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Introduction 
 

Breast Cancer 

 

Breast cancer is the most common malignancy in women in Western countries. The American Cancer Society estimates that 

212,930 new cases of breast cancer were diagnosed and 40,870 died of breast cancer in the United States in 2005 
1
. With 

around 4,000 cases every year the incidence in Switzerland is comparable to the USA. In most Western countries, the inci-

dence of breast cancer has increased steadily over the past few decades, but breast cancer mortality appears to be declining. 

This suggests a benefit from early detection (e.g. screening) and more effective treatment 
2,3

. 

The etiology of the vast majority of breast cancer cases is unknown. However, numerous risk factors for the disease have 

been established such as female gender, age, family history of breast cancer, early menarche, late menopause, older age at 

first childbirth, prolonged hormone replacement therapy, previous exposure to therapeutic chest wall irradiation, benign 

proliferative breast disease, and genetic mutations such as the BRCA1 and BRCA2 genes. However, except for female 

gender and increasing patient age, these risk factors are associated with only a minority of breast cancers. 

Breast cancer is commonly treated by various combinations of surgery, radiation therapy, chemotherapy, and hormone ther-

apy. In order to select the appropriate treatment strategy accurate classification is required. Traditionally, breast cancer clas-

sification included histo-pathological and clinical parameters such as stage of the disease, age, menopausal status and grade 

of the primary tumor. In addition, a variety of genes involved in breast cancer biology were studied and proposed as bio-

markers to improve the classification. However, only a few of them, such as hormone receptors and ERBB2 status are used 

today to classify breast cancer patients and make treatment decisions in clinical routine 
4,5

. More recently, gene expression-

based approaches suggested that they could be superior to classical classification systems 
6-10

. In this context, microarrays 

have emerged as one of the key technology allowing to analyze ten thousands of different transcripts simultaneously and 

permit together with various bioinformatics techniques complex relationships in the data to be explored 
11-19

. Furthermore, 

the assessment of phosphorylation sites and, thus, the activation status of receptors or other key proteins relevant to cancer 

may add important information 
20,21

. 

Since breast cancer is a very heterogeneous disease, both, on the biological and clinical level, but variation in transcriptional 

programs accounts for much of this diversity, gene expression-based classification has the potential to provide an individua-

lized output for each patient in terms of prognosis and therapy prediction. The former can influence the aggressiveness of 

treatment, or in the case of excellent prognosis, even help to completely spare patients from unnecessary adjuvant therapy. 

In contrast, predictive markers might enable to tailor the treatment strategy such as the putative targets or indicate resis-

tances to specific types of treatment. Thus, personalized treatment based on individual molecular finger prints can potential-

ly enhance the treatment efficacy and decrease the risk of side effects. 

 

Microarrays and Breast Cancer 

 

In the late nineties the first microarray experiments in breast cancer were published using cell lines, and normal and tumor 

breast tissues (see also “Stanford Breast Cancer Microarray Project”: http://genome-www.stanford.edu/ breast_cancer/). 

Using 60 different cell lines from various tissues Ross et al. 
22

 described a consistent relationship between gene expression 

pattern and the tissue of origin. This allowed the authors to identify characteristic gene expression pattern for individual 

tissues but also to recognize outliers whose previous classification appeared incorrect. For example, some of the breast can-

cer cell lines clustered together with caner cell lines from the central nervous system, kidney or melanoma. Moreover, spe-

cific features of the gene expression patterns appeared to be related to physiological properties of the cell lines, such as their 

doubling time in culture, drug metabolism or the interferon response. Comparison of gene expression patterns in the cell 

lines to those observed in normal breast tissue or in breast tumor specimens revealed features of the expression patterns in 

the tumors that had recognizable counterparts in specific cell lines, reflecting the tumor, stromal and inflammatory compo-

nents of the tumor tissue.  

Similarly, Perou et al. 
23

 used microarrays and clustering to identify patterns of gene expression in human mammary epi-

thelial cells growing in culture and in primary human breast tumors. Clusters of co-expressed genes identified through ma-

nipulations of mammary epithelial cells in vitro also showed consistent patterns of variation in expression among the breast 

tumor samples. By using immunohistochemistry with antibodies against proteins encoded by a particular gene in a cluster, 

the identity of the cell type within the tumor specimen that contributed the observed gene expression pattern could be de-

termined. Clusters of genes with coherent expression patterns in cultured cells and in the breast tumors samples could be 

related to specific features of biological variation among the samples. One such cluster was found to correlate with variation 

in cell proliferation rates, another with IFN response. Additionally, the group identified clusters of genes expressed by 

stromal cells and lymphocytes in the breast tumors. These reports supported the feasibility and usefulness of studying varia-

tion in gene expression patterns in human cancers as a means to dissect and classify breast cancer. 

http://genome-www.stanford.edu/breast_cancer/
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Subsequent work focused on human breast tumors. Perou et al. 
24

 characterized variation in gene expression patterns in a set 

of 65 surgical specimens of human breast tumors from 42 different individuals, using home-made cDNA microarrays. 

These patterns provided a distinctive molecular portrait of each tumor. Moreover, tumors that were sampled twice (before 

and after a 16-week course of doxorubicin chemotherapy) as well as tumors that were paired with a lymph node metastasis 

from the same patient revealed gene expression patterns that were more similar to each other than either was to any other 

sample. Sets of co-expressed genes were identified for which variation in messenger RNA levels could be related to specific 

features of physiological variation. The tumors could be classified into subtypes distinguished by pervasive differences in 

their gene expression patterns. 

Clustering of tumors showed two main groups: ER-positives and ER-negative tumors. These could be further divided into 

several subgroups and were named according to the predominantly expressed genes defining the cluster. The ER-positive 

group was designated “luminal”, and the ER-negative was subdivided into “normal-like”, “ERBB2” and “basal” subtypes. 

For example, the “luminal/basal” designation originated from the observation that two distinct types of epithelial cells are 

found in the human mammary gland: basal (and/or myoepithelial) cells and luminal epithelial cells. These two cell types can 

be distinguished immunohistochemically using antibodies to keratin 5/6 (“basal”) and keratins 8/18 (“luminal”). The gene 

expression cluster characteristic “basal” and “luminal” subtypes contained these genes. Moreover, many ER-related genes 

defined the “luminal” subtype. Accordingly, “ERBB2” subtype was characterized by the expression of ERBB2 and other 

genes present on the “ERBB2-amplicon”. However, not all ERBB2-positive tumors grouped into the “ERBB2” subtype. 

In a follow-up study, Sorlie et al. 
6
 used gene expression patterns to correlate breast tumor characteristics with clinical out-

come. A total of 85 microarray experiments representing 78 cancers, three fibroadenomas, and four normal breast tissues 

were analyzed by hierarchical clustering. As reported previously, the cancers could be classified into a “basal”, “ERBB2” 

and “normal-like” groups based on variations in gene expression. A novel finding was that the previously characterized ER-

positive “luminal” subtype could be divided into at least two subgroups (“luminal A” and “luminal B”), each with a distinc-

tive expression profile. These subtypes proved to be robust by clustering using two different gene sets: first, a set of 456 

genes previously selected to reflect intrinsic properties of the tumors (“intrinsic” gene set) and, second, a gene set that high-

ly correlated with patient outcome. Subsequent survival analyses showed significantly different outcomes for the various 

groups, including a poor prognosis for the “basal”, “ERBB2” and “normal-like” subtypes, and a good prognosis for the 

“luminal” subtype. Interestingly, there was further a significant difference in survival when considering the two ER-positive 

subtypes (“luminal A and B”), the latter showing similar prognosis to the ER-negative subtypes.  

This “Stanford Classification” (“intrinsic” gene set) was later refined using a total of 115 malignant breast tumors and 534 

"intrinsic" genes where the genes used for the classification were selected based on their similar expression levels between 

pairs of consecutive samples taken from the same tumor separated by 15 weeks of neoadjuvant treatment 
25

. Cluster analys-

es of two published, independent data sets representing different patient cohorts from different laboratories, uncovered some 

of the same breast cancer subtypes, and were also associated with significant differences in clinical outcome. In the same 

study, the authors included further a group of tumors from BRCA1 carriers and found that this genotype predisposes to the 

“basal” tumor subtype. These results supported the idea that the microarray breast tumor subtypes represent biologically 

distinct disease entities. 

Meanwhile, numerous microarray-based experiments were published investigating several aspects of breast cancer includ-

ing gene expression changes associated with hereditary breast cancer (e.g. BRCA 1/2 status) 
26

, histological type 
27,28

, in-

itiating oncogenic event 
29

, breast cancer progression 
30

, clinical status (ER or lymph node) 
31,32

, micro-anatomical location 

of the tumor cell within the tumor 
33

, metastasis and recurrence 
6-8,10,34,35

, treatment 
36-39

, primary tumor and metastasis 
40

, 

metastasis to specific organ sites 
41

,tumor grade 
42

, the impact of DNA amplification on gene expression changes 
43

, wound 

response 
44,45

,or ERBB2 overexpression 
46,47

. However, despite the successful correlation of gene expression profiles with 

clinical and tumor biological features, subsequent biological interpretation, reproducibility or comparison often turned out 

to be non-trivial, sometimes complicating the translation into the clinical setting 
48-50

. At least with respect to gene-

expression-based outcome predictors consistency started to emerge 
51

. 

An example of an microarray experiment is shown in Figure 1. 

 

Microarrays and Bioinformatics 

 

Microarrays are providing unexpected quantities of genome-wide data on gene-expression profiles. For example, an expe-

riment with 30 samples in involving 10.000 genes and 10 different experimental conditions will produce 3x10
6
 pieces of 

primary information. Cross comparison of sample images can multiply this total by many times. Many computation tools 

are available to analyze the date, but the methods that are used can have profound influence on the interpretation of the re-

sults. The understanding of these computational methods and analyzing techniques is therefore required for optimal experi-

mental design and meaningful data analysis 
14,16,17,49,52

. These include methods and tools of mining and warehousing of bio-

data, image processing and data analysis software.  
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The simplest way to identify genes of potential interest is to search for those that are consistently either up or down regu-

lated. However, identifying pattern of gene expression and grouping genes into classes might provide much greater insight 

into their biological function and relevance. To achieve this, there exists a large group of statistical methods. Supervised 

methods, for example, use already existing biological or clinical information to guide the clustering algorithm. In addition, 

before starting with the actual data analysis, the first step in every experiment starts with the careful selection of the array 

probes, usually from databases, and design of the experiment. Once the microarray slide is printed, hybridized, scanned and 

the image processed, normalization of the relative fluorescence intensities of the two channels is done. Normalization ad-

justs for differences in labeling and detection efficiencies for the fluorescent labels and for differences in the quantity of 

initial RNA from the samples examined in the assay. Again there are various methods to achieve this goal. 

It has become increasingly clear, that there are many “good” approaches, and the application of various techniques will al-

low different aspects of the data to be explored. Cluster analysis, for example, does not give absolute answers. Instead, these 

are data-mining techniques that allow relationships in the data to be analyzed. Among the most promising and exciting ap-

plications, but also challenging, are those that classify human disease states such as cancer using patterns of gene expression 

signatures. 

 

 

 

Figure 1. Schematic overview of probe array and 

target preparation for spotted cDNA microarrays 
11

. 

The analysis of gene expression by microarrays 

includes several steps: 1) Array construction. cDNA 

(partial or complete) or chemically synthesized oli-

gonucleotide sequences are spotted onto a slide. 2) 

Probe Preparation. RNA from cells or tissue is ex-

tracted, converted to cDNA and labeled. The use of 

different fluorescent dyes allows mRNAs from two 

different samples (usually probe and control) to be 

labeled in different colors. 3) Hybridization of 

probe to array. The two samples are mixed and will 

hybridize to complementary sequences through 

competitive binding on the array. Unbound material 

is washed away before scanning. 4) Scanning and 

detection. The hybridized array is scanned with the 

use of a confocal laser scanner that can detect each 

of the two fluorescent dyes. 5) Normalization and 

data analysis. The images produced during scanning 

for each dye are aligned by specialized software. 

The spot intensities are adjusted and then over-

lapped. Intensity, number of spots and background 

are determined and quantified. Controls, such as 

externally added sequences, reporter genes, or total 

fluorescence for each sample help to correct for 

differences in labeling and detections efficiency of 

the two fluorescent tags (normalization). Common-

ly, transcripts levels for each single gene are meas-

ured using the ratio of the two sample signals. 
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ERBB Receptors 

 

The physiological and pathological roles of the ERBB family of receptors and ERBB2 in particular, with respect to normal 

and cancerous tissues as well as its implication for treatment strategies has been reviewed in 
53-62

 (Figure 2). 

The ERBB family of growth factor receptors consists of 4 members: EGFR (ERBB1), ERBB2 (HER2/Neu), ERBB3 and 

ERBB4. Exposure of cells to ERBB receptor-specific ligands results in receptor homo-dimerization and/or hetero-

dimerization, kinase activation, and auto- and cross-phosphorylation of cytoplasmic tyrosine residues. Various adaptor mo-

lecules bind to the phosphorylated receptors, mainly via SH2 (Src homology 2) and PTB (phosphotyrosine binding) do-

mains, resulting in signal transduction initiation that ultimately regulates gene transcription 
54,55

.  

Activated ERBB receptors stimulate many intracellular signaling pathways and, despite extensive overlap in the molecules 

that are recruited to the different active receptors, different ERBB family members preferentially modulate certain signaling 

pathways, owing to the ability of individual ERBBs to bind specific effector proteins. Two of the main pathways activated 

by the receptors are the mitogen-activated protein kinase (MAPK) and the phosphatidylinositol 3-kinase (PI3K)–AKT 

pathway 
55,62

. Other important ERBB signaling pathways are the signal transducer and activator of transcription proteins 

(STAT’s), often via EGFR activation, the SRC tyrosine kinase, protein kinase C (PKC), and mammalian target of rapamy-

cin (mTOR), which is activated downstream of PI3K/AKT and other growth regulators. 

It appears that the relative expression level of each ERBB family member, as well as ligand specificity, determines the na-

ture of the dimerizations, and hence the repertoire of adaptors which bind to the activated receptors. This in turn determines 

the specificity and strength of downstream signaling. While ERBB2 has no known ligands, it is the preferred hetero-

dimerization partner of other family members. Thus, ERBB2 overexpression is believed to enhance signaling from these 

receptors in response to binding of their specific ligands, but also independently through homo-dimerization and autophos-

phorylation. 

Recently, Jones et al. 
63

 used protein microarrays comprising virtually every SH2 and PTB domain encoded in the human 

genome to measure the equilibrium dissociation constant of each domain for 61 peptides representing physiological sites of 

tyrosine phosphorylation on the four ERBB receptors. By slicing through the network at different affinity thresholds, the 

authors found surprising differences between the receptors. Most notably, EGFR and ERBB2 became markedly more pro-

miscuous as when their concentration was raised, whereas ERBB3 did not. This, was proposed the authors, might contribute 

to the high oncogenic potential of EGFR and ERBB2 which are frequently overexpressed in many human cancers, including 

breast. 

 

 
 

Figure 2. Overview of the ERBB2 signaling network (receptors, ligands and downstream pathways) 
55

. 
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ERBB2 and Breast Cancer 

 

In human breast cancer ERBB2 (HER2/Neu) is overexpressed in 15 to 30% of cases, and is associated with poor prognosis 

and an increased likelihood of metastasis 
20,64

. Similarly, also ERBB2 phosphorylation has been linked to more aggressive 

phenotype 
21

. However, not all patients with ERBB2-positive tumors develop metastasis and despite intensive research ef-

forts, the biological mechanisms underlying the oncogenicity of ERBB2 are still not fully understood. 

Studies established that regulated ERBB2 signaling is required for normal development and homeostasis of the mammary 

gland. The four ERBB receptors and their multiple polypeptide ligands are differentially expressed during development of 

the mouse mammary gland 
65

. Profiles suggest that EGFR and ERBB2/Neu are required during ductal morphogenesis, whe-

reas ERBB3 and ERBB4 are preferentially expressed through alveolar morphogenesis and lactation. Moreover, gene 

knockouts established that EGFR and its ligand, amphiregulin (AR), are essential for ductal morphogenesis in the adoles-

cent mouse and likely provide the required epithelial-stromal signal. In contrast, the phenotypes of transgenic mice express-

ing dominant negative ERBB2 and ERBB4 proteins suggest that these receptors act in different ways to promote or main-

tain alveolar differentiation. However, mouse models have also confirmed that overexpression or mutation of ERBB-

network components, including ERBB2/Neu, EGFR and ERBB ligands contribute significantly to the initiation of human 

and rodent breast cancer. 

Evidence for a causal link between ERBB2 expression in particular, and tumor progression has come from several experi-

mental studies which showed that cells transfected with ERBB2 are more invasive in vitro, and metastatic in vivo, and 

ERBB2 expressing tumors arising in transgenic mice are also capable of metastasis. In addition, inhibition of the oncogene 

function is capable of reversing the malignant phenotype 
53

.  

Cancer cell invasion and metastasis is a complex process with many steps involved, and ERBB2 was shown to interfere 

with many of these processes. On of the early changes is loss of normal tissue architecture and migratory capability. These 

phenomena are associated with alterations in the cell-cell and cell-ECM (extracellular matrix) interactions. There is compel-

ling evidence that indeed alterations in this system can contribute to metastasis, and that in breast cancer, activation of 

ERBB2 is playing an important role in cell adhesion and signaling. For example, ERBB2 was found to inhibit transcription 

of the E-cadherin gene which is one of the major cell-cell adhesion molecules and is often reduced in breast cancer 
66

. But 

also interactions between ERBB2 and b-catenin, CD44, ICAMs, integrins, and several other molecules involved in cell ad-

hesion and motility has been described 
53,67

. 

Another important process in cancer progression is proteolytic activity. Indeed, ERBB2 was shown to interact with expres-

sion of several proteases such as MMPs and uPA, their receptors or inhibitors 
53,68-70

. Downstream mediators linking 

ERBB2 with increased proteolytic activity include the ETS family of transcription factors 
71

. But proteolytic activity is not 

enough; tumor cell migration is a further important determinant of metastatic capacity. Overexpression of ERBB2 in breast 

carcinoma cell lines as well as HRG (heregulin) stimulation of non-invasive MCF-7 cell lines induces a migratory pheno-

type 
72,73

. Spencer et al. 
74

 utilized carcinoma cells depleted of ERBB2, but not other ERBB receptor members, to 

specifically examine the role of ERBB2 in carcinoma cell migration and invasion. Cells stimulated with EGF-related pep-

tides show increased invasion of the extracellular matrix, whereas cells devoid of functional ERBB2 receptors did not. Fur-

ther, overexpression of ERBB2 in cells devoid of other ERBB receptor members was further sufficient to promote ERK 

activation and CAS/Crk coupling, leading to cell migration. Thus, ERBB2 appears to be a critical component in the migra-

tion/invasion machinery of carcinoma cells. Recently, a novel molecule, MEMO (mediator of ErbB2-driven cell motility) 

was described and seems to control cell migration by relaying extracellular chemotactic signals to the microtubule cytoske-

leton after ERBB2 activation 
67

. 

Tumor angiogenesis is yet another process relevant to tumor progression. The major inducers of angiogenesis are the vascu-

lar endothelial growth factors (VEGFs), although many other factors are known to play a role in angiogenesis 
75

. The 

ERBB2 signaling pathway has been shown to impact angiogenesis at several levels, including the release of angiogenic fac-

tors, the response of endothelial cells to them, and interactions between tumor and endothelial cells during extravasation. 

Upregulation of VEGF transcription and protein production in cells lines occurred via a PI3K/AKT and the MAP/ERK and 

the MAPK/p38 pathways, and could be inhibited by p38 antagonists as well as monoclonal antibodies directed against 

ERBB2 
53,76,77

. Moreover, reports have described that ERBB2 signaling increased HIF1a protein synthesis in a rapamy-

cin/mTOR-dependent manner providing a molecular basis for VEGF induction and tumor angiogenesis elicited by ERBB2 
78

. In a spontaneous metastasis model using human breast cancer cells lines stably transfected with constitutively active 

ERBB2 kinase, injected mice had increased metastasis incidence and tumor microvessel density 
79

. Clinical validation in 

breast tumors that overexpress ERBB2 and which had higher VEGF expression, showed significantly higher p70S6K phos-

phorylation as well, and correlated with higher levels of AKT and mTOR phosphorylation. Additionally, patients with tu-

mors having increased p70S6K phosphorylation showed a trend for worse disease-free survival and increased metastasis. 

More recently, also MMPs received extensive attention in this process, and which too, appear to be regulated – at least to 

some extend – via ERBB signaling 
80

. 
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Interestingly, Kao J et al. 
81

 addressed in a recent report the potential functional contribution of co-amplified genes since 

amplification rarely comprises only single genes. In breast cancer, the “ERBB2” amplification occurs within chromosome 

band 17q12, which contains the ERBB2 oncogene. Analysis of array-based comparative genomic hybridization and expres-

sion profiling data indicated that even the minimum region of recurrent amplification at 17q12 includes several other genes, 

including GRB7 and STARD3, which also exhibit elevated expression when amplified 
46,47,82,83

. Western blot analysis con-

firmed overexpression of each in SKBR3 and BT474 cell lines which harbor the amplification. In these cell lines (but not in 

control MCF7 breast cancer cells lacking 17q12 amplification), targeted knockdown of ERBB2 expression using RNA in-

terference (RNAi) resulted in decreased cell proliferation, decreased cell-cycle progression, and increased apoptosis. Nota-

bly, targeted knockdown of either GRB7 or STARD3 also lead to decreased cell proliferation and cell-cycle progression, 

albeit to a lesser extent compared with ERBB2 knockdown. Therefore, amplification and resultant overexpression of co-

amplified genes could contribute to some of the characteristics observed in ERBB2-positive breast cancers. 

Taken together, compelling evidence suggests that signaling via ERBB2 and other ERBB receptors can regulate many key 

processes in breast cancer, including proliferation, angiogenesis, invasion and metastasis.  

 

ERBB Receptors and Therapy 

 

The ERBB family has become a promising field for targeted therapy. Several antibodies directed against the extracellular 

domain of ERBB receptors and tyrosinekinase inhibitors (TKIs) are at advanced clinical development stages, or are already 

successfully used in the clinic 
57,58,84-87

. The treatment of tumor cells with these agents affects and inhibits many of the intra-

cellular pathways that are essential for cancer development and progression. The mechanisms of action in cancer patients, 

however, are often less clear. The same applies for putative mechanisms of resistances or selection of appropriate pharma-

codynamic markers. 

Trastuzumab (Herceptin ®, Genentech), for example, is a recombinant humanized monoclonal antibody directed against the 

extracellular domain of ERBB2, and is approved for therapy of ERBB2 overexpressing breast cancer. Various mechanisms 

have been observed or proposed in vivo and in vitro by which trastuzumab induces regression of ERBB2-overexpressing 

tumors 
60

. Trastuzumab binding to ERBB2 was shown to lead to internalization and degradation of the ERBB2 receptor 

protein, and trastuzumab induced p27 (KIP1) levels and interaction with CDK2, thereby decreasing CDK2 activity. Trastu-

zumab was further shown to reduce signaling of the PI3K and MAPK pathways, promoting cell cycle arrest and apoptosis. 

Trastuzumab treatment could also reduce angiogenesis via decreased levels of VEGF and TSP1. Other data indicate that 

efficacy of trastuzumab could be related to its induction of immune response, e.g. via stimulation of natural killer cells and 

activation of anti-body dependent cellular cytotoxicity (ADCC). Besides, trastuzumab was shown to inhibit repair of DNA 

after treatment with cytotoxic chemotherapy. 

The objective response rate of trastuzumab in metastatic breast cancer patient in phase II trials was rather low, ranging from 

12 to 34% 
85,88

. Thus, many tumors demonstrate primary de novo or intrinsic resistance to the drug. Combination with tax-

anes could increase response rates and survival 
60

. However, the majority of patients who achieve an initial response to tras-

tuzumab-based regimens develop resistance within 1 year. Proposed mechanisms of resistance to trastuzumab include the 

MUC4 protein that could block the inhibitory actions of the drug via direct binding with ERBB2, preventing interaction 

with its molecular target. Decreased interaction or gain-of-function could theoretically also result from mutations in the 

ERBB2 gene, and has been demonstrated for EGFR in lung cancer 
89

. Also the existence of compensatory pathways and 

signaling aberrations downstream of ERBB2 have been discussed 
57

. Furthermore, aberrant activation of other tyrosineki-

nases such as IGF1R or FGFR members occurs in various types of cancer. Loss of PTEN is yet another mechanism that has 

been associated with trastuzumab resistance 
90

. 

To the situation, potential novel agents or combinations with trastuzumab could prove beneficial such as pan- or dual-

specific ERBB tyrosinekinase inhibitors, pertuzumab (an antibody that in contrast to trastuzumab disrupts receptor hetero-

dimerization), IFG1R inhibitors, mTOR inhibitors, inhibitors of angiogenesis and MMPs, but also optimized combinations 

with anti-hormonal (e.g. aromatase inhibitors) and classical chemotherapy regimen. 

In this context, it is also interesting to note that toxicities reported with ERBB targeted therapies correlate with the normal, 

physiological functions of the respective targeted receptor. For example, ERBB2 plays an important role in the development 

of the heart 
91

. Embryos that lack the receptor die due to improper formation of the ventricular trabeculea in the myocardium 

which is responsible for maintaining blood flow. Moreover, conditional ablation of ERBB2 in postnatal cardiac-muscle cell 

lineages revealed that ERBB2 is also essential in the adult heart for the prevention of cardiomyopathy; cardiac myocyte-

targeted HER2 gene knockout in adult mice lead to impaired cardiac remodeling in response to stress 
92

. Indeed, some 

breast cancer patients show cardiotoxicity when given trastuzumab, including cardiomyopathy, congestive heart failure and 

decreased left ventricular ejection fraction. This might even worsen if trastuzumab is combined with other cardio-toxic 

agents such as anthracyclines. 
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Aims of the Study 
 

The main goals of the project were outlined as follows: 

 

 To investigate the differences between ERBB2-positive and ERBB2-negative breast tumor samples on the gene expres-

sion level and characterize the molecular phenotype associated with ERBB2 status 

 To investigate possible downstream effects associated with ERBB2 signaling 

 To identify relevant subgroups or genes associated with outcome in ERBB2+ and ERBB2- tumors and explore putative 

clinical implications towards a molecular classification of breast cancer 

 

For this purpose, collaboration was established between the University of Basel, Stiftung Tumorbank Basel (STB), OncoS-

core AG in Riehen, the Swiss Institute for Experimental Cancer Research (ISREC) and National Center of Competence in 

Research (NCCR) Molecular Oncology in Lausanne, and the Swiss Bioinformatics Institute in Lausanne. Furthermore, the 

Bioinformatics Core Facility (BCF) and the DNA Array Facility (DAFL) of the Center for Integrative Genomics (CIG) in 

Lausanne were involved. 

 

Work started with cell lines and a set of human breast cancer biopsies to set up and optimize protocols, evaluate technology 

and perform feasibility study for using gene expression microarray for profiling human tumor biopsies. Different RNA ex-

traction, amplification, labeling, hybridization and washing methods were evaluated. Various hardware and software was 

tested to optimize scanning, spot detection and normalization procedures. In parallel, quantitative real-time PCR (qrt-PCR) 

assays for a panel of over 60 cancer-related genes as well as quantitative immunoassays (ELISA and CLISA) for p-ERBB2 

and p-AKT were developed. First test-cDNA microarrays were printed with 100 genes, and followed later by the first gen-

eration of 10K human arrays with over 10.000 genes.  

For the main project a specific subset of primary breast cancer biopsies was selected for which banked fresh frozen tissue, 

clinical follow-up and histopathological data, prospective measurements of ER, PgR, uPA/PAI-1 and ERBB2 protein levels 

were available (Stiftung Tumorbank Basel). Cryo-sections were preformed for all samples including H&E slides, RNA ex-

tracted and amplified. Samples were analyzed by qrt-PCR and microarrays. Additionally, p-ERBB2 and p-AKT were meas-

ured by ELISA/CLISA. For the microarray analysis, a careful and extended pilot experiment was performed to guide the 

design. Subsequent analysis comprised several statistical and exploratory approaches, starting from normalization, cluster 

analysis and supervised methods to build classifiers and identify differentially expressed genes, and pathway mining. Vali-

dation was performed using qrt-PCR data, and was extended to bigger, independent sample collections including publicly 

available microarrays data sets. 

Besides, comparison of a subset of breast tumor biopsies with a commercial microarray platform (Affymetrix U95 Gene-

Chip; collaboration with Novartis), identification of differentially expressed genes in cells that were stimulated by Amiphi-

regulin or EGF, identification of differences between malignant and non-malignant breast tissues, and the assessment of 

paired core-biopsy versus surgical biopsy to evaluate possible gene alterations introduced by the sampling procedure were 

studied. Additionally, the roles of p-AKT and p-ERBB2 were also explored. Finally, clinical applications and feasibility 

assessment with respect to the use of molecular classification for routine diagnostics were evaluated. 
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Materials and Methods 
 

Detailed methods are outlined in the attached publications section; additional protocols can be found in the Appendix. A 

brief summary of methods and materials is given below. 

 

Microarrays 

 

Spotted cDNA arrays were produced at the microarray core facility at ISREC (GeneMachine OmniGrid 3000, CA). An ini-

tial human test chip contained approximately 100 features (human cDNA and arabidobsis control genes) printed in triplicate 

for testing purposes. Later a human 10K chip with over 10.000 spots was produced containing the cDNA library from In-

cyte Genomics plus a selection of some 500 cancer related genes from a custom wish-list compiled at the institute from var-

ious research teams. Detailed specifications about chip design and content can be found on the DNA array facility Lausanne 

webpage: http://www.unil.ch/dafl/ page5509.html. 

During the development and testing period several improvements were achieved due to the following changes: Exchange of 

the glass support from TeleChem (TeleChem International, Sunnyvale, CA) to Quantifoil (Quantifoil Micro Tools, Germa-

ny) leading to significantly lower background levels. The design of the chip was re-arranged and spike genes (arabidobsis 

thaliana) distributed all over the slide, particularly in every sub-array. Arabidobsis RNA was subsequently used during hy-

bridizations and mixed in predefined concentrations and known ratios into the sample preparation allowing better control of 

the hybridizations, and make statements about the quality of the slides. Additionally, the spotting solution was changed re-

ducing unspecific signals and the protocols for hybridizations and washings were improved (detailed protocols in appendix). 

All sequences on the chip were re-blasted and new, improved annotation files were generated in an automated fashion every 

few weeks. In addition, quality measures with respect to the spotted sequence were added, and routine quality controls anal-

ysis after each hybridization, scanning and normalization were defined and integrated into an automated slide processing 

web-tool which became part of each experiment. Some examples are shown in Figures 3 and 4. 

 

 
Figure 3. “MVA plot” after normalization (print-tip specific LOWESS). Average log intensity versus normalized log ratio is 

plotted for a tumor sample hybridized against a reference (pool of all samples). Dotted lines indicate the detection limits of 

the scanner/experiment (saturation and background). Horizontal lines indicate 2 and 3-fold over or under expressed genes. 

Color-coded circles and triangles represent arabidopbsis spike genes. These genes were spiked into each experiment in 

known ratios and concentrations, and were used to control the labeling, hybridization, scanning and normalization proce-

dures. 

http://www.unil.ch/dafl/page5509.html
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Figure 4. “Spatial plots” of a microarray slide after normalization. Back- and foreground intensities are plotted for each 

channel (Cy3/target and Cy5/reference) separately and represented according to its special localization on the array. These 

were used together with several statistical criteria to assess the quality of slides/hybridization and identify potential issues. 

 

Cell Lines and Tissue Biopsies 

 

Six different breast cancer cell lines (MCF-7, T-47D, ZR-75-1, BT-474, MDA-MB-231, SKBR-3) were cultured and grown 

in media, harvested, and pelleted. Aliquots were frozen and stored at -70°C. RNA was exacted and subsequently used for 

development of methods, validation of protocols, and to produce reference materials (e.g. RNA, protein extracts) for various 

experiments 
93-95

. 

A first set of 39 frozen primary breast cancer fresh frozen biopsies was obtained from the STB (Stiftung Tumorbank Basel) 

for feasibility assessment of using archived tumor material for the purpose of the main project. RNA quantity, quality and 

histology (cryo-sections) were evaluated and first hybridizations performed. The feasibility assessment further included a 

comparison of two microarray platforms (data not presented). 

For the main project, 100 primary breast cancer biopsies were selected from STB according to prospectively assessed 

ERBB2 protein expression levels by ELISA. Roughly, 50 % of samples over-expressed ERBB2 (>260ng/mg), and 50% had 

“intermediate” protein levels of ERBB2 (not over-expressed, 100-260ng/mg). For all patients complete clinical follow-up 

was available, including patient demographics, histo-pathological characteristics, treatment and survival data. Excluded 

were patients who received previous neoadjuvant treatment and patients with history of another cancer. 

Cryo-sections were preformed for all biopsies using O.C.T (Tissue Tek, Electron Microscopy Sciences), stained with H&E 

and reviewed. Percentage of tumors cells, stromal component, inflammatory cells, fat and necrotic tissue were quantified. 

Biopsies with less than 50% tumor infiltration or less than 20% tumor cell content, or biopsies containing moderate to ex-

tensive necrosis were to be excluded or replaced for future experiments. Additional slides were prepared and stored for fu-

ture laser-capture micro-dissection (LCM). Afterwards, biopsies were pulverized; part of the powder was used to extract 

RNA for microarray and qrt-PCR analysis, other parts powder were used to extract proteins/prepare cytosols and membrane 

fractions for ERBB2, p-ERBB2 and p-AKT ELISA/CLISA analysis. 

Additional experiments showed that 2-3ug RNA per mm
3
 tissue could be extracted from cryo-sections. Furthermore, the 

RNA quality from cryo-sections was generally good with no apparent degradation as well as tissue embedding by O.C.T. 

did not alter RNA extraction, amplification nor quality. Subsequently, qrt-PCR experiments were performed with RNA 

from cryo-sections after thorough pathological review. 
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RNA Extraction and Quality Assessment 

 

Different RNA extraction methods were tested: (1) Trizol+RNeasy (RNAeasy Mini Kit, Qiagen; for details see appendix), 

(2) RNeasy alone, and (3) an automated extraction apparatus (ABI 6100 Nucleic Acid PrepStation, Applied Biosystems). 

Quality and quantity of the extracted RNA and the robustness of the method was evaluated by Bioanalyzer 2100 (RNA 

6000 Nano LabChip-Kit; Agilent Technologies) and by O.D (18S:28S rRNA ratio, gel pattern/fragments).  

Prior to extraction, biopsy material was pulverized 
20

. There were no significant difference between the methods, however, 

the automated extraction device did not perform well when using fat containing tissues (e.g. breast cancer biopsies) - the  

wells and capillary system of the machine clogged.  

The lower limit for extraction was 10.000 cells. Typical yields obtained for extractions from 50.000 cells were 30-50ng/ul 

and 180-250ng/ul for 250.000 cells, respectively. Measurements of the same samples by O.D. generally indicated higher 

yields by a factor of 1.5-2 as compared to the Bioanalyzer. 

Subsequently, RNA extractions for all tumor biopsies in the main project were done with the RNeasy kit. No or insufficient 

RNA could be extracted in 7 out of 100 biopsies; 81 biopsies had RNA concentrations > 0.15ug/ul (> 7.5ug total RNA, elu-

tion in 50ul). The extracted RNA demonstrated mostly good to very good RNA quality (18S:28S rRNA ratio >1.5 or >2.0 

respectively, no signs of degradation). Examples of 12 RNA profiles from breast tumor biopsies are given in Figure 5. 

 

 

 
 

Figure 5. Example of total RNA from 12 breast cancer samples analyzed after extraction on a Bioanalyzer. The left panel 

shows a “gel-like” picture; the right panel illustrates the abundance (y-axis) for various RNA sizes (x-axis) for each sam-

ple. The first peak corresponds to an internal marker, the subsequent two peaks correspond to 18S and 28S rRNAs. The first 

sample (top left) shows signs of degradation (decreased 28S peak and 28S:18S ratio, degradation fragments present).  
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RNA Amplification and Labeling 

 

RNA amplification was done with the Ambion amplification kit (MessageAmp II aRNA Amplification Kit, Ambion) based 

on the Eberwine method 
96

 (Figure 6). In brief, RNA is reverse transcribed using an oligo-dT primer with a T7 polymerase 

promoter followed by second strand synthesis. Subsequently, the double stranded cDNA is transcribed in vitro adding T7 

polymerase. Applying this method, typically 2000-3000 fold amplification was achieved starting from 1 to 5ug total RNA. 

The mean size of the aRNA after amplification was around 1500 base pairs (bp’s). Robustness of the procedure was as-

sessed in repeated, independent amplifications of the same RNA demonstrating very high reproducibility. 

Amplified RNA was labeled using the fluorescent dyes Cy3 and Cy5 (Cy3/5-dCTP) and 5ug aRNA in a reverse transcrip-

tion step resulting in labeled cDNA. Out of the initial 100 biopsies, 92 were successfully amplified RNA (aRNA). 

 

Detailed protocols for probe preparation can be found in the appendix. 

 

 
 

 

Figure 6. Schematic overview of the RNA amplification procedure (MessageAmp II aRNA Amplification Kit, Ambion) based 

on the Eberwine method 
96

. 
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Reference RNA 

 

Pooled of RNA from all tumor biopsy samples was prepared and used as reference RNA since the goal of the project was 

mainly to measure differences between the samples rather than differences between different tissues or cell lines, and since 

microarrays measure small differences more accurately (limited dynamic range). Typically, 5ug of aRNA was required for 

one hybridization (5ug of pool (Cy3) and 5ug of target (Cy5)), and it was assumed that replicate hybridization would be 

performed (see “pilot experiment”). Thus, biopsies which had more than 21ug (equivalent to 4 hybridizations) of aRNA 

were used for the pool. If a biopsy had more than 21ug of aRNA, the excess RNA was used for the pool but not more than 

30ug meaning that no biopsy contributed more than 30ug to the pool. The total amount of pooled aRNA generated was 

1832ug (equivalent to 366 hybridizations). 

 

Scanning and Feature Extraction 

 

Two scanners were evaluated (Agilent, Agilent Technologies and ScanArray4000, Packard Bioscience). After extended 

testing, Agilent was selected for future experiments due to its ability to scan both channels (Cy3/Cy5) simultaneously lead-

ing to a better overlay of the two images and higher reproducibility in repetitive scans of the same image. 

Numerous scanner settings and their influence on the final results were evaluated (e.g. saturation, photo-bleaching, detection 

of low expressed genes). In this context, repeated scans with different settings were applied in the main experiment (e.g. 

50% and 100% laser power/PMT gain).  

Two feature extraction software were compared: ScanAlyze (developed at the Eisen’s Lab in Stanford, see webpage at: 

http://rana.lbl.gov/EisenSoftware.htm) and GenePix (Molecular Devices Corporation). In light of the “high throughput” 

aspect of the main project (more than 300 arrays to be scanned) and irregularities of the spot size/arrangement during array 

printing, GenePix was the preferred software owing to its automatic grid finding capability and adjustment of spot size (see 

example of a microarray image in the appendix). 

 

Normalization and Clustering 

 

Normalization is a procedure used to “standardize”/account for differences arising from labeling (incorporation efficiency), 

hybridization, scanning, the amount of starting material, etc., to allow for comparisons between experiments. Several me-

thods can be applied. Together with the bioinformatics core facility some standard procedures and methods were established 

after extensive testing. Most of the work was automated by submitting the output files from the scanner directly to a web-

based application, which would return the processed data including several quality indicators. 

Normalization worked best with the print-tip specific LOWESS (locally linear fitting) correction. Both, Spot and the norma-

lization procedure have packages that can be loaded into R statistical software (spot and sma package, www.r-project.org). 

Cluster analysis was done using “Cluster” and “Treeview” software (available at http://rana.lbl.gov/EisenSoftware.htm) or 

directly in R statistical software. Generally, genes were filter according to variation, mean centered and normalized, and 

hierachically clustered (genes and arrays) using Spearman correlation as similarity metric and single linkage as clustering 

method. 

 

qrt-PCR, p-ERBB2 and p-AKT 

 

qrt-PCR assays were set up in collaboration with OncoScore AG and STB in Basel. Protein assays (sandwich immuno-

assays), if not commercially available, were set up in collaboration with Molekulare Tumorbiologie, University of Basel and 

STB. Details can be found in 
93-95

. Eighty-nine of the 92 breast cancer biopsies for which RNA was amplified and used on 

microarray were successfully assessed by qrt-PCR using a panel of 60 cancer related genes; a list with all genes can be 

found in the appendix. Another 70 of these biopsies were analyzed for p-ERBB2 (ELISA), and 65 samples for p-AKT 

(CLISA). 

Comparison between the methods revealed that there was generally high correlation between mRNA expression levels 

measured by microarray and qrt-PCR for most of the genes (see results section). There was further high correlation between 

mRNA and protein expression levels of ESR1 and ERBB2 (r
2
=0.74 and 0.71 respectively; data not shown). 

 

http://rana.lbl.gov/EisenSoftware.htm
http://www.r-project.org/
http://rana.lbl.gov/EisenSoftware.htm
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Statistical Analysis 

 

Statistical analysis was carried out using “R” statistical software and bioconductor packages (www.r-project.org). Devel-

opment of a classification algorithm included bootstrapping to select genes in a training set and rank them according to their 

association with a desired outcome variable based on t-statistics for categorical or Cox coefficients in case of survival data. 

Performance was evaluated using a gene score and ROC (receiver operator characteristics) by calculating the area under the 

curve (AUC) starting for the top ranked gene, and optionally by successively adding variables according to their rank to 

calculate new scores and AUC’s. The number of variables (e.g. genes) in the final model was selected according to the per-

formance of the AUC curve. The optimal cutoff for the gene scores as well as other variables was determined using CART 

(classification and regression trees) to obtain the best separation of the classes 
97

. Finally, the same genes, score and cutoff 

were used to assess the performance on the left out samples (test set). Univariate and multivariate Cox proportional hazard 

model was used to assess association with survival. Kaplan-Meier method was used to plot survival curves and the logrank 

test to compared outcomes. 

 

http://www.r-project.org/
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Results 
 

Several experiments and studies were performed prior to starting the main experiment to develop and validate methods, and 

assess the feasibility to use human breast cancer biopsies in a high-through put gene expression profiling. Moreover, an ex-

tensive pilot experiment was performed in close collaboration with the Bioinformatics Core Facility (BCF) to assess relative 

importance of different sources of variability because the whole experiment/hybridization would take several weeks and 

array printing was done in batches of 100 slides. For more information on some of the results and conclusions from these 

studies please consult the appendix. 

Most of the data from this work has been published; detailed data is presented and discussed there 
93,94,98-100

. However, a 

summary of the key findings as well as supplementary data not previously published will be presented on the subsequent 

pages. Work started with exploratory and correlative analysis using microarray gene expression data from 89 primary breast 

cancer biopsies and recapitulated many of the previously established breast cancer microarray findings reported in the litera-

ture. Subsequent analysis focused on the characterization of the ERBB2 status on a molecular level and the identification of 

prognostic markers in various subsets of breast cancer patients, particularly in patient subgroups stratified by ERBB2 and 

ER status. In this context, also the value of “activated” ERBB2 as measured by phosphorylation of the receptor, and down-

stream signaling pathways (e.g. phosphorylated AKT) were explored. In addition, different methods to build a classifier to 

predict ERBB2 status, survival and other clinical parameters were assessed. Finally, the findings were validated in a larger 

collective of breast cancer patients assessed by quantitative real-time PCR, and extended and compared to independent 

breast cancer microarray data sets for which gene expression and clinical data were publicly accessible. 

 

Evaluation of gene expression changes associated with ERBB2 status, survival, and a classifier for ERBB2 status  

 

Gene expression levels detected by microarray correlated strongly with qrt-PCR results for several known prognostic as 

well as predictive breast cancer genes (see Figure 7). Similar results were observed for correlations with protein expression 

levels (ELISA) of ER and ERBB2, and to a much lesser extent also with uPA. Both, ER and ERBB2 expression levels 

showed bimodal distributions with approximately 50% of tumors being ERBB2+/- (selection bias of the sample set), and 

75% and 25% being ER+/-, respectively (Figure 8). 

Unsupervised clustering analysis of the 89 breast cancer biopsies showed that the dominant gene cluster separating the sam-

ples into the two main groups was driven by the “ER-signature” (ER, GATA3, LIV1, BCL2, GREB1, RERG, etc), and cor-

related well with the ER status of the tumor samples (Figure 9). The “ERBB2”-cluster constituted another important, al-

though smaller cluster in terms of the number of genes, and was anti-correlated with ER (Figure 9). Many of the genes in 

the “ERBB2”-cluster mapped to chromosome 17q12-21 (“ERBB2 amplicon”, ERBB2, GRB7, STARD3, PSMD3, etc; Fig-

ure 9). A third prominent cluster was mainly defined by genes belonging to the “basal-like” subgroup (KRT5, 14, 17, KIT, 

MMP7, etc; Figure 10). Other clusters were dominated by immune response and inflammation or stroma genes (Figure 11). 

Interestingly, these clusters showed also significant differences with respect to outcome (Figure 12). 

 

Supervised analysis revealed that ERBB2 status was strongly associated with the underlying genetic changes, arising from 

the amplification of ERBB2 and it flanking genes. Indeed, these genes demonstrated also correlated expression pattern. 

However, not all genes from the “ERBB2-amplicon” showed simultaneous co-expression, suggesting that such variation 

might arise from different amplification patterns at DNA level, reflecting the changes observed at mRNA level (Figure 13). 

Survival analysis underlined the important role of ERBB2 and the amplicon, respectively (Table 1). Among the top genes 

associated with disease-free survival (DFS) mapped several to chromosome 17q12-21 (“ERBB2-amplicon” region). How-

ever, survival analysis in subsets of patients with ERBB2+ and ERBB2- tumors revealed striking differences with respect to 

the genes associated with patient outcome (Table 2, see also Figures 19 and 20). The gene which correlated best with metas-

tasis-free survival in ERBB2 samples was uPA, and was putatively shown to be regulated by ERBB2 in the literature 
53,68-70

. 

This finding was later followed-up and validated in a bigger set of breast cancer biopsies assessed by qrt-PCR, and in two 

independent microarray breast cancer data set, which were publicly accessible (Amsterdam 
34

 and Rotterdam 
8
 microarray 

data sets). 
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Figure 7. Correlation between mRNA expression levels measured by microarray and qrt-PCR for known prognostic and 

predictive breast cancer genes (ER, PGR, ERBB2 and uPA in (top 4 panels) and MMPs (bottom 4 pannels)). 
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Figure 8. Distribution of ER and ERBB2 (mRNA level) in the 89 breast cancer biopsies as measured by microarray. 
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Figure 9. Unsupervised clustering of 89 breast cancer biopsies (horizontal tree) based on 410 genes (vertical tree). Genes 

were filtered using standard deviation for the difference in genes expression among the samples. Clustering of samples is 

dominated by the “ER”-cluster (ER, GATA3, LIV1, BCL2, GREB1, RERG, etc) and correlates with the ER status based on 

ELISA measurement (horizontal tree labels). The “ERBB2”-cluster is anti-correlated with ER and contains several 17q12-

21 genes (“ERBB2 amplicon”, ERBB2, GRB7, STARD3, PSMD3, etc.). 
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Figure 10. “Basal-like” cluster with expression of basal keratins (KRT5, 14, 17), KIT and MMP7. 
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Figure 11. Example of another prominent cluster associated with inflammatory processes and/or immune response. 
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Figure 12. Unsupervised clustering: Clusters show differences in survival (DFS) as well as in ERBB2 status. 
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Figure 13. Genes from the “ERBB2-amplicon”(17q12-21) show co-expression pattern and are typically overexpressed in 

ER- tumors. However, not all “ERBB2-amplicon” genes show simultaneous co-expression suggesting that different DNA 

amplification patterns might reflect the expression changes observed at RNA level. 
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Clone ChromLoc Gene p.Cox 

IC1911640       17q21.2         MRPL45          0.00653 
IC1818527       18q11.2         LAMA3           0.0089 
IC1968268       17q21.2         PSMD3           0.00912 
IC1737833       17q12           PSMB3           0.01027 
IC2056158       10q24           PLAU            0.01115 
IC1821420       17q11-q12       STARD3          0.01221 
IC293495        NA              SERPINA3        0.01231 
IC1701725       12q24.1         OAS1            0.01351 
IC5047895       10q11.2         DKK1            0.01428 
IC2799253       5q31            NME5            0.01456 
IC4116386       6q25.1          ESR1            0.01555 
IC1711151       14q21-q24       HIF1A           0.01699 
IC1240890       6p21.3          HLA-DQA1        0.01735 
IC2989812       1q21            ANXA9           0.01884 
IC2288855       17q21.1         MAPT            0.02186 
RG52741         16p13.3         ABCA3           0.02280 
IC1505977       4q32-q33        GRIA2           0.02419 
IC2059176       17q11-q21.3     LASP1           0.02944 
IC863708        16q12.2         TNRC9           0.03106 
IC630995        3q21-q25        AGTR1           0.03305 
IC2537863       1p31.1          C1orf29         0.03399 
RG502151        17q25           SLC16A3         0.03843 
IC1858050       16q22.1         CDH1            0.04043 
IC856900        1p34-p12        CYP4B1          0.04349 
IC1646294       10p15           GATA3           0.04396 
IC1637576       17q21.2         THRAP4          0.04466 
IC2823476       5q35.2          STC2            0.04863 
IC1480159       19q13.3         KLK6            0.05061 
IC2622181       6q12            ME1             0.05370 
IC1842009       7q31            SLC26A3         0.05410 
RG2542529       17q11.2-q12     ERBB2           0.05891 

 

Table 1. List of top genes associated with survival in the overall population (n=500 top microarray genes were analyzed; 

filter based on standard deviation; Cox regression analysis, association with DFS) 

 

 

 

Clone ChromLoc Gene p.Cox 

IC2056158 10q24        PLAU        0.00144 

IC2506867 4p14         UCHL1      0.00345 

IC2537863 1p31.1       C1orf29     0.00469 

IC4855492 6q21-q22   COL10A1  0.00509 

IC2986240 6q21-q22   COL10A1  0.00617 

IC1577614 5q11.2       FST          0.00658 

IC1782172 8q22-q23   SDC2        0.00718 

IC1701725 12q24.1     OAS1        0.00816 

IC2636634 19p13.1     COMP       0.00840 

IC1258790 13q33        ITGBL1      0.01051 

IC2900277 14q32        IFI27         0.01255 

IC4079783 11p15.4     ADM         0.01519 

IC1421929 16q22.1     CDH3        0.02012 

IC1813269 16q13-q22 CES1        0.02586 

IC5047895 10q11.2     DKK1        0.02595 

RG378461 4q21-q25   SPP1        0.02950 

IC978433   8q22.3       CTHRC1    0.03072 

IC1405940 3q23-q24   PLOD2      0.03108 

IC1240890 6p21.3       HLA-DQA 0.03330 

IC1643186 4q11-q13   PDGFRA   0.03339 

IC1506256 9q34.1       CRAT        0.03883 

IC1215596 10q25-q26 IFIT1         0.04265 

IC2797546 11q22.3     MMP10     0.04274 

IC980544   2p15-p13   SLC1A4    0.04281 

IC2352645 4q13-q21   AREG       0.04970 

IC3040858 1q21-q23   HIST2H2B 0.05176 

 

Table 2. Top genes associated with survival in the subgroup of ERBB2+ tumors only (n=500 top microarray genes; Cox 

analysis, DFS). 
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Subsequently, classifiers were evaluated to classify samples according to a known clinical or biological parameter such as 

ERBB2 status. For this purpose, bootstrapping was used to select genes in a training set and rank them according to their 

association with a desired outcome variable based on t-statistics. The area under the curve (AUC) was calculated using a 

gene score and ROC (receiver operator characteristics) starting for the top ranked gene, and thereafter by successively add-

ing genes according to their rank to calculate new scores and assess AUC. The number of genes in the final model was se-

lected according to the performance of the AUC curve. Then, the optimal cutoff for the gene score with the selected number 

of genes was determined using CART (classification and regression trees) to obtain the best separation of the classes. Final-

ly, the same genes, score and cutoff were used to assess the performance on the left out samples (test set, Figure 14). 

For ERBB2 status, this classifier showed almost 100% accuracy in the training and around 95% in the test set when all 

genes from the microarray gene set were used. This was mainly due to the fact, that obviously ERBB2 and other 17q12-21 

genes were preferably selected. As a consequence, if the number of genes in the classifier was increased the performance 

started to decrease since “noise” was added - genes that do not discriminate as accurately ERBB2 status as do genes from 

the ERBB2-amplicon. Once all genes from the amplicon were removed, the classifier reached its best performance with 

around 20-30 genes in the model. The performance in the training set revealed typically less than 10% misclassification, and 

around 10-15 % misclassification in the test set (Figure 15). The genes discriminating ERBB2+/- samples contained many 

known cancer-related genes (e.g. MYCN, S100P, MMP1, CEACAM6, etc) as well as ER-related genes (ESR1, RERG, 

BCL2, GREB1, ERBB4, etc; Figure 22). As expected, the two main groups showed significant difference with respect to 

survival (Figure 16). Finally, a three-fold cross-validation was implemented to better control for gene selection and perfor-

mance assessment of the classifier (Figure 17). A “combined” ROC-curve might be used to evaluate or define specific cu-

toff values which will meet desired test characteristics (e.g. sensitivity and specificity of the test). 
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=> chose minimal Number of Genes to go into the Final Model 

Evaluate Perfomance on Test Samples

Repeat several Times with Different Splits of Train/Test Data

Calculate Score for Training Set and determine optimal

Cut-Off by CART or upon desired Test Characteristics

 
 

 

Figure 14. Overview of classification algorithm. Bootstrapping was used to select genes in a training set and rank them 

according to their association with a desired outcome variable (class) based on t-statistics. The area under the curve (AUC) 

was calculated using a gene score and ROC (receiver operator characteristics) starting for the top ranked gene, and the-

reafter by successively adding genes according to their rank to calculate new scores and AUC’s. The number of genes in the 

final model was selected according to the performance of the AUC curve. Then, the optimal cutoff for the gene score with 

the selected number of genes was determined using CART (classification and regression trees) to obtain the best separation 

of the classes. Finally, the same genes, score and cutoff were used to assess the performance on the left out samples (test 

set). 
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Classifier for ERBB2 Status

TrueClass

Train   0  1 

FALSE 27  3

TRUE   2 25

TrueClass

Test    0  1 

FALSE 14  3

TRUE   1 12

 
 

Figure 15. Performance evaluation of a classifier for ERBB2 status; “ERBB2-amplicon” genes were removed. The perfor-

mance of the classifier (AUC) demonstrated a plateau after including approximately 20 genes in the training set. Using an 

“optimal” cutoff for a 20-gene score by CART resulted in a misclassification rate of around 5 % in the training, and 13% in 

the test set. 
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N Observed Expected (O-E)^2/E (O-E)^2/V

sc=0 46       14     21.9      2.84      7.03

sc=1 41       23     15.1      4.12      7.03

Chisq=7  on 1 degrees of freedom, p=0.00802 

Weighted and Ranked Expression Matrix with Sample and Class Labels

 
 

Figure 16. Heatmap of the complete data set (n=89 samples) based on the genes and score calculated according to the 

classifier (above). Samples are aligned in horizontal, genes in vertical order and were ranked according to the t-statistic 

(genes) or score (samples), respectively. The actual (true) labels of the ERBB2 status are given below (0=ERBB2-, 

1=ERBB2+). Genes from the “ERBB2-amplicon” (17q12-21) were excluded from the analysis. Moreover, the two main 

groups show significant differences in survival as shown in the Kaplan-Meier curve below. The genes discriminating 

ERBB2+/- samples contained many known cancer-related genes (e.g. MYCN, S100P, MMP1, CEACAM6, etc) as well as 

ER-related genes (ESR1, RERG, BCL2, GREB1, ERBB4, etc.). 
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Example ERBB2: 3-fold crossvalidation, top 400 genes, n.boot=200, 17q11-21 genes eliminated

 
Figure 17. Example of the performance of the classifier in the test and training set using ERBB2 status as class variable 

and 3-fold cross-validation (the three subsets of data are colored in black, green and blue). All genes from the “ERBB2-

amplicon” were excluded. The AUC statistic reached typically a plateau when 20 or more genes were included in the clas-

sifier. The misclassification rate was lowest when using around 30 or more genes. The combined ROC curves for the test 

and training set might be used to select a specific cutoff for the test according to the desired or predefined requirements for 

the classifier (sensitivity versus 1-specificity are plotted in these curves). In this example, the test might be selected to have 

>90% specificity with around 80% sensitivity. 
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The same classification algorithm was further tested for its ability to classify tumors according to the nodal status of the 

patient. With around 40 genes the sensitivity reached 80% and specificity over 90% (Figure 18). However, when the same 

genes and score were applied to the test set, the misclassification rate increased to almost 50%. Thus, the classifier did not 

accurately predict the nodal status of a patient based on the gene expression profile of the primary tumor. Finally, similar 

analysis of genes separating histological types (ductal versus lobular) showed that e-cadherin was the most prominent gene. 

This finding has been described in the literature before. Loss of e-cadherin expression might further account for the typical 

“indian files” pattern of lobular breast cancers, where individual tumor cells rather than clusters or tubular structures prevail. 

 

 

Nodal Status (Top 2000 Genes, Train=59, Test=30)

-> no accurate prediction in Test Set!

 
 

Figure 18. Example of the same classifier used above to classify tumors according to the nodal status. As shown in the 

training set, by using around 40 genes the sensitivity reached 80%, specificity >90%. However, when the same genes and 

score were applied to the test set the misclassification rate increased to almost 50%. Thus, the classifier could not accurate-

ly predict the nodal status of a patient based on the gene expression profile of the primary tumor. 
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Evaluation and validation of mRNA expression markers capable of identifying ERBB2+ breast cancer patients associated 

with distant metastasis and reduced survival (follow-up of microarray findings) 

 

The prognostic value of 60 biomarkers detected in 317 primary breast cancer patients (STB data set) was assessed by qrt-

PCR individually in ERBB2+/- patients by univariate Cox regression revealing five candidates (uPA, MMP11, uPAR, 

MMP1, and MMP3) significantly associated with metastasis-free survival in ERBB2+ samples (MFS, Figure 19 and 20) 
100

. 

All five genes encode proteases and their levels of mRNA expression correlated strongly with one another. In contrast, none 

of these genes showed significant prognostic value in ERBB2- patients. Survival in this subgroup of patients was mainly 

driven by proliferation genes (E2F1, TOP2A, Survivin, TYMS, TK1, Cyclin D, etc.) 
100

. Possible confounding by treatment, 

ER status or proliferation was excluded after stratified Cox analysis. The prognostic value of the most significant gene 

(uPA) was subsequently successfully validated in independent microarray data sets (Amsterdam 
34

 and Rotterdam 
8
 data 

sets). 

Cox Regression Analysis with Bootstrap (n=100, with Replacement)

Ranked accoring median p-Value in ERBB2 positive Patients

(n=317 patients, n=60 genes)

 
Figure 19. Association of 60 selected cancer-associated genes detected by art-PCR with survival (MFS) in a subset of 82 

ERBB2+ primary breast cancer samples. Proteases (uPA, uPAR, MMP1, MMP11, MMP3, TIMP3, etc) were among the 

most significant genes in this subgroup of patients. 

 

 

Multivariate Cox analysis included nodal status, grade, tumor size, age, hormone receptor status and proliferation. In all 

three study sets uPA demonstrated independent prognostic value and was significantly associated with MFS in ERBB2+ 

breast patients. Besides uPA, nodal status retained independent prognostic value in both the STB and Amsterdam study set, 

respectively. Of note, uPA proved not to be significantly associated with MFS in ERBB2- patients in any of the three study 

sets. Cutoff values for uPA status were chosen to identify ERBB2-positive cases with poor prognosis (5-year MFS of 50% 

or less) after evaluation of the 5-year MFS as a function of uPA mRNA expression. The cutoff values determined by this 

method revealed comparable cutoffs for uPA among the three data sets. Subsequently, ERBB2+ and ERBB2- patients were 

dichotomized by uPA status and Kaplan-Meier analyses performed. Within each study set, uPA status proved to be a strong 

prognostic factor for the development of distant metastasis but only among ERBB2-positive breast cancer patients (hazard 

ratios: STB study 3.1 [95% CI 1.3-7.4]; Amsterdam study 3.5 [1.5-8.1]; and Rotterdam study 2.8 [1.1-7.0]; all p<0.02; Fig-

ure 21). The prognostic value of uPA overexpression was even more pronounced for overall survival among ERBB2+ Ams-

terdam patients (HR=4.6 [1.9-11.5]; p<0.001). A search for alternative cutoff values for uPA failed to identify any level of 
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uPA mRNA expression significantly associated with MFS among ErbB2- breast cancer patients in any of the three study 

sets 
100

. 

ER expression was significantly lower in ERBB2+ as compared to ERBB2- tumors. However, no significant difference was 

found with respect to ER status, nodal status, tumor size, age or treatment group between the dichotomized ERBB2+ /uPA- 

and ERBB2+/uPA- patients in any of the three study sets. In addition, we investigated the 70-genes prognostic signature 
34

 

which classified almost all ERBB2+ patients into the poor prognosis group and revealed no difference in regard of the uPA 

status among ERBB2+ patients. 

 

Cox Regression Analysis with Bootstrap (n=100, with Replacement)

Ranked accoring median p-Value in ERBB2 negative Patients

(n=317 patients, n=60 genes)

 
Figure 20. Association of 60 selected cancer-associated genes detected by art-PCR with survival (MFS) in a subset of 245 

ERBB2- primary breast cancer samples. Proliferation genes (Survivin, E2F1, TOP2A, TK, TYMS, Cyclin D, etc) are among 

is the most significant feature in this subgroup of patients. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21. Kaplan-Meier analysis (MFS) of ERBB2 com-

bined with uPA status (meta-analysis of three independent 

breast cancer data sets comprising 898 samples; cutoff for 

uPA was 25
th

 percentile, for ERBB2 based on mixture 

model) 
100

. 
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Evaluation of proliferation as a key biological process relevant to cancer: associations with different breast cancer pheno-

types and survival 

 

Proliferation was selected as an important hallmark of cancer and determinant of cancer outcome and evaluated in different 

subsets of patients 
101,102

. Increased tumor cell proliferation is frequently accompanied with cell matrix remodeling and neo-

angiogenesis which together with a fast growth rate are the biological basis of an aggressive tumor phenotype. We focused 

on E2F1, BIRC5, TK1, TYMS and TOP2A as surrogate markers for proliferation 
99

. 

The prognostic value of proliferation genes was first evaluated in our data set of 317 breast cancer patients by univariate 

Cox regression: all five markers revealed very similar prognostic value and correlated significantly with distant metastasis-

free survival (MFS). However, subsequent analysis in subgroups of ER+/ER- or ERBB2+/- patients revealed that prolifera-

tion was significantly associated with MFS in ER+ and ERBB2-, but not in ER- or ERBB2+ patients (Figure 22) 
99

. ER- and 

ERBB2+ tumors expressed almost exclusively high proliferation levels while ER+ or ERBB2- patients contained a sub-

group of tumors with low proliferation levels. Analogous findings were made in independent microarray data sets (Amster-

dam and Rotterdam data sets). However, the difference was less pronounced in the Rotterdam data set which contained a 

smaller population of low proliferating ER+ or ERBB2- tumors.  

The prognostic value proliferation was further assessed in multivariate analysis retaining independent prognostic value in 

contrast to ER or ERBB2 status. Moreover, we included a previously established 70-gene prognostic signature which was 

successfully used to discriminate patients with good and poor prognosis 
7,34

: 70-gene signature and proliferation showed 

similar prognostic value and were together with tumor size, age and nodal status independent prognostic markers. Subse-

quently, we used proliferation, ER and ERBB2 status for Kaplan-Meier analysis (Figure 28). In all three study populations, 

patients with low proliferation correlated with a significantly better prognosis (MFS). However, while the 5-year MFS of 

patients with tumors expressing low proliferation levels was very good for patients in the STB (88%) Amsterdam (94%) 

data sets, it was less favorable in the Rotterdam data set (74%). Moreover, the hazard ratio was 4.3 (p<0.001) and 5.1 

(p<0.001) in the former two data sets, but only 1.6 (p=0.041) in the latter one 
99

. Since the proportion of low and interme-

diate grade tumors was much smaller in the Rotterdam data set, the cutoff (30th percentile) was probably too high to identi-

fy the subgroup of low-proliferating tumors. In contrast, lowering the cutoff yielded very comparable results. Kaplan-Meier 

analysis of ER+/- and ERBB2+/- patients revealed no difference once the subgroup of low proliferating tumors was re-

moved (Figure 22). 

Finally, comparison of proliferation and a previously published 70-gene prognostic signature 
7
 revealed that patients as-

signed to the good-prognosis group by gene signature typically expressed low proliferation levels and were ER+ (Figure 23) 
99

. In addition, there was good correlation between proliferation and the correlation coefficients used by the authors to clas-

sify patients into the good- and poor-prognosis groups. E2F1 and 70-gene prognostic signature and E2F1 showed also very 

similar outcomes in Kaplan-Meier analysis (Figure 23) 
99

. Tumors classified by both into the low-risk group were at lowest 

risk to develop metastasis. Similar results were obtained with respect to the prognostic profiles defined by the intrinsic sub-

types gene classification, the wound response signature and the Oncotype DX™ recurrence score (Figure 23). 

 

 

 

 
 A. B. C. D. 
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 E. F. G. H. 

 

 

 
 I. J. K. L. 

 

 

Figure 22. Kaplan-Meier Analysis (MFS). Top: STB data set, middle: Amsterdam data set, bottom: Rotterdam data set. ER 

status (Fig. A, E, I), ERBB2 status (Fig. B, F, J), combination of ER status and E2F1 (Fig. C, G, K), combination of ERBB2 

status and E2F1 (Fig. D, H, L). Pictograms correspond to the scatter plots shown in Figure 1. Color code indicates the pa-

tient population analyzed in the corresponding survival curve 
99

. 

 

 

 

 

 

Figure 23 (next page). Comparison of E2F1 and 70-gene signature in the Amsterdam data set: Scatter plots of estrogen 

receptor (ESR1) and ERBB2 versus E2F1 expression levels (Fig. A and B). Horizontal lines indicate the 30
th

 and 39
th

 per-

centile for E2F1, respectively. 

Kaplan-Meier analysis (MFS) of the Amsterdam data as reported by Fan et al. 
51

: E2F1 (30
th

 percentile cutoff) versus 70-

gene signature (Fig. C), luminal subtypes (Fig. D), recurrence score (Fig. E) and wound response signature (Fig. F) 
99

. 
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 ER- ER+ ERBB2- ERBB2+ 

A.  B.  

 

 

C.   D.  

E.   F.  
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Evaluation of gene expression profiles detected in core biopsies and corresponding surgical biopsy 

 

Gene expression profiles of 22 consecutive breast cancer patients, for whom both core (CB) and surgical biopsy (SB) were 

available, were evaluated by qrt-PCR for a panel of over 60 cancer-related genes 
98

. All core biopsies were obtained under 

sonographic guidance. After establishing the diagnosis of breast cancer, all patients underwent breast surgery with sentinel 

node lymphonodectomy or axillary lymphonodectomy if indicated.  

Hierarchical clustering revealed that paired CB and SB generally clustered together. Interestingly, two separate CBs taken 

from the same patient were very similar to each other, however, differed from their surgical GEP. Subsequent analysis of 

paired CB and SB showed high correlation (rs from 0.86 to 0.98, all p<0.001) 
98

. Gene-by-gene analysis by means of paired 

t-tests showed significant differences between CB and SB for four genes: PAI-1, COX-2, uPAR and MMP1 demonstrated 

all increased levels in the surgical sample 
98

. The increase in the expression of these genes was not related to the time-frame 

between CB and surgery. All other genes were very similarly expressed in paired CB / SB. In order to verify whether the 

higher expression levels of PAI-1 and COX-2 observed in SBs could have been induced by the preceding CB procedure, 

expression levels of the same genes were compared in an independent population of over 300 primary breast cancer pa-

tients. These samples were investigated with the same technique but had no CB taken prior to surgery. However, there was 

no significant difference between the expression levels of PAI-1 or COX-2 measured in surgical samples of the present and 

the reference study population. More importantly, no variation was observed for the remaining genes, particularly with re-

spect to clinically used markers such as ER, PgR and ERBB2 between CB and SB 
98

. 
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Evaluation of the prognostic value of p-ERBB2 and p-AKT expression levels in breast cancer and associations with gene 

expression profiles 

 

p-Y1248-ERBB2 levels were measured with a two-site chemiluminescence-linked immunosorbent assay (CLISA) in 70 

primary breast cancer patients 
93

. Statistical analysis aimed at investigating relationship with known prognostic markers, 

survival, other ERBB family members measured on protein and mRNA level as well as microarray gene expression data.  

p-ERBB2 correlated strongly with ERBB2 levels, both on RNA (r=0.62) and protein (r=0.53) level. When the median value 

of p-ERBB2 was taken as cutoff for p-ERBB2 status, 8 out of 30 (27%) ERBB2- and 27 out of 40 (68%) ERBB2+ tumours 

were considered p-ERBB2+ (p=0.001). No significant association was found between p-ERBB2 levels and nodal status. 

Further, p-ERBB2 expression levels correlated inversely with ER (rs=-0.54) and PgR (rs=-0.46) mRNA and protein expres-

sion levels (rs=-0.67 and rs=-0.45), and with EGFR (rs=0.26) and ERBB4 (rs=-0.47) mRNA levels. The negative correlation 

between p-ERBB2 and ERBB3 mRNA was statistically not significant 
93

. 

Univariate Cox regression analysis revealed significant correlation DFS and OS. Interestingly, p-ERBB2 retained signifi-

cant prognostic value in both, ERBB2- and ERBB2+ patients. Subsequently, Kaplan-Meier showed poorer outcome for p-

ERBB2+ patients (p=0.004); this was more pronounced in nodal positive than nodal negative patients. Of note, p-ERBB2 

status was significantly associated with DFS in the subgroup of ERBB2- patients. Further, p-ERBB2 was an independently 

associated with survival in multivariate analysis including ER, EGFR, ERBB2, pT, pN and age 
93

. 

Gene expression analysis from microarray data revealed that p-ERBB2 correlated strongly with the “ERBB2 amplicon” 

genes (17q11-21, Table 3). Functional annotation showed strongest association with cell growth/cell cycle (Figure 24). 

Generally, there was strong overlap between genes associated with ERBB2 and p-ERBB2 status, however, also significant 

differences with respect to differentially expressed genes (Figure 25). No correlation was found between p-ERBB2 and p-

AKT. 

Spearman Gene ChromLoc Description

0.621072947 STARD3 17q11-q12 START domain containing 3

0.548218287 ERBB2 17q11.2-q12 v-erb-b2 erythroblastic leukemia viral oncogene homolog 2 

0.523130546 GRB7 17q21.2 growth factor receptor-bound protein 7

0.44120062 LAD1 1q25.1-q32.3 ladinin 1

0.439233821 MGST1 12p12.3-p12.1 microsomal glutathione S-transferase 1

0.430266886 ABCC3 17q22 ATP-binding cassette, sub-family C (CFTR/MRP), member 3

0.418729752 S100P 4p16 S100 calcium binding protein P

0.407463252 EME1 17q21.33 essential meiotic endonuclease 1 homolog 1 (S. pombe)

0.399504306 PSMD3 17q21.2 proteasome (prosome, macropain) 26S subunit, non-ATPase, 3

0.394379084 KRTHB3 12q13 keratin, hair, basic, 3

0.37967905 RGS16 1q25-q31 regulator of G-protein signalling 16

0.374915503 CXCL10 4q21 chemokine (C-X-C motif) ligand 10

0.359018757 DKK1 10q11.2 dickkopf homolog 1 (Xenopus laevis)

0.336458627 COMP 19p13.1 cartilage oligomeric matrix protein

0.321397667 KYNU 2q22.3 kynureninase (L-kynurenine hydrolase)

0.303861791 PRODH 22q11.21 proline dehydrogenase (oxidase) 1

0.293879909 MMP1 11q22.3 matrix metalloproteinase 1 (interstitial collagenase)

0.289961867 THRAP4 17q21.2 thyroid hormone receptor associated protein 4

0.287320658 CKMT1 15q15 creatine kinase, mitochondrial 1 (ubiquitous)

0.279565149 MMP13 11q22.3 matrix metalloproteinase 13 (collagenase 3)

0.278667604 MAGEA2 Xq28 melanoma antigen, family A, 2

0.275241492 SLC16A3 17q25 solute carrier family 16 (monocarboxylic acid transporters), member 3

0.273401496 BIRC5 17q25 baculoviral IAP repeat-containing 5 (survivin)

0.264555977 MGLL 3q21.3 monoglyceride lipase

0.262954479 PHB 17q21 prohibitin

0.261669378 RGS1 1q31 regulator of G-protein signalling 1

0.260438319 MYCN 2p24.1 v-myc myelocytomatosis viral related oncogene, neuroblastoma derived (avian)

0.259619089 CCL18 17q11.2 chemokine (C-C motif) ligand 18 (pulmonary and activation-regulated)

0.258964359 AQP5 12q13 aquaporin 5

…

…

-0.545236745 MAPT 17q21.1 microtubule-associated protein tau

-0.542544518 MGC18216 15q26.3 hypothetical protein MGC18216

-0.528608083 ESR1 6q25.1 estrogen receptor 1

-0.505277889 STC2 5q35.2 stanniocalcin 2

-0.466710255 AGTR1 3q21-q25 angiotensin II receptor, type 1

-0.451391476 RERG 12p13.1 RAS-like, estrogen-regulated, growth-inhibitor

-0.441568495 KIF5C 2q23.3 kinesin family member 5C

-0.43962629 ALB 4q11-q13 albumin

-0.436178559 BCL2 18q21.33 B-cell CLL/lymphoma 2

-0.420511596 LAF4 2q11.2-q12 lymphoid nuclear protein related to AF4

-0.407230032 NAT1 8p23.1-p21.3 N-acetyltransferase 1 (arylamine N-acetyltransferase)

-0.402698658 BCL2 18q21.33 B-cell CLL/lymphoma 2

-0.402561979 ABCA3 16p13.3 ATP-binding cassette, sub-family A (ABC1), member 3

-0.39309137 SCNN1B 16p12.2-p12.1 sodium channel, nonvoltage-gated 1, beta (Liddle syndrome)

-0.385832366 FLJ20366 8q23.2 hypothetical protein FLJ20366

-0.384577726 SERPINI1 3q26.2 serine (or cysteine) proteinase inhibitor, clade I (neuroserpin), member 1

-0.381991221 COL4A6 Xq22 collagen, type IV, alpha 6

-0.368563804 GLRB 4q31.3 glycine receptor, beta

-0.363205242 GATA3 10p15 GATA binding protein 3

-0.36075752 KCNE4 2q36.3 potassium voltage-gated channel, Isk-related family, member 4

-0.356178203 CCNG1 5q32-q34 cyclin G1

Spearman Correlation, pERBB2, n=Top 408 Genes

Positive Correlation

Negative Correlation

 
Table 3. Correlation of p-ERBB2 expression levels (CLISA) with genes expression levels measured by microarray. Genes 

from the “ERBB2-amplicon” are among the strongly correlating genes, revealing a similar pattern like ERBB2. 
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p-ErbB2, Top 200 most correlated Genes: Biological Process and KEGG

GO

KEGG

 
 

Figure 24. Functional annotation of the most correlated genes with p-ERBB2 (GO: gene ontology; KEGG: Kyoto Encyclo-

pedia of Genes and Genomes). 

 

 

Comparison of Top 200 Gene List from ErbB2 and pErbB2

Biological Process

Molecular Function

 
 

Figure 25. Comparative annotation of the 200 top genes associated with ERBB2 and p-ERBB2, respectively. 
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Quantitative expression levels of total phosphorylated p-S473-AKT (AKT1/2/3) were measured by means of a two-site 

chemoluminescence-linked immunosorbent assay (CLISA) on cytosol extracts from 156 primary breast cancer samples 
94

. 

There was no association between p-AKT and nodal, ER, ERBB2 or p-ERBB2 status, and tumor size. Survival analysis 

revealed that only very high expression levels of P-Akt correlated (p < 0.01) with poor prognosis. Interestingly, the prognos-

tic value of P-AKT expression was more pronounced in the subset of ERBB2+ patients (p<0.001) 
94

. Subsequently, p-AKT 

expression levels were correlated with mRNA expression levels measured by qrt-PCR of more than 60 cancer related bio-

markers involved processes such as proliferation, hormone dependency, apoptosis, angiogenesis, invasion and metastasis: 

association was found only with markers of proliferation (TYMS, TK1, survivin (BIRC5), TOP2A and E2F1, all p<0.05). 

In agreement with this observation, microarray analysis in a subset of 65 biopsies underlined the correlation of p-AKT with 

proliferation (Table 4, and Figures 26 and 37). A schematic overview about the signaling pathways downstream of AKT 

impacting proliferation is summarized in Figure 28. 

 

Spearman Gene ChromLoc

-0.344668384 THRA 17q11.2

-0.31914751 PPARGC1A 4p15.1

-0.311787513 NDN 15q11.2-q12

-0.300725544 IGHM 14q32.33

-0.299163873 NUCB1 19q13.2-q13.4

-0.297477382 RAFTLIN 3p25.1

-0.294386832 IGF1 12q22-q23

-0.292595104 C1S 12p13

-0.29196375 MGC16044 12q13.11

-0.289853428 ITM2B 13q14.3

-0.289590963 PTGS1 9q32-q33.3

-0.285231143 HP 16q22.1

-0.285153016 RRAS 19q13.3-qter

-0.284495267 EBAF 1q42.1

-0.27863175 IGFBP7 4q12

-0.276138654 C1S 12p13

-0.272607212 HLA-DRB3 6p21.3

-0.270893911 IL2RB 22q13

-0.265024927 LOC387763 11p11.2

-0.25924454 CILP 15q22

-0.259032741 ALG3 3q27.3

-0.256341385 ADPRTL1 13q11

-0.256238626 ARGBP2 NA

-0.254614188 CDKN2A 9p21

-0.25346353 FLRT2 14q24-q32

…

Spearman Gene ChromLoc Description

0.508204961 TYMS 18p11.32 thymidylate synthetase

0.4754085 HMGB2 4q31 high-mobility group box 2

0.384736698 KIF22 16p11.2 kinesin family member 22

0.362103958 CENPF 1q32-q41 centromere protein F, (mitosin)

0.344425276 ZNF354A 5q35.3 zinc finger protein 354A

0.338594473 RANBP17 5q34 RAN binding protein 17

0.328902674 RAD54L 1p32 RAD54-like (S. cerevisiae)

0.320870264 CDC2 10q21.1 cell division cycle 2, G1 to S and G2 to M

0.319418346 UHRF1 19p13.3 ubiquitin-like, containing PHD and RING finger domains, 1

0.316854051 ZNF200 16p13.3 zinc finger protein 200

0.315328926 EZH2 7q35-q36 enhancer of zeste homolog 2 (Drosophila)

0.315020795 CBX1 17q chromobox homolog 1 (HP1 beta homolog Drosophila )

0.314501055 DDX11 12p11 DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 

0.314345757 CGI-01 1q24-q25.3 CGI-01 protein

0.310300072 FEN1 11q12 flap structure-specific endonuclease 1

0.308545454 TP53BP2 1q42.1 tumor protein p53 binding protein, 2

0.308525889 SFRS1 17q21.3-q22 splicing factor, arginine/serine-rich 1 

0.306824588 KIF20A 5q31 kinesin family member 20A

0.305441749 LUC7L 16p13.3 LUC7-like (S. cerevisiae)

0.302252143 PCNA 20pter-p12 proliferating cell nuclear antigen

0.302187956 STMN1 1p36.1-p35 stathmin 1/oncoprotein 18

0.301859198 C16orf34 16p13.3 chromosome 16 open reading frame 34

0.298186725 CDC2 10q21.1 cell division cycle 2, G1 to S and G2 to M

0.296003347 MGC24665 16p13.2 hypothetical protein MGC24665

0.294398685 RAD51 15q15.1 RAD51 homolog (RecA homolog, E. coli) (S. cerevisiae)

0.289153311 MAD2L1 4q27 MAD2 mitotic arrest deficient-like 1 (yeast)

0.285599516 CDCA3 12p13 cell division cycle associated 3

…

Correlation (Spearman):  pAkt with n=3839 Top Genes from Array

-> many genes involved in cell cycle / proliferation (DNA Replication, Mitosis, Transcription, etc)

Negative Correlation: Positive Correlation:

 
 

Table 4. Correlation of p-AKT (CLISA) with genes expression levels of 3839 genes measured by microarray. Many genes 

involved in proliferation / cell cycle are among the most correlated genes with phosphorylated AKT. 
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Cellular Component

Molecular Function

Biological Process

Example pAkt: Top 100 correlated Genes 

 
 

Figure 26. Functional annotation of the most correlated genes (microarray) with p-AKT (gene ontology) 

 

…

KEGG Pathways

Example: KEGG Pathways, Cell Cylce

 
Figure 27. Example of mapping the top 100 most correlated genes with p-AKT in KEGG pathways (Kyoto Encyclopedia of 

Genes and Genomes, Cell cycle). Genes underlined in red were among the top 100 genes which correlated most with p-AKT 

expression. 
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Figure 28. Overview of AKT signaling to proliferation. 
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Discussion 
 

Depending on the stringency of the criteria used, several differentially expressed genes were identified when comparing 

ERBB2+ with ERBB2- tumor samples or that were associated with ERBB status. Interestingly, many of these mapped to 

chromosome 17q12-21 which harbors the “ERBB2-amplicon”, indicating the underlying amplification is responsible for 

this finding. Indeed, parallel measurements of mRNA levels and gene copy number by comparative genomic hybridization 

(CGH) and gene expression microarrays revealed that variation in gene copy number contributes in a high degree to varia-

tion in gene expression in tumor cells 
103

. Pollack et al. 
103

 found that DNA copy number influenced gene expression across 

a wide range of DNA copy number alterations (deletion, low-, mid- and high-level amplification) with 62% of highly ampli-

fied genes having moderately or highly elevated gene expression, and that overall, at least 12% of all the variation in gene 

expression among the breast tumors was directly attributable to underlying variation in gene copy number. In this context, 

also the systematic analysis of gene copy number and expression by CGH microarrays in breast cancer cell lines and tissues 

revealed co-amplification and simultaneous elevation of expression levels of several genes in addition to ERBB2 
82

. How-

ever, pattern analysis of deletions and amplification of the 17q12-21 region around the ERBB2 gene also demonstrated that 

different co-amplification patterns occur, where ERBB2 is not always co-amplified with other genes of this region and vice 

versa 
83

. This was in line with our observations that genes from the ERBB2-amplicon did not always demonstrate simulta-

neous co-expression pattern of all genes from this region in the cluster analysis. 

In addition to “ERBB2-amplicon” genes we identified several other differentially expressed genes associated with ERBB2 

status, some of which might potentially be regulated by ERBB2 or arise through association with phenotypic features of the 

disease such as the cell of origin. Among these were genes related to ER status, genes involved in metastasis and invasion 

(e.g. proteases, S100P/A4), angiogenesis (e.g. VEGF, IL8, HIF1A), proliferation (BIRC5, TK1, CDC2, CDKN1A) and cell 

adhesion (e.g. CEACAM6, CDH1). Moreover, our results demonstrated that using a signature of around 30 genes could be 

used to accurately classify the samples according to their ERBB2 status, notably in the absence of genes from the “ERBB2 

amplicon”. Similar findings were reported in a microarray study by Bertucci et al. 
47

 who developed a gene-expression sig-

nature distinguishing ERBB2+/- breast tumors. 

Gene expression studies of genes associated with ERBB2 status in mammary cell lines transfected with ERBB2 or cell lines 

harboring the “ERBB2-amplicon” demonstrated that there were many differentially expressed genes compared to normal 

cell lines in both cases, however, there was very little overlap between the cells transfected with ERBB2 only and cells with 

the whole amplicon 
46

. Accordingly, there was very little overlap reported by the same authors when comparing the diffe-

rentially expressed genes identified in cell lines with those differentially expressed between ERBB2+/- tumor samples. In 

fact, there were only two common differentially expressed genes between cell lines and tumors, one of them being ERBB2. 

Nevertheless, many of the differentially expressed genes mapped to similar pathways including proliferation, cell adhesion, 

invasion, etc., and showed some overlap with the genes identified in our breast tumor tissues. For example, S100P and 

S100A4 were among these genes and have been previously implicated in breast tumorigenesis and ERBB2 status 
6,104,105

. 

Along these lines, White et al. 
106

 investigated cellular responses to ERBB2 overexpression in mammary cell lines at base-

line and after stimulation with heregulin by microarrays. Among the constitutively higher or lower expressed genes, thus, 

not related to stimulation be heregulin were 21 up- and 27 down-regulated genes including S100P. Stimulation by heregulin 

led to increased MAPK signaling, increased ERBB2 (EGFR)-related autocrine signaling, and inhibition of basal IFN signal-

ing. However, there was limited overlap with the differentially expressed genes observed in tumor tissues. Of note, this 

group further demonstrated that gene expression changes correlated well with protein expression levels of the same genes.  

With respect to the gene expression changes associated with ERBB2 status observed in breast tumor biopsies, current data 

suggest that they reflect different aspects of the disease. These include the underlying genetic changes (eg. the “ERBB2 

amplicon”), the cellular phenotype which itself appears to be combination of genetic changes and possibly the cell of origin, 

as well as the interplay between tumor tissue and stroma, vasculature and immune response. Clinically, they result in an 

aggressive phenotype through regulation of key processes relevant to cancer such as proliferation, invasion, angiogenesis 

and cell adhesion. Data from the literature demonstrated, that ERBB2 indeed can regulated and interfere with these 

processes, and inhibition of ERBB2 using a monoclonal antibody directed against the extracellular leads to prolonged sur-

vival.  

 

With respect to molecular breast cancer classification, recent microarray studies demonstrated that breast cancers can be 

classified into molecularly distinct and clinically relevant subgroups based on variations in gene expression patterns. Sorlie 

et al. 
6
 used unsupervised methods and classified breast cancers into the ER-negative “basal” and “ERBB2-like” subtypes, 

and two ER-positive “luminal” subtypes (luminal A and B). Of note, not all ERBB2-positive tumors fall into the ERBB2-

like category by microarray; few ERBB2+ samples grouped together with luminal B tumors and, thus, were ER+. Other 

research groups used supervised methods to identify gene signatures associated with prognosis 
8,10,34

. Despite promising 

results and successful correlation of gene expression profiles with survival or treatment response, subsequent biological 

interpretation turned out to be non-trivial provoking some skepticism regarding reproducibility and consistency of the newly 
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proposed molecular classifiers 
48,49,107,108

. However, recent data indicate that although little overlap was observed on the lev-

el of individual genes, the underlying biological processes and pathways appear to be similar 
42,48,51

. 

Instead of correlating and mapping prognostically significant genes/signatures or molecular phenotypes to biological path-

ways we explored a “reverse supervised approach”, and correlated known and well defined biological processes to prognos-

tic signatures and molecular phenotypes. In addition, the analysis was extended to selected breast cancer subtypes on an 

individual basis allowing gaining insight into some of the common mechanisms linked with breast cancer prognosis, and 

point towards distinct molecular pathways being relevant according to the breast cancer subtype investigated. At the same 

time, we were able to shed some light on possible sources for discrepancies encountered among different prognostic genes 

signatures in the literature. For example, the 70- and 76-gene prognostic signatures published with the Amsterdam and Rot-

terdam data sets share only three genes 
48,109

, thus, it was speculated that differences in microarray technology or the pres-

ence of multiple signatures that all correlate with survival could be responsible for this observation 
48,108

. However, our re-

sults demonstrate that there are substantial differences in tumor biology between the two study populations, in particular due 

to heterogeneity in sample populations. Thus, we suggest that true biological differences in the signatures might exist which 

are not related to technical problems or data variability. 

In our analysis, proliferation emerged a key determinant of breast cancer prognosis and is particularly suitable to identify a 

subgroup of patients with favorable outcome. The prognostic value of established markers such as ER and ERBB2, in con-

trast, is strongly related to proliferation. This also applies for the molecular subtypes described by Sorlie et al. 
6
, the Ams-

terdam 70-gene signature 
34

 as well as a recently identified recurrence score 
10

 and the wound response signature 
38,44

. Thus, 

proliferation seems to be one of the most “downstream” players of all of these markers in terms of prognosis. Moreover, 

proliferation and in particular E2F1 as a transcription factor also appear to be a good candidate markers for chemotherapy 

response: genes such as TK1, TOP2A and TYMS are regulated by E2F1 or associated with proliferation and are involved as 

direct targets or in metabolism of 5-FU and anthracycline-based therapy 
39,110-113

. Indeed, recent studies demonstrated that 

high proliferating tumors responded better to chemotherapy 
36,39

. Therefore, breast cancer classification should include accu-

rate quantification of the proliferation status on a routine clinical basis. Current data suggest that patients with high prolife-

ration levels then should receive systemic chemotherapy on top of endocrine treatment for ER+ and ERBB2-targeted thera-

py for ERBB2+ tumors. In contrast, tumors with low E2F1 levels will not require aggressive treatment. Since these tumors 

are ER+ endocrine therapy might be sufficient 
10,48

 (Figure 29). 

 

 

 
 

Figure 29. Overview and tentative relationships between recently proposed molecular breast cancer classifiers and ER, 

ERBB2 and E2F1. Possible therapeutic implications are indicated. “Amsterdam Poor” and “Amsterdam good” (Amster-

dam 70-gene signature 
34

); “Luminal A”, “Luminal B”, “Basal subtype”, and “ERBB2 subtype” (Stanford classification 
6
); 

“Recurrence Score High” and “Recurrence Score Low” (recurrence score 
10

, Genomic Health/Oncotype DX ™). 
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While consistency starts to emerge with respect to classification of low-risk patients efforts should continue to refine and 

further explore the high-proliferation, poor-prognosis subtypes. We did a first step into that direction and analyzed 

ERBB2+/- tumors separately. In our analysis proteases emerged as the most relevant genes with regard to progrnosis in 

ERBB2+ patients and further raised the question about a possible causal relationship. Indeed, there is evidence to support 

the view that ERBB2 can transcriptionally upregulate uPA expression and members of the MMP family 
53,68,69

. This was in 

line with the observation that ERBB2+ tumors expressed significantly higher proteases levels as compared to ERBB2- tu-

mors. Similar findings were reported for other cancers 
114,115

. However, the mechanistic interaction linking ERBB2 with 

uPA upregulation and increased breast cancer metastatic potential is likely more complex. Moreover, ERBB2 overexpres-

sion occurs within tumor epithelium while uPA and other proteases are also expressed by tumor stroma 
116,117

, something 

further to consider when microdissection techniques are used for expression profiling and subsequent cancer classification. 

However, these results indicate that apparently only taken in conjunction, uPA and ERBB2 overexpression determine the 

aggressive breast cancer phenotype. This functional interaction would deserve further study at both cellular and clinical le-

vels. Apparently, the proteolytic activity of uPA alone is insufficient to determine the most metastatic of breast cancer phe-

notypes and perhaps requires the proliferation and survival advantages provided by ERBB2 overexpression. Moreover, the 

role of other frequently co-amplified genes on the “ERBB2-amplicon” deserves further investigation. 

These finding also provide some evidence to suggest that the heterogeneous nature of the breast cancer will likely require 

developing “individualized gene signatures” rather than one signature for all patients since the prognostic value of individu-

al markers or gene signatures depends on the biological context of the tumor. Thus, patient stratification might be necessary 

to further optimize current molecular breast cancer classification. Moreover, the use of a “reverse supervised approach” in 

terms of assessing the contribution of individual biological processes (hallmarks of cancer) might constitute an interesting 

approach. Together these constitute valuable strategies towards a biology driven classification and molecular understanding 

of breast cancer, and facilitating the clinical interpretation with respect to the development of appropriate treatment strate-

gies. In this context, ERBB2+ patients might be worthwhile to consider, in addition to standard therapy, for anti-uPA or 

MMP-targeted therapy. 

Another aspect to be considered with respect to clinical application of gene expression-based molecular classification be-

came apparent during the study of paired core and surgical biopsy from the same patient. Today ultrasound-guided core 

biopsy is a well established method to diagnose breast cancer. Thus, molecular profiles might potentially be performed on 

core biopsy material. However, the clinical utility of the information gained by CB needs to be representative for the whole 

tumor. Our study of paired core biopsy and surgical sample suggests that quantitative expression levels of 60 genes detected 

in CBs were highly comparable to their paired surgical samples. However, gene-by-gene analysis demonstrated higher ex-

pression level of PAI-1, COX-2, uPAR and MMP1 in the surgical specimen as compared to their paired CB. Tissue sam-

pling by CB is known to cause local injury which in response will induce wound healing characterized by recruitment of 

inflammatory cells, stimulation of stromal and epithelial cell proliferation, cell migration, and increased angiogenesis. All 

four genes have been described to be essentially involved in these processes 
118,119

. However, reparative processes asso-

ciated with wound healing share also many parallels with cancer 
120-122

.While proteases, their inhibitors, cyto-/chemokines 

and growth factors are essential for the process of wound healing and tissue repair they play also central roles in cancer pro-

gression. For example, uPAR and PAI-1 are responsible for the degradation and remodeling of the extracellular matrix, an-

giogenesis, cell adhesion and migration which are necessary for tumor cell invasion and metastasis 
123,124

. Both were further 

associated with poor clinical outcome in breast cancer 
125-127

. Accordingly, a previously identified "wound-response signa-

ture" turned out to have prognostic value in several carcinomas including breast cancer 
44

.  

Therefore, the observed alterations of individual genes might be attributable to a wound healing process induced by the core 

biopsy procedure. However, this might impact the clinical interpretation with respect to tumor aggressiveness and subse-

quent treatment decisions. Nevertheless, molecular classification of breast cancer samples is feasible and even in smallest 

amounts of tissue, and seems to outperform traditional classification systems. Therefore, the accurate quantification of at 

least the proliferation status as part of routine clinical breast cancer assessment should be encouraged. 

 

For more detailed discussion of the results see attached publications 
93,94,98-100

. 

 

A possible gene-expression-based approach towards a molecular breast cancer classification is outlined in Figures 30-35. 

Molecular analysis will include an algorithm to assess malignancy status, eg. whether the analyzed tumor sample is malig-

nant or benign, followed by stratification according to ERBB2 status and individualized risk score calculation for each sub-

group. Based on the prognosis and selected predictive genes, therapy will be tailored according to the specific expression 

changes for each patient. 
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Figure 30. Schematic for a putative classification algorithm for routine clinical diagnosis and risk assessment (above) with 

potential therapeutic implications (therapy prediction and selection, below). Malignancy status, prognosis, ERBB2 and ER 

status, and therapy prediction will be assessed using a PCR or microarray-based test with few, well selected genes. 
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Gene p-Value
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Figure 31. Example of candidate genes prognostic in subgroups of ERBB2+ or ERBB2- tumors. Proliferation is the domi-

nating cluster in ERBB2- tumors while proteases are the main prognostic indicators in ERBB2+ tumors. 
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Figure 32. Kaplan-Meier survival analysis. Based on a proliferation signature (average of 5 proliferation genes) survival is 

predicted based on a Cox regression model. Left: Survival curves for minimum value, 5
th

, 25
th

 50
th

, 75
th

, 90
th

 percentile and 

maximum value. Right: Modeling of the risk of developing metastasis after 4-years (top), and 5 and 10 years (bottom) de-

pending on the expression levels of these 5 proliferation genes (“risk score”). The same analysis was performed using two 

independent data sets (STB data set: 317 breast cancer samples; Amsterdam data set: 295 breast cancer samples) 
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Figure 33. Kaplan-Meier survival analysis. Based on a 3 proteases survival is predicted based on a Cox regression model. 

Left: Survival curves for minimum value, 5
th

, 25
th

 50
th

, 75
th

, 90
th

 percentile and maximum value. Right: Modeling of the risk 

of developing metastasis after 4-years (top). Stratification according ERBB2 status (Top: ERBB2+ tumors; bottom: 

ERBB2- tumors). Interestingly, the prognostic value of proteases is much less prominent in ERBB2- tumors. 
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Figure 34. Example of a prognostic score algorithm. Several genes are selected according to their association with survival 

in a training set. A prognostic score is calculated for each sample based on Cox coefficients and the actual expression value 

of the respective gene. The performance is evaluated in the training set for various cutoffs thereafter. 

 

 

 
 

Figure 35. Performance (5-year relapse-free survival) of the prognostic score in 317 primary breast cancer samples based 

on 5 genes. The score for a new sample could be calculated according to the formula and the coefficients derived from the 

training set and estimate the 5-year survival of that patient by comparing the score to the corresponding score in the test 

set. 
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Outlook 

 

Possible extensions and/or follow-up through collaboration partners were thought about: (i) laser capture micro dissection 

(LCM) to investigate role of stroma/epithelium, (ii) refine methods and protocols to develop diagnostic tools for the routine 

clinical setting, (iii) prospective clinical trial to assess predictive value and/or select patients for novel therapies (e.g. Her-

ceptin ®), (iv) model system to explore/validate some of findings, in particular the relationship between ERBB2 overex-

pression and the mechanisms of invasion and metastasis through the regulation of proteases, (v) further explore potential of 

publicly available gene expression data sets. 

 

 

Participants and Collaborations 
 

(See also NIRA data base) 

 

Patrick Urban, Vincent Vuaroqueaux, Martin Labuhn, Jonas Cicenas, Serenella Eppenberger-Castori, Urs Eppenberger, 

Willy Küng, Otto Hagenbuchle, Keith Harshman, Mauro Delorenzi, Darlene Goldstein, Therry Sengstag, Asa Wirapati 

 

 

Collaborations 

 

Main: NCCR Molecular Oncology, Lausanne 

 Stiftung Tumorbank Basel, University of Basel 

 Swiss Institute for Experimental Cancer Research (ISREC), Lausanne 

 DNA Array Facility Lausanne, CIG, University of Lausanne 

 Bioinformatics Core Facility, Lausanne 

 Swiss Institute for Bioinformatics, Lausanne 

 OncoScore AG, Basel 

 Molekulare Tumorbiologie, University Basel, Department for Gynecology and Oncology 

Others: University Hospital, Department for Gynecology and Oncology, Basel 

 University Institute of Pathology, Basel 

 Buck Institute for Aging, Novato, CA, USA 

 ZeTuP, St. Gallen 
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Appendix 

Probe Preparation (Labeling), Hybridization and Washing Protocols 

 
What you need to prepare the probe: 

 Oligo dT (Gibco=Life Tech. 25µg no 18418012) 

 Reverse transcriptase + 5x Superscript buffer (Gibco no 18064014) 

 0.1 M DTT (comes with RT) 

 Cy 3-dCTP (Amersham no PA53021) and Cy 5-dCTP (PA55021) 

 DNTPs (BIL-Boehringer no 1969064 ) 

 RNAse inhibitor (Gibco 1000 U no 15518012) 

 Cot 1 human DNA (Gibco no 18440016) 

 Poly A (Sigma 25mg no P9403) 

 25mM EDTA 

 1 M NaOH 

 1 M HCl 

 1 M Tris pH 6,8 

 3 M Na Ac pH 4.9 

 20x SSC and 3x SSC 

 yeast tRNA ( Sigma 500 U no R8759) 

 0.45 millipore filter (Millipore PVDF membrane o, 45 µm red no UFC3OHVNB) 

 2% SDS 
 

What you need for hybridization: 

 3x SSC 

 Probe 

 64oC waterbath 
 

What you need for washes: 

 2x SSC  0.1% SDS 

 0.2x SSC 

 0.1x SSC 

 

Probe preparation. 

 

Prepare in two 200 µl PCR tubes: 

 2 µg oligo-dT (21 mer) 

 2 µg mRNA (control (CTL) or target (TR) RNA) or 25-50 µg totalRNA 

 in 13.4 µl H2O 

 

Heat 5 min, 70°C (PCR machine) 

Leave 5 min at RT. 

 

To each tube add: 

 6 µl 5X SuperScript II buffer 

 3 µl 0.1 M DTT 

 3 µl Cy3-dCTP (1 mM) or Cy5-dCTP (1 mM) (Amersham Cat. # PA53021, PA55021) 

 0.6 µl dNTPs (25 mM dATP, dTTP, dGTP; 10 mM dCTP) 

 2 µl SuperScript II Reverse Transcriptase (Gibco BRL Cat. # 18064-14) 

 2 µl RNAse Inhibitor (15 U/µl) (Gibco BRL Cat. # 15518-012) 

 Incubate 1.30 hr, 42°C (PCR machine). 

 

Pool the two tubes (CTL + TR) 

 

Add:  

 2.65 µl 25 mM EDTA  

 3.3 µl 1 M NaOH 

Incubate 10 min, 65°C (PCR machine). 

 

Add:  

 3.3 µl of 1 M HCl 

 5 µl of 1 M Tris pH 6.8 
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 20 µg Cot 1 DNA  

 10 µg Poly A RNA 

 

Place the sample in a Microcon 30 microcencentrator (Amicon) 

 

Add: 

 400 µl TE [10 mM Tris (pH 7.5) 

 1 mM EDTA] 

 

Spin
1
 12 min, 14'000 g, to a volume of 10 to 20 µl. Discard flowthrough. 

 

Repeat twice
2 

Concentrate down to 9 µ l  

Collect the probe by inverting the filter and centrifuging for 1 min at 1000 g 

 

Add: 

 1.9 µl 20X SSC 

 1 µl E.Coli tRNA (10 µg/µl) 

 0.5 µl 10% SDS  

 

 

Hybridization. 

 

 Put cDNA array slide in hybridization chamber (TeleChem International Cat. # AHC-1*). 

 Add 10 µl of 3X SSC in the two grooves at both ends of the slide to humidify chamber. 

 Heat probe 1 min, 95°C.  

 Spin 1 min, max speed. 

 Add probe to slide
3
, lay cover slip slowly on top of solution

4
. 

 Close chamber, immerge into 64°C bath. WORK QUICKLY. 

 Hybridize O/N without agitation. 

 

 

Washes. 

 

Dismount chamber, put slide in glass slide holder with coverslip
5
. 

 

Place slide holder in glass dish containing washing solutions (ca 500 ml), move slide holder up and down during washing 

time for good agitation then transfer to next dish. Alternatively use Microarray Wash Station (TeleChem International Cat. # 

AW-1*). 

 

Washes (RT):  

 5 min 2X SSC, 0.1% SDS 

 5 min 2X SSC, 0.1% SDS 

 1 min 0.2X SSC 

 1 min 0.2X SSC 

 1 min 0.1X SSC 

 1 min 0.1X SSC 

 

Dry slide in centrifuge 2 min, 2650 rpm. 

Store in light-tight box until scanning
6
. 

 
1. All washing/centrifugation steps are done at room temperature. Chilling results in precipitation of free label. Avoid putting the probe on ice at any time. 

2. After the third centrifugation, probe retained by the Microcon should be brighter than flowthrough. This is an indication of good labeling. 

3. Apply probe where genes are located (use provided mask). 
4. Cover slips must be dust- and particle-free to allow even seating on the array. Air bubbles trapped under the cover slip exit after several minutes at 64°C. 

5. Cover slip comes off during washes. 

6. Cy3 or Cy5 are scanned dry. Storage of up to 2 weeks (Dark, RT) is OK. 

*(http://www.wenet.net/~telechem/) 

http://www.wenet.net/~telechem/
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TRIZOL-RNAeasy (RNA Isolation and Purification) Protocol 

 

Wear gloves, eye protection and work in a fume hood when using Trizol ! 

 

Isolation of RNA from small quantities of tissue ( 1-10 ug) or cells ( 10
2
 to 10

4
) 

 

Avoid washing cells as this might increase the possibility of mRNA degradation. 

 

 1 -Add 800 ul of Trizol to tissue or cells 

 2 -Shear genomic DNA with 2 passes through a 26 gauge need (brown ones) 

 

At this step, samples can be stored at -70
o
C for at least a month. 

 

 3 -Incubate homogenized samples for 10’ at RT (15 to 30
o
C) 

 4 -Add 160 ul of PheChCl3isoamylOH (200ul per 1 ml of Trizol) 

 5 -Shake tubes vigorously by hand for 15 sec - Incubate at RT 2-3’ 

 6 -Spin 15’ at 4
o
C and no more than 12 000 x g 

 7 -Aq phase + 500 ml PheChCl3isoamylOH 

 8 -Spin 2’ 

 9 -Repeat 7 and 8 

 10 -Aqueous phase (500 ul) + an equal vol of 70% EtOH – mix well 

 11 -Load on RNAeasy column (up to 700 ul can be loaded) 

 12 -Spin 15 sec at 10 000 rpm 

 13 -Wash with 700 ul RW1 – Spin 15 sec at 10 000 rpm 

 14 -On a new collection tube, add 500 ul RPE – Spin as in 11 

 15 -Add 500 ul RPE – Spin 2’ at 10 000 rpm 

 16 -In a fresh tube, elute samples with 30-50 ul RNAse free H2O by spinning 1’ at 10 000 rpm 
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Selected Cancer-related Genes assessed by qrt-PCR 

Gene/Group Gene Symbol RefSequence 

Proteases and Inhibitors   
Cathepsin B CTSB NM_001908 
Cathepsin D CTSD NM_001909 
Urokinase-type plasminogen activator PLAU NM_002658 
Urokinase-type plasminogen activator receptor PLAUR NM_002659 
Plasminogen Activator Inhibitor SERPINE1 NM_000602 
Metalloprotease 1 MMP1 NM_002421 
Metalloprotease 2 MMP2 NM_004530 
Metalloprotease 3 MMP3 NM_002422 
Metalloprotease 7 MMP7 NM_002423 
Metalloprotease 9 MMP9 NM_004994 
Metalloprotease 11 MMP11 NM_005940 
Tissue inhibitor of Metalloproteases 1 TIMP1 NM_003254 
Tissue inhibitor of Metalloproteases 2 TIMP2 NM_003255 
Tissue inhibitor of Metalloproteases 3 TIMP3 NM_000362 
Tissue inhibitor of Metalloproteases 4 TIMP4 NM_003256 
Proliferation   
Thymidilate synthase TYMS NM_001071 
Thymidine kinase 1 TK1 NM_003258 
Topoisomerase II-2alpha TOP2A NM_001067 
Transcription factor E2F1 E2F1 NM_005225 
Survivin BIRC5 NM_001168 
Dihydropyrimidine deshydrogenase DPYD NM_000110 
Growth Factors and Receptors   
Transforming growth factor alpha TGFA NM_003236 
Transforming growth factor beta 1 TGFB1 NM_000660 
Epidermal growth factor EGF NM_001963 
Amphiregulin AREG NM_001657 
Epidermal growth factor receptor 1 EGFR NM_005228 
Epidermal growth factor receptor 2 ERBB2 NM_004448 
Epidermal growth factor receptor 3 ERBB3 NM_001982 
Epidermal growth factor receptor 4 ERBB4 NM_005235 
Insulin-like growth factor 1 IGF1 NM_000618 
Insulin-like growth factor 2 IGF2 NM_000612 
Insulin-like growth factor receptor 1 IGF1R NM_000875 
Insulin-like growth factor receptor 2 IGF2R NM_000876 
Angiogenesis   
Vascular endothelial growth factor A VEGF NM_003376 
Vascular endothelial growth factor B VEGFB NM_003377 
Vascular endothelial growth factor C VEGFC NM_005429 
Vascular endothelial growth factor D FIGF NM_004469 
Vascular endothelial growth factor receptor 1 FLT1 NM_002019 
Vascular endothelial growth factor receptor 2 KDR NM_002253 
Vascular endothelial growth factor receptor 3 FLT4 NM_002020 
Thymidine Phosphorylase ECGF1 NM_001953 
Endocrine System   
Estrogen receptor 1 ESR1 NM_000125 
Progesterone receptor PGR NM_000926 
17 beta-hydroxy steroid deshydrogenase 1 HSD17B1 NM_000413 
Cyclooxygenase-2 PTGS2 NM_000963 
Peptidylglycine alpha-amidating monooxygenase PAM NM_000919 
Epithelial Markers   
Cytokeratin 19 KRT19 NM_002276 
CytoKeratin 7 KRT7 NM_005556 
Glutathione S-transferase pi GSTP1 NM_000852 
Cell cycle and Apoptosis   
CyclinD1 CCND1 NM_053056 
p21/Cip1 CDKN1A NM_078467 
p27/Kip1 CDKN1B NM_004064 
Retinoblastoma RB1 NM_000321 
Adrenomedullin ADM NM_001124 
Bcl2-associated X protein BAX NM_138761 
B-cell lymphoma 2 BCL2 NM_000633 
Transcription Factors   
Hypoxia inducible factor 1-alpha HIF1A NM_001530 
Transcription Factor 4 TCF4 NM_003199 
beta-Catenin CTNNB1 NM_001904 
Amplified in breast cancer1 (AIB1) NCOA3 NM_006534 
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ERBB2 Status Determination based on mRNA Expression Levels 

FISH       

PCR    0  1 

FALSE 77  1

TRUE   4 18

FISH       

0  1 

FALSE 75  1

TRUE   6 18

„Optimal Cutoff“ (18„786)

„OS Cutoff“ (16„410)

X-squared = 67.1819, df = 1, p-value = 2.476e-16

X-squared = 59.6493, df = 1, p-value = 1.134e-14

Sensitivity: 94.7%, Specificity: 95.1%, Accuracy: 95% (MissClassification: 5%)

Sensitivity: 94.7%, Specificity: 92.6%, Accuracy: 93% (MissClassification: 7%)

 
 

 

Comparison of ERBB2 status measured by FISH (fluorescence in situ hybridization) and mRNA expression level detected by 

qrt-PCR. The graph shows the ranked expression values of ERBB2 mRNA levels in 100 samples and the corresponding 

ERBB2 status by FISH coded in color (black=ERBB2-, green=ERBB2+). Depending on the selection of the cutoff the mis-

classification rate was between 5 and 7%. 

 

 

ERBB2 mRNA and FISH (n=100) ERBB2 ELISA and FISH (n=317)

ROC Analysis (ERBB2 Status)

 
ROC (receiver operator characteristics): Performance of ERBB2 mRNA (qrt-PCR) and ERBB2 protein (ELISA) to predict 

ERBB2 status. ERBB2 status determined by FISH was used as gold standard (comparator).  
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Examples of the distribution of ERBB2 mRNA expression levels in three independent breast cancer data sets detected by 

qrt-PCR (left) and two different microarray platforms (middle and left). A mixture model was used to estimate the cutoff for 

ERBB2 status since all three displayed a clear bi-model distribution of the ERBB2 mRNA expression levels. The cutoff de-

termined by the mixture model matched very well with the ERBB2 status detected by FISH. 

 

Example Human 10K Microarray image 

 
 

Screen shot of human 10K array (ScanAlyze software) after hybridization of a human breast cancer biopsy vs. reference 

RNA and overlay of the two pictures. This image also illustrates significant differences in spot size and irregularities of 

spot/sub grids alignment as a consequence of array printing. 
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Early Development: Summary Results and Conclusions 

 

Early results obtained with RNA from human breast cancer biopsies as well as various cell lines showed that: 

 RNeasy (Qiagen) was the preferred method for RNA extraction for the main project. Bioanalyzer proved to and impor-

tant tool to assure and assess RNA quality, degradation and quantity after extraction, and was part of standard quality 

controls in future experiments. 

 Amplification of RNA proved to be a robust and highly reproducible procedure yielding typically 2000 to 3000 fold 

amplification. It was to be preformed for both, biopsy and reference RNA in the future project. 

 Refined probe preparation with additional Microcon filtering step protocols were yielded homogenous hybridizations 

with low background. Hybridization introduced bigger variation than amplification. 

 RNA from test biopsies banked for many years had acceptable to good quality RNA for both, cryo-sections and powe-

derized tissue. Review of histology (cryo-cuts) demonstrated almost complete infiltration with tumor with little or no 

necrosis. RNA derived from tumor tissue was successfully amplified and hybridized to microarrays. 

 Preliminary analysis of the test biopsy data showed that tumors clustered into groups according to distinct biological 

features (e.g. sub-types according the hormone receptor status as previously described by Sorlie et al. 
6
) with clear 

trends with respect to survival. Findings were in accordance with previously reported results in the literature suggesting 

that the data obtained with the cDNA microarrays, protocols and STB tissue were meaningful and of high quality. 

 Clustering of various cell lines and test experiments revealed characteristic gene expression pattern reflecting the tissue 

of origin or the specific features accompanied with nature of the experimental design (Figures A and B). For example, 

repeat hybridizations always clustered together as well as did dye-swap. The main cluster separated biopsies (mixed tis-

sues samples) from cells lines and “self-self” hybridization. The genes driving the individual cluster were consistent 

with the composition of the samples (eg. biopsy composed of various cell types vs. cell line of epithelial origin) as well 

as the organ specific characteristics. 

 Many discussions and experiments were performed together with the SIB/BCF allowing to optimize and establish stan-

dard procedures for scanning, image analysis, normalization, background handling, and quality controls. Many of the 

steps were automated and implemented in a web-based application including a repository for raw (images) and numeri-

cal data. 

 There was high correlation between gene expression levels measured by microarray and protein expression levels 

measured by ELISA for selected breast cancer related genes (e.g. estrogen receptor) 

 RNA was extracted from 100 breast cancer biopsies for the main project was of high quality; adequate quantities for 

subsequent microarray analysis in 93 cases. Out of these, 92 RNA samples were successfully amplified 

 After careful evaluation, the use of the Agilent scanner and the GenePix software for feature extraction and image anal-

ysis was recommended 

 An extended pilot experiment demonstrated that hybridizations protocols work fine and reproducibility was good. 

However, randomization should be preformed in order to control for inter-batch and between-days variability. Moreo-

ver, hybridizations should be performed in duplicates without dye-swap (see below) 

 Significant improvement were achieved with the “second” generation of slides/protocols, such as introduction of new 

slide surface, spotting solution and Arabidopsis spike controls 

 New bioinformatics procedures improved quality assessment of slides and annotation files 

 89 biopsies were successfully analyzed by qrt-PCR and profiled for 60 well-defined cancer-related genes. Generally, 

there was high correlation between mRNA expression levels measured by microarray and qrt-PCR 

 p-ERBB2 was assessed in 70 samples and correlated positively with survival, ERBB1/2 RNA and protein levels, and 

correlated negatively with ERBB4 RNA levels. 

 p-AKT was measured in 65 samples and correlated with survival as well as proliferation genes 
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Figure A. Example of hierarchical clustering using breast cancer biopsies, breast and colon cancer cell lines, and “self-

self” hybridizations (same RNA used in target and control sample). Several samples were hybridized in replicates (under-

lined in color), and clustered always together. All breast cancer biopsies cluster together as well as the two cell lines, al-

though much bigger differences can be observed. A filter was applied based on standard deviation (SD) with approx. 800 

genes passing the criteria (shown). Red and green color  indicates high and low expression as compared to reference (Hu-

man Reference RNA, Stratagene). Black: no difference between sample and reference (e.g. “self-self” hybridization) 
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Figure B. Hierarchical Clustering using breast cancer biopsies, breast and colon cancer cell lines: Genes related to im-

mune response, inflammation and stroma were expressed in tissues only. In contrast, apolipoprotein and glucose transpor-

ters or trigryceride transfer protein were found in colon cancer cell line only (CaCo cell line), representing some of the 

tissue and/or cell line specific characteristics of the samples. 



 61 

Microarray Pilot Experiment 

 

In preparation for the large experiment and as a guide to its design, a pilot experiment of 28 hybridizations was set up in 

close collaboration with the Bioinformatics Core Facility (BCF) to assess relative importance of different sources of varia-

bility because the whole experiment/hybridization would take several weeks and array printing is done in batches of 100 

slides. The following parameters (sources of variance) were investigated: 

 

 experimenter (are there differences between and within experimenters) 

 batch differences (are there differences between batches of slides that have been printed at different times) 

 effect of position within batch (are the differences between the slides printed at the beginning versus in the middle 

versus at the end of each batch) 

 time difference between hybridizations (how does the time between replicate hybridizations affect the result) 

 dye bias/normalization (is there a dye-bias which requires day-swap and how does normalization interfere) 

 

The findings from the pilot experiment showed that overall slide quality is good. There were some differences between ex-

perimenters, and that there was variability within experimenters. Differences within/between batch did not seem to be very 

large whereas there were fairly large differences between days (time point of hybridization). These findings had the follow-

ing impact on the design of the main experiment: 

 

 duplicate hybridizations to be performed 

 replicate experiments to be carried out on different days (randomization for time) 

 position within batch not necessary to be controlled 

 randomization necessary to control for inter-batch variability 

 dye-swap not necessary; samples to be labeled with Cy3, reference (pooled RNA) with Cy5 
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Amphiregulin Microarray Project 

 
Patrick Urban, Laura Ciarloni, Cathrin Brisken 

 

 

Introduction 

 

Epidermal growth factor (EGF), TGFa, HB-EGF and Amphiregulin (AR) are ligands that bind to the epithelial growth fac-

tor receptor (EGFR). AR has homology with EGF but is truncated at the C-terminus and exhibits a lower affinity to EGFR 

than EGF 
128

. In a structure-function study of ligand-induced EGFR dimerization, AR could not dimerize EGFR (mechan-

ism of receptor-activation) whereas EGF could 
129

. Cell line experiments with truncated and wild-type EGFR demonstrated 

that the cytoplamic tail of EGFR plays a critical role in AR signaling but is dispensable for EGF 
130

 suggesting, that the two 

EGF-related peptides might differ in their biological activities. Furthermore, they can activate different subsets of ErbB re-

ceptors 
131

. Besides, AR and EGF can function as autocrine growth factors (e.g. AR enhanced by EGF) 
132,133

. 

Comparison of knockout mice models lacking functional EGF, TGFa, HB-EGF or AR demonstrated a specific and unique 

requirement for AR during morphogenesis in mammary gland development whereas EGF, TGFa, HB-EGF were clearly 

dispensable for this process 
65,134

. Together, this suggests, that AR may have unique functions. We want to use gene expres-

sion profiling by microarrays to discover genes that are specifically regulated by AR and not other family members, as ex-

emplified by EGF. 

 

 

Hypothesis and Aims 

 

AR is the only EGF family member that is essential to mammary gland development. It was hypothesized that this is due to 

the unique capacity of AR to induce a particular subset of target genes. To identify these candidate target genes differential-

ly expressed genes were analyzed in cells treated with either AR or EGF by microarray profiling. 

 

 

Experimental Procedures 

 

As model system primary mammary epithelial cells were used which were established in culture from mammary reduction 

mammoplasty (obtained from surgery at CHUV). After starvation for 36 hrs and cells were subsequently stimulated with 

AR or EGF. Prior to that, WT3 cells (mouse mammary cell line) were cultured and grown to confluence, serum starved for 

36h and afterwards stimulated with different concentrations of AR or EGF. 8 hours later, cyclin D1 protein levels were used 

as a surrogate marker for response allowing optimizing individual concentrations for each ligand. Untreated cells were also 

sampled. Once the doses for each ligand were determined, the following experimental design was applied (using human 

primary mammary epithelial cells PMEC): 

 

1. Part 1: One time point, 3 concentrations: 

 

 3 different concentrations of each ligand (ARC1-3, EGFC1-3) and untreated (4h after stimulation), plus “zero” = 8 

samples 

 each sample was hybridized against a pool of RNA consisting of all 8 samples 

 each sample was hybridized once, ARC3, EGFC3 and untreated in duplicate with dye-swap = 11 slides 

 

2. Part 2: One concentration, 3 time points: 

 

 “optimal” concentration (according to exp.1) was used in a time-course experiment 

 the exact design was discussed upon results from exp.1. (maybe direct comparisons could be done) 

 proposed time points were: T1= 0.5h (1h), T2= 4h and T3= 12h (8h) 

 slides required for the 2
nd

 part: appr. 20 
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A big batch of pooled aRNA was prepared. Non-amplified and amplified RNA were checked for quality and quantity. 

DAF/BCF printed about 50 slides for this project.  

 
 
 

 

Pool: AR 1/3  Conc AR: 680ng/ul 30ng 44ul 
 EGF (0.5) 1/3 Conc EGF: 620ng/ul 30ng 48ul 
 Control 1/3 Conc Contr: 876ng/ul 30ng 34ul 

Total     90ng 126ul 

       
Concentration Pool: 714ng/ul Lot Nr Cy3: 212947  
Spikes: DilOct3     Cy5: 213053  
    SS: 1163838  

 

 

Results of differentially expressed genes are shown on Table A on next page. 
 

Amphiregulin Project      
         

Chip-ID Chip-Nr Colour RNA for 5ug H2O Tube Comment 

54 1 Cy3 Pool 7.0 ul 4.5 ul 1   
   Cy5 EGF 0.5 8.0 ul 3.5 ul 2 repeat 

55 2 Cy3 Pool 7.0 ul 4.5 ul 3   
   Cy5 AR 7.3 ul 4.2 ul 4   

56 3 Cy3 Pool 7.0 ul 4.5 ul 5   
   Cy5 Control 5.7 ul 5.8 ul 6   

57 4 Cy3 EGF 0.5 8.0 ul 3.5 ul 7   
   Cy5 Pool 7.0 ul 4.5 ul 8   

58 5 Cy3 AR 7.3 ul 4.2 ul 9   
   Cy5 Pool 7.0 ul 4.5 ul 10   

59 6 Cy3 Control 5.7 ul 5.8 ul 11   
   Cy5 Pool 7.0 ul 4.5 ul 12 repeat 

 60 7 Cy3 Pool 7.0 ul 4.5 ul 13   
   Cy5 EGF 5   14   

 61 8 Cy3 Pool 7.0 ul 4.5 ul 15   
    Cy5 EGF 0.1     16   

       

PMEC 

grow to 
confluence 

starve 
for 36h 

add AR, EGF 
or fresh medium 

AR 

EGF 

Untreated 
(new medium) 

T0 (“zero”) T1 T2 T3 Time Points: 
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Table A. Array Results (Top 30 Differentially Expressed Genes; red over-, blue under-expressed) 
 

A 55 M 55 A57 M57 
AR vs 
EGF GeneSymbl Unigene Description AccessionNr 

12.24 -1.21 12.56 -0.22 -1.43 EST Hs.380959 ESTs, Moderately similar to B Chain B, 14-3-3 ZetaPHOSPHOPEPTIDE COMPLEX  BM475869 

11.93 -0.58 11.48 -0.73 -1.31 THBS1 Hs.87409 thrombospondin 1 NM_003246 

11.05 -0.67 10.95 -0.61 -1.27 CPE Hs.75360 carboxypeptidase E NM_001873 

11.25 -0.69 11.48 -0.53 -1.22 CAST Hs.359682 calpastatin NM_001750 

10.71 -0.33 10.55 -0.84 -1.18 SDNSF Hs.84775 neural stem cell derived neuronal survival protein NM_139279 

11.63 -0.77 12.25 -0.36 -1.13 RBM3 Hs.301404 RNA binding motif protein 3 NM_006743 

12.37 -0.51 11.00 -0.62 -1.13 ANXA3 Hs.1378 annexin A3 NM_005139 

11.56 -0.80 11.33 -0.32 -1.12 USP14 Hs.75981 ubiquitin specific protease 14 (tRNA-guanine transglycosylase) NM_005151 

11.78 -0.79 11.63 -0.30 -1.09 TM9SF2 Hs.28757 transmembrane 9 superfamily member 2 NM_004800 

12.38 -0.74 11.51 -0.34 -1.08 UMPS Hs.2057 uridine monophosphate synthetase (orotate phosphoribosyl transferase and orotidine-5'-decarboxylase) NM_000373 

10.64 -0.57 10.67 -0.49 -1.06 GALNT3 Hs.278611 UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 3 (GalNAc-T3) NM_004482 

10.39 -0.69 9.63 -0.34 -1.04 EST Hs.433347 Homo sapiens cDNA FLJ30687 fis, clone FCBBF2000379. BQ717423 

11.83 -0.60 12.00 -0.43 -1.03 SFPQ Hs.180610 splicing factor proline/glutamine rich (polypyrimidine tract binding protein associated) NM_005066 

11.65 -0.39 10.83 -0.64 -1.03 WHIP Hs.236828 Werner helicase interacting protein NM_020135 

11.57 -0.45 11.04 -0.56 -1.01 SEPW1 Hs.14231 selenoprotein W, 1 NM_003009 

12.71 -0.02 12.28 -0.96 -0.98 HNRPH2 Hs.278857 heterogeneous nuclear ribonucleoprotein H2 (H') NM_019597 

10.07 -0.55 9.69 -0.42 -0.97 EPS15 Hs.79095 epidermal growth factor receptor pathway substrate 15 NM_001981 

9.97 -0.65 9.66 -0.32 -0.97 MTRR Hs.153792 5-methyltetrahydrofolate-homocysteine methyltransferase reductase NM_002454 

11.37 -0.67 11.90 -0.29 -0.96 SNRPD3 Hs.1575 small nuclear ribonucleoprotein D3 polypeptide 18kDa NM_004175 

10.22 -0.25 9.91 -0.71 -0.96 CTNNB1 Hs.171271 catenin (cadherin-associated protein), beta 1 (88kD)   

11.11 -0.29   -0.67 -0.96 AMD1 Hs.262476 S-adenosylmethionine decarboxylase 1 NM_001634 

11.03 -0.56 11.08 -0.40 -0.95 HCCS Hs.211571 holocytochrome c synthase (cytochrome c heme-lyase) NM_005333 

10.58 -0.39 10.28 -0.53 -0.92 KIAA0101 Hs.81892 KIAA0101 gene product NM_014736 

11.18 -0.43 10.93 -0.49 -0.91 ADAM10 Hs.172028 a disintegrin and metalloproteinase domain 10 NM_001110 

10.84 -0.31 10.97 -0.59 -0.90 MARCKS Hs.75607 myristoylated alanine-rich protein kinase C substrate NM_002356 

11.43 -0.17 11.43 -0.74 -0.90 ROBO1 Hs.301198 roundabout, axon guidance receptor, homolog 1 (Drosophila) NM_002941 

11.77 -0.02 11.30 -0.88 -0.90 ADAM9 Hs.2442 a disintegrin and metalloproteinase domain 9 (meltrin gamma) NM_003816 

11.39 -0.33 11.37 -0.57 -0.90 EST   No Siginificant similarities   

11.47 -0.04 11.07 -0.86 -0.90 RAP1A Hs.865 RAP1A, member of RAS oncogene family NM_002884 

11.65 0.37 11.92 0.50 0.87 ENO3 Hs.118804 enolase 3, (beta, muscle) NM_001976 

10.98 -0.06 10.75 0.93 0.87 APG3 Hs.26367 autophagy Apg3p/Aut1p-like NM_022488 

9.81 0.91 8.48 -0.03 0.88 E2F1 Hs.96055 E2F transcription factor 1 NM_005225 

13.69 0.82 13.99 0.06 0.88 ACTB Hs.426930 actin, beta NM_001101 

11.00 0.51 10.96 0.39 0.90 ENO2 Hs.146580 enolase 2, (gamma, neuronal) NM_001975 

13.16 0.28 12.80 0.64 0.92 HNK-1ST Hs.155553 HNK-1 sulfotransferase NM_004854 

12.77 0.43 12.71 0.53 0.96 ACTA2 Hs.195851 actin, alpha 2, smooth muscle, aorta NM_001613 

12.80 0.32 12.99 0.67 0.99 EIF3S6 Hs.106673 eukaryotic translation initiation factor 3, subunit 6 48kDa NM_001568 

8.20 -0.01 12.32 1.00 0.99 MGC16028 Hs.8984 MGC16028 similar to RIKEN cDNA 1700019E19 gene NM_052873 

10.09 0.07 10.64 0.93 0.99 SLA/LP Hs.161436 soluble liver antigen/liver pancreas antigen AI635383 

10.60 0.66 9.85 0.38 1.04 HNRPK Hs.129548 heterogeneous nuclear ribonucleoprotein K   

12.34 0.35 13.09 0.73 1.07 CLK2 Hs.73986 CDC-like kinase 2 NM_001291 

10.36 0.13 10.43 0.96 1.10 ASXL1 Hs.3686 additional sex combs like 1 (Drosophila) AB023195 

10.87 0.30 12.49 0.79 1.10 UGP2 Hs.77837 UDP-glucose pyrophosphorylase 2 NM_006759 

9.59 0.75 9.33 0.35 1.10 CRMP1 Hs.155392 collapsin response mediator protein 1 NM_001313 

10.56 0.13 10.76 1.00 1.13 DDAH2 Hs.247362 dimethylarginine dimethylaminohydrolase 2 NM_013974 

9.58 -0.02 12.08 1.18 1.16 FMO2 Hs.132821 flavin containing monooxygenase 2 NM_001460 

10.99 1.17 8.93 0.01 1.18 PYY Hs.169249 peptide YY NM_004160 

12.45 0.38 12.84 0.91 1.29 KRT16 Hs.432448 keratin 16 (focal non-epidermolytic palmoplantar keratoderma) NM_005557 

13.04 0.46 13.19 0.86 1.32 ANXA2 Hs.217493 annexin A2 NM_004039 

10.68 1.64 8.42 -0.02 1.62 EST Hs.164005 Homo sapiens cDNA FLJ13432 fis, clone PLACE1002537. AK096685 

9.91 1.62 8.20 0.02 1.63 GK Hs.1466 glycerol kinase NM_000167 

10.80 1.65 8.36 0.00 1.65 TH Hs.178237 tyrosine hydroxylase   

11.61 1.87 9.05 -0.18 1.68 DZIP1 Hs.60177 zinc-finger protein DZIP1 NM_014934 

8.89 -0.05 9.82 1.84 1.79 EST Hs.287687 Homo sapiens cDNA: FLJ21960 fis, clone HEP05517. AW968569 

8.67 -0.04 10.25 1.92 1.88 EVER1 Hs.16165 epidermodysplasia verruciformis 1 NM_007267 

12.53 2.27 8.36 0.00 2.28 LTK Hs.210 leukocyte tyrosine kinase NM_002344 

15.01 2.14 10.65 0.22 2.36 PA2G4 Hs.374491 proliferation-associated 2G4, 38kDa NM_006191 

11.70 2.55 8.80 0.01 2.56 PNLIPRP2 Hs.143113 pancreatic lipase-related protein 2 NM_005396 
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Increased Expression of Urokinase-Type Plasminogen
Activator mRNA Determines Adverse Prognosis in
ErbB2-Positive Primary Breast Cancer
Patrick Urban, Vincent Vuaroqueaux, Martin Labuhn, Mauro Delorenzi, Pratyaksha Wirapati, Edward Wight,
Hans-Jörg Senn, Christopher Benz, Urs Eppenberger, and Serenella Eppenberger-Castori

A B S T R A C T

Purpose
To evaluate and validate mRNA expression markers capable of identifying patients with ErbB2-
positive breast cancer associated with distant metastasis and reduced survival.

Patients and Methods
Expression of 60 genes involved in breast cancer biology was assessed by quantitative real-time
PCR (qrt-PCR) in 317 primary breast cancer patients and correlated with clinical outcome data.
Results were validated subsequently using two previously published and publicly available
microarray data sets with different patient populations comprising 295 and 286 breast cancer
samples, respectively.

Results
Of the 60 genes measured by qrt-PCR, urokinase-type plasminogen activator (uPA or PLAU)
mRNA expression was the most significant marker associated with distant metastasis-free
survival (MFS) by univariate Cox analysis in patients with ErbB2-positive tumors and an indepen-
dent factor in multivariate analysis. Subsequent validation in two microarray data sets confirmed
the prognostic value of uPA in ErbB2-positive tumors by both univariate and multivariate analysis.
uPA mRNA expression was not significantly associated with MFS in ErbB2-negative tumors.
Kaplan-Meier analysis showed in all three study populations that patients with ErbB2-positive/
uPA–positive tumors exhibited significantly reduced MFS (hazard ratios [HR], 4.3; 95% CI, 1.6 to
11.8; HR, 2.7; 95% CI, 1.2 to 6.2; and, HR, 2.8; 95% CI, 1.1 to 7.1; all P � .02) as compared with
the group with ErbB2-positive/uPA–negative tumors who exhibited similar outcome to those with
ErbB2-negative tumors, irrespective of uPA status.

Conclusion
After evaluation of 898 breast cancer patients, uPA mRNA expression emerged as a powerful
prognostic indicator in ErbB2-positive tumors. These results were consistent among three
independent study populations assayed by different techniques, including qrt-PCR and two
microarray platforms.

J Clin Oncol 24:4245-4253. © 2006 by American Society of Clinical Oncology

INTRODUCTION

The oncogenic receptor tyrosine kinase, ErbB2
(HER2/neu), has received major attention as a breast
cancer biomarker and is mechanistically linked with
a variety of malignant processes including dysregu-
lated cell growth and proliferation, tumor angiogen-
esis, tissue invasion, and metastases (reviewed
previously1-4). Overexpression of ErbB2 mRNA and
protein resulting from the amplified oncogene is
observed in 15% to 30% of all newly diagnosed
breast cancer patients, in which it is associated with
poor prognosis and serves as a predictor of clinical
responsiveness to the anti-ErbB2 therapeutic trastu-

zumab (Herceptin; Genentech, South San Fran-
cisco, CA). Based on commonly used breast cancer
risk assessment criteria, including the most recent St
Gallen international expert consensus criteria, most
patients with ErbB2-positive breast cancer are as-
signed to the highest risk category for metastatic
relapse.5 However, not all patients with ErbB2-
positive breast cancer develop nodal or distant
metastases; moreover, the molecular mechanisms
by which ErbB2 overexpression results in clini-
cally more aggressive disease remain poorly un-
derstood. Therefore, identification of additional
risk markers is needed to elucidate pathways
responsible for metastatic relapse as well as to
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improve the risk classification of patients diagnosed with ErbB2-
positive breast cancer.

Recently, expression profiling has shown promise in being able to
use breast cancer gene expression signatures to predict metastatic
relapse.6-8 However, to date these studies have not focused on the
identification of outcome predictors for patients newly diagnosed
with ErbB2-positive breast cancer. To address this need, 60 candidate
genes were selected for expression profiling based on their reported
links to malignant cell behavior and breast cancer biology and their
representation in all major cancer pathways, including cell prolifera-
tion and survival, invasiveness, angiogenic potential, and endocrine
dependence (Table 1). All 60 candidates were assessed by quantitative
real-time polymerase chain reaction (qrt-PCR) in a set of 317 primary
breast cancer biopsies and their expression levels were correlated with
clinical outcome data. Five candidate genes were identified whose
expression levels showed significant univariate association with
distant metastasis-free survival (MFS) in ErbB2-positive tumors.
The most significant of these markers, urokinase-type plasmino-
gen activator (uPA or PLAU), was further validated in two indepen-
dent and previously reported breast cancer study populations for
which gene expression (microarray) and patient outcome data are
publicly accessible.6,7

PATIENTS AND METHODS

Study Patients

Fresh frozen tissue from primary breast cancer patients was obtained
from the Stiftung Tumorbank Basel (STB, Basel, Switzerland). Exclusion cri-
teria included neoadjuvant therapy, insufficient tumor content (� 50%), and
poor RNA quality resulting in 317 eligible samples (STB study). All patients
underwent surgery between 1992 and 1996. Quantitative protein levels of
hormone receptors, ErbB2 and uPA, were prospectively determined at the
time of surgery.9,10 Median patient age at diagnosis was 60 years (range, 27 to
88 years). Fifty-seven patients (18%) developed distant metastasis within a
median MFS time of 44 months (range, 8 to 90 months). Forty-six percent of
tumors were node-positive, 73% were estrogen-receptor (ER) –positive (� 20
fmol/mg protein by Enzyme Immuno Assay11), and 22% were ErbB2-positive
(see Statistical Analysis). Systemic adjuvant hormone therapy was adminis-
trated to 43% of patients, chemotherapy to 22% of patients, and combination
adjuvant therapy to 16% of patients; virtually all hormonal therapy was in the
form of tamoxifen, with chemotherapy primarily consisting of cyclophosph-
amide, methotrexate, and fluorouracil and 9% of patients receiving anthracy-
clines. STB is an approved nonprofit laboratory that performs routine tumor
biomarker measurements and clinical research under Swiss health regulatory
office compliance with specific regard to ethical standards and patient confi-
dentiality.

For validation purposes, two additional breast cancer study populations
were also analyzed using the publicly accessible microarray and outcome data
sets reported by Van de Vijver et al (Amsterdam study; Agilent microarray
platform; Agilent Technologies, Palo Alto, CA)6 and Wang et al (Rotterdam
study; Affymetrix microarray platform; Affymetrix, Santa Clara, CA).7 Major
differences in the three study populations included patient age, nodal status,
and adjuvant treatments. MFS was the only outcome parameter commonly
available for all three study populations. Comparative patient and tumor
characteristics from the STB, Amsterdam, and Rotterdam study populations
are summarized in Table 2.

RNA Extraction and Quantitative Real-Time PCR

Gene expression measurements by quantitative real-time PCR were per-
formed as reported.12 In brief, RNA was extracted using the RNAeasy Mini Kit
(Qiagen, Hilden, Germany), quantified and quality-checked on a Bioanalyzer
2100 (RNA 6000 Nano LabChip-Kit; Agilent Technologies). High quality
RNA samples (28S:18S � 1) were reverse transcribed (1�g total RNA,

Table 1. List of the Candidate Genes (N � 60)

Gene Symbol Ref Sequence

Adrenomedullin ADM NM_001124
Amphiregulin AREG NM_001657
Bcl2-associated X protein BAX NM_138761
B-cell lymphoma 2 BCL2 NM_000633
Survivin BIRC5 NM_001168
Cyclin D1 CCND1 NM_053056
p21/Cip1 CDKN1A NM_078467
p27/Kip1 CDKN1B NM_004064
Beta-Catenin CTNNB1 NM_001904
Cathepsin B CTSB NM_001908
Cathepsin D CTSD NM_001909
Dihydropyrimidine deshydrogenase DPYD NM_000110
Transcription factor E2F1 E2F1 NM_005225
Thymidine phosphorylase ECGF1 NM_001953
Epidermal growth factor EGF NM_001963
Epidermal growth factor receptor 1 EGFR NM_005228
Epidermal growth factor receptor 2 ERBB2 NM_004448
Epidermal growth factor receptor 3 ERBB3 NM_001982
Epidermal growth factor receptor 4 ERBB4 NM_005235
Estrogen receptor 1 ESR1 NM_000125
Vascular endothelial growth factor

receptor 1
FLT1 NM_002019

Vascular endothelial growth factor
receptor 3

FLT4 NM_002020

Glutathione S-transferase pi GSTP1 NM_000852
Hypoxia inducible factor 1-alpha HIF1A NM_001530
17 beta-hydroxy steroid deshydrogenase 1 HSD17B1 NM_000413
Insulin-like growth factor 1 IGF1 NM_000618
Insulin-like growth factor receptor 1 IGF1R NM_000875
Insulin-like growth factor 2 IGF2 NM_000612
Insulin-like growth factor receptor 2 IGF2R NM_000876
Vascular endothelial growth factor

receptor 2
KDR NM_002253

Cytokeratin 19 KRT19 NM_002276
Cytokeratin 7 KRT7 NM_005556
Metalloprotease 1 MMP1 NM_002421
Metalloprotease 11 MMP11 NM_005940
Metalloprotease 2 MMP2 NM_004530
Metalloprotease 3 MMP3 NM_002422
Metalloprotease 7 MMP7 NM_002423
Metalloprotease 9 MMP9 NM_004994
Amplified in breast cancer 1 (AIB1) NCOA3 NM_006534
Peptidylglycine alpha-amidating

monooxygenase
PAM NM_000919

Progesterone receptor PGR NM_000926
Urokinase-type plasminogen

activator (uPA)
PLAU NM_002658

Urokinase-type plasminogen activator
receptor (uPAR)

PLAUR NM_002659

Cyclooxygenase-2 PTGS2 NM_000963
Retinoblastoma RB1 NM_000321
Plasminogen activator inhibitor SERPINE1 NM_000602
Transcription factor 4 TCF4 NM_003199
Transforming growth factor alpha TGFA NM_003236
Transforming growth factor beta 1 TGFB1 NM_000660
Tissue inhibitor of metalloproteases 1 TIMP1 NM_003254
Tissue inhibitor of metalloproteases 2 TIMP2 NM_003255
Tissue inhibitor of metalloproteases 3 TIMP3 NM_000362
Tissue inhibitor of metalloproteases 4 TIMP4 NM_003256
Thymidine kinase 1 TK1 NM_003258
Topoisomerase II-2 alpha TOP2A NM_001067
Thymidilate synthase TYMS NM_001071
Vascular endothelial growth factor A VEGF NM_003376
Vascular endothelial growth factor B VEGFB NM_003377
Vascular endothelial growth factor C VEGFC NM_005429
Vascular endothelial growth factor D FIGF NM_004469

NOTE. Official symbol provided by the HUGO Nomenclature Committee
(http://www.gene.ucl.ac.uk/nomenclature).
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10 mmol/L DTT, 1�g of hexamer primers, 2 U of MMLV Reverse Transcrip-
tase [Invitrogen, Carlsbad, CA], 40 U of RNasin [Promega, Madison, WI], 0.5
mmol/L each dNTP [Promega], 1� reaction buffer). PCR primers were de-
signed to be cDNA specific and ordered at GeneScan Europe (Freiburg, Ger-
many). PCR was performed in 40 cycles on a ABI Prism 7000 using 2� SYBR
Green I Master Mix (Applied Biosystems, Foster City, CA) in a final volume of
25 �L. Relative quantities (� cycle threshold values) were obtained by normal-
ization against ribosomal 18S RNA. The 60 candidate genes measured by
quantitative real-time PCR are listed in Table 1.

Statistical Analysis

ErbB2 status was determined based on mRNA expression levels using a
mixture model in all three study populations, because ErbB2 status was not
expressly available for the Amsterdam and Rotterdam studies and ErbB2
mRNA expression revealed a clear bimodal distribution (Online Only Appen-
dix; Tables A1, -A3 and Figs A1-A4). Subsequent comparison of ErbB2 mRNA
expression levels and ErbB2 amplification measured by fluorescence in situ
hybridization (FISH) in a subset of 100 STB tumor samples demonstrated
close agreement between mRNA and FISH, as well as between ErbB2 status

determined by the mixture model and FISH, suggesting that the statistical
model provides accurate assessment of ErbB2 status (95% agreement, kappa
statistic 0.83;13 Online Only Appendix). The prognostic value of biomarkers
was assessed by univariate and multivariate Cox regression against distant
MFS, with and without stratification by ER status, treatment group, and
surrogate markers of tumor proliferation (average mRNA expression levels of
BIRC5, TOP2A, TYMS, TK1, and E2F1). Results were summarized in Tables,
including HR, level of significance (P value), and 95% CI. P values in multi-
variate analysis were based on Wald tests. Cutoff values for uPA were evaluated
in ErbB2-positive and ErbB2-negative groups separately by calculating the
5-year MFS as a function of putative uPA cutoff (Online Only Appendix).
Survival probabilities for MFS were calculated according to the Kaplan-Meier
method and group differences assessed by the log-rank test. Spearman rank
correlation was used to calculate correlations among biomarkers, the t test was
used to investigate differences in mean expression values between groups, and
the Fisher’s exact test was used to assess differences between categoric data.
Log-expression ratios from the Amsterdam study were retransformed to log
basis 2. P values of .05 or less were considered to be significant. All statistical

Table 2. Patient and Tumor Characteristics

Characteristic

Study

STB Amsterdam Rotterdam

Quantitative RT-PCR
Microarray
(Agilent)

Microarray
(Affymetrix)

All
(N � 317)

ErbB2�
(n � 70)

ErbB2�
(n � 247)

All
(N � 295)

ErbB2�
(n � 52)

ErbB2�
(n � 243)

All
(N � 286)

ErbB2�
(n � 51)

ErbB2�
(n � 235)

No. % No. % No. % No. % No. % No. % No. % No. % No. %

Age, years
Mean 60 58 60 44 43 44 54 NA NA
Median 59 57 60 44 43 45 NA NA NA
� 40 20 6 7 10 13 5 75 25 16 31 59 24 36 13 NA NA
41–55 110 35 25 36 85 35 220 75 36 69 184 76 129 45 NA NA
� 56 187 59 38 54 149 60 0 0 0 0 121 42 NA NA

pT stage
pT1 100 32 21 30 79 32 155 53 27 52 128 53 146 51 NA NA
pT2 183 58 41 60 142 58 140 47 25 48 115 47 132 46 NA NA
pT3/4 33 10 7 10 26 10 0 0 0 8 3 NA NA

pN status
Negative 161 51 32 46 129 52 151 51 26 50 125 51 286 100 51 100 235 100
Positive 136 43 36 51 100 41 144 49 26 50 118 49 0 0 0
Unknown 20 6 2 3 18 7 0 0 0 0 0 0

ER status�

Positive 231 73 38 54 193 78 226 77 32 62 194 80 209 73 32 61 177 75
Negative 86 27 32 46 54 22 69 23 20 38 49 20 77 27 19 39 58 25

ErbB2 status
Positive 70 22 70 100 0 52 18 52 100 0 51 18 51 100 0
Negative 247 78 0 247 100 243 82 0 243 100 235 82 0 235 100

Adjuvant therapy
Total 245 77 50 71 195 79 130 44 20 38 110 45 0 0 0
Hormone 135 43 21 30 114 46 20 7 2 4 18 7 0 0 0
Chemotherapy 72 22 16 23 56 23 90 30 17 33 73 30 0 0 0
Combination 38 12 13 18 25 10 20 7 1 2 19 8 0 0 0
None 60 19 15 21 45 18 165 56 32 62 133 65 286 100 51 100 235 100
Unknown 12 3 5 7 7 3 0 0 0 0 0 0

Follow-up
Metastasis 57 18 17 24 40 16 101 34 23 44 78 32 107 37 19 37 88 37
Mean MFS, years 3.7 3.5 3.8 7.3 6.4 7.5 6.5 6.3 6.5
Median MFS, years 3.6 3.3 3.7 6.8 6.0 7.0 7.2 6.8 7.3

Abbreviations: STB, Stiftung Tumorbank Basel; RT-PCR, real-time polymerase chain reaction; ER, estrogen receptor; NA, not available; MFS, metastasis-free survival.
�ER positive � 20 fmol/mg protein (EIA) for STB; for Amsterdam and Rotterdam studies. 6,7 ER status was the only parameter that differed significantly between

patients with ErbB2 � tumors: P � .001 (STB); P � .007 (Amsterdam); P � .081 (Rotterdam).

uPA in ErbB2-Positive Breast Cancer

www.jco.org 4247

Copyright © 2006 by the American Society of Clinical Oncology. All rights reserved. 
Downloaded from www.jco.org on September 19, 2006 . For personal use only. No other uses without permission. 



analyses were preformed using “R” statistical software version 2.0.1 (http://
www.r-project.org).

RESULTS

Candidate Genes Associated With MFS in the ErbB2-

Positive STB Breast Cancer Population

The prognostic value of all 60 biomarkers detected by quantita-
tive real-time PCR was individually assessed in the 70 STB ErbB2-
positive tumors (22%) by univariate Cox regression revealing five
candidates (uPA, MMP 3, MMP11, uPAR [PLAUR], and MMP1)
significantly associated with MFS (Table 3). All five genes encode
proteases and their levels of mRNA expression correlated strongly
with one another (Online Only Appendix). Compared to uPA, the
effect of MMP11, uPAR, MMP1, and MMP3 was weaker and nonsig-
nificant when taken together with uPA in a multivariate model (data
not shown). In contrast, none of the five candidates showed significant
prognostic value with respect to MFS by univariate analysis in the 247
STB patients with ErbB2-negative tumors (Table 3). However, uPA,
uPAR, and MMP1 were significantly associated with MFS in the over-
all population. To investigate possible confounding by treatment
group, ER status, or proliferation (as defined by the average expression
value of BIRC5, TOP2A, TYMS, TK1, and E2F1), stratified Cox anal-
ysis was performed; in all of these models uPA retained significant
prognostic value in ErbB2-positive but not ErbB2-negative tumors
(data not shown).

Prognostic Validation of uPA in Amsterdam and

Rotterdam Breast Cancer Populations

Amsterdam and Rotterdam breast cancer study sets were dichot-
omized into ErbB2-positive and ErbB2-negative patients as described
(Patients and Methods and Online Only Appendix). Using the estab-
lished 0.3 and 12.9 mRNA cutoff values to dichotomize the Amster-
dam and Rotterdam patients, respectively, 52 of the Amsterdam
patients (18%) and 51 of the Rotterdam patients (18%) were classified
as ErbB2-positive (Table 2). Within each of these study sets, the prog-
nostic value of uPA was independently assessed against both the
ErbB2-positive and ErbB2-negative tumors, with and without strati-
fication by ER status, treatment group (Amsterdam study only), and
tumor proliferation. As presented in Table 4, uPA demonstrated sig-
nificant prognostic association with MFS in ErbB2-positive but not in

ErbB2-negative breast cancers. uPA was also significantly associated
with MFS in the overall population, although displaying a weaker
prognostic effect (Table 4).

Multivariate Cox Analysis

The prognostic value of uPA mRNA expression was further as-
sessed by multivariate analysis across all three study populations
against nodal status, grade, tumor size, age, hormone receptor status,
tumor proliferation, and treatment. Of note, the Rotterdam study
patients were all untreated and node-negative, with only information
on ER status available. Across all three study populations, uPA re-
tained independent prognostic value and was significantly associated
with MFS in ErbB2-positive tumors (Table 5). In addition to uPA,
nodal status and chemotherapy retained independent prognostic
value. In multivariate analysis, uPA also retained significance as an
independent prognostic marker across all breast cancer patients,
but not for patients with ErbB2-negative tumors (data not shown).
Overall survival analysis demonstrated consistent findings with MFS

Table 3. Univariate Cox Analysis (MFS) in ErbB2-Positive (n � 70), ErbB2-Negative (n � 247), and Overall STB Breast Cancer Patients

Gene

Univariate MFS

ErbB2�
(n � 70)

ErbB2�
(n � 247)

All
(N � 317)

P HR� 95% CI P HR� 95% CI P HR� 95% CI

uPA .005 3.14 1.36 to 7.27 .364 1.21 0.80 to 1.82 .021 1.53 1.07 to 2.19
MMP3 .009 2.88 1.30 to 6.40 .998 1.00 0.69 to 1.44 .237 1.23 0.88 to 1.72
MMP11 .012 3.02 1.26 to 7.24 .652 1.11 0.71 to 1.72 .064 1.45 0.98 to 2.14
uPAR .014 2.88 1.22 to 6.78 .372 1.21 0.83 to 1.83 .035 1.48 1.03 to 2.12
MMP1 .032 2.23 1.05 to 4.74 .101 1.37 0.93 to 2.32 .003 1.74 1.20 to 2.51

NOTE. Top five genes significant in the ErbB2-positive group are shown.
Abbreviations: HR, hazard ratio; MFS, metastasis-free survival; STB, Stiftung Tumorbank Basel; uPA, urokinase-type plasminogen activator; MMP, matrix

metalloproteinases; uPAR, urokinase-type plasminogen activator receptor.
�Estimated HR using standardization by interquartile range (change in expression from the first to the third quartile).

Table 4. Univariate Cox Analysis (MFS) for uPA in ErbB2-Positive Tumors,
ErbB2-Negative Tumors, and the Overall Population According

to the Three Data Sets

Group

Univariate MFS

P HR� 95% CI

STB
ErbB2� (n � 70) .005 3.14 1.36 to 7.27
ErbB2� (n � 247) .364 1.21 0.80 to 1.82
All (N � 317) .021 1.53 1.07 to 2.19

Amsterdam
ErbB2� (n � 52) .005 2.14 1.25 to 3.66
ErbB2� (n � 243) .148 1.24 0.80 to 1.66
All (N � 295) .005 1.44 1.11 to 1.85

Rotterdam
ErbB2� (n � 51) .003 2.88 1.44 to 5.74
ErbB2� (n � 235) .305 1.15 0.88 to 1.49
All (N � 286) .039 1.29 1.01 to 1.63

Abbreviations: MFS, metastasis-free survival; uPA, urokinase-type plasmino-
gen activator; HR, hazard ratio; STB, Stiftung Tumorbank Basel.

�Estimated HR using standardization by interquartilerange (change in uPA
expression from the first to the third quartile). Studies used different scales
(STB: delta [Ct]; Amsterdam: log [ratio]; Rotterdam: log [intensity]).
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among the Amsterdam study population, for which this outcome
parameter was also available. Multivariate analysis for each of the three
data sets can be found in the Online Only Appendix.

Stratification of ErbB2-Positive Tumors by uPA

The cutoff value for uPA status was set at the 75th percentile after
evaluation of 5-year MFS as a function of uPA mRNA expression in
the STB study population (Online Only Appendix). The uPA cutoff
was chosen to identify ErbB2-positive tumors with poor prognosis
(5-year MFS of less than 50%) and to optimize separation between the
groups. The 75th percentile agreed with previously published uPA
cutoff values based on protein determination.14,15 This same uPA
cutoff value was used to dichotomize ErbB2-positive and ErbB2-
negative tumors in all three study populations and for outcome deter-
mination by Kaplan-Meier analyses (Fig 1). Within each study set,
uPA status proved to be a strong prognostic factor for the develop-
ment of distant metastasis, but only among ErbB2-positive breast
cancer patients (HRs: STB study: 4.3; 95% CI, 1.6 to 11.8; Rotterdam
study: 2.8; 95% CI, 1.1 to 7.1]; Amsterdam study: 2.7; 95% CI, 1.2 to
6.2; all P � .02). The prognostic value of uPA overexpression was even
more pronounced for overall survival among ErbB2-positive Amster-
dam patients (HR, 3.5; 95% CI, 1.5 to 8.6; P � .001, Fig 1). A search for
alternative cutoff values for uPA failed to identify any level of uPA mRNA
expression significantly associated with MFS among patients with ErbB2-
negative breast cancer (Online Only Appendix). These stratification find-
ings were independent of tumor treatment or stage, since multivariate
analysis (see Multivariate Cox Analysis section) confirmed the indepen-
dentprognosticvalueofuPA inErbB2-positivebutnot inErbB2-negative
tumors (Table 5 and the Online Only Appendix).

Clinical and Prognostic Parameters Associated With

uPA Stratified ErbB2-Positive Tumors

In all three study sets, ER expression was significantly lower in
ErbB2-positive as compared with ErbB2-negative tumors. However,

no significant difference was found with respect to ER status, nodal
status, tumor size, age, or treatment group between the dichotomized
ErbB2-positive/uPA–negative and ErbB2-positive/uPA–positive tu-
mors in any of the three study populations (Table 6). In addition, the
70-gene prognostic signature6 was investigated in the Amsterdam
study population and found to classify 85% of ErbB2-positive tumors
into a poor prognosis group; however, this signature showed no dif-
ference with regard to uPA status among patients with ErbB2-positive
tumors (Table 6 and the online-only Appendix). Except for the Rot-
terdam study population, uPA expression was significantly higher in
ErbB2-positive compared with ErbB2-negative tumors.

DISCUSSION

Initial evaluation of mRNA profiles from 60 cancer-related genes
identified five protease-related prognostic candidates whose increased
expression appeared significantly associated with MFS in ErbB2-
positive breast cancer. The most significant of these, uPA, was further
validated in two independent breast cancer study populations.6,7 De-
spite analysis of three distinct study populations by different assay
methods to measure uPA mRNA (quantitative real-time PCR v Agi-
lent and Affymetrix microarrays, Table 2), expression levels of this
biomarkershoweditsconsistentandindependentprognosticsignificance
that was restricted to patients with ErbB2-positive breast cancer.

Matrix metalloproteinases (MMP) and the uPA system are
known to play important roles in cancer cell invasion and metastasis;
16-18 and the initially identified five protease-related prognostic candi-
dates (Table 3) all showed a strong pattern of correlation among the
STB study population (Online Only Appendix). uPA and other
protein members of the uPA system are well established breast
cancer prognostics.10 However, this study showing that uPA mRNA

Table 5. Multivariate Cox Analysis for Patients With ErbB2-Positive Tumors

Factor

ErbB2� MFS

Univariate� Multivariate� Multivariate†

P HR 95% CI P HR 95% CI P HR 95% CI

uPA status
� 75 v � 75th percentile � .001 3.12 1.86 to 5.23 .001 3.24 1.60 to 6.57 � .001 3.08 1.76 to 5.38

ER status
Positive v negative‡ .100 0.65 0.39 to 1.09 .535 0.79 0.38 to 1.65 .325 0.76 0.43 to 1.32

Nodal status
� 3 v 0-3 positive nodes � .001 8.63 3.92 to 18.9 � .001 12.2 4.72 to 31.5 � .001 11.5 4.62 to 28.9

Tumor size, cm
� 2 v � 2 .027 2.19 1.09 to 4.38 .108 1.98 0.86 to 4.55 NI NI NI

Age, years
� 40 v � 40 .421 0.71 0.30 to 1.65 .222 0.46 0.13 to 1.60 NI NI NI

Grade
3 v 1 or 2 .099 1.72 0.90 to 3.29 .780 1.12 0.49 to 2.56 NI NI NI

Proliferation
� median v � median .140 1.58 0.86 to 2.89 .197 1.85 0.73 to 4.73 .107 1.73 0.89 to 3.35

Chemotherapy .881 0.95 0.49 to 1.84 .012 0.30 0.12 to 0.77 .045 0.45 0.21 to 0.98

Abbreviations: MFS, metastasis-free survival; HR, hazard ratio; uPA, urokinase-type plasminogen activator; ER, estrogen receptor.
�Univariate and multivariate analysis based on Cox regression stratified by data set. All variables were coded 0 or 1 according to the criteria below. Since information

on tumor size, age, and grade were not available for the Rotterdam data set this analysis corresponds to the STB and Amsterdam data sets (n � 110; 12 excluded
due to missing values).
†Cox regression including all three study populations stratified by data set. Tumor size, age, and grade were not included in this model since not available for the

Rotterdam data set (n � 165; 8 excluded due to missing values). For multivariate analysis of each individual data set see supplementary information.
‡� 20 v � 20 fmol/mg (STB); for Amsterdam and Rottendam studies, see references.6,7
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expression is of significant prognostic value only in ErbB2-positive
patients is a novel observation. In conjunction with ErbB2 and uPA
status, Zemzoum et al19 used another member of the uPA system,
plasminogen activator inhibitor-1 (PAI-1), to define a high-risk sub-
group of breast cancer patients. Among the STB patients, a strong
correlation was observed between uPA and PAI-1 mRNA levels (rs �
0.64). In this same population, PAI-1 was significantly associated with
MFS by univariate Cox regression, but showed only borderline signif-
icance for ErbB2-positive patients (P � .08), hence it was not included
among the five protease-related prognostic candidates (Table 3). Like
uPA, PAI-1 was not a significantly associated with MFS in ErbB2-
negative tumors. Previously published reports have also demonstrated

the predictive value of uPA with respect to adjuvant chemothera-
py.20,21 However, the uniform association of uPA mRNA expression
with survival observed across three distinct study populations was not
likely due to predictive value with regard to chemotherapy because
one of the validating study populations (Rotterdam) received no
chemotherapy; as well, by multivariate analysis including chemother-
apy, uPA remained an independent and significant factor in determin-
ing patient outcome in the other two study populations (Table 5).

Konecny et al14 and Zemzoum et al19 previously investigated uPA
and ErbB2 in breast cancer and reported their independent prognostic
value, also illustrating that observed prognostic relationships may be
dependent on the method of biomarker assessment (for example,

Fig 1. Combined Kaplan-Meier analysis (ErbB2/uPA). ErbB2-status is indicated by color (red: ErbB-positive; black: ErbB2-negative); urokinase-type plasminogen
activator (uPA) status by line type (solid: uPA-positive; dashed: uPA-negative). (A) Stiftung Tumorbank Basel study (metastasis-free survival [MFS]); (B) Rottendam study
(MFS); (C) Amsterdam study (MFS); (D) Amsterdam study (overall survival).
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immunohistochemistry v FISH for ErbB2) as well as the choice of the
clinical outcome parameter (MFS v disease-free or overall survival).
Unlike these earlier reports which evaluated uPA by immunoassays
(enzyme-linked immunosorbent assay [ELISA]) on protein level and
ErbB2 by protein immunohistochemistry and DNA FISH, this study
quantitated expression of uPA and ErbB2 at the mRNA level. ErbB2
mRNA expression has been shown by several groups including our
own to correlate well with more standard protein and DNA measures
of ErbB2 status.12, 22-24 Although the prognostic value of microarray
and quantitative real-time PCR determined uPA mRNA levels were
found in this study to be highly comparable, prior analysis of STB
patients demonstrated only a moderate correlation between uPA pro-
tein content (ELISA) and mRNA levels (rs � 0.46), suggesting some
biologic discordance between these two measures of uPA bioactivity.
Using an optimized uPA mRNA cutoff value capable of prognostically
subsetting ErbB2-positive tumors, 25% of all breast cancer patients in
this study scored as uPA–positive, which is consistent with the re-
ported proportion of poor-risk breast cancers overexpressing uPA
when measured by protein content.14,15 To avoid overfitting, cutoff
optimization was performed only on the STB study population and
this optimized value was subsequently validated in the Amsterdam
and Rotterdam study populations. Of note, we were unable to find any
uPA cutoff showing prognostic significance among the ErbB2-
negative breast cancer tumors (Online Only Appendix).

Recently, gene expression profiling using microarrays or quanti-
tative real-time PCR have proved useful in predicting breast cancer
outcomes.6-8 Interestingly, neither the prognostic gene signatures
published by the Amsterdam6 nor the Rotterdam7 groups contained
uPA. It was speculated that uPA as a single gene may have limited
prognostic value compared with gene signatures and that mRNA

expression may not be as informative as protein biomarker expres-
sion.25 This study revealed, however, that uPA mRNA level was highly
informative and a prognostically valuable risk indicator when used for
ErbB2-positive breast cancers. Given the finding that uPA mRNA
expression had no apparent prognostic value among ErbB2-negative
breast cancers, it is possible that the overall prognostic importance of
uPA (and other genes) has been underestimated in past breast cancer
studies not stratified by ErbB2 status. Interestingly, the 70-gene prog-
nostic signature published by the Amsterdam group6 classified almost
all ErbB2-positive patients into the poor prognosis group. In terms of
survival there was no difference between the poor prognosis/ErbB2-
positive and poor prognosis/ErbB2-negative tumors (Online Only
Appendix). In contrast to uPA and other proteases, the 70-gene prog-
nostic signature appears to largely discriminate a low-risk group from
among patients with ErbB2-negative tumors.

The existence of a molecular mechanism linking uPA upregula-
tion with ErbB2 overexpression is supported by numerous reports
that ErbB2 activation increases the transcriptional expression of uPA
and various members of the MMP family.4,26-28 Consistent with these
reports, we observed significantly higher uPA expression levels in
ErbB2-positive relative to ErbB2-negative tumors; and similar find-
ings have been reported for other cancers.29-31 However, the mecha-
nistic interactions linking ErbB2 and uPA overexpression with
increased breast cancer metastatic potential are likely more complex,
also because ErbB2 overexpression occurs only within tumor epithe-
lium while uPA and other proteases are primarily overexpressed in
tumor stroma.32,33 Stromal production of uPA (and other proteases)
must be considered when microdissection techniques are used to
obtain breast cancer RNA for expression profiling. The functional
interaction between overexpressed ErbB2 and uPA also deserves

Table 6. Associations Between Clinical Parameters and uPA Status in ErbB2-Positive Tumors

Factor

STB Study Amsterdam Study Rotterdam Study

uPA� uPA�

P

uPA� uPA�

P

uPA� uPA�

PNo. % No. % No. % No. % No. % No. %

Nodal status .211 .369 .99
Negative 23 53 9 36 20 56 6 38 38 100 13 100
Positive 20 47 16 64 16 44 10 62 0 0

Tumor size, cm
Mean 3.0 2.7 .620 2.2 2.3 .450 NA NA —

Differentiation .799 .99 NA NA —
Good/moderate 20 53 15 58 15 42 7 44 NA NA
Poor 18 47 11 42 21 58 9 56 NA NA

Age, years —
Mean 57.5 58.5 .753 43.3 41.6 .458 NA NA

ER status .99 .759 .192
Negative 20 45 12 46 13 36 7 44 12 32 7 54
Positive 24 55 14 54 23 64 9 56 26 68 6 46

Treatment .748 .393 —
Chemotherapy 10 24 6 26 13 36 4 25 0 0
Hormone 14 33 7 30 2 6 0 0 0 0
Combined 7 17 6 26 0 0 1 6 0 0
None 11 26 4 17 21 58 11 69 0 0

70-gene signature6 — .99 —
Good prognosis NA NA 6 17 2 13 NA NA
Poor prognosis NA NA 30 83 14 87 NA NA

Abbreviations: uPA, urokinase-type plasminogen activator; STB, Stiftung Tumorbank Basel; ER, estrogen receptor; NA, not available.
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greater study at both cellular and clinical levels since it is unclear why
ErbB2-negative/uPA–positive and ErbB2-positive/uPA–negative
breast cancers are no more clinically aggressive than ErbB2-negative/
uPA–negative breast cancers. Apparently the proteolytic activity of
uPA alone is insufficient to determine the metastatic outcome, and
perhaps requires the cell proliferation and survival advantages pro-
vided by activation of ErbB2. Similarly, ErbB2 activation may only
predispose to a metastatic outcome in conjunction with cellular ex-
pression of the uPA and other proteases.

In conclusion, this study indicates that overexpression of uPA
mRNA levels in ErbB2-positive breast cancers determines the ag-
gressive and highly metastatic clinical behavior previously attrib-
uted only to activation of the ErbB2 receptor tyrosine kinase.

ErbB2 status is determined on all newly diagnosed breast cancers.
While the prognostic and predictive potential of uPA ELISA-based
measurements is supported by the highest level of clinical evidence,
such uPA assays have proven impractical for widespread clinical
application. Future studies showing that the uPA quantitative real-
time PCR assay as employed in this study may also be adapted to
small paraffin-archived breast cancer samples will undoubtedly
lead to more rapid and widespread clinical measurement of uPA.
With expression profiling now integrated into several ongoing
multinational breast cancer adjuvant trials, attention to breast
tumor uPA mRNA levels, measured alone or as part of gene expres-
sion signature, will further enhance the prognostic and predictive
value of this important protease biomarker.
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GLOSSARY

Gene expression profiling: Identifying the expression of a
set of genes in a biologic sample (eg, blood, tissue) using mi-
croarray technology.

Microarray: A miniature array of regularly spaced DNA or
oligonucleotide sequences printed on a solid support at high den-
sity that is used in a hybridization assay. The sequences may be
cDNAs or oligonucleotide sequences that are synthesized in situ
to make a DNA chip.

MMP (matrix metalloprotease [metalloprotein-
ases]): MMPs belong to a family of enzymes (zinc-dependent en-
doproteinases) that are involved in the degradation of the
extracellular matrix. MMPs are involved in both normal and patho-
logic tissue remodeling, where their selective proteolysis is now ap-
preciated to help regulate cell growth, angiogenesis, and invasiveness.

PAI-1 (plasminogen activator inhibitor): PAI-1 is
serine protease inhibitor, and an inhibitor of uPA and tPA. To-
gether with other members of the uPA system it is involved in
extracellular matrix degradation, stimulation of cell migration
and control of cell adhesion which are important for invasion
and metastasis in cancer. Official gene symbol: SERPINE1[r].

Prognostic (prognostic marker): A marker that predicts
the prognosis of a patient (eg, the likelihood of relapse, progres-
sion, and/or death) independent of future treatment effects. A
factor can be both prognostic and predictive.

Predictive (predictive marker): Markers, biologic or molecu-
lar, that determine which treatment will increase the efficacy and
improve outcome.

qrt-PCR: Quantitative polymerase chain reaction (qPCR), also
known as real-time PCR, consists of detecting PCR products as they
accumulate. It can be applied to gene expression quantification by re-
verse transcription of RNA into cDNA, thus receiving the name of
quantitative reverse transcriptase polymerase chain reaction (qRT-
PCR). In spite of its name— quantitative—results are usually normal-
ized to an endogenous reference. Current devices allow the
simultaneous assessment of many RNA sequences.

uPA (Urokinase-type plasminogen activator): A molecule
with chemotactic activity when bound to its receptor, uPAR. Soluble
uPA or uPA bound to uPAR also generates plasmin, which degrades
extracellular matrix components leading to invasion and metastasis. The
chemotactic activity is responsible for cell recruitment, which occurs in
inflammation, neo-angiogenesis and cancer invasiveness.

uPAR: Also called CD87, uPAR is a GPI (glycophosphatidylinositol)-
anchored protein that is expressed by various cells, including neutro-
phils, T lymphocytes, monocytes, macrophages and fibroblasts. In the
absence of an intracytoplasmic region, the GPI acts as a tether, with the
transmembrane adaptor(s) mediating the activation of intracellular sig-
nal transduction molecules.
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Abstract

Introduction We investigated whether mRNA levels of E2F1, a
key transcription factor involved in proliferation, differentiation
and apoptosis, could be used as a surrogate marker for the
determination of breast cancer outcome.

Methods E2F1 and other proliferation markers were measured
by quantitative RT-PCR in 317 primary breast cancer patients
from the Stiftung Tumorbank Basel. Correlations to one another
as well as to the estrogen receptor and ERBB2 status and
clinical outcome were investigated. Results were validated and
further compared with expression-based prognostic profiles
using The Netherlands Cancer Institute microarray data set
reported by Fan and colleagues.

Results E2F1 mRNA expression levels correlated strongly with
the expression of other proliferation markers, and low values
were mainly found in estrogen receptor-positive and ERBB2-
negative phenotypes. Patients with low E2F1-expressing tumors

were associated with favorable outcome (hazard ratio = 4.3
(95% confidence interval = 1.8–9.9), P = 0.001). These results
were consistent in univariate and multivariate Cox analyses, and
were successfully validated in The Netherlands Cancer Institute
data set. Furthermore, E2F1 expression levels correlated well
with the 70-gene signature displaying the ability of selecting a
common subset of patients at good prognosis. Breast cancer
patients' outcome was comparably predictable by E2F1 levels,
by the 70-gene signature, by the intrinsic subtype gene
classification, by the wound response signature and by the
recurrence score.

Conclusion Assessment of E2F1 at the mRNA level in primary
breast cancer is a strong determinant of breast cancer patient
outcome. E2F1 expression identified patients at low risk of
metastasis irrespective of the estrogen receptor and ERBB2
status, and demonstrated similar prognostic performance to
different gene expression-based predictors.

Introduction
A variety of genes involved in breast cancer biology have been
studied and proposed as prognostic or predictive biomarkers,
but only a few of them, such as hormone receptors and

ERBB2, are used today to classify breast cancer patients and
to make treatment decisions in the clinical routine [1,2]. The
introduction of microarray analysis recently lead to a better
characterization of breast cancer on a molecular level, under-
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lining its biological heterogeneity and revealing that breast
tumors can be grouped into different subtypes with distinct
gene expression profiles and prognosis [3]. Some of these
subtypes confirmed the relevance of established differences
between phenotypes such as the estrogen receptor (ER) and
ERBB2 status, but also identified novel breast cancer sub-
types or prognostic signatures of potential clinical value [3-7].
Although little overlap was observed between these gene sig-
natures at the level of individual genes, recent data indicate
that the underlying biological processes and pathways might
be common [8-10].

In terms of tumor biology, proliferation has been recognized as
a distinct hallmark of cancer and as an important determinant
of cancer outcome [11-13]. Increased tumor cell proliferation
is accompanied by cell matrix remodeling and neo-angiogen-
esis, which together form the basis for an aggressive tumor
phenotype [14,15]. This observation was further underlined by
recent reports showing that several genes involved in gene
signatures discriminating clinically relevant breast cancer sub-
types were related to proliferation [3,4,9,16,17].

In the context of breast cancer molecular screening, we
recently investigated by quantitative RT-PCR the expression of
60 tumor-related genes in various subsets of breast cancers
from the Stiftung Tumorbank Basel (STB) [18,19]. This gene
set also comprised several genes involved in proliferation such
as thymidilate synthase (TYMS), thymidine kinase 1 (TK1),
topoisomerase 2-alpha (TOP2A), survivin (BIRC5) and the
transcription factor E2F1. Since these genes strongly corre-
lated to one another and since the assessment of a single
gene able to accurately predict breast cancer patients' out-
come would represent major advantages for standard clinical
use, we focused our efforts on the evaluation of E2F1 tran-
script levels as surrogate marker for proliferation. This tran-
scription factor is well known for being involved in the cyclin/
cyclin-dependent kinase/retinoblastoma pathway and for con-
trolling the expression of more than 1,000 genes involved in
cell proliferation, differentiation and apoptosis [20-23]. In a set
of 317 primary breast cancers patients with known clinical out-
come (STB data set), we evaluated E2F1 mRNA expression
levels with respect to other proliferation markers, ER and
ERBB2 status and clinical outcome. All results obtained in our
collective were subsequently validated in The Netherlands
Cancer Institute (NKI) microarray data set comprising 295
breast cancer patients. Moreover, the prognostic value of
E2F1 was compared with the 70-gene prognostic signature,
and with other gene expression-based predictors such as the
intrinsic subtypes, the wound response signature and the
recurrence score available as reported by Fan and colleagues
using the same NKI data set [8].

Methods
Study populations
Patients and methods have been described previously [18].
The 317 primary breast cancer tissue samples were obtained
from the STB, Switzerland and were analyzed by quantitative
RT-PCR (STB data set). The previously published microarray
breast cancer data set reported by Van de Vijver and col-
leagues (NKI data set) [5] was used for validation and compar-
ative analysis as reported by Fan and colleagues [8]. Major
differences between the two study populations included the
patient age, nodal status, adjuvant therapy and methodology
(quantitative RT-PCR versus Agilent microarray). Detailed
patient and tumor characteristics are summarized in Table 1.

Quantitative real-time PCR analysis
Gene expression measurements by quantitative RT-PCR were
performed as reported previously [24]. Total RNA was
extracted using the RNAeasy Mini Kit (Qiagen, Hilden, Ger-
many) and was quality-checked on a Bioanalyzer 2100 (Agi-
lent Technologies, Palo Alto, CA, USA). High-quality RNA
samples were reverse-transcribed and PCR was carried out in
40 cycles on a ABI Prism 7000 using 2× SYBR Green I Mas-
ter Mix (Applied Biosystems, Forster City, CA, USA). Relative
gene expression quantities (Δ[Ct] values) were obtained by
normalization against ribosomal 18S RNA.

Statistical analysis
For the STB study the ER status was defined based on the
mRNA level as reported previously [24], and for the NKI data
set the status was defined as provided by the authors [5,8].
The ERBB2 status was determined in both the STB and NKI
data sets using mRNA expression levels for all study popula-
tions as previously described by Urban and colleagues [18].

The prognostic value of biomarkers was assessed by univari-
ate and multivariate Cox analysis against metastasis-free sur-
vival (MFS), and in different patient subgroups according to
the ER and ERBB2 status. The association of E2F1 with MFS
in particular was assessed by univariate Cox analysis for vari-
ous cutoff values (data not shown). For all subsequent analy-
sis, the 30th percentile was used as the cutoff point for E2F1.
Survival probabilities for MFS were calculated according to
the Kaplan–Meier method, and group differences were
assessed by the logrank test. Multivariate P values were based
on Wald statistics. Statistical analysis was performed with 'R'
statistical software version 2.0.1 using the 'survival' package
[25].

Results
E2F1 correlated with other proliferation markers and 
clinical outcome
A strong and significant correlation was found between the
five proliferation markers analyzed in the STB data set (Table
2). Univariate Cox regression analysis demonstrated a signifi-
cant association of E2F1 as well as TYMS, TK1, TOP2A and
Page 2 of 10
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Table 1

Patient and tumor characteristics

Characteristic Stiftung Tumorbank Basel data set The Netherlands Cancer Institute data set

Method Quantitative RT-PCR Agilent Microarray

n 317 295

Age

Mean/median (years) 60/59 44/44

≤ 40 years 20 (6%) 75 (25%)

41–55 years 110 (35%) 220 (75%)

≥ 56 years 187 (59%) 0 (0%)

pT stage

pT1 100 (32%) 155 (53%)

pT2 183 (58%) 140 (47%)

pT3/4 33 (10%) 0

pN status

Negative 161 (54%) 151 (51%)

Positive 136 (46%) 144 (49%)

Unknown 20 0

Histological grade

1 (good) 28 (9%) 75 (25%)

2 (intermediate) 137 (46%) 101 (34%)

3 (poor) 133 (45%) 119 (41%)

Unknown 19 0

Estrogen receptor statusa

Positive 231 (73%) 226 (77%)

Negative 86 (27%) 69 (23%)

ErbB2 status

Positive 70 (22%) 52 (18%)

Negative 247 (78%) 243 (82%)

Adjuvant therapy

None 60 (20%) 165 (56%)

Hormone 135 (44%) 20 (7%)

Chemotherapy 72 (24%) 90 (30%)

Combination 38 (12%) 20 (7%)

Total 245 (80%) 130 (44%)

Unknown 12 0

Follow-up

Events (metastases) 57 (18%) 101 (34%)

Mean/median metastasis-free survival (years) 3.7/3.6 7.3/6.8

Data presented as n (%) unless stated otherwise. aEstrogen receptor positive, ≥ 20 fmol/mg protein (enzyme immunoassay) for the Stiftung 
Tumorbank Basel data set; for The Netherlands Cancer Institute study, see [5,6]
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BIRC5 expression levels with distant MFS (Table 2). Similar
results were observed in the NKI data set (data not shown). In
the NKI data set we also investigated Ki67. The RNA expres-
sion levels of this proliferation marker were positively corre-
lated with E2F1 (correlation coefficient = 0.46) and were
borderline significant (P = 0.02) in univariate Cox regression
analysis.

Distinct E2F1 expression patterns according to ER and 
ERBB2 status determined the clinical outcome
Scatter plots of E2F1 versus ER and ERBB2 expression levels
in the STB data set (Figure 1a,b) revealed that ER-negative
and ERBB2-positive breast tumors typically expressed high
levels of E2F1, whereas in contrast low E2F1 levels (below the
30th percentile of its distribution in this collective) were
detected almost exclusively in ER-positive and ERBB2-nega-
tive breast tumors. The same pattern was observed in the NKI
data set (Figure 1c,d). Similar scatter plots were obtained ana-
lyzing the other proliferation markers (data not shown).

Cox univariate survival analysis performed in subsets of
patients according to their ER and ERBB2 status showed that
E2F1 correlated with MFS in ER-positive and ERBB2-nega-
tive tumors, but not in ER-negative and ERBB2-positive
tumors (data not shown). Combined Kaplan–Meier analysis
using E2F1 and the ER or ERBB2 status revealed that
patients whose tumors expressed low E2F1 levels, a situation
found mainly in ER-positive and ERBB2-negative phenotypes,
were associated with favorable outcome, whereas patients
with tumors expressing high E2F1 levels revealed a poor out-
come independent of the ER and ERBB2 status (Figure 1e-h).

E2F1 correlated well with the 70-gene signature
The majority of the patients in the NKI data set assigned to the
good-prognosis group by the 70-gene signature expressed
low E2F1 levels and were found to be ER-positive or ERBB2-
negative (Figure 2a,b). In addition, there was a strong correla-
tion (r = 0.67) between E2F1 and the 70-gene signature (Fig-
ure 2c). In particular, 77% (69 out of 90) of patients with low
E2F1-expressing tumors overlapped with patients assigned to

the good-prognosis group by the 70-gene signature and were
indeed found to be at the lowest risk of metastatic events.
Patients with low E2F1 and a poor-prognosis signature or
patients with high E2F1 and a good-prognosis signature had
a comparable incidence of metastases (Table 3).

E2F1 stratification showed similar prognostic value as 
the 70-gene and other gene-based predictors
Kaplan–Meier analysis displayed the similar prognostic value
of E2F1 and the 70-gene signature (hazard ratio = 5.1 (95%
confidence interval = 2.7–9.8) and hazard ratio = 4.6 (95%
confidence interval = 2.7–7.8), respectively; Figure 3a). We
obtained similar results (Figure 3b–d) when E2F1 levels were
compared with the breast cancer intrinsic subtypes [3], with
the recurrence score [17] and with the wound response sig-
nature [7], all of these gene expression-based predictors
being reported by Fan and colleagues in the NKI data set [8].

E2F1 was a strong and independent survival factor in 
multivariate analysis
Multivariate survival analysis including E2F1, nodal status,
grade, tumor size, age, ER and ERBB2 status, and treatments
revealed that only E2F1 and nodal status retained independ-
ent prognostic value in the STB data set (Table 4), and that
E2F1, nodal status, tumor size, age and chemotherapy were
significant in the NKI data set (Table 5). We performed a
second multivariate Cox model including additionally the 70-
gene signature in the NKI data set (Table 5), reconfirming that
E2F1 and the 70-gene signature were significant and additive
predictive survival factors together with the nodal status,
tumor size and chemotherapy.

Discussion
In the present study we demonstrated that the assessment of
E2F1 mRNA as a surrogate proliferation marker is a strong
determinant of breast cancer outcome, particularly suitable for
identifying patients at very low risk of metastasis, comparable
with gene expression-based signatures such as the 70-gene
signature. The prognostic component of the ER and ERBB2
status as well as different gene signatures were found to be

Table 2

Correlation among different proliferation markers in the Stiftung Tumorbank Basel data set and association with survival

Correlationa Univariate Cox 
regressionb (P value)

E2F1 BIRC5 TOP2A TK1

E2F1 - <0.001

BIRC5 0.84 0.001

TOP2A 0.78 0.76 <0.001

TK1 0.79 0.88 0.67 0.018

TYMS 0.81 0.80 0.71 0.77 0.005

aPearson correlation coefficient, all P < 0.05. bMetastasis-free survival.
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Figure 1

Estrogen receptor and ERBB2 versus E2F1 expression levelsEstrogen receptor and ERBB2 versus E2F1 expression levels. Scatter plots of estrogen receptor (ER) ESR1 and ERBB2 versus E2F1 expres-
sion levels in (a), (b) the Stiftung Tumorbank Basel data (STB) set and (c), (d) The Netherlands Cancer Institute (NKI) data set. Open circles, no 
metastasis; filled circles, metastasis. Vertical lines, cutoff values for the estrogen receptor (ER) and ERBB2 status, respectively; horizontal lines, 30th 
percentile for E2F1. Combined Kaplan–Meier analysis (metastasis-free survival) using the ER or ERBB2 status and E2F1 (30th percentile) in (e), (f) 
the STB data set and (g), (h) the NKI data set. Labels of the survival curves correspond to the groups as indicated on the respective scatter plot. CI, 
95% confidence interval; HR, hazard ratio.
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strongly related to tumor proliferation. In fact, a large subset of
patients classified with very favorable outcome shared a
common molecular tumor phenotype characterized by ER-
positive and/or ERBB2-negative status and low proliferation
(low levels of E2F1 as well as BIRC5,TYMS,TOP2A and TK1).
Moreover, the results obtained in our data set analyzed by
quantitative RT-PCR were successfully validated in an inde-
pendent breast cancer data set using microarray technology.

Sotiriou and colleagues developed a gene expression grade
index able to reclassify breast cancer patients with tumor his-
tological grade 2 into groups with high risk of recurrence ver-
sus low risk [9]. The gene expression grade index was
developed on the basis of the analysis of five breast cancer
microarray data sets including more than 600 tumors, from
which the authors extracted a list of 242 genes associated
with tumor grade and predicting patient outcome. Most of
these genes were related to proliferation and cell survival,
such as E2F1 and MKI67, BIRC5, TOP2A and STK6, all being
highly correlated and providing similar prognostic information.
In our study, we demonstrated that the detection of a single
gene is sufficient to select tumors at low proliferation. A single
gene assessment requires high RNA quality from fresh (fro-
zen) tissue, however, and might be insufficient in cases of

more heterogeneous RNA quality (for example, RNA from par-
affin-embedded tissues).

Breast cancer has been successfully classified using microar-
rays into clinically relevant subgroups based on variations in
gene expression patterns. Sorlie and colleagues showed that
ER-negative tumors grouped into basal-like and ERBB2 sub-
types, both with poor prognosis [3]. In contrast, ER-positive
breast cancers could be classified into luminal A and luminal
B subtypes with significantly distinct prognosis: luminal A
tumors displayed favorable outcome, whereas survival of
patients with luminal B tumors was poor and comparable with
those of the ER-negative ERBB2 and basal subtypes [3]. Our
classification in the NKI data set revealed that 81% of the
tumors expressing low E2F1 levels (below this study's cutoff
point) corresponded with luminal A subtype as defined by Fan
and colleagues [8], and subsequently had similar prognostic
value (Figure 3b).

Van de Vijver and colleagues used a 70-gene prognostic sig-
nature to discriminate patients with good prognosis and poor
prognosis [5], which according to our analysis strongly corre-
lated with E2F1 expression levels. As shown in Figure 2,
patients defined as of good prognosis by the 70-gene signa-

Table 3

Concordance of E2F1 with the 70-gene signature in The Netherlands Cancer Institute data set

Proliferation status (E2F1) NKI 70-gene signature prognosis

Good Poor Total

E2F1 ≤ p30 4/69 (5.7%) 6/21 (28.6%) 10/90 (11.1%)

E2F1 > p30 12/46 (26.1%) 79/159 (49.6%) 91/205 (44.4%)

Total 16/115 (13.9%) 85/180 (47.2%) 101/295 (34.2%)

The percentage indicates the number of metastatic events over the number of cases in each group.

Figure 2

Comparison of E2F1 and the 70-gene signature in The Netherlands Cancer Institute data setComparison of E2F1 and the 70-gene signature in The Netherlands Cancer Institute data set. (a), (b) Scatter plots of estrogen receptor (ER = 
ESR1) and ERBB2 versus E2F1 expression levels. Open circles, poor-prognosis group as defined by [5]; filled circles, good-prognosis group [5]. 
(c) Correlation between the 70-gene prognostic signature and E2F1. Open circles, no metastasis; filled circles, metastasis.
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ture had tumors expressing low E2F1 levels and were mainly
ER-positive. Despite all observed correlations, multivariate
Cox analysis of the NKI data set showed that E2F1 levels and
the 70-gene prognostic signature retained additive signifi-
cance when both covariates were included (Table 5). This is
probably due to the fact that both markers classified, in
addition to the overlapping patients at very low risk, patients at
similar but higher risk who would not have been selected by
either classifier alone (Table 3). Furthermore, we found that
almost all ERBB2-positive and ER-negative tumors expressed
high levels of E2F1 and were classified as of poor prognosis
according to the 70-gene signature – suggesting an explana-
tion of why Espinosa and colleagues were unsuccessful in
improving the accuracy of the 70-gene signature by incorpo-
rating additional genes such as ERBB2 [26].

Fan and colleagues [8] recently demonstrated that the differ-
ent gene-expression-based predictors including the 70 gene-
signature, the intrinsic subtypes, the wound signature and the
recurrence score were highly concordant to evaluate breast
cancer outcome. Our analysis revealed that low proliferation
as quantified by low levels of E2F1 represented a common
determinant of patients with good prognosis (Figures 2 and 3).
It has to be noted that the prognostic value of E2F1 was inde-
pendent of the nodal status. Indeed, 40% of the STB tumors
and 50% of the NKI tumors with low E2F1 expression levels

belonged to nodal-positive patients at very low risk of metas-
tases, reconfirming the impact of proliferation recently
reported in a study evaluating breast cancer patients with 10
and more positive lymph nodes [27,28].

The STB and NKI data sets differed in adjuvant treatment
modalities; in general, patients of the STB collective were
older and consequently received more hormone therapy but
less chemotherapy as compared with patients of the NKI
collective. In this context, it has to be emphasized that treat-
ment regiments were chosen independent of the E2F1 status
(Additional file 1) and that E2F1 levels retained predictive sur-
vival significance in patients with and without different adju-
vant treatments (Additional file 2). Multivariate analyses,
however, revealed different treatment impacts in the two data
sets (Tables 4 and 5). In the STB collective, chemotherapy
was particularly significant in univariate Cox analysis but was
nonsignificant in multivariate Cox models, suggesting that
information about the higher risk cases receiving chemother-
apy is already included in the combination of the other covari-
ates. Since E2F1 is co-expressed or regulates genes such as
TYMS, TK1 and TOP2A, which were mechanistically linked
with response to 5-fluorouracil and anthracycline-based ther-
apy [16,29-32], however, our results with respect to specific
chemotherapy response should be further investigated.

Figure 3

Kaplan–Meier analysis of metastasis-free survivalKaplan–Meier analysis of metastasis-free survival. Kaplan–Meier analysis (metastasis-free survival) using (a) E2F1 expression (30th percentile) 
and the 70-gene signature, (B) intrinsic subtypes, (c) the recurrence score (Rsu), and (b) the wound response signature. CI, 95% confidence inter-
val; HR, hazard ratio.
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Conclusion
Since accurate monitoring of proliferation assessing the
mRNA E2F1 levels together with the determination of the ER
and ERBB2 status can be performed easily by quantitative RT-
PCR even in small amounts of tissue such as core biopsies
[19], we encourage the inclusion of such analyses in protocols

of ongoing clinical and translational research investigations,
including predictive studies with respect to specific
chemotherapies.
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Table 4

Univariate and multivariate Cox analyses in the Stiftung Tumorbank Basel data set (n = 317)

Factor Univariate metastasis-free survival Multivariate metastasis-free survival

Hazard ratio (95%
confidence interval)

P value Hazard ratio (95%
confidence interval)

P value

E2F1 (>p30 versus ≤ p30) 4.27 (1.83–9.96) 0.001 2.95 (1.10–7.93) 0.032

Grade (3 versus 1 + 2) 2.03 (1.17–3.51) 0.011 1.56 (0.77–3.14) 0.213

Estrogen receptor status (positive versus negative) 0.64 (0.37–1.12) 0.120 1.21 (0.56–2.61) 0.625

ERBB2 status (positive versus negative) 1.69 (0.98–2.92) 0.058 1.41 (0.70–2.81) 0.335

pN (>3 nodes versus ≤ 3 nodes) 3.14 (1.76–5.61) <0.001 2.36 (1.14–4.88) 0.021

Size (>2 cm versus ≤ 2 cm) 1.95 (1.05–3.62) 0.036 1.19 (0.58–2.43) 0.641

Age (≤ 40 years versus >40 years) 0.30 (0.15–0.59) 0.001 0.59 (0.24–1.43) 0.246

Chemotherapy 2.65 (1.54–4.55) <0.001 1.27 (0.45–3.59) 0.654

Hormone therapy 0.50 (0.28–0.88) 0.017 0.76 (0.27–2.17) 0.605

70-gene signature (poor versus good prognosis) Not available Not available Not available Not available

Table 5

Univariate and multivariate Cox analyses in The Netherlands Cancer Institute data set (n = 295)

Factor Univariate metastasis-free 
survival

Multivariate metastasis-free survivala

Hazard ratio (95%
confidence interval)

P value With 70-gene signature Without 70-gene signature

Hazard ratio (95%
confidence interval)

P value Hazard ratio (95%
confidence interval)

P value

E2F1 (>p30 versus ≤ p30) 5.09 (2.65–9.78) <0.001 3.76 (1.90–7.45) <0.001 2.47 (1.20–5.10) 0.014

Grade (3 versus 1 + 2) 2.38 (1.60–3.52) <0.001 1.28 (0.82–2.00) 0.277 1.02 (0.65–1.60) 0.931

Estrogen receptor status (positive versus 
negative)

0.54 (0.36–0.83) 0.005 0.99 (0.61–1.59) 0.956 1.11 (0.70–1.78) 0.658

ERBB2 status (positive versus negative) 1.61 (1.01–2.57) 0.045 1.35 (0.82–2.21) 0.234 1.28 (0.78–2.09) 0.330

pN (>3 nodes versus ≤ 3 nodes) 2.20 (1.37–3.53) 0.001 2.35(1.32–4.21) 0.004 2.69 (1.47–4.91) 0.001

Size (>2 cm versus ≤ 2 cm) 2.08 (1.39–3.10) <0.001 1.70 (1.12–2.58) 0.013 1.73 (1.14–2.62) 0.010

Age (≤ 40 years versus >40 years) 0.50 (0.33–0.75) 0.001 0.59 (0.38–0.89) 0.013 0.67 (0.43–1.02) 0.063

Chemotherapy 0.79 (0.52–1.19) 0.254 0.61 (0.38–1.00) 0.051 0.55 (0.33–0.91) 0.020

Hormone therapy 0.58 (0.28–1.19) 0.139 0.60 (0.28–1.27) 0.181 0.58 (0.27–1.23) 0.157

70-gene signature (poor versus good 
prognosis)

4.55 (2.67–7.77) <0.001 Not included Not included 2.78 (1.49–5.21) 0.001

aMultivariate metastasis-free survival calculated once with and once without the 70-gene signature.
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Abstract

Introduction Gene expression profiling has been successfully
used to classify breast cancer into clinically distinct subtypes,
and to predict the risk of recurrence and treatment response.
The aim of this study was to investigate whether the gene
expression profile (GEP) detected in a core biopsy (CB) is
representative for the entire tumor, since CB is an important tool
in breast cancer diagnosis. Moreover, we investigated whether
performing CBs prior to the surgical excision could influence the
GEP of the respective tumor.

Methods We quantified the RNA expression of 60 relevant
genes by quantitative real-time PCR in paired CBs and surgical
specimens from 22 untreated primary breast cancer patients.
Subsequently, expression data were compared with
independent GEPs obtained from tumors of 317 patients
without preceding CB.

Results In 82% of the cases the GEP detected in the CB
correlated very well with the corresponding profile in the surgical
sample (rs ≥ 0.95, p < 0.001). Gene-by-gene analysis revealed
four genes significantly elevated in the surgical sample
compared to the CB; these comprised genes mainly involved in
inflammation and the wound repair process as well as in tumor
invasion and metastasis.

Conclusion A GEP detected in a CB are representative for the
entire tumor and is, therefore, of clinical relevance. The observed
alterations of individual genes after performance of CB deserve
attention since they might impact the clinical interpretation with
respect to prognosis and therapy prediction of the GEP as
detected in the surgical specimen following CB performance.

Introduction
Gene expression profiling by parallel detection of thousands of
genes permits the molecular signature (phenotype) of a tissue
sample to be read and can, therefore, individually characterize
a patient's tumor at the molecular level. Based on the gene
expression profile (GEP) of a tumor, a molecular classification
for breast cancer was proposed [1] and several molecular sig-
natures were reported to predict the risk of recurrence and
treatment response [2-5]. Such molecular analyses require
only small amounts of material, such as tissue samples

obtained by minimal invasive methods, for example, core
biopsy (CB), which are used to assess the nature of palpable
and non-palpable breast lesions to confirm or exclude the
diagnosis of breast cancer [6-9].

Although CB investigations have become more and more
important in the early workup of breast lesions, there are only
a few investigations regarding the reliability of GEPs as
detected in CBs [10]. However, wound healing subsequent to
CB can potentially induce gene expression alterations in the
injured tissue. Many of these normally occurring reparative
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processes share molecular characteristics with an aggressive
cancer phenotype, such as cell proliferation and survival, ang-
iogenesis, and extracellular matrix remodeling; these biological
hallmarks were shown to predict the clinical course in cancer
[3,11-13]. Therefore, potential biological changes induced by
CB require further study since they may have important conse-
quences for clinical outcome prediction and treatment deci-
sions as well as the interpretation of GEP changes
investigated in neo-adjuvant studies.

We explored the molecular expression levels of 60 genes
using quantitative real-time PCR (qrt-PCR), a highly sensitive
and reproducible method, in paired CB and surgical samples.

These genes were selected according to their known links to
malignant cell behavior in breast cancer and their importance
in major cancer hallmarks, such as proliferation, survival, inva-
siveness and angiogenic potential, and in the wound healing
process [14]. Our first objective was to investigate whether
the molecular profile of a CB is representative for the whole
tumor. The second objective was to study if the repair process
following CB alters the GEP and if this is influenced by the
timeframe between the CB and the surgical excision.

Table 1

Clinicopathological characteristics and gene expression variation of each patient

Difference in gene expression between 
CB and ST (∆Ct [GeneST] – ∆Ct 

[GeneCB])

Patient 
number

Age Time between 
CB and ST 

(days)

Histology Tumor 
diameter 

(cm)

Grade Lymph node 
involvement

Correlation (rs) 
between 

paired CB and 
ST

PAI-1 COX-2 ERBB2

1 68 7 Ductal 3.3 3 Negative 0.97 -0.39 -0.15 -0.08

2 59 8 Ductal 1.8 3 Negative 0.98 -1.68 -0.20 0.52

3 49 21 Ductal 3.3 2 Positive 0.98 -1.19 -1.03 0.62

4 57 13 Ductal 1.1 1 Positive 0.89 -0.63 0.61 -0.02

5 63 14 Ductal 9.0 2 Negative 0.97 -1.41 -1.80 1.40

6 60 21 Ductulo-
lobular

2.7 1 Positive 0.98 -1.38 -2.41 0.23

7 80 12 Ductal 3.1 1 Positive 0.95 -2.62 -1.39 0.44

8 81 14 Lobular 2.8 2 Positive 0.94 -3.78 -3.73 0.29

9 34 14 Ductal 1.8 2 Negative 0.95 -3.16 -1.37 0.12

10 68 10 Ductal 0.9 2 Micrometastasis 0.87 -3.57 -7.27 1.01

11 65 16 Lobular 1.9 1 Negative 0.89 -5.16 -0.80 -0.02

12 80 13 Ductal 6.0 3 Positive 0.86 -2.16 -0.20 0.63

13 59 2 Apocrine 2.7 3 Negative 0.98 -1.18 -4.64 -0.27

14 73 12 Lobular 1.9 2 Positive 0.95 -4.60 -3.97 -1.85

15 61 1 Lobular 2.3 2 Positive 0.89 -1.88 -1.61 -0.94

16 73 22 Ductal 1.9 2 Negative 0.98 -1.28 -0.34 0.26

17 58 3 Ductal 9.0 2 Positive 0.96 -0.48 0.26 -0.42

19 68 13 Ductal 1.2 1 Negative 0.97 -2.18 -2.62 0.31

18a 67 11 Ductal 1.5 2 Micrometastasis NA NA NA NA

20 44 13 Ductulo-
lobular

3.2 3 Positive 0.98 -0.12 0.01 0.19

21 71 20 Ductulo-
lobular

1.7 3 Negative 0.95 -3.15 -1.69 0.26

22 53 5 Ductal 1.3 2 Negative 0.92 -2.81 -5.48 -0.08

aRNA in the core biopsy (CB) of this patient was degraded and, therefore, omitted from the study. COX, cyclooxygenase; NA, not available; PAI-1, 
Plasminogen Activator Inhibitor-1; ST, surgical tumor tissue specimen.
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Materials and methods
Tumor specimen acquisition
Between June 2004 and June 2005, 22 consecutive breast
cancer patients entered this study, for which both CBs and
surgical tumor tissue specimens (STs) were available. This
study was undertaken at the Women's University Hospital
Basel, Switzerland, and approved by the local institutional
review board (EKBB permission Nr. 81/04). Written informed
consent was obtained from all patients.

All CBs (14-gauge needle, Magnum® Core high speed, Bard
Medica, Karlsruhe, Germany) were obtained under sono-
graphic guidance (HDI 5'000 Sono CT®, Philips, Zurich, Swit-
zerland) under local anesthesia through a skin incision in a
sterile field. Five biopsy specimens were taken routinely for
each patient. Two biopsy specimens were divided longitudi-
nally; two halves to be used for molecular examination were,
within one minute, stored in RNAlater®-solution (Qiagen,
Basel, Switzerland), while the other two halves as well as the
other three biopsies were immediately put in formaldehyde

and sent for histological examination to the Institute of Pathol-
ogy, University Hospital Basel.

After establishing the diagnosis of breast cancer, all patients
underwent breast surgery with sentinel node lymphonodec-
tomy or axillary lymphonodectomy if indicated. All surgical
samples were examined by the same pathologist. If the tumor
tissue was larger than 0.5 cm in diameter at the intra-operative
frozen section, a representative piece containing more than
60% tumor cells was cryopreserved within five minutes and
made available to the Stiftung Tumorbank Basel for molecular
examination. The rest of the tumor tissue was embedded in
paraffin for routine histological examination.

Reference study population
RNA expression levels of all 60 genes were detected using the
same qrt-PCR method in 317 surgically excised breast cancer
specimens [15] from patients undergoing primary surgery in
1992 to 1996 without previous examination by CB. All tissue
samples were prepared by the pathologists as described
above, all samples contained more than 60% tumor cells and

Figure 1

Unsupervised hierarchical clustering of paired core biopsy and surgical tumor tissue samples (Spearman correlation, average linkage)Unsupervised hierarchical clustering of paired core biopsy and surgical tumor tissue samples (Spearman correlation, average linkage). Red color 
indicates high expression levels (low ∆Ct) and green vice versa. Patients 6, 11 and 20 had two core biopsies taken that were analyzed separately. In 
four cases the paired gene expression profiles did not cluster together close to each other.
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they were cryoperserved within five minutes. The Stiftung
Tumorbank Basel was subsequently responsible for collec-
tion, storage at -70°C and analysis.

RNA extraction and qrt-PCR
Detailed procedures have been published elsewhere [16]. In
brief, RNA was extracted using the RNeasy Mini Kit (Qiagen,
Inc., Valencia, CA, USA), quantified and quality-checked on a
Bioanalyzer 2100 (RNA 6000 Nano LabChip-Kit, Agilent
Technologies, New Castle, DE, USA). High quality RNA sam-
ples were reverse-transcribed (10 mM DDT, 1 µg of hexamer
primers, 2 U of MMLV Reverse Transcriptase (Invitrogen,
Basel, Switzerland), 40 U of RNasin (Promega, Wallisellen,
Switzerland), 0.5 mM of each dNTP (Promega), 1× reaction
buffer). PCR primers were designed to be cDNA specific and
ordered at GeneScan Europe (Freiburg, Germany). PCR was
performed in 40 cycles on an ABI Prism 7000 using 2× SYBR
Green I Master Mix (Applied Biosystems, Forster City, CA,
USA) in a final volume of 25 µl. Relative quantities (∆Ct) were
obtained by normalization against ribosomal 18S RNA, and
standardization was achieved with Human Universal Standard
RNA (Stratagene Europe, Amsterdam, The Netherlands). The
60 genes quantitatively assessed are listed in Table 1.

Statistical analysis
The same amount of RNA was used for the GEP analysis of
each sample. For statistical analysis, ∆Ct expression values of
each gene were obtained by normalizing the raw gene values
to 18S rRNA as a reference gene.

Cluster and TreeView programs were used to perform unsu-
pervised hierarchical clustering of samples and genes (Spear-
man correlation, average linkage) [17]. Spearman correlation
coefficients were calculated to compare the GEPs of all paired
samples. Differentially expressed genes were identified with
the paired two-sample t-test. The Mann-Whitney U-test was

used to compare median expression values of genes among
different subgroups of patients. All statistical analyses were
carried out at 5% level of significance and performed with S-
Plus software (Version 6.1, Insightful Corporation, Seattle,
WA, USA).

Results
Patient characteristics
The mean age of the 22 patients was 63 years (range: 34 to
81 years). The period between CB and final surgery ranged
from 1 to 23 days. The mean tumor diameter was 2.9 cm
(range: 0.9 to 9 cm). Clinicopathological characteristics of
each patient are listed in Table 1. Of note, one paired tissue
sample was not further evaluated due to poor RNA quality, and
RNA extracted from the two halves of the CB was not pooled
in three cases but analyzed separately.

Comparison of the gene expression profile in paired 
samples
As shown in Figure 1, unsupervised hierarchical clustering
revealed that paired CB and ST generally clustered together;
in only four cases (patients 4, 10, 11, and 12) did the GEP of
the CB not agglomerate with the profile of the respective ST.
Interestingly, the two separate CBs taken from patient 11 were
very similar to each other, although they differed from their ST
GEP. The gene dendrogram of the cluster analysis also
revealed that samples agglomerated in two main groups
according to their respective estrogen receptor status, recon-
firming the representative value of this study population.

Subsequent analysis of paired CBs and STs confirmed the
high correlation between all samples (rs from 0.86 to 0.98, all
p < 0.001) for each patient. A scatter plot of two representa-
tive examples of a paired CB/ST is displayed in Figure 2. The
differences in paired GEPs does not seem to be related to the

Figure 2

Correlation between the gene expression profiles (60 genes) of paired core biopsies (CB) and surgical tumor tissue specimens (ST)Correlation between the gene expression profiles (60 genes) of paired core biopsies (CB) and surgical tumor tissue specimens (ST). (a) Specimens 
from patient 2 (rs = 0.98), as representative for 82% of all cases. (b) Specimens from patient 12, as representative for less correlated paired gene 
expression profiles (rs = 0.86).
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timeframe between CB and surgery or to any other clinico-
pathological parameters (Table 1).

Gene-by-gene analysis in core biopsies and paired 
surgical specimens
The comparison of the expression levels of individual genes by
means of paired t-test showed no significant difference
between CB and ST with the exception of four genes. Plas-
minogen activator inhibitor 1 (PAI-1; also known as
SERPINE1) was significantly higher expressed (lower ∆Ct val-
ues) in STs compared to CBs (p < 0.001, Table 1). Similar dif-
ferences, although less pronounced, were observed for
cyclooxygenase 2 (COX-2; also known as PTGS2; p <
0.001), urokinase plasminogen activator receptor (uPAR; also
known as PLAUR; p = 0.003) and matrix metalloproteinase 1
(MMP1; p = 0.03). The increase in the expression of these
genes was not related to the timeframe between CB and sur-
gery. All other genes were very similarly expressed in paired
CB/ST as shown in Figure 3. Table 1 lists differences in RNA
expression values of PAI-1, COX-2 and ERBB2 for paired
samples of each patient.

Histological re-examination of cryocuts of the surgical speci-
mens revealed a certain amount of inflammation and fibrolysis.
Whether these observations are due to cancerogenesis or to
a de novo induced wound repair process can not be deter-
mined.

Comparison of the expression levels of selected genes 
with a reference study population of surgical tumor 
tissue specimens
To verify whether the higher expression levels of PAI-1 and
COX-2 observed in STs could have been induced by the pre-
ceding CB procedure, we compared the expression levels of
the same genes in an independent population of 317 primary
breast cancer patients. These samples were investigated with
the same qrt-PCR technique but were from patients from
which no CB had been taken prior to surgery. As shown in Fig-
ure 4, the expression levels of PAI-1 and COX-2 measured in
the independent STs without CB were found to be very similar
to the levels detected in CBs and significantly different from
those detected in STs after CB. Moreover, no variation at all

Figure 3

Box plots displaying the changes in the expression of each gene in the surgical specimens (ST) compared to the respective core biopsies (CB)Box plots displaying the changes in the expression of each gene in the surgical specimens (ST) compared to the respective core biopsies (CB).
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was observed for the remaining genes as illustrated by the
expression levels of ERBB2 as an example.

Discussion
Ultrasound-guided CB is a well established method to diag-
nose breast cancer in women, since it is a reliable, and time-
and cost-saving method. The clinical utility of the information
gained by CB depends on whether the CB is representative
for the whole tumor. Our data demonstrate that the quantita-
tive expression levels of 60 genes detected in CBs were highly
comparable to their paired STs in 17 out of the 21 cases inves-
tigated. Even in the cases where GEPs of a CB and ST did not
agglomerate, the expression levels of the ER and progester-
one receptor as well as ERBB2 measured in the CB were also
representative for the whole tumor. This is important since
today's therapy decisions are based on these markers
obtained either by CB or ST (St Gallen consensus recommen-
dations [18]). In addition, our results reconfirm previous obser-
vations reported by immunohistochemistry [19,20] or semi-
qrt-PCR [21].

Tissue sampling by CB causes a local injury, inducing wound
healing that is characterized by recruitment of inflammatory
cells, stimulation of stromal and epithelial cell proliferation, cell
migration and increased angiogenesis. Analysis on a gene-by-
gene basis demonstrated higher expression levels of PAI-1,
COX-2, uPAR and MMP1 in STs compared to their paired
CBs, whereas no changes were observed for all other genes.
These results are not surprising since proteinases (such as
PAI-1 and uPAR) are known to be essentially involved in the
wound healing process [22,23] and COX-2 plays roles in
inflammation and angiogenesis [24-27].

However, many of these reparation processes show parallels
with cancerogenesis [28-30]; while proteinases, their inhibi-
tors, cyto-/chemokines and growth factors are essential for
wound healing and tissue repair, they also play central roles in
cancer progression. For example, uPA, uPAR and its inhibitor
PAI-1 are responsible for the degradation and remodeling of
the extracellular matrix, and are further involved in angiogen-
esis, cell adhesion and migration necessary for tumor cell inva-
sion and metastasis [31,32]. COX-2 can be induced by
cytokines and growth factors during the inflammatory repair
process as well as in cancer [24-26,30] resulting in COX-2
overexpression observed in human malignancies [25-27].

Therefore, increased levels of these markers in the tumor
specimen could suggest a more aggressive cancer pheno-
type. Indeed, elevated levels of uPA and PAI-1 are associated
with poor clinical outcome in breast cancer and also have pre-
dictive value [33-35]. Moreover, a previously identified
'wound-response signature' turned out to be prognostic in
several carcinomas, including breast cancer [12,13]. Although
COX-2 has been associated with increased Vascular
Endothelial Growth Factor A (VEGF), estrogen synthesis, pro-
liferation, apoptosis and invasion [25,27,36], in our study,
higher levels of COX-2 were not accompanied by changes in
the expression of genes involved in these processes, indicat-
ing that the observed molecular alterations influence data
interpretation but not tumor aggressiveness.

Conclusion
Our study demonstrates that expression levels of ER, proges-
terone receptor, ERBB2 and other genes relevant for the man-
agement of breast cancer as detected in CBs are
representative for the whole tumor. However, increased
expression levels of proteinases (e.g. PAI-1, uPAR, MMP1)

Figure 4

Notch box plots of the expression levels of plasminogen activator inhibitor (PAI)-1, cyclooxygenase (COX)-2 and HER-2 as detectedNotch box plots of the expression levels of plasminogen activator inhibitor (PAI)-1, cyclooxygenase (COX)-2 and HER-2 as detected (a) in 317 inde-
pendent surgical specimens of primary breast cancer patients who did not undergo previous diagnosis by core biopsy, (b) in the core biopsy of the 
21 patients entering this study, and (c) in the corresponding surgical excisions.
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and COX-2 in STs compared to their paired CBs suggest
induction of theses genes during the repair process following
tissue injury caused by CBs. This observation is important
since such molecular alterations may have an impact on the
clinical interpretation of GEPs detected in STs with respect to
the prediction of risk assessment and treatment response.
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Abstract

Introduction Akt1, Akt2 and Akt3 kinases are downstream
components of phosphoinositol 3-kinase derived signals from
receptor tyrosine kinases, which influence cell growth,
proliferation and survival. Akt2 overexpression and amplification
have been described in breast, ovarian and pancreatic cancers.
The present study was designed to investigate the prognostic
significance of activated Akt in primary breast cancer and its
association with other tumour biomarkers.

Methods Using a two-site chemiluminescence-linked
immunosorbent assay, we measured the quantitative expression
levels of total phosphorylated (P-S473) Akt (Akt1/Akt2/Akt3) on
cytosol fractions obtained from fresh frozen tissue samples of
156 primary breast cancer patients.

Results Akt phosphorylation was not associated with nodal
status or ErbB-2 protein expression levels. High levels of
phosphorylated Akt correlated (P < 0.01) with poor prognosis,
and the significance of this correlation increased (P < 0.001) in
the subset of patients with ErbB-2 overexpressing tumours. In
addition, phosphorylated Akt was found to be associated with
mRNA expression levels of several proliferation markers (e.g.
thymidylate synthase), measured using quantitative real-time RT-
PCR.

Conclusion Our findings demonstrate that, in breast cancer
patients, Akt activation is associated with tumour proliferation
and poor prognosis, particularly in the subset of patients with
ErbB2-overexpressing tumours.

Introduction
Akt/protein kinase B (PKB) is a serine/threonine kinase that is
involved in mediating various biological responses, such as
inhibition of apoptosis and stimulation of cell proliferation (for
review [1,2]). Three mammalian isoforms are currently known
[1]: Akt1/PKBα, Akt2/PKBβ and Akt3/PKBγ. Akt1 was first
discovered as a cellular homologue of the viral oncogene v-
Akt, which causes leukaemia in mice [3] and is the predomi-
nant isoform in most tissues. High expression of Akt2 has been
observed in insulin-responsive tissues, whereas Akt3 has

been shown to be predominantly expressed in brain and testis
[2].

Phosphoinositol-3-phosphate (PIP3) is a product of phosphoi-
nositol 3-kinase enzymatic activity and has been shown to be
a prerequisite lipid modulator of Akt activity [4]. PIP3 has been
described as a downstream component of a wide range of
receptors, including the c-Met receptor [5], the epidermal
growth factor receptor family [6], fibroblast growth factor
receptor [7], insulin growth factor receptor [8] and platelet-
derived growth factor receptor [9]. In addition, Akt activity can
R394
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be regulated by the PTEN tumour suppressor gene, which
negatively regulates PIP3 levels (for review [10]). After PIP3
binding, Akt1 is activated by phosphorylation on two critical
residues, namely threonine 308 (T308) and serine 473
(S473); similar activation residues (S472 and S474, respec-
tively) are highly conserved in Akt2 and Akt3 (for review [1,2]).
Several studies have found Akt2 to be amplified or overex-
pressed at the mRNA level in various tumour cell lines [11-13]
and in a number of human malignancies, such as colon, pan-
creatic and breast cancers [14-16]. However, activation of
Akt1, Akt2 and Akt3 by phosphorylation appears to be more
clinically relevant than detection of Akt2 amplification or
overexpression.

To date, several groups have investigated the phosphorylation
of active Akt in breast, prostate, colon and pancreatic tumours
by immunohistochemistry [14,17-22]. Under such conditions,
phosphorylation structures may be disturbed by formalin fixa-
tion, rendering specific antigen sites inaccessible. Moreover,
immunohistochemistry gives only semiquantitative results, lim-
iting statistical analysis. Alternatively, enzyme immunoassays
(EIAs) have the advantage that they yield highly reproducible
and sensitive results of quantitative values.

In the present study we detected phosphorylated Akt (P-Akt)
by means of a novel two-site chemiluminescence-linked immu-
noassay (CLISA) in fresh frozen primary tissue samples from
156 primary breast cancer patients. Because it was shown in
previous immunohistochemistry studies that S473 P-Akt has
prognostic significance [17-19], the aim of the present study
was to measure levels of P-Akt continuously using CLISA and
correlate these with survival and factors that are involved in
tumourigenesis. Given that the antibody used in the reported
immunohistochemistry studies recognized all Akt isoforms, we
have developed an assay that allows specific quantitative
detection of active Akt1, Akt2 and Akt3 when phosphorylated
on their corresponding residues, namely S473, S472 and
S474, respectively.

Materials and methods
Tumor and patient characteristics
Fresh material obtained during surgery was kept on ice and
examined by a pathologist. Representative specimens with
more than 60% tumour cells were sent to the Stiftung Tumor-
bank Basel (STB), immediately shock frozen and cryopre-
served (-80°C). All activities of the STB are in accordance with
an official Swiss permit, which guarantees patient confidenti-
ality and respects ethical issues. For the present study, 156
samples of primary breast tumours were selected. Those sam-
ples overexpressing ErbB-2 (>500 U/mg total protein) were
selected, based on ErbB-2 protein expression levels routinely
detected using EIAs at the time of surgery by the STB [23].
EIA ErbB-2 positive samples correlate strongly with DAKO 3+
and with ErbB-2 amplification detected by fluorescent in situ
hybridization (FISH; data not shown).

All patients underwent primary surgery before January 1996.
Sixty-seven patients (43%) experienced disease recurrence
within the median follow-up time of 57 months (range 27–88
months). Sixty-six patients (42%) were node negative, and 90
(58%) were node positive. Forty tumours (26%) were oestro-
gen receptor (ER)-α negative. Ninety-five patients (61%) had
ErbB-2-negative (<500 U/mg total protein) and 61 patients
(39%) had ErbB-2 positive tumours [23]. None of the patients
received neoadjuvant therapy. Patient and tumour characteris-
tics are summarized in Table 1.

Cell lines and tissue culture
MCF-7 breast cancer cells were cultured in IMEM-ZO
(improved minimal essential medium with zinc option) supple-
mented with 5% foetal bovine serum, l-glutamine and antibiot-
ics (penicillin/streptomycin) at 37°C in a 5% carbon dioxide
incubator. For the phospho-standard preparation, subconflu-
ent MCF-7 cells were serum starved for 48 hours in serum-free
media, and were treated with NaF and Na3VO4 for 1 hour, and
then with 10% foetal bovine serum for 10 min. Cells were
lysed for 5 min on ice in EB lysis buffer (20 mmol/l Tris-HCl
[pH 7.4], 0.5 mol/l NaCl, 10 mmol/l EDTA, 1% Triton X100,
20 mmol/l NaF, 20 mmol/l glycerophosphate, 2 mmol/l
Na3VO4, proteinase inhibitor cocktail [Roche, Indianapolis, IN,
USA]), centrifuged at 20,000 g for 5 min and supernatant was
stored at -80°C.

Measurement of oestrogen receptor, progesterone 
receptor and ErbB-2 protein levels in tumour extracts by 
enzyme immunoassay
Tissue homogenates were prepared in accordance with
standard procedures for tumour marker measurement using
EIAs, as previously described [23]. In brief, the frozen tissues
were pulverized in liquid nitrogen using a Micro-Dismembrator
U (B Braun Melsungen AG, Melsungen, Germany). The pow-
der was homogenized using a tissue homogenizer (Ultra-Tur-
rax; Janke & Kunkel, IKA-Werke, Staufen, Germany) for 20 s in
three volumes of ice-cold extraction buffer. The homogenate
was centrifuged at 800 g for 30 min at 2°C, and the resulting
supernatant re-centrifuged in an ultracentrifuge (Beckman
Instruments, Fullerton, CA, USA) at 100,000 g. The resulting
supernatants (cytosols) were used for measurement of the
hormone receptors (ER, progesterone receptor [PgR]), and
the membrane fractions were used for EIA measurement of
membrane-associated ErbB-2. ER and PgR concentrations
were measured from tumour cytosolic extracts by commercial
quantitative ER and PgR EIA kits (Abbott Laboratories, Abbott
Park, IL, USA) using a Quantum II photometer (Abbott Labora-
tories, Abbott Park, IL, USA). Quality control of ER and PgR
measurements was carried out in collaboration with the
Receptor Biomarker Group of the European Organization for
Research and Treatment of Cancer. ErbB-2 receptor levels
were determined on the particulate membrane fractions of
tumour extracts using a commercial monoclonal antibody EIA
kit, described by Eppenberger-Castori and coworkers [23].
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Immunoassay of phosphorylated Akt level
Neither antibody used in the CLISA discriminates between Akt
isoforms. The catching antibody (anti-Akt/PKB, PH domain,
clone SKB1; Upstate Biotechnology, Lake Placid, NY, USA)
recognizes Akt1/PKBα, Akt2/PKBβ and Akt3/PKBγ (weak to
none) based on immunoblot analysis using 100 ng recom-
binant fusion protein for each isoform, as reported by the man-
ufacturer. The detecting phospho-specific (S473) Akt
monoclonal antibody (4E2) detects endogenous levels of Akt1
only when phosphorylated at serine-473. This antibody also
recognizes Akt2 (S472) and Akt3 (S474) if they are phospho-
rylated at the corresponding residues, according to the infor-

mation obtained from the manufacturer (Cell Signaling
Technology, Inc., Beverly, MA, USA). However, 4E2 does not
recognize other Akt phosphorylation sites.

S473 phosphorylated Akt levels were measured using a novel
two-site CLISA. Black 96-well microtitre plates (Nunc Black
MaxiSorp Surface; Nalgen Nunc International, Rochester, NY,
USA) were coated with coating antibody at a concentration of
3 mg/ml of coating buffer (phosphate-buffered saline with 0.6
mmol/l EDTA) in a volume of 100 µl/well and kept at 4°C over-
night. To measure P-Akt, respective tumour extracts were pre-
pared as described above in the presence of NaF and

Table 1

Clinicopathological characteristics of the patients

Feature Number of patients (%)

Patients enrolled 156

Age (years):

<40 12 (8)

40–60 85 (54)

>60 59 (38)

Histology type:

Ductal 109 (70)

Lobular 17 (11)

Other 30 (19)

Tumour size:

T1 49 (31)

T2 90 (58)

T3-T4 17 (11)

Lymph-node status

Node negative 66 (42)

Node positive 90 (58)

Histopathological grade

I + II 57 (37)

III 86 (55)

Not analyzed 13 (8)

Oestrogen receptor

Positive (>20 fmol/mg) 116 (74)

Negative (≤ 20 fmol/mg) 40 (26)

Progesterone receptor

Positive (>20 fmol/mg) 85 (54)

Negative (≤ 20 fmol/mg) 71 (46)
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Na3VO4. Before sample applications, the coated microtitre
plates were washed five times with 200 µl/well washing buffer
(25 mmol/l HEPES [pH 7.4], 300 mmol/l NaCl, 0.05% Tween-
20) and then blocked for 2 hours at room temperature with
250 µl blocking buffer (25 mmol/l HEPES [pH 7.4], 300
mmol/l NaCl, 0.05% Tween-20, 3% TopBlock [Juro AG,
Lucerne, Switzerland]). Blocked wells were washed five times
with 200 µl washing buffer, and then 100 µl diluted tumour
membrane extracts or reference material was added to the
wells and incubated overnight at 4°C.

As a reference for each assay, an extract of MCF-7 cells, pre-
pared as described above, was used. For use in the assay,
MCF-7 cell extracts were sequentially diluted with sample dilu-
tion buffer (blocking buffer, proteinase inhibitor cocktail, NaF
and Na3VO4) at ratios of 1×, 0.75×, 0.5×, 0.25×, 0.125× and
0.025×, and then 100 µl aliquots were incubated on each
microtitre plate, together with tumour tissue extracts and neg-
ative controls (containing only dilution buffer). After incubation
of the samples and reference material, wells were washed five
times with 200 µl washing buffer at room temperature to elim-
inate unbound particles. Biotinylated detection antibody was
added, followed by incubation for 2 hours at room tempera-
ture. Complexes were detected with horseradish peroxidase-
conjugated streptavidin, diluted in conjugate diluents for 1
hour at room temperature. Horseradish peroxidase activity
was detected using SuperSignal WestPico substrate (Pierce,
Rockford, IL, USA) in a glow luminometer. The response data
for diluted reference material was fitted, and the respective
curve was used for the quantification of tumour extracts. The
value of undiluted MCF-7 extracts was denominated as 1 U/
ml.

Quantitative real-time RT-PCR for the detection of 
proliferation markers
RNA was extracted using RNeasy kit (Qiagen, Hilden, Ger-
many). Quality and quantity were checked using a Bioanalyzer
2100 (Agilent, Palo Alto, CA, USA). All genes were examined
using SYBR Green I methods with Taqman 7000 (Applied-
Biosystems, Foster City, CA, USA). Relative quantification
(∆∆Ct) was obtained by normalization with ribosomal 18S and
a standardization step with Human Universal Standard RNA
(Stratagene, La Jolla, CA, USA). Quantitative real-time RT-
PCR results were expressed in arbitrary units of reverse tran-
scribed RNA (U/µg rt-RNA).

Statistical methods
The statistical significance of the association between P-Akt
and other dichotomous variables (e.g. node status) was
assessed using Mann–Whitney U-test. Spearman rank corre-
lation (rs) was calculated to assess associations between con-
tinuous markers (e.g. ErbB-2 or tumour size and P-Akt protein
expression levels). The continuous variable function of CLISA-
determined P-Akt values was first tested for prognostic signif-
icance by univariate Cox regression. A cutoff or prognostic

threshold value with respect to relapse-free survival was
sought by means of classification and regression tree analysis
[24,25]. Survival probabilities were calculated using the Kap-
lan–Meier method and compared by means of log-rank analy-
sis [26]. The Cox proportional hazards regression model was
also applied over multivariate analyses, with the associated
likelihood ratio test used to assess test-of-trend differences.
The results of multivariate Cox regression analysis were sum-
marized in a table and expressed as relative risk for relapse.

Results
Distribution of phosphorylated Akt levels and its 
correlation with tumour characteristics
CLISA quantified P-Akt levels have a left-tailed distribution
ranging from 0 to 1.08 U/mg total protein, with a median of
0.17 U/mg (mean 0.19 U/mg; Fig. 1) and could be trans-
formed to normality by means of the 10th root. There was no
correlation between P-Akt and ErbB-2 protein expression lev-
els. In this set of primary breast cancer samples, we did not
find any significant difference in P-Akt levels with respect to
nodal status, tumour size, ER status or grading, nor any corre-
lation between P-Akt levels and the continuous variables
tumour size and ER level.

Prognostic significance of phosphorylated Akt levels
The prognostic value of P-Akt was investigated with respect to
disease-free survival (DFS) in the patients overall (Fig. 2). Uni-
variate Cox regression revealed a weak correlation between P-
Akt levels and DFS (P < 0.05; likelihood ratio test). An optimal
cutoff value for P-Akt (0.3 U/mg) was calculated using classi-
fication and regression tree analysis, dividing the patients into
two subgroups: 21 patients (14%) patients expressed high
levels of P-Akt (>0.31 U/mg total protein) and 135 patients
(86%) expressed low levels of P-Akt. Subsequently, Kaplan–
Meier survival curves stratified according to low and high P-
Akt levels were plotted (Fig. 2). Sixty-seven per cent of
patients (14 out of the 21) with high P-Akt levels relapsed,
whereas only 36% (49 out of 135) with low P-Akt developed
a relapse of disease within the period of observation (P <
0.01; log-rank test). The 5-year DFS was 33% in the high P-
Akt group versus 60% in the low P-Akt group. The 5-year DFS
in node-positive patients was 50% versus 68% in node-nega-
tive patients (P < 0.05; curves not shown).

Multivariate Cox analysis was performed including P-Akt and
those additional variables that were found to have significant
prognostic value in univariate Cox models (ER, ErbB-2 and
node status, and tumour size and grading). In the tested multi-
variate model CLISA-determined elevated P-Akt level was an
independent prognostic factor (P = 0.02), with a relative risk
for breast cancer relapse of 2.09 (Table 2).
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Prognostic significance of phosphorylated Akt in ErbB2-
overexpressing tumours
Although no correlation was found between P-Akt and ErbB-2
expression, the prognostic impact of P-Akt was greater in
ErbB2-overexpressing tumours than in the samples overall. As
shown in the Kaplan–Meier curves in Fig. 3a, patient progno-
sis decreased significantly when tumours expressed P-Akt lev-
els higher than the median value (P = 0.005). This effect was
even more pronounced when P-Akt levels exceeded the third
quartile value (P < 0.001), which, together with the multivari-
ate Cox-analysis, indicates that P-Akt has independent and
additive prognostic value in combination with ErbB-2 (Fig. 3b).

Correlation of phosphorylated Akt levels and mRNA 
expression of proliferation markers
Because involvement of P-Akt has been implicated in prolifer-
ation and apoptosis, we compared the quantitative P-Akt pro-

tein levels with the quantitative mRNA expression levels of
genes involved in these biological processes. Using Spear-
man rank correlation, P-Akt levels were found to correlate with
thymidylate synthase expression levels (rs = 0.38; P < 0.001)
and, to a lesser extent, with expression levels of thymidine
kinase 1, survivin, topoisomerase IIα and the E2F transcription
factor (Fig. 4, Table 3).

Discussion
Correlations between elevated P-Akt and higher risk for
relapsehas already been demonstrated by other investigators
in certain subsets of patients, specifically patients who
received adjuvant endocrine therapy [17], patients treated
with radiotherapy [18] and patients with a node-negative dis-
ease [19]. Because ErbB-2 has been implicated in the activa-
tion of Akt [27], we investigated the association between P-
Akt and ErbB-2 and its prognostic significance in tumours with
known ErbB-2 expression levels. Our investigation re-con-

Table 2

Univariate and multivariate Cox analysis of relapse-free survival in patients with primary breast cancer

Factor Univariate P Multivariate P Relative risk for relapse 95% CI

P-Akt 0.01 0.02 2.09 1.14–3.85

Node status 0.0003 0.09 1.33 0.95–1.85

ER status 0.03 0.17 0.67 0.38–1.19

ErbB-2 status 0.002 0.04 1.73 1.02–2.94

Grading 0.03 0.06 1.57 0.98–2.50

Tumour size 0.00005 0.02 1.51 1.07–2.13

CI, confidence interval; ER, oestrogen receptor; P-Akt, phosphorylated Akt.

Figure 1

Chemiluminescence-linked immunoassay (CLISA)-quantified phosphor-ylated Akt (P-Akt) levelsChemiluminescence-linked immunoassay (CLISA)-quantified phosphor-
ylated Akt (P-Akt) levels. (a) Histogram showing distribution of chemilu-
minescence-linked immunoassay (CLISA)-determined phosphorylated 
Akt (P-Akt) expression levels in 156 primary breast cancer samples. P-
Akt levels ranged from 0 to 1.08 U/mg, with a median of 0.17 U/mg. (b) 
Scatter plot of P-Akt versus ErbB-2 expression levels. No correlation 
was found between the levels of P-Akt and ErbB-2.

Figure 2

Kaplan–Meier survival curves for patients overallKaplan–Meier survival curves for patients overall. The curves are strati-
fied by phosphorylated Akt (P-Akt) levels. Patients whose tumors 
express high levels of P-Akt exhibit a significantly worse outcome in 
terms of disease-free survival (DFS; P < 0.01).
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firmed the prognostic value of elevated P-Akt levels, and dem-
onstrated that P-Akt expression levels are independent of
other prognostic parameters, such as tumour size, grading,
and node, ER and ErbB-2 status.

The lack of correlation between protein levels of ErbB-2 and
P-Akt may be explained by the fact that Akt is also activated by
various receptor tyrosine kinases [5-9], and by G-protein-cou-
pled receptors [28]. Additionally, it was also observed that
loss of PTEN activity is frequent in breast cancer and
accompanied by increased activation of Akt [29], confirming
that Akt can be activated by stimuli other than ErbB-2. The
prognostic significance of P-Akt levels is increased if com-
bined with ErbB-2 overexpression, suggesting that coactiva-
tion of Akt and ErbB-2 may have a synergistic clinical impact.

Our study is the first report on P-Akt assessed by EIA using a
phospho-specific antibody in breast cancer cytosols of
cryopreserved tumour samples; the technique allowed us to
obtain precise and quantitative results (for review [30]). In
contrast to semiquantitative immunohistochemistry data,
tumour marker profiles assessed by quantitative EIA are more
sensitive and reproducible. EIA tests conducted with fresh fro-
zen tissue extracts avoid the potential antigen damage due to
formalin fixation, paraffin embedding and uncontrolled storage.
Furthermore, the two-site (sandwich) CLISA assay used in this
investigation ensures increased specificity as compared with
single-antibody assays, such as immunohistochemistry and
western blotting. In addition, chemiluminometric detection
guarantees high sensitivity in the detection of antigen–anti-
body complex.

We assayed for P-Akt in total breast tumour lysates, and not in
tissue samples obtained from microdissection, both because
we wished to correlate the protein expression levels of ErbB-
2 and P-Akt levels directly in cells extracted from human
tumour samples, and because it has been demonstrated that
the activation status of Akt varies considerably in tumours of
the same histotype, but not between different histotypes of the
same tumour [31]. The CLISA assay used in the study was
based on homogenized samples, which can include some
stromal and normal tissue cells. The STB tissue samples con-
tained at least 60% tumour cells, as observed by the
pathologist. In addition, samples were previously analyzed for
ErbB-2, ER and PgR using both EIA assays, as well as
immunohistochemistry and/or fluorescence in situ hybridiza-
tion. Importantly, good correlation between the assays was
observed [23], suggesting that homogenization of samples
does not play a crucial role in the final result. As in other assays
that measure phosphorylation levels, the role played by phos-
phatases should not be ignored. We used phosphatase inhib-
itors in all steps of CLISA, as well as sample dilution. There
could be some degradation before P-Akt testing, but all sam-
ples were treated identically, and the study compared relative
P-Akt levels among all tumours. Reference units (U) were used
in order to establish a standard curve, but not to measure
absolute P-Akt levels in separate samples.

Also of interest is the positive correlation between P-Akt and
mRNA expression levels of tumour proliferation markers
shown in the present study. Akt is known to promote cell cycle
progression by modulating the expression [32] and stabiliza-
tion of cyclin D1 [33], which in turn activates the E2F transcrip-
tion factor. Our results also reveal a significant correlation of
P-Akt with E2F-1 transcription factor expression levels, as well

Figure 3

Kaplan–Meier survival curves for the subset of patients with ErbB-2 overexpressing tumoursKaplan–Meier survival curves for the subset of patients with ErbB-2 
overexpressing tumours. The curves stratified by (a) median and (b) 
last quartile values of phosphorylated Akt (P-Akt). Patients whose 
tumours express high levels of P-Akt exhibit a significantly worse out-
come in terms of disease-free survival (DFS; P ≤ 0.005).

Figure 4

Scatter plot of phosphorylated Akt (P-Akt) versus thymidylate synthase (TS) mRNA expressionScatter plot of phosphorylated Akt (P-Akt) versus thymidylate synthase 
(TS) mRNA expression. There is a good positive correlation (rs = 0.38; 
P < 0.001) between the two factors.
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as with genes regulated by E2F, such as thymidylate synthase,
thymidine kinase 1, survivin and topoisomerase IIα.

Conclusion
Using a highly sensitive and specific CLISA assay, we demon-
strated that elevated P-Akt is a marker of poor prognosis
(decreased DFS). The prognostic value of Akt phosphorylation
is independent of other characteristics, including tumour size
and grade, and node, ErbB-2 and ER status. In a subset of
patients with ErbB-2 overexpressing tumours, we demon-
strated that P-Akt levels are of particular prognostic signifi-
cance. In addition, Akt phosphorylation correlated with
elevated mRNA expression levels of tumour proliferation fac-
tors. Based on these findings, we suggest that P-Akt could
play a predictive role with respect to Herceptin, topoisomer-
ase IIα inhibitors and combination therapies using Akt inhibi-
tors, which are currently in clinical trials and should primarily
be assessed in patients with ErbB-2-overexpressing tumours.
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Jonas Cicenasa,c, Patrick Urbana,c, Willy Küngc, Vincent Vuaroqueauxb, Martin Labuhnb,
Edward Wightd, Urs Eppenbergerb,c, Serenella Eppenberger-Castoria,*
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ERBB2 (HER2/Neu) gene amplification and overexpression is associated with increased risk

of metastases and shorter survival in breast cancer. Tyrosine 1248 is a major phosphoryla-

tion site of ERBB2 and reflects the activation status of the receptor. The aim of this study

was to investigate the relationships between quantitative levels of pY1248-ERBB2 (p-ERBB2)

and the expression of epidermal growth factor receptor (EGFR)-family members, and

whether p-ERBB2 could provide additional prognostic value compared with established

prognostic markers. For this purpose we developed a highly sensitive chemilumines-

cence-linked immunoassay (CLISA) and detected p-ERBB2 levels in 70 primary breast can-

cer biopsies. Phosphorylated ERBB2 correlated with EGFR and ERBB2, and inversely with

oestrogen receptor (ER), progesterone receptor (PgR) and ERBB4 expression levels. Addition-

ally, p-ERBB2 was associated with poor clinical outcome in univariate and multivariate Cox

regression analysis. Further studies are needed to evaluate the predictive value of p-ERBB2.

� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

ERBB2 (HER2/Neu) is a member of the epidermal growth factor

receptor (EGFR) family of receptor tyrosine kinases, which

comprises EGFR (HER1, ERBB1), ERBB3 (HER3) and ERBB4

(HER4).1–3 Upon ligand binding, homo- and heterodimeric

complexes are formed, with ERBB2 as the preferred dimerisa-

tion partner.4 This leads to autophosphorylation of specific

tyrosine residues, activation of downstream signalling

cascades and, finally, initiation of biological processes such
er Ltd. All rights reserved

; fax: +41 61 645 9308.
k.org (S. Eppenberger-Ca
as proliferation.5 ERBB2 contains five major tyrosine auto-

phosphorylation sites, including Y-1248.6

In primary breast cancer, ERBB2 is amplified and overex-

pressed in 15–30% of patients and has been associated with

poor prognosis.7–9 Trastuzumab (HerceptinTM), a humanised

monoclonal anti-ERBB2 antibody is the first clinically avail-

able oncogene-targeted therapeutic agent for treatment of so-

lid tumours, and is approved for use in metastatic breast

cancer patients.10 First-line trastuzumab in combination with

chemotherapy resulted in a 25% improvement in overall
.
stori).

mailto:s.eppenberger@tumorbank.org


Table 1 – Tumour and patients characteristics

Feature Number of patients (%)

Patients 70 (100)

Histology type

Ductal 48 (69)

Lobular 11 (16)

Other 11 (16)

Tumour size

T1 18 (26)

T2 42 (60)

T3–4 10 (14)

Lymph node status

Node-negative 33 (47)

Node-positive 37 (53)

Histopathological grade

I + II 27 (39)

III 34 (48)

Not analysed 9 (13)

Oestrogen receptor

Positive (>20 fmol/mg) 50 (71)

Negative (620 fmol/mg) 20 (29)

Median/mean (fmol/mg) 72/139

Progesterone receptor

Positive (>20 fmol/mg) 38 (54)

Negative (620 fmol/mg) 32 (46)

Median/mean (fmol/mg) 28/128

ERBB2

Positive (>260 ng/mg) 40 (57)

Negative (<260 ng/mg) 30 (43)

Median/mean (ng/mg) 307/298
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survival compared with chemotherapy alone. However, only

up to 40% of patients respond to the therapy, suggesting that

more accurate biomarkers are required to identify patients

who are likely to respond to treatment such as trastuzumab.

It was also reported that an inverse relationship exists be-

tween oestrogen receptor (ER) and ERBB2 expression, where

ERBB2 overexpression is associated with decreased ER/pro-

gesterone receptor (PgR) levels and reduced sensitivity, possi-

bly even resistance to endocrine therapy.9,11,12

ERBB2 gene amplification or overexpression per se may not

reflect adequately the activated status of the ERBB2 receptor.

It was hypothesised that the percentage of phosphorylated

ERBB2, and thus activated receptor, could be different be-

tween tumours expressing similar amounts of ERBB2.13

The aim of the present study was to investigate the prog-

nostic value of pY1248-ERBB2 detected with a newly devel-

oped chemiluminescence-linked immunoassay (CLISA), its

association with protein and mRNA expression levels of the

EGFR-family members including established prognostic

markers in a set of 70 primary breast cancer patients.

2. Patients and methods

2.1. Patients and tumour characteristics

For all tumour samples the Stiftung Tumorbank Basel (STB)

received a representative piece of fresh frozen tissue contain-

ing more than 65% tumour cells after surgery and pathologi-

cal examination. Specimens were immediately processed or

cryopreserved (�80 �C). For this study, 70 primary breast tu-

mour samples were selected according to ERBB2 protein

expression levels detected by enzyme immunoassay (EIA) at

time of surgery. Tumours with ERBB2 protein levels >260 ng/

mg total protein were considered positive, which corresponds

to a previously published cut-off value of 500 U/mg total pro-

tein and correlates with the immunohistochemistry (IHC)

DAKO 3+8 as well as ERBB2 amplification detected by fluores-

cence in situ hybridisation (FISH) (Urban P, et al., submitted).

ERBB2-negative tumours showed protein expression levels

between 100 and 260 ng/mg. All patients underwent primary

surgery before January 1996. Twenty-four patients (34%) re-

lapsed within the median follow-up time of 55 months (range

30–89 months). Thirty-seven (53%) were nodal-positive, 50

(71%) were ER-positive and 40 (57%) patients were ERBB2-

positive. None of the patients received neoadjuvant therapy.

STB is a non-profit organisation with an official Swiss per-

mit that guarantees ethical issues and patient confidentiality.

Patients and tumour characteristics are summarised in

Table 1.

2.2. Cell lines and tissue culture

SKBr3 breast cancer cells were cultured in improved minimal

essential medium with zinc option (IMEM-ZO) supplemented

with 5% foetal bovine serum (FBS) and L-glutamine at 37 �C in

a 5% CO2 incubator. For the phospho-standard preparation

sub-confluent SKBr3 cells were serum-starved for 48 h in ser-

um-free medium, treated with NaF and Na3VO4 for 1 h, then

with 10% FBS for 10 min. Cells were lysed in EB lysis buffer

(0.5 M NaCl, 10 mM EDTA, pH 8, 1% Triton · 100, 20 mM
Tris–Cl, pH 7.0, 20 mM NaF, 20 mM glycerophosphate, 2 mM

Na3VO4, proteinase inhibitor cocktail, Roche) for 5 min on

ice, centrifuged at 20,000g for 5 min and the supernatant

stored at �80 �C.

2.3. Measurement of ER, PgR, ERBB2 and EGFR protein
levels

Tissue homogenates were prepared in accordance with stan-

dard procedures for tumour marker EIA measurement, as de-

scribed previously.8 In brief, frozen tissues were powderised

in liquid nitrogen (Micro-Dismembrator U, B. Braun AG, Mels-

ungen, Germany) and homogenised (tissue homogeniser, Ul-

tra-Turrax; Janke and Kunkel, IKA-Werke, Staufen, Germany)

for 20 s in three volumes of ice-cold extraction buffer. The

homogenate was centrifuged at 800g for 30 min at 2 �C, and

the resulting supernatant recentrifuged in an ultracentrifuge

(Beckman Instruments, Fullerton, CA, United States of Amer-

ica (USA)) at 100,000g. The resulting supernatants (cytosols)

were used for measurement of the hormone receptors (ER,

PgR by Abbott Laboratories, Abbott Park, IL, USA), while the

membrane fractions were used for EIA measurement of

ERBB2 (Oncogene Science Human HER-2/neu Quantitative

ELISA Kit, Bayer, Leverkusen, Germany). Quantification of

EGFR was done by radioligand binding assay (LBA) as de-

scribed previously.14 Quality control of ER and PgR measure-

ments were carried out in collaboration with the Receptor
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Biomarker Group of the European Organisation for Research

and Treatment of Cancer (EORTC).

2.4. pY1248-ERBB2 immunoassay

p-ERBB2 levels were measured with a two-site CLISA. Black

96-well microtitre plates (Nunc Black MaxiSorp Surface; Nal-

gen Nunc International, Rochester, NY, USA) were coated with

antihuman activated Neu/c-ERBB2 antibody (#06-229, lot

#15916; Upstate Biotechnology, Lake Placid, NY) at a concen-

tration of 4 mg/ml of coating buffer (phosphate buffered sal-

ine (PBS) with 0.6 mM EDTA) in a volume of 100 ll/well and

kept at 4 �C overnight. This antibody is virtually identical to

the monoclonal antibody clone PN2A that recognises only

pY1248-ERBB2.13,15 Tumour extracts were prepared in the

presence of Na3VO4. Before sample application, coated micro-

titre plates were washed five times with 200 ll/well of wash-

ing buffer (25 mM HEPES, pH 7.4, 300 mM NaCl, 0.05%

Tween-20) and then blocked for 2 h at room temperature with

250 ll blocking buffer (25 mM HEPES, pH 7.4, 300 mM NaCl,

0.05% Tween-20, 3% TopBlock, Juro AG, Switzerland). The
Fig. 1 – Supplementary assay specifications: (a) standard curve f

concentration of 100 (x-axis) corresponds to 100 ll undiluted st

Standard curve was fitted using SoftMax software (Molecular D

quantification (LOQ) was calculated from repeated measuremen

or 0.07 U/ml, and LOQ (mean + 10SDs) was 39203 RLU or 0.41 U/

denominated 100 U/ml; (b) dilution curve for SKBr3 standard (se
blocked wells were washed five times with 300 ml blocking

buffer. Then 100 ll of the diluted membrane extracts or refer-

ence material was added to the wells and incubated overnight

at 4 �C. SKBr3 cell extract was used as reference for each assay

as described above. First, SKBr3 cell membrane extract was

sequentially diluted with sample dilution buffer at ratios of

1·, 0.75·, 0.5·, 0.25·, 0.125· and 0.025·. Subsequently, 100 ll

aliquots were incubated on each microtitre plate together

with the tumour extracts or controls (dilution buffer only).

After incubation, wells were washed five times with 300 ll

washing buffer at room temperature to eliminate unbound

particles. Biotinylated detection antibody (HER-2/Neu Microti-

ter ELISA kit, Oncogene Science) was added to the wells, incu-

bated for 2 h at room temperature and complex detected with

horseradish peroxidase (HRP)-conjugated streptavidin using

SuperSignal WestPico substrate (Pierce) in a glow lumino-

meter. A curve was fitted to the data of the reference dilution

series and used for quantification of tumour extracts. The va-

lue of the undiluted SKBr3 extract was denominated as 100 U/

ml. The standard curve and additional specification are

shown in Fig. 1.
or pY1248-ERBB2 immunoassay as described in Section 2. A

andard (1·), a concentration of 50 to a dilution of 0.5·, etc.

evices, CA, USA). Limit of detection (LOD) and limit of

ts without analyte. LOD (mean + 2SDs) value was 31088 RLU

ml, respectively. The undiluted value of SKBr3 standard was

e Section 2).



Table 2 – Primer sequences

Gene RefSeq Forward primer Reverse primer

ESR1 NM_000125 CTTGCTCTTGGACAGGAACCA CAAACTCCTCTCCCTGCAGATT

PgR NM_000926 TGTCGAGCTCACAGCGTTTC TACAGATGAAGTTGTTTGACAAGATCA

EGFR NM_005228 GGACTATGTCCGGGAACACAA CCAAGTAGTTCATGCCCTTTGC

ERBB2 NM_004448 CTGAACTGGTGTATGCAGATTGC TTCCGAGCGGCCAAGTC

ERBB3 NM_001982 AATAAAAGGGCTATGAGGCGATACT AGCTTCCTTAGCTCTGTCTCTTTGA

ERBB4 NM_005235 GTCCAGATAGCTAAGGGAATGATGTAC CTAGCCCAAAATCTGTGATTTTCAC

PgR, progesterone receptor; EGFR, epidermal growth factor receptor.

Fig. 2 – Distribution of log (p-ERBB2) levels in U/mg total

protein; zero values were omitted.
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2.5. Quantitative real-time PCR (Qrt-PCR) for ER, PgR and
EFGR-family

Total RNA was extracted using RNeasy kit (Qiagen, Hilden,

Germany). RNA quality and quantity was checked for all sam-

ples on Bioanalyzer 2100 (Agilent, Palo Alto, CA, USA). All

genes were measured using SYBR Green I method and a Taq-

man 7000 (Applied-Biosystems, Foster City, CA, USA). Relative

quantification (delta ct-value) was obtained by normalisation

to the ribosomal 18S gene, and by a standardisation step

using Human Universal Standard RNA (Stratagene, La Jolla,

CA, USA). Quantitative real-time polymerase chain reactino

(Qrt-PCR) results were expressed in arbitrary units of reverse

transcribed RNA (U/ug rt-RNA). Primer sequences are listed

in Table 2.

2.6. Statistical methods

Correlations between continuous values were assessed by the

Spearman rank correlation coefficient (rs). Statistical signifi-

cance between p-ERBB2 and dichotomous variables was cal-

culated using Mann–Whitney U test. In the present study

patients were dichotomised and defined as p-ERBB2-nega-

tive/positive according to median value of p-ERBB2. Alterna-

tively, an optimised cut-off value for p-ERBB2 with respect

to prognosis was searched for by classification and regression

trees (CART) analysis.16 Relationships between categorical

data were assessed using Fisher’s exact test. The prognostic

significance between p-ERBB2 and other variables was tested

in univariate and multivariate Cox regression analysis and

likelihood ratio test. Hazard rates and confidence intervals

(CIs) were summarised in tables. Survival curves were esti-

mated by the Kaplan–Meier method and statistical signifi-

cance compared by means of log-rank test. All tests were

performed using S-PLUS statistical software (Insightful,

Version 6).

3. Results

3.1. Distribution of p-ERBB2 and association with ERBB2

p-ERBB2 levels quantified by CLISA ranged from 0 to 127 U/mg

total protein, with a median of 1.096 U/mg (mean 7.49 U/mg).

After log-transformation, values became almost normally

distributed (Fig. 2). Correlation between p-ERBB2 and expres-

sion levels of ERBB2 was 0.62 for mRNA and 0.53 for protein

(Fig. 3 and Table 3). p-ERBB2 levels were significantly higher
in ERBB2-positive tumours than in ERBB2-negative tumours

(Fig. 3). When taking the median value of p-ERBB2 as a cut-

off for p-ERBB2 status, 8 out of 30 (27%) ERBB2-negative and

27 out of 40 (68%) ERBB2-positive tumours were p-ERBB2-posi-

tive (P = 0.001). Similar results were obtained when p-ERBB2

levels were compared with ERBB2 mRNA expression levels

(Fig. 4). Of note, ERBB2-negative tumours included in the

present study represent the upper third of all ERBB2-negative

tumours (Fig. 5). No significant association was found in

p-ERBB2 levels with respect to nodal status, either when anal-

ysing it as a continuous variable or after dichotomisation

(Fig. 3).

3.2. p-ERBB2 and expression of ER/PgR

Quantitative p-ERBB2 expression levels correlated inversely

with ER (rs = �0.54) and PgR (rs = �0.46) mRNA as well as pro-

tein expression level (rs = �0.67 and rs = �0.45, Table 3), and

there was a significant difference in ER and PgR protein levels

in p-ERBB2-negative as compared with p-ERBB2-positive tu-

mours: median ER levels were almost 6-fold (P < 0.001) and

PgR near 7-fold (P = 0.005) lower in p-ERBB2-positive tumours

(Fig. 6). With respect to the hormone receptor status, 30 out of

35 (86%) p-ERBB2-negative tumours were ER-positive



Fig. 3 – Scatter plot of p-ERBB2 (CLISA) versus ERBB2 (ELISA)

protein expression levels. p-ERBB2 expression levels were

log-transformed and one added as constant in order

log-transformed values of zero correspond to zero values in

the raw data. Tumours with ERBB2 >260 ng/mg and

p-ERBB2 > median are considered positive (dashed lines):

(a) circles and triangles indicate patients without and with

relapse, respectively; (b) significant differences of p-ERBB2

levels in ERBB2-negative and ERBB2-positive tumours but

no difference with respect to nodal status.

Fig. 4 – Scatter plot of p-ERBB2 (CLISA) versus ERBB2

expression levels measured by polymerase chain reaction

(PCR) (Delta CT). p-ERBB2 expression levels were

log-transformed and one added as constant so that

log-transformed values of zero correspond to zero values in

the raw data. Dashed lines indicate the cut-off value for

ERBB2 status by PCR (M. Labuhn et al., submitted) and

median expression value of p-ERBB2, respectively. Circles

and triangles indicate patients without and with relapse,

respectively.

Table 3 – Correlation between p-ERBB2 levels and other
quantitatively assessed markers (Spearman correlation
coefficient rs)

Correlation with mRNA expression Protein expression

ER �0.54 (P < 0.001) �0.67 (P < 0.001)

PgR �0.46 (P < 0.001) �0.45 (P < 0.001)

EGFR 0.26 (P = 0.049) 0.43 (P = 0.005)

ERBB2 0.62 (P < 0.001) 0.53 (P < 0.001)

ErBB3 �0.22 (P = 0.080) n.d.

ErBB4 �0.47 (P < 0.001) n.d.

n.d., not determined; ER, oestrogen receptor; PgR, progesterone

receptor; EGFR, epidermal growth factor receptor.
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(>20 fmol/mg) and 24 (69%) PgR-positive (>20 fmol/mg). In

contrast, only 20 out of 35 (57%) p-ERBB2-positive tumours

were ER-positive and 22 (43%) PgR-positive (P = 0.016),

respectively.

3.3. Correlation of p-ERBB2 with mRNA expression of
EGFR-family members, and EGFR and ERBB2 protein
expression

p-ERBB2 levels were correlated with quantitative mRNA

expression levels of all four EGFR-family members (Table 3).

p-ERBB2 was positively correlated with EGFR (rs = 0.26) and
ERBB2 (rs = 0.62) and inversely correlated with ERBB-4

(rs = �0.47). A negative correlation between p-ERBB2 and

ERBB3 mRNA was not statistically significant. Similar results

were obtained for protein expression level of EGFR (rs = 0.43)

and ERBB2 (rs = 0.53, Table 3). Distributions and statistical dif-

ferences of the median mRNA expression levels for all EGRF-

family members in p-ERBB2-negative versus p-ERBB2-positive

tumours are summarised in Fig. 6. ERBB2 expression was sig-

nificantly higher whereas ERBB4 expression was significantly

lower in p-ERBB2-positive patients. Despite their correlation

with p-ERBB2, EGFR and ERBB3 were not significantly differ-

entially expressed between p-ERBB2-positive and -negative

samples.
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Fig. 5 – Distribution of ERBB2 protein expression levels (enzyme-linked immunosorbent assay (ELISA)) in over 3200 primary

breast cancer patients.
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3.4. Prognostic significance of p-ERBB2

p-ERBB2 was first tested in univariate Cox regression analysis,

revealing significant correlation with patient disease-free sur-

vival (DFS) and overall survival (OS, Table 4). Notably, p-ERBB2

retained significant prognostic value in univariate Cox regres-

sion analysis in both ERBB2-negative and ERBB2-positive

groups of patients. Subsequently, Kaplan–Meier survival anal-

ysis was performed for p-ERBB2-negative versus p-ERBB2-po-

sitive tumours (Fig. 7). Eighteen out of 35 (51%) patients with

p-ERBB2-positive tumours developed disease recurrence,

whereas this was the case for only 7 out of 35 (20%) in the p-

ERBB2-negative group (P = 0.004). Five-year DFS was 45% (CI

31–67%) in the p-ERBB2-positive group and 82% (CI 70–96%)

in the p-ERBB2-negative group. In OS analysis 9 out of 35

(26%) patients with p-ERBB2-positive tumours died compared

with 4 out of 35 (11%) in p-ERBB2-negative tumours (P = 0.079,

Fig. 7). Differences in survival remained significant when

stratified according to nodal status. However, the results were

more significant in nodal-positive than nodal-negative pa-

tients (Fig. 7). Moreover, p-ERBB2 status was significantly asso-

ciated with DFS in ERBB2-negative tumours (Fig. 7). Five out of

8 p-ERBB2-positive/ERBB2-negative tumours relapsed. Finally,

p-ERBB2 was an independent and significant prognostic factor

in multivariate Cox regression analysis, which included ER,

EGFR, ERBB2, tumour size (pT), lymph node status (pN) and

age. The results are summarised in Table 4.

4. Discussion

This is the first study to measure quantitative levels of acti-

vated pY1248-ERBB2 applying a newly developed immunoas-
say, and investigating the relationship with mRNA and

protein expression levels of the EGFR-family, established

prognostic markers and survival. Compared with IHC, p-

ERBB2 expression levels assessed by CLISA yield quantitative,

highly sensitive and reproducible results. In addition, CLISA

results obtained from fresh frozen tissue extracts avoid po-

tential antigen damage due to formalin fixation, paraffin

embedding and sample storage. However, phosphorylation

reflects a dynamic process and potential alterations in phos-

phorylation levels require careful sample handling and the

use of phosphatase inhibitors. Further, a two-site (sandwich)

CLISA assay as used in this study ensures increased specific-

ity compared with single-antibody assays such as IHC and

Western blotting.

Several studies have investigated the role of phosphory-

lated ERBB2 in breast tumour samples using IHC.13,15,17 We

could reconfirm the association with ERBB2 status, poor prog-

nosis and the inverse correlation with hormone receptor

expression. Although there is good correlation between ERBB2

and its phosphorylation levels, we identified cases with high

p-ERBB2 levels in ERBB2-negative tumours. This is in contrast

to previously published data by Thor and colleagues,13 which

could not detect p-ERBB2 in ERBB2-negative tumours using

IHC. A possible reason for these findings might be differences

in assay sensitivity, this being higher in CLISA. We observed 8

(27%) of ERBB2-negative tumours to express p-ERBB2 values

above the median, a cut-off that also revealed significant

prognostic value in survival analysis. These were unlikely

p-ERBB2-positive samples classified falsely as ERBB2-negative

using protein-based ERBB2 status since the same number of

p-ERBB2-positive cases was found using mRNA-based ERBB2

status determination (Fig. 4). We further report that p-ERBB2



Fig. 6 – Box plot showing the differences in: (a) distribution

of ER/PgR protein levels, and (b) mRNA expression levels of

the epidermal growth factor receptor (EGFR)-family

members in p-ERBB2-negative/-positive tumours.
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was significantly associated with survival in both ERBB2-neg-

ative and ERBB2-positive patients. Finally, multivariate analy-

sis including ERBB2, EGFR, ER, nodal status, age and tumour

size demonstrated independent prognostic value for p-ERBB2,

suggesting that p-ERBB2 is providing additional information

despite being associated with ERBB2 – a finding which was
Table 4 – Uni- and multi-variate Cox regression analysis again

Factor Univariate

P-value HR (95%

p-ERBB2 0.004 3.4 (1.4–8

ERBB2 0.041 1.9 (1.0–3

EGFR n.s. –

ER 0.012 0.7 (0.6–0

pT <0.001 1.9 (1.3–2

pN 0.011 2.0 (1.2–3

Age n.s. –

n.s., not significant; ER, oestrogen receptor; EGFR, epidermal growth facto

pN, lymph node status.
also recognised by Thor and colleagues.13 Besides p-ERBB2,

nodal status (pN) and tumour size (pT) were independent

prognostic markers in multivariate analysis. Grade was not

included because of too many missing values.

We used the median value of p-ERBB2 to define p-ERBB2-

negative/-positive tumours. Alternatively, we tested an opti-

mised cut-off with respect to prognosis searched for by CART

analysis, which classified 33 tumours in the high-risk group

instead of 35 when using the median. This optimised cut-

off, however, did not change the overall results. It is notewor-

thy that we selected the samples a priori according to ERBB2

protein expression levels and explicitly enriched the popula-

tion with ERBB2-positive samples. The high correlation be-

tween ERBB2 and p-ERBB2 and the fact that there are

approximately as many ERBB2-positive as ERBB2-negative pa-

tients in the population studied might explain why using the

median as cut-off is reasonable in this setting. However, the

number of p-ERBB2-positive tumours is expected to be signif-

icantly lower in a randomised situation. Moreover, our ERBB2-

negative population had ERBB2 protein expression levels

ranging from 100 to 260 ng/mg total protein. This correspond

to the upper third of ERBB2 expression levels among ERBB2-

negative patients when compared with the distribution of

ERBB2 protein expression levels observed in a large study pop-

ulation (Fig. 58). Thus, the percentage of p-ERBB2-positive tu-

mours among ERBB2-negative patients is probably

overestimated.

Because EGFR-family receptors have to homo- and/or het-

ero-dimerise to become activated, we sought to identify po-

tential candidates for the preferred partner for ERBB2 in this

process. We report correlation between p-ERBB2 and EGFR

expression at both mRNA and protein level, suggesting a po-

tential role for EGFR in ERBB2 phosphorylation and signalling

towards a more aggressive phenotype. Indeed, it was pro-

posed that ERBB2 in a heterodimer with EGFR is involved in

signalling pathways required for a human breast cancer cell

to become metastatic.18,19 Despite this correlation with EGFR

there was no significant difference in EGFR expression levels

between p-ERBB2-negative and p-ERBB2-positive tumours.

However, we observed that p-ERBB2 expression was signifi-

cantly higher in tumours having high EGFR protein levels

compared with tumours with low EGFR protein levels (Figs.

6 and 8). Conversely, ERBB3, ERBB4 and ER correlated nega-

tively with p-ERBB2 and were expressed at significantly lower
st patient disease-free survival (DFS)

Multivariate

CI) P-value HR (95% CI)

.1) 0.010 4.1 (1.4–11)

.4) n.s. –

n.s. –

.9) n.s. –

.7) 0.008 2.1 (1.2–3.7)

.3) 0.049 1.9 (1.0–3.7)

n.s. –

r receptor; HR, hazard ratio; CI, confidence interval; pT, tumour size;



Fig. 7 – Kaplan–Meier survival curves for p-ERBB2. Patients were dichotomised according to the median expression value of

p-ERBB2. Disease-free survival (DFS) and overall survival (OS) in (a, b) all patients, in (c, d) nodal-positive patients and (e) DFS

in ERBB2-negative patients.
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levels in tumours having high levels of p-ERBB2 (Fig. 6). Anal-

ogous findings were made in the subset of ERBB2-negative pa-

tients (Fig. 9). With respect to ERBB4 mRNA expression, it was

shown to be associated with good prognosis in a number of

studies,20–22 whereas there is conflicting data about the role

of ERBB3. ERBB3 together with ERBB2 promotes tumour cell

proliferation in vitro,23 but ERBB3 mRNA expression was also

shown to correlate with good prognosis.20,21 The latter find-

ings are in accordance with our results, where ERBB3 and

ERBB4 are good prognostic factors (data not shown).

In conclusion, we show that p-ERBB2, measured quanti-

tatively by CLISA, is a marker of poor prognosis indepen-

dent of ERBB2, ER/PgR, tumour size, nodal status and age.

In addition, p-ERBB2 correlated with expression of EGFR

and ERBB2, and inversely with ER, PgR, ERBB3 and ERBB4.

Hormone receptors and ERBB4 were significantly lower in

tumours expressing high p-ERBB2. These findings might be

of interest with respect to the selection of appropriate treat-

ment strategies. For trastuzumab, it was demonstrated that
tumours expressing p-ERBB2 (IHC) have significantly longer

survival when compared with tumours lacking p-ERBB2.24

The positive correlation between p-ERBB2 and EGFR might

suggest that p-ERBB2 may not only be a predictor of trast-

uzumab response but also predictive of novel EGFR-family

targeted treatments such as ERBB2-dimerisation inhibitors

and dual-specific tyrosine-kinase inhibitors.25,26 The signifi-

cantly lower levels of hormone receptors in p-ERBB2-posi-

tive patients might further suggest relative resistance to

anti-ER targeted treatment.9 However, since this study ad-

dressed mainly the prognostic value of p-ERBB2 and its

relationship with other EGFR-family members, future

research should further investigate the predictive value of

p-ERBB2.
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Fig. 8 – Distribution of p-ERBB2 expression levels in tumour

expression epidermal growth factor receptor (EGFR) protein

levels below and above the median value, respectively.

p-ERBB2 expression levels were log-transformed and one

added as constant so that log-transformed values of zero

correspond to zero values in the raw data.

Fig. 9 – Distribution of epidermal growth factor receptor

(EGFR)-family members and oestrogen receptor (ER)

expression in ERBB2-negative patients with respect to their

p-ERBB2 status.
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