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1. Summary 

Neutrophils are among the most important components of the innate immune 

response, which provides the first line of host defense. The antimicrobial potential of 

neutrophils has been traditionally divided into either non-oxidative or oxidative 

mechanisms. Two of the most important antimicrobial systems of these mechansims 

are granule-associated antimicrobial proteases and peptides and the nicotinamid 

adenine dinucleotide phosphate (NADPH) oxidase generating reactive oxygen species 

(ROS). In the past, studies often focused on the effects of either non-oxidative or 

oxidative mechanisms and decades of research have provided a detailed 

understanding of the regulation, generation and actions of these processes alone. 

Recent evidence challenged the established view of two independent mechanisms and 

proposed the cooperation of the NADPH oxidase with granule proteases in the killing 

of microorganisms. Furthermore, a novel phagocytosis-independent antimicrobial 

mechanism was found by the discovery of neutrophil extracellular traps (NETs). The 

formation of NETs was found dependent on NADPH oxidase activation and the 

production of ROS but NETs are believed to kill entrapped pathogens by NETs-

associated granule proteases and peptides. Consequently, NETs present additional 

evidence for the interaction of non-oxidative and oxidative killing mechanisms.  

Together, these findings opened a new field of investigation with many controversies 

to be elucidated and underscored that we need further insight into the mechanisms by 

which neutrophils specifically recognize and overcome pathogens. 

 

In this thesis, we followed the question whether the murine antimicrobial peptide 

cathelin-related antimicrobial peptide (CRAMP) is an important component of the 
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non-oxidative arm of neutrophil defense against S. aureus. This was motivated 

because little is known about cathelicidin function and activity in neutrophils and 

seems of crucial interest since mice lack the major constituent of human neutrophils -

the -defensins. We further aimed to specify the relationship between the NADPH 

oxidase and CRAMP with focus on the antimicrobial activity of CRAMP in 

association with NETs and in NADPH oxidase-deficient mice (gp91phox-/-). As a 

result, we could demonstrate a previously unknown intracellular antimicrobial activity 

of CRAMP against S. aureus. Specifically, CRAMP colocalized with S. aureus in 

phagolysosomes and we showed first evidence for the presence of intracellular active 

CRAMP. Most interestingly, phagolysosomal localization and intracellular activity of 

CRAMP was found independent of a functional NADPH oxidase controversially to 

our expectations. Investigation of NET-dependent killing of S. aureus revealed a 

negligible role for CRAMP due to inactivation of the peptide in association with 

NETs. This point is of particular relevance and should be considered in the current 

opinion of NETs-mediated antimicrobial activity. In summary, our data provided 

deeper knowledge about one specific member of the non-oxidative killing mechanism 

and gives reason to reconsider the controversial results about interaction of NADPH 

oxidase in activating non-oxidative mechanisms. 

 

In addition, we followed the question whether recognition of S. aureus by TLR2 

regulates the induction of non-oxidative and oxidative killing responses as well as the 

induction of NETs. The background of this study is based on several previous reports. 

First, results of our group evidenced a relationship between TLR2-mediated 

staphylococcal killing by neutrophils and the susceptibility of S. aureus to cationic 

antimicrobial peptides. Additionally, TLR2 activation has been shown to up-regulate 
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cathelicidin expression. Second, TLR2 was demonstrated to induce phosphorylation 

of p47phox and up-regulation of p47phox mRNA in macrophages. However, little 

attention has been paid to similar studies in neutrophils. Third, recognition of 

pathogens by TLRs was hypothesized to induce formation of NETs but there is as yet 

no evidence. First results unraveled a role for TLR2 in rapid induction of the NADPH 

oxidase, whereas TLR2 signaling had no influence on CRAMP activity. Interestingly, 

pathogen sensing for the induction of NETs formation did not depend on TLR2-

MyD88 signaling. Taken together, the results demonstrate a role for TLR2 in 

mediating rapid killing of S. aureus by accelerating the activation of the NADPH 

oxidase complex possibly by influencing assembly. 

Further studies of the mechanisms underlying the relationship between pathogen 

sensing and non-oxidative and oxidative killing mechanisms would contribute greatly 

to our understanding of how the innate immune system resolves bacterial infections 

and will help in the development of therapeutic strategies to assist in clearance of 

pathogenic bacteria. 
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2. General Introduction 

2.1. Neutrophil Biology 

Neutrophils emerge from pluripotent hematopoietic stem cells in the bone marrow. 

They are released into the peripheral blood and circulate for 7-10 hours before 

migrating into the tissues, where they have a life span of only a few hours. 

Neutrophils leave the bone marrow as terminally differentiated cells synthesizing low 

amount of RNA and protein. In humans roughly 100 billion neutrophils enter and 

leave circulating blood every day. 

Neutrophils are the first immune cells recruited from the blood stream to the site of 

infection thereby building the first line of defense against invading microorganisms 

such as bacteria, fungi, and protozoa. The neutrophil-mediated inflammatory response 

is a multi-step process involving initial adhesion of circulating neutrophils to 

activated vascular endothelium, the subsequent extravasation and migration of 

neutrophils towards the site of infection and finally the elimination of invading 

microorganism. Most of these processes involve the mobilization of cytoplasmic 

granules and secretory vesicles. We here focus on the events involved in microbial 

clearance by neutrophil-mediated killing. On encountering the microbe, neutrophils 

take them up by phagocytosis. The phagosome fuses with cytoplasmic neutrophil 

granules to form a phagolysosome, wherein the bacteria are killed by non-oxidative 

and oxidative killing mechanisms. Non-oxidative killing is mediated by the 

antimicrobial arsenal stored in the neutrophil granules discussed in sections 2.1.1 and 

2.1.2, whereas oxidative killing depends on the generation of reactive oxygen species 

(ROS) described in section 2.1.3. 
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2.1.1. Neutrophil Granules 

Non-oxidative killing of invading pathogens is mediated by the fusion of neutrophil 

granules with the phagosome and the subsequent release of antimicrobial granule 

contents from the granule proteoglycan matrix into the phagolysosome. Four types of 

granules have been described and can be discriminated according to their protein 

contents (Figure 1). 

  

Figure 1. The four types of neutrophil granules. The contents of the neutrophil granule 

subsets encompass the non-oxidative killing mechanisms of neutrophils. Primary, secondary, 

and tertiary (gelatinase) granules, as well as secretory vesicles contain characteristic 

proteases, antimicrobial proteins, and receptors. CathG, cathepsin G; NE, neutrophil elastase; 

R, receptor; CR-1, complement receptor 1. Other abbreviations as explained in the text. 

Primary granules contain acidic hydrolases and antimicrobial proteins. 

Myeloperoxidase (MPO), the defining protein of primary granules (1-3), reacts with 

hydrogen peroxide (H2O2), formed by the nicotinamide adenine dinucleotide 

phosphate (NADPH) oxidase, to form hypochlorous acid (HOCl), which is highly 

toxic for microorganisms. MPO is released to the phagosome or the extracellular 

space upon neutrophil activation (4). In humans, the major constituents of primary 

granules are small cationic antimicrobial peptides named -defensins (5). -defensins 

have antimicrobial activity against a broad range of bacteria, fungi, enveloped viruses, 
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and protozoa (5-7). They exert antimicrobial function by forming multimeric 

transmembrane pores (8). Interestingly, murine granulocytes lack -defensins (9). In 

addition, primary granules contain three structurally related proteases: neutrophil 

elastase, cathepsin G, and proteinase-3 (10-12). Neutrophil elastase and cathepsin G 

double knock-out mice have a severe defect in clearance of infections (13) suggesting 

an important role of granule proteases in efficient microbial killing. Proteinase-3 is 

responsible for processing of the secondary granule protein human cathelicidin 

protein-18 (hCAP-18) into its antimicrobial active form LL-37 (14) indicating 

interaction of primary and secondary granule contents. 

The proteins of secondary granules encompass several potent AMPs including 

lactoferrin, hCAP-18 (human) and cathelin-related antimicrobial peptide (CRAMP, 

murine), neutrophil gelatinase-associated lipocalin (NGAL), and lysozyme. 

Lactoferrin and NGAL are iron-binding proteins and impair bacterial growth by iron 

sequestration (15-21). hCAP-18 and its murine homologue CRAMP are 18 kDa 

proteins belonging to the cathelicidin family of AMPs (22-25). The function of 

hCAP-18 and CRAMP will be discussed in detail in section 2.1.2. In addition to 

AMPs, the transmembrane units of NADPH oxidase gp91phox/p22phox (cytochrome 

b558) are constituent of the secondary granule membrane. It is recruited to the 

phagosome after neutrophil activation and initiates the oxidative burst (26, 27). 

In contrast to secondary granules with their high content of antimicrobials, gelatinase 

or tertiary granules contain the metalloproteases gelatinase (MMP-9) and leukolysin 

(MMP-25). They are stored as proforms and are proteolytically activated following 

exocytosis (28-32). The metalloproteases are believed to be of central importance in 

the degradation of vascular basement membranes during neutrophil extravasation due 

to degradation of extracellular matrix components (28, 33, 34). 
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The membranes of secretory vesicles comprise a reservoir of receptors, which are 

incorporated in the plasma membrane during exocytosis and are important in 

pathogen recognition: CD11b/CD18, complement receptor 1 (CR1), 

formylmethionyl-leucyl-phenylalanine (fMLP)-receptors, CD14, and the FcIII 

receptor CD16 (35-38). 

 

2.1.2. Cathelicidins of Men and Mice 

Cathelicidins are small cationic antimicrobial peptides (CAMPs). While human and 

mice each express a single cathelicidin, hCAP-18 and CRAMP respectively, other 

mammalians express several different cathelicidins. All cathelicidins are produced as 

inactive precursors consisting of an N-terminal signal peptide, a prosequence named 

cathelin (cathepsin L inhibitor) domain and a structurally variable C-terminal 

antimicrobial domain (Figure 2) (39). The signal peptide is cleaved off after targeting 

the cathelicidin to secondary granules. The 14 kDa cathelin domain is evolutionary 

highly conserved, whereas the C-terminal antimicrobial domain shows little sequence 

homology among species. The inactive 18 kDa proproteins are stored in the secondary 

granules of neutrophils (40). Proteolytic cleavage of the inactive precursor to release 

the active C-terminal antimicrobial peptide is mediated by proteinase-3 in humans and 

an unknown protease in mice upon neutrophil activation and degranulation (14). 

Intracellular cleavage and release of the mature peptide into the phagolysosome has 

not yet been found. The mature human peptide LL-37 has a length of 37 amino acids; 

the mature murine peptide CRAMP is 34 amino acids long. Both peptides have 

predicted amphipathic –helical structure and the mechanism of bactericidal activity 

assumes intercalation and assembly of the peptide within bacterial membranes to 

disrupt membrane integrity (41-44). 
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Figure 2. Schematic representation of CRAMP pre-proprotein and its processing site. 

The murine cathelicidin contains an N-terminal signal peptide, a highly conserved cathelin-

like domain in the middle and a highly variable C-terminal antimicrobial domain. 

In addition to neutrophils, hCAP-18 and CRAMP have been found in mast cells, 

macrophages, lymphocytes, and epithelial cells (45-49). In macrophages and 

epithelial cells, only low levels of cathelicidin are expressed but become strongly up-

regulated after infection or injury. Interestingly, the antimicrobial active form can be 

found in these cells, but how they are processed remains unknown. 

Purified or synthetic LL-37 and CRAMP have a broad range of antimicrobial activity 

against Gram-positive and Gram-negative bacteria. In vitro, Gram-negative bacteria 

are susceptible to lower concentrations of cathelicidin than Gram-positive bacteria. 

Lately, the generation of CRAMP-deficient mice underscored the importance of 

CRAMP against invading Gram-negative as well as Gram-positive pathogens in vivo. 

Experimental infection studies in CRAMP-deficient mice have demonstrated a critical 

role of CRAMP in defense against Streptococcus pyogenes skin infections (50), 

Escherichia coli urinary tract infections (51), and Neisseria meningitides bacteremia 

(52). So far, studies investigating the protective effect of cathelicidins mainly focused 

on epithelial cells and little is known about their function and activity in neutrophils. 
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2.1.3. The NADPH Oxidase 

As mentioned before, oxidative killing of invading pathogens depends on ROS 

generated by the NADPH oxidase. The NADPH oxidase is a multicomponent enzyme 

that transfers electrons from cytoplasmic NADPH onto extracellular or 

intraphagosomal molecular oxygen (O2), thereby generating superoxide (O2
-). In 

resting cells, the NADPH oxidase is unassembled and inactive, with several protein 

components segregated into membrane and cytosolic locations. The membrane-bound 

subunits gp91phox and p22phox form the cytochrome b588. Cytochrome b588 is 

incorporated into the membranes of secondary granules and secretory vesicles in 

resting neutrophils, whereas the subunits p47phox, p67phox, p40phox, and Rac2 reside in 

the cytosol (Figure 3). During neutrophil activation and recruitment of secondary 

granules and secretory vesicles, cytochrome b588 locates to the phagolysosomal 

membrane or the cell surface. Then, the cytosolic p47phox is rapidly phosphorylated 

and the cytosolic subunits p47phox, p67phox, and p40phox translocate as a complex to the 

membrane (53-55). There, p47phox is further phosphorylated and associates with 

cytochrome b588. Additionally, p67phox interacts with cytochrome b588 and binds to the 

small GTPase Rac2, which translocated independently to the assembling oxidase (56-

58). The phosphorylation is assumed to be mediated by protein kinase C (PKC); 

however, several PKC isoforms have been found to phosphorylate p47phox (59-64). 
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Figure 3. Model illustrating the assembly of the NADPH oxidase. In resting neutrophils, 

the NADPH oxidase is unassembled and inactive. The subunits are segregated into membrane 

and cytosolic locations. Upon cell activation, the cytosolic regulatory components p47phox, 

p67phox, and p40phox translocate as a complex to the membrane-associated gp91phox/p22phox 

(cytochrome b558). The small GTPase Rac translocates independently to the assembling 

oxidase. 

Once assembled, the NADPH oxidase generates O2
-. However, O2

- itself has low 

bactericidal potency. Within the phagosome, superoxide is rapidly converted into 

H2O2 by superoxide dismutase (SOD). H2O2 reacts to form other ROS, such as singlet 

oxygen and hydroxyl radical (OH), which can efficiently kill bacteria. In addition, 

MPO can catalyze the H2O2-dependent oxidation of halides to form toxic hypohalous 

acids, mainly HOCl. The importance of NADPH oxidase is illustrated by the fact that 

persons who lack a functional oxidase have chronic granulomatous disease (CGD) 

and suffer from repeated life-threatening bacterial and fungal infections. In most cases 

of CGD the gene for gp91phox is mutated resulting in total absence of both gp91phox 

and p22phox (65-67). Interestingly, deficiency of MPO is common but seldom leads to 

serious defects in microbial killing questioning the importance of ROS in bacterial 
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clearance. Indeed, bactericidal activity of ROS is low when assessed under conditions 

found in the neutrophil phagolysosome (68). These findings raised doubts about the 

role of ROS in efficient microbial killing. 

Besides electron transfer, the NADPH oxidase also transfers protons to compensate 

for charge separation (69). Unexpectedly, the intraphagosomal pH does not decrease, 

but initially increases shortly after phagosome formation. Part of the charge 

compensation was shown to be due to influx of potassium ions instead of protons. 

Additionally, these cations were instrumental in liberating proteases from their acidic 

proteoglycan matrix in the granules (13). Thus, Segal and colleagues proposed the 

concept that the NADPH oxidase is primarily involved in the liberation of granule 

proteases into the phagosome. Their concept challenges the generally accepted view 

that oxidants directly confer microbial killing and needs to be further validated. 

However, this theory takes not into account the possibility that the activation of 

cathelicidin, which depends on active granule proteases, consequently might be 

affected as well. 

 

2.1.4. Neutrophil Extracellular Traps 

In 2004, a novel phagocytosis-independent killing mechanism, the formation of 

neutrophil extracellular traps (NETs), was discovered (70). In contrast to active 

phagocytosis and intracellular killing by AMPs and ROS, NETs provide an 

extracellular site for microbial killing. NETs consist of a backbone of nuclear 

chromatin-DNA that is decorated with AMPs and enzymes. Pathogens trapped by 

NETs are killed by high local concentrations of AMPs and enzymes similar to the 

killing in the phagolysosome; however, histones are also involved (71). 
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Lipopolysaccharide (LPS), phorbol myristate acetate (PMA), IL-8, and interferons 

have been shown to induce NETs to some extent as well as bacteria directly (70, 72, 

73). Pattern recognition receptors such as Fc receptors and Toll-like receptors 

(TLRs) are speculated to be involved in sensing and signaling and coincide to activate 

PKC, which induces assembly of the NADPH oxidase. Interestingly, the generation of 

ROS was found to be essential for NET induction (72). This ROS-mediated induction 

of NETs formation was termed NETosis (74) which points out that NETs are formed 

in a process that is neither apoptotic nor necrotic (75). However, the exact signaling 

events leading to NET formation are still unclear and need further investigation. 

NETs are able to entrap Gram-positive and Gram-negative bacteria as well as 

pathogenic fungi. Surprisingly, the mechanism of trapping has not yet been studied. 

Speculations about a charge-mediated mechanism whereby CAMPs in NETs trap 

negatively charged microbes exist. Consideration of the negative charge of the DNA 

backbone itself indicates that the positive net charge of CAMPs could also be 

neutralized by NETs-association alone. There is evidence that association of CAMPs 

with DNA reduces their bactericidal activity pointing towards neutralization of charge 

and thereby abolishing binding to the bacterial surface (76, 77). Consistently, no 

significant differences in the trapping by NETs of Streptococcus pneumoniae that had 

different surface charges were observed (78). It remains open what effectively 

attaches the microbe to NETs. 

Most bacteria are killed after they become trapped, but some bacteria are equipped 

with weapons against NETs. The most studied evasion mechanism is the production 

of an extracellular DNase for degradation of the DNA backbone. Other possible 

mechanisms might involve bacterial cell wall modifications to repel NETs or the 
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granule proteins, inhibition of NETs formation by blocking ROS, and secretion of 

proteases that degrade NET-associated granule proteins. 

 

2.2. Toll-like Receptors on Neutrophils 

Microbial infections are sensed by specific innate immune receptors, which recognize 

conserved patterns derived from pathogenic and non-pathogenic microbes. TLRs play 

a crucial role in the immediate detection and control of invading microbes. To date, 

11 mammalian and 13 murine TLRs have been described (79). TLRs are type I 

integral membrane glycoproteins characterized by the extracellular domains 

containing leucine-rich-repeat (LRR) motifs and a cytoplasmic signaling domain 

homologous to that of the interleukin 1 receptor, termed the Toll/IL-1R homology 

(TIR) domain. TLR1, 2, 4, 5, and 6 are expressed at the cell membrane whereas 

TLR7, 8, and 9 reside in subcellular compartments such as the endosome. Neutrophils 

express all of the TLRs with the exception of TLR3 (80). Individual TLRs recognize 

distinct microbe-associated molecular patterns (MAMPs) that have been evolutionary 

conserved in specific classes of microbes. The recognition of their unique ligands is 

mediated through diversification of LRR motifs, cooperative interactions between 

different TLRs, and the use of co-receptors or accessory molecules. 

Upon ligand binding, TLRs dimerize and undergo conformational changes. TLR2 was 

shown to form heterodimers with either TLR1 or TLR6 depending on the nature of 

the ligand (81). Conformational changes lead to the association of the TIR domains 

with either myeloid differentiation factor 88 (MyD88) or TIR domain-containing 

adaptor protein inducing interferon- (TRIF). MyD88 is critical for the signaling of 

all TLRs, except TLR3. Downstream signaling of MyD88 involves IL-1 receptor-
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associated kinase-4 (IRAK-4) and IRAK-1, which recruit tumor necrosis factor 

receptor-associated factor-6 (TRAF6). The cascade results in activation of nuclear 

factor-kappa B (NF-B) and mitogen-activated protein kinases to induce pro-

inflammatory genes and an antimicrobial response. TRIF signaling leads to the 

induction of a signaling cascade activating IRF-3 and IRF-7 and expression of type I 

interferons. 

 

2.3. Staphylococcus aureus 

Staphylococcus aureus is a facultative anaerobic Gram-positive bacterium colonizing 

the human skin and mucous membranes as a commensal. About 20% of the human 

population is persistently colonized, 60% are intermittent carriers, while 20% never 

carry the pathogen (82). When crossing the skin barrier, S. aureus causes abscess 

formation and has the possibility to disseminate and cause severe systemic infections. 

In the tissue, S. aureus is rapidly phagocytosed by neutrophils and exposed to the 

intracellular killing mechanisms described in the previous chapters. But, S. aureus is 

well equipped with several resistance mechanisms to survive in the phagosome. On 

the one hand, AMP resistance is due to natural modifications of teichoic acids and 

membrane phospholipids and secretion of proteases to disarm AMPs. On the other 

hand, S. aureus can resist oxidative killing by radical scavenging and removal of 

superoxide. 

Recognition of S. aureus by neutrophils inducing subsequent activation of 

antimicrobial defense and its resistance mechanisms against killing will be briefly 

outlined in the following sections. 
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2.3.1. Recognition of S. aureus by TLR2 

Sensing of S. aureus is mediated by staphylococcal lipoproteins and to a lesser extent 

by lipoteichoic acids, which are recognized by TLR2 and its co-molecules CD14 and 

CD36 (83-87). 

Activation of TLR2 by staphylococcal peptidoglycan and lipoproteins increased 

cathelicidin mRNA in murine fibroblasts (88) and cathelicidin protein in human 

corneal epithelial cells (89). The importance of TLR2 in mediating inflammatory and 

antimicrobial response against S. aureus is evidenced in TLR2-deficient mice, which 

are highly susceptible to S. aureus septicemia (90). Taken together, these results 

indicate a possible interaction between TLR2 and CAMP-mediated host defense. 

It remains to be elucidated whether TLR2 activates either a non-oxidative or oxidative 

antimicrobial response against S. aureus with further interest on the involvement of 

NADPH oxidase and the induction of NETs. 

 

2.3.2. Staphylococcal Resistance against AMPs 

Most neutrophil AMPs are of cationic nature. Staphylococcal resistance against 

CAMPs is therefore achieved by partially neutralizing the negative charge of the cell 

surface that would attract cationic molecules. The genes of the dltABCD operon insert 

positive charge modifications to wall teichoic acid and lipoteichoic acid. The Dlt 

proteins result in D-alanine substitutions of teichoic acid (91). Similarly, MprF adds 

L-lysine residues to phosphatidylglycerol exposed on the outer surface of the 

staphylococcal cytoplasmic membrane (92, 93). In both cases, the modifications 

reduce the affinity of CAMPs released into the phagosome and repel them from the 

cytoplasmic membrane. Staphylococcal mutants in dltA and mprF are highly 



 21

susceptible to killing by CAMPs and neutrophils in vitro, and show reduced virulence 

in animal infection models (94-96). In addition to positive charge modifications, 

S. aureus has the ability to neutralize CAMPs. Secretion of staphylokinase protects 

S. aureus from defensins due to its potent defensin-binding activity and aureolysin 

can inactivate LL-37 by cleavage (97, 98). 

 

 

Figure 4. Resistance mechanisms of S. aureus against killing by reactive oxygen species 

and antimicrobial peptides. Carotenoid pigment provides an antioxidant shield whereas 

catalase detoxifies hydrogen peroxide protecting S. aureus against ROS. Resistance to 

CAMPs is given by positive charge modifications of the cell wall, aureolysin-mediated 

proteolysis, and inactivation by staphylokinase. Modified from Nizet et al. (99). 

2.3.3. Staphylococcal Resistance against ROS 

ROS produced during the oxidative burst include superoxide anion, which is 

subsequently converted to H2O2, hydroxyl radical, and HOCl. Exogenously generated 

superoxide does not kill bacteria directly. S. aureus expresses two superoxide 

dismutases enzymes (SodA, SodM) responsible for removal of endogenous 

superoxide. There are contradictory results about the role of Sod in staphylococcal 
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resistance against superoxide in vivo. Clement et al. found evidence that inactivation 

of the major superoxide dismutase SodA has no effect on virulence in a mouse 

abscess model (100). A more recent study by the same group showed that mutants in 

SodA and SodM are less virulent in the mouse abscess model (101), indicating that 

SodA and SodM are involved in ROS resistance of S. aureus in vivo. H2O2 is 

bactericidal only at high concentrations. S. aureus can further convert H2O2 to H2O by 

the catalase KatA which accumulates extracelluarly protecting S. aureus from 

external H2O2 . In addition, S. aureus scavenges oxygen free radicals by expression of 

carotenoid pigment increasing resistance against oxidative neutrophil killing in vitro 

and in vivo (102). 

 

2.3.4. Staphylococcal Escape from NETs 

S. aureus can induce the formation of NETs and is itself entrapped in NETs pre-

activated with soluble stimuli (72, 75). Partial killing of S. aureus by NETs has been 

described but the killing activity was most likely due to the antimicrobial activity of 

histones and not granular proteins (75). Therefore, evasion of S. aureus from NETs 

must either depend on degradation of DNA backbone and escape from NETs or the 

inactivation of histones. Since S. aureus secretes a DNase similar to those described 

in NETs degradation by S. pneumoniae, this seems so far the most probable 

mechanisms for S. aureus to evade NETs. This interesting question has not yet been 

addressed and might be a future topic of our research. 



 23

3. Aim of Study 

Neutrophils are the first cells recruited to the site of infection providing immediate 

defense. Their relevance becomes obvious in persons who have neutrophils with 

defects in phagocytosis or killing and suffer from recurrent, often life-threatening 

infections. Neutrophils kill invading pathogens by a combination of non-oxidative and 

oxidative mechanisms involving antimicrobial peptides, reactive oxygen species and 

neutrophil extracellular traps. The microbicidal potential of many of these 

components alone is well established. First evidence of direct interaction of non-

oxidative and oxidative killing was given by the finding that the NADPH oxidase is 

involved in the liberation of granule proteases. However, it is not fully understood 

how these processes cooperate or depend on each other to kill bacteria. 

The first aim of this study was to examine the antimicrobial potential of neutrophil-

derived CRAMP and its site of action in staphylococcal killing. Further, the 

cooperation of non-oxidative and oxidative killing mechanisms was targeted with 

particular attention to the contributing roles of NETs and NADPH oxidase to 

cathelicidin-mediated host defense (Part 1). 

TLR2 contributes to efficient clearance of S. aureus by neutrophils and has been 

described to be involved in the regulation of antimicrobial peptide expression and in 

activation of the NADPH oxidase. Therefore, the second aim of the study was to 

investigate the role for TLR2 in cathelicidin-mediated staphylococcal killing and the 

potential regulation of CRAMP. Further, we intended to investigate the contribution 

of TLR2 in the oxidative killing of S. aureus and whether sensing of S. aureus by 

TLR2 induces the formation of NETs (Part 2). 
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Taken together, the aim of this thesis was to contribute to a better understanding of 

the complex network of non-oxidative and oxidative killing defense of neutrophils 

against S. aureus – on the one hand, by investigating the murine cathelicidin 

(CRAMP), its localization and site of action and on the other hand, by characterizing 

the TLR2-dependent regulation of non-oxidative and oxidative killing induced by 

S. aureus. 
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4. Results 
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Part 1 

 

Neutrophil antimicrobial defense against Staphylococcus aureus is mediated 

by phagolysosomal and extracellular trap-associated cathelicidin 
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Abstract 

Neutrophils kill invading pathogens by antimicrobial peptides (AMPs) including 

cathelicidins, reactive oxygen species and neutrophil extracellular traps (NETs). The 

human pathogen Staphylococcus aureus exhibits enhanced resistance to neutrophil 

AMPs in part due to alanylation of teichoic acids by the dlt operon. In this study, we 

took advantage of the CRAMP-susceptible phenotype of S. aureus ∆dltA to study the 

impact of the murine cathelicidin CRAMP on staphylococcal killing and to identify 

its key site of action in murine neutrophils. 

We demonstrate that CRAMP remained intracellular during PMN exudation from 

blood and was secreted upon PMA stimulation. We show first evidence that CRAMP 

was recruited to phagolysosomes in infected neutrophils and exhibited intracellular 

activity against S. aureus. Later in infection, neutrophils produced NETs and 

immunofluorescence revealed association of CRAMP with S. aureus in NETs. NETs 

similarly killed both S. aureus wt and ∆dltA indicating that CRAMP activity was 

reduced when associated with NETs; CRAMP regained activity after DNase 

treatment. CRAMP localization in response to S. aureus was independent of the 

NADPH oxidase whereas killing was partially dependent. Our study unravels that 

neutrophils use CRAMP in a timed and locally coordinated manner in defense against 

S. aureus. 
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Introduction 

Antimicrobial peptides (AMPs) are widely distributed in animals and plants and are 

among the most ancient innate host defense factors. Mammalian AMPs include -

defensins, -defensins, and cathelicidins. Cathelicidins are found in several 

mammalian species and increasing evidence suggests a key role for cathelicidins in 

innate immune defense. Human and murine leukocytes each constitutively express a 

single cathelicidin: hCAP-18/LL-37 and CRAMP, respectively. hCAP-18/LL-37 and 

CRAMP are stored as pro-peptides in secondary granules of neutrophils. hCAP-18 is 

proteolytically cleaved to the antimicrobial form LL-37 by extracellular proteinase 3 

(1), while the processing protease of CRAMP is unknown. Additionally to leukocytes, 

various epithelia including keratinocytes can induce the production of cathelicidins 

after injury or infection (2). However, significant production of cathelicidin in 

keratinocytes takes several hours; neutrophils entering the injured or infected skin 

immediately, therefore confer a rapid first defense. 

In murine polymorphonuclear neutrophils (PMN), CRAMP is among the major 

cationic AMPs (CAMPs) due to a lack of -defensins in mice (3). The human and 

murine cathelicidins are strongly induced in response to Gram-positive and Gram-

negative species in vitro and in vivo (4-9). Lately, the generation of CRAMP-deficient 

mice made it possible to identify the importance of CRAMP against invading 

pathogens (10). Experimental infection studies in CRAMP-deficient mice have 

demonstrated a critical role of CRAMP in defense against Streptococcus pyogenes 

skin infections (11), Escherichia coli urinary tract infections (12), and Neisseria 

meningitidis bacteremia (4). 
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Recently, neutrophil extracellular traps (NETs) were described as a new 

phagocytosis-independent antimicrobial mechanism of PMN. NETs are composed of 

chromatin and specific enzymes and proteins from PMN granules. They are released 

in response to chemokines and microbial stimuli in a specialized form of cell death 

that depends upon the NADPH oxidase (13) providing a new linkage of oxidative 

burst and AMP function. Cathelicidins have been identified in similar extracellular 

traps released by mast cells (14) and D-alanyl modification of cell wall teichoic acid 

increased pneumococcal survival in NETs (15). 

Non-oxidative killing and oxidative killing pathways in PMN have long been 

considered independent of each other. During oxidative burst, specific granules 

containing the transmembrane component of the NADPH oxidase fuse with the 

forming phagosome accompanied by the activation of the oxidase complex through 

recruitment of cytosolic subunits to the central transmembrane core. The assembled 

NADPH oxidase transfers electrons from the cytosol to the phagosomal lumen, where 

they are used to generate superoxide ions, which together with myeloperoxidase 

promote microbial killing (16). Recent studies propose an additional role of K+ influx 

from the cytosol into the phagosomal lumen, promoting disaggregation of the granule 

proteoglycan matrix and activation of proteases including those responsible for 

processing of AMPs (17, 18). 

The crucial importance of NADPH oxidase in pathogen killing is evidenced in 

persons with chronic granulomatous disease (CGD) that bear inactivating mutations 

in genes of subunits of the oxidase complex and suffer from repeated life-threatening 

bacterial and fungal infection (19, 20). PMN of these patients exhibit normal 

degranulation but the initial phagosomal alkalization, which normally accompanies 

initiation of superoxide production, does not occur (21, 22). Additionally, correction 
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of phagocytic pH to more physiological values restores the ability of CGD neutrophils 

to kill S. aureus (22). Therefore, phagosomal alkalization was proposed to be essential 

for liberating granule enzymes in the phagosome (16). These observations suggest 

that granule proteases act in concert with oxidases for effective bacterial killing; 

however, the functional role of NADPH oxidase in AMP processing has not been 

studied. 

The major human pathogen S. aureus exhibits relative resistance to CAMPs due to 

positive-charge modifications to its cell wall such as peptidoglycan acetylation (23) 

and teichoic acid D-alanylation (24), the capacity to degrade CAMPs with specific 

proteases (25), and AMP-binding properties of staphylokinase (26). We had 

previously observed a reduced virulence of a S. aureus mutant with dealanylated 

teichoic acids (SA113 ∆dltA) in septic and local infection models (27, 28). This 

phenotype was tentatively correlated to an enhanced susceptibility to cathelicidin 

AMPs, but only through in vitro susceptibility testing (28). In order to more fully 

understand the potential role of CRAMP in the response to S. aureus infection, we 

here probe the regulation and cellular location of CRAMP expression in murine blood 

and exudate granulocytes. We further investigated the role of CRAMP in 

staphylococcal killing and its key site of action with particular attention to the 

contributing roles of NETs and NADPH oxidase to cathelicidin-mediated host 

defense. 

Our results demonstrated that PMN exert intracellular antimicrobial activity mediated 

by CRAMP against S. aureus. Additional extracellular entrapping and killing of S. 

aureus by NETs was partially mediated by CRAMP and may help to protect the host 

against further bacterial spreading and development of systemic disease. 
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Materials and Methods 

Bacterial strains. S. aureus wt (ATCC 35556, SA113 wt) and its isogenic mutants 

∆dltA, ∆spa, and ∆spa/∆dltA were grown overnight in tryptic soy broth (Difco) at 

37°C. For stimulation experiments, a subculture was inoculated 1:100 (v/v) from 

overnight culture in fresh tryptic soy broth and grown to late-log phase. Bacteria were 

washed twice with 0.9% NaCl prior to use. 

 

FITC-labeling of staphylococci. S. aureus subculture was grown to mid-log phase in 

fresh tryptic soy broth. Bacteria were washed twice with 0.9% NaCl and labeled in 

0.1 mg/ml FITC (Sigma) in PBS for 1h at 37°C with shaking. Prior to use, bacteria 

were washed twice with 0.9% NaCl and resuspended in Dulbecco’s PBS with 100 

mg/L MgCl2 and 100 mg/L CaCl2 (DPBS++, Invitrogen). 

 

Mice and tissue cage model. C57BL/6, CRAMP-/-, and gp91phox-/- mice were kept 

under specific pathogen-free conditions in the Animal House of the Department of 

Biomedicine, University Hospital Basel, and University of California, San Diego, 

according to the regulations of the Swiss veterinary law and the Veterans 

Administration of San Diego Committee on Animal Use, respectively. Mice were 

euthanized by CO2 or i.p. injection of 500 mg/kg Thiopenthal (Abbott 

Laboratories). 

12-14-weeks-old female mice were anesthetized and sterile Teflon tissue cages were 

implanted subcutaneously, as described previously (28). Two weeks after surgery, the 

sterility of tissue cages was verified. To harvest tissue cage fluid (TCF) for isolation 
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of PMN, mice were anesthetized by isofluorane (MINRAD INC.) and TCF 

percutaneously collected with EDTA. 

 

Antibody generation. Two New Zealand White rabbits were immunized by 

repetitive subcutaneous injections of 150 µg synthetic CRAMP peptide (GL Shangai 

Biochem Ltd.) in adjuvant (MPL® + TDM + CWS Adjuvant System, Sigma) at 

monthly intervals. The titer of the antiserum was estimated by immunoblotting. The 

IgG fraction from the polyclonal anti-serum was isolated on a protein-G sepharose 

(Amersham) column and further affinity purified via affinity chromatography over a 

sepharose column (GE Healthcare) conjugated with synthetic CRAMP peptide used 

as immunogen. Bound antibody was eluted with 0.1 M glycin (0.002% sodium azide, 

pH 2.5) and dialyzed against PBS. A portion of the affinity-purified antibody was 

biotinylated as described previously (29), dialyzed against PBS and stored at -20°C. 

To demonstrate specificity, affinity-purified antibody was used to detect native 18 

kDa CRAMP from murine blood PMN lysates. Affinity-purified anti-CRAMP Ab 

was specific for one band of ~18 kDa, corresponding to the predicted size of pro-

CRAMP (Figure 2A). 

 

PMN isolation. For peripheral blood PMN (bPMN), mouse blood was harvested by 

intracardiac puncture in EDTA. bPMN were isolated as described previously for 

human PMN (30), but using a modified density gradient centrifugation on a 

discontinuous Percoll gradient with 59% and 67% Percoll (Amersham Biotech) in 

PBS. bPMN were collected at the interface of the two Percoll layers. 
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For peritoneal PMN (pPMN), 1 ml of 3% thioglycollate (BD Biosciences) were 

injected i.p. After 6h, pPMN were collected by peritoneal lavage with 5 ml RPMI 

1640 complete medium (5% FBS, 2 mM glutamate, 1 mM sodium pyruvate, 1.5 mM 

HEPES, non-essential amino acids) and pelleted by centrifugation. 

For TCF-PMN, TCF was collected in EDTA and pelleted by centrifugation. 

Where mentioned, bPMN, pPMN, and TCF-PMN were purified over a Percoll 

gradient as described above to a puritiy of > 97% (NIMP-R14 staining) and viability 

of PMN was 99% as assessed by trypan blue staining. 

 

Stimulation of PMN for flow cytometry and immunofluorescence. After isolation 

from blood, peritoneum, or TCF, erythrocytes were lysed in water and PMN were 

resuspended in DPBS++ at 1-2x106 cells/ml. PMN were incubated with 1 µg/ml PMA, 

unlabeled (for flow cytometry) or FITC-labeled (for immunofluorescence) SA113 

∆spa and SA113 ∆spa/∆dltA for 15 and 30 min at 37°C, 200 rpm. Stimulation was 

stopped on ice and PMN were collected by centrifugation for further use in flow 

cytometry or immunofluorescence. Supernatants were collected and released CRAMP 

was measured by ELISA. 

 

Immunofluorescence. After stimulation, cells were spun onto glass coverslips and 

fixed with 4% paraformaldehyde (PFA) in PBS for 30 min at room temperature (RT). 

After permeabilization with 0.2% saponin for 30 min at RT and 5 min in methanol, 

cells were blocked with 2% normal goat or donkey serum (NGS or NDS) for 30 min 

at RT. Cells were stained with affinity-purified rabbit anti-CRAMP (1 µg/ml), 

biotinylated rabbit anti-CRAMP (5 µg/ml), goat anti-cathepsin D (10 µg/ml, Santa 
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Cruz Biotechnology), and rabbit anti-LAMP-1 (10 µg/ml, Abcam) Ab, followed by 

donkey anti-rabbit/goat IgG-Cy3 Ab (7.5 µg/ml, Jackson ImmunoResearch) or 

Streptavidin-Alexa647 (10 µg/ml, Molecular Probes). Isotype-matched Ab served as 

negative controls. To confirm specificity of antibody binding, parallel slides were 

treated identically with affinity-purified rabbit anti-CRAMP Ab that had been 

preincubated for 1h at RT with 20 µg/ml synthetic CRAMP peptide which abolished 

staining (Figure 2B). Specimens were analyzed with a Zeiss Axiovert 100M 

microscope (Carl Zeiss AG) using the confocal system LSM 510 META and LSM 

510 v3.2 SP2 software (Zeiss). 

 

Flow cytometry. Cells were blocked with 2% NGS, fixed with 4% PFA, and 

permeabilized for intracellular staining with 0.1% saponin. Rat anti-mouse 

CD16/CD32 (Pharmingen) has been used to block Fc-receptor binding of IgG. After 

Fc-blocking, cells were sequentially stained with biotinylated rabbit anti-CRAMP Ab 

(1 µg/ml) and Streptavidin-RPE (0.25 µg/ml) or the neutrophil marker rat- anti mouse 

NIMP-R14 (10 µg/ml, own hybridoma) and FITC-conjugated goat anti-rat Ab (7.5 

µg/ml, Jackson ImmunoResearch). Biotinylated rabbit IgG and rat IgG2a 

(Pharmingen) were used as isotype controls. 

 

PMN killing assay. TCF-PMN were resuspended in DPBS++ (with 10% pooled 

mouse plasma) and 2x105 PMN were incubated with SA113 wt or ∆dltA at a 

multiplicity of infection (MOI) of 1 and incubated at 37°C, 200 rpm. After 2h, 

samples were diluted in H2O (pH 11) to lyse PMN and serial dilutions were plated on 

Mueller-Hinton agar (MHA) to enumerate surviving intra- and extracellular bacteria. 
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Intracellular killing assay. pPMN were resuspended at 1x106 PMN in RPMI 1640 

(10 mM HEPES, 2% pooled mouse plasma), seeded into 24-well plates and allowed 

to adhere for 1h. PMN were infected with SA113 wt and ∆dltA at a MOI of 1, 

centrifuged at 800 x g for 5 min to synchronize phagocytosis and further incubated at 

37°C and 5% CO2 for 10 min. 50 U lysostaphin was added for 10 min to kill 

extracellular bacteria. Immediately (0 min) and 30 min after lysostaphin treatment, 

PMN were lysed with H2O (pH 11) and serial dilutions were plated on MHA to assess 

surviving intracellular bacteria. Intracellular killing was calculated as the percentage 

of intracellular bacteria at 30 min versus 0 min. 

 

NET-dependent killing assay. pPMN were resuspended at 2x106 PMN in RPMI 

1640 (10 mM HEPES, 2% pooled mouse plasma), seeded into 24-well plates and 

activated with 50 nM PMA for 4h. The medium was carefully replaced with medium 

containing cytochalasin D (10 µM) with or without 50 U DNase1 to degrade NETs. 

Samples were infected with SA113 wt and ∆dltA at a MOI 0.01, centrifuged at 800 x 

g for 10 min and incubated at 37°C and 5% CO2 for 30 min. Wells were thoroughly 

scraped and serial dilutions were plated on MHA to assess surviving bacteria. NET-

dependent killing was calculated as percentage of bacteria incubated without 

neutrophils. 

 

Immunofluorescence of NETs. 2x105 bPMN or pPMN were seeded in poly-L-

lysine-covered 16-well glass chamber slides, allowed to settle and either treated with 

PMA (50 nM), SA113 ∆spa, SA113 ∆spa/∆dltA at a MOI of 10 or left unstimulated 
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for 4h. Cells were fixed with 4% PFA, blocked with 2% NGS, and stained with 

affinity-purified rabbit anti-CRAMP (1 µg/ml) and donkey anti-rabbit IgG-Cy3 (7.5 

µg/ml) Ab. Controls were done with isotype-matched Ab. For labeling of DNA, 

SYTOX® Green (1 µM, Molecular Probes) was used. Specimens were analyzed as 

described above in immunofluorescence. 

 

ELISA. An ELISA for CRAMP was developed using 96-well flat-bottom 

immunoplates (Nunc). Plates were coated overnight with 1 µg/ml affinity-purified 

rabbit anti-CRAMP Ab in 1 M carbonate buffer (pH 9.6) at 4°C. After blocking with 

1% casein in PBS, samples and standards were added and incubated for 2h. 

Biotinylated anti-CRAMP Ab (400 ng/ml) was added for 1h and further incubated 

with Streptavidin-HRP (Zymed). After incubation for 30 min with TMB substrate 

(Pharmingen), reaction was stopped with 1 M H2SO4 and absorbance was measured at 

450 nm. Between each step, plates were washed 4 times with PBS (0.05% Tween-20). 

All incubations were carried out at RT. 

 

Immunoblot analysis. 1x106 pPMN were infected for 15 min with SA113 wt or left 

unstimulated. Cells were then lysed in 0.9% NaCl containing 1% Triton X-100, 1 mM 

PMSF and a protease inhibitor cocktail (Roche). Cell lysates were separated by SDS-

PAGE and transferred to nitrocellulose membrane (Schleicher & Schüll). Membranes 

were blotted with affinity-purified rabbit anti-CRAMP Ab (1 µg/ml) followed by 

horseradish peroxidase conjugated donkey anti-rabbit IgG (0.16 µg/ml) and were 

visualized with enhanced chemiluminescence (Amersham Bioscience) on films 

(KODAK). 
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Statistical analysis. PMN killing assay was analyzed with Mann-Whitney. Flow 

cytometry data, intracellular killing and NET-dependent killing assays were analyzed 

with paired student’s t-test. Statistical analysis was done with Prism 5.0a (GraphPad 

Software, Inc.). A p-value of p <0.05 was considered statistically significant. 
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Results 

PMN-derived CRAMP is active against S. aureus 

S. aureus is resistant to CRAMP due to a variety of mechanisms including D-

alanylation of teichoic acids (24). We sought to exploit the differential sensitivity of 

S. aureus (SA113) wt and its isogenic ∆dltA mutant to better understand the 

regulation, cellular localization and function of neutrophil-derived CRAMP. PMN 

from tissue cages (TCF-PMN) in C57BL/6 mice exhibited significantly increased 

bactericidal activity against SA113 ∆dltA compared to wt in vitro (Figure 1). In 

contrast, TCF-PMN from CRAMP-/- mice showed similar bactericidal activity against 

SA113 wt and ∆dltA. In addition, the bactericidal activity of CRAMP-/- TCF-PMN 

against SA113 wt was significantly lower than of C57BL/6 PMN (Figure 1). 

 

Figure 1. Bactericidal activity of TCF-PMN from C57BL/6 and CRAMP-/- mice. The numbers of 

viable CFU of SA113 wt (closed) and SA113 ∆dltA (open) after 2h of incubation with TCF-PMN in 

vitro are expressed as percentage of the initial inoculum. Data are mean ± SD of three independent 

experiments. Significant differences are indicated by *: p<0.05 and ***: p<0.001. 

These data showed that the susceptibility of SA113 ∆dltA to PMN is predominantly 

mediated by CRAMP; allowing the ∆dltA mutant to serve as a powerful tool to study 

CRAMP function and activity. Furthermore, the decreased bactericidal activity of 
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CRAMP-/- PMN implies that the expression of CRAMP in PMN is indeed important 

for the defense against S. aureus in vivo, despite the apparent resistance of the 

bacterium to the isolated AMP in vitro. 

 

Degranulation of CRAMP does not occur during PMN migration 

First, the specificity of affinity-purified rabbit anti-CRAMP Ab was tested by 

immunoblot analysis of blood PMN lysates. The antibody recognized a single band at 

~18 kDa corresponding to the predicted size of pro-CRAMP (Figure 2A). The anti-

CRAMP Ab was also specific for CRAMP in immunofluorescence as preincubation 

of anti-CRAMP Ab with excess synthetic CRAMP abolished staining on peritoneal 

PMN (Figure 2B). Next, we studied the location and the site of action of CRAMP by 

investigating intracellular CRAMP expression by flow cytometry in C57BL/6 PMN. 

To exclude that exudation from the bloodstream itself affects CRAMP expression, 

PMN purified from TCF and peritoneal exudates were compared to peripheral blood 

PMN. CRAMP was expressed intracellularly in PMN from all sites (Figure 2Ci-iii, 

upper row). Mean fluorescence intensity (MFI) was similar in all purified PMN 

indicating no loss of CRAMP during exudation from blood. Purified PMN were 

>97% positive for the granulocyte marker NIMP-R14 Ab as shown for TCF-PMN in 

Figure 2Aiv (upper row). Using fluorescence microscopy we showed that CRAMP is 

distributed in a granular pattern in PMN from blood, peritoneal cavity, and TCF 

(Figure 2Bi-iii, lower row). 
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Figure 2. Intracellular CRAMP expression in blood and exudate PMN. (A) Western blot analysis 

of bPMN lysates using affinity-purified rabbit anti-CRAMP Ab. (B) Intracellular staining of pPMN 

with rabbit anti-CRAMP Ab followed by Cy3-conjugated donkey anti-rabbit Ab (i) and identical 

staining performed with antibody preincubated with excess of synthetic CRAMP peptide (ii). (C, upper 

row) PMN purified from blood (i), peritoneal exudate (ii), and TCF (iii) from C57BL/6 mice were 

intracellularly stained with biotinylated rabbit anti-CRAMP (black) or isotype control (grey) Ab 

followed by RPE-conjugated Streptavidin and analyzed by flow cytometry. (iv) Purified TCF-PMN 

stained with the neutrophil marker NIMP-R14 (black) or isotype control (grey) Ab followed by FITC-

conjugated goat anti-rat Ab. Graphs are representative of two to five independent experiments. (C, 

lower row) bPMN (i), pPMN (ii), and TCF-PMN (iii) were immunolabeled with rabbit anti-CRAMP or 

isotype control (not shown) Ab followed by Cy3-conjugated donkey anti-rabbit Ab and examined by 

confocal microscopy. Isotype controls showed no detectable staining. Fluorescence micrographs 

(original magnification x100) are representatives of three independent experiments. 
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These results indicate that CRAMP-containing granules are not released during 

recruitment of PMN, such that full antimicrobial activity can be exerted at the site of 

infection. 

 

PMN release CRAMP after PKC activation 

Degranulation of secondary granules in human PMN was shown to be dependent on 

protein kinase C (PKC) (31). The signaling pathways promoting release of CRAMP 

after stimulation of murine PMN is unknown. We investigated the intrinsic ability of 

C57BL/6 pPMN to secrete CRAMP in response to the PKC activator PMA by flow 

cytometry. Unpurified pPMN were used to avoid preactivation of PMN by percoll 

purification. Therefore, two populations with bright and dim fluorescence are seen in 

the histograms, which were identified as PMN and monocytes by Wright’s stain (data 

not shown). As shown in Figure 2Cii, PMN correspond to the bright CRAMP-

expressing population. The fluorescence histogram of PMA-stimulated versus non-

treated cells shows a reduction in intracellular MFI. Intracellular CRAMP was 

significantly decreased after PMA-stimulation as shown in the bar graph indicating 

release of CRAMP. During secondary granule release lactoferrin and LL-37 

transiently locate to the cell surface (32, 33). Thus, we examined surface translocation 

of CRAMP as readout for secretion in response to PMA. Non-treated cells had no 

detectable CRAMP on their surface, whereas PMA-stimulated cells showed surface 

localization of CRAMP with significantly increased MFI compared to non-treated 

cells (Figure 3B). Using fluorescence microscopy we found that PMN stimulated for 

15 min with PMA had less intracellular CRAMP and its distribution was more 

disperse than in non-treated cells (Figure 3C). 
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Figure 3. PMA-induced intracellular decrease and surface translocation of CRAMP. Flow 

cytometric analysis of unpurified pPMN from C57BL/6 mice stimulated for 15 min with PMA (black 

line) or left untreated (grey area) and subsequently stained with biotinylated rabbit anti-CRAMP or 

isotype control (grey line) Ab followed by RPE-conjugated Streptavidin. (A) Permeabilized cells 

stained for intracellular CRAMP and (B) non-permeabilized cells stained for surface-associated 

CRAMP. Bar graphs show MFI of non-treated (grey) and PMA-stimulated (black) pPMN. 

Representative histograms of two independent experiments are shown. Data are mean ± SD of two 

independent experiments with two mice per group. (C) Immunofluorescence of non-treated and PMA-

stimulated bPMN stained with rabbit anti-CRAMP Ab followed by Cy3-conjugated donkey anti-rabbit 

Ab. Fluorescence micrographs (original magnification x100) are representatives of three independent 

experiments. (D) Released CRAMP from bPMN non-stimulated or stimulated with PMA detected by 

ELISA. Significant differences are indicated by *: p<0.05 and ***: p<0.001. 
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Analysis of supernatants from PMA-stimulated PMN by ELISA confirmed that 

CRAMP was released after 30 min (Figure 3D). Other stimuli, such as fMLP, S. 

aureus lipoteichoic acid (LTA), the synthetic lipopeptide Pam3CSK4, or Salmonella 

abortus equis LPS, did not induce secretion of CRAMP (data not shown). These 

results give evidence that CRAMP is released from granules into the extracellular 

space after activation by PMA but not by a number of microbe-associated molecular 

patterns. 

 

CRAMP is recruited to the phagosome and kills S. aureus intracellularly 

The inability of PMN to secrete CRAMP after exposure to bacterial components 

raised the question whether viable S. aureus induce the release of CRAMP. In the 

following experiments we used the staphylococcal protein A (spa) deletion mutants 

SA113 ∆spa and ∆spa/∆dltA instead of SA113 wt and ∆dltA to avoid the confounding 

factor of unspecific IgG binding to Protein A. pPMN were infected with either SA113 

∆spa and ∆spa/∆dltA for 15 min and intracellular CRAMP expression and surface 

localization was studied by flow cytometry. In pPMN infected with either SA113 

∆spa and ∆spa/∆dltA intracellular and surface localization of CRAMP remained 

unaltered compared to non-treated cells (Figure 4A-B). 

Interestingly, confocal microscopy revealed that CRAMP localized with internalized 

S. aureus strains after infection (Figure 4C-D, arrows). We hypothesized that this 

localization of CRAMP is the result of granule fusion with S. aureus-containing 

phagosomes. Indeed, the phagosomal marker LAMP-1 colocalized with CRAMP at 

the site of S. aureus-containing phagosomes (Figure 4Civ,Div, arrows). 
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Figure 4. Intracellular localization and activity of CRAMP in S. aureus infection. Flow cytometric 

analysis of pPMN from C57BL/6 mice infected for 15 min with SA113 ∆spa (black line) and SA113 

∆spa/∆dltA (grey line) or left untreated (grey area) stained with biotinylated rabbit anti-CRAMP or 

isotype control (dotted line) Ab followed by RPE-conjugated Streptavidin. (A) Permeabilized cells 

stained for intracellular CRAMP and (B) non-permeabilized cells stained for surface-associated 

CRAMP. Bar graphs show MFI of non-treated (grey), SA113 ∆spa-infected (black), and SA113 

∆spa/∆dltA-infected (white) PMN. Representative histograms of three independent experiments are 

shown. Data are mean ± SD of three independent experiments with two mice per group. (C, D) 

Immunofluorescence of bPMN infected for 30 min with FITC-labeled SA113 ∆spa and ∆spa/∆dltA 

(MOI 1). Colocalization of CRAMP, FITC-labeled S. aureus, and LAMP-1: (i) immunostaining of 

CRAMP with biotinylated rabbit anti-CRAMP Ab followed by Streptavidin-Alexa647, (ii) FITC-

labeled SA113 ∆spa and ∆spa/∆dltA, (iii) immunostaining of LAMP-1 with rabbit anti-LAMP-1 Ab 

followed by Cy3-conjugated donkey anti-rabbit Ab, and (iv) overlay of i-iii. Arrows indicate 

colocalization of markers with S. aureus. Fluorescence micrographs (original magnification x150) are 
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representatives of three independent experiments. (E) Intracellular killing of SA113 wt (closed) and 

∆dltA (open) (MOI 1) by pPMN of C57BL/6 mice 30 min after infection. Data are mean ± SEM of 

three independent experiments. Significant differences are indicated by *: p<0.05. (F) Immunoblotting 

of PMN lysates. 1x106 pPMN of C57BL/6 mice were lysed, cell lysates were run on SDS-PAGE and 

analyzed by immunoblotting with rabbit anti-CRAMP or isotype control Abs. Lysates of untreated 

PMN (lane 1) and PMN infected with SA113 wt (lane 2). 10 µg of total protein of lysates were loaded 

per lane. Immunoblots with isotype control antibody was negative. 

Granule fusion to the phagosome was also confirmed by colocalization of CRAMP 

with cathepsin D (data not shown). No differences in localization of CRAMP toward 

the resistant SA113 ∆spa and the CRAMP-susceptible ∆spa/∆dltA mutant were 

observed. Secretion of CRAMP into the extracellular space after 30 min of infection 

with both strains was not detectable by ELISA (data not shown). Although PMN are 

able to secrete CRAMP after soluble stimuli, these data point toward a preferential 

intracellular retention of CRAMP in infection to kill S. aureus in phagolysosomes. 

Consequently, we performed an intracellular killing assay using S. aureus infected 

pPMN to evaluate whether CRAMP is not only recruited but also active in 

phagolysosomes. SA113 wt and ∆dltA were killed intracellularly to 41.2% and 

70.77%, respectively (Figure 4E). SA113 ∆dltA was significantly more susceptible to 

such intracellular killing. From this finding we conclude that the active form of 

CRAMP is present in phagolysosomes. 

To show whether CRAMP is processed from its precursor to its active form in the 

phagosomes, pPMN were stimulated with SA113 wt and analyzed by SDS-PAGE and 

Western blot. In both untreated and infected cells, the pro-form of CRAMP appeared 

as two bands at 18 kDa and a faint band of the cleaved 5 kDa form of CRAMP was 

found in uninfected cells and after phagocytosis of SA113 wt (Figure 4F) indicating 

intracellular processing of CRAMP. 
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CRAMP is present in NETs but DNA-binding reduces CRAMP activity 

Besides their phagocytic activity, human neutrophils were recently found to 

extracellularly entrap and kill S. aureus by forming NETs when phagocytic killing is 

exhausted (34). Proteases and antimicrobial peptides are associated with NETs 

comprising an extracellular site of bactericidal action of granule contents (35). 

Therefore, we first investigated NETs induction in murine PMN following stimulation 

with PMA or SA113 ∆spa. Following both stimuli, NET formation was induced 

within 4h in bPMN (Figure 5Aii,Bii) and pPMN (not shown); unstimulated cells did 

not release DNA (Figure 5Av). In PMA-induced NETs, CRAMP was associated with 

extracellular DNA (Figure 5Aiv). In NETs induced by S. aureus, CRAMP colocalized 

with entrapped bacteria (Figure 5Biv, arrow). These results raised the possibility that 

association within NETs represents an extracellular site of action for CRAMP. To 

investigate the antibacterial activity of NETs, PMA-activated pPMN were incubated 

with SA113 wt and ∆dltA in the presence of cytochalasin D to inhibit phagocytic 

uptake. Both, SA113 wt and ∆dltA were killed with similar efficiency in the presence 

of NETs (Figure 5C). Interestingly, when NETs were degraded with DNase, the 

killing of SA113 wt was completely abolished while ∆dltA remained partially 

susceptible. From the similar susceptibility of SA113 ∆dltA and wt to NET-dependent 

killing we conclude that CRAMP, although present, is not the only important effector 

in the antimicrobial activity of NETs against S. aureus. Tight association of the 

cationic AMP with anionic DNA may reduce access of the peptide to the microbial 

cell surface. 
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Figure 5. Induction of NETs and antimicrobial activity against S. aureus. (A, B) 

Immunofluorescence of bPMN activated for 4h with PMA (Ai-iv) and SA113 ∆spa (B). Colocalization 

of DNA, CRAMP, and S. aureus: (i) bright field, (ii) SYTOX® Green-labeled DNA and SA113 ∆spa, 

(iii) immunostaining of CRAMP with rabbit anti-CRAMP Ab followed by Cy3-conjugated donkey 

anti-rabbit Ab, and (iv) merge of i-iii. (v) Immunofluorescence of unstimulated bPMN indicating no 

NETs formation after 4h. Arrows indicate colocalization of markers with S. aureus. Fluorescence 

micrographs (original magnification x150) are representatives of three independent experiments. (C) 

NET-dependent killing of SA113 wt and ∆dltA (MOI 0.01). NETs were treated with (open) or without 

(closed) DNase before infection to distinguish the contribution of DNA and the other NETs-

components to the killing. Data are mean ± SEM of three independent experiments. Significant 

differences are indicated by *: p<0.05 and ***: p<0.001. 
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NADPH oxidase is a weak contributor to CRAMP expression and response 

Phagosomal alkalization following the NADPH oxidase activation was proposed to be 

essential for liberating granule enzymes in the phagosome (16). These granule 

enzymes are likely necessary for cleavage of CRAMP into is active form raising the 

question if NADPH oxidase-dependent liberation of granule enzymes might affect the 

processing and activity of CRAMP. We hence investigated function and phagosome 

translocation of CRAMP in gp91phox-/- mice lacking a functional NADPH oxidase. We 

assessed the bactericidal activity of gp91phox-/- TCF-PMN toward SA113 wt and ∆dltA 

in vitro. gp91phox-/- TCF-PMN were highly impaired in the killing of both strains 

compared to C57BL/6 TCF-PMN (Figure 6A compared to Figure 1). The persistent 

increased susceptibility of SA113 ∆dltA in gp91phox-/- TCF-PMN suggests that they 

still possess active CRAMP. 

To exclude a defect in granule release we stimulated gp91phox-/- pPMN with PMA for 

15 min and studied intracellular CRAMP expression and surface localization by flow 

cytometry. The MFI of non-treated gp91phox-/- pPMN was lower than in pPMN of 

C57BL/6 mice (Figure 6B versus 4A) indicating a reduced basal intracellular 

CRAMP level. However, intracellular CRAMP was significantly decreased after 

PMA stimulation as shown in the fluorescence histogram and bar graph in Figure 6B 

(left panels). PMA-stimulated cells showed more surface localization of CRAMP than 

non-treated cells with significantly increased MFI (Figure 6B, right panels). 

Regarding degranulation we found no defect in gp91phox-/- pPMN. Further we infected 

gp91phox-/- PMN with SA113 ∆spa and ∆spa/∆dltA strains and observed that CRAMP 

was still recruited to internalized bacteria but LAMP-1 was only partially (Figure 

6Civ,Div, arrows). 
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Figure 6. Contribution of NADPH oxidase to CRAMP function. (A) Bactericidal activity of TCF-

PMN from gp91phox-/- mice. The numbers of viable CFU of SA113 wt (closed) and SA113 ∆dltA (open) 

after 2h of incubation with TCF-PMN are expressed as percentage of the initial inoculum. (B) Flow 

cytometric analysis of pPMN from gp91phox-/- mice stimulated for 15 min with PMA (black line) or left 

untreated (grey area) and stained with biontinylated rabbit anti-CRAMP or isotype control (grey line) 

Ab followed by RPE-conjugated Streptavidin. (left) Permeabilized cells stained for intracellular 

CRAMP and (right) non-permeabilized cells stained for surface-associated CRAMP. Bar graphs show 

MFI of non-treated (grey) and PMA-stimulated (black) pPMN. Representative histograms of three 

independent experiments are shown. Data are mean ± SD of 3 independent experiments. (C, D) 

Immunofluorescence of bPMN of gp91phox-/- mice infected for 30 min with FITC-labeled SA113 ∆spa 

(C) and ∆spa/∆dltA (D) (MOI 1). Colocalization of CRAMP, FITC-labeled S. aureus, and LAMP-1: (i) 

immunostaining of CRAMP with biotinylated anti-CRAMP Ab followed by Streptavidin-Alexa647, 

(ii) FITC-labeled SA113 ∆spa and ∆spa/∆dltA, (iii) immunostaining of LAMP-1 with rabbit anti-

LAMP-1 Ab followed by Cy3-conjugated donkey anti-rabbit Ab, and (iv) merge of i-iii. Arrows 

indicate colocalization of markers with S. aureus. Fluorescence micrographs (original magnification 

x150) are representatives of two independent experiments. (E) Intracellular killing of SA113 wt 

(closed) and ∆dltA (open) (MOI 1) by pPMN of gp91phox-/- mice 30 min after infection. Data are mean 

± SEM of 3 independent experiments. Significant differences are indicated by *: p<0.05 and **: 

p<0.01. 
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Intracellular killing assays revealed that gp91phox-/- PMN are significantly impaired in 

intracellular clearance of SA113 wt (p=0.0109) and ∆dltA (p=0.0392) compared to 

C57BL/6 PMN. SA113 ∆dltA remained more susceptible than wt (Figure 6E) 

suggesting the existence of active CRAMP in these PMN. The formation of NETs 

was described to be dependent on NADPH oxidase (13). Indeed, PMN from gp91phox-

/- mice were unable to induce NETs (data not shown). Taken together, the NADPH 

oxidase is only a weak contributor to the antimicrobial function of CRAMP. 
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Discussion 

Since the original discovery of CRAMP in murine PMN (10), most studies have been 

performed on CRAMP expression and function in keratinocytes and other epithelial 

cells. In this study we provide evidence that PMN-derived CRAMP confers 

antimicrobial activity against the pre-eminent human pathogen S. aureus. 

Furthermore, we identified two different sites of action of CRAMP: Intracellularly in 

the phagolysosome and extracellularly associated in NETs, accentuated by DNA 

degradation. 

To study CRAMP function, we made use of the CRAMP-susceptible S. aureus 

mutant ∆dltA. We had previously shown the CAMP susceptible phenotype of this 

mutant in vitro and in a local murine infection model (28). In this study, we showed 

that the susceptibility of SA113 ∆dltA to murine PMN was selectively mediated by 

CRAMP by the use of CRAMP-/- PMN. Thus, the dealanylated teichoic acids render 

S. aureus predominantly susceptible to CRAMP in PMN. The heightened 

susceptibility of SA113 ∆dltA to other PMN-derived AMPs (e.g.lactoferrin, 

lysozyme) was found to be less pronounced than for CRAMP (36, 37). Additionally, 

major contributions to resistance to other PMN-derived AMPs are provided by other 

staphylococcal virulence mechanisms, i.e. resistance to lysozyme is associated with 

acetylation of peptidoglycan (23) while resistance against lactoferrin (38) and 

lipocalin (39) are governed by multiple iron uptake systems in S. aureus, which might 

be not affected in the ∆dltA phenotype. 

Our results show that TCF-PMN remain active with CRAMP against S. aureus 

despite its high resistance against AMPs in vitro. Similarly, whole blood PMN from 

C57BL/6, but not from CRAMP-/- mice, blocked the proliferation of Group A 
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Streptococcus, another major Gram-positive pathogen with several well-defined 

cathelicidin resistance mechanism against CRAMP (11, 40). 

Most studies on PMN activation and degranulation have been performed using PMN 

isolated from peripheral blood. However, PMN exert their function in vivo mainly 

after exudation from blood. Here we show that secondary granules wherein CRAMP 

is stored are not extensively released during PMN migration. This finding is in 

agreement with a study of granule mobilization during in vivo exudation of human 

PMN. The authors showed that control and exudate PMN have similar total content of 

lactoferrin and myeloperoxidase in secondary and primary granules, respectively (41). 

Nevertheless, our result for TCF-PMN contrasts with a previous study showing that 

TCF-PMN from guinea pigs have reduced myeloperoxidase and lysozyme content 

compared to peritoneal exudate PMN (42). The authors suggested that partial 

degranulation has occurred during contact with the implanted tissue cage. The 

retention of secondary and also primary granules, which harbor the most potent 

antimicrobial peptides including CRAMP, during extravasation may be crucial for 

retaining the antimicrobial activity of PMN for deployment at the site of infection. 

 We observed that secretion of CRAMP is induced after activation of PKC by PMA, 

but not by stimulation with fMLP, staphylococcal LTA, Pam3CSK4, Salmonella-LPS, 

or after phagocytosis of viable S. aureus. The mobilizable granules of PMN differ in 

availability for exocytosis and follow a strict hierarchy of exocytosis. Secretory 

vesicles have the highest propensity for release followed by gelatinase granules, 

secondary granules, and primary granules. This hierarchy could be the explanation 

why stimulation with fMLP did not lead to a significant release of CRAMP, but the 

more powerful agonist PMA induced secretion of CRAMP. Stie et al. showed that the 

human cathelicidin hCAP-18 accumulates at the PMN surface following stimulation 
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by 1 µM fMLP (33). In our hands, 1 µM fMLP did not lead to the surface 

translocation of CRAMP in pPMN, which might be due to different reactivity of 

human blood and murine peritoneal PMN. Nevertheless, surface-translocated 

CRAMP of strongly activated PMN might contribute to the killing and degradation of 

bacteria during their phagocytosis. The signaling pathways that link ligation of 

surface receptors or activation of PKC to degranulation of secondary granules include 

phospholipids, the MAP kinase p38, Ca2+ and the Src kinase Fgr, Rab GTPases and 

finally SNARE molecules (31). Their respective roles for CRAMP mobilization are 

subject of further investigation. 

In infection, CRAMP was recruited to the phagosome where it exerted antimicrobial 

activity on S. aureus. This finding is confirmed by the work of Sorenson et al. 

showing hCAP-18 in the lumen of phagosomes after internalization of Latex beads by 

human PMN (1). By the increased susceptibility of SA113 ∆dltA to intracellular 

killing we showed that CRAMP was intraphagosomally active indicating that 

cleavage might have been occurred. Cathepsin D, a protease found in primary 

granules, was recruited to the phagosome as well. In hand with primary granule 

release into the phagosome, other cathepsins and neutrophil elastase accumulate in the 

lumen and might cleave CRAMP to the active form. By immunoblotting, we showed 

that intracellular CRAMP was mainly present as pro-form as it was shown for the 

human hCAP18/LL-37 (1). However, low amounts of the active form were 

detectable. This unexpected finding was contradictory to our high intracellular killing 

of SA113 ∆dltA. Therefore, we think that active CRAMP might interact with 

negatively charged macromolecules (e.g.DNA) as shown for LL-37 (43, 44) or the 

bacterial membrane, which could explain low detectable amounts. 
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We demonstrated that murine PMN are able to form NETs after activation by PMA 

and viable S. aureus in a fashion similar to human PMN. In addition, CRAMP was 

localized in NETs and with entrapped S. aureus. CRAMP activity could not fully 

explain the NET-mediated killing of S. aureus, since SA113 wt and ∆dltA were killed 

to a similar extent. Extracellular killing of S. aureus therefore requires contributions 

from additional antimicrobial components of NETs, including histones. This is 

consistent with the finding that human NETs pretreated with antibodies against 

histones show reduced killing of S. aureus and Shigella flexneri (34). In contrast, D-

alanylation of teichoic acids enhances resistance against NET-dependent killing in 

non-encapsulated but not encapsulated S. pneumoniae (35). Unlike S. aureus and 

other pathogens, pneumococci are not killed by the antimicrobial components in 

NETs (45). Therefore, the authors argued that NET-dependent killing was a 

cooperative effect of enhanced trapping and increased autolysis of non-encapsulated 

∆dltA pneumococci. More importantly, we showed that the bactericidal activity of 

CRAMP is impaired when associated with NETs, while release of soluble CRAMP 

after degradation of the DNA backbone of NETs restored bactericidal activity of 

CRAMP against SA113 ∆dltA. Our study provides first evidence that NET-associated 

AMP may be in a state of reduced activity; this idea is supported by the fact that the 

antimicrobial activity of LL-37 is inactivated by binding to DNA (44). We 

hypothesize that NETs may serve as a storage site of antimicrobial active peptides and 

enzymes to combat bacteria that are freed during NET breakdown or following 

DNase expression by certain pathogens. 

We found reduced killing of S. aureus by PMN from gp91phox-/- mice and normal 

degranulation after PMA activation similar to human CGD PMN (22). The proposed 

dependence of granular proteases liberation on the NADPH oxidase (18) let us 
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hypothesize an impaired processing of CRAMP in gp91phox-/- mice. However, we 

could not find a link between the activity of the NADPH oxidase and CRAMP 

activity as SA113 ∆dltA remained significantly more susceptible to killing by 

gp91phox-/- PMN than the wt. The level of CRAMP was reduced in the absence of a 

functional NADPH oxidase. Both membrane subunits of the NADPH oxidase are 

absent in CGD patients with mutations in either the gp91phox or p22phox genes as well 

as in gp91phox-/- mice (46, 47). As CRAMP and the membrane subunits of NADPH 

oxidase are normally localized in the secondary granules (48), a lack of the NADPH 

oxidase membrane complex might alter membrane integrity and thereby leading to 

reduced granular content. Another explanation for the reduced intracellular CRAMP 

level might be augmented degranulation as previously described for primary granules 

in CGD neutrophils resulting in decreased levels of human -defensins HNP 1-3 (49). 

The results of our study provide first evidence that PMN-derived CRAMP exhibits 

direct intracellular activity ensuring rapid initial protection from invading pathogens. 

NETs harboring CRAMP during prolonged infection may serve for storing AMPs, 

which might be freed during DNase expression by certain pathogens. 



 

 64

Acknowledgments 

We thank Dr. Gabriela Kuster Pfister (University Hospital Basel) and Prof. Dr. Wolf-

Dietrich Hardt (ETH Zürich) for providing gp91phox-/- mice. We also thank Prof. Dr. 

Friedrich Götz for providing the isogenic SA113 spa-deletion mutants. We thank for 

technical support by Fabrizia Ferracin, Zarko Rajacic, and Beat Erne. This work was 

supported by SNF Nr. 3100A0-104259/1 and /2 and SNF Nr. 3100A0-120617. 

 

Disclosure: The authors have no financial conflict of interest. 

 

Authorship 

Contribution: N.J.J., M.S., K.A.R. and S.A.K. performed experiments; N.J.J., M.S., 

and S.A.K. analyzed the results and made figures; N.J.J., R.G., V.N., A.P., and R.L. 

designed the research and wrote the paper. This work was supported by SNF Nr. 

3100A0-104259/1 and /2 and SNF Nr. 3100A0-120617. 



 

 65 

References 

1. Sorensen, O. E., P. Follin, A. H. Johnsen, J. Calafat, G. S. Tjabringa, P. S. 
Hiemstra, and N. Borregaard. 2001. Human cathelicidin, hCAP-18, is 
processed to the antimicrobial peptide LL-37 by extracellular cleavage with 
proteinase 3. Blood 97:3951-3959. 

2. Dorschner, R. A., V. K. Pestonjamasp, S. Tamakuwala, T. Ohtake, J. Rudisill, 
V. Nizet, B. Agerberth, G. H. Gudmundsson, and R. L. Gallo. 2001. 
Cutaneous injury induces the release of cathelicidin anti-microbial peptides 
active against group A Streptococcus. J Invest Dermatol 117:91-97. 

3. Risso, A. 2000. Leukocyte antimicrobial peptides: multifunctional effector 
molecules of innate immunity. J Leukoc Biol 68:785-792. 

4. Bergman, P., L. Johansson, H. Wan, A. Jones, R. L. Gallo, G. H. 
Gudmundsson, T. Hokfelt, A. B. Jonsson, and B. Agerberth. 2006. Induction 
of the antimicrobial peptide CRAMP in the blood-brain barrier and meninges 
after meningococcal infection. Infect Immun 74:6982-6991. 

5. Johansson, L., P. Thulin, P. Sendi, E. Hertzen, A. Linder, P. Akesson, D. E. 
Low, B. Agerberth, and A. Norrby-Teglund. 2008. Cathelicidin LL-37 in 
severe Streptococcus pyogenes soft tissue infections in humans. Infect Immun 
76:3399-3404. 

6. Komatsuzawa, H., K. Ouhara, S. Yamada, T. Fujiwara, K. Sayama, K. 
Hashimoto, and M. Sugai. 2006. Innate defences against methicillin-resistant 
Staphylococcus aureus (MRSA) infection. J Pathol 208:249-260. 

7. Rivas-Santiago, B., R. Hernandez-Pando, C. Carranza, E. Juarez, J. L. 
Contreras, D. Aguilar-Leon, M. Torres, and E. Sada. 2008. Expression of 
cathelicidin LL-37 during Mycobacterium tuberculosis infection in human 
alveolar macrophages, monocytes, neutrophils, and epithelial cells. Infect 
Immun 76:935-941. 

8. Rodriguez-Martinez, S., M. E. Cancino-Diaz, and J. C. Cancino-Diaz. 2006. 
Expression of CRAMP via PGN-TLR-2 and of alpha-defensin-3 via CpG-
ODN-TLR-9 in corneal fibroblasts. Br J Ophthalmol 90:378-382. 

9. Rosenberger, C. M., R. L. Gallo, and B. B. Finlay. 2004. Interplay between 
antibacterial effectors: a macrophage antimicrobial peptide impairs 
intracellular Salmonella replication. Proc Natl Acad Sci U S A 101:2422-2427. 

10. Gallo, R. L., K. J. Kim, M. Bernfield, C. A. Kozak, M. Zanetti, L. Merluzzi, 
and R. Gennaro. 1997. Identification of CRAMP, a cathelin-related 
antimicrobial peptide expressed in the embryonic and adult mouse. J Biol 
Chem 272:13088-13093. 

11. Nizet, V., T. Ohtake, X. Lauth, J. Trowbridge, J. Rudisill, R. A. Dorschner, V. 
Pestonjamasp, J. Piraino, K. Huttner, and R. L. Gallo. 2001. Innate 
antimicrobial peptide protects the skin from invasive bacterial infection. 
Nature 414:454-457. 

12. Chromek, M., Z. Slamova, P. Bergman, L. Kovacs, L. Podracka, I. Ehren, T. 
Hokfelt, G. H. Gudmundsson, R. L. Gallo, B. Agerberth, and A. Brauner. 
2006. The antimicrobial peptide cathelicidin protects the urinary tract against 
invasive bacterial infection. Nat Med 12:636-641. 



 

 66

13. Fuchs, T. A., U. Abed, C. Goosmann, R. Hurwitz, I. Schulze, V. Wahn, Y. 
Weinrauch, V. Brinkmann, and A. Zychlinsky. 2007. Novel cell death 
program leads to neutrophil extracellular traps. J Cell Biol 176:231-241. 

14. von Kockritz-Blickwede, M., O. Goldmann, P. Thulin, K. Heinemann, A. 
Norrby-Teglund, M. Rohde, and E. Medina. 2008. Phagocytosis-independent 
antimicrobial activity of mast cells by means of extracellular trap formation. 
Blood 111:3070-3080. 

15. Wartha, F., K. Beiter, B. Albiger, J. Fernebro, A. Zychlinsky, S. Normark, and 
B. Henriques-Normark. 2007. Capsule and D-alanylated lipoteichoic acids 
protect Streptococcus pneumoniae against neutrophil extracellular traps. Cell 
Microbiol 9:1162-1171. 

16. Segal, A. W. 2008. The function of the NADPH oxidase of phagocytes and its 
relationship to other NOXs in plants, invertebrates, and mammals. Int J 
Biochem Cell Biol 40:604-618. 

17. Ahluwalia, J., A. Tinker, L. H. Clapp, M. R. Duchen, A. Y. Abramov, S. 
Pope, M. Nobles, and A. W. Segal. 2004. The large-conductance Ca2+-
activated K+ channel is essential for innate immunity. Nature 427:853-858. 

18. Reeves, E. P., H. Lu, H. L. Jacobs, C. G. Messina, S. Bolsover, G. Gabella, E. 
O. Potma, A. Warley, J. Roes, and A. W. Segal. 2002. Killing activity of 
neutrophils is mediated through activation of proteases by K+ flux. Nature 
416:291-297. 

19. Babior, B. M. 1995. The respiratory burst oxidase. Curr Opin Hematol 2:55-
60. 

20. Curnutte, J. T. 1993. Chronic granulomatous disease: the solving of a clinical 
riddle at the molecular level. Clin Immunol Immunopathol 67:S2-15. 

21. Geiszt, M., A. Kapus, and E. Ligeti. 2001. Chronic granulomatous disease: 
more than the lack of superoxide? J Leukoc Biol 69:191-196. 

22. Segal, A. W., M. Geisow, R. Garcia, A. Harper, and R. Miller. 1981. The 
respiratory burst of phagocytic cells is associated with a rise in vacuolar pH. 
Nature 290:406-409. 

23. Bera, A., S. Herbert, A. Jakob, W. Vollmer, and F. Götz. 2005. Why are 
pathogenic staphylococci so lysozyme resistant? The peptidoglycan O-
acetyltransferase OatA is the major determinant for lysozyme resistance of 
Staphylococcus aureus. Mol Microbiol 55:778-787. 

24. Peschel, A., M. Otto, R. W. Jack, H. Kalbacher, G. Jung, and F. Götz. 1999. 
Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to 
defensins, protegrins, and other antimicrobial peptides. J Biol Chem 274:8405-
8410. 

25. Peschel, A., and L. V. Collins. 2001. Staphylococcal resistance to 
antimicrobial peptides of mammalian and bacterial origin. Peptides 22:1651-
1659. 

26. Jin, T., M. Bokarewa, T. Foster, J. Mitchell, J. Higgins, and A. Tarkowski. 
2004. Staphylococcus aureus resists human defensins by production of 
staphylokinase, a novel bacterial evasion mechanism. J Immunol 172:1169-
1176. 

27. Collins, L. V., S. A. Kristian, C. Weidenmaier, M. Faigle, K. P. Van Kessel, J. 
A. Van Strijp, F. Gotz, B. Neumeister, and A. Peschel. 2002. Staphylococcus 
aureus strains lacking D-alanine modifications of teichoic acids are highly 
susceptible to human neutrophil killing and are virulence attenuated in mice. J 
Infect Dis 186:214-219. 



 

 67 

28. Kristian, S. A., X. Lauth, V. Nizet, F. Goetz, B. Neumeister, A. Peschel, and 
R. Landmann. 2003. Alanylation of teichoic acids protects Staphylococcus 
aureus against Toll-like receptor 2-dependent host defense in a mouse tissue 
cage infection model. J Infect Dis 188:414-423. 

29. Bayer, E. A., and M. Wilchek. 1990. Protein biotinylation. Methods Enzymol 
184:138-160. 

30. Hjorth, R., A. K. Jonsson, and P. Vretblad. 1981. A rapid method for 
purification of human granulocytes using percoll. A comparison with dextran 
sedimentation. J Immunol Methods 43:95-101. 

31. Lacy, P., and G. Eitzen. 2008. Control of granule exocytosis in neutrophils. 
Front Biosci 13:5559-5570. 

32. Swain, S. D., K. L. Jutila, and M. T. Quinn. 2000. Cell-surface lactoferrin as a 
marker for degranulation of specific granules in bovine neutrophils. Am J Vet 
Res 61:29-37. 

33. Stie, J., A. V. Jesaitis, C. I. Lord, J. M. Gripentrog, R. M. Taylor, J. B. Burritt, 
and A. J. Jesaitis. 2007. Localization of hCAP-18 on the surface of 
chemoattractant-stimulated human granulocytes: analysis using two novel 
hCAP-18-specific monoclonal antibodies. J Leukoc Biol 82:161-172. 

34. Brinkmann, V., U. Reichard, C. Goosmann, B. Fauler, Y. Uhlemann, D. S. 
Weiss, Y. Weinrauch, and A. Zychlinsky. 2004. Neutrophil extracellular traps 
kill bacteria. Science 303:1532-1535. 

35. Wartha, F., K. Beiter, S. Normark, and B. Henriques-Normark. 2007. 
Neutrophil extracellular traps: casting the NET over pathogenesis. Curr Opin 
Microbiol 10:52-56. 

36. Herbert, S., A. Bera, C. Nerz, D. Kraus, A. Peschel, C. Goerke, M. Meehl, A. 
Cheung, and F. Gotz. 2007. Molecular basis of resistance to muramidase and 
cationic antimicrobial peptide activity of lysozyme in staphylococci. PLoS 
Pathog 3:e102. 

37. Weidenmaier, C., J. F. Kokai-Kun, S. A. Kristian, T. Chanturiya, H. 
Kalbacher, M. Gross, G. Nicholson, B. Neumeister, J. J. Mond, and A. 
Peschel. 2004. Role of teichoic acids in Staphylococcus aureus nasal 
colonization, a major risk factor in nosocomial infections. Nat Med 10:243-
245. 

38. Guillen, C., I. B. McInnes, D. M. Vaughan, S. Kommajosyula, P. H. Van 
Berkel, B. P. Leung, A. Aguila, and J. H. Brock. 2002. Enhanced Th1 
response to Staphylococcus aureus infection in human lactoferrin-transgenic 
mice. J Immunol 168:3950-3957. 

39. Berger, T., A. Togawa, G. S. Duncan, A. J. Elia, A. You-Ten, A. Wakeham, 
H. E. Fong, C. C. Cheung, and T. W. Mak. 2006. Lipocalin 2-deficient mice 
exhibit increased sensitivity to Escherichia coli infection but not to ischemia-
reperfusion injury. Proc Natl Acad Sci U S A 103:1834-1839. 

40. Gallo, R. L., and V. Nizet. 2008. Innate barriers against skin infection and 
associated disorders. Drug Discovery Today: Disease Mechanisms 5:e145-
e152. 

41. Sengelov, H., P. Follin, L. Kjeldsen, K. Lollike, C. Dahlgren, and N. 
Borregaard. 1995. Mobilization of granules and secretory vesicles during in 
vivo exudation of human neutrophils. J Immunol 154:4157-4165. 

42. Zimmerli, W., P. D. Lew, and F. A. Waldvogel. 1984. Pathogenesis of foreign 
body infection. Evidence for a local granulocyte defect. J Clin Invest 73:1191-
1200. 



 

 68

43. Baranska-Rybak, W., A. Sonesson, R. Nowicki, and A. Schmidtchen. 2006. 
Glycosaminoglycans inhibit the antibacterial activity of LL-37 in biological 
fluids. J Antimicrob Chemother 57:260-265. 

44. Weiner, D. J., R. Bucki, and P. A. Janmey. 2003. The antimicrobial activity of 
the cathelicidin LL37 is inhibited by F-actin bundles and restored by gelsolin. 
Am J Respir Cell Mol Biol 28:738-745. 

45. Beiter, K., F. Wartha, B. Albiger, S. Normark, A. Zychlinsky, and B. 
Henriques-Normark. 2006. An endonuclease allows Streptococcus 
pneumoniae to escape from neutrophil extracellular traps. Curr Biol 16:401-
407. 

46. Dinauer, M. C. 1993. The respiratory burst oxidase and the molecular genetics 
of chronic granulomatous disease. Crit Rev Clin Lab Sci 30:329-369. 

47. Pollock, J. D., D. A. Williams, M. A. Gifford, L. L. Li, X. Du, J. Fisherman, 
S. H. Orkin, C. M. Doerschuk, and M. C. Dinauer. 1995. Mouse model of X-
linked chronic granulomatous disease, an inherited defect in phagocyte 
superoxide production. Nat Genet 9:202-209. 

48. Faurschou, M., and N. Borregaard. 2003. Neutrophil granules and secretory 
vesicles in inflammation. Microbes Infect 5:1317-1327. 

49. Pak, V., A. Budikhina, M. Pashenkov, and B. Pinegin. 2007. Neutrophil 
activity in chronic granulomatous disease. Adv Exp Med Biol 601:69-74. 

 
 



 69 

Part 2 

 

Role of TLR2 in non-oxidative and oxidative killing mechanisms of PMN 
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Abstract 

We previously published that TLR2 contributes to efficient clearance of 

Staphylococcus aureus by polymorphonuclear leukocytes (PMN) in a local murine 

infection model. This study focused on the role of TLR2 in the activation of non-

oxidative and oxidative killing mechanisms against S. aureus. We show that TLR2 

clearly contributes to killing of S. aureus. The importance of antimicrobial peptide 

was shown in CRAMP-deficient PMN where killing of S. aureus was similarly 

reduced as in TLR2-deficient PMN. However, TLR2 was not involved in the 

regulation of CRAMP expression or function. PMN from gp91phox-/- were unable to 

eradicate S. aureus comparable to TLR2-/- PMN and suggested that TLR2 may act via 

the NADPH oxidase. Indeed, induction of oxidative burst was delayed in TLR2-

deficient PMN. We further investigated whether sensing of S. aureus by TLR2 is 

involved in the formation of neutrophil extracellular traps (NETs), which are induced 

when phagocytic killing is exhausted. Formation of NETs was independent of TLR2-

MyD88 signaling. Summarized, TLR2 enhances oxidative killing of S. aureus 

possibly by accelerating NADPH oxidase assembly in the phagosome. 
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Introduction 

Staphylococcus aureus (S. aureus) is a human commensal colonizing the skin and 

mucous membranes. When crossing the skin barrier, S. aureus causes abscess 

formation from which the bacteria can disseminate and cause severe systemic 

diseases. Once S. aureus breaches the skin barrier, polymorphonuclear leukocytes 

(PMN) are recruited to the site of infection to prevent further bacterial spread. Then, 

S. aureus is phagocytosed by PMN and eradicated by non-oxidative and oxidative 

mechanisms. The non-oxidative killing mechanisms are mediated by cationic 

antimicrobial peptides (CAMPs) such as defensins and cathelicidin stored in PMN 

granules. The oxidative mechanisms depend on reactive oxygen species (ROS) 

generated by the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and 

myeloperoxidase (MPO). On one hand, the importance of non-oxidative killing comes 

clear in two rare inherited diseases, the Chediak-Higashi syndrome (1-3) and specific 

granule deficiency (4, 5). Both disorders are characterized by recurrent infections and 

shortened life expectancy underlining the fundamental role of granule proteins in host 

defense. On the other hand, the significance of ROS for antimicrobial activity is 

evidenced in patients with chronic granulomatous disease (CGD) lacking a functional 

NADPH oxidase complex and suffering from recurrent infections (6-9). All three 

diseases render patients susceptible to staphylococcal infection indicating that S. 

aureus has evolved the ability to resist both non-oxidative and oxidative PMN killing. 

Resistance to CAMPs is due to positive-charge modifications to the staphylococcal 

cell wall such as teichoic acid alanylation and peptidoglycan acetylation (10-12), 

whereas resistance to ROS is mediated by the expression of carotenoid pigment (13). 
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In addition to the intracellular killing mechanisms, PMN release neutrophil 

extracellular traps (NETs) consisting of chromosomal DNA and granule proteins (14). 

Formation of NETs presumably occurs after phagocytic killing mechanisms are 

exhausted. NETs then capture extracellular bacteria and are supposed to facilitate 

microbial killing by concentrating the antimicrobial arsenal to the site of infection and 

inhibiting further spreading. The formation of NETs was shown to be dependent on 

ROS and inhibitable by serum concentrations > 5% (15) but the precise mechanisms 

of NETs induction need further investigation. Traditionally, non-oxidative and 

oxidative killing mechanisms have been considered independent of each other. 

Recently, ROS have been implicated in the activation of granule proteases (16, 17). 

Activation of NADPH oxidase is followed by the influx of K+ and alkalization of the 

phagosome, which may be crucial to release the cationic granule proteases from the 

anionic proteoglycan matrix of the granules. 

Sensing of S. aureus is mediated by staphylococcal lipoproteins and to a lesser extent 

by lipoteichoic acids (LTA), which are recognized by Toll-like receptor (TLR) 2 and 

its comolecules CD14 and CD36 (18-22). After ligand binding, TLR2 forms 

heterodimers with either TLR1 or TLR6 (23); dimerization causes conformational 

changes thereby triggering activation of myeloid differentiation factor 88 (MyD88). 

TLR2-MyD88-signaling pathway results in the activation of NF-B and MAP kinases 

to induce pro-inflammatory genes and an antimicrobial response. The importance of 

TLR2 in inflammatory and antimicrobial response is evidenced in TLR2-deficient 

mice, which are highly susceptible to S. aureus septicemia (24), Streptococcus 

pneumoniae meningitis (25), and infections with Mycobacterium tuberculosis (26). 

We previously showed that TLR2 contributes to efficient clearance of S. aureus in a 

local infection model and that alanylation of LTA protected S. aureus from this 
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TLR2-mediated defense (27). The protective effect of LTA alanylation was 

tentatively correlated to the resistance against cationic antimicrobial peptides. 

Recently, we could demonstrate that the increased susceptibility of a S. aureus mutant 

deficient in the gene dltA for alanylation of teichoic acids, SA113 ∆dltA, to PMN-

dependent killing is predominantly mediated by the murine cathelicidin CRAMP (28). 

Therefore, we here investigate whether TLR2 regulates the antimicrobial defense 

against S. aureus by activating non-oxidative and oxidative killing mechanisms. 

We show that TLR2 on murine PMN enhances killing of S. aureus in vitro. However, 

TLR2 had no influence on expression level of the murine cathelicidin CRAMP and 

granule recruitment to phagosomes was TLR2-independent. Activation of TLR2 

signaling accelerated the generation of superoxide induced by S. aureus. In contrast, 

formation of NETs was independent of TLR2-MyD88 signaling. 
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Materials and Methods 

Bacterial strains. S. aureus wt (ATCC 35556, SA113 wt) and its isogenic mutants 

∆dltA, ∆spa, and ∆spa/∆dltA were grown overnight in tryptic soy broth (Difco) at 

37°C. For stimulation experiments, a subculture was inoculated 1:100 (v/v) from 

overnight culture in fresh tryptic soy broth and grown to late-log phase. Bacteria were 

washed twice with 0.9% NaCl prior to use. 

 

FITC-labeling of staphylococci. S. aureus subculture was grown to mid-log phase in 

fresh tryptic soy broth. Bacteria were washed twice with 0.9% NaCl and labeled in 

0.1 mg/ml FITC (Sigma) in PBS for 1h at 37°C with shaking. Prior to use, bacteria 

were washed twice with 0.9% NaCl and resuspended in Dulbecco’s PBS with 100 

mg/L MgCl2 and 100 mg/L CaCl2 (DPBS++, Invitrogen). 

 

Mice and tissue cage model. C57BL/6, TLR2-/-, CRAMP-/-, and gp91phox-/- mice were 

kept under specific pathogen-free conditions in the Animal House of the Department 

of Biomedicine, University Hospital Basel, and University of California, San Diego, 

according to the regulations of the Swiss veterinary law and the Veterans 

Administration of San Diego Committee on Animal Use, respectively. Mice were 

euthanized by CO2 or i.p. injection of 500 mg/kg Thiopenthal (Abbott 

Laboratories). 

12-14-weeks-old female mice were anesthetized and sterile Teflon tissue cages were 

implanted subcutaneously, as described previously (27). Two weeks after surgery, the 

sterility of tissue cages was verified. To harvest tissue cage fluid (TCF) for isolation 
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of PMN, mice were anesthetized by isofluorane (MINRAD INC.) and TCF 

percutaneously collected with EDTA. 

 

Antibody generation. Two New Zealand White rabbits were immunized by 

repetitive subcutaneous injections of 150 µg synthetic CRAMP (GL Shangai Biochem 

Ltd.) in adjuvant (MPL® + TDM + CWS Adjuvant System, Sigma) at monthly 

intervals. The titer of the antiserum was estimated by immunoblotting. The IgG 

fraction from the polyclonal anti-serum was isolated on a protein-G sepharose 

(Amersham) column and further affinity purified on CRAMP-coupled NHS-activated 

sepharose (GE Healthcare). Bound antibody was eluted with 0.1 M glycin (0.002% 

sodium azide, pH 2.5) and dialyzed against PBS. A portion of the antibody 

preparation was biotinylated as described previously (29), dialyzed against PBS and 

stored at -20°C. 

 

PMN isolation. For peripheral blood PMN (bPMN), mouse blood was harvested by 

intracardiac puncture in EDTA. bPMN were isolated as described previously for 

human PMN (30), but using a modified density gradient centrifugation on a 

discontinuous Percoll gradient with 59% and 67% Percoll (Amersham Biotech) in 

PBS. bPMN were collected at the interface of the two Percoll layers. 

For peritoneal PMN (pPMN), 1 ml of 3% thioglycollate (BD Biosciences) were 

injected i.p. After 6h, pPMN were collected by peritoneal lavage with 5 ml RPMI 

1640 complete medium (5% FBS, 2 mM glutamate, 1 mM sodium pyruvate, 1.5 mM 

HEPES, non-essential amino acids) and pelleted by centrifugation. 

For TCF-PMN, TCF was collected in EDTA and pelleted by centrifugation. 
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Stimulation of PMN for flow cytometry and immunofluorescence. After isolation 

from blood, peritoneum, or TCF, erythrocytes were lysed in water and PMN were 

resuspended in DPBS++ at 1-2x106 cells/ml. PMN were incubated with 1 µg/ml PMA, 

unlabeled (for flow cytometry) or FITC-labeled (for immunofluorescence) SA113 

∆spa and SA113 ∆spa/∆dltA for 15 and 30 min at 37°C, 200 rpm. Stimulation was 

stopped on ice and PMN were collected by centrifugation for further use in flow 

cytometry or immunofluorescence 

 

Immunofluorescence. After stimulation, cells were spun onto glass coverslips and 

fixed with 4% paraformaldehyde (PFA) in PBS for 30 min at room temperature (RT). 

After permeabilization with 0.2% saponin for 30 min at RT and 5 min in methanol, 

cells were blocked with 2% normal goat or donkey serum (NGS or NDS) for 30 min 

at RT. Cells were stained with affinity-purified polyclonal rabbit anti-CRAMP (1 

µg/ml), biotinylated rabbit anti-CRAMP (5 µg/ml), goat anti-cathepsin D (10 µg/ml, 

Santa Cruz Biotechnology), and rabbit anti-LAMP-1 (10 µg/ml, Abcam) Ab, 

followed by donkey anti-rabbit/goat IgG-Cy3 Ab (7.5 µg/ml, Jackson 

ImmunoResearch) or Streptavidin-Alexa647 (10 µg/ml, Molecular Probes). Isotype-

matched Ab served as negative controls. Specimens were analyzed with a Zeiss 

Axiovert 100M microscope (Carl Zeiss AG) using the confocal system LSM 510 

META and LSM 510 v3.2 SP2 software (Zeiss). 

 

Flow cytometry. Cells were blocked with 2% NGS, fixed with 4% PFA, and 

permeabilized for intracellular staining with 0.1% saponin. They were sequentially 
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stained with biotinylated rabbit anti-CRAMP Ab (1 µg/ml) and Streptavidin-RPE 

(0.25 µg/ml). Biotinylated rabbit IgG was used as isotype control. 

 

PMN killing assay. TCF-PMN were resuspended in DPBS++ (with 10% pooled 

mouse plasma) and 2x105 PMN were incubated with SA113 wt or ∆dltA at a 

multiplicity of infection (MOI) of 1h and incubated at 37°C, 200 rpm. After 2h, 

samples were diluted in H2O (pH 11) to lyse PMN and serial dilutions were plated on 

Mueller-Hinton agar (MHA) to enumerate surviving intra- and extracellular bacteria. 

 

Quantification of DNA release from activated neutrophils. TCF-PMN were 

resuspended in RPMI 1640 complete (2% FCS), seeded into 96-well plates 

(OptiPlate-96F, Perkin Elmer) at 2x105/well and stimulated with 50 nM PMA, SA113 

wt, and SA113 ∆dltA at MOI 10. After indicated time points, Sytox Green 

(MolecularProbes) was added to the cells at a final concentration of 10 μM to detect 

extracellular DNA. Non-stimulated TCF-PMN were used as control. The plates were 

read in a fluorescence microplate reader (Spectramax GeminiXS, Molecular Devices) 

with a filter setting of 485(excitation)/538 (emission). 

 

Superoxide production. Intracellular superoxide anion production of 2x105 TCF-

PMN was measured using luminol-enhanced chemiluminescence (31). TCF-PMN in 

DPBS++ were stimulated with 1 µg/mL PMA, SA113 wt, and SA113 ∆dltA at MOI 10 

in the presence of 50 µM luminol and 2000 Units catalase. Chemiluminescence was 

measured every 5 min throughout the stimulation with a luminometer (Microlumat 

Plus, Berthold Technologies). 
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Statistical analysis. PMN killing assay and in vivo experiments were analyzed with 

Mann-Whitney. Flow cytometry data, intracellular killing and NET-dependent killing 

assays were analyzed with paired student’s t-test. Generation of superoxide was 

analyzed with 2way-ANOVA. Statistical analysis was done with Prism 5.0a 

(GraphPad Software, Inc.). A p-value of p <0.05 was considered statistically 

significant. 
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Results 

TLR2-/- PMN have impaired bactericidal activity against S. aureus  

We previously showed that TLR2 contributes to efficient clearance of S. aureus in a 

local infection model and that alanylation of LTA protected S. aureus from this 

TLR2-mediated defense (27). The protective effect of LTA alanylation was 

tentatively correlated to the enhanced susceptibility of the ∆dltA mutant to CAMPs. 

Indeed, we could recently demonstrate that the increased susceptibility of SA113 

∆dltA to PMN-dependent killing is predominantly mediated by the murine 

cathelicidin CRAMP (28). Together, these results raised the hypothesis that TLR2 

might regulate the expression or function of CRAMP in murine PMN. 

 

 

Figure 1. Bactericidal activity of TCF-PMN and in vivo growth of S. aureus in CRAMP-/- mice. 

(A) The numbers of viable CFU of SA113 wt (closed) and SA113 ∆dltA (open) after 2h of incubation 

with TCF-PMN of C57BL/6 and TLR2-/- mice are expressed as percentage of the initial inoculum. (B) 

In vivo bacterial growth for 14 days after infection with 105 cfu of SA113 wt (closed) and ∆dltA (open) 

in CRAMP-/- mice. Data are mean ± SD of three independent experiments. Significant differences are 

indicated by *: p<0.05, **: p<0.01 and ***: p<0.001. 

We investigated whether TLR2 enhances killing of S. aureus by comparing the 

bactericidal activity of TLR2-/- and C57BL/6 PMN towards SA113 wt and ∆dltA. 
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Indeed, PMN isolated from tissue cage fluid (TCF-PMN) of TLR2-/- mice exhibited 

significantly decreased bactericidal activity against SA113 wt and ∆dltA compared to 

C57BL/6 TCF-PMN (Figure 1A) confirming the results found in vivo (27). SA113 wt 

and ∆dltA survived much better in the presence of TLR2-/- than C57BL/6 TCF-PMN, 

but the enhanced susceptibility of ∆dltA to killing persisted in TLR2-/- TCF-PMN, 

indicating the presence of active cathelicidin in TLR2-/- TCF-PMN. Interestingly, the 

percentage of surviving SA113 wt (213.0% ± 70.77) and ∆dltA (118.3% ± 62.46) in 

presence of TLR2-/- TCF-PMN was similar to the percentages of SA113 wt (214.9% ± 

53.5) and ∆dltA (177.4% ± 30.01) in the presence of CRAMP-/- TCF-PMN published 

earlier (28). Additionally, in vivo experiments revealed similar growth of SA113 wt 

and ∆dltA in CRAMP-/- mice (Figure 1B), which was comparable to the results 

previously found in TLR2-/- mice. These data give first evidence that TLR2 might 

mediate staphylococcal killing by regulating the expression or function of CRAMP in 

PMN. 

 

TLR2-deficient PMN have normal levels of CRAMP 

To investigate whether CRAMP expression is affected by TLR2-deficiency we 

compared intracellular CRAMP levels of TLR2-/- and C57BL/6 PMN by flow 

cytometry. Cells from murine peripheral blood, TCF, and peritoneal exudates were 

used to cover the different populations of PMN encountered by S. aureus in vivo. 

Intracellular expression of CRAMP shown as mean fluorescence intensity (MFI) was 

similar in PMN from TLR2-/- and C57BL/6 mice (Figure 2A). Additionally, MFI of 

PMN from different sites were comparable indicating minor degranulation of 

CRAMP during PMN exudation from blood. Immunofluorescence revealed that 

cellular distribution of CRAMP was similar in TCF-PMN of TLR2-/- and C57BL/6 
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mice (Figure 2B). In addition, the experiment identified PMN as the major CRAMP-

expressing cells in TCF, as monocytes showed no positive staining for CRAMP 

(arrows). These results indicate that TLR2-deficiency does not affect expression of 

CRAMP in PMN granules. 

 

 

Figure 2. Intracellular CRAMP expression in blood and exudate PMN. (A) MFI of purified blood 

PMN, peritoneal exudate cells, and TCF cells from C57BL/6 and TLR2-/- mice intracellularly stained 

with biotinylated rabbit anti-CRAMP Ab followed by RPE-conjugated Streptavidin and analyzed by 

flow cytometry. (B) Immunostaining of CRAMP in TCF cells examined by confocal microscopy. (i) 

Bright field, (ii) immunostaining of CRAMP with rabbit anti-CRAMP Ab followed by Cy3-conjugated 

donkey anti-rabbit Ab, and (iii) merge. Fluorescence micrographs (original magnification x64) are 

representatives of three independent experiments. Arrows indicate unstained monocytes. 
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Granule recruitment to S. aureus-containing phagosomes is TLR2-independent 

The reduced antimicrobial activity of TLR2-/- PMN against S. aureus could further 

base on a defect in degranulation or impaired recruitment of granules to phagocytosed 

S. aureus. In TLR2-deficient macrophages, a defect in phagosome maturation was 

described (32). We recently observed that release of cathelicidin of peritoneal PMN 

takes neither place after stimulation with staphylococcal LTA and synthetic 

lipopeptide nor after phagocytosis of S. aureus and can therefore rule out a defect in 

degranulation (28). To address recruitment of granules to phagosomes we used the 

staphylococcal protein A (spa) deletion mutants SA113 ∆spa and ∆spa/∆dltA instead 

of SA113 wt and ∆dltA to avoid the confounding factor of unspecific IgG binding to 

Protein A. pPMN were infected with FITC-labeled SA113 ∆spa and ∆spa/∆dltA for 

30 min and CRAMP was stained to localize secondary granules after infection. 

CRAMP colocalized with internalized S. aureus strains in TLR2-/- PMN similar as in 

C57BL/6 PMN (Figure 3); no differences in localization of CRAMP toward the 

resistant SA113 ∆spa and the CRAMP-susceptible ∆spa/∆dltA mutant were 

observable. Summarized, the normal expression level and recruitment of granules to 

phagosomes in PMN point toward a TLR2-mediated bactericidal mechanism 

independent of cathelicidin. 



 89 

 

Figure 3. Intracellular localization of CRAMP in S. aureus infection. Immunofluorescence of 

bPMN of C57BL/6 and TLR2-/- mice infected for 30 min with FITC-labeled SA113 ∆spa and 

∆spa/∆dltA (MOI 10). Colocalization of CRAMP and FITC-labeled S. aureus: (i) immunostaining of 

CRAMP with rabbit anti-CRAMP Ab followed by Cy3-conjugated donkey anti-rabbit Ab, (ii) FITC-

labeled SA113 ∆spa and ∆spa/∆dltA, and (iii) overlay. Fluorescence micrographs (original 

magnification x100) are representatives of three independent experiments. 
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TLR2 signaling accelerates oxidative burst 

The findings so far excluded an involvement of TLR2 in non-oxidative killing 

mechanisms of PMN. A recent study showed that phosphorylation of the NADPH 

oxidase subunit p47phox is dependent on TLR2 and macrophages of TLR2-/- mice 

showed no superoxide and H2O2 production (33). Additionally, Laroux et al. showed 

that MyD88 controls assembly of the NADPH oxidase and killing of gram-negative 

bacteria (34). Based on these findings, the TLR2-mediated bactericidal activity 

against S. aureus might be attributed to oxidative killing mechanisms. We thus first 

determined the bactericidal activity of gp91phox-/- TCF-PMN against S. aureus. 

gp91phox-/- TCF-PMN were highly impaired in staphylococcal killing (Figure 4). This 

implies that the NADPH oxidase is involved in staphylococcal defense. 

 

Figure 4. Impact of TLR2 on oxidative burst in PMN. (A) The numbers of viable CFU of SA113 wt 

(closed) and SA113 ∆dltA (open) after 2h of incubation with TCF-PMN from gp91phox-/- mice are 

expressed as percentage of the initial inoculum. (B) S. aureus-induced production of intracellular 

superoxide in TCF-PMN from C57BL/6, TLR2-/-, and gp91phox-/- mice measured by luminol-enhanced 

chemiluminescence. Data are mean ± SD of two independent experiments. Significant differences are 

indicated by *: p<0.05, **: p<0.01, and ***: p<0.001. 

The involvement of TLR2 in the signaling process leading to activation of NADPH 

oxidase and generation of ROS was tested in PMN of TLR2-/- and C57BL/6 mice. 

PMA served as control stimulus and induced a rapid production of superoxide 
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measured by luminol-enhanced chemiluminescence (Figure 4B). Interestingly, 

production of superoxide induced by S. aureus was delayed in TLR2-/- compared to 

C57BL/6 PMN. This result indicates acceleration of oxidative burst by TLR2 

signaling. Further investigation will reveal if a delay in assembly of the NADPH 

oxidase or reduced phosphorylation of subunits causes this defect in TLR2-/- PMN. 

 

Induction of NETs is independent of TLR2-MyD88 signaling 

NETs are made by neutrophils activated with an increasing number of stimuli. 

However, not much is known about exact induction pathways. Urban et al. assumed 

that Fc receptors or pattern-recognition receptors such as TLRs might be involved 

(35). The formation of NETs is dependent on the activation of the NADPH oxidase 

(15). With the observed delay of oxidative burst in TLR2-/- PMN formation of NETs 

might be affected as well. Thus, we analyzed whether TLR2 and MyD88 are involved 

in the induction of NETs by S. aureus. One to 3 hours post-infection with S. aureus, 

PMN from TLR2-/- and MyD88-/- mice released NETs comparable to C57BL/6 mice 

(Figure 5). Control PMN from gp91phox-/- mice were unable to produce NETs. Taken 

together, these data show that TLR2-MyD88 signaling is not involved in NET 

formation indicating that phagocytic or complement receptors might be of importance 

in this process. 
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Figure 5. Role of TLR2 signaling in formation of NETs. Quantification of NETs formation by TCF-

PMN of C57BL/6, TLR2-/-,MyD88-/-, and gp91phox-/- mice activated for 1 hour (A) and 3 hours (B) with 

PMA (stripped), SA113 wt (filled), and ∆dltA (open). Untreated PMN (grey) were used as negative 

control. 
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Discussion 

The role of TLRs in the regulation of antimicrobial peptide expression was first 

described in Drosophila. Expression of human beta-defensin hBD-2 was induced by 

activation of TLR2 by bacterial lipoprotein in lung epithelial cells (36). TLR2 

activation by soluble agonists enhanced cathelicidin protein expression in human 

macrophages (37) and CRAMP mRNA in murine fibroblasts (38). Recently, 

staphylococcal lipoproteins were evidenced to up-regulate human cathelicidin and 

hBD-2 in a TLR2-dependent manner in corneal epithelial cells (39). Altogether 

previous studies supported the hypothesis of a possible interaction between TLR2 and 

CAMP-mediated host defense. 

We confirmed the importance of TLR2 in efficient killing of S. aureus by PMN. In 

line with our previous findings in vivo, alanylation of teichoic acid protected S. aureus 

from killing. Additionally, S. aureus infection in CRAMP-deficient mice mirrored the 

situation published for TLR2-deficient mice where S. aureus wt and ∆dltA showed 

similar growth strengthening our hypothesis. However, our study revealed a 

negligible role of TLR2 in the expression of CRAMP as well as in secondary granule 

recruitment to phagosomes in PMN. PMN, which have a life span of only a few 

hours, do store cathelicidin in the secondary granules as inactive form and processing 

after activation of the cell confers rapid antimicrobial defense. Since PMN are the 

first cells recruited to the site of infection we consider that they use their antimicrobial 

arsenal to eradicate bacteria after phagocytosis independently of TLR2. In epithelial 

cells and macrophages, cathelicidin is constitutively not or only weakly expressed and 

its expression is up-regulated after infection. Therefore, sensing pathogens by TLR2 

and resulting up-regulation of cathelicidin in long-lived epithelial cells and 
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macrophages seems necessary to provide subsequent protection after the first 

intervention of PMN. 

Nevertheless, TLR2 contributed to oxidative killing by accelerating NADPH oxidase 

activation. In agreement with this, we have previously shown that TLR2 enhanced 

oxidative killing of pneumoccoci in murine PMN (40). Additionally, p47phox mRNA 

induction and phosphorylation were found TLR2-dependent in infected macrophages 

(33, 41). The role of TLRs in oxidative burst generation is further documented as 

mice, which lack MyD88, a downstream adaptor of TLR2, failed to produce reactive 

oxygen upon stimulation with group B streptococci (42). Furthermore, MyD88 

enhanced NADPH oxidase assembly and controlled killing of gram-negative bacteria 

(34). Future investigation will reveal the molecular mechanism of TLR2-mediated 

oxidative killing and in particular whether TLR2 activation affects translocation and 

assembly of the NADPH oxidase. 

PMN are able to form NETs that trap and degrade bacteria. The presence of bacteria 

activates PMN and leads to the formation of NETs. Urban et al. proposed that Fc 

receptors and pattern-recognition receptors might be involved in the initiation of 

NETs formation by opsonized and non-opsonized microbes (35). Here, we showed 

that induction of NETs formation by non-opsonized S. aureus is independent of 

TLR2-MyD88-signaling. It is now known that induction of NETs depends on ROS-

signaling, as inhibition of H2O2 formation blocked NET formation and application of 

H2O2 to PMN from CGD patients led to formation of NETs (15). Additionally, NET 

formation is inhibited in a concentration-dependent fashion by serum due to its 

antioxidant activity (15, 43). On the other hand, ROS production can be induced by 

stimulation of PMN with specific TLR ligands. LPS-induced TLR4-MyD88-IRAK-4 

signaling was shown to regulate NADPH oxidase activation (44-47). However, only a 
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few reports have clearly identified the interplay between TLRs and NADPH oxidases 

and needs further investigation. Therefore, signaling mechanisms involved in NETs 

formation by different stimuli might be complicated but future studies on ROS and 

TLR signaling will help to fully understand the process of NET formation. 
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5. Overall Discussion 

In the first part of this thesis we aimed to investigate the antimicrobial potential of 

neutrophil-derived CRAMP in staphylococcal killing. The focus was on the 

identification of its site of action, since little is known so far about extra- or 

intracellular activity of neutrophil-derived cathelicidins. Although the human 

cathelicidin hCAP-18 is secreted to the extracellular space by neutrophils after soluble 

stimuli (14), it is plausible that a particle stimulus such as live S. aureus leads to 

release of cathelicidin into the phagolysosome. Evidence for this assumption is given 

by the fact that hCAP-18 is found in latex bead-containing phagosomes. Interestingly, 

cleavage of hCAP-18 was only observed extracellularly but not yet in the 

phagolysosome (14). Therefore, we intended to investigate extra- and intracellular 

activity of CRAMP against S. aureus and the presence of active CRAMP in 

phagolysosomes. 

We found that neutrophils retain CRAMP during the process of extravasation. This 

documents the importance of CRAMP to exert full antimicrobial activity at the site of 

infection. Although we found degranulation of CRAMP after strong activation of 

neutrophils, soluble MAMPs and importantly live S. aureus did not induce secretion 

of CRAMP to the extracellular space. In contrast, CRAMP was recruited to S. aureus-

containing phagolysosomes. Most interestingly, by using the CRAMP-susceptible 

S. aureus ∆dltA mutant we could demonstrate intracellular activity of CRAMP that 

was not reported before. The main function of CRAMP, therefore, seems to be 

intracellular. This finding is novel and contrasts with the known mainly extracellular 

activity of human cathelicidin. 
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A further approach in this study was to target the interaction of non-oxidative and 

oxidative killing mechanisms of neutrophils. 

A novel link between non-oxidative and oxidative mechanisms was found in the 

formation of NETs, which is dependent on ROS (72). Antimicrobial activity of NETs 

against several pathogens including S. aureus has been established but was not 

correlated to the AMP content. Since AMP activity in NET-association has not yet 

been addressed and might be of importance, we focused on the activity of CRAMP in 

NET-mediated defense. We demonstrated that CRAMP is in a state of reduced 

activity when associated with NETs and does not contribute to staphylococcal killing. 

This new finding contradicts the current opinion that NETs kill bacteria with locally 

concentrated AMPs. Whether this inactivation is common to all NET-associated 

AMPs remains unclear. Approaches addressing this question will be necessary for our 

detailed understanding how NETs exert microbial killing. We hypothesize that NETs 

serve as a storage site of antimicrobial active peptides and enzymes to combat 

bacteria that are freed during NET breakdown or following DNase secretion by 

certain pathogens including S. aureus. 

The ingenious model of synergistic interaction between the NADPH oxidase and 

granule-associated proteases proposed by Segal and co-workers did not consider that 

the subsequent activation of antimicrobial peptides might be affected as well (13). 

Therefore, we further addressed the relationship between a functional NADPH 

oxidase and the efficiency of CRAMP-mediated staphylococcal defense. Using 

gp91phox-/- mice, lacking a functional NADPH oxidase, we found normal CRAMP 

recruitment to the phagolysosome; however, intracellular CRAMP level and killing of 

S. aureus were reduced. Since intracellular killing of S. aureus ∆dltA remained 

enhanced, activation of CRAMP by granule proteases could not be correlated to the 
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NADPH oxidase in this study. While total killing of S. aureus by gp91phox-/- PMN was 

markedly reduced, intracellular killing was only slightly impaired. This might reflect 

an importance of ROS for extracellular but negligibility for intracellular killing. An 

additional finding during our observations was that LAMP-1, which we used as 

phagosomal marker, did only partially co-localize with S. aureus-containing 

phagosomes in gp91phox-/- neutrophils. Few studies are available localizing LAMP-1 in 

the neutrophil; however, LAMP-1 was identified in the membrane of multivesicular 

bodies (MVB) and multilaminar compartments (MLC) (103, 104). Little is known 

about the role of MVB and MLC in neutrophil phagosome formation but they are 

speculated to be the true lysosomes in neutrophils (105). Characterization of 

neutrophil MVB and MLC might broaden our knowledge of phagosome maturation in 

neutrophils and identify a possible role of the NADPH oxidase in this process. 

 

In the second part of this thesis we intended to investigate whether TLR2 mediates the  

activation of non-oxidative or oxidative killing mechanisms in response to S. aureus. 

TLR2 activation has been shown to up-regulate cathelicidin protein and mRNA 

expression in fibroblasts and epithelial cells (88, 89). Evidence for TLR2 in mediating 

a cathelicidin-dependent defense in neutrophils was proposed by our group before 

(96). First, we investigated the role of TLR2 in cathelicidin-mediated staphylococcal 

killing and the potential regulation of CRAMP. We showed that TLR2 contributes to 

efficient staphylococcal killing in neutrophils. A correlation of TLR2-mediated killing 

and CRAMP expression or phagosome recruitment was not found. In accordance with 

the neutrophil’s role in rapid defense these results underscore the concept of storing 

large amounts of inactive cathelicidin for immediate antimicrobial activity upon 

neutrophil activation. In contrast, cathelicidin expression is low in epithelial cells but 
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strongly up-regulated in infection. Accordingly, sensing pathogens by TLR2 and 

resulting up-regulation of cathelicidin is necessary to provide long-term protection by 

epithelial cells whereas the antimicrobial arsenal stored in neutrophil granules is 

sufficient for the first intervention by neutrophils. 

Since TLR2 clearly contributed to efficient staphylococcal killing in neutrophils, 

independent of CRAMP, we assumed that TLR2 might promote oxidative killing in 

response to S. aureus. Our hypothesis was supported by the fact that TLR2 enhances 

oxidative killing of pneumococci in murine PMN (106). In addition, a recent study 

showed that TLR2 activation induced the phosphorylation of the NADPH oxidase 

subunit p47phox in macrophages (107). 

Our results revealed that TLR2 activation by S. aureus accelerates the induction of an 

oxidative burst in neutrophils. Future experiments addressing the phosphorylation and 

kinetics of assembly of NADPH oxidase subunits will specify the position of TLR2 in 

promoting oxidative killing. Under assumption of Segal’s theory it may be argued that 

a delayed production of toxic ROS might additionally affect bacterial killing by 

hindering protease liberation and AMP activation. From this perspective, detailed 

examination of the relationship between TLR2 and NADPH oxidase activation will 

reveal further insights in the complex network of microbial sensing and killing. 

Recent work suggested that TLRs might be involved in the initiation of signaling 

cascades leading to the formation of NETs (108). Although proposed, this hypothesis 

has not been subject of recent studies and there is no clear evidence for it. Therefore, 

we investigated the induction of NETs under the focus of TLR2 signaling. Our results 

revealed that TLR2-MyD88 signaling is not involved in the induction of NETs by 

non-opsonized S. aureus. This result suggests that induction of NETs might rather 

depend on phagocytosis-mediated signaling events than pattern recognition receptors. 
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Clearly, future research is necessary to elucidate which signaling pathways lead to the 

induction of NETs and whether opsonization might be of influence. 

 

In conclusion, the direct interplay of non-oxidative and oxidative killing in 

neutrophils remains complicated and elusive. Overall, we believe that the neutrophil’s 

ability to target many essential processes of microbial pathogens and to synergize 

non-oxidative and oxidative mechanisms with one another results in broad 

antimicrobial activity that is difficult for microorganisms to completely resist or 

circumvent. This needs temporal and spatial coordination of the distinct defense 

mechanisms, which makes it difficult to separate these processes. The remaining 

uncertainties and controversies leave many fascinating questions in the interactions 

between neutrophils and microorganisms to answer. Nevertheless, a deeper 

understanding of this area would be of crucial importance in developing methods to 

interfere with both old and newly emerging pathogens. 
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