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1. Abstract

Intramolecular collision of polypeptides is the primary step in protein folding, the
dynamics of which is of importance for understanding this fascinating topic. In this thesis
the rapid dynamics and flexibility of several sets of peptides were experimentally
investigated with a fluorescence-based method, where the long-lived, hydrophilic
fluorophore, 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO), was employed, which can be
selectively and efficiently quenched by tryptophan (Trp) through contact. An asparagine
derivative, Fmoc-DBO, was synthesized and applied to standard solid-phase peptide
synthesis to obtain DBO/Trp-labeled peptides. The end-to-end collision rates can then be
directly related to the intramolecular quenching of DBO by Trp. [Hudgins, R. R.; Huang,
F.; Gramlich, G.; Nau, W. M. J. Am. Chem. Soc. 2002, 124, 556-564 (Appendix I); Nau,
W. M.; Huang, F.; Wang, X.; Bakirci, H.; Gramlich, G.; Marquez, C. Chimia 2003, 57,
161-167 (Appendix II1); Marquez, C.; Huang, F.; Nau, W. M. IEEE Trans. Nanobiosci.
2004, 3, 39-45 (Appendix V)]

This method has been further improved by establishing a dual quencher system, i.e.,
tyrosine (Tyr) was employed as an additional quencher, which can react with DBO upon
contact but with a lower efficiency than Trp. The combination of two probe/quencher
pairs with different quenching efficiency as well as the theoretical results for
intermolecular diffusion allows the extrapolation of the microscopic rate constants for
formation and dissociation of the end-to-end encounter complex even in the absence of
diffusion-controlled quenching. [Nau, W. M.; Huang, F.; Wang, X.; Bakirci, H.;
Gramlich, G.; Marquez, C. Chimia 2003, 57, 161-167 (Appendix III); Huang, F.; Hudgins,
R. R.; Nau, W. M. 2004, Submitted for publication (Appendix VI)]

We first applied this fluorescence-based method to measure the end-to-end collision
rate constants in flexible Gly-Ser peptides with varying length. The results suggest that the
behavior of real peptides deviates significantly from that of the ideal chain model and the
speed limit for protein folding should be faster than that reported previously. [Hudgins, R.
R.; Huang, F.; Gramlich, G.; Nau, W. M. J. Am. Chem. Soc. 2002, 124, 556-564
(Appendix I)]

We also investigated the end-to-end collision rates of another series of peptides
composed of different types of amino acids in the backbone but with identical length. The

experimental results have led to a conformational flexibility scale for amino acids in
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peptides and suggested that the flexibility of peptides is mainly determined by the atoms
and groups in close proximity to the backbone, while the more remote atoms and groups
have a smaller effect on the peptide dynamics due to their larger conformational space.
[Huang, F.; Nau, W. M. Angew. Chem. Int. Ed. 2003, 42, 2269-2272 (Appendix II);
Huang, F.; Nau, W. M. Res. Chem. Intermed. 2004, submitted for publication (Appendix
VID)]

Further investigations on peptides derived from the N-terminal (-hairpin of
ubiquitin were also carried out. The end-to-end collision rates in these peptides showed
significant dependence on the secondary structure, i.e., the turn segment is much more
flexible than the strand segments, which supports a previous proposal that the 3-turn is the
initiator for the formation of the whole (-hairpin. Activation energies for end-to-end
collision of these peptides showed a good agreement with the collision rate constants,
which indicates that the activation energy may also be a measure of the flexibility of
peptides although it is not as sensitive as the collision rate. [Huang, F.; Hudgins, R. R.;

Nau, W. M. 2004, Submitted for publication (Appendix VI)]

Additionally, to get more detailed structural information of our peptides and to
reveal the underlying reasons for the deviation of the experimental length dependence of
end-to-end collision rates from the theoretical prediction, intramolecular fluorescence
resonance energy transfer (FRET) was applied as an independent approach to investigate
the dynamics in peptide chains. Two energy donor/acceptor pairs with small Forster
critical radius, where either naphthalene or Trp serves as energy donor and DBO as energy
acceptor, were employed. Energy transfer between naphthalene and DBO was first
investigated at a very short distance, where DBO and naphthalene were separated by
dimethylsiloxy. It was found that the Dexter mechanism might dominate in this system
due to the close proximity of donor and acceptor, the high flexibility of the tether, and the
nonviscous solvent employed. [Pischel, U.; Huang, F.; Nau, W. M. Photochem. Photobiol.
Sci. 2004, 3, 305-310 (Appendix IV)] However, when naphthalene and DBO were
covalently attached to the opposite ends of peptides and studied in water, control
experiments in the presence of cucurbit[7]uril as an encapsulating host suggested that
FRET was the dominant mechanism, which allowed us to apply the FRET technique to
recover the intramolecular end-to-end distance distribution and diffusion coefficient by

means of global analysis. In the investigation with naphthalene/DBO energy



donor/acceptor pair, slower diffusion coefficients in shorter chains were found for the
series of flexible Gly-Ser peptides, suggesting that shorter chains may exhibit a larger
internal friction limiting the conformational change. Additionally, the intramolecular
energy transfer efficiency have been measured with the Trp/DBO pair and the effective
average end-to-end distances were calculated, which provided a lower limit for the mean
end-to-end distance of peptides for the global data analysis and offered a complementary
approach to interpret the end-to-end collision rates determined with the same pair but
based on a collision-induced quenching mechanism. [Huang, F.; Wang, X.; Haas, E.; Nau,

W. M. 2004, In preparation (Appendix VIII)]

The fluorescence-based method based on contact quenching mechanism has some
other potential applications. It has potential to be applied for high-throughput screening of

protease activity and to investigate the helix-coil transition in peptides.



2. Introduction

2.1. General background

Proteins can only be functional under their correctly folded three-dimensional or
“native” structure.' As one of the “holy grails” of the physical and life sciences, protein
folding attracts great interest and research in the field has made significant progress in

1** and experimental aspects.”” However, interdisciplinary questions are

both theoretica
still standing: How do proteins fold? How fast do proteins fold? How does the primary

sequence of proteins determine their native structure and functions?

Several mechanisms for protein folding have been proposed, such as the
framework model, hydrophobic collapse model, and nucleation-condensation model.*'* A
framework model assumes that secondary structures are formed first, which are only
dependent on the primary sequence. The secondary structures form and determine the
tertiary structures. A hydrophobic collapse model, on the other hand, supports a
hydrophobic collapse as the first step in the folding pathway, through which proteins form
a molten globule. The following rearrangement of the compact structure results in the
tertiary structure. The nucleation-condensation model assumes that a small nucleus is
necessary at the beginning of protein folding, which works as a template for the
subsequent steps in protein folding and which is assumed to be the rate-limiting step.
Detailed investigations on the kinetics of the primary steps or early processes in protein

folding can provide experimental evidence in favor of each of the various mechanisms.

It is also a long-standing controversy whether protein folding is kinetically or
thermodynamically controlled.”'® In principle, one may be able to clarify kinetic control
and thermodynamic control by computing the global energy minimum of proteins and the
entire energy surface of protein folding. It is, however, impossible at present due to the
extremely long computational time required to reliably search for the global energy
minimum. Kinetic studies of protein folding as well as studies of intermediates in the
folding pathway are therefore the most promising approaches to protein folding at present.

To comprehensively understand protein folding and functions, it is invaluable to
investigate the intramolecular motions of proteins and peptides and their kinetics.'™
Knowledge of the kinetics of peptide and protein conformational changes is also essential

21,22

to provide benchmarks for computational simulations of protein folding and to
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examine theoretical predictions of the folding rates.”* On the other hand, the molecular
flexibility of proteins is a crucial factor in determining their biological activity,”*
including binding affinity, antigenicity, and enzymatic activity. The study of the flexibility
of different segments of proteins is also essential to understand the functions of proteins
and to tackle the de novo design of peptides and proteins, which has attracted intensive
research interest.””* The present thesis focuses on the kinetics of peptide conformational
changes and peptide flexibility in an effort to explore some fundamental questions in

protein folding and functions.
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2.2. Techniques to study the dynamics and folding of proteins and peptides

There are various techniques available to investigate the dynamics and folding of
proteins and peptides, which are summarized in Scheme 2-1 and classified into two major
groups: non-equilibrium techniques and equilibrium techniques. According to the
characteristics of the investigated system and the requirements for time resolution,

different techniques can be selected.

Scheme 2-1. Techniques for measuring dynamics and folding of proteins and peptides.

Fast mixing techniques

Non-equilibrium Pressure jump (P-jump)
techniques

Temperature Jump (T-jump)

Techniques
for . . o . .
measuring Photochemical initiation
dynamics
and folding
of proteins
and peptides

Transient absorption techniques

Fluorescence techniques I
Equilibrium

techniques

Other techniques

The different techniques have their advantages and disadvantages and are
complementary to each other. This thesis aims to develop new fluorescence-based
techniques and to measure the dynamics of peptides. The strength of our techniques will
become more evident by comparison with conventional techniques. This section will

therefore give a brief introduction to the different techniques.
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2.2.1. Conventional non-equilibrium techniques for fast protein folding

Fast mixing techniques include stopped-flow and continuous-flow, which initiate
protein folding by changing the composition of a protein solution. The former has a

3334 and the latter extends the limit down to a few

typical time resolution of milliseconds,
10 us and has become one of the most important techniques in the study of protein
folding.”*” One of the major advantages of the continuous-flow technique is that it is
applicable to a very broad range of proteins because the folded/unfolded equilibrium of
most proteins can be changed by a variation of the concentration of denaturants or the pH
of the solution. However, the time resolution of this technique is still limited to several 10
us. On the other hand, additional reagents are always introduced during the

folding/unfolding processes for both techniques and continuous-flow normally requires

large amounts of sample.

The volume changes in any protein folding/unfolding process renders the
equilibrium also dependent on pressure in addition to temperature and solvent

composition,™®

which allows another method, pressure jump (P-jump), to initiate the
protein folding/unfolding process.”” A modern P-jump apparatus with a stack of
piezoelectric crystals can complete a jump of 200 bar within 50 ms,*” which results in a
similar time resolution as stopped-flow. The major advantages of the P-jump technique lie
in its two-directional jump (increasing or decreasing pressure) and long-time stability after

the jump (up to tens of seconds).”!

Temperature jump (T-jump) is another common technique used for non-
equilibrium processes. After a temperature jump, the conformational distribution
undergoes a change (relaxation) from the initial to the target temperature, i.e., folding or
unfolding is induced. The time resolution for conventional temperature jump techniques
with resistive capacitive heaters was limited to microseconds. With the application of
lasers, the temperature jump can be accomplished in nanoseconds or even faster,”** which
depends on the rate of complete thermal equilibration of solvent and solute as well as on
the width of the laser pulse. Laser-assisted T-jump has a much better time resolution than
fast mixing and P-jump, but its upper limit is determined by the rate of heat diffusion. To
span a large time range, the combination of different T-jump relaxation spectrometers

covering different time ranges is also usually required.”’
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Recently, trigger techniques based on photochemistry, such as photodissociation
and photochemical electron transfer, have been developed. The first photodissociation
method was established based on the different stability of cytochrome c¢ in the presence
and absence of a CO ligand.” At a particular concentration of guanidinium chloride, fast
photodissociation of CO from an unfolded cytochrome c interrupts the equilibrium and
triggers the folding process. The dissociation can be accomplished in <1 ps after the laser
pulse. In addition, Hagen et al. applied a laser pulse to dissociate the heme-ligand complex
in cytochrome c, and then monitored the rebinding of the heme and ligand.* On the
other hand, due to the different stability of reduced and oxidised cytochromes, another
method based on photochemical electron transfer was established,”* where the time
resolution is determined by the electron transfer from Ru* to the oxidized cytochrome ¢
(< 1 ms), and the upper limit is dependent on the re-oxidation of reduced cytochromes.
Another method based on photochemical triggers was realized by introducing a non-native
aryl disulfide cross-linking group into the ends of a peptide, which prevents the peptide
from going into folded conformations.” The folding of peptides is triggered by breaking
the disulfide bond with a laser of 270 nm under physiological conditions. This technique
can be used for different peptides and proteins and can trigger protein folding very fast.
However, the formation of the disulfide bonds presumably induces some unexpected

conformations,’

which will obstruct the observation of real rates for the secondary
structure formation. Additionally, the laser pulse with wavelength at 270 nm is strongly

absorbed also by the aromatic amino acids.
2.2.2. Equilibrium techniques based on contact quenching mechanisms

The conventional techniques, especially the laser-assisted techniques, used for
protein folding have many important advantages. However, to initiate folding or
unfolding, one always either needs very specialized techniques or has to introduce external
reagents to the system, or both. Furthermore, in many cases, the time resolution becomes
the major limitation for fast kinetic studies. Therefore, there is still an intensive quest for
alternative ways to observe very fast kinetics, in particular for some special processes in
the folding of proteins and nucleic acids that cannot be detected by conventional means.
Equilibrium methods can compensate for the deficiencies of conventional non-equilibrium
ways. They are particularly suitable for studies on intramolecular collision in random-
coiled chains and they in principle can access the time range from picoseconds to

microseconds. Equilibrium techniques include dynamic NMR,® photophysical

- 13-



7% as well as single-molecule techniques.®"* Dynamic NMR techniques are

techniques,
limited to the microsecond time scale. Single-molecule techniques are interesting but they
are currently limited to large chromophores, and therefore are not suitable for systems
requiring small probes,” such as very short peptides. The common equilibrium approaches
for measuring the dynamics of peptides and elementary steps in protein folding are

photophysical techniques.

Intramolecular reactions in polymers under diffusion-control have been
extensively studied theoretically.®”” The first photophysical method applied to polymers
under equilibrium was motivated by the theoretical studies of Wilemski and Fixman.”
From then on, experimental studies on polymer dynamics have led to great
achievements.”™® However, the transfer of the probe/quencher methodology from
polymers to biopolymers has proven to be the opposite of straightforward, since there are
a number of additional constraints in polypeptides and oligonucleotides. For example,
polar probes and quenchers should be used to reduce hydrophobic effects and the
probe/quencher system must allow measurement in aqueous solution. These are not
fulfilled for the traditional chromophores like pyrene and anthracene,*™ which has led to

a quest for suitable probe/quencher systems for biopolymers.””***¥7

Scheme 2-2. Principle of photophysical techniques for measuring end-to-end collision rates.

Q

hv T ky kg

k U

Photophysical methods have a general principle, which can be simply described as
Scheme 2-2. A photophysical probe (P) and a quencher (Q) are introduced at the opposite
ends of a peptide with random-coiled structure. The excited probe, P*, can be obtained

with a short light pulse (top-left structure), which can decay spontaneously with the
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intrinsic decay rate constant k, or be quenched by the quencher through contact. The
apparent decay of P*, which can be followed through its characteristic emission or
absorption, will reflect the rate of intrinsic excited-state decay (k) and the intramolecular
quenching rate constant (k,) (Equation 2-1). In the case that intermolecular quenching is
excluded, a kinetic analysis gives Equation 2-2, where k, is the quenching rate constant for
P* in contact with Q. Equation 2-2 contains a steady-state approximation for the
concentration of the encounter complex. For a diffusion-controlled reaction, where k, >>

k_, Equation 2-2 can be simplified to Equation 2-3.

k, = L (2-1)

T T,
PRRLALY (2-2)

b ok_+ky
k, =k, (for k;>>k_) (2-3)

It should be noted that the methodology shown in Scheme 2-2 is subject to several
additional assumptions and requirements. 1) It assumes that the excited probe imposes
little effect on the kinetics of the bio-molecules, which requires that any strong interaction
between excited probe and quencher or the residues in the chain should be excluded. 2) It
requires that the introduced probe and quencher have only a small effect on the kinetics of
chain motion; very small probe and quencher molecules or, preferably, an intrinsic probe
and quencher are desirable. 3) The excited probe must be sufficiently long-lived. 4) The
excited probe is quenched by the quencher at the other end of the chain only through

contact.

The principle of measurement relies on a random-coiled chain. If there are any
secondary structures or any thermodynamically stable conformations, one will not be able
to extract the end-to-end collision rate directly from the fluorescence lifetime; however,
with a suitable model one may be able to obtain the kinetics for the transition between

random-coil and secondary structure.
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3. DBO-based fluorescence methodologies to study peptide dynamics

3.1. A fluorescence method based on a contact quenching mechanism

Photophysical techniques based on transient absorption have been previously
applied to investigate the intramolecular collision rates in peptides."* To fulfill the
requirements for establishing a photophysical method and to take the full advantage of
fluorescence over transient absorption, we selected 2,3-diazabicyclo[2.2.2]-oct-2-ene
(DBO) (Scheme 3-1) as a fluorescent probe and Trp or Tyr as a quencher to measure the
dynamics of peptides. DBO is characterized by an exceedingly long fluorescence lifetime
(up to 1 us), small size, high chemical and photophyiscal stability, good solubility in
water, as well as by a contact quenching mechanism by Trp and Tyr. The bimolecular
quenching rate constants for DBO by 20 natural amino acids were measured. It was found
that Trp, Cys, Met, and Tyr are efficient quenchers. Trp can quench DBO most efficiently
with 2.0 x 10° M's™ in D,0, which allows DBO to be quenched selectively by this
quencher in peptides. In the following projects, Trp was selected as an efficient intrinsic

quencher and Tyr was selected as a complementary, less efficient quencher.

Scheme 3-1. Structures of DBO and Fmoc-DBO.
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DBO was introduced into peptides through Fmoc-DBO (Scheme 3-1), an
asparagine derivative, which has good compatibility with solid-phase peptide synthesis.
The synthetic route for Fmoc-DBO in 10% overall yield is shown in Scheme 3-2 (the

details can be found in Appendix I).
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Scheme 3-2. Synthetic route for Fmoc-DBO.
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The fluorescence decay traces in the presence of quencher in random-coiled

peptides are all monoexponential, which allows us to extract the dynamics of peptides

directly from the fluorescence lifetime. In peptides with secondary structure, the decay is

much more complex, but the model-assisted data analysis provides kinetics for transition

between secondary structure and random-coil. Shown in Figure 3-1 are the typical

fluorescence decay traces for random-coiled peptides.
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Figure 3-1. Typical fluorescence decay traces for random-coiled peptides. The traces from the
upper to the lower one are for WQIFVK-DBO, WTITLE-DBO, and WTLTGK-DBO. Shown in
the inset is the decay for WQIFVK-DBO on a semilogarithmic scale.

Trp is the best quencher among the natural amino acids for measuring the end-to-
end collision rates of peptides due to its high quenching efficiency of DBO and its contact
quenching mechanism. The contact quenching mechanism has been proven by a series of
control experiments.’ For example, after the addition of cucurbit[7]uril, which complexes
DBO selectively and quantitatively (K = 4 x 10° M™") and prevents the collision of DBO
and Trp, the fluorescence lifetime of DBO in the peptide Trp-(Gly-Ser),-DBO increases
from 19.5 ns to 1030 ns, suggesting that the quencher is not able to quench the excited
probe at all (Appendix III and V). This result provides strong evidence for the view that
quenching requires intimate contact. If quenching would occur through space or through

the solvent it should have also been mediated through the supramolecular wall.
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3.2. A method based on intramolecular fluorescence resonance energy transfer

DBO can not only serve as a long-lived fluorescent probe, which is selectively
quenched by Trp or Tyr upon collision, but can also accept energy from Trp or
naphthalene, which allows us to establish a complementary method to investigate peptide
dynamics based on intramolecular fluorescence resonance energy transfer (FRET).”” This
is wonderful since in the method based on the contact quenching mechanism DBO works
as probe and Trp as quencher, but in the method based on FRET DBO serves as acceptor
(quencher) and Trp or its analogue naphthalene as donor (probe), which allows us to keep
the chemical structure of the peptides identical and to compare the results obtained from
the two independent methods. The principle of the energy transfer method is shown in

Scheme 3-3, where energy transfer occurs without direct contact of donor and acceptor.

Scheme 3-3. Principle of the intramolecular fluorescence resonance energy transfer.

energy

The intrachain energy transfer efficiency from donor to acceptor depends on both
the donor-acceptor distance and the fluctuation of the donor/acceptor during the lifetime

of the excited donor. The time-resolved excited donor population decay can be analyzed

by the following equation.'""?

6
gt == Hue (2] s 022 Lo L) L pur)
ot T, r r-or or r-or or

(3-1)

D is the mutual intramolecular end-to-end diffusion coefficient. 87" is the product of
Boltzman constant and temperature (8 = 1/kzT), and U(r) is the potential energy of the

chain possessing an end-to-end distance r. If the equilibrium distribution gN(r) is known,

the potential energy can be obtained according to Equation 3-2:'>"

BU(r)=-1Ingy(r) (3-2)
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The survival probability density of the excited donor can be calculated according to
Equation 3-1 and then integrated according to Equation 3-3 to fit the time-resolved

fluorescence decay.
. -
I=1,[ Amrgy(r.)dr (3-3)

FRET experiments can in principle yield both of the end-to-end distance
distribution and the intrachain diffusion coefficient. However, since these parameters are
highly correlated, the recovery of both distribution and diffusion coefficient from the
donor fluorescence decay becomes unreliable. A global analysis of the fluorescence decay
traces of not only the donor but also the acceptor in the presence and absence of FRET
was suggested to decrease the correlation between the parameters (See also Appendix VIII

for details)."
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4. Length dependence of end-to-end collision rates in peptides

The dynamics of polymers or biopolymers has been subject of numerous
theoretical treatments, which mainly refer to sufficiently long chains and are based on an
ideal Gaussian chain model."® The fluorescence method based on contact quenching was
firstly applied to study the length dependence of end-to-end collision rates in structureless
peptides. A series of DBO/Trp-labeled peptides with different lengths (Scheme 4-1) were

synthesized, which are known to prefer random-coil conformations (cf. Appendix I).

Scheme 4-1. General structure for Trp-(Gly-Ser),-DBO peptides with n =0, 1, 2, 4, 6 and 10.
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The fluorescence decay traces were recorded on a single photon counting setup

N
H

and fitted by a monoexponential function, i.e., each peptide showed a specific
fluorescence lifetime, which is similar to the results reported by other groups and

consistent with numerical simulations.””’

Our results reveal that the intramolecular collision rates (1.1-6.8 x 107 s™)
measured with the present fluorescence-based technique are significantly and consistently
faster at the same length than the previously reported values.”® The reason for this
difference is not clear yet. However, with respect to the “speed limit” for intrachain
collision or protein folding the present data suggest a value as short as 10 ns, which is
similar to the upper limit (< 10 ns) provided by McGimpsey et al.'’ More recently, faster
rates were reported,'’ which may be due to either a larger deactivation rate or a larger

reaction distance (cf. Chapter 7 and Appendix VIII)."

On the other hand, the double-logarithmic plot (Figure 4-1) reveals a clear-cut
curvature and the slope falls far below the theoretical values of —1.5 expected for
sufficiently long ideal chains. Further theoretical and experimental studies suggest that the
decrease of the diffusion coefficient for the shorter peptides is the main reason for the

deviation from theoretical prediction.”'” It is also important to note that the shortest

-4 -



peptide is not the fastest one, i.e., a maximum is reached at N = 4. This significant
inversion immediately speaks against the assumption that the fluorescence of DBO is
quenched by Trp through long-range electron transfer or fluorescence resonance energy
transfer, both of which are highly distance-dependent and therefore expected to occur
faster for the shortest peptide. This is consistent with our other control experiments in

favor of a contact quenching mechanism (cf. Appendix III and V).">"*
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Figure 4-1. Double-logarithmic plot of the intramolecular quenching rate constant (kq) of
Trp—(Gly—Ser),—DBO polypeptides versus the peptide length. The dashed line has a slope of —1.5

and is shown to illustrate the deviation from the theoretical behavior.
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5. A flexibility scale for amino acids in peptides

Molecular flexibility includes local (positional) flexibility and global
(conformational) flexibility. ' The former reflects the local vibration occurring on a
femtosecond time scale within a local energy minimum, while the latter comprises real
conformational changes and reflects the hindrance during conformational changes. The
molecular flexibility of proteins is a crucial factor in determining their biological activity,
including binding affinity, antigenicity, and enzymatic activity.”” The prediction of the
flexibility of peptides and protein segments is therefore essential for understanding and
predicting the functions of proteins, which is significant for de novo peptide design.
Additionally, the knowledge of the flexibility of amino acids will provide important
benchmark values for theoretical studies of peptide dynamics as well as the simulation of

protein functions.

Some positional flexibility scales for amino acids have been obtained from X-ray
diffraction crystallographic data.”® However, conformational flexibility is more important
in biological processes where conformational changes are required. We reported a
conformational flexibility scale for amino acids in peptides according to the end-to-end

collision rates.

Scheme 5-1. General structure for peptides used for setting up a flexibility scale.
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To measure the flexibility of peptides, DBO and Trp were separated by a sequence
of identical amino acids (Scheme 5-1). With the assumption that the end-to-end distance
for the equally long peptides is similar, which is supported by our more recent study based
on FRET,’ it is reasoned that the end-to-end collision rate of peptides should be an
excellent measure of the conformational flexibility of the backbones. A series of end-to-
end collision rate constants were obtained as a function of the amino acid type, which

provide the following flexibility scale for amino acids in peptides:

Gly > Ser > Asp, Asn, Ala > Thr, Leu > Phe, Glu, GIn > His, Arg > Lys > Val > Ile > Pro
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This conformational flexibility scale indicates that the introduction of Gly gives
the most flexible peptide, while Pro makes it most rigid, which is in line with the
expectations from conformational space.'” A general trend between the residue size and
flexibility was found, i.e., larger residues lead on average to a lower flexibility. A slight
charge effect was observed in the 6-mer peptides, in which all of the residues are charged.
In another experiment carried out with peptides with only two charged residues, the end-
to-end collision rate did not show a systematic effect,” indicating that interactions between
two charges are too minute to result in experimentally significant effects on the end-to-end
collision rates (< 10 %). Both of the experiments strongly suggest that charge does not
impose a significant effect on the end-to-end collision rate although it may affect the
thermodynamic parameters of the peptides. The reason for the very weak charge effect is
not clear yet. However, it is reasonable to expect that the hindrance to the backbone
rotation is mainly due to the atoms or groups in close proximity to the backbone, while
atoms or groups more remote from the backbone, no matter how their structure or charge
status is, have a much smaller effect on the internal friction, due to the larger
conformational space. This is consistent with the observation that the $-branched amino
acid Ile was found to reduce peptide flexibility significantly, while the amino acid with
very similar but y-branched structure, Leu, gives rise to a much more flexible peptide.

1’11»13 115,16

Statistica theoretical," and experimenta analyses have revealed that
particular amino acids have a different preference to appear in secondary protein
structures, such as a-helices, B-strands, and B-turns. According to the statistical results'’
Met, Glu, Leu, Ala, Gln, Lys, His and Cys prefer a-helices, Val, Ile, Phe, Tyr, Thr and
Trp favor B-sheets, and Pro, Gly, Asp, Ser and Asn have higher abundance in (3-turns.
This secondary structure preference closely correlates with the conformational flexibility
obtained, i.e., most flexible amino acids, including Gly, Ser, Asn and Asp, are -turn
forming amino acids, and the most rigid amino acids, namely Val and Ile, are 3-sheet
forming amino acids. The exception from this correlation is Pro, which is the most rigid
one but prefers P-turns. Its cyclic structure restricts the dihedral angle about the N-C*
bond (¢ angle) to —60°, which allows this amino acid to fulfill the requirements for a 3-

turn in the i+2 position without conformational distortion.
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6. Primary and secondary structure dependence of peptide flexibility

It is very important to apply our established fluorescence-based method to explore
some fundamental questions in protein folding. In this project, we investigated the
flexibility of peptides relevant to the protein folding of ubiquitin,"” namely the two strand
parts and the turn segment of the N-terminal B-hairpin. Ubiquitin is a protein with 76
amino acids and found in all eukaryotic cells.’ Its primary sequence in the N-terminal -
hairpin is shown in Scheme 6-1."” The investigated peptides were derived from the turn
and strand segments of this hairpin and were labeled with DBO and Trp or Tyr (Scheme
6-1).

Scheme 6-1. Structure of the N-terminal B-hairpin (1-17) of ubiquitin (a) and general structure of

the peptides labeled with DBO/Trp (b) or DBO/Tyr (c).
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The combination of quenchers with different quenching efficiency, namely Trp

and Tyr, as well as the theoretical results for intermolecular encounter complex formation
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(cf. Appendix III),* allows the extrapolation of the absolute rate constants for end-to-end
collision and dissociation. The extrapolated end-to-end collision rates, which are only
slightly larger than the experimental quenching rate constants for the DBO/Trp
probe/quencher system, provide an important measure of the conformational flexibility of
the peptide backbone and support our previous assumption that the intramolecular
quenching of DBO by Trp is almost diffusion-controlled.” The chain flexibility is found to
be strongly dependent on the type of secondary structure that the peptides represent. The

collision rates for peptides derived from the B-strand motifs (ca. 1 x 107 s

) are ca. 4 times
slower than that derived from the (3-turn, which implies that the thermodynamically $-turn
favoured peptides are more flexible. The results provide further support for the hypothesis
that chain flexibility is an important factor in the preorganization of protein segments
during protein folding. The measured activation energies for fluorescence quenching
(1624 kJ mol™), which are larger than the activation energy for viscous flow (1516 kJ
mol™") and which are peptide-sequence dependent, demonstrate that the end-to-end
collision process in peptides is partially controlled by internal friction within the
backbone, while the collision rates at various viscosities indicate that solvent friction is an
additional important factor in determining the collision rate. Mutations of Gly in the f3-
turn peptide to Ala, Phe, Thr or Val, respectively, show that a subtle sequence change
strongly affects the flexibility of peptides, which decreases in the order Gly > Ala, Phe,
Thr > Val, in line with expectations from the flexibility scale,’ yet somewhat less
pronounced than in the flexibility-scale study (See Chapter 5 and Appendix II) since only
a single amino acid was exchanged. Effective end-to-end distances obtained by
intramolecular FRET from Trp to DBO (See Appendix VI and VIII)" suggest that the
equally long peptides have quite similar end-to-end distances, and the difference for the
end-to-end collision rates is therefore presumably not due to the difference of the
conformational equilibrium but to the dynamics of the peptides. This result also supports
our previous assumption for deriving the flexibility scale for amino acids in peptides.’®
Charges do not show systematical effect on end-to-end collision rates in peptides with two
chargeable residues, consistent with the observation of weak charge effect in peptides with

6 chargeable residues (cf. Appendix II and VI).°
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7. Intramolecular energy transfer in peptides

Fluorescence resonance energy transfer (FRET) is one of the most important
photochemical techniques applied in the biochemical sciences. FRET cannot be used to
measure intramolecular collision rates, since the quenching of the donor (probe) does not
need direct contact with the acceptor (quencher). However, the strong distance
dependence of the energy transfer efficiency allows one to apply this technique as a
spectroscopic ruler to measure the site-to-site distance with Equation 7-1."

R,

=0 7-1
R’ +R° -1)

ET

where @ is the energy transfer efficiency, which can be measured from the fluorescence
intensity of the donor, R, is the critical distance, and R is the average distance between
donor and acceptor. In the case without diffusion R is the actual mean distance, while in
the case that donor and acceptor diffuse during FRET process, R is shorter than the
equilibrium average distance and also related to the diffusion coefficient, which provides

the opportunity to measure the diffusion coefficient with FRET.

Scheme 7-1. General structure for donor/acceptor labeled peptides, a) Nal-(Gly-Ser),-DBO (Nal =
Naphthylalanine), b) Trp-(Gly-Ser),-DBO, n =0, 1, 2, 4, 6, 10.

b)

It is a particular challenge to apply FRET to peptides with short end-to-end

distance (ca. 10 A), which are not compatible with normal FRET donor/acceptor pairs,
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with R, ranging from 20 to 90 A,* due to both the strong distance dependence of energy
transfer efficiency and the requirements of a relatively small critical radius in the
theoretical models employed in the data analysis.” To apply the FRET technique in such
special systems, we selected FRET donor/acceptor pairs with very short critical distance
(~ 10 A), naphthalene/DBO or Trp/DBO, for the Gly-Ser peptide series, which have the

same sequence as those used in Chapter 4° (Scheme 7-1).
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Figure 7-1 Typical time-resolved fluorescence decays (A., = 285nm, A, = 335nm) of naphthalene
peptides a) Nal-DBO, b) Nal-(Gly-Ser),-DBO, c) Nal-(Gly-Ser),-DBO, d) Nal-(Gly-Ser),,-DBO,
and e) Nal-(Gly-Ser)s. The inset shows a semi-logarithmic plot for Nal-(Gly-Ser)s-DBO.

The energy transfer between naphthalene and DBO was investigated first at a very
short distance, where DBO and naphthalene were separated by a dimethylsiloxy group. In
that investigation, it was found that exchange energy transfer might be dominant due to
the close proximity of donor and acceptor, the high flexibility of the tether, and the
nonviscous solvent employed. However, in the case of peptides, due to the larger
separation and higher viscosity in D,O, FRET is expected to become dominant. This was
supported by the control experiment in the presence of CB7, which prevents the contact of
naphthalene and DBO efficiently (c¢f. Appendix III and V), but which cannot exclude the
energy transfer between naphthalene and DBO (Appendix VIII).”

The fluorescence decay traces of the naphthalene peptides in the presence of FRET
are characteristically non-monoexponential, which prevents one to assign a fluorescence
lifetime, and they show a strong length dependence (Figure 7-1). These fluorescence

decay traces can be fitted with a biexponential function, from which average lifetimes can
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be obtained. If these average lifetimes are applied to calculate the end-to-end collision
rates approximately with equations 2-1 and 2-3, much larger end-to-end collision rates
than those obtained with method based on contact quenching will be obtained (Figure 7-
2), suggesting that faster “end-to-end collision” could be observed when probe/quencher
pairs based on non-contact quenching mechanism or those with large reaction distance are

applied in end-to-end collision measurements.

8.6 T

log(ky)

log(N)

Figure 7-2. Double logarithmic plot of k . (open cycle) and &, (solid cycle) versus peptide
length (data taken from Table 1). A function of the type y = a —1.5x — b/x was fitted to the
experimental data (@ = 9.37, b = 0.392 for data obtained from collision-based
experiments,6 and a = 9.57, b = 0.229 for data obtained from experiments based on
singlet-singlet energy transfer from current work). The dash-dot-dash line has a slope of
—1.5 and is shown to illustrate the deviation from the theoretical behavior.

The fluorescence decay traces for the donor and acceptor in the presence and
absence of FRET were globally analyzed (cf. Chapter 3.2). However, due to the extremely
short end-to-end distance, which cannot prevent alternative energy transfer through a

Dexter mechanism, and the high correlation between parameters, the analysis is subject to

a quite large uncertainty. To reduce the correlation between the parameters, a theoretical
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prediction for end-to-end distance was combined into the global data analysis. Results
show that the diffusion coefficient decreases significantly for shorter peptides, which is
expected to be the reason for the deviation of the distance dependence in real peptides

from that expected for ideal chains (Figure 7-2, See also Appendix VIII).

The emission spectrum of Trp is very broad and overlaps with that of DBO, which
prevents the use of the Trp/DBO pair for a similar global data analysis. However, the
Trp/DBO energy donor/acceptor pair is very useful due to the very short lifetime of Trp.
In the lifetime of Trp, the conformational change of peptides is expected to be not
significant, especially for rigid peptides. As mentioned above, in the absence of diffusion
or conformational change, the site-to-site distance can be obtained directly from the
energy transfer efficiency with Equation 7-1. In the case of Gly-Ser peptides the diffusion
cannot be completely excluded due to the high flexibility, but the average distance
obtained from the energy transfer efficiency from Trp to DBO provides a lower limit for
the end-to-end distance for the global data analysis and a unique way to estimate the end-
to-end distance distribution function and to interpret the end-to-end collision rates
measured with the same sequence but by employing Trp as collision-induced quencher of

DBO.
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8. Ongoing project: Helix-coil transition of an alanine-rich peptide

a-Helices and (-hairpins are the most common secondary structures in proteins
and are essential in protein folding, stability, and functions. Investigations on their folding
rates and mechanisms are very important for understanding how proteins fold. Laser-
assisted techniques have allowed to directly monitor the formation of a-helices and f3-
hairpins." Although the helix-coil transition has been investigated with both temperature
jump and photophysical methods and found to be a monoexponential process, theoretical
results suggest that a non-monoexponential process should occur in the early stages.’ The

helix-coil transition is therefore worthy of a more detailed investigation.

Our fluorescence-based technique for measuring intramolecular collision can, in
principle, have a time resolution of picoseconds.®’” The application of this new technique
may be able to reveal this elusive process in the helix-coil transition that is too fast to be
observed by the T-jump and triplet-triplet transient absorption techniques, which are

limited in time resolution to > 5 ns.%’

The principle to apply our fluorescence-based technique to investigate a helix-coil
transition is shown in Scheme 8-1. A fluorescent probe (DBO) and an efficient quencher
(Trp) are attached at the opposite ends of a a-helix forming peptide. The excited probe
cannot be quenched by the quencher at the opposite end of the peptide in the helical
conformation because a) the probe can only be quenched through contact® and b) the helix
is rigid and the two ends cannot get into contact in the short time range.® Once the helix
unfolds to a random coil, its ends can collide and then the excited probe can be quenched
through collision with Trp. The deactivation rate of the excited probe (k) is related to the
helix-coil transition rates (k, and k,), the end-to-end collision rates (k, and k,), the
deactivation rate of the contacted excited probe/quencher pair (ks;) as well as the intrinsic
deactivation rate of the excited probe (k,). By measuring the fluorescence decay, one can
get information on these individual rates. From our previous study, the quenching of DBO
by Trp is almost diffusion-controlled in a random-coiled peptide chain, which means that
the whole rate constant for the last two steps in Scheme 8-1a equals k; in a good
approximation (cf. Chapter 2 and Appendix VI). Scheme 8-1a therefore can be simplified
to Scheme 8-1b.
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Scheme 8-1. Principle for measuring helix-coil transition kinetics under equilibrium.

From Scheme 8-1b, a pair of differential equations (Equations 8-1 and 8-2) can be

obtained, which describe the temporal evolution of A and B, respectively.

%= k,B - k,A—k,A (8-1)

Cji—lj =kA-(k,+k,+k;)B (8-2)

The integrated functions to describe the decay of A and B can be obtained by
solving Equations 8-1 and 8-2:

[A]=Ce™ + Cye™ (8-3)
[B]- 2%(k1 —ky —ky + w)e™ " + 2C_k22(k1 —k, —ky —w)e ™ (8-4)
where
k, =k, + %(k1 bkt fk o,k 2Kk, + 2k,k, — 2k k) (8-5)
k, =k, + %(k1 rhy +ky =k ko ko 2kk, + 2ok, — 2k k) (8-6)
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w = [kZ + k2 + k2 + 2k k, + 2k k, — 2k ik, (8-7)
and C, and C, are integration constants.

Accordingly, the decay of the fluorescence can be obtained as Equation 8-8

I=f i(kl —ky—k,+w)+C, e + f i(kl —ky—k,—w)+C, e (8-8)
2k, 2k,

where fis a constant. The initial concentration of A and B are described as Equations 8-9

and 8-10.

[4]-C,+C. i
C C

(Bl =g =k = kg + )+ 2 (k= hy = Ky = w) (8-10)
2 2

It is reasonable to assume that the initial concentration of the excited molecules in
the conformations A and B is proportional to the concentration of the corresponding

ensemble, i.e., [B] o / [A] 0= K, » One can therefore obtain Equations 8-11 and 8-12.

Gk =y — Ky + )+ Cy(ky = ky =k, —w)

K
“ 2k,(C, + C,)

(8-11)

C, —ki-k,—k;+w
C, k+k,+k;+w

(8-12)

The combination of Equations 8-8 and 8-12 gives Equation 8-13 for the

fluorescence intensity decay.

kl+k2—k3+we_k",+f,—kl—k2—k3+wkl+k2—k3—we_km,

(8-13)
2k, ki +k,+k;+w 2k,

I=f'
By measuring the circular dichroism (CD) spectrum at different temperatures and
fitting the ellipticity values at 222 nm (See Figure 8-1) to Equation 8-14,® we can get the

equilibrium constant for the helix-coil transition experimentally.

1-

Or = L{(1-5,)(n=2)(0, + 0, [T =T+ O} + =L 2{(n-2)(0,+0,[T-T,])+ 0,0,
(8-14)

In Equation 8-14, f,, is the fractional population of helix state,

fu=K, (T)/(1+ Keq(T)), n is the number of residues, s, = 0.2 accounts for the length-
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dependence of the ellipticity, (Ha + HaT[T— 7:)]) is the temperature-dependent ellipticity
per residue in the helical conformation with 6, = -4.3 x 10* deg cm® dm™, 6, = 145 deg
cm’dm™ K™ and T, = 273 K, 6. + 0,.T[T - 7:)] is the temperature-dependent ellipticity per
residue in the random coil conformation with 6, = 600 deg cm* dm™" and 6., = —40 deg cm’
dm™ K™, and 6, and 0, are the contributions to the ellipticity by Trp in the helix and

random coil conformations, respectively.®

Since k, can be independently obtained from the lifetime of the reference peptide,
the peptide with identical sequence but without quencher, there remain only two variables,
k, (or k,) and k5, in Equation 8-13, which can be obtained by fitting the fluorescence decay

trace.

-1000 : . . ; . - .

-2000 -

-3000 -

057, (deg cm? dm'l)

-4000 —

1 1 1 1
280 300 320 340 T/K

Figure 8-1. CD-temperature dependence plot. Dots are experimental data and the solid line is the

fit according to Equation 8-14.

In this project we investigated an alanine-rich peptide (Trp-(Ala-Ala-Ala-Arg-
Ala);-Ala-DBO). The early results are shown in Figure 8-1 and 8-2. Figure 8-1 shows
good fitting for the CD data, which provides the equilibrium constant for coil-helix
transition at different temperatures. The helix-coil transition equilibrium constant ranges
from 0.12 (56 °C) to 0.52 (9.5°C) and suggests that the helix is similarly stable as the coil

state for this peptide.

From Figure 8-2, it can be seen that the decay for the peptide without quencher is
monoexponential, while the one for the peptide with quencher is clearly non-
monoexponential, but instead can be fitted very well by a biexponential function.

However, when the pre-exponential factors in Equation 8-13 are included into the fitting,
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it is found that the decay traces cannot be fitted well. This indicates that the model we
established is not perfect and that there is a step that was not considered in the helix-coil
transition model. Furthermore, the fast process with a lifetime of 4-5 ns was not reported
with the T-jump and transient absorption technique, which might suggest that there is a
faster step in the helix-coil transition that could not be observed by T-jump and transient
absorption due to the lower time resolution of > 5 ns.*’ In this project, some interesting

points have appeared but a better model needs to be sought for.

8000
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2000
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Figure 8-2. The time-resolved fluorescence decays for the helix peptides. The upper one is for the

helix peptide without quencher and the lower one is for the helix peptide with quencher.
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9. Summary

A fluorescence-based method, which takes the desirable properties of DBO,
including small size, good solubility in water and long lifetime of the excited state, has
been established for measuring submicrosecond dynamics of polypeptide chains.
Combining this method with other techniques, such as UV absorption, NMR and CD
spectroscopy, we have successfully investigated the length dependence of peptide end-to-
end collision rates and reported a conformational flexibility scale for amino acids in
peptides, which provides an absolute measure for the time-scale of conformational
changes in a series of synthetic short peptides as a function of the amino acid type. In
addition, by studying the kinetics of some elementary steps of protein folding, we also
explored the folding mechanism of secondary structures of proteins, including the folding
of the N-terminal (3-hairpin in ubiquitin and the helix-coil transition in an alanine-rich
peptide. As a complementary method, we have applied intramolecular fluorescence
resonance energy transfer (FRET) to investigate the end-to-end distance distribution and
the diffusion coefficient of random-coiled peptides, where donor/acceptor pairs with very
short critical distance (~10 A) were used. These results are invaluable for research on
diffusion phenomena in polymers and biopolymers. In particular, they are pertinent for the

understanding of protein folding and domain motions in proteins.

Furthermore, the success of this fluorescence-based method in peptide research has
also stimulated the application of DBO to the structural and dynamic investigation of
nucleic acids. At the same time, due to the strong dependence of intramolecular quenching
on the properties of peptide backbone, DBO/Trp labeled peptides have the potential to be
applied to test the activity of enzymes, which are expected to change the properties of the

peptide backbones or cleave them.
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10. A brief experimental description

Materials. All commercial materials were from Fluka or Aldrich. Fmoc-DBO was
synthesized according to the reported procedure. The DBO-labeled peptides were
commercially synthesized in > 95% purity (Affina, Berlin). Details on the synthesis of the

probe and its suitability in solid-phase peptide synthesis can be obtained from Appendix I.

NMR and CD measurements. NMR experiments were carried out on a Bruker DRX 500
spectrometer in D,O (with 10% H,0O) at 1 mM peptide concentration. Circular dichroism
(CD) experiments of the peptides were performed on a Jasco 720 circular dichroism

spectrometer at ambient temperature at peptide concentrations of 10-100 uM.

Fluorescence and UV measurements. Fluorescence decays were recorded on a time-
correlated single photon counting (TCSPC) fluorimeter (FLS920, Edinburgh Instruments,
Edinburgh, Scotland) by using either a 1.5-ns pulse-width H, flash lamp or a Picoquant

picosecond pulsed diode laser (4

(DY

= 373 nm, ca. 50 ps pulse width) for excitation. The
peptide concentrations were adjusted to 10-100 uM, sufficiently low to exclude
intermolecular quenching. The pH-dependent measurements were performed in phosphate

buffer for pH 7, citrate/HCI/NaOH buffer for pH 2 and Na,HPO,/NaOH buffer for pH 12.

Solid-phase fluorescence experiments were carried out in trehalose glass with 1
mM naphthylalanine and 77 mM DBO. Trehalose glass was prepared by heating 5 g
trehalose with a little water to ~130 °C to obtain a viscous solution with naphthylalanine
and DBO dissolved in it, which was then quickly poured into a 1 cm cuvette and allowed

to cool down to get a solid solution.

Absorption spectra were recorded on a Cary 4000 UV-Vis spectrophotometer
(Varian) and steady-state fluorescence spectra on a Cary Eclipse fluorescence

spectrometer (Varian).
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Abstract: A fluorescent amino acid derivative (Fmoc-DBO) has been synthesized, which contains 2,3-
diazabicyclo[2.2.2]oct-2-ene (DBO) as a small, hydrophilic fluorophore with an extremely long fluorescence
lifetime (325 ns in H,O and 505 ns in D,O under air). Polypeptides containing both the DBO residue and
an efficient fluorescence quencher allow the measurement of rate constants for intramolecular end-to-end
contact formation. Bimolecular quenching experiments indicated that Trp, Cys, Met, and Tyr are efficient
quenchers of DBO (kq = 20, 5.1, 4.5, and 3.6 x 10® M~* s in D,O), while the other amino acids are
inefficient. The quenching by Trp, which was selected as an intrinsic quencher, is presumed to involve
exciplex-induced deactivation. Flexible, structureless polypeptides, Trp-(Gly-Ser),-DBO-NH,, were prepared
by standard solid-phase synthesis, and the rates of contact formation were measured through the
intramolecular fluorescence quenching of DBO by Trp with time-correlated single-photon counting, laser
flash photolysis, and steady-state fluorometry. Rate constants of 4.1, 6.8, 4.9, 3.1, 2.0, and 1.1 x 107 s*
forn=0, 1, 2, 4, 6, and 10 were obtained. Noteworthy was the relatively slow quenching for the shortest
peptide (n = 0). The kinetic data are in agreement with recent transient absorption studies of triplet probes
for related peptides, but the rate constants are significantly larger. In contrast to the flexible structureless
Gly-Ser polypeptides, the polyproline Trp-Pro,-DBO-NH, showed insignificant fluorescence quenching,
suggesting that a high polypeptide flexibility and the possibility of probe—quencher contact is essential to
induce quenching. Advantages of the new fluorescence-based method for measuring contact formation
rates in biopolymers include high accuracy, fast time range (100 ps—1 us), and the possibility to perform
measurements in water under air.

Introduction polypeptides in the nanosecond-to-microsecond time range by
means of transient absorption techniq@ies.

2,3-Diazabicyclo[2.2.2]oct-2-ene (DBO) is a fluorophore with
an extremely long fluorescence lifetime (up tou$). As a

There is great interest in “intelligent” fluorescent probes for
biomolecules that can report information beyond mere detection,
e.g., on the structure of polynucleotides and the dynamics of

proteins!—® However, the fluorescence lifetimes of common

fluorophores are typically in the range of several nanoseconds &N
or less. This is too short to monitor nanosecond-to-microsecond Lé\ N
processes as, for example, the intramolecular contact formation N HN o

in polypeptides, which is important to understand the functions
and folding dynamics of proteinsTo bypass this limitation of

fluorescent probes, long-lived triplet-state probes have recently DBO Fmoc-DBO
been introduced for measuring the corresponding rates in

FrmocHN™ "COOH
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Intramolecular Contact Formation in Biopolymers
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is a unique fluorophore due to its long intrinsic fluorescence
lifetime (zo), which amounts to 325 ns in aerated® 420 ns
in deaerated kD, 505 ns in aerated J®, and 730 ns in

tophan (Trp). This has allowed the first direct measurements deaerated BD*21¢Sincek, = 1/7o = 2.0 x 10° s* in aerated
of submicrosecond contact formation kinetics in polypeptides D20, diffusional processes in the submicrosecond rargeX

by a fluorescence technigée!4

s™1) become accessible.

The general principle behind using photophysical probes to gxperimental Section

measure peptide dynamics is shown in Scheme 1. A photo-
physical probe (P) and a quencher (Q) are incorporated into a
polypeptide (bottom-left structure). The backbone of the peptide

Materials. All commercial materials were from Fluka or Aldrich
except for Fmoc-Asp-GBu (Bachem). They were used as received
except for HMPA, which was dried (CaHand freshly distilled prior

is chosen to behave as a random coil, i.e., without preference, yse, and MgN-HCI, which was sublimed in the presence of KOH

for a particular conformation. An excited state of the peptide-
bound probe (P*) is prepared with a short light pulse (top-left
structure). The dynamics of the polypeptide will infrequently
lead to conformations where P* and Q (top-right structure) or
P and Q (bottom-right structure) come in contact, and it is this
event that is of interest for the evaluation of polymer and
biopolymer flexibility. The decay of P*, which can be followed
through its characteristic emission or absorption, will reflect
the rate of intrinsic excited-state decdg)(and the intramo-
lecular quenching rate constaig) Intermolecular quenching

is excluded by working at sufficiently low concentrations. If

(0.03 Torr, 100°C). Column chromatography was performed with silica
gel 60-200um. The synthetic sequence for Fmoc-DBO in 10% overall
yield is shown in Scheme 2. 1-Hydroxymethyl-2,3-diazabicyclo[2.2.2]-
oct-2-ene {) was synthesized according to a literature procedared
converted to the new 1-aminomethyl-2,3-diazabicyclo[2.2.2]oct-2-ene
(4) by tosylation, azide substitution, and subsequent reduction with
lithium aluminum hydride.

Synthesis of 1-(Aminomethyl)-2,3-diazabicyclo[2.2.2]oct-2-ene (4).
For tosylation, the pyridine-free method of Tanabe was G4%edl.
solution of p-toluenesulfonyl chloride (12.4 g, 65 mmol) in 50 mL of
dry CH,CIl, was added to a stirred solution of 1-(hydroxymethyl)-2,3-
diazabicyclo[2.2.2]oct-2-ene (5.29 g, 37.7 mmolxNE{6.5 mL, 46.6

the probe/quencher pair is designed in such a way that moleculatmmol), and dry MeN-HCI (4.35 mg, 45.5 mmol) in 150 mL of

contact formation between P* and Q.J is followed by
immediate quenchingg), kg equals the pertinent rate of contact
formation, ky. The condition of “immediate” quenching upon

CH.Cl,, and the mixture was stirred under nitrogen for 18 h. The
mixture was charged with 8.5 mL 6fN-dimethylethanolamine, stirred
for 10 min, and, after addition of water, was extracted with ethyl acetate.

contact is fulfilled wherkg > k_, the rate of dissociation of the The combined organic layers were washed with water and brine, dried
encounter complex. This criterion is generally assumed to be ©ver NaSQ;, and concentrated by rotary evaporation to give the
met when the intermolecular quenching of free P* by free Q in sulfonate ?Stpf?' as colorless crystals (10.8 g, 36.6 mmol, .97% yield).
solution occurs near the diffusion-controlled rate. In other cases Recrystallization from ether afforded colorless needles with mp-119

. : '121°C: UV (n-hexane)max 381 nm,e 120 Mt cm™%; *H NMR (400
kq will be a function of the three rate constaits k-, andky,

3 ) X 1 MHz CDCl3) 6 1.09-1.15 (2 H, m, CH), 1.29-1.35 (2 H, m, CH)),
which requires a more involved analysis to extrdactbut, on

- o ’ 1.59-1.64 (4 H, m, CH), 2.46 (3 H, s, CH), 4.56 (2 H, s, CHO),
the other hand, may also provide information lonts 5.16 (1 H, s br, CH), 7.37 (2 H, d|= 8 Hz, CH) 7.86 (2 H, dJ =

The methodology in Scheme 1 requires a probe with a 8 Hz, CH) ppm;**C NMR (126 MHz CDC}) 6 21.2 (2 C, CH)), 21.7
sufficiently slow intrinsic decay ratég < ks, to allow intra- (CHy), 23.2 (2 C, CH), 61.7 (CH), 65.6 (§), 74.2 (CHO), 128.1 (2
molecular quenching to compete with the natural decay and, C. CH), 129.9 (2C, CH), 132.6 (f; 145.0 () ppm. Anal. Calcd for

thus, to report kinetic information on contact formation. DBO C14HisN20sS: C,57.12;H, 6.16; N, 9.52; O, 16.31. Found: C, 57.04;
H, 6.21; N, 9.65; O, 16.42.

The sulfonate esteét (356 mg, 1.21 mmol) and 400 mg (6.15 mmol)
of NaN; were dissolved in 10 mL of dry HMPA. The stirred mixture
> > was heated under argon for 14 h at 9 (reflux condenser). After
Taylor, D. L., Waggoner, A. S., Lanni, F., Murphy, R. F., Birge, R. R., . . . .
Eds.; Alan R. Liss, Inc.. New York, 1986: pp-28. cooling, the mixture was diluted with 20 mL of water and extracted
(15) It should be noted that the methodology in Scheme 1 is subject to two four times with ether. The combined extracts were rotary evaporated,

additional assumptions. First it is assumed that the diffusion rate constants : : : :
in the excited-state resemble those in the ground state (top and bottom redissolved in 25 mL of ether, and washed with 50 mL of water. Drying

equilibria in Scheme 1). This assumption may be fulfilled for the association

(13) Lakowicz, J. RPrinciples of fluorescence spectrosco@lenum Press:
New York, 1983.
(14) Waggoner, A. S. Ipplications of fluorescence in the biomedical sciences

rate k) but will not generally apply for the dissociation rate Y due to
the possibility of excited-state binding (exciplexes and excimers). Further,

(16) Nau, W. M.; Greiner, G.; Rau, H.; Wall, J.; Olivucci, M.; Scaiano, JJC.
Phys. Chem. A999 103 1579-1584.

it is assumed that the rate constants are not governed by the diffusive (17) Engel, P. S.; Horsey, D. W.; Scholz, J. N.; Karatsu, T.; Kitamura].A.

behavior of the probe and the quencher (e.g., due to hydrophobe association)

to allow an extrapolation to a characteristic dynamic property of the peptide
backbone.

Phys. Chem1992 96, 7524-7535.
(18) Yoshida, Y.; Sakakura, Y.; Aso, N.; Okada, S.; TanabeTa&trahedron
1999 55, 2183-2192.
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over MgSQ and rotary evaporation gave the azigl¢170 mg crude
product, 81%) with~5% HMPA. This intermediate was not purified
for the next step due to its instability even at low temperatiité:
NMR (400 MHz, CDC}) 6 1.15-1.25 (2 H, m, CH)), 1.32-1.43 (2
H, m, CH,), 1.51-1.68 (4 H, m, CH), 3.90 (2 H, s, CH—Nj3), 5.17 (1
H, s br, CH);*C NMR (101 MHz, CDC}) 6 21.7 (2 C, CH)), 24.2 (2
C, CH,), 58.3 (CH—Ns3), 61.9 (CH), 67.0 (§) ppm.

A solution of azide3 (164 mg, 0.99 mmol) in 10 mL of dry THF

Fmoc), 50.6 (CH Asp), 62.2 (CH), 67.2 {67.3 (CH Fmoc), 120.0

(2 C, CH Fmoc), 125.2 (2 C, CH Fmoc), 127.1 (2 C, CH Fmoc), 127.7
(2 C, CH Fmoc), 141.3 (2C, {Fmoc), 143.8 (2 C, £Fmoc), 156.0
(C=0 Fmoc), 172.1 (€0), 172.6 (COOH); FAB MS (NBA) 477

(M + H*); 515 (M+ K*). HR-MS: calcd 477.2137 (M- H*); found
(+ESI-TOF) 477.2120.

Peptide SynthesisPolypeptides were made by Affina Immuntechnik

GmbH (Berlin, Germany). The raw polypeptide was precipitated in

diethyl ether and purified by semipreparative HPLC (LC-8A, Shimadzu)
on an RP-18 column at 4%C (VYDAC No. 218TP101522, 1@L).

was added dropwise to a stirred slurry of lithium aluminum hydride
(76 mg, 2 mmol) in THF (5 mL) under nitrogen. The mixture was
stirred at 68°C for 6 h, cooled to room temperature, diluted with 10 Flow rates of 0.7 (25& 4.5 column) or 8 mL min! (250 x 22 column)

mL THF, and slowly treated with 15% NaOH until a white, granular ~ with water containing 0.1% trifluoroacetic or phosphoric acid as eluent
precipitate was formed. The precipitate was removed by filtration and were adjusted to which a gradient of up to 50% acetonitrile containing
washed with THF, and the combined filtrates were evaporated. The 0.1% trifluoroacetic or phosphoric acid as coeluent was applied within

residue was dissolved in GHI, and dried over KOH pellets.
Concentration and flash column chromatography {Clkimethanol/
NEt; 89:10:1) gave the amind (111 mg, 80%) as a colorless,
hygroscopic wax melting at room temperature: UVo@ Amax 369
nm, e 43 M~* cm (D,0); 'H NMR (400 MHz, CDC}) ¢ 1.18-1.25
(2 H, m, CH), 1.31-1.48 (4 H, m, CH), 1.60-1.67 (2 H, m, CHj),
1.78 (2H, br s, NH), 3.21 (2 H, br s, CkN), 5.14-5.17 (1 H, m, CH)
ppm;13C NMR (101 MHz, CDC}) 6 22.0 (2 C, CH), 24.0 (2 C, CH)),
49.2 (1 C,CHN), 61.9 (1 C, CH), 67.2 (1 C,&£ppm. The hygroscopic

nature of the pure amine prevented an accurate elemental analysis.

Synthesis of Fmoc-DBO.Amine 4 (80 mg, 0.575 mmol), Fmoc-

Asp-Qt-Bu (240 mg, 0.583 mmol) and 184 mg of EEDQ (0.75 mmol)

were stirred in 15 mL of dry CkCl, under argon for 2 days. The

mixture was diluted to 50 mL, washed successively with 5% citric acid,

water, saturated NaHGQwater, and brine, and dried over MgSO
Concentration and flash column chromatography {ClH with 2%

MeOH) gave the amidB (272 mg, 89%) as a colorless solid with mp

178-180°C: 'H NMR (CDCls, 500 MHz)6 1.06-1.16 (2 H, m, CH)),
1.24-1.35 (2 H, m, CH), 1.47 (9 H, s, CH), 1.45-1.66 (4 H, m,
CHy), 2.78 (1 H, ddJ = 16.0, 4.4 Hz5-CH, Asp), 2.95 (1 H, dd,
=16.0, 4.4 Hz3-CH, Asp), 3.82 (2 H, dJ = 6.1 Hz, CHN), 4.21 (1
H,t,J= 7.4 Hz, CH Fmoc), 4.28 (1 H, dd, = 10.4, 7.4 Hz, CH
Fmoc), 4.39 (1 H, dd) = 10.4, 7.4 Hz, CHFmoc), 4.48-4.52 (1 H,
m, a-CH Asp), 5.20 (1 H, br s, CH), 6.05 (1 H, br d,= 8.5 Hz,
urethane NH), 6.55 (1 H, br § = 6.1 Hz, NH), 7.30 2 H, t) = 7.4
Hz, CH Fmoc), 7.40 (2 H, ) = 7.4 Hz, CH Fmoc), 7.587.62 (2 H,
m, CH Fmoc), 7.76 (2 H, dJ = 7.4 Hz, CH Fmoc) ppm!*C NMR
(CDCls, 126 MHz) 6 21.7 (2 C, CH), 24.1 (2 C, CH), 27.9 (3 C,
CHg), 38.0 (CH Asp), 45.3 (CHN), 47.1 (CH Fmoc), 51.3 (CH Asp),
62.0 (CH), 66.8 (§), 67.2 (CH Fmoc), 82.3 (@), 119.9 (2 C, CH

20 min. The retention times ranged between 10 and 22 min. The purity
of the polypeptides was 95% as determined by MALDI-MS and
HPLC. UV spectrophotometry confirmed also the presence of the
characteristic chromophores (DBO, Trp). The extinction coefficients
were the same, within error, as those reported for Fp500 M

cm 1) and DBO (50 Mt cm™1),1220 which provides another purity
and sample identity criterion.

The DBO probe and the Fmoc-DBO amino acid are fully compatible
with standard Fmoc solid-phase peptide synthesis. No complications
were found in coupling, and there was no apparent degradation of DBO
during cleavage with 95% trifluoroacetic acid and HPLC purification.
No special scavengétr protecting groups are required for the DBO
residue during synthesis and cleavage.

Fluorescence SpectroscopyAll measurements were performed in
aerated DO at ambient temperature. Fluorescence lifetimes were
measured on a laser flash photolysis (LFP) setup (LP900, Edinburgh
Instruments, Edinburgh, Scotland) with 7-mJ, 355-nm pulses of 4-ns
width from a Nd:YAG laser (Minilite I, Continuum, Santa Clara, CA),
and with a time-correlated single-photon counting (SPC) fluorometer
(FLS900, Edinburgh Instruments) using a 1.5-ns pulse-widtfidsh
lamp at 370 nm. The FLS900 instrument was also used for the steady-
state fluorescence (SSF) spectita{ = 365 nm). Fluorescence was
detected at 430 nm on both time-resolved setups. The resulting data
were analyzed with the Edinburgh software of the LP900 and FLS900
setup by means of monoexponential or biexponential decay functions
and a reconvolution function for the excitation light pulse. Intermo-
lecular quenching experiments were performed withulsolutions
of DBO and varying quencher concentrations up to 50% quenching
effect or up to the solubility limit of the quencher«& data points).
Typical concentrations of polypeptides were /M for LFP and 100

Fmoc), 125.2 (2 C, CH Fmoc), 127.0 (2 C, CH Fmoc), 127.7 (2 C, uM for SPC experiments. The polypeptides were measured over a

CH Fmoc), 141.3 (2 C, gFmoc), 143.8 (gFmoc), 143.9 (gFmoc),
156.1 (G=0 Fmoc), 170.0 (E&0), 170.3 (G=0); FAB" MS (NBA)
533 (M + HT), 571 (M+ K*). Anal. Calcd for GoHzeN4Os:0.2CH-

Cly: C, 66.00; H, 6.68; N, 10.19; O, 14.55. Found: C, 65.81; H, 6.82;

N, 10.10; O, 14.42.
Amide 5 (181 mg, 0.340 mmol) in 5 mL of dry Cil, was

converted to the free carboxylic acid by adding 3 mL of TFA to the

concentration range of AM—1 mM by LFP and 1uM—1 mM by

SPC. The fluorescence lifetimes remained constant within error within
this concentration range. In the case of SSF measurements, a linear
increase of the intensity with concentration (200—1 mM, 5 data
points) was found.

Results

ice-cooled solution and subsequent stirring at room temperature for 3 Quenching by Amino Acids and Denaturing AgentsThe
h. Rotary e_vgporation of the mixture and coevaporation with toluer_1e photophysical methodology outlined in Scheme 1 required the
and acetonitrile gave Fmoc-DBO (160 mg, 98%) as a colorless solid, gg|action of a quencher for the excited DBO with an efficient,

which was used directly for peptide synthestsi NMR (CDCls, 500
MHz) 6 1.07-1.19 (2 H, m, CH), 1.26-1.39 (2 H, m, CH), 1.50~
1.57 (2 H, m, CH), 1.61-1.68 (2 H, m, CH), 2.81 (1 H, dd,J =
15.6, 8.1 Hz,5-CH, Asp), 3.03 (1 H, ddJ = 15.6, 2.7 Hz,3-CH,
Asp), 3.74-3.88 (2 H, m, CHN), 4.20 (1 H, tJ = 7.2 Hz, CH Fmoc),
4.30-4.40 (2 H, m, CHFmoc), 4.52-4.57 (1 H, ma-CH Asp), 5.20
(1 H, brs, CH), 6.23 (1 H, br d] = 4.7 Hz, urethane NH), 7.30 (2 H,
t, J = 7.5 Hz, CH Fmoc), 7.39 (2 H, ] = 7.5 Hz, CH Fmoc), 7.44
(1 H, brt,J =11 Hz, NH), 7.56-7.60 (2 H, m, CH Fmoc), 7.75 (2 H,
d, J= 7.5 Hz, CH Fmoc)**C NMR (CDCk, 126 MHz)¢6 21.7 (2 C,
CH,), 24.2 (CH), 24.3 (CH), 37.8 (CH Asp), 45.7 (CHN), 47.0 (CH
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preferably diffusion-controlled, quenching rate constant. It was
appealing to select a natural amino acid as an intrinsic
quenchet? For this purpose, the quenching rate constants of
the parent DBO by the 20 natural amino acids were measured
in DO, H,O, and pH 7.0 phosphate buffer. Table 1 reports the
data for six amino acids that gave rise to significant quenching

(19) Luisi, P. L.; Rizzo, V.; Lorenzi, G. P.; Straub, B.; Suter, U.; Guarnaccia,
R. Biopolymers1975 14, 2347-2362.

(20) Nau, W. M.EPA Newsl|200Q 70, 6—29.

(21) Guy, C. A,; Fields, G. BMethods Enzymoll997, 289, 67—83.
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Table 1. Fluorescence Quenching Rate Constants for Natural
Amino Acids

amino acid kq/(108 Mt 57 1)ap

tryptophan (Trp) 20
cysteine (Cys) 5.1[1.9]
methionine (Met) 4.5
tyrosine (Tyr) 3.6 [1.6]
phenylalanine (Phe) 0.08
histidine (His) 0.06

aQuenching rate constant measured for the parent DBO®; Brror
in data is 5%. For the remaining 14 naturally occurring amino aiglis,
less than 1x 10° M~! s71 b Deuterium isotope effects, i.ekq(H20)/
kq(D20), are given in brackets for cases where significant effects were
observed.

effects. The remaining 14 amino acids quenched at insignificant
rates below 1x 10° M~! s The backbone of model
polypeptides should be composed of such “inert” amino acids
to avoid competitive intramolecular quenching in the actual
kinetic measurements of peptide dynamics. The quenching
experiments yielded identical results, within error, in buffered
(pH 7.0) and unbuffered #D, except for quenching by histidine
(pKa ~6—7),22 for which the rate increased to 0.26108 M1

s 1 in buffer. This indicates that the unprotonated imidazole

group is a stronger quencher. Significant solvent isotope effects

were observed for Tyr and Cys.
The fluorescence lifetimes of DBO in polypeptides consisting
of the above-mentioned “inert” amino acids, i.e., without

intramolecular quenchers, were measured for two representative

sequences, GlIn-lle-Phe-Val-Lys-DBO-MNtdnd Thr-Leu-Thr-
Gly-Lys-DBO-NH,. The experimental lifetimes in aerated@®
(510 and 490 ns) were the same, within error, as that of the

parent chromophore (505 ns), which confirms the absence of

intramolecular quenching by these amino acids in polypeptides.
Only for the four amino acids Trp, Cys, Tyr, and Met did
the quenching approach the diffusion-controlled limit with
values above 3x 10® M~! sl Among these strongest
quenchers, Trp and Tyr appear preferable for the design of
intramolecular quenching experiments since the two sulfur-
containing amino acids Cys and Met have a well-known lability

during synthesis and photolysis. Presently, Trp was selected as

the most efficient quencher.
Fluorescence quenching by the denaturing agents urea an
guanidinium chloride was found to be insignificarti0%) up

to 5.5 M concentration, with apparent quenching rate constants

below 3 x 10* M~ s7L. This finding and the fact that the
fluorescence lifetime of DBO is insensitive to pH between 2
and 12 should allow for a broad range of experimental
conditions for studying peptide dynamics, albeit these have not
been exploited in the present study.

Quenching MechanismBased on detailed investigations of
the fluorescence quenching of the parent fluoropRé#e23-28

(22) Abeles, R. H.; Frey, P. A.; Jencks, W.Blochemistry Jones and Bartlett
Publishers: Boston, 1992.

(23) Nau, W. M.; Pischel, UAngew. Chem., Int. Ed. Engl999 38, 2885~
2888.

(24) Nau, W. M.; Greiner, G.; Wall, J.; Rau, H.; Olivucci, M.; Robb, M. A.
Angew. Chem., Int. Ed. Engl998 37, 98—-101.

(25) Nau, W. M.; Greiner, G.; Rau, H.; Olivucci, M.; Robb, M. Ber. Bunsen-
Ges. Phys. Chenl998 102 486-492.

(26) Pischel, U.; Zhang, X.; Hellrung, B.; Haselbach, E.; Muller, P.-A.; Nau,
W. M. J. Am. Chem. So@00Q 122 2027-2034.

(27) Pischel, U.; Allonas, X.; Nau, W. M. Inf. Recording200Q 25, 311—
321

(28) Sinibropi, A.; Pischel, U.; Basosi, R.; Nau, W. M.; Olivucci, Kngew.
Chem., Int. Ed200Q 39, 4582-4586.

two viable quenching mechanisms need to be taken into
account: hydrogen abstracti§i*2> and exciplex-induced
quenching?®-28 Both mechanisms require a close probe/
guencher contact. The deuterium isotope effect for Tyr and Cys
(Table 1) provides evidence that a hydrogen atom abstraction
(from the phenolic G-H or the S-H group) is indeed involved,
which has in fact been previously observed in the quenching
of DBO by the phenol group ic-tocopherol! For cysteine,
hydrogen abstraction is further supported by the quenching rate
constants of methionine (Table 1) and cystine, i.e., the8S
oxidized cysteine dimer (X 10° M~1s71, in D,0, this work).
Although they are both better electron donors than cysteine,
they are somewhat less efficient quenchers since they lack the
reactive S-H bond.

For tryptophan, no deuterium isotope effect is observed.
Moreover, we have evidence from quenching of DBO by
dihydroxyindoleg® that hydrogen abstraction from the labile
N—H indole bond is inefficient. Hence, the quenching of DBO
by Trp is likely to occur through an exciplex intermediate with
close contact® 28 This is corroborated by the observation that
1-methyl-Trp, which lacks the NH bond, is quenched at a very
similar rate (1.6x 10° M~1s™1, in D,0, this work) as Trp itself
(2.0 x 10° M1 s1). Since exciplexes of n¥-excited states,
including ketones and azoalkanes, are nonemig8itfeonly
indirect evidence for their involvement has been obtained. For
the interaction of my*-excited states (which includes DBO) with
aromatic donors, the structure of the exciplexes is presumed to
involve a singly occupied lone pair orbital of the excited state
to face the aromatia system® For amines as electron donors,
exciplex formation with DBO is a diffusion-controlled reaction
and radiationless deactivation of the exciplex is triggered by a
close-lying conical intersectici.We presume a similar quench-
ing mechanism for singlet-excited DBO by Trp.

Trp-(Gly-Ser) -DBO-NH, Polypeptides. To establish the
overall suitability of the fluorescence-based method for measur-
ing contact formation in biopolymers, we have performed an
exploratory study on the length dependence of the intramolec-
ular quenching rate constants between DBO and Trp in
structureless peptides. Aerated@was selected for the poly-
peptide studies, which presents a good tradeoff between the

C;equirement of a long fluorescence lifetime (cf. Introduction),

convenient measurement under air, and direct comparison with
D,O NMR data, which are employed in other cases to test for
structural effects.

N
1
N
HN
0] e} o}
HZN /\[(ﬁ NH2
N N
H H
(o} o}
HO
\ n
N

H

The sequences were chosen to be the (GlyxSpajirs
introduced by Bieri et al., which are supposed to be “structure-

(29) Zhang, X.; Erb, C.; Flammer, J.; Nau, W. Fhotochem. PhotobioR00Q
71, 524-533.

(30) Wagner, P. J.; Truman, R. J.; Puchalski, A. E.; WakeJ.RAm. Chem.
Soc.1986 108 7727-7738.
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I Table 2. Fluorescence Lifetimes and Intramolecular Quenching
rel Rate Constants for DBO/Trp-Containing Polypeptides? Obtained
LOF x log (counts) 4.0 from Different Techniques
s ky/
B ,% 2.0 7/ns® (10757
.3 polypeptide N Spcd LFPe SSF SPCY
o5kt % Trp-(Gly-Ser)y-DBO-NH;,
. n=0 2 23.3 24.5 20 4.1
. n=1 4 14.3 135 13 6.8
Fe n=2 6 195 185 18 4.9
. n=4 10 305 30 29 3.1
é n==6 14 456 45  £456p 2.0
00 =, n=10 22 744 76 69 11
0 50 100 150 t/ns Trp-Pra-DBO-NH, 6 460 460 470 <0.02
Figure 1. Fluorescence decays (SPC, normalized intensity) of«SD

aLifetime of polypeptides not containing Trp or other amino acid
quenchers is~500 ns in aerated O, e.g., 510 ns for GIn-lle-Phe-Val-
Lys-DBO-NH, and 490 ns for Thr-Leu-Thr-Gly-Lys-DBO-NiHP Number
of peptide units between probe (DBO) and quencher (TrpJuorescence
lifetime in aerated RO at 23°C. 9 Measured by time-correlated single-
photon counting; error in data is 0.3 ns except for= 10 (1.0 ns).
e Measured by laser flash photolysis; error in data is 5Measured by
less”? Shown in Figure 1 are the SPC results for the Trp-(Gly- steady-state fluorescence; the slope of the plot of the signal intensity vs the

Ser)-DBO-NH polypepides witin = 1,2, 4, and 6 (sructure  S0Cenaten uas essumed o be provorins o he etime, uang the
above). The shortest homologue of the series with 0, i.e., eq 1 by using the SPC lifetimes amgl= 500 ns." Reference value.
Trp-DBO-NH,, and a longer one witm = 10 were also

measured. The Poissonian noise statistics of the digital SPC
method allows an unsurpassed detection accuracy of minute
deviations from monoexponential decay kinetics. As an example,
the decay trace fan = 1 is shown on a semilogarithmic scale

in the inset of Figure 1, which is the preferred SPC data
representation mode. Clearly, a second longer lived exponential
component is detected, which, however, contributes merely 1%
to the total signal intensity (ratio of preexponential factors). This
feature may well be due to an impurity. Within the purity
specifications of the polypeptides 95%), the SPC data (and
also the LFP data) allow an assignment of monoexponential
decay behavionf’ values=1.1). This supports the findings by Figure 2. Steady-state fluorescence spectra of 200 Trp-(Gly-Sery-
Bieri et al® and Lapidus et &l Multiexponential decays have _ DgO-NHZ polype);;tidesrq =124 6, f'room bottom to to?) spgctrum) in
been observed, for example, for fast electron transfer in aerated RO. The original intensity (in counts) of each spectrum was divided
polypeptides in the picosecond time regifieAs suggested by the counts in the maximum (430 nm) and multiplied by 45.6, the
previously? end-to-end contact formation, which occurs in the reference lifetime (in ns) for the = 6 polypeptide (Table 2).

nanosecond range, may be sufficiently slow to allow rapid the parent fluorophore. The experimenkglvalues are taken

|ntercor:vfer3|tﬁn bte)tweer:j the various C(t)_nflo(;mers Endi_ tth’ as a direct measure of the rate constants for contact formation
account for the observed monoexponential decay kinetics. (k+); cf. Introduction.

control experiment for a polypeptide with a more rigid, extended
polyproline backbone, i.e., Trp-(PwlPBO-NH,, yielded a very
long fluorescence lifetime of 460 ns. Monoexponential decay
behavior was also observed in this case.

aerated RO solutions of Trp-(Gly-Sep)DBO-NH, polypeptidesif = 1,

2, 4, 6), linear scale. The lowest trace corresponds=tol, the uppermost
one ton = 6. Shown in the inset is the decay for= 1 on a semilogarithmic
scale; note the long-lived component (1% preexponential factor contribu-
tion), which is assigned to a trace impurity.

I (arb.)

600 A/nm

400 500

k= 1/t — Ly~ k, 1)

The availability of different experimental techniques is a
Note that the fluorescence lifetimes of the Trp-(Gly-$er)  unique advantage of fluorescence measurerfettand allows
DBO-NH; polypeptides range from 10 to 75 ns (Table 2). for a broad use of fluorescence-based methods in general. Three
Fluorescence lifetimes in this region are readily and very techniques for measuring fluorescence have been explored: SPC
accurately measurable by SPC or phase-modulation techrifques. (Figure 1), LFP, and SSF (Figure 2). The mutual agreement
To extract intramolecular quenching rate constakgs Table that has been obtained by these three methods is excellent (Table
2), a correction of the observed lifetimeg) for the inherent 2). While SPC is preferred for high-accuracy results, SSF
decay of the excited statep] according to eq 1 is recommended. measurements are more commonly accessible and are well suited
The error introduced ilkg by a direct conversiorkg ~ 1/7) is for relative lifetime measurements. Note that a reference with
small for the present data set10%) due to the efficient  a known lifetime is required for the determination of absolute
quenching € < 7o) but cannot generally be neglected. The |ifetimes by SSF.
inherent fluorescence lifetime of the DBO residue in aerated .
D,0 was taken as 500 ns, which is the average lifetime measureoD Iscussion
for peptide sequences lacking intramolecular quenchers and for The purpose of this work is to establish a novel fluorescence-
. based method for measuring the kinetics of intramolecular

@1 gbgz()tg?;' B S o ,Gafsh?,thgs"gh on. ggggfiggf'g'%_s- R contact formation in biopolymers. This requires beforehand a

581. discussion of the advantageous properties of the new fluorophore
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and a comparison with the previously employed techniques, fluorescence from triplettriplet annihilation between anthracene
followed by some principal suitability considerations, and, pairs3® However, few intramolecular quenching experiments
finally, an experimental test with polypeptides of different chain have been applied to biomolecules such as pepfides.
lengths. In the present work, we have employed DBO as a fluorescent
Chromophore Characteristics. The distinct photophysical ~ probe and Trp as a quencher to measure the rates of intramo-
and chemical properties of the parent 2,3-diazabicyclo[2.2.2]- lecular contact formation in polypeptides. Previous studies on
oct-2-ene fluorophore have been discussed previdéiéRFor these rates have made use of similar photophysical methodolo-
use as a fluorescent label for biomolecules, in particular peptides,gies but with a different technique (transient triplet absorption)
certain aspects are particularly noteworthy. First, DBO is small and with different probe/quencher systetn¥, which cannot
(~5-A diameter) and nearly spherical, which contrasts the exploit the advantages of fluorescence as a detection tech-
established polyaromatic chromophores and luminescent transi-nique!®4 McGimpsey et al. examined two systems with
tion metal complexes. Equally important is the high solubility benzophenone as a probe and naphthalene as quencher (Bzp/
of the neutral parent fluorophore in water, which is related to Nap)® Triplet benzophenone was obtained by a 355-nm laser
its high inherent dipole moment of 3.5®This minimizes the flash (5-ns pulse width) in deaerated acetonitrile, but intramo-
tendency for hydrophobic associatf®®* and renders the lecular energy transfer to naphthalene was too fast to allow
possibility unlikely that the experiment reports on the rate of measurement<{10 ns). This Bzp/Nap system also offered the
hydrophobe associatiétrather than on the pertinent biopolymer  possibility of examining by 308-nm photolysis the (backward)
chain mobility® Also, the hydrophilic fluorophore promotes Forster resonance energy transfer (FRET) from the singlet-
water solubility of the short polypeptides into the millimolar —excited Nap to Bzp. Bieri et al. used thioxanthone as probe and
range. This allows standard measurements in water, and a direchaphthalene as quencher (Thx/N&fhe fast kinetics of contact
comparison with NMR experiments, which are often performed formation in short polypeptides was quantified for the first time
in the same concentration range. The fluorophore has also ain this study. The Thx triplet was produced by 351-nm laser
high chemical and photochemical stability with decomposition excitation (20-ns pulse width) in degassed ethanol and in
quantum yields of about 0.1% in 83 and 0.3% in RO.1 mixtures with water and glycerol. The triplet energy transfer,
No change in the fluorescence lifetime was observed even afterwhich in this case was rigorously established through the time-
extended measurements{000 laser pulses) and several days resolved rise of the Nap triplet, occurred near the diffusion-
storage in solution. controlled limit, but was reversible and inefficient under some
With respect to the photophysical behavior, the absorption conditions, which precluded studies in water. Lapidus et al. used
maximum in the near-UV (364 nif)and the high fluorescence ~ two natural amino acids, namely, tryptophan as probe and
quantum vyield £20% in aerated water in the absence of Cysteine (and lipoate) as quencher (Trp/CysJhe Trp triplet
quenchers) are appealing for various instrumental reasonsWas populated with 290-nm dye laser pulses (8 ns) N
Common Nd:YAG, XeF excimer andMear-UV laser excita- ~ Saturated water. The quenching rate constant for Cys fell below
tion at 355, 351, and 337 nm can be selected, which by-passeéhe diffusion limit, and a correction was introduced by com-
Tyr and Trp excitation and complications due to peptide parison with the more efficient intramolecular quenching by
autofluorescenc¥ The unique property of the parent chro- lipoate. It should be mentioned that the chemical and photo-
mophore, however, is its exceptionally long fluorescence lifetime chemical stability of the triplet probes Thand Trg®“°required
(~1 us in gas phase, 505 ns in aerategD)'! which is the attention during peptide synthesis and LFP experiments, re-
longest among organic chromophores in solution. It is this long SPectively.
fluorescence lifetime that allows the presently described novel ~Each of the above-mentioned methods has its strengths and
kinetic applications and that differentiates this fluorescence- may be preferable to study a specific aspect of biopolymer
based method from others. It is important to note that the kinetics. The advantages of the presently introduced fluorescence-
fluorescence of DBO can be monitored under air. This is based method (DBO/Trp) comprise, mostimportantly, the ease
possible due to the very slow oxygen quenching of DBO in of experimental monitoring by fluorescence in water under air

water (2.1x 10° M1 s1) compared to other singlet-excited ~ With high sensitivity and precisioft.
stated!? The DBO-based fluorescence technique is particularly well

suited to perform measurements in the fast time rarngg00

Kinetics. Many experiments using chromopherguencher pairs ns) and to analyze nonexponential decay behavior. Since recent
to measure intramolecular kinetics jmolymers have been experiments have demonstrated that the contact formation

discussed in the literature, including fluorescence quenching andXinetics of the shortest polypeptides are significantly fastér(
triplet absorption experimenté3 Related photophysical ap-  nd 20 ns, respectivef/) than previously presumed,and in

proaches involve intramolecular excimer formation of pyr&ne, fact fall into a critical time rangé? it appears essential to have
phosphorescence decay from benzopheddrand delayed available techniques that allow accurate measurements of these

Techniques for Measuring Submicrosecond Biopolymer

(40) Mialocq, J. C.; Amouyal, E.; Bernas, A.; Grand, D.Phys. Cheml982

(32) Harmony, M. D.; Talkinkton, T. L.; Nandi, R. NI. Mol. Struct.1984 86, 3173-3177.

125 125-130. (41) Unfortunately, the absorbance of DBO is too low to reach the optimum
(33) Lee, S.; Winnik, M. AMacromolecules1997, 30, 2633-2641. sensitivity of fluorescence measurements (nM range). Nevertheless, the
(34) Daugherty, D. L.; Gellman, S. H.. Am. Chem. Sod999 121, 4325~ sensitivity of the DBO measurements compares favorably with that

4333. employed in the previous triplet transient absorption experiments with strong
(35) Johnson, G. E]. Chem. Physl975 63, 4047-4053. absorbers; cf. refs 9 and 10. The SPC detection limit could be significantly
(36) Pischel, U.; Nau, W. MJ. Phys. Org. Chen200Q 13, 640-647. lowered by replacement of the hydrogen flash lamp by laser excitation.
(37) Winnik, M. A. Chem. Re. 1981, 81, 491-524. (42) Hagen, S. J.; Hofrichter, J.; Szabo, A.; Eaton, WPAoc. Natl. Acad. Sci.
(38) Horie, K.; Schnabel, W.; Mita, I.; Ushiki, HMacromoleculesl981, 14, U.S.A.1996 93, 11615-11617.

1422-1428. (43) Callender, R. H.; Dyer, R. B.; Gilmanshin, R.; Woodruff, W. Ahnu.
(39) Winnik, M. A. Acc. Chem. Red.977, 10, 173-179. Rev. Phys. Chem1998 49, 173-202.
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fast kinetic processes. Fluorescence detection opens a uniqu&RET work by Haas et al. with polypeptid@scontaining
opportunity along this line since it allows measurement down naphthalene as a probe, (~60 ns) and dansyl as quencher,
to the picosecond rangéMeasurements with triplet probes are  energy transfer was found to occur over distances ef3Z2A
subject to instrumental limitations (typical laser pulse widths and there is also substantial evidence for long-range electron
around 10 ns$)® and may also be limited by inefficient{13% transfer in polypeptide%-51.5658 For the DBO/Trp system,
for Trp)** and slow 2.5 ns for both Trp and Th$#346 FRET is not possible since the singlet excitation energy of Trp
intersystem crossing from the initial singlet-excited state to the (E* = 399 kJ mot1)5is much higher than that of DBEf =
triplet, as well as concomitant fluorescence (about 10 and 7% 328 kJ mot? in water, calculated fromiyax = 364 nm)23:5°
for Trp and Thx, respectivelyf4” all of which limit the ET as the fluorescence quenching mechanism of DBO by
accessible time scale. Conversely, the triplet probes haveTrp requires more detailed attention, especially since Trp is
lifetimes in the microsecond range due to their spin-forbidden known as a strong intrinsic electron donor in peptides with an
decay (30—40usy1°and should also be applicable to slower oxidation potential of~0.80—-0.85 V vs SCE at neutral pF:50
kinetic processes. In contrast, the DBO method is restricted to However, the very low reduction potential of DB@p(ed =
the submicrosecond range as a consequence of the inherent-2.8 V vs SCE} results in an endergonic energetics for
fluorescence decay lifetime<Q us)1216The different techniques  electron transferAGgr > 20 kJ moi1)®1 which cannot account
are thus complementary and cover a large dynamic range.  for the observed quenching rate constants in these polypep-
Distance Dependence of Quenchingthe methodology in  tides®® It has been proposed that electron-transfer-induced
Scheme 1 requires the quenching of the probe to occur (1) fluorescence quenching of end-labeled probes by a terminal Trp
rapidly and (2) upon intimate contact with the quencher, in polypeptides becomes important when the excited-state
resulting in a diffusion-controlled, contact-induced quenching reduction potentialt.eq + E*) exceeds a value of 1.5 . This
process. With respect to the requirement of molecular contact, is by far not fulfilled for the fluorescent probe DBO, sinEgq
the fluorescence quenching of DBO is unique since its fluo- + E* = 0.6 V, which points to another quenching mechanism.
rescence quenching requires a close, structurally well-definedMoreover, we have recently ruled out ET for several tertiary
molecular approach within van der Waals contact32A amines as quenchers although they have even lower oxidation
distance) with an efficient hydrog&®+2%or electron donofé-28 potentials than Trg® The combined results are in line with
The related quenching mechanisms, hydrogen abstraction andexciplex-induced quenching but speak against ET. This is
exciplex-induced quenching, are chemically inefficient and have important for the interpretations since only the former mecha-
been studied in experimental and theoretical dét&f:23-28 For nism requires contact between the probe and the quencher and
comparison, it should be noted that the tripleiplet energy can therefore be directly related to end-to-end intrachain contact
transfer in the Thx/Nap probe/quencher pair proceeds supposedlyformation.
through a Dexter mechanishiDexter-type energy transfer does Quenching Rate ConstantsThe intermolecular quenching
not strictly occur upon van der Waals radius contact but rate constants for the probe/quencher pairs should ideally reflect
decreases exponentially with distance and orbital overlap, suchthe values that are commonly accepted for diffusion-controlled
that quenching events may occur within several nanosecondsreactions of small solutes in a particular solvEnHowever,
at separations of 56 A.4850 McGimpsey et al. further  quenching rate constants that fall somewhat below the diffusion-
suggested for their Bzp/Nap polypeptides that superexchangecontrolled limit may well be acceptable, because the dissociation
(through-bond) triplet energy transfer may contribute as fvell. of an intramolecular probe/quencher encounter pak-(in
The quenching mechanism in the Trp/Cys probe/quencher pairScheme 1) has been suggestad be slower than in the case
has not been discussed in detélil. of anintermolecularencounter, presumably due to the rigidity
Intramolecular quenching experiments based on FRET or Of the polypeptide backbone. This may allow a slower-than-
electron transfer (ET) as the quenching mechanism may providediffusion-controlled quenching process to compete more favor-
invaluable information on biomolecular structure and dy- ably. This circumstance suggests that probe/quencher pairs
namics? 6315553 However, FRET and ET do not require Whose quenching rate constants fall somewhat below the ideal
intimate molecular contact and may well occur over larger value may still reliably reflect the rate constants for contact
distances, e.g., through bond by a superexchange mech#nism. formation in a polypeptide. Even in cases where the quenching
Hence, the quenching rates may not directly reflect the rates ofrate constants fall significantly below the desired limit, e.g.,
intrachain contact formatioh®* For example, in the seminal

(54) Thomas, D. D.; Carlsen, W. F.; Stryer, Broc. Natl. Acad. Sci. U.S.A.
1978 75, 5746-5750.
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31

(44) Chen, Y.; Liu, B.; Yu, H.-T.; Barkley, M. DJ. Am. Chem. Sod 996
118 9271-9278.

(45) Murov, S. L.; Carmichael, I.; Hug, G. IlHandbook of Photochemistry
Marcel Dekker: New York, 1993.

(46) Ley, C.; Morlet-Savary, F.; Jacques, P.; Fouassier,GhBm. Phys200Q
255, 335-346.

(47) Dalton, J. C.; Montgomery, F. Q. Am. Chem. Sod974 96, 6230~
6232

(56) Faraggi, M.; DeFelippis, M. R.; Klapper, M. H. Am. Chem. S0d.989
111 5141-5145.

(57) DeFelippis, M. R.; Faraggi, M.; Klapper, M. H. Am. Chem. Sod.991,

112 5640-5642.
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(49) Wagner, P. J.; Kla P.J. Am. Chem. S0d.998 121, 9626-9635.
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10911
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Figure 3. Double-logarithmic plot of the intramolecular quenching rate
constantk) of Trp-(Gly-Ser}-DBO-NH; polypeptides vs the peptide length,
taken as the number of intervening peptide uriis The SPC values from
Table 2 are used; the statistical errors obtained from this technique result
in errors on the same order of magnitude as the size of the data points. A
simple function of the typg = a —1.5x — b/x was fitted to the experimental
data & = 9.37 andb = 0.392) to reflect the theoretical slope ofL.5 at

long chain lengths and the expected rapid fallbfi(term) at short chain
lengths; cf. ref 66. The dashed line has a slope-&f5 and is shown to
illustrate the deviation from the theoretical behavior.

04

)
0.6

1
0.8

1.0 1.2

5.0 x 10® M~1 s for the Trp/Cys pair in watefd the
experimental rate data may serve to provide reliablative
kinetic data. The absolute rate constants for contact formation
as has been suggested, can be extrapoléted.

The quenching rate constant for the DBO/Trp pair (2.0
10° M~1 s, like that for the Trp/lipoate pair~3 x 10°
M~1s71)1063{s close to the diffusion-controlled limit in water
(6.5 x 10° M~1s71),62 and the quenching rate of the Thx/Nap
pair in ethanol (4x 10° M~1 s71)? lies close to the diffusion
rate constant in ethanol (54 10° M~1 s71).62 These probe/
quencher pairs should thus directly report on the rate of
intramolecular end-to-end contact formatidn (n Scheme 1).

Length Dependence of Polypeptide Contact Formation
Rates.To study the length dependence of polypeptide contact
formation rates by the intramolecular quenching methodology

intrachain contact formation within a Gaussian chain ap-
proximation, such a plot should be linear with a slope-af50

at sufficiently long chain lengtff:6” A comparison with the same
plots provided in the previous studig8reveals that the contact
formation rates measured with the present fluorescence-based
technique (taken as the intramolecular quenching rate constants
in Table 2) are significantly and consistently faster at the same
length than the previously measured values. The variance from
the Thx/Nap data set appears to be quite constant around 40%,
while that with the extrapolated Trp/Cys data ranges between
20 and 150%. For example, the rate constantdNfer 4 andN

= 10 in the DBO/Trp data set (6.8 and 2010’ s™1) exceed

the results foN = 3 and 9 in the Thx/Nap series (5.0 and 1.4

x 107 s71)% as well as those extrapolated fér= 4 andN = 10

in the Trp/Cys study (2.7 and 1 107 s71).10 Moreover, the

rate constants foN = 22 in the DBO/Trp data set, which is
the longest polypeptide among those yet studied, is significantly
larger than that extrapolated for the shoer= 19 peptide in

the Trp/Cys study (11 vs 7.% 1C° s1).10 Whether these
variances are due to the selection of different solvents and
polypeptide sequences, assumptions related to diffusion-
controlled quenching, or structural effects imposed by the probe/
guencher pairs cannot be decided at present. However, with
respect to the “speed limit?®42for intrachain contact formation

in polypeptides, the present data suggest a value as short as 10
ns, which is similar to the upper limit<{10 ns) provided by
McGimpsey et af.

That the fluorescence quenching rate constants are indeed a
measure of polypeptide chain contacts and not of differential
rates of superexchange electron transfer (see above) is evident
from the fluorescence lifetime of the shortest homologue of the
series (| = 0), which is actually higher than those for the two
next longer derivatives with =1 and 2. In addition, the study
of a derivative with a polyproline backbone, i.e., Trp-(R+0)
DBO-NH,, revealed a much longer fluorescence lifetimes of
460 ns in DO, very close to that observed for polypeptides not
containing Trp (500 ns). Polyprolines are presumed to have an

(Scheme 1), the quencher is generally separated from the prob&yended, more rigid structure in soluti®e such that the

by a varying number of unreactive amino acids, and it is

longer fluorescence lifetimes can be interpreted in terms of a

assumed that the experimental intramolecular quenching rate,qq,ced flexibility of the polyproline backbone, which renders

constants Ky) are a direct measure of the rate for contact

formation ). Previous studies employed transient triplet

absorption to study polypeptides with the structures Thx-(Gly-
Ser)-Nap-Ser-Gly ( = 1—4)° and Cys-(GIn-Gly-Ala)-Trp (n

= 1-6).10 We have now examined the length dependence for
Trp-(Gly-Ser)-DBO-NH; polypeptides witm = 0, 1, 2, 4, 6,

and 10. The DBO residue was attached at the C terminus and;
Trp was attached as a quencher to the N terminus. Tyrosine or

artificial amino acids could be employed instead of tryptophan,
but the latter was preferred in view of the fast quenching rate
(Table 1) and natural relevance. The fluorescence lifetimes of
the polypeptides are entered in Table 2.

The present data are entered in akgptlog(N) plot in Figure
3, whereN denotes the number of -CO-NH- peptide units
between probe and quencher, i.e., the peptide |éigthcord-
ing to the polymer theory by Flory, which treats the kinetics of

(63) Bent, D. V.; Hayon, EJ. Am. Chem. Sod.975 97, 2612-2619.

(64) Gonnelli, M.; Strambini, G. BBiochemistryl995 34, 13847-13857.

(65) The peptide unit in the asparagine chain (cf. structure) has been counted
for the present polypeptides. If it is not countédi€ 3, 5, 9, 13, 21), the
conclusions with respect to absolute rates, curvature, and step81+
0.07) remain unchanged.

conformations with contact between the probe and the quencher
less likely®8

It is important to note that the lokg)—log(N) plot of our
data (Figure 3) indicates a pronounced negative curvature with
a sharp falloff nearN = 2. In fact, this sharp falloff is
theoretically expected at sufficiently short chain lengths due to
he breakdown of the Gaussian chain approximaifos first
indication of a negative curvature for polypeptides was obtained
from the Trp/Cys data séf.Moreover, if a linear function is
fitted through the data for the longer polypeptides with=

(66) Suter, U. W.; Mutter, M.; Flory, P. J. Am. Chem. Sod.976 98, 5740~
5745.

(67) Mutter, M.; Suter, U. W.; Flory, P. J. Am. Chem. S0d.976 98, 5745~
5748.

(68) The control experiments with both polypeptides also provide additional
evidence against superexchange electron transfer as the quenching mech-
anism (see above). The rate of the latter is expected to increase weakly,
but exponentially with the number of peptide uritdf superexchange
electron transfer were to play an important role, one would expect a similar
guenching rate constant for the Pro and Gly-Ser peptides of the same length
and one would expect the fastest rate constant for the shortest dipeptide (
= 0). Both are not observed experimentally. It should be noted that the
kinetics of intramolecular chain diffusion has actually been an uncertainty
in several studies of long-range electron transfer (e.g., refs 51 and 58).
The present method should also be of interest in this context.
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1-10 (Figure 3,r2 = 0.995), the slope-{1.05 4+ 0.06) falls other amino acids and nucleotides, should be viable, which
below the theoretical value{(1.50) and the previously reported renders the present fluorescence-based method an attractive
slope (-1.36+ 0.26)2 While a smaller-than-theoretical slope alternative to assess the kinetics of intramolecular diffusion
can again be rationalized in terms of the pertinent approxima- phenomena in polymers and biopolymers. In particular, this is
tions®6 the contrast in slope between the two experimental pertinent for the understanding of protein folding and the domain
studies is interesting in view of the identical polypeptide motions in proteins.

backbones. ) )
Acknowledgment. R.R.H. thanks the National Science Foun-

Conclusions dation (U.S.A.) for an International Research Fellowship (grant

The present fluorescence-based method for measuring subINT-9901459). This work was generously supported through
microsecond dynamics of polypeptide chain contact formation several grants of the Swiss National Science Foundation (MHV
yields unsurpassed kinetic data with respect to accuracy, 9rant 2134-62567.00 for G.G., NF grant 620-58000.99 for
detection of nonexponentiality, and time range (106 pgs). W.M.N). The study was performed within the Swiss National
These features, along with the full compatibility with standard Research Program “Supramolecular Functional Materials” (grant
solid-phase peptide synthesis, the high photostability of the 4047-057552 for W.M.N.). We acknowledge the help of C.
small, dipolar probe, and the use in aerated water, are advantaMarquez with the Fmoc-DBO synthesis.
geous for a wide range of biological applications. Attachment
of the same fluorophore to other biological targets, including JA010493N

564 J. AM. CHEM. SOC. = VOL. 124, NO. 4, 2002






Amino Acid Flexibility

A Conformational Flexibility Scale for Amino
Acids in Peptides**

Fang Huang and Werner M. Nau*

The molecular flexibility of proteins is a crucial factor in
determining their biological activity,! including binding
affinity,” antigenicity,’! and enzymatic activity.! The identi-
fication of regions in proteins with the highest conformational
flexibility and rigidity is essential for predicting the mecha-
nism of protein folding,> for understanding domain motions
in proteins,"7® and for predicting the rate of nonlocal
interactions as well as intramolecular reactions, including
electron and proton transfer and cyclizations.'’) Conse-
quently, there is considerable interest in predicting the
flexibility or, conversely, the rigidity of peptides from their
amino acid sequence.!''-'3 The prediction of peptide flexibility
has additional implications for the de novo design of pep-
tides!' and for the theoretical understanding of peptide
dynamics.["”]

We now report a novel scale for the flexibility of amino
acids, which provides an absolute measure for the time scale
of conformational changes in short structureless peptides as a
function of the amino acid type. This experimental scale is
derived from kinetic measurements of the collision frequency
between the two ends of short random-coil polypeptides.

The present experiments provide the first application of
our recently introduced fluorazophore method for measuring
the kinetics of end-to-end collision in polypeptides.'!”] In
essence, 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) is attached
as a fluorescent probe at one end of the peptide and
tryptophan is placed at the other end as an efficient quencher
(Figure 1). The unique features of this probe/quencher pair
are the exceedingly long fluorescence lifetime of the probe
(several hundred nanoseconds) and the contact quenching

DBO kcoll Tl'p
DBO

Trp

Figure 1. End-to-end collision in peptides labeled with DBO as a fluo-
rescent probe at the C terminus and Trp as a fluorescence quencher at
the N terminus.
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Angewandte

mechanism, which differentiates it from conventional fluo-
rescence resonance energy transfer (FRET) donor/acceptor
pairs. The fluorescence lifetimes of DBO/Trp peptides
provide the quenching rate constants (k,), which measure
the end-to-end collision frequency (k. in Figure 1).I'1 Such
collisions occur on the ns—us time scale according to recent
studies.['7-20]

We reasoned that the collision frequency of peptides, in
which Trp and DBO are separated by a sequence of identical
amino acids (Scheme 1), should be an excellent measure of

O R q (@]
H,N N.
i o NH, n=4,6
| n NH
N O

N

Scheme 1. General structure of the peptides.

the conformational flexibility of the backbone.!! These
peptides adopt random-coil conformations according to CD
measurements.?? Since the conformational changes required
for end-to-end contact derive from fast rotations about the
N—C¢ and C*—C bonds,®! and since different o substituents
are expected to hinder these bond rotations to a different
degree, we expected different collision frequencies when the
probe and the quencher are separated by different amino
acids. This arrangement should allow us to correlate the
collision frequency with the type of amino acid and thereby
build up a flexibility scale (Table 1). It should be stated that
this scale reflects the global or conformational flexibility of
the amino acids in peptides. This scale is unrelated to
previously introduced local or positional flexibility scales?*
obtained from X-ray diffraction crystallographic data.l'-3l
The latter scales provide measures of the average displace-
ments of atoms in amino acid residues from their equilibrium
geometry, which are derived from vibrations on the femto-
second time scale and reflect the shallowness of the potential
centered around an energy minimum.

The quenching rate constants in Table 1, which were
obtained from the fluorescence decays (Figure2), show
variations of 1-2 orders of magnitude for the various amino
acids. Lower quenching rate constants correspond to lower
end-to-end collision frequencies and indicate a lower flexi-
bility (or higher rigidity). The following order of flexibility
applies:

Gly > Ser > Asp, Asn, Ala > Thr, Leu > Phe, Glu, Gln
> His, Arg > Lys > Val > Ile > Pro

The above order was also preserved in the presence of 6 M
guanidinium chloride, except that Leu appeared to give rise to
a somewhat less flexible peptide. Guanidinium chloride is an
efficient denaturant, which should destroy any remaining
secondary structure as well as aggregation between hydro-
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Table 1: Fluorescence quenching rate constants in Trp-X;-DBO-NH,
peptides.

X Residue (R) kq [10°s77]
without additivel  with denaturant!!

Gy H 39 23
Ser  -CH,OH 25 19
Aspld  -CH,CO,H 21

-CH,CO," 19 12
Asn  -CH,CONH, 20 14
Ala -CH, ca. 184 ca. 144
Thr -CH(OH)CH; 11 9.3
Leu -CH,CH(CH,), ca. 101 ca. 5.1
Phe  -CH,Ph ca. 7.6/4¢ ca. 7.51
Gluld  -CH,CH,CO,H 8.8

-CH,CH,CO, 7.4 5.4
Gln  -CH,CH,CONH, 7.2 48

+
NH
Hisld  -CcH; / » 4.8 4.0
H

Arg  -(CHy);NHCNH,NH,* 46 26
Lys  -(CH,)-NH, 4.0

-(CH,)-NH,*+ 2.8 1.9
Val -CH(CH,), ca. 3.014¢l ca. 2.6
lle -CH(CH,)CH,CH; ca. 2.3l ca. 1.6

tfl
Pro RO,C™ Q; <0.1 <0.1
N

[a] Measured in D,O. [b] Measured in H,O with 6 M guanidinium
chloride. [c] The unprotonated forms were studied at pD 12, the
protonated ones at pD 2. [d] Extrapolated from the kinetics of the shorter
peptide (n=4), see Experimental Section. [e] Measured with 30%
acetonitrile. [f] Entire amino acid.
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Figure 2. Fluorescence decays for selected Trp-X;-DBO-NH, peptides
in aerated D,O measured by single photon counting. The inset shows
a representative decay on a semi-logarithmic scale.

phobic peptides.>) The consistency of the results in the
absence and presence of this denaturant provides strong
evidence that the property which is being reflected by the
kinetic measurements is indeed conformational flexibility.
Note also that the rate of end-to-end collision in the presence
of the salt is reduced throughout the entire series of peptides;
this reflects the increased viscosity of the solution which limits
the mutual diffusion of the chain ends.

© 2003 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
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According to the conformational flexibility scale, the
introduction of Gly into the peptide increases the conforma-
tional flexibility, while Pro makes it more rigid. This is in line
with expectations from conformational space,’®) with Gly
being the amino acid with the least limited rotational freedom
and Pro being the one with a frozen N—C“bond. The
sequence found for the other amino acids cannot be predicted
in a straightforward manner. There is a general trend between
the residue size and the kinetics: larger residues lead to lower
collision frequencies, which indicates a lower flexibility; for
example, Gln < Asn; Thr < Ser; Phe, Leu < Ala < Gly; Ile <
Val. This result is presumably related to the larger rotational
barriers imposed by the larger residues and the decrease in
the diffusion coefficient of the peptide chain with increasing
residue size. The effect of residue charges was also examined;
there appears to be a tendency for the neutral residues to
allow aslightly greater flexibility, namely, unprotonated Lys >
protonated Lys, protonated Glu > unprotonated Glu, and
protonated Asp = unprotonated Asp. The observed charge
effect is not very large, but is in line with the intuitive
expectation that Coulombic repulsions reduce the overall
flexibility by limiting the conformational freedom.

B Branching is well known to increase the activation
barriers for bond rotations of an amino acid and therefore
decreases the accessible conformational space in a peptide
significantly.’” Indeed, the peptides with [3-substituted amino
acids (Val and Ile) are amongst the least flexible ones on our
scale. Particularly instructive is the comparison of the two
constitutional isomers Leu and Ile, where the latter one
imposes a higher rigidity. The p-branched Thr gives rise to
more flexible peptides than Val and Ile. Nevertheless, the
flexibility of the Thr peptides is slightly decreased compared
to those composed of f-unsubstituted amino acids with even
larger residues, for example, Thr < Asn, Asp. Evidently, the {3-
hydroxy group somewhat limits the flexibility, but much less
severely than the (3-methyl group in Val and Ile. The special
effect of hydroxy substitution is also evident with Ser, which
gives rise to a more flexible peptide than Ala, although it is
larger as a result of the additional hydroxy group.

We did not observe a clear-cut relationship between the
flexibility and the hydrophobicity of the residue. Val and Ile
are very hydrophobic amino acids, but the high rigidity of the
related peptides appears to be mainly a consequence of the f3-
substitution pattern, since there is a large differentiation from
Leu, which is similarly hydrophobic. On the other hand, His
and Arg are quite hydrophilic, but their peptides are less
flexible than that based on the hydrophobic Phe. The
hydrophobicity of the residues, therefore, does not emerge
as a common denominator of peptide flexibility.

A long-standing question in peptide chemistry is which
properties of an amino acid are decisive for the protein
secondary structure. Statistical,?*=" theoretical,*!l and exper-
imental>3 analyses have revealed relative abundances of
particular amino acids in secondary protein structures such as
o helices, f strands, and f3 turns. According to the statistical
results, ! Met, Glu, Leu, Ala, Gln, Lys, His, and Cys are a-
helix-forming amino acids, Val, Ile, Phe, Tyr, Thr, and Trp
tend to form B-sheet structures, and Pro, Gly, Asp, Ser, and
Asn favor P turns. A correlation between conformational
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flexibility and the propensity of an amino acid to occur in a
secondary structure emerges if one disregards the o-helix-
forming amino acids and Pro (see below). Accordingly, the
most flexible amino acids, including Gly, Ser, Asn, and Asp,
are (3-turn-forming amino acids, while the most rigid amino
acids, namely Val and Ile, are 3-sheet-forming amino acids. In
addition, when comparing the 3-branched amino acids, Thr is
not only the most flexible one on our scale, but it also has a
much higher tendency than Val and Ile to occur in p turns.?8!

We consider that this agreement between the flexibility
and the P-turn and p-sheet propensity is significant and
suggest that both properties are the result of the same
underlying reason: namely, the (energetically unfavorable)
angular arrangements which are required in f§ turns may be
the same as those which need to be reached for collision-
induced quenching (Figure 1). In other words, the conforma-
tions required for quenching are turnlike. Large o substitu-
ents and in particular f§ branching do not favor f turns
because of steric interactions,?”’ and this avoidance also
manifests itself in the kinetic measurements where a similar
conformation is required for quenching. It appears that
flexible amino acids, in particular Gly and Ser, promote stable
[ turns, although one must keep in mind that the abundance
of an amino acid also depends strongly on the specific position
within a § turn.”4 Rigid amino acids have a higher tendency
to occur in B-sheet structures than in 3 turns, but they may
also favor the formation of a helices. a-Helix formation is
dominated by additional interactions between non-adjacent
amino acids,?! which are unlikely to be related to chain
flexibility. In fact, a relationship between o-helix propensity
and flexibility cannot be recognized, although it is evident
that the a-helix-forming amino acids adopt an intermediate
position on the proposed flexibility scale.

A clear exception is Pro,? which gives rise to the most
rigid peptide, but which is also favored in 3 turns. The high
rigidity is imposed by its cyclic structure, which prevents
rotations about the N—C* bond. The high [3-turn propensity, on
the other hand, is related to the restricted —60° ¢ angle, which
presents an ideal arrangement in the i + 1 position of {3 turns.l*

In summary, the following trends emerge for the con-
formational flexibility of amino acids in peptides as assessed
by our method: 1) Large residues reduce the flexibility; 2) 3-
alkyl branching greatly reduces flexibility, while p-hydroxy
substitution retains a high flexibility; 3) charge repulsions
between residues decrease the flexibility slightly; 4) the
conformationally frozen amino acid Pro is the least flexible
while the simplest amino acid Gly is the most flexible; 5) a
correlation with f-turn propensity applies, with the most
flexible amino acids also being those with high p-turn
propensity; 6) rigid amino acids appear to be favored in
[ sheets; and 7) there is no clear-cut relationship between
flexibility and hydrophobicity or the o-helix propensity of
amino acids. Finally, one must note that the present flexibility
scale is based on a set of synthetic peptides with a backbone
composed of identical amino acids. Whether the flexibility of
native random-coil peptide sequences can be predicted from
this scale in an incremental fashion or depends strongly on the
specific sequence, will be the subject of future studies
applying the same methodology.
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Experimental Section

The peptides were commercially synthesized in >95% purity
(Affina, Berlin). Details on the synthesis of the probe and its
suitability in solid-phase peptide synthesis have been reported.l'”! The
choice of the peptide length (number of amino acids as spacers of the
probe and the quencher) is essential since the peptide should not be
too long to enable measurement of significant quenching and to
maintain water solubility, and neither should it be too short to
maintain sufficiently long lifetimes for accurate measurement and to
ensure that the measured rates reflect an intrinsic property of the
backbone, namely, the amino acid. Six amino acids (n = 6) provided a
good balance between these factors, but peptides of this chain length
with the most hydrophobic amino acids (Ala, Leu, Phe, Val, and Ile)
were poorly soluble in pure water, thus causing complications in both
peptide synthesis as well as fluorescence measurement. For these
cases, a shorter sequence of four amino acids (n =4) was chosen, and
the known length dependence of the kinetics of end-to-end colli-
sion!'” allowed extrapolation of the rates to the value for n=6.

Fluorescence decays were measured by single photon counting
(FLS900, Edinburgh Instruments) under air, either in D,O or in H,O
containing 6M guanidinium chloride. All peptides were sufficiently
soluble in the presence of guanidinium chloride, but peptides based
on the hydrophobic amino acids Phe, Val, and Ile were not sufficiently
soluble without this denaturant. In these three cases, 30 % acetonitrile
was added to D,O to achieve the same working concentration (10 um)
as for the other peptides and these solutions were deaerated. The co-
solvent did not have a major effect on the measured rates, which could
be demonstrated through control experiments in neat D,O at lower
peptide concentration (ca. 1 pum).

The decay kinetics were monoexponential in all cases (Figure 2),
such that it was possible to assign a characteristic fluorescence
lifetime () to each peptide and amino acid backbone.?!! The
quenching rate constants k, were obtained from the experimental
fluorescence lifetimes as k, = 1/7—1/7,, where 7, corresponds to the
intrinsic fluorescence lifetime of the probe in the absence of
quenchers, for example, as measured for the free parent fluorophore
as well as for peptides lacking a quencher. This value amounts to
500 ns in aerated D,O and to 360ns in H,O containing 6M
guanidinium chloride. Subject to the assumption of a random coil
conformation/?? and subject to the assumption of diffusion-controlled
intramolecular quenching,'?! the quenching rate constant (k,) can
be directly interpreted as end-to-end collision frequency (k. in
Figure 1).
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Fluorescent probes and sensors are
well-established tools in analytical and bio-
logical chemistry, spanning such diverse
applications as calcium ion detection, cell
staining, and polarity sensing [1]. An inter-
esting sub-class of fluorescent probes com-
prises chromophores with a particularly
long fluorescence lifetime, e.g. more than
50 ns [2]. Perhaps the simplest yet very im-
portant application based on long-lived
fluorescence (or generally luminescence)
relies on the reliable differentiation of long
fluorescence lifetimes from any shorter-
lived luminescence components. This is of
interest, in particular, for screening assays
where fluorescent probes are employed to
signal molecular events such as the inhibi-
tion of an enzyme by a library of potential
drugs. Short-lived emission is ubiquitous
and may stem from other additives, sample
impurities, biological components, scat-
tered light, the solvent, or sample container
materials of cuvettes and microplates.
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The shorter-lived components can be
eliminated from detection through a time-
gate, such that the emission from the long-
lived fluorescent label (which serves as the
signaling unit) can be selectively detected.
This reduces the background during the
measurement dramatically. An instructive
example is depicted in Fig. 1, which com-
pares the fluorescence decay of a long-lived
fluorescent probe (T = 500 ns) with that
of a shorter-lived fluorescing component
(T = 10 ns), with the latter one, however,
being much more intense (108 times larger
preexponential factor). If as usual the inte-
grated fluorescence intensity would be
compared through steady-state methods, a
‘signal-to-background’ of 0.00005:1 would
result, which would prevent any useful
information to be obtained. If one carries
out the experiment in lifetime mode with
a time-gate between 200-1000 ns and
integrates the areas under the curves, the
‘signal-to-background’ ratio becomes bet-
ter than 10000:1, an impressive improve-
ment by more than eight orders of magni-
tude, which has its underlying reason in the
exponential decay kinetics of the fluores-
cence. This improvement renders the selec-
tive detection of long-lived fluorophores in
so-called ‘time-resolved’ screening assays
generally an entirely instrumental problem.
In particular, the real background may be
dominated by detector noise rather than
contributions from short-lived emission.

CB7+DBO

CHIMIA 2008, 57, No. 4

10 T 1 1
I Y <—— time gate
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Fig. 1. Comparison of the fluorescence decay of a long-lived fluorescent
probe (7 = 500 ns) with that of a shorter-lived component (z = 10 ns);
the shorter-lived component is 108 times more intense (relative preex-
ponential factors). A suitable time gate for use in a time-resolved assay

is shown at 200 ns.

Relatively few organic molecules dis-
play lifetimes in this long time regime, with
azoalkanes derived from 2,3-diazabicy-
clo[2.2.2]oct-2-ene (DBO) displaying the
longest fluorescence lifetime in solution
[3]. The record for the longest fluorescence
lifetime of an organic chromophore in solu-
tion lies currently at 1.03 ps (in aerated
H,0!) [4] and is held by the supramolecu-
lar complex (CB7+DBO) between the par-

ent azoalkane and cucurbit[7]uril (CB7), a
barrel-like organic host molecule [5]. Over
the past six years, we have investigated this
interesting chromophore in great detail and
have prepared several DBO derivatives,
which we refer to as fluorazophores (‘fluo-
rescent azo chromophores’). Some of the
investigated derivatives are shown in
Scheme 1.
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A representative synthetic sequence to ob-
tain Fmoc-Fluorazophore is shown in
Scheme 2, which has been scaled up to af-
ford typically 3 g of Fmoc-DBO in an over-
all yield of 10%, sufficient for the commer-
cial synthesis of up to 30 polypeptides
(10 mg scale).

The intriguing photophysics of fluo-
razophores has been worked out in great de-
tail [6-11] and the fascinating quenching
pathways have been investigated through a
combination of experimental and theoreti-
cal methods [12-14]. On the more applied
side, fluorazophores have proven to be use-
ful as sensors for antioxidant activity, both
in solution [15][16] as well as in mem-
brane-mimetic systems [17], as probes for
measuring the kinetics of association with
supramolecular systems [18][19], as tools
to investigate the geometries of cyclodex-
trin inclusion complexes by means of cir-
cular dichroism [20][21], and as probes for
the polarizability inside molecular contain-
er molecules [22].

Most recently, we have employed fluo-
razophores to measure the kinetics of end-
to-end collision in biopolymers (k. in
Scheme 3), including peptides [23][24],
and oligonucleotides [25]. For this purpose,
the fluorazophore (P) is attached to one end
of the biopolymer and an efficient (nearly
diffusion-controlled) fluorescence quencher
(Q) is attached to the other side; in peptides
this quencher moiety is usually tryptophane
and in oligonucleotides guanine. The kine-
tics of fluorescence quenching can then be
equated to the rate of end-to-end collision,
which has proven difficult to obtain accu-
rately by alternative techniques.

Keeping in mind that alternative me-
thods have other advantages [26][27], the
fluorazophore approach presents, arguably,
the most sensitive and most accurate tool
for measuring end-to-end contact in
biopolymers known to date. Note that this
application is made possible by the exceed-
ingly long fluorescence lifetime, which al-
lows the fluorazophore to ‘wait’ sufficient-
ly long until it is being approached (and im-
mediately quenched) by the other end; this
diffusive approach of the chain ends takes
10 ns to 1 ps in aqueous solution. The life-
time of fluorazophores (ca. 505 ns in D,0
under air) is therefore ideally suited for in-
vestigations in this time regime.

Being able to measure the absolute rates
for the motions within biopolymers or at
least knowing the time scale for these
processes is of fundamental importance for
understanding the mechanism of protein
folding [28], for predicting the kinetics of
intramolecular reactions in biopolymers
(formation of hydrogen bonds, cystine
bridges, proton transfer, electron transfer)
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[29], and for understanding protein domain
motions [30]. The size of biopolymers and
the effects of solvation, including salt ef-
fects, still present a major challenge to com-
putational chemistry, which demands ex-
perimental data. The latter, in turn, may
provide invaluable benchmark values for
the calibration of theoretical models [31].
A simple problem already arises if one
attempts to predict the time scale of diffu-
sion-controlled end-to-end collision in
(bio)polymers from the available rates for
diffusion-controlled intermolecular reac-
tions. To allow a comparison, it is useful to
compare the probability for intramolecular

and intermolecular encounter complex for-
mation between two fragments.

Consider Scheme 4a, the intermolecular
case. We assume an ideal solution with no
enthalpic interactions between the probe
(P) and the quencher (Q) molecules. The
concentration of the encounter complex,
Cpq- can be obtained according to Eqn. (1)
with V, being the volume of the encounter
complex with radius a (spherical approxi-
mation). C,” and C,0 are the total concen-
trations of P and Q. The ‘equilibrium con-
stant’ for encounter complex formation is
then given by Eqn. (2), assuming that the
concentration of molecules in contact is
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(a) intermolecular reaction

k coll

,"di 5%

(b} intramolecular reaction

Scheme 4

small (dilute solution, i.e. Cp= C and C
=~C O) It follows that the equlhbuum con-
stant for encounter complex formation (in
units of m*mol~!) equals the volume of the
encounter complex multiplied with the
Avogadro constant (V,). This in turn corre-
sponds, due to the absence of enthalpic ef-
fects, to the loss of entropy associated with
the formation of the encounter complex, i.e.

A,;S® = RIn(1000K;, . C%), where the fac-
tors 1000 and CY, the standard concentra-
tion in M, are added to give a dimensionless
equilibrium constant.

Coq =GN V.Gl = CUCON, %ms (1)
c Cp 4
Ky =—2- w—12 - —34°N,
WS C, Clcy e @

The intramolecular case, Scheme 4b,
describes the pertinent situation for en-
counter complex formation within a
biopolymer chain labeled with a probe (P)
and a quencher (Q) at opposite ends. For
simplicity, we assume that the chain does
not introduce additional interactions be-
tween probe and quencher except to restrict
the distance by which they can diffuse apart
(ideal chain, Gaussian chain). Like for the
intermolecular case, we assume no en-
thalpic interactions between the probe and
the quencher residues. The fraction of
chains with the two ends in contact, (C 4 CaN
be obtained in this case from the distribu-
tion function (g) in Eqn. (3), which has ana-
Iytical solutions for a very long chain (N >> 1,
with N the number of chain segments)
and for the shortest chain (N = 2). r is taken
as the distance between the chain ends and
b equals the length of an individual chain
segment. The ‘equilibrium constant’ for end-
to-end encounters is then given by Eqn. (4),

which assumes for the case of a very long
chain (N >> 1) that the concentration of
molecules in contact is small (C, = C, +
C,). Again, this relates directly to the loss
of entropy associated with the formation of
an end-to-end encounter complex within an
ideal chain, i.e. A, ;S? = RInk,

ntra’

e

,wit_l‘1 (r’)=!v\lb2 for N>»1
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ly function of the chain for the intramolec-
ular case is to limit the distance between
probe and quencher.

intra intra intra .
Kintra - kcoll / kchss . ool 5 )
K mter inter g inter (5)
inter coll diss coll

Use of the respective expressions for the
equilibrium constants for intermolecular
and intramolecular encounter complex for-
mation then affords Eqn. (6). If one further
expresses the intermolecular collision rate
constant through the relationship between
the intermolecular diffusion rate constant
and the diffusion coefficient (g2 = 4pman,),
one obtains Eqn. (7), with D being the mu-
tual intermolecular diffusion coefficient.

Eqn. (7) provides the ideal relationship
between the unknown rate constant for in-
tramolecular end-to-end collision and the
known (diffusion-controlled) rate constant
for an intermolecular probe-quencher pair.
Accordingly, the rate of end-to-end colli-
sion in a biopolymer increases linearly with
the diffusion coefficient and size of the en-

(3’):’“!

g(r)= bz for N =2

¢, C 3 Vg ¥

i SN/ . iy o =g’ =—qa’ for N>>1
Kow = ety = s = (Zyz(rz] 3 (JszZ) rn L
e, ‘ 4 .

c f:g(r)47rr dr (a/b)z - S
Klmm =t oa 2 for N'=2

Co 1= [ glr)amaiar 4-(alt)

The kinetics of end-to-end contact for-
mation for the intramolecular reaction can
be related to that of the intermolecular re-
action (Eqn. (5)) if one reduces the equilib-
rium constants to ratios of microscopic rate
constants and considers further that the ele-
mentary rate of dissociation of the en-
counter complex must be identical for both
species within the approximations made
(g~ = gimr), Recall, in particular that the on-

counter complex (radius a), it depends in-
versely on the cubed chain segment length
(b), and it decreases with increasing chain
length (N) with the characteristic exponent
of =3/2. Eqn. (7) has been derived in a diffe-
rent context by Szabo, Schulten, and Schul-
ten through an analysis of the first passage
time of end-attached groups based on a
modified Smoluchowski equation [32][33].

for N'>>1

N*“/2 for N
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To apply Eqn. (7), one may use com-
monly accepted intermolecular diffusion
coefficients of 10 cm2s™! in water (the
mutual diffusion coefficient in Eqn. (7) cor-
responds to twice this value), a van-der-
Waals reaction radius of 5 A, and a chain
segment length of 5 A (typical for one pep-
tide unit). The resulting estimates for the in-
tramolecular collision times (l/k.,) are
0.2 ns for N=4 and 2.7 ns for N = 20. This
means that end-to-end contact formation in
biopolymers in solution may occur as fast
as several ns according to the simplest the-
oretical framework. These theoretical rates
can now be compared with the experimen-
tal results obtained from the fluorazophore
probe/quencher technique in synthetic
polypeptides.

Our initial experimental study focused
on the length dependence of the end-to-end
collision rates in peptides with the general
structure Trp-(Gly-Ser) -DBO-NH, (struc-
ture below); these peptides are water solu-
ble and presumed to be ‘structureless’ ac-
cording to a previous study [26]. This is an
important requirement to apply theories
based on Gaussian chain behavior [34][35].

H

The fluorescence decays of all peptides
as recorded with the time-correlated single
photon counting technique were strictly
monoexponential (Fig. 2). The resulting
fluorescence lifetimes (t) for the peptides

with different length are listed in the Table
and range from 10-75 ns. Subject to the as-
sumption of diffusion-controlled quench-
ing, the collision rates can be directly ob-
tained through a correction for the inherent
fluorescence lifetime (T,) according to Eqn.
(8). The data for the collision rate constants
demonstrate that end-to-end contact forma-
tion in short polypeptides may occur as fast
as 10 ns in water, significantly faster than
previous estimates of rates for peptides
with the same length, but also substantially
smaller than expected from the ideal-chain
behavior according to Eqn. (7) (see above).
Presumably, the diffusion coefficients of
the peptide chain ends are much smaller
than those of the free probe and quencher;
the use of smaller diffusion coefficients in
Eqn. (7) than the intermolecular ones would
bring the theoretical data much closer to the
experimental cnes [36].

koo = 1/t =1/ 1 (8)

Table. Fluorescence lifetimes and end-to-
end collision rate constants for Trp—(Gly—
Ser),-DBO-NH, polypeptides

n N2 t/ns® kg, /107 s71¢
0 2 23.3 41
1 4 14.3 6.8
2 6 19.5 4.9
4 10 30.5 3.1
6 14 45.6 2.0
10 22 74.4 1.1

aNumber of peptide units between probe and
quencher. PFiuorescence lifetime in aerated
D,0 at 23 °C measured by time-correlated
single photon counting. ¢Obtained from Eqgn. 8
with 7, = 500 ns.
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The dependence of the collision rates on
the chain length as derived in Eqn. (7) pre-
dicts a linear increase of the logarithmic
collision rates with the logarithm of the
number of chain segments (). The corre-
sponding plot (Fig. 3) for the experimental
data shows that this linear relationship is
not observed. Instead, one obtains a plot
with a strong negative curvature. Moreover,
the theoretical slope [34][35] of —~3/2 is on-
ly reached for the longer chains. These vari-
ances indicate deviations from the ideal
behavior, which are presumably related to
effects of chain stiffness, which impose an
increased internal friction for end-to-end
collision in the short chains [36].

The interpretation of the fluorescence
lifetimes in terms of end-to-end collision
rate constants requires a collision-induced
fluorescence quenching, i.e. probe and
quencher must come into van-der-Waals
contact (2-3 A distance) for quenching to
occur. This is naturally fulfilled for quench-
ing by hydrogen atom transfer or exciplex-
induced quenching, which are the two
prototypal quenching mechanisms of the
DBO chromophore [3]{6][8][131(14][37-39].
However, quenching by electron transfer,
which presents an alternative quenching
mechanism, could operate through bond
(superexchange mechanism); it could also
occur over a considerable distance through
space or through the solvent (up to 5-8 A)
and must therefore be excluded [40]. The
same applies for Dexter-type triplet energy
transfer, which has been employed in other
intramolecular probe/quencher pairs to as-
sess end-to-end contact formation {[26]
[41][42]. Quenching over larger distances
than van-der-Waals contact would result in
a continuum of distance-dependent rate
constants, which could not be analyzed in
terms of a diffusion-controlled collision

04 06 08 10 12 14 log[N]

Ly log [keonl
].0 — 78k
)
., 7.6+
: T4+
05+«
. 7.2+
i : 7.0
LJ
¢ L
0.0 "‘1 L 1 N . 0 02
0 50 100 150 [t/ns]

Fig. 2. Fluorescence decays (time-correlated single photon counting,
normalized intensity) of Trp—~(Gly-Ser),-DBO-NH, polypeptides (n = 1,
2, 4, and 6). The lowest trace corresponds to n = 1, the uppermost one

ton=86.

Fig. 3. Double-logarithmic plot of the end-to-end collision rate con-
stants (k) of Trp—(Gly-Ser),~DBO-NH, polypeptides versus the pep-
tide length, taken as the number of intervening peptide units (V). The
dashed line has a slope of —3/2 and is shown to illustrate the deviation

from the theoretical behavior (Eqn. 7).
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process. In this case, quenching presents no
longer an elementary reaction to which a
single rate constant can be assigned. In fact,
fluorescence resonance energy transfer,
which operates over even larger distances,
has proven inapplicable to obtain the perti-
nent elementary rate constants [26][43].

In view of the possible complications
due to distance-dependent quenching rates,
it appeared compulsory to establish experi-
mentally that quenching through bond or
through the solvent do in fact not apply for
the DBO/Trp probe/quencher pair. We have
therefore performed a series of carefully
designed control experiments (Schemes
5-7). Control experiments of this type are
strongly recommended to establish alter-
native methods for assessing end-to-end
contact formation, in particular if triplet
energy transfer or electron transfer (both
of which are candidates for distance-de-
pendent quenching rates) are the postulated
quenching mechanisms.

In the first experiment (Scheme 5), we
have compared the fluorescence lifetime of
the shortest peptide, in which probe and
quencher are directly attached, with the
longer ones. The lifetime of the shortest
peptide is in fact longer than for the next
longer one (Table), which speaks strongly
against a through-bond quenching mecha-
nism, but can be understood in terms of
internal friction (steric hindrance effects)
[36]. We encounter this effect in daily life:
It is more difficult to make a knot in a very
short rope than in a longer one.

In the second experiment (Scheme 6),
we have exchanged the presumably flexible
amino acids glycine and serine in the back-
bone of the peptide by rigid cyclic proline
spacers. The proline peptide has a much
longer lifetime than the glycine-serine one,
close to the lifetime in the absence of
quencher (505 ns in D,O). This suggests
that quenching through bond is unlikely
since the number of bonds remains identi-
cal in both species. The effect of rigidifying
the backbone provides also strong evidence
that it is the diffusion between the chain
ends which is decisive for the quenching
process. Incidentally, it should also be men-
tioned that any increase in the solvent vis-
cosity, as it can be achieved, for example,
through the addition of denaturants like
urea (5 M) or guanidinium chloride (6 M)
also decreases the end-to-end collision
rates of flexible DBO/Trp polypeptides,
consistent with a diffusive process.

In the third experiment (Scheme 7), we
have left the peptide backbone unchanged,
but have added cucurbit[7]uril (CB7) to the
aqueous solution of the peptide. As demon-
strated by NMR experiments, CB7 com-
plexes selectively and quantitatively the

TrpGlySerDBO-NH,
=143 ns in DO

TrpDBO-NH,
=233 nsin D,0

end-to-end collision
more difficult to achieve

Scheme 5

TrpGlySerGlySerDBO-NH,
T=19.5ns inD,0

TrpProProProProDBO-NH,
7=450nsin D,0

cnd-to-end collision
virtually prevented
Y by backbone rigidity
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Scheme 6

TrpGlySerGlySerDBO-NH,
7=19.5 ns in D,0

TrpGlySerGlySerDBO-CB7-NH,
= 1030 nsin D,0

but intimate contact pre vented

end-to-end collision possible,
through protective shield

Scheme 7
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DBO chromophore (K = 4 x 10° M™!) and
thereby provides a ‘protective shield’
around the chromophore.[22] This shield
prevents van-der-Waals contact with the
quencher, which is still free to diffuse since
solvent and peptide backbone have re-
mained unchanged. The resulting lifetime
of the complexed peptide was found to be
1.03 s, suggesting that the quencher is not
able to quench the excited probe at all (the
longer lifetime than in D, O results from the
exclusion of oxygen and the solvent from
the cavity). This result provides strong evi-
dence for the view that quenching requires
intimate contact. If quenching would occur
through space or through the solvent it
should have also been mediated through the
supramolecular wall.

It follows from the control experiment
in Scheme 6, that the fluorescence lifetimes
of DBO/Trp end-labeled peptides are a
quantitative measure of the flexibility or
rigidity of the peptide backbone. We have
therefore most recently synthesized a series
of random-coil peptides, in which Trp and
DBO are separated by a sequence of identi-
cal amino acids (see structure below) [24].
Each peptide has a characteristic fluores-
cence lifetime, which can be interpreted in
terms of the conformational flexibility,
which a particular amino acid imposes on
the backbone. This allows one to define a
conformational flexibility scale for amino
acids in peptides. The following order of
flexibility applies, where glycine gives rise
to the most flexible peptide and proline pro-
duces the most rigid one:

Gly > Ser > Asp, Asn, Ala > Thr, Leu >
Phe, Glu, Gln > His, Arg > Lys > Val > [le
> Pro

H

H,N

N NH,

0 o
\ 5 HN

N

H N

N

In summary, the intramolecular fluores-
cence quenching of fluorazophores pro-
vides a distinct tool for investigations in the
area of biopolymer dynamics. Future stud-
ies will involve oligonucleotides, larger,
structured peptides, mutation effects, the
determination of activation energies, and
the transfer of the kinetic results to applica-
tions in high-throughput screening technol-
ogy, where the long fluorescence lifetime
provides the additional advantage of sup-

pressing background fluorescence through
time-resolved detection (see Fig. 1).
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Two novel azoalkane bichromophores and related model compounds have been synthesised and photophysically
characterised. Dimethylphenylsiloxy (DPSO) or dimethylnaphthylsiloxy (DNSO) serve as aromatic donor groups
(antenna) and the azoalkane 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) as the acceptor. The UV spectral window of
DBO (250-300 nm) allows selective excitation of the donor. Intramolecular singlet-singlet energy transfer to DBO is
highly efficient and proceeds with quantum yields of 0.76 with DPSO and 0.99 with DNSO. The photophysical and
spectral properties of the bichromophoric systems suggest that energy transfer occurs through diffusional approach
of the donor and acceptor within a van der Waals contact at which the exchange mechanism is presumed to
dominate. Furthermore, akin to the behaviour of electron-transfer systems in the Marcus inverted region, a rate of
energy transfer 2.5 times slower was observed for the system with the more favourable energetics, i.e. singlet—singlet
energy transfer from DPSO proceeded slower than from DNSO, although the process is more exergonic for DPSO

(—142 kJ mol ™! for DPSO versus —67 kJ mol~! for DNSO).

Introduction

2,3-Diazabicyclo[2.2.2]oct-2-ene (DBO) is a bicyclic azoalkane
which has applications as a fluorescent probe for supra-
molecular assemblies, e.g. cyclodextrin- or cucurbituril-based
host—guest systems,"*> for the detection of antioxidants or
nucleotides,* and as a fluorescent label to study biopolymer
dynamics.®® In particular, the exceptionally long fluorescence
lifetime of DBO ' in solution (up to 1 ps), along with distinct
novel quenching mechanisms, i.e. aborted hydrogen and elec-
tron transfer,'"'? open a wide dynamic range for the assessment
of weak or remote interactions while maintaining a high select-
ivity towards the quencher. The low energy n_,n* transition of
DBO allows selective excitation of the chromophore (A, =
378 nm hexane). However, the extinction coefficient of this
transition is comparatively small (g3 = 180 M~ 'em™' in
alkanes),” due to poor spatial overlap between the n_ and n*
orbitals.

For many applications, it is essential to improve the absorp-
tion properties, while preserving the advantageous fluorescent
properties, of the azoalkane. We have now investigated the
feasibility of attaching an antenna for efficient light absorption
and subsequent singlet energy transfer to the azoalkane.
Numerous studies regarding intramolecular energy transfer
involving singlet- "7 as well as triplet-excited states have been
reported.’®”® Variation of excited-state energies and spacer
properties, e.g. flexibility and intra-chromophore distances, has
provided valuable insights into the mechanistic details of this
basic photophysical process.”** Although azoalkanes have
been the subject of intermolecular energy-transfer studies,?**
the only intramolecular study deals with triplet-triplet energy
transfer from carbonyl chromophores to azoalkanes.?®

Morrison and co-workers have introduced the dimethyl-
phenylsiloxy (DPSO) group as an antenna for singlet-singlet
energy transfer (SSET) to keto functions in steroidal mole-
cules.” Owing to its high excitation energy, the DPSO
antenna can undergo efficient, highly exergonic energy transfer

This journal is © The Royal Society of Chemistry and Owner Societies 2004

to an acceptor chromophore, and has a short excited-state life-
time, which reduces competitive intermolecular quenching reac-
tions. Energy-transfer studies from DPSO to DBO appeared
particularly promising, since DBO offers a UV spectral window
between 250 and 300 nm, which should allow very selective
excitation of the DPSO antenna. In addition to DPSO, we
planned to study the dimethylnaphthylsiloxy (DNSO) group as
a new antenna function. This was intended to allow the influ-
ence of the thermodynamics on the energy-transfer process to
be investigated.

Two bichromophoric compounds with a phenyl or naphthyl
moiety linked by a siloxy spacer to the bridgehead position of
DBO (1a and 2a) were also synthesised as part of this project
(Chart 1). These molecules were photophysically characterised
by UV absorption as well as steady-state and time-resolved
fluorescence spectroscopy and compared with the antenna
model compounds lacking the DBO acceptor (1b and 2b).

O
Si—Q
|

Si—OQ
CH CH,
3 N\ 3 N%
N N
1a 2a

CH;, O CH;
CH; CHs
ot O

CHj CH,

1b 2b

Chart 1 Structures of the bichromophoric azoalkanes (1a and 2a) and
antenna model compounds (1b and 2b).

Photochem. Photobiol. Sci., 2004,3, 305-310 | 305




Experimental
Materials

1-(Hydroxymethyl)-2,3-diazabicyclo[2.2.2]oct-2-ene 2 and
chlorodimethylnaphthylsilane 3 were synthesised according to
literature procedures. All other chemicals and solvents for the
synthesis were used as received from Aldrich. Column chrom-
atography was performed with 70-230 pum silica gel from
Merck. Cyclohexane was of spectroscopic quality from
Fluka. Fluorescence grade benzene (Fluka) and naphthalene
(National Bureau of Standards) were used as fluorescence
standards.

Spectroscopic measurements

The absorption spectra were recorded using a Perkin-Elmer
Lambda 19 spectrometer. All fluorescence measurements were
performed in degassed solutions (3 freeze—pump-thaw cycles)
at ambient temperature (24 °C). A home-made quartz cell with
a high vacuum Teflon stopcock was used. Fluorescence spectra
were recorded with a Glen Spectra Fluorolog Spex spectro-
meter. Fluorescence lifetimes were determined using an Edin-
burgh FLS900 single-photon counting setup operated by a
1.5 ns pulse width hydrogen flash lamp (nF900). The resulting
data were analysed by means of monoexponential decay func-
tions and a re-convolution function for the excitation light
pulse. The concentration of bichromophoric compounds was
kept low (107°-10~* M) to exclude competitive intermolecular
quenching.

Synthesis of the antenna-substituted azoalkanes 1a and 2a

General procedure. A solution of 1 mmol 1-(hydroxymethyl)-
2,3-diazabicyclo[2.2.2]oct-2-ene, 1.3 mmol triethylamine, and
1.5 mmol chlorodimethylarylsilane in 10 ml dry dichloro-
methane was stirred at room temperature under argon for 24 h.
The resulting reaction mixture was extracted with 2 X 5 ml
water and the resulting organic layer was dried over Na,SO,.
After filtration and solvent evaporation, a yellowish oil was
obtained. Column chromatography with hexane-ethylacetate
(1:1) yielded the product as colourless oil.

1-(Dimethylphenyl)siloxymethyl-2,3-diazabicyclo[2.2.2]oct-2-
ene (1a). Yield 69%. UV/Vis (cyclohexane): A 253 (log & = 2.28),
259 (2.44), 264 (2.44), 270 (2.30), 379 (2.22) nm. '"H-NMR (400
MHz, CDCly): 6 0.44 [6 H, s, (CH,),Si], 1.07-1.16 (2 H, m,
CH,), 1.28-1.38 (2 H, m, CH,), 1.52-1.62 (4 H, m, CH,), 4.17
(2 H, s, CH,0), 5.12 (1 H, t, J = 3.5 Hz, CH), 7.37-7.41 (3 H,
m, CH aryl), 7.60-7.64 (2 H, m, CH aryl) ppm. *C-NMR (126
MHz, CDCly): 6 —1.8 [2 C, (CH,),Si], 21.6 (2 C, CH,), 23.1
(2 C, CHy), 61.9 (CH), 67.4 (C,), 68.6 (CH,0), 127.8 (2 C, CH
aryl), 129.6 (2 C, CH aryl), 133.6 (CH aryl), 137.8 (C, aryl)
ppm. Elemental analysis caled for C,sH,,SiN,O: C, 65.65; H,
8.08; N, 10.21; found: C, 65.75; H, 8.02; N, 10.15%.

1-(Dimethylnaphth-1-yl)siloxymethyl-2,3-diazabicyclo[2.2.2]-
oct-2-ene (2a). Yield 19%. UV/Vis (cyclohexane): 4 262 (log
& = 3.58), 273 (3.81), 283 (3.89), 294 (3.73), 379 (2.24) nm.
'"H-NMR (400 MHz, CDCl,): § 0.61 [6 H, s, (CH,),Si], 1.11-
1.16 (2 H, m, CH,), 1.26-1.35 (2 H, m, CH,), 1.54-1.61 (4 H, m,
CH,), 4.18 (2 H, s, CH,0), 5.12 (1 H, t, J = 3.5 Hz, CH), 7.46—
7.53 (3 H, m, CH aryl), 7.79 (1 H, dd, J = 1.5 and 5.8 Hz, CH
aryl), 7.85-7.91 (2 H, m, CH aryl), 8.32-8.34 (1 H, m, CH aryl)
ppm. B¥C-NMR (126 MHz, CDCL,): 6 —0.6 [2 C, (CH,),Si], 21.6
(2C,CH,),23.2(2 C, CH,), 61.9 (CH), 67.4 (C,), 68.7 (CH,0),
125.0 (CH aryl), 125.5 (CH aryl), 126.0 (CH aryl), 128.3 (CH
aryl), 128.9 (CH aryl), 130.4 (CH aryl), 133.3 (CH aryl), 133.9
(C,aryl), 135.8 (C, aryl), 136.9 (C, aryl) ppm. Elemental analy-
sis caled for C,4H,,SiN,O: C, 70.33; H, 7.46; N, 8.63; found: C,
70.32; H, 7.46; N, 8.70%.
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Synthesis of the antenna model compounds 1b and 2b

General procedure. 2.3 mmol of sodium were dissolved in
3 ml methanol and 1.4 mmol of chlorodimethylarylsilane were
added dropwise. The mixture was stirred for 2 h at room
temperature. The solvent was evaporated and the residue was
treated with 5 ml of freshly distilled diethyl ether. After fil-
tration, the solvent was removed by evaporation and the result-
ing oil was purified by Kugelrohr microdistillation to yield a
colourless product.

Methoxydimethylphenylsilane (1b). Yield 39%. UV/Vis
(cyclohexane): 4 253 (log ¢ = 2.26), 259 (2.43), 264 (2.42), 270
(2.29) nm. 'H-NMR (400 MHz, CDCly): 6 0.39 [6 H, s,
(CH,),Si], 3.45 (3 H, s, CH;0), 7.36-7.43 (3 H, m, CH aryl),
7.56-7.60 (2 H, m, CH aryl) ppm. “C-NMR (126 MHz,
CDCl,): 0 —2.4 [2 C, (CH,),Si], 50.7 (CH;0), 127.9 (2 C, CH
aryl), 129.6 (2 C, CH aryl), 133.4 (CH aryl), 137.4 (C, aryl)
ppm. Elemental analysis calcd for C,H,,SiO: C, 65.00; H, 8.49;
found: C, 64.29; H, 8.04%.

Methoxydimethylnaphth-1-ylsilane (2b). Yield 30%. UV/Vis
(cyclohexane): 4 262 (log ¢ = 3.59), 273 (3.81), 283 (3.89), 294
(3.72) nm. 'H-NMR (400 MHz, CDCly): 6 0.57 [6 H, s,
(CH,),Si], 3.48 (3 H, s, CH;0), 7.47-7.57 (3 H, m, CH aryl),
7.76 (1 H,d, J=7.1 Hz, CH aryl), 7.88-7.93 (2 H, m, CH aryl),
8.33 (1 H, d, J = 8.1 Hz, CH aryl) ppm. *C-NMR (126 MHz,
CDCL,): 6 —1.0 [2 C, (CH,),Si], 50.6 (CH;0), 125.0 (CH aryl),
125.5 (CH aryl), 126.1 (CH aryl), 128.0 (CH aryl), 128.9 (CH
aryl), 130.4 (CH aryl), 133.3 (CH aryl), 133.9 (C, aryl), 135.5
(C, aryl), 136.9 (C, aryl) ppm. Elemental analysis calcd for
C;H,(Si0: C, 72.17; H, 7.45; found: C, 72.04; H, 7.39%.

Results and discussion
Absorption properties

The UV spectra of the individual chromophores in cyclohexane
are shown in Fig. 1. The aryl residues in the antenna model
compounds show characteristic vibrationally structured m,m*
transitions, with a weaker band for the phenyl moiety in 1b (4,
=259 nm, ¢ = 275 M~ cm™), due to its symmetry-forbidden
nature, and a red-shifted absorption with a high transition
probability (A, = 283 nm, ¢ = 7800 M~! cm™") for the naph-
thalene chromophore in 2b. The symmetry-allowed but, due to
poor spatial overlap of the participating n_ and n* orbitals,
orbital-forbidden transition®' of the azoalkane at 379 nm has
an ¢ value of ca. 170 M~ cm™' in hydrocarbon solvents.
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Fig. 1 Absorption spectra of the antenna model compounds 1b (- - -)
and 2b (---; divided by 30) and the parent DBO (—). Note that the
absorption of compounds 1b and 2b occurs in the spectral window of
DBO, therefore allowing exclusive excitation of the antenna. The inset
shows the absorption spectrum of the bichromophore 1a (—) in
comparison to the individual components, the antenna model 1b (- - -)
and the parent DBO (---), all in cyclohexane.



Table 1 Photophysical data for the investigated compounds (see Chart 1) in cyclohexane

7:'ns @b Dgepr ! ksspr /s Jyalcm® mol ™! Jolem Kinger /M1 57!
la 0.63 0.014 0.76 1.2 x10° 46%x1075 1.3%x107° 1.3 %108
1b 2.61 0.040
2a 0.33 0.008 0.99 3.0 x 10° 48x 107" 1.2x1074 1.5 %10
2b 54.0 0.279

“ Measured by single photon counting; 5% error. * Measured by steady-state fluorescence spectroscopy using benzene (@, = 0.06) or naphthalene
(®;=0.19) in cyclohexane as standards;** 10% error. ¢ Equations for calculation are given in the text. “ Quantum yields for energy transfer are based
on time-resolved data. ¢ Note that these values differ significantly from the Dexter spectral overlap integrals calculated by Engel et al.** for the
intermolecular energy transfer between DBO and benzene (J,, = 2.0 X 1077 cm) or naphthalene (J,, = 6.8 X 107 ¢m) in isooctane. / Intermolecular
fluorescence quenching rate constants of benzene or naphthalene by DBO in isooctane taken from ref. 24.

The spectra of the bichromophoric systems are a super-
position of the two separated chromophores, as shown in the
inset of Fig. 1 for 1a and the individual chromophores 1b and
DBO. Neither the spectral shapes nor the oscillator strengths
are altered, which rules out a sizable electronic interaction
between the two chromophores in the ground state. In fact,
the only difference is that the spectra of the bichromophoric
compounds reveal a marginal red shift (ca. 1 nm) of the maxi-
mum of the n_,m* transition of the azoalkane residue compared
to the parent DBO. This effect may be indicative of the presence
of the remote aryl groups, which should increase the apparent
polarisability in the surroundings of the azo chromophore.®?
Recent studies of DBO in various solvents have revealed a
marked dependence of the absorption maximum on the polaris-
ability of the environment: the higher the polarisability, the more
red-shifted (and more intense) is the absorption.?

Note in particular the large UV window of DBO and the
perfect spectral match of the antenna absorptions in the
bichromophoric systems (Fig. 1), which render them quite
unique. In photophysically related donor—acceptor combin-
ations of dimethoxynaphthalene and bicyclic (di)ketones,
selective excitation of the donor has only been achieved by
exploiting the differences in molar absorption coefficients.*

Fluorescence measurements

To investigate intramolecular singlet-singlet energy transfer in
the antenna-substituted azoalkanes, steady-state as well as
time-resolved fluorescence measurements were performed.
Selective excitation of the antenna results, in both cases, in
a weak residual fluorescence of the aromatic moiety (A, =
295 nm for 1a and 345 nm for 2a). The emission spectra are
dominated by the characteristic broad band of DBO, with a
maximum at 430 nm. In both cases, the excitation spectrum,
with A, = 430 nm, matched the absorption spectrum of the
bichromophore, which provides the signature of energy transfer
from the aryl residue to the azoalkane chromophore. This is
exemplified in Fig. 2, which shows the fluorescence emission and

0.54%

I /au.
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Fig. 2 Fluorescence emission (—; A, = 283 nm) and excitation (- - -;
Jops = 430 nm) spectra of 2a in cyclohexane (2.1 X 107> M).

excitation spectra of the DNSO-substituted azoalkane 2a in
cyclohexane. In order to quantify the fluorescence properties,
the emission quantum yields of the aryl residues in the antenna
model compounds (1b and 2b) and the bichromophoric systems
(1a and 2a) were determined (c¢f. Table 1). Benzene and naph-
thalene were used as reference standards (@, = 0.06 and 0.19,
respectively, in cyclohexane).**

The shortened fluorescence lifetimes of the antenna in 1a and
2a compared to their respective model compounds, 1b and 2b,
as obtained from single-photon counting-based measurements
(cf. Table 1 and Fig. 3) are in line with the steady-state fluor-
escence quenching results. Deviations from monoexponential
decay behaviour were not observed. The lifetimes are not
dependent on the concentration of the bichromophoric system
within the examined concentration range (107°~10* M), which
mitigates against intermolecular association and static quench-
ing in the nonpolar solvent. As will be shown below, a contact-
quenching mechanism is operative, for which deviations from
monoexponential decay kinetics are only expected on a
picosecond timescale.*®

1.0

0.5 4

counts /a.u.

0.0

-10 I 0 I 1I0 I 20 I 30
t/ns

Fig. 3 Time-resolved fluorescence decay kinetics of 1a (lower trace)

and 1b (upper trace) in cyclohexane ([1a] = 3.5 X 107* M, [1b] = 1.9 x

1072 M; Ay = 270 nm, Ag,s = 295 nm). The solid lines represent

reconvolution fits taking into account the lamp profile.

The assignment of the mechanism of intramolecular fluor-
escence quenching as singlet-singlet energy transfer from the
arene to the azo chromophore requires attention. First, the
fraction of naphthalene fluorescence which is lost due to intra-
molecular quenching is fully converted, within instrumental
error, to DBO emission (c¢f. Fig. 2). Second, electron transfer,
the most likely competitive quenching mechanism, is expected
to be strongly endergonic in nonpolar cyclohexane for both
phenyl and naphthyl. Even if the calculation is done for a polar
solvent (acetonitrile),* only slightly exergonic thermodynamics
applies for the oxidation of DBO (AG,, ~ —30 kJ mol™' for
naphthalene and ca. —5 kJ mol™' for benzene), while photo-
reduction of DBO is already an uphill process (AG,, = +34 kJ
mol~!' for naphthalene and ca. +33 kJ mol™! for benzene).
Electron transfer is therefore not expected to compete with the
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strongly exergonic singlet-singlet energy transfer (—142 kJ
mol ! for 1a and —67 kJ mol ™! for 2a).15:18:3637

Note that the fluorescence lifetime of the DBO chromophore
remains unaffected for the phenyl derivative 1a (270 versus 275
ns for the parent DBO in cyclohexane), but is shortened for the
naphthyl derivative 2a (106 ns). The weak quenching of DBO
fluorescence by naphthalene is presumably induced by intra-
molecular exciplex formation, which is known for the quench-
ing of n,n* excited states by arenes.'*** The naphthyl group is
a stronger quencher than the phenyl group, as is also indicated
by the intermolecular quenching rate constants of DBO, which
are 1.0 x 10° M~ s7! for benzene' and 6.7 x 10° M™' s7! for
naphthalene.

Rate and efficiency of singlet—singlet energy transfer

The efficiency of singlet—singlet energy transfer (Dggpr) and the
associated intramolecular rate constant (kggpr) can be deter-
mined by using eqn. 1 and 2. The indices (a) and (b) refer to the
compounds in Chart 1.

Py TR
Dgsr = 1- - (M
f(b) Tf(b)
D
ksser = ISSET 2
f(a)

The results are shown in Table 1. The quantum yields were
calculated on the basis of the fluorescence lifetimes, which is
made possible by the monoexponentiality of the decays. The use
of steady-state fluorescence quantum yields leads, within error
limits, to virtually the same values (0.66 for 1a and 0.97 for 2a).
The intramolecular rate constant for SSET can be calculated
from the lifetimes as 1.2 x 10° s™! for the phenyl-substituted azo
chromophore 1a and as 3.0 x 10° s™! for 2a. These values are of
the same order of magnitude as those observed for related
bichromophoric systems with similar donor—acceptor spacing.*’

Strikingly, these rate constants seem to contradict the
thermodynamic data for energy transfer (see above), ie. the
process is a factor of 2.5 slower for the thermodynamically
favoured case la, for which singlet-singlet energy transfer is
75 kJ mol™' more exergonic than for 2a. This inverted effect
has previously been observed for intermolecular singlet-singlet
energy transfer between aromatics and azoalkanes*>* In
essence, we have reached the inverted region, where energy
transfer is slowed down, regardless of favourable thermo-
dynamics, due to decreased Franck—Condon overlap between
the initial and final states, akin to the Marcus inverted region
for electron transfer.*!

The dominant quantities are the spectral overlap integrals (J)
of the donor emission and the acceptor absorption, which enter
directly the expressions (eqn. 3 and 4) for the rate constants of
energy transfer according to the dipole—dipole (Forster, ky_4) or
the exchange (Dexter, k,,) mechanisms.?! Note that the absorp-
tion band is normalised in Dexter theory such that a small
absolute extinction coefficient of the acceptor (in this case, the
azo chromophore) reduces the energy-transfer rate only for the
dipole-dipole mechanism.

6
kg =L(&j 3)
R
9000In10(x a4,
where RO6 = #Jd—d
128n°n" Ny
b = 2 K20 4)
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The spectral overlap integrals according to Forster (J4_4) and
Dexter (J,,) theory'* were obtained by numerical integration
and are presented in Table 1. Note that the absolute values for J
are comparable to those obtained for similar intramolecular
systems composed of 1,4-dimethoxynaphthalene and di-
ketones.** For the phenyl case, 1a, the excitation energy of the
donor exceeds significantly that of the acceptor. This causes a
mismatch of donor emission and acceptor absorption bands
(cf- Fig. 4) and reduces J for both mechanisms. With the known
fluorescence quantum yields and lifetimes in the absence of
quencher (see values for 1b and 2b in Table 1), and by assuming
a constant specific orbital interaction K (in eqn. 4, only for
Dexter mechanism), the expectation factors by which energy
transfer for 2a should be faster than for 1a can be calculated.
Factors of 3.5 for the Forster mechanism and 9.2 for the Dexter
mechanism are obtained, in qualitative agreement with experi-
ment, but at variance with expectations based on the thermo-
dynamics alone. The faster energy-transfer rates for 2a are
mainly due to the larger J values, while the differences in the
radiative decay rates (which enter eqn. 3 as the ratio of @y and
7p) somewhat moderate the net effect in the dipole—dipole case.
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Fig. 4 Absorption spectrum of the parent DBO (—) and fluorescence
spectra of the antenna model compounds 1b (- - +; 4., = 249 nm) and 2b
(---; Zexe = 283 nm) in cyclohexane (fluorescence spectra normalised to
same area as absorption spectrum). Note the very poor spectral overlap
for the 1b-DBO donor-acceptor pair.

Mechanism of energy transfer

Singlet-singlet energy transfer by the exchange mechanism
requires orbital overlap, ie. contact between probe and
quencher. Fluorescence resonance energy transfer can occur
over larger distances, as can be judged from the critical transfer
distance, R, (eqn. 3).

With known spectral data and x* = 2/3, the critical transfer
radii for 1a and 2a can be calculated as R, = 5.4 and 11.1 A,
respectively. These critical radii provide the distance at which
energy transfer and the deactivation by other processes occur at
the same rate. However, to account for the experimentally
observed energy-transfer efficiencies, which are greater than
50% (Table 1), energy transfer must occur at a shorter mean
distance (R), which can be derived from eqn. 5.

_

[ R JG ()
1+ —

Ry

Mean distances of 4.5 and 5.2 A result for 1a and for 2a,
respectively, which suggest that probe and quencher come
effectively within van der Waals contact to undergo quenching
(the sum of the radii of probe and quencher is ca. 5 A). This

means that singlet-singlet energy transfer in the bichromo-
phoric systems proceeds predominantly by the exchange

BRgpr =



mechanism, which is generally anticipated when forbidden
acceptor transitions are involved (in this case, the orbital-
forbidden n_,n* transition of DBO).***! Previous studies on
intermolecular energy transfer-induced fluorescence quenching
of aromatics by azoalkanes have also led to the conclusion that
an exchange mechanism operates.”>>** For example, steric
hindrance effects were observed, which stress the requirement
for orbital overlap between donor and acceptor orbitals.?®

The efficient quenching demonstrates that donor and
acceptor must rapidly come into contact within the excited-
state lifetime of the donor, i.e. within several nanoseconds. In
fact, mutual diffusion of the two ends of a very short polymer
chain is expected to occur on a timescale as fast as 1 ns.® The
observed timescale for energy transfer is, therefore, consistent
with the idea that energy transfer is promoted by a diffusive
intramolecular collision between the donor and acceptor.*
Intramolecular diffusion should occur faster for the phenyl
derivative 1a, since the phenyl group has a higher diffusion
coefficient. The fact that intramolecular quenching in 1a is
nevertheless slower reflects the less favourable electronic
requirement for energy transfer (small overlap integral), i.e. not
every collision between the phenyl and DBO residues may lead
to quenching. In fact, the intermolecular fluorescence quench-
ing rate constants of benzene and naphthalene by DBO (ki
values in Table 1) demonstrate that the quenching of benzene,
in contrast to naphthalene, is not diffusion controlled.?*

Comparison of the quenching rate constants for the intra-
molecular and the intermolecular reaction (Table 1) reveals also
that the differentiation between the rate constants for the two
aromatic chromophores is much less pronounced for the intra-
molecular case (the kgser values differ by a factor of 2-3) com-
pared to the intermolecular case (the k.., values differ by a
factor of 100). This trend is in line with the idea that intrachain
diffusion becomes an additional factor in determining the
quenching rates. Note that the intramolecular diffusion co-
efficients of a chromophore in, for example, a polymer chain
are typically 10 times smaller than the corresponding free
intermolecular diffusion coefficients,*** such that the impact of
electronic factors on the overall rate is less pronounced. In
other words, the kinetics shifts from purely reaction controlled
for the intermolecular case to partially diffusion controlled for
the intramolecular case. In addition, any participation of fluor-
escence resonance energy transfer, which is likely to compete to
an unknown extent for the intramolecular system, will tend to
reduce the differential rates (see expectation factors above). The
combined arguments account for the observation that the
“inverted effect” on singlet-singlet energy transfer is less
pronounced for the bichromophoric systems studied here than
for the intermolecular reaction.

Conclusions

Two new bichromophoric DBO derivatives have been photo-
physically characterised. Both perform very efficient singlet—
singlet energy transfer by an exchange mechanism, which
is induced by intramolecular diffusion to form van der
Waals contact between donor and acceptor. An inverted
effect of the intramolecular quenching rate constants on the
thermodynamics of energy transfer was observed; however,
this is less pronounced than for the intermolecular reaction.
While the DPSO group in 1a exhibits a weak absorption band
like DBO, the DNSO group in 2a shows an ¢ value which is
ca. 50 times higher, which greatly improves the absorption
features of DBO while performing an almost quantitative and
irreversible singlet-singlet energy transfer. DNSO is therefore a
suitable antenna for DBO. Unfortunately, the naphthyl group
also causes some exciplex-induced quenching of the long-lived
DBO chromophore, which certainly limits the scope of the
antenna approach to remedy the weak absorption properties of
DBO.
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Cucurbiturils: Molecular Nanocapsules for
Time-Resolved Fluorescence-Based Assays

Cesar Marquez, Fang Huang, and Werner M. Nau*

Abstract—A new fluorescent host-guest system based on
the inclusion of the fluorophore 2,3-diazabicyclo[2.2.2]oct-2-ene
(DBO) into the cavity of the molecular container compound
cucurbit[7]uril (CB7) has been designed which possesses an
exceedingly long-lived emission (690 ns in aerated water). The
large binding constant of (4 = 1) x 10° M—! along with the
resistance of the CB7-DBO complex toward external fluorescence
quenchers allow the use of CB7 as an enhancer in time-resolved
fluorescence-based assays, e.g., to screen enzyme activity or inhi-
bition by using DBO-labeled peptides as substrates. The response
of CB7-DBO to different environmental conditions and possible
quenchers are described.

Index Terms—Assays, fluorescence, molecular containers,

nanocapsules, peptides, sensors.

1. INTRODUCTION

LL life processes are based on intermolecular recog-

nition and interactions; whether it is the transport of
ions, such as sodium and potassium, enzymatic catalysis, or
antigen—antibody complexation, etc. They depend on weak
and delicate forces requiring minute energies far below those
required for forming a covalent bond [1]. These intermolecular
forces involve binding energies smaller than the values re-
quired for covalent bonds (50-100 kcal mol~!). Consequently,
simultaneous binding at multiples sites is generally required
to accumulate a sizable binding energy of 2-20 kcal mol~!
in solution [2]. The chemical field concerned with such weak
interactions is the area of supramolecular chemistry [3].

One of the most fascinating supramolecular assemblies are
host—guest complexes [4]. Since Pedersen demonstrated the
potential of a new class of host systems, namely, crown ethers,
which are able to form strong complexes with alkali metal ions
[5], host—guest chemistry has grown to an area of intensive
chemical research, mostly due to the potential of host—guest
systems to serve as mimics for enzyme—substrate complexes.
Most host systems have a concave interior, which is reminiscent

Manuscript received September 12, 2003; revised October 30, 2003. This
work was supported by the Swiss National Science Foundation under Projects
620-58000.99 and 4047-0575552 within Program NRP 47. Asterisk indicates
corresponding author.

C. Marquez is with the School of Engineering and Science, International
University Bremen, Bremen D-28759, Germany (e-mail: c.marquez@
iu-bremen.de).

F. Huang is with the Department of Chemistry, University of Basel, Basel
CH-4056, Switzerland (e-mail: fang.huang @unibas.ch).

*W. M. Nau is with the School of Engineering and Science, International
University Bremen, Bremen D-28759, Germany, and also with the Department
of Chemistry, University of Basel, Basel CH-4056, Switzerland (e-mail:
w.nau@iu-bremen.de).

Digital Object Identifier 10.1109/TNB.2004.824269

of the hydrophobic pocket of many enzymes. When a guest
can be deeply immersed in a sufficiently large concave host
molecule, the host serves as a molecular container. Molecular
containers are unique structures in that they can lead to a
virtually perfect chemical isolation of the guest. In addition,
with an outer diameter of 1-3 nm, they present the smallest
discrete examples of nanocapsules.

The weak interactions between the molecular container and
the encapsulated guest may include hydrogen bonding, ion
pairing, m—m dispersion interactions, van der Waals attractions,
metal ion ligation, or solvophobic effects. A major challenge
has been to understand these weak interactions in an effort
to reproduce particular properties and selectivities observed
in natural processes, as well as to transfer the knowledge to
practical applications such as sensors, catalysis, information
technology, removal of contaminants, nuclear waste treatment,
etc.

Different types of molecular containers have been described,
e.g., podands, corands, clathrochelates, cryptands, speleands,
spherands, cavitands, carcerands, hemicarcerands, calixarenes,
cyclophanes, and cryptophanes (see Scheme 1 for selected
molecular structures). The size and shape of their binding
cavity, their rigidity or flexibility, as well as their overall
appearance distinguish them from each other and render them
useful for special types of applications [6]. The size of some
oligomeric host systems, including «-, 8-, and «y-cyclodextrins
(CDs) composed of six, seven, or eight a-D-glucose units
(Scheme 2), can be adjusted to match the guests.

Molecular container compounds, and in particular CDs, have
already been widely employed in nanobiotechnological areas of
interest, e.g., in the selective removal of heavy metals [7], [8],
radioactive waste [9]-[11], organic compounds [12], [13], or
other contaminants from polluted waters, in metal switching and
sensing [14]-[16], in the controlled release of drugs, perfumes,
and flavors [17], in catalysis [18]-[20], and metal ion transport
[21].

A general objective of our group has been to explore
the intrinsic properties and the potential use of a family of
nanocapsules known as cucurbit[n]urils (CBn) [22]-[24]. Like
CDs, they can be designed in different sizes, which allows a
fine-tuning of their host—guest complexation properties. The
most common ones are CB5, CB6, and CB7 (Scheme 3), of
which only the last one is sufficiently large to encapsulate larger
organic guests or residues with more than seven heavy atoms.
We have studied the effects governing the thermodynamics and
kinetics of host—guest complex formation of CB6 [25] and the
influence of the CB7 cavity on the physical properties of the
guest moieties [26].

1536-1241/04$20.00 © 2004 IEEE
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To explore new applications of the potentially most
useful CB7, we have encapsulated as a fluorescent guest the
azoalkane 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO), a chro-
mophore possessing a weak n, 7 absorption in the near UV
(Amax = 365 nm in water) [26]-[31]. Different advantages of
DBO (marketed as Fluorazophore-P, derived from FLUORes-
cent AZOalkane chromoPHORE-Parent) make it an ideal probe
for host—guest studies. DBO has a small volume, spherical
shape, and good solubility in water as well as in organic media.
In addition, the fluorescence lifetime of DBO is exceptionally
long, for example, 1.03 us in the gas phase [30] and 325 ns
in aerated water [28]. It fluoresces with a high quantum yield
(approximately 20% in water) over a broad spectral range
(Amax = 430 nm), and its spectroscopic properties respond
strongly to the chemical environment [26].

The resulting fluorescent host—guest complex CB7-DBO
(Scheme 4) can serve as a water-soluble fluorescent probe or
sensor for biochemical applications. The complex presents,
in particular, an appealing fluorophore for application in
time-resolved fluorescence assays, which allow an efficient
removal of autofluorescence by application of an electronic
time gate. This application is made possible by the exceedingly
long lifetime (up to 690 ns in aerated H»O) of the complex. CB7
protects the fluorescent probe from the outside environment,
improving its application potential for optical signaling. In this

IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. 3, NO. 1, MARCH 2004

hemicarcerand

sense, the CB7-DBO complex serves as a true nanomolecular
device, since it can be used as a “nano flashlamp” in biological
environments due to its exceedingly long-lived emission.

II. MATERIALS AND METHODS
A. Synthesis of CB7

Since the reported synthetic procedure for CB7 is quite
tedious and proceeds in very low yield [31], it was essential
to develop an improved synthetic method, which exploited
some recent mechanistic insights into the oligomerization of
glycoluril [32], [33].

Formaldehyde (14 mL of a 37% aqueous solution, 182 mM)
was mixed with sulfuric acid (60 mL of a 9-M aqueous solution)
and the magnetically stirred mixture was cooled down to 5 °C.
Glycoluril (11.4 g, 80 mM) was added, which dissolved slowly
to produce a thick transparent gel. After approximately 30 min
the gel became too viscous to allow further stirring, and at this
point the temperature was elevated to 100 °C, which resulted in
a redissolution of the gel. After heating for 72 h, no precipitate,
which would be indicative of an excess of undesirable CB6, was
observed.

The reaction mixture was then poured into 200 mL of
bidistilled water, and 800 mL of acetone was added, thereby
inducing precipitation of all CBn oligo- and polymers. Filtration
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and subsequent washing with 1.5 L of a mixture of cold mainly CB7. The precipitate was purified by dissolving the
acetone/water (8 : 2 v/v) to remove the acid produced a mixture crude material in 200 mL of bidistilled water. Addition of 20 mL
of CBn as a white powder. Addition of 400 mL of bidistilled of acetone caused the precipitation of a mixture of CB7 with
water dissolved all CBn but CB6 (6.8 g) which is, therefore, other unidentified homologues, which was disregarded. The
easily separated (the solubility of CB6 in water is <50 M) further addition of acetone (100 mL) led to the precipitation of
[34]. When the remaining solution was treated with 300 mL of the major fraction of CB7. Washing of the latter fraction with
acetone, a new precipitate (8.5 g) appeared, which contained acetone and diethyl ether and subsequent drying under vacuum
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at 140 °C for 72 h gave 6.5 g of CB7 (> 95% purity, 49% yield TABLE 1

with respect to glycoluril). The product was characterized by
proton nuclear magnetic resonance and electrospray ionization
mass spectrometry based on known literature data [31].

B. Preparation of the CB7-DBO Host—Guest Complex

When CB7 (approximately 3 mM) was added to an aqueous
solution of DBO (approximately 2 mM), complexation took
place almost instantaneously as monitored by 'H NMR. At
these concentrations, > 99% of DBO are included inside the
CB7 cavity (the binding constant is (4 + 1) x 10° M~" [26]).
The solubility of the CB7-DBO complex in pure water is
approximately 5 mM, which can be increased by addition of
salts (metal ions).

C. Fluorescence Spectroscopy

All measurements were performed in HoO or D2 O at ambient
temperature. Fluorescence lifetimes were measured on a laser
flash photolysis (LFP) setup (LP900, Edinburgh Instruments,
Edinburgh, U.K.) with 7 mJ, 355-nm pulses of 4 ns width
from a Nd:YAG laser (Minilite II, Continuum, Santa Clara,
CA), and with a time-correlated single-photon counting (SPC)
fluorimeter (FLS920, Edinburgh Instruments, Edinburgh, U.K.)
using 50-ps laser pulses at 373 nm for excitation (Picoquant
PDL 800-B pulse generator with LDH-P-C-375 laser head).
The FLS920 instrument was also used for the steady-state
fluorescence spectra (Aexe = 365 nm). Fluorescence was
detected at 450 nm on both time-resolved setups. The resulting
data were analyzed with the instrument software by means of
monoexponential decay functions with a reconvolution fit for
the excitation pulse. Intermolecular quenching experiments
were performed with 0.1 mM solutions of DBO and varying
quencher concentrations up to 50% quenching effect or up
to the solubility limit of the quencher (4-5 data points). The
DBO-labeled peptide concentration was adjusted to approxi-
mately 0.1 mM (SPC measurement).

FLUORESCENCE LIFETIMES

Conditions Toso U Teprpso /1S

gas phase 1.03

H,0, aerated 0.33 0.69
H,0, deaerated 042 0.69
D,0, aerated 051 097
D-0, deaerated 0.73 0.97
H,0, Na,SO,, aerated 0.33 0.95
D,0, Na,SO,, aerated 0.51 1.03

Fluorescence lifetimes (7) of DBO in water and encapsulated in the CB7
complex, measured under conditions of nearly quantitative complexation (>99 %,
[DBO] =2 mM, [CB7] =3 mM).

III. RESULTS
A. Fluorescence Lifetimes and Quenching

The inclusion of DBO inside CB7 provokes an increase in
its fluorescence lifetime from 325 ns in aerated aqueous solu-
tion to 690 ns (Table I). The lifetime does not change when
the solution is degassed, suggesting that oxygen is incapable
of quenching the encapsulated chromophore. However, when
deuterated water is used, a further increase in lifetime is ob-
served due to the less efficient quenching by O-D bonds [29],
reaching a value of 970 ns. This is the longest fluorescence life-
time measured for an organic chromophore in solution. For bio-
chemical applications, it is noteworthy that the fluorescence is
detected in water under air.

The goodness of fit between host and guest is corroborated by
molecular dynamics calculations [26], which suggest that even
a water or oxygen molecule cannot be coincluded together with
DBO. The cavity of CB7 is, thus, completely filled out by DBO
without leaving a larger “empty” space.

The protection effect operates also for potential quenchers
of DBO fluorescence (see Table II). The encapsulation of DBO
into CB7 prevents contact between the quencher and the guest,
which efficiently suppresses collision-induced quenching. In
this way, potential “contact” quenchers such as ascorbic acid
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TABLE 1I
FLUORESCENCE QUENCHING RATE CONSTANTS

DBO

sncher CB7*DBO
Quencher kq/l()" M- kq/l()“ M-'s!
oxygen 2.1 <0.04
biacetyl 6.1 <0.05
sodium iodide 1.6 <0.005
sodium nitrite 25 <0.1
ascorbic acid 2.1 < 0.006
tryptophan 2.1 <0.1
dGMpPY 0.5 <0.005

Fluorescence quenching rate constants (k) of DBO in H>O and encapsulated
in the CB7 complex, mecasured under conditions of necarly quantitative
complexation (>99 %, [DBO] = 2 mM, [CB7] =3 mM). " 2'-dcoxyguanosine-5'-
monophosphate disodium salt.

counts
/104

WGSGS-DBO+<CB7

}KWGSGS—DBO

0 . L 1 L
0 2000

4000 t/ns

Fig. 1. Fluorescence decays for the uncomplexed peptide WGSGS-DBO and
the complexed peptide WGSGS-DBO-CB?7 in aerated D, O measured by SPC.

[28], tryptophan [35], or 2’-deoxyguanosine-5’-monophos-
phate disodium salt (dAGMP), which are efficient quenchers of
DBO fluorescence in the absence of CB7, are inefficient in
quenching the fluorescent complex. Only few additives, e.g., bi-
acetyl, iodide, or nitrite, are able to cause a minor fluorescence
quenching of the complex (two orders of magnitude lower
quenching rate constant). In these cases, quenching is presumed
to occur by either energy transfer (biacetyl) or electron transfer
(iodide, nitrite), i.e., by quenching mechanisms which are well
known to operate through space or through the solvent over
medium to large distances.

B. Complexation of DBO-Labeled Biomolecules

The fluorophore DBO can be covalently attached to
biomolecules like peptides and oligonucleotides [35]-[39].
Subsequent addition of CB7 allows one to selectively complex
the fluorophore and thereby lengthen its lifetime to approxi-
mately 0.7 ps in HoO and 1.0 ps in D2O. A specific example
of the enhancement of lifetime is shown in Fig. 1 (experimental
data) and Scheme 5 (where F represents DBO as fluorophore
and Q tryptophan as quencher) for a peptide with the structure
WGSGS-DBO (80 1M in aerated D2O). The fluorophore is at-
tached through a labeled asparagine [35]. Before complexation,
the fluorescence lifetime of the peptide is very short (19.5 ns)
because the peptide contains an N-terminal tryptophan as an
internal quencher, which can cause quenching through exciplex
formation by end-to-end collision [35]. The addition of CB7

(0.8 mM) leads to an increase in fluorescence lifetime by a
factor of 50, resulting in a lifetime of 1030 ns. This can be
accounted for by a selective and nearly quantitative (> 99%)
complexation of the DBO chromophore by CB7, which is
corroborated by the shielding effect upon the guest in NMR
experiments. This chromophore complexation suppresses
quenching by excluding the possibility of end-to-end collision
of DBO with the internal tryptophan, which is required to
induce quenching.

IV. DISCUSSSION

Fluorescent labels are invaluable tools in numerous areas of
biological chemistry, e.g., for the purpose of calcium ion de-
tection, cell staining, and polarity sensing [40]. An appealing
subclass of fluorescent probes comprises chromophores with
a particularly long fluorescence lifetime (> 50 ns) [35]. One
powerful application, which exploits long-lived fluorescence (or
generally luminescence), relies on the reliable differentiation
of long fluorescence lifetimes from any shorter-lived lumines-
cence components. This is of interest, in particular, for screening
assays, where fluorescent probes are employed to signal molec-
ular events such as the inhibition of an enzyme by a library of
potential drugs.

CB7 is an interesting molecular container compound. It
is able to both encapsulate and release guest molecules,
which characterizes it as a true nanocapsule. As demonstrated
herein, the addition of CB7 to a DBO-labeled peptide results
in the formation of a supramolecular fluorescent complex
(CB7-DBO). This complex displays the longest fluorescence
lifetime amongst purely organic chromophores in solution,
amounting up to 1 us, even in water under air. In fact, the
lifetime inside the complex can reach the value measured for
the gas phase (Table I), implying a virtually perfect shielding
from the outside environment. This is also confirmed by
the inefficient quenching by a series of known fluorescence
quenchers (Table II). Quenching is completely suppressed for
quenchers requiring intimate probe—quencher contact, while in
the case of other quenching mechanisms (electron and energy
transfer) the quenching rate constant decreases by two orders
of magnitude.

We suggest that the long lifetime of this complex can be
exploited for the sensitive detection of biomolecules in assays.
Short-lived emission is ubiquitous and may stem from other
additives, sample impurities, biological components, scattered
light, the solvent, or sample container materials of cuvettes and
microplates. The shorter lived components can be relatively
easily eliminated, however, from the detection by applying a
time gate, such that the emission from the long-lived fluorescent
label (which serves as signaling unit—in this case, CB7-DBO)
can be selectively detected. This reduces the background during
the measurement dramatically.

An instructive hypothetical example is depicted in Fig. 2
[41], which compares the fluorescence decay of a long-lived
fluorescent probe (7 = 1.0 us) with that of a shorter-lived
fluorescing component (r = 10 ns), with the latter one,
however, being much more intense (10° times larger pre-
exponential factor). If as usual the integrated fluorescence
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Fig.2. Comparison of the fluorescence decay of a long-lived fluorescent probe

(7 = 1.0 ps) with that of a shorter-lived component (7 = 10 ns); the shorter
lived component is 10° times more intense (relative preexponential factors). A
suitable time gate for use in a time-resolved assay is shown at 200 ns.

intensity would be compared through steady-state methods,
a “signal-to-background” of 0.0001:1 would result, which
would exclude one from obtaining any useful information. If
one carries out the experiment in lifetime mode with a time
gate between 200 and 1000 ns and integrates the areas under
the curves, the “signal-to-background” ratio becomes better
than 20000 : 1, an impressive improvement by more than eight
orders of magnitude, which has its underlying reason in the ex-
ponential decay kinetics of the fluorescence. This improvement
renders the selective detection of long-lived fluorophores in
so-called time-resolved screening assays generally an entirely
instrumental problem. In particular, the real background may
be dominated by detector noise rather than contributions from
short-lived emission.

Note that the effect observed upon complexation of CB7 and
DBO-labeled peptides (Fig. 1) resembles closely the situation
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7=1030 ns
"no contact possible"

described in Fig. 2, which underscores the potential of this
complex for time-gated fluorescence detection. In essence,
the addition of CB7 serves as an “enhancer” which could be
exploited in assays to detect the formation or consumption,
for example of a DBO-labeled peptide substrate, with high
accuracy by employing time-gated detection of fluorescence. A
similar principle of measuring time-gated fluorescence, albeit
on a slower time scale (> 10 ps), is already commercially ap-
plicable in so-called time-resolved fluorescence (TRF) assays.
Examples are the DELFIA and LANCE assays [42], which
exploit long-lived micellized europium clathrates as lumines-
cent labels. In the case of the europium assays, the addition of
micelles serves as an “enhancement solution,” which greatly
reduces the quenching of the lanthanide ion by the surrounding
water. The application of the CB7-DBO complex could provide
a purely organic equivalent and true fluorescence-based method
to the established inorganic luminescence-based techniques.

V. CONCLUSION

Addition of the molecular container compound CB7 to DBO-
labeled biomolecules greatly enhances the fluorescence lifetime
of DBO through the formation of a host—guest complex. The
resulting fluorescence lifetime of approximately 1 us is suffi-
ciently long-lived to discriminate it reliably from shorter-lived
autofluorescence. This allows for a sensitive detection, which
could be useful, among others, for high-throughput screening
technology.
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Abstract

The intrachain fluorescence quenching of the fluorophore 2,3-diazabicyclo[2.2.2]oct-2-ene
(DBO) is measured in short peptide fragments relevant to the protein folding of ubiquitin, namely the
two strand parts and the turn fragment of the N-terminal -hairpin. The investigated peptides adapt a
random-coil conformation in aqueous solution according to CD and NMR experiments. The
combination of quenchers with different quenching efficiency, namely tryptophan and tyrosine, allows
the extrapolation of the rate constants for end-to-end collision rates as well as the dissociation of the
end-to-end encounter complex. The measured activation energies for fluorescence quenching
demonstrate that the end-to-end collision process in peptides is partially controlled by internal friction
within the backbone, while measurements in solvents of different viscosity (H,O, D,O, and 7.0 M
guanidinium chloride) suggest that solvent friction is an additional important factor in determining the
collision rate. The extrapolated end-to-end collision rates, which are only slightly larger than the
experimental rates for the DBO/Trp probe/quencher system, provide a measure of the conformational
flexibility of the peptide backbone. The chain flexibility is found to be strongly dependent on the type
of secondary structure that the peptides represent. The collision rates for peptides derived from the 3-
strand motifs (ca. 1 x 107 s™') are ca. 4 times slower than that derived from the B-turn. The results
provide further support for the hypothesis that chain flexibility is an important factor in the
preorganization of protein fragments during protein folding. Mutations to the [3-turn peptide show that
subtle sequence changes strongly affect the flexibility of peptides as well. The protonation and charge
status of the peptides, however, is shown to have no significant effect on the flexibility of the
investigated peptides. The meaning and definition of end-to-end collision rates in the context of protein

folding is critically discussed.



Introduction

Protein folding is one of the “holy grails” of the physical and life sciences."> While several
general folding mechanisms, such as the framework model, the hydrophobic collapse model, and the
nucleation-condensation model, have been proposed,"*‘ the long-standing controversy on whether
protein folding is kinetically or thermodynamically controlled has remained.”” Studies of the
elementary steps in protein folding, such as the formation of B-hairpins, a-helices, and loops, and in
particular on the kinetics of the formation of these secondary structures are necessary to validate the
various proposed folding mechanisms.”® To better understand how the domains of a protein move, in
which sequence a protein folds, and which secondary structures emerge first, it is essential to
investigate peptide dynamics, to measure the kinetics of nonlocal intrachain interactions, and to predict
the flexibility of peptide sequences.”'”"" For example, it may be anticipated that nucleation may occur
near the conformationally most flexible (or most “dynamic”) portions of a protein.

Recent studies show that the timescale of the elementary protein folding steps ranges from
several nanoseconds to tens of microseconds. Such studies have included indirect dynamic NMR

"> and direct photophysical intrastrand quenching experiments.'** A critical parameter

experiments,
for protein folding is the rate of intrachain collision, which imposes a rate limit for the formation of a
loop or B-turn.>'>** Recently, we have established a fluorescence-based method, with 2,3-
diazabicyclo[2.2.2]oct-2-ene (DBO) as a probe and Trp as quencher, for measuring end-to-end
collision in biopolymers occurring on the submicrosecond time scale. Intramolecular fluorescence
quenching of DBO by Trp has already proven useful to assess the rate and length dependence of

intrachain collisions,”*

and to establish a conformational flexibility scale of amino acids in model
peptide sequences.* The extremely long fluorescence lifetime of DBO, even in water under air, and its
efficient contact quenching by Trp form the basis for its application to biopolymer dynamics. In
addition, DBO is small, hydrophilic, and very versatile during peptide synthesis.”***

To contribute to the area of protein folding, it is essential to apply the established DBO
quenching method to the properties of native proteins. In the present work, we investigate the
flexibility of some important fragments of ubiquitin with the fluorescence-based method. Ubiquitin is a
small protein with 76 amino acids. The structure, stability and folding of ubiquitin as well as its peptide
fragments have been previously studied.”*”' Shown in Scheme 1la is the 17-residue N-terminal B-

hairpin of ubiquitin, which is composed of two B-strands connected by a B-turn.”” This B-hairpin is



believed to play a key role in the early events of ubiquitin folding.”** To compare the sequence
dependence of end-to-end collision rates and thereby assess the flexibility, we synthesized DBO/Trp or
DBO/Tyr end-labeled peptides (Scheme 1b,c) derived from the “upper strand” (Q’IFVK®), the “lower
strand” (T’ ITLE'®), and the “turn” (T"LTGK'""). These sequences are of interest because although they
show random-coil behavior in solution, they represent structurally well-defined and distinct parts of the

protein in the native, intact state.

Scheme 1. Structure of the N-terminal B-hairpin (1-17) of ubiquitin (a) and general structure of the

peptides labeled with DBO/Trp (b) or DBO/Tyr (c).
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The individual sequences should possess a different intrinsic flexibility and propensity for
folding, which is reflected in the rate by which the two ends of the peptide collide. These intrinsic
dynamic parameters of primary peptide sequences can be investigated in short sequences without the
complications imposed by secondary structures, i.e., in the absence of any preferred,
thermodynamically stable conformation. Since fast-folding turns are implicated as the initiators of the
folding of pB-hairpins, measuring the end-to-end collision rates of the turn and strand fragments of the
B-hairpin may help to clarify p-hairpin folding kinetics and mechanism.'®*>*> These rates can be
directly related to the intramolecular fluorescence quenching of DBO by either Trp or Tyr in the
labeled sequences. The combination of these two quenchers with different quenching efficiency allows
the extrapolation of the microscopic rate constants for formation and dissociation of the end-to-end
encounter complex, which itself present a new methodology and extension of our fluorescence
technique.” In addition, to the best of our knowledge, we report the first activation energies for end-to-
end collision in short polypeptides obtained by direct photophysical experiments.

Experimental Section

Materials. The synthesis of the Fmoc-protected and DBO-labeled asparagine derivative has
been described previously.” Polypeptides (all amidated at the C-terminus) were made by Affina
Immuntechnik (Berlin, Germany) in > 95% purity (determined by MALDI-MS and HPLC). Water was
bi-distilled. D,O (> 99.9% D) was from Glaser AG, Basel. Other commercial analytical-grade materials
were from Fluka or Aldrich.

NMR and CD measurements. NMR experiments were carried out on a Bruker DRX 500
spectrometer in D,0 (with 10% H,0O) at 1 mM peptide concentration. Circular dichroism (CD)
experiments of the peptides were performed on a Jasco 720 circular dichroism spectrometer at ambient
temperature at peptide concentrations of 10—100 uM.

Fluorescence lifetime measurements. Fluorescence lifetimes were measured on a laser flash
photolysis setup (LP900, Edinburgh Instruments, Edinburgh, Scotland) with 7 mJ, 355-nm pulses of 4-
ns width from a Nd:YAG laser (Minilite II, Continuum, Santa Clara, CA), and with a time-correlated
single-photon counting fluorimeter (FLS920, Edinburgh Instruments) using a 1.5-ns pulse-width H,
flash lamp at 365 nm. Fluorescence was detected at 430 nm.

Peptides were measured in H,O and D,O at ambient temperature unless stated differently.

Typical concentrations of polypeptides were 10 uM for flash photolysis and 100 uM for single-photon



counting experiments. The temperature-dependent experiments were carried out from 20-50°C. The
pH-dependent measurements were performed in phosphate buffer for pH 7, citrate/HCI/NaOH buffer
for pH 2 and Na,HPO,/NaOH buffer for pH 12. The concentration of guanidinium chloride was
adjusted by measuring the refractive index.

Results

NMR and CD Experiments. NMR and CD spectroscopy were carried out to corroborate that
the investigated peptides adopt the random-coil conformation expected for such short sequences.****
Assignments were based on a combination of 1D-NMR, 2D-COSY, and 2D-TOCSY spectra. The
chemical shifts are very sensitive to the secondary structure,” which allows one to differentiate the
random-coil structures from defined secondary structures. The chemical shifts obtained for all labeled
peptides were compared with those reported for folded”” as well as denatured™ ubiquitin, see Table 1
for example. The chemical shifts of those residues which possess identical neighboring residues in the
synthetic peptide fragments as in ubiquitin were not significantly different (+ 0.02 ppm) from those
measured for denatured ubiquitin, i.e., in agreement with a random-coil conformation. Slight variances
in chemical shift were expectedly observed for the residues directly adjacent to the probe or quencher,
which experience an environment different from that in the denatured protein (upper and lower entry in
Table 1).*

CD measurements were also performed for all peptides at different pH values.” All CD spectra
show the characteristic pattern for a random coil.®” It is the combination of NMR and CD
experiments, which allows us to exclude the existence of sizable amounts of secondary structure in the
investigated peptides. All interpretations are therefore based on the assignment of random-coil behavior
to the labeled peptide fragments.

Kinetics of end-to-end collision in the turn and strand peptides. The fluorescence-based
method for measuring the end-to-end collision rate constants in peptides has been discussed in detail.”’
The intramolecular quenching rate constant in a probe/quencher-labeled peptide is first obtained
according to eq. 1 from the experimental fluorescence lifetimes of the probe-labeled peptides with ()

and without (7,) attached quencher.
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k, =k, for k;>>k_ 3)
The quenching rate constant is a composite of the microscopic rate constants in Scheme 2 and

can be expressed by eq. 2, which employs the common steady-state approximation for the formation of

the end-to-end encounter complex. k, is the end-to-end collision rate constant to form the
probe/quencher encounter complex and k& and k,; are the rate constants for its dissociation and
deactivation, respectively. For a diffusion-controlled reaction k; >> k_ applies and the simplified eq. 3
results, i.e., for a diffusion-controlled probe/quencher pair the end-to-end collision rate constant equals
directly the experimental quenching rate constant. For a non-diffusion-controlled system,
interpretations must be based on eq. 2. In the present work Trp was employed as an essentially

diffusion-controlled quencher of DBO, and Tyr as a non-diffusion-controlled quencher.

Scheme 2. Kinetic scheme for intramolecular fluorescence quenching.
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The three peptide fragments without quencher, TLTGK-DBO, QIFVK-DBO and
TITLE-DBO, displayed fluorescence lifetimes of 480, 510 and 540 ns in D,O, respectively. These
fluorescence lifetimes are similar to that of parent DBO (505 ns), indicating that a peptide composed of
inert amino acids does not significantly quench DBO.” The attachment of Trp or Tyr as quencher

reduced the lifetimes substantially. From the quenching effects the intramolecular quenching rate



constants were obtained according to eq. 1 (Table 2). When Tyr is used as quencher, the peptide
corresponding to the P-turn (YTLTGK-DBO) gives the fastest fluorescence quenching rate, the one
corresponding to the upper strand (YQIFVK-DBO) displays approximately a 4 times slower quenching
rate, and the rate for the lower strand peptide (YTITLE-DBO) lies in between.*” Substitution of Tyr by
Trp (Table 2) results in much shorter fluorescence lifetimes and accordingly higher quenching rate
constants, around 3-5 fold higher. In contrast, measurements in more viscous*' guanidinium chloride
solutions (Table 3) lead to decrease in rate constants by a factor of 2-3 (Table 3). However, regardless
of the variation in the absolute rate constants, the order of the quenching efficiency remains the same
for both quenchers, i.e., B-turn < lower strand < upper strand. Shown in Figure 1 are representative
fluorescence decay traces.

The intramolecular fluorescence quenching is induced by a collision between probe and
quencher, which occurs with a different frequency depending on the flexibility of the peptide backbone.

»* je., the

The quenching rate constants can therefore be interpreted in terms of the peptide flexibility,
turn sequence of ubiquitin is more flexible than the two strand sequences.*

Activation energy of end-to-end collision. The activation energies for intramolecular end-to-
end collision in probe/quencher-labeled peptides were obtained by plotting the temperature dependence
of the quenching rate constants. For this purpose, the fluorescence lifetimes were measured for each
peptide with and without quencher at different temperatures and the quenching rate constants were then
individually determined for each temperature according to eq. 1. In the absence of quenchers, the
fluorescence lifetime of DBO shows a very weak temperature dependence.” The variation in the
fluorescence lifetime of the DBO-labeled peptides without quencher was therefore much weaker than
that of the peptides with quencher attached, which indicated a sizable activation barrier for the
quenching process. All Arrhenius plots were linear, see Figure 2 for example.

Notably, the experimental activation energies for intramolecular quenching in aqueous solution
(17-25 kJ mol ™, Table 3) are similar to or larger than the apparent activation energy of solvent viscous
flow in the same temperature range (298-328 K), which amounts to 15.5 kJ mol™' for H,O and 16.6 kJ
mol™ for D,0.* Activation energies in the same range have been reported for intrachain collision in a
larger unfolded protein.” For comparison, the activation energies for the bimolecular quenching of a
DBO-labeled peptide (QIFVK-DBO) by the free quenchers, Trp and Tyr, fell in the range of 15 + 3 kJ

mol™" in deaerated H,O and D,O. The intermolecular values have a larger error due to the fractional



quenching even at the solubility limit of Tyr and Trp. Note also that the difference in the activation
energy of viscous flow between D,O or H,O (ca. 1 kJ mol™) is too small to result in experimentally
significant effects on the activation barriers. In contrast, the selection of 7.0 M guanidinium chloride
solution as a substantially more viscous solvent causes a pronounced increase in the activation energies
for intramolcular quenching (Table 3).

The order of the activation energies follows the order of the end-to-end collision rates, i.e., the
most flexible B-turn peptide (TLTGK) displays the lowest activation energy, and the upper, most rigid
B-strand peptide shows the highest activation barrier. Accordingly, end-to-end collision is energetically
facilitated in the -turn peptide compared to the B-strand peptides. The fact that some activation
barriers exceed the value expected for viscous flow in water immediately indicates that the end-to-end
collision process is not only slowed down by “solvent friction”, but also by an “internal friction” (to
employ the terminology of polymer models). In other words, some residues impose sizable barriers for
those conformational rearrangements of the peptide backbone, which are required to bring the chain
ends into contact.

Importantly, the values of the activation energies in the different peptides are the same, within
error, for both Trp (Table 3) and Tyr (data not shown) as quencher. This result is consistent with the
notion that the experimental activation energies result from an interplay of the effects of internal
friction (flexibility of the peptide backbone) and solvent friction (viscosity-dependent diffusional
motion) on the collision rate k, in Figure 2, but not from a potential activation energy of the rapid
deactivation step (k,). The lower intramolecular quenching efficiency of Tyr (Table 2) is therefore
mainly manifested in a reduced preexponential A factor, as expected from the very different transition
states for quenching (see below).

The trend of the preexponential A factors with the type of peptide fragment (Table 3) is less
intuitively understood. However it can at least be demonstrated that the order of magnitude is
reasonable for an intramolecular reaction by comparison with the theoretical relationship for an ideal
(Gaussian) chain and an ideal intermolecular collision in eq. 4, which assumes the same activation
barrier for both processes.*

A intra ~ 3
A™ \27ND’N,
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N represents the number of chain segments, N, the Avogadro number, and b the length of one segment.
For a heptapeptide (N = 7) with a length of 3.8 A for each peptide bond,"”” A™", the preexponential
factor of an intramolecular reaction, should then amount to approximately 50% of the value for the
corresponding intermolecular reaction, A™". One therefore expects the preexponential factors for the
intramolecular reactions to fall below those for the intermolecular processes (InA = 26 for quenching of
QIFVK-DBO by Trp or Tyr). The experimental results in Table 3 are in agreement with this notion,
although the decrease is quite pronounced for some peptides, which points to strong deviations from
ideal-chain behavior.

Charge effects. The effects of charge on the end-to-end collision process in the peptides
derived from ubiquitin were also investigated through pH control as well as positional mutation in the
peptides. Shown in Table 4 is the pH dependence of the lifetimes for free DBO and the peptides
without quencher. The lifetime of DBO remains constant from pH 2-12. Peptides without quencher
also have the same lifetime within error at pH 2 and pH 7, but their fluorescence lifetimes decreased at
pH 12, especially for QIFVK-DBO and TLTGK-DBO. This decrease is related to the deprotonation of
the photochemically inert aminium groups at the N-terminus and in particular in lysine to reactive
amino groups; amines are well-known quenchers of DBO fluorescence (through exciplex formation),”
which accounts for the decrease in fluorescence lifetime, most pronounced in peptides containing
lysine, at very alkaline pH. For comparison, the intermolecular quenching rate constant for DBO by
lysine increases from < 1 x 10° M's™ at acidic and neutral pH* to 1.45 x 10’ M's™ at pH 12 (this
work). Note that the intrachain quenching by other amino acids but Tyr and Trp is explicitly corrected
for in eq. 1 by the proper choice of T,.

The charge effects on the quenching rate constants for the peptides with quencher are contained
in Table 5. Strikingly, quenching for all Tyr peptides increases significantly at high pH. This increase,
however, is not indicative for an effect on the chain dynamics but due to the deprotonation of tyrosine
itself, which produces the phenoxyl anion, a stronger quencher of DBO fluorescence. Note that while
the intermolecular quenching rate constant of DBO by Trp is independent of pH, that by Tyr increases
by a factor of 4 between pH 7 and 12 (Table 2). There appears to be a change in quenching mechanism
by tyrosine from hydrogen abstraction” for the phenol form at pH 7 to exciplex formation for the
phenolate ion at pH 12. This is reflected in the decrease in solvent isotope effect from 1.6 at pH 7 to 1.2

at pH 12 (Table 2); the isotope effect at pH 7 is related to a partially reaction-controlled abstraction of
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the solvent-exchangable phenolic hydrogen atom, while the minor isotope effect at pH 12 can be
accounted for in terms of the viscosity-related solvent isotope effect on a close to diffusion-controlled
reaction, akin to the minor solvent isotope effect observed for Trp (Table 2).

Due to the variation of the quenching rate constants, the tyrosine peptides studied at pH 12
should be treated separately. Note, however, that Tyr at pH 12 has (incidentally) the same quenching
rate constant as Trp. Since the intramolecular quenching of DBO by Trp is presumed to be essentially
diffusion-controlled, the same should apply for tyrosine at pH 12. In fact, the rate constants for all Tyr-
labeled peptides at pH 12 are equal, within error, to the corresponding Trp-labeled sequences (Table 5).

Mutation effects. Numerous studies in the area of protein engineering have demonstrated that
specific amino acids can have a substantial effect on the folding, structure, stability, and function of
proteins.®”' We have therefore investigated mutation effects of a single amino acid on the flexibility of
the B-turn peptide derived from ubiquitin (Table 6). The different mutants show very different
quenching rate constants, which confirms the importance of individual amino acids in determining
peptide chain flexibility.

Discussion

We have investigated the end-to-end collision rates of equally long peptides derived from the N-
terminal f3-hairpin of ubiquitin, which report on the flexibility in dependence on primary structure and
secondary structure propensity of the peptides.* The intrachain dynamics was studied by measuring the
intramolecular fluorescence quenching rate constants between DBO, attached as fluorophore to the C-
terminus, and either Trp or Tyr, attached as quenchers to the N-terminus (Scheme 1b,c). Due to the
nearly diffusion-controlled quenching of excited DBO by Trp, the corresponding quenching rate
constants have been proposed to be approximately equal to the end-to-end collision rate constants.*
Tyr presents also a good, albeit not diffusion-controlled quencher among the 20 amino acids.” Tyr was
selected as a complementary quencher to investigate the quantitative effect of non-diffusion-controlled
intermolecular quenching on the intramolecular quenching rate,” to extrapolate to the fully diffusion-
controlled end-to-end collision rates (k,), and to estimate the dissociation rates of the end-to-end
encounter complex (k_ in Scheme 2).

Primary and secondary structure dependence of peptide flexibility. The quenching rate
constants for the three peptide fragments derived from the ubiquitin (3-hairpin have been determined for

both the DBO/Trp and the DBO/Tyr probe/quencher pair. All investigated peptides adopt a random-
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coil conformation as established by NMR and CD, which allows one to relate the efficiency of
intramolecular quenching to the dynamics of the intrachain motion rather than to a structural preference
or spatial proximity between probe and quencher.” Both sets of data (for Trp and Tyr as quencher)
reveal the same order of quenching rates and therefore flexibility of the peptide sequence: turn > lower
strand > upper strand. For example, the quenching rate constant for the turn peptide (TLTGK) is 2—4
times faster than that of the peptides corresponding to the upper and lower strand (QIFVK and ELTIT).
The spectroscopic measurements suggest that the f3-turn region of ubiquitin is “more flexible” than the
B-strand regions. This notion is also supported by the activation energy for end-to-end collision, which
is significantly (up to 8 kJ mol™") lower for the B-turn than for both B-strand parts (Table 3). Indeed, the
TLTGK turn has been suggested to be highly flexible even in the structure of native ubiquitin.”® The
fact that TLTGK is more flexible and can form a turn much faster than the other examined peptides
may play an important role in the early events of ubiquitin folding. In other words, a flexible region in
a protein is more likely to serve as nucleus for the formation of the secondary structure.

Note that the investigated peptide fragments are equally long, such that the known distance
dependence of the end-to-end collision rate™ can be neglected in the interpretation of the kinetic data.
In addition, FRET experiments* indicate that the average end-to-end distance is comparable in the
three peptide fragments. The strong variation in the end-to-end collision rates of the peptides must
therefore have its underlying reasons in the chain dynamics, i.e., the flexibility of the backbone as
imposed by the specific amino acid sequence. As shown in a preliminary communication, individual
amino acids affect the flexibility of peptides to a different extent with the flexibility order being as
follows:** Gly > Ser > Asp, Asn, Ala > Thr, Leu > Phe, Glu, Gln > His, Arg > Lys > Val > Ile > Pro.
This scale was established for peptide backbones composed of six identical amino acids, such that a
direct comparison with the mixed ubiquitin sequences is difficult. However, it is reasonable to assume
that the high flexibility of the TLTGK turn region is mainly due to the presence of the most flexible
Gly unit, while the high rigidity of the ELTIT and, more pronounced, the QIFVK strand parts is mainly
imposed by the presence of one or two very rigid B-branched valine and isoleucine segments,
respectively. To verify this intuition, the effect of mutations on the 3-turn region was investigated.

In a first set of experiments, Gly in the TLTGK -turn, was mutated to Ala, Phe, Thr and Val to
demonstrate its importance in determining the flexibility of this fragment. Indeed, the quenching rate

constants (studied for the DBO/Tyr probe quencher pair, Table 6) decreased significantly in the order
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Gly > Ala, Phe, Thr > Val, suggesting an increase in rigidity. This increase is in line with expectations
from the flexibility scale (see above), yet somewhat less pronounced than in the preliminary study®*
since only a single amino acid was exchanged. Note again that variations in hydrophobicity of the
residues have no systematic effect on the flexibility of the peptide mutants, in agreement with our
previous study on peptide homopolymers.**

The rate constants for the Ala, Phe, and Thr mutants resemble those observed for the lower
strand while the rate constant for the Val mutant even approaches the rate measured for the upper
strand (Table 2 and Table 6). This result demonstrates that the Gly in the turn sequence is indispensable
for the high flexibility, while the f alkyl-branched residues substantially increase the rigidity in the
strand parts. The latter have, in fact, also a high propensity to occur in -strands, while Gly is a
prominent amino acid in B-turn regions.”>” The B alkyl-branched residues may predispose these
sequences to be relatively extended and rigid, which does, along with the high flexibility of the B-turn
region, essentially predefine the formation of a f3-hairpin. The p-hydroxyl-branched Thr appears more
flexible than the B-alkyl-branched amino acids Val and Ile.* In contrast to Val and Ile, Thr has also a
high propensity to occur in B-turns, in addition to B-sheets.”” The higher flexibility of Thr is reflected
in the larger quenching rate constant of the G—T mutant compared to the G—V mutant (Table 6).

The mutation of an additional amino acid adjacent to the presumably most flexible Gly linkage,
namely of T—G to give TLGGK, causes an additional increase in chain flexibility (Table 6), which is
in line with expectations based on the individual flexibility of the amino acids.>* However, it appears
unlikely that effects related to chain flexibility are simply additive or predictable in an incremental
fashion. Rather, specific amino acids and specific positions as well as the particular sequence are all
expected to affect the internal friction in a peptide and they may be vital to produce a flexible peptide,
which requires more detailed follow-up work.* For example, we have designed an inverse sequence of
the lower strand peptide in which the amino acid composition is the same, but in which the sequence is
inverted from TITLE (original) to ELTIT (inverted). The results (Table 2) revealed a significant
sequence effect (ca. 20-30%) on the fluorescence quenching rate constant, which demonstrates the

limitations of predicting chain flexibility in an incremental fashion.

The experimental data for the two (3-strand parts suggest a somewhat higher flexibility of the
lower strand (Table 2), which is presumably related to the presence of an additional (3-alkyl branched

amino acid in the upper strand. However, in the actual 3-hairpin of ubiquitin both strands could display

13



a comparable rigidity. Note that the present studies were limited to pentameric [3-strand sections of the
B-hairpin (Q’IFVK® and T ITLE') in order to allow a direct comparison to the intervening pentameric
B-turn fragment (T'LTGK'). The inclusion of the additional residues of the B-strands, i.e., the
comparison of the hexamers M'QIFVK® and T"”ITLEV" (see Scheme 1), should give rise to similarly
rigid strand fragments since a stiffening f-branched Val residue is added to the lower strand.

We also questioned to which degree a variation in the charge status of the different peptide
fragments could be responsible for the observed variations in end-to-end collision rates. Much effort
has therefore been devoted to the design of pH-dependent experiments (Table 5) to scrutinize the
existence of charge effects on the end-to-end collision rates. In addition, we used a peptide sequence
with a Glu — Lys mutation to invert the charge status within the same sequence through the exchange
of an acidic for a basic site (YTITLE-DBO and YTITLK-DBO in Table 5). However, the combined
experiments did not yield a systematic dependence on the charge status.

We conclude from Table 5 that any effects related to the repulsion or attraction of two charges
are too minute to result in experimentally significant effects on the end-to-end collision rates (< 10 %).
In fact, in our preliminary communication only a small charge effect on the end-to-end collision rates
(ca. 10%) became observable even with six charged residues.” The important conclusion in regard to
end-to-end collision rate constants for the three ubiquitin-derived peptide fragments is that charge
effects cannot be responsible for the observed variations, i.e., the faster kinetics of the f-turn
(TLTGK). The failure to observe a salt effect (up to 0.1 M NaCl, data not shown), which is expected to
reduce electrostatic interactions by screening the charges, also supports the finding that charge effects
on the end-to-end collision rate (k,) are not well developed in our peptide sequences.

Microscopic rate constants for end-to-end collision and dissociation. We reasoned that the
study of two different quenchers with varying quenching efficiency can be used to extrapolate the end-
to-end collision rates and, in addition, to obtain estimates of the dissociation rates (k_ in Scheme 2) for
the different peptide sequences. For fluorescence quenching of DBO, one can employ Trp as a
quencher with high efficiency and Tyr as a quencher with a lower efficiency. The same results could be
obtained with deprotonated Tyr (at pH 12), which is an equally efficient quencher as Trp. The end-to-
end collision rates are proposed to be determined by the peptide backbone such that the rate constants

for both formation as well as dissociation of the encounter complex should be the same for the
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DBO/Trp and DBO/Tyr pairs, i.e., k) =k =k, and k' =~k =k_. Eqs 5a,b then apply for the Trp and

Tyr cases as specific expressions of eq. 2.

k- kY v koK)
- and (b) k' = —+——¢
k_+ k) ® &, k_+k,

(a) k' = ®)

To solve this system of coupled equations for the respective formation and dissociation rate
constants, one must specify the unimolecular rate constants for deactivation of the excited encounter
complexes (k,) for both Trp and Tyr. Theses rate constants should only be dependent on the quencher
and therefore be independent of the chain, i.e., the same for the intramolecular and intermolecular
reactions. The values for k, are obtained according to eqs 6a,b from the intermolecular quenching rate
constants (k;mer) by assuming quenching in an ideal solution without enthalpic interactions between
probe and quencher.***"’ The diffusion-limited rate for the intermolecular reaction (k.") was taken as
3.0 x 10° M's™" in H,0,” assuming a collision radius (@) of 4 A.* The values for k,, obtained from eqs
6, amount then to 2.1 x 10" s™' for Trp and 1.5 x 10’ s™" for Tyr in H,O. In accordance with the

proposed quenching mechanism, the estimated &, values display a significant isotope effect for Tyr

(1.8, hydrogen atom abstraction), but not for Trp.
3kinterkinter,Y
(a) k; _ diff *q
3 inter inter,
40007a’N,, (ki = ki)

3 k ir;tfr kinter,W
and (b) kc\[,v = 3 - i?ner inter, W (6)
40007’ N, (g — ke

The resulting values for k, and k_, obtained by solving the system of coupled eqs 5, are entered
in Table 7. While the rate constant for intermolecular quenching of the QIFVK-DBO peptide by Trp
(1.6 x 10° M™'s™) falls about a factor of 2 below the expected diffusion-limited rate (3.0 x 10° M™'s™),
the extrapolated end-to-end collision rate constants (Table 7) turn out to be only slightly larger than the
intramolecular quenching rate constants for the DBO/Trp system (Table 2). The DBO/Trp
probe/quencher pair is therefore well suited to assess end-to-end collision kinetics in peptides, as
already projected in previous studies.”** The results in Table 7 therefore support the suggestion that a
reaction which is somewhat slower than diffusion-controlled in the intermolecular case, can become
close to diffusion-controlled in the corresponding intramolecular system.” This is due to the decrease
of the diffusion coefficient of probe and quencher when attached to the chain, which may amount to
one order of magnitude.*"® The internal friction of the chain limits free diffusion, which resembles the
effect of an increased viscosity in a diffusion-controlled intermolecular reaction. This diffusive effect
should operate both on the formation of the encounter complex and its dissociation, since both the

forward and the reverse reactions require the same conformational changes. The peptide chain will
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therefore not only reduce the rate of end-to-end collision ( &, ), but it should, in a first approximation,
also increase the lifetime of the encounter complex. This accounts for the observation that the k_ value

! for the intramolecular

decreases from 1.9 x 10" s™' for the intermolecular reaction to 2.0—4.6 x 10° s
cases (Table 7). Note that this decrease in k_ improves the condition for diffusion-controlled quenching
in Scheme 2 (k, >> k_), since the deactivation rate ( k,) should be independent of the attachment of the
chain.

The significant variances in the rate constants for the various peptides reveal the biopolymer
chains as being far from ideal, since an ideal chain would be characterized by constant values of k, and
k_.*° In addition, the equilibrium constants for intramolecular encounter complex formation (K, =
k,/k_, Table 7) are not constant for the different peptides . They range from 3-9 x 10~ and fall one
order of magnitude below the ideal expectation value* (ca. 0.09 for an ideal chain with 7 segments, a
reaction radius of 4.0 A* and a segment length of 3.8 A'). This is indicative of a slight steric repulsion
between the chain ends and speaks certainly against a hydrophobic attraction and association between

probe and quencher. The latter should give rise to larger values of K, than for an ideal chain. For

ntra

example, in a recent study employing time-resolved confocal fluorescence spectroscopy.’ K., values

intra
in the range of 2.2-4.9 have been obtained for oxazine/Trp labeled peptides, in which probe and
quencher are separated by 8-9 amino acids. These are one order of magnitude larger than the ideal-
chain values expected for peptides of this length (ca. 0.2 for reaction radius of 5.5 A®). Indeed, a strong
hydrophobic association between oxazine as probe and Trp as quencher is observed in the ground state
(static quenching) and provides also a prerequisite for applying the confocal fluorescence technique,
which is based on an equilibrium between two states with different fluorescence properties. In contrast,
steady-state fluorescence experiments for the intramolecular and intermolecular quenching of DBO by

7

Trp did not reveal significant static quenching,” which once more corroborates the absence of

significant hydrophobic probe/quencher association and is in line with the very small calculated K,
values (Table 7).”

Factors determining end-to-end collision rates. For peptides with Trp as quencher, the
isotope effect (Table 2) on the quenching rate constants ranges from 1.1-1.2, which comes close to the
ratio of the viscosities of D,O and H,O at 25 °C [n(D,0)/n(H,0) = (1.1 cP)/(0.89 cP) = 1.23]. More

significantly, there is a factor of 2—-3 decrease for the end-to-end collision rates in 7.0 M guanidinium

chloride solution (Table 3), which can also be accounted for in terms of the higher viscosity effect in
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this medium (7 = 1.71 cP). In fact, the decrease is somewhat larger than expected on the basis of
viscosity alone, which has been observed previously and attributed to some association of the additive
to the peptide.*’ The latter is expected to cause an additional decrease of the diffusion coefficient of the
chain ends.

The viscosity effects demonstrate that solvent friction is an important factor in determining the
end-to-end collision rates. On the other hand, we have also evidence derived from the activation
barriers (Table 3) and the large variations in end-to-end collision rate constants for different sequences
(Table 2 and 7) that the internal friction of the peptide backbone is another important factor.
Consequently, the end-to-end collision rates in short peptides are determined by a subtle interplay
between internal friction and solvent friction. The activation barriers in Table 3 suggest that end-to-end
collision in the most flexible turn is mainly controlled by solvent friction; internal friction becomes
sizable in the more rigid strand fragments.

Interpretation of end-to-end collision rates. It should be mentioned that the end-to-end
collision rate in a peptide depends on the definition of what an end-to-end collision (or contact
formation) actually is. The choice of the proper reaction or collision radius is particularly critical.™® We
have used a value of 4 A for the present DBO/Trp and DBO/Tyr probe/quencher systems and the data
in Table 7.” It can be shown that the choice of a larger radius is expected to lead to substantially higher
end-to-end collision rates. It is therefore less surprising that probe/quencher systems with larger
reaction radius, like those performing exergonic triplet-triplet” or singlet-singlet energy transfer,”**
may display intramolecular quenching rate constants which are larger than those obtained from the
DBO/Trp and DBO/Tyr probe/quencher pairs. Exchange energy transfer is expected to occur as soon as
orbital overlap between probe and quencher is established within distances as large as 8 A°“® while
quenching of DBO by Trp is subject to the stringent and proximate (< 4 A)* transition state geometries
for exciplex formation and hydrogen abstraction (see Scheme 3). The latter have been calculated at a

47,70

very high level of theory for alcohols® and amines*" as quenchers.
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Scheme 3. Presumed structures for the transition states for fluorescence quenching of DBO by an

indole as a model for Trp and by a phenol as a model for Tyr.

B B ES B B ES
ca. 2.6 A
; } ca.22A O"'H"_N\‘
i N
s I

As can be seen, the quenching of DBO by Trp and Tyr requires a more intimate and better
defined end-to-end contact (“a specific atom-to-atom contact”) than quenching by exchange energy
transfer (“a chromophore-to-chromophore orbital overlap”). Systems with a larger effective quenching

6365 and therefore imply apparently faster end-to-end

radius may yield faster quenching rate constants
collision rates, which, however, are then due to a different definition of what the “end” represents,
namely an increased size of the ends. The more stringent geometric selection rules for fluorescence
quenching of DBO are also reflected in the unique observation that the rates go through a maximum
when the chain length is altered, i.e., the shortest homologue is not the fastest one.” While this

71,72

characteristic “inversion” behavior is expected for bonding interactions in peptides, as well as

73,74

polymers, it has not yet been reported in the related studies on polypeptides for alternative

probe/quencher pairs with looser quenching geometries.'**" %

With the important insight that there is no universal rate constant of end-to-end collision, we
can return to the original motivation for measuring this quantity, which was the prediction of the rates
of the elementary steps of protein folding. Clearly, the formation of initial secondary structures,
whether B-turn or a-helix, requires the crucial formation of at least a single “correct” hydrogen bond,
which may then lead to a zipping of the remaining parts. Hydrogen bonding presents a specific,
proximate, and geometrically well-defined atom-to-atom contact, which leads us to suggest that the
presently reported end-to-end collision rates present excellent estimates for the maximum rates for

formation of peptide hydrogen bonds. In this context, it may or may not be important to emphasize that

the atomic arrangement responsible for quenching of DBO by tyrosine with a collinear N---H---O
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transition state (see Scheme 3) presents an excellent mimic of the N---H---O hydrogen bond in
peptides.

The present rate data suggest that the formation of the first hydrogen bond in the $-turn region
can occur as fast as 25 ns (1/k, ). The actual rate of formation of the entire 3-hairpin cannot be directly
predicted from this value alone, but it can be used as the basis to estimate the time scale. If one assumes
as one extreme scenario (i) that each of the 6—7 important hydrogen bonds in the ubiquitin hairpin
(Scheme 1a) is formed with the same rate of 25 ns (which neglects the known length dependence of

end-to-end collision rates),"**'*

(i7) that exclusively correct hydrogen bonds are formed and (ii7) that
each formation of a correct hydrogen bond leads to a rapid zipping of the two strand parts, one obtains
a rate as fast as 4 ns for the formation of the entire [3-hairpin. If, however, one makes the reasonable
assumption that mismatched hydrogen bonds are also formed and that the hairpin sequence can be
transiently trapped in incorrect structures, the overall process can be slowed down by as much as 1-2
order of magnitudes, similar to the situation for ssDNA hairpin structures.” It is therefore likely that
the overall rates of -hairpin formation lie in the range of several tens to hundreds of ns, thereby
approaching some early estimates.'*'®
Conclusions

In conclusion, we have used a combination of two intramolecular probe/quencher pairs of
varying efficiency, namely DBO/Trp and DBO/Tyr, to extrapolate the end-to-end collision rates in
polypeptides derived from the two strand and the single turn regions of a natural 3-hairpin secondary
structure. The extrapolated collision rates lie close to the rates determined for the DBO/Trp pair,
thereby supporting the conjectures from previous studies and confirming the notion that reactions
between probe and quencher tend to become “more diffusion-controlled” upon attachment to a peptide
chain as a consequence of the reduced diffusion coefficients when attached as ends to a chain.
Fluorescence quenching of DBO mimics an elementary step of peptide folding, namely the formation
of initial hydrogen bonds to initiate secondary structure formation, in that it involves a specific “atom-
to-atom” type of collision, which is characterized by a specific transition state geometry with an
intimate approach in reach of covalent bonding. The present study has also revealed that the end-to-end
collision rates and thereby flexibility of peptides is highly dependent on the peptide sequence. Peptides

derived from the B-turn of ubiquitin were found to be much more flexible than those of the 3-strands.

Varying flexibility of peptide sequences may therefore impose a strong kinetic bias in the early stages
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of protein folding. The collision rate for the turn allowed an estimated rate of ca. 25 ns for the
formation of a single hydrogen bond in the (-turn region. The prediction of the formation rate of an
entire (3-hairpin, however, does critically depend on the formation of mismatched structures, which
could slow down the overall process, akin to the situation for ssDNA hairpins.” In addition, individual
amino acids were shown to have a dramatic effect on peptide flexibility through peptide “mutation”
experiments, while charge repulsions or attractions between the chain ends have an insignificant effect
on the end-to-end collision rates. The end-to-end collision rate constants, activation energies, and
isotope effects demonstrate finally that it is a combination of internal friction in the peptide backbone
(conformational changes) and solvent friction (viscosity-limited diffusion), which determines the rates
of end-to-end collision in equally long peptides. Variations of the end-to-end distance distribution
functions are also expected, but do not need to be invoked to account for the observed effects on the
end-to-end collision dynamics.
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Table 1. '"H NMR chemical shifts of the labeled turn fragment (DBO-TLTGKY) in comparison to

those in denatured and folded ubiquitin

O(NH) O0(aH)
labeled denatured folded labeled denatured folded

position peptide” ubiquitinb ubiquitin® peptide® ubiquitinb ubiquitin®
[T-7]¢ 8.66 8.34 8.69 4.37 4.41 5.00

L-8 8.50 8.51 8.91 4.44 4.44 4.33

T-9 8.09 8.09 7.59 4.36 4.37 4.41
G-10 8.34 8.32 7.78 3.94 3.94 3.62/4.36°
[K-11]¢ 8.17 8.10 7.25 4.18 4.09 4.37

* This work in D,0 with 10% H,O. ® At 8 M urea and pH 2, taken from ref. *. ¢ At 50 °C in 25 mM
acetic acid at pH 4.7, taken from ref. *’. ¢ Amino acid has a different direct neighbor in the labeled

peptide and in ubiquitin. © Separate peaks for glycine a.-protons.
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Table 2. Fluorescence lifetimes, quenching rate constants, and solvent deuterium isotope effects for the

intramolecular and intermolecular quenching of DBO-labeled peptides and DBO by tryptophan and

tyrosine
in H,0O in D,O
k (H,O/
fragment sequence tns  kJ(10°s™)*  wns  kJ(10°sT)
k,(D,0)
upper strand WQIFVK-DBO 90 8.2 110 7.1 1.2
YQIFVK-DBO 172 3.0 266 1.8 1.7
lower strand WTITLE-DBO 63 13.0 74 12.0 1.1
YTITLE-DBO 110 6.1 175 3.9 1.6
[YELTIT-DBOJ]" 126 5.0 215 2.8 1.8
turn WTLTGK-DBO 27 34.0 33 28.0 1.2
YTLTGK-DBO 74 10.2 130 5.6 1.8
[DBO-TLTGKY]* 76 9.9 135 5.3 2.0
intermolecular W + QIFVK-DBO 1600 M™' 1400 M™! 1.1
Y + QIFVK-DBO 230 M™! 130 M 1.8
W + DBO 2100 M™ 2000 M™ 1.1
Y + DBO (pH 7) 560 M 360 M 1.6
Y + DBO (pH 12) 2100 M 1800 M™! 12

* Unless stated differently, lifetimes of corresponding peptides without quencher were taken as 7, in the

calculation of intramolecular quenching rate constants according to eq. 1. Inverted lower strand;

lifetime of TITLE-DBO taken as t,. © Probe/quencher-exchanged turn; lifetime of TLTGK-DBO taken

as T,.
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Table 3. End-to-end collision rates and activation energies of DBO/Trp-labeled peptides in different

solvents®
fragment sequence solvent k,/(10°s7™) In(A/s™) E,/(KJmol™)
upper strand  WQIFVK-DBO  H,0 8.2 25.5 23
D,O 7.1 25.5 25
4.4 M Gdn.HCI 6.7
7.0 M Gdn.HCl 3.8 26.8 29
lower stand WTITLE-DBO  H,0 13.0 25.0 21
D,0 12.0 24.5 20
4.4 M Gdn.HCI 9.5
7.0 M Gdn.HCI 4.6 27.4 28
turn WTLTGK-DBO H,0 34.0 24.0 17
D,O 28.0 24.0 17
4.4 M Gdn.HCI 22.0
7.0 M Gdn.HCI 12.2 25.8 23

* To obtain the intramolecular quenching rate constant at different temperatures (298-328 K), the
lifetime of the corresponding peptide without quencher was measured at the same temperature and
taken as 7,. Error in k is 5% and in E, £ 1 kJ mol.

> The viscosities of the solvents at 25 °C are 0.89 cP in H,0, 1.10 ¢P in D,0O, 1.18 cP in 44 M

Gdn.HCI, and 1.71 ¢P in 7.0 M Gdn.HCI.
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Table 4. Intrinsic fluorescence lifetimes of the DBO-labeled reference peptides and DBO in the

absence of tryptophan and tyrosine as quenchers at different pH in H,O

T/ns
fragment sequence pH 2 pH7 pH 12
upper strand QIFVK-DBO 355 355 240
lower strand TITLE-DBO 350 340 320
turn TLTGK-DBO 315 305 205
intermolecular DBO 315 320 315
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Table 5. Charge effects on the rate constants for the intramolecular and intermolecular fluorescence

quenching of DBO-labeled peptides and DBO in dependence on pH in H,O

k/(10°s™)*
charge status "
fragment sequence pH?2 pH 7 pH 12
7.2 8.2 7.1
upper strand WQIFVK-DBO + + + +
WQIFVK-DBO WQIFVK-DBO WQIFVK-DBO
2.8 3.0 6.7
YQIFVK-DBO + + + + B
YQIFVK-DBO YQIFVK-DBO YQIFVK-DBO
11.0 13.0 15.0
lower strand WTITLE-DBO + + — _
WTITLE-DBO WTITLE-DBO WTITLE-DBO
5.8 6.1 16.0
YTITLE-DBO + + - - -
YTITLE-DBO YTITLE-DBO YTITLE-DBO
4.5 4.4 13.0
[YTITLK-DBOJ + + + + _
YTITLK-DBO YTITLK-DBO YTITLK-DBO
d 4.6 5.0 16.0
[YELTIT-DBO] + +— _
YELTIT-DBO YELTIT-DBO YELTIT-DBO
30.0 34.0 35.0
turn WTLTGK-DBO + + + +
WTLTGK-DBO  WTLTGK-DBO  WTLTGK-DBO
9.8 10.2 31.0
YTLTGK-DBO + + + + _
YTLTGK-DBO YTLTGK-DBO YTLTGK-DBO
10.0 9.9 34.0
[DBO-TLTGKY]* + + + + a
DBO-TLTGKY DBO-TLTGKY DBO-TLTGKY
1800 M 2000 M™! 2300 M
intermolecular W + DBO + _
DBO + W DBO + W DBO + W
600 M 560 M 2100 M
Y + DBO + __
DBO + Y DBO + Y DBO + Y
<1M" <1M" 143 M
K + DBO ++ + -
DBO + K DBO + K DBO + K

* Reference values (1,) were individually determined for corresponding peptide without quencher. °

Charge status based on the pK, values reported in ref. °. ¢ Mutated lower strand; lifetime of
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TLTGK-DBO taken as 7, ‘Onverted lower strand; lifetime of TITLE-DBO taken as T,.

‘Mrobe/quencher-exchanged turn; lifetime of TLTGK-DBO taken as t,.
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Table 6. Mutation effects on the rate constants for intramolecular fluorescence quenching of the DBO-

labeled turn peptide by tyrosine as N-terminal quencher

in H,0O in D,O
mutation sequence 7/ns k/(10°s7)* 7/ns k/(10°s7)*
none YTLTGK-DBO 74 10.2 130 5.6
G—A YTLTAK-DBO 108 6.1 164 4.1
G—F YTLTFK-DBO 110 6.0 168 4.0
G—T YTLTTK-DBO 112 5.8 185 34
G—V YTLTVK-DBO 138 4.1 220 2.5
T—G YTLGGK-DBO 68 11.6 120 6.3

* 1, was taken as 325 ns in H,O and 500 ns in D,0.
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Table 7. Extrapolated microscopic rate constants® for the intramolecular and intermolecular quenching
of DBO-labeled peptides and DBO according to Scheme 2 in H,O [kinetic solvent deuterium isotope

effects, i.e., k(H,O/k(D,0), given in square brackets]

fragment sequence k,/10°s™ k_/10° 57" K/ 107
upper strand W/Y-QIFVK-DBO 9.5[1.2] 3.2[1.1] 3.0
lower strand W/Y-TITLE-DBO 14.2 [1.1] 2.0 [1.0] 7.1
turn W/Y-TLTGK-DBO 41.4 [1.2] 4.6 [1.1] 9.0
intermolecular W/Y + QIFVK-DBO = 3000 M [= 1.23] 18.6 [1.23] 160 M™!

* The values were extrapolated by assuming an ideal intermolecular diffusion, cf. text and ref.”.
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Captions for Figures

Figure 1. Fluorescence decays (measured by single-photon counting) of ubiquitin-derived peptides
(100 uM in D,0). The traces derive from the upper strand (WQIFVK-DBO, upper trace), lower strand
(WTITLE-DBO, middle trace), and the turn (WTLTGK-DBO, lower trace). Shown in the inset is the
decay for WQIFVK-DBO on a semilogarithmic scale.

Figure 2. Representative Arrhenius plots for the intramolecular fluorescence quenching in DBO-

labeled peptides by Trp.
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Abstract

Knowledge of peptide dynamics and flexibility is of importance for understanding and
predicting the folding mechanisms of proteins and their functions. The present work gives an
overview and applies a fluorescence-based technique to investigate the dynamics and flexibility of
peptides with different length and different sequences. This new technique takes full advantages of
fluorescence for detection as compared to the previously employed transient absorption. The length
dependence of end-to-end collision rates suggests that the behavior of peptides is far from that of
an ideal chain, and the strong sequence dependence of peptides flexibility allows one to extract a
flexibility scale for amino acids in peptides. The rigidifying character of a polyproline backbone, the
effect of charges on the end-to-end collision frequency, and the flexibility of P-peptides in

comparison to their oo homologues are also studied.



Introduction

A common approach to measure intrachain dynamics in polymers is based on the use of a
photophysical probe and a quencher attached to the ends of a polymer chain [1-5]. Following
excitation of the probe, there is a certain possibility that the quencher diffuses to the excited probe
to induce, upon collision, excited-state deactivation. In the case of efficient quenching, the
intramolecular quenching rate constant is directly related to the rate of end-to-end collision, which is
an important parameter since it reports on the conformational flexibility of the backbone and allows
the comparison of the dynamic properties of different polymers. In addition, it allows experimental
tests of theoretical models for polymer motions and polymer reactions [6], in particular the
cyclization propensity [5, 7]. An important requirement of the probe/quencher methodology is that
long-lived excited states need to be employed, since the lifetimes have to be sufficiently long to
allow intrachain diffusion to compete efficiently with the intrinsic excited-state decay. Triplet-
excited states (monitored by transient absorption) and some long-lived fluorescent states (mostly
pyrene) have been employed in the respective measurements with polymers [1-5]. Another
requirement is that quenching must take place strictly upon contact of the probe/quencher pair but
not through a longer distance as is often the case for fluorescence resonance energy transfer
(FRET) or highly exergonic electron transfer. Otherwise, the quenching process does not directly
report on the elementary process of end-to-end collision but reflects the distance distribution and
the diffusion coefficients of the chain ends [8], which is of primary interest in a different context.
The preferred probe/quencher pairs for addressing end-to-end collision kinetics are therefore based
on quenching by either hydrogen atom transfer and exciplex or excimer formation. Quenching by
triplet-triplet energy transfer [9, 10] and electron transfer [11, 12] may be applicable in limiting
cases and in combination with careful control experiments [13], while fluorescence energy transfer
(FRET) needs to be avoided unless donor/acceptor pairs with a very small Forster critical radius
(ca. 10 A) are employed [14].

The principle for measurement of end-to-end collision kinetics by the probe/quencher
methodology and the relationship of the quenching rate constant to the microscopic rate constants
for formation (k,), dissociation (k_), and deactivation of the excited-state encounter complex (top

right structure) are shown in Figure 1 [15, 16]. Note that the quenching rate constant equals the



end-to-end collision rate constant whenever quenching is efficient, i.e., k;, >> k_. It is then said that
quenching is determined by intrachain diffusion, which is restricted by two factors: internal friction
within the backbone and solvent friction by the surrounding medium.

The transfer of the probe/quencher methodology from polymers to biopolymers has proven
to be the opposite of straightforward, since there are a number of additional constraints in
polypeptides and oligonucleotides. For example, polar probes and quenchers should be used to
reduce hydrophobic effects and the probe/quencher system must allow measurement in aqueous
solution. These are not fulfilled for the traditional chromophores like pyrene and anthracene [1-4].
which has led to a quest of suitable probe/quencher systems for biopolymers [9-12].

In this context, we have introduced the use of 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) as a
long-lived fluorescent probe [15, 16], and either tryptophan (for polypeptides) [17, 18] or guanine
(for oligonucleotides) [19, 20] as intrinsic fluorescence quenchers. In the case of polypeptides,
tyrosine can be used as an alternative, although somewhat less efficient, quencher [21]. The
condition k; >> k_in Figure 1 is fulfilled when the corresponding intermolecular reaction between
probe and quencher is diffusion-controlled, but this is no necessary criterion. In biopolymers,
quenching may be determined by intrachain diffusion even if the intermolecular quenching of the
probe falls up to one order of magnitude below the diffusion-controlled limit. This is due to the
reduced diffusion coefficient of the chain ends, which results in a slower k_ rate (Figure 1) than for
the intermolecular ones [11, 21].

The DBO chromophore is unique due to its long lifetime (e.g., 325 ns in H,O), which can be
further increased to about 1 wus by addition of an enhancement solution containing the
supramolecular host cucurbit[7]uril and sodium sulfate [22]; this value is the same as that measured
in the gas phase [23]. In addition, the DBO chromophore has a very small size, it is uncharged yet
polar, does not tend to form ground-state complexes or excimers, is compatible with solid-phase
synthesis, as well as thermally and photochemically stable. All these features are advantageous for
use as a fluorescent probe for biomolecules, even if the extinction coefficient is very low [15, 24].
Experimental Section

The fluorescence lifetimes of the water-soluble peptides (<= 100 uM) were measured in D,0O

at 25°C by time-correlated single photon counting (FLS920, Edinburgh Instruments) with a



Picoquant picosecond pulsed diode laser (A = 373 nm, ca. 50 ps pulse width) for excitation. Fmoc-
DBO, which is a labeled asparagine, was synthesized as previously described [17], which allows the
attachment of the DBO chromophore to a polypeptide by standard solid-phase synthesis
techniques. Peptides were made by Biosyntan (Berlin) in a purity better than 95%. The three f3-
peptides were supplied by the group of Prof. Samuel H. Gellman, University of Wisconsin-
Madison.

Results and Discussion

The end-to-end collision rates reported in the present study have been obtained by analyzing
fluorescence quenching in DBO/Trp end-labeled peptides according to our previously established
methodology [17, 18, 21]. The DBO/Trp probe/quencher method has been established as an
accurate and broadly applicable tool to assess end-to-end collision rates, which has received
independent support by the most recent theoretical studies [6, 25] as well as single-molecule
experiments employing time-resolved confocal fluorescence microscopy [26]. For example, the
end-to-end collision rate for the peptide structure X-SQETFSDLWKLLPEN is 9.8 x 10° s™' for
the ensemble measurement with X = DBO and 8.3 x 10° s™' for the single molecule measurement
with X = oxazine, where the small deviation can be attributed to a slower diffusion of the larger
oxazine probe.

The measured intramolecular quenching rate constants for different polypeptides are entered
in Table 1. The results show that the intramolecular quenching rate constants are strongly
dependent on chain length and chain sequence and vary by 1-2 orders of magnitude. The first
section in Table 1 shows the length dependence of the quenching efficiency for the Gly-Ser series
with the characteristic inversion at very short separation (“no backbone”) [17]. A double
logarithmic plot of the quenching rate constants versus peptide length gives rise to an evident
negative curvature and a much smaller slope than the theoretical prediction for an ideal chain
(Figure 2), which suggests a significant deviation of the behavior of the peptides from ideal chain
behavior. The inversion may either come from the breakdown of the Gaussian approximation, i.e.,
distribution deviation from ideal chain, or the significant decrease of end-to-end diffusion
coefficient since the end-to-end collision rate is determined by both the end-to-end distribution and

the diffusion coefficient. Further theoretical and experimental studies have revealed that the



distribution function is not the dominant factor inducing the inversion [6], but that a significant
decrease of the end-to-end diffusion coefficient is expected for the shortest peptides.

On the other hand, the observed inversion immediately speaks against the remote possibility
of a through space quenching mechanism for the DBO/Trp probe/quencher pair, which would be
expected, for example, if electron transfer through bond or energy transfer, but supports the
exciplex quenching mechanism. This characteristic “inversion” behavior is expected for bonding
interactions in peptides [7] as well as polymers [1], because specific steric effects in very short
backbones hinder cyclization and therefore end-to-end contact. However, the inversion has not been
reported in related studies on polypeptides with alternative probe/quencher pairs [9, 11], which is
presumably due to looser and less well-defined quenching geometries.

Listed in the second section in Table 1 is the length dependence and rigidifying character in
polyprolines. A comparison with the equally long Gly-Ser peptides shows a significant decrease of
the quenching rate constant for polyproline peptides. This is due to the high rigidity of proline, i.e.,
the large internal friction in polyproline, which stems from its frozen N-C* bond. Polyproline
peptides also show a much more significant length dependence, i.e. the quenching rate decreases
much more steeply with increasing peptide length than it is the case for the Gly-Ser peptides or an
ideal Gaussian chain (Figure 2). This is presumably a consequence of the PPII-helix formation in
polyprolines [18], which becomes more stable for longer sequences, as evidenced by CD
measurements. The increased internal friction and PPII-helix propensity both slow end-to-end
collision by decreasing the rotation rate of the backbone and changing the conformational
equilibrium, respectively. Note that for the remaining equally long peptides, no sizable secondary
structure formation was indicated by CD and/or '"H NMR spectra, such that we assign a random-
coil conformation to all tetrameric and hexameric peptides except for the polyprolines. Changes in
conformational equilibrium are not held responsible for the differences in end-to-end collision rates
in these cases [21], but rather variations in internal flexibility as imposed by the amino acid type and
sequence.

B-Peptides, composed of -amino acids, are considered to be good scaffolds for creating
biologically active molecules due to their characteristics over a-peptides [27, 28]. It is very

interesting to compare the flexibility of a-peptides and 3-peptides with similar structure, which may



reveal some important underlying reasons for the different properties of these two related
biopolymers. A slightly higher flexibility of -peptides as compared to their a-homologues has
been suggested theoretically [29]. To provide direct experimental evidence, the end-to-end collision
rate of 3-peptides and its length dependence were also investigated [30], which are shown in the
third section in Table 1. Shown in Figure 3 are the structures of the p-peptides used in present
work, the amino acid of which has very similar structure to Gly, but with an “additional” methylene
group. A comparison of the data with those for a-peptides with similar structure, e.g. Gly or Gly-
Ser peptides, and the same number of peptide bonds shows similar quenching rate constants. This
is surprising if one considers that the contour length of a 3-peptide is extended by an additional
—CH,- bond in each monomeric unit, and if one recalls that longer peptides should give rise to
slower quenching according to the known length dependence (see above). Making use of the rough
approximation that the length of a -peptide is 4/3 that of an a-peptide due to the additional o-bond
in each monomeric unit, and transferring the known length dependence for a-peptides, where
logk «-blogl with [ the contour length of a peptide and b = 1-1.5 [9, 11, 17], one expects the
rates of end-to-end collision in B-peptides to be 30—40% slower than for equally long a-peptides.
Experimentally, the rate constants for end-to-end collision are very similar, e.g., 3.9 x 10° s™' for the
o-hexaglycine and 3.5 x 10° s™' for the B-hexaglycine derivative. This demonstrates that the effect
related to the increased chain length (expectation value ca. 2.5 x 10° s7') is at least partially offset
by an extra element of chain flexibility in the B-peptide. We assign this tentatively to the rotation
about the additional CH,—CH, bond which should increase the conformational space accessible to
the B-peptide [27]. The latter may facility end-to-end collision, which is being probed by the present
experimental technique. For comparison, it should be mentioned that the activation energies for the
end-to-end collision process of both o- and B-peptides are comparable and lie close to the
activation energy of solvent viscous flow [21].

Another very important aspect in peptide dynamics is to know whether or not charges impose
significant effect on the end-to-end collision rates or peptide flexibility. To test electrostatic effect
on peptide intramolecular collision, experiments were also carried out at different pH to control the
charge status of the peptides. Shown in the fourth section in Table 1 are the quenching rate

constants of some typical peptides, the residues of which can be protonated and deprotonated, and



the charges can be changed by adjusting the pH. A slight charge effect was observed in the 6-mer
peptides, in which all of the residues can be charged [18]. In another set of experiment carried out
with peptides containing only two chargeable residues, the end-to-end collision rate did not show a
systematic effect [21], which suggests that any effects related to the repulsion or attraction of two
charges are too minute to result in experimentally significant effects on the end-to-end collision
rates (< 10 %). Both of the experiments strongly suggest that charge does not impose significant
effect on the end-to-end collision rate although it is well known to affect the thermodynamic
parameters of peptides and proteins.

The reason for the very weak charge effect has not been clearly demonstrated yet. In addition
to the efficient screening of charges by water, one must take into account that the actual position of
the charged residues is quite remote from the backbone. The results for the amino acid type have
demonstrated that end-to-end collision rates are mainly governed by the atoms or groups in close
proximity to the backbone [18]. For example (see also below), the (3-branched amino acid Ile was
found to reduce peptide end-to-end collision rate significantly, while the y-branched isomeric amino
acid Leu gives rise to peptides with much faster collision rate, demonstrating that a y-methyl group
imposes much less hindrance on the rotation of the peptide back bone than a 3-methyl group. In
line with these observations, the more remote charged residues have also a significantly decreased
effect on the internal friction; they are quite remote from the backbone, which offers them a larger
conformational space such that they can better “avoid “friction.

The end-to-end collision rates for peptides composed of a sequence of identical amino acids
are also investigated. With the assumption that the end-to-end distances are similar for all of the
equally long peptides, we reasoned that the end-to-end collision rates can be directly related to the
flexibility of peptides. The end-to-end collision rate as a function of amino acid type gives a
flexibility scale of amino acids in peptides with the order: Gly > Ser > Asp, Asn, Ala > Thr, Leu >
Phe, Glu, GIn > His, Arg > Lys > Val > Ile > Pro [18]. The quenching rate constants in section five
of Table 1 show variations by 1-2 orders of magnitude for the various amino acids. Such large
variations indicate that the individual amino acid type can impose hindrance to the rotation of
peptide backbone in very different degree, which are hardly possible to come from the variation of

conformational equilibrium. Recent fluorescence resonance energy transfer (FRET) investigations



on peptides derived from the first f-hairpin at the N-terminus of ubiquitin supports our assumption
that equally long peptides have similar end-to-end distance and that variations in the distribution
functions are not the dominant factor in determining the difference of end-to-end collision rate [21].
The interpretation of the end-to-end collision rate constants in terms of internal friction or dynamic
flexibility as imposed by the amino acid type and sequence remains therefore valid.

Finally, we also addressed the effect of the solvent on the end-to-end collision rates for
peptides. The collision rates of peptides in H,O and D,O have already been investigated in our
previous work and the results suggest a viscosity-dependence of the end-to-end collision rate [21].
The effect of urea on the collision rates was presently investigated and the results are shown in the
first and the sixth sections in Table 1, where values in the parenthesis were obtained in 4.8 M urea-
D, 0 solution. One of the important features of DBO is that it is not efficiently quenched by the
common denaturants, urea and guanidinium chloride, i.e., the quenching rate constant are < 3 x 10*
M's™! [17]. This allows experiments to be performed in concentrated urea or guanidinium chloride
solution without losing the crucial property of long-lived fluorescence. As shown in Table 1, the
quenching rate constants decrease in urea solution. The decrease of the quenching rate constant,
ranging from 1.2-1.4, is similar as or larger than that expected on the basis of viscosity increase
(n/n, = 1.28 for urea/H,O solution [31]), which is similar, although less pronounced, as the results
from measurements in 7.0 M guanidinium chloride solution for other peptides [21]. On the
contrary, experiments on Gly-Ser peptides carried out in acetonitrile give similar quenching rate
constant as in D,O (data not shown). This cannot be accounted for in terms of a viscosity effect,
because the viscosity of acetonitrile is approximately 3 times lower than in water, and demonstrates
that other factors but viscosity, e.g., variations in distribution functions, may become important
when the reaction medium is substantially altered, e.g., by the use of organic solvents or co-

solvents.

Conclusion
We have established a fluorescence-based method for measuring the end-to-end collision
rates of plolypeptides, where DBO is used as long-lived fluorescent probe, and Trp or Tyr as

efficient quencher. Length dependence and sequence dependence on the end-to-end collision rates



of peptides were investigated in detail, which shows real peptides are significantly different from
ideal chains. A conformational flexibility scale for amino acids in peptides was reported, depending
on the variation of end-to-end collision rate on peptide sequence. Charges have weak effect on the
end-to-end collision rates of peptides and viscosity effect for significantly different solvent cannot

be simply predicted.
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Captions for Figures

Figure 1. Scheme for intramolecular excited-state quenching and pertinent kinetic equations.

Figure 2. Double logarithmic plot of the intramolecular quenching rate constant (k,) vs peptide
length of peptides with the general structure Trp-(Gly-Ser) -DBO (n =0, 1, 2, 4, 6, 10; @) and Trp-
(Pro),-DBO (n =0, 2, 4,6; m). The solid line is a fit of data for the Gly-Ser peptides to the function
y=a-15x - b/x (a =9.37 and b = 0.392). The dotted line has a slope of —1.5 and is shown to
illustrate the deviation from the theoretical behaviour for an ideal Gaussian chain. The dashed line is

a fit of data for the Pro peptides to the function y = a + bx, which gives a slope of —4.4.

Figure 3. Structure of Trp-/DBO-labeled B-peptides.
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Table 1.

Intrachain quenching rate constants in peptides.”

Backbone kq/ (106 571 Backbone kq/ (106 571
1) Length dependence for Gly-Ser series 5) Dependence on amino acid type
Trp-DBO 41 Trp-Gly,-DBO 39
Trp-Gly—Ser-DBO 68 (59)° Trp-Ser,-DBO 25
Trp-(Gly—Ser),-DBO 49 (40) Trp-Asp,-DBO 21
Trp-(Gly-Ser),-DBO 31 (24)° Trp-Asn,-DBO 20
Trp-(Gly-Ser),-DBO 20 (14)° Trp-Ala,-DBO = 18
Trp-(Gly-Ser), ,-DBO 11 Trp-Thr,-DBO 11

2) Length dependence for Pro series Trp-Leu,-DBO = 10
Trp-Pro,-DBO 1.1 Trp-Phe,-DBO = 7.6
Trp-Pro,-DBO 0.2 Trp-Glu,-DBO 8.8
Trp-Pro,-DBO <0.1 Trp-Gln,-DBO 7.2

3) Length dependence for B-peptides Trp-His,-DBO 4.8

n =2 (see Figure 3) 68 Trp-Arg,-DBO 4.6

n =4 (see Figure 3) 49 Trp-Lys,-DBO 4.0

n = 6 (see Figure 3) 35 Trp-Val,-DBO = 3.0

4) Dependence on residue charges Trp-lle,-DBO =23
Trp-Asp,-DBO (pD 2) 21 Trp-Pro,-DBO <0.1
Trp-Asp,-DBO (pD 12) 19 6) Secondary structure dependence
Trp-Glu,-DBO (pD 2) 8.8 YQIFVK-DBO 1.8 (1.2)°
Trp-Glu,-DBO (pD 12) 7.4 YELTIT-DBO 2.8 (1.7)°
Trp-Lys,-DBO (pD 2) 2.8 YTLTGK-DBO 5.6 (4.0)°
Trp-Lys,-DBO (pD 12) 4.0

“ Values obtained in D, 0.

® Values in parenthesis obtained in 4.8 M urea-D,O solution.
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Abstract

Intramolecular fluorescence resonance energy transfer (FRET) has been measured to
recover detailed structural and dynamic properties in flexible Gly-Ser peptides. Two
fluorescence energy donor/acceptor pairs with very small Forster critical radius (< 10A) are
introduced, where either naphthalene or tryptophan serves as energy donor and 2,3-
diazabicyclo[2.2.2]oct-2-ene (DBO) as acceptor. The fluorescence decays of the donor
(naphthalene) and acceptor (DBO) in the presence and absence of FRET have been measured
and subjected to global data analysis. The recovered intramolecular diffusion coefficients
(0.78 - 20 x 10”7 cm?/s) were found to be much smaller than those of free amino acids (10~
cm’/s), which provides experimental evidence that the diffusion of the chain ends of these
biopolymers is considerably slowed down. The slowest diffusion coefficients were obtained
for the shortest peptides, which is consistent with expectations from theoretical studies.
Shorter chains are proposed to exhibit a larger internal friction, which limits chain flexibility.
Additionally, the intramolecular energy transfer efficiency has been measured for both
donor/acceptor pairs and the effective average end-to-end distances were calculated, which
are compared with independently determined end-to-end collision rates in the same set of

peptides.



Introduction

How proteins fold and how proteins function remain to be two of the most important and
fundamental questions in protein science. The kinetics and dynamics of peptide chain motions
presents an indispensable element in this context. The sequence and rate of the formation of
the individual secondary structures will be critical for the correct folding to the functional
native conformation of a protein,' while the rates of hinge or shear domain motions in a
protein will be decisive for substrate binding.>” Peptide motion, as an essential step for
conformational changes of peptides and proteins, is therefore indispensable in protein folding
and protein functions.

To explore the mechanism, predict the rate limit in protein folding, and to disclose the
relationship between the function and flexibility of different regions in a protein, several
photophysical methods for monitoring intramolecular collisions in peptides have been
established. For this purpose, a probe and quencher are introduced at the two ends or in two
positions of a peptide,*® and the intramolecular collision rates are then extracted from the
kinetics of quenching of the excited probe, either a triplet state monitored by transient
absorption, or a fluorescent singlet state. All of these methods are based on an assumption that
the excited probe is quenched by the quencher through contact, which has been
experimentally established for the fluorescence-based method.” Any quenching that can occur
over a longer distance, including super electron transfer and fluorescence resonance energy
transfer (FRET), should therefore be avoided.” While the use of FRET as spectroscopic ruler®
to estimate average distances in static, large proteins is well-established, its application to
short flexible peptides as more dynamic systems has been less frequently explored.”’® The
latter can be used to recover the end-to-end distribution function and diffusion coefficients of
the chain ends as additional key parameters.’

The short peptides, for which the end-to-end collision rates have been determined in

previous studies, have typical lengths between 2-20 amino acid residues, suggesting average
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end-to-end distance on the order of 10 A. In order to investigate such short peptides by FRET,
and thereby obtain complementary information on the dynamics, it is essential to design
FRET donor/acceptor pairs with Forster critical radii (R,) on the same order of magnitude,
i.e., 10 A.""'"* This is because the determination of distances by FRET is most accurate when
the donor/acceptor distance lies within a range of 0.5R,—2.0R,. This limitation restricts the
choice of donor/acceptor pairs dramatically, since in addition to a very low oscillator strength
of the acceptor, both donor and acceptor must ideally be small organic chromophores and in
addition, the acceptor should have no absorption at the excitation wavelength of the donor.

The previously investigated peptides were of the type Trp—backbone—-DBO, where the
backbone represents the characteristic amino acid sequence and where DBO presents 2,3-
diazabicyclo[2.2.2]oct-2-ene, a fluorescent azo chromophore with an exceedingly long
lifetime, which is efficiently quenched intramolecularly by forming an intimate contact with
Trp to allow the accurate determination of the end-to-end collision rate constants between the
chain ends represented by the C-terminal probe (DBO) and the N-terminal quencher.®">"

We reckoned that the identical peptides, i.e., Trp—backbone—DBO could be employed as
FRET systems, by exciting Trp as donor and monitoring the singlet energy transfer to DBO as
acceptor. Luckily, it turned out further that the Forster critical radius for this pair is exactly
the 10 A required to apply FRET for reliable distance measurements in the identical set of
peptides, and therefore to allow an excellent and self-consistent comparison of experimental
data, namely the previously determined end-to-end collision rates. In a second step, it turned
out that substitution of Trp by the very closely related naphthylalanine (Nal) provides an
additional insight and some advantages due to the longer donor lifetime while preserving the
very short Forster critical radius at the same value.

The results of this FRET study are described in this paper for peptides of different chain

length, Nal-(Gly-Ser),-DBO and Trp-(Gly-Ser),-DBO° (n = 0, 1, 2, 4, 6 and 10, cf. Scheme



1), for which we expected substantial variations in the end-to-end distribution functions and
diffusion coefficients."
Experimental Section

Materials. All commercial materials were from Fluka or Aldrich. The DBO-labeled
peptides were commercially synthesized in > 95% purity (Affina, Berlin). Details on the
synthesis of the probe and its suitability in solid-phase peptide synthesis can be obtained from
our previous study.®

Fluorescence measurements. Fluorescence decays were recorded on a time-correlated
single photon counting (TCSPC) fluorometer (FLS920, Edinburgh Instruments, Edinburgh,
Scotland) by using a 1.5-ns pulse-width H, flash lamp or a Picoquant picosecond pulsed diode
laser (A, = 373 nm, ca. 50 ps pulse width) for excitation. The peptide concentrations were
adjusted to 10-100 uM, sufficiently low to exclude intermolecular interactions. Experiments
were carried out in D,O under air to keep the experimental conditions consistent with
previous study, where the end-to-end collision rates for peptides with the same backbone have
been measured.” For each peptide, Nal-(Gly-Ser),-DBO, three independent fluorescence
decay traces were collected. Upon excitation of the naphthalene chromophore (A, = 285 nm),
the temporal evolution of the fluorescence of both the donor (naphthalene A, = 335 nm) and
the acceptor (DBO A, = 450 nm) were monitored. In an independent set of experiments the
fluorescence decay of acceptor (DBO) was also measured for direct excitation (A, = 373nm).
To obtain the donor decay in the absence of FRET, a reference peptide, Nal-(Gly-Ser),, was
synthesized, in which only the donor moiety, naphthalene, is present, i.e., without acceptor.

Solid-phase fluorescence experiments were carried out in trehalose glass with 1 mM
naphthylalanine and 77 mM DBO. Trehalose glass was prepared by heating 5 g trehalose with
ca. 0.5 mL water to ~130 °C to obtain a viscous solution with dissolved naphthylalanine and
DBO, which was then quickly poured into a 1 cm cuvette and allowed to cool down to get a

transparent glassy matrix.



Absorption spectra were recorded on a Cary 4000 UV-Vis spectrometer (Varian) and
stead-state fluorescence spectra on a Cary Eclipse fluorometer (Varian)

Data analysis. There are two factors which affect the efficiency of FRET: (1) the end-to-
end distance distribution, i.e., the donor/acceptor distance, which is dependent on the
sequence and the length of the peptides, and (2) the conformational flexibility, since the
peptide chains undergo conformational changes during the excited state lifetime. The latter
leads to diffusional fluctuations of donor acceptor distance during the probe lifetime, which
enhances the FRET efficiency by a varying degree. In principle, the time-resolved decay of

the surviving excited donor sites is described by the following distribution function:'®'>'®
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D 1is the mutual intramolecular end-to-end diffusion constant, which is the sum of the

individual diffusion coefficients of the two chain ends. ! is the product of the Boltzman

constant and temperature (8 = 1/kgT), and U(r) is the potential energy of the chain possessing
an end-to-end distance r. If the ground-state equilibrium distribution g (r) is known, the

potential energy can be obtained according to Equation 2, assuming no perturbation of the

distribution function upon excitation of the donor.'*"’

pU(r)=~Ingy(r) @)
Equation 1 can be used to calculate the survival probability density of an excited state at

distance r subject to the boundary condition

0« . p
58N(r,t)+ gN(r,t)EﬁU(r) _0 3

r-a

FRET experiments can in principle yield both, the end-to-end distance distribution and the
intrachain diffusion coefficient. However, since these parameters are tightly correlated, the
recovery of both distribution and diffusion coefficient from the donor fluorescence decay

becomes very difficult. According to Haas and coworkers this problem is overcome by global



analysis of both the donor and acceptor fluorescence decays and growth curves.” This
approach of “over-determination” has been adapted in this paper.
Results

Intramolecular energy transfer from naphthalene to DBO. In a pervious work, efficient
singlet-singlet energy transfer from naphthalene to DBO has been observed,” where
naphthalene and DBO were directly connected through a short dimethylsiloxy tether. The
experimental results (for n-hexane as solvent) suggested that the effective average end-to-end
distance between naphthalene and DBO is as short as 5.2 A, which means that naphthalene
and DBO come essentially in contact (orbital overlap) such that exchange energy transfer
mechanism was expected to be dominant. In the present set of experiments with peptides,
FRET was expected to become dominant due to the longer and more rigid tether and due to
the more viscous aqueous solution which both favor FRET over exchange- energy transfer
due to (1) a larger average end-to-end distances and (2) slower diffusion.

In order to corroborate the participation of FRET in the case of the Nal/DBO doubly
labeled peptides, a control experiment was performed, in which a host molecule,
cucurbit[7]uril (CB7), was added to solutions of Nal-(Gly-Ser),-DBO and Nal-(Gly-Ser)q,
respectively. It has been demonstrated that DBO can be included into the cavity of CB7 to
form a supramolecular host-guest complex, where CB7 can serve as a protective shield to
exclude the contact between DBO and naphthalene.”'” Independent control experiment
revealed that naphthalene is also included into CB7. At the selected concentrations of peptide
(3.8 x 10 M) and CB7 (7.5 x 10™* M) less than 1% of peptide is uncomplexed, owing to the
high binding constants, (5 = 1) x 10* M™" for Nal*CB7 and (4 + 1) x 10° M for DBO*CB7.
The salient feature of this control experiment is that the complexed chromophores cannot
undergo exchange energy transfer due to the separation imposed by the supramolecular host,
but only FRET, which is free to operate through space. Indeed, under such conditions the

resonance energy transfer between naphthalene and DBO is still observed in both steady-state
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and time-resolved measurements. The emission spectrum of the doubly labeled peptide Nal-
(Gly-Ser),-DBO in the presence of CB7 is shown in Figure 4, where the emission of DBO
above 400 nm was observed with excitation of naphthalene at 285 nm. When time-resolved
measurements were performed, the fluorescence decay of the naphthalene residue in both
Nal-(Gly-Ser), and Nal-(Gly-Ser),-DBO could be roughly fitted with a monoexponential
decay function, lifetimes of 73 ns and 62 ns were observed. The significantly longer lifetime
than that of free naphthalene under the same condition without CB7 (37 ns) was also an
evidence that the naphthalene residue in both peptides has been efficiently protected by CB7
from the quenching of oxygen. However, the obviously shorter naphthalene lifetime in the
doubly labeled peptide Nal-(Gly-Ser),-DBO suggested that the excited naphthalene can still
be quenched by DBO even in the cavity of CB7. Recall that the inclusion of DBO by CB7 in
peptide Trp-(Gly-Ser),-DBO excludes completely the quenching by tryptophan (increasing
the lifetime of DBO from 20 ns to 1030 ns), where a contact quenching mechanism applies.’
This control experiment suggests that a close contact is not necessary for the quenching of
naphthalene by DBO and that a through-space electron or energy transfer process, which can
occur through the walls of the supramolecular cages, dominates at long distances. The
possibility of an electron transfer mechanism, however, has been excluded in a previous work
on the basis of the endergonic thermodynamics.'® The energy transfer efficiency for peptide
Nal-(Gly-Ser),-DBO in the presence of CB7, calculated from fluorescence lifetime, is 15.1%,
suggesting an effective distance of energy transfer of 13.1 A, which corresponds to the
average end-to-end distance of this peptide. This average end-to-end distance is a little longer
than the corresponding one in the absence of the CB7 (See Table 2 and 3), because that the
donor and acceptor are prevented to approach closer than the cucurbituril diameter when they
are included by CB7 (Scheme 2). Admittedly, this experiment does not provide compulsory
evidence that FRET dominates in the uncomplexed peptide as well, but it is an appealing

experiment to address the question by means of supramolecular technology.
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The quenching rate constants of naphthalene by DBO in the intermolecular case were also
measured in D,O (n = 1.1 cP), H,O (n = 0.89 cP) and acetonitrile (1 = 0.345 cP), which are
5.7 x 10° M™'s™, 6.3 x 10° M's™", and 9.5 x 10° M™'s™" at 25°C, respectively, demonstrating
diffusion-controlled quenching.

Characterization of FRET donor/acceptor pair. The critical Forster radius (R,) for
resonance energy transfer from naphthalene to DBO in D,0 was calculated according to
Forster theory from the overlap (J) of the absorption spectrum of DBO and the fluorescence
emission spectrum of naphthalene. The R, value of the Nal/DBO energy donor/acceptor pair
inD,0is 9.8 +0.2 A (J =3.05 x 10" M'cm”'nm*). Note that the critical radius in H,O is the
same as in D,O within error due to the very similar spectra, quantum yield (this work) and
refractive index.” Naphthalene has a fluorescence lifetime of 37 ns in both H,O and D,O.
Peptide-attached naphthalene and DBO, Nal-(Gly-Ser), and (Gly-Ser),-DBO, were also
applied to measure R,. Results show that the attachment to peptides does not affect J and R,
values.

Alternatively, R, was obtained by measuring the fluorescence decay in the absence of

diffusion and energy migration among donor molecules, which can be described by Equations

4 and 5.”'
1= Lyexp[-1/7=2(C, /Co, )(1/7)""] )
C,, = 3000/27**NR, (5)
Here, 7 is the lifetime in the absence of quencher, C, is the concentration of the acceptor and
C,4 1s the critical acceptor concentration for energy transfer.
The pertinent measurements were done in solid trehalose, where diffusion could be
neglected.”” Additionally, the concentration of the acceptor DBO (77 mM) was controlled to

be much higher than that of the naphthylalanine donor (1 mM) such that the energy migration

between donor molecules (homo-FRET) could be neglected. Note that naphthylalanine was



used instead of naphthalene in the solid phase experiments because the preparation of the
solid sample needs enhanced temperatures, where naphthalene itself sublimes. The
fluorescence decay was recorded and then applied to Equations 4 and 5 to calculate R,. The
result is 9.4 + 0.4 A, consistent within error with the value calculated from the spectral
overlap. The slightly smaller value may come from the difference of the medium, e.g., a
larger refractive index in trehalose than in water.

Time-resolved fluorescence measurements. The time-resolved fluorescence decay of
naphthalene residue (A, = 335 nm) was recorded in the donor-only-labeled peptide and the
donor/acceptor doubly-labeled peptides by donor excitation (A,, = 285 nm) (representative
decay traces are shown in Figure 1). The decay trace of the donor-only-labeled peptide can be
fitted with a mono-exponential function with a lifetime of 36 ns, similar to the decay of free
naphthalene. However, a multi-exponential function is required in the case of the doubly-
labeled peptides due to the continuum of energy transfer rates. The fitting results are
summarized in Table 1; for simplicity and ease of comparison, “average” fluorescence
lifetimes are provided also for the multiexponential decays by a weighing procedure.
Expectedly, the average fluorescence lifetimes of the naphthalene donor residue are
consistently shorter than that of free naphthalene as a result of energy transfer. The lifetimes
increase with increasing peptide length, indicating a reduced FRET efficiency in the longer
peptides.

The time-resolved fluorescence decay traces of the DBO acceptor residue (A,,, = 450 nm)
was measured by exciting the naphthalene donor residue (A, = 285 nm, Figure 2) as well as
by directly exciting DBO (A., = 373 nm). The direct excitation of the DBO acceptor residue
resulted in a monoexponential decay, with the lifetimes increase with peptide chain length as
well, from 135 ns for Nal-DBO to 270 ns for Nal-(Gly-Ser),,-DBO. These lifetimes fall
shorter than the fluorescence lifetimes of the DBO-only-labeled peptide (e.g., 403 ns for (Gly-

Ser),-DBO) as a consequence of some intramolecular exciplex-induced quenching of the
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excited DBO by the ground-state naphthalene residue; this quenching channel becomes less
efficient as the distance between probe and quencher increases. The fluorescence response of
the DBO acceptor residue upon excitation of naphthalene as donor is characterized by a rapid
growth and slower decay, which can be understood in terms of the initial population of the
excited DBO by FRET and its subsequent deactivation. The time constant characterizing the
decay component found for DBO populated by FRET was identical, within error, to the time
constant measured upon direct excitation. This is not necessarily expected since the FRET
experiment populates a subpopulation of peptide conformations in which the DBO and
naphthalene chromophores are within distances and geometries suitable for FRET, while the
direct excitation samples the conformational ensemble average.

End-to-end distance distribution and intramolecular diffusion coefficient. The time-
resolved fluorescence data for each peptide were analyzed according to Equation 1 by
employing the Globals software package (Experimental section).” The mean end-to-end
distance and the intramolecular diffusion coefficient were calculated for all peptides. The
results are summarized in Table 2.

Firstly, the fluorescence data were directly employed in fitting. The representative end-to-
end distance distributions recovered from direct global analysis are shown in Figure 3. From
the parameters in Table 2 we can see that the mean end-to-end distance is significantly shorter
than the contour length (sum of length of the individual segments), and increases only slowly
with increasing backbone length. For example, while the contour length increases from 22.8
A for Nal-(Gly-Ser),-DBO to 53.2 A for Nal-(Gly-Ser),-DBO the extracted mean end-to-end
distances increase merely from 7.96 A to 10.91 A. This suggests that the Gly-Ser peptide
chains are highly flexible and form more random-coil-type than extended conformations. On
the other hand, the obtained intramolecular diffusion coefficients are all on the order of 107’
cm’/s and increase with chain length for the shorter peptides (N < 10) to reach an upper limit
for the longer ones (N = 10).
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Due to the high correlation of the parameters the errors remained large even in the over-
determined global analysis, which required a model-assisted data analysis to better expose the

salient features of the trends of the diffusion coefficients. For this purpose, we calculated a set

of approximate root mean square end-to-end distances as <R2> = LI, where L is the contour

length and [ is the Kuhn length of Gly-Ser peptides, both obtained by assuming a length of
one peptide unit as 3.8 A.” It was found that the calculated means (R,,.,,) are close to the
fitted ones but change in a more systematic way. Re-analysis of the kinetic data by
constraining the R ., values provided an improved set of distributions and diffusion
coefficients. The recovered intramolecular diffusion coefficients were also found to lie in the

range of 10 cm?/s to 10°cm?/s, which are in the same order of magnitude as values for

5,24 5

similar peptides obtained experimentally”™** and theoretically,” and one to two orders of
magnitude slower than those of free amino acids.”® For the available values (N < 10), the
coefficients increase with contour length.

Energy transfer efficiency. Average energy transfer efficiency in the system can be

calculated through time-resolved or steady—state fluorescence measurements according to the

following equations:

D, =1- L (6a)
IO

@, =1-1- (6b)
TO

I and I, as well as T and T, are the fluorescence intensity and average lifetime of the donor
residue in the presence and absence of the acceptor residue, respectively. Equation 6b is only
valid if the fluorescence decay can be fitted monoexponentially. This is not the case for the
present FRET systems, such that the fluorescence intensity was preferred in the calculation of

the energy transfer efficiency.
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Figure 4 shows the fluorescence emission spectra (donor excitation) of the doubly-labeled
peptides with different contour lengths and the naphthalene donor-only-labeled peptide. In the
absence of the DBO acceptor, a strong emission of the naphthalene donor was observed from
300—400 nm. In the Nal/DBO doubly-labeled peptides, the emission of naphthalene was
significantly reduced and the typical emission of DBO appeared at longer wavelength as a
consequence of singlet-singlet energy transfer. With increasing peptide length, the intensity of
naphthalene fluorescence recovers again partially as a result of a reduced energy transfer
efficiency. As a peculiarity, it has to be noted that the DBO fluorescence intensity remains
surprisingly constant regardless of the large variations in donor fluorescence; this is due to the
delicate balance of two factors since the shorter peptides show more efficient energy transfer,
but also shorter DBO fluorescence lifetimes due to more efficient intramolecular quenching
of the excited acceptor by the ground state donor.

The steady-state fluorescence results are summarized in Table 3. The average energy
transfer efficiency calculated according to the changes of naphthalene emission is strongly
dependent on the contour length of the peptides. It decreases from 94% for the shortest Nal-
DBO peptide to 60% of the longest one, Nal-(Gly-Ser),,-DBO. There are two parameters that
can principally reduce the energy transfer efficiency: longer average distances or slower
conformational fluctuation rates. The recovered intramolecular diffusion coefficients actually
increase for the longer peptides, which demonstrates that the reduced energy transfer
efficiency derives from a larger end-to-end distance in the longer peptides.

The effective average end-to-end distance at which energy transfer occurs, R',..,,, can be

calculated from the energy transfer efficiency according to Equation 7.

R°+R,°

mean

(7)

ET

In case that the conformations of the peptides are fixed, i.e, no fluctuations occur during the

lifetime of excited donor, R',.,, Will be equal to the equilibrium average end-to-end distances
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(R ), returned from the global analysis. However, in the case of Gly-Ser peptides, the high
flexibility of the backbone facilitates rapid conformational changes, such that the R', .., values
reflects the average distances at which energy transfer occurs, which will be naturally shorter
than the equilibrium average end-to-end distance, R,,.,,, as a consequence of the vastly more
efficient transfer rates at shorter distance (R° dependence). Additionally, the difference
between R',.,, and R, .,, should be larger for the longer peptides because the reduced energy
transfer efficiency in the longer peptides results in a longer lifetime of the donor residue,
which makes it possible that even peptides with remote donor/acceptor separation have
sufficient time for diffusion to explore conformations with suitable energy transfer distanced.

The R',.,, values obtained from steady-state measurements in Table 3 with the R, values
recovered by global analysis in Table 2 are generally consistent with the above expectations:
for the shorter peptides, the R',..,, value are quite similar to R, due to the high energy
transfer efficiency, but with increasing contour length, the R, values become significantly
larger than the corresponding R',.,, values. However it is also noticed that the assumed R, .,,
value for the shortest Nal-DBO peptide, 5.4 A, is shorter than the calculated R',.,, value, 6.2
A. This suggested that the model used for predicting the root mean square end-to-end distance
has some shortcoming for the very short chain with only two peptide bonds. In fact, both
numerical simulations,"” molecular dynamics simulations,” as well as end-to-end collision
rate measurements’ have demonstrated that the very short peptide is an outlier due to its
apparently higher rigidity, which is now also borne out by a higher-than-expected effective
average distance of energy transfer, again suggesting a more extended conformation.

FRET from tryptophan donor to DBO acceptor residue. The fluorescence and triplet-
triplet absorption of tryptophan has been intensively employed to study the structural and
dynamic properties of protein and peptides.”*** The emission of tryptophan in water is very
broad with a maximum at 350 nm. The large overlap with the absorption of DBO makes
FRET possible. The critical radius, R,, for the Trp/DBO energy donor/acceptor pair was also
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calculated from the spectra overlap (J = 3.97 x 10" M'cm'nm*, being the same for peptide-
linked tryptophan and DBO, Trp-(GlySer), and (GlySer),-DBO), and a value of 9.9 £ 0.2 A,
virtually the same as for the Nal/DBO pair, which allows one to conduct closely related
experiment.

In this paper, we also employed the steady-state fluorescence intensity of tryptophan
(donor) to calculate the energy transfer efficiency and the effective average end-to-end
distance. The chemical structure of Nal and Trp is very similar (Scheme 1); it is therefore a
very good approximation that the structural and dynamic properties of these two series of
peptides such as the equilibrium end-to-end distance distribution and the intramolecular
diffusion coefficient are very similar. There is, however, an important photophysical
difference between the two probes, which should have a direct and predictable effect on the
energy transfer efficiencies. Namely, the fluorescence lifetime of Trp is shorter than that of
Nal by one full order of magnitude, which limits the probability that FRET is induced through
diffusional fluctuation and conformational changes, but favor a static energy transfer. In other
words, the contribution of the diffusion-enhanced FRET, and therefore the overall FRET
efficiency is reduced in the Trp-based peptides (Table 3). An additional manifestation of this
notion is that the Trp peptides should give rise to systematically larger R',.,, value (closer to
the equilibrium R,.,,), which is supported by the experimental data in Table 3.

Participation of intermolecular energy transfer. It should be noted that the global
analysis is based on the assumption that the FRET process only occurs between naphthalene
and DBO attached in the same peptide, i.e., that the change of the fluorescent property of the
naphthalene residue is only caused by an intramolecular energy transfer process. To exclude
intermolecular energy transfer or other quenching processes, control experiments were
performed. For this purpose, the donor—only labeled peptide, 100 uM Nal-(Gly-Ser), D,O
solution was excited at 285 nm. The emission spectrum between 290-550 nm showed a

typical naphthalene fluorescent peak at 335 nm. After the addition of the acceptor-only
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labeled peptide, 100 uM (Gly-Ser),-DBO, 285-nm excitation did not lead to DBO emission.
Additionally, time-resolved measurement demonstrated that before and after addition of
acceptor-only labeled peptide, the lifetime of naphthalene in the donor-only peptide remained
unchanged, indicating the absence of quenching. These control experiments suggested that at
100 uM, the upper limit of peptide concentration applied in the fluorescence measurements in
this paper, no intermolecular energy transfer happens, i.e., any FRET observed in the doubly-
labeled peptides must occur intramolecularly.

In addition, this experiment provides conclusive evidence that association between the
peptides does not occur at typical experimental concentrations, since aggregation would
situate probe and quencher in sufficiently close proximity to allow FRET. In addition,
aggregation should be further disfavored by the lower concentration employed in most
experiments.

Discussion

FRET is widely employed, besides its application in supramolecular photonic devices,” to
measure molecular conformational changes and probe-quencher distances, mostly
intramolecularly in biopolymers.”'***** One of the key problems in the application of FRET is
the selection of suitable donor/acceptor pairs with the appropriate Forster critical radii, which
is due to the very strong distance dependence of the energy transfer rate and therefore transfer
efficiency (Figure 5).

Note that most conventional FRET probe/quencher pairs have critical radii ranging from
20—100 A.* The resonance energy donor/acceptor pairs employed in this paper, Trp/DBO and
Nal/DBO, have similar, very small critical radii of 9.9 A and 9.8 A respectively, and should
therefore be suitable to probe chromophore separations at such short distances. Since FRET
measurements are most sensitive in the range where the distance between probe and quencher
lies between 0.5 R, and 2 R, the present probe/quencher pairs should excel when

probe/quencher separation between 5-20 A are to be investigated. For average energy transfer
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distance below 5 A energy transfer would be too fast and efficient (> 98%, kg > 64k,), while
above 20 A it is too inefficient (< 2%, kg > 1/64k,), compare Figure 5. The average end-to-
end distances in the short flexible Gly-Ser peptides studied in this work range from a few
angstrom to less than 20 A, and are are therefore ideally suited for the present FRET pairs.

An additional motivation for using donors and acceptors with small molecular size as well
as small Forster critical radii comes from theoretical work and molecular dynamic
simulations. These have shown that the survival probability of energy donor/acceptor pairs in
doubly-labeled polymer chains can be most accurately recovered from the approximate
theories, such as WF theory or the SSS model, if the Forster critical radius and chormophore
sizes are smaller or similar to the chain length.'"'* Evidently, this theoretical condition cannot
be fulfilled by most established FRET donor/acceptor pairs when the end-to-end distances
become very short. In comparison, the energy donors used in the present work (tryptophan or
naphthalene) and in particular the acceptor (DBO) are very small compared with conventional
fluorescent probes.” This specific advantage together with the small Forster critical radius
around 10 A make it possible to recover the structural and dynamic properties of short
peptides from the fluorescence decays, based on the modified Smoluchowski equation and
global analysis.*

Singlet-singlet energy transfer may occur through an exchange (Dexter) or a resonance
(FRET) mechanism, or both."*** Transfer due to exchange interaction become more
important at very small donor/acceptor separation, while FRET dominates at longer distance.
In our previous work, where naphthalene and DBO were separated by a dimethylsiloxy tether
and measured in n-hexane, energy transfer from naphthalene to DBO was considered to occur
mainly through Dexter mechanism due to the very short and flexible tether and very lower
solvent viscosity.' In the current work on a more rigid peptide chain and more viscous

solvent, we expect FRET to become dominant. Actually, the ratio of energy transfer through

17



Dexter and FRET can be estimated roughly. At the rapid-diffusion limit of fluorescence
resonance energy transfer, the upper limit of energy transfer rate can be estimated by eq. 8.>**

2.523RS

3
Tpr

®)

kFRET =

T, is the lifetime (in s) of the donor in the absence of the energy transfer and r is the distance
of closest approach of the donor and acceptor (in nm), which is taken as 0.4 from the reaction
distance for Trp/DBO.” The calculated FRET rate constant is found to be 1.1 x 10° M™'s™,
much smaller than the experimental intermolecular quenching rate constant of naphthalene by
DBO (ca. 6 x 10° M's™" in water, see Results), indicating that a Dexter mechanism dominates
in the intermolecular case with less than 20% of energy transfer through FRET. However, this
does not mean that Dexter is also dominant in the case of intramolecular energy transfer,
which is due to a slower intramolecular diffusion, which puts the exchange mechanism at a
disadvantage since it requires a close donor/acceptor approach. Both current work and
previous work have shown that intramolecular diffusion coefficients fall at least one order of

magnitude below the respective intermolecular ones,**

which suggests the energy transfer
rate by Dexter will decrease by at least 10 times in the intramolecular case. On the other hand,
the intrinsic distance dependence of the energy transfer rates by FRET remains almost
unchanged. It is therefore reasonable to assume that FRET becomes dominant in the peptides
investigated.

Experimentally, time-resolved fluorescence decay traces of donor and acceptor were
recorded for each peptide in the presence and absence of FRET. The fluorescence decay
traces of naphthalene in the presence of FRET cannot be satisfactorily fitted
monoexponentially. Nevertheless, a biexponential fit is sufficient to describe the decay traces
and even in this case the contribution of the longer-lived component is small (< 10%). It is

possible to define an “average” lifetime (Table 1) and employ it to calculated an apparent

intramolecular quenching rate constant by energy transfer, which can be compared with the
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end-to-end collision rate constants previously determined for the same Gly-Ser peptide
backbone (k, values in Table 1).° The results entered in Table 1 as ker values and plotted in
Figure 6 as the logarithmic rate constants versus logN, with N taken as number of peptide
units. Such plots are common in polymer and biopolymer kinetics*® in order to evaluate
deviations from ideal-chain behavior. As can be seen, the apparent quenching rate constants
from FRET fall far above the end-to-end collision rates, which suggests that the quenching of
the donor by the acceptor does not occur through a well-defined and intimate contact, but
through a longer-range interaction characteristic for FRET. In addition, the inversion at very
short donor/acceptor, which is found for the end-to-end collision rates disappears, although a
negative curvature remains, which reflects steric hindrance effects prominent in very short
chain. This discriminating feature also points to a quenching mechanism with looser
geometrical constraints, namely FRET, which depends primarily on the distance.

The fluorescence decay traces were accordingly subjected to global analysis according to
the pertinent FRET model (eq. 1). This analysis yielded the equilibrium end-to-end distance
distributions (for example see Figure 3) and the intrachain diffusion coefficient (Table 2). The
recovered intramolecular diffusion coefficients lie in the reasonable range of 10cm?/s, at
least one order of magnitude smaller than the diffusion of free amino acid molecules (ca.
10~ cm*/s in H,0).” Most importantly, a decrease of the diffusion constants for the shorter
peptides is observed. In a previous study,” we have numerically simulated the dynamics of
the short Gly-Ser peptides and suggested that a slower diffusion coefficient of shorter
peptides would be the underlying reason for the negative curvature and the weaker length-
dependent end-to-end collision rates (Figure 6) compared with theoretical prediction for the
ideal chain model. The results in the present paper now verify this suggestion experimentally.
The lower diffusion coefficients in the shorter peptides can be most intuitively in terms of
steric hindrance effects, since a short backbone restricts motion of the chain ends more than a

longer one does. In addition, the lower diffusion coefficients can be interpreted in terms of a
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higher “internal friction”, which is yet another conceptual approach to chain stiffness in
polymers and biopolymers.'**

The time-resolved fluorescence measurements in the Trp/DBO doubly-labeled peptides,
which are exactly those for which the end-to-end collision rates have been measured, were
less conclusive and not amenable for more detailed global analysis. This is because the time-
resolved fluorescence decay of tryptophan is complex and non-monoexponential even in the
absence of acceptors.’ Even free tryptophan shows a bi-exponential trace in neutral aqueous
solution. In Trp/DBO-labeled peptides, the decay pattern becomes more complex. As a
second complication, the very broad emission of tryptophan overlaps with that of DBO,
which would require a ratiometeric method to discriminate the fluorescence of the DBO
acceptor upon excitation of tryptophan as donor. Nevertheless, the integrated energy transfer
efficiency can be determined from steady-state fluorescence measurements, which allows at
least estimates of the effective average end-to-end distances.

The directly observable properties of fluorescent labeled biopolymer chain, such as the
end-to-end collision rates and the intramolecular energy transfer efficiency in peptides and
oligonucleotides, are dependent on two factors: the equilibrium end-to-end distance
distribution and the flexibility of the backbone. The Trp/DBO probe/quencher pair has been
proven to provide a measure of the end-to-end collision rates in peptides, where DBO serves
as a long-lived probe and Trp as a selectively collision-induced quencher.*”"* By changing the
role of tryptophan from the contact quencher to that of an energy donor with DBO acting as
acceptor, or by exchanging tryptophan by the closely related naphthalene as donor, it is now
possible to obtain approximate distributions. The results are shown for naphthalene in Figure
3, obtained by global analysis. The data for tryptophan allow a more direct estimate on the
average end-to-end distances and therefore distributions because the singletlifetime of
tryptophan is very short (< 3 ns), such that the Brownian motion during its excited state

lifetime cannot result in a large displacement, especially because of the relatively small
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diffusion coefficients of the chain ends. The effective average energy transfer distance, R',..,.,
recovered from the Trp/DBO FRET system should therefore fall only slightly below the
actual average distance under equilibrium conditions, R,,,. In a first approximation, the
average energy transfer distances obtained from (steady-state) FRET in Trp/DBO peptides
can be taken as measure of the average end-to-end distance. This approximation should hold
particularly well for rigid peptides or in very viscous media where the motion of the chain on
a 3-ns time scale can be neglected.'* Even in the case of the presently investigated flexible
Gly-Ser peptides, the agreement between the energy transfer distance obtained from Trp/DBO
FRET (Table 3) are in satisfactory agreement with the experimental values by global fitting of
the Nal/DBO FRET data, as well as the theoretical values for an ideal chain model (Table 2).
Conclusions

Two energy donor/acceptor pairs (naphthalene/DBO and tryptophan/DBO) with very small
Forster radius (R, ~10 A) have been applied to recover structural and dynamic properties of
short flexible peptides through intramolecular FRET. These donor/acceptor pairs with very
small critical radius have proven very suitable for investigating these very short biopolymers.
In addition, FRET efficiencies in the tryptophan/DBO donor/acceptor pair allowed direct
estimates the average end-to-end distance of peptides, which is made possible by the short
fluorescence lifetime of tryptophan. Global analysis of the time-resolved fluorescence decay
traces and end-to-end distances obtained from the ideal chain model were also employed to
improve the accuracy of the results. The results confirmed that the intramolecular diffusion
coefficients are one to two orders of magnitude smaller than the intermolecular diffusion
coefficients. The smallest diffusion coefficients were observed in the shorter peptides, in line

with previous numerical simulations result.
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Captions for schemes and figures

Scheme 1. Structure of doubly labeled peptides: a) Nal/DBO labeled peptides, Nal-(Gly-
Ser),-DBO and b) Trp/DBO labeled peptides, Trp-(Gly-Ser),-DBO.

Scheme 2. Structure of CB7 combined peptides Nal-(Gly-Ser),-DBO.

Figure 1. Time-resolved fluorescence decay of naphthalene donor in doubly labeled peptides
a) Nal-DBO, b) Nal-(Gly-Ser),-DBO, c¢) Nal-(Gly-Ser),-DBO, d) Nal-(Gly-Ser),,-DBO, and
in the donor-only peptide e) Nal-(Gly-Ser),. A, = 285nm, A_,, = 335nm.

Figure 2. Time-resolved fluorescence decay of DBO acceptor in doubly labeled peptides a)
Nal-DBO, b) Nal-(Gly-Ser),-DBO, c) Nal-(Gly-Ser),-DBO, and d) Nal-(Gly-Ser),,-DBO. A,
=285nm, A, = 450nm.

Figure 3. Representative end-to-end distance distribution in Nal/DBO doubly labeled
peptides recovered from direct global analysis: Nal-DBO (—), Nal-(Gly-Ser),-DBO (----),
and Nal-(Gly-Ser),-DBO (— - — - — ).

Figure 4. Fluorescence emission spectra of doubly labeled peptides Nal-(Gly-Ser),-DBO
(solid line, from lower to the upper ones, n = 0, 1, 2, 4, 6, and 10, respectively) and
naphthalene donor-only peptide (dashed line, Nal-(Gly-Ser),), as well as the emission
spectrum of peptide Nal-(Gly-Ser),-DBO (3.8 x 10~ M) in the presence of CB7 (7.5 x 107
M) (dotted line). A,, = 285 nm.

Figure 5. FRET efficiency dependent on the donor/acceptor distance.

Figure 6. Double logarithmic plot of kg (open cycle) and k, (solid cycle) versus peptide
length (data taken from Table 1). A function of the type y = a —1.5x — b/x was fitted to the
experimental data (a = 9.37, b = 0.392 for data obtained from collision-based experiments,®
and a = 9.57, b = 0.229 for data obtained from experiments based on singlet-singlet energy
transfer from current work). The dash-dot-dash line has a slope of —1.5 and is shown to

illustrate the deviation from the theoretical behavior.
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Scheme 2
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Table 1. Parameters of naphthalene fluorescence lifetimes in donor-only-labeled and

donor/acceptor doubly-labeled peptides*

(o, T k, k,
peptide N e X . et 1yt
(ns) (ns)* (10's™)“  (10's™)°
Nal-(G-S), 35.5(1.000) 1.01 35.5
Nal-DBO 2 3.1(0.975), 1.28 3.7 24 4.1
25.8(0.025)
Nal-G-S-DBO 4 3.5(0.966), 1.36 4.1 22 6.8
22.6(0.034)
Nal-(G-S),-DBO 6 5.0(0.961), 1.09 6.2 13 49
35.4(0.039)
Nal-(G-S),-DBO 10 8.3(0.920), 1.09 10.5 6.7 3.1
36.0(0.080)
Nal-(G-S),-DBO 14 10.8(0.978), 1.11 11.4 5.9 2.0
36.4(0.022)
Nal-(G-S),,-DBO 22 18.2(0.904), 1.12 20.7 2.0 1.1
45.0(0.095)

“ A, =285nmand A, =335 nm.

’ Recovered lifetimes (7;) and preexponential factors (o, normalized) of single or double
exponential fits to time-resolved fluorescence decay of naphthalene residue in different
peptides.

¢ Lifetime averages (Eairi) for multi-exponential fits.**

¢ Apparent quenching rate constants of naphthalene by DBO, calculated from the average
lifetime of naphthalene in Nal-(Gly-Ser),-DBO peptides.

¢ Collision-controlled intrachian quenching rate constants of DBO by tryptophan, taken from

Ref. 6.
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Table 2. Distance distribution and diffusion coefficient recovered from global analysis for

Nal-(GlySer),-DBO peptides.

direct global analysis model-assistant analysis
L Rinean D Riean D

" N A (A (107cm?s) X (M) (107cm%s) :
0 2 7.6 6.14 2.67 1.12 54 0.78 1.42
1 4 15.2 6.26 2.76 1.09 7.6 5.44 1.10
2 6 22.8 7.96 4.03 1.13 9.3 11.69 1.14
4 10 38.0 10.39 5.66 .11 12.0 14.73 1.12
6 14 53.2 10.91 491 1.08 14.2 79.0 1.10
10 22 83.6 14.76 4.47 1.16 17.8 4.2 1.16

“ Contour length, L = N [, where N is the number of intervening peptide units and 1 is the
length per unit (Kuhn length), taken as 3.8 A.

b Experimental average end-to-end distance obtained by FRET measurements and direct
global analysis.

“ Root mean square end-to-end distance of each peptide calculated from the relationship

Rmean = IW
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Table 3. Energy transfer efficiency and effective end-to-end distance in peptides Donor-(Gly-

Ser),-DBO with naphthalene and tryptophan serve as energy donor.

Donor = naphthalene Donor = tryptophan
n N Dy R ean (A) Dy R ean (A)
0 2 0.94 6.2 0.94 6.4
1 4 0.92 6.5 0.86 8.6
2 6 0.87 7.1 0.79 9.5
4 10 0.73 8.3 0.68 10.7
6 14 0.70 8.5 0.65 11.3
10 22 0.61 9.1 0.58 11.0
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