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Abstract 

 

 

Cellular processes benefit from evolutionary shaping when optimized 

protein-protein interactions result in enhanced functionality. In fact, most cellular 

proteins are tightly embedded into biological networks that function following a 

modularity principle. Modularity, whether based on components as parts of stable 

protein complexes or as dynamic units that interact only transiently (as in signalling 

and metabolic cascades), facilitates the combinatorial generation of complexity in 

protein networks through the re-wiring of modules in addition to the diversification of 

individual proteins – thereby increasing the “evolvability” of the system. The 

mechanisms that drive the emergence and evolution of molecular recognition in 

protein networks remain unclear. It is difficult to justify such evolution on the basis of 

organismic advantage, since the latter might only be noticeable once full pathways 

and cascades have evolved. It is then likely that the evolution of protein-protein 

interactions is in the first instance driven by a molecular principle of local advantage 

to the protein system itself - for example, molecular stability. Unfortunately, it is 

difficult to gain insights into the evolution of protein-protein interactions since the 

pathways of evolutionary shaping normally let intermediates of evolution disappear. 

Subsequently, conclusions are more usually drawn from the comparison of proteins 

between different species and by mutagenesis probing.  

In the current study, we aim at gaining an insight into the evolutionary shaping of 

proteins surfaces for hetero-complex formation by studying two systems at an early 

stage of development: Tryptophan Synthase B2b (TrpB2b) from S. solfataricus and 

the modular interfaces of the poly-FNIII tandems in the muscle filament titin. In the 

case of TrpB2b, the evolution of inter-subunit communication is addressed in 

addition. Both structures have been elucidated using X-ray crystallography and a 

comparative analysis of their surfaces has been carried out. The architectural elements 

subjected to evolutionary pressure have been identified and conclusions on their 

relation to function and evolution have been drawn. 

 

 



  

 

 

 

 

1 Introduction 

 

 

 

Interactions within and between proteins are influenced by the distinct 

properties (polarity and shape) of participating surfaces. The polarity and shape of 

involved amino acids depends on their atomic composition. Evolutionary shaping 

maximizes the compatibility of surfaces, where temporary and obligate interactions 

can be formed either directly between amino acids or mediated by water. 
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1.1 Polarity of bonds and molecules 
 

When a covalent bond between two atoms is formed the aim is to create a 

noble gas like electron configuration by sharing their electrons. The electronegativity 

difference between the two elements involved in the bond defines the localization of 

the electrons (towards the nucleus of the atom at higher electronegativity, Figure 1.1). 

The asymmetric distribution of the electrons in the binding orbital results in polarity 

of the bond, which is proportional to the difference in electronegativity between the 

nuclei involved. The extreme case is the complete transfer of the electrons from one 

atom to the other in ionic species. Different intra- and intermolecular interactions, 

according to the polarity of bonds/molecules, can be formed: 

 
(i) Van der Waals interactions (London dispersity): result from temporary 

asymmetric electron distribution due to which molecules interact with each other.  

(ii) Dipole-dipole interactions: asymmetric electron distribution creates partial 

charges with a subsequent permanent dipole moment for bonds between atoms of 

medium electronegativity difference. 

(iii) Hydrogen bonds (H-bonds): strong polarization of bonds resulting in permanent 

dipoles with highly asymmetric electron distribution and subsequent creation of 

partial charges. The strong type is found in bonds between hydrogen (H) and 

nitrogen (N), oxygen (O) or fluor (F). The weak type occurs when hydrogen is 

bonded to elements with lower electronegativity (e.g. sulfur or carbon with sp2- 

or sp-hybridization). 

(iv) Ionic/electrostatic interactions: electron transfer from one atom to the other. A 

low percentage of covalent bond character remains. 

 
Hydrogens involved in H-bonds can lose their covalent character (transfer of 

acidic protons). Acidity of these protons (hydrogen cation) depends on the nature of 

the covalent bond and the polarity of its environment. In general, the polarity of a 

molecule is related to the polarity of the bonds within this molecule. It can be 

expressed by the dipole moment, which is the vectorial addition of all the dipole 

moments between the bonds of the molecule. If a molecule is symmetrical, there is no 

overall dipole moment. Aromatic systems (e.g. benzene) are symmetric and have no 

net dipole moment. Aromatic molecules have a greater electron-density on the face of 
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the ring and reduced on its edge, 

which gives rise to a quadrupole 

moment (Waters, 2002 and 

references therein). Aromatic 

interactions have been proposed 

to be composed of 

van der Waals, hydrophobic and 

electrostatic interactions 

(relative contribution is still 

under investigation). Several 

geometries between aromatic 

molecules are attractive. In the 

model of electrostatic ring 

interactions (Hunter & Sanders, 

1991), the charge distribution in 

the %-system is represented by a 

set of point charges. The key 

feature of this model is that it 

considers %-electrons and 

#-bonding systems separately 

and reveals %-%-repulsion and %-#-attractions to be the governing factors in the 

interaction between two aromatic molecules. The T-shaped arrangement 

(edge-to-face, Figure 1.2A) is energetically favored (slightly) over the %-%-stacking 

arrangement (offset stacked, Figure 1.2B) in aqueous solutions. The electrostatic 

component is responsible for orientation of the two molecules respect to each other, 

while Van der Waals interactions seem to be the source of stabilization. 

Not only interactions between aromatic systems can be observed. There are a 

variety of possible interactions from aromatic systems to different interaction 

partners, e.g. H-bonds (%-H-bonds, longer distance and considerably weaker) or 

interactions from the face of the aromatic ring to a cation (%-cation interactions, 

Mitchell et al., 1994; Figure 1.2C).  

 

 
Figure 1.1 Schematic representation of shared 

(valence) electrons in a bond between nuclei with 

different electronegativity difference (!EN). 

The red wedge indicates the change in the bond polarity 
and the electronegativity difference of the nuclei. In 
practice, even an ionic bond has at least a partial covalent 
character (indicated by the green triangle). The image 
was adapted from the homepage of Prof. Grandinetti from 
Ohio-State University (www.chemistry.ohi-
state.edu/&grandi). 
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Thus, the three aromatic amino acids (phenylalanine, tyrosine and tryptophan) 

can form a variety of interactions through their ring-moiety and can be seen as the 

global players in protein-protein interfaces (Meyer et al., 2002 and references therein; 

see also section 1.4.4). 

 

 

1.2 Water 
 

Water is composed of the most frequent (hydrogen) and the third most 

frequent (oxygen) elements in the universe and is the only pure substance found 

naturally in all three states of matter. It is implicated in many biomolecular processes, 

which is due to its polar properties and the fact that the majority of biomolecules act 

in an aqueous environment. As a result, it has been called the “molecule of life”, the 

“matrix of life”, “life’s natural habitat” and similar denominations, that underline its 

biological importance (Finney, 2004).  

A single water molecule is composed of a central oxygen atom (O) forming 

#-bonds to two hydrogen atoms (H) (Figure 1.3A). Two electron pairs complete the 

distorted tetrahedral coordination sphere of the oxygen (104.5° HH-angle vs. 109.5° 

e.g. in methane). The molecule is a dipole (dipole moment: 1.85 D, Clough et al., 

1973) with partial negative charges located in the region of the oxygen atom and 

partial positive charges on each of the hydrogen atoms (Figure 1.3B). 

 

A      B   C 

 
Figure 1.2 Geometries of aromatic interactions in proteins. 

(A) edge-to-face (B) offset stacked (also observed in DNA base stacking). The two geometrical 
arrangements (A/B) are energetically almost equivalent (image from Waters, 2002). (C) Binding 
mode of the anti-Alzheimer drug E2020 in the active site of acetylcholinesterase from Torpedo 

californica (image adapted from Meyer et al., 2002). Interactions between aromatic residues as well 
as from aromatic residues to other polar species can be observed. 
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The areas with different charges between water molecules are attracted to each 

other (H-bonding). This attraction explains many properties of water (e.g. its high 

melting point compared to binary hydrogen compounds of the direct neighbors of 

oxygen in the Periodic System of Elements). The energy of this H-bond is 

approximately 20 kJ/mol, which is in between that of an ionic and a Van der Waals 

interaction.  

The preferred coordination geometry of water is tetrahedral (four-coordinated 

motif), which is central to liquid and solid water (Figure 1.4A). Neutron diffraction 

experiments indicated the existence of three-coordinated waters as well. The close 

location of the two lone-pairs results in a broad area with negative charge (Figure 

1.4B) that even allows five-coordinated waters (Finney, 2004). This reflects the 

highly dynamic behavior and fluctuation of H-bonds in liquid water with average of 

four-coordinated water and a broad variety of OOO angles. 

Water also shows an amphoteric character: dissociation to protons (H+) and 

hydroxyl ions (OH-). Other water molecules abstract protons to form hydroxonium 

ions (H3O
+). The conduction of the excess proton in liquid water is very high. 

Electron and neutron Compton scattering experiments indicated an effect ascribed as 

attosecond quantum entanglement of protons (Chatzidimitriou-Dreismann et al., 

2003): neutrons and electrons colliding with water are scattered. The scattering 

indicates, that they are affected by a ratio of 1.5:1 of hydrogen to oxygen (in the 

attosecond timescale, 10-18 s). It has been suggested that in these timescales water 

reacts rather like H3/2O instead of H2O.  

A      B 

 
Figure 1.3 Geometry of water.  

(A) Average geometry of a water molecule (adapted from Finney, 2004). (B) Contours of total 
electron density in the HOH plane, from quantum mechanical calculations by Hermansson (1984) 
with added partial charges. 
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1.3 Solvation of molecules: hydrophobicity/hydrophility 
 

The hydrophilic and/or hydrophobic properties of a given molecule dictate its 

behavior in a polar aqueous solution since, in general, favorable interactions are 

formed between groups of similar nature. A “hydrophile” is a molecule that has a 

certain polarizability or intrinsic polarity. The interaction between a hydrophile 

(functional group or molecule) and water obeys the requirements of a tetrahedral 

coordination and sufficient H-bonding.  

The term “hydrophobicity” is commonly used to describe the low solubility of 

non-polar groups in water. A classical qualitative explanation of the hydrophobic 

effect is based on the weak interactions between water and non-polar substances 

versus the strong H-bonding interactions (high cohesive energy density) in the matrix 

of water (Lazaridis, 2001). Water adopts a clathrate-like arrangement around small 

non-polar solutes. These solutes do not aggregate but their clathrate cages share an 

interface that separates the cavities occupied by the solutes. Larger solutes are too big 

for clathrate cages. The resulting aggregation minimizes the exposed area of these 

molecules to water (Dill et al., 2005). When a molecule contains polar as well as 

non-polar regions it is termed an amphiphile (e.g. lipids). 

A              B 

 
Figure 1.4 Coordination sphere of water.  

(A) Representation of the tetrahedral coordination sphere of a water molecule. Each of the upper 
partners in the sphere donate a H-bond and each of the lower partners accept one, respectively. 
Dashed lines indicate H-bonds. The color code is as in Figure 1.3. (B) Spatial distribution function, 
which illustrates through lobes the average distribution of neighboring water molecules in liquid 
water (images adapted from Finney, 2004).  
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The organized folding behavior of proteins placed in aqueous environments is 

driven by the polar properties of water. It is important to understand protein 

three-dimensional structure as having evolved in water.  

 

1.4 Proteins 
 

Proteins are the most complex and abundant biomolecules in Nature. They 

must fold into complicated three-dimensional structures to become active (see section 

1.4.1). The three-dimensional arrangement (fold) of the polypeptide chain is 

determined by the properties (e.g. size and polarity) of its amino acids. However, the 

mechanism underlying the folding event on the basis of sequence is currently not 

understood.  

Protein sequences are shaped by a complex interplay of different selective 

pressures. The increasing number of sequenced genomes gives more and more 

insights into relationships between proteins of different organisms and their putative 

mechanisms of evolution. However, protein evolution is still poorly understood. It has 

been shown that a large number of known structures belong to a surprisingly small set 

of basic folds, so that the evolution of proteins is believed to be due to duplication and 

combination of a limited “toolkit” of domains (see sections 1.4.2 & 1.4.3). In 

addition, the native structure and functionality of a protein are often dependent on 

specific association states. This oligomerization can involve copies of a same protein 

(self-assembly) or can involve hetero-complexation with other proteins or 

biomolecules. It can also be of a transient or permanent (obligatory) nature. To date, 

little understanding exists of how the necessary macro-molecular recognition process 

as well as inter-subunit communication has evolved in the independent components to 

generate complex functional assemblies.  

 

 

1.4.1 Protein folding 

 

Protein folding is thought to be driven by hydrophobicity (Tanford, 1978; 

Rose et al., 1985). Globular proteins are characterized by a tight packing of 

hydrophobic side-chains in the so-called “hydrophobic core”. Formation of many 

favorable van der Waals interactions as well as exclusion of solvent molecules 
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maximize hydrophobic stabilization (Dill, 1990). Classical hypotheses describe the 

folding process of a polypeptidic chain as a nearly sequential series with discrete 

intermediates, where folding is initiated by the hydrophobic-collapse of the unfolded 

chain. In the next step, specific interactions are optimized; this fine-tuning shifts the 

equilibrium further towards the native state. Specific electrostatic interactions play a 

critical role in reaching the native fold as well as in stabilizing secondary structure 

elements, which assemble further by mutual conformational selection into folding 

units. These units contain a sufficiently large, buried, hydrophobic core and are 

capable of independent thermodynamic existence. One or more hydrophobic core 

units associate to form domains. Domains associate to subunits and subunits associate 

to form quaternary structures (Kumar & Nussinov, 2002 and references therein). 

The energy landscape theory of folding considers multiple pathways of 

organization of partially folded intermediates towards the native fold. A funneled 

energy landscape (Figure 1.5) is responsible for the robust ability of proteins to fold 

(Onuchic & Wolynes, 2004).  

 
Figure 1.5 Schematic energy landscape for protein folding and aggregation.  

The surface shows the multitude of conformations “funneling“ towards the native state via 
intramolecular contacts (adapted from Jahn & Radford, 2005).  
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The surface of the folding funnel is specific of each polypeptide sequence and 

is determined by both kinetic and thermodynamic properties of the folding chain. In 

general, small single domain proteins (<100 residues) reach the native state in a 

sub-second timescale (smooth folding landscape with two species populated separated 

by a transition state barrier). Larger proteins (>100 residues) reveal a rougher energy 

surface with folding intermediates. In large multidomain proteins different regions 

fold in parallel, while a final step establishes all native intra- and interdomain contacts 

(Jahn & Radford, 2005 and references therein).  

Partially folded states along the landscape may form favored intermolecular 

interactions resulting in aggregation. These aggregates can be the source of disease 

(Jahn & Radford, 2005). For example, amyloid fibrils are found to be insoluble 

deposits of aggregates involved in disorders like Alzheimer’s and Parkinson’s disease 

as well as type II diabetes and Creutzfeld Jacob disease. 

Thermophilic adaptation of proteins can give insights into those factors that 

stabilize the fold of proteins without affecting their functionality. Stabilizing 

interactions have been suggested based on a comparison of structures of homologous 

pairs from mesophiles and thermophiles (Jaenicke & Böhm, 1998; Sterner & Liebl, 

2000): 

 

(i) Increased H-bonding (higher side-chain involvement an more satisfied 

H-bonding pattern) 

(ii) Networks of improved electrostatic interactions 

(iii) Optimized hydrophobic interactions 

(iv) Higher packing density (lower number, volume and area of cavities) 

(v) Increased polar surface areas  

(vi) Higher "-helical content and stability 

(vii) Binding of metal ions 

(viii) Fixation of the termini to the protein core 

(ix) Shortened solvent exposed loops 

(x) Residues with energetically unfavorable conformations mutated to Gly 

(xi) Higher Pro and $-branched residue content in loops 

(xii) Oligomer formation 

(xiii) Reduced Asn, Gln, Cys and Met content (thermolabile amino acids). 
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Additionally, stabilizing effects were suggested on the basis of comparison of 

sequences in the genomes of mesophilic and thermophilic organisms: 

  

(xiv) Decreased polar uncharged residues (Asn, Gln, Ser, Thr; Haney et al., 1999) 

(xv) Increased charged residues, especially Glu, Arg, Lys (Cambillau & Claverie, 

2000). 

(xvi) Lower average size of thermophilic proteins (Chakravarty & Varadarajan, 

2000). 

 

A problem in the analysis of hydrophobic interactions is the temperature 

dependence of hydrophobic stabilization. The effect is enthalpic at room temperature 

and entropic at higher temperatures with the maximum at 75°C 

(Makhatadze & Privalov, 1995). On the contrary, the stabilizing effect of electrostatic 

interactions has been suggested to be proportional to temperature (Elcock, 1998; 

Xiao & Honig, 1999). Due to the lack of information on stabilizing effects of other 

interactions a general model for thermophilic stabilization is not possible at this time 

(Sterner & Liebl, 2001). 

 

1.4.2 Protein fold families 

 

The data retrieved by sequencing of genomes of organisms from all three 

kingdoms of life together with structural data derived from X-ray crystallography and 

NMR experiments is expanding our knowledge of structural families. Methods for the 

detection of sequence similarity have also advanced over the past years resulting in a 

gain of sensitivity. These advances make it possible to map domains from structural 

families onto genome sequences. The procedure reveals how protein families are 

distributed throughout the genomes and how they might influence functional 

repertoires and biological complexity. 

There seems to be a universal set of domain families (approx. 140) throughout 

the three kingdoms of life. Families involved in protein biosynthesis are the largest 

conserved group in this universal set (Figure 1.6A & B). Approximately half of the 

domain sequences of organisms with known genome have been recognized as 

relatives of CATH families. CATH (Gerstein & Levitt, 1997) is a domain structure 
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database that hierarchically classifies protein domain structures and organizes them in 

a Dictionary of Homologous superfamilies (DHS; Pearl et al., 2005). For a scheme 

showing the distribution of frequently assigned folds see Figure 1.6C. 

 

 

1.4.3 Protein evolution 

 

Proteins that share a common ancestor are called “homologous”. They share a 

common three-dimensional fold (to a certain extent) and, often, also share common 

active sites or binding domains. Homologous sequences can be divided into orthologs 

(occur in different species) and paralogs (originating from a gene duplication event). 

The rate of divergence varies for each protein family investigated. Thus, the number 

of differences cannot be used to estimate the period over which the proteins diverged. 

This is particularly true for paralogs, since once a sequence has duplicated it may 

change very rapidly before selective pressure on its new function slows its rate of 

change. 

Usually, sequence conservation occurs in the evolution of a protein when the 

selective pressure on different amino acids is high due to functionality. Conserved 

sequences normally have conserved functions. However, the conservation of function, 

not the conservation of sequence, is desired (Kirschner & Gerhart, 1998). Function 

A    B   C 

 
Figure 1.6 Protein families and folds.  

Average proportions of genome sequences in common protein (A) and domain (B) families. (A/B)  
Numbers in the segments of the circles indicates whether a fold is present in one, two or three 
kingdoms of life or is unique (u) to one of them. The numbers around the diagrams represent the folds 
corresponding to the wedges in the diagram. (C) Distribution by fold in the CATH database. The 
angles subtended by the sectors correspond to the frequency of occurrence of the protein folds, 
measured by the number of close sequence families within each fold group (adapted from 
Marsden et al., 2006). 
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can be retained even with a low homology. Nevertheless, structural conservation is 

normally higher than sequence conservation and allows detection of remote 

homologies, for which all similarity has been washed out from the sequence 

(Marsden et al., 2006).  

To this date, efforts to understand protein evolution have mostly focused on 

domains (Figure 1.7), the independent folding units from which modern proteins are 

formed. Analyses have confirmed the extent to which some very common domains 

are duplicated, shuffled within a genome and combined in different ways 

(Vogel et al., 2004a). This follows a mosaic model of constructing new proteins that 

can subsequently evolve modified functions, thereby expanding the functional 

repertoire of the organism (Vogel et al., 2004b).  

 

 

 

 
Figure 1.7 The role of domains in protein evolution.  

Overview of different aspects of multidomain proteins: the repertoire of domain superfamilies and their 
role in the formation of multidomain proteins by duplication and recombination, and the geometry and 
functional relationship of domains within these combinations. Domains belonging to the same 
superfamily are represented by rectangles of the same colour. Supradomains are two- or three-domain 
combinations, which occur in different architectures with different N- and C-terminal neighbours, as 
shown in the second panel. These short series of domains form functional units that are reused in 
different protein contexts (adapted from Vogel et al., 2004). 
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In the evolution of proteins and the complicated interactions between them, 

the coupling of processes can be separated into strong and weak linkages: 

 

(i) Strong linkage: strong dependence of one process on another occurs when two 

or more proteins aggregate into an active complex or when the product of an 

enzyme is the substrate of another enzyme. Steric requirements are high, and 

the complementary fit of surfaces of interacting components is precise. This 

formation of obliged, strictly interconnected complexes imposes a “forced 

proximity” that ensures a rapid information exchange between subunits (for 

example, substrate transfer) and eliminates delays that could result from 

cytosolic crowding and diffusion limitation. It can also provide a unique, local 

physicochemical environment leading to an increase in molecular stability, 

specificity, affinity and even enhanced activity through cooperativity.  

(ii) Weak linkage: activity of a process depends minimally on other components 

or processes. Weak linkage often occurs in regulatory pathways, e.g. signal 

transduction, neural relays or transcriptional control circuits. The components 

often have switch-like capacity to exist alternatively in active and inactive 

states, and signals release the innate activity. Weak linkage shows tolerance, 

flexibility and robustness. 

 

Thus, the capacity of a lineage to evolve (evolutionary adaptability or 

“evolvability”) depends on the linkage of the components. Evolvability is higher for 

proteins that are able to interact with common structural elements (Beltrao & Serrano, 

2007). Based on the analysis of atomic structures and kinetic data, three pathways for 

the evolution of protein dimers (also applicable to other oligomers) have been 

suggested (Xu et al., 1998). The first pathway involves formation of a functional 

dimer directly without going through an ancestor monomer. In the second pathway, 

residues in stable monomers mutate towards a complementary surface. Such dimers, 

evolved from ancestral monomers, are likely to have small interfaces with few key 

residues critical for binding. Third, the domain swapping mechanism replaces one 

segment in a monomer by an equivalent segment from an identical chain to form a 

dimer. These dimers contain at least one stable domain in a chain.  
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Units within a dimer can further evolve by gene duplication, which can 

initialize functional divergence (Pereira-Leal et al., 2007; Figure 1.8) to form large 

protein complexes. Oligomerization of paralogs and identical chains seems to be key 

to the evolution of protein-protein networks (self-interacting proteins have twice as 

many functionally related interaction partners as non-dimers; Ispolatov et al., 2005). 

In fact, most cellular proteins are tightly embedded into biological networks that 

function following a modularity principle. The recognition of this principle has 

recently triggered the study of protein-protein interactions in complexes, pathways, 

and even complete organisms, that has become the new paradigm in protein biology. 

Modularity, whether based on components as parts of stable protein complexes or as 

dynamic units that interact only transiently (as in signaling and metabolic cascades), 

facilitates the combinatorial generation of complexity in protein networks by allowing 

the re-wiring of modules to add to the diversification of individual proteins. This 

increases the “evolvability” of the system and facilitates the accommodation to 

novelty through accumulation of non-lethal mutations.  

The mechanisms that drive the emergence and subsequent evolution of 

modularity in cellular networks remain unclear to this date. 
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A 

 
B 

 
Figure 1.8 Hypothesis for origins and evolution of protein complexes. 
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Figure 1.8 Hypothesis for origins and evolution of protein complexes. 

(A) Gene duplication with conservation of protein-protein interactions is frequent. Self-interactions 
have special structural properties that are conserved into the duplicated interaction between paralogous 
proteins (light-dark interaction). Interactions between paralogous proteins are more versatile 
functionally and structurally, and are systematically selected in the evolution of protein interaction 
networks and complexes. (B) Hierarchical modularity in biology. (a) Modularity at the protein level - 
proteins consist of modules formed by domains. The S. cervisiae uridylate kinase [1ukz] contains a 
single P-loop containing nucleotide triphosphate hydrolase domain as defined in the SCOP database 
(Murzin et al., 1995; Andreeva et al,. 2004). A domain from the same superfamily is also found in the 
multi-domain protein EF-TU from T. thermophilus [1exm], also shown as a red cartoon. The two other 
domains belong to the SCOP superfamilies translation proteins (pink) and EF-TU/eEF-1alpha/eIF2-
gamma C-terminal domain (violet). (b) Modularity at the cellular level - most proteins work in a 
cooperative manner with other proteins and form functional modules. Three distinct types of functional 
modules are shown: (i) a protein complex - the B. taurus ATP synthase [1e79]. Here six protein chains 
(three red and three orange) that all contain the P-loop containing nucleotide triphosphate hydrolase 
domain (cartoon representation) as well as several other domains, assemble and form a ring; (ii) a 
signalling pathway - mating response MAPK pathway in yeast (Schwartz & Madhani 2004); (iii) a 
metabolic pathway - mevalonate pathway. (c) The diversity of cellular types is a consequence of the 
distinct arrangement of modules at lower levels, and cells are themselves modules from which tissues 
are built, such as the dendritic cells (grey) and lymphocytes (green) shown here (images adapted from 
Pereira-Leal et al., 2006/2007) 

 

1.4.4 Protein-protein interactions 

 

Protein-protein recognition is essential to a variety of cellular processes. It is 

implicated e.g. in signal transduction, antigen-antibody binding, regulation of gene 

expression, enhancement of structural stability and functionality. There is a huge 

variety of homo- and hetero-multimers, where the multimer represents the 

biologically active state. The strength of contacts at protein interfaces can even 

exceed that of the core of the proteins involved (Brinda & Vishveshwara, 2005). 

Several variables are involved in protein-protein interactions (Levy & Onuchic, 

2006): 

 

(i) Protein side-chain and backbone flexibility 

(ii) Solvent effects 

(iii) Hydrophobic/non-polar interactions 

(iv) Electrostatic interactions/H-bonds 

 

The strength of non-covalent interactions is lowest for hydrophobic 

interactions (!10 kJ/mol) followed by H-bonds (!20 kJ/mol) and highest for salt 

bridges (!30 kJ/mol). The contribution of hydrophobic residues to the stabilization 

energy of interfaces is similar to the stabilization energy in protein folding 

(Guharoy & Chakrabarti, 2005). Several studies have reported that electrostatic 
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interactions can accelerate recognition by the long-range attraction that controls the 

formation of the complex. The interface gains stability by forming hydrophobic 

contacts and H-bonds (Levy & Onuchic, 2006 and references therein).   

The biophysical characterization of protein-binding interfaces has been 

achieved through Ala-scanning mutagenesis (Clackson & Wells, 1995; DeLano et al., 

2000; DeLano, 2002). A hot spot has been defined as a residue that, when mutated to 

Ala, leads to a significant drop in the binding constant (typically 10-fold or higher) as 

determined by the change in the free energy of binding (!!G). Positioning of a 

residue in the core region of an interface and simultaneous H-bonding make it critical 

for binding (Guharoy & Chakrabarti, 2005). Systematic analysis identified Arg, Tyr 

and Trp as common hot spots, since these residues occur with high frequency and 

provide strong interface stabilization (usually '2 kcal/mol; Thorn & Bogan, 2001; 

Bogan & Thorn, 1998).  

Every interface between two proteins can be divided into core (buried region) 

and rim (partially solvent accessible region surrounding the core) with an average area 

contribution of 75 % (core) and 25 % (rim). These results have been obtained from 

interfaces of homodimers (Bahadur et al., 2003) and complexes (Chakrabarti & Janin, 

2002). Composition of the core is similar to the protein interior and composition of 

the rim similar to the protein surface. The rim region shows preference for conserved 

Gly. This residue (together with Pro) has been suggested to have a structural role. Leu 

and aromatic residues are the highest ranked core residues. Arg, an interface hot spot 

residue, can be observed frequently in both regions (the rim and the core), which is 

likely due to its ability to form hydrophobic as well as polar interactions 

(Caffrey et al., 2004). In general, residues involved in formation of interfaces are 

usually more conserved than the remainder of the protein surface (core- over 

rim-conservation, Guharoy & Chakrabarti, 2005). Interfaces of homodimers show a 

lower degree of conservation than other interfaces. Gaps in interface-forming 

sequence patches are more frequent in transient interfaces (Caffrey et al., 2004).  

Protein-protein interfaces have been investigated extensively, e.g. 

Cole & Warwicker (2002), Bahadur and coworkers (2003), Chakrabarti & Janin 

(2002), Guharoy & Chakrabarti (2005) and Ofran & Rost (2003). These studies differ 

in several aspects, e.g. the number of investigated structures or the groups of 

multimers defined. The challenge in this case is to intercorrelate their results, which 
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are in part contradictory, since results vary with the interface groups defined by the 

authors. Thus, a clear principle for the formation of interfaces is yet to be established. 

Nevertheless, some tendencies and preferences in residues and hot spots in interfaces 

have been found. The largest set of non-redundant interfaces has been investigated by 

Ofran & Rost (2003). The authors differentiated between interfaces within one chain 

(groups i and ii below), which are relevant to protein evolution, fold and functionality; 

and those formed between two chains (groups iii to vi) that are characterized by the 

chains involved (identical vs. different) and the duration of interface formation 

(transient vs. permanent). The data given in other publications have been added here 

to the classification by Ofran & Rost:  

 

(i) Intra-domain: within one structural domain. Aliphatic and aromatic residues are 

overrepresented. The hydrophobic effect dominates the fold (this can also 

involve aliphatic moieties of charged residues).  

(ii) Domain-domain: between different domains in one chain, which can be regarded 

as an intermediate between binding and folding surface. The amino acid 

composition of the interface resembles that of hetero-obligomers below 

(independently folded chains) since domain-domain (independently folded units) 

interfaces also show amino acid compositions similar to that of a protein surface 

(Jones et al., 2000).  

(iii) Homo-obligomer (from obligate oligomer): permanently interacting identical 

chains show preference for interactions between identical amino acids. The 

average subunit interface is bigger than in complexes. Non-polar interactions 

dominate interface. The most abundant residues are Leu and Arg (with Asp, Glu 

and main chain carbonyl as acceptors for the satisfaction of polarity), followed 

by other aliphatic residues (Val, Ile, Met). Interfaces are enriched in aromatic 

residues (Bahadur et al., 2003). Defined protein aggregation can be critical for 

the pathway to the native fold (coupled binding/folding event in homodimers).  

(iv) Homo-complex: between transiently interacting identical chains. Depleted in salt 

bridges, under-represented in Trp (compared to other interfaces) and rich in 

contacts between identical residues. Binding of homodimers occurs between 

already folded monomers (Levy & Onuchic, 2006).  
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(v) Hetero-obligomer: between permanently interacting different protein chains. 

Depleted in hydrophobic residues compared to homo-multimers (groups iii and 

iv together). 

(vi) Hetero-complex: between transiently interacting different protein chains. 

Preference for Arg over Thr as well as enriched in aromatic residues in the core 

region. Charged residues are depleted (except Arg). The rim region resembles the 

remainder of the surface. The aromatic residues Phe and Tyr have been suggested 

to be the main driving force for interface formation (Chakrabarti & Janin, 2002). 

Hydrophobic residues interact to the aliphatic moieties of charged residues. 

 

The divergent composition of these protein-protein interfaces (i to vi) as 

investigated by Ofran & Rost (2003) is illustrated in (Figure 1.9).  

In general, protein-protein interfaces are depleted in Lys, Ser, Gly and Ala 

residues and show high preference for aromatic residues as well as Arg, His and Met. 

The Arg residues preferentially interact with the acidic residues across the interface. 

Aromatic and hydrophobic residues form interactions to each other and within their 

Figure 1.9 Composition of the six interface types defined by Ofran & Rost (2003).  
The propensities of all residues found in SWISS-PROT were used as background. If the frequency 
of an amino acid is similar to its frequency in SWISS-PROT, the height of the bar is close to zero. 
Over-representation results in a positive bar, and under-representation results in a negative bar. The 
amino acid residues are identified by their one-letter code, sorted by biophysical features. 
Residue-residue preferences are shown in Figure 6.1 in appendix 6.2. 
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groups. Biophysical similar residues (e.g. Leu and Ile or Asp and Glu) show similar 

trends across the different types of interfaces. Hydrophobic interactions are more 

frequent in permanent over transient interfaces (Jones & Thornton, 1997; 

Lo Conte et al., 1999).  

Water is also of importance in protein-protein interactions. A dominant role of 

water in binding is obviously expected especially in hydrophilic interface regions. The 

involvement of a water molecule is favorable when the enthalpy gain is higher than 

the entropic cost for immobilization (for protein folding and interface formation). On 

the other hand, bulk solvent exclusion, allowing direct protein-protein contacts, 

creates a favorable hydrophobic effect (Levy et al., 2004). The aliphatic moieties of 

hot spot residues are usually surrounded by hydrophobic residues to occlude bulk 

water. The analysis of crystal structures revealed that a number of water molecules 

remain at interfaces and contribute to their stability (10-11 waters per 1000 Å2 in 

oligomers and complexes, 15 in crystal contacts). Preferred amino acids with water 

mediated interactions are: Asp, Glu and Arg. Waters involved in interface formation 

can form rings around the interfaces as well as being buried within (Rodier et al., 

2005).  

Determinants of protein-protein interfaces constitute hot spots, where a small 

fraction of residues cluster together resulting in strong stabilization. Interface hot spot 

residues are often those capable of forming the highest amount of different 

interactions: Arg (hydrophobic, H-bonds, electrostatic) and Tyr/Trp (hydrophobic, 

H-bonds, %-interactions). The folding of a protein can be seen as a hierarchical 

interface formation procedure: secondary structure elements form interfaces towards a 

domain-fold, domains form interfaces resulting in a pseudo-quarternary structure 

within one chain and different chains associate over interfaces to shape the 

quarternary structure of a protein. Relative contributions of hydrophobic and 

hydrophilic interactions differ in protein folding and association (Xu et al., 1998). In 

this scenario, temporary interfaces represent either an evolutionary intermediate of 

process enhancement (see Figure 2.4) or interaction between units that have to be 

reversible (e.g. receptor-ligand complexes). Thus, the relationship of protein 

association between the interfaces of different hierarchical levels should be seen as a 

fluent process of evolutionary shaping, where increasing hydrophobicity is 

characteristic of a more obligate interface.  
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1.5 Aim of this work 
 

The focus of this work was to investigate the structural basis of protein-protein 

interactions at different stages of evolutionary shaping using X-ray crystallography 

and homology modeling. Two protein components have been the primary target of 

this study: Tryptophan Synthase B2 from S. solfataricus and the poly-FNIII tandems 

from the A-band region of the human muscle filament titin. 

Tryptophan Synthase (TrpS) is a metabolic enzyme from the tryptophan 

biosynthesis pathway that catalyzes the last two steps in the synthesis. It is a hetero-

enzyme, whose quaternary structure is composed of a TrpA and TrpB subunits. This 

hetero-assembly has developed an intersubunit communication in the form of 

substrate channeling and mutual allosteric regulation that results in a direct catalytic 

advantage. However, ancestral TrpA and TrpB enzymes that either complex only 

transiently and have an impaired allosteric communication or even do not interact at 

all, have been retained in archae organisms. Structural changes in the enzyme 

products further correlate with gene translocation events within the genome, where 

genes coding for interacting forms of the enzymes have become incorporated into 

operon units subjected to a common regulation of their transcription. This makes of 

TrpS an ideal model system for the study of protein network evolution. In this work, 

we analyze an early snapshot of TrpB evolution, corresponding to a form of this 

enzyme (TrpB2b) that does not interact with TrpA and whose gene is not part of the 

trp-operon.  

A frequent mechanism of protein evolution is the duplication, shuffling and 

combination in various ways of smaller independent folding units (domains). In this 

way functional complexity can be achieved by the re-wiring of a limited set of 

common building blocks. This mechanism often leads to the formation of the more 

complex multi-domain proteins encountered in higher organisms. In these, the 

evolution of domain-domain interactions is essential to the integration of the different 

modules into a global functional unit. In order to analyze whether the evolution of 

domain-domain interactions resembles that of inter-subunit recognition and 

communication in obligate hetero-assemblies, we have explored the structure of the 

FNIII-double tandem A77-A78 from the A-band of titin. This region of the filament is 

characterized by its composition of distinct super-repeats of IG- and FNIII-domains. 

The strictly regular domain pattern is thought to have arised by gene duplication 
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events. Contrary to the poly-IG fractions of the filament for which several tandem 

structures are now available, no atomic models of FNIII tandems of titin others than 

the one contained in this work exist to date. We have analyzed the structure of the 

A77-A78 tandem and extracted conclusions on evolutionary changes in tandem 

interfaces that modulate transition properties within the modular super-repeat 

structure. The building blocks of this modular system share a high similarity but a 

small subset of residues is responsible for their mutual arrangement. Here we 

speculate that changes at the linker regions might be the primary determinant of new 

discrete functions correlating with modular positions, for example relevant to myosin 

assembly. 
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2 SsTrpB2b: an ancestral Tryptophan 

Synthase 

 

 

Tryptophan biosynthesis takes place in free-living prokaryotes, lower 

eukaryotes and higher plants. It comprises seven catalytic activities (from chorismate) 

that are organized in a trp-operon (Yanofsky, 2003 and 2001, figure below). The 

structural inventory of all seven enzymes from this pathway has been completed and a 

wealth of data on their biochemistry and evolution exists – making this the second 

major metabolic route under study after the glycolysis. Further, the increasing 

availability of multiple genome sequence records makes of this pathway a unique 

model for the investigation of multi-level protein network modularity.  

According to the organism under consideration, Trp enzymes can exist as 

individual components or as dual, fusion proteins with enhanced catalytic properties. 

Moreover, operon and non-operon variants – allegedly evolutionary remnants – 

remain available in several genomes. This is particularly the case for Tryptophan 

Synthase (TrpS), which catalyzes the last reaction in this biosynthesis. In the TrpS 

family, three enzyme classes exist with different association properties and allosteric 

communication. They represent different evolutionary states of macromolecular 

recognition and integration within a modular network. This work aims at the 

comparison of representatives from these families at the molecular level, where TrpS 

is to serve as a paradigm to determine the evolutionary shaping required to achieve 

specific recognition, assembly and inter-subunit communication as well as modulation 

of activity during network evolution.  
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2.1 Abstract 
 

There are two evolutionarily related families of the Tryptophan Synthase 

(TrpS) $-subunit, termed TrpB1 (gene always located inside the trp-operon) and 

TrpB2 (gene inside and/or outside the trp-operon). They show different association to 

TrpA and different allosteric communication depending on the location of the 

corresponding gene: transcripts encoded by genes inside the operon form 

hetero-tetramers with TrpA (permanent in the case of TrpB1 and transient in TrpB2), 

while transcripts (TrpB2 only) encoded by genes outside the operon lack these 

association properties. TrpB1/TrpA hetero-obligomers show mutual allosteric 

communication, but TrpB2/TrpA hetero-complexes accelerate only the TrpA reaction. 

While the TrpB1 family has already been structurally investigated, the atomic 

structure of a TrpB2 enzyme is yet to be determined.  

We elucidated the first structure of a non-operon encoded Tryptophan 

Synthase from the hyperthermophilic Archeon Sulfolobus solfataricus (SsTrpB2b) 

using X-ray crystallography. The structure of TrpB2b reveals unique structural 

features built upon a protein core common to both families. The main-differences 

between TrpB1 and TrpB2 family members cluster in the TrpA interface region 

indicating that this governs the association properties and allosteric communication of 

these enzymes. The different structural organization of SsTrpB2b respect to TrpB1 

suggests that segments common to both TrpB families as well as unique elements 

contribute to the SsTrpB2/SsTrpA interface with subsequent activation of TrpA. The 

different structural organization of TrpB2 family members and the altered sequence in 

common structural elements are responsible for the lack of allosteric communication 

from TrpA to TrpB2. The allosteric path of TrpB1/TrpA obligomers is likely to have 

evolved after establishment of a permanent interaction between these two proteins. 
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2.2 Introduction: Tryptophan Synthases 
 

2.2.1 Pyridoxal-5’-phosphate (PLP, vitamin B6)-dependent enzymes 

 

Pyridoxal-5’-phosphate (PLP, vitamin B6)-dependent enzymes are classified 

into four unrelated families (", $, D-Ala aminotransferase and Ala racemase families; 

Table 2.1), characterized by independent folds (Christen & Mehta, 2001).  

 

Table 2.1 Structural classification of PLP-dependent enzymes.  

Family Prototype 

" Asp aminotransferase 

$ Trp Synthase (TrpB subunit) 

D-Ala aminotransferase D-Ala aminotransferase 

Ala racemase Ala racemase 

 

The " family is the largest among the four families and shows the lowest 

internal structural homology. The $ family, the second largest, is structurally rather 

uniform. The remaining D-Ala aminotransferase and Ala racemase families are small 

and comprise three and four members, respectively. 

 

2.2.2 Tryptophan Synthases 

 

Tryptophan Synthase (TrpS, EC 4.2.1.20) forms a hetero-obligomer type 

multienzyme complex composed of TrpA ("-subunit) and TrpB ($-subunit). The 

quarternary structure of the enzyme is heterotetrameric (Hyde et al., 1988) with a 

central $2-dimer and two "-subunits that interact with opposite faces of the dimer to 

form a linear "$$" arrangement. Formation of this quaternary structure enhances the 

catalytic activity of both TrpA and TrpB components two orders of magnitudes (for 

Salmonella typhimurium, Miles, 1995). The enzyme catalyses the last two steps in the 

biosynthesis of Trp, also called "$-reaction (Figure 2.1), where each reaction is 

catalyzed by one subunit of the enzyme. 
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The active sites of TrpA and TrpB are connected via a tunnel (approx. 25 Å 

length, Figure 2.2). The hydrophobic character of the tunnel supports the diffusion of 

the product of the "-reaction (indole) to the active site of the $-subunit 

(Hyde et al., 1988). A tunnel between active sites of two enzymes catalyzing distinct 

reactions was first observed in TrpS from Salmonella typhimurium by Hyde and 

coworkers (1988). Meanwhile similar channeling has also been observed in other 

enzymes (e.g. Carbamoyl Phosphate Synthetase or Glutamate Synthase; 

Raushel et al., 2003). 

The genes TrpA and TrpB, forming the multienzyme complex, are located on 

a same trp-operon. The genome sequencing of thermophilic microorganisms revealed 

an additional gene for a $-subunit outside the trp-operon. TrpB genes became then 

called trpB1 and trpB2, to refer to operon and non-operon copies respectively 

(Hettwer & Sterner, 2002). TrpB1 and TrpB2 protein products have distinct sequence 

features (as described below). To date trpB2 genes seem to be almost exclusive of 

Archea. They have been found in all but five species in the group of Euryarchaeota 

(Methanococci, Methanopyri and Halobacteria). More recently, it has become known 

that organisms can contain diverse combinations of trpB genes, including a 

trpB1/trpB2 combination (e.g. Thermotoga maritima) or two trpB2 genes 

(e.g. Sulfolobus solfataricus). While the trpB1 gene is always located in the 

 
Figure 2.1 Reactions catalyzed by TrpS.  

The physiological main-reaction is shown, side-reaction (elimination) yielding pyruvate is not 
shown (image from Hettwer & Sterner, 2003). 
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trp-operon, in organisms with two trpB2 genes one trpB2 gene (trpB2a) is in the 

trp-operon and the other outside (trpB2b). Transcripts from TrpB proteins from this 

operon have been found to bind to TrpA, where TrpB1 forms hetero-obligomers and 

TrpB2a hetero-complexes. Non-operon TrpB2b transcripts lack the capability to 

interact with TrpA, (Leopoldseder, 2005; details below).  

The transcripts of these genes form phylogenetically separated groups, termed 

the TrpB1 and TrpB2 families (Hettwer & Sterner, 2002). Sequence identities within 

each of the families are approximately 60%, while they are lower between them 

(approx. 30%). Comparison of the TrpB1 structure from Salmonella typhimurium 

with sequence alignments of TrpB2 enzymes revealed clusters of conserved residues 

at the active site suggesting a common catalytic activity. However, a long N-terminal 

extension and two insertions in the vicinity of the TrpA interface suggested an altered 

association with TrpA (Hettwer & Sterner, 2002). 

 
Figure 2.2 Three-dimensional structure of StTrpS (Hyde et al., 1988).  

The indole tunnel (shown in the lower moiety of the obligomer) passes from the active site of 
TrpA (blue) and the two domains TrpB1 (yellow/red) to PLP (also shown in the upper moiety of 
the second TrpB1 monomer) at the active site (modified from Miles, 2001).  
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Figure 2.3 Phylogenetic tree of the two sequence families of TrpB proteins.  

The TrpB1 family with representatives from mesophilic (regular type) and hyperthermophilic 
microorganism (in bold). The TrpB2 family has been found exclusively in hyperthermophiles. The 
two kingdoms where TrpB2 proteins have been found are indicated (A, archaeon; B, bacterium). The 
image was adapted from Hettwer & Sterner (2003). Abbreviations for organisms: AERPE  

Aeropyrum pernix; ARCFU Archaeoglobus fulgidus; AQUAE Aquifex aeolicus; BACST Bacillus 

stearothermophilus; BACSU Bacillus subtilis; ECOLI Escherichia coli; METJA Methanococcus 

jannaschii;  METTH Methanobacterium thermoautotrophicum; METTM Methanobacterium 

thermoautotrophicum (strain Marburg / DSM 2133); METVO Methanococcus voltae; PYRAB 

Pyrococcus abyssi; PYRKO Pyrococcus kodakaraensis; THEMA Thermotoga maritima; THETH 

Thermus thermophilus; SALTY Salmonella typhimurium; SULSO Sulfolobus solfataricus 
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2.2.3 The Tryptophan Synthase of Sulfolobus solfataricus 

 

Sulfolobus solfataricus is a hyperthermophilic crenarcheon with optimal 

growth conditions at high temperatures (75-80°C) and low pH values (2-4) (She et al., 

2001). The trp operon of the archeon comprises one trpA and one trpB2 (TrpB2a 

transcript) gene. Additionally, a second trpB2 gene is located downstream of the 

operon (TrpB2b transcript). The two TrpB2 have high sequence identity (52 %). A 

similar occurrence was reported in four other crenarchea (Pyrobaculum aerophilum, 

Aeropyrum pernix, Pirophilus torridus, Sulfolobus tokodaii; Fitz-Gibbon et al., 2002; 

Futterer et al., 2004; Kawarabayasi et al., 2001; Kawarabayasi et al., 1999). 

The TrpA/TrpB2 system from Sulfolobus solfataricus has been investigated by 

Leopoldseder (2005). Size exclusion chromatography and analytical 

ultracentrifugation experiments showed no evidence for the formation of a stable 

multienzyme complex between any of the $-subunits and the "-subunit. However, 

based on titration experiments a transient SsTrpA:SsTrpB2a complex formation 

during catalysis has been suggested (Leopoldseder et al., 2006). The interaction of 

SsTrpB2a and SsTrpA was proven by the activation of the "-reaction (60-fold for 

addition of SsTrpB2a and 270-fold for addition of SsTrpB2a and L-Ser; no effect for 

SsTrpB2b) in steady-state kinetics. Interestingly, experiments showed only upstream 

activation of the "-reaction by SsTrpB2a but no activation of the $-reaction by 

SsTrpA in the presence and absence of the substrate analogue IPP. Contrary to the 

reciprocal allosteric effect that results in mutual activation, as described for TrpB1, 

the effect in TrpB2a is only monodirectional, it activating SsTrpA. The rate-limiting 

step in S. solfataricus is the TrpA reaction (2-fold lower turnover). 

Steady-state kinetic experiments of the $-reaction revealed an order of 

magnitude higher catalytic efficiency (kcat/KM) for the operon coded SsTrpB2a over 

the non-operon SsTrpB2b. The higher efficiency was due to the higher turn-over 

number (kcat) of SsTrpB2a. Both the side reaction (Ser deaminase activity, 

Crawford et al., 1964) and the main reaction ($-reaction) of TrpB1 proteins have been 

proposed to be the stand-alone functions of TrpB2s by Xie et al. (2002) and 

Leopoldseder et al. (2006), respectively. In fact, almost all organisms with a trpB2 

gene lack a Ser deaminase gene.  
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However, the Ser deaminase activity (deamination of Ser yields pyruvate and 

ammonia) of TrpB2b shows lower catalytic efficiency than the $-reaction. The issue 

is controversial. 

Mutagenesis studies based on the structure of StTrpB1 as well as sequence 

alignments of SsTrpB2 family proteins have been performed by Leopoldseder (2005). 

Putative TrpA binding segments as well as the complete N-terminus were switched 

between the TrpB2 proteins of S. solfataricus. The significantly lower TrpA 

activation of two SsTrpB2a mutants (TrpB2a_1 and TrpB2a_3 in Table 2.2) indicated 

the switched residues as candidates for interaction to SsTrpA. The TrpB2b mutants 

had no effect on the TrpA reaction.  

 

Table 2.2 Mutagenesis of SsTrpB2a and SsTrpB2b. 

SsTrpB2a_x SsTrpB2b_x Modification No1 

Gln30-Ile37 Thr37-L40 Switched 1 

Met1-Leu442 Met1-Leu47 Switched 2 

Asn274-Arg279 Asp277-Lys287 Switched 3 

Lys190-Gln197 Gln193-Asn200 Switched 4 
1in SsTrpB2a_x/SsTrpB2b_x 
2insoluble 
 

The non-operon coded TrpB2 family members have been suggested to be 

ancient $-subunit types, from which the operon coded TrpB1 proteins have evolved. 

In the model suggested by Leopoldseder and coworkers (2006), evolution of TrpB 

enzymes was initiated by gene duplication events followed by integration into the 

operon. The operon located enzyme evolved then the capability to form a permanent 

multienzyme complex. The TrpB2b class enzymes could have then taken a new 

function, e.g. indole salvage enzyme (Hettwer & Sterner, 2002) or Ser deaminase 

(Xie et al., 2002). The final steps of TrpS evolution could have been loss of the gene 

outside the operon and fusion of TrpA and TrpB (Figure 2.4).  
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Figure 2.4 Hypothetical model for TrpB evolution. 

The listed organisms provide examples of the given trpA and trpB gene organizations and the 
interactions between the TrpA and TrpB subunits. The horizontal arrows indicate the direction of 
subunit activation. The genes trpB2a from S. solfataricus and trpB2 from T. maritima might code 
for indole salvage proteins. Image adapted from Leopoldseder et al., (2006). 
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2.2.4 Structure of TrpS 

 

TrpS structures (composed of TrpA and TrpB1 subunits) have been 

determined for the thermophilic archeon Pyrococcus furiosus and the mesophilic 

bacterium Salmonella typhimurium (first structure of a TrpS; overview in Table 2.4). 

The structures of thermophiles and mesophiles show a similar fold. For PfTrpS 

structures of the complex as well as its isolated components are known. The fold of 

the subunits is independent of multimer formation; only shifts of structural elements 

in respect to each other occur upon association (Lee et al., 2005, details in section 

2.2.6).  

TrpA has a ("$)8-barrel (TIM-barrel) fold (Figure 2.5), which is found in 

approximately 10 % of all proteins with known structure (Miles, 2001; 

Sterner & Hocker, 2005). There are two additional helices (termed "H2’ and "H8’) to 

the ("$)8-barrel. Helix 8’ is involved in coordination of the phosphate moiety of the 

substrate via its positive dipole moment (Weyand et al., 2002).  

 

 

The $-subunit shows two domains of approximately the same size (Table 2.3). 

The two domains can be superposed and show structural similarity (PfTrpB1, 

rmsd = 2.7 Å over 73 C" atoms, Hioki et al., 2004). The N-terminal domain comprises 

a subdomain, the so-called COMM (from "$-COMMunication) domain. During 

 
Figure 2.5 The "-subunit of StTrpS. 

Gradient coloring from blue (N-terminus) to red (C-terminus). Two loops of TrpA have been 
identified to be involved in catalysis, "L2 and "L6. These are positioned downstream of the 
corresponding $-strands "S2 and "S6. The image was created from StTrpA (PDB code 1BKS, 
Hyde et al., 1988) using PYMOL with secondary structure elements being mapped to the sequence 
according to Yamagata et al., 2001. 
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catalysis the COMM domain undergoes a rigid body movement (10° rotation relative 

to the remainder of the $-subunit). Two Gly residues at the borders of this domain 

have been suggested to act as hinges during catalysis (Schneider et al., 1998).  

 

Table 2.3 Domain composition of StTrpB1 and Pf TrpB1. 

 N-terminal COMM C-terminal Reference 

StTrpB1 1-52, 86-204 97-184a 53-85, 205-397 Hyde et al., 1988 

PfTrpB1 1-46, 81-200 102-189b 47-80, 201-388 Hioki et al., 2004 
asubdomain of the N-terminal domain as defined by Schneider and coworkers (1998) 
bdefined by sequence comparisons 
 

The interface between the $-subunits is formed by a broad, nearly flat surface 

with a dyad axis passing through it. Roughly, the subunits interact via cross-domain 

interactions to each other, where the N-terminal domain of one subunit interacts with 

the C-terminal domain of the complementary subunit (and vice versa). For a 

representation of the $-subunit and the biological relevant heterotetramer see Figure 

2.6. Hydrophobic interactions are central to both interfaces (hetero-obligomer and 

homo-obligomer). The thermophilic TrpS gains stability by minimizing cavities and 

improving interactions across the interface (Hioki et al., 2004). The "$-dimer was 

suggested to be the functional unit in catalysis, while hetero-tetramer formation serves 

to stabilize this unit (Hyde et al., 1988). 

 

2.2.5 PLP-binding in TrpB1 

 

PLP (vitamin B6) dependent enzymes form a covalent bond between the 

(-amino group of an active site Lys and the cofactor vitamin B6 

(Christen & Mehta, 2001). In TrpS, the cofactor binds to the $-subunit (between the 

N-terminal and C-terminal domains). The residues involved in PLP binding (Figure 

2.7) are strictly conserved in both families of TrpB1 and TrpB2 proteins.  
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A 

 
B 

 
Figure 2.6 TrpS from Pyrococcus furiosus (PDB code 1WDW, Lee et al., 2005). 

(A) Biological heterotetramer ("$$"). Left: TrpA and TrpB1 colored by secondary structures and 
the central fold of the domains Right: TrpA and TrpB1 colored by domains. The cofactor in the 
center between the two domains of TrpB1 is shown in stick representation. (B) Sequence of 
PfTrpB1 with important residues highlighted by yellow background. 
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The active site Lys (upstream to 

H3; StLys87, PfLys82) forms a 

covalent aldimine bond to PLP. 

This Lys residue is not only 

important to form the aldimine, 

but also acts as a catalytic base. 

The main contribution to 

coordination of the phosphate 

group is mediated by a motif on 

a turn between S7 and a H8 in 

the C-terminal domain. The 

sequence of this motif is 

Gly-Gly-Gly-Ser-Asn.  

Gly-rich loops of analogous positioning between a strand and a helix are well 

known in phosphate binding proteins (mostly as part of nucleotide binding motifs). In 

these proteins, they are called “Gly-rich P-loop motif” and were first described for 

adenylate kinase (for reviews see Saraste et al., 1990; Prasad 2001).  

A His residue (directly preceding the catalytic Lys) interacts with the 

phosphate moiety and coordinates the pyridine ring of the cofactor (edge-to-face 

arrangement). Mutations in this residue (St$H86L) alter the catalytic and 

spectroscopic properties of the enzyme (Miles et al., 1989; Ro & Miles, 1999). Hence, 

this His was suggested to alter the pKa value of the catalytic residue towards the 

physiological pH. Besides PLP coordination this His interacts with the adjacent 

catalytic Lys during the $-reaction. A Ser residue between S10 and H13 coordinates 

the pyridine nitrogen of PLP.  

 

2.2.6 Formation of the TrpA/TrpB1 hetero-obligomer 

 

Lee and coworkers (2005) investigated structural changes in the individual 

subunits of P. furiosus TrpS upon hetero-obligomer ("$$") formation. The "-subunit 

showed only small conformational changes (0.6 Å shifts for 36 of 247 residues, equal 

to 14.6%) in residues located in segments forming the hetero-obligomer interface, i.e. 

loops L2 and L6, which are partially ordered in PfTrpA as well as residues in H4 

 
Figure 2.7 Coordination of the cofactor PLP 

(H-bonding; modified from Rhee et al., 1997). 
The P-loop is formed by residues Gly232-Asn236. 
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(with subsequent hydrophobic rearrangement of PfTrpA in that region). In PfTrpB1, 

obligomer formation induced larger structural changes, which involved 140 of 388 

residues (36.1 %) with C"-displacement over 0.6 Å. Structural changes involved parts 

of the COMM subdomain (residues 100 to 170), which rearranged as a rigid body. In 

contrast, residues 255 to 303 (H9, S8’, S8’’ and H10) in the C-terminal domain move 

in an induced-fit conformational change. The authors concluded, that the COMM 

rearrangement transmits information between the active sites of the two enzymes 

upon obligomer formation (analogous to allosteric communication). These changes 

led to the formation of a long hydrophobic network with subsequent widening of the 

indole tunnel (Figure 2.8). The homo-obligomer interface, which is important for the 

functionality of PfTrpB1, remained unchanged upon hetero-obligomer formation.  

 

 

Structural changes during catalysis have been investigated for TrpS from 

S. typhimurium (Rhee et al., 1997). The interaction pattern between the interface 

residues remained relatively unchanged, despite large positional changes. 

 

 

 

 
Figure 2.8 Stereo view of the tunnel-widening in PfTrpB1. 

The indole tunnel in PfTrpB1 with blue and red lines indicating the Pf"2$2 and Pf$2 dimer, 
respectively. Distances between the residues Glu286 and Gly157 and between Ile299 and Gly106 
expanded by 5.5 and 2.5 Å, respectively. Yellow arrows indicate conformational changes of 
Asp300 (opening the substrate entrance) and Phe274/His275 (gating residues). It should be 
mentioned that the conformational changes of the gating residues could have been induced by the 
presence of K+, which was present in the crystallization buffer. 
 
 



SsTrpB2b: an ancestral Tryptophan Synthase 
_____________________________________________________________________ 

 40 

2.2.7 Catalytic mechanism of TrpS 

 

The elucidation of structures of complexes of TrpS with reaction intermediates 

has given detailed insights into conformational changes taking place during catalysis. 

This involved mainly structures from S. typhimurium (Table 2.4). The mechanism of 

catalysis itself has been examined by exploiting distinct spectral properties of 

transiently accumulating PLP intermediates (Miles, 1979). 

 

Table 2.4 Structural data available for binding of substrates, intermediates and products in the 

$-subunit (after Miles, 2001, for S. typhimurium and P. furiosus1). 

PDB code "2$2 Ligand2 ("/$) Intermediate3 Reference 

1BEU "D60N IPP/Ser IPP/E-Ser Rhee et al., 1998 

1UBS $K87T apo/Ser E-Ser Rhee et al., 1997 

2TRS $K87T IPP/Ser IPP/E-Ser Rhee et al., 1997 

2TSY $K87T GP/Ser GP/E-Ser Rhee et al., 1997 

2TYS $K87T apo/Trp E-Trp Rhee et al., 1997 

1A50 WT F-IPP/apo IPP/E Schneider et al., 1998 

1TTQ WT apo/apo (K+ ) E Rhee et al., 1996 

1TTP WT apo/apo (Cs+) E Rhee et al., 1996 

1BKS WT IPP/apo E Hyde et al., 1988 

1A5S WT F-IPP/Ser F-IPP/E-AA Schneider et al., 1998 

1A5A "D60N apo/apo (K+ ) E Rhee et al., 1998 

1A5B "D60N IGP/apo (K+ ) IGP/E Rhee et al., 1998 

2WSY WT apo/apo E Schneider et al., 1998 

1QOP WT IGP/apo (no ion) IGP/E 

1QOQ WT IPP/ apo IPP/E 

Weyand & Schlichting, 

1999 

1C294 WT TIA/ apo TIA/E Sachpatzidis et al., 1999 

1GEQ WT " apo/- - Yamagata et al., 2001 

1WDW WT apo/apo E Lee et al., 2005 

1V8Z WT $2 -/ apo E Hioki et al., 2004 

1Pyrococcus furiosus structures: 1WDW and 1V8Z; 2monovalent cations Na+ (if nothing else 
mentioned) and Trp/Ser are bound to the $-subunit. IPP (indole 3-propanol phosphate, substrate 
analogue), FIPP (5-Fluoro IPP), IGP (indole-3-glycerol phosphate), GP (DL-"-3-glycerol 
3-phosphate), TIA (" transition state intermediate); 3intermediates are illustrated in Figure 2.10; 
4representative; full: 1C29, 1C8V, 1C9D, 1CW2 and 1CX9 
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TrpA catalyzes a retroaldol reaction that results in the enzymatic cleavage of 

indole-3-glycerol phosphate (IGP) to indole and glyceraldehyde-3-phosphate (GA3P). 

This is termed the "-reaction. The catalytic mechanism of TrpA is believed to follow 

a general “push-pull” acid base mechanism: 

 
(i) Indolenine tautomerization: the base B2 polarizes the N-H bond of indole and 

abstracts the proton. The acid B1H protonates the C3 atom and facilitates the 

electronic rearrangement that leads to the formation of the indolenine tautomer 

(first step in Figure 2.9).  

(ii) C-C bond cleavage: the base B3 abstracts the proton from the C1) hydroxyl of the 

glyceryl side chain of IGP. This event leads to the formation of indole and D-

glyceraldehyde 3-phosphate. (GA3P, second step in Figure 2.9). 

 
The crystal structure of StTrpS (Hyde et al., 1988) and mutagenesis studies 

(Nagata et al., 1989; Shirvanee et al., 1990; Yutani et al., 1987) led to propose that 

the proton-transfer steps during cleavage and synthesis of IGP are catalyzed by the 

bases StGlu49 and StAsp60 (Kirschner et al., 1991; Nagata et al., 1989). This was 

later supported by crystallographic studies (Rhee et al., 1998; Rhee et al., 1997). 

 

 
Figure 2.9 The "-reaction catalyzed by TrpA.  

The catalytic bases B1H and B3 were identified to be StGlu49. B2 was identified to be StAsp60 
(Rhee et al., 1998 and references therein). Figure adapted from Sachpatzidis et al., 1999 (description: 
main text). 
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The TrpB reaction (or $-reaction) shows two stages (Figure 2.10). Stage I 

comprises the steps of transaldimination and subsequent condensation to form an 

amino acrylate intermediate: 

 

(i) Transaldimination: the internal aldimine bond (E) covalently bound $Lys87 to 

PLP is replaced by the amino group of the substrate serine to form an external 

aldimine with PLP (E-Ser). The transaldimination proceeds over a gem-diamine 

intermediate.  

(ii) Condensation: $Lys87 abstracts the acidic proton of the C" of E-Ser. The 

hydroxy group of E-Ser leaves and a water molecule is formed by deprotonation 

of $Lys87 to recover the catalytic base. This yields the formation of an amino 

acrylate intermediate (E-AA), a Michael-system with an electrophilic double 

bond.  

 

The end of stage I with formation of E-AA can be regarded as a “hold modus” 

since the progress of the reaction is now dependent on the supply of indole from the 

"-reaction. Kinetic studies indicate that formation of the amino acrylate intermediate 

in the $-subunit significantly activates the "-reaction (25- to 30-fold). Conformational 

changes in this step are supposed to play roles in allosteric interactions between the "- 

and $-subunits (Anderson et al., 1991; Banik et al., 1995; Brzovic et al., 1992a; 

Kawasaki et al., 1987).  

Stage II of the $-reaction starts when indole is transferred through the 

hydrophobic tunnel from the "-subunit to the $-subunit active site: 

 

(i) Michael-type addition: nucleophilic addition of indole to the electrophilic double 

bond on the si face of E-AA yielding a quinoide intermediate (E-Q) 

(Miles et al., 1982). The nucleophilic addition of indole is believed to be 

facilitated by StGlu109, that can stabilize a positive charge at the indole NH 

(Anderson et al., 1991; Brzovic et al., 1992b). The formation of E-Q is an 

example of the electron storing properties (from the substrate bond) common to 

all pathways of PLP dependent enzymes (Christen & Mehta, 2001).  
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(ii) E-Q is protonated by the catalytic Lys to result in a second external aldimine 

(E-Trp). The reaction cycle is completed by the formation of the internal 

aldimine to the catalytic Lys (E) in a $-replacement reaction and release of Trp.  

 
The formation of E-Trp in stage II is the trigger for deactivation of the "-site. The 

coordination of the external aldimines is mainly mediated via main chain atoms of the 

$-subunit and PLP coordination has been observed to be closely similar, with some 

minor differences in E-Trp (Rhee et al., 1997; Leja et al., 1995). 

A  

 
B            C 

 
Figure 2.10 Catalytic mechanism of TrpB and coordination of external aldimines. 

(A) Catalytic mechanism of TrpB1 from S. typhimurium divided in two stages (from Miles, 2001) At the 
end of stage I $-elimination to pyruvate is shown (Ser deaminase activity). Intermediates in catalysis and 
their *Abs is shown (for used abbreviations see main text) (B) Coordination of the external aldimine (E-Ser) 
StAsp305 is in “swing in” conformation, which is important for substrate specifity. During catalysis, it is 
in “swing out” conformation and not involved in binding of Ser. (C) Coordination of the aldimine formed 
with the product (E-Trp). (B/C) The interaction sphere taken was 3.5 Å for the StTrpB1K87T inactive 
mutant. The "-subunit was in the apo form in figures shown here. The figures were taken from 
Rhee et al., 1997. 
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2.2.8 Effectors of TrpS catalysis 

 

Catalysis of enzymes, especially enzymes in anabolic pathways, has to be 

regulated. This can happen at the genetic level (e.g. the coordinated expression of 

genes trp-operon; Yanofsky, 2001) or by affecting the enzymes itself (e.g. 

feedback-inhibition of Anthranilate Synthase; Zalkin, 1993). Repression and 

inhibition are extreme cases, where the systems are switched either “on” or “off”. 

Besides these cases, there are many possibilities to negatively or positively influence 

an enzymatic reaction. Reactivity of TrpS containing a B1 subunit is affected by a 

complex system of allosteric regulation, including: 

 

(i) Monovalent cations 

(ii) pH  

(iii) "-subunit ligands (allosteric communication) 

 

2.2.8a Monovalent cation binding 

 

Monovalent cations play a role in catalysis of PLP-dependent enzymes (for a 

review see Woehl & Dunn, 1995). Structural studies revealed a binding-site for a 

cation (Na+) 8 Å away from the phosphate moiety of PLP in the C-terminal domain of 

StTrpB1 (Rhee et al., 1996). The binding-site is involved in allosteric communication 

between the active sites of TrpA and TrpB1 (Woehl & Dunn, 1999).  

Effects mediated by the nature of alkali cations have been investigated by 

Rhee and coworkers (1996) using X-ray crystallography. Structural changes in StTrpS 

upon replacement of the natural Na+ for K+/Cs+ are: 

 

(i) Higher flexibility of the "-subunit active site loop.  

(ii) Displacement of cation binding loop and altered coordination sphere of the cation 

(Table 2.5).  

(iii) Displacement of the side chain of Tyr279 and the putative tunnel gating residue 

Phe280 out of the tunnel of StTrpB1 

(iv) Loss of interaction between Asp305 and Arg167 (both StTrpB1) with a putative 

new interaction partner Asp56 (StTrpA). 
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Table 2.5 Coordination of the monovalent cations in StTrpB1 after Rhee et al., 19961. 

 Na+ K+ Cs+ 

Coordination no 5 4 6 

Ligands2  

Gly2323 

 

 

Phe306 

Ser308 

2 x H2O 

 

Gly2323 

 

 

Phe306 

Ser308 

1 x H2O 

Val231 

Gly2323 

Gly268 

Leu304 

Phe306 

Ser308 

 

Coordination sphere Tetragonal 

pyramidal 

Like Na+ (one 

H2O less) 

Octahedral 

1sphere of maximum 4.0 Å around cation (for Cs+) 
2all amino acids are residues of the $-subunit, common residues are underlined 
3Gly232 is also involved in PLP coordination by the P-loop. 
 

Exclusively carbonyl oxygens of TrpB1 residues coordinate the cations in the 

binding-site. Variation in the monovalent cation affects the maximal rate of TrpS 

stage I in catalysis. The increased rate of the enzyme results from the altered ligand 

sphere of the given cations. Accordingly, the overall conformation of the enzyme is 

altered on a long-range scale favoring a more active state with increasing size of the 

cation. The presence of the physiological Na+ ion increases the affinity of E-AA for 

indole, which favours the closed conformation. Since the closed conformation also 

stimulates the "-reaction, the cation binding-site is involved in allosteric 

communication (Woehl & Dunn, 1999). 

 

2.2.8b pH-dependence 

 

Given that catalytic acids and bases are involved in the reaction catalyzed by 

TrpS, a dependence on pH can be observed. Several catalytic properties of TrpS are 

affected by pH: 

 

(i) Accumulation of the quinoid species (E-Q) in stage II of the $-reaction increases 

with pH (Goldberg & Baldwin, 1967; Mozzarelli et al., 2000).  
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(ii) The rate-limiting step, carried out by E. coli TrpS, varies as a function of pH. At 

pH 6.5 it is the C" proton removal from E-Ser to E-AA and at pH 7.6 it is the 

release of the product L-Trp (Lane & Kirschner, 1983).  

(iii) The pH-dependence of $-replacement and $-elimination was found to be 

significantly altered by a StTrpB1H86L (PLP coordinating residue) mutation 

(Ro & Miles, 1999). 

(iv) Accumulation of the external aldimine is favored at high pH, whereas the 

"-amino acrylate is stabilized at low pH (Peracchi et al., 1996; 

Mozzarelli et al., 1989). Replacement of the cation weakens dependence on pH 

with Cs+ > K+ > no ions > Na+ favouring formation of E-AA (Schiaretti et al., 

2004). 

(v) The catalytic Lys residue (forming E) is involved in protonation initiating the 

$-elimination from E-Ser to E-AA (Hur et al., 2002).  

 

2.2.8c Allosteric communication 

 

The regulation of enzyme activity by interaction with metabolites is key to cell 

function. A common event that accompanies ligand binding is the transition between 

open and closed states (Gutteridge &Thornton, 2004). For TrpS, the transition 

between open (low activity) and closed (high activity) states has a dual role: it 

increases the catalytic activity and prevents indole from escaping the enzyme.  

Allosteric interactions occur when binding of one ligand at a specific site is 

influenced by binding of another ligand at a different (allosteric) site. A pathway for 

allosteric communication between the active sites of "- and $-subunits was proposed 

by Schneider and coworkers (1998). The model is based on kinetic, mutagenic and 

structural data. The pathway goes from "-subunit active site over $-subunit helix 6 

($H6) and the COMM domain to the $-subunit active site. Additionally, Rhee and 

coworkers (1997) investigated allosteric communication: 

 

(i) apo: "L2 and "L6 are disordered and the "-subunit active site is accessible to 

solvent. Both subunits are in open conformation. The side chain of the gating 

residue ($Phe280) blocks the tunnel between the active sites of TrpA and TrpB. 
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A H-bond between the side chains of $Asn171 and $Tyr279 supports the 

conformation of $Phe280 by sterical hindrance.  

(ii) "-active site to $H6: IGP binds to the "-subunit. The mobile "L6 becomes 

ordered, closes the "-subunit active site and shields it from solvent exposure. 

Subsequently "Thr183 (in "L6) orients the side chain of the catalytic base 

"Asp60 (in "L2), which coordinates the indole moiety of the substrate (IGP). 

The second catalytic base "Glu49 (in "L2) coordinates the glycerol moiety of 

IGP. A H-bond between main chain atoms of "Gly184 (in "L6) and $Ser178 (in 

$H6) is formed. Mutagenesis studies revealed $Ser178Pro to lose intersubunit 

signaling (Raboni et al., 2005). 

(iii) $H6 to COMM domain: upstream along $H6, the H-bonding pattern is changed. 

Stabilization of "L2 is given by H-bonds from "Asp56 to $Asn171 and 

$Lys167. The conformation of the side chains of $Tyr279 and $Phe280 is 

changed since the H-bond from $Tyr279 to $Asn171 remains. The tunnel is 

partially opened. Interactions from "Asp60 and "Pro57 to $Arg175 are formed 

and support the conformation of the "-site catalytic base, "Asp60. Since $H6 is 

included in the COMM domain, the altered interaction pattern induces a rigid 

body movement of this domain, which opens the $-subunit active site. An 

alternative conformation of $Lys167 (“swing in” conformation; H-bonding to 

$Asp305; Rhee et al., 1996) seems to be less important in allosteric regulation 

than in substrate specifity (Weber-Ban et al., 2001, Ferrari et al., 2003).  

(iv) $-subunit closure: upon binding of Ser the COMM domain rotates 10° relative to 

the rest of the $-subunit moving the two regions closer together. The side chain 

of $Asp305 changes from the “swing in” conformation (E-Ser side chain 

coordination) to the “swing out” conformation. The carboxylate moiety of E-Ser 

is coordinated by residues of a turn in the COMM domain and $Asp305.  

(v) Catalysis: substrate binding to the active sites of both subunits favors E-AA 

formation in the equilibrium of stage I during catalysis. Upon IGP cleavage the 

tunnel opens (displacement of "L2). Indole is transferred and stage II of catalysis 

yields E-Trp. The $-subunit is in “half open” conformational (similar to E-Ser 

without IGP bound to the "-subunit). With the transaldimination reaction the 

cycle is completed and products are released.  
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Allosteric effects in TrpS seem to be restricted to the communication between the 

active sites of the "- and $-subunits (overview in Figure 2.11). Communication 

between the active sites of the two adjacent $-subunits has not been reported so far. 

The formation of the homo-obligomer is considered to happen for the benefit of 

stability of the $-subunit (Hyde et al., 1988).  

 

 
Figure 2.11 Overview of allosteric signalling and effects of TrpS during catalysis.  

The states of the "-subunit are shown in different grays and of the $-subunit in different greens. 
Horizontal/diagonal arrows indicate a conformational change affecting the adjacent subunit 
(green/magenta) or the direction an allosteric effector alters the equilibrium distribution (blue). 
Allosteric effectors favoring a conformational state are shown next to the state, effectors altering an 
equilibrium distribution (blue) next to the reaction arrows (black) with direction of the positive effect.  
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2.3 Aim of the work 
 

The evolution of TrpS is still under investigation. Initial models have been 

produced on the base of kinetic data and sequence comparisons between TrpB1 and 

TrpB2 family members. However, the structural base for the formation of the 

hetero-complex between SsTrpB2a and SsTrpA remains elusive. To date, SsTrpB2a 

protein production has been a problematic task (extremely low yields). In contrast to 

that, SsTrpB2b production yielded amounts sufficient for crystallographic 

investigation. The proteins share high sequence identity and therefore the structural 

homology should be also high. SsTrpB2b lacks interaction to SsTrpA. However, 

structural investigation of SsTrpB2b can give detailed insight about the organization 

of the protein. This model system gives insights into the evolution of an enzyme, 

where evolved orthologues show different association properties. In particular, the 

structure is interesting since S. solfataricus houses two paralogues of TrpB2 that can 

be regarded as the initialization point of TrpB evolution towards higher complexation. 

Model systems with rudimentarily evolved properties are rare since we normally see 

only the result of evolutionary shaping.   

A first goal was to elucidate the structure of SsTrpB2b, which subsequently 

had to be set in context with TrpB1 family members as well as findings for 

SsTrpB2a/SsTrpB2b and SsTrpA. Subsequently, the focus of the work was the 

comparative analysis of the structures of TrpB1 family members and SsTrpB2b to 

reveal structural similarities and differences. A particular focus lay on catalysis, 

allosteric communication and interface formation in SsTrpB2b compared to TrpB1 

family members. Since sequence conservation point towards highly similar structures 

of SsTrpB2b and SsTrpB2a the lack of mutual allosteric communication and 

complexation properties of the TrpB2 family members in S. solfataricus could be 

investigated. The catalytic properties between TrpB1 and TrpB2 seem to be 

conserved, which allowed homology model based investigation of interface formation 

in TrpB2 members of S. solfataricus.  
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2.4 Methods 
 

SsTrpB2b from Sulfolobus solfataricus was expressed and purified in the 

laboratory of Prof. Reinhard Sterner at the University of Regensburg (Germany). The 

protein was received in frozen state (- 80°C) in 20 mM potassium phosphate buffer 

pH 7.5. The medium of the protein was changed to 25 mM NaCl and 10 mM HEPES 

pH 7.5 by dialysis overnight (approx 16 h) at 4°C. For crystallization trials 

concentrations of 10.0 ± 2.5 mg/mL (based on A280 values) were used. Defrosted 

aliquots of SsTrpB2b were used in crystallization trials within 24 hours. 

 

2.4.1 Crystallization 

 

Crystallization trials were performed using the vapor diffusion method at room 

temperature, where 1 µL of SsTrpB2b was mixed with 1 µL of reservoir solution to 

form a 2 µL drop. For initial screening, each droplet was equilibrated against 70 µL of 

reservoir solution in 96-well CrystalQuick protein crystallization plates (Greiner), 

using a sitting-drop setting.  

Commercial kits (sparse matrix kits CS-I & II, Hampton research) yielded 

several initial crystallization conditions (Table 2.6). Crystals with a three-dimensional 

habit grew overnight. The conditions were reproduced using the hanging-drop vapor 

diffusion method with the same drop ratio and increased reservoir volume (500 µL) in 

VDX plates (Hampton Research). 

 

Table 2.6 Conditions yielding crystals of SsTrpB2b in an initial screening. 

Preciptant1 Buffer Additive 

30% PEG-4000 100 mM Tris HCl pH 8.5 200 mM NaOAc x 3 H2O  

30% PEG-4000  100 mM Tris HCl pH 8.5 200 mM MgCl2 x 6 H2O  

30% PEG-8000 100 mM Na-cacodylate pH 6.5 200 mM NaOAc x 3 H2O  
1PEG-X = poly ethylene glycol-(molecular mass) 

 

Visual inspection of SsTrpB2b crystals revealed that only few of them were 

single, while most showed multiple growth. Refinement of initial conditions required 

varying PEG content, pH and additive nature (variation of ionic species). This yielded 

crystals with improved size as well as a higher portion of single crystals (Figure 2.12). 
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Best crystals (grown from 30% PEG-4000, 100 mM Tris pH 8.5 and 100 mM NaCl) 

were frozen in mother liquor supplemented with additional 10% PEG-4000 as 

cryoprotectant and used in diffraction experiments. 

 

2.4.2 Collection of a native data set 

 

X-ray data collection was carried out at the European Synchrotron Radiation 

Facility (ESRF), Grenoble, France. A native data set of non-overlapping oscillations 

was collected at 100 K at the beamline ID-23 equipped with a marCCD 225 detector. 

The diffraction images (Figure 2.13) with a diffraction limit of 1.94 Å were processed 

with the XDS package (Kabsch, 1988). For data collection parameters and X-ray 

statistics see Table 2.7. The Rfree (Brünger, 1993) was used as a cross-validation 

indicator in model building and refinement, for which reflections were partitioned into 

a working and a free set using FREERFLAG (CCP4, 1994).  

A        B 

 
Figure 2.12 Crystals of SsTrpB2b.  

(A) Crystals in a hanging-drop grown from 25% PEG-4000, 100 mM Tris-HCl pH 8.0, 200 mM NaCl. 
A single crystal (indicated by the green arrow) with dimensions of approx. 140 µm x 140 µm x 
140 µm and multiple crystals (indicated by red arrows) as well as precipitated protein. (B) Crystal 
(grown from 30% PEG-4000, 100 mM Tris pH 8.5 and 100 mM NaCl) used for native data collection 
mounted in a nylon cryo-loop (Hampton Research). 
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Table 2.7 Data collection parameters and X-ray statistics for SsTrpB2b. 

Parameter Value 

X-ray source ESRF (Grenoble) ID-23 

Detector marCCD 225 

Total rotation 180° 

Oscillation range 0.5° 

Exposure time 0.5 s 

Detector to crystal distance 180 mm 

Wavelength 0.9840 Å 

Spacegroup P 21  

Unit cell [Å] 55.790, 61.590, 110.130, $ = 80.73° 

Resolution 19.97 - 1.94 (1.96 - 1.94)1 

Unique reflections 54720 (1622) 1 

Rsym (I) 5.8 (38.3) 1 

I/# (I) 16.7 (3.9) 1 

Multiplicity 3.76 (3.76) 1 

Completeness 99.8 (100.0) 1 
1outer resolution shell 

 
Figure 2.13 Diffraction pattern of SsTrpB2b crystals. 

High resolution reflections are shown in the inset. Resolution rings (Å) are displayed. 
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2.4.3 Detection of noncrystallographic symmetry (NCS) 

 

The Matthews coefficient Vm (Matthews, 1968) describes the packing density 

of a protein crystal given the volume of the unit cell Vcell [Å3], the number of 

asymmetric units (a.u.) per unit cell z, the number of monomers per a.u. n and the 

molecular weight per monomer Mw [Da]. The Matthews coefficient Vm is then given 

by the relation: 

 
Vm = (V/z)/(n*MW) 

 
Considering that the molecular weight of SsTrpB2b is 47778 Da (as calculated 

from sequence data) the analysis of the Matthews coefficient revealed, that the a.u. of 

this crystal form must contain one to two molecular copies of SsTrpB2b (Table 2.8). 

 

Table 2.8 Results from Matthews coefficient calculations for SsTrpB2b. 

Molecules per a.u.1 Matthews coefficient Solvent content [%] 

1 3.9 68.3 

2 2.0 36.6 
1monomers of SsTrpB2b 

 

Usually, the Matthews coefficient varies between 1.6 and 3.6 Å3/Da, which 

suggested that two molecular copies of SsTrpB2b were present in the a.u of this 

crystal form. This agrees with the oligomeric state of the functional form of the 

protein that is a biological dimer. In the subsequent steps of structure elucidation it 

was confirmed that two SsTrpB2b units formed this a.u. The non-crystallographic 

symmetry (NCS) relation between the two subunits was explored using self-rotation 

functions in AMORE (Navaza, 1994) and POLARRFN (CCP4, 1994). Despite 

exploring medium and low resolution ranges as well as diverse Patterson radii of 

integration, no convincing solution was obtained. Best solutions typically exhibited 

correlation coefficients of 25-45%, were relatively unstable and contrasted poorly 

against background peaks. An analysis of native Patterson maps also did not reveal 

translational NCS. Thus, no conclusions on NCS relations could be established at that 

time.  
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2.4.4 Phasing by Molecular Replacement (MR) 

 

TrpB1 and TrpB2 proteins are evolutionarily related. Thus, phasing followed 

molecular replacement (MR) protocols using TrpB1 as search model. Homologous 

structures in the PDB database (www.rcsb.org/pdb) were identified by a sequence 

based homology search (BLAST, Altschul et al., 1990). This revealed two TrpB1 

possible templates: TrpB1 from Salmolnella typhimurium (StTrpB1) and Pyrococcus 

furiosus (PfTrpB1), with PfTrpB1 as the closest homologue (PDB entry 1V8Z, 

Hioki et al., 2004) with a 32 % sequence identity. Based on this homology, a search 

model was created with the program O (Jones et al., 1991), where strictly conserved 

residues and residues with similar shape (e.g. Asp and Asn) were included in the 

search model and all other non-Gly residues were exchanged for Ala (or to Gly if 

present in the SsTrpB2b sequence; Figure 2.14). 

 
Figure 2.14 Sequence alignment of SsTrpB2b, PfTrpB1 (1V8Z) and the search model. 

SsTrpB2b (TrpB2b) vs. 1V8Z (Tryptophan Synthase from P. furiosus) with the sequence of the  
model (trimmed to the minimal common sequence) below. Strictly conserved residues are 
highlighted in yellow, residues with similar shape in cyan and residues that have been replaced by 
Gly in magenta background, respectively. 
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MR was carried out using the program PHASER (McCoy et al., 2005). 

Multiple trials were performed using the dimeric TrpB1 as search model as well as the 

monomeric form (Table 2.9). The MR solution was visually validated in O 

(Jones et al., 1991) for packing and fitting in a calculated electron density map.  

 

Table 2.9 Solution statistics for MR using PHASER.  

 Z-score (rotation) Z-score (translation) log-likelihood gain1 

Monomer 1 6.4 3.6 38 

Monomer 2 6.7 9.3 114 
1refined log-likelihood gain: 128 

 

2.4.5 Model building and refinement 

 

Refinement of atomic coordinates relies on the minimization of the 

discrepancy between observed and calculated structure factor amplitudes. Refinement 

of atomic coordinates is a cyclic process, which involves algorithms that can remove 

errors (e.g. chain tracing or conformations) combined with manual interpretation of 

electron density maps and subsequent model building using visualization software, in 

this case the programs O and COOT were employed (Emsley & Cowtan, 2004). The 

refinement parameters of the cofactor (PLP) were derived using the PRODRG2 server 

(Schuettelkopf & van Aalten, 2004). 

The initial model was progressively edited in iterative cycles of model 

building and subsequently refined in CNS (Crystallography and NMR Suite CNS, 

Brünger et al., 1998). The structure was refined against native data between 20.00 and 

1.94 Å resolution. Model refinement included conjugate gradient minimization of 

atomic coordinates, bulk solvent correction and isotropic individual B-factor 

refinement with geometrical and B-factor NCS restraints applied throughout. Large 

parts of the initial model had to be truncated after it became evident that these 

disagreed with calculated maps leading to regions of non-interpretable electron 

density.  

The program ARP/wARP (Perrakis et al., 1999) was then used for model 

improvement (map enhancement mode). ARP/wARP is a program package for 

automated model building and refinement of protein structures. It combines reciprocal 

space structure-factor refinement with updating of the model (adding and/or removing 
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atoms) in real space to construct and improve protein models. Map enhancement 

mode uses a hybrid-model (combination of a partial protein model and a free-atom 

set), which allows a considerably better description of the map, since prominent 

features in electron density (unaccounted for by the current model) are described by 

free atoms. This procedure yielded significant phase improvement and subsequently 

improved electron density. The quality was sufficient for completion of model 

building (Figure 2.15). NCS restraints were removed at this point. 

Since ARP/wARP uses REFMAC (CCP4 program suite; CCP4, 1994) for 

refinement, this program was then used for maximum likelihood based restrained 

model refinement without a translation/liberation/screw (TLS) tensor. This included 

sparse matrix minimization, overall individual isotropic B-factor refinement and bulk 

solvent correction. Solvent molecules were identified with ARP/wARP (solvent mode 

routine) and COOT. The solvent mode routine of ARP/wARP continuously updates 

the solvent structure, while the protein model remains unchanged. For refinement 

statistics see Table 2.10. Several residues were not identified as they were disordered 

in both NCS copies: the N-terminus (Met1 - Met3), the C-terminus (Glu429) and an 

N-terminal segment (Asp34 - Leu43; 10 residues). Additionally, there is a helix (H5’, 

red arrow in Figure 2.15A), which showed interpretable electron density in one 

subunit and merely traceability for the backbone only in the other subunit. 
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A                                                                

 
B 

 
Figure 2.15 Model improvement in ARP/wARP and overview on model building/refinement. 

(A) Sequence of SsTrpB2b with secondary structure elements assigned on top. Residues with 
interpretable electron density in the truncated SsTrpB2b model are colored in cyan, residues built after 
initial refinement rounds in magenta and ARP/wARP in yellow, respectively. The "-helix H5’ is 
indicated by a red arrow. (B) The models in different stages of refinement are given in the yellow 
boxes and thumbnails above the boxes. The steps in order to improve the model done in building 
software are given in the green boxes above the models and done with refinement tools below the 
models. NCS restraints were excluded from the final stages of refinement. The dashed black double 
arrows indicate the cyclic nature of refinement. 
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Table 2.10 Model parameters of SsTrpB2b. 

R-factor/Rfree [%]1 18.6/24.5 

Number of protein residues 828 

Number of solvent molecules 362 

Average B-factor (MC/SC/PLP)2 31.17/33.76/29.47 || 24.35/27.11/22.63 

rmsd (between NCS copies) [Å] 0.625 (all atoms)3 

rmsd: bond length [Å]/bond angle [°] 0.019/1.77 
1The R-free set comprised 894 reflections corresponding to 1.63% of the total data (54720 reflections). 
2MC = main-chain, SC = side-chain for copy 1 || copy 2 
3calculated with LSQKAB 

 

For a Ramachandran diagram of the two NCS-related copies of TrpB2b see 

Figure 2.16, for Ramachandran plot statistics Table 2.11 and for a summary of the 

steps towards the elucidation of the structure of SsTrpB2 see Figure 2.17. 

 

Table 2.11 Ramachandran plot1 statistics for SsTrpB2b. 

 Number Percentage 

Residues in favored regions 636 91.4 

Residues in additional allowed regions 52 7.5 

Residues in generously allowed regions 3 0.4 

Residues in disallowed regions 5 0.7 
1for 696 non-Gly and non-Pro residues from analysis in PROCHECK 

 

Residues in disallowed regions cluster in loop L8’ (illustrated in Figure 2.28) 

in both copies. The electron density in this loop is poor and subsequently the residues 

have high B-factors indicating mobility. The carbonyl oxygens of these residues 

coordinate a single water molecule, which may influence the main-chain 

conformation in this region.  
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A 

 
Figure 2.17 Summary of the steps during structure elucidation.  

(A) The path to structure solution (yellow): linear steps during processing and phasing and cyclic 
iterative structure refinement (green side tracks, more details below).  

 
Figure 2.16 Ramachandran diagram for both NCS-related copies of SsTrpB2b. 

Favored regions are indicated by red, additional allowed regions by yellow, generously allowed 
regions by light yellow and disallowed regions by white background, respectively. All non-Gly and 
non-Pro residues (black squares) are in allowed regions. Most Gly and Pro residues (black triangles) 
are in allowed regions, as well. The plot was generated using PROCHECK (Laskowski et al., 1993). 
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2.5 Results and discussion 
 

 
2.5.1 Overall structure of SsTrpB2b 

 
The crystal structure of SsTrpB2b has been elucidated at 1.94 Å resolution 

using the MR method and is the first structure of a TrpB2 family member.  The 

asymmetric unit (a.u.) includes two chains of SsTrpB2b, corresponding to the 

biological dimer. The two molecular copies are related by a two-fold proper NCS 

(rmsd of 0.5 Å over 420 C"-atoms calculated with TOP, CCP4, 1994). Both chains of 

SsTrpB2b in the a.u. contain residues Arg4-Gln34 and Lys44-Lys428. Residues 

Asp186-Ser199, corresponding to H5’, show clear density in one chain and weak 

density in the other.  

The structure of SsTrpB2b (Figure 2.18) reveals a fold similar to that of TrpB1 

proteins reported so far (Lee et al., 2005; Hyde et al., 1988; Schneider et al., 1998). 

For the assignment of secondary structure elements mapped onto the sequence of 

SsTrpB2b see Figure 2.19. The secondary structure elements have been assigned 

using the software PROMOTIF (Hutchinson & Thornton, 1996) and their numbering 

is based on the comparison of SsTrpB2b and StTrpB1 (Schneider et al., 1998). 

Differences in the overall structure between SsTrpB2b and the TrpB1 family members 

cluster in the hypothetical TrpA interface and are likely to be the effectors of the 

divergent interaction behavior of TrpB2 family members. These differences are as 

follows: 

(i) The N-terminal extension: residues Arg4 to Asp66 adopt a different tertiary 

structure (details in section 2.5.5a, magenta bar in Figure 2.19).  

(ii) The cation binding-site region (residues Val261 to Tyr339, green bar in Figure 

2.19): shift of a loop segment and coordination of SsLys298 instead of the cation 

(details in section 2.5.5b). 

(iii) The insertion helix H5’ (residues Glu189 to Lys197, section 2.5.5c): this "-helix 

is unique to TrpB2 family members (yellow bar in Figure 2.19). 

 

Additional small extensions of structural elements (H3 and H12) should 

participate into the local organization of SsTrpB2b without any further effects on 

association. 
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Figure 2.18 Overall structure of SsTrpB2b. 

The left subunit is colored according to the domain organization of SsTrpB2b: the N-terminal 
domain is colored dark green (COMM subdomain) and lemon (remainder of N-terminal domain). 
The C-terminal domain is colored blue. The right subunit is colored according to differences 
between SsTrpB2b, PfTrpB1 and StTrpB1: the N-terminal domain is colored in black. In this 
domain there are the N-terminal extension (magenta) and the insertion helix H5’ (yellow). The 
cation binding-site region (green) is in the C-terminal domain. The cofactor (including SsLys111) in 
both subunits is shown in stick representation (carbon: yellow, oxygen: red, nitrogen: blue and 
sulfur: orange), The upper and lower panel correspond to a 180° rotation around the horizontal axis 
in the paper plane. The N-termini are indicated in the lower panel (C-termini are not visible). 
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Figure 2.19 Structure based sequence alignment of SsTrB2b, PfTrpB1 and StTrpB1. 

The magenta bar indicates the N-terminal segment that shows altered tertiary structure between 
SsTrpB2b (B2SS), PfTrpB1 (B1PF) and StTrpB1 (StB1). The yellow and green bars indicate the 
insertion helix H5’ and the cation binding-site region, respectively. The green triangles point to the 
start and end of the mobile subdomain (COMM) in the N-terminal domain. Every tenth amino acid in 
the SsTrpB2b sequence is indicated by a dot above the sequence. A cartoon representation shows the 
secondary structure elements of SsTrpB2b (N-terminal domain in green; C-terminal domain in blue). 
Disordered amino acids are indicated by red letters. Strictly conserved residues are shown with yellow 
background. Amino acids involved in secondary structure elements are written in bold letters 
($-strands) and bold/italic ("-helices). Numbers below the sequences indicate residues in 
catalytic/structural features: 1 E-Lys, 2 E-Lys coordination, 3 E-Ser/E-Trp (Ser/Trp coordination) 4 
E-Ser coordination and allosteric communication (side chain) 5 E-Trp coordination (side chain), 6 
tunnel gating, 7 Na+-binding site (note: involved SsG262 is underlined), 8 allosteric regulation. 
 
 
2.5.2 Domain organization of SsTrpB2b 

 
Each subunit of the $2-dimer comprises the N- and C-terminal domains as 

reported for TrpB1 from Pyrococcus furiosus (Hioki et al., 2004) and Salmonella 

typhimurium (Hyde et al., 1988; Schneider et al., 1998). Domain assignment (Table 

2.12) has been done by comparative analysis of structure based sequence alignments 

of StTrpB1 (1BKS, rmsd = 1.41 Å over 273 C" atoms, 33 % identity), PfTrpB1 

(1WDW, rmsd = 1.35 Å over 291 C" atoms, 33 % identity) and SsTrpB2b. 

Additionally, the very N-terminal residues (Arg4 to Asp8) contribute to the central 

$-sheet of the C-terminal domain (Figure 2.20) and, thus, have been assigned to the 

C-terminal domain. The main segment of each of the domains contains a 

3-layer-(ABA) sandwich with Rossmann fold topology, which has been described in 

the CATH database for StTrpB1.  

 
Table 2.12 Domain organization of SsTrpB2b. 

N-terminal domain C-terminal domain 

 Arg4 - Asp8  

Leu9 - Gln74 Val75 - Ser109 

His110 - Lys2361 Thr237 - Lys428 

1residues Ala117 (H3) to Gly226 (downstream of S6) form the COMM domain  
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The core regions of the N- and C-terminal domains of TrpB1 proteins share 

mutual structural homology, primarily involving their core regions (Table 2.13; 

Figure 2.21). 

 
Table 2.13 Comparison of the N- and C-terminal domains of SsTrpB2b, StTrpB1 and PfTrpB1. 

Tryptophan Synthase rmsd [Å]/ C"-atoms Reference 

SsTrpB2b 2.2/511  

StTrpB1 2.2/732 Hyde et. al.,1988 

PfTrpB1 2.7/693 Hioki et. al., 2004 

superposed with 1TOP, 2ALIGN, 3LSQKAB 
 

A      B 

 
Figure 2.20 The domains of SsTrpB2b. 

SsTrpB2b was colored from the N-terminus (blue) to the Cterminus (red) and split into its domains. (A) 
The N-terminal domain viewed from the Cterminal domain. The core of the domain comprises central 
four-stranded parallel $-sheet formed by $-strands S3, S4, S5 and S6. The $-sheet is flanked by 
"-helices H3, H4, H5a and H5b on one side as well as H6 and H5’ on the other side. The COMM 
subdomain includes secondary structure elements from H3 (cyan) to S6 (lemon). The short segment 
comprises a two-stranded antiparallel $-sheet (strands S0’ and S0’’). The "-helices H1, H2 and H3 pack 
between this sheet and the core region. (B) The C-terminal domain viewed from the N-terminal domain. 
The C-terminal domain comprises a central seven-stranded mixed $-sheet formed by S0, S1, S2, S7, S8, 
S9 and S10. This $-sheet is flanked by "-helices H2’, H11, H12 and H13 on one side and "-helices 
H7b, H8, H9 and H10 on the other side. Strands S8’ and S8’’ form another, two-stranded, antiparallel 
$-sheet, which is separated by "-helices H9 and H10 from the central sheet. (A/B) The adjacent subunit 
is located on the right side of the domains. 
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A             B 

 
Figure 2.21 Superposition of the N- and C-terminal domains of SsTrpB2b. 

Structural elements are colored as in Figure 2.20. (A) The sequence of structurally equivalent 
residues is highlighted purple and strictly conserved residues by yellow background. (B) Upper 
panel: equivalent secondary elements are labeled. Lower panel: non-equivalent secondary structure 
elements are labeled.  

 

The central $-sheets of the N-terminal (S3 - S6) and C-terminal (S7 - S10) 

domains as well as their flanking "-helices (H4 and H6 in the N-t and H8 and H12 in 

the C-terminal domain) are structurally equivalent. The "-helices H5’ (N-terminal 

domain) and H11 (C-terminal domain) deviate in their positions. H5’ is not present in 

TrpB1 family members. This indicates that SsTrpB2b may have evolved from two 

ancestral proteins corresponding to each of the domains present. It is likely that theses 

ancestral proteins have been created by gene duplication. In fact, a structure based 

PDB search (using the DALI server, Holm & Sander, 1993) revealed several 

bacterial/archeal proteins with structural similarity to the COMM (Table 2.14) and the 

C-terminal domain (Table 2.15). These homologs, mostly of unknown function, could 

be ancestral proteins, which may still remain in the genomes but an evolved protein 

with enhanced functionality may have replaced them functionally.  

 



SsTrpB2b: an ancestral Tryptophan Synthase 
_____________________________________________________________________ 

 66 

Table 2.14 The COMM subdomain and similar domains (from DALI query) 

PDB ID rmsd [Å] 

over C" 

Z1 #aa Description 

1L1S 3.7 (83) 5.7 111 Protein of unknown function MTH14912 

1T57 3.2 (91) 5.4 179 Protein of pyruvate kinase activity MTH16752 

1ID1 3.4 (73) 5.1 153 RCK domain from E. coli potassium channel 
1higher Z-scores mean higher similarity (dissimilar for Z < 2) 
2from Methanobacterium thermoautotrophicum (structural genomics) 

 

Table 2.15 The C-terminal domain and similar domains/proteins (from DALI query) 

PDB ID rmsd [Å] 

over C" 

Z1 #aa Description 

1T57 4.9 (114) 4.5 179 Protein with pyruvate kinase activity MTH16752 

2F46 4.2 (94) 3.6 39 Protein of unknown function 73806133 

1PDO    Putative phosphoprotein phosphatase4 
1higher Z-scores mean higher similarity (dissimilar for Z < 2) 
2from Methanobacterium thermoautotrophicum (structural genomics) 
3from Neisseria meningitis FAM18 (structural genomics) 
4from Arabidopsis thaliana gene AT1G05000 (structural genomics 

 

Thus, evolution of the SsTrpB2b monomer (or in general TrpB2 proteins) 

could have included recombination of paralogues. Then, a hypothetical pathway of 

interface formation resulting in an ancient SsTrpB2 version has probably gone over 

hetero-complex to hetero-obligomer and consequential domain-domain interface 

formation by fusion of the two chains.   

 

2.5.3 Active site of SsTrpB2b 

 
The active sites of TrpB1 and TrpB2 family members are almost identical. 

The residues equivalent to those reported by Rhee and coworkers (1997) are involved 

in PLP-binding/-coordination (Figure 2.22 and Table 2.16) and are strictly conserved 

between the two families. In both families, the distance between the PLP molecules in 

the active sites of each of the subunits across the homo-obligomer interface is 

approximately 30 Å.  
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Table 2.16 Binding of the cofactor in SsTrpB2. 

SsTrpB2b1 Binding/coordination of 

Lys111 PLP, covalent binding 

His110 Phosphate binding 

Gly262-Gly-Gly-Ser-Asn266 P-loop, phosphate binding 

Ser412 Pyridine nitrogen 

2 x H2O Phosphate 
1residues are strictly conserved in both TrpB families 

 

Based on the assumption of identical substrate coordination properties 

between the TrpB family members, potential catalytic residues can be assigned in 

TrpB2. Comparison of SsTrpB2b with StTrpB1 structures suggests that the segment 

Glu133-Thr-Gly-Ala-Glu-Trp139 (equivalent to Glu109-Thr-Gly-Ala-Glu-His115 in 

StTrpB1; S3 to H4 in Figure 2.19) fulfill identical roles in both TrpB families. 

SsTrp139 (equivalent to StHis115) is the only residue in this segment that is not 

strictly conserved between TrpB1 and TrpB2 family members. SsArg338 (equivalent 

to StAsp305, which coordinates E-Ser) is another residue without conservation. 

 
Figure 2.22 Active site residues and the corresponding electron density (contoured at 1 #). 

Residues/waters in a 3.2 Å sphere of the cofactor vitamin B6 are shown in stick/cpk representation. 
The carbon atoms of the covalent bound Lys111 and the cofactor are shown in magenta (residue 
called LLP111). The remaining residues are colored by domain (N-terminal green, C-terminal cyan). 
Oxygen atoms are colored red, Nitrogen blue and Sulfur orange, respectively. 
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However, both SsTrp139 and SsArg338 are strictly conserved within the TrpB2 

family while the equivalent StHis115 and StAsp305 are strictly conserved among 

TrpB1 proteins. (Figure 6.2; appendix 6.2). Superposition of putative catalytic 

residues in PyMOL (DeLano, 2002) reflects the high similarity of SsTrpB2b to 

PfTrpB1 (rmsd = 0.76 Å, apo, PDB code 1WDW) as well as StTrpB1 (rmsd = 0.51 Å, 

apo, PDB code 2WSY). Even the side chains show almost identical conformations 

(Figure 2.23).  

 

The side chain of SsTrp139 adopts a conformation almost identical to that of 

StHis115. The nitrogen atoms of the ring systems of the two amino acids are in the 

same position. This effect results from a H-bond of the indole side chain to the side 

chain oxygen of SsThr134. This polar interaction can be equally formed by His and 

Trp residues. The alternating properties of the His/Trp side-chains do not appear to 

affect the catalytic properties of the TrpB1 and TrpB2 families, which are equivalent 

 
Figure 2.23 Superposition of some catalytic residues between TrpB family representatives. 

SsTrpB2 (yellow carbon atoms), StTrpB1 (magenta carbon atoms) and PfTrpB1 (green carbon 
atoms) superpose with very low rmsds. Residues without conservation between the families are 
indicated by arrows: SsTrp139 (blue arrow) superposes better than SsArg338 (red arrow). The 
catalytic turn (cat) and the P-loop with the internal aldimine and the adjacent SsHis110 (“cof” for 
cofactor binding) show an excellent superposition. 
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according to biochemical studies (Leopoldseder et al., 2006) since only the 

main-chains of SsTrp138 and StHis115 are involved in E-Ser/E-Trp coordination.  

On the contrary, the mutation of a residue with function in allosteric 

communication and/or substrate specificity can have severe effects on the 

functionality of an enzyme. StAsp305 has been shown to have an effect on substrate 

specificity (Ferrari et al., 2003). Based on the analysis of a StAsp305Ala mutated 

variant, this role has been assigned to the carboxylate group of the side-chain. Due to 

the significant difference in size and shape, SsArg338 is unlikely to be involved in 

catalysis like StAsp305. The guanidine group of SsArg338 only forms water-bridged 

H-bonds to SsTrpB2b residues (illustrated in Figure 2.28 in section 2.5.5b). Allosteric 

communication, which involves H-bonding between the side-chains of StAsp305 and 

StLys167 in StTrpB1, is unlikely in this case. Residues involved in cofactor binding 

and coordination as well as residues with putative catalytic function complete the 

active site of SsTrpB2b (Figure 2.24).  

 
Figure 2.24 The active site of SsTrpB2b. 

View from the active site of a hypothetical "-subunit into the SsTrpB2b active site. The cofactor and 
the internal aldimine to Lys111 (LLP111) are colored in magenta. Residues that have a role during 
catalysis are indicated by stick representation (green: N-terminal domain; blue: C-terminal domain; 
exception are putative residues reported for substrate/product binding: yellow). Secondary structure 
elements upstream and downstream of residues with catalytic function are represented as solid 
cartoons. For a better view, the remaining secondary structure elements are represented as transparent 
cartoons.  
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2.5.4 Protein-protein interfaces of SsTrpB2b 

 
SsTrpB2b comprises two protein-protein interfaces: a domain-domain 

interface between the N- and C-terminal domains and a homo-obligomer interface 

between the subunits of SsTrpB2b. These interfaces have been analyzed with 

LIGPLOT (Wallace et al., 1995) to elucidate their interaction pattern, which has been 

mapped to the sequences of SsTrpB2b and SsTrpB2a (Figure 2.25). 

The domain-domain interface between the N- and C-terminal domains shows a 

predominantly hydrophobic character. Aliphatic residues are most abundant in this 

interface and mainly form interactions between the non-COMM segment and the 

C-terminal domain. There is a polar contribution, which clusters in the N-terminal 

sequence segment characteristic of the TrpB2 family. These results reveal the 

permitted mobility of the COMM domain during catalysis in an otherwise tightly 

packed enzyme resembling intra-domain interfaces. The residues involved in the 

domain-domain interface show high conservation between SsTrpB2b and SsTrpB2a, 

while two residues (SsTrpB2b Glu27 and Lys352) are swapped between the two 

proteins. The high conservation (54% sequence identity) suggests a similar fold of 

these two TrpB2 family members, while the disordered segment upstream to H1 could 

show differences between SsTrpB2a and SsTrpB2b.  

The homodimer interface shows high similarity between TrpB1 and TrpB2 

family proteins. The N-terminal domain of one subunit predominantly interacts with 

the C-terminal domain of the other subunit (and vice versa). The amino acid 

composition of the interface is predominantly hydrophobic, confirming the trend 

described in section 1.4.4. In SsTrpB2b, the most abundant residues in the interface 

are Arg and Tyr, which in some cases use the full spectrum of possible interactions, 

emphasizing their role as global players in protein-protein interfaces. Additionally, 

several Leu residues contribute to the interface. The segment of the N-terminal 

extension in the rim region of the dimer interface, which contributes roughly 10 % to 

the interface (Table 2.17), is an exception to the remaining hydrophobic dimer 

interface. However, its contribution to a gain in stability should be higher than 

expected by pure comparison of interface areas, since in contains mostly H-bonds. 
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Table 2.17 Comparison of dimer interfaces of SsTrpB2b and TrpB1 family proteins. 

Tryptophan Synthase (PDB code) Buried surface area [Å2]1 

SsTrpB2b 4437.8 

StTrpB1 (1BKS) 4021.5 

PfTrpB1 (1WDW) 4057.6 

1the buried surface area has been calculated with GRASP (Nicholls et al., 1991). 
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Figure 2.25 The interfaces of SsTrpB2b (B2b) in comparison with SsTrpB2a (B2a). 
The sequences are aligned as in Figure 6.2 in the appendix. The composition of this figure is analogous 
to Figure 2.19. Asterisks (underlined for formation of H-bonds) indicate residues forming interactions 
in the domain-domain (domdom, above SsTrpB2b) and homo-obligomer (homobl). In the 
domain-domain interface (above SsTrpB2b sequence), red background indicates residues with 
mainchain-mainchain interactions involved in the local organization of structural elements (e.g. H2) 
and magenta background the swapped residues (reflecting a pseudo-conservation), respectively. In the 
homo-obligomer interface, residues forming an H-bond to one of the 16 bridging waters are indicated 
by blue triangles (there are no waters involved in the domain-domain interface.).   

 

Surprisingly, the polar segments of the N-terminal extension contribute to 

both, the domain-domain and the homo-obligomer interface indicating a role as an 

interconnecting stabilization element between the domains and subunits in the context 

of thermophilic adaptation. Between the TrpS families, the fixation of the N-terminus 

in the domain-domain and homo-obligomer interface is unique to the TrpB2 family. 

In TrpB1 proteins, hetero-obligomer formation may have made the N-terminal 

extension segment obsolete, since the N-terminus of TrpB1 family members is 

anchored in the hetero-obligomer interface.  

 

2.5.5 Differences between the TrpB1 and TrpB2 families 

 
2.5.5a The N-terminal extension 

 

The N-terminal extension (residues Arg4 to Asp66) interconnects all interfaces 

in TrpB2 family members: the N-terminus folds into the homo-obligomer interface 

and it progresses along the domain-domain interface towards the putative 

hetero-complex (SsTrpB2a only) interface (Figure 2.26). The "-helices H1 in TrpB1 

and TrpB2 are the first co-locating structural elements (perpendicular orientation), 

while H1 in SsTrpB2b packs into a cavity not present in TrpB1 family members 

(upstream to H7a in Figure 2.19). In TrpB1 family members, H1 is a central element 

in the hetero-obligomer TrpA interface, while it is distant to the interface in 

ssTrpB2b. This suggests, that H1 is not involved in the hetero-complex interface 

between SsTrpB2a and SsTrpA. In contrast, the disordered segment in SsTrpB2b 

(Asp33 to Leu43, upstream to H1) could be involved in interactions between 

SsTrpB2a and SsTrpA. Two insertions in this segment could influence the association 

properties of SsTrpB2b and SsTrpB2a.  
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The N-terminal extension is truncated in SsTrpB2a suggesting that S0 is 

missing in the central $-sheet of the C-terminal domain. This may be a first step 

towards anchorage of the N-terminus segment in the TrpA interface analogous to 

TrpB1 family members.  

 

2.5.5b The cation binding-site region 

 
Proteins of the TrpB1 family show coordination of a Na+ ion, while in 

SsTrpB2b the amino group of SsLys298 replaces this cation. The coordination sphere 

of Na+ and SsLys298 show high similarity (Table 2.18 and Figure 2.27). SsLys298 

anchors the "-helix H9 in the “cation-binding site” of SsTrpB2b. Thus, SsLys298 

links three elements in the “cation binding-site” (instead of two in StTrpB1). This may 

provide additional stabilization to the corresponding region. 

 

 
Figure 2.26 The N-terminal extension. 

Right: the N-terminal extension in SsTrpB2b (magenta) compared to the structure of the 
N-terminus in PfTrpB1 (yellow). The N-terminus of SsTrpB2b reveals a completely altered 
structure compared to the N-terminus of PfTrpB1. PfTrpA is shown in gray. The borders of the 
disordered segment (Gln33 to Lys44) in the N-terminal extension are indicated by arrows. Only 
one subunit is shown. Left: zoom into the homo-obligomer interface. Residues forming H-bonds 
(indicated by red dashes) across the interface are shown in stick representation and labeled. The 
N-terminus contributes with $-strand S0 (labeled) to the C-terminal domain. 
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Table 2.18 Cation binding site in proteins of the TrpB1 and TrpB2 families. 

Tryptophan Synthase Ligand Coordination sphere1 Reference 

SsTrpB2b K298 V261, G262, Y339, H2O
2  

StTrpB1 Na+ G232, F306, S308, 2 H2O
3 Rhee et al., 1996 

PfTrpB1 Na+ G227, Y301, G303, 

3 H2O
4 

unpublished, 1V8Z 

used, only partial 

occupancy observed 
1conserved residues (position) in the coordination sphere are underlined 
coordination: 2tetragonal planar, 3tetragonal pyramidal, 4octahedral (in 1V8Z) 

 

 

Due to the lacking sodium ion, the E-AA intermediate and subsequently the 

closed conformation of SsTrpB2b cannot be stabilized in the same way as in TrpB1. 

Further, the region flanked by the N- and C-terminal residues coordinating SsLys298 

reveals significant structural differences between TrpB2 and TrpB1 members (Figure 

2.28). Structure based sequence alignments (Figure 6.2 in appendix) suggest that these 

differences constitute a second structural feature separating TrpB2 and TrpB1 family 

members. 

A      B 

 
Figure 2.27 The coordination sphere of SsLys298 and the cation binding-site of StTrpB1. 

Residues corresponding to structurally equivalent positions in both coordination spheres are shown in 
magenta and residues only present in one sphere in cyan, respectively. The tetragonal plane of the 
coordination sphere is shifted between SsTrpB2b and StTrpB1. Water molecules are shown as red 
spheres. (A) The coordination sphere of SsLys298 (yellow) and the corresponding electron density 
(dark blue, contoured at 1 #). (B) Na+ (orange) coordination in StTrpB1. Pro270, which is structurally 
equivalent to SsLys298, has been added. The atoms forming the coordination sphere are connected with 
red dashes.  
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Figure 2.28 Comparison of the cation binding-site regions of SsTrpB2b and StTrpB1. 

(A) Overview of the cation binding site of SsTrpB2b (green; also for B, C and D). The N- and 
C-terminal residues of the region are indicated with N and C, respectively. (B to D) The cation 
binding-site region of SsTrpB2b superposed to the corresponding region in StTrpB1 (yellow). For a 
better overview the region has been split into three fragments. Residues forming water-bridged 
interactions are labeled (asterisks indicate strict conservation between SsTrpB2b and SsTrpB2a) and 
shown as sticks. Green and yellow arrows indicate insertions in TrpB2 and TrpB1 family members, 
respectively. Secondary structure elements are labeled. (B) Segment representing the N-terminal 
moiety of the cation binding-site region. The "-helix H8 shows variable length in both, TrpB2 and 
TrpB1 family members. The water coordinating Lys298 forms a bridge to Val296. (C) The loop L8’ 
is significantly elongated in SsTrpB2b. Residues of L8’ coordinate a water molecule, which should 
further stabilize this segment. (D) The segment downstream to S8’’ reveals a structural shift of a loop 
segment. 
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There are two insertions in the structure of SsTrpB2b that may affect its 

functionality: the structurally altered loop segment downstream of S8’’ and the 

elongation of L8’. The loop segment downstream of S8’’ carries a residue (StAsp305, 

equivalent to SsArg338), which is involved in allosteric communication in StTrpB1. 

Due to the interaction pattern of SsArg338, this should not be able to participate in a 

TrpB1-analogous allosteric communication. Additionally, a putative acceptor residue 

of the allosteric communication (StLys167) would be a Gly in SsTrpB2b, which lacks 

a side chain critical to this communication. The residues downstream of SsArg338 

form interactions to L8’. Thus, an element involved in allosteric communication in 

TrpB1 family members is missing in SsTrpB2b, which should break the allosteric 

pathway between the active sites of TrpA and TrpB2 family members. 

The insertion in L8’ is equivalent to a plug in the tunnel entrance, since gating 

residues in TrpB1 members are located there. The residues SsAsp307 and SsTyr309 

(equivalent to the gating residues StTyr279 and StPhe280) are in different 

conformations in SsTrpB2b and StTrpB1. Instead of an interaction pattern between 

StTyr279 in L8’ and H6, SsAsp307 (strictly conserved in TrpB2 family members) 

forms an interaction to the strictly conserved SsThr322. The main-chain of SsTyr309 

interacts to the strictly conserved SsHis340. Thus, an interaction pattern critical to 

allosteric communication in StTrpB1 cannot be formed and the conformation of L8’ 

should be decoupled from COMM subdomain movement analogous to TrpB1. The 

high conservation of L8’ in TrpB2 family members suggests SsLys313 to be a 

candidate involved in the different association behaviour of SsTrpB2b and SsTrpB2a, 

if this structural element is involved. In SsTrpB2a, a Gly in the position equivalent to 

SsLys313 should give L8’ higher conformational freedom and minimize volume 

requirements in this position. Additional flexibility may be critical to an alternative 

tunnel opening mechanism, which is likely to happen in SsTrpB2a due to decoupling 

of L8’ and H6.  

 

2.5.5c The insertion helix H5’ 

 

The insertion helix H5’ is vicinal of the hypothetical TrpA interface of 

SsTrpB2b. It is present in all members of the TrpB2 family. H5’ forms exclusively 

interactions to H6 in the COMM domain. Thus, it shields H6, which is involved in 

allosteric communication, from accessibility. The interaction between H5’ and H6 is 
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mostly hydrophobic. Only one H-bond is formed by the main chain of H5’ Glu214 

(strictly conserved in TrpB2 family members). The helix has a putative intrinsic 

mobility, suggested by the high B-factors of the crystallographic model. Due to this 

mobility, H5’ may undergo structural displacement during catalysis, with subsequent 

solvent exposure of H6. The low conservation of H5’, together with its putative 

mobility, makes it hard to estimate its role in the association behavior of 

SsTrpB2b/SsTrpB2a to TrpA. However, it is likely that in SsTrpB2b H5’ blocks 

allosteric communication (if analogous to TrpB1), since the accessibility of H6 is 

critical to this process. 

 

 

Three regions with altered structure cluster in the hypothetical TrpA interface 

of SsTrpB2b: L8’, H5’ and the N-terminal extension (borders of the disordered 

segment). It is likely, that the composition of these elements dictates the association 

behavior of SsTrpA and SsTrpB2b (lack of complex formation) as well as SsTrpB2a 

(hetero-complex formation).  

 
Figure 2.29 The insertion helix H5’ (displayed as sticks) and its environment.  
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2.5.6 The hetero-complex between SsTrpB2a and SsTrpA 

 

The activation of the "-reaction of SsTrpA by SsTrpB2a constitutes indirect 

evidence for hetero-complex formation during catalysis. It seems that SsTrpB2a 

and/or SsTrpA create a conformational state during catalysis, which is capable to form 

the binding interface. The catalysis of StTrpB1 and StTrpA has been investigated 

intensively on a structural level over the past two decades (Figure 2.30). 

 

2.5.6a Homology models 

 

Crystal structures of StTrpB1 at different points during catalytic were used to 

produce homology models of active states of SsTrpB2b. In catalysis, the COMM 

subdomain moves as a rigid body, while the rest of the enzyme remains unchanged 

(rmsd = 0.24 Å, Schneider et al., 1998). Due to this and the significantly altered 

tertiary structure between the TrpB1 and TrpB2 family, homology models were 

produced by splitting SsTrpB2b into COMM subdomain and remainder of the protein. 

These two segments were independently superposed to the corresponding regions in 

TrpB1 (Table 2.19). To produce the final models, the superposed segments were 

subsequently idealized with REFMAC (Murshudov et al., 1997; Figure 2.31A).  

 

 

 
Figure 2.30 States of catalysis for which structural information exists for TrpB1/TrpA. 

All structures are from S. typhimurium TrpB1/TrpA (except 1WDW from P. furiosus). Active site 
complexes are shown in black ("-active site/$-active site) with PDB codes below (blue). Natural 
substrates entering the active sites during catalysis in red (used analogues are colored in black, 
abbreviations are given in Table 2.4). 
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Table 2.19 Statistics of superposition of the COMM domains of SsTrpB2b and StTrpB1. 

Template rmsd [Å] 

(COMM) 

Over C" 

(COMM) 

rmsd [Å] 

(rest1) 

Over C"  

(rest1) 

Homology model 

1UBS 0.9 91 1.1 196 SsTrpB2b_ESer 

2TYS 1.0 89 1.1 195 SsTrpB2b_ETrp 
1rest defines SsTrpB2b with COMM domain removed, namely residues 4-115 and 227-428 
 

However, clashes in SsTrpB2b models (prior to idealization) involved residues 

upstream to SsH1, the active site loop (N-terminal COMM subdomain border), SsH6, 

the C-terminal COMM subdomain border and L8’ indicating that these regions may 

have to undergo conformational changes during catalysis. Despite, the external 

aldimines (E-Ser and E-Trp) could be modeled within the active sites of the homology 

models. The resulting complexes revealed protein:ligand interactions analogous to 

those in TrpB1, indicating a good structural correlation of the SsTrpB2b_ESer and 

SsTrpB2b_ETrp conformational states. 

Due to the high sequence conservation between SsTrpB2b and SsTrpB2a, 

additional homology models (SWISS MODEL, Guex & Peitsch, 1997; 

Schwede et al., 2003) could be generated for SsTrpB2a (Figure 2.31B). Additionally, 

the homology model SsTrpB2b_ESer was used as template for homology modeling 

(SWISS MODEL) of the corresponding catalytic state of SsTrpB2a.  

A      B 

 
Figure 2.31 SsTrpB2b and homology models. 

Crystal structure and homology models of SsTrpB2b (A) and homology models of SsTrpB2a (B). The 
COMM subdomain movement is best visible in H5’ (labeled). H1 and its upstream region as well as 
L8’ (both orange and labeled) move away from H6 (labeled) due to the COMM movement.   
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The homology model SsTrpB2a is essentially identical to SsTrpB2b 

(rmsd = 0.1 Å over 398 C"-atoms using TOP). The same is valid for the superposition 

of SsTrpB2b_ESer and SsTrpB2a_ESer (rmsd = 0.2 Å over 399 C"-atoms using 

TOP). The corresponding structure based sequence alignments are analogous to 

Figure 2.25, while H1 is also present in both SsTrpB2b and SsTrpB2a . 

 

2.5.6b  The interface between TrpB1/TrpB2 and TrpA 

 

A detailed description of interfaces in the Tryptophan Synthases of P. furiosus 

and S. typhimurium is not available in the bibliography. A single comparison of the 

homo-obligomer interface has been reported that focuses on the stabilization energy 

of H-bonds (Hioki et al., 2004). Hence, the hetero-obligomer interface between TrpA 

and TrpB1 was analyzed here using the program LIGPLOT (Wallace et al., 1995). A 

structure-based sequence alignment (Swiss PDB Viewer; statistics in Table 2.20) was 

produced to correlate involved segments between the TrpB family members. This 

revealed that segments with obligatory interactions in TrpB1 belong to the N-terminal 

extension and the cation binding-site region in SsTrpB2b. Due to the COMM 

subdomain movement in TrpB1, this element is only temporarily involved in 

interactions to TrpA with H6, which is shielded by H5’ in SsTrpB2b/SsTrpB2a 

(Figure 6.2 in Appendix).  

 

Table 2.20 Superposition of SsTrpB2b and PfTrbpB1 (1WDW) as well as StTrpB1 (rest). 

PDB code rmsd [Å] Over C"-atoms 

1WDW 1.34 291 

2WSY 1.46 263 

1BKS 1.42 272 

1UBS 1.44 261 

2TRS 1.40 248 

1A5S 1.46 259 

2TYS 1.41 248 

 

Analogous to TrpB1, TrpA structures were superposed using Swiss PDB 

Viewer (statistics in Table 2.21) and a structure-based sequence alignment of TrpA 

representatives (MyHits, Figure 6.3 in appendix) created. In TrpA, residues forming 
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interactions to TrpB1 proteins cluster in three regions involving the active site loop 

L2 and its downstream region (H2’) as well as the "-helices H3 and H4. SsTrpA 

reveals a significantly altered L2 sequence and the truncation of H2’, which seems to 

be a feature unique to SsTrpA. This may affect the catalytic efficiency of SsTrpA 

compared to other TrpA proteins. The loop L6 has a variable length between different 

organisms. L6 is the initiation point of allosteric communication and has a supportive 

role in TrpA catalysis (stabilization of L2 and closure of the active site). SsTrpA has 

the shortest L6 indicating that both, allosteric communication and L2 stabilization 

may be affected. 

 

Table 2.21 Statistics of the superposition of PfTrpA (1WDW) to TrpAs of S. typhimurium. 

PDB code rmsd [Å] Over C"-atoms 

2WSY 1.17 204 

1BKS 1.18 216 

1UBS 1.19 218 

2TRS 1.25 211 

1A5S 1.19 215 

2TYS 1.24 213 

 

2.5.6c Putative role of SsTrpB2b segments in the hetero-complex interface 

 

It can be expected that the relative position of the TrpA interface in SsTrpB2a 

has been retained and evolutionary shaping has optimized the interaction pattern in 

the hetero-complex towards a hetero-obligomer interface. However, the TrpA/TrpB 

interface reveals various differences between the TrpB1 and TrpB2 family, which are 

likely to affect the interaction pattern to TrpA. Due to the increased catalytic 

efficiency of SsTrpA in presence of SsTrpB2a (60-fold for apo and 270-fold for 

addition of L-Ser, Leopoldseder et al., 2006) it is likely that conformational changes 

in SsTrpB2a during catalysis create a surface with improved interactions to SsTrpA. 

The structures of SsTrpB2a_ESer and StTrpB1 (2TRS, rmsd = 1.5 Å over 283 

C"-atoms) have been superposed and the coordinates of StTrpA (with a closed active 

site) extracted. Comparison of StTrpA and SsTrpB2b/SsTrpB2a reveals H5’, H6 and 

L8’ as structural elements with a putative role in the hetero-complex interface (Figure 

2.32). It is likely, that H1 and the disordered segment upstream of H1 are also 
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involved in this interface as indicated by a SsTrpB2a variant in the studies of 

Leopoldseder (2005). Additionally, this showed lower activation of SsTrpA by a 

second SsTrpB2 variant with “switched” structural residues in H8 (variants indicated 

in Figure 2.25), which is distant to the interface. This modification is likely to affect 

the structure of H1 and its upstream region. This, together with structure based 

sequence alignments of TrpA proteins and interactions across the hetero-obligomer 

interface of StTrpS, can be used to create a hypothetical model of the role of TrpB2 

elements in hetero-complex formation and allosteric communication: 

 

(i) L8’ in SsTrpB2a stabilizes the active site loop L2 of SsTrpA. In SsTrpB2b, this 

loop cannot interact with L2 because of steric hindrance. The best candidate is 

the side-chain of SsLys313 in the core of the interface, which is equivalent to a 

Gly in SsTrpB2a. This would explain the moderate increase in catalytic 

efficiency of SsTrpA upon addition of SsTrpB2a. This stabilization may be 

provided by an induced fit conformational change of L8’, which might open the 

tunnel entrance.  

(ii) The mobile "-helix H5’ in SsTrpB2a provides additional stabilization to SsTrpA 

L2. In SsTrpA, H2’ (downstream of L2) is truncated but H5’ in SsTrpB2a may 

fulfill the role of the truncated segment instead. The E-Ser conformational state 

moves H5’ closer to SsTrpA which is likely to provide further stabilization to 

SsTrpA L2. However, this could be an element stabilizing the hetero-complex 

interface without increasing catalytic activity (as indicated by the switch of H5’ 

between TrpB2b and TrpB2a; Leopoldseder, 2005)1. The COMM domain adopts 

semi-closed conformation, L8’ has to obey this movement by a conformational 

change favoring interactions to SsTrpA. Significantly altered sequences of H5’ 

between SsTrpB2a and SsTrpB2b are likely to affect a possible interaction of this 

helix to SsTrpA. 

(iii) Analogous to TrpB1, H6 interacts with SsTrpA L6 providing stabilization. 

(iv) H1 and the disordered segment upstream are in the vicinity of SsTrpA, which 

makes the involvement of this segment likely (analogous to the involvement of 

the N-terminus of StTrpB1 in the hetero-obligomer interface).  

                                                
1 If this stabilization would be provided by the conserved N-terminal moiety of H5’ TrpB2 variants 
would have no effect on interface formation/activation. 
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The differences in structural elements with putative involvement in TrpA 

binding between SsTrpB2a and SsTrpB2b are likely to be the determinant of 

hetero-complexation. In L8’ (SsTrpB2b), Lys313 (Gly in SsTrpB2a) is a residue that 

 
Figure 2.32 Hypothetical hetero-complex interface between SsTrpB2a and StTrpA. 

SsTrpB2a is coloured as in Figure 2.31, while H1 and the first residue upstream to the disordered 
segment are coloured red. Different signs indicate structural elements in SsTrpB2a and StTrpA 
(L2 and its downstream region shown solid, cyan; L6 solid, magenta). The remainder of StTrpA is 
shown in gray surface representation as well as transparent magenta cartoon representation 
(transparent to show the active site). The disordered segment in SsTrpB2a may interact with the 
region shown as transparent magenta cartoon. The substrate analogue (IPL, yellow) is shown in 
the active site of StTrpA. 
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is underrepresented in protein-protein interfaces in general. In SsTrpB2a, a Tyr in H5’ 

is an interface hot spot residue, while in SsTrpB2b a Phe is in the equivalent position. 

The disordered segment carries several hot spot residues in SsTrpB2a (two Arg and 

one Tyr), which are missing in SsTrpB2b. This segment may be able to form 

interactions to SsTrpA providing additional stabilization to the interface. 

Alternatively, the truncation of H8 could allow different packing of H1 and its 

upstream region including the disordered segment. 

 

2.5.6d Allosteric communication 

 

The suggested path of mutual allosteric communication between the active 

sites of TrpA and TrpB1 involves regions that have been altered across TrpB1 and 

TrpB2 family members (N-terminal extension, cation binding site region, insertion 

helix H5’ and the active site). This path shows several potential point breaks: 

 

(i) The residue StAsn171 (strictly conserved in the B1 family) is equivalent to 

SsSer210 (strictly conserved in B2 members). The gating residues, which interact 

with this Asn in TrpB1, adopt different conformations and are shielded by L8’ in 

TrpB2 family members.  

(ii) Truncation of H6 in the COMM subdomain of TrpB2 enzymes could prevent an 

interaction pattern as that of TrpB1 (H6 in TrpB1 interacts with L6 in TrpA). 

Additionally, this loop is truncated in SsTrpA.  

(iii) The interaction of $H6 to the gating residues is not present in SsTrpB2b and can 

subsequently not be changed. For the formation of these interactions, L8’ would 

have to undergo conformational changes 

(iv) SsArg339 adopts a different conformation than the equivalent StAsp305 (neither 

“swing-in” nor “swing-out” conformation).  

 

A mutual allosteric communication path between SsTrpB2a and SsTrpA 

cannot be formed since several critical elements are either not present or shielded 

from the required interaction. However, SsTrpB2a shows a higher activation of the 

"-reaction (between 60 and 300-fold) than StTrpB1 (25-fold; Miles, 2001). Since the 

"-reaction is the rate-limiting step in the "$-reaction of S. solfataricus, SsTrpB2a also 
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benefits from increased indole availability. Another role of the allosteric 

communication is to prevent the loss of indole during channelling between active 

sites. The lack of the cation decreases the stability of the E-AA state, which has 

higher affinity for indole. An indole molecule in the tunnel may get lost if SsTrpA 

dissociated from SsTrpB2a (because of a conformational change induced by reaction 

of E-AA in E-Ser). This emphasizes a role of SsTrpB2b as an indole salvage protein 

in a system, which is in a nascent phase of evolution towards formation of 

protein-protein interfaces. 

 

2.5.7 Summary and conclusions 

 

2.5.7a Summary 

 

During structure elucidation it became obvious that SsTrpB2b and TrpB1 

family members comprise a common core and differ mainly in their interface to TrpA. 

Structural features of SsTrpB2b have been analyzed and set into the context of the 

TrpB2 and TrpB1 families. The extensive studies of TrpB1 family members over the 

last two decades made it possible to model conformational states of SsTrpB2b during 

catalysis. The high sequence conservation between SsTrpB2b and SsTrpB2a allowed 

the production of homology models to draw conclusion on the molecular determinants 

of the complexation behavior of SsTrpB2b and SsTrpB2a. 

The elucidation of the structure of TrpB2b from Sulfolobus solfataricus 

(non-operon located trpB2 transcript) gave detailed insight into similarities and 

differences between the TrpB1 and TrpB2 families. The domain organization is 

highly similar and the active site composition indicates identical catalytic properties 

in both families. Differences between these families include three regions (N-terminal 

extension, insertion helix H5’ and the cation binding-site region) clustering in the 

hypothetical hetero-complex interface of TrpB2 family members. The first residues of 

the N-terminal extension of SsTrpB2b fold back onto the dimer interface and 

contribute to the central $-sheet in the C-terminal domain. This segment represents a 

polar extension to otherwise predominantly hydrophobic homo-obligomer interfaces 

in TrpB1 and TrpB2 enzymes. The monovalent cation is not present in TrpB2 

members and is replaced by the side-chain of a Lys residue (SsLys298), which may 
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stabilize the corresponding region. The insertion helix (H5’), exclusively found in 

TrpB2, shields H6 (an element involved in allosteric communication in the TrpB1 

family) from access.  

Homology models suggest a SsTrpA:SsTrpB2a interaction pattern, which is 

similar to that of TrpB1:TrpA. The key to activation of SsTrpA seems to lie on the 

contributions of H5’ and L8, elements likely to prevent the formation of a 

SsTrpB2b:SsTrpA hetero-complex. The allosteric communication path is potentially 

disrupted as several points in TrpB2 family members, which results in 

monodirectional activation of TrpA. 

 

2.5.7b Conclusion 

 

The model system SsTrpB2 is an ancestral initiation point of TrpB protein 

evolution, likely to correspond to a nascent phase. Oligomerization is “tested” by 

formation of a hetero-complex between SsTrpB2a and SsTrpA, while a second copy 

(SsTrpB2b) guarantees retained functionality (catalysis). The evolution towards 

modern hetero-obligomers seems to arise from altered stabilization (by fixation of the 

N-termini) and enhanced functionality (allosteric communication). The fixation of the 

N-terminus in the homo-obligomer interface has become obsolete upon formation of 

hetero-obligomers. In this context, an initial evolutionary step towards reorganization 

of the N-terminus seems to be the truncation of H8 in SsTrpB2a, which may have 

allowed different packing of H1 and its upstream region with subsequent 

minimization of sterical clashes. The enhanced catalytic efficiency of SsTrpA favours 

the evolutionary pathway from the observed dimer over hetero-complexation towards 

formation of a hetero-obligomer. Subsequently, sterical clashes in the hetero-complex 

interface between SsTrpA and SsTrpB2a have been minimized to stabilize it.  

An initial stability gain may have loosened evolutionary pressure on the cation 

binding-site. The obligate interaction between TrpB1 and TrpA also loosens 

evolutionary pressure on the length of L8’ since indole cannot be lost due to complex 

dissociation and the role of gating residues can then be established. A final step in the 

evolution of mutual allosteric communication could have been the complementary 

shaping of helix H6, which is the central element in the path. Even “shifting” of 

structural elements between TrpB2 and TrpA (e.g. H5’ in SsTrpB2b may have 
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become H2’ in TrpA) seems to be involved in the evolution from two independent 

enzymes towards a multienzyme complex.  

After the completion of this work, the structure of SsTrpA was completed in 

our lab. This will allow now furthering the evolutionary analysis of 

hetero-complexation in this group of enzymes. 
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3 A77-A78: insights into the A-band 

organization in human muscle 

 

The sarcomere – contractile unit of striated muscle – is one of the most 

organized and highly synchronized bio-machinery known to date. The titin filament 

plays multiple roles both in its complex function and ordered ultrastructure. In 

particular, titin is believed to act as a scaffold or template for the assembly of multiple 

other sarcomeric proteins, supporting numerous protein-protein interactions. For 

example, the poly-FnIII super-repeat structure of titin’s A-band region is thought to 

serve as an assembly matrix for the myosin-based thick filament. In agreement with 

this, the periodicity of the latter matches the periodicity of long super-repeats in titin. 

To date, no structural information exists on the conformational arrangement of 

domains within the poly-FNIII arrays of A-band titin. To this effect, we have 

elucidated the crystal structure of the two-FnIII tandem A77-A78, which provides an 

insight into the intramolecular FnIII-FnIII interfaces of titin and their potential 

involvement in thick filament assembly. 
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3.1 Abstract 
 

Titin is a gigantic protein that spans half of the sarcomere. Its A-band fraction 

is believed to act as a matrix for myosin filament assembly. This part of the titin chain 

is composed of fibronectin type III (FNIII) and Immunoglobulin-like (IG) modules, 

organized in two types of super-repeats containing seven and eleven domains (short 

and long type, respectively). To date, there are no atomic models of FNIII tandems 

from titin and subsequently the architecture of its A-band region remains elusive. 

We elucidated the first structure of an intracellular FNIII tandem, A77-A78 

from a long super-repeat of human titin, using X-ray crystallography. A77-A78 

correspond to positions two and three of the fourth super-repeat tandem. A77-A78 

adopts a semi-extended conformation, defined by an unusually polar domain interface 

crowded with tight H-bond contacts. This suggests that the structure of this tandem is 

well-defined and stiff. The modular interface is determined by the properties of end 

loop clusters as well as by linker composition, which are mostly conserved across 

equivalent domain positions across super-repeats. In titin’s FNIII transitions, 

A77-A78 seems to represent the tightest transition with the lowest conformational 

freedom. In other titin FNIII tandems, longer linkers and a higher hydrophobic 

content of the interface seems to allow them higher conformational freedom. This 

suggests a super-repeat dependent rigidity of FNIIIs transitions, which creates tightly 

associated tandems with a possible myosin assembly matrix function as well as 

transitions that may act as hinges for fine-tuning of this assembly.  

Based on the recent structure of A168-A170 (IG-IG-FNIII) from the M-line of 

titin, a homology model of the tandem A76-A78 was produced. This show a zig-zag 

arrangement where highly conserved patches co-align along the filament in the 

filament surface with the best accessibility. This leads to speculate on the potential 

role of these regions in higher assembly within the sarcomere.  
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3.2 Introduction 
 

3.2.1 The sarcomere and its major components 

 

Muscle ultrastructure is characterized by a complex arrangement of 

multi-protein arrays. The sarcomere (Figure 3.1) is the basic contractile unit of 

striated muscle, being the smallest self-contained functional unit of myofibrils. 

Sarcomeric features resolved by electron microscopy (EM) are the transverse thin and 

thick filaments and the longitudinal Z- and M-lines (the lines are also referred to as 

discs or bands) as well as the P-zone. 

 

The I-band includes the thin filament and the Z-disc. The thin filament – 

which is actin-based - is anchored in the Z-disc and interacts with the thick, myosin-

based filament during active force generation according to the “sliding filament” 

model (Huxley & Niedergerke, 1954) following the “Lymn-Taylor-cycle” 

(Lymn & Taylor, 1971) of ATP hydrolysis by myosin during contraction. The A-band 

comprises the area where thick and thin filaments interdigitate. Its central region is 

occupied only by the thick filament, with the M-line denoting the geometrical center 

of the sarcomere where the thick filament switches its polarity, so that half sarcomeres 

are in fact repeats with opposite direction. 

 

 

 

 

 
Figure 3.1 The sarcomere. 

The sarcomere comprises the region from Z-line to Z-line (indicated by vertical arrows). For a 
description of the regions in the sarcomere see upcoming chapters. Image adapted from Stryer, 
1975, Biochemistry.  
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3.2.2 Myosin and the thick filament  

 

The central component of the thick filament is myosin, which is composed of 

a light chain (rod domain, oligomerization motif) and a heavy chain (head domain, 

active force generation). Myosin oligomerizes over its rod domains from initial 

dimeric building blocks to a bipolar filament (parallel arrangement in each half 

sarcomere). Each thick filament spans the whole A-band region and switches its 

polarity at the M-line, where myosin molecules are arranged antiparallel. This creates 

a region free of myosin heads, the P-zone (also referred to as bare-zone), where 

various other proteins interconnect the filaments into hexagonal arrangements. 

Low-angle X-ray diffraction (Huxley & Brown, 1967) and EM (Luther et al., 1981) 

indicated periodicity of the myosin heads in the thick filament of vertebrates, where 6 

myosin molecules (3 dimers1) form a crown with 429 Å periodicity and 143 Å 

sub-periodicity resulting in three-fold rotational symmetry along the filament (Figure 

3.2A). The spacing between the crowns shows periodic perturbation within a 429 Å 

repeat (Cantino et al., 2000).  

The second principal component of the thick filament is Myosin binding 

protein-C (MyBP-C, also called C-Protein), exclusively found in the C-zone of the 

A-band. There it binds myosin and titin’s IG domains at intervals of myosin crown 

periodicity (Rome et al., 1973). Roles in filament assembly during myofibrillogenesis 

and the regulation of contraction have been proposed (Kenny et al., 1999 and 

references therein). MyBP-C is largely composed of domains with IG and FNIII fold 

and additional unique sequences. The last four domains (C7-C10) show a pattern 

FNIII-IG-FNIII-IG and are associated with titin and myosin binding 

(Freiburg & Gautel, 1996) (Figure 3.2B). C10 is the main myosin binding-site while 

C7-C9 are supposed to give MyBP-C its proper location by interactions with myosin 

as well as each first IG domain of titin’s long super-repeat2 (MyBP-C domains 

C8-C10).  

                                                
1 4 dimers per crown in invertebrates and 6 dimers in scallop; same periodicity 
2 the composition of titin’s super-repeats is shown in section 3.2.3a 
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Figure 3.2 Vertebrate myosin and MyBP-C. 

(A) Myosin models from low angle X-ray diffraction and electron microscopy (EM) single particle 3D 
reconstruction. The cross sectional view (top) of X-ray and EM models showing three 
symmetry-related crowns (sub-periodicity 143 Å) to result in a global periodicity of 429 Å (both 
indicated in the bottom panel). (B) The domain composition of myosin binding protein C (MyBP-C; 
lower panel) and the interaction models between myosin and MyBP-C. Rome et al. (1973) suggested 
that three MyBP-C molecules arrange in collar fashion around the myosin filament (domains C5 to C10 
of three chains wrap around the myosin filament) while domains C1 to C4 point away from myosin. 
The second model by Squire & Knupp (2005) shows an axial orientation of MyBP-C along the myosin 
filament. The three C-terminal domains (C8-C10) interact with the first IG modules in titin’s long 
super-repeat (Freiburg & Gautel, 1996). MyBP-C molecules can also interact with each other (over C7 
and C10 as well as C5 and C8; Moolman-Smook et al., 2002; Squire et al., 2003). 

 

The A-band region of titin constitutes an additional component of the thick 

filament, which has been proposed to act as a molecular ruler and template in thick 

filament assembly (Whiting et al., 1989). This involves six titin molecules per thick 

filament in each half of the sarcomere (estimated from mass measurements of the titin 

content of myosin; Liversage et al., 2001). The mechanism underlying myosin 

assembly in vivo is yet to be understood.  

 

3.2.3 Titin 

 

The gigantic protein titin (also known as connectin) spans half of the 

sarcomere (>1.3 µm). It is anchored to the Z-disc, spans the I-band, penetrates the 

A-band and attaches to an adjacent titin molecule in the M-line. With up to 3.7 MDa it 

is the largest protein known to date (Maruyama et al., 1977; Wang et al., 1979). The 

building blocks of titin were initially identified in 1995 (Labeit and Kolmerer, 1995), 

when sequence data first became available, and were completed in 2001 once the 

domain composition of the different isoforms was established (Bang et al, 2001). This 

revealed that most of the 38138 amino acids encoded by the human titin gene fold 

into immunoglobulin (Ig) and fibronectin-3 (Fn3) domains, which add up to ~300 

modules in the larger isoforms (approx. 90% of its molecular mass). They form 

mostly linear tandems distributed along the length of the filament. Other important 

components of titin include the so-called PEVK region in the I-band (rich in proline, 

glutamate, valine and lysine residues), unique sequences - yet to be characterized - 

and one single catalytic domain, a kinase (TK), located at the M-line. TK is related to 

myosin light chain kinase (MLCK)-like Ser/Thr kinase and phosphorylates telethonin 

in developing muscle (Mayans et al., 1998). This phosphorylation is thought to be 

important for initiating or regulating myofibrillogenesis. Titin plays different roles 
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across the diverse functional regions of the sarcomere, participating in sarcomere 

assembly and myofibrillogenesis, maintenance of ultrastructure, elasticity, myofibril 

turn-over and mechanotransduction in muscle (for reviews see 

Granzier & Labeit, 2005; Squire et al., 2005).  

 

3.2.3a Titin’s A-band organization 

 

Titin’s role of molecular template and ruler is particularly pronounced in the 

A-band, where allegedly contribute to regulate the assembly of the myosin-based 

thick filament. A-band titin is composed of serially linked IG and FNIII domains, 

organized in super-repeats (Figure 3.3) composed of either seven (short repeat) or 

eleven (long repeat) domains. The short super-repeats consist of a 

[IG-(FNIII)2-IG-(FNIII)3] domain arrangement and are located in the D-zone (from 

distal to the M-line) at the tip of the myosin filament. The contiguous long 

super-repeats have a [IG-(FNIII)2-IG-(FNIII)3-IG-(FNIII)3] composition and are 

located in the C-zone (from central in the A-band), which ends at the edge of the bare 

zone. Long repeats are believed to have evolved from the short form by gene 

duplication (Higgins et al., 1994).  

 
Figure 3.3 The modular organization of titin’s A-band region. 

Top panel: overview of titin’s domain organization. IG-like modules are depicted as red boxes, 
FNIII-like modules are shown in white. The titin kinase domain is colored in black and unique 
sequences are colored in light blue. Underneath, the myosin filament is sketched in green with the 
attached MyBP-C shown as blue boxes. Bottom panel: blow-up of the I/A-junction, a short and a 
long (FNIII module numbering shown underneath) super-repeat domain (adapted from 
Muhle-Goll et al., 2001). 
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Low-angle X-ray diffraction (Squire et al., 2004) suggested periodicities of 

40 Å for titin’s modules along the myosin filament (38 Å optical diffraction; 

Hanson et al., 1971) and subsequently the involvement of the long super-repeat1 in 

myosin periodicity (freeze-fractions of muscle A-bands by Cantino et al., 2002; low 

angle X-ray diffraction by Oshima et al., 2003 and Squire et al., 2005). In a 

hypothetical model by Squire and coworkers (2005; Figure 3.4), three equivalent titin 

strands (dimeric titin) arrange in either a coil or in zigzag around the myosin filament. 

Axial arrangement of titin on the myosin filament was suggested by Cantino and 

coworkers (2002). There is little evidence favoring one over the other arrangement. 

 

                                                
1 eleven domains in extended conformation span 418-440 Å  

  
Figure 3.4 Hypothetical titin-myosin model. 

Left: radial net of the myosin head positions on the surface of a thick filament viewed from outside 
the filament, where each black circle represents the location of a pair of myosin heads. The myosin 
head arrangement is represented as right-handed, three-start, nine head pair per turn helix of pitch 
3x429 Å (true repeat 429 Å). On the surface of the thick filament six titin molecules (blue) three 
equivalent pairs of two titin molecules (blue; organized into three equivalent strands) intertwine to 
form a coil with a pitch of 214.5 Å. This titin arrangement possesses a 1287 Å true repeat and 
interactions with three successive 429 Å myosin repeats are not equivalent. Right: 
Three-dimensional representation of the thick filament with twisting titin strands whose radial net is 
depicted left. Adapted from Squire et al., 2005. 
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Binding studies (cosedimentation and solid phase binding assays, 

Muhle-Goll et al., 2001) of FNIII tandems (A77-A78, A80-A82 and A84-A86) 

revealed binding of titin’s FNIIIs to myosin, heavy meromyosin (globular heads with 

a section of the rods) and to sub-fragment S1 (myosin head domain). Reliable models 

of the organization in the myosin filament are still not available.  

 

3.2.3b Titin’s main building blocks 

 

IG and FNIII modules (~100 aa length) belong to the superfamily of 

immunoglobulin-like proteins, which exhibit a two-layer $-sandwich architecture 

following a greek-key topology (CATH domain database; Figure 3.5).  

 

Titin’s IG modules have been classified to the intermediate (I) set of domains 

as they contain features intermediate between the variable (V) and constant (C1 and 

C2) set of immunoglobulin frames (Harpaz & Chothia, 1994). Titin’s FNIII modules 

are found exclusively in the A-band region and are the only intracellular FNIII 

modules known to date.  

There are features common to both IG (Improta et al., 1996; Witt et al., 1998) 

and FNIII (Muhle-Goll et al., 1998; Muhle-Goll et al., 2001) domains of titin. These 

features comprise a Pro-rich motif at the N-terminus, an Asn-x-x-Gly-motif in the FG 

$-hairpin and the fact that N- and C-termini are located in opposite ends of the 

modules. Additionally, there is a so-called Tyr-corner, characterized by the interaction 

 
Figure 3.5 IG and FNIII modules and their topology. 

The strands of the two $-sheets in FNIII (left) and IG (right) modules are shown in red and green. The 
topology of FNIII and IG domains differs mainly by a switch of a single $-strand between the sheets 
(Bork et al., 1994), called C’ in FNIII domains and D in IG domains (image adapted from Paci & 
Karplus, 2000). 
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of the side-chain of a conserved Tyr residue (from strand E) to the main-chain of the 

i-5 residue (Hamill et al., 2000). To date, there are only a few atomic models of 

modular components of titin (Table 3.1). Most models correspond to domains in 

isolation, although most recently two tandem structures have been reported, namely 

the IG-tandem Z1-Z2 (Zou et al., 2006; Marino et al., 2006) and the IG-IG-FNIII 

tandem A168-A170 (Mrosek et al., 2007). It should be noted that, to this date, a single 

structure of a FNIII module from human titin, A71, has been elucidated 

(Muhle-Goll et al., 1998). 

 
Table 3.1 Structures of IG/FNIII modules from human titin (updated from Marino et al., 2005). 

Module1 Location PDB ID Method Reference 

Z1Z2 Z-disc 2A38 X-ray Cryst. Marino et al., 2006 

Z1Z22 Z-disc 1YA5 X-ray Cryst. Zou et al., 2006 

I1 I-band3 1G1C X-ray Cryst. Mayans et al., 2001 

I914 I-band5 1TIT6 NMR Improta et al., 1996 

A717 A-band 1BPV NMR Muhle-Goll et al., 1998 

A168-A170 P-zone 2NZI X-ray Cryst. Mrosek et al., 2007 

M1 M-line 2BK8 X-ray Cryst. Müller et al.,  

M5 M-line 1NCT8 NMR Pfuhl & Pastore, 1995 
1all modules (except A71 and A170) have IG fold, 2in complex with telethonin, 3constitutive, proximal 
I-band 4former name: I27, 5constitutive, distal I-band 6also 1TIU, 7position seven in the third long 
super-repeat domain, 8also 1NCU, 1TNM and 1TNN  
 

To date, the architecture and conformational dynamics of the titin chain 

remains mostly unknown. One single complete study exists that addresses the 

properties of a two-IG tandem.  This carried out by Marino and coworkers (2006) 

investigated Z1-Z2 from the N-terminus of the titin filament using X-ray 

crystallography, small angle X-ray scattering (SAXS), NMR relaxation and residual 

dipolar couplings. This revealed that Z1-Z2 preferentially adopts an extended 

conformation at equilibrium in solution despite a lack of interactions across the IG 

modules and the presence of a three-residue, hydrophilic linker. The restricted nature 

of the modular dynamics in Z1-Z2 appears mediated by a minor hydrophobic 

contribution from the aliphatic fraction of linker residues. The putative role of this 

preferential conformation is the selective recruitment of the Z1-Z2 binding partner 

telethonin by steric means. No analogous studies have been carried out so far for 

titin’s FNIII tandems. 
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3.2.3c The architecture of titin’s FNIII modules 

 

The NMR solution structure of A71 (Muhle-Goll et al., 1998) gave detailed 

insights into the structure of intracellular FNIII modules. Based on this structure, the 

conservation of titin FNIII modules was estimated by sequence alignments and 

mapped to A71 (Figure 3.6), which showed repeat position dependent conservation 

(Muhle-Goll et al., 2001).  

 

 
F

ig
u

re
 3

.6
 C

o
n

se
rv

a
ti

o
n

 i
n

 t
it

in
's

 F
N

II
I 

m
o

d
u

le
s.

 

   



A77-A78: insights into the A-band organization in human muscle 
_____________________________________________________________________ 

 99 

Figure 3.6 Conservation in titin's FNIII modules. 

Sequence logos of the consensus sequences of the FNIII domain families in titin (top left). Each 
alignment column corresponds to a stack of letters where the total height of the stack equals the relative 
entropy of the column. Letters that make up one stack are sorted according to their height, which 
corresponds to their contribution to the relative entropy of the column. Letters in gray correspond to 
conserved positions in the interior of the domains. The underlying color code corresponds to the 
location of the residues on the surface of the domains (yellow: N-terminal side, cyan: C-terminal side, 
magenta: back side and purple: front side/CC’-loop packing). Residues involved in the hydrophobic 
core as well as highly conserved surface patches are indicated below the sequences (as given in 
Muhle-Goll et al., 1998). The cartoon representation of A71 (lower right) shows the front and back 
sides of the module. The position-dependent surface conservation scores are shown for each position of 
the short (upper right) and the long super-repeat (lower left) from white (no conservation) to dark blue 
(>85% conserved). The almost invariant Trp54 (center of the CC’-loop packing) is shown in magenta. 
Domain positions in the super-repeat are indicated above the structures. Image adapted from 
Muhle-Goll et al., 2001. 

 

In individual FNIII modules, the conserved residues can be classified into two 

classes (Muhle-Goll et al., 2001): residues belonging to the hydrophobic core 

(maintaining the module fold) and residues on the domain surface (required for 

specific functions). The hydrophobic core of A71 is dominated by aromatic and 

aliphatic residues, which group in two centers, with Trp22 at the N-terminal side and 

Tyr72 (also involved in the Tyr-corner) as the C-terminal center. The surface 

conservation of titin’s FNIII modules depends on their position within the repeat, with 

the highest conservation in FNIII modules downstream to IG modules. In general, the 

front-side (side of the four-stranded $-sheet) has a higher degree of surface 

conservation, which mainly involves the CC’-loop as a hot spot of conservation 

(Muhle-Goll et al., 1998). There, a highly conserved Trp residue (Trp54 in A71) 

packs between surface-exposed residues on the neighboring $-strands. Its interaction 

partners are preferentially Arg or Lys residues surrounded by a second layer of Glu 

residues.  

The loops of titin’s FNIII modules have a conserved length, contrary to 

extracellular FNIIIs that show variable loop lengths with low conservation (e.g. FNIII 

modules of fibronectin, Leahy et al., 1995, Copie et al., 1998 and Sharma et al., 1999; 

integrin, de Pereda et al., 1999; neuroglian, Huber et al., 1994 and tenascin, Bisig 

et al., 1999). Key residues present in the loop regions of all titin FNIII domains 

suggest limited structural freedom. The tight packing of conserved residues in the 

N-terminal loop region contains a central poly-Pro (type II) helix, which packs into a 

groove between the BC-loop and FG-turn. The central element in the C-terminus is 

the Tyr-corner, which packs against the AB-hairpin and the EF-loop. The C-terminal 

domain border is a residue two positions downstream of the last $-strand (G-strand).  
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3.2.3d Evolution of titin’s FNIII-modules 

 

Titin’s FNIII modules have evolved by gene duplication events. A 

phylogenetic tree of titin’s FNIII modules (Figure 3.7A) reveals branches tightly 

packed at the center of the tree indicating early and rapid duplication events. In 

general, modules in equivalent positions across repeat cluster and, thus, they share 

higher similarity than domains within a same repeat. These findings led to a model, in 

which whole super-repeat tandems duplicated during the evolution of titin. The long 

super-repeat evolved in an additional duplication event from the short super-repeat 

(Figure 3.7B). 

 

  

A       B 

 
Figure 3.7 The evolution of titin’s super-repeats and FNIII modules. 

(A) Neighbor-joining tree of titin’s FNIII modules and the corresponding nomenclature (indicated 
above the repeat structure) below. IG modules (red) and FNIII modules (white) cluster according to 
their super-repeat domain position. The branches tightly packed at the center of the tree indicate 
early and rapid duplication events. (B) Proposed order of duplication based on analysis of the 
branching pattern: the gene of the short super-repeat (gray) has duplicated to form the long 
super-repeat, which was extended by another gene duplication event (partial duplication of the 
C-terminal moiety of the short super-repeat; adapted from Kenny et al., 1999).  
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3.3 Methods 
 

The cloning (for cDNA sequence see EMBL X90568), expression and 

purification of the FNIII tandem A77-78 from titin’s A-band have been described by 

Muhle-Goll and coworkers (2001). The plasmid (pETM11) with the expression clone 

of the construct A77-78 was kindly provided by Claudia Muhle-Goll (EMBL, 

Heidelberg).  

 

3.3.1 Expression and purification 

 

Expression and purification protocols were adapted and optimized from 

Muhle-Goll et al., (2001). Briefly: the recombinant protein was expressed in E. coli 

strain BL21(DE3) Rosetta using pETM11 as expression vector. The cells were grown 

at 37°C up to an OD600 of approximately 0.6 in Luria Bertani medium supplemented 

with 25 µg/mL Kanamycin and 34 µg/mL Chloramphenicol. Expression was induced 

by addition of iso-Propyl-$-D-thiogalactopyranosid (IPTG) to a final concentration of 

1 mM. At the induction point the temperature was lowered to 30°C and cells grown 

further for approximately 16 hours. Cells were harvested by centrifugation (3400 x g, 

4°C, 15 min). Bacterial pellets were resuspended in lysis buffer (100 mM NaCl, 

50 mM Tris HCl pH 7.2, 2 mM DTT) in the presence of a protease inhibitor cocktail 

(Boehringer), DNase (2 µg/mL) and lysozyme (10 mg/mL). The resulting suspension 

was lysed by sonication (Branson Sonifier, ice cooling, 3 s pulse, 6 s pause, 

3 min overall) and the homogenate centrifuged (43’000 x g, 4°C, 30 min). The 

supernatant was applied to a Ni2+-chelating HisTrap column (GE Healthcare) 

equilibrated in lysis buffer. Elution used lysis buffer supplemented with 250 mM 

imidazol. The eluate was dialyzed against 150 mM NaCl, 50 mM Tris-HCl pH 8.0, 

2 mM DTT in the presence of TEV-protease (ratio TEV:protein = 1:50) at 4°C for 

16 h. This resulted in efficient tag removal (>90 %). Traces of uncut protein and the 

His-tagged TEV protease were removed by subtractive affinity chromatography 

(Ni2+-chelating HisTrap column). The flow-through fractions were concentrated and 

applied to a Superdex 75 HiLoad 16/60 prep grade column (GE Healthcare) 

equilibrated in lysis buffer. The elution profile of this size exclusion chromatography 

showed a single peak (red bar in Figure 3.8). A schematic overview of the expression 
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and purification procedure is shown in Figure 3.8. The purified protein was 

concentrated to 20-80 mg/mL (determined by A280) and stored at 4°C for further use.  
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3.3.2 Crystallization 

 

Crystallization trials were performed using the vapor diffusion method at room 

temperature, where 1 µL of A77-A78 was mixed with 1 µL of reservoir solution to 

form a 2 µL drop. For initial screening, each droplet was equilibrated against 70 µL of 

reservoir solution in 96-well CrystalQuick protein crystallization plates (Greiner) 

using a sitting-drop setting. Commercial kits1 yielded several initial crystallization 

conditions (Table 3.2). 

 

Table 3.2 Hits in the initial screening of A77-A78. 

Precipitant Buffer Additive 

30 % PEG-4000 100 mM TRIS pH 8.5 200 mM Li2SO4 x H2O 

70 % MPD 100 mM HEPES pH 7.5 - 

50 % PEG-200  100 mM Na/K-phosphate pH 6.2 200 mM NaCl 

30 % 1,2-propanediol 100 mM HEPES pH 7.5 20 % PEG-400 

 

Crystals grew as clusters of thin needles with different diameters. The 

conditions were reproduced using the hanging-drop vapor diffusion method with the 

same drop ratio and increased reservoir volume (500 µL) in VDX plates (Hampton 

Research). Conditions with PEG-4000, PEG-200 and propanediol as precipitant did 

not show significant improvement (independent of buffer, pH-range, PEG molecular 

weight, crystallization method, precipitant combination and protein concentration).  

MPD as precipitant yielded crystals overnight, combined with a significant 

amount of amorphous precipitate. Subsequently the effect of precipitant and protein 

concentration were explored. Additionally, a possible temperature dependence of 

crystallization was examined at 4°C. Since MPD is a volatile precipitant, setups with 

MPD solely in the reservoir and drops with protein solution (increased volume, 

1.5 µL) were produced and stored at different temperatures (4°C and 20°C). Only 

drops stored at 4°C remained transparent, from which clusters of needles with higher 

diameter grew after approximately two weeks. To improve the quality of crystals in 

these MPD evaporation setups, different additives (e.g. PEG-200, PEG-400, 

1,6-hexanediol, glycerol) were tried. None of the additives is volatile. Thus, each had 

                                                
1 Sparse matrix kits CS-I & II from Hampton Research; Cryo I, Cryo II, Wizard I, Wizard II from 
Emerald Biostructures; Structure Screen 1, Structure Screen 2 from Molecular Dimensions 



A77-A78: insights into the A-band organization in human muscle 
_____________________________________________________________________ 

 104 

to be added to the drop (but not to the reservoir) from stock solutions (0.5 µL of a 

20 % four-fold stock, final concentration 5%), which increased the drop size from 

1.5 µL to 2.0 µL. Crystals (some >500 µm in diameter) suitable for X-ray diffraction 

experiments, were found with this volatile evaporation/additive approach (at 4 °C). 

Best crystals, grown from 40 % MPD, 5 % PEG-400 were directly frozen in mother 

liquor and used in data collection. For a schematic overview of the refinement of 

crystallization conditions of A77-A78 see Figure 3.9. 
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3.3.3 Collection of a native data set  

 

A native data set was collected from a best crystal of titin A77-A78 at 100 K 

on an Elliot GX20 CuK" rotating-anode equipped with a mar345 detector. Data were 

collected as two series of non-overlapping oscillations (see Table 3.3 for data 

collection parameters).  

 

Table 3.3 Data collection parameters for A77-A78. 

Parameter Value 

Total rotation 103°  

Oscillation range ("+) 0.5° 

Exposure time 240 s per frame 

Detector to crystal distance 100 mm 

 

The diffraction images (Figure 3.10) were processed up to 1.65 Å with the 

XDS/XSCALE package (Kabsch, 1988). For X-ray statistics see Table 3.4.  

 

 
Figure 3.10 Diffraction images from crystals of A77-A78. 

High resolution reflections are shown in the area with high contrast. Resolution rings [Å] are 
displayed.  
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Table 3.4 X-ray statistics for A77-A78. 

Parameter Value 

X-ray source Elliot GX20 

Detector mar345 

Wavelength 1.5405 Å 

Spacegroup C 2 2 21 

Unit cell [Å] 115.90, 163.20, 65.20 

Resolution 20 - 1.65 (1.68 - 1.65)1 

Unique reflections 74213 (3775) 1 

Rsym (I) [%] 7.1 (36.8) 1 

I/# (I) 11.9 (3.6) 1 

Multiplicity 3.90 (3.69) 1 

Completeness [%] 96.7 (99.5) 1 
1outer resolution shell 

 

The Rfree (Brünger, 1992) was used as a cross-validation indicator during 

refinement. For this, reflections were partitioned at an early state into a working and a 

free set using FREERFLAG (CCP4, 1994). 

 

3.3.4 Detection of non-crystallographic symmetry (NCS) 

 

The Matthews coefficient Vm (Matthews, 1968) was calculated in a way 

analogous to SsTrpB2b (section 0). Considering that the molecular weight of 

A77-A78 is 21595 Da (as calculated from sequence data), the analysis of the 

Matthews coefficient (VM; Matthews 1968) revealed that the a.u. must contain two to 

four copies of A77-A78 (Table 3.5) with three being the most probable. 

 

Table 3.5 Matthews coefficients for crystals of A77-A78. 

Molecules per a.u. Matthews coefficient Solvent content [%] 

2 3.6 65.7 

3 2.8 48.5 

4 1.8 31.4 
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In the subsequent steps of structure elucidation, it became clear that there are 

two tandems of A77-A78 in the a.u. For the detection of the rotational component of 

the non-crystallographic symmetry (NCS) the programs AMORE (Navaza, 1994) (see 

Table 3.6 for solutions) and POLARRFN (CCP4, 1994) were used. The method 

correlates sets of self-vectors from two Patterson maps. 

 

Table 3.6 Euler and Polar rotational NCS relations as determined using AMORE. 

Alpha Beta Gamma Peak height Omega Phi Kappa 

0.0 180.0 90.6 61.6 (%) 90.0 44.7 180.0 

The self-rotation function was calculated between a resolution of 18.0 and 5 Å 

 

 

This result indicated that a two-fold (,=180°) NCS axis existed perpendicular 

to c (omega=90°) and roughly contained in the ab plane, bisecting it (phi=45°). The 

axis and the molecular copies that it relates is displayed on the three-dimensional 

crystal lattice shown in Figure 3.13 (section 3.4.1). 

 

 
Figure 3.11 Graphical representation of the self-rotation function calculated using POLARFN. 

Stereographic projection of the section , = 180°. The presence of NCS is shown by additional 2-fold 
axes indicated by red arrows. 
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3.3.5 Phasing by Molecular Replacement (MR) 

 

The structure of the FNIII domain A170 (determined previously in our group; 

Mrosek et al., 2007) was kindly provided by Michael Mrosek to be used as search 

model in this study. A170 is positioned downstream of A77-A78 in the M-line region 

of titin. Two modified search models derived from A170 were produced that 

maximally approximated the sequence features of A77 and A78 separately. For this, 

corresponding sequence alignments of A170 to each of the modules of A77-A78 

(38 % identity to A77 and 34 % to A78) were carried out. With the resulting models 

trimmed to the minimal common sequence, MR was pursued using PHASER 

(McCoy et al., 2005) (Table 3.7). MR solutions were visually inspected for lattice 

packing and fitting into a calculated electron density map with the program O. 

 

Table 3.7 Statistics for MR using PHASER. 

Search model Zrot Ztrans log-likelihood gain1 

A77 (module1) 3.9 5.5 22 

A77 (module2) 4.6 7.9 73 

A78 (module1) 3.4 12.4 162 

A78 (module2) 3.3 16.1 289 
1overall log-likelihood gain: 367 

 

3.3.6 Refinement and model building 

 

The initial MR model of A77-78 was subjected to ARP/wARP (Perrakis et al., 

1999) for automated model building (warpNtrace procedure). The warpNtrace 

procedure (overview in Figure 6.5 in the appendix) calculates an electron density 

from the pre-refined initial model and creates a free atom model in this electron 

density. The stereochemistry of the MR model is completely ignored and the free 

atom model expanded by adding atoms in regions of high density. Based on 

connectivity, the main-chain is traced first (normally this results in various 

fragments). Intermediate hybrid models are refined using REFMAC 

(Murshudov et al., 1997). The docking of the sequence into the side-chain electron 

density produces the final ARP/wARP model. The intermediate structure so obtained 

was refined against native data between 1.65 and 19.80 Å resolution using REFMAC 
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(Murshudov et al., 1997) without a translation/liberation/screw (TLS) tensor. 

Restrained maximum likelihood based refinement included sparse matrix 

minimization (without NCS restraints), overall individual isotropic B-factor 

refinement and bulk solvent correction. Solvent molecules were identified with 

ARP/wARP (solvent mode routine) and COOT. For manual interpretation of electron 

density and subsequent model building the software COOT (Emsley & Cowtan, 2004) 

was used.  

The final model contains two copies of A77-78 present in the asymmetric unit 

(see Table 3.8 for model parameters). One copy shows all expected residues 

(Gly1-Asp197) where the first three residues (Gly1-Ala-Met3) are remnants of the 

TEV-cleavage site and have no biological function. In the second copy, those residues 

are disordered and not included in the model (the N-terminal residue of this chain is 

the physiological Asp4). 

 

Table 3.8 Model parameters for A77-A78. 

Variable Value 

R-factor/Rfree [%]1 21.6/23.4 

Number of protein residues 392 

Number of solvent molecules 482 

Number of MPD molecules 2 

rmsd (NCS copies)2 [Å] 0.837 

average B-factor (MC/SC)3 18.26/20.66 || 19.09/21.24  

rmsd bonds [Å]/angle [°] 0.012/1.361 
1the R-free set comprised 978 reflections corresponding to 1.35% of the total data. 
2for all atoms of the residues Asp4 - Asp197 calculated with LSQKAB 
3MC = main-chain, SC = side-chain for copy 1 || copy 2 
 

The Ramachandran plot (Ramachandran et al., 1963) shows that all residues of 

both NCS copies of A77-A78 are in allowed regions (Figure 3.12, with corresponding 

statistics in Table 3.9). 

 

 

 

 

 



A77-A78: insights into the A-band organization in human muscle 
_____________________________________________________________________ 

 110 

Table 3.9 Ramachandran diagram statistics1 

 Number Percentage 

Residues in favored regions 305 90.8 

Residues in additional allowed regions 31 9.2 

Residues in generously allowed regions 0 0.0 

Residues in disallowed regions 0 0.0 
1for non-Gly and non-Pro residues (336) from analysis in PROCHECK 

 

 

 

3.3.7 Sequence alignments and figures 

 

The titin sequence (EMBL-data library accession code X90568) was 

fragmented to extract the FNIII domain sequence information. For each domain, 

N-terminal and C-terminal residues were defined as the first and last ones forming 

 
Figure 3.12 Ramachandran diagram of the two NCS-related copies of titin A77-A78. 

Favored regions are indicated in red, additional allowed regions in yellow, generously allowed regions 
by light yellow and disallowed regions by white background, respectively. The plot was generated 
using PROCHECK (Laskowski et al., 1993). 
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interactions within each module in the structure of A77-A78. The resulting module 

sequences were aligned using ClustalW (Chenna et al., 2003) and visually validated 

according to the integral structural features reported for FNIII modules (e.g. 

hydrophobic core packing). Sequence conservation was mapped onto the B-factor 

column using MODTRAFO (Schirmer, in-house software), which applies the 

BLOSOM matrix. Figures showing the structural features were prepared with PyMOL 

(DeLano, 2004). 

 

3.3.8 Structure superposition 

 

For comparison of A77-A78 to structures deposited in the PDB database 

(www.rcsb.org), a sequence-based search was performed. Structures involved in 

protein-protein complexes were excluded while multidomain arrangements were 

investigated further. These multidomain FNIII structures were superposed to 

A77-A78 using TOP (CCP4, 1994). Best superpositions were investigated further at 

the structural level (see section 3.4.4a). 

For A77, best matches were found to the tandem of Drosophila neuroglican 

(Huber et al., 1994, 1CFB) and module two (of four) of the FNIII tandem from human 

fibronectin (Leahy et al., 1996, 1FNF). Best matches for A78 were module two of the 

heparin and integrin binding fragment of fibronectin (Sharma et al., 1999, 1FNH), 

module two of a tandem from chicken tenascin (Bisig et al., 1999, 1QR4) and two 

human FNIII modules of the cytoplasmic tail of integrin "6$4 (de Pereda et al., 1999, 

1QG3). The cell attachment modules of mouse fibronectin (Copie et al., 1998, 2MFN, 

rmsd 1.1 Å over 76 residues, identity 25 %) were discarded due to reported 

inter-modular flexibility.  

Visual comparison and analysis of A77-A78 and investigated FNIII-tandems 

focused on the highly conserved N-terminal interface region (including loop 

conformation, composition and orientation) since conservation on the C-terminal side 

seems to be linked only to the core fold of FNIII modules (loops show conserved 

length and conformation in titin and other FNIII modules. 

The superposition of A77 to A168-A170 (Mrosek et al., 2007) using TOP 

yielded the template for homology model production 
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3.4 Results and discussion 
 

3.4.1 The crystal lattice of A77-A78 

 

The crystal structure of A77-78 has been elucidated at 1.65 Å resolution using 

the Molecular Replacement (MR) method. The asymmetric unit (a.u.) of A77-A78 

crystal contains two NCS-related copies. The Matthews coefficient of these crystals 

(3.6 Å3/Da) indicates an unusually high solvent content (66%). Protein molecules are 

not distributed evenly in the crystal, but form a quadratic lattice with large 

solvent-filled channels that co-align to “perforate” the crystal as micro-pores (Figure 

3.13). 

The parallel arrangement of symmetry related molecules (Figure 3.14) is 

noteworthy. In this, two A77-A78 tandems associate over a broad surface (1430 Å2 or 

715 Å2 per chain; analyzed with ProFace, Saha et al., 2006), trapping multiple solvent 

atoms in between and where a predominantly hydrophobic interface is contributed by 

A78 domains.  

 

 

 
Figure 3.13 The crystal lattice of A77-A78 (view of the AB-plane). 

In the crystal lattice A77-A78 is densely packed and forms solvent channels. One copy of A77-78 
(and its symmetry equivalent molecules) is shown in black, the other in yellow. The unit cell is in 
green. The black tandems form layers parallel to the AC-plane, where A77-A78 molecules arrange 
anti-parallel. These layers are connected by parallel and antiparallel arranged A77-A78 molecules. 
The 2-fold relation between NCS copies in the a.u. is indicated in cyan. 
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3.4.2 Overall structure of A77-78 

 

A77-A78 represent positions two and three in repeat four of the long 

super-repeat from the C-zone of titin, where the A77-A78 modules are flanked by IG 

domains. This is the first structure of an FNIII tandem from titin. Both copies of 

A77-A78 in the a.u. contain residues 4-197 (residues 1-3, remnants from protease 

digest, are disordered in one chain). The two NCS copies are essentially identical 

(rmsd 0.64 Å for C"-atoms 4-196 calculated with LSQKAB, CCP4, 1994).  

 
Figure 3.14 Y-shaped arrangement of NCS-related A77-A78 molecules in the crystal. 

Orthogonal views of the two A77-A78 tandems (green and cyan with grey surface) associated over a 
broad surface with water molecules (red) in the interface. Highly conserved patches from both 
tandems cluster in the center of the dimer: the CC’-loop and the BC-loop.  
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Each of the chains comprises two contiguous FNIII-modules (Figure 3.15) 

showing a classical topology, i.e. a two-layer $-sandwich consisting of a short 

three-stranded and a long four-stranded $-sheet packing against each other to form the 

hydrophobic core (Main et al., 1992; Campbell & Spitzfaden, 1994). 

 

 

   A       B 

 
Figure 3.15 Overall structure of A77-A78. 

The modules interact in a tail (A77) to head (A78) fashion involving their C- and N-terminal loop 
regions, respectively. The $-sheets of A77 are colored in blue with loops in magenta, $-sheets of A78 
are colored in green with loops in red. Linker residues are colored in yellow. (A) Side-view with 
labeled loops. The front-sides are indicated with gray triangles. (B) View onto the concave plane of 
A77-A78 with labeled $-sheets (view onto the back-side of A77 and the front-side of A78). 
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The secondary structure elements of A77-A78 have been assigned with 

PROMOTIF (Hutchinson & Thornton, 1996). Analogous to the structure of A71 

(Muhle-Goll et al., 1998), the last $-strand (G-strand) in each module is fragmented. 

It comprises three segments with two amino acid residues each (referred to as G1, G2 

and G3 in the following).  

A77-A78 adopts a slightly bent conformation (opening angles of 157° and 

158° for chain A and B, calculated with MOLEMAN2), while front and back sides 

roughly point in opposite directions (torsion angles of 176° for both chains, calculated 

with MOLEMAN2). The distance between the centers of gravity of A77 and A78 is 

approximately 41 Å, which is slightly larger than the observed periodicity in 

low-angle X-ray diffraction (40 Å; Squire et al., 2004). The identical domain 

orientation of both copies in the a.u. suggests that the conformation of A77-A78 is 

well defined and probably affected by low modular variability. 

 

3.4.3 Interfaces in A77-A78 

 

The A77-A78 tandem contains an intra-domain and a domain-domain 

interface. In the intra-domain interface, residues between the layers of the $-sandwich 

form a tight hydrophobic packing with two centers, this is a “hydrophobic core” that 

is common to FNIII modules. Additionally, the extraordinarily long loops in the 

N-terminal loop cluster of titin’s FNIII modules form interactions extending the 

hydrophobic core. The domain-domain interface shows a FNIII transition with an 

atypical interaction pattern (mainly polar contribution) involving an unusually high 

number of loops. A detailed description of both interfaces is given below.   
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3.4.3a The intra-domain interface: the hydrophobic core and its extension 

 

The intra-domain interface in A77-A78 reveals hydrophobic interactions in the 

center of the domains (hydrophobic core) and a polar extension in the N-terminal loop 

cluster. The centers of the hydrophobic core common to FNIII modules are a strictly 

conserved Trp (Trp26/Trp123 in A77/A78) at the N-terminal side of the sandwich and 

a Tyr (Tyr75/Tyr171; involved in the Tyr-corner) at the C-terminal side. These highly 

conserved residues tightly pack together in titin’s FNIIIs (as reported by 

Muhle-Goll et al., 1998, Figure 3.16A). The OH-group of the Tyr-corner also 

coordinates a water molecule as reported by de Pereda et al. (1999) for the 

cytoplasmic tail of integrin. 

On the N-terminal side, the common hydrophobic core is extended into the 

corresponding loop region by hydrophobic and polar interactions between conserved 

residues (Figure 3.16B). Central to the hydrophobic packing in the N-terminal loop 

region are four residues (Pro6-Pro9 in A77 and Pro103-Pro106 in A78) in a poly-Pro 

type II helix conformation (as reported by Huber et al., 1994 for Drosophila 

neuroglian). These residues pack between strictly conserved residues in the BC-loop 

and the FG-turn. The central residue in this cluster is a strictly conserved Asn 

(Asn83/Asn179) part of a Asn-X-X-Gly conserved motif, which defines this $-turn 

and that forms a buried H-bonding network with highly conserved residues 

inter-connecting the linker, the BC-loop and the FG1-turn. Thus, the core packing of 

titin’s FNIII modules comprises three centers, where the central Trp and the 

C-terminal Tyr form the hydrophobic core and the N-terminal loop cluster is 

stabilized by the polar interactions of an Asn. This may give the loop regions a dual 

role, since they are also involved in domain-domain interfaces.  
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Figure 3.17 The intra-domain interface of A78. 

(A) Residues involved in hydrophobic core formation are shown in green (sticks/dots) with the core 
residues in yellow. Residues forming additional hydrophobic interactions are shown in magenta 
(dots/sticks) and residues forming H-bonds (red dashed lines) to the central Asn179 (gray, sticks) in 
cyan (sticks). A red arrow indicated residues forming the Tyr-corner. Residues common to the 
hydrophobic core of FNIIIs are boxed. (B) Zoom into the N-terminal face loop cluster. Top: The 
H-bonding pattern of Asn179 (asterisk) is central to this loop cluster. Three highly conserved segments 
are inter-connected (see schematic representation in the bottom panel) and form a polar extension to the 
hydrophobic core. A similar tight organization of the N-terminal loop regions has also been observed in 
the so-called “N-conserved type” IG modules of titin (Marino et al., 2005). 
 

3.4.3b The interface between A77-A78 

 

A77-A78 shows no free linker sequence, like e.g. Z1-Z2. The C-terminal 

border of A77 (Ser100) and the N-terminal border of A78 (Glu101) are in the center 

of the interface, so that the two domains are effectively connected by a zero-length 

linker. However, titin’s FNIII transitions have variable linker lengths according to the 

position in the super-repeat (details in section 3.4.4b). Therefore, the “linker” will be 

defined here as the sequence downstream of the last secondary structure element of 

A77 to the first highly conserved Pro in A78: Ala99-Ser100-Glu101-Arg102 (for 

A77-A78). The central residues in this linker (Ser100 and Glu101) form H-bonds to 

all loop regions pointing into the interface (AB-turn/EF-loop in A77 and 

BC-loop/FG-turn in A78). There are also direct interactions between the modules. A 

tight H-bonding pattern (Figure 3.18; additional details in Table 6.1 in appendix) 

dominates the interaction pattern of the interface, although there is also a significantly 

low hydrophobic contribution (residues indicated in Table 3.10). The interface 

between A77 and A78 comprises a core and a rim region (determined with ProFace; 

Saha et al., 2006) with three patches Table 3.10. 

 

Table 3.10 Core and rim regions in the A77-A78 interface1. 

A77 (patch1) A78 module border and 

linker (patch 2) 

A78 (patch 3) 

(1) Val17-Thr-Lys19 (2) Val97-Lys98 (3) His128-Asp-Gly-Gly-Ser132 

(1) Glu71-Gly72 (2) Ser100-Glu1012 (3) Glu180-Lys181 
1core regions are written in bold face and residues contributing exclusively by hydrophobic interactions 
are underlined 
2Ala99 and Arg102, which have not been included into domain borders in the calculations, contribute 
to the interface by hydrophobic interactions and H-bonds. Ala99 and Arg102 have solvent 
accessibilities below 10% and 50%, respectively  
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The interface resembles hetero-obligomer interfaces, which are depleted in 

hydrophobic interactions. This in contrast to other FNIII transitions (e.g. fibronectin, 

Leahy et al., 1996) where predominantly hydrophobic interactions involving a low 

number of loops dominate the domain-domain interface. The tight H-bond network in 

the A77-A78 transition indicates that this should be a very stiff domain arrangement, 

likely to result in conserved, defined inter-domain orientations for positions two and 

three of the long super-repeat. This is supported by the fact that the interface of A77 

and A78 reveals strictly conserved regions (Asp129-Gly-Gly130 in the BC-loop and 

Asn179/Gly182 in the FG1-turn of A78) besides others with lower conservation 

(AB-turn and EF-loop in A78 and the linker) (indicated in Figure 3.16). The bent, 

semi-extended conformation of A77-A78 results in distinct faces with different 

accessibilities and surface conservation, which may have a role in higher 

complexation, e.g. in myosin matrix assembly, which is likely to require similar 

tandem arrangements in domains with same functions. It could be speculated that the 

strong interaction pattern in the A77-A78 interface allows for variability in individual 

domains as long as the overall arrangement retains the function of the transition. The 

interaction density in A77-78 is likely to show higher tolerance against loss of single 

interactions than low interaction density transitions (e.g. FNIII transitions in the cell 

attachment module from mouse, Copie et al., 1998).  

 

 

 
Figure 3.18 The A77-A78 interface. 

A stereo view of the interface region between A77 (blue) and A78 (green) and the inter-connecting 
linker. The convex plane of the tandem is placed at the bottom. To give a better overview only 
involved parts of the residues forming H-bonds are given in stick representation (indicated by 
labeling, water molecules are not shown).  Red dashed lines indicate H-bonds. 
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3.4.4 Orientations of FNIII transitions in titin 

 

The inter-domain orientation and dynamics of FNIII modules within tandems 

in titin must depend on the length of interface loops and linker sequences as well as 

the character of the interactions (polar vs. hydrophobic).  

 

3.4.4a A77-A78 and extracellular FNIII transitions 

 

The superposition of A77-A78 to other tandems gave best results for three 

FNIII transitions (Table 3.11). Superposition of the tandems reveals a BC-loop with 

variable length (longest in A78), whereas the FG1-turn has similar length in all 

modules. In general, tandems with greater conservation in the N-terminal face and 

linker show higher similarity to the observed arrangement in A77-78.  

 

Table 3.11 Superposition of other FNIII tandems to A78. 

PDB code rmsd [Å] C"-atoms Description 

1FNH 1.0 76 Heparin and integrin binding fragment of 

human fibronectin1  

1QR4 1.1 78 Tandem from chicken tenascin 

1QG3 1.3 77 Cytoplasmic tail of human integrin "6$4 

1modules two and three 

 

The tandem arrangement suggests that the orientation of the linker and the 

neighboring module is determined by the structural features of the BC-loop, and to a 

minor extent of the EF-loop that is in close vicinity (Figure 3.19). Additionally, the 

conformation of the FG-turn shows dependence on the presence of the residue 

equivalent to the conserved Asn in the polar sequence motif of this loop - in modules 

lacking this residue, the FG1-turn orients away from the linker. This is combined with 

the lack of interaction between the FG1-turn and the linker, which results in further 

orientation of the linker an adjacent modules into the BC-loop direction. 
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Among the investigated FNIII tandems, the cytoplasmic tail of human integrin 

"6$4 (1QG3) reveals the highest similarity to A78. This includes a BC-loop of 

similar length (with low conservation) as well as the presence of conserved motifs in 

the linker and FG1-turn. The corresponding interactions result in an analogous 

A 

          
B 

 
Figure 3.19 Comparison of A77-A78 to other tandems. 

(A) Stereo view of A77-A78 superposed to other FNIII tandems. On the N-terminal side, A78 (dark 
green) shows the longest loops compared to the other modules (light green), while C-terminal sides  
show similar loop lengths. Especially the BC-loop (red in A78 and in the color of the first module in 
the others) is truncated. The first modules seem to “fall” into this direction suggesting the length of 
the BC-loop to be an effector of tandem organization. (B) Similar motifs on the N-terminal side result 
in similar organization of the corresponding elements. Structures without the two conserved motifs 
(as indicated in Figure 3.17 and shown as sticks here) seem to lack the stiff arrangement of the 
N-terminal side with subsequent loss of the interconnection of the corresponding elements. 
 
 



A77-A78: insights into the A-band organization in human muscle 
_____________________________________________________________________ 

 123 

arrangement of the N-terminal face (extended hydrophobic core as well as 

inter-connection of the linker, BC- and FG1-loops). Even a similar interaction pattern 

across the surface is formed (numbering for A78): the side-chain of Asn179 

(FG1-turn) interacts with the main-chain of Glu101 (linker), whose side-chain 

interacts with the main-chain of Lys19 (AB-turn). In general, the organization of 

structural elements, as observed in A78, seems to define the orientation of the module 

upstream.  

 

3.4.4b The linkers between FNIII modules in titin 

 

The linker regions in FNIII transitions of titin have not yet been investigated in 

detail. However, the domain positions reveal distinct linker lengths and conservation 

(Figure 3.20 and the corresponding sequence alignments in Figure 3.21). The studies 

by Muhle-Goll and coworkers focused on conservation of individual modules (front- 

and back-side). The study of the modular transitions, with their corresponding 

interaction patterns, makes it possible to draw conclusions on the relation between 

linker composition and transition rigidity.  

 

 
Figure 3.20 The A-band region of titin and conservation of FNIII modules in the 

super-repeats. 

The sheme shows the I/A-junction, followed by the short super-repeat, the long super-repeat and 
the M-line region (left to right). FNIII modules are colored in white; IG modules belonging to the 
short and long super-repeat are colored blue and red, respectively. Other IG domains are colored in 
green. The titin kinase is colored in black. On top of the A-band scheme the conservation of the 
super-repeats is labeled on the structure of A77. Below the A-band scheme there is an overview of  
linker lengths between FNIII domains. An asterisk indicates modules for which experimental 
structures are available. Outliers concerning linker composition lack the triangles/squares in the 
lower panel. 
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The transitions between FNIII modules of the long super-repeat reveal distinct 

linker lengths and compositions (Figure 3.20):  

 

(i) Transition between modules two and three (with A77-78 as a representative): 

short linkers compared to other transitions and a Pro-x-Pro-x or Pro-x-x-Pro 

motif. Glx residue as the N-terminal domain border. 

 

(ii) Transition between modules six and seven (with A71 as a structural 

representative for position seven): shorter linker length than in (i) and an 

extended Pro-rich motif (Pro-x-x-Pro-Pro). Preference for Asx as the domain 

border (equivalent to Glx in (i)). 

 

 

 

 

 

 
Figure 3.21a Linker region between modules two and three in the long super-repeat. 

The alignment shows the region between the conserved Ala-x-Asn-x-x-Gly in the FG1-turn (first 
module) and the Pro-x-x-Asp-Gly-Gly motif in the BC-loop. The domain borders are indicated by 
gray and the Pro-rich motif by yellow background, respectively. Regions belonging to the modules 
(based on A77-A78 domain borders) are underlined. 
 
 

 
Figure 3.21b Linker region between modules six and seven in the long super-repeat. 

The alignment region, the domain borders and the underlined regions are analogous to Figure 
3.21a. The Pro-rich motif is indicated by red background. 
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(iii) Remaining FNIII transitions, namely five to six, nine to ten and ten to 

eleven: long linkers and a Pro-x-x-Pro motif. The Pro residues are integral 

part of the FNIII modules and not of the linkers, so that they should not 

influence the conformational freedom of the inter-domain arrangement. 

 

 

Analogous to the linker regions of the long super repeat, the transitions of the 

short super-repeat can be aligned (Figure 3.22). Surprisingly, the linker lengths in the 

transition between modules two and three as well as six and seven reveal a long 

linker, which appears to be related to transitions of type (iii).  

A 

 
B 

 
C 

 
Figure 3.21c Linker regions of the long super-repeat with a long linker. 

The alignment region, the domain borders and the underlined regions are analogous to Figure 
3.21a. The Pro-rich motif is indicated by green background. The figure shows the transitions from 
the long super-repeat positions five to six (A), nine to ten (B) and ten to eleven (C). 
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Modular connections dictate the conformational freedom of the titin chain, 

where the modules act as rigid building blocks. The current analysis suggests that the 

distinct conservation patterns of linker sequences and domain borders create defined 

interfaces at specific super-repeat positions. If the interaction pattern between the 

EF-loop of one module and the BC-loop of the next was conserved, elongation of the 

linker might either linearize the tandem conformation or weaken the modular 

interactions with a subsequent introduction of torsional freedom in the tandem, as 

observed in the IG-doublet Z1-Z2 (Marino et al., 2006). 

The transition in positions two and three of the long-super repeat appears to be 

the most rigid. The positioning of a core residue in the linker (Glu101 in A77) may 

have the role of a selectivity filter in tandem pre-arrangement. Additional interactions 

between the domain ends and the linker could then support this initial interaction 

pattern and form super-repeat position dependent tandem arrangements. 

The evolutionary relationship between the short and long super-repeat is, that 

the latter was created by gene duplication of the short super-repeat (Kenny et al., 

A 

 
B 

 
C 

 
Figure 3.22 FNIII transitions in the short super-repeat. 

The alignment region, the domain borders and the underlined regions of short super-repeat 
modules are analogous to Figure 3.21a. The Pro-rich motif of the modules is indicated by green 
(compare Figure 3.21c) and red (compare Figure 3.21b) background. The figure shows the 
transitions from the short super-repeat positions two to three (A), five to six (B) and six to seven 
(C). 
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1999). The N-terminal Pro-rich motifs of equivalent transitions between the long and 

short super-repeat show similar sequence patterns, while the corresponding linkers 

have different lengths. The similar linker lengths of equivalent long super-repeat 

transitions suggest an evolutionary pathway from an eleven domain repeat prototype 

(as indicated in Figure 3.7) combined with linker truncations (Figure 3.23).  

 

 

3.4.5 The A76-A78 homology model 

 

In the structure of A168-A170 (Mrosek et al., 2007), an IG-IG-FNIII construct 

from the P-zone of human titin, the hydrophobic IG-FNIII interface involves a 

conserved motif (Asn-x-x-Gly in the FG-turn) in long-super repeat FNIIIs 

downstream to IG modules (illustrated in Figure 6.7 in the appendix). The putative 

interface residues in the tandem A76-A77 (IG-FNIII) share high conservation with 

A169-A170, which makes a similar interaction pattern likely and made it possible to 

produce a homology model for the tandem A76-A77, spanning the first three 

positions of domain four of the long super-repeat. For this purpose, the modules A77 

and A170 were superposed using TOP (rmsd = 0.9 Å over 91 residues, identity 45 %). 

The resulting hypothetical transition A169-A77-A78 was used as a template and was 

subjected to homology modeling using SWISS MODEL (Guex & Peitsch, 1997; 

Schwede et al., 2003). The model reveals a zigzag arrangement. 

 
Figure 3.23 Model for linker truncation in the evolution of the long super-repeat. 

The evolutionary pathway was adapted from Kenny et al., 1999. The linker lengths suggest that 
prototype III has evolved from domain 2. According to Kenny and coworkers, the remainder of the 
long super-repeat has evolved from prototype III 
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In A169, the FG-turn (the Asn corresponding to Asn179 in A77)) forms an 

H-bond to an Asp in the linker, which is equivalent to the interaction observed in 

A77-A78. The side-chain of the Asp in the linker forms a H-bond to the side-chain of 

an Arg in the A’B-loop of the IG-module. This pattern is similar to the interactions 

described in sections 3.4.3b & 3.4.4a, suggesting that conformational fixation of the 

main-chain in the FNIII N-terminal face creates a selectivity filter, which may be 

involved in pre-orientation of transitions. Additional residues in the interface may 

stabilize it with subsequent orientation For IG-FNIII transitions, the Asn-x1-x2-Gly 

motif in the FG-turn preferentially involves an acidic/basic residue (for x1) and an 

aromatic residue (for x2). An interaction pattern mediated by conserved residues 

suggests the observed zigzag arrangement to be applicable to analogous IG-FNIII 

transitions in the long super-repeat.  

 

The zigzag arrangement places the CC’-loop on the front-side (in the 

C-terminal moiety) of the module on the convex plane of each transition. This 

organization gives the CC’-loop high accessibility to other molecules and conserved 

patches in FNIII modules form an almost continuous stretch. This highly accessible 

stretch is likely to have a role in interface formation between titin and other proteins. 

 
 

Figure 3.24 Homology model of A76-A78. 

The modules are colored after their conservation in the first three positions of super-repeat domains 
from white (low conservation) to blue (high conservation). The AB-turn of the IG A76, which forms 
interactions to the linker is indicated by a green arrow. In A77, three highly conserved loop regions 
are indicated by yellow (BC-loop), red (CC’-loop) and cyan (FG1-turn) arrows. The gray triangles 
point away from the front sides of both FNIII modules.  
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3.5 Summary  
 

The structure of the construct A77-A78 is the first structure of a FNIII tandem 

from human titin and the first atomic structure of an intracellular FNIII transition. 

Each of the modules of A77-A78 comprises a FNIII fold with a hydrophobic core 

characteristic of FNIII modules. This core is extended into the loop region of the 

N-terminal end of the domain. In this extension, a buried Asn residue interconnects 

the loops and the linker. These interactions are likely to introduce additional rigidity, 

making each FNIII module of titin a stiff building block.  

In the unusual polar transition interface, a remarkable number of loops take 

place in inter-domain contacts and the linker by H-bond formation. The 

predominantly polar interface in combination with the high stiffness of the interface 

loops suggests that this conformation is highly defined and conserved across 

equivalent positions of the long super-repeat. Based on super-repeat position 

dependent conservation other transitions may comprise their own, discrete 

arrangements with distinct conformational freedom. 

A hypothetical model for the A76-A78 tandem based on sequence 

conservation at the domain interface shows a zigzag, extended arrangement of 

domains. This conformation results in maximal surface exposure of conserved 

residues on the CC’-loop on the front-side of the modules.  

The A77-A78 (and, in general, all transitions in positions two and three in the 

long super-repeat) is highly rigid and represents the tightest possible FNIII transition 

in titin. The crowded polar interface does not appear to allow for a detectable 

conformational freedom. This might directly reflect the putative role of this tandem in 

the creation of a defined template to modulate the assembly of the myosin-based thick 

filament (hetero-obligomer type). As in the case of Z1Z2 (Marino et al., 2006) and 

A168-A170 (Mrosek et al., 2007), a pre-existent defined conformation appears to help 

the recruitment of other molecules onto the surface of the titin filament, probably by 

means of steric effects. Due to the evolutionary relationship of the domains, the 

investigation of a distinct set of tandems should allow the production of a model for 

the whole A-band, which can help to understand the role of titin in the assembly of 

the thick filament. 
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After the completion of this study, SAXS data became available that confirm 

that the crystal structure of A77-A78 corresponds to the structure of the tandem in 

solution. Furthermore, an NMR study confirmed the interaction of A77-A78 with 

myosin heads and contact mapping experiments are currently under consideration. 
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4 Dystrophia Myotonica Protein Kinase 

 

Dystrophia Myotonica Protein Kinase (DMPK) and related members of the 

family are complex multi-domain kinases that become activated by oligomerization. 

The self-assembly of DMPK (and related kinases) was thought to be mediated by a C-

terminal coiled-coil fraction. However, contradictory biochemical data reported for 

different members of the family questioned the extent to which these kinases might 

share a general oligomerization principle.  

At the time when this project was initiated, no structural data existed for any 

member of the family. A structural and biophysical study on DMPK was then 

undertaken in our lab that comprised full-length DMPK as well as truncated variants. 

Within this study, the work on a C-terminally truncated form lacking the coiled-coil 

domain, DMPK"VR/CC, is my own. Crystallization trials of this form yielded no 

crystals suitable for X-ray data collection since protein samples did not show the 

long-term homogeneity critical to this process. A characterization of the oligomeric 

state of this construct is reported in:  

 

Garcia P., Ucurum Z., Bucher R., Svergun D.I., Huber T., Lustig A., Konarev P.V., 
Marino M. and O. Mayans (2006). "Molecular insights into the self-assembly 
mechanism of dystrophia myotonica kinase." FASEB J. 20: 1142-1151 
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Final remarks on protein-protein interfaces and their evolution 

 

Proteins work in the cell within the context of multi-modular networks, where 

individual components are connected through a succession of interactions, as in the 

case of an information-processing signalling cascade, or by the product of one 

enzyme being the substrate of the next in a metabolic cascade. “Network connections” 

can be established between (i) dynamic functional protein units which do not interact 

but communicate “through space”; (ii) weakly and transiently interacting units; (iii) 

stable, obligate protein assemblies or (iv) fused multi-modular protein systems where 

different functional units are covalently linked. The assembly of protein components 

brings up a direct functional advantage, since the protein system gains additional 

properties that exceed the sum of their individual functions. For example, clustering 

of modules in signalling cascades or metabolic pathways ensures a rapid information 

exchange and eliminates delays that would occur as a result of cytosolic crowding and 

diffusion limitation. Complex formation can also provide a unique, local 

physicochemical environment that leads to an increase in specificity, affinity and, at 

times, enhanced activity through cooperativity. In addition, formation of higher-order 

assemblies provides an increase in mechanical and chemical stability, an advantage 

most clearly exhibited by the homo-oligomeric filamentous assemblies of the 

cytoskeleton. Thus, it can be concluded that molecular interactions stand substantial 

selection pressure. This is supported by the fact that proteins interacting with other 

proteins in strong, structural interactions (for example, histones, actin and tubulin) 

have changed little during evolution.  

Although the mechanisms of protein evolution have been amply addressed 

(e.g. gene shuffling, duplication, …), the nature of the evolutionary pressure that 

drives formation of protein-protein interfaces – and, moreover, inter-subunit 

communication - is less well understood, since an advantage at the level of organismic 

function might only become deterministic once the evolution of a number of 

correlated factors has taken place. For example, it is currently not known how full, 

complex metabolic pathways have formed.  

At a molecular level, the study of the evolution of protein-protein recognition 

is complicated. First, difficulties arise from the fact that many recognition 

intermediates appear not to have been retained in current organisms. But, more 
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importantly, a major limitation is the impossibility to correlate the multiple genome 

sequences available to date with the assembly properties of the protein the code for. 

Amino acid residues involved in the stabilization of protein interactions are able to act 

through all their functional groups (including main chain, aliphatic fraction and/or 

terminal groups). In fact, the global players in interface formation are often residues 

able to display a broad spectrum of molecular interactions of different nature (such as 

e.g. Arg). Thus, sequence conservation at interfaces is often rather permissive. 

Effectively, current studies that emphasize key functional groups in interface amino 

acids can be misleading. Since conclusions based on pure sequence comparison data 

are not sufficient to elucidate the evolutionary principles governing macromolecular 

recognition, the experimental investigation of protein structures, their interfaces and 

their assembly properties is inevitable. 
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6 Appendix 

 

6.1 Materials 
 
6.1.1 Organisms 

 
Escherichia coli DH5", XL-1 BLUE, BL21 (DE3) Rosetta 
 
6.1.2 Plasmids for protein expression 

 
 Plasmids for protein expression were kindly provided from C. Muhle-Goll, 
EMBL Heidelberg. 
 

Vector Construct 
pETM11 A77-A78 

 
6.1.3 Proteins 

 
Low Molecular Weight Marker (LMW-Marker, GE Healthcare) 
 
Protein (from) Molecular weight [kDa] 
Phosphorylase b (rabbit muscle) 97 
Albumin (bovine serum) 66 
Ovalbumin (chicken egg white) 45 
Carboanhydrase (bovine erythrocyte) 30 
Trypsin inhibitor (soybean) 20 
"-Lactalbumin (bovine milk) 14 
 
Other proteins:  HEW Lysozyme 
   DNase I 
    
 
6.1.4 Chemicals 

 
Antibiotica: 
 
Chloramphenicol 
Kanamycin 
 
Protease inhibitors: 
 
Complete Protease Inhibitor Cocktail (Roche AG) 
PMSF (AppliChem) 
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Other chemicals: 
 
Chemical Manufacturer 
Acetic Acid, AcOH Merck 
Acrylamide, AA BioRad 
Ammonium peroxodisulfate, APS Merck 
Coomassie Brilliant Blue R-250 Fluka 
Dioxane Merck 
Dithiothreitol, DTT AppliChem 
Ethanol, EtOH Merck 
Na2Ethylendiamintetraacetic acid, EDTA  AppliChem 
Ethylenglycol Fluka 
Glycerin Fluka 
Glycine, Gly Fluka 
Guanidinium hydrochloride, GndHCl Sigma 
4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 
sodium salt (HEPES) 

Sigma 

1,6-Hexanediol Fluka 
Hydrochloric acid, HCl Merck 
Imidazole Fluka 
iso-Propanol, iPrOH Fluka 
Isopropyl-$-D-thiogalactopyranoside, IPTG AppliChem 
Magnesium chloride hexahydrate, MgCl2 x 6 H2O Fluka 
Magnesium sulfate heptahydrate, MgSO4 x 7 H2O Fluka 
$-Mercaptoethanol, $-ME Fluka 
N,N’-Methylenbisacrylamide Serva 
Methylpenthandiol, MPD Merck 
PEG-2001 Fluka 
PEG-4001 Fluka 
PEG-15001 Fluka 
PEG-40001 Fluka 
PEG-80001 Fluka 
Sodium cacodylate trihydrate, Na3AsO x 3 H2O Fluka 
Sodium chloride, NaCl Merck 
Sodium Dodecylsulfate, SDS BioRad 
Sodium hydroxide, NaOH Merck 
N,N,N’,N’-Tetramethylenethylendiamine, TEMED Fluka 
Tris(hydroxymethyl)-aminomethan, Tris Merck 
Tryptone Beckton, Dickinson & Co. 
Yeast extract Beckton, Dickinson & Co. 
1PEG-X: Polyethylenglycol-Mw 
 
Crystallization kits: 
 
Cryo I, Cryo II, Wizard I, Wizard II Emerald Biostructures 
Structure Screen 1, Structure Screen 2 Molecular Dimensions 
Crystal Screen, Crystal Screen 2, Quick 
Screen (Phosphate) 

Hampton Research 
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6.1.5 Buffers and media 

 
 All buffers, stock solutions and media, if not mentioned here, were prepared 
exactly like described in Sambrook & Russel (2001). 
LB-medium: 
 
Tryptone 
Yeast extract 
NaCl 
 
IPTG stock solution: 
 
 IPTG stock solutions have been prepared by dissolving 238 mg/mL IPTG in 
H2O. The solution has been filtered sterile, aliquoted and stored at -20°C. 
 
Chloramphenicol stock solution (1000x): 
 
 Chloramphenicol stock solutions have been prepared by dissolving 34 mg/mL 
Chloramphenicol in EtOH (abs.). The stock solution was stored at -20°C.  
 
Kanamycin stock solution (1000x): 
 Kanamycin stock solutions have been prepared by dissolving 50 mg/mL 
Kanamycin in ddH2O and subsequent sterile filtration. The stock solution has been 
stored in aliquots at -20°C. 
 
PEG stock solutions: 
 
 PEG stock-solutions from solid PEGs (' 1000 Mw) were prepared in 50 % 
(w/v) stock solutions.  
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6.2 Additional material (projects) 
 

6.2.1 Introduction 

 
Figure 6.1 Residue-residue preferences. 

(A) Intra-domain, (B) domain-domain, (C) obligatory homo-oligomers (homo-obligomers), (D) 
transient homo-oligomers (homo-complexes), (E) obligatory hetero-oligomers (hetero-obligomers), 
and (F) transient hetero-oligomers (hetero-complexes). A red square indicates that the interaction 
occurs more frequently than expected; a blue square indicates that it occurs less frequently than 
expected. The amino acid residues are ordered according to hydrophobicity,42 with Ile as the most 
hydrophobic and Arg as the least hydrophobic (adapted from Ofran & Rost, 2003). 
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6.2.2 SsTrpB2b 
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Figure 6.3a Structure based sequence alignment of TrpAs and the interactions to TrpB1.  

The secondary structure elements are shown for PfTrpA as assigned by Yamagata et al., 2001. 
SsTrpA shows a different L2 (catalytic loop) composition. Strictly conserved residues are 
highlighted. The first helix (H0), which is not present in PfTrpA is shown transparent. The legend 
for allosteric/catalytic residues as well as residues interacting to TrpB1 is given in the second part. 
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Figure 6.3b Structure based sequence alignment (part two). 
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6.2.3 A77-A78  
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Figure 6.6 Stereo image of the superposition of titin’s FNIII modules with known structure. 

The superposition reveals the high similarity of these modules. Only the N- (left) and C-termini 
(right) deviate in in C"-positions.  
 
 

 
Figure 6.5 A flowchart of the warpNtrace procedure (adapted from Perrakis et al., 1999). 
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6.2.3a H-bonding in the interface between A77 and A78 

 

Table 6.1 H-bonding network in the A77-A78 interface. 

Module-module interactions (direct and via water molecules) 
A77 residue Atom A78 residue Atom Distance [Å] Notes1 

Glu71e  OE2 His128b NE2 2.9 direct 
Lys98e NZ Glu180f OE2 2.8 direct 
Lys98e  O Lys181f Nz 2.9 direct 
Lys19a NZ His128b ND1 2.9/2.8 via water 
Glu71e OE2 Asp129b OD1 3.2/2.7 via water 
Lys98e NZ Gly131b O 2.8/2.7 via water 
Linker-to-module interactions (direct and via water molecules)3 
Linker residue Atom Module residue Atom Distance [Å] Notes1 
Ala99 N Cys73c O 2.9 direct 
Ala99 O Gly72c N 2.7 direct 
Ser100 N Lys98e O 3.1 direct 
Ser100 OG Ser132b OG 2.7 direct 
Ser100 OG Lys181d NZ 2.8 direct 
Ser100  O Val17a O 3.1/3.0 via water 
Glu101 N Gly130b O 2.8 direct 
Glu101 OE1 Lys19a N 3.1 direct 
Glu101 OE2 Arg102 NH2 2.8/2.8 via water 
Glu101 O Asn179d ND 3.0 direct 
Arg102 NH2 Ile183g  O 3.1 direct 
Arg102 NH2 Asp185h N 3.1 direct 
Arg102 NH2 Asp185h OD1 3.3/2.6 via water 
Arg102 NH2 Asp185h OD2 2.9/3.4 via water 
Arg102 NH2 Asp185h OD1 3.3 direct 
1listed are only waters with electron density observed in both chains in the asymmetric unit. 
interactions via water are given in: distance of water molecule first atom/second atom  
positions of the residues on loops: aAB-loop A77, cEF-loop (A77), eG3-strand (A77), gG1-strand (A78), 
bBC-loop (A78), dF-strand (A78), fFG1-loop (A78), hG1G2-loop (A78) 
3linker: residues between the last strand of A77 and the first residue of the PxxP-motif in A78  
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