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Abstract 

Multiple sclerosis is a chronic, inflammatory and demyelinating disease of the CNS. 

Although diffuse inflammatory damage as well as progressive axonal injury has been 

shown in the chronic phase of the disease, little is known about the molecular 

mechanisms underlying these pathological processes. In order to identify such 

mechanisms, the gene expression profile in MS normal appearing white matter 

(NAWM), was studied. Furthermore, the presence of such changes in a MS animal 

model was analyzed.  

A differential gene expression analysis on NAWM revealed the upregulation of genes 

involved in anti-inflammatory mechanisms, such as STAT6, and genes involved in 

pro-inflammatory mechanisms, such as STAT4. By immunohistochemistry, a 

predominant expression of the components of the STAT6 signalling pathway in 

oligodendrocytes was demonstrated. These findings suggest an endogenous 

inflammatory activation throughout the whole MS NAWM, in which oligodendrocytes 

actively participate. Whether such changes represent also earliest pathological 

processes in MS or are due to a long, chronic disease course is unknown. Therefore, 

differential gene expression of a biopsy with NAWM taken from a 17 year-old woman 

during her first clinical incident was analyzed. This revealed a strong upregulation of 

neuronal nitric oxide synthase (nNOS) as well as STAT6, and genes involved in 

neuroprotection against oxidative stress. These findings suggest that intrinsic 

inflammatory- as well as neuroprotective mechanism activation are early events in 

MS NAWM, which sustain over time. To study these mechanisms in more detail, a 

gene expression study in an animal model for MS was performed. For this, normal 

appearing white and grey matter of DA rats with recombinant MOG-induced EAE was 

analyzed. However, an induction of immune-modulating or neuroprotective genes 

was not evident in EAE NAWM. Therefore, we conclude that MOG-induced EAE in 

DA rat may not be a suitable model to investigate the immune-modulating or 

neuroprotective mechanisms observed in MS NAWM. In contrast, a comparable 

downregulation of glutamate receptors and genes encoding mitochondrial proteins as 

in MS NAGM was detected in EAE NAGM. 

In summary, gene expression changes characteristic of endogenous inflammatory as 

well as neuroprotective mechanisms were identified in the MS NAWM, whereas 

these mechanisms were not present in an animal model of this disease, leading to 

the conclusion that in MS intrinsic mechanisms may take place, independent of 

acute, autoimmune-mediated inflammation. 
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Introduction 

 

Multiple Sclerosis 

Multiple sclerosis is a chronic inflammatory, demyelinating disease of the CNS. It is 

one of the most common diseases of the CNS in young adulthood. The hallmark of 

this disease is the inflammatory plaque. Despite extensive research, the clinical 

cause of MS is still unknown. 

A major goal of this thesis was to unravel certain molecular aspects of this disease 

with the focus on the normal appearing white matter (NAWM), which is one of the 

most promising tissue to study earliest pathogenic mechanisms possibly leading to or 

protecting from the formation of lesions. 

 

History of Multiple Sclerosis 

There exist several historical reports of people probably suffering from MS. One of 

the first documented cases probably suffering from MS is thought to be the case of 

Saint Lidwina of Schiedam (1380-1433). The Dutch nun developed from the age of 

sixteen until her death at age 53 intermittent pain, weakness of the legs and vision 

loss, which are typical symptoms for MS. There exists also an Icelandic saga about a 

possible early case of multiple sclerosis in which a woman lost sight of both eyes and 

her speech which on the following days recovered again. 

However, the first illustrations and descriptions of clinical details of multiple sclerosis 

were made by Robert Hooper (1773-1835), Robert Carswell (1793-1857) and Jean 

Curveilhier (1791-1873) during the 1830’s (Figure 1). But it was Jean-Martin Charcot 

(1825-1893) who putted previous work and his own clinical and pathological 

observations together and developed the disease concept of MS (Charcot, 1868). 

Later, several subforms of MS were introduced, such as Devic’s type of neuromyelitis 

optica, Marburg’s acute MS and Balo’s concentric sclerosis (Balo, 1928; Devic, 1894; 

Marburg, 1906). 
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In 1863, Eduard Rindfleisch (1836-1908) recognized 

that focal lesions are centred by blood vessels which 

are in a state characteristic of chronic inflammation 

(Rindfleisch, 1863). In contrast to Charcot, for which 

the disease was primarily a glia disorder and only 

secondary due to blood vessel changes, Rindfleisch 

and later Marburg (1906) considered Multiple 

Sclerosis to be an inflammatory demyelinating 

disease (Marburg, 1906; Rindfleisch, 1863). 

Following these first studies on MS, many others 

described in great detail structural changes in MS. In 

1864, Carl Fromann described the occurrence of 

demyelination and astrocytosis (Fromann, 1864). 

Joseph Babinski (1857-1932), showed in 1885 the 

interaction of inflammatory cells, in particular 

macrophages, with demyelinated nerve fibres 

(Babinski, 1885). In his study, Babinski also showed 

axons which are surrounded by thin myelin sheaths 

with short internodes (Babinski, 1885). Later, this 

aspect was discussed by Otto Marburg (1874-1948), 

which also recognized the abundance of axons with 

thin myelin sheaths (Marburg, 1906). It was him who 

first suggested, that these axons might represent 

attempts of remyelination (Marburg, 1906). In 1916, 

James Dawson (1870-1927) published a summary 

of the significant knowledge on MS and also of the 

different ideas about the cause of the disease (Dawson, 1916). 5 years later, del Río 

Hortega discovered the myelin producing cell, which he named oligodendrocyte 

(Hortega, 1921). Then, in 1961, remyelination was first demonstrated by Richard and 

Mary Bunge (Bunge et al., 1961). 18 years later, it has been demonstrated that 

remyelination restores conduction in previously demyelinated lesions (Smith et al., 

1979; Smith et al., 1981). Until now, huge effort has been made to elucidate the 

cause and disease mechanisms of MS. This is reflected by the over 37000 

publications found today on PubMed (A service of the U.S. National Library of 

Figure 1 Drawing of a spinal cord from a MS 
patient by Robert Carswell (1793-1857 
g: patches of the same kind on the spinal 
cord. k: Softening of a portion of the cord. A 
and B represent transverse sections of the 
cord to show that the discoloration 
commences on the surface of the white and 
extends inwards to the grey substande. 
Copied from Carswell, 1938. 
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Medicine that includes over 17 million citations from MEDLINE and other life science 

journals for biomedical articles back to the 1950s) dealing with MS. Nevertheless, 

despite of extensive and detailed analysis of MS tissue pathology, the cause and 

underlying pathogenetic mechanisms are still unknown. 
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The Epidemiology of Multiple Sclerosis 

The distribution of Multiple Sclerosis 

Distribution by gender 

In all representative prevalence studies, prevalence rates are higher for women than 

men. Rates range from 11 to 282 per 100'000 in women compared to 10 to 123 per 

100'000 in men, which corresponds to a female:male ratio between 1.1 and 3.4 

(Pugliatti et al., 2006). The highest ratio was found in North America, whereas the 

lowest reported ratio was found in Israel (Compston, 2006a). The average 

female:male ratio is about two females to one male (2F:1M) (Confavreux, 2006). This 

could be also demonstrated in Switzerland, in which a female:male ratio of 1.8 was 

reported in the Canton of Berne (Beer and Kesselring, 1994) and a ratio of 2.2 in the 

north-western region (Groebke-Lorenz et al., 1992). As additionally, pregnancy has 

an inhibitory effect on the relapse-rate in MS, it is speculated that the hormonal state 

has a great influence on disease mechanisms (Confavreux, 2006). 

Distribution by age 

Despite the problems to determine the 

age of onset in MS, there is a general 

consensus about the peak onset 

around the age of 30 (Figure 2) 

(Confavreux, 2006). There is a high 

variation of the total prevalence by age 

group in different countries (Pugliatti et 

al., 2006). In Switzerland, the 

prevalence for different age groups 

ranges from 5 per 100’000 (0-17 

years) until 230 per 100’000 (35-49 

years). The mean age at clinical onset 

was reported to be at 31.6 years for 

the north-western region (Groebke-

Lorenz et al., 1992). 

 

Figure 2 Distribution of patients by age af onset of the disease, 
among 812 patients with multiple sclerosis. 
Copied from Compston, 2006  
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Figure 3 Worldwide distribution of MS as of 1998 with high (prevalence 30+; solid), medium 
(prevalence 5 ± 29; dotted), and low (prevalence 0 ± 4; dashed) regions defined. Blank areas are 
regions without data. Copied from Kurtzke and Wallin, 2000. 

Geographic distribution 

The prevalence of MS varies in different regions around the world. The total 

estimated prevalence rate for MS is about 83 persons per 100'000. It is highest in 

northern Europe, southern Australia and in the middle part of North America 

(Noseworthy et al., 2000), whereas other regions like most of Australia, southern US 

and parts of South America are areas of medium prevalence (Figure 3). In earlier 

studies, prevalence rates for Europe correlated with geographic latitude. However, 

this latitude gradient seems to disappear as high frequency zones are now also 

found in southern Europe, such as Portugal and Greece (Ascherio and Munger, 

2007; Kurtzke, 2000). Fitting in the gradient of MS prevalence in Europe, prevalence 

rates for Switzerland are between 110 and 164 per 100'000 (Beer and Kesselring, 

1994; Groebke-Lorenz et al., 1992). As the global distribution of prevalence rates 

follow the distribution of Caucasian people, this points to genetic triggers for the 

disease. Nevertheless, regional diversities in prevalence rates further imply the 

involvement of environmental factors in the pathogenesis of MS. 
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Environmental factors 

In a study of European immigrants to South Africa, it was reported that by migration 

from a high risk area into a location of low risk area before the age of 15, the 

prevalence for these immigrants equals the prevalence of the low risk area. In 

contrast, prevalence rate of migrants older than 15 was the same as expected for 

their high-risk homelands (Dean and Kurtzke, 1970; Elian et al., 1990; Kurtzke, 2000; 

Kurtzke et al., 1970). Although in other reports, migrants retain their prevalence rate 

independent of their age (Ebers, 2008), these results further suggested that in MS an 

environmental cause or precipitant may be active. 

 

Infections 

There is evidence that a viral exposure, e.g. measles, mumps and rubella, at a later 

age increases the risk of getting MS (Compston et al., 1986). This effect is even 

higher in individuals infected with EBV (Martyn et al., 1993). In particular, MS risk is 

about 10 times greater among individuals with an EBV infection in childhood and 

about 20 times greater among individuals who developed mononucleosis (Ascherio 

and Munger, 2007). Other examples of causative agents implicated in MS 

pathogenesis are HHV-6 (Challoner et al., 1995), MSRV (Dolei et al., 2002) and 

Chlamydia pneumoniae (Gilden, 1999; Sriram et al., 1999). To date, numerous 

reports claimed the involvement of viruses as MS triggers, but none of these 

observations withstood scrutiny so far (Soldan and Jacobson, 2001; Sospedra and 

Martin, 2005). 

 

Non-infectious environmental events 

There are several reported non-infectious environmental risk factors which may 

contribute to MS pathogenesis. One of the most likely candidate is sunlight exposure 

and linked to this, circulating Vitamin D. But also other factors such as diet, sex 

hormones, cigarette smoking or trauma have been and still are discussed (for review 

see Ascherio and Munger, 2007). 
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Genetic factors 

Susceptibility to MS is not only modified by the environment but also by genetic 

factors. This is supported by studies showing a racial susceptibility to MS (Compston 

et al., 1986). For example, in Aborigines or Maoris, MS is rarely diagnosed, whereas 

it occurs commonly in the Caucasian population (Hammond et al., 1988; Miller et al., 

1990; Skegg et al., 1987). There is a familial recurrence rate of about 15% for MS 

(Compston and Coles, 2002). For monozygotic twins, the recurrence rate is about 

30-35% (Ebers et al., 1986; Ebers et al., 1995; Mumford et al., 1994; Sadovnick et 

al., 1993). Age-adjusted risk for siblings is around 3%, followed by parents (2%) and 

children (2%), which is much higher than general population risk (Figure 4) 

(Compston, 2006b; Compston and Coles, 2002; Sadovnick and Baird, 1988; 

Sadovnick et al., 1988). Despite extensive searches, no major susceptibility gene has 

been identified through full genome screens. Nevertheless, some regions of interests 

have been identified (Compston, 2000). Population studies have suggested a 

candidate gene within the HLA class II, encoded on chromosome 6q21.1 - 21.3, 

exerting an influence on susceptibility of MS (Burton et al., 2007; Compston, 2006b). 

Association of gene polymorphisms with disease course was shown among others 

for APOE (Chapman et al., 2001; Evangelou et al., 1999) or IL-1β receptor and IL-1β 

receptor antagonist genes (Kantarci et al., 2000; Schrijver et al., 1999). More 

recently, an allelic and functional association of the IL-7 receptor alpha chain was 

reported (Gregory et al., 2007). 

 

Figure 4 Recurrence risks for multiple sclerosis in families 
Age adjusted recurrence risks for different relatives of probands with multiple sclerosis. Pooled data from population based 
surveys. Estimated 95% Cis are shown. Copied from Compston and Coles, 2002. 
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Clinical Features of Multiple Sclerosis 

Symptoms of MS 

In MS, symptoms and signs are variable. Generally, they reflect the extent to which 

parts of the CNS, which are fulfilling motor and sensory functions, such as the 

brainstem, cerebellum and spinal cord, are involved. The incidence of initial 

symptoms, although difficult to find out, are approximately as follows (McAlpine, 

1972): 

 

Weakness in one or more limbs 35% 

Optic neuritis    20% 

Paraesthesia    20% 

Diplopia     10% 

Vertigo     5% 

Disturbance of micturition  5% 

Others     5% 

 

Principally, most MS symptoms base on the slowed, or even loss of axonal 

conduction due to demyelination (McDonald and Sears, 1969). In contrast, by 

generating ectopic impulses, demyelinated axons can also lead to positive 

sensations (Baker and Bostock, 1992). A common phenomenon in MS is a dramatic 

exacerbation of symptoms upon heat. E.g. deterioration during sunbathing, during a 

hot shower (Waxman and Geschwind, 1983) or a hot bath, which was used for MS 

diagnosis in the past (Berger and Sheremata, 1982) . Altogether, there exists many 

symptoms or signs of MS (for review see McDonald, 2006). 

 

Disease course 

Generally, the course of MS can be described in terms of relapses, remissions and 

chronic progression either from onset or after a period of remissions (Confavreux, 

2006). For the majority of patients, the usual course of MS is characterized by 

repeated relapses generally associated with the eventual onset of disease 

progression.  
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Generally, the overall disease course was classified in four different categories 

(Confavreux, 2006) (see Figure 5). In relapsing-remitting MS, clearly defined 

relapses with full recovery or with sequelae and residual deficits upon recovery are 

seen. Furthermore, the periods between the disease relapses are characterized by a 

lack of disease progression.  Secondary-progressive MS is defined as MS with 

initial relapsing-remitting disease course followed by progression with or without 

occasional relapses, minor remissions, and plateaus. In primary progressive MS, 

the disease progression starts from onset with occasional plateaus and temporary 

minor improvements allowed. The fourth category is the progressive relapsing MS, 

which is defined as progressive disease from onset, with clear acute relapses, with or 

without full recovery. The periods between relapses are characterized by continuing 

progression. A „fifth“ definition would be transient progressive MS, which sometimes 

is used for few patients with a progressive course except for a single relapse at some 

time (Filippi et al., 1995a; Filippi et al., 1995b; Gayou et al., 1997). Others use this 

term solely for patients with a progressive course devoid of relapses beginning years 

after an isolated episode (Gayou et al., 1997). Again other clinicians allow the single 

attack before or after the onset of the disease (Stevenson and Miller, 1999; 

Stevenson et al., 2000). Although these different MS patterns were defined, one must 

be aware that the course of MS in an individual patient is largely unpredictable. 

 

Figure 5 Classification of the course of 

multiple sclerosis. 

Copied from Confavreux and Compston, 

2006 
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Prognosis in MS 

As the knowledge of prognosis is a major concern for almost every patient, long-term 

studies were performed to identify prognostic informations during the clinical course 

of MS. But, although current prognostic knowledge shows reasonable consistency, 

this is based on statistical analysis of patient populations, and therefore, extensive 

individual variations are encountered. 

As a first association to the clinical outcome of the disease, men were found to 

develop a faster clinical progression (Confavreux et al., 2003; Confavreux et al., 

2000). As others did not found this effect, this led to the conclusion that, the influence 

on gender on prognosis is weak (Confavreux, 2006). Another finding was the 

association of age at onset to disability: the older the age at onset, the shorter the 

time of disability (Broman et al., 1981; Confavreux et al., 2003; Confavreux et al., 

2000; Eriksson et al., 2003; Renoux et al., 2007). Furthermore, presentation with 

optic neuritis is associated with slower disability progression, while onset with a 

spinal cord syndrome, or motor and cerebellar features correlated with a faster 

disability progression (Confavreux et al., 2003; Confavreux et al., 2000; Eriksson et 

al., 2003). The strongest clinical predictor in MS is the initial course of the disease. A 

progressive course from onset is associated with a shorter time to reach disability 

landmarks, if compared with relapsing-remitting MS (Amato and Ponziani, 2000; 

Broman et al., 1981; Confavreux et al., 2003; Confavreux et al., 2000; Kantarci et al., 

1998). 

 

MS variants 

MS is a heterogeneous disease with many different features. Today, five „variants“ of 

MS are defined, although it is not absolutely clear whether these „variants“ might be 

independent diseases or not. The chronic MS, the major variant and issue of this 

dissertation, was defined by Charcot (Charcot, 1868). Another variant is the acute 

MS, which was first described by Marburg (Marburg, 1906). Clinically, acute MS is 

characterized by rapid progression and an exceptionally severe course (Lassmann, 

2006). Another important difference to chronic MS is the additional occurrence of 

peripheral nerve demyelination (Lassmann et al., 1981; Marburg, 1906). In Balo’s 

concentric sclerosis, large demyelinated plaques are found, that show peculiar 

alternating rims of myelin preservation and loss (Balo, 1928). This gives the lesions 
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an appearance of onion bulbs. The major feature of neuromyelitis optica (Devic’s 

disease) is a dominant involvement of the spinal cord and the visual pathway (Devic, 

1894). This subform shows a very severe clinical manifestation and is commonest in 

oriental people (Lassmann, 2006). In diffuse sclerosis (Schilder’s disease), the 

pathology was characterized by primary demyelination that, unlike in chronic MS, 

was not restricted to focal plaques but affected large parts of the periventricular white 

matter (Lassmann, 2006; Schilder, 1912). 
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Pathology and Pathogenesis of Multiple Sclerosis 

Originally, MS has been recognized as a disease of the CNS where an inflammatory 

process is associated with focal plaques of primary demyelination (Charcot, 1868; 

Lassmann, 2006; Lassmann et al., 2007). The most characteristic pathological 

feature of MS is the demyelinated plaque with glial scar formation (see page 34), 

which can be found anywhere where myelin sheaths are present (Lassmann, 2006; 

Lassmann et al., 2007). Currently, MS is still considered to be a CD4+ T helper cell 

type 1 mediated autoimmune disease, most likely targeting myelin (Sospedra and 

Martin, 2005). Whether this inflammation is the primary event in, or just a 

consequence of the disease is still not known. This current concept of MS 

pathogenesis takes issue with immune system mechanisms, which are somewhat 

special in the brain, and therefore, referred to as immune privilege of the CNS. 

 

Immune system and the brain 

The immune system can be roughly divided into the innate and the adaptive part, 

which can regulate each other but are mostly independent. Both can identify harmful 

structures and mount a response to neutralize this threat. However, both have to be 

tightly controlled in order to avoid damage to self tissue. It is speculated, that in MS 

this control fails in the adaptive immune system, leading to the observed autoimmune 

reaction in MS. 

Innate immunity 

The innate immune system forms the first line of defence against pathogens. It’s 

main role is self-protection and maintenance of homeostasis, but can also trigger 

autoimmunity (Sospedra and Martin, 2005). The innate immunity recognizes 

evolutionarily conserved structures that are common to invading pathogens (O'Brien 

et al., 2008), discriminating those from self structures. The recognition of these 

structures is mediated by pattern-recognition receptors such as Toll-like receptors 

(TLRs), which are expressed on cells of the innate system. Responses mediated by 

the innate immune system occur rapidly, and can reach any location of the affected 

organism. The innate immune system is composed of specialized cells such as 
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macrophages, dendritic cells, natural killer cells (NK) and CNS-resident cells such as 

microglia (O'Brien et al., 2008). 

Adaptive immunity 

In contrast to the innate immune system, immune responses of the adaptive immune 

system are highly specific and focussed, and earlier immune responses of the 

adaptive immune system leave an imprint on the immunological memory. This leads 

to a faster and more vigorous immune reaction on pathogens repeatedly entering the 

body. The basis for this specificity and memory capacity of the adaptive immune 

system is the clonal diversity of its immune cells, lymphocytes, which each of which is 

characterized by diverse surface receptors for (ideally) one antigen. Therefore, 

pathogens intruding the body are recognized by specific lymphocytes expressing 

receptors which best fit the antigen. These antigens are presented to the 

lymphocytes by specialized cells, the antigen presenting cells (APC), via the major 

histocompatibility complex (MHC). Subsequently, these lymphocytes are activated, 

multiply and differentiate in order to neutralize the antigen. 

The adaptive system relies mainly on two cell types, the T and B lymphocytes. 

Whereas the main role of B lymphocytes is the generation of antibodies and present 

antigens to T lymphocytes, T lymphocytes are responsible for cell-mediated 

immunity. T lymphocytes themselves can be divided into two main groups, the T 

helper cells (Th), directing and orchestrating immune responses, and the cytotoxic T 

cells (Tc), inducing death of pathogen infected cells. Most commonly these two types 

are distinguished according to their expression of surface markers. Therefore, T 

helper cells are also known as CD4+ cells, whereas cytotoxic T cells are called CD8+ 

cells (Janeway, 1992). 

 

The Th1/Th2/Th17 trichotomy 

The selective activation of CD4+ T helper cell  subsets  is an important step 

determining the immune response to pathogens as well as the pathogenesis of 

allergies and autoimmunity (for review see Rautajoki et al., 2008). Generally, CD4+ T 

helper cells can be divided in functionally different subsets, such as Th1, Th2 and 

Th17 cells. This differentiation is made according to their expression of cytokines, 

which are critical components in immune regulation and signalling, determining the 
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action of different immune cells. Whereas Th1 and the newly discovered Th17 subset 

are associated with autoimmune diseases and the clearing of intracellular pathogens 

(Steinman, 2007; Szabo et al., 2003), the Th2 subset is predominantly linked to 

atopic diseases and allergies (Mowen and Glimcher, 2004). A major pathway 

involved in the differentiation and polarization of T helper cell subsets is the 

JAK/STAT signalling pathway. Members of the signal transduction and activator of 

transcription (STAT) family like STAT1, STAT3, STAT4 and STAT6 are thought to be 

critically involved in the polarization of Th1, Th17 or Th2 cells (Harrington et al., 

2006; Kaplan et al., 1996; Takeda et al., 1996). Whereas STAT1, STAT3 and STAT4 

are involved in Th1 and Th17 cell polarization, Th2 cell polarization depends most 

exclusively on STAT6 (Rautajoki et al., 2008). Both, Th1 cells as well as Th17 cells 

are believed to act in a pro-inflammatory way, releasing pro-inflammatory cytokines 

such as e.g. IL-1, IL-6, IL-12, IL-23 and IFN-γ and therefore promoting autoimmune 

mechanisms. In contrast, Th2 cells are thought act in an anti-inflammatory way  

(Sospedra and Martin, 2005), releasing e.g. IL-4 and IL-10 and by that, limiting 

autoimmune mechanisms. 

 

Cytokines / Chemokines 

Immune systems cytokines are small signalling molecules that orchestrate all phases 

of the immune response (for review see Sospedra and Martin, 2005). Cytokines are 

organised in highly complex, dynamic networks and have in part redundant functions 

due to their signalling through multi-component receptors. Generally, cytokines are 

divided into pro- and anti-inflammatory subsets, according to their effect on the 

immune response. Under normal conditions, a dynamic balance between pro- and 

anti-inflammatory cytokines is established to maintain homeostasis (for review see 

Sospedra and Martin, 2005). Under pathological conditions, cytokine release is 

shifted towards either pro-inflammatory cytokines (e.g. autoimmunity - IL-1, IL-12, IL-

23 and IFN-γ) or anti-inflammatory cytokines (e.g. allergic reactions - IL-4, IL-6 and 

IL-10). 

On the other hand, chemokines are a subset of cytokines with chemoattractant 

properties. Therefore, chemokines and their receptors play a central role in the 

recruitment of leukocytes and other cell types (for review see Sospedra and Martin, 

2005). They can induce and activate leukocyte adhesion molecules and establish a 
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chemotactic concentration gradient resulting in leukocyte recruitment. As cytokines, 

chemokines can be divided into a pro- and anti-inflammatory subset. 

 

The CNS immune privilege 

It has been clearly demonstrated, that destructive T-cell responses are much more 

difficult to be initiated in the CNS parenchyma than in many other non-CNS sites 

(Barker and Billingham, 1977; Perry, 1998). Furthermore, T-cell receptor (TCR) 

transgenic mice in which T cells are predominantly specific for CNS myelin antigens 

do not spontaneously develop T-cell infiltration, demyelinating lesions or clinical signs 

of EAE (Brabb et al., 1997; Brabb et al., 2000). Still, this privilege does not apply to 

all regions of the CNS, as pro-inflammatory T-cell responses are readily triggered 

within the non-parenchymal sites of the CNS (Carson et al., 2006; Perry, 1998). CNS 

immune privilege was believed to base on the immunologically separation of the CNS 

from the peripheral immune system, as well as on an immunologically inert CNS 

(Barker and Billingham, 1977). However, newer studies suggest that CNS immune 

privilege is not equal to immune isolation, but rather a collection of CNS-driven 

mechanisms that actively regulate T-cell responses within the CNS (Carson et al., 

2006). 

In MS, the nature and function of the immune privilege is of high interest, as T-cell 

responses are thought to play a major role in MS pathogenesis. Therefore, major 

cells and structures currently known to be involved in the formation of this immune 

privilege are shortly reviewed hereafter. 

 

The blood-brain-barrier (BBB) 

The BBB is a complex structure which is built by specialized cerebrovascular 

endothelial cells in contact with pericytes and astrocytes (Abbott et al., 2006; 

Balabanov and Dore-Duffy, 1998; Han and Suk, 2005). Primarily, the BBB is used for 

the regulation of nutrient movement into the CNS, potentially toxic molecules out 

from the CNS and limiting the entry uncontrolled blood-borne metabolisms and toxins 

in the brain (Han and Suk, 2005; Ohtsuki, 2004; Zlokovic, 2005). 

In immunological terms, the BBB has been defined to limit leukocyte, in particular 

lymphocyte, migration into the CNS (Carson et al., 2006). This movement regulation 
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may be in part under the control of CNS-resident cell such as astrocytes and 

microglia (Gimenez et al., 2006). 

 

Microglia 

Microglia play a major role in homeostatic and reparative functions, and are the 

earliest sensors of all forms of pathological incursion (Ransohoff, 2007). In 

immunological terms, microglia possess properties of antigen-presenting-cells and 

phagocytes (Jack et al., 2005; Sanders and De Keyser, 2007). Microglia are involved 

in the innate as well as the adaptive immune system and are able to regulate 

inflammation and cell damage (Chew et al., 2006). Being the APC and phagocyte of 

the CNS, microglia are believed to be the primary cell type responsible for brain-

immune system interactions (Jack et al., 2005). However, microglia never seem to 

leave the CNS and thus proinflammatory T cell responses are less likely activated 

(Carson et al., 2006; Carson et al., 1999). Thus, microglia are more likely to play a 

role in modifying or directing T-cell function rather than in antigen-specific recruitment 

of lymphocytes into the CNS (Greter et al., 2005). The expression of molecules 

inhibiting T-cell proliferation and decreasing MHC expression, microglia appear to be 

specialized to promote a short self-limiting T cell response in the brain (Carson et al., 

2006). 

Astrocytes 

The main task of astrocytes in the CNS is the maintenance of physiological 

homeostasis of neurons (Gimsa et al., 2004). In CNS-immune system interactions 

the main role of astrocytes seem to be the limitation of T-cell responses, as they were 

shown to induce T cell apoptosis (Bechmann et al., 2002). Furthermore, astrocytes 

may play an anti-inflammatory role during T-cell mediated neuroinflammation (Gimsa 

et al., 2004), further limiting detrimental, pro-inflammatory T-cell responses. 

Nevertheless, astrocytes can also act as APCs. Astrocytes were shown to express 

MHC class I as well as MHC class II molecules (Hamo et al., 2007; Hoftberger et al., 

2004) and therefore capable of activating T lymphocytes. 
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Neurons 

Indirectly, neurons are also involved in the formation of the immune privilege. It has 

been shown, that microglial MHC expression is regulated by neuronal activity 

(Neumann, 2001; Reinke and Fabry, 2006). Furthermore, it is speculated whether 

neurons are trying to promote their survival by triggering increased neuroprotective 

APC function in microglia (Carson et al., 2006). Whether neurons are able to express 

MHC class I molecules under normal conditions remains controversial, as some have 

shown an MHC class I expression by neurons (Huh et al., 2000; Lidman et al., 1999; 

Redwine et al., 2001) whereas others have not (Fujimaki et al., 1996; Lampson, 

1995). 

Oligodendrocytes 

Oligodendrocytes are the cells of the CNS forming myelin, a unit of membranes 

wrapped around axons allowing fast saltatory conduction. Recently, research has 

begun to elucidate the extent that oligodendrocytes actively regulate immune 

responses. Although a direct modification of immune responses by oligodendrocytes 

could not be demonstrated yet, oligodendrocytes were reported to express several 

molecules capable of influencing immune responses (Balabanov et al., 2007; 

Cannella and Raine, 2004; Christians et al., 2002; Stahnke et al., 2007; Zeis et al., 

2008). As in MS, oligodendrocytes are the main target of the immune response, the 

question whether oligodendrocytes are capable of modifying immune responses is of 

high significance. 



General Introduction 

Page 27 

The MS lesion 

The pathological hallmark of MS is the demyelinated plaque with preserved axons 

and astrocytic scar formation. The characterization of these lesions is based on the 

state of demyelination, the nature and appearance of inflammatory infiltrates, their 

state and the presence or absence of antibodies. By these features, several distinct 

lesion types were defined (for review see Lassmann, 2006). 

The basic feature of plaques in chronic MS consists of a sharply demarcated area 

with a diameter of <1mm to several centimetres (Lassmann, 2006). These plaques 

are generally centred around small blood vessels (Rindfleisch, 1863). 

Microscopically, myelin sheaths are lost whereas axons are relatively spared and 

embedded in astroglial scar tissue (Lassmann, 2006). Depending on the type of 

lesions, inflammatory infiltrates, mainly composed of mononuclear cells, are present. 

 

Actively demyelinating lesions 

A characteristic of actively demyelinating lesions is the presence of myelin sheaths in 

the process of dissolution (Figure 6). Additionally, degradation products of myelin are 

found within macrophages (Bruck et al., 1995; Gay et al., 1997; Lassmann, 2006). In 

acute plaques, demyelination occurs simultaneously in the whole lesion whereas in 

chronic active plaques (a late form of actively demyelinating lesions), a zone of active 

demyelination surrounds the already demyelinated centre of the plaque (Lassmann, 

2006).  

Inactive demyelinated lesions 

Inactive demyelinated lesions are characterized by an absence of ongoing 

destruction of myelin sheaths. Nevertheless, there can still be some inflammation  

with activated macrophages (Bruck et al., 1995). In early stages, inactive plaques 

can still be infiltrated by lymphocytes and macrophages and thus be hypercellular. In 

contrast, late inactive plaques are characterized by the presence of only few 

lymphocytes and macrophages. Furthermore, a dense astrocytic scar has been 

formed, embedding remaining demyelinated axons (Lassmann, 2006). 
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Figure 6 Lesional activity in multiple sclerosis. (A) Acute multiple sclerosis plaque; immunocytochemistry shows numerous 
macrophages stained with macrophage activation marker MRP14; 80x. (B) Acute multiple sclerosis; luxol fast blue myelin stain; 
early lesion stage infiltrated by numerous macrophages containing luxol fast blue-positive degradation products (arrow); in 
between are preserved myelinated fibres (arrowhead); 500x (C) Chronic multiple sclerosis, luxol fast blue myelin stain showing 
radially expanding lesion; numerous macrophages with luxol fast blue-positive myelin degradation products in the demyelinated 
area; 80x (D) Chronic multiple sclerosis: in situ hybridization for proteolipid protein mRNA (black) and immunocytochemistry for 
proteolipid protein (red). Edge of a radially expanding lesion showing destruction of proteolipid protein-positive myelin sheaths 
(red) and proteolipid protein taken up by macrophages (small red granules). Oligodendrocytes with proteolipid protein mRNA 
(black cells) are reduced at the plaque margin. 300x 
Copied from Lassmann, 2006 
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Shadow plaques 

Immunocytochemical as well as ultrastructural 

data strongly suggest that a complete 

remyelination of a previously demyelinated 

plaque leads to the formation of the so-called 

shadow plaque (Figure 7). During 

remyelination only thin myelin sheaths are 

formed, which leads to a decreased density of 

myelin staining (Lassmann, 1983; Lassmann, 

2006).  

 

Destructive lesions 

Another lesion type are the so-called 

destructive lesions. These lesions are 

characterized by an extensive additional tissue 

destruction affecting astrocytes and axons as 

well, sometimes giving rise to cystic brain 

lesions (Lassmann, 2006). Destructive lesions are responsible for very severe and 

rapid progressing acute and chronic MS (Miller et al., 1991; Sugano et al., 1992). 

 

Figure 7 Remyelination in multiple sclerosis 
Chronic multiple sclerosis: luxol fast blue myelin 
stain; multiple lesions in the white matter; some 
lesions are completely demyelinated (thick arrows), 
whereas others are shadow plaques (thin arrows) 
Copied from Lassmann, 2006 
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Heterogeneity of active demyelinating lesions 

Recent studies of active demyelinating lesions, have shown interindividual 

differences in the patterns of oligodendrocyte pathology and myelin destruction, 

which might possibly reflect different pathogenesis (Figure 8, Lucchinetti et al., 2000). 

Whether in a single patient, the pattern of demyelination and oligodendrocyte injury 

are homogeneous or not is currently under heavy discussion (Barnett and Prineas, 

2004; Breij et al., 2008; Lucchinetti et al., 1999; Lucchinetti et al., 2000; Lucchinetti et 

al., 2004; Raine, 2008).  

 

Pattern I – Macrophage mediated lesion formation 

In active demyelinating lesions showing a pattern I, active demyelination is 

associated with a T-lymphocyte and macrophage-dominated inflammation. 

Macrophages and microglia are found in close contact with degenerating myelin. This 

pattern shows a relative axonal as well as oligodendrocyte sparing. Furthermore, a 

reappearance of oligodendrocytes is frequent and often an extensive remyelination 

can be seen. As a putative mechanism, demyelination induced by macrophage or 

cytotoxic T-cell toxins is suggested (Lassmann, 2006; Lucchinetti et al., 2000). 

 

Figure 8 Summary of pathogenetic mechanisms involved in 
the formation of multiple sclerosis lesions. 
Inflammation:  evidence indicates that T helper 1 (Th1) cells 
have a role in inducing inflammatory reactions in the central 
nervous system. In addition, however, T helper 2 (Th2) cells 
and cytotoxic, class-I restricted cytotoxic T cells (Tc1) might 
modify the outcome of the lesions. Demyelination: myelin 
sheaths and oligodendrocytes (OG) can be destroyed, 
possibly by different mechanisms in different individuals. This 
results in distinctly different patterns of demyelination in active 
lesions. Demyelination may be induced by macrophages (M) 
and/or their toxic products (resulting in pattern I), by specific 
demyelinating antibodies and complement (C, resulting in 
pattern II), by degenerative changes in distal processes, in 
particular those of periaxonal oligodendrocytes (distal 
oligodendrogliopathy), followed by apoptosis (resulting in 
pattern III) or by a primary degeneration of oligodendrocytes 
followed by myelin destruction (resulting in pattern IV). 
Axonal injury: axonal injury follows acute destruction of myelin 
sheaths. In the active phase of demyelination, axonal injury is 
likely to be induced by macrophage toxins or by the direct 
effects of cytotoxic T cells. The chronic axonal injury 
observed inactive plaques may be caused by a lack of trophic 
support by glial cells, such as oligodendrocytes, but could 
also involve inflammatory mediators, produced by 
macrophages, that persist in most active chronic lesions. 
Copied from Lassmann et al., 2001 
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Pattern II – Antibody mediated lesion formation 

In contrast to pattern I lesions, in pattern II lesions a deposition of Immunoglobulins 

and complement C9neo antigen at sites of active myelin destruction can be detected. 

This is exclusively found in pattern II lesions whereas oligodendrocyte and axon 

pathology is similar as in pattern I. Therefore, it is suggested that beside of a T-cell 

mediated inflammation with macrophage and microglia activation, complement 

mediated lysis of antibody-targeted myelin is occurring (Lassmann, 2006; Lucchinetti 

et al., 2000). 

 

Pattern III – Distal oligodendrogliopathy 

The hallmark of pattern III lesions is the selective loss of MAG and CNPase in early 

stages of plaque formation. These changes are associated with alterations in the 

most distal processes of oligodendrocytes, later followed by oligodendrocyte 

apoptosis and demyelination (Lassmann, 2006; Lucchinetti et al., 2000). In contrast 

to pattern I and II lesions, edges of pattern III lesions are ill-defined and lesions are 

not necessarily centred on small vessels (Lassmann, 2006). Pattern III lesions are 

thought to be formed by a T-cell-mediated small vessel vasculitis with secondary 

ischemic damage of the white matter (Lassmann et al., 2001). 

 

Pattern IV – Primary oligodendrocyte damage with secondary demyelination 

In addition to pattern I and II lesions, pattern IV lesions show a prominent 

oligodendrocyte degeneration in a small rim of periplaque white matter (Lucchinetti et 

al., 2000) followed by an inflammatory infiltration of the tissue. Pattern IV lesions are 

a rather uncommon MS lesion type (<2% of lesions analyzed by Lucchinetti et al., 

2000). Whether this lesion type is formed due to a genetic defect or not remains to be 

determined. 
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Cellular composition of MS lesions 

MS is a disease most probably driven by inflammation. Whether this inflammation is 

due to immune-mediated processes or is a secondary consequence of tissue injury is 

currently still not known. Mediated by cells of the adaptive immune system, such as T 

and B lymphocytes, MS inflammation is thus reflected by their presence within 

lesions. In addition, cells of the innate immune system such as macrophages as well 

as microglia and astrocytes are activated and recruited. Most recently, an 

involvement of oligodendrocytes in these inflammatory mechanisms is discussed. 

 

T lymphocytes 

In MS lesions, CD4+ (T helper cells) as well as CD8+ (cytotoxic/suppressor T cells) T 

lymphocytes are present. Together, these T cells represent the majority of infiltrating 

lymphocytes (Nyland et al., 1982). Currently, it is not clear whether CD4+ cells are 

the dominant T cell population in lesions or CD8+ T cells. Some studies report a 

domination of CD4+ T cells (Traugott et al., 1983a; Traugott et al., 1983b) whereas 

others show a domination of CD8+ T cells (Booss et al., 1983). In most recent 

studies, an equal number of CD4+ and CD8+ T cells is reported (Babbe et al., 2000; 

Gay et al., 1997). Both, CD4+ as well as CD8+ T lymphocytes have been shown to 

be clonally expanded (Babbe et al., 2000), suggesting an activation by the 

recognition of their specific antigen (Babbe et al., 2000; Wekerle, 2006). 

Whereas the immune response of CD4+ T cells is MHC class II restricted, CD8+ T 

cells respond to MHC class I presented peptides. MHCII expression is restricted to 

professional antigen presenting cells such as microglia/macrophages and dendritic 

cells (Becher et al., 2000; Greter et al., 2005). In the case of CD4+ T cells, three 

subpopulations have been identified to date. Studies in EAE suggest that CD4+ T 

cells of the Th1 and Th17 lineage play a major role in disease pathology (Gutcher et 

al., 2006; Langrish et al., 2005; Langrish et al., 2004; Lassmann and Ransohoff, 

2004; Sospedra and Martin, 2005; Weaver et al., 2006). These two lineages are 

thought to be pro-inflammatory, secreting cytokines like IFN-γ (Th1), IL-17A, IL-17F 

and IL-22 (Iwakura and Ishigame, 2006; Kreymborg et al., 2007; McGeachy et al., 

2007).  In contrast,  CD4+ T cells of the Th2 type, are thought to be mostly beneficial 



General Introduction 

Page 33 

and have been associated with remission and recovery from disease (Cannella and 

Raine, 2004; Sospedra and Martin, 2005). 

By the interaction of the CD8+ T cell receptor together with the MHC class I peptide 

complex, CD8+ T cells are activated and are directly cytotoxic to cells presenting 

their specific antigen (Parkin and Cohen, 2001). In EAE, an involvement of CD8+ 

cytotoxic T lymphocytes in autoimmune demyelination was shown (Huseby et al., 

2001; Sun et al., 2001). Except for microglia, no resident CNS cells express MHC 

class II, but an expression of MHC class I is common (Sospedra and Martin, 2005). 

Therefore, a major involvement of CD8+ T cells is suggested. 

Altogether, both CD4+ and CD8+ T cell responses seem to contribute to MS 

pathogenesis, although probably at different steps and with different roles (Sospedra 

and Martin, 2005). 

 

B lymphocytes 

Beside T lymphocytes, B lymphocytes are found to be present within plaques 

(Prineas and Wright, 1978). Furthermore, the presence of oligoclonal bands suggests 

an involvement of B cells in MS pathogenesis. The clonal expansion of B cell 

populations in lesions has been shown (Gilden et al., 2001), suggesting their 

activation. It has also been shown that immunoglobulin-containing cells were 

significantly more numerous in plaques than in non plaques and in recent plaques as 

compared with old plaques (Esiri, 1977). 

 

Macrophages / Microglia 

Macrophages are a type of phagocytes, which continuously migrate through tissues 

with the primary task to phagocyte and destroy pathogens. Microglia are a 

heterogeneous population of CNS-specific macrophages that play an important part 

in maintaining CNS immune privilege (Carson et al., 2006). Within MS lesions, the 

majority of hematopoietic cells are monocytes and macrophages (Adams and 

Poston, 1990; Adams et al., 1989). An involvement of macrophages was shown by 

the presence of myelin degradation products in macrophages (Bruck et al., 1994). 

Furthermore, macrophages and microglia were shown to express activation markers, 

e.g. Ki-M1P (Bruck et al., 1995; Ozawa et al., 1994), suggesting their phagocytic 
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activation. In MS lesions, macrophages and microglia were further shown to express 

a variety of molecules required for propagation and regulation of the inflammatory 

response (Wekerle, 2006). These include cytokines and their receptors (Bonetti and 

Raine, 1997; Ramanathan et al., 2001; Woodroofe and Cuzner, 1993), MHC 

antigens (Esiri and Reading, 1987), adhesion molecules (Peterson et al., 2002) and 

others. This suggests a major involvement of microglia and/or macrophages in lesion 

formation. In EAE, a correlation between disease severity and macrophage infiltration 

was found, further suggesting a major role for macrophages in lesion pathogenesis 

(Berger et al., 1997). 

 

Astrocytes and the glial scar 

Under normal circumstances, astrocytes 

are dynamic cells capable of 

communicating with neurons and other 

glial cells. They are involved in synaptic 

functioning, physical structuring of the 

brain, its metabolism as well as 

responding to pathological insults 

(Williams et al., 2007). Upon such 

insults, astrocytes are activated resulting 

in a process called astrogliosis (Williams 

et al., 2007). In MS, a described feature 

of lesions is the proliferation and 

hypertrophy of astrocytes. Their abnormality in MS lesions even led to the hypothesis 

that MS was a primary disease of astrocytes (Müller, 1904). Astrocytes were also 

reported to express cytokines such as TNF-α and LT-α, which might point to an 

involvement of astrocytes in lesion formation (Zeis and Schaeren-Wiemers, 2008). In 

the majority of chronic MS lesions, activated astrocytes form the so-called astrocytic 

(or glial) scar (Figure 9, Anton, 1912; Jakob, 1915; Williams et al., 2007). This 

astrocytic scar is characterized by a fibrillary network of astrocytic processes 

containing high amounts of GFAP, embedding remained axons (Williams et al., 

2007). This scarring is known to produce an inhibitory environment which can impede 

tissue repair (Holley et al., 2003). In particular, migration of oligodendrocyte 

Figure 9 Astrocytic scar in multiple sclerosis 
Anti-GFAP stained fibrillary network forming the astrocytic 
scar in a chronic lesion. (100x) Kindly provided by 
U.Graumann. 
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progenitors, remyelination and axonal regeneration was shown to be prevented by 

the astrocytic scar (Faissner, 1997; Rosen et al., 1989). 

Oligodendrocytes 

Oligodendrocytes are the cells of the 

CNS forming myelin, a unit of 

membranes wrapped around axons 

allowing fast saltatory conduction 

(Figure 10). In contrast to the Schwann 

cells from the PNS, Oligodendrocytes 

can maintain up to 50 internodes of 

myelin simultaneously. Due to the fact 

that oligodendrocytes are highly 

specialized and have a high metabolic 

demand maintaining many myelin 

sheaths, oligodendrocytes are one of 

the most vulnerable cells in the CNS (Merrill and Scolding, 1999; Zeis and Schaeren-

Wiemers, 2008). In MS, myelin appears to be the primary target of the inflammatory 

reaction. It appears that a T-cell mediated immune reaction against myelin antigens 

is responsible for the induction of inflammation in MS (Wekerle, 2006). Therefore, the 

myelin producing oligodendrocytes are the major target cell of the immune reaction in 

MS. Although oligodendrocyte loss is evident during the chronic disease process, 

recent studies have shown that oligodendrocytes may successfully protect 

themselves. In particular, this has been shown during the pathogenesis of Balo’s 

concentric sclerosis (see page 19, Stadelmann et al., 2005). Furthermore, 

oligodendrocytes have been shown to be capable of expressing a variety of 

protective molecules (Balabanov et al., 2007; Christians et al., 2002; Stahnke et al., 

2007), and have been suggested to have potential immune-modulating capacities 

(Balabanov et al., 2007; Cannella and Raine, 2004; Christians et al., 2002; Stahnke 

et al., 2007; Zeis et al., 2008). This suggests a view of oligodendrocytes being at 

least capable to defend themselves, or even being a part of the immune privilege of 

the brain (Zeis and Schaeren-Wiemers, 2008). 

 

 

Figure 10 Oligodendrocyte in culture 
Oligodendrocyte in culture stained by MBP. Note the many 
processes extending to attach to and myelinate axons. 
(500x). Kindly provided by N.Schaeren-Wiemers 
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The „normal“ white matter in MS 

In MS, lesions form predominantly in white matter regions. The reason why lesions 

form in some parts of the white matter, whereas other parts are spared is still 

unknown. The  knowledge of mechanisms present in the MS white matter facilitating 

or preventing lesion formation would be highly relevant. Studies of the white matter in 

MS have revealed accumulating evidences that the white matter in MS is far from 

being normal. MRI and spectroscopy studies have revealed diffuse abnormalities 

within the white matter, and therefore called normal appearing white matter (NAWM) 

of MS patients. Among others, blood-brain-barrier changes, axonal injury and to 

some extent astro- and microgliosis has been reported to be present in MS NAWM 

(Aboul-Enein et al., 2003; Fu et al., 1998; Silver et al., 2001). Furthermore, recent 

MRI studies describe profound alterations in NAWM in whom focal lesion load is 

small and cannot account for the extent of diffuse changes (Bozzali et al., 2002; 

Filippi et al., 2003). Microscopically, a mild inflammatory reaction, reflected by some 

microglia activation, astrocytes scarring as well as increased expression of proteolytic 

enzymes within astrocytes and microglia has been shown (Allen et al., 1981; Allen 

and McKeown, 1979; Allen et al., 2001; McKeown and Allen, 1978). An inflammatory 

reaction is further supported by the finding of diffuse inflammatory damage spreading 

throughout the whole brain in the chronic phase of the disease associated with slow 

progressive axonal injury at sites without obvious inflammation (Kutzelnigg et al., 

2005). Furthermore, a study from our lab revealed an upregulation of a number of 

functionally related genes involved in oxidative stress, homeostasis and endogenous 

neuroprotection (Graumann et al., 2003). In particular, hypoxia inducible factor 1α 

(HIF-1α) and some of its targets genes such as e.g. vascular endothelial growth 

factor 1 (VEGFR1) were shown to be upregulated in most MS cases, possibly 

reflecting an adaptation of cells of the NAWM to the pathophysiology of MS. 

Although, changes in NAWM are present, this tissue reflects a promising possibility to 

detect MS specific, pre-lesional changes, which are to some extent independent from 

possible, secondary induced changes due to the strong inflammatory reaction. 
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Axonal pathology 

Although MS seems to be a primary demyelinating disease, acute axonal pathology 

is seen in active demyelinating lesions, and axonal density is reduced in most chronic 

MS plaques (Ferguson et al., 1997; Trapp et al., 1998; Zeis and Schaeren-Wiemers, 

2008). Generally, active destruction of axons is higher in actively demyelinating 

lesions and acute multiple sclerosis than in chronic plaques (Barnes et al., 1991). 

Loss of axonal profiles in established lesions up to 60-70% has been observed 

(Bjartmar et al., 2000; Bjartmar et al., 2001; Bjartmar and Trapp, 2001). Axonal loss 

is not restricted to demyelinated plaques but is also found in remote tract systems 

(Bjartmar et al., 2001; Ganter et al., 1999; Lovas et al., 2000). Furthermore, similar 

spinal cord atrophy was shown in areas with demyelinating plaques and areas 

without lesions (Evangelou et al., 2005). Furthermore, a correlation of tract 

degeneration in the corpus callosum and the degree of axonal damage in adjacent 

plaques of the white matter was demonstrated (Evangelou et al., 2000). This 

suggests that secondary Wallerian degeneration is an important feature of MS.  

Acute axonal injury is apparent in actively demyelinating lesions of acute MS as well 

as in active plaques of chronic MS (Bitsch et al., 2000; Marburg, 1906; Trapp et al., 

1998). This damage consists of axonal transsection, axonal interruption, swelling with 

formation of spheroids and regenerative sprouting (Trapp et al., 1998). It was shown 

that axons are damaged during the process of acute demyelination and shortly after 

it (Ferguson et al., 1997; Kornek et al., 2000). Therefore, it is widely accepted that 

the active inflammatory process also affects axons (Kornek and Lassmann, 1999). 

As oligodendrocytes secrete neurotrophic factors important for neuronal survival, an 

oligodendrocyte loss might additionally contribute directly to axonal injury and 

degeneration (Meyer-Franke et al., 1995). Although inflammation is quiescent in 

completely demyelinated lesions, a process of slow axonal injury was demonstrated 

in such lesions (Kornek et al., 2000). This slow axonal injury might be functionally 

significant during the long disease duration of MS (Lassmann, 2006). It has been 

suggested, that this chronic axonopathy is not due directly to inflammation, but 

results from loss of trophic support normally provided to axons by myelin or glia, 

acting directly or through the maintenance of electrical activity, or both (Barres and 

Raff, 1993; Wilkins et al., 2001). In a study of acute axonal injury in relation to 

disease duration, it was suggested that axonal injury might be most extensive at 
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early stages of the disease, decreasing over time (Kuhlmann et al., 2002). Another 

interpretation of this study suggested that the extent of axonal injury reflects the 

severity of the disease rather than the stage or duration (Lassmann, 2006). To a 

lower incidence, axonal injury and loss was also demonstrated to be present in the 

PPWM, white matter directly adjacent to a lesion, and NAWM (Evangelou et al., 

2000a; Evangelou et al., 2000b; Ferguson et al., 1997; Kornek et al., 2000). This 

overall, chronic axonal degeneration might slowly increase the clinical deficit, 

decaying a compromised but functioning pathway and leading to disease progression 

(Figure 11, Compston and Coles, 2002). 

 

 

 

Figure 11 The course of MS correlated with axonal pathology 

Inflammatory axonal conduction blocks (Yellow bars) during earlier stages, as well as chronic axonal degeneration (purple area) 

accumulating over lead to clinical symptoms of MS (dashed line). Copied from Compston and Coles, 2002. 

 

 

Grey matter pathology 

Although being most obvious in the white matter, lesions are also found in all grey 

matter areas of the CNS of MS patients (Brownell and Hughes, 1962; Sander, 1898). 

As in the white matter, myelin remains the principal target in grey matter plaques. 

Three different types of grey matter lesions have been defined: intracortical-, cortico-

subcortical- and surface-oriented band-like cortical- lesions (Bo et al., 2003; Kidd et 

al., 1999; Peterson et al., 2001). Whereas the first two develop, as white matter 

lesions around small veins and ventricles (Lassmann, 2006), the third type is 

characterized by demyelination of the outer 3-5 layers of the cortex (Figure 12) 

(Lassmann, 2006; Peterson et al., 2001). This results in band-like lesions spanning 

millimetres to centimetres of the cortical surface (Peterson et al., 2001). Although to a 
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certain degree similar to white matter lesions, grey matter lesions show a limited 

inflammatory reaction and BBB damage. 
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Figure 12 Types of cortical demyelination 
In control cases MOG immunoreactivity could be 
detected in all cortical layers including the molecular 
layer (A). In most MS cases, surface-oriented bandlike 
cortical lesions (subpial lesions) were detected 
(B,C).Intracortical demyelination lesions (C) were less 
frequent. 
Kindly provided by J.Kinter. 
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Origin or cause of MS 

As the cause of MS is still not known, speculations and hypotheses were developed 

and published. Most serious hypotheses were developed by the study of animal 

models mimicking certain aspect of the disease. Other speculations evolved by 

correlating prevalence of MS with other factors, such as e.g. the usage of amalgam 

fillings. However, except for the two below presented hypotheses, no other 

hypotheses are really considered by the majority of the scientific community. 

 

MS as an autoimmune disease 

Currently, the autoimmune hypothesis is the most generally accepted among MS 

researchers. This view is based on the cellular composition of brain and CSF 

infiltrating cells as well as data from EAE, one of the major MS animal model 

(Sospedra and Martin, 2005; Zamvil and Steinman, 1990). In this concept, MS is a 

CD4+ T helper cell type 1 mediated autoimmune disease (Hafler, 2004; Martin et al., 

1992). This then leads to a secondary activation of macrophages and microglia. 

Supporting this view, several self antigens correlated with MS have been identified, 

such as MBP, PLP and MOG (Schmidt et al., 1997; Steinman, 1996). In the EAE 

model, injection of these and other myelin components into susceptible animals leads 

to a CD4+ mediated autoimmune disease, sharing similarities with MS (Martin et al., 

1992; Zamvil and Steinman, 1990). Furthermore, the disease can be adoptively 

transferred by encephalitogenic CD4+ T cells into naive animals (Martin et al., 1992; 

Pettinelli and McFarlin, 1981; Zamvil and Steinman, 1990). A major role of CD4+ T 

cells in MS is further supported by the fact that HLA class II molecules represent the 

strongest genetic risk factor for MS (Sospedra and Martin, 2005). Nevertheless, the 

presence of autoreactive T cells does not fully explain autoimmunity in MS, as these 

cells were also found in healthy individuals (Steinman et al., 1995; Wucherpfennig et 

al., 1994). 

It is suggested that autoimmunity in MS is triggered by superantigens or molecular 

mimicry (Marrack and Kappler, 1994; Wucherpfennig and Strominger, 1995a). 

Superantigens might unspecifically stimulate T cells leading to an autoimmune 

reaction. It has been shown that such antigens can induce relapses and/or stimulate 

MBP-specific T cells (Brocke et al., 1993). Alternatively, structural similarities of 

epitopes from pathogens and epitopes of human tissues lead to the activation of 
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autoaggressive T cells resulting in their migration into the CNS (Brocke et al., 1993). 

As viruses such as measles, influenza viruses and adenoviruses have homologies 

with MBP, this implicated their involvement in MS pathogenesis (Wucherpfennig and 

Strominger, 1995). Nevertheless, none of these hypothesis were confirmed 

convincingly. 

 

MS as a virus-induced disease 

The involvement of a virus in the pathogenesis of MS is debated since 1884 (Marie, 

1884). Viral infections are logical candidates as triggers of MS, as it was shown that 

the prevalence rate depend to some extent on environmental factors. Furthermore, it 

has been shown that MS relapses often follow viral infections (Sibley et al., 1985). 

The phenomenon of „MS epidemics“ as e.g. the one on the Faroe Islands further 

points to an infectious agent (Kurtzke et al., 1982; Kurtzke and Hyllested, 1975; 

Sospedra and Martin, 2005). Another evidence for infectious triggers origins from 

EAE of transgenic mice expressing a TCR specific for an encephalitogenic peptide of 

MBP. If housed under nonpathogen-free conditions, almost 100% of these mice 

develop EAE whereas if housed under pathogen-free conditions no disease occurred 

(Goverman et al., 1993). Furthermore, the TMEV animal model is an example of a 

virus-induced demyelinating disease and also used as a model for MS (Sospedra 

and Martin, 2005). In this context, the predominant presence of CD8+ T-cells in MS 

plaques is suggestive of a viral infection, as activation of CD8+ T-cells is mediated by 

MHC class I molecules normally responsible for viral antigen presentation (Morrison 

et al., 1986). 

Viruses that are pathogenic in humans, such as HHV-6 and EBV, are suitable 

candidates and have been widely studied in MS (Sospedra and Martin, 2005). The 

detection of HHV-6 in oligodendrocytes in MS plaque tissue suggested a role of 

HHV-6 in MS (Challoner et al., 1995). Nevertheless, HHV-6 was also found in 

oligodendrocytes of normal brains. Furthermore, HHV-6 DNA and HHV-6 IgG and 

IgM antibodies were found in serum and CSF of MS patients, which data are, 

however, controversial (Sospedra and Martin, 2005). A linkage of EBV with MS is 

suggested by an elevation of Anti-EBV antibodies in patients with MS. A recent 

finding of B cell follicles in the cerebral meninges of some MS cases as major site of 

EBV persistence further supported the involvement of EBV in MS pathogenesis 
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(Serafini et al., 2007). To date, numerous reports claimed the involvement of viruses 

as MS triggers, but none of these observations withstood scrutiny so far (Soldan and 

Jacobson, 2001; Sospedra and Martin, 2005). 
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Animal models for MS 

Currently, several models are used to investigate particular aspects observed in MS. 

Although all these models mimic to some extent pathological features of MS, none of 

it mimics them all. Two main models are used in the context of modelling pathological 

features of MS. The most widely used model is experimental autoimmune 

encephalomyelitis (EAE), followed by the Theiler’s virus induced encephalomyelitis 

model. These two models led to a certain extent to the two hypotheses of MS origin 

(see page 40, 41). Additionally, there are also other models mimicking aspects of MS 

such as e.g. toxin-induced demyelination models or transgenic mice.  

In this study, we have chosen to use a specific variant of MOG-induced EAE, as this 

model mimics most closely the clinical disease course of MS and furthermore shows 

a extended demyelination. However, the EAE models for MS has its potential as well 

as its limitations. 

 

Experimental autoimmune encephalomyelitis 

A common animal model used to study possible pathological mechanisms of MS is 

experimental autoimmune encephalomyelitis (EAE). Neurological complications due 

to rabies vaccination, first suggested autoimmunity targeted against nervous tissue 

elements can induce brain inflammation (Remlinger, 1928). This was then proven in 

experiments showing an induction of inflammatory demyelinating lesions after active 

immunization with brain tissue (Rivers, 1933). Since the initial experiments by Rivers, 

several different models of EAE were developed, which differ in the immunological 

reaction, inflammatory processes and the neuropathophysiology in the CNS. The 

various models differ in the choice of species, strain, antigen, and immunization 

protocol that are used. There exist models for non-human primates like marmosets 

and rhesus monkeys, as well as for rodents like guinea pigs, rats, and mice. Each 

model shares similarities to MS but also differs in some aspects from these (Table 1). 

Furthermore, transgenic mice have been developed which spontaneously develop 

autoimmune encephalomyelitis (for review see Bettelli, 2007; Krishnamoorthy et al., 

2007). 
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Also, transgenic mice which overexpress TNF-a were shown to cause myelin 

damage and apoptosis of oligodendrocytes and their precursors (Probert et al., 

1995). 

Active EAE 

The active induction of EAE is most commonly used for modelling MS (for review see 

Gold et al., 2006). Active immunization of susceptible animals with CNS tissue or with 

purified components of CNS myelin, for instance MBP, PLP or MOG results in a high 

incidence of disease with more or less reproducible clinical course (Gold et al., 2000; 

Gold et al., 2006). After the sensitization with the antigen, first clinical signs of the 

disease are generally observed within 9-14 days. However, this depends strongly on 

the species and mode of sensitization (Gold et al., 2000). Clinical signs reported 

depend on the position of the active inflammatory infiltrates. Due to a predominant 

spinal cord infiltration in EAE, weakness of the tail and paraplegia are most 

commonly observed. Generally, induction of EAE leads to a strong T-cell mediated 

inflammatory reaction, which, according to the model used, can be mediated by 

CD4+ or CD8+ T-cells. This inflammatory reaction leads to some extent to 

Table 1 Commonly used rodent EAE models. Copied form Gold et al., 2000. 
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demyelination, axonal conduction block and axonal degeneration and. In some 

models, inflammation and demyelination is potentiated by the presence of 

autoantibodies. Recently, it was reported that the induction of EAE in marmosets as 

well as the MOG-induced EAE in rats clearly reflect the immunopathology of pattern 

II multiple sclerosis lesion (de Graaf et al., 2008; Merkler et al., 2006). In contrast, 

MOG-induced EAE in C57/Bl6 mice is thought to reflect pattern I MS lesions. 

Altogether, the variety of possible EAE pathomechanisms, achieved by different 

immunization protocols, made active EAE an ideal model for MS (Gold et al., 2006). 

 

Adoptive-transfer EAE 

In AT-EAE, in vitro propagated, sensitized T-cell lines are injected intravenously into 

a susceptible recipient. Experiments with AT-EAE conclusively proved for the first 

time that EAE is induced by an autoimmune reaction. Due to the clarity of the 

disease mechanism of AT-EAE, this model has become a major experimental tool for 

investigating T-cell function and regulation in neuroinflammatory and autoimmune 

disease (Gold et al., 2000). Furthermore, the importance of CD8+ T-cells in 

autoimmune reactions were demonstrated, as adoptive transfer of CD8+ T-cell were 

shown to induce severe EAE (Sun et al., 2001). Nevertheless, in the context of MS, 

AT-EAE shows critical limitations such as the monophasic disease course and little 

demyelination. 

 

Limitations and potential of EAE as a model for MS 

Limitations of EAE 

The view of MS being a T-cell mediated autoimmune disease is derived primarily 

from EAE. Nevertheless, one must be aware that EAE is not MS. The most obvious 

difference between MS and EAE is that MS develops spontaneously whereas EAE 

has to be actively induced. Currently, transgenic animals are developed which suffer 

from spontaneous EAE (Bettelli et al., 2003; Goverman et al., 1993; Waldner et al., 

2000). Furthermore, in most EAE models, a strong immune adjuvant is required to 

induce the disease whereas in MS no comparable immunological trigger is known. A 

major difference between MS and EAE is the nature of the immune response. Most 

EAE models are dominated by a CD4+ T cell response whereas in MS lesions, CD8+ 
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T cells seem to be the predominant T cell type present (Sriram and Steiner, 2005). 

Therefore, the relevance of cytotoxic CD8+ T cells in MS has been underestimated 

(Gold et al., 2000). Furthermore, an efficient and fast remyelination seen in EAE 

(Papadopoulos et al., 2006), was suggested to protect axons in inflammatory lesions 

and prevent the development of chronically demyelinated lesions as in MS. Also, 

currently no EAE model exists mimicking primary progressive MS. 

 

Potential of EAE 

Despite of the many differences between EAE and MS, this model has proven to be 

most useful to study certain aspects of MS. By using EAE models, T-cell mediated 

immune damage and inflammatory processes were intensively studied (Table 2). 

Although this T-cell response differs between EAE and MS, it led to the 

understanding of T-cell mediated immune damage of the CNS (Berger et al., 1997; 

Gold et al., 2006). Furthermore, macrophage recruitment into lesions was shown to 

correlate with disease severity, which was shown to apply for both, MS as well as 

EAE (Berger et al., 1997; Gold et al., 2006). Therefore, EAE might be a valuable 

model to study macrophage recruitment or activation during CNS autoimmunity. 

Although in most EAE models demyelination is rather limited, others have proven to 

be highly useful to study mechanisms of demyelination and remyelination. Growing 

evidence further suggests that EAE models might be used to investigate the 

pathomechanisms of different MS lesion patterns (Merkler et al., 2006) as well as of 

different MS subsets (Krishnamoorthy et al., 2006). Altogether, several aspects of 

Table 2 Pathological features of multiple sclerosis and the most suitable EAE models. Copied from Gold et al., 2006 
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potential pathogenic mechanisms of MS can be mimicked in EAE (Table 2). 
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Theiler’s virus-induced encephalomyelitis 

Another model which mimics certain aspect of MS is the Theiler’s murine 

encephalomyelitis. In this model, infection with TMEV leads to demyelination and 

oligodendrocyte apoptosis (Pender et al., 1991; Tsunoda and Fujinami, 1996). During 

the acute phase of TMEV-induced demyelination, the virus is eliminated from the 

gray matter of the CNS, whereas in the chronic phase, TMEV persistently infects glial 

cells and/or macrophages/microglia in the white matter. The recruitment of T-cells 

and macrophages during the chronic phase subsequently leads to inflammation and 

demyelination (Tsunoda and Fujinami, 1996). Apart from a anti-viral immune 

response, epitope spreading was detected in TMEV-induced demyelination, where 

virus-induced damage led to activation of autoreactive T cells specific for myelin 

protein epitopes (Miller et al., 1997). As in EAE, it is suggested that CD4+ T cells are 

directly involved in the pathogenesis of the disease (Dal Canto et al., 1996).  

Furthermore, apart from dose and strain of the virus, susceptibility for TMEV-induced 

demyelination depends, as in EAE, on strain, gender and age of the animals (Dal 

Canto et al., 1996). 

 

Cuprizone-induced demyelinating models 

Another experimental models mimicking in particular demyelination, are toxin-

induced demyelinating models such as e.g. cuprizone-induced demyelination. By 

feeding mice with the copper chelator cuprizone, a massive demyelination can be 

reproducibly induced in large areas of mouse brain. Demyelination is induced by 

oligodendrocyte apoptosis, which is then followed by a phagocytosis of myelin by 

microglia. These models are especially valuable for studying manipulations which 

may accelerate or repress the process of demyelination and or remyelination. 
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Impacts on therapy of MS 

Animal models for MS are further used for developing therapeutic strategies. For 

that, EAE is the predominantly used model. From the current therapies planned for 

phase II and III trials in MS, most were first examined in EAE. But, although EAE is a 

useful model to study certain aspects of MS, transferring promising therapies 

beneficial in EAE is difficult. Many agents have been found to successfully ameliorate 

EAE (Table 3), but many failed finally in subsequent human clinical trials (Sriram and 

Steiner, 2005). Whereas some showed no beneficial effects in MS, others did, but 

had strong side effects in addition. Few cases showed even worsening effects 

(Sriram and Steiner, 2005). Nevertheless, six medications have received approval 

from the US Food and Drug Administration for treatment of MS. Three of them, 

glatiramer acetate, mitoxantrone and natalizumab were developed after showing 

promise in EAE (Steinman and Zamvil, 2006). Additionally, several new medications 

first developed in EAE are currently being investigated in clinical trials. 

 

 

 

Table 3 Agents Successful in Treating EAE. Copied from Sriram and Steiner, 2005. 
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Oligodendrocytes and MS 

Oligodendrocytes are the cells of the CNS forming myelin, a unit of membranes 

wrapped around axons allowing fast saltatory conduction. In MS, myelin appears to 

be the primary target of the inflammatory reaction. It appears that a T-cell mediated 

immune reaction against myelin antigens is responsible for the induction of 

inflammation in MS (Lassmann, 2006). Therefore, the myelin producing 

oligodendrocytes are the major target cell of the immune reaction in MS. 

 

Mechanisms mediating oligodendrocyte damage 

Oligodendrocytes can be damaged by various mechanisms (for review see Zeis and 

Schaeren-Wiemers, 2008). These “attacks” are occurring either direct via lysis or 

indirect via toxic mediators or via an imbalance of the surrounding environment. 

Immune cells such as CD8+ cytotoxic T-cells have been shown to be directly 

cytotoxic to cells presenting their specific antigen (Parkin and Cohen, 2001), which 

oligodendrocytes are capable to. In contrast, CD4+ T helper cells are capable to 

induce oligodendrocyte damage by secreting cytokines, such as TNF-α, and 

promoting activation of nearby macrophages and microglia. Activated macrophages 

and microglia were shown to have incorporated myelin products, and express a large 

variety of different for oligodendrocytes deleterious compounds, such as TNF-α, 

reactive oxygen species (ROS), reactive nitrogen species (RNS) and Fas-ligand 

(FasL). TNF-α is a potent cytotoxic molecule capable of inducing oligodendrocyte cell 

death (D'Souza et al., 1996b; Jurewicz et al., 2005; Selmaj and Raine, 1988). 

Furthermore, the production of ROS and RNS by activated macrophages and 

microglia can lead to various types of damage such as lipid peroxidation, tyrosine 

nitrosylation and DNA strand breaks (van der Veen and Roberts, 1999; Willenborg et 

al., 1999; Zhang et al., 1994). High expression of inducible nitric oxide synthase 

(iNOS) as well as neuronal nitric oxide synthase (nNOS) has been reported in 

activated macrophages and microglia within active lesions in MS (De Groot et al., 

1997; Hill et al., 2004), and RNS mediated damage in oligodendrocytes has also 

been demonstrated (Jack et al., 2007; Li et al., 2005; Merrill et al., 1993). 
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Oxidative stress and oligodendrocytes 

Under normal conditions reactive oxygen and nitrogen species (ROS, RNS) are 

routinely produced in low concentrations, posing little threat to oligodendrocytes as 

they possess defense and repair mechanisms. However, during the inflammation 

process of MS, a high expression of inducible nitric oxide synthase (iNOS) as well as 

neuronal nitric oxide synthase (nNOS) has been reported (De Groot et al., 1997; Hill 

et al., 2004). Furthermore, RNS-mediated damage in oligodendrocytes has been 

demonstrated (Jack et al., 2007; Li et al., 2005; Merrill et al., 1993). 

As oligodendrocytes are vulnerable to NO-mediated damage (Smith et al., 1999; 

Smith and Lassmann, 2002), activation of mechanisms protecting oligodendrocytes 

from oxidative stress-induced damage would be highly beneficial. A recent study of 

subcortical NAWM from MS cases has shown the upregulation of several genes 

involved in ischemic preconditioning (Graumann et al., 2003). In particular, HIF-1α 

has been shown to be an important regulator of hypoxic preconditioning (Bergeron et 

al., 2000; Bernaudin et al., 2002; Sharp et al., 2001) and is activated by hypoxia, 

growth factors, NO and others (for review see Brune and Zhou, 2007; Semenza, 

2002). HIF-1α and some of its downstream genes were shown to be elevated in MS 

NAWM (Graumann et al., 2003), and in-situ hybridization experiments of MS NAWM 

(Zeis et al., 2008) as well as examinations of Balo’s concentric sclerosis identified 

oligodendrocytes expressing this transcription factor (Stadelmann et al., 2005), 

suggesting that oligodendrocytes mount ischemic protective mechanisms during the 

disease course. Furthermore, oligodendrocytes were also shown to express heat-

shock proteins 70 (HSP70) (Stadelmann et al., 2005) as well as HSP32 (Stahnke et 

al., 2007). In the case of HSP70, a protective role has been shown in brain ischemia 

(for review see Christians et al., 2002), whereas HSP32 was shown to exert a 

protective role against oxidative stress in an oligodendroglial cell line (Stahnke et al., 

2007). 

Interestingly, sub-lethal doses of inflammatory cytokines such as IFN-γ and TNF-α 

were reported to induce ischemic protective mechanisms in target cells. The 

induction of HSP70 in oligodendrocytes was shown in-vitro by treatment of 

oligodendrocyte cultures with a mix of cytokines (D'Souza et al., 1994). Further, 

treatment of oligodendrocyte cultures with IFN-γ led to an increase in the expression 

of genes involved in protection against oxidative stress (Balabanov et al., 2007). In 
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line, treatment of mice with IFN-γ before onset of EAE led to an amelioration of the 

disease through activating the integrated stress response (Lin et al., 2007). 

Altogether, oligodendrocytes induce and express endogenous protective 

mechanisms possibly influencing lesion formation in MS. 

 

Oligodendrocytes and growth factors 

Changes in growth factors as well as growth factor receptors expression were 

demonstrated in MS. Several growth factors such as nerve growth factor (NGF), 

insulin-like growth factor (IGF) and transforming growth factor β (TGF-β) were 

reported to be expressed by oligodendrocytes (for review see Du and Dreyfus, 2002). 

By expression of these factors, oligodendrocytes might influence the survival and/or 

function of neighboring cells. NGF can bind to the tyrosine kinase receptor A (TrkA) 

as well as to the low-affinity nerve growth factor receptor (p75NTR). By binding to 

TrkA, NGF promotes cell survival whereas binding to p75NTR under some 

circumstances might also modulate susceptibility to programmed cell death or 

apoptosis (Casaccia-Bonnefil et al., 1999; Yoon et al., 1998). In EAE, expression of 

TrkA was detected on neurons, astrocytes and oligodendrocytes (Oderfeld-Nowak et 

al., 2003; Oderfeld-Nowak et al., 2001), whereas p75NTR was detected on neurons, 

microglia, astrocytes and oligodendrocytes (Nataf et al., 1998; Villoslada et al., 

2000). In EAE, NGF was shown to have beneficial effects, as NGF-deprived rats 

display more severe neurological deficits during disease course. Further, treatment of 

marmoset monkeys with NGF prevented the full development of EAE lesions and 

delayed the onset of clinical EAE (Micera et al., 2000; Villoslada et al., 2000). 

Another growth factor  expressed by oligodendrocytes is IGF-1, which was reported 

to ameliorate TNF-α induced demyelination in transgenic mice (Ye et al., 2007). 

Furthermore, IGF-1 was also reported to reduce demyelination in EAE (Liu et al., 

1995), although this beneficial effect is still under debate (Cannella et al., 2000). The 

expression of TGF-β by oligodendrocytes was also reported, which is discussed in 

the next chapter. Altogether, by expressing several growth factors, oligodendrocytes 

in MS might influence the function and survival of themselves, but also of the nearby 

cells, possibly enhancing remyelination and hindering lesion formation. 
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Immune modulating ability of oligodendrocytes might have an impact on MS 

In vitro experiments suggested, that upon stimulation by Interferon-γ, 

oligodendrocytes express protective genes against oxidative stress as well as a 

number of chemokines, including CXCL10, CCL2, CCL3 and CCL5 (Fig. 4) 

(Balabanov et al., 2007). CXCL10, CCL2 and CCL5 were also found to be 

upregulated in MS NAWM (Graumann et al., 2003). Furthermore, mice with 

oligodendrocytes with suppressed responsiveness to IFN-γ showed higher 

oligodendrocyte apoptosis in EAE as well as an accelerated disease onset, but 

milder perivascular inflammation and minimal parenchymal infiltration and 

demyelination (Balabanov et al., 2007). This effect of IFN-γ on oligodendrocytes 

demonstrates that oligodendrocytes are capable to react on external immune 

challenges by induction of protective mechanisms, and that they possibly modulate 

inflammatory responses. The expression of different cytokine receptors on 

oligodendrocytes in active and silent lesions may further suggest an active role in 

innate immunity of the CNS (Cannella and Raine, 2004). Oligodendrocytes were also 

shown to express TGF-β in vitro (da Cunha et al., 1993; McKinnon et al., 1993), 

which can suppress immune and inflammatory responses (for review see Pratt and 

McPherson, 1997), and might promote myelination and remyelination (Setzu et al., 

2006). 

The expression of cytokine receptors and the possibility of chemokine expression 

might point to oligodendrocytes playing a role in the innate immunity by actively 

modulating their environment and interacting with cells of the immune system. 

Therefore, oligodendrocytes might be capable to influence lesion formation in MS. 
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Aim of the work 

Multiple sclerosis is a chronic, inflammatory and demyelinating disease of the CNS. 

Although diffuse inflammatory damage as well as progressive axonal injury has been 

shown in the chronic phase of the disease, little is known about the molecular 

mechanisms underlying these pathological processes. In previous studies, 

accumulating evidence suggested that the morphologically normal appearing white 

matter in MS is far from being normal. A study from our lab revealed an upregulation 

of a number of functionally related genes involved in endogenous neuroprotection, 

oxidative stress response and ischemic preconditioning (Graumann et al., 2003). 

Furthermore, increasing evidence point to an induction of inflammatory mechanisms 

in MS NAWM. Altogether, this raises several questions: 

 

1. Is an immune response mounted in the NAWM ? And if so, which cells mount this 

response ? 

2. Are these changes observed in late disease course NAWM already induced in 

NAWM from early disease course ? 

3. Are these changes of the MS NAWM also present in an animal model of MS ? 

 

In order to investigate a potential immune response of the NAWM, a differential gene 

expression analysis as well as immunohistochemistry experiments were performed. 

Furthermore, a discrimination between early and late pathogenic mechanisms of the 

MS NAWM was achieved by analyzing a biopsy taken from a patient during early 

disease course. As tissue derived from MS patients is limited and predominantly 

origins from older patients with a long-time disease course, a differential gene 

expression analysis of NAWM of MOG-induced EAE was investigated. The presence 

of similar molecular and cellular mechanisms in EAE NAWM as in MS NAWM would 

allow to study these mechanisms in more detail. 
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Abstract 

Multiple Sclerosis is a chronic inflammatory disease of the central nervous system 

(CNS). Although progressive axonal injury and diffuse inflammatory damage has 

been shown in the chronic phase of the disease, little is known about the molecular 

mechanisms underlying these pathological processes. In order to identify these 

mechanisms, we have studied the gene expression profile in non-lesion containing 

tissue, the so called normal appearing white matter (NAWM). We performed 

differential gene expression analysis and quantitative RT-PCR on subcortical white 

matter from 11 MS and 8 control cases. Differentially expressed genes were further 

analyzed in detail by in-situ hybridization and immunofluorescence studies. We show 

that genes known to be involved in anti-inflammatory and protective mechanisms 

such as STAT6, JAK1, IL-4R, IL-10, Chromogranin C, and Hif-1α are consistently 

upregulated in the MS NAWM. On the other hand, genes involved in pro-

inflammatory mechanisms, such as STAT4, IL-1β and MCSF, were also upregulated 

in MS NAWM but less regularly. Immunofluorescence colocalization analysis 

revealed expression of STAT6, JAK1, IL-4R and IL-13R mainly in oligodendrocytes, 

whereas STAT4 expression was detected predominantly in microglia. In line with 

these data, in-situ hybridization analysis showed an increased expression in MS 

NAWM of HIF-1α in oligodendrocytes and HLA-DRα in microglia cells. The 

consistency of the expression levels of STAT6, JAK1, JAK3 and IL-4R between the 

MS cases suggests an overall activation of the STAT6 signalling pathway in 

oligodendrocytes, whereas the expression of STAT4 and HLA-DRα indicates the 

activation of pro-inflammatory pathways in microglia. The upregulation of genes 

involved in anti-inflammatory mechanisms driven by oligodendrocytes may protect 

the CNS environment and thus limit lesion formation, whereas the activation of pro-

inflammatory mechanisms in microglia may favour disease progression. Altogether, 

our data suggests an endogenous inflammatory reaction throughout the whole white 

matter of MS brain, in which oligodendrocytes actively participate. This reaction might 

further influence and to some extend facilitate lesion formation. 

 

Keywords: Multiple Sclerosis, Inflammation, Cytokines, Chemokines, 

Neuroprotection 
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Introduction 

Multiple Sclerosis (MS) is a chronic inflammatory demyelinating disease of the central 

nervous system (CNS). Studies of the histopathology of the demyelinated lesions 

characteristic of MS (Lucchinetti et al., 2000; Raine and Scheinberg, 1988) have 

revealed a great deal of heterogeneity at the cellular and molecular level, which 

might partially reflect the diversity of the clinical disease course. A major effort in the 

study of the pathogenesis of MS has been to understand the molecular mechanisms 

of lesion formation (Lock et al., 2002; Lucchinetti et al., 2000), and in particular the 

role of various immune-modulating components in the different types of lesions 

(Lassmann and Ransohoff, 2004).  

 

Pathological similarities to the animal model for Th1 mediated brain inflammation, 

experimental autoimmune encephalomyelitis (EAE), have suggested that MS is an 

autoimmune disorder caused by myelin-specific CD4+ T cells of the Th1 (Lassmann 

and Ransohoff, 2004; Sospedra and Martin, 2005) and/or Th17 type (Gutcher et al., 

2006; Weaver et al., 2006). In contrast, other studies have highlighted a major role 

for CD8+ T cells in EAE and MS (Babbe et al., 2000; Booss et al., 1983; Neumann et 

al., 2002; Sun et al., 2001). Furthermore, Th2 helper-cell mediated mechanisms have 

also been suggested to contribute to inflammation in a subset of patients with MS 

(Lafaille et al., 1997). Cytokines are critical components in immune regulation and 

signalling, and thus, play a major role in determining the actions of different immune 

cells. Although still debated, anti-inflammatory cytokines of the Th2 type (e.g. Il-10, 

IL-4) are thought to be mostly beneficial and have been associated with remission 

and recovery from disease (Cannella and Raine, 2004; Sospedra and Martin, 2005). 

In contrast, cytokines of the Th1 and Th17 type (e.g. Il-1, IL-6, IL-12, IL-17, IFN-γ and 

TNF-β) are thought to be predominantly pro-inflammatory and are likely to play a role 

in the pathogenesis of MS. In regard to CNS-Immune system communication 

cytokines are highly relevant as well. As an example CNS targeted expression of IL-3 

is sufficient to promote recruitment and activation of macrophage/microglial cells in 

white matter regions of the brain leading to subsequent demyelination (Chiang et al., 

1996), highlighting the crucial role of CNS specific modulation of the immune system. 
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There is accumulating evidence for the deregulation of various aspects of the 

immune response in the brain parenchyma as well as in the periphery in MS. An 

important signal transduction pathway involved in immune regulation is the 

JAK/STAT signalling pathway, which consists of the protein families of Janus tyrosine 

kinases (JAK) and the signal transducers and activators of transcription (STATs). 

Other members of the JAK/STAT pathway are the protein tyrosine phosphatase (SH-

PTP2) and the growth-factor-receptor-bound protein 2 (GRB2). GRB2 and SHP2 can 

form a complex together with the IL-6R (gp130) and are known to link the JAK/STAT 

pathway to the MAPK pathway (Schiemann et al., 1997), which was shown recently 

to be upregulated in MS (Graumann et al., 2003). Most interestingly in the context of 

MS, the JAK/STAT signalling pathway plays a critical role in the regulation of the 

sensitivity to cytokines and in their expression. It is known that the JAK/STAT 

signalling pathway is a sensitive switch playing a major role in the Th-polarization of 

the immune system. Members of the STAT family like STAT1, STAT3, STAT4 and 

STAT6 are thought to be critically involved in the polarization of Th1, Th17 or Th2 

cells (Harrington et al., 2006; Kaplan et al., 1996; Takeda et al., 1996). In EAE, it has 

been shown that STAT4 deficient mice are resistant to the induction of MOG-induced 

EAE, whereas STAT6 deficient mice show a more severe clinical course (Chitnis et 

al., 2001). These findings suggest that STAT4 may be involved in the promotion of 

inflammatory mechanisms, whereas STAT6 may be important in their limitation. 

Therefore, we concentrated our work on STAT4, STAT6 and their particular 

downstream genes as markers for either pro- or anti-inflammatory mechanisms in 

resident cells of the brain. 

 

In addition to the well characterized inflammatory white matter lesions, studies by 

magnetic transfer imaging (MTI) have suggested that the normal appearing white 

matter (NAWM) of the majority of MS patients has significant abnormalities, such as 

blood-brain-barrier changes, axonal injury and to some extent astro- and microgliosis 

(Aboul-Enein et al., 2003; Fu et al., 1998; Silver et al., 2001). In line with this, our 

recent microarray analysis of MS NAWM revealed the upregulation of a number of 

functionally related genes involved in endogenous neuroprotection, as well as in the 

maintenance of cellular homeostasis (Graumann et al., 2003). In addition to these 

protective responses, the NAWM also mounts an immune modulating response, 

which is the subject of this study. 
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Material and Methods 

Tissue collection 

MS and control tissue samples were supplied by the UK Multiple Sclerosis Tissue 

Bank (UK Multicentre Research Ethics Committee, MREC/02/2/39), funded by the 

Multiple Sclerosis Society of Great Britain and Northern Ireland (registered charity 

207495). Additional tissue samples were collected at the Department of Pathology, 

University Hospital Basel (Ethics Committee of the University Hospital Basel). Tissue 

samples representing normal control white matter and normal appearing MS white 

matter were collected and analyzed as described previously (Graumann et al., 2003). 

All brains were routinely screened by a neuropathologist to confirm diagnosis of MS 

and to exclude confounding pathologies such as amyloid deposition, metastasis and 

ischemic lesions. 

 

 

 Table 1 - Summary and characterization of patients 

 

 
Patient 

ID 

Age 

(yr) 
Sex 

MS 

Type 

Disease 

Duration (yr) 

Postmortem 

Interval (hr) 
Cause of Death Array, LC 

         

MS patients MS1* 56 f SP 31 12 Bilater basal pneumonia I, I I, III,  LC 

 MS2 58 f PP 22 16 Peritonitis I, LC 

 MS3 76 f SP >14 18 Myocardial infarction I, I I, III,  LC 

 MS5* 58 f PP 21 6 Bronchopneumonia I, I I, III,  LC 

 MS10 69 f PP 31 11 Acute pyeionephritis I, I I, LC 

 MS12 78 f PP 31 9 Lung infection I, LC 

 MS14 56 f PR 34 6 not known LC 

 MS18 78 f SP 42 5 Bronchocarcinoma I, LC 

 MS20 66 f SP 30 13 Aspiration pneumonia I, LC 

 MS25 54 f SP 20 22 Bronchopneumonia LC 

 MS26 83 f Silent - 6 Myocardial infarction I, I I, III,  LC 

         

Controls CLo3 85 f - - 9 not known LC 

 CLo6* 73 m - - 21 Heart attack I, I I, III;  LC 

 CLo7 77 m - - 26 Lung cancer I, LC 

 CLo8 64 f - - 18 Cardiac failure I, I I, LC 

 CBS1 70 m - - 15 Myocardial infarct I, I I, III,  LC 

 CBS2 66 m - - 16 Bronchocarcinoma I, I I, III,  LC 

 CBS4 69 m - - 10 Myocardial infarct I, LC 

 CBS5 59 f - - 22 Acute pancreatitits I, I I, III,  LC 

         

Clinical and pathological information concerning the 11 MS and 8 control cases studied are shown. All MS and all control 

tissue samples except MS25 and CLo3 were used for microarray analysis. For MS1, MS5 and CLo6 (asterisk) two different 

tissue blocks were used for the microarray and qRT-PCR analysis. Abbreviations: SP=Secondary-progressive, PP=Primary-

progressive, PR=Progressive-Relapsing, I=BD Atlas
TM
 Human 1.2 Array I, II=BD Atlas

TM
 Human 1.2 Array II, III=BD Atlas

TM
 

Human 1.2 Array III, LC=Lightcycler 
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Furthermore, NAWM tissues were screened for T-cell infiltration (CD3), activated 

microglia and macrophages (CD68), activated astrocytes (GFAP) and signs for 

demyelination and remyelination (PLP); tissues showing signs of lesion formation 

such as accumulation of CD3- or CD68-positive cells or abnormal myelin staining 

were excluded from this study. From the MS cases, five showed a secondary-

progressive, four a primary-progressive, one a progressive-relapsing and one a silent 

disease course. The mean age of the control cases was 70.4 ± 10.7 years with a 

post-mortem delay time of 17.1 ± 5.9 hours. The mean age of the MS cases was 66.5 

± 10.7 years with a post-mortem delay time of 11.3 ± 5.6 hours (Table 1). From these 

tissue blocks provided (Fig.1A), about 20-40mg pure subcortical white matter tissue 

was isolated and used for RNA isolation (hatched area). 

 

Antibodies 

For histochemical analysis the following antibodies were used: anti-STAT4 (R&D 

Systems, Cat.Nr. PA-ST4, 1:250), anti-STAT6 (R&D Systems, Cat.Nr. AF2167, 

1:250), anti-Olig2 (Chemicon, Cat.Nr. AB9610, 1:250), anti-JAK1 (Chemicon, Cat.Nr. 

MAB3700, 1:250), anti-hIL-4R (R&D Systems, Cat.Nr. MAB230), anti-IL13R (Abnova, 

Cat.Nr. H00003598-MO1), anti-CD68 (DAKO, Cat.Nr.M0814, 1:500), anti-GFAP 

(SIGMA, Cat.Nr. G-3893), anti-PLP (kindly provided by K.-A. Nave, Göttingen), anti-

CD3 (Novocastra Labs, Cat.Nr.NCL-CD3-PS1), anti-MBP (Chemicon, Cat.Nr. 

MAB386), pan neurofilaments (rabbit pAb cocktail; Biomol, Cat.Nr.NA1297). The 

secondary antibodies used were: donkey-anti-mouse-biotin (1:500), donkey-anti-

rabbit-Cy2 (1:500), donkey-anti-rabbit-Cy3 (1:500), donkey-anti-rabbit-Cy5 (1:500), 

donkey-anti-mouse-Cy2 (1:500), donkey-anti-mouse-Cy3 (1:500), donkey-anti-rat-

Cy5 (1:500), donkey-anti-goat-Cy2 (1:500) and donkey-anti-goat-Cy3 (1:500) (all 

from Jackson ImmunoResearch). 

 

Immunohistochemistry 

All tissue samples were analyzed by immunohistochemistry. Cryostat sections 

(10µm) used for tissue characterization using anti-CD68, -PLP, -MOG and -CD3 

antibodies were fixed for 10min in 10% formalin. Sections used for CD3 staining were 

then boiled in 10mM sodium citrate buffer, pH 6.0 for 30min. For inactivation of 
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endogenous peroxidase all sections were treated with 0.3% hydrogen peroxide and 

blocked with blocking buffer (1% normal donkey serum, 2% Fish skin gelatine, 0.15% 

Triton). After quenching, sections were incubated with primary antibodies overnight at 

4°C. Secondary biotinylated antibodies were applied for 1 hour at room temperature 

followed by the ABC complex reagent (Vector Labs) for 1 hour. Color reaction was 

performed with 3-Amino-9-ethylcarbazole (Erne et al., 2002). Counterstaining was 

performed in haematoxylin for 1min followed by rinsing the slide in running tap water. 

For fluorescent colocalization study using anti-STAT4, -STAT6, -MBP, -OLIG2, -

JAK1, -Neurofilament, -GFAP, and -CD68 antibodies, cryostat sections (10µm) were 

air-dried for 20min and fixed for 10min in acetone at -20°C. For MBP/JAK1 

colocalization immersed fixed tissue samples were used (tissue blocks were fixed in 

4% paraformaldehyde in PBS for seven days). Sections were incubated with the 

primary antibodies at 4°C overnight. After washing with PBS, sections were 

incubated for 1 hour with cupric sulphate in ammonium acetate buffer (10mM CuSO4, 

50mM CH3COONH4, pH 5.0) in order to reduce autofluorescence (Schnell et al., 

1999). Secondary antibodies were incubated for 1 hour at room temperature. Slides 

were mounted with Fluorosave and kept at 4°C. 

 

Total RNA preparation 

Total RNA isolation was performed by homogenization in guanidinium thiocyanate 

followed by a CsCl ultracentrifugation (Bothwell et al., 1990). Freshly isolated RNA 

was tested for integrity by ethidium-bromide gel electrophoresis and GFAP Northern 

blot analysis as shown before (Graumann et al., 2003). 

 

Atlas™ cDNA Expression Array hybridization 

The Clontech Atlas™ cDNA Expression Array 1.2 (I-III) contains 3’528 selected 

cDNA sequences arrayed on three different nylon membranes (1’176 per array). 

Array hybridization was performed according to Graumann et al., (2003). Array I was 

hybridized with 11 MS and 8 control samples, Array II with 7 MS and 5 control 

samples and Array III with 6 MS and 4 control samples (Table 1, 3). Quantification of 

differential hybridization signal intensities was achieved with the AtlasImage™ 2.0 

software program. Data analysis was performed according to Graumann et al., 
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(2003). Quantitative RT-PCR was performed to verify gene expression data received 

from the array experiments. As we described previously, qRT-PCR results revealed 

an even greater fold difference, indicating that differential expression patterns are 

rather under- than overestimated from the microarray analysis (Graumann et al., 

2003). Therefore, median values showing fold changes above 1.5 are indicative to be 

upregulated in a particular MS case and median values below 0.66 to be 

downregulated. 

 

Quantitative RT-PCR 

Real-time RT-PCR was performed using the LightCycler system (Roche). Primer 

sequences were either provided by Clontech or designed from unique site over exon-

intron junctions to prevent amplification of genomic DNA. Real-time RT-PCR was 

performed according to the manufacturer’s protocol (Roche). RNA amounts were 

calculated with relative standard curves for all mRNAs of interest and 60s ribosomal 

protein L13A was used for normalization. Normalization was further evaluated by the 

40s ribosomal protein S9. Primer sequences used for qRT-PCR are shown in Table 

2. 
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Table 2 Primer Sequences used for qRT-PCR 

Primer Name Gene Acc.Nr. Sequence 

5' STAT4 5' - TCCGAAGTGATTCAACAGAGCC - 3' 
3' STAT4 

NM_003151.2 
5' - TTCTTGGTGCGTCAGAGTTTATCC - 3' 

5' STAT6 5' - CACTGGAAGCAGGAAGAACT - 3' 
3' STAT6 

NM_003153.3 
5' - TCAAGCTGTGCAGAGACACT - 3' 

5' SOCS3 5' - TGTGCCTCCTGACTATGTCT - 3' 
3' SOCS3 

NM_003955.3 
5' - CCTGACTGGCCAATACTTAC - 3' 

5' Aqp4 5' - TACTGGTGCCAGCATGAATC - 3' 
3' Aqp4 

NM_001650.4 
5' - TTGTCCTCCACCTCCATGTA - 3' 

5' HLA-DR 5' - ATGGCCATAAGTGGAGTCC - 3' 
3' HLA-DR 

K01171 
5' - TTCACTGAGGTCAAGGATTG - 3' 

5' nNOS 5' - TGGAGGTGCTGGAGGAGTTC - 3' 
3' nNOS 

NM_000620.1 
5' - TGAGCCAGGAGGAGCATACG - 3' 

5' MAG 5' - CCGCCGAAGACGGCGTCTATGC - 3' 
3' MAG 

NM_080600.1 
5' - CTCTCGTAGATGACCGTGGACAGG - 3' 

5' MOG 5' - CCTCCTCCTCCTCCAAGT - 3' 
3' MOG 

NM_002433.3 
5' - CCATGCCTGTAGCGTTCTTC - 3' 

5' PLP 5' - TTCTGTGGCTGTGGACATG - 3' 
3' PLP 

NM_000533.3 
5' - GAGGCAGTTCCATAGATGAC - 3' 

5' MBP 5' - ACCCGGCAAGAACTGCTCACTATGGCTC - 3' 
3' MBP 

M30515 
5' - TGAGCCGATTTATAGTCGGACGCAC - 3' 

5' GFAP 5' - GACGAGATGGCCCGCCACTTGC - 3' 
3' GFAP 

J04569 
5' - CTCCACGGTCTTCACCACGATGTTC - 3' 

5' NSE 5' - TGGTGTGCTGAGGTGTTAG - 3' 
3' NSE 

NM_001975.2 
5' - CCTTATTAGCCAGGCGTGA - 3' 

5' Snap25 5' - TAGTGGACGAACGGGAGCAGATGG - 3' 
3' Snap25 

XM_009497 
5' - CGTTGGTTGGCCTCATCAATTCTGG - 3' 

5' PDGFR-alpha 5' - CCACGCTACCAGTGAAGTCT - 3' 
3' PDGFR-alpha 

NM_006206.2 
5' - CACAGCAGGATGGTCACTCT - 3' 

5' 60s 5' - TCGTGCGTCTGAAGCCTAC - 3' 

3' 60s 
X56932 

5' - TCTTCCGGTAGTGGATCTTG - 3' 

5’IL-4 5' - CCGAGTTGACCGTAACAGAC - 3' 

3’IL-4 
NM_000589.2 

5' - CTCTGGTTGGCTTCCTTCAC - 3' 

5’IL-4R 5' - CGTCAGCGTTTCCTGCATTG - 3' 

3’IL-4R 
NM_000418.2 

5' - CTCTTTGGCAGCCTTGTGAG - 3' 

5’IL-12p40 5’ - AACCTGACCCACCCAAGAAC - 3’ 

3’IL-12p40 
NM_002187.2 

5’ - AGATGCCCATTCGCTCCAAG - 3’ 

5’IL-13 5' - ATCCGCTCCTCAATCCTCTC - 3' 

3’IL-13 
NM_002188.2 

5' - AGCATCCTCTGGGTCTTCTC - 3' 

5’ and 3’ Primers used for quantitative RT-PCR analysis together with the gene accession numbers are shown. The 

gene 60s was used as housekeeping gene for normalization. 
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In situ hybridization 

cDNA sequences of STAT6 (U16031, pos. 1248-2522) and HIF-1α (U22431, po. 

1215-2394) were cloned from human cerebellum tissue into pBluescript KS II+. cDNA 

for HLA-DRα was kindly provided by Viktor Steimle (Department of Biology, 

University of Sherbrooke, Sherbrooke, Canada). Digoxigenin-labelled cRNAs were 

generated for Hif-1α and HLA-DRα. In situ hybridization was performed on 

cryosections (10µm thick) of freshly frozen tissue as described previously (Schaeren-

Wiemers and Gerfin-Moser, 1993; Spiegel et al., 2002). Hybridization was done 

overnight at 68°C and color reaction time for the alkaline phosphatase reaction was 

48 hours for all probes. 

 

Statistics 

Statistical significance is expressed by p-values generated by the non-parametric 

Mann-Whitney U-Test. For each gene two p-values were calculated (Table 3). A 

hierarchical cluster analysis was performed using the program “Cluster” and 

“TreeView” from Michael Eisen (Eisen et al., 1998). Hierarchical cluster analysis 

revealed two MS case groups based on similarities in their gene expression pattern. 

Therefore, two p-values were calculated. The first p-value (marked by an asterisk) 

was calculated using the signal intensities from the cases MS 1, 2, 3, 5, 12 and 26, 

whereas the second p-value (marked by double-asterisk) was calculated by using all 

MS cases. To evaluate differential gene expression data from the microarrays in 

more detail, a boxplot from each gene was generated and analyzed (data are shown 

for particular genes in Fig.5). For this, the hybridization signal intensities were 

normalized to one of the control samples according to Graumann et al. (2003). 

Statistical correlation was calculated using the non-parametric Spearman’s test. 
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Figure 1: Histopathological examination of subcortical MS NAWM tissue.  

To analyze gene expression changes in the NAWM we isolated pure subcortical white matter (hatched area) from 

tissue blocks (A, red box). Immunohistochemical analyses were made to characterize the NAWM and to exclude 

possible lesions. NAWM stained by PLP (B) showed normal myelin. CD3 positive cells were detected rarely in the 

NAWM (C, arrow). We could detect some CD68 positive cells in the NAWM (D, arrows). Furthermore, staining for 

GFAP revealed weakly activated astrocytes (E). Bars = 50 µm 
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Results 

Histological and molecular examination of subcortical NAWM from MS and 

control brains 

All brains used in this study were routinely screened by a neuropathologist to confirm 

diagnosis of MS and to exclude confounding pathologies such as for example 

Alzheimer’s disease. The clinical and pathological information on the MS and control 

cases was collected and is summarized in Table 1. To analyze gene expression 

changes in the NAWM, we dissected subcortical white matter from cortical grey 

matter to ensure that only RNA from white matter tissue was isolated (Fig. 1A, 

hatched area). Isolated RNA was tested for its integrity by ethidium-bromide gel 

electrophoresis and GFAP Northern blotting, and only samples with high quality RNA 

were used. In order to confirm normal cellular integrity and composition, and to 

exclude any possible pathological changes such as demyelination and inflammation, 

we performed immunohistochemical analysis on the NAWM tissue. Staining for 

myelinated fibres (Fig. 1B, PLP) showed no signs of demyelination or shadow 

plaques. We detected almost no CD3-positive cells in subcortical NAWM (Fig. 1C). 

However, we detected CD68 positive cells distributed throughout the MS NAWM (Fig. 

1D). There was no evidence of astrogliosis as revealed by an anti-GFAP staining 

(Fig. 1E, GFAP). As we have described before, some neurons were found in human 

subcortical white matter as well (Graumann et al., 2003). In summary, all tissue 

included in this study showed no histological evidence of demyelinating lesions, 

remyelination or inflammatory infiltrates. 

In a recent study, we performed a differential expression analysis of subcortical 

NAWM from MS cases  and corresponding subcortical white matter from control 

cases (Graumann et al., 2003). We performed a hierarchical cluster analysis to 

identify groups of MS cases based on similarities in their gene expression pattern. 

This analysis revealed a major group within the MS cases (MS1, 2, 3, 5, 12 and 26), 

which showed strong similarities in their expression patterns (Graumann et al., 2003). 

A minor group of three MS cases (MS10, 18 and 20) showed an expression pattern 

with some similarities to the major group such as the upregulation of STAT6, but 

showed overall fewer alterations compared to the control cases. 
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Table 3 Genes differentially expressed in NAWM 

 MEDIAN P-
value  

MEDIAN P-
value  

gene-
bank 
accession 

gene name MS26 
MS1 
A3B2 

MS1 
A3D1 

MS12 
P1A4 

MS5 
A3C2 

MS5 
A3C7 

MS3 
A4B4 

MS2 
P5C4 

 
MS20 
P3B3 

MS10 
A4D3 

MS18 
P3B4 

 

STAT signaling pathway 

U16031 STAT6 2.8 3.8 2.9 2.8 3 1.9 3.1 4.5 0.005 1.5 1.5 2 0.005 

L29277 STAT3 1.4 2 2 1.7 2.4 1.5 1.5 1.5 0.012 1 1.2 1.2 0.032 

M35203 JAK1 1.5 4.3 2.6 1.7 1.9 1.4 2.1 1.9 0.003 1.4 0.9 1.3 0.005 

AF005216 JAK2 3 2.7 2.2 2 1.2 1.6 1 1.3 0.172 1.2 1.5 0.9 0.186 

U09607 JAK3 3.3 3.4 2.3 1.1 1.5 1.5 2 8 0.074 3.5 0.6 1.3 0.137 

X54637 TYK2 1.8 2.4 1.8 1.4 1.7 1.4 2.3 1 0.141 0.8 0.8 1 0.322 

L08807 SH-PTP2 1.6 1.9 1.9 2.3 1.6 1 1.6 2 0.012 2.1 1.3 1.4 0.008 

L29511 GRB2 2.2 2.1 2.5 2 2.7 2.2 2 1.4 0.002 1.4 1.1 0.9 0.01 

M57230 IL-6Rb 2.1 3.2 2.1 1.6 2.7 1.9 1.5 1.1 0.036 1.5 0.9 1.8 0.069 

L05624 MAPKK 1 3.7 6.3 4.1 2.3 2.1 2 1.9 1.6 0.002 0.7 1.3 0.7 0.013 

X02751 N-ras 3.8 1.8 1.5 2.3 2.1 1.1 1 0.7 0.115 0.9 1.1 1.1 0.248 

X03484 c-raf 3 1.7 1.9 2.1 1.3 1.1 1.4 1.8 0.016 1.3 1 0.6 0.083 

U09579 WAF1 3.5 2.5 2.2 2.1 1.5 1.6 1.4 2 0.172 1.2 0.6 1.6 0.215 

L34075 FRAP 2.8 4.1 1.4 2.5 1.7 1.3 2.7 0.4 0.027 1.1 2 0.5 0.075 

Cytokines 

M57627 IL-10 2.4 2.7 1.3 1.8 2 1.7 1.1 1.3 0.016 1.1 0.8 0.8 0.048 

M19154 TGF-β2 2.5 3.1 1.8 1.5 3 2.2 2.3 1.7 0.006 0.9 1 2.6 0.01 

D49950 IL-18 2.3 2.2 1.5 1.2 1.6 1.6 1.1 1 0.093 0.6 1.5 0.5 0.248 

K02770 IL-1β 2.6 2.6 1.7 1.5 2.2 1.9 1.6 1.2 0.046 0.9 0.8 1.5 0.117 

Cytokine receptors 

X77722 INF-α/βR 1.2 2.4 1.2 2.3 2.6 1.5 1.1 0.9 0.046 1.5 0.9 0.8 0.099 

M57230 IL-6Rβ 2.1 3.2 2.1 1.6 2.7 1.9 1.5 1.1 0.036 1.5 0.9 1.8 0.069 

X01057 IL-2Rα/β 3.6 7.1 1 2.1 2.7 2.1 1.1 2.9 0.021 1.6 0.6 0.6 0.058 

M33294 TNFR1 2.8 3 1.9 1.5 2.3 1.5 2.1 2.1 0.141 1.3 1.2 1.8 0.16 

Chemokines / -receptors 

M37435 MCSF 3.8 5.6 1.1 3.1 2.7 2.4 1.9 1.6 0.009 1.4 1.9 1 0.01 

M24545 MCP1 3.7 4.6 2.1 1.6 1.7 1.9 2.2 6.1 0.172 1.3 0.5 1.4 0.215 

U10117 EMAP II 3.1 3.1 1.3 2.9 1.9 2.2 1.4 1.9 0.012 1.9 1 1.1 0.017 

M21121 RANTES 3.5 2.9 0.9 1.1 1.3 1.5 1 2 0.059 1.6 0.7 0.7 0.16 

D10925 CCR1 1.1 4.5 1.3 1.7 2 1.8 1.1 1.2 0.115 0.9 0.6 1 0.283 

M25756 Chromogranin C 2.4 2.5 4.1 2.3 2.7 3.6 5.1 1.9 0.009 0.9 1.8 0.9 0.021 

Adhesion molecules 

J03132 ICAM1 2.2 3.5 2.6 1.8 1.9 1.1 1.2 1.9 0.046 1.2 0.7 2.5 0.048 

X57766 MMP11 1.4 16.9 2.2 1.9 4 3.1 2.1 1.6 0.074 0.9 0.9 1.5 0.137 

M15395 LFA-1 1.7 2.9 1.7 2 4.2 2.4 1.1 0.7 0.059 0.3 1.1 1.1 0.283 

Hypoxia related genes 

U22431 HIF-1α 1.5 6.5 3.6 2.3 2.2 1.8 2 1 0.016 2.3 0.5 1.4 0.021 

Upregulation is shown in dark grey whereas downregulation is shown in yellow. Medians of ratios against all control samples are 

shown for each MS sample. Statistical significance is expressed as p-value (non-parametric Mann-Whitney U-Test). P-values were 

calculated for the major group (*) and for all MS cases (**). P-values below 0.05 are printed in bold numbers, whereas p-values 

between 0.05 and 0.1 are shown in italic numbers. 
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Changed expression of genes of the JAK/STAT signalling pathway 

One of the major pathways involved in immune regulation is the JAK/STAT signalling 

pathway (Dell'Albani et al., 2003). By microarray and quantitative RT-PCR analysis of 

MS NAWM, we observed changes in the regulation of gene expression of several 

genes known to be involved in the JAK/STAT signalling pathway (Table 3, Fig. 2A-

D). One member of the STAT family, STAT6 was upregulated in all MS cases (Table 

3, Fig. 2A, p=0.005). Furthermore, we also found STAT3 to be significantly 

upregulated in these MS NAWM (Table 3). The other members, STAT1, 2, 4, 5a and 

5b could not be detected by microarray analysis. However, using the more sensitive 

qRT-PCR, we revealed that STAT4 was also significantly upregulated in MS cases 

(Fig.2D, p=0.002). To identify the cell types expressing STAT4 and STAT6, we 

performed a immunofluorescent colocalization study (Fig. 3 and 4). Most of the 

STAT4 expressing cells were CD68-positive, suggesting that the main cell population 

expressing STAT4 are activated microglia (Fig. 3A, arrow). Occasionally, we 

identified STAT4-positive astrocytes (Fig. 3B, arrow). We did not detect any STAT4-

positive oligodendrocytes or neurons in MS NAWM. In contrast, immunofluorescent 

staining for STAT6 showed that STAT6 was mostly in cells expressing OLIG2 (Fig. 

4A, arrows), demonstrating that cells of the oligodendrocyte lineage were the main 

cell population expressing this transcription factor. The arrangement of 

STAT6/OLIG2-positive cells in interfascicular rows indicates an expression by 

myelinating oligodendrocytes. However, STAT6 expression was not limited to 

oligodendrocytes, as occasionally GFAP/STAT6-positive astrocytes were also 

detected in the NAWM (Fig. 4B, arrow). Colocalization with neurofilament revealed 

STAT6/ Neurofilament-positive neurons in the NAWM as well (Fig. 4C, arrow). No 

colocalization of STAT6 together with CD68 could be detected. Triple 

immunofluorescence staining showed sporadically astrocytes positive for both 

STAT4 and STAT6 in the NAWM (Fig. 4D, arrow). 
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The expression of all four members of the JAK family could be detected by 

microarray analysis. Whereas JAK2 and TYK2 were not statistically significant 

changed, JAK1 was significantly upregulated in the NAWM of MS cases (Table 3, 

Fig. 2B). Another member of the JAK tyrosine kinase family, JAK3, was also 

upregulated in MS NAWM but with a weaker significance (Table 3). To identify the 

cell types expressing JAK1, we performed a colocalization immunofluorescent study, 

which revealed the expression of JAK1 in oligodendrocytes expressing MBP (Fig. 4E, 

arrow). Interestingly, we could show a positive correlation of JAK1 (r=0.505, p=0.027) 

Figure 2: Boxplots of selected differentially expressed genes analyzed by quantitative RT-PCR and microarray. qRT-PCR 

was performed for STAT6 (A), IL-4R (C), STAT4 (D), HIF-1α (F), nNOS (G), iNOS (H) and eNOS (I). JAK1 (B) and MCSF 

(E) were analyzed by microarray. Boxplots show differential gene expression in control white matter and MS NAWM. 

Genes significantly upregulated in MS NAWM are marked with an asterisk. 
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Figure 3: Immunofluorescence localization of STAT4 in MS NAWM. Colocalization analysis showed STAT4 being expressed 

in CD68 positive cells (A, arrow). Furthermore, we could show some astrocytes positive for STAT4 (B, arrow). We did not 

detect any neurons or oligodendrocytes positive for STAT4 in the NAWM. Bar = 20µm 

and JAK3 (r=0.530, p=0.020) expression levels to the expression levels of STAT6 

within the different MS cases. Although an overall increase in expression of JAK2 

and TYK2 in MS could also be observed, the upregulation was not statistically 

significant. Other genes belonging to the JAK/STAT signalling pathway, such as SH-

PTP2 and GRB2 were also significantly upregulated in MS NAWM (Table 3). 

Furthermore, we found the upregulation of neuroblastoma RAS viral (v-ras) 

oncogene homolog (N-RAS), v-raf-1 murine leukemia viral oncogene homolog 1 (c-

raf) in some and mitogen-activated protein kinase kinase 1 (MAPKK1) in most MS 

cases. Also, cyclin-dependent kinase inhibitor 1A (p21, WAF1) and FK506 binding 

protein 12-rapamycin associated protein 1 (FRAP1) were upregulated in the majority 

of the MS cases. In summary, our results show the upregulation of genes from the 

Interleukin-4/Interleukin-13 signalling pathway expressed by oligodendrocytes and 

genes of other JAK/STAT signalling pathways in resident brain cells in a majority of 

the MS cases studied.  
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Figure 4: Immunofluorescence localization of STAT6, JAK1, IL-4R and IL-13R in MS NAWM. STAT6 was mostly colocalized 

together with the oligodendrocytes marker OLIG2 (A, arrows). In few cases colocalization with astrocytes (B, arrow) and 

subcortical white matter neurons (C, arrow) could be observed. Sporadically, we could detect some astrocytes positive for both, 

STAT4 and STAT6 (D, arrow). Additionally, we could show that JAK1 mostly colocalized together with the myelin protein MBP 

(E, arrows). Furthermore, IL-4R (F, arrows) and Il-13R (G, arrows), the main receptors leading to STAT6 activation, colocalized 

with STAT6 and OLIG2. Bar = 20µm 
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Upregulated cytokine and cytokine-receptor expression in NAWM of MS 

patients 

Changes in the balance between pro- and anti-inflammatory cytokines and their 

receptors have been implicated in the pathogenesis of MS. Therefore, we 

investigated the expression pattern of cytokines and their receptors in the NAWM of 

MS patients (Table 3). Most strikingly, we observed a significant upregulation of the 

anti-inflammatory cytokines interleukin 10 (IL-10) and transforming growth factor beta 

2 (TGF-β2) in the MS cases. On the other hand, IL-18 and IL-1β also showed 

elevated expression levels in the majority of MS cases. Other cytokines such as 

TGF-α and TGF-β3 showed only minor changes or were even decreased in some 

MS cases (data not shown). An endogenous expression of most of the cytokines, in 

particular IL-4, IL-6, IL-12, IL-13, IL-17, IL-23 and IFN-γ could not be detected by 

microarray analysis or by quantitative RT-PCR. 

 

Microarray analysis of cytokine receptors revealed detectable expression of IL-2 

receptor subunit alpha (IL-2Rα), IFN-γ receptor, IFN-alpha/beta receptor, IL-6 

receptor (IL-6R) and tumor necrosis factor receptor 1 (TNFR1; Table 3). We detected 

an upregulation of the IL-6Rβ subunit (gp130) and TNFR1 in 9 out of 11 MS samples. 

In contrast to IL-6Rβ, which was significantly upregulated in MS NAWM, upregulation 

of TNFR1 was not statistically significant due to the fact that several control samples 

had also relative high TNFR1 expression levels (Table 3). One of the most 

consistently upregulated cytokine receptors was the interleukin-2 receptor alpha (IL-

2Rα). Its co-receptors IL-2Rβ and IL-2Rγ, however, could not be detected by 

microarray (data not shown). Significant upregulation was also detected for the IFN-

α/β receptor, whereas the IFN-γ receptor was only upregulated in 2 of 11 MS 

samples (Table 3).  

 

To investigate the anti-inflammatory signalling pathway of STAT6, JAK1 and JAK3 in 

more detail, we examined the expression pattern of one of its main receptors, the IL-

4 receptor (IL-4R), by quantitative RT-PCR. We detected elevated expression levels 

of IL-4R in MS NAWM (Fig. 2C). Even though we could detect an overall higher 

expression of IL-4R in MS NAWM samples this was not statistically significant. The 

reason for this is a relative high expression of one of the controls (CLo6), and in 
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addition, a moderate expression of IL-4R in the three cases of the minor group. 

However, IL-4R expression levels correlated well with the expression levels of STAT6 

(r=0.657, p=0.008) within the analyzed tissue samples. Immunofluorescent 

colocalization study with STAT6 revealed STAT6/IL-4R positive oligodendrocytes 

throughout the NAWM (Fig.4F). Furthermore, immunofluorescent colocalization study 

for IL-13 receptor (IL-13R), which is another STAT6-activating receptor, revealed 

STAT6/IL-13R positive oligodendrocytes in the MS NAWM as well (Fig.4G). In 

summary, our results show that oligodendrocytes in MS NAWM are expressing the 

necessary components for STAT6/JAK1 signalling. 

 

Upregulated chemokines and chemokine receptor expression in NAWM of MS 

patients 

Chemokines and chemokine receptors play a critical role in the recruitment of 

lymphocytes and other inflammatory cells into the CNS (Sospedra and Martin, 2005). 

Microarray analysis revealed significant upregulation of several chemokines in MS 

NAWM (Table 3), in particular chromogranin C, monocyte colony-stimulating factor 

(MCSF) and endothelial-monocyte-activating polypeptide (EMAP-II). Boxplot analysis 

for MCSF shows an overall low-level expression in control cases and upregulation in 

almost all MS cases (Fig. 2E). Although monocyte chemotactic protein (MCP-1) 

showed an upregulation in all MS cases of the major group (Table 3), this was not 

statistically significant because MCP-1 expression among control cases was highly 

variable (data not shown). Other chemokines such as RANTES and its receptor 

CCR1 also showed elevated expression levels in particular MS cases, but for the 

same reason as for MCP-1 these were not statistically significant. Altogether, we 

could demonstrate that the expression levels of several chemokines involved in the 

attraction of peripheral immune cells into the CNS were increased. 

 

Differential gene expression of cell adhesion molecules 

Cell adhesion molecules play an essential role in many inflammatory processes, 

such as blood-brain-barrier changes, cell migration and differentiation. Therefore, we 

investigated the gene expression profile of different cell adhesion molecules (Table 

3). Most of these genes did not show altered expression levels with the exception of 
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ICAM-1, which was significantly upregulated in the majority of the MS cases (Table 

3). Others such as LFA-1β had a more heterogeneous expression pattern (Table 3). 

Matrix metalloproteinases (MMP) are also implicated in the pathogenesis of the 

inflammatory process in MS, but our microarray study revealed that only MMP-11 

(stromelysin-3) was upregulated in MS NAWM. MMP-7, MMP-9 and MMP-16 were 

found constitutively expressed in all control and MS cases, but their expression levels 

were not altered.  

 

Upregulation of HLA-DRαααα in MS NAWM 

The expression of the major histocompatibility complex HLA-DR α-chain, crucial for 

antigen presentation, was upregulated in the majority of MS cases, whereas 

upregulation of HLA II DP α-chain was less evident and only detected in a subset of 

MS cases (data not shown). To identify cells expressing HLA-DRα, we performed in 

situ hybridization analysis (performed by Sacha Zaugg during his master thesis). This 

revealed the expression of HLA-DRα mRNA throughout the NAWM of the majority of 

MS cases (Fig. 5A), whereas in control white matter HLA-DRα was not detectable 

(Fig. 5B). Due to the morphology of the HLA-DRα expressing cells - small cells with 

thin processes - we identified most of the HLA-DRα expressing cells as microglia 

(Fig. 5C). Colocalization with anti-GFAP immunohistochemistry revealed that some 

astrocytes might also express HLA-DRα (data not shown). In summary, our data 

indicate that a part of the HLA Class II complex, especially HLA-DRα, is upregulated 

in MS NAWM. 
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Upregulation of the neuronal- but not of the inducible and endothelial nitric 

oxide synthase 

Nitric oxide (NO), and thus nitric oxide synthases (NOS) play an important role under 

physiological as well as pathological conditions (Smith and Lassmann, 2002). 

Therefore, we performed qRT-PCR analysis and detected upregulation of the 

neuronal form of NOS (nNOS), in most of the MS NAWM tissue samples (Fig. 2G). In 

contrast, the inducible NOS (iNOS) showed comparable expression levels in MS 

NAWM as in controls cases (Fig. 2H). Also the expression of endothelial NOS 

(eNOS) in MS NAWM showed no difference to the control cases (Fig. 2H, I). 

 

Upregulation of HIF-1αααα in NAWM 

In our previous microarray study we showed that HIF-1α, a key regulator of hypoxia-

induced gene regulation, and its downstream genes were significantly upregulated in 

MS NAWM (Graumann et al., 2003). Quantitative RT-PCR analysis in 11 MS and 8 

Figure 5: In situ hybridization of HLA-DR mRNA in MS and control white matter. 

Many HLA-DRα positive cells were detected in the NAWM of MS cases (A) compared with 

white matter from control cases where the hybridization signal was below background levels 

(B). In situ hybridization shows that HLA-DRα mRNA expression in cells of the NAWM 
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control cases for HIF-1α revealed a consistent upregulation of HIF-1α in MS NAWM 

(Fig. 2F, p=0.002), verifying our  microarray data (Graumann et al., 2003). In order to 

identify the cell types expressing HIF-1α, we performed in-situ hybridization analysis 

(Fig. 6, performed by Ralf Brunner during his master thesis). We found that in 

subcortical white matter of control cases HIF-1α mRNA could not be detected (Fig. 

6A), indicating an overall weak expression in white matter. However, in MS NAWM 

HIF-1α hybridization signals became detectable in a number of cells throughout the 

NAWM (Fig. 6B, arrows). Colocalization analysis for GFAP revealed that a small 

subpopulation of astrocytes expressed HIF-1α (Fig. 6C). Other HIF-1α positive cells 

were arranged in interfascicular rows, suggestive of myelinating oligodendrocytes 

(Fig. 6D, arrows). 

 

Figure 6: In situ hybridization of HIF-1α mRNA in MS and control white matter.  

In subcortical white matter of control cases HIF-1α could not be detected (A). In MS NAWM, 

however, we could detect a hybridization signal for HIF-1α mRNA in a number of cells (B). 

Colocalization with anti-GFAP immunohistochemistry revealed a subpopulation of astrocytes 

expressing HIF-1α (C, arrow), whereas other astrocytes were negative for HIF-1α (C, 

arrowhead). Due to the chain-like arrangement and their morphology, we suggest that Hif-1α is 

also expressed by oligodendrocytes (D, arrows). Bars = 25µm 
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Discussion 

Very little is known about the earliest intrinsic changes to the CNS occurring in MS 

before the appearance of overt inflammatory and demyelinating plaques. The normal 

appearing non-lesional white matter looks normal from a morphological and cellular 

point of view. However, MRI and gene expression studies have shown significant 

changes in NAWM that might give indications concerning both, the early changes 

occurring before lesion formation and the attempts by the CNS to prevent the same 

(Aboul-Enein et al., 2003; Fu et al., 1998; Graumann et al., 2003; Silver et al., 2001). 

Furthermore, most recent data suggests a diffuse inflammatory damage spreading 

throughout the whole brain in the chronic phase of the disease associated with slow 

progressive axonal injury at sites without inflammation (Kutzelnigg et al., 2005). In 

order to identify pre-lesional changes and immunological regulators, we analyzed the 

gene expression profile in the NAWM of 11 MS cases. All tissue included in this 

study was routinely screened by a neuropathologist and showed no signs of 

additional neurological diseases. Tissue from MS cases with confounding 

pathologies such as hypoxic neurons, fibrillary tangles or metastasis as well as 

accumulation of inflammatory cells or demyelination were excluded from this study. In 

particular, subcortical NAWM tissues revealed almost no T-cell infiltration. In line, T-

cell specific transcripts were rarely detectable in single MS cases and no correlation 

of genes from the STAT signalling pathways and T-cell specific transcripts could be 

made. In addition, we could not detect any CD3/STAT6-expressing cells in MS 

NAWM. As gene expression changes were obtained by comparing MS cases with 

age-matched control cases, detection of differential gene expression due to age-

related mechanisms was avoided. This so-defined NAWM tissue is ideal to study the 

intrinsic changes of brain cells during the long-lasting disease course of MS. 

 

Hierarchical cluster analysis of the MS cases based on the similarities of their 

expression pattern revealed two possible groups. But, no grouping according to the 

MS type could be identified. Possibly, gene expression changes in the MS NAWM 

from different MS types might equalize during the long-lasting progressive disease 

course. As gene expression changes taking place in the MS NAWM do not depend 

upon the MS type, this allowed us to combine gene expression data from all MS 

types. 
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Altogether, our analysis revealed that genes involved at different levels of the 

inflammatory response, such as signalling, transcription, cell adhesion and antigen 

presentation, were upregulated in the MS NAWM. Most interestingly, we detected 

upregulation of genes linked to both anti- as well as pro-inflammatory mechanisms. 

Two central players involved in these two mechanisms are the transcription factors 

STAT6 and STAT4 (Pfitzner et al., 2004).  

 

Diffuse damage of the CNS might be due to pro-inflammatory microglia in the 

MS NAWM 

We found that in the NAWM, STAT4, a characteristic marker for pro-inflammatory 

mechanisms, was generally expressed by CD68-positive cells suggestive for 

activated microglia; occasionally astrocytes as well. In line, an upregulation of HLA-

DRα, known to be generally expressed by microglia, was detected in the NAWM of 

MS cases. STAT4 is involved in IL-12 and IL-23 mediated signalling and as a 

consequence in Th1 cell differentiation (Watford et al., 2004). The upregulation of 

STAT4 found in the NAWM tissue is strikingly prominent and might point to the 

development of a pro-inflammatory environment allowing or facilitating the infiltration 

of peripheral immune cells into the CNS. This is supported by a study investigating 

the role of STAT4 in the development of local allergic airway response. In this study, 

STAT4 knockout mice showed a significant decrease in airway hyperactivity via local 

alteration of chemokine production, such as CCL5, CCL6, CCL11 and CCL17 

(Raman et al., 2003). Furthermore STAT4 is known to play a major role in IFN-γ 

regulation and is involved in the induction of IL-2R (Watford et al., 2004). Also 

involved in IL-12 and IL-23 signalling are the Janus kinases JAK2 and TYK2, which 

were upregulated in some MS cases. Furthermore, IL-1β, which is described as a 

pro-inflammatory cytokine primarily secreted by activated microglia cells and 

infiltrating macrophages (Correale and Villa, 2004) was significantly upregulated in 

MS NAWM. An enhanced expression of IL-1β might also be one cause of the 

reported diffuse damage of the CNS (Kutzelnigg et al., 2005), as intracerebral 

microinjections of IL-1β induced death of intrinsic CNS cells (Holmin and Mathiesen, 

2000). The view of microglia playing a pro-inflammatory role in MS NAWM is further 

supported by a study showing that a blockage of microglial release of nitrite oxide, 
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pro-inflammatory cytokines and chemokines, resulted in a strong reduction of CNS 

inflammation and an amelioration of the clinical signs in EAE (Heppner et al., 2005). 

Furthermore, in MS NAWM, we could detect the upregulation of several chemokines, 

such as MCSF, EMAP II, MCP-1 (CCL2), ICAM-1 and RANTES (CCL5). This is inline 

with a study which showed an increased MCSF expression in the periplaque white 

matter of MS cases (Werner et al., 2002). Altogether, we speculate that the alteration 

of the pro-inflammatory gene expression pattern in resident cells of the NAWM, most 

likely microglia, could prepare or later contribute to the enhancement and facilitation 

of the infiltration of active immune cells into the CNS. At this point, the production of 

these pro-inflammatory signals might still not be enough to promote T-cell recruitment 

but they might be already deleterious for the CNS, as the expression of one specific 

cytokine under certain circumstances can already lead to an infiltration of immune 

cells into the CNS (Chiang et al., 1996). 

 

Are oligodendrocytes playing an active role in immune regulation in the CNS? 

A major finding of this study was the upregulation of genes involved in anti-

inflammatory mechanisms in MS NAWM, illustrated by the upregulation of IL-10, a 

potent anti-inflammatory cytokine known to inhibit the activation of monocytes, 

dendritic cells and macrophages (Beebe et al., 2002). Furthermore, TGF-β2, which 

was reported to reduce demyelination and macrophage recruitment in a viral model 

of MS (Drescher et al., 2000), was strongly upregulated in NAWM of most of the MS 

cases. However, most interesting was the finding that STAT6 was upregulated in the 

NAWM of all MS cases. Although the function of STAT6 is not yet fully determined, 

this transcription factor is known to be involved in anti-inflammatory pathways. 

STAT6 is one of the major steps in IL-4 and IL-13 signalling (Takeda et al., 1997) and 

this is further demonstrated by the exacerbation of EAE in STAT6-deficient mice 

(Chitnis et al., 2001). The main cells expressing STAT6 in the MS NAWM were found 

to be oligodendrocytes. Furthermore, JAK1, IL-4R and IL-13R, all belonging to the 

STAT6 signalling pathway (Hebenstreit et al., 2006), were also expressed by 

oligodendrocytes. In the case of JAK1 and IL-4R, this is in agreement with the 

findings of Cannella and Raine (2004). Comparison of the expression pattern of 

STAT6, IL-4R, JAK1 and JAK3 showed a strong correlation within the different 

cases. This suggests an overall upregulation of the STAT6 signalling pathway in 
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oligodendrocytes. Additionally, we show that HIF-1α, a transcription factor inducing 

hypoxic preconditioning (Bergeron et al., 2000), is also expressed in 

oligodendrocytes in MS NAWM. Therefore, we hypothesize that in contrast to the 

pro-inflammatory response, the protective, anti-inflammatory response in the NAWM 

is mounted predominantly by oligodendrocytes. This conclusion is supported by a 

recent study showing that oligodendrocytes are capable of mounting protective 

mechanisms preventing demyelination (Lin et al., 2007). Furthermore, it was recently 

reported that mice with suppressed oligodendrocyte responsiveness to IFN-γ 

developed EAE with an accelerated onset and markedly increased oligodendrocyte 

apoptosis (Balabanov et al., 2007). In the same study, oligodendrocytes were shown 

to be capable of expressing several chemokines. This supports the view of 

oligodendrocytes participating in the regulation of CNS intrinsic immunity. Therefore, 

we speculate that the exacerbation of EAE in STAT6 knockout mice (Chitnis et al., 

2001) might also result from the deficiency in activating the STAT6 signalling 

pathway in oligodendrocytes. Because oligodendrocytes are highly susceptible to 

inflammation mediated damage it may be crucial for them to compensate for the 

upregulated pro-inflammatory environment and to limit the inflammatory response 

and damage. The upregulation of an anti-inflammatory, and therefore also 

neuroprotective, environment in the MS NAWM is further supported by the activation 

of other neuroprotective pathways shown in our previous NAWM study (Graumann et 

al., 2003). 

 

Are signals from lesions leading to an imbalance of inflammatory mechanisms 

in NAWM or vice versa? 

We hypothesize that there are two possible reasons for the differential regulation of 

immune modulating genes in the cells of the NAWM. One possibility could be that 

diffusing, soluble factors released by activated inflammatory cells found in active MS 

lesions might activate and modulate inflammatory gene expression in resident cells 

of the distant NAWM. This idea is supported by a study using quantitative magnetic 

resonance imaging (MRI) techniques, where the authors suggest that axonal damage 

and demyelination in NAWM mainly arise as a secondary result of visible lesions with 

the largest effect close to these lesions (Vrenken et al., 2006). With the exception of 

IL-1β, IL-10, IL-18 and TGF-β2, most cytokines could not be detected by microarray 
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in MS NAWM, which suggests that these cytokines are not, or very weakly, 

expressed in NAWM tissue. Because we observed STAT4 and STAT6 upregulation 

in MS NAWM, we performed quantitative RT-PCR to identify the possible expression 

of their main activating cytokines, IL-4, IL-13, IL12 and IL-23. The absence of IL-4, IL-

12, IL-13 and IL-23 expression on one hand, and the simultaneous upregulation of 

genes from the STAT4 and STAT6 pathway in MS NAWM on the other hand, further 

imply that extrinsic signals might influence the expression of immune modulating 

genes in the resident cells of the CNS. Additionally, this might be supported by the 

fact that in different tissue samples from the same MS case some genes are 

differently regulated, such as MCSF or CCR1 in the case of MS1. 

 

Another possibility could be that brain intrinsic events such as impairment of 

oligodendrocyte and/or neuronal function, and subsequent astrocyte and microglia 

activation may be the initial cause for the differential gene regulation observed in 

NAWM. This hypothesis is supported by the upregulation of the endogenous 

neuronal NOS (nNOS), but not of the inducible NOS (iNOS) and endothelial NOS 

(eNOS), suggesting a parenchymal deregulation. Immune modulating signals from 

the periphery would first activate microglia inducing iNOS or endothelial cells of the 

blood-brain-barrier activating eNOS. Moreover, the upregulation of HIF-1α in 

oligodendrocytes and neurons supports the view of oligodendrocyte and/or neuronal 

dysfunction in the NAWM as a possible primary cause. This idea is supported by a 

study of relapsing-remitting MS cases, showing widespread oligodendrocyte 

apoptosis as the earliest change in lesions in which other cells appeared normal 

(Barnett and Prineas, 2004). It could be that in certain regions of the NAWM 

activated endogenous neuroprotective mechanisms may gradually fail. This may lead 

to an imbalance between protective and pro-inflammatory mechanisms facilitating 

lesion formation. 

 

Is MS NAWM in a subtle balance between inflammation and neuroprotection? 

Overall our results suggest that although the NAWM of MS patients shows no visible 

signs of active inflammation, many different genes are expressed in the tissue, which 

are known to be involved in the regulation and activation of the immune response 

that are normally not expressed in the CNS. The expression of pro- as well as anti-
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inflammatory genes in the NAWM of the MS brain suggests that the CNS is in a state 

of low-level inflammation and an unsteady balance between protection and 

inflammation. This is further reflected by the heterogeneous regulation of cell 

adhesion molecules, matrix metalloproteinases and genes of the HLA complex. Yet, 

this combination of inflammatory factors seems not to be enough to promote T-cell 

recruitment. Possibly, these immune modulating genes are expressed below an 

active threshold or not in the required combination. The expression of the different 

subunits of the interleukin 2 receptor may also suggest that some of these 

mechanisms are not yet functionally active. Furthermore, the presence of competing 

anti-inflammatory mechanisms may inhibit infiltration of peripheral immune cells. 

Nevertheless, the activation of pro-inflammatory components might contribute to the 

reported diffuse damage of the CNS in MS (Kutzelnigg et al., 2005). 

 

In summary, we show that a substantial set of genes involved in inflammation is 

expressed in resident cells of the NAWM. These genes are specifically regulated in 

the NAWM of MS patients compared with healthy controls, indicating an activation of 

the intrinsic immune regulation of the CNS, whereat oligodendrocytes actively 

participate. Therefore, the MS NAWM may be in a state of subtle balance between 

inflammation and neuroprotection, leading to an immune preconditioning of the non-

infiltrated NAWM.  
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Abstract 

A stereotactic biopsy of a seventeen year-old woman revealed an acute inflammatory 

demyelinating lesion compatible with pattern III multiple sclerosis according to 

Lucchinetti et al.(Lucchinetti et al., 2000) The biopsy included a region distant from 

the active inflammatory demyelinating lesion with abnormal MRI signal, however 

lacking histopathological signs of demyelination and/or oligodendrocyte apoptosis. 

Expression analysis of this area revealed a strong upregulation of neuronal nitric 

oxide synthase (nNOS). Furthermore, detection of nitrotyrosine provided evidence for 

reactive nitrogen species (RNS) mediated damage to oligodendrocytes. 

Concomitantly, genes involved in neuroprotection against oxidative stress such as 

heme oxygenase 1 were upregulated. This study shows for the first time earliest 

molecular changes in white matter distant to actively demyelinating lesions during the 

first manifestation of MS, pointing towards a more widespread pathological process. 

Therapeutic targeting of the identified mechanisms of tissue injury might be crucial to 

prevent further lesion formation as well as secondary tissue damage.  

 

Introduction 

Multiple sclerosis (MS) is a chronic, inflammatory demyelinating disease of the 

central nervous system (CNS) with great heterogeneity in clinical course, response to 

therapy and lesion pathogenesis. In 2000, four different patterns of demyelination 

were suggested.(Lucchinetti et al., 2000) One of these, pattern III, is characterized by 

an early selective loss of myelin-associated glycoprotein (MAG) associated with 

oligodendrocyte apoptosis. Oligodendrocyte apoptosis in the absence of significant 

inflammatory cell infiltrates has also been described as a possible initial event of 

lesion formation, and has been designated as `pre-phagocytic` stage of 

demyelinating MS lesions.(Barnett and Prineas, 2004) As a potential cause of 

oligodendrocyte apoptosis in MS nitric oxide (NO) was suggested.(Smith and 

Lassmann, 2002) Recently, one isoform of NO synthase, neuronal nitric oxide 

synthase (nNOS), was reported to play a key role in CNS demyelination.(Linares et 

al., 2006) In our study, we analyzed white matter without signs of demyelination or 

oligodendrocyte apoptosis (from a region with abnormal T1 and T2 weighted MRI 

signal) distant from the actively demyelinating pattern III lesion. Gene expression 
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analysis revealed strong upregulation of nNOS, but only minor upregulation of 

inducible nitric oxide synthase (iNOS) and endothelial nitric oxide synthase (eNOS). 

This and the finding of nitrotyrosine-immunoreactive oligodendrocytes, indicative of 

NO-mediated damage, support the view of early, widespread damage to 

oligodendrocytes preceding active demyelination with oligodendrocyte apoptosis 

seen in pattern III MS. 

 

Materials and Methods 

Stereotactic brain biopsy and histopathological examination 

Biopsy specimens were taken from three different target regions in the frontal 

subcortical white matter (Figure 1B and D). Four biopsy specimens were formalin-

fixed and embedded in paraffin (3) or epon (1) for diagnostic purposes; two others 

were snap-frozen for RNA extraction and transferred to our lab for molecular 

analysis. Conventional myelin staining was performed with Holmes/Luxol. 

Immunohistochemical staining was performed as described before.(Graumann et al., 

2003; Lucchinetti et al., 1998; Stadelmann et al., 2005) Detection of reactive nitrogen 

species (RNS), in particular peroxynitrite mediated damage was performed by 

immunofluorescent staining with anti-nitrotyrosine antibody as described before.(Jack 

et al., 2007) For detection of fragmented DNA, terminal deoxynucleotidyl transferase-

mediated dUTP nick end labeling (TUNEL) was used as described.(Stadelmann et 

al., 1998)  

 

RNA isolation and quantitative RT-PCR analysis 

Total RNA isolation and quantitative RT-PCR analysis was performed as previously 

described.(Graumann et al., 2003; Zeis et al., 2008) Expression data obtained from 

the biopsy of the patient were compared to expression levels of the subcortical white 

matter from brain tissue obtained from post-mortem control cases and normal 

appearing white matter (NAWM) of MS cases as previously described in 

detail.(Graumann et al., 2003; Zeis et al., 2008) In addition, expression data were 

also compared to a control autopsy from a 36 year old patient without neurological 

disease (C25, male, cause of death: carcinoma of the tongue). As the amount of 
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RNA derived from the biopsied patient was very limited, qRT-PCR analysis was 

performed at least in duplicates and for particular genes (e.g. nNOS, iNOS) in 

triplicates. 

 

Results 

Case Report 

A previously healthy, seventeen-year-old woman was hospitalized with subacute 

progressive global aphasia, right-sided hemiparesis, difficulty in walking and 

dysphagia. Neurological examination revealed right sided hemianopsia and right 

hemiplegia with hemihypaesthesia with extensor plantar response. Laboratory tests 

for rheumatic factors, antinuclear antibodies, c-ANCA, p-ANCA as well as CNS 

serology for HIV, HSV, VSZ, measles, mumps, FSME, syphilis and Lyme disease 

were negative. Urine sediment, as well as vitamins B12, B1 and E were normal. 

Analysis of the cerebrospinal fluid (CSF) revealed a pleocytosis (43 leukocytes x106/l; 

normal value <5), increased protein (548mg/l; normal value 180-480mg/l) and more 

than 5 oligoclonal bands. T1-weighted MRI showed a large hypointense lesion of the 

subcortical white matter extending throughout the left hemisphere, hyperintense on 

T2-weighted scans (Figure 1A). Gadolinium enhanced T1 MRI revealed a punctate 

garland-like enhancement in the fronto-parietal subcortical white matter (Figure 1B, 

arrow), which was only seen on the second MRI, 10 days after admission. Because 

of the pseudotumoral lesion characteristics, stereotactic biopsy from three different 

target regions in the frontal subcortical white matter was undertaken on day 15 of 

hospitalization (Figure 1B and D). Initial high dose steroid treatment followed by a 

course of i.v. immunoglobulins did not lead to a therapeutic response, whereas in 

subsequent months there was a slow improvement of the neurological deficits. No 

relapses occurred in the following 5 years. In a routine follow-up MRI investigation 5 

years after the initial presentation, two new lesions were observed in the contralateral 

hemisphere (Figure 1C, arrows). Two months later a relapse occurred with increased 

ataxia, aphasia and sensory-motor impairment on the right side. Brain MRI displayed 

new lesions with diffusion restriction and gadolinium enhancement in the left 

brachium pontis (not shown). The patient underwent steroid and mitoxantrone 

therapy. After further 5 months she suffered from another relapse with 
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hyperaesthesia of the left leg. Spinal MRI showed intramedullar hyperintense lesions 

in the cervical (C2) and thoracic (Th5/6 and Th10/11) spinal cord. Thus, she fulfilled 

the diagnostic criteria for MS.(McDonald et al., 2001; Poser, 2006)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: MRI analysis of the index patient 

A T2-weighted MRI during the first manifestation displays a large confluent hyperintense lesion in the 

subcortical white matter of left hemisphere (A) with mass effect (arrowhead). Gadolinium enhanced T1-

weighted MRI revealed a punctate, garland-like enhancement in the subcortical white matter (B, arrow). Red 

lines mark schematically the three target regions from which the stereotactic biopsy specimens were taken 

(B). A routine follow-up MRI investigation after 5 years revealed three new white matter lesions in the 

contralateral hemisphere (C, white arrows). Black arrow points to tissue destruction by one of the 

stereotactic brain biopsies (C). A CT picture (D) illustrates the three target regions of the biopsy specimens 

taken from the frontal subcortical white matter (arrows). Note, CT signal enhancement by bleedings caused 

by the excision of tissue is visible (D, arrows 1 and 2). Note, that the origin of all biopsy specimens was in 

regions of abnormal T1, T2 and CT signals, but only some biopsy specimens contained inflammatory 

demyelinating lesion, whereas others contained histomorphologically normal appearing white matter only. 
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The active demyelinating lesion reveals MS pattern III-like pathology 

In one of the three formalin-fixed and paraffin-embedded biopsy specimens taken 

from target region 1 (Figure 1B, D), a demyelinating lesion was seen (Figure 2A) with 

perivascular lymphocytic cuffs (Figure 2A, inset arrow) and dense infiltrates of foamy 

macrophages (Figure 2B) containing MOG-positive myelin debris (Figure 2E, arrows) 

indicating early active demyelination. In contrast to myelin oligodendrocyte 

glycoprotein (MOG) and PLP (Figure 2C), the specific absence of myelin-associated 

glycoprotein (MAG, Figure 2D) was apparent. In addition, oligodendrocytes with dark 

and fragmented nuclei suggestive of apoptosis were found within the lesion, which 

was confirmed by TUNEL staining (Figure 2F, arrow). Altogether, this pathology is in 

agreement with a pattern III lesion type according to Lucchinetti et al.(Lucchinetti et 

al., 2000) 

 

White matter with no signs of demyelination or inflammation was included in 

the biopsy 

Histopathology of another formalin-fixed biopsy specimen, taken from the target 

region 2 (Figure 1B, D), showed normally myelinated white matter with signs of slight 

microglia activation, but no evidence of inflammatory infiltrates or active 

demyelination (data not shown). One additional fixed biopsy specimen of target 

region 3 showed a small very focal, sharp bordered lesion alternating with 

histopathologically normal appearing tissue without any inflammatory infiltrates (data 

not shown). 

The two fresh snap frozen biopsy tissue specimens, taken from target regions 2 and 

3 (Figure 1B,D), revealed white matter with no signs of inflammation or demyelination 

(Figure 2G,H). This was evidenced by homogenous expression of proteolipid protein 

(PLP, Figure 2G) and other myelin proteins. Perivascular lymphocytes were absent 

(Figure 2I, arrow points to a blood vessel), however, a number of CD68 positive 

microglia were detected throughout the tissue (Figure 2K). In addition, activated 

astrocytes were evidenced by increased immunoreactivity for glial fibrillary acid 

protein (GFAP, Figure 2L). Signs of microglia and astrocyte activation may 

correspond to hypointense alterations observed on T1-weigthed MRI as well as 

hyperintense alterations on T2-weighted MRI (Figure 1A).(Bruck et al., 1997; Fisher 

et al., 2007) These white matter tissues, revealing no signs of demyelination or 
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inflammation (Figure 2G-L) - although abnormal in MRI - were used for the qRT-PCR 

analysis. 

 

Characterization of the non demyelinated white matter reveals high levels of 

nNOS expression and nitric oxide mediated damage of oligodendrocytes  

To characterize earliest molecular changes in the non demyelinated white matter, we 

performed quantitative RT-PCR for selected genes (Table). As NO is suggested to 

play an important role in MS pathogenesis and lesion formation, we investigated the 

expression pattern of the three NO producing enzymes: nNOS, iNOS and eNOS. The 

most striking result was the high expression level of nNOS in the non demyelinated 

white matter of the biopsied patient compared to the low nNOS expression levels in 

subcortical white matter of control and NAWM of MS post-mortem brains. We could 

also detect slightly elevated levels of the expression of iNOS and eNOS (Table). 

Immunohistochemical analysis for iNOS revealed moderate expression in the non 

demyelinated white matter of the biopsied patient, most probably in microglia or 

astrocytes (Figure 2M, arrow). The low induction of iNOS expression was also 

evident by qRT-PCR (Table). In contrast, a high expression of iNOS was detected 

within the inflammatory lesion, where macrophages and activated microglia were 

strongly positive for iNOS (data not shown). 

Staining of the non demyelinated white matter with an anti-nitrotyrosine antibody 

revealed an accumulation of nitrotyrosine on myelin and oligodendrocytes far-away 

from the actively demyelinating lesion (Figure 2N), pinpointing to a peroxynitrite-

mediated damage to oligodendrocytes . However, apoptotic oligodendrocytes were 

only detected in the actively demyelinating lesion (Figure 2F). 

 

Molecular analysis of the non demyelinated white matter suggests early 

changes in oligodendrocytes 

Since MS pattern III pathology was postulated to reflect an oligodendrogliopathy, we 

analyzed oligodendrocyte specific genes involved in myelin maintenance. MOG and 

myelin basic protein (MBP) displayed comparable expression levels in the biopsied 

patient and in the subcortical white matter of post mortem brains from control and MS 

cases (Table). However, much higher expression levels of MAG and PLP were 
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detected in the non demyelinated white matter of the biopsied patient. Compared 

with the expression levels of both, old and young (C25) post-mortem control tissue, 

an upregulation of about four times was observed (Table). Furthermore, platelet-

derived growth factor B (PDGFB), known to influence oligodendrocyte 

development,(Silberstein et al., 1996) was 9-fold upregulated in the biopsied patient. 

Analysis of genes implicated in oligodendrocyte development and known to be 

expressed by oligodendrocyte precursor cells such as platelet-derived growth factor 

receptor alpha (PDGFRα) and early growth response protein 1 (EGR1/Krox24), 

revealed also increased expression levels in the biopsied patient. However, a 

comparable expression level of PDGFRα was detected in the young control autopsy 

(C25) suggesting age-related regulation (Prof. Dr. R. Franklin, University of 

Cambridge, personal communication).  
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Figure 2: Immunohistochemical analysis of lesion and non demyelinated white matter tissue 

Immunopathological examination of paraffin-embedded biopsies containing lesion tissue (A-F) revealed a relatively sharp bordered 

lesion by Holmes/Luxol staining (A) with a dense infiltrate of CD68-positive macrophages (B). Inset of (A) shows dense infiltrating 

cells around a blood vessel (arrow). Staining for PLP in the acute lesion still appeared normal (C), whereas a specific absence of 

MAG was detected (D). Furthermore, MOG-positive myelin debris was detected within macrophages (E, arrows). TUNEL-staining 

revealed apoptotic oligodendrocytes, co-stained by CNPase, within the lesion (F, arrow). 

Examination of the fresh-frozen biopsies used for RNA analysis did not show any signs of infiltrates or lesion formation (G-M). 

Staining by anti-PLP showed normal myelin (G), haematoxilin-staining revealed normal cellularity (H) and blood vessels without 

infiltrating cells (I, arrow). However, a number of CD68-positive cells, histopathological microglia, were detected (K). Furthermore, 

activated astrocytes could be detected throughout the white matter (L). Staining for iNOS in non-demyelinated white matter distant 

to lesion revealed low expression levels in cells resembling microglia or astrocytes (M, arrow). Immunofluorescent colocalization 

for nitrotyrosine showed an accumulation in CNPase-positive oligodendrocytes (N, arrow). 
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High expression of Aquaporin 4 in non demyelinated white matter 

As the MRI analysis showed alterations in the white matter of the left hemisphere, 

and immunohistochemical staining for GFAP revealed activated astrocytes, we 

investigated astrocyte-specific genes such as GFAP, Aquaporin 4 (AQP4) as well as 

the taurine transporter (TAUT) by qRT-PCR. Expression levels of AQP4 as well as 

GFAP were about 5 times higher than in the control cases (Table), further reflecting 

astrocyte activation and edema formation.  

 

Induction of endogenous neuroprotective mechanisms in non demyelinated 

white matter 

In an earlier publication we showed the upregulation of endogenous neuroprotective 

genes in the normal-appearing white matter of MS autopsy cases.(Graumann et al., 

2003),(Zeis et al., 2008) Therefore, we selected specific protective genes for our 

analysis of the white matter of the present patient. In contrast to our previous study 

on post-mortem brain tissue, heme oxygenase 1 (HO-1) - protective against oxidative 

stress and known to be expressed in oligodendrocytes as well as astrocytes and 

microglia(Stahnke et al., 2007) - showed a six-fold upregulation in the white matter of 

the biopsy. On the other hand, the expression of HSP70.1, another protective protein 

which is induced mainly by heat-shock and not by oxidative stress,(Goldbaum and 

Richter-Landsberg, 2001) was not changed. Also, in the case of hypoxia-inducible 

transcription factor 1α (HIF1α), a key regulator in hypoxic preconditioning and 

upregulated in NAWM in chronic MS,(Graumann et al., 2003; Zeis et al., 2008) 

expression levels in the non demyelinated white matter of the biopsied patient were 

comparable to those from the control cases. Nevertheless, under acute hypoxic 

conditions, activation of HIF1α is fulfilled by stabilizing the protein rather than mRNA 

upregulation.(Dery et al., 2005) Indeed, the upregulation of vascular endothelial 

growth factor receptor (VEGFR), a downstream gene of HIF1α, indicates possible 

HIF1α activation.(Semenza, 2001) Altogether, the upregulation of HO-1 as well as 

VEGFR suggests an activation of protective mechanisms against oxidative stress in 

the non demyelinated white matter in pattern III MS. 
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Upregulation of anti- as well as pro-inflammatory genes in non demyelinated 

white matter 

Autoimmunity plays a major role in the pathology of MS. We and others have recently 

suggested an involvement of innate immune mechanisms in MS.(Cannella and 

Raine, 2004; Zeis et al., 2008) We thus examined the expression of selected genes 

involved in innate inflammatory mechanisms, which we had already studied in post-

mortem NAWM (Table).(Zeis et al., 2008) A major finding was the 18-fold increase in 

STAT6, an anti-inflammatory transcription factor which we found to be expressed by 

oligodendrocytes in the MS NAWM.(Zeis et al., 2008) The expression level of STAT4, 

a major pro-inflammatory transcription factor was also elevated in the biopsied 

patient, but the young control case showed even higher levels. HLA-DRA showed a 

seven-fold upregulation compared to the post-mortem control cases, and was not 

detectable in the young control case, which may correlate with the increased 

expression of iNOS, and possibly reflects the activation status of CD68-positive 

microglia (Figure 2D). 

 

Discussion 

This study reports for the first time earliest molecular changes in non demyelinated 

white matter during the first manifestation of an actively demyelinating pattern III MS 

case. Although all white matter tissue specimens were taken from brain areas 

showing abnormal MRI signals, histopathological examination of the specimens used 

for RNA extraction revealed white matter without any signs of inflammation or 

demyelination. As a major finding, we show that nNOS is strongly upregulated in non 

demyelinated white matter during a very early, acute phase of MS. As nNOS gene 

expression level of a young control autopsy case (C25) was comparable to that of 

post-mortem control cases, this upregulation most likely represents a disease specific 

mechanism and not an age-related artifact.  

Recent data showed that nNOS plays a key role in mediating CNS demyelination in a 

toxin-induced demyelinating animal model.(Linares et al., 2006) The presence of NO 

is further supported by the finding of nitrotyrosine-positive oligodendrocytes, 

suggesting early NO-mediated oligodendrocyte damage. Thus, upregulation of nNOS 

in the non demyelinated white matter may reflect early brain intrinsic changes in 

pattern III MS preceding active demyelination. Although nNOS was highly expressed, 
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overt apoptotic oligodendrocytes were not detectable in the non demyelinated white 

matter, suggesting sublethal damage to oligodendrocytes not reaching the apoptotic 

threshold. Alternatively, oligodendrocyte death might be prevented by simultaneously 

induced protective mechanisms.(Zeis et al., 2008) This is consistent with our 

observation of the upregulation of heme oxygenase HO-1, which is known to be 

protective against NO-mediated damage.(Reiter et al., 2006) Ongoing alterations in 

oligodendrocytes were further indicated by the upregulation of PLP and MAG mRNA, 

which could reflect stress of oligodendrocytes, or might be specific for pattern III MS. 

The upregulation of particular genes in oligodendrocytes, such as STAT6, MAG or 

PLP, might further strengthen the assumption of brain intrinsic events preceding 

lesion formation; e.g. impairment of oligodendrocyte and/or neuronal dysfunction, 

because these alterations in gene expression are present in the white matter distant 

from actively inflammatory, demyelinating lesions. Eventually, these alterations might 

then lead to, facilitate or impede lesion formation. Barnett and Prineas suggested 

widespread oligodendrocyte damage and apoptosis as one of the earliest change in 

lesion formation,(Barnett and Prineas, 2004), which would fit our observation. 

Whether this is specific for a subset of MS patients (pattern III lesions) or a general 

phenomenon in MS pathology needs to be further elucidated. 

Another explanation for nNOS expression in the non demyelinated white matter 

might be activated astrocytes, as these cells were shown to increase expression of 

nNOS under pathological conditions.(Catania et al., 2001; Kim et al., 2000) Activation 

of astrocytes is also evident by the upregulation of GFAP, AQP4 and TAUT. 

Nevertheless, the inducible isoform of NOS (iNOS) was only moderately upregulated, 

additionally supporting the concept that rather brain intrinsic changes than primary 

immune reactions are causative for of the observed differential gene expression in 

the non demyelinated white matter, 

Although abnormalities in a large area of the left hemisphere have been detected on 

T1 and T2 weighted MRI, only a small part of the biopsy specimens contained areas 

of inflammatory demyelination. We conclude from our study that even in large T1 and 

T2 abnormalities there remains non demyelinated white matter without overt signs of 

inflammation . This is in agreement with a study from Fisher et al., 2007 showing that 

T1 and T2 MRI abnormalities do not necessarily imply demyelination and lesion 

formation.(Fisher et al., 2007) Still, our data indicate activated microglia, astrogliosis 
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and edema formation, which may not yet reach a pathological level leading to tissue 

destruction, but disclose intrinsic molecular alterations. 

 

Taken together our study suggests that earliest molecular changes are present in the 

non demyelinated white matter distant from an active inflammatory demyelinating 

lesion. The changes in the non demyelinated white matter might be crucial for lesion 

initiation and the further development of the disease, determining lesion progression 

or limitation. Therefore, therapeutical modulation of these alterations in the white 

matter might be an important target for the prevention of tissue damage in MS. 
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Abstract 

 

Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central 

nervous system (CNS). Several studies suggest that additional to the focal lesions 

occurring in MS there are diffuse inflammatory and degenerative alterations in the 

CNS. We investigated whether in an animal model for MS, namely EAE similar 

changes take place. We isolated normal appearing white and grey matter from the 

corpus callosum and the somatosensory cortex of DA rats with rMOG-induced EAE 

and performed gene expression analysis. Analysis after 60 days of clinical course 

revealed only minor changes in the corpus callosum of EAE rats. But, in the 

somatosensory cortex a number of gene expression alterations could be identified, 

although on the morphological and cellular alterations were not evident. One of the 

most striking observations is the downregulation of genes involved in mitochondrial 

function as well as a whole set of genes coding for different glutamate receptors.  

Our data suggest that molecular alterations in neurons far distant to inflammatory 

demyelinating lesions are evident; some may reflect degenerative processes induced 

by lesion mediated axonal injury in the spinal cord. These results indicate that the 

MOG-induced EAE in DA rats is a valuable model to analyze neuronal alterations 

due to axonal impairment in an acute phase of a MS-like disease, and could be use 

for development of neuroprotective strategies.  

 

 

 

Keywords: EAE, neuroprotection, inflammation, MS, NAWM, NAGM 
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1. Introduction 

 

Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central 

nervous system (CNS). Currently, it is thought that MS is an autoimmune disorder 

directed against CNS antigens which leads to inflammation and demyelination 

(Hemmer et al., 2002; Noseworthy et al., 2000). A major characteristic of MS is the 

formation of the so-called plaques or lesions, areas of neuronal damage and 

demyelination (Lassmann, 1998). Studies of the histopathology of the demyelinated 

lesions revealed a great deal of heterogeneity in the mechanism of their formation 

(Lassmann et al., 2001; Lucchinetti et al., 2000; Raine and Scheinberg, 1988) for 

review see Lassmann et al., 2001), which might to some extent reflect the diversity of 

clinical disease courses of MS. Studies of the so-called normal appearing white 

matter (NAWM) by magnetic transfer imaging (MTI) revealed indeed abnormalities 

already occurring before lesion formation (Filippi et al., 1998). Further imaging 

studies reported early changes in the NAWM of MS patients which include axonal 

damage or loss (Filippi et al., 2003; Fu et al., 1998) and blood-brain-barrier (BBB) 

alterations (Silver et al., 2001; Werring et al., 2000). Other studies reported diffuse 

axonal injury with microglia activation (Kutzelnigg et al., 2005), or differential 

regulation of specific proteins or enzymes (Allen and McKeown, 1979; Sinclair et al., 

2005). In line with these findings, recent studies from our lab revealed an 

upregulation of a number of functionally related genes involved in endogenous 

neuroprotection (Graumann et al., 2003). In particular, hypoxia inducible factor 1α 

(HIF-1α) and some of its targets genes such as e.g. vascular endothelial growth 

factor 1 (VEGFR1) were shown to be upregulated in most MS cases, possibly 

reflecting an adaptation of cells to the chronic progressive pathophysiology of MS. In 

another study, we have shown the upregulation of the STAT6 signaling pathway and 

an overall inflammatory reaction through the NAWM of MS brains (Zeis et al., 2008). 

As the majority of cells expressing STAT6 in NAWM were oligodendrocytes, we 

suggested that oligodendrocytes are actively participating in endogenous 

inflammatory reactions of MS brains (Zeis et al., 2008; Zeis and Schaeren-Wiemers, 

2008). In summary, normal appearing white matter in MS shows a wide range of 

abnormalities which might influence the pathogenesis of MS. 

One of the most widely used models to mimic certain aspects of MS is experimental 

autoimmune encephalomyelitis (EAE). There are several forms of EAE which can be 
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induced in different species and strains by immunization with different antigens and 

by using various immunization protocols (Gold et al., 2000). One of the models 

sharing major features of MS such as a relapsing-remitting disease course and 

demyelination is the MOG-induced EAE in DA rats (Storch et al., 1998b). Depending 

on the mode of induction of EAE in DA rats, a variable quantity of different disease 

courses such as chronic relapsing, chronic progressive, relapsing remitting or acute 

progressive can develop (Kinter et al., 2008; Storch et al., 1998b). Unlike in other 

EAE models, inflammatory demyelinating lesions are not only induced by T-cell 

mediated immune reactions, but also mediated by anti-MOG antibody response. 

Therefore, EAE in DA rats is controlled by genetic factors, regulating T- and B- cell 

responses, and by sensitization, differentially stimulating T- or B-cell responses 

(Storch et al., 1998b). 

Many features of MS can be mimicked in EAE. We investigated whether in EAE 

similar diffuse alterations in normal appearing tissue as seen in MS take place. 

Therefore, we isolated normal appearing white and grey matter from the corpus 

callosum and the somatosensory cortex of EAE and control rats and performed gene 

expression analysis. 
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2. Materials and Methods 

2.1 Expression of Recombinant Mouse MOG 

For the expression of recombinant rat MOG, the bacterial expression vector pRSET 

A (Invitrogen Corp.) was used containing the amino acids 1-125 of the mature rat 

protein fused to several histidine residues. An overnight culture of a transformed 

E.coli Bl21 strain was used for inoculation of a large expression culture (SOB, 

ampicillin, kanamycin). The OD600 was measured until it reaches 0.5 and expression 

was induced by the addition of isopropyl-β-D-thiogalactopyranoside at 1 mM final 

concentration. After 4 h the bacteria were harvested by centrifugation (15 min, 4,000 

g). The pellet was then frozen and stored until purification was performed. 

 

2.2 Purification of HIS-Tagged MOG 

For immobilized metal ion affinity chromatography, the Talon purification system 

(Clontech) was used. The bacterial pellet was resuspended in lysis buffer (8 M urea, 

100 mM NaH2PO4, 10 mM Tris-HCl, pH 8) and sonicated to disrupt the bacteria. 

After a further centrifugation (20 min, 10,000 g), the pellet was again resuspended in 

lysis buffer and the centrifugation step was repeated. Both supernatants were pooled 

and subjected on the immobilized metal ion affinity chromatography column for 

purification at room temperature. After loading, the column was washed with 2 vol 

lysis buffer and 2 vol washing buffer (8 M urea, 100 mM NaH2PO4, 10 mM Tris-HCl, 

pH 6.3). The purified recombinant protein was collected by eluting the column with 

elution buffer (8 M urea, 100 mM NaH2PO4, 10 mM Tris-HCl, pH 4.5). To obtain 

soluble recombinant MOG, the purified protein was dialyzed 4 times (dilution factor 

1:200 each) against 20 mM sodium acetate buffer (pH 3.6) at 4°C. Finally, the 

purified and soluble protein was concentrated (Centricon, 10,000 MWCO) until the 

protein concentration was at least 2 mg/ml. The protein was aliquoted and stored at -

80°C.  

 

2.3 Induction of EAE 

EAE induction was made as described before (Storch et al., 1998b). For induction of 

EAE 50µg of rMOG emulsified with incomplete Freud’s adjuvant (IFA) (Difco 

Laboratories, Detroit, MI) was injected into inbred adult female DA rats (10-12 weeks, 

from Harlan, Netherlands). Injections were given intradermally in the dorsal aspect of 

the base of the tail. A group of control rats were injected with saline, emulsified with 
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an equal volume of IFA. The clinical progress of the disease was monitored daily. 

Rats were weighted and their neurological deficits were scored according the 

standard protocol (Storch et al., 1998b). 

 

2.4 Immunohistochemistry 

Cryostat sections (10µm) used for tissue characterization using anti-CD68, -PLP and 

-GFAP antibodies were fixed for 10min in 10% formalin. For inactivation of 

endogenous peroxidase all sections were treated with 0.3% hydrogen peroxide and 

blocked with blocking buffer (1% normal donkey serum, 2% Fish skin gelatin, 0.15% 

Triton). After quenching, sections were incubated with primary antibodies overnight at 

4°C. Secondary biotinylated antibodies were applied for 1 hour at room temperature 

followed by the ABC complex reagent (Vector Labs) for 1 hour. Color reaction was 

performed with 3-Amino-9-ethylcarbazole (Erne et al., 2002). Counterstaining was 

performed in haematoxylin for 1min followed by rinsing the slide in running tap water. 

For histochemical analysis the following antibodies were used: anti-PLP (AbD 

serotec Cat.Nr. MCA839G), anti-Monocytes/Macrophages (CD68; Chemicon, Cat.Nr. 

MAB1435) and anti-GFAP (Sigma, Cat.Nr. G3893). 
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Table 1: Primer sequences used for qRT-PCR 

Primer Name Gene accession number Sequence 

5’ Rpl13a 5’-GCCATTGTGGCCAAGCAGGT-3’ 

3’ Rpl13a 
NM_173340.2 

5’-GTAGGCTTCAGCCGCACAAC-3’ 

5’ Rpl19 5’-TCGCCAATGCCAACTCTC-3’ 

3’ Rpl19 
NM_031103.1 

5’-ACCCTTCCTCTTCCCTATGC-3’ 

5’ Rps9 5’-CCGCACGATGCCTGGAGTTA-3’ 

3’ Rps9 
NM_031108.1 

5’-TGCACCACCACGGAGGTACA-3’ 

5’ Hif1a 5’-CTGTCACTGCCACCGCAACT-3’ 

3’ Hif1a 
NM_024359.1 

5’-TGGTGAGGCTGTCCGACTGT-3’ 

5’ Hmox1 5’-CTGGTGATGGCCTCCTTGTA-3’ 

3’ Hmox1 
NM_012580.2 

5’-ACCAGCAGCTCAGGATGAGT-3’ 

5’ Ogg1 5’-AGGTGTGAGGCTGCTGAGAC-3’ 

3’ Ogg1 
NM_030870.1 

5’-AGGCCCAACTTCCTGAGGTG-3’ 

5’ Flt1 5’-GAGATGCACAGTGACATACC-3’ 

3’ Flt1 
NM_019306.1 

5’-TTCTCTATCCTGACGACTGG-3’ 

5’ Ywhah 5’-TTGAGAAGGAGCTGGAGACA-3’ 

3’ Ywhah 
NM_013052.1 

5’-CCTTATACGCTGCCTCAGAA-3’ 

5’ Aqp4 5’-GCATGAATCCAGCTCGATCC-3’ 

3’ Aqp4 
NM_012825.1 

5’-TGTCCTCCACCTCCATGTAG-3’ 

5’ Bcl2l2 5’-TTCCGGCGCACCTTCTCTGA-3’ 

3’ Bcl2l2 
NM_021850.2 

5’-GCCAAGCGTGTCTCCAGGTA-3’ 

5’ Ctgf 5’-CAGGCTGGAGAAGCAGAGTC-3’ 

3’ Ctgf 
NM_022266.2 

5’-GGCAGGCACAGGTCTTGATG-3’ 

5’ Sod1 5’-TTTCTCGTGGACCACCATAG-3’ 

3’ Sod1 
NM_017050.1 

5’-TACACAAGGCTGTACCACTG-3’ 

5’ Nos1 5’-AGTCATGTTTGCCGTCAGTC-3’ 

3’ Nos1 
NM_052799.1 

5’-TTGAAAGCACCAGCACCTAC-3’ 

5’ Nos2 5’-TTCTGTGCTAATGCGGAAGGTC-3’ 

3’ Nos2 
NM_012611.2 

5’-TTCTTCAGAGTCTGCCCATTGC-3’ 

5’ C2ta 5’-GCCTGAGCAAGGACCTCTTC-3’ 

3’ C2ta 
NM_053529.1 

5’-GGCATCTCACCGTGGTAGAC-3’ 

5’ Eno2 5’-CCTCTATCGCCACATTGCTC-3’ 

3’ Eno2 
NM_139325.1 

5’-CATCCTTGCCGTACTTGTCC-3’ 

5’ Pik3c3 5’-GGAGACCGGCACCTGGATAA-3’ 

3’ Pik3c3 
NM_022958.2 

5’-AATGTGCCGGAAGGAGGTGG-3’ 

5’ Slc6a6 5’-TCGCGCTCTGCCTCCTCTTA-3’ 

3’ Slc6a6 
NM_017206.1 

5’-TTCCAGCGTCGATCCACACC-3’ 

5’ Stat4 5’-AGGTCGGGTTTCCAAAGAGA-3’ 

3’ Stat4 
NM_001012226.1 

5’-ATGGCAGCCACTTTGTGTTC-3’ 

5’ Stat6 5’-GGTGTCCTGGACCTCACTAA-3’ 

3’ Stat6 
XM_343223.3 

5’-TCTATCTCTTGTAGGTCGGC-3’ 

 

 

 

Table shows the 5’ and 3’ primers used for quantitative RT-PCR analysis. The genes 40s S9, 60s L19 

and 60s L13A were used for normalization. 
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2.5 Total RNA purification and quantitative RT-PCR analysis 

To achieve the highest tissue comparability between our analysis of human 

subcortical NAWM (Graumann et al., 2003), and this analysis, we isolated brain 

tissue far away from inflammatory lesions, that are predominantly located in the 

spinal cord. As a corresponding tissue to MS NAWM we dissected white matter from 

the corpus callosum (Fig.1A, cc). Additionally, cortical grey matter from the 

somatosensory cortex which contains pyramidal neurons projecting into the spinal 

cord was isolated (Fig.1A, cx). Total RNA was isolated using the RNeasy lipid tissue 

kit (Qiagen). cDNA was generated using the Superscript II reverse transcriptase 

(Invitrogen). Real-time RT-PCR was performed using the LightCycler system 

(Roche). Primer sequences were designed from unique site over exon-intron 

junctions to prevent amplification of genomic DNA. Real-time RT-PCR was 

performed according to the manufacturer’s protocol (Roche). RNA amounts were 

calculated with relative standard curves for all mRNAs of interest and 60s ribosomal 

protein L13A, 40s ribosomal protein S9 and ribosomal protein L19 were used for 

normalization. Primer sequences used for qRT-PCR are shown in Table 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Histopathological examination of corpus callosum and cortex tissue. 

To analyse gene expression changes in EAE NAWM from corpus callosum (cc) as well as EAE NAGM from the 

somatosensory cortex (cx) we isolated NAWM and NAGM tissue from DA rat brains (A, hatched areas). 

Immunohistochemical analyses were made to exclude possible inflammatory infiltrates or demyelination. Tissue 

stained by PLP (B) showed normal myelin. Stainings for GFAP (C) revealed normal astrocytes. No inflammatory 

infiltrates were detected by staining for CD68-positive cells (D). Bar=200µm 
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2.6 cDNA Expression Array hybridization 

The Clontech Atlas™ Rat 1.2 cDNA Expression Array contains 1’176 selected cDNA 

sequences arrayed on a nylon membrane. Array hybridization was performed 

according to Graumann et al., (2003). Array was hybridized with 3 control and 7 EAE 

grey matter samples. Quantification of differential hybridization signal intensities was 

achieved with the AtlasImage™ 2.0 software program. Hybridization signals which in 

the average were below 2500 pixels were excluded from our analysis as background 

values range from about 700 to about 2000 pixels. Therefore, 580 cDNA sequences 

were included in our analysis. 

 

2.7 Animal grouping 

In a first step, the gene expression of all diseased animals was compared to the 

control group. Afterwards, as the human cases analyzed in Graumann et al., 2003 

were suffering from MS in average for over 25 years, the animal samples were 

divided into two groups for analysis. Animals were sorted according to their clinical 

course. Animals showing a disease course characterized by a primary relapse with a 

secondary chronic phase were assigned to the “Chronic” group, which is most 

reflecting the situation of MS patients analyzed. All other animals showing 

miscellaneous clinical courses such as short acute attacks with death in a few days 

or primary relapse with secondary long-term remission were assigned to the 

“Variable” group (Table 2, Fig. 1). This was done as no correlation of gene 

expression was detected if compared with disease onset, duration, severity and type. 

 

2.8 Normalization and Statistics 

Normalization of calculated RNA amounts by qRT-PCR was done by using 60s 

ribosomal protein L13 (NM_031101.1), 40s ribosomal protein S9 (NM_031108.1) and 

ribosomal protein L19 (NM_031103.1). Using these three ribosomal genes, a 

geometric mean was calculated to which all target genes were normalized. Such a 

normalization strategy, recently proposed, showed to be more accurate for qRT-PCR 

normalization rather than using single-gene normalization (Vandesompele et al., 

2002). Statistical significance was then calculated by comparison of the normalized 

raw data from control animals to EAE animals, and is expressed by P-values 

generated by the non-parametric Mann-Whitney U-Test. 



Results 

Page 108 

Normalization of the Clontech Atlas™ Rat 1.2 cDNA Expression Array was performed 

by using 60s ribosomal protein L13 and ribosomal protein L19 but not 40s ribosomal 

protein S9 as 40s ribosomal protein S9 was not present on the array. The normalized 

hybridization intensities from the EAE animals were then compared to the 

corresponding ones from the control animals to provide fold changes. Statistical 

significance was calculated by comparison of the normalized raw data from control 

animals to EAE animals, and is expressed by P-values generated by the non-

parametric Mann-Whitney U-Test. 

 

 

Table 2: Analyzed animals 

Animal Disease Type 
Disease 

Duration 

Avg. Disease 

Score 
Group 

EAE - 1 Chronic 46d 2.91 Chronic 

EAE - 2 Chronic 15d 2.67 Chronic 

EAE - 3 Chronic 31d 2.81 Chronic 

EAE - 4 Chronic 14d 2.73 Chronic 

EAE - 5 Chronic 21d 3.00 Chronic 

EAE - 6 Chronic 47d 1.90 Chronic 

EAE - 7 Chronic 47d 2.56 Chronic 

EAE - 8 Chronic 44d 2.66 Chronic 

EAE - 9 Chronic 28d 2.79 Chronic 

EAE - 10 Chronic 22d 2.80 Chronic 

EAE - 11 RR 46d 1.54 Variable 

EAE - 12 RR 33d 1.34 Variable 

EAE - 13 RR, Acute 16d 2.37 Variable 

EAE - 14 Acute 8d 2.87 Variable 

EAE - 15 Acute 6d 3.25 Variable 

EAE - 16 no disease - - Variable 

EAE - 17 no disease - - Variable 

 

Animals were grouped according to their clinical course. A majority of animals analyzed showed a chronic disease course. These 

animals were grouped together in the “Chronic” group. Additionally, two animals with an acute progressive and three animals with 

a relapsing-remitting disease course were analyzed. Furthermore, two animals without any detectable clinical disease were 

analyzed. As animals showing acute progressive, relapsing-remitting or no disease showed no consistent gene expression 

changes if compared with the control group and no correlations could be found, these animals were grouped together in the 

“Variable” group. Additionally, the table shows the average clinical score and the average disease duration of the animals until they 

were sacrificed. 
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3. Results 

3.1 Clinical course of EAE 

DA rats induced with EAE developed different clinical courses (Fig. 2). About 20% of 

the animals never developed obvious neurological signs. 40% of all animals showed 

a chronic course, sometimes with one relapse. 20% of the animals develop a 

relapsing-remitting clinical course, whereas the remaining 20% show a short, acute 

disease course (Fig. 2). Inflammatory infiltrates and demyelination are predominantly 

located in the spinal cord and the optical nerve. Nevertheless, inflammatory infiltrates 

can also develop in brain tissue such as corpus callosum. Therefore, 

immunohistochemical analysis for PLP, GFAP and CD68 were made to exclude 

possible inflammatory lesions present in the isolated tissue (Fig.1B, C and D). 

 

 

Figure 2: Different clinical disease courses observed in MOG-induced EAE in DA rats 

Examples of different clinical courses observed. Most animals showed a chronic disease course mostly similar to 

the one showed. Other disease courses observed were acute progressive, relapsing-remitting. In some animals 

no disease could be scored. 
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3.2 Most of the selected genes related to ischemic preconditioning show no 

expression changes in the normal appearing white and grey matter 

 

To test the hypothesis, if in experimental autoimmune encephalomyelitis comparable 

mechanisms of ischemic preconditioning take place as in MS, the expression of a set 

of genes involved in ischemic preconditioning and reported to be elevated in MS 

NAWM (Graumann et al., 2003) were investigated. In a first step, we have analyzed 

differential gene expression of hypoxia inducible factor 1α (HIF-1α), heme oxygenase 

1 (HO-1), 8-oxoguanine DNA glycosylase (OGG1) and vascular endothelial factor 

receptor (VEGFR, Fig. 3). HIF-1α, a key regulator of hypoxia-induced gene 

regulation, showed no significant expression changes, neither in NAWM nor in 

NAGM. In contrast, the expression of HO-1, which can be induced among others by 

oxidative stress or cytokines, was changed. Whereas HO-1 was not significantly 

changed in the NAWM, there was a significant downregulation of HO-1 in the NAGM 

of all EAE animals (p=0.035), when compared to controls. If animals were sorted 

according to their disease pattern, a significant downregulation of HO-1 was detected 

in the “Chronic” group (p=0.045) but not in the “Variable” group (p=0.151). OGG1, a 

DNA repair enzyme, which was reported to be activated upon oxidative stress, 

showed high variations in the white matter of control as well as EAE animals. In the 

grey matter of control animals, OGG1 was rather homogeneously expressed, 

whereas in the NAGM OGG1 expression varied strongly from animal to animal. In the 

case of VEGFR, a downstream gene of HIF-1α and also known to be involved in 

ischemic preconditioning, no significant changes in gene expression of the NAWM or 

NAGM could be detected. 
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In Graumann et al., 2003 we also showed to upregulation of BCL2-like 2 (BCL2L2) 

and tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein eta 

(YWHAH) which are both involved in cellular processes such as apoptosis and 

survival. In contrast to human NAWM, Ywhah shows no significant changes in EAE 

NAWM and NAGM (Table 3). Nevertheless, in the EAE NAWM, Ywhah shows a 

tendency to be downregulated in the „Variable“ group (p=0.051). In the case of 

Bcl2l2, also no changes could be detected in the EAE NAWM (Table 3). Another 

gene which is involved in ischemic preconditioning is connective tissue growth factor 

(Ctgf). Therefore, we have checked whether the expression of Ctgf is changed in the 

NAWM and NAGM tissue, but no significant changes could be detected (Table 3). In 

order to detect blood-brain-barrier changes possibly induced by ischemic 

mechanisms, we have investigated the expression of Aquaporin4 (Aqp4), a major 

water channel in the brain. Though, no significant changes in Aqp4 could be 

detected, neither in EAE NAWM nor in NAGM tissue. Taurine transporter (Solute 

carrier family (neurotransmitter transporter, taurine), member 6), which we 

Figure 3: Boxplots of selected genes known to be involved in ischemic preconditioning mechanisms 

Boxplots of selected differentially expressed genes analyzed by quantitative RT-PCR. Boxplots show differential gene 

expression in Control, “Chronic” and “Variable” groups. Values are shown proportionally to the control group. Genes 

showing a significant changed expression (p<0.05) was marked by asterisks. 
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investigated as an indicator of hypoxic insults and which was also upregulated in 

human NAWM, showed also no significant changes in EAE NAGM (Table 3). To 

investigate neuronal reactions upon the induction of EAE, we have analyzed the 

expression of enolase 2, gamma (Eno2). We found a slight tendency of Eno2 to be 

downregulated in the EAE NAGM of the „chronic“ group (p=0.065). Nevertheless, no 

significant changes could be detected in the „variable“ group and neither if all EAE 

animals were compared with controls (Table 3). In our previous study from 

Graumann et al., 2003, we showed an upregulation of several genes from the PI-3 

Kinase/Akt pathway, which are also involved in ischemic preconditioning. Therefore, 

we investigated the expression of the phosphoinositide-3-kinase, class 3 (Pik3c3) as 

a marker for this pathway, but no significant gene expression changes have been 

detected (Table 3). We also analyzed Superoxide dismutase 1 (Sod1), shown to be 

protective after transient focal ischemia. We could detect a significant downregulation 

of Sod1 in the EAE NAWM of the „variable“ group (p=0.035, Table 3). However, no 

significant changes were found if comparing all animals. Also, no significant 

expression changes were detected in the „chronic“ group (Table 3). In another study 

(Zeis et al., 2008, submitted), we have detected a strong upregulation of the neuronal 

nitric oxide synthase (nNOS) in non demyelinated white matter in a very early case of 

MS. Therefore, we have investigated the expression of nNOS in EAE NAWM as well 

as NAGM. Though, no significant gene expression changes were detected (Table 3). 

In summary, we detected only minor changes in gene expression of ischemic 

preconditioning-related genes in the NAWM of the corpus callosum and the NAGM of 

the somatosensory cortex. 
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Table 3 Gene expression changes of additional genes analyzed 

Normal appearing white matter 

Chronic Variable 

Gene name 
Median 

1
st
 

Quartile 
3
rd
 

Quartile 
p-value Median 

1
st
 

Quartile 
3
rd
 

Quartile 
p-value 

14-3-3e 0.93 0.86 1.20 0.428 0.80 0.53 0.85 0.051 * 

AQP4 1.35 0.83 1.80 0.368 1.19 0.84 1.66 0.628 

bcl-w 0.89 0.85 1.02 0.792 0.87 0.80 0.90 0.181 

CTGF 0.93 0.73 1.17 0.635 0.69 0.62 0.98 0.295 

nNOS 1.03 0.79 1.39 0.635 0.95 0.66 1.16 0.628 

SOD 0.77 0.70 1.06 0.492 0.65 0.53 0.86 0.035 * 

         

Normal appearing grey matter 

Chronic Variable 

Gene name 
Median 

1
st
 

Quartile 
3
rd
 

Quartile 
p-value Median 

1
st
 

Quartile 
3
rd
 

Quartile 
p-value 

14-3-3e 0.74 0.57 1.02 0.171 0.91 0.88 0.91 0.548 

AQP4 0.92 0.73 1.06 0.284 1.12 0.86 1.28 1.000 

CTGF 0.86 0.68 1.20 0.622 0.89 0.86 1.23 0.841 

nNOS 1.08 0.69 1.21 0.724 1.36 0.84 1.40 1.000 

NSE 0.91 0.77 1.00 0.065 * 1.01 0.88 1.17 0.841 

PI3K 1.02 0.83 1.15 0.354 1.11 1.05 1.36 0.421 

SOD 0.95 0.82 1.06 0.524 1.11 1.05 1.11 0.690 

TAUT 0.87 0.59 1.01 0.354 0.95 0.88 1.01 0.841 

 

 

 

 

 

 

3.3 Quantitative RT-PCR analysis of selected genes related to inflammation 

 

In our studies of MS NAWM tissue, we found differential regulation of genes related 

to inflammation, in particular of the JAK/STAT signaling pathway. To identify whether 

these alterations of inflammatory related genes also occur in EAE normal appearing 

white and grey matter distant to the acute inflammatory lesion, we investigated the 

expression pattern of CIITA, iNOS, STAT4 and STAT6 (Fig. 4). To detect an overall 

immune-related activation in the white matter of the corpus callosum as well as in the 

grey matter of the somatosensory cortex, we investigated the expression of CIITA. 

Table shows the median of gene expression from NAWM and NAGM compared to control tissue of genes not presented by 

Boxplots. Grade of variance is shown by the 1
st
 and 3

rd
 quartile. Values are shown proportionally to the control group. Statistical 

significance is expressed as p-values generated by the non-parametric Mann-Whitney U-test. P-values below 0.05 are printed in 

bold, italic numbers, whereas P-values between 0.05 and 0.1 are shown in bold numbers. 
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CIITA, a major regulator of MHC class II gene expression, showed a slight elevation 

in its expression in the corpus callosum whereas in grey matter the expression of 

CIITA was a little lower in chronic EAE animals than in controls (p=0.127, Fig. 4). 

Recent publications showed that inhibition of nitric oxide (NO) production by blocking 

inducible nitric oxide synthase (iNOS) has a positive effect on the disease course of 

EAE. Therefore, we investigated the expression of iNOS as a marker of possible low-

level microglia and/or astrocyte activation. In white as well as grey matter, we could 

not detect any significant changes in iNOS expression. Nevertheless, in both tissues 

there was a slight increase of iNOS expression (Fig. 4). As overall markers for brain 

intrinsic pro- or anti-inflammatory changes, we decided to investigate the expression 

of STAT4 and STAT6. STAT4, a pro-inflammatory transcription factor, among others 

involved in Th1 cell differentiation, was not significantly changed in the white matter 

of the corpus callosum (Fig.4). In contrast, a significant decrease of STAT4 was 

detected in the NAGM if expression of all animals was compared to controls 

(p=0.007, Fig. 4). Furthermore, there was a significant downregulation of STAT4 in 

the chronic group (p=0.002). In contrast, no significant downregulation could be 

detected in the variable EAE group (p=0.222). STAT6, an anti-inflammatory 

transcription factor among others involved in Th2 cell differentiation, showed also no 

significant changes in normal appearing white matter (Fig. 4). Again, a significant 

decrease in STAT6 expression was present in the NAGM; but, only in the chronic 

group (p=0.045, Fig. 4). If the expression of all EAE animals were compared to those 

of controls, no significant change could be shown (p=0.075). In the variable group 

there was an even less significant downregulation of STAT6 (p=0.421). Altogether, 

we show that neither gene expression analyzed is changed in the EAE NAWM of the 

corpus callosum, whereas STAT4 and STAT6 are downregulated in the NAGM of the 

somatosensory cortex. 
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3.4 Microarray study of gene expression in cortical grey matter 

 

To identify altered gene expression in the normal appearing grey matter in more 

detail, we performed gene expression analysis of the somatosensory cortex using 

microarray technology. The somatosensory cortex of control and EAE rats were 

dissected, RNA was isolated and differential gene expression analysis was 

performed with Clontech Atlas™ Rat 1.2 cDNA Expression Array with 1176 spotted 

cDNA sequences. We identified genes, which were significantly up- or 

downregulated in the motor cortex of EAE rats. From 1176 spotted cDNA sequences, 

580 were detectable of which were 32 differentially regulated. All of the significant 

differentially expressed genes of the somatosensory cortex were downregulated. In 

Table 4 all differentially expressed genes are listed with a p-value lower than 0.05 

obtained by the non-parametric Mann-Whitney U-Test. Significant differentially 

expressed genes with a fold change lower than 0.66 (corresponds an 1.5 fold 

upregulation) are marked in bold. Among the differentially expressed genes 6 

transcripts are encoding mitochondrial proteins. 

Figure 4: Boxplots of selected genes known to be involved in inflammatory mechanisms 

Boxplots of selected differentially expressed genes analyzed by quantitative RT-PCR. Boxplots show differential gene 

expression in Control, “Chronic” and “Variable” groups. Values are shown proportionally to the control group. Genes showing 

a significant changed expression (p<0.05) was marked by asterisks. 
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Table 4 Genes significantly changed in NAGM 

 

Acc. number Symbol Gene name fc   pvalue 

J04022 ATP2A2 Atpase, Ca++ Transporting, Cardiac Muscle, Slow Twitch 2 0.40  0.030 

J03933 THRB Thyroid Hormone Receptor Beta 0.42  0.017 

AF020777 PTK2 Ptk2 Protein Tyrosine Kinase 2 0.42  0.017 

U23443 PAK1 P21 (Cdkn1a)-Activated Kinase 1 0.43  0.017 

X59737 CKMT1 Creatine Kinase, Mitochondrial 1, Ubiquitous 0.44  0.030 

M92905 CACNA1B Calcium Channel, Voltage-Dependent, N Type, Alpha 1b Subunit 0.45  0.017 

J02646 EIF2S1 Eukaryotic Translation Initiation Factor 2, Subunit 1 Alpha 0.49  0.017 

L27129 MAPK8 Mitogen-Activated Protein Kinase 8 0.49  0.030 

AF001423 GRIN2A Glutamate Receptor, Ionotropic, N-Methyl D-Aspartate 2a 0.50  0.017 

L27843 PTP4A1 Protein Tyrosine Phosphatase 4a1 0.52  0.017 

J04526 HK1 Hexokinase 1 0.52  0.017 

L07925 RALGDS Ral Guanine Nucleotide Dissociation Stimulator 0.53  0.017 

D44481 CRK V-Crk Sarcoma Virus Ct10 Oncogene Homolog (Avian) 0.54  0.017 

L14851 NRXN3 Neurexin 3 0.54  0.030 

D17445 YWHAH Tyrosine 3-Monooxygenase/Tryptophan 5-Monooxygenase Activation Protein, Eta 0.58  0.030 

M20636 PLCB1 Phospholipase C, Beta 1 0.58  0.030 

U07683 UGT8 Udp Galactosyltransferase 8 0.59  0.017 

S59158 SLC1A3 Solute Carrier Family 1 (Glial High Affinity Glutamate Transporter), Member 3 0.59  0.030 

D85183 PTPNS1 Protein Tyrosine Phosphatase, Non-Receptor Type Substrate 1 0.60  0.030 

U62897 CPD Carboxypeptidase D 0.60  0.017 

L27513 TR4 Tr4 Orphan Receptor 0.62  0.030 

D50696 PSMC1 Peptidase (Prosome, Macropain) 26s Subunit, Atpase 1 0.64  0.030 

M86621 CACNA2D1 Calcium Channel, Voltage-Dependent, Alpha2/Delta Subunit 1 0.66  0.030 

D10854 AKR1A1 Aldo-Keto Reductase Family 1, Member A1 0.68  0.030 

D13062 AK3 Adenylate Kinase 3 0.69  0.017 

M91590 ARRB2 Arrestin, Beta 2 0.70  0.030 

M84416 YWHAE Tyrosine 3-Monooxygenase/Tryptophan 5-Monooxygenase Activation Protein, Epsilon  0.73  0.030 

M18331 PRKCE Protein Kinase C, Epsilon 0.74  0.017 

D64045 PIK3R1 Phosphatidylinositol 3-Kinase, Regulatory Subunit, Polypeptide 1 0.74  0.017 

L14684 GFM G Elongation Factor 0.76  0.030 

M19044 ATP5B Atp Synthase, H+ Transporting, Mitochondrial F1 Complex, Beta Polypeptide 0.76  0.017 

M11185 PLP Proteolipid Protein 0.80   0.030 

 

Normal Appearing Grey Matter from the somatosensory cortex of EAE and control rats was dissected to isolate RNA for gene 

expression profiling using microarrays. 32 of 580 detectable genes were significantly differentially expressed. Statistical 

significance is expressed as p-values generated by the non-parametric Mann-Whitney U-test. Fold changes (fc) lower than 0.66 

(1.5 fold downregulation) are printed in bold. 
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Table 5 Gene Expression of Glutamate Receptors and Transporters    

Acc. number Symbol Gene name fc   pvalue 

X17184 GRIA1 Glutamate Receptor, Ionotropic, AMPA1 0.38  0.087 

M85035 GRIA2 Glutamate Receptor, Ionotropic, AMPA2 0.53  0.087 

M85036 GRIA3 Glutamate Receptor, Ionotropic, AMPA3 0.48  0.087 

M85037 GRIA4 Glutamate Receptor, Ionotropic, AMPA4 0.51  0.087 

M83561 GRIK1 Glutamate Receptor, Ionotropic, Kainate1 0.79  0.425 

X63255 GRIN1 Glutamate Receptor, Ionotropic, NMDA1 0.62  0.053 

AF001423 GRIN2A Glutamate Receptor, Ionotropic, NMDA2A 0.50  0.017 

M91562 GRIN2B Glutamate Receptor, Ionotropic, NMDA2B 0.72  0.305 

M92075 GRM2 Glutamate Receptor, Metabotropic, 2 1.02  0.732 

M92076 GRM3 Glutamate Receptor, Metabotropic, 3 0.61  0.053 

M90518 GRM4 Glutamate Receptor, Metabotropic, 4 0.69  0.305 

D10891 GRM5 Glutamate Receptor, Metabotropic, 5 0.71  0.138 

D16817 GRM7 Glutamate Receptor, Metabotropic, 6 0.80  0.087 

 

All detectable ionotropic and metabotropic glutamate receptor genes including their fold changes (fc) and their p-values are 

listed. Statistical significance is expressed as p-values generated by the non-parametric Mann-Whitney U-test. P-values below 

0.05 are printed in bold, italic numbers, whereas p-values between 0.05 and 0.1 are shown in bold numbers. Fold changes (fc) 

lower than 0.66 (1.5 fold downregulation) are printed in bold. 

 

 

The mitochondrial creatine kinase 1 (CKMT1) and hexokinase 1 (HK1) were 

significantly lower expressed in the cortex of EAE rats compared to control rats with a 

fold change lower than 0.66 (0.44 and 0.52 respectively). Whereas the ATP 

Synthase beta subunit of the mitochondrial F1 complex (ATP5B), G Elongation factor 

(GFM), 14-3-3 Epsilon (YWHAE) and adenylate kinase 3 (AK3) show only a slight but 

significant decreased expression in EAE rats. Additional to the three mitochondrial 

kinases we could further detect six kinases to be downregulated in the cortex of EAE 

rats. Kinases with more than a twofold decrease of expression were the focal 

adhesion kinase (PTK2; fc=0.42), p21 activated kinase 1 (PAK1; fc=0.43) and janus 

kinase 1 (MAPK8, fc=0.49). Interestingly, we could detect a twofold decreased 

expression of the 2A subtype of N-methyl-D-aspartate (NMDA) receptor (GRIN2A) 

and a significant reduction of the glutamate transporter GLAST (SLC1A3). Therefore 

we had a closer look on the expression of ionotropic and metabotropic glutamate 

receptors (Table 5). In the somatosensory cortex of EAE rats there is reduced 

expression of AMPA and NMDA ionotropic glutamate receptors. All four AMPA 

subunits show a reduction more than twofold, although failing slightly the level of 
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significance (p=0.083). Additional, there was a reduced expression of the NDMA 

Receptor 1 subunit (p=0.053) and the metabotrobic Glutamate receptor (mGlur3, 

GRM3). Neither significant nor near significant changes could be detected for the 

type 2B NMDA receptor, the metabotrobic receptors mGlur2, mGlur4, mGlur5, and 

mGlur6 (GRM2,4,5,7). In summary, we could detect a downregulation of genes 

mainly involved in mitochondrial energy metabolism and genes encoding for 

glutamate receptors. 
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4. Discussion 

 

In the last years, thorough studies of the NAWM of MS patients, have revealed 

abnormalities occurring before lesion formation such as axonal damage or loss, BBB 

alterations, to some extent astro- and microgliosis and also differential regulation of 

specific proteins or enzymes (Allen and McKeown, 1979; Filippi et al., 2003; Filippi et 

al., 1998; Fu et al., 1998; Kutzelnigg et al., 2005; Silver et al., 2001; Sinclair et al., 

2005; Werring et al., 2000). In line with these findings, recent studies from our lab 

revealed differentially regulated gene expression in NAWM from MS cases in 

comparison to control cases (Graumann et al., 2003; Zeis et al., 2008). In particular, 

we have shown changes in genes related to endogenous neuroprotection such as 

the induction of genes involved in ischemic preconditioning (e.g. HIF-1α and 

VEGFR), or genes that reflect a higher energy metabolism (Graumann et al., 2003). 

This data showed that in MS, the brain might mount a global defense against 

oxidative stress, which takes place also in areas remote from active inflammation or 

demyelination (Graumann et al., 2003). In another study, we could show an 

upregulation of genes involved in anti- as well as pro-inflammatory mechanisms (Zeis 

et al., 2008). In particular, we found an upregulation of members of the anti-

inflammatory STAT6 signaling pathway (Cannella and Raine, 2004; Zeis et al., 

2008). As the majority of cells expressing STAT6 in NAWM were oligodendrocytes, 

we suggested that oligodendrocytes are actively participating in endogenous 

inflammatory reactions of MS brains (Zeis et al., 2008; Zeis and Schaeren-Wiemers, 

2008). On the other hand, an upregulation of STAT4, a pro-inflammatory transcription 

factor, was also detected, which might mainly take place in microglia (Zeis et al., 

2008). Altogether, we postulated that MS NAWM is in a subtle balance between 

inflammation and neuroprotection (Zeis et al., 2008). In summary, all these 

publications demonstrated that normal appearing white matter in MS shows a wide 

range of abnormalities which could influence the pathogenesis of MS. 

Therefore, the aim of this study was to investigate whether in a model of MS 

comparable mechanisms are activated in tissue far away from lesions. To mimic the 

situation in MS NAWM we have chosen to study differential gene expression in 

MOG-induced EAE in DA rats, as this model shows many clinical as well as 

pathological similarities to MS (Kornek et al., 2000; Storch et al., 1998b). Using DA 

rats, several different clinical courses could be observed such as primary-
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progressive, secondary-progressive and relapsing-remitting as well as acute 

progressive disease courses. We dissected normal appearing white matter from 

corpus callosum from rats suffering from a chronic disease course which would 

corresponding best to the situation of previously analyzed subcortical MS NAWM,. To 

simultaneously analyze possible grey matter changes, we dissected normal 

appearing grey matter from the somatosensory cortex. 

Our analysis revealed only minor changes in the gene expression of the white matter 

of the corpus callosum. Neither genes known to be involved in ischemic 

preconditioning mechanisms nor selected genes involved in pro- and anti-

inflammatory mechanisms were significantly changed in the NAWM of the corpus 

callosum. Therefore, we were not able to reproduce changes revealed in MS NAWM 

in experimental autoimmune encephalomyelitis. This might be due to several 

reasons. Although we selected animals with a long disease course, we cannot 

exclude the possibility that gene expression changes in MS are a cause of chronic 

stimulation over years and thus not yet detectable in EAE corpus callosum tissue. A 

study of the temporal course of NaV1.8 in Purkinje Neurons in EAE showed that in 

this case, first significant changes in NaV1.8 protein, which were paralleled by 

changes in NaV1.8 mRNA, were observed at between 51 and 75 days (Craner et al., 

2003). In contrast, EAE NAWM tissue in this study is not directly affected by 

inflammatory, demyelinating infiltrates, therefore, first changes might even appear 

later in time. Another difference possibly leading to diverse gene expression changes 

in EAE and MS NAWM might be the kind of inflammation and the position of its 

occurrence. Unlike in chronic MS, lesions in MOG-induced EAE in DA rats are 

predominantly localized in the spinal cord and/or in the optic nerve (Kinter et al., 

2008; Storch et al., 1998b). As ischemic preconditioning mechanisms in MS NAWM 

might be induced by lesions present nearby, in EAE NAWM tissue of the corpus 

callosum, ischemic preconditioning mechanisms might not be induced due to a 

higher distance to active inflammatory lesions. Furthermore, the kind of inflammation 

is different differs between MS and MOG-induced EAE. In our study we have chosen 

to use an EAE model in which not only T cells are determinant for the immune 

reactions, but also anti-MOG antibodies (Storch et al., 1998b). This model would 

most closely reflect the so-called “pattern II” (Storch et al., 1998a), one of the four 

distinct pathological MS lesion patterns which were proposed by immunopathological 

classification of lesions (Lucchinetti et al., 2000). Nevertheless, the immune reaction 
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in MOG-induced DA rat EAE is, as most EAE models, predominantly determined by 

CD4+ T cells. In contrast, in MS lesions, CD8+ T cells are dominating over CD4+ 

lymphocytes (Booss et al., 1983) and additionally, clonal expansion of CD8+ T cells 

was reported (Babbe et al., 2000). Therefore, these immunological differences 

between EAE and MS might lead to another or even no reaction of the NAWM. 

Altogether, we speculate that ischemic preconditioning genes or genes involved in 

intrinsic immune responses of the white matter might not have been induced yet, or 

are not induced in this EAE model. Therefore, MOG-induced DA rat EAE might be an 

unsuitable model to study aspects of ischemic preconditioning mechanisms present 

in MS NAWM. 

In recent years, damage to neurons and axons, as well as grey matter abnormalities 

gained increasing attention in MS research. The extent of axonal pathology has 

emerged as an important correlate of the clinical deficit in MS patients (Dutta and 

Trapp, 2007). Total amount of neuro-/axonal damage accumulating in the MS brain 

may further be augmented by the formation of grey matter lesions. Several 

abnormalities have been identified in the grey matter of MS patients by modern 

imaging techniques (Chen et al., 2004; Newcombe et al., 1991) as well as 

immunohistological methods (Brownell and Hughes, 1962; Schwab and McGeer, 

2002). These pathological alterations have been linked to several clinical 

manifestations, such as seizures, fatigue and cognitive dysfunction (Amato et al., 

2004; Benedict et al., 2004; Blinkenberg et al., 2000; Houtchens et al., 2007; Lazeron 

et al., 2000; Morgen et al., 2006; Sanfilipo et al., 2006). However, there is very little 

known about the molecular changes in grey matter of MS patients. A major cause of 

the irreversible neurological disability that occurs in the chronic stages of MS is the 

degeneration of chronically demyelinated axons. Recent studies identified gene 

expression changes in the primary motor cortex of MS in post mortem tissue from 

severely disabled chronic MS patients (Dutta et al., 2007; Dutta et al., 2006). 

Therefore, we addressed the question whether in EAE there are similar neuronal 

changes in cortical regions caused by axonal degeneration in the spinal cord. We 

found several genes encoding mitochondrial proteins to be downregulated 

suggesting a reduced capacity of the upper motor neurons in producing ATP. These 

findings are in accordance with a recent study performed with post mortem tissue 

form MS patients and is consistent with the hypothesis that chronically demyelinated 
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axons are degenerating due to a misbalance between reduced supply of ATP and 

energy demand. 

A further observation in our array study was the downregulation of ionotropic 

glutamate receptors of the NMDA and AMPA subclass. All four subunits of the AMPA 

receptors showed a decreased expression in the somatosensory cortex of EAE rats. 

In several studies a downregulation of glutamate receptors as result of axonal 

transsection in axotomy experiments has been reported (Ginsberg et al., 1996; Wang 

and Tseng, 2004).It was hypothesized that downregulation of glutamate receptors in 

injured neurons is a mechanism to protect itself against excitotoxicity. It has been 

suggested that one important mechanism by which neurodegeneration occurs in MS 

is excitotoxicity caused by imbalanced glutamate metabolism and consequent 

increased extracellular glutamate concentration (Groom et al., 2003). Indeed, it has 

been demonstrated that glutamate receptor antagonists and inhibitors of glutamate 

transmission were efficient in reducing axonal damage, death of oligodendrocytes, 

and ameliorating clinical EAE (Basso et al., 2008; Groom et al., 2003; Paul and 

Bolton, 2002; Pitt et al., 2000; Smith et al., 2000; Wallstrom et al., 1996). Therefore, 

the reduced glutamate receptor expression in the cortex may be a protective 

mechanism against excitotoxicity induced by axonal transsection in the spinal cord.  

 

The most changes observed in the microarray experiment analysing gene expression 

in the normal appearing grey matter seem to reflect either neurodegenerative or 

neuroprotective mechanisms. We couldn’t detect a diffuse inflammatory reaction 

within the somatosensory cortex of EAE rats. Hence, the detected changes in this 

study may reflect the neuronal degeneration induced by lesion mediated axonal 

transsection in the spinal cord. 

In summary, in the normal appearing white matter far distant form lesion sites only 

minor molecular changes could be observed, whereas in the normal appearing grey 

matter we identified several gene expression alterations. Downregulation of genes 

encoding mitochondrial as well as glutamate receptor proteins may reflect the 

neuronal degeneration induced by lesion mediated axonal injury in the spinal cord. A 

diffuse inflammatory reaction in white matter as reported in MS could not be 

detected. This indicates that the MOG-induced EAE in DA rats is valuable model for 

MS to analyze acute damage but is not suitable to investigate several chronic 

alterations in MS. 
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Abstract 

In the pathogenesis of multiple sclerosis, oligodendrocytes and its myelin sheaths are 

thought to be the primary target of destruction. The mechanism leading to 

oligodendrocyte injury and demyelination is still elusive. Oligodendrocytes are 

maintaining up to 50 internodes of myelin, which is an extraordinary metabolic 

demand. This makes them one of the most vulnerable cell type in the central nervous 

system, and even small insults can lead to oligodendrocyte impairment, 

demyelination and axonal dysfunction. For this reason, oligodendrocytes are viewed 

as more or less the “lame ducks” of the CNS who can easily become victims. 

However, recent data demonstrate that this perception needs possibly to be revised. 

Latest data suggest that oligodendrocytes may also act as “fierce creatures”, 

influencing the surrounding cells in many ways to preserve its own, as well as their 

function, allowing sustained functionality of the CNS upon an attack. In this review, 

the concept of “reactive or activated oligodendrocyte” is introduced, describing 

alterations in oligodendrocytes which are either protective mechanisms allowing 

survival in otherwise lethal environment, or influencing and possibly modulating the 

ongoing inflammation. Though, “harnished” oligodendrocytes might actively modulate 

and shape their environment and be part of the immune privilege of the brain. 

 

Introduction 

Multiple sclerosis (MS) is an inflammatory, demyelinating disease of the central 

nervous system (CNS). The pathological hallmark of the disease is the inflammatory 

plaque. Studies of its histopathology have revealed a wide heterogeneity at the 

cellular and molecular level, which might partially reflect the diversity of the clinical 

disease course (Lucchinetti et al., 2000; Raine and Scheinberg, 1988). There are 

several hypotheses to explain the immunological injury in MS. In the most prominent 

and most widely accepted hypothesis, MS is driven by a T-cell mediated immune 

response leading to secondary macrophage and microglia activation and 

demyelination (Compston et al., 2006). In a majority of MS cases, this immune 

response is further accompanied by antibodies or complement deposition 

(Lucchinetti et al., 2000). Other hypotheses implicate a viral pathogenesis to be the 
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origin of MS (Kennedy and Steiner, 1994), or intrinsic oligodendrocyte damage 

leading to subsequent MS disease (Lucchinetti et al., 2000). 

 

One of the major features of an inflammatory plaque is demyelination and the loss of 

oligodendrocytes (Ozawa et al., 1994). Due to the fact that oligodendrocytes are 

highly specialized and have a high metabolic demand maintaining many myelin 

sheaths, oligodendrocytes are one of the most vulnerable cells in the CNS. There are 

many ways which lead to oligodendrocyte impairment and injury (for review see 

Ludwin, 1997; Raine, 1997; Merrill and Scolding, 1999). Still, oligodendrocyte 

apoptosis and loss is not the major feature in MS, implicating that the major target of 

the destructive process is the myelin sheath (Ozawa et al., 1994). In particular cases, 

however, oligodendrocyte apoptosis might be a primary cause (Lucchinetti et al., 

2000); (Barnett and Prineas, 2004). Studies from animal models showed that T cell 

infiltration and subsequent inflammation in the CNS per se does not necessarily lead 

to extensive demyelination (for review see Gold et al., 2000; Gold et al., 2006). 

Furthermore, oligodendrocytes are able to resist at least to some extent to 

autoimmune-mediated demyelination (Ozawa et al., 1994). An important question 

arises: which mechanisms lead to or protect from potential harmful oligodendrocyte 

injury? 

 

Oligodendrocytes - lame ducks? 

Until now, many cell types have been shown to be potentially able to damage 

oligodendrocytes. In the first part of this review, we discuss some of these cell types 

and their mediators leading to oligodendrocyte injury or death. Figure 1 shows a 

schematic view of these cells and their possible oligodendrocyte harming mediators. 

 

Oligodendrocyte injury mediated by immune cells 

In acute MS lesions, CD4+ as well as CD8+ T lymphocytes are present. These cells 

can recognize their antigen if presented by MHC molecules expressed on target 

cells, and be subsequently activated. Under normal conditions, MHC expression in 

the CNS does either not occur or is below detection levels (Redwine et al., 2001). In 

vitro experiments showed, however, that oligodendrocytes can be induced to express 
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MHC class I molecules (Grenier et al., 1989; Kim, 1985) as well as MHC class II 

molecules (Bergsteindottir et al., 1992). Also in vivo, it has been shown that 

oligodendrocytes are expressing MHC class I molecules in a murine model of CNS 

inflammation and demyelination (Redwine et al., 2001) as well as in multiple sclerosis 

lesions (Hoftberger et al., 2004). This suggests that under pathological conditions, 

oligodendrocytes induce MHC I expression and can thereby directly activate T cells 

and consequently be damaged by them. 

 

 

 

 

 

Figure 1: Cells mediating oligodendrocyte injury in the course of multiple sclerosis 

Many different cell types have the potential to damage oligodendrocytes. Here, some of these cells and their potential 

oligodendrocyte damaging mediators are summarized. CD4+ Th1 T cells have been shown to induce oligodendrocyte 

damage among others through IL-2, LT and IFN-γ, whereas oligodendrocyte damaging mechanisms of Th17 T cells involve 

IL-6 and TNF-α. CD8+ T cells can induce oligodendrocyte damage directly by MHC-I restricted cell lysis. Furthermore, γ/δ 

T cells were also shown to have the potential of damaging oligodendrocytes by direct lysis. By secreting antibodies, B cell 

mediated damage to oligodendrocytes through opsonization was demonstrated. Macrophages are one of the main cell 

types inducing oligodendrocyte damage by TNF-α, FasL, ROS/RNS and other mechanisms. Furthermore, astrocytes were 

shown to be potential harmful to oligodendrocytes by mechanisms involving TNF-α, LT and RNS. 
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CD8+ T lymphocytes 

By the interaction of the CD8+ T cell receptor together with the MHC class I peptide 

complex, CD8+ T cells are activated and are directly cytotoxic to cells presenting 

their specific antigen (Parkin and Cohen, 2001). Activation of CD8+ T cell by 

recognition of their specific antigen is then followed by clonal expansion. In MS, this 

was shown by analyzing lesions as well as blood and cerebral spinal fluid (CSF) for 

clonal composition and T cell receptor repertoire (Babbe et al., 2000; Skulina et al., 

2004). These results suggested that CD8+ T cells might have recognized their 

specific antigen within the lesion and might have been activated. It has been shown 

that oligodendrocytes are susceptible to cytolysis by CD8+ T lymphocytes (Jurewicz 

et al., 1998; Ruijs et al., 1990). Further, an involvement of CD8+ cytotoxic T 

lymphocytes in autoimmune demyelination was shown in experimental autoimmune 

encephalomyelitis (EAE) (Huseby et al., 2001; Sun et al., 2001). Altogether, this 

suggests that CD8+ T lymphocytes might contribute to oligodendrocyte injury in MS. 

 

CD4+ T lymphocytes 

CD4+ Th cells recognize their cognate antigen exclusively in the context of MHCII 

molecules. In contrast to MHC class I molecules, the expression of MHC class II 

molecules by oligodendrocytes could not be demonstrated in MS (Lee and Raine, 

1989). MHCII expression is restricted to professional antigen presenting cells such as 

microglia/macrophages and dendritic cells (Becher et al., 2000; Greter et al., 2005). It 

is easily conceivable that CD4+ T helper cells induce oligodendrocyte damage by 

secreting cytokines and promoting activation of nearby macrophages and microglia. 

Studies in EAE suggest that CD4+ T cells of the Th1 and Th17 lineage play a major 

role in disease pathology (Gutcher et al., 2006; Langrish et al., 2005; Langrish et al., 

2004; Lassmann and Ransohoff, 2004; Sospedra and Martin, 2005; Weaver et al., 

2006). Th1 cells are characterized by the predominant secretion of IFN-γb whereas 

Th17 cells are shown to secrete IL-17A, IL-17F and IL-22 (Iwakura and Ishigame, 

2006; Kreymborg et al., 2007; McGeachy et al., 2007). It was shown that 

oligodendrocytes express TNF-α receptors (Cannella et al., 2007; Raine et al., 1998) 

as well as other cytokine receptors such as IFN-γ receptor (Cannella and Raine, 

2004), and treatment of oligodendroglial cell lines with IFN-γ induces apoptosis 
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(Buntinx et al., 2004). Oligodendrocytes were also shown to be susceptible to TNF-α 

induced cell death (D'Souza et al., 1996a; Jurewicz et al., 2005; Selmaj and Raine, 

1988). Taken together, activated CD4+ T lymphocytes do contribute to some extent 

directly or indirectly to oligodendrocyte injury in MS. 

 

γγγγ/δδδδ T lymphocytes 

Another cell type found in MS lesions are γ/δ T lymphocytes (Wucherpfennig et al., 

1992). γ/δ T cells are a T cell subpopulation showing a different T cell receptor 

structure than α/β T cells (Li et al., 1998). The role of γ/δ T lymphocytes in MS is still 

unclear. Nevertheless, depletion of γ/δ T lymphocytes during EAE has been shown to 

ameliorate disease severity during the acute phases of the disease (Rajan et al., 

1996). Furthermore, γ/δ T cells were shown to enhance adoptive-transfer EAE by 

promoting antigen presentation and IL-12 production (Odyniec et al., 2004). As lysis 

of oligodendrocytes by γ/δ T cells has been demonstrated in vitro (Freedman et al., 

1991), a possible impact on oligodendrocyte injury in MS might not be ruled out. 

 

B-cells and antibodies 

In cerebrospinal fluid (CSF) of MS patients, abnormal oligoclonal immunoglobulin 

bands are detected, which supports clinical diagnosis of MS (Compston et al., 2006). 

Autoantibodies against myelin components were reported to be present in serum and 

CSF as well as lesions of MS patients (Genain et al., 1999; Reindl et al., 1999). In-

line, IgG isolated from inflamed CNS tissue from MS patients were shown to 

recognize MOG (O'Connor et al., 2005). Recently, meningeal B-cell follicles were 

reported to associate with early onset of disease and severe cortical pathology in 

secondary progressive MS (Magliozzi et al., 2007). Therefore, antibody producing B-

cells may have potential impact on oligodendrocyte injury and demyelination. For 

example, injection of antibodies augmented demyelination during the course of a T-

cell mediated transfer EAE (Linington et al., 1988). Further, it has been shown that by 

opsonizing the myelin-oligodendrocyte surface, antibodies can stimulate 

oligodendrocyte lysis of macrophages through their Fc receptors (Scolding and 

Compston, 1991). Also, another demyelinating mechanism by antibodies was shown 

to involve membrane attack complex (MAC) deposition, which finally leads to 
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complement mediated cytolysis (Mead et al., 2002; for review see Sospedra and 

Martin, 2005). Altogether, direct antibody-mediated injury of oligodendrocytes in 

multiple sclerosis might play an important role, although its impact on MS 

pathogenesis could not be determined yet. 

 

Oligodendrocyte injury mediated by activated macrophages/microglia 

Activated macrophages and microglia may play an important role in inducing 

oligodendrocyte injury during acute inflammation in MS. It has been shown that 

disease severity in EAE correlates best with macrophage infiltration (Berger et al., 

1997). Activated macrophages and microglia were shown to have incorporated 

myelin products, and express a large variety of different for oligodendrocytes 

deleterious compounds, such as TNF-α, reactive oxygen species (ROS), reactive 

nitrogen species (RNS) and Fas-ligand (FasL). TNF-α is a potent cytotoxic molecule 

capable of inducing oligodendrocyte cell death (D'Souza et al., 1996b; Jurewicz et 

al., 2005; Selmaj and Raine, 1988). The production of ROS and RNS by activated 

macrophages and microglia can lead to various types of damage such as lipid 

peroxidation, tyrosine nitrosylation and DNA strand breaks (van der Veen and 

Roberts, 1999; Willenborg et al., 1999; Zhang et al., 1994). High expression of 

inducible nitric oxide synthase (iNOS) as well as neuronal nitric oxide synthase 

(nNOS) has been reported in activated macrophages and microglia within active 

lesions in MS (De Groot et al., 1997; Hill et al., 2004), and RNS mediated damage in 

oligodendrocytes has also been demonstrated (Jack et al., 2007; Li et al., 2005; 

Merrill et al., 1993). Oligodendrocytes were also reported to express Fas in MS 

lesions (D'Souza et al., 1996). FasL was shown to induce oligodendrocyte damage 

(Li et al., 2002) and as microglia express FasL in MS lesions (Becher et al., 1998), 

they might therefore induce oligodendrocyte apoptosis. Furthermore, it has been 

shown that activated macrophages and microglia are capable of damaging 

oligodendrocytes in an antibody-dependent mechanism (Griot-Wenk et al., 1991). 

Altogether, activated macrophages and microglia might be one of the major 

mediators of oligodendrocyte injury in MS. 
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Oligodendrocyte injury mediated by astrocytes 

Astrocytes are known to maintain physiological glutamate levels in the brain. 

Therefore, malfunctioning or too slow glutamate uptake might lead to an 

enhancement of oligodendrocyte excitotoxic damage (Newcombe et al., 2007). 

Additionally, astrocytes are also known to express TNF-α and LT-α. Thus, astrocytes 

might also be potential inducer of oligodendrocyte injury via TNF-α and LT-α 

dependent mechanisms (for review see Williams et al., 2007). An expression of all 

three isoforms of NOS by astrocytes was also reported (for review see Gibson et al., 

2005). In MS plaques, high levels of constitutively expressed NOS were detected to 

be expressed by astrocytes and macrophages (De Groot et al., 1997). In contrast to 

astrocytes, oligodendrocytes are shown to be much more susceptible to NO induced 

oxidative stress (Mitrovic et al., 1995). This is explained by the high iron load stored 

in oligodendrocytes (Connor and Menzies, 1995; Roskams and Connor, 1994; 

Thorburne and Juurlink, 1996) as well as their low content of reduced-glutathione 

(GSH) (Juurlink et al., 1998; Thorburne and Juurlink, 1996). Iron (Fe2+) was reported 

to be involved in the formation of hydroxyl radicals (Gutteridge and Halliwell, 1989), 

whereas glutathione peroxidase activity, using GSH as an electron donor, scavenges 

hydrogen peroxide and thus inhibits hydroxyl radical formation (Juurlink et al., 1998). 

A production of NO through NOS expressed by astrocytes might, therefore, lead to 

oxidative stress and damage in oligodendrocytes. Taken together, activated 

astrocytes might also be involved in damaging oligodendrocytes during the disease 

course of MS. 

 

Reactive or activated oligodendrocytes – pure defensive or even 

fierce creatures? 

As discussed before, immune cells as well as brain resident cells are able to produce 

a variety of potentially harmful factors for oligodendrocytes. These “attacks” are 

occurring either direct via lysis or indirect via toxic mediators or via an imbalance of 

the surrounding environment. As demyelination is a major feature in MS and also 

loss of oligodendrocyte during the chronic disease process is evident, 

oligodendrocytes can be regarded as “poor victims” in the pathogenic process of MS. 

Still, the question arises if oligodendrocytes are really “lame ducks” allowing 
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passively disease progression, or if they attempt to defend themselves in one way or 

the other, which could even influence disease progression? 

 

Studies characterizing oligodendrocytes in MS lesion and in primary oligodendrocyte 

cultures as well as analysis of normal appearing white matter (NAWM) MS tissue, 

which is mostly devoid of immune infiltrates - therefore suitable to study pre-lesional 

activities of oligodendrocytes - have recently disclosed a view of oligodendrocytes 

being potential immune-modulating in MS. Further, oligodendrocytes were shown to 

successfully protect themselves during pathogenesis of Balo’s concentric sclerosis 

(Stadelmann et al., 2005). Altogether, these findings might lead to a view of 

oligodendrocytes being at least capable to defend themselves, or even be a reactive 

- to some extent active cell type - being part of the immune privilege of the brain. 

Here, we discuss the capacity of oligodendrocytes to react against certain insults for 

their own protection, and how they might modulate their environment by influencing 

disease progression. 

 

Activation of endogenous protective mechanisms 

In the last few years, growing evidence suggest an involvement of hypoxia-like 

pathogenic mechanisms in MS (Lassmann, 2003). Especially, in the so-called pattern 

III of the lesion patterns identified recently (Lucchinetti et al., 2000), hypoxia-like 

tissue injury may play a pathogenetic role (Aboul-Enein et al., 2003). Hypoxic tissue 

injury can be induced in many ways. As already mentioned above, reactive oxygen 

and nitrogen species (ROS, RNS) are known to induce cellular damages, and were 

proposed to be involved in the demyelinating processes (Smith et al., 1999). For 

example, NO can impair respiratory chain function in mitochondria, and by that can 

cause axon conduction block (Redford et al., 1997). In particular, oligodendrocytes 

are vulnerable to NO-mediated damage (Smith et al., 1999; Smith and Lassmann, 

2002), and therefore, activation of mechanisms protecting oligodendrocytes from 

oxidative stress inducing damage would be highly beneficial. A recent study of 

subcortical NAWM from MS cases has shown the upregulation of several genes 

involved in ischemic preconditioning (Graumann et al., 2003). In particular, HIF-1α 

has been shown to be an important regulator of hypoxic preconditioning (Bergeron et 

al., 2000; Bernaudin et al., 2002; Sharp et al., 2001) and is activated by hypoxia, 
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growth factors, NO and others (for review see Brune and Zhou, 2007; Semenza, 

2002). HIF-1α and some of its downstream genes were shown to be elevated in MS 

NAWM (Graumann et al., 2003), and in-situ hybridization experiments of MS NAWM 

(Zeis et al., 2008) as well as examinations of Balo’s concentric sclerosis identified 

oligodendrocytes expressing this transcription factor (Stadelmann et al., 2005), 

suggesting that oligodendrocytes mount ischemic protective mechanisms during the 

disease course (Fig. 2). Furthermore, oligodendrocytes were also shown to express 

heat-shock proteins 70 (HSP70) (Stadelmann et al., 2005) as well as HSP32 

(Stahnke et al., 2007). In the case of HSP70, a protective role has been shown in 

brain ischemia (for review see Christians et al., 2002), whereas HSP32 was shown to 

exert a protective role against oxidative stress in an oligodendroglial cell line 

(Stahnke et al., 2007). 

 

 

 

 

 

Interestingly, sub-lethal doses of inflammatory cytokines such as IFN-γ and TNF-α 

were reported to induce protective mechanisms in target cells (Fig. 2). The induction 

of HSP70 in oligodendrocytes was shown in-vitro by treatment of oligodendrocyte 

cultures with a mix of cytokines (D'Souza et al., 1994). Further, treatment of 

oligodendrocyte cultures with IFN-γ led to an increase in the expression of genes 

involved in protection against oxidative stress (Balabanov et al., 2007). In line, 

treatment of mice with IFN-γ before onset of EAE led to an amelioration of the 

Figure 2: Ischemic preconditioning pathways in 

oligodendrocytes 

Recent studies showed that oligodendrocytes can mount 

ischemic preconditioning mechanisms upon different stimuli. 

Treatment of oligodendrocytes with sub-lethal doses of IFN-γ 

and TNF-α led to the upregulation of genes involved in ischemic 

tolerance. Protective genes were also shown to be upregulated 

in oligodendrocytes after stimulation with growth factors. 

Furthermore, low-levels of RNS/ROS were reported to lead to a 

stabilization of HIF-1α which in turn activates the transcription of 

protective genes such as for example VEGFR, GLUT1 and 3. 
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disease through activating the integrated stress response (Lin et al., 2007). 

Altogether, oligodendrocytes are able to induce and express endogenous protective 

mechanisms allowing them to survive in an otherwise potentially lethal environment. 

 

Growth factors 

Changes in growth factors as well as growth factor receptors expression were 

demonstrated in MS. Several growth factors such as nerve growth factor (NGF), 

insulin-like growth factor (IGF) and transforming growth factor β (TGF-β) were 

reported to be expressed by oligodendrocytes (for review see Du and Dreyfus, 2002). 

By expression of these factors, oligodendrocytes might influence the survival and/or 

function of neighboring cells. NGF can bind to the tyrosine kinase receptor A (TrkA) 

as well as to the low-affinity nerve growth factor receptor (p75NTR). By binding to 

TrkA, NGF promotes cell survival whereas binding to p75NTR under some 

circumstances might also modulate susceptibility to programmed cell death or 

apoptosis (Casaccia-Bonnefil et al., 1999; Yoon et al., 1998). In EAE, expression of 

TrkA was detected on neurons, astrocytes and oligodendrocytes (Oderfeld-Nowak et 

al., 2003; Oderfeld-Nowak et al., 2001), whereas p75NTR was detected on neurons, 

microglia, astrocytes and oligodendrocytes (Nataf et al., 1998; Villoslada et al., 

2000). In EAE, NGF was shown to have beneficial effects, as NGF-deprived rats 

display more severe neurological deficits during disease course. Further, treatment of 

marmoset monkeys with NGF prevented the full development of EAE lesions and 

delayed the onset of clinical EAE (Micera et al., 2000; Villoslada et al., 2000). 

Another growth factor  expressed by oligodendrocytes is IGF-1, which was reported 

to ameliorate TNF-α induced demyelination in transgenic mice (Ye et al., 2007). 

Furthermore, IGF-1 was also reported to reduce demyelination in EAE (Liu et al., 

1995), although this beneficial effect is still under debate (Cannella et al., 2000). The 

expression of TGF-β by oligodendrocytes was also reported, which is discussed in 

the next chapter. Altogether, by expressing several growth factors, oligodendrocytes 

are able to influence the function and survival of themselves, but also of the nearby 

cells.  
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Figure 3: STAT6 signaling pathway expression in oligodendrocytes 

Recently, oligodendrocytes were shown to be able to express immune-mechanism relevant genes. Immunofluorescence 

colocalization analysis of proteins from the STAT6 signaling pathway in multiple sclerosis patients revealed the expression of 

IL-4R (A), IL-13R (B) and STAT6 (C) in oligodendrocytes (Olig2 positive) in subcortical normal appearing white matter brain 

tissue. A: Colocalization of STAT6 (red), IL-4R (green, inset), OLIG2 (blue) and DAPI (cyan); B: Colocalization of STAT6 

(red), IL-13R (green, inset), OLIG2 (blue) and DAPI (cyan); C: Colocalization of STAT6 (red), OLIG2 (blue) and DAPI (cyan) in 

oligodendrocytes arranged in interfascicular rows, which is typical for myelinating oligodendrocytes (for more detailed pictures 

see Zeis et al., 2008). Scale bar= 25µm. 

 

Potential immune modulating ability of oligodendrocytes 

Immunohistochemical analysis of proteins expressed by oligodendrocytes revealed 

that oligodendrocytes are able to express cytokine receptors as well as members 

from the JAK/STAT family (Cannella and Raine, 2004; Zeis et al., 2008). In a recent 

study, we have shown that genes from the STAT6 signaling pathway are upregulated 

in MS NAWM, and that STAT6 and its members JAK1/ 3, IL-4R and IL-13R are 

expressed by oligodendrocytes (Fig. 3 and 4) (Zeis et al., 2008). The STAT6 

signaling pathway is known from CD4+ T helper cells type 2, and it has been shown 

that STAT6 is critically required for differentiation into Th2 cells (Kaplan et al., 1996). 

Although still debated, cytokines of the Th2 type such as IL-4 and IL-10 are thought 

to be mostly beneficial in MS and EAE (Cannella and Raine, 2004; Sospedra and 

Martin, 2005). In EAE it has been shown that STAT6 knock-out mice develop a more 

severe disease than wild-type mice (Chitnis et al., 2001). This might be due to the 

lack of Th2 cells, but may also be due to the inability of oligodendrocytes to modulate 

their environment in an anti-inflammatory way. The expression and activation of an 

anti-inflammatory response by oligodendrocytes might be crucial for them to 

compensate for the upregulated pro-inflammatory environment, and to limit the 

inflammatory response and damage (Zeis et al., 2008). The expression of different 

cytokine receptors on oligodendrocytes in active and silent lesions may further 
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suggest an active role in innate immunity of the CNS (Cannella and Raine, 2004). 

Oligodendrocytes were also shown to express TGF-β in vitro (da Cunha et al., 1993; 

McKinnon et al., 1993), which can suppress immune and inflammatory responses (for 

review see Pratt and McPherson, 1997), and might promote myelination and 

remyelination (Setzu et al., 2006).  

 

 

 

 

 

In vitro experiments suggested, that upon stimulation by Interferon-γ, 

oligodendrocytes express protective genes against oxidative stress as well as a 

number of chemokines, including CXCL10, CCL2, CCL3 and CCL5 (Fig. 4) 

(Balabanov et al., 2007). CXCL10, CCL2 and CCL5 were also found to be 

upregulated in MS NAWM (Graumann et al., 2003). Furthermore, mice with 

oligodendrocytes with suppressed responsiveness to IFN-γ showed higher 

oligodendrocyte apoptosis in EAE as well as an accelerated disease onset, but 

milder perivascular inflammation and minimal parenchymal infiltration and 

demyelination (Balabanov et al., 2007). This effect of IFN-γ on oligodendrocytes 

demonstrates that oligodendrocytes are capable to react on external immune 

challenges by induction of protective mechanisms, and that they can modulate 

inflammatory responses. The expression of cytokine receptors as well as members 

from the anti-inflammatory STAT6 signaling pathway, and the possibility of 

Figure 4: Immune response-mediating pathways in 

oligodendrocytes 

Analysis of proteins expressed by oligodendrocytes revealed 

that oligodendrocytes are able to express immune mechanisms-

related proteins. Members of the STAT6 signaling pathway, 

such as IL-4R, IL13R, JAK1 and STAT6, were shown to be 

expressed by oligodendrocytes. This might indicate an anti-

inflammatory “Th-2”-like response by oligodendrocytes. 

Furthermore, treatment of oligodendrocytes with a sub-lethal 

dose of IFN-γ and TNF-α led to the secretion of chemokines 

such as CXCL10 (IP-10), CCL2 (MCP-1), CCL3 (MIP-1α) and 

CCL5 (Rantes). Altogether, this indicates that oligodendrocytes 

might play an immune-modulating role MS. 
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chemokine expression might point to oligodendrocytes playing a role in the innate 

immunity by actively modulating their environment and interacting with cells of the 

immune system. 

 

Conclusions 

Oligodendrocytes as the myelinating cell type in the CNS are the major targets in 

MS. Many studies have shown that oligodendrocytes are easily damaged by various 

mechanisms. Therefore, oligodendrocytes might be seen as “lame ducks” of the 

CNS. However, growing evidence indicate that oligodendrocyte are far more than a 

passive presence in the CNS during MS. Oligodendrocytes are either constitutively 

expressing or inducing various molecules able to influence inflammatory reactions, 

and prevent cell death in order to conserve the functionality of the CNS. It seems that 

oligodendrocytes in MS have a rather active or reactive phenotype, preventing fatal 

damage as well as modulating their surrounding. Therefore, oligodendrocytes may 

even act as “fierce creatures”, influencing innate immunity and being an active part in 

the formation of the immune privilege of the brain. 
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Abstract 

Recently, the introduction of RNA profiling using microarray technology has helped to 

elucidate gene expression changes in diseased tissue samples from post-mortem 

human brains. Especially, in the field of Multiple sclerosis (MS) research, microarray-

based RNA profiling has been applied in the hope to identify disease specific 

alterations. The lack of good biomarkers for diagnostic as well as for prognostic 

purposes, but also the need for new drug targets and for a better understanding of 

the pathophysiology makes this technique a valuable tool. Different RNA profiling 

approaches have been used addressing distinct scientific questions. MS brain tissue 

samples have been proven to be an appropriate source for RNA profiling to 

investigate molecular pathomechanisms. This work discusses the critical parameters 

for RNA profiling of MS brain tissues, and reviews the results obtained by microarray 

studies analysing differential gene expression in MS brain tissues. 

Introduction 

Despite the recent progress made in Multiple sclerosis (MS) research the aetiology of 

the disease remains still unsolved. Reliable and clinically useful diagnostic and 

prognostic markers for MS are still not available. Recent studies expanded the 

number of susceptibility genes, underscoring the complexity of the genetic trait of MS 

(Ebers et al., 1996; Gregory et al., 2007; Hafler et al., 2007; Haines et al., 1996; 

Kuokkanen et al., 1997; Lundmark et al., 2007; Sawcer et al., 1996). Additionally, 

environmental influences such as geographical factors as well as viral infections are 

discussed as important risk factors (Ebers, 2008; Hogancamp et al., 1997). The 

development and improvement of new experimental and technical tools measuring 

gene expression regulation made it possible to analyze changes in MS tissue 

samples by high-throughput technologies like DNA microarrays, also called gene 

chips. 

 

There are several different platforms available for RNA profiling (Lee and Saeed, 

2007). They differ in the number of gene sequences covered by the array, in the 

length of the cDNA probes, and the way the source RNA is processed for probe 

labelling. The most commonly used microarrays use short oligonucleotide sequences 

(25 to 60-mers), which are covalently bound to a small glass surface (e.g. Affimetrix, 
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Illumina) (Kuo et al., 2006). These arrays cover the whole genome sequence of the 

species to be analyzed. Total or poly A+ RNA is extracted from a selected biological 

sample, converted into cDNA, from which a fluorescently labelled cRNA is generated. 

Another type of arrays is using radioactive labelled cDNA as a high sensitive probe 

for detecting expressed gene sequences (e.g. Clontech ATLAS arrays) (Bowtell, 

1999; Duggan et al., 1999). The combination of long cDNA fragments (300-500bp) 

attached to a nylon membrane and the use of radioactivity for labelling cDNA probes 

makes this type of microarrays very specific and in particular sensitive. A 

disadvantage of this system is the lower number of gene sequences (500-5000) 

covered by one array. After hybridization of the labelled cDNA probe, the 

hybridization signal of each sequence spot is determined either by laser scanning of 

the fluorescent or by autoradiography of the radioactive signal (phosphor-imager). 

Routinely, with 1µg of total RNA (down to 10 ng RNA) the gene expression of the 

whole genome can be analyzed at the same time. 

Microarrays in MS 

The first study applying microarray technology on MS brain tissue was published in 

1999 by Whitney and colleagues (Whitney et al., 1999). Since then, several studies 

using microarrays were performed to identify differential gene expression in MS 

tissue as well as in tissues from experimental autoimmune encephalomyelitis (EAE), 

an animal model of MS (Comabella and Martin, 2007). These studies partially 

overlap, concerning experimental setup as well as the obtained result. Nevertheless, 

the heterogeneity of the experimental setups makes it difficult to compare these 

studies retrospectively (Comabella and Martin, 2007). Several points have to be 

considered when a microarray study is planned (Figure 1). At the beginning of each 

gene expression study, the scientific question determines the experimental setup. In 

MS research, a wide range of scientific questions were addressed using microarray 

experiments. Several studies aimed to identify biomarkers for diagnostic purposes 

(Bomprezzi et al., 2003; Mandel et al., 2004), whereas other studies were designed 

to identify molecular mechanisms of the pathophysiology or to discover new drug 

targets (Dutta et al., 2006; Graumann et al., 2003; Lindberg et al., 2004; Lock et al., 

2002; Mycko et al., 2003; Mycko et al., 2004; Tajouri et al., 2003; Whitney et al., 

1999; Whitney et al., 2001).  The  diversity   in   experimental   design   used   in  the  
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past, partially reflects the different approaches addressing distinct scientific 

questions. 

An important issue in using microarray technology in MS research is the tissue 

selection and sampling. This includes different populations of peripheral blood cells 

(PBMC and CD3+ cells) (Goertsches and Zettl, 2007), different types of lesioned 

white matter (e.g. acute, active and silent lesions) and normal appearing white matter 

(NAWM) (Table) (Lindberg and Kappos, 2006). Microarray studies in MS further differ 

concerning the number of MS cases as well as the type of MS disease course 

(relapsing remitting, primary progressive or secondary progressive). As already 

Figure 1 The main issues to be considered when performing RNA profiling of MS brains using microarray analysis. 

The first step consists of defining the scientific question that should be answered by the output data. The working 

hypothesis will help to design a study and to select the patient cohort as well as the type of tissue samples. The 

next step includes the actual microarray experiment by which the gene expression data are obtained. After 

statistical analysis and generation of an expression profile the data should be verified by alternative methods and 

optimally validated using an independent cohort of patients. 
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mentioned, different expression array platforms are nowadays available (Lee and 

Saeed, 2007) from which most of them have been used in MS research, which 

further increases difficulties in comparability. Another major step is the analysis of the 

hybridization signals. Today, there are a large variety of software tools available for 

statistical analysis used for the identification of differentially expressed genes. A 

major issue for the correct interpretation of microarray data is the choice of the 

normalization parameters. Currently, this largely depends on the system used; e.g. 

“global normalization” is often applied to microarrays covering thousands of 

sequences, whereas hybridizations signals from microarrays which cover a chosen 

selection of sequences will rather be normalized with one or a set of house keeping 

genes. Still, the final interpretation of the obtained results remains one of the most 

challenging steps in analyzing data from gene chips. Currently, the need in 

developing new tools converting the enormous amount of generated microarray data 

into biological significant interpretations is discussed (Comabella and Martin, 2007). 

Finally, identified differentially expressed genes have to be verified using other 

techniques such as quantitative RT-PCR, in situ hybridization, Western blot analysis 

and/or immunohistochemistry. For that, validation by using an independent cohort of 

patients would be ideal. Among all these issues, sample and case selection is one of 

the major criteria for successful analysis of gene expression alterations in MS brain 

tissues, and are therefore discussed in more detail. 

Sample and Case Selection 

In neurological diseases affecting the central nervous system (CNS), like MS, the 

availability of the affected tissue is limited. The studies are mostly limited to post 

mortem tissue because brain biopsies for analytical purpose are only rarely taken. 

RNA degrades relatively fast after death, and thus cases with a short post mortem 

time are most likely the best source for RNA that can be used for expression profiling. 

Still, full length total RNA can be isolated from post-mortem times up to 20 hours; 

whereas a short post-mortem time does not always guarantee intact RNA (Graumann 

et al., 2003). Nevertheless, post mortem tissue is a useful source for gene 

expression studies, used for the analysis of the pathomechanisms, and to identify 

possible drug targets. A further selection of the tissue samples is an essential issue 

in the experimental setup. To ensure that the identified changes in gene expression 

are due to the parameter to be analyzed (e.g. diseased vs. control) it is important to 
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avoid false results due to a bias in case and tissue selection. Possible bias in case 

selection are sex, age, treatment, disease course, additional diseases and post 

mortem time of the collected tissue. Aging effects such as higher expression of anti-

oxidative stress genes, low level gliosis and reduced expression of neurotransmitter 

receptor genes (Lu et al., 2004) can be excluded by using appropriate control brain 

tissue from the corresponding region, corresponding age, comparable cause of 

death, and comparable post mortem delay time. 

For MS research there is a variety of sources of biological samples when analyzing 

gene expression in the brain. Most of the studies used post mortem brains from MS 

and healthy control patients (Figure 2A, Table), but also CNS tissues of EAE animals 

have been used (Figure 2B). As already mentioned, the maintenance of 

comparability between MS cases and controls is crucial. Therefore, selected brain 

areas (e.g. subcortical white matter, periventricular white matter) used for the 

analysis should be analogous. The sample heterogeneity can be reduced by isolating 

tissue from defined brain regions to avoid false results due to regional distinctions. 

Another important issue in identifying differential expressed genes is the cellular 

composition of the tissue to be compared (Figure 2C-F). To identify genes which are 

up- or down regulated by a specific cell type, a monotypic cell population as a source 

for microarray experiments is optimal. Unfortunately, this is not the case for most 

heterogeneous tissues like the CNS. 

White matter is mainly populated by myelinating oligodendrocytes, astrocytes and 

microglia (Figure 2C). Additionally, interstitial subcortical neurons, endothelial cells 

forming blood vessel walls, and even axonal transported transcripts can be sources 

of RNA. Therefore, the obtained expression profile of white matter tissue is a mixture 

of all these cell types. When using lesioned tissue as source for RNA, the cellular 

composition is even more complex due to infiltrating immune cells, like T-cells, B-

cells and peripheral macrophages (Figure 2D, E, F). Therefore, the comparison of 

tissue with different cellular composition (e.g. lesioned MS tissue vs. tissue from 

control cases) must be interpreted with this special focus and awareness. This as 

differences in the amount of specific RNA transcripts might be either due to an up- or 

downregulation in resident cells, or due to differences in cellularity, e.g. infiltrating 

cells, or a combination of both. The challenge but also difficulty of analyzing lesioned 

brain tissue is to discriminate between these possibilities and to identify truly 

differentially regulated genes. 
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Figure 2 Different type of brain tissues analyzed in MS research. 

Different types of brain tissue have been used for microarray studies in the field of MS research (A). Additional, an 

animal model for MS, namely EAE, has been used to isolate tissue from the central nervous system for microarray 

experiments (B). An important issue in identifying differential expressed genes is the cellular composition of the 

tissue to be compared. White matter is mainly populated by myelinating oligodendrocytes, astrocytes and microglia 

(C). In lesions the cellular composition is even more complex due to infiltrating immune cells, like T-cells, B-cells and 

peripheral macrophages (D-F). Therefore, the comparison of tissue with different cellular composition (e.g. lesioned 

MS tissue vs. tissue from control cases) must be interpreted with this special focus and awareness. 
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Due to the above mentioned points a careful characterization of the tissue that will be 

finally used for RNA extraction is important. Immunohistological characterization with 

markers for demyelination, infiltration, and gliosis are necessary and a prerequisite 

for the interpretation of the data. Certainly, it is nearly impossible to fulfil all these 

criteria, but they have to be considered when analyzing and interpreting the results. 

Microarray studies using brain tissue published so far differ in most of the points 

mentioned above, and are therefore difficult to compare with each other. In the next 

chapter we summarize these studies using various MS brain tissues as source for 

RNA. 

Results from RNA profiling in MS brain tissue 

White matter lesions are the hallmark of MS, and therefore analyzed extensively. 

Several studies investigated the gene expression pattern in lesions by comparing 

them with either tissue from control cases, NAWM, or other types of lesions (an 

overview of the different studies is provided in the Table). More recently, first studies 

on molecular alterations in cortical grey matter were performed investigating changes 

in neurons (Allen and McKeown, 1979; Dutta et al., 2006). All of these studies are 

based on a small number of cases (max. 10), which most of them were in a 

progressive disease stage. As all these studies based on post-mortem tissue, they 

represent a snap-shot of the situation at late stages of the disease course. Therefore, 

gene expression changes observed in studies using post mortem brain tissue are 

usually reflecting the chronic disease stage plus the bias of aging, which can be 

excluded by using appropriate control tissue as discussed above. This is in contrast 

to studies using peripheral blood, where large numbers of patients at different 

disease stages can be sample. 

 

Studying gene expression in MS lesions 

After an initial study comparing an acute lesion with NAWM of one MS case, Whitney 

et al. published a second study using several lesions from two MS cases and white 

matter from control cases (Whitney et al., 1999; Whitney et al., 2001). This study 

combined the use of cDNA microarray technology and EAE, to identify gene 

transcripts that are more abundant in either disease states, but not in normal white 

matter or normal mouse brains. One gene, 5-lipoxygenase, could be identified to fulfil 
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these criteria. Immunohistochemistry showed that this gene is mainly expressed by 

infiltrating macrophages, and only weakly expressed in normal control brains. Lock et 

al. detected an increased expression of inflammatory cytokines (e.g., IL-6 and IL-17), 

complement genes and other genes involved in immunity (Lock et al., 2002). They 

also analyzed the role of the immunoglobulin (Ig) Fc receptor common gamma chain 

and the granulocyte colony-stimulating factor (G-CSF) in EAE. Tajouri and 

colleagues investigated expression profiles in acute and chronic active MS lesions 

and compared those with patient-matched white matter (Tajouri et al., 2003). In two 

separate reports, Mycko and colleagues studied gene expression between margins 

and centres of chronic active and chronic inactive lesions from autopsy samples of 

four patients (Mycko et al., 2003; Mycko et al., 2004). Significant differences in the 

transcriptional profiles of these two lesion types were found. Lindberg et al. 

investigated gene expression in active lesions and NAWM from brain autopsy 

samples of patients with secondary progressive MS by comparison with aged-

matched controls (Lindberg et al., 2004). Genes involved in the humoral immune 

response showed the highest change in expression underscoring the important role 

of a humoral immune response in lesions. 

Studying gene expression in NAWM 

Other studies focused on identification of differential expressed genes in the normal 

appearing white matter (Dutta et al., 2006; Graumann et al., 2003; Lindberg et al., 

2004; Zeis et al., 2008). In 1979 Allen et al described several histological 

abnormalities in NAWM that was defined as white matter devoid of macroscopic 

visible plaques (Allen and McKeown, 1979). Microscopically normal white matter was 

therefore described as white matter tissue without any pathological signs, like gliosis, 

demyelination, or infiltration. This definition depends strongly on the methodology 

available and can vary from study to study, especially over time when techniques and 

knowledge improves. Analyzing NAWM would address the question whether specific 

changes exist in the NAWM, which either lead to lesion formation or are protective 

and prevent tissue damage. The number of infiltrating cells in NAWM is very low and 

can be neglected (Figure 2). Therefore, the cellular composition in NAWM is similar 

as in the white matter of normal control cases. This makes the NAWM an ideal tissue 

for analyzing differential expressed genes in the MS brain. 
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Only a few studies analyzed differential gene expression in NAWM (Dutta et al., 

2006; Graumann et al., 2003; Lindberg et al., 2004; Zeis et al., 2008). The study of 

Graumann et al. compared 12 tissue samples from NAWM of 10 MS cases with 8 

white matter tissue samples from 7 control cases (Graumann et al., 2003). To further 

reduce tissue heterogeneity subcortical white matter was specifically chosen for all 

tissue samples and used for RNA isolation. Selected results obtained by the 

microarray experiment were verified using in-situ hybridization and 

immunohistochemistry (Graumann et al., 2003; Zeis et al., 2008). As a result of this 

particular selection of well defined brain areas - and by exclusion of tissue samples 

with different cellular composition - endogenous expression changes could be 

detected. Several alterations have been identified, in which the molecular footprints 

pointed towards changes that are characteristic of neuroprotective mechanisms 

against hypoxic insults (Graumann et al., 2003). This study further revealed 

upregulation of a number of functionally related genes known to be involved in 

endogenous neuroprotection as well as in maintenance of cellular homeostasis. The 

results demonstrated that in MS brain a global defence against oxidative stress is 

mounted, probably in order to preserve cellular function. This is based on the 

observation that whole signalling pathways involved in long-term ischemic tolerance 

were significantly upregulated in MS NAWM, best illustrated by the upregulation of 

one of the key transcription factors HIF1α and its downstream genes (Graumann et 

al., 2003). 

 

In a follow-up study, Zeis et al. could demonstrate an alteration of several genes 

involved in inflammatory mechanisms (Zeis et al., 2008). Using 

immunohistochemistry, they could show that the anti-inflammatory STAT6 signalling 

pathway is expressed mainly by oligodendrocytes, whereas the pro-inflammatory 

transcription factor STAT4 is expressed by microglia. The identification that 

oligodendrocytes in MS express “anti-inflammatory” genes led to the conclusion that 

oligodendrocytes might be capable to modulate its environment and by that can 

influence the progression of the disease (Zeis et al., 2008). An additional study 

comparing NAWM from MS cases with white matter from age-matched controls 

provided evidence of dysfunctional homeostasis and changes related to immune-

mediated mechanisms, supporting the concept of MS pathogenesis being a 

generalized process that involves the entire CNS (Lindberg et al., 2004).  
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Although, MS is a primary demyelinating disease, progressive neuronal dysfunction 

due to axonal degeneration is occurring. Therefore, studies of molecular alterations 

in neurons might reveal changes allowing a better understanding of the ongoing 

neurodegenerative process observed in MS. In a microarray analysis of grey matter 

from the motor cortex a decreased expression of mitochondrial genes as well as of 

particular components of the GABA-ergic neurotransmission system was identified 

(Dutta et al., 2006). In a second study, an upregulation of a set of genes involved in 

the ciliary neurotrophic factor (CNTF) signalling pathway was observed (Allen and 

McKeown, 1979). These results suggest that a mitochondrial dysfunction could 

contribute to progressive neurological disability in MS patients, whereas induction of 

CNTF signalling might represent a compensatory response to disease pathogenesis. 

 

All the studies used post mortem tissue, and therefore, investigated the expression of 

genes mostly in a chronic state of the disease. The question arises which of the 

observed changes are disease specific and which are due to the long disease 

progression. To analyze the pathophysiology in MS in earlier states of the disease, 

brain biopsies would be the tissue of choice, but the disadvantage is the rare 

availability of brain biopsies from MS cases. Still, brain tissue of single MS cases who 

passed away at a very early time point during the disease course exist, and would be 

a valuable source for comparing molecular changes during early and acute phase 

with the one from later and chronic stage (Barnett and Prineas, 2004). Another 

drawback is the fact that most biopsies are formalin fixed and embedded in paraffin. 

Improving the technologies in using RNA from fixed and paraffin embedded biopsy 

samples for gene expression studies would allow the investigation of molecular 

alterations in the early phase of MS. Alternatively, comparison with other brain 

disorders in which to some degree inflammatory processes are activated, might help 

to identify disease specific changes. Microarray and expression profiling in diseases 

such as ischemia, epilepsy, and Alzheimer have been performed (Majores et al., 

2004; Reddy and McWeeney, 2006; Vikman and Edvinsson, 2006), but for the same 

reason as described before, comparison of the data is difficult. Nevertheless, 

common molecular changes such as microglia and astrocyte activation could be 

identified.  
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Summary 

The use of cDNA microarrays in RNA expression profiling studies provided new 

insights in the pathomechanism of MS. The identification of endogenous protective 

mechanisms in MS brain may lead to the development of new therapeutics drugs, 

which can help to impede the progressive loss of neurological function seen in MS. 

Future expression studies with increased case numbers and better defined MS cases 

may give more insights in the molecular basis of the heterogeneity seen in the MS 

disease course. Hopefully, such RNA profiling studies of MS brain tissues will help to 

design more specific treatments. The potential of studying gene expression using 

brain biopsies is promising and will hopefully give more insights in the molecular 

changes occurring in early stages of MS. 
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Abstract 

Multiple Sclerosis (MS) is a chronic inflammatory disease of the central nervous 

system (CNS). One of the most used animal models for MS is experimental 

autoimmune encephalomyelitis (EAE). Until now several different EAE models were 

developed, differing in the immunological reaction, inflammatory processes and the 

neuropathophysiology in the CNS. Here, we present a model induced in DA rats by 

immunization with the N-terminal fragment of myelin oligodendrocyte glycoprotein. 

This specific model shows several similarities to MS such as a relapsing-remitting 

disease course, demyelination and axonal degeneration. By immunohistochemical 

characterization, lesions could be detected mostly in the spinal cord, but also in optic 

nerve and tract, brainstem, cerebellum and in different areas of the forebrain. The 

mimicking of particular features of MS and the occurrence of special disease entities 

like optic neuritis, Devic's disease and the acute MS form of Marburg’s type makes 

this EAE type a excellent model for investigating certain aspects of the 

pathophysiology seen in MS. 

 

Introduction 

Multiple sclerosis (MS) is the most common neurological disorder of young adults in 

the Western countries. The hallmarks of the disease are demyelinating lesion in the 

central nervous system (CNS). The current prevailing hypothesis is that MS is an 

autoimmune disorder directed against CNS antigens leading to inflammation and 

demyelination (for review see Hemmer et al., 2002; Lassmann et al., 2001; 

Noseworthy et al., 2000; Wekerle, 1998). The primary cause and the pathogenesis of 

MS are still unknown. A common animal model used to study possible pathological 

mechanisms of MS is experimental autoimmune encephalomyelitis (EAE). Since the 

initial experiments by Rivers et al. (Rivers, 1933), several different models of EAE 

were developed, which differ in the immunological reaction, inflammatory processes 

and the neuropathophysiology in the CNS (for review see Gold et al., 2006; Steinman 

and Zamvil, 2005; Wekerle, 1993). Each model shares similarities to MS but also 

differs in some aspects from these. Therefore, the proper selection of the most 

valuable model is essential and depends strongly on the scientific question being 

addressed. 
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The various models differ in the choice of species, strain, antigen, and immunization 

protocol that are used. There exist models for non-human primates like marmosets 

and rhesus monkeys, as well as for rodents like guinea pigs, rats, and mice. The 

latter has become the most used animal with the advantage of the availability of 

genetically modified mice and the good knowledge about the mouse genome. In rats 

as well as in other animals the susceptibility and the type of EAE observed is strongly 

strain dependent. Further, the antigen used for induction of the autoimmune 

response is an important issue. There exist a large variety of antigens to induce EAE: 

whole spinal cord preparation, purified myelin proteins, recombinant myelin proteins 

or synthetic peptides. The known CNS antigens that can induce an autoimmune 

response and EAE are myelin basic protein (MBP), myelin oligodendrocyte 

glycoprotein (MOG), myelin-associated glycoprotein (MAG), proteolipid protein (PLP), 

and S-100 protein. Generally, there are two different ways to induce EAE: it can be 

induced by active immunization with neuro-antigens or by passive transfer of neuro-

antigen specific T-cells, which were stimulated in vitro with the antigen for 3-4 days. 

Even the immunization protocols necessary for induction of EAE vary. For example, 

DA rats develop severe paralytic EAE after immunization with MBP in incomplete 

Freud’s adjuvant (IFA), which lacks mycobacteria, whereas mice may require multiple 

injections of antigen as well as additional pertussis toxin injections for EAE induction 

(Lenz et al., 1999; Martin et al., 1992). 

As MOG-induced EAE in particular rat strains shares the major features of MS such 

as a relapsing-remitting disease course and demyelination (Adelmann et al., 1995; 

Johns et al., 1995), we describe here a protocol for MOG-induced EAE in DA Rats. 

The inbreeding of these rats was initiated by Odell at the Oak Ridge National 

Laboratory and completed at the Wistar Institute in 1965. This strain is susceptible to 

the induction of autoimmune thyroiditis (Rose, 1975) as well as collagen-induced 

arthritis following immunisation with type II collagens. Protocols were established for 

MOG-induced EAE in DA rats using either recombinant rat (Weissert et al., 1998) or 

mouse MOG (Storch et al., 1998b) as antigen. In this chronic relapsing (CR) EAE 

model, which is presented here, animals are actively immunized with a recombinant 

N-terminal fragment of mouse MOG, which leads to the formation of inflammatory 

demyelinating lesions depending on both T-cells and anti-MOG antibodies (Linington 

et al., 1988).  
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The pathology in the described MOG-EAE model reflects the spectrum seen in MS in 

many ways. Not only a relapsing-remitting disease courses like in classical MS can 

be observed, but also special disease entities like optic neuritis, Devic's disease and 

the acute MS form of Marburg’s type are observed in MOG immunized DA rats 

(Storch et al., 1998b). Inflammatory demyelinating lesions and axonal degeneration 

are both typical characteristics seen in MS as well as in the described EAE model. 

For these reasons, the MOG-induced CR-EAE model in DA rat represents a suitable 

model for studying the pathophysiological mechanisms in MS. 

 

Materials and Methods 

All protocols for animal experimentations must first be reviewed and approved by an 

Institutional animal Care and Use Committee, or must conform to governmental 

regulations regarding the care and use of laboratory animals. 

 

Purification and Expression of recombinant MOG 

Expression of recombinant mouse MOG. For expression of recombinant mouse MOG 

the bacterial expression vector pRSET A (Invitrogen Corp) containing the amino 

acids 1 to 116 of the mature mouse protein fused to a several histidine residues 

(Pham-Dinh et al., 1993; Reynolds et al., 2002). An overnight culture was used for 

inoculation of a large expression culture (SOB, ampicillin, kanamycin). The OD600 

was measured until it reaches 0.5 and expression was induced by the addition of 

IPTG at 1mM final concentration. After 4 hours the bacteria were harvested by 

centrifugation (15min, 4000g). The pellet was then frozen and stored until purification 

was performed. 

Purification of HIS-tagged MOG. For immobilized metal ion affinity chromatography 

(IMAC) the Talon purification system (Clontech) was used. The bacteria pellet was 

resuspended in lysis buffer (8M Urea, 100 mM NaH2PO4, 10 mM Tris HCl, pH 8) and 

sonicated to disrupt the bacteria. After a further centrifugation (20min; 10000g) the 

pellet was again resuspended in lysis buffer and the centrifugation step was 

repeated. Both supernatants were pooled and subjected on the IMAC column for 

purification at room temperature. After loading, the column was washed with 2 

volumes of lysis buffer and 2 volumes of washing buffer (8M Urea, 100 mM 
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NaH2PO4, 10 mM Tris HCl, pH 6.3). The purified recombinant protein was collected 

by eluting the column with Elution buffer (8M Urea, 100 mM NaH2PO4, 10 mM Tris 

HCl, pH 4.5). To obtain soluble (not refolded) recombinant MOG the purified protein 

was dialysed 4 times (dilution factor 1:200 each) against 20 mM sodium acetate 

buffer (pH3.6) at 4°C. Finally, the purified and soluble protein was concentrated 

(Centricon, 10,000 MWCO) until the protein concentration was at least 2mg/ml. The 

protein was aliquoted and stored at -80°C. Aliquots once thawed may not frozen 

again. 

 

Induction of EAE in DA Rats 

Animals. 10-12 weeks old female DA/OlaHsd rats were purchased from Harlan 

(Netherlands). The animals were housed in light- and temperature-regulated rooms 

under specific pathogen-free conditions with free access to water and food. Note, 

that the housing conditions can also influence the clinical course of EAE (Goverman 

et al., 1993). 

Antigen Preparation and Immunization. An 1:1 emulsion of 2mg/ml recombinant 

MOG solution and IFA was prepared. The IFA/antigen mixture was drawn up into a 

glass syringe with an 18-G needle. The needle was removed and a syringe was 

attached to a double-ended locking hub connector (Luer-Lok, Becton Dickinson) or 

plastic 3-way stopcock. At the other end an empty glass syringe was attached and 

the mixture was forced back and forth from one syringe to the other repeatedly. 

When the mixture was homogeneous and white the connecter was disconnected, a 

22-G needle was attached, and air bubbles were removed. (When extruding a small 

drop on the surface of water, a good oil-in-water emulsion should hold together as a 

droplet and not disperse). The emulsion was prepared just before the immunization 

and kept on ice. The DA rats were first anesthetized with isoflurane, then the base of 

the tail was shaved and disinfected. Immunization occurred with application of 100µl 

of the emulsion subcutaneously at the base of the tail. The tail of each animal was 

marked for identification. Rats were weighted daily and the clinical score was 

monitored as described below. 

 

Monitoring the Clinical Score 
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One week after immunization the rats were monitored every day for neurological 

deficits, which start about 14 days after immunization. Each rat was graded daily and 

assigned a score from 0 to 5 as shown in table1. Rats were sacrificed after 60 days 

and brains as well as spinal cords were removed for further analysis. When they had 

a clinical score of more than 3 for two days in a row they had to be killed for ethical 

reasons. 

The clinical stages of the disease are defined as follows: The acute phase is the 

period of the first clinical signs, in which rats show ascending paralysis following 

active disease induction. The phase of clinical improvement that follows a clinical 

episode was described as remission. A remission was defined as a reduction of the 

clinical score by a minimum of one grade for at least 2 days after the peak of the 

acute phase or a disease relapse has been reached. A relapse is the phase of 

increasing neurological deficits seen after remission. This is normally defined as an 

increase of at least one grade in clinical score maintained for at minimum of 2 days 

after remission has occurred. The animals were grouped in four different categories 

depending on the disease course obtained by the clinical score recorded during the 

experiment. The animals without any obvious neurological deficits represented one 

group. A second group was composed of animals with an acute or progressive 

disease course showing no remissions and did not establish a stable chronic phase. 

Animals showing a stable chronic state after an initial acute phase represented a 

third group and a fourth group consisted of rats with a relapsing-remitting disease 

course, which was defined by at least one relapse of 1 score for a minimum of 2 

days.  
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Table 1. Clinical score 

Score Clinical signs 

0 no clinical signs 

1 tail weakness 

2 monoparesis or monoplegia 

2.5 mild paraparesis 

3 paraparesis or paraplegia 

3.5 paraplegia with spasticity 

4 hemiplegia, quadriparesis 

5 quadriplegia, moribund state 

 

 

Immunohistochemistry 

Animals were anaesthetized by inhalation with 2-3 vol% isoflurane (Abbott, 

Switzerland) and sacrificed by decapitation. The brain and the spinal cord were 

removed and either fixed for 24 h in 4% paraformaldehyde (PFA in PBS, pH 7.5), 

cryoprotected and embedded, or directly embedded in OCT-Compound and fresh 

frozen using dry ice. Cryostat sections (12µm) were either mounted on gelatin-coated 

slides or processed as free floating sections for further analysis. Tissue sections were 

fixed in 4% PFA for 30 min or in acetone for 1min depending on the antibody used. 

For staining of PLP or neurofilament the tissue sections were incubated in 70% 

ethanol over night at room temperature. After blocking the sections in blocking 

solution (PBS pH 7.5, 2% fish gelatine, 2% normal goat serum, 0.2% Triton X-100) 

for 1 h, sections were incubated with the appropriate primary antibodies over night at 

4 °C in blocking solution (Schaeren-Wiemers et al., 2004). When peroxidase was 

used, endogenous peroxidase was quenched by incubation of slides for 20 min in 

methanol plus 0.3% H2O2. Incubation of secondary antibodies was performed either 

with fluorescence labeled or biotinylated antibodies in blocking solution. When 

biotinylated secondary antibodies were used, further incubations were performed 

with premixed avidin and biotylinated peroxidase complex (Vecta-stain ABC kit; 

Vector Laboratories) according to the manufacturer's instructions. The 

immunohistochemical signal was revealed by a color reaction with AEC (3-Amino-9-

ethylcarbazole). Counterstaining was either performed with hematoxylin for 1 min 
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followed by rinsing the slide in running tap water or with DAPI when using 

fluorescence labeled antibodies. 

Antibodies. Following primary antibodies were used: CD68 (ED1; Serotec; 1:500); 

PLP (MCA839G; Serotec; 1:500); CD11b (MCA275R; Serotec; 1:500); GFAP (G-A-5; 

Sigma; 1:2000). As a secondary antibody a biotinylated Goat Anti-Mouse IgG (115-

065-166; Jackson ImmunoResearch; 1:500) was used. 

 

Results and Discussion 

Clinical Course of disease 

The first clinical signs, typically the loss of tail tonicity, were observed about two 

weeks after the induction of EAE. In the MOG induced EAE model in DA rats the 

animals show a broad spectrum of different disease courses. By varying the amount 

or the solubility of the antigen the spectrum of disease courses can be influenced. 

Immunization of precipitated recombinant MOG leads to an increase of animals that 

develop an optic neuritis but fail to develop clinical signs (Storch et al., 1998b). 

Increasing the amount of antigen leads to a larger fraction of animals showing a 

relapsing-remitting disease course (Papadopoulos et al., 2006). In our study, we 

used 100 µm MOG resulting in four groups of animals defined in respect of the 

clinical disease course. Typical EAE disease courses are shown in table 2 and figure 

1.  One group of up to 30% was composed of animals showing no obvious 

neurological deficits (fig. 1a). A second group of rats displayed an acute progressive 

form without a remission or a stable chronic phase (fig. 1b). These animals have to 

be sacrificed early after the disease onset because of the lack of disease 

amelioration or stabilisation. After the initial acute phase a third group of animals 

stabilize in a chronic phase and neither show any detectable disease progression nor 

amelioration of the disease (fig. 1c). Although, it cannot be excluded that there is still 

a slow disease progression that is not detectable by the grading system, these rats 

resemble a group of animals with chronic EAE. The last group is defined by rats 

developing a relapsing-remitting course (fig. 1d) mimicking the typical disease course 

seen in MS patients during early disease phase. Although the classification into four 

groups is a simplification, it demonstrates the spectrum of disease courses seen in 

MOG-induced EAE in DA rats, which to some extend corresponds to the different 
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disease courses observed in MS patients. An experiment with a more homogenous 

disease outcome can be obtained by varying dose and solubility of recombinant 

MOG used for immunization.  

 

 

Table 2. Spectrum of disease course 

Disease course Number Percent of total 

No clinical signs 18 33 

Acute  15 27 

Chronic  8 15 

Relapsing-remitting 14 25 

EAE type distribution: clinical scores of the animals were analyzed over the experiment time. 

Animals which had to be sacrificed after less than 7 days after disease onset were counted as 

acute EAE. An improvement of at least 1 score point for more than 1 day was counted as 

remission. Animals having a clinical course with a steady worsening and no improvement over at 

least 20 days were counted as chronic-progressive EAE. In total, we analyzed 70 animals from 

which 15 were control and 55 were EAE animals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1. Different disease courses in MOG-induced EAE in DA rats. Four typical disease courses 

can be observed in an EAE experiment induced by immunization with 100 µg recombinant MOG. 

Whereas some animals do not show any clinical signs (a), others develop an acute disease onset 

without remission (b). In some cases, animals stabilize after an initial acute phase and show a 

chronic disease course without further relapses or remissions (c). The fourth group includes animals 

which have a relapsing-remitting disease course characterized by at least 1 relapse (d). 
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Lesion characterization 

Lesion identification and characterization within the CNS were done by 

immunohistological analysis with several antibodies to identify inflammation (CD68), 

demyelination (PLP), astrogliosis (GFAP), or neuronal degeneration (neurofilament). 

The pathology of MOG induced EAE was characterized by large inflammatory 

demyelinating lesions within the CNS. The highest incidence of lesions was found in 

the spinal cord (fig. 2), optic nerve and tract, brainstem, and cerebellum. In some 

animals lesions can also be detected in regions of the forebrain (fig. 3). The 

anatomical localisation of inflammatory infiltrates influences the clinical score, which 

is based mainly on motor deficits caused by spinal cord lesions. Additionally, ataxia 

can be observed primary due to lesions in the brainstem or cerebellum. In addition, 

the anatomical distribution of lesion within the central nervous system is influenced 

by the antigen specificity of T-cells (Berger et al., 1997). For example, adoptive 

transfer of MBP-specific T-cells in Lewis rats results in widespread inflammation of 

the spinal cord and only minor involvement of the forebrain, whereas MOG-specific 

T-cells induce lesions also within the forebrain and the optical nerve. 

 

Cellular composition of lesions 

In most models of EAE the cellular composition consists of infiltrating T-cells, 

macrophages and activated microglia. To identify infiltrating phagocytotic cells, like 

activated macrophages and microglia, an antibody against CD68 was used (fig. 2d, 

g, j, 3b). High density of activated macrophages/microglia could be detected in 

demyelinated areas within the spinal cord (fig. 2d, g, arrows) and the brain (fig. 3e). 

Even in areas adjacent to the demyelinated lesions, which were apparently normal, 

were often populated by CD68 positive cells (fig. 2d, arrowhead). These might be 

signs of ongoing white matter destruction. Activation of macrophages/microglia could 

be confirmed by using CD11b as an additional marker (fig. 2f, i, arrows). Strong 

immunoreactivity of antibodies against GFAP demonstrated pronounced astrogliosis 

in and around the lesions (fig 3e). In actively demyelinating lesions signs of antibody 

mediated myelin destruction were observed, which was evident by the presence of 

complement components and IgG (Linington et al., 1989). In some cases, 

widespread demyelination, inflammation and astrogliosis were observed throughout 

the whole width of the spinal cord (fig. 2j, k, l). 
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Demyelination 

The extent of demyelination within spinal cord (fig. 2e, h, k) and brain (fig. 3a-c) was 

visualized by using an antibody recognizing the major myelin protein PLP. MOG-EAE 

induces not only an encephalitogenic T-cell response but also an autoantibody 

response which initiates demyelination and enhances disease severity in animals 

Fig. 2. Examples of inflammatory demyelinating lesions in the spinal cord. Lesion 

characterization was performed by immunohistological analysis to identify inflammation 

(CD68; a, d, g, j), demyelination (PLP; b, e, h, k) and astrogliosis (GFAP; c, f, i, l). In 

contrast to control animals (a--c), inflammatory demyelinating lesions were present in 

animals developing EAE (d--l). Inflammation in the white matter (d and g, arrows) was 

leading to focal demyelinating lesions (e and h, arrows) and astrogliosis (f and i). 

Interestingly, demyelination did not always correlate with infiltration (d and e, arrowheads). 

Note that astrocytes are already activated in areas where demyelination was not yet 

evident (f, arrowheads). In some animals, a widespread infiltration as well as an extensive 

demyelination could be observed (j and k). As a consequence, a strong activation of 

astrocytes could be detected throughout the whole width of the spinal cord (l). df = Dorsal 

funiculus; dr = dorsal root; gm = gray matter; vf = ventral funiculus; vr = ventral root; wm = 

white matter. 
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actively immunized with MOG. Passive transfer of activated MOG specific T-cells 

only lead to inflammation and additional administration of antibodies is necessary to 

obtain demyelination (Linington et al., 1988). The strong demyelinating activity seen 

in animals actively immunized with MOG is unique among the available EAE models. 

Demyelination is mediated through a combination of complement and antibody-

dependent mechanism, while the local production of pro-inflammatory factors 

enhances the inflammatory response (Linington et al., 1988; Weissert et al., 1998). 

Remyelination by oligodendrocytes and Schwann cells are observable by tightly 

compacted abnormally thin myelin sheaths. Myelin repair is already evident after 10 

days from onset of disease in DA rats (Papadopoulos et al., 2006). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Demyelinating lesions in the brain. The MOG-induced EAE model in DA rats also 

induces demyelinating lesions in the brain. Lesions are observed often in the brainstem and 

the cerebellum, but also in periventricular regions of the forebrain, e.g. the septum (a). The 

lesions are characterized by a loss of myelin proteins like PLP (b and c) and the presence of 

reactive astrocytes (d). In the lesion, numerous CD11b-positive cells (f) can be seen, which 

are composed of activated microglia and macrophages showing also phagocytotic activity 

identified by the marker CD68 (e). 
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Axonal pathology 

The rediscovery of axonal damage as an important component of Multiple sclerosis 

has lead to new insights in the pathology of Multiple sclerosis lesions (Ferguson et 

al., 1997; Trapp et al., 1998). Axonal injury and loss is thought to be responsible for 

the progressive exacerbation of the disease and the need for neuroprotective 

therapies has become apparent (for review see Bjartmar and Trapp, 2001). 

Experimental studies soon showed parallel findings in EAE (Kornek et al., 2000; 

Wujek et al., 2002). Furthermore, specific molecular abnormalities such as 

redistribution of ion channels on chronically demyelinated axons were identified that 

may play an important role in the axonal pathology of Multiple sclerosis (Craner et al., 

2004a; Craner et al., 2004b; Kornek et al., 2000). The degree of axonal loss 

correlates with clinical severity in progressive as well as relapsing-remitting forms of 

MOG-EAE (Papadopoulos et al., 2006). In contrast, demyelination and inflammation 

does not show any significant correlation with the clinical severity scores in animals 

having a relapsing-remitting disease course (Papadopoulos et al., 2006). 

 

Conclusions 

There are several EAE protocols available and the choice which model should be 

applied depends strongly on the scientific question to be addressed. Compared to 

Multiple sclerosis, where the primary cause of the disease remains still unknown, the 

EAE models are autoimmune mediated diseases. The MOG-induced EAE in DA rat 

closely mimics some of the main clinical features of Multiple sclerosis, which makes it 

an attractive model to study the pathophysiology of the disease. A spectrum of 

disease courses can be observed in MOG-EAE in DA rats ranging from animals 

showing no clinical sign to severe fatal forms. An advantage is the possibility to 

influence the disease outcome in favour of a specific disease course, such as 

relapsing-remitting EAE. The presence of demyelinating lesions and remyelinating 

activity makes the model a viable tool for investigations of the mechanisms involved 

in remyelination. In MS patients axonal loss has been observed which correlates with 

disease progression. Axonal degeneration and loss is also present in the CNS of DA 

rats immunized with recombinant MOG and this axonal pathology in inflammatory 

demyelinating lesions closely reflects that observed in MS.  
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In summary, the MOG-induced CR-EAE in DA rats may serve as a good model for 

investigating certain aspects of the pathobiology seen in MS. 
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Discussion 

General discussion 

Very little is known about the earliest intrinsic changes in the brain of MS patients 

before the appearance of overt inflammation and demyelinating lesions. However, 

MRI and gene expression studies have shown significant changes in NAWM that 

might give indications concerning both, the early changes occurring before lesion 

formation and the attempts by the CNS to prevent the same (Aboul-Enein et al., 

2003; Filippi et al., 1998; Fu et al., 1998; Graumann et al., 2003; Silver et al., 2001). 

Most recent data also suggest molecular changes and diffuse inflammatory damage 

spreading throughout the whole brain in the chronic phase of the disease associated 

with slow progressive axonal injury at sites without inflammation (Graumann et al., 

2003; Kutzelnigg et al., 2005). 

Although earliest changes are already present in the NAWM, this tissue bears the 

most promising possibility to detect primary, MS specific pre-lesional changes, which 

are independent from secondary inflammatory reactions due to lesion formation. 

Furthermore, NAWM tissue from chronic MS cases is ideal to study the intrinsic 

changes of brain cells during the long-lasting disease course of MS, whereas the 

NAWM of early disease course tissue additionally allows the identification of 

mechanisms crucial for lesion initiation and further development of the disease. 

 

Anti-inflammatory oligodendrocytes might play a major role in the CNS 

immune-privilege limiting lesion formation during MS relapses 

In order to identify these pre-lesional changes, a gene expression profile study was 

performed in the NAWM of 11 MS cases suffering from chronic MS. In addition, the 

non-lesional white matter of a female MS case during her first clinical relapse was 

analyzed. In both studies, differential gene expression of genes involved in different 

mechanisms of the inflammatory cascade, such as signalling, transcription, cell 

adhesion and antigen presentation was detected. Most prominent was the 

upregulation of STAT6 in all MS NAWM tissues from early as well as late disease 

course. The function of STAT6 is not yet known, but it is known that this transcription 

factor plays a central role in anti-inflammatory mechanisms (Pfitzner et al., 2004). 



General Discussion 

Page 164 

STAT6 is the major transcription factor of IL-4 and IL-13 signalling (Takeda et al., 

1997). IL-4 and IL-13 signalling over STAT6 leads to the differentiation of T cells into 

the anti-inflammatory T helper cell type 2, releasing anti-inflammatory cytokines. The 

involvement of STAT6 in anti-inflammatory mechanisms is further demonstrated by 

the exacerbation of the pro-inflammatory autoimmune response in EAE-induced 

STAT6-deficient mice (Chitnis et al., 2001). 

In our post mortem study the main cells expressing STAT6 in the MS NAWM were 

oligodendrocytes. Furthermore, JAK1, IL-4R and IL-13R, all belonging to the STAT6 

signalling pathway (Hebenstreit et al., 2006), were also upregulated in MS NAWM 

and expressed by oligodendrocytes. JAK1 and IL-4R have been shown to be 

expressed in oligodendrocytes in MS brains, which is in agreement with the findings 

of Cannella and Raine (2004). Comparison of the expression of STAT6, IL-4R, JAK1 

and another member of the STAT6-signalling pathway, JAK3, revealed a strong 

correlation in expression intensity within the different cases. This suggests an overall 

upregulation of the STAT6 signalling pathway in oligodendrocytes in MS NAWM. 

From our data, we hypothesize that a protective, anti-inflammatory response can not 

only be mounted by T cells but also by oligodendrocytes in the MS NAWM. The 

involvement of oligodendrocytes in the immune response of the brain is further 

supported by two recent studies showing that oligodendrocytes are mounting 

protective mechanisms in order to prevent demyelination (Lin et al., 2007), and by 

the findings that oligodendrocytes are responding to IFN-γ in a protective way and 

capable of expressing chemokines (Balabanov et al., 2007). These data give rise to a 

new view of oligodendrocytes participating in the regulation of CNS intrinsic 

immunity, the so-called CNS immune privilege. As oligodendrocytes are highly 

susceptible to inflammation mediated damage, it may be crucial for them to 

compensate for the induced “pro-inflammatory environment” and to limit the 

inflammatory response and subsequent damage. The upregulation of STAT6 was 

detected in all MS cases and to a much higher extent in the non-lesional white matter 

of the MS case during early disease course. A high induction in white matter tissue 

together with extent MRI abnormalities in a early MS case during the first relapse 

further highlights an important functional role of STAT6 in MS. Our explanation could 

be that the induction of anti-inflammatory mechanisms in oligodendrocytes is crucial 

for limiting immune responses during relapses of MS in order to prevent extensive 

lesion formation. 
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Are signals from MS lesions leading to changes in the NAWM or are changes in 

the NAWM leading to MS lesions? 

The cause of differential gene expression in the MS NAWM might either be a 

consequence of diffusing signalling molecules (e.g. cytokines, chemokines or growth 

factors) released from nearby lesions and/or peripheral immune cells or due to 

regulation by NAWM intrinsic events. An involvement of signalling from the nearby 

lesions of the NAWM is supported by a study using quantitative MRI techniques, 

where the authors suggest that axonal damage and demyelination in NAWM mainly 

arise as a secondary result of visible lesions with the largest effect close to these 

lesions (Vrenken et al., 2006). This is further supported by the fact that an expression 

of the main cytokines, regulating pro- and anti-inflammatory responses (e.g. IL-4, IL-

13, IL-12 and IL.-23), was not detected in our MS NAWM gene expression study, 

whereas their downstream genes STAT4 and STAT6 as well as other inflammatory 

genes were shown to be differentially regulated. This absence of IL-4, IL-12, IL-13 

and IL-23 expression on one hand, and the simultaneous upregulation of their target 

genes from the STAT4 and STAT6 pathway in MS NAWM on the other hand, further 

imply that extrinsic signals might influence the expression of immune modulating 

genes in the resident cells of the CNS. 

 

A differential gene expression due to intrinsic events is supported by the upregulation 

of the endogenous nNOS, but not of iNOS and eNOS, suggesting a parenchymal 

disregulation. Recent data showed that nNOS plays a key role in mediating CNS 

demyelination in a toxin-induced demyelinating animal model (Linares et al., 2006). 

Immune modulating signals from the periphery would first activate microglia, the main 

immune cell of the CNS and by that induce iNOS (Shen et al., 2005). Therefore, an 

intrinsic deregulation of nNOS, uninfluenced by extrinsic signals, is most likely. The 

phenomenon of nNOS upregulation while iNOS expression is not induced was also 

detected in the non-lesional white matter of the very early MS case. As the acute 

lesion of an early MS case during the first relapse was identified to correspond to 

pattern III MS lesions, a strong upregulation of nNOS in this case supports the 

hypothesis that intrinsic changes could be the origin of MS lesions. Whether these 

changes might be specific for a subset of MS patients (Pattern III lesions) or a 

general phenomenon in MS pathology cannot be determined yet and needs to be 

further elucidated. As an induction of nNOS was detected in all chronic MS cases, a 
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general mechanism rather than a pattern III specific mechanisms is suggested. This 

view is supported by Barnett and Prineas who suggested widespread 

oligodendrocyte damage and apoptosis to be one of the earliest change in general 

lesion formation (Barnett and Prineas, 2004). Still, it is unclear if these alterations 

might lead to, facilitate or impede lesion formation. 

The view of intrinsic events leading to a changed gene expression pattern in MS 

NAWM is further supported by our differential gene expression study of corpus 

callosum tissue of MOG-induced EAE in DA rats. Although a high expression of 

cytokines and chemokines is reported to be induced in EAE lesions (Chitnis et al., 

2001; Gold et al., 2000; Greter et al., 2005), no changes in immune-related genes of 

the corpus callosum were found. Therefore, diffusion of signalling molecules such as 

cytokines and chemokines across the BBB into the NAWM seems to be very limited, 

which in consequence favours the view of gene expression changes found in the MS 

NAWM being of intrinsic origin. 

 

Are molecular mechanisms detected in MS NAWM also present in MOG-

induced EAE? 

Prominent gene expression changes suggesting an induction of ischemic, 

neuroprotective mechanisms and anti-inflammatory mechanisms have been revealed 

by a differential gene expression analysis of the MS NAWM (Graumann et al., 2003; 

Zeis et al., 2008). Generally, tissue derived from MS patients is limited, and functional 

experiments (e.g. siRNA, cell culture) are almost impossible to perform. Therefore, it 

would be highly useful if pathogenic mechanisms identified in MS NAWM can also be 

observed in a MS animal model. For this reason, we investigated whether in a 

particular animal model for MS, similar mechanisms are taking place. The MOG-

induced EAE in DA rats was chosen since it shows many clinical as well as 

pathological similarities to MS (Kornek et al., 2000; Storch et al., 1998). EAE 

diseased DA rats were sacrificed during the chronic disease course at day 60. 

Corpus callosum was dissected, which would correspond best to the situation of 

previously analyzed subcortical MS NAWM as rats do not have subcortical white 

matter. To simultaneously analyze possible grey matter changes reported from MS, 

normal appearing grey matter from the somatosensory cortex was dissected and 

analyzed in parallel. 
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Our analysis revealed only minor changes in the gene expression in the white matter 

of the corpus callosum in EAE. In the grey matter of the somatosensory cortex in 

EAE, we found a downregulation of glutamate channels as well as genes encoding 

for mitochondrial proteins. Neither genes known to be involved in ischemic 

preconditioning mechanisms nor selected genes involved in pro- and anti-

inflammatory mechanisms, shown to be changed in MS NAWM, were significantly 

changed in the NAWM of the corpus callosum in EAE animals. From these data we 

conclude that the corpus callosum is not influenced by the encephalitic autoimmune 

reaction in EAE. This might be due to several reasons. Although we selected animals 

with a long disease course (60days), we cannot exclude the possibility that gene 

expression changes in MS are a cause of chronic stimulation over years and thus are 

not yet detectable in EAE corpus callosum tissue. A study of the temporal course of 

NaV1.8 in Purkinje neurons in EAE showed that first significant changes in NaV1.8 

protein as well as mRNA expression, were observed between day 51-75 (Craner et 

al., 2003). In contrast, EAE NAWM tissue in this study, taken after 60 days, was not 

directly affected by inflammatory, demyelinating infiltrates. Therefore, first changes 

might even appear later in time. Another difference possibly leading to diverse gene 

expression changes in EAE and MS NAWM might be kind of inflammation and place 

of its occurrence. Unlike in most chronic MS cases, lesions in MOG-induced EAE in 

DA rats are predominantly localized in the spinal cord and/or in the optic nerve, and 

much less frequently encountered in the brain (Kinter et al., 2008; Storch et al., 

1998). As ischemic preconditioning mechanisms in MS NAWM might be induced by 

lesions located nearby, ischemic preconditioning mechanisms might not be induced 

in EAE NAWM tissue of the corpus callosum, where the distance to active 

inflammatory lesions is much higher. Additionally, corpus callosum tissue in MS is 

less affected by lesion formation than other regions such as the periventricular white 

matter and the cortico-subcortical white matter (Steiner, 1931). This suggests that 

corpus callosum is less involved by the inflammatory response in autoimmune 

disorders. Furthermore, the autoimmune response type is different between MS and 

MOG-induced EAE. In our study we have chosen to use an EAE model in which not 

only T cells are determinant for the immune reactions, but also anti-MOG antibodies 

(Storch et al., 1998b). Nevertheless, the immune reaction in MOG-induced DA rat 

EAE, as in most EAE models, is predominantly determined by CD4+ T cells. In 

contrast, in MS lesions, CD8+ T cells are dominating over CD4+ lymphocytes (Booss 
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et al., 1983) and additionally, clonal expansion of CD8+ T cells was reported (Babbe 

et al., 2000). Therefore, immunological differences between EAE and MS might lead 

to another or even no reaction of the NAWM. 

Alternatively, the absence of brain lesions in MOG-induced EAE might be a 

consequence of unchanged gene expression in the EAE NAWM. Assuming that the 

differential gene expression detected in the MS NAWM might facilitate lesion 

formation, the absent induction of these genes might make EAE NAWM more 

resistant to inflammatory infiltration and lesion formation. 

Ischemic preconditioning genes or genes involved in intrinsic immune responses of 

the white matter were not induced in the corpus callosum of this EAE model. 

Whether these mechanisms are induced in the white matter of the spinal cord, 

adjacent to lesions was not determined yet and has to be elucidated. Nevertheless, 

MOG-induced DA rat EAE might be an unsuitable model to study aspects of ischemic 

preconditioning and intrinsic immune-response mechanisms present in MS NAWM 

far away from lesions. In contrast, a downregulation of glutamate receptors as well as 

a downregulation of genes encoding for mitochondrial proteins was detected. These 

findings correspond to some extent to findings of the MS NAGM, possibly reflecting 

neuronal degeneration due to axonal injury in the spinal cord (Dutta et al., 2006; 

Ginsberg et al., 1996; Wang and Tseng, 2004). 

 

Final summary 

In summary, in this dissertation, the expression of immune-response mechanisms in 

NAWM oligodendrocytes from early and late disease course was demonstrated. In 

particular, an upregulation of genes from the anti-inflammatory STAT6 signaling 

pathway, namely STAT6, JAK1, IL-4R and IL-13R was identified. This suggests an 

involvement of oligodendrocytes in the intrinsic immune-response of the CNS, and 

therefore in being part of the CNS immune-privilege. Furthermore, a very high 

induction of nNOS in MRI-abnormal NAWM tissue of an MS case during early 

disease course was identified, suggestive of earliest changes taking place in MS, 

capable of supporting demyelination. Finally, it was demonstrated that NAWM tissue 

from MOG-induced EAE in DA rats does not necessarily induce changes found in the 

MS NAWM. This highlights the need of another MS animal model, where similar 

NAWM gene disregulation can be observed, in order to investigate earliest, intrinsic 
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NAWM changes possibly leading to or protecting from lesion formation. As in NAWM 

changes in gene expression occur, this has to be taken into consideration during the 

development of new therapeutic strategies for MS. Therefore, a new MS animal 

model which includes NAWM gene disregulation might be of great value in the 

development of new therapeutic strategies or even a cure for MS. 

 

Outlook 

The finding of oligodendrocytes being part of the CNS immune-privilege, is a new 

concept in brain immunology. The induction of the anti-inflammatory transcription 

factor STAT6 in oligodendrocytes might be crucial for limiting immune responses and 

subsequent damage in MS. Therefore, the immunological role of STAT6 in 

oligodendrocytes has to be further elucidated. For that, an investigation of primary, 

highly pure oligodendrocyte cultures from wild-type as well as STAT6 knock-out mice 

is suitable. Differential gene expression analysis of these cultures, untreated or 

treated with the main STAT6 activator cytokine IL-4, would allow to identify genes 

expressed in oligodendrocytes which are under the control of STAT6. Furthermore, 

analysis of the cell culture supernatants for cytokine and chemokine expression 

would reveal the anti-inflammatory immune response capacity of oligodendrocytes. 

Finally, treatment of T-cell as well as macrophage cultures with the supernatant of 

treated oligodendrocyte cultures would reveal whether oligodendrocytes have the 

capacity to influence the major cell types promoting lesion formation in MS. 
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Appendix A : Main Methods 

In this section, a more detailed presentation of the main experimental procedures is 

provided. Methods for qRT-PCR, STAT6 immunohistochemistry and EAE induction 

are desribed in detail, since they were specifically adapted. 

 

RNA isolation 

Guanidium-thiocyanate - Cesium Chloride method 

RNA isolation using the Guanidium-thiocyanate (GTC)-Cesium Chloride method was 

used for isolation of RNA from human NAWM. This method relies on the strong 

chaotropic nature of GTC to denature any Rnase present in the sample. RNA is then 

isolated by the centrifugation of the samples on a cushion of 5.7M CsCl, which is 

passed by the RNA whereas the DNA and other cellular macromolecules remain 

above the cushion. 

 
- take up to 1g of tissue and transfer it into 50ml Falcon tube on dry ice 
- homogenate tissue in 6ml 4M Guanidium-thiocyanate solution 

o 2-3x ~1min with high speed (break in between) 
- leave 30-60min on ice 
- Pasteur test (Viscosity) 
- Add 2ml 4M Guanidium-thiocyanate solution and homogenat again 

o 2x ~1min with high  speed (break in between) 
- Pasteur test (Viscosity) 
- Leave 60min on ice 
- Centrifuge 3min at about 600g at room temperature 
- fill Ultracentrifuge tube (14ml, Beckmann) with 3.5ml 5.7M CsCl, pH 5.5 
- layer homogenate 
- fill up and balance tubes/samples with 4M GTC solution 
- Ultracentrifuge at 32000rpm, 20h, 20°C 
- Carefully remove all of GTC layer with Pateur pipette and vaccuum 
- Carefully remove CsCl layer until about 0.5-1cm over bottom 

� change pasteur pipette frequently, as pipettes 
could carry RNAses through the layer and 
contaminate the sample 

� try to suck liquids from the tube wall (minimizes 
turbulences) 

� take care NOT TO SUCK THE SAMPLE from the 
bottom 

- quickly invert UZ-tube to drain (catch remaining ~1ml liquid with a falcon tube) 
� prepare Eppendorf tubes 1.5ml on ice 
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� prepare Phenol(25) /Chloroform(24) 
/Isoamylalcohol(1) mix 

� Precool tabletop centrifuge to 4°C (14000g) 
- cut UZ-tube about 1cm over the bottom with the sample with a razor blade 

� take care, UZ-tube parts might flip away 
- rinse pellet with 95% EtOH (4°C) at RT 

- Dissolve Pellet in TE pH 8.0 (about 200µl) 
- transfer in eppi on ice 
- Mix Phe/Chlo/Iso mix to TE (1:1), vortex thoroughly 
- leave 30min on ice 
- centrifuge 25min at 4°C, 14000g 
- take away watery phase in new eppi 

- Mix watery phase with: (e.g. for 100µl watery phase) 

� 1/10 Vol NaCl (10µl) 

� 2.5x Vol 100% EtOH, -20°C (250µl) 

� 1-2µl glycogen 
- Precipitate RNA on dry ice (~1h) or in -70°C freezer (overnight) 
- Spin Eppi with RNA (from dry ice or -70°C freezer) for 45min, 4°C, 15000g 
- Wash pellet with 75% EtOh (-20°C) 
- Centrifuge 10min, 4°C, 15000g 
- take away supernatant (RNA is sometimes visible as a small, clear dot) 
- air-dry pellet 

- Dissolve pellet in wateror 10mM TE pH. 6.5 (c.a. 20µl) 
- measure OD 
- Store at -80°C 

 

RNeasy lipid tissue kit 

The RNeasy lipid tissue kit (QIAGEN) was used for the isolation of RNA from the 

corpus callosum as well as the somatosensory cortex of rats suffering from EAE.  

 

- take up to 100mg of tissue and transfer it into a 2ml tube 
- Add 1 ml QIAzol Lysis Reagent 
- homogenate tissue 

o 2-3x ~1min with high speed (break in between) 
- Place the tube containing the homogenate on the benchtop at room 

temperature (15-25°C) for 5min 
- Add 200ml chloroform. Shake it vigorously for 15sec. 
- Place the tube containing the homogenate on the benchtop at room 

temperature for 2-3min 
- Centrifuge at 12’000g for 15min at 4°C. 
- Transfer the upper, aqueous phase to a new tube. 
- Add 1Vol. of 70% ethanol and mix thouroughly by vortexing 

- Transfer up to 700µl of the sample to an RNeasy Mini spin column placed in a 
2ml collection tube. 

- Centrifuge for 15s at 8000g at room temperature 
- Discard the flow-through 
- Repeat using the remainder of the sample 
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- Discard the flow-through 
- Add 2ml Buffer RW1 to RNeasy column 
- Centrifuge 5min at 5000g 
- Discard flow-through 

- Add 20µl Dnase I stock solution to 140µl Buffer RDD 
- Mix by gently inverting the tube 
- Add this Dnase incubation mix to the RNeasy column membrane 
- Place on benchtop (20-30°C) for 15min 
- Add 2ml Buffer RW1 to the column 
- Centrifuge 5min at 5000g 

- Add 700µl Buffer RW1 to the column 
- Centrifuge 15s at 8000g 
- Discard flow-through 

- Add 500µl Buffer RPE to the column 
- Centrifuge 15s at 8000g 
- Place the RNeasy column in a new 1.5ml tube 
- Add 30ml H2O to the spin column membrane 
- Centrifuge 1min at 8000g 
- Add another 30ml H2O to the spin column membrane 
- Centrifuge 1min at 8000g 
- Measure OD 
- Store at -80°C 

 

Reverse transcription 

Routinely, we used 1µg total RNA for a reverse transcriptase reaction.  

 

- Add 1µl (250ng) of random hexamer primers to a 1.5ml tube 

- Add 1µg total RNA to the tube 

- Add 1µl 10mM dNTP Mix (10mM of each dATP, dGTP, dCTP and dTTP) 

- Add H2O to 13µl total volume 
- Heat mixture for 5min at 65°C 
- Incubate 1min at 4°C on ice 
- Centrifuge briefly 

- Add 4µl 5X First-Strand Buffer 

- Add 1µl 0.1M DTT 

- Add 1µl H2O 

- Add 1µl Superscript III RT (200 units / ml, Invitrogen) 
- Mix by pipetting 
- Incubate at 25°c for 5min 
- Incubate at 50°C for 60min 
- Inactivate the reaction by heating at 70°C for 15min 
- Store at -20°C 
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Quantitative RT-PCR / Lightcycler 

For quantitative RT-PCR, the Lightcycler system from Roche was used. Primers for 

this system are designed from unique sites of the expressed gene over the exon-

intron junctions to avoid amplification of genomic DNA. Generally, a standard curve 

for a specific gene is created using a dilution series of the according plasmid as 

cDNA template. Furthermore, include one reaction without any template in order to 

see whether there is primer-dimer formation. To spare cDNA template, the standard 

total reaction volume of 20µl was reduced to 5µl. 

 

For each reaction pipett the following into a 20µl glas capillary: 

0.5µl  specific 5’ Primer 

0.5µl  specific 3’ Primer 

0.5µl  H2O 

1.0µl  SYBR Green Master mix (Prepared according to the manufacturer) 
 

2.5µl  cDNA template 
 
Insert the glas capillaries into the Lightcycler system and perform a run with the 

according parameters. By default, Annealing is performed at 65°C for 5sec. 

 

Statistics 

Normalization of calculated RNA amounts by qRT-PCR was done by using 60s 

ribosomal protein L13 (NM_031101.1), 40s ribosomal protein S9 (NM_031108.1) and 

ribosomal protein L19 (NM_031103.1). Using these three ribosomal genes, a 

geometric mean was calculated to which all target genes were normalized. Such a 

normalization strategy, recently proposed, showed to be more accurate for qRT-PCR 

normalization rather than using single-gene normalization (Vandesompele et al., 

2002). Statistical significance was then calculated by comparison of the normalized 

raw data from control animals to EAE animals, and is expressed by P-values 

generated by the non-parametric Mann-Whitney U-Test. 



Appendix A : Central Methods 

Page 190 

STAT immunofluorescence staining 

For STAT immunofluorescence, tissue had to be fixed with acetone (-20°C), whereas 

fixation with PFA didn’t reveal any signal. Furthermore, autofluorescence was 

quenched by the incubation in 10mM cupric sulfate. 

 

- Cut 10µm cryostat sections from tissue and mount on a glass slide 
- Air-dry for 20min 
- Fix for 10min in 100% Acetone (-20°C) 
- Wash 3 times in PBS pH 7.0 for 5min 
- Incubate for 1h in 2% normal donkey serum, 2% Fish-Skin Gelatine, 0.1% 

Triton and 0.05% Tween 20 
- Incubate 48h with the primary antibody at 4°C (anti-STAT4 (R&D Systems, 

Cat.Nr. PA-ST4, 1:250), anti-STAT6 (R&D Systems, Cat.Nr. AF2167, 1:250) 
- Wash 3 times in PBS pH 7.0 
- Incubate for 1h in 10mM CuSO4, 50mM CH3COONH4, pH 5.0 to reduce 

autofluorscence 
- Wash 3 times in PBS pH 7.0 
- Incubate with 2nd antibody at room temperature (15-25°C) for 1h 
- Mount slides with fluorosave 
- Store slides at 4°C 

 

EAE induction 

EAE induction was made as described before (Storch et al., 1998b). For induction of 

EAE 50µg of rMOG emulsified with incomplete Freud’s adjuvant (IFA) (Difco 

Laboratories, Detroit, MI) was injected into inbred adult female DA rats (10-12 weeks, 

from Harlan, Netherlands). Injections were given intradermally in the dorsal aspect of 

the base of the tail. A group of control rats were injected with saline, emulsified with 

an equal volume of IFA. The clinical progress of the disease was monitored daily. 

Rats were weighted and their neurological deficits were scored according the 

standard protocol. 
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