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1 Abstract 
The amygdala is a key structure of the neuronal circuitry mediating expression 

and extinction of conditioned fear. However, fear memories are thought to be 

encoded in a larger network comprising the medial prefrontal cortex (mPFC) and 

the hippocampus (HC). Thus, amygdala projections to the mPFC and to the HC 

are likely to be involved in fear learning, yet the cellular substrates of that learning 

remain unknown. To examine the role of identified amygdala projection neurons 

in the expression and extinction of conditioned fear responses, I used a 

combination of in vivo retrograde tracing techniques and analysis of expression of 

the activity-dependent immediate early genes (IEGs) cFos and Zif268. I show that 

amygdala neurons projecting to the mPFC or to the HC exhibit differential cFos 

and Zif268 expression in fear conditioned animals compared with non-

conditioned control animals and with animals subjected to extinction. In particular, 

extinction resulted in a selective induction of cFos in mPFC projecting neurons. A 

more detailed analysis revealed that neurons projecting to the infralimbic 

subdivision of the mPFC (IL), but not those projecting to the prelimbic subdivision 

(PL), account for the specific cFos expression in mPFC-projecting neurons 

following extinction. To investigate the physiological correlates of fear extinction in 

anatomically defined subpopulations of amygdala projection neurons I used an 

electrophysiological ex vivo approach. In these experiments, I recorded from 

identified BA neurons projecting to PL or IL in slices obtained from mice subjected 

to extinction. Extinction differentially affects intrinsic properties of PL- and IL-

projecting cells. While there was no change in PL-projecting neurons, IL-

projecting BA cells showed a learning-related increase in spike half-width and a 

concomitant decrease in the fast after-hyperpolarization (AHPfast). In control 

animals, spike half-width and AHPfast were controlled by the activation of voltage-

dependent potassium channels (VDPCs) and large-conductance Ca2+ dependent 

potassium channels (BK-channels). After extinction training only VDPCs 

contribute to the AHPfast in IL-projecitng cells. This indicates a specific modulation 

of BK-channels in IL-projecting neurons following extinction learning. Our findings 

suggest that a change in the balance of activity between IL- and PL-projecting BA 

neurons may be involved in the extinction of conditioned fear.  
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2 Introduction 

2.1 Learning and memory 
Memory is an organism’s ability to store, retain and retrieve information. It is a 

pivotal aspect of our lives and ranges from simple associations to complex 

learning events like playing a piece of music on the piano by heart. While learning 

to play a piece of music by heart takes training and can be recalled for month or 

even years after training, other memory processes, such as keeping a telephone 

number in mind for the process of dialing, involve very time-limited memory that 

can be gone within seconds or minutes. Thus, memory can be divided into a 

short-term and a long-term phase. The pivotal aspect of long-term memory is that 

it involves persistent changes in the underlying neural circuits.  

Insight into memory processes has come from the study of mental disorders and 

the complete or partial loss of memory (amnesia). Different forms of amnesia 

revealed that considering memory as a single cohesive process is misleading. 

There are many different kinds of memory and interfering with one can leave 

another untouched. Memory can be encoded as a habit, fact or emotion and can 

be associated with different kinds of sensory information. This encoding requires 

changes in different neural circuits located in brain areas involved in associations, 

emotion, motor performance and/or sensory perception. Understanding how 

memory works requires a detailed dissection of these different circuits. A major 

contribution to this challenge came from Ivan Pavlov who studied how 

emotionally relevant associations are formed in a dog’s brain. In these 

experiments a dog learned to associate the sound of a doorbell with food. After a 

few pairings, the sound of the doorbell made the dog salivate in expectation of the 

food. This form of memory formation, in which an animal learns that a neutral 

stimulus predicts an emotionally important event is known today as Pavlovian 

conditioning (or classical conditioning). Pavlovian conditioning has been widely 

studied to elucidate the neuronal substrates underlying. In the work presented in 

this thesis, I use an aversive form of Pavlovian conditioning, classical auditory 

fear conditioning. 
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2.2 Fear conditioning and extinction 
Pavlovian fear conditioning is one of the most widely used paradigms to study the 

biological basis of emotion, as well as learning and memory: an aversive (often 

noxious) stimulus, the unconditioned stimulus (US), is presented paired with an 

emotionally neutral stimulus, the conditioned stimulus (CS). In animal 

experiments the US is generally a mild footshock and the CS can be a sensory 

stimulus like a light, smell or tone. After several pairings of the CS and the US the 

animal learns that the CS predicts the US and starts to show fear responses 

when exposed to the CS alone (Fig.1) (LeDoux, 1998). Fear responses include 

changes in heart rate and blood pressure, release of stress hormones, analgesia, 

and facilitation of reflexes. In rodents, a straightforward and therefore often used 

way to quantify fear is to measure the freezing response of an animal to an 

aversive stimulus that can not be avoided. Freezing, observable as an immobile 

posture, is a defensive behavior since predators usually target moving prey 

(Fanselow and Poulos, 2005).  Pavlovian fear conditioning has a number of 

advantages as a model for learning: It involves only a small number of stimuli (the 

CS and the US) and the behavioral output is an innate natural behavior. This 

signifies the analysis and correlation of the observed changes to single 

components of the experiment in an easily quantifiable manner.  

Conditioned fear responses can be inhibited by extinction training. When the CS 

is repeatedly presented without the US, the animal learns that the CS does not 

predict the US any more, and exhibits reduced fear responses (Quirk and 

Mueller, 2008). Already Pavlov described this phenomenon in his appetitive 

conditioning experiments with dogs (Pavlov, 1927). His observation that an 

animal’s conditioned response to an extinguished CS can spontaneously recover 

with time led him to propose that extinction reflects new inhibitory learning rather 

than the erasure of the conditioned fear memory. It is thought that the brain stores 

the initial fear memory and the extinction memory in two separate traces. This is 

confirmed by experiments performed after extinction learning. Presenting the US 

alone will immediately unveil a fear reaction to the CS a process known as 

reinstatement. Furthermore, extinction, like FC, is context-dependent, in that not 

only the cue is associated with presentation (or omission) of the US, but also the 
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surrounding environment. Placing the animal after extinction back in the context it 

has been conditioned in will elicit fear behavior. Presentation of the CS in this 

context will further increase the fear response, a process called renewal (Ji and 

Maren, 2007; Quirk and Mueller, 2008). Thus, it is widely accepted that extinction 

represents new inhibitory learning. 
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Figure 1: Pairing a footshock (US) and a tone (CS) in context A leads to conditioned freezing 
behavior also in context B when the CS is presented (Test). Repeated non-reinforced presentation 
of the CS in context B will lead to a decrease in fear behavior as response to the tone (Extinction). 
Defensive fear reactions of mice are measured as percent freezing (lower diagram). Freezing 
behavior increases after fear conditioning and decreases during extinction. 

 

Studying fear conditioning and extinction in rodents serves as models for human 

psychopathology and treatment of those. Too much fear or impaired 

discrimination between threatening and neutral stimuli leads to diseases like 

phobias, obsessive compulsive disorder and post-traumatic stress disorder 

(PTSD) (Kent and Rauch, 2003; Millan, 2003; Uys et al., 2003). In particular 

PTSD is a disease from which civilians and soldiers who have been exposed to 

war-time situations often suffer. PTSD patients exhibit a defect in “extinguishing” 

stress-related situations and it is hoped that by a detailed understanding of the 

underlying neural substrates potential therapies and drugs can be developed.  
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2.3 Brain areas involved in the acquisition and extinction of 

conditioned fear 
2.3.1 The amygdala 
2.3.1.1 General anatomy 

The amygdala is a key brain structure in aversive emotional learning, a brain 

structure located deeply within the medial temporal lobe (Fanselow and LeDoux, 

1999).  It is a non-layered structure consisting of different nuclei which differ in 

their cytoarchitechture, histochemistry and connectivity (Pitkanen et al., 2000a). 

These nuclei are divided into different groups according to Price et al (1987) (1) 

the basolateral amygdala (BLA), including the lateral (LA), the basal (BA) and the 

basomedial (BMA) nucleus, (2) the central complex (CE), including the central 

lateral (CEl), central capsular (CElc) and central medial (CEm) nuclei and (3) 

more superficial nuclei including the anterior cortical nucleus, bed nucleus of the 

accessory olfactory tract and others (Fig. 2). The BLA is surrounded by cell 

clusters the so called intercalated cell masses (ICM), which are comprised solely 

of GABAergic neurons and could not be classified into the above groups (Pare 

and Smith, 1993).  

The overall flow of information within the amygdala follows the direction of the 

inter-nuclear projections (Fig.2) (Pitkanen et al., 1997; Sah et al., 2003). The LA 

serves as the principal sensory interface as it receives multimodal, early sensory 

information from the thalamus and cortex (Turner and Herkenham, 1991; 

McDonald, 1998). The CEm serves as the main output station, as its projection 

neurons target different structures in the brainstem and in the hypothalamus to 

orchestrate conditioned autonomic and motor responses (Krettek and Price, 

1978; Veening et al., 1984; LeDoux et al., 1988). In addition, amygdala nuclei 

receive unidirectional input from, or are reciprocally connected to cortical and 

subcortical brain structures (McDonald, 1991; McDonald et al., 1996; McDonald, 

1998; Pitkanen, 2000; Pitkanen et al., 2000a). Together with the multitude of 

inter- and intra-nuclear projections, this suggests that information can be 

processed both by mechanisms intrinsic to amygdala networks, as well as 

modified by interactions with other brain structures to integrate sensory inputs, 
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generate fear response outputs, and modulate fear responses according to 

circumstances, such as in fear extinction (Pitkanen et al., 1997; Sah et al., 2003). 
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Figure 2: Structure of the amygdala and surrounding brain-areas. CS-US information is conveyed 
to the LA via sensory thalamus and cortex. Moreover the CS is processed within the BLA and 
further conducted to the CE which projects to brainstem and hypothalamus and is thereby capable 
of eliciting fear responses. LA = lateral nucleus of the amygdala, BA = basal nucleus of the 
amygdala, BMP = accessory nucleus of the amygdala posterior, BMA = accessory nucleus of the 
amygdala anterior, CE = central nuclei of the amygdala. (Pictures taken  from Paxinos & Franklin, 
The mouse atlas.)  

 

2.3.1.2 Intrinsic and extrinsic connectivity of the amygdala 

Each nucleus of the amygdala is differentially connected; to areas within and 

outside of the amygdala. The LA is reciprocally connected to almost all other 

amygdala nuclei. An exception is the CEl where the LA projects to but does not 

get input from. Furthermore, the LA is reciprocally connected to external brain 

structures, including the hippocampus and cortical regions (Pitkanen et al., 

2000b). The exception is the thalamus that provides strong input to the LA but 

does not receive projections (Turner and Herkenham, 1991; Pitkanen et al., 

1997). The LA receives dense sensory input of more cortical areas than any other 

amygdaloid nucleus (McDonald, 1998). Cortical inputs provide information about 

highly processed visual, somato-sensory, visceral sensory and auditory stimuli. 

Thus, the LA is the integration site for auditory and somato-sensory inputs 

(LeDoux et al., 1990; LeDoux, 2000). This is confirmed by physiological data 
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showing that pairing auditory and nociceptive stimuli enhances the auditory 

evoked responses recorded in the LA in vivo (Quirk et al., 1997; Rogan et al., 

1997; Rosenkranz and Grace, 2002). Importantly the LA is also innervated by 

projections from structures related to other memory systems, including the 

prefrontal and perirhinal cortical areas, and the hippocampus (HC) (LeDoux, 

2000).  

The BA receives the strongest intra-amygdaloid input from the LA. In turn it 

projects to LA, CE and other amygdala nuclei (Savander et al., 1995). Cortical 

inputs to the BA originate largely in the same areas as those to the LA, but their 

density is generally lighter (Pitkanen, 2000). This does not apply to projections 

from the frontal cortex (prefrontal and perirhinal cortex). These are strongly and 

reciprocally connected to the BA (Berendse et al., 1992; Bacon et al., 1996). 

Other areas involved in memory formation like the HC are densely interconnected 

with the BA (McDonald, 1998; Pikkarainen et al., 1999). Additional brain 

structures the BA is connected to are the thalamus, the basal forebrain and the 

nucleus accumbens (Pitkanen, 2000). 

The CE receives relatively unprocessed visceral sensory inputs directly from 

some thalamic nuclei, the olfactory bulb, and the nucleus of the solitary tract in 

the brainstem. Neurons originating from the medial subdivision of the central 

nuclei (CEm) project to central grey (CG), lateral hypothalamus (LH) and 

paraventricular hypothalamus (PVN), all of which mediate fear responses 

(Pitkanen et al., 1997; Medina et al., 2002). Thus the amygdala links sensory 

inputs from thalamic and sensory cortical regions with hypothalamic and 

brainstem effector systems to control behavior. The strong interconnections with 

the HC and the prefrontal cortex suggest that fear memory is stored in a large 

network. 

 

2.3.1.3 Properties of amygdala neurons 

Based on morphological, neurochemical and physiological features, the BLA is a 

cortex-like structure. Projection neurons (PNs) represent the largest population of 

neurons in the BLA of around 85% (McDonald and Augustine, 1993; Mahanty 
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and Sah, 1998). They are large spiny cells, with low firing rates and frequency 

adaptation (Pare and Gaudreau, 1996). Interestingly, these neurons display a 

morphological continuity ranging from pyramidal to stellate (Pare et al., 1995; 

Faber et al., 2001). In general, the somata of projection neurons in the LA are 

smaller than those of the BA (Millhouse and DeOlmos, 1983). 

Aspiny, GABAergic interneurons (INs) form the second group of neurons in the 

BLA (McDonald and Augustine 1993). INs have smaller somata compared to PNs 

and form a heterogenous population with regard to their dendritic and axonal 

arborizations (Carlsen and Heimer, 1988; Pare and Smith, 1998). Like 

interneurons in cortex and hippocampus, BLA interneurons can be divided into 

several subtypes based on the expression of a variety of calcium-binding proteins 

(parvalbumin (PV), calbindin, calretinin) and neuropeptides (somatostatin (SOM), 

cholecystokinin, neuropeptide Y, vasointestinal polypeptide) (Kemppainen and 

Pitkanen, 2000; McDonald and Mascagni, 2001; Mascagni and McDonald, 2003).  

 

2.3.1.4 The amygdala in fear conditioning and extinction 

The discovery that the amygdala contributes to emotional behavior was made in 

the 1950s. Bilateral lesions of the amygdala in monkeys led to dull and less 

fearful behavior (Weiskrantz, 1956). Electrical stimulation of the amygdala elicited 

high fear responses (Delgado et al., 1956). Today we know that the BLA is a key 

site for the formation of CS-US associations during fear conditioning and also 

during extinction learning. This evidence is based on studies using permanent or 

reversible lesions of the BLA, application of drugs, and electrophysiological 

recordings of neuronal activity during fear conditioning. 

Selective neurotoxic lesions of the BLA before fear conditioning have been shown 

to impair the formation of CS-US associations (Campeau and Davis, 1995; 

Cousens and Otto, 1998; LeDoux, 2000). Furthermore, lesions of the BLA made 

after fear learning have been shown to prevent memory retrieval (Campeau and 

Davis 1995; Cousens and Otto 1998). However, lesions of the BLA are not useful 

to study extinction learning, as no fear memory is preserved (Quirk and Mueller, 

2008). Better are pharmacological manipulations of the BLA to explore its role in 
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extinction memory. Formation of long-term memory has been linked to a 

molecular cascade involving N-methyl-D-aspartate receptor (NMDA-R) mediated 

calcium entry, activation of protein kinases, gene expression, and protein 

synthesis (Kandel, 2001). Manipulation of these pathways within the BLA 

interferes with both, acquisition and extinction of conditioned fear (Falls et al., 

1992; Lu et al., 2001; Rodrigues et al., 2001; Schafe et al., 2001; Lin et al., 2003; 

Desgranges et al., 2008). Furthermore, electrophysiological recordings showed 

that FC leads to a potentiation of sensory evoked responses to the CS in the BLA 

(Quirk et al., 1995; Rogan and LeDoux, 1995; Quirk et al., 1997; Rogan et al., 

1997; Collins and Pare, 2000). During extinction amygdala output becomes 

gradually inhibited. This process requires the formation of a new memory trace 

and includes inhibitory neurons within the amygdala to block CE output. Whether 

these are local inhibitory networks in the BLA or the intercalated cell masses 

(ICM) at the interface between BLA and CE is still under debate (Rosenkranz et 

al., 2003; Berretta et al., 2005; Likhtik et al., 2008) 

The overall flow of information within the amygdala follows the direction of the 

inter-nuclear projections; e.g. from LA to BA, and from BLA to CEA and, within 

CEA, from the CEl to the CEm (Pitkanen et al., 1997; Sah et al., 2003). Plasticity 

within the LA potentiates the ability of the CS to excite neurons in the medial 

subdivision of the central nucleus (CEm) and thereby generates conditioned fear 

(Davis, 2000; LeDoux, 2000; Malkani and Rosen, 2000a; Blair et al., 2001).  

Interestingly, formation of long-term memories requires insertion of AMPAR into 

synapses and interfering with this insertion of new AMPAR into LA synapses 

prevents fear conditioning (Rumpel et al., 2005). Recently, it has been shown that 

CREB (adenosine 3`, 5`-monophosphate response element-binding protein) – 

knockout (KO) mice cannot acquire fear memory, which is completely rescued by 

intra-LA expression of CREB. Thus, CREB-expression in the LA is necessary and 

sufficient for fear memory consolidation (Han et al., 2007). Indeed, ablation of the 

LA neuronal subpopulation that overexpresses CREB after FC, erases the fear 

memory (Han et al., 2009). These findings resulted in the model that the major 

site of plasticity and memory storage in FC is the LA, and other amygdala nuclei 

serve as processing and relay structures. 
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However, this model is not complete and there is increasing evidence that the LA 

is not the only site where plasticity happens. Other possible sites of plasticity are 

the CE (Samson and Paré, 2005; Wilensky et al., 2006) and the BA (Paré et al., 

2004; Anglada-Figueroa and Quirk, 2005). The hypothesis that the CE 

contributes directly to fear conditioning is already supported by anatomical data, 

showing direct auditory and somatic inputs (Goosens and Maren, 2001). In 

addition, overtraining of BLA lesioned rats partially rescues fear conditioning 

which is completely prevented by lesions or pharmacological inactivation of the 

CE (Zimmerman et al., 2007). Thus, the CE is the probable site that stores the 

fear memory in the absence of the BLA.  

It is not entirely clear how the LA influences CEm output as there are no direct 

projections to the CEm (Paré et al., 2004). But it is known that the LA projects to 

the BA which in turn projects to the CEm (Pitkanen et al., 1997; Pare and Smith, 

1998). This points to an indirect route of the LA to the CEm via the BA (LeDoux, 

1995). Surprisingly, pre-training lesions of the BA had no effect on the acquisition 

of fear conditioning (Amorapanth et al., 2000; Goosens and Maren, 2001). In 

contrast, post-training lesions completely abolished the expression of conditioned 

fear (Anglada-Figueroa and Quirk, 2005). Another recent study from our 

laboratory shows distinct BA cell populations identified by their CS-response 

(Herry et al., 2008). Depending if fear or extinction activates these neurons, they 

were called “fear or extinction cells”. “Extinction cells” become specifically CS-

activated during extinction training supporting earlier findings of activity in the BA 

as a response to extinction learning (Herry and Mons, 2004). These cells were, in 

contrast to “fear cells”, not found in the LA (Repa et al., 2001). Pharmacological 

inactivation of the BA impairs behavioral transitions from high to low fear and 

vice-versa (Herry et al., 2008). Together, this indicates that the BA is actively 

involved in fear conditioning and extinction and particularly in situations requiring 

rapid switching between the two converse behavioral states. 
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2.3.2 Hippocampus 

The Hippocampus (HC) is an evolutionary ancient brain structure located in the 

medial temporal lobe. It is subdivided into the following areas: CA1, CA2 and CA3 

fields of the HC, the dentate gyrus (DG) and the subiculum (S) (Fig. 3A). Massive 

reciprocal connections with the amygdala are formed between ventral CA1 and 

the subiculum (Pitkanen, 2000). Furthermore the HC is connected to other fear 

memory-related areas like the mPFC (Ishikawa and Nakamura, 2006).  

The HC was put into the spotlight of memory research through studies on the 

case of patient HM in the 1950s. HM suffered from severe epilepsy originating 

from both temporal lobes. To control the epilepsy, physicians removed almost the 

whole HC on both sides. After the surgery HM suffered from acute anterograde 

amnesia; although his working memory was intact he could not form any  new 

long-term memory (Scoville and Milner, 1957). 

Besides general memory formation, the HC plays the major role in spatial 

memory and navigation. This was primarily investigated in rodents. In 1971 

O’Keefe and co-workers recorded from neurons within the HC and demonstrated 

that activity of specific hippocampal neurons, today known as “place cells”, 

correlates with a specific location of the rat in space (O'Keefe and Conway, 

1978). Inactivation of the HC in mice leads to a severe deficit in spatial and 

contextual learning (Corcoran and Maren, 2001). Therefore, it is believed that that 

the HC is critical for using contextual information to guide behavior (Fanselow, 

2000; Maren and Holt, 2000). Until today the ultimate test for HC performance are 

spatial tests (Richardson et al., 2002; Herrera-Morales et al., 2007; Pawlowski et 

al., 2009).  

FC and extinction learning are, as mentioned earlier, strongly context-dependent 

(Bouton et al., 1993; Bouton and Nelson, 1994). This context-dependency can be 

disrupted by inactivation of the dorsal HC (dHC) (Corcoran and Maren, 2001; 

Hobin et al., 2006). Recently, it was shown that context-dependent activity to a 

conditioned tone in the LA is modulated by the dHC (Maren and Hobin, 2007). 

The authors inactivated the dHC by muscimol application while recording single-

units from the LA. Inactivation led to impairment of contextual extinction and a 
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concomitant loss of context-driven activity in the LA. In general it is believed that 

the HC is more involved in contextual modulation of Pavlovian FC. However, 

inactivation of the ventral HC (vHC) interferes with both cued and contextual 

aspects of FC and extinction, suggesting differing roles for the dHC and the vHC 

(Maren, 1999; Maren and Holt, 2004).  
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Figure 3: A: Structure and subareas of the ventral hippocampus (HCv). CA1, CA2, CA3 subfields 
of the HC, S = subiculum, DG = dentate gyrus, Ent = entorhinal cortex. B: Structure and subareas 
of the medial prefrontal cortex (mPFC). CG = anterior cingulate cortex, PL = prelimbic cortex, IL = 
infralimbic cortex. C: During fear conditioning the PL excites amygdala output, which is inhibited 
after extinction learning by the IL. Both learning paradigms are modulated by hippocampal activity. 
LA = lateral nucleus of the amygdala, BA = basal nucleus of the amygdala, CE = central nucleus 
of the amygdala. MGm = medial geniculate nucleus. 

 

2.3.3 Medial prefrontal cortex (mPFC) 

The mPFC is part of the prefrontal cortex that constitutes the anterior part of the 

frontal lobes of the brain.  It consists of three different subdivisions: The anterior 

cingulate (CG), the infralimbic (IL) and the prelimbic cortex (PL) (Fig 3B) 

(Groenewegen et al., 1990; Uylings and van Eden, 1990). Since the famous case 

of Phineas Gage, who suffered from frontal lobe lesions caused by an accident in 

1884, the prefrontal cortex has been associated with emotional regulation 

(Damasio et al., 1994).  After the accident Phineas Gage exhibited characteristics 
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he did not show before: He was quick-tempered, irritable and impatient, but his 

cognitive abilities were unchanged. 

Today, detailed knowledge about the function of the prefrontal cortex in emotional 

processes comes from animal studies, mostly in rodents (Davidson and Irwin, 

1999). Concerning the relevance of the mPFC in FC and extinction, however, 

previous behavioral studies have reported conflicting results. In rats, lesions of 

the mPFC led to an increase (Morgan et al., 1993), a decrease (Rosen et al., 

1992; Lacroix et al., 2000), or to no change in fear responses (Holson, 1986; 

Rosen et al., 1992; Gewirtz et al., 1997).  

 

Figure 4: The IL is functionally involved in retrieval of extinction. A: Lesions of IL do not prevent 
extinction but interfere with retrievall of extinction the following day (modified from Quirk et al 
2000). B: Infusing the protein synthesis inhibitor anisomycin (Aniso) into the IL just before 
extinction (arrow) has no effect on extinction learning but blocked retrieval of extinction the 
following day (modified from Santini et al 2004). C: Single unit recording shows that IL neurons 
respond to the CS only during retrieval of extinction, suggesting that IL tone responses are 
responsible for low fear after extinction (modified from Milad and Quirk, 2002). These and other 
data suggest that extinction induced changes in prefrontal neuronal activity is necessary for fear 
extinction. vmPFC, ventral medial prefrontal cortex; Habit., habituation; Cond., conditioning. From: 
(Quirk et al., 2006). 

 

These results may be a consequence of targeting different subdivisions of the 

mPFC. Indeed, there is increasing evidence for an opposing role of the PL and 
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the IL in acquisition and extinction of conditioned fear (Fig. 4) (Sierra-Mercado et 

al., 2006). During trace fear conditioning, a protocol in which CS and US 

presentation is separated by a certain time interval, PL neurons show a learning-

related increase in activity to the CS presentation, whereas IL neurons decrease 

their activity (Gilmartin and McEchron, 2005). In contrast, IL neurons show 

extinction learning related increases in activity as a response to the CS (Fig. 4 C) 

(Milad and Quirk, 2002). Microstimulation of the PL reduces, and IL-stimulation 

facilitates, extinction learning (Vidal-Gonzalez et al., 2006). Furthermore, 

microinfusion of the activity-blocker tetrodotoxin (TTX) in the PL reduces freezing 

to both a tone and a context that were paired with a footshock (Corcoran and 

Quirk, 2007). In contrast, excitotoxic lesions of the IL, as well as local application 

of the protein synthesis inhibitor anisomycin, allow for normal acquisition of fear 

but impaired extinction learning (Fig. 4A, B) (Quirk et al., 2000). Thus, the PL 

seems to be more involved in fear learning, whereas the IL has a key function in 

extinction learning (Fig. 4).  

 

It is thought that during extinction activity in the IL (but: not all studies differentiate 

between IL and PL) inhibits activity and prevents plasticity in LA neurons, 

probably by activation of local inhibitory networks or by recruitment of intercalated 

cell masses (Rosenkranz et al., 2003; Berretta et al., 2005; Likhtik et al., 2008). 

Less is known about the influence the BLA exerts upon the mPFC. BLA 

stimulation leads to two different kinds of responses in separate populations of 

mPFC neurons: monosynaptic, excitatory responses and more often inhibition of 

spontaneous firing (Floresco and Tse, 2007). Furthermore, within the mPFC input 

from the amygdala and the HC converges and interacts (Ishikawa and Nakamura, 

2003).  

 

2.4 Immediate-early genes 
Memory can be divided into a short- and long-term phase. A short-term memory 

does not result in any long lasting neural changes. In contrast long-term memory 

processes induce enduring neural changes that allow information storage for 



Introduction  23 
 
 

 

weeks, month, or even years. An important feature distinguishing short- from 

long-term memory is that only the latter depends on mRNA and protein synthesis. 

Interfering with transcription or translation immediately after training disrupts long-

term memory formation in experimental animals, while leaving short-term memory 

intact (Nader et al., 2000; Schafe and LeDoux, 2000). This labile phase is 

transient, lasting a couple of hours. Long-term memory becomes stable and 

insensitive to disruption with time. However, reactivation of a memory can bring it 

back to a labile state, a process called reconsolidation that is again protein 

synthesis dependent (Alberini, 2005). Since protein synthesis depends on 

transcription of DNA to mRNA, important regulators of memory formation are 

transcription factors (TFs). TFs that play an important role during memory 

consolidation belong largely to a group of proteins which are activated rapidly and 

transiently as a response to neuronal activity. These are so called immediate 

early genes (IEGs). In addition to TF IEGs, there are also effector IEGs that are 

more directly involved in functional processes at the synapse. 

IEGs were identified in the 1960s and 1970s in cancer research. Later it was 

shown that they are present in the genome of all animals and that they are 

inducible by a multitude of stimuli, including growth factors or mitogens. Since it 

became evident that they are induced in the brain following for example seizures, 

kindling and other activity changes, IEGs were investigated as potential mediators 

of the cellular changes in memory formation. An important feature of IEG 

induction is it’s transience making IEGs a powerful tool to map activity in the brain 

(Guzowski et al., 2005). Primarily the TF cFos has been widely used to detect 

activated brain areas (Herry and Mons, 2004; Berretta et al., 2005; Reijmers et 

al., 2007). 

 

2.4.1 Zif268 

Expression levels of the TF Zif268, also called Egr-1, NGFI-A, Krox-24, TIS8 and 

ZENK, increase in defined brain-structures upon cellular activation. Following 

activity eliciting stimulation zif268 mRNA is expressed in a time window between 

20 min and 60 min and Zif268 protein levels are highest between 1 – 2h after 
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activation (Gass et al., 1992; Malkani and Rosen, 2000a, b; Zangenehpour and 

Chaudhuri, 2002). In the amygdala, Zif268 is expressed following fear 

conditioning and extinction, as well as other anxiety related and drug seeking 

behavior (Malkani and Rosen, 2000a; Thomas et al., 2003; Herry and Mons, 

2004; Rosen et al., 2005). Increases in cellular activity within neuronal tissue are 

known to activate Zif268, likely through an elevation in cytosolic Ca2+ (Murphy et 

al., 1991; Condorelli et al., 1994; Ghosh et al., 1994). An increase in intracellular 

calcium levels activates different signal transduction pathways and some of them 

have been implicated in Zif268 induction (Knapska and Kaczmarek, 2004).  

As Zif268 is rapidly and transiently induced in activated brain regions and 

mediates transcription and thereby protein-synthesis it has long been 

hypothesized that it plays a role in the protein-synthesis dependent processes of 

long-term memory and LTP. Indeed, recent studies could show a prominent role 

of Zif268 in both. In the amygdala, administration of the anti-anxiety drug 

diazepam not only blocks fear conditioning but also Zif268 induction (Malkani and 

Rosen, 2000b). Furthermore, microinfusion of a zif268 antisense 

oligodeoxynucleotide to the LA disrupts Zif268 expression and interferes with 

contextual fear memory formation (Malkani et al., 2004). Studies on Zif268-/- mice 

indicate a role for Zif268 in late but not in early phases of LTP. In addition, Zif268-

/- mice are impaired in spatial learning tasks and in amygdala-dependent 

conditioned taste aversion (Jones et al., 2001). Moreover, low expression of 

Zif268 in the mPFC and the amygdala is associated with resistance to extinction 

(Herry and Mons, 2004). A recent study could link Zif268 overexpression in the 

amygdala to strengthening of an aversive memory together with resistance to 

extinction of that memory trace (Baumgartel et al., 2008). In summary, 

transcription factor Zif268 is likely to be involved in the consolidation of memory 

and in the formation of LTP. 

 

2.4.2 cFos 

The TF cFos is part of the AP-1 complex which is capable of DNA-binding and 

transcription initiation. cFos is an ubiquitous protein, present in almost all cell-



Introduction  25 
 
 

 

types and it is induced by a variety of stimuli including cytokines, stress, growth 

factors, bacterial and viral infections, and oncoproteins (Herrera and Robertson, 

1996). In the brain cFos is rapidly and transiently expressed in activated brain 

areas with a peak-expression after ~ 2h; basal expression levels are low (Gass et 

al., 1992; Hughes et al., 1992). A multitude of stimuli in a huge variety of brain 

structures lead to cFos expression. Seizures can induce cFos throughout the 

brain (Dragunow et al., 1987; Dragunow and Robertson, 1987; Morgan et al., 

1987); sensory stimulation, cerebral ischemia, stroke and axotomy can induce 

cFos (Kogure and Kato, 1993; Hope, 1998; Coggeshall, 2005; Van der Gucht et 

al., 2005). Single whisker deprivation in mice leads to cFos positive nuclei in the 

barrel cortex only in the barrel corresponding to the spared whisker and fear 

conditioning induces cFos expression in the amygdala and in the mPFC (Barth et 

al., 2004; Herry and Mons, 2004). Thus, because cFos is reliably induced by 

activity-changes, its expression has been widely used as tool to identify brain 

areas activated under specific circumstances. Like Zif268, cFos levels increase 

as a response to elevated intra-neuronal free calcium (Bading et al., 1993). The 

calmodulin pathway appears to link the elevated intracellular calcium to gene 

induction.  

Despite the fact that activity induces cFos expression in the brain the role of cFos 

in learning and memory is still unclear. In mice, fear conditioning induces cFos in 

the amygdala (Herry and Mons, 2004). Furthermore, resistance to fear extinction 

is correlated with increased cFos expression in the mPFC and the amygdala 

(Herry and Mons, 2004). Some studies also show a requirement for cFos 

expression in learning paradigms. Passive avoidance training does not only 

induce cFos expression in the amygdala, it also requires cFos expression for the 

formation of the memory as demonstrated by infusion of antisense 

oligonucleotides (Lamprecht and Dudai, 1996).  Additionally, mice deficient for 

cFos specifically exhibit selective deficits in hippocampus-dependent learning, 

like contextual fear conditioning (Fleischmann et al., 2003). Thus, cFos 

expression is induced in the brain during memory formation and is also necessary 

for some forms of learning. 



Introduction  26 
 
 

 

In contrast to Zif268, assessment of the role of cFos in in neuronal plasticity led to 

conflicting results. In anesthetized animals where LTP was elicited by electrical 

stimulation, no cFos induction could be observed in the dentate gyrus (Douglas et 

al., 1988). However, very strong stimuli are able to induce cFos expression 

(Abraham et al., 1993). Mice deficient for cFos in the CNS displayed a reduced 

magnitude of hippocampal LTP (Fleischmann et al., 2003). In summary, cFos 

seems to be critically recruited during the activation of neuronal circuits. However, 

in contrast to Zif268, whose expression could be directly linked to plasticity and 

memory retrieval, the link of cFos expression to plasticity is conflicting.  

 

2.5 Electrophysiological correlates of fear learning and extinction 
In the previous chapters I have discussed the brain’s capacity of storing 

information at a systemic level: I presented the brain structures contributing to 

different aspects of fear conditioning and extinction and introduced IEGs as 

modulators of long-term changes in the brain. In this chapter I will discuss 

changes in cellular physiology which could underlie associative learning in 

general and in fear learning and extinction in particular. The idea that memory 

storage results from activity-dependent changes in synaptic strength was 

postulated by Hebb (1949), who proposed that connections between two cells 

could be strengthened if both cells were active simultaneously. This process was 

later on indeed discovered, first in HC, later in other brain areas and is called 

long-term potentiation (LTP). LTP is one of the best cellular models for 

information storage associated with learning and memory (Sourdet and Debanne, 

1999; Abbott and Nelson, 2000; Bi and Poo, 2001; Sjostrom and Nelson, 2002). 

However, synaptic plasticity is not the only persistent change that can happen on 

a cellular level. Additionally or alternatively, plasticity of intrinsic electrical 

properties such excitability, regulated by ion channels in nonsynaptic structures of 

neurons has been described, and intensely investigated over the last years 

(Daoudal and Debanne, 2003; Zhang and Linden, 2003; Disterhoft and Oh, 

2006). 
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2.5.1 Synaptic plasticity   

LTP, and the related phenomenon long-term depression (LTD), have been 

described at many synapses in different brain regions. They were most 

intensively studied at glutamatergic synapses in the hippocampus (Martin et al., 

2000). The current model of LTP involves activation of AMPA-R and the 

concomitant recruitment of NMDA-R most often being coexpressed at 

glutamatergic synapses (Malenka and Bear, 2004). Upon activation by glutamate 

release AMPA-Rs open at resting membrane potential and mediate fast 

excitatory postsynaptic potentials (EPSPs), through sodium influx (Hestrin et al., 

1990). Whereas AMPA-Rs are responsible for basal synaptic transmission, 

NMDA-Rs function as coincidence-detectors of concerted neuronal activity. At the 

resting membrane potential NMDA-Rs are blocked by intracellular Mg2+ (Nowak 

et al., 1984). Upon depolarization NMDA-Rs become unblocked and permeable 

to cations including Ca2+ ions when activated by glutamate. The resulting rise in 

intracellular Ca2+ activates a cascade of biochemical changes that leads to 

persistent changes in synaptic strength (Malenka and Bear, 2004). These 

changes can either increase (LTP) or decrease synaptic strength (LTD). 

The exact nature of the link between LTP and memory formation is still under 

debate. A particularly useful system to investigate this link is associative FC 

combined with the search for cellular correlates in the amygdala. Today, there is 

considerable evidence supporting the notion that LTP at sensory afferents to the 

basolateral amygdala underlies acquisition of FC (Sah et al., 2008).  

Pharmacological and molecular manipulations that block LTP in vivo and in vitro 

under some conditions, also block the acquisition of fear conditioning (Bauer et 

al., 2002; Goosens and Maren, 2004; Rumpel et al., 2005; Humeau et al., 2007).  

Patch clamp recordings of lateral amygdala neurons show that inputs from 

cortical and thalamic areas converge in the amygdala and are highly plastic 

(LeDoux et al., 1991; Romanski and LeDoux, 1993). Fear conditioning enhances 

synaptic transmission at these afferents to the amygdala ex vivo (McKernan and 

Shinnick-Gallagher, 1997; Tsvetkov et al., 2002). This applies also to CS-evoked 

responses measured in vivo (Quirk et al., 1997; Rogan et al., 1997; Goosens et 

al., 2003). Furthermore, LTP can be induced at sensory afferents to the amygdala 
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both in vivo and in vitro (Rogan and LeDoux, 1995; Huang and Kandel, 1998; 

Doyere et al., 2003). It has therefore been proposed that LTP at synapses in the 

amygdala underlie the acquisition of conditioned fear.   

  

2.5.2 Intrinsic plasticity 

Synapses are not the only neuronal elements that contribute to long-term activity 

changes in networks. Neuronal mechanisms contribute to intrinsic neuronal 

excitability (Daoudal and Debanne, 2003). The excitability of a neuron is 

determined by the properties and distribution of ion channels in its membrane. It 

can also be defined as the ability of a neuron to generate an action potential 

(output) upon stimulation (input). At the mechanistic level, this involves opening of 

voltage- and Ca2+-dependent ion channels located on the dendrites, soma and 

axon of a cell.  

 

Figure 5: Different mechanisms for changing cellular excitability. A: A decreased spike threshold 
causes spiking at smaller depolarization. B: A reduction in the AHP increases the number of 
spikes elicited by the same depolarizing step. C: Enhanced back-propagation increases 
depolarization in non-activated cellular compartments. Figure from (Daoudal and Debanne, 2003). 
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It has previously been shown that excitability of neurons changes with learning. 

For example, eye-blink conditioning leads to an increased excitability in 

hippocampal neurons recorded from conditioned animals compared to naïve or 

pseudo-conditioned animals (Disterhoft et al., 1986; Schreurs et al., 1997; Saar et 

al., 1998). Neuronal excitability of mPFC neurons was found to be enhanced 

following learning of a fear conditioning task in prefrontal cortical neurons (Santini 

et al., 2008). Different ways to shape a neuron’s excitability have been shown 

(Fig. 5): In cerebellar neurons a reduced AP-threshold increases neuronal 

excitability upon high frequency stimulation (Fig. 5A) (Armano et al., 2000); 

Changes in the after-hyperpolarization (AHP) following single AP and bursts of 

spikes lead to changes in spike frequency and spike frequency adaptation (Fig. 

5B) (Disterhoft and Oh, 2006). Finally, enhanced AP back propagation following 

postsynaptic depolarization increases intrinsic excitability in CA1 pyramidal 

neurons (Tsubokawa et al., 2000), as well as in entorhinal cortical neurons  

(Egorov et al., 2002) and in  cerebellar neurons (Aizenman and Linden, 2000). At 

the mechanistic level, synaptic plasticity and intrinsic plasticity share common 

induction pathways. It has been shown that activation of NMDA-Rs is required for 

potentiation of intrinsic excitability (Armano et al., 2000; Aizenman et al., 2003). In 

summary, changes in intrinsic excitability have been identified as a cellular 

correlate of learning in various brain areas including the mPFC, the HC and the 

cerebellum. Intrinsic excitability can be shaped in different ways and is 

determined by expression of Ca2+ and voltage dependent ion channels.   

 

2.5.2.1 Afterhyperpolarization (AHP)  

The AHP is mediated either by Ca2+- dependent voltage sensitive potassium 

channels or by voltage-dependent potassium channels, depending on the type of 

AHP and the cell-type. Three types of AHPs are distinguished by their time-

course: fast, medium and slow AHP. The underlying currents are Ic, IAHP and 

sIAHP, respectively (Lancaster and Nicoll, 1987; Disterhoft and Oh, 2006). The fast 

and medium AHP contribute to action potential repolarization and spike firing 
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frequency. The slow AHP is widely acknowledged to be the main determinant of 

spike frequency adaptation (Faber & Sah, 2002). 

The fast AHP follows the downstroke of an AP. It plays not only a role in AP 

repolarization, but also in determination of spike half-width, thereby influencing 

the amount of Ca2+ entering the cell (Faber and Sah, 2003). It lasts for about 5 

ms and in many cell-types it is largely mediated by large conductance Ca2+-

dependent potassium channels (BK-channels). BK-channels are gated by Ca2+ 

and blocked by low concentrations of tetraethylammonium ions (TEA) (0.1-1 mM) 

and by the specific toxins charybdotoxin and iberiotoxin (IbTX). They have single 

channel conductances greater than 100 pS and are voltage sensitive, opening 

more easily and longer at depolarized potentials.  

However, there is good evidence that, in contrast to other brain structures, the 

AHPfast in the lateral amygdala is mediated by voltage-dependent potassium 

channels (VDPCs) (Faber and Sah, 2002). VDPCs open at depolarized potentials 

and play a role for AP repolarization. VDPCs that mediate AHPfast in LA neurons 

probably consist of the subunits Kv1.1, Kv1.2 or Kv1.6 as the AHP can be 

blocked by the snake venom α –dendrotoxin (α-DTX) (Grissmer et al., 1994).  

The medium AHP follows single AP and trains of APs, lasts 50-200 msec and is 

mediated by small conductance potassium channels (SK-channels), which, like 

BK-channels, are gated by Ca2+. Their single channel conductance is in the 5-20 

pS range and they are blocked by high concentrations of TEA (10-20mmol/l) and 

the bee toxin apamin (Tzounopoulos and Stackman, 2003).  

The channel(s) underlying AHPslow are not known. However, the underlying 

current sIAHP is activated following trains of APs and can last up to 6 seconds. It is 

insensitive to blockers of SK- and BK-channels, but can be modulated by 

neuromodulaters, such as acetylcholine and noradrenaline (Disterhoft and Oh, 

2006). 

All three currents Ic, IAHP and sIAHP have been implicated in shaping intrinsic 

neuronal plasticity upon learning. In the HC, where the AHPfast is mediated by BK-

channels, trace eyeblink conditioning increases the intrinsic excitability of CA1 
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neurons by decreasing the fast and the slow AHP (Matthews et al., 2008; 

Matthews et al., 2009). However, blocking BK-channels in HC in vivo leads to an 

unspecific increase in activity also due to increased release probability and 

impedes acquisition of trace eyeblink conditioning. In the IL, fear conditioning 

decreases both the AHPfast and the AHPslow and thereby also increases cellular 

excitability of pyramidal neurons in layer II/III and V (Santini et al., 2008). 

However, decreases of the AHPfast are not always accompanied by increased 

excitability. Selective changes in spike frequency adaptation of neurons have 

been reported as well as no changes in firing behavior of a cell (Gu et al., 2007; 

Haghdoost-Yazdi et al., 2008). 

The slow AHP is increased in hippocampal cells from aging animals (Landfield 

and Pitler, 1984; Power et al., 2002), and this increase correlates with increased 

AP accommodation and difficulty in learning hippocampus-dependent tasks such 

as trace eyeblink conditioning (Moyer et al., 2000) and the Morris water maze 

(Tombaugh et al., 2005). 

 

2.6 Aim of this study 
Although the amygdala is a key component of the neuronal circuitry mediating 

expression and extinction of conditioned fear, fear memories are thought to be 

encoded in a larger network comprising the medial prefrontal cortex (mPFC) and 

the hippocampus (HC). Particularly, two subdivisions of the mPFC, the prelimbic 

(PL) and the infralimbic (IL) cortex, are assumed to be involved in fear 

conditioning and extinction, respectively. Thus, amygdala projections to the PL, 

the IL and to the HC are likely to be involved in fear learning, yet the cellular 

substrates remain unknown. In my Thesis, I examined the role of identified 

amygdala projection neurons in the expression and extinction of conditioned fear 

responses. I used a combination of in vivo retrograde tracing techniques and 

expression analysis of the activity-dependent IEGs cFos and Zif268. Additionally, 

I addressed physiological correlates of fear conditioning and extinction in 

anatomically defined neurons using patch-clamp recordings in an ex vivo 

electrophysiological approach.  
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3 Material and methods 

3.1 Animals 
Male C57BL/6J mice (RCC, Füllinsdorf, Switzerland) or cFos-GFP transgenic 

mice lines 1-3 and 4-1 (Barth et al., 2004) backcrossed into C57BL/6J (over 10 

generations) were used for all experiments. Adult mice of 5 weeks to five month 

of age were housed separately in a temperature controlled room with a 12/12 

hour light/dark cycle with food pellets and water available ad libitum. All 

procedures were carried out with an approval by the Veterinary Department of the 

Canton of Basel-Stadt.  

3.2 Genotyping cFos-GFP transgenic mice 
Genotyping was done from biopsy of the tailtips. Tailtips were kept in lysis buffer 

containing proteinase K over night at 55 °C and heat-shocked at 95 °C for 5 min. 

Primers specific to the coding sequence of gfp (Primer 1: 

5’GAACTCCAGCAGGACCATGT3’, Primer 2: 5’TATATCATGGCCGA 

CAAGCA3’, from Microsynth, Switzerland) plus additional standard reagents 

(Invitrogen GmbH) were mixed with the DNA samples for the polymerase chain 

reaction (PCR). For the subsequent gel electrophoresis a 1% agarose gel was 

stained with with 0.005% ethidium bromide for visualization of DNA with UV-light. 

3.3 Behavioral training 
Mice were submitted to an auditory fear-conditioning paradigm in which a CS (7.5 

kHz, 50 ms, 30 X @ 0.9 Hz, 80 dB), was paired with a US (mild foot shock, 0.6 

mA, 1 s). Conditioning took place in a chamber consisting of a shock grid floor 

made of stainless steel rods placed in a square transparent Plexiglas box. A 

speaker was positioned on top of the square transparent box. The whole system 

was placed inside a sound-attenuating wooden cubicle. The shock grid was 

connected to a current generator and scrambler to deliver the foot-shock.  The 

current generator and scrambler were controlled by a computer running the Tru 

Scan 99 software for in-time delivery of CS and US (Coulbourn Instruments, 

Allentown, PA). Extinction training was performed over two days in a different 

context (same system but different visual and olfactory cues). Freezing behavior 
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was quantified during each behavioral session using an automatic infrared beam 

detection system placed on the bottom of the experimental chamber (Coulbourn 

Instruments, Allentown, PA). Statistical analyses were performed using paired t 

test and one-way ANOVA comparisons at the p < 0.05 level of significance. 

Results are presented as mean SEM. 

3.4 Retrograde labeling and adeno-associated virus (AAV) injection  
For retrograde labeling of BA neurons projecting to either mPFC or HC we used 

fluorophore coated latex microspheres (red exc.= 530 nm, em.= 590 nm and 

green exc.= 460 nm, em.=505 nm) referred to as retrobeads (RBs) (Lumafluor 

Inc., Naples, FL). RBs were dialyzed with a sucrose solution (0.32 M) to reduce 

osmotic stress in injected tissues. Polycarbonate membrane filters (Sterlitech 

Corp., Washington, USA; pore-size 0.01 μm, diameter 25 mm) were placed in a 

cell culture dish containing ~ 10 ml sucrose solution and incubated ON at RT. 

Subsequently RBs were stored at 4°C until use.  

Mice were anesthetized with initially 3 % Isoflourane (Minrad, Inc., Buffalo, NY, 

USA) with 2 % during stereotactical surgery. Mice were placed into a 

stereotactical frame (David Kopf Instruments; Bilaney GmbH, Düsseldorf, 

Germany) and injected with RBs to the mPFC or the HC using a syringe (600 

Series, 5μl, Hamilton Bonaduz AG, Bonaduz, GR, Switzerland) or a picospritzer 

(Föhr Medical Instruments GmbH, Seeheim-Ober Beerbach, Germany) in 

combination with glass pipettes (borosilicate glass capillaries, World Precision 

Instruments, Inc., Sarasota, Florida, USA pulled on a Flaming/Brown micropipette 

puller P-97, Sutter Instruments, Novato, CA, USA). The injection volumes for the 

mPFC and the HC were 0.2 and 0.3 μl respectively. Coordinates to target 

bilaterally the mPFC were originating from the bregma: rostral + 1.9, lateral +/- 

0.3 and ventral 2.3 (PL) and 2.5 (IL), respectively; the HC coordinates were 

caudal – 3.6, lateral +/- 3.6 and ventral 3.7 (all coordinates calculated from the 

Mouse Brain Atlas by Franklin and Paxinos). During surgery mice were locally 

treated with lidocaine (Boehringer Ingelheim, Germany) and naropin 

(Astrazeneca, Germany) for analgesia. Post-surgery treatment of mice involved 

subcutaneous injection of 0.06ml Metacam (Boehringer Ingelheim, Germany) to 

reduce pain and inflammation risk. 
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3.5 Immunohistochemistry 
Mice were deeply anaesthetized using urethane 2 h after the completion of the 

behavioral testing and perfused transcardially with ice-cold solution of 4% 

paraformaldehyde in phosphate buffer (PFA; pH 7.4). After postfixation overnight 

in the same fixative at 4 °C, coronal sections (50 μm) were cut on a vibratome 

(Leica, Nussloch, Germany) and collected in phosphate-buffered saline (PBS). 

Free-floating sections were rinsed in PBS. After four rinses, sections were 

incubated in a blocking solution (10% bovine serum albumin (BSA) and 0.2% 

Triton X-100 in PBS) containing the primary polyclonal rabbit anti-c-Fos 

(Oncogene Research Products; 1: 20000 dilution) or anti-Zif268 (Santa Cruz; 1: 

5000 dilution) over night (ON) at 4 °C. Subsequently, sections were washed with 

PBS and incubated for 2 h at RT with fluorescent goat antirabbit IgG (Santa Cruz; 

1: 1000 in PBS). Finally immuno-labeled sections were rinsed in 3x in PBS, 

mounted on gelatin-coated slides, dehydrated and coverslipped.  

3.6 Confocal microscopy and image analysis 
3D z-stacks of BA parts and 2D overview pictures (tiles) of the whole amygdala 

were acquired using confocal fluorescence microscopes, either a LSM 510 or a 

LSM 510 meta (Carl Zeiss AG, Germany) and three different lasers (488, 543 and 

633 nm). Tiles and z-stacks were acquired using a 40x/1.3 oil immersion DIC 

lens. Settings for acquisition (photomulitplier assignment and contrast values) 

were adjusted for different staining batches using a pixel saturation tool on very 

bright and dark spots. Pinhole was always adjusted to 1. Tiled images from the 

entire amygdala were collected with an opened pinhole. Confocal z-stack image 

series were sectioned in 1 μm thin optical planes (325.8 μm x 325.8μm x 10-

35μm), tiles were taken in 9 x 9 images (2592.8μm x 2602.2μm). For 

quantification of IEG induction six tiled overview pictures/mouse and for 

assessing colocalisation of RBs/IEG five images per animal were analyzed.  

Quantification of IEG induction following different behavioral paradigms of the 

mice were done on tiles and analyzed with Imaris (Bitplane, Zürich, Switzerland) 

and LSM Image Browser (Carl Zeiss AG, Germany). The different subnuclei of 

the BLA (BA, LA, BMA) were defined with the Image Browser and then imported 

to Imaris to automatically count positive nuclei with the spot detection software. 
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Parameters were kept constant within comparable batches of raw files. The spot 

diameter was set to 10 μm for every analysis, whereas the detection threshold 

was changed depending on the experiment. For the RBs/IEG colocalisation, 

double labeled neurons were counted manually in the LSM Image Browser. 

3.7 Mouse brain slice preparation 
Brain coronal slices were prepared from six to nine week old male mice injected 

with RBs into the mPFC. Mice were either transgenic for cFos-GFP (lines 1-3 or 

4-1 backcrossed into C57BL/6J background) or littermates. Brains were dissected 

in ice-cold artificial cerebrospinal fluid (ACSF), and sliced (300 μm thick) with a 

Microm slicer (model HM 650 V; Walldorf, Germany) at 4ºC. Sapphire blades 

(Delaware Diamond Knives, USA) were used, to improve slice quality. Slices 

were recovered for 45 min at 37ºC in an interface chamber containing ACSF 

equilibrated with 95% O2/5% CO2. The ACSF contained (in mM): 124 NaCl, 2.7 

KCl, 2 CaCl2, 1.3 MgCl2, 26 NaHCO3, 0.4 NaH2PO4, 18 glucose, 2.25 

ascorbate. 

3.8 Electrophysiological recordings 
Whole-cell patch-clamp recordings were obtained from RB-labeled projection 

neurons in the BA at RT in a submerged chamber with a constant perfusion with 

fresh ACSF.  

Neurons were visually identified with infrared video microscopy using an upright 

microscope equipped with x5 and x40 objectives (Olympus, Hamburg, Germany). 

Fluorescent cells were identified using a Polychrome V Till imaging system (Till 

Photonics, Gräfelfing, Germany). Patch electrodes (3-5MΩ) were pulled from 

borosilicate glass tubing and were filled with an intracellular solution consisting of 

(in mM): 130 potassium-gluconate, 10 HEPES, 10 phosphocreatineNa2, 4 Mg-

ATP, 0.4 Na-GTP, 5 KCl, 0.6 EGTA (pH adjusted to 7.25 with KOH, ~ 280 - 

300mOsm). In voltage- and current-clamp recordings, membrane potential was 

held at −70mV. Monosynaptic EPSPs were elicited by stimulation of afferent 

fibers with a bipolar twisted platinum/10% iridium wire (25µm diameter). Bipolar 

stimulating electrodes were placed on afferent fibers from the internal capsule 

(containing thalamic afferents), the external capsule (containing cortical afferents) 
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or ventral to the CE (containing HC and mPFC afferents). All recordings were 

performed in the presence of 100µM picrotoxin, a GABAA antagonist. 

Data were acquired with pClamp9.2 (Axon Instruments, Union City, CA, USA) 

and recorded with a Multiclamp700B. Voltage-clamp experiments were filtered at 

2 kHz and sampled at 5 kHz, whereas all current-clamp experiments were filtered 

at 10 kHz and sampled at 20 kHz. Series resistance was monitored throughout 

the experiments by applying a hyperpolarizing pulse. Any modification of the 

series resistance exceeding 20% was a cause for the exclusion of the data from 

the analysis. Spiking patterns were assessed by applying two different protocols 

to the cells in current-clamp; one applying hyperpolarizing currents from -200 pA 

to depolarizing currents at +250 pA in 50 pA steps, the other ranging from -400 

pA to +500pA in 100 pA steps. Paired-pulse ratio was measured from files 

recorded in voltage-clamp. Stimulation electrodes, placed at the external or 

internal capsule or ventral to the CE, were programmed to evoke two EPSPs 

separated by 50 ms. The first EPSP was calibrated to an approximate size of 50 

– 100 mV. Spontaneous recordings were achieved in the gap-free modus. Two 5 

min files were recorded and before and after series resistance has been checked. 

All values are expressed as means ± s.e.m. Statistical comparisons were done 

with paired or unpaired Student's t-test or with a one- or two-way ANOVA 

followed by a post-hoc Tukey test as appropriate (two-tailed p < 0.05 was 

considered significant). 

3.9  Biocytin filling and staining 
One neuron per slice was filled with a Neurobiotin/Biocytin mix (approx. 5mg/ml 

intracellular solution; Vector Laboratories, Inc., Burlingame, CA, USA; Sigma-

Aldrich Chemie GmbH, Steinheim, Germany). Subsequently, slices were 

transferred to 4% PFA and kept for 1 – 3 weeks at 4°C for fixation. Staining 

procedure as described before using ABC-elite kit (Vector Laboratories, Inc., 

Burlingame, CA, USA; (McDonald, 1992; Wilson and Sachdev, 2004)) 
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3.10  Disconnecting-inactivation of BA and mPFC by muscimol 

iontophoresis 
Muscimol micro-iontophoresis injection was performed in chronically implanted 

animals. Single-barrel micropipettes with a tip diameter of 10 to 15 μm were cut at 

1 cm length and filled with a solution containing muscimol covalently coupled to a 

fluorophore (Muscimol-Bodipy-TMR conjugated, Invitrogen; 5 mM in phosphate 

buffered saline (PBS) 0.1 M, DMSO 40%) or with bodipy alone (Invitrogen; 5 mM 

in PBS 0.1 M, DMSO 40%). Mice were bilaterally implanted at the following 

coordinates: one side was targeted to the BA 1.7 mm posterior to bregma; 3.3 

mm lateral to midline; and 4 mm to 4.3 mm deep from the cortical surface. The 

other side was targeted to the IL: 1.9 mm anterior to bregma; 0.3 mm lateral to 

midline; and 2.4 mm deep from the cortical surface. Chlorided silver wires were 

inserted in each micropipette and attached to a connector. A third silver wire 

screwed onto the skull and attached to the connector served as a reference 

electrode. The entire miniature was secured using cyanoacrylate adhesive gel. 

After surgery, mice were allowed to recover for 1 day. On the injection day, 

iontophoretic applications were performed by means of cationic current (+14 μA) 

for 9 min and 6 min for BA and IL targeting, respectively using a precision current 

source device (Stoelting). Mice were submitted to the behavioural procedure 5 

min after the end of iontophoretic injections and were immediately perfused at the 

end of the experiments. Brains were collected for further histological analysis. 

Serial slices containing the amygdala were imaged at X5 using an 

epifluorescence stereo binocular (Leica), and the location and the extent of the 

injections were controlled. Mice were included in the analysis only if they 

presented a injection targeting exclusively the BA and the IL, respectively. 

Statistical analyses were performed using paired and unpaired Student's t-tests 

post hoc comparisons at the P < 0.05 level of significance. Results are presented 

as mean ± s.e.m. 
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3.11  Molecular approach for inactivation of synaptic transmission 

(MISTs) 
3.11.1 AAV serotype testing 

To investigate which AAV serotype efficiently infects the amygdala I used pre-

made AAVs AAV1-CAG-GFP and AAV2-CAG-GFP (Applied Viromics, USA). 

Until usage AAVs were kept at -80°C. Prior to injection I mixed the AAV 

containing solution 50:50 with red fluorescent latex beads for easy identification of 

the injection site (no retrograde transport; Invitrogen GmbH) and kept the vial at 

4°C. Injection was performed as described before for retrograde labeling with a 

Hamilton syringe. Coordinates for targeting the BLA were 1.7 mm posterior, 3.3 

mm lateral and 4.3 mm ventral. Two weeks after injection, mice were 

transcardially perfused with 4% PFA, brains were sectioned and sections were 

stained for GFP (GFP-AB, Invitrogen GmbH). Picture analysis was done at a 

confocal microscope LSM510 (Zeiss, Germany). Both serotypes were able to 

infect the BLA but AAV1 appeared more to be more efficient (verification by eye). 

3.11.2 Cloning procedure to generate AAV for MIST  

To generate the adeno-associated virus (AAV) for MISTs I cloned a modified 

Vamp2, fused to a small protein capable of homodimerization (VampFv2) into a 

pAAV-CAG-shuttle plasmid (Applied Viromics, CA, USA). Additionally a modified 

shuttle vector containing the synapsin- instead of the chicken β-actin (CAG) – 

promoter was generated. A VampFv2-IRES-eGFP original construct was 

generously provided by the lab of Karel Svoboda (AK-353, pBS Kozak-VampFv2-

IRES-EGFP-WPRE; Janelia Farm, USA). Standard cloning procedures were 

applied as previously described. Kozak-VampFv2-EGFP-WPRE-polyA was 

amplified from AK-353 to include a NheI cleavage site at the 3’ end of the 

construct using PCR (Primer: VampFv2-NheI 

5’GCTTGCTAGCGAATTCTTAATTAAGCCACCATG 3’; VampFv2-SphI 5’ 

CCCAGCATGCCTGCTATTG 3’). The PCR product as well as shuttles pAAV-

CAG and pAAV.Syn were cut with restriction enzymes NheI and SphI and ligated 

to the plasmids pAAV-CAG-VampFv2 and pAAV-Syn-VampFv2 (Fig. 6). To verify 

accuracy of the two constructs they were sent to the sequencing facility. 
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Subsequently I sent the verified vectors in for virus (AAV1) production (Applied 

Viromics, USA).    
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Figure 6: Viral vectors to express VampFv2 and GFP in neurons. Expression is driven either by 
the CAG- (upper construct) or the Syn- (lower construct) promoter. 

   

3.11.3 Testing of AAV-Syn-VampFv2 and AAV-CAG-VampFv2 

To test how efficient synaptic transmission is silenced by AAV-Syn/CAG-

VampFv2 infection we infected the CA3 region in hippocampal slice cultures 

(generously provided by the lab of Thomas Oerthner). Infection was obtained by 

injecting the virus to the target region with a picospritzer (see retrograde labeling). 

Two to three week after infection whole-cell patch-clamp recordings were 

obtained from CA1 projection neurons at RT in a submerged chamber with a 

constant perfusion with fresh cellculture ACSF (ASCFcc). The ACSFcc contained 

(in mM): 124 NaCl, 2.7 KCl, 4 CaCl2, 4 MgCl2, 26 NaHCO3, 0.4 NaH2PO4, 18 

glucose, 2.25 ascorbate, 1 Chloroadenosine, 0.1 Picrotoxin, 0.01 

carboxypiperazin-4-yl-propyl-1-phosphonic acid (CPP). The dimerizer FKBP was 

obtained from ARIAD Pharmaceuticals (USA) and solved in DMSO to 100 µM. 

A stimulation electrode was placed on green fluorescent cells in the CA3 region 

heavily projecting to CA1 neurons. Following acquisition of baseline evoked 

responses, perfusion was changed to ACSFcc containing FKBP at a 1:1000 
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dilution (Karpova et al., 2005). Control conditions contained also 0.1% of DMSO. 

Electrophysiological recordings were performed as described in chapter 3.8.
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4 Results 

4.1 Different induction of immediate early genes in anatomically 

defined BA projection neurons after consolidation and extinction 

of conditioned fear 
 

4.1.1 Immediate early gene expression in the amygdala following acquisition 

and extinction of conditioned fear 

To map the activity induced by fear-related learning in the amygdala I analyzed 

immediate early gene (IEG) expression in different subnuclei of the amygdala 

following auditory fear conditioning and extinction. I used the IEGs cFos and 

Zif268 which are widely employed in activity-mapping paradigms throughout the 

brain and which are rapidly and transiently induced (Herry and Mons, 2004; 

Guzowski et al., 2005). Because expression of both IEGs peaks 2h following 

activity-induction I performed my experiments at this time point (Gass et al., 

1992). IEG expression in brain sections from mice subjected to different 

behavioral training was analyzed (Fig. 7A). Naïve animals and those receiving 

only auditory stimulation (CS only) served as controls. No associative learning 

occurred under these conditions and the mice showed low freezing behavior (Fig. 

7B). Fear conditioned (FC) mice showed high fear responses to CS presentation 

2h and 2 days following acquisition (Fig. 7C, D,: FC p < 0.001; Fear consolidation 

day2 p < 0.001, day3 p < 0.001, student’s T test). Extinction, by repeated non-

reinforced presentation of the CS led to a gradual decline of fear responses (Fig. 

7E, no CS vs CS day2 p < 0.001, CS day2 vs CS day3 p < 0.001, student’s T 

test).   
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Figure 7: Behavioral analysis of mice included in the study. A: Naïve animals were habituated to 

humans by handling. CS only mice were exposed to the tone (CS) on 3 consecutive days (n=21). 

For FC, mice were exposed to 5 CS-US pairings and either subsequently (fear conditioning, 

n=12)), or after 2 days of memory consolidation (fear consolidation, 4 CS presentations per 

session, n=22) or 2 days of extinction (16 CS presentations per session, n=17) sacrificed for IEG 

expression analysis. B: Control mice showed no elevated freezing response to the CS, compared 

to baseline levels. C, D: During FC mice acquired high freezing behavior to the tone (C) that 

persisted in the fear consolidated mice over two consecutive days (D). E: Extinction led to decline 

of fear behavior. 

The LA, the BA and the BMA at rostro-caudal coordinates from Bregma: -1,22 – 

2.18 were analyzed for IEG expression. The number of IEG positive cells was 

normalized to the number of all neurons in these nuclei. The number of neurons 

was determined by counting NeuN (neuronal nuclei) positive nuclei in amygdala 

brain sections of the same rostro-caudal levels from naïve animals (Fig. 8A). The 

total number of NeuN positive nuclei varied little (LA: 1069 +/- 23 cells/mm2; BA: 

693 +/- 34 cells/mm2, n = 3). Naive animals expressed undetectable or very low 

baseline levels of cFos in the amygdala, whereas CS presentation alone induced 

an increase in cFos expression in all nuclei (Fig. 8B). This is not surprising as it is 

known that a proportion of amygdala neurons is activated by sensory input like 

tones (Quirk et al., 1995). FC strongly increased the number of cFos-positive 

cells, whereas fear consolidation and extinction resulted in a moderate increase 

of cFos-positive cells only in the LA and the BA. The highest expression of cFos 

was detected in the BA, where up to 12 +/- 1 % (n = 12) of all neurons expressed 

cFos after FC. In contrast, in the LA FC induced cFos expression in about 6 +/- 1 

% (n = 12) of the cells.     
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Figure 8: Fear learning and extinction induce IEG expression in different subnuclei of the 
amygdala. A: Example for a NeuN Ab (left panel), cFos Ab (middle panel) and Zif268 Ab (right 
panel (Alexa 488) stained brain slice (section shows amygdala) used for anatomical quantification. 
B, C: Quantification of cFos and Zif268 expression in all neurons of different amygdala subnuclei 
as a function of behavioral pradigms. **p < 0.01 ***p < 0.001. 

 

Robust baseline expression in naïve mice was found for Zif268 (9 +/- 2 % of all 

neurons, n = 3). In contrast to cFos, expression levels of Zif268 were almost the 

same between the naïve and the CS only groups (Fig. 8C). Following FC, fear 

consolidation and extinction Zif268 expression was moderatly upregulated in the 

LA, the BA and the BMA. While the majority of cFos-positive cells clustered in the 

anterior part of the BA, Zif268 was predominately found in the LA (Fig. 8A).  In 

summary, expression of different IEGs in the amygdala depends on the specific 

behavioral state of the animal and thus provides a good tool to dissect 

functionally distinct neuronal subpopulations within the amygdala. 

 

4.1.2 Anatomically defined neurons in the basal amygdala (BA) differentially 

express cFos and Zif268 following fear conditioning and extinction 

In contrast to the cortex or the HC, the amygdala is a non-layered structure. 

Within the subnuclei, excitatory pyramidal cells and different types of GABAergic 
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interneurons are intermingled, making it difficult to distinguish subpopulations of 

cells. To identify different neuronal sub-populations, I performed injections of a 

fluorescent retrograde tracer (Lumaflour retrobeads, RBs) into the mPFC and into 

the ventral HC. Both brain areas have been implicated in fear learning and 

extinction (Quirk et al., 2006; Ji and Maren, 2007). Since the amygdala is strongly 

connected to these structures, amygdala projections to the mPFC and HC are 

likely to be involved in fear learning and extinction. 

 RB labeling allows identification of amygdala neurons with defined anatomical 

targets (Fig. 9A).  mPFC and vHC projecting neurons were mainly found in the 

magnocellular part of the BA. Thus, my analysis is limited to the BA (Fig. 9B). 

Double injections into the mPFC and the vHC in the same animals using different 

RB-fluorophores showed that retrogradely labeled cells were intermingeled within 

the same region of the BA. Double labeled neurons were observed very rarely, 

suggesting that individual cells exclusively project either to the mPFC or the HC 

(Fig. 9A, B).  
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Figure 9: Injection of Retrobeads into mPFC (red) and HC (green) leads to labeling of 
anatomically defined cells in the amygdala. A: Schematic drawing. B: representative injections to 
the mPFC (upper panel, red RBs) and the HC (lower panel, green RBs) and related labeling in the 
amygdala (right panel). Left panels to illustrate anatomical location of injection from Paxinos and 
Franklin, mouse brain atlas. 

  

To address whether IEG expression in different neuronal sub-populations is 

associated with fear conditioning and extinction in vivo, injections of RBs into the 

mPFC and the HC were combined with IEG stainings (Fig. 10A). In mPFC 

projecting neurons, a prominent increase in cFos expression occurred in animals 

from the FC group compared to the CS only group (Fig. 10B; first panel). After 
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fear consolidation and extinction training, mPFC-projecting cells showed 

intermediate cFos levels (Fig. 10B). In contrast, HC-projecting neurons showed a 

moderate increase in cFos expression in behavioral training eliciting high fear, but 

no increase after fear extinction (Fig. 10B; middle panel, p < 0.05, one-way 

ANOVA, CS only vs. FC p = 0.055, CS only vs. fear consolidation p = n.s., post 

hoc tukey test). 
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Figure 10: Colocalization of FC-induced IEG immunoreactivity with RB retrograde tracer. A: IEG 
expression analysois of mPFC- (left panel), HC-projecting (middle panel) or all (right panel) BA 
neurons. B: BA cells projecting to the mPFC express cFos highest after FC and also after fear 
consolidation and extinction (left panel). HC-projecting neurons express cFos in response to high 
fear behavior but not after extinction (middle panel). Comparison of cFos expression in all, mPFC-
projecting and HC-projecting BA neurons (right panel). C: Zif268 expression is specifically induced 
by fear consolidation in mPFC-projecting neurons (left panel). HC-projecting neurons are not 
induced for Zif268 expression (middle panel). Comparison of all vs mPFC- and HC-projecting BA 
neurons reveals high cell-type specificity (right panel). D: Comparing cFos and Zif268 expression 
shows differences in induction. * p < 0.05, *** p < 0.001. 

When comparing the normalized increase in cFos positive cells in the BA vs. the 

increase in mPFC- and HC- projecting subpopulations it becomes clear that the 

low cFos expression in HC-projecting cells after extinction is highly characteristic 

(Fig. 10B; right panel). Whereas after FC and fear consolidation cFos induction in 

mPFC and HC projecting neurons follows the overall trend of highest cFos 
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expression after fear conditioning and an intermediate increase after fear 

consolidation, after extinction only mPFC-projecting BA neurons show an 

increase in cFos. HC-projecting cells are excluded from the overall increase cFos 

induction after extinction. 

Zif268 expression was quite different in mPFC-projecting cells compared to cFos 

expression. Only after fear consolidation mPFC-projecting BA neurons expressed 

high Zif268 levels (Fig. 10C; right panel). This is in accord with the postulated role 

of Zif268 in the consolidation of fear memory (Malkani et al., 2004). No 

upregulation could be found in HC-projecting neurons following different 

behavioral training (Fig. 10C, middle panel). Comparing the overall induction of 

Zif268 in the BA with that in mPFC- and HC- projecting neurons revealed a highly 

cell-type specific expression pattern as a response to different behavioral 

paradigms (Fig. 10C; right panel). Even though FC induced Zif268 expression in 

the BA, these neurons did not project to either the mPFC or the HC. Fear 

consolidation resulted in a slightly over-proportional expression of Zif268 in 

mPFC-projecting cells and no induction in HC-projecting neurons. Similarly there 

was no increase in Zif268 expression after extinction in HC-projecting cells, but in 

mPFC-projecting neurons.  

To rule out that colocalisation data between anatomically defined neurons and 

IEGs were biased due to variability in the number of labeled cells, I counted all 

cells included in each group. There was no difference in the number of 

retrogradely labeled cells between groups (Fig. 11). 

Comparison of cFos and Zif268 showed IEG-dependent specificity for both the 

cell-type and the type of behavioral training (Fig. 10D). In particular, acute FC 

induced cFos expression in a cell-type specific manner mPFC- and HC- 

projecting neurons (Fig. 10D; left and middle panel). Although literature points to 

a prominent role of the HC in contextual aspects of fear learning and extinction 

(Cammarota et al., 2005; Maren and Quirk, 2004) no upregulation of cFos and 

Zif268 could be detected in HC-projecting cells after extinction (Fig. 10D; middle 

panel). Thus, extinction and fear learning differentially induced cFos and Zif268 in 

amygdala neurons in a cell-type specific manner. 
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Figure 11: Control plots that fluctuations in cell numbers between groups do not account for the 
results shown in Fig. 9. A, B: Total number of mPFC-projecting BA neurons to quantify the overlap 
between anatomically labeled cells and cFos positive (A)or Zif268 positive (B) cells, respectively. 

 

4.1.3 Fear learning and extinction differentially induce cFos in neurons 

projecting to distinct subdivisions of the mPFC  

Since the IL and the PL subdivisions of the mPFC are thought to exert opposing 

effects on fear learning, we hypothesized that neurons within the amygdala 

projecting to the IL or PL could contribute to fear conditioning and extinction, 

respectively (Maren and Quirk, 2004). Indeed, analysis of data with precise PL- or 

IL-injections revealed different expression of cFos and Zif268 (Fig. 12). cFos 

expression was high in PL-projecting neurons after high-fear behavioral 

paradigms and low after extinction (Fig. 12A). In contrast, IL-projecting neurons 

showed increased cFos expression in the extinguished mice and low cFos 

expression after FC and fear consolidation. Preliminary results for Zif268 

expression in IL- and PL-projecting showed no increase in expression for either 

sub-area after FC (Fig. 12C). Fear consolidation induced Zif268 expression in 

both the PL- and the IL-projecting cells. In contrast to cFos, Zif268 was not 

upregulated in IL-projecting neurons after extinction.  

These different results were not a consequence of fluctuating cell numbers 

between groups (Fig. 13). Similar number of neurons was counted for the 

different behavioral groups (Fig. 13). There was no correlation between the total 

number of anatomically defined cell number and the extend of colocalization with 

cFos.     
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Figure 12: Colocalization of FC-induced cFos immunoreactivity with RB retrograde tracer injected 
to PL or IL. A: Examples for RB injection sites in the PL (top, red) and IL (bottom, green) part of 
the mPFC. B: Neurons projecting to the infralimbic division of the mPFC express cFos specifically 
after extinction, whereas neurons projecting to the prelimbic division express cFos after FC and 
consolidation of FC. C: Neurons projecting to the mPFC do not express Zif268 after FC. Following 
fear consolidation and extinction PL-projecting BA neurons express higher Zif268 levels. * P< 0.05 
**P< 0.01 ***P<0.001.  

 

Together, fear learning and extinction differentially induced cFos in amygdala 

neurons projecting to the PL and the IL subdivisions of the mPFC, respectively. 

This suggests that IL-projecting neurons were activated by extinction training, 

whereas PL-projecting neurons were specifically activated during fear learning.  

Preliminary results for Zif268 showed that its expression, similar to cFos, was 

high in PL-projecting neurons after fear consolidation of mice. However, extinction 

training revealed the mirror-image: Zif268 induction in PL-projecting neurons. This 

suggests cell-type specificity in the behavior-dependent induction of different 

IEGs. Furthermore, extinction training induced large and characteristic effects in 

terms of IEG expression in IL-projecting BA neurons and is therefore a very 

interesting behavioral paradigm to study in those cells.  
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Figure 13: Control plots that fluctuations in cell numbers between groups do not account for the 
results shown in Fig. 11. A, C: Total number of PL- (A) and IL-projecting (C) BA neurons used to 
quantify the overlap between anatomically labeled cells and cFos positive cells. B, D: Correlation 
plots showing no correlation between the number of anatomically labeled cells (PL-(B) and IL-
projecting (D)) and the colocalization with cFos I analyzed.   

 

4.2 Physiological correlates of extinction in anatomically defined BA 

neurons 
4.2.1 The synaptic drive in PL/IL-projecting neurons is not altered following 

extinction training 

To further investigate if anatomically defined BA neurons contribute specifically to 

fear learning and extinction, I characterized IL- and PL-projecting cells 

physiologically using an ex vivo approach. Changes in synaptic strength or 

intrinsic neuronal plasticity occur upon fear conditioning and extinction in the 

amygdala and in the mPFC (McKernan and Shinnick-Gallagher, 1997; Rogan et 

al., 1997; Santini et al., 2008). However, properties of mPFC-projecting amygdala 

neurons have not been investigated so far. The most pronounced differences in 

cFos expression were observed between IL- and PL-projecting BA neurons after 

extinction. Therefore, I recorded from identified IL- or PL-projecting neurons in 

slices obtained from extinction-trained mice to investigate learning related 

changes (Fig. 14A, B). I analyzed four different groups of neurons: PL- and IL-

projecting neurons from CS only control animals (PL-CS only and IL-CS only) and 
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PL- and IL-projecting cells from animals subjected to extinction training (PL-X and 

IL-X). First, I examined the passive properties, and found that they did not differ 

between groups (Table 1, one-way ANOVA across all four groups: VRest n.s.; 

Rseries n.s.; Rin n.s.; Tau n.s.; Cap n.s.). 

Table 1: Neurons projecting to PL or IL share the same basic properties. 

  
PL-CS only  
(n=16) 

PL-X  
(n=27) 

IL-CS only  
(n=26) 

IL-X 
(n=10) 

Vrest (mV) - 71    +/-   1.6 - 69    +/-   1 - 69    +/-   2 - 68    +/-   1.4 
Rseries (Mohm)   14.1 +/-   0.5   15.1 +/-   0.5   14.6 +/-   0.3   15.7 +/-   0.6 
Rin (MOhm)  186   +/-  18  194   +/-  13  175   +/- 21  167   +/-  13 
Tau (ms)     3.2 +/-   0.1     3.4 +/-   0.2     3.2 +/-   0.1     3.5 +/-   0.2 
Cap (nF)  263   +/-  14  267   +/-   13  258   +/-  13  252   +/-  19 

 

To investigate if synaptic changes were induced by extinction training I measured 

the paired pulse ratio (PPR) of evoked excitatory postsynaptic currents (EPSCs) 

by stimulating afferent fibers innervating the amygdala (Fig. 14C). The PPR is a 

correlate for synaptic release probability and is calculated as the ratio of the 

second event’s peak over the first (Fourcaudot et al., 2008). I stimulated inputs 

from cortical and thalamic areas that reach the amygdala via the external and the 

internal capsule, respectively. Another site of incoming fibers from the mPFC and 

the HC to the BA is located ventral to the CE. This pathway has been identified in 

our laboratory using anterograde or retrograde viral tracing techniques 

(unpublished data: Ingrid Ehrlich and Steffen Wolff). The PPR in the three input 

pathways (cortical, thalamic and HC/mPFC) was determined using an inter-

stimulus interval of 50 ms (Fig. 14C). None of the examined pathways showed a 

change in PPR in any of the groups analyzed (Table 2; one-way ANOVA: PPRthal 

p = 0.08; PPRctx n.s.; PPRHC/mPFC n.s.). 

Table 2: Neurons projecting to PL or IL share the same values for PPR on the different pathways. 
Data for PPRctx was not included to analysis due to low n.  

  PL-CS only PL-X IL-CS only IL-X 

PPRctx 
1.4 +/- 0.09 
(n=4) 

1.4 +/- 0.11 
(n=8) 

1.3 +/- 0.06 
(n=7) 

? 
(n=2) 

PPRthal 
1.6 +/- 0.12 
(n=10) 

1.4 +/- 0.1 
(n=21) 

1.5 +/- 0.1 
(n=5) 

1.8 +/- 0.2 
(n=9) 

PPRHC/mPFC 
1.4 +/- 0.12 
(n=14) 

1.3 +/- 0.13 
(n=11) 

1.3 +/- 0.15 
(n=10) 

1.1 +/- 0.1 
(n=5) 

 



Results  51 
 
 

 

To address if overall synaptic drive onto different subpopulations was altered by 

learning, I recorded spontaneous EPSCs (sEPSCs, Fig. 14D). This allows for an 

unbiased readout of overall synaptic drive. Changes in the frequency of events 

suggest changes in the number of connections made onto the recorded cell, 

while changes in the amplitude point to a strengthening of synaptic connections. 

Rise- and decay-time are determined by ion-channel composition, but are also 

shaped by the distance of the synapse to the somatic recording pipette. Analysis 

of frequency, amplitude, rise- and decay-time of sEPSCs did not reveal any 

differences between groups (Table 3; one-way ANOVA: frequency n.s., amplitude 

n.s., rise-time n.s., decay-time n.s.). 

Table 3: IL- and PL-projecting neurons do not differ in terms of frequency, amplitude, rise- and 
decay-time of spontaneous activity. Frequency is shown as number of events in 5 min.    

 
PL-CS only  
(n=16) 

PL-X  
(n=27) 

IL-CS only  
(n=26) 

IL-X 
(n=10) 

Frequency 1387  +/- 208 1858   +/- 251 1938   +/- 447 1722   +/- 472 
Amplitude (pA)    13   +/-    0.4     14.9+/-   0.8     14.6+/-    0.8     13   +/-    0.6 
Risetime (ms)      2.1+/-    0.04       2.1+/-   0.04       2.1+/-    0.03       2.1+/-    0.09 
Decaytime (ms)      4.1+/-    0.2       4.7+/-   0.2       4.2+/-    0.1       4.2+/-    0.3 
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Figure 14: A: Behavior of CS only and extinguished animals included to physiological analysis of 
anatomically labeled neurons. Mice with RB injections to PL or IL did not differ in terms of freezing 
behavior. B:  Infrared DIC and fluorescent images of a living, retrobead labeled BA neuron. C:  
Schematic drawing (Paxinos and Franklin, mouse brain atlas) indicating stimulation- (cortical, 
thalamic, HC/mPFC pathway) and recording sites (BA) for PPR measurement (inset).D: Example 
traces of spontaneous activity.  
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In summary, I did not find significant changes in synaptic properties. However, the 

IL-X group showed a trend toward an increased PPR in the thalamic and a 

decreased PPR in the HC/mPFC pathway. Furthermore, a value for PPRctx is 

missing because of insufficient numbers of experiments. Clearly, more 

experiments are needed to draw stronger conclusions about putative changes in 

release probability in IL-projecting BA neurons upon extinction training of mice. 

 

4.2.2 IL-projecting neurons change intrinsic cellular properties following 

extinction 

Next, I explored whether excitability and spiking properties of BA neurons were 

altered after extinction learning. To do so, I applied a series of negative and 

positive current steps in current-clamp mode while holding cells at -70 mV (Fig. 

15A). I found that PL-projecting BA neurons did not change their firing or the AP 

properties following extinction learning (Fig. 15B; Table 4). In contrast, IL-

projecting neurons showed a decreased AHPfast at the downstroke of the AP (Fig 

15C; Table 4; two-way ANOVA: p < 0.001; post hoc Tukey test: PL:CS only-IL:CS 

only p < 0.05, IL:X-IL:CS only p < 0.01, PL:X-IL:CS only p < 0.01, IL:X-PL:CS 

only n.s., PL:X-PL:CS only n.s., PL:X-IL:X n.s.) and an increased spike half-width 

following extinction learning (Fig. 15D; Table 4; two-way ANOVA: p < 0.01; post 

hoc Tukey test: PL:CS only-IL:CS only n.s., IL:X-IL:CS only p < 0.001; PL:X-

IL:CS only n.s., IL:X-PL:CS only p < 0.001, PL:X-PL:CS only n.s., PL:X-IL:X p < 

0.01). AHPfast was measured in a 5 ms time-window following the first AP, as it is 

most pronounced after the fist spike. My results are in line with previous findings 

demonstrating that learning decreases the AHPfast in mPFC neurons following 

extinction (Santini et al., 2008) and in hippocampal pyramidal neurons after trace 

eyeblink conditioning (Matthews et al., 2008). Furthermore, the AHPfast underlying 

current Ic contributes directly to the spike half-width (Gu et al., 2007). 
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Table 4: Firing and AP properties of PL- and IL-projecting BA neurons. The intrinsic properties of 
PL-projecintg BA neurons are not changed following extinction learning. IL-projecting neurons 
display an increased spike half-width and a decreased AHPfast following extinction learning. 
Excitability = number of spikes at 250pA current injection, ISI = inter-spike-interval.  

  
PL-CS only  
(n=16) 

PL-X  
(n=27) 

IL-CS only  
(n=26) 

IL-X 
(n=10) 

Excitability    6.9 +/-  1.6     7   +/-  0.9     6    +/-  0.8    6.5 +/-  0.9 
Spike-threshold (mV) - 42   +/-  1 - 43   +/-  0.7 - 41    +/-  0.6 - 40   +/-  0.8 
Spike-amplitude (pA)   86   +/-  0.8   86   +/-  0.8   86    +/-  0.7   84   +/-  1.4 
Spike half-width (ms) *    1.4 +/-  0.03    1.5 +/-  0.03     1.4 +/-  0.04    1.7 +/-  0.2*** 
AHPfast (mV) * -  2.8 +/-  0.7 -  2.8 +/-  0.6 -  5.1  +/-  0.7** -  1.5 +/-  1.2 
AHPmedium (mV)    3.3 +/-  0.5    2.9 +/-  0.3    2.3  +/-  0.6    3.9 +/-  0.7 
AHPslow (mV) -  0.6 +/-  0.2 -  1    +/-  0.1 -  0.7  +/-  0.1    0.9 +/-  0.3 
ISI (3rd / 1st)    2.1 +/-  0.1    2.5 +/-  0.2    2.4  +/-  0.2    2.9 +/-  0.5 
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Figure 15: A: Example traces of hyper- and depolarizing steps applied to neurons to assess 
intrinsic properties. B: Neurons projecting to PL or IL display the same intrinsic excitability. C, D: 
IL-projecting neurons decrease AHPfast and increase spike half-width following extinction learning, 
while PL-projecting neurons do not change these properties.  
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In summary, extinction learning did not result in changes in synaptic properties of 

IL- and PL- projecting BA neurons. Interestingly, intrinsic neuronal properties of 

IL-projecting neurons were altered upon extinction training. The AHPfast was 

markedly reduced and the spike half-width was broadened. This decreased 

AHPfast and the increased spike half-width may allow for larger Ca2+ influx into the 

neuron during spiking, which, in turn, could lead to downstream biochemical 

changes in the cell. This could account for the increased cFos expression in IL-

projecting BA neurons following extinction. 

 

4.2.3 AHPfast and spike half-width in IL-projecting BA neurons is mediated by 

VDPC and BK-channels 

To examine which channels mediate the observed changes in excitability I 

pharmacologically interfered with their function in vitro. The channels mediating 

the AHPfast in neurons were identified in most brain structures as BK-channels 

(Matthews et al., 2008). However, in the LA, it was demonstrated that BK-

channels are rather implicated in spike half-width determination than in the 

AHPfast (Faber and Sah, 2003). The channels largely responsible for the AHPfast 

are the VDPC subtypes Kv1.1, Kv1.2 and Kv1.6 (Faber and Sah, 2002). The BA 

has never been examined in this respect. BK-channels are known to be 

specifically blocked by the scorpion toxin iberiotoxin (IbTX), whereas the VDPC 

subtypes Kv1.1, Kv1.2 and Kv1.6 are blocked by α-dendrotoxin (α-DTX), a snake 

toxin. To investigate which channels mediate the pronounced AHPfast in IL-

projecting BA neurons in control conditions I recorded from IL-projecting neurons 

in slices obtained from CS only mice and blocked either BK-channels, VDPCs or 

both. Bath application of either DTX or IbTX alone reduced the AHPfast, with a 

greater effect for DTX (Fig. 16A; DTX: reduction in AHPfast = 4.49 mV +/- 0.44, p < 

0.001; IbTX: reduction in AHPfast = 2.66 mV +/- 1.05, p < 0.05; paired students t 

test). Similarly, the spike half-width depended on both channels as washin of 

either DTX or IbTX prolonged the spike (Fig. 16B; DTX: increase in spike half-

width = 0.096 ms +/- 0.034, p < 0.05; IbTX: increase in spike half-width = 0.18 ms 

+/- 0.05, p < 0.01; paired students t test). Sequential bath application of both 

blockers sequentially resulted in a 59 +/- 4.6 % reduction of the AHPfast by DTX 
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and a 41 +/- 4.6 % reduction by IbTX (IbTX washin in the presence of DTX, n = 1; 

DTX washin in the presence of IbTX, n = 2). In summary, my data support the 

notion that both BK-channels and VDPCs underlie the AHPfast and the spike 

repolarization in IL-projecting BA neurons. 

 

Figure 16:  Currents mediated by voltage-dependent potassium channels and BK-channels are 
involved in action potential repolarization and AHPfast in IL-projecting BA neurons. A: A specific 
blocker of voltage-dependent potassium channels (α-DTX, 100nM) and a BK-channel blocker 
(IbTX, 50nM) partially block the AHPfast. B: Bath application of DTX and IbTX increase spike half-
width.  

 

4.2.4 The decrease in the AHPfast in IL-projecting neurons following extinction 

learning might be mediated by a functional downregulation of BK-

channels 

After extinction, IL-projecting neurons displayed a decreased AHPfast and an 

increased spike half-width. This suggests a down-regulation of the underlying 

channels. As both parameters are mediated by BK-channels and VDPCs, either 

one of these potassium channels, or both, could contribute to this effect. Because 

applying α-DTX and IbTX to IL-projecting neurons in control conditions mimicked 

the changes in AHPfast and spike half-width that were observed after extinction 

training, I analyzed if other parameter changes would be mimicked by drug 

application. Comparing the excitability of IL-projecting neurons before and after 

extinction revealed no change in the cellular excitability and spiking pattern even 

though the AHPfast was decreased (Fig. 17 A, left panel). Application of α-DTX 

increased excitability in control IL-projecting cells (Fig. 17 A, right panel). In 
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contrast, blockade of BK-channels by IbTX mimicked the spiking property 

changes observed following extinction (Fig. 17A, lower panel): While the AHPfast 

was decreased and the spike half-width was increased the excitability remained 

unchanged. This indicates a functional down-regulation of BK-channels in IL-

projecting neurons following extinction.    

To further investigate which channels were modulated by extinction, I applied 

IbTX and α-DTX to IL-projecting BA neurons recorded from mice subjected to 

fear extinction. Preliminary data showed that application of α-DTX blocked the 

AHPfast, whereas wash-in of IbTX had no effect (Fig. 17B). This further supports 

our hypothesis of a functional down-regulation of BK-channels following extinction 

training. However, the spike half-width was still increased by application of both 

drugs. More experiments are required to confirm these preliminary results. 
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Figure 17: The decrease in AHPfast and increase in spike half-width in IL-projecting neurons 
following extinction might be mediated by a functional down-regulation of BK-channels. A: 
Excitability of IL-projecting neurons was not changed by behavioral manipulation (left panel). 
Application of α-DTX to IL-projecting neurons in control conditions increased excitability (right 
panel, p < 0.001 paired student’s t test), while IbTX left excitability unchanged (lower panel). B: 
Application of α-DTX to IL-projecting neurons following extinction training blocked the AHPfast, 
while IbTX had no effect.  

 

4.2.5 Anatomical reconstructions of PL- and IL-projecting neurons 

To investigate if neurons that project to PL or IL show different local axonal 

projections or dendritic arborization, recorded neurons were filled with a 

Neurobiotin/Biocytin mix for reconstruction. Eight PL-projecting and two IL-
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projecting BA neurons were reconstructed (Fig. 18). In four of the reconstructed 

neurons the axon was cut close to the cell body and therefore no conclusions 

could be drawn on local axonal projections (Fig. 18G-J). In two cells, one 

projecting to the PL and one to the IL, the axon could traced beyond the BLA (Fig. 

18B, C). Interestingly, the IL-projecting neuron sent its axon to the CE, most likely 

to its lateral part (CEl) (Fig. 18B). The PL-projecting cell projected to the striatum 

(Fig. 18C).  In another IL-projecting neuron I could follow the axon to the border of 

the BLA to the central amygdala (Fig. 18A). Three more PL-projecting BA 

neurons exhibited axons locally in the BLA, but never came close to the CE (Fig. 

18D-F).  

The dendritic arborization varied between individual neurons with a clear 

difference between PL- and IL-projecting neurons.  While some cells had an even 

distribution of the dendrites around the cell body (Fig. 18A, C, D, G, I), others 

were polarized, displaying one prominent dendritic branch sampling a specific 

part of the BLA (Fig. 18B, H and J). Three of the PL-projecting neurons seemed 

to reach for input from the border of the BLA, where fibers from cortical areas run 

and the intercalated cell masses are located (Fig. 18D, H and J). Interestingly, a 

dendritic branch from another PL-projecting neuron was located in the central 

amygdala (Fig. 18G). In summary, IL-projecting neurons can locally project to the 

CEl, which was not found in eight neurons projecting to the PL. This suggests 

some specificity of local axonal projections in neurons projecting to PL and IL. 

The two main subnuclei of the CE the CEl and the medial division of the CE 

(CEm), consist of inhibitory cells. The CEm is the output nucleus of the amygdala 

sending projections to brainstem and hypothalamus to elicit fear responses. The 

CEl projects to the CEm, thereby inhibiting and disinhibiting the CEm to suppress 

or gate fear behavior. This suggests that excitatory connections from IL-projecting 

BA neurons to the CEl could have an important impact on CEm output by 

regulating activity in the CEl. PL-projecting neurons can project to the striatum. 

Dendritic trees are highly variable across the two classes. However, the number 

of reconstructed IL/projecting neurons is still low. To clarify whether different 

axonal projection patterns co-vary with long-range projections, and whether there 

is specificity in the dendritic arborization patterns, more neurons need to be 

reconstructed.   
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Figure 18: Anatomical reconstructions of PL- and IL-projecting BA neurons. Blue = Cellbodies and 
dendrites, red = axons, black = amygdala contour; d = dorsal, m = medial, v = ventral, l = lateral; 
scalebar = 100 μm. LA = lateral amygdala, BA = basal amygdala, CE = central amygdala. 

 

4.2.6 cFos-positive cells generate less output following extinction 

Following extinction training, cFos was induced in a greater number of BA 

neurons compared to controls (Fig. 8B). As cFos expression can be triggered 

upon Ca2+ influx, it is likely that these cells have been activated by extinction 

training. However, it is not clear what the physiological correlates of cFos 
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expression are, e.g. if plasticity is triggered in neurons that express cFos. To 

assess this I took advantage of a cFos-GFP transgenic mouseline expressing a 

cFos-GFP fusion-protein regulated by the cfos-promotor (Barth et al., 2004). 

Analysis of colocalization of AB stainings for cFos and GFP revealed, as 

expected for a fusion protein, 100% overlap for GFP positive neurons expressing 

cFos. Furthermore, overlap for cFos positive neurons being also GFP fluorescent 

was 97% (Fig. 19A; unpublished data, Dominic Trojer). In acute slices prepared 

from cFos-GFP transgenic mice, GFP expressing neurons could be visually 

identified (Fig. 19B). I recorded from GFP positive (X-GFP+) and GFP negative 

(X-GFP-) neurons after extinction training. In control animals, only GFP negative 

(CS only-GFP-) neurons were recorded due to low number of GFP+ cells. In 

addition, these animals were injected with red RB into the mPFC. Included to this 

analysis were only neurons that were not RB-labeled. First, I examined the 

passive properties of the neurons (Table 5). Rseries, Vrest, the membrane time-

constant Tau, and the capacitance (Cap) of CS only-GFP-, X-GFP- and X-GFP+ 

displayed no difference (Rseries n.s., Vrest n.s., Tau n.s., Cap n.s.; one-way 

ANOVA). However, Vrest shows a trend to be increased after extinction. The input 

resistance (Rin) was lower in neurons recorded in extinction conditions compared 

to those from control conditions (p <0.01 one-way ANOVA; CS only-GFP- vs X-

GFP- p < 0.05, CS only-GFP- vs X-GFP+ p < 0.05, X-GFP- vs X-GFP+ n.s. post 

hoc Tukey test). 

Table 5: BA neurons have a smaller Rin following extinction learning. Vrest, Rseries, Tau and Cap are 
not altered in CS only-GFP- cells compared to X-GFP- and X-GFP+ cells.  # p < 0.05 compared to 
CS only-GFP-.  

  
CS only-GFP - 
(n=10) 

X-GFP - 
(n=22) 

X-GFP +  
(n=10) 

Vrest (mV) -  71    +/-   1.6 - 67   +/-   1.1 - 67    +/-   2.3 
Rseries (Mohm)    14.5 +/-   0.8   14.7 +/-   1   14.9 +/-   1.4 
Rin (MOhm)  211    +/-  24  152   +/-  11#  132   +/-  12 # 
Tau (ms)      3.2 +/-   0.15     3.3 +/-   0.17     3.3 +/-   0.4 
Cap (nF)  254    +/-  17  275   +/-  17  238   +/-  17 

 

The synaptic properties investigated by stimulating fibers from cortical and 

thalamic areas did not change across groups (Table 6; PPRctx n.s., PPRthal n.s., 

one-way ANOVA). However, the PPR calculated from evoked events by 

stimulating the HC/mPFC pathway might be smaller in Fos-GFP+ cells compared 
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to both other groups, suggesting an increased probability of release in fibers from 

the mPFC and HC contacting these cells. 

Table 6: BA neurons share the same values for PPR on the different pathways after extinction 
training or cFos-GFP expression. Data for PPRHC/mPFC was not statistical analysed due to low n. 

  CS only-GFP - X-GFP - X-GFP + 

PPRctx 
1.6   +/-   0.17 
(n=6) 

1.82  +/-   0.23 
(n=9)   

1.6   +/-   0.11 
(n=3) 

PPRthal 
1.65 +/-   0.1 
(n=4) 

1.61  +/-   0.08 
(n=16) 

1.51 +/-   0.13 
(n=6) 

PPRHC/mPFC 
1.85 +/-   0.22 
(n=4) 

1.73 
(n=2) 

1.2   +/-   0.05 
(n=3) 
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Figure 19: cFos positive neurons after extinction are less excitable than cFos negative neurons in 
control and extinction conditions. A: cFos-GFP reporter mice express cFos and GFP following 
extinction training. Colocalization ~ 97%. B: Infrared DIC and fluorescent images of a living, cFos-
GFP labeled BA neuron (exc = 488 nm, em = 525 nm and exc = 545 nm, em = 594 nm , 
respectively, magn = 40x). C: BA neurons expressing GFP are less excitable than GFP negative 
neurons. p < 0.01, two-way ANOVA.  

 

Overall, synaptic input to BA neurons was assessed by recording spontaneous 

EPSCs. All groups showed high variability and no difference was observed (Table 

7; frequency n.s., amplitude n.s., rise-time n.s., decay-time n.s.). However, the 

frequency of events seemed to be almost doubled in X-GFP+ neurons compared 

to CS only-GFP- and X-GFP-. However, this was due to one outlier and might not 

reflect a real difference.   
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Table 7: BA neurons do not differ in terms of frequency, amplitude, rise- and decay-time of 
spontaneous activity following extinction training or cFos-GFP expression. Frequency is shown as 
number of events in 5 min.   

 
CS only-GFP - 
(n=5) 

X-GFP - 
(n=15) 

X-GFP + 
(n=6) 

Frequency 1110    +/-   185 1442    +/-  328 2424      +/-  801 
Amplitude (pA)     13.9 +/-       0.5     14.7 +/-      0.5     14      +/-      1 
Rise-time (ms)       2.2 +/-       0.03       2.1 +/-      0.05       1.96 +/-      0.05 
Decay-time (ms)       4.1 +/-       0.1       4.3 +/-      0.2       3.8   +/-      0.5 

 

Next, I explored if excitability and spiking properties of BA neurons expressing 

cFos-GFP following extinction learning were altered. While different types of AHP 

and spike half-width were not changed by extinction training and cFos 

expression, the spike threshold and spike amplitude seemed to be lowered 

(Table 8). This was not statistical significant (spike threshold p = n.s., spike 

amplitude p = n.s. one-way ANOVA). In stark contrast the excitability of neurons 

that express cFos was reduced following extinction training, particularly at smaller 

current steps (Fig. 19C, Table 8; p < 0.001 two-way anova with X-GFP- vs X-

GFP+ p < 0.01 in a post hoc Tukey test). This was surprising as we hypothesized 

that the output of cFos expressing neurons might be potentiated by extinction 

learning. However, this result is in line with the low input resistance of X-GFP+ 

neurons (Table 5). It might be possible that these cells undergo homeostatic 

plasticity after receiving strong input during extinction learning. Moreover, this 

does not exclude that specific synapses were potentiated and input from these 

connections have a high impact in cells that are less excitable in general. This is 

further supported by a possible increase in release probability at synaptic input 

from HC and mPFC (Table 6). 

Table 8: Firing and AP properties of BA neurons. The excitability of GFP positive neurons (X-
GFP+) is decreased following extinction learning. Other intrinsic properties are not changed 
following extinction training and cFos-GFP expression. Excitability = number of spikes at 250pA 
current injection. ** p < 0.01  

  
CS only-GFP - 
(n=10) 

X-GFP - 
(n=31) 

X-GFP + 
(n=10) 

Excitability    8.2    +/-   1.2     7      +/-   0.9     3.9   +/-   1 ** 
Spike-threshold (mV) - 43.7   +/-   0.9 - 41      +/-   0.8 - 39.5   +/-   1 
Spike-amplitude (pA)   86      +/-   0.9   82      +/-   1   81      +/-   1 
Spike half-width (ms)     1.45 +/-   0.03     1.56 +/-   0.03     1.49 +/-   0.04 
AHPfast (mV) -   3.4  +/-   0.7 -   2.2   +/-   0.5 -   3.4   +/-   0.7 
AHPmedium (mV)     3.5  +/-   0.7     3.8   +/-   0.6     2.5   +/-   0.9 
AHPslow (mV) -   0.7  +/-   0.2 -   0.74 +/-   0.1 -   0.35 +/-   0.2 
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4.2.7 Physiological properties of PL- and IL-projecting BA neurons expressing 

cFos 

As I found that PL/IL-projecting and cFos-GFP expressing BA neurons exhibited 

specific properties that were different from each other, I wanted to know if 

anatomically defined BA neurons identified to express cFos by GFP fluorescence 

possess similar properties. I showed before that neurons projecting to the PL did 

not exhibit any changes in their physiological properties after extinction training. 

In contrast, IL-projecting neurons exhibited a decreased AHPfast and an increased 

spike half-width. BA neurons expressing GFP following extinction training were 

less excitable and might have had a lower Rin, but exhibited no change in AHPfast 

or spike half-width. Consequentially, we asked how BA neurons behaved that 

were identified to project either to PL or to IL and express cFos (Fig. 20A). 

Although this dataset is preliminary I can present considerable trends. The Rin 

was low in PL-GFP+X, while Vrest seemed not to be changed in PL-GFP+X cells 

compared to PL-CS only and PL-X (Table 9, Rin p = 0.07, Vrest p = n.s., one-way 

ANOVA). The membrane time constant Tau and the capacitance showed a slight 

trend being decreased in PL-GFP+X neurons (Table 9, Tau p = n.s., Cap p = n.s., 

one-way ANOVA). 

Table 9: Passive properties of PL-projecting BA neurons in control conditions and following 
extinction. After extinction cFos expressing PL-projecting neurons could be identified by GFP 
fluorescence (PL-GFP+X). ## p < 0.01 compared to PL-CS only,  * p < 0.05 compared to PL-X. 

  
PL-CS only  
(n=16) 

PL-X  
(n=27) 

PL-GFP+ X 
(n=3) 

Vrest (mV) - 71    +/-   1.6 - 69    +/-   1 - 68    +/-   3.4 
Rseries (Mohm)   14.1 +/-   0.5   15.1 +/-   0.5   13.3 +/-   0.4 
Rin (MOhm)  186   +/-  18  194   +/-  13   95    +/-   4 
Tau (ms)     3.2 +/-   0.1     3.4 +/-   0.2     2.6 +/-   0.2## * 
Cap (nF)  263   +/-   14  267   +/-  13  232   +/-  14 

 

In IL-GFP+X neurons the Rin and Tau were lower compared to the other cell 

groups (Table 10, Rin p = n.s., Tau p < 0.01, one-way ANOVA, IL-CS only vs. IL-

GFP+X p < 0.01, IL-X vs. IL-GFP+X p < 0.05, IL-CS only vs. IL-X p = n.s., post 

hoc Tukey test). Vrest and Cap were not changed (Table 10, Vrest p = n.s., Tau p = 

n.s., one-way ANOVA). Note, that the recording quality for IL-GFP+X as indicated 

by a high Rseries is worse than those of the other groups. 
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Table 10: Passive properties of IL-projecting BA neurons in control conditions and following 
extinction. After extinction cFos expressing IL-projecting neurons could be identified by GFP 
fluorescence (IL-GFP+X). ###p < 0.001 compared to IL-CS only, * p < 0.05 compared to IL-X. 

  
IL-CS only  
(n=26) 

IL-X 
(n=10) 

IL-GFP+ X 
(n=4) 

Vrest (mV) -  69   +/-   2 - 68    +/-    1.4 - 68    +/-   2 
Rseries (Mohm)   14.6 +/-   0.3   15.7 +/-    0.6   22.2 +/-   4.2### *  
Rin (MOhm)  175   +/-  21  167   +/-   13  134   +/-  28 
Tau (ms)     3.2 +/-   0.1     3.5 +/-    0.2     4.6 +/-   0.6 
Cap (nF)  258   +/-   13  252   +/-   19  267   +/-   7 

 

Excitability was not altered in PL-projecting neurons expressing cFos-GFP 

following extinction training compared to GFP negative PL-projecting neurons 

(Table 11, Fig. 20B, p = n.s., one-way ANOVA). This is in contrast to anatomically 

unidentified neurons expressing cFos-GFP after extinction, which exhibited a 

decreased excitability (Table 8). The spike amplitude was smaller in PL-GFP+X 

neurons than in PL-CS only and PL-X (Table 11, p < 0.05, one-way ANOVA; IL-

CS only vs. IL-X p = n.s., IL-CS only vs IL-GFP+ X p < 0.05, IL-X vs. IL-GFP+ X p 

< 0.05, post hoc Tukey test). Other intrinsic properties were unchanged (Table 

11, spike threshold p = n.s., spike half-width p = n.s., AHPfast p = n.s., AHPmedium p 

= n.s., AHPslow p = n.s., one-way ANOVA). 

 

Table 11: Intrinsic properties of PL-projecting BA neurons. # p < 0.05 compared to PL-CS only, * p 
< 0.05 compared to PL-X. 

  
PL-CS only  
(n=16) 

PL-X  
(n=27) 

PL-GFP+ X 
(n=5) 

Excitability   6.9   +/-   1.6   7      +/-   0.9     6     +/-   1.4 
Spike-threshold (mV) -42     +/-   1 -43     +/-   0.7 -42.7   +/-   1.7 
Spike-amplitude (pA)  86     +/-   0.8  86     +/-   0.8  80      +/-   3.4# * 
Spike half-width (ms)   1.45 +/-   0.03   1.51 +/-   0.03    1.59 +/-   0.09 
AHPfast (mV) - 2.8   +/-   0.7 - 2.8   +/-   0.6 -  1.6   +/-   0.6 
AHPmedium (mV)   3.3   +/-   0.5   2.9   +/-   0.3    2.6   +/-   1.1 
AHPslow (mV) - 0.6   +/-   0.2 - 1      +/-   0.1 -  0.77 +/-   0.23 

 

Excitability of IL-GFP+X neurons seemed to be lower compared to IL-CS only 

and IL-X (Fig. 20C, Table 12, p = n.s., two-way ANOVA). Additionally the spike 

amplitude was decreased in IL-GFP+X neurons compared to IL-CS only (Table 

12, p < 0.05, one-way ANOVA, IL-CS only vs. IL-X p = n.s., IL-X vs. IL-GFP+X p 

= n.s., IL-CS only vs. IL-GFP+X p < 0.05, post hoc Tukey test). The spike half-

width of IL-projecting neurons was increased following extinction, also of those 

that express cFos-GFP (Table 12, p < 0.001, one-way ANOVA, IL-CS only vs. IL-
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X p < 0.001, IL-CS only vs. IL-GFP+X p < 0.05, IL-X vs. IL-GFP+X p = n.s.). 

Similarly, the AHPfast was decreased in IL-projecting neurons after extinction 

independent of cFos-GFP expression (Table 12, p < 0.01 one-way ANOVA, IL-

CS only vs. IL-X p < 0.01, IL-CS only vs. IL-GFP+X p = n.s., IL-X vs. IL-GFP+X p 

= n.s., post hoc Tukey test). The spike threshold, AHPmedium and AHPfast were 

unchanged in IL-GFP+X cells (Table 12, spike threshold p = n.s., AHPmedium p = 

n.s., AHPslow p = n.s., one-way ANOVA) 

Table 12: Intrinsic properties of IL-projecting BA neurons. . ### p < 0.001, ## p < 0.01, # p < 0.05 
compared to IL-CS only.  

  
IL-CS only  
(n=26) 

IL-X 
(n=10) 

IL-GFP+ X 
(n=4) 

Excitability    6   +/-   0.8   6.5 +/-   0.9   4      +/-   1.7 
Spike-threshold (mV) -41   +/-   0.6 -40   +/-   0.8 -39     +/-   1.1 
Spike-amplitude (pA)  86   +/-   0.7  84   +/-   1.4  79     +/-   2.3 # 
Spike half-width (ms)   1.4 +/-   0.04   1.7 +/-   0.2 ###   1.62 +/-   0.08 # 
AHPfast (mV) -5.1  +/-   0.7 -1.5  +/-   1.2## - 2      +/-   2.3 
AHPmedium (mV)  2.3  +/-   0.6   3.9 +/-   0.7   2.7   +/-   1.2 
AHPslow (mV) -0.7  +/-   0.1   0.9 +/-   0.3 - 1.5   +/-   0.6 
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Figure 20: A: Infrared DIC and fluorescent images of a living, cFos-GFP and retrobeads labeled 
BA neuron (exc = 488 nm, em = 525 nm and exc = 545 nm, em = 594 nm , respectively, magn = 
40x). B: PL projecting neurons expressing GFP are as excitable as PL projecting neurons, 
whereas IL projecting neurons expressing GFP might by less excitable than IL projecting neurons. 

 

In summary, the Rin is low in PL-GFP+X and in IL-GFP+X as well as in 

anatomically unidentified GFP positive neurons (Table 5, 9, 10) suggesting a low 
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Rin as a consequence of cFos expression, independent of the cell-type that 

expresses cFos. Similarly, the spike amplitude seemed to be decreased in all 

cFos-GFP positive neurons. Interestingly, IL-GFP+X neurons showed, like 

anatomically unidentified X-GFP+ neurons, a decreased excitability, which could 

not be found in IL-X and PL-GFP+X neurons. Moreover, the AHPfast and the spike 

half-width were modulated in IL-projecting neurons following extinction 

independent of cFos-GFP expression. This indicates that some some properties 

change subtype specific independent of cFos expression.   

 

4.3 Behavioral relevance of IL- and PL-projecting BA neurons 
4.3.1 Reversible asymmetric inactivation of IL and BA 

To address the behavioral relevance of functional connections between the 

amygdala and the PL/IL in behaving animals I am currently performing 

experiments aimed at silencing the amygdala and the PL/IL in contralateral 

hemispheres by local iontophoretic application of the GABAA-receptor agonist 

muscimol (Fig. 21A). These experiments provide a means to explore the role of 

connections between these two brain areas while leaving both structures 

unilaterally intact, but with no intact connectivity between (Garcia et al., 1999).   

Because immunohistochemical and electrophysiological data pointed to a 

modulation of IL-projecting BA neurons following extinction training, I inactivated 

the IL and BA before the second extinction training session and compared this 

with inactivation of the PL and the BA (Fig. 21). Preliminary data suggest that 

mice with asymmetric inactivation of the IL or the PL and the BA show a different 

effect on fear behavior (Fig. 21A). Mice with an asymmetric IL-BA inactivation 

showed high freezing levels. In contrast, an animal with an asymmetric 

inactivation of PL and BA exhibited no effect or a decrease in fear behavior (more 

experiments need to be performed).  

To test if this was specific for CS-presentation, we measured freezing throughout 

the second extinction session also in between CS presentation. We found that 

inactivation of IL and BA led to freezing behavior in between CS presentation 
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(Fig. 21B). This suggests that disconnecting the IL and the BA leads to a general 

effect on fear behavior, rather than a specific impact on extinction learning. 

Furthermore this may support the idea that the IL is implicated in inhibiting 

amygdala output, whereas the PL is necessary for learning/expression of high 

fear states. However, asymmetric inactivations affect reciprocal projections 

between PL/IL and BA. Therefore, we do not know if these effects are mediated 

by pathways to or from the BA or a combination.    

 
Figure 21: Asymmetric inactivation of the PL/IL and the BA. A: Schematic drawing to illustrate the 
functional disconnection of IL and BA (left picture). Examples for successful muscimol application 
to PL/BA (upper panel) and IL/BA (lower panel). B: Following muscimol injection (↓) to IL/BA, mice 
showed increased baseline freezing and no extinction. One mouse with muscimol injection to 
PL/BA showed extinction. C: Mice injected to IL/BA display generalized freezing behavior to the 
context. TP=time point.  

 

4.3.2 A molecular approach to reversibly silence synaptic transmission: 

Molecules for inactivation of synaptic transmission (MISTs) 

To explore the impact of BA projections to the PL and the IL I aimed to 

specifically and reversibly silence this pathway in freely moving mice. One 

possibility to silence specific groups of cells is to use a technique known as 

“Molecules for Inactivation of Synaptic Transmission” (MISTs) (Karpova et al., 

2005). MISTs consist of presynaptic proteins, necessary for neurotransmitter 

release, which are genetically modulated allowing for reversible inactivation and 

can be expressed in subsets of cells or brain areas. Inactivation of presynaptic 

release is triggered by chemical induction of dimerization of a modified protein. 
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One of the MISTs developed is a modified small vesicle associated membrane 

protein 2 (Vamp2), also called Synaptobrevin. Vamp2 is fused to the FK506 

binding protein (FKBP). This fusion protein can be triggered to homodimerize by 

applying the small molecule FK506. In neurons overexpressing Vamp2 fused to 

FKBP (VampFv2) presynaptic release was shown to be silenced upon application 

of the dimerizer FK506. Over-expression of VampFv2 in BA neurons and targeted 

injection of FK506 to the PL or the IL leads to a specific silencing of the 

respective pathway, by inactivation of presynaptic release in the IL only in axons 

originating from the BA. 

To over-express the Vamp MIST in amygdalar neurons I cloned the VampFv2-

construct into an adeno-associated virus (AAV) vector. Pilot experiments revealed 

that the AAV2 serotype infected BLA neurons reliably (data not shown). To drive 

expression of VampFv2 two different promotors were chosen: The chicken β-

actin promoter (CAG) is very strong and ubiquitous leading to high expression-

levels in all cell-types, whereas the Syn-promotor is specific to neurons. Both 

generated constructs AAV-CAG-VampFv2 and AAV-Syn-VampFv2 also 

expressed eGFP.  

To characterize both constructs, I infected the CA3 region in hippocampal slice 

cultures (generously provided by the laboratory of Thomas Oertner) with either 

AAV-CAG-VampFv2 or AAV-Syn-VampFv2. Infected cells were visualized by 

GFP fluorescence imaging (Fig. 22A). Axons from neurons within CA3 contact 

pyramidal neurons in CA1. Therefore, cells recorded in CA1, were stimulated by 

electric pulses in CA3 to assess changes in synaptic transmission upon bath-

application of the dimerizer FK506 (Fig. 22A). 

Treatment of slice cultures with the dimerizer (100 nM) only led to slight changes 

in the amplitude of evoked EPSCs in CA1 neurons (Fig. 22B). In total, wash in of 

FK506 reduced evoked EPSCs by only ~ 30%, independent of the recording 

temperature (RT and 36°C) (Fig. 22B, C). This was the same for both constructs. 

In some cells, a marked reduction in spontaneous activity was observed (data not 

shown). The low efficacy of the dimerizer might be a stimulation artifact, as it is 

possible that I stimulated a higher proportion of non-infected neurons and thereby 
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underestimated the silencing ability of the drug. To explore effects of FK506 

application on VampFv2 expressing neurons in detail, Ingrid Ehrlich recorded 

from connected pairs of neurons in CA3, where one or both CA3 neurons were 

identified to express GFP. Also, in these conditions synaptic transmission was 

only impaired by ~ 30% (Fig. 22C, lower rows).  

In conclusion, with the tools I developed, we could achieve a moderate 

presynaptic silencing in slice cultures. In vivo, a 30% reduction in synaptic 

transmission would likely not be enough to efficiently silence the BA-PL/IL 

pathway, particularly taking into account that most likely not all BA neurons would 

be infected by the AAV. For this reason, we decided not to explore this approach 

any further. It remains to be tested whether in vivo conditions are different from 

those in slice cultures, leaving the possibility that the VampFv2 system could be 

working better in vivo.     
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Figure 22: Molecules for inactivation of synaptic transmission (MISTs) in hippocampal slice 
cultures. A: Hippocampal slice culture infected with AAV-Syn-VampFV2. Pictures taken with a 5x 
objective in infrared (left) and GFP fluorescent settings (right).Scheme of recording and stimulation 
site (right). B: Representative recording of a CA1 neuron. Events triggered by stimulation of 
infected CA3 fibers. CL = crosslinker C: Table to summarize effects of CL wash-in on recorded 
cells
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5 Discussion 
To examine the role of amygdala projection neurons in the expression and 

extinction of conditioned fear responses, I used activity-mapping by expression 

analysis of IEGs. I found that the two IEGs cFos and Zif268 were differentially 

expressed in the amygdala. While cFos was primarily found in the BA, Zif268 was 

mainly expressed in the LA. However, both were induced in response to fear 

conditioning and extinction. A combination of in vivo retrograde tracing techniques 

and analysis of expression of the activity-dependent IEGs cFos and Zif268 

showed that amygdala neurons projecting to the mPFC or to the HC exhibited 

differential cFos and Zif268 expression in fear conditioned animals compared with 

non-conditioned control animals and with animals subjected to extinction. In 

particular, extinction resulted in a selective induction of cFos in mPFC- over HC-

projecting neurons. Two subdivisions of the mPFC, the prelimbic (PL) and the 

infralimbic (IL) cortex are assumed to be differentially involved in fear conditioning 

and extinction. A more detailed analysis revealed that neurons projecting to the 

IL, but not those projecting to the PL, accounted for the specific increase in cFos 

expression following extinction. To investigate the physiological correlates of fear 

extinction in anatomically defined subpopulations of amygdala projection neurons 

I used an electrophysiological ex vivo approach. In these experiments, I recorded 

from identified BA neurons projecting to PL or IL in slices obtained from mice 

subjected to extinction. Extinction differentially affected intrinsic properties of PL- 

and IL-projecting cells. While there was no change in PL-projecting neurons, IL-

projecting BA cells showed a learning-related increase in spike half-width and a 

concomitant decrease in the fast after-hyperpolarization (AHPfast). In control 

animals, spike half-width and AHPfast were influenced by the activation of VDPCs 

and BK-channels. Preliminary results indicated that after extinction training, only 

VDPCs contribute to the AHPfast in IL-projecitng cells. This suggests a specific 

modulation of BK-channels in IL-projecting neurons following extinction learning. 

Moreover, our findings indicate that a change in the balance of activity between 

IL- and PL-projecting BA neurons may be involved in the extinction of conditioned 

fear.  
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5.1 BLA neuron subpopulations  
I demonstrated that neuronal subpopulations within the amygdala were 

differentially activated following fear conditioning and extinction as suggested by 

expression analysis of the two IEGs cFos and Zif268. These IEGs were 

differentially activated by behavioral fear learning paradigms. While cFos positive 

neurons were predominately found in the BA after FC the majority of Zif268 

expressing cells was found in the LA and was equally increased by FC and 

extinction. This suggests that distinct cell-populations within the BLA were 

differentially activated during fear learning and extinction. Overall, my data are  in 

line with the notion that various IEGs can be induced by different stimuli (Alberini, 

2009).  

Double-injections of red and green RB to the mPFC and the HC revealed that the 

corresponding projection neurons in the BA are two separate populations. Even 

though it was known that the BA projects to both brain areas, it was not clear if 

these cell populations overlap (Pitkanen et al., 2000a). In contrast, in the vHC 

single neurons project simultaneously to the mPFC and the amygdala (Ishikawa 

and Nakamura, 2006). 

 

5.2 Anatomically identified neurons are differentially activated 

following fear conditioning and extinction  
IGE expression was specifically and differentially induced in anatomically 

identified subpopulations of BA neurons projecting either to the mPFC or the HC. 

While FC and fear consolidation induced cFos expression in mPFC- and HC-

projecting neurons, extinction learning induced cFos only in mPFC-projecting 

neurons. In keeping, work from our laboratory showed that distinct neuronal 

subpopulations in the BA that are activated by fear conditioning (“fear neurons”) 

and extinction (“extinction neurons”) project to the mPFC (Herry et al., 2008). 

Furthermore, Zif268 expression in mPFC-projecting BA neurons was specifically 

induced following fear consolidation. This is in line with the postulated role of 

Zif268 expression in memory consolidation.It has been suggested that Zif268 

induced by plasticity producing stimuli rather than by cellular activity alone 
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(Malkani et al., 2004; Alberini, 2009). Interestingly, no increase in Zif268-

expression was found in HC-projecting neurons, suggesting that fear conditioning 

and extinction induced Zif268 expression in anatomically unidentified 

subpopulations of amygdala neurons. It is surprising that, in HC-projecting 

neurons, cFos was only moderately induced, and Zif268 not at all (Maren and 

Holt, 2004). However, while it has been shown that extinction related activity in 

the LA is driven by dHC input (Maren and Hobin, 2007), less is known about the 

BLA to HC pathway. It is possible that information about the riskiness of a context 

is directly assessed by sensory-evoked activity in the HC as inactivation of the 

HC can abolish FC (Maren, 1999; Corcoran and Maren, 2001). Additionally, the 

emotional value of a context could also be conveyed to the HC via the mPFC, as 

both amygdala and HC are reciprocally connected to the mPFC (Ishikawa and 

Nakamura, 2003).     

“Fear neurons” and “extinction neurons” project to the mPFC, which consists of 

different subareas that are thought to be differentially implicated in fear 

conditioning and extinction (Vidal-Gonzalez et al., 2006). The PL is implicated in 

fear conditioning and the IL in extinction learning. In keeping, I found that BA 

neurons projecting to the PL expressed high cFos levels in high fear paradigms, 

whereas IL-projecting BA neurons are induced to express increased cFos levels 

following extinction (see Fig. 12). This indicates that not only IL and PL, but also 

BA neurons projecting to these areas are differentially activated by fear learning 

and extinction and might represent fear and extinction neurons, respectively. 

Interestingly, preliminary data showed that Zif268 expression is elevated 

particularly in PL- over IL-projecting neurons following fear consolidation and 

extinction, indicating again differential stimuli to induce cFos and Zif268 

expression. 

 

5.3 Physiological correlates of fear conditioning and extinction in PL- 

and IL-projecting BA neurons  
When investigating electrophysiological correlates of fear learning, I found that 

BA neurons projecting to the PL did not change physiological properties following 
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extinction training, whereas IL-projecting BA neurons displayed a decreased 

AHPfast and an increased spike half-width. How these two parameters may 

influence BA output to the IL, and perhaps IL activity is discussed below. My 

findings support the notion of the IL being implicated in extinction learning. 

In the HC, the AHPfast and the spike half-width are determined primarily through 

BK-channels (Poolos and Johnston, 1999). In contrast, in the LA, blockade of BK-

channels increases spike half-width, but contributes little to the AHPfast, which is 

mediated by VGPCs (Faber and Sah, 2002). Here, I show that in IL-projecting BA 

neurons both channel-types contributed to the AHPfast and spike half-width. 

Interestingly, the AHPfast has been shown before to be modulated by learning 

paradigms in rodents. Decreases in the AHPfast were found following trace 

eyeblink conditioning in the HC (Matthews et al., 2008) and after fear extinction in 

the mPFC (Santini et al., 2008). This suggests an important role of BK-channels 

in learning. In keeping, my preliminary pharmacological data suggest a functional 

down-regulation of BK-channels after fear extinction learning. However, intra-

hippocampal blockade of BK-channels does not fascilitate but block trace 

eyeblink conditioning (Matthews and Disterhoft, 2009). This is surprising, because 

a block of BK-channels should have mimicked the functional downregulation of 

BK-channels and the concomitant decrease in the AHPfast following learning and 

therefore rather fascilitate learning. This is probably due to block of 

presynaptically expressed BK-channels by increasing release probability in an 

unspecific manner. 

In the HC, the decrease in AHPfast is accompanied by an increase in intrinsic 

cellular excitability (Matthews et al., 2008). Furthermore, trace eyeblink 

conditioning also decreases the AHPslow which can account for an increase in 

excitability (Matthews et al., 2009). In contrast, I did not find changes in cellular 

excitability accompanying the changes in AHPfast and spike half width. In the LA, it 

has been reported that fear extinction leads to no changes in excitability of 

neurons compared to naïve animals, but does increase the propensity of bursting 

of neurons which is accompanied by changes in AHP (Santini et al., 2008). 

Overall, this literature is still controversial. For example, Gu et al. found that 

blockade of BK-channels in hippocampal CA1 neurons decreases burstiness (Gu 
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et al., 2007). I did not find modulated burst behavior of IL-projecting BA neurons 

with decreased AHPfast, but can not completely exclude a change in another 

subtle parameter of intrinsic cellular excitability. A possibility to be tested would be 

a change in EPSP-spike coupling. 

Usually, APs are accompanied by a rise in cytosolic Ca2+. The resulting Ca2+ 

influx during APs occurs largely during AP repolarisation (Llinas et al., 1981). 

Therefore, the spike duration is a key determinant of the amount of Ca2+ influx. It 

has been shown at presynaptic terminals that an increase in Ca2+ leads to 

increased neurotransmitter release (Augustine, 1990; Sabatini and Regehr, 1997; 

Geiger and Jonas, 2000). The increase in spike half-width in IL-projecting 

neurons following extinction could lead to increased presynaptic release in the IL 

and therefore to a strengthened BLA-IL pathway. However, I was only able to 

investigate properties of ion-channels at the soma of neurons. To further 

investigate a potential effect of an increased spike half-width on synaptic release 

in the IL we need to study these properties at the axonal level. Importantly, 

“extinction cells” show, like IL-projecting cells, an increase in spike half-width 

indicated by a broadened wave-form (Cyril Herry, unpublished data,). This 

suggests that IL-projecting BA neurons could be “extinction cells”. However, the 

spike half width increase in “extinction cells” happened already following fear 

conditioning and remained increased during extinction training. If this holds true 

for IL-projecting neurons recorded ex vivo remains to be tested. 

Surprisingly, I found no change in synaptic input onto IL-projecting BA neurons 

after extinction training, even though the increase in the number of cFos 

expressing cells suggested activation of these cells. However, activation of a 

pathway does not necessarily result in plasticity of the activated synapses. 

Furthermore, I can not exclude that some of the inputs were altered, as indicated 

by trends for an increased and decreased PPR at the thalamic and HC/mPFC 

pathway, respectively. To dissect input-pathways more specifically, an approach 

using channelrhodopsin (ChR) would give more detailed information (Zhang et 

al., 2007). This could be achieved by expressing ChR in a brain-area specific 

manner, which would allow for long-range fibers in the amygdala to be selectively 

activated with light. 
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The fact that extinction training resulted in specific modulations of IL-projecting 

BA neurons over PL-projecting neurons suggests a change in the activity balance 

between these two anatomically identified BA neurons caused by extinction 

training. Whether these changes are also necessary remains to be tested. 

Interestingly, my anatomical reconstructions revealed that some IL-projecting 

neurons projected to the CEl, which was not found for PL-projecting neurons. The 

CE, consisting mainly of inhibitory neurons, is the “output station” of the amygdala 

and activity in CEm leads to high fear responses (Goosens and Maren, 2003; 

Wilensky et al., 2006). The CEm is downstream of the CEl and it was shown that 

CEl neurons can inhibit CEm neurons (Huber et al., 2005). Thus, IL-projecting 

neurons could locally excite CEl neurons during extinction and thereby inhibiting 

CEm output and the fear response. 

 

5.4 cFos-GFP expressing neurons in the BA are less excitable  
In a parallel approach I was able to record from cFos-GFP reporter mice ex vivo 

following behavioral training. This revealed that anatomically unidentified neurons 

expressing cFos-GFP after fear extinction were less excitable than neurons 

negative for cFos-GFP. As these cells express cFos probably as a direct 

response to activation this might be due to homeostatic scaling. Homeostasis is 

thought to stabilize the activity of neurons and thereby maintains the stability of 

neuronal networks (Turrigiano, 2007). It was shown that this can involve activity-

dependent regulation of intrinsic neuronal firing properties (Marder and Prinz, 

2003; Zhang and Linden, 2003), as well as synaptic scaling (Turrigiano, 2007). 

Possibly, cFos is expressed in strongly activated brain areas in a certain 

percentage of cells to keep the network balanced. However, recordings in the 

barrel cortex from cFos positive and cFos negative neurons following single-

whisker stimulation revealed no such difference (Barth et al., 2004). The 

difference to our protocol is that their stimulation was ongoing for 24 – 48 h. As 

cFos-GFP is a transient protein, which is gone ~ 4 h after expression, the authors 

might have recorded from neurons with a recent history of cFos expression and 

thereby missed possible physiological consequences. 
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The decrease in excitability in cFos-GFP+ neurons might be a direct 

consequence of the lower Rin in these cells, compared to CS only-GFP- and X-

GFP-. The lower Rin will decrease the depolarizytion associated with a given 

(synaptic) current as given by Ohm’s law. Thus, with constant spike threshold, the 

number of spikes will be reduced. However, when looking at anatomically defined 

subpopulations, the Rin was also low in cFos-GFP expressing neurons identified 

to project to PL and IL, but only IL-projecting cells exhibited a decrease in 

excitability. Interestingly, the physiological changes of the AHP and spike-half 

width found in IL-projecting neurons after extinction training were cell-type 

specific and occurred independent of cFos-GFP induction. However, the numbers 

of recordings in cFos-GFP expressing anatomically defined neurons are very low 

and more experiments are required to clarify the consequences of cFos 

expression in these cells. 

 

5.5 Summary 
PL- and IL-projecting BA neurons were differentially activated and modulated 

upon fear extinction in mice and might represent previously idetified “fear and 

extinction neurons” (Herry et al., 2008). This was indicated by analysis of the IEG 

cFos, which was expressed in a higher proportion of IL- vs. PL-projecting neurons 

after extinction. This probably reflects increased activation of these cells. In 

contrast, fear conditioning induced increased cFos expression specifically in PL-

projecting neurons. Despite using cFos expression as activity-mapping, I found 

that neurons in the BA identified to express cFos were less excitable. This might 

reflect previous strong activation and subsequent homeostatic scaling of these 

cells. Further indication that IL-projecting neurons were “extinction cells” came 

from electrophysiological recordings in anatomically identified neurons from acute 

slices. Only IL-projecting neurons showed extinction learning related changes of 

physiological properties. They displayed a decreased AHPfast and an increased 

spike half-width. A decrease in AHPfast has been shown before to be regulated in 

a learning-dependent manner (Matthews et al., 2008). Importantly, also 

“extinction cells” showed an increase in the spike half-width after extinction 

compared to naïve conditions (Cyril Herry, unpublished data).  
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6 Outlook 
Overall, based on my findings more questions can be addressed. The first one is 

the behavioral impact of projections from the BA to the PL and the IL. To address 

this, I tested two different approaches, asymmetric inactivation and silencing 

using MISTs. Both approaches appeared to be not suitable. What might be 

alternative approaches to assess the behavioral relevance of BA projections to 

the PL/IL? One possibility is the use of optogenetics (Zhang et al., 2007). This 

approach involves infection of neurons with retrogradely transported herpes 

simplex-virus (HSV) driving the expression of light-gated channels. Two different 

channels are available so far, channelrhodopsin (ChR) which depolarizes cells 

upon illumination with blue light, and halorhodopsin (NpHR) which hyperpolarizes 

and silences cells as a response to yellow light. After injection with HSV, 

amygdala neurons projecting to the mPFC express ChR and NpHR. As it is 

possible to illuminate deep brain structures with optical fibres (Adamantidis et al., 

2007), targeted photostimulation to the BA could specifically excite (blue light) or 

silence (yellow light) PL/IL-projecting neurons in the behaving animal. This would 

allow for testing the impact of activity changes in PL- and IL-projecting BA 

neurons for the expression and extinction of conditioned fear. 

A second possibility would be to ablate subpopulations of BA neurons that project 

to the mPFC and the IL and PL. For this, we could use a mouse-model for 

conditional ablation of diphtheria toxin receptor (DTR) expressing cells by 

application of diphtheria toxin (DT) (Han et al., 2009). Neurons in mice carrying a 

floxed STOP-cassette before the DTR coding sequence can be made vulnerable 

to DT by expression of the Cre-recombinase. Expression of Cre-recombinase via 

HSV can be achieved in mPFC-projecting BA neurons by a targeted injection of 

the HSV to mPFC subdivisions. Targeted injection of DT to the BA will thus only 

ablate those cells expressing the DTR. If this approach works remains to be 

tested. 

A second big question is the link between the physiological changes I found in IL-

projecting BA neurons and the impact on IL activity. Two different experiments 

are planned to explore the possibility that the increased spike half width of IL-
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projecting neurons in the BA leads to increased release probability at their axon 

terminals in the IL following extinction training. First, we will assess if the changes 

in AHPfast and spike half-width are not only somatic but also axonal. Therefore, 

we plan to perform simultaneous somatic and axonal recordings in control 

conditions and following extinction training. Secondly, we plan to directly study if 

Ca2+ influx is increased within the IL in terminals originating from the amygdala 

after fear extinction, thus providing direct indication for increased release 

probability. Therefore, we plan to identify terminals in the IL originating from the 

amygdala by application of a GFP-expressing virus to the amygdala. In an ex vivo 

approach we will test, using Ca2+ indicators in acute slices, the Ca2+ response to 

minimal stimulation in GFP-expressing terminals. 

The third central question is to explore whether PL- and IL-projecting neurons are 

correlated with the reported “fear and extinction neurons” (Herry et al, 2008). To 

address this, we need to record from PL- and IL-projecting neurons in an ex vivo 

approach directly following fear conditioning. This will provide information whether 

PL-projecting neurons change physiological properties with fear learning. 

Furthermore, this will tell us whether physiological parameters in IL-projecting 

cells like the AHPfast and spike half-width already change directly following fear 

conditioning, like they do in “extinction cells” recorded in vivo. These data could at 

least provide strong correlative evidence for a connection between fear and 

extinction neurons and PL-and IL-projecting cells, respectively. 
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