A Global-to-Local Model
for the Representation of Human Faces

Inauguraldissertation

zur
Erlangung der Wirde eines Doktors der Philosophie
vorgelegt der
Philosophisch-Naturwissenschaftlichen Fakultat
der Universitat Basel

von

Reinhard Knothe
aus Freiburg im Breisgau, Deutschland

Basel, 2009

Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultat

auf Antrag von

Prof. Dr. Thomas Vetter, Universitat Basel, Dissertationsleiter
Prof. Dr. Hans Burkhardt, Universitat Freiburg, Korreferent

Basel, den 23.06.2009

Prof. Dr. Eberhard Parlow, Dekan

A Global-to-Local Model
for the Representation of Human Faces

PhD Thesis
Reinhard Knothe
2009

Originaldokument gespeichert auf dem Dokumentenserver der Universitat Basel
edoc.unibas.ch

90¢e

Dieses Werk ist unter dem Vertrag ,Creative Commons Namensnennung-Keine
kommerzielle Nutzung-Keine Bearbeitung 2.5 Schweiz" lizenziert. Die vollstédndige Lizenz
kann unter
creativecommons.org/licences/by-nc-nd/2.5/ch
eingesehen werden.

@creative
commons

Namensnennung-Keine kommerzielle Nutzung-Keine Bearbeitung 2.5 Schweiz

Sie dirfen:

@ das Werk vervielféltigen, verbreiten und 6ffentlich zugéanglich machen

Zu den folgenden Bedingungen:

Namensnennung. Sie missen den Namen des Autors/Rechteinhabers in der von
ihm festgelegten Weise nennen (wodurch aber nicht der Eindruck entstehen darf,
Sie oder die Nutzung des Werkes durch Sie wiirden entlohnt).

Keine kommerzielle Nutzung. Dieses Werk darf nicht fir kommerzielle Zwecke
verwendet werden.

Keine Bearbeitung. Dieses Werk darf nicht bearbeitet oder in anderer Weise
verandert werden.

W @

e |Im Falle einer Verbreitung missen Sie anderen die Lizenzbedingungen, unter welche
dieses Werk fallt, mitteilen.

e Jede der vorgenannten Bedingungen kann aufgehoben werden, sofern Sie die Einwilli-
gung des Rechteinhabers dazu erhalten.

e Diese Lizenz lasst die Urheberpersoénlichkeitsrechte unberihrt.

Abstract

In the context of face modeling and face recognition, statistical models are widely
used for the representation and modeling of surfaces. Most of these models are
obtained by computing Principal Components Analysis (PCA) on a set of repre-
sentative examples. These models represent novel faces poorly due to their holistic
nature (i.e. each component has global support), and they suffer from overfitting
when used for generalization from partial information. In this work, we present
a novel analysis method that breaks the objects up into modes based on spatial
frequency. The high-frequency modes are segmented into regions with respect to
specific features of the object. After computing PCA on these segments individ-
ually, a hierarchy of global and local components gradually decreasing in size of
their support is combined into a linear statistical model, hence the name, Global-
to-Local model (G2L). We apply our methodology to build a novel G2L model of
3D shapes of human heads. Both the representation and the generalization capa-
bilities of the models are evaluated and compared in a standardized test, and it is
demonstrated that the G2L model performs better compared to traditional holistic
PCA models. Furthermore, both models are used to reconstruct the 3D shape of
faces from a single photograph. A novel adaptive fitting method is presented that
estimates the model parameters using a multi-resolution approach. The model is
first fitted to contours extracted from the image. In a second stage, the contours
are kept fixed and the remaining flexibility of the model is fitted to the input image.
This makes the method fast (30 sec on a standard PC), efficient, and accurate.

Contents

NOtation . . . v v v v e e e e e e e e e e e e

1 Introduction

1.1 PriorWork
1.2 The Global-to-Local Model
1.3 OVerview . . . v v v v e e e e e e e e e e e

2 Data and Parametrization

21 TheData
21.1 MPI-TUData
212 UniBSData
2.2 Scanner and Data Acquisition
2.3 Parametrization and Correspondence
24 TheTemplate
2.4.1 Parametrization
2.4.2 DataRepresentation

3 The Global-to-Local Model

31 PCAModel
3.2 Global-to-LocalModel
3.3 Multiresolution Analysis
3.3.1 Gaussian- and Laplacian Pyramids
3.3.2 Gaussian- and Laplacian Pyramids for Shapes
333 Filterbank
3.4 Segmentation of the Details
3.5 Building a linear statistical model
3.5.1 Global and Local Components.
352 Covariance

3.6 Regularization

11
12
15
15

17
17
17
18
20
21
22
23
24

8 CONTENTS
4 Evaluation 49
4.1 Distance Measures oo 50
4.2 Projectiontothe FaceSpace 51
4.3 Reconstruction from a Sparse Setof Points 52
44 Experiments. 53
44.1 ExperimentA 53

442 ExperimentB. L. 58

5 Fitting 61
51 ExternalModels. 62
5.1.1 Shapeand ColorModels 63

5.1.2 CameraModel L. 63

5.1.3 Illumination Model 66

52 CostFunction 67
5.2.1 Special Cost Functions 69

5.2.2 Regularization, 71

53 Optimization vt 71
5.4 Stepwise Fitting System 73
5.4.1 Multiresolution. 73

5.4.2 Multi-Level Fitting 73

54.3 2-StageFitting, 74

55 SGDandMFFitter 75
55.1 SGDFitter 76

5.5.2 Multi Feature Fitter 77

5.6 FittingModules o oL 78
5.6.1 Module 1: Pose from Landmarks 78

5.6.2 Module 2: Shading from Contour 79

5.6.3 Module 3: [llumination from Intensity 84

5.6.4 Module 4: Surface Color from Pixel Intensity 85

5.6.5 Module 5: Shape from Shading 86

5.6.6 Texture Extraction 88

5.7 Efficiency 90
5.7.1 Multiresolution, Optimization and Cost Function 91

5.7.2 Implementation 92

5.7.3 Elimination of irrelevant termsof V. 92

5.8 Resultsand Comparison 93
5.8.1 ExperimentC 93

5.8.2 ExperimentD 94

CONTENTS 9
6 Conclusion and Future Work 929
6.1 Conclusion 99

6.2 ExpressionModel oL oL o 100

6.3 Automatic Contour Extraction 102

6.4 Statistical ColorModels 104

6.5 ColorCorrection i 105

7 Appendix 109
7.1 Derivatives o i e e e e e e e e e e e e e e 109
7.1.1 Derivatives of the CameraModel 109

7.1.2 Derivatives of the Shape Model 110

7.1.3 Derivatives of the Illumination Model 111

7.1.4 Derivatives of the Surface Color Model 112

7.1.5 Derivatives of the Surface Normals 113

7.1.6 Derivatives of the Shape Model (Color Intensity) 114

7.2 Computation of the Segments 115

7.3 Reconstruction and Blending of the Texture 117
Acknowledgments. 118
Bibliography 119

Curriculum Vitae

10

CONTENTS

Notation

n

m
x=(7],...,7L)" € R¥
T = (g, 1y,)"

)
|

- (exu €y, ez>T
W= (wx,wy)T

the number of training examples

the number of vertices in each example
3D shape of one training example

one vertex (in model coordinates)

one vertex (in eye coordinates)

one vertex (in window coordinates)

X 3D shape of example on level [
y! details on level [
n Fine-to Coarse Transition
from level h (high) to level [(low)
Th Coarse-to Fine Transition
from level [(low) to level (high)
/ level of the G2L model
M = (p,o0,U) linear generative statistical model
p € R3™ mean
U =[uy,...,uy] € R®>*" matrix with n’ components

!

o= (01,...00) ER"

weighting of the components
PCA model

Mot Global-to-Local model

a=(aj,...,a.,)l € R% per-vertex-color of one training example
a= (a®, a% aP)T color of one vertex

p=(p, A\ apB) model parameters

p camera model parameters (see Table 5.1)
A illumination model parameters (Table 5.2)
a shape model parameters

1] surface color model parameters

Chapter 1

Introduction

Reconstructing the 3D shape of a human face from a photo is an ill-posed problem
and therefore requires prior knowledge, which is usually introduced in the form of
a statistical model. Statistical shape models represent object classes by parameters
describing the variability of the elements within the class. In contrast to models
that are purely descriptive, statistical models are generative, i.e. the shape is a func-
tion of the parameters. They are widely used in computer vision and computer
graphics for the representation of human heads [1, 2, 3, 4, 5]. Similar models are
used to represent human bodies [6], and in medical image analysis and computa-
tional anatomy to model the variability of biological shapes [7, 8, 9, 10, 11, 12].

The reconstructed 3D surfaces can be used for computer animation of faces
and whole bodies [13, 6], e.g. for movies or computer games or to customize 3D
avatars. Such avatars are used by computer users as an alter ego in computer games
or online communities. The shape can also be used indirectly to manipulate the
expression or attributes of faces in photographs, e.g. by transferring the expres-
sion from one photograph to another [13, 14], to exchange faces in photographs
[15], to generate stimuli for psychological experiments [16], and for automatic
face recognition [17, 2, 18, 19].

Currently there exist two types of face recognition systems: Firstly, 3D face
recognition systems which use a 3D scan. These systems are typically used for
access control. The drawback of these systems, however, is that they require a
3D scan and can therefore only be used in a cooperative scenario. Secondly, 2D
face recognition system which use a single image or a video stream. The advan-
tage of these systems is their potential use in uncooperative scenarios like video
surveillance. However, in practice, their application is prevented by too low recog-
nition rates of the currently available commercial systems [20]. Automated 2D
face recognition is still one of the most challenging research topics in computer
vision, and it has been demonstrated that variations in pose and light are major
problems [21]. Other problems are hair and beards and partial occlusion e.g. from

Avatar of the XBOX 360

12 Introduction

glasses. Most of these systems use 2D images or photos to represent the subjects
in the gallery. Hence, these methods are limited in their expressiveness and there-
fore most face recognition systems show good results only for faces under frontal
or near frontal pose. Methods that are based on fitting 3D statistical models have
been proposed to overcome this issue [17]. They are the key to recognize people
in non-frontal poses or from images with unknown illumination conditions.

1.1 Prior Work

Most statistical models are based on a Principle Component Analysis (PCA) of a
set of training data. Turk and Pentland use a 2D PCA model to represent faces,
the Eigenfaces [22]. As training data set they use a set of photographs of human
faces. The pictures are coarsely aligned, but not registered with dense correspon-
dence. Their system works only well on adequate images, i.e. for pictures in frontal
view with controlled illumination and without expression, e.g. passport or drivers
license photographs.

Cootes, Taylor et al. represent the face as a set of 2D points (Active Shape Mod-
els, ASM [23]). As training data they also use a set of face images. But contrary
to the Eigenface approach, they manually register the face images by labeling 152
2D landmark points. The ASM is a PCA model of these face shapes in frontal
view. In [24, 25] they combine this model with a PCA model of pixel intensities.
This model is called Active Appearance Model (AAM). The ASM/AAM separates
shape from appearance, however, it does not separate between 3D pose changes
and shape and between illumination and inherent color of the face.

In contrast to these 2D approaches, the Morphable Model represents a face as
a 3D shape with per-vertex color. The Morphable Model is a statistical model for
shape and per-vertex color that is trained from a dataset of 200 densely registered
3D scans. Blanz and Vetter [1] used their Morphable Model to reconstruct the 3D
shape of a face from a photograph. This fitting is done in an Analysis-by-Synthesis
approach by optimizing a cost function that consists of the difference between
the rendered model and the input photo and a term that controls the probability
within the model. Romdhani and Vetter [2] later improved the fitting by using a
cost function that included several features extracted from the image, such as the
contours, landmark points, and shading information.

PCA models are widely used, but they have some major drawbacks. PCA is
focused on dimensionality reduction. The principal components are holistic, i.e.
each component has global support. Hence the influence of each coefficient is not
localized and affects the whole shape. As a result, there is, in general, no meaning-
ful interpretation of the components. This is counter-intuitive when the model is
used in an interactive tool. In the context of human faces, we would expect to be

1.1 Prior Work 13

able to change e.g. the shape of the nose independently of the shape of the ear, but
this is not possible with PCA models. Holistic Morphable Models are not flexible
enough to locally adapt to several features at the same time.

Local Feature Analysis (LFA) [26] was introduced as an alternative method to
PCA to overcome the holistic limitations. The PCA representation is typically not
topographic, meaning that nearby components of the PCA-coefficient vector have
no spatial relationship. In a topographic model, nearby components should have
the same relationship as the corresponding components in the input vector. Penev
and Atick [26] have introduced a model that achieves this goal, the Local Feature
Analysis (LFA).

In [27] we developed an object class representation based on a combination of
PCA and LFA approaches. Since both methods have complementary advantages,
a combined method is reasonable. A low dimensional global PCA model is com-
bined with a local representation by a LFA model. Local models are developed
around landmark vertices. In this approach the PCA model is used for a coarse
holistic shape representation and details are represented by the LFA-based local
models. This object representation provides local adaptation of the surface and is
able to fit 3D control points exactly without affecting areas of the surface far away
from these control points. The disadvantage of this representation is that the local
models depend on the 3D landmark vertices chosen while training the model.

For non-generative models (like models used for object or face detection) there
also exist approaches to represent the localized spatial structure of face images
[28, 29]. One such approach is based on the observation that many classes of im-
ages (e.g. wavelet transforms of geometrically aligned face images) have a sparse
structuring of their statistical dependency [28]. Therefore a classifier for face de-
tection is trained which decomposes the input images into subsets. Only the sta-
tistical dependency within each subset is represented and the subsets are treated as
statistically independent. Previous parts-based methods for face recognition like
[29] used manually defined parts.

In [30] a hierarchical Active Shape Model based on the wavelet decomposi-
tion is proposed. The contour shape is decomposed using Haar and Daubechies-7
wavelets. Similar to our approach, the covariance matrix of the wavelet coeffi-
cients is approximated by a matrix with block diagonal structure. The wavelet co-
efficients are divided into bands of fixed size and PCA is performed on each band
individually. In [31] a similar model of 2D shapes that have a local self-similarity
along their contour is developed. The contour is segmented and each segment is
modeled using Legendre polynomials followed by a PCA of the co-registered set
of contour segments.

In [32] an approach similar to [30] is used for 3D medical imagery using con-
formal mappings and spherical wavelets, and an algorithm is presented to cluster
the coefficients via spectral graph partitioning to model 3D brain structures.

14 Introduction

(b) (d)

Figure 1.1: Photograph (a) and reconstruction of the 3D shape from (a) using a PCA model for shape and surface color (b). The fitting
algorithm [2] uses multiple features, in particular the detected edges (Canny Edge Detector) (c). This involves a trade-off between likelihood
of the face and accuracy of the feature matches. Not all features are matched perfectly (d), in particular at the chin. The result with the G2L
model is shown in Figure 5.11.

However, not all wavelets are suitable for 3D shapes. In particular, Haar and
Daubechies wavelets cause severe artifacts like undulations or spikes. We have
investigated this approach in [33]. To overcome these problems in [33] we have
used Surface Wavelets as proposed in [34]. A Surface Wavelets base function is
shown in the margin.

The wavelet transform has two properties that are of interest in this context:
the base functions have local support and the decorrelation of the wavelet coeffi-
cients. However, the wavelet transform does not completely decorrelate real-world
signals [35]. In particular, wavelet coefficients tend to be large/small when adja-
cent coefficients are also large/small. For this reason, in [30, 32] patches of wavelet
coefficients are used.

However, there are two reasons, why we are not using the wavelet transform
of the surface. Firstly, the oscillation of wavelet base functions caused artifacts in
our attempts of building statistical models of the 3D surface (even with surface
wavelets).

Secondly, the tree-like structure of the wavelet coefficients is not compatible
with a generative model in which the facial surface is represented as a linear com-
bination of components. This is needed for fitting the model to data using an
Analysis-by-Synthesis approach (see Chapter 5). For these reasons, we are not
using wavelets, and use an additive approach instead.

1.2 The Global-to-Local Model 15

1.2 The Global-to-Local Model

The face space spanned by the model should include all reasonable human faces
and exclude all non-faces. The space spanned by the principal components is too
limited and too flexible at the same time. On the one hand, it does not span the
space of all faces. Every face in this space is an affine combination of the training
samples. As a result, it can poorly represent novel faces, i.e. those which are not
in the database used to train the model. Hence, the PCA model is not able to
represent all possible human faces. On the other hand, overfitting occurs when the
model is used for generalization from partial information and is forced to adapt
locally to features [36]. In particular, overfitting is a practical problem when a
PCA Morphable Model is fitted to a photograph. Hence, the model is too flexible,
it is able to generate things that are not faces. This overfitting can be repressed
by regularization on the cost of poor fitting of the partial information (for an
example, see Figure 1.1). One has to choose a trade-oft between accuracy of the
reconstruction and likelihood of the result being a face [36].

In this work we present a novel analysis method to build a statistical model,
the Global-to-Local (G2L) model. This model improves over PCA-based models
in three respects: Firstly, it is more flexible. It can better represent novel faces and
can better adapt locally to partial information. Secondly, the model is more strict,
it only generates valid faces when forced to adapt locally. Thirdly, the model has
components with local support which describe specific features of the face.

1.3 Overview

This thesis is organized as follows: Chapter 2 describes the training data. In Chap-
ter 3 the G2L model is introduced. In this work, two different G2L models are
built, which are trained from two different data sets. The first data set is the data
set that has previously been used in our research group, and the second data set
is trained from newly scanned faces, see Chapter 2. To compare the G2L model
with the PCA model, two test scenarios are used. The performance of the models
when used to reconstruct the 3D shape from a sparse set of 3D landmark points
is compared in Chapter 4. This is a controlled and standardized test scenario to
compare the models independently from the fitting algorithm, and we demon-
strate the improvements of G2L models compared to PCA models for both data
sets. In Chapter 5 we apply both models to reconstruct the 3D shape from images.
For this we use a novel adaptive fitting method consisting of multiple modules that
optimize the parameters successively.

16

Introduction

Chapter 2

Data and Parametrization

Statistical models are built from data. The construction of these models, i.e. the
data acquisition and registration, is a tedious and expensive process, both in time
and money. The quality and expressiveness of statistical models heavily depend
on the quality of the data. High quality data is the foundation and prerequisite of
a good statistical model.

The data acquisition was a joint work with Pascal Paysan, while the registration
was done by Brian Amberg, in [37] more detailed information about the data
acquisition and the registration can be found.

2.1 The Data

In this work, we use two different data sets. From each data set, both a G2L model
and a PCA model are built. In Table 2.1 a detailed comparison of the data sets
(including several variants) is given.

2.1.1 MPI-TU Data

The first data set is the Max-Planck-Institut Tiibingen (MPI-TU) Morphable Model
[1], which has been intensively used in our research group before, e.g. for fitting
(38, 1, 36, 2, 14, 15]. Currently, to the best of our knowledge, there exists only
one comparable set of registered 3D scans of faces, the University of South Florida
(USF) MM [39].

In their original version, the 200 MPI-TU scans are registered with a 3D optical
flow algorithm. This data did not include the backs of the heads and no interior
of the mouth, see Table 2.1, 1st row. Here, however, we use a variation of this data
which is registered with a different method [40], thereby estimating the back of
the head. In this model, all registered scans have an arbitrary polygonal mesh. To

Figure 2.1:

3D face scanning device
developed by ABW-3D [42].
The system consists of
two structured light pro-
jectors, three black-and-
white cameras for the
shape, three 8 mega pix-
els DSLR cameras and
three studio flash lights
(Multiblitz).

18 Data and Parametrization

Multiblitz &

Canon D20
ABW
Black-and- Projector
White
Camera
o —

3D shape Texture

be compatible with the G2L model, this data has been re-parametrized in a cube
representation, see Table 2.1, 2nd row. In addition to this training set, there exists
a test set of 25 ABW-3D-scans (see Section 2.2), for which the same registration
method [40] was used.

2.1.2 UniBS Data

The second data set was acquired in our lab at the University of Basel between
December 2006 and September 2008. Compared with the MPI-TU data, the newly
scanned data (called UniBS data from now on) are superior in several aspects:
Firstly, our 3D scanner [42] (see Figure 2.1) offers higher resolution and higher
precision in shorter scanning time than the Cyberware [41] scanner used for the
MPI-TU and USF models, resulting in more accurate scans. Secondly, a different
registration method is used, which, together with a better parametrization, yields
less correspondence artifacts, see Figure 2.6.

For the experiments we use different data sets that vary in number of samples
and registration method used to establish correspondence. The UniBS-A data set
consists of 125 scans of 125 individuals, all with neutral expression. They are split
randomly into a training set of 100 scans and a test set of 25 scans. This data set
has been acquired before February 2008.

2.1 The Data

19

MPI-TU Model

laser scanner, Cyberware[41], scan time ~ 30 s
200 scans registered with optical flow [1]

75972 vertices / vertex color

facial mask / mouth closed / no expression
cylindrical coordinates

MPI-TU-C Model

laser scanner, Cyberware[41], scan time ~ 30 s

200 scans registered with optical flow [40]

78082 vertices / texture mapping

with back of the head / mouth opened / no expression
arbitrary parametrization (mesh)

Basel Face Model (BFM)

structured light scanner, ABW-3D[42], scan time ~0.5 s
200 scans

registered with ICP (modification of [43])

53490 vertices / vertex color

facial mask / mouth opened / no expression

cube parametrization

UniBS-A

structured light scanner, ABW-3D[42], scan time ~0.5 s
100 scans (TRAIN), 25 scans (TEST)

registered with ICP (modification of [43])

97577 vertices / vertex color or high-res textures

with back of the head / mouth opened / no expression
cube parametrization

® 9@ O@®

UniBS-B

structured light scanner, ABW-3D[42], scan time ~0.5 s
200 scans (in total: 459 neutral scans available)
additional 20 MRI scans

registered with ICP (modification of [43])

97577 vertices / vertex color or high-res textures

full head (with back of the head) / mouth opened /
plus 709 expression scans available

cube parametrization

Table 2.1: The table compares the MPI-Ti model, the Basel Face Model (BFM) and the data used in this work
(UniBS data). The term ‘mouth opened’ means that the lips are not connected and that the interior of the mouth

is modeled.

Figure 2.2:

Scans acquired with our
structured light scanner
have holes, and the back
of the head is missing.
The image shows two ex-
amples of the test set,
with id FLX and PPY. In
Figure 2.3 the registered
scans are shown.

20 Data and Parametrization

The UniBS-B data set consists of 200 scans of 200 individuals, the same 200
scans that are used for the BFM (Basel Face Model), see below. This data set is a
subset of all available data. In total, 1168 registered scans of 286 individuals are
available, 459 of them have neutral expression. For 709 scans, we asked the subjects
to show the basic emotions joy, fear, disgust, anger, sadness and surprise. In [44]
Paul Ekman concludes that this list of basic emotions is biologically universal to all
humans. In comparison to the UniBS-A data set, the back of the head is estimated
during a different registration method.

The Basel Face Model (BFM) [37] is a PCA model that will be made publicly
available. The BFM consists of 200 scans and only the frontal mask without the
back of the head is used to compute the model. The intention here is to have a
model that is comparable with the MPI-TU model, both in size and in resolution
of the data.

2.2 Scanner and Data Acquisition

Scanning of human faces is a challenging task for several reasons. First of all, the
acquisition time is critical. We decided to use a structured light system because of
its shorter acquisition time (~ 0.5 s) compared to laser scanners (~ 30 s). This
structured light system is a prototype system by ABW-3D [42] with some modifi-
cations. It is an active stereo vision system with white light sources. Active stereo
systems have a higher accuracy compared to passive systems, because of the lack
of features e.g. on the cheeks. Because the baseline of stereo systems is restricted,
the scanner uses a multi-view approach with four subsystems, as shown in Fig-
ure 2.1. The left and the middle black-and-white camera together with the left
projector build two stereo subsystems, and accordingly the middle and the right
black-and-white camera together with the right projector build the remaining two

2.3 Parametrization and Correspondence 21

FLX PPY

Figure 2.3: To build statistical models, the data needs to be in correspondence: the registration establishes a common parametrization,
fills in holes, and adds the back of the head. The image shows two examples of the UniBS-A test set. In Figure 2.2 the scanned data is
shown that was used as input for the registration.

stereo subsystems. The system captures the facial surface from ear to ear, the 3D
shape of the eyes and hair cannot be captured with our system due to their reflec-
tion properties. The resolution of the geometry measurement is higher than all
comparable systems we are aware of. Examples of such scans can be seen in Figure
2.2. With each scan, three photos with DSLR (digital single-lens reflex) cameras
(Canon D20, 3504 x 2336 pixel, sSRGB color profile) are taken simultaneously to
capture the surface color. Three studio flashes with diffuser umbrellas are used to
achieve a homogeneous ambient illumination.

2.3 Parametrization and Correspondence

To build statistical models, the data needs to be in correspondence. This means
that corresponding points are mapped to the same point in the parametrization
for all shapes. When shapes are in correspondence, it is possible to morph between
the shapes, and hence affine combinations of registered faces represent new faces.

To establish correspondence, a nonrigid ICP method is used. The method is
a modification of the method developed by Brian Amberg [43]. In Figure 2.3 the
registered scans of Figure 2.2 are shown. The registration method is applied in
the 3D domain on triangular meshes. It progressively deforms a template mesh
towards the measured surface. Missing data is added for regions that cannot be
scanned due to their reflection properties (e.g. eyes, hair), for regions with arti-
facts from the scanning (e.g. the nose bridge) and for regions that are not covered
by the scanner (i.e. the back of the head). All registered data share a common

22 Data and Parametrization

Figure 2.4: The regular grid structure of the template provides the hierarchy of the multiresolution scheme.

parametrization that is defined by the parametrization of the template (see Sec-
tion 2.4).

For the UniBS-A data set, the back of the head is estimated only by deforming
the template shape and not by statistical knowledge derived from measuring data.
To compute the G2L model, the shape of the full head is needed because the mul-
tiresolution analysis would be disturbed by the boundary, if only a facial mask were
used (this will be explained in Section 2.4 in more detail). The statistical analysis,
at least that one for the G2L model, is not disturbed by the estimated data. How-
ever, as can be seen in Figure 2.3, the estimated backs of the heads are not optimal,
they are slightly too small. To overcome this problem, the missing data at the back
of the head is estimated using MRI scans (like the slice shown in the margin).
Therefore, Anita Lerch, Thomas Albrecht and Marcel Liithi segmented the facial
surface of 20 MRI scans of human heads [45]. From these surfaces, Brian Amberg
built a PCA model. The back of the head of the individuals scanned with the struc-
tured light scanner is estimated by using the MRI-PCA model in a bootstrapping
process while registering the data.

2.4 The Template

Due to the correspondence of the training data, the meshes of the registered scans
differ only in the position of the vertices, but not in the list of the quadrilateral.
This list is the same for all registered scans and defined by the template. The tem-
plate has a regular grid structure, i.e. each vertex has four neighbors (except for
eight irregular vertices with three neighbors). The regular grid structure is im-
portant, since it easily allows a multiresolution analysis for shapes, as shown in
Figure 2.4. The regular mesh is defined as a Parametric Surface

= FU) @.1)
where U C R*isopenand F': U — R3.

2.4 The Template 23

Representing the template as a parametric surface not only has the advantage
that it provides multiresolution analysis in a straightforward way. It also simplifies
the usage of measures like curvature. Most problems can be addressed in the para-
metric space U C R? instead of the 3D surface I' C R3. This simplifies problems
for surfaces embedded in R3 to problems for images [46].

Meshes with arbitrary topology, like the mesh shown in the figure in the mar-
gin [40], have vertices with an arbitrary number of neighbors. For these meshes
multiresolution analysis can be done with an approach like [34]. Here, however,
we prefer to use a template that supports multiresolution by design.

2.4.1 Parametrization

Parameterizations are in general not unique. We use a parametrization tailored
especially for our needs. The surface of the template (model 7') is interpreted as a
2-dimensional submanifold of R? and parametrized by six charts ¢; : U; — ¢(U;)
where U; C 7 are the front, back, left, right, top or bottom face, see Figure 2.5.

The MPI-TU model is parametrized with cylindrical polar coordinates, where
the parameter domain is cropped by the mask shown in the margin. This bound-
ary interferes with the development of multiresolution analysis. For this reason,
we prefer a parametrization with fewer boundaries, that covers the full head, not
only the frontal face.

The shape of our template is open at the bottom (at the neck line). The mouth
can be opened (i.e. the upper and lower lips are not connected), however, the in-
terior of the mouth is modeled, therefore there are no boundaries. In a similar
way, the nostrils are modeled without boundaries. For this reason, the Euler char-
acteristic of the template shape is x = 1. The Euler characteristic is a topological
invariant, and y = 1 means that the surface is topologically equivalent to a disk.

This would suggest a parametrization with a square as parameter domain. In
the figure in the margin a parametrization is shown, where the neckline is mapped
to the border of a quadratic parameter domain. This leads to severe distortion.
Thus, it is more appropriate to consider the human face (with back head) as topo-

Figure 2.5:
The template surface can
be interpreted as a 2-
dimensional submanifold
with six charts.

W

N

AV,
=

R
N

24 Data and Parametrization

logically equivalent to a sphere (Euler characteristic y = 2) and mark the region
at the neck as invalid.

For this reason, we decided to use a parametrization where the parameter do-
main has also Euler characteristic Y = 2 with six charts that are arranged as a
cube (see Figure 2.5). This parametrization involves only eight irregular points,
namely the eight corners of the cube. These points are placed in such a way that
the boundaries between the charts pass through regions that are of no special in-
terest: they go through the cheeks, the chin and the forehead, but not through the
nose, the mouth, the eyes and the ears. Additionally, some important landmarks
of the face are mapped to special points in the parametrization, e.g. the tip of the
nose is mapped to the center of the frontal chart.

Choosing the parametrization involves a trade-off between the number of ir-
regular points and the distortion caused by these points. A parametrization with
two irregular points (e.g. the map of the earth with north and south pole) would
also be a possible parametrization. However, such a parametrization would in-
troduce quite severe distortion at each of the poles. Using a parametrization with
eight irregular points is a reasonable trade-oft between number of singularities and
distortion.

A parametrization with low distortion is especially important when computing
affine combinations (morphs) of the data. The effect of distortion on the model
quality is illustrated in Figure 2.6. On the left side, the MPI-TU model with its
cylindrical parametrization shows its typical artifacts on the chin. Due to the
cylindrical parametrization, only a few vertices lie in the chin region. The cube
parametrization distributes the vertices more uniformly over the surface. Notably
it has enough vertices in the chin region and therefore avoids these artifacts.

The model used here only consists of data with neutral expression implying a
closed mouth. In Section 6.2 (future work) we discuss an extension of the model
towards expressions. For this, it is necessary that the template covers the lips and
the interior of the mouth, since all scans are registered to a common reference
frame.

2.4.2 Data Representation

Based on the parametrization, a mesh can be generated in different ways and with
different resolutions. We use a regular grid-structured quadrilateral mesh with
(28 4+ 1) x (2! 4 1) vertices on each chart (on level [), in which the vertices at the
boundaries are shared by two charts. In the figure in the margin, such a mesh on
level | = 2 is shown with 5 x 5 vertices at each chart. In this mesh, each vertex has
four neighbors, except for the eight corners, which have three neighbors. Typically,
we use meshes up to level | = 7. Thus, the full mesh has 6 - 22! + 2 = 98306
vertices. As some of these vertices are marked as invalid (on the neck), the mesh

2.4 The Template 25

MPI TU data UniBS data

cylindrical coordinates cube coordinates

has fewer vertices (m = 97577). Each vertex j is represented by a 3D point & =
(24, 2,,2,)T € R®. Due to the correspondence, the mesh topology is the same for
each face. Each shape can be represented as a 3m dimensional vector

T
X = (xx,la Ty1,Lz1y--- 5 Lomy Lym, xz,m) . (22)

The inherent color or albedo of the face is represented with a simple reflectance
color per vertex, i.e. for the head, the color is represented in the 3m dimensional
vector

a = (af,af,dl ... a aC, aB)7" . (2.3)
Using per-vertex color has several advantages. When statistical models are used
for fitting, per-vertex color simplifies the cost functions, since the cost function
can then be defined as a sum over the vertex positions, see Section 5.2, Equation
5.19. Using color information in higher resolution would increase the cost for
evaluating the cost function and therefore reduce the performance of the fitting.
In the pictures taken by the scanner, fine details like stubble and freckles are
visible. However, these (fine) details are not in correspondence after registration,
not only because color information is not used for registration, but also because it
is unclear how to expand the concept of correspondence to such fine details. The
statistical models used here, however, require correspondence, i.e. increasing the
resolution would not necessarily improve the quality of the model, since the fine
details get lost by the linear combinations. Hence, other types of statistical models

Figure 2.6:
Correspondence artifacts
caused by the surface
parametrization occur es-
pecially for larger values
of model coefficients. The
renderings of the same
random coefficient vector
(i ~ N(0,(2.5)?)) with
the BFM (right) show less
artifacts compared with
the MPI-TU model (left).

26 Data and Parametrization

are needed for this, in Section 6.4 (future work) this is discussed. In this work, we
solely use per-vertex color for the statistical color model.

On the other hand, there clearly are applications that can take advantage of
higher resolution color information. For this reason, the color information can be
represented in the form of texture maps, where each of the six charts (see Figure
2.5) defines one texture map. This technique is used in Section 5.6.6, where in a
post processing step after fitting, the texture of the face is extracted from the input
photograph.

Chapter 3
The Global-to-Local Model

Models are simplified, abstract representations or descriptions of objects, systems,
phenomena, etc. In our case, when we refer to the term model, we usually think of
a representation not for one single object, but for a whole class of objects. Accord-
ingly, a face model should be able to describe or code the shape (and the surface
color) of all human faces.

The models used here are parametric, generative models. This means that an
individual is described by a small vector of parameters or coefficients. From these
coefficients, the 3D shape (and the surface color) can be generated. In computa-
tional anatomy, such models are often called statistical models. It is assumed that
the coefficients are distributed according to a normal distribution.

Definition A linear generative statistical face model is a model
M = (pu,0,U) (3.1)

where € R®™ is the mean, U = [uy,...,u,] € R¥*" is a matrix with n/
components and o is a weighting of the components, with the following proper-
ties:

e Given a coefficient vector o, the shape of a face can be generated by the
mean plus a linear combination

X=u+ Z a,;0;4;4 . (32)

e The coefficients

a; ~ N(0,1) (3.3)

are independent and distributed according to a normal distribution.

28 The Global-to-Local Model

In this chapter, we discuss two methods of training such models from data. In
previous work [1, 2], the well known Principle Component Analysis (PCA) was
used. In order to improve it, in this work we develop a novel analysis method,
called the Global-to-Local model (G2L). For comparison, both models are con-
structed from the same set of n training examples x; € R*", where m is the
number of vertices.

3.1 PCA Model

The PCA model
Mobpca = (p, opca, Upca), (3.4)

is constructed by applying a widely used technique for dimensionality reduction,
Principle Component Analysis (PCA). For the ease of notation we will drop the
subscript index in the following. The vector p € R3™ is the mean, o € R"! the
standard deviation and U = [uy,...,u,_1] € R*"*"~! is an orthonormal basis
of principle components. From n training examples, the mean and n — 1 principle
components are computed. The remaining principle components are irrelevant,
since the corresponding standard deviation o; = 0,Vi > n. The mean face is

estimated as the average
1 n
p=— ; (3.5)

of the examples. The mean-free data vectors are stacked into the data matrix
Xi=[x1— ..., %, — p (3.6)

and decomposed into the column-orthonormal matrix U, the diagonal matrix
W € R"1*7~1 and the orthonormal matrix VI € R"~1*", using singular value
decomposition (SVD)

X =UWV". (3.7)

The standard deviation o; = w;/+/n of the examples projected onto the princi-
ple components u; is computed from the diagonal elements w; of the matrix W.
The principle components u; form the basis of the model space. A face x can be
described with respect to this basis by the parameters «; as a linear combination

n—1

X =+ Z oo, . (3.8)

=1

The covariance matrix of the data is given by

1 1
¥y = XXT=-Uuwv'vwu" = UAU" (3.9)
n n

3.1 PCA Model 29

where A = %WQ. Since the matrix U is column-orthonormal, the coefficients o
are given by the projection

a = diag(oy?t, ..., 0,) U (x — p) (3.10)

n—1

into the model space. Under the assumption that the training data x; are dis-
tributed according to a normal distribution with mean g,

1
p(x) = uHexp(—ﬁ«x—u),ui)z) (3.11)
1 1
= vexp(—§ZU—§<(x—u)7ui>2) (3.12)
= vep(—sa’a) = vep(—lal?) (3.13)

the coefficients a; ~ A(0,1) are independent and identically distributed (v is
a normalization constant). An examples of such a PCA model can be seen in
Figure 3.1.

PCA-based models, however, have some severe disadvantages. The number
of coefficients is limited by the number of training samples n. For instance, the
training set UniBS-A contains n = 100 scans and therefore the model is limited
to 99 components. As a result, all possible faces have to be represented by a vector
of length 99. The PCA model is not flexible enough to represent novel faces and
performs well only on the training data, but not on test data.

PCA models are holistic, i.e. each component has global support. As a result,
changing only one coefficient «; affects every part of the shape. The components
have no meaningful interpretation, as can be seen in Figure 3.1. Each component
encodes some details of the nose and some details of the forehead and some details
of the ears, etc. at the same time. Changing e.g. the shape of the nose is not possible
without affecting the ears and the chin, i.e. it is not possible to change one facial
feature and keep all other vertices fixed.

The very last components only encode noise in the training set, for an example
see the figure in the margin, where the 99¢h principle component of the UniBS-A
PCA model is shown (with agg = 30 - 0gg).

When one tries to adapt the PCA model locally to facial features, this is either
not possible at all, or, if possible, only with severe overfitting. Overfitting occurs
when an unsuitable statistical model with too many parameters is fitted to novel
data. The data is matched well and the function or the surface passes through the
points or vertices. However, in between, the model generates arbitrary results. In
the toy example in Figure 3.2, green curve, this effect is demonstrated: a holistic
or global model (i.e. all components in this model have global support, here: sine
functions of different frequency) is fitted to five landmark points. Overfitting can

30 The Global-to-Local Model

Shape Shape Components
Mean 1st. (+50) 2nd. (+50) 3rd. (+50) 4th. (+50) 5th. (+50) 6th. (+50) 7th. (+50)

1st. (—50) 2nd. (—50) 3rd. (—50) 4th. (—50) 5th. (—50) 6th. (—50) 7th. (—50)
Color Color Components
Mean 1st. (+50) 2nd. (+50) 3rd. (+50) 4th. (+50) 5th. (+50) 6th. (+50) 7th. (+50)

1st. (—50) 2nd. (~50) 3rd. (—50) 4th. (=50) 5th. (—50) 6th. (—50) 7th. (=50)

Figure 3.1: The mean together with the variation of the first seven principle components of the shape (top, UniBs-A data set) and surface
color (bottom, UniBS-B data set) PCA model.

3.1 PCA Model 31
o} o}
o} o} o} e
o} o © o}
o} o}
o) o} o}
o © ©

be prevented by reducing the number of parameters of the model or by regular-
ization. Large coefficients lead to a low prior probability. Regularization penalizes
large coefficients, thereby preventing overfitting. Both approaches work in a sim-
ilar way, since the most relevant components with large standard deviation o; are
effected less by regularization than those with small o; [36].

In the toy example in Figure 3.2, red curve, a holistic model with one compo-
nent (in this example: one sine function) yields a better fit. However, the measured
data is only poorly approximated and for our application, we require the measured
data to be fitted more accurately. For our purpose, we can assume that the noise
of the measurement (i.e. acquisition of the photo) is much below the error intro-
duced by the (PCA-) model, and therefore a large fitting error is not acceptable.
For global models, we have to choose a trade-off between accuracy at the landmark
points and plausibility of the reconstruction.

For the yellow curve in Figure 3.2, we have used a toy G2L model that consists
of one component with full support (global component, here: one sine function)
and several components with limited support (local components, here: several seg-
mented and overlapping sin? functions. This toy G2L model has the same number
of coefficients as the global sine model (12 components). This model fits the data
without overfitting and approximates the landmark points very well.

Figure 3.2:

In a toy example, different
models are used to fit a
function to a small set of
points (1st row/left). With
a model where the basis
function have global sup-
port (sin-functions), either
overfitting occurs (green)
or the measured data are
not well matched (red).
The model (yellow) has
a global component and
several local components
(segmented, overlapping
sin?-functions) and fits
the data well without
arbitrary results in
between.

Figure 3.3:
From the toy example
training set (the four

shapes in the 1st row) a
PCA model (2nd row) and
a G2L model (3rd row)
are trained. The PCA
model has two holistic
components. The G2L
model has one global
component that affects
the size of the square and
one local component that
modifies only the triangle
(the nose). Although this
is a toy example, the PCA
and G2L models are in
fact computed from the
2D vertex positions of the
training set.

32 The Global-to-Local Model
Training set
PCA model
mean 1st component 2nd component
G2L model
mean 1st component 2nd Component

3.2 Global-to-Local Model

The goal is to have a model that can adapt to features locally. The model should
contain components with limited support, i.e. most of the components are non-
zero only within a (small) region. The size of the support has to depend on the
kind of the feature. Features like the chin, the mouth and lips require components
of different size. Besides the local components, the model has a few global compo-
nents that control the size of the head and height-to-width ratio without affecting
the shape of e.g. the nose or the eyes.

The principle of the global to local analysis is outlined in the toy example in
Figure 3.3. In the first row, a set of four shapes can be seen that is used as the
training set. The training set suggests that the length of the triangle is independent
from the size of the square. However, applying PCA to this set leads to two holistic
principle components (the third component has a zero eigenvalue). With this
model it is not possible to change the shape of the triangle without changing the
position of the vertices of the square.

One possible approach to improve PCA model fits is to split up the surface into
multiple regions and fit the model independently in each region. This approach
was used for faces by [1, 2] with four regions (eyes, nose, lips, rest). The disadvan-

3.2 Global-to-Local Model 33

tage of this approach is that it completely eliminates any global correlation. It is
not guaranteed that the separately modeled segments always fit together. To avoid
sharp transitions, the separate segments are blended into a single surface. These
combined surfaces do not necessarily represent a valid face, as the correlation be-
tween segments is neglected.

The G2L model is a different attempt for building a locally adaptable shape
model. Instead of allowing local adaption by separate models, we propose a model
in which local variation is modeled locally, but these local models are integrated
into a single model that represents the whole face. The key idea is to unite the
global and local modeling with a multiresolution approach. Global features such
as the overall head size and width are modeled by low resolution components while
the high resolution components model local features such as the shape of the nose
or mouth. The high resolution components are specifically organized in such a
way that independent details of the face surface are modeled by separate compo-
nents. The support of these components is locally limited to the respective facial
feature.

The covariance matrix exhibits a specific sparsity pattern: high resolution com-
ponents are decorrelated from low resolution components and independent facial
features within each resolution level are decorrelated from each other. This de-
composition is inspired by [30], where 1D wavelet functions were used to analyze
a contour in a 2D image.

To construct a model with global and local components (G2L model), we need:

e Multiresolution analysis of the facial shape.
The key idea is to break up the facial shape into components based on spatial
frequency. The resulting hierarchy contains components gradually decreas-
ing in spatial frequency.

o Segmentation of the details.
The high frequency components code small facial features, that are clustered
in multiple regions, each representing a specific feature. Therefore, these
components can be segmented into regions in a meaningful way. For each
level in the multiresolution hierarchy, different regions are used, the size of
the regions depends on the spatial frequency. Hard edges at the boundaries
of the segments are avoided by the multiresolution approach.

e Building a linear statistical model.
From the low frequency components and the segmented high frequency
components, separate statistical models are computed. The resulting global
and local components are combined into one linear statistical model. This
statistical model can be used in the same way as PCA-based statistical mod-
els.

Figure 3.4:

The Gaussian Pyramid
for images is computed
by repeatedly applying a
Gauss Filter and subsam-
pling. The horizontal ar-
rows denote Gaussian fil-
tering and subsampling.

34 The Global-to-Local Model

b3 b2 bt bo
A — n A
—
||near linear linear
mter olation
P interpolation interpolation
¥

n

FEs
-
—

13 b 12 b! 5 b

3.3 Multiresolution Analysis

In order to develop the multiresolution scheme of the G2L models, we use a con-
cept from image processing to decorrelate image pixels, the Gaussian- and Lapla-
cian Pyramids [47]. This principle is transferred to 3D shapes. For the G2L model,
it is used to split up the facial shape and later recombine it without artifacts at the
boundaries.

3.3.1 Gaussian- and Laplacian Pyramids

A Gaussian Pyramid for images is generated by repeatedly applying a low-pass
filter, typically a Gaussian Filter, to an image b. The filtered images contain less
information, therefore they can be subsampled. This process can be repeated re-
cursively, which gives rise to the pyramid structure. The filtered and subsampled
images are denoted by b', where [is the level in the pyramid. An example of a
Gaussian Pyramid is shown in Figure 3.4. Closely related to Gaussian Pyramids
are Laplacian Pyramids, where instead of a low-pass filter a high-pass filter is used.
The high-pass filtering is done by computing the difference between two consecu-
tive levels of the Gaussian Pyramid

dl _ bl+1_ T§+1 bl (314)

where 17 is an interpolation operator. For this toy example, linear interpolation is
used. An example of a Laplacian Pyramid is shown in Figure 3.5. Given a Laplacian

3.3 Multiresolution Analysis 35

b3 b? b! %
—_ ﬂ
difference
Y
d° =
b*— 13 b b’— 17 b b'— 75 b’

Pyramid, the original image on level I can be recovered

1B+ 1y d =10 b+ > 1, b1 bl =b (3.15)
l l

by recombining all pyramid levels. This is called collapsing the pyramid.

Gaussian and Laplacian Pyramids can be used to blend two images [47]. For
example, this technique is used in software for blending multiple photos of a
scenery to a large panorama (e.g. [48]). Our main focus is to use this principle
on 3D shapes to build the G2L. However, we have also used texture blending to
estimate the color of the back of the head, see Appendix 7.3.

3.3.2 Gaussian- and Laplacian Pyramids for Shapes

The concept of Gaussian- and Laplacian Pyramids is defined for 2D images and
we now transfer this concept to 3D shapes. As with images, the Gaussian shape
pyramid is created by repeatedly applying a low-pass filter and subsampling. The
Laplacian shape pyramid is defined as the difference between consecutive levels of
the Gaussian pyramid. Thus we need to define two transitions: a fine-to-coarse
transition that smooths and subsamples the mesh and a coarse-to-fine transition
that takes a low resolution mesh and a computed and interpolated (or rather ap-
proximated) copy of the mesh.

Figure 3.5:

The Laplacian Pyramid for
images is computed us-
ing the Gaussian Pyra-
mid. This defines a filter-
bank of images. The input
image b? is band-pass fil-
tered: d? contains only
high spacial frequencies,
d! only mid-high frequen-
cies, d° only mid-low fre-
quencies and b? only low
frequencies.

36 The Global-to-Local Model

|
@r —
|
|
|
|

sl —

! - ' 64 1 32 1 64 l
1 i 1 ! ! ! LR NG
e
1 ! ,) \ N|
_______ S I 3 _,_3 _ — 3 % 9w 3 _ 1S5 7
]l t | 8 T~ !T 8 32+ 16 1+ 32 |‘\\: 12 1;,,»‘|
—l_4 1 || _________ }|i 1oL
R ' ' r 36 <! ' 36
| 41 14341 N7
16 1 16 64 1 321 o 6
(a) (b) | : | (c) | : | : | (d)

Figure 3.6: In this work, we use the Catmull-Clark subdivision scheme for meshes with quadrilateral faces [49]. The figures show the
Catmull-Clark subdivision mask for inserting a face vertex (a) and edge vertex (b), and for regular (c) and irregular (d) vertices. For arbitrary
polygonal meshes, a more general form of Catmull-Clark subdivision an be used [50].

Coarse-to-Fine Transition

For the coarse-to-fine transition we use Catmull-Clark [50] subdivision, an ap-
proximating subdivision scheme that creates smooth surfaces.

To interpolate low resolution images, usually bilinear interpolation is used.
This interpolation method can also be used for shapes. However, bilinear interpo-
lation applied to shapes leads to hard edges that look unnatural for smooth objects
like human faces. Another possibility to interpolate the surface would be to use an
interpolating subdivision scheme, like Modified Butterfly Subdivision [51]. Inter-
polating subdivision schemes do not change the position of a vertex, once a vertex
exists in the mesh. Common for all interpolating subdivision schemes is that they
may generate strange shapes with unnatural undulations [51].

To avoid these artifacts, we prefer an approximating subdivision scheme that
creates smooth surfaces without unnatural undulations. Approximating subdivi-
sion schemes may change the position of a vertex that already exists in the mesh.
Here we use one of the most popular subdivision schemes, the Catmull-Clark sub-
division scheme for meshes with quadrilateral faces. It is based on tensor product
bi-cubic uniform B-splines [49]. The limit surface obtained by repeated subdivi-
sion is called Catmull-Clark surface. It can be shown that this surface is at least
C'. The Catmull-Clark subdivision algorithm is defined recursively by applying
the subdivision rules shown in Figure 3.6. Let x' be a low resolution mesh on some
level [. Catmull-Clark subdivision is a linear operation. To generate a mesh on a
higher level h = [+ 1 we use 1" x' where 1€ R3™»*3™ is the Catmull-Clark sub-
division matrix that is defined by the subdivision rules shown in Figure 3.6, and
my, and m; are the number of vertices in the mesh on level h and [, respectively.
To simplify notation, the matrix ¢:=1¢1% denotes the subdivision matrix to sub-
divide a mesh on level a into a mesh on level c. and the matrix Tl::ﬂm"”‘ denotes

3.3 Multiresolution Analysis 37

subdivision to the maximal level /., that is given by the maximal resolution of
the template used for registration.

Fine-to-Coarse Transition

Beside the coarse-to-fine transition, we need to define a fine-to-coarse transition.
The downsampled version of the mesh

x = x" (3.16)

is generated from the high resolution mesh x" on level h where | € R3¥™ 3™ js
a matrix. This requires three steps:

e To avoid aliasing effects, the data is low-pass filtered by Gaussian smoothing.
For meshes it is more appropriate to smooth the direction and the length of
the vectors. When smoothing is applied to the z-, y- and z-coordinates of
the vertices independently, the mesh tends to shrink, as illustrated in the
margin: the middle vector of the surface (a) is filtered with Gaussian filter
(1,11

35> 1)- The result is the downsized vector in (b). This effect is undesired,

the surface should be a coarse approximation and not a smaller version.

e Downsampling is performed using the regular structure of the mesh by re-
moving every second vertex in parametrization. This is done in both the
and y directions of the parametrization, and as a result the mesh on level
[— 1 has approximately 1/4 of the vertices of the mesh on level /.

e As illustrated in Figure 3.7, the volume of an object usually changes by

Catmull-Clark subdivision. As a result, when applying the subdivision scheme \

to the downsampled mesh, the result is a downsized version of the face. The
vertices of the low resolution mesh are control points that affect the shape
and size of the Catmull-Clark surface. Hence, we want to find those con-
trol points that generate a mesh that is a coarse approximation of the in-
put mesh while maintaining overall size. This is illustrated in the margin,
where the (orange) cube is given by those control points, whose Catmull-
Clark surface is similar to the surface of the face. Hence, the mesh x' is
not a coarse approximation of the input mesh, but x! are the control points

Figure 3.7:

This figure shows the first
three steps of Catmull-
Clark subdivision of a
cube and the Catmull-
Clark subdivision surface.

(b)

-

Figure 3.8:

As for images (see Fig-
ure 3.4), the Gaussian
Pyramid for 3D shapes
(shown in the first row)
is computed by repeat-
edly applying a Gauss
Filter and subsampling.
In this figure, we also
shown the Catmull-Clark
surfaces that are gener-
ated by the low resolution
meshes.

38 The Global-to-Local Model
x0
>
l subdivison l subdivison l subdivison
T4 x* T2 x* To x"

for Catmull-Clark subdivision. To find these control points, it is necessary
to invert the subdivision matrix 7. Inverting the subdivision matrix is an
overconstrained problem, so this can only be approximated.

The resulting hierarchy of meshes, together with the resulting limit surfaces can be
seen in Figure 3.8.

3.3.3 Filterbank

The mesh x!,] < h contains fewer vertices than the mesh x", so some details
are lost. These details are captured by the residual between the mesh x" and the
subdivided copy of the mesh x'

yih = x"— 1 x (3.17)
Analogously to the Laplacian Pyramid for images, the original mesh x" can be
recovered given the low resolution mesh x' and the details, according to

x" =1hxt ¢yt e R, (3.18)
This process can be continued recursively. For the G2L model, a filterbank with
the four steps s4 = 7, s3 =4, sy = 2and s; = 0 is used (see Figure 3.9). This is
a reasonable trade-off and having a model with too many levels is not helpful for

3.4 Segmentation of the Details 39

x7 T4 x*

—_

—_—

N

.
o

Tyt = T2 y? =
T4 x* T4 xt— T2 x? Ta x?— To x?

x7

the statistical analysis. To simplify notation, the details between two consecutive
levels are denoted by

Yo = s (=234 (3.19)

(¢ denotes the level in the G2L model, ¢ = 1 is the global level). By collapsing
the pyramid (i.e. recombining all pyramid levels of the Laplacian pyramid), the
original data

x=x"=Tox"+ > T,y"=Tox"+ > (T, x"— T, , x"") (3.20)

e{2,3,4} e{2,3,4}

is reconstructed. Turning a surface into this kind of Laplacian Pyramid and col-
lapsing is a lossless transformation.

3.4 Segmentation of the Details

By the multiresolution analysis with the Laplacian Pyramid, the facial surface is
broken up into components according to spatial frequency. But the detail com-
ponents do not have a local support yet. They influence the whole face and not a
specific feature. However, as with images, the Laplacian Pyramid removes correla-
tion [47] and the details y' are sparse: we observe that they cluster into regions, as
can be seen in Figure 3.10. The reason for this is that in some regions (e.g. at the
cheeks), there are usually no high frequency details. To achieve local support, the
details are segmented into regions of facial features, such that the details in each

Figure 3.9:

As for images (see Figure
3.5), the Laplacian Pyra-
mid for shapes is com-
puted using the Gaussian
Pyramid. This defines a
filterbank of 3D shapes.
The details in the second
row (y”,14 y* and 12 y?)
are the offset between the
red and the white surface.

40 The Global-to-Local Model

8.3333e+00

2.3333e-01 1.0000e+00

1.6667e+01
1.9444e-01

4.6667e-01 2.0000e+00
5.4444e-01 2.3333e+00

(a) level 4: var(y™) (b) level 3: var(T4 y*) (c) level 2: var(T2 y?)

Figure 3.10: The variance of the detail components y' for levels I = 1,2, and 3 is estimated from the training data set. For higher
frequency components, the variance is sparse and clustered into regions.

segment are correlated with details in the same segment, but not (or as little as pos-
sible) with details in other segments. The segmentation considers the variance, i.e.
the boundaries of the segments go through regions with small variance. In this
way, components with local support are created, which independently model sep-
arate facial features.

For each level, a different segmentation is used, and the size of the segments is
related to the spatial frequency of the features, see Figure 3.11. Although, in princi-
ple, these segments could be defined manually, we determined them automatically
using the procedure described in Appendix 7.2.

For the G2L model it is necessary to recombine the segments to a single shape,
i.e. we meet the problem of blending different regions of the shape. To avoid hard
edges at the boundary of the segments, blending of the segments is done using the
Laplacian pyramids of shapes, in a similar way as the Laplacian Pyramids are used
to blend multiple images [47]. The segments are blended across a transition zone
proportional in size to the spatial frequency of the facial features represented in
the segment. At the top level of the pyramid, a sharp blend mask is used, while at
the bottom level a wide one is used. Thus, high frequency details are blended over
a narrow region and low frequency details are blended over a wide region.

To segment the detail components y', binary masks m € {0,1}™ are used,
where m' is the number of vertices in y’. The mask m; for segment j is a vector
of binary indicator variables m; ; € {0, 1}

mj; = (ij: s amml,j)T (321)

where 0 < j < 7! and 7! is the number of segments for level , such that m; ; = 1

3.5 Building a linear statistical model 41

(a) level 4 (b) level 3 (c) level 2

Figure 3.11: To segment the high frequency details, different masks are used for the different levels. The segments are defined taking
into account the variance shown in Figure 3.10.

if vertex i belongs to segment j and m; ; = 0 otherwise. The set of masks for level /
M'={m}, ... m.}, (3.22)

describes a partition of the set of all vertices, i.e. Z]T.Zl m;; = 1; Vi. The masks
for level ¢ = 2, 3 and 4 are visualized in Figure 3.11.
The segment components

Sm =11 diag(m)y' (3.23)

are given by masking the detail components and subdividing up to the maximal
level. The segments s,,, € R®™ are all represented by vectors of the same length as
the original mesh x. However, the segments s,;, have local support. By using the
masks on a low resolution and subdividing the masked segments, the boundaries
are smoothed with a transition zone that depends on the level. By summing up all
segments

Y sm= Y Tidiagm)y' =1, Y diag(m)y' =T, y' (3.24)

meM! meM! meM!

the detail components can be recovered.

3.5 Building a linear statistical model

The facial surface of a single face is broken up into features with local support.
This can be done for all faces in the database. In the following, we describe how

42 The Global-to-Local Model

Figure 3.12: The figure illustrates the different steps needed to build the G2L model: The facial surface is broken up according to spatial
frequency by multiresolution analysis. The high frequency details are segmented. For the global and local segments, individual PCA models
are computed and the components are combined into a linear statistical model.

the global and local features are used to define the local and global components of
a linear statistical model. In Figure 3.12 this process is visualized.

3.5.1 Global and Local Components

With the Gaussian pyramid of shapes, the facial surface x is split into a hierarchy
of low-frequency features and high-frequency features (Equation 3.20):

x=lox"+) Ty’ (3.25)
l

The high-frequency features are segmented into multiple regions (Equation 3.24),
i.e. each face x is split into global features and a set of local features

x=Tox’+> > sm. (3.26)
!

meM!

The segments s,,, € R3™ are all represented by vectors of the same length, see
Equation 3.23. The number of global and local features is 7 = 1 + >_ 7'. These

3.5 Building a linear statistical model 43

global and local features are combined to a feature vector

S
gl
x' = . e R*™ (3.27)
S’T.—l

where

s’ :=Tg xg € R™™ (3.28)
are the the global features and

s =5, €R 5> 0 (3.29)

are the local features, and m; € M' is one of the masks. The computation of the
global and local features, i.e. the high-pass and low-pass filtering and segmentation
can be written as a linear transformation

x = Ax. (3.30)

The original surface x can be recovered by summing up the global and local fea-
tures, see Equation 3.26

X:BX/:ZSj, (3.31)
j=1

where B=(1,1,...,1)® L
The mean-free feature vectors of the training set are stacked into the data ma-
trix (analogously to Equation 3.6)

X =K, . . xX—u]=) (3.32)

where p’' = % > i, x/; is the mean of the feature vectors. The sub-matrix X/ =
[s{—p?, ...,) —p'] is the mean-free data matrix for feature jand p/ = L 37" s/
is the corresponding the mean.

In particular, the mean of the data

y,:%ixi:%inng%ix’i:BM’zzuj (3.33)
i=1 =1 i=1 7

44 The Global-to-Local Model

(@) corr(wgzao, x) (b) corr(1 y3z00: T ¥?) (c) corr(T yisen, T x°)

Figure 3.13: This figure visualizes the correlation between the tip of the nose (vertex number 8320) and all other vertices. The correlation
is estimated over the UniBS-A data set. Sown is the absolute value of correlation coefficient of the distance of each vertex from the mean,
red indicates maximal value 1 and blue indicates no correlation. Figure (a) shows that for data x the tip of the nose is correlated also with
the back of the head. Figure (b) shows the correlation of the detail features on level 2, where the correlation is mostly sparse and large only
in a region surrounding the nose. Figure (c) shows that there is almost no correlation between detail features on level 2 the global features.

can be recovered from the mean of the features and the mean-free feature matrix
can be written as

BX' = B[x;—pu, ..., x, —] (3.34)
= [Bxy —By/,...,Bx,, — By/| (3.35)
= [x1— ..., x, — p] =X, (3.36)

3.5.2 Covariance

The features are constructed in such a way that the covariance matrix exhibits a
specific sparsity pattern: high resolution components are decorrelated from low
resolution components and independent facial features within each resolution
level are decorrelated from each other. To estimate the covariance matrix, we
assume or rather enforce complete decorrelation, similar to [30]. That these as-
sumptions are reasonable for the face model is illustrated in Figure 3.13, where
the pairwise linear correlation coefficient between the tip of the nose and all other
vertices is visualized. Figure 3.13(a) shows strong correlation for the data x, while
the correlation of the high-frequency features y? is sparse (see Figure 3.13(b)) and
the correlation between high-frequency features y? and low-frequency features x°
is negligible (see Figure 3.13(c)).

3.5 Building a linear statistical model 45

For the PCA model, the covariance matrix

1
> = EXXT:UAUT (3.37)

is diagonalized (Equation 3.9). In term of the global and local features, the covari-
ance matrix can be written as
1 1
¥ =-XX"=

~BX'X"B” (3.38)
n n

where X’ is the mean-free feature matrix (Equation 3.32). To diagonalize the ma-

trix X'X'", however, we can make use of the sparsity and approximate the matrix

by

O O
1 1 XX
XX = (3.39)

XTXT

Even if the high and low resolution components are not completely decorrelated
in the original data X', we assume or rather enforce complete decorrelation by
using above approximation. Therefore, the SVD is computed individually on each
block with X/ = U'W/ V" and A/ = 1Wi?

[UPA°UY"
u'A'UY
¥ = . (3.40)
i U AU
U AD U T
_ . (341
I U’ AT ur
Hence, the covariance matrix is approximately diagonalized by
¥ = BX'X"B” ~[U°, U! ... UA[U°,U,... U|" (3.42)
=U'A'U" (3.43)

where

U =[U° U, ... U] (3.44)

46 The Global-to-Local Model

is the combined matrix of all components. The matrix
A =diag(A°, A',--- A7) (3.45)

is the diagonal matrix of all eigenvalues. The difference to the estimation of the co-
variance in Equation 3.37 is that most of the components in U’ have local support,
since U’ i > 1 is computed from segments s,,, with local support. The matrix U’
consist of 7 - (n — 1) components, since it is composed from 7 models, and each
model has n — 1 components.

PCA minimizes the projection error of the samples to a lower dimensional
subspace, i.e. it minimizes the deformation introduced by using a restricted num-
ber n’ < n — 1 of components, for more details see [52]. For this reason, for
PCA models, the number of components can be reduced by using the n’ principle
components with the largest eigenvalues)\;, which by convention are the first n’
components, see Figure 3.14.

For the G2L model, we use a similar approach. For each component u} € R3™
from U’, the corresponding value of deformation measure is given by \.. Hence,
we use the component u; with the largest \; over all global and local components.
In Figure 3.14 the first 400 eigenvalues are plotted.

Together with the mean p, the component matrix U’ and the the correspond-
ing standard deviation o} = w]/+/n define a linear generative statistical face model
(Equation 3.1)

MGZL = (/,l,, O'/, UI) . (3.46)

Analogously to Equation 3.11, the probability distribution is given by
1 1112
p(x) = l/exp(—§Ha 1% (3.47)

where o are the coefficients of the G2L model (and v is a constant factor).

3.6 Regularization

The main application of statistical face models (Equation 3.1) is their fitting to
incomplete data. The model is used as prior knowledge: the model coefficients
are estimated and the complete reconstructed surface is generated by the model.
However, not every arbitrary vector of coefficients encodes a valid face, the coef-
ficients have to be distributed according to a normal distribution (Equation 3.1).
In the following, we will use a Bayesian approach for reconstruction [36], where
from the prior probability of the model and prior assumption of Gaussian noise
on the measurement a combined cost function is derived. Let T be a (incomplete)

3.6 Regularization 47

G2L Model
16 = 1 1 1 1 1 1] A
® 14 - global -
2 12 = level 1 -
GE, 12 - level 2 -
.g 6 - | level 3 _
4 - -

g 5 | 1| | 1

0 | i | (MY WD WA 1 000) T A 1 T
0 50 100 150 200 250 300 350 400

Component

PCA Model
1 1 1 1 1 |
) global -
2 -
g -
S -
% -
S) -
1 1 1 1 1 J

0 50 100 150 200 250 300 350 400
Component

Figure 3.14: For the UniBS-A data, the first 400 eigenvalues of G2L model (top) are compared to the eigenvalues of PCA model (bottom).
For the G2L model, the global and local components on level 1,2, and 3 are mixed and sorted according to their eigenvalues. The colors
indicate the level in the hierarchy of the local components. The more local components with higher frequency are less important. The PCA
model is restricted to 99 principle components, since the UniBS-A data set contains 100 scans; the G2L model has more components and
offers more flexibility.

measurement.! Let r(a) be the corresponding noiseless measurement that is gen-
erated by the model through the parameters ac. When the measurement consists
of the 3D coordinates of a vertex j, then

(o) = Zj(a) = [U diag(oy, ..., 0n) o, (3.48)

j
is the noiseless measure generated by the model. However, depending on the type
of measurement, the transformation 7; may also contain a perspective projection
or shading calculation. It processes the vertex j such that it can be compared with
the corresponding measurement 7;.

The residual between the measurement T and the model r(c)

Fla,F) =Y fi(a,7) (3.49)

IStatistical face model can be fitted to photographs or other types of incomplete data, such
as a sparse set of 3D vertices, 2D landmark points or contour edges extracted from an image.
Therefore, T can be different types of measurement, e.g. the 2D or 3D position of vertices or pixel
color intensities.

48 The Global-to-Local Model

is given as the sum over residual per vertex
fila, 7i) = |7 = i(a) | (3.50)

where 7;, 7;(cx) are the ith entries of the measurement T and the noiseless mea-
surement r, respectively.

For each dimension, we assume that the measurement T is subject to uncorre-
lated Gaussian noise with standard deviation ¢. The likelihood to measure I given
the model (see [36]) is given by

PFE|a) = [[PGF|7i(e) (3.51)
= H Uy €Xp (—%ﬂfi(a, fz(a))) (3.52)
— oy exp (_%‘2 S e, ma))) (3.53)

= U,exp (—%F(a, f‘)) , (3.54)

where v, is a constant factor. Given the measurement T, the posterior probability
is given by (using Bayes rule)

Pla|F) = Vp(|a)p(a) (3.55)

— VyemFed) el (3.56)

where 1/ is another constant factor and p(«) is the prior probability of the model
(Equation 3.11). Thus, the coefficients with maximal posterior probability are
found by minimizing the cost function

F = —25%log P(a | F) = F(a, F) + nl|e||* + ¢ (3.57)

where 7 = 62 is the regularization parameter and ¢ is a constant.

Chapter 4

Evaluation

Fitting the model to face images, i.e. reconstructing the 3D surface of a face from
a single photograph, is the most important application of statistical shape models.
However, evaluating these reconstructions allows only limited conclusions about
the quality of the model. It is unclear whether artifacts or fails are caused by de-
ficiencies of the model, deficiencies of the fitting method, or deficiencies of the
evaluation method. For example, the edges are usually not fitted well with the
PCA model and it is difficult to determine whether the model is too inflexible to
be able to fit the edges or if the optimizer gets stuck in a local minimum. Addition-
ally, it is difficult to judge the quality of fitting results; the />-norm (or Euclidean
norm) between the original surface and the reconstruction is of very limited use
here. For this reason, in [14] the fitting is evaluated by performing recognition
experiments and measuring the recognition rates. This, however, makes it even
more difficult to judge the quality of the model. To overcome these problems,
a much more controlled environment is used in this chapter. In this controlled
environment, the correspondence between the measured vertices and the vertices
in the model is known. In particular, all fittings in this chapter are computed by a
closed-from expression and not by an iterative optimization algorithm. Therefore,
we can be sure that the global minimum is found and we do not have to worry if
the fitting gets stuck in a local optimum.

In order to evaluate the quality of a model, two points need to be considered:
representation and generalization. Firstly, we compare how well novel faces can
be represented with PCA and G2L models. This can be seen as the difference £4
(approximation error, see Figure 4.1) between the novel face and the best approx-
imation in the space spanned by the models.

But we cannot expect to find this best approximation when only partial infor-
mation is available. So, in a second experiment, we evaluate how well the models
generalize when the surface of a novel face is reconstructed from a sparse set of fea-
ture points. Usually, this gives an additional difference, the sample error, £g. Re-

50 Evaluation

Figure 4.1: To evaluate the quality of statistical models, two types of errors need to be considered: the approximation error £, and
the sample error £s. The red line visualizes the space of all faces that can be represented by the model. The approximation error is the
difference between a novel face x and the best approximation x* within the model. It is zero when the novel face is already in the model
space, which is generally not the case. When a face is reconstructed from partial information, usually not the best approximation x* is
found but a different face x’. The difference between x* and x’ is the sample error. By making the model space larger, £ 4 can be reduced,
however, this may happen at the cost of a larger £s.

A: original surface
B: large Euclidean distance
C: small Euclidean distance

construction from a sparse set of feature points is similar to fitting a curve through
some observed values, which usually calls for regularization or a restriction on the
admissible function. Here, we restrict the possible solutions to the space spanned
by the model.

4.1 Distance Measures

To evaluate the quality of a reconstruction (with respect to its original surface
scan), we need an appropriate distance measure to compare two 3D surfaces. The
sum of the Euclidean norm (or /2-norm) over all vertices of the shapes is the most
obvious choice

I < .
d(xi, %) = ~ > 1Zks — Erl? (4.1)
k=1

where 7, ; and @, ; are corresponding vertices of the two surfaces. However, Eu-
clidean distance treats all vertices independently and does therefore not detect vi-
sually unpleasing effects such as oscillations or random noise. As one can see in
the illustration in the margin, optimizing the Euclidean distance favors near but
noisy surfaces over distant but similar ones. Comparing reconstructed surfaces B
and C with the original surface A, the Euclidean distance between B and A is much
larger than between C and A, although C appears quite different from A and we
would prefer B as a reconstruction result.

Accordingly, a small Euclidean distance is necessary but not sufficient for a
good surface reconstruction and the visual quality of a reconstructed surface de-
pends not only on the Euclidean distance. This is visible in the rendered surfaces,

4.2 Projection to the Face Space 51

e.g. in Figure 4.2 where the PCA190 heads have a smaller Euclidean distance than
the PCA30 heads, see Figure 4.3, left plot, but we would clearly consider the PCA30
head a better reconstruction result. To arrive at a comparison method which is
closer to our intuitive perception of the quality of a reconstruction result, we pro-
pose to compare the Mean Curvature of the surfaces,

1 m
d(i, Xj)me = — > |H(k)i — H(k);| (4.2)
k=1

where H is the mean curvature. This measure can be computed easily due to
the parametrization (see Section 2.4.1) and it is sensitive to effects such as noise,
oscillations, and other artifacts. Moreover, it is a neutral measure, since the mean
curvature is not minimized in the cost function. Nevertheless (or for that reason),
this measure is not only able to detect synthetic oscillations, but also appropriate
to detect overfitting, which is the main problem while fitting.

Other possibilities are to compare the Shape Index [53] or the angle between
the normals of the faces. Here, we use the mean curvature distance, but the shape
index distance and the normal distance showed similar results. As can be seen in
Figure 4.3, right plot, the mean curvature distance increases for noisy and ripply
surfaces.

4.2 Projection to the Face Space

The first test setting focuses on how well novel faces can be represented by the
different models. Since the faces in the test set are not used for training, they are
not in the face space spanned by the models. As a result, the test faces can only be
approximated by the models and there will always be an approximation error, see
Figure 4.1,

Ea =d(x,x") (4.3)
where X is a face of the test set and x* is its optimal approximation. The optimal
approximation minimizes the [?-approximation error £ 4, i.e. it minimizes the dis-
tance

FPol =33 — &) (4.4)
=1

between all measured vertices Z; and all model vertices
7;(a) = [U diag(oy,...,0n) o, (4.5)

In case of the PCA-model, the columns of U are orthogonal and the coefficients
can be computed by projection (see Equation 3.10). For the G2L model, a linear
equation system has to be solved. Examples of projections can be seen in Figure
4.2, and results can be found in Figure 4.3 and Figure 4.6.

52 Evaluation

4.3 Reconstruction from a Sparse Set of Points

The second test setting focuses on the generalization capabilities of the models.
The surfaces in the test set are estimated from a small set of m’ 3D feature points.
For each feature point, the correspondence is known and SP*** denotes the set of
indices. In this case, we cannot expect to find the optimal approximation x* of
the test sample X. Instead, we can only find a different surface x’ # x*, with an
estimation error (also called sample error), see Figure 4.1

Es =d(x*,x'). (4.6)

To fit the models to the points, the difference between the measured landmark
vertices Z; and the corresponding model vertices 7;(x)

e = " ||E - (o) (4.7)

iespnts

is minimized (compare with Equation 3.49 and Equation 3.50). However, mini-
mizing this distance without considering the model probability leads to overfit-
ting. This can be avoided by using a Bayesian approach (see Section 3.6). Under
the assumption that the measurement of the feature points is subject to uncor-
related Gaussian noise and using the probability density of the model as a prior
knowledge, the cost function is (see Equation 3.57)

F = FP 4 qgla?. (4.8)

This reconstruction implicates a trade-off between accuracy of the measured fea-
ture points and likelihood of the reconstructed surface being a face. This trade-oft
is controlled by the regularization parameter = 62 (Equation 3.57). In [36] it is
shown that the coefficients can be obtained by

. w; T
a =V diag (wf n 77) u,r (4.9)

where U,diag(w))V] = Q is the singular value decomposition of the reduced
and scaled model components

Q = RUdiag(al, R ,O'n/) (410)

and R € R™*™ is the matrix that selects the vertices in SP™* from the vector x.
The measurement T = [Z1,...,T,s] — Ry is given by the mean-free landmark
vertices.

4.4 Experiments 53

4.4 Experiments

To evaluate and compare the PCA and the G2L models, we have done two exper-
iments: Experiment A uses the MPI-TU-C data set and Experiment B uses the
UniBS-A data set (see Table 2.1). For both experiments, we compare the represen-
tation and generalization capabilities of the G2L model with the PCA model.

4.4.1 Experiment A
Data

Both the G2L and the PCA model are trained from the same training set of 198
scans of faces. These faces are scanned with a Cyberware Scanner and registered
as described in [40] (this is the data MPI-TU-C, see Table 2.1). As test set, a set of
20 additional scans (10 male / 10 female) is used. These faces are scanned with
a structured light scanner and registered with the same method as the rest of the
scans.

Projection

When projecting the test data into the PCA model, severe artifacts appear when
all or almost all PCA components are used, see Figure 4.2 for an example. With
the same number of components, the G2L model reconstructions have much less
artifacts. The G2L model reconstructions can be further improved by using more
components than is possible for the PCA model. Interestingly, when we compare
the representation error (i.e. the distance between reconstruction and its ground
truth), the G2L model reconstructions are better than the PCA reconstructions,
see left plot in Figure 4.3. As expected, the mean curvature distance increases when
more PCA components are used (see right plot). For the G2L model, however, the
mean curvature distance does not increase, it even decreases.

Generalization

Reconstructing the surface from a few 3D landmark points involves a trade-off be-
tween accuracy of the fit at those points and likelihood of the fitting result within
the model. This trade-off is controlled with a regularization parameter & (see
Equation 4.8). In Figure 4.4 the reconstruction from 42 landmark points is shown
for varying regularization. Without regularization, the PCA model reconstruc-
tions suffer from severe overfitting, with strong regularization, the mean face is
reconstructed. The G2L model reconstructions, on the other hand, do not suf-
fer from overfitting. At the same time, the G2L model accomplishes much better
accuracy at the landmark points, see plot in Figure 4.5. In these plots, a PCA

54 Evaluation

PCA 30 PCA 90 PCA 190 original

©
=
£
o
>
i
G2L 30 G2L 90 G2L 190 G2L 300 G2L600
PCA 30 PCA 90 PCA 190 original
o
o2
=
£
a
x
1]

20000

G2L 30 G2L 90 G2L 190 G2L 300 G2L 600

Figure 4.2: Experiment A (MPI-T-C data set): Projection of two novel examples (from the test set) to PCA model (first row) and to G2L
model (second row) with different number of components. The Euclidean distance and the mean curvature distance evaluated over the test

set is plotted in Figure 4.3. For the PCA model, the surface gets distorted using too many coefficients, even though the Euclidean distance
decreases.

4.4 Experiments 55

Projection Error: Full Shape Projection Error: Mean Curvature
’E\ 3 r 1 1 1 1 GZ;_ — l 0008 r 1 1 1 1 G2|_I — i
£ o5 PCA sessssses _ ~ 0.0075 - PCA ssssssee -
8 5. i 5 0.007 - - -
= o 0.0065 - -
Z 15- - 2 0.006 - -
S 1- . % 0.0055 - -
5 U O 0.0045 - -
TR - - - - . ' 0.004 '
0 100 200 300 400 500 600 0 100 200 300 400 500 600
Number of Coefficients i Number of Coefficients i

Figure 4.3: Experiment A (MPI-T-C data set): Projection of novel examples (from the test set) to PCA model (blue dotted line) and to
G2L model (red line) with respect to different number of components. The plot shows the average over a test set of 20 examples. Example
of these projections can be found in Figure 4.2. On this test set, the G2L model has a smaller Euclidean distance, even with the same
number of coefficients. For the PCA model projections, the mean curvature distance increases using more components, since the surface
gets distorted.

model with 190 components (the size of the training set is 198) is compared with
a G2L model with also 190 components and with a G2L model with 600 com-
ponents. The minimal residual that could be achieved are 0.381 mm with the
PCA model, compared to 0.045 mm with the G2L model (600 components) and
0.321 mm with the G2L model (190 components). For a reasonable regulariza-
tion (e.g. & = 102) not only the accuracy at the landmark points is much better
with the G2L model, but also the approximation error (i.e. the distance between
reconstruction and its ground truth) is much smaller, both in [?-distance as well
as in mean curvature distance. As it has already been shown for the projection
(see Figure 4.3, right plot), the mean curvature distance does not improve signifi-
cantly compared with the mean curvature distance of a reconstruction with strong
regularization. However, the mean curvature distance is important to detect over-
fitting. For & < 10° mm the PCA model shows severe overfitting, while the G2L
model suffers much less from overfitting.

Using a G2L model with the same number of components as are available for
the PCA model, we have a smaller generalization error and better accuracy at the
landmark vertices. However, from the same data, we can compute a G2L model
with more components, what further improves generalization and approximation
error.

56 Evaluation

PCA (5 = 10"2 mm) PCA (5 =10'mm) PCA (5 =103

mm) original 42 points

Example 1

G2L (5 =10"2mm) G2L (5 =10"mm) G2L (G

I
3
2

[N

PCA (5 = 10~ 2 mm) PCA (5 =10'mm) PCA (5 = 10% mm) original

Example 2

GoL (5 =10"2mm) G2L(5=10"mm) G2L (5 =10% mm)

Figure 4.4: Experiment A (MPI-TU-C data set): Generalization from 42 landmark points (1st row, right most image): Two examples of
the test set are reconstructed using PCA model (first row) and G2L model (second row) with different regularization parameter = 2. The
parameter & is chosen within a reasonable range, where both, the G2L model and the PCA model reconstructions have their optimum, see

the plots of the similar experiment (using 100 vertices) in Figure 4.5. The PCA reconstructions suffer from severe overfitting, while the G2L
reconstructs the surfaces much better.

4.4 Experiments 57

Approximation Error: Full Shape Approximation Error: Facial Mask
’§\ 6 r 1 }.-. 1 1 1 1 GZI: (600) 1 A ’§ 6 r 1 '.-..I 1 1 1 G2|: (600) 1 A
E 5. '-. G2L (190) _ E 5 - -,. G2L (190) _
© < PCA (190) seesseese o -... PCA (190) seessesse
2 4- %, - 2 4- A
o] ", — s e
2 3. -, — 2 3. <
[a)] ° o, .--"'. a o
§ 2- ...'“‘--.u....u.----"""M - § 2-)
2 - - 2 .
D 0.) o 0.)
-15 -1 -05 0 0.5 1 1.5 2 2.5 3 -15 -1 -05 0 0.5 1 1.5 2 25 3
Regularization (6 = 10"mm) Regularization (& = 10°mm)
Approximation Error: Landmark Points Approximation Error: Mean Curvature
’g 4 r GZLI(GOO) 1 1 1 1 1 1 i 0008 r 1 1 1 1 '.... 1 1 GaL (IGOO) 1 A
\S, 3.5 - G2L (190) ”~ . 0.0075 - % G2L (190) -
8 3 _ PCA (190) eeeesesce' - — § 0007 _ ‘...- PCA (190) eeeesesce _
S 25- & O 0.0065 -
2 2. - 2 0.006 -
c 15- - é 0.0055 -
° - - % 0.005 -
ko] =
T 05 - s] S 0.0045 - ;
w 0 T L L L L L ' 0.004 - L L L L L L L L '
15 1 05 0 05 1 15 2 25 3 -1t5 1 05 0 05 1 15 2 25 3
Regularization (¢ = 10*mm) Regularization (¢ = 10*mm)

Figure 4.5: Experiment A (MPI-T-C data set): Generalization from 100 vertices: The 20 examples of the test set are reconstructed
using PCA model with 190 components (blue dotted line) and two G2L models (with 190 components: orange line / with 600 components:

red line) with different regularization. Using a reasonable regularization (e.g. 6 = 10%), the Euclidean distance is smaller for the G2L model
compared with the optimal regularization for the PCA model. This applies when the distance is evaluated over the full face as well as when
the distance is evaluated over the facial mask. This is also true when the number of components of the G2L model is restricted to the
number of components of the PCA model. Additionally, the G2L model shows less error at the landmark points.

Approximation Error: Full Shape Approximation Error: Mean Curvature
= 2r 1 1 1 1 1 1 PCA .I. hl 0.008 r 1 1 1 1 1 1 PCA "l al
£ G2l em— -~ 0.0075 - G2l m— =
® - -z 0.007 - e -
o — o
< O 0.0065- -
- > oo°
2 - > 0.006 - -
3 . £ 0.005-
§ 0 0.0045 - -
L 0 L L L L L L L ' 0.004 - L L L L L L L '

0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
Number of Coefficients i Number of Coefficients i

Figure 4.6: Experiment B (UniBs-A data set): Projection of novel examples (from the test set) to PCA model (blue dotted line) and to
G2L model (red line) with respect to different number of components. The plot shows the average over a test set of 25 examples. Here,
in contrast to Experiment A (see Figure 4.3), with the same number of coefficients, the PCA model shows a smaller Euclidean Distance.
However, for the G2L model, the Euclidean distance can be reduced using more components. For the G2L model, using more components
does not distort the shape, as it is the case with the PCA model, as it can be seen in the mean curvature plot.

58 Evaluation

Reconstruction Error: Full Shape Reconstruction Error: Facial Mask
,5 2 r 1 1 1 1 1 1 S l ’E 2 r ..' l
ry . % 15- .
o (]
C C
8 8
@ . B { e -
[a 0000000,
5 S
8 S B :
© ©
=} =}
I 0L L L L L L L L 1 w 0L L L L L L L L 1
25 2 15 -1 05 0 05 1 1.5 25 2 15 -1 05 0 05 1 1.5
Regularization (& = 10°mm) Regularization (& = 10°mm)
Reconstruction Error: landmark points Reconstruction Error: Mean Curvature
’; 2 r PICA 1 1 l 0008 r 1
g a2l . 0.0075 -
g 15- - ZIf 0.007 -
] o 0.0085 -
B9 - = 0,006 -
a 3
< £ 0.0085 -
g 05* - % 0.005 - -
E] O 0.0045 - -
w 0 & 1 1 1 1 1] 0004 L 1 1 1 1 1 1 1]
25 2 15 -1 05 0 05 1 1.5 25 2 145 -1 05 0 05 1 15
Regularization (6 = 10°mm) Regularization (6 = 10*mm)

Figure 4.7: Experiment B (UniBS-A data set): Generalization from 77 vertices: The 25 examples of the test set are reconstructed using
PCA model (blue dotted line) and G2L model (red line) with different regularization. In contrast to the G2L model, the PCA model is too
inflexible to match the 77 landmark points. The G2L model is much more flexible and can match the landmark points almost perfectly. At
the same time, it generalizes slightly better than the PCA model: The Euclidean Distance is smaller, i.e. on the facial mask. Overfitting can
be avoided using regularization, as the mean curvature plot demonstrates. Examples of such reconstructions are shown in Figure 4.8.

44.2 ExperimentB
Data

For this experiment, we use UniBS-A data, a data set of 125 registered scans, see
Table 2.1. In contrast to Experiment A, where training and test data differ signifi-
cantly, here, one data set was split randomly into a training set of 100 scans and a
test set of 25 scans.

Projection

Unlike Experiment A, here the [? error is smaller for the PCA model, compared
with the G2L model, see the left plot in Figure 4.6. This is to be expected since
the PCA model minimizes the [? error on the training set [52], and the test and
training set do not differ significantly as in Experiment A.

However, this is only true when models with the same number of components
are compared, and the PCA model is limited to 99 components. Using a G2L
model with more components, the I? error is much smaller then the best /2 error

4.4 Experiments 59

of the PCA model. The mean curvature error plots (Figure 4.6, right) are similar
to those of experiment A. Using more components, for PCA models, the mean
curvature error increases, and for G2L model, it decreases.

Generalization

For generalization from a sparse set of landmarks points, the results are similar
for those of Experiment A. The PCA model is too inflexible and cannot fit 77
3D landmark points. In this experiment, we have used more landmark points
than in Experiment A, since the resolution of the UniBS-A data is higher then the
resolution of the MPI-TU data, and therefore we are able to locate more feature
points. The feature points used in this experiment can be seen in the figure in the
margin. The PCA model has at the most 99 components and hence the problem
is overconstrained. For this reason overfitting is not the main issue here. As can
be seen in Figure 4.7 bottom left, even without regularization, the error at the
landmarks is greater than 0.5 mm in average. The G2L model, however, can fit the
landmarks (almost) perfectly. For a reasonable regularization (e.g. & = 1071) the
[%-error for the G2L model is a little better than the best one for the PCA model
(Figure 4.7, top left). This effect is even stronger when only the facial mask is
considered (here, we computed the error only over the face without the back of the
head, Figure 4.7, top right). Nevertheless, also in this experiment slight overfitting
appears. This can be seen in the mean curvature distance (Figure 4.7, bottom
right) as well as in the examples in Figure 4.8. The smallest approximation error
for the G2L model appears for a regularization parameter of ¢ = 10~'mm =
0.1 mm (compared with ¢ = 10~ mm = 0.56 mm), i.e. we have to assume less
noise on the landmark points to prevent overfitting.

Figure 4.8:
Experiment B (UniBS-A
data set): Generalization
from 77 vertices: the ex-
amples of the test set
(b) are reconstructed us-
ing the PCA model (a)
and the G2L model (c)
with a regularization of
c = 0.1 For this
parameter, the average
distance at the landmark
points is 0.11mm for the
G2L model, compared
with 0.56mm for the PCA
model. Nevertheless, the
PCA model shows slight
overfitting. This can be
also seen in the plot in
Figure 4.7.

60

Evaluation

(b) original

Chapter 5
Fitting

The most important application of statistical shape models is their use as prior
knowledge in the reconstruction of the 3D shape of a face. For example, as input
data for reconstruction noisy and/or incomplete 3D data can be used, as done in
Chapter 4. The much more difficult scenario is given when no 3D data is available
and the model parameters have to be estimated from a 2D projection of the face.
In contrast to purely descriptive models, the parameters can not only be used as
an abstract description of the face, but also to reconstruct the 3D shape.

In this chapter we describe a method to estimate the model parameters. As
input we use a single photograph of the subject, together with a few (typically five
to seven) manually labeled feature points. Fitting is done by estimating the model
parameters with an iterative approach, using an Analysis-by-Synthesis loop: the 3D
model is rendered as an image and this image is compared with the input image.
The parameters are updated to minimize the residual. Automatically fitting the
model to an image requires three components: a statistical model, a cost function
and an optimization algorithm.

Statistical Model

To render the image, additionally to the statistical shape model, a camera model
is used that describes the pose of the face, its 3D position in the world space and
the internal parameters of the camera. Analogously, in addition to the statistical
surface color model, a simple global illumination model is used. While the shape
and color models have already been introduced, we derive the external models (i.e.
the camera and the illumination model) in Section 5.1.

Cost Function

To model the optimization problem, a cost function (also called objective func-
tion) is needed. In the Analysis-by-Synthesis loop, the cost function compares the

Figure 5.1:

To render the images in
an analysis-by-synthesis
loop, the camera and the
shape model define the
2D shape of the face in
the image and the illu-
mination model and the
color model define the ap-
pearance.

62 Fitting

shape
shape model & — camera model p

rendered image

esllor il @ illumination \J

model A appearence
~ TV 7\ TV
statistical models external models

input image with a rendered image. The most commonly used cost function is
the [?-distance between the generated image and the input image. However, this
type of cost functions has many local minima. For this reason, instead of using
one single cost function, we use different cost functions measuring the distance of
landmark points, contours and pixel intensities.

Optimization Algorithm

To minimize the cost function, i.e. to find the parameters for which the cost is
minimal, an optimization algorithm is needed. An large number of optimization
algorithms have been developed. An overview of the most commonly used opti-
mization algorithms can be found in [54] and [55]. The algorithms differ in terms
of robustness, efficiency, and accuracy. These desired properties may conflict with
each other, and different optimization strategies are suitable for different prob-
lems. In this work we use a variant of the Quasi-Newton algorithm (L-BFGS). We
will justify this choice in Section 5.3.

5.1 External Models

The fitting system uses an analysis-by-synthesis approach: it minimizes the differ-
ence between the input image and the reconstructed scene. To render the image,
in addition to the shape and color model, two external models (camera and illu-
mination) are needed. The shape model (parameter v) gives the 3D position of
each vertex in 3D. The camera model (parameter p) projects the vertices to 2D
positions in the image.

The relation of surface color model and illumination model is analogous, see
Figure 5.1. The color model (parameter 3) defines inherent color of the surface.
Since we are using per-vertex color, there is one RGB color per vertex. The illu-
mination model (parameter A) simulates the light source and estimates the final

5.1 External Models 63

appearance or pixel color in the image. While doing so, the estimated normals of
the shape are used.

Usually, one is not interested in the external parameters, but mostly in the
model parameters. These parameters describe the shape and color or albedo of
the face and can be used to reconstruct the face. The parameters can also be used
directly for recognition [17, 14, 18, 19]. The external parameters that describe
pose, 3D position, internal camera parameter, and illumination conditions are
most often not of direct interest.

5.1.1 Shape and Color Models

The shape model is a statistical model M := (u, o, U) (see Equation 3.1) that
defines the 3D position of each vertex

in model coordinates (i.e. in the model coordinate frame), where U; € R**"
are the corresponding rows of the model matrix U for vertex ¢ (i.e. rows 37, 3i +
1, 3i4-2) and fi; are the corresponding entries of the mean p. The statistical model
can be either a G2L or a PCA model that is trained with the previously introduced
training data (Equation 2.2).

Analogously, the color model is a statistical model that is trained with the cor-
responding per-vertex color (Equation 2.3). Here, we solely use a PCA-based color
model. The color model defines the color of each vertex

az(ﬁ) = ﬁa,i + Ua,idiag<0a,1 s O-a,n{l)ﬂ (52)

In Section 6.4 (future work) we discuss other possibilities for statistical color mod-
els. In order to render an actual image of the face described by the statistical model,
we need a camera model.

5.1.2 Camera Model

As camera model, a pinhole camera model is used. A general pinhole camera
has nine degrees of freedom [56]: three internal camera parameters (focal length
and principle point) and six external camera parameters that describe the rotation
(three parameters) and 3D translation (three parameters) between the model co-
ordinate (or object coordinate) system and the camera or eye coordinate system.
We use a 9-parameter pinhole camera model f’p :IR* — IR* where

p= 7,00t ty ts, f,00,0,)" (5.3)

are the nine camera parameters, see Table 5.1.

Model
coordinates &

transform

l Modelview

Eye coor-
dinates €

lProjection

Clip coor-
dinates ¢

Perspective
division

Normalized
device
coordinates d

l\/iewport

transform

Window
coordinates w

64 Fitting

Y nodding (rotation around z-axis)

© azimuth (rotation around y-axis)

¥ image plane rotation (rotation around z-axis)
t = (tyt,t.)" | 3D translation

f focal length

0= (0, 0,)" | offset of principle point

Table 5.1: The parameters of camera model p = (7, @, ¥, tz, ty, t=, f, 0z, 0y) describe a pinhole camera.

Let © = (x,,2,,7,)" be a 3D point of the object in model coordinates. To
simplify the notation, we have omitted the index identifying the vertex number.
The corresponding 2D position in the image (window coordinates) is given by

—

W = FPp(T) = Tpa(m, , 4 /7)) (5.4)

where @ : R? — RR? is a perspective projection from eye to window coordinates
and the modelview transform m,, , , 7 transforms the model coordinate to eye co-
ordinates. In the following, we will derive the perspective projection and the mod-
elview transformation and relate them to the OpenGL rendering pipeline [57].
The perspective projection 7 is split into the projection, the perspective division,
and the viewport transform, see the figure in the margin. We use the notation
used in the OpenGL specification [58], making it straightforward to implement
the rendering using OpenGL.

Modelview Transformation

The modelview transformation transforms the vertices in model coordinates ¢/
into eye coordinates €. To simplify the calculation, we assume a world with only
one object. This implies that all vertices are transformed by the same modelview
matrix. The camera is fixed, placed at the point (0, 0,9)7, and is looking along the
negative z-axis. The parameter 0 is fixed and is no longer acting as a parameter of
the model. The modelview transformation is given by

e=m,,,{7) = RRBR,RyT + (o, ty, . —0)" (5.5)

where R, R, Ry, are elementary rotation matrices

R,,,=R,R.Ry (5.6)
cosy —siny 0 cospp 0 —sine 1 0 0
= siny cosy O 0 1 0 0 cosy —sing (5.7)
0 0 1 sing 0 cosp 0 siny cosvy

5.1 External Models 65

around the z-, y- and x-axis, respectively. By defining the rotation matrix in this
way, the angle ¢ is the azimuth or rotation of the face to profile view, the angle
Y describes the nodding of the face and the angle v describes the image plane
rotation, as shown in the margin figure.

Projection

The frustum matrix F transforms the eye coordinates € into the (homogeneous)
clip coordinates ¢ = (cy, ¢y, C., ¢,y)T. With this transformation, the viewing frus-
tum is defined, and the visible vertices lie within this frustum.

c=F (e, ey, e, 1)T ,

where F is the frustum matrix, given by

&0 0
0 & 50
F = 0 ‘65 _té 2 (5.8)
f—n f—n
0 0 -1 0

with the parameters near, far, tight, left, top, bottom describing the clipping planes
of the viewing frustum [58], as shown in the margin figure. For the camera model
used, we assume that the viewing frustum is symmetric with [= —tvand b =
—t. Additionally, we assume that the far clipping plane is much behind the near
clipping plane (f > n). As a result, matrix F reduces to

nt 0 0 O
0 n/t 0 0
0 0 -1 —2n
0 0 -1 0

F— (5.9)

In a pinhole camera, the focal length f is equal to the distance between the image
plane and the pinhole. To manipulate the focal length without affecting the near
clipping plane, we allow for scaling the width and height of the frustum inversely
by f,ie.t = @ and t = tTO, where 7y and ¢, are kept fixed. Thus the frustum

f
transformation reduces to

n
Cyp €x {_Oea:
N & (& f—n€
Cc = Y = F v = to Y (5.10)
C €z —€, — 2n

Cw 1 —e,

66 Fitting
= (l,, Ly, 1.)T light direction
- R G B T
Co = (et ¢, c2)! | color intensity of ambient light
¢y = (cf,c5,c8)T | color intensity of directional light
c color contrast
¢y = (cl,¢5,cl)T | color gain
¢, = (c&, ¢ BT | color offset

Table 5.2: The parameters of the illumination model A = (i, &7, el e, el)T describe one directed light
source.

Perspective Division

The normalized device coordinates d are computed by homogenizing the clip coor-
dinates

B Ca/Cu —%Z—j
d= | ¢yfew | =| L2 |. (5.11)
Cs/Cw 1+ 20
Viewport Transformation
The 2D window coordinates i = (x,y)T (in pixels) are obtained by viewport
transformation b)
B(1+d;)+o
=) T T
v (B(1+d,) +o,) (5.12)

where o’ = (p,, p,)” are the width and height of the final image (both in pixels)
and 0 = (o, oy)T is an offset (also in pixels) measured from the center of the
image. The plus sign in the second component of the viewport transformation
corresponds to an OpenGL-compliant window coordinate system with the origin
in the lower left corner, the minus sign corresponds to a coordinates system with
the origin in the upper left. We will use the OpenGL coordinate system. Summa-
rizing, the perspective projection from Equation 5.4 can be written as

Br(] — Mex) 4o
ﬁfﬁ(é} = 2 Toféz (513)
%(1 - :(J:e:) + Oy

5.1.3 lllumination Model

We now have the 2D position for each vertex in the image. In principle, we could
render a 2D image using the corresponding color value from the model.! The re-

'We omit rasterization here, since we do not need it for the definition of the cost function, i.e.
we only render the vertices without rastering the triangles between the vertices. Rasterization is
only needed for z-buffering, i.e. to determine which vertices are visible.

5.2 Cost Function 67

sult would be an image showing the pure albedo without any shading. To compute
the pixel intensities for a shaded surface, we need a (local) illumination model.
The illumination model uses light which comes directly from only one light
source (direct illumination), i.e. we do not consider reflected light (like from the
walls) and effects like cast shadows. To model the reflection, we use the Phong
reflection model, an empirical model of local illumination. This is an adequately
simple illumination model and is very often used, in particular it is the default illu-
mination model used in OpenGL. The color of the reflected light & = (¢, ¢, c¢P)

is computed independently for the three color channels as

A

¢ = acq + acgmax({(n’,1),0) + scg max({r,)", 0) (5.14)

so we can omit the color index here. The inherent color (albedo) of the surface
a comes from the color model (Equation 5.2), c,, ¢4 are the ambient and diffuse

light colors, resp. (see Table 5.2).> With | = HéTH we denote the normalized di-

rection of the incoming light and © is the normalized viewing direction. Instead
of transforming the surface normals into the eye coordinate system (similar to
the modelview transform), the eye normals 72’ are estimated from the neighboring
vertices in eye coordinates. This simplifies the computation of the derivatives of
the surface normals, see Appendix 7.1.5. The (normalized) reflectance ray

P=2(n, D0 —1 (5.15)

can be computed given the normal and the light direction. As in [38] the color
contrast is corrected (parameter ¢) and each color channel is multiplied by the
color gain and an offset is added. The final pixel intensities are then computed by

B cf‘ clt ck
I = cg M. ch + cf (5.16)
cl cP cB
where
1 0.3 0.59 0.11
M.,=c 1 +(1—-¢)| 0.3 059 0.11) (5.17)
1 0.3 0.59 0.11

5.2 Cost Function

In each iteration of the analysis-by-synthesis loop, the cost function is given as
the difference between the input image and the rendered image. The naive way of

2The parameters v = 10 (shininess) and s = 0.12 (intensity of specular reflection) are kept
fixed.

68 Fitting

computing the difference is the sum over all pixels of the image

Fyp A, B) =) pilp A, B) (5.18)

pixels

where p; is the cost per pixel. Defining the cost function as a sum over vertices
(instead of a sum over pixels)

F(p7A7a>/6) = Z.fz(p7 A7(1713) (519)

has the advantage that it is not necessary to render the full image, i.e. to raster-
ize the triangles of the projected model mesh. This assumes regularly distributed
vertices, otherwise a weighting would be needed. Avoiding rasterization in the
definition of cost function makes computing its derivatives much easier.

The cost per vertex f; compares the calculated color of the vertex (I; Equation
5.16) with the color from the input image I; = I(P,(Z;(cx)) (i.e. the color from
the input image T at that position onto which vertex ¢ is projected). The intensity
cost function is given by the squared difference between the RGB intensities of
input image T and the RGB intensities of the rendered model

frt=IE=TIP= 3 =T (520
ce{R,G,B}

In Equation 5.19 the sum runs over some (not necessarily all) vertices ;. For
different cost functions, the sum can run over a different set of vertices, e.g. the
sum runs over all vertices that are visible in the input image, or just the vertices at
the contour, see Section 5.2.1. For the intensity cost function, the sum runs over
all visible vertices SV, i.e. over all vertices that are neither occluded by other parts
of the face nor at the back of the face

=y (5.21)
iESViS

In gradient-based optimization algorithms, the gradient VF is needed to deter-
mine the local search direction. The derivative with respect to any parameter ¢ is
given by

HFnt of; .~ dI¢ OIf
o 2 aJ; =Y. D 2K - I % ag) (5.22)
g i c€{R,G,B}

Here, £ can be any of the parameters (shape), B (surface color), p (pose) or A

(light). The second term 8615

oIc OI¢ P, . 0I¢ OP,
o6 Ox 96 Oy O

is given by

(5.23)

5.2 Cost Function 69

oIc oI°

where the gradients of the input images 5-, - are estimated using finite dif-
ferences (Sobel operator). The derivatives of the image projection 88121' and %

do not depend on the color parameters and the lighting parameters, therefore

aa? = 88% = 0;¢ € {B, A}, the derivatives with respect to the camera parameters

and the shape parameters are given in Appendix 7.1.1 and 7.1.2, respectively.

We use this cost function to estimate the illumination, the surface color and the
shape (the pose is estimated by the landmark points and the contour, see below).
Therefore we need the derivatives of the cost function (Equation 5.22) with respect

to A, 3 and . The derivatives %{'C, %—Ig and 86]1'0 can be found in Section 7.1.3,
(0%

Section 7.1.4 and 7.1.6, respectively.

5.2.1 Special Cost Functions

When fitting the model to the image, we whish to find the optimal model and cam-
era parameters by minimizing the difference between the rendered model and the
input image. The cost function measures this distance between image and model.
It should be neither too complicated nor too simple. When the cost function is too
simple, the resulting parameters are only a poor approximation. When the cost
function is too complicated, the optimizer is not able to find the global minimum.
An optimal cost function is minimal at the best fit p* and has no other (local) min-
ima. This allows us to use gradient based optimization algorithms which work best
on well behaved functions. In this way, we achieve fast and accurate optimization.
Cost functions with many local minima require the use of robust optimization al-
gorithms (e.g. stochastic optimization) that require many evaluations of the cost
function (and possibly the gradient) and are therefore very slow.

In our fitting system, we use several types of cost functions. In this section, we
introduce these cost functions and in Section 5.4 and Section 5.6 we describe in
detail how they are applied in the fitting system.

The intensity cost function (Equation 5.21) has many local minima, as is illus-
trated in the toy example in the margin figure. Let (a) be the input image and (b)
be a simple rendered model. The intensity cost function for translating (b) with
respect to (a) is plotted in (c). Although this cost function has its minimal value
for the desired translation of (b), it is very difficult for a gradient based optimizer
to find the optimum, if the initial guess is far away from the optimum. An ideal
cost function would have the form as shown in (d).

We wish to formulate our fitting algorithm in terms of such an ideal cost func-
tion. To compute this cost function, additional features such as edges or landmark
points are extracted from the image, and the cost function is given as the distance
to the nearest feature. Recently, approaches to learn locally ideal cost functions for

70 Fitting

face model fitting have been proposed [59]. The advantage of their approach is
that the potentially difficult process of extracting edges from the image is avoided.

These cost functions used to determine the camera parameters p and shape
parameters o have the form of a general least squares cost function

F(p,a) = Z [i(Pp(& (@), fi =0, (5.24)

where f; only depends on the 2D position onto which the vertex has been pro-
jected. In the fitting system, we use two such cost functions:

e Landmark Cost Function

£ = |1~ B = | By(i(e) — G (5.25)

)

In this case, the sum runs over a set S™ of predefined landmarks and ¢;
denotes the 2D position of landmark .

Fim = Z fim (5.26)
i€ Sm
e Contour Cost Function
fot = d(w;)? = d(Py(Z;()))? (5.27)

where d : R? — R is the distance transform of the contour image (see
Section 5.6.2) i.e. d(z,y) is the Euclidean distance of the pixel at (z,y) to
the nearest contour pixel. In this case, the sum runs over all vertices on the
contour S,

Frt= Y e (5.28)

ieSent

In the cases of the least squares cost function, the derivative (Equation 5.22) sim-

plifies to
OF —~0f ~~[0f;0P, 0f 0P,
7 =255 2 {ar o¢ oy a&] 529

where £ is one of the camera or shape model parameters. The important observa-
tion here is that the derivatives 852? and % do not change for different functions
f (they have already been used in Equation 5.23). We will give these derivatives
for all parameters £ € {p, a} in the Appendix 7.1.1 and Appendix 7.1.2. In most
cases, the derivatives of the function f are either straightforward or are obtained

numerically.

5.3 Optimization 71

5.2.2 Regularization

Not every possible parameter vector represents a valid face. With statistical mod-
els, it is assumed that the model parameters o and 3 are distributed according to
a specific distribution, in our case a normal distribution (Equation 3.3). The cost
functions '™ (Equation 5.21), F'™ (Equation 5.26), and F*** (Equation 5.28)
measure the difference between the input image and the rendered image (defined
by p) in different ways, without considering the likelihood of the parameters. As a
result, minimizing these cost functions sometimes leads to very unlikely faces. For
the cost function, this means that not only the difference has to be minimized, but
we also have to assure that the parameters are distributed properly. The assump-
tion that the parameters are distributed according to a normal distribution lead to
the regularization term (see Section 3.6)

F8 = ||a]?. (5.30)

5.3 Optimization

Given the cost function F that depends on the parameters p = (p, A, a, B), we
have to find the parameters p* that minimize the cost. A huge number of mini-
mization algorithms has been developed and the area of numerical optimization
was studied intensively in the last decades. Mainly, optimization methods can be
divided into three categories: Methods that only evaluate the function for para-
meters p, methods that require to compute the gradient and methods that also re-
quire to compute the second derivatives. Another type of optimization algorithms
focuses on finding the global optimum (instead of only finding a local optimum),
e.g. simulated annealing.

In [60] we argued that the cost function for the contour (Equation 5.28) is nei-
ther differentiable nor even continuous. The movement of texture contour points
with respect to parameters is analytically differentiable, silhouette movement is
piecewise differentiable (although generally not analytically), and inner contour
movement is discontinuous (with 3D solids, contours appear, disappear, split and
merge under parameter changes [61]).

Therefore, in [60] we used the Downbhill Simplex Method [62, 55], a method
known to be slow but robust. It uses function evaluations only and makes no
assumption on the smoothness of the function, and therefore deals well with
ill-behaved functions. However, since the gradient is not used, the method re-
quires many more function evaluation than other optimization methods and con-
sequently is very slow, too slow for our purpose.

When the gradient is available for the optimization, the naive approach would
be to use steepest descent (or gradient descent) [63]: Starting from the current es-

72 Fitting

timate it searches the minimal point in the direction opposite to the gradient, uses
this point as the new estimate and iterate until a (local) optimum is found. Steep-
est descent is known for very slow convergence close to the optimum. When the
cost function space is badly scaled (i.e. the problem has a high condition number),
the algorithm makes many small steps with many evaluations of the function and
the gradient. Stochastic gradient descent (SGD) approximates the true gradient by
the sum of the gradients of a small random subset of all vertices. This method is
much faster (compared to gradient descent) and it was used in [1, 38] to fit the
Morphable Model to an input image. SGD is very robust, it avoids local minima
by adding noise to the gradient estimate [1, 64].

In [17] a stochastic version of Newton’s algorithm (similar to stochastic gradi-
ent descent) is developed and used to fit the model to an image. While doing so,
the second derivatives are computed numerically from the first derivatives. Similar
to SGD, stochastic Newton algorithm avoids getting trapped in a local minimum
by introducing a random error on the gradient.

When the cost function is designed differently, in particular, when it is smoother
and has less local minima, non-stochastic optimization algorithms can be used.
For instance in [2, 14] a method proposed by Levenberg and Marquardt (LM) was
used as optimization method for fitting. This method is often considered the best
optimization algorithm for least-squares cost functions, i.e. when the cost func-
tion is given as the sum of squares of deviations or residuals r : R® — R (7 is the
number of parameters in p)

F(p) =5 Y ri(p). (531)

The LM algorithm makes use of the special form of least-squares cost functions
and approximates the Hessian matrix V2F using the Jacobian matrix J : V2F =~
JTJ, ignoring second order terms. For large-residual problems, i.e. problems in
which the residual is large at the minimum, the second order-terms are too large
to be excluded, and therefore, the performance of LM is poor in these cases [54].
In our fitting system, the intensity cost function (Equation 5.21) and the contour
cost function (Equation 5.28) are such large-residual problems.

Optimization methods have been developed that accumulate information
gained during previous iteration steps, such as conjugate gradient and Quasi-
Newton algorithms. Like steepest descent, Quasi-Newton methods require only
the gradient and the cost function in each iteration. They approximate the Hes-
sian matrix of second derivatives V? F' by a matrix that is updated in each iteration
by analyzing the last gradient vectors. Compared to gradient descent, the increase
in speed is dramatic and they are sometimes even faster than Newton’s method
since the computation of the second derivative is avoided [54].

5.4 Stepwise Fitting System 73

Here, we use one of the most popular quasi-Newton algorithms, L-BFGS, the
memory-limited version of the method proposed by Broyden, Fletcher, Goldfarb
and Shanno. It is designed for large-dimensional problems when the approxima-
tion of the Hessian matrix H € R™ ™ is too large to store. Instead, only the history
of past p updates of p and V F'(p) is stored [65]. It is known that the BFGS method
has very effective self-correction properties. If the approximation of V2F is incor-
rect, it will correct itself within a few steps [54]. These properties are important
since in each iteration the vertices over which the cost function is evaluated might
change. For the contour term (Equation 5.28) in each iteration it is recalculated
which model vertices are on the contour. For the pixel intensity cost function the
visibility of the vertices is newly determined in each iteration.

5.4 Stepwise Fitting System

The fitting system fits the parameters step by step to the input image. For this
purpose, several modules are used that run consecutively. In Figure 5.2 the fitting
system is illustrated. In Section 5.6 we will describe the different modules with all
relevant details. In the following, we give a overview of the fitting system.

5.4.1 Multiresolution

The application of fast optimization methods requires the cost functions to be well
behaved, i.e. they should be locally smooth and should not have too many local
minima. In the fitting system we use several cost functions (F'™, F"* and F™t),
In particular, the intensity cost function has many local minima, but so does the
contour cost function, when the contours or edges are extracted from an image
with an overly sensitive edge detector. For this reason we combine the approach of
using several cost functions with a traditional multi-resolution approach for the
cost functions F'™™ and F°™, as illustrated in the plots in the margin. Again, (a)
is the input image, (b) the rendered model and (c) is the intensity cost function
with many local minima. If the input image is smoothed (d), the cost function (e)
also becomes smooth and the minimum of this cost function can be found more
easily. This is used as the initial guess for searching the (global) optimum in the
original cost function (c). In most cases, this procedures also significantly speeds
up the optimization.

5.4.2 Multi-Level Fitting

This principle is now used for the fitting. The cost function (Equation 5.20) is
evaluated from two inputs, the input image (I) and the image generated by the

74 Fitting

input image

f\/

landmark points contours

) ()
| b | | | | !
] opt S opt ; >R —— ; | ; .- N oot IR
) o | : ot) : |
A A A A A A A
| B B B | 1
| B B | B |
3 Pose from | 3 i 3 o 3 3 3 3 Shape from !
‘Landmarks : | Shape from Contour } JIllumination| | Color - Shading |

Figure 5.2: The fitting system consists of several modules that run consecutively. Each module updates the parameter of the corre-
sponding model and gives the parameter to the next modules as initial guess. Model C is the camera model, 1,2,3 are the global and the
local components of the G2L model, L is the illumination model and V is the per-vertex surface color model.

model (I). The input image is smoothed and downsampled, and the image gra-
dients are computed from the downsampled images. Accordingly, in case of the
contour cost function, the edges are extracted on downsampled images and dif-
ferent parameters for the edge detector are used, such that more or less detailed
edges are used for the fitting.

For the model term, however, we make use of the multi-level structure of the
G2L model and three levels of the G2L model are fitted one after the other. At first,
the global shape model (level 1) is fitted to a low resolution version of the image,
then the local components on level 2 are fitted to the higher resolution image, and
finally the local components on level 3 are fitted to the original image. Usually,
the very fine details on level 4 are neglected, since experiments have demonstrated
(e.g. the experiment shown in Figure 5.6) that these components are not relevant
for the fitting.

5.4.3 2-Stage Fitting

In addition to the multi-level fitting, the optimization problem is separated into
two sub-problems, as illustrated in Figure 5.3. The 2-stage multilevel fitting system
is detailed in Table 5.3.

5.5 SGD and MF Fitter 75

local 3 o e
/7 7/
@ @
7/ 7/
global o
7/ 7/
external 0
stage 1: shape only stage 2: appearance and shape
Stage 1

The position of landmarks and contours in an image does not depend on the il-
lumination of the scene. For this reason, these features can be extracted without
having estimated the illumination. These features are then used to estimate the
camera and shape coefficients. Therefore, in the first stage of the fitting, we can
fit the camera and the shape coefficients, while the illumination and color model
parameters are neither estimated in the first stage, nor even needed for the cost
functions F'™ (Equation 5.26) and F'*"* (Equation 5.28). The result is an approx-
imation of the surface that matches these features very well, but lacks some of the
internal features of the face. For example, for faces in frontal view the shape of the
nose is only poorly reconstructed up to now, see Figure 5.5.

Stage 2

The estimated shape from Stage 1 is accurate enough to fit the illumination model
and then the color model. Then, the estimated shape is used as an initial guess for
the intensity cost function F'™* (Equation 5.21) to refine the shape parameter of
the local models on level 2 and 3.

5.5 SGD and MF Fitter

The fitter that we present in this chapter is different in many ways from the fitters
used in our group before to fit a PCA model [1, 2]. Using the cost function from

Figure 5.3:

The fitting system con-
sists of two stages: In
Stage 1 the shape pa-
rameter p (camera model
C) and o« (G2L shape
model level 1,2,3) are es-
timated without consider-
ing the appearance. In
Stage 2, the approaches
parameters X (illumina-
tion model) and 3 (sur-
face color model) are esti-
mated and the shape pa-
rameter are refined. Both
stages use a coarse-to-
fine strategy, where first
the external model pa-
rameters are estimated,
then the global model pa-
rameters and then the lo-
cal model parameters.

76 Fitting

Step Module Cost Function Shape Appearance
©006 0
1 | Pose from Landmarks Fm *x 0 o o |/ /
2a | Shape from Contours | F'™ +n™F (% % o © |/ /
2b | Shape from Contours | F'™ +nF™ | % © @ |/ /
3 | Shape from Contours | F™ +nF™ | O % © |/ /
4 | Shape from Contours | F*™™ +pf™¢ | O O % |/
5 Illumination Fint OO0 O |% %)
6 Surface Color Fint O OO @@ *
7 | Shape from Shading | F™ + ™ F | [[% O |O [
8 | Shape from Shading | F™+pF™ | O O (%) |E O

* model parameters are optimized
@ | model parameters are fixed to zero (mean)
[| model parameters are fixed to previous estimate

/ not considered

Table 5.3: To fit the G2L model to images, a fitting system with different modules is used. In principle these
modules could be combined in any order. This table gives an overview of the steps and the order, in which
they are usually used for fitting. Thereby, either Step 2a or 2b are used and Step 6 is optional. Model C is the
camera model, 1,2,3 are the global and the local components of the G2L model, L is the illumination model and
V is the per-vertex surface color model.

Section 5.2, in this section we explain the similarities and dissimilarities in more
detail.

5.5.1 SGD Fitter

In [1], the cost function is a combination of the intensity term f"* (Equation 5.20)
and regularization term F"*¢ (Equation 5.30)

F=n Y fM4+F®+FS4EE (5.32)
i€ Srand
In addition to the regularization for the shape parameters F'*¢ = ||a||?, a si-

milar regularization for the surface color parameters is used (F;™* = [|3||*) and an

._5.)2

ad-hoc estimate of the camera model parameters F;°8 = 3 (‘)Jafp?)
PyJ

to the intensity term F'™ (Equation 5.21), the intensity term in [1] is computed
as a sum over triangles. The fitting is initialized using five to seven manually set
landmark points (we expect these landmarks to be detected automatically in the
future, see Section 6.3).

To avoid local minima, in [1] two strategies are used. Firstly, stochastic gra-
dient descent is used, a very robust, but not very fast optimizer (see Section 5.3):

. In contrast

5.5 SGD and MF Fitter 77

the cost fi™ is evaluated over 5™, a random subset of 40 triangles that is chosen
in each iteration, and the probability of selecting a triangle is proportional to the
image area covered by this triangle.

Secondly, the following coarse-to-fine strategies are used to avoid local min-
ima:

e In the first iterations, the resolution of the input image and the PCA model
is reduced.

e At the beginning of the optimization, only the first few statistical model
parameters o; and [3; are optimized.

e The regularization parameter 7 is increased over time, reducing the weight
of the prior probability.

e In the final steps of the optimization, the PCA model is broken down into
segments. The coefficients o; and [3; are optimized independently and the
final surface is obtained by blending the segments.

5.5.2 Multi Feature Fitter

In [2] a different approach to the local minima problem (in the intensity cost
function) is presented: In addition to the intensity cost function, various image
features are used, yielding a cost function

F = it ™ 4 1o P A 0pe PP+ heg (Fo® + F3™) + e F* 0 (5.33)

where the 7);’s are the feature weighting factors. The specular highlight feature F**P°
is based on the idea that the specular highlight can be easily detected (the pixels are
saturated) and that on these points the surface normal is given by the half-vector
between the view vector and the light direction. The texture constraint feature F'*°
enforces the model color to be in a valid range between [0..1]. This combined cost
function is smoother, and therefore it is not needed to use stochastic optimization.
Instead, Levenberg-Marquardt optimization is used. The fitting is initialized using
five to seven manually set landmark points.

We use this fitter as the reference system and compare our results with these
fittings (see Section 5.8). In [2] the MPI model was used. However, this fitter is
also tuned for the use with the BFM in [37], i.e. this fitter uses a PCA model that
was trained from the same scans that are used to train the G2L model.

78 Fitting

5.6 Fitting Modules

The full fitting system consists of several modules, namely modules for landmark
fitting, contour fitting, illumination fitting, and shape-from-shading fitting. In
Figure 5.2 the fitting system is illustrated. Additionally to the cost function and
the gradient, each module needs a renderer that generates an image from the pa-
rameter p to be compared with the input image. Some modules perform some
preprocessing on the input image. The modules are implemented in a way that
they can easily be interchanged. Table 5.3 gives an overview of the steps in that
order that is usually used for fitting. Each component takes a parameter vector
p = (o, A\, 3, p)T as input and updates a subset of these parameters. The result-
ing parameters p’ are then used as input for the next component. In the following
we will describe the different modules with all relevant details.

5.6.1 Module 1: Pose from Landmarks

The contour fitting requires a rough initial guess of the pose [60]. The pose and
the other camera parameters (3D translation, internal camera parameters) can be
estimated quite accurately using a few landmark points. Here, the shape para-
meters are kept fixed, see Table 5.3. As cost function, the landmark cost function
(Equation 5.26) is used. The derivatives with respect to the camera model para-
meters are given in Appendix 7.1.1.

To estimate the camera parameters, we typically use a set (depending on their
visibility) of seven landmarks: The center of the eyes, the tip of the nose, the left
and right corner of the mouth and the earlobes. Currently, these landmarks are
either manually labeled (in case of photos) or synthesized (in case of the synthetic
test sets). The reason for the selection of these landmarks is that we expect these
landmarks to be detected automatically in the future, see Section 6.3. An alterna-
tive could be to first fit an Active Appearance Model [24, 66]. With this approach,
at least for frontal and near-frontal images, one would get a higher number of fea-
ture points. When more landmark points are available, it is also reasonable to fit
the first few shape components. However, in the typical case with 5-7 landmark
points, these points are only used to estimate the camera parameters. An example
of such a fitting is shown in Figure 5.4.

Since this is typically the first step, this component is initialized with the mean
face in frontal pose, with a focal length of 500pz and centered:’

a = 0 Vi (5.34)
p = O=y=t,=t,=t,=0,=0,=0 (5.35)
f = 500pzx. (5.36)

with a camera distance @ = 5000mm and r, = tg = 100 pz - mm and n = 1lmm

5.6 Fitting Modules 79

contour fitting

Figure 5.4: In Step 1 of the fitting system, the external camera parameters (pose and 3D translation) are estimated from the (manually
labeled) landmarks (middle) on the input photo (left). The internal camera parameters (focal length, 2D offset of the principle point) are
computed from the EXIF data of the input image.

Digital Camera

In cases where the input image is taken with a digital camera, the focal length f and
the offset of the principle point ¢ can be computed. The image file format used by
digital cameras contains specific meta data tags. The EXIF (Exchangeable Image
File Format) standard covers information such as the camera model (therefore we
know the ccd size) and the focal length. In the original image we manually select
the (quadratic) region of interest, crop the file and resample it to a resolution of
512px x 512pz. The offset of the principle point o,, 0, can be computed and the
focal length is given by

To Weed Wimg lo hccd himg

=9 =2— 5.37
f n f camera D12pT n f camera O 12px ()

where W, hceq are the width and height of the ccd chip (in mm) and Wimg, Pimg
are the width and height of the camera picture (in pixel).

5.6.2 Module 2: Shading from Contour

Different authors often think of different things when they use the term contour.
Sometimes, contours are image contours (e.g. in the context of Active Contour
Models [24]), a synonym of what we call edges. In the context of shapes, contour
is often used interchangeably with silhouette. Other definitions of contour are im-
plied by terms such as inner contours, texture contours, or shadow contours. We de-
fine contour as the collection of those edges whose image locations are invariant to

80 Fitting

lighting. Contours then fall into two classes: those originating in the geometry of
the solid (occlusion contours), and those originating in material properties (texture
contours). For example, a line drawing of a face would characteristically consist of
just these edges.

e Occlusion Contours

Assuming a smooth solid shape [61], occlusion contours can be formally
defined as the projection of those points & of the surface that are visible
(i.e. that are not occluded by other parts of the object) and whose surface
normal 77 is perpendicular to the (normalized) viewing direction © from the
eye to the point 7, i.e. (77, 0) = 0. This definition encompasses both outer
contours (silhouettes) and inner contours (e.g. on the nose), where inner
contours only appear on non-convex solids.

e Texture Contours
Texture Contours are permanent edges on texture maps. For faces, such
contours are found at the lips, the eyes, the eyebrows, as well as at hair
boundaries and within the hair.

Which contour features are accessible for matching depends on the applica-
tion context. For example, when reconstructing faces from a shadow play, only
silhouettes are available. When the input is a photograph, all types of contours are
in principle accessible.

In order to match the contours generated from the model to the contours or
edges in the image, two tasks need to be done: render the contours from the model,
and compare them with the contours in the input image.

Rendering Function

The contour of the model is generated by determining front- and back-facing
polygons on the mesh. Edges between a back and a front facing polygon are con-
tour candidates. Hidden contours are eliminated through z-buffering. Since hair
is not covered by the model, we do not consider points on the back of the head.
For this reason, we do not use contour points outside the mask shown in the mar-
gin. In addition to the occlusion contours, we marked some texture contours in
the face, namely the line around the eyes, the nostrils and the mouth line, and the
chin. These contours are always rendered when they are visible, i.e. when they are
not occluded by other parts of the face. The choice of these contours is based on
the observation of what kind of contours can typically be detected in the image
by the edge detector we use. Depending on the viewing direction, occlusion con-
tours are generated at the same positions as some texture contours. In particular,
the texture contour at the chin is hidden (and removed by the z-buffering) and

5.6 Fitting Modules 81

replaced by the occlusion contour when the person looks down. However, when
the person looks up, no occlusion contour is generated at the chin. Finally, the
remaining edges are projected onto an image.

Distance Transform

For the contour cost, we need to compute the difference between the rendered
contour and the extracted contour. Edge comparison is a research topic in its own
right with many interesting approaches, such as elastic matching, Fourier descrip-
tors, or shock graphs [67], to name only a few. All of them are computationally
expensive and require a relatively noise-free input. As long as we are dealing with
unreliable input from the edge detector, we choose the more primitive yet robust
approach of distance transforms, which solves correspondence implicitly, how-
ever, not necessarily well.

The contour cost function (Equation 5.28) is defined as the sum over the dis-
tance of the model contour vertices (projected onto the image) to the nearest edge
detected in the image. To compute the cost efficiently, we use the Euclidean dis-
tance transform [68] of the input contour image. This is a scalar field d : R? — R
where d(z, y) is the Euclidean distance of the pixel at (z, y) to the nearest contour
pixel.

The contour cost function is fairly robust against unmatched edges (i.e. edges
that are detected in the image, but are not generated by the model, e.g. edges
caused by cast shadow), although such edges can create an undesirable potential.
On the other hand, contours not present in the input image will create large er-
ror terms, and optimization will drive them towards completely unrelated edges.
To prevent this, the gradient far away from input edges should be small or zero.
This can be achieved by using a threshold for the distance transform as in [60].
However, this leads to unwanted plateaus when several distance transforms are
combined (see below). For this reason we compute the distance transform as in

[69]
d(z,y)
d(z,y) = —22 5.38
() d(z,y) + kK (538)
where x is a parameter that controls the width of the valley (for an example, see
Figure 5.5).

To extract the edges from the image, we use a general-purpose edge detec-
tion algorithm, the Canny edge detector [70], that is designed to work on a wide
range of images. It has several adjustable parameters, in particular the size of the
Gaussian filter that is used to smooth the input image and two thresholds for the
intensity gradients. If the thresholds are set too high, only a few edges are detected
and important information is missed, if they are set too low, irrelevant informa-
tion and noise is falsely detected as edges. It is not only difficult to find a generic

82 Fitting

value that works well on all images, it is even difficult to find one for a specific
image that works well on all regions.

In order not to tune the Canny-thresholds by hand, we use a distance trans-
form that integrates the information over a range of edge thresholds (similar to
[69]).

7 o dg(l', y)
d(z,y) = ; RERIET: (5.39)

where 0 is the parameter (i.e. the lower threshold) of the Canny edge detector.
This approach has the advantage that weak edges (i.e edges that only appear for
low Canny-thresholds) only have an influence if they are far away from strong
edges. In addition, the gradient of the distance transform far away from detected
edges is neglectable.

Cost Function

The distance transform codes for each pixel in the image the cost to the next con-
tour. Accordingly, we use the contour cost function (Equation 5.28) that runs over
the contour vertices of the model and evaluates the distance transform at the posi-
tion of the projected vertices. The derivatives with respect to the shape model are
given in Appendix 7.1.2. To prevent overfitting, we use regularization (Equation
5.30). This yields a combined cost function

Fcnt/reg — Fcnt + nFreg (540)

with the regularization parameter 7). In Figure 5.5 the distance transform and the
cost function are visualized, where the sum runs over the vertices in dark green.
Usually, in this module the parameters of the shape model are estimated, and
the parameters of the camera model are kept fixed, see Table 5.3. Depending on
the accuracy of the landmark points, it might be reasonable to refine the estimated
pose parameters in the shape from contour module while fitting the components
on level 1 (global). We implemented this as an optional step in the fitting, see
Table 5.3. In this case, the cost function is combined from the contour term and
the landmark term
Fcnt/lm — fent + 77Flm) (541)

Regularization is not needed here, since this is only used for the components on
level 1.

Multi Level

The model components are fitted using the coarse-to-fine strategy (see Section
5.4.2), for both the model (different levels) and the input image. For the model,

5.6 Fitting Modules initial guess from pose fitting 83

light fitting

Figure 5.5: In Step 2/3/4 of the fitting system (module shape from contour), the shape parameters are estimated given the distance
transform extracted from the image (left column, white is the minimal value of the distance transform, and black is the maximal value). The
right column shows the estimated shape and the middle column shows the contour (texture and occlusion contours) of the shape model
(red) rendered into the original image (gray). In the first row, the global shape parameters (level 1) are estimated from a coarse distance
transform. In the second row, local level 2 parameters are estimated and in the third row level 3 parameters.

84 Fitting

Global-to-Local Model PCA model
1 - -
' ' avg memm
var
0.8 - -
S S
= 06 - - =
© ©
> >
3 04 - -3
[0] (0]
o o
0.2 - -
init level 1 level 2 level 3 level 4 init PCA

Figure 5.6: The plot shows the evaluation of the contour fitting in a synthetic test environment where the input images are computed from
the 3D geometry of the faces in the test set (UniBS-A test, 10 images per subject with varying pose and illumination). Since the numerical
value of the cost function differs depending on the size of the head and the pose (the number of vertices at the contour is different), the
error is normalized with the error after the pose from landmark step that is used as initial guess for the contour fitting. The left plot shows
the error for the G2L model after fitting level 1,2,3 and 4.

this means that the parameters of the already fitted levels are kept fixed. The edge
detection is done on a different resolution of the image and with different para-
meters « for the distance transform (for an example, see Figure 5.5).

level parameter image size
level 1 (global) k=100 27 =128
level 2 k=30 28 = 256
level 3 k=15 29 =512

While doing so, we are interested in the question, how far it is reasonable to
fit higher levels of the model to edges, i.e. whether the error increases using more
levels. For this, we use a synthetic test environment, where the distance transform
is extracted from images that are rendered from the 3D geometry of the faces in
the test set with varying pose and illumination, similar to the experiments we have
used in [60]. The result of this experiment is shown in Figure 5.6. Even tough
level 1 (global) has the largest influence, local levels 2 and 3 further reduce the
fitting error. In particular, the final fitting error for the G2L model is much smaller
than the fitting error for the PCA model. Both the G2L model and the PCA model
are trained from the same dataset (UniBS-A training) and the same set of distance
transform (generated from UniBS-A test) was used.

5.6.3 Module 3: lllumination from Intensity

After having completed the first stage, the result of the contour fitting is a quite
accurate fit of the shape that lacks some internal features of the face, but is accurate
enough to start with the second stage where the appearance of the face is used,
i.e. from now on modules are used in which the cost function is (mainly) the

5.6 Fitting Modules 85

intensity cost function (Equation 5.21). Similar to the first stage, we start with
estimating the parameters of the external model, i.e. the illumination model, while
all other parameters are kept fixed, see Table 5.3. The derivatives with respect to
the parameters of the illumination model is given in Appendix 7.1.3.

In contrast to the contour fitting, fitting the parameters of the illumination
model is much more straightforward. Here we use an illumination model with
ambient light and one directional light source and color correction (see Section
5.1.3), which was also used by [1]. This simple illumination model is sufficient for
a wide range of images, for an example see Figure 5.7. As one can see in Figure 3.1,
the first components of the surface color model are heavily influenced by the illu-
mination. For this reason, we have separated fitting the illumination from fitting
the surface color model. However, this might not be optimal. Using a different
color model and fitting both components together is possible and might improve
the result.

Rendering Function

For the first time during the fitting, we now need to render the full image: for each
vertex its visibility, its position in the 2D image, and its color need to be computed.
Here we use the estimated shape together with the vertex color of the mean face,
again see Figure 3.1. In this step, only the color of each vertex changes, but not its
position in the image.

Cost Function

To speed up the computation, we approximate the pixel intensity cost function
and the gradient by running the sum over every 10th vertex. The selection is
not chosen randomly, we simply select a fixed set. Our experiments have demon-
strated that for the intensity module, this approximation hardly affects the result
(however, this is not true for the shape from the shading module, see below).

5.6.4 Module 4: Surface Color from Pixel Intensity

In this module, the parameters of the surface color module are estimated while all
other parameter are kept fixed, see Table 5.3. This module can be used when the
parameters of the illumination model are estimated. As cost function, the pixel
intensity cost function is used and the derivatives with respect to the model pa-
rameters are given in Appendix 7.1.4. We use this module optionally, and usually
we are not interested in the estimated color, since this is replaced by the extracted
texture. However, fitting the color (instead of using the color of the mean) im-
proves the outcome of the next module, the shape form shading module.

Figure 5.7:

In Step 5 of the fitting
system (module illumina-
tion from intensity), the
parameters of the illu-
mination model are es-
timated using the initial
guess from the contour fit-
ting and the color of the
mean face.

86 Fitting

initial guess from contour fitting

shape from shading fitting

5.6.5 Module 5: Shape from Shading

The estimated shape after Module 2 (Shape from Contour) fits the input features
well but lacks some of the internal features of the face. This happens since some
features like the width of the nose (in frontal pose) are not represented by the edge
feature and are therefore not modeled by the contour model. Another reason is
that due to bad illumination conditions in the input image some features might
not be detected by the edge detector. In the Shape from Shading module, the pa-
rameter of the local shape components are refined, see Table 5.3. The global shape
components (level 1) only affect the overall shape of the face. These parameters
are already determined by the contour fitting and need no refinement.

The estimated shape after Module 2 is good enough to be used as the initial
guess for the pixel intensity cost function. The derivatives with respect to the shape
model are given in Appendix 7.1.2, where an approximation of the gradient is
used, see Section 5.7.3. The challenge in this module is to keep the vertices at
the contour fixed and fit the remaining flexibility. For this, we investigated four
approaches:

Refining the Shape Parameters

The most straightforward idea is to use the estimated shape as initial guess and re-
fine the shape parameters using the pixel intensity cost function (Equation 5.21).
One could assume that the contours are not changed anymore, since the con-
tours implicitly take part in the pixel intensities. However, our experiments have

5.6 Fitting Modules 87

(@) (b) () (d)

Figure 5.8: The input image (red patch in (a)) is compared with the rendered model (blue). The cost function is defined as the integral
over the area of the rendered model. Thus, when the model is changed, the area where the cost function is evaluated also changes. For
(d), the cost is large, since the background is compared with the model. However, for both (b) and (c) the cost is small. In practice, this
causes the optimizer to shrink the model and destroys the contour fit.

demonstrated that the rendered model tends to shrink. The reason for this is, that
by modifying the model parameters, the area over which the cost function is evalu-
ated changes, since the cost function is defined as the sum over the visible vertices.
For this reason, it also almost never happens that the rendered model expands, as
is illustrated in Figure 5.8, since in this case, the background is compared with the
rendered model.

Modeling the Remaining Flexibility

In [71] we presented a method to model the remaining flexibility when some part
of a statistical shape model is fixed. When statistical models are fitted to par-
tial data like the contour, many different reconstructions are possible, and we are
not only interested in a plausible reconstruction but also the remaining flexibility
within the model and the reliability of the reconstruction.

The remaining flexibility is modeled by flexibility components that can be fit-
ted to the input image in the same way as the components of a statistical model.
Our experiments have shown that this is possible in principle. However, the other
two approaches show better results. The reason for this is twofold: Firstly, the ver-
tices at the contour are fixed, i.e. they cannot move along the contour line, even
though the contour cost would remain the same. Even worse, the vertices are not
only fixed in 2D, but also in 3D, i.e. motion of the vertices along the viewing ray
in 3D that generated the same 2D position is prohibited. Secondly, the flexibil-
ity components have global support, even though they are computed from a G2L
model.

88 Fitting

Combined Cost Function

Another approach to keep the vertices at the contour fixed and fit the remaining
flexibility is to fix the 2D projection of the (contour) vertices. By using a combined
cost function

nintFint 4 ncnt Fcnt (542)

we additionally allow changes of the position of the vertices along the contour and
penalize when the vertices are moved away from the contour. Our experiments
have demonstrated that this is the best approach to fit the relatively large local
components on level 2. An example can be seen in Figure 5.9, first row (Step 6).
In contrast to Module 3 (Illumination from Intensity, Section 5.6.3, here the cost
function and the gradient are evaluated using all vertices.

Selection of the Local Models

The local components on level 3 have a smaller support than the components on
level 2 (see Figure 3.11), and in fact, many components do not touch the contour.
For this reason, here a different approach can be used that directly exploits the
local support of the components.

The local components that are intersected by the outer contour (i.e. by the sil-
houette) are called outer components and the other components are called inner
components. The partition in outer in inner components is computed based on
the current fitting after having fitted on level 2. The outer components are already
determined by the contour and need no refinement. The inner components are
not determined, except those that are already fitted to the texture contours and the
self-occlusion contours. On the other hand, changing these components does not
influence the area in which the cost function is computed and there the problems
discussed above do not appear. The outer components are fixed and inner compo-
nents estimated. In doing so, regularization is needed, yielding the cost function

Fint 4 e (5.43)

The effect of this step is usually clearly visible in the shape. The shape of nose, lips
and eyes changes considerably, since these features are not sufficiently determined
by the contour used in the early fitting stages, for an example see Figure 5.9, second
row, Step 7),

5.6.6 Texture Extraction

The result of the fitting is a very good estimate of the shape, the surface color, how-
ever, is not as well estimated. There are two reasons for this. Firstly, for the surface
color we use a holistic PCA model (in Section 6.4 we discuss how the idea of the

5.6 Fitting Modules 89

initial guess from light fitting

texture extraction

Figure 5.9: In Step 6/7 (module shape from shading) of the fitting system, the shape parameters are refined, in the first row on local level
2 and in the second row on local level 3. The left column shows the estimated shape in frontal pose, the middle column shows the contour
(texture and occlusion contours) of the shape (red) rendered into the original image (gray). The right column the illuminated shape (with the
mean color) as it is compared with the input image.

G2L model can be transferred to color models). Secondly, we cannot expect the
high frequency details like stubble or freckles (and even wrinkles) to be properly
registered.

To improve the visual quality of the model, we extract the texture from the
input image, given the estimated shape. This step is also important in order to
evaluate the quality of the shape estimation. When the shape is not properly esti-
mated, some regions are badly aligned. This leads to artifacts when the estimated
shape together with the extracted texture is rendered with a novel pose. Figure 5.10

920 Fitting

Figure 5.10: The G2L model (UniBS-A) is fitting to a single input photo (shown in Figure 5.4). The extracted texture demonstrates
the highly accurate correspondence between estimated shape and input photo. The resulting shape is very similar compared with the
(registered) scan of the same individual (FLX), see Figure 2.3

shows the estimated shape and extracted texture of example FLX under two novel
poses and demonstrates that all regions are properly aligned and no artifacts are
visible.

The extracted texture, however, is only of limited use and two problems can
be observed. Firstly, the texture is incomplete, in particular when the input photo
shows the person from the side (for an example, see Figure 5.13). Secondly, the
extracted texture shows the appearance of the face including the illumination. To
render the face with a different illumination, however, we would like to reconstruct
the pure albedo, see future work, Section 6.5.

5.7 Efficiency

With the focus on accuracy, time efficiency was not out primary goal. On the other
hand, the long run time of previous fitting methods was not only one of the main
reasons that hindered the widespread application of these models, it also hinders
the development, testing, and evaluation of the fitting system.

Computing a full fitting takes ~ 30 s on recent consumer hardware (see Ta-
ble 5.4). This is much faster compared to all previous fitting algorithms. In [2] a
run time of ~ 70 s on a 3.0 Ghz Intel ® Pentium®IV computer was reported for
the MMF/LM fitting and ~ 4.5 min on a 2.0 Ghz for the SNO algorithm. For a
direct comparison with this method, it took ~ 86 s to compute the fitting shown
in Figure 5.13, 3rd row, on the same hardware (Table 5.4) and with a model built
from the same data. The run time could easily be further reduced at the cost of the
accuracy (see future work, Section 6.3).

5.7 Efficiency 91

CPU Intel® Core™2 Duo 2.40GHz (cache size: 4096 KB)

RAM 3GB

GPU NVIDIA GeForce 7300 with OpenGL version 2.1.2

oS Linux fc9.x86_64 (64bit)

ct+ gcc version 4.3.0

flags -03 -funroll-loops -mssse3 -march=core2 -mfpmath=sse
BLAS Intel®Math Kernel Library 10.0.011

OpenCV | 1.0.0

Table 5.4: The computer used for experimentation is a standard desktop PC.

Memory efficiency is not that much an issue. The whole model is loaded into
the memory at the beginning of the fitting and the fitter does not use much more
memory. So the memory footprint of the fitting algorithm is mainly determined
by the size of the model.

The run time of the optimization is given by the number of function evalua-
tions and the cost per iteration. The internal cost of the optimizer can be neglected
(at least for L-BFGS). In order to develop an efficient fitting implementation, one
has to choose an optimizer that requires few functions and gradient evaluations
and to implement the evaluations efficiently. Strategies for achieving these effi-
ciency goals are discussed in the following sub-sections.

5.7.1 Multiresolution, Optimization and Cost Function

By using the multiresolution approach (with multiple levels of the statistical model
and multiple modules, see Section 5.4.2), the cost function in the first modules is
smooth, and in the last modules we start with a quite good initial guess. Therefore,
it is not necessary to use stochastic optimization algorithms, which are robust but
slow. Instead, we can use very efficient optimization algorithms that require only
a few evaluations of the function and the gradient, but have the disadvantage that
they are sensitive to local minima in the cost function.

With the multiple modules strategy, not all parameters of all models are op-
timized at the same time and therefore not all gradients are needed all the time.
Accordingly, only the gradients with respect to parameters that are not fixed are
evaluated. The computational cost for evaluating the gradients differs dramati-
cally for the different cost functions used. Especially the derivatives of the intensity
cost function (Equation 5.22) are much more expensive than the derivatives of the
other cost functions.

92 Fitting

5.7.2 Implementation

On the other hand, the runtime of the fitting can be reduced by reducing the run-
time per iteration. The cost of the function evaluation is mainly given by the cost
of computing the linear combination of the model (see Equation 5.1) and render-
ing the image. The linear combination is efficiently computed using BLAS Level
2 (matrix-vector operations), and OpenGL could be used to compute the image.
However, for all cost functions used, we need the 2D positions of the vertices in
the image, not only the pixel intensities that can be read from the OpenGL frame-
buffer. For this reason, we compute the 2D positions (i.e. 4x4-matrix X 4-vector)
using BLAS. OpenGL, however, is used for determining which vertices are visible
and which are occluded by other parts of the object. This is done by using the
OpenGL z-buffer. Thus, we avoid rasterization of the triangles on the CPU.

5.7.3 Elimination of irrelevant terms of V

A rule of thumb for software development says that 80% of the runtime of an algo-
rithm are spent in 20% of the functions [72]. By profiling the implemented fitting
system using valgrind, we checked which functions are expensive to evaluate,
and we checked experimentally whether these terms are relevant for the result. In
this way, we prevent the system from wasting time on terms that are not needed.

For the illumination model (), the computation of the derivatives of the ren-
dered image with respect to the parameters of the illumination model % (Equa-
tion 7.19) are expensive especially for the light direction | (Equation 7.23). Here
we approximate the true gradient by a gradient that is computed using 10% of
the visible vertices. Experiments have demonstrated that this makes (almost) no
difference in the fitting result.

For the shape model (), however, a similar approximation reduces the quality
of the fittings, therefore it is preferable to evaluate the cost function using all visible
vertices. When we take a close look at the gradient (Equation 5.22 with { = «;)
for the shape parameters,

Fint . ~ I¢ 7'0

aOéj 5 8C¥j i ce{R.G.B} 6aj 80@-

two additional terms need to be evaluated:

e The derivative of the input image with respect to the shape parameter gi :
J

changing the shape parameter changes the position in the image onto ver-

tex ¢ is projected to. Thus, the pixel intensity changes, which is compared

with the color of vertex i.

5.8 Results and Comparison 93

gi] : changing the shape parameter
changes the shape and therefore the normal of vertex 7 and hence color of

vertex ¢ due to illumination.

e The derivative of the rendered image

giy > STI":_, at the same time giy is much more
expensive to evaluate, see Appendix 7.1.5 and Appendix 7.1.6 (i.e. Equation 7.19,
Equation 7.37 to Equation 7.39, and Equation 7.29 to Equation 7.36). For this

reason, we approximate Equation 5.22 by

Our experiments have shown that

[rint) ~ _,[V.C
D 0D DD DIE TSI SR CYD

Oa; Do, oa;
J i J i ce{rgb} J

with little to no adverse effects on the fitting result.

5.8 Results and Comparison

It is quite difficult to evaluate the quality of a fitting result. This was the motivation
for the evaluation in a controlled environment, see Chapter 4. Nevertheless, fitting
results need to be evaluated, even if this evaluation is done visually. The same two
points as in Chapter 4 need to be considered: Firstly, how well are the features of
the face in the image matched? This is important in particular for the contours,
but also for other features where the estimated shape and the input need to be in
correspondence. This can be evaluated by extracting the texture and rotating the
face into a novel view. Secondly, how well the model generalizes, i.e. how similar
are the estimated shape and true 3D real shape of the person?

To compare fittings of the G2L model with the PCA model, it would be easy
to use the fitter presented here with a PCA model. However, this comparison is
unfair, since the fitter is not tuned to PCA models. In particular, due to the missing
multiresolution of the PCA model, the fitter almost immediately gets stuck in a
local minimum. For this reason, it is more meaningful to use the fitter from [14]
as a reference system, which is optimized to the BFM PCA model [37].

5.8.1 Experiment C

In this experiment the model is fitted to photos of subjects from the UniBS-A
test set. 3D scans of these subjects are available and hence we can compare the
estimated surfaces with the captured surfaces. The G2L model is trained from the
UniBS-A training set, but the subjects of the test set are not in the training set.

In Figure 5.10 and Figure 5.13 example fits are shown. The surfaces with ex-
tracted textures rendered in a novel view confirm that the features are matched

Figure 5.11:

The photograph (left) from
Figure 1.1 is fitted with the
G2L model (UniBS-A). In

the right image, the fitted |

surface (blue) and its oc-
clusion contours and tex-
ture contour for the eyes
(red) are rendered into
the input image (gray),
demonstrating that the ac-
curacy at the edges (in
particular at the chin) has
been improved. The esti-
mated shape can be seen
in Figure 5.12.

94 Fitting

accurately. Comparing the estimated surface with the captured surface of these
subjects (shown in Figure 2.2 and Figure 2.3) shows that the surface is estimated
well.

In Figure 5.13, 3rd row, the segmented PCA model (BFM) is fitted to the same
input image of subject PPY using the fitter [2]. Subject PPY is not in the training
set for the BFM model either (however, subject FLX is in that training set, and for
this reason, we skip fitting the BFM to the FLX image).

In Figure 5.11 and Figure 5.12 we show the result of fitting the G2L to the
photograph we used in the motivation, demonstrating the improvements in ac-
curacy at the edges. However, this comparison is slightly unfair, since in Figure
1.1, the PCA model was trained from the MPI-TU dataset and the texture is not
extracted from the photograph. On the other hand, Figure 1.1 is a good example
of a state-of-the-art-fitting before the beginning of this work.

5.8.2 ExperimentD

For this experiment, we use photos from a publicly available face database, the PIE
database [73]. In Experiment D, the G2L and the PCA model are based on the
same 200 scans: The G2L model is trained from the UniBS-B dataset and the PCA
model is the BFM, see Section 2.1.2.

In Figure 5.14 and Figure 5.15 two examples of fittings of the G2L model and
the (segmented) PCA model are shown. To compare the accuracy of the fits, we
rendered the estimated surface in the estimated pose into the original image. The
estimated surface is blue and semi-transparent, and its occluding contours and the
texture contours at the eyes are marked in red. This demonstrated that the G2L

5.8 Results and Comparison 95

Figure 5.12: The photograph from Figure 5.11 is fitted with the G2L model (UniBS-A). The extracted texture demonstrates the highly
accurate correspondence between estimated shape.

model improves the accuracy, in particular the eyes are in correspondence and
most contours are matched correctly. In Figure 5.14 a typical problem shows up,
where the contour of the left ear is matched to the inner contour of the ear.

Since for the PIE database the 3D surface of the subjects is not available, it
is difficult to judge the generalization of the models. However, the PIE database
contains images from different directions taken simultaneously. Hence, we can
fit the pose of the estimated surface to an image of the same subject taken from
a different direction (using Module 1: pose from landmarks). In Figure 5.14 the
estimated shape in novel pose is very similar to the second photo. In Figure 5.15,
however, the shape of the nose is a little too large (although much better compared
with the PCA model fit). The reason for this is that in the photo in near frontal
view, we can only make assumptions on the shape of the nose based on prior
knowledge about the ethnic origin of the subject. However, the model cannot do
that, since the dataset contains (almost) only scans of Caucasians.

96 Fitting

® (9) (h)

Figure 5.13: The figure shows the G2L model (UniBS-A) fitted to a single input photo (a). The extracted texture (d,e) and the contour
of the estimated shape rendered into the photo (b) demonstrate the highly accurate correspondence between estimated shape and input
photo. The resulting shape (c) is very similar to the (registered) scan of the same individual (PPY), see Figure 2.3. In the 3rd row, we show
a fitting of the same input image (a) with the Multi Feature Fitter [2] and the PCA model (BFM, trained from the same set of scans then the
G2L model (UniBs-4). Figure (f) and (g) show the reconstructed shape in the fitted and the frontal pose, respectively. Figure (h) shows the
extracted and estimated texture.

5.8 Results and Comparison 97

novel pose: frontal novel pose: 90°

Figure 5.14: The PCA model (BFM, 2nd row) and the G2L model (UniBS-B, 3rd row) are fitted to the input image (1st row, PIE 4007/27/07
[73]). In the 4th row, the fitted surface (G2L model) with the extracted texture is shown in novel pose and a photo of the same subject for
comparison (PIE 4007/22/14, this photo was not used for fitting).

input image

PCA model fitting [2]

G2L model fitting

The fitted surface (blue) and its occlu-
sion contours and texture contour for
the eyes (red) are rendered into the
input image (gray) I

98 Fitting

novel pose: frontal novel pose: 90°

input image

PCA model fitting [2]

G2L model fitting

The fitted surface (blue) and its occlu-
sion contours and texture contour for
the eyes (red) are rendered into the
input image (gray)

Figure 5.15: The PCA model (BFM, 2nd row) and the G2L model (UniBS-B,3rd row) are fitted to the input image (1st row, PIE 4000/05/11
[73]). In the 4th row, the fitted surface (G2L model) with the extracted texture is shown in novel pose and a photo of the same subject for
comparison (PIE 4000/22/22, this photo was not used for fitting).

Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis we have presented a novel analysis method for training a statistical
model from data.

The components of the well-known PCA model all have global support, i.e.
each model coefficient affects the full shape. The G2L model is based on a multi-
resolution analysis of the shape and consists of a hierarchy of global and local
components with limited support. The shape of different parts of the face can be
modified without affecting the rest of the shape.

In order to evaluate the quality of the model, we have used a controlled fitting
environment, where the surface of faces is reconstructed from a sparse set of 3D
landmark points. We have demonstrated that, in contrast to the PCA model, the
G2L model is able to locally adapt to the landmarks. At the same time, the G2L
model has a slightly better generalization error than the PCA model.

We have also demonstrated that this model can be fitted to a single photograph
and can reconstruct the 3D surface of a face. In the fitting system, first the con-
tours are fitted. In a second step, the contours are kept fixed, and the remaining
flexibility of the shape model is fitted using the color pixel intensities. We use a
multiresolution approach for fitting that, in combination with an efficient Quasi-
Newton method (L-BFGS), results in a run-time for the full fitting of ~ 30 s on
standard hardware.

The G2L model has decisive advantages compared to the previous PCA model,
in particular the model is locally more flexible and can therefore match features in
the image much more accurately.

However, the current model has some restrictions. The most important chal-
lenges for future work are to develop a representation for facial expression, espe-
cially those with open mouth and eye movement, as well as hairstyle, facial hair like

100 Conclusion and Future Work

beards, and texture details like freckles, stubble, wrinkles, birthmarks and scars.
The second challenge is to fit these models to images. Also methods to improve the
robustness of the fitting are needed. In the following sections, some approaches to
tackle these tasks are discussed.

6.2 Expression Model

The model we have used in this work separates shape and surface color informa-
tion from pose and illumination. However, the model does not separate identity
and expression.

The statistical shape models used in this work are trained from faces of dif-
ferent individuals in neutral expression. Therefore, they can generate faces with
different identities, but only faces with neutral expression. For this reason, these
models can only be fitted to images with persons with neutral expression. Espe-
cially when the person smiles, smirks or opens the mouth, the fitting fails. Making
the fitting robust with respect to facial expression would expand the application
area of statistical face models dramatically and is one of the most important chal-
lenges for future work.

In [19] we have demonstrated that expression invariant 3D face recognition
can be done by fitting an identity/expression separating PCA model to 3D shape
data. We use one model for all types of expressions, and each set of coefficients
describes one specific expression. The combined identity/expression model is then
fitted to the data (3D or images) and the expression is normalized by removing the
expression components.

For the UniBS-B dataset 709 scans are available where the subject shows one
of the basic emotions joy, fear, disgust, anger, sadness and surprise [44], see Sec-
tion 2.1.2. In [19] we presented a statistical expression model where the statis-
tical model for the identity (i.e. the PCA model as in [19] or the G2L model)
is expanded with components that describe the expression, see Figure 6.1. For
each expression scan x; ., r € {joy, fear, disgust, anger, sadness, surprise}, the
expression vector is calculated as the difference

Yip = Xip — X (6.1)

between the expression scan and the neutral scan x; of that specific person. This
approach shows the problem that due to deficits in the registration, unnatural
movements of the shape of the back of the head occur. For this reason, we mask
out regions of which we assume that they do not change due to expressions, see
the mask m in the margin. Hence, the expression vector is given as

y;,r - b(Xi,Ta Xiy m) — X (62)

6.2 Expression Model 101

shape expression components
mean 1st. (+20) 2nd. (+20) 3rd. (+20) 4th. (+20) 5th. (+20) Bth. (+20) 7th. (+20)

1st. (—20) 2nd. (=20) 3rd. (—20) 4th. (—20) 5th. (—20) 6th. (—20) 7th. (—20)

Figure 6.1: The mean of the UniBS-B data set (see Section 2.1.2) together with the variation of first seven expression components. The
model is computed from 709 pairs of neutral and expression scans.

where b is the multi-scale blending using the Gaussian- and Laplacian Pyramids
(similar to the texture blending in Appendix 7.3). These differences are already
mode-centered, when the neutral expression is the natural mode of the expression
data [19]. Therefore, it is not reasonable to subtract the arithmetic mean from
expression vector y; .. For the expression, we use a simple PCA model, i.e. the
mEexp expression vector are stacked into the data matrix

Yexp = [yia e ’y':nEXP] = UEXPWEXPV;{XP (6.3)

and decomposed with SVD. The outcome of this is the expression model

Mexp = (Il', O EXP, UEXP)- (6.4)

An example of such an expression model can be seen in Figure 6.1. This model
only modifies the expression of a face, but not the identity. A combined model for
identity and expression

Mgaux = (N, [UGZLUEXP]a [UGZLUEXP]) (6.5)

is therefore given by the combined model consisting of the components of the
identity model and the components of the expression model.

Figure 6.2:

Using the expression
model, the open mouth
of the person in the input
image (a) is correctly
recovered, as it can be
seen in the rendering
in novel pose (b, with
extracted texture). To fit
the model (expression
model and G2L model)
to the image, a manually
guided fitting system
with 19 clicked landmark
points and manually la-
beled contours was used
[74]. By removing the
expression components,
the expression can be
neutralized (c). Image (d)
shows the input image (a)
with rendered neutralized
model (c).

102 Conclusion and Future Work
(a) (b)
(d) (c)

Currently, we are not able to fit such a model automatically to an image. The
main problem is that the fitting system does not open the mouth, even when com-
ponents with open mouth are available. The reason for this is that the optimiza-
tion starts with an initial guess with closed mouth and gets trapped in a local min-
imum where both the upper and the lower lip are assigned to the same contour.

As a proof of concept, in the master thesis of Felix Gorny we developed a man-
ually guided fitting system [74]. In this work, 19 landmark points are used, in
particular a landmark points at the upper lip and one at the lower lip, forcing the
mouth to open. Moreover, the contours are defined manually, so that the upper
and lower lip are fitted correctly, for an example see Figure 6.2.

6.3 Automatic Contour Extraction

A fitting algorithm should be fast, precise, robust and work fully automatically. In
the following, we discuss how to improve the presented fitting system.

The presented fitting algorithm works very precise, i.e. if the features in the
face are detected, the fitting algorithm can match them. At the same time, the

6.3 Automatic Contour Extraction 103

fitting is very cost-efficient, we reduced the run time of the fitting algorithm from
~ 70 s reported in [2] to ~30 s.

Further acceleration can be achieved easily by reducing the number of itera-
tions (with more aggressive stop parameters in L-BFGS), using models with fewer
vertices (e.g. level 6 with 23888 vertices instead of level 7 with 97577 vertices),
evaluating the cost function and its gradient using a subset of the vertices or using
fewer model components in each fitting module. However, all these approxima-
tions affect the accuracy of the model negatively and were therefore not an option
for the work presented here.

The fitting system is implemented using C++, BLAS and OpenGL. In algo-
rithms like the fitting system that require massive vector operations, using the
GPU?’s ability to operate on large matrices in parallel can yield several orders of
magnitude higher performance than an implementation on a conventional CPU.
We did some early experiments implementing some of the derivatives of the fitting
on the GPU using CUDA. The experiments have confirmed that the acceleration

is significant, e.g. Tobias Maier achieved for the derivatives 2% (Equation 7.22) a

ac,
speed-up of factor 17 (using an Intel ® Core™2 Duo E8400 (3GHz) with a Geforce
G8600 GT, speed-up including transfer time). However, developing on the GPU
is quite time-consuming in terms of developing time, and therefore implementing

the full fitting system on the GPU remains a long-term goal.

The fitting system does not work fully automatically, i.e. the user has to man-
ually set five to seven landmark points in the image. We expect that in the future
these landmarks can be detected automatically. M. Rétsch reports in his PhD [75]
that he is able to detect the five inner feature points (eyes, nose, corner of the
mouth) for faces in frontal pose using a variant of his face detector [76]. However,
currently, this method only works robustly for frontal or near-frontal images.

The robustness of the fitting system depends on its weakest module. In partic-
ular, the preprocessing step of contour extraction offers the possibility to improve
the robustness of the full fitting system. The distance transform (see Section 5.6.2)
is based on contours detected with Canny edge detection. It works well to detect
a wide range of edges in images. However, it is not specially designed to detect
contours in face images. As a result, the distance transform contains many false
positives and also false negatives, an example of a distance transform can be seen
in Figure 6.3. At the eyes (similar things happen e.g. at the ears) multiple parallel
edges are detected by the Canny edge detector and, depending on the initialization,
it can happen that the model contour is fitted to the wrong edge.

One particular challenge is illustrated in the figure in the margin, where Canny
edge detection also detects edges that are caused by cast shadows. One approach
to overcome this is to classify the edges according to their being caused by a change
in shading or by a change in albedo using classifiers like in [77].

Figure 6.3:
From the input image
(a), the distance trans-
form (Equation 5.39) can
be computed using differ-
ent thresholds.

104 Conclusion and Future Work

(d) k=30

A different solution could be to use prior knowledge from the model already
in the edge detection process, e.g. by first fitting an Active Appearance Model [24,
66] to the input image. From this fitting we could directly derive the distance
transform (and also landmark points).

The process of extracting edges from the image could also be avoided by learn-
ing locally ideal cost functions for face model fitting [59]. An interesting approach
could be to combine their work with a 3D model.

In particular, this problem has to be solved when the model (and the expres-
sion model) should be fitted to images with persons showing expressions. When
the mouth of the person is opened, it is important for the fitting to find the up-
per and lower contour of the lips and exclude edges caused by the teeth. It has to
be assured that the upper (and lower) mouth line of the model comes into corre-
spondence with the upper (and lower) mouth line detected in the image. This is in
particular a challenge when the optimization is started with an initial guess with
a closed mouth, since it easily happens that both mouth lines get fitted to either
the upper or the lower mouth line. In the example fit in Figure 6.2 we solved this
problem by using landmarks at the upper and lower lip, and therefore forced the
mouth to open. When using model-based contour detection, the explicit corres-
pondence has to be used in a similar way.

6.4 Statistical Color Models

In this work, we focused on statistical shape models only. Solely as an optional step
in the fitting algorithm (Module 4: Surface Color from Pixel Intensity, see Section
5.6.4) we use a simple per-vertex color PCA model. An important question is, how
the idea of the G2L model can be transferred to color models. In this section, we
discuss some challenges in this process.

By using vertex color, fine details like freckles and stubble get lost, even though
the resolution of the scanner is high enough to capture them (see Section 2.2). So,
at first, it seems to be reasonable to use texture mapping and thereby increase the
resolution of the color information (see Section 2.4.2). However, these fine details
are not in correspondence, with the consequence that these details get lost when

6.5 Color Correction 105

building affine combinations of multiple high resolution textures. One reason
for the missing correspondence of these details is that color information is not
used during the registration process. However, it is even unclear, how to define
correspondence for fine details like freckles in a reasonable way.

For this reason, it makes little sense to use linear models (like the PCA model
or the G2L model) for high resolution color data. One approach could be a model
that is able to generate skin with freckles, birthmarks and scars, and that is trained
from (skin) patches that are not in correspondence.

A similar challenge is a color model for the eyes: here, the registration does not
take into account that the iris has to be round. In addition, for the eyes, there is
no correspondence between shape and texture. In particular, this causes problems
when the person moves the eyes to the right and left (the shape of the eyes in the
template cannot be rotated). For this reason, all scanned persons look straight
ahead, however, still the boundary of the iris in the mean is blurry. For the fitting,
it would be preferable that the model can generate persons looking aside, e.g. by
rotating the eyes explicitly in the 3D geometry as in Figure 6.4.

6.5 Color Correction

Usually, the visual quality of fittings can be dramatically improved by mapping the
pixel intensities of the input image to the reconstructed surface (see Section 5.6.6).
Since the color model is not able to represent all small details that are important to
capture the individual albedo of a face (see above), with this model-free approach,
photo-realistic renderings can be created.

In doing so, we are confronted with three challenges: Firstly, the input image
is illuminated, i.e. the input images does not show the pure albedo, and shading
and cast shadows are also responsible for the appearance. Secondly, the texture
is incomplete, since we use a single image and parts of the head are occluded.
Thirdly, some parts of the head might be occluded, e.g. by hair, and these artifacts
are visible in the extracted texture.

To separate the pure albedo from the shading, in [1] it is suggested to correct
the extracted texture by the difference between the estimated model color (not

Figure 6.4:

In the Bachelor Thesis
of Christian Horisberger
[78], we modeled 3D geo-
metry of the human eye
by a sphere with the tex-
ture map of the iris and
sclera. Thus, the eyes
can be rotated.

106 Conclusion and Future Work

(a) (b) (c) (d)

Figure 6.5: For the reconstructed surface (a), the color of the input photo (see Figure 5.14) is mapped to the surface, where occluded
regions are filled in with yellow (b). This color is corrected by the difference between the model color and the illuminated model color
(c). Missing regions and the area outside the facial mask is replaced by the estimated model color. This surface color can be used to
re-illuminate the scene using a more complex global illumination model (d). Here, environmental mapping using a light probe from [79] was
used.

illuminated) and the illuminated model color, an example can be seen in Figure
6.5. However, this correction shows only good results when the illumination is well
estimated. This is only the case when the shortcoming caused by simplifications
of the illumination model (in particular that the illumination model uses ambient
light and one directed light source, see Section 5.1.3) are not too severe. In [77] a
method was proposed to decompose an image into two intrinsic images, one for
the reflectance (albedo) and one for the shading. In the master thesis of Marcel
Arheit [80], we tried to apply this method to face images, result are shown in
Figure 6.6.

To fill in missing regions in the extracted texture, the estimated model color
can be used, see Figure 6.5 for an example. However, this works only well for
persons in frontal or near frontal pose. Since the model color is only given in low
resolution, freckles and stubble is missing on the other side. One approach could
be to mirror the extracted texture. However, in doing so, all birthmarks, scars and
wrinkles are reproduced symmetrically which is not correct. Another approach
is to estimate the missing texture parts using super-resolution or image analogies
[81]. For regions where the high-resolution texture is missing, at least the low-
resolution surface color is available (from the model). The high-resolution texture
for these regions is estimated based on corresponding patches of low-resolution
surface color and extracted high-resolution texture from the visible areas of the
surface. In [82] Christian Horisberger is investigating in this approach.

In this chapter, we discussed some topics for future work. All of them are mo-

6.5 Color Correction 107

(@) (b) ()

Figure 6.6: The extracted color mapped to the reconstructed surface (a) is decomposed into two intrinsic images, one for the reflectance
(b) and one for the shading [80].

tivated by practical problems, in particular with the goal to make the fitting system
more robust and reliable. Developing a fitting system that works well on a wider
range of input images would increase the application area. However, theoretical
questions follow, e.g. how to compute statistical models that do not require (local)
correspondence of the training data (like a model for skin). This is in particular
a challenge, when this model-based approach is transferred to other object classes
than face.

108 Conclusion and Future Work

Chapter 7

Appendix

7.1 Derivatives

7.1.1 Derivatives of the Camera Model

In this section we give the partial derivatives of the image projection with respect to
parameters of the camera model p. We start with the 3D translation t = (¢,¢,¢,)7.

0P, wnf

o = oy, Gmes = Oea)fes € {22} (7.1)
J

0P, hn ,

3_;; = —57{(%@ —d0zey)/el; g€ f{x,y, 2} (7.2)
J

The partial derivatives with respect to the rotation angles 7y, ¢ and ¢ are given by

0P, wnf OR 1 OR €r
o0 = 3 2=), n @), e
0 € {v, 0.9} (7.3)
oP, hnf ORY 1 [OR\ e
90 24 Z " [(86)ykez (ae)zkegl

0€{v, 0,0} (7.4)

110 Appendix

with
OR. 0 —cosysinpcosy+sinysiny siny sin g cosy + cosy sinvy
— = 0 —cosysinpsiny +siny cosy siny sinpsiny — cosy cosy
oY .
0 cos 1) cos —sin cos ¢
OR. —singcosy —sintycospcosy — cos cos P Ccosy
£ = —sinpsiny —sinyYcospsiny — cosy cos @ siny
Y Ccos —sinysing — cos 1 sin g
R —cospsiny sinsin@siny — cos Y cosy cos 1 sin w sin 7y + sin ¢ cos ~y
5 coscosy —sinysingcosy —cosyYsiny — cossin p cosy + sin ¢ sin vy
7 0 0 0

The partial derivatives with respect to the focal length f is given by

or, _wne or, _h ne,
of 2rpe,’ of 2te,

(7.5)

and finally the partial derivatives with respect to the offset & = (0, 0,)” are trivial.

oP, 0P, _, 0P _ . OB _
do, do, do, do,

1 (7.6)

7.1.2 Derivatives of the Shape Model

In a linear model with n’ components, each vertex Z; of the model is given as the
linear combination, see Equation 3.3

T = il + Six (7.7)

where ji; € R? is the 3D position of the mean for the ith vertex and S; € R**"
denote the corresponding rows of the weighted linear model matrix

S = Udiag(oy ...0u) . (7.8)

We pick one particular vertex and drop the index 7. Thus one entry z; of the vertex
T = (v, x, x,)7 is written as

Tj = [y + Z Sjk()ék (7.9)
k

and hence one entry e; of the vertex in eye coordinates can be written as

€; = [Rf—l— ﬂj = ; Rjpxy +1; = ; Ry, <uk + ; Sklal) +1; (7.10)

7.1 Derivatives 111

_ _%% > Si (ije—lz _ szi—g) (7.12)
J
S o O L

J

7.1.3 Derivatives of the lllumination Model

In this subsection, the partial derivatives of the rendered image I (i.e. the color
intensities of the ith vertex, we drop the vertex index here) with respect to the
paramters of the illumination model (see Table 5.2) are given. The derivatives for
the color gain are given by

ar o
5 = & |M. | c~ ; i € {R,G, B} (7.15)
Cg !

where here € is the ith unit vector, i.e. €z = (1,0, 0)7 etc. The derivatives for the
color contrast is given by

or ¢y B
3= c§ p amca (7.16)
g
5 1 0.3 0.59 0.11
with ~ —M, = 1 —[03 059 0.11 (7.17)
Oc | 0.3 059 0.11

and for the color offset by

or
act

—¢; ic€{RG, B}. (7.18)

112 Appendix

The derivatives with respect to the ambient and diffuse light color (¢,, ¢;) and the
direction (/) of the light have the form

R acft
8f Cg o€
== G M., f’a_zG (7.19)
é CB Oc;
3

where the derivatives for not corresponding ambient and diffuse color, resp., are
Zero

dct oc o S
gaq _ 94 _y, i e{R.G.B, 7.20
o~ o i,j €{ }i g (7.20)

and the derivatives for the ambient color are given by

oc
oct,

= a’; i € {R,G, B} (7.21)

and the derivatives for the diffuse color are given by

22 = a'(i,D) + s(7,9)"; i€ {R.G, B} (7.22)
d

and the derivatives for the light direction are given by

o, L., ol

8_l;i = diag(a) - éy(n’, 8_lk>+ (7.23)
ol ol

- ~\v—1 N A V- A . 24
SCqu (T, V) <(n , 8lk>n 8lk’v> s ke{x,y, 2} (7.24)

al ~ ~y
where — = L0y — L*l;ly) (7.25)

Oly,

with L=t (7.26)

7.1.4 Derivatives of the Surface Color Model

Similar to the shape model, for a vertex ¢, the surface color is given as the linear
combination
Cai = flt; = BiA (7.27)

7.1 Derivatives 113

where B; € R?*" are the rows of the weighted model matrix B = U,diag(cq,1 - .- 0apn,)
for vertex 7 (and again, we drop the index 7). The derivatives of the image color

with respect to the texture model coefficients g—é have the form of Equation 7.19

with .
801

9B
where b, € R3 is the k-th column of B;.

= diag(by)(C, + Ca(it', 1)) (7.28)

7.1.5 Derivatives of the Surface Normals

In this section we will derive the derivatives of the surface normals. We will use
them to compute the derivatives of the illumination model in the next section.

We assume that the surface normals for each vertex Z; are computed given the
neighboring vertices:

—

(fr —.fl) X (ft —fb) _n

— T = TS (7.29)
(7 = @) x (& =)l 7]

n =

where 7., 7, ¥y, T, are the neighboring vertices in the right, left, top and bottom
direction, resp., using the regular structure of the mesh, as shown in the figure.
Writing each of the vertices as a linear combination (see Equation 7.7) and using
the abbreviations for horizontal (H') and vertical (V') pairs of vertices

' =, — i 7 = — ;A7 € R (7.30)
S =8, -5;:8"=8, -8 St 8V e R (7.31)

we can write the unnormalized direction of the surface normal as

i =gl x iv + (Sfa) x iV + (SVa) x il + (S#a) x (S"a) (7.32)
in order to compute the derivative, we can simplify this to
= @' x i+ (8"a) x i — (8Var) x " +

€i,j.k (Z (S5 S + St S| cwon, + Z SﬂSﬁa?) (7.33)
l

l<m

St

where ¢; ; 1 is the Levi-Civita Symbol. As usual, S;; denotes the (7, j)th entry of
the matrix S. The derivative of the normal can now be computed by
on
Oayg

dH 7V NV qH
= Sg XU +S; XU +

€ gk (Z [SH S+ SitSu] o+ Sj;’S,LQaS> (7.34)
l#s

114 Appendix

where 5; = (s1; Sa; ng)T denotes the ith column of matrix S. However, we need
to consider the normalized normal

1 1
= 7 ii (7.35)

17l \/n2+n2+ n3

and the derivative of the normalized normal can be computed using the derivative
of the normal by

= — — N:
0oy |il| \Oas [In]]> """ day

7.1.6 Derivatives of the Shape Model (Color Intensity)

The derivatives of the image color with respect to the shape model coefficients g—g
have the form of Equation 7.19 with (we omit the color channel ¢ here)

A A . 1
g on' or ov
— = l FLoY T | ((5—, 0 = 1 7.37
s acd<aak,) + scqu (T, 0) {(aak,w + (. 8ak>] 1 (7.37)
where (., %) is neglected, as in [38], and the derivative of the reflectance ray

(Equation 5.15) is given by

or on' - ~ on'
_9 N 7.38
(‘90% |:<8(Ik’ >n * <n ’ >8aJ ()
and the derivative of the surface normal in eye coordinates
on’ on
=R— 7.39
80% Gak ()

is computed by rotating the derivatives of the (normalized) surface normal a‘%,
Equation 7.36.

7.2 Computation of the Segments 115

7.2 Computation of the Segments

In Section 3.4 segments are used to mask the detail components y’. On different
levels of detail it is reasonable to use a different segmentation. In principle, we
could define these segments manually. Here, we describe how we obtained these
segments automatically. For this purpose, we use a variant of the K -means clus-
tering. K -means partitions a dataset of observations of a random variable into
K clusters. For instance, it can be used to segment an image into regions with
homogeneous appearance [83]. Our goal is similar, however, we want to segment
the vertices of the 3D shape into regions where the vertices are correlated. For this
reason, we modify the K -means clustering by exchanging the way, the similarity
is computed.

The data set {x, . . .x, } contains the 3D surfaces of n faces. We now consider
this as a collection of m 3-dimensional random variables Z;

and the dataset contains n observations for each random variable.

The goal is to partition the vector x into K clusters, such that the variables
inside a cluster have a larger inter-variable covariance compared with the variables
outside the cluster.

Similar to K-means [83], we need a set of 3-dimensional vectors [i;, where
1 < j < K, in which fi; is the prototype for cluster j. Let m;; € {0,1} be
a binary indicator variable (where 1 < j7 < K), and m;; = 1 if variable 7 is
assigned to cluster j and m, ; = 0 otherwise.

To compute the clustering, a two stage optimization is used: First, the binary
indicator variables m, ; for the segments are updated

1 ifj = argmin; cov(Z;, [i;)
Mij = { 0 otherwise (7.41)

then the prototype for clusters /i; are updated

. 1 L

7

This process is repeated until convergence. /' -means clustering does not guar-
anty that the clusters or patched are connected, and in fact, neigher connection
nor neighborhood information is even used. Each variable is treated indepen-
dently. For this reason, is sometimes happens (in particular for higher levels) that
the patches are not connected, a fact that we want to avoid for the G2L model.

116 Appendix

Thus, we split the K-means clusters into segments that are not connected. The
outcome of the K -means clustering is not unique, it depends on the random ini-
tialization and the number of segments K. However, at least for level / = 2, in
most cases the algorithm converges to the same clustering. In Figure 3.11 the seg-
mentation computed by K -means clustering is shown for level / = 2,3 and 4.

7.3 Reconstruction and Blending of the Texture 117

(a) (b) (c) (d)

Figure 7.1: The texture extracted by the scanner contains hair and artifacts (a). These are masked out manually (b) and filled with the
average color (c). To avoid edges, the two textures are blended using Gaussian and Laplacian Pyramids (d).

7.3 Reconstruction and Blending of the Tex-
ture

To blend two images, three pyramids are used, one Laplacian Pyramid for each of
the two input images and one Gaussian Pyramid for the blend mask. Now, each
level of the pyramids is blended, one level at a time. Finally the blended Laplacian
Pyramid is collapsed, giving the result. Using this multiresolution blending, image
features are blended across a transition zone that is proportional in size to the
spatial frequency of the features [48].

We have used this technique to reconstruct the color of the skin for the back
of the head as shown in Figure 7.1. The shape of hair can not be captured by the
scanner and the shape of the head is estimated during the registration. To have
a complete texture, the hair and other artifacts are manually removed from the
captured textures and the color of the skin is estimated by the average color of the
texture. When the six texture maps of the mesh (see Section 2.4.2) are blended one
at the time, artifacts at the boundaries of the charts appear. For this reason it is
necessary to use Gaussian and Laplacian Pyramids that are implemented directly
in the parametrization. These texture pyramids are implemented analogously to
the Gaussian and Laplacian Shape Pyramids discussed in Section 3.3.

118 Acknowledgments

Acknowledgments

First and foremost to all my colleagues and PhD students for countless discussions
and their enthusiasm.

To Prof. Thomas Vetter for his ongoing support and encouragement.

To Brian Amberg for our shape retrieval experiments and the expression model
and to Thomas Albrecht for our experiments on modeling the remaining flexibi-
lity.

To Pascal Paysan for scanning hundreds of people and to Brian Amberg using
all the computers to put them in correspondence.

To Beat Rothlisberger for his help implementing the fitting system and calculat-
ing the derivatives.

To our bachelor- and master- students for their exceptional hard work and
their contributions in their theses: To Marcel Arheit separating shading from re-
flectance, to Felix Gorny manually fitting the expression model, to Christian Ho-
risberger for modeling the eyes, to Michael Keller for developing an early contour
fitter, to Tobias Maier implementing parts of the fitter on the GPU and to Frank
Preiswerk for fitting AAMs.

Thanks also to Thomas Albrecht, Brian Amberg, Lothar Knothe and Sandro
Schonborn for carefully reading the manuscript.

And to the best parents a kid could hope for, Ingrid and Lothar... for everything.

This work was supported by a grant from the Swiss National Science Foundation
200021-103814.

Bibliography

[1]

2]

[9]

V. Blanz and T. Vetter, “A morphable model for the synthesis of 3D faces,” in
Conference on Computer Graphics and Interactive Techniques (SIGGRAPH),
1999, pp. 187-194.

S. Romdhani and T. Vetter, “Estimating 3D shape and texture using pixel
intensity, edges, specular highlights, texture constraints and a prior,” IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), vol. 2, pp.
986—-993 vol. 2, June 2005.

V. Blanz, K. Scherbaum, and H.-P. Seidel, “Fitting a morphable model to
3D scans of faces,” in IEEE 11th International Conference on Computer Vision
(ICCV), 2007.

E B. ter Haar and R. C. Veltkamp, “A 3D Face Matching Framework,” i
SMI’08, Shape Modeling International, 2008, pp. 103—110.

——, “3D Face Model Fitting for Recognition,” in ECCV 2008, 2008.

B. Allen, B. Curless, and Z. Popovi¢, “The space of human body shapes: Re-
construction and parameterization from range scans,” ACM Trans. Graph.,
vol. 22, no. 3, pp. 587-594, 2003.

M. Fleute and S. Lavallee, “Building a complete surface model from sparse
data using statistical shape models: Application to computer assisted knee
surgery,” Medical Image Computing and Computer-Assisted Intervention-
MICCALI, vol. 98, pp. 880-7.

G. Zheng, K. Rajamani, and L. Nolte, “Use of a dense surface point distribu-
tion model in a three-stage anatomical shape reconstruction from sparse in-
formation for computer-assisted orthopaedic surgery: a preliminary study,”
ACCV, vol. 6, pp. 52—60.

G. Subsol, J. Thirion, and N. Ayache, “A scheme for automatically building
three-dimensional morphometric anatomical atlases: application to a skull
atlas,” Medical Image Analysis, vol. 2, no. 1, pp. 37-60, 1998.

120

BIBLIOGRAPHY

[10]

[11]

[17]

E. Dam, P. Fletcher, and S. Pizer, “Automatic shape model building based on
principal geodesic analysis bootstrapping,” Medical Image Analysis, 2007.

D. Shen, E. Herskovits, and C. Davatzikos, “An adaptive-focus statistical
shape model for segmentation and shape modeling of 3-D brain structures,”
IEEE Transactions on Medical Imaging, vol. 20, no. 4, pp. 257-270, 2001.

T. Albrecht, M. Luthi, and T. Vetter, “A statistical deformation prior for non-
rigid image and shape registration,” IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2008.

V. Blanz, C. Basso, T. Poggio, and T. Vetter, “Reanimating faces in images and
video,” in EuroGraphics, 2003, pp. 641-650.

S. Romdhani, “Face image analysis using a multiple features fitting strategy,”
Dissertation, Universitit Basel, 2005.

J.-S. Pierrard and T. Vetter, “Skin detail analysis for face recognition,” IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June 2007.

D. A. Leopold, A. J. O'Toole, T. Vetter, and V. Blanz, “Prototype-referenced
shape encoding revealed by high-level aftereffects,” Nature Neuroscience,
vol. 4, no. 1, pp. 89-94, 2001.

V. Blanz and T. Vetter, “Face recognition based on fitting a 3D morphable
model,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 25, no. 9, pp. 1063—-1074, 2003.

B. Amberg, R. Knothe, and T. Vetter, “SHREC’08 entry: Shape based face
recognition with a morphable model,” in SMI’08, Shape Modeling Interna-
tional, New York, NY, USA, 2008.

——, “Expression invariant 3D face recognition with a morphable model,”
in IEEE International Conference on Automatic Face and Gesture Recognition,
2008.

“Face recognition as a search tool “Foto-Fahndung* final report,” Bundeskri-
minalamt, Wiesbaden, 2007.

W. Zhao, R. Chellappa, P. J. Phillips, and A. Rosenfeld, “Face recognition: A
literature survey,” ACM Comput. Surv., vol. 35, no. 4, pp. 399-458, 2003.

M. A. Turk and A. P. Pentland, “Face recognition using eigenfaces,” IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 586—
591, Jun 1991.

BIBLIOGRAPHY 121

[23]

[31]

[32]

D. Cooper, T. Cootes, C. Taylor, and J. Graham, “Active shape models - their
training and application,” Computer Vision and Image Understanding, no. 61,
pp. 3859, 1995.

A. Lanitis, C. Taylor, and T. Cootes, “Automatic interpretation and coding of
face images using flexible models,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 19, no. 7, pp. 743-756, Jul 1997.

T. E Cootes, G. J. Edwards, and C. J. Taylor, “Active appearance models.”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 23, no. 6,
pp. 681-685, 2001.

P. Penev and J. Atick, “Local feature analysis: A general statistical theory for
object representation,” Neural Systems, vol. 7, pp. 477-500, 1996.

R. Knothe, S. Romdhani, and T. Vetter, “Combining pca and Ifa for surface
reconstruction from a sparse set of control points,” in IEEE International
Conference on Automatic Face and Gesture Recognition, 2006, pp. 637—644.

H. Schneiderman, “Learning statistical structure for object detection,” in Im-
ages and Patterns (CAIP). Springer-Verlag, 2003.

B. Heisele, T. Serre, and T. Poggio, “A component-based framework for face
detection and identification,” International Journal Computer Vision, vol. 74,
no. 2, pp. 167-181, 2007.

C. Davatzikos, X. Tao, and D. Shen, “Hierarchical active shape models, using
the wavelet transform,” Medical Imaging, IEEE Transactions on, vol. 22, no. 3,
pp. 414-423, March 2003.

>

A. Bhalerao and R. Wilson, “Local shape modelling using warplets,” Lecture
Notes in Computer Science, vol. 3540, pp. 439—448, 2005.

D. Nain, S. Haker, A. Bobick, and A. Tannenbaum, “Multiscale 3-d shape
representation and segmentation using spherical wavelets,” Medical Imaging,
IEEE Transactions on, vol. 26, no. 4, pp. 598-618, April 2007.

R. Knothe, “Waveletbasierte Kompression des Morphable Models,” Diplo-
marbeit, Universitit Freiburg, 2004.

M. Lounsbery, T. D. DeRose, and J. Warren, “Multiresolution analysis
for surfaces of arbitrary topological type,” ACM Transactions on Graphics,
vol. 16, no. 1, pp. 34-73, 1997.

122

BIBLIOGRAPHY

[35]

(38]

[44]

[45]

[47]

M. Crouse, R. Nowak, and R. Baraniuk, “Wavelet-based statistical signal pro-
cessing using hidden markov models,” IEEE Transactions on Signal Processing,
1997.

V. Blanz and T. Vetter, “Reconstructing the complete 3D shape of faces from
partial information,” it+ti Oldenburg Verlag, vol. 44, no. 6, pp. 295-302,
2002.

P. Paysan, R. Knothe, B. Amberg, S. Romdhani, and T. Vetter, “A 3D face
model for pose and illumination invariant face recognition,” 6th IEEE Inter-
national Conference on Advanced Video and Signal Based Surveillance, 2009.

V. Blanz, “Automatische rekonstruktion der dreidimensionalen form von
gesichtern aus einem einzelbild,” Dissertation, Eberhard-Karls-Universitiit
Tiibingen, 2000.

“USF humanid 3D face dataset, courtesy of Sudeep Sarkar, Univ. of South
Florida, Tampa, 2005.”

C. Basso, P. Paysan, and T. Vetter, “Registration of expressions data using a
3D morphable model.” in IEEE International Conference on Automatic Face
and Gesture Recognition, 2006, pp. 205-210.

(2008) Cyberware website. [Online]. Available: http://www.cyberware.com/
(2008) ABW-3D website. [Online]. Available: http://www.abw-3d.de/

B. Amberg, S. Romdhani, and T. Vetter, “Optimal step nonrigid ICP algo-
rithms for surface registration,” IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2007.

P. Ekman, “Basic emotions,” Handbook of Cognition and Emotion, John Wiley
& Sons, Ltd., 1999.

M. Liithi, A. Lerch, T. Albrecht, Z. Krol, and T. Vetter, “A hierarchical, multi-
resolution approach for model-based skull-segmentation in MRI volumes,”
Conference Proceedings 3D-Physiological Human, December 2008.

N. Litke, M. Droske, M. Rumpf, and P. Schroder, “An image processing ap-
proach to surface matching.” in Symposium on Geometry Processing, Vienna,
Austria, 2005, pp. 207-216.

P. J. Burt and E. H. Adelson, “The laplacian pyramid as a compact image
code,” IEEE Transactions on Communications, vol. COM-31,4, pp. 532-540,
1983.

BIBLIOGRAPHY 123

[48]

[49]

[55]

[56]

[57]

[61]

(2008) hugin - panorama photo stitcher / enblend. [Online]. Available:
http://hugin.sourceforge.net/, http://enblend.sourceforge.net/

D. Zorin, P. Schroder, T. DeRose, L. Kobbelt, A. Levin, and W. Sweldens,
“Subdivision for modeling and animation,” SIGGRAPH 2000 Course notes,
2000.

E. Catmull and J. Clark, “Recursively generated b-spline surfaces on arbitrary
topological meshes,” Computer Aided Design, vol. 10, no. 6, pp. 350-355,
1978.

T. Akenine-Moller and E. Haines, “Real-time rendering,” A.K. Peters Ltd.,
Natick, Massachusetts, 2002.

C. M. Bishop, “Neural networks for pattern recognition,” Clarendon Press,
Oxford, 1995.

C. Dorai and A. K. Jain, “COSMOS - a representation scheme for 3D free-
form objects,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 19, no. 10, pp. 1115-1130, 1997.

J. Nocedal and S. Wright, “Numerical optimization,” Springer, New York,
2006.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, “Numerical
recipes: The art of scientific computing,” Cambridge University Press, 2007.

R. Hartley and A. Zisserman, “Multiple view geometry in computer vision,”
Cambridge University Press, 2004.

D. Shreiner, M. Woo, J. Neider, and T. Davis, “Opengl(r) programming
guide: The official guide to learning opengl, version 2,” Addison Wesley Long-
man, Reading, Massachusetts, 2005.

M. Segal and K. Akeley, “The opengl(r) graphics system: A specification,”
Silicon Graphics, Inc., 2006.

M. Wimmer, E Stulp, S. Pietzsch, and B. Radig, “Learning local objective
functions for robust face model fitting,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 30, no. 8, pp. 1357—-1370, Aug. 2008.

M. Keller, R. Knothe, and T. Vetter, “3D reconstruction of human faces from
occluding contours,” Proceedings of the Mirage 2007, March 2007.

J. J. Koenderink, “Solid shape,” The MIT Press, 1990.

124

BIBLIOGRAPHY

[62]

[63]

[65]

[66]

[67]

J. A. Nelder and R. Mead, “A Simplex Method for Function Minimization,”
The Computer Journal, vol. 7, no. 4, pp. 308-313, 1965.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, “Numerical
recipes in ¢ / the art of scientific computing,” Cambridge University Press,
1999.

M. J. Jones and T. Poggio, “Multidimensional morphable models: A frame-
work for representing and matching object classes,” International Journal
Computer Vision, vol. 29, no. 2, pp. 107-131, 1998.

D. C. Liu and J. Nocedal, “On the limited memory bfgs method for large
scale optimization,” Math. Program., vol. 45, no. 3, pp. 503-528, 1989.

B. Amberg, A. Blake, and T. Vetter, “On compositional image alignment,
with an application to active appearance models,” 2009.

K. Siddiqi, A. Shokoufandeh, S. J. Dickinson, and S. W. Zucker, “Shock
graphs and shape matching,” International Journal of Computer Vision,
vol. 35, no. 1, pp. 13-32, 1999.

P. Felzenszwalb and D. Huttenlocher, “Distance transforms of sampled func-
tions,” Technical Report, 2004.

B. Amberg, A. Blake, A. Fitzgibbon, S. Romdhani, and T. Vetter, “Recon-
structing high quality face-surfaces using model based stereo,” IEEE 11th In-
ternational Conference on Computer Vision (ICCV), Oct. 2007.

J. Canny, “A computational approach to edge detection,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 8, no. 6, pp. 679-698, 1986.

T. Albrecht, R. Knothe, and T. Vetter, “Modeling the remaining flexibility
of partially fixed statistical shape models,” in 2nd MICCAI Workshop on the
Mathematical Foundations of Computational Anatomy, 2008.

S. Meyers, “Effective c++: 55 specific ways to improve your programs and
designs,” Addison-Wesley Professional Computing, 2005.

T. Sim, S. Baker, and M. Bsat, “The CMU pose, illumination, and expres-
sion (PIE) database of human faces,” The Robotics Institute, Carnegie Mel-
lon University, Tech. Rep. CMU-RI-TR-01-02, January 2001.

E. Gorny, “Enhancing automatic fitting procedures of human heads by man-
ual interaction,” Master thesis, Universitit Basel, 2009.

BIBLIOGRAPHY 125

[75]

[76]

[77]

[80]

[81]

[82]

[83]

M. Ritsch, “Wavelet frame accelerated reduced vector machine for efficient
image analysis,” Dissertation, Universitdt Basel, 2008.

M. Ritsch, G. Teschke, S. Romdhani, and T. Vetter, “Wavelet frame acceler-
ated reduced support vector machines,” Immage Processing, IEEE Transactions
on, vol. 17, no. 12, pp. 2456-2464, Dec. 2008.

M. Tappen, W. Freeman, and E. Adelson, “Recovering intrinsic images from
a single image,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 27, no. 9, pp. 1459-1472, Sept. 2005.

C. Horisberger, “I see you - 3d head and gaze simulation for visual tracking,”
Bachelor thesis, Universitit Basel, 2006.

P. Debevec, “Rendering synthetic objects into real scenes: bridging tradi-
tional and image-based graphics with global illumination and high dynamic
range photography,” in ACM SIGGRAPH 2008 classes, 2008.

M. Arheit, “Separating shading from reflectance in face images,” Master the-
sis, Universitit Basel, 2009.

A. Hertzmann, C. E. Jacobs, N. Oliver, B. Curless, and D. H. Salesin, “Image
analogies,” in Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH), 2001, pp. 327—340.

C. Horisberger, “Texture synthesis for morhable face models,” Master thesis,
Universitit Basel, 2009.

C. M. Bishop, “Pattern recognition and machine learning,” Springer, 2006.

126 BIBLIOGRAPHY

127

Curriculum Vitae

personliche Daten

e geboren am 11. Februar 1978 in Freiburg im Breisgau.
e Staatsangehorigkeit: deutsch

— Vater: Dr. Lothar Knothe, Dipl.-Chem.
— Mutter: Dr. med. Ingrid Knothe, Dipl.-Chem.

Schule
e 1984-1988: Johann-Peter-Hebel-Schule Gundelfingen

e 1988-1997: Albert-Schweitzer-Gymnasium Gundelfingen

e Juni 1997: Abitur - allgemeine Hochschulreife

1997/98: Zivildienst im St. Josefskrankenhaus Freiburg

Studium

o Oktober 1998 - Mirz 2001: Grundstudium der Informatik mit Nebenfach
Physik an der Albert-Ludwigs-Universitit Freiburg

e April 2001 - August 2003: Hauptstudium der Informatik mit Nebenfach
Mathematik an der Albert-Ludwigs-Universitit Freiburg.

e Oktober 2001-Mirz 2002: ERASMUS-Stipendium an der ETH Ziirich.

e September 2003-Februar 2004: Diplomarbeit an der Universitit Basel bei
Herrn Prof. Thomas Vetter.
Thema: Waveletbasierte Kompression des Morphable Models.

e Mirz 2004: Diplom in Informatik der Albert-Ludwigs-Universitit Freiburg.

e seit Juni 2004: wissenschaftlicher Assistent am Departement Informatik der
Universitit Basel bei Herrn Prof. Thomas Vetter.

