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ABBRIVIETATIONS   
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SUMMARY  

Background: Healthy human pregnancies are accompanied by a mild systemic maternal 

inflammatory response, which includes activation of peripheral blood monocytes. This 

generalized inflammation is exaggerated in preeclampsia, a placenta-dependent disorder 

specific to human pregnancies. It has been proposed that placental syncytiotrophoblast 

membrane microparticles (STBM), which are released into the peripheral blood, might 

contribute to the maternal response in normal pregnancy and preeclampsia.  

Aim: The aim of this work was to assess the inflammatory properties of STBM generated in 

vitro from human term placentas by four different approaches which should mimic 

physiologic or patho-physiologic conditions, and their mode of action on human monocytes in 

vitro.   

Methods: STBM were prepared by: (1) placental explant cultures of villous tissue incubated 

at 20% O2/5% CO2 (air) at 37°C for 72 hours (eS20); (2) perfusion of the maternal side of a 

placental cotyledon (pS); (3) placental explant cultures of villous tissue incubated at 3% 

O2/5% CO2 (hypoxia) at 37°C for 72 hours (eS3); and (4) mechanical dissection of villous 

tissue (mS). In all approaches, STBM were isolated by serial high-speed centrifugation. 

STBM were co-incubated with either the human monocytic cell line Mono Mac 6 or human 

peripheral blood monocytes. In some cases, agents which inhibit cellular functions or 

signalling pathways were used. Analysis of viability, phenotype and function were performed 

by real-time PCR, flow cytometry, ELISA and fluorescence microscopy.    

Results: Viability of Mono Mac 6 cells was not impaired following treatment with STBM. 

However, STBM only induced a marginal response in Mono Mac 6.  None of the STBM 

population affected the viability of primary monocytes. eS3 and mS decreased the expression 

of CD54 on peripheral blood monocytes, but did not induce the secretion of IL-1β, IL-6 and 

IL-8. However, pS and eS20 up-regulated the cell surface expression of CD54 on primary 

monocytes and stimulated the secretion of IL-1β, IL-6 and IL-8 in a dose- and time-dependent 
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manner. Interestingly, eS20 derived from normal and preeclamptic placentas stimulated 

monocyte activation to similar degrees.    

eS20 induced the transcription of several NF-κB responsive genes, including IL-6 and IL-8, 

and the secretion of IL-6 and IL-8 was reduced upon treatment with NF-κB inhibitors.  

eS20 was located at the monocytic cell surface and a phagocytosis inhibitor did not reverse the 

eS20 induced production of IL-6 and IL-8. 

Primary monocytes and the non-responding Mono Mac 6 cells expressed toll like receptors 

(TLRs) differently. Pre-incubation of primary monocytes with an inhibitor of intracellular 

TLR signalling reduced the inflammatory response triggered by eS20.   

Conclusions: STBM populations evoked neither a proinflammatory nor an anti-inflammatory 

phenotype in Mono Mac 6 cells. However, STBM prepared at conditions which are believed 

to mimic the physiologic situation in human pregnancy (eS20 and pS) triggered the secretion 

of IL-1β, IL-6 and IL-8 and up-regulated the expression of the adhesion molecule CD54 on 

peripheral blood monocytes. These findings indicate that Mono Mac 6 cells are not the 

appropriate cells to study the interaction between monocytes and STBM.   

STBM prepared at non-physiologic (mS) and hypoxic (eS3) conditions, which are thought to 

mimic the patho-physiologic situation in preeclampsia, did not induce an inflammatory 

response in peripheral blood monocytes. In addition, the observation that eS20 derived from 

normal as well as from preeclamptic placentas triggered an equally strong and dose-dependent 

inflammatory response in primary monocytes, suggests that there are no or only minor 

qualitative differences between the microparticles. These findings presume that the overt 

maternal inflammation associated with preeclampsia may be due to the higher concentration 

of circulating STBM, rather than to a qualitative difference between microparticles released 

from normal and patho-physiologic placentas.  

The results also suggest that the inflammatory reaction in monocytes may be initiated by the 

attachment of STBM to the cell surface and the activation of TLRs. In turn, NF-κB mediates 
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transcription of proinflammatory genes, including IL-1β, IL-6, IL-8 and CD54. The altered 

expression of CD54 may modulate the adhesion properties of monocytes, whereas the 

secretion of IL-1β, IL-6 and IL-8 could recruit further immune cells, leading to generalized 

inflammation. 
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INTRODUCTION 

 

1. Human placentation 

 

Although reproduction is a fundamental feature of life, in humans it is paradoxically a quite 

inefficient process. The probability of conception per menstrual cycle just accounts for 30% 

and only 60% of human pregnancies are progressing beyond week 20 of gestation [1, 2]. 

Successful human pregnancy relies on well coordinated complex processes, including 

implantation of the fertilized egg into the hormonally primed uterus, followed by placentation 

to ensure fetal supply with oxygen and nutrients derived from the maternal circulation. 

Furthermore, the fetal and placental oxygen demand and the interactions between maternal 

and feto-placental cells are changing throughout gestation. Any disturbance in this well 

controlled development, can lead to pregnancy disorders or even pregnancy loss.  

 

1.1. Implantation 

During the passage of the fallopian tube, the fertilized ovum (zygote) divides to form the 

morula (12 to 16 cells). Six to seven days following conception, the 128 cell stage mass 

(blastocyst) starts to implant into the uterine wall (Figure 1). Human implantation can be 

divided in three steps. The first unstable adhesion of the blastocyst is called apposition and is 

characterized by the contact between microvilli of the trophoblast cells and the large and 

smooth projections (pinopodes) of the uterine epithelium. During the stable adhesion these 

interactions are increasing, leading to the final step of implantation, namely the invasion of 

the blastocyst into the uterus. As soon as the blastocyst had penetrated the uterine wall, the 

trophoblast cells, which form the extra-embryonic tissue covering the inner cell mass, which 
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is preset to develop into the embryo, migrate deeper into the uterine stroma to form the 

placenta (Figure 1).  

 

Figure 1: Implantation. Successful invasion of the blastocyst into the maternal uterus involves 

several highly regulated processes. Oxygen tension, transcription factors and growth factors/cytokines 

control trophoblast proliferation and differentiation [3]. 

 

1.2. Haemochorial placentation 

Placentation is the process of the development of the placenta during pregnancy and is the key 

event to ensure the appropriate transfer of nutrients and oxygen from the mother to the 

growing fetus.  

Among mammalian pregnancies, there exist several types of placentation, which highly vary 

in respect of the invasive potential of the placental cells into the uterus (Figure 2) [4]. 

Epitheliochorial placentation involves no invasion at all. In endotheliochorial placentas the 

trophoblast cells are in direct contact with the endothelium of maternal vessels.  
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Several mammals, including rodents, monkeys and humans, have the invasive haemochorial 

placentation. However, rodents and monkeys are not complete models for human 

placentation, since the intermixture of fetal and maternal cells is highest in humans. 

 

 

Figure 2: The three major types of placentation. Depending on the mode of placentation, the 

relationship between maternal blood cells and fetal trophoblast cells is different. (a) Epitheliochorial 

placentation is characterised by the apposition of the uterine epithelium and the trophoblast cell layer, 

in the absence of trophoblast invasion into the maternal tissue and vessels. (b) In endotheliochorial 

placentation the uterine epithelial cell layer is ruptured and trophoblasts are in direct tangency with the 

maternal endothelium. (c) The most invasive type of placentation is the haemochorial one, where 

trophobalst cells are penetrating maternal vessels and the syncytiotophoblast is in direct contact with 

maternal blood in the intervillous space [4]. 

  

During human placentation, there are three main changes in the uterus. First, the uterine 

mucosa (endometrium) differentiates into a dense cellular matrix (decidua) by a process 

called decidualization [5]. Second, trophoblast cells are invading the decidua and the 

underlying myometrium [5]. Third, the uterine spiral arteries are transformed into widened, 

low resistance vessels, to direct an increased maternal blood flow into the placenta [5]. This 

enlargement is mainly done by extravillous trophoblast cells (EVTs), comprising interstitial 

and endovascular EVTs, which penetrate maternal vessels, disrupt and replace the 
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endothelium and some parts of the muscle coat, resulting in a pseudo-endothelium being half 

fetal and half maternal [6].  

Beside EVT cells, there exist the villous trophoblast cells, which form the cellular shell of the 

villous tree. The core fetal stroma, containing fetal vessels, which merge into the umbilical 

vein or the two umbilical arteries, is covered by germinative and proliferative villous 

cytothrophoblasts (Figure 3). The fusion of the mononuclear cytotrophoblasts ensures the 

formation and renewal of the external multinucleated and non-dividing syncytiotrophoblast 

layer (Figure 3). The syncytiotrophoblast is in constant contact with the maternal blood in the 

intervillous space and as a counterbalance to the syncytial fusion, old cellular material of the 

syncytiotophoblast is steadily released into the maternal blood (Figure 3). In healthy human 

pregnancies this release most likely involves apoptotic mechanisms, characterized by well 

controlled, consecutive morphological changes. Syncytiotophoblast debris, known as 

syncytial knots, morphologically resemble apoptotic bodies, except that they contain several 

nuclei [7-9].  

Towards term, the syncytiotrophoblast reaches a surface area of 12-14m
2
 and several grams of 

syncytial knots are released daily into the maternal blood [10, 11]. 

 

 

Figure 3: Syncytiotrophoblast turnover. The 

syncytiotophoblast is steadily renewed by the 

underlying germinative and proliferative 

cytotrophoblast cells. Syncytial fusion of 

differentiated mononuclear cytotrophoblasts leads 

to the formation of the non-proliferative 

multinucleated syncytiotrophoblast. Due to 

normal cell turnover, cellular and subcellular 

syncytiotrophoblast material is released into the 

intervillous space [12]. 
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1.3. Physiological hypoxia in early placentation

Early human placentation is not truly haemochorial. In fact, w

uterine tissue, they also obstruct the tips of the spiral arteries by forming cellular plugs 

(Figure 4) [13]. On the one hand, this cell shell firmly connects placenta and maternal tissue. 

On the other hand, these plugs filter maternal blood and strongly limit blood flow into the 

intervillous space. In this stage, placental villi only contain few capillary vesse

low feto-placental blood flow. Only few spiral arteries in the periphery are never plugged by 

EVT and allow a limited maternal blood flow into the placenta 

the amniotic cavity and the placenta are spatially separated by the exocoelomic cavity (Figure 

4). All these anatomical changes mediate a hypoxic environment, which is essential for the 

development of the fetus. Fetal organogenesis is very susceptible to teratogenic damage by 

reactive oxygen free radicals (OFRs) and hypoxia is needed to keep the full pluripotency of 

stem cells [14].        

 

 

Physiological hypoxia in early placentation 

Early human placentation is not truly haemochorial. In fact, when EVT start to invade the 

uterine tissue, they also obstruct the tips of the spiral arteries by forming cellular plugs 

. On the one hand, this cell shell firmly connects placenta and maternal tissue. 

On the other hand, these plugs filter maternal blood and strongly limit blood flow into the 

intervillous space. In this stage, placental villi only contain few capillary vesse

placental blood flow. Only few spiral arteries in the periphery are never plugged by 

EVT and allow a limited maternal blood flow into the placenta [13]. Additionally, the fetus in 

the amniotic cavity and the placenta are spatially separated by the exocoelomic cavity (Figure 

4). All these anatomical changes mediate a hypoxic environment, which is essential for the 

fetus. Fetal organogenesis is very susceptible to teratogenic damage by 

reactive oxygen free radicals (OFRs) and hypoxia is needed to keep the full pluripotency of 

Figure 4: Early human pregnancy (End of 2

month). Obstruction of the tips of the spiral arteries

by extravillous trophoblast cells prevents the flow of 

maternal blood into the intervillous space of the 

placenta, resulting in a hypoxic environment for the 

placenta and the growing fetus

arteries in the periphery are never plugged allowing a 

minimal maternal blood flow into the intervillous 

space (white arrows). M = myometrium, D = decidua, 

P = placenta, ECC = exo-coelomic cavity, AC = 

amniotic cavity, SYS = secondary yolk sac 
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. On the one hand, this cell shell firmly connects placenta and maternal tissue. 

On the other hand, these plugs filter maternal blood and strongly limit blood flow into the 

intervillous space. In this stage, placental villi only contain few capillary vessels, leading to a 

placental blood flow. Only few spiral arteries in the periphery are never plugged by 

. Additionally, the fetus in 

the amniotic cavity and the placenta are spatially separated by the exocoelomic cavity (Figure 

4). All these anatomical changes mediate a hypoxic environment, which is essential for the 

fetus. Fetal organogenesis is very susceptible to teratogenic damage by 

reactive oxygen free radicals (OFRs) and hypoxia is needed to keep the full pluripotency of 

Figure 4: Early human pregnancy (End of 2
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Obstruction of the tips of the spiral arteries 

by extravillous trophoblast cells prevents the flow of 

maternal blood into the intervillous space of the 

placenta, resulting in a hypoxic environment for the 

placenta and the growing fetus. Only few spiral 

arteries in the periphery are never plugged allowing a 

minimal maternal blood flow into the intervillous 

space (white arrows). M = myometrium, D = decidua, 

coelomic cavity, AC = 

amniotic cavity, SYS = secondary yolk sac [13]. 



INTRODUCTION 14

1.4. Physiological placental oxidative burst at the end of the first trimester 

After week 12 of gestation the decidual partial pressure of O2 (PO2) is two to three times 

higher than between week 8 and 10 [15, 16]. This rise in the intraplacental PO2 at the end of 

the first trimester triggers an oxidative burst in the periphery of the early placenta [16]. This 

higher local O2 concentration damages the trophoblasts and leads to villous degeneration, 

inducing the formation of fetal membranes [17]. 

The increased placental oxygenation triggers trophoblast growth and differentiation, and 

invasive EVT extensively transform the spiral arteries, including the myometrial segments 

[13]. Spiral arterial rearrangement is complete by week 20 and allows an increased maternal 

blood supply of the placenta.  
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2. Immunology of human pregnancy 

 

2.1. Immunological interfaces 

The invasive nature of haemochorial placentation implicates direct contact of maternal and 

fetal cells. There are two immunological interfaces between mother and child in human 

pregnancy (Figure 5). Interface 1 involves the local interactions between maternal cells and 

placental trophoblasts in the decidua and is the main feto-maternal interface during early 

pregnancy (Figure 5A) [18]. Interface 2 is set up towards the end of the first trimester with the 

onset of maternal blood flow into the placental intervillous space and takes place between the 

syncytiotrophoblast, the outer lining of the placenta, and circulating maternal blood cells 

(Figure 5B) [16, 18, 19]. Due to the large size of the placenta, the second interface becomes 

the main interface towards term pregnancy [18]. The syncytiotrophoblast constantly releases 

placentally-produced factors, including hormones, cytokines, angiogenic factors and 

trophoblast debris, into the intervillous space, from where they are carried with the maternal 

blood flow into the entire circulation (extended interface 2) (Figure 5C) [18]. 
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Figure 5: Immunological feto-maternal interfaces in human pregnancy. (a) Interface 1 takes place 

between decidual immune cells and fetal trophobalst cells and is the main feto-maternal interface in 

early human pregnancy. (b) Towards end of pregnancy, interface 2, implying interactions between the 

syncytiotrophoblast and circulating maternal blood cells, becomes the predominant feto-maternal 

interface. (c) The syncytiotrophobalst constantly releases cellular and subcellular trophoblast debris, 

including STBM, into the maternal blood. Thus, STBM continuously encounter maternal blood cells 

throughout the circulation, described as extended interface 2. NK = NK cells, uNK = uterine NK cells, 

L = lymphocytes, M= macrophages, Mo = monocytes, DC = dendritic cells, Tx = invasive extravillous 

trophoblasts, S = stromal cells, SPA = spiral arteries, E = endothelial cells, STBM = 

syncytiotophoblast microparticles [18]. 
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2.2. Immunological interactions 

In immunological term, the growing fetus in the uterus is considered as a semi-allograft, 

having half of the genes from the mother (maternal) and the other half from the father 

(paternal). Interestingly, in healthy human pregnancies the fetal and maternal cells are 

coexisting, without leading to the rejection of the developing fetus. This feto-maternal 

tolerance is believed to be carried out by several mechanisms used by the maternal immune 

system and placental trophoblast cells locally at interface 1, but also systemically in the 

maternal circulation.    

 

2.2.1. Predominant Th2 immunity 

In 1993 Wegmann and co-workers suggested, that the human fetus is not rejected by the 

maternal immune system thanks to a prevalent production of T helper cell 2 (Th2) cytokines, 

both systemically and in the placental bed [20-22]. Th2 mediators, such as interleukin (IL)-4, 

IL-5, IL-6, IL-10 and IL-13, attenuate the production of proinflammatory Th1 cytokines, such 

as IL-2 and interferon (IFN)-γ. Thereby, the Th2 response interferes with the stimulation of 

CD8
+
 cytotoxic T-cells and natural killer (NK)-cells, which may be harmful for the fetal cells 

[20].  

The Th2 cytokine IL-4 is continuously expressed by the syncytiotrophoblast, cytotrophoblast 

cells and decidual macrophages [23, 24]. In addition, the spontaneous secretion of the Th1 

mediator IL-12 by peripheral blood mononuclear cells (PBMC) from pregnant women is 

significantly decreased than in non-pregnant controls [25]. However, few years ago, the 

question raised, if this bias towards Th2 cytokine secretion is important for successful 

pregnancy, or if it is just a secondary effect [26]. Although, in humans, a propensity to Th1 

immune reactions has been reported in pregnancy complications, such as recurrent 

spontaneous abortions, so far, a T-cell mediated attack of the fetus, triggered by a shift 

towards Th1 immunity has only been shown in an abortion-prone mouse model [27, 28]. 
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Thereby, the abortions in the matings of CBA/J females with DBA/2 males were mediated by 

the production of the Th1 cytokine TNF-α in the decidua and could be hindered by the Th2 

cytokine IL-10 [28, 29]. 

 

2.2.2. Absent trophoblast expression of MHC class II and classical polymorphic MHC 

class I molecules  

Major histocompatibility complex (MHC) class I and class II molecules present peptides, 

derived from pathogens or foreign cells, on the cell surface of antigen presenting cells (APCs) 

to cytotoxic CD8
+
 T-cells and helper CD4

+
 T-cells, respectively [30]. MHC class I and II 

themselves are recognized as non-self antigens by the immune cells of a recipient of an 

allogeneic organ graft [31, 32]. Thus, an analogy could be drawn between the fetus and an 

allograft. However, all human trophoblast cell subsets completely lack MHC class II 

expression and display an unconventional pattern of MHC class I molecules [4]. The classical 

polymorphic MHC class I molecules human leukocyte antigen (HLA)–A and HLA-B, which 

are driving the T-cell-dependent transplant rejection, are not expressed by any trophoblast cell 

subset [18]. Intriguingly, EVT cells display the classical polymorphic HLA-C and the non-

classical, less polymorphic HLA-G, HLA-E and HLA-F [33-37].  

Originally it was believed that the syncytiotrophoblast cells are deficient of MHC class I and 

II expression, but lately it has been proposed that they might display non-classical HLA-E and 

produce soluble HLA-G [4, 38-40]. 

 

2.2.3. Decidual NK (dNK) cells and their interaction with trophoblast HLA-E, -G, -C 

70% of all leukocytes at the implantation site are made up by a particular CD56
hi

CD16
-
 

decidual natural killer (dNK) cell subset, which are recruited in great numbers in early 

pregnancy and remain the most abundant maternal immune cells in the decidua until mid-

gestation, before their quantity is decreasing again towards term [41, 42]. 
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Despite their expression of perforin, granzyme A and B, and some NK-activating receptors, 

and the close contact with infiltrating interstitial trophoblasts, dNK cells do not mediate 

cytotoxicity against the allogeneic trophoblast cells [43, 44]. This is believed to be due to the 

interaction between the non-classical, largely monomorphic MHC class I molecules HLA-G 

and HLA-E displayed by EVT and its receptors expressed by dNK cells. HLA-E is suggested 

to bind to the inhibitory receptor CD94/NKG2A, which is highly expressed by dNK cells 

[45]. A number of inhibitory NK cell receptors, including the killer cell immunoglobulin 

receptor (KIR) KIR2DL4 (CD158d) and the leukocyte Ig-like receptor (LIR-1), have been 

suggested to bind to HLA-G and, thus, prevent NK-mediated killing [46, 47]. 

In addition to tolerance induction, the great abundance of dNK cells also indicates an essential 

role in placentation. Indeed, dNK cells are suggested to actively support vascular remodelling 

by secreting interferon (IFN)-γ, vascular endothelial growth factor (VEGF) and placental 

growth factor (PlGF) [48, 49]. Furthermore, dNK cells produce the chemokines IL-8 and 

interferon-inducible-protein-10 (IP-10), which trigger migration of invading trophoblasts [49].  

It has also been proposed that specific dNK cell – EVT interactions might be more beneficial 

for the transformation of the spiral arteries [50]. EVT express the classical, polymorphic 

MHC class I molecule HLA-C, which interacts with specific members of the KIR family of 

NK cell receptors, namely KIR2D (contain two immunoglobulin-like domains) [51]. 

Depending on the combination of the haplotypes, KIR2D may be more activating or more 

inhibiting [51]. Particular (more activating) KIR2D-HLA-C pairs may be more favourable for 

the enlargement of the spiral arteries, suggesting that activated dNK cells might be essential 

for an efficient vascular remodelling [4, 50].  

 

2.2.4. Decidual macrophages 

20-30% of the maternal cells at the implantation site account for decidual macrophages and 

their numbers remain high throughout pregnancy [52]. Decidual macrophages display CD14, 
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the MHC class II molecule HLA-DR and low levels of the T-cell co-stimulatory cell surface 

markers CD80 and CD86 [52-54]. In vitro, decidual macrophages spontaneously produce high 

levels of the anti-inflammatory cytokine IL-10 and express the tryptophan catabolising 

enzyme indoleamine dioxygenase (IDO), suggesting that decidual macrophages exhibit 

immunosuppressive functions, which may be important to maintain feto-maternal tolerance 

[54, 55]. 

Since decidual macrophages are localized in the proximity of apoptotic trophoblast cells in the 

placental bed, it has been speculated that the engulfment of these dying cells by decidual 

macrophages might result in a decreased synthesis of proinflammatory cytokines and an 

enhanced secretion of anti-inflammatory Th2 mediators [52]. The uptake of apoptotic 

trophoblast cells may prevent secondary necrosis, which is characterized by the release of 

potentially proinflammatory and immunogenic intracellular material from the dying cells [52].  

 

2.2.5. Regulatory T-cells (Treg)  

The human CD4
+
CD25

high
 regulatory T-cells (Treg) are involved in tolerance induction against 

self-antigens and allogeneic organ grafts [56, 57].  

Levels of peripheral blood Treg almost double during pregnancy, compared to non-pregnant 

controls, and drop again postpartum [58]. Treg are also localized in the decidua and during 

early pregnancy they account for 22% of CD4
+
 cells. Spontaneous abortion is associated with 

a reduction of circulating Treg to non-pregnant levels and a decrease of the 

CD4
+
CD25

high
/CD4

+
 ratio to 7% in the decidua [59, 60]. 

These observations suggest that Treg are essential for the maintenance of the maternal 

tolerance towards the growing fetus and, thus, may contribute to the successful progression of 

human pregnancy. 
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2.2.6. B7 family:  

Activation of naive T-cells requires the engagement of the T cell receptor (TCR) by binding 

to an antigen peptide – MHC protein complex on APCs. To complete T-cell stimulation, a 

costimulatory signal is needed, which is mediated by the interaction between T-cell expressed 

CD28 and members of the B7 family, displayed by the partner cell [61]. However, B7 

molecules are able to trigger both, activating and inhibitory signals in lymphocytes. 

The expression of at least five of the seven known B7 family members has been reported in 

the human placenta [62, 63]. From all placentally expressed B7 family members, only B7-H1 

has been documented to play a key role in maternal tolerance toward the fetus, since 

inhibition or genetic deletion of B7-H1 resulted in an elevated rejection of the allogeneic fetus 

in animal experiments [64]. In humans, placental expression of B7-H1 is found on 

syncytiotrophoblasts, villous and extravillous cytotrophoblasts, and is increasing throughout 

pregnancy [62]. B7-H1 interacts with the immunoinhibitory molecule programmed death 

(PD)-1, which is present on activated T-cells, B-cells and monocytes [65]. The in vitro 

ligation of human PD-1 blocks T-cell proliferation and cytokine production [66]. As human 

decidual T-cells express PD-1, the induction of the PD-1-B7-H1 pathway may provide a 

mechanism of immunological tolerance towards the fetal semi-allograft [67].     

 

2.2.7. Indoleamine-2,3-dioxygenase (IDO): 

Indoleamine-2,3-dioxygenase (IDO) is a tryptophan-degrading enzyme, which is expressed at 

the feto-maternal interfaces by trophoblasts, syncytiotrophoblasts and glandular epithelial 

cells [60]. By depleting tryptophan from the local microenvironment, IDO can inhibit the 

activation of T-cells, which are particularly sensitive to the loss of this essential amino acid 

[68, 69]. IDO may mediate T-cell suppression either by limiting the availability of tryptophan, 

or by indirect effects on the biology of IDO-expressing cells [69]. 
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2.2.8. Fas-Fas ligand system: 

Expression of the death-triggering receptor-ligand pair Fas (CD95) – Fas ligand 

(FasL/CD95L) is found at the feto-maternal interface. FasL is expressed by EVT, villous 

cytotrophoblasts, syncytiotrophoblasts and maternal decidual cells, and eliminates activated 

Fas-positive maternal immune cells invading the uterus [70-72]. In vitro, human trophoblast 

cells induce Fas/FasL dependent apoptosis in T-cells [73, 74]. Recently, Abrahams et al. 

demonstrated that trophoblast cells from the first trimester placenta do not express cell-

surface FasL [75]. However, the first trimester trophoblast cells are able to secrete FasL in 

vitro, which might protect them from the recognition by the maternal immune system [75]. 

 

2.2.9. Complement regulatory proteins: 

The complement system is an essential component of the immune defence, assembled by a set 

of proteins, and mediates clearance of pathogens, apoptotic cells and immune complexes [76, 

77]. The net result of the complement cascade is the formation of the membrane attack 

complex (MAC), leading to cellular lysis [76]. The syncytiotrophoblast, villous 

cytotrophoblasts and EVT all express the three complement regulatory proteins decay 

accelerating factor (DAF/CD55), membrane co-factor protein (MCP/CD46) and CD59, which 

protect healthy cells from cell lysis [78-82].  

 

2.2.10. Deportation of syncytiotrophoblast debris into maternal blood 

As mentioned earlier, the old cellular material of the syncytiotrophoblast, such as syncytial 

knots and microparticles, is constantly released into the intervillous space (Figure 5). 

Syncytial knots are detectable in the maternal uterine veins, but not in the peripheral blood of 

pregnant women, which might be due to their uptake by alveolar macrophages in the lungs 

[83-85]. Engulfment of syncytial knots by a macrophage cell line induces an anti-

inflammatory response in vitro, suggesting that the shedding of apoptotic debris is not only a 
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mechanism to dispose aged syncytiotrophoblast cells, but also a mechanism to provide 

tolerogenic parental antigens to the maternal immune system [85]. 
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2.3. Systemic maternal inflammation  

Healthy third-trimester pregnant women display a generalized inflammatory response, which 

is in some regards as extensive as in sepsis [86]. However, this controlled systemic 

inflammatory reaction does not appear to be harmful for the mother.  

Markers of overall maternal inflammation include an elevated total white blood cell count 

(leukocytosis) and increased levels of the proinflammatory cytokines IL-1, IL-6, TNF-α and 

the acute phase protein C-reactive protein (CRP) in the serum of pregnant women compared 

to non-pregnant subjects [87-90]. CRP levels are moderately raised as early as week 4 of 

gestation, providing evidence that there is a low-grade maternal inflammation already during 

the implantation of the conceptus [90]. Furthermore, there is an activation of peripheral blood 

leukocytes, which is characterized by the significantly elevated cell surface expression of the 

adhesion molecules CD11b, CD11c, CD64 and the pattern recognition receptor CD14 on 

granulocytes and monocytes compared to non-pregnant controls [18, 86, 91]. Moreover, 

monocytes, granulocytes and lymphocytes display significantly increased values of basal 

intracellular reactive oxygen species [86].  

Granulocytes from pregnant donors spontaneously produce the proinflammatory cytokine IL-

6 and the chemokine IL-8 [92]. Phorbol 12-myristate 13-acetate (PMA)/ionomycin-stimulated 

third trimester granulocytes synthesise significantly more IL-8 than PMA/ionomycin-

stimulated cells from non-pregnant women, suggesting that circulating maternal granulocytes 

are primed to produce inflammatory mediators [92]. 

Monocytes from pregnant women display an enhanced phagocytic rate with peak levels in the 

third trimester and exhibit a progressive up-regulation of the cell surface adhesion molecule 

CD54 [92-94]. In addition, PMA/ionomycin triggers a higher production of intracellular IL-

1β in second- and third-trimester monocytes than in the cells from pregnant women in the first 

trimester and non-pregnant controls [92]. These findings suggest a continuous activation of 

maternal monocytes throughout pregnancy.     
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It has also been shown, that during pregnancy, the platelets, the complement - and the clotting 

system are activated [18].  

Until now the cause of this maternal inflammation is unknown. However, it is generally 

accepted, that it consists in a sterile inflammatory reaction, which is stimulated by the 

pregnancy itself and not by an infection. Candidate triggers include placental factors released 

into maternal blood, such as cytokines and angiogenic factors [95, 96]. 

 

2.3.1. Placental cytokines 

Pro-inflammatory cytokines and chemokines, including IL-6, IL-1β, IL-8 and TNF-α, are 

produced by the placenta, as shown by in vitro cultures of placental villous tissue [97-100]. 

Beside their local action, they are also secreted into the maternal circulation, where they may 

contribute to the mild systemic inflammation by attracting and stimulating maternal immune 

and endothelial cells [101]. The placental expression of the different cytokines varies in 

function of the gestational age, most likely reflecting a specific function at particular stages of 

pregnancy [102, 103].   

 

2.3.2. Placental angiogenic factors  

Placental angiogenesis is of great importance in pregnancy to ensure appropriate blood supply 

to the growing fetus. Angiogenesis is supported by placentally-produced angiogenic factors, 

such as PlGF and VEGF, which interact with receptors expressed by the vascular 

endothelium, including the VEGF receptor (VEGFR / Flt-1) and endoglin (Eng) [104-110]. In 

addition, soluble forms of Flt-1 (sFlt-1) and Eng (sEng) with anti-angiogenic properties are 

produced by the placenta [96, 111]. These factors are released into the maternal peripheral 

blood, where they could disturb the maternal endothelium and explain the vascular reactivity 

and mild glomerular endotheliosis found towards term [112, 113]. The expression of these 

markers varies with the gestational age [96, 114]. 
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A potential role in the maternal inflammatory response is also ascribed to membrane 

microparticles released from the syncytiotrophoblast into the maternal circulation, which are 

discussed later, in chapter 3 of the introduction [115]. 
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3. Preeclampsia 

 

3.1. Epidemiology 

Preeclampsia is a heterogeneous placenta-dependent disorder specific to human pregnancies 

and is characterized by new onset hypertension (systolic and diastolic pressure of ≥140 and 

90mm Hg) and proteinuria (protein excretion of ≥300 mg in a 24 h urine collection, or a 

dipstick of ≥2+) after week 20 of gestation [116, 117]. The maternal symptoms become 

apparent in the second half of pregnancy and may be either early (<34 weeks of gestation) or 

late (>34 weeks of gestation), and mild or severe, according to the degree of hypertension 

and/or protenuria. In addition, patients may exhibit edema, reduced blood supply to several 

organs, including the placenta, and can end up in organ (mainly renal or liver) failures. In 

severe cases preeclamptic women may develop the HELLP syndrome (hemolysis, elevated 

liver enzymes, and low platelet counts) or the disorder may evolve into eclampsia, which is 

characterized by convulsions and seizures, pre- or postnatally. Preeclampsia may manifest as 

a maternal syndrome only, or it can affect the fetus, through in utero growth restriction 

(IUGR) or sudden fetal distress. 

The reported incidence of preeclampsia is 2 to 7% among human pregnancies world wide 

[117]. However, there are large differences in the frequency of incidence among populations, 

which may be due to racial, geographic, social and economic distinctions. Other predisposing 

factors, which make women more prone to become preeclamptic during pregnancy, include 

obesity, chronic hypertension, diabetes or insulin resistance, multiple gestations and a history 

of previous preeclampsia [118]. 

Owing to the excellent medical care in western countries, preeclampsia is less and less fatal 

[119]. However, in underdeveloped countries preeclampsia remains the major cause of 

maternal death. In Latin America and Caribbean over 25% of maternal deaths are attributed to 
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pregnancy associated hypertensive disorders [120]. In Columbia the number of maternal 

deaths caused by preeclampsia (42%) is ten times higher than in the United States [121]. 

Pregnancy may be lengthened by giving antihypertensive drugs to treat the symptoms of the 

disorder [122]. To prevent imminent eclampsia magnesium sulphate, a promising 

anticonvulsant drug, is applied [123-126]. However, none of these drugs prevents the onset of 

preeclampsia and the only definite cure of preeclampsia is the removal of the placenta by 

elective preterm delivery, either by induction or caesarean section. Though, preterm delivery 

(<37 weeks of gestation) accounts for 75% of perinatal mortality and preterm babies are at 

increased risk for long-term medical problems affecting the neurological, respiratory, 

cardiovascular and gastrointestinal systems [127].   

Although the acute maternal symptoms of preeclampsia can be cured by delivering the baby, 

women have an increased risk to develop cardiovascular diseases in later life [128]. 

Since preeclampsia is a life-threatening disorder, it is very demanding to recognize the disease 

early enough. In the past few years, research focussed in the finding of biophysical and 

biochemical markers, which are differently expressed in preeclamptic women or in women, 

who will develop the disease, compared to healthy pregnant controls, and could be used for 

detection and prediction [129]. 

Several clinical studies were/are evaluating the efficiency of prophylactic agents, such as the 

anti-oxidant vitamins C and E, low-dose aspirin, folic acid and calcium [117, 130-136]. 

However, the results of different clinical trials are either contradictory or not efficacious. 
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3.2. Pathophysiology 

Preeclampsia may be divided into two main stages. The first stage is related to the 

asymptomatic preclinical phase in early pregnancy. The clinical stage appears in the second 

half of pregnancy and is characterized by the maternal syndrome.  

 

3.2.1. Preclinical stage: shallow trophoblast invasion and incomplete vascular 

remodelling  

Preeclampsia may develop in pregnancies without a viable fetus (hydatidiform moles), but its 

onset always depends on the presence of a placenta [118]. A long lasting hypothesis has been 

that the onset of preeclampsia relies on a deficient development of the early placenta and an 

incomplete remodelling of the maternal spiral arteries (Figure 6). This poor placentation takes 

place before week 20 of gestation [137]. The invasion of the decidua by EVT is reduced and 

the transformation of spiral arteries into dilated tubes is shallow or absent.  

However, reduced placental perfusion cannot be the only trigger of preeclampsia since 

normotensive intrauterine growth restriction (nIUGR) is associated with an incomplete 

placentation in the absence of the maternal syndrome [138].  

Furthermore, the current hypothesis on the placental origin of preeclampsia has been 

challenged [139]. It has been suggested that the failure of the development and the 

differentiation of the trophoblast lineage at various time-points may result in preeclampsia 

with late-onset appearance and mild symptoms, or IUGR. 

However, women suffering from arterial diseases, hypertension, obesity and diabetes before 

conception are predisposed to preeclampsia, and in this so-called maternal preeclampsia the 

challenge rather lies in an inappropriate maternal response than in an abnormal placentation 

[140, 141]. 

. 
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Figure 6: Incomplete remodelling of spiral arteries in preeclampsia. During normal pregnancy 

uterine spiral arteries are extensively remodelled. In order to increase the placental and fetal blood 

supply, the spiral arteries are enlarged by replacing the vascular endothelium by infiltrating 

trophoblast cells. In preeclampsia and IUGR vascular transformation is shallow resulting in a reduced 

blood flow in the intervillous space [41]. 

 

3.2.1.1. Placental oxidative stress 

The shallow remodelling of spiral arteries implicates maintenance of smooth muscle cells in 

the placental vascular walls and persistence of up to 50% of the vascular contractibility [13]. 

This might result in an intermittent perfusion of the intervillous space mediating transient 

hypoxic conditions [142]. In in vitro experiments, Hung and collaborators demonstrated that 

oxidative stress, which is characterized by an imbalance favouring oxidant over antioxidant 

forces, occurs after reoxygenation of hypoxic placental tissue [143]. Enhanced placental 

oxidative stress is associated with increased tissue damage mediated by reactive oxygen free 

radicals (OFRs) [13].  
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Lipid peroxidation, induced by OFRs, enhances the incorporation of cholesterol, oxidized free 

fatty acids (FFAs) and low-density lipoproteins (LDLs) into cell membranes [144]. 

Furthermore, in regions of spiral and myometrial arteries, where the physiologic remodelling 

is missing, pathologic lesions known as acute atherosis can be found [143]. Acute atherosis 

shares a lot of clinical features with atherosclerosis, namely clusters of macrophages loaded 

with lipids (foam cells), fibrinoid necrosis of vascular walls, dysfunctional endothelium and 

accumulations of platelets [145-148]. Markers of oxidative stress have been found in the 

peripheral blood of preeclamptic women [149, 150]. Hence, it has been proposed that 

oxidatively stressed placentas of preeclamptic patients release soluble factors into the 

maternal bloodstream, where they might affect the maternal vascular endothelium [151].     

 

3.2.1.2. Maternal-paternal immune maladaptation   

There are multiple lines of evidence that imply a crucial role of the maternal immune system 

in the onset of preeclampsia.  

Preeclampsia is a disorder of first pregnancies (primigravidity) and the risk to develop 

preeclampsia decreases upon an earlier healthy pregnancy [152, 153]. However, the change of 

the partner reverses this natural protection generated by multiple pregnancies (multigravidity). 

Thus, Robillard and co-workers described preeclampsia as a “disease of new couples” 

(primipaternity), according to the observation that the length of sexual cohabitation before 

conception inversely correlates with the risk of preeclampsia [154]. Though, the use of barrier 

contraceptives, such as condoms, does not reduce the risk of developing preeclampsia, leading 

to the hypothesis that preeclampsia might develop due to missing seminal priming [155].  

Other mechanisms of tolerance induction are altered or missing in preeclampsia as well. A 

reduced trophoblast FasL expression and an elevated Fas expression have been observed and 

this correlates with increased apoptosis of EVTs and villous trophoblast cells [156-160]. 

Furthermore HLA-G expression on EVTs is reduced or even missing, and, thus, the resulting 
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deficient interactions with dNK cells might lead to dNK-cell-mediated cytolysis of EVTs 

[161, 162]. Santoso and co-workers reported a decreased expression of the T-cell inhibitor 

IDO in preeclamptic placentas [163]. In addition, in pregnancy pathologies, such as 

preeclampsia and recurrent pregnancy loss, an increased activation of the complement system 

has been found [128, 164-166]. However, studies gave controversial results about the 

frequency of peripheral blood Treg cells in women suffering from preeclampsia [167-169]. 

In addition, preeclampsia is associated with a predominant Th1 response in the peripheral 

maternal blood, as well as in the placenta, in contrast to the Th2 bias in normal pregnancy 

[170]. The spontaneous and phytohemagglutinin (PHA)-stimulated production of the Th1 

cytokines TNFα, IL-2 and IFNγ by PBMC from preeclamptic patients is higher than those 

from normal pregnant controls [171, 172]. Furthermore, the in vitro stimulation of PBMC 

from preeclamptic women with the classical Th1 cytokine IFNγ results in an increased 

production of IL-12 and IL-18 [173]. In the presence of IL-12, IL-18 does not act as a Th2 

mediator anymore, but supports the IL-12 driven Th1 response [174]. Th1 cytokines are 

known to trigger chronic inflammation, and IFNγ, together with the proinflammatory factors 

IL-1 and TNFα, has been shown to amplify this chronic inflammatory response [170].  

 

3.2.2. Clinical stage: excessive maternal systemic inflammation and placental factors 

An excessive, generalized maternal inflammatory response including a dysfunctional maternal 

endothelium is thought to be at the basis of the maternal clinical manifestations [175, 176].  

This overt inflammatory response is believed to be the extreme end of the mild inflammation 

found in healthy pregnancy [177]. There is a significantly increased leukocytosis and a 

significantly higher concentration of the proinflammatory mediators IL-6 and IL-8 in the 

peripheral blood of preeclamptic women relative to normal pregnant women [178-185].  

Enhanced activation of peripheral blood leukocytes is marked by the higher basal as well as 

PMA-induced production of intracellular reactive oxygen species and a significant increased 
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cell surface expression of the integrin CD11b, in monocytes and granulocytes from 

preeclamptic women compared to the monocytes and granulocytes from healthy pregnant 

women [86, 91, 186].  

Additionally, expression of the activation marker HLA-DR is significantly enhanced on 

monocytes derived from preeclamptic women relative to the cells of normotensive pregnant 

women [25]. However, the findings on the level of CD14 expression on monocytes are 

contradictory [25, 91]. Furthermore, spontaneous intra-monocytic synthesis of IL-1β, IL-6 

and IL-8 is higher in cells from preeclamptic women than in monocytes derived from normal 

pregnant and non-pregnant subjects [187]. Monocyte-derived microparticles were also more 

elevated in preeclamptic patients compared with pregnant controls, reflecting activation of 

their parental cells in preeclampsia [188]. 

A dysfunctional endothelium is marked by the increased plasma concentrations of the 

vasoconstrictive mediators’ asymmetric dimethylarginine and endothelin, and the released 

integrin fibronectin in women with adjacent preeclampsia relative to women with 

uncomplicated pregnancies [189-192].  

Furthermore, there is an elevated activation of the complement cascade, the clotting system 

and the platelets in the peripheral blood of preeclamptic women compared to normal pregnant 

women [193-195]. 

As it is the case in normal pregnancy, candidate triggers are believed to be derived from the 

placenta [196]. The expression of placental cytokines and placenta-derived angiogenic factors 

is altered compared to normal pregnancy. Placental tissue from preeclamptic women produce 

increased levels of the proinflammatory cytokines TNFα, IL-1, and IFN-γ relative to the 

placenta of normal pregnant subjects [95]. The anti-angiogenic factors sFlt-1 and sEng, which 

are secreted by the placenta, are elevated in the peripheral blood of preeclamptic women for a 

long time before the onset of the disease [96, 197-200]. On the other hand, the levels of the 

pro-angiogenic factor PlGF are reduced before and during onset of preeclampsia [129, 201].  
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The rates of syncytial apoptosis and shedding of debris are significantly increased in 

preeclampsia compared to normotensive pregnancy (Figure 7), consistent with the increased 

placental damage and dysfunction observed in this pathological condition [160]. Other 

markers for apoptosis, such as cytokeratin and cell free fetal DNA of placental origin are also 

elevated in preeclampsia [202, 203]. It was suggested that the shedding of placental debris 

might be exacerbated by apo-necrosis or even necrosis in this pathologic condition (Figure 7) 

[204]. Among this syncytial debris, there are small membrane microparticles released from 

the syncytiotrophoblast [115].  

 

  

 

Figure 7: Release of Syncytial knots and STBM by 

apoptosis, apo-necrosis and necrosis. (A) Controlled 

apoptotic shedding of syncytial knots and STBM due to 

normal cell turnover. (B) If the final steps of apoptosis fail 

and the membranes of the apoptotic bodies break (apo-

necrotic shedding), released intracellular material may trigger 

inflammation. (C) Necrotic rupture of the syncytiotrophoblast 

layer leads to uncontrolled disposal of the cellular content, 

inducing a maternal inflammatory response. CT = 

cytotrophoblast; ST = syncytiotrophoblast [205]. 
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3.3. Microparticles  

 

3.3.1. Microparticles in general  

Microparticles are subcellular membrane-sealed fragments and exhibit a mean diameter of 

100 nm. They are shed from the cell surface in both physiologic and patho-physiologic 

conditions, and are generated during cell death and cellular activation [206]. The properties of 

microparticles may differ according to the characteristics of the parental cell, including 

membrane components, content of proteins, lipids and messenger RNA, size and antigenicity 

[206]. 

Microparticles are components of normal peripheral blood (5-50µg microparticles/ml blood) 

and are released from leukocytes, endothelium, erythrocytes and platelets [206]. Platelet-

derived microparticles are the most abundant ones in normal serum (80%), whereas 

microparticles released from endothelial cells and leukocytes only account for 10% each 

[206]. However, their numbers are increasing during inflammation, cell injury, infection, 

thrombosis, cardiovascular diseases and platelet activation [206]. Furthermore, microparticles 

are released from tumour cells in cancer patients [207-209]. 

Due to their interactions with cells, microparticles are essential modulators of cell to cell 

communication. Hence, microparticles may affect the function or nature of the target cell by 

the following means [206, 210]:  

• Stimulation of the target cell by a ligand/receptor interaction   

• Transfer of membrane molecules 

• Transfer of cytoplasmic proteins, mRNA, lipids 

• Delivery of pathogens, such as HIV, prions  

Indeed, it has been assumed, that lots of cell-free receptors and molecules detected in body 

fluids are in truth microparticle-associated [211-213]. 

 



INTRODUCTION 36

3.3.2. Microparticles in inflammation 

During inflammation the numbers of circulating microparticles in peripheral blood are 

increased, exerting various effects on cells of the immune system and the endothelium. 

Microparticles shed from endothelial cells have been shown to mediate procoagulant activity 

in monocytes [214]. Platelet-derived microparticles display IL-1β and have been reported to 

change the expression of adhesion molecules and to trigger the production of 

proinflammatory mediators in monocytes and endothelial cells [206, 215]. Microparticles, 

also named ectosomes, released from monocytes display procoagulant properties [216]. Upon 

activation, monocytes secrete bioactive IL-1β, which is associated with microparticles [217]. 

IL-1β is then released from the microparticles. On the contrary, ectosomes derived from 

activated polymorphonuclear leukocytes (PMN) and erythrocytes possess immunosuppressive 

activities. Gasser et al. described a PMN-ectosome dependent increase of transformation 

growth factor (TGF)-β1 production by macrophages, whereas the secretion of the 

proinflammatory mediators IL-8 and TNF-α was not induced [218]. Furthermore, ectosomes 

derived from PMN and erythrocytes inhibited the zymosan A and LPS induced activation of 

macrophages [218, 219]. 

   

3.3.3. Syncytiotrophoblast microparticles (STBM) 

Next to microparticles derived from platelets, leukocytes and endothelium, in pregnant 

women, unique circulating microparticles originated from placental syncytiotrophoblasts can 

be found [84].  

Syncytiotrophoblast microparticles (STBM) are 100-200 nm in diameter and are free of nuclei 

[115, 220]. Unlike the bigger syncytial knots, STBM are not trapped in the maternal lungs and 

get into the maternal peripheral circulation, where they encounter maternal immune and 

endothelial cells, and, thus, may affect their function and phenotype [84]. 
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In the peripheral blood of preeclamptic women there are significantly increased 

concentrations of STBM compared to normotensive subjects [84, 221]. 

 

3.3.4. STBM and the maternal inflammation   

Circulating STBM have been proposed to be involved in the systemic feto-maternal tolerance, 

as well as in the generalized maternal inflammation. But, as placental microparticles represent 

less than 6% of the total amount of microparticles in the maternal peripheral blood in normal 

pregnant women, it is very difficult to obtain appropriate numbers of pure STBM from the 

maternal blood [222]. Divers ex vivo and in vitro approaches for the preparation of STBM 

from term placentas have been published [220]. Some approaches may better mimic the 

physiologic situation in human pregnancy, whereas others could reflect more closely non-

physiologic or the patho-physiologic conditions found in preeclampsia. Thus, depending on 

the mode of preparation, STBM induce different responses in target cells.    

On the one hand, STBM have been shown to affect the adaptive immune system. Both, 

STBM generated by mechanical dissection of villous tissue from human term placentas as 

well as STBM prepared by in vitro explant cultures of villous tissues incubated in air 

significantly inhibited the proliferation of phorbol ester and Ca
2+

 ionophore stimulated 

peripheral blood T-cells, whereas STBM isolated from the wash of the maternal side of a 

dually-perfused placental lobe enhanced proliferation [223]. Gercel-Taylor and co-workers 

isolated shed placental membrane fragments from the serum of pregnant women [224]. These 

“naturally occurring” placental microvesicles expressed FasL and triggered Fas/FasL-

mediated apoptosis and the down-regulation of CD3-ζ on a T-cell line, suggesting a role of 

placental membrane fragments in the systemic maternal immune tolerance [224]. However, 

this study cannot be directly compared with the one from Gupta and co-workers, as Gercel-

Taylor et al. isolated membrane fragments, which were smaller in size (exosomes) than the in 
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vitro prepared STBM. Furthermore, they used a T-cell line and not peripheral blood T-cells to 

evaluate the effects of the exosmes [224, 225].  

On the other hand, artificially generated STBM have also shown to activate innate immune 

cells. STBM prepared by in vitro villous explant cultures incubated in air and STBM collected 

from the maternal side of an ex vivo dually perfused placental cotyledon induced partial 

inhibition of endothelial cell proliferation, but no apoptosis [220, 226]. However, in the same 

experiment STBM prepared by mechanical dissection of villous tissue triggered endothelial 

cell detachment from the collagen matrix, and apoptosis, supporting the proposal that STBM 

prepared by the physical disruption of the villous tissue integrity are released during cellular 

necrosis [220]. In addition, these STBM triggered the production of superoxide radicals in 

neutrophils. This production was higher upon co-culture with STBM prepared from 

preeclamptic placentas [227]. This observation correlated with the N-formyl-methionyl-

leucyl-phenylalanine (FMLP)-induced synthesis of superoxide radicals in neutrophils from 

normal pregnant and preeclamptic women, suggesting that STBM might be a trigger of the 

production of superoxide radicals in maternal neutrophils [227]. 

Furthermore, STBM generated by in vitro culture of villous tissue incubated in air 

significantly increased the expression of the activation marker CD11b on peripheral blood 

neutrophils [228]. The same STBM preparations mediated the formation of fibrous 

extracellular lattices containing DNA, called neutrophil extracellular traps (NETs), which are 

known to be generated upon an inflammatory signal, such as gram-negative and gram-positive 

bacteria, IL-8 and PMA, in neutrophils [228-230]. As large numbers of NETs have been 

observed in the intervillous space of preeclamptic placentas, it has been suggested that STBM 

might be a key activator of maternal neutrophils and, thus, mediate the formation of NETs 

[228].    

Less is known about the inflammatory effects of STBM on human peripheral blood 

monocytes. Monocytes belong to the mononuclear leukocytes and develop from monoblasts 
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in the bone morrow [231]. Once entered the blood, human monocytes circulate for few days, 

before they invade tissues, where they may differentiate into macrophages or dendritic cells 

[232]. Two main monocyte subsets may be distinguished according to their expression of 

CD14, which is part of the lipopolysaccharide receptor, and CD16 (FcγRIII): the “classical” 

CD14
+
CD16

-
 monocytes, which account for 95% of all blood monocytes, and the “non-

classical” CD14
lo

CD16
+
 monocytes [232]. The key functions of monocytes during 

inflammation are the processing of antigens, the release of cytokines and thereby stimulating 

other immune cells. A previous study revealed that STBM isolated ex vivo from the maternal 

perfusion of a placental cotyledon induced the intra-monocytic production of the Th1 

cytokines TNF-α and IL-12p70, thereby strongly suggesting that placental microparticles may 

play a role in the development of the inflammatory state in pregnancy [173].   
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RESEARCH OBJECTIVE 

 

Since maternal monocytes are progressively activated during normal pregnancy and are 

further activated in preeclampsia, the aim of this PhD project was to evaluate STBM as 

candidate trigger for this activation [86, 91, 92, 101, 176, 187]. The inflammatory nature of 

STBM was investigated by their co-incubation with monocytes in vitro.  

STBM were artificially generated from healthy or preeclamptic human term placentas. 

Several conditions, either mimicking the physiological situation of normal pregnancy or the 

patho-physiological conditions found in preeclampsia, were used.  

Functional analysis was performed by assessing the following items in STBM-treated 

monocytes:  

• cell viability  

• gene expression 

• cytokine secretion 

• cell surface expression  

• interaction/communication  

• intracellular signalling 
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MATERIALS AND METHODS 

 

1. Preparation of syncytiotrophoblast microparticles (STBM) 

 

This study was approved by the Cantonal Institutional Review Board of Basel, Switzerland, 

and the Ethical Committee Review Board for studies in human subjects of Lund, Sweden, and 

written informed consent was received in all cases. Human placentas were obtained from the 

University Women’s Hospital Basel, or the Department of Obstetrics and Gynecology, Lund 

University Hospital, immediately after elective caesarean section or vaginal delivery from 

uncomplicated pregnancies or cases of preeclampsia. STBM were generated by four different 

approaches, indifferently of the mode of delivery. 

Preparations of STBM by in vitro cultures of placental villous fragments and by mechanical 

dissection of villous tissue were performed in the laboratory of Prenatal Medicine in Basel, 

Switzerland. 

 

1.1. In vitro explant cultures (eS20 and eS3) 

After the removal of the decidua, the villous tissue was cut into small pieces and washed 3 

times in phosphate buffered saline (PBS) to eliminate clotted blood. The villous fragments 

were dissected into smaller pieces (2-4 mm
3
) free of any visible vessels. Villous explants were 

cultured in 10 cm-diameter culture dishes (Corning, NY, USA) in Dulbecco Modified Eagle’s 

Medium (DMEM):F12 Nutrient Mixture (1:1) (Gibco, Grand Island, NY, USA) supplemented 

with 10% FCS (Amimed, Allschwil, Switzerland), 1 x antibiotic/antimycotic (Gibco, Grand 

Island, NY, USA), 25 IU/ml heparin (B. Braun Medical AG, Sempach, Switzerland) and 50 

U/ml aprotinin (Fluka, Buchs, Switzerland) for 72 h at 37 °C. Incubation was performed in 

20% O2 / 5% CO2 (air) for healthy as well as for preeclamptic placentas, or in 3% O2 / 5% 
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CO2 (hypoxia) for normal term placentas. 25 µg/ml of vitamin C (Sigma, Saint Louis, MO, 

USA) was added to the cultures incubated in 20% O2 / 5% CO2, to preserve villous tissue 

from elevated programmed cell death or necrosis [233].  

 

1.2. Mechanical dissection (mS) 

The villous tissue from healthy term placentas was separately dissected using the protocol 

described before in [220]. In brief, small fragments of villous tissue were extensively washed 

three times in ice cold 100 mM CaCl2 to remove blood cells and stirred in 0.15 M NaCl 

supplemented with 400 U/ml penicillin/streptomycin (Gibco, Grand Island, NY, USA) 

overnight at 4 °C.  

 

1.3. Placental dual perfusion (pS) 

Placental dual perfusions of healthy term placentas were carried out in the laboratory of Prof. 

Dr. S. Hansson at the Department of Obstetrics and Gynecology, University Hospital Lund, 

Lund, Sweden. 

A suitable cotyledon was set up for separate dual perfusion of the maternal (intervillous 

space) and the fetal compartment (villous vasculature), without recirculation at flow rates of 

approximately 12 and 6 ml/min respectively, using a well-described perfusion system [234]. 

Particulate matter was collected with a 30 minute wash of the maternal side of the placental 

cotyledon.  

 

In all approaches STBM were isolated from supernatants by a three step centrifugation at 4 

°C: 1000 × g for 10 min, 10’000 × g for 10 min, and 60’000 × g for 90 min. The final pellets 

contained STBM, were washed with PBS and resuspended in PBS containing 5% sucrose. 

STBM and STBM-free supernatants were stored at -20 °C until use.  
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1.4. STBM quantification 

A surrogate assay was used to quantify STBM. Thereby, the protein content of the different 

STBM preparations was measured with the Advanced protein assay reagent from 

Cytoskeleton Inc. (Denver, CO, USA), according to the manufacturer’s recommendations. 

The optical density was read at 595 nm with the Spectramax 250 microplate 

spectrophotometer (Molecular Devices, Sunnyvale, CA, USA). 

 

1.5. Caspases activity assay 

Whole protein extracts were obtained by homogenizing the explants in 50 mM Tris pH 7.6, 

150 mM NaCl, 1 x protease inhibitor cocktail, 1% Triton X-100 and 0.5mM PMSF, with a 

Polytron PT 1200 E tissue homogenizer (Kinematica AG, Littau-Lucerne, Switzerland). The 

protein content was quantified by the Bradford assay. An adaptation of the fluorimetric 

homogeneous caspases assay (Roche Diagnostics GmbH; Mannheim, Germany) was used to 

assess activated caspases 2, 3, 6, 7, 8, 9 and 10. In brief, protein extracts were diluted 1/10 in 

the incubation buffer, 1 volume of  the substrate working solution was added and the reaction 

was incubated at 37 °C for 24 h. The cleavage of the substrate by active caspases released was 

measured with an excitation filter set at 485 nm, and an emission filter set at 538 nm. The cut 

off value was set at 530 nm. Relative fluorescence units (RFU) were measured on a 

Spectramax Gemini spectrofluorometer (Molecular Devices, Sunnyvale, CA, USA), using the 

Softmax Pro software (Molecular Devices, Sunnyvale, CA, USA). The results are presented 

as RFU / µg of proteins  

  

1.6. Lactate dehydrogenase (LDH) cytotoxicity assay 

The release of LDH into the culture medium was assessed relative to a positive control, made 

from a villous explant lysed in 1% Triton X-100, using an adaptation of the colorimetric 

lactate dehydrogenase based toxicity assay from Sigma (Saint Louis, MO, USA). In brief, 
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culture supernatants were diluted 1/3 in the assay mixture consisting of equal amounts of 

substrate, enzyme and dye solutions. The reaction was stopped with 1 N HCl and the optical 

density (OD) was measured at 490 nm in a Spectramax 250 microplate spectrophotometer 

(Molecular Devices, Sunnyvale, CA, USA). Percent necrotic cell death was calculated as (OD 

of sample / OD of Triton X-100-lysed explant) × 100%. 
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2. Cell culture 

 

2.1. Cell line: Mono Mac 6 

The monocytic cell line Mono Mac 6 (kindly provided by Prof. R. Landmann, Department of 

Biomedicine, University of Basel, Switzerland) was established in 1985 from the peripheral 

blood of a 64-year-old man with relapsed acute monocytic leukemia (AML FAB M5) upon 

myeloid metaplasia [235]. Mono Mac 6 cells were cultured in RPMI-1640 medium (Gibco, 

Grand Island, NY, USA), containing 10% FCS (Amimed, Allschwil, Switzerland), 4 mM 

glutamine (Gibco, Grand Island, NY, USA), 100 U/ml penicillin/streptomycin (Gibco, Grand 

Island, NY, USA), 1 x non-essential amino acids (Gibco, Grand Island, NY, USA), 1 mM 

sodium pyruvate (Gibco, Grand Island, NY, USA) and 9 µg/ml human insulin (Gibco, Grand 

Island, NY, USA).  

 

2.2. Human blood monocytes 

40 ml of venous blood from male donors, collected in EDTA-containing tubes, were diluted 

in PBS supplemented with 2 mM EDTA and peripheral blood mononuclear cells (PBMC) 

were separated by density gradient centrifugation on Histopaque (Sigma, Saint Louis, MO, 

USA). PBMC were washed twice with PBS / 2 mM EDTA. The remaining erythrocytes were 

lysed with the red blood cell (RBC) lysis solution (Qiagen, Valencia, CA, USA). Monocytes 

were isolated by negative selection using the human Monocyte Isolation Kit II and magnetic 

cell separation (MACS) (Miltenyi Biotec Inc., Auburn, CA, USA), according to the 

manufacturer’s protocol. Purified populations of monocytes generally contained >94% CD14
+
 

cells, as confirmed by flow cytometry, and were resuspended in RPMI-1640 medium (Gibco, 

Grand Island, NY, USA), supplemented with 10% FCS (Amimed, Allschwil, Switzerland), 4 

mM glutamine (Gibco, Grand Island, NY, USA) and 100 U/ml penicillin/streptomycin 

(Gibco, Grand Island, NY, USA).  
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2.3. Co-culture of monocytes and STBM 

Peripheral blood monocytes or Mono Mac 6 cells were cultured at 5 × 10
5
 cells / ml in 

complete RPMI-1640 medium (Gibco, Grand Island, NY, USA). STBM were added in 

different concentrations, ranging from 10 µg/ml up to 300 µg/ml, as indicated in the figure 

legends. STBM preparations were tested individually on at least 2 different monocyte 

populations to exclude a donor-specific response. As a positive control of the monocyte 

response, cells were treated with lipopolysaccharide (LPS) from gram-negative bacteria 

(Sigma, Saint Louis, MO, USA). In some experiments, STBM were pre-treated with 0.4 

µg/ml or 1 µg/ml of a mouse anti-human IL-8 blocking antibody (R&D Systems Inc., 

Minneapolis, MN, USA) or 10 µg/ml of a mouse anti-human CD54 antagonistic antibody 

(R&D Systems Inc., Minneapolis, MN, USA) for 15 min before co-culture with monocytes. 

Alternatively, the cells were cultured with 1 ng/ml, 10 ng/ml and 100 ng/ml of recombinant 

human IL-8 (Sigma, Saint Louis, MO, USA). In some cultures monocytes were pre-incubated 

for 15 min with 1 µM and 10 µM of cytochalasin B (Sigma, Saint Louis, MO, USA), 10 µM 

of 6-Amino-4-(4-phenoxyphenylethylamino)quinazoline (6AQ) (Calbiochem, San Diego, CA, 

USA) and 10 µM of Perillyl alcohol (PA) (Sigma, Saint Louis, MO, USA), and for 24  h with 

1 µM of the MyD88 homodimerization peptide (Imgenex, San Diego, CA, USA), followed by 

the addition of the STBM. Cells and culture supernatant were separately harvested after 4 h or 

16 h incubation at 37 °C in air / 5% CO2.  
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3. Functional Analysis  

 

3.1. Cell viability (WST-1 assay) 

The colorimetric WST-1 assay (Roche Diagnostics GmbH; Mannheim, Germany) was used to 

assess cell viability and is based on the cleavage of the tetrazolium salt WST-1 by 

mitochondrial dehydrogenases in viable cells. Following co-culture, monocytes were 

harvested, washed, resuspended in 100 µl complete RPMI-1640 medium and transferred into 

96-well plates. 10 µl of WST-1 reagent was added to each well. As a negative control, the 

same volume of culture medium and WST-1 reagent were used. The plate was incubated for 2 

h at 37 °C, in air / 5% CO2 and analyzed on the Spectramax 250 microplate 

spectrophotometer (Molecular Devices, Sunnyvale, CA, USA) at 450 nm, corrected by the 

reference wavelength of 600 nm. 

 

3.2. Flow cytometry 

To block unspecific binding through Fc receptors (FcRs), monocytes were pre-incubated with 

purified human IgG (Sigma, Saint Louis, MO, USA), diluted to a working concentration of 

200 µg/ml in PBS / 2 mM EDTA / 1% FCS for 5 min at 4 °C. FACS stainings were 

performed for 15 min at 4 °C with ready to use concentrations of FITC-conjugated antibodies 

against CD14 (BD Pharmingen, San Jose, CA, USA) and TLR2 (eBioscience, San Diego, 

CA, USA), PE-conjugated antibodies against CD54, CD11b (BD Pharmingen, San Jose, CA, 

USA), TLR1 and TLR4 (eBioscience, San Diego, CA, USA), and APC-conjugated antibody 

against CD11a (BD Pharmingen, San Jose, CA, USA). For the detection of TREM-1, the 

supernatant of the human TREM-1-specific hybridoma 21C7 (kindly provided by Prof. Dr. 

Christoph Müller, University of Berne, Switzerland) - diluted 1/10 in PBS / 2 mM EDTA / 

1% FCS - and, as a second step, PE-conjugated goat anti-mouse Ig (SouthernBiotech, 

Birmingham, AL, USA) - diluted 1/1000 in PBS / 2 mM EDTA / 1% FCS - were used. After 
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washing, the stained cells were resuspended in PBS / 2 mM EDTA / 1% FCS and 10’000 

events were acquired on a Dako Cyan flow cytometer (Beckman Coulter, Fullerton, CA, 

USA) and analyzed with the Summit software. 

 

3.3. Enzyme-linked immunosorbent assay (ELISA) 

 

3.3.1. IL-1β, IL-6, IL-8 and CD54 ELISA 

IL-1ß, IL-6, IL-8 and CD54 were quantified with commercial DuoSet
®

 ELISA Development 

Kits (R&D Systems Inc., Minneapolis, MN, USA) following the manufacturer’s instructions. 

Precisely, 96-well maxisorb immunoplates (Nunc, part of Thermo Fisher Scientific, 

Rochester, NY, USA) were coated with 50 µl/well capture antibody, diluted 1/180 in PBS, 

sealed and kept at RT overnight. Wells were rinsed once with H2O and blocked at RT with 

250 µl of PBS / 0.5% BSA / 1 mM EDTA. After 1 h, plates were rinsed with H2O and 50 

µl/well of samples and standard, diluted in 1x PBS / 0.5% BSA / 1 mM EDTA, were added. 

Plates were kept at RT for 2 h and washed 4 times with PBS / 0.05% Tween. 50 µl of the 

biotin-conjugated detection antibody, diluted in 1x PBS / 1% BSA to the requested working 

concentration, were pipetted into each well and incubated at RT. After 2 h the plates were 

washed 4 times with PBS / 0.05% Tween and 50 µl of streptavidin-conjugated horseradish-

peroxidase (HRP), diluted 1/200 in PBS / 1% BSA, were added into each well. Plates were 

incubated for 30 min at RT and washed 4 times with PBS / 0.05% Tween. Into each well 100 

µl of TMB substrate solution (Sigma, St. Louis, MO, USA) were added and kept in the dark 

at RT until colour development. The colour reaction was stopped with 50 µl of 2 N H2SO4. 

Optical density was read on the Spectramax 250 microplate spectrophotometer (Molecular 

Devices, Sunnyvale, CA, USA) at 450 nm, adjusted by the wavelength correction of 562 nm, 

using Softmax Pro software (Molecular Devices, Sunnyvale, CA, USA).  
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Samples and standard were measured in duplicates and mean values were calculated in each 

experiment. 

 

3.3.2. IL-10 ELISA 

IL-10 production was measured using the human IL-10 ELISA Ready-SET-Go kit from 

eBioscience (San Diego, CA, USA), according to the manufacturer’s protocol. Plates were 

coated with 100 µl/well capture antibody, diluted 1/250 in coating buffer, sealed and 

incubated overnight at 4 °C. The next day, plates were washed 4 times with PBS / 0.05% 

Tween and blocked with 200 µl/well of 1 x assay diluent for 1 h at RT. Wells were washed 4 

times with 1x PBS / 0.05% Tween and 100 µl of the samples and the recombinant IL-10 

standard, diluted in 1 x assay diluent, were added. After 2 h at RT, plates were washed 5 times 

with PBS / 0.05% Tween and 100 µl of detection antibody, diluted 1/250 in 1 x assay diluent, 

were pipetted into each well. Following incubation at RT for 1 h, plates were washed 5 times 

with PBS / 0.05% Tween and 100 µl/well of avidin-HRP, diluted 1/250, were added and 

incubated for 30 min at RT. The last washing step was repeated 7 times with PBS / 0.05% 

Tween. 100 µl/well of TMB substrate solution were added and kept in the dark at RT until 

colour development. The reaction was stopped with 50 µl 2 N H2SO4. Optical density was 

measured on the Spectramax 250 microplate spectrophotometer (Molecular Devices, 

Sunnyvale, CA, USA) at 450 nm, corrected with the reference wavelength of 562 nm. 

Samples and standard were measured in duplicates and mean values were calculated in each 

experiment. 

 

3.3.3. Placental alkaline phosphatase (PLAP) ELISA 

96-well maxisorb immunoplates (Nunc, part of Thermo Fisher Scientific, Rochester, NY, 

USA) were coated overnight at RT with 1 µg/ml of the monoclonal mouse anti-human 

placental alkaline phosphatase (PLAP) Ab-5 antibody (Lab Vision Corporation, Fremont, CA, 
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USA). After rinsing with H2O, plates were blocked for 1 h at RT with 250 µl/well PBS / 0.5% 

BSA / 1 mM EDTA. Samples and PLAP standard (Sigma, St. Louis, MO, USA) were diluted 

in PBS / 0.5% BSA / 1 mM EDTA, distributed 50 µl/well and incubated at RT for 3 h. Plates 

were washed 4 times with PBS / 0.05% Tween and 100 µl/well pre-warmed pNPP substrate 

solution (Sigma, St. Louis, MO, USA) were added and incubated for 2-3 h at RT till the 

colour reaction was completed. Optical density was measured on the Spectramax 250 

microplate spectrophotometer (Molecular Devices, Sunnyvale, CA, USA) at 405 nm. 

Samples and standard were measured in duplicates and mean values were calculated in each 

experiment. 

   

3.4. RNA extraction 

Using the RNAeasy Mini kit from Qiagen (Valencia, CA, USA), RNA was isolated from 

monocytes co-cultured for 4 h with 300 µg/ml eS20 derived from three different STBM 

preparations. Cells were washed with ice cold PBS, centrifuged at 400 × g for 5 min at 4 °C 

and resuspended in 500 µl Trizol reagent (Gibco, Grand Island, NY, USA). Tubes were 

vortexed vigorously and incubated at RT for 5 min. 100 µl of RF chloroform were added, 

mixed well, kept at RT for 3 min and centrifuged at 16’000 × g for 15 min at RT. 500 µl of 

the aqueous phase were transferred into new eppendorf tubes, supplemented with 250 µl of 

100% ethanol, mixed well and applied onto columns. After centrifugation at 8’000 × g for 15 

seconds at RT, the flow-through was discarded, 350 µl of solution RW1 were pipetted onto 

the columns and centrifuged again at 8’000 × g for 15 seconds at RT. In turn, the flow-

through was discarded, 10 µl of DNAse 1 and 70 µl of the solution RDD were mixed and 

directly pipetted onto the matrix of the column and incubated for 15 min at RT. 350 µl of 

solution RW1 were added and centrifuged at 8’000 × g for 15 seconds at RT. The flow-

through was discarded and the columns were washed twice with 500 µl of buffer RPE and 

centrifuged at 8’000 × g for 2 min at RT. Columns were put into new eppendorf tubes and 
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RNA was eluted from the matrix with 50 µl of RNAse free H2O by centrifugation at 8’000 × 

g for 15 seconds at RT.  

RNA was quantified using nanodrop (Wilmington, DE, USA). 

 

3.5. GAPDH real-time PCR with mRNA  

To control for contamination of mRNA with genomic DNA, real-time PCR for GAPDH 

mRNA was done, in the presence or absence of the reverse transcription enzyme. For each 

sample, the reaction consisted of 1 x one-step RT-PCR Master Mix (Applied Biosystems, 

Foster City, CA, USA) containing 0.2 µM of forward primer (5’-

GAAGGTGAAGGTCGGAGT-3’) (Microsynth AG, Balgach, CH), 0.2 µM of reverse primer 

(5’-GAAGATGGTGATGGGATTTC-3’) (Microsynth AG, Balgach, CH) and 0.2 µM of 6-

carboxyfluorescein-labeled probe (Applied Biosystems, Foster City, CA, USA) for the 

amplification of the GAPDH mRNA 5’ end. All samples were performed in duplicates, with 

and without the addition of 1 x reverse transcriptase mix, to exclude the presence of GAPDH 

DNA, and run under the following conditions: 30 min at 48 °C, 10 min at 95 °C and 45 cycles 

(15 seconds at 95 °C, 1 min at 60 °C).  

 

3.6. Reverse transcription reaction 

For the reverse transcription reaction (TRIO-Thermoblock; Biometra, Goettingen, Germany) 

167 ng RNA were added to the reaction mix containing 4 µl MgCl2, 2 µl of RT 10 x buffer, 2 

µl of 10 mM dNTP mix, 0.5 µl rec RNAsin, 1 µl of 0.5 mg/µl random primers and 0.6 µl of 

25 U/µl AMV RT transcriptase (Promega, Madison, WI, USA) and filled up with H2O to a 

total volume of 20 µl. The reaction was performed using the following conditions: 10 min at 

37 °C, 60 min at 45 °C, 5 min at 95 °C and 15 min at 4 °C. The cDNA products of all eS20 

treated and untreated monocytes were pooled separately.  
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3.7. Human NF-κB Signalling Pathway RT
2
 Profiler PCR Array 

The real-time PCR based array from SABiosciences (Frederick, MD, USA) profiles 

expression of 84 key genes involved in the NF-κB signalling transduction. Two 96-well real-

time PCR plates were delivered from SABiosciences, pre-coated with the forward and reverse 

primers of the respective genes. The pipetting, described next, was performed at 4 °C. For one 

96-well plate 102 µl of cDNA were mixed with 1275 µl of 2x SuperArray RT
2
 qPCR master 

mix and filled up with H2O to the final volume of 2550 µl. 25 µl of the experimental cocktail 

were pipetted into each well of the PCR array. Plates were sealed with the optical thin-wall 8-

cap strips, shortly spun down to remove bubbles, and run at the following PCR cycling 

program for ABI 7000 (Applied Biosystems Inc., Forster City, USA): 10 min at 95 °C, 40 

cycles (15 seconds at 95 °C, 1 min at 60 °C).  

For the quantification test mRNA transcripts (Ct) were normalized to the reference gene actin. 

Results were presented as the transcript fold change of the respective gene normalized to actin 

(∆Ct) and relative to untreated controls (∆∆Ct), using the 2
-∆∆Ct

 method. 

 

3.8. Fluorescence microscopy 

STBM were stained with 5 µM of the red fluorescent membrane dye PKH26 (Sigma, St. 

Louis, MO, USA) and incubated for 5 min at RT. The staining was stopped with 2 ml of heat 

inactivated FCS and kept at RT for 2 min. 4 ml of PBS were added and centrifuged for 30 min 

at 60’000 × g. The PKH-26 stained STBM were washed twice in PBS and centrifuged for 1 h 

at 60’000 × g. The STBM-pellet was resuspended in PBS supplemented with 5% sucrose and 

stored at -20 °C until use. 

Monocytes were isolated from peripheral blood as described above and resuspended in PBS. 1 

× 10
6
 cells were labelled with 1 µM of the green fluorescent cytoplasmic dye 

carboxyfluorescein succinimidyl ester (CFSE) (kindly provided by Prof. Dr. G. Spagnoli, 

Department of Biomedicine, University of Basel, Switzerland) for 10 min in the dark at 37 
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°C. The staining reaction was stopped with 2 ml of RPMI medium containing 10% FCS for 5 

min at RT and centrifuged for 5 min at 400 × g. The cell pellet was washed 3 times in PBS 

and resuspended in complete RPMI medium to a concentration of 5 × 10
5
 cells/ml.    

PKH26-stained STBM were co-cultured with CFSE-labelled monocytes for 16 h as described 

above. Cells were harvested and washed once in PBS. 100’000 cells were transferred on one 

microscope slide using cytospin centrifugation (Shandon cytospin 3, Histocom AG, Zug, CH) 

at 400 rpm for 5 min. Slides were dried at RT in the dark and cells were fixed with 4% 

formaldehyde for 30 min. DNA was stained with DAPI and slides were immediately covered 

with coverslides. Analysis was done using a Zeiss Axioplan 2 imaging fluorescent microscope 

(Carl Zeiss AG, Feldbach, CH).   

 

3.9. Statistical analysis 

To calculate the statistical significance of differences between experimental groups, the 

Mann-Whitney test was performed using the statistical analysis software SPSS (Statistical 

Package for the Social Sciences; Chicago, IL, USA). P < 0.05 was considered statistically 

significant. 
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RESULTS 

 

1. STBM preparations 

STBM were prepared by four different approaches, which are believed to mimic physiological 

and patho-physiological conditions [204]. STBM generated by in vitro cultures of explants 

from villous tissue incubated at 20% O2 (eS20), or collected from the maternal side of ex vivo 

dually perfused placental lobe (pS) are believed to represent the most physiological conditions 

with apoptotic shedding as part of normal placental turnover. Generation of STBM by 

mechanical dissection of villous tissue (mS) is, in essence, a necrotic process of release, 

whereas STBM released from villous tissues cultured at 3% O2 (eS3) could reflect the hypoxic 

conditions seen in preeclampsia. To assess the degree of apoptosis and necrosis in placental 

explant cultures incubated in 20% or 3% oxygen, tissue caspases activity and the release of 

LDH were measured (Figure 8). Villous tissue explants cultured at 3% O2 showed lower 

caspases activity but higher LDH release relative to the explants incubated at 20% O2 (Figure 

8a and b), strongly suggesting higher rate of apoptotic tissue turnover in 20% O2, and 

conversely, increased necrosis in tissue cultured under hypoxia.  
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Figure 8. Expression of activated caspases and release of LDH by villous tissue explants.   

Villous explants were cultured for 72 h at 37 °C in either 20% O2 or 3% O2. The same placentas were 

used for cultures under both oxygen conditions. (A) The levels of active caspases in protein extracts of 

villous explants are expressed as relative fluorescence units (RFU) / µg of tissue protein. (B) The 

percentage of LDH released in the culture medium is indicated relative to the LDH activity from an 

explant that was lysed in detergent. Bars are presented as mean ± SEM of 3 explant cultures. Statistics 

were not performed as the experiment included only 3 explant cultures.     

 

 

 

1.1. All microparticle preparations contain the syncytiotrophoblast specific placental 

alkaline phosphatase (PLAP) 

The placental origin of the in vitro prepared STBM was confirmed by quantification of their 

content of placental alkaline phosphatase (PLAP) by ELISA (Table 1). All STBM populations 

tested contained PLAP. However, the levels of mS-associated PLAP were up to 4 times higher 

than the ones enclosed in eS20 and eS3 (Table 1). As previously shown by my colleagues, the 

STBM prepared by dual perfusion of a cotyledon contained similar concentrations of PLAP as 

the STBM generated by villous tissue cultures incubated in 20% O2 [220]. 
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Table 1. Content of PLAP in the STBM populations was measured by ELISA. All results are shown 

by mean ± SEM of STBM generated from 3-4 different placentas for each condition. 

 

 

 

1.2. STBM associated cytokines 

The placental syncytiotrophoblast produces many proinflammatory cytokines, which might be 

associated with the microvesicles when the latter shed off from the syncytiotrophoblast 

membrane. In particular, it has been previously shown by my colleagues that STBM prepared 

from villous explant cultures incubated in air, contained detectable amounts of IL-8 [228]. As 

cytokines influence many aspects of monocyte activation, we analysed the different STBM 

preparations for the presence of proinflammatory factors.    

None of the STBM preparations contained detectable levels of IL-1ß or TNF-α (data not 

shown). IL-6 was either undetectable or present at very low concentrations (Table 2). IL-8 

was similarly absent or low in pS, eS3 and mS. However, high levels of IL-8 were 

reproducibly associated with preparations of eS20 (Table 2).   
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Table 2. Presence of STBM-associated cytokines was measured by ELISA. All results are shown as 

mean ± SEM of STBM generated from 3-5 different placentas for each condition       

        

 

 

1.3. Conclusion 

Placental explant cultures incubated in 20% O2 exhibited an increased apoptotic cell turnover, 

whereas necrosis was higher in placental villous tissues cultured at hypoxic conditions.  

All STBM preparations contained the syncytiotrophoblast-specific PLAP and high levels of 

the chemokine IL-8 were associated with eS20. 
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2. STBM prepared from normal term placentas do not activate the 

monocytic cell line Mono Mac 6  

 

To investigate the effects of STBM on human monocytes the monoblastic cell line Mono Mac 

6, which is derived from the peripheral blood of a man with relapsed acute monocytic 

leukemia upon myeloid metaplasia, was chosen [235]. 

Faas and co-workers previously used Mono Mac 6 to evaluate the monocytic cell surface 

expression of the adhesion molecule CD54 and the synthesis of reactive oxygen species 

following treatment with plasma from normal pregnant and preeclamptic women [236]. 

 

2.2. STBM only marginally alter the expression and median fluorescent intensity of cell 

surface markers on Mono Mac 6 cells 

STBM did not induce apoptosis in Mono Mac 6 cells, as assessed by visual inspectation and 

the distribution of the cells in the forward scatter (FSC) / side scatter (SSC) dot plots of flow 

cytometric analysis (data not shown). 

CD14, CD54 (intercellular adhesion molecule 1/ICAM-1) and the MHC class II molecule 

HLA-DR have been shown to be differently expressed by peripheral blood monocytes in 

normal pregnant and preeclamptic women compared to non-pregnant controls [25, 91, 92].  

10% of Mono Mac 6 cells displayed CD14 and its median fluorescent intensity (MFI) was 

low (Figure 9a). Both, the number of cells expressing CD14 as well as its MFI were increased 

upon treatment with LPS for 16h. However, none of the three STBM preparations (eS20, eS3 

and mS) altered the frequency of expressing cells and MFI of CD14 (Figure 9a).  

Mono Mac 6 cells were highly positive for CD54, which was further enhanced following 

stimulation with LPS (Figure 9b). While eS20 and eS3 did not trigger any change, mS 

decreased the frequency of CD54 expressing cells in a dose-dependent manner (Figure 9b and 

d). Furthermore, MFI of CD54 was 3.5 fold increased after LPS treatment and reduced upon 
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incubation with mS (17.9 ± 1.9), compared to basal MFI (25.9 ± 2.1) (Figure 9b and d). The 

percentage of HLA-DR expressing cells remained equal in untreated cells and cells incubated 

with LPS or STBM (Figure 9c). However, MFI of HLA-DR was dose-dependently declined 

by mS (Figure 9c and e).  
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Figure 9. Expression of CD14, CD54 and HLA-DR on Mono Mac 6 cells co-incubated with 

STBM prepared from normal term placentas. Percentage of expressing cells and median 

fluorescent intensity (MFI) of CD14 (A), CD54 (B) and HLA-DR (C) of Mono Mac 6 cells co-

cultured with 300 µg/ml STBM or 1 µg/ml LPS for 16 h. (D, E) Percentage of expressing cells and 

MFI of CD54 and HLA-DR on Mono Mac 6 cells following treatment with three different 

concentrations of STBM. Data are presented as mean ± SEM of 2 independent co-culture experiments 

with STBM prepared from 3 different placentas for each condition.   
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2.3. STBM do not trigger the secretion of pro-inflammatory cytokines in Mono Mac 6 

cells 

As another approach to evaluate the activation status of Mono Mac 6 cells upon STBM 

treatment, secretion of the proinflammatory cytokines interleukin (IL)-6 and IL-1ß were 

measured (Table 3).  

Mono Mac 6 cells produced trace amounts of IL-6 and IL-1β in the absence of any trigger 

(Table 3). Stimulation with LPS induced a 76.6 fold and a 7.9 fold increase in IL-6 (826.8 ± 

78.1pg/ml) and IL-1β (35.6 ± 18.1pg/ml) secretion, respectively (Table 3). However, there 

was no induction of IL-6 and IL- 1β production after co-culture with any of the three STBM 

population (Table 3). 

 

Table 3. Production of IL-6, IL-1β and IL-10 by Mono Mac 6 cells cultured for 16 h in the absence of 

any treatment and following stimulation with 1 µg/ml LPS or co-incubation with STBM. All results 

are shown as mean ± SEM of 2 co-culture experiments with STBM generated from 3-4 different 

placentas for each condition. 
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2.4. STBM do not induce an anti-inflammatory response in Mono Mac 6 cells  

Analysis of activation markers, including cell surface molecules and proinflammatory 

mediators, showed that none of the STBM preparations stimulated an inflammatory response 

in Mono Mac 6 cells. To investigate a potential STBM-mediated anti-inflammatory effect on 

Mono Mac 6 cells, the secretion of IL-10 was assessed (Table 3). Untreated Mono Mac 6 cells 

produced trace amounts of IL-10 (4.7 ± 0.9pg/ml), which was enhanced by LPS (66.6 ± 

23.4pg/ml), but not altered by any of the STBM preparations (Table 3). 

 

2.5. Conclusion 

Although Mono Mac 6 responded to LPS, STBM did not trigger an inflammatory response in 

the cell line. Co-cultures of STBM and Mono Mac 6 might not be the appropriate model to 

study the effects of placental membrane fragments on monocytes.  

Thus, next the inflammatory nature of STBM was analyzed on peripheral blood monocytes.  
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3. STBM prepared from normal term placentas activate human peripheral 

blood monocytes 

 

3.1. STBM do not affect the viability of human monocytes 

The human peripheral blood monocytes only represent 5-10% of blood leukocytes and to 

avoid activation of the cells during isolation, monocytes were enriched by a negative selection 

method using the magnetic cell separation approach [232]. This resulted in purified 

populations of monocytes, which generally contained >94% CD14
+
 cells, as confirmed by 

flow cytometry (data not shown). These cells were incubated with the same STBM 

preparations used in the experiments with Mono Mac 6 cells, namely eS20, eS3 and mS, as well 

as with STBM, which were collected from the maternal side of ex vivo dually perfused 

placental lobe (pS). Next to eS20, pS are believed to represent the physiologic situation found 

in human pregnancy. None of the STBM preparations substantially altered monocytic 

viability as observed in the flow cytometer analysis (Figure 10a). Furthermore, cell viability 

was also routinely quantified by a colorimetric assay, which measures mitochondrial 

dehydrogenase activity, and was always >80% relative to the untreated monocytes that were 

cultured in parallel to the STBM-treated cells (data not shown). 

 

3.2. STBM differently alter the expression of cell surface markers on human primary 

monocytes 

In order to investigate the effect of STBM on the phenotypic activation status of monocytes, 

the cell surface expression of CD14, CD54 and CD11a (alpha L integrin) was measured 

(Figure 10). Like CD14 and CD54, CD11a is differently expressed on monocytes of pregnant 

and preeclamptic women compared to non-pregnant controls [92].   

Neither the well known monocyte activator LPS nor the different STBM populations altered 

CD14 expression relative to the untreated cells following a 16 hour co-incubation (Figure 10b 
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and c). In contrast, stimulation of monocytes with LPS led to an increased median fluorescent 

intensity (MFI) of CD54 and a decrease in the expression of CD11a (Figure 10b and c). 

Incubation with eS20 and pS also enhanced monocytic expression of CD54, whereas eS3 and 

mS led to decreased CD54 MFI (Figure 10b and c). Cell surface expression of CD11a was 

reduced, albeit to differing extents, by all microparticle populations except eS20 (Figure 10b 

and c). 

 

 

Figure 10. Expression of CD14, CD54 and CD11a on monocytes co-incubated with different 

STBM populations.  

(A) Representative forward scatter (FSC) / side scatter (SSC) dot plots of monocytes, left untreated, 

incubated with 300 µg/ml STBM or 1 µg/ml LPS for 16 h. (B) Representative histograms of CD14, 

CD54 and CD11a on R1 gated cells co-cultured with indicated STBM preparations. (C) Differences in 

median fluorescent intensity (MFI) of CD14, CD54 and CD11a triggered by LPS and the different 

STBM populations. Bars represent mean ± SEM of 2 independent monocyte co-culture experiments 

with STBM generated from 3-5 different placentas for each condition (* P value < 0.05;  

** P value < 0.01). 
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3.3. eS20 and pS induce the secretion of proinflammatory cytokines by human 

monocytes 

Since the changes in cell surface expression of adhesion molecules upon incubation with 

STBM may indicate monocytic activation, we next investigated whether STBM could 

stimulate the secretion of the chemokine IL-8 and the proinflammatory cytokines IL-1ß and 

IL-6 (Figure 11). 

Monocytes cultured for 16 h in the absence of treatment produced basal levels of IL-8, but did 

not secrete detectable levels of proinflammatory cytokines (Figure 11a). As expected, 

stimulation with LPS enhanced IL-8 secretion and induced the production of IL-1β and IL-6 

compared to the untreated cells. Incubation with eS20 led to a comparable increase in IL-8 

release, while at the same dose of STBM protein, pS triggered a 3-fold higher secretion of IL-

8 than eS20 (Figure 11a upper panel). Both, eS20 and pS also stimulated IL-6 and IL-1ß 

production, although to varying degrees. Whereas the cellular response to eS20 remained 

modest and was always lower than that induced by LPS, the stimulatory effect of pS on 

cytokine expression was extreme. IL-6 and IL-1β secretion were, respectively, 3.5-fold and 

2.6-fold higher upon incubation with pS than following stimulation with LPS (Figure 11a, 

medium and lower panels). In contrast, eS3 and mS did not induce monocytic release of IL-6, 

IL-1ß or IL-8. 
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Figure 11. STBM-mediated secretion of cytokines by monocytes. (A) Quantification of IL-8, IL-6 

and IL-1ß secreted by monocytes by ELISA. Cells were left untreated, co-incubated for 16 h with 300 

µg/ml STBM or 100 pg/ml LPS. (B) Dose-dependent release of IL-8 and IL-6 by pS and eS20. (C) 

Time-dependent secretion of IL-6 and IL-1ß by monocytes upon treatment with eS20. Data are 

presented as mean ± SEM of 2 monocyte co-culture experiments with STBM generated from 3-5 

different placentas for each condition (* P value < 0.05; ** P value < 0.01). eS20-associated IL-8 was 

deduced from total levels of IL-8 measured in the co-cultures (in order to evaluate monocytic 

contribution).  

 

3.4. STBM-induced cytokine secretion is dose- and time-dependent 

The secretion of proinflammatory factors stimulated by eS20 and pS was dependent on the 

concentration of microparticles, which was evaluated by their protein content. Increasing 

amounts of eS20 and pS mediated a steady rise in IL-8 production (Figure 12b, upper panel). 

IL-6 secretion in response to eS20 was also dose-dependent (Figure 12b, medium panel). In 
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contrast, the levels of IL-6 already reached a plateau at the lowest dose of pS and did not 

increase further. Moreover, pS induced a higher cytokine response than eS20 at all doses of 

STBM tested. pS also stimulated IL-1β secretion in a dose-dependent manner (Figure 12b, 

lower panel). 

Cytokine production in response to STBM was also time-dependent. While IL-6 secretion 

increased steadily from 4 h to 16 h following stimulation, IL-1ß release reached maximum 

levels already at 4 h and was sustained with longer incubation (Figure 12c). 

 

3.5. IL-8 is not responsible for eS20 mediated cytokine secretion  

As shown in Table 2, eS20 contain detectable levels of IL-8. Although IL-8 has never been 

described as a stimulus for monocytes, we confirmed that it was not responsible for the eS20-

mediated activation of the cells. First, monocytes, which were stimulated with three different 

concentrations of human recombinant IL-8 for 16 h did not produce IL-6 (data not shown). 

Furthermore, the IL-6 secretion in response to eS20 was not affected by the presence of an 

anti-human IL-8 blocking antibody (Figure 13). 
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Figure 13. STBM-induced IL-6 secretion in presence of IL-8 blocking antibody. 300 µg/ml eS20 

were pre-treated with mouse anti-human IL-8 antibody with the indicated concentrations, before co-

culture with monocytes for 16 h. All data are presented as mean ± SEM of 2 monocyte co-culture 

experiments with eS20 prepared from 3 different placentas. 

 

 

3.6. Conclusion 

pS and eS20 activated peripheral blood monocytes in a dose-dependent manner and it was not 

due to STBM-associated IL-8. 
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4. STBM prepared from preeclamptic placentas equally activate human 

peripheral blood monocytes as STBM from healthy placentas 

 

4.1. eS20 prepared from term preeclamptic placentas modify the expression of cell 

surface molecules 

So far, all co-culture experiments were done using STBM from healthy term placentas. The 

next step was to evaluate the effects of STBM derived from preeclamptic placentas on 

monocytes and to compare them with the ones of STBM form healthy term placentas. Thus, 

the eS20 preparation approach was used to generate eS20 from preeclamptic placentas. To 

investigate if eS20 generated from preeclamptic placentas induce changes in the expression 

profile of cell surface markers as well, the expression of CD14, CD54 and CD11a on primary 

human monocytes treated with eS20 from preeclamptic placentas was compared with that on 

untreated monocytes. Monocytic CD14 expression remained unchanged. However, MFI of 

CD54 was highly increased (641.2 ± 122.5) and MFI of CD11a decreased (-583.4 ± 77.2) on 

monocytes co-cultured with eS20 from preeclamptic placentas (Figure 13b and c). The changes 

in cell surface expression were similar to these induced by eS20 from normal term placentas 

(see Figure 10). 
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Figure 13. Expression of CD14, CD54 and CD11a on monocytes co-incubated with eS20 prepared 

from preeclamptic placentas. (A) Representative forward scatter / side scatter dot plots of monocytes 

treated with 300 µg/ml of three different preparations of eS20 isolated from preeclamptic placentas 

(eS20 PE1, eS20 PE2, eS20 PE3) and untreated monocytes. (B) Representative histograms of CD14, 

CD54 and CD11a on R1 gated cells co-cultured with the three STBM preparations. (C) Differences in 

median fluorescent intensity (MFI) of CD14, CD54 and CD11a triggered by eS20 generated from 3 

different preeclamptic placentas. Bars represent mean ± SEM of 2 independent monocyte co-culture 

experiments with eS20 prepared from 3 different preeclamptic placentas (* P value < 0.05;  

** P value < 0.01). 

.  
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4.2. eS20 generated from normal and preeclamptic placentas similarly trigger the 

secretion of proinflammatory cytokines 

Knowing that eS20 from healthy term placentas induced a dose-dependent production of 

proinflammatory mediators by primary monocytes, the effect of eS20 generated from 

preeclamptic placentas on the monocytic secretion of IL-6 and IL-8 was analysed (Figure 14). 

eS20 derived from preeclamptic placentas stimulated IL-6 and IL-8 secretion by monocytes in 

a dose-dependent manner and to a similar extent as eS20 isolated from normal placentas 

(Figure 14a and b).   

Figure 14. eS20 prepared from normal and preeclamptic placentas induce dose-dependent 

release of IL-6 and IL-8 in a similar range. Measurement of IL-6 (A) and IL-8 (B) secretion by 

monocytes by ELISA. Cells were left untreated or incubated with 10, 30 ,100 and 300µg/ml eS20 

derived from normal (NP) or preeclamptic (PE) placentas for 16 h. All results are defined as mean ± 

SEM of 2 different monocyte co-culture experiments with eS20 generated from 3 preeclamptic 

placentas and form 5 healthy placentas.  

 

 

4.3. Conclusion  

eS20 from preeclamptic placentas showed a similar proinflammatory action on monocyte 

activation as eS20 from normal term placentas. 
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5. STBM induce secretion of proinflammatory mediators by primary 

human monocytes in a NF-κB-dependent manner 

 

So far, this work showed that pS isolated from normal term placentas and eS20 prepared from 

normal as well as from preeclamptic placentas triggered monocytic cell surface expression of 

CD54 and secretion of proinflammatory mediators by primary human monocytes. Gene 

expression of CD54, IL-1β, IL-6 and IL-8 is known to be induced by the transcription factor 

nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) [237].  

Hence, the potential role of NF-κB in the activated phenotype of STBM-treated monocytes 

was analysed. 

Since there was a higher abundance of normal term placentas than preeclamptic ones, the 

following experiments were performed using eS20 prepared from normal term placentas only. 

 

5.1. The transcription of proinflammatory mediators is induced by eS20  

Treatment of primary monocytes with eS20 for 4 h induced the transcription of multiple NF-

κB responsive genes relative to their expression in untreated cells (Figure 15a).  

IL-6 transcription was highly induced in monocytes co-cultured with eS20, demonstrated by a 

2
-∆∆Ct 

value of 120.26 relative to untreated controls (Figure 15a). Genes with a transcript fold 

change between 10 and 21 were the chemokine CCL2 (chemokine (C-C motif) ligand 2) (2
-

∆∆Ct 
= 18.77), which is also known as monocyte chemotactic protein (MCP)-1, the cytokines 

colony-stimulating factor (CSF)-2 (2
-∆∆Ct 

= 17.03) and CSF-3 (2
-∆∆Ct 

= 20.97), TNF (2
-∆∆Ct 

= 

11.16) and IL-1α (2
-∆∆Ct 

= 15.24) and the transcription factor EGR1 (early growth response 1) 

(2
-∆∆Ct 

= 16.34). Furthermore, a fold increase of gene transcription ranging between 2 and 10 

was measured for the cytokines IL-1β (2
-∆∆Ct 

= 6.02), lymphotoxin (LT)-α (2
-∆∆Ct 

= 3.53), the 

chemokine IL-8 (2
-∆∆Ct 

= 3.78), the IL-1 receptor type 1 (IL-1R1) (2
-∆∆Ct 

= 2.35), and Jun (2
-

∆∆Ct 
= 3.78), which forms, either as homodimer or heterodimer, the functional transcription 
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factor AP-1 (activator protein-1). However, in addition to genes encoding for 

proinflammatory mediators, monocytic gene transcription of the anti-inflammatory cytokine 

IL-10 (2
-∆∆Ct 

= 5.82) was increased following co-culture with eS20 (Figure 15a).   

 

 

Figure 15. Differential expression of genes involved in NF-κB signalling following treatment with 

eS20. Monocytes were co-cultured for 4 h with 300 µg/ml of three different eS20 preparations and the 

pooled cDNA was analysed for the transcription of several genes. (A) eS20 induced a transcript fold 

change (2
-∆∆Ct

) ≥ 2 in the following genes: chemokine (C-C motif) ligand 2 (CCL2), Colony-

stimulating factor 2 (CSF2), CSF3, Epidermal growth factor 1 (EGR1), interleukin (IL)-10, IL-1α 

(IL1A), IL-1β (IL1B), IL-6, IL-8, JUN, lymphotoxin-α (LTA) and tumour necrosis factor (TNF). (B) 

eS20 mediated a transcript fold change ≤ 2 in the following genes: B-cell CCL/lymphoma 3 (BCL3), 

nucleotide-binding oligomerization domain containing (NOD)-1, caspase 8 (CASP8), Fas-Associated 

protein with Death Domain (FADD), NLR family, pyrin domain containing 12 (NLRP12), TICAM2, 

Toll-like receptor (TLR)-1, -6, -7, -8, -9 and CD27.      
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5.2. eS20 decrease the gene expression of pro-apoptotic mediators, pattern recognition 

receptors and their adaptor molecules  

Beside induction, eS20 mediated down-regulation of several NF-κB responsive genes, which 

were defined by a 2
-∆∆Ct

 value ≤ 0.5 (Figure 15b). 

On the one hand, the gene expression of the pro-apoptotic molecules caspase-8 (2
-∆∆Ct 

= 0.32), 

CD27 (2
-∆∆Ct 

= 0.43), a member of the TNFR superfamily, and FADD (Fas-Associated protein 

with Death Domain) (2
-∆∆Ct 

= 0.5) was decreased (Figure 15b). On the other hand, eS20 

reduced the transcription of the pattern recognition receptors toll-like receptor (TLR)1 (2
-∆∆Ct 

= 0.25), TLR6 (2
-∆∆Ct 

= 0.2), TLR7 (2
-∆∆Ct 

= 0.26), TLR8 (2
-∆∆Ct 

= 0.32), TLR9 (2
-∆∆Ct 

= 0.44) 

and nucleotide-binding oligomerization domain containing (NOD)-1 (2
-∆∆Ct 

= 0.47), the 

intracellular TLR4 adaptor molecule TICAM2 (2
-∆∆Ct 

= 0.47) and NLRP12 (NLR family, 

pyrin domain containing 12) (2
-∆∆Ct 

= 0.38), which encodes the NOD-like receptor monarch-1. 

Furthermore, gene expression of the transcriptional NF-κB co-activator BCL3 (B-cell 

CCL/lymphoma 3) (2
-∆∆Ct 

= 0.42) was halved in response to eS20 (Figure 15b).      

 

5.3. Inhibitors of NF- κB reduce cytokine secretion mediated by eS20  

To confirm the involvement of NF-κB in the activation of peripheral blood monocytes by 

eS20, cells were treated with agents, which are known to block NF-κB activation (Figure 16). 

6-Amino-4-(4-phenoxyphenylethylamino) quinazoline (6AQ) is a cell-permeable quinazoline 

compound, which functions as inhibitor of NF-κB transcriptional activation [238]. Perillyl 

alcohol (PA) is suggested to block calcium-dependent NF-κB signalling [239].  

Both inhibitors reduced LPS-triggered IL-6 synthesis, whereas the effect on IL-8 secretion 

was marginal (Figure 16a and b). 6AQ and PA similarly decreased IL-6 and IL-8 production 

in eS20-treated monocytes compared to cells co-cultured with eS20 in the absence of 6AQ and 

PA (Figure 16a and b). 
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Figure 16. NF-κB inhibitors reduce the eS20-induced IL-6 and IL-8 secretion in monocytes. 

Monocytes were pre-incubated with 10 µM of 6-amino-4-(4-phenoxyphenylethylamino) quinazoline 

(6AQ), perillyl alcohol (PA) or DMSO, the solvent of 6AQ, before co-culture with 300 µg/ml eS20 or 

100 pg/ml LPS for 16 h. IL-6 (A) and IL-8 (B) secretion was quantified by ELISA. All data are 

presented as mean ± SEM of 3 different monocyte co-culture experiments with eS20 generated form 4 

placentas (* P value < 0.05; ** P value < 0.01). Statistics were not performed for LPS, as the 

experiment has only been done three times.     

 

 

5.4. Conclusion 

Incubation of STBM with monocytes triggered changes in the transcription of several genes, 

which was partially mediated by NF-κB.  
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6. Interaction of STBM and primary human monocytes 

 

6.1. eS20 attach to the monocytic cell surface   

To assess if STBM directly interact with human monocytes, eS20 were stained with the red 

fluorescent membrane dye PKH-26 before co-culture with monocytes. Flow cytometric 

analysis revealed that all monocytes were highly positive for PKH-26, suggesting a binding of 

STBM to the monocytic cell surface (Figure 17a). This finding was confirmed by fluorescent 

microscopy (Figure 17b). Therefore monocytes were stained with the green fluorescent 

cytoplasmic dye carboxyfluorescein succinimidyl ester (CFSE) and treated with PKH26-

labelled eS20. Single STBM or aggregates of STBM were localized at the boundary of the 

CFSE-stained monocytes (Figure 17b). The nuclei were stained with the DNA-binding dye 

4',6-Diamidin-2'-phenylindol- dihydrochlorid) (DAPI).  

 

Figure 17. STBM bind to the monocyte surface. (A) Representative histograms of flow cytometry 

analysis of monocytes co-cultured with PKH-26-labelled eS20 for 16 h. (B) Fluorescence microscopy 

of CFSE-stained monocytes (green) incubated with PKH-26-labelled eS20 (red) for 16 h. DNA was 

stained with DAPI (blue). 2 independent monocyte co-cultures were performed with eS20 prepared 

from 3 different placentas. 
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6.2. eS20 mediated secretion of proinflammatory mediators is independent of 

phagocytosis by human monocytes 

Although Figure 17b does not suggest an engulfment of STBM, next, it was tested if 

phagocytosis was important for the eS20-mediated cytokine secretion. To block phagocytosis, 

monocytes were pre-treated with cytochalasin B, a cell-permeable mycotoxin that shortens 

actin filaments by inhibiting monomer addition, before stimulation with eS20 (Figure 18). 

Cytochalasin B did not reverse the eS20-induced secretion of IL-8 and IL-6 (Figure 18a and b), 

showing that phagocytosis is not required for the induction of the inflammatory response. 

However, the localization of eS20 at the monocytic cell surface suggested that monocytes 

express cell surface molecules, which interact with eS20-associated markers and convey the 

activation signal into the cell.   

Figure 18. Inhibition of phagocytosis does not reverse STBM-mediated secretion of 

proinflammatory mediators by monocytes. Monocytes were pre-treated with 1 or 10 µM of the 

phagocytosis inhibitor cytochalasin B or with DMSO, the solvent of cytochalasin B, before addition of 

300 µg/ml eS20. Release of IL-8 (A) and IL-6 (B) was quantified by ELISA. All data are presented as 

mean ± SEM of 3 different monocyte co-culture experiments with eS20 prepared from 3 placentas. 
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6.3. STBM contain CD54 

It has been previously proposed that monocytes strongly adhere via LFA-1 to CD54 displayed 

by cultured syncytiotrophoblasts [240]. As it is likely that STBM express the same membrane 

molecules as their parental cells, it was speculated that STBM-associated CD54 could bind 

LFA-1 expressed by monocytes. Thus, in a next step, the potential existence of STBM-

associated CD54 was analyzed. 

All STBM populations that activated monocytes, namely eS20 and pS prepared from healthy 

term placentas and eS20 generated from preeclamptic placentas, contained CD54 (Table 4). 

However, there was less microparticle-associated CD54 in pS, which always triggered the 

highest STBM-mediated inflammatory response in monocytes, than in eS20, suggesting that 

CD54 may not be the major molecule mediating the interaction. 

 

Table 4. Presence of STBM-associated CD54 was measured by ELISA. All results are shown as mean 

± SEM of STBM prepared from 3 different placentas for each condition. NP = normal pregnancy; PE 

= preeclampsia. 
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6.4. STBM-associated CD54 is not responsible for eS20 mediated cytokine secretion 

Although the concentration of STBM-associated CD54 was lower in pS than eS20, its possible 

involvement in monocyte activation was evaluated. Therefore, the potential CD54-mediated 

adhesion of eS20 to primary monocytes was blocked with an anti-human CD54 antagonistic 

antibody. However, the secretion of IL-6 and IL-8 was not affected by the presence of the 

blocking antibody (Figure 19a and b), showing that CD54 is not required for the eS20-

mediated inflammatory response.  

 

Figure 19. STBM-associated CD54 is not responsible for the proinflammatory response of 

monocytes. 100 µg/ml eS20 were pre-incubated with 10 µg/ml of anti-human CD54 adhesion antibody 

before adding to monocytes. After 16 h of co-culture, IL-8 (A) and IL-6 (B) secretion by monocytes 

was measured by ELISA. Bars represent mean ± SEM of 2 monocyte co-culture experiments 

with eS20 prepared from 3 different placentas.     

 

 

6.5. Basal expression of cell surface marker is different in Mono Mac 6 cells and 

peripheral blood monocytes  

Previous results from this work showed that eS20 triggered an inflammatory response in 

primary human blood monocytes, but not in the monocytic cell line Mono Mac 6. The lack of 

the cell surface expression of a specific molecule could be responsible for the 

unresponsiveness of Mono Mac 6 cells towards STBM treatment. Thus, basal expression of 
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monocytic markers, which might be involved in the binding of eS20 to monocytes and the 

subsequent intracellular signalling, was assessed on Mono Mac 6 cells and peripheral blood 

monocytes (Figure 20a and b). Comparison of CD14 expression confirmed previous results. 

Monocytes were highly positive for CD14, whereas Mono Mac 6 cells expressed low levels of 

CD14 (17.1 ± 5.1%). Both cell types were positive for CD54 and CD11a (Figure 20a and b).  

Peripheral blood monocytes and Mono Mac 6 highly expressed toll like receptor (TLR) 2 

(98.9 ± 0.2% and 86.6 ± 2.1%, respectively), whereas they were negative for TLR4 (Figure 

20a and b). However, there was a huge difference in the expression profile of TLR1: almost 

all primary cells (86.2 ± 7.8%) were positive for TLR1, in contrast to the Mono Mac 6, which 

did not express TLR1 (Figure 20a and b). In addition, primary monocytes (14.9 ± 3.9%) 

displayed triggering receptor expressed on myeloid cells (TREM)-1, in contrast to Mono Mac 

6 (Figure 20a and b). 
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Figure 20. Different basal expression of cell surface molecules on Mono Mac 6 and primary 

monocytes. (A) Percentage of Mono Mac 6 cells and peripheral blood monocytes expressing CD14, 

CD54, CD11a, TLR1, TLR2, TLR4 and TREM-1. Bars represent mean ± SEM of 2 experiments. (B) 

Representative histograms of all cell surface molecules analysed. 
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6.6. MyD88 inhibitor peptide reduces eS20 mediated secretion of proinflammatory 

mediators 

TLR are potential receptors for STBM, as STBM are assembled of characteristic lipids [241]. 

In addition, the finding that TLR1 was differently expressed on primary monocytes and Mono 

Mac 6, suggested that the eS20-induced monocyte activation may be mediated through TLR 

signalling.   

Myeloid differentiation primary response gene (MyD) 88 is an intracellular adaptor protein, 

which is used by TLRs to induce the transcription factor NF-κB [242]. To investigate the 

involvement of TLR activation in eS20-mediated secretion of proinflammatory mediators by 

monocytes, TLR signalling was blocked by a MyD88 homodimerization inhibitory peptide 

(Figure 21). Pre-treatment of monocytes with the inhibitory peptide reduced LPS-triggered 

IL-6 and IL-8 secretion (Figure 21a and b). The highest inhibition was achieved when the 

cells were treated with the lowest dose of LPS. 

Treatment of monocytes with eS20 in the presence of the MyD88 inhibitory peptide impaired 

monocyte activation, as shown by the reduced secretion of IL-6 (78.6 ± 16.5% and 87.1 ± 

4.9%, respectively) and IL-8 (80.8 ± 3.2% and 72.7 ± 5.4%, respectively) compared to cells 

cultured with eS20 alone (Figure 21a and b). 
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Figure 21. MyD88 homodimerization peptide reduces the STBM mediated proinflammatory 

response. Primary monocytes were treated with 1 µM of the MyD88 inhibitor peptide for 24 h before 

culturing with eS20 or LPS for 12 h. Quantification of IL-8 (A) and IL-6 (B) released by monocytes 

was performed by ELISA and presented as percentage secretion relative to monocytes treated with 

eS20 or LPS without pre-incubation with the MyD88 homodimerization peptide. Data are presented as 

mean ± SEM of 3 monocyte co-culture experiments with eS20 prepared from 4 different placentas  

(* P value < 0.05; ** P value < 0.01). Statistics were not performed for LPS, as the experiment has 

only been done three times.     

 

6.7. Conclusion 

eS20 bound to the monocyte cell surface and eS20 partially mediated activation of monocytes 

through the TLR-signalling pathway.  
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DISCUSSION 

Syncytiotrophoblast microparticles (STBM) have been attributed potential functions in the 

systemic maternal inflammatory response during normal human pregnancy and in the 

exaggerated generalized inflammation found in preeclampsia [115]. My colleagues and others 

showed, that STBM prepared from term placentas directly activate human cells of the 

inflammatory network, comprising endothelial cells and neutrophils, in vitro [220, 226-228, 

243].  

In the current work, the monocytic cell line Mono Mac 6 and primary human monocytes were 

used to investigate the potential contribution of STBM on the cellular viability, phenotype and 

function of monocytes. Thereby, STBM were prepared from healthy term placentas by four 

different in vitro approaches at conditions, which are believed to reflect either the physiologic 

situation in normal pregnancy (STBM washed from the maternal side of a dually perfused 

placental cotyledon and STBM shed by explants cultured in air) or the patho-physiologic one 

found in preeclampsia (STBM isolated by mechanical dissection and STBM generated from 

villous explant cultures incubated in hypoxic conditions). The dual perfusions of placental 

cotyledons and the cultures of villous tissue explants may represent best the in vivo situation, 

as the tissue structure and integrity are at least partially retained. In addition, Di Santo et al. 

has previously shown that the trophoblast viability und functionality was even better 

maintained during dual perfusions than in villous tissue explant cultures incubated in air, by 

directly comparing tissues from the same placenta for 7 hours [244]. Although the conditions 

of the present study are not exactly as those in Di Santo et al., one may assume that the same 

would be true when comparing a dual perfusion of 30 minutes and a villous explant culture 

incubated in air of 72 hours. In order to mimic the placental hypoxic conditions observed in 

preeclampsia, villous tissue explants were cultured in 3% O2. Indeed, the current results 

suggest that there is a shift from apoptotic to necrotic cell death in villous tissue cultured in 
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3% O2 in contrast to the villous tissue incubated in 20% O2. Furthermore, physical disruption 

of tissue integrity by mechanical dissection of villous tissue is, in essence, a necrotic process.       

None of the STBM populations triggered an inflammatory response in Mono Mac 6, although 

an activated phenotype was inducible by LPS. However, decreased CD54 expression on 

Mono Mac 6 cells incubated with mS could indicate changes in adhesion properties. Faas and 

co-workers recently observed a similar decreased CD54 expression on Mono Mac 6 cells 

following treatment with plasma derived from normal pregnant and preeclamptic women for 

24 h, suggesting that STBM in the maternal plasma could mediate this reduced expression 

[236]. 

The absence of responsiveness of Mono Mac 6 cells upon co-incubation with STBM, may be 

attributed to its immature phenotype [245]. This is confirmed by the present results, which 

revealed low frequency of Mono Mac 6 cells expressing CD14, in contrast to the mature 

peripheral blood monocytes, which are highly positive for CD14. Thus, the inflammatory 

potential of in vitro prepared STBM was assessed on primary human peripheral blood 

monocytes. The data show, that different STBM populations triggered various responses in 

primary monocytes without affecting cell viability, which confirms that Mono Mac 6 cells 

and primary monocytes are not identical, concerning function and phenotype. 

While the most patho-physiologic STBM populations (eS3 and mS) had no or only minor 

influences on the monocytic phenotype and function, STBM generated in conditions 

mimicking more closely the physiologic situation (eS20 and pS) induced a proinflammatory 

response.  

That the monocytic response varied according to the mode of preparation of the STBM is not 

surprising in the light of previous findings with other cell types. For instance, it was shown 

that mS triggered endothelial cell detachment from the collagen matrix and apoptosis, whereas 

eS20 and pS induced a partial inhibition of endothelial cell proliferation, but no apoptosis [220, 
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226]. Furthermore, eS20 and mS significantly inhibited, whereas pS enhanced, the proliferation 

of T lymphocytes induced with phorbol ester and Ca
2+

 ionophore [223].  

The current data show that primary monocytes treated with pS and eS20 acquired an 

activation-like phenotype and secreted proinflammatory immune mediators. Up-regulation of 

the adhesion molecule CD54 is of interest in regard of a previous report documenting a 

significant increase in CD54 expression on peripheral blood monocytes from third trimester 

pregnancies [92]. The results suggest that placental microparticles could be the mediators of 

this observation. 

pS and eS20 also stimulated the production of  the proinflammatory molecules IL-8, IL-6 and 

IL-1β. These factors have been analysed because of their enhanced intracellular expression in 

peripheral blood monocytes of preeclamptic women [187]. Furthermore, they are also present 

in elevated concentrations in the serum of preeclamptic patients [183-185]. The current results 

are also in line with a recent report, which showed that STBM prepared by dual perfusion of a 

placental cotyledon, but not STBM generated by mechanical dissection of villous tissue, 

induced a functional response in primary monocytes in vitro, as measured by the increased 

intra-cellular production of TNF-α and IL-12p70 [173]. However, in the study of Germain 

and co-workers, STBM were incubated with the whole peripheral blood mononuclear cell 

(PBMC) fraction, leaving open the possibility that the up-regulation of cytokine expression in 

monocytes could be indirect, for instance by cell-cell contact between monocytes and STBM-

activated third-party cells, or alternatively, through stimulation by a soluble mediator 

produced by the latter. Our findings allow us to conclude that STBM are capable of directly 

inducing monocytic cytokine production.  

The monocytic response was time-dependent. As expected, IL-6 secretion increased steadily 

with incubation time, whereas the secretion of IL-1β was rapid and sustained. This 

observation is in agreement with the knowledge that IL-1β is a mediator of acute 

inflammation, whereas IL-6 is a secondary pleiotropic regulator of inflammatory responses. 
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IL-1β is stored as an inactive precursor molecule in the cytoplasm, which is cleaved and 

released as a proactive form in the extra-cellular compartment immediately after stimulation 

[246]. 

The results also show that monocyte activation in response to STBM was dose-dependent. 

Moreover, at identical protein concentration, the response stimulated by pS was much higher 

than that induced by eS20. This could indicate that these two preparations of microparticles are 

functionally different. On the other hand, this might also reflect a technical limitation of this 

work. To conform to previous studies, the STBM-associated protein concentration was used 

to quantify the STBM populations [173, 220]. However, this is a surrogate measurement for 

microparticle numbers as the protein content of differentially prepared STBM may vary. 

Another aspect that needs to be considered when interpreting the current results is that, 

although the presence, in our STBM preparation, of syncytial-membrane microparticles could 

be confirmed by the detection of syncytiotrophoblast-specific PLAP, a possible occurrence of 

microparticles derived from non-trophoblastic elements of the villous tissue or from residual 

maternal blood cell debris cannot be excluded.   

eS20 prepared from preeclamptic placentas induced a proinflammatory reaction in peripheral 

blood monocytes, as well. eS20 from normal as well as from preeclamptic placentas triggered 

an equally strong and dose-dependent inflammatory response in primary monocytes, 

suggesting that there are no or minor qualitative differences between the microparticles. From 

these observations one may speculate that the overt maternal inflammation associated with 

preeclampsia might be due to the higher concentrations of circulating STBM, rather than to 

qualitative differences between the microparticles shed from the healthy and patho-

physiologic placentas.  

eS20 partially induced the inflammatory response through NF-κB. NF-κB is a master 

transcription factor involved in inflammatory pathways, which regulates the expression of 

several genes, including CD54, IL-8, IL-6 and IL-1β [237]. eS20 triggered the transcription of 
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a number of NF-κB-regulated genes, which contribute to the amplification of an inflammatory 

reaction, by either attracting or inducing production and differentiation of other immune cells. 

Beside a tremendous increase in the transcription rate of IL-6, there was a high induction of 

the small proinflammatory chemokine CCL2, which chemotactically attracts monocytes to 

sites of inflammation [247]. Furthermore, eS20 induced the transcription of the cytokines CSF-

2 and -3, which control production, differentiation and function of macrophages and 

granulocytes, TNF, which is a major mediator of acute inflammation, and the TNF family 

member LT-α, which mediate various inflammatory and immunologic responses [248-250].  

Although, eS20 triggered a huge release of IL-8 by monocytes, its transcription was only 

marginally enhanced. This observation could point to the presence of an intracellular reservoir 

of pre-stored IL-8, as it is the case in Weibel-Palade bodies in microvascular endothelial cells 

[251]. However, it has to be considered that gene expression and secreted protein levels of IL-

8 were measured at different time points following eS20 treatment (after 4 and 16 hours, 

respectively).    

eS20 not only stimulated the secretion of IL-1β, but also its gene transcription. However, the 

transcription of the other isoform of IL-1, namely IL-1α, was induced more by eS20. IL-1β and 

IL-1α both stimulate chemokine production, when they bind IL-1 receptor 1 (IL-1R1).  

eS20 also induced gene expression of the transcription factors EGR1 and JUN. EGR1 belongs 

to a family of immediate early genes, which exhibit a critical role in cellular growth, 

development and differentiation [252]. JUN either forms homodimers (JUN/JUN) or 

heterodimers (JUN/FOS and JUN/ATF) to generate the functional AP-1 transcription factor, 

which regulates gene expression of crucial molecules of the immune system, including 

cytokines [253]. 

However, eS20 also triggered transcription of the anti-inflammatory cytokine IL-10, 

representing a typical negative feedback regulator, which is usually produced by activated 

cells to maintain homeostatic control and to prevent potential injury mediated by an overt 
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inflammatory reaction [254]. The eS20-mediated decrease in gene expression of TLR1, TLR6, 

TLR7, TLR8, TLR9 and TICAM2, an intracellular adaptor molecule restricted to TLR4 

signalling, may contribute to the resolution of the inflammatory response as well [255, 256]. 

In addition, the reduced transcription of the transcriptional co-activator of NF-κB BCL3 may 

limit the transcriptional activity of NF-κB and, thus, support the termination of the 

inflammatory reaction [257, 258].  

On the one hand, down-regulated transcription of the cytoplasmic pattern recognition receptor 

NOD1 (CARD4) could also account for the restriction of the inflammation, because NOD1 

functions as activator of NF-κB [259]. On the other hand, reduced NOD1 transcription 

prevents apoptosis, as NOD1-mediated activation of the pro-apoptotic molecule caspase 9 is 

inhibited [259].  

NF-κB is also known as a cell survival factor, and the eS20-mediated decrease in gene 

expression of the apoptosis-inducing molecules FADD, caspase 8 and the TNF receptor 

CD27, could explain the high viability of monocytes following STBM treatment, compared to 

monocytes cultured in absence of any trigger [237, 260-262].  

The requirement of NF-κB for the regulation of IL-6 and IL-8 production could be 

demonstrated by the finding that the two NF-κB inhibitors 6AQ and PA partially prevented 

the secretion of the proinflammatory mediators upon stimulation with eS20. eS20-triggered 

release of proinflammatory factors was more reduced following treatment with 6AQ than with 

PA. This is not surprising, as these two compounds interfere with different steps of NF-κB 

activation. PA decreases intracellular calcium levels and thereby blocks the calcium-

dependent NF-κB pathway, only [239]. However, 6AQ is a low molecular weight inhibitor of 

NF-κB transcriptional activation and might not be restricted to one of the pathways activating 

NF-κB [238]. Activation of the NF-κB signal transduction pathway in PBMC of preeclamptic 

women remains controversial [263, 264]. Luppi et al. showed an increased activation of NF-

κB compared to normal pregnant controls [263]. In contrast, McCracken and co-workers 
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published a suppression of the NF-κB activation pathway relative to normal pregnant and 

non-pregnant subjects [264]. However, this suppression might rather be attributed to the T-

cell subset than the monocytes, as McCracken et al. recently documented the down-regulation 

of NF-κB in peripheral blood T-cells of pregnant women [265].   

The finding that there is a response in eS20-treated monocytes, raised the question of a direct 

interaction between monocytes and STBM. Results obtained by flow cytometry and 

fluorescence microscopy revealed, that eS20 attach to the monocytic surface. These results are 

in line with the work of Germain and collaborators, who recently gave evidence for binding of 

placental-derived microparticles on circulating monocytes in the peripheral blood of normal 

pregnant and preeclamptic women [173].  

The observed localization of eS20 at the boundary of monocytes, suggests that STBM interact 

with monocytes via one or several receptor-ligand-pair(s).  

pS and eS20 preparations led to decreased CD11a expression on monocytes. CD11a forms 

together with CD18 the heterodimeric integrin lymphocyte function-associated antigen-1 

(LFA-1). It has been suggested that monocytes strongly adhere via LFA-1 to CD54 displayed 

by cultured syncytiotrophoblasts [240]. Since STBM are likely to encompass the same 

membrane molecules as the parent cell from which they are derived, it has been speculated 

that the observed changes in CD11a fluorescence intensity might be due to the interaction 

between the STBM and the monocytes through these partner molecules, resulting in some 

form of masking of the CD11a epitope to the antibody used for the present flow cytometry 

analysis. The results obtained during this work confirmed the presence of CD54 on STBM. 

Although binding was not analyzed, the adhesion blockade of CD54 did not affect the 

production of IL-6 and IL-8 in primary monocytes induced by eS20.  

The STBM used in this study also contained proinflammatory mediators. According to the 

data, a role for IL-8 that is associated with eS20, or the proinflammatory cytokines IL-6, IL-1β 

and TNF-α, which are present only in trace concentrations in all STBM populations, is 
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unlikely. However, it has been previously shown that STBM isolated by placental perfusion 

of the maternal circuit contained the biologically active isoform of IL-1β [234]. In contrast to 

the present work, where pS have been retrieved from placental washes lasting for 30 minutes, 

Di Santo and co-workers prepared STBM after seven hours of perfusion of the maternal 

compartment.       

STBM are potential ligands for TLRs, as STBM are constituted of characteristic lipids and 

contain DNA molecules [241, 266]. According to the data, TLR1 is a candidate receptor for 

STBM, as Mono Mac 6 cells, which did not respond to STBM, were lacking TLR1 

expression, whereas nearly all primary monocytes were positive for TLR1. TLR1 forms 

heterodimers with TLR2 and binds preferentially triacylated lipopeptides [267]. Blocking the 

TLR signalling by the cell permeable MyD88 homodimerization peptide reduced IL-6 and IL-

8 secretion, which gave further evidence for the involvement of TLRs. TLR signalling via the 

adaptor molecule MyD88 results in NF-κB activation [268]. However, some TLRs, such as 

TLR3 and TLR4, may trigger inflammation in a MyD88-independent way as well [268]. In 

the case of TLR4 it is known, that MyD88-dependent signalling is already induced at the 

plasma membrane, whereas activation of the MyD88-independent pathway needs endocytosis 

of the receptor/ligand complex [269]. Provided that this observation of Kagan et al. is true for 

other TLRs, which signal through MyD88, and knowing that engulfment of STBM is not 

required for the proinflammatory response in monocytes, one could speculate, that STBM are 

recognized on the monocyte membrane by one or several TLRs, which then trigger the 

MyD88-dependent cascade and induce the inflammatory response in absence of TLR 

internalisation.  

However, the MyD88 inhibitory peptide did not completely block the inflammatory response 

in eS20-treated monocytes. This could point out the involvement of further membrane 

molecules, which signal through other pathways. A candidate molecule is TREM-1, which 

was not expressed on Mono Mac 6, but present at low levels on primary monocytes. TREM-1 
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is known to transduce the extracellular signals through the immunoreceptor tyrosine-based 

activation motif (ITAM) into the nucleus, inducing the production of proinflammatory 

mediators, such as IL-8 and TNFα [270, 271]. However, the ligand of TREM-1 is still 

illusive. 

In conclusion, the present analysis suggests that STBM prepared by in vitro approaches, 

which probably mimic best the physiologic conditions of human pregnancy, bear dose-

dependent proinflammatory properties for primary monocytes. This is interesting in regard to 

the in vivo situation in normal pregnancy. The progressive monocytic activation in the 

maternal peripheral blood may be caused by the steady increase in the load of placental 

microparticles with gestational age. In addition, the present study suggests, that there are 

minor qualitative differences between STBM prepared from healthy and preeclamptic 

placentas. This could further indicate that the overt monocyte activation associated with 

preeclampsia may be attributed to the enhanced circulatory concentrations of STBM, rather 

than to a differential nature of the microparticles, compared to normal pregnancy. 

The results also suggest that STBM induce the MyD88-dependent TLR signalling at the cell 

surface, leading to NF-κB activation. In turn, NF-κB mediates the transcription of 

proinflammatory mediators, including IL-1β, IL-6 and IL-8, and adhesion molecules, such as 

CD54, resulting in a systemic inflammation.  

 

In future, the following questions should be solved in order to understand the inflammation-

inducing components of STBM: which molecules displayed by STBM are recognized by 

which TLR? Are there other receptors expressed by monocytes binding to respective ligands 

on STBM? Although it is very demanding to get decent and pure amounts of naturally 

occurring STBM from maternal blood, it would be interesting to compare their molecular 

expression profile with the one of in vitro prepared placental microparticles.  
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To extend the knowledge of potential in vivo effects of the STBM populations, analyzed in 

the present study, the next steps include their examination in pregnant mice. Possible xeno-

reactions should be ruled out by the administration of unspecific microparticles, for example 

human red blood cell microparticles (RBC ghost).    

However, preeclampsia is a multifactorial disorder and it is unlikely, that STBM alone are 

responsible for the maternal syndrome. Thus, data from all lines of ongoing research in 

preeclampsia should be considered, to get a more complete picture of the factors mediating 

the disease, which hopefully can be translated into new diagnostic and screening tools.      
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