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1 Summary 
 

Ca2+ ions play key signalling roles in all fundamental neurophysiological processes. The 

diversity of these roles is accomplished with astounding specificity, velocity and flexibility. 

Voltage-gated Ca2+ channels represent an important Ca2+ source in neurons, as they allow for 

Ca2+ influx upon excitatory electrical stimulation. My thesis has addressed the signalling roles 

of the third of the three major classes of VGCCs, the CaV3 Ca2+ channel family. These 

channels give rise to the low-voltage activated Ca2+ currents, also called T-type Ca2+ currents, 

and are predominantly found in neurons capable of generating rhythmic burst discharges. For 

example, in thalamic neurons, Ca2+ influx through these channels is well known to be critical 

for the generation of rhythmic burst discharges during neuronal oscillations typical during 

sleep. However, whether IT-mediated Ca2+ entry adopts signalling roles in thalamic neurons 

has not been addressed. I hypothesized that identifying Ca2+-dependent targets of CaV3 

channels in the thalamus would help to elucidate Ca2+-dependent signalling processes related 

to sleep, and, thus, ultimately help to assess the roles of sleep in neuronal function. I have 

identified a dual signalling role for Ca2+ entry through CaV3 channels using 

electrophysiological, imaging, genetic, and computational techniques. I also demonstrate that 

this Ca2+ signalling process occurs in a compartmentalized structure and is highly organized. 

In the nRt, which is well-known for its vigorous bursting activity during sleep-related large-

scale oscillations, we found that IT-mediated Ca2+ signalling is the dominant Ca2+ source in 

nRt dendrites, raising Ca2+ to a high level of ~ 0. 7 µM/burst. In these dendrites, the Ca2+-

dependent SK2-type K+ channels are selective targets of T-type Ca2+. These SK2 channels are 

located exclusively in nRt dendrites and are gated rapidly by IT. However, this rapid coupling 

between T-type Ca2+ and SK channels is not static. Instead, we identified SERCA pumps as 

modulators of the functional complex of CaV3 and SK2 channels. This modulation occurs in a 

competitive manner, since SERCA pumps sequestrate Ca2+ from the same pool of Ca2+ ions 

that gates SK2 channels, while Ca2+ entering through other sources is not taken up. The 

interplay of CaV3 channels, SK2 channels and SERCA pumps suggests that nRt dendrites are 

specialized in handling T-type Ca2+ to regulate oscillatory dynamics. Moreover, my work 

suggests that these cells have developed unique strategies to handle large, repetitive Ca2+ 

oscillations, and to sequester them specifically, thereby potentially using them to control 
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endoplasmic reticulum-dependent neuronal functions, such as Ca2+-induced Ca2+ release or 

even protein synthesis. 

In collaborative efforts, we addressed the physiological relevance of our findings in vivo 

by studying the sleep behaviour and physiology of SK2 KO mice. Knocking out SK2, the 

selective target for T-type Ca2+, revealed a strong attenuation of low-frequency rhythmic 

activity in the EEG during NREMS and a destabilization of sleep behaviour that is manifested 

by an enhancement of NREMS fragmentation. These data indicate that SK2 channels strongly 

control sleep, and the selective weakening of frequency bands related to nRt function 

indicates that the signalling complex identified in my work could act as an amplifier of the 

synaptic and cellular events leading to large-scale thalamocortical oscillations typical for 

normal sleep. 

Altogether, my thesis presents a fully reconstructed link, from a single gene encoding a 

Ca2+-gated K+ channel, to the mechanism of its gating via T-type Ca2+, to its role in cellular 

activity, to one of the most dramatic disturbances of a healthy sleep EEG. I demonstrate that 

sleep is accompanied by large, unique Ca2+ signalling events in thalamic neurons that might 

contribute to steer the electroencephalographic manifestation and behavioural stabilization of 

sleep. I propose that the identification of the molecular basis of these processes will help 

identify targets to improve sleep quality in disease. 
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2 Zusammenfassung 
 

Ca2+-Ionen spielen eine Schlüsselrolle in allen fundamentalen neurophysiologischen 

Prozessen. Die Vielfältigkeit dieser Rollen wird durch eine erstaunliche Spezifität, 

Geschwindigkeit und Flexibilität garantiert. Spannungsabhängige Ca2+-Kanäle sind wichtige 

Ca2+-Quellen in Neuronen, da sie als Antwort auf exzitatorische elektrische Stimuli einen 

Ca2+-Einstrom erlauben. Spannungsabhängige Ca2+-Kanäle werden in drei Hauptklassen 

unterteilt, CaV1, CaV2 und CaV3. In meiner Dissertation befasse ich mich mit der Frage, 

welche Rolle die spannungsabhängigen Ca2+-Kanäle der CaV3-Ca2+-Kanalfamilie in der 

neuronalen Signalfunktion von Ca2+ spielen. CaV3-Kanäle findet man vorwiegend in 

Neuronen, die zu gebündelten rhythmischen Entladungen fähig sind. CaV3-Kanäle liegen der 

Generation von Ca2+-Strömen zugrunde, die ihre Aktivierungsschwelle bei relativ 

hyperpolarisiertem Membranpotential haben, den sogenannten T-Strömen. In thalamischen 

Neuronen zum Beispiel sind T-Ströme entscheidend für die Generation von heftigen, 

rhythmischen Entladungen während schlaftypischen neuronalen Oszillationen. Ob jedoch 

CaV3-vermitteltes (T-typ) Ca2+ neben der elektrogenen Funktion auch eine Signalfunktion in 

thalamischen Neuronen innehat, wurde bisher nicht untersucht. Ich stellte die Hypothese auf, 

dass das Finden von Interaktionszielen des T-typ-Ca2+ im Thalamus hilft, für Schlaf potenziell 

wichtige Ca2+-abhängige Signalprozesse zu verstehen. Dies kann letztendlich helfen, die 

Rolle von Schlaf auf neuronaler Ebene zu verstehen. In meiner Dissertation habe ich mit 

elektrophysiologischen, bildgebenden, molekularbiologischen und computergestützten 

Techniken eine duale Signalfunktion von T-typ-Ca2+ identifiziert. Des weiteren zeige ich, 

dass diese Ca2+-Signalprozesse räumlich abgegrenzt und in hohem Grad organisiert sind. In 

Neuronen des nRt, die für seine lebhaften, gebündelten Entladungsaktivitäten während 

schlafspezifischen Oszillationen bekannt sind, haben wir gezeigt, dass T-typ-Ca2+ die 

intradendritale Ca2+-Konzentration auf den hohen Wert von 0.7 µM pro gebündelte Entladung 

rasch ansteigen lässt, und die dominante Ca2+-Quelle in den Dendriten der Neuronen des nRt 

darstellt. Die im nRt ausschliesslich in den Dendriten exprimierten Ca2+-abhängigen 

Kaliumkanäle des Typs SK2 sind ein selektives Ziel. Die schnelle funktionale Kopplung 

dieser beiden Kanäle ist nicht statisch. Wir haben gezeigt, dass die SERCA-Pumpen die 

Stärke dieser Kopplung modulieren. Die Modulation der Stärke der Kopplung des 

Signalkomplexes aus CaV3- und SK2-Kanälen basiert auf einer Kompetition zwischen SK2-
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Kanälen und SERCA-Pumpen selektiv um T-typ-Ca2+. Das Zusammenspiel von CaV3-

Kanälen, SK2-Kanälen und SERCA-Pumpen lässt vermuten, dass Dendriten des nRt im 

Umgang mit T-typ- Ca2+ spezialisiert sind, um die Dynamik von Oszillationen zu regulieren. 

Die Resultate meiner Arbeit lassen sogar vermuten, dass diese Zellen eine einzigartige 

Strategie im Umgang mit grossen, repetitiven Konzentrationsschwankungen von 

dendritischem Ca2+ entwickelt haben, und mit dessen spezifischen Aufnahme möglicherweise 

ihre ER-abhängigen Funktionen, wie CICR oder Proteinsynthese, kontrollieren. Die 

Kollaboration mit einer anderen Forschungsgruppe ermöglichte es uns, Fragen über die 

physiologische und verhaltensbiologische Bedeutung unserer Resultate in vivo nachzugehen, 

indem wir das Schlafverhalten und die Schlafphysiologie von SK2 KO Mäusen untersuchten. 

SK2 KO Mäuse zeigen im EEG während des NREMS eine ausgeprägte Verminderung von 

niederfrequenten Rhythmen und eine Destabilisierung des Schlafverhaltens, das sich in einer 

Zunahme der Schlafunterbrüche äussert. Diese Resultate deuten darauf hin, dass SK2 den 

Schlaf stark kontrolliert. Weiter deutet die selektive Verminderung von Frequenzbändern, 

welche mit der Aktivität des nRt in Zusammenhang stehen, darauf hin, dass der dreiteilige, 

funktionelle Komplex als Verstärker von synaptischen oder zellulären Funktionen agieren 

könnte, die im gesunden Organismus zu schlaftypischen thalamocorticalen Oszillationen 

führen. 

Zusammenfassend beschriebe ich in meiner Dissertation einen komplett rekonstruierten 

Zusammenhang zwischen einem einzigen Gen, welches einen Ca2+-abhängigen Kaliumkanal 

codiert, über dessen selektiven Öffnung durch T-typ-Ca2+, deren physiologischen Bedeutung 

auf zellulärer Ebene, und einer der dramatischsten Störungen eines Schlaf EEGs. Ich zeige, 

dass Schlaf von grossen Ca2+-Signalen in thalamischen Neuronen begleitet ist, welche 

beitragen die elektroenzephalographische Manifestation und die Stabilisierung des 

Schlafverhaltens zu lenken. Ich denke, dass die Identifikation der molekularen Basis dieses 

Prozesses helfen wird, pharmakologische Ansätze zur Verbesserung der Schlafqualität im 

kranken Organismus zu finden.  



Introduction 

 

7

 

3 Introduction 



Introduction 

 

8

 

The universality and versatility of Ca2+ 

signalling: Ca2+ sinks and Ca2+ sources in 

neurons and exemplary cases 
 

Otto Loewi, the Nobel laureate in physiology or medicine from 1936, once said: “Ja, 

Kalzium das ist alles….”. Indeed, Ca2+ ions are a most ubiquitous and versatile cellular 

messenger that couple electrical excitation to the activation of intracellular enzymes and 

signal transduction cascades. Ca2+ ions control a seemingly endless number of physiological 

processes, ranging from classical examples such as rapid muscle contraction and 

neurotransmitter release, to dendritic integration and synaptic plasticity, to long-term changes 

in gene transcription, cell proliferation and death, and thus ultimately to brain development, 

sensory motor control, learning and memory, and cognitive processing (Petersen et al., 2005). 

Thanks to the universality and diversity of Ca2+ signalling, the brain is uniquely able to adapt 

and modify its function for the long-term in response to brief, salient stimuli. In fact, a fully 

Ca2+-independent cellular process has been documented in only a few cases (see e.g. (Akiba 

and Sato, 2004; Doherty and Walsh, 1991)).  

The universality and versatility of Ca2+ functions is enabled through the diversification 

of its signalling mechanisms at multiple levels, from the initial Ca2+ entry to the ultimate 

signalling tasks.  

First, the Ca2+ signalling network is composed of a relatively limited number of Ca2+ 

sinks and sources, each of which, however, is found in multiple isoforms with different 

biophysical properties and subcellular locations.  

Second, Ca2+ signals vary in terms of their spatio-temporal patterning. Ca2+ signals may 

take place within spatial domains ranging from nanometres to meters (Berridge, 1997) and 

time windows ranging from fractions of seconds to days. This gives rise to a highly irregular 

distribution of intracellular Ca2+ levels within the cytosol at any given moment in time. For 

example, Ca2+ ions control fast and highly localized processes such as the fusion of 

neurotransmitter-containing synaptic vesicles (Schneggenburger and Neher, 2000), which 

occur at the synaptic terminals within nanometer domains. On the other hand, Ca2+ ions link 

dendritic electrical activity to slowly occurring changes in gene expression, triggered in the 

nucleus that is tens of micrometers distant (Finkbeiner and Greenberg, 1998). 



Introduction 

 

9

 

Third, thousands of Ca2+-sensitive proteins with different affinities, and subcellular 

locations act as Ca2+ sensors. Some of these proteins, such as calbindin or parvalbumin, 

merely act as buffers for Ca2+, some others, such as PKC and phospholipase A, use Ca2+ as a 

trigger for enzymatic activities, or, like CaM, act as a mediator without any intrinsic 

enzymatic activity as Ca2+ sensors or signal transducers for other proteins (Heizmann and 

Hunziker, 1991). 

Fourth, some Ca2+ signalling components are regulated or modulated by other signalling 

compounds and pathways, including Ca2+ itself (Catterall, 2000). The rate, for example, of 

Ca2+ sequestration by SERCA pumps is dependent on the [Ca2+]L (Solovyova et al., 2002).  

Fifth, in addition to the role of Ca2+ as a second messenger and a direct gating molecule, 

Ca2+ acts, like all cations, as a positive charge carrier in neurons. Electrochemically driven 

Ca2+ entry into the cytoplasm gives rise to an electrical signal. The electrogenic function 

further adds to the diversity of Ca2+ signalling because Ca2+ entry results in membrane 

depolarization. For example, in thalamic neurons, the influx of Ca2+-carried positive charge 

through low voltage-activated Ca2+ channels triggers the generation of rhythmic burst 

discharges, as typically occurs during slow-wave sleep (Pape et al., 2004). 

In summary, Ca2+ plays a trimodal signalling role by acting as a second messenger, a 

direct gating molecule and an electrogenic signal carrier. 

The aim of this introductory chapter is to introduce the reader to the diversity of the 

neuronal Ca2+ sinks and sources. Based on review articles, this chapter is intended to highlight 

that Ca2+ has evolved into a selective signalling ion inspite of its ubiquity and universality. 

Furthermore, we wishs to stress that the diversity of the basic elements of Ca2+ signalling in 

terms of molecular composition, kinetics, and spatial distribution underlies the specificity of 

Ca2+ signalling. For each of the Ca2+ sources and sinks mentioned, we will describe their basic 

biophysical properties relevant for their function, and we will focus in particular on 

highlighting some of the best known physiological processes in which these sources and sinks 

are well characterized and functionally interesting. The introductory chapter will not 

introduce the reader to the numerous down-stream Ca2+-sensitive proteins and modulators of 

Ca2+ sinks and Ca2+ sources. 
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3.1 Evolutionary aspects 
 

About 3.3 billion years ago, when the first living cells started to develop, Ca2+ was 

abundant in the igneous rocks of the hot earth’s crust. However, Ca2+ was bound as CaO and 

therefore not available for use. Heavy rainfalls dissolved the Ca2+ and cooled the earth, 

leading to various chemical and biological reactions and eventually to further dissolution of 

free Ca2+. This sudden rise of extracellular free Ca2+ caused serious problems for early life, 

since a high Ca2+ concentration leads to organellar damage, causes the aggregation of proteins 

and nucleic acids, and leads to precipitation of phosphates (Jaiswal, 2001). It is believed that 

this evolutionary pressure led to the evolution of the Ca2+ handling mechanisms aimed at 

keeping a low [Ca2+]i. 

Several arguments offer an explanation to why Ca2+ was preferred as an intracellular 

signalling molecule over other ions such as Na+, K+ or Mg2+, which are also abundant in 

biological systems. First, the uniquely large Ca2+ gradient (1000-fold, compare to Na+: 10-

fold) that exists across the plasma membrane allowed for a robust Ca2+ influx that could be 

used as an external signal. Secondly, Ca2+ has, compared to the other ions, a favourable 

chemical nature (Jaiswal, 2001). Ca2+ ions exhibit, for example, a high affinity to the oxygen 

in carboxylate groups found frequently in amino acids (Jaiswal, 2001). Another parameter 

allowing Ca2+ to evolve into the favourite signalling molecule is its rapid binding kinetics. 

Ca2+ binds to and dissociates from a protein more quickly by a factor of up to ~100 compared 

to Mg2+ (Jaiswal, 2001). Furthermore, Ca2+ exhibits, due to its ionic radius, high coordination 

numbers and often irregular coordination geometry, which puts Ca2+ at an advantage in acting 

as a cross-linker in biology (Jaiswal, 2001). Finally, Ca2+ is able to bind in a unique manner to 

components of biological membranes like long-chain alkyl carboxylates and 

phosphatidylserine, a phospholipid, and affect the orientation, fluidity and fusion of the 

membranes (Jaiswal, 2001). 

 

3.2 Ca2+ sources and Ca2+ sinks in neuronal cells 

 

The extracellular free Ca2+ concentration (~1-2 mM) is about 10,000 times higher than 

the resting free [Ca2+]i (~50-100 nM) and is therefore abundantly available to cells. However, 
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it is not usable for intracellular Ca2+ signalling unless it is capable of crossing the 

plasmamembrane barrier and entering the cytosol. At this moment, Ca2+ levels increase 

dramatically, and have been estimated to go up to 0.1 mM in localized signalling events such 

as neurotransmission, thus leading to a 1000-fold decrease in the Ca2+ gradient across the 

membrane. To handle these extreme fluctuations in intracellular levels of Ca2+, specialized 

Ca2+ entry pathways must exist to allow the exchange of Ca2+ between the extracellular and 

intracellular compartments. Moreover, due to the toxicity of free intracellular Ca2+, [Ca2+]i 

must be returned to basal levels as soon as possible, though without compromising its 

signalling function. This task is achieved by high-affinity cytosolic Ca2+ buffers and efficient 

extrusion and sequestration systems. 

The goal of this chapter is to highlight the biophysical diversity of the restricted number 

of basic Ca2+ signalling network components, which guarantee Ca2+ entry into the cytosol and 

its sequestration or extrusion.  

 

3.2.1 Ca2+ sources 

 

3.2.1.1 Voltage-gated Ca2+-permeable channels 

 

Voltage-gated channels that act as a Ca2+ source can be divided into the classical 

VGCCs and voltage-gated cation channels. These Ca2+-permeable ion channels sense the 

membrane potential and react to its depolarization by opening a gate that allows Ca2+ to enter 

the cell. Voltage-gated Ca2+ channels mediate a rapid, selective Ca2+ influx in response to 

membrane depolarization, whereas cation channels are permeable to several cations. Notably, 

most, if not all, neuronal cells express more than one type of VGCCs (Hille, 1992), 

highlighting the need for a diversity of Ca2+ entry according to the extracellular signals to be 

conveyed. Indeed, the pharmacological blockade of single classes of VGCCs typically 

abolishes the transduction of membrane depolarization into distinct cellular responses, despite 

the presence of multiple Ca2+ channels in the same cells (Goldberg and Wilson, 2005). Thus, 

it is not the increase in Ca2+ per se, but indeed the specific portal through which it enters the 

cytosol, which determines the cellular response. 

The diversity of Ca2+ channels is evident when considering their molecular constitution. 

The VGCCs are composed of four or five distinct subunits (α1-, β-, α2-, δ- and γ-subunit). The 

pore-forming α1-subunit, which is organised in four homologous domains (I-IV), comprises 
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the voltage sensor and gating apparatus, and most of the known sites of channel modulation 

by G-protein, phosphorylation, Ca2+/CaM, drugs, and toxins (Catterall, 2000). The 

intracellular β- and extracellular α2-subunit, and the δ-subunit have an auxiliary function and 

further modulating properties, such as phosphorylation (Catterall, 2000). Ten different types 

of VGCCs α1-subunits have been cloned, which are pooled into 3 subfamilies, the CaV1 

subfamily with 4 members, CaV1.1 to CaV1.4, the CaV2 and the CaV3 subfamilies with 3 

members each. 

This diversity in the molecular composition gives rise to an assortment of Ca2+ currents 

with distinct voltage dependence and kinetic properties, two characteristics that essentially 

determine the amplitude and time course of intracellular Ca2+ signals. Traditionally, these 

were divided into two major classes. The LVA currents, which exhibit a low activation 

threshold of activation of about ~-70 mV, and the HVA currents, which are activated at 

membrane potentials positive to approximately -30 mV (Hille, 1992). LVA currents typically 

activate around resting membrane potentials after a hyperpolarizing input, decay 

comparatively rapidly, with a decay time of τ ~ 20-50 ms and show a low single-channel 

conductance (4-11 pS). Because of their transient activation characteristics, they were named 

T-type Ca2+ currents (T for transient) (Hille, 1992). Four different currents were distinguished 

within the family of HVA currents. The L-type currents exhibit a very large single-channel 

conductance (~25 pS) and a slow decay time of τ > 1 s. This current has been named L-type 

Ca2+ current due to its long-lasting kinetics (L for long) (Catterall, 2000). The N-type Ca2+ 

current (N for new) differs from the L- and the T-type Ca2+ currents in terms of its 

intermediate voltage dependence and its different inactivation kinetics (more negative and 

faster than L-type, but more positive and slower than T-type). Last, the P/Q and the R-

currents, exhibiting properties comparable to those of the N-type Ca2+ current, were 

distinguished by their pharmacological properties and their strong expression in cerebellar 

cells (P for Purkinje, R for Resistant) (Catterall, 2000). These basic biophysical differences 

suggest that, by virtue of their intrinsic characteristics, the VGCC family is structured so that 

it may represent a Ca2+ source for different physiological needs. Indeed, it turns out that the 

long-lasting L-type Ca2+ currents are typically involved in activity-dependent gene 

expression, in synaptic plasticity, and cell survival (Lipscombe et al., 2004), whereas N-, R- 

and P/Q-type Ca2+ currents are well-known for their role in neurotransmitter release 

(Catterall, 2000) and IT mediate neuronal rebound bursts (Perez-Reyes, 2003). Additionally, 

Ca2+ currents play distinct roles in shaping neuronal excitability. One of the most prominent 

roles has been described in recent years and involves the generation of dendritic Ca2+ 
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transients in response to a critical frequency of back-propagating APs, of coincident synaptic 

input, and of AP discharge (Larkum et al., 2003). 

It is now clear that the original classification of Ca2+ currents in terms of their gating 

properties has a molecular correlate in the three major types of α1-subunit cloned so far. 

Indeed, heterologous expression of these in mammalian cell lines or Xenopus oocytes largely 

reproduces some of the essential current properties, including activation range, kinetics and 

pharmacology. Channels, which belong to the CaV1 subfamily, have been found to mediate L-

type currents, whereas channels belong to the CaV2 subfamily mediate P/Q- (CaV2.1), N- 

(CaV2.2) and R-type Ca2+ currents (CaV2.3). The channels, which belong to the CaV3 

subfamily mediate the IT. Further diversification in detailed properties, such as voltage 

dependence, current density, drug sensitivity and binding properties to intracellular synaptic 

proteins, like CASK, SNAP-25, syntaxin and Mint-1, arises from splice variants of the α1 

pore-forming subunit and from auxiliary subunit isoforms that are expressed in the recorded 

cells (Catterall et al., 2005). 

In addition to the differences conferred by their molecular properties, other aspects of 

Ca2+ channels contribute to the diversity of their function as a Ca2+ source. Among the most 

important aspects are their selective coupling to downstream effectors, modulation by G-

proteins, and phosphorylation (Catterall, 2000). For example the selective coupling of CaV2.1 

or CaV2.2 to syntaxin, a component of the SNARE protein complex critical for the fusion of 

synaptic vesicles with the presynaptic membrane, shifts the voltage dependence of steady-

state inactivation during long depolarizing prepulses towards more negative membrane 

potentials, which results in the inhibition of the channel activity (Catterall, 2000). G-protein-

mediated modulation of channel properties has been predominantly reported from the CaV2 

subfamily. Multiple G-protein coupled pathways interact with CaV2 channels, further 

increasing the diversity of the channel. In rat sympathetic ganglion neurons, for example, 

CaV2.2 channels are regulated by five different G-protein coupled pathways (Dolphin, 2003). 

The activation of the Gi- or Gs-protein coupled receptors, such as GABAB receptors, α2-

adrenergic receptors, A1 adenosine receptors and the opioid receptors µ and δ, decelerate the 

current activation kinetics of CaV2.1 and CaV2.2 channels and shift their activation threshold 

towards more positive membrane potentials via direct binding of the Gβγ subunit with the 

consequence of channel inhibition (Dolphin, 2003). This Gi- or Gs-protein coupled receptor-

mediated channel inhibition is reversed by direct phosphorylation of the channels via PKC, 

which indicates a crosstalk between different G-protein coupled pathways in modulating 

VGCC activity (Catterall, 2000). 
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Hyperpolarization-activated HCN channels are voltage gated ion channels, traditionally 

known to be permeable to Na+ and K+ cations. However, it has been recently demonstrated 

that they are slightly permeable to Ca2+, rendering them members of voltage-gated channels 

that act as a Ca2+ source (Yu et al., 2004; Zhong et al., 2004). HCN channel-mediated current 

is typically activated by a hyperpolarized membrane potential below approximately -60 mV, 

gates with an activation time constant ranging between hundreds of milliseconds and seconds, 

and shows no inactivation (Frère et al., 2004). HCN channels are best known as pacemakers 

for rhythmic discharges in cardiac sinoatrial cells and some central neurons, but whether Ca2+ 

entry through HCN channels plays a role in this function, and other functions attributed to this 

channel (Frère et al., 2004), is not yet clear. So far, this Ca2+ permeability was found in 

heterologously expressed HCN4 channels and made up 0.6% of the inward current evoked at 

-120 mV (Yu et al., 2004). Whole-cell recordings in dorsal root ganglia neurons revealed an 

IHCN-induced increase of [Ca2+]i, which was associated with an elevation of the membrane 

capacitance. From this it has been suggested that Ca2+ ions have caused membrane fusion, 

thus possibly implicating it in neurotransmission (Yu et al., 2004).  

 

Physiological function attributed to VGCCs: Synaptic transmission is one of the most 

prominent and well characterized physiological processes in which VGCCs are involved. We 

describe here an example highlighting the diversity of VGCCs based on the example of 

GABA release at distinct hippocampal inhibitory synapses.  

Hippocampal pyramidal cells of the CA3 area receive GABAergic inputs from 

morphologically, immunocytochemically, and electrophysiologically distinct interneurons, 

which arise in different strata and show distinct innervation patterns (Freund and Buzsáki, 

1996). GABAergic interneurons produce both perisomatic and dendritic inhibition, and 

determine the timing of AP discharge of hippocampal pyramidal neurons through their 

embedding in feed forward and feedback circuits (Freund and Buzsáki, 1996). Distinct 

subtypes of VGCC mediate GABA release in different interneurons (Poncer et al., 1997). 

Dual recordings from stratum oriens interneurons and postsynaptic CA3 pyramidal cells 

revealed that unitary IPSPs were blocked after bath application of 200 nM of the P/Q-type 

Ca2+ current (CaV2.1) blocker ω-agatoxin IVA. The bath application of the N-type Ca2+ 

current (CaV2.2) blocker ω-conotoxin MVIIA (1 µM) however, had nearly no effect on 

GABA induced IPSPs. Conversely, dual recordings from stratum radiatum interneurons and 

postsynaptic CA3 pyramidal cells revealed that IPSPs were blocked after bath application of 

ω-conotoxin MVIIA, but remained unchanged after the application of ω-agatoxin IVA. These 
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results show that GABAergic interneurons from different regions (stratum oriens and – 

radiatum) express a defined type of VGCC at presynaptic release sites. Considering that all 

VGCCs, and in that particular example, CaV2.1 and CaV2.2 channels and the related currents, 

differ in their biophysical and kinetic properties, it is likely that the predominant expression of 

a given VGCC gives rise to interneuron-specific GABA release characteristics, such as 

different release rates and release timing (Hefft and Jonas, 2005). 

 

3.2.1.2 Ligand-gated Ca2+ conducting channels 

 

Ligand-gated, plasmamembrane-bound Ca2+-conducting channels represent an 

additional pathway for Ca2+ entry into neurons. This family is made up of channels activated 

by the neurotransmitters acetylcholine and glutamate, acting as extracellular ligands, or by 

cyclic nucleotides, acting as intracellular ligands.  

 

3.2.1.2.1 Plasmamembrane-bound ligand-gated Ca2+ conducting channels 

 

The three Ca2+-conducting channels, which are gated by extracellular ligands, are the 

nAChRs and the glutamate-gated channels: The NMDARs and the AMPARs.  

Neuronal nAChRs are pentameric acetylcholine-activated ion channels composed out of 

four different types of subunits. Nicotinic AChR are involved in functional processes as 

diverse as cognition, learning and memory, arousal, and metabolism as well as in many 

pathological conditions such as epilepsy, Alzheimer’s and Parkinson’s disease, schizophrenia, 

Tourette’s syndrome, anxiety, and depression (Paterson and Nordberg, 2000). Channel gating 

opens a cation-permeable pore that conducts not only Ca2+, but also Na+ and K+, and induces 

a rapid plasma membrane depolarization (Rogers and Dani, 1995). Growing evidence 

indicates that neuronal nAChRs are not limited to postsynaptic locations, but are also present 

at pre-, peri-, and extrasynaptic locations of the CNS, where they modulate neurotransmitter 

release (Paterson and Nordberg, 2000). Two different classes of neuronal nAChRs are 

distinguished by their Ca2+ permeability, their sensitivity to α-BTX, and their structural 

properties. The first class is α-BTX sensitive, contains the subunits α7-α9 and exhibits a 

variable and high level (PCa/PNa ~6-80) Ca2+ permeability. The second group is α-BTX 

insensitive, contains the subunits α2-α6 und exhibits low Ca2+ permeability (PCa/PNa ~0.2-3.8) 

(Fucile, 2004). Furthermore, neuronal nAChRs exhibit a range of single-channel 
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conductances between 5 and 50 pS and of desensitization time constants between 100ms and 

2 s, depending on the specific subunit and tissue expression. Both types of nAChRs are 

widely expressed in the CNS and the functional differences between these two groups and the 

different isoforms within them are far from being understood (Fucile, 2004). Nevertheless, 

this high degree of diversity suggests specific physiological roles for distinct neuronal nAChR 

subtypes. 

 

The NMDARs are a glutamate-gated cationic channels with an important contribution 

to excitatory synaptic transmission in the CNS (Dingledine et al., 1999). These channels are 

one of the most eminent ion conducting proteins in neuroscience in terms of its versatility in 

Ca2+ signalling being implicated in many aspects of synaptic plasticity. N-methyl-D-aspartate 

receptors play a crucial role in controlling synaptic plasticity-dependent AMPAR trafficking, 

are involved in structural modifications of the neuron associated with synaptic plasticity, and 

play a decisive role in major forms of homeostatic synaptic plasticity (Carlisle and Kennedy, 

2005; Derkach et al., 2007; Perez-Otano and Ehlers, 2005). The cation permeability through 

the cationic NMDAR is highly voltage-dependent. At resting membrane potentials, cation 

permeability, and therefore Ca2+ influx through activated NMDARs is largely inhibited by a 

Mg2+ ion blocking the ion channel pore. Depolarization positive to ~ -50 mV ejects the Mg2+ 

ions out of the channel pore and allows Ca2+ conductance. N-methyl-D-aspartate receptors are 

5 to 10 times more permeable to Ca2+ than to K+ or Na+ (Hille, 1992). In the nervous system 

at least 6 different NMDAR subunits have been cloned, NR1, NR2A-2D, and NR3A-3B 

(Cull-Candy et al., 2001). Each combination of the different subunits and their splice variants 

that form functional channels gives rise to distinct biophysical channel properties that are 

critical for the Ca2+ signals provide. The assembling of NR1, for example, with any of the 

four different NR2 subunits increases the current conductance from 5- to 60-fold compared to 

homomeric NR1 channels (Squire, 2002). Furthermore, the NR2 subunits have markedly 

different decay kinetics, with NR2A-containing NMDARs producing the fastest and NR2D-

containing NMDARs the slowest EPSC. Slow decaying NMDAR-mediated currents are 

predominant during early phases of development, whereas during experience-dependent 

maturation of circuits they are gradually replaced by more rapidly decaying isoforms (Cull-

Candy et al., 2001). 

 

The glutamate-activated AMPARs form the third group of ligand-gated, 

plasmamembrane-bound Ca2+-conducting channels. AMPARs are tetrameric, voltage-
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independent ion channels composed of four subunits, GluR1-4. For these receptors, the 

incorporation of the GluR2 subunit reduces the channel’s Ca2+ permeability, which leads to 

the mediation of negligible Ca2+ influx, whereas receptors lacking the GluR2 subunit are 

highly permeable and exhibit distinctly fast kinetics. For example, in Bergmann glial cells, 

where only 3% of the expressed subunits are GluR2 subunits, the Ca2+/Na+ permeability ratio 

is ~2.8 and the time courses of deactivation and desensitization are around τ ~1.0 ms and τ 

~3.2 ms respectively. Conversely, in neocortical layer V pyramidal cells, where 75% of the 

expressed subunits are GluR2 subunits, the Ca2+/Na+ permeability ratio is ~0.07 and the time 

courses of deactivation and desensitization are τ ~2.5 ms and τ ~11.2 ms respectively (Liu and 

Zukin, 2007). The subunit composition of AMPARs changes during synaptic plasticity. For 

example, cerebellar parallel fiber-stellate cell synapses express AMPARs, which are devoid of 

the GluR2 subunit. High frequency (50 Hz) activation of these synapses leads to the insertion 

of GluR2 subunits with the consequence of a reduced Ca2+ influx and thereby to the induction 

of LTD. In contrast, the inhibition of synaptic activity has the opposite effect. (Liu and Zukin, 

2007). This activity dependent change of channel composition, which leads to a change of 

Ca2+ permeability, represents a particular form of synaptic plasticity. 

 

Physiological function attributed to extracellular ligand-gated Ca2+ conducting 

channels: Long-term synaptic plasticity is the most prominent and well characterized 

physiological process in which NMDAR-mediated Ca2+ signalling is involved (Malenka and 

Bear, 2004). Ca2+ signalling though these channels underlies the induction of these long-term 

changes in structure, morphology and physiology of synapses (Perez-Otano and Ehlers, 

2005). 

We describe here an example illustrating that modifications in NMDAR composition 

underlie changes in hippocampus dependent learning behaviour. In the adult hippocampus, 

NR2A- and NR2B-containing NMDARs are the major contributors to synaptic NMDAR 

currents. NR2B-containing channels differ from NR2A-containing channels in their slower 

deactivation time, their larger Ca2+ permeability and their coupling to intracellular signalling 

partners important for plasticity (Kopp et al., 2007). Aged rats have deficits in spatial learning 

behavior due to an age-related decrease of NR2B expression (Magnusson et al., 2002). Thus, 

in young rats with a deficit of NR2B in the hippocampus, the success in tests to assess spatial 

learning, such as the Morris water maze, and the generation of LTP are impaired (Clayton et 

al., 2002). Conversely, overexpression of NR2B in the hippocampus facilitates synaptic 

potentiation and increases success in spatial learning (Tang et al., 1999). These examples 
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impressively demonstrate that alterations in the composition of channel subunits, whether 

experimentally introduced or resulting from aging, importantly shape synaptic plasticity and 

hippocampus-dependent learning.  

 

There are two major Ca2+ sources provided by Ca2+-permeable channels gated by 

intracellular ligands, the TRP channels and the CNG channels. 

 

TRP channels are a remarkably diversified class of Ca2+ sources composed of at least 28 

channel subunit genes. TRP channels are cation-permeable channels that could be grouped 

into seven subfamilies (TRPA, TRPC, TRPV, TRPM, TRPA, TRPP, and TRPL) on the basis 

of amino acid sequence homology (Ramsey et al., 2006). TRP channels show some 

similarities to VGCCs in the general structure of the transmembrane domains, as both are 

consist of six (S1-S6) transmembrane segments and a pore region between S5 and S6. The 

Ca2+ conductance varies within the different TRP subtypes. Most of the TRP channels exhibit 

little preference for Ca2+ (PCa/PNa = 1-10). A minor group and some splice variants show 

either Na+ selectivity (PCa/PNa < 0.05) or Ca2+ selectivity (PCa/PNa > 100), such as TRPV5, 

TRPV6 and a splice variant of TRPM3 (TRP3α2) (Ramsey et al., 2006). Although many 

different physiological mechanisms have been implicated with TRP channel activity and the 

resulting Ca2+ influx, the physiological role of TRP channel-mediated Ca2+ signalling is still 

unknown (Clapham, 2003). More recently, TRP channels have been implicated in store–

operated Ca2+ entry based on knock-down experiments, which have shown that the 

elimination or the reduction of TRP expression can decrease native store–operated Ca2+ entry; 

however, this has been shown for other Ca2+ conducting channels, such as the CNG channel 

CNG2, as well (Ramsey et al., 2006). Furthermore, no mammalian TRP channel has yet 

explicitly fulfilled the electrophysiological criteria for store-operated channels. For example, 

no TRP channel exhibits the required high Ca2+ selectivity (PCa/PNa ~1000) or low single 

channel conductance (<0.1 pS) (Clapham, 2003).  

The repertoire of stimuli leading to TRP channels includes not only ligands, but also 

physical stimuli. Several of these TRP channels recruited by a single stimulus modality are 

now known to confer distinct sensations, such as temperature, touch, pain, and taste 

(Clapham, 2003). The established modes of activation are subdivided into three general 

categories (Ramsey et al., 2006). First, receptor-based activation requires the recruitment of 

PLC by Gq-protein-coupled receptors and receptor tyrosine kinases can modulate TRP 

channel activity via the hydrolysis of PIP2 into the second messengers DAG and IP3. This 
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form of regulation has been described predominantly for TRPC channels, which are mainly 

expressed in the CNS. Second, in the ligand-induced activation, exogenous small organic 

molecules, such as capsaicin or iciline; endogenous lipids or products of lipid metabolism, 

such as DAG or IP3; purine nucleotides and their metabolites and inorganic ions, such as Ca2+ 

and Mg2+, have been shown to activate TRP channels. This form of activation is typical for 

TRPC channels as well and for some TRPM channels. Third, in the activation through 

physical stimuli, TRP channels seem to be gated by changes in temperature and by 

mechanical stimuli. Temperature-dependent gating has been described in TRP channels of the 

V-, M- and P-type and gating after a mechanical stimulus has been found in TRPP channels 

(Clapham, 2003; Ramsey et al., 2006).  

 

CNG channels are non-selective cation channels that are gated by cyclic nucleotides, 

such as cAMP and cGMP (Craven and Zagotta, 2006). In contrast to ligand-gated receptors 

gated by extracellular ligands, CNG channels do not desensitize in the presence of the ligand, 

which render them a potentially strong Ca2+ provider. Vertebrate CNG channels are tetramers 

composed of various combinations of 6 different subunits (CNGA1-4, CNGB1 and CNGB3). 

Whereas CNGA1, CNGA2, and CNGA3 form homomeric channels in heterologous 

expression systems, CNGA4, CNGB1, and CNGB3 do not form functional homomeric 

channels, but can co-assemble with other subunits to form heteromers and therefore give rise 

to more diversity. Probably most native CNG channels are heteromeric compositions (Craven 

and Zagotta, 2006). The different combination of subunits allows the expression of tissue-

specific CNG channels with unique properties according to its physiological role. For 

example: The relative Ca2+ permeability varies between different cell types and tissues. 

Whereas the Ca2+ permeability of CNG channels in retinal cones is PCa/PK = 8, the Ca2+ 

permeability in retinal rods is PCa/PK = 1.7 (Zufall et al., 1997). This diversity on a cellular 

level could be explained by the different subunit composition of CNG channels in rods 

(CNGA1 and CNGB1) and cones (CNGA3 and CNGB3) (Craven and Zagotta, 2006; Kaupp 

and Seifert, 2002).  

Cyclic nucleotide-gated channels are best known for their role in phototransduction and 

olfactory signalling (Craven and Zagotta, 2006). In vertebrate rod photoreceptors, direct 

binding of intracellular cGMP leads to an inward current of Na+ and Ca2+. In the dark, when 

cGMP-levels are high, CNG channels are permanently open and contribute to the so called 

dark current, which triggers the glutamatergic neurotransmitter signals to the retinal cells. The 

Ca2+ influx during darkness is not only participating in the depolarization of the cell, but also 
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controlling the activity of numerous down-stream Ca2+-sensitive proteins, such as guanylyl 

cyclase-activating protein, whose stimulation gives rise to a positive feedback loop by 

stimulating guanylyl cyclase that then catalyses cGMP synthesis (Squire, 2002). Furthermore, 

both the Ca2+-mediated depolarization, which increases the open probability of the channel, 

and the change in [Ca2+]i, due to the formation of a Ca2+/CaM complex whose binding to 

some of the CNG channels inhibits the channel’s allosteric opening transition, can modulate 

CNG channel properties (Matulef and Zagotta, 2003). 

Cyclic nucleotide-gated channels have also been found expressed in non-sensory 

neurons, such as in the hippocampus, the cerebellum, and the cortex (Kaupp and Seifert, 

2002), where their roles are not as well understood as in phototransduction and olfactory 

signalling (Craven and Zagotta, 2006).  

 

Physiological function attributed to intracellular ligand-gated Ca2+ conducting 

channels: Among the most extensively characterized physiological roles of TRP channel-

mediated Ca2+ influx is its involvement in growth cone guidance (Ramsey et al., 2006). 

Changes in [Ca2+]i play an important role in growth cone guidance by regulating growth cone 

morphology, the cytoskeleton and the trafficking of membrane precursor vesicles. Axon 

extension is guided by guiding cues, such as BDNF and netrin-1. BDNF-induced growth cone 

attraction requires Ca2+ influx though TRPC channels in rat cerebellar granule cells (Li et al., 

2005). Conversely, netrin-1-induced growth cone attraction requires Ca2+ influx though CaV1 

channels and Ca2+ release from intracellular Ca2+ stores (Hong et al., 2000). These papers 

suggest that different chemotactic cues require defined Ca2+ sources to trigger particular types 

of Ca2+ signalling. Using short interfering RNA techniques, Li and colleagues showed, 

furthermore, that out of three expressed TRPC channels (TRPC1, TRPC3 and TRPC6) in the 

growth cone, only TRPC3 and TRP6 are specifically required for BDNF-induced growth cone 

attraction of cerebellar granule cells. However, TRPC3 is not involved in neurite outgrowth 

(Ramsey et al., 2006). Therefore, it seems that the diversity of TRP channels allows for the 

generation of Ca2+ signals that are specific for distinct regulatory functions in the growth 

cone. 

 

3.2.1.2.2 Intracellular Ca2+ release channels 

 

From the extracellular space, neurons have access to an infinite supply of Ca2+ that 

accesses the cells’ interior on given defined stimuli. In addition to this abundant source, 
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intracellular Ca2+ stores within the endoplasmic/sarcoplasmic reticulum provide a more finite 

internal store for which Ca2+ itself is a principal activator. In addition to its well-known cell 

biological role in the synthesis and processing of proteins, phospholipids and leukotrienes, the 

ER is an intracellular Ca2+ store that controls Ca2+ homeostasis and yet is also able to boost 

externally generated Ca2+ signals. Accordingly, the ER is equipped with Ca2+ channels and 

transporters in its membrane and a set of Ca2+ binding proteins in its lumen, such as 

calreticulin and calnexin, which control diverse aspects of ER function. Ca2+ release from the 

ER, is controlled by two families of Ca2+ channels. The Ca2+-gated RYR and the IP3R (Fill 

and Copello, 2002; Foskett et al., 2007; Verkhratsky, 2005). 

 

There are three RYRs, which are best known for their role in excitation-contraction 

coupling in muscle. However, all three isoforms are expressed in neurons, and reach 

particularly high densities in somata and terminals. RYRs share a tetrameric structure and are 

activated by [Ca2+]i within the range of 1-10 µM, depending on the subunit composition of the 

channel (Fill and Copello, 2002; Verkhratsky, 2005). The biophysical properties of the RYRs 

exhibit fast activation kinetics (τ ~0.5-1ms) and large conductance (100-500 pS), rendering 

them powerful Ca2+ providers in spite of a limited Ca2+ selectivity (PCa/PK ~6-7) (Fill and 

Copello, 2002). RYRs are triggered by intracellular free Ca2+ provided from either 

plasmamembrane-bound Ca2+ channels or neighbouring endomembrane bound receptors, 

leading to a phenomenon called CICR (Verkhratsky, 2005). Ca2+-induced Ca2+ release has 

been shown to occur in many regions of the CNS after physiologically relevant stimulation 

(Verkhratsky, 2005). A particularly well-known example is the synaptically evoked CICR in 

boutons of hippocampal neurons, where the CICR-mediated Ca2+ transient has been 

associated with the mediation of short-term plasticity (Emptage et al., 2001). This example 

shows that CICR is critically involved in spatial and temporal aspects, as well as the strength 

of Ca2+ signalling (see below) (Verkhratsky, 2005). Ca2+ release by RYRs is positively 

modulated by the second messenger cyclic ADP ribose, a nucleotide metabolite, which is 

typically produced after hypoxia (Verkhratsky, 2005). Furthermore, another important 

modulator is Ca2+ itself. Increasing [Ca2+]L enhances the sensitivity of RYRs and eventually 

also of IP3Rs (Verkhratsky, 2005). This Ca2+-dependent modulation adds to the diversity of 

RYR-dependent Ca2+ signalling by providing the ER with a kind of memory by accumulating 

and storing information of former Ca2+ transients (Verkhratsky, 2005). 
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Like RYRs, IP3Rs are endomembrane-bound, Ca2+-selective ion channels of the 

endoplasmic reticulum and the Golgi apparatus, which are sensitive to the second messenger 

IP3 and to Ca2+. The generation of IP3 is based on the stimulation of PLC via G-protein-

linked, metabotropic receptors or tyrosine kinase-linked receptors. Hydrolysis of PIP2 by PLC 

leads to the second messengers DAG and IP3. There is strong evidence in neurons that this 

mechanism is relevant for the generation of localized Ca2+ signals during synaptic 

transmission or in the emergence of Ca2+ waves that spread from dendrites to soma 

(Verkhratsky, 2005). 

Three different subunits (IP3R1-3) with various splice variants assemble into hetero- or 

homotetrameric channels, with IP3R1 being the dominant isoforms expressed in neurons. 

IP3Rs are synergistically activated by IP3 and Ca2+. Therefore, in addition to CICR triggered 

by the gating of RYRs, activation of IP3Rs may also be involved (Foskett et al., 2007). The 

effects of Ca2+ on the IP3Rs are such that low levels (300-400 nM) activate, whereas high 

levels become inhibitory. The ability of Ca2+ to stimulate its own release is regulated by IP3, 

whose presence is required to allow Ca2+ to act. The role of IP3 could thus be seen as a 

compound that enhances cytosol excitability, such that Ca2+ can provoke a boosting of its own 

signal.  

The activity of IP3Rs is modulated by many factors such as ATP, interluminal divalent 

cations, like Ca2+ itself, phosphorylation through cyclic AMP-dependent PKA, PKC and 

PKG, tyrosine kinase, and CaM-dependent protein kinase, and a large number of interacting 

proteins including CaM (Foskett et al., 2007).  

 

Physiological function attributed to endomembrane-bound ligand-gated Ca2+ 

conducting channels: A well-known illustration for the physiological relevance of Ca2+ 

release from internal stores is the induction of LTD by mGluR-driven IP3-induced Ca2+ 

release in cerebellar PC. These neurons have the largest and most arborized dendritic arbour 

of all vertebrate neurons and are filled with an elaborate network of ER that extends 

throughout the dendrites into the synaptic spines. This ER shows a high density of IP3Rs in 

both its dendritic and spinous protrusions. Paired stimulation of afferent excitatory inputs onto 

PCs, the climbing fibres and parallel fibres, produces LTD of parallel fibre inputs. In animals 

deficient in mGluR1 or IP3Rs such LTD cannot be induced (Aiba et al., 1994; Inoue et al., 

1998). Furthermore, reintroduction of mGluRs and photolytic intracellular release of caged 

IP3 successfully restores LTD induction (Ichise et al., 2000; Khodakhah and Armstrong, 

1997). It was convincingly demonstrated that, indeed, a burst of synaptic activation of parallel 
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fibers leads to a biphasic pattern of Ca2+ accumulation in PC dendrites, the faster one being 

mediated by ionotropic AMPARs, the slower one being abolished with drugs that block 

mGluRs or IP3Rs. Thus, it appears that the conjoint activation of IP3-coupled pathways with 

the gating of VGCCs, resulting from the suprathreshold climbing fiber input, is necessary for 

LTD induction. This example provides a representative case for the powerful role of IP3 

release in the dynamics of Ca2+ signalling. However the precise role of IP3 in the induction of 

LTD remains to be resolved, because it has recently been reported that selective activation of 

mGluR1 is sufficient to induce LTD attenuating mGluR-induced slow EPSC and IP3R-

mediated increase of [Ca2+]i (Jin et al., 2007). 

 

3.2.2 Ca2+ sinks  

 

3.2.2.1 The extrusion mechanisms 

 

The maintenance of Ca2+ homeostasis requires a powerful extrusion system to 

compensate for Ca2+ influx and to restore the resting [Ca2+]i. Two membrane-bound extrusion 

systems, the PMCA and the Na+/Ca2+ exchangers, are essentially responsible for Ca2+ 

extrusion in neurons (Guerini et al., 2005). Their function consists not only “cleaning up” 

excessive Ca2+, but also further shaping the amplitude and time course of Ca2+ signals. 

 

The PMCA is a membrane-bound extrusion pump, which hydrolyses ATP to transport 

Ca2+ from the cytosol into the extracellular medium (Thayer et al., 2002). The PMCA has a 

high affinity to Ca2+ with a K1/2 starting from 0.2 μM (Garcia and Strehler, 1999), but a 

limited transport capacity with a turnover rate in the order of 10-50 s-1 (i.e. number of Ca2+ 

transported per unit time) (Strehler and Zacharias, 2001). This means that, under 

physiological conditions, during which [Ca2+]i is about 0.1 μM, PMCA is permanently active. 

It has been suggested therefore, that PMCA functions as a fine-tuner of [Ca2+]i, already 

extruding Ca2+ at a sub-micromolar level, and therefore keeping the [Ca2+]i low (Guerini et 

al., 2005).  

Four different isoforms (PMCA1-4) have been characterized, which are expressed in a 

tissue specific manner. PMCA1 and 4 are expressed in almost all tissues, whereas the 

isoforms 2 and 3 are predominantly expressed in a restricted manner in the nervous system. 

The complexity is increased by numerous alternative splice variants, which affect the 
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expression localization, modulation and biophysical properties of the pump (Strehler and 

Zacharias, 2001; Thayer et al., 2002). This varied diversity in cellular and subcellular 

expression as well as the diversity of the isoforms and their splice variants and the resulting 

differences in biophysical properties suggesting a cell and cell-compartment specific function 

of the different PMCAs. Isoform or even splice-variant specific biophysical properties and 

physiological roles are very difficult or not yet possible to address in vivo. There are many 

reasons for this. For example: First, standard methods for the investigation of pump activity, 

such as patch clamping, do not allow for successful measurements due to the low turnover 

rate of the PMCAs. Second, there are neither isoform nor splice variant specific 

pharmacological inhibitors available. Third, most cells express more than one type and splice 

variant of PMCAs (Strehler and Zacharias, 2001). 

The extrusion rate of PMCAs is [Ca2+]i-dependent in a hyperbolic manner. Under 

resting conditions, PMCAs are characterized by a low binding affinity for Ca2+ (K1/2 ~ 10-20 

µM), which, however, rises ~ 100-fold (K1/2 ~ 0.2-0.5 µM) after an increase of [Ca2+]i within 

a range of 0.1 µM to 1 µM. This Ca2+-dependent regulation of PMCA function has been 

shown to occur via an autoinhibitory action of CaM at low [Ca2+]i (Garcia and Strehler, 

1999). When [Ca2+]i increases, the formation of the Ca2+-CaM-PMCA complex induces a 

conformational change that unmasks the active site of the pump (Guerini et al., 2005). The 

sensitivity to CaM differs between the different isoforms and their splice variants. PMCA2b 

(K1/2=2.1 nM) exhibit, for example, an approximate 5 fold higher CaM affinity than PMCA4b 

(K1/2=9.8 nM), and an approximate 4 fold higher affinity than PMCA2a (K1/2=8.4 nM) 

(Strehler and Zacharias, 2001). 

Due to its biophysical properties, such as low turnover rate and high Ca2+ affinity, 

PMCAs were thought to “simply” maintain the resting level of [Ca2+]i. It has been show 

however, that PMCAs play an active role in Ca2+ signalling, predominantly in the regulation 

of Ca2+ transients arising during cellular excitability (Strehler and Zacharias, 2001). Thus, 

PMCA activity is well-known for its role in sensory hair cell adaptation and its function in 

regulating excitatory synaptic transmission in hippocampal CA3 neurons (see below) (Garcia 

and Strehler, 1999). The important role of PMCA activity in sensory hair cell adaptation has 

been shown by an isoform-specific KO experiments that revealed that PMCA2 activity 

underlies the ability to hear. PMCA2 heterozygote mice are clearly hearing impaired 

(auditory brain stem response threshold 70-80 db compared to 30-45 db of WT mice) and 

PMCA2 null mice are deaf (Strehler and Zacharias, 2001).  
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In mammals two basic types of Na+/Ca2+ exchangers have been described. The classical 

NCX exchange 3 Na+ for each Ca2+ using the energy of the Na+ gradient set by the ATP-

dependent Na+/K+-pump, whereas the second type of Na+/Ca2+ exchangers, the NCKX is K+ 

dependent and co-exchanges one Ca2+ and one K+ for four Na+ ions. 

 

The classical NCX have a lower affinity to Ca2+ (K1/2 0.6-6 µM), compared to the 

PMCAs, and the clearance rate increases exponentially with a rise in [Ca2+]i (Blaustein and 

Lederer, 1999). This comparatively greater efficacy of the NCXs enables them to handle the 

rapid extrusion (turn-over rate in range of 1000 to 5000s-1 for NCX1 (Blaustein and Lederer, 

1999)) of large amounts of Ca2+. It has been suggested therefore, that PMCAs and NCXs 

might work in a complementary way. Thus, PMCAs would control resting [Ca2+]i and extrude 

Ca2+ during rises in [Ca2+]i which are too low to activate NCXs, while NCXs would be 

responsible for the extrusion of large [Ca2+]i when PMCAs are saturated. In neurons, NCXs 

play a key role in the control of [Ca2+]i during synaptic transmission. Reduction of the Na+ 

gradient across the membrane, which has the consequence of a reduced NCX activity, 

increases the neurotransmitter release as many reports from mammalian peripheral and central 

synapses have shown. However the precise role of NCXs during vesicle release is not yet 

fully understood (Blaustein and Lederer, 1999). 

Three isoforms (NCX1-3) are known to date, but whether there are biophysical 

differences between the three isoforms and their various splice variances is not yet clear. 

Therefore the diversity of NCXs is manifested in their different expression pattern and 

temporal variability of expression. All of the three NCX isoforms are expressed in the brain, 

but at different levels. NCX2 and NCX3 are expressed at high levels in the brain, whereas 

NCX1 is predominantly expressed in the heart (Guerini et al., 2005).  

NCX expression shows strong activity-dependence. It has been reported that NCX2 

genes are down-regulated within 30-60 minutes after depolarization of the membrane in 

developing cerebellar neurons (Guerini et al., 2005). The quick down-regulation of NCX2 has 

been shown to be dependent on the activity of the Ca2+-dependent phosphatase calcineurin. 

This indicates that Ca2+ can directly modulate the amount of Ca2+ exchanger protein in the 

neuron (Guerini et al., 2005). Furthermore, the expression of the different isoforms changes 

during development. NCX3 becomes strongly up-regulated after chronic membrane 

depolarization during the process of maturation, while the total amount NCX1 remains 

unaltered. This has the consequence of an increased total amount of NCXs. These fast up- and 
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down regulations of particular NCX isoforms during development let one assume different 

physiological significances for the three isoforms. 

 

K+-dependent Na+/Ca2+ exchangers extrude one cytosolic Ca2+ and K+ in exchange for 4 

Na+. In contrast to NCXs, NCKXs exhibit a higher affinity to Ca2+ (for NCKX1-2: K1/2 ~1-2 

µM), and a lower maximum turnover rate (for NCKX1: 2 -115 s-1) (Blaustein and Lederer, 

1999; Visser and Lytton, 2007). It is expected that, based on the sequence identity, the other 

NCKX isoforms exhibit the same biophysical properties (Visser and Lytton, 2007). K+-

dependent Na+/Ca2+ exchangers are therefore dedicated to reduce intracellular Ca2+ to a low 

nanomolar concentration. 

Five different isoforms (NCKX1-5) have been described so far with distinct expression 

patterns (Visser and Lytton, 2007). Although little differences in the biophysical properties 

are expected, the distinct expression pattern of the different isoforms suggests isoform-

specific physiological significances.  

It has been shown by several studies that NCKX-mediated Ca2+ extrusion plays a 

prominent role in neuronal Ca2+ clearance. In axon terminals of rat neurohypophysis, ~90% of 

Ca2+ exchange based Ca2+ clearance is K+ dependent. A predominant contribution to Ca2+ 

clearance by NCKX has also been demonstrated in the calyx of Held and in hippocampal 

CA1 neurons (Visser and Lytton, 2007).  

 

Physiological function attributed to the extrusion system. We describe here how the 

diversity of PMCAs regulates excitatory synaptic transmission in hippocampal CA3 neurons. 

Alternative splicing at the C-terminal of a given PMCA isoform produces two functionally 

different variants: the splice variant “a” is more rapidly activated by Ca2+ and extrudes Ca2+ at 

a higher rate compared to the PMCA splice variant “b”, which exhibits long-lasting extrusion 

properties at high rates (Strehler and Zacharias, 2001). The spatially defined expression of a 

particular splice variant of a specific PMCA isoform is important for synaptic transmission 

(Jensen et al., 2007). Western blot analysis and immunohistochemical studies of hippocampal 

tissue, which expresses all PMCA isoforms (PMCA1-4), revealed that splice variant PMCA2a 

is selectively enriched at excitatory presynaptic terminals within the CA3 region. 

Electrophysiological experiments in CA3 hippocampal slices showed that the inhibition of 

PMCAs, either via increasing/lowering the pH, or through pharmacological blockade, 

enhances the frequency, but not the amplitude, of mEPSC. In contrast, although PMCA2a is 

present in some inhibitory presynaptic terminals within the hippocampal CA3, neither the 
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frequency nor the amplitude of mIPSCs changed after inhibition of PMCA (Jensen et al., 

2007). Furthermore the paired-pulse ratio of evoked IPSCs, which is an indicator of 

presynaptic release probability, was not significantly altered after inhibition of PMCAs. In 

contrast, the paired-pulse ratio of evoked EPSCs increased by an increment of the second 

EPSC, indicating an enhanced synaptic release, arbitrated by the PMCA-inhibition-mediated 

increase of presynaptic [Ca2+]. These experiments nicely show that the compartmentalized 

expression of alternatively spliced PMCA isoforms is important for basic aspects of synaptic 

transmissions. In the example above a specific splice variant of a particular PMCA isoform 

(PMCA2a) is selectively enhanced in presynaptic terminals of predominantly excitatory 

synapses of the hippocampal CA3 region.  

 

3.2.2.2 The sequestration mechanisms 

 

Beside the two membrane-bound extrusion systems, which extrude Ca2+ out of the cell, 

three further mechanisms are known to remove Ca2+ from the cytosol. The SERCA pumps of 

the ER and the Golgi apparatus, the SPCA of the Golgi apparatus, and the mCU represent the 

sequestration mechanism absorbing Ca2+ from the cytosol into the particular organelle. All 

three organelles, the mitochondria, the ER, and the Golgi apparatus are known to be Ca2+ 

stores (Rizzuto, 2001). 

 

Sarco-Endoplasmic Reticulum Ca2+ ATPase pumps are endomembrane-bound ATPases 

of the ER and the Golgi apparatus, which are closely related to the membrane-bound PMCA, 

since both belong to the P-type pumps, which are characterized by the formation of a 

phosphorylated intermediate as a part of the catalytic cycle (Verkhratsky, 2005). The ER acts 

simultaneously as a Ca2+ source, relying on the activation of the two Ca2+ channels RYRs and 

IP3Rs, and a Ca2+ sink through SERCA-based sequestration of intracellular Ca2+ into the 

lumen (Berridge et al., 2000). Sarco-Endoplasmic Reticulum Ca2+ ATPase pumps are 

therefore an important element in the homeostatic regulation of [Ca2+]i in neurons and ensure 

the appropriate filling of the ER with Ca2+.  

Three isoforms (SERCA1-3) have been characterized with various splice variants, 

which differ in their expression pattern and their biophysical properties (Pozzan et al., 1994; 

Sepulveda et al., 2004). Two of the three isoforms, type 3 and type 2, are expressed in the 

brain. The splice variant SERCA2b is ubiquitously expressed in central neurons, whereas the 

splice variants SERCA2a and SERCA3 are principally restricted to the cerebellar PC 
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(Verkhratsky, 2005). Consistent with these expression patterns, SERCA2-deficient mice 

exhibit embryonic lethality, whereas mice deficient in the variant SERCA2a survive to 

adulthood, albeit with severe cardiac hypertrophy, and SERCA3 KO mice exhibit no apparent 

disease phenotype during maturation (Prasad et al., 2004). 

Neuronal SERCA pumps act on a comparatively rapid (< 100 ms) time scales and have 

a high affinity for Ca2+ (K1/2 ~0.1-1 µM). It has been suggested therefore that SERCA pump 

activity is at about 50% of its maximal rate at resting [Ca2+]i (Pozzan et al., 1994). This 

enables the ER to sequestrate and accumulate Ca2+ rapidly, very efficiently and, in high 

concentrations (100 µM). The activity of SERCA pumps is regulated by several mechanisms 

such as by phosphorylation, ER-immanent Ca2+ binding proteins and Ca2+ itself (Pozzan et 

al., 1994). In central neurons, a 10 time increase of [Ca2+]i results in a 5-fold increase of 

SERCA pump activity (Favre et al., 1996; Verkhratsky, 2005). More interestingly, the level of 

free [Ca2+]L plays an important role in the regulation of SERCA pump activity. The speed of 

Ca2+ uptake increases 5-7 times in response to a decrease in [Ca2+]L, whereas replenishment of 

the ER slowes down the velocity of SERCA pump activity (Favre et al., 1996).  

 

Secretory-pathway Ca2+-ATPase are endomembrane-bound ATPases of the Golgi 

apparatus, which belong, as do SERCA and PMCA, to the P-type pumps. Little is known 

about the diversity and function of SPCA in mammals. Most studies so far have been done in 

yeast, C. elegans and expression systems (Wuytack et al., 2002). Two isoforms are known in 

man (SPCA1 and SPCA2) with two splice variants in SPCA1. SPCA activity appears to be 

important for shaping intracellular Ca2+ signalling in yeast and expression systems (Wuytack 

et al., 2002). 

 

The mCU is the primary supplier of Ca2+ into the mitochondria (Duchen, 2000b; Gunter 

et al., 2000). Ca2+ uptake into the mitochondria depends strictly on the electrochemical 

gradient, which is maintained by the mitochondrial NCX (Gunter et al., 2000). It has been 

suggested that mCU is likely an inwardly rectifying Ca2+ selective ion channel, but the exact 

nature and molecular structure of the mCU is still elusive (Duchen, 2000b). Although little is 

known about the diversity of mCU in terms of isoforms, kinetics or expression, it is generally 

agreed that mitochondrial Ca2+ sequestration plays an important physiological role in shaping 

amplitude and duration of transient elevation of [Ca2+]i (Duchen, 2000a). The inhibition of 

mitochondrial Ca2+ sequestration, for example, accelerates the secretion of catecholamines 
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from adrenal chromaffin cells, which is dependent on a transient increase of [Ca2+]i (Thayer et 

al., 2002). 

 

Physiological function attributed to the sequestration mechanisms: The link between 

SERCA-mediated Ca2+ uptake and physiological processes is best understood in cardiac cells 

(Berridge, 2003), but an important physiological role for SERCA-mediated Ca2+ sequestration 

in neuronal Ca2+ signalling has been documented in dendritic spines, the sites of synaptic 

communication and plasticity (Majewska et al., 2000). The concurrent generation of back-

propagating APs and EPSP induces a supralinear rise of [Ca2+]i in dendritic spines, which 

underlies synaptic plasticity. The duration of the small time window, in which the neuron 

interprets the two signals as coincident is therefore crucial for the regulation of the generation 

of long-term plasticity. It has been shown that SERCA-mediated Ca2+ sequestration is 

crucially involved in the regulation of the time window during which spines are able to 

maintain high [Ca2+]i. The initiation of back-propagating APs in CA1 pyramidal neurons 

causes an increase of [Ca2+]i in their spines, which is larger (average ratio of the peak [Ca2+]i 

between spine and dendrite: ~2.1) than the [Ca2+]i observed in the dendrite. The decay of this 

back-propagating APs-induced rise of [Ca2+]i has a monoexponential slow time course (τ 

~1261 ms) in dendrites, whereas in spines a biexponential time course, with a initial fast (τ 

~141 ms) and a subsequent slow (τ ~1367 ms) phase, has been found (Majewska et al., 2000). 

Based on previous studies showing a major role for SERCA pumps in Ca2+ clearance in 

dendrites of pyramidal neurons (Markram et al., 1995), the authors postulated that SERCA 

pumps contribute to the fast phase of the biexponential decay time course found in spines. 

Indeed, application of CPA, a selective blocker of SERCA pumps, lengthened the fast phase 

from ~118 ms to ~611 ms, whereas the slow phase followed the slow decay kinetics of 

dendrites (Majewska et al., 2000). These experiments show a crucial role of SERCA pumps in 

controlling the temporal continuance of Ca2+ in spines after a back-propagating AP-induced 

rise of [Ca2+]i and, therefore, in  determining the duration of the time window in which 

generation of long-term plasticity is possible.  
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4 Aims of the thesis 
 

This thesis deals with the specificity of Ca2+ signalling in the thalamus. It has long been 

recognized that an important thalamic function is to generate oscillatory activity during sleep. 

Most recently, it has been demonstrated that the lack of a gene encoding a low voltage-

activated Ca2+ channel of the T-type family (CaV3) leads to severe sleep disturbances. It is 

well known that CaV3 channels are important for a particular form of neuronal discharge, the 

so-called LT bursts. However, a major unknown aspect of Ca2+ signalling in the thalamus is 

whether Ca2+ entering through CaV3 channels adopts important signalling roles within 

thalamic neurons. How large are the Ca2+ signals generated by CaV3 channels? Which role do 

they play in Ca2+ signalling through LT bursts? Do they act as gating molecules? Can we find 

evidence for a specificity of signalling, and, if yes, what are the mechanisms? What is the role 

of Ca2+ sinks in oscillatory activity? Can we attribute physiological relevance to this 

specificity, perhaps even at the behavioural level? 

In my thesis, I have addressed all these questions by focusing on a thalamic nucleus that 

vigorously participates in oscillations during sleep, the nucleus reticularis thalami.  

We hypothesized that defining the Ca2+ sources leading to SK channel activation in 

these neurons could be relevant to several levels of research related to sleep oscillations. First, 

it could help to elucidate the principles of CaV3 channel-dependent Ca2+ signals in more 

detail, in particular in relation to the efficacy and specificity of the Ca2+ signalling that they 

provide. Second, it was previously shown that nRt oscillations are dynamic, in that they are 

either on-going, or intrinsically dampened. This observation points to a variable strength of 

SK channel activation, but the reasons for this variability are unclear. Third, we envisaged 

employing the well-documented animals lacking defined SK channel subtypes to get insight 

into the molecular basis and subcellular distribution of SK channels in nRt, and hence in their 

relative position to the Ca2+ sources. Fourth, we speculated that, by clarifying the mechanisms 

of SK channel gating in a sleep pacemaker nucleus, we could weigh the role of nRt oscillatory 

activity in generating the physiological hallmarks of sleep, the EEG waves. Finally, we had 

great hopes that, by elucidating the biophysical and molecular underpinnings of sleep-related 

neuronal activity, we could eventually define molecular targets that could interfere with the 

quality and the quantity of sleep, one of the major sources of health deterioration in modern 

society. 
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5 Results  
 

5.1 Introduction to the paper 

 

The past decades have witnessed a major interest in the role of LT bursts in the TC 

system in relation to the control of arousal states (Bezdudnaya et al., 2006; Crunelli et al., 

2006), and to rhythmogenesis (Contreras, 2006; Llinás et al., 2005). In particular, it is well 

known that myriads of neurons in the TC system co-operate to produce synchronized, 

rhythmic network activity that underlies the characteristic EEG sleep waves (Contreras, 2006; 

Crunelli et al., 2006). 

Recently, genetically modified mice lacking a Ca2+ channel subunit of the CaV3 channel 

family were described as showing major disturbances in sleep patterns. These were 

accompanied by a reduced EEG power in two prominent frequency bands of NREMS, the 

delta (1-4 Hz) and the spindle (8-10 Hz) range (Anderson et al., 2005; Lee et al., 2004). These 

genetic studies hence establish a direct link between a unique form of neuronal discharge and 

sleep, and complement the classic electrophysiological demonstrations of the tight association 

of LT bursts with the functional brain state of sleep (Contreras, 2006). 

 

5.1.1 Mice lacking the gene encoding the CaV3.1 channel exhibit severe 

sleep disturbance 

 

In these mice, the global, unconditional deletion of CaV3.1 causes a prominent loss of 

low-frequency components in the EEG of naturally sleeping mice. To these belong the δ-

oscillations at 1-4 Hz, which are predominantly found and representative in the EEG during 

NREMS. Furthermore, spindle waves (7-14 Hz), which are typically found during lighter 

stages of sleep or, accompanied by δ-waves, at the transition between NREMS and REMS, 

are significantly reduced (Lee et al., 2004). No differences between CaV3.1 mutant and WT 

mice could be found in waves typical to REMS and wake states, such as θ- (5-10 Hz) and β-

waves (10-20 Hz) respectively. At the level of sleep behavior, mice lacking CaV3.1 exhibited 

a reduced total amount of sleep time (786 min versus 856 min in WT). This deficit could be 

explained by the animals showing an increased number of brief awakenings (typically < 16 
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sec) and a reduction of time spent in NREMS (637 min versus 704 min in WT), while the 

time spent in REMS remained unaltered compared to WT mice. In mice with a thalamus-

restricted KO of the Cav3.1 gene, a reduction of NREMS time was also observed (Anderson 

et al., 2005). In contrast to the EEG data shown by Lee et al., Anderson et al. report, but 

without showing the data, a decreased δ-wave power during NREM in unconditional and 

thalamus-restricted KO. Thus, in both unconditional and thalamus-restricted KO mice more 

detailed experiments at the EEG level are required.  

Altogether, these KO mice demonstrate a critical role for low-threshold Ca2+ channels. 

The data show the massive effect of the deletion of a single CaV3 isoform has on the level of 

sleep behaviour and EEG, and indicate a critical role for the thalamus in the generation of 

sleep rhythms. What is known about the role of thalamic CaV3 channels in the generation of 

NREMS rhythms? 

 

5.1.2 The role of CaV3 channels in the generation of NREMS related 

rhythms 

 

The generation of NREMS related EEG waves relies on the synchronized, rhythmic 

network activity of the neurons of the TC system, which is composed of interconnected 

network loops between the neocortex, the thalamus and the nRt (Crunelli et al., 2006; 

Steriade, 2003). In the last decades of the 20th century, extracellular and intracellular 

recordings of sleeping animals have provided the cornerstones around which our view of the 

role of thalamic and cortical activities in sleep physiology was shaped. Subsequently, in vitro 

recordings from brain slice preparations, some of which were serendipitously recognized as 

generating spontaneous oscillatory activities, refined our understanding of the cellular and 

network interactions during sleep. 

At the beginning of this remarkable history of TC physiology related to sleep, such 

extracellular and intracellular in vivo studies during the NREM sleep of natural sleeping 

animals demonstrated that thalamic neurons generated a peculiar form of bursts of APs that 

crowned a slower depolarizing potential (Hirsch et al., 1983; McCarley et al., 1983). Such 

burst discharges could be artificially triggered by the injection of hyperpolarizing current. In 

vitro electrophysiological experiments revealed that the slow depolarizing potential could be 

triggered by brief (~50 ms) depolarization of a relatively hyperpolarized membrane 

(membrane potential below ~-70 mV) or by the hyperpolarization of a membrane at resting 
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potential. The slow depolarizing potential was subsequently called the LT spike, because of 

its activation threshold at comparatively hyperpolarized membrane potentials (~-70 mV). 

Bursts of APs are generated after the LT spike has reached the threshold of AP generation (~-

55 mV). Isolated LT spikes, obtained by the application of the Na+ channel blocker TTX, are 

abolished after the application of Ca2+ conductance inhibitors, such as CoCl2 or CdCl2 

(Jahnsen and Llinás, 1984; Llinás and Jahnsen, 1982). The voltage dependence, the low 

activation threshold, and the pharmacological characteristics of the LT spike prompted the 

idea that a Ca2+ conductance underlies the generation of LT spikes (reviewed by (McCormick 

and Bal, 1997)). Indeed, voltage-clamp recordings from isolated thalamic cells clearly 

revealed the presence of a Ca2+ current with characteristics consistent with the conductance 

mediating the LT spike (Huguenard and Prince, 1992; Pape and McCormick, 1990). The flow 

of Ca2+ ions hence plays an important electrogenic role in the generation of burst discharges, 

which are found in thalamic neurons during natural NREMS.  

These classical recordings also brought the understanding to the point that cellular 

oscillatory characteristics, such as the frequency and pattern of discharge, could be directly 

correlated with the frequency bands of the sleep EEG. Thus, in vivo recordings during 

NREMS show that TC neurons generate rhythmic burst discharges in a frequency range of 

0.5-4 Hz, which correlates with the frequency band of δ-waves in the EEG. Although the full 

cellular basis of the EEG δ-waves is still a matter of controversy, with both thalamic and 

cortical activities involved (Buzsáki and Gage, 1989), the recent CaV3.1 KO experiments 

provide substantial support in favor of a significant thalamic contribution to these sleep 

waves. The intrinsic burst mechanism of TC neurons is based on an interplay between a CaV3 

channel-mediated IT and the IHCN. At relatively a hyperpolarized membrane potential such as 

it is typical for TC neurons during NREMS (Hirsch et al., 1983), IHCN, which typically 

activates at membrane potentials below -60 mV, pushes the membrane potential towards the 

activation threshold of CaV3 channels. The following additional influx of positive charges 

builds up a LT spike, which depolarizes the membrane towards the threshold for a burst of 

APs. Deactivation of IHCN and inactivation of IT leads to a hyperpolarization of the membrane, 

which de-inactivates IT and activates IHCN again (reviewed by (McCormick and Bal, 1997)). 

This important involvement of CaV3 channels in the generation of intrinsic rhythmic burst 

discharges in TC neurons has been recently confirmed by KO experiments (Kim et al., 2001), 

in which the lack of Cav3.1 leads to a full abolishment of cellular burst discharges, while 

tonic activity is spared.  
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In addition to the δ-rhythm, we also have an elaborate cellular understanding of spindle 

wave generation (10-15 Hz). Rather than being based on the oscillatory activity of single 

neurons, these waves arise out of an interplay between TC neurons and their immediate 

neighbours the nRt neurons. Similar to TC neurons, nRt neurons generate bursts of APs. The 

nRt is a GABAergic structure, which covers the dorso-lateral part of the thalamus and is, 

therefore, interposed between the cortex and the thalamus. Nucleus reticularis neurons project 

to TC neurons. In contrast to the bursts of TC neurons, nRt bursts are followed typically by an 

AHP, which is generated by the activation of SK channels (Avanzini et al., 1989; Bal and 

McCormick, 1993). This AHP is strong enough to de-inactivate CaV3 channels and therefore 

allows nRt neurons to autonomously generate sequences of bursts discharges. In contrast to 

TC neurons, the oscillatory activity of nRt cells is thus based on Ca2+ entry during LT bursts, 

rather than on an intrinsic pacemaker current, such as IHCN. The spontaneous oscillatory 

activity of nRt neurons is much greater than that of TC neurons, due to the fact that these cells 

possess an IT with a voltage range of activation that is more depolarized. This spontaneous 

oscillatory activity, and also its intrinsic dampening, is critical for the initiation and 

synchronization of spindle waves. 

Thus, in vivo intracellular recordings revealed that during EEG spindle wave generation 

TC neurons receive rhythmic IPSPs at the frequency of 7-14 Hz, which correlated with the 

frequency band of spindle waves. Both in vivo and in vitro studies demonstrated that these 

rhythmic IPSPs result from an activation of GABAergic nRt neurons. The IPSP-mediated 

hyperpolarization activates IHCN and de-inactivates CaV3 channels, which open during the 

cessation of IPSP. The following LT spike-mediated burst of APs activates nRt neurons by a 

feedback loop again. The frequency of spindle waves correlates with the time required for 

closing the loop between the activation of a nRt neuron, the generation of inhibitory 

postsynaptic potential in TC neurons, the occasional rebound burst response of these neurons, 

and the generation of an excitatory response in the nRt cell, further eliciting rebound bursting 

(reviewed by (McCormick and Bal, 1997)). Thus, CaV3 channels drive synaptic oscillations, 

which oscillate within a frequency band that correlates with those of EEG spindle waves. 
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5.1.3 Does Ca2+ provided by CaV3 have a signalling role in nRt neurons? 

 

Given the versatility of Ca2+ as an intracellular signalling compound, it is plausible to 

speculate that Ca2+ entry through CaV3 channels may not be restricted to its electrogenic 

function. However, in spite of a large body of work on LT bursts and CaV3 channels both in 

vivo and in vitro, still remarkably little is known about the signalling function of T-type Ca2+. 

However, several studies strongly suggest that T-type Ca2+ might be important for the 

temporal dynamics of sleep-related oscillatory activity. For example, it was found previously 

by Bal and McCormick that blocking IHCN produced a block of the waxing and waning 

characteristics of spindle waves at frequencies of about once per 10 s (Bal and McCormick, 

1996). This block was accompanied by a reduction in the duration of a refractory period 

between spindles, during which the propensity of neurons to generate rebound bursts is much 

reduced. Subsequently, it was found that the neuronal activity found during spindle waves 

itself is responsible for this refractory period, because it was associated with a Ca2+-dependent 

upregulation of IHCN (Lüthi and McCormick, 1998). This Ca2+ originated from the repetitive 

rebound bursting of TC neurons involved in spindle waves and is thought to be linked to the 

stimulation of a Ca2+-sensitive adenylyl cyclase. The resulting cAMP increase is then 

responsible for persistently activating IHCN, which is carried by channels directly binding 

cAMP. Thus, although the contribution of IT was not directly specified, this work provided 

strong support for the idea that the bursting activity of neurons during sleep was accompanied 

by specific Ca2+ signalling systems and the production of second messengers. Currently, it 

remains a matter of speculation whether the periodic stimulation of cAMP synthesis during 

spindle waves has any additional functional implications related to sleep function. 

Additional evidence for T-type Ca2+ signalling was recently reported from thalamic 

midline neurons, in which T-type Ca2+ triggers CICR (Richter et al., 2005). Interestingly, 

CICR is not triggered in thalamic neurons involved in primary sensory relay nor in nRt 

neurons (Richter et al., 2005). 

Finally, it was previously recognized that apamin-sensitive SK channels are activated 

during the generation of rhythmic burst discharges in nRt neurons (Avanzini et al., 1989; Bal 

and McCormick, 1993). Moreover, preliminary studies indicated that apamin infusion into the 

brain could affect sleep states (Benington et al., 1995; Gandolfo et al., 1996). Much is known 

about SK channel gating in diverse neuronal cell types. In particular, it has been shown that 
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SK channels are often selectively coupled to certain Ca2+ channels, thereby influencing 

particular types of neuronal discharge. For example, studies in dopaminergic midbrain 

neurons revealed a selective functional coupling of CaV3 channels to SK channels, which 

prevents burst firing and maintains pacemaker precision in these neurons (Wolfart and 

Roeper, 2002). 
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Summary 

 
T-type Ca2+ currents underlie rhythmic burst discharges during neuronal oscillations 

typical for sleep. However, Ca2+-dependent effectors selectively regulated by T-type Ca2+ 

currents remain unknown. We show that in the dendrites of nucleus reticularis thalami 

(nRt), [Ca2+]i increases are dominated by T-type Ca2+ currents and shape rhythmic 

bursting by creating a competition between Ca2+-dependent SK-type K+ currents and 

Ca2+ uptake pumps. Via selective activation of dendritically located SK2 channels, 

oscillatory bursting is generated along major dendritic segments. The sequestration of 

Ca2+ by sarco/endoplasmic reticulum Ca2+-ATPases (SERCAs), together with 

cumulative T-type Ca2+ channel inactivation, antagonizes SK2 channel activation and 

dampens oscillations. Mice lacking the SK2 channel gene demonstrate a >3-fold 

reduction in low-frequency rhythms in the electroencephalogram of non-rapid-eye-

movement sleep. The interplay of T-type Ca2+ channels, SK2 channels, and SERCAs in 

nRt dendrites comprises a specialized organization handling Ca2+ entry through T-type 

Ca2+ channels to regulate oscillatory dynamics related to sleep. 
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Introduction 

Neurons in the thalamocortical system co-operate to produce synchronized, rhythmic 

network activity that underlies slow waves characteristic of sleep electroencephalograms 

(EEGs) (Crunelli et al., 2006; Steriade, 2003). Rhythmogenesis is accompanied by low-

threshold (LT) burst discharges in thalamic neurons which are carried by Cav3 Ca2+ channels 

and give rise to low-voltage-activated, T-type, Ca2+ currents (Perez-Reyes, 2003). Mice 

lacking the Cav3.1 channel subunit fail to produce bursts in thalamocortical neurons and show 

reduced EEG power in prominent frequency bands of non-rapid-eye-movement sleep 

(NREMS) (Shin et al., 2006).  

Although Ca2+ ions entering through T-type Ca2+ currents are the electrical charge 

carriers underlying LT bursts, the associated intracellular Ca2+ ([Ca2+]i) dynamics and their 

role in sleep physiology remain largely unknown. To understand the role of T-type Ca2+ 

currents in sleep-related oscillations, elementary quantitative information about Ca2+ influx 

through T-type Ca2+ currents, their contribution to [Ca2+]i during a LT burst and their function 

in intracellular signalling is required. T-type Ca2+ channels have a lower unitary conductance 

than other types of Ca2+ channels and inactivate more rapidly (Perez-Reyes, 2003), suggesting 

that they might make only a minor contribution to total Ca2+ influx during neuronal 

discharges. However, in thalamic neurons, T-type Ca2+ currents are large (Perez-Reyes, 

2003), and computational studies suggest that a high channel density is important for 

oscillatory LT bursts (Destexhe et al., 1996). Moreover, LT burst-dependent Ca2+ signalling 

shapes the temporal evolution of sleep-related oscillations in vitro (Blethyn et al., 2006; Pape 

et al., 2004), but the specific roles of Ca2+ entering through T-type Ca2+ channels and how 

they affect the sleep EEG have not been determined. 

We hypothesized that targets selectively regulated by T-type Ca2+ currents would be 

important for controlling sleep-related cellular oscillations and could have implications for 

sleep physiology. We focused on the nucleus reticularis thalami (nRt), a thin inhibitory 

network interposed between thalamocortical projection neurons and the cortex that is 

important for information transfer and arousal control (Fuentealba and Steriade, 2005; Pinault, 

2004). Lesioning the nRt leads to the disappearance of sleep-related spindle oscillations and 

produces attention neglect (Fuentealba and Steriade, 2005; Pinault, 2004). Prominent and 

well-characterized forms of rhythmic bursting in the nRt accompany the major forms of low-

frequency EEG oscillations, in particular δ-oscillations (1 - 4 Hz), spindle waves (10 - 15 Hz) 

and slow oscillations (< 1 Hz) (Amzica et al., 1992; Domich et al., 1986; Steriade et al., 

1993), but the nRt also generates bursts in response to sensory stimuli (Cotillon and Edeline, 
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2000). T-type Ca2+ channels in nRt are composed of Cav3.2 and Cav3.3 subunits (Talley et al., 

1999) and are heavily expressed along the somatodendritic axis (Joksovic et al., 2005). In 

contrast to the Cav3.1-mediated bursts of thalamocortical neurons, nRt bursts are typically 

followed by an afterhyperpolarization (AHP) generated by small-conductance Ca2+-dependent 

SK-type K+ currents (Avanzini et al., 1989; Bal and McCormick, 1993), and recruit 

additional, although molecularly unidentified, Ca2+- and Na+-dependent cationic conductances 

(Bal and McCormick, 1993; Blethyn et al., 2006). Therefore, Ca2+-dependent ionic 

mechanisms in nRt cells are responsible for time-varying oscillatory bursting patterns that are, 

at least partly, dependent on Ca2+ entry through T-type Ca2+ currents. Dynamics and 

synchrony of these oscillatory activities are sculpted by synaptic input within thalamocortical 

loops, via brainstem afferents, and by reciprocal connections between nRt cells (Fuentealba 

and Steriade, 2005; Pinault, 2004).  

Our study reveals that Ca2+ influx through T-type Ca2+ channels during a single LT 

burst leads to a marked [Ca2+]i increase in nRt dendrites, in which SK2-containing SK 

channels are strongly expressed and are activated rapidly and selectively. Sarco/endoplasmic 

Ca2+ ATPases (SERCAs) compete with SK2 channels for available Ca2+ and attenuate the 

strength of nRt oscillations. In mice lacking the gene encoding SK2 channels (SK2-/-), 

NREMS EEG power density is dramatically reduced in the δ and spindle frequencies. 

Altogether, our findings suggest that Ca2+ influx through T-type Ca2+ channels, acting through 

competing targets, underlies endogenous nRt oscillations that are linked to characteristic 

frequency bands of NREMS. 

 

Results 
Selective coupling between T-type Ca2+ and SK currents in nRt cells 

We first examined the role of T-type Ca2+ currents in the activation of SK currents using 

whole-cell electrophysiological recordings. We used Cs+-based patch electrodes to restrict K+ 

permeability and to optimize voltage-clamp conditions in recordings from intact nRt cells 

(Sun et al., 2001). Under these conditions, T-type Ca2+ currents were detected as rapid inward 

currents following 0.5 s step hyperpolarizations (by -40 mV from a holding potential of –55 to 

-60 mV) that were reduced by the T-type Ca2+ channel blocker mibefradil (10-50 μM applied 

for 10 min) (from -494 ± 101 pA to -72 ± 34 pA, n = 7, p < 0.02; Figure 1A inset) (Perez-

Reyes, 2003). Cells included in this analysis showed T-type Ca2+ currents with properties that 

fulfilled previously established criteria for acceptable voltage control in intact nRt cells (see 

Supplemental Experimental Procedures). We next recorded with K+-based electrodes to 
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permit unrestricted activation of K+, including SK currents. Under these conditions, the 

response recorded between -67 and -62 mV at the offset of the hyperpolarizing step (-40 mV, 

125 ms) was biphasic: the T-type Ca2+ current was typically followed by a small outward 

current (~10-200 pA above baseline), which was blocked by the selective SK channel blocker 

apamin (100 nM) (Figure 1A). The apamin-sensitive current, obtained by subtracting currents 

before and after apamin application, had an amplitude of 349 ± 59 pA (n = 5; Figure 1B) and 

decayed with a biexponential time course. The fast component had a time constant of τ1 = 

30.1 ± 2.6 ms (n = 5), while the slow component decayed with τ2 = 834 ± 227 ms (n = 5) and 

contributed 17.3 ± 4.2 % to the total current amplitude. The latency from the peak of the T-

type Ca2+ current to the peak of the apamin-sensitive current was 14.1 ± 0.3 ms (n = 5; Figure 

1C). Thus, digital subtraction yields a large SK current in nRt cells, and the voltage-clamp 

approach appeared suitable for characterizing the mechanism of its activation (see 

Supplemental Experimental Procedures). 

To determine whether Ca2+ entry through T-type Ca2+ currents was required for SK 

current activation, the effects on the apamin-sensitive current of including the Ca2+ chelators 

1,2-Bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (BAPTA, 1-5 mM) in the patch 

pipette were determined. When BAPTA was present, no apamin-sensitive current could be 

elicited (5.9 ± 3.2 pA, n = 9, p < 0.001 compared to BAPTA-free conditions; Figure 1D), 

although T-type Ca2+ currents remained unaltered (currents amounted to 426 ± 49 pA at the 

offset of the hyperpolarizing step, p > 0.05). Furthermore, apamin-sensitive currents persisted 

in the presence of the Na+ channel blocker tetrodotoxin (TTX, 0.5 μM) (366 ± 34 pA vs. 423 

± 54  pA, n = 3, p > 0.05; Figure 1E), but were largely blocked in mibefradil (50 μM applied 

for 10 min, remaining apamin-sensitive current amplitude -11 ± 4 pA, n = 4, p < 0.002; Figure 

1F). 

The role of rapid SK current activation was explored by quantifying the decay phase of 

T-type Ca2+ currents. Since these show a biphasic inward-outward waveform before apamin, 

and a monophasic decay in apamin, we compared the initial current decay slope between the 

two conditions (see Supplemental Experimental Procedures). Apamin strongly reduced the 

decay slope, making it comparable to that found with Cs+-based electrodes (Figure 1G). Thus, 

apamin-sensitive SK channels underlie the outward K+ current following the T-type Ca2+ 

currents, and the repolarizing effect of the SK current accelerates the decay of the T-type 

current, consistent with its role in promoting oscillations. 

High-voltage-activated (HVA) Ca2+ currents may also activate SK currents in the nRt 

(Debarbieux et al., 1998). Indeed, apamin-sensitive currents (194 ± 24 pA, n = 11), evoked 
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following depolarizing voltage steps (from -67 to -37 mV for 10 - 125 ms), were reduced by 

the Cav2 channel blocker ω-conotoxinMVIIC (ω-CTXMVIIC, ~1 μM) (18.7 ± 6.4 % of the 

control amplitude, n = 5, p < 0.02; Figure 1H). Therefore, it was important to determine the 

distinct contributions of T-type and HVA Ca2+ currents to SK current activation during a LT 

burst. Upon transient hyperpolarization, nRt cells recorded in the whole-cell patch 

configuration presented 2 - 5 oscillatory high-frequency (150 - 250 Hz) LT burst discharges, 

typically of 2 - 10 action potentials at around 4 - 10 Hz (Supplemental Experimental 

Procedures). Bath application of TTX (0.5 μM) blocked the action potentials, isolating the LT 

Ca2+ spike, but only marginally reduced the number of LT spikes (in ctrl: 3.0 ± 0.3 bursts, in 

TTX: 2.6 ± 0.2 bursts, n = 6, p < 0.05), and the amplitude of the AHP was largely preserved 

(data not shown) (Bal and McCormick, 1993). In contrast, apamin abolished oscillations and 

unmasked a plateau potential (n = 6; Figure 1I). Finally, the SK channel gating enhancer 1-

ethyl-2-benzimidazolinone (1-EBIO, 0. 1 mM), which increases the apparent Ca2+ sensitivity 

of SK channels but does not alter their maximal activation (Pedarzani et al., 2001), potentiated 

oscillatory activity (Figure S1A-D). These pharmacological experiments suggest that a 

coupling between T-type Ca2+ and SK currents is the central event underlying the oscillatory 

activity in nRt neurons. 
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Figure 1. SK channels are selectively gated by T-type Ca2+ channels and control oscillatory 
discharges in the nRt 
 

(A) Membrane current responses elicited after a hyperpolarizing voltage command (from 
-60 to -100 mV, 500 ms) in K+-based solutions (K+-control). A small outward current 
followed the inwardly directed T-type Ca2+ current, that was abolished by the SK 
channel blocker apamin (+Apa, 100 nM). Note that apamin also decelerated T-type 
Ca2+ current decay. Inset: The T-type Ca2+ current, evoked with Cs+-based patch 
solution (Cs+-control) blocking K+ channels, is strongly reduced by mibefradil (+ 
Mibe, 50 μM). Scale bars for inset: 100 pA, 100 ms. 

(B) Digital isolation of the apamin-sensitive current, obtained from the same cell as in A. 
Dark line shows a biexponential fit to the trace, described by time constants τ1 and 
τ2. A small inward current component preceding the apamin-sensitive current 
typically remained in the subtracted trace because the lack of SK current led to a 
small increase in the peak of the T-type Ca2+ current (see A). The correlation 
coefficient of the fit was 0.91 ± 0.01for n = 6 cells. 

(C) Overlay of the T-type Ca2+ current (in the presence of apamin) and the apamin-
sensitive current (Apa-sens. current). Same cell as in A. Double-headed arrow and 
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vertical dotted lines delineate the peak-to-peak latency between T-type Ca2+ current 
and apamin-sensitive current. 

(D) Apamin-sensitive current was not detectable in the presence of 5 mM BAPTA in the 
recording pipette, while the T-type Ca2+ current remained unaltered. 

(E) Apamin-sensitive currents before and during TTX application are shown overlaid, 
together with the inward T-type Ca2+ current in TTX+apamin. 

(F) Apamin-sensitive current in mibefradil (50 μM) and T-type Ca2+ current in control 
conditions. Inset shows T-type Ca2+ current in mibefradil. Scale bars apply for all 
traces. 

(G) The decay slope of the T-type Ca2+ current, obtained by its linear fitting 
(Supplemental Experimental Procedures), in K+-based solution and in the presence of 
apamin or intracellular Cs+. ** denotes p < 0.01. Data are means ± SEM of 6 cells for 
Ctrl and apamin, and of 13 cells for Cs+. 

(H) Apamin-sensitive current, activated by depolarizing voltage steps (30 mV, 125 ms, 
upper traces) to gate high-voltage-activated (HVA) Ca2+ currents, and effects of the 
Cav2 channel blocker ω-conotoxin MVIIC (+ ω-CTXMVIIC, lower traces). 

(I) Whole-cell recordings of nRt discharge patterns after brief negative current injections 
(-100 pA, 400 ms). Under control conditions (Ctrl), an oscillation with three LT 
bursts (arrows) was elicited. Application of tetrodotoxin (+ TTX, 0.5 μM) abolished 
action potentials, but left the oscillation largely intact. Subsequent apamin application 
(+ Apa, 100 nM) uncovered a slowly decaying plateau potential. Dotted lines, resting 
membrane potential. 

 

 

T-type Ca2+ currents dominate Δ[Ca2+]i in dendrites during a LT burst 

To identify the mechanism underlying a presumed selective coupling between T-type 

Ca2+ currents and SK currents, the change in intracellular free Ca2+ concentration (Δ[Ca2+]i) 

generated by a LT burst was imaged in cells filled with the Ca2+ dye magfura-2 (3 mM). This 

low-affinity Ca2+ indicator (Kd ~ 25 μM, see Experimental Procedures) is best-suited to this 

study because it permits us to real-time image Δ[Ca2+]i in the micromolar range (Ogden et al., 

1995). We focused on signals in the dendrites, because dendritic T-type Ca2+ currents are 

essential for LT bursting (Destexhe et al., 1996; Joksovic et al., 2005). Figure 2A shows a 

dye-filled nRt cell, with the bipolar-shaped, thin dendritic arborization partially visible. The 

Δ[Ca2+]i evoked by a LT burst could be measured up to ~150 μm from the soma with only 

minor differences in amplitude and kinetics at different dendritic sites (Figure 2B). Therefore, 

Δ[Ca2+]i was determined from fluorescence signals averaged over the entire imaged dendrite 

(100 - 150 μm from soma). The Δ[Ca2+]i associated with the LT burst reached peak levels of 

713 ± 71 nM (n = 6 dendrites from 6 different nRt neurons in 3 independent experiments), 

and decayed with a time constant of 56 ± 9 ms (fitted in n = 5 experiments). At 0.1 mM 

ethylene glycol tetraacetic acid (EGTA), Δ[Ca2+]i measured with magfura-2 was 

undistinguishable from that without EGTA (Δ[Ca2+]i = 775 ± 82 nM, τ = 46 ± 8 ms, n = 4, p > 
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0.05). Mibefradil (50 μM) reduced these transients by 90.2 ± 3.6% (to 87 ± 57 nM, n = 3, p < 

0.05; Figure 2B). The delay between the Δ[Ca2+]i and the AHP, measured as a peak-to-peak 

latency, was 37 ± 6 ms (range 21 - 46 ms, n = 4; Figure 2C). Taking into account that AHP 

time-to-peak is the convolution of T-type Ca2+ current decay, SK current activation and the 

charging of cell capacitance (τ ~ 12 - 22 ms), this value is consistent with the 

electrophysiologically determined peak-to-peak latency between T-type Ca2+ currents and SK 

currents (~ 14 ms, see Figure 1C) and supports our ability to measure robust Ca2+ currents 

with imaging techniques. 

We next determined the relative importance of Ca2+ specifically provided by the T-type 

Ca2+ current over the Ca2+ currents activated during action potentials. Neurons were 

depolarized to values between -55 and -45 mV to generate a train of 5 - 30 action potentials 

without an underlying LT spike. Tonic discharge rates reached frequencies around 150 - 220 

Hz within the first 3 - 5 action potentials before undergoing adaptation, close to those reached 

during burst discharges (150 - 250 Hz). Under these conditions, Δ[Ca2+]i was markedly 

smaller (15.9 ± 5.4 nM per action potential, n = 5, p < 0.01; Figure 2D) than Δ[Ca2+]i 

associated with the LT burst. 

This difference could be due to a larger Ca2+ influx through T-type Ca2+ channels 

compared to HVA channels, or because the sources of Δ[Ca2+]i were associated with different 

local endogenous buffering. To distinguish between these possibilities, the total Ca2+ entering 

during a LT burst was measured with the high-affinity Ca2+ indicator bis-fura-2 (1 mM). In 

these recordings, the dye-bound Ca2+ (Δ[DCa2+]i, see Experimental Procedures and (Canepari 

et al., 2004)) was 135 ± 22 μM (n = 4) for a single LT burst and 1.35 ± 0.18 μM (n = 4) per 

action potential (Figure 2E). Taken together, a LT burst generates a large [Ca2+]i increase in 

nRt cell dendrites due to Ca2+ influx through T-type Ca2+ currents, while an action potential 

crowning the burst contributes only ~ 1%. With a single-channel conductance of 1 pS and a 

dendritic diameter of 5 - 8 μm, a T-type Ca2+ conductance density of ~0.6 - 1 mS/cm2 is 

required to achieve these signal amplitudes. Furthermore, these measurements provide an 

estimate of the buffer capacity ~ 200, which is similar for HVA- and T-type Ca2+ currents. 

Thus, both electrophysiological and imaging data demonstrate an overwhelming dominance 

of Ca2+ provided by the T-type Ca2+ currents in nRt dendrites during a LT burst. 
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Figure 2. T-type Ca2+ channels dominate dendritic [Ca2+]i increases during LT bursts 
 

(A) Reconstruction of a mag-fura2-filled nRt cell (3 mM). Boxes depict areas over which 
fluorescent signals were measured and averaged. 

(B) Upper traces: Δ[Ca2+]i acquired at 125 Hz in the areas of the boxes in A, elicited by a 
LT burst. Traces are superimposed, showing their overlapping time course throughout 
the first ~150 μm of the dendrite. Lower traces: Effects of Mibefradil (+ Mibe, 50 μM, 
bath-applied for 10 min) on the Ca2+ transient induced by a LT burst (Ctrl). 

(C) Overlay of the LT burst (thin line) and the Δ[Ca2+]i acquired at 500 Hz (thick line), 
illustrating the delay (double-headed arrow) between the peak of the [Ca2+]i transient 
and the AHP. Same cell as in A, B. 

(D) For another cell, [Ca2+]i increases produced by both a LT burst (left traces) and tonic 
action potentials (evoked by 100 pA d.c., right traces) are shown. Dotted line denotes 
the onset of the [Ca2+]i transient, which is delayed with respect to the LT burst, 
consistent with the low Ca2+ affinity of mag-fura2. 

(E) In a cell filled with bis-fura-2 (1 mM), Δ[DCa2+]i evoked by a LT burst (left traces) 
and tonic action potential discharge (right traces) was determined. Note the lack of a 
burst-associated AHP, in contrast to the cell in D recorded with mag-fura2. For this 
high-affinity Ca2+ dye, the transient starts closer to the onset of the LT burst (dotted 
line). 
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SK2 channels mediate the SK currents in nRt cells 

The apparently selective coupling of T-type Ca2+ channels to SK channels could be 

supported if SK channels were expressed at subcellular sites at which Ca2+ entry through T-

type Ca2+ channels is dominant. Previous in situ hybridization results revealed that both SK1 

and SK2 channel subunits are expressed in nRt (Stocker and Pedarzani, 2000). To determine 

which channel isoforms carry the SK current, we examined SK1-/- or SK2-/- mice (Bond et 

al., 2004). The nRt cell morphology, basic cellular properties, and whole-cell T-type Ca2+ 

current properties important for repetitive bursting were similar in cells from SK2-/-, SK1-/- 

and wild-type (WT) SK2+/+ littermate animals (Supplemental Experimental Data). However, 

in SK2-/- animals, the oscillatory discharge was arrested and replaced by a single, slowly 

decaying depolarization (in 27 / 27 cells tested; Figure 3A), with a distinct lack of burst-

associated AHPs. In contrast, SK1-/- cells showed unaltered discharge behaviour compared to 

WT littermates in all 39 cells studied (Figure 3B). Moreover, SK2-/-, but not SK1-/-, nRt 

neurons lacked an apamin-sensitive current following both the T-type and the HVA Ca2+ 

currents (Figure 3A-C). Finally, the slope of the T-type Ca2+ current decay in SK2-/- neurons 

(n = 20) was not significantly different from the values obtained after apamin application (p > 

0.05; see Figure 1G), but smaller than in WT and in SK1-/- cells (Figure 3C). Finally, 

application of 1-EBIO failed to induce an outward current following the T-type Ca2+ current 

in SK2-/- cells (Figure S1E and S1F). Low-threshold bursting properties of thalamocortical 

neurons, including sag potentials, burst amplitudes, and burst discharge frequencies, appeared 

unaltered in the SK2-/- mice (n = 4) compared to wild-type animals (n = 5, data not shown). 

Thus, within the thalamic network, the lack of SK2 channels selectively compromises 

oscillatory bursting in nRt neurons. 
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Figure 3. SK2-containing SK channels mediate oscillatory LT bursts and apamin-sensitive 
currents in nRt cells 
 

(A) Membrane voltage responses to negative current injections (-100 pA, 400 ms, left) and 
apamin-sensitive (Apa-sens.) currents (right), in nRt cells of SK2-/- mice. Note that a 
LT burst and a T-type Ca2+ current (T-current) were clearly present. 

(B) Same as A, for a cell derived from a SK1-/- mouse. 
(C) Pooled data showing the amplitudes of apamin-sensitive currents evoked after T-type 

Ca2+ current (left), after HVA Ca2+ current (depolarization-activated, + 30 mV, 60-125 
ms) (middle), and the slope of the T-type Ca2+ current decay (right) for SK1-/-, SK2-/- 
and wild-type (WT) littermate controls. Data are presented as means ± SEM of 4-20 
cells. ** denotes p < 0.005, *** p < 0.001. 

 

 

Selective expression of SK2 channels in nRt cell dendrites 

High-resolution immunohistochemical techniques were applied to determine the 

subcellular localization of SK2 protein in nRt neurons (Figure 4). Immunoreactivity for SK2 
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was found throughout the dorsoventral extension of the nRt (Figure 4A-C), consistent with 

previous observations at the mRNA level (Stocker and Pedarzani, 2000). The SK2 

immunoreactivity was predominantly located in the neuropil surrounding the spindle-shaped 

cell bodies (Figure 4C), and was absent in SK2-/- animals (Figure 4D). The subcellular 

localization of SK2 subunits was further refined using pre-embedding immunogold electron 

microscopy (Figure 4E-I). Few immunogold particles were observed in cell bodies, and most 

of them were associated with the rough endoplasmic reticulum (ER); almost no 

immunoparticles were found at the somatic plasma membrane (0.87 ± 0.32 immunogold/μm2) 

(Figure 4E). Most SK2 immunoparticles were located in dendrites along the extrasynaptic 

plasma membrane of dendritic shafts (10.87 ± 2.11 immunogold/μm2, p < 0.01 compared to 

somatic density; Figure 4F-I). Notably, immunoparticles were often found close to excitatory 

synapses (146 immunoparticles within 200 nm from the edge of postsynaptic density of 50 

excitatory profiles), but never close to inhibitory synapses (0 immunoparticles for 25 

inhibitory profiles), suggesting that they may detect Ca2+ entry resulting from glutamatergic 

synaptic transmission (Ngo-Anh et al., 2005). A large portion of total labelling (1181 

immunoparticles out of 1737; 68%) was also found associated with intracellular membranes, 

potentially reflecting protein trafficking. Thus, SK2 channel density is highest in dendrites, 

where Ca2+ influx occurs almost exclusively through T-type Ca2+ channels during a LT burst. 
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Figure 4. SK2 channel subunits are selectively expressed in nRt dendrites  
 

(A-D) Immunoreactivity for SK2 protein in nRt-containing sections of WT animals 
(SK2+/+) at three different magnifications (A-C), and of SK2-/- animals (SK2-/-, D), 
as revealed by a pre-embedding immunoperoxidase method at the light microscopic 
level. Box in B denotes area presented in C. Scale bars: A,D, 1 mm: B, 0.2 mm; C, 0.1 
mm. Ctx, cortex, Th, Thalamus, ic, internal capsule. 

(E-I) Immunoreactivity for SK2 at ultrastructural level, using electron microscopy. 
Arrows, immunogold particle in somatic and dendritic membranes; Crossed arrows, 
gold labeling in intracellular membranes. Den, Dendrite, ER, Endoplasmic Reticulum, 
N, Nucleus, b, bouton, ib, inhibitory bouton. Scale bars in E-I, 0.2 µm. 
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Weakening of nRt oscillations through T-type channel Ca2+ channel inactivation 

Are there regulatory mechanisms that vary the strength of T-type Ca2+ channel/SK2 

channel coupling? This question was motivated by the well-documented observation that, 

albeit single nRt bursts show a stereotyped discharge pattern (Domich et al., 1986): their 

temporal succession exhibits a complex time course in which consecutive bursts gradually 

weaken and are replaced by tonic discharges, or in which switching between active and silent 

states occurs (Bal and McCormick, 1993; Blethyn et al., 2006; Domich et al., 1986; 

Fuentealba et al., 2005). Cationic conductances have been advocated to explain these 

deviations from on-going rhythmic bursting (Crunelli et al., 2006; Pape et al., 2004). Here, we 

assessed whether variable T-type Ca2+-to-SK2 channel coupling might contribute to a 

diversification of nRt discharge patterns by quantifying Ca2+ signals during repetitive LT 

bursts in magfura-2 filled cells. Up to three bursting cycles of a dampened oscillation were 

imaged (Figure 5A), each of which was accompanied by rapid elevations of [Ca2+]i that 

largely decayed (< 10% of the peak) before the generation of the next transient (n = 5 cells). 

These [Ca2+]i transients showed a striking decrement in amplitude from one oscillatory cycle 

to the next (n = 5, p < 0.001; Figure 5B), indicating that fewer T-type Ca2+ channels open in 

successive cycles of the oscillation (Movie S1). Consistent with this, the rising slope of 

successive [Ca2+]i transients became shallower, while decay time constants increased (Figure 

5C), indicating a gradual temporal blurring in the synchronicity of T-type Ca2+ channel 

activation. Moreover, the integrated area beneath the [Ca2+]i transients was proportional to the 

amplitude of the LT spikes throughout all three oscillatory cycles (p < 0.0001; Figure 5D) and 

repeated voltage-gating of T-type Ca2+ currents at frequencies comparable to those of 

dampened oscillations resulted in cumulative current inactivation (Figure S2).  

We tested whether these decremental [Ca2+]i transients weakened activation of SK2 

currents. T-type Ca2+ currents during cumulative inactivation lacked rapid outward currents 

and showed a decelerated decay slope (Figure S2), consistent with diminished SK2 current 

amplitudes (see Figure 1G). Moreover, the SK channel gating enhancer 1-EBIO selectively 

lengthened interburst intervals later in oscillations, while not significantly altering the first 

interburst interval (Figure S1 and Supplemental Data). Taken together, these data show that 

use-dependent inactivation mechanisms limit activation of T-type Ca2+ currents during 

repetitive oscillations, thereby leading to smaller [Ca2+]i signals and attenuated SK2 channel 

activation. 
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Figure 5. Repetitive LT bursting is accompanied by a decrease in the amplitude of Δ[Ca2+]i 
 

(A) Combined recording of electrophysiological and fluorescent signals during the 
generation of repetitive LT bursting. Δ[Ca2+]i was acquired at 125 Hz in a dendritic 
segment shown in the inset (boxed area). 

(B) Overlay of the first three [Ca2+]i transients shown in A, labeled as 1, 2, 3. Histogram 
illustrates means ± SEM of the peak Δ[Ca2+]i reached in 5 cells for bursts 1 and 2, and 
in 2 cells for burst 3. *** denotes p < 0.001 

(C) Quantification of the time course of the transients by rising slope (filled bars, in μM/s) 
and decay time constant (open bars, in ms). Data are presented as means ± SEM, with 
** denoting p < 0.005, and * denoting p < 0.02.  

(D) Plot of the LT burst amplitude against the area underneath the Ca2+ transient, showing 
the linear correlation. The LT burst amplitude was determined from burst threshold to 
the peak of the T-type Ca2+ current-induced depolarization. Data points were pooled 
for all bursts from 5 cells. The squared correlation coefficient for the linear regression 
was 0.834, and p < 0.0001. 
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Strengthening of nRt oscillations through blockade of endoplasmic Ca2+ sequestration 

The gating of SK currents is regulated by the handling of internal Ca2+ in diverse 

neurons (Bond et al., 2005; Stocker, 2004) and may be strengthened by Ca2+–induced Ca2+ 

release triggered via T-type Ca2+ currents (Cui et al., 2004; Richter et al., 2005). To assess 

whether similar mechanisms regulate T-type Ca2+ channel/SK2 channel coupling in nRt cells, 

we studied the effects of decreasing Ca2+-induced Ca2+ release through antagonizing 

SERCAs. Within ~ 5 min of bath application of the SERCA inhibitor, cyclopiazonic acid 

(CPA, 10 μM), the amplitude of the outward SK2 current following T-type Ca2+ currents was 

markedly enhanced (from 14 ± 30 pA to 91 ± 33 pA, n = 10, p < 0.001; Figure 6A). Digital 

subtraction was carried out in a subgroup of 7 cells to confirm that the apamin-sensitive 

current increased significantly in CPA (n = 7; p < 0.02; Figure 6B). Thapsigargin (4 μM in the 

patch pipette), a less-selective inhibitor of SERCAs, also produced an increase in the outward 

current from 51 ± 12 pA to 153 ± 33 pA (n = 7, p < 0.03). In the presence of CPA, apamin-

sensitive currents showed a biexponential decay similar to control (p > 0.4 for both fast and 

slow time constants), but the slow component now contributed 29.7 ± 7.6% of the total 

current (n = 7; p < 0.05 compared to slow current components before CPA application; Figure 

6C), suggesting a prolonged presence of Ca2+ ions able to activate SK2 channels. Blocking 

SERCAs thus potentiates SK2 currents, contrary to an expected decrease if Ca2+-induced Ca2+ 

release was involved. In these cells, the amplitude of the T-type Ca2+ current was largely 

preserved in the presence of 10 μM CPA (~10% decrease, Ctrl T-type Ca2+ current peak 

amplitude: -510 ± 88 pA, CPA T-type Ca2+ current peak amplitude: -456 ± 80 pA, n = 7, p < 

0.05) and the decay time remained unaltered in comparison to cells exposed to apamin only 

(τdecay = 31.3 ± 3.1 ms, n = 7; p > 0.05). The potentiated apamin-sensitive current could thus 

not be explained by altered voltage-gating of T-type Ca2+ currents. 

The effects of SERCA antagonism on SK2 currents could reflect increased steady 

[Ca2+]i levels or SK2 channel modifications, such as dephosphorylation of bound calmodulin 

(Bildl et al., 2004) rather than an action on T-type Ca2+/SK2 channel coupling. To address this 

possibility, we tested whether CPA affected SK2 currents activated via Ca2+ entry through 

HVA channels of the Cav2 type (see Figure 1H). Notably, CPA produced a small but non-

significant reduction of the apamin-sensitive SK2 currents (n = 7, p = 0.055; Figure 6D). 

Similar results were obtained when the depolarizing voltage step was shortened to 60 ms to 

reduce Ca2+ influx (data not shown), showing that limiting the duration of Ca2+ entry did not 

alter the polarity of CPA actions. Moreover, CPA (10 μM) had no effect on currents activated 

after a hyperpolarizing command in nRt neurons of SK2-/- mice, but potentiated the outward 
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currents in nRt neurons of SK1-/- mice (Figure 6E and G) and revealed a slowly decaying 

apamin-sensitive current component (Figure 6F). Thus, SERCA’s role is to selectively clear 

the Ca2+ flowing through T-type Ca2+ channels and to antagonize SK2 channel activation. 

Indeed, T-type Ca2+ channels, SK2 channels and SERCAs appear to be grouped into a Ca2+ 

signalling domain, in which SK2 channels and SERCA stand in competition for available 

Ca2+ entered through T-type Ca2+ channels. 

 

 

 
 

Figure 6. Sarco/endoplasmic Ca2+-ATPases (SERCAs) specifically limit SK2 channel gating 
by T-type Ca2+, but not by HVA Ca2+ currents 
 

(A) Representative cell showing current responses to membrane hyperpolarization (-40 
mV, 125 ms) in control (Ctrl), in cyclopiazonic acid (CPA, 10 μM), and after addition 
of apamin (+ Apa, 100 nM). 
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(B) The time course of the apamin-sensitive current, evoked after membrane 
hyperpolarization, before and during CPA application. Dotted line, average current 
before CPA. Data are means ± SEM of 7 cells. 

(C) Apamin-sensitive currents before (Ctrl) and after CPA application (CPA), obtained by 
digital subtraction of traces recorded in apamin. Black lines depict biexponential fits, 
with time constants τ1 = 33 ms and τ2 = 429 ms in Ctrl, and τ1 = 41 ms and τ2 = 946 
ms in CPA. In the presence of CPA, the slow current component contributed 32.6% of 
the total apamin-sensitive current, whereas in Ctrl it was 19.6%. Inset shows an 
overlay of the current traces that were used for digital subtraction. Note that the 
inward T-type Ca2+ current overlayed in all experimental conditions, but its decay was 
accelerated in CPA and decelerated in CPA + apamin (CPA + Apa). The small 
decrease in peak current amplitude in CPA is attributable to the potentiated outward 
SK current. Scale bars, 100 pA, 200 ms. 

(D) Time course of apamin-sensitive currents, evoked by depolarization (30 mV, 125 ms), 
before and during CPA application. Dotted line, average current before CPA. Data are 
means ± SEM of 7 cells. 

(E) As in A, with recordings obtained from cells of SK2-/- and SK1-/- animals. Note the 
lack of effects of CPA and apamin on cells from the SK2-/- animals, whereas these 
were preserved in SK1-/- cells. 

(F) Apamin-sensitive currents, obtained by digital substraction of currents shown in E. 
Dotted lines denotes 0 pA. Note the enhanced slow current component in CPA in the 
cell from a SK1-/- mouse. 

(G) Histogram showing the CPA-induced changes in apamin-sensitive currents relative to 
baseline in wild-type (WT, n = 9), SK2-/- (n = 5) and SK1-/- (n = 10) cells. In SK2-/-, 
the current obtained as apamin-sensitive before CPA was < 1 pA. ** denotes p < 0.01. 

 

 

We evaluated whether such competitive interaction plays a role in rhythmic nRt 

discharges. Under control conditions, the number of bursts showed a bell-shaped dependence 

on the resting membrane potential preceding a hyperpolarizing current injection (-100 pA, 

400 ms) (Figure 7A and B). Bath application of CPA (10 μM) induced a prolongation of the 

AHPs following the LT bursts (n = 9; Figure 7A), and lengthened the time spent bursting. The 

increased bursting was most pronounced at the peak of the bell-shaped curve, while bursting 

was not affected for current injections initiated at the margins of the burst voltage window 

(Figure 7B and C). The membrane potential responses to the hyperpolarizing current steps 

remained unaltered (in control: -22.8 ± 3.3 mV and -24.4 ± 2.2 mV from –72 and – 77 mV; in 

CPA: -24.2 ± 2.3 mV and –26.4 ± 2.1 mV; n = 9; p > 0.05). The effects of CPA were also 

tested on cells using whole cell perforated patch-clamp recordings that faithfully preserve the 

intracellular Ca2+ homeostasis. In this configuration, nRt neurons showed more bursts as well 

as more variable burst discharge patterns (Figure 7D). The CPA effects were evident as a 

marked prolongation of the bursting pattern (n = 5 different nRt cells). 

In a computational model of a single-compartment cell incorporating previously 

described phenomenological models of T-type Ca2+ currents, SK currents and SERCAs 
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(Supplemental Data), basic aspects of nRt oscillatory dynamics and their regulation by 

SERCA could be reproduced (Figure S3). This model provides additional support to the 

conclusion that we have identified three major interacting partners controlling the dynamics 

of nRt cell oscillations. 

 

 

 

 

Figure 7. SERCAs modulate the strength of nRt oscillations 
 

(A) Discharge patterns of a representative nRt cell before (Ctrl) and after CPA application, 
evoked by negative current injection (-100 pA, 125 ms). Cell was held at different 
membrane potentials, indicated to the left of each trace. 

(B) Number of LT burst discharges in the cell presented in A, plotted against holding 
potential. Black circles represent burst discharge number before, open circles after 
CPA application. 

(C) As B, showing pooled data for 8 cells with voltage bins of 2.5 mV. Data are presented 
as means ± SEM, * denotes p < 0.05. 

(D) Effect of CPA on a cell in perforated-patch mode. The bursting mode was 
strengthened in CPA (bottom trace) compared to the control situation (top trace). 
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NREM sleep in SK2-/- mice shows reduced EEG power and increased fragmentation 

In the in vivo situation, oscillatory burst discharges in nRt accompany characteristic 

slow waves found in the EEG during NREMS (Crunelli et al., 2006; Steriade, 2003). To 

explore whether the cellular mechanisms identified here are relevant for slow-wave sleep 

oscillations, we studied the sleep EEG in SK2-/- mice (Bond et al., 2004). EEG spectral 

profiles between 0 - 35 Hz were examined in freely behaving SK2-/- (n = 6) and SK2+/+ (n = 

7) mice during NREMS, REMS and while awake. Normally, NREMS is characterized by 

low-frequency and high-amplitude oscillations in the EEG (Figure 8A), and the thalamic 

contributions to these is well established (for review, see (Crunelli et al., 2006; Steriade, 

2003)). The REMS EEG is, in contrast, dominated by theta (5 - 10 Hz) oscillations to which 

the hippocampus makes an important contribution (for review, see (Buzsáki, 2002)). Various 

frequency components contribute to the waking EEG, including theta activity. In the SK2-null 

mice, we found that the EEG of all arousal states showed a reduction in power, consistent 

with the expression of SK2 in numerous brain regions, including the hippocampus and 

brainstem (Stocker and Pedarzani, 2000). However, we noted that the lack of SK2 channels 

compromised the NREMS EEG to the greatest extent. An almost 4-fold decrease was 

observed in the delta (1 - 4 Hz) frequency range, and a more than 3-fold reduction in the sleep 

spindle (10 - 15 Hz) band (Figure 8B). The reduced contribution of slow oscillations to the 

NREMS EEG persisted even after taking the differences in overall EEG amplitude into 

account (Figure S4A). For waking and REMS, a pronounced reduction was observed in the 10 

Hz range (Figure 8B). This decrease was due mainly to a slowing of EEG theta oscillations 

(Figure S4A), consistent with a contribution of SK2 channels to the waveform of 

hippocampal discharges at theta frequencies (Kramár et al., 2004). Finally, SK2-/- mice 

showed a diminished surge of the sleep spindle activity that is characteristic of the transition 

from NREMS to REMS (Figures 8D and S4B) (Franken et al., 1998; Gottesmann, 1996). 

Additionally, SK2-/- mice showed greater NREMS fragmentation, such as more 

frequent brief awakenings from NREMS and a higher number of short NREMS periods 

(Figure 8C and Table S1). These are behavioral signs indicative of decreased sleep depth, 

consistent with the reduction of EEG delta activity (Franken et al., 1999). This suppression of 

prominent low-frequency components of the NREMS EEG, accompanied by sleep 

disturbances, suggests that SK2 channel activity contributes to generating some of the 

physiological hallmarks of NREMS. 
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Figure 8. Lack of SK2 greatly impacts the sleep EEG and NREM sleep (NREMS) 
fragmentation  

 
(A) Examples of 20 s EEG and EMG traces for SK2-/- (left) and SK2+/+ (right panels) 

mice at the NREMS to waking (upper) and REMS to waking (lower panels) 
transitions. Despite the pronounced reduction in EEG amplitude, NREMS preserved 
its characteristic EEG signature (see insert at 2-fold amplification) ensuring the 
reliable determination of this state also in SK2-/- mice. The same scaling for EEG and 
EMG amplitude was used across traces except for insert (see scale bars). Examples 
were taken from two simultaneously recorded mice approximately 1 h after lights-on. 

(B) Quantification of the spectral composition of the EEG during NREMS, REMS, and 
waking confirmed an important reduction in EEG activity in SK2-/- (upper left) and 
SK2+/+ (right panel) mice. Genotype differences (lower left panel) were most 
pronounced during NREMS at frequencies below 15 Hz. Horizontal bars mark 
frequency bins in which EEG power density significantly differed between genotypes 
(post-hoc t-tests, P<0.05). Color codings of bars match those of the spectra for each 
behavioral state. 

(C) Sleep fragmentation measured as the number of waking episodes shorter or equal to 
16 s (one or two 4 s epochs) and the number of short NREMS episodes (< 1min) were 
increased in SK2-/- mice (open bars) while the number of longer NREMS episodes (> 
1min) did not differ. Number of episodes was expressed per hour of NREMS to 
correct for eventual differences in NREMS time. Asterisks mark significant 
differences between genotypes (post-hoc t-tests, P<0.05). Bars mark means + SEM. 

(D) Time course of EEG activity in the spindle frequency band (i.e., sigma power; 10-
15Hz) at the NREM to REMS transitions. The prevailing level of sigma power during 
NREMS as well as its surge prior to REMS onset (see inset; maximum values reached 
were expressed as % of prevailing level; see dashed horizontal lines) were both 
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reduced. Power density was expressed relative to the level reached in REMS during 
which spindle oscillations are absent. See Figure S4 for details on the analyses and for 
changes in other frequency bands. Bottom bar denotes 4 s epochs in which sigma 
power was significantly reduced in SK2-/- mice; asterisk indicates significant 
genotype difference in sigma peak power (post-hoc t-tests, P<0.05). 

 

 

Discussion 
We used a diverse repertoire of technical approaches to study the coupling between T-

type Ca2+ currents and the Ca2+-activated SK2 K+ currents and its role in oscillatory activity 

of nRt neurons. We found that thalamic T-type Ca2+ currents, beyond their role as burst 

generators, produce marked intracellular Ca2+ elevations that adopt specific intracellular 

signalling roles. The interaction between T-type Ca2+ channels and SK2 channels is based on 

their spatial co-expression in a substantial portion of nRt dendrites. In these dendrites, T-type 

Ca2+ and SK2 channels, together with SERCAs, form an efficient signalling triad. Ca2+ entry 

through T-type Ca2+ channels activates SK2 channels and SK2 channel activity is attenuated 

by SERCA-mediated sequestration of that same pool of Ca2+ ions. EEG analysis showed that 

global deletion of the SK2 channel gene produced a most marked decrement in the frequency 

bands that correlate with rhythmic burst discharges of thalamic neurons, including those from 

the nRt (Crunelli et al., 2006; Steriade, 2003). We propose that through the dual coupling of 

T-type Ca2+ channels to SK2 channels and SERCAs, nRt dendrites are endowed with a 

dendritic Ca2+ signalling triad that contributes to the amplification of thalamic oscillations 

into large-scale EEG waves. 

 

T-type Ca2+ channels in nRt dendrites 

T-type Ca2+ current-dependent Ca2+ signals account for the overwhelming majority of 

[Ca2+]i in nRt dendrites. At the high time resolution of our Ca2+ imaging system (up to 2 ms), 

no marked differences in the dynamics of these signals along the imaged dendrite section 

were detected, suggesting that T-type Ca2+ channels are homogeneously distributed along 

proximal dendritic membranes. A dominance of Ca2+ entry through T-type Ca2+ currents has 

also been reported for the dendrites of cerebellar unipolar brush cells (Diana et al., 2007), for 

dendrodendritic synapses of olfactory bulb granule cells (Egger et al., 2003), and for the 

neuritic tree of invertebrate heart interneurons (Ivanov and Calabrese, 2000). However, it 

stands in contrast to the thalamocortical neurons, in which both T-type and HVA Ca2+ 

currents increase [Ca2+]i in dendrites during bursting (Kuisle et al., 2006; Munsch et al., 

1997). The nRt may thus belong to a small group of nuclei with neuronal dendrites 



Results 

 

61

specialized in the handling of Ca2+ entry through T-type Ca2+ channels and in 

compartmentalizing targets for these, such as ion channels, sequestration machinery, and sites 

of vesicular release (Egger et al., 2003; Ivanov and Calabrese, 2000). Cells in the nRt express 

mRNA for both Cav3.2 and Cav3.3 isoforms (Talley et al., 1999) and T-type Ca2+ currents 

show distinct kinetic properties according to their subcellular localization, characterized by 

rapidly inactivating somatic, and more slowly decaying dendritic currents (Joksovic et al., 

2005). Both Cav3.2 and Cav3.3 subtypes contribute to dendritic Ca2+ currents in nRt (Joksovic 

et al., 2006). However, it appears likely that the properties conferred by the Cav3.3 isoform 

make a significant contribution to the [Ca2+]i transients observed here. Heterologously 

expressed Cav3.3 channels exhibit slow components of inactivation and recovery from 

inactivation (Frazier et al., 2001; Uebachs et al., 2006) and once activated, generate 

spontaneous plateau potentials and large [Ca2+]i increments (Chevalier et al., 2006). Similarly, 

in the absence of SK2 channels, nRt bursting is followed by long-lasting plateau potentials, 

reminiscent of those generated by Cav3.3 channels. Furthermore, the dampening of nRt 

oscillations is caused by fading T-type Ca2+ channel recruitment, as imaging, 

electrophysiological, and modelling studies are consistent with a use-dependent cumulative 

inactivation of T-type Ca2+ channels and a drop-out of channels in burst generation. How, in 

detail, the inactivation and recovery characteristics of currents generated by Cav3.3 or Cav3.2 

channels (Frazier et al., 2001; Uebachs et al., 2006) shape the activation of SK2 currents 

remains to be determined. In addition, synaptic activity during network oscillations, in 

particular Ca2+ influx through N-methyl-D-aspartate (NMDA) receptors may further 

contribute to [Ca2+]i in nRt dendrites and regulate synaptically located SK2 channels (Ngo-

Anh et al., 2005). This possibility remains to be explored, both in terms of synergistic effects 

of glutamatergic receptor currents and T-type Ca2+ currents in SK2 current activation, as well 

as how Ca2+ influx through NMDA receptors could additionally regulate SK2 channel 

function at synaptic sites. 

Our work unifies a number of previous theoretical and experimental aspects of nRt 

rhythmogenesis. An essential role of dendrites for nRt function has been recognized 

(Destexhe et al., 1996; Huguenard and Prince, 1992), and is underscored here by 

demonstrating the dendritic ionic specializations required for rhythmogenesis. [Ca2+]i 

elevations appear synchronously in proximal dendrites, suggesting a uniform and high 

expression of T-type Ca2+ channels. The estimated T-type Ca2+ channel conductance density 

is consistent with previous values used in computational studies (Destexhe et al., 1996), and 

suggests that T-type Ca2+ channel density in proximal dendrites is high enough to play an 



Results 

 

62

active role in dendritic Ca2+ electrogenesis. These properties are combined with additional 

distinctive features of nRt dendrites (Pinault, 2004). Their fine and extended arborizations 

give rise to a high surface-to-volume ratio that generates large transmembrane current flow, 

guaranteeing robust switching between the oscillatory ‘up’ and ‘down’ states. Together with 

the electrical connectivity via gap junctions and long-range reciprocal interactions (Pinault, 

2004), nRt dendrites appear uniquely equipped to form a plexus of vigorously oscillating 

membrane surfaces. 

 

SK2 channels in nRt dendrites 

Heterologously expressed SK2 channels need ~6-8 ms to gate in saturating [Ca2+]i 

(Pedarzani et al., 2001; Xia et al., 1998) and, in CA1 hippocampal cells, presumed single SK 

channels open within 15 ms following HVA Ca2+ channel activation, which are colocalized 

within 50-150 nm (Marrion and Tavalin, 1998). In nRt cells, the peak [Ca2+]i levels reached in 

the dendrites (~0.7 μM) are close to what is needed to maximally activate SK2 channels 

(Köhler et al., 1996; Pedarzani et al., 2001). Moreover, the latency to SK current activation 

was ~14 ms from the peak of the T-type Ca2+ current, indicating a close-to-maximal rate of 

exposure of SK2 channels to the Ca2+ entered through T-type Ca2+ channels. In imaging 

experiments, the AHP generated by SK channels peaked within ~37 ms after [Ca2+]i was 

maximal. Although this value is determined by the convolution of ion current flow and charge 

of membrane capacitance (see Results), it is also consistent with the idea that SK2 channel 

activation occurs at a very fast rate. These estimates underscore the idea that dendrites of nRt 

cells are functionally specialized to ensure a rapid Ca2+–activated K+ signalling via 

colocalization with a high density of Ca2+ sources. 

After their strong activation by a single LT burst, SK2 channels exert a threefold role in 

nRt oscillations. First, the AHPs generated by SK2 channels in nRt neurons are permissive for 

repetitive LT burst generation because they allow T-type Ca2+ channels to recover from 

inactivation and to generate the next LT burst. Second, we found that SK2 channels accelerate 

LT burst termination, because blocking them with apamin or intracellular Cs+, or via genetic 

deletion, reduced the T-type Ca2+ current decay slope by more than two-fold and led to 

pronounced, slowly decaying plateau potentials. Thus, T-type Ca2+ channels and SK2 

channels form a Ca2+-mediated feedback loop. Ca2+ entry through T-type Ca2+ currents 

activates SK2 currents and the repolarizing effect of these terminates the T-type Ca2+ currents 

that supply their Ca2+ source. Such rapid current decay perhaps prevents a slow form of 

inactivation (Frazier et al., 2001) and is consistent with previous descriptions of SK currents 
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in the context of terminating plateau potentials (Bond et al., 2005; Cai et al., 2004). The 

coupling between T-type Ca2+ and SK currents can even prevent bursting, when SK currents 

activate rapidly enough to effectively terminate T-type Ca2+ currents before their full 

activation (Wolfart and Roeper, 2002). Third, our data suggest that decremental activation of 

SK2 currents may also be involved in the cessation of nRt oscillations. Such dampening was 

previously attributed to slowly activating, Ca2+-dependent cationic currents (Bal and 

McCormick, 1993; Blethyn et al., 2006; Pape et al., 2004), but the question remained open to 

what extent these additional currents were instrumental for oscillatory dampening, and, if so, 

what were their biophysical and molecular properties. Our imaging experiments show little 

temporal summation of [Ca2+]i during repetitive LT bursts and thus provide little support for a 

scenario of an accruing activation of Ca2+-dependent cationic currents during repetitive LT 

bursts. Instead, we found that T-type Ca2+ currents diminish during repetitive activation and 

produce smaller [Ca2+]i elevations. This was accompanied by a lack of associated rapid 

outward currents and a shallower decay, consistent with decreased SK2 current activation. 

Finally, the analysis of the effects of 1-EBIO further suggests that SK2 current activation is 

submaximal in later oscillatory cycles. For these reasons, we propose that a mechanism 

invoking T-type Ca2+ and SK2 channel coupling may, in large part, account for dampened nRt 

oscillations. 

 

Role of SERCAs in regulating the coupling between T-type Ca2+ currents and SK2 

currents 

SERCAs are an important element in the homeostatic regulation of [Ca2+]i in neurons 

and ensure the appropriate filling of the ER with Ca2+, which can become available via Ca2+-

induced Ca2+ release, to regulate ion channels. In contrast to this well-established role of 

intracellular Ca2+ stores in neuronal excitability, the possibility that SERCAs actively control 

neuronal rhythmicity via their sequestrating function has not been described, although 

SERCA-mediated Ca2+ uptake is well-known for enhancing performance of cardiac cells 

(Misquitta et al., 1999). Remarkably, SERCAs act specifically on T-type Ca2+ current-

dependent Ca2+ entry, strongly suggesting that they are colocalized with T-type Ca2+ and SK2 

channels, but not with HVA Ca2+ channels. SERCAs have an affinity for Ca2+ of 0.27 - 0.4 

μM (Lytton et al., 1992) and, in Purkinje cells at room temperature, remove Ca2+ at a rate of 

up to ~0.6 μM/s for [Ca2+]i  in the low micromolar range (Fierro et al., 1998). These are 

parameters ranges consistent with the idea of SERCAs acting as competitors with SK2 

channels for available free Ca2+ ions. The competition is supported by our observation that 
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apamin-sensitive currents are potentiated in total amplitude and in a slowly decaying current 

component when SERCAs are blocked, indicating a higher and more prolonged [Ca2+]i in the 

vicinity of SK2 channels. Moreover, interburst AHPs are lengthened and the number of bursts 

increased in CPA. On the one hand, SERCAs may contribute to shorten the exposure of SK2 

channels to Ca2+ during the AHP, thereby limiting T-type Ca2+ channel recovery and 

promoting oscillatory dampening. This possibility is consistent with a greater slow tail 

component in SK2 currents when SERCAs are blocked. On the other hand, the fact that SK2 

currents are also potentiated at their peak suggests that SERCAs may act rapidly to antagonize 

SK2 channel-induced deactivation of T-type Ca2+ channels, thereby effectively potentiating 

T-type Ca2+ channel activation and SK2 channel exposure to [Ca2+]i. Further Ca2+ imaging 

experiments will be required to understand the detailed consequences of SERCA activity on 

dendritic [Ca2+]i signals and on SK2 channel function. 

 

The role of nRt SK2 channels in low-frequency EEG waves of NREMS 

In vivo, burst discharges in nRt are most prominent during periods of EEG 

synchronization, such as during NREMS, while tonic firing predominates during waking and 

REMS (Domich et al., 1986; Fuentealba and Steriade, 2005). We note in particular that EEG 

power is reduced most strongly during NREMS in SK2-/- mice, suggesting that SK2 channels 

play a role in boosting oscillatory activities underlying low-frequency sleep oscillations. This 

may indicate a link between the observed oscillatory bursting deficits in nRt cells and the 

EEG alterations. However, at present we cannot exclude other explanations since EEG 

rhythms result from interplay between thalamic and cortical networks and are strongly 

regulated by ascending brainstem afferents (Steriade et al., 2003). Indeed, in the absence of 

SK2 channels, low-frequency oscillations in the EEG persist, albeit they are strongly 

weakened, consistent with the nRt not being the only site of rhythm generation (Steriade, 

2003). The reduction of the EEG power in SK2-null mice could be caused by multiple 

disturbances in thalamic and cortical networks, and of alterations in corticothalamic 

communication (for earlier works, see (Benington et al., 1995; Gandolfo et al., 1996)). In 

addition, there may be compensatory effects due to the lack of SK2 channels. Although nRt is 

clearly implicated in some NREMS oscillations (Fuentealba and Steriade, 2005), a substantial 

experimental effort in recordings in vivo would be needed to elucidate the detailed role of 

SK2 channels in nRt dendrites in the neuronal networks underlying NREMS EEG 

oscillations. Nevertheless, our work suggests that assessing the roles of SK2 channels in 

thalamocortical networks could help to identify targets for improving NREMS continuity 
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and/or depth, in disorders in which NREMS quality is impacted such as in primary insomnia 

or insomnias associated with psychiatric or neurological disorders. 

 

Experimental Procedures 

 
Electrophysiological Recordings 

Horizontal slices (400 μm for extracellular recordings, 300 μm for patch-clamp 

recordings) were prepared from WT, SK1-/- or SK2-/- mice and corresponding +/+ littermates 

(1.5 - 2 month-old for extracellular recordings, 17 - 23 days for patch-clamp recordings), as 

described previously (Kuisle et al., 2006) and approved by the Veterinäramt of the Canton 

Basel-Stadt. Extracellular and patch-clamp recording were obtained according to well-

established procedures at 33.5 - 35°C (Supplemental Experimental Procedures). Data were 

analyzed off-line using pClamp 9.2. and Igor Pro V.5.0.5. software and are indicated as means 

± standard error (SEM). 

 

Genotyping 

Homozygous SK2-/- and SK1-/- mice were obtained from crossings of heterozygotic 

pairs, bred to the genetic background of the WT C57Bl/6J animals, and were genotyped as 

described (Bond et al., 2004). 

 

Ca2+ imaging experiments 

The internal solution for whole-cell recordings was supplemented with magfura-2 (3 

mM) or bis-fura-2 (1 mM, Kd = 0.525 μM), but no EGTA, unless otherwise specified. 

Fluorescence was excited with a 150 W ultrastable Xenon Arc lamp (Cairn Research, UK) at 

387 ± 6 nm and detected with a NeuroCCD-SM camera (RedShirt, USA) at 510 ± 45 nm and 

sampled either at 125 or 500 frames/s. The field was 125 µm x 125 µm (80 pixels x 80 

pixels). Bleaching was taken into account by subtracting trials without electrophysiological 

stimulation. The brightest dendrite was selected for recordings. Four sequences were averaged 

to improve the signal-to-noise ratio. For experiments with magfura-2, fluorescence signals 

were converted into changes of free Ca2+ concentration defined as Δ[Ca2+]i = Kd*(Fmin-F)/(F-

Fmax) where F is the fluorescence intensity (after correction for the slice auto-fluorescence) 

and Fmin and Fmax are the fluorescence intensities at 0 and at saturating Ca2+, respectively. The 

value for Kd was determined experimentally (see Supplemental Experimental Procedures). 

Bis-fura-2-mediated signals were converted into dye-bound Ca2+ defined as Δ[DCa2+] = 
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1mM*(Fmin-F)/(Fmin-Fmax) (Canepari et al., 2004). In the conversions of fluorescence signals 

either into Δ[Ca2+]i or Δ[DCa2+], Fmin was approximated with the initial resting fluorescence 

whereas F-Fmax and Fmin-Fmax were approximated with F and Fmin respectively. 

 

Immunohistochemistry and electron microscopy 

Sections were treated for light and electron microscopy immunolabeling as described 

previously (Luján et al., 1996) (Supplemental Experimental Procedures). Affinity-purified 

rabbit and guinea pig antibodies to SK2 were raised against amino acid residues 536 - 574 of 

the mouse SK2 (Accession No. NM080465), and diluted at 1 - 2 µg/ml. 

 

EEG Monitoring and Analyses 

For EEG recordings, adult (2.5 - 4 months-old), female SK2 +/+ (n = 7) and SK2-/- (n = 

6) mice were used. Mice were equipped with EEG and electromyogram (EMG) electrodes 

according to standard procedures (see Supplementary Experimental Procedures). Continuous 

EEG and EMG recordings were obtained for 24 h (n = 5) or 48 h (n = 8). Offline, the 

behavioral states waking, NREMS, and REMS were determined by visual inspection of the 

EEG and EMG signals for consecutive 4 s intervals. The spectral content of the EEG was 

estimated using a discrete fourier transformation routine. For further details on recording and 

analysis, see Supplemental Experimental Procedures. 

 

Computational modeling 

For details of the model, see Supplemental Experimental Procedures. Equations were 

solved in Mathematica V.5.0 using Runge-Kutta integration. 

 

Statistical analysis 

Two-tailed paired and unpaired t-test were used for within and between group 

comparisons, respectively. For multiple comparisons between data obtained from wild-type, 

SK1- and SK2-deficient animals, Tukey's HSD or Dunnett’s T3 post-hoc test was used after 

significance was reached in a one-way analysis of variance with factor “genotype” and 

homogeneity of variances was tested with Levene’s test. p < 0.05 was considered statistically 

significant. Analyses were carried out using SPSS V. 14. See legends to the Figure S4 and 

Table S1 for further details on statistical analyses. 

 



Results 

 

67

References 
Amzica, F., Nuñez, A., and Steriade, M. (1992). Delta frequency (1-4 Hz) oscillations of 
perigeniculate thalamic neurons and their modulation by light. Neuroscience 51, 285-294. 
Avanzini, G., de Curtis, M., Panzica, F., and Spreafico, R. (1989). Intrinsic properties of 
nucleus reticularis thalami neurones of the rat studied in vitro. J Physiol 416, 111-122. 
Bal, T., and McCormick, D.A. (1993). Mechanisms of oscillatory activity in guinea-pig 
nucleus reticularis thalami in vitro: a mammalian pacemaker. J Physiol 468, 669-691. 
Benington, J.H., Woudenberg, M.C., and Heller, H.C. (1995). Apamin, a selective SK 
potassium channel blocker, suppresses REM sleep without a compensatory rebound. Brain 
Res 692, 86-92. 
Bildl, W., Strassmaier, T., Thurm, H., Andersen, J., Eble, S., Oliver, D., Knipper, M., Mann, 
M., Schulte, U., Adelman, J.P., and Fakler, B. (2004). Protein kinase CK2 is coassembled 
with small conductance Ca2+-activated K+ channels and regulates channel gating. Neuron 43, 
847-858. 
Blethyn, K.L., Hughes, S.W., Tóth, T.I., Cope, D.W., and Crunelli, V. (2006). Neuronal basis 
of the slow (<1 Hz) oscillation in neurons of the nucleus reticularis thalami in vitro. J 
Neurosci 26, 2474-2486. 
Bond, C.T., Herson, P.S., Strassmaier, T., Hammond, R., Stackman, R., Maylie, J., and 
Adelman, J.P. (2004). Small conductance Ca2+-activated K+ channel knock-out mice reveal 
the identity of calcium-dependent afterhyperpolarization currents. J Neurosci 24, 5301-5306. 
Bond, C.T., Maylie, J., and Adelman, J.P. (2005). SK channels in excitability, pacemaking 
and synaptic integration. Curr Opin Neurobiol 15, 305-311. 
Buzsáki, G. (2002). Theta oscillations in the hippocampus. Neuron 33, 325-340. 
Cai, X., Liang, C.W., Muralidharan, S., Kao, J.P., Tang, C.M., and Thompson, S.M. (2004). 
Unique roles of SK and Kv4.2 potassium channels in dendritic integration. Neuron 44, 351-
364. 
Canepari, M., Auger, C., and Ogden, D. (2004). Ca2+ ion permeability and single-channel 
properties of the metabotropic slow EPSC of rat Purkinje neurons. J Neurosci 24, 3563-3573. 
Chevalier, M., Lory, P., Mironneau, C., Macrez, N., and Quignard, J.F. (2006). T-type Cav3.3 
calcium channels produce spontaneous low-threshold action potentials and intracellular 
calcium oscillations. Eur J Neurosci 23, 2321-2329. 
Cotillon, N., and Edeline, J.M. (2000). Tone-evoked oscillations in the rat auditory cortex 
result from interactions between the thalamus and reticular nucleus. Eur J Neurosci 12, 3637-
3650. 
Crunelli, V., Cope, D.W., and Hughes, S.W. (2006). Thalamic T-type Ca2+ channels and 
NREM sleep. Cell Calcium 40, 175-190. 
Cui, G., Okamoto, T., and Morikawa, H. (2004). Spontaneous opening of T-type Ca2+ 
channels contributes to the irregular firing of dopamine neurons in neonatal rats. J Neurosci 
24, 11079-11087. 
Debarbieux, F., Brunton, J., and Charpak, S. (1998). Effect of bicuculline on thalamic 
activity: a direct blockade of IAHP in reticularis neurons. J Neurophysiol 79, 2911-2918. 
Destexhe, A., Contreras, D., Steriade, M., Sejnowski, T.J., and Huguenard, J.R. (1996). In 
vivo, in vitro, and computational analysis of dendritic calcium currents in thalamic reticular 
neurons. J Neurosci 16, 169-185. 
Diana, M.A., Otsu, Y., Maton, G., Collin, T., Chat, M., and Dieudonne, S. (2007). T-type and 
L-type Ca2+ conductances define and encode the bimodal firing pattern of vestibulocerebellar 
unipolar brush cells. J Neurosci 27, 3823-3838. 
Domich, L., Oakson, G., and Steriade, M. (1986). Thalamic burst patterns in the naturally 
sleeping cat: a comparison between cortically projecting and reticularis neurones. J Physiol 
379, 429-449. 



Results 

 

68

Egger, V., Svoboda, K., and Mainen, Z.F. (2003). Mechanisms of lateral inhibition in the 
olfactory bulb: efficiency and modulation of spike-evoked calcium influx into granule cells. J 
Neurosci 23, 7551-7558. 
Fierro, L., DiPolo, R., and Llanò, I. (1998). Intracellular calcium clearance in Purkinje cell 
somata from rat cerebellar slices. J Physiol 510 ( Pt 2), 499-512. 
Franken, P., Malafosse, A., and Tafti, M. (1998). Genetic variation in EEG activity during 
sleep in inbred mice. Am J Physiol 275, R1127-R1137. 
Franken, P., Malafosse, A., and Tafti, M. (1999). Genetic determinants of sleep regulation in 
inbred mice. Sleep 22, 155-169. 
Frazier, C.J., Serrano, J.R., George, E.G., Yu, X., Viswanathan, A., Perez-Reyes, E., and 
Jones, S.W. (2001). Gating kinetics of the α1I T-type calcium channel. J Gen Physiol 118, 
457-470. 
Fuentealba, P., and Steriade, M. (2005). The reticular nucleus revisited: intrinsic and network 
properties of a thalamic pacemaker. Prog Neurobiol 75, 125-141. 
Fuentealba, P., Timofeev, I., Bazhenov, M., Sejnowski, T.J., and Steriade, M. (2005). 
Membrane bistability in thalamic reticular neurons during spindle oscillations. J Neurophysiol 
93, 294-304. 
Gandolfo, G., Schweitz, H., Lazdunski, M., and Gottesmann, C. (1996). Sleep cycle 
disturbances induced by apamin, a selective blocker of Ca2+-activated K+ channels. Brain Res 
736, 344-347. 
Gottesmann, C. (1996). The transition from slow-wave sleep to paradoxical sleep: evolving 
facts and concepts of the neurophysiological processes underlying the intermediate stage of 
sleep. Neurosci Biobehav Rev 20, 367-387. 
Huguenard, J.R., and Prince, D.A. (1992). A novel T-type current underlies prolonged Ca2+-
dependent burst firing in GABAergic neurons of rat thalamic reticular nucleus. J Neurosci 12, 
3804-3817. 
Ivanov, A.I., and Calabrese, R.L. (2000). Intracellular Ca2+ dynamics during spontaneous and 
evoked activity of leech heart interneurons: low-threshold Ca currents and graded synaptic 
transmission. J Neurosci 20, 4930-4943. 
Joksovic, P.M., Bayliss, D.A., and Todorovic, S.M. (2005). Different kinetic properties of two 
T-type Ca2+ currents of rat reticular thalamic neurones and their modulation by enflurane. J 
Physiol 566, 125-142. 
Joksovic, P.M., Nelson, M.T., Jevtovic-Todorovic, V., Patel, M.K., Perez-Reyes, E., 
Campbell, K.P., Chen, C.C., and Todorovic, S.M. (2006). CaV3.2 is the major molecular 
substrate for redox regulation of T-type Ca2+ channels in the rat and mouse thalamus. J 
Physiol 574, 415-430. 
Köhler, M., Hirschberg, B., Bond, C.T., Kinzie, J.M., Marrion, N.V., Maylie, J., and 
Adelman, J.P. (1996). Small-conductance, calcium-activated potassium channels from 
mammalian brain. Science 273, 1709-1714. 
Kramár, E.A., Lin, B., Lin, C.-Y., Arai, A.C., Gall, C.M., and Lynch, G. (2004). A novel 
mechanism for the facilitation of theta-induced long-term potentiation by brain-derived 
neurotrophic factor. J Neurosci 24, 5151-5161. 
Kuisle, M., Wanaverbecq, N., Brewster, A.L., Frere, S.G., Pinault, D., Baram, T.Z., and 
Lüthi, A. (2006). Functional stabilization of weakened thalamic pacemaker channel regulation 
in rat absence epilepsy. J Physiol 575, 83-100. 
Luján, R., Nusser, Z., Roberts, J.D., Shigemoto, R., and Somogyi, P. (1996). Perisynaptic 
location of metabotropic glutamate receptors mGluR1 and mGluR5 on dendrites and dendritic 
spines in the rat hippocampus. Eur J Neurosci 8, 1488-1500. 
Lytton, J., Westlin, M., Burk, S.E., Shull, G.E., and MacLennan, D.H. (1992). Functional 
comparisons between isoforms of the sarcoplasmic or endoplasmic reticulum family of 
calcium pumps. J Biol Chem 267, 14483-14489. 



Results 

 

69

Marrion, N.V., and Tavalin, S.J. (1998). Selective activation of Ca2+-activated K+ channels by 
co-localized Ca2+ channels in hippocampal neurons. Nature 395, 900-905. 
Misquitta, C.M., Mack, D.P., and Grover, A.K. (1999). Sarco/endoplasmic reticulum Ca2+ 
(SERCA)-pumps: link to heart beats and calcium waves. Cell Calcium 25, 277-290. 
Munsch, T., Budde, T., and Pape, H.C. (1997). Voltage-activated intracellular calcium 
transients in thalamic relay cells and interneurons. Neuroreport 8, 2411-2418. 
Ngo-Anh, T.J., Bloodgood, B.L., Lin, M., Sabatini, B.L., Maylie, J., and Adelman, J.P. 
(2005). SK channels and NMDA receptors form a Ca2+-mediated feedback loop in dendritic 
spines. Nat Neurosci 8, 642-649. 
Ogden, D., Khodakhah, K., Carter, T., Thomas, M., and Capiod, T. (1995). Analogue 
computation of transient changes of intracellular free Ca2+ concentration with the low affinity 
Ca2+ indicator furaptra during whole-cell patch-clamp recording. Pflugers Arch 429, 587-591. 
Pape, H.C., Munsch, T., and Budde, T. (2004). Novel vistas of calcium-mediated signalling in 
the thalamus. Pflugers Arch 448, 131-138. 
Pedarzani, P., Mosbacher, J., Rivard, A., Cingolani, L.A., Oliver, D., Stocker, M., Adelman, 
J.P., and Fakler, B. (2001). Control of electrical activity in central neurons by modulating the 
gating of small conductance Ca2+-activated K+ channels. J Biol Chem 276, 9762-9769. 
Perez-Reyes, E. (2003). Molecular physiology of low-voltage-activated T-type calcium 
channels. Physiol Rev 83, 117-161. 
Pinault, D. (2004). The thalamic reticular nucleus: structure, function and concept. Brain Res 
Brain Res Rev 46, 1-31. 
Richter, T.A., Kolaj, M., and Renaud, L.P. (2005). Low voltage-activated Ca2+ channels are 
coupled to Ca2+-induced Ca2+ release in rat thalamic midline neurons. J Neurosci 25, 8267-
8271. 
Shin, H.S., Lee, J., and Song, I. (2006). Genetic studies on the role of T-type Ca2+ channels in 
sleep and absence epilepsy. CNS&Neurol Disorders - Drug Targets 5, 629-638. 
Steriade, M. (2003). The corticothalamic system in sleep. Front Biosci 8, d878-d899. 
Steriade, M., Contreras, D., Curró Dossi, R., and Nuñez, A. (1993). The slow (< 1 Hz) 
oscillation in reticular thalamic and thalamocortical neurons: scenario of sleep rhythm 
generation in interacting thalamic and neocortical networks. J Neurosci 13, 3284-3299. 
Stocker, M. (2004). Ca2+-activated K+ channels: molecular determinants and function of the 
SK family. Nat Rev Neurosci 5, 758-770. 
Stocker, M., and Pedarzani, P. (2000). Differential distribution of three Ca2+-activated K+ 
channel subunits, SK1, SK2, and SK3, in the adult rat central nervous system. Mol Cell 
Neurosci 15, 476-493. 
Sun, Q.Q., Huguenard, J.R., and Prince, D.A. (2001). Neuropeptide Y receptors differentially 
modulate G-protein-activated inwardly rectifying K+ channels and high-voltage-activated 
Ca2+ channels in rat thalamic neurons. J Physiol 531, 67-79. 
Talley, E.M., Cribbs, L.L., Lee, J.H., Daud, A., Perez-Reyes, E., and Bayliss, D.A. (1999). 
Differential distribution of three members of a gene family encoding low voltage-activated 
(T-type) calcium channels. J Neurosci 19, 1895-1911. 
Uebachs, M., Schaub, C., Perez-Reyes, E., and Beck, H. (2006). T-type Ca2+ channels encode 
prior neuronal activity as modulated recovery rates. J Physiol 571, 519-536. 
Wolfart, J., and Roeper, J. (2002). Selective coupling of T-type calcium channels to SK 
potassium channels prevents intrinsic bursting in dopaminergic midbrain neurons. J Neurosci 
22, 3404-3413. 
Xia, X.M., Fakler, B., Rivard, A., Wayman, G., Johnson-Pais, T., Keen, J.E., Ishii, T., 
Hirschberg, B., Bond, C.T., Lutsenko, S., et al. (1998). Mechanism of calcium gating in 
small-conductance calcium-activated potassium channels. Nature 395, 503-507. 
 
 



Results 

 

70 

 

Supplemental Data 



Results 

 

71 

 

 
 

A competition between SK2 channels and SERCAs 

for Ca2+ entry through T-type channels 

gates sleep-related oscillations in thalamic dendrites 

 
Lucius Cueni, Marco Canepari, Rafael Luján, Yann Emmenegger, Masahiko Watanabe, Chris 
T. Bond, Paul Franken, John P. Adelman and Anita Lüthi 
 
1) Supplemental Experimental Procedures 
 

 

Electrophysiological recordings 

 

Recording solutions and data acquisition. For patch-clamp recordings, the bath was 

constantly perfused with fresh medium at a rate of 2.5-4 mlmin-1 that contained (in mM): 131 

NaCl; 2.5 KCl; 1.25 NaH2PO4; 1.2 MgCl2; 2 CaCl2; 26 NaHCO3, 18 dextrose, 1.7 L(+)-

ascorbic acid. The caudal portion of the nRt was localized before pipette positioning using a 

low-power (10 x) objective, and a high-power water immersion objective (40 x) and near-

infrared differential interference contrast optics were used for visualizing cells. Patch pipettes 

were pulled from borosilicate glass tubing (TW150F-4, outer diameter 1.5 mm, World 

Precision Instruments) on a vertical two-step puller (PP-83, Narishige) and filled with the 

following solution (in mM): 130 KMeSO4, 10 KCl, 10 HEPES, 0.1 mM EGTA, 2 MgCl2, 2 

K-ATP, 0.2 Na-GTP, 10 phosphocreatine, adjusted to 290 mOsm with sucrose, pH 7.25. The 

low concentration of EGTA increases the intracellular Ca2+ buffering capacity by ~1000 and 

hence clamps steady-state Ca2+ levels to low values, while not affecting [Ca2+]i transients 

generated by LT bursts (see Results). The resistance of the electrodes was 2.1-3.8 MΩ and 

yielded series resistances in the range between 10-20 MΩ. Series resistance was constantly 

monitored throughout the experiments and increases > 20% were not accepted. For MeSO4– 

and gluconate-based pipettes, a liquid junction potential of -17 mV and -10 mV was taken 

into account, respectively. Data from voltage- and current-clamp recordings were collected 

through an Axopatch 200B amplifier (Molecular Devices), filtered at 2 kHz and acquired at 5 

kHz using pClamp 9.2. software (Molecular Devices). To isolate T-type Ca2+ currents, Cs+-

based intracellular solutions were used, in which KMeSO4 was replaced by CsGluconate and 
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KCl by CsCl, and hyperpolarizing voltage commands were applied (from -60 to -100 mV, 

500 ms). Cells included in this analysis showed T-type Ca2+ currents with properties that 

fulfilled previously established criteria for acceptable voltage control in intact nRt cells, 

including a smooth activation and decay (τdecay = 28.1 ± 3.2 ms at -55 to – 60 mV at 35 °C, n 

= 12) and a steady-state inactivation curve with a V50 of -79.3 ± 0.3 mV and a slope of 5.0 ± 

0.2 mV (n = 12), close to values published previously for acutely dissociated cells 

(Huguenard and Prince, 1992). In K+-based recordings, neurons were generally clamped 

around their resting membrane potentials (~-67 - -80 mV) and SK currents, evoked after 

hyper- (-40 mV, 125 ms) or depolarizing voltage steps (+ 30 mV, 125 ms), were quantified 

between –62 and -67 mV. T-type Ca2+ current decay slope was determined by a linear fit to 

the 15 ms time interval after current peak, during which decay is linear (e.g. Figure 1A, C). 

 

Analysis of apamin-sensitive currents. SK currents were obtained by digital subtraction 

of currents recorded in the presence of apamin (100 nM), and are presented as apamin-

sensitive currents. In our experiments, SK currents were recorded at a constant holding 

voltage following a hyperpolarizing step to gate T-type Ca2+ currents. Apamin subtraction 

was carried out by digitally subtracting averaged traces (typically 2 - 5 sweeps) obtained 

following bath application of 100 nM apamin. We assessed the quality and stability of 

voltage-clamp control in these recordings with K+-based electrodes in several ways. First, we 

tested whether the apamin-sensitive currents, obtained by digital subtraction, remained stable 

for the period required to perform application of pharmacological substances via the bath or 

through the recording pipette (ca. 10 min). Apamin-sensitive currents were unchanged after 

this time (109.2 ± 7.9 % of control amplitude, n = 4, p > 0.4). Second, we took care to only 

carry out the subtraction when all recording conditions, such as input resistance, series 

resistance and capacitive currents remained unaltered before and after apamin application. We 

noted that some small inward T-type Ca2+ currents (< 15% of total current) remained which 

were due to a slight, apamin-induced increase in the peak of the T-type Ca2+ current. This 

likely resulted from apamin-induced decelerated decay of the T-type Ca2+ current (see e.g. 

Figure 1A, B). However, these currents were small (< ~ 50 pA) and decayed rapidly 

compared to the time course of the apamin-sensitive outward current. These remaining 

currents will thus lead to an overestimation of the latency between peak T-type and peak SK 

current, an error which does not affect the interpretation of the tight temporal coupling 

between the two currents. Third, the decay time constant of the T-type Ca2+ currents was 32.3 

± 1.2 ms (n = 6) in apamin, close to the value obtained with Cs+-based electrodes (p > 0.05). 
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This suggests that, in the cells selected, voltage-clamp was comparable to the situation in 

which K+ currents were blocked. Finally, we noted that the peak-to-peak latency between T-

type Ca2+ currents and apamin-sensitive currents showed little variability in the 5 cells 

included in the analysis (14.1 ± 0.3 ms, range 12.9 - 14.8 ms), further pointing to a stable time 

course of T-type Ca2+ currents and reproducible voltage-clamp across experiments. From 

these tests, we concluded that our experimental conditions were such that voltage-clamp of T-

type Ca2+ currents at -62 to -67 mV was stable enough to allow for reliable activation of 

apamin-sensitive currents. However, we also noted that our T-type Ca2+ current amplitudes 

were comparatively small, which indicated that we clamped only a portion of the whole-cell 

currents (Joksovic et al., 2005; Sun et al., 2001), likely those contained in soma and proximal 

dendrites.  

 

Whole-cell and perforated patch recordings in current-clamp mode. Dampened 

oscillations were obtained after brief membrane hyperpolarization (-100 pA, 400 ms). Cells 

recorded in the whole-cell patch configuration presented 2 - 5 oscillatory high-frequency (150 

- 250 Hz) LT burst discharges of typically 2 - 10 action potentials around 4 - 10 Hz, similar to 

findings in vivo and in vitro (Avanzini et al., 1989; Bal and McCormick, 1993; Blethyn et al., 

2006; Steriade et al., 1993). The discharge frequency decreased from ~10 Hz when current 

pulses were injected at -60 mV to ~4 - 6 Hz around –78 mV, similar to the oscillations 

obtained by microelectrode recordings in vitro. Note that the properties of action potentials 

and associated rapid AHPs may be distorted due to the electronic design of the Axopatch 

200B amplifier. Perforated patch-clamp recordings were achieved via including gramicidin at 

2.8 µM in the prefiltered patch pipette solution, which was then sonicated for 30 s. 

Gramicidin was prepared freshly in a 2.8 mM stock solution in dimethylsulfoxide. The pipette 

tip was initially filled with gramicidin-free solution by brief immersion and backfilled with 

gramicidin-containing patch pipette solution. Minimal pressure was applied to the patch 

pipette only while crossing the surface of the bath and before cell contact. The cell-attached 

configuration, with a seal resistance > 0.7 GΩ was obtained by applying negative pressure to 

the patch pipette. Perforation was assessed in voltage-clamp by monitoring current responses 

to 10 mV hyperpolarizing steps. When current transients reached values >90 pA, the 

recording configuration was switched to current-clamp and the experiment was started. 

 

Drugs. Drugs (1-EBIO, mibefradil, apamin, TTX, ω-CTXMVIIC, CPA) were 

maintained in 200-1000-fold concentrated stock concentrations and applied to the bath at the 



Results 

 

74 

 

concentrations indicated. In some experiments, 1-EBIO, apamin and ω-CTXMVIIC were 

applied focally through a local puffing pipette attached to a picospritzer (World Precision 

Instruments). Thapsigargin was included at 4 μM in the patch pipette through back-filling, as 

described for gramicidin. In control pipette solutions, apamin-sensitive current remained 

unaltered (239 ± 41 pA after 1.5 min, 261 ± 19 pA after 8-10 min, n = 4, p > 0.4). 

 

Ca2+ imaging experiments 

 

Calibration of fluorescent signals. Ca2+ signals were evaluated after calibration of dye 

affinities with solutions containing known free [Ca2+] using established procedures. The Kd of 

magfura-2 with Mg2+ at pH 7.3 and 34 ºC, measured using EGTA-buffered solutions ([Ca2+]~ 

1 - 30 µM ), was 25 ± 5 µM (standard deviation from least-squares interpolation). This 

estimate was similar to that reported by (Hyrc et al., 2000) and slightly smaller than that 

reported by (Naraghi, 1997) and (Ogden et al., 1995), presumably because these 

measurements were done at 22 - 24 ºC. The Kd of bis-fura-2 with Mg2+, not relevant for the 

estimate of [DCa2+], was considered to be that reported by Molecular Probes (0.525 µM). The 

buffer capacity of the cell, defined as K = [BCa2+]/[Ca2+] where [BCa2+] is the transient Ca2+ 

bound to the endogenous cell buffer, was estimated as Δ[DCa2+]/ Δ[Ca2+]i. This estimate is 

based on the approximation that 3 mM magfura-2 (buffer capacity ~120) does not 

significantly alter the physiological Δ[Ca2+] and that in the presence of 1 mM bis-fura-2 

(buffer capacity ~1900) all the Ca2+ that enters the cell binds to the dye.  

 

Immunohistochemical procedures 

 

Preparation of tissue sections. Three P21 mice were deeply anaesthetised by 

intraperitoneal injection of ketamine-xylazine 1 : 1 (0.1 mL ⁄ kg body weight) and perfused 

through the ascending aorta for 13 - 18 min, first with 0.9% saline for 1 min followed by 

freshly prepared ice-cold fixative containing 4% paraformaldehyde, 0.05% glutaraldehyde 

and ~0.2% picric acid made up in 0.1 M phosphate buffer (PB; pH 7.4). After perfusion, 

brains were removed from the skull and immersed in the same fixative for 2 hours. Tissue 

blocks containing the nRt were dissected and washed thoroughly in 0.1 M phosphate buffer 

for several hours. Coronal 60 μm thick sections were then cut on a Vibratome (Leica V1000) 

and collected in 0.1 M phosphate buffer. 
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Light microscopy. A similar procedure to that described earlier was used (Luján et al., 

1996). Briefly, free-floating sections were incubated in 10% normal goat serum (NGS, Vector 

Laboratories, USA) diluted in Tris-buffered saline (TBS) for 1 h. Sections were then 

incubated for 48 h in a solution of a primary antibody against SK2 at a final protein 

concentration of 1 - 2 µg/ml each, diluted in TBS containing 1% NGS. After washes in TBS, 

the sections were incubated for 2 h in biotinylated goat anti-rabbit or goat anti-guinea pig 

IgGs (Vector Laboratories) diluted 1 : 50 in TBS containing 1% NGS. They were then 

transferred into avidin-biotin-peroxidase complex (ABC kit, Vector Laboratories) diluted 1 : 

100 and left for 2 h at room temperature. Peroxidase enzyme activity was revealed using 3,3´-

diaminobenzidine tetrahydrochloride (DAB; 0.05% in TB, pH 7.4) as the chromogen and 

0.01% H2O2 as substrate. Finally, the sections were air-dried and coverslipped prior to 

observation with a photomicroscope (DMRS, Leica) equipped with differential interference 

contrast optics. 

Electron microscopy. For ultrastructural analysis, the silver-enhanced immunogold 

technique was used and immunogold particles along the plasma membrane and at intracellular 

sites of morphologically identifiable somata, dendritic shafts and axon terminals were 

assessed. We quantified the percentage of immunoparticles located along the plasma 

membrane of nRt dendrites. We also measured the density of immunoparticles (number of 

immunoparticles/μm2). The immunoparticle density was calculated in particle/effective 

membrane area in EM pictures (in particle/μm2) over plasma membrane compartments and 

was statistically compared to the non-specific labelling densities (also given in particle/μm2). 

Background labelling, assessed by determining particle density over nucleus, mitochondria 

and myelin, was 0.05 ± 0.01 immunogold/μm2. 

 

EEG Monitoring and Analyses 

 

Animals used. Adult female SK2+/+ (n = 7) and SK2-/- (n = 6) mice were used in this 

study. Mice were kept individually in polycarbonate cages (31 x 18 x 18cm) with food and 

water available ad libitum, and maintained on a 12 h light – 12 h dark cycle (lights-on at 9:00 

AM) at an ambient temperature of 24.5 - 25.5 °C. Body (SK2+/+: 19.4 ± 0.7 g; SK2-/-: 21.2 ± 

0.6 g) and brain (SK2+/+: 452 ± 8 mg; SK2-/-: 449 ± 13 mg) weight did not differ between 

genotypes. Age at time-of-recording was 17 weeks for 4 of the SK2-/- mice; all others were 

11-weeks old. 
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Surgical implantation. EEG and EMG electrodes were implanted under deep 

anaesthesia with a mixture of ketamine and xylazine (i.p., 75 and 10 mg/kg, respectively, at a 

volume of 8 μl/g). Two gold-plated miniature screws (diameter 1.1 mm) served as EEG 

electrodes and were screwed into the cranium over the right cerebral hemisphere, in a fronto-

parietal position (according to (Franken et al., 1998)). Four additional anchor screws were 

implanted; one over the right hemisphere and three over the left hemisphere. Two semi-rigid 

gold wires served as EMG electrodes and were inserted between two neck muscles. The EEG 

and EMG electrodes were soldered to a connector and the anchor screws were cemented to the 

skull. Four to 8 days of recovery from surgery were allowed before animals were connected to 

the recording leads. A minimum of 6 adaptation days (or 10 including recovery from surgery) 

were scheduled before data collection. 

Analysis. EEG and EMG signals were recorded continuously for 24 h (n = 5) or 48 h (n 

= 8) under undisturbed baseline conditions. The analogous signals were digitized at 2 kHz and 

subsequently stored at 200 Hz on hard disc. The EEG was subjected to a discrete-Fourier 

transformation yielding power spectra (range: 0.25 – 90 Hz, resolution: 0.25 Hz, window 

function: hamming) for consecutive 4 - s epochs. Hardware (EMBLA™) and software 

(Somnologica-3™) were purchased from Medcare/Flaga (Island). Based on the EEG and 

EMG signals, the animal’s behavior was classified as REMS, NREMS, or wakefulness, for 

consecutive 4 - s epochs according to standard criteria (Franken et al., 1998). States were 

scored by visual inspection of the EEG and EMG signals displayed on a PC monitor. Four-

second epochs containing EEG artifacts were marked, so they could be excluded from EEG 

spectral analyses. For each state, an EEG spectral profile was constructed by averaging all 4-s 

epochs scored as that state. Spectral changes at the NREM-to-REMS transition, calculation of 

theta peak frequency in the REMS and waking EEG and the fragmentation of NREMS were 

calculated as described previously (Franken et al., 2006; Franken et al., 1998, 1999). 

 

Drugs and chemicals 

 

1-EBIO, apamin, thapsigargin and ω-CTXMVIIC were obtained from Tocris, CPA 

from Alomone Labs, TTX from Latoxan, and magfura-2, bis-fura-2 from Molecular Probes. 

EGTA, BAPTA, Gramicidin D and standard salts for electrophysiological solutions were 

purchased from Sigma-Aldrich or Merck, L(+)-Ascorbic acid from VWR Prolabo and 

KMeSO4 from ICN Biomedicals. Mibefradil was a kind gift of F. Hoffmann-La Roche Ltd, 

Basel Switzerland.  



Results 

 

77 

 

2) Supplemental Data, Figures and Table 
 

Supplemental Figure S1: Effects of the SK channel gating enhancer 1-EBIO on 

oscillatory bursting of single units in nRt and on SK-currents in wild-type and SK2-/- 

mice. 

 

1-EBIO enhances the apparent affinity of native SK channels for Ca2+ (Pedarzani et al., 

2001), and is expected to potentiate channel activation. Extracellular recordings were obtained 

in interface-style recording chambers with low-resistance (< 1 MΩ) tungsten electrodes 

(Frederick Haer) and band-pass filtered between 0.3 kHz and 10 kHz using an extracellular 

amplifier (Warner Instruments) from slices perfused with (in mM): 131 NaCl, 2.5 KCl, 1.25 

NaH2PO4, 26 NaHCO3, 2 CaCl2, 1.2 MgCl2, 18 dextrose, 1.7 L(+)-ascorbic acid. A single-unit 

was identified by series of spontaneous tonic or bursts of action potentials. Bursts showed an 

accelerando-decelerando pattern in the action potential discharge frequency (Domich et al., 

1986). Single electric shocks (50 - 200 μA, 1 ms) were applied at 0.05 - 0.1 Hz via bipolar 

stimulation electrodes (Frederick Haer) placed in the internal capsule adjacent to the nRt. 

These stimuli typically silenced active units and then elicited repetitive burst discharges. The 

number of bursts was determined by the average of the bursts after 5-10 successive stimuli. 

Tonic action potential frequency was determined by counting action potentials in the first 

second after cessation of burst discharge. 

Single units were identified in extracellular recordings by a stable action potential 

amplitude (20 - 100 μV) above baseline (~2 - 5 μV) and repetitive, high-frequency (220 - 500 

Hz), burst discharges. An electric shock to the internal capsule transformed a tonically 

discharging into a repetitively bursting unit for 2 - 8 s, before tonic action potential discharge 

was resumed (Panels A, B). Local application of 1-EBIO (~ 0.1 mM) provoked an almost 

three-fold increase in the number of LT bursts (Panel C) and a prolongation of the interburst 

intervals in the initial portion of the oscillation (Panel A), while the frequency of the tonic 

discharge remained unaffected (Panel D). Interestingly, the prolongation of the interburst 

intervals was significant for all but the first of 6 intervals measured (first 6 intervals in 

control: 402 ± 40 ms, 338 ± 34 ms, 325 ± 25 ms, 296 ± 26 ms, 295 ± 17 ms, 277 ± 18 ms; in 

1-EBIO: 482 ± 53 ms, 398 ± 36 ms, 344 ± 33 ms, 316 ± 33 ms, 320 ± 24 ms, 297 ± 21 ms; p 

< 0.03 for 2nd to 6th interval, p = 0.067 for 1st interval), suggesting that, except for the first 

interburst interval, the SK channel gating by bursts is normally submaximal.. Bursting was 

abolished by local application of apamin (100 nM) (data not shown). 1-EBIO markedly 
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enhanced SK-currents in wild-type animals, while not having any effect on T-type Ca2+ 

current-dependent outward currents in SK2-/- cells (Panels E, F). 

 

 

 
 

Figure S1. 1-EBIO, an SK channel enhancer, promotes bursting in nRt cells and its 
effects on SK-currents are absent in SK2-/- cells. A Extracellular recordings of a tonically 
discharging nRt cell, which is transformed into bursting by electrically stimulating 
synaptic inputs (200 μA, 0.1 ms, arrow), before (Control) and after local application of 1-
EBIO (~0.1 mM). Inset shows a single burst at an expanded time scale. The cell generates 
a serious of burst discharges, before resuming tonic firing. In 1-EBIO, the number of burst 
discharges was increased. B Expanded portions of recordings numbered 1 and 2 in A. 
Double-headed arrows denote the interburst interval. C Average number of bursts 
discharged per stimulation, before and after 1-EBIO application. Data are presented as 
means ± SEM of 10 units. * denotes p < 0.05. D Average number of action potentials 
discharged in the first sec after resuming tonic firing. Data are presented as means ± SEM 
of 7 units. E Bath-application of 1-EBIO (0.1 mM) onto voltage-clamped nRt cells from 
wild-type (WT) and SK2-/- mice. 1-EBIO promotes the generation of an outward 
afterhyperpolarization current (AHP-current) that follows the T-type Ca2+ current in WT, 
but not in SK2-/- cells. Cells were hyperpolarized to -120 mV for 125 ms, before being 
repolarized to -62 mV. Dotted lines denote steady-state holding current at – 62 mV. F 
Graphic representation of the time course of 1-EBIO effects on AHP-current in recordings 
from WT (black circles, n = 5) and SK2-/- cells (white circles, n = 5). Dotted lines 
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represent the average of the last 5 responses before the start of 1-EBIO application. Note 
that the current values in SK2-/- animals are negative at the time point at which an AHP-
current is generated in WT cells, due to the slower decay of T-type Ca2+ currents in SK2-/- 
cells. 1-EBIO increased the current in WT (p < 0.005), but not in SK2-/- cells (p > 0.05). 
Data are presented as means ± SEM of 5 cells per genotype. 

 

 

Supplemental Figure S2. Cumulative use-dependent inactivation of T-current 

 

To assess for use-dependent decrease in T-current activation, a voltage-protocol that 

involves repeated depolarization-hyperpolarization cycles was used. This protocol mimics the 

rapid membrane potential changes occurring during dampened oscillations (Panel A) and 

allows to measure full T-type Ca2+ current amplitudes at each cycle. Representative traces 

presented in Panel B illustrate that rapid inward currents were generated after each 

depolarizing upstroke (asterisks), which markedly diminished in amplitude in subsequent 

cycles, and reached steady-state levels after about three cycles. These inward currents were T- 

type Ca2+ currents since they were largely blocked by mibefradil (50 μM)(Panel C). In Panel 

D, averaged values of four experiments involving five depolarization-hyperpolarization cycles 

yielded a significant decrease of current response after 3 cycles (to 45.6 ± 10%, p < 0.05), to 

30 ± 8% after 5 cycles (p < 0.05 compared to third cycle). Also added to the plot in Panel D is 

a decrease in the decay slope of the T-type Ca2+ current, which is a measure of the efficiency 

of T-type Ca2+ / SK2 channel coupling. Taken together, whole-cell T- type Ca2+ current in nRt 

cells showed use-dependent cumulative inactivation, accompanied by a decrement in SK 

channel recruitment. These gating properties are consistent with the observed accruing 

decrement of Ca2+ signals during dampened oscillations. 
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Figure S2. T-type Ca2+ current in nRt cells shows use-dependent cumulative inactivation. A 
Voltage-clamp protocol involving five hyperpolarizing-depolarizing cycles, approaching the 
membrane potential events during a dampened oscillation. Depolarized phases were 
maintained for 80 ms to allow for full decay of T-type Ca2+ current amplitudes. In this way, 
current amplitudes could be measured directly. B Representative current responses to the 
protocol illustrated in A. Note the rapid generation of an inward current at the onset of each 
depolarizing cycle (*), reflecting activation of T-type Ca2+ current, and its decrement in 
current amplitude from one cycle to the next. The T-type Ca2+ current activated in the first 
cycle is followed by an outward current, which strongly weakens, reflecting weakened SK 
channel recruitment. C Overlay of current responses before (Ctrl, thin lines) and after 
Mibefradil (Mibe, thick lines) (50 μM) application. D Normalized T-type Ca2+ current 
responses plotted against cycle number elicited by the protocol shown in A. Black circles: 
current amplitude, measured from peak to baseline current at -50 mV. Open circles: decay 
slope of T-type Ca2+ currents (see Supplemental Experimental Procedures). Values are 
significantly smaller starting with the third cycle (p < 0.05). 
 

 

Electrophysiological properties of SK1-/-, SK2-/- and littermate control animals 

 

Values for passive input resistance, measured with brief 10 mV hyperpolarizing voltage 

steps, were 250 ± 16 MΩ (n = 41) in SK1-/- animals, and 207 ± 16 MΩ in SK2-/- animals (n 

= 25), not significantly different from a randomly selected group of WT littermate controls 

(225 ± 16 MΩ, n = 33, p > 0.05). Moreover, cells showed unaltered amplitudes of resting 

membrane potential (for SK1-/-: -79.8 ± 1.5 mV, n = 40; for SK2-/-: -77.6 ± 1.6 mV, n = 27; 

in control: -77.9 ± 1.6 mV, n = 39; p > 0.05), amplitudes of T-type Ca2+ currents at a test 

potential of –62 to 67 mV (for SK1-/-: -481 ± 48 pA, n = 33; for SK2-/-: -429 ± 34 pA, n =20; 
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for wild-type: -478 ± 53 pA, n = 15, p > 0.05), steady-state inactivation curves, and time 

courses of recovery from inactivation (data not shown). 

 

Supplemental Figure S3: A computational model of T-type Ca2+ and SK channel 

coupling and SERCA 

 

Previous computational models of nRt cells generated dampened oscillations within a 

single-compartment, containing Hodgkin-Huxley models of voltage-gated channels and two 

Ca2+-activated conductances, a K+ and a cation conductance (Destexhe et al., 1994). 

Following this model, a single-compartment model incorporating T-type Ca2+ channels, Ca2+-

dependent K+ channels, and sequestration mechanisms was used. Passive properties were 

implemented as described by Destexhe et al. (1994), with  

 

CmdV/dt = -gL*(V – EL) – IT – I SK 

 

where V is the membrane potential, Cm = 1 μF/cm2, EL = - 78 mV, and gL = 0.05 mS/cm2, IT 

is the T-type Ca2+ current, and ISK the Ca2+-dependent K+ current.  

 

T-type Ca2+ channels were modelled according to  

 

IT = gca * m2 * h * (V – Eca) 

 

with the activation parameter m(V,t) described by 

 

dm/dt = - [1/τm (V)] * [m – m∞ (V)] 

 

and the inactivation parameter h(V,t) 

 

dh/dt = - [1/τh (V)] * [h – h∞ (V)] 

 

The voltage dependence of m, h, and the time constants followed 

 

 

m∞(V) = 1 / [1 + exp [(- V + 52) / 7.4]] 
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h∞(V) =  1 / [1 + exp [( V + 80) / 5]] 

 

τm (V) = 0.44 + 0.15 / [exp ( (V + 27) / 10) + exp ( -(V + 102) / 15)] 

 

τh (V) = 22.7 + 0.27 / [exp ( (V + 48) / 4) + exp ( -(V + 407) / 50)] 

 

The maximum conductance gca was 1.75 mS/cm2, and ECa = 100 mV the reversal 

potential. 

 

Similarly, ISK was described by 

 

ISK = gSK * mSK * hSK * (V – Eca) 

 

with the gating parameter mSK described by 

 

dmSK/dt = - [1/τmSK([Ca2+]i)] * [mSK – mSK,∞([Ca2+]i)] 

 

The steady-state activation parameter mSK,∞([Ca2+]i) was described by a dependence on 

the fourth power (n = 4) of [Ca2+]i and α was set to 0.4 * 10^12 ms-1mM-4 and β to 0.025 ms-1, 

according to 

 

mSK,∞ ([Ca2+]i)] = α[Ca2+]i
n / (α[Ca2+]i

n + β) 

 

τmSK ([Ca2+]i)] = 1 / (α[Ca2+]i
n + β) 

 

In this manner, half-activation of the K+ channels occurred at ~0.5 µM [Ca2+]i. The 

maximal K+ conductance was set to 3 mS/cm2. 

 

Ca2+ sequestration mechanisms were modelled as described in equation (10) of 

Destexhe et al. (1994). 

 

d [Ca2+]i / dt = - KT * [Ca2+]i / [[Ca2+]i + Kd] 
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Two such mechanisms were implemented, the first with Michaelis-Menten constants of 

KT = 10-4 mMms-1 and Kd = 10-4 mM and the second with 5-fold smaller KT and Kd. [Ca2+]i(t) 

was then modelled according to the sum sequestration and influx, with the latter one defined 

as 

 

d [Ca2+]i / dt = - [k /2Fd] * IT 

 

where k = 0.1, F is the Faraday constant and d = 1 μm. 

Initial conditions were a resting membrane potential of -90 mV, a [Ca2+]i of 100 nM, 

and the gating parameters for the T-type Ca2+ current were set to m (t = 0) = 0.0 and h (t = 0) 

= 1.0. 

Slow recovery from inactivation was introduced by requiring that the time evolution of 

the inactivation parameter h(t) is governed by τh (V) when h(t) > h∞(V) but by τslow = 2 s when 

h(t) < h∞(V). In this manner, the voltage-dependence of inactivation described by Frazier et al. 

(2001) was approximated. Blocking SERCA was modelled by removing the second Ca2+ 

sequestration mechanism. 

In this model, we reproduced on-going oscillatory bursting in the absence of the cationic 

conductance. Removing Ca2+ sequestration from this model fully abolished the oscillations, 

because Ca2+ was not cleared and the cells became tonically hyperpolarized (data not shown). 

This is not observed experimentally when blocking SERCA selectively, and indicates that 

more than one sequestration mechanism controls Ca2+ removal after a LT burst in a real cell. 

To take this into account, we implemented two sequestration mechanisms with a 5-fold 

difference in affinity and kinetics. This, by itself, did not affect the on-going oscillations (left 

traces). We then implemented a formalism following values reported by Frazier et al. (2001) 

to phenomenologically take slow recovery from inactivation into account. This led to a 

marked dampening that involved the generation of submaximal LT bursts and Ca2+ signals 

(middle traces). Within this extended model, we studied the role of [Ca2+]i handling. Removal 

of the low-affinity sequestration only generated a pattern in which oscillations occurred, albeit 

with a weakened dampening (right traces). This reduction was accompanied by an enhanced 

number of [Ca2+]i transients, and a small decrease in the amplitude of the first two Ca2+ 

signals. This illustrates that the recovery from inactivation strongly shapes the temporal 

evolution of oscillatory dampening, while the sequestration of Ca2+ finely modulates the 

interaction between T-type Ca2+ and rapidly activated K+ channels (see Discussion). 
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Figure S3. A computational model of nRt oscillations, reproducing on-going oscillations 
when T-type Ca2+ channels were coupled to a Ca2+-activated K+ conductance (left). The cell 
contained two Ca2+ sequestration mechanisms. Time course of [Ca2+]i is shown below. When 
slow recovery was introduced (middle), oscillations were dampened. Removal of a slow Ca2+ 
sequestration, mimicking SERCA blockade, attenuated the dampening (right). 

 

 

Supplemental Figure S4A, 4B and Supplemental Table S1. Sleep-wake behavior and 

EEG analysis of SK2-/- and SK2+/+ mice 

 

Large differences in EEG power density were observed between genotypes (Figure 8). 

To verify whether, besides difference in absolute values, the relative contribution of the 

various frequencies to the EEG was affected by genotype, relative spectra were calculated by 

expressing the power density in each frequency bin as a percentage of total EEG power over 

the entire frequency range (excluding the 45-55 Hz range) for that state (Figure S4A). During 

NREMS, the relative contribution of delta activity to the EEG was decreased, and of a wide 

range of fast frequencies, including beta (18 – 25 Hz) and gamma (35- 60 Hz), increased. 

Differences in the relative REMS spectra were most prominent in theta (5 – 10 Hz) and beta 

frequency ranges. Gamma activity was not affected (not shown). Differences in the theta 

range were due to a significant (p <0.05, t-test, asterisk) 0.3 Hz slowing of theta peak 

frequency (see inset) during this state in SK2-/- mice. Changes in the relative waking EEG 

were limited to a pronounced decrease at 10 Hz that resulted from a (non-significant) slowing 

in theta oscillations also in this state (see inset of Figure S4A). Theta peak frequency was 

determined by selecting the frequency bin with the highest power density within the theta 

range (5-10Hz) within individual mice (mean ± SEM; bi-directional). A contour plot shows 
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the spectral composition of the EEG at frequencies up to 90 Hz at NREMS to REMS 

transitions (Figure S4B). 

Despite pronounced differences in NREMS fragmentation (Figure 8), overall time-

spent-asleep was not significantly affected by genotype (Table S1). Calculated over 24 h, 

SK2-/- mice (n = 4) slept somewhat less (- 30min) compared to SK2+/+ (n=5), due largely to 

a 43 min deficit in sleep time during the 12 h dark (D) or active period. 

 

 

 
 

Figure S4A: Mean relative (upper panels) EEG spectra for NREMS (left), REMS (middle), 
and waking (right panels) during baseline. Relative EEG spectra were calculated for each 
state by expressing power density in each frequency bin as a percentage of total power over 
all frequency bins within each state. Genotype differences (lower panels) were calculated as 
Log2-transformed SK2-/- / SK2+/+ ratios. Red bars mark frequency bins that significantly 
differed between genotype (post-hoc, t-tests, P<0.05). 
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Figure S4B: Contour plot of the changes in the EEG spectral composition at the transition 
from NREMS (-3 to 0min) to REMS (0 to +2min) for SK2+/+ (left; n=7) and SK2-/- (right 
panel; n=6) mice. ‘Heat map’ was constructed by aligning and averaging spectra from all 
transitions selected during the 24- or 48 h baseline recordings, first within and then among 
mice. Power density within 0.25 Hz bins were expressed as a percentage of the mean power 
density for that bin over 4 s epochs scored as NREMS in the 1st 2min (i.e., -3 to -1min) of the 
transition to visualize relative spectral changes. Contour lines connect levels of similar 
relative power in 8 color-coded 20% increments. White dashed lines at time = 0 indicate the 
time between the last 4s epoch scored as NREMS and the 1st 4s epoch scored as REMS. EEG 
changes start during the 1 min prior to REMS onset and entail a marked increase in EEG 
activity in the spindle frequency range (10 – 15 Hz; see also Figure 8D) shortly followed by 
an increase in theta activity (5 – 10 Hz). Maximum spindle activity is reached around -25 s, 
while maximum theta activity is reached at the transition. After the transition, spectral values 
reach their typical REMS levels with, below 35 Hz, no other activity than theta and above 35 
Hz, including the gamma band (35 - 60Hz) activity that exceeds high frequency EEG activity 
in NREMS up to 3- fold. Genotype differences concern the less prominent surge in spindle 
activity prior to REMS onset (see Figure 8D) and a smaller relative increase in gamma/high-
frequency activity and smaller relative decreases in delta and spindle activity (dark blue areas) 
during REMS in SK2-/- mice. 
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 Genotype Waking [h] NREMS [h] REMS [min] 

SK2-/- 4.97 ± 0.15 6.16 ± 0.20 52.2 ± 6.3 12h L-period 
SK2+/+ 5.16 ± 0.13 5.85 ± 0.11 59.3 ± 3.1 
SK2-/- 10.22 ± 0.17 1.60 ± 0.15 10.3 ± 1.6 12h D-period 
SK2+/+ 9.50 ± 0.26 2.23 ± 0.23 16.0 ± 2.1 
SK2-/- 5.20 ± 0.13* 4.47 ± 0.15* 43.8 ± 2.9 L-D difference 
SK2+/+ 4.34 ± 0.21 3.61 ± 0.17 43.4 ± 3.0 
SK2-/- 15.19 ± 0.28 7.78 ± 0.28 62.5 ± 7.9 24 h 
SK2+/+ 14.67 ± 0.31 8.08 ± 0.29 75.3 ± 3.3 

 

Table S1:  Summary of time spent in waking, NREMS and REMS for SK2-/- and SK2+/+ 
animals during the light (L) or the dark (D) period or over 24 h. The decrease in NREMS time 
in the D-period combined with a (non-significant) increase during the light period, let to a 
significantly increased L-D difference in NREMS time in SK2-/- mice (2-way ANOVA 
interaction between factors ‘Genotype’ and ‘LD-period’ (with repeated measures for LD-
period): Waking P=0.0064; NREMS P=0.0032. *Mark significant genotype differences (P < 
0.01; post-hoc t-test). Analyses were based on 2 baseline recordings and represent means ± 
SEM. 
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Introduction 

 

Voltage-gated Ca2+ channels are key mediators of rapid [Ca2+]i increases in neurons in 

response to membrane depolarization. Intracellular Ca2+ ions entered through these channels 

adopt a multitude of signalling tasks that are involved in all major neuronal functions. To 

these belong, on the short-term, immediate effects on Ca2+-dependent ion channels and 

enzymes, on the intermediate-term, regulation of transmitter release and excitability, and on 

the long-term, the control of gene transcription and the plasticity of synaptic strength. The 

nervous system expresses a number of Ca2+ channel subtypes, each with distinct biophysical 

properties and cellular distributions. The large majority of signalling roles are carried out by 

the Ca2+ ions entering through the high-voltage-activated (HVA) Ca2+ channels, which are 

generated by the CaV1 and CaV2 Ca2+ channel families (for reviews, see (Berridge, 1998; 

Catterall, 1998; Dolphin, 2006; Khosravani and Zamponi, 2006)). 

In contrast to the well-documented roles of Ca2+ provided by members of the CaV1 and 

CaV2 family, the CaV3 channels are much less known in terms of their contribution to [Ca2+]i 

in neurons and their intracellular signalling functions. These channels, also called T-type Ca2+ 

channels, show the most distinctive biophysical characteristics amongst the voltage-gated 

Ca2+ channel family. They are activated by subthreshold membrane depolarizations and, by 

virtue of their rapid and mostly complete inactivation at moderate depolarizations, generate 

spike-like, transient membrane depolarizations, which earned them the name T-current 

(Huguenard, 1996; Perez-Reyes, 2003). Channel recruitment typically requires a preceding 

period of hyperpolarization, during which channels recover from inactivation and become 

primed to activate once activation threshold is crossed. Therefore, CaV3 channel activation 

occurs, in most cases, as a rebound to inhibitory input, typically accompanied by high-

frequency action potentials bursts.  

There are a number of reasons for which our understanding of Ca2+ signals generated 

through T-type Ca2+ channels has just begun. First, T-type Ca2+ currents are typically co-

expressed with HVA channels, albeit at smaller channel densities. Therefore, their 

contribution to [Ca2+]i is masked by the robust Ca2+ signals generated by HVA Ca2+ channels. 

Second, the lack of potent and selective pharmacological tools to block T-channels has 

hampered progress in dissecting their function. The most frequently used drugs are low Ni2+ 

concentrations (50-100 μM) and mibefradil (10-100 μM), but both substances affect other 

voltage-gated Ca2+ channels. Third, T-type Ca2+ channels have a comparatively low single-

channel conductance and inactivate rapidly and virtually completely (Huguenard, 1996). This 
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transient nature of the current inherently limits Ca2+ influx. Fourth, in many cell types, T-type 

Ca2+ channels are expressed in neuronal dendrites (Christie et al., 1995; Destexhe et al., 1998; 

Kavalali et al., 1997; Magee et al., 1995), and their density increases in thin distal protrusions 

(Christie et al., 1995; Destexhe et al., 1996). Measurement of electrical and fluorescent 

signals in these requires sensitive optical techniques to be combined with dendritic recordings. 

Finally, in hippocampal and amygdalar cells, the R-type Ca2+ channel is also expressed 

strongly in dendrites and spines (Humeau et al., 2005) and the similarity of its 

pharmacological profile (Isomura et al., 2002; Markram and Sakmann, 1994) required that 

distinctions between T-type and R-type signals were carried out with additional 

pharmacological tools (see e.g. (Humeau et al., 2005; Tai et al., 2006)). 

Currently, there is considerable evidence for potentially significant Ca2+ signalling roles 

associated with T-type Ca2+ currents in neurons, yet the [Ca2+]i signals generated and the 

messenger mechanisms involved have not been addressed. In several cell types, Ca2+ entering 

during burst discharge is important for the temporal patterning of oscillations (Bal and 

McCormick, 1993; Crunelli et al., 2006; Diana et al., 2007; Lüthi and McCormick, 1998; 

Swensen and Bean, 2003), although the exact role of T-type Ca2+ currents is not known. CaV3 

channels are also expressed in non-bursting cells and contribute to Ca2+ elevations generated 

by action potentials (McCobb and Beam, 1991; Wolfart and Roeper, 2002). Furthermore, 

several forms of long-term synaptic plasticity depend on T-type Ca2+ currents (Aizenman et 

al., 1998; Birtoli and Ulrich, 2004; Czarnecki et al., 2007; Nevian and Sakmann, 2006; Oliet 

et al., 1997; Pugh and Raman, 2006). Finally, specific T-current-dependent Ca2+ signalling 

has been proposed to rely on spatial co-localization with its target ion channels (Wolfart and 

Roeper, 2002). Third, pathological oscillations, such as those found during epilepsies, have 

been associated with genetic alterations in CaV3 Ca2+ channel subunits, which lead to altered 

current voltage dependence (Tsakiridou et al., 1995) and altered Ca2+ signalling (Kuisle et al., 

2006). 

This review gives an overview over recent reports documenting that T-type Ca2+ 

channels do act as an important Ca2+ source. It is focussed on T-type Ca2+ channels in 

neurons, but refers to non-neuronal cell types in cases where exemplary functions for Ca2+ 

entering through T-type Ca2+ channels were described. Altogether, this article not only 

illustrates that Ca2+ entering through T-type Ca2+ channels may dominate Ca2+ levels in 

intracellular compartments. It aims to emphasize particularly that signalling via Ca2+ entering 

through T-type Ca2+ channels is accompanied by elaborate compartmentalization and 

localization strategies to allow for a unique physiological use of this Ca2+ source. 
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Ca2+ entry resulting from unique voltage-gating 

 

Three of the peculiar voltage-gating characteristics render CaV3 channels a potentially 

unique Ca2+ source. First, T-type Ca2+ currents are activated around resting membrane 

potentials and hence may produce [Ca2+]i elevations at subthreshold potentials. Indeed, a Ni2+-

sensitive low-threshold Ca2+ signal accompanies subthreshold excitatory input in cortical 

layer V dendrites (Magee et al., 1995; Markram and Sakmann, 1994), whereas it makes a 

minor contribution to the Ca2+ entry resulting from a single action potential (Markram et al., 

1995; McCobb and Beam, 1991). Therefore, T-type Ca2+ channels electrically boost weak 

depolarizing input (Gillessen and Alzheimer, 1997) and will thus facilitate the coupling of 

synaptic input to dendritic action potential initiation zones (Larkum et al., 1999b) and the 

generation of action potential bursts (Larkum et al., 1999a). Furthermore, T-type Ca2+ 

channels could provide an intracellular Ca2+ signal that helps to prime and amplify subsequent 

Ca2+-dependent processes. For example, Ca2+ imaging of hippocampal dendrites of young rat 

revealed a greater T-type Ca2+ channel-dependent signal in distal compared to proximal 

dendrites (Christie et al., 1995). Such a mechanism could be particularly important in these 

distal processes, in which the amplitude of backpropagating action potentials, in contrast to 

proximal dendrites, is too small to elicit significant Ca2+ influx. The associated depolarization 

could also help in the generation of plateau potentials in hippocampal pyramidal cells (Cai et 

al., 2004) and complex spikes in cerebellar Purkinje cells (Cavelier et al., 2002). An 

amplification of distal input through T-type Ca2+ channels has also been invoked in the 

context of boosting the sensitivity of peripheral sensory perception. In olfactory receptor 

neurons, odor-induced Ca2+ transients in the cilia-containing knob are produced by cyclic-

nucleotide-gated channels, but are boosted by T-type Ca2+ currents by more than 50%. 

Without this boosting, only weak signals appear in the somata of these neurons, suggesting 

that T-type Ca2+ currents help in the propagation of olfactory signals to the soma (Gautam et 

al., 2007).  

Second, T-type Ca2+ channels deactivate slowly after repolarization and may thus allow 

for Ca2+ entry long after neuronal discharge has been completed. Indeed, proportionally more 

Ca2+ ions flow through T-type Ca2+ currents during a rapid action potential than what would 

be expected based on their small current amplitude, mostly due to a slow tail current after 

repolarization (McCobb and Beam, 1991). Furthermore, significant deactivating T-current 

flows during interburst intervals in Purkinje cells, coincident with the time course of 
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activation of Ca2+-dependent afterhyperpolarizing currents (Swensen and Bean, 2003), 

suggesting that the gating of these may be steered by Ca2+ entered through T-type Ca2+ 

currents. 

Third, although T-type Ca2+ channels are well-known for their prominent inactivation, 

all three isoforms of the channel show a small, but significant window current, resulting from 

a small fraction of channels remaining open and giving rise to a stationary Ca2+ influx, and a 

persistent enhancement of free intracellular Ca2+ levels (Crunelli et al., 2005). 

Electrophysiologically, such a standing current gives rise to a membrane potential bistability 

and the capability of switching abruptly between “up” and “down” states (Williams et al., 

1997b). An interesting case for the signalling role of this steady Ca2+ elevation has been 

associated with the differentiation of skeletal muscle cells. The establishment of skeletal 

muscle requires the differentiation and eventual fusion of myoblasts into multinucleated 

myotubes. This is a Ca2+-dependent process that eventually leads to the transcription of 

muscle-specific genes. At the onset of the fusion process, a subpopulation of myoblasts shows 

an elevated [Ca2+]i level. Buffering this increase prevents fusion (Arnaudeau et al., 2006; 

Bijlenga et al., 2000). Furthermore, differentiating myotubes start expressing CaV3.2 T-type 

Ca2+ channels, and their pharmacological inhibition prevents the development of myotubes 

with elevated resting [Ca2+]i levels. Therefore, T-type Ca2+ channels appear responsible for the 

augmentation of basal [Ca2+]i, consistent with an incomplete inactivation of T-channels in 

these cells. Therefore, a small fraction of activated channels will remain open and give rise to 

a steady Ca2+ influx, and a persistent enhancement of free intracellular Ca2+ levels. Notably, 

activation of a window current in myoblasts is enabled through a gradual hyperpolarization of 

the membrane potential, caused by the expression of an inward rectifier K+ current (Konig et 

al., 2006). In central neurones, window currents are activated during slow oscillatory 

discharges in thalamic cells that accompany a slow (< 1 Hz) sleep rhythm (Crunelli et al., 

2005). The persistent Ca2+ influx, together with the recruitment of Ca2+-dependent cationic 

currents, permit the persistence in a plateau-like up-state for periods of seconds (Blethyn et 

al., 2006). 

 

T-type channel Ca2+ signalling due to unique localization and co-localization 

 

Single-channel recordings, Ca2+ imaging, and modelling studies point to a non-uniform 

expression of T-type Ca2+ channels along the somatodendritic axis in diverse neuronal cell 

types. In hippocampal dendrites, T-type Ca2+ channels contribute ~40% of the Ca2+ signal 
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generated by repetitive action potentials at dendritic sites > 150 μm distant from the soma, but 

only 30% at proximal sites (Christie et al., 1995; Magee and Johnston, 1995). In 

thalamocortical cells, the density of T-type Ca2+ channels is highest in the thick stem dendritic 

segment 20-30 μm from the soma, whereas low densities were found at somatic and more 

distal dendritic sites (Williams and Stuart, 2000). Conversely, in neurons of the nucleus 

reticularis thalami, T-type Ca2+ channels are found in both somata and dendrites (Joksovic et 

al., 2005), but a computational study suggested a particularly high density in the fine distal 

dendrites of these cells (Destexhe et al., 1996). In unipolar brush cells of the 

vestibulocerebellum, large Ca2+ signals are generated by low-threshold spikes in the distal 

brush, whereas these are minor in the soma or proximal dendrites (Diana et al., 2007). Burst 

firing in these cells hence leads to a strong signal in the brush, and tonic action potential firing 

produces a homogeneous Ca2+ increase throughout the cell. Therefore, the bimodal activity 

pattern in these cells is accompanied by a distinctly compartmentalized Ca2+ signalling 

system. In nucleus reticularis thalami cells, T-type Ca2+ channels in dendrites are expressed 

together with Ca2+-dependent K+ channels of the SK-type. These cells are well-known for 

their vigorous oscillatory burst discharges during sleep-related oscillations, which emerge 

from interplay between low-threshold bursts and afterhyperpolarizations mediated by SK 

currents. The dendritic co-localization of a high-density of T-type Ca2+ channels and SK 

channels enables their rapid and efficient functional coupling and the generation of vigorous 

oscillations (Cueni et al., 2007). 

Dendritic Ca2+ signals underlie dendritic transmitter release (Egger et al., 2005; Rancz 

and Häusser, 2006), facilitate the induction of synaptic plasticity (Kampa et al., 2006), are 

implicated in gene transcription (West et al., 2002) and in activity-dependent growth and 

maintenance of dendritic arbors (Poo and Zheng, 2006; Redmond and Ghosh, 2005). 

Dendritic T-type Ca2+ channels, including those localized to spines, are involved in some 

forms of long-term synaptic plasticity (Isomura et al., 2002; Nevian and Sakmann, 2006) (see 

also below). Interestingly, the dendritic confinement of T-type Ca2+ channels occurs in later 

developmental stages. In hippocampus, currents are easily recorded in acutely dissociated 

cells from immature hippocampus, indicating their presence at soma and proximal dendrites, 

but currents are no longer recorded in adult cells (Thompson and Wong, 1991), presumably 

due to the restricted expression at more distal dendritic portions. Whether and how this 

initially strong expression in somata and dendrites is involved in hippocampal development 

remains to be assessed. 
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Ca2+ entering through T-type Ca2+ channels can take over selective signalling roles due 

to tight coupling with Ca2+-dependent ion channel targets, possibly resulting from their 

physical proximity to these. A repeatedly observed motif is the coupling of T-type Ca2+ 

channels to Ca2+-dependent SK-type K+ channels. Electrophysiological studies revealed that, 

in dopaminergic midbrain neurons, SK channels are activated almost exclusively by T-type 

Ca2+ channels, although these neurons also express HVA channels (Wolfart and Roeper, 

2002). This interacting ion channel pair gives rise to a small outward current that provides the 

small hyperpolarization necessary for a regular, periodic action potential discharge. During 

neonatal stages of dopaminergic neuron development, the dual coupling of T-type Ca2+ 

channels to SK channels and ryanodine receptors (RyR) also gives rise to spontaneous SK 

channel-dependent miniature outward currents that deregularizes spontaneous action potential 

discharge (Cui et al., 2004). These are thought to be due to spontaneous opening of single T-

type Ca2+ channels, a small Ca2+ localized influx and a subsequent boosting by Ca2+ release 

via RyR that is then sufficient to activate SK channels. The selective coupling between T-type 

Ca2+ and SK2 channels is also prominent in nRt cells (Cueni et al., 2007), which is enabled 

through the presence of both channels in the thin dendrites of these cells, with a minor 

contribution of HVA Ca2+ channels. Interestingly, in these cells, the sarco/endoplasmic Ca2+ 

ATPases (SERCA) selectively sequester Ca2+ when entered through dendritic T-type Ca2+ 

channels, whereas it leaves unaffected Ca2+ entered through high-voltage activated Ca2+ 

channels. This suggests that SERCA may be localized in the vicinity of T-type Ca2+ but not 

HVA Ca2+ channels. A preferential localization of SERCA on dendritic ER protrusions could 

underlie its selectivity for T-type Ca2+, whereas SERCA may be lacking or somewhat remote 

in compartments expressing HVA Ca2+ channels. So far, however, little is known about the 

molecular details via which the selective T-type Ca2+/SK channel coupling is enabled, the 

spatial scales on which it occurs and on their positioning relative to intracellular Ca2+ 

compartments. 

A coupling of T-type Ca2+ channels to Ca2+-activated K+ channels has also been 

suggested for the CaV3.2 isoform expressed in the vascular smooth muscle of coronary 

arteries. Mice lacking the CaV3.2 isoform show chronically constricted and malformed 

arteries, and relaxation of arterial vessels by vasodilating agents was markedly impaired 

(Chen et al., 2003). The deficiency in arterial relaxation was proposed to be due to a failure of 

Ca2+, entering through CaV3.2 channels, to antagonize contraction. CaV3.2 channels co-

sediment with Ca2+-activated K+ channels of the BK type, suggesting that their close co-

localization could translate Ca2+ entry into membrane hyperpolarization and stop contraction. 
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Thus, at least in coronary arteries, T-type Ca2+ channels mediate vasodilatation through 

producing [Ca2+]i increases. 

An at least partial coupling of T-type Ca2+ channels to diverse types of Ca2+-dependent 

K+ channels has been reported in a number of bursting neurons, such cholinergic nucleus 

basalis neurons (Williams et al., 1997a), intralaminar thalamic neurons (Goaillard and 

Vincent, 2002), Purkinje neurons (Swensen and Bean, 2003) and cartwheel cells of dorsal 

cochlear nucleus (Kim and Trussell, 2007). In thalamocortical and habenular neurons, T-type 

Ca2+ current could also be coupled to Ca2+-dependent cationic currents, thereby leading to 

pronounced afterdepolarizations (Blethyn et al., 2006; Chang and Kim, 2004). 

 

Coupling to intracellular Ca2+ release 

 

An emerging aspect of Ca2+ signalling via T-type Ca2+ channels is the activation of 

Ca2+-induced Ca2+ release (CICR). Aside from their major counterpart, the L-type Ca2+ 

channels, T-type Ca2+ channels act as Ca2+ sources in cardiac functions and couple to the 

sarcoplasmic reticulum to induce Ca2+ release (Sipido et al., 1998). T-type Ca2+ channel 

density is highest in pacemaking structures, whereas low levels are found in ventricular cells 

(Vassort et al., 2006). In pacemaking sinoatrial node and atrial cells, T-type Ca2+ channels 

contribute to the late phase of diastolic depolarization (Hagiwara et al., 1988). During this 

period, numerous rapid (20-30 ms), localized Ca2+ sparks appear at the sarcolemmal surface 

of these cells, which precede the rapid rise at the onset of the cardiac action potential (Hüser 

et al., 2000). These sparks sum up to a pedestal increase in [Ca2+]i at subthreshold potentials 

and are further boosted by Ca2+ release from the SR. Sarcolemmal Ca2+ signals are known to 

drive Na+-Ca2+ exchange current, hence resulting in further membrane depolarization, further 

Ca2+ entry and acceleration of the diastolic depolarization (Hüser et al., 2000). Thus, via the 

amplification of their intracellular Ca2+ signals through sarcolemmal Ca2+ release sites, T-type 

Ca2+ channels adopt an important role in cardiac pacemaking. Consistent with this finding, 

mice lacking the CaV3.1 Ca2+ channel subunit show no T-type Ca2+ currents in pacemaking 

cardiac tissue, a slowing of the late phase of diastolic depolarization and bradycardia 

(Mangoni et al., 2006). 

T-type Ca2+ channel-dependent signalling also contributes to cardiac excitation-

contraction coupling, although its density is too low in ventricular myocytes to significantly 

add to the contraction induced by L-type Ca2+ channels. However, in Purkinje fibers, a 

comparison of L-type and T-type Ca2+ channel-induced contraction was carried out under 
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controlled voltage-clamp conditions (Zhou and January, 1998). In these cells, Ca2+ entry 

through T-type Ca2+ channels could elicit contractions that were not much smaller than those 

triggered by L-type Ca2+ channels and that were also mediated by SR-dependent Ca2+ release. 

However, responses had a greater latency and built up more slowly, indicating that T-type 

Ca2+ channels coupled less efficiently to the internal release machinery. A possible 

explanation for this decreased efficacy could rely on a less tight integration of T-type Ca2+ 

channels in the local Ca2+ signalling microdomains described for L-type channels. 

In neurons, two studies clearly document that T-type Ca2+ channels may induce release, 

namely in dopaminergic neurons of neonatal midbrain (Cui et al., 2004) and in midline 

thalamic neurons (Richter et al., 2005).  

Neonatal dopaminergic neurons show spontaneous action potential discharge at a slow 

and irregular rate, which is then replaced by a pacemaker-like discharge pattern in adulthood. 

Cui et al. found that irregularity could be explained by the generation of spontaneous 

miniature hyperpolarizations, which are generated by SK channel-mediated spontaneous 

miniature outward currents (SMOC). Two different SMOC, which both are absent in adult 

dopaminergic neurons, are distinguished according to their amplitude. The induction of large-

amplitude SMOC (≥ 22 pA) requires the selective coupling of T-type Ca2+ channels, ER-

bound RYR and SK channels, since different inhibition of each signalling component abolish 

the generation of SMOC. 

In midline thalamic neurons the physiological relevance of T-type Ca2+ channel-induced 

CICR is not known. However, the occurrence of T-type Ca2+ channel-mediated CICR 

predominantly in midline thalamic neurons, but not within the nRt and specific 

thalamocortical nuclei indicating a relevance in specific firing properties, since midline 

thalamic neurons exhibit, in contrast to nRt and thalamocortical neurons, little spontaneous 

activity. 

 

Involvement in synaptic transmission 

 

Synaptic transmission belongs to the most extensively studied Ca2+-dependent processes 

(Schneggenburger and Neher, 2005). Ca2+ signals involved in synaptic transmission belong to 

the largest and most highly localized transients, reaching levels of up to tens of micromolar 

within < 1 ms on spatial scales of 10-100 nm during fast synaptic transmission. Ca2+ binds to 

proteins of the SNARE complex, which contains the putative Ca2+ sensor synaptotagmin to 

trigger rapid vesicle exocytosis (Südhof, 2004). Channels of the HVA family, in particular the 
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N, and P/Q-type channels, play a dominant role in generating these transients (Reid et al., 

2003). In contrast, to date, there are few reports on an involvement of T-type Ca2+ channels in 

neurotransmission. Slower forms of secretion, such as hormone release from neuroendocrine 

cells, involve a contribution of T-type Ca2+ channels (Carbone et al., 2006). In chromaffin 

cells, this contribution varies according to the conditions to which cells are exposed, being 

increased by cAMP-producing stimuli and by hypoxia. Secretion controlled by T-type Ca2+ 

channels in these cells is initiated at more hyperpolarized potentials, but couples with equal 

efficacy and velocity to the release apparatus (Giancippoli et al., 2006), thus permitting 

catecholamine release in response to previously subthreshold stimuli. 

More recently, a number of research groups provided strong evidence that T-type Ca2+ 

channels are involved in neurotransmitter release in neurons as well, thereby endowing these 

with a low-threshold component of fast exocytosis. Such a mechanism appears to make 

physiological sense for graded forms of vesicular release, in which synaptic transmission 

occurs in response to gradual changes in membrane voltage. A remarkable case is the graded 

transmission of reciprocally connected inhibitory leech heart neurons, which generate burst 

discharges in alternating sequence (Ivanov and Calabrese, 2000). T-type Ca2+-current-

dependent burst discharges lead to robust Ca2+ increases at the sites of synaptic contact, 

whereas tonic action potentials produced minor [Ca2+]i elevations. The amplitude of T-type 

Ca2+ currents correlates with the presynaptic dynamics and with the graded synaptic 

transmission, even when measured at the fine sites of synaptic contact, strongly indicating that 

the currents measured at the soma were indeed the main triggers of release (Ivanov and 

Calabrese, 2000). A role for T-type Ca2+ currents in graded transmission has also been 

identified for retinal bipolar cells. These second-order retinal cells transform input from 

retinal ganglion cells into a constant depolarization and use ribbon-type synapses to contact 

amacrine neurons. It has remained unclear by which mechanism the constant depolarization of 

the bipolar cells leads to a transient component in the synaptic response of amacrine cells. Pan 

et al. (Pan et al., 2001) used fluorescent Ca2+ imaging and capacitance measurement 

techniques to identify a role for T-type Ca2+ currents in triggering vesicle fusion at the giant 

terminals of bipolar cells. Although stronger depolarizations evoked an L-type Ca2+ current 

component of transmission, the release initiated by T-type Ca2+ currents could be strong 

enough to elicit feedback inhibitory currents in these cells. Indeed, recruitment of T-type Ca2+ 

currents doubles the amplitude of evoked glutamatergic responses in amacrine cells without 

strongly altering their time course, suggesting a similar efficacy of T-type and L-type currents 

in coupling to the release apparatus (Singer and Diamond, 2003). The transient nature of T-
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type Ca2+ currents was proposed to represent a possible mechanism underlying the 

transformation of a tonic depolarization into a transient output. However, a later study 

revealed that transient components could also occur at membrane potential ranges at which T-

type Ca2+ current activation is no longer significant, indicating the involvement of other 

mechanisms in this transformation (Singer and Diamond, 2003). 

T-type Ca2+ currents mediate action-potential-evoked neurotransmitter release granule 

cells of the olfactory bulb (Egger et al., 2003). These are axonless inhibitory neurons that 

generate lateral inhibition via dendrodendritic synapses formed with the major output cells of 

the bulb, the mitral cells. Additionally, granule cells receive the major synaptic feedback from 

olfactory cortex. Dendrodendritic interactions may occur both in a local mode, in which only 

single synapses communicate reciprocally, or via eliciting an action potential in granule cells. 

Activation of such action potentials from the resting membrane voltage of around -70 mV is 

sufficient to elicit a marked T-type Ca2+-current-dependent increase in [Ca2+]i that couples to 

the release of GABA. Notably, these [Ca2+]i transients are particularly robust in the distal 

dendritic zones of granule cells, from which most contact sites are formed. Thus, T-type Ca2+ 

currents may be involved in mediating global forms of lateral inhibition. 

Altogether, accruing evidence shows that T-type Ca2+ currents do make a significant 

contribution to neurotransmitter release, albeit these are found in a restricted number of cell 

types with graded or dendritic forms of synaptic release. It will be of interest to determine, in 

the future, whether other cell types which combine a dominance of T-type Ca2+ current-

related Ca2+ entry in dendrites with dendrodendritic specializations, such as nRt neurons, also 

utilize this Ca2+ to trigger dendrodendritic neuropeptide release (Sun et al., 2003). 

 

Involvement in synaptic plasticity 

 

To date, several forms of associative synaptic plasticity involving activation of 

metabotropic glutamate receptors (mGluRs) are thought to require Ca2+ entry through T-type 

Ca2+ currents. In neonatal and young hippocampus, classic extracellular stimulation protocols 

via repeated stimulation of hippocampal Schaffer collaterals at theta frequencies (5 Hz, 3 min) 

evoked a long-term depression (LTD) that was mediated by activation of metabotropic 

glutamate receptors (mGluRs) and blocked by low concentrations of Ni2+ (Oliet et al., 1997). 

In mature hippocampus, discharge properties of CA1 pyramidal cells during such low-

frequency stimulation were noted to involve burst firing, with typically three action potentials 

being generated around 150-200 Hz (Thomas et al., 1998). At this age, conditioning induced a 
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long-term potentiation (LTP) that was fully blocked only by combined application of both 

NMDAR antagonists and low Ni2+. Analysis of the site dependence of LTP along the apical 

dendrites of hippocampal cells revealed that this Ni2+ dependence was greatest in the distal 

dendritic portions, at which T-type Ca2+ currents are most strongly expressed (Isomura et al., 

2002). An involvement of T-type Ca2+ currents in mGluR-dependent associative plasticity 

was also found in neocortex when pairing single action potential or burst discharges of 

cortical pyramidal cells with EPSPs (Birtoli and Ulrich, 2004; Nevian and Sakmann, 2006). 

The mechanisms of action of Ca2+ entering through T-type Ca2+ currents have not yet been 

fully elaborated. Several pieces of evidence point to a presynaptic expression of LTD 

depending on both mGluRs and T-type Ca2+ currents, suggesting the release of a retrograde 

messenger. In young hippocampus, mGluR-dependent LTD was accompanied by a decrease 

in the frequency of miniature synaptic events (Oliet et al., 1997). In neocortex, mGluR-LTD 

leads to recruitment of phospholipase C (PLC) and subsequent release of endocannabinoids 

(Nevian and Sakmann, 2006). Interestingly, the Ca2+ signal during LTD induction is not 

affected by mGluR blockade, indicating that the role of mGluR activation is limited to trigger 

the PLC cascade, while the Ca2+ is provided by voltage-gated Ca2+ channels. T-type Ca2+ 

current activation is obligatory when LTD is induced by pairing with single action potentials, 

but not when bursts of action potentials are generated. Under these latter conditions, low Ni2+ 

concentrations needs to be combined with L-type channel antagonists to fully abolish LTD, 

suggesting that the Ca2+ signal may be generated by the activation of a combination of 

voltage-dependent Ca2+ channels. Altogether, Ca2+ signalling through T-type Ca2+ currents 

may thus contribute at several stages of the induction cascade, most likely by regulating 

proteins leading to endocannabinoid release. However, the exclusive role of these channels 

during weak postsynaptic activity may be overruled by high-voltage-activated Ca2+ channels 

when action potential bursts are generated. 

Rebound burst discharges generated by T-type Ca2+ channels have been recently 

implicated in plasticity in the cerebellum, although the contribution of Ca2+ entering through 

these channels has not yet been elucidated in detail. Low-frequency stimulation of inhibitory 

afferents onto neurons of the deep cerebellar nuclei, each evoking a rebound burst discharge, 

led to a LTP or LTD of IPSCs, depending on the number of action potentials generated during 

the rebound bursting (Aizenman et al., 1998). When mossy fiber activation was paired with 

postsynaptic rebound current, a LTP of mossy fiber EPSCs was generated that strongly 

dependent on the relative timing of synaptic stimulation and rebound current (Pugh and 

Raman, 2006). Thus, the rebound current had to occur during, or shortly after the synaptic 
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stimuli, for plasticity to be induced, while no change was observed when it preceded EPSCs. 

It is currently believed that Ca2+ entry during T-type Ca2+ channels may help to boost a 

plasticity-promoting Ca2+ signal generated by the synaptic stimuli. Such a mechanism would 

point to an important role of non-synaptic Ca2+ signals generated by T-type Ca2+ channels in 

some forms of synaptic plasticity. 

 

Conclusions 

 

The current literature points to a number of specialized cell types which, expressing T-

type Ca2+ channels at high densities, exploit them as a Ca2+ source for distinct physiological 

functions. Indeed, in some cases, Ca2+ entering through T-type Ca2+ channels acts as the 

dominant, if not exclusive, source to trigger a unique Ca2+-dependent process. To the most 

prominent of these belongs the regulation of oscillatory bursting along stretches of dendritic 

membrane, regulation of developmental processes through regulating resting Ca2+ levels, 

dendrodendritic synaptic transmission, and synaptic plasticity involving postsynaptic rebound 

discharge. In these cases, the specialized Ca2+ signalling functions carried by Ca2+ entering 

through T-type Ca2+ channels is illustrated most impressively. It appears conceivable that, to 

further understand the molecular and biophysical basis of T-type Ca2+ channel signalling, a 

focus on these specialized cell types would be helpful. Understanding these primary roles of 

Ca2+ entering through T-type Ca2+ channels will further stimulate research on dissecting the 

roles of T-type Ca2+ channels in the fundamental cellular mechanisms of excitability, 

transmission, and plasticity. 
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6 General discussion 
 

By combining electrophysiological, imaging, immunohistochemical, computational, 

genetic, and EEG techniques, we described how T-type Ca2+ signalling underlies the 

generation of nRt oscillations. We found that thalamic IT give rise to marked elevations of 

[Ca2+]i beyond its role as burst generator. In addition, we identified a tripartite functional 

complex composed of CaV3 channels, SK2 channels and SERCA pumps, which underlie the 

generation and the temporal dynamics of nRt oscillations. Furthermore, we found a 

remarkable correlation between the consequences of SK2-KO at the cellular and EEG levels, 

strongly suggesting that the mechanism we identified is physiologically relevant to sleep 

mechanisms. Altogether, my work represents the first study that quantifies the Ca2+ signals 

generated by the CaV3 channel family in the context of physiologically relevant cellular 

oscillations. 

 

6.1 The role of CaV3 channels during nRt oscillations 

 

In mice, the lack of the CaV3.1 gene causes severe sleep disturbances (Anderson et al., 

2005; Lee et al., 2004), suggesting that assessing sleep-related neuronal activities could be a 

particularly useful approach to further understand CaV3-dependent Ca2+signalling. Our study 

was dedicated to the nRt cells, a particularly vigorously bursting cell that is further facilitated 

by the expression of a IT with unique voltage-dependent properties (Huguenard and Prince, 

1992). The strategically crucial location of the nRt is documented by lesions applied to the 

nRt, which abolishe sleep-related spindle oscillations within the TC network and produce 

attentional neglect (for review, see (Pinault, 2004)). At the cellular level, the discharge 

capacities of nRt cells, in conjunction with their strong innervation of TC cells and their 

glutamatergic control by the layer VI corticothalamic feedback, render them important 

pacemakers for network oscillations. Furthermore, dampened oscillatory burst discharge, 

followed by tonic activity, is critical for the transmission of novel aspects of sensory 

information (Cotillon and Edeline, 2000; Shosaku and Sumitomo, 1983; Swadlow et al., 

2005) and is disrupted in an animal model of schizophrenia (Krause et al., 2003). Conversely, 

enhancing nRt cell activity, either through genetic loss of reciprocal inhibition (Huntsman et 



General discussion 

 

109

 

al., 1999) augmentation of LT IT (Tsakiridou et al., 1995), excessive cortical activity (Slaght 

et al., 2002) or through pharmacological strengthening of reciprocal inhibition (Liu et al., 

1992), leads to a hyperexcitable nRt network and the emergence of generalized epileptic 

seizures (Huguenard, 1998). The appropriate control and limitation of nRt neuron bursting 

activity thus appears essential for balancing TC networks. In the nRt the two isoforms 

expressed, CaV3.2 and CaV3.3 (Talley et al., 1999), show markedly different kinetics 

compared to CaV3.1 which are suggestive of enhanced and prolonged capacities of burst 

generation. CaV3.2 channels exhibit rapid inactivation and recovery from inactivation, 

whereas CaV3.3 channels exhibit slow components of inactivation and recovery from 

inactivation (Talavera and Nilius, 2006). A recent publication reports a rapidly inactivating 

somatic and a more slowly decaying dendritic IT (Joksovic et al., 2005).We obtained the first 

quantification of an IT-dependent Ca2+ signal in a manner that minimally disturbs its natural 

time course. Notably, these signals account for the large majority of [Ca2+]i in nRt dendrites 

and appear synchronously in the 100-150 μm of imaged dendrite, suggesting a uniform and 

high expression of CaV3 channels along the proximal dendritic membrane. The estimated 

CaV3 channel conductance density in our studies (0.6-1 mS/cm2) allows us to compare it to 

previous estimates achieved in computational studies (Destexhe et al., 1996). In these, the 

threshold density required for LT bursting was determined to be 0.3 mS/cm2, assuming a 

uniform distribution of CaV3 channels. This threshold was lowered by one order of magnitude 

(0.045 mS/cm2) in models where the distal dendrites had a high channel density (0.5 mS/cm2). 

Although our imaging does not allow us to estimate the [Ca2+]i in the fine distal arborizations, 

the derived value clearly lies above these values and indicates that proximal dendrites play an 

active role in dendritic Ca2+ electrogenesis. In essence, this means that nRt dendrites are 

vigorous oscillators, which, by virtue of their high expression of CaV3 channels and SK 

channels, are able to act as single compartments that make rapid transitions between the 

oscillatory ‘up’ and ‘down’ states. This effect, combined with the high surface-to-volume 

ratio of nRt dendrites (Pinault, 2004), produces a robust oscillatory unit that handles large 

Ca2+ charge transfer and accumulation over repeated time periods. When further combined 

with the electrical connectivity between nRt dendrites, via gap junctions and long-range 

synaptic interactions (Landisman et al., 2002; Pinault, 2004), it appears plausible that nRt 

dendrites are specialized to form a plexus of synchronously oscillating dendrites throughout 

major portions of the nRt. 

In our study, we also found that later cycles of the oscillation showed decreased [Ca2+]i 

signals. The mechanisms implicated in the reduction of these signals are related to insufficient 
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CaV3 channel recruitment, since burst amplitude was proportional to the Ca2+ signal in all 

oscillatory cycles. Ca2+-induced channel inactivation is well-known for HVA Ca2+ currents 

(Budde et al., 2002), but has not been described for native IT. Moreover, [Ca2+]i signals show 

a minor temporal summation, arguing against incremental Ca2+-induced inactivation. 

However, CaV3 channels go through a cycle of recovery once they have been inactivated, 

with a time constant of 0.5-1 s at room temperature (Frazier et al., 2001; Huguenard and 

Prince, 1992). These experimental results are consistent with a slow gating process underlying 

the decrementing Ca2+ signal. The slow time dependence makes the comparatively small and 

short hyperpolarizations produced by SK channels insufficient for full CaV3 channel recovery. 

Computational modelling shows substantial CaV3 channel inactivation during single LT 

bursts and integrating recovery from inactivation into currently available models robustly 

reproduces dampening. 

 

6.2 SK channel gating during nRt oscillations 

 

SK2 and SK1 are expressed in very high and high levels, respectively in the nRt. In 

contrast, SK3, which is predominantly expressed in TC cells, is expressed in very low levels 

in the nRt (Sailer et al., 2004; Stocker and Pedarzani, 2000). Our findings of the dendritically 

restricted expression pattern of SK2 protein in the nRt fits well in the emergent view that 

SK2-containing channels are an important attribute of dendritic excitability (Bond et al., 

2005). SK channels are exclusively activated by increases in [Ca2+]i via various Ca2+ sources 

(see introduction). Direct binding of Ca2+ on CaM, which constitutively binds to SK channels, 

results in the channel opening (Xia et al., 1998). The following outward K+current underlies 

the generation of the AHP, whose decay mirrors the decrease of [Ca2+]i to baseline levels. In 

distal dendrites of hippocampal CA1 neurons, HVA Ca2+ channel-mediated plateau potentials 

are shortened by SK channel-mediated repolarisation (Cai et al., 2004). Local blocking of SK 

channels with the selective channel blocker apamin results in the prolongation of the plateau 

potential. The ability of focally applied glutamate to induce APs increases during apamin-

mediated prolongation of the plateau potential. Whereas the dendritic excitability in CA1 

neurons changes after a local block of dendritic SK channels, SK channel inhibition has a 

moderate effect on the excitability of somatic current injections (Bond et al., 2004; Stocker et 

al., 1999). 
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In nRt cells, SK channel gating is tightly linked to CaV3 channel activation, as 

demonstrated by our finding that blocking IT with mibefradil leads to the disappearance of the 

apamin-sensitive current. Moreover, this link is supported when considering the temporal 

scales of current activation and Ca2+ signalling. Heterologously expressed SK2 channels need 

~6-8 ms to gate in saturating [Ca2+]i (Pedarzani et al., 2001). In CA1 hippocampal cells SK 

channels, which are co-localized within 50-150 nm of HVA Ca2+ channel open within 15 ms 

of HVA activation (Marrion and Tavalin, 1998). Taking into account that the generation of 

the AHP is the result of a charge of membrane capacitance due to IT deactivation and SK 

current activation, the slightly longer time delay of on average ~37 ms, is consistent with a 

very fast rate of CaV3-/SK channel interaction. It is therefore somewhat curious that we found 

that not only fast (BAPTA), but also slow (EGTA) Ca2+ buffers interfere with SK channel 

gating in nRt dendrites (Figure D1). Slow and fast Ca2+ buffers differentially attenuate the 

spatial spread of Ca2+ around its source (Augustine et al., 2003). The presence of BAPTA, (1-

5 mM) fully abolished the oscillatory burst discharges of nRt cells within minutes of gaining 

whole-cell access and replaced neuronal firing with a single burst followed by a slowly 

decaying plateau potential (Figure D1 A,D), similar to the discharge pattern in Apa-treated or 

SK2-deficient cells. Dampened oscillations were attenuated, but not abolished, when the 

pipette contained EGTA (Figure D1 B,D). At 0.1 mM EGTA, Δ[Ca2+]i measured with 

magfura-2 was undistinguishable from that without EGTA (data not shown). When EGTA 

was used at 5 mM, neurons typically discharged with 2 bursts interspersed by a rapid but 

clearly discernible AHP. Thus, CaV3- and SK channel coupling is abolished by fast Ca2+ 

buffers, while slow Ca2+ chelation leads to attenuation. Spatially averaged [Ca2+]i transients 

thus mediate CaV3-/SK channel coupling, with a minor contribution from localized signals. 

This finding is consistent with the general notion that SK channels typically remain remote 

from their Ca2+ sources and are responsible for AHP-mediating currents of intermediate time 

course in contrast to their rapidly acting BK channel counterparts, which undergo complex 

formation with Ca2+ channels and are responsible for very fast AHPs (Bean, 2007; Berkefeld 

et al., 2006). 
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D Figure 1. Ca2+ buffers interfered with SK channel gating in nRt dendrites 
 
(A) Whole-cell recordings of nRt discharge pattern after a brief negative current 

injection (-100 pA, 400 ms). The fast Ca2+ buffer BAPTA is applied in the patch 
pipette. High (5 mM) and low (1 mM) concentrations of BAPTA blocked burst-
associated AHPs. Note that the single discharge and the plateau potential are similar 
to the discharge pattern in apamin and SK2-deficient cells.  

(B) Whole-cell recordings of nRt discharge pattern after a brief negative current 
injection (-100 pA, 400 ms). The slow Ca2+ buffer EGTA is applied in the patch 
pipette High (5 mM) and low (1 mM) concentrations of EGTA partially blocked 
burst-associated AHPs. 

(C) Membrane current response elucidated after a hyperpolarizing voltage step (from -50 
to -110 mV, 125 ms) and digital isolation of the apamin-sensitive current. High 
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pipette concentrations from either BAPTA (right) or EGTA (left) abolished SK 
current while IT remained unaltered. 

(D) Pooled data showing the number of LT burst discharges in Ctrl high and low 
concentrations of BAPTA and EGTA (left). Histogram showing the amplitudes of 
apamin-sensitive currents recorded under control conditions (Ctrl, n=7) and with 
BAPTA (n=6) and EGTA (n=10)-containing pipettes (right). 

 

 

Afterhyperpolarizations generated by SK channels are permissive for repetitive LT 

burst generation because they help in the recovery of inactivated CaV3 channels. In addition, 

we found that SK channels accelerate LT burst termination because their blockade with 

apamin or intracellular Cs+, or via genetic deletion, reduced IT decay slope by more than two-

fold and led to pronounced, slowly decaying plateau potentials. The IT in nRt cells is mediated 

by CaV3 channels containing CaV 3.3 subunits, which form slowly inactivating isoforms 

(Joksovic et al., 2005; Joksovic et al., 2006) capable of generating plateau potentials 

(Chevalier et al., 2006). Activation of SK channels shuts down these plateau potentials along 

the entire dendrite, and thus helps prevent a slow form of CaV3 channel inactivation. The SK 

channel function has been repeatedly described in the context of terminating plateau 

potentials in neurons (Bond et al., 2005). The coupling between IT and SK currents can go as 

far as to prevent bursting once SK currents activate rapidly enough to antagonize IT spike 

generation (Wolfart and Roeper, 2002). SK channel gating thus appears to be tailored to 

control the functional impact of CaV3 channels according to neuronal discharge 

characteristics. 

Previous studies have addressed some of the ionic mechanisms underlying the time 

course of dampened nRt cell bursting. The generation of a burst AHP that decreases in 

amplitude from one burst to the next, associated with burst fading, is typically reported for 

somatically (Avanzini et al., 1989) and synaptically (Bal and McCormick, 1993) evoked, as 

well as spontaneous (Blethyn et al., 2006) intrinsic oscillations. Small conductance Ca2+-

activated K+ channel currents are widely recognized to be central for the burst AHP, but 

additional currents have been advocated to explain the dampening of neuronal oscillations. 

These include persistent Na+ currents (Avanzini et al., 1989; Mulle et al., 1986), Ca2+-

activated cationic currents that activate due to Ca2+ accumulation (Bal and McCormick, 1993; 

Blethyn et al., 2006), and Na+-activated K+ currents (Blethyn et al., 2006; Kim and 

McCormick, 1998). The biophysical and molecular properties of these secondarily activated 

currents are not known. Our current data now show that many of the events underlying 

dampened nRt activity may be well explained based on the quantitative aspects of CaV3- and 
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SK channel coupling. First, imaging of [Ca2+]i reveals that Ca2+ transients generated by LT 

bursts decay completely during each AHP and do not summate, making activation of slow 

Ca2+-dependent conductances unlikely. Second, inclusion of high concentrations of the rapid 

chelator BAPTA prevents SK channel gating but does not prevent the burst AHP, which is 

thought to be mediated by Ca2+-dependent cationic conductance. Third, we find that SK 

channel gating is rapidly attenuated during oscillations, because Ca2+ transients decay quickly, 

thereby limiting the recovery of inactivated CaV3 channels and the generation of the next LT 

burst. Fourth, strengthening Ca2+ binding to SK channels by 1-EBIO potentiates bursting, and 

retards the transition into the tonic discharge mode, showing that SK channel gating is the 

critical factor limiting LT burst generation. Altogether, we suggest that CaV3- and SK channel 

coupling is the major determinant of the temporal aspects of nRt oscillations. 

Afterhyperpolarizations generated by SK channels are, on the one hand, rate-limiting for 

repetitive LT burst generation. On the other hand, they are also important for accelerating IT 

decay by suppressing IT-dependent plateau potentials, which could, in fact, be due to slow 

inactivation of IT isoforms expressed in nRt cells (Cavelier et al., 2002; Frazier et al., 2001; 

Joksovic et al., 2005) or to the “window” components of the current (Blethyn et al., 2006). 

Activation of SK channels is strong and rapid enough to shut down the plateau potentials, a 

function which is consistent with their role in terminating plateau potentials in a number of 

neurons (Beurrier et al., 1999; Cai et al., 2004). 

 

6.3 The role of SERCA during nRt oscillations 

 

Sarco-Endoplasmic Reticulum Ca2+ ATPase pumps are important elements in the 

homeostatic regulation of [Ca2+]i many cells, including neurons (Verkhratsky, 2005). 

Prolonged blockade of SERCA pumps result in neuronal death (Nguyen et al., 2002) and mice 

lacking SERCA2 die perinatally/postnatally (Prasad et al., 2004). In neurons, SERCA pumps 

have been thought to primarily shape neuronal excitability by ensuring the appropriate filling 

of the ER with Ca2+, which would then become available for CICR (Berridge, 2002). In 

addition to being the most important intracellular source of Ca2+, the ER plays a central role 

as a Ca2+ sink by virtue of its expression of energy-driven ATPases, the SERCAs (Misquitta 

et al., 1999). During the cardiac heartbeat, SERCA pumps are among the mechanisms 

terminating the large turnover of Ca2+ and speeding up the recovery from cardiac 

refractoriness (Szentesi et al., 2004). In marked contrast to the heart, how the uptake of 
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intracellular Ca2+ controls the dynamics of neuronal discharge has been poorly addressed, 

although it is well established that SERCA-mediated sequestration occurrs continuously at 

subthreshold potentials (Garaschuk et al., 1997; Power and Sah, 2005), shapes the waveform 

of cytosolic Ca2+ signals (Fierro et al., 1998; Wanaverbecq et al., 2003) and is accelerated by 

phosphorylation (Usachev et al., 2006). Moreover, SERCA also limit the decay kinetics (< 

100 ms) of dendritic (Markram et al., 1995) and spinous (Majewska et al., 2000) Ca2+ 

transients, pointing to localized and efficient ER protrusions within neuronal processes 

(Pozzo-Miller et al., 2000). 

 

 

 
 

D Figure 2. Hypothetical scheme illustrating the proposed co-localization of CaV3 channels, 
SK2 channels and SERCA pumps 

 
During sleep-related oscillations, such as LT burst oscillations, massive influx of T-type Ca2+ 
selectively and rapidly gates SK2 channels in nRt dendrites, indicating the formation of a 
functional complex between CaV3 and SK2 channels. SERCA pumps selectively sequestrate 
T-type Ca2+ suggesting that they may be co-localized with the CaV3-/SK channel complex but 
not with HVA Ca2+ channels. The rapid sequestration of T-type Ca2+ by SERCA pumps 
restricts the Ca2+ available for SK2 activation. SERCA pumps and SK2 channels compete for 
T-type Ca2+ in nRt dendrites during LT burst oscillations, thus limiting CaV3 channel 
recovery, which underlies the dampening of the oscillations. 
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Ca2+ release from the ER has repeatedly been demonstrated to amplify SK channel 

gating (Cordoba-Rodriguez et al., 1999; Cui et al., 2004; Davies et al., 1996; Morikawa et al., 

2000; Seutin et al., 2000; Yoshizaki et al., 1995). However, CICR does not appear to occur in 

nRt (Richter et al., 2005). The dampening of nRt oscillations, although robustly controlled by 

the dynamics of CaV3- and SK-channel coupling, underlies modulation by SERCA. Neuronal 

SERCA pumps act on a comparatively rapid (< 100 ms) time scale (Markram et al., 1995) and 

have a high affinity for Ca2+ (K1/2 ~0.1-1 µM). This enables the ER to sequestrate and 

accumulate Ca2+ rapidly, very efficiently and in high concentration (100 µM). The properties 

of these pumps thus enable them to act on the time scales of CaV3-/SK-channel coupling, and 

to stand in competition with SK channels for available Ca2+ (Figure D2). In outer hair cells, 

the inhibition of SERCA pumps by CPA prevents the deactivation of Ca2+-activated K+-

conductances, suggesting that Ca2+ sequestration by SERCA pumps competes for Ca2+ with 

SK channels and is necessary to terminate Ca2+-activated K+-conductance (Sridhar et al., 

1997). The competition is supported by our data on the effects of CPA on apamin-sensitive 

currents, on interburst AHP and burst number, and by the modelling results. The role of these 

pumps could thus, on the one hand, involve the limitation of SK channel gating during LT 

bursts, and the promotion of CaV3 channel inactivation. On the other hand, SERCA pumps 

may contribute to shorten the exposure of SK channels to Ca2+ during the AHP, thereby 

limiting CaV3 channel recovery, consistent with a slow tail component in SK currents during 

CPA application. Remarkably, SERCA pumps act specifically on IT-dependent Ca2+ entry, 

suggesting that they may be localized in the vicinity of CaV3- but not HVA Ca2+ channels 

(Figure D2). A preferential localization of SERCA pumps on dendritic ER protrusions could 

underlie its selectivity for T-type Ca2+, whereas SERCA pumps may be lacking or somewhat 

remote in compartments expressing HVA Ca2+ channels (Budde et al., 1998). 
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7 Conclusions and outlook 
 

The past decades have witnessed a major interest in the role of LT bursts in the TC 

system in relation to the control of arousal states (Bezdudnaya et al., 2006; Crunelli et al., 

2006), and to rhythmogenesis (Contreras, 2006; Llinás et al., 2005). In contrast, their potential 

intracellular consequences on cellular functions remained poorly understood. Our work 

addresses the latter issue by revealing that CaV3 channels generate large [Ca2+]i transients 

that, strategically placed with their signalling targets, are importantly implicated in oscillatory 

dynamics.  

Beyond the biophysical and network implications, we hope that the results presented 

here also initiate further work on Ca2+ signalling in relation to TC activities during sleep. In 

this context, we point to the selective sequestration of Ca2+ entering through IT, in particular 

since luminal Ca2+ levels regulate major ER functions in cell physiology, including gene 

transcription and protein synthesis. This makes it conceivable that the T-type Ca2+, once 

introduced in the ER, may adopt yet additional signalling functions pertinent to physiological 

processes controlled by sleep. Furthermore, CaV3 channels are implicated in pathological 

rhythms, such as those found during generalized epilepsies and neurodegenerative disorders 

(Contreras, 2006; Shin et al., 2006). Abnormal Ca2+ load in the ER, and perturbed Ca2+ 

homeostasis (Berridge et al., 2003), may very well be one of the core manifestations in the 

cells afflicted. 

 

This thesis represents an interdisciplinary study, combining sleep-wake behaviour 

monitoring, EEG measurements, electrophysiological recordings, Ca2+ imaging, immuno-

electron microscopy and computational modelling to elaborate a detailed picture of Ca2+ 

signalling through low-voltage activated Ca2+ channels in nRt neurons and its physiological 

relevance. The work provides evidences of several novelties in the signalling role of T-type 

Ca2+. First, in nRt neurons CaV3 channels are selectively coupled to SK channels and form an 

expeditious functional complex. Second, the identification and quantification of T-type-Ca2+ 

in nRt neurons revealed a massive, quick influx and dominance of T-type-Ca2+ in Ca2+ 

signalling in nRt dendrites. Third, the selective coupling of CaV3 channels to SK2 subunit-

containing SK channels underlies the AHP, typical for rhythmic intrinsic burst discharges in 

nRt neurons. Fourth, endoplasmic Ca2+ sequestration modulates oscillatory discharges in the 
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nRt via a competitive interaction of SERCA pumps with SK2 channels for T-type Ca2+ in a 

functionally significant manner. Fifth, transgenic mice lacking the SK2 channel encoding 

gene, exhibit a disruption of nRt oscillations and a marked decrease in EEG frequency bands 

typical for NREMS. Last, the lack of SK2 channels causes destabilized sleep in mice, as they 

wake more often from sleep. 

My work opens novel perspectives on several levels of investigations in relating ion 

channels, [Ca2+]i dynamics, cellular oscillations to the in vivo hallmarks of sleep. Here, I 

would like to give a brief outline of these perspectives, structured clearly from the molecular 

to the cellular to the systems level. 

 

7.1 Gating of SK2 channels by Ca2+ in nRt 

 

Neurons of the nRt participate in diverse forms of oscillations that are guided by both 

intrinsic and synaptic mechanisms (McCormick and Bal, 1997). So far, we concentrated on 

the simplest form of an nRt oscillation, one generated exclusively via intrinsic ion channels. 

However, during natural oscillations, such as sleep spindle waves, both intrinsic (e.g. CaV3 

channels) and synaptic (e.g. NMDAR) Ca2+ sources will control SK2 channel gating. Indeed, 

it has been shown recently that SK2 channels are under the control of Ca2+ entry through 

NMDARs in the hippocampus (Ngo-Anh et al., 2005). Understanding these will be necessary 

to fully appreciate the dramatic consequences of SK2-KO on cellular oscillations. 

 

Question 1: Which CaV3 channels are involved in regulating SK2 channels?  

 

Two CaV3 channel subtypes could be involved in mediating nRt bursts: CaV3.2 and 

CaV3.3 (Talley et al., 1999). To date, it is not been addressed, which of these contribute to 

dendritic Ca2+ signals. I would like to exploit the differential Ni2+ sensitivity (Yunker, 2003), 

the differential redox sensitivity (Todorovic et al., 2001) and the differential neurotransmitter 

sensitivity (e.g. muscarine (Hildebrand et al., 2007)) of CaV3.2 and CaV3.3 to find out which 

Ca2+ channel is responsible for SK2 channel gating. I would also like to use the CaV3.2 KO 

animals that are now available (Joksovic et al., 2006). We have been speculating in the paper 

that it could be CaV3.3 that is responsible. Demonstrating this would be the first proof for an 

important role of CaV 3.3 as a Ca2+ source in the CNS. 
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Question 2: What is the role of HVA channels in gating SK2 channels?  

 

We found that SK2 is mostly expressed in dendrites, yet HVA channels generate almost 

no Ca2+ signal in the dendrites. Nevertheless HVA channels and SK2 channels are coupled. 

How is this possible? One possibility could be that the few SK2 channels expressed on the 

soma are tightly co-localized with HVA channels. This question could be addressed by testing 

the effects of slow and fast Ca2+ buffers on CaV3-/SK2- and HVA/SK2 channel coupling. 

Moreover, we will also need to carry out imaging experiments in the soma of nRt cells. 

 

Question 3: Do NMDARs gate SK2 channels in the nRt?  

 

Neurons of the nRt are typically triggered to burst by excitatory synaptic input (e.g. 

during spindle waves). N-methyl-D-aspartate receptors may activate SK2 channels (Ngo-Anh 

et al., 2005). Moreover, SK2 channels are expressed perisynaptically in nRt (our results). 

Therefore, I would predict that NMDARs activate SK2 channels. I would like to use NMDAR 

subtype pharmacology to test which NMDAR contribute (both synaptic and extrasynaptic). 

This is interesting because nRt seems to express the more “juvenile” NMDAR isoforms 

NR2C and D (Jones et al., 1998), which are more Ca2+-permeable. What is their functional 

role? 

 

Question 4: What is the nature of the competition for T-type Ca2+? 

 

In our paper, we show that SERCA pumps compete with SK2 channel for available 

Ca2+. I would like to better understand this competition. Is it dependent upon cellular 

metabolic status? Is it dependent upon the “filling” status of the ER, i.e. upon intraluminal 

Ca2+ levels? We have done some experiments showing that, if we give repeated depolarizing 

voltage commands to elicit Ca2+ entry through HVA channels, we strengthen CaV3-/SK 

channel interaction. 

 

7.2 Modulation of SK2 channel function in nRt 

 

We have identified in our paper a tripartite functional complex between CaV3 channels, 

SK2 channels and SERCA pumps. It is known from the heart that SERCA pumps are 
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important for removing Ca2+ entering during the systole and for accelerating cardiac recovery. 

SERCA pump activity is tightly regulated in the heart (Misquitta et al., 1999), but almost 

nothing is known about SERCA pump regulation in neurons. Sarco-Endoplasmic Reticulum 

Ca2+ ATPase pump regulation could possibly play a role in setting the strength of nRt 

oscillations. 

 

Question 1: Does other neurotransmitter receptor activity modulate the CaV3-/SK channel 

coupling? 

 

There are a number of candidate neurotransmitter receptors that I would like to test for 

their effects on CaV3-/SK channel coupling. For example, nRt cells express beta2-adrenergic 

receptors (Rainbow et al., 1984), known to act via PKA in highly compartmentalized cAMP 

signalling domains. Do these modulate CaV3-/SK channel coupling?  

 

Question 2: Do nRt neurons show plasticity in SK2 channel expression? 

 

This idea is inspired by our observation of strong cytoplasmic labelling for SK2 

immunoparticles in nRt dendrites, which could be a mechanism to modulate the strength of 

nRt pacemaking during different arousal states. I am currently thinking about using 

corticothalamic afferent stimulation to elicit strong NMDAR activation in nRt cells and then 

monitor SK2 channel function. It is well established that nRt cells are heavily innervated by 

cortical afferents (Pinault, 2004), but whether they induce plastic changes in ion channels 

involved in rhythmogenesis is not known. 

 

7.3 Consequences of SK2-lack on nRt function 

 

In my work, we have focused on intrinsic discharge properties of nRt neurons in the 

absence of SK2. It apperars that the lack of SK2 does not grossly alter ionic cellular 

properties, but prevents cellular oscillations and puts the neurons into some kind of 

depolarization-block after a single burst generation. It is to be expected that this lack of 

oscilloatins and the depolarization-block will alter the dendritic functions of nRt neurons, the 

Ca2+ signals they experience, as well as their interaction in the thalamic network. It would be 

interesting to carry out a more detailed analysis of nRt characteristics in the SK2 KO. 
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Question 1: What do Ca2+ signals in nRt dendrites of SK2 KO mice look like?  

 

Conducting the same Ca2+ imaging experiments as we have done in WT mice, I would 

predict that the Ca2+ signals would be greatly prolonged and strengthened in amplitude. 

 

Question 2: What do Ca2+ signals in the oscillatory network of WT and SK2 KO mice look 

like?  

 

Today methods to image Ca2+ signals in large neuronal populations exist, e.g. by using 

acetoxymethyl ester dyes (Takahashi et al., 2007). I would like to image nRt population 

activity in WT and in SK2 KO nRt and see how it propagates in the network. 

 

Question 3: What is the function of SK2 in generalized epilepsies? 

 

Numerous studies document an important role of nRt in generalized epilepsies 

(abnormally strong burst firing, abnormal expression of IT) (for review see e.g. (Steriade, 

2005)). To my knowledge, nobody has tested the function of SK2 in rodent models of absence 

epilepsy (GAERS, Stargazer, lethargic). 

 

Question 4: Are there compensatory effects due to the lack of SK2 channels? 

 

Potential compensatory effects due to the lack of SK2 channels could be investigated in 

more detail. Are the expression levels of SK1 or SK3, or other hyperpolarizing conductances, 

like HCN channels, altered?  

 

7.4 SK2 channel function in sleep 

 

SK2 channels strongly influence sleep homeostasis. In our work, we found that the lack 

of SK2 abolishes the sleep rebound typical after sleep deprivation, whose hallmark is an 

increase in low-frequency components of slow-wave sleep. To my knowledge, this is the first 

ion channel implicated in sleep homeostasis and it could, therefore, help to assess the 

mechanisms underlying sleep homeostasis. 
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Question 1: Does sleep deprivation affect SK2 function in a measurable manner?  

 

The idea would be to carry out our sleep deprivation procedure (Kopp et al., 2006) and 

combine it then with electrophysiological experiments on SK2 and with measurements of nRt 

cell oscillations . 

 

Question 2: What are the genetic/transcriptional mechanisms of sleep homeostasis?  

 

We mentioned in the paper that it could be interesting to test the involvement of SK2 in 

well-described mouse models with perturbed sleep homeostasis (e.g. NPAS2 KO) (Dudley et 

al., 2003). I would be interested in beginning to generate links between the 

genetic/transcriptional mechanisms involved in sleep homeostasis and their consequences on 

ion channels implicated in rhythmogenesis, such as SK2. 

 

Question 3: Is the decrease in EEG frequency bands typical for NREMS in SK2 KO mice a 

consequence of the disruption of nRt oscillations in vitro? 

 

Although, in vivo, burst discharges in nRt are most prominent during NREMS related 

oscillations, the disruption of nRt oscillations in vitro and the decrease in EEG frequency 

bands typical for NREMS in SK2 KO mice could be a coincidence rather than a consequence. 

Therefore, in order to link these two observations, conditional nRt SK2 KO mice and/or in 

vivo intracellular recordings of nRt neurons in SK2 KO mice could be conductive.  

 

Question 4: What is the effect of SK channel modulators on the generation of sleep related 

oscillations and NREM EEG? 

 

In vivo, intraperitoneal and subcutaneous injections of 1-EBIO, a SK channel modulator 

that increases the Ca2+ affinity, results in an increased seizure threshold and reduces seizure 

incidence in seizure models (Anderson et al., 2006). Moreover, bath application of 1-EBIO 

during patch clamp recordings of nRt neurons, leads to 222 % increase of CaV3-mediated SK 

current. It would therefore be interesting to investigate the effect of an in vivo intrathalamic 

injection of 1-EBIO on the generation of sleep related oscillations and NREM EEG (Walter et 

al., 2006). To further investigate the role of SK channels in the generation of sleep related 
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oscillations and its role in sleep physiology, experiments, similar to those performed during 

my thesis would be interesting to do using mice overexpressing SK2 (Hammond et al., 2006). 
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9 List of abbreviations 
 

[Ca2+]  Ca2+ concentration 

[Ca2+]i  Intracellular Ca2+ concentration  

[Ca2+]L  Intraluminal Ca2+ concentration 

1-EBIO  1-ethyl-2-benzimidazolinone 

ABC  Avidin-biotin peroxidase complex 

AHP  Afterhyperpolarization 

AMPAR  α-Amino-3-hydroxy-5-methyl-4-isoxazol-propion acid receptor 

AMP  Adenosine 5’-monophosphate 

AP  Action potential 

Apa  Apamin 

ATP  Adenosine 5’-triphosphate  

BAPTA  1,2-Bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid 

BDNF  Brain-derived neurotrophic factor 

BK  Large conductance Ca2+-activated K+ channel 

CA  Cornu ammonis 

CaM  Calmodulin 

cAMP  Adenosine 3’,5’-cyclic monophosphate 

CaO  Calc-alkaline 

CASK  Ca2+/CaM-dependent protein serine kinase 

cGMP  Guanosine 3’,5’-cyclic monophosphate 

CICR  Ca2+-induced Ca2+ release 

CNG  Cyclic nucleotide-gated 

CNS  Central nervous system 

CPA  Cyclopiazonic acid 

Ctrl  Control 

DAB  3,3-diaminobenzidine-tetrahydrochloride 

DAG  Diacylglycerol  

EEG  Electroencephalogram 

EGTA  Ethylene glycol Bis(2-aminoethyl ether)- N,N,N′,N′-tetraacetic acid 

EMG  Electromyogram 
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EPSC  Excitatory postsynaptic current 

EPSP  Excitatory postsynaptic potential 

ER  Endoplasmic reticulum 

GABA  γ-amino butyric acid 

GABAR  γ-amino butyric acid receptor 

GAERS  Genetic absence epilepsy rat from Strasbourg 

HCN  Hyperpolarization activated cationic non-selective 

HVA  High-voltage-activated 

IP3  Inositol (1,4,5) trisphosphate  

IP3R  Inositol (1,4,5) trisphosphate receptor 

IPSC  Inhibitory postsynaptic current 

IPSP  Inhibitory postsynaptic potential 

IT  T-type Ca2+ current 

KO  Knock-out 

LT  Low-threshold 

LTD  Long-term depression 

LTP  Long-term potentiation 

LVA  Low-voltage-activated 

mCU  Mitochondrial Ca2+ uniporter 

mEPSP  Miniature excitatory postsynaptic potential 

mGluR   Metabotropic glutamate receptor  

Mibe  Mibefradil 

Mint-1  Munc18-interacting Protein1 

mIPSC  Miniature inhibitory postsynaptic current 

nAChR  Nicotinic acetylcholine receptor 

NCKX  K+-dependent Na+/Ca2+ exchanger 

NCX  Na+/Ca2+ exchanger 

NGS  Normal goat serum 

NMDA  N-methyl-D-aspartate 

NMDAR  N-methyl-D-aspartate receptor 

NPAS2  Neuronal PAS domain protein 2 

NREM  Non-rapid eye movement 

NREMS  Non-rapid eye movement sleep 

nRt  Nucleus reticularis thalami 
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NSF   N-ethylmaleimide-sensitive fusion protein 

PB  Phosphate buffer 

PC  Purkinje cell 

PIP2  Phosphatidylinositol (4,5) bisphosphate  

PKA  Protein kinase A 

PKC  Protein kinase C 

PKG  Protein kinase G 

PLC  Phospholipase C 

PMCA  Plasma membrane Ca2+ ATPase  

REM  Rapid eye movement 

REMS  Rapid eye movement sleep 

RNA  Ribonucleic acid 

RYR  Ryanodine receptor 

SERCA  Sarco-Endoplasmic Reticulum Ca2+ ATPase 

SK  Small conductance Ca2+-activated K+ channel 

SMOC  Spontaneous miniature outward current 

SNAP-25  Synaptosomal protein of 25 kDa 

SNARE  Soluble NSF attachment protein receptor 

SPCA  Secretory-pathway Ca2+ ATPase 

TBS  Tris buffered saline 

TC  Thalamocortical 

TRP  Transient receptor potential 

TTX  Tetrodotoxin 

VGCC  Voltage-gated Ca2+ channel 

WT  Wild-type 

α-BTX  α-bungarotoxin 

ω-CTX MVIIC ω-conotoxin MVIIC 
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