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ABSTRACT 
 

 Allergic disease is highly prevalent in humans, and is a disorder of the immune 

system referred to as atopy. Allergy - or type I hypersensitivity - is characterized by 

excessive activation of mast cells by IgE, which results in inflammatory responses. Common 

allergic reactions include eczema, hives, hay fever, asthma and food allergies. Severe 

allergies may result in life-threatening anaphylactic responses and potentially death. 

Mast cells, the primary effector cells in allergy and inflammation, are derived from 

circulating hemapoietic progenitor cells, mature in vascularized tissue and play important 

role in both innate and adaptative immunity. They express on their surface different 

receptors: the high affinity IgE receptor, FcεRI, activated upon IgE/antigen complexes cross-

linking leading to degranulation; c-kit, the receptor for SCF important for growth and 

differentiation of mast cells; G-protein coupled receptors (GPCR) for chemokines; Toll-like 

receptors and complement receptors that can interact with pathogens. Once activated, mast 

cells release a variety of stored and newly synthesized inflammatory mediators such as 

granules-associated mediators (e.g. histamine, proteases), lipid mediators (e.g. leukotrienes 

and protaglandines) and cytokines and chemokines. All these inflammatory mediators lead to 

immune cells recruitment at the site of inflammation. 

The class I phosphoinositide 3-kinase (PI3K), which produces the second messenger 

PtdIns(3,4,5)P3, has been demonstrated to be essential in mast cell activation. Indeed, PI3Kγ, 

the only class IB PI3K, plays a role in mast cell activation via adenosine which potentiated 

mast cell degranulation initiated by IgE/antigen. PI3Kγ consists of a catalytic subunit p110γ, 

which binds to either p101 or p84 adapter subunits. In mast cells, p84 is the predominant 

adaptor subunit and plays a major role in signaling downstream of GPCR. PI3Kδ, a class IA 

PI3K, is also important in mast cell activation especially through the c-kit receptor. 

Using bone marrow derived mast cells (BMMCs) from p110γ-deficient mice and 

catalytically inactive p110δ mice, we investigate the role of these two kinases in a step by 

step analysis of mast cell recruitment from blood to the inflammation site. Our investigations 

revealed that p110δ remains essential for signaling downstream of the c-kit receptor but 
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p110γ is the main isoform involved in mast cell adhesion to endothelia. This process is 

mediated by interaction between α4β1 integrin on mast cells and VCAM-1 expressed on 

endothelial cells. We found that functional p110γ is required for mast cell-derived TNF-α 

triggering activation of endothelia. In tissues, mast cells adhere to extracellular matrix protein 

like fibronectin. Activation of cell surface receptors leads to BMMCs adhesion to fibronectin 

in a p110γ-dependent manner and mediated by α5β1 integrin. In vivo, IgE-mediated mast cell 

recruitment as well as IgE/antigen-induced passive cutaneous anaphylaxis are severely 

impaired by the absence of p110γ. In addition, both p110γ isoform-selective inhibitor and 

Enbrel, a TNF blocker, protected mice against anaphylaxis response. Altogether this suggests 

a critical role for PI3Kγ and TNF-α in mast cell activation and recruitment during allergy and 

inflammation. 
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INTRODUCTION 
 

 

 1. Mast cells 

 

  1.1. History 

 

 Mast cells were first described by Paul Ehrlich in 1878. In his doctoral thesis, he 

discussed their unique staining characteristics and large granules which led him to name them 

“Mastzellen” in the belief that they could nourish the surrounding tissue (from the Greek 

masto “I feed”) 1. In 1900, Jolly demonstrated the bone marrow origin of mast cells 2. In the 

1950s, mast cell granules were discovered to be the major reservoir of histamine 3 and to 

participate in allergic diseases 4-6. The identification of interleukin-3 (IL-3) as a mast cell 

growth factor in the 1980s enabled to culture them and facilitate their studies 7,8. Since then, 

studies have addressed the role of mast cells in both innate and adaptive immunity 9,10, 

including their ability to phagocytose bacteria 11 and their dominant role in the Arthus 

Reaction (local inflammation response due to deposition of immune complexes in tissues) 12. 

 

  1.2. Origin, morphology and distribution 

 

 During the 100 years after their discovery, mast cells were believed to be a 

component of connective tissue derived from undifferentiated mesenchymal cells 13. 

However, Kitaura and co-workers established that mast cells are derived from multipotent 

hematopoietic progenitors in the bone marrow. Indeed, W/WV mice, devoid of mast cells, 

were able to develop mast cells if the mice received bone marrow cells from a normal animal 
14,15. Mast cells originate from pluripotent CD34+/c-kit+/CD13+ cells in humans and from Lin-

/Sca.1-/FcεRI-/c-kit+ cells in mice. Mast cells precursors circulate in the blood and migrate 

into vascularized tissues, where they differentiate and maturate under the influence of growth 
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factors and cytokines 16-20. IL-3 and the c-kit ligand, also known as stem cell factor (SCF) are 

the principal cytokines that promote murine mast cell maturation and proliferation 8,21,22. 

Mast cells are about 10-20 µm diameter in size. They are widely distributed in 

connective tissue and contain metachromatic granules composed of heparin and histamine 

which can be stained with dye as toluidine blue and make them readily identifiable in 

tissues23. 

Mast cells are preferentially located at the interface of external and internal 

environments such as the airways, the gut and most abundantly, the skin where they are 

strategically positioned to trigger allergic reactions but also to provide protective host defense 

responses against pathogens 24,25. The analysis of human cutaneous mast cells shows no 

difference in mast cell number regarding the sex or the age of the individuals examined. 

Interestingly, mast cell numbers are higher in superficial skin layers and at peripheral skin 

sites (hand, feet, facial skin) where the risk of bacterial infection is more prominent 26. 

 

  1.3. Heterogeneity 

 

Although mast cells share many characteristics, it has been known since their 

discovery that they represent a heterogenous population. 

The rodent mast cell subtypes are based on phenotypical, morphological and histochemical 

differences: connective tissue mast cells (CTMC) are found in the skin and peritoneal cavity 

whereas mucosal mast cells (MMC) are located in the intestinal lamina propria 27. MMC can 

rapidly expand during T cell-dependent immune responses to certain intestinal parasites 28,29. 

In contrast, CTMC display little or no T cell-dependence and are present in normal numbers 

in athymic nude mice 30. The differences between these two populations, summarized in 

Table 1, include size, histamine content, proteoglycans and neutral proteases composition. 
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Table 1: Rodent mast cell characteristics 

Characteristics 
Connective Tissue Mast 

Cells (CTMC) 
Mucosal Mast Cell (MMC) 

Size (µm) 10-20 5-10 

Formaldehyde fixation Resistant Sensitive 

Staining Safranin Alcian Blue 

T-cell dependence in development No Yes 

Protease content Chymase: RMCP I Chymase: RMCP II 

Proteoglycans molecular mass 

(kDa) 
Heparin 750-1000 Chondroitin sulfate 100-150 

Histamine (pg/cell) 10-20 1 

5-Hydroxytryptamine (pg/cell) 1-2 <0.5 

Prostaglandin D2 + + 

Leukotriene C4 - ++ 

Activated by 

FcεRI aggregation 

Compound 48/80 

Substance P 

 

Yes 

Yes 

Yes 

 

Yes 

No 

No 

Inhibited by sodium cromoglycate Yes No 

Table adapted from 27. 
 

Human mast cells also exhibit differences in size, histochemical properties, quantities 

of stored mediators, sensitivity to stimulation and drug susceptibility. Like in rodents, human 

mast cells can be classified into two populations according to their neutral protease content: 

MCTC because they contain both tryptase and chymase whereas MCT contain only tryptase 31. 

The MCT are principally found in the alveolar septa of the lung and in the small intestinal 

mucosa whereas the MCTC predominate in the skin and the small intestinal submucosa 32 

(Table 2). Therefore, the human MCT corresponds most closely to MMC whereas the MCTC 

corresponds closely to the rodent CTMC. 



Introduction: Mast cells 

 19 

Table 2: Characteristics of human mast cell subsets 

Characteristics MCT MCTC 

Neutral protease Tryptase 

Tryptase 

Chymase 

Carboxypeptidase 

Cathepsin G 

Granule ultrastructure Scrolls Lattice/grating 

T-cell dependence Yes No 

Inhibited by sodium cromoglycate Yes No 

Distribution, % 

Skin 

Alveolar tissue 

Nasal mucosa 

Tonsils 

Small intestine 

Mucosa 

Submucosa 

 

<1 

93 

66 

40 

 

81 

23 

 

>99 

7 

34 

60 

 

19 

77 

Table adapted from 27. 
 

 

  1.4. Growth and differentiation 

 

Normal mast cell development and survival, and therefore mast cell function, are 

disrupted in mice lacking functional membrane SCF (Sl/Sld) or with mutations within the c-

kit receptor (W/WV) with less than 1% of wt levels of skin mast cells and no detectable mast 

cells in the peritoneal cavity, respiratory system, gastrointestinal tract or other sites 15,33. The 

mast cell-deficiency can be overcome by mast cell transplantation via adoptive transfer into 

the peritoneal cavity or via intradermal or intravenous injection 34. Therefore, the major 

factors for mast cell growth and development include SCF, IL-3 and TH2-associated 

cytokines such as IL-4, IL-9 and IL-10 35. 
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Mast cell progenitors proliferate and differentiate in vitro in the presence of SCF and 

IL-3 18. In vitro, mouse bone marrow cultured in IL-3 containing media gives rise to cultures 

of about 85% or more mast cells after 4-5 weeks 36 whereas granulocyte-macrophage colony-

stimulating factor (GM-CSF) 37, interferon-γ (INF-γ) 38 and transforming growth factor-β 

(TGF-β) 39 inhibit the differentiation of IL-3-dependent mast cells. IL-3 is both necessary and 

sufficient for murine bone marrow-derived mast cell (BMMCs) growth in vitro, although 

more factors are required for maturation. Alone, SCF have a limited early effect on BMMCs 

survival, however SCF, IL-4 and IL-9 act in synergy with IL-3 to enhance mast cell 

proliferation 27. Murine bone marrow cultured in presence of IL-3 and SCF gives rise to 

BMMCs corresponding to CTMC phenotype 40. 

 

  1.5. IgE and its high affinity receptor FcεRI 

 

 Mast cell activation is initiated upon interaction of a multivalent antigen (allergen) 

with its specific IgE antibody attached to the cell membrane via its high-affinity receptor, 

FcεRI. Cross-linkage of IgE-allergen brings the receptors into juxtaposition and initiates mast 

cell activation and mediator generation and release. 

IgE is produced following presentation of antigen by antigen-presenting cells (APC), 

such as a dendritic cell (DC) or B cell, to TH2 cells at local lymph nodes. Activated T cells 

then release IL-4, IL-13 and CD154 (CD40 ligand). CD154 engages CD40 expressed on 

APC, resulting in activation of the APC. In B cells this results in isotype class switching from 

IgM to antigen-specific IgE by a complex process, followed by secretion of allergen-specific 

IgE 41. IgE sensitizes mast cells to antigen locally 42, thus minimizing systemic reactions and 

promoting survival of the mast cells 43. Circulating levels of IgE are normally very low, in the 

range of 1 to 400 ng/ml (the lowest of the five human immunoglobulin isotypes) and their 

increase correlates with allergic disease 44. 

FcεRI is a multimeric cell-surface receptor that binds the Fc fragment of IgE with 

high affinity 45. It is a tetrameric protein complex consisting of an α-chain (FcεRIα), a β-

chain (FcεRIβ) and a homodimer of disulfide-linked γ-chains (FcεRIγ) (Figure 1). The α, β 

and dimeric γ chains form a complex in the plasma membrane through hydrophobic and 

electrostatic noncovalent interactions involving both covalently and noncovalently bound 
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lipids 46,47. The α-chain belongs to the immunoglobulin superfamily and comprises a 

transmembrane domain, a short cytoplasmic tail and two extracellular immunoglobulin-

related domains that bind a single IgE molecule, 48-51. The β subunit has four transmembrane 

domains separating amino and carboxy terminal cytoplasmic tails 51,52. The γ-chain consists 

essentially of a transmembrane region and a cytoplasmic tail 53. The FcεRIβ- and  γ-chains 

have no role in ligand binding. FcεRI, has no intrinsic tyrosine kinase activity, like other 

antigen receptors, but instead contains immunoreceptor tyrosine-based activation motifs 

(ITAMs) on the cytoplasmic tails of the β and γ chains, which get phosphorylated after 

antigen cross-linking of receptor-bound IgE molecules 54. The α subunit is unique to FcεRI. 

However, the β and γ subunits are shared with others Fc receptors; the β-chain with the low-

affinity IgG receptor, FcγRIII, and the γ-chain with both FcγRIII and the high-affinity IgG 

receptor, FcγRI 55-57. 

 

 
 

Figure 1: A. Schematic structure of IgE which contains two isotype-specific heavy chains 
and two light chains (H2L2). The Fab domain contains both heavy chain and light chain 
components while the Fc domain is derived exclusively from the heavy chain. The black lines 
represent the disulfide bonds. B. The FcεRI receptor consists of one α-chain, one β-chain and 
two γ-chains. The α-chain comprises two Ig-like domains, a transmembrane domain and a 
cytoplasmic tail. The β subunit has four transmembrane domains while the γ-chain consists of 
a transmembrane domain and a cytoplasmic tail. The tetrameric form is expressed by mast 
cells and basophils. C. The trimeric form lacks the β-chain and is expressed by APCs. 
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In mouse, FcεRI is expressed on effector cells of anaphylaxis, i.e. mast cells and 

basophils as a tetramer whereas its distribution in humans also comprises monocytes, 

Langerhans cells, eosinophils and DCs as a trimeric form lacking the β-chain 58-62. The 

expression of FcεRI on the surface of mouse mast cells occurs early in their differentiation 

and maturation 63, and mature mast cells can express FcεRI in excess of 105 per cell 64. 

IgE binds to transmembrane- or solubilized-FcεRI receptors with high affinity 

(Kd=10-10 M) 65. The binding of IgE occurs via the Fc region of the immunoglobulin in a 1:1 

ratio 66. The Cε3 domain (immunoglobulin heavy chain epsilon constant domain 3) of the 

IgE-Fc region contains the binding site for FcεRI 67. IgE binds to the extracellular domain of 

the α subunit without a conformational change 68. Studies in both mice and humans have 

revealed that levels of FcεRI surface expression can be regulated by levels of IgE 69,70. For 

example, IgE-deficient mice exhibit a dramatic reduction in FcεRI expression compared to 

wild-type mice, which is upregulated by incubation of IgE in vitro or by administration of 

IgE in vivo 71. Other studies reported similar effects of IgE on the surface expression of FcεRI 

on basophils, monocytes and DCs 72,73. Mechanistically, IgE-mediated FcεRI upregulation 

results from the stabilization of the cell surface receptors by the immunoglobulin. This 

stabilization stops internalization and degradation of FcεRI while maintaining basal 

synthesis. Inhibition of FcεRI internalization leads to the accumulation of more receptors at 

the cell surface. Initially, the accumulation comes from the preformed receptor pool and is 

insensible to the protein-synthesis inhibitor, cycloheximide. Later, when the pool of FcεRI is 

fully utilized, this process becomes sensitive to cycloheximide 71,74. 

 

  1.6. SCF and its receptor, c-kit 

 

 C-kit receptor, also known as CD117, is a receptor tyrosine kinase 75. SCF, a 

hematopoietic growth factor, was identified as the c-kit ligand 76. c-kit is encoded by the 

white spotting locus (W) 77 and expressed as several alternatively spliced isoforms (four 

isoforms in humans and two isoforms in mice) which give rise to proteins with molecular 

weights around 145 kDa 75. SCF is encoded by the Steel locus (Sl) 21 and exists as two forms 

produced by alternative splicing: a soluble form and a membrane-bound form, which lacks 

the proteolytic site for processing into the soluble form 78. 
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The receptor is a type III receptor tyrosine kinase. The members of this subfamily 

share the same topology (Figure 2): an extracellular part containing five immunoglobulin-

like motifs, a transmembrane segment and a cytoplasmic kinase domain divided into 

proximal and distal regions by an insert sequence of variable length. SCF binds to the second 

and third Ig domains while the fourth motif plays a role in receptor dimerization 79. The 

kinase domain, with the activation loop located in the distal kinase domain, are responsible 

for catalyzing the transfer of a phosphate group from ATP to the substrate 80. 

 

 

 

The receptor is expressed by hematopoietic stem cells, dendritic, erythroid, megakaryotic and 

myeloid progenitor cells, and pro-B and pro-T cells 81,82. C-kit expression is lost during cells 

differentiation except in melanocytes, the intestinal interstitial cells of Cajal and mature mast 

cells 83,84. SCF is produced by fibroblasts, endothelial cells, thymus tissue, spleen, testis and 

mast cells 85-89. 

Although SCF has many roles in stem cell biology, its major role is related to mast 

cells, which are among the few cells that express c-kit after differentiation 40. Both W/WV 

and Sl/Sld mice with mutations in the c-kit receptor and SCF loci respectively exhibit 

macrocytic anemia, sterility, hypopigmentation, and are deficient in mast cells 15,33 

suggesting that SCF/c-kit interaction plays an important role in the development of murine 

mast cells. Although W/WV mice contain less than 1% of the number observed in wt animals, 

mast cell progenitors are found in the bone marrow of these mice 90. Treatment of Sl/Sld mice 
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Figure 2: Structure of the c-kit receptor. 
Upon ligand binding, c-kit dimerizes and its 
intrinsic tyrosine activity is activated leading 
to phosphorylation of key residues. These 
residues constitute high-affinity binding 
sites for signal transduction molecules. 
In the extracellular domain, 1 to 5 refer to 
number of the Ig-like domains. In the 
cytoplasmic domain, the numbers refer to 
the phosphorylated residues. 
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with SCF locally increases the number of mast cells 76. SCF promotes survival, proliferation 

and maturation of mast cells in vitro and in vivo 40,91,92. SCF also promotes mast cell 

degranulation by itself 93,94, chemotaxis 95 and adhesion 96. SCF can also potentiate mast cell 

degranulation during IgE-dependent activation and release of histamine and arachidonic acid 
93,97,98 or serotonin from mouse peritoneal mast cells 99. 

 

  1.7. Toll-like receptors (TLRs) 

 

 Consistent with their role as sentinels in host defence, mast cells have a wide variety 

of cell-surface receptors that can interact with pathogens. Indeed, mast cells express TLRs to 

respond to products of both Gram-positive and Gram-negative bacteria and participate in host 

defense 100-103. The primary response to TLR ligands is the production of inflammatory 

cytokines such as TNF-α and IL-6 rather than degranulation 104,105. Both rodent and human 

mast cells have been shown to express TLR1, 2, 3, 4, 6, 7, 8 and 9, although functional 

studies focused mainly on TLR2 and TLR4. The latter both synergize with FcεRI to enhance 

degranulation and mediator release 106. The use of TLR2- and TLR4-deficient mice 

demonstrates that the response to peptidoglycans (PGN) engages TLR2 whereas response to 

lipopolysaccharide (LPS) is TLR4 dependent 107. All the TLRs recognize a specific category 

of microbial products such as PGN by TLR2, dsRNA by TLR3 108, LPS by TLR4, ssRNA by 

TLR7 and TLR8 109 and bacterial DNA and CpG-containing DNA by TLR9 110. 

 

  1.8. Receptors for complement components 

 

 Another mechanism to respond to pathogens is provided by the complement receptors 

found on the mast cell surface. Mast cells have long been recognized to interact with the 

complement system through complement receptor 3, CR3 (also known as CD11b/CD18), 

CR4 (CD11c/CD18) and the receptors for C3a (C3aR) and C5a (C5aR) 111,112. C3a, but not 

C5a induces degranulation and production of the chemokines MCP-1 (monocyte 

chemoattractant protein-1) and RANTES 113,114. This suggest that C3a and C5a recruit mast 

cells to the site of complement activation and C3a-stimulated mast cells produce chemokines 

which promote recruitment of APCs and T cells. Indeed, recruitment of Langerhans cells to 
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lymph nodes induces by PGN is not observed in mast cell- or C3a-deficient mice 115. It has 

been suggested that C3a binding to CR3 inhibits FcεRI signaling in some mast cells. This 

process requires a sequence in C3a, distinct from the C3a receptor binding domain, which 

inhibits FcεRIβ subunit phosphorylation and subsequent signaling events 116,117.  

 

  1.9. Mast cell mediators 

 

 Mast cells contain or generate on appropriate stimulation a group of potent 

biologically active mediators that can have many different effects in inflammation, tissue 

remodeling, and organ function at the site of mast cell activation 27,118. Mast cells produce 

three main classes of mediators: preformed granule-associated mediators; newly generated 

lipid mediators; and cytokines and chemokines 119,120. 

 

  1.9.1. Granule-associated mediators 

 Histamine is an amine known to be stored by mouse and human mast cells in 

intracellular granules, in a crystallin complex with proteases 3 (mouse and rat, but not human, 

mast cells also contain serotonin 121,122). Histamine is formed by decarboxylation of the 

amino acid histidine in the Golgi of mast cells and basophils 123,124. Mast cells from human 

lung, skin, lymphoid tissue and small intestine contain about 3 to 10 pg histamine/cell 125,126. 

Histamine is released into the local environment after initiation of the degranulation process 

during allergic response. It induces contraction of airway smooth muscle, mucus secretion 

and increases the vascular permeability and facilitates leukocytes to access affected tissues 
127. Once secreted, histamine is metabolized rapidly within 1-2 minutes 128. On target cells, 

histamine binds specific histamine receptors designated H1 to H4 129. 

Mouse and human mast cells contain variable mixtures of heparin and chondroitin 

sulfate proteoglycans 130,131. These proteoglycans act as extracellular mediators and as storage 

matrices for other preformed mediators. Indeed, by ionic interactions, they bind histamine, 

neutral proteases and carboxypeptidase and they contribute to the packaging and storage of 

these molecules within the secretory granules 132-134. Heparin is a potent anti-coagulant and 

can bind certain cytokines, chemokines and growth factors produced by mast cells 
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themselves 118. Heparin also regulates the localization and the activity of mast cell proteases 
135. 

The major protein component stored in mast cell secretory granules are neutral 

proteases released during exocytosis. These enzymes are called tryptases and chymases and 

are tryptic and chymotryptic peptidases, respectively. All these are serine proteases of the 

trypsin family but differ in form, activity and expression 136. In mice, the major mast cell 

proteases (designated as MCP) are the chymases: mMCP-1, -2, -4, -5 and -9; tryptases: 

mMCP-6, -7, -11 and mTMT, a transmembrane tryptase; and carboxypeptidase (mMC-CPA) 
137,138. Mouse mast cell proteases are differently expressed at specific tissue localization: mast 

cells in mouse airway and intestinal mucosa express mMCP-1 and mMCP-2, whereas skin 

and peritoneal mast cells express mMCP-4, -5, -6 and mMC-CPA 139-142. As in mice, the 

human proteases are differentially localized according to mast cell subtypes. Indeed, human 

tryptase is expressed in mucosal mast cells (MCT), whereas tryptase, chymase and 

carboxypeptidase are present in skin and intestinal submucosa mast cells (MCTC) 32. The 

proteases are stored in the secretory granules as an active form and bound to heparin and 

chondroitin chains making them resistant to extracellular proteases 143. Tryptase cleaves 

fibrinogen, activates latent collagenases, hydrolizes some neuropeptides, may causes mucus 

secretion and be mitogenic 144. It also enhances vasopermeability, inflammation and airway 

smooth muscle hyperreactivity 145. On the other hand, chymase converts angiotensin I to II, 

cleaves extracellular matrix (ECM) proteins , i.e. laminin, type IV collagen, fibronectin (FN), 

stimulates mucus secretion, degrades neuropeptides and can activate the metalloproteinase-2 

and IL-1β precursor 146-148. These proteases have also various roles in tissue remodeling and 

cellular recruitment 149-151. 

 

  1.9.2. Lipid mediators 

 Mast cell activation initiates de novo synthesis of lipid-derived substances. Among 

them, the most important are the cyclooxygenase and lipoxygenase metabolites of 

arachidonic acid, which possess potent inflammatory activity 152. The major product of 

cyclooxygenase is prostaglandin (PG) D2, whereas lipoxygenase generates leukotrienes 

(LTs): LTC4, and its derivates LTD4 and LTE4. Human mast cells produce LTB4 but in lower 

amounts than PGD2 and LTC4 153,154. LTC4 is a potent bronchoconstrictor and increases 
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vascular permeability resulting in swelling and oedema and helping recruitment of leukocytes 
155. LTB4 promotes eosinophils and neutrophils recruitment, enhances lysosomal enzyme 

release and augments superoxide anion production 156-158. PGD2 is an inhibitor of platelet 

aggregation 159. It is chemotactic for TH2 cells, eosinophils and basophils 160. PGD2 induces 

vasodilatation and increases permeability and facilitates transendothelial migration of 

inflammatory cells during allergic inflammation 161,162. PGD2 also acts as a mediator in 

allergic asthma. Indeed, in PGD receptor (DP) deficient mice challenged with ovalbumin 

after sensitization, the level of serum IgE is increased, whereas the TH2 cytokines and 

leukocytes accumulation in lung is greatly reduced 163. Platelet-activating factor (PAF) has 

been detected after IgE/antigen activation of mouse BMMCs, basophils and human mast cells 
164,165. PAF aggregates, degranulates platelets and causes blood vessels to dilate 166. It is a 

potent mediator which induces bronchoconstriction, systemic hypotension and can induce 

anaphylaxis shock and death 167. Mice lacking the PAF receptor or treatment of PAF receptor 

antagonist protect animals against anaphylaxis 168,169. 

 

  1.9.3. Cytokines and chemokines 

 Mast cells represent a potential source of cytokines, growth factors and chemokines. 

The synthesis and release of these products can be IgE-dependent or not but little is known 

about their regulation and secretion by patient with mastocytosis. 

TNF-α was the first cytokine localized in mast cells 170. TNF-α is stored in small 

amounts in the secretory granules and its transcription is induced after mast cell activation via 

FcεRI 171. TNF-α can also be released after LPS stimulation through TLR2 and PGN 

stimulation via TLR4 101. TGFβ is released by BMMCs after IgE/antigen stimulation and 

activates fibroblasts for the secretion of MCP-1 172,173. IL-1β is produced by BMMCs upon 

activation by IgE/antigen or LPS 101,174. IL-3 affects development and survival of eosinophils, 

basophils and mast cells. Both human and mouse mast cells have the ability to release IL-3 in 

response to high-affinity IgE receptor 175,176. IL-4 is involved in the regulation of IgE 

biosynthesis. Human lung mast cells rapidly released IL-4 upon IgE-dependent stimulation 
177. BMMCs stimulated with PGN also produce IL-4 101. IgE/antigen stimulation has been 

reported to induce IL-4 secretion from BMMCs when cells are treated with a combination of 

IL-3/IL-4/GM-CSF but not with IL-3 alone 178. IL-5 mRNA levels is increased in mouse mast 
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cells and the protein is produced by human mast cells activated by FcεRI 179,180. IL-6 

stimulates the differentiation and maturation of B cells and the production of 

immunoglobulins. IL-6 is secreted by both human and mouse mast cells stimulated by 

IgE/antigen, LPS, PGN, calcium ionophore and SCF 101,181,182. IL-8 is a potent chemotactic 

cytokine for neutrophils and lymphocytes 183,184. IL-8 is released from human mast cells 

stimulated with phorbol 12-myristate 13-acetate (PMA) or calcium ionophore 185. 

Keratinocyte-derived chemokine (KC), the functional murine homolog of IL-8, is secreted by 

FcεRI-activated mouse mast cells 186. BMMCs activated by IgE/antigen or calcium ionophore 

are able to produce enhanced levels of IL-9 (as well as IL-3, IL-5, IL-6 and TNF-α) when 

costimulated with IL-1 187. IL-10 enhances proliferation and Ig production by B cells via the 

CD40 pathway 188. It has been shown that human lung mast cells are capable of producing 

IL-10 in response to IgE-dependent stimulation 189. Human and murine mast cells produce 

IL-13 in response to PMA, LPS, PGN, calcium ionophore, SCF or through their IgE receptor 

activation 190-192. IL-13, along with IL-4, is implicated in the induction of IgE synthesis.  

Human mast cells contain and release IL-16 after PMA or C5a activation. This provides a 

possible link between mast cell activation and T cell accumulation in mast cell-dependent 

inflammation because IL-16 functions as a CD4+ T cell chemoattractant cytokine 193. Human 

and mouse mast cells are also an important source of GM-CSF. This IgE-dependent GM-CSF 

release can be potentiated by SCF 194. Nerve growth factor (NGF) is produced in both human 

and mouse mast cells after IgE/antigen stimulation 195. SCF regulates mast cell differentiation 

and growth. Human skin and lung mast cells store and secrete SCF upon activation 89,196. 

Chemokines are chemotactic cytokines regulating the migration of hemapoietic cells, 

including mast cells. There is also evidence that cultured mast cells and mast cell lines 

release chemokines such as macrophage inflammatory protein-1α (MIP-1α), MIP-1β, MCP-

1 and RANTES which can recruit effector cells during immune response 197-199. 

 

  1.10. Adhesion Molecules 

 

The complexes forming the functional component of cell adhesion comprised three 

general classes of protein: the cell adhesion molecules (CAMs), the ECM proteins and the 

peripheral membrane proteins. There are four major families of the CAMs: the integrins, the 
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immunoglobulin superfamily, the selectins and the cadherins 200,201. Among them, the 

integrins are the best studied as receptors of mast cells. 

 

1.10.1 Integrins 

The integrins are non-covalently linked, heterodimeric molecules containing an α and 

a β subunit, each with a large extracellular domain, a transmembrane domain and a short 

cytoplasmic tail 202,203 (Figure 3). 

 

 
 
Figure 3: Schematic diagram of integrin structure. The overall structure is that of a head 
region (propeller and thigh domains of the α-subunit and the βA, hybrid and PSI domains of 
the β-subunit) supported on two legs that are made up of the calf1 and calf2 domains in the 
α-subunit and the EGF repeats and β-tail domain in the β-subunit. The binding of ligands 
takes place at an interface between the α and the β subunit 204. 
 

These heterodimeric receptors mediate active connection between extracellular 

adhesion molecules and the intracellular actin cytoskeleton. In mammals, 18 α and 8 β 

subunits have been characterized and form 24 different receptors (Figure 4). Integrin-ligand 

interactions provide physical support for cells in order to maintain cohesion, to enable the 

generation of traction forces to permit movement, and to organize signaling complexes to 

modulate differentiation and cell fate 205. The signal transduction through integrins occurs in 

two directions: from the extracellular environment to the cytoplasm, termed “outside-in 
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signaling” and from the cytoplasm out to the extracellular domain of the receptor, termed 

“inside-out signaling” 206. Integrin activation converts them from a low-affinity (resting) state 

to a high-affinity (activated) state. 

 

 
 

Figure 4: The Integrin Receptor Family: the mammalian subunits and their αβ associations 
form 24 distinct integrins. These can be considered in several subfamilies based on 
evolutionary relationships (coloring of α subunits), ligand specificity and, in the case of β2 
and β7 integrins, restricted expression on white blood cells 207. 
 

Human mast cells from the lung, uterus and skin have been shown to express the 

integrin molecules β1 (CD29), β2 (CD18), α2 (CD49b), α3 (CD49c), α4 (CD49d), α5 

(CD49e), αIIb (CD41), αV (CD51), β3 (CD61) and β7 52-60. On the other hand, the integrin 

molecules β1, α4, α5, α6 (CD49f), αV, αIIb, β3 and β7 are expressed on the surface of 

BMMCs. All these integrin molecules have one or more natural ligands which are 

summarized in Table 3. During mast cell differentiation, the levels of α4β1 gradually 

decrease whereas the levels of α5β1 remain high 211,212. 

Activated mast cells adhere to ECM proteins such as fibronectin, vitronectin, laminin, 

fibrinogen that bind to integrins expressed on the mast cell surface. 
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Table 3: The integrin family in human and murine mast cells 

Integrin Alternative names Ligands 

αIIbβ3 gpIIb/IIIa Fibrinogen, vitronectin, fibronectin 

α3β1 VLA-3, CD49c/CD29 Laminin, collagen I, fibronectin 

α4β1 VLA-4, CD49d/CD29 Fibronectin, VCAM-1, MadCAM-1 

α4β7  Fibronectin, VCAM-1, MadCAM-1 

α5β1 VLA-5, CD49e/CD29 Fibronectin 

α6β1 VLA-6, CD49f/CD29 Laminin 

αVβ3 CD51/CD61 Vitronectin, fibronectin, PECAM-1, fibrinogen 

 Table adapted from 213. 
 

  1.10.2. Immunoglobulin superfamily (IgSF) 

The IgSF is a large group of surface and soluble proteins involved in recognition, 

binding, or adhesion processes of cells. This superfamily includes cell surface antigen 

receptors, co-receptors and co-stimulatory molecules of the immune system, molecules 

involved in antigen presentation to lymphocytes, cell adhesion molecules, certain cytokine 

receptors and intracellular muscle proteins 214,215. In the immune system, IgSF members play 

a critical role in cellular adhesion. They express repeated immunoglobulin-like domains at 

their extracellular N-termini. These Ig domains are globular loop-like structures stabilized by 

sulphydryl bridging. Key members include the Intercellular Cell Adhesion Molecules 

(ICAMs), Vascular Cell Adhesion Molecule-1 (VCAM-1), the peripheral addressin, 

MadCAM-1 and the Platelet-Endothelial Cell Adhesion Molecule (PECAM). Structurally, 

the ICAMs on leukocytes contain two to five extracellular Ig domains 216. ICAM-1, also 

known as CD54, is express on the membranes of leukocytes and endothelial cells and its 

level can be increased by IL-1 α and TNF-α 217,218. ICAM-1 is a ligand for lymphocyte 

function-associated antigen-1, LFA-1 (αLβ2 integrin) and Mac-1 (αMβ2 integrin), receptors 

found on leukocytes. When activated, leukocytes bind to endothelial cells via ICAM-1/LFA-

1 and then transmigrate into tissue 219. VCAM-1, also known as CD106, contains six or seven 

Ig repeats and is expressed by many different cell types including activated endothelial cells, 

bone marrow stromal cells, spleen stroma cells, thymic epithelial cells and some DCs in the 
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spleen. The cytokines IL-1β, IL-4, TNF-α and IFN-γ up-regulate VCAM-1 on endothelial 

cell surface 218,220. VCAM-1 is a ligand for α4β1 and α4β7 integrins 221,222. The interaction 

between VCAM-1 and integrins expressed on leukocytes is involved in the extravasation of 

leukocytes through the endothelium to sites of inflammation 223. MadCAM-1, containing five 

Ig domains, is expressed selectively on high endothelial venules (HEV) and lamina propia 

venules 224,225 and binds to both α4β7 integrin and L-selectin 226,227. 

Human intestinal mast cells express ICAM-1 on their surface 210. But mast cells have 

also been reported to induce ICAM-1, VCAM-1 and E-selectin expression on endothelial 

cells via their release of TNF-α 228,229. Similarly, co-culture of mast cells with fibroblasts 

markedly increases ICAM-1 and VCAM-1 surface expression on fibroblasts 210,230. 

 

  1.10.3. Selectin family 

Selectins are the main receptors that mediate the initial capture of circulating 

leukocytes to vascular endothelial surfaces followed by rolling adhesion 231. The selectins 

comprise a three-member family with a highly conserved N-terminal C-type lectin and 

epidermal growth factor (EGF)-like tandem domains that bind sialyl-LewisX-like 

carbohydrate ligands 232. L-selectin (CD62L) is expressed on most circulating leukocytes and 

initiates leukocyte capture events in high endothelial venules in secondary lymphoid tissues 

and at peripheral sites of inflammation. L-selectin interacts with GlyCAM-1 and CD34 233,234. 

E-selectin (CD62E) is expressed only on endothelial cells activated by cytokines such as IL-

1, LPS and TNF-α 235. P-selectin (CD62P) is stored preformed in granules of endothelial 

cells and in the α granules of activated platelets 236. In response to mediators such as 

thrombin and histamine, P-selectin is rapidly mobilized to the plasma membrane 237. Its 

primary ligand is PSGL-1 (P-selectin glycoprotein ligand-1) constitutively found on 

leukocytes 238. P-selectin is largely responsible for the rolling phase of leukocyte adhesion 

cascade. Mast cells are known to release both histamine and TNF-α and in this respect might 

be important in E- and P-selectins regulation on endothelial cells. In fact, mast cells induce 

upregulation of P-selectin and E-selectin by secretion of histamine and TNF-α respectively 

on endothelia 229,239. It has also been reported that histamine produced by mast cells induce 

IL-6 and IL-8 secretion by endothelial cells. This process is concentration-dependent and 

inhibited by H1 or H2 receptor antagonists 240. 
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The regulation of both CAMs and selectins on endothelial cells suggest that mast cells 

contribute to cell recruitment in inflammation 241. 

 

  1.11. Adhesion to Extracellular Matrix (ECM) 

 

To understand the basis of mast cell biology, it is necessary to understand the 

interactions between mast cells and extracellular connective tissue matrix components. 

Adhesion of mast cells to components of connective tissue is important for the recruitment of 

mast cell progenitors from the circulation into tissue and the subsequent development, 

distribution, survival, priming and activation of mature mast cells 242. 

The ECM is a complex network of glycoproteins and proteoglycans composed of collagens, 

laminins, vitronectin, fibrinogen and fibronectin (FN) which serve as substrate for integrins 
243. The ECM plays an essential role in survival, adhesion, migration and proliferation of 

cells. 

 

  1.11.1 Laminin 

The laminins are a family of glycoproteins providing a part of the structural 

scaffolding of basal laminae in virtually all animals. Each laminin molecule is a heterotrimer 

composed of one α, one β and one γ chain subunits. There are fifteen laminin trimers formed 

of varying combinations of five α, three β and three γ chains. They can form independent 

networks, bind to other matrix macromolecules and mediate cell interaction by integrin, 

dystroglycan and other receptors. Through these interactions, laminins lead to cell adhesion 

and differentiation, cell shape and movement, and promote tissue survival 244,245. 

In tissues, mast cells are often localized close to the basement membrane of 

endothelial cells and increase in number at sites of inflammation. This distribution led 

researchers to focus on the possibility that mast cells might adhere to laminin. It has been 

revealed that both mast cell lines and BMMCs possess functional laminin receptors. Contrary 

to mast cell lines which adhere spontaneously to surface coated with laminin, BMMCs had to 

be activated with PMA to adhere. This adherence is accompanied by cell spreading, 

redistribution of histamine granules and can be inhibited by antibodies to laminin and laminin 

receptors, α6β1 integrin 246-248. Activation of BMMCs by the calcium ionophore A23187, 
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SCF or IgE/antigen also promote cell attachement to laminin 249. Subsequently, laminin A 

was observed to be a chemoattractant for BMMCs after activation by A23187, PMA or 

IgE/antigen 250. 

In human studies, skin mast cells and a mast cell line named HMC-1, adhere spontaneously 

on laminin 209,251 and adherence is enhanced by stimulation with SCF 252. 

 

1.11.2. Vitronectin 

Vitronectin belongs to a group of adhesive glycoproteins synthesized mainly by liver 

cells and plays roles in cell adhesion, differentiation, proliferation and morphogenesis 253,254. 

Vitronectin circulates in the blood as a monomer where it contributes to hemostasis and 

fibrinolysis 255, but is converted into a multimeric form when incorporated into the ECM. 

Vitronectin contains an Arg-Gly-Asp (RGD) sequence constituting a binding site for 

integrins such as αVβ1, αVβ3, αVβ5 and αIIbβ3 256. 

Activated BMMCs were shown to adhere to vitronectin and this interaction was 

blocked using a RGD peptide or an antisera for αVβ3 257. Activation of BMMCs through 

αVβ3 results in enhanced tyrosine phosphorylation of focal adhesion kinase (FAK), a 

cytoplasmic protein tyrosine kinase involved in mitogenic and oncogenic signal transduction 
258. 

Human skin mast cells spontaneously adhere to vitronectin through αVβ3 259,260, 

whereas the mast cell line HMC-1 required cell activation by PMA 251. 

 

1.11.3. Fibrinogen 

Fibrinogen (also called factor I) is a soluble plasma protein synthesized in the liver 

and is the main protein of blood coagulation system. It is a large protein and consists of two 

identical subunits containing three chains: α, β and γ, linked to each other by disulfide bonds. 

Fibrinogen contains two RGD sites for integrin interactions 261. 

Mouse BMMCs stimulate with IgE, SCF or crosslinking of FcεRI adhere to 

fibrinogen in an integrin αIIbβ3 dependent manner. In addition, binding of BMMCs to 

fibrinogen enhanced proliferation, cytokine production and migration 262. 
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1.11.4. Fibronectin (FN) 

FN is a glycoprotein composed of three different types of repeated modules: type I, II 

and III. The most abundant module is type III, which contains the RGD recognition sequence 

along with other binding sites for heparin and integrins. Fibronectin molecules can form two 

disulfide bridges at their carboxy-termini, producing a covalently-linked dimer (Figure 5). 

FN exists in two forms: soluble plasma FN which is produced by hepatocytes and is secreted 

into the blood, and insoluble cellular FN which is the major component of ECM and is 

secreted by fibroblasts 263. In tissues, FN polymerization is a cell-dependent process that 

requires direct interactions with integrin receptors 264. So far, 11 different integrin 

heterodimers are known to be capable of binding to FN, and 4 of them, α5β1, α4β1, αVβ3, 

and αIIbβ3, trigger FN assembly in vitro 265,266. 

 

 
 

Figure 5: Scheme of the FN protein showing the repeated arrangement of the three module 
types (type I, blue; type II, brown; type III, green). The dimer forms via two disulfide bonds 
at the C-terminus. The key binding sites for integrins and other ECM protein such as heparin, 
fibrin and collagen are indicated. The RGD sequence is located in the 10th fragment of the 
type III module 267. 

 

In the murine sytem, previous studies showed that BMMCs were able to bind to FN 

but required activation by PMA and that binding was dose dependent 268. This adhesion to 

FN could be inhibited by an RGD-containing peptide 268. It has also been reported that SCF 

stimulates BMMCs to adhere to FN at very low concentrations, i.e. lower than the 

concentration required for cell growth, suggesting that, in vivo, this stimulus plays an 

important role in mast cell recruitment 269. Cross-linking of the high affinity IgE receptor 

(FcεRI) has also been reported to enhance BMMCs binding to FN 270, resulting in increased 
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survival 271. It was then reported that IgE alone (i.e. without FcεRI crosslinking) could also 

increase the adhesion of mast cells to FN through the activation of both the phosphoinositide 

3-kinase (PI3K) and phospholipase Cγ (PLCγ)/protein kinase C (PKC) pathways. Therefore 

IgE or SCF, at concentrations lower than those required for mast cell degranulation, might 

only play a role in mediating the recruitment, adhesion and survival of mast cells during 

infection or allergic reactions 272,273. In addition, the neurotransmitter serotonin (5-

hydroytryptamine (5-HT)) induces adherence of mouse BMMCs to FN and chemotaxis 

accompanied by actin polymerization 274. Most of these mediators have been shown to induce 

α5β1-mediated adhesion to FN through a process involving increased avidity of integrin 

termed “inside-out” signaling 275. Furthermore, the tetraspanin CD63, a transmembrane 

molecule that form complexes by lateral interactions with other tetraspanins and other 

molecules such as β1 integrin 276, modulates mast cell adhesion to FN 277.  

Human mast cells adhere spontaneously to FN 209,251, but stimulation with SCF, PMA 

or A23187 enhances their adherence and provide a co-stimulatory signal for cytokine 

production like IL-8, IL-3 and GM-CSF 252,278. Furthermore, IL-6 has been reported to 

increase, whereas TNF-α and INF-γ inhibit adhesion of human mast cell to FN 279. Activation 

of human mast cells through TLR3 inhibits mast cell attachement to FN in a dose-dependent 

manner and results in a conformational change of β1 integrin to an inactive form 280. More 

recently, IL-33, a member of the IL-1 family, and IL-1β have been shown to promote mast 

cell adhesion to FN, thus enhancing their survival, and to promote IL-8 and IL-13 production 

upon FcεRI cross-linking 281. These findings are important to understand the mechanisms 

leading to tissue-specific localization of mast cells. 

 

  1.12. Adhesion to other cells 

 

 Mast cells adhere not only to ECM but also to other cells. The earliest study 

demonstrates that dog mastocytoma mast cells adhere to dog tracheal epithelial cells. 

Adhesion was abolished by pretreatment of mast cells with protease, suggesting the 

involvement of specific cell surface receptors 282. Similarly, mast cells are known to adhere to 

fibroblasts in vitro. Attachment to fibroblasts is significantly impaired when mast cells do not 

express the extracellular domain of c-kit and likewise when fibrosblasts do not express the c-
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kit ligand SCF, or by addition of a monoclonal antibody against the extracellular part of c-kit 
283. More recently, c-kit was reported to behave as an adhesion molecule and as an activator 

of other adhesion molecules through PI3K phosphorylation 284. Mast cells reside in close 

proximity to T cells in inflamed allergic tissues and sites of infections 259. Indeed, BMMCs 

and human mast cells form heterotypic aggregates with activated T cells. This cell-to-cell 

contact induces mast cells to release mediators like histamine and TNF-α. This mast cell-T 

cell interaction is mediated by ICAM-1 and LFA-1 as antibodies directed against these two 

adhesion molecules inhibit the attachment-induced mast cell degranulation 285,286. Others 

have described that the adhesion of mast cells with endothelial cells is mediated by 

interactions between VCAM-1 and VLA-4 expressed on HUVECs and mast cells, 

respectively 210. In addition, human mast cell progenitor express α4β1 and PSGL-1 which 

mediate their adhesion to activated endothelial cells under flow conditions 287. 

 

  1.13. Migration of mast cells 

 

 Mast cell progenitors enter the circulation and complete their differentiation in 

tissues. Significant increase of mast cell density in local tissue has been described in diseases 
288-293, indicating that mast cell progenitors can be activated for migration through 

endothelium and also within the tissue. It has been demonstrated that SDF-1α, the only 

known ligand for CXCR4 expressed on human mast cells, mediates transmigration of mast 

cells trough HUVEC monolayers. In addition, mast cells selectively produce IL-8 in response 

to SDF-1α 294. In mice, large numbers of mast cell progenitors reside in the small intestine 

and are constitutively recruited by a mechanism involving the α4β7 integrin 295. In inflamed 

lung, α4 integrin and VCAM-1 but not MadCAM-1 are essential for mast cell progenitors 

recruitment 296. Chemokine receptors expressed by mast cell progenitors and mature tissue 

mast cells are most likely involved in directing the progenitors from the circulation into the 

tissue. In CXCR2-deficient mice, the intestinal mast cells progenitor concentration is reduced 

indicating that the maintenance of mast cell progenitors in the small intestine is a dynamic 

process that requires expression of the α4β7 integrin and the chemokine receptor CXCR2 297. 

A role for CCR3 in mast cell homing has been identified in CCR3-deficient mice. In these 

mice, increased numbers of mast cells are found in the trachea after sensitization and allergen 
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challenge in an allergic airway inflammation model 298. Migration of human lung mast cells 

is induced by airway smooth muscle cultures predominantly through activation of CXCR3. 

Importantly, CXCL10, a ligand for CXCR3, is expressed preferentially by asthmatic airway 

smooth muscle in bronchial biopsies and ex vivo cells compared with those from heathly 

control subjects 299. Once in the tissue, a variety of biologic agents, including growth factors, 

chemokines, and adenosine nucleotides, are known to attract rodent mast cells 95,300-303. 

Antigens work not only as stimulants for the release of allergic mediators from IgE-sensitized 

mast cells but also as chemoattractants, which can be suppressed by inhibitors of Rho-

kinase/ROCK and p38 304. Mouse IgE molecules display a wide spectrum of heterogeneity 

regarding their ability to induce the production and secretion of IL-6 and TNF-α, with highly 

cytokinergic (HC) IgEs and poorly cytokinergic (PC) IgEs 305. Recently, HC IgEs have been 

shown to efficiently activate mast cells and to promote their migration in the absence of 

antigen. IgE- and IgE+antigen-mediated migration involves an autocrine/paracrine secretion 

of soluble factors including adenosine, leukotriene B4, and several chemokines. Secretion of 

these factors depends on two tyrosine kinases, Lyn and Syk, and that are agonists of G-

protein-coupled-receptors and signal through PI3Kγ, leading to mast cell migration 306. In 

mice, mast cells are attracted by IgE and IgE-sensitized mast cells are attracted by the 

antigen. Therefore, IgE and antigen are implicated in mast cell accumulation at allergic tissue 

sites with high local IgE levels 306. In addition to their function as mast cell activating agents, 

C3a and C5a have been shown to be chemotactic for human mast cells 112,307. This 

chemoattraction provides a mechanism for rapid accumulation of mast cells at sites of 

inflammation. 

 

  1.14. Mast cell implication in disease 

 

 Mast cells are involved in both innate and acquired immunity 9,308. Upon activation 

(via the FcεRI receptor or non-IgE-mediated activation through complement receptors or 

TLR) mast cells release a broad spectrum of preformed or newly synthesized pro-

inflammatory mediators. 
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  1.14.1. Allergic disease 

 Although many cells are involved in the allergic cascade, mast cells are the primary 

effector cells in allergic diseases due to their tissue location. IgE/antigen cross-linking to 

FcεRI induces degranulation and therefore release of mediators such as histamine, 

leukotrienes and prostaglandins which contribute to eosinophil recruitment, increase vascular 

permeability and smooth muscle contraction 309. Mast cell-derived cytokines cause B cells to 

class switch to synthesize IgE, induce basophil histamine release, recruit neutrophils and 

eosinophils, and promote the development of T cells into a TH2 phenotype 310-312. Mast cell 

products induce both an immediate reaction and a late-phase response (LPR). The immediate 

reaction occurs within minutes thus referred as immediate hypersensitivity reaction. Late-

phase reaction peaks between 6 and 12 hours following antigen challenge and is associated 

with cytokines/chemokines production and release in part from eosinophils, neutrophils and 

basophils that have entered the inflammatory site following the immediate reaction 313 

(Figure 6). Mast cells are also involved in chronic allergic inflammation where symptoms 

relapse over time. 

 Traditional treatment and management of allergies simply involve avoiding the 

allergen which is the trigger or otherwise reducing the exposure. Unfortunately, allergic 

persons cannot always keep away from allergen and in this respect medical treatments have 

been greatly improved (Table 4). Pharmacotherapy comprises several antagonistic drugs 

used to block the action of allergic mediators or to prevent activation of cells and 

degranulation processes. Immunotherapy or hyposensitization is an alternative treatment, in 

which the patient is gradually exposed to larger doses of the allergen. This can either reduce 

the severity or eliminate hypersensitivity altogether 314. 
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Table 4: Pharmacotherapy and immunotherapy treatments used in allergy 
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Figure 6: Mechanism of allergic cascade. IL-4 and IL-13 release from TH2 cells results in 
isotype class switching from IgM to IgE in B cells. Cross-linking of IgE molecules by the 
antigen leads to mast cell degranulation. This immediate reaction occurs within minutes. The 
late-phase response (LPR), which reaches a peak between 6 and 12 hours, is associated with 
cytokines and chemokines production and release by mast cells and leukocytes 337. 
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Asthma is a complex inflammatory disorder associated with alterations in airway 

smooth muscle reactivity and remodeling, excessive production of mucus, 

bronchoconstriction and infiltration of lymphocytes, eosinophils and neutrophils. Mast cells 

also play an important role as several studies have reported that mast cells numbers are 

increased within the airway smooth muscle bundles of asthmatic patients 338-341. 

Allergic rhinitis (AR) is the most common allergic disease in United States and is 

estimated to affect up to 40% of children and 25% of adults 342. Mast cells constitutively 

reside in the nasal mucosa and do not normally go into the superficial airway epithelium. 

With allergen exposure, mast cells migrate to, and proliferate within, the epithelium 343. 

These epithelial mast cells predominantly express tryptase and are selectively increased in 

AR 312,344. 

Mast cells are also increased in a variety of chronic inflammation skin disorders, 

including atopic dermatitis (AD) 345. Biopsies of AD lesions demonstrate an increase in mast 

cell numbers compared with uninvolved sites 346. 

Occular allergy occurs in more than 50% of the allergic populations 309. In 

symptomatic allergic patients, an increase in mast cells with evidence of degranulation is 

seen in conjunctival biopsies 347. In addition to the increase in mast cells within the 

conjunctiva, the number of IL-4 mRNA-positive mast cells is increased threefold in seasonal 

allergic conjunctivitis 348. 

 

  1.14.2. Rheumatoid arthritis 

 Rheumatoid arthritis (RA) is the most common inflammatory disease of joints and 

occurs worldwide with a prevalence of about 1% in western countries 349. If the inflammation 

is not controlled, the synovial tissue fills the joint cavity and finally destroys the cartilage and 

adjacent bone. Cytokines are involved in the inflammatory reaction. Indeed, transgenic mice 

that overproduce TNF-α or that lack the IL-1β receptor antagonist (IL-1ra) develop 

spontaneous arthritis 350,351. The role of TNF-α and IL-1β has been demonstrated also in the 

K/BxN model of arthritis 352. In the K/BxN model, infusion of autoantibodies to W/WV mice 

fails to induce arthritis. In the absence of mast cells, there is no recruitment of other 

inflammatory cells into the joint 353. Moreover, the number of mast cells has been shown to 

increase in arthritis and to correlate with the disease severity 291. First, mast cells initiate and 
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perpetuate the inflammation and promote the destruction of the surrounding tissue, then they 

recruit and stimulate other cell types, as synovial fibroblasts and endothelial cells 354. Mast 

cells localized in synovium rapidly produce and release mediators of inflammation, in 

particular TNF-α and IL-1β 355. Il-1β produced by mast cells has been shown to contribute to 

the initiation of inflammation within joints 356. In addition, the rapid production of LTB4 by 

mast cells is important for the recruitement of CD8+ effector T cells 357,358. Proliferation of 

synovial fibroblasts is a central feature of RA. The mast cell-derived tryptase has been shown 

to stimulate the collagen production by synovial fibroblasts 359. Mast cell-derived TNF-α is 

also a potent activator of synovial fibroblasts and it stimulates their proliferation 360. 

Furthermore, TNF-α induces expression of SCF in synovial fibroblasts: mast cells activate 

synovial fibroblasts, which in turn promote mast cell survival by secreting SCF 361. Mast cells 

also contribute to cartilage and bone destruction. Mast cells can induce the expression of 

matrix metalloproteinases (MMPs) in synovium, and tryptase and chymase can activate latent 

collagenases leading to cartilage erosion and collagen degradatation362-365. Therefore, mast 

cell may represent an interesting target for future drug development. 

 

  1.14.3. Innate immunity 

 Beside their traditional role in allergic inflammation and RA, mast cells also act as 

sentinels in host defense against pathogens. Mast cells can be activated by both direct and 

indirect mechanisms after exposure to pathogens 366. Direct interactions involve TLR-

mediated activation and lead to cytokine, chemokine and lipid-mediator production but not 

necessarily degranulation 104. Indirect activations include Fc-receptor and complement-

receptor-mediated activations. Fc-receptor-mediated activation leads to the degranulation of 

mast cells and the production of multiple newly generated mediators 367. Complement-

receptor-mediated activation can occurs through receptors for complement components (CR3 

and CR4) and receptors for complement products (C3aR and C5aR) 112. The complement 

components induce the secretion of cytokines and lipid mediators as well as degranulation 
368. 
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 2. Phosphoinositide 3-kinase (PI3K) 

 

 The PI3K family of lipid kinases, catalyzes the transfer of the γ-phosphate group of 

ATP to the D3-hydroxy group of phosphoinositides (PtdIns). These enzymes produce various 

lipid products such as PtdIns(3)P, PtdIns(3,4)P2 and PtdIns(3,4,5)P3, therefore recruiting 

signaling molecules containing a lipid-binding domain to cellular membranes 369,370 (Figure 

7). 

 

 
 

Figure 7: A. Structure of phosphatidyinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P3). This 
structure represents the myo-inositol ring linked via its phosphate group to diacylglycerol. B. 
Metabolic reactions leading to the generation of phosphoinositide species from PtdIns. Red 
arrows illustrate the phosphorylation catalyzed by PI3Ks, blue arrows represent the 
dephosphorylation by PTEN and the green arrow, the one performed by SHIP 371. 
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According to their structure, lipid substrate specificity and associated regulatory subunits, the 

PI3K family is divided into three classes: class I, II and III 372,373 (Figure 8). 

 

 
 

Figure 8: Structure of phosphoinositide 3-kinases. The three catalytic subunits of class IA 
PI3K, are composed of a p85-binding site (p85B), a Ras-binding domain (RasB), a C2 
domain (protein kinase C homology domain 2), a PI3K accessory region and a catalytic core 
domain (PI3Kc) which interacts with ATP, phosphoinositides and the inhibitor, wortmannin. 
The only class IB member, PI3Kγ, has an adaptor-binding site (AdB) and two βγ interaction 
sites (red triangles). The class II enzymes possess no adaptor-binding site but have additional 
C-terminal phox (PX) and C2 domains. The class III enzymes lack both adaptor-binding site 
and Ras-binding domain. The regulatory subunits of class IA PI3Ks contain a proline-rich 
region, an iSH2 domain flanked by two SH2 domains. p85α and p85β have an additional 
SH3 domain and a BH domain at the N-terminus. p101 and p84/p87, the regulatory subunits 
of class IB PI3Ks, contain an N-terminal domain required for interaction with p110γ and a 
Gβγ interaction domain at the C-terminus. Modified from 374. 
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Class I PI3Ks are the best described of the PI3K family. Class I enzymes are the only ones 

able to convert PtdIns(4,5)P2 to the second messenger, PtdIns(3,4,5)P3 on the inner side of 

the plasma membrane. Although PtdIns(4,5)P2 is their preferentiel substrate in vivo, they can 

also phosphorylate PtdIns and PtdIns(4)P in vitro 375,376. Activation of class I PI3Ks by 

extracellular signaling involves their translocation to the plasma membrane to get access to 

lipid substrates. The class I PI3Ks are heterodimeric molecules composed of a catalytic 

subunit and a regulatory subunit, and are further subdivided into class IA and IB according to 

their regulatory partners and mechanisms of activation. 

 

  2.1. Class I PI3Ks 

 

  2.1.1. Structure of class IA PI3Ks 

 The class IA enzymes are heterodimers containing a catalytic subunit of 110 kDa: 

p110α, β or δ (encoded by the genes Pik3ca, Pik3cb and Pik3cd respectively) and one of the 

five regulatory p85α, p55α, p50α, p85β or p55γ subunit 377-382. The regulatory subunits 

p85α, p55α and p50α are derived from a single gene, Pik3r1, by alternative splicing 

mechanisms, while p85β and p55γ are encoded by distinct genes (Pik3r2 and Pik3r3 

respectively) 383. Whereas the catalytic p110α and β isoforms are widely expressed in 

mammalian tissues, p110δ is mainly found in leukocytes 379,384. The catalytic subunits 

contain an N-terminal p85-binding domain allowing them to interact with their regulatory 

partner, a Ras-binding domain, a C2 domain and a C-terminal kinase domain (Figure 8). 

Each regulatory subunit has two Src Homology 2 (SH2) domains separated by a so-called 

inter-SH2 (iSH2) domain between the SH2 domains. The iSH2 domain interacts 

constitutively with the N-terminal domain of the catalytic subunit to maintain the stability of 

p110 in the cell. In addition, p85α and p85β possess a N-terminal Src Homology 3 (SH3) 

domain and a Breakpoint-cluster-region Homology (BH) domain flanked by two proline-rich 

regions 372. Although no specific association has been discovered between the adaptor and 

catalytic subunits, p55α and p50α are more potent activators of p110 upon insulin 

stimulation 385,386. 
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  2.1.2. Structure of class IB PI3Ks 

 The only member of the class IB enzyme identified so far is the catalytic subunit 

p110γ that shares structural similarities with the class IA PI3Ks 387. The p110γ isoform 

appears to be present only in mammals and is abundantly expressed in white blood cells and 

particularly in mast cells 388,389. The crystrallographic structure of the catalytic subunit has 

been reported with a C2 and catalytic domains positioned to interact with phospholipid 

membranes 390. The Ras-binding domain is placed against the catalytic domain where it 

drives allosteric activation of the enzyme 390. The N-terminal region contains an adaptor-

binding site for the class IB regulatory subunit, p101 or the recently discovered p84/p87 391-

395. p110γ directly interacts with Gβγ subunits via two binding sites, one in the N-terminal 

region and the other close to the catalytic core at the C-teminus, leading to a horseshoe 

conformation 396. The crystal structures of p110γ with wortmannin, LY294002 or protein 

kinase inhibitors provide evidences of their interactions and conformational changes into the 

ATP binding pocket. These indications are then useful for the design of isoform specific 

inhibitors 397. 

Compared to the catalytic subunit structure, little is known about the regulatory subunits that 

share only 30% identity mainly in the N- and C-terminal ends 392. Both p101 and p84/p87 

contain a N-terminal domain interacting with the adaptor-binding protein domain at the N-

terminal of p110γ 393,398 (Figure 8). The Gβγ association region is located at the C-terminal 

end of the regulatory subunits 393. Moreover, the binding of the regulatory subunits to p110γ 

increases the activation of p110γ by Gβγ subunits 392. The main difference between p84/p87 

and p101 is that unlike p101 which is found in the nucleus, p84/p87, because it lacks the 

central nuclear localization signals found in p101, remains cytoplasmic 394. 

 

  2.1.3. Activation of class I PI3Ks 

 Signaling pathway downstream of PI3Ks class I affects cell growth, proliferation, 

survival as well as cell movement. Class I PI3Ks are activated by a variety of stimuli 

including growth factors, inflammatorymediators, hormones, neurotransmitters, 

immunoglobulins and antigens 374. 
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The class IA PI3Ks are recruited and activated downstream of phosphorylated 

tyrosine residues on receptor tyrosine kinases (RTK). Upon activation, the cytoplasmic tail of 

these receptors contains a conserved protein tyrosine kinase core that can be either 

autophosphorylated and/or phosphorylated by intracellular protein kinases, in particular at 

conserved Tyr-xaa-xaa-Met (YxxM) motifs 399. Upon ligand binding, these receptors 

dimerise resulting in the phosphorylation of the YxxM sequences. These then provide 

docking sites for the SH2 domains of the regulatory subunit of PI3K, which brings the p110 

catalytic subunit at the plasma membrane in proximity of its lipid substrates allowing the 

conversion of PtdIns(4,5)P2 to PtdIns(3,4,5)P3 400 (Figure 9). Adaptor proteins such as the 

IRS (insulin receptor substrate) and Gab (Grb2-associated binding protein) families can also 

contain YxxM motifs 401. The RTKs (EGFR; PDGFR; FGFR) exist as monomers at the 

plasma membrane, apart from the insulin receptor. The binding of p85 SH2 domains to 

receptor cytoplasmic tail cause a conformational change of the regulatory subunit, therefore 

reverting the inhibitory action of p85 on p110 lipid kinase activity 402-405. The proline-rich 

regions and SH3 domains of p85α and p85β can facilitate additional protein-protein 

interactions. Indeed, p85 has been reported to bind directly to the SH3 domains of Src, Abl, 

Lck, Gab2, Fyn and Lyn and p85 itself via its proline-rich motifs 406-410. Additionally, the 

SH3 domain of p85 interact with proline-rich domains of dynamin GTPase, Shc (Src-

homologue and collagen-homologue) and Cbl (Casitas B-lineage lymphoma) 411-413. p85, via 

its BH domain, has been reported to interact with members of the Rho/Rac/Cdc42 family of 

small GTP-binding proteins 414,415. All class IA PI3Ks have been reported to possess an 

intrinsic protein kinase activity by which the catalytic subunit can phosphorylate specific 

Ser/Thr residues on the adaptor subunit and autophosphorylate itself 416,417. 

In immune cells, the B cell receptor (BCR) and T cell receptor (TCR) recognize antigen and 

mediate signal transduction through PI3K class I activation. In B cells, the cytoplasmic tail of 

CD19 (a B cell-specific costimulatory receptor), BCAP (B-cell PI3K adaptor protein) and 

Cbl exhibit YxxM motifs that, upon phosphorylation, can associate with the SH2 domains of 

the regulatory subunits of class IA PI3K 418,419. In T cells, YxxM motifs are found in the 

cytoplasmic domains of the T cell costimulatory receptor CD28 and T-cell-receptor-

interacting molecule (TRIM) 420,421. Moreover, both BCR and TCR harbor ITAMs 

(immunoreceptor tyrosine-based activation motifs) in their cytoplasmic tails. Upon 

activation, these motifs are phosphorylated by Src-family tyrosine kinases leading to the 
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recruitment and activation of the SH2 domain-containing tyrosine kinase Syk, or the related 

kinase ZAP-70 in T cells 422,423. Thus class IA PI3K is also activated by antigen receptor 

engagement and its lipid products regulate a number of downstream events. 

 

 
 

Figure 9: Activation of class IA PI3Ks. Binding of growth factors induces receptor 
dimerisation and autophosphorylation or phosphorylation of multiple tyrosines (blue circle), 
which can be located in YxxM motifs (black circles). These create docking sites for the SH2 
domains of the p85, p55 and p50 regulatory subunits of class IA PI3Ks, leading to their 
recruitment in the signaling complex. GTP-Ras is known to bind the catalytic subunit of class 
I PI3Ks and to play a role in the synergistic activation of their lipid kinase activity 374,424,425. 
 

Activation of class IB PI3K occurs downstream of G-protein coupled receptors 

(GPCRs), a large family of receptors proteins that includes adenosine, lipid mediators of 

inflammation and chemokine receptors. GPCRs are usually coupled to heterotrimeric G 

proteins composed of α, β and γ subunits that are associated in the inactive, GDP-bound state 
387. Activation of GPCRs upon ligand binding induced a conformational change in the 

receptor resulting in a decreased affinity of Gα for GDP and an increased affinity for GTP. 

This exchange triggers the dissociation of the Gα-GTP from the Gβγ dimer and the receptor 
426. This induces the recruitment of PI3Kγ at the plasma membrane 427. Free Gβγ subunits 

interact with p110γ and the adaptor proteins p101 and p84/p87, thus activating the class IB 

PI3K and production of PtdIns(3,4,5)P3 396,428,429 (Figure 10). This activation has been 
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reported to be dependent on the regulatory subunit 391. PI3Kγ has also been shown to be 

activated by GTP-Ras (N, K, H and R) in vitro and in vivo. Indeed, crystal structure reveals a 

direct interaction of Ras which triggers a conformational change of the catalytic subunit 

p110γ. Five residues in p110γ have been shown to be critical for binding to GTP-Ras. In the 

so-called p110γ DASAA mutant (T232D, K251A, K254S, K255A and K256A) these 

essential amino acids are mutated and it can neither bind nor be activated by GTP-Ras 430. 

The simultaneous analysis of p101-/- and p110γ DASAA suggests that Ras and Gβγ can 

synergistically activate PI3Kγ but differently regulate distinct PI3K effectors 431. 

In addition to its lipid kinase activity, PI3Kγ also possesses an intrinsic Ser/Thr protein 

kinase activity that is sufficient to induce mitogen-activated protein kinase (MAPK) 

activation 432. Moreover, p110γ autophosphorylates itself on Ser1101 and also 

transphosphorylates the p101 adapter 433-435. 

 

 
 

Figure 10: Activation of class IB PI3K. Binding of chemokines to GPCRs induces 
dissociation of the Gα-GTP from Gβγ dimer. The latter interacts with p110γ and the p101 or 
p84/p87 adaptor proteins. Ras-GTP is known to bind directly to and activate p110γ. Modified 
from 374. 
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Activation of class I PI3Ks leads to production of PtdIns(3,4,5)P3 which recruits 

proteins with pleckstrin homology (PH) domains, e.g. the serine/threonine protein kinase B 

(PKB/Akt) (Figure 11). Once PKB is recruited to the receptor-signaling complex, 

phosphoinositide-dependent kinase 1 (PDK1) phosphorylates the activation loop of PKB at 

Thr308 436. Full activation of PKB required a second phosphorylation by so-called PDK2 on 

the hydrophobic motif at Ser 473 of PKB. The mTOR (mammalian target of rapamycin) 

complex 2 (mTORC2) and DNA-PKcs have been determined as PDK2 kinases 437-439. Upon 

activation, PKB phosphorylates many proteins and thus positively or negatively regulates 

their activity. These targeted molecules can be involved in cell cycle progression, such as 

forkhead box O (FOXOs), cell survival via the regulation of inhibitory κB kinase (IKK) and 

caspase 9, or translation and transcription controlled by mTORC1 440-442. 

 

 
 

Figure 11: Central role of the PI3K pathway. PtdIns(3,4,5)P3 is produced by class I PI3Ks, 
and recruits proteins with PH domain (black oval). Abbreviations: 4E-BP1, eukaryotic 
initiation factor 4F binding protein; Bad, Bcl2-antagonist of cell death; Bcl-Xl/Bcl-2, Bcl-
Xl/Bcl-2-antagonist causing cell death; Cyc D1, cyclin D1; eIF2B, eukaryotic initiation factor 
2B; FasL, Fas ligand; GSK-3, glycogen synthase kinase 3; NFκB, nuclear factor κB; S6K, S6 
kinase; TSC, tuberous sclerosis complex; TSC1, hamartin; TSC2, tuberin. Modified from 374. 
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PtdIns(3,4,5)P3 also binds guanine exchange factor (GEFs) via their PH domains and 

activates them. This leads to exchange of GDP to GTP on small GTPases such as Rac, Rho 

and Cdc42, therefore stimulating cell motility 443,444. 

The members of the non-receptor tyrosine kinases (NRTK) Tec family contain a PH domain, 

a Tec homology (TH) domain as well as SH2 and SH3 domains 445. PtdIns(3,4,5)P3 produced 

by activation of class I PI3Ks leads to the translocation of Tec family members at the plasma 

membrane bringing them in close proximity to Src tyrosine kinases which phosphorylate Tec 

kinases 446. The Tec substrate, PLCγ, is activated and PtdIns(4,5)P2 is thus hydrolyzed at the 

cell surface into diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3). This second 

messengers mediate the elevation in intracellular calcium and activation of PKC 447. 

 

2.1.4. Termination of the PI3K signaling: the phosphoinositide phosphatases 

 As described above, the PI3Ks can be activated by a variety of extracellular stimuli 

and this signaling pathway has to be regulated. This is mainly controlled by two 

phosphoinositide phosphatases: the phosphatase and tensin homologue deleted on 

chromosome 10 (PTEN/MMAC/TEP1) and the SH2-containing inositol 5-phosphatase 

(SHIP). 

The role of PTEN is to keep the levels of PtdIns(3,4,5)P3 low by cleavage of  the 3’ 

phosphate on the inositol ring of PtdIns(3,4,5)P3 
448. Loss of PTEN function results in an 

increased concentration of PtdIns(3,4,5)P3 and in PKB hyperactivation, confering protection 

from apoptotic stimuli 449. PTEN was identified as a tumor suppressor gene located on 

chromosome 10 450-452. Frequent mutations or deletions in the PTEN gene have been found in 

gliomas, endometrial, prostate and breast cancers and malignant melanomas 453-457. Germline 

mutations in PTEN are responsible for Cowden disease, Lhermitte-Duclos disease and the 

Bannayan-Zonana syndrome 458-460. The homozygous deletion of PTEN results in embryonic 

lethality and analysis of the PTEN-/- embryonic stem cells demonstrate its crucial role in 

tumor suppression by controlling cellular differentiation and anchorage-independent growth 
461. The PTEN structure reveals a phosphatase domain and a C2 domain. PTEN translocates 

to the membrane where the C2 domain binds PtdIns(3,4,5)P3 462. Since PTEN mutations are 

associated with tumor progression and metastasis, a role for PTEN in cell adhesion and 

migration has been studied. In a glioblastoma cell line, PTEN reintroduction 
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dephosphorylates FAK leading to inhibition of integrin-mediated cell spreading and 

migration 463. In fibroblasts, PTEN deficiency leads to increased cell motility and endogenous 

activition of Rac1 and Cdc42, two small GTPases with well-established roles in cell motility 
464. In Dictyostelium and mammalian leukocytes, chemoattractants induce a pool of activated 

Cdc42 at the leading edge of the cell whereas PTEN is located at the posterior part 465. In 

drosophila, PTEN has been shown to regulates cell size, cell number and organ size 466-468. 

Heterozygous mice mutated for PTEN develop lethal polyclonal autoimmune disorders as 

well as impaired Fas-mediated apoptosis 469. Furthermore, mice with T cell-specific deletion 

of PTEN develop lymphomas due to defect in negative selection of T cells 470. 

SHIP is another phosphoinositide phosphatase family that plays important roles in 

negative regulation of intracellular signaling in cells. Two members of the SHIP family have 

been identified: SHIP-1 and SHIP-2 encoded by different genes. Multiple forms of SHIP-1 

resulting from alternative mRNA splicing, protein degradation and posttranslational 

modification have been reported 471,472. SHIP-1 is a 145 kDa protein and its expression seems 

to be restricted to haematopoitic cells, whereas SHIP-2 is a 150 kDa protein that seems to be 

more ubiquitously expressed 473,474. SHIP family members are composed of a N-terminal SH2 

domain, a central inositol 5-phosphatase catalytic domain, C-terminal tyrosine residues 

(within NPXY motifs) and proline-rich regions 475. SHIP’s N-terminal SH2 domain can 

interact with tyrosine phosphorylated proteins, such as immunoreceptor tyrosine-based 

inhibiting motifs (ITIMs) of the FcγRIIB1, and gp49B1 or ITAMs of FcεRI on mast cells 476. 

Upon phosphorylation, the C-terminal tyrosine residues serve as docking site for SH2 

domain-containing proteins or for the phosphotyrosine binding domain of the adaptor Shc 479. 

The p85 regulatory subunit of PI3K has also been shown to interact with SHIP via the SH2 

domain of p85 and the phosphotyrosines of SHIP 480. The proline-rich regions provide 

binding sites for SH3 domain-containing proteins such as Grb2, Src and c-Abl 481. Hence, 

these structural domains are able to support the relocalization of SHIP from the cytosol to the 

plasma membrane, where its catalytic activity regulates PtdIns(3,4,5)P3 accumulation 482. 

Indeed, the central catalytic domain of SHIP dephosphorylates the D-5 position on the 

inositol ring of PtdIns(3,4,5)P3 and Ins(1,3,4,5)P4 483-485. SHIP-1, through dephosphrylation 

of PtdIns(3,4,5)P3, prevents the membrane recruitment of Btk to PtdIns(3,4,5)P3 via its PH 

domain and thus the activation of PLCγ 486. SHIP-1 therefore negatively regulates the 

calcium fluxes. SHIP-1 also prevents the recruitment and activation of PKD1, and subsequent 
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activation of PKB and MAPK 487,488. SHIP-1-deficient mice are viable but have a shorter life 

span due to an infiltration of macrophages and neutrophils in the lungs. They also present 

increased numbers of myeloid cell progenitors in both the bone marrow and the spleen. The 

bone marrow have decreased number of lymphoid and erythroid cell progenitors 489. SHIP-1 

also plays an important role in the regulation of B cell differentiation and function. Indeed, 

upon stimulation through the FcgRIIB1/BCR engagement, the SHIP-1-/- B cells display an 

increased proliferation, a prolonged Ca2+ influx and an enhanced MAPK activation 490. In 

mast cells, SHIP-1 has been described as a “gatekeeper” of degranulation by maintaining the 

level of PtdIns(3,4,5)P3 below the threshold for full mast cell activation. Indeed, SHIP-1-/- 

mast cells exhibit a more pronounced degranulation and IL-6 production as well as an 

increased Ca2+ influx and MAPK phosphorylation upon stimulation through FcεRI 491,492. 

PTEN and SHIP provide tight regulation of the PI3K pathway and are essential not only for 

normal immune system development but also for prevention of immunopathologies. 

 

  2.2. Class II PI3Ks 

 

 Class II PI3Ks are composed of three members: PI3K-C2α, PI3K-C2β which are 

widely expressed in mammalian tissues 493,494 and PI3K-C2γ, restricted to few tissues 

including liver, breast and prostate  495,496. Members of this class are monomers of 170-210 

kDa in size. Structurally, the class II PI3Ks display homologies with the class I enzymes but 

lack the p85 binding motif and have different N-termini. They also possess an extended C-

terminus with additional regulatory domains including the phox homology (PX) and C2 

domains 497. Pharmacological distinction can also be made. Indeed, PI3K-C2α is very 

resistant to the classical PI3K inhibitors wortmannin and LY294002 compared to class I 

members 494. The β isoform appears to be very sensitive to wortmannin but quite resistant to 

LY294002 498,499. Class II enzymes have not yet been reported to associate with a regulatory 

subunit. In vitro, class II PI3Ks phosphorylate PtdIns to PtdIns(3)P and PtdIns(4)P to 

PtdIns(3,4)P2, but unlike class I PI3Ks, not PtdIns(4,5)P2 (although PI3K-C2α was observed 

to phosphorylate PtdIns(4,5)P2 only in the presence of phosphatidylserine 494). There is no 

clear indication of their in vivo lipid substrate, but the strong preference for PtdIns in vitro 

suggests that PtdIns(3)P is the main lipid product in vivo 498,500-502. Moreover, recent studies 
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have reported evidences indicating that pools of PtdIns(3)P can be specifically generated 

upon cellular stimulation and act as intracellular second messengers 499,503,504. The lack of an 

aspartic acid residue in the C2 domain prevents PI3K-C2 to function in a Ca2+-dependent 

manner regarding phospholipid binding 500. Deletion of the C2 domain increased the lipid 

kinase activity, therefore suggesting that it functions as a negative regulator of the catalytic 

domain 498. Endogenous PI3K-C2α is constitutively associated with phospholipid membranes 

and is clearly concentrated at the trans-Golgi network. Neither the PX domain nor C-terminal 

C2 domains are required for this cellular localization 505. PI3K-C2α has also been reported to 

bind directly to clathrin via its N-terminal region and to stimulate PI3K-C2α activity toward 

phosphorylated inositide substrates 506. In addition, PI3K-C2α expression disrupts clathrin 

distribution and blocks clathrin-mediated endocytosis and sorting 506. A large variety of 

stimuli has been found to activate class II PI3K indicating that these enzymes can regulate 

many intracellular processes. Insulin has been reported to activate PI3K-C2α by inducing 

phosphorylation of the kinase. Similarly, PI3K-C2β activity is also increased dowmstream of 

the insulin receptor 507,508. Furthermore, the chemokine MCP-1 induces activation of PI3K-

C2α, although the kinetics of activation are slower compared to class I enzymes 509. Both 

PI3K-C2α and C2β associate with polypeptide growth factor receptors such as epidermal 

growth factor receptor (EGFR) and platelet-derived growth factor receptor (PDGFR) 

indicating that these enzymes may have a role in such signaling pathways 510. LPA stimulates 

PI3K-C2β, and the resulting pool of PtdIns(3)P at the plasma membrane is involved in cell 

migration 499. Additionally, PI3K-C2β has also been reported to associate with the SCF 

receptor 511.  

 

  2.3. Class III PI3Ks 

 

 Vps34 (vacuolar protein sorting 34) is classified as the sole class III PI3K. It was 

discovered in a screen for mutants defective in vacuolar protein sorting in Saccharomyces 

cerevisiae 512,513. Homologous proteins have been identified in unicellular organisms, plants, 

Drosophila melanogaster, Caenorhabditis elegans as well as mammals 514-519. Class III 

PI3Ks are highly conserved in eukaryotes and represent the most ancient PI3Ks 520. In 

mammals, hVps34 is ubiquitously expressed 515. Class III enzymes utilize as solely substrate 
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PtdIns and thus produce only PtdIns(3)P, and are extremely insensitive to PI3K inhibitors 

such as wortmannin 521. PtdIns(3)P binds FYVE (Fab1p, YOTB, Vac1p and EEA1) and PX 

domain -containing effectors. Vps34 exhibits homology with the catalytic subunit of other 

PI3Ks, particularly at the level of domain organization (Figure 7). Vps34 is associated with a 

regulatory subunit Vps15, which possess intrinsic serine/threonine kinase activity 522 and 

corresponds to p150 in humans 523. Vps15 kinase activity is required for activation and 

recruitment of Vps34 to Golgi membranes, as inactivation of Vps15 kinase activity inhibits 

the Vps15-Vps34 interaction and subsequently stimulation of Vps34 kinase activity 524. 

Vsp34 kinase activity plays a direct role in vesicular transport from the Golgi to vacuoles, as 

a temperature-sensitive mutant exhibits defect in both protein sorting to vacuoles and kinase 

activity 524. The human homologs of Vps34 and Vps15 appear to regulate membrane 

trafficking to lysosomes in a similar manner 525,526. In early endosomes, PtdIns(3)P is formed 

by the hVps34/p150 complex which is recruited by the small GTPase Rab5 527. Early-

endosomal autoantigen 1 (EEA1) is also recruited via the interaction with PtdIns(3)P and 

Rab5 528. More recently, it has been reported that hVps34 and p150 interact with Rab7 in late 

endosomes 529 (Figure 12). Experiments in S. cerevisiae have provided a direct link between 

trimeric G-protein and Vps34 which interacts directly with a Gα subunit promoting increase 

of PtdIns(3)P production at the endosome 530. The class III PI3K is required for autophagy 

through production of PtdIns(3)P via the autophagy-specific complex composed of Beclin-1, 

Vps15 and hVps34 531 (in yeast, an additional accessory protein Vps14 is required 532). 

Recent studies have reported that hVps34 also contributes to the regulation of mTOR by 

nutrients, since hVps34 knockdown blocks both insulin and amino acid stimulations of S6K1 
533,534. 
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Figure 12: Class I and III PI3Ks are involved in phagocytosis. The opsonized 
microorganisms bind to Fcγ-receptors in the membrane of the phagocyte. This causes 
phosphorylation of the cytoplasmic part of the receptor and subsequent recruitment of a class 
I PI3K leading to PtdIns(3,4,5)P3 production, actin rearrangements and phagosome 
formation. Once the phagosome is sealed, PtdIns(3,4,5)P3 is dephosphorylated and 
PtdIns(3)P is formed by class III PI3K which is recruited to the early phagosome by Rab5. 
EEA1 is also recruited by interaction with PtdIns(3)P and Rab5. The phagosome gradually 
matures, eventually fuses with a lysosome forming a phagolysosome in which degradation of 
the microorganism ensues 535. 
 

  2.4. Targeting PI3Ks 

 

  2.4.1. Genetic targeting of class I PI3Ks 

 In the last few years, the development of several mouse models which are deficient 

for one or more regulatory or catalytic subunits of class I PI3Ks has been described 536. 

Deletion of class IA PI3K regulatory subunits was reported in four mouse models: one lost 

the expression of all Pik3r1 gene products thus deleting p85α, p55α and p50α  and is 

perinatally lethal 537; the second lost the expression of p85α but retained the expression of 



Introduction: Phosphoinositide 3-kinase 

 58 

p55α and p50α  538; the third is no longer expressing p55α and p50α but retains expression 

of p85α  539; and in the fourth mouse model, the gene encoding p85β (Pik3r2) is deleted 540. 

Deletion of the Pik3r1 gene products leads to severe reduction in the expression of all p110 

isoforms 541. On the other hand, deletion of p85β does not affect the expression of the other 

class IA PI3K subunits 540. In vitro and in vivo, PI3Ks exhibit a positive role in insulin 

signaling 542. Surprisingly, all class IA regulatory subunit knock out (KO) mice display 

increased insulin sensitivity and improved glucose tolerance in vivo 540,543. Disruption of 

p85α leads to impaired B cell development and functions. B cells from p85α KO have 

defects in proliferative responses to the polyclonal B cell activators anti-IgM, LPS and CD40 
537,538. Moreover, p85α-deficient B cells show that BCR-induced Ca2+ flux and 

phosphorylation of IκBα as well as PKB are reduced 544. T cell functions are intact in the 

absence of p85α. However, T cell lacking p85β show enhanced proliferation and survival 

following antigen-receptor stimulation, suggesting that p85β limits T cell expansion 545. 

Compared with deletion of class IA regulatory subunits, disruption of the p110 subunits is a 

more direct approach to identify the function of the individual catalytic isoforms. All class I 

catalytic subunits have been genetically inactivated. Deletions either in Pik3ca or Pik3cb are 

embryonically lethal 546,547. But recently, two groups were able to obtain viable p110β-

deficient mice: the first used Cre recombinase leading to the deletion of exons 21 and 22 of 

the kinase domain of p110β and showed that the p110β isoform can also  signals downstream 

of GPCR along with p110γ 548. The second inserted a mutation in the Pik3cb gene (K805R), 

leading to the production of a catalytically inactive form of p110β.  These mutants reveal that 

p110β is required for insulin signaling and that these mice are protected from tumor 

development 549. Mice lacking p110δ or expressing a p110δ catalytically inactive have been 

generated and are viable. Antigen receptor signaling in B and T cells is impaired and immune 

responses in vivo are attenuated in p110δ mutant mice 550-552. Animals lacking p110δ 

catalytic subunit present evidence that this isoform participates in neutrophil migration to 

chemoattractant but also modulates the up-regulation of selectin on endothelium 553. The only 

class IB isoform, p110γ, has also been targeted either by disruption of the Pik3cg gene 

(p110γ-/-) 389,554 or by generating animals with a catalytically inactive PI3Kγ (mutation of the 

Lys833 into Arg; p110γKR/KR) 555,556. The chemotactic responses are impaired in neutrophils, 

macrophages and eosinophils from p110γ mutant mice 554,557. The T cell survival and 
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proliferation are both reduced in p110γ-/- mice compared to wt mice. PI3Kγ-deficient 

neutrophils exhibit defects in GPCR-stimulated respiratory burst 555. It has been reported that 

PI3Kγ activity in vascular endothelium is also essential for neutrophil recruitment, as its 

activity is required for efficient selectin-mediated adhesion 558. 

 

  2.4.2. Pharmacological inhibition of the PI3K signaling 

 As PI3Ks are key molecules in signaling pathways, the interest in developing 

inhibitors as potential therapeutic agents has arised. Wortmannin and LY294002 are broad 

pan PI3K inhibitors. Wortmanin is the more potent inhibitor of the two with an in vitro IC50 

(50% inhibitory concentration) around 5nM, whereas LY294002 is less active with an IC50 

around 1µM 559,560 (Figure 13). Both inhibitors target the ATP binding site of PI3K (Figure 

8) which is located between a cleft formed by the N- and the C-terminal lobes of the catalytic 

domain 397. Wortmannin irreversibly inhibits PI3Ks covalently interacting with a lysine 

residue in the ATP-binding pocket of PI3K (Lys802 in p110α and Lys833 in p110γ  
397,433,561). LY294002, in constrast, is a competitive inhibitor of the ATP site 560. Both 

compounds target not only PI3K but also other kinases such as DNA-PKcs, mTOR, PI4K and 

ATM 562-565. 

 

 

 
Figure 13: Chemical structures of the broad PI3K inhibitors, wortmannin and LY294002 
 

The first synthetic generation of PI3K inhibitors have increased selectivity in respect 

to wortmannin and LY294002. Indeed, the compound IC87114 has been described as an 

ATP-competitive inhibitor able to selectively inhibit PI3Kδ activity (Figure 14). The IC50 of 

IC87114 for PI3Kδ inhibition is 0.5µM whereas the values for PI3Kα, PI3Kβ and PI3Kγ are 

Wortmannin 

 

LY294002 
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100, 75 and 29 µM, respectively. This compound has been used to explore the importance of 

PI3Kδ in neutrophil migration, and TNF1α-stimulated elastase exocytosis from neutrophils 

in a mouse model of inflammation 566,567. The selective inhibition of PI3Kδ has also been 

reported to play a role in the pathophysiology of acute myeloid leukemia 568,569. In addition, 

the pharmacological inactivation of PI3Kδ in BMMCs leads to defective SCF-mediated in 

vitro proliferation and signaling, to impaired allergen-IgE-induced degranulation, and 

protects mice against anaphylactic allergic responses 570,571. 

 

 
 
Figure 14: Chemical structure of the PI3Kδ selective inhibitor, IC87114 566. 
 

Among the second synthetic generation of PI3K inhibitors, AS252424, AS604850 

and AS605240 are the first examples of inhibitors selectively targeting PI3Kγ 572 (Figure 15). 

These inhibitors have been used to block neutrophil chemotaxis in vitro and in vivo 573. In 

mouse models of rheumatoid arthritis, these compounds suppress the progression of joint 

destruction 574. 

 

 
Figure 15: Chemical structure of the PI3Kγ selective inhibitors, AS252424, AS604850 and 
AS605240 374. 
 

AS252424 AS604850 AS605240 
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 3. Role of PI3K in mast cells 

 

 Mast cells express the class IA p85α, p85β and p50α regulatory subunits in addition 

to all three class IA catalytic subunits p110α, p110β and p110δ and the class IB p110γ 

associated with the p84/p87 regulatory subunit. Mast cells do not express the regulatory 

subunit, p101 395. 

 

  3.1. Activation of class I PI3Ks in mast cells 

 

Mast cells express FcεRI, the high affinity receptor for IgE, on their surface, which 

makes them primary effector cells in allergy, asthma and atopic dermatitis. Binding of 

antigen to this receptor mediates immediate type I hypersensitivity reaction, leading to the 

production of inflammatory and vasoactive mediators, lipid-derived mediators, chemokines 

and cytokines. 

Upon multivalent antigen binding to IgE and FcεRI, a signaling cascade is initiated leading to 

degranulation. Indeed, the ITAMs are phosphorylated by the Src kinase Lyn 575,576 (Figure 

16). The tyrosine-phosphorylated ITAMs located in the γ chain-cytoplasmic domains 

subsequently recruit Syk, via its SH2 domains, which get activated through phosphorylation 

by Lyn and/or autophosphorylation 577,578. As a consequence, the transmembrane adapter 

molecules LAT (linker for activation of T cells) and NTAL (non-T cell activation linker) get 

phosphorylated and serve as scaffold for multimolecular signaling complexes including 

adapter molecules Grb2, Gab2 (Grb2-associated binding protein 2) and Gads and the 

signaling enzymes PLCγ1 and  PLCγ2 579-584. BMMCs lacking LAT show a severe reduction 

in Ca2+ mobilization, degranulation and cytokine production upon IgE/antigen activation 585. 

Once activated, PLCγ catalyzes the hydrolysis of PtdIns(4,5)P2 that gives rise to DAG and 

IP3. DAG associates with the serine/threonine PKC and promotes its activation. IP3 binds to 

its receptor on the endoplasmic reticulum and liberate intracellular Ca2+ triggering the entry 

of extracellular Ca2+ through stored-operated calcium channels (SOCC) in the plasma 

membrane 586. These signals lead to mast cell degranulation, eicosanoid generation and also 

activation of the transcription factors for chemokine and cytokine production 587. 
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Degranulation is dependent on the influx of extracellular Ca2+. Indeed, EGTA chelation of 

extracellular Ca2+ abrogates mast cell degranulation 588. 

In parallel to this pathway, the cytosolic adapter molecule, Gab2, is phosphorylated by either 

Fyn or Syk 589,590. Phosphorylated Gab2 further recruits class IA PI3K via its p85 regulatory 

subunit through its SH2 and SH3 domains leading to PI3K activation and PtdIns(3,4,5)P3 

production. BMMCs derived from Gab2-deficient mice present defective PI3K-dependent 

signaling following FcεRI aggregation 591. Subsequently, molecules containing PH domains, 

including Vav and Btk (Bruton’s tyrosine kinase) can be recruited to the plasma membrane in 

a PI3K-dependent manner following FcεRI aggregation 592,593.  

 

 
 

Figure 16: Activation of class I PI3Ks in mast cells. Following FcεRI aggregation, Fyn and 
Syk become activated resulting in phosphorylation of Gab2, leading to the binding of PI3K 
class IA by Gab2. A mechanim involving a Btk-dependent phosphorylation of PLCγ results 
in PKC activation and increase in Ca2+ mobilization. LAT and NTAL bind Grb2 following 
phosphorylation in a Lyn and Syk-dependent manner. Once phosphorylated, LAT and NTAL 
can also activate PLCγ leading to mast cell degranulation. In the case of c-kit, p85α can 
directly binds to the phosphorylated receptor and subsequently increases PtdIns(3,4,5)P3 level 
via PI3Kδ. Upon ligand binding to GPCRs, PI3Kγ becomes activated and produces 
PtdIns(3,4,5)P3 which provides docking site for PH domains of associating proteins 597,598. 
 

PI3K class IA can also be activated via c-kit. Unlike FcεRI, c-kit has inherent protein-

tyrosine kinase activity 594. SCF-mediated dimerization of c-kit induces autophoshorylation at 

multiple tyrosine residues in the cytoplasmic tail providing docking sites for various 

molecules including PLCγ1, Lyn, Fyn, Grb2, Shc and the p85 regulatory subunit. 595. The 
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latter leads to activation of PI3Kδ specifically, as the c-kit signaling pathway is impaired in 

BMMCs derived from p110δ kinase-inactive knock-in mice 570. 

Mast cells also express GPCRs such as chemokine and adenosine receptors. Adenosine 

receptor family is composed of 4 members: A1, A2a, A2b and A3 which are all expressed on 

BMMCs 596. Adenosine, acting through the A3 adenosine receptor, increases PtdIns(3,4,5)P3 

level exclusively via PI3Kγ. This stimulation also results in the amplification of IgE/antigen-

mediated degranulation of BMMCs 596. 

 

  3.2. Pharmacological inhibition of PI3K activity in mast cells 

 

 The PI3K inhibitors, wortmannin and LY294002, have been widely reported to inhibit 

antigen-mediated degranulation in mast cells as well as cytokine production 587,599-601. 

Furthermore, wortmannin and the PI3Kγ inhibitor AS252424, also inhibit the antigen-

mediated degranulation potentiated by adenosine 571,596. SCF-mediated signaling in BMMCs 

can also be impaired either by wortmannin, LY294002 or IC87114, the p110δ selective 

inhibitor. Indeed, wortmannin and LY294002 inhibit SCF-mediated cell migration, adhesion 

to FN, proliferation and survival in BMMCs 601. These attenuated responses are similarly 

observed with the p110δ-selective inhibitor, IC87114, but not with the p110γ inhibitor, 

AS252424 571. Accordingly, stimulation via FcεRI and c-kit results in a marked PI3K-

dependent activation of the mTORC1 pathway as revealed by its wortmannin sensitivity 601. 

 

  3.3. Genetic targeting of PI3Ks in mast cells 

 

 Disruption of the p85α gene leads to a reduced expression of the class IA PI3K 

catalytic subunits p110α, p110β and p110δ 602. The loss of p85α partially inhibited SCF-

induced degranulation, proliferation and phosphorylation of PKB. In contrast, p85α gene 

products were not required for FcεRI-initiated exocytosis and phosphoralation of PKB 602. 

Moreover, strong anaphylactic shock with increased vascular permeability and histamine 

concentration after passive systemic anaphylaxis (PSA) was observed in absence of p85α and 

was identical to wt animals 603. 
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Which PI3K isoform is involved downstream of the FcεRI receptor is not clear. The role of 

the class IB PI3K has been investigated in BMMCs lacking p110γ and indeed, BMMCs 

derived from PI3Kγ null mice display attenuated degranulation compared to wild-type cells 

when stimulated through FcεRI receptor. Thus, adenosine-mediated hyperreactivity in 

BMMCs is abrogated in absence of p110γ. In addition, mice lacking p110γ do not form 

oedema after intradermal injection of adenosine and show impaired mast cell-mediated 

allergic response when challenge by PSA 596. 

Genetic inactivation of p110δ leads to impaired SCF signaling such as phosphorylation of 

PKB, adhesion, migration and proliferation 570. But surprisingly, the loss-of-function of 

p110δ was also claimed to impaired allergen-IgE-induced degranulation in vitro and protects 

mice against anaphylactic allergic responses 570. In a recent study, a side-by-side analysis of 

p110γ and p110δ in mast cell activation was performed using genetic approaches and 

isoform-selective inhibitors 571. Inactivation of both isoforms leads to impaired degranulation. 

As expected, phosphorylation of PKB upon IgE/antigen stimulation is impaired by 

inactivation of p110γ. Surprisingly, however, inhibition of p110δ is not effective to block the 

IgE/antigen signaling at first but only at late time point. Even more astonishing, only p110δ 

inactivation, but not p110γ, shows reduced in vivo passive cutaneous anaphylaxis response 

while in vitro both isoform inhibition shows an identical reduction in granule release. These 

results are quite unexpected as the loss of p85α in mice and mast cells reveals intact FcεRI-

mediated signaling in vitro and passive systemic anaphylaxis response are identical to the wt 

animals 602,603. 
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AIM OF THE STUDY 
 

The importance of class I PI3Ks activation is known to be essential in mast cell 

activation as wortmannin, a pan-PI3K inhibitor, blocks histamine secretion and leukotrienes 

release by irreversibly inhibiting PI3K (Yano et al., 1993). Moreover, the degradation of 

PtdIns(3,4,5)P3 by the phosphoinostide phosphatase SHIP, attenuated mast cell activation 

(Huber et al., 1998). The role of SHIP as a gatekeeper of mast cell degranulation, illustrates 

that PI3Ks are relevant enzymes in the mast cell-mediated allergic response. The aim of this 

study was to investigate and to compare the role of PI3Kγ and PI3Kδ in mast cell activation 

and recruitment in vitro and in vivo. For this purpose, we performed a step-by-step analysis of 

mast cell translocation from blood to the inflamed tissue. We used wt, p110γKO (deficient for 

p110γ), p110γKR (p110γ kinase inactivated) and p110δDA (p110δ kinase inactivated) mice for 

in vivo experiments and BMMCs derived from these mice for in vitro experiments as well as 

the p110δ specific inhibitor, IC87114 and a novel p110γ specific inhibitor, HBC520. 

Mast cell recruitment is a process that involves adhesion of mast cell progenitors via α4β1 

integrins to endothelial cells via VCAM-1 (Boyce et al., 2002). We were interested to know 

whether PI3Kγ and PI3Kδ play a role in this first step of the transmigration and we 

investigated by performing adhesion assay on endothelial cells. 

Moreover, mast cells have been described as a source of TNF-α, which is upregulating the 

cell adhesion molecules VCAM-1 and ICAM-1 on endothelia (Gordon and Galli, 1990; 

Meng et al., 1995; Plaut et al., 1989). For this reason and the fact that p110δ-deficient mast 

cells have impaired TNF-α secretion, we speculated that PI3Kγ and PI3Kδ might be involved 

in VCAM-1/ICAM-1 upregulation as well as in TNF-α and IL-6 production. 

Once in tissue, mast cells achieve their differentiation and maturation, and interact with the 

extracellular matrix. In vitro studies have reported that BMMCs can bind to fibronectin but 

only after activation and induce α5β1 integrin-mediated adhesion to fibronectin. Considering 

these facts, we performed adhesion assay to test the capacity of PI3Kγ and PI3Kδ to mediate 

adhesion upon stimulation. 
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Regarding the IgE/antigen signaling, the role of PI3Kγ and PI3Kδ in vitro and in vivo is 

disputed ((Laffargue et al., 2002) vs (Ali et al., 2008)), therefore we investigated their role in 

FcεRI-driven mast cell degranulation and PKB phosphorylation in vitro. 

Furthermore, activation through SCF, adenosine, IgE or IgE/antigen mediated BMMCs 

migration in vitro and required functional PI3Kδ and PI3Kγ (Ali et al., 2004; Kitaura et al., 

2005). We evaluated the pathophysiologic relevance of these in vitro observations by 

investigating the role of each lipid kinase in mast cell recruitment in vivo first by local 

application of IgE and then testing the IgE/antigen-triggered allergic response. 
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1. Abstract 

 

Mast cells are primary effector cells in allergy and chronic inflammation. Class IB (PI3Kγ) 

and class IA (PI3Kδ) PI3K have been shown to play major roles in mast cell activation: 

antigen/IgE stimulation triggers autocrine/paracrine activation of mast cells through G 

protein-coupled receptors (GPCRs) and PI3Kγ, e.g. by adenosine through the A3 adenosine 

receptor. PI3Kδ acts downstream of c-kit to promote mast cell growth and differentiation. 

Presently, data concerning the relative importance of PI3Kγ and PI3Kδ are controversial. 

Here we investigate the role of PI3Kγ and PI3Kδ during mast cell activation and allergic 

responses. From blood to tissues, we demonstrate that PI3Kγ is a major player in mast cell 

adhesion to endothelia involving α4β1 integrin whereas adhesion to fibronectin is mediated 

by α5β1 integrin. VCAM-1 and ICAM-1 upregulation and mast cell-derived TNF-α-

mediated activation of endothelia also require functional PI3Kγ. Genetic and pharmacologic 

approaches confirm the role of PI3Kδ in stem factor signaling (SCF) signaling. However, 

IgE/antigen signaling and mast cell degranulation are driven by PI3Kγ. Finally, in vivo mast 

cell recruitment as well as passive cutaneous anaphylaxis experiments are severely impaired 

by absence or pharmacological inhibition of PI3Kγ. Altogether, modulation of PI3Kγ and 

TNF-α affect mast cell function in crucial phases, rendering them appropriated targets for 

allergic diseases. 



Results 

102 

2. Introduction 

 

Mast cells are primary effector cells in allergy and chronic inflammation 1,2. Derived 

from circulating hematopoietic progenitor cells, they mature in vascularized tissues 3, and are 

activated by cross-linking the high affinity IgE receptor (FcεRI) by IgE/antigen complexes 4. 

FcεRI is composed of an α-subunit capturing IgE, and a β-subunit and two γ chains 

mediating downstream signaling 5. Upon FcεRI cross-linking, the protein tyrosine kinase Lyn 

phosphorylates immunoreceptor tyrosine-based motifs (ITAMs) located in the cytoplasmic 

regions of the FcεRI β and γ chains. This initiates the recruitment of Syk and the 

phosphorylation of multiple tyrosines on LAT, NTAL/LAB 6 and Tyr-X-X-Met motifs on 

Grb2-associated binder 2 (Gab2; 7,8). These serve as docking sites for the two src-homology 

(SH2) domains in class IA phosphoinositide 3-kinase (PI3K) regulatory subunits, which 

tightly associate with one catalytic subunits of p110α, p110β or p110δ 9-11. Of these, 

p110δ was proposed to produce a first wave of the PI3K product PtdIns(3,4,5)P3 12. 

 

PI3K activation has been demonstrated to be essential in mast cell activation early on using 

the pan-PI3K inhibitor wortmannin 13,14, and by the fact that the degradation of 

PtdIns(3,4,5)P3 to PtdIns(3,4)P2 by the SH2 domain-containing inositol 5’-phosphtatase 

(SHIP) attenuates mast cell activation 15. We have reported previously, that the only class IB 

PI3K, PI3Kγ, plays a role in mast cell activation in an autocrine/paracrine way: adenosine is 

released during inflammation and hypoxia and triggers via G-protein coupled receptors 

(GPCRs) a rapid and transient activation of the PI3Kγ pathway, which potentiates mast cell 

degranulation initiated by IgE/antigen 16. Moreover, it has been shown that adenosine 

activates mast cells in atopic patients 17. PI3Kγ consists of a catalytic subunit 110γ, which 

binds to either a p101 18 or p84 (also called p87PIKAP 19,20 adapter subunit. In mast cells, p84 is 

predominant and plays the major role in signaling downstream of GPCRs 21. The output of 

PI3K and the protein tyrosine kinase cascade finally integrate to trigger the influx of 

extracellular Ca2+, degranulation of histamine-containing granula, and later, the production of 

inflammatory mediators 22,23. 
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Presently, the assigned roles of PI3Kδ and PI3Kγ isoforms in mast cell degranulation are 

controversial (compare 12,16,24), and little is known concerning the involvement of PI3Ks in 

mast cell recruitment. Mast cell recruitment is a highly regulated process, and involves 

adhesion of mast cell progenitors via α4β1 integrins to endothelial cell adhesion molecules 

(e.g. VCAM-1, 25). Mast cells themselves contribute to VCAM-1 and ICAM-1 upregulation 

by the release of cytokines, including tumor necrosis factor-α (TNF-α, 26-28). After 

chemokine-induced extravasation 29, interactions with the extracellular matrix (ECM) 

promote mast cell differentiation, survival and activation 30,31. Here, the engagement of α5β1 

integrins with fibronectin (FN) have been shown to play a prominent role, and facilitate mast 

cell activation by IgE/antigen complexes 32-34.  

Although it has been shown in vitro, that the migration of bone marrow-derived mast cells 

(BMMCs) is induced by IgE and IgE/antigen complexes involving PI3Kγ signaling 35, the in 

vivo importance of PI3K isoforms in the individual steps leading to mast cell recruitment, 

degranulation and anaphylaxis, remains still to be defined. 

 

Here, we delineate the involvement of PI3Kδ and PI3Kγ isoforms in the recruitment of mast 

cells, their cross-talk with endothelia, extravasation and provide in vitro and in vivo evidence 

for their selective roles. It remains undisputed that PI3Kδ is essential for signaling 

downstream of the c-Kit receptor 12, but PI3Kγ takes a prominent role in mast cell adhesion 

to endothelia, diapedesis and is required for sensitivity of mast cells to IgE/antigen activation 

in tissues. Functional PI3Kγ also modulates the feedback of tissue mast cells via TNF-α to 

the activation of endothelial cells. In addition, the combination of genetic and 

pharmacological approaches revealed that modulation of mast cell recruitment is a promising 

strategy to attenuate allergic responses. These results have an important impact on the 

evaluation of currently developed compounds. 
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3. Materials and Methods 

 

Antibodies and reagents 

Phycoerythrin-labeled (PE) hamster anti-mouse FcεRIα (clone MAR-1) antibody was from 

eBioscience, PE-rat IgG2b anti-mouse CD117/c-kit (clone 3c1) antibody was from 

ImmunoKontact. Biotinylated and neutralizing anti-mouse integrin β1 (clone HMb1-1), α4 

(clone R1-2), α5 (clone MFR5) antibodies and PE-streptavidin were from Biolegend. PE-

mouse IgG1κ anti-human VCAM-1 (clone 51-10C9) antibody was from BD Pharmingen, 

goat anti-mouse FITC antibody was from Jackson Immuno Research and mouse anti-human 

ICAM-1 (clone 14D2D12) antibody was a generous gift from Ruggero Pardi. Neutralizing rat 

IgG1 anti-mouse TNF-α (clone MP6-XT22) antibody, C5a and SDF-1α were from R&D 

Systems. Enbrel (etanercept; 25mg in pre-filled syringue), neutralizing rat anti-mouse IgE 

antibody 36, neutralizing anti-mouse IL-1β (clone 1400.24.17) antibody 37 and HBC520 were 

from Novartis Institutes for BioMedical research (Basel, Switzerland). CellTracker Green 

(CTG) and carboxyfluorescein diacetate, succinimidyl ester (CFSE) were from Invitrogen. 

IC87114 was from Otava Ltd. Evans Blue, Toluidine Blue O, phorbol 12-myristate 13-

acetate (PMA), adenosine, N6-(3-iodobenzyl)adenosine-5’-N-methyluronamide, 1-Deoxy-1-

[6-[((3-Iodophenyl)methyl)amino]-9H-purin-9-yl]-N-methyl-β-D-ribofuranuronamide (IB-

MECA), Dinitrophenyl-human serum albumin (DNP), mouse anti-DNP IgE (clone SPE-7) 

and cell culture reagents (if not stated differently) were from Sigma-Aldrich. Murine stem 

cell factor (SCF), murine IL-3 and recombinant murine RANTES were from Peprotech. 

 

Mice 

C57BL/6J wild-type (wt) mice were acquired from Jackson, p110γKO 38, p110γKR 39 and 

p110δDA mice 40 in the same genetic background were used, age matched from 8 to 12 weeks. 

Experiments were carried out in accordance with institutional guidelines and national 

legislation. 

 

Bone marrow-derived mast cells 

Bone marrow (BM) was obtained from decapitated femurs by centrifugation, and cells were 

re-suspended in IMDM containing 10% HIFCS, 2 mM L-Gln, 10 µg/ml PEST, 50 µM β-
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mercaptoethanol, additionally supplemented to 2 ng/ml recombinant murine IL-3 and 5 ng/ml 

murine SCF. BM was cultured at 37°C, 5% CO2 for four days. Subsequently, bone marrow-

derived mast cells (BMMCs) were diluted weekly to 0.5×106 cells/ml maintaining 20% 

recycled medium mixed with 80% fresh medium. IL-3 (2ng/ml) was added three times per 

week 16. After 4 weeks, BMMC differentiation was monitored by the expression of c-Kit and 

FcεRI using flow cytometry. 

 

Culture of HUVECs 

Human umbilical vein endothelial cells (HUVECs) were cultured in cell culture flasks (BD 

Falcon) coated with 2% gelatin (type A from porcine skin incubated 30 min at 37°C) in 

HUVEC medium (M199 medium supplemented with 20% HIFCS, 2 mM L-Gln, 10 µg/ml 

PEST, 40 U/ml heparin, 20 µg/ml bovine pituitary extract [Gibco]). HUVECs were used 

between the 4th and 9th passage for experiments. 

 

Adhesion Assays 

Preparation of substrats: For BMMC adhesion to endothelia, monolayers of HUVECs were 

activated with 50 ng/ml TNF-α for 16 hrs at 37°C in 96-well plates coated with 2% gelatin. 

For BMMC adhesion to fibronectin (FN), 96-well MaxiSorp plates (Nunc) were coated with 

1 µg/ml FN in PBS overnight at 4°C, blocked on the following day with 4% BSA in PBS for 

1 hr at 37°C, followed by a rinse with PBS. 

Preparation of cells: For DNP stimulations, BMMCs were preloaded overnight with 0.5 

µg/ml IgE at 37°C. For other agonists, non-sensitized BMMCs were used. BMMCs in PBS 

were labeled with 10 µM CFSE for 10 min at 37°C. The cells were then washed twice in 

IMDM/BSA (IMDM/L-Gln/PEST/50 µM β-mercaptoethanol plus 1% BSA and 20 mM 

Hepes, pH 7.4). Where indicated, BMMCs were then pre-incubated with neutralizing 

antibodies for 30 min at 37°C. The stimulants were added to 96-well plates in 50 µl 

IMDM/BSA followed by the addition of labeled and pretreated 5x104 BMMCs in 100 µl 

IMDM/BSA. After 30 min of incubation at 37°C, each well was washed three times with 

modified Tyrodes buffer (137 mM NaCl/2.7 mM KCl/1.8 mM CaCl2/1 mM MgCl2/5.6 mM 

glucose/0.1 % BSA/20 mM Hepes, pH 7.4) under constant flow conditions (electronic 

multichannel pipetman, speed 1 [Gilson]) to remove non-adherent cells. Finally, the 
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fluorescence of adherent cells was determined (excitation: 492nm; emission: 518nm) and 

expressed as percentage of the fluorescence intensity of initially added cells. 

 

FACS Analysis 

Adhesion molecules on HUVECs: Confluent HUVECs were incubated with 5 times diluted 

BMMC supernatant (Sn) at 37°C for 16 hrs (time corresponding to the peak expression of 

VCAM-1/ICAM-1) 28. Where mentioned, BMMC supernatant was pre-incubated with PBS, 

Enbrel, neutralizing anti-TNF-α or anti-IL-1β antibodies for 1 hr at 37°C and then added to 

HUVECs. Stimulated HUVECs were trypsinized and incubated with PE-labeled anti-VCAM-

1 or anti-ICAM-1 antibodies for 30 min at 4°C. For ICAM-1 expression, the cells were 

subsequently incubated with secondary FITC-labeled anti-mouse antibodies for 30 min at 

4°C.  

Integrins on BMMCs: BMMCs were incubated with biotinylated anti-β1, anti-α4 or anti-α5 

integrin antibodies for 30 min at 4°C, and then incubated with PE-streptavidin for 20 min at 

4°C. All flow cytometry acquisitions were performed with FACS Calibur (BD) and the data 

were analyzed with Flowjo (Treestar). 

 

BMMC stimulation and cytokine secretion 

BMMCs were preloaded overnight with 100 ng/ml IgE, washed, re-suspended at 1x106 

cells/ml, and stimulated with 5 ng/ml DNP or 5 ng/ml DNP plus 1 µM adenosine for 6 hrs at 

37°C. Where indicated, wt BMMCs were incubated for 1 hr with inhibitors or 0.1% DMSO 

before stimulations. The cells were harvested, and the amount of cytokines in BMMC 

supernatants was measured by specific ELISA kits from R&D Systems according to the 

manufacturer protocol. 

 

Cell migration assay 

Migration of BMMCs was assayed for 6 hrs in 24-well Transwell Supports (Corning; 5.0 µm 

pore polycarbonate membranes bottom coated overnight with 1 µg/ml FN in PBS at 4°C, 

blocked with 4% BSA in PBS for 1 hr at 37°C, and equilibrated in IMDM/BSA for 30 min at 

37°C). Transwells containing 0.25x106 BMMCs in 200 µl IMDM/BSA were immersed in the 

lower well containing stimulants in 500 µl IMDM/BSA. Cells migrated to the lower well 

were counted using a Neubauer Chamber. 
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In vivo mast cell recruitment: 

Toluidine Blue O staining: Mice were shaved on the back one day before injections. 

Subsequently, isotype control or neutralizing compounds (anti-IgE, anti-IL-1β antibodies or 

Enbrel) were injected intraperitoneally (i.p.), and 12 hrs later IgE or PBS were injected 

intradermally (i.d.) into the flank. Mice were injected i.d. with 5 µl IgE (100 ng) or PBS into 

the ear or 20 µl IgE (100 ng) or PBS in the left and right flank respectively. Skin biopsies 

from IgE injection and control sites were obtained 24 and 48 hrs later. The tissues were fixed, 

paraffin-embedded and stained with 0.5% Toluidine Blue O solution to assess the presence of 

tissue mast cells (MCs). MCs were counted per injection site (6 slides per specimen from 3 

different animals per each condition) using a light microscope with a 12.5 x 12.5 µm grid at 

x20 magnification and average MCs/mm2 was determined by blinded counting. 

Intravital microscopy: C57BL/6 mice received an intrascrotal injection of TNF-α (50 ng 

diluted in 400 µl PBS). 5x106 CTG-labeled BMMCs were applied via cannulated left femoral 

artery 2 hrs later. Surgical preparation of the right cremaster muscle as well as in vivo 

fluorescence microscopy was performed 2 hrs later as described earlier 41,42. Rolling and 

firmly adherent BMMCs were counted in five fields of view covering ~ 70 – 80 % of the 

entire cremasteric surface and given as average number of cells per minute and 10mm2 

surface area. Rolling mast cells were defined as those moving slower than the associated 

blood flow. Firmly adherent cells were determined as those resting in the associated blood 

flow for more than 30 seconds. 

 

Degranulation Assay: 

BMMCs were preloaded overnight with 100 ng/ml IgE, washed twice and re-suspended at 

1x106 cells/ml in modified Tyrodes buffer. Degranulation was induced by the indicated DNP 

concentrations, and the reaction was stopped after 20 min by addition of 0.1 M 

Na2CO3/NaHCO3. Where indicated, wt BMMCs were incubated for 30 minutes with 

inhibitors or 0.1% DMSO before DNP stimulation. β-hexosaminidase activity in supernatants 

was assessed with p-nitrophenyl N-acetyl-β-D-glucosaminide (p-NAG) as a substrate at 410 

nm. Results are expressed as the percentage of total TritonX-100 releasable β-

hexosaminidase in whole cells 16. 
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Immunoblotting: 

Proteins were separated by SDS-PAGE and transferred to Immobilon PVDF membranes 

(Millipore). Rabbit monoclonal anti-pSer473-PKB/Akt (Cell Signaling Technology), mouse 

monoclonal anti-PKB/Akt (clone 19G7/C7), monoclonal anti-p110γ (Alexis; clone H1) and 

rabbit polyclonal anti-p110δ (Santa Cruz; clone H-219) were used to detect molecules in the 

PI3K pathway. Secondary antibodies such as horseradish peroxidase (HRPO)-coupled rabbit 

anti-mouse IgG and goat anti-rabbit IgG antibodies (Sigma-Aldrich) were visualized using 

enhanced chemiluminescence (Millipore).  

 

Passive Cutaneous Anaphylaxis (PCA): 

Mice were shaved on the back one day before injections. They then received i.d. injections of 

20 µl of PBS and IgE in the top and bottom back skin respectively. An i.v. injection of DNP 

in 100 µl of 0.5% Evans Blue in saline solution was performed 48 hrs later, and skin biopsies 

from IgE injection and control sites were obtained 30 min later. Evans blue was extracted in 

300 µl formamide at 55°C for 48 hrs, and quantified at 620 nm. Where indicated, inhibitors 

or vehicle (0.5% methylcellulose/Tween 80) were administrated per os (p.o.). 
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4. Results 

 

Mast cells are localized throughout all tissues, and are abundant in skin and mucus 

membranes. Mast cell numbers can be dynamically regulated, and allergic and inflammatory 

conditions, as well as host defense mechanisms can provoke the recruitment of mast cells. 

Asthma, allergic rhinitis, atopic dermatitis are often accompanied by elevated levels of IgE 43, 

and it has been reported that IgE can trigger mast cell migration in vitro 35. 

 

IgE-induced mast cell recruitment to skin requires p110γ  but not p110δ .  

Here, we determined the number of mast cells at specific dermal sites in wild type (wt), 

p110γ-/- (abbreviated as p110γKO in the following) and p110γK833R/K833R (short p110γKR) and 

p110δD910A/D910A (p110δDA) mice before and after a challenge with IgE. While unchallenged 

mice of all genotypes displayed indistinguishable mast cell numbers in dorsal skin, animals 

with inactivated p110δDA had only half the mast cells in the ear (Fig. 1A). These results are in 

agreement with previously published data in p110γKO 16 and p110δDA mice 24. 

When IgE was injected intradermally (i.d.), this recruited mast cells to the injection site, 

while PBS injections were ineffective (Fig. 1B, C). The examination of Toluidine-stained 

histological samples illustrated a significant increase in mast cell numbers at 24 h and close 

to a doubling of resident mast cells at 48 h in ears and dorsal skin of wild type mice. 

Interestingly, this IgE-induced mast cell infiltration was completely abrogated in the absence 

of functional p110γ (p110γKO and p110γKR), but very little affected in p110δDA mice. These 

results suggest that p110γ but not p110δ is required for the acute, IgE-induced recruitment of 

mast cells to tissues, which is in agreement with the requirement of p110γ in in vitro-

mediated mast cell migration triggered by IgE 35. Starting from lower numbers of resident 

mast cells in the ears of p110δDA animals, IgE triggered the same proportional increase as 

compared to wild type (1.8 x), but did not give rise to maximal mast cell numbers as detected 

in challenged wild type ears. As IgE targets specifically mast cells, this might be the first 

indication that resident tissue mast cell numbers are relevant for the further progression of 

IgE-mediated responses. 
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Figure 1. IgE-induced mast cell recruitment is p110γ-dependent in vivo. (A) Ear and back 
skin biopsies from wt, p110γKO, p110γKR and p110δDA mice were prepared, stained with 
Toluidine Blue O and the mast cells (MCs) number/mm2 were determined by light 
microscopy (n>3, mean ± SEM, * p<0.001 compared with wt). (B) Wt, p110γKO, p110γKR 
and p110δDA mice were i.d. injected with 100 ng IgE (plain lines) or PBS (dotted lines) and 
killed 24 or 48 hrs later. MCs were counted by light microscopy. (n>3, mean ± SEM, & 
p<0.05, * p<0.001 compared with wt). (C) Representative pictures of wt, p110γKO and 
p110δDA back skin biopsies. The arrows show MCs stained with Toluidine Blue O. 
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Agonist-dependent roles for p110γ  and p110δ  in BMMC migration. 

To analyze the relay of signals through p110γ and p110δ during mast cell recruitment, in 

vitro migration assay were performed (Fig. 2A). In transwell assays, mast cell migration to 

lower wells containing SCF, adenosine, the A3 adenosine receptor (A3AR) agonist IB-

MECA or IgE with and without antigen was assessed after 6 h of exposure to stimuli. As 

expected, BMMCs derived from p110δDA mice completely lost their capability to migrate 

towards SCF, while the absence of p110γ did not affect SCF signaling trough c-Kit. The 

situation was reversed with the GPCR ligands adenosine and IB-MECA, which required 

functional p110γ for migration, while p110δ function was dispensable here. 

As reported by Kitaura 35, IgE or IgE/antigen complexes can trigger mast cell migration in 

vitro involving autocrine/paracrine signaling through p110γ. The selectivity for the 

requirement of the p110γ isoform could be confirmed here, as both, the migration towards 

IgE and IgE/antigen were abrogated in p110γKO BMMCs, while the inactivation of p110δ did 

not significantly affect the migratory process in vitro. 

Consequently, it appears that the IgE or IgE/antigen triggered activation of mast cells mainly 

causes the release and action of adenosine and other GPCR ligands 16,35, and that cytokines 

signaling through p110δ play a minor role. Combined with the intact in vivo recruitment of 

p110δDA mast cells, one may conclude that SCF signaling plays no role in the IgE-induced 

mast cell infiltration to dorsal sites. 
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Figure 2. Differential roles for p110g and p110d regarding BMMC migration. (A) 
BMMCs from wt, p110γKO and p110δDA mice were stimulated with 20 ng/ml SCF, 1 µM 
adenosine, 10 nM IB-MECA, 1 µg/ml IgE or 100 ng/ml IgE overnight plus 10 ng/ml DNP 
and allowed to migrate through transwell-coated with FN for 6 hrs at 37°C. Migrated cells in 
the lower well were counted (n>3, mean ± SEM, * p<0.001 compared with wt). 
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BMMC adhesion to endothelial cells is mediated by PI3K. 

Adhesion of immune cells to endothelial cells is a prerequisite for immune cell migration to 

target tissues. To explore the involvement of PI3Ks in this process, we used stimuli known to 

attract leukocytes to inflammatory sites. C5a, SDF-1α, RANTES, as well as adenosine and 

IB-MECA were tested for their capability to induce BMMC adhesion to HUVECs in vitro 

(Fig. 2B). These GPCR agonists all induced the adhesion of wild type and p110δDA BMMCs 

to HUVECs, while p110γ null BMMCs did not respond. SCF could also be used to trigger 

adhesion of BMMCs to HUVECs, and here all mast cells except for the p110δDA BMMCs 

did adhere. 

Next we assessed, which adhesion molecules mediated the interaction between BMMCs and 

endothelia. Boyle et al. 25 have demonstrated that the adhesion of human progenitor mast 

cells to HUVECs can be blocked using anti-α4-integrin antibodies. As shown in Figure 2C, 

resting BMMCs from wild type, p110γKO, and p110δDA mice expressed α4, α5 and β1 

integrins on their surface at identical levels. 

When BMMCs were exposed to anti-integrin blocking antibodies before stimulation, anti-α4, 

anti−β1 and combinations of anti-α4 and anti−β1 antibodies were most efficient to prevent 

mast cell adhesion to endothelia, while anti-α5 antibodies had negligible effects, and anti-

 α5/anti−β1 combinations were not superior to anti−β1 antibodies alone (Fig. 2D). As 

blockage of adhesion was mediated for p110γ and p110δ signaling by targeting α4β1 (VLA-

4) integrins, this illustrates that the signaling of both PI3K isoforms can converge into the 

same cell responses, but that the two pathways are clearly separated upstream of 

PtdIns(3,4,5)P3 production. And although it occurs in vitro, the p110δ-dependent increase in 

adhesion does not seem to play a role in vivo. 
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Figure 2. Chemokines-induced adhesion of BMMCs to HUVECs is p110γ-dependent. 
(B) CFSE-labeled BMMCs from wt, p110γKO and p110δDA mice were incubated on HUVECs 
with 20 ng/ml SCF, 1 µM adenosine, 10 nM IB-MECA, 10 nM C5a, 10 nM SDF-1α or 10 
nM RANTES for 30 min at 37°C, washed and fluorescence of adherent cells was measured 
(n>3, mean ± SEM, * p<0.001 compared with wt). (C) Integrin expression in BMMCs: cells 
were incubated with anti-α4, anti-α5 and anti-β1 biotinylated antibodies for 30 min at 4°C, 
then with streptavidin-PE for 20 min at 4°C and analyzed by FACS. (B) Wt BMMCs were 
incubated with neutralizing anti-α4, anti-α5 and anti-β1 integrin antibodies (40 µg/ml) for 30 
min at 37°C before being seeded on HUVECs and adhesion assay was performed as 
mentioned above (n>3, mean ± SEM, $ p<0.01 compared with control). 
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Differential roles for p110γ  and p110δ  mediating adhesion of BMMCs to extracellular 

matrix protein fibronectin. 

After the transit to tissues, mast cells responsiveness is regulated by interactions with 

extracellular matrix proteins such as fibronectin (FN). To address the role of PI3Ks in this 

event, we assessed adhesion of wild type, p110γKO and p110δDA BMMCs to FN-coated 

plates. Resting BMMCs do not adhere to FN, but BMMCs of all origins adhered after 

exposure to the protein kinase C activator phorbol 12-myristate 13-acetate (PMA; Fig. 3A). 

As for the adherence to endothelial cells, activation of c-Kit via SCF required a functional 

p110δ to achieve adhesion, which confirms previously published data 24, while for GPCR 

ligands (adenosine, IB-MECA) p110γ was essential to fix mast cells on FN. Exposure of 

BMMCs to IgE alone was sufficient to trigger adhesion to FN. This response was completely 

abrogated in p110γ-deficient cells, while loss of p110δ function reduced adhesion 

insignificantly as compared to wild type cells. When the input signal to FcεRI was increased 

using IgE/antigen complexes, elimination of p110γ was less efficient to obstruct adhesion 

(Fig. 3A). 

 

Adhesion of activated BMMC to FN is known to be mediated by a high-affinity state of α5β1 

integrins 33,34,44,45, but little is known about which PI3K isoforms couple to increased ligand 

binding of α5β1 integrins. As anti-α5 integrin and the combination of anti-α5 and anti-β1 

integrin antibodies blocked PMA, SCF and adenosine triggered adhesion to FN most 

efficiently, both p110γ and p110δ can basically provide the signals to activate α5β1 integrins, 

but signals emerge from different input and are relayed by clearly separated pathways 

(Fig.3B). Along these lines, it was also demonstrated, that SCF-induced mast cell adhesion to 

FN was insensitive to inhibitors selectively targeting p110γ (AS252424; 24). 
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Figure 3. Differential roles for p110γ  and p110δ  regarding BMMC adhesion on 
fibronectin. (A) CFSE-labeled bone marrow-derived mast cells (BMMCs) from wt, p110γKO 
and p110δDA mice were stimulated with 100 nM PMA, 20 ng/ml SCF, 1 µM adenosine, 10 
nM IB-MECA, 1 µg/ml IgE or 500 ng/ml IgE overnight plus 100 ng/ml DNP. After 30 min 
incubation on FN at 37°C, wells are washed, and fluorescence of adherent cells was 
measured (n>3, mean ± SEM, * p<0.001 compared with wt). (B) Wt BMMCs were pre-
incubated with neutralizing anti-α4, anti-α5 and anti-β1 integrin antibodies (40 µg/ml) for 30 
min before being seeded into FN-coated plates. Fluorescence of the adherent cells was 
measured (n=3, mean ± SEM, & p<0.05, $ p<0.01, * p<0.001 compared with control).  
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Mast cells require p110γ  to activate and bind to endothelial cells. 

Meng et al. 28 have shown previously that supernatants from activated BMMCs (BMMC Sn) 

markedly increase surface expression of the adhesion molecules ICAM-1 and VCAM-1 on 

endothelial cells. To evaluate the need for PI3K signaling, supernatants from wild type, 

p110γKO and p110δDA BMMCs stimulated with IgE/ antigen or IgE/antigen and adenosine, 

were transferred to HUVECs. As detected by FACS, the exposure of VCAM-1 and ICAM-1 

after 16 hours incubation with BMMC Sn was maximal in wild type cells (Fig. 4A, B), and 

could be mimicked by the addition of excess TNF-α to HUVECs 46,47. VCAM-1 upregulation 

was efficiently induced by supernatants from stimulated wild type and p110δDA BMMCs, 

while the loss of p110γ reduced the potency of BMMCs supernatants close to background 

activity. ICAM-1 levels were already elevated in non-stimulated HUVECs, and BMMC 

supernatants roughly doubled ICAM-1 surface expression, except for p110γKO BMMC-

derived supernatants with a small, but significant reduction in activity. 

When supernatants from stimulated BMMCs were supplemented with anti-TNF-α antibodies 

or the TNF-α blocker Enbrel (a soluble fusion protein combining two type II TNF-α receptor 

[TNFR2] with an Fc fragment of human IgG1 48) before they were added to HUVECs, 

VCAM-1 and ICAM-1 upregulation on endothelial cells was completely abrogated. The 

addition of IL-1β neutralizing antibodies prior to incubation with HUVECs did not interfere 

with VCAM-1/ICAM-1 upregulation (Fig. 4C and D). This indicates, that the upregulation of 

VCAM-1 and ICAM-1 on endothelial cells is mediated mainly by TNF-α and that mast cells 

require mainly p110γ to produce this cytokine in response to IgE stimulation. To verify this, 

secretion of TNF-α and IL-6 from BMMCs stimulated with combinations of IgE, antigen and 

adenosine was determined. The loss of p110γ or its inhibition with the p110γ-selective 

inhibitor HBC520 in wild type BMMCs (see fig. S2 for the characterization of the inhibitor) 

ablated TNF-α production, and reduced IL-6 secretion by >50-60% (Fig. 5A and B). 

Interference with p110δ activity by genetic (p110δDA) and pharmacological means (IC87114, 
49) reduced TNF-α and IL-6 release somewhat after stimulation with IgE/antigen, but was 

ineffective when adenosine was combined with IgE/antigen stimulation. As the latter 

condition best fits the in vivo situation during an allergic response where adenosine is 

released, one might expect that p110γ plays a dominant role in the release of the two above 

mentioned cytokines. 
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Figure 4. VCAM-1/ICAM-1 expression on endothelia is mediated by TNF-α  and is 
dependent on the presence of p110γ  in BMMCs. 
Upregulation of VCAM-1 (A) and ICAM-1 (B) on HUVECs is induced after 16 hrs exposure 
to BMMC supernatant (Sn). Cells were incubated with anti-VCAM-1 and anti-ICAM-1 
antibodies and then analyzed by flow cytometry (n>3, mean ± SEM, * p<0.001 compared 
with wt). HUVECs were exposed to BMMC Sn previously incubated with 1µg/ml anti-TNF-
α antibody, 1µg/ml of anti-IL-1β antibody or 10µg/ml Enbrel for 1 hr at 37°C. VCAM-1 (C) 
and ICAM-1 (D) surface expression were analyzed by flow cytometry (n=3, mean ± SEM, * 
p<0.001 compared with control). 
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Figure 5. Optimal TNF-α  and IL-6 production require p110γ  in BMMCs. (A) TNF-α 
and (B) IL-6 release from BMMCs after overnight incubation with 100 ng/ml IgE and 
stimulation with 5ng/ml DNP or with 5ng/ml DNP plus 1 µM adenosine for 6 hrs. HBC520 
and IC87114 were used at 5µM and added for 1hr before stimulations (n=3, mean ± SEM, * 
p<0.001, & p<0.05 compared with wt). 
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IgE-mediated PKB/Akt phosphorylation and degranulation require p110γ .  

It has been demonstrated that p110δ is the major source of PI3K activity downstream of the 

c-Kit receptor in SCF stimulated BMMCs 24. This and the independence of SCF-stimulated 

phosphorylation of PKB/Akt on p110γ was confirmed here (Fig. 6A).  

BMMCs stimulated by IgE/antigen exhibit a phosphorylation of PKB/Akt that is abrogated to 

a big extent in p110γKO BMMCs, while inactive p110δ does not show a significant decrease 

in PKB/Akt phosphorylation (Fig. 6B), a differences maintained over time. 

The PKB/Akt phosphorylation is mirrored by the relative contributions of p110γ and p110δ 

in the IgE/antigen-mediated degranulation response (as measured by the release of β-

hexosaminidase), where degranulation was impaired in p110γKO BMMCs 16, and was 

likewise prevented by two p110γ specific inhibitors (HBC520, and AS252424 50,51, see Fig. 

6C). The inactivation of p110γ attenuates degranulation most efficiently at low antigen 

concentrations, while high antigen concentrations were capable to override the block imposed 

by p110γ inhibition partially. In contrary to its role downstream of c-kit, we could not 

establish a role for p110δ in FcεRI-induced signaling (see also fig. S2), which stands in 

opposition to results obtained by Ali et al. 12. 
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Figure 6. Contribution of p110γ  and p110δ  to SCF and FcεRI-induced BMMC 
responses. (A) BMMCs from wt, p110γKO and p110δDA mice were starved in medium 
containing 2% FCS for 3 hrs and stimulated with different SCF concentrations (left panel) 
and for different times (right panel). (B) BMMCs from wt, p110γKO and p110δDA mice were 
incubated overnight with 100 ng/ml IgE, starved and stimulated with different DNP 
concentrations (left panel) and for different times (right panel). The ratio pPKB/PKB have 
been quantified using ImageJ (n=3, mean ± SEM, $ p<0.01 compared with wt). (C) 
Degranulation was followed by β-hexosaminidase activity in wt, p110γKO and p110δDA 
BMMCs (left panel) or in wt BMMCs pre-incubated with inhibitors (right panel) after 
overnight incubation with 100 ng/ml IgE. Cells were stimulated for 20 min with the indicated 
amount of DNP before β-hexosaminidase was assessed in the cell supernatant. HBC520 and 
AS252424 were used at 5µM and IC87114 at 10µM and added for 30 min before DNP 
stimulation (n>3, mean ± SEM, $ p<0.01 compared with wt or control). 
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Chronic inhibition of p110γ  best to suppress passive anaphylactic responses. 

To test the validity of the in vitro results above, wild type, p110γKO, p110γKR and p110δDA 

mice were subjected to a model of passive cutaneous anaphylaxis (PCA). For PCA, mice 

were locally sensitized with i.d injections of IgE or PBS in the dorsal dermis, and an i.v. 

application of antigen (DNP) and Evans blue followed 48 hours later. The extravasation of 

Evans Blue was then measured to quantify the allergic response manifested as mast cell-

induced vascular permeability. When the doses of IgE or antigen were stepwise increased, the 

PCA response was augmented in wild type mice (Fig. 7A). At elevated IgE concentrations, 

inactivation of p110δ rapidly failed to protect mice against PCA, while p110γKO mice still 

showed robustly attenuated responses. When antigen levels were gradually increased, it 

became apparent, that also the block imposed in p110γKO and p110γKR mice could be partially 

bypassed, although a 40-50% protection remained even at elevated antigen concentrations 

(Fig. 7B). 

Of two orally available, isoform-specific PI3K inhibitors, it was only HBC520 targeting 

p110γ, which blocked PCA responses efficiently. The inhibition of p110δ by IC87114 was 

ineffective in our hands, although the compound was previously claimed to attenuate 

anaphylaxis 12. During our studies it became also clear, that a chronic treatment (for the 

injection scheme see Fig. 7C) with HBC520 was superior to even 10 times elevated doses of 

the inhibitor applied acutely (Fig. 7D). Interestingly, also Enbrel applied over the 

sensitization period was able to prevent a PCA response. As shown in Fig. 7E, the efficiency 

of the interference with PCA appeared to correlate with the recruitment of mast cells to 

challenged tissue. Mimicking the situation in p110γKO and p110γKR mice, the chronic 

treatment with HBC520 prohibited IgE-induced mast cell accumulation, and chronic IC87114 

had a moderate but significant effect as observed for mast cell recruitment in p110δDA 

animals. 
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Figure 7. Contribution of p110γ  and p110δ  to vascular permeability in vivo. (A) wt, 
p110γKO and p110δDA mice were sensitized with different doses of IgE (filled bars) or PBS 
(dashed bars) and i.v. injected 48 hrs later with 25 µg DNP (n>5, mean ± SEM, $ p<0.01 
compared with wt). (B) Wt, p110γKO, p110γKR and p110δDA mice were sensitized with 10 ng 
IgE (filled bars) or PBS (dashed bars) and i.v. injected 48 hrs later with different doses of 
DNP (n>5, mean ± SEM, $ p<0.01 compared with wt). (C) Protocol of chronic (1 or 3 
mg/kg), acute (10 or 30 mg/kg) inhibitors or Enbrel (10 mg/kg) treatment. The chronic 
treatment was performed at -2, 6, 24, 30 and 47 hrs. For acute treatment, mice received a 
single dose at 47 hrs administrated p.o. Enbrel was given at -2 and 24 hrs. (D) Wt mice were 
sensitized with 10 ng IgE or PBS and i.v. injected 48 hrs later with 25 µg DNP and treated 
with p110 inhibitors (left panel). Wt mice were also treated with Enbrel (right panel) (n>5, 
mean ± SEM, $ p<0.01 compared with control). (E) Wt mice received chronic and acute 
inhibitor treatments and were killed 48 hrs after IgE or PBS i.d. injections. MCs were stained 
with Toluidine Blue O and counted using a light microscope (n>3, mean ± SEM, * p<0.001 
compared with control). 
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Committed step of mast cell recruitment, activation of endothelia and/or PI3K in mast 

cells? 

As mast cell recruitment and the progression of PCA seem to go hand in hand, we wanted to 

elucidate if the PI3K-dependent activation of mast cells, or the activation of endothelial cells 

was crucial for the recruitment process. To evaluate these steps, TNF-α was injected 

intrascrotally to generate inflamed endothelia in the cremaster muscle vasculature. Here, intra 

vital microscopy was exploited to monitor the rolling and adhesion of fluorescently pre-

labelled BMMCs with wild type, p110γKO and p110δDA genotypes. It became apparent, that 

wild type and p110δDA BMMCs readily docked to endothelia, while the interactions of 

BMMCs devoid of p110γ showed an impaired adhesion in vivo. (Fig. 8A and B and 

movie_1). This implies that the GPCR/p110γ-dependent increase in adhesion – most likely 

by upregulation of α4β1 integrins – plays a central role in the recruitment process.  

The IgE-triggered recruitment of mast cells can be blocked, however, by Enbrel (Fig. 8C) 

illustrating that the action of TNF-α is also crucial to provide endothelial docking sites. The 

involvement of FcεRI-activated tissue mast cells in the process is supported by the fact that 

neutralizing anti-IgE antibodies inhibited mast cell recruitment as efficiently as Enbrel, while 

isotype and anti-IL1β antibodies remained ineffective. 

 

Altogether, the above results document that mast cell recruitment, acute degranulation and 

cytokine release can be modulated by the inhibition of p110γ and to a lesser extent by 

targeting p110δ, and that this strategy attenuates multiple p110γ–dependent steps in the 

evolvement of the allergic response from the blood stream to the IgE challenged tissue. As a 

further insight, chronic ablation of PI3K activity proved to be superior, which might allow 

the lowering of applied inhibitor doses and improve drug safety. 
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Figure 8. Mast cell recruitment upon stimulation. (A) 4 hrs after stimulation with TNF-α, 
the number of rolling (left panel) and firmly adherent cells (right panel) were quantified in 
the cremaster muscle using in vivo fluorescence microscopy (n=5; mean ± SEM; & p<0.05 
compared with wt). (B) Rolling wt mast cell (in green) in the blood stream. (C) Wt mice 
received i.p. injection with 10 mg/kg rat IgG isotype control, neutralizing anti-IgE, anti-IL-1β 
antibodies or Enbrel 12 hrs prior to IgE or PBS i.d. injections and were killed 24 hrs later. 
MCs were stained with Toluidine Blue O and counted using a light microscope (n>3, mean ± 
SEM, * p<0.001 compared with wt isotype treated). 
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5. Discussion 

 

In BMMCs, p110γ is the major PI3K isoform operating downstream of GPCRs 16 

whereas p110δ controls c-kit, the SCF receptor 12. Which PI3Ks command the IgE/antigen-

FcεRI pathway is controversial. In the present study, we report evidences that p110γ is 

required for signaling through FcεRI. In vitro, p110γ is important for BMMCs adhesion to 

FN with stimulation such as adenosine or IB-MECA but also IgE alone and IgE/antigen 

whereas the major role of p110δ in this adhesion process is through c-kit (Fig. 2A). Similar to 

IgE/antigen and SCF-induced adhesion 52,53, adenosine and IB-MECA-induced adhesion is 

mediated through α5β1 integrin (Fig. 2B, C). Importantly, we have then described a role for 

p110γ during BMMC adhesion to endothelia when cells are in presence of adenosine, IB-

MECA or chemokines (Fig. 3A). Consistent with the results discussed above, the role of 

p110δ is limited to SCF-induced adhesion to HUVECs. In vitro BMMC migration assay also 

relates the central position of p110γ in this process. Indeed, adenosine, IB-MECA, IgE and 

IgE/antigen-induced migration are all impaired in the absence of p110γ. As shown before, 

only SCF-induced migration is reduced by p110δ inactivation (Fig. 2D). In vivo experiments 

demonstrate that p110γ is also essential for mast cell recruitment after IgE injection in the 

murine skin (Fig. 1). Indeed, it is unlikely that mast cell have proliferated in the short time 

notice or induced by IgE alone. 

 

Mast cells contribute to defend the body against pathogens and parasites 54,55 and their 

activation also leads to allergic inflammatory reactions in response to antigen such as asthma, 

allergic rhinitis, eczema and anaphylaxis. In response to inflammation, mast cells produce 

and release various inflammatory mediators including histamine, leukotriene C4, 

prostaglandin D2, cytokines, chemokines and proteases 56,57. TNF-α and IL-6 are secreted in 

wt BMMCs upon IgE/DNP and IgE/DNP plus adenosine stimulation. For the first time, we 

have shown that in the absence of p110γ, or wt treated with p110γ inhibitor, the cytokine 

secretion is closed to baseline observed with IgE sensitization. In comparison, the 

inactivation of p110δ results in a diminution of the secreted cytokines upon IgE/DNP 

stimulation 12 but is immediately “rescue” by addition of adenosine (Fig. 5A, B). TNF-α is 

important for VCAM-1/ICAM-1 upregulation. Indeed, the use of an α-TNF-α antibody or 
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Enbrel completely abrogates the effect of wt BMMC Sn on VCAM-1/ICAM-1 upregulation 

(Fig. 4C, D). The lack of TNF-α secretion in p110γKO BMMCs explains why the level of 

surface adhesion molecules on endothelia is not increased in the presence of p110γKO BMMC 

Sn (Fig. 4A, B). Moreover, Enbrel totally abolishes mast cell recruitment in vivo (Fig. 5C). 

These results demonstrate conclusively that the release of TNF-α-mediated by p110γ is 

important both in vitro and in vivo. 

 

The SCF and IgE/antigen signaling have been analyzed by PKB phosphorylation, a 

downstream effector of PI3Ks. Unsurprisingly, PKB phosphorylation upon SCF stimulation 

is completely abrogated by inactivation of p110δ compare to wt or p110γKO BMMCs (Fig. 

6A). However, IgE/antigen signaling is impaired in absence of p110γ but not when p110δ is 

inactivated suggesting that the loss of p110γ is mainly responsible for signaling through 

FcεRI (Fig. 6B). Consistent with these results, BMMC degranulation is strongly reduced in 

absence of p110γ whereas the level of degranulation in p110δDA BMMCs is similar to those 

obtained with wt BMMCs (Fig. 6C). However, Ali et al., 12,24 have shown a reduction in PKB 

phosphorylation and degranulation upon IgE/DNP when p110δ is inactivated. Others have 

studied c-kit and FcεRI signaling using p85α -/- BMMCs 58, the most abundant class IA 

PI3Ks adaptor subunit. It has been found that the loss of p85α reduced the expression level of 

class IA PI3K catalytic subunits p110α, p110β and p110δ. Lu-Kuo et al. have demonstrated 

that p85α is essential for both degranulation and phosphorylation of PKB signals upon SCF 

stimulation whereas it is dispensable for FcεRI-induced degranulation and phosphorylation of 

PKB. 

In vivo PCA experiments with different doses of IgE and DNP confirm the critical role of 

PI3Kγ (Fig. 7). Similar results have been obtained by Laffargue et al. using passive systemic 

anaphylaxis (PSA) experiments. Fukao et al. have described that the systemic anaphylaxis 

shock responses are intact with mice lacking p85α. In the same study, they also observed an 

impaired c-kit signaling in p85α-/- BMMCs whereas the FcεRI-mediated degranulation is not 

affected. These and the results obtained in the present study are further evidences that p110δ 

is essential in c-kit signaling whereas p110γ is a key element of the FcεRI-induced in vitro 

and in vivo signaling. 
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Mast cells are known to be involved in the development of allergic inflammation. These 

diseases affect a very large number of the human population and include asthma, allergic 

rhinitis, atopic dermatitis, anaphylaxis and allergic eye disease. In all theses, mast cell 

numbers are increased, degranulation intensified and cytokines production induced 59. As we 

have shown in figure 1, i.d. injection of IgE increases the number of dermal mast cell in wt 

but not in p110γ. The use of Enbrel also impaired the mast cell recruitment. In absence of 

p110γ, TNF-α and IL-6 secretion are diminished. In asthma, VCAM-1/ICAM-1 are 

expressed on airway smooth muscle cells and may be involved in retention of mast cells and 

others immune cells 60 and this study reveals the importance of p110γ and TNF-α in this 

process. These results indicate that both p110γ and TNF-α would be appropriate intracellular 

targets in the treatment of human allergic diseases. 
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7. Supplementary Materials and Methods 

 

Mast cell progenitor staining 

BM from wt, p110γKO and p110δDA were isolated. After lysing the red blood cells with Tris-

buffered ammonium chloride, bone marrow cells were stained with FITC-labeled antibodies 

specific for the following lineage markers: CD3 (clone 145-2C11), CD4 (clone GK1.5), CD8 

(clone 53.6.72), CD11b (clone M1/70), CD11c (clone N418), B220 (clone RA3-6B2), CD19 

(clone 1D3), NK1.1 (clone PK136), Sca.1 (clone D7), TER119 (clone TER-119) and with 

PE-labeled FcεRI (clone MAR-1) and APC-labeled c-Kit (clone ACK2). All antibodies were 

a generous gift from Antonius Rolink. The cells were incubated 30 min at 4°C, washed and 

flow cytometry acquisition was performed with FACS Calibur (BD). The data were analyzed 

with Flowjo (Treestar). 

 

BMMC stimulation 

BMMCs were preloaded overnight with 100 ng/ml IgE, washed, re-suspended at 1x106 

cells/ml, and stimulated with different DNP or SCF concentrations or 0.5 µM adenosine. 

BMMCs were incubated for 1 hr with inhibitors at 10 µM or 0.1% DMSO before 

stimulations. 

 

fMLP Assay: 

Fresh human blood from donors was collected in 20 ml tubes containing 20 mg/ml 

EDTA/PBS anticoagulant. Blood was subjected to red blood cell sedimentation over 4% 

dextran/PBS, for 30 minutes, on ice. The leucocyte-containing supernatant was layered on a 

Ficoll-PaqueTM (Amersham Pharmacia, Sweden) density gradient and centrifuged at 350g, for 

20 minutes, at 18°C. The pellet containing the granulocytes was then lysed in cold water and 

the isotonic balance was restored by adding X2 PBS before centrifugating 8 minutes at 350g 

and at 4°C. The pellet of granulocytes (neutrophils purity > 97%) was resuspended at 4.106
 

cells/ml in HBSS + 0.1% BSA and left on ice. 50 µl of neutrophils were added to the Costar 

3912 microtitre plates (2.105
 cells/well). 50 µl of inhibitors were added to the wells and 

incubated 15 minutes, at 37 °C. 50 µl of lucigenin was dispensed to all wells (final 

concentration = 100µM). The plate was then placed inside the Microluminat LB 96P and 100 
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µl of 5 µM fMLP was dispensed automatically by the luminometer into selected wells. 100 µl 

of PBS/1mM CaCl2/1mM MgCl2 was added manually to control wells containing 

‘unstimulated’ cells. Total chemiluminescence and the temporal profile of each well were 

measured simultaneously for 6 minutes. 

 

Human B cell proliferation assay: 

B cells were purified from donors blood according to the protocol supplied by Dynal (Dynal 

Product code: 113.13). Isolated human B cells (0.5x105/well) were incubated with rabbit anti-

human IgM antibody (10µg/mL final concentration; Stratech scientific Ltd: 309-006-043) in 

RPMI, 10% FCS, 1% MEM non-essential amino acids, 1µL 3H-thymidine (1µCi/well) in 96-

well plate for 48 hours. Incorporated thymidine was measured following extensive washing 

using a Packard TopCount. 
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8. Supplementary Figures and Tables 

 

Table S1: In vitro IC50 values of class I PI3K specific inhibitors, [µM]. 

 

 
Data were compiled from: 61, 50, 51, 62, 49 and $present work. 

 

 

Table S2: Cell based IC50 values (µM) of class I PI3K specific inhibitors. 

AS252424 HBC520 IC87114 In vivo response 

850 

 

 

4.2924; >10$ 

 0.3$ 

 1.6$ 

 0.5$ 

 >10$ 

 1.9$ 

 0.05$ 

3.624; >10$ 

0.2724 

fMLP-induced response 

Human B cell proliferation 

Adenosine-induced pPKB/Akt 

SCF-induced pPKB/Akt 
 

Data were compiled from: 50 fMLP-induced PtdIns(3,4,5)P3, 24 and $present 

work (the fMLP-induced response here was respiratory burst measured as 

indicated in supplementary materials). 

PI3K isoform TGX-221 A252424 HBC520 IC87114 

p110α 0.7850-561 0.07150-0.9451 1.8$ >10049-20062 

p110β 0.00561-0.0150 1.250-2051 0.25$ 1662-7549 

p110γ 3.250- >1061 0.01250-0.0351 0.09$ 2949-6162 

p110δ 0.06550-0.161 0.1950-2051 0.75$ 0.1362-0.549 
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Supplementary figure S1: BM from wt, p110γKO and p110δDA mice were isolated. Cells 
negative for Lin and Sca.1 were gated for FcεRI- and c-Kit+. Representative FACS plot of 
mast cell progenitor cells in the bone marrow of wt (A), p110γKO (B) and p110δDA (C) mice. 
(D) Percentage of mast cell progenitors was determined by staining for FcεRI-, Lin-, Sca.1- 
and c-kit+ cells (n=3, mean ± SEM). 
 



Results 

134 

 
 
Supplementary figure S2: Wt BMMCs were incubated overnight with 100 ng/ml IgE, 
starved in medium containing 2% FCS for 3 hrs, treated with 10 µM of inhibitors during the 
last hour and (A) stimulated with different DNP concentrations (n=3, mean ± SEM, * p<0.01 
compared with control) or (B) different SCF concentrations (n=3, mean ± SEM, * p<0.05 
compared with control). (C) Wt BMMCs were starved in medium containing 2% FCS for 3 
hrs, treated with different HBC520 concentrations during the last hour and stimulated with 
0.5 µM adenosine. The ratio pPKB/PKB have been quantified using ImageJ and IC50 was 
determined (n=3, mean ± SEM). 
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CONCLUSIONS 
 

The work presented in this thesis aimed to identify and evaluate the role of PI3Kγ and 

PI3Kδ in mast cell activation and recruitment in vitro and in vivo. Indeed, previous studies 

have shown that PI3Ks are relevant enzymes in mast cell-mediated allergic response, but the 

importance of PI3Kγ and PI3Kδ is controversial ((Laffargue et al., 2002) vs (Ali et al., 

2008)). 

For the first time, PI3Kγ was shown to drive chemokine-induced BMMCs adhesion to 

endothelia, a process mediated by α4β1 integrin. Moreover, functional PI3Kγ is required for 

upregulation of VCAM-1/ICAM-1 on endothelial cells through TNF-α produced by mast 

cells. We also demonstrated that PI3Kγ is indispensable in adenosine, IB-MECA, IgE and 

IgE/antigen-induced mast cell adhesion to fibronectin. 

While it remains uncontested that PI3Kδ is essential for signaling downstream of the 

c-kit receptor, its role in the IgE/antigen pathway is minimal in our hand. Indeed, PI3Kδ is 

not necessary neither for IgE/antigen-mediated mast cell degranulation nor for PKB 

phosphorylation. On the contrary, the main isoform involved in signaling downstream of the 

FcεRI receptor is PI3Kγ. 

In vitro, it has been reported that BMMCs migration is induced by SCF activation in a 

PI3Kδ-dependent manner (Ali et al., 2004) whereas adenosine, IgE or IgE/antigen 

stimulations required functional PI3Kγ (Kitaura et al., 2005). We were able to confirm the 

role of each lipid kinase in migration assay. We then performed in vivo experiments to 

evaluate the relevance of these in vitro observations. 

For the first time, we demonstrated that in tissues, mast cells are attracted to IgE by a 

mechanism determined by PI3Kγ. Indeed, mast cell recruitment is completely abrogated in 

absence of PI3Kγ, but not affected by the loss of  PI3Kδ function, suggesting that PI3Kδ is 

irrelevant in acute mast cell recruitment. Our point of view is also strenghten by the fact that 

only PI3Kγ and not PI3Kδ inhibitors prevent mast cell accumulation. These results are in 

agreement with the fact that PI3Kγ is the major isoform involved in mast cell adhesion on 

fibronectin upon IgE stimulation.  
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Passive cutaneous anaphylaxis experiments also confirmed the prominent role of 

PI3Kγ. Indeed, both genetic and pharmacologic inhibition severely attenuates the 

anaphylactic shock. These findings also reinforce the data obtained in vitro with BMMCs 

degranulation. The in vivo allergic response was also modulated by TNF-α as Enbrel protects 

mice from passive cutaneous anaphylaxis confirming the important role of TNF-α. Intravital 

microscopy experiments also support these findings since only PI3Kγ, but not PI3Kδ, is 

required for rolling and firmly adherence of mast cells in the cremaster muscle after TNF-α 

stimulation. These results are supported by the fact mice treated with Enbrel did not display 

any mast cell recruitment to tissues. Altogether, modulation of PI3Kγ activity affects mast 

cell activation, recruitment and allergic responsiveness. 

 

The results of the present study indicate that the IgE levels might correlate with mast cell 

numbers in vivo. Indeed, a recent study supports this evidence and reports that mice subjected 

to inhalation of Aspergillus fumigatus (Af) displayed a vigorous IgE response accompanied 

by a dramatic expansion of mast cells in trachea, bronchus and spleen (Mathias et al., 2009). 

Previously, it has been shown that IgE acts as a positive regulator of FcεRI on mast cell 

surface (Yamaguchi et al., 1997) and indeed the IgE receptor is upregulated on lung mast 

cells of wt mice following Af exposure (Mathias et al., 2009). It would be interesting to assess 

whether the loss of PI3Kγ is able to prevent the FcεRI upregulation in our model. In addition, 

IL-5-derived mast cells is increased in wt mice after Af exposure leading to an increased 

eosinophilia (Mathias et al., 2009). As PI3Kγ is required for mast cell recruitment, it would 

make sense to compare the cytokine profile in tissues from wt, p110γKO and p110δDA exposed 

to IgE or IgE/antigen leading us to a better understanding of the mechanism. 

IgE plays a central role in allergy as its level influences the mast cell number located within 

tissues. IgE is produced by B cells through a class-switch recombination (CSR) process that 

required expression of activation-induced cytidine deaminase (AID). Interestingly, 

inactivation of p110δ leads to increased IgE production and IgE expression on B cells 

probably because p110δ-inactive B cells expressed 2 fold-more AID transcripts than wt B 

cells (Zhang et al., 2008). These results raise new questions. Indeed, if the IgE level correlate 

with the number of mast cells, it would explain why the mast cell accumulation is not 
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reduced in p110δ mice. Additionally, it would be interesting to know if the IgE level in 

absence of PI3Kγ is reduced which could explain the reduction in mast cell recruitment. 

Studies in allergic and atopic patients have demonstrated an increased mast cell number in 

tissues leading to re-evaluate mast cell as a crucial effector cell in allergic disease. 

Treatments of allergic diseases aim mainly to block mast cell degranulation and mediator 

release or to prevent the binding of IgE onto mast cells but none act on mast cell expansion in 

tissues. Thus, new therapeutic strategy can be envisaged like a PI3Kγ inhibitor which would 

prevent the accumulation of mast cell number in tissues, reducing at the same time the 

degranulation and release of inflammatory mediators and therefore the recruitment of other 

leukocytes. 
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C E L L B I O L O G Y
PI3Kg Adaptor Subunits Define Coupling to
Degranulation and Cell Motility by Distinct
PtdIns(3,4,5)P3 Pools in Mast Cells
Thomas Bohnacker,1 Romina Marone,1* Emilie Collmann,1* Ronan Calvez,1†

Emilio Hirsch,2 Matthias P. Wymann1‡
(Published 9 June 2009; Volume 2 Issue 74 ra27)
Phosphoinositide 3-kinase g (PI3Kg) plays a major role in chronic inflammation and allergy. It is a hetero-
dimer of a catalytic p110g subunit and an adaptor protein, either p101 or the p101 homolog p84 (p87PIKAP). It
is unclear whether both PI3Kg complexes specifically modulate responses such as chemotaxis and de-
granulation. In mast cells, the p84-p110g complex synergizes with immunoglobulin E (IgE)– and antigen-
clustered FcɛRI receptor signaling and is required to achieve maximal degranulation. During this process,
PI3Kg is activated by ligands of heterotrimeric guanine nucleotide–binding protein (G protein)–coupled
receptors (GPCRs), in particular adenosine receptors, through autocrine and paracrine pathways. Here,
we show that p110g needs p84 to relay signals from GPCRs to formation of phosphatidylinositol 3,4,5-
trisphosphate [PtdIns(3,4,5)P3], phosphorylation of Akt, migration of cells, and synergistic adenosine-
enforced degranulation. Furthermore, the absence of adaptor subunits could not be compensated for by
increased p110g abundance. Differentiated, p110g null cells also lost adaptor proteins. Complementation
of p110g null mast cells with p101 and p110g restored the activation of Akt and cell migration, but failed to
support degranulation. Lack of degranulation was attributed to a change in the spatiotemporal localiza-
tion of PI3Kg-derived PtdIns(3,4,5)P3; although both p84-p110g and p101-p110g complexes initially depos-
ited PtdIns(3,4,5)P3 at the plasma membrane, p101-p110g–derived PtdIns(3,4,5)P3 was rapidly endocytosed
to motile, microtubule-associated vesicles. In addition, p84-p110g, but not p101-p110g signaling was sen-
sitive to disruption of lipid rafts. Our results demonstrate a nonredundant function for the p101 and p84
PI3Kg adaptor proteins and show that distinct pools of PtdIns(3,4,5)P3 at the plasma membrane can elicit
specific cell responses.
INTRODUCTION

Phosphoinositide 3-kinases (PI3Ks) are implicated in cancer (1–4) and in-
flammation (5, 6), and their net activity can modulate the transition from
normal cell functions to the progress of disease. Regulatory subunits trans-
locate the 110-kD catalytic subunits—consisting of class IA PI3K members
p110a, b, and d and class IB p110g—to their substrate phosphatidylinositol
4,5-bisphosphate [PtdIns(4,5)P2] at the plasma membrane. For class IA
PI3Ks, it is well documented that both Src homology 2 (SH2) domains of
p85-like regulatory subunits (encoded by PIK3R1, PIK3R2, and PIK3R3)
direct the PI3Kcomplexes to phosphorylatedTyr-X-X-Metmotifs on recep-
tor protein tyrosine kinases or their substrates (5, 7) and that interactions
between p85 and p110 regulate enzyme activity (8, 9). In spite of this knowl-
edge, the physiological consequences of genetic ablation of regulatory p85
subunits have often been surprising.Whereas targeting of p85a (by deletion
of exon 1 of PIK3R1) attenuated the function of PI3K downstream of the B
cell receptor as expected (10–12), loss of p85a or p85b increased insulin
signaling (13–15). Due to the multilevel complexity of the PI3K network,
1Institute of Biochemistry and Genetics, Department of Biomedicine, Univer-
sity of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland. 2Dipartimento
di Genetica, Biologia e Biochimica, Università di Torino, Via Nizza 52, I-10126
Turin, Italy.
*These authors contributed equally to this work.
†Present address: Marie Curie Excellence Team, INSERM U563, CHU Purpan,
BP 3028, 31024 Toulouse Cedex 3, France.
‡To whom correspondence should be addressed. E-mail: Matthias.Wymann@
UniBas.ch
however, a full description of the physiological roles of the regulatory sub-
units of PI3Ks is far from being complete.

The sole member of the class IB family, p110g (encoded by PIK3CG)
operates downstream of heterotrimeric guanine nucleotide–binding protein
(G protein)–coupled receptors (GPCRs) (5, 16) and is activated by bg sub-
units of G proteins (Gbg) in vitro (17, 18). The catalytic subunit p110g forms
heterodimers with either of the adaptor subunits p101 (encoded by PIK3R5)
(18) and a p101 homolog, p84 (also called p87PIKAP, encoded by PIK3R6)
(19, 20). N- and C-terminal sites of p110g bind to Gbg subunits directly (21),
but p101 and p84 are required for efficient Gbg-stimulated phosphorylation of
PtdIns(4,5)P2 invitro (19, 22, 23). The physiological importance of p101was
demonstrated convincingly in p101 null mice, in which GPCR ligands failed
to trigger neutrophil chemotactic responses, whereas the induction of neutro-
phil NADPH oxidase was not affected (24), even though both responses are
dependent on PI3Kg (16). The p101 and p84 adaptor subunits perform equally
well in vitro (19), but a physiological role for p84 is yet to be defined. It is
still unclear whether p84 and p101 have overlapping or nonredundant func-
tions in vivo.

We have therefore addressed the requirement and actions of PI3Kg adaptor
proteins in the physiologic context of mast cell activation, which provides a
superb model system in which to study the function of PI3Kg. In mouse mast
cells, PI3Kg signals downstream ofA3 adenosine receptors (A3ARs) and drives
cell migration (25), as well as synergistically enhancing IgE- and antigen-
mediated degranulation in vitro and IgE- and antigen-induced passive systemic
anaphylaxis in vivo (26). In this context, adenosine signaling throughGPCRs is
well known for activating mast cells in atopic, but not normal, patients (27, 28).
www.SCIENCESIGNALING.org 9 June 2009 Vol 2 Issue 74 ra27 1
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The clustering of FceRI receptors through antigen-IgE complexes trig-
gers a protein tyrosine kinase cascade that leads to the phosphorylation of
immunoreceptor tyrosine–based activation motifs (ITAMs) on FceRI recep-
tor chains, multiple tyrosines on linker of activated T cells (LAT), non–T cell
activation linker [(NTAL), also known as linker for activation of B cells
(LAB), also known as LAT2] (29), and Tyr-X-X-Metmotifs on growth factor
receptor–bound protein 2 (Grb2)–associated binding protein 2 (Gab2) (30).
Class IA PI3Ks, and in particular p110d (31), thus produce a first wave of
phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P3] as a consequence
of the clustering of FceRI receptors. This signal is, however, quenched by the
action of the SH2 domain–containing inositol 5′-phosphatase (SHIP), which
degrades PtdIns(3,4,5)P3 to PtdIns(3,4)P2 (32). In this context, GPCR-
triggered activity of PI3Kg delivers a superimposed pulse of PtdIns(3,4,5)P3,
which is integrated with the FceRI protein tyrosine cascade and produces a
full-scale activation and degranulation response. Its exclusive dependence
onPI3Kgmakes this an attractivemodel inwhich to unravel the functions of
the PI3Kg adaptor proteins.

Here, we show that differentiated hematopoietic cells that lack the p110g
catalytic subunit also lose their PI3Kg adaptor proteins, which was exploited
to producemast cells devoid of both p110g andp84.Complementation assays
showed that p110g could not operate without its adaptor proteins. Moreover,
p101 and p84 had nonredundant functions in a physiological context and
produced distinct pools of PtdIns(3,4,5)P3 with different fates, sensitivities
to depletion of cholesterol, and capacities to promote release of mast cell
granules. PI3Kg adaptor subunits thus controlled spatiotemporal signaling
of p110g catalytic subunits to yield diverse physiologic outputs. Because
PI3Kg is an important component in chronic inflammation and allergy, a
full understanding of its mechanism of activation might open previously
unknown avenues of context- and tissue-specific targeting of PI3Kg. Spatial
organization might also apply to mammalian p85 class IA PI3K adaptor
proteins, which have physiologically poorly explored interaction domains,
such as the SH3 and breakpoint cluster region homology (BH) domains (7).
RESULTS

Mast cells: a model in which to study the functions of
PI3Kg adaptor proteins
To evaluate and compare the tissue distribution of p84-p110g and p101-
p110g complexes, wemeasured the abundance of messenger RNAs (mRNAs)
for mouse p110g, p84, and p101 by quantitative polymerase chain reaction
(qPCR) assays. mRNAs for p110g, p84, and p101 were detected at high
abundance in murine hematopoetic tissues and cells (Fig. 1A and fig. S1),
corresponding to the reported role of PI3Kg in the recruitment of leukocytes
(16) and full-scale activation of mast cells (26). In all tissues investigated,
p110gmRNA correlated with the presence of that of at least one of the adap-
tor subunits, supporting the importance of the regulators to the function of
PI3Kg. The mRNA for p101 was prominently expressed in bone marrow
(BM), thymus, spleen, and lymph nodes but was at low abundance in BM-
derived mast cells (BMMCs) (see Fig. 1C for protein abundance) and mast
cell lines of mouse (MC/9), rat (RBL-2H3), and human (HMC-1) origin. In
contrast, the abundance of p84 mRNAwas high in mast cells (Fig. 1, A and
B). Similarly, we examined the abundance of PI3Kg subunit proteins in
hematopoietic cells derived from wild-type (WT) mice, p110g null mice
(KO) (16, 33), or genetically targeted mice with catalytically inactive
p110g (KR, which contains a Lys833→Arg mutation) (34). In BM samples,
the abundance of p84 protein was not affected by manipulations of the
p110g locus (Fig. 1D). However, the abundance of p84 was lower in differ-
entiated cells such as mast cells, macrophages, splenocytes, and neutrophils
from KO mice than from WT mice, whereas the abundance of p84 was
normal in cells from KR mice (Fig. 1D and fig. S2). This implies that the
stability of p84was dependent on the presence of p110g but not on its kinase
activity. That other, yet unexplored mechanisms control the abundance of
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Fig. 1. Tissue distribution of p110g and its adaptor subunits. (A) Relative
copy numbers of mRNAs for p110g, p84, and p101 were assessed by
qPCR in the indicated murine tissues (for additional tissues, see fig. S1),
as well as in BMMCs and a mouse mast cell line (MC/9). Data shown
represent mean ± SEM of more than three experiments. All values are
normalized to the copy number of p84 mRNA in BM. (B) p84, p101,
p110g, and GAPDH (internal standard) mRNAs were amplified from the
RBL-2H3 and HMC-1 mast cell lines and the indicated rat and human
cells and tissues by RT-PCR, separated by agarose gel electrophoresis,
and visualized with ethidium bromide. (C) p101 protein is undetectable
in murine BMMCs. Total lysates of murine BMMCs and J774 cells were
subjected to SDS-PAGE and the indicated proteins were detected by
Western blotting. (D) p84 protein is stabilized in the presence of p110g.
Bone marrow (BM), macrophages (MØ), splenocytes (Spleno), neutrophils
(NØ), and mast cells (BMMC) fromWT mice (WT), mice deficient in p110g
(KO), or mice with a catalytically inactivated p110g (Lys833→Arg mutation;
KR) were probed for the presence of p110g and p84 proteins by Western
blotting. Blots in (B) to (D) are representative of more than three experi-
ments each.
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PI3Kg adaptor proteins is illustrated by the stability of p84 in BM samples
from KO mice and the lower abundance of p84 mRNA in KO BMMCs
compared to that in WT BMMCs (fig. S2C).

Because BMMCs from KO mice lack both adaptor and catalytic sub-
units, we used them for complementation assays and functional studies.
We first explored the physiological output of the p84-p110g complex and
then tested whether exogenous p101 could substitute for p84. Both adaptor
proteins interact with p110g and Gbg subunits in vitro, although p101 sen-
sitizes PI3Kg for activation byGbg subunits at even lower concentrations of
Gbg subunits (19).

Combinations of WTor catalytically inactive (KR) p110g proteins with
either green fluorescent protein (GFP)–tagged p84 (GFP-p84) or p101
(GFP-p101) were introduced into KO BMMCs by nucleofection. Com-
plementation ofWT p110gwith GFP-p84 or GFP-p101 restored adenosine
receptor signaling, as detected by the presence of phosphorylated Akt, but
the isolated introduction of p110g did not (Fig. 2A).Under these conditions,
introduction of p110g with or without GFP-p84 or GFP-p101 did not in-
crease the abundance of endogenous p84 (fig. S3). As for WT BMMCs
(26), adenosine-mediated phosphorylation of Akt in KOBMMCs reconsti-
tutedwith either p110-adaptor complexwas prevented by the PI3K inhibitor
wortmannin (Fig. 2B) and by pretreatment with pertussis toxin (PTX) (fig.
S4). The A3AR-specific agonist IB-MECA and agonists targeting all aden-
osine receptors (adenosine and NECA) stimulated phosphorylation of Akt
to a similar extent independently of the PI3Kg adaptor protein used, indicat-
ing that PI3Kg adaptors did not alter adenosine receptor signaling (fig. S4).

A role for PI3Kg in GPCR-induced chemotaxis has been established in
various cell types (16, 24, 35, 36). Mast cells migrate toward adenosine
through activation of A3AR in a PI3Kg-dependent, PTX-sensitive manner
(25). When reconstituted with p110g only, BMMCs derived from KOmice
were unable to migrate toward adenosine, whereas reconstitution with WT
p110g and either hemagglutinin (HA)-tagged p84 (HA-p84) or p101 (HA-
p101) resulted in the cells having an increasedmigratory capacity (Fig. 2C).
Neither the presence of the individual adaptor proteins nor reconstitution
with either adaptor protein and catalytically inactive p110g (KR) restored
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Fig. 2. Adenosine-induced phosphorylation of Akt and cell migration is
restored in KO BMMCs by reconstitution with p110g and either p84 or
p101. KO BMMCs were transfected with plasmids encoding functional
p110g (WT) and either GFP-tagged p84 (GFP-p84) or p101 (GFP-p101).
One day later, cells were starved in IL-3–free medium containing 2%
FCS for 3 hours and stimulated with 2 mM adenosine for 3 min. (A) Phos-
phorylation of Akt at Ser473 was determined by analysis of Western blots
of cell lysates with an anti–Akt-pSer473. The abundance of p110g was
assessed with an anti-p110g, whereas GFP-p84 and GFP-p101 were de-
tected and their relative abundance was compared with an anti-GFP.
One representative experiment of three is shown. (B) Stimulations per-
formed as in (A) were tested for their sensitivity to 30 min of pre-
incubation with 500 nM wortmannin (Wm). Phosphorylation of Thr308 of
Akt was assessed in parallel with the appropriate antibody. (C) KO
BMMCs were reconstituted with WT or KR p110g and either HA-p84 or
HA-p101 as indicated, as well as with GFP to select for transfected cells.
Migration of GFP-positive BMMCs was assayed in Transwell chambers
for 6 hours in the absence (top) or presence of 1 mM adenosine (bottom)
in the lower well. Subsequently, GFP-positive cells were quantified. Data
shown are the mean number ± SEM of migrated GFP-positive cells from
n = 3 to 9 experiments. (D) Comparison of activation of Akt and migration
of reconstituted KO BMMCs. KO BMMCs were transfected with plasmids
encoding GFP, p110g, and either HA-p84 or HA-p101 (as indicated, with
variable DNA concentrations), whereas WT BMMCs were transfected
with a plasmid encoding GFP as a control. Experiments to measure
adenosine-stimulated Akt activity and cell migration were performed as
described for (A) and (C), respectively. In parallel, the abundance of
p110g protein was determined by Western blotting. Cell responses
(phosphorylation of Thr308 of Akt and cell migration) of complemented
KO BMMCs are expressed as the fold difference to those of WT BMMCS
and were correlated with the fold difference in the abundance of p110g
protein compared to that of WT BMMCs. Data shown are from n = 3
experiments, with two to three different DNA inputs in each experiment.
Migration events were corrected by subtracting the number of migrating
unstimulated cells to determine the number of cells that migrated in re-
sponse to adenosine.
p110γ WT Wmp110γ WT
A B
0

2

0 2 4 6 8
p110γ (fold WT)

M
ig

KR WT– –

0

p110γ

www.SCIENCESIGNALING.org 9 June 2009 Vol 2 Issue 74 ra27 3



R E S E A R C H A R T I C L E
mast cell migration, showing that a functional p110g-adaptor complex is
required to sustain motility (Fig. 2C). This is underlined by the extent of
adenosine-dependent phosphorylation of Thr308 of Akt and the efficiency
of cell migration both being proportional to the amount of PI3Kg complex
present, whereas even when the abundance of p110g was greater than six-
fold higher than that of the endogenous protein in WT cells, the lack of
adaptor proteins could not be compensated for (Fig. 2D).
Nonredundant functions of PI3Kg adaptor proteins
To investigate adaptor-dependent PI3Kg signaling in the degranulation of
mast cells, we adapted a flow cytometric assay first described byDemo et al.
(37), which is based on the degranulation-induced, extracellular exposure of
phosphatidylserine on the cell surface and the subsequent staining of cells
with annexin V. Many groups (37–40) have established a direct correlation
between the extent of release of b-hexosaminidase and the extent of annexin
V binding in various contexts. With WT and KO BMMCs, we confirmed
that the assay sensitively detected IgE- and antigen-mediated degranulation
and we distinguished this from a full-scale response that involved costimu-
lation of cells with adenosine (Fig. 3, A and B). In agreement with previous
b-hexosaminidase assays, the stimulation of WT BMMCs with IgE and a
low concentration of antigen resulted in little degranulation,whichwas even
less so for KO BMMCs. As expected, adenosine-triggered hyperactivation
of mast cells was completely abrogated in the absence of PI3Kg (Fig. 3B).
With the annexin V staining assay, we could separately analyze transfected
and nontransfected cells through the detection of GFP or GFP fusion pro-
teins by flow cytometry. GFP-negative cells served as an internal standard.
When KO BMMCs were transfected with plasmids that encoded GFP-p84
and p110g, responsiveness to adenosine was restored to that of WT BMMCs,
and only the GFP–p84-p110g complex could enhance degranulation after
costimulation with adenosine. As was observed for phosphorylation of Akt
and cell migration, the individual subunits GFP-p84 and p110g, or the cat-
alytically inactive p110g-adaptor complex, failed to reconstitute adenosine-
dependent degranulation ofmast cells (Fig. 3C). These results underline that
p110g was incapable of signaling or contributing to degranulation in the
absence of an adaptor subunit.

As shown above, p84 was indispensable for adenosine receptor–mediated
PI3Kg signaling that led to enhancement of IgE- and antigen-mediated de-
granulation (Fig. 3C). KO BMMCs reconstituted with GFP-p101 and WT
p110g, however, did not produce an adenosine-dependent increase in de-
granulation above that observed in response to IgE and antigen, whereas
cells reconstituted with GFP-p84 and p110g exhibited maximal degranula-
tion (Fig. 4A). The abundance of p110g, p84, and p101 proteins were also
quantified. When the abundance of p110g was normalized to that of the
p84-p110g complex, it was found that reconstitution of cells with p110g
alone resulted in a fivefold lower abundance of p110g protein than that in
cells reconstituted with both p110g and p84. The p101 protein stabilized
p110g somewhat better than p84 did (Fig. 4B). There was no significant
difference in the abundance of GFP-p84 and GFP-p101 (Fig. 4D), and both
GFP-tagged adaptor proteins were localized to the cytosol (Fig. 4E). Because
p101 translocates to the nucleus in the absence of p110g (41), we assumed that
cytosolicGFP-p101was tightly bound to p110g andwas thus in a functional
state. This is also in agreement with mediation of adenosine-induced acti-
vation of Akt andmigration by the p101-p110g complex. Similar results were
obtained in experiments with cells reconstituted with GFP-fused p110g and
HA-tagged adaptor subunits (Fig. 4A). Consistent with the previous experi-
ments, KOBMMCs reconstitutedwith HA-p84-GFP-p110g complexes ex-
hibited adenosine-dependent degranulation, whereas those reconstituted with
HA-p101-GFP-p110g complexes did not. In the latter experiments, fusion
of GFP to the N terminus of p110g stabilized the kinase when expressed
alone, so that its abundance approached that observed in the presence of
its adaptor proteins (Fig. 4C). Despite this increased abundance, GFP-p110g
alone was incapable of rescuing adenosine signaling in KO BMMCs.
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Fig. 3. Mast cell hyperreactivity requires p84. (A and B) Mast cell degran-
ulation was assessed by annexin V staining and flow cytometry. WT and
KO BMMCs were exposed overnight to anti-DNP IgE (100 ng/ml). (A) Left:
Cells were stained with annexin V after loading with IgE (red), additional
stimulation with DNP-HSA (1 ng/ml; Ag) for 20 min (green), or with DNP-
HSA (1 ng/ml) and 2 mM adenosine for 20 min (black). Right: Adenosine-
dependent activation is represented by the difference in histograms from
[IgE+Ag+Ade] and [IgE+Ag] stimulations, given as Events(3) – Events(2).
(B) Top: Quantification of the experiments shown in (A). Degranulation was
calculated from events within region M2 after stimulation with IgE+Ag or
IgE+Ag+Ade, as indicated. Data shown are the mean ± SEM of n = 4
experiments with two populations of BMMCs and are expressed as the
percentage of annexin V–positive cells in the M2 gate (Degranulation,
% of annexin V staining). Bottom: For comparison, b-hexosaminidase
(b-hex.) release assays were performed under identical conditions. Data
shown are the mean ± SEM of n = 3 experiments. (C) Restoration of
adenosine-enforced degranulation in transfected KO BMMCs. KO BMMCs
were transfected with expression plasmids for GFP or GFP-p84 in combi-
nation with p110g (WT or KR). The adenosine-dependent component of
degranulation in the reconstituted BMMCs is shown (DDegranulation; see
Materials and Methods). Here, % of annexin V staining represents the
difference [Events(3) – Events(2)] as explained for (A). Data shown are
the mean ± SEM for n > 3 experiments. The dotted line sets P < 0.015
for comparison with p110g:GFP-p84. The bar labeled with GFP– denotes
the degranulation of GFP-negative, electroporated, but nontransfected
KO BMMCs, which served as an internal control. The setting of regions
(GFP+, M2, etc.) is explained in detail in fig. S5.
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Differences in p84- and p101-mediated
localization of PtdIns(3,4,5)P3
PI3Kg-derived PtdIns(3,4,5)P3 was visualized with the PtdIns(3,4,5)P3-
specific pleckstrin homology (PH) domain of Bruton’s protein tyrosine
kinase (Btk) (42) fused toGFP (PHBtk-GFP). Although adenosine-triggered
phosphorylation of Akt occurred with both types of PI3Kg complex, the
localization of PHBtk-GFP was distinguishable depending on the adaptor
protein used. Whereas adenosine caused the transient translocation of
PHBtk-GFP from the cytosol to the plasma membrane in cells containing
HA–p84-p110g complexes, in adenosine-treated BMMCs that contained
HA–p101-p110g complexes, PHBtk-GFP displayed a vesicular distribution
below the plasma membrane at later time points (Fig. 5A and movies m1
and m2). These endocytosed vesicles were separated from the plasma mem-
brane and did not contain PtdIns(4,5)P2, as visualized with a red fluorescent
probe made from the PH domain of phospholipase C d (PHPLCd-RFP) (Fig.
5B). Whereas the PHPLCd-RFP probe was constitutively localized at the
plasma membrane, the membrane docking of PHBtk-GFP required stimula-
tion of the cells with adenosine, an active PI3Kg complex, and an intact
PHBtk domain, because the Arg

28→Cys (R28C) mutation of PHBtk blocked
its translocation (Fig. 5, A and B). Therefore, PtdIns(3,4,5)P3 was indeed
present in the p101-dependent, internalized vesicles, whereas PtdIns(4,5)P2
was excluded.

To test a correlation between the occurrence of intracellular PtdIns(3,4,5)P3
and the abundance of p101, we performed an analysis of a population of
cells to assess the extent of plasma membrane (rim) or internal, vesicular
staining for PtdIns(3,4,5)P3 (Fig. 6A). Within 20 s of stimulation with aden-
osine, cells that contained HA–p84-p110g complexes displayed translocated
PHBtk-GFP at the plasmamembrane and attenuated rim staining could be de-
tected until 2 min later. Cells that contained HA–p101-p110g complexes
showed rim staining at early time points (<15 s), but intracellular speckles
of PtdIns(3,4,5)P3 also became visible. By 120 s after the addition of adeno-
sine, most p101-containing cells displayed speckles, whereas p84-containing
cells did not.

Live-cell microscopy was applied as an alternative method to monitor
the relocalization of PtdIns(3,4,5)P3. In single cells that containedHA–p84-
p110g complexes, translocation of PHBtk-GFP to the plasmamembranewas
maximal at 40 to 50 s after the addition of adenosine andwasmaintained for
less than 2 min after stimulation before moving from the rim region to the
cytosol. In BMMCs that contained HA–p101-p110g complexes, the inten-
sity of fluorescence at the rim showed similar dynamics, but diminished be-
cause of endocytosis of PtdIns(3,4,5)P3 (Fig. 6, B andC, fig. S6, andmovies
m3 and m4). Quantification of this process illustrated that PtdIns(3,4,5)P3
was produced at the plasma membrane by both PI3Kg complexes at the
same rate, and that the pace of degradation of PtdIns(3,4,5)P3 within the
plasma membrane was comparable to the removal of PtdIns(3,4,5)P3 by
endocytosis (Fig. 6C). Costimulation of mast cells with IgE-antigen and
adenosine dramatically prolonged and accentuated the localization of
PHBtk-GFP to the plasma membrane in cells containing p84-p110g and
delayed the onset of translocation and p101-p110g-mediated endocytosis
of PHBtk-GFP to >2 min after stimulation with adenosine (Fig. 6, D and
E, and movies m5 and m6). The prolonged retention times of PHBtk-GFP
at the plasma membrane might reflect a spatial synergy between p84- and
class IA–derived PI3K activities.

Cytosolic, PtdIns(3,4,5)P3-containing vesicles were mobile, and endo-
cytosis of PtdIns(3,4,5)P3 was followed by fast transcellular movements in a
fraction of the speckles (fig. S6; see alternative analysis exemplified with
movie m4). The curvature of the transport trajectories and the often peri-
nuclear destination of the speckles suggested that a subset of the speckles
was associated with microtubules. Indeed, pretreatment of BMMCs that
contained HA–p101-p110g with the microtubule disruptor nocodazole
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Fig. 4. The p101 adaptor protein does not compensate for p84 in degran-
ulation responses. (A) Left: KO BMMCs were transfected with plasmids
encoding p110g in combination with plasmids encoding GFP (√), GFP-
p84, or GFP-p101. Degranulation was measured after stimulation of cells
with IgE and antigen with or without adenosine as in Fig. 3C. Data shown
are the mean ± SEM for n > 5 experiments with P < 0.0004 for p84 com-
pared to p101. “Neg.” denotes the degranulation of GFP-negative, electro-
porated, but nontransfected KO BMMCs. Right: Experiments were performed
as in the left panel but with GFP fused to p110g instead of the adaptor pro-
teins. (B to D) Quantification of restored p110g and adaptor subunits on an
Odyssey infrared-detection system. The abundance of p110g is shown nor-
malized to that of p110g when coexpressed with p84. Data shown are the
mean ± SEM of n = 3 experiments. (B) Quantification of data from the left
panel of (A). (C) Quantification of data from the right panel of (A). (D) Quan-
tification of the abundance of GFP-p84 and GFP-p101 proteins normal-
ized to that of GFP-p84. Data shown are the mean ± SEM from n = 2
experiments. (E) Cellular localization of GFP-p84 and GFP-p101 in KO
BMMCs reconstituted with either fusion protein and p110g. Images are
deconvoluted. N, nucleus.
www.SCIENCESIGNALING.org 9 June 2009 Vol 2 Issue 74 ra27 5



R E S E A R C H A R T I C L E
attenuated the mobility of PtdIns(3,4,5)P3-containing speckles, but not the
initial endocytosis to a submembrane localization (fig. S6B and movies m8
and m9).

Disruption of cholesterol-rich domains affects the
signaling of p84-p110g, but not of p101-containing PI3Kg
PI3Kg complexes consisting of p101 were capable of driving a subset of
cellular responses even though PtdIns(3,4,5)P3 was endocytosed. The only
response not promoted by p101 was degranulation, which requires the
integration of signals derived from costimulation with IgE and antigen. Be-
cause cross-linked FceRI receptors accumulate and signal in cholesterol-
rich, plasma membrane microdomains called lipid rafts (43–45), we set
out to test the sensitivities of both types of PI3Kg complex to methyl-b-
cyclodextrin (MbCD), a compound that depletes cholesterol from mem-
branes. Tomonitor the process, we stained cells with fluorescently labeled
cholera toxin subunit b (CTb), a marker of lipid rafts. In untreated cells,
CTb showed a punctuate pattern, which was disrupted on exposure to
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MbCD (Fig. 7A). Of note, pretreatmentwithMbCDselectively attenuated
adenosine signaling mediated by p84-p110g in WT BMMCs (Fig. 7A) or
by p84-p110g in reconstituted KO BMMCs (Fig. 7, B and C). In contrast,
p101-p110g–mediated or interleukin-3 (IL-3)–stimulated phosphoryl-
ation of Akt was unaffected by disruption of lipid rafts (Fig. 7, B and C).

The above data add to the evidence that suggests that the PI3Kg adaptors
p84 and p101 serve a nonredundant function and can specifically diverge
PI3Kg signals downstream of GPCRs. Altogether, our results are com-
patible with a model in which both p110g complexes integrate upstream
signals fromGPCRs and PTX-sensitive heterotrimericGproteins, but differ
in downstream processing toward a localized signal output.

Cells with endogenous p101 internalize PtdIns(3,4,5)P3
Having shown the nonredundant role of PI3Kg adaptor subunits in mast
cells inwhich p84 is the predominant adaptor protein, we investigated trans-
location of PHBtk-GFP in the J774 macrophage cell line, in which p101 is the
predominant PI3Kg adaptor protein (Fig. 1C and fig. S8C). It can therefore
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encoding HA-p87 or HA-p101,
as well as PHBtk-GFP to monitor
PtdIns(3,4,5)P3 production. Twenty-
four hours after transfection, cells
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microscopy. The localization of
PtdIns(3,4,5)P3 was visualized
with PHBtk-GFP. For adenosine-
stimulated cells containing p84-
p110g or p101-p110g complexes,
deconvoluted, high-resolution z
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p110g–driven internalization is spe-
cific to PtdIns(3,4,5)P3-binding PH
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indicated fluorescently labeled lipid-
binding probes. Stimulation with
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expressed. Middle: Merged pic-
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be assumed that the major output of PI3Kg in these cells is derived from
p101-p110g complexes. J774 cells could be stimulated with either C5a or
C3a to phosphorylate Akt (fig. S8A). C5a and C3a signaling to Akt was
PI3Kg dependent, because the PI3Kg-specific inhibitor AS252424 efficiently
blocked phosphorylation of Akt, whereas TGX-221, which targets PI3Kb,
was ineffective at blocking phosphorylation of Akt (fig. S8A). In J774 cells
transfected with a plasmid encoding PHBtk-GFP, stimulation with C5a and
C3a led to the association of the PtdIns(3,4,5)P3 probe with the plasma
membrane at early time points (<15 s), but at >45 s, PHBtk-GFP was in-
ternalized, as had been observed in adenosine-stimulated KO BMMCs re-
constituted with p101-p110g complexes. Internalization of PtdIns(3,4,5)P3
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thus occurs in cells with endogenous p101-p110g complexes and might
be a pathway alternative to that of the lipid phosphatases to remove
PtdIns(3,4,5)P3 from the plasma membrane (fig. S8B).

DISCUSSION

PI3Kg is the major PI3K isoform that operates downstream of GPCRs,
such as receptors for chemokines, N-formyl-Met-Leu-Phe, complement
fragments (16, 33, 46), and murine A3AR (26), in hematopoietic cells.
GPCRs mediate the activation of PI3Kg through the release of Gbg sub-
units from heterotrimeric G proteins (18, 21, 47). Biochemical and over-
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as a percentage of the total number
of transfected cells. (B) Selected
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periments in adenosine-stimulated
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moviesm3 andm4). (C) Quantifica-
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lated with 5 mM adenosine. Data
shown are the mean ± SEM for
n = 6 experiments. Inset is an
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plexes. (D) Selected time points
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experiments for cells containingp101-p110g complexes, andwereanalyzedas in (C). The lowconcentrationof antigenusedheredidnot trigger translocation
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expression studies in nonhematopoietic cells have shown that p101 aug-
ments the translocation of PI3Kg (41) and the Gbg-dependent turnover
of PtdIns(4,5)P2 (18, 22), but the necessity for a PI3Kg adaptor protein
in physiological processes has remained disputed until recently (24).

Studies of the expression profiles of PI3Kg across multiple tissues show
that mRNAs encoding p110g, p84, and p101 are highly expressed in hema-
topoietic tissues.Whereas the abundance of p101mRNAwas high in tissues
and cells that contain lymphocytes [thymus, spleen, and peripheral blood
lymphocytes (PBLs)], we could not detect p84 mRNA in PBLs, and the
abundance of p84 protein was low in splenocytes. Both adaptor proteins
were found in neutrophils and monocytes or macrophages, whereas only
p84 was found in mast cells. Overall, p101-p110g complexes dominate
the lymphoid lineage, whereas p84 is found in myeloid cells with varying
penetrance.When p110gwas eliminated by gene targeting, p84 protein was
destabilized in differentiated cells. Similar reductions were observed for
p101 in neutrophils isolated from BM of p110g null mice (19). Because
catalytically inactive p110g (KR) was sufficient to maintain p84 protein
in BMMCs, the lipid kinase activity of p110g is apparently not required
for the stabilization of adaptor proteins.
In mast cells lacking functional p110g, adenosinewas incapable of activat-
ing Akt or of triggering the translocation of a probe of PtdIns(3,4,5)P3
(PHBtk-GFP) to the plasmamembrane. In this setting, the combination of adap-
tor protein with active p110g was required to restore the responsiveness of KO
BMMCs to adenosine. These results show conclusively that p110gmust inter-
act with adaptor protein to generate PtdIns(3,4,5)P3 downstream of GPCRs.

To date, functional comparisons of p101 and p84 in cells that normally ex-
press p110g have not been performed; in vitro studies have, however, convinc-
ingly shown that p101 and p84 activate p110g by the same basic mechanism
(19, 22, 23). In mast cells, PI3Kg controls physiological responses in vitro and
in vivo (26), and both the loss of adaptor protein in p110g null cells and the
inability of monomeric p110g to rescue GPCR signaling exclude the interfer-
ence of cross-compensatory effects of the PI3Kg adaptors in this model.

With the above biochemical studies in mind, it was a surprise that the
coexpression of p101 with p110g did not reconstitute adenosine-dependent
degranulation in IgE- and antigen-primed KOBMMCs. The analysis of the
abundance of p110g, p84, and p101 proteins, as well as of their cellular lo-
calization, suggested that both types of PI3Kg complexes were in a position
to signal, but that only p84-p110g did so successfully. In contrast to de-
granulation, both p84 and p101 could be combined with p110g to reconsti-
tute adenosine-induced cell motility of KO BMMCs, whereas p110g alone
was insufficient. It is thus evident that GPCRs can link to the chemotactic
machinery through both adaptor isoforms. Important roles for p110g (16, 48)
and p101 (24) in the chemotaxis of neutrophils have been described previ-
ously. That migration ofmast cellswas proportional to the amount of PI3Kg
complex present strongly suggests that the loss of migratory capacity in
p101 null neutrophils (24) is due to a reduction in the extent of PI3Kg
signaling rather than to an exclusive link between p101 and cell motility.

The selective promotion of degranulation by p84 suggests that the two
adaptor proteins selectively redirect PI3Kg downstream signaling into
separate response patterns. Such selectivity is unlikely achieved through
the deployment or interference of different adenosine receptor types, be-
cause an A3AR-specific ligand (IB-MECA) and ligands that stimulate all
four adenosine receptors (adenosine, NECA) caused phosphorylation of
Akt to an equivalent extent in conjunction with both types of PI3Kg
complexes. The observation that PtdIns(3,4,5)P3 remained at the plasma
membrane when it originated from the activity of p84-p110g, but was en-
docytosed when its sourcewas the p101-p110g complex, strongly indicates
that the two PI3K complexes produce two distinct PtdIns(3,4,5)P3 pools at
the plasma membrane. That p84-p110g could signal in lipid microdomains
was also supported by its sensitivity to disruption of cholesterol-rich do-
mains by MbCD, whereas adenosine-mediated signaling through p101-
p110g to activation of Akt resisted cholesterol depletion. Cross-linking of
FceRI concentrates the activated receptor in lipid rafts (43, 44), and one
could thus speculate that p84-p110g locally enhances the abundance of
PtdIns(3,4,5)P3 in the vicinity of clustered FceRI receptors and the asso-
ciated protein tyrosine kinase cascade. This would imply that degranulation
is under the control of a system that integrates the status of the protein tyro-
sine kinase cascade output with local concentrations of PtdIns(3,4,5)P3 and
relays downstream signals only when the two inputs occur coincidently.
Moreover, for efficient degranulation to occur, high threshold concentra-
tions of PtdIns(3,4,5)P3 have to be reached (26), which could be achieved
through the selective targeting of p84-p110g complexes. Such a localized
but high-amplitude signal emerging from PI3Kg could thus overrun the
gatekeeper function of the 5′-lipid phosphatase SHIP (32, 49), which con-
tinuously attenuates the low-level signal of PtdIns(3,4,5)P3 produced by
p85-associated class IA PI3K under conditions of low concentrations of
antigen. If PtdIns(3,4,5)P3 is localized outside of these areas, as assumed
here for p101-p110g–derived PtdIns(3,4,5)P3, it has a different route of deg-
radation and can be endocytosed.
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Binding of p101 to p110g has been reported to reduce the basal catalytic
activity of PI3Kg (50), and the adaptor proteins can thus be considered as
inhibitors and stabilizers of cytosolic PI3Kg complexes. Here, we showed
that these complexes seem to be fully activated only in the correct context
and cellular localization. Due to technical limitations, it cannot be con-
cluded presently whether the main action of the adaptors is to restrict access
of PI3Kg to certain sites and responses or to direct PI3Kg to specific cellular
docking sites. The whole process shows similarity to the activation of class
IA PI3Ks, in which p85-like regulators block the activity of the catalytic
p110 subunit as long as they do not interact with phosphorylated tyrosines
on growth factor receptors (9, 51).

The processes in mast cells presented here illustrate that the p84-p110g
and p101-p110g complexes serve nonredundant but also overlapping func-
tions. In allergy, only the p84-p110g complex cooperates with IgE- and
antigen-dependent signaling in mast cell activation. Our elucidation of
adaptor-specific PI3Kg signaling has a potential therapeutic value, because
loss of PI3Kg function not only attenuates chronic inflammation and allergy,
but also modulates cardiovascular parameters (34, 52). Although inhibition
of PI3Kg has been regarded as cardioprotective, such convolution might
complicate chronic pharmaceutical targeting of PI3Kg in inflammatory dis-
eases. Based on our results, tissue selective targeting of PI3Kg bymodulation
of the function of adaptor molecules might become possible in the future.
MATERIALS AND METHODS

Cloning of p84, plasmids, and antisera
Murine p84 complementary DNA (cDNA) was obtained from murine 32D
cells by reverse transcription PCR (RT-PCR) (for details and primers see
Supplementary Materials). Human full-length p84 cDNA was amplified
from neutrophils with Pwo polymerase (Roche Diagnostics, Mannheim,
Germany) (accession data for p84:Musmusculus, AY753194;Homo sapiens,
AY753192; UniProt: PI3R6_Human; GenBank:PIK3R6). The p101 coding
sequence (18) and p84 were transferred to pcDNA3, pcDNA-HA, and
pEGFPvectors for expression. Plasmids for the expression of p110g expres-
sion were previously described (53). The PH domain of Btk fused to GFP
(pEGFP-PHBtk, donated by T. Balla) was used as a sensor of PtdIns(3,4,5)P3.
The cDNA of the PH domain of PLCd was subcloned into pTagRFP-N1.
Antisera against murine p84 fragment (Met1 to Glu162) were raised in rab-
bits and goats and antisera against human p101 fragment (Pro575 to Pro880)
were raised in rabbits. Protein fragments were expressed as (His)6 fusion
proteins from bacterial pQE vectors (Qiagen, Hilden) and purified on
Ni2+-NTA beads (Qiagen) according to the manufacturer’s instructions.

Cell culture, isolation, and differentiation
To isolate, derive, and culture BMMCs from C57BL/6J mice and mice
without functional PI3Kg [KO1 (16), KO2 (33), and KR (34)], cells from
fresh BMwere resuspended in complete Iscove’s modified Dulbecco’s me-
dium (IMDM) with 10% heat-inactivated fetal calf serum (HIFCS), 2 mM
L-glutamine (Gln), 1% penicillin-streptomycin solution (PEST), 50 mM
b-mercaptoethanol (b-ME), and recombinantmurine IL-3 (2ng/ml; Peprotech,
Rocky Hill, NJ) and cultured at 37°C and 5% CO2 for 4 days. Subsequently,
BMMCswere dilutedweekly to 0.5 × 106 cells/mlwith amixture of 80% fresh,
complete IMDMand20% recycledmedium,with IL-3 added every second day
(26).Nonadherent cellsweremonitored for thepresenceofFceRI[withaphyco-
erythrin (PE)-conjugated hamster antibody to mouse FceRIa; clone MAR-1,
eBioscience, San Diego, CA] and c-kit (rat IgG2B anti-mouse CD117/c-kit;
clone 3c1, ImmunoKontact, Bioggo, Switzerland) by fluorescence-activated cell
sorting (FACS) analysis. BM-derivedmacrophageswere differentiated in bacte-
rial dishes (Greiner bio-one,Kremsmünster,Austria) at 1×106cells/ml inRPMI
1640 (Sigma) supplemented with HIFCS/Gln/PEST/b-ME and 20% L-929
cell-conditioned medium. Nonadherent cells were collected 5 days later
for experiments (54). Neutrophils and splenocytes were isolated as de-
scribed (16). The murine macrophage cell line J774 and the rat mast cell
line RBL2H3 were cultured in complete DMEM (HIFCS, Gln, PEST),
the human mast cell line HMC-1 was cultured in IMDM containing
HIFCS/Gln/PEST/ b-ME, and the human monocytic cell line THP-1 was
cultured in complete RPMI 1640 (HIFCS/Gln/PEST/b-ME).

Transfections
BMMCs were transfected with the Amaxa Nucleofector according to the
manufacturer’s protocol (Amaxa). BMMCs (7 × 106 to 10 × 106) were re-
suspended in 100 ml of nucleofection solution T (Amaxa) to which was
added 10 to 15 mg of plasmid DNA (in 15 ml of 10 mM tris and 1 mM
EDTA, pH 8.0). Immediately after electroporation, cells were cultured in
5 ml of complete IMDM at 37°C and 5%CO2 for 5 hours. After a medium
change with complete IMDM, transfected cell populations were cultured
for 24 hours, after which they were sensitized with mouse anti-DNP IgE
(100 ng/ml; mAB SPE-7, Sigma-Aldrich) for degranulation experiments.
Stimulations occurred 24 hours after transfection.

Stimulation of BMMCs with adenosine
Twenty-one hours after transfection, BMMCswere collected by centrifuga-
tion (160g for 3 min), washed, and starved in IL-3–free medium containing
2% fetal calf serum (FCS) for 3 hours (0.5 × 106 to 1 × 106 cells/ml), and
were then stimulated with 2 mM adenosine for the indicated time (at 37°C,
5%CO2). ForWestern blotting analysis, stimulation of cells was stopped on
ice, the cells were collected by centrifugation (16,000g for 1 min at 4°C),
washed in 1× phosphate-buffered saline (PBS) and lysed at 1 × 107 cells/ml
in 2× sample buffer [125 mM Tris-HCl (pH 6.8), 4% SDS, 10% b-ME,
20%glycerol, bromphenol blue]. Proteinswere denatured at 95°C for 7min,
and then subjected to SDS–polyacrylamide gel electrophoresis (PAGE) and
Western blotting. For microscopy experiments, stimulation was stopped by
the addition of an equal volume of ice-cold 10% p-formaldehyde in PBS.
Wortmannin (500 nM), PTX (100 ng/ml, Sigma), MbCD (5 mM, Sigma),
AS252424 (1 mM,Merck-Serono, Geneva), and TGX-221 (1 mM, Cayman
Pharma,Neratovice)were added to cells 30min before stimulation,whereas
nocodazole (1 mM, Sigma) was added 3 hours before stimulation.

Western blotting analysis
Proteins were separated by SDS-PAGE and transferred byWestern blotting
to Immobilon PVDF membranes (Millipore). Mouse monoclonal antibody
(mAb) to p110g (clone H1, Alexis), rabbit mAbs to pSer473-PKB/Akt and
to pThr308-PKB/Akt (both from Cell Signaling Technology, Danvers, MA),
mouse mAbs to GFP (Roche Diagnostics) and to HA (HA.11, Babco), and
the antisera mentioned above were used to detect proteins in the PI3Kg
pathway. Mouse mAb to vinculin was produced from the hybridoma clone
VII-F9 (a gift of V. Kotelianski). Secondary antibodies such as horseradish
peroxidase (HRP)–conjugated rabbit antibody to mouse IgG and goat anti-
body to rabbit IgG (Sigma, St. Louis, MO) were visualized by enhanced
chemiluminescence (Millipore).

Quantitative Western blotting
After SDS-PAGE, proteins were transferred to Immobilon FL membranes
(Millipore) and blocked with Odyssey blocking buffer (LI-COR Bio-
sciences, NE), followed by incubation with primary antibodies in the same
buffer.Matched secondary antibodieswere goat anti-rabbit IgG-IRDye 800
(Rockland, Gilbertsville, PA) and goat anti-mouse IgG-Alexa Fluor 680
(Molecular Probes, Eugene, OR). Membrane-bound fluorescence was
detected on the Odyssey Infrared Imaging System (LI-COR Biosciences).
www.SCIENCESIGNALING.org 9 June 2009 Vol 2 Issue 74 ra27 9



R E S E A R C H A R T I C L E
Isolation of total RNA, RT-PCR, and qPCR
RNA was isolated from TRIzol-lysed tissues as described by Invitrogen.
cDNAwas generatedwith 2 mgof total RNAwithM-MLV reverse transcrip-
tase (RT buffer and protocol, Invitrogen) and RNAsin (Promega) and stored
at –80°C until ready for use. An ABPrism 7000 (Applied Biosystems, Foster
City, CA) and SYBR GREEN PCR Master Mix (Applied Biosystems) was
used for qPCR analysis of p84, p110g, and p101 mRNAs. GAPDH mRNA
served as an internal standard to generate calibration curves in which the cycle
numbers at the crossing point (CP) were given by

CP ¼ b þ a logð½cDNA�Þ

where b was 15.136 and a was –3.2877. Variations in total cDNA content
were compensated for with the GAPDH CP values for a given tissue:

CPtissue corrected ¼ CPtissue − ðCPGAPDH tissue − CPGAPDH external standardÞ

The relative copy number (Rc#) was then calculated as:

Rc# ¼ 10ð4:872 − 0:30354�CPsample correctedÞ

The efficiency E of PCR was 2.01 or 101%. The above calculation was
cross-checked with calibration curves established with linearized plasmids
for p110g and p84. Deviations from theGAPDH-based calculationswere in
the range of 1.1- to 1.3-fold. cDNA of rat or human origin was amplified by
conventional PCR by Taq Polymerase (New England Biolabs, Ipswich,
MA) in aT3Thermocycler (Biometra, Göttingen,Germany). PCRproducts
were separated in 2% agarose gels and visualized with ethidium bromide in
a Geneflash imaging system for gel documentation (Syngene, Cambridge,
UK). Primers are listed in the Supplementary Materials.

Fluorescence microscopy
After stimulation, cells were fixed by the addition of an equal volume of
ice-cold 10% p-formaldehyde in PBS. For staining of F-actin, cells were
permeabilized in PBS, 1% BSA, 0.1% Triton X-100 and incubated with
rhodamine-phalloidin (Molecular Probes) (55). Alexa555-conjugated chol-
era toxin staining (Invitrogen) was performed according to the supplier’s
instructions. Subsequently, cells were spun onto microscopy slides (at 100g)
and mounted in Mowiol (Plüss-Stauffer). Images were acquired on an
Axiovert 200 M microscope (Zeiss) fitted with a Plan-Achromat 100×/1.4
oil objective and an Orca ER II camera (Hamamatsu) with OpenLab
software (Improvision). High-resolution images were generated from 0.2 mM
image z stacks, which were then deconvoluted with Volocity 4.0 software.

Live-cell microscopy
Transfected cells (0.5 × 106 to 1.0 × 106/ml, in 0.5 ml) were plated in
IMDM containing 2% HIFCS, L-Gln, PEST, 50 mM b-ME on poly-Lys–
coated (Sigma-Aldrich) coverslips for 3 hours in live-microscopy chambers
(Life Imaging Services, Basel, Switzerland). Live imaging was performed
on a Zeiss Axiovert 35 microscope (with a 100× plan-Neofluar 1.30/oil ob-
jective), equipped with Micromax heating (to 37°C) and a Princeton
Instruments camera system (Trenton, NJ), or on an Axiovert 200 Mmicro-
scope (Zeiss) fitted with a Plan-Achromat 63×/1.4 oil objective and anOrca
ER II camera (Hamamatsu), equipped with a microscope temperature con-
trol system (Life Imaging Services). For stimulations, 0.5 ml of modified
Tyrode’s buffer (137mMNaCl, 2.7mMKCl, 1.8mMCaCl2, 1mMMgCl2,
5.6 mM glucose, 20 mM Hepes, pH 7.4) containing 5 mM adenosine or
5 mM adenosine and DNP-HSA [10 ng/ml; where cells were presensi-
tized with anti-DNP IgE (100 ng/ml) overnight] were added carefully to
avoid displacement of cells. To monitor the translocation of GFP-PHBtk,
images were acquired every 2 s over the indicated time with either Meta-
morph 4.01 software (Axiovert 35 microscope) or OpenLab software
(Axiovert 200 M microscope). Movies were assembled with Volocity 4.0
software. Plasmamembrane–localized PHBtk-GFPwas determined bymea-
suring the integrated fluorescent intensities of two circular regions of interest
(ROIs) with ImageJ software. The first ROI (ROIout) included the whole cell,
whereas the secondROI (ROIin),which had a reduced radius,was set such that
plasmamembrane staining was excluded. The sizes and locations of the ROIs
were constant in all frames. Plasma membrane–localized PHBtk-GFP was
calculated as (ROIout – ROIin)/ROIout for each acquired frame. Division
by ROIout in this formula corrects for sample bleaching, because values
(in arbitrary units) of all frames were normalized to the first (unstimulated)
frame and plotted over time. Intensity surface plots were calculated with
ImageJ software.

Single cell–based degranulation assay
BMMCs were incubated in complete IMDM with mouse anti-DNP IgE
(100 ng/ml) overnight and then stimulated with DNP-HSA (1 ng/ml;
Sigma-Aldrich) with or without 2 mM adenosine for 20 min at 37°C.
Cells were then washed in PBS, transferred to annexin V–binding buffer
(10 mM Hepes, 140 mM NaCl, 2.5 mM CaCl2, pH 7.4) and stained with
Cy5-conjugated annexin V (BD Biosciences) for 15 min on ice. FACS
analysis was performed on a FACSCalibur with CellQuest software (BD
Biosciences). FACSeventswere gated according to cell size, GFP-positive
and GFP-negative cells, and annexin V–Cy5 staining as a measure of de-
granulation [see Demo et al. (37) and Martin et al. (56) for assay valida-
tion]. It must be noted that the correlation between annexin V staining and
degranulation required validation for each of the stimuli and conditions
used (57). For experiments with transfected KO BMMCs, degranulation
was calculated for GFP-positive and GFP-negative cells separately, as GFP-
negative cells define basal degranulation of KO BMMCs. For reconstituted
cells, adenosine-induced degranulation was expressed as the difference in
the percentage of total cells in M2 (annexin V–positive) after stimulation
with IgE and antigen either with (IgE+Ag+Ade) or without (IgE+Ag) aden-
osine (DDegranulation, % of annexin V staining). The borders of the M2
gate were set to discriminate the synergistic action of adenosine from stim-
ulation with IgE and antigen and from apoptotic cells after nucleofection,
which were also stained with propidium iodide (PI). See fig. S5 for more
information.

Release of b-hexosaminidase
The release of histamine-containing granuleswas quantified by the determi-
nation of b-hexosaminidase in the cell supernatants with a method slightly
modified from that of Laffargue et. al. (26). BMMCs were incubated with
anti-DNP IgE (100 ng/ml) overnight and resuspended in modified Tyrode’s
buffer at 0.5 × 106 to 1.0 × 106 cells/ml at 37°C and 5%CO2.Degranulation
was induced with DNP-HSA (1 ng/ml) with or without 2 mMadenosine for
20min at 37°C and 5%CO2. The reactionwas stopped and b-hexosaminidase
activity was measured with p-nitrophenyl-N-acetyl-b-D-glucosaminide
(Sigma). Results are given as the percentage of total Triton X-100–releasable
b-hexosaminidase.

Cell migration assays
Migration of transfected BMMCs was assayed in 24-well Transwell Sup-
ports (Corning) with 5.0-mm pore polycarbonate membranes for 6 hours.
Before the experiment, Transwell membranes were coated with fibronectin
(1 mg/ml) in PBS at 4°C overnight, blockedwith 4%BSA in PBS for 1 hour
at 37°C, and equilibrated in migration medium (IMDM supplemented with
L-Gln, PEST, 1%BSA, 50 µM b-ME, and 20mMHepes, pH 7.4) for 30 min
at 37°C. Transfected BMMCs were washed twice in migration medium.
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Cell suspensions (0.5 × 106 cells in 200 ml) were applied to the upper compart-
ment of the Transwell inserts already containing migration medium supple-
mented with or without 1 mM adenosine in the lower well. Fluorescent cells
that reached the lower well were quantified with the fluorescent microscope.
SUPPLEMENTARY MATERIALS
www.sciencesignaling.org/cgi/content/full/2/74/ra27/DC1
Supplementary Text
Materials and Methods
Fig. S1. Tissue distribution of p110g and its adaptor subunits (additional tissues).
Fig. S2. p84 is stabilized by p110g in mast cells.
Fig. S3. Restoration of p110g does not affect the abundance of endogenous p84 protein.
Fig. S4. Adenosine receptor ligands and PI3Kg signaling leads to phosphorylation of Akt.
Fig. S5. Illustration of the gating procedures used in single-cell degranulation assays.
Fig. S6. p101-p110g–dependent endocytosis of PtdIns(3,4,5)P3 is associated with micro-
tubules.
Fig. S7. Quantification of PHBtk-GFP probes at the plasma membrane after low-level stim-
ulation of BMMCs with IgE and antigen.
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