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Summary 

This thesis was motivated by the need of the Anti Malaria Campaign (AMC) of Sri 

Lanka for malaria risk maps and malaria case number predictions to assist in the 

planning for malaria control.  Despite a wealth of high resolution data collected over 

decades, a malaria forecasting system was not in place, and detailed island-wide maps 

of malaria incidence could permit the assessment of the malaria situation and its 

determinants.  The overall aim of this thesis was to describe the spatial and seasonal 

distribution of malaria in Sri Lanka and associated factors, and to develop a malaria 

forecasting system.   

In this thesis, the spatial variation of malaria in Sri Lanka was described in relation to 

risk factors. Also, the risk and the impact of a tsunami natural disaster on malaria 

transmission and malaria control in Sri Lanka were evaluated. The relation in space 

between seasonality of malaria and seasonality of rainfall, and the relationship 

between monthly malaria case time series and monthly rainfall time series in Sri 

Lanka were quantified. A model for short term malaria prediction was developed and 

implemented in Sri Lanka for use by the AMC. This thesis also contributed a 

statistical methodology for analysing over dispersed temporal count data with non 

stationary and / or seasonal behaviour, such as observed in malaria case count time 

series in Sri Lanka. 

In Chapter 1, the stage was set by briefly describing malarial disease and the biology 

of malarial parasites and vectors relevant to Sri Lanka.  The influence of weather on 

malaria transmission, and observed linkages between weather and malaria in terms of 

spatial and temporal patterns were introduced.  Immunity was also briefly discussed, 

because it affects the translation of (unobserved) disease transmission patterns into 

patterns of observed malaria cases. A brief overview was given of the history of 

malaria and malaria control in Sri Lanka. 

Chapter 2 provided health professionals and the larger general public with the first 

island-wide incidence maps of Plasmodium vivax and Plasmodium falciparum 

malaria at sub district resolution.  The distribution and seasonality of P. vivax and P. 

falciparum incidence was remarkably similar within each district, although they 

varied spatially.  The annual malaria incidence changed over the 1995 – 2002 period, 

and the rate of change varied with the area, thus indicating the need for regular 
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updates of the incidence maps.  The spatial and temporal malaria distribution in the 

country was related to accessibility of areas for implementation of malaria control (in 

particular governed by the armed conflict and the peace process), and to socio 

economic and environmental factors.  Also, the exposure of tourists to malaria 

infection was discussed. 

Chapter 3 provided a re-assessment of the malaria situation, including details on 

vector insecticide resistance, parasite drug resistance, and insights into the national 

policy for malaria diagnosis and treatment.  The assessment and its publication were 

triggered by the tsunami that hit on 26 December 2004, and the ensuing international 

concern about possibilities of an increase of vector borne diseases.  The likelihood of 

a widespread outbreak was estimated as limited.  The public health system was 

deemed capable of dealing with the possible threat of a malaria outbreak.  Concerns 

were expressed that the influx of foreign medical assistance, drugs, and insecticides 

could interfere with malaria surveillance, and the long term malaria control strategy of 

Sri Lanka, if not in accordance with government policy. 

Chapter 4 assessed the impact of the tsunami on the malaria situation and the national 

and international malaria control efforts in the year following the tsunami. Malaria 

incidence had decreased in most districts, including the ones that were hit hardest by 

the tsunami, and the whole-country malaria incidence time series did not deviate from 

the downward trend that started in 2000.  The focus of national and international post 

tsunami malaria control efforts was supply of antimalarials, distribution of 

impregnated mosquito nets and increased monitoring in the affected area.  

Internationally donated antimalarials were either redundant or did not comply with 

national drug policy.  There was no indication of increased malaria vector density.   

In Chapter 5, the spatial correlation between average seasonality of malaria and 

climatic seasonality of rainfall was studied.  A simple index for seasonality was 

developed by making use of the characteristic of a varying degree of bimodality of 

seasonality present in both malaria and rainfall in Sri Lanka.  The malaria seasonality 

index was significantly associated with the rainfall seasonality index in a regression 

taking spatial autocorrelation into account.  This was in paradox with the negative 

correlation in space between annual rainfall and malaria endemicity (Chapter 2). Both 

rainfall and malaria may react independently to monsoonal periodicity, but given the 

fact that rainfall has an important impact on the availability and quality of breeding 
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sites for malaria vectors, it is clear that rainfall seasonality is an important driver of 

malaria seasonality. 

In Chapter 6, the temporal correlation between monthly malaria case time series and 

monthly rainfall time series was explored for each district separately.  For most 

districts, strong positive correlations were found for malaria time series lagging zero 

to three months behind rainfall.  However, only for a few districts, weak positive (at 

lags zero and one) or weak negative (at lags two to six) correlations were found if 

autocorrelation and seasonality were removed from the series prior to cross-

correlation analysis, thus indicating that rainfall might have little potential use in a 

malaria forecasting system.  These cross correlation analyses had the drawbacks that 

inter-annual effects were masked due to detrending of the data, and that potentially 

seasonally varying effects were not taken into account.  Subsequent inter-annual 

analysis showed strong negative correlations between malaria and rainfall for a group 

of districts in the centre-west of the country.  Seasonal inter-annual analysis showed 

that the effect of rainfall on malaria varied according to the season (and geography).   

Chapter 7 focused on the development of a malaria forecasting system for Sri Lanka, 

which could assist in the efficient allocation of resources for malaria control, 

especially when malaria is unstable and fluctuates in intensity both spatially and 

temporally.  Several types of time series models were tested in their ability to predict 

the monthly number of malaria cases in districts one to four months ahead.  Different 

districts required different prediction models, and the prediction accuracy varied with 

district and forecasting horizon.  It was subsequently tested if rainfall or malaria 

patterns in neighbouring districts could improve prediction accuracy of the selected 

models.  Only for a few districts, a modest improvement was made when rainfall was 

included in the models as a covariate.  This modest improvement was not deemed 

sufficient to merit investing in a forecasting system for which rainfall data are 

routinely processed.  The development and launch of a system for forecasting malaria 

by the AMC was described in addendum to Chapter 7.  

Throughout the statistical modelling in Chapter 7, it was assumed that logarithmically 

transformed malaria case data were approximately Gaussian distributed.  However, 

such an approximation is less close when case numbers are low, as was the case at the 

time of writing.  Therefore, in Chapter 8, a class of generalised multiplicative seasonal 

autoregressive integrated moving average models for the parsimonious and 
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observation-driven modelling of non Gaussian, non stationary and / or seasonal time 

series data was developed.   

Chapter 9 provides a general discussion in which the contributions of this thesis are 

put into context, in which limitations of this thesis are discussed and directions for 

future research outlined.   
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Zusammenfassung 

Diese These wurde durch die Notwendigkeit von Malaria-Risiko-Karten und Malaria 

Fall Zahl Vorhersagen anhand der Anti-Malaria-Kampagne (AMC) von Sri Lanka zur 

Unterstützung bei der Planung für die Malariabekämpfung motiviert. Trotz einer Fülle 

von hochauflösenden Daten über Jahrzehnte, gab es keine Vorhersage-Systeme für 

Malaria in Sri Lanka und es gab keine detaillierten Inselkarten von Malariainzidenz 

für die Bewertung der Malariasituation und ihrer Determinanten. Das übergeordnete 

Ziel dieser Arbeit war die Beschreibung von der räumlichen und saisonalen 

Verteilung von Malaria in Sri Lanka und den damit verbundenen Faktoren sowie die 

Entwicklung eines Malaria-Vorhersage-System.  

In dieser Arbeit wurde die räumliche Variation der Malaria in Sri Lanka in Bezug auf 

die Risikofaktoren beschrieben. Auch das Risiko und die Auswirkungen der Tsunami-

Katastrophe auf die natürliche Übertragung der Malaria und Malaria Bekämpfung in 

Sri Lanka wurde ausgewertet. Die räumliche Beziehung zwischen 

Malariasaisonabhängigkeit und klimatische Saisonalität der Niederschläge, sowie die 

Beziehung zwischen den monatlichen Malariafallzeitreihen und monatlichen 

Niederschlagsmengezeitreihen in Sri Lanka wurden quantifiziert. Ein Modell für die 

kurzfristige Malaria Vorhersage wurde entwickelt und für die Verwendung durch den 

AMC in Sri Lanka implementiert. Diese Arbeit trug auch eine statistische Methode 

für die Analyse zeitlich überverteilter Daten mit nicht stationären und / oder 

saisonalem Verhalten, wie Malariafallzeitreihen in Sri Lanka, bei. 

Kapitel 1 gab eine kurze Beschreibung der Malariaerkrankung und der Biologie der 

Malariaparasiten und Vektoren in Sri Lanka. Der Einfluss der Witterung auf die 

Übertragung der Malaria und beobachtete Zusammenhänge zwischen Witterung und 

Malaria im Hinblick auf die räumlichen und zeitlichen Muster wurden eingeführt. 

Immunität wurde auch kurz diskutiert, denn es wirkt sich auf die Umwandlung von 

(unbeobachteten) Übertragungsmustern der Krankheit in Muster von beobachteten 

Malariafällen aus. Eine kurze Übersicht von der Geschichte der Malaria und Malaria 

Bekämpfung in Sri Lanka wurde gegeben.  

Kapitel 2 lieferte für die Fachkräfte des Gesundheitswesens und der weiten 

Öffentlichkeit die ersten inselweiten Inzidenzkarten von Plasmodium vivax und 

Plasmodium falciparum Malaria mit Auflösung bis zu den Unterbezirken . Die 
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Verteilung und Seasonalität der P. vivax- und P. falciparum-Inzidenz war 

bemerkenswert ähnlich in jedem Bezirk, auch wenn sie räumlich variierten. Die 

jährliche Malariainzidenz änderte sich von 1995 – 2002 und das Tempo der 

Veränderung variierte mit der Gegend. So zeigte sich die Notwendigkeit einer 

regelmäßigen Erneuerung der Inzidenzkarten. Die räumliche und zeitliche Verteilung 

der Malaria im Land war im Zusammenhang mit der Zugänglichkeit von Gegenden 

zur Malariabekämpfung (insbesondere durch den bewaffneten Konflikt und den 

Friedensprozess), und die sozioökonomischen und ökologischen Faktoren. Auch die 

Exposition von Touristen zu Malariainfektion wurde diskutiert.  

Kapitel 3 verschaffte eine erneute Bewertung der Malariasituation, einschließlich 

Details über Vektorinsektizidresistenz, Parasitenmedikamentenresistenz und 

Einblicken in die nationale Politik für die Diagnose und Behandlung der Malaria. Die 

Bewertung und die Veröffentlichung wurden ausgelöst durch den Tsunami, vom 26. 

Dezember 2004, und die internationale Besorgnis über die sich daraus ergebende 

mögliche Erhöhung der Vektorkrankheiten. Die Wahrscheinlichkeit eines weit 

verbreiteten Ausbruchs wurde als begrenzt geschätzt. Das System der öffentlichen 

Gesundheit wurde als geeignet für den Umgang mit der möglichen Gefahr einer 

Malariaepidemie erachtet. Bedenken wurden geäußert, dass der Zustrom von 

ausländischer medizinischer Hilfe, Drogen und Insektiziden die Malariaüberwachung 

und die langfristige Kontrolle der Malariastrategie von Sri Lanka stören könnte, wenn 

sie nicht im Einklang mit der Regierungspolitik waren.  

Kapitel 4 bewertet die Auswirkungen des Tsunami auf die Malariasituation und die 

nationalen und internationalen Anstrengungen in der Kontrolle der Malaria im Jahr 

nach dem Tsunami. Malariainzidenz war gesunken in den meisten Bezirken, darunter 

diejenigen, die am härtesten von der Tsunami-Katastrophe getroffen waren, und die 

Malariainzidenz des ganzen Landes weichte nicht vom Abwärtstrend ab der im Jahr 

2000 begann. Der Fokus der nationalen und internationalen Post-Tsunami 

Malariakontrollbemühungen bestand in der Versorgung mit Malariamitteln, 

Verteilung von imprägnierten Moskitonetzen und eine stärkere Überwachung in den 

betroffenen Bereichen. International gespendete Malariamittel wurden entweder 

überflüssig oder nicht im Einklang mit der nationalen Drogenpolitik. Es gab keine 

Hinweise auf eine erhöhte Malaria-Vektor-Dichte.  
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In Kapitel 5 wurde die räumliche Korrelation zwischen dem Durchschnitt der 

Saisonabhängigkeit von Malaria und klimatische Saisonalität der Niederschläge 

untersucht. Ein einfacher Index für saisonal wurde entwickelt durch die Verwendung 

des Merkmals des unterschiedlichen Grades der Zweigipfligkeit der Saisonalität der 

Malaria und der Niederschläge in Sri Lanka. Der Malariasaisonalitätsindex wurde 

signifikant mit dem Niederschlagssaisonalitätsindex in einer Regression assoziert, die 

räumliche Autokorrelation berücksichtigte. Das war im Gegensatz zur negativen 

Korrelation im Raum zwischen den jährlichen Niederschlägen und der endemischen 

Situation von Malaria (Kapitel 2). Sowohl Niederschläge als auch Malaria könnten 

unabhängig auf die monsunische Periodizität reagieren, aber angesichts der Tatsache, 

dass die Niederschläge einen wichtigen Einfluss auf die Verfügbarkeit und Qualität 

der Brutplätze für die Malariavektoren haben, ist es wahrscheinlich, dass 

Niederschlagssaisonalität ein wichtiger Faktor für Malariasaisonabhängigkeit ist.  

In Kapitel 6, wurde die zeitliche Korrelation zwischen monatlichen 

Malariafallzeitreihen und monatlichen Niederschlagsmengezeitreihen für jeden Bezirk 

getrennt erforscht. Für die meisten Distrikte, wurde für Malariazeitreihen eine starke 

positive Korrelation gefunden für den Zeitraum von null bis drei Monaten nach 

Niederschlägen. Aber nur für ein paar Bezirke mit schwach positiven (Verzögerungen 

bei null und einem Monat) oder schwach negativen (bei Verzögerungen von zwei bis 

sechs Monate) wurde Korrelationen gefunden, wenn Autokorrelation und Saisonalität 

aus der Serie vor der Cross-Korrelation Analyse herausgelöst wurden, was bedeutet, 

dass Niederschläge vielleicht wenig Potenzial in der Nutzung eines Malaria-

Vorhersage-System hat. Diese Cross-Korrelation Analysen hatten die Nachteile, dass 

zwischenjährlichen Auswirkungen verdeckt waren durch Trendherausnahme der 

Daten und mögliche saisonal unterschiedliche Effekte wurden nicht berücksichtigt. 

Die nachfolgende zwischenjährliche Analyse zeigte starke negative Korrelationen 

zwischen Malaria und Niederschlägen für eine Gruppe von Bezirken im mittleren 

Westen des Landes. Eine saisonale zwischenjährliche Analyse zeigte, dass die 

Wirkung von Regen auf Malaria je nach der Saison (und Geographie) differierte.  

Kapitel 7 konzentriert sich auf die Entwicklung eines Malariavorhersagesystems für 

Sri Lanka, dass bei der effizienten Bereitstellung von Ressourcen für die Kontrolle 

der Malaria förderlich sein könnte, vor allem, wenn die Malaria instabil ist und 

sowohl räumlich und zeitlich in der Intensität schwankt. Mehrere Arten von 
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Zeitreihenmodelle wurden getestet und ihre Fähigkeit zur Vorhersage der monatlichen 

Zahl der Malariafälle in den Bezirken ein bis vier Monate im Voraus. Verschiedene 

Bezirke benötigten verschiedene Vorhersage-Modelle, und die Genauigkeit der 

Vorhersage änderte sich mit Bezirks- und Prognosehorizont. Es wurde dann getestet, 

wie Regen- oder Malariamuster in den benachbarten Bezirken die Genauigkeit der 

Vorhersage der ausgewählten Modelle verbessern könnte. Nur für ein paar Bezirke 

wurde mit Niederschlägen als Variable in den Modellen eine bescheidene 

Verbesserung erhalten. Diese leichte Verbesserung war nicht als ausreichend erachtet, 

um eine Investition in ein Vorhersagesystem, bei dem Niederschlagsdaten 

routinemäßig verarbeitet werden müssen, zu begründen. Die Entwicklung und 

Einführung eines Systems für die Vorhersage von Malaria durch die AMC wurde in 

Ergänzung zu Kapitel 7 beschrieben.  

Während der statistischen Modellierung in Kapitel 7 war als gegeben vorausgesetzt, 

dass logarithmisch transformierte Malariafalldaten ungefähr normal verteilt waren. 

Allerdings, eine solche Annäherung ist weniger gut, wenn Fallzahlen niedrig sind, wie 

zum Zeitpunkt der Redaktion der Fall war. Daher wurde in Kapitel 8 eine Klasse von 

allgemeinen multiplikativen saisonalen integrierten autoregressiven Modellen mit 

gleitendem Durchschnitten für die Beobachtung und sparsame Modellierung von 

nicht gaußförmigen, nicht stationären und / oder saisonalen Zeitreihendaten 

entwickelt. 

Kapitel 9 enthält eine allgemeine Diskussion, in denen die Beiträge dieser Arbeit in 

Kontext gebracht worden sind, in denen die Grenzen dieser Arbeit diskutiert worden 

sind, und in denen die Richtungen für die zukünftige Forschung skizziert worden sind. 
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Malaria 

Malaria is a disease caused by an infection of a eukaryote parasite of the genus 

Plasmodium (Haemosporida: Plasmodiidae) of the phylum Apicomplexa.  Of the four 

species of Plasmodium that infect humans (P. falciparum, P. malariae, P. ovale, and 

P. vivax), P. falciparum and P. vivax are currently the only species reported in Sri 

Lanka.   

Plasmodium falciparum infection can be fatal when it develops into a severe malaria, 

and most of the fatal malaria cases in the world are attributed to this species.  Red 

blood cells infected with P. falciparum can clog small blood vessels in the brain, 

resulting in cerebral malaria, which is often fatal.  Also, P. falciparum is often 

associated with severe anaemia because it multiples rapidly in the blood.  Other 

nonspecific symptoms include chills, discomfort, fatigue, headache, muscle pain, 

cough and respiratory distress, low birth weights, hypoglycaemia and organ failure. 

Plasmodium vivax can cause death due to enlarged spleen, but more often it causes 

debilitating, but not deadly, nonspecific symptoms as listed above.   

Plasmodium falciparum and P. vivax have a similar biology, but there are important 

differences.  For example, P. vivax has dormant liver stages termed "hypnozoites".  

Also, P. vivax is not associated with cerebral malaria. 

Lifecycle of Plasmodium 

The plasmodia, in the sporozoite stage, enter the bloodstream of the vertebrate host 

when excreted from the salivary gland of an infected female mosquito during the 

process of biting (only female mosquitoes take blood meals).  Because of blood 

circulation, the sporozoites are carried to the liver within minutes.  Each sporozoite 

then invades a liver cell (hepatocyte).  A trait of e. g. P. vivax is that some of the 

sporozoites do not immediately start to grow and divide (schizogony) after entering 

the hepatocyte, but remain in a dormant, hypnozoite stage for weeks, months, or even 

years [1].  Thus a single infection can be responsible for a series of "relapses".  The 

factors that eventually trigger schizogony are not known.  The exoerythrocytic 

schizogony stage is characterized by multiple rounds of nuclear division without 

cellular segmentation, which takes about six to fifteen days, depending on the 

Plasmodium species.  After a number of nuclear divisions, the schizont will segment 

and merozoites are formed.  After rupturing of the schizont, the merozoites are 
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released in the bloodstream.  Each merozoite invades a red blood cell (erythrocyte) 

and transforms into a trophozoite, a feeding stage.  After growing, the trophozoite 

transforms itself into a schizont by replicating its DNA multiple times without cellular 

segmentation.  The schizont then undergoes cellular segmentation and differentiation 

to form a number of merozoite cells in the erythrocyte.  The merozoites burst from the 

erythrocyte, and enter other erythrocytes within minutes.  The rupture of the 

membrane of the parasitized erythrocytes is associated with fever in the host.  Some 

trophozoites do not develop into schizonts, but develop into a micro or a macro 

gametocyte.  These gametocytes take roughly 8-10 days to reach full maturity.   

When ingested by a mosquito feeding on the infected host, the gametocytes leave the 

erythrocyte shell and mature into gametes.  The macro gamete becomes enlarged and 

spherical.  The micro gamete's DNA divides three times to form eight nuclei.  Each 

nucleus pairs with a flagellum to form a microgamete.  A macro gamete is fertilized 

by a microgamete to form a diploid zygote.  The zygote then develops into an 

ookinete.  The ookinete traverses the peritrophic membrane and crosses the midgut 

epithelium, after which it forms an oocyst.  The oocyst matures to form multiple 

haploid sporozoites.  The speed of maturation is dependent on temperature, but takes 

typically one to three weeks.  The immature sporozoites break through the oocyst wall 

into the haemolymph and migrate to the salivary glands, where they complete their 

differentiation. The mature sporozoites can then be injected into a vertebrate host to 

complete the lifecycle. 

Vectors transmitting P. vivax and P. falciparum in Sri Lankaa 

The four species of Plasmodium that infect humans have been found to be able to 

complete the intra-mosquito part of their lifecycle in about 68 mosquito species, all 

within the genus of Anopheles (Diptera: Culicidae).  In Sri Lanka, eight anopheline 

species (An. aconitus, An. annularis, An. culicifacies, An. nigerrimus or An. 

peditaeniatus, An. subpictus, An. tessellatus, An. vagus, and An. varuna) have been 

found to be infected with P. vivax and nine anopheline species (An. annularis, An. 

barbirostris, An. culicifacies, An. pallidus, An. peditaeniatus, An. subpictus, An. 

tessellatus, An. vagus, and An. varuna) have been found to be infected with P. 

                                                           
a Vector ecology is discussed in more detail in Chapter 3 in the subsection 
“Environmental changes and vector breeding” and in Chapter 4 in the section “Vector 
ecology” 
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falciparum.  For one infected species (An. nigerrimus), the Plasmodium species was 

not specified [2].  The suitability of a mosquito species to act as a vector for P. vivax 

or P. falciparum depends not only on mosquito-parasite interactions, but also on 

mosquito life expectancy (as the Plasmodium parasite needs the mosquito to survive 

the extrinsic incubation period; the period necessary for Plasmodium to mature inside 

the mosquito, which varies with the Plasmodium species and depends on ambient 

temperature), on mosquito feeding frequency, and on mosquito preference for human 

blood (anthropophily).  For a mosquito species to be important in malaria 

transmission, apart from being a suitable vector, it also has to be (at least seasonally) 

abundant.  Abundance of a vector species is for a large part determined by the 

ecological suitability of the environmental conditions, which includes the presence 

and quality of breeding sites, the presence and quality of resting sites, and the access 

to hosts for taking blood meals.  The suitability of a set of environmental conditions 

varies with the ecological preferences of the vector species, and the environmental 

conditions are subject to (seasonal and non seasonal) change.  In Sri Lanka, 

Anopheles culicifacies is the main mosquito species associated with malaria 

epidemics [3].  This species has a relatively strong preference to feed on humans 

(over e.g. cattle) compared to the other anopheline species present in Sri Lanka [3], 

although they are primarily zoophilic (feed mostly on cattle).  Anopheles culicifacies 

breeds mainly in pools formed in river and stream beds, and therefore, its density is 

mostly dependent on temporal and spatial variations in rainfall and river flow.  

Anopheles culicifacies also breeds in abandoned gem mining pits, agricultural wells 

and to a lesser extent in pools in agricultural water reservoirs [2].   

The influence of weather on Plasmodium transmission 

Weather-related variables such as temperature, humidity, wind, and rainfall form an 

important part of the set of the environmental conditions that influence mosquito 

population dynamics and biting behaviour, and hence the transmission of 

Plasmodium.  Temperature influences the speed of mosquito (population) 

development, including the frequency with which blood meals are taken [4].  

Humidity is important for the life expectancy of adult mosquitoes, as they are prone to 

desiccation.  Wind may increase desiccation and hamper host seeking.  Rainfall 

influences temperature and relative humidity, but above all provides water necessary 

for breeding, as the immature stages of the mosquito life cycle are aquatic.  The 
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optimum amount and frequency of rainfall depends on the physical nature of the 

breeding site and the requirements of the vector species, and rainfall may act 

indirectly on mosquito breeding when it occurs upstream or when water is transported 

for irrigation purposes.  Hence the impact of rainfall on mosquito population 

dynamics is complex; A large amount of rainfall at once may flush out breeding sites 

and wash away adults, while continuous low volume rainfall may not be optimal for 

colonizing mosquito species that require temporary breeding sites.  

Apart from influencing mosquito population dynamics and biting behaviour, 

temperature also influences the length of the extrinsic incubation period of the 

Plasmodium parasite (The process of sporogony ceases below 16 °C and above 40 °C 

[5,6]).  

Spatial patterns of malaria in Sri Lanka 

The spatial variation in annual precipitation has been linked to spatial variation in 

malaria endemicity in Sri Lanka by early malariologists who used a classification of 

the country into a wet, intermediate and dry zone [7] based on the amount of rainfall 

received during the south-west monsoon.  The region receiving the most annual 

precipitation has the least malaria, and endemicity increases with decreasing annual 

rainfall.  The fact that the districts in the extreme south west of the island (Galle and 

Kalutara) have always been virtually free of malaria is attributed to the wet climate in 

which rivers flow year round without pooling.  In the south west, only a drought 

might cause pooling in rivers and hence create conditions suitable for the breeding of 

An. culicifacies.  For example, districts with wet and intermediate annual rainfall in 

this region have repeatedly been affected by malaria epidemics, mostly attributed to 

droughts due to a failing south-west monsoon (which occurs normally between 

February and July), while districts towards the north and east with dryer climates (and 

with a higher malaria endemicity) were less affected [7].  In contrast, towards the 

north and east, where the climate is much dryer (particularly during April – 

September), rivers often run dry, and rainfall creates new puddles, especially 

following a period of drought.   

The district of Nuwara Eliya, in the hills situated in the south-centre of the country, is 

also virtually free of malaria, and the few cases recorded there probably resulted from 

infective bites received elsewhere.  With increasing altitude, temperature decreases 
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and thus at higher altitude conditions are unfavourable for malaria transmission.  

Other factors influencing spatial distribution of malaria are malaria control 

interventions (some areas are less accessible, e.g. during conflict), population density 

and variable status of economic development.  With increasing wealth, the quality of 

housing and the level of personal protection against mosquito bites increases.  

Temporal patterns in malaria time series 

Malaria in Sri Lanka shows a strong seasonality, which varies from bimodal in the 

south-west, to virtually monomodal in the extreme north and east.  Rainfall 

seasonality follows the same spatial pattern, with a bimodal seasonality in the south-

west, and a virtual monomodal seasonality in the north and east.   

Apart from annual seasonality, a five-year periodicity was observed by Gill in data on 

epidemics from 1906 to 1934 [8].  Epidemics in the period from 1867 to 1943 (before 

large scale vector control was implemented) were found to be significantly associated 

with El Niño Southern Oscillation (ENSO) [9].  Epidemics were more likely to occur 

during El Niño years, when the southwest monsoon is was likely to be less intense 

and involved less rainfall.  However, in more recent years, the direction of the 

association between precipitation and ENSO has been reversed [10].  ENSO could 

thus still be used to predict rainfall, and possibly malaria, if the link between rainfall 

and malaria persists.   

Immunity 

Due to the unstable malaria transmission pattern, it is assumed that the population in 

Sri Lanka does not have high levels of acquired anti-disease and anti parasite 

immunity, unlike the situation in highly endemic regions in sub-Saharan Africa [2].  

Therefore, both adults and children suffer from the disease, with few asymptomatic 

carriers.  However, some age-related immunity may exist, since adults have a slightly 

lower incidence than children while they are likely to be more exposed [11,12].  In a 

study in the area of Kataragama in the south, in adults, higher levels of antibodies to 

epitopes on circumsporozoite protein were found than in children, and this was 

associated with a higher frequency of inoculations in adults [13].  However, in the 

same study, no correlation was found between seroconversion and malaria infection in 

individuals, leaving the role of these antibodies in protective immunity unclear.  Also, 

in a study in a village in Anuradhapura District, high levels of prevalence (97%) of 
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antibodies to epitopes on circumsporozoite protein were found during the peak of the 

transmission season, but these antibody concentrations and prevalence decreased 

rapidly with time after the end of malaria transmission, and antibody concentrations 

did not correlate with the presence of blood-stage malaria infections, thus leaving the 

protective effect unclear [14].  When protective immunity is high as a result of high 

levels of transmission, as is the case of many African settings, it strongly confounds 

the relationship between (all age) incidence time series and transmission [15].  When 

immunity plays an important role in disease transmission, it may create / maintain so 

called “endogenous” cycles in incidence time series, even when the vectorial capacity 

(the vector population’s potential to transmit malaria) is at a constant level.  Cyclical 

patterns in incidence time series may thus partly be caused by dynamics of immunity, 

and this may confound the relationship between incidence and extrinsic drivers such 

as weather [16].  Because of extremely low sporozoite rates in vector mosquitoes in 

Sri Lanka, it is difficult to measure the entomological inoculation rate (EIR), which is 

otherwise a good measure of the risk of inoculation.  In the absence of reliable 

estimates of EIR, the malaria case incidence might be a satisfactory measure of 

parasite transmission, provided that protective and anti disease immunity is low.  

Brief history of malaria and malaria control in Sri Lanka 

The decline of the irrigation-based civilisation with its centre in Polonnaruwa (in the 

northern, dry zone of the country) at the end of the twelfth century has been attributed 

to the introduction of malaria from South India [17], although it is also well possible 

that the decline of the civilisation was triggered by destruction of the infrastructure by 

(human) foreign invaders.  The Portuguese and Dutch, who successively occupied the 

coastal areas (1505–1658 and 1658-1798, respectively) mention unhealthiness of 

certain areas because of periodic fevers [18].  The British, who colonized Sri Lanka 

from 1798 to independence in 1948, reported more frequently on a malaria-like illness 

including a report of an epidemic in 1803.  In 1861, the British planted cinchona in Sri 

Lanka.  Administration of quinine, derived from cinchona bark, remained the sole 

antimalarial control activity until 1921, when vector control in the form of 

environmental management of breeding sites, oiling and larvivorous fish was started 

[19].  In 1867, the Civil Medical Department started systematic reporting, and annual 

records of causes of death, including those attributed to malaria, are available since 

1911, a year after the establishment of the Anti Malaria Campaign (AMC).  The most 
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serious malaria epidemic recorded in the history of Sri Lanka was the 1934 – 1935 

epidemic, which claimed 80 000 deaths.  The Malaria Control Programme began in 

1945 with DDT indoor residual spraying (IRS), which was associated with a 100-fold 

reduction in morbidity and mortality over ten years.  The Malaria Eradication 

Programme was started in 1958, and blanket IRS brought malaria down to seventeen 

cases in 1963.  DDT spraying was ceased in 1964 and in 1967/1968, a “post 

eradication” P. vivax malaria epidemic occurred.  DDT spraying was then re-

introduced, but after the discovery of DDT resistance in 1969 [20], it was replaced by 

malathion spraying in 1973.  Thereafter, malaria morbidity levels fluctuated with 

epidemics in 1975 and 1986 when falciparum malaria morbidity levels were 

especially high.  Mortality rates since 1960 have, however, remained lower than any 

time since recording started [21].  After decentralization of the AMC in 1989, the 

spraying program was revised, and only selected malarious areas were sprayed in a 

blanket approach.  After 1998, for IRS, malathion was mostly replaced by other 

insecticides such as lambda-cyhalothrin, deltamethrin, and fenitrothion.  In 1993, the 

WHO Global Malaria Control Strategy [22] was adopted, which included integrated 

and selective vector control with targeted spraying only, and distribution of 

insecticide treated bednets.  Also, early diagnosis and prompt treatment was 

emphasised.  The two other main elements of the Global Malaria Control Strategy 

were early detection, containment or prevention of epidemics, and to strengthen local 

capacities in research to permit the regular assessment of the malaria situation and its 

ecological, social and economic determinants.  In 1999, the Sri Lanka government 

approved of the Roll Back Malaria (RBM) initiative. Malaria control activities are 

currently funded by the Sri Lankan government and the Global Fund to fight Aids, 

Tuberculosis and Malaria (GFATM). 

Thus, in Sri Lanka, organized efforts to reduce transmission of Plasmodium species 

that infect humans have focussed on reducing the availability of the parasite in the 

human population, by administrating antimalarial drugs to patients after confirmation 

of the presence of Plasmodium parasites, and on vector controlb.  Vector control has 

focused on reducing the mosquito population and on reducing the mosquito life 

expectancy.  This was done by reducing the presence and suitability of breeding sites 
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through environmental management [23], larviciding and distributing larvivorous fish, 

by reducing the quality of resting sites by IRS of insecticides, which affects the life 

expectancy of mainly indoor resting (endophilic) mosquito species, and by increasing 

the risk associated with taking a blood meal from human hosts, through distribution of 

insecticide treated bed nets which form a physical barrier to, repel, and kill indoor 

biting (endophagic) mosquitoes (Note that IRS also repels and kills endophagic 

mosquitoes).  Because An. culicifacies is relatively endophilic, IRS is relatively 

effective against this species.  

Other potential tools for Plasmodium transmission control, such as sterile insect 

technique [24,24], or vaccination, have not been applied in Sri Lanka.   

Objectives of this thesis 

This thesis was motivated by the need of the Anti Malaria Campaign of Sri Lanka for 

malaria risk maps and malaria case number predictions to assist in the planning for 

malaria control.  The AMC of Sri Lanka has been successfully combating malaria 

using integrated and selective vector control and early diagnosis and prompt 

treatment.  However, despite a wealth of high resolution data collected over decades, 

a malaria forecasting system was not in place, and there was a need for detailed 

island-wide maps of malaria incidence to permit the assessment of the malaria 

situation and its determinants.  The overall aim of this thesis was to describe the 

spatial and seasonal distribution of malaria in Sri Lanka and associated factors, and to 

develop a malaria forecasting system. 

The specific objectives were: 

1 To describe the spatial variation of malaria in Sri Lanka. 

2 To estimate the risk of a malaria epidemic associated with a tsunami natural disaster 

in Sri Lanka. 

3 To evaluate the effect of a tsunami disaster on malaria transmission in Sri Lanka, 

and to evaluate the response of national and international organisations to the tsunami 

in terms of malaria relevant actions. 

                                                                                                                                                                      
b Vector control is discussed in more detail in Chapter 3, in the subsection “Vector 
control strategies and insecticide resistance”, and Chapter 4 in the section “Vector 
control and personal protection since the tsunami” 
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4 To quantify the correlation in space between seasonality of malaria and seasonality 

of rainfall in Sri Lanka. 

5 To assess the relationships between monthly malaria case count data series and 

monthly mean rainfall series in Sri Lanka. 

6 To develop and implement a model for short term malaria prediction in Sri Lanka. 

7 To develop a statistical methodology for analysing over dispersed temporal count 

data and implement this methodology for short term malaria prediction. 
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Abstract 

Background 

Despite a relatively good national case reporting system in Sri Lanka, detailed maps 

of malaria distribution have not been publicly available.  

Methods 

In this study, monthly records over the period 1995 – 2000 of microscopically 

confirmed malaria parasite positive blood film readings, at sub-district spatial 

resolution, were used to produce maps of malaria distribution across the island.  Also, 

annual malaria trends at district resolution were displayed for the period 1995 – 2002.  

Results 

The maps show that Plasmodium vivax malaria incidence has a marked variation in 

distribution over the island.  The incidence of Plasmodium falciparum malaria follows 

a similar spatial pattern but is generally much lower than that of P. vivax.  In the 

north, malaria shows one seasonal peak in the beginning of the year, whereas towards 

the south a second peak around June is more pronounced.  

Conclusion 

This paper provides the first publicly available maps of both P. vivax and P. 

falciparum malaria incidence distribution on the island of Sri Lanka at sub-district 

resolution, which may be useful to health professionals, travellers and travel medicine 

professionals in their assessment of malaria risk in Sri Lanka.  As incidence of 

malaria changes over time, regular updates of these maps are necessary.  
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Background 

The Anti Malaria Campaign (AMC) Directorate of the Ministry of Health in Sri 

Lanka maintains a relatively good national case reporting system.  However, maps of 

malaria disease distribution over the island have not been available to a wide public, 

until a recent publication of a map based on 1989-1994 incidence data at district 

resolution [2].  Travel medicine Internet sites describe in their advice to travellers to 

Sri Lanka merely that the risk of malaria is present all year round in all areas (below 

800 m altitude), except in the districts of Colombo, Kalutara, and Nuwara Eliya, and 

sometimes unrealistic maps are posted.   

In Sri Lanka, two species of malaria, Plasmodium vivax and Plasmodium falciparum, 

are present.  The main vector is Anopheles culicifacies, which breeds mainly in pools 

in stagnant rivers, and therefore, its density is mostly dependent on temporal and 

spatial variations in rainfall and river flow.  Anopheles culicifacies also breeds in 

abandoned gem mining pits and agricultural wells.  Vectors of less importance are 

Anopheles annularis, Anopheles subpictus, Anopheles tessellatus and Anopheles 

vagus [2].  

This publication provides information on spatial and temporal distribution of malaria 

incidence on the island of Sri Lanka.  Malaria incidence maps are useful in allocating 

limited malaria control resources to the malaria prone areas at the right time.  They 

may also be useful to health professionals, travellers and travel medicine professionals 

in their assessment of malaria risk in Sri Lanka.  

Methods 

The mapping is based on monthly records over the period January 1995 – December 

2000 of microscopically confirmed malaria parasite positive blood film readings, at 

the spatial resolution of Medical Officer of Health (MOH) areas.  These were 

collected by the AMC from aggregated disease records reported by governmental 

hospitals and mobile clinics.  MOH area boundaries are in accordance with the 

Divisional Secretariat Division (DSD) boundaries (See additional files 1a and 1b: 

Map and list of Divisional Secretariat Divisions), except that some MOH areas cover 

multiple DSDs.  DSDs are administrative units below the district level with a median 

population of about 50,000 and an average surface of 208 km2.  District resolution 

2001 and 2002 data were included to show recent developments.  
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Most people in Sri Lanka with suspected malarial fever seek diagnosis and treatment 

in government health facilities [2].  In all provincial hospitals and in malaria endemic 

zones also in district and rural hospitals, and in some dispensaries, a microscopist is 

permanently available for laboratory diagnosis of malaria.  Private clinics usually 

have limited facilities or expertise available for malaria detection, except the private 

hospitals in Colombo.  When parasites are detected, patients are treated with 

chloroquine 10mg/kg bodyweight, and normally with 8-amino quinaline (primaquine) 

against liver stages of P. vivax.   

In the few cases where records for one month or two succeeding months were missing 

(due to absence of a microscopist), data were estimated by interpolation of monthly 

case series.  In situations where malaria confirmed case data for three or more 

succeeding months were not available, these months’ data were marked as missing.  

As a denominator for the incidence calculations, population estimates (See additional 

file 2: Population) were made by exponential interpolation (and extrapolation to 2002) 

of 1994 and 2001 census data from the Department of Census and Statistics 

(http://www.statistics.gov.lk/Documents/census2001/resultindex.htm).  For those 

districts in the north and east not covered by the census, and for which only a district 

total estimate was posted, DSD populations were estimated according to the 

population distribution over the districts from data posted by the North East 

Provincial council (http://www.nepc.lk/index.htm).   

The GIS package ArcView was used to modify a DSD map of Sri Lanka to MOH area 

boundaries and ArcView and MapInfo were used to produce maps of malaria 

distribution across the island.  

Results and discussion 

There are several concerns with the quality of the data.  In the North and East, malaria 

case data from there may be grossly underestimated.  Due to the armed conflict there 

was shortage of trained microscopists in these areas and only a small part of the 

clinical cases is microscopically confirmed [25].  In the rest of the country, the 

availability of field assistants for blood film collection and the availability of 

microscopists was high, and the authors estimate the proportion of microscopically 

confirmed cases to be about 70% [26].  Unfortunately, we have no precise data 

available to study the effect of the availability of field assistants and microscopists on 

http://www.statistics.gov.lk/Documents/census2001/resultindex.htm
http://www.nepc.lk/index.htm
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the number of blood films examined.  In general, there is high acceptance of blood 

filming by the population [27,28].   

It is AMC policy to cross-check 10% of Plasmodium positive blood films, and 10% of 

negative films for parasite presence and species identification, both at District and 

Central levels.  However, after decentralisation of the AMC in 1989, cross-checking 

was often not performed.  Only sporadically blood films were cross-checked at the 

central laboratory, and no records were kept.  In June 2000, a new policy was installed 

to cross-check films at the central laboratory.  Mostly films with doubtful readings 

were sent to the AMC central laboratory for cross-checking, and only from a limited 

number of districts and months.  Therefore, we could not estimate the error rate for 

the period under study.  An AMC report over the year 1988, before the 

decentralisation, states a species misidentification of 0%, an error of 0.2% false 

positives (1.6% of positive slides cross-checked), and 1% false negatives (5% of 

negative slides cross-checked) [29].  We believe that the quality has since improved 

as microscopists received more extensive training (1 year versus 6 months) since 

1990.   

Self-treatment with anti-malarials is relatively uncommon in Sri Lanka.  In four-

hundred-and-forty-three household interviews in 1992 in Kataragama, Moneragala 

District, none reported keeping a stock of anti-malarial drugs at home (DMG, 

unpublished data).  In a survey in 1999 at governmental hospital level in nine 

malarious districts (outside the conflict area), none out of nine-hundred patients 

diagnosed with P. falciparum reported the use of anti-malarial drugs prior to 

presentation at the hospital, whereas 19% had taken non anti-malarial drugs, mostly 

administered by the government hospital or dispensary [30].  However, in 2000 in 

Mallavi, Mullaitivu District (in the conflict area), 7.4% of patients reported self-

treatment with chloroquine prior to presentation to the outpatient department (OPD), 

and 84.5% with non anti-malarial drugs [25].  It is not known how many people 

successfully treated themselves with anti-malarial drugs and therefore did not present 

themselves to the governmental facility in the latter two studies. 

Patients who seek treatment at non-governmental health facilities are not registered, 

and this leads to further underestimation of the number of cases.  In a study in three 

MOH areas in Moneragala, only about half the cases were treated at governmental 

health facilities and therefore registered, with considerable variation at Grama 
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Niladhari resolution [26].  Grama Niladhari are administrative units with the highest 

spatial resolution used in Sri Lanka.  However, at coarser resolution, gross spatial bias 

due to treatment at private facilities is expected to be limited, as governmental 

facilities are the preferred diagnosis and treatment centres (69% in an irrigation 

resettlement area (Mahaweli System C) in Badulla District[31], >75% in Kataragama, 

Moneragala District [11], 84% in a location in Hurulawewa, Anuradhapura District 

[27], 83 – 97% in four villages in and around Lunugamwehera irrigation project, 

Hambantota District [32], even in the conflict areas (80% in Mallavi, Mullaitivu 

District [25]).   

Another spatial bias is the fact that cases detected in occasional mass blood surveys in 

selected villages in high risk areas are also included in the statistics.  However, these 

blood films tend not to exceed 1% of the total examined. 

Aggregated case records from the health facilities were not corrected for 

recrudescence of P. falciparum or relapse of P. vivax.  It is, therefore, possible that 

patients with treatment failure due to incomplete drug compliance or resistance, were 

recorded more than once, thereby overestimating the incidence.  Interviews in 

Kataragama (Moneragala District) of malaria patients revealed that drug non-

adherence is very low (none for forty-three recrudescent cases [33], three for more 

than seven-hundred-and-twelve cases (<0.4%) [34].  In Malavi (Mullaitivu District), 

however, interviews revealed 26.2% non-adherence to full treatment, mostly (58%) 

for reasons of side effects [25].  It is not known in how many of these cases this 

resulted in treatment failure.  In Sri Lanka, no studies have yet employed molecular 

methods to differentiate between recrudescence and re-infection [35].  Instead, studies 

at several locations have used different arbitrary time periods between successive 

infections for classifying a successive infection as recrudescent or as new.  Also, 

some studies have used active follow up methods instead of passive methods to detect 

recurrent infections.  Corrections based on these active detection studies tend to 

overestimate the number of double counted P. falciparum cases, as chloroquine 

resistant recrudescent infections show less severe clinical symptoms, and therefore 

have a lower probability of being recorded in the AMC registers [34].  In Colombo, 

during 1992 – 1993, a study using active detection reported 55% (n = 129) 

recrudescent cases within 40 days of follow up.  However, 61% of these were non 

patent and these people reported that they would not have sought treatment.  



 18

Therefore, only 22% of cases would have been double recorded if detected passively 

[34].  Handunnetti and colleagues found in a passive case detection study in 1992 in 

Kataragama (Moneragala District), that 26% (n = 616) of P. falciparum episodes 

occurred within 31 days of the previous episode in the same person [34].  A more 

recent study using passive case detection during 1998-1999 in Kataragama and 

Buttala (Moneragala District) found 12% (n = 359) of cases re-occurring within 28 

days [33].  An active case-detection follow-up study in 1999 in nine malarious 

districts (outside the conflict area) found parasites in 34 – 62% (Table 1) of patients 

within 28 days after diagnosis and treatment of P. falciparum [30].  It is interesting to 

note that there is a strong positive correlation (binomial regression, r = 0.81, p < 0.01, 

n = 9) between the proportion of recrudescence infections and P. falciparum 

incidence (even if the incidence is corrected by assuming that each recrudescent case 

is counted twice).  Based on this regression one could consider adjusting reported 

cases of P. falciparum in each MOH area, which would bring down higher incidence 

rates relatively more than lower incidence rates.  We did not do so because of likely 

overestimation of the number of double counted cases by the active detection method 

used in the follow up study.  With regard to P. vivax relapses, Fonseka and Mendis 

[36] estimated a rate of 18% from patients in Colombo during the period 1981 – 1984.  

These people had acquired their infections elsewhere in the country, and most of them 

suffered from the relapse within 24 weeks after the primary attack. 

 

Table 1 - Incidence and recrudescence of Plasmodium falciparum in 1999 in nine districts of Sri Lanka 

District P. falciparum 
cases 

Population P. falciparum 
incidence 

(x 1000) 

Recrudes-
cent cases* 

Number of 
patients 
followed for 
28 days* 

Proportion re-
crudescent* 

Anuradhapura 5,132 725,557 7.07 49 99 0.49 

Badulla 633 1,073,134 0.59 34 100 0.34 

Hambantota 1,018 495,702 2.05 35 100 0.35 

Kurunegala 2,073 1,462,149 1.42 42 100 0.42 

Matale 1,116 495,511 2.25 36 100 0.36 

Moneragala 7,215 448,226 16.10 62 100 0.62 

Polonnaruwa 978 319,632 3.06 50 100 0.50 

Puttalam 3,375 843,410 4.00 53 97 0.55 

Ratnapura 2,685 1,035,690 2.59 42 100 0.42 

* Data reproduced with permission of Dr. G.N.L. Galappaththy [30] 
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Another concern for data quality is that the population census data may be less 

reliable in the North and East.  Also, an important number of malaria infections may 

not have been contracted at the place of reporting.  This may especially be true for 

infections contracted by military personnel in the conflict zone and reported in their 

place of residence while on medical leave.  Furthermore, until 2000, cases were 

generally ascribed to the MOH area of the reporting hospital, regardless of the place 

of residence of the patient. The year 1998 was the most complete in terms of malaria 

case records.   

 

Figure 1 - Annual parasite incidence of 

Plasmodium vivax 

Map of the districts of Sri Lanka with annual 

parasite incidence (API) of P. vivax malaria 

cases at Medical Officer of Health (MOH) area 

resolution over the year 1998. 

 

Figure 2 - Annual parasite incidence of 

Plasmodium falciparum 

Map of the districts of Sri Lanka with annual 

parasite incidence (API) of P. falciparum 

malaria and mixed infections of both P. vivax 

and P. falciparum at Medical Officer of Health 

(MOH) area resolution over the year 1998. 

Figure 1 shows that the annual parasite incidence (API) of P. vivax malaria cases at 

MOH area resolution had marked variation over the island.  Particularly, the districts 

of Jaffna, Kilinochchi and Mullaitivu in the north, and the district of Moneragala and 

the south-eastern MOH areas in Ratnapura district show high malaria incidence.  The 

API of P. falciparum (and mixed) infections (Figure 2) was generally much lower 
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than the API of P. vivax, although the spatial distribution is somewhat similar.  In the 

districts of Batticaloa and Ampara in the east, the proportion of P. falciparum was 

much lower than elsewhere in the country. 

Clearly, the northern areas are facing a serious malaria problem.  Difficulties in 

obtaining prompt treatment may have enhanced malaria transmission.  In the rest of 

the country this factor seems of a lesser importance, as the health systems are 

generally well developed.  Socio-economic factors such as personal protection against 

mosquitoes and quality of housing construction are important in explaining the 

distribution of malaria incidence.  More important, however, are factors influencing 

malaria mosquitoes, such as temperature (altitude), rainfall and resulting river flow 

(See additional files 3: temperature, 4: altitude, 5: rainfall, and 6: rivers and lakes), but 

also (chemical) control efforts by the AMC.  Especially the latter factor has 

historically played an important role in the malaria epidemiology in Sri Lanka [21].  

After 1983, no more governmental vector control has been implemented in the 

northern areas.  To learn more about the relative importance of socio-economic and 

environmental risk factors for malaria, a spatial regression analysis linking incidence 

directly to covariates (as information on vector density and distribution is scarce) is 

being done, the results of which will be disseminated in due course. 

 

Figure 3 - Trends of annual parasite incidence 

Trends of annual parasite incidence of P. falciparum (red bars) and P. vivax (blue bars) malaria over 

the years 1995 (bar on far left) to 2002 (bar on far right), at district resolution.  The height of the bars in 

the legend represents an annual parasite incidence of 10 cases per 1000 persons. 
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Figure 3 shows the trends of annual parasite incidence of P. falciparum and P. vivax 

malaria over the years 1995 to 2002, at district resolution.  Plasmodium falciparum 

and P. vivax generally show similar trends over the 8-year period.  However, there is 

considerable variation in temporal trends over the country, even at a relatively short 

distance: In Jaffna, malaria incidence went down after 1998, whereas it still increased 

in the neighbouring districts of Kilinochchi and Mullaitivu.  For Mannar, data were 

incomplete.  Although the malaria incidence showed a general increase over the 1995 

– 2000 period, it declined strongly after 2000.  The ongoing peace process may be an 

important contributing factor for the recent decline in cases in the conflict zone.  

Notably the access to the area for spray teams has been increased.  Also, foreign aid 

organisations have been providing insecticide-impregnated bednets in the affected 

areas.  The variation in temporal trends and socio-political developments illustrate the 

need for regular updates of malaria distribution maps such as shown in Figure 1 and 

Figure 2.   

 

Figure 4 - Geometric mean monthly parasite incidence patterns 

Geometric mean monthly parasite incidence patterns of P. falciparum (red bars) and P. vivax (blue 

bars) malaria from January (bar on far left) to December (bar on far right), relative to the month with 

the highest geometric mean incidence, over the period January 1995 to December 2000, at district 

resolution.  The height of the bars in the legend represents 100 percent (The month with the highest 

geometric mean incidence for the respective malaria species). 
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Figure 4 shows the geometric mean monthly parasite incidence patterns of P. 

falciparum and P. vivax malaria over the period January 1995 to December 2000, at 

district resolution.  In the northern districts, P. falciparum peaks around March, 

whereas towards the south the peak is shifted towards January.  Plasmodium vivax 

generally peaks in January.  Except for the northern districts, a second malaria peak of 

either species occurs around July.  This peak is especially pronounced in the west-

central districts with very low malaria incidence, where it can even outweigh the 

January peak.  Roughly, in all districts, P. falciparum and P. vivax follow the same 

seasonal pattern, although P. vivax’ seasonality is less explicit.  This observation 

could be due to relapses (activation of hypnozoites in the liver).  Therefore, the P. 

falciparum incidence seems a better proxy for P. falciparum malaria transmission 

seasonality than P. vivax incidence is for P. vivax transmission seasonality, although 

these patterns are also somewhat smoothed by recrudescence. 

There is evidence of considerable spatial variation in the risk of malaria transmission 

at a higher resolution than the MOH area scale presented in this paper.  Malaria is a 

disease of rural areas and cities are mostly unaffected.  The distance of houses to 

breeding sites of malaria vectors within a MOH area is an important risk factor 

[37,38].  The authors of this study are currently working on a malaria risk map of the 

Badulla and Moneragala districts at Grama Niladhari resolution. 

 

Figure 5 - Foreign guest nights in tourist hotels 

Monthly foreign guest nights spent in tourist hotels in 2001 in malarious areas with an annual parasite 

incidence > 1 case/1000 population (red lines and dots) and non malarious areas (blue lines and 

squares).  Source: Ceylon Tourist Board: Annual Statistical Report 2001 [39].  Note that this figure is 
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not representative for other years because of the attack on the Bandaranaike International Airport by 

the Liberation Tigers of Tamil Eelam on 24 July 2001, after which tourism plummeted. 

On average, 370,000 tourists visit Sri Lanka annually, of whom the majority (63%) is 

of European origin (http://www.lanka.net/centralbank/y-td_tourism.html).  Roughly 

14% of tourist hotel nights booked by foreigners in 2001 [39] was in areas with a risk 

of malaria (API > 1 case/1000 population).  Of these, most were spent during months 

of transmission, as the tourist seasons coincide with the inter-monsoon periods 

(Figure 5) when malaria transmission is at its maximum.  Some of the important 

tourist destinations, such as the ancient cities of Anuradhapura, Polonnaruwa, and 

Sigiriya, and the Yala and Uda Walawe national parks are situated in endemic areas, 

but these are mainly popular for day trips.  Most tourists will therefore not be exposed 

during evening or night time, when An. culicifacies is most active.  Tourist hotels 

generally provide anti mosquito measures such as pyrethrum mosquito coils and bed 

nets, and most hotel rooms have a fan or air conditioning, so contact with nocturnal 

indoor-biting vectors is limited.  Repellents are recommended when outdoors after 

dusk.  There is no justification for prescribing chemoprophylaxis to tourists who 

intend to remain in resorts in the non-malarious areas and make only day trips to 

destinations in the malaria endemic areas.  Physicians and travel clinics should tailor 

their advice on prophylactic drugs to the individual traveller, taking into account the 

itinerary and time of travel.  The AMC advises travellers to malaria endemic areas 

(with an API of P. falciparum and/or P. vivax above 10 per 1000 population) to take a 

weekly dose of 300 mg chloroquine (for adults) as prophylactic measure from two 

weeks before the visit until four weeks after the visit.  In case of treatment failure due 

to chloroquine resistance, sulfadoxine / pyremethamine is available at all 

governmental health facilities in the endemic areas.  Carrying anti-malarial drugs for 

self administration (standby treatment) should not be recommended for Sri Lanka, as 

facilities for diagnosis and treatment are available in all parts of the country. 

Conclusions 

This paper provides the first publicly available maps of both P. vivax and P. 

falciparum malaria incidence distribution on the island of Sri Lanka at sub-district 

resolution.  The maps show that both P. vivax and P. falciparum malaria incidence 

have a marked variation in distribution over the island, even within districts.  The 

incidence of P. falciparum malaria follows a similar spatial pattern to that of P. vivax 



 24

but is generally much lower.  In the north, malaria shows one seasonal peak in the 

beginning of the year, whereas towards the south a second peak around June becomes 

more pronounced. 

These maps may be useful for the planning of malaria control activities.  They also 

may be useful to health professionals, travellers and travel medicine professionals in 

their assessment of malaria risk in Sri Lanka.  However, as incidence of malaria 

changes over time, regular updates of these maps are necessary. 
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Addendum to Chapter 2 – Regression analysis of spatial distribution of malaria 

 

Part of these result were presented at the 58th Annual Session, Sri Lanka Association 

of the Advancement of Science [40] 

 

Background 

In chapter 2, the spatial distribution of malaria in 1998 at sub-district level was 

presented.  Although some covariates influencing malaria distribution were discussed, 

this discussion was not supported by a statistical analysis.  This chapter provides the 

spatial statistical analysis of malaria incidence over 1998 in relation to some 

covariates  

Materials and methods 

Malaria data were the aggregated clinical malaria case numbers over 1998 at Medical 

Officer of Health (MOH) area spatial resolution, due to both P. vivax (Figure 1) and 

P. falciparum (Figure 2) infection.  In 1998, there were 226 MOH areas in Sri Lanka.  

Two of these were excluded because of missing malaria data in 1998.  For each MOH 

area, the mid year population for 1998 was calculated by (temporal) interpolation of 

census data, which were collected by the Department of Census and Statistics [41] 

and North East Provincial Council [42]. 

Using a geographic information system (GIS), a digital map of Divisional Secretariat 

Division (DSD) boundaries (See additional files 1a and 1b: Map and list of Divisional 

Secretariat Divisions), was modified into a map of MOH areas by aggregating some 

DSD areas.  The digital MOH area map was then used to calculate the surface area for 

each MOH area, and to extract data from GIS data maps.  Thus, data for the following 

variables were obtained: the mean altitude [43], mean rainfall [44], a binary indicator 

for government “cleared” (controlled) areas (as opposed to areas that are not under 

government control because of conflict) if more than 33% of the surface of an area 

was “cleared” [45], proportion of area surface covered with sparse forest [46], 

proportion of area surface covered with dense forest [46], proportion of area surface 

covered with paddy [46], and proportion of area surface covered with a buffer zone of 
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100 meter around river and tank (reservoirs) shore [46].  The population density was 

calculated by dividing the population by the surface of the area.   

First, each covariate, untransformed and logarithmically transformed (if possible), 

was tested individually in a non spatial negative binomial model.  The residual spatial 

correlation was calculated using the Moran’s I index for spatial correlation on the 

Pearson residuals.  The covariates for which the posterior distribution of the 

coefficient did not include zero in the non spatial negative binomial were all entered 

into a multiple Poisson conditional autoregressive (CAR(γ, τs)) model.  In this model, 

unexplained extra-Poisson variation (variation that is larger than the conditional 

mean) is assumed to be either due to effects of unobserved covariates, or spatial 

autocorrelation due to the contagious nature of the disease.  The extra-Poisson 

variation is then modelled through random effects, which can be spatially auto 

correlated.  The modelling of the (spatial) random effects typically enlarges the 

support of the posterior distribution of the coefficients [47]. 

Another way of modeling count data is through the negative binomial distribution.  

The specification for the negative binomial distribution of an independent malaria 

count y in area i, is ( )~ ,i iy NegBin rλ  with the mass function 
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thus models extra-Poisson dispersion. 

The parameter iλ  was modelled with a logarithmic link function, ( )expi iλ μ=  with 

the logarithmically transformed population as offset.   

We considered T
i i iμ ϕ= +x β  where ( )0 1 2, , ,...,T

νβ β β β=β  is a vector of coefficients 

for ( )0 1, 2, ,, , ,...,T
i i i ix x x xν=x , a vector of an intercept multiplier (usually taken as 

0 1x = ) and ν  covariates, and φi is an area-specific random effect taking into account 

the spatial correlation introduced by the spatial structure of unobserved covariates.  
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For the φi‘s, a CAR(γ, τs) model was adopted which assumes that 
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=  measures between area variation.  To 

facilitate model fit a Bayesian modelling framework was used.  The following prior 

distributions were chosen for the parameters: β0, …, βν ~ U(-∞, ∞), τ, τs ~ Ga(0.005, 

0.005), γ ~ U(a, b) with limits a, b specified as described by Gelfand and Vounatsou 

[48].  For the (non spatial) negative binomial models, the dispersion parameter of the 

negative binomial distribution was assigned a ψ  ~ Ga(0.001, 0.001) prior 

distribution.  The CAR(γ, τs) was considered as a prior distribution for the φi‘s.  The 

effect of this prior distribution is to shrink the observed value of an area to that of the 

local mean, where the local mean is the mean of all contiguous areas excluding the 

area itself.  The posterior distribution of the value of an area is therefore a 

compromise between the prior, which is based on the value of neighbouring areas, 

and the data for the area.  Bayesian CAR models have been widely used in malaria 

mapping [49-52].  A non spatial model was also applied.  The deviance information 

criterion (DIC) [53] was used to determine the best fitting model.  The models were 

estimated using a Markov Chain Monte Carlo process using three chains. The number 

of iterations and the length of the burn-in varied on the models, depending on the 

convergence (assessed by studying plots of the Gelman-Rubin convergence statistic as 

modified by Brooks and Gelman [54]) and the amount of autocorrelation in the 

individual chains. The models were implemented with the software package 

“WinBUGS” [55], called from the statistical environment “R” [56] using the package 

“R2WinBUGS”. 
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Table 2 - Variables tested as covariate in negative binomial non spatial models. 

Coefficient Moran's I DIC Explanatory variable 

Mean 95% CI 
Lower 
bound. 

95% CI 
Upper 
bound. 

Mean 95% CI 
Lower 
bound. 

95% CI 
Upper 
bound. 

 

None    0.61 0.60 0.61 2778 

Annual rainfall (m) -4.02 -4.78 -3.29 0.42 0.38 0.48 2698 

Population density (persons / m2), 
logarithmically transformed -0.83 -1.10 -0.57 0.69 0.67 0.69 2749 

Altitude (m) -3.12 -4.09 -1.95 0.59 0.58 0.60 2757 

Cleared areas (m2 / m2) -2.05 -3.39 -1.01 0.53 0.45 0.59 2763 

River and tank shore (m2 / m2), 
logarithmically transformed -0.46 -1.03 -0.16 0.36 0.22 0.49 2767 

Paddy cultivation (m2 / m2), 
logarithmically transformed 0.22 0.01 0.39 0.61 0.60 0.61 2775 

Dense forest  (m2 / m2) 1.76 0.28 3.66 0.63 0.61 0.65 2775 

Sparse forest  (m2 / m2) 3.91 -1.14 9.99 0.62 0.60 0.62 2778 

Legend: Transf. = Transformation, Dev. = Deviance, NA = Not Available, Log. = logarithmically, CI = 
Credible interval  

 

Results 

The results of the (non spatial) negative binomial model, obtained using three Markov 

chains of 2 000 iterations, including a burn-in of 1 000 iterations (Table 2), showed 

that the posterior distribution of the coefficient did not include zero for most of the 

covariates.  The mean of the posterior distribution of the dispersal parameter r of the 

negative binomial was below one, indicating that the malaria cases, conditional on the 

population and each of the tested covariates, showed a strong extra-Poisson (over) 

dispersion.  The model with the lowest DIC was the model with the total annual 

rainfall as covariate.  Although this covariate lowered the Moran’s I, as compared to 

that of the raw data, it was still significant.  If a model shows spatial autocorrelation in 

the residuals, the posterior density distributions of the coefficients are typically too 

narrow, and the estimates of the mean of the coefficients may be biased.   

In the Poisson models with CAR, the Markov chains of the samples for the coefficient 

of the covariates showed strong autocorrelation.  For reliable estimation, many 

iterations were thus required.  The multivariate model was estimated using three 

Markov chains of 2 600 000 iterations, including a burn-in of 100 000 iterations.  The 

posterior distributions of the coefficients for annual rainfall, logarithmically 
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transformed population density and altitude did not include zero, whereas they did for 

cleared area, logarithmically transformed river and tank shore, logarithmically 

transformed area of paddy cultivation, dense forest or sparse forest (Table 3).   

It should be noted that the deviance and the DIC of the Poisson CAR model was much 

lower than the deviance and DIC of the best non spatial negative binomial model. 

 

Table 3 - Regression results of malaria incidence in the spatial Poisson CAR(γ, τs) model. 

Parameter mean 95% CI Lower bound. 95% CI Upper bound. 
Intercept -9.49 -13.58 -5.63 
βannual rainfall -2.41 -3.28 -1.47 
βlog(population density) -1.06 -1.52 -0.65 
βaltitude -2.92 -4.67 -1.31 
βcleared areas 0.83 -0.90 2.60 
βlog(shoreline) 0.17 -0.09 0.51 
βlog(paddy) 0.11 -0.05 0.26 
βdense forest -0.94 -3.42 1.67 
γ 0.81 0.54 0.97 
τ 0.04 0.04 0.05 
Moran’s I 0.02 -0.07 0.11 
deviance 1419 1380 1465 
DIC 1610   
 

Discussion 

The most important variable in explaining the spatial variability of malaria in single 

variable negative binomial analysis was annual rainfall, with a negative coefficient.  

As discussed in chapter 6, the spatial distribution of annual rainfall has since long 

been associated with the spatial distribution of malaria endemicity.  The explanation 

for this is that Anopheles culicifacies, the main malaria vector in Sri Lanka, breeds by 

preference in puddles in stagnating rivers.  In the region with the highest annual 

rainfall, with a strong bimodal rainfall pattern, rivers rarely stagnate, whereas in the 

region with less annual rainfall (and only one rainfall peak), rivers stagnate during the 

long dry season. 

The second most important variable was (logarithmically transformed) population 

density, also with a negative coefficient.  Population density is an interesting variable 

with many aspects.  It is possible that people have migrated to, or thrived better in 

areas where environmental conditions were less favourable for malaria transmission, 

because of malaria [57].  The spatial distribution of malaria would then be an 
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explanatory variable for the distribution of population density, rather than the inverse.  

On the other hand, in Sri Lanka, population density is associated with wealth, the 

wealthier living in cities.  The wealthier tend to be better protected from mosquito 

bites due to improved housing quality, use of electrical fans or air conditioning and 

purchasing power of bed nets and mosquito repellents.  Densely populated places are 

also associated with environmental pollution, which could affect anopheline mosquito 

breeding negatively.  It is also well possible that the correlation between population 

density and malaria is completely co-incidental.  People have thrived in coastal areas, 

with income generating activities such as trade, fishing and tourism.  The cultivation 

of many crops is more successful in the region with ample annual rainfall, than in the 

dryer areas, resulting in a higher population density in these areas.  Furthermore, in 

the hill country, where lower temperatures are not conducive to malaria transmission, 

there is a large population of tea-estate workers.   

The third most important variable was altitude, again with a negative coefficient.  It is 

well known that temperature decreases linearly with altitude, and parasite 

development in the vector mosquitoes is slow at low temperatures.   

The three most important variables in single variable negative binomial analysis 

(annual rainfall, logarithmically transformed population density and altitude) were all 

significantly different from zero in spatial Poisson analysis allowing for random 

effects.   

The fact that the variable "safety cleared areas" were not significant in a multivariate 

analysis could be explained by high collinearity with rainfall and population density. 



 32

 

 

 

 

 

Chapter 3 – Maps of the Sri Lanka malaria situation preceding the tsunami and 

key aspects to be considered in the emergency phase and beyond 

This chapter was published in the Malaria Journal 2005, 4:8.   

 

Olivier J.T. Briët1*, Gawrie N.L. Galappaththy2, Flemming Konradsen1, 3, Priyanie H. 

Amerasinghe1, Felix P. Amerasinghe1 

 

1International Water Management Institute, P.O. Box 2075, Colombo, Sri Lanka. Tel. 

+94 11 2787404; Fax. +94 11 2786854 

2Anti Malaria Campaign Head Office, Colombo, Sri Lanka 

3 Department of International Health, University of Copenhagen, Denmark 

*Corresponding author. 

 



 33

Abstract 

Background 

Following the tsunami, a detailed overview of the area specific transmission levels is 

essential in assessing the risk of malaria in Sri Lanka.  Recent information on vector 

insecticide resistance, parasite drug resistance, and insights into the national policy for 

malaria diagnosis and treatment are important in assisting national and international 

agencies in their control efforts. 

Methods 

Monthly records over the period January 1995 – October 2004 of confirmed malaria 

cases were used to perform an analysis of malaria distribution at district spatial 

resolution.  Also, a focused review of published reports and routinely collected 

information was performed. 

Results 

The incidence of malaria was only 1 case per thousand population in the 10 months 

leading up to the disaster, in the districts with the highest transmission. 

Conclusion 

Although relocated people may be more exposed to mosquito bites, and their capacity 

to handle diseases affected, the environmental changes caused by the tsunami are 

unlikely to enhance breeding of the principal vector, and, given the present low 

parasite reservoir, the likelihood of a malaria outbreak is low.  However, close 

monitoring of the situation is necessary, especially as December – February is 

normally the peak transmission season.  Despite some losses, the Sri Lanka public 

health system is capable of dealing with the possible threat of a malaria outbreak after 

the tsunami.  The influx of foreign medical assistance, drugs and insecticides may 

interfere with malaria surveillance, and the long term malaria control strategy of Sri 

Lanka if not in accordance with government policy. 
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Background 

After the tsunami hit Sri Lanka on 26 December 2004, news reports and public health 

agencies warned against the possibilities of an increase of vector borne diseases, in 

particular malaria and dengue.  Immediately after the disaster, an estimated 860,000 

people were displaced and more than 820 emergency camps established throughout 

the affected areas [58].  By 14 January, approximately 440,000 people were still 

sheltered in approximately 460 emergency camps [59].  For maps of the tsunami 

affected area, we refer elsewhere [60]. 

Malaria in Sri Lanka is of a highly unstable nature and has historically fluctuated 

greatly over the years and with significant seasonal differences.  Sixty-five to eighty 

percent of the malaria cases are caused by Plasmodium vivax and the remainder by 

Plasmodium falciparum [2].  Recently, an overview of the spatial and temporal 

distribution of malaria in Sri Lanka over the period 1995 – 2002 was published in this 

journal [61].  The present publication aims at providing an update on the recent 

malaria situation, to October 2004 inclusive, and to discuss factors of relevance which 

may help in assessing the potential of the tsunami and ensuing events to exacerbate 

the malaria situation. 

 

Figure 6 - Population 

Map of population by divisional secretariat division in Sri Lanka estimated for mid December 2004.  

One dot represents 1000 people.  Sources: Department of Census and Statistics 

(http://www.statistics.gov.lk/), North East Provincial Council (http://www.nepc.lk/ and UNHCR 

(http://www.unhcr.lk). 
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Methods 

Malaria maps were based on monthly records over the period January 2004 – October 

2004 (the most recent month for which data recording was complete at the time of 

writing) of microscopically confirmed malaria parasite positive blood smear readings, 

at district spatial resolution.  These were collected by the Anti Malaria Campaign 

(AMC) Directorate of the Ministry of Health from aggregated disease records 

reported by governmental hospitals and mobile clinics.  Additionally, in the temporal 

analysis, monthly data by district for the period 2001 – 2002, and data by sub district 

for 1995 – 2000 as described by Briët et al. [61] were used.  The quality of routinely 

collected information on malaria is described elsewhere [61].  As denominator for the 

incidence calculations, population estimates for 2001 and beyond were made by 

exponential interpolation (and extrapolation to December 2004) (Figure 6) as follows.  

For the districts Mannar, Vavuniya, Trincomalee and Batticaloa, that were not or 

incompletely enumerated in the 2001 census because of limited access of the 

government to these conflict affected areas, the 2001 mid-year population was taken 

from data posted by the North East Provincial Council [42].  For all other districts, the 

2001 mid-year population was taken from data posted by the Department of Census 

and Statistics [41].  The natural annual (mid-2001 to mid-2002 and mid-2002 to mid-

2003) population growth rates for Jaffna, Kilinochchi, Mullaitivu, Mannar, Vavuniya, 

Trincomalee and Batticaloa were taken as the average annual growth rates of all the 

other districts, calculated from mid year population statistics estimated by the 

Department of Census and Statistics.  For all other districts, these growth rates were 

calculated for each district separately.  For mid 2003 – mid 2004 and beyond, the 

growth rates for mid-2002 to mid-2003 were used.  Further, the number of internally 

displaced persons (IDPs) was taken into account [62].  For each month and for each 

district, the net number of immigrants was calculated as the total number of IDPs 

moved to or within a district since 2001, minus the number of IDPs moved from or 

within that district.  This net number of immigrants was then distributed over the 

months proportionately to the monthly statistics of IDPs moved to or within a district.  

Additionally, the number of monthly immigrants from India was taken into account. 

A focused review of literature has been performed, identifying crucial information for 

the outbreak preparedness and control during the emergency phase.  The intent was 

not to present a complete review of malaria in Sri Lanka but to provide information 
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useful for an assessment of the current situation.  A general review of malaria in Sri 

Lanka can be found in Konradsen, Amerasinghe et al. [2]. 

 

Figure 7 - Monthly parasite and blood smear examination incidence patterns 

Monthly parasite incidence patterns of P. falciparum and P. vivax malaria combined per 1000 

population (red line on logarithmic scale), blood smears examined per 1000 population (black line on 

logarithmic scale), and percentage of blood smears positive for malaria (blue line) from January 1995 

to October 2004 in Sri Lanka. 

 

Figure 8 - Trends of parasite incidence 

Trends of parasite incidence of P. falciparum (red bars) and P. vivax (blue bars) malaria over the years 

November 1995 – October 1996 (bar on far left) to November 2003 – October 2004 (bar on far right), 

at district resolution.  The height of the bars in the legend represents an annual parasite incidence of 10 

cases per 1000 persons. 
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Results and discussion 

Present malaria situation and parasite reservoir 

The country-wide malaria incidence increased from January 1996 to January 2000, 

with the typical seasonality of high peaks around January and lower peaks around 

June – July, but it has decreased dramatically since January 2000 (Figure 7).  Figure 8 

shows that the recent decrease in the overall malaria incidence in the country is 

predominantly due to a decrease in incidence in the districts of Vavuniya and 

Kilinochchi in the north.  The decrease was least in the district of Ampara, making it 

the most malarious district during January – October 2004 (Figure 9 and Figure 10).  

Although districts on the east coast which were badly affected by the tsunami had 

been relatively malarious in 2004 as compared to the rest of the country, the 

maximum of around 1 case per 1000 people over a 10 month period in these districts 

is remarkably low.  The total number of malaria cases in 2003 was 10,510, the lowest 

since the resurgence of malaria in 1968 when the eradication campaign failed [21].  

The year 2004 promises to be three times lower with only 3,037 cases recorded up to 

October, as opposed to 9,682 cases recorded during January – October 2003.  The low 

incidence is not related to a decline in collection effort, which has decreased only 

marginally (Figure 7).  At the time of writing, malaria incidence information for the 

months of November and December was still incomplete.  In November 2004, 

without the figures for the non endemic districts Gampaha and Kalutara, and data 

from a few medical institutions in Mannar and Mullaitivu missing, thus far only 230 

cases were recorded.  In the malaria endemic districts, December, January and 

February are normally the months with the highest malaria incidence [61], so a rise in 

case numbers may normally be expected.  However, neither the district authorities nor 

the Epidemiology Unit of the Ministry of Health have reported any malaria cases 

from the affected areas for 30 December 2004 –13 January 2005, based on the spot 

checks performed and the review of available health information [63].  Asymptomatic 

infections of P. falciparum and P. vivax and dormant stages of P. vivax normally 

provide the parasite reservoir for bridging periods of low seasonal transmission (with 

unsuitable conditions for mosquito vectors).  Under the present policy of 

administering primaquine in addition to chloroquine (see section on diagnosis and 

treatment), the reservoir of dormant stages of P. vivax will be low and this will delay a 

possible outbreak.  It must be emphasized that the low level of malaria transmission in 
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the recent past does not guarantee that localized or even island wide epidemics will 

not occur.  In the past, even after periods of very low levels of malaria transmission, 

outbreaks have occurred, often due to constraints placed on the public health system, 

by unusual rainfall patterns or by yet unexplained factors. 

Figure 9 - Parasite incidence of Plasmodium 

vivax 

Map of the districts of Sri Lanka with P. vivax 

malaria cases per 1000 population over the 

period January – October 2004. 

 

Figure 10 - Parasite incidence of Plasmodium 

falciparum 

Map of the districts of Sri Lanka with P. 

falciparum malaria cases and mixed infections 

of both P. vivax and P. falciparum per 1000 

population over the period January – October 

2004. 

 

Capacity of health care services and disease surveillance 

An important factor to consider in the current situation is the capacity of the existing 

health care service.  Following the tsunami the Sri Lanka Ministry of Health reported 

22 hospitals and nine administrative buildings damaged or completely destroyed, 

mostly in Ampara and Trincomalee districts [64].  It has been reported that at least 40 

doctors and hundreds of other medical staff have died as a consequence of the tsunami 

and a much higher number injured or in other ways affected by the disaster [65].  

However, both the central government departments and organizations in the field 

report sufficient medical staff.  Even in the conflict affected areas in the north and 

east, the AMC has been able to monitor malaria and react timely with control 
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measures to outbreaks since the peace process started in 2002.  Also, the AMC has 

long standing experience with mobile clinics for malaria detection and treatment in 

remote areas.  Lack of co-ordination among the many government departments, 

international aid agencies, non-governmental organizations and private individuals 

involved in the first phase of the emergency continues to be an important issue weeks 

into the disaster.  According to the Ministry of Health media reports, more than 600 

foreign doctors are now working in the affected areas, but few, if any, are registered 

with the Sri Lanka Medical Council or other relevant authorities [66].  With doctors 

from many countries, language barriers are also a perceived problem. 

In some places, central stocks of medical supplies were destroyed, including the 

Regional Medical Supply Division in the Ampara District.  However, sufficient drugs 

have been imported during the days and weeks following the disaster.  The World 

Health Organization has drawn up plans for antimalarials, insecticides and spray 

equipment to be made available on request.  Although the increased capacity at the 

district and provincial levels has improved the co-ordination, a risk remains that local 

needs for health care are not adequately covered in spite of the availability of 

significant resources.  In some parts of the island, especially areas in the east, affected 

both by the destruction caused by the tsunami and by exceptionally heavy rainfall in 

the weeks following, distribution of drugs has been problematic and this has left 

certain communities vulnerable. 

Whereas the overall capacity to provide treatment and routine malaria control 

activities, in general, has not been severely hampered, the routine health information 

system will have been constrained by the large number of autonomous health camps 

set up, and their lack of integration with the established surveillance system.  It is 

essential to establish a system for monitoring malaria in the affected areas.  Many 

people are moving back to their old place of residence trying to rebuild livelihoods 

and it will be essential for the public health authorities to keep contact with these 

communities to prevent an increase in malaria going unnoticed. 
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Diagnosis, treatment and drug resistance 

In Sri Lanka, microscopy on blood smears or use of rapid diagnostic test kits have 

been the standard diagnostic procedure, and precedes the prescription of drugs to the 

patient.  In the current situation, with the many small health clinics established within 

emergency camps, it is likely that the use of rapid diagnostic kits would be the more 

feasible means of confirmation.  The first line drugs recommended for malaria 

treatment in Sri Lanka is still a chloroquine and primaquine (PQ) combination for 

cases of P. vivax as well as P. falciparum infection.  Primaquine is not administered to 

children below one year, and those with known G-6PD enzyme deficiency, and for 

pregnant mothers. 

So far, there have been no reports of chloroquine-resistant P. vivax infections in Sri 

Lanka.  The first chloroquine-resistant P. falciparum case was reported in 1984 [67].  

Up to 62% in vivo chloroquine resistance has been recorded in malarious areas 

[30,34,61,68].  For chloroquine resistant cases of P. falciparum the government 

recommended drug is sulphadoxine-pyrimethamine (SP).  However, SP is not 

recommended for the last trimester of pregnancy, first six weeks of lactation and for 

children below two months of age.  The first SP-resistant case of P. falciparum was 

reported in 1992 in Polonnaruwa district.  Up to 1999, five to six cases have been 

reported by the AMC.  More recently (January – June 2002), SP resistant P. 

falciparum has been documented in the Northern Province [68].  For SP resistant 

cases quinine is recommended, but only as an in-patient treatment. 

In the current emergency situation, with many (foreign) doctors working 

autonomously, the diagnosis and treatment practices may depart from the established 

government guidelines and new antimalarials are also likely to be brought in.  

Moreover, the current practice of restricting SP to government hospitals will be 

difficult to enforce.  Similarly, introduction of low quality and obsolete drugs will be 

difficult to counter at community level at the current stage of supervisory capacity and 

co-ordination level.  Drugs have been reported stolen from warehouses, allegedly 

finding their way to private trade establishments [69].  Overall, it is crucial that the 

development of drug resistance is monitored closely and inappropriate drugs are 

actively phased out of the market to avoid later complications in case management. 
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Environmental changes and vector breeding 

The seawater brought inland by the tsunami has mixed with monsoon rainwater to 

form puddles of varying salinity.  Also, thousands of muddy surface water puddles 

have been created as a result of destruction and rehabilitation activities that are 

already underway.  The brackish puddles are expected to favour the breeding of 

Anopheles subpictus sibling species B, which is a well-known coastal breeding 

species in Sri Lanka.  However, it has not been directly incriminated as a field vector 

in Sri Lanka, despite its susceptibility to P. falciparum [70].  Nevertheless, 

Abhayawardana et al. [71] found peak malaria transmission in coastal areas of 

Puttalam in the presence of An. subpictus sibling species B and the complete absence 

of Anopheles culicifacies (the main malaria vector in Sri Lanka), and suggested that 

this An. subpictus sibling may have a role in transmission.  It is noteworthy, that 

freshwater An. subpictus (which is now known to consist of a mixture of species A, C 

and D), which breeds in muddy rain fed puddles, has been consistently incriminated 

in malaria transmission in many inland areas of Sri Lanka [2].  Another species that is 

likely to breed prolifically in muddy rain-fed pools is Anopheles vagus.  This species 

has been linked as a vector responsible for a malaria outbreak in southern Sri Lanka 

[2,72].  On present evidence, neither An. subpictus nor An. vagus, are likely to cause 

major malaria epidemics but could, at high density, be responsible for focal outbreaks 

that need quick action.  Thus, it is important that an entomological monitoring 

programme be set up in the period leading up to and during the south west monsoon 

that is expected during May – June 2005 in the tsunami affected western and southern 

Sri Lanka.  It should be noted that the infamous Asian brackish water breeding 

malaria vector Anopheles sundaicus, which is a threat in the tsunami-affected areas in 

Indonesia, Myanmar, and the Andaman and Nicobar islands [73], does not occur in 

Sri Lanka. 

The main vector in Sri Lanka is An. culicifacies type E [74,75], which breeds mainly 

in pools formed in river and stream beds, and therefore, its density is mostly 

dependent on temporal and spatial variations in rainfall and river flow.  Anopheles 

culicifacies also breeds in abandoned gem mining pits, agricultural wells and to a 

lesser extent in pools in agricultural water reservoirs [2].  It is unlikely that the rubble 

constituting a major part of the landscape in the affected areas creates breeding 

opportunities for An. culicifacies, unless it blocks waterways and creates pooling.  
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Post tsunami development activities may revive banned sand mining practices in 

rivers.  If this happens, clear water pools created by these sand mining activities may 

serve as breeding sites for An. culicifacies [2].  Overall, it is very unlikely that the 

principal vector of malaria in Sri Lanka will breed prolifically in brackish water 

habitats or other habitats that may be created during the post tsunami reconstruction 

phase.  Similarly, the principal dengue vector in Sri Lanka, Aedes aegypti, does not 

breed in saline water [76].  However, it may find plenty of rainwater-filled containers 

amidst the rubble created by the disaster for it to breed. 

Vector control strategies and insecticide resistance 

The Colombo based Head Office of the AMC gives the overall guidelines for island 

wide vector control, while each province works out a plan for control activities based 

on the distribution and level of malaria transmission.  Several malaria vector control 

interventions are currently employed within the country.  In all districts, residual 

insecticide spray activities are focused on areas where malaria transmission has been 

established by confirmed malaria cases.  The control of anopheline larvae using 

mostly chemicals focuses on sites close to human habitation.  Small-scale application 

of larvivorous fish and environmental modifications are also carried out.  Since 1997, 

mosquito nets, which are biannually treated with insecticide, are distributed free of 

charge in malarious areas.  Since two years, the main control effort is through these 

nets.  Since January 2004, 80,000 nets with long lasting insecticide have been 

distributed.  Also, nets are available for purchase from outlets in most parts of the 

country. 

Studies in Sri Lanka over the 1990s on An. culicifacies and a range of potential 

secondary vectors such as An. subpictus and An. vagus have shown high level of 

resistance to either organochlorines, organophosphates or to both groups of 

insecticides [2,77-79].  DDT and Malathion are no longer recommended since An. 

culicifacies and An. subpictus has been found resistant.  Currently, synthetic 

pyrethroids such as Cyfluthrin, Deltamethrin, Etofenprox, and Lambda-cyhalothrin 

are being used in the country.  At present, Fenitrothion is the only organophosphate 

used for vector control.  A study conducted by Abhayawardana from 1990 to 1992 

[11,71] on An. subpictus found 68% and 54 % susceptibility to Malathion and 

Fenitrothion, respectively, for inland species (sibling species A), whereas for coastal 

species (primarily sibling species B) it was 100%.  However, the latter was found 
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resistant to permethrin [71].  From several districts it was reported that, as a result of 

the tsunami, organisations have brought in insecticides not normally used or no longer 

recommended for vector control in Sri Lanka (P. Amerasinghe, personal 

communication).  Vector resistance, in the light of the introduction of new 

insecticides, needs to be monitored and if necessary action should be taken. 

Exposure of the affected community 

The majority of the people initially affected by the disaster are still living in 

emergency camps or in other places close to the coast.  At the time of writing, to the 

best of our knowledge, relatively few people have moved from areas of low or no 

malaria transmission to areas of high transmission.  However, during the next phases, 

when people may be resettled in semi-permanent and later in permanent housing, 

communities may be relocated from areas where they have had no malaria experience 

to malarious areas.  In these situations, the communities’ capacity to cope with 

malaria infection will be low. 

Despite distribution of nets to many camps, and intensified vector control in some 

areas, people in the emergency camps (schools, temples, mosques, etc.) and those 

returning to damaged houses are more exposed to mosquito bites than in pre-disaster 

housing, due to the open nature of the shelter.  Additionally, most families will have 

lost mosquito nets or other means to protect against mosquito bites.  It is more 

difficult to assess the protective effect of tents that have been set up in most of the 

semi-permanent camps established.  The location of semi permanent and permanent 

settlements may have a significant effect on the risk of infection.  Epidemiological 

studies from other parts of Sri Lanka have shown that people living within 750 m of a 

stream with An. culicifacies breeding, were at significantly higher risk for malaria 

than people living further away [37]. 

Conclusions 

This paper provides maps of both P. vivax and P. falciparum malaria incidence 

distribution on the island of Sri Lanka at district resolution in the 10 months preceding 

the tsunami, and an analysis of monthly malaria incidence in the country since 

January 1995.  The malaria incidence was historically low, which implies a limited 

parasite reservoir in the human population.  In spite of the fact that the months of 

December and January are normally the peak period for transmission, given the 
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transmission level in the months leading up to the disaster, the risk of a large-scale 

outbreak seems to be limited.  However, the low transmission levels over the past 

years may also have made people less alert to possible outbreaks, and the population 

would have less protective immunity towards the disease.  The environmental changes 

resulting from the tsunami do not create particular opportunities for breeding of the 

principal malaria vector An. culicifacies but potential does exist for less important 

species such as An. subpictus and An. vagus.  People living in emergency camps or 

returning to pre-disaster areas of residence are at higher risk of mosquito bites than 

normal.  In spite of the emergency, the capacity of the public health authorities to 

perform malaria preventive and curative interventions remains high and essential 

supplies and staff capacity is not a problem.  However, co-ordination of assistance 

and maintaining a strong surveillance system remain significant areas of concern.  

Increased attention to the establishment of a monitoring system including both 

parasitological and entomological parameters is recommended.  Likewise, the large 

inflow of donated drugs and insecticides outside government control will potentially 

have long term implications on malaria control and case management, and especially 

the quality of administered drugs and the development of drug resistance requires 

careful monitoring. 
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Abstract 

One year ago, the authors of this article reported in this journal on the malaria 

situation in Sri Lanka prior to the tsunami that hit on 26 December 2004, and 

estimated the likelihood of a post-tsunami malaria outbreak to be low.  Malaria 

incidence has decreased in 2005 as compared to 2004 in most districts, including the 

ones that were hit hardest by the tsunami.  The malaria incidence (aggregated for the 

whole country) in 2005 followed the downward trend that started in 2000.  However, 

surveillance was somewhat affected by the tsunami in some coastal areas and the 

actual incidence in these areas may have been higher than recorded, although there 

were no indications of this and it is unlikely to have affected the overall trend 

significantly.  The focus of national and international post tsunami malaria control 

efforts was supply of antimalarials, distribution of impregnated mosquito nets and 

increased monitoring of the affected area.  Internationally donated antimalarials were 

either redundant or did not comply with national drug policy.  However, few seem to 

have entered circulation outside government control.  Despite distribution of mosquito 

nets, still a large population is relatively exposed to mosquito bites due to inadequate 

housing.  There were no indications of increased malaria vector abundance.  Overall it 

is concluded that the tsunami has not negatively influenced the malaria situation in Sri 

Lanka. 
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Introduction 

One year ago, the authors of this article reported in this journal [80] on the malaria 

situation in Sri Lanka prior to the tsunami that hit on 26 December 2004, and 

estimated the likelihood of a post-tsunami malaria outbreak.  Here they report on 

changes in malaria incidence recorded in the Anti Malaria Campaign (AMC) since the 

tsunami.  Also, they discuss the control measures taken in response to the tsunami by 

the Anti Malaria Campaign (additional file 1), international donors and non-

governmental organizations (NGOs) (additional file 2), and effects on the surveillance 

system. 

 

Figure 11 - Parasite incidence by district pre- and post-tsunami. 

Monthly parasite incidence of P. falciparum and P. vivax malaria combined in 2004 (red bars) and 

2005 up to December (blue bars).  The bar on the far left represents January.  Overlapping bars colour 

purple.  The height of the bars in the legend represents 1 case per 10,000 persons per month.  Numbers 

indicate the percentage change per district of January – December 2005 as compared to January – 

December 2004. 
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Malaria incidence pre and post tsunami 

Figure 11 shows the monthly malaria incidence January 2004 – December 2005 at 

district level, and the percent difference between the successive years.  On the north, 

east and south coasts, most of the districts show a strong decline (except Trincomalee 

[-4%]), whereas the malaria incidence increased in the districts of Colombo, Gampaha 

and Puttalam on the west coast, which were the least tsunami affected coastal districts 

of the country.  A possible reason for the slow decline of malaria in Trincomalee, as 

compared to other coastal districts in the east, is that particularly in Trincomalee there 

was increased civil unrest and political protests in 2005 as compared to 2004, 

hindering the control efforts of the regional malaria officer (RMO).  There is no 

indication that the physical impact of the tsunami has affected the malaria case load in 

Trincomalee District as 85% of the cases were reported from Trincomalee Medical 

Officer of Health (MOH) administrative area, (representing about 28% of the 

population in the District), which was relatively unaffected by the tsunami in terms of 

buildings destroyed and people killed or missing [81] as compared to other coastal 

MOH administrative areas in Trincomalee district.  Only eighteen cases (six percent 

of the total cases in Trincomalee District) occurred in Kinnyia MOH among tsunami-

displaced people.  Note that despite the “dramatic” increases in malaria incidence in 

some districts on the west coast, the number of cases in 2005 was low, and these 

increases could have arisen from incidental mini-outbreaks.   
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Table 4 - Annual percentage of growth in malaria incidence over the years 2001 to 2004 as compared 

to the years 2004 – 2005, absolute case numbers in 2005 and population projection in districts in Sri 

Lanka, and their geographic position. 

District Position 

Annual 
percent 
growth of 
incidence 
2001-2004 

Annual 
percent 
growth of 
incidence 
2004-2005 Difference 

Absolute 
cases 
2005 

Projected 
population 
mid 2005 

Ampara East coast -18 -83 -65 126 612696 

Anuradhapura Inland -50 -30 20 448 780900 

Badulla Inland -65 -94 -30 3 829245 

Batticaloa East coast -59 -80 -22 84 540535 

Colombo West coast -61 179 240 17 2382298 

Galle South coast NA NA NA 0 1028690 

Gampaha West coast -63 50 113 56 2112382 

Hambantota South coast -65 -84 -18 6 536952 

Jaffna North coast -70 -50 19 24 653466 

Kalutara West coast -52 -43 8 4 1092711 

Kandy Inland -59 29 88 17 1345092 

Kegalle Inland -65 -46 19 6 798845 

Kilinochchi West coast -89 -60 29 16 147603 

Kurunegala Inland -61 -50 11 258 1503423 

Mannar West coast -37 -93 -56 4 100181 

Matale Inland -50 -77 -27 18 462498 

Matara South coast -47 -55 -9 10 799400 

Moneragala Inland -64 -89 -25 17 413301 

Mullaitivu East coast -88 -43 45 5 122942 

Nuwara Eliya Inland -55 -100 -45 0 728166 

Polonnaruwa Inland -41 -90 -49 37 378379 

Puttalam West coast -69 159 228 102 738475 

Ratnapura Inland -74 -68 6 22 1068896 

Trincomalee East coast -37 -4 33 286 355573 

Vavuniya Inland -73 45 118 62 155650 

NA*: In Galle District, only 2 malaria cases were reported in 2001 and none thereafter. 
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Figure 12 - Monthly parasite and blood smear examination incidence patterns. 

Monthly parasite incidence patterns of P. falciparum and P. vivax malaria combined per 1000 

population (thick red line) and 12 month moving average (thin red line), blood smears examined per 

1000 population (thick black line) and 12 month moving average (thin black line), and proportion of 

blood smears positive for malaria (thick blue line) and 12 month moving average (thin blue line) from 

January 1995 to December 2005 in Sri Lanka.  Ninety-five % Confidence areas are indicated for one-

month ahead prediction of time series for January - December 2005, using the fixed trends as found in 

the period April 2000 – December 2004 (in grey). 

 

Although with considerable spatial variation (Table 4), the malaria incidence in Sri 

Lanka shows a general downward trend since about April 2000 (Figure 12).  This 

makes it necessary to assess whether this trend has continued after the tsunami, or 

whether there has been a change in trend since the disaster.  A possible explanation 

for the downward trend pre-tsunami is the decrease in armed conflict that preceded 

the signing of the memorandum of understanding on the Permanent Cessation of 

Hostilities in February 2002.  The Anti Malaria Campaign was one of the few 

institutions that had access to uncleared areas during the conflict, but was limited in 

its operation by hostilities.  It should be noted that malaria transmission in Sri Lanka 

has always fluctuated over the years in response to major changes in control strategies 
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and efforts, climate variations, or due to factors not yet fully established.  Between 

April 2000 and December 2004, the malaria positive blood smear incidence in the 

whole country has decreased exponentially by 8 percent per month (the 13 month 

moving average [with values for months at extremes given half weight] plotted in 

Figure 12 is approximately a straight line on a logarithmic scale).  Over the same 

period, the surveillance effort (the blood smears examined per population) has also 

decreased exponentially, but only by 0.8% per month.  By December 2004, the ratio 

of positive slides to the number of blood slides examined was 1:250 (400 / 99694).  

The observed monthly incidence since the tsunami, over the period January –

December 2005 is not significantly different (alpha = 0.05) from the one-month-ahead 

prediction applying the fixed trend and using a first order auto regressive model with 

first order seasonal component.  Therefore, at the country level, there is no evidence 

that the tsunami affected the incidence of malaria.   

Surveillance issues 

Many of the tsunami-affected areas are also affected by the ethnic conflict, and this 

undoubtedly influences the quality of incidence records negatively in these areas.  

This, and spatial differences in other surveillance aspects [61] and transmission make 

it logical to assess the impact of the tsunami disaster and response by comparing the 

malaria situation in affected areas post disaster with the situation preceding the 

disaster, rather than comparing affected with unaffected areas.  However, surveillance 

was not quite the same in affected areas post tsunami.  Mobile clinics have visited 

camps with displaced people and performed active case detection (patients with fever 

were encouraged to test for malaria), and results were not taken into account in the 

surveillance database.  Furthermore, approximately 6000 malaria rapid diagnostic kits 

have been supplied by UN agencies [82].  These kits are used by AMC Regional 

Malaria Officers in remote areas if no microscopists are available.  Results from these 

tests were not included in the surveillance statistics in 2005 (but will be from January 

2006 onwards).  At the country scale, 1000 kits per month is relatively insignificant to 

the100,000 slides that were on average examined (routinely) monthly over 2005, but 

this may have underestimated figures from tsunami affected areas specifically.  

However, the number of cases detected but not reported by these methods can be 

characterized as “few”, although precise figures are not available (GNLG, personal 

communication).  Overall, the surveillance effort (blood films examined) over the 
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period January –December 2005, as per the surveillance database (Figure 12) was not 

significantly different from predicted.  Therefore, at country level, there is no 

indication that the tsunami has affected surveillance capacity, either negatively or 

positively after the international aid effort. 

Tsunami medical aid and interference with country malaria treatment policy 

Over 100,000 anti-malarial tablets were supplied by UN agencies after the tsunami 

[82].  These are chloroquine, proguanil and sulphadoxine / pyrimethamine (SP) 

tablets, which are in line with government policy.  However, given the current low 

endemicity level of malaria (less than 4,000 cases were reported over the year 2004, 

and 1,628 cases over 2005), and the fact that government drug warehouses were well 

stored (50,000 tablets per district) prior to the tsunami, most of these donated tablets 

is likely to expire.  Although stocks of some other medications have been reported 

“lost” from warehouses, this has not been the case for antimalarials.  Some NGOs 

brought small quantities of artesunate-based tablets (currently not in line with 

government policy) into the country, and were treating fever cases in camps the first 

week after the disaster until being asked by the AMC (RMOs visited camps when 

possible) to refer cases to government medical institutions or otherwise treat with 

government approved medication after confirmation of disease.  A large shipment of 

unsolicited artesunate-based tablets arrived at Colombo port but was not cleared by 

customs after AMC orders (GNLG, personal communication). 

Vector control and personal protection since the tsunami 

Half a year post tsunami, over 500,000 people were registered as tsunami-displaced in 

welfare centres or staying with friends and relatives [82], of which then almost 10,000 

families were still staying in tents.  The latest government estimates are that Sri Lanka 

is 21 percent of the way to its overall housing goal.  So far, 7,461 new homes have 

been built, while homeowners have repaired another 13,737 homes.  These statistics 

are from the government's Reconstruction and Development Agency, which is 

coordinating the tsunami recovery.  Therefore, by government estimates, several 

hundred thousand Sri Lankans are still without permanent homes.  Some 33,000 

families, or at least 150,000 people, remain in transitional shelters.  Others are living 

temporarily with relatives or friends [83].  Although international and national NGOs 

have contributed to malaria vector control by distributing over 100,000 insecticide 
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treated nets (Additional file 2), many of the people in the camps have no way to use a 

mosquito net because the tents or barracks are too crowded [84], or they have 

difficulty placing the nets properly (particularly in tents).  Also, lack of space may 

force displaced people to spend lots of time outside and therefore exposed.  Although 

in tsunami affected Aceh (Indonesia), insecticide-impregnated plastic sheeting for 

refugee tents and temporary houses were used, these have not been reported in Sri 

Lanka.  International NGOs have also contributed to malaria vector control by 

supplying fogging machines and they have helped with the development of disease 

awareness campaigns.  After incidental reports of NGOs spraying insecticide, the 

government has issued technical guidelines on the application of insecticides for 

control of vector-borne diseases in tsunami-affected areas in January 2005.  In the 

immediate post tsunami period, there was a programme of chlorination of wells and 

regular spraying of larvicides and fogging around settlement camps.  Also, in some 

camps, RMOs have carried out indoor residual spraying.  In this context, it is 

important to note that for Anopheles culicifacies and Anopheles subpictus A, 

widespread resistance to Malathion has been found and, maybe more importantly, 

these two species also have developed some resistance to pyrethroid insecticides now 

important in the operations of malaria control [85]. 

Population movement 

In South India, the potential migration in and out of the tsunami hit areas was initially 

seen as a potential risk of introducing malaria into areas with low prevalence [86].  

However, a situation analysis three months after the disaster found only limited 

population movements in South India but highlighted the problems of increased 

migration into the area by e.g. fishermen and pilgrims [87].  Although in Sri Lanka, 

(still) many people are registered as Internally Displaced Persons (IDPs) as result of 

the tsunami, most of these are hosted by friends and family or housed in camps in the 

vicinity of their original residences.  Figures on inter-district displacement as result of 

the tsunami are not available, but it can be characterized as low (International 

Organization for Migration Sri Lanka, UNHCR Sri Lanka, Humanitarian Information 

Centre for Sri Lanka, personal communications). 
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Vector ecology 

Densities of the principal malaria vector An. culicifacies and secondary vector An. 

subpictus have declined in the whole country, possibly due to a gradual switch from 

less effective organophosphates to pyrethroids since 2001, but it is also possible that 

indoor resting of vectors has been affected by the decline in use of thatched roofs 

(with cadjan or palmyrah leaves) with socio-economic development (The districts in 

the north and east have profited less from this development).  Overall, there was no 

indication of increased malaria vector breeding in tsunami affected areas (R. R. 

Abeyasinghe, personal communication).  In the tsunami affected southern District of 

Hambantotha, not a single An. culicifacies specimen was found by the AMC 

entomological team in the normally high transmission month January.  In a small 

study in tsunami-affected areas in the east coast, it was found that anophelines (An. 

culicifacies in wells, An. subpictus in pools after rains, Anopheles varuna and 

Anopheles vagus in rice fields) were breeding in all types of habitats, albeit in small 

numbers.  Larval populations were affected by rainfall and cleaning of wells [88], as 

well as by chlorination and regular spraying of larvicides.  On average, the coastal 

belt affected by salt water intrusion was about 1 km from the shore, and the salt water 

deposited by the tsunami dried up quickly and did not sustain the breeding 

populations of mosquitoes.  The east of the island (especially Batticaloa and Ampara 

Districts) received substantial rainfall within a couple of weeks after the tsunami, 

resulting in some flooding.  This fresh water receded within a few days washing away 

any traces of salt water.  An entomological study undertaken post tsunami along the 

coast of Tamil Nadu (India) found that the urban malaria vector Anopheles stephensi 

was introduced into the area from nearby towns and became the predominant species 

only four weeks after the wave hit the coastline.  Likewise, in India, the rural malaria 

vector An. culicifacies seemed to adapt to higher levels of salinity than what had 

previously been reported, but the increasing temperatures dried up the breeding sites 

created in the debris left behind by the tsunami by April-May [87].  On the Andaman 

and Nicobar Islands, the most important vector found breeding in tsunami affected 

areas was the brackish water mosquito Anopheles sundaicus [89].  In Sri Lanka, 

neither An. sundaicus nor An. stephensi are found. 
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Conclusions 

Despite initial warnings from some international health agencies, malaria in Sri Lanka 

did not increase after the tsunami.  The effect of the tsunami disaster on malaria can 

not be accurately assessed in the presence of control measures.  However, it appears 

that measures taken by the local health authorities in collaboration with NGOs were 

sufficient to prevent possible outbreaks.  In addition, the ecological impact of the 

tsunami was not conducive to malaria vector breeding.  However, still a large part of 

the population may be exposed to mosquito bites, despite distribution of impregnated 

bed nets.  It is unfortunate that a large quantity of antimalarials may go to waste due 

to over abundant stocks, or incompatibility with the national drug policy.  In 

emergency situations, donors and NGOs are urged to contact local health authorities 

for coordination. 
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Addendum to Chapter 4 – Analysis of pre and post tsunami trends in malaria 

incidence time series 

 

Introduction 

The availability of more recent malaria case data, and the methodology developed in 

Chapter 8, allowed for a more rigorous statistical analysis of the question whether the 

tsunami has had an impact on all-island malaria incidence.  In particular, it was 

investigated whether post-tsunami the slope of the (downward) trend changed. 

Material and Methods 

Data 

The time series of whole island malaria cases and population used were the same as 

presented in Chapter 4, with the exception that the time series were extended up to 

and including December 2006 (Figure 13). 

 

Figure 13 - Malaria incidence in Sri Lanka 1995 – 2006 

Logarithmically transformed monthly malaria incidence aggregated for the whole country of Sri Lanka 

from 1995 to 2006.  The vertical line indicates the day when the tsunami hit Sri Lanka. 
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Statistical methods 

The statistical methods are similar to those employed in Chapter 8.  Unlike in Chapter 

8, where malaria time series were presumed to have a stochastic trend, in the present 

analysis, malaria incidence data were presumed to follow a deterministic trend.  The 

data were thus not differenced, but an intercept and a piecewise linear trend was fitted 

to the data [90,91].  A piecewise linear trend contains intervals where the trend line is 

locally linear, but there are change points where the slope may change abruptly. 

The piecewise linear trend was modelled by including a variable for each interval for 

which the slope was modelled separately.  E.g. a model allowing for a slope up to a 

certain change point, and a different slope thereafter thus contained two trend 

variables.  Each trend variable ,k tx  for the local interval k  followed the function: 
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The incidence pattern (Figure 13) shows a clear seasonality, and a change in slope at 

the beginning of the year 2000 is apparent.  A change in slope after December 2004 is 

not evident, although the peak at the end of 2005 and 2006 might suggest a slightly 

less strong negative slope. 

In an exploratory analysis, logarithmically transformed malaria incidence was 

assumed to be Gaussian distributed.  In subsequent analysis, the malaria cases were 

assumed to be negative binomially distributed, and population was used as an offset 

variable.   

In Gaussian (S)ARMA analysis with 2K = , all combinations of parameters p, q, P, 

and Q were tested with p, q, P, Q ∈{0,1,2}, and 1b ∈{55,…, 66} (corresponding to 

the interval July 1999 – June 2000).  In order to model seasonality, two sub-models 

were considered: a model with deterministic seasonality through second order 

harmonics, and a model with seasonal random effects.  Akaike’s information criterion 
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(AIC) was used to determine the values of the parameters giving the best fit for each 

sub model.  The statistical package “R” was used for the analysis. 

The selected (S)ARMA models were consequently modelled in a Bayesian framework 

with a negative binomial distribution, using the software package WinBUGS (see 

Chapter 8).  The models were then fitted with an additional interval, allowing the 

slope to be different after the tsunami event, thus in models with 3k =  and 2b  = 120 

(corresponding to December 2004). The deviance information criterion (DIC) was 

used to determine whether allowing the slope for January 2005 – December 2006 to 

differ from the slope from 2000 – December 2004 improved the model. 

Results and conclusion 

The best SARMA model was the model SARMA(p=1, q=0, P=1, Q=1), with a change 

point between February and March 2000 (Henceforth Model 1a).  The best ARMA 

model with second order harmonics was the model ARMA(p=1, q=0), with a change 

point between March and April 2000 (Henceforth Model 2a). 

In the Bayesian negative binomial models, the addition of a change point in slope 

between December 2004 and January 2005 to Model 1a (resulting in Model 1b) or 

Model 2a (resulting in Model 2b) did not yield a lower DIC, in either model (Table 5). 

Therefore, it can be concluded that the tsunami did not cause a change in slope in 

malaria incidence trends.   
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Table 5 - Results from negative binomial models  

Parameter/Criterion Model 1a  Model 1b  Model 2a  Model 2b  

  mean s.d. mean s.d. mean s.d. mean s.d. 

βintercept -6.33 0.985 -6.16 0.512 -7.30 0.114 -7.30 0.112 

1φ  0.67 0.071 0.68 0.071 0.60 0.069 0.61 0.067 
*
1φ  0.93 0.049 0.92 0.054     
*
1θ  -0.66 0.144 -0.63 0.151     

βsin(2πt/12)      0.14 0.038 0.14 0.039 

βcos(2πt/12)      0.24 0.037 0.24 0.038 

βsin(2πt/6)      0.16 0.025 0.16 0.024 

βcos(2πt/6)      0.08 0.024 0.08 0.024 

1x
β  0.01 0.007 0.01 0.006 0.01 0.003 0.01 0.002 

2xβ  -0.08 0.004 -0.09 0.005 -0.08 0.002 -0.08 0.003 

3xβ    -0.10 0.023   -0.08 0.010 

r 30.11 4.736 29.11 4.554 34.15 4.828 33.93 0.067 

DIC 2017.08   2021.31   2227.87   2229.85   

Legend: 1x  = local linear trend for the interval from January 1995 up to and including February 2000 

(model 1ab) or March 2000 (model 2ab); 2x = local linear trend for the interval from March 2000 

(model 1ab) or from April 2000 (model 2ab) up to and including December 2006 (model 1a and model 

2a) or December 2004 (model 1b and model 2b); 3x  local linear trend for the interval from January 

2005 to December 2006. 
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Abstract 

Correlation in space between seasonality of malaria and seasonality of rainfall was 

studied in Sri Lanka.  A simple seasonality index was developed by making use of the 

bimodal seasonality of both malaria and rainfall.  The malaria seasonality index was 

regressed against the rainfall seasonality index taking spatial autocorrelation into 

account.  Despite the presence of spatial autocorrelation, the coefficient for the 

rainfall seasonality index in explaining the malaria seasonality index was found to be 

significant.  The results suggest that rainfall is an important driver of malaria 

seasonality. 

Keywords: malaria, rain, seasonality, Sri Lanka 

 

 

Figure 14 - Monthly confirmed malaria cases in Sri Lanka 

Monthly confirmed malaria cases in Sri Lanka over the period January 1972 to December 2003. 
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Introduction 

In the field of malaria transmission and prediction modelling there is not only an 

interest in risk per se but also an increasing interest in identifying the seasonality of 

malaria over larger geographical areas [52,92-95].  Malaria case time-series in Sri 

Lanka show both strong long-term fluctuations and seasonality (Figure 14).  The 

long-term fluctuations are generally attributed to the impact of malaria control 

strategies and the development of insecticide resistance.  Seasonality, on the other 

hand, is generally attributed to climatic factors, in particular rainfall which provides 

the breeding habitats for the malaria vector mosquitoes and sustains the aquatic, 

immature stages of their life cycle.  The optimum amount and frequency of rainfall 

depend on the physical nature of the breeding site and the requirements of the vector 

in question.  It should be remembered that rainfall may also have an indirect impact 

on mosquito breeding, e.g. when it occurs upstream or when rain water is transported 

for irrigation purposes.  Hence, rainfall impinges on mosquito population dynamics in 

a rather complex way.  For example, a large amount of rain within a short period of 

time may wash away aquatic stages as well as adults, while continuous, low-volume 

rainfall may not be optimal for colonizing mosquito species that require temporary 

breeding sites.  Although malaria-case time-series (from which long term non-

seasonal trends were removed) and rainfall time-series appear to have strong cross-

correlations, a large part of these correlations can be explained by both series being 

cyclical with a similar periodicity [96].  Many biological processes follow annual 

cycles and high cross-correlations do not necessarily infer a causal link.  However, 

there is spatial information that suggests that rainfall seasonality could be a driver of 

malaria seasonality and although the island of Sri Lanka is only 65,610 km2, in total, 

it shows strong spatial variability in climate [97].  The south-western part of the 

country (often described as the wet zone since it receives more than 1900 mm of rain 

annually) is affected by two periods of monsoon rains with peaks in May and 

October, whereas rainfall peaks in November/December with a very minor, almost 

imperceptible peak in April (Figure 15) in the so called dry zone in the north-east 

which receives less than 1900 mm rain annually.  Corresponding to this distribution of 

rainfall, malaria-case time-series show a strong bimodal seasonality in the south-

western part of the island, whereas the malaria time-series become more monomodal 

in nature towards the north and east with the second peak in the middle of the year 
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being much less important (Figure 16).  In order to establish whether there is a 

correlation between rainfall seasonality and malaria seasonality over space, a 

regression analysis was carried out.   

Figure 15 - Geometric mean seasonality of 

rainfall 

Geometric mean monthly rainfall from January 

(bar on far left) to December (bar on far right), 

over the period January 1972 to December 

2003, in areas of Sri Lanka.  The height of the 

bars in the legend represents 200 mm. 

 

Figure 16 - Seasonal figure of malaria 

Seasonal additive figure of monthly 

logarithmically transformed malaria cases 

from January (bar on far left) to December (bar 

on far right), over 1972 to 2003, in areas of Sri 

Lanka.  The value of 0.6 is added to all data to 

make all data positive. 

Materials and methods 

Malaria and rainfall data 

Records of the total count of blood films examined for malaria, and how many of 

these are positive for malaria, are reported monthly by Government health facilities 

and aggregated by the medical officer responsible for each so called health area (a 

sub-district health administrative division).  This study is based on information 

regarding such blood film counts provided by the Anti Malaria Campaign (AMC) of 
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Sri Lanka for the period 1972 – 2003.  For some of the records, the number of blood 

films examined was marked as “not received” (and therefore classified as missing).  

For 14.90% of the records, the value was given as zero or left blank.  For the latter 

records (the blanks), there was ambiguity as to whether the data were missing due to 

problems in data recording or whether they could also be taken as zero, i.e. no patients 

presented themselves for examination in that particular area in that particular month.  

In the data cleaning procedure (see statistical methods below), 1.4% of the records 

were declared as not available (NA).  This included the records where the place for 

entering the number of blood films examined was marked as “not received” (0.95% of 

all the records) and the records for which the number of the blood films could be 

classified as a lower additive outlier [98] (0.44% of all records).  The data from the 

districts in the north and east, where data gathering and reporting was affected by the 

armed conflict, had the largest percentage of NA labels: Jaffna (5.4%), Mannar 

(26.1%), Vavuniya (8.9%), Kilinochchi (2%), Trincomalee (2%) and Ampara (5.4%).  

Over time, some health areas changed boundaries or split into two, e.g. in 1972 and 

2003, the number of health areas was 98 and 230, respectively, and were therefore 

deemed unsuitable for temporal data aggregation.  For the purpose of this study, 

health areas with variable boundaries were aggregated into larger areas corresponding 

to malaria data for which the catchment area did not change over the 1972 – 2003 

period.  Thus, the surface of Sri Lanka was divided into 37 areas (Figure 15 and 

Figure 16) and the “cleaned” monthly malaria-positive data were aggregated 

accordingly.   

Precipitation records, collected by 342 stations across the island, were purchased from 

the Meteorological Department of Sri Lanka and monthly rainfall surfaces were 

created through spatial prediction using kriging.  Three stations with consistently 

aberrant rainfall records, detected through cross-validation using kriging [99], were 

removed from the dataset.  From each monthly rainfall surface, the average value of 

rainfall was extracted for each area. 

Statistical methods 

In a data cleaning procedure, the time series of blood film counts in health areas were 

logarithmically transformed to normality (after the value one was added to the data).  

Under the null hypothesis, each observation was assumed to be part of a seasonal 

autoregressive integrated moving average (SARIMA) process [100] with parameters 
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p=0, d=1, q=1, P=0, D=1, and Q=1.  Observations were marked as additive outliers if 

the likelihood ratio test statistic (for an additive outlier) for the observation was below 

a threshold of -6 [98] and classified as NA.  For each of these and other NA 

observations that were not at the beginning or at the end of a series, values for the 

number of malaria-positive blood films were estimated through a one-step-ahead 

SARIMA forecasting model on the original series and on the reversed series.  These 

two estimates were then averaged.  This approach has been discussed by Mwaniki and 

colleagues [101].  Finally, the health area data series were aggregated to the larger 

area (previously defined) resolution before analysis, as these spatial units remained 

constant over the study period, whereas for many health areas boundaries changed 

(within the larger area boundaries) over the study period.   

For each area and for each calendar month of the year, the 34-year (the period 

matching the malaria data available) mean rainfall was calculated and the values 

logarithmically transformed.  For each area, the first rainfall peak was calculated as 

the sum of the rainfall climatology during the calendar months March – August, and 

the second rainfall peak was calculated as the sum of the rainfall climatology during 

the calendar months September – February.  The logarithmically transformed ratio of 

the two peaks was used as an index of rainfall seasonality.  For malaria-case count 

time-series, a similar procedure was applied except that the long-term trends were 

calculated using a 13-point moving average filter with the coefficients at the extremes 

given half weight [90] and removed.  Also, the first malaria peak was calculated as 

the sum of the seasonal figure during the calendar months April – September and the 

second malaria peak as the sum of the seasonal figure during the calendar months 

October – March.   

The distribution of the malaria seasonality index was tested for normality using the 

Shapiro-Wilk test [102].  The presence of spatial autocorrelation of the malaria 

seasonality index among areas was tested with the Moran's I test [103]. 

Let yi be the malaria seasonality index in area i, i  = 1, …, 37.  It was assumed that yi 

arises from a normal distribution with mean μi and precision parameter τ, that is yi ~ 

N(μi,τ).  We considered μi = β0 + β1 xi + φi where xi measures rainfall seasonality.  β0, 

β1 are regression coefficients and φi is an area-specific random effect taking into 

account the spatial correlation introduced by the spatial structure of unobserved 

covariates.  For the φi‘s, a conditional autoregressive model with random effects, 
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CAR(γ, τs), was adopted which assumes that 1| , , ~ ,i
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=  measures between area variation.  To facilitate model fit a Bayesian 

modelling framework was used.  The following prior distributions were chosen for the 

parameters: β0, β1 ~ U(-∞, ∞), τ, τs ~ Ga(0.005, 0.005), γ ~ U(a, b) with limits a, b 

specified as described by Gelfand and Vounatsou [48].  The CAR(γ, τs) was 

considered as a prior distribution for the φi‘s.  The effect of this prior distribution is to 

shrink the outcome variable value (in this case the malaria seasonality index) of an 

area to that of the local mean, where the local mean is the mean of all contiguous 

areas excluding the area itself.  The posterior distribution of the seasonality index of 

an area is therefore a compromise between the prior, which is based on the seasonality 

index of neighbouring areas, and the data for the area.  Two spatial models were 

fitted: a) a CAR(γ, τs) and b) a CAR(1, τs).  The latter model assumes maximum 

spatial correlation although it does not give a proper distribution for the φi‘s [104].  

The former model gives a well-defined proper distribution.  Bayesian CAR models 

have been widely used in malaria mapping [50-52].  A non spatial model was also 

applied.  The deviance information criterion (DIC) [53] was used to determine the 

best fitting model.  The models were estimated using a Markov Chain Monte Carlo 

process using three chains, and 1,500,000 iterations (including a burn-in of 500,000 

iterations), with a thinning rate of 100.  Convergence was assessed by studying plots 

of the Gelman-Rubin convergence statistic as modified by Brooks and Gelman [54]. 

The regression analysis described above was repeated including zone as a regressor.  

Also, because there is some concern that cases in areas with historically low 

transmission may primarily have been acquired elsewhere (and patterns would 

therefore not represent local transmission) the analysis (without zone as regressor) 

was repeated excluding nine areas with a geometric mean annual case-load of less 

than 600 over the study period (all of these except Chilaw were situated in the wet 

zone and some were situated at high elevations): Colombo district, Kalutara district, 

Galle district, the northern part of Matara district, the western part of Ratnapura 

district, Nuwara Eliya district (comprising of two areas), eastern part of Kandy 

district, and Chilaw (the southern part of Puttalam district).   
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All data management and analysis was performed in the software environment R [56].  

The Bayesian regression analysis, which was carried out in the software package 

“WinBUGS” [55] which can be called from R using the R package “R2WinBUGS”. 

 

Figure 17 - Scatter plot of malaria seasonality versus rainfall seasonality 

Scatter plot of the malaria seasonality index on the vertical axis against the rainfall seasonality index on 

the horizontal axis for areas in the wet zone receiving more than 1900 mm rainfall annually (solid 

circles) and in the dry zone (open circles) in Sri Lanka.   

 

Results 

There was no evidence that the malaria seasonality index, nor the residuals of any of 

the regression analyses, were not Gaussian distributed, according to the Shapiro-Wilk 

test.  A scatter plot of the malaria seasonality index against the rainfall seasonality 

index (Figure 17) showed that there are no clear outliers.  The Moran's I test for the 

complete dataset (n=37, I = 0.46, 95% credible interval = 0.45 – 0.52) and the reduced 
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dataset (n=28, I = 0.45, 95% credible interval = 0.42 – 0.54) showed that there was 

significant spatial autocorrelation in the malaria seasonality index, thus nearby pairs 

of districts had a more similar malaria seasonality index than distant pairs. 

Table 6 - Results of regression of the malaria seasonality index against the rainfall seasonality index in 

malarious areas 

Model parameter Mean Standard 
deviation 

95% Credible interval 

Non spatial β0 -0.20  0.11  -0.41 -   0.01 

 β1  2.53  0.51   1.54 -   3.55 

 τ  4.65  1.10   2.68 -   6.92 

 Moran’s I  0.16  0.04   0.12 -   0.27 

 DIC 52.18   

     

CAR normal β0 -0.18  0.14  -0.44 -  0.09 

 β1  2.69  0.73   1.29 -  4.19 

 τ 10.34 23.34   2.99 -  52.56 

 τs 40.90 80.37   1.00 – 276.70 

 Moran’s I  0.11  0.11  -0.10 -   0.34 

 DIC 45.47   

     

CAR proper β0 -0.19  0.13  -0.44 -   0.05 

 β1  2.61  0.56   1.53 -   3.73 

 τ 10.71 32.20   2.90 -  61.91 

 τs 53.50 93.04   0.94 - 314.20 

 γ -0.03  0.70  -1.37 -   0.96 

 Moran’s I  0.12  0.09  -0.09 -   0.27 

 DIC 41.1   

Legend: tau = precision = 1/variance; gamma = spatial auto correlation coefficient; Deviance = 

posterior mean of -2*log(likelihood) ; DIC = Deviance information criterion 

 

Estimates for the mean of the coefficients in the non-spatial, CAR(1, τs) and CAR(γ, 

τs) models (Table 6) were very similar.  The standard deviations of the coefficients for 

the rainfall seasonality index and zone in explaining malaria seasonality were larger 

(as expected) in the spatial models as compared to the non-spatial model.  The 95% 

credible interval of the posterior distribution of the rainfall seasonality index 

coefficient did not include zero.  The CAR(γ, τs) was the best fitting model because 

the DIC had the smallest value.  In the CAR(γ, τs) model with both the rainfall index 
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and the zone as covariate, the 95% credible interval of the posterior distribution of the 

rainfall coefficient was larger but still did not include zero (results not shown).  It 

should be noted that the zone coefficient was highly significant in explaining the 

rainfall seasonality index (p<0.00001), thus collinearity may have played an 

important role.  There was no evidence for zone-rainfall seasonality interaction 

(analysis not shown).  After accounting for the effect of the rainfall seasonality (and 

the zone effect), the residuals in the non-spatial model showed a much weaker, albeit 

significant, spatial autocorrelation based on the Moran’s I.   

Discussion 

Spatial autocorrelation in the rainfall seasonality index accounted for most of the 

spatial autocorrelation in the malaria seasonality index, as shown by the comparison 

of the Moran’s I of the raw data with the Moran’s I of the residuals of a non-spatial 

model including the rainfall seasonality index.  The additional spatial correlation 

could be due to unobserved variables that change gradually over space, such as those 

related to soil conditions and altitude (temperature), or factors intrinsic to malaria 

transmission (as nearby districts may influence other districts) or due to cross-border 

reporting of cases.  However, the analysis excluding those areas that were thought 

particularly affected by cross-border reporting yielded a similar spatial correlation 

index.  The CAR(γ, τs) model showed the lowest DIC.  However, there are some 

doubts as to whether this model really performed this well as the gamma parameter 

was not significantly different from zero.  Nevertheless, since the regression models 

indicated that the 95% credibility intervals for the coefficient for rainfall did not 

include zero in the spatial models, there was evidence for a significant correlation 

between seasonality of rainfall and malaria. 

The work most similar to the work presented here is that by Mabaso et al. [52,92] who 

made use of a seasonal concentration index to summarize seasonality in malaria 

incidence and entomological inoculation rate (EIR).  The seasonal concentration 

index is based on vector representation (i.e., both magnitude and direction) of the 

mean monthly values in a given year.  Mabaso et al. [92] found that the seasonal 

concentration index of rainfall was significant in explaining the seasonal 

concentration index of EIR across Africa.  The EIR is more closely related to 

environmental variables and is a better measure of the risk of inoculation than 

reported malaria cases, which is confounded by immunological processes.  When 



 72

protective immunity is high as a result of high levels of transmission, as is the case in 

many African settings, it strongly confounds the relationship between the (all age) 

incidence time-series and transmission [15].  When immunity plays an important role 

in disease transmission, it may create and maintain so called “endogenous cycles” in 

incidence time-series, even when the vectorial capacity (the mosquito vector 

population’s potential to transmit malaria) is at a constant level.  Cyclical patterns in 

incidence time-series may thus partly be caused by immunity dynamics and this may 

confound the relationship between incidence and extrinsic drivers such as weather 

[16].  Because of extremely low sporozoite rates in vector mosquitoes in Sri Lanka, it 

is difficult to measure the EIR which is otherwise a good measure of the risk of 

inoculation.  In the absence of reliable EIR estimates, the malaria-case incidence 

might be a satisfactory measure of parasite transmission, provided that protective and 

anti disease immunity is low.  Although there are strong similarities between the 

seasonal concentration index and the seasonality index presented here, there are also 

important differences.  For example, neither differentiate between bimodal systems 

with (evenly spaced) peaks of similar height and systems without seasonality.  

However, the seasonality index is continuous, whereas the seasonal concentration 

index is contained in the zero–one (zero–100 if expressed as percentage) interval.  

Most importantly, in bimodal systems, the seasonality index allows differentiating 

between a situation with the first peak being higher than a second (and the reverse 

situation), whereas the seasonal concentration index does not differentiate. 

In this paper, seasonality in temperature was not studied as it was considered of less 

importance than rainfall seasonality in the Sri Lankan context.  The country is situated 

close to the equator and the temperature therefore fluctuates over a narrow range.  

Also, a large part of its temporal variability is governed by rainfall.  Moreover, for 

most malarious areas (except in the hilly part of the country situated just south of the 

centre of the island), the temperature (varying between 22 and 32 degrees Celsius) is 

well within the range suitable for malaria transmission [5].  A study in Ethiopia found 

temperature to be generally insignificant in explaining malaria for districts below 

1,650 m [105].  However, it merits investigation whether temperature influences 

malaria seasonality in the hills. 

This paper provides evidence that, (even) after correction for spatial autocorrelation in 

the data, rainfall seasonality is significant in explaining malaria seasonality in space.  
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This suggests that high cross-correlations between rainfall time-series and malaria 

time-series found elsewhere [96] are not accidental but that rainfall is a driver of 

seasonality of malaria cases.  Rainfall seasonality could thus in theory be used as a 

predictor of the seasonality of malaria transmission in the absence of malaria case 

data or EIR data in areas of low transmission and temperatures which are conducive 

to malaria transmission year round.   
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Abstract 

Background 

Rainfall data have potential use for malaria prediction.  However, the relationship 

between rainfall and the number of malaria cases is indirect and complex. 

Methods 

The statistical relationships between monthly malaria case count data series and 

monthly mean rainfall series (extracted from interpolated station data) over the period 

1972 – 2005 in districts in Sri Lanka was explored in four analyses: cross-correlation; 

cross-correlation with pre-whitening; inter-annual; and seasonal inter-annual 

regression.   

Results 

For most districts, strong positive correlations were found for malaria time series 

lagging zero to three months behind rainfall, and negative correlations were found for 

malaria time series lagging four to nine months behind rainfall.  However, analysis 

with prewhitening showed that most of these correlations were spurious.  Only for a 

few districts, weak positive (at lags zero and one) or weak negative (at lags two to six) 

correlations were found in prewhitened series.  Inter-annual analysis showed strong 

negative correlations between malaria and rainfall for a group of districts in the 

centre-west of the country.  Seasonal inter-annual analysis showed that the effect of 

rainfall on malaria varied according to the season and geography.   

Conclusions 

Seasonally varying effects of rainfall on malaria case counts may explain weak 

overall cross-correlations found in prewhitened series, and should be taken into 

account in malaria predictive models making use of rainfall as a covariate. 
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Background 

Malaria is a complex disease and its transmission and prevalence is influenced by 

many factors, amongst which (variability in) climatic conditions are considered to 

play a major role.  With increasing weather variability and ability to forecast weather, 

there is an interest in developing systems for malaria forecasting that incorporate 

weather related factors as explanatory variables.  Many studies in various parts of the 

world have linked malaria time series to weather variables such as rainfall, 

temperature and humidity.  For instance, by using polynomial distributed lag models, 

Teklehaimanot and colleagues [105] found that malaria was associated with rainfall 

and minimum temperature (with the strength of the association varying with altitude) 

in Ethiopia.  Worrall and colleagues [106] used rainfall and maximum temperature at 

a lag of four months to successfully fit a biological transmission model to malaria 

case data in a district in Zimbabwe.  Craig and colleagues [107] linked inter-annual 

differences in malaria to rainfall and temperature in South Africa.   

Sri Lanka has a long history of researching the links between rainfall and malaria and 

many studies observed links between the two [7,8,11,108], but others did not find a 

strong [109] or an obvious correlation [110].  A study in Sri Lanka incorporating 

rainfall as a linear or non linear explanatory variable into a (seasonal) auto-regressive 

integrated moving average (ARIMA) model showed little improvement in malaria 

prediction over ARIMA models without a rainfall predictor [111].   

Weather affects the malaria incidence mostly through its effects on both the mosquito 

vector (species, population dynamics, gonotrophic cycle and survivorship [112]) and 

the development of the malaria parasite inside the mosquito vector.  In Sri Lanka, the 

main malaria vector Anopheles culicifacies breeds primarily in river bed pools [2] 

which occur during dry periods, but also in other breeding sites such as seepage areas 

next to irrigation tanks, hoof prints, and abandoned gem mining pits.  The spatial 

variation in annual precipitation (Figure 18) has been linked to spatial variation in 

malaria endemicity in Sri Lanka [61] by early malariologists who used the concept of 

a classification of the country into a wet, intermediate and dry zone [7] based on the 

amount of rainfall received during the south-west monsoon.  The region receiving the 

most annual precipitation has the least malaria, and endemicity increases with 

decreasing annual rainfall.  The fact that the districts in the extreme south west of the 

island (Galle and Kalutara) have always been virtually free of malaria is attributed to 
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the wet climate in which rivers flow year round without pooling.  In the south west, 

only a drought might cause pooling in rivers and hence create conditions suitable for 

the breeding of An. culicifacies.  For example, districts with wet and intermediate 

annual rainfall in this region have repeatedly been affected by malaria epidemics, 

mostly attributed to droughts due to a failing south-west monsoon (which occurs 

normally between February and July), while districts towards the north and east with 

dryer climates (and with a higher malaria endemicity) were less affected [7].  Hence a 

negative correlation between rainfall and malaria is expected in districts in the wet 

and intermediate rainfall zones.  In contrast, towards the north and east, where the 

climate is much dryer (particularly during April – September) and rivers often run 

dry, rainfall creates new puddles, especially following a period of drought.  The 

relation between rainfall and malaria may not only change over space, but also 

depending on the season.  Both rainfall and malaria show a marked seasonality which 

is bimodal in the south west and increasingly monomodal towards the north and east 

[113] (Figure 18 and Figure 19).  There is a very interesting duality in the relationship 

of rainfall with malaria.  Although malaria prevalence (not shown in this paper, see 

e.g. [61]) decreases with annual rainfall in space, study of the seasonality of both 

(Figure 18 and Figure 19) reveals that malaria follows rainfall with a few months 

delay, a low seasonal rainfall peak being followed by a low seasonal malaria peak, 

and a high seasonal rainfall peak being followed by a high seasonal malaria peak.  In 

the present paper, the relationship between rainfall and malaria incidence in Sri Lanka 

was investigated allowing for spatial variability in the relationship using (i) cross-

correlation analysis, (ii) cross-correlation analysis with prewhitening (prior removal 

of seasonality and auto-correlation in the series), (iii) inter-annual analysis and (iv) 

seasonal inter-annual analysis allowing for seasonal variability in the relationship.  

Only the first of these four approaches has been used to study malaria and rainfall 

relationships in Sri Lanka previously, and only in limited geographic areas.  A better 

understanding of the relationship between rainfall and malaria may help to improve 

forecasting of changes in malaria incidence. 
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Figure 18 - Geometric mean seasonality and 

annual geometric mean total of rainfall 

Geometric mean monthly rainfall from January 

(bar on far left) to December (bar on far right), 

calculated over the period January 1971 to 

December 2005, and the total geometric mean 

annual rainfall in districts of Sri Lanka. The 

height of the bar in the legend represents 200 

mm. The classification of the annual rainfall 

follows the common delineation into a wet 

zone (>2500 mm per annum), intermediate 

zone, and a dry (<1900 mm per annum) zone, 

with a “very dry” category for rainfall <1400 

mm per annum.   

Figure 19 - Geometric mean seasonality of 

detrended malaria cases 

Geometric mean monthly number of malaria 

cases from January (bar on far left) to 

December (bar on far right), calculated over 

the period January 1972 to December 2005, 

after detrending, in districts of Sri Lanka. The 

height of the bar in the legend represents 1, 

(because of detrending, no unit is given). 
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Methods 

Data 

Since January 1972, the Sri Lankan national malaria control programme, the Anti 

Malaria Campaign (AMC), has collected monthly confirmed malaria case data from 

health facilities aggregated by medical officer of health (MOH) areas (which 

represent sub district health administrative divisions).  This data up to December 2005 

was cleaned and aggregated to district resolution.  For each district, for each month, 

the mean rainfall was extracted from monthly rainfall surfaces for the period January 

1971 – December 2005.  Both rainfall and malaria datasets are described in detail 

elsewhere [111]. 

 

Figure 20 - Annual malaria cases  

Annual number of malaria positive cases from 1972 (bar on far right) to 2006 (bar on for left) in 

districts in Sri Lanka. The height of the bar in the legend represents 10,000 cases. 
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Statistical analysis 

The relationship between rainfall and malaria incidence was investigated using (i) 

cross-correlation analysis, (ii) cross-correlation analysis with prewhitening, (iii) inter-

annual analysis and (iv) seasonal inter-annual analysis allowing for temporal 

variability in the effect. 

Cross-correlation analysis 

Cross-correlations between detrended monthly malaria case count time series and 

monthly total rainfall [109] were analysed to detect the time lag(s) of rainfall 

preceding malaria at which the series show strongest correlation.   

Malaria time series showed strong long term fluctuations for most districts in Sri 

Lanka (Figure 20).  However, in rainfall time series these long term fluctuations were 

absent.  Therefore, it was expected that rainfall could not explain the long term 

fluctuations in malaria, which were probably related to other factors, such as malaria 

control and population changes.  The long term fluctuations masked the correlation 

between malaria and rainfall and since no information on the underlying factors was 

available in the data, the long term fluctuations needed to be removed prior to 

calculating cross-correlations.  It was assumed that untransformed monthly malaria 

case count data follow a seasonal model of the form:  

t t t ty m S ε=  

where ty  is the malaria case count in month t ; tm  is the mean level in month t ; tS  is 

the seasonal effect in month t ; and tε  is the random error.  A logarithmic 

transformation ( )' log 1t ty y= +  was employed to transform the malaria case counts to 

normality and turn equation (1) into a (linear) additive model [90] of the form: 

' ' ' 't t t ty m S ε= + +  where ( )' logt tm m≈ , ( )' logt tS S≈  and ( )' logt tε ε≈ .   

As an example, Figure 21 shows the logarithmically transformed series for Gampaha 

district.  The long term fluctuations 'tm  in the logarithmically transformed monthly 

district malaria case count series were calculated using a 13-point centred smoothing 

filter with the months at the extremes given half weight: 

( )1 1 1
12 2 26 5 5 6' ' ... ' ... ' 't t t t t tm y y y y y− − + += + + + + + + . 
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Smoothing was performed using the function “decompose” of the package “stats” in 

the software R [56].  From the detrended series ' 't t ty mζ = −  (Figure 22) implicitly 

long term trends caused by population growth were removed.  Cross-correlation 

analysis was applied between the detrended log transformed malaria case time series 

and untransformed rainfall time series tx .  The cross-correlation was estimated for 

malaria with a lag l  of zero to twelve months behind rainfall as 

( )( )
1

N

l t t l x
t

r x x Ns sζζ ζ+
=

= − −∑  

 where xs , sζ  are the sample standard deviations of observations on tx  and tζ , 

respectively.  The analysis was repeated with logarithmically transformed rainfall 

time series ( )' log 1t tx x= + . 

Even though the above approach may find strong correlations, these may not be very 

useful for malaria prediction if aberrations from the long term seasonal mean of 

rainfall are weakly linked to aberrations from the long term seasonal mean of the 

malaria case series.  In addition, the standard cross-correlation assumes observations 

are independent, whereas in reality the malaria data are temporally correlated.   

 

Figure 21 - Logarithmically transformed monthly malaria case counts for Gampaha District 

Logarithmically transformed monthly malaria case counts (after adding the value 1 to all data) for 

Gampaha District. 
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Figure 22 - Detrended (prewhitened) logarithmically transformed monthly malaria case counts for 

Gampaha District 

Detrended logarithmically transformed monthly malaria case counts (black line) and prewhitened 

detrended logarithmically transformed monthly malaria case counts (red line) for Gampaha District. 

 

Cross-correlation analysis with prewhitening 

Cross-correlation with the seasonality and autocorrelation removed by simple 

prewhitening allows for detection of the time lag(s) of rainfall preceding malaria, at 

which divergences from the long term seasonal pattern in rainfall time series shows 

strongest correlation with such divergences in detrended malaria case count time 

series, while minimizing effects of spurious correlations caused by autocorrelation in 

the time series.  This method bears some similarity to anomaly analysis, where the 

cross-correlation of aberrations from the long term seasonal mean of the explanatory 

variables is weakly correlated with aberrations from the long term seasonal mean of 

the response variable.  It should be noted that in this analysis, the cross correlation is 

calculated as the average over all (calendar) months.  Possible varying correlation 

depending on the season is not accounted for, i.e. if rainfall has a strong positive 

effect on malaria in some months, and a strong negative in others, the average 

detected cross correlation could be weak.  The effect of prewhitening is to reduce 

unassociated autocorrelation and/or trends within time series prior to computation of 
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their cross correlation function (It is well established that autocorrelation within time 

series can produce spurious cross correlations [90]).  Simple prewhitening is used 

when there is a clear unidirectional influence such as between rainfall and malaria.  

First, an auto-regressive model is fit to the explanatory variable.  The prewhitened 

explanatory variable consists of the residuals of the fitted model.  The prewhitened 

outcome variable consists of the residuals of the same model (with the same 

parameters) applied to the outcome variable.  With the inclusion of seasonality in the 

autoregressive model, the prewhitening procedure removes seasonality (and 

autocorrelation) from the explanatory variable time series, and the same amount of 

seasonality (and autocorrelation) from the outcome variable time series.  It is thus 

possible that additional seasonality (and autocorrelation) remains in the prewhitened 

outcome variable time series. 

For each district, multiplicative seasonal auto-regressive integrated moving average 

(SARIMA) models [100] with all possible combinations of parameters p, q, P, Q ∈  

{0, 1, 2} and with d, D ∈  {0, 1}, were evaluated using the Akaike’s information 

criterion (AIC) on untransformed and logarithmically transformed monthly rainfall 

totals in the period from January 1971 to December 2005.   

The selected SARIMA model was then used to prewhiten both the rainfall time series 

and detrended (smoothed) logarithmically transformed malaria case count time series 

tζ .  The residuals of both series were used as input for the cross-correlation analysis.  

The functions “arima” and “ccf” from the R package “stats” were used.   

The cross-correlation analyses above have the drawback of masking inter-annual 

effects of rainfall on malaria time series because of the removal of the strong long 

term trend fluctuations.   

Inter-annual analysis 

In “Inter-annual analysis”, the series of differenced logarithmically transformed 

annual malaria cases was studied to determine if it was correlated to differenced 

logarithmically transformed total annual rainfall.  Unlike the first two approaches, it 

could not account for the within year effects, but inter-annual effects were not 

masked. 
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Figure 23 - Differenced logarithmically transformed annual malaria case counts and rainfall for 

Gampaha District 

Differenced logarithmically transformed annual (the twelve month period starting in April) malaria 

case counts (black line), malaria case counts with first order auto correlation removed (red line), and 

the differenced logarithmically transformed annual rainfall with a three month lag shift (the twelve 

month period starting in January), corrected for autocorrelation in malaria and multiplied by -10 (blue 

line) for Gampaha District. 

 

The difference ( ) ( ) ( ), , 1, , 1,log log logt k t k t k t k t kY Y Y Y− −Ω = − =  reflects the relative 

change in case numbers between consecutive years [107], where ,t kY  is the annual 

malaria case total for year t , and the start month k  of the twelve-month period was 

either April ( 4k = ) or September ( 9k = ) because seasonally, malaria was lowest in 

either April or September, depending on the district [61].  Similarly, the relative 

change in rainfall over 12 month periods preceding the malaria periods with a lag l  of 

one to three months was represented by 

( ) ( ) ( ), , , , 1, , , , 1, ,log log logt l k t k l t k l t k l t k lX X X X− −Ξ = − = .  Malaria was regressed against 

rainfall in a first order auto-correlated (AR1) model: 

( ), 1, , , , 1, , ,t k k t k l k t l k k t l k t kφ β φ ε− −Ω = Ω + Ξ − Ξ + .  The Pearson correlation coefficient 

between , 1,t k k t kφ −Ω − Ω  and , , 1, ,t k l k t k lφ −Ξ − Ξ  was then calculated.  Figure 23 and Figure 
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24 provide an illustration for Gampaha District.  The robustness of all significant 

( 0.1p ≤ ) correlations detected was tested as follows: For each observation it was 

calculated whether it was influential in terms of dfbeta, dffits, covariance ratios, 

Cook's distances and the diagonal elements of the hat matrix.  Observations which 

were influential with respect to any of these measures were omitted (one at a time) 

from the data and the correlation coefficient was recalculated.  The weakest 

correlation among these was recorded. 

 

Figure 24 - Scatter plot of differenced logarithmically transformed annual malaria case counts and 

rainfall for Gampaha District 

Scatter plot of differenced logarithmically transformed annual (the twelve month period starting in 

April) malaria case counts with first order auto correlation removed against differenced logarithmically 

transformed annual (the twelve month period starting in January) rainfall corrected for first order auto 

correlation in malaria for Gampaha District. 

 

Seasonal inter-annual analysis 
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logarithmically transformed malaria count over three months (e.g. January - March) 

differenced with the average logarithmically transformed malaria in the previous 

twelve months: ( ) ( )
1 2

, , ,
1 13
log 1 3 log 1 12

k k

t k t k t k
k k

y yω
+ −

− −

= + − +∑ ∑  with ,t ky  the malaria 

count in month k  (varied between January and December) and in year t .  Similarly, 

( ) ( )
1 2

, , , , , ,
1 13

log 1 3 log 1 12
k l k l

t k l t k l t k l
k l k l

x xξ
+ − − −

− − − −

= + − +∑ ∑ .  The seasonally varying 

correlation coefficients between rainfall and malaria ,k lr  were transformed into ,k lz  

values using the Fisher transformation ,
,

,

1
0.5log

1
k l

k l
k l

r
z

r
⎛ ⎞+

= ⎜ ⎟⎜ ⎟−⎝ ⎠
 and correlated to a three 

month centred moving average of logarithmically transformed geometric mean 

seasonal rainfall (similar as depicted in Figure 18, but logarithmically transformed) 

and its derivative (expressing the change in seasonal rainfall per month). 

 

Figure 25 - Cross-correlation box plot 

Box plot of Pearson product-moment correlation coefficients of time series of logarithmically 

transformed monthly rainfall and (detrended) monthly logarithmically transformed malaria case time 

series at several lags for districts in Sri Lanka, grouped by lag distance. 
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Results 

Cross-correlation analysis 

For all districts, a local maximum cross-correlation between malaria and 

untransformed rainfall or logarithmically transformed rainfall was found when rainfall 

was preceding malaria by zero to three months, depending on the district.  For 13 out 

of 25 districts, logarithmic transformation of rainfall improved the cross-correlation 

(Figure 25), and for some districts the logarithmic transformation of rainfall caused 

the lag of the local peak correlation to shift by a month.  For most districts, the 

optimum was found at a lag of two months.  Neighbouring districts showed similar 

cross-correlation coefficients at similar lags (Figure 26).  The peak correlation 

coefficient was as high as 0.5 for some districts (e.g. Anuradhapura and Puttalam), but 

very low and not significant for others (e.g. Badulla).  A local minimum cross-

correlation between malaria and untransformed rainfall or logarithmically transformed 

rainfall was found when rainfall was preceding malaria by four to ten months, 

depending on the district.  For most districts, a second local maximum was found 

when rainfall was preceding malaria by seven to nine months. 

 

Figure 26 - Mapped maximum cross-correlation coefficients 

Mapped maximum cross-correlation coefficients for logarithmically transformed monthly rainfall 

preceding (detrended) logarithmically transformed monthly malaria case time series with zero to 

twelve months for districts in Sri Lanka. Numbers indicate the lag (in months) for which the maximum 

occurred. 
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Figure 27 - Cross-correlation box plot after prewhitening (rainfall log-transformed)  

Box plot of Pearson product-moment correlation coefficients of prewhitened series of logarithmically 

transformed monthly rainfall and (detrended) monthly malaria case time series at several lags for 

districts in Sri Lanka, grouped by lag distance.  

 

Cross-correlation analysis with prewhitening 
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similar lags (Figure 28 and Figure 29).  For 18 out of 25 districts, logarithmic 

transformation of rainfall improved the cross-correlation for the first local maximum, 

and for 12 out of 25 districts, it improved for the local minimum following the first 

maximum, as compared to untransformed rainfall.  The prewhitened series showed 

strongest positive correlations at lags of zero and one month, and only for five out of 

25 districts (Puttalam, Kurunegala, Matale, Kegalle and Moneragala, all neighbouring 

districts except Moneragala) the correlation coefficient was over 0.15.  Strongest 

negative associations were found at lags of two to five months, and only for six out of 

25 districts (Gampaha, Kegalle, Kurunegala, Matale, Nuwara Eliya and Ratnapura, all 

adjoining districts) the correlation coefficient was below -0.15. 

 

Figure 28 - Mapped maximum cross-

correlation coefficients after prewhitening 

Mapped maximum cross-correlation 

coefficients for logarithmically transformed 

rainfall preceding (detrended) logarithmically 

transformed malaria case time series with zero 

to twelve months for districts in Sri Lanka, 

after prewhitening. Numbers indicate the lag 

(in months) for which the maximum occurred. 

 

Figure 29 - Mapped minimum cross-

correlation coefficients after prewhitening 

Mapped minimum cross-correlation 

coefficients for logarithmically transformed 

monthly rainfall preceding (detrended) 

logarithmically transformed monthly malaria 

case time series with zero to twelve months for 

districts in Sri Lanka, after prewhitening. 

Numbers indicate the lag (in months) for 

which the maximum occurred. 
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Table 7 - Maximum and minimum Pearson product-moment cross-correlation coefficients, starting 

month and lag (number of months that malaria case time series are lagged behind) for which the 

maximum or minimum occurred, and significance of the regression coefficient for logarithmically 

transformed rainfall and differenced logarithmically transformed annual malaria case time series (n = 

32), corrected for first order auto regressive correlation. 

District Minimum   Maximum 

  cc start month (lag) cc 
start month 
(lag) 

Ampara -0.01 4(3) 0.23 9(1) 

Anuradhapura 0.08 4(1) 0.27 9(3) 

Badulla -0.09 4(1) 0.30 9(1) 

Batticaloa -0.06 9(3) 0.23 4(1) 

Colombo -0.05 4(3) 0.25 9(3) 

Galle -0.27 4(1) 0.27 9(3) 

Gampaha -0.41* 4(3) 0.03 9(3) 

Hambantota -0.24 4(3) 0.08 9(3) 

Jaffna -0.16 4(3) 0.13 9(1) 

Kalutara -0.10 4(3) 0.25 9(2) 

Kandy -0.40* 4(3) -0.09 9(3) 

Kegalle -0.55** 4(3) -0.13 9(3) 

Kilinochchi -0.03 4(2) 0.12 9(1) 

Kurunegala -0.32' 4(3) 0.13 9(1) 

Mannar -0.08 4(3) 0.06 4(1) 

Matale -0.18 4(1) 0.10 9(1) 

Matara -0.11 4(2) 0.13 9(2) 

Moneragala -0.17 4(3) 0.23 9(1) 

Mullaitivu -0.20 9(3) 0.06 4(3) 

Nuwara Eliya -0.36* 9(2) -0.23 9(3) 

Polonnaruwa -0.22 4(3) 0.17 9(1) 

Puttalam -0.14 4(3) 0.18 9(1) 

Ratnapura -0.52** 4(3) -0.03 9(1) 

Trincomalee -0.30' 9(3) -0.07 4(3) 

Vavuniya -0.35' (4)2 -0.26 (4)1 

Legend: cc=Pearson product moment correlation coefficient, significance of regression coefficient 

different from zero: ‘ = P<0.10,* = P<0.05, ** = P<0.01 
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Inter-annual analysis 

None of the districts showed significant ( 0.1p ≤ , n = 32) positive correlation 

coefficients (Table 7), and eight districts showed significant negative correlation 

coefficients (Figure 30).  After omitting the influential observation that contributed 

most to the correlation, for four adjoining districts the correlation coefficients were 

still significant ( 0.1p ≤ , n = 31).  These districts were Kurunegala (r = -0.32, p = 

0.08), Kegalle (r = -0.48, p = 0.007), Kandy (r = -0.34, p = 0.063), and Ratnapura (r = 

-0.52, p = 0.003).   

 

Figure 30 - Mapped minimum inter-annual cross-correlation coefficients 

Mapped minimum cross-correlation coefficients for logarithmically transformed annual rainfall 

preceding differenced logarithmically transformed annual malaria case time series (with first order auto 

correlation removed (see methods)), with one to three months for districts in Sri Lanka. Numbers 

indicate the starting month of the year (4 = April, 9 = November) and between brackets the lag (in 

months) for which the minimum occurred. 
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Seasonal inter-annual analysis 

In a given district, rainfall over a particular three month period (e.g. January – 

March), relative to rainfall in the preceding twelve month period, had in general a 

similar effect on the malaria count over three months, relative to the malaria in the 

preceding twelve month period, for malaria following rainfall with a time lag of one 

(e.g. malaria in February – April) to three (e.g. malaria in May – June) months, 

although cross correlations were stronger positive at a lag of one month and stronger 

negative at a lag if three months.  This is illustrated for the district of Gampaha in 

Figure 31.  The cross-correlation coefficient for rainfall preceding malaria with a lag 

of two months is presented in Figure 32.  This figure shows strong negative 

correlation coefficients for districts in the centre west of the country for rainfall 

during February – June.  After omitting the influential observation that contributed 

most to the correlation, the troughs were significant ( 0.1p ≤ , n = 31) for the districts 

Gampaha, Kegalle and Nuwara Eliya.  For Puttalam, Gampaha and Kegalle, 

significant peaks were observed at the end of the year.  In the north and east, some 

districts showed positive correlation during the middle of the year (significant peaks 

for the districts Jaffna, Kilinochchi, Batticaloa, Ampara and Moneragala).  Jaffna 

District showed significant positive peaks at the end of the year, whereas for close by 

Mullaitivu District the relationship was negative.  The Fisher transformed seasonal 

inter-annual correlation coefficients at a lag of two months were significantly 

( 0.1p ≤ , n = 12) negatively correlated to seasonal rainfall in some districts in the east 

(Mullaitivu, Mannar and Polonnaruwa, Figure 33 and Figure 34), whereas there was a 

positive correlation for the districts Anuradhapura, Kandy, Nuwara Eliya and 

Kalutara.  A more smooth picture was obtained by correlating the derivative of 

seasonal rainfall to the Fisher transformed seasonal inter-annual correlation 

coefficients.  Districts in the centre-west (Gampaha, Kegalle and Colombo) and in the 

north (Jaffna) showed significant negative correlations (Figure 35 and Figure 36).  

Districts in the east showed positive correlation (significant for Mullaitivu, Batticaloa 

and Ampara).  Galle also showed a significant positive correlation, but these results 

should be interpreted with the knowledge that the few infections recorded there are 

presumed to have been acquired elsewhere.   
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Figure 31 - Cross-correlation coefficients for 

each rainfall month with malaria lagging one 

to three months behind for Gampaha District. 

Cross-correlation coefficients for 

logarithmically transformed three-monthly 

rainfall (differenced with the logarithmically 

transformed rainfall in the preceding twelve 

months) with logarithmically transformed 

three-monthly number of malaria cases 

(differenced with the logarithmically 

transformed number of malaria in the 

preceding twelve months), after removing first 

order auto correlation (see methods)), with the 

malaria series lagging one (blue line), two 

(black line) and three (red line) months behind 

the rainfall series, for the districts of Gampaha 

in Sri Lanka. The time scale on the horizontal 

axis reflects the centre month for three rainfall 

months.   

Figure 32 - Mapped seasonal cross-correlation 

coefficients for malaria lagging two months 

behind rainfall. 

Mapped cross-correlation coefficients for 

logarithmically transformed three-monthly 

rainfall (differenced with the logarithmically 

transformed rainfall in the preceding twelve 

months) with logarithmically transformed 

three-monthly number of malaria cases 

(differenced with the logarithmically 

transformed number of malaria in the 

preceding twelve months), after removing first 

order auto correlation (see methods)), with the 

malaria series lagging two months behind the 

rainfall series, for districts in Sri Lanka. The 

bar on the far left represents January as the 

centre month of a three months rainfall period; 

the bar on the far right represents December. 

Red bars represent negative correlation, green 

bars represent positive correlation. 
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Figure 33 - Correlation coefficients and 

rainfall for Gampaha District 

Three month centred moving average of 

logarithmically transformed geometric mean 

monthly rainfall (in mm per month, calculated 

over the period January 1971 to December 

2005) (blue line on right vertical axis), its 

derivative representing logarithmically 

transformed rainfall change per month (green 

line on left vertical axis) and the Fisher 

transformed correlation coefficient (red line on 

left vertical axis) between malaria and rainfall 

at a lag of two months, found in seasonal inter-

annual analysis (see methods) for Gampaha 

District. 

Figure 34 - Correlation between correlation 

coefficients and rainfall for districts in Sri 

Lanka 

Mapped correlation coefficient between the 

Fisher transformed correlation coefficient 

between malaria and rainfall found in seasonal 

inter-annual analysis at a lag of two months, 

(see methods) and a three month centred 

moving average of logarithmically transformed 

geometric mean monthly rainfall (in mm per 

month, calculated over the period January 

1971 to December 2005) for districts in Sri 

Lanka

 

 

2 4 6 8 10 12

-1
.0

-0
.5

0.
0

0.
5

1.
0

month

z 
an

d 
ra

in
fa

ll 
ch

an
ge

2
3

4
5

6

lo
g 

ra
in

fa
ll



 95

 

Figure 35 - Correlation coefficients and 

rainfall for Polonnaruwa District 

Three month centred moving average of 

logarithmically transformed geometric mean 

monthly rainfall (originally in mm per month, 

calculated over the period January 1971 to 

December 2005) (blue line on right vertical 

axis), its derivative representing change in 

logarithmically transformed rainfall per month 

(green line on left vertical axis) and the Fisher 

transformed correlation coefficient (red line on 

left vertical axis) between malaria and rainfall 

at a lag of two months, found in seasonal inter-

annual analysis (see methods) for Polonnaruwa 

District. 

Figure 36 - Correlation between correlation 

coefficients and change in rainfall for districts 

in Sri Lanka 

Mapped correlation coefficient between the 

Fisher transformed correlation coefficient 

between malaria and rainfall found in seasonal 

inter-annual analysis at a lag of two months, 

(see methods) and monthly change in a three 

month centred moving average of 

logarithmically transformed geometric mean 

monthly rainfall (originally in mm per month, 

calculated over the period January 1971 to 

December 2005) for districts in Sri Lanka.
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Discussion 

Cross-correlation analysis 

In some districts in Sri Lanka, malaria case time series and rainfall showed high 

cross-correlations at short lags as well as at longer lags.  While a causal relationship is 

biologically plausible at a lag of two to four months, it is increasingly less so at longer 

lag times.  Amerasinghe and colleagues [3] found a lag period of 1.5 months between 

a peak in abundance of Anopheles culicifacies immature forms and a peak in malaria 

cases, in a village in Anuradhapura District.  An additional time lag between rainfall 

and its effect on breeding conditions, depending on conditions such as soil moisture 

content, has to be included for the calculation of the rainfall – malaria time lag.  For 

most districts, a positive cross correlation was observed between malaria and rainfall 

at a lag of two months, confirming the visual impression obtained by studying Figure 

18 and Figure 19.  It appears, however, that a large part of the detected cross-

correlation is due to auto-correlation and concurring cyclical trends, as the cross-

correlation analysis with the prewhitened series (discussed below) showed much 

smaller cross-correlations at short lags and absence of cross correlation at longer lags.   

Cross-correlation analysis with prewhitening 

For a few districts, (weak) positive cross-correlations were found in prewhitened 

series with no lag (Kegalle, Kurunegala and Moneragala) and at a lag of one month 

(Matale and Puttalam).  With a lag of one month, short term prediction with a one 

month horizon would be possible.  However, a one month lag seems the absolute 

minimum for the biological pathway from creating suitable breeding conditions to 

mosquito development, parasite development in the mosquito, the onset of disease 

symptoms, and eventually the taking of a blood sample.  Nevertheless, in a study in 

China, log transformed malaria and rainfall showed a maximum (positive) effect for 

malaria lagging one month behind rainfall, when entered into a regression model 

together with minimum temperature and fixed quarterly effects for seasonality [114].  

Cross-correlations of rainfall contemporary with malaria (at a lag of zero months) are 

of no value for malaria prediction systems because the total monthly rainfall for the 

future month needs to be known, unless rainfall can be predicted with high certainty.  

The (strongest) negative cross-correlations, albeit weak, found in the six adjoining 

districts at lags of two to five months in the centre-west, are in line with other studies 
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that showed that this region (except for Nuwara Eliya district which is situated at high 

altitude) is particularly prone to epidemics when monsoon rains fail [7].  It is difficult 

to find explanations for the differences in lag time at which the maximum or 

minimum cross-correlation occurs among (often neighbouring) districts.  Factors that 

could contribute to these differences are saturation levels and water retention of top 

soils, factors related to differences in malaria endemicity, and differences in 

temperature (mainly caused by differences in altitude).  However, given the generally 

weak cross-correlations, a large part of the inter-district variation in time-lag of 

maximum or minimum cross-correlation could have been caused by stochastic noise. 

After prewhitening, the cross-correlations found were very weak.  Only if rainfall can 

explain that part of the variation in a malaria time series that cannot be explained by 

autocorrelation and repetition of seasonal patterns, a rainfall covariate could 

contribute to a malaria forecasting system.  It was only for two out of the six districts 

(Gampaha and Ratnapura) with strongest negative correlation (situated in the centre 

west) that Briët and colleagues [111] found some contribution of rainfall to malaria 

prediction in seasonal ARIMA models at a lag of two months, and they found no 

improvement for Matale and Puttalam districts at a lag of one month.   

Inter-annual analysis 

Some studies in neighbouring India [115,116], with comparable total annual rainfall 

and strong seasonality in rainfall, have tried but failed to find a significant correlation 

between annual rainfall and malaria.  These studies did not consider differencing or 

detrending the data.  A study in Ingwavuma and Ubombo districts in KwaZulu-Natal 

province in South Africa, with less annual rainfall than Sri Lanka, also failed to find 

such correlation between annual malaria and rainfall time series, but it did find 

significant positive correlations between the difference of successive twelve-monthly 

(July to June, corresponding to the local malaria season) logarithmically transformed 

malaria case totals and summer (November – March) rainfall (and temperature) [107], 

while the long term trends were attributed to non-climatic factors [117].  Likewise, a 

study in Botswana, also with less annual rainfall than Sri Lanka, found a positive 

correlation between (detrended) annual malaria anomalies and December – February 

rainfall [118].  In the present study, strong negative correlations were found between 

differenced annual malaria and rainfall for a contiguous group of districts in the 

centre-west (with high annual rainfall), and these results were somewhat in line with 



 98

the results found in the cross-correlation analysis with prewhitening.  This area in 

particular has been repeatedly affected by malaria epidemics during droughts in the 

pre-malaria control era [7], and apparently malaria control has not changed this 

dynamic.  Although initially significant negative correlations were detected for the 

drier districts Vavuniya and Trincomalee, the correlations in these districts were not 

very robust to influential observations.  The data quality in the north-east has been 

compromised by the armed conflict in the region, and for some districts (particularly 

Vavuniya) some missing data were imputed.  The strong (negative) inter-annual 

correlations found for the districts in the centre-west provides hope for the 

development of long term malaria forecasting systems involving long term weather 

forecasts, provided these systems have sufficient capabilities to predict rainfall 

anomalies up to a year in advance, which is currently not feasible.  It is tempting to 

attribute the inverse direction of the relationship between rainfall and malaria found in 

this analysis as compared to the direction found in Southern Africa to the difference in 

annual rainfall, although other important differences exist, notably in malaria vector 

species. 

Seasonal inter-annual analysis 

The results of the seasonal inter-annual analysis supported the theory that rainfall 

varies in its effect on malaria transmission depending on the season.  These effects 

may cancel out when averaged over the entire calendar year (inherent to the first three 

approaches studied), and therefore, it seems that malaria forecasting systems 

incorporating rainfall need to take this seasonally varying effect into account.  Note, 

however, that Briët and colleagues [111] found limited improvement in malaria 

prediction with a seasonally varying rainfall effect for only three districts.   

There was a marked difference in the season-varying effect of rainfall on malaria 

between the south-western quadrant of the country and the rest of the country.  In the 

south west, the effect was strongly negative during February – June, whereas in the 

other quadrants, often a positive effect was found during April – September.  In most 

districts (except in the north-eastern quadrant), also a (weak) positive effect was 

found in December or January.   

Similar to the explanation of the spatial variation in malaria endemicity by spatial 

variation in annual rainfall, the spatial variation in the (seasonally varying) effect of 
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rainfall on malaria may be explained by spatial variation in (seasonal) rainfall.  In the 

south west, rainfall is normally lowest between November – April, in contrast with 

the rest of the country, where the April – September trough is (much) deeper in the 

rainfall climatology (Figure 18).  The classic biological explanation for the epidemics 

in the centre-west of the country is that failure of the south-west monsoon (that 

normally occurs between February – July, affecting mostly the wet and intermediate 

zones in the west) will cause the already low rivers (relative to the rest of the year) to 

stagnate and create breeding sites for An. culicifacies.  Thus the strong negative 

correlation found for rainfall occurring in February to May / June, especially during 

the first half of the first rainfall season, could be explained.  During the second half of 

the first rainfall season, when rivers flow, the negative effect is negligible.  However, 

the positive correlation at the end of the year, occurring just after the peak of the 

second rainfall season, is in contrast with this reasoning.  Possibly different breeding 

sites play a role at that time of the year.  In the north and east, the climate is 

particularly dry from February – September.  Here, rainfall during the middle of the 

year will provide the water required for mosquito breeding and humidity for survival, 

explaining the positive relationship found during the middle of the year, after the 

driest months.  During the north-east monsoon (October – January) the rivers flow 

normally abundantly, and a negative correlation might be expected (based on the 

observations in the centre west of the country) during this period, but only for one 

district with poor quality malaria data (Mullaitivu) this was apparent, whereas for 

another close by district (Jaffna), the opposite was observed.  There is no evidence 

that this mechanism plays a role in the north and east.  Furthermore, in the north and 

east, the highest malaria peak is normally observed in January (just after the peak in 

the north-east monsoon rains).  This is in line with the fact that early malariologists 

considered rivers not to be intimately involved in the mechanism of epidemic malaria 

in the dry zone [7].  The results from the analysis of correlation between Fisher 

transformed correlation coefficients and rainfall also suggested a different mechanism 

in the centre west from that in the rest of the country.   

The fact that positive correlations were stronger at a lag of one month, and negative 

correlations were stronger at a longer lag of three months may be explained as 

follows: Within a one month period, rainfall can influence malaria transmission and 

cases positively by providing humidity which increases mosquito survival.  One 
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month might not be long enough for rainfall to influence malaria cases through an 

effect on mosquito breeding.  A negative effect of rainfall on mosquito breeding (for 

instance less than normal rainfall which might cause river pooling, which will have a 

delay in itself) will need a longer lag period to translate into a change in malaria 

cases.   

Limitations of this study 

This study was limited to linear rainfall – malaria relationships.  For a better 

understanding of the biological mechanisms behind the observed relationships 

between rainfall and malaria cases, the link between rainfall and mosquito breeding 

and survival should be included.  Long, high quality time series of entomological data 

were unfortunately not available for this purpose.  Rainfall influenced variables, such 

as soil moisture saturation and river flow, are more directly linked to specific malaria 

vector breeding conditions.  However, such variables are more expensive to measure 

and therefore often estimated using rainfall, and in the latter case using such a 

variable would have little advantages.  There would be a clear advantage if for 

instance human interference with river flow, for purposes such as irrigation or power 

generation, could be taken into account.  Such interference disrupts the relationship 

between rainfall and river flow, and hence the relationship between rainfall and 

malaria [119].  Apart from rainfall and rainfall related variables, another variable that 

is expected to have a strong temporal effect on malaria case count time series is 

malaria control intervention.  This variable was not taken into account due to 

incomplete data.  Also, control methods and insecticides have changed over time, 

making it a complex covariate.  Temperature was not studied as it was considered of 

less importance than rainfall, showing little temporal variability (because Sri Lanka is 

situated close to the equator), and a large part of its temporal variability being 

governed by rainfall.  Except for the hill country, situated in the centre of Sri Lanka, 

the temperature is conducive to malaria transmission throughout the year.  Other 

environmental factors that are often considered in malaria studies are altitude and land 

use.  These were not taken into account as these do not fluctuate (strongly) over time.  

Another limitation is the use of Gaussian models on transformed count data, whereas 

negative binomially distributed methods on untransformed data [120] may have been 

more appropriate.  This study was performed on aggregated cases of Plasmodium 

falciparum and P. vivax.  Although the seasonality of P. vivax is slightly less marked 
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than that of P. falciparum, possibly caused by relapses of P. vivax occurring well after 

infection, the seasonality is very similar [61].  In the current study, it was presumed 

that cases were infected in the district where they were recorded.  Although with the 

large spatial units of districts only a small percentage of cases may have been 

acquired elsewhere, these would mostly be expected to have been acquired in 

neighbouring districts with similar rainfall patterns.  Nevertheless, in districts with 

normally very low transmission such as Galle, Nuwara Eliya and Colombo, the 

proportion of cases from elsewhere might be much higher, and the relationships 

between rainfall and malaria for these districts should be interpreted with care.   

Conclusions 

Although malaria and rainfall showed high cross-correlations in many districts in Sri 

Lanka, variation from normal monthly malaria counts patterns showed limited cross-

correlation with variation from normal monthly rainfall patterns, and therefore rainfall 

may have limited use for predicting malaria.  Seasonally varying effects of rainfall on 

malaria case counts may explain weak cross-correlations in prewhitened series (as the 

cross-correlation analysis did not allow for a seasonally varying effect).  There was a 

marked difference in the seasonally varying effect between the south-western 

quadrant and the rest of the country, which was probably related to differences in 

rainfall, but also to spatially different water requirements for optimum breeding 

conditions for the main malaria vector in Sri Lanka.   
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Abstract 

Background 

Malaria in Sri Lanka is unstable and fluctuates in intensity both spatially and 

temporally.  Although the case counts are dwindling at present, given the past history 

of resurgence of outbreaks despite effective control measures, the control programmes 

have to stay prepared.  The availability of long time series of monitored/diagnosed 

malaria cases allows for the study of forecasting models, with an aim to developing a 

forecasting system which could assist in the efficient allocation of resources for 

malaria control.   

Methods 

Exponentially weighted moving average models, autoregressive integrated moving 

average (ARIMA) models with seasonal components, and seasonal multiplicative 

autoregressive integrated moving average (SARIMA) models were compared on 

monthly time series of district malaria cases for their ability to predict the number of 

malaria cases one to four months ahead.  The addition of covariates such as the 

number of malaria cases in neighbouring districts or rainfall were assessed for their 

ability to improve prediction of selected (seasonal) ARIMA models. 

Results 

The best model for forecasting and the forecasting error depended strongly on the 

district.  The addition of rainfall as a covariate improved prediction of selected 

(seasonal) ARIMA models modestly in some districts, but worsened prediction in 

other districts.  Improvement by adding rainfall was more frequent at larger 

forecasting horizons. 

Conclusions 

Heterogeneity of patterns of malaria in Sri Lanka requires regionally specific 

prediction models.  Prediction error was large at a minimum of 22% (for one of the 

districts) for one month ahead predictions.  The modest improvement made in short 

term prediction by adding rainfall as a covariate to these prediction models may not 

be sufficient to merit investing in a forecasting system for which rainfall data are 

routinely processed. 
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Background 

Malaria has been a major public health problem in Sri Lanka [2] until recently.  Since 

the year 2000, incidence has dwindled [121] with only 591 reported cases for 2006 

[122].  It is unstable and fluctuates in intensity both spatially and temporally, thus 

resources for control have to be spread in time and space to be prepared for outbreaks, 

which have occurred in the past despite very aggressive and effective malaria control 

operations [38].  Having a forecasting system in place will contribute to a more 

focussed approach for control, and have a positive impact on the resource allocation 

for malaria control over space and time.  This paper explores different models for 

malaria case prediction, which is possible due to the availability of long, dense and 

reliable records of malaria cases and climate variables in Sri Lanka [26].   

While many factors play a role in the spatial and temporal distribution of malaria, 

climate variability (both spatial variation of the long term seasonal mean of weather 

variables, and temporal aberrations from the long term seasonal mean) has been 

shown to be important in explaining its occurrence [9,109,123] and is considered a 

major determinant [124].  Temperature, rainfall, and humidity affect breeding and 

survival of a certain (sub) species of anopheline mosquitoes that carry the malaria 

parasite, as well as development of malaria parasites within vector mosquitoes, 

thereby creating a link between weather and malaria.   

At present, there are no practical tools for temporal prediction of the occurrence of 

malaria based on observed rainfall or weather forecasts in Asia, although these are in 

development [125].  For Africa, such tools have been developed [94] and applied 

[126].  Recent work [127,128] focuses on malaria early warning systems, in which 

flags are raised when epidemics are expected.  Setting the threshold for what is an 

epidemic (defined as a number of cases substantially exceeding that what is expected 

based on recent experience or what is thought normal) is subjective.  The term 

‘epidemic’ does not combine well with the term ‘prediction’ (if the expected number 

is predicted based on recent experience, the prediction can never be ‘epidemic’ 

according to the above definition).  It is difficult to define, especially in Sri Lanka, at 

what level malaria incidence is thought to be normal, as the malaria time series show 

strong long-term fluctuations and it is, therefore, difficult to set thresholds.  In 

general, disease forecasting is most useful to health services when it predicts case 

numbers two to six months ahead, allowing tactical responses to be made when 
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disease risk is predicted to increase (or decrease) [129].  For this reason this paper 

avoids the problem of setting epidemic thresholds, by focusing on forecasting malaria 

cases only. 

Malaria case numbers are influenced by factors intrinsic to malaria such as infectivity, 

immunity and susceptibility of vectors and humans, and extrinsic, environmental 

factors such as rainfall.  The number of possible models for malaria prediction is 

infinite.  In biological process models, typically consisting of sets of equations, 

prediction can be done with details of all pathways, parameters and variables believed 

to be important for the dynamics of the disease [129].  In statistical models, temporal 

or spatial autoregressive terms account for the fact that case numbers depend on past 

or nearby case numbers through (sometimes cyclical) intrinsic processes, as well as 

for (unobserved) extrinsic auto correlated factors or factors with fading effects.  This 

study was limited to some statistical models that are relatively easily implemented 

without taking into consideration complex biological processes and their parameters, 

and /or have been successful elsewhere in malaria forecasting studies.  With sufficient 

temporal autocorrelation in malaria case time series, malaria cases can be predicted 

based on previous values [130].  However, predictions from statistical models are 

made under the assumption that the relationships established based on past 

observations remain the same into the future.  Therefore, statistical models require 

experience with as wide a spectrum of conditions as possible.  In this light, the present 

low case numbers, with a probable negative effect on immunity, have been 

unprecedented in the time series under study, and a caution should be in place.  More 

complex statistical models can be constructed where malaria incidence in an area is, 

apart from its own previous values, also dependent on (previous) values in 

neighbouring areas, or covariates such as rainfall [107,131].  These latter models 

require more inputs and therefore more resource intensive to apply, particularly where 

covariate data need to be acquired and processed in a timely manner to be useful for 

forecasting.  In this paper, it was examined which standard time series statistical 

model would be useful for forecasting malaria, and it was examined whether addition 

of rainfall to autoregressive models could improve malaria prediction in districts with 

one to four month forecasting horizons. 
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Methods 

This section describes the data used for the analyses, methods for pre-processing of 

the data, types of models tested and the criteria for model selection. 

Malaria data 

The count of blood films examined for malaria as well as those positive for malaria 

per month reported by government health facilities and aggregated by medical officer 

of health (MOH) area (which represent sub district health administrative divisions) 

were provided by the Anti Malaria Campaign of Sri Lanka for the period 1972 – 

2003.  In addition, data aggregated by district were available for the years 2004 – 

2005.  For some of the records, the number of blood films examined was marked as 

“not received” (and therefore classified as missing).  For 14.90% of the MOH area 

level records, the value was zero, or left blank.  For the latter records, there was 

ambiguity as to whether the data value could be missing due to problems in data 

recording, or genuinely zero if no patients presented themselves for examination in 

that particular area in that particular month.  As such, in a data cleaning procedure 

(see section on statistical methods), 1.4% of the records was declared as not available 

(NA) if the number of blood films examined was marked as “not received” (0.95%), 

or if the number of blood films could be classified as a lower additive outlier (0.44%).  

The data from districts in the north and east, where data gathering and reporting was 

affected by the armed conflict, had the largest percentage of data labelled not 

available: Jaffna (5.4%), Mannar (26.1%), Vavuniya (8.9%), Kilinochchi (2%), 

Trincomalee (2%) and Ampara (5.4%).  After imputation, MOH area level data for 

positive cases were aggregated to district resolution and combined with the district 

level data (for the period 2004 – 2005).   
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Figure 37 - Rainfall stations 

Location of stations measuring rainfall for which monthly data (open circles) and daily data (solid 

triangles) were available.  Grey lines represent current boundaries of the 25 districts.  The time period 

for which data was available varied per station. 

 

Rainfall data 

Records of precipitation (rain fall) collected by 342 stations across the island were 

purchased from the Meteorological Department of Sri Lanka (see Figure 37).  This 

consisted mostly of monthly aggregate data, but for an area in the south (Ruhuna), 

daily rainfall data were also available for 57 stations covering partly the districts of 

Ratnapura, Hambantota, Badulla and Moneragala, for the period January 1972 – 

March 2003.  Three stations with consistently aberrant rainfall, detected through cross 

validation using kriging [99], were removed from the dataset.  Monthly rainfall 

surfaces were created through spatial prediction using kriging [99].  From the daily 

data available, the monthly “rainy day index” was calculated for each station by 

dividing the number of days per month that rainfall was larger than zero by the 

number of days that a reading for rainfall was available.  Monthly rainy day index 

surfaces were generated following the same procedure as for the total monthly 

rainfall.  From each monthly rainfall surface, the average value of rainfall / rainy day 

index was extracted for each district. 
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Statistical methods 

The monthly count of malaria positive blood slides in each district ty  were 

transformed to normality via the logarithmic transformation ( )log 1t tz y= + .  The 

models tested included exponentially smoothing and auto-regressive integrated 

moving average (ARIMA) models [90].  As some of the district malaria count time 

series showed strong seasonality, seasonality was also modelled.  In models using 

exponential smoothing, seasonality was included using the Holt-Winters procedure 

[90].  In ARIMA models, seasonality was included via three different approaches 

which are all widely used in literature: seasonality through fixed (monthly) effects; 

seasonality through harmonics; and through random effects using seasonal 

multiplicative auto-regressive integrated moving average (SARIMA) models.  

Whether or not covariates such as rainfall and concurrent malaria case counts in 

neighbouring areas improved the predictive ability of the models was also tested.  In 

addition, the seasonal adjustment method used by Abeku and colleagues [130], was 

tested. 

Exponentially weighted moving average models 

The additive Holt-Winters prediction function (for time series with period length s) at 

time t+h is given by the following equation: 

 , ,ˆt h t h t hz m S+ = +   

where ,t hm is the average number of cases at time t+h expressed as a trend ,t hr  and an 

overall mean term ta , that is , ,t h t h tm r a= + .  ,t hS  is a seasonality term at time t+h, 

such that , 1 ( 1)modt h t s h sS S − + + −=  where ( )1 modh s−  is the remainder of h-1 after division 

by s (e.g. 14 mod12 2= ).  Thus  

 1 ( 1)modˆt h t t t s h sz a hr S+ − + + −= + +     (1) 

where ta , tr  and tS  are calculated by the following recursive functions: 

 ( ) ( )( )1 11t t t s t ta z S a rα α− − −= − + − + ; 

 ( ) ( )1 11t t t tr a a rβ β− −= − + − ; 

 ( ) ( )1t t t t sS z a Sγ γ −= − + − . 

Both seasonal and non-seasonal (with γ  fixed to 0) models were tested using the 

function “HoltWinters” in the package “stats” of the statistical software package “R”. 
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(S)ARIMA regression models 

It was assumed that tz  is Gaussian distributed, ( )2~ ,t tz N μ σ , with mean tμ  and 

variance 2σ .  Further, it was assumed that  

 ( ) ( ), , , ,t t t tf z d p x g u qμ = +    (2) 

where ( ), , ,t tf z d p x  and ( ),tg u q  model the temporal correlation as 

 ( ) ( )( ) ( ), , , 1 d
t t p t t tf z d p x B B x z z= Φ − − +  and ( ) ( ),t q t tg u q B u u= Θ −  

where 

 ( ) 11 ... p
p pB B Bφ φΦ = − − − ;  

 ( ) 11 ... q
q qB B Bθ θΘ = − − − ; 

 tu  is Gaussian white noise; 

 t t tx m S= + ;  

 tS  models the seasonal process; 

 tm  models the mean of tz  

 B  is a backshift operator with ( )d
t t dB z z −= . 

The seasonality in the ARIMA models of equation 2 was modelled by fixed effects.  

In particular it was assumed: 

• 0tS =  (A non seasonal model), 

• ( )
12

,
1

k

t k k t
k

S α δ
=

=

= ∑  where { },

1 if  = nk
, 1,2,...

0 if nkk t

t
n

t
δ

⎧
= =⎨ ≠⎩

 

(Seasonality through fixed effects for months: Note that in this model tm  does not 

contain an intercept to avoid over parameterisation), 

• ( )
2

sin 2 2t i i i
i

S A f tπ πϕ= +∑  

a second order harmonic component where iA  is the amplitude of harmonic i; if  is 

the frequency of harmonic i, with 1 1/f s= , 2 2 /f s= ; and iϕ  is the phase shift (in 

units of time) of harmonic i. 
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Also, a multiplicative seasonal ARIMA(p,d,q)*(P,D,Q) model (henceforth SARIMA) 

was considered with period s, obtained by modifying equation 2 into 

 ( ) ( ), , , , , , , , ,t t t tf z d p D P s m g u q Q sμ = +  

where 

 ( ) ( )( ) ( ) ( )( )*, , , , , , 1 1
Dd s s

t t p P t t tf z d p D P s m B B B B m z z= Φ − − Φ − + ; 

 ( ) ( ) ( )*, , , s
t q Q t tg u q Q s B B u u= Θ Θ − ; 

 ( )* * *
11 ...s s sP

P PB B Bφ φΦ = − − − ; 

 ( )* * *
11 ...s s sQ

Q QB B Bθ θΘ = − − − ; 

 and ( )p BΦ , ( )q BΘ , tu , tm and B  as explained above. 

The function “arima” in the package “stats” of the statistical software “R” was used to 

calculate the prediction criterion.  Tested models included all (Gaussian) ARIMA 

models possible with combinations of parameters (p, d, q) with p, q ∈  {0,1,2} and 

with d = 1, without explanatory variables, and all (Gaussian) SARIMA models 

possible with combinations of parameters (p, d, q, P, D, Q) with p, q ∈  {0,1,2} and d 

= 1 and P, D, Q ∈  {0,1}, also without explanatory variables.  An intercept was not 

included in the mean as it drops out of the equation due to differencing (d = 1).  The 

differencing also removes effects of trends such as potentially caused by population 

growth. 

Covariates were included in the term tm .  In particular, 1) , 1t j j t
j

m zβ −=∑  where 

, 1j tz −  is the transformed malaria count at month t - 1 in neighbour j; 2) t t lm βχ −=  

where tχ  is the rainfall parameter in month t - l with l = lag.  Rainfall was considered 

at lags of one to four months preceding malaria and in the following forms: 

untransformed monthly rainfall, logarithmically transformed monthly rainfall, rainy 

day index (for those districts with daily rainfall available), monthly rainfall factored 

into quintiles (in case of non-linear relationships), and rainfall with a separate 

coefficient for each of the twelve calendar months, i.e. a coefficient for January 

rainfall, one for February, etc., in order to allow for seasonally varying effects.  For 

each district, covariates were tested by including them into the (S)ARIMA model that 

performed best for the respective district and lag. 
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Estimation of non-available malaria count data 

In a data cleaning procedure, the time series of blood film counts in MOH areas were 

logarithmically transformed to normality (after the value one was added to the data).  

Under the null hypothesis, each observation was assumed to be part of a seasonal 

autoregressive integrated moving average (SARIMA) process with parameters p = 0, 

d = 1, q = 1, P = 0, D = 1, and Q = 1.  Observations were marked as additive outlier if 

the likelihood ratio test statistic (for an additive outlier) for the observation was below 

a threshold of -6 [98], and were classified as not available.  For those observations 

classified as not available that were not at the beginning or end of a series, values for 

the number of malaria positive blood films were estimated through a one-step-ahead 

SARIMA forecasting model on the original series and on the reversed series, and the 

two estimates were averaged.  This approach has been discussed by Mwaniki and 

colleagues [101].  Finally, the MOH area data series were aggregated to district 

resolution before analysis, as these spatial units remained constant over the study 

period, whereas for many MOH areas boundaries changed (within district boundaries) 

over the study period.   

Seasonal adjustment method with last three observations 

Abeku and colleagues [130] tested a seasonal adjustment method on malaria data in 

Ethiopia and found that it performed better in comparison to SARIMA models.  They 

obtained best results when using a three year “training” time series.  The prediction 

formula used is as follows:  

 { } { }
3 3 3

1 1 1
12 123 3 3

1 1 1

ˆ
k l k

t t k t l t k l
k l k

z z z z
= = =

− − − −
= = =

⎧ ⎫= + −⎨ ⎬
⎩ ⎭

∑ ∑ ∑ . 

Model evaluation 

For each district, model parameters were estimated on approximately the first half of 

the malaria case time series (January 1972 – December 1987), and one to four step 

ahead (out of sample) predictions were made on the second half (January 1988 – 

December 2005) with the parameters fixed.   
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For selection of the best predictive models, all models tested were evaluated on the 

prediction criterion which was defined as the mean absolute relative error (mare) of 

back transformed out of sample predictions:  

 
1

ˆ
1

N
t t

i t

y ymare N
y=

−
=

+∑   

where ˆty is the predicted number of malaria positive cases at time t, and N is the 

number of predictions.  Predictions needed to be genuinely out of sample in order to 

prevent bias towards more highly parameterized models.  The mare was used rather 

than mean square error, as the malaria count time series show widely differing 

variances across the series [90].  The best model was that with the lowest prediction 

criterion for a given time series. 

 

Figure 38 - Mean absolute relative error in districts at a 1 month forecasting horizon 

Mean relative absolute error of out of series prediction at a forecasting horizon of 1 month ahead for 

districts in Sri Lanka for the best model (without the inclusion of rainfall as a covariate) tested. 
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Table 8 - Mean absolute relative error of out of series prediction at forecasting horizons of 1 to 4 

months ahead for districts in Sri Lanka for the best (S)ARIMA model tested. 

District Horizon 1 Horizon 2 Horizon 3 Horizon 4 

 Criterion 
Model 
(pdqPDQ) Criterion 

Model 
(pdqPDQ) Criterion 

Model 
(pdqPDQ) Criterion 

Model 
(pdqPDQ) 

Ampara 0.37 012SOH 0.48 012101 0.58 012101 0.60 012101 

Anuradhapura 0.23 211101 0.37 210110 0.45 012110 0.51 210110 

Badulla 0.43 110SOH 0.62 111SOH 0.75 212101 0.74 112100 

Batticaloa 0.36 010011 0.54 012101 0.66 012101 0.78 012101 

Colombo 0.35 011000 0.38 112000 0.43 211001 0.46 011000 

Galle 0.49 212002 0.58 211101 0.63 211101 0.71 211110 

Gampaha 0.40 011111 0.56 011SOH 0.67 011SOH 0.78 011SOH 

Hambantota 0.31 010101 0.47 110101 0.60 210101 0.71 210101 

Jaffna 0.42 010011 0.58 012111 0.74 012011 0.82 012SOH 

Kalutara 0.54 112100 0.72 011000 0.79 110000 0.79 110000 

Kandy 0.33 012101 0.43 012101 0.48 112SOH 0.51 212SOH 

Kegalle 0.37 010SOH 0.55 211011 0.66 211SOH 0.75 211SOH 

Kilinochchi 0.51 010101 0.95 010101 2.13 111010 2.13 010002 

Kurunegala 0.25 011011 0.41 010011 0.53 011011 0.63 011011 

Mannar 1.16 011100 0.97 012101 1.10 112100 1.18 111101 

Matale 0.37 110101 0.53 110101 0.62 212011 0.70 112011 

Matara 0.35 212101 0.40 011101 0.46 212101 0.49 0110111 

Moneragala 0.29 110100 0.40 011100 0.48 210100 0.56 011100 

Mullaitivu 1.03 111100 1.70 112000 2.00 110000 2.58 111SOH 

Nuwara Eliya 0.48 212111 0.58 212101 0.66 212101 0.68 111000 

Polonnaruwa 0.32 111101 0.47 012101 0.57 111011 0.66 111011 

Puttalam 0.35 010101 0.46 010101 0.60 212101 0.72 010101 

Ratnapura 0.30 011111 0.43 012111 0.50 210111 0.57 112111 

Trincomalee 0.53 112000 0.79 010100 1.05 010100 1.15 112111 

Vavuniya 1.22 012000 1.43 012101 1.41 211101 1.48 012101 

Legend: pdq = order of autoregressive component, integrated component and moving average 

component; PDQ = order of seasonal autoregressive component, seasonal integrated component and 

seasonal moving average component; SOH = seasonality through second order harmonic;  
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Results 

The best model (without extrinsic explanatory variables) varied by district and 

forecasting horizon (Table 8).  For instance, for the district of Ampara, for a one 

month forecasting horizon, the best model was an ARIMA (2,1,1) model with 

seasonality modelled through a harmonic with a period of one year and a harmonic 

with a period of six months.  For further forecasting horizons, the ARIMA(0,1,2) 

model with seasonality through a first order seasonal autoregressive and a first order 

seasonal moving average component was best for the district of Ampara.  The best 

model was most often of the SARIMA class, followed by the class of models 

modelling seasonality through second order harmonics.  For a few districts, at some 

forecasting horizons, exponential smoothing was best (Table 9).  The seasonal 

adjustment method performed worst (Not shown).  The mean relative absolute error 

of forecasts varied over the districts (for the same forecasting horizon, see Figure 38), 

and increased with forecasting horizon.  The mare was relatively high for the districts 

Galle and Kalutara in the south west, and Nuwara Eliya in the central hill country, 

which have low malaria endemicity.  The mare was also (very) high for the districts 

affected by the armed conflict in the north and east.  Within a class of models, the 

most complicated model tested was not necessarily the best model, and often the 

prediction improvement obtained by fitting an extra (S)ARIMA parameter as 

compared to more parsimonious models was marginal. 

In the analysis of covariates for the mean term, only the (S)ARIMA models shown in 

Table 8 were tested.  Only for the districts Mannar and Ampara, inclusion of malaria 

in neighbouring districts lowered one month ahead mare, with 6.8% and 4.6%, 

respectively.  For many other districts, inclusion of malaria in neighbouring districts 

raised the mare.  Inclusion of a rainfall variable lowered the mare with 2.5% or more 

for eight districts at one or more horizons (Table 10).  Logarithmically transformed 

rainfall lowered the mare for Gampaha District (at horizons of three and four months), 

Mannar District (at a horizon of one month) and Vavuniya District (at a horizon of 

four months).  Logarithmically transformed rainfall with a separate coefficient for 

each calendar month lowered the mare for Ratnapura District (at horizons of three and 

four months), and Trincomalee District (at horizons of two and three months).  

Rainfall factored into quintiles (allowing a non-linear relationship) lowered the mare 

for Moneragala District (at a horizon of two months) and Mullaitivu District (at a 
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horizon of one month).  The rainy day index lowered the mare for Moneragala 

District (at a horizon of three months), and the rainy day index with a separate 

coefficient for each calendar month lowered the mare for Badulla District at a horizon 

of four months. 

Table 9 - Mean absolute relative error of out of series prediction at forecasting horizons of 1 to 4 

months ahead for districts in Sri Lanka for Holt Winters models. 

District 
Horizon 1 

  

Horizon 2 

  

Horizon 3 

  

Horizon 4 

  

Model H HW H HW H HW H HW 

Ampara 0.43 0.39 0.65 0.52 0.83 0.63 0.86 0.67 

Anuradhapura 0.34 0.22 0.66 0.35 0.99 0.45 1.22 0.53 

Badulla 0.46 0.54 0.67 0.75 0.87 0.95 0.84 0.96 

Batticaloa 0.41 0.41 0.65 0.65 0.82 0.82 0.97 0.97 

Colombo 0.35 0.37 0.39 0.43 0.44 0.48 0.46 0.53 

Galle 0.50 0.61 0.59 0.74 0.67 0.83 0.79 0.96 

Gampaha 0.43 0.43 0.59 0.59 0.70 0.70 0.78 0.78 

Hambantota 0.36 0.36 0.57 0.56 0.76 0.73 0.88 0.87 

Jaffna 0.43 0.46 0.62 0.63 0.79 0.85 0.85 0.97 

Kalutara 0.55 0.61 0.72 0.80 0.81 0.91 0.88 0.97 

Kandy 0.37 0.37 0.50 0.50 0.56 0.57 0.57 0.57 

Kegalle 0.39 0.40 0.63 0.62 0.83 0.82 0.94 0.95 

Kilinochchi 0.58 0.60 1.08 1.12 2.50 2.26 2.70 2.17 

Kurunegala 0.34 0.26 0.61 0.43 0.76 0.57 0.85 0.70 

Mannar 1.41 1.57 1.74 1.98 1.61 2.63 1.78 2.28 

Matale 0.45 0.41 0.73 0.63 0.96 0.74 1.13 0.81 

Matara 0.37 0.35 0.42 0.40 0.49 0.48 0.52 0.52 

Moneragala 0.31 0.31 0.42 0.41 0.54 0.52 0.62 0.63 

Mullaitivu 1.08 1.19 1.73 1.70 2.21 2.54 2.73 2.38 

Nuwara Eliya 0.49 0.50 0.61 0.60 0.69 0.69 0.69 0.69 

Polonnaruwa 0.37 0.37 0.60 0.60 0.76 0.76 0.82 0.82 

Puttalam 0.42 0.37 0.67 0.49 0.88 0.64 1.00 0.76 

Ratnapura 0.36 0.31 0.55 0.47 0.64 0.56 0.74 0.66 

Trincomalee 0.53 0.56 0.82 0.75 1.15 0.97 1.35 1.07 

Vavuniya 1.89 2.02 2.82 3.93 2.45 14.21 2.19 4.11 

H = Holt’s two parameter exponential smoothing; HW = Holt-Winters’ three parameter exponential 

smoothing (including seasonality).  Values in bold italic represent a better mare as compared to the best 

(S)ARIMA model (without rainfall). 
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Table 10 - Districts in Sri Lanka for which inclusion of a covariate in the mean term of the best 

(S)ARIMA model tested improved the mean absolute relative error of out of series prediction at 

forecasting horizons of 1 to 4 months ahead. 

District 
Horizon 
(months) 

Lag 
(months) covariate 

Improve-
ment 
(%) 

Badulla  4 4 
rainy day index, with a separate coefficient for each 
calendar month 6.5 

Gampaha  3 4 logarithmically transformed total monthly rainfall (mm) 3.8 

Gampaha  4 4 logarithmically transformed total monthly rainfall (mm) 4.5 

Mannar 1 2 logarithmically transformed total monthly rainfall (mm) 5.2 

Moneragala 2 2 monthly rainfall factored into quintiles 4.1 

Moneragala 2 3 rainy day index 4.6 

Moneragala 3 3 rainy day index 3.2 

Mullaitivu 1 1 monthly rainfall factored into quintiles 2.6 

Ratnapura 3 4 
logarithmically transformed total monthly rainfall (mm), 
with a separate coefficient for each calendar month  3.9 

Ratnapura 4 4 
logarithmically transformed total monthly rainfall (mm), 
with a separate coefficient for each calendar month  3.6 

Trincomalee 2 2 
logarithmically transformed total monthly rainfall (mm), 
with a separate coefficient for each calendar month  8.4 

Trincomalee 3 3 
logarithmically transformed total monthly rainfall (mm), 
with a separate coefficient for each calendar month  9.2 

Vavuniya  4 4 logarithmically transformed total monthly rainfall (mm) 2.5 

 

Discussion 

Models without extrinsic explanatory variables 

The mean relative prediction error calculated by the best models (without extrinsic 

explanatory variables) tested was quite large for many districts.  However, the models 

were fitted to only half of the length of the time-series available, because for the 

purpose of model testing out of sample predictions are required. It is expected that for 

application in a forecasting system where the full series are used for fitting, the error 

will be reduced.  For some districts in the north, the forecasting error was particularly 

large.  For these districts, a relatively large proportion of the data had been imputed, 

and the quality of the existing data is likely compromised by the armed conflict in this 

region.  General issues related to data quality are discussed elsewhere [61].  In this 

(primarily) temporal study, issues relating to spatial variation in data quality (e.g. 

through access to health facilities for sampling) are of less importance than those 
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pertaining to temporal aspects, such as the deployment of mobile clinics during 

specific periods.  Despite the sometimes large prediction errors, especially for larger 

forecasting horizons, prediction intervals yielded by these models (albeit less accurate 

for low predicted mean counts due to the Gaussian approximation used) could aid the 

AMC in assessing the risk of malaria in the near future, and adjust resources for 

preparedness accordingly.  Although the best model selected varied among districts 

and over forecasting horizons, the difference between models was often small.  

Instead of specifying a different model for each situation, for practical 

implementation, it may be worth selecting for each district (or even group of districts) 

one model that performs well on average over a range of forecasting horizons (and 

districts within the group), provided that the prediction quality does not deteriorate 

more than a set percentage.  A pilot forecasting system using district specific 

SARIMA models is currently being tested by the AMC in Sri Lanka (the system uses 

currently models without explanatory variables because a system to incorporate newly 

observed explanatory data is not yet in place).  As the spatial resolution of the 

forecasting models presented is at district level, predictions will not help spatially 

targeted control at sub district level.  For this, regional malaria control officers will 

have to rely on their experience of where within the district cases tend to occur if they 

occur, possibly aided by existing malaria maps at sub district level [61]. 

Models including rainfall as explanatory variable 

It should be kept in mind that the malaria count data are not a direct proxy of new 

malaria infections or even infective bites.  Recrudescent and relapsing cases (mostly 

due to ineffective drugs) occur multiple times in the malaria dataset, and immunity 

may play a role during periods of higher endemicity, thus weakening explanatory 

power of a variable such as rainfall, which would probably be better at explaining 

infectious bites [132]. 

Rainfall improved the prediction for eight districts, at one or more of the tested 

forecasting horizons, but it also worsened the prediction for other districts at various 

horizons.  For some districts, the rainfall preceding malaria by two months improved 

performance at forecasting horizons of three and four months (not shown), but this is 

of little use in a forecasting system, unless rainfall can be predicted with high 

confidence (one to two months ahead).  Although only tested for four districts, the 

rainy day index was promising as it improved results for two out of these. 
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The results of the analysis incorporating rainfall was remarkably different from what 

would be expected based on results of cross correlation analysis of malaria and 

rainfall.  Although both (pre-whitened) cross correlations [96] and the improvements 

of rainfall to prediction accuracy were generally low, (pre-whitened) cross correlation 

analysis indicated that prediction accuracy for a number of districts in the centre-west 

and centre-south of the country was likely to benefit from rainfall (with a single, 

negative coefficient), and the present analysis found such improvement only for 

Gampaha District.   

Varying seasonal effects of rainfall on malaria in seasonal inter-annual analysis [96] 

suggested that especially for districts in the north and east, prediction models would 

benefit from addition of rainfall with a monthly varying coefficient.  However, only 

for the districts Trincomalee and Ratnapura (the latter situated in the south), this was 

the case.  It is possible that for most of the districts, the training time series was too 

short (sixteen years) to estimate each of the twelve coefficients reliably.   

For most districts (except the districts Mannar, Mullaitivu and Vavuniya), presumably 

due to strong short term temporal auto correlation, the observed number of malaria 

cases is a good predictor at a one month forecasting horizon (Figure 38).  

Interestingly, for Mannar and Mullaitivu, rainfall could improve predictions 

somewhat at this horizon.  For the remaining six districts for which rainfall was found 

to improve predictions, this was mostly at larger forecasting horizons.  For prediction 

with an even further forecasting horizon, use of predicted rainfall might be feasible.  

Rainfall could be predicted up to several months ahead using, for instance, the El 

Niño southern oscillation index, which in itself has proven to have a statistically 

significant relationship with malaria epidemics in the pre control era [9].  During 

periods when case reporting might be compromised (e.g. through civil war), rainfall 

may gain in relative importance as a predictor of the true number of cases, although 

this would be difficult to validate.  It should be noted that high cross correlations 

between (not prewhitened, seasonal) malaria time series and extrinsic covariates (with 

seasonality) such as rainfall and temperature may exist [96], and these covariates may 

perform well in models that do not include fixed seasonal or auto-regressive seasonal 

terms, but not necessarily better than models that do include fixed seasonal or auto-

regressive seasonal terms. 
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The contribution of rainfall to reducing the prediction error was modest, and it is 

arguable whether or not the achieved reduction in the prediction error (for instance, a 

reduction of 9.2%, bringing the mean relative error down from 1.05 to 0.95 at a 

horizon of three months in the district Trincomalee) merits investing in a system 

where at the end of each month, monitored rainfall data are collected and processed to 

obtain average values for the district surface for entering into the prediction model.  

However, as such data become increasingly available with the development of 

monthly rainfall data monitoring systems at district and sub district scale [133], the 

reduction in prediction error gained might well outweigh the (reduced) effort. 

The modest improvement found by including rainfall compares well to a study in 

Ethiopia [131].  That study also found modest improvement (a reduction of 10.7% in 

the number of one step ahead predictions that were more than twice or less than half 

the observed value) by a model incorporating rainfall and temperature over a simple 

model using the previous value as predictor (an ARIMA(0,1,0) model).  However, the 

improvement would probably have been less if it had been tested on out of sample 

predictions.  It is interesting to note that in this same paper, Abeku and colleagues 

[131] found that the ARIMA(0,1,0) performed better than the seasonal adjustment 

method (which performed unsatisfactorily on Sri Lankan data), whereas previously 

the seasonal adjustment method had been reported as superior [130].  Another study 

carried out in Ethiopia found that a prediction model including rainfall, temperature 

and cases in the previous month performed well in flagging potential epidemics as 

compared to observed cases, but was not compared with a prediction model based on 

past cases alone [127], therefore, the relative improvement cannot be assessed and 

compared to the improvement found in the present study.   

Some explanatory variables not considered in this study and suggestions for future 

work 

Other rainfall related variables such as soil moisture content and river flow might give 

better results than observed rainfall, as these are more directly related to malaria 

vector breeding conditions.  The main malaria vector in Sri Lanka, Anopheles 

culicificacies, primarily breeds in pooling rivers (although there are also other habitats 

such as those mentioned above).  In general, rainfall and river flow show strong cross 

correlations, and therefore rainfall can serve as a proxy for river flow.  However, 

under dryer conditions –important for vector breeding– direct runoff will be decreased 
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and river flow will be increasingly influenced by other hydrological processes such as 

percolation and evapo-transpiration.  As river flow and soil moisture are difficult to 

measure over large surfaces (and long term data with good spatial resolution are not 

readily available), they can be estimated through modelling, although rainfall will 

remain an important variable in such models [134].  Vegetation indices such as the 

normalized difference vegetation index (NDVI) were not studied because it can be 

argued that in a primarily temporal analysis, observed station rainfall is more closely 

related to breeding conditions than temporal changes in NDVI.  Furthermore, remote 

sensing images of Sri Lanka suffer from obstruction by cloud cover during the 

monsoons.  Apart from rainfall and rainfall related variables, another variable that is 

expected to have a strong temporal effect on malaria is vector control.  This variable 

was not taken into account due to incomplete data.  The effect of rainfall on malaria 

could be studied for data in the pre-control era [9], but with the reality of control 

measures being carried out this will be of little use for current prediction.  The 

primary goal of this study was to develop an easy to use practical prediction model 

with the data available.  The effect of missing important variables in a prediction 

model will not invalidate results, but will be expressed in larger prediction intervals.  

Nevertheless, inclusion of a malaria control variable, at least for those districts with 

relatively complete data, merits investigation.   

Temperature was not considered as part of the present analysis, based on the 

assumption that it was of less importance than rainfall, showing little temporal 

variability (because Sri Lanka is situated close to the equator), and a large part of its 

temporal variability being governed by rainfall.  Except for the hill country (covering 

largely the districts Nuwara Eliya, Kandy and Badulla), the temperature is generally 

conducive to malaria transmission throughout the year.  However, for parts of the 

districts Kandy and Badulla, temperature could be limiting during part of (but not the 

whole of) the year and its role in these districts merits further investigation.  In a study 

on the relationship between malaria and rainfall and temperature in Ethiopia, rainfall 

was found to be important in hot districts which were situated below 1650 m, but not 

in cold districts above 1650 m, where minimum temperature was significant [105].  

Other environmental factors that are often considered in malaria studies are altitude 

and land use.  Altitude was not taken into account because it does not fluctuate over 

time, and is thus of no use for temporal forecasting.  Land use databases with monthly 
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temporal resolution were not available.  The performance of rainfall over several lag 

times accumulated, or at thresholds, remains to be explored.  It is tempting to try to 

build a space-time malaria forecasting model for the whole of Sri Lanka with more 

statistical power than a separate model for each district.  Such a model should allow 

for regionally varying functions of covariates and take into account spatial auto 

correlation between districts or even MOH areas.  For the purpose of a forecasting 

system, with the presently small malaria counts in most districts, it might be more 

appropriate to model the malaria counts directly following a negative binomial 

distribution, rather than through a logarithmic transformation [120].  Although easy to 

implement (and used in this work as well as work by others), the Gaussian (Normal) 

approximation of the malaria count data (after logarithmic transformation) is likely to 

affect the accuracy of the predictions, particularly when the counts are expected to be 

close to zero.  Most importantly, this may yield inaccurate prediction intervals during 

periods of low case numbers.  Although not so important in the current study (where 

models were evaluated on the means of the predictions), prediction intervals are very 

important for control planning. 
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Addendum to Chapter 7 – Implementation of a malaria forecasting system 

 

Introduction 

One of the main objectives of the project “Analysis of impacts of climate variability 

on malaria transmission in Sri Lanka and the development of an early warning 

system” was to provide the Anti Malaria Campaign of Sri Lanka with a malaria 

forecasting system.  In this addendum, it was described how the models and findings 

described in Chapter 7 were used to implement a forecasting system. 

The introduction of a malaria forecasting system was done in two phases.  The first 

system was introduced in June 2006, and feedback from RMOs was obtained during a 

workshop held at IWMI on the 30th of August 2006.  Based on the feedback and 

further analysis, a multi-model system was developed to suit different districts.  The 

new models were shared during a workshop held at IWMI in September 2007, where 

the RMOs and AMC staff were introduced to software.  This software allowed RMOs 

to make the predictions in their district.  Subsequently, the AMC headquarters agreed 

to make all predictions every month, as not all the RMOs did have computer facilities.  

Forecasting model selection 

The models in the software provided for the malaria forecasting system were all of the 

SARIMA class, and did not incorporate external climate variables such as rainfall.   

Although observed rainfall could improve prediction in certain districts (Chapter 7), it 

was not included in the model.  The reason for this is that (at the time of writing), 

there was no system operational which provides the Anti Malaria Campaign with up 

to date monthly district rainfall totalsc at the end of each calendar month, or even 

predicted into the future.  A model which depends on such data would thus not be 

functional in a forecasting system.   

                                                           
c Monthly district rainfall totals were used during the testing of the capacity of rainfall to improve 
predictions, as these were deemed to be the best measure of rainfall over the entire district.  The 
monthly district rainfall totals were calculated by interpolating gauge data from 342 stations across the 
island using kriging, and extracting the total value for the surface of a district.  As data acquisition of 
such a large number of stations might be costly and cause delays, a system whereby some important 
main rainfall stations are used, together with established statistical correlations with other stations, 
might be feasible, but this would require some programming and testing. 



 125

Table 11 - Quality of out of series predictions at forecasting horizons of 1 to 2 months ahead made with 

the SARIMA models recommended for districts in Sri Lanka for the most recent 24 month period (July 

2006 – July 2007). 

District 
SARIMA 
(pdqPDQ) Horizon 1 Horizon 2 

 
 % 

mare 
mw 
95%pi 

% 
below 

% 
higher 

% 
mare 

mw 
95%pi 

% 
below 

% 
higher 

Ampara 012101 55.0 5.4 8.3 0.0 75.0 7.9 4.2 4.2 

Anuradhapura 210110 60.8 20.9 4.2 12.5 90.9 41.0 4.2 8.3 

Badulla 112100 6.3 1.9 0.0 0.0 12.5 2.5 0.0 0.0 

Batticaloa 012101 70.5 4.7 12.5 8.3 90.8 8.8 8.3 4.2 

Colombo 211001 20.8 1.9 0.0 0.0 27.1 3.0 4.2 0.0 

Galle 211101 0.0 2.8 0.0 0.0 0.0 3.0 0.0 0.0 

Gampaha 011111 105.1 8.0 4.2 8.3 137.9 11.6 8.3 0.0 

Hambantota 210101 61.0 3.5 4.2 12.5 101.8 5.0 8.3 8.3 

Jaffna 012111 58.0 3.1 4.2 4.2 43.4 5.2 0.0 0.0 

Kalutara 110000 31.9 3.7 0.0 0.0 20.1 4.6 0.0 0.0 

Kandy 012101 35.4 1.9 0.0 4.2 45.8 2.6 0.0 4.2 

Kegalle 211011 22.2 1.9 0.0 0.0 27.8 3.2 0.0 0.0 

Kilinochchi 010101 6.3 3.2 0.0 0.0 22.9 6.6 0.0 0.0 

Kurunegala 011011 74.0 26.1 16.7 12.5 79.7 41.5 8.3 4.2 

Mannar 012101 10.4 5.5 0.0 0.0 8.3 8.1 0.0 0.0 

Matale 112011 36.7 2.3 4.2 8.3 38.1 3.1 0.0 8.3 

Matara 011101 31.9 2.1 0.0 4.2 34.7 2.3 0.0 0.0 

Moneragala 210100 24.3 1.8 0.0 0.0 21.5 2.4 0.0 4.2 

Mullaitivu 112000 8.7 5.7 0.0 0.0 13.0 8.7 0.0 0.0 

Nuwara Eliya 212101 0.0 2.0 0.0 0.0 0.0 2.1 0.0 0.0 

Polonnaruwa 111011 35.0 2.9 0.0 4.2 45.4 4.5 4.2 4.2 

Puttalam 010101 37.5 5.9 0.0 4.2 64.7 10.9 0.0 0.0 

Ratnapura 012111 25.7 2.0 0.0 4.2 31.3 2.8 0.0 4.2 

Trincomalee 112000 80.2 54.6 0.0 4.2 157.6 114.5 0.0 0.0 

Vavuniya 012101 80.9 29.3 0.0 8.3 126.3 36.9 0.0 8.3 

Legend: pdq = order of autoregressive component, integrated component and moving average 

component; PDQ = order of seasonal autoregressive component, seasonal integrated component and 

seasonal moving average component; %mare = mean relative absolute error of predictions expressed as 

percentage; mw95%pi = mean width of 95% prediction interval; %below = percentage of observations 

lower than lower 95% prediction interval boundary; %higher = percentage of observations higher than 

upper 95% prediction interval boundary; horizon = the number of month predictions are made ahead. 
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The models provided assume that the outcome variable (logarithmically transformed 

malaria case count data) is Gaussian distributed. This assumption might be violated, 

especially when case counts are close to zero.  This could yield incorrect prediction 

intervals.  

Model performance 

For the most recent two years of data available, for each district, predictions at a one 

and a two month forecasting horizon were made using the recommended models and 

compared to observed cases (Table 11).  The mean absolute relative prediction error 

(mare) is a good measure of model accuracy.  The results for the mare were very 

variable, depending on the district.  This was due, in part, to the extremely low 

number of malaria cases over the most recent two year period of the data.  For 

instance, in the district of Galle, no cases were observed, and predictions were zero 

for all months, hence the extremely low mare found of 0 %.  The mean width of the 

95% prediction interval (mw95%pi) is a measure of model precision.  The mw95%pi 

also varied largely over the districts.  The mw95%pi was particularly large for districts 

for which one or more of the observations were outside the 95 % prediction interval.  

Although 5% of the observations are expected to lie outside the 95 % prediction 

interval, it was striking that for some districts, this percentage was higher (up to 29% 

in Kurunegala district).  The example of the district of Kurunegala (Table 12) shows 

that after one observation occurred outside the 95 % prediction interval, prediction 

intervals of shortly following predictions were much wider.  The 95% prediction 

interval in the models used might be too narrow for some districts and not account for 

“erratic” behaviour of malaria positive counts time series.  This is possibly due to the 

fact that predictions were made using Gaussian models on logarithmically 

transformed data, which may be less accurate at low malaria count levels. 

Forecasting system - Phase 1: Predictions at one and two months’ forecasting 

horizons 

The AMC head office provided IWMI with the most recent monthly district malaria 

positive case counts through E-mail or telephone communications.  The AMC head 

office obtained these data from RMOs at monthly held review meetings, often held 

towards the end of the month.  At IWMI, the new monthly district malaria case data 

were entered manually and appended to the data file.  Consequently, predictions at a 
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Table 12 - Observed values and predictions at a forecasting horizon of 1 month ahead for Kurunegala 

District 

Month Observed Prediction L95%pib U95%pib w95%pi %re below higher 

Aug-05 27 12 5 24 19 -54 0 1 

Sep-05 21 28 13 58 45 32 0 0 

Oct-05 21 21 10 43 33 0 0 0 

Nov-05 24 23 11 48 37 -4 0 0 

Dec-05 47 33 16 68 52 -29 0 0 

Jan-06 96 54 26 109 83 -43 0 0 

Feb-06 34 69 34 142 108 100 1 0 

Mar-06 15 20 9 41 32 31 0 0 

Apr-06 11 9 4 19 15 -17 0 0 

May-06 10 14 6 29 23 36 0 0 

Jun-06 8 12 6 26 20 44 0 0 

Jul-06 25 9 4 18 14 -62 0 1 

Aug-06 10 27 13 57 44 155 1 0 

Sep-06 16 8 4 18 14 -47 0 0 

Oct-06 13 17 8 35 27 29 0 0 

Nov-06 7 14 6 30 24 88 0 0 

Dec-06 2 10 4 21 17 267 1 0 

Jan-07 4 2 1 6 5 -40 0 0 

Feb-07 0 2 1 6 5 200 1 0 

Mar-07 0 0 0 0 0 0 0 0 

Apr-07 1 0 0 0 0 -50 0 1 

May-07 0 2 0 4 4 200 0 0 

Jun-07 1 0 0 1 1 -50 0 0 

Jul-07 0 2 0 4 4 200 0 0 

Legend: L95%pib = lower 95% prediction interval boundary ; U95%pib = upper 95% prediction 

interval boundary ;%re = relative error of predictions expressed as percentage; w95%pi = width of 95% 

prediction interval; below = count of 1 if observation is lower than lower 95% prediction interval 

boundary; higher = count of 1 if observations higher than upper 95% prediction interval boundary  
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one month and two month horizons were made using the function “arima” in the 

package “stats” of the software “R”, freely available from http://cran.r-project.org/ 

(accessed 2007). Initially, for all districts, a uniform SARIMA prediction model was 

used.  This model had the parameters p=0, d=1, q=1, P=1, D=0, Q=1 (See Chapter 7 

for model definition).  This model was chosen based on preliminary testing on 

selected districts.  SARIMA was performed on logarithmically transformed malaria 

case data after being augmented with the value one.  Predictions and 95% prediction 

interval boundaries were back transformed, and rounded to positive integer values.  

Predictions were manually transferred to a text table compatible with “html” code for 

internet (http://www.iwmi.cgiar.org/health/malaria/predictions/) and E-mail posting, 

and posted within minutes, for RMOs to access.  

 

Figure 39 - CD-ROM 

Cover image of CD-ROM provided to Anti Malaria Campaign head office staff and Regional Malaria 

Officers. 

 

Forecasting system - Phase 2: Provision of software to RMOs and AMC staff for 

prediction 

Present RMOs and AMC staff were provided with a CD-ROM (Figure 39) containing 

the software and data, and the AMC staff were given additional CD-ROMs for those 

RMOs unable to attend, for further distribution during a monthly review meeting.  

http://cran.r-project.org/
http://www.iwmi.cgiar.org/health/malaria/predictions/
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The software could be easily installed following prompts on computers with a 

Windows based operating system.  RMOs could enter their recent monthly malaria 

case data and append these to the data provided (monthly district case positives since 

January 1972 until July 2007).  The CD-ROM contained a software program which 

makes predictions at a forecasting horizon of 1 to 12 months, including prediction 

intervals, using SARIMA models.  By selecting their district (one operator switch), 

RMOs could generate predictions for their district within seconds.  In addition, 

alternative recommended SARIMA model parameter settings were given (based on 

those found optimal in Chapter 7) for each district specifically.  Apart from numerical 

output, also a graph is generated (Figure 40).  In addition, the AMC head office was 

provided with a software macro program allowing calculation of predictions of all 

districts in a single action, making use of the recommended model parameter settings 

for each district. For the prediction program, the occurrence of missing data was 

allowed. In case the most recent data are missing for a district, the prediction for a 

future month is simply one step more “ahead”.   

 

Figure 40 - Screen shot of output 

Screen shot of an output of malaria case prediction program for a selected district. 
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Discussion 

The models developed used case data only, as rainfall did not improve models 

substantially, and rainfall data were (still) cumbersome to process.  Despite their 

simplicity, the models were received well by the AMC, as this was the first time such 

a system was tested in the country.  It was felt that this was a first step towards 

developing useful models for malaria forecasting in Sri Lanka.   

During the initial phase of the development of the model, it was noted that the success 

of a forecasting system would depend on the reporting of the cases data in time (by 

the end of each month) and having a good communication systems (Computers, 

internet and telephone facilities etc.) at the district level where operational activities 

are carried out.  Such facilities were not equally distributed and the effects of the on-

going civil war posed recurrent problems, especially in the north and east of the 

country.  It was clear that the method of reporting case data quickly was of paramount 

importance if the models were to be used effectively.  The system that operated within 

the AMC was that the district case data were shared at the monthly review meetings 

held during the last week of the month.  It has been the experience that the full set of 

the data were not always gathered due to various problems that occurred at a district 

level.  The district level counts were collected from different sub-centres, and the 

reporting system often depended on local transport or having an AMC vehicle for 

conveyance.   

While the individual RMOs were very happy to use the tool in the field where 

possible (those who had facilities), it was realised that predictions were also necessary 

at the central planning level.  In the initial phase it was also seen that the 

operationalization of such a system with predictions made at IWMI could not be 

sustained after the project period, therefore, it was agreed that the forecasting would 

be handled centrally, and results shared at review meetings, or communicated via 

phone if meetings were not held.  This would be also beneficial in monitoring and 

sharing the information across districts, and keeping tabs on the outbreaks occurring 

near district boundaries.   

Thus, the prediction system was handed over to the AMC at no additional cost for use 

after the end of the project.  This was possible as the R software could be freely 

distributed under a GNU general public license.  (Although the pre-made prediction 
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program macro is very user friendly, the software is otherwise not menu driven and 

therefore somewhat complicated).  The macro program developed at IWMI was 

distributed as a global public good under IWMI’s policy on intellectual property. 

 

Table 13 - Observed values and predictions at a forecasting horizon of 1 month ahead for Trincomalee 

District 

Month Observed Prediction L95%pib U95%pib w95%pi %re below higher 

Aug-05 8 13 2 63 61 56 0 0 

Sep-05 29 10 1 48 47 -63 0 0 

Oct-05 23 35 7 162 155 50 0 0 

Nov-05 24 24 5 112 107 0 0 0 

Dec-05 11 26 5 121 116 125 0 0 

Jan-06 8 12 2 57 55 44 0 0 

Feb-06 10 10 1 47 46 0 0 0 

Mar-06 14 12 2 58 56 -13 0 0 

Apr-06 20 16 3 76 73 -19 0 0 

May-06 12 22 4 102 98 77 0 0 

Jun-06 2 13 2 61 59 367 0 0 

Jul-06 2 2 0 15 15 0 0 0 

Aug-06 1 3 0 17 17 100 0 0 

Sep-06 3 2 0 11 11 -25 0 0 

Oct-06 0 4 0 23 23 400 0 0 

Nov-06 0 0 0 5 5 0 0 0 

Dec-06 2 0 0 6 6 -67 0 0 

Jan-07 4 3 0 18 18 -20 0 0 

Feb-07 1 5 0 26 26 200 0 0 

Mar-07 23 1 0 9 9 -92 0 1 

Apr-07 22 27 5 129 124 22 0 0 

May-07 15 20 4 93 89 31 0 0 

Jun-07 6 14 2 67 65 114 0 0 

Jul-07 4 6 1 31 30 40 0 0 

Legend: as in Table 12 
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Some small outbreaks occurred that were not picked out by the predictive models.  

AMC head office staff noted that the models were not able to adequately forecast the 

beginning of small outbreaks such as that occurred in the Trincomalee district (Table 

13), although the cases in ensuing months were adequately predicted.  In this 

outbreak, the cases occurred primarily in migrant workers, and migration is a factor 

that was not directly accounted for in this model. With the low prevalence of malaria 

throughout Sri Lanka at the time of writing, malaria cases occurred erratically and 

were extremely difficult to forecast.   

Within the framework of the model, the usefulness of the prediction system for actual 

control planning was difficult to estimate.  The RMOs were of the view that the 

prediction intervals gave an indication of the control capacity that needed to be 

maintained to a level to be able to cope with possible case numbers in the higher end 

of the 95% prediction interval.  Others expressed that developing the models to obtain 

predictions at a sub-district scale should be the next target, so that control operations 

could be carried out selectively. Many RMOs keep records at Grama Niladhari level, 

which is an administrative area level even below the MOH area level.  A system 

incorporating sub district variability would be much more complex to install, 

especially as spatial dependence would have to be incorporated in order to cope with 

low and therefore erratic counts in time series.  Furthermore, since there was a 

considerable delay in reporting of MOH area level data (much larger than the delay in 

reporting of district aggregated data), this would be of little use if predictions were 

made at the AMC head office. 

Although (Bayesian) negative binomial models have now been developed (Chapter 8) 

for which data do not need to be transformed, and which may be more accurate and 

give more realistic prediction intervals than Gaussian models on logarithmically 

transformed data, these models need substantially more computing power than the 

(frequentist) Gaussian models to yield prediction estimates.  Adequate computers that 

will yield results in a reasonable time period may not be available at the peripheral 

level.  Also, experience with interpreting model convergence is often necessary, and 

such models are therefore not yet ready for use by staff with limited experience with 

Bayesian statistical software.    
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Abstract 

Generalized autoregressive moving average (GARMA) models were extended to 

generalized multiplicative seasonal autoregressive integrated moving average 

(GSARIMA) models for the parsimonious and observation-driven modelling of non 

Gaussian, non stationary and / or seasonal time series data.  Model fit was done by 

Bayesian Markov chain Monte Carlo methods.  The choice of link function and 

methods for dealing with zeros amongst the observations were briefly examined.  The 

model was demonstrated on monthly malaria episode count data in a district in Sri 

Lanka assuming that they follow a negative binomial distribution with a logarithmic 

link function.  Computer code was provided for the implementation of these models in 

freely available software.  
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1 Introduction  

Malaria has been a major public health problem in Sri Lanka [2] until incidence 

dwindled recently [135].  Malaria in Sri Lanka is seasonal and unstable and fluctuates 

in intensity both spatially and temporally, thus resources for control have to be spread 

in time and space to be prepared for outbreaks, which have occurred in the past 

despite very aggressive and effective malaria control operations [38].  Currently, the 

Anti Malaria Campaign Directorate of the Ministry of Health in Sri Lanka is testing a 

malaria forecasting system which could contribute to a more focussed approach for 

control, and could have a positive impact on the resource allocation for malaria 

control over space and time.  This forecasting system uses multiplicative seasonal 

autoregressive integrated moving average (SARIMA) models which assume that 

logarithmically transformed monthly malaria case count data are approximately 

Gaussian distributed.  Although Box-Cox class transformation of the malaria counts 

may yield approximately Gaussian distributed data, such approximation is less close 

for observations with a low expected mean [136].  Also, low count data may include 

zeros, which renders Box-Cox transformation not applicable.  To overcome this 

problem, a small constant can be added to the data.  Especially with low current 

monthly case counts, the Gaussian modelling on transformed data may result in 

inaccurate prediction intervals.  Models assuming a negative binomial-class 

distribution for (untransformed) malaria count data may be more appropriate 

[127,137,138].  However, negative binomial-class models incorporating SARIMA 

structure were not yet available.   

Benjamin and colleagues [139] provide a framework for generalized linear 

autoregressive moving average (GARMA) models, and they discuss amongst others 

GARMA(p,q) models for Poisson and negative binomially distributed data.  GARMA 

models allow for lagged dependence in observations are also known as observation 

driven models.  Alternatively, parameter driven models (also) allow dependence in 

latent variables [140-143].  The former models are easier to estimate and prediction is 

straightforward, while the latter models are in general easier to interpret [144,145].  

Jung and colleagues [146] found that both types of models performed similarly.   

GARMA models relate predictors and ARMA components to a transformation of the 

mean parameter of the data distribution ( tλ ), via a link function.  A log link function 
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ensures that tλ  is constrained to the domain of positive real numbers.  Lagged 

observations should then also be logarithmically transformed, which is not possible 

for observations with value zero.  Zeger and Qaqish [147] discuss adding a small 

constant to the data, either to all data, or only to zeros.   

Grunwald [148] discuss a conditional linear autoregressive (CLAR) model with an 

identity link function.  In order to ensure a positive tλ , restrictions can be put on the 

parameters.  In stationary models, the intercept can be restricted to be positive.  Also, 

restricting the autoregressive coefficient 1φ  to 10 1φ< <  in a first order autoregressive 

Poisson model will ensure a positive tλ .  Brandt and Williams [149] discuss that 

negative values of 1φ  may be admissible depending on the size of the intercept and the 

variance of the series.   

A variant of the GARMA models, generalized linear autoregressive moving average 

(GLARMA) models, is presented by Davis and colleagues [145].   

Heinen [150] proposes a class of autoregressive conditional Poisson (ACP) models 

with methods allowing for over and under dispersion in the marginal distribution of 

the data.  Another class of Poisson models with auto correlated error structure use 

"binomial thinning" and are called integer-valued autoregressive (INAR) models.  

The autoregressive parameter is restricted to 10 1φ< < .  INAR models may be 

theoretically extended to moving average (INMA) and INARMA models [151,152], 

but these are not easily implemented [153].   

An alternative parameter driven modelling approach is to assume an autoregressive 

process on time specific random effects introduced in the mean structure using a 

logarithmic link function [154].  Such a model is sometimes called a stochastic 

autoregressive mean (SAM) model [146] and has frequently been applied in Bayesian 

temporal and spatio-temporal modelling [49,50,138,144,155-157].   

Of the models discussed above, the GARMA framework appears the most flexible for 

the modelling of count data with autoregressive and / or moving average structure.  

Benjamin and colleagues [139] apply a GARMA model to a time series of polio cases 

with a deterministic component for the seasonal effect using two sine and cosine 

pairs.  However, if the seasonal component is thought to be stochastic the GARMA 

model presented by Benjamin and colleagues [139] is not appropriate.  Also, many 
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time series of count data exist which are non stationary, and this is also the case for 

the malaria case count time series in districts in Sri Lanka.  The GARMA model could 

easily be extended to a class of generalised multiplicative seasonal autoregressive 

integrated moving average (GSARIMA) models, analogous to SARIMA models for 

Gaussian distributed data.  The class of GSARIMA models includes generalised 

autoregressive integrated moving average (GARIMA) models.  GSARIMA models 

are defined in section 2 of this chapter.  Model estimation through full Bayesian 

inference is briefly described.  Some properties of the choice of link function and 

choices for data transformations in case of a logarithmic link function and 

observations with the value zero are investigated section 3.  In section 4, a negative 

binomial GSARIMA model is applied to malaria count time series in a district in Sri 

Lanka.  Section 5 provides concluding remarks and software code is provided in the 

Appendix. 

2 The model 

Model formulation 

The negative binomial GARMA(p,q) model with logarithmic link function of 

Benjamin and colleagues [139] for a time series ( )nttt
T yyy ++= ,...,, 1y  of length n can 

be written: 

( )~ ,t ty NegBin λ ψ  where ( ) ( )
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    (2) 

( )' max , ,0 1t l t ly y c c− −= < ≤        (3) 

where ( ) 11 ... p
p pB B Bφ φΦ = − − − , ( ) 11 ... q

q qB B Bθ θΘ = − − − , B  is a backshift 

operator with ( )d
t t dB y y −= , ( )0 1 2, , ,...,T

νβ β β β=β  is a vector of coefficients for 

( )0 1, 2, ,, , ,...,T
t t t tx x x xν=x , which is a vector of an intercept multiplier (usually taken as 

0 1x = ) and ν  time dependent covariates.  Under the specification for the negative 

binomial distribution in Eq 1, ( )t tE y λ=  and ( )
2
t

t tV y λλ
ψ

= + .  As ψ →∞ , the 

limiting form of the negative binomial distribution is the Poisson distribution.  The 
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transformation in Eq 3, henceforth called "ZQ1" is proposed by Zeger and Qaqish 

[147] in order to avoid problems of taking the logarithm of observations with value 

zero.  Zeger and Qaqish [147] also suggest an alternative method, henceforth called 

"ZQ2", which translates into the model variant: 

( ) ( ) ( ) ( ){ } ( )

( ) ( ) ( ) ( ) ( )

log log exp log log

       log / log /

T
t p t t t

q t t t t

B c y c y c

B y c c y c c

λ

λ λ

⎡ ⎤= Φ + − + + +⎣ ⎦

−Θ + + + + +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

x β
 

The above models can be extended to GSARIMA(p,d,q,P,D,Q) models including 

seasonality and integration.  With ZQ1 transformation, the extended model is: 

( ) ( )( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

*

*

log 1 1 log ' log '

               log ' / log ' /

Dd s s T
t p P t t t

s
q Q t t t t

B B B B y y

B B y y

λ
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−Θ Θ +

x β
 

where s  is the length of the period ( 12s =  for monthly data with an annual cycle), 

( )* * *
11 ...s s sP

P PB B Bφ φΦ = − − − , ( )* * *
11 ...s s sQ

Q QB B Bθ θΘ = − − − , ( )p BΦ , ( )q BΘ , and 

B  are as above.  Similarly, with ZQ2 transformation, the extended model is: 
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In the GARMA framework, negative binomially distributed data could be modelled 

via a logarithmic link function or an identity link function, whichever is thought most 

appropriate for the series.  A negative binomial GSARIMA(p,d,q,P,D,Q) model with 

identity link function takes the form: 

( )( ) ( ) ( ) ( )
( ) ( )( ) ( )

*

*

1 1 exp
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t p P t t t

s
q Q t t t t

B B B B y y

B B y y

λ

λ λ

⎡ ⎤= Φ − − Φ − +⎣ ⎦

−Θ Θ − + −

x β
. 

Model estimation  

Benjamin and colleagues [139] employ maximum likelihood estimation through 

iterative weighted least squares and base inference on asymptotic results.  In order to 

overcome computational problems associated with the maximum likelihood approach, 

we have formulated the model in a Bayesian framework.  In a fully Bayesian context, 

the joint posterior distribution conditional on the first w observations with w  equal to 

the maximum autoregressive lag required in the model is proportional to the product 

of the likelihood and the prior distributions of the parameters, which are a priori 
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considered independent: 

( )
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with X  an n  by 1ν +  matrix of covariates, ( )1,...,
T

pφ φ=φ , ( )1,...,
T

qθ θ=θ , 

( )* * *
1 ,...,T

Pφ φ=φ , and ( )* * *
1 ,...,T

Qθ θ=θ .  For the purpose of inference, stationary and 

invertibility conditions discussed by Box and Jenkins [158] were considered.   

In Bayesian inference, prior distributions need to be assigned to all model parameters.  

We assume a stationary model and therefore the auto correlation and moving average 

parameters were given prior distributions that match the stationarity and invertibility 

region, which were constructed using an algorithm provided by Jones [159].  For this 

purpose, we reparameterize the likelihood in terms of r , ( )1,...,
T

pr r=r  instead of φ , 

where 2 1p prφ = −  and ( )( )1
1

2 1 2 1 2 1 , 1,..., 1
i

p i p i p k p k
k

r r r i pφ − − − − +
=

= − − − − = −∑  and 

assume the following prior distributions: ( ) [ ]( )1 1
2 2~ 1 , 1 , 1,...,ir Beta i i i p+ + =⎡ ⎤⎣ ⎦ , 

where [ ]x  denotes the integer part of x .  Parameters θ , *φ , and *θ  are also 

reparameterized and similar prior distributions discussed above are assumed on the 

new parameterization.  Further priors chosen were β0, …, βν ~ U(-∞, ∞) and ψ  ~ 

Ga(0.01, 0.01).  For the first w  observations, the residuals on the predictor scale (e.g. 

log(y’t) – log(λt) in the case of a logarithmic link function) were set to zero.  In a 

Bayesian framework, for use in the identity link function, a restriction can be put on 

the mean tλ  itself, that is 0tλ ≥ .  In this study the GSARIMA models were estimated 

using the free Bayesian software "WinBUGS"[55], which uses Gibbs sampling.  

Congdon [160] shows some examples of analysis of non-Gaussian time series using 

WinBUGS.  It should be noted that WinBUGS simulates each node in turn, which can 

make convergence very slow and the program very inefficient for some time series 

models.  Model building in WinBUGS was straightforward although slightly 

laborious for complex SARIMA structures.  An example of WinBUGS code (written 

for use with the R package "R2WinBUGS"[161]) for a negative binomial GSARIMA 

model with logarithmic link function and ZQ1 transformation is given in the 

Appendix). 
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3 Simulation studies 

Three simulation studies were performed.  In the first study, we assessed the influence 

of the choice of link function and choices for data transformations on the distribution 

of simulated data.  In the second study, the effect of (mis)specification of the link 

function and data transformation when estimating GARMA model parameters was 

investigated.  In the third study, the ability to estimate simulated data series with 

GSARIMA structure was briefly explored.  Data series with (invertible) GSARIMA 

structure were simulated in the software environment R by writing the GSARIMA 

model in the form of an infinite AR representation, approximated by a finite order AR 

representation [162].   

The choice of link function and choices for data transformations in case of a 

logarithmic link function and observations with the value zero 

For Poisson AR(1) models with identity link function and logarithmic link function 

(with transformation ZQ1 and ZQ2), the distribution properties of simulated series of 

length 1 000 000 were compared for an intercept exp(β0) = 2, exp(β0) = 10 or exp(β0) 

= 100, and a coefficient 1φ  = -0.5 or 1φ  = 0.5, and a constant c = 0.1, or c = 1 (Table 

14).   
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Table 14 - Distribution properties of simulated series of different Poisson AR(1) models 

Model    mean Variance skewness kurtosis
Link Exp(β0) 1φ  c      
identity 2 0.5 2.00 2.67 1.06 4.54
log-ZQ1 2 0.5 0.1 1.54 2.32 1.14 4.41
log-ZQ1 2 0.5 1.0 1.98 2.35 0.91 4.02
log-ZQ2 2 0.5 0.1 1.55 2.30 1.12 4.29
log-ZQ2 2 0.5 1.0 1.91 2.15 0.84 3.80
    
identity 2 -0.5 2.01 2.62 0.83 3.63
log-ZQ1 2 -0.5 0.1 3.01 10.05 1.73 5.90
log-ZQ1 2 -0.5 1.0 2.14 2.50 0.82 3.73
log-ZQ2 2 -0.5 0.1 3.03 10.47 1.75 5.94
log-ZQ2 2 -0.5 1.0 2.16 2.55 0.87 3.95
    
identity 10 0.5 10.00 13.37 0.47 3.31
log-ZQ1 10 0.5 0.1 9.61 13.37 0.40 3.18
log-ZQ1 10 0.5 1.0 9.62 13.34 0.40 3.17
log-ZQ2 10 0.5 0.1 9.63 13.23 0.39 3.17
log-ZQ2 10 0.5 1.0 9.75 12.50 0.40 3.16
    
identity 10 -0.5 10.00 13.34 0.37 3.14
log-ZQ1 10 -0.5 0.1 10.42 17.30 2.40 41.83
log-ZQ1 10 -0.5 1.0 10.41 16.00 0.84 4.99
log-ZQ2 10 -0.5 0.1 10.41 16.80 2.14 36.58
log-ZQ2 10 -0.5 1.0 10.31 13.99 0.61 3.97
    
identity 100 0.5 99.98 133.58 0.15 3.04
log-ZQ1 100 0.5 0.1 99.67 133.47 0.12 3.02
log-ZQ1 100 0.5 1.0 99.68 133.23 0.12 3.01
log-ZQ2 100 0.5 0.1 99.66 133.21 0.13 3.02
log-ZQ2 100 0.5 1.0 99.66 132.45 0.13 3.02
    
identity 100 -0.5 100.00 133.27 0.11 3.01
log-ZQ1 100 -0.5 0.1 100.34 134.70 0.18 3.05
log-ZQ1 100 -0.5 1.0 100.34 134.72 0.18 3.06
log-ZQ2 100 -0.5 0.1 100.34 134.68 0.18 3.07
log-ZQ2 100 -0.5 1.0 100.33 134.13 0.18 3.06

Legend: ZQ1: transformation method corresponding to equation 2.2 in Zeger and Qaqish [147]; ZQ2: 

transformation method corresponding to equation 2.4 in Zeger and Qaqish [147]. 
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For a (high) intercept of exp(β0) = 100, all models had near identical results, although 

the log-link models resulted in slightly lower mean, variance, skewness and kurtosis 

with a positive 1φ , and vice versa for a negative 1φ .  This effect became stronger at a 

lower intercept of exp(β0) = 10.  The impact of the choice for constant c (in the log-

link models) was strong at the lower intercepts exp(β0) = 2 and exp(β0) = 10 (for the 

latter, for 1 0.5φ = − ), and a value of c = 1 gave results most similar to the model with 

identity link function.  The choice for the transformation method gave variable 

results: at a low intercept exp(β0) = 2 (and c = 1), the mean, variance, skewness and 

kurtosis were more similar to the identity link model for ZQ1 (except the variance for 

1 0.5φ = − ), whereas at the intercept of exp(β0) = 10 (and c = 1), the mean, variance, 

skewness and kurtosis were more similar to the identity link model for ZQ2 (except 

the variance and kurtosis for 1 0.5φ = ). 

Effect of (mis)specification of the link function 

The effect of choice of the link function, of the ZQ transformation and of the value of 

the parameter c on parameter estimates was studied on a simulated Poisson time series 

of length 1 000, with AR(p = 1) structure with 1 0.5φ = , with a logarithmic link 

function using transformation method ZQ1 with c = 1, and an intercept exp(β0) = 2.  

Models were estimated using three chains with each a length of 2 000 iterations, 

including a burn-in of 1 000 iterations (Table 15). 

Table 15 – Parameter estimates and 95% credible intervals for three types of models on a simulated 
Poisson AR(1) series with log link function, "ZQ1" transformation, intercept = 2, c = 1, and 1φ = 0.5. 

Link c intercept 1φ  maref DIC 

identity NA 1.98 (1.86 – 2.10) 0.33 (0.26 – 0.39) 0.48 3360 

log-ZQ1 0.1 2.13 (2.01 – 2.25) 0.18 (0.14 – 0.22) 0.52 3402 

log-ZQ1 1 2.00 (1.85 – 2.17) 0.45 (0.38 – 0.53) 0.46 3346 

log-ZQ2 0.1 2.12 (2.01 – 2.25) 0.17 (0.13 – 0.22) 0.52 3406 

log-ZQ2  1 2.07 (1.95 – 2.21) 0.46 (0.37 – 0.55) 0.50 3371 

 

The model "log-ZQ1" with c = 1 performs best, as expected.  The identity link model 

appears to do better than the model "log-ZQ2" with c = 1, based on the DIC and 

maref, but for the identity link model, the 95% credible interval of 1φ  was below 0.5, 

which was the value used for simulation.  With c = 0.1, for both ZQ1 and ZQ2 
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transformations, the 95% credible intervals for both the intercept and 1φ  did not 

include the parameter values used for the simulation. 

Ability to estimate GSARIMA structure 

Finally, a negative binomial GSARIMA(2,1,0,0,0,1) time series of length 1 000 was 

simulated, with a logarithmic link function, ZQ1 transformation with c = 1, an 

external variable sampled xt ~ N(0,1), and β1=0.7, 1 0.5φ = , 2 0.2φ = , *
1 0.5θ = , s = 12, 

ψ  = 5.  This model was estimated with a chain of a length of 600 iterations including 

a burn-in of 200 iterations.  The results in Table 16 show that the method proposed 

here was able to estimate the parameters correctly. 

Table 16 – Parameter estimates and 95% credible intervals on a simulated negative binomial 
GSARIMA(2,1,0,0,0,1) time series with log link function, zq1 zero transformation, c parameter 1, 
β1=0.7, 1φ = 0.5, 2φ = 0.2, *

1θ = 0.5, s = 12, and ψ  = 5. 

Parameter Estimate 

β1 0.71 (0.69 – 0.72) 

1φ  0.45 (0.39 – 0.51) 

2φ  0.23 (0.16 – 0.29) 
*
1θ  0.48 (0.44 – 0.52) 

ψ  5.05(4.46 – 5.63) 

 

4 Application to malaria time series analysis 

This section provides an example of a GSARIMA model applied to monthly malaria 

case count ty  for the period 1972 – 2005 in the district of Gampaha in Sri Lanka 

(Figure 41), with rainfall as covariate.  Records of malaria positive blood films were 

reported monthly by government health facilities and aggregated by the Anti Malaria 

Campaign (AMC) of Sri Lanka.  Rainfall was the monthly district average height of 

the precipitation column, which was derived from monthly island-wide precipitation 

surfaces.  These rainfall surfaces were generated by spatial interpolation of 

precipitation records collected by 342 stations across the island.  The data was earlier 

described by Briët and colleagues [111], who fitted Gaussian SARIMA and ARIMA 

models with a deterministic seasonal effect to logarithmically transformed malaria 

case data.   
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Preliminary model identification using frequentist Gaussian SARIMA  

Because Bayesian model fit using Markov chain Monte Carlo (MCMC) algorithms is 

computationally expensive, rather than fitting many possible MCMC models, 

preliminary model identification was performed using standard frequentist tools 

developed for time series with Gaussian marginal errors.  A visual analysis of the 

malaria time series (Figure 41) detected the presence of a long term (inter annual) 

change in the mean level, unstable variance which appears to increase with the mean, 

and multiplicative seasonality (the size of the seasonal effect is proportional to the 

mean).  For the purpose of choosing the parameters p, d, q, P, D, and Q, the data was 

transformed using a fitted Box-Cox transformation in order to stabilize the variance, 

to make the seasonal effect additive, and to make the data approximately normally 

distributed.  The fitted Box-Cox parameters were a power of 0.24 and a constant of 

0.25 added to each observation prior to transformation.  In the transformed time series 

the presence of long term change in the mean level was also apparent.  Although the 

changes in the mean level could potentially be related to malaria control efforts, 

development of parasite and vector resistance, etc., such data were not considered 

here.  Hence the trend was treated as a stochastic trend, which was (first order) 

difference stationary.  The augmented Dickey – Fuller test supported the presence of a 

unit-root (p = 0.14).  Plots of the auto correlation function (ACF) (not shown) and the 

partial auto correlation function (PACF) (not shown) of the differenced series showed 

significant (partial) auto correlation at lags of three and twelve months.  Gaussian 

SARIMA models and ARIMA models with a deterministic component for the 

seasonal effect with d = 1 were fitted with the (frequentist) software R.  The covariate 

matrix for the deterministic component for the seasonal effect using second order 

harmonics (i.e. using two sine and cosine pairs) is given by 

( ) ( ) ( ) ( )sin 2 12 ,cos 2 12 ,sin 2 6 ,cos 2 6T
t t t t tπ π π π= ⎡ ⎤⎣ ⎦x .  A (time independent) 

intercept was not included because the intercept drops out of the equation after first 

order differencing.  Based on the preliminary analysis, four Gaussian SARIMA 

models and two Gaussian ARIMA models with second order harmonics were initially 

selected, based on Akaike’s information criterion (Table 17).   
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Table 17 - Akaike’s information criterion (AIC) for selected (Gaussian) models on Box-Cox 
transformed data.  For all these models, where applicable, the autoregressive ( 1φ  and 2φ ) or moving 

average parameters ( 1θ  and 2θ ) corresponding to the first two lags were omitted. 

 Excluding rainfall Including rainfall 
Model AIC AIC 
SARIMA(3,1,0,1,0,0) 1572.75 1574.55 
SARIMA(3,1,0,0,0,1) 1573.09 1574.93 
SARIMA(0,1,3,1,0,0) 1572.50 1574.45 
SARIMA(0,1,3,0,0,1) 1572.84 1574.81 
ARIMA(3,1,0) SOH 1566.17 1564.91 
ARIMA(0,1,3) SOH 1565.10 1564.20 
Legend: SOH: second order harmonics 
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Figure 41 - Malaria cases in Gampaha District over time 

 

Model identification using GSARIMA 

Bayesian negative binomial versions of the first three SARIMA models and two 

ARIMA models with second order harmonics identified in the preliminary analysis 

were implemented in WinBUGS on untransformed data.  The fourth SARIMA 

selected model was not implemented because for the estimation of more than one 

moving average parameter, in WinBUGS, the computing time per iteration increases 

exponentially with an increasing number of observations and are impractical with 

currently available computing power.  Models were evaluated on two criteria.  The 

first criterion was the deviance information criterion (DIC) which was calculated as 

the mean of the posterior distribution of the deviance conditional on the first ω  

observations (D), with ω  equal to the maximum w of the five models compared, 

augmented with the number of effective estimated parameters as penalty to prevent 

over fitting.  Models with lower DIC are considered better.  The model with the 
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largest lag required (w = 16) was the model GSARIMA(3,1,0,1,0,0) with s = 12.  A 

second criterion which was defined as the mean absolute relative error of fitted values 

(maref): maref = ( )
1

ˆ
1

t n
t t

t t

y y n
yω

ω
=

= +

−
−

+∑  where ˆty is the fitted number of malaria 

positive cases at time t.  Since the posterior distributions of the fitted values were 

skewed, the median of the posterior distribution of the fit was taken for ˆty .  The 

maref is similar to the mean absolute percentage error, which is applicable for series 

for which the variance is dependent on the mean [90].  The maref statistic does not 

have a built in penalty to prevent over fitting, but among models with similar value of 

maref, the model with the least number of parameters should be preferred.  The maref 

does not depend on distribution assumptions, in contrast to the DIC.  Models were run 

with a single Markov chain of 11 000 iterations including a burn-in of 1 000 

iterations, using WinBUGS default settings.  Convergence was assessed in separate 

runs of 2 000 iterations with three chains, by studying plots of the Gelman-Rubin 

convergence statistic (on estimated parameters) as modified by Brooks and Gelman 

[54]. 

Based on the DIC, the best model was the negative binomial GARIMA(3,1,0) model 

with parameters for the first two lags ( 1φ  and 2φ ) omitted (fixed to zero), with 

deterministic harmonic seasonality and with rainfall preceding malaria with two 

months (Table 18).  The parameter and deviance estimates for this model, henceforth 

"GARIMA(3,1,0)-SOH-RF", are detailed in Table 19.  However, based on the maref, 

the negative binomial GSARIMA(3,1,0,1,0,0) model, also with the parameters for the 

first two lags omitted but without rainfall, was preferred.  This model is also detailed 

in Table 19.  Despite the GSARIMA(3,1,0,1,0,0) model having a higher (worse) DIC 

than the GARIMA(3,1,0)-SOH-RF model, the maref of the GSARIMA(3,1,0,1,0,0) 

model was one percent better than the maref of the GARIMA(3,1,0)-SOH-RF model, 

and required less than half the number of fitted parameters.   
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Table 18 - Selection criteria statistics for selected negative binomial models with transformation 
method "ZQ1" for logarithmic link models with c = 1.  For all models, where applicable, the 
autoregressive ( 1φ  and 2φ ) or moving average parameters ( 1θ  and 2θ ) corresponding to the first two 
lags were omitted. 

Model nep DIC maref 
GSARIMA(3,1,0,1,0,0) 3 4350.69 0.3876 
GSARIMA(3,1,0,0,0,1) 3 4351.11 0.3889 
GSARIMA(0,1,3,1,0,0) 3 4352.31 0.3881 
GSARIMA(3,1,0,1,0,0)-RF 4 4352.48 0.3895 
GARIMA(3,1,0)-SOH 6 4335.59 0.3961 
GARIMA(0,1,3)-SOH 6 4336.10 0.3938 
GARIMA(3,1,0)-SOH-RF 7 4333.29 0.3884 
GARIMA(0,1,3)-SOH-RF 7 4334.11 0.3876 
Legend: nep; number of estimated parameters; DIC: Deviance Information Criterion; maref: mean 
absolute relative error of fitted values; RF: with rainfall lagged at 2 months; SOH: second order 
harmonics.   
 
Table 19 - Parameter estimates (mean and 95% credible interval) of selected negative binomial models  
Parameter GARIMA(3,1,0)-SOH-RF GSARIMA(0,1,3,1,0,0) 
βrain -0.335 (-0.656, -0.024)  
βsin(2πt/12)  -0.103 (-0.233, 0.024)  
βcos(2πt/12)  -0.148 (-0.278, -0.017)  
βsin(2πt/6)  0.136 (0.058, 0.214)  
βcos(2πt/6)  0.156 (0.073, 0.237)  
φ3 -0.097 (-0.194, -0.001) -0.133 (-0.227, -0.037) 
φ1

*  0.121 (0.027, 0.216) 
ψ  4.542 (3.867, 5.267) 4.342 (3.692, 5.070) 
Amplitude AH$ 0.193 (0.07, 0.317)  
Amplitude SAH$ 0.210 (0.127, 0.294)  
Phase shift AH$ 4.829 (3.295, 6.345)  
Phase shift SAH$  -0.687 (-1.053, -0.335)  
Legend: GARIMA(3,1,0)-SOH-RF = GARIMA(3,1,0) model with parameters for the first two lags ( 1φ  

and 2φ ) omitted, second order harmonics and rainfall lagged at 2 months (in m); 

GSARIMA(3,1,0,1,0,0) = GSARIMA(3,1,0,1,0,0) model with parameters for the first two lags ( 1φ  and 

2φ ) omitted; AH = annual harmonic, SAH = semi-annual harmonic; $ = derived parameter, phase shift 
= phase shift of the cosine function expressed in months. 
 

Residual analysis  

After fitting the GARIMA(3,1,0)-SOH-RF and GSARIMA(3,1,0) models, for each 

observation, the cumulative probability that the observed value occurred given its 

posterior distribution was calculated.  Because of the fact that the posterior 

cumulative distribution function is discrete, the cumulative probability value was 

randomized by drawing a random value tp  from the uniform distribution in the 

interval ( ) ( )1, , , , ,t t t tF y r F y rλ λ−⎡ ⎤⎣ ⎦ , where ( ), ,t tF y rλ  is the cumulative posterior 

distribution function (estimated with 10 000 samples from this distribution), following 
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a procedure by Dunn and Smyth [163].  This procedure is advocated by Benjamin and 

colleagues [139] for discrete GARMA models.   

Figure 42 shows that for randomized cumulative probability values below about 0.4 

for the GARIMA(3,1,0)-SOH-RF model and 0.5 for the GSARIMA(3,1,0) model, on 

average, cumulatively fewer observations had these values than expected based on the 

posterior density distributions.  Therefore, on average, the part of the posterior density 

distributions below the median was too much spread out to the left.  The lower 

boundaries of credibility intervals of the distributions were thus on average too low.  

For both models, probability values between about 0.5 and 0.9, the cumulative 

distribution function followed the diagonal.  However, above a value of about 0.9, 

again the cumulative distribution function was (slightly) below the diagonal, 

indicating that the upper boundaries of credibility intervals were on average (slightly) 

too low.   

The randomized cumulative probability values were converted into normalized 

randomized quantile residuals tε  using the quantile function (inverse cumulative 

distribution function) of the normal distribution with zero mean and unity variance.  

Prior to conversion, randomized cumulative probability values of zero (when all 10 

000 samples from the posterior distribution function were above the observed value) 

were set to 0.00 001 and randomized cumulative probability values of one (when all 

10 000 samples from the posterior distribution function were below the observed 

value) were set to 0.99 999. 
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Figure 42 - Cumulative distribution function of randomized residual probabilities 

Legend: The black line represents the cumulative distribution function of randomized residual 

probabilities of the GARIMA(3,1,0)-SOH-RF model.  The red line represents the cumulative 

distribution function of randomized residual probabilities of the selected GSARIMA(3,1,0) model.  The 

grey diagonal line (cumulative distribution equals randomized probability) represents on average 

appropriate posterior distributions.  Dotted lines represent 95% confidence boundaries for proportions 

equalling the probability for 392 observations. 

 

Figure 43 shows the normal Q-Q plots for the normalized randomized quantile 

residuals of the GARIMA(3,1,0)-SOH-RF model, for which the distribution is slightly 

leptokurtotic.  A plot of these normalized randomized quantile residuals against time 

(Figure 44) appears a random scatter at first sight, but at closer inspection, extreme 

residuals occur more often during periods with more strong relative changes.   
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Figure 43 - Normal Q-Q plot of normalized 

randomised quantile residuals of the selected 

GARIMA(3,1,0)-SOH-RF model 

Figure 44 - Plot of normalized randomised 

quantile residuals of the selected 

GARIMA(3,1,0)-SOH-RF model against time 

This is because the residuals tε  are positively correlated with a relative change in 

malaria cases, with linear regression line 
1

1.78log 0.22t
t

t

y
y

ε
−

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
 (Figure 45).  The 

fact that this line does not go through the origin but has a (small but significant; p < 

0.05) positive intercept is another indication that the posterior distributions have on 

average too much mass to the left, and therefore on average overestimate the 

residuals.  Plots of the residuals of the GSARIMA(3,1,0) model looked very similar 

and are not shown. 
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Figure 45 - Plot of normalized randomised quantile residuals of the selected GARIMA(3,1,0)-SOH-RF 

model against the logarithm of relative change 

 

Figure 46 and Figure 47 show plots of the autocorrelation and partial autocorrelation 

functions of the normalized randomized quantile residuals of the GARIMA(3,1,0)-

SOH-RF model.  Although at lag 23 there seemed to be significant (partial) 

autocorrelation, the Ljung-Box test [164] showed no evidence of residual 

autocorrelation.  The Ljung-Box statistic was 24.93 based on 24 lags which was not 

significant (p = 0.35) because the quantile corresponding to the 95th percentile of a 

chi-squared distribution with 23 degrees freedom (24 degrees minus one fitted ARMA 

parameter) is 35.17.  The Ljung-Box test is valid under these mild conditions of non-

normality, although for stronger non-normality, the Ljung-Box test is not robust and 

tends to reject the null hypothesis of no autocorrelation too quickly [165]. 
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Figure 46 - Plot of the autocorrelation function 

of normalized randomised quantile residuals of 

the selected GARIMA(3,1,0)-SOH-RF model 

 

Figure 47 - Plot of the partial autocorrelation 

function of normalized randomised quantile 

residuals of the selected GARIMA(3,1,0)-

SOH-RF model
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Figure 48 - Plot of the autocorrelation function 

of normalized randomised quantile residuals of 

the selected GSARIMA(3,1,0) model 

 

Figure 49 - Plot of the partial autocorrelation 

function of normalized randomised quantile 

residuals of the selected GSARIMA(3,1,0) 

model

Figure 48 and Figure 49 plot the autocorrelation and partial autocorrelation functions 

of the normalized randomized quantile residuals of the GSARIMA(3,1,0) model.  For 

the residuals of this model, none of the lags showed significant (partial) 

autocorrelation, and the Ljung-Box statistic was 20.19 based on 24 lags was also not 

significant (p = 0.57) because the quantile corresponding to the 95th percentile of a 
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chi-squared distribution with 22 degrees freedom (24 degrees minus two fitted 

ARMA parameters) is 33.92.  Based on the visual comparison of plots of the ACF and 

PACF, and on the size of the Ljung-Box statistic, the GSARIMA(3,1,0) model was 

better at modelling the autocorrelation present in this malaria time series.   

For the purpose of (one step ahead) malaria prediction in practice, the simpler 

GSARIMA(3,1,0) model which does not require rainfall data collection may be 

preferable.  Although the posterior distributions of the GSARIMA(3,1,0) model were 

slightly less appropriate than those of the GARIMA(3,1,0)-SOH-RF model, the 95% 

credibility interval boundaries are similar (Figure 42).  The fact that the cumulative 

distribution functions do not perfectly match the diagonal in Figure 42 indicates that 

there is still room for improvement, both through modelling of a more complex 

autocorrelation structure (e.g. through time varying SARIMA parameters) and 

through inclusion of covariates.  It is also possible that the assumption of an under-

laying negative binomial distribution is not entirely appropriate.  In the latter case, the 

DIC, which was based on this assumption, has less value than the maref.  Apart from 

the fact that the maref does not depend on the assumption of a true under laying 

distribution, it is easier to interpret by malaria control staff.   

5 Conclusions 

For the modelling of monthly time series of counts of new malaria episodes in a 

district in Sri Lanka, GSARIMA models and GARIMA model with a deterministic 

seasonality component were developed.  GSARIMA models and GARIMA models 

are an extension of a class of GARMA models, [139], and are suitable for 

parsimonious modelling of non-stationary seasonal time series of (over dispersed) 

count data with negative binomial conditional distribution.   

Models were presented with a choice of identity link function or logarithmic link 

function.  For the identity link function, an alternative to commonly used parameter 

restrictions was proposed.  For models with a logarithmic link function, the choice of 

the transformation method for dealing with observations with a value of zero and its 

threshold parameter was studied.  With a high intercept of exp(β0) = 100, simulated 

data series with an AR(p = 1) model had near identical distributions.  However, with 

lower intercepts of exp(β0) = 10 and exp(β0) = 2, the distributions varied in shape.  

Especially with a negative value of 1φ , at low intercepts, a value of c = 0.1 caused the 
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distribution of logarithmic link function-generated data to be very dissimilar to 

identity link function-generated data, whereas with a value of c = 1 the distributions 

were more similar.   

The model estimation was done by Bayesian Markov chain Monte Carlo methods.  

Model misspecification in estimating parameters from a simulated data series with 

ZQ1 transformation and c = 1 resulted in incorrect parameter estimates, except for the 

ZQ2 model with the correct c parameter (fixed).  A Bayesian GSARIMA model was 

tested on simulated data and estimated the parameters correctly.   

Bayesian GSARIMA and GARIMA models were applied to malaria case count time 

series data of Gampaha District in Sri Lanka.  Both a GSARIMA and a GARIMA 

model with a deterministic seasonality component were selected based on different 

criteria.  The GARIMA model showed a lower DIC, but the GSARIMA model had a 

lower mean absolute relative error and needed less parameters.  The Bayesian 

modelling allowed analysis of the posterior distributions of the fitted observations.  

For both models, on average, these distributions did not perfectly mirror the 

distribution of the residuals (although the GARIMA model did better).  This is 

possibly an indication that the assumption of an under-laying negative binomial 

distribution was not entirely appropriate.  Both models could account for 

autocorrelation in the data, although the GSARIMA model was slightly better based 

on the Ljung-Box statistic.   

Instead of Bayesian methods, estimation using an iteratively reweighed least squares 

algorithm as used by Benjamin and colleagues [139] should also be feasible for 

GSARIMA modelling.  An unpolished function for modelling GARMA models is 

available in the free R module VGAM [166], but this does not (yet) handle 

GSARIMA models.   
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This thesis brings together many aspects of malaria epidemiology in Sri Lanka, which 

converged towards developing forecasting models for better strategic planning.  

Assessment of the malaria situation and associated risk factors through incidence 

maps set the stage for predicting the impact of the tsunami on malaria, and the 

exploration of forecasting models, in a country where malaria incidence is unstable 

and fluctuates in intensity both spatially and temporally.   

Rationale and goal of this thesis 

The overall aim of this thesis was to describe the spatial and seasonal distribution of 

malaria in Sri Lanka and associated factors, and to develop a malaria forecasting 

system.  Despite a wealth of high resolution data collected over decades, a malaria 

forecasting system was not in place, and there was a need for detailed island-wide 

maps of malaria incidence to permit the assessment of the malaria situation and its 

determinants.  The Anti Malaria Campaign of Sri Lanka also needed malaria risk 

maps and malaria case number predictions to assist in the planning for malaria 

control.  This need was emphasized with the adoption by the AMC of the WHO 

“Global Malaria Control Strategy” [22].  Early detection and containment or 

prevention of epidemics and the regular assessment of the malaria situation and its 

determinants are two of the four main elements of this strategy.   

Contributions of this thesis in context 

Malaria risk assessment 

An online publication that resulted from the work described in Chapter 2 of this thesis 

provided health professionals and the larger general public in 2003 with the first 

island-wide incidence maps of P. vivax and P. falciparum malaria at sub district 

resolution in Sri Lanka.  This publication also contained maps depicting seasonality 

and recent trends of malaria, and discussed associated risk factors.  This work has 

been accessed over 30 000 times since publication [167], making it today the most 

viewed publication of the Malaria Journal since its inception.  Possibly a large 

proportion of the accesses were by prospective visitors to Sri Lanka wishing to inform 

themselves about the risk of malaria and the need for prophylaxis.  Maps of malaria 

disease distribution over the island had not been available to a wide public, until a 

(book) publication [2] of a map based on 1989-1994 incidence data at district 

resolution.  The last annual report of the AMC that contained island wide malaria 
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maps was published in 1992 [168].  Travel medicine Internet sites described in their 

advice to travellers to Sri Lanka merely that the risk of malaria is present all year 

round in all areas (below 800 m altitude), except in the districts of Colombo, Kalutara, 

and Nuwara Eliya, and sometimes unrealistic maps [169] are (still) posted, showing 

most of the country at risk of malaria.   

The tsunami that hit Sri Lanka on 26 December 2004, and the ensuing international 

concern about possibilities of an increase of vector borne diseases triggered the online 

publication of the work described in Chapter 3 of this thesis.  The experiences gained 

during the process of writing and publishing the work of Chapter 2 allowed a rapid 

assessment of the risk of a malaria outbreak as a result of the tsunami, which was 

considered low.  Thanks to the cooperation of peer reviewers and editors of the 

Malaria Journal, the assessment was published just one month after the disaster, 

making the publication timely and relevant for the planning and guidance of national 

and international malaria control efforts in response to the tsunami event.  Also this 

work has reached a large audience, being the second most viewed publication of the 

Malaria Journal since its inception, with over 15000 access events today [167].  One 

year after the tsunami, the impact of the tsunami on the malaria situation and the 

malaria control efforts was evaluated, as is described in Chapter 4.  This evaluation 

established that the tsunami had not affected the downward trend in malaria cases in 

Sri Lanka, confirming the prediction that was made immediately after the tsunami 

event.  This was in contrast to the negative effect of the tsunami on the malaria 

situation in the Andaman and Nicobar Islands [89]. 

Development of a malaria forecasting system 

A malaria forecasting system could assist in the efficient allocation of resources for 

malaria control, especially when malaria is unstable and fluctuates in intensity both 

spatially and temporally, as is the situation in Sri Lanka.  Variability in malaria case 

numbers is influenced by factors intrinsic to malaria such as infectivity, immunity and 

susceptibility of vectors and humans, and extrinsic, environmental factors such as 

rainfall.  Malaria prediction can be done both by biological process models and 

statistical models [129].  This thesis was restricted to statistical models.  When 

autocorrelation is present in the data, malaria cases can be predicted based on 

previous / neighbouring values, and data of extrinsic covariates could improve 

prediction [105,131,170,171].  In Sri Lanka, relatively long and good quality time 
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series of monthly malaria case data are available at district resolution.  A number of 

different types of classic time series prediction models [90], initially without extrinsic 

covariates, because of the extra effort involved in routinely processing of extrinsic 

covariates, were tested for prediction accuracy at prediction horizons of one to four 

months (Chapter 7).  The models that gave the highest prediction accuracy were 

generally the class of multiplicative seasonal autoregressive integrated moving 

average (SARIMA) models, where seasonality was modelled through random effects.  

It was then explored if extrinsic covariates could improve prediction accuracy of these 

models. 

Early malariologists had observed that particularly the centre-south-west of the island 

(then called Ceylon) was prone to malaria epidemics when the rainfall during the 

south-west monsoon period was less than usual, whereas in the north and east malaria 

epidemics seemed positively associated with rainfall [8].  The observation of Bouma 

and van der Kaay [9] that epidemics in the period from 1867 to 1943 were 

significantly more likely to occur during El Niño years (when the southwest monsoon 

is was likely to be less intense and involved less rainfall) provided hope that ENSO 

could be used to predict malaria epidemics.  However, since the introduction of large 

scale vector control in 1945, the relationship between epidemics and rainfall (and 

ENSO) could have been weakened.  Furthermore, in more recent years, the direction 

of the association between precipitation and ENSO has been reversed [10].  

Therefore, in order to establish how rainfall could assist in malaria prediction, the 

present analyses focused on statistical rainfall – malaria relationships.  The historic 

notion that malaria endemicity is negatively correlated to the spatial distribution of 

rainfall in Sri Lanka [7] was confirmed with statistical methods accounting for spatial 

autocorrelation (Chapter 2 addendum).  Also, the notion that the modality of 

seasonality of rainfall and that of malaria are correlated in space [8] was statistically 

confirmed by a regression using a new seasonality index (Chapter 5), and 

relationships were found to be unaltered in the control era.   

If malaria time series are significantly correlated to rainfall case time series, while 

lagging a few months behind rainfall, rainfall data could have potential use for short 

term malaria prediction.  Some studies observed links between the two [7,8,11,108], 

yet others did not find a strong [109] or an obvious correlation [110,172].  In this 

thesis, the temporal correlation between monthly malaria case time series and monthly 
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rainfall time series was explored for each district separately (Chapter 6).  For most 

districts, strong positive correlations were found for malaria time series lagging zero 

to three months behind rainfall.  However, these results were spurious, as was shown 

in an analysis using prewhitening. This was the first application of the prewhitening 

technique, which removes autocorrelation and seasonality from the series, in malaria-

rainfall cross correlation analysis.  Only weak cross correlations were found in 

prewhitened series, thus indicating that rainfall might have little potential use in a 

malaria forecasting system.  However, the cross correlation analyses (with and 

without prewhitening) had the drawbacks that (i) data had to be detrended before 

analysis, thus masking inter-annual effects, and (ii) the analyses did not allow for 

potentially seasonally varying effects of rainfall on malaria.   

Subsequent inter-annual analysis [107] showed strong negative correlations between 

malaria and rainfall for a group of districts in the centre-west of the country, 

confirming the notion of early malariologists that this area was prone to drought 

associated epidemics [8].  By modifying the technique of inter-annual analysis to 

allow for seasonally varying effects, it was shown that the effect of rainfall on malaria 

varied according to the season (and geography).  Thus, seasonally varying effects of 

rainfall on malaria case counts may explain weak overall cross-correlations found in 

prewhitened series.   

With the knowledge of statistical rainfall – malaria relationships gained, it was then 

tested if the inclusion of rainfall as a covariate in the SARIMA models could improve 

prediction accuracy.  The rainfall covariate was studied in linear, non linear and 

seasonally variable forms (Chapter 7).  Only for a few districts, a modest 

improvement in prediction error was made when rainfall was included as a covariate.  

This modest improvement was not deemed to be sufficient to merit investing in a 

forecasting system for which rainfall data are routinely processed.  Therefore, a 

malaria forecasting system based on SARIMA models (without extrinsic covariates) 

was introduced to the AMC (addendum to Chapter 7), which is being tested at the 

time of writing.  To our knowledge, this is the first operational malaria forecasting 

system to include monthly forecasts based on statistical modeling.   

Throughout the statistical modelling in Chapter 7, it was assumed that logarithmically 

transformed malaria case data were approximately Gaussian distributed.  However, 

such an approximation is less close when case counts are close to zero, and the 
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prediction interval may be incorrect.  Given that recent malaria case counts were low 

in districts in Sri Lanka, there was a need for predictive models that did not suffer 

from such limitations.   

Although there is a growing literature on time series models for count data, no count 

data models with SARIMA structure were yet available.  Therefore, in this thesis 

(Chapter 8), a class of generalised multiplicative seasonal autoregressive integrated 

moving average (GSARIMA) models for the parsimonious and observation-driven 

modelling of non Gaussian, non stationary and / or seasonal time series data was 

developed, by extending a class of generalized autoregressive moving average 

(GARMA) models [139].  The parameter estimation was done by Bayesian Markov 

chain Monte Carlo methods.  This was demonstrated by the application of a 

GSARIMA model with negative binomial distribution and a logarithmic link function 

to a monthly time series of counts of new malaria episodes in Gampaha district in Sri 

Lanka.  Although the Bayesian estimation requires substantial implementation skill 

and computing power, the developed GSARIMA models may find wide application in 

temporal modelling of rare diseases. 

Limitations of this thesis and directions for future research 

The main limitation of the work described in this thesis is the data quality, which is 

difficult to control for in studies that depend on external data sources.  Although the 

data were of relatively good quality compared to those available in many tropical 

countries, the following data issues leading to spatial and temporal bias were 

recognized:  

• Due to the armed conflict in the North and East, there was a shortage of 

trained microscopists in these areas and only a small part of the clinical cases 

was microscopically confirmed [25];   

• The microscopically confirmed cases may be about 70% in the rest of the 

country [26], thus underestimating the true number of cases;   

• The amount of cross checking of blood slides at central level since 1989 was 

limited;   

• Although estimated as low, the amount of self treatment is not sufficiently 

known, thus it is difficult to adjust case data for this;   
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• Patients who seek treatment at non-governmental health facilities are not 

registered;   

• Cases detected in occasional mass blood surveys in selected villages in high 

risk areas are also included in the statistics;   

• Malaria infections may not have been contracted at the place of reporting;   

• The population census data may be less reliable in the North and East due to 

armed conflict;   

• Aggregated case records from the health facilities were not corrected for 

recrudescence of P. falciparum or relapse of P. vivax;   

• Results from approximately 6000 malaria rapid diagnostic kits supplied by UN 

agencies [82] for use in remote areas where no microscopists are available 

were not included in the surveillance statistics in 2005.   

Further, the number of extrinsic variables tested for potential to explain the spatial 

distribution of malaria was limited to rainfall, population density, altitude (as a proxy 

for temperature), safety clearance (as proxy for conflict), shoreline of rivers and 

reservoirs, and a few classes of land use cover.  The extrinsic variables tested for 

potential to explain the temporal distribution of malaria were limited to rainfall.  The 

performance of rainfall with distributed lags [105,127], or at thresholds, remains to be 

explored.  Other related variables such as soil moisture content and river flow might 

give better results than rainfall itself, as these are more directly related to malaria 

vector breeding conditions.   

The temporal effect of temperature remains to be studied, although it may only affect 

malaria in the hill country, as in the rest of the country, the temperature is always in a 

range conducive to malaria transmission.   

An obvious extrinsic variable missing from these analyses is the amount and quality 

of vector control, which has proven itself to have strong impact on malaria in Sri 

Lanka in the past.  Whereas vector control data (number of houses sprayed with 

insecticide) was collected by the AMC, monthly data was (only) available since 

around 1992 (depending on the district), and the length of the time series was 

considered too short for this analysis.  Furthermore, vector control data was 

complicated by issues such as change of active ingredient, and vector resistance 
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development, but above all, by feedback (vector control will have an impact on 

malaria incidence, but malaria incidence will influence the amount of vector control).  

Nevertheless, it might be worthwhile to include the impact of vector control in future 

research, especially because it may explain long term trends in malaria incidence.  

With such a variable, possibly time series models would no longer need to employ a 

stochastic trend to render the series stationary.  Another variable related to vector 

control that is likely to explain long term trends is conflict.  In a preliminary 

exploratory analysis (not shown), the annual number of malaria cases was highly 

correlated to the number of civilians killed, missing or injured in the conflict zone.  

However, the quality of this data was disputed and not regarded fit for publication.   

In this thesis, extrinsic variables which act on mosquito vectors were employed to 

explain malaria case distribution, but the distribution and abundance of vector 

mosquitoes themselves was not included in explanatory models.  Such data might 

clarify the paradoxical relationships found between rainfall and malaria.  

Unfortunately, time series of mosquito collections were scarce in Sri Lanka and not of 

sufficient quality to be included in the models.  Similarly, immunity was not taken 

into account because of the lack of time series of anti-malarial anti-body prevalence.  

It would be interesting to compare the results of the models employed in this thesis 

with models that incorporate entomological and immunological data.   

Apart from the data quality, another limitation of the thesis is that the models 

employed do not take into account space-time interaction.  Instead, spatial models 

were fitted to study the spatial distribution of malaria between areas / districts, and 

temporal models were used to study the temporal distribution of malaria within 

districts.  A space-time malaria forecasting model for the whole of Sri Lanka could 

have more statistical power than a separate model for each district.  Such a model 

should allow for regionally varying functions of covariates and take into account 

spatial auto correlation between districts.  This limitation could be addressed in future 

research. 

This thesis focused on models for short term monthly malaria count predictions of one 

to four months, and rainfall did not contribute much to model prediction.  It is well 

possible that rainfall, or ENSO, could be useful in prediction of inter-annual malaria 

anomalies [118,128]. 
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Additional files from chapters 

 

Chapter 2 Additional file 1a – Divisional Secretariat Divisions 

Map of Divisional Secretariat Divisions in Sri Lanka.  Source: The Survey 

Department, Sri Lanka.   



Chapter 2 Additional File 1b 

Divisional Secretariat Divisions. List of Divisional Secretariat Division names and 
their number corresponding to the number printed in additional file 1a. 

ID DSD DISTRICT 
1101 Padawiya Anuradhapura 
1102 Kebitigollewa Anuradhapura 
1103 Medawachchiya Anuradhapura 
1104 Nuwaragam palatha central Anuradhapura 
1105 Nochchiyagama Anuradhapura 
1106 Rambewa Anuradhapura 
1107 Kahatagasdigiliya Anuradhapura 
1108 Horowupothana Anuradhapura 
1109 Galenbindunuwewa Anuradhapura 
1110 Mihintale Anuradhapura 
1111 Nachchaduwa Anuradhapura 
1112 Rajanganaya Anuradhapura 
1113 Talawa Anuradhapura 
1114 Tirappane Anuradhapura 
1115 Palugaswewa Anuradhapura 
1116 Kekirawa Anuradhapura 
1117 Ipalogama Anuradhapura 
1118 Galnewa Anuradhapura 
1119 Palagala Anuradhapura 
1120 Thambuththegama Anuradhapura 
1121 Nuwaragam palatha east Anuradhapura 
1122 Mahawilachchiya Anuradhapura 
1201 Medirigiriya Polonnaruwa 
1202 Lankapura Polonnaruwa 
1203 Hingurakgoda Polonnaruwa 
1204 Elahera Polonnaruwa 
1205 Thamankaduwa Polonnaruwa 
1206 Welikanda Polonnaruwa 
1207 Dimbulagala Polonnaruwa 
2101 Delft Jaffna 
2102 Kaytes Jaffna 
2103 Chankanai Jaffna 
2104 Sandilippai Jaffna 
2105 Tellippalai Jaffna 
2106 Kopai Jaffna 
2107 Karaveddy Jaffna 
2108 Pointpedro Jaffna 
2109 Maruthankerny Jaffna 
2110 Uduvil ' chunnakam ' Jaffna 
2111 Velanai Jaffna 
2112 Jaffna Jaffna 
2113 Nallur Jaffna 
2114 Chavakachcheri Jaffna 
2201 Pachchilaipallai Kilinochchi 
2202 Kandavalai Kilinochchi 
2203 Karachchi Kilinochchi 
2204 Pooneryn Kilinochchi 
2301 Maritime pattu Mullaitivu 
2302 Puthukkudiyiruppu Mullaitivu 
2303 Oddusuddan Mullaitivu 
 

ID DSD DISTRICT 
2304 Tunukkai Mullaitivu 
2305 Pandiyankulam ( mantai east ) Mullaitivu 
2401 Mannar Mannar 
2402 Mantai west Mannar 
2403 Nanaddan Mannar 
2404 Musali Mannar 
2405 Madhu Mannar 
2501 Vavuniya north Vavuniya 
2502 Vavuniya Vavuniya 
2503 Vavuniya south Vavuniya 
2504 Vengala cheddikulam Vavuniya 
2601 Padawi sripura Trincomalee 
2602 Kuchchaveli Trincomalee 
2603 Gomarankadawala Trincomalee 
2604 Morawewa Trincomalee 
2605 Trincomalee town & gravets Trincomalee 
2606 Thampalagamuwa Trincomalee 
2607 Kinniya Trincomalee 
2608 Muttur Trincomalee 
2609 Seruwila Trincomalee 
2610 Kantale Trincomalee 
2611 Verugal eachchalampattu Trincomalee 
2701 Koralai pattu north Batticaloa 
2702 Koralai pattu Batticaloa 
2703 Koralai pattu west Batticaloa 
2704 Eravur pattu Batticaloa 
2705 Eravurpattu town Batticaloa 
2706 Manmunai north Batticaloa 
2707 Manmunai pattu Batticaloa 
2708 Kattankudi Batticaloa 
2709 manmunai west Batticaloa 
2710 Manmunai south west Batticaloa 
2711 Manmunai south & eruvil Batticaloa 
2712 Porativu pattu Batticaloa 
2801 Dehiattakandiya Ampara 
2802 Padiyatalawa Ampara 
2803 Maha-oya Ampara 
2804 Uhana Ampara 
2805 Sammanturai Ampara 
2806 Kalmunai Ampara 
2807 Karativu Ampara 
2808 Nainativu Ampara 
2809 Attalachena Ampara 
2810 Akkaraipattu Ampara 
2811 Ampara Ampara 
2812 Damana Ampara 
2813 Alayadivembu Ampara 
2814 Thirukkovil Ampara 
2815 Potuvil Ampara 
2816 Lahugala Ampara 
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ID DSD DISTRICT 
3101 Galewela Matale 
3102 Naula Matale 
3103 Dambulla Matale 
3104 Pallepola Matale 
3105 Yatawatta Matale 
3106 Matale Matale 
3107 Ambanganga Matale 
3108 Laggala  pallegama Matale 
3109 Wilgamuwa Matale 
3110 Raththota Matale 
3111 Ukuwela Matale 
3201 Pujapitiya Kandy 
3202 Harispattuwa Kandy 
3203 Patha dumbara Kandy 
3204 Panwila Kandy 
3205 Uda dumbara Kandy 
3206 Minipe Kandy 
3207 Meda dumbara Kandy 
3208 Pasbage korale Kandy 
3209 Mahanuwara  four  gravets Kandy 
3210 Kundasale Kandy 
3211 Tumpane Kandy 
3212 Udunuwara Kandy 
3213 Yatinuwara Kandy 
3214 Patha hewaheta Kandy 
3215 Uda palatha Kandy 
3216 Ganga ihala korale Kandy 
3217 Akurana Kandy 
3218 Delthota Kandy 
3219 Doluwa Kandy 
3301 Kotmale Nuwaraeliya 
3302 Hanguranketha Nuwaraeliya 
3303 Walapane Nuwaraeliya 
3304 Nuwaraeliya Nuwaraeliya 
3305 Ambangamuwa korale Nuwaraeliya 
4101 Vanathavillu Puttalam 
4102 Karuwalasgawewa Puttalam 
4103 Kalpitiya Puttalam 
4104 Puttalam Puttalam 
4105 Nawagaththegama Puttalam 
4106 Mundala Puttalam 
4107 Mahakumbukkadawala Puttalam 
4108 Pallama Puttalam 
4109 Anamaduwa Puttalam 
4110 Arachchikattuwa Puttalam 
4111 Chilaw Puttalam 
4112 Nattandiya Puttalam 
4113 Wennappuwa Puttalam 
4114 Dankotuwa Puttalam 
4115 Madampe Puttalam 
4116 Mahawewa Puttalam 
4201 Giribawa Kurunegala 
4202 Galgamuwa Kurunegala 
4203 Nikaweratiya Kurunegala 
 
 

ID DSD DISTRICT 
4204 Mahawa Kurunegala 
4205 Polpithigama Kurunegala 
4206 Kobeigane Kurunegala 
4207 Wariyapola Kurunegala 
4208 Ibbagamuwa Kurunegala 
4209 Bingiriya Kurunegala 
4210 Kuliyapitiya west Kurunegala 
4211 Kurunegala Kurunegala 
4212 Ridigama Kurunegala 
4213 Kuliyapitiya east Kurunegala 
4214 Polgahawela Kurunegala 
4215 Narammala Kurunegala 
4216 Pannala Kurunegala 
4217 Panduwasnuwara Kurunegala 
4218 Katupotha Kurunegala 
4219 Maspotha Kurunegala 
4220 Kotawehera Kurunegala 
4221 Ganewattaa Kurunegala 
4222 Mawathagama Kurunegala 
4223 Udubaddawa Kurunegala 
4224 Alawwa Kurunegala 
4225 Weerambugedara Kurunegala 
4226 Rasnayakapura Kurunegala 
4227 Mallawapitiya Kurunegala 
4228 Ehetuwewa Kurunegala 
4229 Ambanpola Kurunegala 
5101 Negambo Gampaha 
5102 Katana Gampaha 
5103 Divulapitiya Gampaha 
5104 Meerigama Gampaha 
5105 Attanagalla Gampaha 
5106 Minuwangoda Gampaha 
5107 Wattala Gampaha 
5108 Ja-ela Gampaha 
5109 Gampaha Gampaha 
5110 Mahara Gampaha 
5111 Dompe Gampaha 
5112 Biyagama Gampaha 
5113 Kelaniya Gampaha 
5201 Colombo Colombo 
5202 Kolonnawa Colombo 
5203 Kaduwela Colombo 
5204 Homagama Colombo 
5205 Hanwella Colombo 
5206 Maharagama Colombo 
5207 Nugegoda Colombo 
5208 Moratuwa Colombo 
5209 Kesbewa Colombo 
5210 Dehiwala- mount laviniya Colombo 
5211 Thimbirigasyaya Colombo 
5212 Padukka Colombo 
5301 Panadura Kalutara 
5302 Bandaragama Kalutara 
5303 Horana Kalutara 
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ID DSD DISTRICT 
5304 Bulathsinhala Kalutara 
5305 Dodangoda Kalutara 
5306 Kalutara Kalutara 
5307 Beruwala Kalutara 
5308 Mathugama Kalutara 
5309 Agalawatta Kalutara 
5310 Walallawita Kalutara 
5311 Madurawela Kalutara 
5312 Millaniya Kalutara 
5313 Palinda nuwara Kalutara 
6101 Rambukkana Kegalle 
6102 Mawanella Kegalle 
6103 Aranayake Kegalle 
6104 Kegalle Kegalle 
6105 Galigamuwa Kegalle 
6106 Warakapola Kegalle 
6107 Ruwanwella Kegalle 
6108 Yatiyantota Kegalle 
6109 Deraniyagala Kegalle 
6110 Dehiowita Kegalle 
6111 Bulathkohupitiya Kegalle 
6201 Eheliyagoda Ratnapura 
6202 Kuruwita Ratnapura 
6203 Ratnapura Ratnapura 
6204 Imbulpe Ratnapura 
6205 Balangoda Ratnapura 
6206 Opanayake Ratnapura 
6207 Pelmadulla Ratnapura 
6208 Elapatha Ratnapura 
6209 Ayagama Ratnapura 
6210 Nivithigala Ratnapura 
6211 Kahawatta Ratnapura 
6212 Godakawela Ratnapura 
6213 Weligepola Ratnapura 
6214 Kalawana Ratnapura 
6215 Kolonne korale Ratnapura 
6216 Embilipitiya Ratnapura 
6217 Kiriella Ratnapura 
7101 Mahiyangana Badulla 
7102 Ridimaliyadda Badulla 
7103 Meegahakivula Badulla 
7104 Kandeketiya Badulla 
7105 Uva  paranagama Badulla 
7106 Hali-ela Badulla 
7107 Soranathota Badulla 
7108 Passara Badulla 
7109 Badulla Badulla 
7110 Ella Badulla 
7111 Bandarawela Badulla 
7112 Welimada Badulla 
7113 Haputale Badulla 
7114 Haldummulla Badulla 
7201 Bibile Monaragala 
7202 Madulla Monaragala 
 

ID DSD DISTRICT 
7203 Medagama Monaragala 
7204 Badalkumbura Monaragala 
7205 Monaragala Monaragala 
7206 Siyambalanduwa Monaragala 
7207 Buttala Monaragala 
7208 Wellawaya Monaragala 
7209 Katharagama Monaragala 
7210 Thanamalwila Monaragala 
7211 Sevanagala Monaragala 
8101 Benthota Galle 
8102 Elpitiya Galle 
8103 Niyagama Galle 
8104 Tawalama Galle 
8105 Neluwa Galle 
8106 Nagoda Galle 
8107 Welivitiya-divithura Galle 
8108 Karandeniya Galle 
8109 Balapitiya Galle 
8110 Ambalangoda Galle 
8111 Hikkaduwa Galle 
8112 Baddegama Galle 
8113 Yakkalamulla Galle 
8114 Imaduwa Galle 
8115 Akmeemana Galle 
8116 Bope-poddala Galle 
8117 Galle Galle 
8118 Habaraduwa Galle 
8201 Kotapola Matara 
8202 Pasgoda Matara 
8203 Mulatiyana Matara 
8204 Akuressa Matara 
8205 Malimbada Matara 
8206 Kamburupitiya Matara 
8207 Hakmana Matara 
8208 Dikwella Matara 
8209 Thihagoda Matara 
8210 Weligama Matara 
8211 Matara Matara 
8212 Devinuwara Matara 
8213 Pitabeddara Matara 
8214 Welipitiya Matara 
8215 Athuraliya Matara 
8216 Kirinda-puhulwell Matara 
8301 Katuwana Hambanthota 
8302 Weeraketiya Hambanthota 
8303 Anguinukolapelessa Hambanthota 
8304 Ambalathota Hambanthota 
8305 Hambanthota Hambanthota 
8306 Suriyawewa Hambanthota 
8307 Lunugamwehera Hambanthota 
8308 Tissamaharama Hambanthota 
8309 Tangalle Hambanthota 
8310 Beliatta Hambanthota 
8311 Okewela Hambanthota 

 



 

Chapter 2 Additional file 2 – Population 

Map of population by divisional secretariat division in Sri Lanka.  One dot represents 

1000 people.  Sources: Department of Census and Statistics 

(http://www.statistics.gov.lk/) and North East Provincial Council 

(http://www.nepc.lk/index.htm). 
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Chapter 2 Additional file 3 – Temperature 

Maps of monthly average temperature in Sri Lanka.  Source: IWMI World Water and 

Climate Atlas (http://www.iwmi.cgiar.org/WAtlas/atlas.htm). 
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Chapter 2 Additional file 4 – Altitude 

Map of altitude in Sri Lanka.  Colour shading as recommended by the GLOBE project 

(except white background).  Green contour line: 500m, black contour lines: 1000m.  

Source: GLOBE project (http://www.ngdc.noaa.gov/seg/topo/globe.shtml). 
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Chapter 2 Additional file 5 – Rainfall 

Maps of monthly rainfall (75% probability) in Sri Lanka.  Source: IWMI World 

Water and Climate Atlas (http://www.iwmi.cgiar.org/WAtlas/atlas.htm). 
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Chapter 2 Additional file 6 – Rivers and lakes 

Map of river network and lakes / tanks in Sri Lanka.  Source: The Survey Department, 

Sri Lanka. 
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Chapter 4 additional file 1  

Short/Medium Term Plan for prevention and control of possible malaria 

outbreaks in tsunami affected areas of Sri Lanka.  

Prepared by the Anti Malaria Campaign Directorate on 29th December 2004. 

Important: Please bear in mind that nearly all the tsunami affected districts of the 

country excluding the coastal districts from Matara to Gampaha belong to malarious 

areas. Therefore in the absence of clinical features suggestive of acute respiratory 

infections or acute gastro enteritis please consider the possibility of malaria in any 

febrile patient or in any patient with a history of fever. 

Measures to be taken by Regional Malaria Officers of the Anti Malaria Campaign in 

tsunami affected districts and adjacent districts where camps for the displaced are 

located: 

1. Ensure availability of a buffer stock of at least 50000 tablets each of 

chloroquine and primaquine. 

2. Make available malaria diagnostic facilities (microscopy or Rapid Diagnostic 

Test Kits) to hospitals, camps for the displaced and to locations where outbreaks of 

malaria are suspected. 

3. Take immediate measures to introduce long lasting insecticide treated 

mosquito nets to all occupants of camps for the displaced in high risk malaria districts 

of Jaffna, Mullaitivu, Kilinochchi, Trincomalee, Batticaloa, Kalmunai (Ampara 

coastal), Hambantota. Collect all LLINs available with GFATM partner organizations 

and distribute to the camps as soon as possible. Seek partner organization support for 

this activity if possible. 

4. Carry out indoor residual spraying of all camps for the displaced in all affected 

districts wit insecticide on a priority basis. 

5. Ensure that measures are taken to locate new camps for displaced persons 

away from malaria risk areas of the district or ensure that no malaria vector breeding 

sites are in close proximity to camps for displaced persons. Take measures to 

modify/manipulate existing breeding sites to make them unfavourable to malaria 

vector breeding. Consider the application of larvicides or introduction of larvivorous 

fish. 
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6. Make arrangements with adjacent inland districts or with Anti Malaria 

Campaign Headquarters to have standby staff such as Public Health Inspectors, Public 

Health Laboratory Technicians and Public Health field Officers for deployment in 

tsunami-affected districts for malaria control activities. 

7. Establish communication with all foreign and local medical teams working in 

the area and obtain reports of suspected number of patients treated for malaria. Inform 

all foreign medical teams regarding National Guidelines for malaria treatment and 

provide copies of documents to all teams. 

8. Send fortnightly (every two weeks) a report regarding activities carried out, 

number of malaria cases reported, number of suspected malaria patients treated with 

anti malarials. Inform Director Anti Malaria regarding any outbreak of fever or 

malaria outbreaks immediately by telephone (Tel no. 0112588947). 
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Chapter 4 additional file 2 (one_year-post-tsunami_additionalfile2_1475-2875-5-42-

S1.rtf) 

Non-exhaustive list of reported antimalarial support by non-governmental 

organizations (source: Reliefweb). 

http://www.reliefweb.int/rw/rwb.nsf/db900SID/RURI-6LYPJC?OpenDocument 

Source: International Federation of Red Cross And Red Crescent Societies (IFRC) 

Date: 13 Feb 2006 

South Asia: Earthquake & Tsunamis Third/Fourth Quarterly Report Appeal 

No.28/2004 Operation Update No. 58 

Distribution of mosquito nets in Ampara district (with ministry of health) together 

with appropriate health education 

http://www.reliefweb.int/rw/rwb.nsf/db900SID/EVOD-6LUECU?OpenDocument 

Source: Humanitarian Situation Report - Sri Lanka: 03 - 09 Feb 2006 

United Nations Office for the Coordination of Humanitarian Affairs (OCHA) 

Date: 09 Feb 2006 

IOM has distributed over 700 bags of rice, 500 hurricane lamps, 300 packets of tea, 

15 tents, and 37 mosquito nets to families displaced from transitional shelter sites in 

Trincomalee district due to the prevalent political situation 

http://www.reliefweb.int/rw/rwb.nsf/db900SID/KHII-6LJ8PE?OpenDocument 

Source: United Nations Office for the Coordination of Humanitarian Affairs (OCHA) 

Date: 26 Jan 2006 

Humanitarian Situation Report - Sri Lanka: 21 - 26 Jan 2006 

“A total of 744 bed-nets and 50 baby kits in Valachenai, Batticaloa in collaboration 

with Regional Malaria Officer.” 

http://www.reliefweb.int/rw/rwb.nsf/db900SID/KHII-6KWA69?OpenDocument 

Source: MADRE (Madre) 

Date: 10 Jan 2006 

The tsunami: One year later 

http://www.reliefweb.int/rw/rwb.nsf/db900SID/RURI-6LYPJC?OpenDocument
http://www.reliefweb.int/rw/rwb.nsf/db900SID/EVOD-6LUECU?OpenDocument
http://www.reliefweb.int/rw/rwb.nsf/db900SID/KHII-6LJ8PE?OpenDocument
http://www.reliefweb.int/rw/rwb.nsf/db900SID/KHII-6KWA69?OpenDocument
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Supplies for pregnant women and new mothers, including infant mosquito nets and 

mats 

http://www.reliefweb.int/rw/rwb.nsf/db900SID/ETOA-6KW3CX?OpenDocument 

Source: The Salvation Army 

Date: 30 Nov 2005 

East Asian Tsunami Recovery Report - Nov 2005 

Sector: Nutrition, health or medical services; Objectives: Provide medical 

exams/referral, establish health clinics, distribute mosquito nets; Beneficiaries to 

Date: 1,502. 

http://www.reliefweb.int/rw/rwb.nsf/db900SID/RMOI-6KH3JL?OpenDocument 

Source: GOAL 

Date: 23 Dec 2005 

What GOAL has achieved in Sri Lanka after the tsunami one year on 

distributing mosquito nets 

http://www.reliefweb.int/rw/rwb.nsf/db900SID/RMOI-6KG5HB?OpenDocument 

Source: Concern 

Date: 26 Dec 2005 

Concern Sri Lanka - One year on 

Project Galle 2005 was established in response to the tsunami by a group of Sri 

Lankan and international volunteers living in the Galle district. The group identified 

families and distributed 7,376 family kits including essential relief items. Family kits 

included a mosquito net, a sleeping mat, water collection vessel, and essential cooking 

and eating utensils. Personal hygiene items were also added.  

http://www.reliefweb.int/rw/rwb.nsf/db900SID/KHII-6KK5CS?OpenDocument 

Source: United Nations Children's Fund (UNICEF) 

Date: 22 Dec 2005 

UNICEF Situation Report Sri Lanka 27 Nov - 22 Dec 2005 

http://www.reliefweb.int/rw/rwb.nsf/db900SID/ETOA-6KW3CX?OpenDocument
http://www.reliefweb.int/rw/rwb.nsf/db900SID/RMOI-6KH3JL?OpenDocument
http://www.reliefweb.int/rw/rwb.nsf/db900SID/RMOI-6KG5HB?OpenDocument
http://www.reliefweb.int/rw/rwb.nsf/db900SID/KHII-6KK5CS?OpenDocument
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In Kilinochchi, assistance to people affected by the October floods in Kilinochchi and 

Mullaitivu has continued during the reporting period. UNICEF responded by 

distributing tarpaulins, 1000 liter water tanks, water pumps, sleeping mats, mosquito 

nets 

http://www.reliefweb.int/rw/rwb.nsf/db900SID/KHII-6KG4GG?OpenDocument 

Source: International Federation of Red Cross And Red Crescent Societies (IFRC) 

Date: 15 Dec 2005 

Tsunami operation - Facts and figures updated 15 Dec 2005 

More than 300,000 people have received distributions of relief goods including food, 

cooking supplies, stoves, hygiene items, mosquito nets, lamps, clothes, sleeping mats, 

school uniforms, schoolbags, stationery and clothes. 

http://www.reliefweb.int/rw/rwb.nsf/db900SID/RMOI-6K53TS?OpenDocument 

Source: Direct Relief International 

Date: 15 Dec 2005 

Tsunami grant summaries 

The Tropical and Environmental Diseases and Health Association (TEDHA) was 

founded in Hikkaduwa, Sri Lanka to address environmental concerns in the country. 

Comprised of environmental health specialists, an epidemiologist, parasitologists, and 

public health inspectors, the organization has worked closely with the Ministry of 

Health on a national malaria control program. Following the tsunami, TEDHA 

initiated voluntary tsunami relief health activities in Thotagamuwa-Hikkaduwa, 

including a vector control assessment of the area. This assessment confirmed a strong 

need for vector control measures in the area, especially in relief camps.  

With a grant from Direct Relief, TEDHA has implemented vector borne disease 

prevention programs in Hikkaduwa and Hambantota, both located on the southern 

coast of Sri Lanka, and both devastated by the tsunami. Hikkaduwa was severely 

affected by the tsunami, suffering approximately half of the Galle District's nearly 

5,000 deaths. Hambantota District sustained over 5,000 causalities making it one of 

the worst affected districts. For survivors, a lack of housing, an unsafe water supply, 

limited nutritional supply, and poor hygiene conditions contribute to an increased risk 

http://www.reliefweb.int/rw/rwb.nsf/db900SID/KHII-6KG4GG?OpenDocument
http://www.reliefweb.int/rw/rwb.nsf/db900SID/RMOI-6K53TS?OpenDocument
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of communicable diseases such as diarrhea, dengue, malaria, filariasis, and Japanese 

encephalitis.  

In Hikkaduwa and Hambantota, TEDHA has distributed 18,000 insecticide treated 

mosquito nets, procured by Direct Relief, to families residing in displaced persons 

camps and affected neighborhoods. Recipients receive training on use of the nets and 

on measures to effectively prevent disease. Bed nets will be retreated as needed by 

TEDHA's community health volunteers who will regularly monitor net use. 

In addition, Direct Relief provided 5,000 insecticide-treated mosquito nets, with a 

value of $30,457, to Sarvodaya to assist in their (separate) vector control programs in 

relief camps. 

http://www.reliefweb.int/rw/rwb.nsf/db900SID/RMOI-6K53H7?OpenDocument 

Source: Direct Relief International 

Date: 15 Dec 2005 

One year after tsunami, Direct Relief International remains committed to providing 

vital medical resources 

Over 168,800 families in Sri Lanka and India are being protected from malaria and 

other insect-borne diseases through the provision of 170,100 insecticide-treated 

mosquito nets and fogging devices; 

http://www.reliefweb.int/rw/rwb.nsf/db900SID/KHII-6K375J?OpenDocument 

Source: Church World Service (CWS) 

Date: 14 Dec 2005 

Tsunami anniversary: In global agency¹s largest natural disaster response, aid workers 

see signs of recovery at people level 

In Sri Lanka, Church World Service¹s Pakistan-Afghanistan regional staff provided 

food and water, tents, mats, sheets, mosquito nets, health supplies, kitchen utensils, 

clothing and medicine to some 56,100 families. 

http://www.reliefweb.int/rw/rwb.nsf/db900SID/KOCA-6JZJ9G?OpenDocument 

Source: Medical Emergency Relief International (Merlin) 

Date: 12 Dec 2005 

http://www.reliefweb.int/rw/rwb.nsf/db900SID/RMOI-6K53H7?OpenDocument
http://www.reliefweb.int/rw/rwb.nsf/db900SID/KHII-6K375J?OpenDocument
http://www.reliefweb.int/rw/rwb.nsf/db900SID/KOCA-6JZJ9G?OpenDocument
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Preventing disease outbreaks  

Thousands of people have been living in makeshift camps which are overcrowded and 

mosquito-ridden. In these difficult conditions, maintaining standards of personal 

hygiene and cleanliness are paramount if people are to stay healthy. Merlin has been 

helping to prevent disease outbreaks in camps by distributing more than 15,000 

hygiene kits, organising clean-ups and providing camp cleaning equipment. Merlin 

has also trained more than 800 volunteers to promote good hygiene practices in 

camps.  

Merlin's project is reaching more than 1 million people in total, including 3,000 

mothers who have been given essential items for their newborn babies, and 120,000 

people who have received mosquito nets. Two hundred midwives have also been 

provided with emergency delivery equipment and supplies from Merlin.  

Over the coming months, Merlin will construct and equip seven permanent health 

centres to replace those that were destroyed. These facilities together served more 

than 100,000 people before the tsunami. Merlin is also helping to strengthen the 

existing health systems, for example, by training health workers, improving 

laboratories and helping to develop an emergency operational plan for disease 

outbreaks. 

http://www.reliefweb.int/rw/rwb.nsf/db900SID/DPAS-6JPF3V?OpenDocument 

Source: Adventist Development and Relief Agency International (ADRA) 

Date: 01 Dec 2005 

South Asia: ADRA publishes report on tsunami response and launches remembrance 

campaign 

Provision of mosquito nets. 

http://www.reliefweb.int/rw/rwb.nsf/db900SID/RMOI-6K88CA?OpenDocument 

Source: Swiss Agency for Development and Cooperation (SDC) 

Date: 30 Nov 2005 

Two projects in Sri Lanka: Reconstruction of schools and houses 

The first SDC/HA measure was the shipment of 150 truckloads of locally acquired 

relief goods (including mats, covers, mosquito nets, water cans, cooking sets, soap, 

http://www.reliefweb.int/rw/rwb.nsf/db900SID/DPAS-6JPF3V?OpenDocument
http://www.reliefweb.int/rw/rwb.nsf/db900SID/RMOI-6K88CA?OpenDocument
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toiletries, candles, matches) for around 3,000 homeless families in Matara district. 

250 water tanks were organized and set up to ensure a supply of drinking water in 

Matara. 

http://www.reliefweb.int/rw/rwb.nsf/db900SID/RMOI-6KS3AJ?OpenDocument 

Source: Government of Canada 

Date: 24 Nov 2005 

12,000 mosquito nets and floor mats were distributed 

http://www.reliefweb.int/rw/rwb.nsf/db900SID/RMOI-6HH76M?OpenDocument 

Source: United Nations Office for the Coordination of Humanitarian Affairs (OCHA) 

Date: 21 Oct 2005 

Humanitarian Situation Report - Sri Lanka: 15 - 21 Oct 2005 

Dengue alerts are ongoing in Matara district and among aid workers the OCHA Galle 

field office reports. Two cases of dengue have been reported by the Spanish Red 

Cross and Caritas International. IOM Sri Lanka is in the process of developing an 

information campaign aimed at delivering messages about the high tendency for an 

outbreak of dengue and malaria due to increased breeding sites following the seasonal 

rains. In Trincomalee, the Medical Health Officer with the support of IOM launched 

an awareness raising campaign on dengue and malaria prevention, which will be aired 

through the local cable TV network. This announcement will be telecast in local 

languages, initially for seven continuous days and then every Sunday through 

December 2005.  

The broadcast message states: "There is potential risk for outbreaks of dengue and 

malaria in Trincomalee again this season. Let us protect ourselves from these diseases 

by destroying mosquito breeding sites such as bottles, coconut shells, polythene bags, 

plastic containers and other places where water can stagnate."  

In Batticaloa, as part of the prevention exercise for dengue and malaria, an 

environmental hygiene programme has been developed by the CHSO (community 

health surveillance officer) to inform residents on how to destroy breeding sites for 

vectors of the diseases.  

http://www.reliefweb.int/rw/rwb.nsf/db900SID/RMOI-6KS3AJ?OpenDocument
http://www.reliefweb.int/rw/rwb.nsf/db900SID/RMOI-6HH76M?OpenDocument
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http://www.reliefweb.int/rw/rwb.nsf/db900SID/KHII-

6GQ7ZY?OpenDocument&cc=lka 

Source: United Nations Office for the Coordination of Humanitarian Affairs (OCHA) 

Date: 29 Sep 2005 

Humanitarian Situation Report - Sri Lanka: 23 - 29 Sep 2005 

In Trincomalee, an anti-malaria campaign and vector surveillance was recently 

conducted by health officials in Kinniya and Trincomalee town. Four malaria cases 

have been reported from Kinniya. UNICEF distributed 1,000 insecticide treated nets 

in Kinniya. Furthermore, a dengue fever awareness programme is being conducted by 

100 community volunteers trained by the Ministry of Health, every Saturday in 

Trincomalee. Public warning messages are being issued to prevent an outbreak of 

dengue fever.  

http://www.reliefweb.int/rw/rwb.nsf/db900SID/RMOI-6EUAW7?OpenDocument 

Source: United Nations Children's Fund (UNICEF) 

Date: 28 Jun 2005 

UNICEF Situation Report Sri Lanka 28 Jun 2005 

66,000 families served with kits including hygiene materials, mosquito nets, lanterns, 

cooking utensils, buckets, water purification tablets, clothes, mattresses and sleeping 

bags. 

http://www.reliefweb.int/rw/rwb.nsf/db900SID/KHII-6DY5LD?OpenDocument 

Source: United Nations Office for the Coordination of Humanitarian Affairs (OCHA) 

Date: 16 Jun 2005 

Sri Lanka: Facts regarding post-tsunami recovery six months on 

- 101 emergency health kits have been provided to hospitals and clinics by UNICEF 

and WHO benefiting some 1,500,000 tsunami-affected people 

- Approx. 6000 malaria rapid diagnostic kits and over 100,000 anti-malarial tablets 

supplied by UN agencies. 

- 48,000 impregnated mosquito nets have been provided by UNICEF and WHO with 

50,000 more are on the way. 

http://www.reliefweb.int/rw/rwb.nsf/db900SID/KHII-6GQ7ZY?OpenDocument&cc=lka
http://www.reliefweb.int/rw/rwb.nsf/db900SID/KHII-6GQ7ZY?OpenDocument&cc=lka
http://www.reliefweb.int/rw/rwb.nsf/db900SID/RMOI-6EUAW7?OpenDocument
http://www.reliefweb.int/rw/rwb.nsf/db900SID/KHII-6DY5LD?OpenDocument
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http://www.reliefweb.int/rw/rwb.nsf/db900SID/EVOD-

6CYHRE?OpenDocument&cc=lka 

Source: United Nations Office for the Coordination of Humanitarian Affairs (OCHA) 

Date: 16 Jun 2005 

Sri Lanka: Facts regarding post-tsunami recovery six months on 

Five-thousand mosquito nets were handed over to the Deputy Director of Health 

Services in Ampara by UNICEF to support the Anti-Malaria Campaign. Another 

5,400 nets were provided to the Health Sevice in Jaffna district. An increase in 

mosquito-borne diseases is likely due to the seasonal North East monsoon rains. 

http://www.reliefweb.int/rw/rwb.nsf/db900SID/RMOI-6DV3DH?OpenDocument 

Source: Lutheran World Relief (LWR) 

Date: 30 Jun 2005 

Six months later: a tsunami update from Lutheran World Relief 

Provision of mosquito nets. 

http://www.reliefweb.int/rw/rwb.nsf/db900SID/SODA-6DS8J9?OpenDocument 

Source: Medair 

Date: 27 Jun 2005 

Tsunami crisis: 6 month review of Medair activities in Sri Lanka 

Essential relief items distributed to 2,300 families including; buckets, jerry cans, 

mosquito nets, mats, milk powder, soap, sachets of water purification chemicals. 

http://www.reliefweb.int/rw/rwb.nsf/db900SID/EVOD-6DCGME?OpenDocument 

Source: United Nations Office for the Coordination of Humanitarian Affairs (OCHA) 

Date: 14 Jun 2005 

IOM/OCHA Sri Lanka: Humanitarian Situation Report 10 - 14 Jun 2005 

The situation in Mandana camp, Thirukkovil division, Ampara district provides a 

good example of how the government, UN agencies and NGOs remain pro-active in 

their response to continuing humanitarian relief concerns. As recently as 9 June, the 

population of the Mandana camp, which held 592 families in March, was down to 161 

http://www.reliefweb.int/rw/rwb.nsf/db900SID/EVOD-6CYHRE?OpenDocument&cc=lka
http://www.reliefweb.int/rw/rwb.nsf/db900SID/EVOD-6CYHRE?OpenDocument&cc=lka
http://www.reliefweb.int/rw/rwb.nsf/db900SID/RMOI-6DV3DH?OpenDocument
http://www.reliefweb.int/rw/rwb.nsf/db900SID/SODA-6DS8J9?OpenDocument
http://www.reliefweb.int/rw/rwb.nsf/db900SID/EVOD-6DCGME?OpenDocument


 198

families. Construction of transitional shelters, lack of transportation and incidents of 

violence had caused some residents to relocate, but the principal reason for the exodus 

was a report of several cases of Hepatitis A which quickly evolved into a rumour of 

the existence of a yellow fever outbreak, prompting a camp-wide scare. UN agency 

and NGO representatives with government health authorities took swift preventive 

measures, including safeguarding water supplies, spraying for mosquitoes and 

stepping up awareness raising activities regarding Hepatitis A and a campaign to 

assure residents there was no evidence of yellow fever.  

http://www.reliefweb.int/rw/rwb.nsf/db900SID/EVOD-6CYHRE?OpenDocument 

Source: United Nations Office for the Coordination of Humanitarian Affairs (OCHA) 

Date: 02 Jun 2005 

Humanitarian Situation Report - Sri Lanka: 27 May - 2 June 2005 

Five-thousand mosquito nets were handed over to the Deputy Director of Health 

Services in Ampara by UNICEF to support the Anti-Malaria Campaign. Another 

5,400 nets were provided to the Health Sevice in Jaffna district. An increase in 

mosquito-borne diseases is likely due to the seasonal North East monsoon rains.  

http://www.reliefweb.int/rw/rwb.nsf/db900SID/EVOD-6CPHQ5?OpenDocument 

Source: United Nations Office for the Coordination of Humanitarian Affairs (OCHA) 

Date: 24 May 2005 

IOM/OCHA Sri Lanka: Humanitarian Situation Report 20 - 24 May 2005 

WHO is providing fogging machines for mosquito control against malaria and dengue 

to a number of Deputy Provincial Directors of Health (DPDH) Services in the 

districts. In addition, WHO has recently conducted a fogging machine operation and 

maintenance workshop in Matara district for new operators of the fogging equipment 

and for Public Health Inspectors from Galle, Matara and Hambantota districts. 

http://www.reliefweb.int/rw/rwb.nsf/db900SID/VBOL-6CJHBG?OpenDocument 

Source: United Nations Office for the Coordination of Humanitarian Affairs (OCHA) 

Date: 19 May 2005 

Humanitarian Situation Report - Sri Lanka: 13 - 19 May 2005 

http://www.reliefweb.int/rw/rwb.nsf/db900SID/EVOD-6CYHRE?OpenDocument
http://www.reliefweb.int/rw/rwb.nsf/db900SID/EVOD-6CPHQ5?OpenDocument
http://www.reliefweb.int/rw/rwb.nsf/db900SID/VBOL-6CJHBG?OpenDocument
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Some 12,400 mosquito nets, which were handed over by UNICEF to the Deputy 

Director of Health Services in Batticaloa district, are being distributed to families in 

the malaria prevalent areas of the district. An increase in Mosquito-borne diseases is 

likely due to the seasonal North East monsoon rains. 

http://www.reliefweb.int/rw/rwb.nsf/db900SID/LSGZ-6CNBNN?OpenDocument 

Source: Oxfam 

Date: 04 May 2005 

Tsunami crisis - situation update: Providing shelter, rebuilding livelihoods 

In Trincomalee, a temporary mobile shed for public performance was made and 

erected in Narasima Malai camp. In Kuncahavalli a drama on diarrhoea, hygiene and 

mosquito borne diseases was performed to 100 people living in Narasima Mali camp 

and 75 people from Alnuriya Vidiyalayam camp.  

http://www.reliefweb.int/rw/rwb.nsf/db900SID/MHII-6BZ5MX?OpenDocument 

Source: American Red Cross 

Date: 27 Apr 2005 

Red Cross spurs anti-malaria campaign 

By Alice Kociejowski and Stacey M. Winston, special to Redcross.org  

Wednesday, April 27, 2005 -- Colombo, Sri Lanka -- It has been four months since 

the tsunami, and the International Red Cross/Red Crescent Movement continues to 

provide invaluable assistance to vulnerable families -- notably it began an anti-malaria 

campaign.  

At the request of the Ministry of Health, the Sri Lankan Red Cross (SLRCS) and the 

International Federation of Red Cross and Red Crescent Societies (Federation), in 

cooperation with the International Committee of Red Cross (ICRC), are distributing 

treated mosquito nets across the Ampara district to tsunami affected and indirectly 

affected families, as part of a nationwide anti-malaria campaign.  

Ampara has one of the highest incidence rates of malaria in Sri Lanka, and mosquito 

nets, if used properly, provide simple but effective prevention against this deadly 

disease.  

http://www.reliefweb.int/rw/rwb.nsf/db900SID/LSGZ-6CNBNN?OpenDocument
http://www.reliefweb.int/rw/rwb.nsf/db900SID/MHII-6BZ5MX?OpenDocument
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"Malaria can be a difficult disease to control, especially in a post-disaster situation, 

but mosquito nets are one of the easiest and most effective solutions," said Jeff Chinn, 

American Red Cross relief team member.  

As the rainy season approaches and the risk of vector borne diseases increases, 

distribution of mosquito nets becomes more essential. Since the tsunami struck, the 

SLRCS and the Federation have distributed over 66,000 nets in Galle, Matara, 

Hambantota and Ampara.  

This distribution is just a small, but vital part of the Red Cross work that aims to 

improve the lives of vulnerable people in all areas of Sri Lanka.  

http://www.reliefweb.int/rw/rwb.nsf/db900SID/KHII-6JF83M?OpenDocument 

Source: International Committee of the Red Cross (ICRC) 

Date: 04 Apr 2005 

Tsunami disaster in Sri Lanka : The response of the International Committee of the 

Red Cross (ICRC) 4 Apr 2005 

Working with the local authorities, the Sri Lankan Red Cross and the ICRC have 

delivered over 35,000 family kits to welfare centres and transit camps and other 

displaced persons in the north and east of the country. Such kits typically contain 

floor mats, bed sheets, soap, towels, buckets, jerry cans and plastic dishes. In addition, 

over 100 welfare centres in the same regions were provided with cooking pots and 

utensils for communal cooking. Nearly 12,000 pieces of clothing, 22,000 blankets, 

11,000 kitchen sets and 3,300 kerosene lamps have been distributed to displaced 

families. The ICRC is assisting the Canadian, Japanese, Swiss, Austrian and 

American Red Cross Societies to provide 30,000 displaced families with monthly 

hygiene kits over a six-month period. The kits contain soap, toothpaste, sanitary 

towels, bath towels, mosquito coils, etc. 

http://www.reliefweb.int/rw/rwb.nsf/db900SID/KHII-6B53VW?OpenDocument 

Source: United Nations Office for the Coordination of Humanitarian Affairs (OCHA) 

Date: 02 Apr 2005 

Indonesia, Sri Lanka, Thailand: Earthquake and Tsunami OCHA Situation Report No. 

34 

http://www.reliefweb.int/rw/rwb.nsf/db900SID/KHII-6JF83M?OpenDocument
http://www.reliefweb.int/rw/rwb.nsf/db900SID/KHII-6B53VW?OpenDocument
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In Ampara, the local health service is coordinating the distribution of 70,618 

insecticide-treated mosquito nets supplied by several agencies. The total mosquito net 

requirement for the district is 83,802. 

http://www.reliefweb.int/rw/rwb.nsf/db900SID/VBOL-6AZHDG?OpenDocument 

Source: United Nations Office for the Coordination of Humanitarian Affairs (OCHA) 

Date: 31 Mar 2005 

Humanitarian Situation Report - Sri Lanka: 25 - 31 Mar 2005 

In Ampara, the local health service is coordinating the distribution of insecticide-

treated mosquito nets by a number of agencies including: UNICEF, 20,000 nets, 

GOAL, 20,000, Merlin, 2,450, MSF, 3,900, ICRC, 5,000, LIONS, 15,000 and Medair 

4,268. The total mosquito net requirement for the district is 83,802. 

http://www.reliefweb.int/rw/rwb.nsf/db900SID/RMOI-6AS2SF?OpenDocument 

Source: Caritas 

Date: 24 Mar 2005 

Caritas reviews Sri Lanka programmes - three months after tsunami 

In Galle division mosquito nets have also been distributed to families in temporary 

shelters as malaria and dengue fever are endemic to the coastal areas of Sri Lanka. 

http://www.reliefweb.int/rw/rwb.nsf/db900SID/EGUA-6ARQF6?OpenDocument 

Source: Oxfam 

Date: 23 Mar 2005 

OI Tsunami External Bulletin #24 of 23 Mar 2005 

In Matara and Hambantota, a distribution of non-food-relief items was successfully 

completed, and local women and men received 10,834 hygiene items, including 

nappies, hot water flasks, soap, mosquito nets, washing bowls, feeding cups and 

spoons, a cleaning brush for bottles, sponge, sheets and a pillow. Family packs were 

also distributed. 

http://www.reliefweb.int/rw/rwb.nsf/db900SID/VBOL-6AQJW6?OpenDocument 

Source: International Organization for Migration (IOM) 

http://www.reliefweb.int/rw/rwb.nsf/db900SID/VBOL-6AZHDG?OpenDocument
http://www.reliefweb.int/rw/rwb.nsf/db900SID/RMOI-6AS2SF?OpenDocument
http://www.reliefweb.int/rw/rwb.nsf/db900SID/EGUA-6ARQF6?OpenDocument
http://www.reliefweb.int/rw/rwb.nsf/db900SID/VBOL-6AQJW6?OpenDocument
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Date: 21 Mar 2005 

IOM Sri Lanka: Tsunami response program update 21 Mar 2005 

IOM distributed 326 mosquito nets in two IDP camps in Eachchilampattu DS division 

on behalf of Trincomalee Lions Club. 

http://www.reliefweb.int/rw/rwb.nsf/db900SID/RMOI-6AL8UV?OpenDocument 

Source: Medair 

Date: 17 Mar 2005 

South Asia Emergency - Operations update 

Distribution of essential relief items to 2,294 families including; 2,247 buckets, 2,161 

jerry cans, 4,258 mosquito nets, 2,114 mats, 2,088 boxes of milk powder, 1070 bars 

of soap, 77,580 sachets of water purification chemicals. 

http://www.reliefweb.int/rw/rwb.nsf/db900SID/RMOI-6AL4PE?OpenDocument 

Source: HelpAge International 

Date: 17 Mar 2005 

After the tsunami: Latest from Sri Lanka 

HelpAge Sri Lanka is working with four local community organisations in Ampara, 

Batticaloa and Trincomalee districts to distribute non-food items such as pots, pans, 

mosquito nets, soap, disinfectants, spoons, knives, plates, and other items required to 

cope with daily needs.  

http://www.reliefweb.int/rw/rwb.nsf/db900SID/VBOL-6B8ERY?OpenDocument 

Source: ZOA Refugee Care 

Date: 08 Feb 2005 

Update on ZOA tsunami relief work in Sri Lanka - 8 Feb 2005 

Dispatching of the first of 90,000 high quality mosquito nets commenced (distribution 

to be completed before the end of June). 

http://www.reliefweb.int/rw/rwb.nsf/db900SID/RMOI-6AL8UV?OpenDocument
http://www.reliefweb.int/rw/rwb.nsf/db900SID/RMOI-6AL4PE?OpenDocument
http://www.reliefweb.int/rw/rwb.nsf/db900SID/VBOL-6B8ERY?OpenDocument
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Chapter 8 appendix 

library(R2WinBUGS) 
model310101x<-function(){ 
 ##Priors## 
 #beta ~ dflat() #model with external variable 
 beta <- 0 #model without external variable 
 phi.star1 ~ dunif(-0.999, 0.999) #model with a first order 
seasonal autoregressive parameter 
# phi.star1 <- 0 #model without a first order seasonal 
autoregressive parameter 
# theta.star1 ~ dunif(-0.999, 0.999) #model with a first order 
seasonal moving average parameter 
 theta.star1 <- 0 #model without a first order seasonal moving 
average parameter 
 psi ~ dgamma(0.01,0.01) 
 for (i in 1:p){ 
  alpha.db[i] <- round(0.5*(i+1)-0.01) 
  beta.db[i] <- round(0.5*i+1-0.01) 
  r[i] ~ dbeta(alpha.db[i], beta.db[i]) 
  r.map[i] <- 2*r[i]-1 
 } 
 y.phi[1,1] <- r.map[1] 
 for (i in 2:p){ 
  for (k in 1:(i-1)){ 
  y.phi[k,i] <- y.phi[k,i-1] -r.map[i]*y.phi[i-k,i-1] 
  } 
  y.phi[i,i] <- r.map[i] 
 } 
 phi[1] <- 0 #use this option if phi[1] is omitted 
# phi[1] <- y.phi[1,p] #use this option if phi[1] is included 
 phi[2] <- 0 #use this option if phi[2] is omitted 
# phi[2] <- y.phi[2,p] #use this option if phi[2] is included 
 phi[3] <- y.phi[3,p]  
 #### 
  
 ##Error for first w observations## 
 for (t in 1: w){ 
  u[t] <- 0 
 } 
 #### 
  
 ##Likelihood ## 
 for (t in (w+1):N){ 
  y[t] ~ dnegbin(pr[t],psi) 
  pr[t] <- psi/(psi+lambda[t]) 
  lambda[t] <- exp(m[t]) 
  m[t] <- beta * x[t] +log(max(c,cut(y[t-1]))) -beta*x[t-1]  
+sum(AR[ ,t]) +sum(ARSAR[ ,t]) +SAR[t] +(theta.star1)*cut(u[t-12]) 
  for (k in 1:p){ 
   AR[k,t] <-  
 phi[k]*log(max(c,cut(y[t-k])))  
-phi[k]*beta*x[t-k]  
-phi[k]*log(max(c,cut(y[t-k-1])))  
+phi[k]*beta*x[t-k-1] 
   ARSAR[k,t]<-  
-phi.star1*phi[k]*log(max(c,cut(y[t-k-12])))  
+phi.star1*phi[k]*beta*x[t-k-12]  
+phi.star1*phi[k]*log(max(c,cut(y[t-k-1-12])))  
-phi.star1*phi[k]*beta*x[t-k-1-12]  
  } 
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  SAR[t]<- 
 phi.star1*log(max(c,cut(y[t-12])))  
-phi.star1*beta*x[t-12] 
-phi.star1*log(max(c,cut(y[t-1-12])))  
+phi.star1 *beta*x[t-1-12] 
  u[t] <- log(max(c,cut(y[t]))/cut(lambda[t])) 
  LL[t] <- cut(psi)*log(cut(pr[t])) +cut(y[t])*log(1-
cut(pr[t])) +loggam(cut(y[t]) +cut(psi)) -loggam(cut(y[t])+1) -
loggam(cut(psi)) 
 } 
 cut.psi <- cut(psi) 
 #### 
  
 ##Deviance## 
 Dev <- -2*sum(LL[(w +1) : N]) 
 #### 
} 
write.model(model310101x, con = "model310101x.txt") 
 
inits<- list(list(psi=10, phi.star1=0)) 
parameters<-c("psi", "phi", "phi.star1", "Dev")  
data<-list(N=408, w=16, p=3, c=1, y= y[1:408], x=x[1:408]) 
 
#estimation: 
winbugs.output <- bugs(data, inits, parameters,  
    model.file="model310101x.txt", 
    n.iter=11000, n.burnin=1000, n.thin=1, n.chains=1, debug=T, 
    bugs.directory = "c:/Program Files/WinBUGS14/", 
    working.directory = NULL, clearWD = TRUE) 
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