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2. ABBREVIATIONS 
ADAM a disintegrin and metalloproteinase   kcat turnover number 
ADAMTS a disintegrin and metalloproteinase with 

thrombospondin type 1 repeats 
 KS keratan sulphate 

AspN  endoproteinase from Pseudomonas fragi 
mutant  

 LADII leukocyte adhesion deficiency II 

B3GALTL β1,3-galactosyltransferase-like   Lfng lunatic Fringe 
CADASIL cerebrovascular dementia  LLO lipid-linked oligosaccharide 
CAZy Carbohydrate-Active enZYmes database  LSD lysosomal storage diseases 
CDG Congenital Disorders of Glycosylation  LysC endoproteinase from Achromobacter lyticus 
Cer ceramide  m/z mass over charge 
CRD  carbohydrate-recognition domains  MALDI-TOF matrix-assisted laser desorption/ionization time-of-

flight 
CS chondroitin sulphate   Mfng manic Fringe 
CSP circum-sporozoite protein  MPI phosphomannose-isomerase 
ECL enhanced chemiluminescence  MS mass spectrometry 
ECM extracellular matrix  OFUT1 O-fucosyltransferase 1 
EGF epidermal growth factor-like module  OFUT2 O-fucosyltransferase 2 
Endo Hf endoglycosidase Hf  OGT O-GlcNAc transferase 
ER endoplasmic reticulum  OST oligosaccharyltransferase 
ERAD ER-associated degradation  PI phosphatidylinositol 
ERGIC ER-Golgi intermediate compartment  PIC protease inhibitor cocktail 
ERT enzyme replacement therapy  PNGase F peptide-N-glycosidase F 
FGF-2 fibroblast growth factor-2  POFUT1 protein O-fucosyltransferase 1 
FGFR fibroblast growth factor receptor  POFUT2 protein O-fucosyltransferase 2 
FPLC fast protein liquid chromatography  ppGalNAcT polypeptide N-acetlygalactosaminyltransferase 
FRET fluorescence energy resonance transfer  PPS Peters Plus syndrome 
GAG glycosaminoglycan  Rfng radical Fringe 
GHs glycosidases  Rspo R-spondin 
GlcNAc-P N-acetylglucosamine-phosphate  Tf transferrin 
GnT-V GlcNAc-transferase-V  TGN trans-Golgi network 
GPI  glycosylphosphatidylinositol  TRAP thrombospondin-related anonymous protein 
GTG-DEEP Global Trace Graph  TRSP thrombospondin-related sporozoites protein 
GTs glycosyltransferases  TSP thrombospondin  
HA hyaluronan  TSP-1 thrombospondin-1  
HEK293T human embryonic kidney cells with SV40 

large T-antigen 
 TSR thrombospondin type 1 repeat 

hLys hydroxylysine  TSR4 4th TSR from F-spondin 
HPLC high performance liquid chromatography  uPA urinary-type plasminogen activator 
IEF isoelectic focusing  β3Glc-T β1,3-glucosyltransferase 
IP immunoprecipitation  β4GalT β1,4-galactosyltransferse 
  
 

 

Standard abbreviations of amino acids
  Standard abbreviations of sugars

 
Three letter code One letter code Amino acid  Fuc Fucose 
Ala A alanine  Glc Glucose 
Arg R arginine  GlcNAc N-acetylglucosamine 
Asn N asparagine  Gal Galactose 
Asp D aspartate  GalNAc N-acetylgalactosamine 
Cys C cysteine  Xyl Xylose 
Gln Q glutamine  Man Mannose 
Glu E glutamate  Dol-P-Man Dolichyl Phosphomannose
Gly G glycine  Dol-P-Glc Dolichyl Phosphoglucose 
His H histidine  Dol-P-Glc Dolichyl Phosphoglucose 
Ile I isoleucine    
Leu L leucine    
Lys K lysine    
Met M methionine    
Phe F phenylalanine    
Pro P proline    
Ser S serine    
Thr T threonine    
Trp W tryptophan    
Tyr Y tyrosine    
Val V valine    
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3. ABSTRACT 
Rare types of protein glycosylation often occur in a domain-specific manner required for important 

biological functions (Okajima et al. 2008). O-linked fucosylation, where the fucose is linked directly to 

the hydroxyl groups of serine or threonine residues, has so far only been reported on three distinct 

protein modules: epidermal growth factor (EGF)-like domains; thrombospondin type 1 repeats (TSRs); 

and on the protease inhibitor PMP-C. The function of O-fucosylation is well studied on EGFs, where 

changes in the O-fucose glycan on Notch EGFs alter Notch signalling (reviewed in Okajima et al. 

2008).  

TSRs are modified by the unusual Glc-β1,3-Fuc-O- disaccharide (Hofsteenge et al. 2001; 

Gonzalez de Peredo et al. 2002). Protein O-fucosyltransferase 2 (POFUT2) initiates the fucosylation 

of properly folded TSRs. Deletion of POFUT2 in C. elegans causes an early dorsal migration 

phenotype of the anterior distal tip cell (Canevascini et. al, manuscript in preparation). Recently it was 

shown that Pofut2 null embryos die by mid-gastrulation (Du et al. 2007). Further, O-fucosylation of 

TSRs in ADAMTS13 (Ricketts et al. 2007) and ADAMTS-like 1/punctin (Wang et al. 2007) is required 

for their secretion in mammalian cells. Since these experiments abolished the fucosylated glycan,   

Glc-β1,3-Fuc-O-, it remains to be determined what role the glucose plays. Therefore, the β1,3-

glucosyltransferase (β3Glc-T) that catalyses the last step in the formation of this disaccharide, needed 

to be identified and characterised.  

In order to identify the β3Glc-T a relevant enzyme substrate in the form of properly folded 

TSR-fucose needed to be produced. I describe a reproducible purification strategy for the production 

of a large amount of highly pure, correctly folded TSR and fucosylated TSR domain (Chapter 6.1). 

Using this TSR-fucose substrate in a specific radiochemical assay, I was able to identify the β3Glc-T 

as a member of the glycosyltransferase family GT31, which includes Fringe, the enzyme that modifies 

O-fucose in EGF repeats. The cloned β3Glc-T specifically catalyses the transfer of glucose from 

UDP-glucose to TSR-fucose to yield Glc-β1,3-Fuc-O- (Chapter 6.2). There is no reactivity towards 

non-fucosylated substrates or fucosylated EGF. The β3Glc-T protein consists of an N- and C-terminal 

domain of approximately equal size that share internal sequence homology. Within the C-terminal 

domain putative catalytic centre, several key residues were identified (Asp-349, Asp-351, Asp-421) for 

β3Glc-T activity (Chapters 6.2 and 6.3). In addition, the removal of either of the two N-glycosylation 

sites in β3Glc-T resulted in diminished activity (Chapter 6.3). The β3Glc-T N-terminal domain does not 

possess intrinsic β3Glc-T activity but affects its activity. Expression of the β3Glc-T C-terminal domain 

requires the co-expression of the β3Glc-T N-terminal domain. I suggest that the β3Glc-T N-terminal 

domain may function as a stabiliser or internal chaperone (Chapter 6.4). Moreover, it was recently 

shown that mutations in the gene encoding β3Glc-T cause the severe developmental disease, Peters 

Plus syndrome (PPS) (Lesnik Oberstein et al. 2006). Constructs encoding these mutated β3Glc-T 

sequences express truncated proteins lacking the catalytic domain (Chapter 6.4). This raises the 

possibility that the truncated β3Glc-T proteins may play a role in PPS. 

The work presented in this thesis provides the basis for further studies on the role of β3Glc-T 

in regulating TSR biological function, through glycosylation, in health and disease. 
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4. RESEARCH OBJECTIVE 
 

(1) We would like to understand the biological function of the Glc-β1,3-Fuc-O- disaccharide structure 

in TSRs. For this my aim was to identify the TSR-fucose-specific β1,3-glucosyltransferase (β3Glc-

T) and further characterise it at the molecular level. 

(2) Subsequently, we also planned to study the β3Glc-T by genetic manipulation in the multicellular 

model organism C. elegans. This strategy altered with the finding that mutations in the human 

β3Glc-T cause a new congenital disorder of glycosylation, Peters Plus syndrome. I then focused 

on understanding the function of the β3Glc-T N- and C-terminal domains with reference to the 

truncating mutations found in PPS. 
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5. GENERAL INTRODUCTION 

5.1. The Concept of Glycobiology 

Glycosylation consists of the attachment of sugars to other sugars or aglycans such as proteins and 

lipids. There are nine different sugars in mammals that may be linked in several positions and 

stereoisomeric configurations, creating a huge variety of glycans. In addition, there are four main 

classes of protein glycosylation based upon the core linkage of the carbohydrate to the protein. 

Greater than 3% of the human genome is involved in glycosylation processes resulting in more than 

50% of proteins expressed being glycosylated (Apweiler et al. 1999; Davies et al. 2005). Clearly this 

modification generates a very complex proteome. 

Glycobiology is the study of the structure, biosynthesis and biology of carbohydrates. 

Glycosylation is conserved from bacteria to man. Glycobiology is one of the most rapidly developing 

fields in life sciences. The three main molecular players of glycobiology: glycans, lectins, and 

carbohydrate active enzymes (glycosyltransferases and glycosidases), are functionally closely 

connected with each other (Figure 1). Their interactions are time- and location dependent. 

 

 

 

 

 

 

 

 

 
Figure 1. The players of glycobiology 

 

Glycans are synthesised by large families of carbohydrate active enzymes. 

Glycosyltransferases are involved in the covalent attachment of sugars to other sugars, proteins or 

lipids, whilst the glycosidases interact at specific points in this assembly process to trim off sugar 

residues and remodel the developing glycan structure. The lectins, which are glycan-binding proteins, 

recognise particular glycan patterns and help decode the glycan structure into a biological effect. 

The primary structure of the first glycan was determined in 1958 (Meyer 1958), however the 

interest in glycobiology only started to grow rapidly from the late 1980s. Today it is evident that 

carbohydrates have an important biological role in processes including cell-cell interaction, protein 

trafficking, adhesion, signalling, fertilisation and immunological recognition. Several human diseases, 

including haematological disorders, some inflammatory skin diseases, diabetes, several oncogenic 

transformations and inherited glycosylation disorders are known to involve changes in glycosylation or 

glycan recognition (Varki et al. 1999). 

Carbohydrate Active 
Enzymes 

Lectins Glycans 

Time 
Location 
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In contrast to genomics and proteomics, where many of the research tools have been 

available for the scientists, the development of analytical and biochemical technologies to investigate 

the glycan structure-function relationship has presented great challenges. The reasons are the 

following: first, in contrast to protein synthesis, the assembly of glycan structures is not a template-

driven process, but involves consecutive enzymatic reactions. Moreover, some of these carbohydrate 

active enzymes have tissue-specific isoforms. Second, since no proofreading machinery is present 

and there is competition for the glycosylated substrate, heterogeneity and great diversity of different 

glycan structures (glycoforms) appear. Thus, the presence of the same glycoform in different proteins 

and different glycoforms on the same protein, even at the same site, make it difficult to establish 

structure-function relationships. Finally, understanding the biochemical basis of the interaction 

between glycans and lectins is also a demanding task (Raman et al. 2005).  

5.2. The Three Players of Glycobiology 

In eukaryotic cells many important cellular processes occur in the different compartments of the 

secretory pathway. Newly synthesised proteins destined for the endoplasmic reticulum (ER), Golgi and 

lysosome, as well as the secretory and plasma membrane proteins are first targeted to the rough ER. 

The nascent polypeptides contain an amino-terminal hydrophobic signal sequence which initiates their 

transport into the ER lumen via the translocon. Within the ER, the folding of the proteins is checked 

and the properly folded ones are transported to the Golgi apparatus by vesicular trafficking. The 

secretory, lysosomal and plasma membrane proteins are transported through the Golgi apparatus and 

sorted according to their final destination at the trans-Golgi network (Figure 2). Several steps within 

the secretory pathway are modulated by the N-glycans on the transported glycoproteins. 

 
 
 
 
 
 

Figure 2. Schematic representation of the 
secretory pathway 

The ER is the entry point of the secretory pathway. 
Here nascent proteins are correctly folded and exit the 
ER in COPII-coated transport vesicles. Fusion of these 
vesicles forms the ER-Golgi intermediate compartment 
(ERGIC). Anterograde cargo moves through the Golgi 
stack and the sorting takes place at the trans-Golgi 
network (TGN). ER proteins which leaked out of the 
ER to the ERGIC and Golgi stacks are recycled by 
COPI coated vesicles.  
 
 
 
 
 
 

 
 
In the following sections I will discuss some of the ways glycans control these and other events. In 

addition, I will outline how the carbohydrate active enzymes and lectins are involved in different 

biological processes. 

Adapted from van Vliet et al., 2003 
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Glycans 
The glycome, the entire repertoire of glycans in humans, is much greater in size than the number of 

proteins encoded by the genome (Freeze 2006). Glycans are formed on protein, lipid or saccharide 

acceptors by glycosyltransferases and glycosidases as they pass through the secretory pathway 

(Figure 2). The glycans can vary from simple monosaccharides to highly branched and complex 

glycan structures. 

In mammals eleven activated sugar donors and several amino acids, using two anomeric 

configurations of glycosidic bonds, participate in different combinations to build up a large variety of 

glycoconjugates (Table 1).  

 
Table 1. Mammalian glycans  

In mammals eleven activated sugar donors and multiple protein and lipid acceptors exist, which 
produce 15 glycans in α or β configurations linked at a number of positions of the donor sugar ring 
(coloured in yellow). The attached monosaccharide often becomes a saccharide acceptor in 1 of 52 
other glycosyltransferase reactions (depicted in blue). This results in glycosidic bonds with α or β 
configurations of the donor saccharide linked through position 1 or 2 to position 2, 3, 4, 6 or 8 of the 
saccharide acceptor. The en bloc attachment of the N-linked glycans is marked with a “$” sign. Dol-P, 
dolichyl phosphate; GalNAc, N-acetylgalactosamine; GlcNAc, N-acetylglucosamine; Ser/Thr, 
serine/threonine; Asn, asparagine; hLys, hydroxylysine; Trp, tryptophan; Tyr, tyrosine; PI, 
phosphatidylinositol. The table is modified from Ohtsubo et al, 2006. 

 

Sugar Donors  
 
 
 
 
 
 

GDP-
fucose 

UDP-
galactose 

UDP-
GalNAc 

UDP-
Glucose 

UDP-
GlcNAc 

UDP-
Glucuronic 

acid 
GDP-

mannose 
CMP-
sialic 
acid 

UDP-
xylose 

Dol-P-
mannose 

Dol-P-
glucose 

Ser/Thr α1 - α1 β1 β1 - - - β1 α1 β1 

Asn - - - β1 $ - - - - - - 

hLys - β1 - - - - - - - - - 

Trp - - - - - - - - - α1 - 

Tyr - - - α1 - - - - - - - 

Ceramide - β1 - β1 - - - - - - - Pr
ot

ei
n 

an
d 

Li
pi

d 
A

cc
ep

to
rs

 

PI - - - - α1 - - - - - - 

Fucose - - - β1-3 β1-3 - - - - - - 

Galactose α1-2 
α1-3 
α1-4 
β1-3 

α1-3 
β1-3 
β1-4 

α1-2 β1-3 
β1-6 

β1-3 
β1-4 - α2-3 

α2-6 - - - 

GalNAc - β1-3 α1-3 
α1-6 - β1-6 β1-3 - α2-6 - - - 

Glucose - β1-4 - - - - - - α1-3 - α1-2 
α1-3 

GlcNAc 
α1-3 
α1-4 
α1-6 

β1-3 
β1-4 β1-4 - α1-6 

β1-4 
β1-3 
β1-4 β1-4 - - α1-4 - 

Glucuronic 
acid - - β1-4 - α1-4 

β1-6 - - - - - - 

Mannose - - - - β1-2 - 
α1-2 
α1-3 
α1-6 

- - 
α1-2 
α1-3 
α1-6 

α1-3 

Sialic acid - - - - - - - α2-8 - - - 

Sa
cc

ha
rid

e 
A

cc
ep

to
rs

 

Xylose - β1-4 - - - - - - α1-3 -  
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Due to these permutations the information content of the glycans is enormous (Spiro 2002; Ohtsubo et 

al. 2006). There are four main classes of protein glycosylation according to the attachment site of the 

carbohydrate chain: N-glycosylation, O-glycosylation, glycosyl phosphatidylinositol-anchored 

glycosylation and the less common C-glycosylation. 

N-glycans 

The biosynthesis of N-glycans is the most extensive and complicated type of glycan assembly. It can 

be divided into three consecutive phases: the step-wise assembly of the 14-sugar containing lipid-

linked oligosaccharide (LLO) precursor (Figure 3), the en bloc transfer of the precursor to the amide 

group of the asparagine in the consensus sequence Asn-X-Ser/Thr (where X can be any amino acid 

except proline) of the nascent protein, and the processing of the N-linked glycan  (Kornfeld et al. 

1985). This complex processing is initiated in the ER, continues in the cis , medial and trans Golgi, 

and through into the trans-Golgi network (Figure 2) (Kornfeld et al. 1985). 

 

 

 

  

 

 

 

 

 

 

 

 

 
Figure 3. Biosynthesis of the LLO precursor 

 
The assembly of the LLO precursor occurs in two locations (Figure 3). On the cytoplasmic 

side of the ER, two GlcNAc residues are attached to the lipid, dolichol, via a pyrophosphate linkage. 

Subsequently, five mannose residues are added by mannosyltransferases utilising GDP-mannose as 

the donor sugar. This lipid-linked heptasaccharide is then translocated across the ER membrane into 

the luminal side by a putative flippase. Here, the oligosaccharide is further extended by the addition of 

four mannoses and three glucoses via the action of unique glycosyltransferases utilizing dolichol-

linked monosaccharide donors to yield Glc3Man9GlcNAc2-P-P-dolichol (Kornfeld et al. 1985). 

Once the LLO is assembled, the glycan portion is transferred to the protein co-translationally, 

whereby the innermost GlcNAc is attached in a β-linkage to the amide group of asparagine. This 

reaction is catalysed by the multi-subunit protein oligosaccharyltransferase. Following the transfer, the 

oligosaccharide branches undergo several processing reactions by glycosidases and 

glycosyltransferases. In the lumen of the ER, the lectin chaperone molecules calnexin and calreticulin 

(Zhang et al. 1997) bind to the glycoprotein’s monoglucosylated oligosaccharide and help the 

N-acetylglucosamine 
 
Glucose 
 
Mannose  
 
Lipid Dolichol 

P 
I 

P 
I 
P 
I 
 UDP 

P 
I 
P 
I 
 UDP GDP 

5x 

P 
I 
P 
I 
      -P 

4x 

P 
I 
P 
I 
 

3x 
    -P 

P 
I 
P 
I 
 

flip 
Cytosol ER lumen 

β4 β4 β4 β4 

 
   α6 

 α2 

 α2 

 α3  α6 
β4 

 α2 

 α2 

β4 

 α2  α2 

 α6  α3 

 α2  α2  α2 

 α6 

 α2  α6 

 α3 

 α3 
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 α3 
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             Modified from Varki et al., 1999 
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glycoprotein to fold correctly. Further trimming and addition of sugar moieties onto the N-glycans 

continues in the Golgi apparatus resulting in different modifications to the core structure. Thus, 

depending on the destination of the glycoprotein, its glycans may exist as high- mannose, hybrid and 

complex types. Misfolded glycoproteins that fail to achieve their correct folding state are removed from 

the calnexin/calreticulin cycle and encounter a membrane-bound lectin which triggers the ER-

associated degradation (ERAD) (Hebert et al. 2007).This involves the export of the glycoproteins out 

of the ER via the translocon to the proteasome for degradation (Lord et al. 2000).  

O-glycans  

In O-linked glycosylation the carbohydrate chains are covalently linked to the hydroxyl group of serine 

(Ser), threonine (Thr) or hydroxylysine (hLys). In contrast to N-glycosylation, which occurs co-

translationally in the ER and is initiated by the transfer of a large LLO, O-glycosylation is post-

translational, occurs in the ER and the Golgi, and is synthesized by the step-wise addition of 

monosaccharides directly to the protein. The O-glycan is not trimmed by glycosidases during its 

synthesis. Furthermore, a consensus amino acid sequence for O-glycosylation attachment is poorly 

defined in most cases.  

In the following pages, some examples of O-glycosylated proteins will be mentioned with an 

emphasis on the unusual O-fucosylation. 

Common O-glycans 
Mucins and proteoglycans are the two most representative glycoprotein groups bearing large numbers 

of O-linked sugars. Mucin polypeptides are extremely long and contain numerous tandem repeats with 

a relatively simple, uncharged amino acid composition rich in Pro, Ser and Thr residues. The synthesis 

of O-glycans is initiated by the attachment of GalNAc in an α-linkage to the hydroxyl of Ser/Thr. This 

initial step is catalysed by a large family of the polypeptide N-acetylgalactosaminyltransferases 

(ppGalNAc-T). The ppGalNAc-Ts are an exception to the “one enzyme-one linkage” paradigm, which 

has been a wide-spread theory in the field of glycobiology. So far, the transferase activity of sixteen 

isozymes has been shown (Wandall et al. 2007) and according to in silico analysis 24 ppGalNAc-Ts 

exist (Ten Hagen et al. 2003). The isoforms are expressed in a tissue- and cell-specific and also in a 

time-dependent manner (Young et al. 2003). They also show a preference for different amino acids 

surrounding the target Ser/Thr residues. Subsequent sugar addition to the GalNAc linked protein, by 

other glycosyltransferases in the Golgi, gives rise to several core structures which often terminate in 

sialic acids. This clustering of negatively charged oligosaccharides in mucins can result in high water 

retention. Mucins are the major component of mucus and primarily function in the water retention and 

lubrication of surfaces found in the digestive, genital and respiratory tracts (Ten Hagen et al. 2003). 

Proteoglycans consist of a core protein covalently modified with glycosaminoglycans (GAGs). 

These GAGs are linear polysaccharides ranging from 40 to over a 100 sugar residues (~10KDa to 

over 25KDa). Some proteoglycans, such as aggrecan, can have more than a 100 of these GAGs 

chains attached to its protein core. The GAGs are composed of disaccharide repeats, of amino sugars 

(GlcNAc and GalNAc) and uronic acids (GlcA and IdoA), which can be decorated with sulphate 

groups. In the GAG, hyaluronan (HA), there may be 104 GlcNAcβ1,3GlcAβ1,4 repeats. Exceptionally, 



General Introduction 

 

12

HA is never covalently linked to a protein and it is synthesised at the plasma membrane. In addition, 

the HA polymer is assembled from the reducing end at a rate of a 100 monosaccharide per second. 

HA holds a high water content which increases its volume. This hydration effect allows HA to act as a 

biological lubricant by reducing friction during movement and providing resistance under compression. 

Chondroitin sulphate (CS), dermatan sulphate and heparan sulphate O-glycan synthesis is initiated by 

the attachment of xylose onto a Ser in Ser-Gly rich sequences often surrounded by acidic residues. In 

contrast, keratan sulphate (Galβ1,4GlcNAcβ1,3)n has its O-glycans (KSII) linked via GalNAc on 

Ser/Thr as described above for mucins. Keratan sulphate (KSI) GAGs are N-linked to asparagine via 

GlcNAc. In the cornea, the KSI proteoglycan lumican, maintains the collagen fibril organisation and is 

essential for corneal transparency (Chakravarti et al. 1998). Large proportion of the extracellular 

matrix (ECM) of the central nervous system (CNS) is composed of proteoglycans. Increasing evidence 

shows that CS and HA play essential roles in the development of the CNS but inhibit CNS repair 

(Sherman et al. 2008). The cell surface proteoglycans have other distinct functions, such as binding to 

soluble polypeptide growth factors. The best studied example is the activation of fibroblast growth 

factor (FGF) through its interaction with heparin and heparan sulphate. This interaction is essential for 

the FGF to activate its receptor, FGFR, by stabilising the dimerised FGFR-FGF complex (Ornitz et al. 

1995).  

Unusual O-glycans 
In addition to the common O-glycans, a wide variety of simpler O-glycans exists. Biosynthesis of these 

shorter glycan structures is initiated by the attachment of GlcNAc, fucose (Fuc), glucose (Glc), 

galactose (Gal) or mannose (Man) to a Ser or Thr. 

O-GlcNAc modification 

O-GlcNAc modification is the addition of a single GlcNAc in a β-linkage to Ser/Thr and occurs in the 

nucleus and the cytoplasm (Torres et al. 1984). Apart from its localisation, there are other reasons why 

this modification is so unique. With its cycling mechanism it is different from the stable glycan 

modifications and is more similar to the dynamic phosphorylation (Slawson et al. 2006). Site mapping 

of c-Myc (Kamemura et al. 2003), oestrogen receptor-β (Cheng et al. 2000), SV40 large T antigen 

(Medina et al. 1998) and endothelial nitric oxide synthase (Du et al. 2000) revealed that the 

attachment site of the GlcNAc and the phosphate were the same. This led to the hypothesis that       

O-GlcNAc and O-phosphate are reciprocal and competes for the same Ser/Thr residues.  

Two enzymes are involved in O-GlcNAcylation, the O-GlcNAc transferase (OGT), which adds 

the GlcNAc to the Ser or Thr, and a glycosidase, O-GlcNAcase, which removes the sugar from the 

protein. More than 500 nuclear and cytoplasmic proteins are modified with O-GlcNAc (Hart et al. 

2007), including nuclear core proteins, transcription factors, polymerases, RNA binding proteins, 

phosphatases, kinases, cytoskeletal proteins and chaperones (Zachara et al. 2006). Cells lacking the 

O-GlcNAc transferase gene are not viable, which indicates that O-GlcNAcylation has an essential role 

in fundamental cell processes such as protein phosphorylation, protein turnover and cell signalling 

(Shafi et al. 2000). O-GlcNAc can act as nutrient sensor responding to the glucose flux through the 

hexosamine biosynthesis pathway (Wells et al. 2003; Zachara et al. 2004). Recently, a novel 
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phosphoinositide binding domain on OGT was identified (Yang et al. 2008). Upon insulin stimulation 

PIP3 can recruit OGT to the plasma membrane where it modifies various insulin signalling pathway 

proteins with O-GlcNAc, affecting their phosphorylation state and activity, and resulting in a reduced 

insulin response (Yang et al. 2008). The dysregulation of O-GlcNAcylation can lead to diseases such 

as insulin resistance, obesity, type 2 diabetes (Liu et al. 2000; Clark et al. 2003; Yang et al. 2008) and 

Alzheimer’s disease (Ludemann et al. 2005).  

O-fucosylation pathways 

Fucose usually appears as a terminal sugar on various glycoconjugates, where it has important 

biological roles. For example, the core α1,6-fucose on the N-glycans of TGF-β1 receptor is required 

for receptor activation (Wang et al. 2006). Fucose can also be linked directly to the hydroxyl group of 

Ser/Thr in three different protein domains: epidermal growth factor-like domains (EGFs), 

thrombospondin type 1 repeats (TSRs) and the protease inhibitor PMP-C (Nakakura et al. 1992) 

(Figure 4). These domains are between 36 to ~60 amino acids long and contain three disulfide bonds 

in a module specific pattern.  

PMP-C has a compact structure, consisting of three short anti-parallel β sheets (Mer et al. 

1996). Although the presence of fucose on Thr-9 in PMP-C does not affect its ability to inhibit serine 

proteinases (Kellenberger et al. 1995), it does increase the thermostability of the molecule (Mer et al. 

1996). Also, the non-fucosylated PMP-C can inhibit high voltage-activated Ca2+ currents, whereas the 

fucosylated form does not (Scott et al. 1997).  

  

 

 

 

  

 

 

 

 

 

 

 

 

 

 
Figure 4. Three-dimensional structures of TSR, EGF and PMP-C 

Crystal structures of TSR2 from thrombospondin-1 (PDB: 1LSL), EGF from factor VII (PDB: 1FF7) and 
PMP-C (PDB: 1PMC). Disulfide bridges are shown in dark blue, O-fucosylation sites are indicated in red. 

 

The residue for the O-fucosylation is found within a β-sheet in EGF domains, whereas in TSRs it is 

located in the loop between the first and second strands (Figure 4).The biosynthetic pathway of         

O-fucosylation in PMP-C is unknown but has been elucidated for EGFs and TSRs (Figure 5).  
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Figure 5. The three O-linked fucosylation pathways in EGF and TSR domains 

In the putative consensus sequences X can be any amino acid. The superscript next to the cysteines 
indicates the position of the conserved cysteines counting from the N-terminal end. S/T is the O-
fucosylated residue. The glycosyltransferases are shown in red. *In mammals there are three Fringe 
homologues: Manic, Lunatic and Radical Fringe. In Drosophila there is a single Fringe that extends the 
EGF fucosylation pathway to O-α1-Fuc-β1,3GlcNAc. There is no evidence of longer O-fucosylated 
glycans in Drosophila. 

EGF O-fucosylation 

EGF domains can be O-fucosylated in two different ways. The Ser/Thr residue in the putative 

consensus sequence C2X3-5(S/T)C3 carries either a single α1-Fuc residue or a tetrasaccharide 

(Figure 5). The O-linked fucose monosaccharide occurs in urinary-type plasminogen activator (uPA) 

(Buko et al. 1991); tissue-type plasminogen activator; human clotting factors VII, IX and XII (Bjoern et 

al. 1991); Notch receptors (Harris et al. 1993) and its ligands, Delta1 and Jagged1 in mammals (Panin 

et al. 2002) and Delta and Serrate in Drosophila (Okajima et al. 2002; Panin et al. 2002); and Cripto 

(Schiffer et al. 2001; Yan et al. 2002; Shi et al. 2007). The fucose transfer is catalysed by the protein 

O-fucosyltransferase 1 (POFUT1) (Wang et al. 1998; Wang et al. 2001). The O-fucose may be 

extended with a GlcNAc by Fringe, a β1,3 N-acetylglucosaminyltransferase (Moloney et al. 2000; 

Panin et al. 2002), and further elongated with a galactose and then a sialic acid to yield the 

tetrasaccharide, Sia-α2,6Gal-β1,4-GlcNAc-β1,3-Fucα1, as found on coagulation factor IX (Nishimura 

et al. 1992; Harris et al. 1993) and Notch receptor in mammals (Harris et al. 1993; Moloney et al. 

2000). 

O-fucosylation of EGF domains can have a ligand-receptor modulating role. In uPA, the        

O-fucose is required for the activation, but not the binding of uPA receptor, a mitogenic receptor 

involved in various kinase cascades (Rabbani et al. 1992). Extensive studies, summarized below, 

demonstrate how glycosylation can also affect the Notch signalling pathway. Notch receptors control 

several short-range signalling events through cell-cell contact such as lineage decision, lateral 

inhibition and inductive signalling. Mutations in the components of the Notch signalling pathway are 

associated with several human disorders including cerebrovascular dementia (CADASIL) (Joutel et al. 
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1996), cancer (Bolos et al. 2007), and developmental disorders of liver, heart, skeleton, eye, and 

kidney (Li et al. 1997; Oda et al. 1997). 

Notch receptors are a family of single transmembrane glycoproteins containing up to 36 EGF 

repeats in their extracellular domain. As the receptor matures through the secretory pathway, many of 

its EGF repeats are modified with O-fucose and O-glucose in the ER (Moloney et al. 2000; Shao et al. 

2002) The elongation of the O-linked glycans occurs in the Golgi. In the trans-Golgi, a furin-like 

convertase cleaves Notch into two fragments that heterodimerise into a structure which, in mammals, 

is essential for its activity. Notch translocates to the cell membrane and is activated upon binding its 

ligands that are expressed on apposing cells. The receptor-ligand interaction triggers the cleavage of 

Notch by a cell surface metalloprotease, ADAM10, leaving the extracellular domain of Notch bound to 

its ligand on the neighbouring cell. The truncated membrane-bound Notch is further cleaved within the 

membrane by a γ-secretase, releasing the intracellular domain of Notch which transits to the nucleus, 

where it acts as a transcription factor inducing the expression of target genes.  

Ablation of the mouse pofut1 gene is embryonic lethal at ~E9.5 with defects in somitogenesis, 

vasculogenesis, cardiogenesis, and neurogenesis. These phenotypes are consistent with a complete 

lack of all Notch signalling. Loss of the pofut1 homologue in Drosophila, Ofut1, also results in a Notch 

loss of function phenotype. Whilst the importance of pofut1/Ofut1 in Notch signalling is not in doubt, its 

mechanism of action is. POFUT1/Ofut1 is a soluble ER glycosyltransferase, which in the case of CHO-

derived POFUT1, requires correctly folded EGF domains in order to recognise the consensus site 

(Wang et al. 1998). In Drosophila, the knockdown of OFUT1 causes Notch to accumulate in the ER, 

and an inactive form of the fucosyltransferase supports Notch secretion (Okajima et al. 2005). These 

experiments, from the Irvine laboratory, propose a chaperone-like role of OFUT1. Recently, work from 

the same laboratory has shown that the chaperone-like activity of OFUT1 is sufficient to generate 

functional Notch receptors (Okajima et al. 2008). Contrary to these conclusions, the Matsuno group do 

not find Notch accumulating in the ER of Ofut1 mutants, but rather in a novel endocytic compartment 

(Sasamura et al. 2007). This group proposed two trafficking models for OFUT1. The first, which is 

independent of its fucosyltransferase activity, argues that secreted OFUT1 associates with Notch at 

the cell surface and promotes the constitutive endocytosis of the Notch receptors (Sasamura et al. 

2007). The second model, which is dependent on the fucosyltransferase activity, suggests OFUT1 

promotes the trafficking of Notch from the plasma membrane to the sub-apical and adherens junction 

(Sasaki et al. 2007). The chaperone model and trafficking models for OFUT1 function in Notch 

signalling are apparently restricted to Drosophila as Notch receptors are equivalently expressed on the 

surface of mammalian cells lacking Pofut1 (Stahl et al. 2008). 

An alternative way to determine whether the real cause of the Notch loss of function 

phenotypes lies in the loss of the fucosyltransferase activity in general, or the loss of the fucose 

residue in the EGF repeats of Notch receptors, is to mutate the O-fucose consensus sites. Using this 

approach, the effect of the absent O-fucose as well as the elimination of the elongated fucosylated 

glycan can be examined. A point mutation, replacing the Thr with an Ala, in the most conserved        

O-fucose site found in EGF 12 ligand-binding domain was created. The mutant mice show weaker 

Notch signalling during embryogenesis, post-weaning growth and T-cell development (Ge et al. 2008). 

To prove that it is the absence of O-fucose and not the amino acid change, which leads to the 
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observed signalling inhibition, Thr was replaced by Ser in EGF 12 with no effect in Notch signalling 

(Shi et al. 2007). In contrast, mutation of the O-fucose site in Drosophila EGF 12 leads to a 

hyperactive Notch response to its ligands (Lei et al. 2003). One reason for these opposite effects of 

the EGF 12 O-fucosylated glycans may be due directly to the different glycan structures found in 

Drosophila and the mouse. In Drosophila there is only evidence for the O-fucose and O-α1-Fuc-

β1,3GlcNAc glycans (Xu et al. 2007), whereas in mammals the tetrasaccharide, O-α1-Fuc-

β1,3GlcNAc-β1,4Gal-α2,3/6-NeuAc,also occurs (Figure 5). 

 

Protein type Drosophila Mammals C. elegans 

Receptors Notch 

Notch1 
Notch2 
Notch3 
Notch4 

Lin-12 
Glp-1 

Ligands 
Delta 

 
Serrate 

Delta1 
Delta3 
Delta4 

Jagged1 
Jagged 2 

Lag-2 
Apx-1 

Fucosyltransferase OFUT1 POFUT1 C15C7.1 

Fringe Fringe 
Lunatic Fringe 
Manic Fringe 

Radical Fringe 
- 

Galactosyltransferase 
β4GalNAcA 
β4GalNAcB 

 

β4GalT-1 
β4GalT-2 
β4GalT-3 
β4GalT-4 
β4GalT-5 
β4GalT-6 

n.d.? 

Sialyltransferase n.d.? α2,3SiaT 
α2,6SiaT n.d.? 

 

Table 2. Components of the Notch pathway 

 

The interest in the glycosylation state of Notch was stimulated by the identification of a known 

modulator of Notch signalling, Fringe (Panin et al. 1997), as the β1,3-N-acetylglucosaminyltransferase 

that attaches GlcNAc in a β1,3-linkage to the O-fucose on Notch EGF domains (Bruckner et al. 2000; 

Moloney et al. 2000; Panin et al. 2002). In the Drosophila wing disc, Fringe potentiates Notch 

signalling induced by its ligand, Delta, and inhibits Notch signalling induced by its ligand, Serrate 

(Okajima et al. 2003). The outcome of this restricted Notch signalling is clearly observed along 

dorsal/ventral boundary (Figure 6) (Haines et al. 2003). 

Fringe mutants show less severe phenotypes than Ofut1- indicating that Fringe only affects a 

subset of Notch signalling events. In vertebrates, the influence of Fringe is more complicated, since 

there are four Notch receptors, five ligands and three Fringe proteins (Table 2). The three Fringe 

homologues, Lunatic (Lfng), Manic (Mfng) and Radical Fringe (Rfng) function in the Golgi but they are 

also secreted (Johnston et al. 1997; Lu et al. 2006). In general the effects of Lfng and Mfng is similar 

to Drosophila Fringe, they enhance Delta1-induced Notch signalling and inhibit Jagged1-induced 

Notch signalling. However, differences between Lfng and Mfng on Notch2 signalling have been 

reported (Shimizu et al. 2001), and Rfng can enhance both Delta1-induced and Jagged-1 induced 

Notch signalling (Yang et al. 2005). The vertebrate Fringes are differently expressed throughout 
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development and exhibit differences in their in vitro specific activities which suggest their distinct role 

in Notch signalling (Qiu et al. 2004; Rampal et al. 2005). Lfng is expressed in many cell types during 

embryogenesis and somitogenesis (Johnston et al. 1997). Mice with inactivated Lfng gene display 

severely disorganized axial skeleton and die perinatally or in early adulthood (Evrard et al. 1998; 

Zhang et al. 1998). Recently, a human patient with spondylocostal dystosis (defective somitogenesis) 

has been diagnosed to carry an autosomal recessive mutation (F188L) in the Lfng gene (Sparrow et 

al. 2006). The equivalent mutation of this conserved amino acid in mouse LFGN results in its 

mislocalisation and inactivity (Sparrow et al. 2006). In contrast, mice with mutations in Rfng show no 

visible phenotype (Moran et al. 1999).  
Figure 6. The role of O-fucose glycans 

in Notch inductive signalling 

 

 

 

 

 

 

 

 

 

 

 

 

The GlcNAc-Fuc disaccharide on Notch EGF repeats can be extended into a tetrasaccharide 

by the subsequent actions of a β1,4-galactosyltransferse (β4GalT) and a sialyltransferase (Moloney et 

al. 2000; Chen et al. 2001; Shao et al. 2002). Co-culture assays in CHO cells revealed that β4GalT-1 

is required for Lfng and Mfng inhibition of Jagged1-induced Notch signalling. The subsequent addition 

of sialic acid was not necessary suggesting that the trisaccharide, Galβ1,4GlcNAcβ1,3Fuc, supports 

Fringe-dependent modulation of Notch signalling in mammalian cells (Chen et al. 2001). However, 

mice lacking β4GalT-1 are viable with no obvious skeletal defects as would be expected in the 

inhibition of Notch1 signalling (Chen et al. 2006). This may be due to genetic redundancy, since in 

mammals there are six β4GalT genes and they all transfer Gal to GlcNAc. In the Drosophila genome 

only two β4GalT exist, and flies with mutations in both genes do not exhibit the fng-like phenotype 

(Haines et al. 2005). This raises the possibility that in Drosophila, the GlcNAcβ1,3Fuc disaccharide is 

sufficient for Notch signalling (Xu et al. 2007).  

EGF domains can undergo another type of glycosylation, O-glucosylation of serine residues. 

Bovine blood coagulation factors VII and IX were the first proteins identified with this modification 

(Hase et al. 1988). The structural analysis by NMR revealed Xyl-α1,3-Xyl-α1,3-Glc-β1-O-Ser53 on the 

first EGF domain in bovine factor IX (Hase et al. 1990). This is the only occasion the complete 

trisaccharide structure has been determined. The structure of an O-glucose containing trisaccharide 

attached to Notch1 isolated from CHO cells was not determined but is presumed to be the same as 

(a) The developing tissue that will give rise to the wing 
(the wing imaginal disc) is subdivided by the 
expression of apterous (blue stain) into dorsal and 
ventral cells. Normally, a peak of Notch activation 
occurs along the interface between dorsal and ventral 
cells. Notch signalling can be visualized by examining 
the expression of downstream target genes such as 
wingless (red stain). (b) Notch activation is positioned 
at the dorsal–ventral interface by the modulatory effect 
of Fringe (Fng) on signalling by the two Notch (N) 
ligands. Fringe (Fng) and Serrate (Ser) are expressed 
in dorsal cells (blue). Fringe potentiates Delta (Dl) 
signalling (shown by +), allowing it to signal to dorsal 
cells, and inhibits Serrate signalling (as shown by -), 
which limits Serrate to signalling from dorsal cells to 
ventral cells. The expression of Delta and Serrate is 
initially broad, but their later expression is stimulated 
by Notch activation. So, a positive-feedback loop is 
established between the two Notch ligands along the 
edge of Fringe expression in the wing.  Adapted from Haines et al., 2003 
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that found on bovine coagulation factor IX (Moloney et al. 2000). The identification of several EGF 

containing proteins carrying O-glucosylated glycans (Nishimura et al. 1989) lead to the putative 

consensus sequence for O-glucosylation, C1XSXPC2 (C1 and C2 are the first and second conserved 

cysteines, respectively) (Harris et al. 1993; Moloney et al. 2000).  

Protein O-glucosyltransferase activity has been demonstrated in many different cell lines and 

the mammalian enzyme was shown to require properly folded EGF domains for activity (Shao et al. 

2002). Recently, in a genetic screen looking for genes involved in the development of 

mechanosensory organs on the body of the fly, rumi was identified (Acar et al. 2008). Mutations in 

rumi caused a temperature-sensitive Notch loss of function phenotype. The rumi gene encodes an    

O-glucosyltransferase that attaches glucose to serine residues in EGF repeats on Notch. Interestingly, 

Rumi is acting in the ER of the signal-receiving cell. The results suggest that the O-glucosylation of the 

EGF repeats in Notch mediated by Rumi is essential for Notch receptor folding and signalling (Acar et 

al. 2008). The O-glucose may also be a substrate for xylosyltransferases, which can extend the         

O-glucose monosaccharide to a trisaccharide. Since the xylosyltransferases have not been cloned, it 

is unclear if the rumi phenotype changes are caused by the absence of O-glucose or of a di- or 

trisaccharide containing xyloses.  

TSR O-fucosylation 

In 1975 an unusual disaccharide Glc-β1,3-Fuc-O attached to a Thr was discovered in human urine 

(Hallgren et al. 1975). Later, the same structure was isolated from several unidentified proteins 

expressed in Lec1-CHO cells labelled with 3H-fucose (Moloney et al. 1997). Then in 2001 Hofsteenge 

and co-workers, whilst analysing another rare modification, C-mannosylation on human 

thrombospondin-1, demonstrated that the Glcβ1,3Fuc disaccharide is present on thrombospondin type 

1 repeats (TSRs) (Hofsteenge et al. 2001). This clearly established a new fucosylation modification on 

a distinct protein module (Figure 4). Several other TSR containing proteins, including properdin,         

F-spondin (Gonzalez de Peredo et al. 2002), ADAMTS13 (Ricketts et al. 2007) and ADAMTS-like 

1/punctin-1 (Wang et al. 2007) have since been shown to carry this O-fucosylation (For further 

information about the TSR superfamily and its glycosylation see Chapter 5.3). The disaccharide is 

attached to the Ser/Thr residue in the putative consensus sequence CX2/3(S/T)CX2G (Gonzalez de 

Peredo et al. 2002). It is now apparent that distinct glycosyltransferases act either in the                     

O-fucosylation of EGF or TSR and there is no cross-talk between these two pathways (Luo et al. 

2006a). Protein O-fucosyltransferase 2 (POFUT2) modifies correctly folded TSR (Luo et al. 2006b) 

and the subsequent glucose addition is catalysed by the β1,3-glucosyltransferase, β3Glc-T (Kozma et 

al. 2006; Sato et al. 2006). Both POFUT2 and β1,3-glucosyltransferase are soluble enzymes localised 

in the ER.  

Little is known about the function of the enzymes participating in the O-fucosylation of TSRs. 

Canevascini et. al. (manuscript in preparation) have shown that deletion of the C. elegans homologue 

of POFUT2, causes an early dorsal migration phenotype of the anterior distal tip cell. O-fucosylation of 

the TSR domains in ADAMTS-like 1/punctin (Wang et al. 2007) and ADMATS-13 (Ricketts et al. 2007) 

is required for their secretion in mammalian cells. Currently it is unclear if the fucose alone or the 

Glcβ1,3Fuc disaccharide is necessary for the secretion of TSR containing proteins. Recently it was 
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shown that POFUT2 is ubiquitously expressed in mouse embryos and required for normal 

gastrulation. Pofut2 null embryos die by mid-gastrulation. Histological analysis suggest that POFUT2 

promotes the epithelial to mesenchymal transition (Du et al. 2007). Not only the fucose, but also the 

glucose is needed for normal development. Mutations in the gene encoding β3Glc-T causes a severe 

developmental disease, Peters Plus syndrome (for detailed information see Chapter 6.4).  

 

Glycosyltransferase  C. elegans Drosophila Mammals 

Fucosyltransferase PAD-2 OFUT2 POFUT2 

Glucosyltransferase ZC250.2* CG9109-PA* β3Glc-T 
 

Table 3. Conservation of the TSR O-fucosylation pathway  
Glycosyltransferases participating in the O-fucosylation of TSR repeats. *The enzymatic activity of the 
putative β1,3-glucosyltransferases in C. elegans and Drosophila needs to be determined. 

C-glycosylation 

A novel type of protein glycosylation, where the C-1 atom of mannose is covalently linked in an          

α-linkage to the C-2 atom of the indole ring of tryptophan, was discovered using a combination of 

mass spectrometry and NMR spectroscopy (Hofsteenge et al. 1994; de Beer et al. 1995; Löffler et al. 

1996). C-mannosylation differs from N- and O-glycans not only in the nature of its linkage, but also in 

its fragmentation pattern by tandem mass spectrometry. In the case of O-linked hexose, the glycosidic 

bond between the amino acid and the sugar residue fragments first, resulting in a 162 Da hexosyl 

residue loss. In the case of carbon-linked mannose, it is not the glycosidic bond that fragments, but a 

120 Da fragment which brakes off from the hexosyl residue. This 120 Da loss was previously observed 

in the fragmentation of flavone C-glycopyranosides (Li et al. 1991) and became the “fingerprint” of      

C-linked mannose. Trp is the only amino acid residue modified with a C-C linked mannose in 

mammalian cells (Zanetta et al. 2004). No further elongation of the mannose has been observed. 

Ribonuclease 2 (RNase 2), from human urine, was the first mammalian protein shown to be 

C-mannosylated (Hofsteenge et al. 1994). In RNase 2 only the first tryptophan in the sequence 

WXXW is mannosylated. (Krieg et al. 1998) The motif occurs in a number of different protein families 

including the type I cytokines receptors, mucins and notably, the thrombospondin type 1 repeat (TSR) 

superfamily. In all cases examined, members of these families are C-mannosylated (Doucey et al. 

1999; Hofsteenge et al. 1999; Hartmann et al. 2000; Gonzalez de Peredo et al. 2002; Furmanek et al. 

2003; Perez-Vilar et al. 2004). Interestingly, in many TSR-containing proteins there is an extended 

putative recognition motif, WXXWXXW, in which one, two or even all three tryptophans may be 

modified with mannose. Moreover, a deca neuropeptide from the stick insect Carausius morosus, that 

does not contain any sequence similarity to the WXXW motif, is also C-mannosylated (Gade et al. 

1992; Munte et al. 2008). Either there are undetermined residues that support C-mannosylation or 

there are multiple C-mannosyltransferases.  

C-mannosylation is carried out by an unidentified membrane-bound C-mannosyltransferase 

that uses dolichyl-phosphomannose (Dol-P-Man) as the sugar donor (Doucey et al. 1998). The 

enzyme activity has been detected in many organisms from C. elegans to man, but not in bacteria, 

yeast or insects (Krieg et al. 1997; Zanetta et al. 2004). Clearly there is a discrepancy between the 
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observed modification in insects and their apparent lack of enzyme activity that still needs to be 

resolved. The biological function of C-mannosylation remains to be determined. Nevertheless, the 

modification is necessary for the secretion of mucins, MUC5AC and MUC5B Cys subdomains, in 

Chinese hamster ovary cells (Perez-Vilar et al. 2004). 

Lectins 
Lectins are proteins that bind glycans and function in decoding this sugar information into a biological 

effect. They were discovered more than 100 years ago in plants but are now known to exist 

throughout nature, including microorganisms where they are called adhesins and toxins in bacteria, 

and hemagglutinins in viruses. Lectins exist as integral membrane proteins, as well as soluble 

proteins, hence they can interact with glycoconjugates located either in the extracellular or luminal 

spaces (Varki et al. 1999). 

 The binding between a lectin and its counter partner glycan is reversible, non-covalent, and 

tends to be of low-affinity. Animal lectins are usually multivalent either through their multi-subunit 

organisation or due to the presence of several carbohydrate recognition domains. The multivalent 

binding of low-affinity single sites generates high avidity, enabling the lectin to function in diverse 

biological processes. 

 The major lectin families are: C-type (collectins, selectins); calnexin group (calnexin, 

calreticulin, calmegin); L-type (lectins in ER-Golgi pathway); P-type (mannose-6-phosphate receptors); 

S-type (galectins); and I-type lectins (siglecs).  

 Selectins take part in the recruitment of leukocytes to inflammatory sites. As a response to the 

chemokines released by the injured or inflamed tissues, endothelial cells start to express selectins on 

their cell surface. These transmembrane adhesion molecules mediate the leukocytes to tether and roll 

along the endothelial layer. The rotational movements of the white blood cells are possible by the 

forming and breaking of the weak glycan-selectin interactions. The stronger adherence of the 

leukocytes to the endothelial layer is facilitated by protein-protein interactions between integrins and 

their receptors. Finally the leukocytes migrate through the endothelium into the tissue via 

extravasation (Kansas 1996). 

 Lectins participate in the glycoprotein quality control mechanism in the ER, in which the 

misfolded proteins are separated from the correctly folded ones (Ellgaard et al. 1999). As described 

earlier, nascent glycoproteins are N-glycosylated in the ER through the attachment of the 

Glc3Man9GlcNAc2 oligosaccharide (Figure 3). Glucosidase I and II trim off the outer two glucose 

residues to yield Glc1Man9GlcNAc2 which is recognised by the lectin chaperones, calnexin and 

calreticulin. This binding exposes the maturing glycoprotein to ERp57 (a glycoprotein-dedicated 

oxidoreductase), and generally slows the folding reaction, enhancing its overall efficiency (Helenius et 

al. 1992). When the substrate is released from the lectin chaperones, glucosidase II removes the final 

glucose, thereby preventing substrate rebinding to calnexin/calreticulin. If the glycoprotein is folded 

correctly it proceeds into the secretory pathway, otherwise the nearly native folded glycoproteins are 

re-glucosylated by the UDP-glucose:glycoprotein glucosyltransferase and the glycoprotein enters 

another round of folding interactions with calnexin/calreticulin (Hauri et al. 2000; Caramelo et al. 

2004). Extensively misfolded glycoproteins are destined for ER-associated protein degradation 
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(ERAD). The N-glycans on these ERAD candidates are de-mannosylated, in particular the α1,2-linked 

mannoses are removed to yield Man5-6GlcNAc2. This excludes the misfolded glycoprotein from futile 

folding cycles and facilitates its retro-translocation into the cytosol and subsequent removal by the 

proteasome. The extensive de-mannosylation of misfolded glycoproteins also prevents their 

interaction with the lectin cargo receptors ERGIC53/VIP36 (L-type lectins) thus reducing the protein 

load in the ER.  

 Lysosomes are intracellular organelles accommodating lysosomal enzymes that degrade 

various macromolecules. In order to avoid the release of these harmful enzymes from the cell, they 

are uniquely modified with a targeting signal. As the lysosomal proteins pass through the secretory 

pathway, they acquire a phosphomannosyl residue on their N-glycans in the cis-Golgi. Mannose-6-

phosphate receptors (P-type lectins), recognise the mannose-6-phosphate on the lysosomal enzymes 

in the trans-Golgi and direct the protein traffic to the late endosomes via clathrin-coated vesicles. In 

the acidic endosomes, the receptor releases the enzyme, which is then packaged into the lysosomal 

compartment. The free mannose-6-phosphate receptor can either recycle back to the trans-Golgi to 

cargo more enzymes or it can cycle to the plasma membrane to re-capture and endocytose any 

mislocalised hydrolases (Kaplan et al. 1977; Taylor et al. 2003). 

 Lectins also participate in the clearance of glycoproteins e.g. glycoprotein hormones from the 

circulatory system, adhesion of infections agents to host cells, signalling, and in cell interactions in the 

immune system, malignancy and metastasis (Ambrosi et al. 2005).  

Carbohydrate Active Enzymes 
Glycosyltransferases (GTs) and glycosidases (GHs) account for ~1-3% of all the encoded proteins in 

most organisms (Davies et al. 2005). GTs are responsible for the transfer of the glycosyl residue from 

activated high-energy sugar donors (e.g. GDP-fucose, Dol-P-mannose) to an acceptor (e.g. sugar, 

lipid, protein or small molecule), forming a glycosidic bond (Figure 7). GHs catalyse the hydrolysis of 

the glycosidic bonds.  

 

 

 

 

 

 

 

 
 

Figure 7. Glycosyltransferase reaction schemes  

 
Both GTs and GHs are subdivided into two main groups as either inverting or retaining 

enzymes, depending on the stereochemical outcome at the anomeric centre relative to that of the 

sugar donor (Lairson et al. 2004). The Carbohydrate Active enZyme database (CAZy, 

http://www.cazy.org) classifies the enzymes into families based on their amino acid sequence 

similarities (Campbell et al. 1997; Coutinho et al. 2003). This database was set up more than 15 years 
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ago and is continuously updated. Currently there are over 200 families in CAZy including GTs, GHs, 

polysaccharide lyases and carbohydrate esterases. The GT section of the database contains more 

than 16000 open reading frames organised into 90 families. Within the human genome, there are 240 

sequences listed, which fall into 42 distinct families.  

Crystal structures have been solved for 28 different GT families. In contrast to the GHs that 

show a large variety of 3D folds including all α, all β or mixed α/β structures, the GTs have two main 

folds, termed GT-A and GT-B. These folds are similar to the Rossmann-type fold, which is a six-

stranded parallel β-sheet linked together with α-helices and found in many nucleotide-binding proteins 

(Lesk 1995). The GT-B fold contains two Rossmann-like folds connected with a linker region. There is 

no strictly conserved residue shared in the GT-B family members (Hu et al. 2002). The GT-A fold 

consists of a seven-stranded β-sheet, with one sheet running anti-parallel. The central β-sheet is 

flanked by a smaller one and association of both, via a short loop, creates the active site. A DXD motif, 

located in this short loop, interacts with the phosphate groups of the nucleotide donor through the 

coordination of a divalent cation. A third fold has emerged with the crystal structure of the 

sialyltransferase CstII from Campylobacter jejuni, which is structurally close to the GT-A fold but lacks 

the DXD motif (Chiu et al. 2004). There are no structures solved for GTs using lipid-phosphate donor 

sugars. 

Since the glycosylation reactions occur in the secretory pathway and in the cytosol, the GTs 

exist as membrane-bound, secreted, and soluble proteins. The location of a GT dictates where it acts 

in the glycan biosynthesis pathway. Golgi-resident GTs tend to adopt a type II membrane topology 

(Paulson et al. 1989), consisting of a short cytosolic N-terminal tail with a single transmembrane 

domain, linked to a long stem region extending into the Golgi lumen followed by the globular catalytic 

domain at the C-terminus. Proteases acting on the stem region can release the catalytic domain, 

leading to secretion of the GTs from the cell. Since these circulating GTs do not have access to their 

donor substrates, they do not act as GT. GTs residing in the ER may be multi-transmembrane or 

soluble enzymes. Soluble GTs are retained in the ER via their C-terminal KDEL-like ER retrieval 

sequence (Pelham 1988; Pidoux et al. 1992; Zhen et al. 1993).  

Sugar donors are made in the cytosol and have to be transported into the appropriate secretory 

compartment for glycosylation to occur. Distinct nucleotide sugar transporters are present in the 

Golgi/ER membrane and act as antiporters (Martinez-Duncker et al. 2003), in which the entrance of 

the sugar nucleotide into the Golgi/ER lumen is coupled by the exit of the corresponding nucleoside 

monophosphate from the Golgi/ER (Hirschberg et al. 1998). Curiously, although fucosylation has been 

shown to occur in the ER (Luo et al. 2005; Luo et al. 2006b), the existence of an ER GDP-fucose 

transporter has not been demonstrated yet. 

There are several exceptions to the “one-enzyme-one-linkage” paradigm, which was associated 

to the action of glycosyltransferases for a long time. Redundant glycosyltransferase families, (e.g. 

polypeptide N-acetylgalactosaminyltransferases (ppGalNAc-T) and α2,8-sialyltransferases), are 

known where the same glycosidic bond is formed by several, structurally and genetically related 

enzymes. Other glycosyltransferases, such as fucosyltransferase III, can catalyse the formation of 

α1,3 and α1,4 glycosidic linkages (Kukowska-Latallo et al. 1990). Moreover the acceptor specificity of 

a certain glycosyltransferases may be modified by their interaction with other proteins.                   
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β1,4-galactosyltransferase switches its substrate specificity from GlcNAc to Glc in the presence of     

α-lactalbumin to allow lactose synthesis during milk production (Brew et al. 1975; Elling et al. 1999). 

Furthermore, there are polymerizing GTs such as chondroitin synthases with GlcAT-II and GalNAcT-II 

activities, which have two active sites and catalyse two consecutive sugar transfers (Kitagawa et al. 

2001). 

5.2. Dysregulation of Glycosylation 

It has become evident that defects in monosaccharide synthesis, nucleotide sugar transport, assembly 

and attachment of carbohydrate structures to proteins and lipids or glycan recognition can lead to 

misglycosylation. This has been implicated in several inherited and acquired human diseases.  

Acquired Human Diseases 
The number of non-inherited diseases with aberrant glycosylation is increasing. This is not surprising 

considering the diverse roles of the glycans, carbohydrate active enzymes and lectins in various 

cellular mechanisms.  

Cancer 

Over expression or loss of expression of certain glycan structures can occur in malignant cells. The 

altered glycosylation can result in loss of adhesion or initiate new cell adhesion and therefore promote 

the formation of secondary tumours at new sites.  

The metastatic potential of tumour cells has been correlated with the increased sialylation of 

certain cell surface glycans. Upon malignant transformation of the cell, the activity of GlcNAc-

transferase-V (GnT-V) is increased, which is caused by the transcriptional activation of its promoter by 

the Ras-Raf-Ets signal transduction pathway. This leads to an increase of N-linked β(1,6)-branching. 

The additional branching creates extra sites for terminal sialic acid residues, which consequently 

results in upregulation of sialyltransferases increasing the global sialylation (Dennis et al. 1987; Orntoft 

et al. 1999). Endogenous lectins such as siglecs and selectins bind to sialic acid residues and are 

known to mediate cell adhesion and extravasation of normal cells. This property can facilitate invasion 

of tumour cells. Interestingly, GnT-V is a bifunctional protein, participating not only in tumour 

metastasis but also in angiogenesis, the earlier phase of tumour progression. This angiogenic 

potential is not mediated by the GnT-V enzyme activity, but instead by the translocation of its cleaved 

soluble form to the extracellular matrix. The basic domain of the secreted soluble form of GnT-V 

promotes the release of fibroblast growth factor-2 resulting in tumour angiogenesis (Saito et al. 2002). 

Inherited Human Diseases 
A large number of inherited disorders are caused by dysfunctional carbohydrate active enzymes and 

lectins. These diseases are biochemically heterogeneous and exhibit a broad clinical spectrum of 

symptoms within a particular disorder, and even between patients having a defect in the same gene. 

Most of the diseases are currently untreatable, but some do have simple and effective therapies.  
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Lysosomal storage disorders  

Biomolecules, such as carbohydrates, lipids, proteins and sterols have finite life times and are 

degraded after being transported into the lysosomes. There are over 40 known lysosomal storage 

diseases (LSD) that result from a deficiency in the activity of a lysosomal hydrolase and a rapid 

accumulation of the corresponding substrates (Vellodi 2005). The degree of the severity of the 

disorder depends on the residual enzyme activity, the amount of the accumulated material and even 

on the time of the onset of the disease (Butters 2007).  

The lysosomal endo- and exoglycosidases are responsible for the degradation of the 

oligosaccharides. Exoglycosidases hydrolyse the terminal sugar from the non-reducing end of the 

glycan chain, whereas the endoglycosidases cleave internal glycosidic bonds. The large family of 

glycolipid LSD includes Gaucher, Fabry, Tay-Sachs and Sandhoff diseases and the disorders have 

often been difficult to treat. However, in the last two decades the development of different therapies 

has made significant progress. Apart from bone marrow transplantation, enzyme replacement therapy 

(ERT) is also used to correct the deficient enzyme activity. The administration of recombinant             

β-glucocerebrosidase to more than 4000 patients with Gaucher disease is an example of a very 

successful therapy. However, ERT is expensive and cannot treat all the symptoms associated with 

LSD. Therefore, alternative therapeutics are being developed. A non-enzymatic way to treat LSD is by 

substrate reduction therapy. This approach attempts to inhibit the synthesis of glycolipids and thus 

diminish the load in the lysosomes. A number of small molecule inhibitors against the 

glucosylceramide synthase, which catalyses the first step in glycolipid biosynthesis, are currently in 

clinical trials. An alternative therapeutic approach is to correct the malfunctioning lysosomal enzyme 

during its biosynthesis through chaperone-mediated therapy. Some small molecular chaperones 

appear to bind to the active site of the mutated lysosomal enzyme during its biosynthesis in the ER 

and assist in protein folding, reducing ERAD, and increasing the trafficking of the more active 

glucosylceran synthase to the lysosome (Futerman et al. 2004; Vellodi 2005). The level of enzyme 

activity required to prevent substrate accumulation is ~10% of the normal level, which is achievable 

with the chaperone-mediated therapy. Furthermore, the small molecular chaperones, in contrast to 

ERT, can cross the blood-brain-barrier, opening up the possibility of treating LSD with neurological 

involvement (Fan 2008). 

Congenital Disorders of Glycosylation  

Several pathways are involved in the assembly and the attachment of the numerous oligosaccharides 

linked to proteins and lipids. To date, more than 37 genetic disorders result from a deficiency in the 

glycosylation of glycoproteins or glycolipids, including malfunctioning enzymes which participate in the 

N- and O-glycan synthesis pathways (Freeze 2006) as well as in GPI-anchor biosynthesis (Kranz et al. 

2007). These autosomal recessive metabolic disorders are clustered into a family termed, congenital 

disorders of glycosylation (CDG). These disorders are very rare, less than 1000 patients are known 

worldwide (Grunewald 2007; Jaeken et al. 2007). Although it is believed that the actual number of 

CDG cases far exceeds those diagnosed as around 20% of patients die in the first 5 years of 

childhood. In addition, there appears to be a lack of awareness of these diseases amongst clinicians. 
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Fortunately, efforts are underway in the United States to include CDG in the next generation of infant 

screening tests. The advances in diagnostic testing are also uncovering many new types of CDG. 

CDG types 

Since the first patient with CDG was reported in 1980, several new types of CDG have been identified. 

To date there are over twenty N-glycosylation defects, ten O-glycosylation defects and two defects in 

lipid glycosylation (Freeze 2007; Jaeken et al. 2007). The known CDG are divided into two groups 

depending on the nature and the location of the defect. Type I disorders (CDG-I) involve the disrupted 

biosynthesis of the LLO precursor leading to a lack of N-glycans attached to the proteins. Type II 

disorders (CDG-II) exhibit defects in either the trimming, remodelling, extension reactions or the 

intracellular trafficking of N-glycans (see Figure 8) (Aebi et al. 1999). The disorders caused by 

defective O-glycosylation have not been formally included into the groups of CDG and still have their 

names which are descriptive to the disease. The number of patients, where the glycosylation 

deficiency has not yet been identified is continuously growing (Jaeken et al. 2001) and therefore a new 

group, CDG-X, has recently been added. 

Considering the multiple steps involved in glycosylation and the diversity of proteins that are 

modified or interact with glycosylated proteins, it is unsurprising that the clinical manifestations of the 

inherited disorders are heterogeneous. Clinicians should screen their patients for CDG if they present 

the following symptoms: failure to thrive, hypotonia, inverted nipples, unusual fat deposits, mental and 

psychomotor retardation, stroke-like episodes, protein-losing enteropathy, hypoglycemia, generalized 

demyelination and optic atrophy (Freeze 2006). Symptoms also vary between individuals with the 

same disorder. This can be partially explained by differences in their residual enzymatic activities 

and/or additional genetic factors. 

Defects in the biosynthetic pathway of the core N-glycan prevent the completion of the glycan 

synthesis, which result in decreased N-glycosylation. The complete loss of N-glycosylation is lethal 

(Marek et al. 1999). Mutations in PMM2 cause the most common CDG, CDG-Ia. PMM2 encodes a 

phosphomanno-mutase that converts mannose-6-phosphate to mannose-1-phosphate, the precursor 

of GDP-mannose required for all mannosylation reactions. Over 90 mutations have been identified in 

PMM2 that result in loss of the enzyme’s thermostability or in reduced substrate binding. In CDG 

patients there is always some residual enzymatic observed. Interestingly, the correlation between mild 

phenotype and higher residual PMM2 activity is only observed in some cases, which suggest that 

other genetic factors are involved in CDG-Ia.  

CDG-Ib is different from most of the other CDG types. Strikingly, it does not affect the central 

nervous system and most of its phenotypic changes, such as protein-losing enteropathy, 

hypoglycemia and hyperinsulinemia can be corrected by supplementing mannose in the diet. In CDG-

Ib, mutations in phosphomannose-isomerase (MPI) result in a decreased level of mannose-6-

phosphate derived from fructose-6-phosphate. However, dietary mannose can be converted into 

mannose-6-phophate by a hexokinase and therefore by-pass the metabolic block caused by the 

deficient MPI (Leroy 2006). 
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Figure 8. Sites of genetic defects in the biosynthetic pathway for N-linked glycans 
In this schematic representation of the N-glycan biosynthetic pathway, the assembly, the attachment 
and the processing of the LLO can be followed. The steps, where the genetic disorder appears, are 
indicated by names of the genes involved. Above the gene name, the official CGD nomenclature is 
written. 
 

Genetic defects concerning the processing of the N-glycans in the Golgi apparatus and other 

glycosylation pathways often manifest in different clinical features than the ones that can be found in 

type I CDGs. CDG-IIc, also known as leukocyte adhesion deficiency type II (LADII), is characterised 

by recurring bacterial infections, deficient physical growth, microcephaly, abnormal body proportions 

and psychomotor retardation. The disorder is caused by a defect in the GDP-fucose transporter in the 

Golgi. This causes a decrease in fucosylated glycans, such as the fucosylated selectin ligands on the 

surface of neutrophils required for leukocyte adhesion. Oral fucose therapy in LADII patients can 

restore the fucosylation of cells and correct their leukocyte adhesion phenotype and 

immunodeficiencies. Apparently fucose supplementation in LADII works via an alternative GDP-fucose 

transporter (Helmus et al. 2006). 

The clinical manifestations of O-glycosylation defects are different from those observed in       

N-glycosylation disorders. O-mannosylation defects cause congenital muscular dystrophies, such as 

Walker-Warburg syndrome where defective glycosylation of α-dystroglycan leads to the disruption of 

α-dystroglycan interactions with the extracellular matrix resulting in severe muscular dystrophies, 

structural eye abnormalities, brain malformations and short life span. Defects in O-xylose pathways 

usually cause bone, cartilage and other extracellular matrix abnormalities, such as Ehler-Danlos 

syndrome. 

Adapted from Freeze, H. H., 2006 
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Detection of CDGs 

The common screening test for CDG is the isoelectric focusing of the serum protein, transferrin (Tf). Tf 

has two N-glycosylation sites, both occupied with biantennary or triantennary disialylated glycans, 

resulting in negatively charged species. In the case of type I CDG, a subpopulation of Tf molecules 

lacking one or both N-glycan chains leads to a reduction in the negatively charged species 

(carbohydrate deficient Tf). In type II CDG the N-glycosylation sites are occupied but the glycosylation 

is incomplete, resulting in different glycoforms with 0, 1, 2, 3, 4 or 5 sialic acids. The Tf serum test is 

fast, cheap and generally reliable. Recently HPLC and mass spectrometric analysis of carbohydrate 

deficient Tf by either electrospray ionization or matrix-assisted laser desorption/ionization, have 

proved to be efficient analytical methods. Often a number of protein variants of transferrin are present 

in the serum which can affect the isoelectric point of the molecule (Ohno et al. 1992). There are some 

disorders, such as uncontrolled galactosemia (Charlwood et al. 1998; Sturiale et al. 2005), fructose 

intolerance (Adamowicz et al. 1996; Jaeken et al. 1996), and heavy alcohol consumption (del Castillo 

Busto et al. 2005) which can mimic CDG profiles leading to false positive results. To avoid these 

pitfalls of diagnosis a multiple test can be used to screen CDG patients. Here the Tf isoelectric 

focusing screen is combined with MALDI-TOF analysis for glycosylation site occupancy and analysis 

of the glycan structures on Tf glycopeptides (Wada 2006). To identify the subtype of CDG, the most 

time-consuming step, the identification of the defective gene in each patient is needed. This is usually 

done by assaying for the altered enzymatic activity.  

Since the nature of the O-glycosylation defects are so diverse, testing only one specific 

glycoprotein would not lead to a diagnosis. So far, the only screening method that is available for the 

detection of defects in O-mannosylation, is by immunohistochemical staining of the α-dystroglycan 

with monoclonal antibodies (Wopereis et al. 2006). Recently a novel immunopurification-mass 

spectrometry method was developed to confirm the suspected glycosylation defects, occurring in 

Peters Plus syndrome (Hess et al. 2008). Patients with this syndrome have biallelic truncating 

mutations in the gene encoding β3Glc-T (Lesnik Oberstein et al. 2006), that is responsible for the 

glucosylation of O-fucosylated TSR repeats (Kozma et al. 2006; Sato et al. 2006). This approach 

highlights the importance of analysing discrete protein domains, TSR in this case, to detect changes in 

rare forms of glycosylation. 
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5.3. Thrombospondin Type 1 Repeats  

Thrombospondin type 1 repeats (TSRs) were first identified in the multi-domain extracellular matrix 

protein thrombospondin 1 (TSP-1) (Lawler et al. 1986). TSRs are conserved in evolution with 31 

Drosophila, 28 C. elegans and 141 human proteins. These proteins often consist of multiple modules 

with the TSRs secreted extracellularly. The TSRs are functionally important in the regulation of 

extracellular matrix organization, cell-cell interaction, axonal and cell guidance (Tucker 2004). 

There are only two thrombospondin TSR containing proteins, TSP-1 and TSP-2, that each of 

them has three tandem TSRs located between the vWC and the EGF-like domains. TSRs are not only 

found in TSPs but also in other multidomain proteins, including F-spondin, SCO-spondin, UNC-5, 

semaphorin-5, thrombospondin-related anonymous protein (TRAP), thrombospondin-related 

sporozoites protein (TRSP) and circumsporozoite protein (CSP) from the Plasmodium falciparum 

parasite, properdin, complement proteins C6, C7, C8, C9 and the ADAMTS (A Disintegrin And 

Metalloproteinase with ThromboSpondin type 1 repeats) family (Adams et al. 2000).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 9. Domain structure of some TSR-superfamily members 
The length of the protein corresponds to the amino acid scale at the top of the figure. The TSR domains 
are indicated by red diamonds. The cross-hatched boxes represent the transmembrane domains. vWC, 
von Willebrand factor type C domain; 2, calcium-binding EGF-like domain; Reelin, Reelin domain; Sp, 
Spondin domain; 7-SPAN, seven transmembrane spanning domain; vWA, von Willebrand factor type A 
domain; CT, C-terminal cysteine knot-like domain; DEATH, death apoptosis domain; Di, disintegrin-like 
domain; FI, factor I membrane attack complex; GPS, latrophilin/CL-1-like G-protein-coupled receptor 
proteolytic site; IB, insulin growth factor-binding protein domain; Ig, immunoglobulin domain; L-R, LDL 
receptor class A; MACPF, membrane attack complex/perforin domain; MPase, metalloprotease domain; 
PL, plexin repeat; Pro, reprolysin family propeptide; SEMA, semaphorin domain; Su, Sushi (SCR) 
domain; TEV, domain that interacts with PDZ-containing proteins; TSC, thrombospondin C-terminal 
domain; TSN, thrombospondin N-terminal domain; TSR3, thrombospondin type 3 domain; ZU5, domain 
present in ZO-1 and UNC-5. 

Adapted from Tucker, 2004 
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TSRs are ~60 amino acids long with around 12 conserved residues (highlighted in Figure 10). 

The crystal structure of TSR2-TSR3 from human TSP-1 revealed that TSRs fold as three anti-parallel 

strands (Tan et al. 2002) (Figure 11). The B and C strands form limited regular β-sheets, whereas the 

A strand has a unique rippled conformation and contains the conserved sequence motif WXXWXXW. 

The tryptophan side chains form a layer with the conserved arginines guanidinium groups from the 

B strand filling in the spaces between the indole moieties. The top and bottom of this stacked core is 

capped by disulphides.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 10. Multiple sequence alignment of the two major groups of TSRs 

The disulphide patterns of groups 1 and 2 are drawn schematically as yellow lines on the left-hand side. 
For group 1, two hydrogen bonds between the jar handle and the N-terminus are drawn as red lines. In 
the alignment the paired cysteines are also shown in yellow. The putative recognition motif for O-
fucosylation (in bold) is indicated under the alignment. 
 

Interestingly, it appears that there are two main groups of TSR-containing proteins based on 

their disulphide bond pairings (Figure 10). The main difference occurs at the top of the TSR layered 

structure. For TSRs in group 1, which includes members of TSP, BAI, ADAMTS and properdin, the 

top cysteine bridge is formed by cysteines from the end of the B strand to the beginning of the 

C strand (Cys3-Cys4). In contrast, TSRs in group 2, which includes F-spondin and TRAP, the top 

disulphide is formed at the start of the A and C strands (Cys1-Cys4). This suggests that the N-terminus 

in group 2 TSRs is stabilised by this disulphide bridge rather than the jar handle found in group 1 TSR 

(Figure 10). At the bottom of the TSR domain in both groups 1 and 2, the AB loop is stabilised by a 

Modified from Tan et al., 2002 

Group 2 

Group 1 

         CX2-3         S/TCX2G 
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disulphide bond to the carboxyl terminus of the C strand. In addition, the most N-terminal tryptophan 

is poorly conserved in TSRs from group 2. 

The NMR solution structures of rat F-spondin TSR1 and TSR4, as well as TRAP-TSR from 

P. falciparum have also been solved (Paakkonen et al. 2006; Tossavainen et al. 2006). There is a 

similar fold between these group 2 TSR containing proteins and the group 1 TSR2-TSR3 from TSP-1, 

with the overall core and AB loop superimposing well. Surprisingly there is some increase in flexibility 

in the BC loop region of F-spondin TSR4 compared to F-spondin TSR1 (Paakkonen et al. 2006). 

Glycosylation and Biological Role of TSRs 
TSRs undergo two unusual types of glycosylation, C-mannosylation and O-fucosylation (Hofsteenge 

et al. 2001; Gonzalez de Peredo et al. 2002). In C-mannosylation, the mannose is covalently linked to 

the indole ring of tryptophan in a C-C linkage. Depending on the particular TSR, one, two or all three 

tryptophans found in the WXXWXXW sequence in strand A may be modified. TSR O-fucosylation 

occurs in the putative consensus sequence CX2-3S/TCX2G in the AB loop (Figure 11). This 

modification is carried out by POFUT2 and requires a properly folded module. Further extension of the 

fucose by β3Glc-T yields O-α1-Fucβ1,3Glc, which has only been identified in TSRs.  

 

 

 

 

 

 
 

Figure 11. Schematic representation of a TSR domain  
The three C-mannosylated tryptophans are located on strand A (starting from the N-terminus). The 
Glcβ1,3Fuc-O- disaccharide occurs in the AB loop. The short β-sheets in strands B and C are drawn as 
orange arrows.  

 

Although the Drosophila S2 expression system used in the production of TSR2-TSR3 from 

TSP-1 for crystallography did not allow for C-mannosylation modification (Hofsteenge et al. 2001; Tan 

et al. 2002), the side chains of all tryptophans in TSR2 and TSR3 modules are orientated so that the 

Cδ1 atoms are exposed (Figure 11). The interleaved arginines are also exposed along the front face 

of the domain forming a positively charged groove. Tan and colleagues proposed that this molecular 

surface represents the “recognition face” of the TSR domain. C-mannosylation of the exposed 

tryptophans does not significantly alter the surface electrostatic potential but may enhance the groove 

in the recognition face (Tan et al. 2002). 

TSRs can bind to GAGs, which are repeating units of negatively charged disaccharides found 

on proteoglycans. Differences in TSRs binding affinities to GAGs may be explained by the overall 

electrostatic potential on the surface of the particular TSR module. For example, the front face of the 

ADAMTS4 TSR and that of TSR5 and TSR6 from F-spondin are almost completely covered in 

positive charges compared with the positive charge groove on TSR2 from TSP-1. The extra density of 

positive charges in the former TSRs is due to their more basic C strands. The high affinity binding of 

N 

C 
Modified from Tan et al, 2002 
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ADAMTS4 TSR (aggrecanase-1) to the GAG side chains of aggrecan (the major proteoglycan in 

cartilage) appears to be necessary for the enzymatic cleavage of aggrecan during pathogenic 

cartilage destruction (Tortorella et al. 2000). Similarly, the binding of F-spondin to the extracellular 

matrix and neuron growth cones involves GAGs and is mediated by the positively charged TSR5 and 

TSR6 domains (Klar et al. 1992; Tzarfati-Majar et al. 2001). In the case of the malarial parasite, 

P. falciparum, there are several TSR containing proteins including CSP, TSRP and TRAP, which 

mediate host cell invasion. CSP and TSRP are involved in the attachment and entry of sporozoites to 

liver cells, respectively (Rathore et al. 2002; Labaied et al. 2007), whereas TRAP binds to GAGs on 

the surface of salivary glands in the mosquito and liver hepatocytes in the vertebrate host 

(Matuschewski et al. 2002) and is essential for sporozoites gliding motility (Sultan et al. 1997). The 

solution structure of TRAP-TSR indicates a front surface of N-terminal positive charges and               

C-terminal negative charges which may account for its weak binding to heparin. Hence, TRAP 

probably depends on its neighbouring vWA domain for its high affinity binding to heparin 

(Tossavainen et al. 2006).  

There is a twist between TSR2 and TSR3 of TSP-1 due to a proline residue between the two 

domains. This results in a 180° turn so that TSR2 and TSR3 face in opposite directions (Tan et al. 

2002). Comparing the alignment of TSRs in Figure 10 suggests that a similarly positioned proline 

occurs more frequently in the group 1 multi-TSR containing proteins than those belonging to group 2. 

The functional implications of changing the orientation of the TSR recognition face complete with its 

glycosylation modifications remains to be determined. 

TSRs mediate many of the biological effects of TSP-1 and TSP-2 including the regulation of 

angiogenesis, wound healing, cell adhesion and migration (Lawler 2000). The anti-angiogenic effect 

of TSP-1 and TSP-2 occurs via its interaction with the endothelial cell surface receptor CD36 and the 

subsequent induction of apoptosis (Dawson et al. 1997; Jimenez et al. 2001). The CSVTCG 

sequence (derived from TSR2 and TSR3 of TSP-1) was identified as the binding region (Asch et al. 

1992). These inhibition studies used synthetic peptides, yet this sequence naturally occurs in TSRs 

with the two cysteines involved in separate disulphide bonds and the threonine modified with the 

Glcβ1,3Fuc disaccharide. Therefore, the different glycoforms of thrombospondin TSR modules should 

be analysed for a binding effect on CD36. TSP-1 can also activate TGFβ. The WSHWSPW and RFK 

sequences in TSP-1 TSR2 mediate the binding and activation of TGFβ, respectively (Young et al. 

2004a; Young et al. 2004b). As the first two tryptophans in the WSHWSPW sequence are fully         

C-mannosylated in the native molecule (Hofsteenge et al. 2001) it would be worthwhile testing if these 

small sugar additions in the TSR module alter its binding and subsequent activation of TGFβ. 

One member of the ADAMTS family, ADAMTS13, is a plasma zinc-containing 

metalloproteinase that cleaves large multimers of von Willebrand factor into smaller less 

thrombogenic fragments. A lack of ADAMTS13 activity leads to the life-threatening condition 

thrombotic thrombocytopenic purpura (Soejima et al. 2005). Six of the eight TSRs in ADAMTS13 are 

modified with the Glcβ1,3Fuc disaccharide (Ricketts et al. 2007). Mutation of any of the modified 

serine sites to alanine reduced the expression of ADAMTS13 in mammalian HEK293 TREx cells. No 

effect on von Willebrand factor cleavage was observed with the mutants. The secretion defects were 
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more pronounced when more than one O-fucosylation site was mutated. Curiously, over-expression 

of an active but not an inactive form of POFUT2, could rescue the secretion defect of an ADAMTS13 

protein that had mutations in two of its TSR O-fucosylation sites (Ricketts et al. 2007). The secretion 

of another ADAMTS superfamily member, ADAMTS-like-1/punctin-1, which lacks metalloprotease 

activity but contains four TSRs, was similarly regulated by O-fucosylation (Wang et al. 2007). 

F-spondin is an extracellular matrix protein that consists of a reelin and spondin domain at the 

N-terminus and six TSR domains at the C-terminus (Klar et al. 1992; Wang et al. 2007). TSR1-4 are 

O-fucosylated and TSRs1-5 are C-mannosylated (Gonzalez de Peredo et al. 2002). Between the fifth 

and sixth TSR domain a non TSR-element is present which is targeted for proteolysis by the serine 

protease plasmin (Tzarfati-Majar et al. 2001). 

F-spondin is mostly expressed by the floor plate cells of the developing embryo and plays a 

dual role in the central nervous system. On the one hand it promotes the outgrowth of the 

commissural axons (Burstyn-Cohen et al. 1999) but on the other hand it inhibits the outgrowth of the 

motor axons and is involved in restricting the migration path of neural crest cells in somites (Tzarfati-

Majar et al. 2001). The proteolytic processing of F-spondin generates four functional protein 

fragments, the reelin/spondin domain (Burstyn-Cohen et al. 1999), the inhibitory non-adhesive TSR1-

4 and adhesive TSR5 and TSR6. The reelin/spondin domain, TSR5 and TSR6, bind the extracellular 

matrix, which underlies the floor plate, whereas the TSR1-4 binds to the apical floor plate cells via 

lipoprotein receptor-related protein receptors. The TSR1-4 attachment prevents the penetration of 

commissural axons into the floor plate cells whereas the adhesive TSR5 and 6 domains permit it 

(Zisman et al. 2007) (Figure 12). 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 
Figure 12. The role of F-spondin in midline crossing 

 

F-spondin is also expressed in developing peripheral nerves and it is likely to play role in 

axonal regeneration after nerve injury (Burstyn-Cohen et al. 1998). F-spondin can also act as an 

extracellular linker protein between another member of the low-density lipoprotein receptor family, 

Taken from Zisman et al., 2007 
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ApoEr2, and amyloid β-precursor protein. The reelin/spondin domains bind to the extracellular domain 

of amyloid β-precursor protein and inhibit its cleavage by β-secretase (Ho et al. 2004), while the 

TSR1-4 bind to the ligand binding domain of ApoEr2 (Hoe et al. 2005). This clustering of the two 

transmembrane proteins (ApoEr2 and amyloid β-precursor protein) by full-length F-spondin results in 

increased amyloid β-precursor protein levels but decreased processing and Aβ levels (Hoe et al. 

2005).  

In summary, the various biological activities of many TSR containing proteins resides within 

their TSR domains. The next challenge is to determine if the unusual sugar structures found in these 

modules regulates their biological activity in an analogous manner to Notch glycosylation.  

  

 



Results 

 

34

6. RESULTS 

6.1. Large Scale Production of Rat F-Spondin TSR4 and TSR4-

Fucose 

Introduction 
Three different types of protein domains are known to be O-fucosylated directly on the protein 

backbone: EGF domains; TSRs; and PMP-C. The glycan biosynthesis pathways have been 

elucidated for EGF domains and more recently for TSRs. The fucosylation reactions on EGF repeats 

and TSRs are performed by protein O-fucosyltransferase 1 (POFUT1) and protein O-fucosyl-

transferase 2 (POFUT2), respectively (Luo et al. 2006a; Luo et al. 2006b). Although POFUT1 and 

POFUT2 share 22% amino acid sequence identity, they are specific for their substrates and do not 

cross-talk between the two pathways (Figure 5) (Luo et al. 2006a). Interestingly, both enzymes are 

localised in the ER and they both require a properly folded substrate for their activity (Wang et al. 

1998; Luo et al. 2006a). The second step in the EGF glycosylation pathway is performed by a β1,3- 

N-acetylglucosaminyltransferase, Fringe, of which there are three homologues in vertebrates 

(Johnston et al. 1997). One of the aims of this thesis was the identification of the β1,3-

glucosyltransferase acting on fucosylated TSRs.  

To achieve this aim, a sensitive enzyme activity assay was needed to monitor β3Glc-T 

activity. Prior to the identification of proteins modified with Glcβ1,3Fuc, the original substrate used in 

detecting β3Glc-T activity was the synthetic small molecule para-nitrophenyl-α-L-fucose (Moloney et 

al. 1999). However, it has since been determined that the POFUT2 requires properly folded TSR and 

thus the βGlc-T encounters the properly folded fucosylated form of TSR as its substrate in vivo. 

Therefore, for the optimal in vitro detection of β3Glc-T activity, milligrams of properly folded and highly 

pure fucosylated TSR modules were required. Previously in our laboratory TSR4 from rat F-spondin 

had been studied as a model TSR. A His6-tagged form of rat F-spondin TSR4 could be expressed in 

mammalian cells, purified and analysed by LC-MSMS, to reveal modifications with C-mannoses on its 

tryptophans and the O-Fucβ1,3Glc disaccharide on the threonine in the sequence CSVTGC 

(Gonzalez de Peredo et al. 2002). Attempts to express non-glycosylated TSR4 in bacteria have also 

been made. These experiments showed that the major fraction of TSR4 generated multimeric 

complexes due to improper disulfide bridge formation. As cysteine scrambling occurs at neutral pH 

and the concatemer formation could not be circumvented, a three-step purification protocol has been 

established to obtain the TSR4 module in the correctly folded state. Subsequently, the TSR4 domain 

was fucosylated in large amounts and purified in a two-step chromatographic procedure to yield a 

suitable substrate for the glucosylation reaction. 
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Materials and Methods 

Expression and purification of rat F-spondin TSR4 

The rat and human F-spondin TSR4 modules are highly conserved. There is a single conservative 

amino acid change in the C strand where the rat TSR4 has an alanine and the human a valine, three 

residues before the 5th cysteine. The bacterial expression construct, pET22b-F-spondin-TSR4-TEV-

Myc-His6, encoding a tagged form of rat F-spondin TSR4 was generated as described (Kozma et al. 

2006). Jan Hofsteenge optimised the small scale E. coli expression and Ni-NTA purification of rat        

F-spondin TSR4 (Kozma et al. 2006). The large scale bacterial protein expression was performed 

using eleven batches of eight litres bacterial culture with the help of Jasmin Althaus. Details of the 

optimised three-step purification scheme are described in Chapter 6.2 (Kozma et al. 2006). Aliquots of 

purified TSR4 (0.78 mg/ml) were stored at -80 °C. This non-fucosylated TSR4 was used as a 

substrate for the in vitro protein O-fucosyltransferase assay, as described in Canevascini et al. 

(manuscript in preparation). 

Preparation and purification of TSR4-fucose 

To prepare the substrate for the β1,3-glucosyltransferase assay, aliquots of rat F-spondin TSR4 were 

fucosylated as described (Kozma et al. 2006). The standard assay reaction volume of 25 µl was 

scaled up 50-400x for the preparation of milligram stocks. To obtain 100% fucosylated TSR4, the 

reaction was performed for 2 hours at room temperature and stopped by placing on ice. The degree 

of TSR4 fucosylation was monitored by either reversed-phase HPLC-MS or MALDI-TOF-MS (Kozma 

et al. 2006). 

The 100% fucosylated TSR4 was immediately purified by FPLC using a prepacked 1 ml 

HisTrap HP (GE Healthcare) affinity column. For optimal binding, the imidazole concentration in the 

sample was reduced to 20 mM by adding five volumes of 20 mM Tris-HCl, pH 7.4, 500 mM NaCl 

buffer. The sample was filtered through a 0.22 µm filter (Steriflip, Millipore) and loaded onto the 

equilibrated HisTrap HP column using either a superloop or a peristaltic pump at a flow rate of 

0.3 ml/min. The column was washed with 2 volumes of 20 mM Tris-HCl, pH 7.4, 20 mM imidazole, 

500 mM NaCl (buffer A), and the His-tagged TSR4-fucose was eluted stepwise with 4 column 

volumes of 20 mM Tris-HCl, pH 7.4, 500 mM imidazole, 500 mM NaCl (buffer B) at the flow rate of 

0.4 ml/min. The fractions containing TSR4-fucose were pooled and desalted into 20 mM Tris-HCl, 

pH 7.4, 30 mM NaCl buffer using a 5 ml HiTrap desalting (GE Healthcare) column at a flow rate of 

2 ml/min. Fractions containing TSR4-fucose protein were pooled and the concentration determined by 

SDS-PAGE with purified TSR4 as standard (Kozma et al 2006). The quantification was done by       

Dr. Reto Portman using the Proteomweaver (Definiens) software. The concentration of purified TSR4 

was determined from its absorbance at 280 nm using a calculated molar absorption coefficient of 

12962 M -1cm -1. Aliquots from the different batches of TSR4-fucose production were stored at -80ºC. 
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Results 

Large scale TSR4 production and purification in E. coli  

Properly folded, homogenous F-spondin TSR4 was required for the fucosyltransferase, POFUT2. In 

the large scale production 22 mg of the TSR4 monomer was recovered after the three purification 

steps (Figure 13). The overall purification yield was 0.25 mg/litre of culture. 

 

 

 

 

 

 

 
 
 

Figure 13. The three-step purification scheme of bacterial TSR4 

 
 Following a mechanical lysis of the bacterial cultures, the clarified lysates were incubated 

overnight with Ni-NTA agarose (for details see Chapter 6.2). The eluates containing TSR4 were 

pooled and subjected to size-exclusion and ion-exchange chromatographic steps. TSR4 expressed in 

E.coli has the tendency to form inter-molecular disulfide bridges resulting in TSR4 concatemers. In 

order to separate the monomeric TSR4 from such concatemers, size-exclusion chromatography on a 

Sephacryl-FF S-200 column was performed (Figure 14).  

 

 

 

 

 

 

 

 

 

 

 
Figure 14. Gel-filtration of TSR4-Myc-His6 on a Sephacryl FF S-200 column in 50 mM NH4HCO3 

 
The major portion (~80%) of the fractions consisted of TSR4-concatemers and contaminating 

proteins. The underlying cause of the TSR4 concatemer formation may simply be the overproduction 

of recombinant protein or the spontaneous, incorrect formation of inter-molecular disulfide bridges. 

The high pH of the Ni-NTA elution may have contributed to the formation of incorrect disulphide 

bridges as cysteine-scrambling starts to occur at neutral pH (Chang 1994). Refolding of the protein in 

a redox buffer system could have remedied the disulphide-scrambling and resulted in the formation of 
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the natural disulfide bonds (data not shown). However, this procedure would have to be performed 

using a low protein concentration (0.1 mg/ml) requiring a vast buffer volume.  

The monomeric TSR4 fractions from the gel-filtration column were lyophilised. Further 

purification was performed by ion-exchange chromatography on a MonoQ 5/50 (GE Healthcare) 

FPLC column in 20 mM Tris-HCl, pH 8.0 (Figure 15A). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 15. Purification of gel-filtered TSR4 by anion-exchange chromatography 

(A) A280 trace of TSR4 on an anion-exchange MonoQ 5/50 FPLC column. TSR4 elutes at ~120 mM NaCl. 
The monomeric and concatemeric TSR4 fractions are indicated by black arrows. (B) SDS-PAGE analysis 
of protein fractions (26-30 and 43-44) stained with Colloidal Coomassie Brilliant blue.  

 

The monomeric TSR4 eluted at 120 mM NaCl from the MonoQ column (Figure 15A), migrated as a 

single band on a non-reducing SDS-PAGE (Figure 15B) and as a single peak on a reverse-phase 

C18 HPLC column (Figure 16). Out of 143 mg of TSR4 F-spondin only 22 mg was recovered in the 

properly folded form. 

An indication for the presence of the three-disulfide bridges is seen from the observed 

molecular mass of TSR4 (9960 Da, Figure 16), which is the same as the calculated one. To decide 

whether the protein was in a native-like conformation, we analysed the folding/unfolding behaviour by 

far-UV CD and fluorescence spectroscopy (Kozma et al 2006). In summary, the purified TSR4 

appears to be correctly folded by all the criteria tested including, electrophoretic, chromatographic and 

spectroscopic analysis (Kozma et al 2006). In addition, the TSR4 proved to be a suitable substrate for 

the protein O-fucosyltransferase POFUT2 (shown below). 

Small scale in vitro fucosylation of TSR4  

The in vitro fucosylation assay was initially established in our laboratory using extracts from HEK293T 

cells expressing C. elegans POFUT2 as the enzyme source. By increasing the amount of enzyme 

source it is possible to obtain 100% substrate conversion. Reverse-phase HPLC shows the 

incorporation of the fucosyl residue into the TSR4 module (Figure 16). TSR4 (5 μg) was purified from 

fucosylation reaction mixtures or control reactions, where the TSR4 was added after the reaction was 
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stopped, using a RP-C18 column. The TSR modules eluting at 45.9 minutes (blue trace in Figure 16) 

and 46.6 minutes (green trace in Figure 16) were analysed by MALDI-TOF-MS and the masses of the 

fucosylated (10106 Da) and non-fucosylated (9960 Da) TSR4 modules were observed, respectively, 

in agreement with the expected masses. The mass difference of 146 Da, corresponds to the mass of 

a single fucosyl residue. The leading “shoulder” in each HPLC chromatogram is due to oxidized 

methionine residues in the TSR4, whereas the trailing “shoulder” in the TSR4-fucose trace is caused 

by one of the components in the protease inhibitor cocktail used in the fucosylation reaction 

(Figure 16). The presence of the fucosyl residue also shows that the purified TSR4 is correctly folded 

as it serves as a substrate for C. elegans POFUT2 and human POFUT2 (data not shown). 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 16. Product proof of TSR4-fucose by RP-HPLC 
TSR4 modules were purified, from fucosylation reaction mixtures (blue trace) or control reactions where 
TSR4 was added to the mix after the reaction was stopped (green trace), using a RP-C18 HPLC column. 
The TSR4-fucose elutes ~40 seconds earlier than the TSR4. The indicated masses of TSR4 and TSR4-
fucose were determined by an internally calibrated MALDI-TOF MS (Brucker Daltronics Ultraflex II). The 
theoretical masses of the TSR4 species were calculated using the protein analysis software GPMAW 
(Lighthouse Day). Buffer B consists of 80% acetonitrile, 0.085% triflouroacetic acid). 

Peptide mapping of TSR4-fucose 

In the intact module of TSR4-fucose only the presence of a 146 Da fucose can be deduced by 

MALDI-TOF-MS but not its position. In order to determine the latter, the HPLC purified TSR4-fucose 

was digested with endoproteinase Lys-C. This resulted in a mixture of peptides (K1, K3-K6) with the 

expected masses and a glycopeptide (K2*) which was 146 Da heavier than the non glycosylated K2 

(Figure 17). Since K2* peptide contains five hydroxyl residues which can be potentially fucosylated, 

further cleavage of the peptide was necessary. An endopeptidase Asp-N digest of the K2* 

glycopeptide yields an eight amino acid-long peptide, 14DCSVTCGK21, with 146 Da greater mass than 

expected for the unmodified peptide (see red arrow, Figure 18A). By using tandem mass spectrometry 

we could fragment the 14DCSVTCGK21 (+146 Da) peptide and observe the ion for 18TCGK21 

(+146 Da) (Figure 18B). 
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Figure 17. Sequential digest of TSR4-fucose 

The intact TSR4-myc-His6 protein is on the left hand side. Additional sequence from pET22b vector is 
marked in yellow; theoretical O-fucosylation site is in red and an asterisk; tobacco etch virus-site is in 
green, c-myc epitope is in purple; His6-tag marked in blue. The two endoproteinase reactions (LysC 
digest of the intact TSR4; ApsN digest of the glycopeptide (underlined)) are indicated by arrows. 

 

Since Thr-18 is the only hydroxyl residue in this fragment we conclude that it is the site of fucose 

modification, the same site that is modified in the native protein (Gonzalez de Peredo et al. 2002). 

This data shows that not only Drosophila POFUT2 (Luo et al. 2006b), but also the C. elegans 

homologue can perform the O-fucosylation reaction on an isolated TSR module. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 18. Identification of the O-fucosylation site in TSR4-fucose 

The fucosylated peptide (K2*) was purified by RP-HPLC and cleaved with endopeptidase Asp-N. (A) 
Tandem mass spectrometry of the C-terminal peptide (DCSVTCGK + 146 Da) was performed to confirm 
its identity. Its double charged 537.2 kDa ion is indicated by red arrow. Ions that lost the fucosyl residue 
are shown as “-Fuc”. (B) Secondary fragmentation of the y4 fragment was performed to verify the site of 
fucose (146 Da) attachment. The loss of the 146 kDa is shown by dashed arrow. 
 

Large scale TSR4-fucose production and purification 

After verifying the fucosylation site on the TSR4 acceptor, TSR4-fucose could be produced in large 

quantities. For this a reproducible, fast and easy purification method was developed. TSR4 was in 

vitro fucosylated using cell extracts from HEK293T cells expressing C. elegans POFUT2 and purified 

via its His6-tag followed by a desalting step.  

 

 

Name MH+ (Da) Peptide Sequence
K1 248.1 TK 

K2* 2285/2431 LCLLSPWSEWSDCSVT*CGK 

K3 1276.7 GMRTRQRMLK 

K4 1920.8 SLAELGDCNEDLEQAEK 

K5 2540.1 CMLPECPENLYFQGSRGPEQK 

K6 2126.9 LISEEDLNSAVDHHHHHH 

Adapted from Canevascini et al.  
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Figure 19. Elution profile of TSR4-fucose from the Ni-NTA affinity column 
(A) A280 trace of the eluted His-tagged TSR4-fucose. The depicted signal is the subtraction of the signal of 
the reaction sample and the blank. Elution with 500 mM imidazole is marked by dark red brackets. (B) A 
non-reducing SDS-PAGE stained with colloidal Coomassie Brilliant Blue of the protein containing fractions. 

 

All the His6-tagged TSR4-fucose (1 mg batch, Figure 19A) eluted in the first elution step from the Ni-

NTA affinity column in highly pure form (Figure 19B). 

The imidazole had to be removed from the TSR4-fucose for its application in downstream 

assays. After this desalting step ~85% of the pure TSR4-fucose was recovered. Three consecutive 

batches of TSR4-fucose were produced using 1 mg, 2 mg and 3.5 mg of TSR4. In the 3.5 mg batch a 

small amount of high molecular weight contamination was observed. This is due to the increased 

amount of His6-tagged POFUT2 from C. elegans present in the reaction mixture. At present, this 

problem can be overcome as high amount of purified, active FLAG-tagged human POFUT2 is now 

available in our laboratory. 

The secondary structure of TSR4-fucose was characterised by circular dichroism (see 

Chapter 6.2) and shown to be the same as that of TSR4.  
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Discussion 
The production of pure fucosylated TSR modules is necessary for the in vitro measurement of    

β3Glc-T activity, as well as for future kinetic studies on this enzyme. In this chapter the production of 

highly pure, monomeric and properly folded TSR4 with intact disulfide bonds has been demonstrated. 

The recombinant TSR4 module could be fucosylated on the same site identified in the full-length        

F-spondin protein and is thus a suitable substrate for subsequent in vitro glucosylation assays. The 

developed purification protocol is reproducible but very laborious. Discussed below are some areas 

where the production of TSR may be improved. 

Enhancing the bacterial expression levels and purification yields 

The overproduction of recombinant proteins often stresses the host cells which can lead to misfolding 

or aggregation of the expressed protein. In engineered E. coli strains overexpressing a combination of 

six cytosolic chaperones and two small heat shock proteins, a novel two-step strategy was developed 

which resulted in a 42-fold increase in protein solubility in 70% of the 64 examined proteins (de Marco 

et al. 2007). Initially, the chaperone system was co-overexpressed with the recombinant target 

protein. Then the protein synthesis was inhibited, enabling the chaperones to mediate refolding of 

misfolded and aggregated proteins (de Marco et al. 2007). Addition of the highly soluble NusA domain 

between the His-tag and the target protein can also increase the solubility and stability of the 

recombinant protein (de Marco et al. 2004). The introduction of a specific protease recognition site 

downstream of the NusA, facilitates the cleavage of the target protein from the rest of the construct 

during purification. 

Since the cytoplasm of E. coli is a reducing environment, due to the presence of reduced 

glutathione (Hwang et al. 1995), most of the disulfide bonds do not form properly. As a large 

proportion of the TSR4 produced in our E. coli protein production system was concatemerised 

(Figures 14 and 15), efforts should be made to avoid the polymerisation process. One possibility 

would be to prepare a construct encoding TSR4 that targets the protein expression to the periplasm of 

E. coli, enabling a more rapid folding/oxidation of disulfide bridges (Missiakas et al. 1993). Another 

solution may be to use the E. coli trxB gor strain which have a mutation in both the thioredoxin 

reductase and glutathione reductase genes. This changes the redox potential of the cytoplasm to one 

that resembles the mammalian endoplasmic reticulum and allows for efficient folding of disulphide 

bridges (Bessette et al. 1999). The expression levels of certain proteins with complex disulfide bonds 

patterns, such as human tissue plasminogen activator, was increased 10- to 15-fold in the E. coli trxB 

gor mutant strain compared to the wild type strain (Bessette et al. 1999). The yield of functional Fab 

antibody in this mutant strain is further enhanced when co-expressed with cytoplasmic chaperones 

(Levy et al. 2001). 

Applying one of these options may results in larger amounts of properly folded TSR4 leading 

to a less complex and faster purification scheme. 
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Changing the expression system 

For the production of milligram quantities of protein in a short time, the expression in E. coli is the 

simplest option. Nevertheless, there are alternative expression systems, such as insect or yeast cell 

lines, that may produce high yields of correctly folded proteins.  

When TSR1-3 from human TSP-1 was expressed in Drosophila S2 cells, the modules were 

only modified with O-fucose and not further elongated to Glcβ1,3Fuc (Hofsteenge et al. 2001; Tan et 

al. 2002). The S2 expression system was apparently efficient for the production of these TSR 

modules (24 µg/ml) and combined with the simple purification scheme (Miao et al. 2001) lead to the 

solving of the TSR crystal structure (Tan et al. 2002). Encouraged by these results, the initial attempts 

of large scale production of properly folded TSR4-fucose were investigated in S2 cells. Although most 

of the expressed TSR4 was in a monomeric form, the levels of protein expression (0.5 µg/ml) and 

poor purification yields meant that the S2 expression system was not pursued further. 

Recently, Chigira and colleagues. engineered a mammalian O-fucosylation system in 

Saccharomyces cerevisiae (Chigira et al. 2008). In their system, the O-fucosylation pathway was 

reconstituted with genes encoding an EGF domain, the protein O-fucosyltransferase 1 (OFUT1) and 

two genes whose product converts GDP-mannose to GDP-fucose. The production level of the EGF 

domain in the engineered yeast was 5 mg/litre culture. The recombinant module was modified with O-

fucose, and could be further elongated with a GlcNAc sugar by the introduction of the Fringe gene 

into the engineered in vivo O-fucosylation system, suggesting that the module was correctly folded. 

The ratio between the O-fucosylated and non-glycosylated EGF domain was estimated to be 9:1 in 

the culture media after four days. It would be worthwhile to test a similar system geared for the in vivo 

production of TSR O-fucosylation. If similar yields of TSR and fucosylated TSR modules could be 

produced in one system in vivo, then the in vitro fucosylation step of the TSR module could be 

omitted. After the purification of the tagged protein, the non glycosylated and glycosylated forms could 

be separated by preparative HPLC as shown in Figure 16. 

Changing the TSR module 

A search of the Pfam database (Finn et al. 2006) in April 2008, identified 431 TSRs in 141 human 

proteins. However, only ~5% of the TSRs from five proteins, including F-spondin, have so far been 

identified with the Glcβ1,3Fuc modification. Previous work in our laboratory showed that the individual 

TSR4 module from F-spondin could be expressed in mammalian cells and the Glcβ1,3Fuc 

disaccharide easily analysed by LC-MSMS. Hence, this protein module was considered as a good in 

vitro acceptor substrate for the POFUT2 and β3Glc-T radiochemical activity assays. Using TSR4 from 

F-spondin as a model TSR we can begin to ask questions about some of the requirements for the     

O-fucosylation and β3Glc-T reactions. Besides the sequence motif, CX2-3S/TCX2G, the correct three-

dimensional structure of the AB loop is essential for O-fucosylation. For example, insertion of two 

glycine residues before the modification site abolishes O-fucosylation when expressed in HEK 293T 

cells (Klein et al., unpublished observations). The results presented in this chapter show that the 

bacterial expression of TSR4 from F-spondin yields a correctly folded non-glycosylated protein 

module that can be efficiently O-fucosylated in vitro. This indicates that C-mannosylation, which 

occurs on the A-strand of TSRs, is not required at the single module level, for the O-glycosylation 
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modifications in the AB loop. We do not know if it is possible to synthesise a minimal TSR AB loop, 

stabilised by cysteine bridges, which may act as a suitable acceptor for POFUT2 and β3Glc-T. 

It appears that individual TSR domains are expressed at different levels in various 

mammalian expression systems. For example, TSR4 from properdin is expressed at much greater 

levels than either TSR1 from properdin or TSR4 from F-spondin in mammalian cells (Keusch J.J., 

unpublished observations). As TSR modules can vary in their sequence, length and disulphide 

pattern, it is possible that their expression levels may also change in other expression systems.  
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6.3. Characterisation of β1,3-Glucosyltransferase 

Introduction 
To further characterise the newly identified β3Glc-T, the following questions were addressed:  

1. Is there a complex formed between β3Glc-T and POFUT2?  

2. Which residues in β3Glc-T are required for catalytic activity?  

3. What role do the N-glycans in β3Glc-T play? 

Studies on the complex formation between β3Glc-T and POFUT2 

There are a number of studies describing the complex formation between proteins involved in a 

common carbohydrate biosynthetic pathway. In 1996, Nilsson and colleagues demonstrated a 

physical association between N-acetylglucosaminyltransferase I and mannosidase II, two enzymes 

involved in the synthesis of complex N-glycans (Nilsson et al. 1996). This interaction is mediated by 

the stem region of the N-acetylglucosaminyltransferase I and retains the complex in the Golgi. 

Complex formation between two glycosyltransferases involved in consecutive steps in glycolipid 

formation has also been demonstrated (Maccioni et al. 2002). Significantly, an in vivo complex 

between the two homologues POMT1 and POMT2 is required for protein O-mannosyltransferase 

activity (Akasaka-Manya et al. 2006). Interestingly, an association between UDP-galactose:ceramide 

galactosyltransferase and the UDP-galactose transporter changes the intracellular localisation of this 

transporter from the Golgi to the ER (Sprong et al. 2003).  

Most glycosyltransferases contain transmembrane domains that anchor the proteins in the 

membrane of a particular subcellular compartment. β3Glc-T and POFUT2 are unusual in this respect 

as they lack transmembrane domains and co-localise in the soluble fraction of the ER (see Chapter 

6.2). Whilst the β3Glc-T contains an ER-retrieval sequence at its C-terminus, there is no such 

localisation signal in POFUT2. This prompted us to speculate on how POFUT2 is retained in the ER. 

As the majority of mammalian TSRs are fully modified with the disaccharide Glcβ1,3Fuc in vivo, it is 

plausible that the consecutive enzyme reactions are tightly coupled in vivo and thus the POFUT2 may 

be retained in the ER through an association with β3Glc-T. As an initial step to investigate an 

interaction between these two glycosyltransferases, co-immunoprecipitation experiments were 

performed from the conditioned medium of transiently transfected mammalian cells. 

Identification of the catalytic residues in β3Glc-T 

β3Glc-T consists of 498 amino acids with the first 28 amino acids representing the signal sequence. 

The mature protein can be divided into two approximately equal domains of around 235 residues. In 

the C-terminal domain there are 12 amino acids and five motifs that are highly conserved amongst the 

glycosyltransferases in family GT31 of the CAZy database (Heinonen et al. 2003). The most notable 

motif is the triplet of aspartates (349DDD351; DXD is the more general motif), which corresponds to the 

catalytic core. The closest relatives to β3Glc-T are Radical Fringe and core 1 β3-galactosyltransferase 

with 28% and 27% sequence identity, respectively (Heinonen et al. 2003). 
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Mn2+ 

Mn2+ 
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The crystal structure of Manic Fringe, a paralogue of Radical Fringe, has recently been 

solved (Jinek et al. 2006). Manic Fringe shows a mixed α/β-fold belonging to the GT-A superfamily. 

As β3Glc-T and Manic Fringe share 23% sequence identity and both enzymes act on fucosylated 

substrates, we expected their catalytic domains to display a similar three-dimensional structure. 

Figure 20 shows the C-terminal sequence of human β3Glc-T threaded onto the 3D-structure of 

murine Manic Fringe, complexed with Mn2+ and a modelled UDP-glucose.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Figure 20. The C-terminal domain of human β3Glc-T is modelled on the crystal 
structure of murine Manic Fringe 

The structure of murine Manic Fringe (amino acids 45-321) is shown is white. The C-terminal domain of 
human β3Glc-T (amino acids 264-498) is superimposed on the structure. The conserved residues are 
shown in orange and residues that are similar are shaded in yellow. In the centre, UDP-glucose is 
modelled in the catalytic centre. The position of the fucose, which was not experimentally established, 
has been chosen so that the 3’-OH is close to the C-1 of the glucose. UDP-glucose and the fucosyl 
residue are shown in ball and stick format and Mn2+ as a purple sphere. Disordered loops are indicated 
with dashed lines. The structure was created by Dr. Jan Hofsteenge using the program Insight II. 
 

The residues surrounding the donor sugar and the divalent cation are conserved. The nucleotide 

sugar-binding site, 142DDD144, is located in a cleft at the top of the central β-sheet in the core domain 

of Manic Fringe (Jinek et al. 2006). Asp-144 and the conserved histidine, His-256, coordinate the 

Mn2+, and thus the α- and β-phosphates of UDP (Figure 21A). Asp-143 contacts two hydroxyl groups 

of the ribose sugar (Jinek et al. 2006). According to the analysis of the catalytic domain of β3Glc-T 

(Figure 21B) it is likely that its catalytic centre resembles that of Manic Fringe. This is supported by 

the observation that mutation of Asp-349 and Asp-351 to alanines in the equivalent nucleotide sugar-

binding site in β3Glc-T, 349DDD351, abolishes enzyme activity (Kozma et al. 2006). In β3Glc-T Ala-444 

has replaced His-256 in Manic Fringe. The Mn2+-coordination could possibly be taken over by His-456 

(Figure 21B). 
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Studies on the 3D-structures of other inverting GT-A glycosyltransferases indicate that the 

acceptor sugar binds in a pocket adjacent to the donor sugar-binding site (Pedersen et al. 2000).    

Asp-232, located in the conserved 230PDD232 motif in Manic Fringe, is found in the structurally 

equivalent position as Asp-191 in SpsA (Charnock et al. 1999) and Glu-281 in glucuronyltransferase 

(Pedersen et al. 2000), suggesting that this could be the general base for the catalytic mechanism of 

Fringe (Jinek et al. 2006). In inverting glycosyltransferases, this general base initiates the catalysis by 

abstracting a proton from the reactive group of the acceptor, allowing the direct nucleophilic attack at 

the donor sugar C1 carbon centre (Unligil et al. 2000). The general base in β3Glc-T could be         

Asp-421, which is in close proximity to the modelled fucose. To determine if Asp-421 in the 419PDD421 

motif in β3Glc-T is important for catalysis, this aspartate residue was changed into alanine and the 

properties of the expressed mutant enzyme were investigated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 21. Models of the active sites of murine Manic Fringe and human β3Glc-T 

(A) Structural model of the crystallised murine Manic Fringe in a complex with Mn2+ and UDP. (B) 
Hypothetical structure of human β3Glc-T achieved by the superimposition of its C-terminal sequence 
onto the structure of murine Manic Fringe. UDP-glucose and a fucosyl residue are modelled in the 
catalytic centre. Mn2+ is shown as purple sphere. The models were done by Dr. Jan Hofsteenge using 
the program Insight II. 

Internal homology between the N- and C-terminal domains of β3Glc-T 

β3Glc-T can be divided into two approximately equal domains, the N-terminal domain containing 

amino acids approximately 29-263 and the C-terminal catalytic domain with amino acids 264 to 498 

(Figure 22).  

 

 

 
 

Figure 22. The schematic representation of human β3Glc-T 
The signal sequence is shaded in yellow, the N-terminal domain in purple and the C-terminal domain in 
blue. The C-terminal ER-retrieval signal, REEL, is coloured in green. The C-terminus catalytic active site, 
349DDD351, and the putative catalytic base, 419PDD421, as well as the corresponding putative catalytic sites 
in the N-terminal domain are indicated. 

REEL498 Signal 
Sequence 

349DDD351         PDD421132EEE134         KHE220 

N-terminus C-terminus 

Amino acid  1                    28                                               263                                                               498 
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Although there is no spatial structural similarity between the N- and C-terminal domains, there is 

internal sequence similarity (Figure 23). The potential catalytic residues (132EEE134 in the N-terminus, 
349DDD351 in the C-terminus) and the potential catalytic bases (218KHE220 in the N-terminus and 
419PDD421 in the C-terminus) as well as the N-glycosylation sites (124N and 336N) are conserved. Eight 

out of the 12 highly conserved residues in the GT31 family are also found in the N-terminal domain of 

β3Glc-T (indicated with an asterisk). 

 

 

 

 

 

 

 

 

 
 

F
Figure 23. Alignment of the human β3Glc-T N- and C-terminal domains  

Identical residues are written between the N- and C-terminal alignments. Conserved residues are 
indicated by a cross. The asterisks show those residues that are also conserved in the family GT31. The 
potential N-glycosylation sites are underlined and the catalytic residues are boxed in grey. The numbers 
refer to the amino acid position in the full-length β3Glc-T molecule. Gaps introduced for the alignment are 
shown by a dash. The alignment was performed using ‘Blast2sequences’. 
 
 

Modelling the human β3Glc-T sequence onto the mouse Manic Fringe structure shows that only the 

C-terminal domain superimposes (Figure 20). We speculated that if the C-terminal domain is the 

intrinsic functional glucosyltransferase then a point mutation in the N-terminal domain would not be 

expected to affect the β3Glc-T enzyme activity. To test this hypothesis the glutamic acid in the 
218KHE220 sequence was mutated to an alanine.  

The importance of the N-glycosylation sites in β3Glc-T 

N-linked glycans play important biochemical and physiological roles in the protein they are attached to 

including thermal stability, solubility, resistance to proteolytic cleavage, biological activity, and in vivo 

clearance rate (Varki 1993). The presence of the Asn-X-Ser/Thr consensus sequence in a protein is 

necessary but not sufficient for N-glycosylation. Occupancy also depends on the location, 

conformation and residues within and around the acceptor site. When the glycosylation site is 

occupied, the type of attached glycan may either be a complex, a high-mannose or a hybrid 

oligosaccharide (Jones et al. 2005). 

Most glycosyltransferases are N-glycosylated. The lack of N-glycosylation site occupancy can 

result in low enzyme activity, altered subcellular localisation, or decreased enzyme solubility (Martina 

et al. 1998; Baboval et al. 2000; Christensen et al. 2000; Loriol et al. 2007). However, in other 

                               * 
N-terminus   59  VFVIQSQSNSFHAKRAEQLKK------SILKQAADLTQE-LPSVLLLHQLAKQEGAWTIL  111 
                 +FV       FH  R   +K+      S+++  +D T+  +P+V L      +        
C-terminus  269  IFVAVKTCKKFHGDRMPIVKQTWESQASLIEYYSDYTENSIPTVDLGIPNTDRGHCGKTF  328 
 
                                *    * *           *           * 
N-terminus  112  PLLPHFSVTYSRNSSWIFFCEEETRIQIPKLLETLRRYDPSKEWFLGKALHDEEATIIHH  171 
                  +L  F       ++W+   +++T I I +L   L  YD  K  FLG+             
C-terminus  329  AILERFLNRSQDKTAWLVIVDDDTLISISRLQHLLSCYDSGKPVFLGE-----------R  377 
 
                                      *                          * 
N-terminus  172  YAFSENPTVFKYPDFAAGWALSIPLVNKLTKRLKSESLKSDFTIDLKHEIALYIWDKGGG  231 
                 Y +      + Y     G   S     +  +RL +   +  ++ D   ++ L +   G G 
C-terminus  378  YGYGLGTGGYSYITGGGGMVFS----REAVRRLLASKCRC-YSNDAPDDMVLGMCFSGLG  432 
 
N-terminus  232  PPLTPVPEF  240 
                  P+T  P F 
C-terminus  433  IPVTHSPLF  441 
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glycosyltransferases the disruption of their N-glycosylation by mutagenesis of the attachment site had 

no effect on activity (Malissard et al. 1996; Minowa et al. 1998; Jinek et al. 2006).  

Human β3Glc-T contains two potential N-glycosylation sites, Asn-124 and Asn-336, located in 

the N- and C-terminal domains of the protein, respectively. The two N-glycosylation sites are 

conserved in mammals and bird. In amphibians and teleosteans only the N-terminal glycosylation site 

is present. In most invertebrates these aligned N-glycosylation sites are absent. However, it should be 

noted that the invertebrates do contain N-glycosylation sites outside of the alignment shown in 

Figure 24, for example there are four in Drosophila, three in Anopheles and one in C.elegans. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 24. Alignment of the N-glycosylation sites in β3Glc-T 
(A). Schematic representation of human β3Glc-T: The signal sequence, N-terminus, C-terminus and the 
ER-retrieval sequence are represented in yellow, purple, blue and green, respectively. The potential N-
glycosylation sites (124NSS126, 336NRS338) are also indicated. (B) 18 β3Glc-T homologous sequences were 
selected and aligned using ClustalW. The two N-glycosylation sites are shaded in grey and yellow. 
*Note, that M. Musculus β3Glc-T sequence also contains two putative N-glycosylation sites, but its N-
terminal one, 78NLT80, is not depicted in the figure. 

 
In order to determine if the N-glycosylation sites in human β3Glc-T are occupied, cell extracts 

were treated with glycosidases and the β3Glc-T monitored by Western blot. The importance of the 

individual N-glycosylation sites was assessed by site-directed mutagenesis and enzyme activity 

assays. 

A 

Mammals 

Bird 
Amphibian 

Nematodes 

Teleostean 

Homo sapiens                  117 FSVTYSRN----SSWIFFCEEE      FLNRSQD-----KTAWLVIVDDD 351 
Mus musculus                  109 FSVTYSKN----SAWIFFCEEE      FLNHSHN-----KISWLVIVDDD 342 
Pongo pygmaeus                 30 FSVTYSRN----SSWVFFCEEE      FLNRSQD-----KTAWLVIVDDD 264 
Equus caballus                105 FSATYSRN----SSWIFFCEEE      FLNHSRD-----KIAWLVIVDDD 339 
Canis familiaris              190 FSVTYSRN----SSWIFFCEEE      FLNHSHD-----KIAWLVIVDDD 424 
Monodelphis domestica         138 FSTTFGRN----SSWIFFCEEE      FLNHSSD-----STAWLVIVDDD 376 
Gallus gallus                 172 FSVAYGRN----SSWIFFCEED      YLNHSSP-----RTPWLVIVDDD 410 
Xenopus tropicalis            114 FSDTYGRN----SSWIFFCEEE      FMELYVG-----RMSWLIIVDDD 352 
Danio rerio                    65 LSSQFGKN----SSWIMFLEED      FLSSHVP-----RTDWLLIVDDD 305 
Gasterosteus aculeatus        111 LSYSFGKN----SSWFVFLEEE      FVSGAVP-----ETKWLLVVDDD 349 
Strongylocentrotus purpuratus 197 IYNEFEQK-----KWFFFCEED      FLNNPEYR----TFPWLAITDDD 457 
Brugia malayi                  89 SLSRKYKET----DWLFICEPD      LKNDEMV-----KRRWLVITDDD 320 
Caenorhabditis elegans          6 KLP----FI----DWIIIAEDT      FLGSSGN-----GAKWLVVADDD 239 
Drosophila melangoster         91 LRAQARVLGAR-TEWIIWCQHN      LKDIGKQL----DIRWLMLVDDD 358 
Anopheles gambiae              34 IRAAMLKSTHRTARWLIVCEEQ      GDNGSLQA-----IRWVMLVDDD 329 
Aedes aegypti                  11 IRASILKASHAGTRWLIICEED      QEEMFRNRALADVISWIMLVDDD 269 
Tribolium castaneum           106 LYALHKDN----TSWFFFAEDR      RKKITP------QIKWIVLADDD 339 
Nasonia vitripennis           101 LNDQ-KVE----AQWYMFCTET      APILEEK-----NLAWLIITDDD 333 

Echinoderm 

Insects 

B 

REEL498 Signal 
Sequence 

336NRS338  124NSS126 Human β3Glc-T 

* 
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Materials and Methods 

Constructs 

Sequences encoding amino acids 29-498 and 29-494 of human β3Glc-T, with N-terminal FLAG tags, 

were amplified from pcDNA3.1-β3Glc-T-Myc-His6 (see Chapter 6.2) by PCR using the following 

primer pairs: forward primer (5’-CGGGATCCGATTACAAGGATGACGACGATAAGTCTGAAGATACA 

AAGAAAGAGGTCAAGC-3’), reverse primer (5’-GCGGATCCCTATAACTCCTCTCGAAAACCTTTCT 

G-3’); and forward primer (5’-CGGGATCCGATTACAAGGATGACGACGATAAGTCTGAAGATACAAA 

GAAAGAGGTCAAGC-3’), reverse primer (5’-GCTCTAGACTACTAAAAACCTTTCTGTGTCTCCTGC 

CTGG-3’), respectively (restriction enzyme sites are underlined). The products were digested with 

BamHI or BamHI and XbaI and subcloned into the similarly digested pSecTagB to yield pSecTagB-

Δ28FLAGβ3Glc-T and pSecTagB-Δ28FLAGβ3Glc-TΔREEL. In these constructs, the signal sequence 

from β3Glc-T was replaced with that of Igκ present in the pSecTagB vector. The pcDNA3.1-

huPOFUT2-V5-His6 construct encoding full-length human POFUT2 with C-terminal V5-His6 tags was 

provided by Dr. Jeremy Keusch. 

Inverse PCR site-directed mutagenesis was performed directly on pcDNA3.1-β3Glc-T-Myc-

His6 (see Chapter 6.2) using the following primer pairs for E220A, forward primer (5’-

GATTTAAAACATGCTATTGCCCTCTAC-3’), reverse primer (5’-GTAGAGGGCAATAGCATGTTTTAA 

ATC-3’); for D421A, forward primer (5’-GATGCTCCCGATGCTATGGTCCTGGGAATG-3’), reverse 

primer (5’-CATTCCCAGGACCATAGCATCGGGAGCATC-3’); for N124Q, forward primer (5’-

ACATATAGCAGACAGTCATCTTGG-3’), reverse primer (5’-CCAAGATGACTGTCTGCTATATGT-3’); 

and for N336Q, forward primer (5’-GAAAGATTTCTGCAGCGTAGCCAGGAC-3’), reverse primer (5’-

GTCCTGGCTACGCTGCAGAAATCTTTC-3’). 

Cell culture 

HEK293T cells were cultured and transfected as described in Chapter 6.2. Cells and conditioned 

media were harvested 60 h after transfection. Cell extracts were prepared as described in Chapter 

6.2. 

Glycosyltransferase activity assays 

POFUT and β3Glc-T activity assays were performed as described in Canevascini et al. (manuscript in 

preparation) and Chapter 6.2, respectively. 

Co-immunoprecipitation of β3Glc-T and POFUT2 

Conditioned medium from HEK293T cells, transiently co-transfected with pcDNA3.1-huPOFUT2-V5-

His6 and either pSecTagB-Δ28FLAGβ3Glc-T or pSecTagB-Δ28FLAGβ3Glc-TΔREEL, was filtered 

through a 0.22 μm ExpressTMPlus filter (Millipore). Complete-EDTA free protease inhibitor (Roche) 

cocktail was added to the filtered conditioned medium. As a negative control, conditioned medium 



Results 

 

60

from cells transfected with empty pSecTagB cDNA was used. Anti-FLAG M2 affinity gel (Sigma) was 

equilibrated at 4 °C with TBS (10 mM Tris-HCl, pH 7.4, 150 mM NaCl). The conditioned media or 

high-speed supernatant was added to the anti-FLAG beads and incubated overnight on a roller at 

4 °C. The beads were washed three times with TBS for 30 minutes at 4°C, and the bound 

recombinant proteins were eluted at room temperature with 0.5 mg/ml 3xFLAG peptide (Sigma). 

For the purification of the His6-tagged protein, Ni-NTA agarose (Qiagen) were equilibrated 

with buffer A containing 20 mM Tris-HCl, pH 7.4, 500 mM NaCl and 20 mM imidazole. Conditioned 

media or high speed supernatant containing the His6-tagged recombinant proteins was bound to the 

beads and after three wash steps with buffer A, 150 mM EDTA was used for elution. 

Deglycosylation reactions 

Total protein, from the high-speed supernatant of HEK293T cells transiently transfected with β3Glc-T 

constructs, was deglycosylated with either EndoHf or PNGaseF (New Englands Biolabs). Digests 

performed under native conditions used 60 U EndoHf or 20 U PNGaseF per µg total protein in 10 mM 

Tris-HCl, pH 7.4, 30 mM NaCl, for 1h at 37˚C. Samples denatured prior to PNGaseF digestion were 

performed as described in the manufacturer’s instructions, with 10 U PNGaseF per µg total protein, 

for 1h at 37˚C. 

Sequence alignments 

The amino acid sequences of β3Glc-T orthologues were retrieved from the NCBI database using 

BLAST (http://www.ncbi.nlm.niv.gov/BLAST). GenBank accession numbers of the sequences used in 

the multiple sequence alignment are: Homo sapiens AAO37647.1; Mus musculus Q8BHT6.2; Pongo 

pygmaeus CAH90386.1; Equus caballus XP_001495201.1; Gallus gallus XP_425633.2; Canis 

familiaris XP_543143.2; Monodelphis domestica XP_001377019.1; Danio rerio XP_001339799.1; 

Gasterosteus aculeatus ENSGACT00000015186; Xenopus tropicalis NP_001072551.1; Anopheles 

gambiae XP_310125.4; Brugia malayi EDP35370.1; Aedes aegypti XP_001650768.1; 

Strongylocentrotus purpuratus XP_781188.1; Tribolium castaneum XP_968234.1; Caenorhabditis 

elegans (zc250.2) NP_504520.1; Nasonia vitripennis XP_001606218.1 and Drosophila melanogaster 

NP_608982.2 (CG9109-PA, isoform A). The alignment was performed using ClustalW.  

Western blot 

Proteins were separated on a 10% SDS-polyacrylamide gel and transferred to nitrocellulose 

membrane. The primary antibodies used were affinity purified rabbit anti-human β3Glc-T (directed 

against a C-terminal epitope, Agrisera), mouse monoclonal anti-V5 (Invitrogen) and mouse anti-FLAG 

BioM2 (Sigma). The donkey anti-rabbit IgG-HRP and sheep anti-mouse IgG-HRP secondary 

antibodies were obtained from GE Healthcare. The extravidin-peroxidase conjugate was diluted 

1:2000 (Sigma). All antibodies were diluted 1:5000. The blots were developed using the enhanced 

chemiluminescence (ECL, Western blotting, GE Healthcare) kit. 
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Results 

Complex formation between β3Glc-T and POFUT2 

During the cloning of the FLAG-tagged β3Glc-T constructs, the natural signal sequence (amino acids 

1-28) from β3Glc-T was replaced with that of Igκ present in the pSecTagB vector. This exchange of 

signal sequences did not alter the subcellular localisation of β3Glc-T. When HEK293T cells were 

transfected with pSecTag-Δ28FLAGβ3Glc-T cDNA (Figure 25A), the overexpressed FLAG-tagged 

β3Glc-T was still retained in the cellular high-speed supernatant (S2 fraction) and exhibited a similar 

increase in enzyme activity as the full-length β3Glc-T-Myc-His protein used in Chapter 6.2. In 

contrast, when HEK293T cells were transfected with pSecTag-Δ28FLAGβ3Glc-TΔREEL cDNA, which 

lacks the ER-retrieval sequence, the overexpressed FLAG-tagged β3Glc-TΔREEL accumulated in the 

culture medium (Figure 25C). The secreted β3Glc-TΔREEL protein was immunoprecipitated via its 

FLAG tag and a greater than 6-fold increase in β3Glc-T activity was detected compared to the 

controls (Figure 25B). As the secreted form of β3Glc-T protein was readily detectable and active, it 

could be used to examine if there was a stable physical interaction with POFUT2 in the conditioned 

medium. 

 

 

 

 

 

 
 

 

 

 

 

 

 
 

 

 

 

 

Figure 25. The lack of the ER-retrieval sequence, REEL, results in secretion of β3Glc-T 
into the culture media 

(A) The signal sequence from β3Glc-T was replaced with the Igκ-chain leader sequence. A FLAG-tag 
was inserted at the N-terminus of β3Glc-T. HEK293T cells were transiently transfected with pSecTag-
Δ28FLAGβ3Glc-T (β3Glc-T), pSecTag-Δ28FLAGβ3Glc-TΔREEL (β3Glc-TΔREEL) or empty pSecTag 
vector (Control). Equal volumes of the conditioned medium were immunoprecipitated using anti-FLAG 
agarose and assayed for glucosyltransferase activity (B) or for expression of FLAG-tagged β3Glc-T 
protein by Western blot analysis with anti-FLAG (C). Values represent the average of duplicate samples 
and the error bars represent standard deviations. 

 

For the complex formation studies, constructs encoding POFUT2-V5-His6 and FLAG-tagged β3Glc-T 

(either the secreted or cellular β3Glc-T) were transiently co-transfected into HEK293T cells. The 

conditioned media was immunoprecipitated with either anti-FLAG agarose or Ni-NTA agarose and the  
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β3Glc-T and POFUT2 proteins detected by Western blot and their corresponding enzyme activities 

measured (Figure 26).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
Figure 26. Co-immunoprecipitation of β3Glc-T and POFUT2 from conditioned media 

Conditioned media from HEK293T cells co-transfected with pSecTag-Δ28FLAGβ3Glc-T and pcDNA3.1-
POFUT2-V5-His6 (lanes 1, 4), pSecTag-Δ28FLAGβ3Glc-TΔREEL and pcDNA3.1-POFUT2-V5-His6 
(lanes 2, 5), or control empty plasmids (lanes 3, 6) was immunoprecipitated with either anti-FLAG 
agarose (β3GlcT) or Ni-NTA agarose (POFUT2) as indicated and the corresponding β3Glc-T (A) and 
POFUT2 (B) activities measured. The substrate consumption values show duplicate measurements in 
percentile. The background levels from the control samples are shown as a red dotted line. (C) Elutions 
from the immunoprecipitations were analysed by Western blot. nd, not determined. 
 

Secreted Δ28FLAGβ3Glc-TΔREEL and POFUT2-V5-His6 proteins could be detected by Western blot 

using the anti-FLAG and anti-V5 antibodies, respectively (Figure 26C, lanes 2, 4 and 5). As expected, 

the overexpressed Δ28FLAGβ3Glc-T protein that contains the REEL sequence was retained inside 

the cells and could not be detected in the medium (Figure 26C, lanes 1 and 4). Interestingly, when the 

secreted FLAG-tagged Δ28FLAGβ3Glc-TΔREEL was immunoprecipitated with anti-FLAG agarose, 

the POFUT2-V5-His6 protein was also detected by Western blot (Figure 26C, lane 2, both panels), 
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identifying an interaction between the secreted β3Glc-T and POFUT2 proteins. However, the 

reciprocal immunoprecipitation did not pull down Δ28FLAGβ3Glc-TΔREEL on the Ni-NTA agarose 

containing POFUT2 (Figure 26C, lane 5, both panels). 

To test whether the co-immunoprecipitated material shows a real physical interaction between 

the two enzymes, bead suspensions were used to measure β3Glc-T and POFUT2 activities 

(Figure 26A and B). Significant enzyme activities could only be detected in the immunoprecipitations 

corresponding to the pertinent enzyme i.e. anti-FLAG agarose (β3Glc-T) and Ni-NTA agarose 

(POFUT2). The anti-FLAG agarose precipitated approximately five-times higher β3Glc-T activity from 

the Δ28FLAGβ3Glc-TΔREEL co-immunoprecipitations compared to the control sample (Figure 26A). 

A similar increase in β3Glc-T activity was seen when pSecTagΔ28FLAGβ3Glc-TΔREEL was 

expressed alone (Figure 25B). The Ni-NTA pull-downs exhibited very high levels of POFUT2 activity, 

between 470- and 670-fold greater than the control (Figure 26B). Since the POFUT2 activities were 

measured in the non-linear range the real increase in the experimental versus the control will actually 

be much greater. β3Glc-T activity was measured in the linear range (less than 10% substrate 

conversion). 

Surprisingly, POFUT2 appears inactive when co-immunopreciptated with β3Glc-T from the 

conditioned medium. Similar levels of POFUT2-V5-His6 protein were detected in the co-

immunoprecipitations with the different β3Glc-T constructs (Figure 26C lanes 2, 4 and 5). However, 

there is only significant POFUT2 activity when β3Glc-T protein is absent in these co-

immunoprecipitations (compare lanes 4 and 5 in Figure 26B and C with lane 2). Note that β3Glc-T is 

active when expressed alone or complexed with POFUT2 (Figure 25 and 26A lane 2).  

Mutating the putative catalytic base in β3Glc-T affects its activity 

Homology modelling between human β3Glc-T and murine Manic Fringe (Figure 21) predicted        

Asp-421 as the general base in human β3Glc-T. To determine if Asp-421 is catalytically important in 

β3Glc-T, this conserved residue (located in the 419PDD421 motif) was mutated to alanine. The β3Glc-T 

D421A mutant protein was expressed in the high-speed supernatant of HEK293T cells. Western blot 

analysis confirmed that the D241 mutant protein migrated at the same apparent molecular weight as 

the wild type protein, although with a slightly lower level of expression (Figure 27B, lane 4). The 

D421A mutant showed only ~6% of the wild type β3Glc-T activity (Figure 27A, lane 4) and even 

exhibited a 60% lower activity than the empty vector transfected sample. The latter finding suggests 

that the overexpression of the β3Glc-T D421A mutant results in the suppression of the endogenous 

β3Glc-T activity. 

The internal sequence homology in β3Glc-T reveals that 132EEE134 and 218KHE220 in the N-

terminus, aligns with 349DDD351 and 419PDD421 in the C-terminus, respectively (Figure 23). To 

investigate whether these glutamic acids in the N-terminus have any affect on β3Glc-T activity, site-

directed mutagenesis was performed. Unfortunately, due to technical difficulties, none of the 
132EEE134 residues were mutated. The E220A mutant was found to be similarly expressed in the high-

speed supernatant as the wild type β3Glc-T (Figure 27B, lane 3), yet surprisingly the β3Glc-T activity 
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was reduced by 8-fold. Again the total β3Glc-T activity in the cell extract overexpressing the E220A 

mutant was less than that observed for the endogenous β3Glc-T only (empty). 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 27. Mutating the putative catalytic bases in β3Glc-T affects its activity  
HEK293T cells were transiently transfected with pcDNA3.1-β3Glc-T-Myc-His6 encoding either the wild 
type β3Glc-T or harbouring the point mutations E220A or D421A in the 218KHE220 and 419PDD421 motifs, 
respectively. (A) Glycosyltransferase activity was measured using 12.5 µg of total protein from the 
soluble fraction of these transfectants. (B) Western blot analysis was performed with 15 µg of total 
protein from the soluble fraction and probed with anti-β3Glc-T antibody. Values shown are the average of 
duplicate samples and the error bars represent standard deviations. Note that the anti-β3GlcT antibody 
does not detect the endogenous β3Glc-T enzyme in HEK293T cells at this level of total protein. 

 

These results show that a mutation in the C-terminal putative catalytic base 419PDD421, as well as a 

mutation in the corresponding residue 218KHE220, in the N-terminal domain abolishes the β3Glc-T 

activity. Thus, despite the lack of structural homology between the N- and C-terminal domains of 

β3Glc-T, the N-terminal domain also contributes to β3Glc-T activity.  

The importance of the N-glycosylation sites in β3Glc-T  

β3Glc-T has two potential N-glycosylation sites at Asn-124 and Asn-336, located in the N- and          

C-terminal domain, respectively. The calculated molecular mass of the overexpressed, Myc-His6 

tagged β3Glc-T is 60 kDa, whereas the band detected on Western blots migrates at ~65 kDa. In order 

to determine, how many N-glycosylation sites are used in β3Glc-T, the enzyme was treated with 

glycosidases to remove the N-glycans. β3Glc-T is an ER-localised soluble protein, therefore the de-

glycosylation experiments were performed using high-speed supernatant of transiently transfected 

HEK293T cells overexpressing β3Glc-T. The high-speed supernatant was treated with peptide-N-

glycosidase F (PNGase F), which cleaves all N-linked glycoproteins, and analysed by Western blot. 

Complete deglycosylation was possible under non-denaturing conditions. There was a visible mass 

shift between the treated and untreated material (Figure 28). To find out the type of the attached       

N-glycans, an endoglycosidase H (Endo Hf) digestion was performed. Endo Hf cleaves only the high-

mannose oligosaccharides added in the ER and some hybrid structures, but does not cleave the 

complex sugar chains synthesised in the Golgi. The β3Glc-T shifted by ~5kDa when digested with 

either Endo Hf or PNGaseF compared to the control (Figure 28).  

Anti-β3Glc-T 

A 

B 

0

100

200

300

400

500

600

700

800

β3Glc-T Empty vector E220A D421A

Co
nv

er
si

on
 [p

m
ol

/m
g/

h]

    1             2     3             4 

Su
bs

tr
at

e 
C

on
su

m
pt

io
n 

(p
m

ol
/m

g/
h)

 

β3Glc-T 



Results 

 

65 

 

 

 

 
 

Figure 28. Deglycosylation of β3Glc-T-Myc-His6 

Western blot analysis of high-speed supernatant from HEK293T cells transiently transfected with 
pcDNA3.1-β3Glc-T-Myc-His6 with and without PNGase F and Endo Hf treatment. The glycosidase 
reactions were performed under native conditions. 12.5 µg of total protein was analysed. 

 

Hence complex N-glycans are not present on β3Glc-T. Since β3Glc-T is retained in the ER, the most 

likely type of N-glycans are the high-mannose types (GlcNAc2Man5-9 structures). However, the mass 

difference observed would correspond to two N-glycans of ~2.5kDa, which is more than expected for 

a typical high mannose (GlcNAc2Man9) structure (~1.9kDa). A more detailed examination of the         

N-glycans is needed to determine their exact mass and composition.  

To determine whether the presence of the N-linked glycans modifies any β3Glc-T properties, 

N-glycosylation site mutants were generated by changing the asparagines at position 124 and 336 to 

glutamines. Western blot analysis revealed the overexpressed β3Glc-T mutants N124Q and N336Q 

migrating ~2.5kDa under the wild type β3Glc-T (Figure 29B). The mutant protein bands collapsed to 

60kDa after treatment with PNGaseF (data not shown). This indicates that both N-glycosylation sites 

in β3Glc-T are occupied with similar sized glycans. The N124Q was expressed to the same extent as 

the wild type β3Glc-T, whilst that of N336Q was slightly reduced (Figure 29B).  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 29. The N-glycosylation sites in β3Glc-T are required for its activity 

HEK293T cells were transiently transfected with pcDNA3.1-β3Glc-T-Myc-His6 encoding either the wild 
type β3Glc-T or harbouring the point mutations N124Q and N336Q in the N-glycosylation sites. (A) 
Glucosyltransferase activity was measured using 12.5 µg of total protein from the soluble fraction of 
these transfectants. (B) Western blot analysis was performed with 15 µg of total protein from the soluble 
fraction and probed with anti-β3Glc-T antibody. Values shown are the average of duplicate samples and 
the error bars represent standard deviations. Note that the anti-β3GlcT antibody does not detect the 
endogenous β3Glc-T enzyme in HEK293T cells at this level of total protein. 
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To determine whether the N-glycosylation sites affects β3Glc-T activity, the high-speed 

supernatant from the transiently transfected cells were tested (Figure 29A). Both the N-terminal and 

C-terminal N-glycosylation site mutants showed greatly diminished β3Glc-T activities, with only 35% 

and 27% of the wild type activity, respectively. As the expression levels of the wild type and N124Q 

mutant protein was similar (see Figure 29B, lanes 1 and 3), the decrease in activity is due to the       

N-glycosylation site mutation. The N-glycan in the C-terminal domain (N336Q) may affect the β3Glc-T 

protein stability to a greater extent than the N-glycan in the N-terminal domain. Taken together, the 

presence of both N-glycans is required for full β3Glc-T activity.  

 
 
 



Results 

 

67 

Discussion 

Complex formation between β3Glc-T and POFUT2 

A complex between the soluble forms of β3Glc-T and POFUT2 isolated from the conditioned medium 

was observed. The N-terminal FLAG-tagged β3Glc-T was immunoprecipitated with anti-FLAG 

agarose and both β3Glc-T and POFUT2 proteins were detected by Western blot. This association 

inhibited POFUT2 activity but not β3Glc-T activity. However, it was not possible to reproduce this 

result in the reciprocal pull-down. There may be a trivial technical reason for this that could be 

resolved by exchanging the tags used or their locations on the expressed protein.  

What is more uncertain is the relevance of such an association. Indeed it is not clear if such a 

complex forms in the ER and transits the secretory pathway into the conditioned media as a stable 

complex or if the association only occurs outside of the cell. When these experiments on complex 

formation were initiated, antibodies against the human β3Glc-T and POFUT2 proteins were 

unavailable. This necessitated the use of tagged proteins in an overexpression system. It would be 

preferable to investigate complex formation on the endogenous proteins in the ER as this is where the 

proteins are normally localised. The basal β3Glc-T and POFUT2 activities from HEK293T ER 

fractions could be detected (Chapter 6.2, Figure 7). Pilot co-immunoprecipitation experiments were 

performed on the endogenous enzymes from the ER fractions of HEK293T cells using newly 

generated antibodies against the glycosyltransferases. However, due to the small volumes and low 

protein concentration in the Nycodenz fractions, neither the anti-β3Glc-T nor the anti-POFUT2 

antibodies were able to recognise the endogenous proteins. It may be necessary to screen for a 

suitable cell line with detectable levels of endogenous β3Glc-T and POFUT2 proteins for future co-

immunoprecipitation studies. 

Fluorescence energy resonance transfer (FRET) could be used to explore the proximity of 

endogenous β3Glc-T and POFUT2 proteins in the ER. In this case, fluorophore-tagged antibodies 

against the two transferases may be used as the donor and acceptor fluorophores and analysed by 

confocal microscopy or FACS. FRET will only identify close associations but not necessarily direct 

interactions. The identification of other binding partners involved in complex formation may be 

addressed using far Western blot (Wu et al. 2007). In this technique, ER fractions containing the 

endogenous prey protein are separated on SDS or native PAGE, and transferred to a membrane. The 

proteins are denatured and re-natured on the membrane, and then the membrane is blocked and 

incubated with purified bait protein (ie POFUT2). Subsequent probing with antibodies to the bait 

protein will detect the binding partners. 
When full-length β3Glc-T, containing the REEL sequence, is overexpressed in HEK293T cells 

it is still retained in the cellular S2 fraction and does not escape into the culture medium. In contrast, 

the ER-retention mechanism for POFUT2 is saturable as overexpression of POFUT2 leads to its 

partial secretion into the culture medium. Even the co-overexpression of the full-length β3Glc-T with 

POFUT2 does not prevent the secretion of a significant portion of POFUT2 from the cell. Hence, 

β3Glc-T alone is not capable of retaining POFUT2 in the ER. The SignalP program predicts the signal 
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sequence for human POFUT2 to be cleaved between amino acids 20 and 21. In our laboratory, the 

deletion of the first 36 amino acids from POFUT2 results in its bulk secretion from HEK293T cells into 

the culture medium (Keusch J.J., unpublished observations). This suggests that residues between 

amino acids 21 and 36 are important for the retention of POFUT2 within the ER. 

Identification of catalytic residues in β3Glc-T 

As shown in Figure 5A (Chapter 6.2), the mutations in the catalytic core 349DDD351 motif, abolish 

β3Glc-T activity. The modelling of human β3Glc-T onto the catalytic pocket of mouse Manic Fringe 

crystal structure suggests that not only Asp-349 and Asp-351, but also the highly conserved Asp-421 

could be involved in the catalytic mechanism.  

Interestingly, the overexpression of β3Glc-T catalytic mutants decreases the endogenous 

β3Glc-T activity. This had been previously observed with the 349ADD351 and 349ADA351 mutants 

(Chapter 6.2) and is reproduced with the D421A mutant and surprisingly with the E220A mutant. This 

indicates that the mutants could serve a dominant negative function. This inhibition can happen in 

different ways, for example by homophilic interaction with the active enzyme; association with a 

presently unknown factor which is responsible for the enzyme activation or by competing for the post-

translational modifications required for the enzyme activity. Further experiments are needed to follow 

up this potential dominant negative effect. To check whether the mutants inhibits the endogenous 

β3Glc-T in vivo, the mixture of mutant and wild type cell extracts should be checked for activity. The 

mRNA level of the endogenous β3Glc-T also needs to be examined to see whether the decreased 

activity is due to the down-regulation of the β3Glc-T gene. 

The results of the structural analysis (Figure 21) and the highly conserved nature of Asp-421 

suggest that it might play a direct role in the catalytic mechanism of β3Glc-T as a general base, rather 

than contributing to the correct folding of an active site. Additional mutational studies, for example 

replacing the His-456 residue (Figure 21), are needed to gain a broader picture of the catalytic 

mechanism of β3Glc-T. However, exactly how these residues contribute to β3Glc-T catalytic activity 

will only be fully understood when the crystal structure of β3Glc-T becomes available. 

Substitution of Gln-220 with an alanine, in the N-terminal 218KHE220 motif of β3Glc-T abolished 

β3Glc-T activity. This finding is in contradiction with the idea that the C-terminal domain alone is 

responsible for the activity of β3Glc-T. To see whether the affinity towards the acceptor or the donor 

substrate is affected by this mutation, the kinetic parameters of the wild type and the E220A mutant 

should be examined. It is also conceivable that this point mutation could indirectly affect the enzyme 

activity through a local conformation change. 

The importance of N-glycosylation in β3Glc-T  

The role of the N-linked glycans in glycosyltransferases is protein-dependent. Some 

glycosyltransferases including bovine POFUT1 (Loriol et al. 2007), α2,6-sialyltransferase (Fast et al. 

1993), Drosophila Manic Fringe (Jinek et al. 2006) and human core 2 β1,6-N-

acetylgucosaminyltransferase (Toki et al. 1997), require their N-glycosylation sites occupied for full 
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biological activity. Other glycosyltransferases, like human β1,4-galactosyltransferase (Borsig et al. 

1997) and POFUT2 (Chun-I Chen, unpublished observations) retain their catalytic activity in the 

absence of their N-glycans. 

Alignments of the N-glycosylation sites in β3Glc-T from several species indicated that two 

sites are conserved in mammals and birds. In human β3Glc-T both N-glycosylation sites are 

occupied. Deletion of either site by site-directed mutagenesis severely diminishes its β3Glc-T activity. 

The removal of the N-linked glycosylation sites can result in the formation of non-native cysteine-

bridges leading to a different conformation and consequently reduced enzymatic activity. An 

alternative approach to study the role of the N-glycans in β3Glc-T would be to deglycosylate the high-

speed supernatant fraction, under non-denaturing conditions, and then assay for β3Glc-T activity. 

This would allow the β3Glc-T to achieve its native conformation and thus, the contribution of the       

N-glycans to its activity could be assessed. Preliminary results from such experiments indicate that 

the N-glycans are required for β3Glc-T activity. 

The importance of the N-glycans in β3Glc-T has several implications. In order to thoroughly 

study β3Glc-T we would like to purify this enzyme to homogeneity and eventually to crystallise it. The 

choice of a particular expression system determines the protein’s glycosylation. For instance, the 

expression of a secreted form of β3Glc-T will generate complex type N-glycans instead of the high-

mannose structures found on the β3Glc-T in the ER. The impact these different glycoforms may have 

on β3Glc-T activity needs to be studied further. It is possible to produce secreted glycoproteins with a 

more homogeneous structure by using mutant cell lines deficient in GlcNAcT1 (the committed step for 

complex N-glycan synthesis) or by expressing in the presence of N-glycosylation processing inhibitors 

such as kifunensine (Chang et al. 2007). 
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6.4. Expression of β1,3-Glucosyltransferase Domains with 

Reference to Peters Plus Syndrome 

Introduction 
Recently, the identification of biallelic mutations in the gene encoding β3Glc-T was shown to cause 

the developmental disorder Peters Plus syndrome (PPS) (Lesnik Oberstein et al. 2006). We 

investigated whether constructs encoding these mutations expressed the truncated protein products. 

In addition the expression of the β3Glc-T N- and C-terminal domains were studied. Finally, the first 

steps to purify β3Glc-T were performed.  

The connection between Peters Plus syndrome and β3Glc-T 

PPS (MIM 261540) is a rare autosomal recessive disorder characterized by anterior eye-chamber 

defects, disproportionate short-stature, developmental delay, typical craniofacial features, broad 

hands and feet, and cleft lip and/or palate. The most frequently occurring eye-chamber defect is 

Peters anomaly consisting of central corneal opacity, thinning of the posterior aspect of the cornea, 

iridocorneal adhesions and may include cataracts and glaucoma (Maillette de Buy Wenniger-Prick et 

al. 2002; Lesnik Oberstein et al. 2006). The eye involvement is usually bilateral. 

Lesnik Oberstein and colleagues performed a genome wide array-based comparative 

genomic hybridization analysis on six patients with PPS and initially identified a deletion of ~1.5 Mb in 

chromosome 13 (q12.3q13.1) in two brothers (Lesnik Oberstein et al. 2006). Further sequencing of 

the six genes in this region identified biallelic truncating mutations in a β1,3-galactosyltransferase-like 

gene (B3GALTL) in a total of 20 PPS patients examined. Although no enzyme activity had been 

demonstrated for B3GALTL gene product, it was proposed to be β3-glycosyltransferase-like based on 

its sequence similarity with other members of the GT31 family in the CAZY database (Heinonen et al. 

2003). We and others have since determined that the B3GALTL gene encodes the β3Glc-T that 

synthesizes the unusual disaccharide Glcβ1,3Fuc-O- on TSRs (Kozma et al. 2006; Sato et al. 2006). 

Recent work performed in our laboratory has identified defective glucosylation of TSRs in patients 

with PPS, which clearly establishes PPS as a new congenital disorder of glycosylation (Hess et al. 

2008).  

The gene encoding human β3Glc-T is located on chromosome 13 at 13q12.3 and contains 15 

exons divided by 14 introns spanning 132 kb (Figure 30). It is expressed in a wide range of tissues 

with differential expression of 3.4 kb and 4.2 kb transcripts arising from the use of alternative 3’UTRs 

(Heinonen et al. 2003). The expression is especially high in the brain, heart and kidney. β3Glc-T has 

orthologues in C. elegans through to mammals suggesting that it plays an important role in the tissues 

of multicellular organisms. In the mouse there are two transcripts of 5 kb and 2 kb expressed in a 

similar pattern to that observed in man (Heinonen et al. 2006). Curiously, in some mouse tissues the 

expression of β3Glc-T mRNA is developmentally regulated. For example, in situ hybridisation 

revealed that the expression in the foetal kidney was high in the cortex and weak in the medulla, 
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whereas in the adult kidney the pattern was reversed. The strong β3Glc-T mRNA signal observed in 

the retina of a one-day old mouse is downregulated in the adult mouse (Heinonen et al. 2006). 

In all the 20 patients with PPS examined there was a hot-spot mutation, present in either one 

(4/20) or two copies (16/20), in the donor splice site of exon 8 (c.660+1G A). In two cases the 

c.660+1G A mutation was combined with another point mutation in intron 5 (c.347+5G A). In the 

other two cases, the c.660+1G A point mutation was found together with a deletion of ~1.5 Mb in 

chromosome 13 (q12.3q13.1) (Lesnik Oberstein et al. 2006). Nested RT-PCR performed on RNA 

isolated from lymphocytes or fibroblasts of patients with PPS, showed that the point mutations 

c.347+5G A and c.660+1G A lead to altered splicing, resulting in the skipping of exons 5 and 8, 

respectively (Lesnik Oberstein et al. 2006) (Figure 30). 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 
Figure 30. Patients with PPS have truncating mutations in the gene encoding β3Glc-T. 

The 15 exons of the gene encoding β3Glc-T are shown as pink boxes (top line in (A) and (B)). The 
location of the splicing mutations is marked by a vertical black line in the genomic DNA (gDNA). The 
premature stop codons are represented by red hexagons on the mRNA (middle line in (A) and (B)).  

 

The 347+5G A and 660+1G A mutations are predicted to lead to the formation of severely truncated 

proteins consisting of 95 amino acids (p.Glu91LeufsX6) and 212 amino acids (p.Thr201ProfsX13), 

respectively. These proteins would lack the catalytic C-terminal domain including the ER-retrieval 

sequence, which will probably alter their subcellular localisation. Hence, the aberrant splicing of 

β3Glc-T is likely to result in deficient β3Glc-T activity in patients with PPS. In addition, there may be 

either a loss- or gain-of-function with the truncated N-terminal domains which could have pathological 

effects in PPS. We wanted to investigate whether the two predicted truncated proteins are expressed. 

Cell lines derived from patients with PPS were unavailable at the time, therefore the cDNAs encoding 
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the putative p.Glu91LeufsX6 and p.Thr201ProfsX13 proteins were generated, cloned into p3xFLAG-

CMV-14 expression vector and transiently transfected into HEK293T cells. 

Purification of full-length and the N- and C-terminal domains of β3Glc-T 

The full-length β3Glc-T has internal sequence homology (Figure 23). Despite the sequence similarity 

there is no apparent spatial structural similarity. In Chapter 6.3, point mutations of potential catalytic 

residues in the C- and N-terminal domains of β3Glc-T affected the enzyme activity. It is unclear 

whether the N-terminal domain is also a glycosyltransferase or fulfills another role. The expression of 

the N- and C-terminal domains of wild-type β3Glc-T was initiated to see if it was possible to express 

these domains separately. Constructs encoding the N- (amino acids 1-263) and C-terminal (amino 

acids 264-494) β3Glc-T domains were designed with different secretion signals and purification tags. 

The further aim was to try and identify ligands for the domains using isothermal titration calorimetry.  

The large-scale expression and purification of FLAG-tagged full-length β3Glc-T was started in 

order to better study the enzyme kinetics of β3Glc-T, and as an initial step towards its crystallization.  
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Materials and Methods 

Constructs 

Sequences encoding amino acids 29-263 or 1-263 (N-terminal constructs) of human β3Glc-T were 

amplified from pcDNA3.1-β3Glc-T-Myc-His6 (Chapter 6.2) by PCR using the following primer pairs: 

forward primer (5’-GGGGTACCACCACCATGCGGCCGCCCGCCTGCTG-3’) and reverse primer (5’-

GCGGATCCTGGCTTTCTACAAAGCGGTAGAAAAG-3’); forward primer (5’-TGCTCTAGAACCAC 

CATGCGGCCGCCCGCCTGCTG-3’) and reverse primer (5’-GCGGATCCTGGCTTTCTACAAAG 

CGGTAGAAAAG-3’); forward primer (5’-GGGGTACCACCACCATGCGGCCGCCCGCCTGCTG-3’) 

and reverse primer (5’-GCGGATCCTGGCTTTCTACAAAGCGGTAGAAAAG-3’), respectively 

(restriction sites are underlined). The products were digested with KpnI and BamHI, XbaI and BamHI, 

or KpnI and BamHI, and ligated into similarly digested pSecTagB, pcDNA3.1 (-) and p3xFLAG-CMV-

14 vectors, respectively. This yielded the differently tagged pSecTagB-Δ28FLAGβ3Glc-T26, 

pcDNA3.1-β3Glc-T263-Myc-His6 and pCMV14-β3Glc-T263-3xFLAG constructs, respectively. 

Sequences encoding amino acids 264-494 (C-terminal constructs) of human β3Glc-T were amplified 

from pcDNA3.1-β3Glc-T-Myc-His6 using the following primers: forward primer (5’-CGGGATCCGAT 

TACAAGGATGACGACGATAAGGTGAAGAAGAAGGATATTTTTGTTGC-3’) and reverse primer (5’-

CGAGATCTAAAACCTTTCTGTGTCTCCTGCCTGG-3’); forward primer (5’-CGGGATCCGTGA 

AGAAGAAGGATATTTTTGTTGC-3’) and reverse primer (5’-CGAGATCTAAAACCTTTCTGTGT 

CTCCTGCCTGG-3’) (restriction sites are underlined). The products were digested with BamHI and 

XbaI, then ligated into similarly digested pSecTagB to yield the C-terminal constructs, pSecTagB-

Δ263FLAGβ3Glc-TΔREEL and pSecTagB-Δ263β3Glc-TΔREEL-Myc-His6. 

To create DNA sequences encoding the two theoretically truncated β3Glc-T proteins from 

patients with PPS (p.Glu91LeufsX6 and pThr201ProfsX13), pcDNA3.1-β3Glc-T-Myc-His6 template 

was amplified by PCR using the following primer pairs: forward primer (5’-GGGGTACCA 

CCACCATGCGGCCGCCCGCCTGCTG-3’) and reverse primer (5’-GCGGATCCTATGTTACAGAAA 

AGCTGTGTAAG-3’); forward primer (5’-GGGGTACCACCACCATGCGGCCGCCC GCCTGCTG 3’) 

and reverse primer (5’-GCGGATCCTCAGGGGAGGTCCTCCGCCTTTGTCCCAGATGTAG 

AGGGCAATTTGTTTACAAGTGGAATACTTA-3’), respectively. The PCR products were digested with 

KpnI and BamHI and ligated in-frame into similarly digested p3xFLAG-CMV-14 to yield pCMV14-

ΔEx5β3Glc-T-3xFLAG and pCMV14-ΔEx8β3Glc-T-3xFLAG. 

Cell culture 

Transfections and preparations of cell extracts were performed as described in Chapters 6.2 and 6.3. 

The work was done in collaboration with Dr. Jeremy Keusch. To generate stable clones, p343X cDNA 

(that confers resistance to hygromycin B), was co-transfected with either the pSecTagB-

Δ28FLAGβ3Glc-T263 construct encoding the N-terminus, or pSecTagB-Δ28FLAGβ3Glc-TΔREEL 

construct encoding the full-length secreted β3Glc-T. Selection of stable clones was started 48 hours 

after transfection in medium containing 300 µg/ml hygromycin B. Single resistant clones were picked, 
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expanded and the conditioned medium screened for the highest expression of the recombinant 

FLAG-fusion proteins (see Chapter 6.3). 

Large-scale purification of full-length and N-terminal domain of β3Glc-T 

Conditioned media from HEK293T cells stably expressing Δ28FLAGβ3Glc-TΔREEL clone C3 (1 litre) 

and Δ28FLAGβ3Glc-T263 (N-terminal) clone A42-8 (0.9 litre) constructs were collected. Anti-FLAG 

beads were equilibrated in ice-cold TBS-PI (10 mM Tris-HCl, pH 7.4, 150 mM NaCl, with Complete 

Protease Inhibitor® (Roche)). The culture media was divided into 50 ml aliquots and 270 µl of 

equilibrated anti-FLAG agarose (50% suspension) was added per 50 ml aliquot. The bead-media 

suspensions were rotated overnight at 4 °C. The anti-FLAG agarose were recovered by centrifugation 

at 4000 rpm for 0.5 min, and washed three times with 50 ml of TBS-PI by rotating for 1 h at 4 °C. The 

washed beads were stored as a 50% suspension in TBS-PI at 4 °C.  

Ion-exchange chromatography of affinity-purified full-length β3Glc-T 

The 50% suspension of anti-FLAG agarose with full-length β3Glc-T bound was spun down at 500 rpm 

for 10 min 4 °C and washed twice with one bead volume of 10 mM Tris-HCl, pH 7.5, 3 M NaCl 

solution for 15 min at 4 °C with rotation. The salt solution was removed by applying three washes of 

TBS-PI buffer for 15 min at 4 C with rotation. The anti-FLAG beads were eluted with one bead volume 

of 0.5 mg/ml FLAG peptide for 1 h at 4 °C with rotation. Half of the eluate (~2 ml) was dialysed against 

2 litres 20 mM Tris-HCl, pH 8.5, at 4 C, using a 10 kDa MWCO Slide-A-Lyzer. 

 Anion-exchange chromatography was done using a 1ml Mono Q 5/50 fast protein liquid 

chromatography column (GE Healthcare) equilibrated in 20 mM Tris-HCl, pH 8.5. The sample was 

loaded onto the column at a flow rate of 1 ml/min and proteins were eluted using a 30 min linear 

gradient of 0-500 mM NaCl in 20 mM Tris-HCl, pH 8.5 at a flow rate of 1 ml/min. The fractions were 

collected and 10 µl aliquots analysed by SDS-PAGE and Western blot as described in Chapter 6.3. 

Co-immunoprecipitation of the N- and C-terminal domains of β3Glc-T 

Co-immunoprecipitation of conditioned media from HEK293T cells co-transfected with the N-terminal 

pSec-tagB-Δ28FLAGβ3Glc-T263 and the C-terminal pcDNA3.1-Δ263β3Glc-TΔREEL-Myc-His6 was 

performed with either anti-FLAG agarose or Ni-NTA-agarose (see Chapter 6.3). A fraction of the 

eluates was analysed by Western blot and assayed for β3Glc-T activity (see Chapters 6.2 and 6.3). 
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Results 

Expression of truncated β3Glc-T proteins 

Lesnik Oberstein and colleagues identified mutations in the gene encoding β3Glc-T in patients with 

PPS (Lesnik Oberstein et al. 2006). These mutations generate out-of-frame mRNA transcripts that 

predict severely truncated proteins lacking the β3Glc-T catalytic domain. Further, patients with PPS 

exhibit defective glucosylation of their TSRs in properdin (Hess et al. 2008). These reports suggest 

that β3Glc-T activity is absent in the patients with PPS. Neither the stability of the mutated transcripts 

nor the existence of the truncated β3Glc-T translation products is known. Since the only available 

antibody against β3Glc-T would not detect these shortened proteins, constructs encoding the 

predicted truncated β3Glc-T proteins with a 3xFLAG tag were generated and transiently transfected 

into HEK293T cells.  

Interestingly, proteins were expressed from both constructs encoding the truncated β3Glc-T 

proteins, p.Glu91LeufsX6 and p.Thr201ProfsX13, with similar levels detected inside the cell as well as 

in the conditioned media (Figure 31). The bands observed on the Western blot were ~2kDa greater 

than their expected size. In the case of the p.Thr201ProfsX13 protein this increase in molecular 

weight may be due to the addition of an N-linked glycan at Asn-124. As there is no apparent ER-

retention signal present in these truncated proteins it is surprising that approximately half of the 

expressed protein is retained inside the cells.  

 

 

 

 

 

 

 

 
Figure 31. Expression of truncated β3Glc-T proteins 

DNAs encoding the truncated β3Glc-T proteins (pGlu91LeufsX6 and p.Thr201ProfsX13), predicted from 
mutations identified in patients with PPS, were transiently transfected in HEK293T cells (lanes A, C and 
B,D, respectively). Conditioned media (CM) was immunoprecipitated with anti-FLAG agarose and the 
eluates (~3.8% of total; lanes A, B) or 25 µg of total protein from the high-speed supernatant (~1.4% of 
total; lanes C, D) was analysed by Western blot using anti-FLAG. 

 

Expression studies of the N- and C-terminal domains of β3Glc-T  

As discussed in Chapter 6.3, β3Glc-T consists of two approximately equal N- and C-terminal 

domains. Differentially-tagged constructs encoding secreted forms of these β3Glc-T domains were 

generated. The N-terminal domain (amino acids 1-263) constructs incorporated either the natural 

signal sequence from β3Glc-T or the one from IgΚ. For the C-terminal domain (amino acids 264-294) 

constructs the signal sequence from IgK was used and the ER-retrieval like sequence REEL was 

deleted from the sequence to facilitate protein expression into the culture medium. 
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Figure 32. Expression of β3Glc-T N- and C-terminal domains in HEK293T cells 

The differentially tagged β3Glc-T N- and C-terminal domain constructs were designed to allow protein 
expression into the culture media. Conditioned medium from the transiently transfected HEK293T cells 
was immunoprecipitated using either anti-FLAG agarose or Ni-NTA agarose. The eluates were analysed 
by Western blot using either anti-FLAG or anti-Myc antibodies for the detection of the N-terminal 
domains, or with the anti-β3Glc-T antibody for the detection of the C-terminal domain. The expected 
molecular weights of the proteins are indicated.  

 

The constructs were transiently transfected into HEK293T cells and the conditioned media was 

immunoprecipitated using either anti-FLAG agarose or Ni-NTA agarose, and the eluates analysed by 

Western blot (Figure 32). Proteins expressed from all the N-terminal domain constructs could be 

detected by Western blot and were stable. In all cases the observed molecular weights were higher 

than expected, which was due to an N-glycan on the N-terminal N-glycosylation site. As expected, 

there was no β3Glc-T activity observed for the N-terminal domain of β3Glc-T (Figure 33A, lane 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 33. Immunoprecipitation of the full-length and N-terminal β3Glc-T                        

from culture media 
Conditioned media from HEK293T cells transfected with pSecTag-Δ28FLAGβ3Glc-TΔREEL (lane 1), 
pSecTag-Δ28FLAGβ3Glc-TΔ263 (lane 2) or control empty plasmids (lane 3) was immunoprecipitated 
with anti-FLAG beads and the β3Glc-T activity was measured (A). The substrate consumption values 
show duplicate measurements in percentile. (B) Elutions from the immunoprecipitations were analysed 
by Western blot. 

 

Interestingly, the N-terminal domain construct encoding β3Glc-T263-3xFLAG was not only expressed 

in the conditioned media but also in the high-speed supernatant (data not shown). This high-speed 

supernatant material also lacked β3Glc-T activity (data not shown). A similar pattern of expression 
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was observed with the truncated β3Glc-T proteins (Figure 31). In contrast, the N-terminal domain 

construct encoding Δ28FLAGβ3Glc-T263 that has the IgK signal sequence in place of the β3Glc-T 

signal sequence, was only detected in the conditioned medium. It appears that the natural signal 

sequence of β3Glc-T not only directs the proteins into the secretory pathway but also influences the 

retention of the shortened forms of β3Glc-T that lack an ER-retrieval sequence.  

 HEK293T cells did not express any of the C-terminal domain proteins, either inside the cell 

(data not shown) or secreted into the culture medium (Figure 32). However, when the N- and C-

terminal domain constructs were co-transfected into HEK293T cells both the N- and the C-terminal 

domain proteins could be immunoprecipitated from the conditioned media. The anti-FLAG 

immunoprecipitated the β3Glc-T263-3xFLAG N-terminal domain (Figure 34B, top panel, lane 1) and 

the Ni-NTA pulled-down the Δ263β3Glc-TΔREEL-Myc-His6 C-terminal domain (Figure 34B, bottom 

panel, lane 3). Moreover, the N-terminal domain was detected in the C-terminal domain pull-down 

(Figure 34B, top panel, lane 3) and the C-terminal domain was detected in the N-terminal domain 

immunoprecipitation (Figure 34B, bottom panel, lane 1). These results indicate that the N- and           

C-terminal domains are non-covalently interacting forming complex. Furthermore, the expression of 

the C-terminal domain requires the co-expression of the N-terminal domain. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 34. Co-immunoprecipitation of N- and C-terminal domains  

HEK293T cells were transiently co-transfected with constructs encoding β3Glc-T263-3xFLAG and 
Δ263β3Glc-TΔREEL-Myc-His6 (lanes 1 and 3) or with empty vector alone (lane 2). The conditioned 
media was immunoprecipitated using anti-FLAG agarose (lanes 1 and2) or Ni-NTA agarose (lane 3) and 
assayed for β3Glc-T activity (A) or analysed by Western blot (B). n.d., not determined. 

 

The recovery of the C-terminal domain expression by the co-expression of the N- and C-terminal 

domains did not result in any β3Glc-T activity above background (Figure 34A, lanes 1 and 2). This 

unambiguously shows that for β3Glc-T activity, the N- and C-terminal domains need to be expressed 

within the same molecule, i.e. in the intact β3Glc-T protein. 
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Initial purification of the full-length β3Glc-T  

Pilot experiments (Figure 25A) showed that active recombinant β3Glc-T, Δ28FLAGβ3Glc-TΔREEL, 

was successfully secreted into the culture media. Conditioned media from HEK293T cells stably 

expressing Δ28FLAGβ3Glc-TΔREEL was used in an initial enzyme purification trial. The FLAG-

tagged β3Glc-T was purified from 1 litre of conditioned media using anti-FLAG agarose. The protein 

was eluted from the affinity column using 3xFLAG peptide and analysed by SDS-PAGE. After staining 

the gel with Coomassie blue, β3Glc-T could be detected although there were also many 

contaminating proteins present (Figure 35A, lane 1). A 3 M NaCl salt-wash of the anti-FLAG agarose 

was performed before elution with the 3xFLAG peptide in order to reduce the non-specifically bound 

contaminants (Figure 35A, lane 2). The β3Glc-T activity in the eluates before and after salt-wash was 

found to convert 0.93% and 0.86% of the substrate input, respectively. Hence the salt-wash did not 

result in a significant decrease in β3Glc-T activity but did reduce the complexity of the elution fraction 

(Figure 35A, lane 2). From the BSA protein standard curve, the amount of β3Glc-T protein was 

estimated as ~53 ng/µl and ~110 ng/µl for the eluates with and without salt-wash, respectively 

(Figure 35). Almost a 2-fold increase in specific enzyme activity for the salt-washed eluate 

(5.4 nmol mg-1 h-1) compared to the non-salt-washed eluate (2.8 nmol mg-1 h-1) was observed. The 

total amount of isolated β3Glc-T protein from the 1 litre of conditioned medium is estimated at 120 µg. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 35. Quantification of β3Glc-T eluted from anti-FLAG agarose 
β3Glc-T protein was purified, from 1 litre of conditioned media from HEK293T cells stably expressing 
the Δ28FLAGβ3Glc-TΔREEL, using anti-FLAG agarose. (A) 10 µl of the eluates before (lane 1) and 
after a high-salt wash (lane 2), were analysed by SDS-PAGE. A BSA protein standard curve was used 
for quantification. The gel was stained with Coomassie blue. (B) 7.5 µl of the eluates before (lane 1) 
and after a high-salt wash (lane 2), were assayed for β3Glc-T activity.  
 
 

 The eluate from the salt-washed beads was subjected to dialysis to remove the 3xFLAG-

peptide. Using the protein analysis software GPMAW, an overall net charge of β3Glc-T was 

calculated as -3 with the pH between pH 7-9. Thus, anion-exchange chromatography, at pH 8.5, was 
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used to purify β3Glc-T from the dialysed salt-washed eluate. The dialysed material bound to the 

column as no protein was detected in the flow through. Proteins were eluted from the column by 

increasing the NaCl concentration (Figure 36A). Fractions where significant A280 was detected were 

analysed by SDS-PAGE and Western blot. Initially, the peak at 27.1 min was expected to be the 

recombinant β3Glc-T protein, but only traces of protein were detected by Western blot or silver-

stained SDS-PAGE (Figure 36B).  

 

 

 

 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 

                   
  
 
 
 
 

Figure 36. Purification of affinity-purified β3Glc-T by anion-exchange chromatography 
(A) Anion-exchange chromatography was performed using a 1ml MonoQ 5/50 FPLC column. The 
dialysed sample was loaded onto the column in 20 mM Tris-HCl, pH 8.5. Proteins (A280 trace, blue line) 
were eluted from the column using a linear gradient of 0-500 mM NaCl in 20 mM Tris-HCl, pH 8.5 (pink 
line) at a flow rate of 1ml/min. (B) 10 µl (2%) from the fractions that eluted between 24.5 and 
28.5 minutes were separated on a 10% SDS-PAGE and either analysed by Western blot or silver-
stained. The load represents 0.25% of the dialysed sample. 
 

Subsequent studies in our laboratory have revealed that the 3xFLAG peptide is not efficiently 

dialysed out and that the absorbance peak at 27.1 min on the Mono Q corresponds to the 3xFLAG 

peptide. It appears that much of the β3Glc-T protein was lost during the dialysis step. The load band 

(Figure 36B) should have represented >250 ng protein but this dialysed material was poorly visible on 

the silver-stained gel and produced only a moderate signal on the Western blot. 
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Discussion 

Truncated β3Glc-T proteins in Peters Plus syndrome 

PPS is caused by truncating mutations in the gene encoding β3Glc-T (Lesnik Oberstein et al. 2006). 

The deficient glucosylation of TSRs observed in patients with PPS (Hess et al. 2008) is thought to be 

due to the loss of β3Glc-T activity. The two splicing mutations described in PPS are predicted to yield 

short β3Glc-T proteins that contain partial N-terminal domains. Constructs encoding these truncated 

β3Glc-T proteins (p.Glu91LeufsX6 and pThr201ProfsX13) were efficiently expressed in HEK293T 

cells. The expressed truncated proteins were stable and detected in the conditioned media as well as 

in the high-speed supernatant. These results lead one to speculate on the existence and possible 

roles of such truncated β3Glc-T proteins in patients with PPS.  

The truncated proteins were not assayed for β3Glc-T activity but are likely to be inactive as 

observed for the β3Glc-T N-terminal domain (amino acids 1-263). In the previous chapter an 

association between β3Glc-T and POFUT2 was shown that inhibited POFUT2 activity. In PPS, it is 

conceivable that complex formation would not be possible between the truncated forms of β3Glc-T 

and POFUT2 resulting in elevated POFUT2 activity.  

Until the function of the N-terminal domain of β3Glc-T is determined it is difficult to speculate 

on the roles of the truncated forms of β3Glc-T. It is also unclear if the truncated β3Glc-T proteins 

functionally represent shortened N-terminal domain proteins. Considering that the truncated β3Glc-T 

proteins lack disulphide bridges and contain unrelated β3Glc-T sequences at their C-terminus arising 

from the frameshifts, these truncated proteins may actually reveal some novel functions. Since the 

truncated proteins are stable they could be used in immunoprecipitation experiments as a way to 

identify potential binding partners.  

The β3Glc-T signal sequence appeared to enhance the retention of various full-length and 

partial β3Glc-T N-terminal domain proteins inside the cell (high-speed supernatant fraction). It is 

unclear if this is due to self-association with the endogenous full-length β3Glc-T or if there is an 

additional role attributable to the natural β3Glc-T signal sequence. There is growing evidence that 

signal peptides contain a significant amount of functional information apart from directing the protein 

into the secretory pathway. For example, the signal peptide can function as a trans-acting factor to 

promote Lassa virus GP-C proteolytic processing (Eichler et al. 2003). Signal sequences have also 

been shown to promote protein oligomerisation (Benach et al. 2003) and prevent protein misfolding 

(Szabady et al. 2005).  

Expression of β3Glc-T N- and C-terminal domains  

Internal sequence homology exists between the β3Glc-T N- and C-terminal domains (Figure 23), yet 

only the C-terminal domain aligns with the 3D-structure of Manic Fringe. Recently, the Global Trace 

Graph (GTG-DEEP; http://ekhidna.biocenter.helsinki.fi/gtg/start) algorithm became available that 

performs searches of very distant homologues to the query protein sequence and identifies protein 

folds (Heger et al. 2007). Using this algorithm, the β3Glc-T N-terminal domain aligned to the PDB 
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structures of several galectins, a family of compact globular galactose-binding proteins. This 

alignment of amino acids 96-240 from β3Glc-T with the galectins gave a relatively high score (925) 

despite the large 50 amino acid insertion in the β3Glc-T sequence. The purification of the β3Glc-T     

N-terminal domain and subsequent analysis by isothermal calorimetry should clarify whether this 

domain has intrinsic sugar-binding activity.  

The catalytic C-terminal domain of β3Glc-T could not be expressed independently of its        

N-terminal domain. Co-transfection of β3Glc-T N- and C-terminal domain constructs in HEK293T cells 

did rescue the expression of the C-terminal domain but not its β3Glc-T activity (Figure 34). This 

suggests that in the full-length β3Glc-T molecule, the folding of the N- and C-terminal domains is 

inter-dependent to maintain β3Glc-T activity, possibly through interdomain disulphide-bond formation. 

It was not possible to express the C. elegans homologue of β3Glc-T, zc250.2, in mammalian 

HEK293T cells (data not shown). The C. elegans β3Glc-T protein lacks the first 106 amino acids from 

its N-terminal region compared to the human β3Glc-T. It could be that the absence of this portion of 

the N-terminal domain prevents the expression of the C. elegans β3Glc-T in mammalian cells. 

Another possibility is that either a specific co-factor or a chaperone molecule in C. elegans needs to 

be present to facilitate the protein expression in an orthologous expression system. This inter-species 

discrepancy has been observed with core 1 β1,3-galactosyltransferase (T-synthase). The mammalian 

T-synthase can only be expressed in mammalian expression system, where the specific molecular 

chaperone, Cosmc, is present (Ju et al. 2002).  

The β3Glc-T N-terminal domain can be stably expressed and is able to support the 

expression of the C-terminal domain when co-transfected, suggesting that the N-terminal domain is 

acting as an internal chaperone. A similar phenomenon was observed with the Golgi β1,4-

galactosyltransferase, where the N-terminal stem region showed a positive effect on the in vitro 

folding of the C-terminal catalytic domain (Boeggeman et al. 2003). 

Purification of full-length β3Glc-T 

When β3Glc-T was expressed in the soluble fraction (high-speed supernatant), the activity was        

5-times higher than that measured for the endogenous enzyme. An increase in β3Glc-T specific 

activity was expected when β3Glc-T was secreted and immunoprecipitated from the conditioned 

media. However, despite the relatively high amount of recombinant protein (Δ28FLAGβ3Glc-

TΔREEL; ~0.12 mg/l) immunoprecipitated from the conditioned media, the specific β3Glc-T activity 

was surprisingly low, with still only a 5-fold increase over the endogenous activity. Assuming that the 

substrate concentrations in the activity assay are saturating, the calculated turnover number (kcat) of 

the enzyme would be 10-4 sec-1, which is 1000-fold less active than that calculated for POFUT2 

(Dominique Klein, unpublished observations). There can be several reasons for the low specific 

activity of the secreted Δ28FLAGβ3Glc-TΔREEL protein. 

It has been shown for several membrane-bound Golgi glycosyltransferases that dimerisation 

plays a role in regulating their activities. Dimers of α1,3-fucosyltransferase VI (Borsig et al. 1998) and 

the Galβ1,3-glucuronosyltransferase (Ouzzine et al. 2000) are catalytically active. In contrast, 

dimerisation of the sialyltransferase ST6Gal1 results in a conformational change, which leads to 
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decreased affinity for its nucleotide sugar donor and consequently to diminished activity (Ma et al. 

1996). My preliminary experiments indicate that the secreted β3Glc-T dimerises and that the            

N-terminal domain alone can support dimerisation (data not shown). It would be worthwhile to 

investigate the ratio between the dimeric and monomeric β3Glc-T, determine how and where the 

dimerisation occurs and establish if the catalytic activity is preferentially associated with a particular 

form. 

 Another explanation for the low specific activity of the secreted β3Glc-T may be that it cannot 

fully function when it is removed from the ER, its natural working environment. It is possible that 

β3Glc-T requires additional component(s) for its full activity. Thus, overexpression of β3Glc-T in any 

cellular systems would not be optimal if the co-factor(s) would be rate-limiting for the production of 

active β3Glc-T. To determine the existence of the additional factor(s), the enzyme purification should 

be performed from a cell line expressing endogenous β3Glc-T at a level which can be detected by the 

anti-β3Glc-T antibody. Affinity columns containing TSR-fucose or UDP could be employed for the 

purification. The semi-purified material could be analysed by MS to identify β3Glc-T binding partners, 

which might be the co-factor(s) necessary for its full activity. 
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7. SUMMARY AND OUTLOOK  
Any one of the three main players in glycobiology (Figure1) is an entry point for research into this 

fascinating field. In 2001, a unique Glcβ1,3Fuc disaccharide was discovered on the TSRs of TSP-1 

(Hofsteenge et al. 2001). Five years later, the glycosyltransferases involved in this O-fucosylation 

pathway were revealed, starting with POFUT2 (Luo et al. 2006b) and now part of the work in this 

thesis has identified the β3Glc-T that completes the glycan structure (Kozma et al. 2006; Sato et al. 

2006). Severe truncating mutations in β3Glc-T, disrupt the synthesis of Glcβ1,3Fuc and cause the 

developmental disorder Peters Plus syndrome (PPS) (Lesnik Oberstein et al. 2006). 

Searching for the missing pieces in the glycobiology puzzle… 
It is likely that there is a third player, a lectin, involved in TSR glycobiology. Some ER 

glycosyltransferases that recognise correctly folded substrates may play a role in the protein folding 

quality control mechanism (Okajima et al. 2005). If β3Glc-T is assisting in the supra-domain assembly 

of multiple TSRs, then perhaps the addition of the Glcβ1,3Fuc disaccharide could act as a specific 

export signal for an ER lectin. Alternatively, lectins in the blood or on the surface of cells may 

recognise this sugar modification on secreted glycoproteins. We now have the tools available to 

generate different TSR glycoforms that could be used in the search for a Glcβ1,3Fuc disaccharide-

specific lectin. The in vitro production currently uses the bacterially expressed TSR and builds up the 

O-fucosylated glycan in a step-wise manner with the purified recombinant glycosyltransferases.  

It is also feasible to do similar experiments in cell culture systems where the additional 

modifications of TSRs, notably C-mannosylation would also be produced. Characterised TSR 

glycoforms will help to elucidate the biological significance of the O-glycosylation modification. It 

would be interesting to determine if particular TSP-1 glycoforms affect its activation of TGFβ or alters 

its binding to CD36 and ability to activate apoptosis in endothelial cells. 

Abnormal O-glycosylation was detected in properdin TSRs from patients with PPS (Hess et 

al. 2008), but not in unrelated O- and N-linked glycosylation pathways (Lesnik Oberstein et al. 2006). 

Only a modest decrease (1.3-1.7-fold) in the serum properdin levels from patients with PPS was 

observed which is unlikely to be of any significance for the disease (Hess et al. 2008). Whilst 

properdin remains a useful reporter for the glycosylation status in PPS it is expected that many of the 

other 140 human TSR-containing proteins will also lack glucose and that this deficiency may affect 

the biological activity of some key glycoproteins in PPS. Inhibiting the fucosylation (and thus the 

glucosylation) in the TSRs of ADAMTS13 (Ricketts et al. 2007) and ADAMTS-like 1 (Wang et al. 

2007), decreased their secretion in cell culture. It is unknown if the lack of the glucose alone would 

have any consequence on the secretion of TSR-containing proteins. 

Clearly there is a need to be able to monitor the Glcβ1,3Fuc disaccharide on more than a few 

proteins. Although we know this modification occurs in TSRs it may exist elsewhere. Sometimes so-

called “rare” forms of protein glycosylation are only thought to be rare because the tools required for 

their detection are unavailable, or they make up a minor component in an abundant source. An 

antibody against the Glcβ1,3Fuc disaccharide would be a useful reagent to develop. The antigen 
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could be prepared in vitro using the purified recombinant glycosyltransferases and either coupled to a 

carrier for immunisation or used to screen phage display libraries.  

 Another open approach to identify novel O-fucosylated proteins may be possible through 

the adaptation of some recently available glycan tagging methods. Here chemically modified sugars 

are taken up by cells and incorporated into glycoproteins and glycolipids via the normal biosynthetic 

pathways. The modified glycoconjugates are then detected using a specific chemically coupled probe, 

allowing enrichment of the tagged glycoproteins and their subsequent analysis by mass spectrometry 

(Laughlin et al. 2006). There are a variety of azide-specific chemistries available but the least 

cytotoxic for probing fucose incorporates an 6-alkyne fucose analogue and labels by Cu(I) catalysed 

azide–alkyne condensation, so called “click chemistry” (Hsu et al. 2007). The ability of POFUT2 to 

utilize GDP-fucose analogues, with C6 modifications on the sugar ring, could be verified through the 

expression of a TSR module in cells labelled with the alkyne fucose and analysis by methods 

established in our laboratory. The judicious use of an appropriate cell line could enhance the 

incorporation of the fucose into O-fucosylated glycans rather than N-linked structures. 

Mutations in the gene encoding β3Glc-T (B3GALTL) 
As discussed in Chapters 6.3 and 6.4, the further characterisation of β3Glc-T in control cells and 

healthy organisms will help our understanding of TSR glycobiology in disease states. In particular, we 

need to determine the function of the β3Glc-T N-terminal domain and that of the truncated β3Glc-T 

proteins predicted to exist in PPS.  

The diagnosis of PPS is difficult as the spectrum of symptoms is varied and there are no 

formal diagnostic criteria. Patients can now be screened to identify mutations in the gene encoding 

β3Glc-T (B3GALTL). The majority of patients with PPS are homozygous for a hot-spot mutation in 

intron 8 (c.660 +1G>A) but additional mutations are described in GeneReviews 

(http://www.geneclinics.org) and in the Leiden Open Variation Database 

(http://chromium.liacs.nl/lovd/index.php?select_db=B3GALTL). Interestingly, in two clinically 

confirmed cases of PPS, one patient was homozygous for a truncating mutation in exon 13 

(p.Tyr366X) (Table 4), while the other patient carried the c.1207G>A (p.Val403Ile) point mutation on 

one allele. As more patients suspected of having PPS are screened, the number of allelic variations in 

the gene encoding β3Glc-T is increasing.  
 

 
Table 4. B3GALTL allelic variations found in PPS. 

 

DNA change (reported cases) Expected protein Reference 

c.347+5G→A/ c.660+1G→A (2) p.Glu91LeufsX6 (Lesnik Oberstein et al. 2006) 

c.660+1G→A/ c.660+1G→A (36) p.Thr201ProfsX13 (Lesnik Oberstein et al. 2006) 

c.1098T→A/ c.1098T→A(1) p.Tyr366X GeneReviews 

deletion of one of the alleles, with a  
c.660+1G→A mutation on the other allele (2) p.Thr201ProfsX13 (Lesnik Oberstein et al. 2006) 

c.1207G→A (1) p.Val403Ile Unpublished data 
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Out of the other 24 unconfirmed cases of PPS, the majority have mutations on a single allele 

in the non-coding region where the impact on the protein is difficult to predict. Three patients from this 

group have point mutations that would lead to the following substitutions, Val245Met; Gly369Ser; and 

Lys370Glu. It would be interesting to determine what impact these mutations have on the β3Glc-T 

activity as haploinsufficiency or variations in β3Glc-T may increase glaucoma susceptibility in 

individuals that do not have PPS (Lesnik Oberstein et al. 2006).  

Recently, a group in the US screened seven patients with PPS for the two major splice site 

mutations (c.347+5G>A and c.660+1G>A) and only found two patients homozygous for c.660+1G>A, 

and one patient heterozygous for the same mutation (Reis et al. 2007). A complete screening of the 

entire β3Glc-T gene is currently in progress for these seven patients. In addition, another group has 

identified a patient with PPS that does not carry mutations in the β3Glc-T gene (Dr. E. Morova, 

University of Nijmengen, the Netherlands, personal communications) and shows no apparent defect 

in the TSR glycosylation (J. Hofsteenge and D. Hess, unpublished observations). These later results 

suggest that there may be other components, apart from β3Glc-T, associated with PPS. 

Alternative splicing of β3Glc-T 
RNA splicing is carried out by spliceosomes, ribonucleoprotein complexes that recognise the exon-

intron junctions and catalyse the precise removal of introns and the joining of exons. The pre-mRNA 

can yield many different mRNA leading to the translation of different protein isoforms with varied and 

sometimes conflicting functions. It is estimated that 74% of all human genes are alternatively spliced 

(Johnson et al. 2003). A search of the Alternative Splicing and Transcript Diversity 1.1 database 

(http://www.ebi.ac.uk/astd/main.html) revealed four different β3Glc-T protein isoforms, suggesting the 

presence of additional properties for β3Glc-T. Maintaining the normal ratio of alternative splice 

isoforms is important in preventing the onset of disease (Garcia-Blanco et al. 2004). The ability to 

monitor the levels of β3Glc-T isoforms in healthy people and truncated forms in PPS may be 

informative. 

Greater than 15% of disease-causing mutations result in splicing defects (reviewed in 

(Faustino et al. 2003)). These mutations may lie in the recognition sequence for splicing 

(donor/acceptor splice sites, enhancer/silencer elements) or in the splicing factors that associate with 

these splice sequences. The family of SR (Ser/ Arg-rich) proteins are major splice factors that bind to 

regulatory elements in the pre-mRNA and recruit splicing machinery to splicing signals. Titration of 

these SR proteins affects the use of alternative splice sites. In Drosophila, the splicing factor 

SRp55/B52 controls eye size through the production of two alternative splice forms of the master 

control gene, eyeless (Fic et al. 2007). It is noteworthy that Pax-6, the human homologue of eyeless, 

also produces two alternative spliced isoforms that differ in their DNA-binding activity (Epstein et al. 

1994).  

In PPS the most prevalent mutations in the gene encoding β3Glc-T result in a lost splicing 

function by destroying a 5’ splice site sequence. Although this is a particularly strong mutation, some 

splicing mutations are occasionally leaky and produce both the mutant and wild type transcripts from 

the same allele. Depending on the level of missed splicing a certain level of normal protein may be 

produced that could have a dramatic effect on the disease phenotype. In addition, since splicing 
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outcomes can be very cell-type specific, it would be worthwhile checking several purified cell types 

from patients with PPS for levels of wild-type β3Glc-T protein and activity. 

There are a growing number of strategies aimed at altering splicing in human disease-causing 

genes, including antisense oligonucleotides (Hua et al. 2008), RNA reprogramming (Garcia-Blanco et 

al. 2004) and low molecular weight compounds (Yeo 2005). In a small compound screen the plant 

cytokinin kinetin was identified as a strong splicing enhancer for the IKBKAP gene that is involved in 

the splicing disorder, familial dysautonomia (Hims et al. 2007). The kinetin activity required a CAA 

element at the end of the affected IKBKAP exon 20. Interestingly, this element is also conserved in 

exon 8 of the β3Glc-T gene, the commonly omitted exon in PPS. Hence it would be interesting to test 

similar compounds in PPS cells for the enhanced inclusion of the β3Glc-T exon 8. 

Developing an animal model for PPS 
Patients with PPS may share the same mutation in the gene encoding β3Glc-T but the symptoms and 

their degree of severity varies. Treating the symptoms in PPS usually involves corneal transplantation 

to preserve the vision and some patients respond to growth hormone. The extent of mental 

retardation is particularly varied in PPS and is progressive, which suggests a potential therapeutic 

window (http://www.geneclinics.org). 

How can a single genetic mutation in β3Glc-T (B3GALTL) be responsible for the various 

clinical manifestations observed in PPS? As discussed above, if β3Glc-T’s crucial biological role is 

through its enzymatic activity then the pleiotropic symptoms found in PPS may be due to the altered 

properties of many key glycosylated TSR-containing proteins. It could be that the time and location of 

β3Glc-T activity is required for very specific developmental events. PPS may result from abnormal 

neural crest development (Maillette de Buy Wenniger-Prick et al. 2002). One of the major symptoms 

described in PPS is the anterior eye-chamber disorder, Peters’ anomaly. The neural crest contributes 

many structures in the eye, including the stroma and endothelium of the eye and the stroma of the 

iris, which are all disrupted in PPS. In order to understand if β3Glc-T is expressed in neural crest-

derived cells, its gene and protein expression pattern in the developing eye is required. If β3Glc-T is 

found to be expressed during the appropriate time for eye development, then it is technically possible 

to selectively inactivate it in neural crest stem cells (Ittner et al. 2005). This approach would hopefully 

provide a model to study Peters’ anomaly, if not PPS. 

Deletion of the gene encoding β3Glc-T in the mouse may reveal the enzyme’s biological role in an 

organism. An alternative approach to try and gain some insight into the role of β3Glc-T in disease 

would be to try and make a mouse model of PPS. Some very elegant approaches in developing 

mouse models of CDG include engineering animals harbouring the equivalent hot-spot mutation 

observed in CDG patients (Wang et al. 2001; Cromphout et al. 2006; Thiel et al. 2006). This is 

important as most CDGs result from hypomorphic alleles rather than complete loss of function. Thus 

for a mouse model of PPS, donor splice mutations in the gene encoding β3Glc-T that result in an 

exon 5 or exon 8 skip with the equivalent frameshifts observed in the PPS patients, could be 

envisioned. These mice could be investigated for the multiple symptoms seen in PPS. 
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