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SUMMARY 

Histone H3 lysine 36 (H3K36) methylation was identified as a conserved modification 

from yeast to human. In yeast, biochemical characterization of the SET2 protein and 

genome wide mapping of H3K36me2 and K36me3 indicate that H3K36 methylation 

functions in transcription elongation through Set2/Rpd3S pathway. 

A number of H3K36 methyltransferases and demethylases have been identified in 

different species, which underscores the dynamics of H3K36 methylation. As in yeast, 

H3K36me3 also peaks at the 3’ end of genes in mammals. The genome wide view of 

H3K36me1 and H3K36me2 is not clear yet. To date, the functional significance of 

H3K36 methylation remains largely unknown in mammals. 

In this thesis, homologs of SET2 in mammals, including Nsd1, Nsd2, Nsd3, and HypB, 

were studied. Nsd proteins displayed weak methyltransferase activity towards histone 

H3 in vitro. Their target specificities needs to be further analyzed. In vitro, HypB showed 

strong activity for histone H3 lysine 36. In vivo, H3K36 trimethylation levels were 

significantly reduced in HypB knock-down cells, indicating that HypB is a major H3K36 

trimethyltransferase. Distribution of H3K36 methylation (mono-, di-, and tri-) were 

analyzed by immunofluorescence both in human and mouse cells. All three methylation 

states of showed euchromatic distribution, whereas H3K36 mono- and dimethylation 

also showed heterochromatic enrichment in terminally differentiated NIH3T3 cells as 

well. In embryonic stem cells, H3K36 methylation showed an inverse correlation with 

the expression level of Oct4, a stem cell marker, suggesting a potential role of H3K36 

methylation in ES cell differentiation. After induction of differentiation by removing LIF or 

adding retinoic acid to the culture medium, stem cell genes failed to be repressed and 

lineage specific genes failed to be activated to the same degree in HypB knockdown 

cell as observed in mock treated ES cells. The presence of H3K36me3 along Oct4 

locus was mapped by CHIP. H3K36me3 was highly enriched in the coding region, and 

was low upstream of the transcription start site in undifferentiated ES cells. During 

differentiation, however, H3K36me3 decreased on the coding region and increased 

slightly on enhancer region of Oct4 in the course of Oct4 repression after differentiation. 

In all, we propose that H3K36me3 is catalyzed by HypB and has an inverse correlation 

with Oct4 expression. HypB facilitates ES cell differentiation. The molecular mechanism 

by which HypB facilitates differentiation requires further investigation.  
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CHAPTER 1 INTRODUCTION 

1.1 Genome and epigenome 

Genomic DNA of eukaryotic cells is highly folded and compacted with histone and non-

histone proteins into chromatin. Gene expression, chromosome segregation, DNA 

replication, repair, and recombination all act not on DNA alone, but on the chromatin 

template. Chemical modifications occur on DNA and histone proteins and form a 

complex regulatory network that modulates chromatin structure and genome function. 

The epigenome refers to the complete description of these potentially heritable changes 

across the genome (Bernstein et al., 2007). Thus, a single genome can generate a 

multitude of distinct 'epigenomes', as the fertilized egg progresses through development 

and translates its information into more than 200 different types of cell fates (Allis et al., 

2006) (Figure 1). 

 
Figure 1. DNA Versus Chromatin 

The genome: Invariant DNA sequence (green double helix) if an individual. The epigenome: the 
overall chromatin composition, which indexes the entire genome in any given cell. It varies 
according to cell type and response to internal and external signals it receives. (Lower panel) 
Epigenome diversification occurs during development in multicellular organisms as differentiation 
proceeds from a single stem cell (the fertilized embryo) to more committed cells. Reversal of 
differentiation or transdifferentiation (blue lines) requires the reprogramming of a cell’s 
epigenome. (Allis et al. 2006, Epigenetics) 
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1.2 Higher-order chromatin organization 

The fundamental subunit of chromatin is the nucleosome, which consists of 

approximately 147 base pairs (bp) of DNA wrapped around an octamer of the four core 

histones (H3, H4, H2A, H2B) (Luger et al., 1997) (Felsenfeld and Groudine, 2003). 

Specific interactions between individual nucleosomes drive the folding of a nucleosomal 

array (the primary structure of chromatin) into the 30 nm fiber (secondary structure) and 

into larger-scale configurations (tertiary structures) that build an entire chromosome 

(Tremethick, 2007) (Figure 2).  

 

Figure 2. Organization of DNA within the chromatin structure 
The lowest level of organization is the nucleosome, in which two superhelical turns of DNA (a 
total of 147 base pairs) are wound around the outside of a histone octamer. Nucleosomes are 
connected to one another by short stretches of linker DNA. At the next level of organization the 
string of nucleosomes is folded into a fibre about 30 nm in diameter, and these fibres are then 
further folded into higher-order structures. At levels of structure beyond the nucleosome the 
details of folding are still uncertain. (Felsenfeld and Groudine, 2003) 
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1.3 Euchromatin and heterochromatin 

In a simple classification approach, there are two different types of chromatin 

environments in the genome, active euchromatin and silent heterochromatin. 

Euchromatin exists in an “open” (decompacted), more nuclease-sensitive configuration, 

making it “poised” for gene expression, although not necessarily being transcriptionally 

active. Euchromatin consists largely of coding sequences, which only account for a 

small fraction (4%) of the genome in mammals. Heterochromatin exists in a “closed” 

(compacted) configuration, making it transcriptionally limited. Heterochromatin mainly 

consists of noncoding and/or repetitive sequences. Heterochromatin plays a critically 

important role in the organization and proper function of genomes (Figure 3).  

 

 
Figure 3. Distinction between Euchromatin and Heterochromatin Momains 
Summary of common differences between euchromatin and constitutive heterochromatin. This 
includes in the type of transcripts produced, recruitment of DNA-binding proteins (i.e. 
transcription factor [TF]), chromatin-associated proteins and complexes, covalent histone 
modifications, and histone variant composition. (Allis et al. 2006, Epigenetics) 
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1.4 Epigenetic regulation of chromatin function 

The dynamics of chromatin structure is tightly regulated through multiple mechanisms 

including chromatin modification, chromatin remodeling, histone variant incorporation 

and histone eviction (Li et al., 2007a).  

1.4.1 Chromatin modifications 

Chromatin modifications fall into two main categories: histone modifications and DNA 

methylation (Bernstein et al., 2007) (Berger, 2007) (Table 1). Histone modification has 

been found to be a central feature of genomic regulation. 

1.4.1.1 Histone modifications and histone-modifying enzymes 

Both histone tails and globular domains are subject to a vast array of posttranslational 

modifications. These modifications include methylation of arginine (R) residues; 

methylation, acetylation, ubiqutylation, ADP-ribosylation, and sumoylation of lysine (K) 

residues; and phosphorylation of serines and threonines (Table 1). Enzymes that direct 

modifications have been identified over the past ten years (Table 2). Most modifications 

have been found to be dynamic and enzymes that remove the modification have been 

identified. Enzymes that catalyse histone modifications and their counterpart enzymes 

that reverse the modifications antagonistically, govern the steady-state balance of each 

modification (Allis et al., 2006) (Figure 4).  

 

Figure 4. Histone Modifying Enzymes 
Covalent histone modifications are transduced by histone-modifying enzymes (“writer”) abd 
removed by antagonizing activities. They are classified into families according to the type of 
enzymatic action (e.g. acetylation or phosphorylation). Protein domains with specific affinity for a 
histone tail modification are termed “readers”. (HAT) Histone acetyltransferase; (PRMT) protein 
argine methyltransferase; (HKMT) histone lysine methyltransferase; (HDAC) histone deacetylase; 
(PPTase) protein phosphatase: (Ac) acetylation; (P) phosphorylation; (Me) methylation. (Allis et 
al. 2006, Epigenetics) 
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Histone acetyltransferases (HATs) acetylate specific lysine residues in histone 

substrates and are reversed by the action of histone deacetylases (HDACs). The 

histone kinase family of enzymes phosphorylate specific serine or threonine residues, 

and phosphatases (PPTase) remove phosphorylation marks. Protein arginine 

methyltransferases (PRMTs) methylate arginine residues, and are indirectly reversed by 

the action of deiminases, which convert methyl-arginine (or arginine) to a citrulline 

residue. Histone lysine methyltransferases (HKMTs) methylate lysine residue of histone, 

and this mark is erased by histone demethylase. 

Table1. Chromatin modifications 

Mark* Transcriptionally relevant sites Transcriptional role 

DNA methylation       

Methylated cytosine (meC) CpG islands Repression 

Histone modifications       

Acetylated lysine (Kac) H3 (K9,K14,K18,K36,K56) Activation   

 H4 (K5,K8,K12,K16) Activation  

 H2A Activation  

  H2B (K6,K7,K16,K17) Activation   

Phosphorylated serine/threonine (S/Tph) H3 (T3,S10,S28) Activation   

 H2A Activation  

  H2B  Activation   

Methylated arginine (Rme) H3 (R2,R17,R26) Activation   

  H4 (R3) Activation   

Methylated lysine (Kme) H3 (K4,K36,K79) Activation   

 H3 (K9,K27) Repression 

  K4 (K20) Repression 

Ubiquitylated lysine (Kub) H2B (K123§/120¶) Activation   

  H2A (K119¶) Repression 

Sumoylation lysine (Ksu) H4 (K5,K8,K12,K16) Repression 

 H2A (K126) Repression 

  H2B (K6,K7,K16,K17) Repression 

Isomerized proline (Pisom) H3 (P30,P38) Activation/Repression

* The modification on either DNA or a histone.   

§ Yeast (Saccharomyces cerevisiae).    

¶ Mammals 

 

(Adapted from Berger, 2007)    
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Table2. Chromatin-modifying enzymes 

Modifications Position   S. cerevisiae S. pombe Drosophila Mammals 

Methylation H3 K4 Set1 Set1 Trx, Ash1 Mll, All-1, Ash1, 

      ALR-1/2, ALR,  

          Set7/9, Set1 

  K9 n/a Clr4 Su(var)3-9 Suv39h, G9a,  

     Ash1 SETDB1, CLL8, 

          Eu-HMTase1 

  K27     E(Z) Ezh2 

  K36 Set2 Set2 dSet2 HypB, Smyd2, 

          NSD1, Ash1 

   K79 Dot1     Dot1L 

  H4 K20   Set9 PR-Set7, Ash1 PR-Set7, Set8 

Arg methylation H3 R2       CARM1 

  R17       CARM1 

   R26       CARM1 

  H4 R3       PRMT1 

Phosphorylation H3 S10 Snf1       

    S28       MSK1, MSK2 

Ubiquitylation H2A K119       Bmi/Ring1a 

  H2B K120/123 Rad6, Bre1 Rad6   BbcH6, RNF20/40 

Isomerization H3 P10, P38 FPR4       

Acetylation H3 K9       PCAF/GCN5 

  K14 Sas3   CBP/P300, TIP60, 

          PCAF/GCN5 

  K18    CBP/P300, 

      PCAF/GCN5 

   K56 Rtt109       

 H4 K5 Esa1 Mst1   HAT1,CBP/P300, 

      TIP60, HBO1 

  K8 Esa1 Mst1   CBP/P300, TIP60,  

          HBO1 

  K12 Esa1 Mst1  HAT1, TIP60, HBO1 

   K16 Sas2, NuA4 Mst2 dMOF TIP60, hMOF 

 H2A K5       CBP/P300 

 H2B K12       CBP/P300 

    K15       CBP/P300 

(Adapted from Li et al. 2007 and Kouzarides, 2007) 
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Most modifications have distinct localization patterns associated with different 

chromatin environments. Generally, histone acetylation, methylation at H3K4 and 

H3K79 has been linked to activation of transcription and referred to as euchromatin 

modifications. Methylation at H3K9, H3K27 and H4K20 has been linked to 

repression and termed as heterochromatin modifications. Methylation at H3K36 has 

been linked to transcriptional elongation. However, it is involved in a deacetylation 

pathway to restore a repressive chromatin after passage of RNA polymerase II (see 

also 1.8). Within a transcription unit, most modifications are distributed in distinct 

localized patterns (Figure 5). The localization of histone modification is tightly 

regulated and is crucial for its effect on chromatin structure and transcription (Li et 

al., 2007a).  

 
 
 
 

Figure 5. Genome-Wide Distribution Pattern of Histone Modifications from a 
Transcription Perspective 

The distribution of histones and their modifications are mapped on an arbitrary gene relative to 
its promoter the upstream region, the core promoter, ORF, 5’ end of ORF and 3’ end of ORF. 
The curves represent the patterns that are determined via genome-wide approaches. The squares 
indicate that the data are based on only a few case studies. With the exception of the data on K9 
and K27 methylation, most of the data are based on yeast genes. (Li et al, 2007) 
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1.4.1.2 Functional mechanisms of histone modifications 

There are three characterized mechanisms for the function of modifications (Figure 6). 

First, histone modifications may affect the chromatin structure by changing the contact 

between different histones in adjacent nucleosomes or the interaction of histone with 

DNA, which are brought about by changes in the physical properties of modified histone 

tails, such as a modulation in the electrostatic charge or tail structure. This mechanism 

is considered as a cis-effect. Acetylation and phosphorylation are thought to function 

through this mechanism. Secondly, histone modifications may prevent or disrupt the 

binding of proteins that associate with chromatin or histones. Thirdly, histone 

modifications may provide binding sites that attract certain effectors via specific 

domains. Methylation is recognized by chromo-like domains of the Royal family 

(chromo, tudor, MBT) and PHD domains, acetylation is recognized by bromodomains, 

and phosphorylation is recognized by a domain present in 14-3-3 proteins. The latter 

two mechanisms are considered as trans-effects (Kouzarides, 2007) (Figure 7). 

 

Figure 6. Models showing how Histones Posttranslational Modifications Affect the 
Chromatin Template 
Model 1 propose that changes to chromatin structure are mediated by the cis effects of covalent 
histone modifications, such as histone acetylation or phosphorylation. Model 2 illustrates the 
inhibitory effect of a histone modification for the binding of a chromatin-associated factor (CF), 
as exemplified by H3S10 phosphorylation occluding HP1 binding at methylated H3K9. In model 
3, a histone modification may provide binding specificity for a chromatin-associated factor. A 
classic example is HP1 binding through its chromodomain to methylated H3K9. (Allis et al. 
2006, Epigenetics) 
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 Figure 7. Recruitment of Proteins to Histones.  

(A) Domains used for the recognition of methylated lysines, acetylated lysines, or phosphorylated 
serines. (B) Proteins found that associate preferentially with modified versions of histone H3 and 
histone H4. (Kouzarides, 2007)  

 

 

Furthermore, crosstalk between different modifications is also implicated in the function 

of histone modification at different levels. Different modifications on the same residue 

antagonize each other. Certain modification of one residue may affect the modification 

or the affinity binding of effector proteins of adjacent resides within the same histone tail 

(Mateescu et al., 2004). Modification of one residue may also affect the modifications of 

the other residues on different histone tails. 

1.4.1.3 Functional consequence of histone modifications 

The function of histone modifications includes the establishment of global chromatin 

environments (such as euchromatin and heterochromatin) and the orchestration of 

DNA-based biological process such as transcription, replication, DNA repair, and 

chromosome condensation. One hypothesis is that there is a “Histone code”, linking 

specific modifications with individual processes (Strahl and Allis, 2000; Turner, 2000). 

However, It is not likely that the histone code functions as a genetic code that is a 

predictable, invariant and nearly universal language. The function of different histone 

modifications varies considerably from one organism to the other, especially between 

lower and higher eukaryotes. One limitation of the histone code is that one modification 

does not invariantly translate to one biological output. Thus, a more general hypothesis 

has been proposed where histone modification serve as a nuclear DNA-associated 

signal transduction pathway (Allis et al., 2006). 
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1.4.2 Chromatin remodeling and histone eviction 

The second major class of chromatin regulators are protein complexes that utilize ATP 

hydrolysis to slide nucleosomes, replace histones, or alter the histone-DNA contacts. 

Due to this, they are generally referred to as chromatin-remodeling complexes. The 

consequences of remodeling include transient unwrapping of DNA from histone 

octamers, forming DNA loops, or moving nucleosomes to different translational 

positions, all of which change the accessibility of nucleosomal DNA to transcription 

factors (Flaus and Owen-Hughes, 2004; Saha et al., 2006). Recent studies reveal that 

histone displacement does occur in vivo during chromatin remodeling and that entire 

histone octamers can also be displaced (evicted) or exchanged under certain 

circumstances (Li et al., 2007a). 

1.4.3 Histone variants incorporation 

It is known that many variant forms of histones exist in many different organisms. 

Variants have been found to distinguish alternative chromatin states at centromeres, at 

the inactive mammalian X chromosome and at transcriptionally active loci, and are 

assembled into chromatin by specific protein complexes. The differences between 

variants and canonical histones in the histone tails, in the histone fold domains, or the 

difference of key amino acid residues may result in different nucleosome structures, 

stabilities, modifications, and compositions. The incorporation of histone variants 

impacts higher-order chromatin structure in various ways to facilitate various cellular 

processes (Henikoff et al., 2004; Kamakaka and Biggins, 2005; Li et al., 2007a).  

1.5 Histone acetylation and deacetylation 

Most of the acetylation sites fall within the N-terminal tail of the histones. However, a 

lysine within the core domain of H3K56 has recently been found to be acetylated (Xu et 

al., 2005) (Table 1). Histone acetylation is enriched predominantly at the promoter 

region and the transcriptional start site of active genes, and this enrichment drops 

substantially across the ORFs (Pokholok et al., 2005). 

Acetyltransferases are divided into three main families: GANT, MYST, and CBP/p300 

(Sterner and Berger, 2000). In general, these enzymes modify more than one lysine but 

some limited specificity can be detected for some enzymes (Table 2). GANT targets 
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histone H3 as its main substrate, the MYST family targets histone H4 as its main 

substrate and CBP/p300 targets both H3 and H4.  

The reversal of acetylation correlates with transcriptional repression. There are three 

distinct families of histone deacetylases: the class I and class II histone deacetylase and 

the class III NAD-dependant enzymes of the Sir family (Ouaissi and Ouaissi, 2006). 

These enzymes are involved in multiple signalling pathways and they are present in 

numerous repressive chromatin complexes. In general, these enzymes do not show 

specificity for a particular acetyl group, although some of the yeast enzymes have 

specificity for a particular histone: Hda1 for H3 and H2B (Wu et al., 2001); Hos2 for H3 

and H4 (Wang et al., 2002a). The fission yeast class III deacetylase Sir2 has some 

selectivity for H4K16ac, and recently, the human Sir family member SirT2 has been 

demonstrated to have a similar preference (Vaquero et al., 2006).  

Bromodomains were discovered as acetyl-lysine binding domains. It is widely 

distributed among the different chromatin modifying proteins, such as histone 

acetyltransferase (GCNF/PANF, CBP/p300, TAFII250, etc.), methyltransferase (ASH1, 

RIZ, MLL), chromatin remodelers (SNF2, Brama, CHARC, etc.) (de la Cruz et al., 2005) 

or other proteins (Brd2,etc.) (Kanno et al., 2004). 

Histone acetylation is almost invariably associated with activation of transcription and 

histone deacetylation is associated with gene repression (Kurdistani and Grunstein, 

2003). This is consistent with that HATs and HDACs are associated with coactivator 

and corepressor respectively. It has been confirmed that the bromodomain is required 

for chromatin association of SWI/SNF and the SAGA complexes (Hassan et al., 2002). 

Thus, the regulatory role of histone acetylation may function at different steps during 

transcription. In addition, acetylation of H4K16 modulates both higher order chromatin 

structure and functional interactions between a non-histone protein and the chromatin 

fibre (Shogren-Knaak et al., 2006). 

1.6 Histone methylation 

Histone methylation is catalysed by histone methyltransferases (HMT), histone-lysine N-

methyltransferase and histone-arginine N-methyltransferase, which catalyse the transfer 

of one to three methyl groups from the cofactor S-Adenosyl methionine to lysine and 

arginine residues of histone proteins. All HMTs contain an SET (Su(var)3-9, Enhancer 

of Zeste, Trithorax) domain with exception of the non-canonical Dot1 (Dillon et al., 2005; 

http://en.wikipedia.org/wiki/Catalyze
http://en.wikipedia.org/wiki/Methyl
http://en.wikipedia.org/wiki/Cofactor
http://en.wikipedia.org/wiki/S-Adenosyl_methionine
http://en.wikipedia.org/wiki/Lysine
http://en.wikipedia.org/wiki/Arginine
http://en.wikipedia.org/wiki/Histone
http://en.wikipedia.org/wiki/Protein
http://en.wikipedia.org/wiki/Protein_domain
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Martin and Zhang, 2005; van Leeuwen et al., 2002). Histone methylation is more 

complex than the other modifications. First, it can occur on either lysines or arginines. 

Secondly, histone methylation functions in both transcription activation and repression. 

Thirdly, lysines can be mono- (me1), di- (me2), or tri- (me3) methylated, and arginines 

can be mono- (me1) or di- (me2, symmetric or asymmetric) methylated. In the following 

paragraphs, the most recent characteristics of the individual methylation state are 

summarized. H3K36 methylation will be discussed in 1.8. 

1.6.1 H3K4 methylation 

Global patterns: The H3K4 residue in yeast is methylated by the Set1 complex across 

the entire ORF of active genes. As shown in Figure 6, monomethylation is enriched 

toward the 3’ end, and dimethylation peaks in the middle, whereas trimethylation occurs 

around the transcription start site and the 5’ end of the ORF (Pokholok et al., 2005). In 

vertebrates, the majority of dimethylation colocalizes with H3K4me3 in discrete zones 

about 5-20 nucleosomes in length proximate to highly transcribed genes (Bernstein et 

al., 2005; Schneider et al., 2004). A subset of dimethylation sites is devoid of H3K4me3 

(Bernstein et al., 2005). Recent ChIP on chip study showed that H3K4me3 was 

enriched at both active and inactive genes throughout the genome. The signals 

observed for H3K4me3 were typically lower (about 3-fold) at the inactive genes than 

active genes but were substantially above background and located at the same position 

relative to the transcription start site (Guenther et al., 2007). 

HMTs/Writers: Set1 is the sole enzyme responsible H3K4 methylation in yeast. In 

mammals, at least ten known or predicted H3K4 methyltransferases exist, including the 

MLL family (MLL1, MLL2, MLL3, MLL4, SET1A and SET1B), ASH1, SET7/9, SMYD3, 

and PRDM9 (Ruthenburg et al., 2007).  

Demethylases/Erasers: In yeast, Jhd2 preferentially demethylates H3K4me3 (Liang et 

al., 2007). The first H3K4 demethylase discovered is LSD1, which demethylates 

H3K4me1 and H3K4me2, but not H3K4me3 (Shi et al., 2004). Subsequently, 

RBP2/JARID1A (Christensen et al., 2007; Klose et al., 2007b), PLU-1/ JARID1B 

(Yamane et al., 2007), SMCX/JARID1C (Iwase et al., 2007) and JARID1D (Lee et al., 

2007a) were identified as H3K4 demethylases in the mammalian system.  
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Effectors/Readers: A number of effector proteins recognize methylated H3K4 through 

different domains. Many of the known H3K4 methyl readers reside within protein 

complexes associated with enzymatic activities operating on the chromatin template. 

Chd1 and BPTF are involved in ATP-dependent chromatin remodeling. BPTF 

recognizes H3K4me3 via PHD domain (Wysocka et al., 2006) and Chd1 recognizes 

H3K4me2 and H3K4me3 via its chromodomain (Flanagan et al., 2005; Pray-Grant et 

al., 2005). ING proteins are present in histone acetylation and deacetylation complexes 

and recognize H3K4me2 and H3K4me3 via their PHD domain (Doyon et al., 2006). 

JMJD2a, a histone demethylase, recognizes H3K4me3 and maybe also H3K4me2 via a 

tudor domain (Shi and Whetstine, 2007).  

Functional significance: H3K4 methylation is coupled to specific biological functions 

according to its associated factors. The recruitment of remodeling machinery, such as 

the BPTF-containing NURF remodeling complex, facilitates transcription by increasing 

the accessibility of the chromatin template to the transcription machinery. The 

association of H3K4 methyl with ING3-5 containing acetyltransferase complexes 

functions in transcription activation. In contrast, ING2, a native subunit of a repressive 

mSin3a-HDAC1 histone deacetylase complex, binds with high affinity to the 

trimethylated H3K4, which functions in active gene repression. JMJD2A is present in co-

repressor complex N-CoR and retinoblastoma (Huang et al., 2006). Recruitment of 

JMJD2A to H3K4me3 presumably leads to gene repression.  

1.6.2 H3K79 methylation 

Global patterns: H3K79 methylation was first identified in yeast (van Leeuwen et al., 

2002). K79 lies within the core of the nucleosome rather than in the tail. Global analysis 

in yeast has shown that H3K79 is methylated in euchromatic regions and associates 

with the coding region of active genes. H3K79 trimethylation is enriched at both 5’ and 

3’ across the transcribe region of genes (Pokholok et al., 2005). However, H3K79 

trimethylation of the mammalian PABPC1 gene is enriched at 5’ end and not maintained 

across the entire transcribed region (Vakoc et al., 2006). Global analysis on human 

genes indicated that H3K79 me2 is closely associated with H3K4me2 and H3K36me2 in 

the coding region, suggesting that active lysine methylation pairs that generally occur 

together in the coding regions of human genes are H3K4me2/H3K79me2 and 
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H3K36me2/H3K79me2. Relatively few numbers of genes appear to have 

H3K4me2/K36me2/K79me2 in the coding region (Miao and Natarajan, 2005). 

HMTs/Writers: Dot1 was identified as the sole enzyme for H3K79 methylation in yeast 

(van Leeuwen et al., 2002). Conserved homologs have been subsequently identified in 

mammals and fly (Feng et al., 2002; Shanower et al., 2005). Dot1 is found the only 

active histone methyltransferase without containing SET domain so far.  

Demethylases/Erasers: No demethylase for H3K79 has been identified until now. 

Effectors/Readers: 53BP1 has been identified as the sole H3K79 methyl binding 

protein (Huyen et al., 2004).  

Functional significance: The function of H3K79 methylation in transcription is 

contradictory. Early reports showed that H3K79me3 did not show a correlation with 

either active or silent genes in yeast (Pokholok et al., 2005), while H3K79me2 was 

linked to active transcription in Drosophila (Schubeler et al., 2004) and humans (Okada 

et al., 2005). Recent data showed that H3K79me1 was modestly associated with 

activation while H3K79me3 was associated with repression in human cells and that 

H3K79me2 did not show any preference toward either active or silent genes (Barski et 

al., 2007). 53BP binding to methylated H3K79me3 functions in the DNA repair process 

(Wang et al., 2002b). 

1.6.3 H3K9 methylation 

Global patterns: H3K9 methylation was first observed in mammals and the enzyme 

SUV39H1 was the first histone methyltransferase to be identified (Rea et al., 2000). 

Subsequent studies showed that H3K9 methylation, mainly H3K9me2 and H3K9me3, 

were enriched in heterochromatin both in yeast (Nakayama et al., 2001; Noma et al., 

2001) and in mammals (Bannister et al., 2001; Lachner et al., 2001). Methylation of 

H3K9 has also been detected at the promoter of some mammalian genes in 

euchromatin region when the genes are silent. Recently, genome wide profiling has 

show that the signals of both H3K9me2 and H3K9me3 were higher in silent genes than 

active genes in a region of 10kb surrounding the TSS (transcriptional start site). High 

H3K9me1 levels were detected in more active promoters surrounding the TSS (Barski 

et al., 2007). In addition, H3K9me3 was found to be enriched also in the coding region 

of active genes (Vakoc et al., 2005; Vakoc et al., 2006). 
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HMTs/Writers: Until now, a number of H3K9 methyltransferases from different species 

have been identified, including Clr4 (S.pombe), Su(var)3-9, Ash1 (Drosophila) and 

Suv39h, G9a, Eu-HMTaseI, Setdb1 (Mammals).  

Demethylases/Erasers: The JHDM3/JMJD2A family of jmjC domain containing 

proteins has been identified as H3K9 demethylase in mammals. This family includes 

JHMD3A/JMJD2A, JMJD2B, JMJD2C/GASC1, and JMJD2D (Klose et al., 2006). Rph1, 

the yeast homolog of mammalian JHDM3A/JMJD2A, showed demethylation activity 

towards H3K9me3 and H3K36me3 in vitro or when overexpressed in mammalian cells, 

although H3K9 methylation has not been found in budding yeast (Klose et al., 2007a).  

Effectors/Readers: The so-called chromodomain is the first identified structure motif 

that allows binding to methylated histone tails. All three isoforms of HP1 (HP1α, HP1β, 

and HP1γ) can bind to all three methylation states of H3K9 (me1, me2, and me3) via its 

chromodomain. The chromodomain of CDY1 (Chromodomain protein, Y-linked, 1) binds 

to H3K9me2 and H3K9me3 (Kim et al., 2006).  

Functional significance: As discussed above, H3K9 methylation is required for 

heterochromatin formation. SUV39H (or Clr4 in fission yeast) methylates H3K9, creating 

a binding platform for HP1 (of Swi6 in fission yeast). Upon HP1 binding, 

heterochromatin can spread onto adjacent nucleosomes by its association with 

SUV39H. In addition, HP1 self-associates via the chromoshadow domain, facilitating the 

spread of heterochromatin (Allis et al., 2006). H3K9 methylation also functions in the 

repression of euchromatic genes. The mechanism of this repression is different from 

that of heterochromatin formation. Generally, repressor or corepressor proteins recruit 

SUV39H, G9a, or SETDB1 to the promoter of target genes (Ayyanathan et al., 2003; 

Smallwood et al., 2007). The recent detection of H3K9me3 and HP1γ on the coding 

region of active genes indicates that H3K9 trimethylation may function in transcription 

elongation (Vakoc et al., 2005; Vakoc et al., 2006), similar to the co-occurring 

modification H3K36me3 on the coding region.  

1.6.4 H3K27 methylation  

Global patterns: H3K27 methylation is a repressive modification found in three distinct 

places in the cell: (1) euchromatic gene loci (H3K27me1, me2, and me3) (2) at 
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pericentric heterochromatin (H3K27me1), and (3) at the inactive X in mammals 

(H3K27me3) (Allis et al., 2006). High-resolution profiling of histone methylations in the 

human genome showed H3K27me3 signals were modestly elevated at silent promoter 

and reduced at active promoters and genic regions, whereas not much change was 

observed in intergenic regions. H3K27me1 signals were higher at active promoters than 

silent promoters, particularly downstream the TSS. H3K27me2 had a similar distribution 

as H3K27me3, though less biased toward silent genes (Barski et al., 2007). H3K27me1 

is selectively enriched ate pericentric heterochromatin together with H3K9me3.  

HMTs/Writers: The enzyme that mediates H3K27 methylation in mammals is Ezh2, a 

homolog of the Drosophila Enhancer of Zeste (E(z)) protein (Cao et al., 2002; Czermin 

et al., 2002; Kuzmichev et al., 2002; Muller et al., 2002). It functions in the Polycomb 

repressive complex 2 together with Suz12 and Eed that are required for enzymatic 

activity in vivo (Cao and Zhang, 2004; Montgomery et al., 2005).  

Demethylases/Erasers: Recently, UTX and JMJD3 have been identified as H3K27me3 

demethylases (Agger et al., 2007; Lee et al., 2007b).  

Effectors/Readers: It has been shown that Polycomb (Pc), a subunit of PRC1 complex, 

binds to methylated H3K27 through its chromodomain that binds trimethyl about five 

times stronger than mono- or dimethylated residues (Daniel et al., 2005). Pc is encoded 

by a single gene in Drosophila. However, among five mouse homologs (Cbx2, Cbx4, 

Cbx6, Cbx7, Cbx8), only Cbx2 and Cbx7 bind to H3K27me3, as well as H3K9me3 

(Bernstein et al., 2006b).  

Functional significance: H3K27 methylation functions in (1) maintaining repression of 

target genes and allow for “cellular memory” throughout subsequent cell divisions and 

development (Ringrose and Paro, 2004), (2) heterochromatin structure formation 

(Peters et al., 2003), (3) X-inactivation (Wang et al., 2001), and (4) genomic imprinting 

(Wang et al., 2001).  

1.6.5 H4K20 methylation  

Global patterns: H4K20me3 is only at present pericentric heterochromatin whereas 

H4K20me2 is broadly distributed over euchromatic regions. H4K20me1 in enriched at Xi 
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foci in female cells (Schotta et al., 2004). High-resolution profiling in the human genome 

showed that H4K20me3 did not show association with either active or silent promoters. 

It also revealed a peak of H4K20me1 in the region downstream of the TSS (Barski et 

al., 2007). However, other data showed that H4K20me1 was enriched in promoter or 

coding regions of active genes (Talasz et al., 2005; Vakoc et al., 2006). 

HMTs/Writers: Suv4-20h1 and Suv20h2 are responsible for generating H4H20me3 

(Schotta et al., 2004). PrSet7 is an HMT with selective activity towards nucleosomal 

H4K20, being an exclusively monomethylating enzyme (Karachentsev et al., 2005; 

Nishioka et al., 2002).  

Demethylases/Erasers: The demethylase of H4K20 has not been found yet.  

Effectors/Readers: L3MBTL1 binds to mono- and dimethylation of histone H4 lysine 20 

through its MBT domain (Trojer et al., 2007). CrB2 is H4K20 methyl binding protein in 

budding yeast (Sanders et al., 2004). 

Functional significance: The distribution patterns and the effector proteins of H4K20 

methylation indicates that this methylation may function in different processes including 

heterochromatin formation (Schotta et al., 2004), transcription regulation (Talasz et al., 

2005; Vakoc et al., 2006), X-inactivation (Kohlmaier et al., 2004) and DNA repair 

(Sanders et al., 2004). H4K20 monomethylation has a negative correlation with H4K16 

acetylation (Nishioka et al., 2002), which controls chromatin structure and protein 

interaction (Shogren-Knaak et al., 2006), suggesting that H4K20 methylation might 

function in higher-order chromatin structure. 

1.7 DNA methylation 

DNA methylation is found in the genome of diverse organisms including both 

prokaryotes and eukaryotes. In mammals it occurs mainly in the context of CpG 

dinucleotides (CpGs). Most CpGs of mammalian genome (intergenic DNA, coding DNA 

and repeat element) appears to be methylated, except CpGs grouped in clusters called 

“CpG islands” present in promoter of many genes. A subset of CpG islands has been 

shown to be subject to tissue-specific methylation during development.  

http://en.wikipedia.org/wiki/CpG_islands
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Four DNA methyltransferases (DNMTs) sharing a conserved DNMT domain have been 

identified in mammals. The founding member, DNMT1, maintains DNA methylation 

during replication by copying the DNA methylation of the old DNA strand onto the newly 

synthesized strand (Leonhardt et al., 1992). DNMT3a and DNMT3b are responsible for 

de novo methylation, as they are able to target unmethylated CpG sites (Okano et al., 

1999). They also cooperate with DNMT1 to propagate methylation patterns during cell 

division (Liang et al., 2002). DNMT2 has only weak DNA methyltransferase activity in 

vitro and has recently been shown to efficiently methylate tRNAs (Goll et al., 2006). 

DNMT3L is a DNMT-related protein that does not contain intrinsic DNA 

methyltransferase activity, but physically associates with DNMT3a and DNMT3b and 

modulates their catalytic activity (Hata et al., 2002). In combination, these de novo and 

maintenance methyltransferases seem to constitute the core enzymatic components of 

the DNA methylation system in mammals (Klose and Bird, 2006; Weber and Schubeler, 

2007). 

Recently, Gadd45a has been identified as a key regulator of active DNA demethylation 

(Barreto et al., 2007). It interacts with and requires the DNA repair endonuclease XPG, 

relieving epigenetic gene silencing by promoting DNA repair, which erases methylation 

marker. 

DNA methylation is generally associated with a repressed chromatin state and inhibition 

of promoter activity. Two models of repression have been proposed: first, cytosine 

methylation can prevent binding of transcription factors; and second, DNA methylation 

can affect chromatin states indirectly through the recruitment of methyl-CpG-binding 

proteins (MBPs) (Klose and Bird, 2006). With the exception of MBD3, which contains 

amino acid substitutions that prevent binding to methyl-CpG, the mammalian MBD 

proteins (named MBD1–MBD4) and the founding member, MeCP2, all specifically 

recognize methyl-CpG. (Klose and Bird, 2006; Weber and Schubeler, 2007). 

Mammalian DNA methylation has been implicated in a diverse range of cellular 

functions and pathologies, including tissue-specific gene expression, cell differentiation, 

genomic imprinting, X chromosome inactivation, regulation of chromatin structure, 

carcinogenesis, and aging. It is essential for normal development and remains 

indispensable for the survival of differentiated cells. The DNA methylome also 
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undergoes characteristic changes in pathologies such as cancer. These include 

genome wide loss of methylation and aberrant local gain of methylation. In particular, 

tumor suppressor gene promoters are targets of hypermethylation, which typically 

results in their silencing (Bernstein et al., 2007). 

1.8 H3K36 methylation 

Global patterns: H3K36 methylation was first discovered in yeast (Strahl et al., 2002). 

It is conserved from yeast to human, being present in S. cerevisiae, S. pombe (Morris et 

al., 2005), N. crassa (Adhvaryu et al., 2005), C. elegans (Bender et al., 2006), 

A.thaliana (Zhao et al., 2005), Drosophila (Stabell et al., 2007), mouse (Rayasam et al., 

2003) and human (Sun et al., 2005). In yeast, it has been shown that mono-, di-, and 

trimethylation can be regulated differently although they are catalyzed by the same 

enzyme. In yeast, Bur1 or Bur2 deletion significantly reduced the level of trimethylation 

without apparent changes on mono- and dimethylation of H3K36 (Chu et al., 2006). 

Recent genome wide analyses have shown that both di- and trimethylation are enriched 

at the 3’ open reading frame (ORF) of yeast gene (Pokholok et al., 2005). Besides of 

presence on 3’ ORF, there is also evidence in yeast that H3K36 methylation can occur 

on the promoter of some genes (Morillon et al., 2005). In C. elegans, H3K36me2 has 

been shown to localize to autosomes, being excluded from the X chromosome (Bender 

et al., 2006). In fly, H3K36me2 showed an interband staining pattern on euchromatin 

region of polytene chromosomes (Ebert et al., 2006). In mammals, trimethylation of 

H3K36 is strongly enriched across the transcribed regions of active genes and 

H3K36me1 showed slight preference towards the active promoter (Barski et al., 2007; 

Vakoc et al., 2006). Acetylation of H3K36 has recently been identified as a conserved 

modification (Morris et al., 2007), adding complexity to the modifying state of H3K36.  

HMTs/Writers: The first H3K36 methyltransferase identified is S. cerevisiae Set2 

(Strahl et al., 2002). Set2 is the only H3K36 methyltransferase in S. cerevisiae, S. 

pombe, and N. crassa (Adhvaryu et al., 2005; Morris et al., 2005). In C. elegans, Mes-4 

was identified as H3K36me2 methyltransferase in the germline and in the early embryo 

(Bender et al., 2006) and Met1 is an H3K36me3 methyltransferase (Andersen and 

Horvitz, 2007). In Drosophila, DmMes4 mediates dimethylation of H3K36, which serves 

as substrate for trimethylation by dHypB (Bell et al, manuscript in preparation). 
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However, another group reported that dSet2, an alternative name of dHypB, is the sole 

enzyme responsible for dimethylation of H3K36 (Stabell et al., 2007). In addition, it has 

been reported Drosophila discs absent, small, or homeotic-1 (ASH1) is a 

methyltransferase specific for H3K36 (Tanaka et al., 2007). In mammals, a number of 

SET domain protein have been identified as H3K36 methyltransferase, including Nsd1, 

Smyd2, Metnase, HypB and Ash1 (Brown et al., 2006; Lee et al., 2005; Rayasam et al., 

2003; Sun et al., 2005; Tanaka et al., 2007). The structure feature of a number of SET2 

family proteins is illustrated in Figure 8. 

Demethylases/Eraser: Several H3K36 demethylases have been identified that 

contribute to the dynamics of H3K36 methylation. The first identified H3K36 

demethylase is JHDM1 that selectively demethylates H3K36 with preference for the 

dimethyl form (Tsukada et al., 2006). Subsequently, JHDM3A (JMJD2A) was found to 

demethylate H3K9me3 and H3K36me3 (Whetstine et al., 2006). Recently, Jhd1 and 

Rph1, the yeast homolog of JHDM1 and JHDM3, were identified. Jhd1 fine-tunes the 

distribution of H3K36me2 within ORF (Fang et al., 2007) and Rph1 demethylates 

H3K36me3, H3K36me2, and also H3K9me3 (Kim and Buratowski, 2007; Klose et al., 

2007a). Jhd1 and Rph1 were proposed to promote transcription elongation (Kim and 

Buratowski, 2007). Gis1 was reported as H3K36me1 or H3K36me2 demethylase (Tu et 

al., 2007). Further investigations are required to uncover the biological significance of 

H3K36 demethylation. 
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Figure 8. Structure feature of SET2 family HMTs 

The SMART program was used. Different protein domains are indicated as below: 

PWWP:   HMG:   PHD:   AWS:   SET:  

Post-SET:   Bromo:   BAH:   WW:   Ring:  

 

 

 

Effectors/Readers: One of the proposed models of histone modifications is that they 

provide binding sites that attract effector proteins (Kouzarides, 2007). It has been shown 

that methylation is recognized by chromo-like domains of the Royal family (Chromo, 

Tudor, MBT) and by PHD domains. The first effector protein binding methylated H3K36 

is Eaf3, a subunit of the RPD3S complex (Joshi and Struhl, 2005; Keogh et al., 2005; Li 

et al., 2007b). There are two Eaf3 homologs in mammals, MSL3L and MRG15 

(Carrozza et al., 2005). MSL3L is male specific lethal 3 (MSL3) like protein, a subunit of 

drosophila MSL3 dosage compensation complex. MRG15 is a transcription cofactor, 

30 



 Friedrich Miescher Institute / University of Basel 

31 

which is associated with both HAT and HDAC complexes. MRG15 has been shown 

bind to H3K36me2 or H3K36me3 in vitro (Zhang et al., 2006b). PHD domain containing 

proteins tend to recognize methylated H3K36. CHD3 (also named Mi-2α), a component 

of the NuRD complex, shows specific binding to H3K36me3 through its PHD domain 

(Mellor, 2006b). In addition, PHD domain of yeast Rco1, another subunit of RPD3S, is 

also required for targeting the RPD3S complex to chromatin together with the 

chromodomain of Eaf3. Thus, the coupled chromo and PHD domains of Rpd3S specify 

recognition of the methyl H3K36 mark, demonstrating the first combinatorial domain 

requirement within a protein complex to read a specific histone modification (Li et al., 

2007b). Genome wide studies of PHD finger proteins by peptide microarray in S. 

cerevisiae have revealed two PHD finger proteins Ecm5 and Nto1 as methylated H3K36 

binding proteins (Shi et al., 2007). Ecm5 is a potential histone demethylase, but no 

activity has been found yet (Tu et al., 2007).  

Functional significance: As a conserved modification from yeast to human, H3K36 

methylation plays an important role during development. In S. cerevisiae, synthetic 

growth defects were obtained when a set2 deletion was combined with deletions of all 

five components of the Paf1 complex in synthetic genetic array (SGA) analysis (Krogan 

et al., 2003). In S. pombe, the Set2 deletion strain showed a strong growth defect in 

nutrient depleted synthetic medium (Morris et al., 2005). In both cases, deletion strains 

show a transcription elongation defect, which is characterized by the sensitivity to 6-

azauralcil, an inhibitor of transcription elongation. In N. crassa, H3K36 methylation is 

required for normal vegetable growth and sexual development. Set2 mutants grow 

slowly and are female sterile (Adhvaryu et al., 2005). In C. elegans, mutation in Mes-4 

results in maternal-effect sterility (Garvin et al., 1998). Subsequent study showed that 

loss of Mes-4 resulted in desilencing of X-linked genes (Bender et al., 2006). In 

mammals, Nsd1 deficient mice are embryonic lethal (Rayasam et al., 2003). NSD1 links 

H3K36 methylation to Hox-A gene activation and leukaemogenesis (Wang et al., 2007).   

All phenotypes are accompanied by misregulation of gene expression. Several lines of 

evidence support that H3K36 methylation functions in transcription elongation. First, in 

yeast SET2 deletion strains show sensitivity to 6-azauracil (Krogan et al., 2003). 

Second, SET2 interacts with the serine 2 phosphorylated elongating form of RNA 

polymerase II (Gerber and Shilatifard, 2003; Li et al., 2003; Xiao et al., 2003) and thirdly 

H3K36 methylation is found to accumulate at the 3’ end of active genes (Pokholok et al., 
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2005). Also, the methylation activity of SET2 is dependent on serine 2 phosphorylation 

of RNA polymerase II (Kizer et al., 2005; Krogan et al., 2003). The role of H3K36 

methylation during transcription elongation, along the role of H3K4me3, is illustrated in 

Figure 9 (Hirose and Ohkuma, 2007). 

  

 

 Figure 9. Function of H3K36 methylation in transcription  

(A) The general transcription factors (GTFs) form a complex with initiation-competent hypo-
phosphorylated Pol II (Pol IIA) at the promoter. Transcription starts at the same time as Ser5 
phosphorylation of the CTD (thick black line) by TFIIH. (B) Shortly after transcription initiation, 
capping enzyme (CE) is recruited to the phosphorylated Pol II (Pol IIO) through its direct binding to 
Ser5-phosphorylated CTD. The histone methyltransferase Set1-containing complex is also recruited and 
trimethylates histone H3 Lysine 4 (H3K4). Transcription pausing induced by DSIF/NELF is relieved by 
P-TEFb-mediated CTD phosphorylation. (C) Elongating Pol IIO is increasingly phosphorylated at Ser2 
by P-TEFb and associated with histone methyltransferase Set2, which trimethylates histone H3 Lysine 
36. Pol IIO also helps the recruitment of the splicing machinery (SP), which splices sites in the pre-
mRNA (red line). This step is mediated by an unknown phosphorylated CTD-binding factor (X) that 
facilitates the efficient excision of introns (red broken line). (D) Near the 3' end of the gene, 3' end 
processing factors (PA) are increasingly recruited to Pol IIO through direct interaction between Pcf11 
and the Ser2-phosphorylated CTD. After transcribing the poly (A) signal (AATAAA), 3' end processing 
factors possibly transfer to RNA to catalyse endonucleolytic cleavage (black arrow) and induce 
subsequent transcription termination, which is presumably helped by the 5'–3' exonucleases Xrn2 and 
Pcf11. (E) After dissociating from the DNA template, Pol IIO is possibly dephosphorylated by the 
action of the CTD phosphatases, FCP1 and Ssu72, before recycling or reinitiation. (Hirose and 
Ohkuma, 2007) 
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In yeast, it was shown that the functional significance of H3K36 methylation during 

elongation is the suppression of inappropriate initiation from cryptic start sites within the 

coding region (Carrozza et al., 2005; Joshi and Struhl, 2005; Keogh et al., 2005; Li et 

al., 2007b; Li et al., 2007c). To achieve this, methylation of H3K36 recruits Eaf3 and 

Rco1 through combinatory function of chromodomain and PHD domain, which in turn 

brings the RPD3S deacetylase complex to the coding region. Deacetylation then 

removes any acetylation that was placed in the coding region during the process of 

transcription, resetting chromatin into its stable state. This “closing up” of chromatin, 

following the passage of RNA polymerase II, prevents access of internal initiation sites 

that may be inappropriately used (Kouzarides, 2007; Mellor, 2006a) (Figure 10). 

Genome-wide approach revealed that infrequently transcribed long genes exhibited a 

stronger dependency on Set2/Rpd3S pathway for accurate transcription (Li et al., 

2007c). In mammals, the mechanistic function of H3K36 remains elusive.  
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 Figure 10. Mechanism of H3K36 methylation by SET2 during transcriptional elongation 

The promoter and part of the transcribed region of a typical gene is shown, with associated 
nucleosomes, polymerases, regulatory proteins and histone modifications. The black line represents 
DNA and the thicker grey line RNA. Nucleosomes are discs with H3-H4 N-terminal tails coloured 
according to modifications (grey, unmodified; blue, acetylated at promoter; red, K36 methylated and 
deacetylated; white solid disc, K4 methylated and acetylated; discs with a dashed outline, acetylated 
and unstable). In wild-type cells (a) there are two clear phases of transcription elongation (shown by 
vertical red line in a and b). The first, after transcription initiation (bent arrow), is characterized by 
phosphorylation of the carboxy-terminal (CTD) of RNA polymerase II at Ser5 and associated Set1-
dependent methylation of lysine 4 leading to histone acetylation and unstable nucleosomes. The second 
phase is characterized by CTD phosphorylation at Ser2 that recruits Set2 leading to K36me. As RNA 
polymerase II passes through a nucleosome, the chromatin is transiently acetylated, and then 
deacetylated and stabilized by the recruitment of the Rpd3 deacetylase via the Eaf3 chromodomain to 
methylated K36. This prevents internal initiation of transcription from cryptic sites within genes (b). 
(Mellor, 2006) 
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1.9 Genetic and epigenetic regulators of pluripotency 

1.9.1 ES cell self-renewal and differentiation 

Mouse embryonic stem (ES) cells can be derived from the inner cell mass (ICM) of the 

mouse blastocyst. ES cells and the cells of the embryonic inner cell mass are 

pluripotent. Pluripotency refers to the potential of a cell to differentiate into any of the 

three germ layers: endoderm (interior stomach lining, gastrointestinal tract, the lungs), 

mesoderm (muscle, bone, blood, urogenital), or ectoderm (epidermal tissues and 

nervous system). Pluripotent stem cells can give rise to any fetal or adult cell type. 

However, alone they cannot develop into a fetal or adult animal because they lack the 

potential to contribute to extraembryonic tissue, such as the placenta. ES cell can self-

renew continuously for years if they are cultured under conditions that prevent their 

differentiation. Pluripotent mouse ES cells are poised to differentiate into all of the 

somatic cells found in the embryo itself (Niwa, 2007). Studies over the past few years 

have revealed that both genetic and epigenetic processes play roles in the maintenance 

of ES cell pluripotency and the lineage commitment of ES cell. 

1.9.2 Genetic regulator of ES cell self-renewal 

Signaling pathways maintaining stem cell pluripotency 

Extrinsic signals such as LIF, BMP, and WNT regulate pluripotent genes and maintain 

pluripotency and self-renewal. LIF, leukemia inhibitory factor, prevents differentiation 

through the canonical JAK/STAT pathway (Cartwright et al., 2005). BMP, bone 

morphogenetic proteins, block lineage-specific transcription factors by inducing the 

expression of Id genes via the Smad pathway (Ying et al., 2003). WNT/β-catenin 

pathway prevents ES cell differentiation through convergence on the LIF/JAK-STAT 

pathway at the level of STAT3 (Hao et al., 2006).  

Self-renewal by preventing differentiation and by promoting proliferation 

ES cell pluripotency is maintained during self-renewal by the prevention of 

differentiation and the promotion of proliferation. The transcription factors Oct3/4, 

Nanog, and Sox2 are present in the ICM and are thought to maintain pluripotency of 

stem cells by preventing differentiation. Oct3/4, a POU family transcription factor 

encoded by Pou5f1, acts as a gatekeeper to prevent ES cell differentiation. Both 

http://en.wikipedia.org/wiki/Cellular_differentiation
http://en.wikipedia.org/wiki/Germ_layers
http://en.wikipedia.org/wiki/Placenta
http://en.wikipedia.org/wiki/Leukemia_inhibitory_factor
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upregulation and downregulation over threshold level results in cell differentiation (Niwa 

et al., 2000). Nanog is an NK-2 class homeobox transcription factor expressed the 

pluripotent cells of the ICM. Overexpression of Nanog in mouse embryonic stem cells 

causes them to self-renew in the absence of LIF. In the absence of Nanog, mouse 

embryonic stem cells differentiate into visceral/parietal endoderm (Chambers et al., 

2003; Mitsui et al., 2003). Reducing the expression of Sox2, a member of the Sox (SRY-

related HMG box) family, induces ES cell differentiation (Masui et al., 2007). During self-

renewal, most ES cells are in the S phase of the cell cycle, with only a few in G1 

(Burdon et al., 2002). Transcription factors b-Myb and c-Myc promote ES cell self-

renewal by activation the progression of cell cycle directly (Cartwright et al., 2005; Iwai 

et al., 2001). Eras and Tcl1 promote cell cycle through modulating PI3K/Akt pathway 

(Takahashi et al., 2005). Utf1 (Nishimoto et al., 2005; Okuda et al., 1998) and Sall4 

(Sakaki-Yumoto et al., 2006; Zhang et al., 2006a) required for cell proliferation were 

proved to modulate ES cell pluripotency. Recent loss- and gain-of-function screen have 

identified a number of candidates, such as Esrrb, Tbx3, Tcl1 and Dppa4 involved in 

controlling ES cell self-renewal (Ivanova et al., 2006) and the gene list keeps growing. 

Transcription network for self-renewal and pluripotency 

To date, ES specific enhancers that contain binding sites for Oct4 and Sox2 have been 

identified in several genes, including Fgf4, Utf1, Fbxo15, Nanog and Lefty1. Both Oct4 

and Sox2 are activated by the Oct4-Sox2 complex in a stem cell specific manner (Chew 

et al., 2005). The identification of common target sites in the regulatory elements of 

Oct4, Sox2, and Nanog by recent studies using ChIP together with genome-wide 

location techniques has suggested that Oct4, Sox2, and Nanog might form a regulatory 

feedback circuit to maintain pluripotency in ES cells; in this circuit, all three transcription 

factors regulate themselves, as well as each other (Niwa, 2007).  

To date, studies have revealed three regulatory elements of Oct3/4, a distal enhancer, a 

proximal enhancer, and proximal promoter, which can be antagonistically bound by 

positive or negative regulators according to undifferentiated or differentiated state of 

cells (Niwa, 2007) (Figure 11.A). A nuclear hormone receptor Lrh1 (Liver receptor 

homolog 1, also known as Nr5a2) is positive regulator of Oct4. By contrast, germ cell 

nuclear factor (Gcnf, or Nr6a1) is a negative regulator of Oct4. Chicken ovalbumin 

upstream promoter-transcription factors (Coup-tf) I and II, encoded by Nr2f1 and Nr2f2, 

http://en.wikipedia.org/wiki/Leukemia_inhibitory_factor


 Friedrich Miescher Institute / University of Basel 

respectively, also function as negative regulators of Oct3/4 expression. The balance 

between these positive and negative regulators might determine the precise level of 

Oct3/4 expression in response to extracellular stimuli.  

The regulatory circuit that maintains pluripotency interacts with the feedback loop shown 

in figure 11.B, in which Oct3/4, Sox2 and Nanog function to maintain their expression, 

promoting continuous ES cell self-renewal. This loop determines the differentiation fate 

of ES cells by influencing the expression of transcription factors, such as Cdx2 (which 

promotes trophectodermal differentiation) and Gata6 (which promotes primitive 

endoderm differentiation). Moreover, as Gcnf, Nr2f1 and Nr2f2 are upregulated after the 

induction of either trophectoderm or primitive endoderm differentiation, these negative 

regulators might form the negative-feedback loop that shuts down Oct3/4 in 

differentiated cells, and which could then be followed by epigenetic chromatin 

modifications that result in the repression of the Oct3/4 promoter (Niwa, 2007).  

 

Figure 11. A transcription factor network to 
control ES cell self-renewal and 
differentiation.  

(A) Transcriptional regulation of the mouse 
Oct3/4 gene. There are four evolutionally 
conserved regions (CR1-4) that contain multiple 
transcription factor (TF) binding sites. The TFs 
that bind to these sites are shown above and either 
activate (red) or repress (blue) transcription. DE, 
distal enhancer; PE, proximal enhancer; PP, 
proximal promoter. (B) Transcription factor 
networks for pluripotent stem cells (green), 
trophectoderm (yellow) and primitive 
(extraembryonic) endoderm (blue). Positive-
feedback loops between Oct3/4, Sox2 and Nanog 
maintain their expression to promote continuous 
ES cell self-renewal. Cdx2 is autoregulated and 
forms a reciprocal inhibitory loop with Oct3/4, 
which acts to establish their mutually exclusive 
expression patterns. A similar regulatory loop, not 
yet confirmed, might exist for Nanog and Gata6. 
Coup-tfs and Gcnf act as a negative-feedback 
system to repress Oct3/4 completely. (Niwa, 
2007) 
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1.9.3 Chromatin regulators of pluripotency 

A series of recent studies have revealed that mouse and human ES cells possess 

certain novel epigenetic features, such as chromatin structure, abundance of modified 

histones, and Polycomb group (PcG) protein-binding patterns (Meshorer and Misteli, 

2006).  

Properties of stem cell chromatin 

Many nuclear features, including nuclear lamina, the nucleolus, heterochromatin 

structure, and nuclear speckles, undergo morphological changes during the 

differentiation process (Meshorer and Misteli, 2006). Studies in several systems indicate 

that ES cells are characterized by a distinct higher-order global chromatin structure. ES 

cells are richer in less compact euchromatin and, as differentiation progresses, 

accumulate highly condensed, transcriptionally inactive heterochromatin regions (Arney 

and Fisher, 2004; Francastel et al., 2000). Heterochromatin spatially rearranges and the 

number of heterochromatic foci increases during differentiation (Meshorer and Misteli, 

2006).  

Consistent with this notion, the expression of several ATP-dependent chromatin 

remodelling factors is elevated in ES cells and the genomic disruption of chromatin 

remodelling proteins, including BRG1 (Bultman et al., 2000), SNF5 (Klochendler-Yeivin 

et al., 2000), SSRP1 (Cao et al., 2003) and SNF2H (Stopka and Skoultchi, 2003), 

results in premature embryonic death prior to implantation. Interestingly, in all these 

cases, lethality occurred at the blastocyst stage, when the inner cell mass (ICM), the 

source of ES cells, is formed. It has been shown that the chromatin remodeller NuRD 

(nucleosome remodelling and histone deacetylation) is essential for ES cell 

differentiation (Kaji et al., 2006). Although the detailed mechanism of their functions is 

unknown, these observations strongly point towards an active role of chromatin-

remodelling factors in the maintenance of stem-cell identity and the initial steps of 

differentiation.  

Recent FRAP (fluorescent recovery after photobleaching) studies have revealed that 

histones H2B, H3, and HP1 are more rapidly exchanged in ES cells compared with 

differentiated cells (Meshorer et al., 2006). The chromatin state might be more 

permissive for transcription in ES cells than in differentiated cells.  

http://www.nature.com/nrg/journal/v8/n4/glossary/nrg2046.html#df10
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Histone modification has been correlated with the chromatin and the transcriptional 

status of genes. Consistent with changes in the global genome activity, changes in 

histone-modification patterns accompany ES-cell differentiation. Examples are the 

differentiation-dependent increase in the silenced chromatin mark H3K9 trimethylation 

and a decrease in the global levels of active markers acetylated histones H3 and H4 

(Lee et al., 2004; Meshorer et al., 2006) . These observations indicate that ES-cell 

chromatin is overall more active, or at least marked with activity-associated histone 

modifications, and that differentiation is accompanied by a transition to transcriptionally 

less-permissive chromatin. An elevation of repressive heterochromatin marks, including 

H3-triMeK9, H3-MeK27, H3-diMeK27, H4-diMeK20 and H4-triMeK20, was also 

observed in repeat sequences and retrotransposons during RA-induced mouse ES-cell 

differentiation (Martens et al., 2005). Global histone deacetylation during ES cell 

differentiation is also implied by the observed inhibition of differentiation of murine ES 

cells after treatment with the histone deacetylase (HDAC) inhibitor trichostatin A (TSA) 

(Lee et al., 2004).  

 

Bivalent chromatin in stem cell 

The properties of ES cells described above indicate that the pluripotency of ES cells is 

underpinned by an unusual state of their chromatin and the distinct state of chromatin is 

complemented by unique epigenetic mechanism to sustain pluripotency.  A series of 

reports have assigned to Polycomb-group (PcG) proteins an essential role in 

maintaining the pluripotent state of ES cells as PcG complexes bind to many 

differentiation specific genes (Boyer et al., 2006; Lee et al., 2006). Meanwhile, genome 

wide mapping of H3K27me3 (a repressive marker catalysed by PcG proteins) and 

H3K4me3 (an active marker catalysed by Trithorax-group (TrxG) proteins) by CHIP-chip 

revealed an unusual “bivalent” chromatin structure, in which these two mutually 

exclusive markers colocalized in particular region named “bivalent domain” (Bernstein et 

al., 2006a; Jorgensen et al., 2006). The bivalent domains are highly enriched in ES cells 

relative to differentiated cells and they are associated with genes encoding transcription 

factors with roles in embryonic development and lineage specification. Subsequently, 

genome wide mapping of chromatin state by an alternative method CHIP-seq (mapping 

CHIP enrichment by sequencing) characterized the changes of the bivalent domain 
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during differentiation from ES cells to neural progenitor cells and embryonic fibroblast. 

The change of bivalent promoters on a set of genes, involved in different differentiation 

pathways, correlated to their demonstrated developmental potential (Mikkelsen et al., 

2007). 

Bivalent promoters show low activity despite the presence of H3K4me3, suggesting that 

the repressive effect of PcG activity is generally dominant over the ubiquitous TrxG 

activity. Bivalent domains are associated with genes with more complex expression 

patterns, including key developmental transcription factors, morphogens and cell 

surface molecules. Thus, these results suggest that promoters may be classified as 

active, repressed or poised for alternative developmental fates. Conceivably, chromatin 

state at key regulatory genes may suffice to describe developmental commitment and 

potential (Mikkelsen et al., 2007).  

It is not understood how PcG proteins are recruited to specific target for establishing the 

bivalent domains in ES cells. It is known that half of the bivalent domains are also 

bound by Oct4, Sox2, and Nanog (Bernstein et al., 2006a). These stem-cell-specific 

transcription factors might take the role of recruiting PcGs to bivalent domains. Other 

novel stem-cell-specific transcription factors must be present in pluripotent cells and 

contribute to setting up chromatin signatures of stem cells. Thus, the orchestration of 

network architecture of ES cells and the balance between genetic and epigenetic 

regulation are key to understand the phenomenon of pluripotency.  

 

Epigenetic regulation of Oct4 expression 

Both global and local chromatin states are investigated to define how transcription 

factors and chromatin modifiers function together over time in establishing and 

maintaining the pluripotent state. As well as global changes, local chromatin 

modifications are thought to be important for the proper control of stem cell or lineage 

specific genes. As expected, epigenetic changes on the locus of Oct4 during 

differentiation have been confirmed. It has been shown that several genes, such as 

G9a, Mbd3, Suz12, and CGBP, are required for repression and silencing of Oct4 during 

differentiation (Carlone et al., 2005; Kaji et al., 2007; Pasini et al., 2007). In a recent 

study, the decrease of histone deacetylation and the increase of DNA methylation were 

observed on the Oct4 promoter in ES cells induced for differentiation by addition of all-
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trans retinoic acid (RA). A decrease of H3K4 methylation and increase of H3K9 

methylation was also observed. Oct4 in differentiated ES cells can be reactivated in the 

absence of DNA methylation (Feldman et al., 2006). One model was proposed based 

on this evidence (Figure 13). Nucleosomes over the active Oct4 promoter initially 

contain histone H3 that is acetylated at Lys 9 and Lys 14. When differentiation is 

initiated, repressors (including orphan nuclear receptor GCNF, which binds the RA 

receptor element, RARE) associate with the Oct4 promoter, causing transient 

transcriptional repression. This presumably brings about the binding of G9a, which 

recruits histone deacetylase molecules (HDACs) by an, as yet, uncharacterized 

mechanism. Once deacetylated, H3K9 becomes a substrate for methylation, either by 

G9a itself, or through the involvement of additional histone methylases. H3K9me3 can 

then bind the chromodomain protein HP1. DNA methylation is catalysed by Dnmt3a, 

and perhaps Dnmt3b, which are recruited to the promoter through the involvement of 

G9a and other effectors, such as HP1. Prior to de novo methylation, Oct4 can be 

reactivated when cells are returned to early pre-differentiation conditions. Following this 

step, however, repression seems to be irreversible. 

 

 
Figure 13. Model for Oct4 heterochromatinization 

 (Feldman et al., 2006) 

 
 

 

Recently, Mbd3/NuRD was found to be required for repression of Oct4 during 

differentiation in embryoid bodies (Kaji et al., 2006). Other data show that GCNF 

sequentially recruits MBD3 and MBD2, and initiate DNA methylation on the promoter of 

Oct4 in RA-differentiated ES cells, resulting in repression and silencing of Oct4 
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expression (Gu et al., 2006) (Figure 15).  It is not clear if the above two model function 

independently or synergistically. 

 

 

 
Figure 14.  Model of Oct4 gene repression and silencing initiated by GCNF-dependent 
recruitment of MBD2 and MBD3 

The Oct4 promoter with a doublet of direct repeats with 0 spacing (DR0) and unmethylated CpG sites is 
activated by LRH-1 under the control of LIF. At the beginning of RA induction (1.5 days), induced 
expression of GCNF hexamer replaces LRH-1 binding at the DR0 site. GCNF recruits the MBD3 
complex to unmethylated CpG sites, and Oct4 repression is initiated. Once de novo DNA methylation is 
triggered through direct or indirect recruitment of Dnmt3A or -3B to the Oct4 promoter by the GCNF-
MBD3 complex, MBD2 or MBD2/3 complexes are recruited to methylated CpG sites, and silencing of 
the Oct4 gene occurs (days 1.5 to 3.0). At late stages of RA-induced differentiation (days 3 to 6), the 
expression of GCNF is down-regulated, and the MBD2 and MBD3 complexes are no longer bound to 
the Oct4 promoter, but DNA methylation is maintained, and the Oct4 gene is completely silenced (day 
6). (Gu et al., 2006) 

 

 

 

 

 

 

In this thesis, I addressed the function of H3K36 methylation in mammals. The 

distribution patterns of H3K36me1, me2, and me3 was analyzed in human and mouse 

cells by IF. The enzymatic activity of candidate H3K36 methyltransferase, Nsd and 

HypB proteins, was measured by HMT assay in vitro and RNAi approach in vivo. The 

dynamic and function of H3K36me3 during ES cell differentiation was investigated. 
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CHAPTER 2 RESULTS 

2.1 Distribution of H3K36 methylation in mammalian cells 

To investigate a possible role of H3K36 methylation in euchromatin or heterochromatin 

formation, the localization of H3K36 methylation states was determined by 

immunofluorescence staining using antibodies specific for H3K36me1, H3K36me2, and 

H3K36me3. The fluorochrome DAPI was used as a nuclear counterstain. In somatic 

cells, pericentric heterochromatin of several chromosomes clusters into chromocenters 

that can be visualized by DAPI preferentially binding to the underlying AT-rich major 

satellites (Guenatri et al., 2004). In contrast, euchromatin is only weakly stained by 

DAPI. The localization pattern of H3K36 methylation was analyzed in differentiated 

NIH3T3 cells, mouse embryo stem cells and human cells. 

2.1.1 Distribution of H3K36 methylation in differentiated mammalian cells 

The localization pattern of H3K36 methylation in mouse NIH3T3 cells is shown in Figure 

15. Euchromatin and heterochromatin were marked by H3K36me1 and H3K36me2, as 

indicated by the labeling of regions stained weakly or intensively with DAPI. In contrast, 

H3K36 trimethylation only localized to euchromatin. H3K36 methylation states were also 

analyzed in human cells. All three methyl markers are evenly distributed throughout the 

nucleus of 293 cells (Figure 16) and U2OS cells (Figure 17).  

To see if H3K36 methylation patterns are dynamic throughout the cell cycle, the 

localization was analyzed in G1, S, and G2/M phase NIH3T3 cells. NIH3T3 cells were 

fractionated by FACS sorting based on Hoechst 33342 staining (Figure 18). Proliferating 

cell nuclear antigen (PCNA) antibody was used as a marker to distinguish early, mid, 

and late S phase cells. PCNA shows a diffused pattern in non-S phase cells and a 

granular pattern in early S cells. In mid S cells, PCNA shows ring shape-like staining 

around pericentric heterochromatin or spotted foci colocalized with heterochromatin, 

indicating the replication of major satellites. In late S cells, PCNA displays spotted foci 

on the edge of pericentric heterochromatin indicating the replication of minor satellites 

(Guenatri et al., 2004; Houlard et al., 2006). The H3 serine10 phosphorylation antibody 

was used as marker for cells in G2 and mitosis. Late G2 cells show H3 serine10 

phosphorylation at pericentric heterochromatin only. As mitosis proceeds, 
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phosphorylation of histone H3 spreads along the chromosomes and is complete at 

prophase. At the end of mitosis, histone H3 is dephosphorylated (Polioudaki et al., 

2004; Prigent and Dimitrov, 2003). Mitotic chromosomes were identified by the 

morphology of its chromosomes. No apparent difference of distribution patterns for all 

three methyl markers, H3K36me1 (Figure 19), H3K36me2 (Figure 20), and H3K36me3 

(Figure 21) was found between cells from different phase of cell cycle (compare G1, S, 

and G2, early S and later S, early G2 and later G2). These results indicate that genomic 

localization patterns of H3K36 methylation remain constant throughout the cell cycle.  

 

Figure 15. Distribution pattern of H3K36 methylation in mouse NIH3T3 cells 

NIH3T3 cells were stained with H3K36 methylation antibodies and counterstained with DAPI. 
H3K36me1 and H3K36me2 localized to euchromatin and heterochromatin. H3K36me3 only 
localized to euchromatic regions. Scale bar: 5 micrometer. 
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Figure 16. Distribution pattern of H3K36 methylation in human 293 cells 
H3K36me1, H3K36me2, and H3K36me3 are evenly distributed throughout the nucleus in 293 cells. 
Human cells do not contain chromocenters, intensively stained by DAPI, that are characteristic of 
mouse cells. Scale bar: 5 micrometer. 
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Figure 17. Distribution pattern of H3K36 methylation in U2OS cells 
H3K36me1, H3K36me2, and H3K36me3 are evenly distributed throughout the nucleus in U2OS 
cells. Scale bar: 5 micrometer. 
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Figure 18. FACS sorting profile of 
NIH3T3 cells  
NIH3T3 cells were sorted based on 
Hoechst 33342 staining. G1, S, and G2/M 
cells were separately collected for 
immunofluorescence staining. 

 

 

 

 

Figure 19. Distribution pattern of H3K36me1 during cell cycle in NIH3T3 cells 

H3K36me1 localized to euchromatin and heterochromatin during the entire cell cycle G1, S, and G2/M 
phase; early S and later S are distinguished by PCNA staining; early G2 and later G2 are distinguished 
by H3 serine 10 phosphorylation staining. Mitotic chromosomes are identified by the morphology of 
chromosomes stained by DAPI. Scale bar: 5 micrometer. 
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 Figure 20. Distribution pattern of H3K36me2 during cell cycle in NIH3T3 cells 

H3K36me2 localized to euchromatin and heterochromatin during the entire cell cycle G1, S, and 
G2/M phase; early S and later S are distinguished by PCNA staining; early G2 and later G2 are 
distinguished by H3 serine 10 phosphorylation staining. Mitotic chromosomes are identified by the 
morphology of chromosomes stained by DAPI. Scale bar: 5 micrometer. 
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Figure 21. Distribution pattern of H3K36me3 during cell cycle in NIH3T3 cells 

H3K36me3 localized to euchromatin during the entire cell cycle G1, S, and G2/M phase; early S and 
later S are distinguished by PCNA staining; early G2 and later G2 are distinguished by H3 serine 10 
phosphorylation staining. Mitotic chromosomes are identified by the morphology of chromosomes 
stained by DAPI. Scale bar: 5 micrometer.  
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2.1.2 Distribution of H3K36 methylation in undifferentiated embryonic stem cells 

It was shown that the distribution pattern of some histone methyl markers differ between 

undifferentiated and terminally differentiated cells (Biron et al., 2004; Kourmouli et al., 

2004). To address if H3K36 methylation states change during differentiation, 

immunofluorescence staining was performed in CCE cells, a mouse embryonic stem 

cell line. An antibody against Oct4 was used to validate the undifferentiated state of the 

pluripotent stem cells. Intriguingly, the staining revealed a clear inverse correlation 

between H3K36 methylation and Oct4 expression (Figure 22). Many CCE cells, in which 

Oct4 was expressed at a high level, displayed only low levels of staining intensity for all 

three methyl states of H3K36. Only a small population of cells, in which Oct4 was lowly 

expressed, showed high level of intensity for all three H3K36 methylation states (Figure 

22).  

 

Figure 22. Inverse correlation between H3K36 methylation and Oct4 expression 

Many CCE cells showed high level intensity of Oct4 but low level of intensity for all three methyl 
markers of H3K36. Only small population of cells, in which Oct4 was expressed at low level, showed 
high level of intensity for all three H3K36 methylation states, suggesting an inverse correlation between 
H3K36 methylation and Oct4 expression. Scale bar: 10 micrometer. 
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In cells with low Oct4 levels, it was noticed that H3K36me1 and H3K36me2 also 

showed heterochromatic foci at DAPI dense region (Figure 23). This staining pattern 

resembles that of NIH3T3 cells, suggesting that the CCE cells with low Oct4 levels 

represent a differentiated state instead of technical failure to detect Oct4. Like NIH3T3 

cells, H3K36me3 only localized to euchromatin in cells with low Oct4 level. It has been 

reported that 5-10% CCE cells undergo spontaneous differentiation even with the 

presence of LIF (Sauter et al., 2005). Taken together, these data suggest an inverse 

correlation between H3K36 methylation and the expression of Oct4, which may point to 

a function of H3K36 methylation during ES cell differentiation.   

 

Figure 23. H3K36me1 and H3K36me2 showed heterochromatic foci in cells with low 
level of Oct4 
H3K36me1/2 showed enrichment at heterochromatin region in cells with low level of Oct4. 
H3K36me3 only showed euchromatic distribution. Scale bar: 10 micrometer.

 

 

To exclude that the inverse correlation is cell cycle dependent, costaining of H3K36me3 

and Oct4 was performed in G1, S, and G2/M phase of CCE cells. CCE cells were 

fractionated by FACS sorting to G1, S, and G2/M based on Hoechst 33342 staining. 

This inverse correlation H3K36me3 and Oct4 expression existed throughout the cell 
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cycle. The proportion of cells with high level of K36me3 and low level of Oct4 was about 

10% in G1, S, and G2 phase (Figure 24). Cells in mitotic stage did not show nuclear 

Oct4 signals (last panel of Figure 24). 

 

 

 
Figure 24. Inverse correlation between H3K36me3 and Oct4 expression throughout 
cell cycle 

G1, S, and G2/M CCE cells were fractionated based on Hoechst 33342 staining and stained by 
H3K36me3 and Oct4 antibodies. In all three phases, about 10% of cells showed low levels of Oct4 
but high levels of H3K36me3 (indicated by arrowhead). Cells in mitotic stage showed no signal of 
Oct4 (indicated by arrowhead of the bottom panel).  
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To test if this reverse correlation is universal in ES cells, immunostaining of H3K36me3 

and Oct4 expression was performed in other two ES cell lines, PGK12 and LF2. These 

lines showed a similar inverse correlation as observed in CCE cells (Figure 25). 

 

Figure 25. Inverse correlation between H3K36me3 and Oct4 expression in PGK12 and LF2 
ES cells 

There was a certain population of cells with high level of H3K36me3, but low level of Oct4, for both 
PGK12 and LF2 cells. 

 

 

 

2.2 Identification of H3K36 methyltransferases in vitro 

Yeast SET2 has been identified as H3K36 methyltransferase in vivo (Strahl et al., 

2002). Mouse Nsd1 (Rayasam et al., 2003) and human HYPB (Sun et al., 2005) were 

shown as H3K36 methyltransferases by in vitro study. The sequence alignment within 

SET domain in Figure 26 shows that the conserved residues or motives, required for 

HMT activity (Dillon et al., 2005), are present in all members of SET2 family HMTs. The 

alignment predicts that these proteins are putative histone methyltransferases. From the 

structure features illustrated in Figure 8, SET2 family can be further divided into four 

groups. Group I includes Ce_Mes4 and Ce_Set12; Group II includes Ce_HypB, 

Sc_Set2, Dm_HypB and Mm_HypB; Group III includes Dm_Ash1 and Mm_Ash1; Group 

IV includes Dm_Mes-4, Mm_Nsd1, Mm_Nsd2, and Mm_Nsd3. Nsd1, Nsd2, Nsd3, and 

HypB will be discussed below. 
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Figure 26. A protein sequence alignment of SET domains of SET2 family HMTs 

SET domain is defined by SMART. The alignment was performed using Clustal X. The conserved 
residues involved in binding to AdoMet  and the target lysine (blue arrow), catalysis (green arrow), the 
structural pseudoknot (black arrow) , an intra-molecular interacting salt bridge (red arrow), and a F/Y 
switch (grey arrow) controlling whether the product is mono-, di-, or trimethylated histone are 
indicated. Ce: Caenorhabditis elegans; Sc: Saccharomyces cerevisiae; Dm: Drosophila melanogaster; 
Mm: Mus musculus. 

 

2.2.1 In vitro HMT assay of Nsd proteins 

Nsd family and HypB proteins were chosen for further analysis. To identify if they have 

histone methyltransferase activity, in vitro HMT assay was performed. The catalytic 

domain of the candidate enzymes including pre-SET, SET, and post-SET domain were 

cloned into GST constructs (Figure 27a). Recombinant proteins were expressed in 

bacteria and purified for the enzymatic reactions (Figure 27b).  
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Figure 27. Expression of recombinant GST fusion proteins 

(a) Schematic diagram of recombinant GST fusion proteins of putative H3K36 HMTs. 
Catalytic domain including pre-SET, SET, and post-SET domain, Nsd1 (1700-1987), Nsd2 
(933-1240), Nsd3 (1020-1333), and HypB (888-1208), were cloned into GST construct pGEX-
6P-1.  (b) SDS-PAGE analysis of GST fusion proteins (arrows), visualized by Coomassie 
staining.  
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A mixture of histones purified from calf thymus was used as substrate. 3H-labeled S-

adenosyl-L-methionine was used as the methyl donor. HMT assay was first performed 

at pH8.5 and without magnesium condition. The preliminary experiment revealed weak 

activity from Nsd1, Nsd2, and Nsd3, but strong activity from HypB towards histone H3.  

It is known that pH and magnesium are critical determinants of the HMT reaction. pH 

and magnesium concentration were titrated. The titration result confirmed that pH9 was 

the best for Nsd1 (Rayasam et al., 2003) (Figure 28a). The same pH was used for HMT 

assay of Nsd2 and Nsd3. The concentration of magnesium was tested at pH9 for Nsd1, 

Nsd2, and Nsd3. Nsd1 showed moderate activity towards histone H3. Nsd2 and Nsd3 

showed weak activity towards histone H3. The activity of Nsd1 is independent on 

magnesium whereas 10 mM and 5 mM of magnesium are required for the activity of 

Nsd2 and Nsd3 respectively (Figure 28b).  
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Figure 28. In vitro HMT assay of Nsd proteins 

(a) pH was titrated for Nsd1 in HMT assay using native histones as substrates for the catalytic 
domain of Nsd1 proteins. (b) Mg2+ concentrations were titrated for Nsd1, Nsd2, and Nsd3. Mg2+ 

is not required for Nsd1 activity. 10 mM and 5 mM of magnesium are required for the activity of 
Nsd2 and Nsd3 respectively. The H3K9me3 HMT Suv39h1 was used as positive control for the 
HMT assay (Rea et al., 2000). 
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2.2.2 In vitro HMT assay of HypB 

To determine whether the mouse HypB protein is a histone H3K36 methyltransferase as 

the human protein (Sun et al., 2005), in vitro HMT assay was performed with the 

recombinant protein of HypB catalytic domain. It showed strong activity towards histone 

H3 and the signal is stronger at pH8.5 and pH9 than at lower pH (Figure 29).The activity 

of HypB was independent on magnesium (data not shown).  

 

Figure 29. HypB methylated histone H3 in vitro 

Different pH was tested for the HMT assay of the recombinant catalytic 
domain of HypB. Native calf thymus histones purchased from Sigma 
were used as substrates. The recombinant catalytic domain of HypB 
showed stronger HMT activity at pH8.5 and pH9 than lower pH.  

 

 

 

To further identify the targeting residue of HypB, different histone N-terminal peptides 

were used as substrate in the HMT assay, amino acid numbers are indicated in 

brackets. HypB showed no activity towards histone H1, H4 (12-31), and H3 (1-20) but 

H3 (19-38). Mutation at lysine 27 and lysine 37 of H3 (19-38) did not affect the activity of 

HypB. Only the K36L mutation at lysine 36 of H3 (19-38) abolished the activity of HypB. 

Thus, H3K36 is the targeting residues of HypB (Figure 30). H3K36 unmodified, 

monomethylated, and dimethylated but not trimethylated peptides of H3 (19-38) could 

serve as substrates, suggesting that HypB catalyzes H3K36 mono-, di-, and 

trimethylation in vitro (Figure 30). 

HypB could also methylate nucleosomes from wild type and Set2 deleted (Set2Δ) yeast 

strain, indicating that HypB can methylate nucleosomes with unmodified and pre-

methylated H3 lysine 36 residues (Figure 31). Nucleosomes from yeast strains with 

double deletion of Set2 and Set1 (Set2Δ, Set1Δ) or Set2 and Dot1 (Set2Δ, Dot1Δ), and 

triple deletion of Set2, Set1, and Dot1 (Set2Δ, Set1Δ, Dot1Δ) also served as substrate 

for HpyB (Figure 31), indicating HypB can methylate nucleosomes with unmodified H3 
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lysine 4, 36, and 79 residue.  Taken together, these data show that HypB is a H3K36 

methyltransferase in vitro.  
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Figure 30. HypB methylated histone H3 peptide at lysine 36 

Histone N-terminal peptides were used as substrates in HMT assay to identify the target residue of 
HypB catalytic domain. The catalytic domain of HypB showed no HMT activity towards H1 peptides 
of different variants, H4 (12-31), and H3 (1-20). It showed HMT activity towards H3 (19-38). Mutation 
of lysine 27 and 37 didn’t affect the HMT activity. Only mutation of lysine 36 abolished the HMT 
activity. All H3K36 unmodified, monomethylated, and dimethylated except trimethylated peptides of 
H3 (19-38) served as substrates.  

 

 

 

 
Figure 31. Specificity of HypB on nucleosomes substrates 
Specificity of the catalytic domain of HypB was determined using nucleosomes extracted from different 
yeast strains. The catalytic domain of HypB methylated nucleosomes from yeast strain of wild type, 
Set2 single deletion (Set2Δ), Set2 and Set1 double deletion (Set2Δ, Set1Δ), Set2 and Dot1 double 
deletion (Set2Δ, Dot1Δ), and Set2, Set1, Dot1 triple deletion (Set2Δ, Set1Δ, Dot1Δ). Suv39h1 and 
HypB methylated native histone as positive control of HMT assay. 
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2.3 Identification of H3K36 methyltransferases in vivo 

In vitro activity assays were performed with truncated GST-fusion proteins containing 

only the catalytic domain. To assay the activity of these four candidate enzymes in vivo, 

H3K36 methylation states were analyzed after knockdown by RNA interference of the 

individual genes in cells by western blot or immunofluorescence (IF) staining using 

H3K36 specific antibodies.  

First, the expression levels of candidate genes were analyzed by quantitative real time 

PCR in different human and mouse cell lines (Figure 32). The expression levels of 

NSD1, NSD2, NSD3 and HYPB was higher in human cancer cell lines (293, Hela and 

U2OS) than in human embryonic carcinoma cell lines (Tera1, Tera2, and NCCIT). 

NSD2 was highly expressed, NSD1 and HYPB was intermediately expressed, and 

NSD3 was lowly expressed in 293, Hela, and U2OS cells. Mouse Nsd1, Nsd2, Nsd3 

and HypB showed differentially expressed pattern between undifferentiated ES cells 

(E14, CCE), Trophectoderm Stem cells (TS) and NIH3T3 cells. In ES cells, the 

expression level of Nsd1 and HypB was higher than that of Nsd2 and Nsd3. In NIH3T3 

cells, HypB was highly expressed, Nsd2 and Nsd3 were intermediately expressed, and 

Nsd1 was lowly expressed. In TS cells, Nsd2 was very highly expressed, HypB was 

intermediately expressed, and Nsd1 and Nsd3 were lowly expressed. 

 
Figure 32. Expression of Nsd and HypB in different human and mouse cell lines 

(a) Gene expression was analyzed by real time PCR in human Tera1, Tera2, NCCIT, 293, Hela, and U2OS 
cells. (b) Gene expression was analyzed by real time PCR in mouse NIH3T3, undifferentiated E14 ES cells, 
undifferentiated CCE, TS cells. The relative expression was normalized to Nsd1 expression in both human and 
mouse cells. 
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Human 293, U2OS and mouse CCE, NIH3T3 were used for further knockdown 

experiments. The RNAi approach was first set up in 293 cells using shRNA (sigma) 

(Figure 33). 4 or 5 shRNAs targeting each gene were separately transfected into 293 

cells and selected by puromycin for 5 days. The most efficient shRNAs were chosen for 

further use. 1 shRNA for NSD1, 1 shRNA for NSD2, combination of 2 shRNA for NSD3 

and combination of 4 shRNA for HYPB were transfected into 293 cells and selected for 

5 days. mRNA were isolated for gene expression analysis.  

 

 

 

 

 

Figure 33 Map of shRNA expressing vector 
Transcription of shRNA is driven by U6 promoter. Puromycin resistance 
gene is used for mammalian selection. Ampicillin resistance gene is used 
for selection in bacteria. 
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Efficient knockdown was achieved for all for genes at mRNA level (Figure 34). IF of 

H3K36 methylation was used to detect the knockdown effect. No change of all three 

methylation states of H3K36 was observed after knockdown any of NSD1, NSD2, or 

NSD3 gene (data not shown). This may have resulted from redundancy or 

compensation. Real time PCR analysis showed that the expression of HYPB was 

upregulated in NSD1 knockdown cells, the expression of NSD1, NSD3, and HYPB were 

upregulated in NSD2 knockdown cells, and the expression of HypB was upregulated in 

NSD3 knockdown cells (Figure 34). No efficient knockdown was obtained when all three 

NSD genes were simultaneously knocked down.  

 

Figure 34. Knockdown of NSD1, NSD2, NSD3, and HYPB in 293 cells 

Gene expression for all four genes was analyzed by real time PCR in each knockdown sample. 
Around 60%, 80%, and 55% knockdown was obtained for NSD1, NSD2, and NSD3 respectively. 
HYPB was upregulated upon NSD1, NSD2 or NSD3 knockdown. Around 60% knockdown was 
obtained for HYPB, without affecting expression of NSD1, NSD2, and NSD3. 
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Due to the potential compensation problem for NSD genes, together with the strong 

activity of HypB in vitro, the subsequent study was mainly focused on HypB gene. 

Efficient knockdown of HYPB was achieved in 293 cells using shRNA without apparent 

changes of NSD genes at mRNA level detected by real time PCR (Figure 34). IF data 

showed that H3K36me3 was strongly reduced in shRNA positive cells indicated by 

cotransfection of pCX-eGFP construct (Figure 35). In contrast, no apparent change was 

observed for H3K36me1 and H3K36me2 (data not shown). A small change of 

H3K36me3 was also detected by western blot (Figure 36). A similar response was 

observed in human osteosarcoma epithelial cells (U2OS) cells by shRNA (Figure 37) 

and stealth RNA (Invitrogen) (Figure 38).  

 

 

 

 

 

Figure 35. H3K36me3 was strongly reduced upon HYPB knockdown by shRNA in 293 
cells detected by IF 
shHYPB plasmids were cotransfected with pCX-EGFP plasmid into 293 cells. After 5 days selection by 
puromycin, H3K36 methylation was detected by IF. H3K36me3 was strongly reduced in shHYPB 
positive cells indicated by EGFP. No change of H3K36me3 was observed in scramble shRNA 
transfected cells.  
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Figure 36. H3K36me3 was reduced upon HYPB knockdown by shRNA in 293 cells 
detected by western blot 
Histones were extracted from cells after 5 days selection with puromycin after shRNA transfection. 
When 0.1 µg acid extracted histones were loaded, H3K36me3 was clearly reduced in shHYPB samples 
compared with scramble control sample, but no clear change for H3K36me2. No apparent change of 
H3K36me2 and H3K36me3 was detected in shNSD1, shNSD2, shNSD3 samples. H3 antibody was 
used for loading control.  
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Figure 37. H3K36me3 was strongly reduced upon HYPB knockdown by shRNA in U2OS 
cells detected by IF 
shHYPB plasmid were cotransfected with pCX-EGFP plasmid into U2OS cells. After 3 days without 
selection, H3K36 methylation was detected by IF. H3K36me3 was significantly reduced, but no 
apparent change of H3K36me1, and H3K36me2 was observed in shHYPB transfected cells indicated 
by EGFP. No change of H3K36me3 was observed in scramble shRNA transfected cells.  
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Figure 38. H3K36me3 was strongly reduce upon HYPB knockdown by stealth RNA in 
U2OS cells detected by IF 
Around 70% knockdown was obtained by stealth RNAi detected by real time PCR. IF showed that 
H3K36me3 was strongly reduced in RNAi sample compared with mock treated control cells. 
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Subsequently, the function of HypB in mouse system was addressed. Because of 

unavailability of shRNA for mouse HypB gene, stealth RNAs for mouse HypB were 

designed. Stealth RNAs were transiently transfected into NIH3T3 and CCE cells. After 3 

days, the knockdown effect was determined by real time PCR of HypB mRNA and IF of 

H3K36me3. Around 70-80% knockdown could be achieved in NIH3T3 and CCE 

detected by real time PCR and H3K36me3 was strongly reduced detected by IF (Figure 

39). No apparent upregulation of H3K36me1 and H3K36me2 was observed in CCE 

cells (Figure 40). Thus, HypB is a H3K36 trimethyltransferase in vivo. 

 

 

 
Figure 39. H3K36 was strongly reduced upon HypB knockdown by stealth RNA in 
NIH3T3 and CCE cells 

Around 80% and 70% knockdown was obtained by stealth RNAi after 3 days in NIH3T3 and CCE cells 
respectively detected by real time PCR. IF showed that H3K36me3 was strongly reduced in RNAi 
sample compared with mock treated control cells for both NIH3T3 and CCE cells. 
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Figure 40. No apparent change of H3K36me1 and H3K36me2 was observed upon HypB 
knockdown by stealth RNA in CCE cells 

No apparent upregulation of H3K36me1 and H3K36me2 was observed upon stealth RNAi of HypB 
after 3 days in CCE cells. 
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2.4 HypB facilitates ES cell differentiation 

2.4.1 The effect of HypB knockdown in undifferentiated cells  

To study the function of H3K36me3 in more detail, the effect of HypB knockdown was 

monitored in undifferentiated ES cells and during differentiation. First, the effect of HypB 

knockdown was checked in undifferentiated CCE cells cultured in the presence of LIF. 

Proliferation rates were analyzed over four days by counting cells. The proliferation rate 

of HypB knockdown cells is markedly higher than that of mock treated control cells 

(Figure 41).  

 

 

 
Figure 41. HypB knockdown CCE cells proliferated faster than 
control cells 
Proliferate rate were measured by counting cells, mock treated (blue line) and 
stealth RNA treated (Red dash line), for four consecutive days after stealth RNA 
transfection.  

 

 

To determine the basis of the proliferation difference, the cell cycle profile was analyzed 

using the BrdU flow kit (BD biosciences). In this method, bromodeoxyuridine (BrdU, an 

analog of the DNA precursor thymidine) is incorporated into newly synthesized DNA in 

the S phase of the cell cycle. The incorporated BrdU is detected with specific anti-BrdU 

fluorescent antibodies by flow cytometry. 7-amino-actinomycin D (7-AAD) was used as 
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a staining dye for total DNA to define G1, S, or G2/M phases of cell cycle. The cells 

after 2 days knockdown showed no obvious difference in BrdU incorporation between 

mock treated and knockdown cells (Figure 42). The distribution of cells during cell cycle 

is shown in Figure 42.  

 

 

 

 

Figure 42. Cell cycle analysis of HypB knockdown CCE ES cells 

(a) Flow cytometric analysis of BrdU incorporation in exponentially growing cell. Mock treat: blue; 
stealth RNA treated: red.  (b) Cell cycle distribution. There is no significant difference between mock 
treated and stealth RNA treated cell. G1: ~11%; S: ~70%; G2/M: ~13%. Total events: ~ 25000. 

 

69 



 Friedrich Miescher Institute / University of Basel 

The decrease of H3K36me3 in HypB knockdown cells was confirmed by IF (Figure 43). 

The reason for faster proliferating of knockdown cells is not clear. One possibility is that 

the population of cells undergoing spontaneous differentiation (which are proliferating 

slower) is smaller in knockdown cells than in mock treated control cells. To test this 

hypothesis, the relative levels of Oct4 and H3K36me3 as observed by 

immunofluorescence staining were quantified in single cells.  Indeed, the quantification 

result shows that there were fewer cells with low levels of Oct4 in knockdown cells than 

in control cells for both day 2 and day 3 (Figure 43).  

 

 

 
Figure 43. IF of undifferentiated HypB knockdown and control CCE ES cells 

H3K36me3 was significantly reduced at day 2 (a) and day 3 (b) upon HypB knockdown. There were 
slightly less cells with low Oct4 level in the HypB knockdown cells than the mock treated control cells 
(The category of Oct4 level is described in the following paragraphs). 
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2.4.2 The effect of HypB knockdown in differentiated cells  

An inverse correlation between H3K36 methylation and expression level of Oct4 was 

observed above. These data are reminiscent of two recent studying on the Mbd3 protein 

(Gu et al., 2006; Kaji et al., 2007). Mbd3 was found to be required for ES cell 

differentiation. For example, Oct4 was still expressed in Mbd3-null cells after 5 days 

differentiation induced by LIF removal (Kaji et al., 2006). Mbd3 is a component of the 

NuRD complex, which also contains the CHD3 protein. CHD3 has been identified as an 

H3K36me3 binding protein in vitro (Mellor, 2006b). It tempting to that H3K36me3 may 

facilitate the recruitment of Mbd3/NuRD complex to the Oct4 promoter in the course of 

differentiation. Thus, an intriguing question is whether knockdown of HypB will show a 

similar phenotype as Mbd3-null ES cells. Thus, the effect of H3K36me3 was 

subsequently analyzed during differentiation induced by removal of LIF or adding all-

trans Retinoic Acid (RA). 

The expression level of Oct4 was measured by IF in mock treated and knockdown cells 

harvested at day 3 at different conditions, undifferentiated (+LIF), differentiated in the 

absence of LIF (-LIF), and differentiated in the absence of LIF and the presence of RA (-

LIF, +RA). The efficiency of knockdown was proven by the decrease of HypB mRNA by 

real time PCR (Figure 44).  

 

Figure 44. Knockdown of HypB in CCE cells 

Around 70% knockdown was obtained for all conditions. The 
relative expression was normalized to mock control at +LIF 
condition. In control cells, the level of HypB at -LIF condition 
is lower than at +LIF condition, in contrast, the level of HypB 
at –LIF, +RA condition is higher than at +LIF condition. 
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The decrease in H3K36me3 was detected by IF (Figure 45). These results show that 

there were clearly more Oct4 positive cells in knockdown cells than mock treated cells 

after differentiation induced by either -LIF or +RA (Figure 45).  

 

Figure 45. Oct4 repression defects in HypB knockdown ES cells under promotion of 
differentiation 

IF of H3K36me3 showed efficient knockdown for all three conditions. Quantification of IF was shown on 
the right of the figure. For the mock treated control samples, the number of Oct4 expressing cells is 
significantly reduced at -LIF than at +LIF (P=3.4e-24). The number is further reduced at –LIF, +RA. There 
is no significant difference in the percentage of Oct4 expressing cells between knockdown and mock 
treatment at +LIF (P=0.16). There are significantly more Oct4 expressing cells in the knockdown cells than 
the mock treated control cells at –LIF (P=2.68e-07) and at –LIF, +RA (P=0.006). Significance was 
calculated by using the Fisher’s exact test (R program). 
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Further classification of expression level of Oct4 was required for the quantification of IF 

data. The expression of Oct4 was categorized into four groups based on the intensity of 

signals, high level (Oct4+++), intermediate level (Oct4++), low level (Oct4+) and no 

expression (Oct4-) (Figure 45).  

The quantification results are shown in Figure 45. For the mock treated control sample, 

the number of Oct4 expressing cells (Oct4+++, Oct4++, and Oct4+) is significantly less 

under differentiation induced by LIF removal (-LIF) than undifferentiated cells (+LIF). 

These data are in agreement with that the expression of Oct4 decreased after the 

induction of differentiation by removal of LIF (Cartwright et al., 2005). The number of 

Oct4 expressing cells (Oct4+++, Oct4++, and Oct4+) was further reduced after RA-

induced differentiation, confirming the notion that RA is a stronger inducer of 

differentiation than LIF removal only (Ben-Shushan et al., 1995; Minucci et al., 

1996)(Figure 45).  

There was no apparent difference in percentage of Oct4 expressing between 

knockdown and mock treatment under undifferentiated condition (+LIF) (Figure 45a). 

However, there were significantly more Oct4 expressing cells (Oct4+++ and Oct4++)  in 

the knockdown cells than the mock treated control cells after differentiation, induced by 

the removal of LIF (-LIF) (Figure 45b). There were more Oct4 expressing cells 

(Oct4+++, Oct4++, and Oct4+) in the knockdown cells than the mock control cells after 

differentiation induced by adding RA (-LIF, +RA) (Figure 45c). Thus, in summary, the 

decrease of the total number of Oct4 expressing cells in each population after 

differentiation induced by LIF removal (-LIF) or adding RA (-LIF, +RA), is less prominent 

in the knockdown samples than in the mock treated control samples (Figure 45).  

Thus, the IF data shows that the expression of Oct4 failed to be repressed to the same 

extend in the knockdown cells as the mock treated cells after differentiation induced by 

either removal of LIF or adding RA, implying that HypB-mediated H3K36me3 functions 

in differentiating ES cell to facilitate differentiation. 

To evaluate the role of HypB in H3K36me3 during differentiation, the level of 

H3K36me3 was carefully scored in differentiating ES cells. H3K36me3 were 

categorized into four groups based the intensity of signals: very high (K36me3++++), 

high (K36me3+++), intermediate (K36me3++), and low (K36me3+) (Figure 46). 
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Figure 46. H3K36me3 in mock treated and HypB knockdown ES cells 
For the mock treated cells, the number of K36me3+++ and K36me3++ cells significantly increased after 
differentiation induced by removal of LIF (-LIF) (P=1.32e-14). No apparent difference was observed for 
the distribution of the H3K36me3 staining classes between undifferentiated (+LIF) and differentiated (-LIF, 
+RA) condition (P=0.106). The increase of H3Kme3 after LIF removal mainly occurred in the population 
of Oct4- cells, which suggested that a certain population of cells, with decrease of Oct4 expression gained 
H3K36me3 upon differentiation. The majority of HypB knockdown cells were H3K36me3+ at all three 
conditions, indicating efficient knockdown (a, b, and c). Significance was calculated by using the Fisher’s 
exact test (R program). 
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The distribution of cells in the different groups was first compared for the mock treated 

control cells. In undifferentiated condition, ~65% cells are K36me3++, ~27% cells are 

K36me3+++, ~7% cells are K36me3++++, and 1% cells are K36me3+ (Figure 46a). 

After removing LIF, the number of K36me3+++ cells was significantly increased at the 

expense of the number of K36me++ cells (Figure 46b). These data indicate that the 

level of H3K36me3 increased during the early phase of differentiation (see below). A 

comparison to Oct4 expression levels shows that the cells, strongly stained for 

H3K36me3, did not express Oct4 (right graphs of Figure 46b), supporting the inverse 

correlation. In contrast, the distribution of cells with different H3K36me3 levels did not 

vary between cells differentiated after 3 days RA treatment versus undifferentiated ES 

cells. Importantly, the majority of cells in the first group were Oct4 negative (Oct4-). 

Thus, the levels of H3K36me3 in Oct4 negative cells depend greatly on the procedure 

of in vitro differentiation; and thus cell identity of the differentiating cells. It may also 

reflect a temporal order of differentiation, meaning that H3K36me3 levels first increased 

during early differentiation (-LIF), followed a dramatic decrease in H3K36me3 induced 

by RA treatment. 

In the HypB knockdown samples, the majority of cells had low levels of H3K36 

trimethylation for all three conditions, confirming that the knockdown was effective. The 

number of Oct4 negative cells with high levels of H3K36me3 was clearly reduced after 

HypB knockdown when differentiation was induced by removal of LIF. Accordingly, the 

percentage of Oct4+++ and Oct4++ cells increased. These data suggest that reduced 

levels of HypB prevent efficient differentiation of ES cells, induced by the absence of 

LIF. In the presence of RA however, HypB knockdown cells do differentiate, indicating 

that HypB may only facilitate the differentiation process during the early phase of 

differentiation.   

2.5 Dynamics of H3K36me3 and Oct4 expression during differentiation 

To further study the relationship between H3K36me3 and Oct4 expression, the 

expression of HypB and Oct4, as well as the state of H3K36 methylation during 

differentiation were monitored by real time PCR and western blot. The differentiation of 

CCE cells was induced by removal of LIF (-LIF) or adding RA (-LIF, +RA) for 36, 48, 72, 

96, and 144 hours. The expression levels of Oct4 only decreased by 25% after the first 
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96 hours of differentiation induced by LIF removal. In contrast, RA induced a strong and 

progressive reduction in Oct4 expression (Figure 47a). These data are in agreement 

with the percentage of Oct4 expressing cells after 3 days of differentiation in the 

absence of LIF or in the presence of RA (Figure 45b). The dynamic of Oct4 is consistent 

with current knowledge on Oct4 expression during differentiation.  

 

Figure 47. Dynamic of HypB, Oct4, and H3K36me3 during differentiation 

Dynamic of Oct4, HypB, and H3K36me3 was analysed during differentiation induced by 
withdrawing LIF or adding RA at different time. (a) Expression level of Oct4 and HypB was 
determined by real time PCR. (b) Expression level of Oct4 was determined by western blot. (c) 
H3K36 trimethylation state was determined by western blot. Histone H3 was used as loading control. 

 

 

 

Western blot was performed to determine whether mRNA levels reflect Oct4 protein 

levels. Cells were fractionated into cytosolic fraction, 0.4M nuclear fraction (nuclear 
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soluble), and 2M fraction (chromatin bound). Oct4 proteins were mainly present in 0.4M 

fraction (Figure 47b; data not shown). The kinetics of Oct4 protein disappearance was 

similar as observed for Oct4 mRNA during differentiation (compare Figure 47b and 

47a).  

HypB expression slightly decreased at early time (from 36 to 96 hours), but increased at 

later time (144 hours) after LIF removal. However, HypB expression gradually increased 

after differentiation induced by RA (Figure 47a). 

The methylation states of H3K36me3 were also checked by western blot during 

differentiation. H3K36me3 increased during differentiation at both conditions of LIF 

removal and adding RA from 48 hours (Figure 47c). RNAi experiment showed that 

HypB was responsible for the increase of H3K36me3 during differentiation by LIF 

removal (Figure 46b). Interestingly, the HypB mRNA levels initially dropped down during 

differentiation in the absence of LIF. It will be important to study the kinetics of HypB 

protein. Towards this purpose, a HypB-specific antibody has been generated in the lab. 

Preliminary experiments show that the antibody detects a protein of the predicted 

molecular weight by western blot. Moreover, it shows a strong nuclear staining 

immunofluorescence. To explain the increase of H3K36me3, either the HypB protein 

becomes stabilized and/or becomes enzymatically more activated. 

2.6 Gene expression analysis in HypB knockdown ES cells 

To investigate the molecular mechanism of the delay in differentiation of HypB 

knockdown cells, the expression of marker genes during differentiation was analyzed. In 

these experiments HypB and Oct4 expression showed the same kinetics as observed 

before (Figure 47a), underscoring the reproducibility the assay during differentiation.  

The knockdown efficiency was first compared at both undifferentiated and two 

differentiation conditions at day 3. The knockdown is effective at day 3 for all conditions 

tested (Figure 48). Independent knockdown experiment lasting for 5 days was also 

performed. The knockdown efficiency was, however, lower. This may have two reasons: 

The first is that small interfere RNAs had been diluted out as a consequence of cell 

division. Alternatively, the increase in HypB expression may have counter-acted the 

knockdown effect of the siRNA (Figure 48). 
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Figure 48. HypB knockdown ES cells fail to repress ES cell markers as control 
cells upon induction of differentiation 
Expression level of HypB, Oct4, Rex1, Nanog, and Sox2 were determined by real time PCR in two 
independent RNAi experiment with treatment for 3 days and 5 days. The expression levels of each 
gene in mock cells with LIF were set as 100. 
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The transcription of genes predominantly expressed in pluripotent cells or in 

differentiated cells was compared by real time PCR in mock control cells and HypB 

knockdown cells. The results show that the expression of undifferentiated cell markers 

Oct4, Rex1, Nanog, and Sox2 was slightly higher in knockdown cells than mock treated 

control cells at day 3 and day 5 after differentiation induced by removal of LIF or adding 

RA (Figure 48).  

In contrast, the expression markers representing specific stages of differentiation (Fgf5, 

Brachyury, Flk1, Gata6, and Nestin) were clearly reduced in knockdown cells than mock 

treated control cells (Figure 49).  
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Figure 49. HypB knockdown ES cells fail to activate differentiation-specific genes 
as control cells upon induction of differentiation 
Expression levels of Brachyury, Flk1, Fgf5, Gata6, and Nestin were determined by real time 
PCR in two independent RNAi experiment with treatment for 3 days and 5 days. The expression 
levels of each gene in mock cells with LIF were set as 100. 
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Fgf5, a primitive ectoderm marker, was barely detectable in undifferentiated ES cells. 

The levels of Fgf5 were strongly induced at day 3 and day 5 after differentiation by 

removal of LIF, but slightly induced at day 3 or day 5 after differentiation by RA (Figure 

49). This result is consistent with that Fgf5 mRNA is transiently upregulated at initial 

stages of lineage commitment of differentiating ES cells (Cartwright et al., 2005; Hebert 

et al., 1991; Lowell et al., 2006; Shen and Leder, 1992).  

Brachyury and Flk1, two mesoderm markers, were not expressed in undifferentiated ES 

cells. The levels of Brachyury were dramatically induced at day 3 and day 5 after 

differentiation by removal of LIF. The levels of Brachyury were low at day 3 and day5 

after differentiation induced by RA (Figure 49). This expression of Brachyury is in 

agreement with that it transiently peaks in early differentiation (Cartwright et al., 2005; 

Fehling et al., 2003; Ng et al., 2005). The level of Flk1 was low at day 3, only induced at 

day 5 after differentiation by removal of LIF and also induced at day 3 after 

differentiation by RA, then became lower at day 5 (Figure 49). This result reflects the 

coexpression of Flk1 and Brachyury during differentiation (Huber et al., 2004), but Flk1 

peaks later than Brachyury (Hirst et al., 2006; Kaji et al., 2007; Ng et al., 2005).  

Gata6, an endoderm marker, was slightly induced at day 3, but significantly induced at 

day 5 after differentiation by removal of LIF. The induction of Gata6 during 

differentiation was more effective by RA than by removal of LIF, and the level of Gata6 

is much higher at day 5 than at day 3 after differentiation by RA (Figure 49). This was 

confirmed by independent experiment (Figure 50). These results are consistent with the 

gradually and progressively increase of Gata6 during endoderm differentiation (Hirst et 

al., 2006). 

Nestin, an ectoderm marker, was slightly induced at day 3, but significantly induced at 

day 5 after differentiation by removal of LIF. The induction of Nestin during 

differentiation was more effective by RA than by removal of LIF, and the level of Nestin 

is much higher at day 5 than at day 3 after differentiation by RA (Figure 49). It showed a 

similar trend as Gata6 (Figure 50).  
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Figure 50. Kinetics of Gata6 and Nestin during differentiation 

Gata6 and Nestin progressively increased during differentiation particular when induced by RA. The 
induction of these two genes during differentiation was more effective by RA than by removal of LIF. 
Oct4 showed similar reduction as before during differentiation.

 

After HypB knockdown, most of the differentiation specific genes are downregulated. 

The misregulation of gene expression in HypB knockdown cells is similar as observed in 

Mbd3-null ES cells when differentiation was induced by removal of LIF (Kaji et al., 

2006). In addition, Dppa3, an early marker of primordial germ cells, was significantly 

down regulated in HypB knockdown cells (Figure 51); similar as in Mbd3-null cells (Kaji 

et al., 2006). Taken together, these results demonstrate that H3K36me3 by HypB 

facilitates ES cell differentiation and the knockdown of HypB results in both 

misregulation of stem cell-specific genes and differentiation-specific genes.  

 

 
Figure 51. Dppa3 was downregulated in HypB knockdown ES 
cells 

Dppa3 is downregulated upon HypB knockdown at day 3 in undifferentiated 
ES cell. Dppa3 is an early marker of primordial germ cells, which is 
downregulated in Mbd3-null ES cells.  
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It has been reported that Oct4 failed to be repressed in cells deficient for genes such as 

Mbd3, Suz12, CGBP, after 5 or 10 days differentiation (Carlone et al., 2005; Kaji et al., 

2007; Pasini et al., 2007).  To test a possible role of HypB knockdown during long term 

differentiation, I generated cell line with stable knockdown of HypB by shRNA. The 

knockdown was efficient (~70%) in undifferentiated cells. However, the efficiency was 

low after long time of differentiation as observed in RNAi experiment using small 

interfere RNA (Figure 52). Thus, the analysis of Oct4 expression in 5 or 10 days 

differentiated cells is unfeasible.  HypB-null ES cells and mice are required for the 

further functional analysis of H3K36 methylation during differentiation and development.  

 

 

 
Figure 52. Stable knockdown of HypB in CCE cells 
Cell line with stable knockdown of HypB was generated using retrovirus expressing 
shRNA from pMSCV-LMP vector. Empty vector was used for generating control cell 
line. In undifferentiated ES cells, the efficiency is from ~55% ~ 70% (a, b). The 
efficiency become lower at 5 and 10 days differentiated ES cells (b).  
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2.7 Distribution of H3K36me3 on Oct4 locus during differentiation 

To dissect the mechanism of H3K36me3 in regulating Oct4 expression, the distribution 

of H3K36me3 on Oct4 locus was mapped by chromatin immunoprecipitation (ChIP). In 

addition to the inverse correlation, several lines of evidences suggested a direct link 

between H3K36me3 and expression of Oct4. First, as discussed above, there exists a 

potential link between H3K36me3 and Mbd3/NuRD complex (Mellor, 2006b). Along 

these lines, it has been shown that GCNF sequentially recruits Mbd3 and Mbd2 to the 

promoter of Oct4 and was required for the repression of Oct4 gene during differentiation 

induced by RA (Gu et al., 2006) (Figure 14). 

Secondly, it has been shown that the proximal enhancer (PE) of Oct4 is required for its 

repression during differentiation induced by removal of LIF. Oct4/lacZ transgene 

expression was not downregulated when the PE is absent, but was downregulated 

when PE is present after the transgenic ES clones were induced to form embryo bodies 

(Ovitt and Scholer, 1998). The transgenic ES clone with PE deletion construct showed 

similar phenotype of Oct4 expression as Mbd3-null and HypB knockdown cells.  

So the question here is whether HypB-mediated H3K36me3 is contributing to the 

recruitment of Mbd3/NuRD complex to the proximal enhancer and the promoter region 

of Oct4 gene during differentiation. Because the dynamics of Oct4 expression is 

different during differentiation induced by removal of LIF and adding RA, ChIP was 

performed in both differentiated ES cell, as well as undifferentiated ES cells. Primers 

covering the Oct4 locus, including the distal enhancer (DE), the proximal enhancer 

(PE), the proximal promoter (PP), Intron 1 and Exon 5 were chosen from published 

paper (Chew et al., 2005) or newly designed (Figure 53).  

 

 
Figure 53. Scheme picture of Oct4 locus and primers 
Start code ATG starts from +1 bp. Upstream: an upstream region of DE (-3155/-2991bp). DE: distal 
enhancer (-2126/-1956bp). PE: proximal enhancer (-1440/-1191bp). PP: proximal promoter (-377/-
194). Intron 1 (+1416/+1620bp). Exon 5 (+4364/+4521bp). ChIP primers are indicated by black bar.  
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The ChIP data showed that the levels of H3K36me3 were low upstream of transcription 

start site of Oct4 (left graph of Figure 54a) and highly enriched in the coding region of 

Oct4 in the undifferentiated condition (+LIF). H3K36me3 levels were higher at 3’ end 

(Exon 5) than in the first Intron (right graph of Figure 54a). This result is in agreement 

with the known distribution pattern of H3K36me3 as a marker for transcription 

elongation at active locus (Barski et al., 2007; Mikkelsen et al., 2007; Pokholok et al., 

2005; Vakoc et al., 2006). The levels of H3K36me3 on coding region (Intron 1 and Exon 

5) remained high during differentiation by removal of LIF until 96 hours, and were 

dramatically reduced after 144 hours (right graph of Figure 54a). This change correlates 

with the kinetics of Oct4 repression during differentiation (Figure 46a and 46b). In 

contrast, H3K36me3 on DE and PE was increased 2-3 folds after 96 hours 

differentiation by removal of LIF (left graph of 54a).  

 
Figure 54. Distribution of H3K36me3 on the Oct4 locus in undifferentiated and 
differentiating ES cells  
(a) H3K36me3 levels were low upstream of transcription start site and highly enriched in the coding 
region of Oct4 at undifferentiated condition (+LIF). After LIF removal, H3K36me3 levels on coding 
region remained high until 96 hours, and were dramatically reduced after 144 hours. H3K36me3 levels 
on PE, DE, and upstream of DE increased after 96 hours. (b) H3K36me3 levels on the coding were 
reduced faster under differentiation by adding RA than by removal of LIF. The levels of H3K36me3 
on PP, PE, DE, and upstream of DE all increased after differentiation induced by RA. 
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The levels of H3K36me3 on the coding region of Oct4 were dramatically reduced after 

96 hours differentiation by adding RA (Figure 54b). The reduction after differentiation is 

faster under the treatment of RA than under the treatment of LIF removal. These results 

correlate with the faster reduction of the Oct4 level after differentiation by RA than by 

LIF removal (Figure 46a and 46b). The level of H3K36me3 increased 2-3 folds 

upstream of transcription start site (Figure 54b). 

The levels of H3K4me3, a marker of active chromatin, was low upstream of the 

promoter and 3’ end of the coding region, but high at the promoter and Intron 1. It is 

higher at Intron 1 than at promoter in undifferentiated cells (Figure 55a). This result is in 

agreement with the notion about the distribution of H3K4me3 (Guenther et al., 2007; 

Mikkelsen et al., 2007; Pokholok et al., 2005; Schneider et al., 2004). The levels of 

H3K4me3 at the promoter and Intron 1 decreased after 96 hours differentiation by 

removal of LIF and were reduced to very low level after RA addition (Figure 55a). The 

low levels of H3K4me3 upstream of the promoter and at 3’ end of coding region were 

further reduced after differentiation (Figure 55a). This change of H3K4me3 also 

correlated the kinetics of Oct4 during differentiation (Figure 46a and 46b). 
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 Figure 55. Distribution of H3K4me3 on the Oct4 locus in undifferentiated and 
differentiating ES cells 
(a) The levels of H3K4me3 were high on PP and Intron 1, but low at upstream, DE, PE and Exon 5
in undifferentiated cells. The levels of H3K4me3 on PP and Intron 1 slightly decreased after 96 
hours differentiation but dramatically decreased after 144 hours differentiation by removal of LIF.
(b) H3K4me3 decreased to a very low level along the whole Oct4 locus after 96 hours differentiation 
induced by adding RA. 

 

 

 

Taken together, the enrichment of H3K36me3 downstream of transcription start site 

correlated with the expression of Oct4 during ES cell differentiation. By contrast, the 

slight enrichment upstream of transcription start site correlated with the repression of 

Oct4 during ES differentiation. 
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CHAPTER 3 DISCUSSION 

3.1 HypB is the major H3K36me3 methyltransferase in mammalian cells 

In yeast, SET2 is the only methyltransferase responsible for all three states of H3K36 

methylation (Chu et al., 2006). The deletion of SET2 does not affect cell viability and 

causes a slight growth defect (Krogan et al., 2003). The major role of SET2-mediated 

H3K36 methylation is linked to transcription elongation, since H3K36 methylation is 

enriched in the coding region of genes and this enrichment is dependent on the 

interaction between SET2 and serine 2 phosphorylated elongating form of RNA 

polymerase II. 

In mammals, several H3K36 methyltransferases have been identified, for example 

mouse Nsd1 (Rayasam et al., 2003) and human HYPB (Sun et al., 2005). Homolog 

searching and sequence alignment analysis indicate that more H3K36 

methyltransferases exist in mammals. They are structurally different except for the 

conserved catalytic domain, implicating that different methylation states of H3K36 may 

be catalyzed by different enzymes that have different cellular function. As deficiency in 

the Nsd1 gene causes embryonic lethality (Rayasam et al., 2003), the phenotype is 

more severe in mammals than in yeast. H3K36 methylation may therefore have more 

important functions in mammals. Nevertheless, not much is known about H3K36 

methylation in vivo in mammals.  

In this thesis, I identified HypB as a major H3K36 trimethyltransferase in vivo. IF shows 

that H3K36me3 localizes to euchromatin region. HypB knockdown resulted in a 

significant decrease of H3K36 in both human cells and mouse cells. The domain 

features HypB and the protein sequence alignment shows that HypB is the closest 

homolog of yeast SET2. The SRI domain, SET2 Rbp1 Interacting domain, by which 

SET2 interacts with the elongation RNA polymerase II, is conserved in mammalian 

HypB (Sun et al., 2005) .  

In yeast, an in vivo function of H3K36 methylation during transcriptional elongation has 

been revealed by identifying Eaf3 as a H3K36 methyl binding protein. The H3K36 

methyl marker serves to recruit a HDAC (Rpd3) complex through the chromodomain of 
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Eaf3 and the later identified PHD domain of Rco1 to antagonize H3 and H4 acetylation 

in the body of genes (Li et al., 2007b). This Set2-Rpd3S pathway controls global 

acetylation levels at coding region. A subset of genes depends on this pathway to 

suppress spurious transcriptional initiation at the coding region. In addition, infrequently 

transcribed and long genes depend on the Set2/Rpd3S pathway for accurate 

transcription (Li et al., 2007c). It was also reported that Set2 was required for repression 

of anti-sense transcripts (Nicolas et al., 2007). The average length of higher eukaryote 

genes is much longer than in yeast. It is conceivable that this pathway would play a 

more critical role in higher eukaryotes.  

In this thesis, chromatin immunoprecipitation in mouse cells showed that H3K36me3 is 

highly enriched in the coding region of Oct4 gene in undifferentiated ES cells. 

H3K36me3 clearly decreases on Oct4 coding region after its repression after 

differentiation. These results are consistent that H3K36me3 distributes on the coding 

region of active genes as a hallmark of elongation. Thus, it will be interesting to 

investigate whether HypB knockdown will affect the acetylation states of histone 

acetylation on the coding region and result in inaccurate transcription of genes. Multi 

exon transcriptome analysis of HypB knockdown cells will allow the identification of 

spurious transcripts in mammalian system. Consequently, it will be interesting to 

determine whether such transcripts evoke a transcriptional interference or RNAi-

mediated repression response.  

The mammalian homolog of yeast Eaf3, MRG15 has been identified as a H3K36 methyl 

binding protein (Zhang et al., 2006b). MRG15 associates with RBP2 and  

downregulates the H3K4 methylation at transcribed regions (Hayakawa et al., 2007). It 

is interesting to speculate that H3K36 methylation on the coding region may serve as 

marker for the recruitment of MRG15. Another homolog of yeast Eaf3, Msl3l is 

speculated as a H3K36 methyl binding protein, yet experimental evidence is still lacking. 

Recently, targeting of MSL3 was found toward the 3’ end of the gene and dependent on 

gene transcription (Kind and Akhtar, 2007). It remains elusive whether this targeting is 

through H3K36 methylation. 

Moreover, being a component of NuRD complex, CHD3 can bind to H3K36me3 through 

its PHD domain (Mellor, 2006b). This may suggest that the NuRD complex is recruited 
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to the coding region of transcribed genes as well. It will be interesting to determine 

whether NuRD complex is target to the coding region of gene through H3K36me3 and 

has function in controlling gene expression. 

The C. elegans H3K36 trimethylase (Met-1) and H3K9 trimethylase (Met-2) affect the 

activity of each other (Andersen and Horvitz, 2007). Concurrence of H3K36me3 and 

H3K9me3 on coding region of some genes and existence of a demethylase targeting 

both H3K36me3 and H3K9me3 in mammals also indicated that there might be interplay 

between H3K36me3 and H3K9me3. Thus, it is worthwhile to study the methylation state 

of H3K9 after HypB knockdown to address if H3K36me3 crosstalk with the other histone 

modifications.  

Finally, no apparent change of H3K36me1 and H3K36me2 was detected in HypB 

knockdown cells, suggesting that these two methyl markers are catalyzed by some 

other enzymes in separate pathway. It further indicates that H3K36me1 and H3K36me2 

do not compensate for the reduced H3K36me3 levels upon HypB knockdown. I cannot, 

however, exclude that HypB may also function in mediating H3K36me1 and H3K36me2.  

3.2 HypB facilitates ES cell differentiation: a role within the coding region of 
target gene? 

Using IF, I observed a clear increase of H3K36me3 in 3 days differentiated ES cells 

induced by LIF removal. This increase significantly correlated with a reduction in Oct4 

expression. Western blot result confirmed the increase of H3K36me3, which also 

correlated with the decrease of Oct4 expression during ES cell differentiation. Even 

under the culture condition directing maintenance of the undifferentiated state of ES 

cells, a small population cells spontaneously differentiates based on the loss of Oct4 

expression detected by IF. All three methylation states of H3K36 show an increase 

signal intensity early differentiating cells, compared to undifferentiated cells with high 

levels of Oct4. These results indicate that H3K36me3 may have a function during ES 

cell differentiation. 

I found that ES cells differentiation is suppressed upon HypB knockdown when 

differentiation is induced by removal of LIF or adding RA. This is reflected in a failure to 

downregulate stem cell genes or upregulation of differentiation specific genes.  
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Several studies in both yeast and mammals have demonstrated that H3K36me3 is a 

marker for recent transcribed chromatin (Bernstein et al., 2005; Morris et al., 2005; 

Muller et al., 2007; Pokholok et al., 2005; Vakoc et al., 2006). Most of the promoters 

contain H3K4me3 and RNA polymerase II, but only a subset of genes with H3K36me3 

transcribe (Guenther et al., 2007), suggesting H3K36me3 is required for efficient 

transcription. I observed an increase of H3K36me3 during differentiation. Thus, 

knockdown of HypB may impair the proper transcription of genes that normally need to 

be activated during differentiation. Alternatively, the observed change in gene 

expression is just consequence of differentiation defects.  

3.3 HypB facilitates ES cell differentiation: a role at the promoter and enhancer of 
Oct4? 

HypB knockdown ES cells show a similar phenotype as Mbd3-null ES cells. Mbd3-null 

ES cells also failed to repress stem cell markers and activate differentiation markers, 

which are analyzed in HypB knockdown ES cells. Mbd3 is found to be recruited to the 

promoter of Oct4 and required for the repression of Oct4 during differentiation. Mbd3 is 

a component of the NuRD complex, which contains another protein CHD3. CHD3 has 

been identified as an H3K36me3 binding protein. In addition, the proximal enhancer 

(PE) of Oct4 is found to be required for downregulation of Oct4 expression after 

differentiation induced by removal of LIF. Oct4/lacZ transgene expression was not down 

regulated when the PE is absent, but was down regulated when the PE is present, after 

the transgenic ES clones were induced to form embryo bodies (Ovitt and Scholer, 

1998). The transgenic ES clone with the PE deletion construct showed similar 

phenotype of Oct4 expression as Mbd3-null and HypB knockdown cells. Thus, HypB 

may have a direct effect on the promoter and enhancer for the downregulation of Oct4 

expression. 

In yeast, there is some evidence to support a role of H3K36 methylation on the 

promoter of genes. It was reported that SET2 is a repressor of GAL4 transcription 

(Landry et al., 2003). The GAL4 promoter, which does not contain a TATA box, is 

regulated by three cis-acting elements: a UAS necessary for maximal GAL4 expression, 

an upstream sequence that is essential for GAL4 expression, and Mig1 binding sites 

that mediate glucose repression of GAL4 expression. UAS deleted mutation have a low 
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basal level of GAL4 expression. SET2 functions in this basal repression of GAL4 as 

H3K36 methylation is present on the promoter.  Moreover, SET2 mutant significantly 

increases expression of a UAS-less GAL4 gene. In yeast, SET2 has an opposite role to 

yFACT in TBP binding on the promoter of genes (Biswas et al., 2006). TBP, although 

named TATA-binding protein, is also involved in regulating TATA less promoter 

(Ohbayashi et al., 2003; Pugh and Tjian, 1991; Weis and Reinberg, 1997).  

Like the yeast GAL4 gene, Oct4 has a TATA-less promoter, and regulated by three cis-

acting elements, the distal enhancer, the proximal enhancer, and proximal promoter. It 

is known that the distal enhancer is required for Oct4 expression and the proximal 

enhancer is required for repression of Oct4 (Ovitt and Scholer, 1998). Oct4ΔDE/lacZ 

reporter was repressed in ES cells (Yeom et al., 1996). To investigate whether HypB 

regulates Oct4 gene expression in mammalian system by a similar regulatory way as 

yeast SET2 regulates GAL4, it will be informative to perform HypB knockdown in 

Oct4ΔDE/lacZ reporter transfected ES cells to test if the reporter can be reactivated 

upon reduction of HypB.  

Chromatin immunoprecipitation on Oct4 locus showed that H3K36me3 is highly 

enriched in the coding region in undifferentiated ES cells. H3K36me3 clearly decreases 

on Oct4 coding region after its repression upon differentiation. In contrast, a small 

increase of H3K36me3 on the promoter of Oct4 was observed after differentiation. The 

levels, however, resemble the amount of H3K36me3 at 3’ end of gene in the repressed 

condition.  

As discussed above, Mbd3 is recruited to the promoter of Oct4, but it only transiently 

present around 36 hours after differentiation induced by RA. It is tempting to suggest a 

model (Figure 56) in which H3K36 facilitates or reinforces the binding of Mbd3 through 

CHD3/NuRD for repressing of Oct4 during differentiation, but this hypothesis needs 

further verification. The preliminary data did not reveal an increase of H3K36me3 at this 

time point. Ultimately, it is needed to show that the recruitment of Mbd3 to the Oct4 

promoter during differentiation is reduced upon HypB knockdown. So far, attempts to 

reproduce the data of recruitment of Mbd3 to the promoter of Oct4 (Gu et al., 2006) 

failed. It is still possible that Mbd3/NuRD function in the coding region as proposed 

above, which results in the similar phenotypes between Mbd3-null and HypB 
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knockdown ES cells. Alternatively, HypB may function in a distinct way, independent of 

its activity towards histone.  

 

 Figure 56. Working model of H3K36me3 on the promoter of Oct4 during differentiation 
HypB-mediated H3K36me3 is involved in facilitating or reinforcing the recruitment of the NuRD complex 
to the Oct4 promoter after differentiation. CR2: conserved region 2. (Adapted from Gu et al., 2006)  

To understand the molecular mechanism of HypB and H3K36me3 in differentiation, 

genome wide mapping of H3K36me3 and HypB during differentiation by ChIP-chip or 

ChIP-seq, transcription profiling gene expression during differentiation in HypB 

knockdown cells, and identification of HypB interaction partners in undifferentiated 

versus different stages of differentiation would be worthwhile to be performed. 

3.4 The dynamics of H3K36 methylation on chromatin 

The immunofluorescence staining showed that H3K36me1 and H3K36me2 not only 

localized in euchromatin, but also showed heterochromatic enrichment at DAPI dense 

region (Figure 15). In undifferentiated ES cells, these two H3K36 methyl markers were 

present in euchromatin at low levels. Upon differentiation, global levels increased and 

correlated inversely with the presence of the stem cell marker Oct4 (Figure 22). 

Importantly, H3K36me1 and H3K36me2 gained heterochromatic enrichment upon 

differentiation (Figure 23). Accordingly, in mouse oocytes and early embryos, no 

heterochromatic localization of H3K36me1 or H3K36me2 was observed. The staining of 

H3K36me2 in oocyte and early embryo is shown in Figure 57. This may indicate that 

these two methyl markers acquire heterochromatic enrichment during differentiation at 

specific stage of early embryonic development and play an important role during early 

development.  
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The putative candidates of H3K36 methyltransferase Nsd2 and Nsd3 showed a weak in 

vitro HMT activity towards H3. Interestingly, when Nsd2 and Nsd3 were overexpressed 

using EGFP fusion constructs in NIH3T3 cells, both proteins showed localization at 

heterochromatin (Figure 58). The presence of PWWP domains in Nsd2 and Nsd3 may 

explain their heterochromatic localizations since the similar PWWP domain in Dnmt3a 

and Dnmt3b targets them to heterochromatin (Chen et al., 2004). The localization of 

Nsd2 and Nsd3 protein is currently under investigation with the antibodies generated in 

our lab.  

 

Figure 58.  Localization of overexpressed Nsd2, Nsd3, and HypB 
Nsd2-EGFP and Nsd3-EGFP localized to euchromatin and Heterochromatin. HypB-EGFP only 
localized to euchromatin. 

 

 

It still needs to be clarified whether Nsd2 and Nsd3 are responsible for H3K36me1 

and/or H3K36me2 at heterochromatin in mammals and if the gain of H3K36me1 and 
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H3K36me2 at heterochromatic region has functional significance during embryo 

development. A PWWP domain is also present in the Nsd1 protein; it might recruit Nsd1 

to heterochromatin as well. 

The question remains why H3K36me1 and H3K36me2 are not present at pericentric 

heterochromatin in undifferentiated ES cells. One possibility is that the chromatin state 

or associated factors in undifferentiated ES cells block the recruitment of the Nsd 

proteins. The second possibility is that the pericentric heterochromatin undergoes some 

kind of maturation during differentiation that allows the targeting of the Nsd proteins in 

differentiated cells. 

In contrast, H3K36me3 only localizes in euchromatin. In undifferentiated ES cells, 

H3K36me3 is present in euchromatin at low levels. Upon differentiation, global levels 

increased and correlated inversely with the presence of the stem cell marker Oct4. 

Overexpressed HypB-EGFP in NIH3T3 cells localized to euchromatin and correlate with 

the localization of H3K36me3 (Figure 58). We can not completely exclude the activity of 

HypB for H3K36me1 and H3K36me2 in vivo, although only decrease of H3K36me3 was 

observed in HypB knockdown cells.   

Interestingly, H3K36me3 labels oocyte and maternal genome in early zygotes (Figure 

59), reflecting establishment during transcription occurring in growing oocyte and stable 

inheritance of this marker to the embryo. H3K36me3 is lost during first round of 

replication, transition form early to late zygote. H3K36me3 is newly established in late 2-

cell embryo, concurrent with genome wide activation of transcription. It will be 

interesting to study the function of H3K36me3 during early embryo development by 

RNAi or gene targeting. 
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3.5 Additional roles of H3K36 methylation 

H3K36 methylation is implicated in other processes. In yeast, the SET2 deletion strain 

showed a mild phenotype to irradiation, implicating the role in DNA repair (Game et al., 

2006). The increase of antisense transcripts in the SET2 deletion strains is generally 

associated with hypersensitivity to DNA-damaging agents (Nicolas et al., 2007). MRG15 

is present in the Tip60 complex, which selectively acetylates histone variant and results 

in histone variant exchange at DNA lesions (Kusch et al., 2004). Immunostaining in 

irradiated U2OS cells show that H3K36me3 is clearly excluded from phosphorylated 

H2A.X foci, a marker of double stand break sites (Figure 60). Further studies need to 

address if H3K36 methylation is indeed involved in DNA repair.   

 

Figure 60. H3K36me3 was excluded from DNA double stands break 

U2OS cells were exposed to 10 Gy ionizing irradiation and examined 15 min later by 
immunofluorescence. 

 

 

In C. elegans, H3K36me2 methylated by Mes-4 participates in X-linked gene silencing, 

together with Mes-2/-3/-6. H3K36 methylation may function in Drosophila dosage 

compensation because of its crosstalk with H4K16 acetylation ( Bell et al., manuscript in 

preparation) and targeting of MSL3 was found toward the 3’ end of the gene and 

dependent on gene transcription (Kind and Akhtar, 2007). The distribution patterns of 

H3K36 methylation on autosomes and sex chromosomes in mammalian cells are 

unknown yet. It will be very interesting to investigate if the H3K36 methylation in 
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mammals functions in X-linked gene silencing by a similar mechanism in C. elegans, 

and in dosage compensation by a similar mechanism in Drosophila.  

3.6 H3K36 methyltransferase and cancers 

All three genes NSD1, NSD2, and NSD3 have been implicated in cancer. 

Rearrangements of the genetic sequences of NSD1 and NSD3 that result in truncations 

are associated with acute myeloid leukemia, and a fusion of NSD2 that is thought to 

cause overexpression of the gene is associated with multiple myeloma (Schneider et 

al., 2002). NSD3 is also rearranged in several cancerous cell lines and primary breast 

carcinomas (Schneider et al., 2002). Recently, it has been reported that NUP98-NSD1 

links H3K36 methylation leukaemogenesis. It binds to genomic elements adjacent to 

HoxA7 and HoxA9, maintains H3K36 methylation and prevents EZH2-mediated H3K27 

methylation for transcription repression of Hox-A locus during differentiation (Wang et 

al., 2007).  

HYPB has been identified as a candidate gene deleted at 3p21.31 in multiple myeloma 

by array comparative genomic hybridization (Carrasco et al., 2006). HYPB is 

downregulated in leukemia (Figure 61). It will be highly interesting to investigate if HYPB 

may act as a tumor suppressor gene and if downregulation of HYPB promotes cancer 

stem cell self-renewal.  

 

Figure 61. Downregulation of HYPB in leukemia 

Data was obtained from http://www.oncomine.org/main/mainx.jsp 
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3.7 Conclusion 

HypB is identified as a major H3K36 trimethylase in vivo. H3K36me3 localizes to 

euchromatin. The levels of H3K36me3 are low in undifferentiated ES cells and increase 

in differentiating ES cells identified by the low levels of Oct4. HypB knockdown cells fail 

to repress the stem cell-specific genes and activate differentiation-specific gene after 

differentiation. Thus, HypB-mediated H3K36me3 has an important role in facilitating ES 

cell differentiation. 

H3K36me1 and H3K36me2 localize to both euchromatin and heterochromatin in 

differentiating ES cells and terminally differentiated NIH3T3 cells. In contrast, these two 

methyl markers only localize to euchromatin in undifferentiated ES cells and in early 

mouse embryo, suggesting heterochromatic gain H3K36me1 and H3K36me2 during 

differentiation.   

The mechanism of H3K36me3 in facilitating ES cell differentiation need to be further 

dissected. Experiments will be performed to investigate whether the known and the 

potential pathways discussed above are involved in the observed phenotype of HypB 

knockdown cells. Genome wide mapping of H3K36me3 and HypB during differentiation 

by ChIP-chip or ChIP-seq, transcription profiling gene expression during differentiation 

in HypB knockdown cells, and identification of HypB interaction partners in 

undifferentiated versus different stages of differentiation will be informative to 

understand the function of HypB and H3K36me3. 
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CHAPTER 4. MATERIALS AND METHODS 

4.1 Materials 

4.1.1 Cell lines and culture media 

NIH3T3 mouse fibroblasts, ATCC CRL-1658. Cells are cultured in DMEM 

supplemented with 10% FCS. 

293 human embryonic kidney carcinoma, ATCC CRL 1573. Cultured in DMEM 

supplemented with 10% FCS.  

U2OS human bone osteosarcoma epithelial cells, obtained from the cell 

collection of the Antoine Peters laboratory. Cells are cultured in DMEM 

supplemented with 10% FCS. 

CCE mouse embryonic stem (ES) cell line, obtained from the cell collection of 

the Antoine Peters laboratory.  

PGK12 mouse embryonic stem (ES) cell line, obtained from the cell collection of 

the Antoine Peters laboratory. 

LF2 mouse embryonic stem (ES) cell line, obtained from the cell collection of 

the Antoine Peters laboratory.  

Ecophoenix helper-free retrovirus producer lines, obtained from the cell collection of 

the Antoine Peters laboratory.  

 

Dulbecco's Modified Eagles Medium (DMEM)  Invitrogen/Gibco BRL  

Fetal Calf Serum (FCS)        Invitrogen/Gibco BRL  

Fetal Calf Serum (FCS) (for ES maintenance) Invitrogen/Gibco BRL 

Penicillin G/Streptomycin (100x)     Invitrogen/Gibco BRL 

Glutamine (200 mM)        Invitrogen/Gibco BRL  

Trypsin/EDTA (1x)         Invitrogen/Gibco BRL  

LIF              Peters Lab 

Sodium Pyruvate         Invitrogen/Gibco BRL  

Non-Essential Amino Acids      Invitrogen/Gibco BRL  

β-Mercaptoethanol         Invitrogen/Gibco BRL  
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4.1.2 Antibodies  

Goat α -mouse HRP         Sigma 

Sheep α -rabbit HRP        GE healthcare 

Rabbit α -goat HRP         Santa Cruz 

Goat α -rabbit-Alexa 488 or 565 conjugates  Molecular Probes 

Goat α -mouse-Alexa 488 or 565 conjugates Molecular Probes 

Anti-H3K36me1          Abcam 

Anti-H3K36me2          Upstate 

Anti-H3K36me3          Abcam 

Anti-H3K4me3          Upstate 

PCNA             Dako 

H3 serine 10 phosphorylation      Upstate 

Oct4             BD pharmingen, Santa cruz 

Mbd3             Santa cruz 

Rabit IgG            Sigma 

 
4.1.3 Histone peptides 
H3 (1-20)     ARTKQTARKSTGGKAPRKQL-cys 

H3 (1-20) K4L   ARTLQTARKSTGGKAPRKQL-cys 

H3 (1-20) K9L   ARTKQTARLSTGGKAPRKQL-cys 

H3 (19-38)    QLATKAARKSAPATGGVKKP-cys 

H3 (19-38) K27L   QLATKAARLSAPATGGVKKP-cys  

H3 (19-38) K36L   ARKSAPATGGVLKPHRYRPGT-cys 

H3 (19-38) K37L   ARKSAPATGGVKLPHRYRPGT-cys 

H3 (19-38) K36LK37L ARKSAPATGGVLLPHRYRPGT-cys 

H3 (19-38) K36me1  ARKSAPATGGVK (Me) KPHRYRPGT-cys 

H3 (19-38) K36me2  ARKSAPATGGVK (Me2) KPHRYRPGT-cys 

H3 (19-38) K36me3  ARKSAPATGGVK (Me3) KPHRYRPGT-cys 

H4 (12-31)    KGGAKRHRKVLRDNIQGITK-cys 

H4 (12-31) K20L   KGGAKRHRLVLRDNIQGITK-cys 

H1a (18-33)    PAAAKKTKKPAKAAAP-cys 

H1b (18-33)    SPAKKKTTKKAGAAKR-cys 

H1c (18-33)    APAKKKAAKKPAGVRR-cys 
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H1d (18-33)     TPVKKKAKKTGAAAGK-cys 

H1e (18-33)     TPVKKKARKAAGGAKR-cys  

H1t (20-35)    PSSKRRGKKPGLAPAR-cys 

H10 (12-27)     KPKRAKASKKSTDHPK-cys 

 
4.1.4 RT-PCR primers of gene expression 
Human genes: 

Gene   Primer     Sequence (5’ to 3’) 

NSD1   F       TCCAGAAGTACCCACCCACTG 

    R      GCGCATCAACCGACCTTTAG 

NSD2   F       TGAAGCTGAGGACACACCCA 

    R       GTTGCTGCCTGGCTCTTGAG 

NSD3   F       CGGGTACGAGAGTATAAAGG 

    R       CTGAGGTCGGGGTTTCCGAA 

HypB   F       AAAATGGACTGTGAACGGACAA 

    R       TGGCTGATCCGCAGAAACA 

GAPDH  F        TTGCCATCAATGACCCCTTCA 

    R        CGCCCCACTTGATTTTGGA 

 

Mouse genes: 

Gene   Primer     Sequence (5’ to 3’) 

Nsd2   F       GTGCACGCCAGTATCATGTAC 

    R        CTCTCAATCTCCCCGAAATAG 

HypB   F       GAGGTGTATCGGATTCCAAAG 

    R        TGACAGAGAGCCCCGTCGTTT 

Oct4   F       CACACTCTACTCAGTCCCTTTTCCT 

    R        CAAAGCTCCAGGTTCTCTTGTCTAC 

Rex1   F        GTCCTTTTGATGGCTGCGAG 

    R        TCCCCAGTGCCTCTGTCATT 

Nanog   F        CCTCCAGCAGATGCAAGAACTC 

    R        CTTCAACCACTGGTTTTTCTGCC 

 

Sox2   F        CGAGATAAACATGGCAATCAAATG 
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    R        AACGTTTGCCTTAAACAAGACCAC 

Brachyury F        GCTCTAAGGAACCACCGGTCATC 

    R        ATGGGACTGCAGCATGGACAG 

Gata6   F        GGGCCTTGTCTGCTAAGGAAG 

    R        CCACGAACGCTTGTGAAATG 

Flk1   F        CTGTGGCGTTTCCTACTCCT 

    R        AGGAGCAAGCTGCATCATTT 

Fgf5   F        CTGTATGGACCCACAGGGAGTAAC 

    R        ATTAAGCTCCTGGGTCGCAAG 

Nestin   F        CAGCAACTGGCACACCTCAA 

    R        CCCAAGGAAATGCAGCTTCA 

Dppa3   F        AGGCTCGAAGGAAATGAGTTTG 

    R       TCCTAATTCTTCCCGATTTTCG 

Gapdh  F        ATGTTCCAGTATGACTCCACTCACG 

    R        GAAGACACCAGTAGACTCCACGACA 

 

4.1.5 RT-PCR primers on Oct4 locus of ChIP 
Region  Primer     Sequence (5’ to 3’) 

R1    F    CATTATAGGTGTGGCATTCCGCATCTG 

    R    TGCCACAAACCACCTGTATTTTAGAACCA 

DE    F    GGAACTGGGTGTGGGGAGGTTGTA 

    R    AGAAGATTAAGGAAGGGCTAGGACGAGAG 

R2    F    TGCTCTGGGCTTTTTGAGGCTGTGTGATT 

    R    TGGCGGAAAGACACTAAGGAGACGGGATT 

PP    F    TGGGCTGAAATACTGGGTTC 

    R    GTCCTTACAGCCCACTCAG 

R3    F    CCCTGCAGAAGGAGCTAGAACA 

    R    CCTACATTAAGAGCCGTGAGATCAG 

R4    F    CACACTCTACTCAGTCCCTTTTCCT 

    R    CAAAGCTCCAGGTTCTCTTGTCTAC 
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4.1.6 siRNA and shRNA templates 
shRNA/pLKO.1 for human genes (Sigma): 

NSD1: TRCN0000061353 CCGAACACTTTCCCACTGTTA 

NSD2: TRCN0000019816 CCTCTCTTTGAATCTTCCATT 

NSD3: TRCN0000015613 CGAGAGTATAAAGGTCATAAA 

     TRCN0000015615 CGAGAATATCATGTCCAGTTT 

HYPB: TRCN0000003030 CCTGAAGAATGATGAGATAAT 

     TRCN0000003031 GCAAGTAAAGCCTGTCCTCAA 

 TRCN0000003032 GCCCTATGACTCTCTTGGTTA 

 TRCN0000003033 CTTACCTGTCTGGAACTCATA 

Stealth RNA for human HYPB (Invitrogen): 

Sense: AUAAGGAGCAGGAGAACACACUGGG 

Antisense: CCCAGUGUGUUCUCCUGCUCCUUAU 

shRNA/MSCV-LMP for mouse HypB:  

CGGAAATAAGCAGCAATTCAA 

Stealth RNA for mouse HypB (Invitrogen):  

Sense Sequence: GCACCGGAAAUAAGCAGCAAUUCAA 

Antisense Sequence: UUGAAUUGCUGCUUAUUUCCGGUGC 

4.1.7 Plasmids 
Map of the general plasmids, pGEX-6P-1, pMSCV-LMP, and pCX-EGFP are shown in 

Appendix. 

shRNA expression plasmids: 

pLKO.1-scramble 

pLKO.1-shNSD1 

pLKO.1-shNSD2 

pLKO.1-shNSD3 

pLKO.1-shHypB 
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pMSCV-LMP-shHypB 

Eukaryotic expression plasmids: 

pCX-Nsd2-EGFP 

pCX-Nsd3-EGFP 

pCX-HypB-EGFP 

 
4.1.8 Enzymes 

Enzymes were obtained form New England Biolabs (NEB), Roche Diagnostics, or 

Promega and were used in the buffer combinations recommended by the manufacturer. 
Restriction enzymes     NEB, or Roche 

Calf intestine phosphatase (CIP)  NEB 

T4 DNA ligase       NEB 

Pfu DNA polymerase     Promega 

Pfx DNA polymerase     Invitrogen 

Taq DNA polymerase      Promega 

Tag plus DNA polymerase    Statagene 

RNaseA        Roche 

RNase Inhibitor RNasin®    Promega 

 
4.1.9 Bacteria and media formulations 
Top10:       Invitrogen 

Top10F’:      Invitrogen 

DH5α:      BD/Takara. 

BL21(DE3):      Stratagene 

BL21 (DE3) pLysS:      Invitrogen 

Bacteria are cultured in Luria Bertani (LB) medium at 37°C in presence of the 

corresponding selection antibiotics.  

 

4.1.10 Kits 
Bradford protein determination assay   BioRad 

ECL Western Blotting Kit       GE Healthcare 

LipofectAMINE 2000 transfection reagent  Qiagen 

pcDNA/HisMax TOPO TA expression Kit  Invitrogen 

THERMOSCRIPT RT-PCR System    Invitrogen 

BrdU Flow Kits          BD Biosciences 
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Plasmid Mini, and Maxi Kit      Qiagen 

QIAquick Gel Extraction Kit      Qiagen 

QIAquick PCR Purification Kit     Qiagen 

RNeasy Mini Kit          Qiagen 

Ni-NTA Superflow         Qiagen 

Talon metal affinity resin       Takara 

 
 
4.2 Methods 
 
4.2.1 Cell culture: 
293, U2OS, Ecophoenix, and NIH3T3 cells were cultured in DMEM supplemented with 

10% FCS.  Mouse ES cells CCE, PGK12, and LF2 were cultured in High glucose 

DMEM supplemented with 15% FCS (for ES maintenance), 10 ng/mL LIF (Leukemia 

Inhibitory Factor), 1 mM Sodium Pyruvate, 0.1 mM Non-Essential Amino Acids, 1mM β-

Mercaptoethanol. ES cells were cultured on gelatinized tissue culture dishes. ES cells 

were passaged every 2-3 days at a ratio of 1/20 - 1/40 by washing with PBS, 

dissociating with 0.1 trypsin-EDTA for 5 min at 37°C, and resuspending in ES medium. 

Media were change daily. All cell culture media are supplemented with 100U/ml 

penicillin G, 100μg/ml streptomycin, and 2mM glutamine and all cells are cultured under 

5% CO2 in atmospheric air at 37°C unless otherwise stated.  

 

4.2.2 shRNA plasmid transfection 
Transfection was performed according to manufacture’s protocol (Invitrogen’s 

Lipofectamine 2000). Briefly, cells (2 x 105) were seeded in 6-well plates 1 day before 

transfection. 2μg shRNA plasmids were transfected by 5 μl Lipofectamine 2000 in 2 ml 

medium per well.   

 
4.2.3 Stealth RNA transfection 
Transfection was performed according to manufacture’s protocol (Invitrogen’s 

Lipofectamine 2000). Briefly, cells (2 x 105) were seeded in 6-well plates 1 day before 

transfection. Transiently transfected cell were either harvested at day 3 without 
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selection or at day 5 with puromycin selection for analysis.  20nM stealth RNA was 

transfected by 5 μl Lipofectamine 2000 in 2 ml medium per well.  

 
4.2.4 siRNA and shRNA vector design 
shRNA in pLKO.1 vector targeting human NSD1, NSD2, NSD3, and HYPB genes were 

purchased from Sigma. Stealth RNA (25 base-pair blunt siRNA) targeting human and 

mouse HypB gene were purchased from Invitrogen. A miR30-based shRNA template 

targeting mouse HypB was cloned into MSCV-LTRmiR30-PIG (LMP) vector according 

to the manufacture’s protocol (Open Biosystems).  

 

4.2.5 Retroviral infection of shRNA 
To produce viruses, 5 x 106 ecophenix cells were seeded on 10-cm dishes 12-24 hours 

before transfection. 24μg shRNA plasmids were transfected by 60 μl Lipofectamine 

2000 per well. After 6 hours incubation at 37ºC, the medium was change to ES medium. 

24 hours after transfection, cells were transferred to 32ºC and cultured for 48 hours. 

The supernatant was collected and filtered by 0.45-μm filter. The supernatant was 

supplemented with 5μg/ml polybrene and were ready to use or stored at -80ºC. 

To infect ES cells, cells were plated in 6-well dishes 12 hours before infection. The 

medium was replaced by 2.5 ml supernatant containing viruses and spin at 1000g for 1 

hour. The cells were incubated for 6 hours at 37ºC. Then the supernatant was replaced 

by fresh ES medium and cultured for shRNA expression. Infected cells harvested at 72 

hours after infection or after selection by puromycin containing medium were used for 

gene expression analysis. To establish a stable pool of overexpressing shRNA, ES cells 

were sequentially infected, ~12 hours apart.  GFP positive cells sorted by FACS were 

put in culture under puromycin selection.   

 

4.2.6 Staining of live cells with Hoechst 33342 
Hoechst 33342 was added to 1 x 106 cells/ml cell suspension in FACS buffer (PBS 

without Ca2+ and Mg2+ with 3% FCS) to obtain a final fluorophore concentration of 2.0 

μg/ml. Cells were incubated 20 min at 37ºC. Cells were sorted by flow cytometer for UV 

excitation at 340-380 nM.  
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4.2.7 Cell proliferation and cycle analysis 
To assay proliferation, CCE cells were seed at 2.8 x 104 cells (in triplicate) in gelatinized 

6-well dishes and transfected with stealth RNA at the second day (day 0). Cells were 

counted by CASY cell counter from day 0 to day 3.  

The BrdU incorporation study was performed according to manufacturer’s protocol (BD, 

BrdU Flow Kit). Briefly, CCE cells transfected by stealth RNA were incubated with BrdU 

for 1 hour at 37ºC. The incorporated BrdU was stained with specific anti-BrdU 

fluorescent antibodies. 7-amino-actinomycin D (7-AAD) was used as a staining dye for 

total DNA to define G1, S, or G2/M phases of cell cycle. The cells were analysed by 

flow cytometry. 

 

4.2.8 Immunoflurorescense staining  
ES cells were trypsinized and placed on poly-L-lysine coated coverslips for 10 min to 

attach. Cells were fixed with 2% paraformaldehyde in PBS (pH 7.4), permeabilized in 

0.1% Triton-X100 in 0.1% sodium citrate and blocked for 30 min in 0.1% Tween-20 in 

PBS containing 2.5% BSA and 10% normal goat serum at RT. Fixed cells were blocked 

30 minutes at RT in 0.1% Tween-20 in PBS containing 2.5% BSA and 10% normal goat 

serum, and were then incubated with primary antibodies in blocking solution for 2 h at 

4ºC. Double antibody staining was accomplished by mixing appropriate different primary 

and different secondary antibodies for simultaneous incubation. Cells were washed 

three times for 10 min in 0.1% Tween-20 in PBS containing 0.25% BSA before 

application of secondary antibodies. For detection, anti-rabbit IgG-Alexa 488, anti-

mouse IgG-Alexa 568 (Molecular Probes) secondary antibodies were diluted 1:500 in 

blocking solution and cells were incubated for 1 h at RT followed by three washing steps 

a 10 min in 0.1% Tween-20 in PBS in the dark. Cells were mounted in Vectashield 

containing DAPI (Vector laboratories). 

293 cells were grown on poly-D-lysine treated coverslips, U2OS and NIH3T3 cells were 

grown on normal coverslips 1 day before staining. The procedures were performed 

identical as described for ES cells. 

 

4.2.9 GST fusion protein cloning, expression, and purification 
DNA fragments coving catalytic domain (pre-SET, SET, and post-SET domain) of Nsd1, 

Nsd2, Nsd3, and HypB were cloned into pGEX-6P-1 vector. Transformation of plasmid 
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into BL21 bacterial was performed according to the manufacture’s protocol 

(Stratagene). Overnight bacterial culture from single colony was diluted 100x and 

cultured at 37ºC for ~2 hours to OD 0.6-0.8, then induced by 0.1 mM IPTG for 6 hours 

at 28ºC. Bacterial pellets were suspended in lysis buffer (1% Triton X-100, 50mM Tris-

HCl pH7.5, 150nM NaCl, 1mM DTT, protease inhibitor cocktail) with 0.25mg/ml 

lysozyme on ice for 20 min and then sonicated 3x 10 seconds with 50%. Recombinant 

proteins were purified using Glutathione Sepharose 4 Fast Flow according to the 

manufacture’s protocol (Amersham Pharmacia Biotech).  

 

4.2.10 Histone methyltransferase assay 
In a final reaction volume of 20 μl, the protein sample was incubated at 30ºC for 1 hr in 

a reaction buffer containing 50 mM Tris-HCl, 4 mM DTT, and 1 μM 3H-labeled S-

adenosyl-L-methionine [3H ]SAM (GE Healthcare). Different pH of Tris-HCl and different 

Mg2+ concentration was titrated.  2μl of 10mM histone tail peptides, 2μg of native 

histone mixture (Roche), histone octamers, or oligonucleosomes was used as 

substrates. The reaction was stopped by addition of SDS sample buffer, and the 

reaction mixtures were fractionated by 12% or 15% SDS-PAGE. Separated peptides or 

histones were then transferred to a PVDF membrane and visualized by Ponceau 

staining. The membrane was exposed to phosphoimager screen overnight or longer 

and scanned by Typhoon 9200. 

 
 

4.2.11 RNA isolation and reverse transcription 
Total RNA was isolated by Trizol according to the manufacturer’s instructions 

(Invitrogen). 1.25μg total RNA was reverse transcribed with oligo(dT) primers for 60min 

at 50ºC according to the manufacturer’s protocol (THERMOSCRIPT RT-PCR System, 

Invitrogen).  

 

4.2.12 In vitro ES cell differentiation 
Differentiation media consisted of either ES medium without LIF or ES medium without 

LIF and supplemented with 0.1 μM all-trans retinoic acid. For RNAi experiment, medium 

was changed every day. For time course of differentiation, ES cells were plated on 10-

cm gelatinized tissue culture dishes. In differentiated medium with LIF, ES cells were 
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seeded at a ratio of 1/2 for 36 hours differentiation, 1/3 for 48 hours differentiation, 1/10 

for 72 hours differentiation, 1/40 for 96 hours differentiation, and 1/120 for 144 hours 

differentiation; In ES medium without LIF and supplemented with 0.1 μM all-trans 

retinoic acid, 1/2 for 36 hours differentiation, 1/3 for 48 hours differentiation, 1/5 for 72 

hours differentiation, 1/10 for 96 hours differentiation, and 1/40 for 144 hours 

differentiation. Media were change every 2 days. Control cells were harvested 2 days 

after plating in +LIF media. Cells were harvested for total RNA isolation, cell extraction, 

immunostaining or chromatin immunoprecipitation. 

 
4.2.13 Chromatin immunoprecipitation (ChIP) 
Cells were crosslinked by adding 11x fixation solution (50mM Hepes at pH7.5, 1mM 

EDTA, 0.5mM EGTA, 100mM NaCl, 11% Formaldehyde) for 10 min at RT. Crosslinking 

was stopped by adding 11x glycine (1.375M Glycine) to a final concentration of 125mM. 

Cells were lysed with SDS buffer (50mM Tris-HCl at pH8.0, 1% SDS, 10mM EDTA) to 

20 x 106 cells/ml in the presence of 1x protease inhibitor (complete, Roche) for 5 min at 

RT and diluted to 5 x 106 cells/ml with dilution buffer (20mM Tris-HCl at pH8.0, 150mM 

NaCl, 1% triton X-100, 2mM EDTA). Cell lysates were sonicated to a genomic fragment 

length of 500-1000 base pair. Cell lysates were diluted 2.5x to 0.1% SDS and 

precipitated by primary antibody with rotation overnight at 4ºC. Overnight pre-blocked 

protein A beads were added to cell lysates and rotated at 4ºC for at least 4 hours. 

Beads were washed  3x with low salt washing buffer (20mM Tris-HCl at pH8.0, 150mM 

NaCl, 1% triton X-100, 0.1% SDS, 2mM EDTA), 1x high salt washing buffer (20mM Tris-

HCl at pH8.0, 500mM NaCl, 1% triton X-100, 0.1% SDS, 2mM EDTA),and TE (10mM 

Tris-HCl at pH8.0, 1mM EDTA).  

 

4.2.14 Real time PCR 
Real time PCR was performed with ABI prism 7000 Sequence Detection System 

(Applied Biosystems). For gene expression analysis, real time PCR was performed 

using qPCR MasterMix Plus for SYBR green I QGS (Eurogentec) or SYBR green PCR 

master mix (Applied Biosystems). 5μl 20x diluted cDNA and 5μl genomic DNA was 

used for 50 μl reaction. Differences for expression level and ChIPed DNA were 

calculated according to the 2-ΔΔCt method (Livak and Schmittgen, 2001).  
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4.2.15 Histone isolation 
1~2 x 106 cells were suspended in 1 ml lysis buffer (10mM Tris-HCl at pH6.5, 1% Triton 

X-100, 20mM MgCl2, 50mM sodium bisulfite, 8.6% Sucrose) and homogenized by 

passing through microtip (200ul) 20 x. Collect nuclei by centrifugation at 1000g for 5 

min. The nuclei were washed by lysis buffer for 3 times. Resuspended the nuclei in 

100ul Tris-EDTA solution (30mM Tris-HCl at pH7.5, 50mM EDTA). Add 1.1 μl 

concentrated H2SO4 and vortex, then incubate on ice more than 1 hour. Take 

supernatant after centrifugation at 14000rpm for 10 min at 4ºC, and add 1ml acetone to 

the supernatant. After overnight incubation at RT, centrifuge at 13000rpm for 10 min at 

RT. Wash the pellet with acetone and air-dry. Resuspend the pellet in water for 

analysis.   

 
4.2.16 Prepare cell extraction 
 

Cells were resuspended in buffer A (10mM HEPES pH7.9, 5mM MgCl2, 0.25M Sucrose) 

with 0.1% NP-40. The suspension was passed through an 18G1 needle 4 times and 

incubated on ice for 10 minutes, then spin at 8000rpm for 10 minutes. The supernatant 

was kept as cytosolic fraction. The pellet was resuspended in buffer B (10mM HEPES 

pH7.9, 1mM MgCl2, 0.1mM EDTA, 25% glycerol) with 0.4M NaCl. The suspension was 

passed through an 18G1 needle 4 times and incubated on ice for 30 minutes, then spin 

at 10000rpm for 1o minutes. The supernatant was kept as 0.4M nuclear fraction. The 

pellet was resuspended in buffer B with 2M NaCl. The suspension was passed through 

an18G1 needle 4 times, incubated on ice for 30 minutes and sonicated 5x 15 seconds 

on ice. The suspension was kept as 2M nuclear fraction. All the buffers are 

supplemented by protease inhibitor cocktail (Roche) before use. All fractions of cell 

extraction were dialyzes against buffer BC100 (25nM Tris-HCl pH7.9, 100mM NaCl, 

0.2mM EDTA, 20% glycerol) at 4ºC. 

 

4.2.17 Western blot  
Proteins were separated on a SDS-PAGE gel and blotted onto Hybond-P membranes 

(Amersham). Membranes were probed for primary antibodies and detected with anti-

rabbit HRP or anti-mouse HRP secondary antibodies followed by ECL detection 

(Amersham).  
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CHAPTER 5. APPENDIX 

5.1 Vector information of pGEX-6P-1 

 

 

 

 

 

 

 

Figure 62. Vector map of pGEX-6P-1 
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5.2 Vector information of MSCV-LMP 

 

 

 

 

Figure 63. Vector map of MSCV-LMP  
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5.3 Vector information of pCX-EGFP 

 

 

 

 

 
Figure 64. Vector map of pCX-EGFP 
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