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SUMMARY 

 
Myeloproliferative disorders (MPD) are diseases characterized by clonal hematopoiesis 

with overprodution of mature cells from erythroid, megakaryocytic and myeloid lineages. 

Polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis 

(PMF) constitute classic MPDs. Activating somatic JAK2 mutations are frequently found 

in patients with myeloproliferative disorders. These mutations lead to constitutive 

activation of the JAK-STAT signaling pathway, which plays essential roles in 

hematopoiesis. The JAK2-V617F mutation is involved in the pathogenesis of 95% of PV 

and about 50% of ET and PMF patients. JAK2 exon 12 mutations surrounding amino 

acids 539-545 are found in the majority of PV patients who are negative for the JAK2-

V617F mutation. Most of PV patients with JAK2-V617F have homozygous erythroid 

colonies as a result of mitotic recombination, which is rare in ET patients and PV patients 

with JAK2 exon 12 mutations. JAK2 exon 16 mutant alleles affecting a highly conserved 

arginine residue at position 683 (R683) are found in 18%-28% of patients with Down’s 

syndrome-associated acute lymphoblastic leukemia (DS-ALL). In addition to JAK2, 

MPLW515 mutations are identified in about 5% of PMF patients and 1-9% of ET patients 

through screening other players in hematopoiesis, which could lead to activation of JAK-

STAT signaling. 

 

In the first part of my thesis, I compared JAK2-V617F positive PV patients with those 

carrying JAK2 exon 12 mutations in regard to the lineage distribution of these mutations 

and the presence of the mutations in erythroid progenitors in these PV patients. JAK2-

V617F and JAK2 exon 12 mutations represent clonal markers useful for tracking the 

hematopoietic lineages involved in MPD. The results provided clues about the stage 

(such as hematopoietic stem cells or committed progenitors) at which the transformation 

of hematopoietic progenitors occurred, which may cause different phenotypes. I 

developed a novel and sensitive assay to quantitate the amount of JAK2 exon 12 

mutations in purified platelets, granulocytes, monocytes, B lymphocytes, T lymphocytes 

and natural killer cells (NK cells). The lineage distributions of JAK2 exon 12 mutations 

and JAK2-V617F were similar in platelets, granulocytes, and monocytes, which always 
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carried the mutations, while the involvement of lymphoid cells showed large 

interindividual variations and T cells were rarely involved. This similarity does not 

explain why exon 12 mutations and JAK2-V617F result in divergent phenotypes. 

Analysis of erythroid progenitors indicated clonal heterogeneity in PV patients. One 

patient displayed erythroid colonies homozygous for the exon 12 mutation, which is very 

rare in patients with JAK2 exon 12 mutations, with evidence for mitotic recombination 

on chromosome 9p. In several patients with exon 12 mutations or JAK2-V617F, a 

substantial proportion of erythroid endogenous colonies (EECs) were JAK2 wild type. 

One patient carried two independent clones: one with an exon 12 mutation and another 

clone carrying JAK2-V617F. The finding of clonal heterogeneity is compatible with the 

hypothesis that additional clonal events are involved in the pathogenesis of PV. 

 
From the first part of my work, we noticed that in some patients the frequency of JAK2-

V617F mutation in peripheral blood is very low, and can only be detected with very 

sensitive methods such as allele-specific PCR. It has also been observed that in about half 

of PV patients with JAK2-V617F, the homozygous erythroid colonies only constituted a 

small proportion of the total number of BFU-Es, and more than half of patients with 

JAK2 exon 12 mutations had only a small percentage of BFU-Es carrying the mutation. 

To answer how such a small proportion of mutant cells can lead to a substantial increase 

in red cell population, we hypothesized that JAK2-V617F homozygous BFU-Es or JAK2 

exon 12 mutant BFU-Es proliferate more efficiently and prevail over wild type BFU-Es 

during terminal erythroid differentiation. In the second part of my thesis work, I 

performed a pilot experiment by comparing the amount of JAK2 mutation in BFU-Es 

with that in reticulocytes from the same patient sample to address this question. 

Preliminary data showed that in some PV patients who had a higher ratio of mutated 

JAK2 in reticulocytes than in granulocytes, the frequency of mutant allele increased 

during terminal differentiation from BFU-Es to reticulocytes, indicating a substantial 

amplification occurred at this stage. However, this phenomenon cannot be solely 

attributed to the presence of homozygous JAK2-V617F colonies since some patients who 

did not have homozygous JAK2-V617F colonies also had the mutation amplified. Future 

directions including analysis of a larger cohort of samples and examination of the clonal 
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origin of reticulocytes using X-chromosome inactivation assays will further elucidate the 

impact of JAK2 mutations on erythroid terminal differentiation. 

 

To define the pathologic role of various JAK2 mutations, and investigate the functional 

differences between different JAK2 mutations, the third part of my thesis work was to 

generate transgenic mouse models with inducible expression of JAK2 exon 12 or exon 16 

mutations. The most frequent JAK2 exon 12 mutations (N542-E543del and E543-

D544del) and JAK2 exon 16 R683G mutation were chosen as our candidates. Using a 

highly efficient recombination engineering technique with bacterial artificial 

chromosomes (BACs), we generated the JAK2 exon 12 mutant transgene constructs with 

the exon 12 sequence placed in the inverse orientation and flanked by antiparallel loxP 

sites. Similarly, the JAK2 transgene construct with R683G was made to have the 

sequences encoding the kinase domain placed in the inverse orientation and flanked by 

antiparallel loxP sites. The JAK2 R683G transgene construct is ready for microinjection. 

The JAK2 exon 12 mutant transgene constructs were microinjected into the pronucleus of 

zygotes from C57/BL6 mice and transferred to foster mice. Three transgenic founders 

with JAK2 exon 12 N542-E543del and two transgenic founders with JAK2 exon 12 E543-

D544del have been obtained. These founders will be crossed with VavCre or MxCre 

transgenic mice in order to induce expression of mutant human JAK2. Detailed blood 

counts, pathological abnormality assessment and genotype-phenotype relationship 

analysis will be performed.  
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GENERAL INTRODUCTION 

 

Hematopoiesis 

Hematopoiesis is a highly orchestrated process of blood cell formation and homeostasis 

in both embryonic and adult life. Multiple anatomical sites are involved in embryonic 

hematopoiesis. In humans, primitive hematopoiesis starts in the yolk sac as early as in the 

first few weeks of embryonic development, which mainly produces primitive blood cells 

but also generates cells persisting as adult hematopoietic stem cells. Afterwards, 

definitive hematopoiesis starts in the intraembryonic aorta-gonad-mesonephros (AGM) 

region, which is a major site of the in situ generation of definitive hematopoietic stem 

cells (HSCs).
1
 From 6 weeks until 6-7 months of gestation, the fetal liver and spleen 

become the major sites of hematopoiesis and this activity remains detectable until 2 

weeks after birth. Later on, the bone marrow gradually becomes the primary blood-

forming site and during childhood and adult life the bone marrow is the only source of 

normal hematopoiesis.
2
 

  

Hematopoietic stem cells and progenitors 

Adult hematopoietic stem cells (HSCs) are the cells in peripheral blood or bone marrow 

(BM), which can differentiate into all different lineages of blood cells, and 

simultaneously replicate themselves through self-renewal to prevent depletion of the stem 

cell pool in the BM. HSC self-renewal is a specialized cell division. It could be either 

symmetrical, producing two identical HSCs with the same pluripotent property as the 

parental cells, or asymmetrical, producing a HSC and a progenitor with limited self-

renewal capacity but possessing the ability for clonal expansion and maintenance of the 

circulating blood cell population. HSCs are responsible for the constant renewal of blood 

cells everyday. In normal conditions, the majority of HSCs are kept in a quiescent state 

(G0 phase),
3
 thereby preserving their capacity to self-renew. In the event of a stress such 

as bleeding or infection, quiescent HSCs and progenitors are stimulated to proliferate and 

differentiate into mature blood cells. When the stress disappears, the kinetics of 
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hemtopoiesis goes back to baseline level. The frequency of HSCs in bone marrow is quite 

low. About 1 in every 10,000 to1000,000 bone marrow cells is thought to be a stem cell.  

 

Based on the ability of self-renewal, HSCs are divided into 2 populations: long-term 

HSCs, which are capable of self-renewal and give complete hematopoietic lineage 

recovery in secondary transplantation in mouse models, and short-term HSCs, which can 

regenerate all blood lineages but can not renew themselves over long term.  

 

HSCs are able to generate every lineage found in the hematopoietic system. It is widely 

accepted that HSCs generate multiple lineages through a successive series of intermediate 

progenitors. During this process, the progeny from HSCs gradually lose their self-renewal 

ability, but keep their proliferation capacity. The long-term HSCs give rise to short-term 

HSCs and short-term HSCs further differentiate into common lymphoid progenitors 

(CLPs), which can generate all cells of the lymphoid lineages, and common myeloid 

progenitors (CMPs). CMPs then give rise to either granulocyte/macrophage progenitors 

(GMPs) or megakaryocyte/erythrocyte progenitor (MEPs)
4,5

 The progenitors finally 

commit to a certain lineage and give rise to mature blood cells (Figure 1). However, 

Iwasaki recently showed evidence that HSCs can form bipotent myeloerythroid and 

myelolymphoid progenitors before proceeding into the myeloid versus lymphoid 

pathway.
6
 Ultimately, terminally differentiated cells are produced and released from bone 

marrow into peripheral blood. 

 

Regulation of hematopoiesis 

Most of the mature blood cells are short-lived, and it is estimated that each day up to 1012 

fresh blood cells need to be produced in normal adults to maintain the steady-state 

hematopoiesis. This highly orchestrated process of blood cell production from HSCs to 

committed progenitors and finally to terminally differentiated mature cells is mainly 

regulated by 3 mechanisms: the lineage specific transcription factors, hematopoietic 

growth factors (HGFs) and the interaction between hematopoietic cells and the bone 

marrow niches.7 The HGFs are a group of acidic glycoproteins that bind to type I 

cytokine receptor family members. Among them, the primary regulators of erythrocyte, 
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platelet, and neutrophil production are erythropoietin (EPO), thrombopoietin (TPO) and 

granulocyte-colony stimulating factor (G-CSF) respectively. Binding of ligand to 

receptor triggers receptor conformational changes and transduces extracellular signals 

inside the cell to instruct cell survival, proliferation, and differentiation. Dysregulation of 

hematopoietic growth factors underlies a number of disorders such as lymphomas, 

myeloproliferative disorders and leukemia.  

 

Erythropoiesis 

The normal life span of mature erythrocytes is around 120 days. Each day approximately 

10
12

 new red blood cells are produced in the human body to maintain homeostasis. In 

human adults, normal erythropoiesis occurs in the bone marrow. The hematopoietic stem 

cells successively differentiate into colony-forming unit granulocyte, erythroid, 

monocyte, and megakaryocyte (CFU-GEMM), erythroid colony forming cells (BFU-E, 

CFU-E), and become proerythroblasts, the first morphologically recognizable cells of 

erythroid lineage. The proerythroblasts undergo a number of divisions, and give rise to 

basophilic normoblasts, polychromatic normoblasts, then to the orthochromatic 

normoblast. Finally, the orthochromatic normoblast extrudes the nuclei and develops into 

reticulocyte. The reticulocytes still contain some ribosomal RNA at this stage. After 1-2 

days in the bone marrow, reticulocytes are released into peripheral blood where they 

become mature red blood cells after another 1-2 days.
8
 

 

The production of red blood cells is regulated by erythropoietin (EPO), a cytokine 

produced mainly in the peritubular interstitial cells of the kidney. The production of EPO 

is controlled by oxygen tension in the tissue of the kidney. The response to EPO is related 

to the expression of EPO receptor on the cell surface. EPO receptor is expressed not only 

on erythroid progenitors but also on several non-hematopoietic tissues such as myocytes, 

cortical neurons and epithelia cells of prostate, ovary and breast. During erythroid lineage 

development, the requirement for EPO begins between the burst-forming unit (BFU-E) 

and colony-forming unit (CFU-E) until erythroblast.8  
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Figure 1. A common model of Hematopoiesis. HSC, hematopoietic stem cell; CMP, 

common myeloid progenitors; CLP, common lymphoid progenitor; MEP, 

megakaryocyte/erythrocyte progenitor; GMP, granulocyte/macrophage progenitor; TNK, 

T cell natural killer cell progenitor; BCP, B cell progenitor; MkP, megakaryocyte 

progenitor; EP, erythroid progenitor; GP, granulocyte progenitor; MP, monocyte 

progenitor; TCP, T cell progenitor; NKP, natural killer cell progenitor. 
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Cytokines and hematopoietin receptor superfamily 

Cytokines are a family of polypeptide growth factors that modulate gene expression in 

diverse cell types by binding to and activating members of the conserved cytokine-

receptor superfamily. Common cytokines engaged in normal hematopoiesis include 

interleukins (ILs), interferons (IFNs), colony-stimulating factors (CSFs), erythropoietin 

(EPO), thrombopoietin (TPO) and leukemia inhibitory factor (LIF).9 All these cytokines 

have their cognate receptors on the cell surface, called cytokine receptors or 

hematopoietin receptors. This family of receptors also includes receptors for several 

structurally related factors and hormones, such as growth hormone (GH), prolactin (PRL) 

and ciliary neurotrophic factor (CNTF). Some cytokine receptors have different 

cytoplasmic domain due to alternative mRNA splicing, such as G-CSFR, GM-CSFR and 

MPL. Different signaling pathways could be activated via the different cytoplasmic 

domains. 

 
Most hematopoietin receptors belong to type I and type II cytokine receptors. The type I 

cytokine receptor is either a homodimer of a receptor such as EPO receptor, TPO receptor 

(MPL), G-SCF receptor, 10 or a heterodimer with a specific ligand-binding subunit and a 

common signal-transducing subunit which might be shared with other cytokine receptors. 

The common subunits include 1) common  chain, shared by GM-CSF receptor, IL-3R , 

IL-5R ; 2) common  chain, shared by IL-2R , IL-4R , IL-7R , IL-9R , IL-13R , IL-

15R  and IL-17R ; 3) gp130 subunit, shared by LIFR , IL-11R  and IL6-R . Each of 

these transmembrane proteins is comprised of an intracellular domain containing 

approximately 100 to 500 amino acids, a transmembrane domain of 20 to 25 residues, 

and one or two extracellular cytokine-binding domains with several common structural 

features.11 The average extracellular domain is around 210 amino acids in size and it 

contains one to four conserved cysteine residues in the N terminal, a tryptophan-serine-x-

serine-tryptophan (W-S-X-W-S) motif in the C terminal that is important for ligand-

receptor interaction, and fibronectin type III domain. In the cytoplasmic domain, type I 

receptors are characterized by the presence of less conserved Box1 and Box2 domains, 

which are critical for the function of receptors and mediating mitogenic signals.12,13 Type 

II cytokine receptors mainly consist of receptors for interferons and IL-10, which are 
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similar to type I cytokine receptors except they do not possess the signature sequence W-

S-X-W-S that is characteristic of type I receptors. The cytokine receptors are devoid of 

catalytic activity and they transmit their signals through cellular tyrosine kinases, in most 

cases via the family of Janus kinases (Jaks). 

 

Jak-Stat signaling in hematopoiesis 

Overview of the Jak-Stat activation mechanism 

Janus tyrosine kinases play critical roles in cytokine signaling transduction of 

hematopoietic cells. They are involved in transducing signals from type I receptors 

(receptors for IL-2-IL-7, IL-13, GM-CSF, GH, PRL, EPO, and TPO) as well as type II 

cytokine receptors (receptors for IFN- , , ).
14

 The Janus kinase-signal transducer and 

activator of transcription (Jak-Stat) pathway is widely exploited by members of cytokine 

receptor superfamily, including EPOR, MPL, G-CSFR, receptors for interferons and 

many kinds of interleukins.  

 

Janus kinases 

The Janus kinases are a family of large cytoplasmic tyrosine kinases with molecular 

weights in the range of 120–140 kDa (1130–1142 aa). In mammals, there are four 

members of the Jak family: Jak1, Jak2, Jak3, and Tyk2.15 From C-terminal to N-terminal, 

Jaks consist of seven conserved domains, termed Jak homology (JH) domains 1-7. 

(Figure 2) JH1 and JH2 domains exert the most important functions of Jaks. JH1 acts as a 

kinase domain, containing the ATP-binding region and the activation loop. The JH2 

domain is the pseudokinase domain, which is highly homologous to tyrosine kinase 

domain, but lacks the catalytic activity due to the absence of necessary residues. The 

pseudokinase domain is believed to have autoinhibitory function and regulate both basal 

activity of the Jak kinases and cytokine-induced activation of the catalytic function.16,17 

Expression of JH2-deficient Jak2 resulted in cytokine-independency in cytokine-

dependent cell lines.16 JH3-JH4 region comprises the SH2-like domain, which is 

homologous to SH2 domain, but does not bind to phosphotyrosine residues.18 The JH5-

JH7 region constitutes the FERM domain (Four-ponint-one, Ezrin, Radxin, Moesin), 

which mediates the association between Jaks and other proteins.19 Recently, 
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autophosphorylation of Y119 in the FERM domain has been shown to down regulate 

receptor-mediated kinase activation.20 

 

Jaks are vital for normal hematopoiesis. Jak1 is mainly involved in IL-6 signaling.21 Jak1 

deficient mice showed perinatal lethality and defective lymphoid development.22 Jak3 

plays a non-redundant role in the function of all receptors utilizing the c chain.23 Jak3 

knock out mice showed severe combined immunodeficiency, which affected both T cells 

and B cells.24 Tyk2 is involved in interferon- /  signaling and mediates activation of 

interferon-responsive genes.25 Jak2 is activated in response to a variety of cytokines, 

including EPO 26, TPO, IL-5 27,28, IL-3, and GM-CSF.29 Fetal liver cells from Jak2-

deficient embryos fail to respond to EPO, IL-3, TPO, and mice deficient in Jak2 are 

embryonic lethal due to the absence of definitive hematopoiesis. All these in vitro and in 

vivo experimental data demonstrate that Jak2 plays essential, non-redundant roles in 

signal transduction induced by these cytokines in hematopoiesis.30 

 

 

 

 

 

 

 

Figure 2. Janus homology domains of the Jak family of kinases. Jaks consist of seven 

conserved domains, termed Jak homology (JH) domains 1-7. The position of JAK2-

V617F and JAK2 exon 12 mutations of JAK2 are indicated with arrows. 

 

Stats      

Stats are transcription factors with about 750-800 amino acids and latent in the 

cytoplasma. They are recruited to the receptor complex and get activated by 

phosphorylated Jaks. Subsequently, activated Stats dimerize, translocate to the nucleus, 

bind DNA and ultimately affect gene expression. The Stat proteins are comprised of 

amino terminal domain, coiled-coil domain, SH2 domain, linker, DNA binding domain, 
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and transcriptional activation domain. The amino terminus domain forms a hook-like 

structure, which may facilitate Stats binding to targets. The coiled-coil domain mediates 

the interaction of Stats with a variety of other factors, and the linker domain is involved 

in transcriptional control. The SH2 domain is essential for Stats functions and has several 

responsibilities: serving as the docking site to bind tyrosine phosphorylated receptor 

subunits, helping the association with the activated Jaks, and forming the hinge in the 

nutcracker-like structure when bound to DNA.31 

 

There are 7 mammalian Stats, Stat 1 to 6, including Stat5a and Stat5b. Disturbance of 

Stat genes in mouse models showed defects on development and hematopoiesis. Stat1 

plays important roles in IFN signaling. Stat1 knockout mice had no developmental 

defects, but showed defective innate immune responses to viruses and bacteria infections 

and susceptible to tumor formation.32 due to impaired IFN responses. Stat2 is involved in 

IFN /  signaling. Stat2 knockout mice were viable but susceptible to viral infections.33 

Stat3 deletion is embryonic lethal.34 Stat4 gets activated mainly through IL-12 and IL-23. 

Disruption of IL-12 signaling due to absence of Stat4 resulted in defective formation of 

Th1 cells in Stat4 knockout mice.35,36 Stat5a and 5b double knockout mice showed 

defects in transducing signals from IL-2, IL-3, GM-CSF and G-CSF.37,38 Stat6 is involved 

in IL-4 signaling and Stat6 knockout mice had a block in Th2 cell development and IgE 

class switching.39,40 

 

Jak-Stat signaling pathway 

The Jak-Stat pathway consists of three families of genes: the Janus tyrosine kinases 

family, the Stat (signal transducers and activators of transcription) family and the 

CIS/SOCS family, which acts as negative regulators of the Jak-Stat pathway. 

 

Engagement of cytokine receptors by hematopoietic growth factors induce 

conformational changes in the receptor, bringing the two cytoplasmic Jaks into close 

juxtaposition, which leads to activation of the kinases by transphosphorylation. Activated 

Jaks then phosphorylate the cytoplasmic domain of the receptor, creating docking sites 

for secondary signaling proteins such as Stats. Stats are then recruited to the cytokine 
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receptor and phosphorylated by Jaks. Phosphorylated Stats dimmerize by interactions 

between the Src homology 2 (SH2) domains and translocate to the nucleus, where they 

bind specific regulatory sequences and activate transcription of target genes. Activation 

of Jak2 also entails activation of the phosphotidylinositol 3-kinase (PI3K)–Akt pathway41 

and mitogen-activated protein kinase (MAPK) pathway,42 each of which activates an 

overlapping subgroup of downstream signaling molecules such as cell cycle activators, 

anti-apoptosis molecules and transcription factors (Figure 3). Combination of activated 

Jaks and Stats determine the specificity in cytokine signaling. 

 

Negative regulation of Jak-Stat signaling pathway 

Activation of Jak-Stat signaling is rapid and transient. Several mechanisms and molecules 

contribute to turn off the signaling pathway. 

  

Protein tyrosine phosphatases (PTPs) 

Three types of protein tyrosine phosphatases have been shown to negatively regulate Jak-

Stat signaling pathway.  

SH2-containing phosphatases (SHPs) have 2 family members termed SHP1 and SHP2 

sharing 55% homology of protein sequence. SHP1 is mainly expressed in hematopoietic 

cells, while SHP2 is more ubiquitously expressed. They are characterized by the presence 

of two SH2 domains and a phosphatase catalytic domain. The SH2 domain can associate 

with the phosphotyrosine residues on the activated receptors, on JAKs or on signaling 

molecules, which subsequently trigger the activation of the phosphatase domain to 

dephosphorylate the substrate.43 Mice deficient for Shp1 showed hematopoietic 

dysfunctions and displayed hyperphosphorylation of Jak1 and Jak2 following cytokine 

treatment. Silencing of Shp-1 gene was detected in various hematologic malignancies, 

such as leukemia, lymphomas and myeloma.44,45,46 

 
The receptor-like tyrosine phosphatase, CD45, a hematopoietic-specific phosphatase, is 

the second type of tyrosine phosphatase that negatively regulates Jak-Stat signaling.47 

Absence of CD45 leads to augmented Jak and Stat phosphorylation  in hematopoietic 

cells.48 
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The third group of phosphotyrosine phosphatases includes phosphotyrosine phosphatase 

1B (PTP1B) and T cell protein tyrosine phosphatase (TC-PTP), which have high 

similarities in their catalytic domains. They specifically recognize tyrosine residues in the 

Jak activation loop. PTP1B interacts with Jak2 and Tyk2 while TC-PTP 

dephosphorylates Jak1 and Jak3.43 In contrast to PTP1B, which is expressed in many 

tissues, TC-PTP is mainly expressed in hematopoietic cells and comprised of two 

isoforms created by alternative splicing, the nuclear form TC45 and the cytoplasmic form 

TC48. The nuclear form of TC-PTP is also responsible for the deactivation of nuclear 

Stat1 and Stat3.49 

 

Suppressors of cytokine signaling (SOCS) proteins 

SOCS proteins are small proteins that possess SH2 domains and conserved C-terminal 

SOCS/CIS boxes. This protein family has 8 members, cytokine-inducible SH2 containing 

protein (CIS) and SOCS1-7.50 The suppression of Jak-Stat signaling is achieved mainly 

by 3 mechanisms. Firstly, SOCS can compete with STATs for phosphorylated docking 

sites on the receptors. For example, CIS can bind to STAT5 binding site of the receptor, 

prevent STAT5 binding and thus inhibit signaling.51 In addition, SOCS such as SOCS-1 

associate with the activation loop of JAKs directly via its SH2 domain to inhibit the 

function of JAKs. Similarly the kinase inhibitory region of SOCS-1 and SOCS-3 can bind 

to the JAK catalytic pocket and block its catalytic activity. The third way is to target 

signaling proteins to the ubiquitin proteasome pathway through the SOCS box.52  

 

Protein inhibitor of activated STAT proteins (PIAS) 

PIAS family is comprised of 5 members: PIAS1, PIASx, PIAS3- , PIAS3-  and PIASy. 

They consist of a N-terminal LXXLL co-regulator domain, a zinc finger domain and a C-

terminal acidic domain. PIAS proteins bind to activated STATs dimers and block 

transcription by either inhibiting DNA binding of STATs (PIAS1 and PIAS3) or 

mediating recruitment of transcriptional repressors (PIASx and PIASy).53 Recent research 

showed that in addition to the inhibition of STAT proteins, PIAS actually interact with a 

variety of transcription factors. 
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                                                                                        Levine RL, Nature Reviews Cancer 2007 54 

 

Figure 3. Jak-Stat signaling pathway. a) Binding of cytokine receptors with ligands 

results in Jak2 phosphorylation, recruitment and phosphorylation of Stats and activation 

of downstream signaling pathways including Stat transcription factors, PI3K pathway, 

and MAP kinase pathway. b) The JAK2V617F and JAK2 exon 12 mutant kinases bind 

receptors and get phosphorylated in the absence of cytokines, leading to ligand-

independent activation of downstream signaling pathways. c) MPLW515L/K mutants are 

able to phosphorylate wild-type JAK2 in the absence of TPO, which results in the 

activation of signaling pathways downstream of JAK2. SOCS proteins, most notably 

SOCS-1 and SOCS-3, normally mediate negative regulation of JAK2 signaling.
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Myeloproliferative disorders 

The concept of Myeloproliferative disorders (MPD) was first proposed by Damshek in 

1951, who considered chronic myelogenous leukemia (CML), polycythemia vera (PV), 

essential thrombocythemia (ET) and primary myelofibrosis (PMF) as closely interrelated 

disease entities.
55

 The discovery of Philadephia chromosome resulting from 

t(9;22)(q34;q11) and the bcr/abl transcript established CML as a separate disease 

entity.
56-58

 A specific kinase inhibitor, namely imatinib mesylate (Gleevec; Novartis, 

Switzerland) was subsequently developed and used successfully in the treatment of CML 

patients.
59,60

 PV is a disease with increased red blood cells because of clonal expansion. 

About half of PV patients have neutrophil leukocytosis or raised platelet counts. ET is 

characterized by thrombocytosis due to abnormal megakaryocyte proliferation and 

overproduction of platelets. PMF is a progressive fibrosis of the bone marrow and 

characterized by increased collagen in bone marrow with subsequent development of 

extramedullary hematopoiesis in spleen and liver. In summary, this heterogenous group 

of diseases is characterized by increased hematopoiesis with normal differentiation, 

leading to elevated amount of mature non-lymphoid blood cells and/or platelets in the 

peripheral blood.  

 

MPD clonal origin 

X chromosome-linked markers have been successfully used to explore the clonal origin 

of MPDs.
61

 During development, somatic cells of females randomly inactivate one of the 

two X chromosomes. As a result, women heterozygous for a polymorphic X-linked allele 

have a mixture of cells expressing one or the other allele in normal tissues. If cells are 

clonal, i.e. they come from the same ancestor; all of the cells inactivate the same X 

chromosome, thus showing a homogeneous type of X-inactivation pattern. Based on this 

theory, Adamson et al showed that female PV patients had the same form of glucose-6-

phosphate dehydrogenase (G6PD) in their erythrocytes, granulocytes, and platelets, 

demonstrating the clonal origin of PV.
62

 EI Kassar N
63

 and Tsukamoto N
64

 studied the 

polymorphism of the human androgen receptor gene (HUMARA), as well as the 

restriction fragment length polymorphisms (RFLP) of the X-chromosome 

phosphoglycerate kinase (PGK) and hypoxanthine phosphoribosyltransferase (HPRT) 
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genes in female ET and PMF patients and found out that most of patients also had clonal 

hematopoiesis. All these data suggest that PV, ET and PMF originated from a multipotent 

hematopoietic progenitor or a stem cell, which acquired proliferative and/or survival 

advantage in the course of the disease. 

 

Cytogenetic analysis provides genetic basis to study clonal hematopoiesis. The recurrent 

but non-specific cytogenetic abnormalities such as numerical gains or losses and 

chromosome translocations are frequent in Philadelphia-negative chronic 

myeloproliferative disorders. About 10-15% PV and 30-40% PMF patients had abnormal 

karyotype at diagnosis; while in ET patients, only 5-6% carried chromosomal aberrations. 

In PV patients, the most frequent abnormalities are del(20q), trisomies 8 and 9 as 

determined by fluorescence in situ hybridization (FISH)
65,66

 while del(13q), del(20q) and 

partial trisomy 1q are more commonly seen in PMF patients.
67

 

 

Loss of heterozygosity of chromosome 9p (9pLOH) 

Loss of heterozygosity (LOH) is a kind of chromosomal alteration that is undetectable by 

cytogenetic analysis or fluorescent in situ hybridization (FISH) analysis. It is the result of 

mitotic recombination caused by exchange of chromosomal DNA between non-sister 

chromatids during mitosis. Using genome-wide microsatellite screening, Kralovics et al
68

 

identified loss of heterozygosity in three genomic regions on chromosomes 9p, 10q, and 

11q and found out that 9pLOH is the most frequent chromosomal lesion in PV patients 

with a prevalence of about 30%. 

 

JAK2 mutations in MPD patients 

Although various cytogenetic abnormalities were reported in patients with MPD, no 

specific abnormality was found until 2005, in which year, our group together with several 

other groups independently discovered a somatically acquired JAK2 mutation (JAK2-

V617F) in MPD patients.
69-72

 This discovery is an important advance in our 

understanding of the pathogenesis of myeloproliferative disorders. The mutation changes 

the guanine to thymine at position 1849, which results in the substitution of valine to 

phenylalanine at position 617 (JAK2-V617F) in the pseudokinase domain of the jak2 
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protein. According to these reports, JAK2-V617F can be detected in about 90-95% of PV 

patients and about 50% of ET and PMF patients. Many patients with PV or PMF are 

homozygous for the V617F mutation, as a result of mitotic recombination affecting 

chromosome 9p, but homozygosity is rare in patients with ET.
69,73

 Less frequently, JAK2-

V617F has also been observed in patients with chronic myelomonocytic leukemia 

(CMML), myelodysplastic syndrome (MDS), acute myeloid leukemia (AML), atypical 

myeloproliferive disorder, hypereosinophilic syndrome and systemic mastocytosis. It is 

worth to note that JAK2-V617F is exclusive to disorders of myeloid lineages, and has 

never been found in lymphoid malignancies.
74-76

 Analysis of different hematopoietic 

compartments in MPD patients by several groups shows that JAK2-V617F can be found 

in hematopoietic stem cells (HSCs) with a phenotype of CD34
+
CD38

-
CD90

+
Lin

-
, and 

myeloid progenitors, and occasionally B and T cells.
77-81

  

 

Careful analysis of other JAK2 exons led to the discovery of JAK2 exon 12 mutations in a 

subset of PV patients who are negative for JAK2-V617F. Interestingly, unlike JAK2-

V617F, being the only mutation in exon 14, fourteen different JAK2 exon 12 mutations 

(missense mutation, deletions and insertions) have been reported.
82-88

 These mutations 

mainly occur in the vicinity of codon 539 and 543 and all of them cause a phenotype 

closely related to isolated erythrocytosis, because they are not observed in any patients 

with ET or PMF. In addition, sequencing of receptors associated with JAK2 signaling in 

JAK2-V617F negative MPD patients led to the discovery of two gain-of-function somatic 

mutations in the thrombopoietin receptor (MPL), MPLW515L and MPLW515K, which 

are located at the transmembrane-juxtamembrane junction of MPL.
89,90

 Three additional 

MPL mutations in the vicinity (MPLS505N, MPLA506T and MPLA519T) were 

subsequently identified. In total, about 5% PMF patients and 1-9% ET patients carried 

MPL mutations.
89-93

 

 
Aberrant cell signaling in MPDs 

It was observed more than 30 years ago that bone marrow cells from PV patients had the 

ability to differentiate into erythroid colonies in the absence of exogenous erythropoietin 

in vitro (endogenous erythroid colonies, EECs), whereas progenitor cells from normal 
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persons gave rise to erythroid colonies only in the presence of EPO.94 Albeit EECs are 

present in almost all PV patients, they are not specific to PV, because a proportion of ET 

and PMF patients also have EECs.94,95 The presence of EECs has become one of the 

diagnostic criteria for PV as proposed by the World Health Organization (WHO).96 

Similarly, some studies showed megakaryocytic progenitor cells from the majority of ET 

patients, formed factor independent megakaryocytic colonies (EMC) under serum-

containing conditions, which is not the case for reactive thrombocytosis. Interestingly, 

EMCs can also be detected in some PV and PMF patients.97,98 These abnormalities 

associated with in vitro growth of hematopoietic progenitors indicate the presence of 

altered cytokine receptor signaling, which is confirmed by the discovery of JAK2 

mutations in the majority of MPD patients.69-72 

 

Functional studies of JAK2-V617F and JAK2 exon 12 mutations showed that expression 

of either type of JAK2 mutations, but not wild type JAK2, induces cytokine 

hypersensitivity and cytokine-independent growth in the presence of EPO or TPO 

receptors.69,70,72,82 Auto-phosphorylation assays showed that JAK2-V617F mutation 

constitutively activated the JAK2 tyrosine kinase72 and that both JAK2-V617F and JAK2 

exon 12 mutations can lead to increased phosphorylation of JAK2 and its downstream 

effector, STAT5.69,82 In addition to the activation of STAT5, MAP kinase and PI3K 

pathways are also activated as assessed by phosphorylation of ERK and AKT 

respectively (Figure 3), but their exact role in the pathogenesis of MPD is unclear.  

 
JAK2-V617F is located in the JH2 domain of JAK2, which is the pseudokinase domain 

(Figure 2). As described above, the JH2 domain is important for autoinhibition of JAK2. 

This pseudokinase domain plays a critical role in regulating both basal activity of Jak 

kinases and cytokine induced activation of the catalytic function.16,17 It is predicted that 

JAK2-V617F leads to loss of autoinhibition on the JH1 domain, which results in 

constitutive activation of JAK2 in the absence of ligands.
99,100

 Detailed structural analysis 

of interaction between JH1 and JH2 domains would provide more clues for understanding 

the functional aberrance of JAK2-V617F.  
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Various JAK2 exon 12 mutations affect residues 537 through 543 and cause unregulated 

JAK2 activity. This region is predicted to lie within the linking region between the SH2 

and JH2 domains of JAK2. These affected residues are close to the loop carrying 

V617F.82 However, detailed structural and biochemical analysis is needed to verify this 

prediction.  

 

Models to study JAK2 mutations in vivo 

In vivo studies using retroviral bone marrow transplantation assays demonstrated that 

overexpression of Jak2-V617F in bone marrow cells results in a PV-like phenotype with 

increased hematocrit, leukocytosis, extramedullary hematopoiesis and subsequent 

myelofibrosis, but no thrombocytosis.70,101-104 These results indicate that JAK2-V617F is 

sufficient to cause PV although different genetic backgrounds of mice (Balb/C vs. C57/6) 

may have impact on the degree of leukocytosis and myelofibrosis. Interestingly, 

thrombocytosis, which is a common phenomenon in patients with PV and ET, was only 

observed in a group with low mutant Jak2 expression in one study.101 Similar bone 

marrow transplantation studies using Jak2-K539L (exon 12 mutation) led to expansion of 

erythroid lineages and mild expansion granulocyte lineage as compared to JAK2-V617F, 

but no megakaryocytes expansion was observed.82 

 

Until now, three transgenic mouse models with JAK2-V617F have been established.105-107 

Low level expression of JAK2-V617F induced a phenotype resembling ET with 

thrombocytosis, while high expression of the transgene developed a PV-like phenotype in 

mice, indicating the dosage of the mutant allele is important for the phenotype 

manifestation. Currently, it is still not completely clear why a single JAK2-V617F 

mutation can cause three different disease phenotypes. 

 

Recombination-mediated genetic engineering (Recombineering) 

Bacterial Artificial Chromosomes (BACs) 

Bacterial artificial chromosome is a kind of cloning vector based on the E. coli fertility 

plasmid (F-factor). Compared to traditional high-copy plasmids, BACs can propagate up 

to 300 kb genomic DNA as 1-2 copy plasmids in a well characterized recombination 
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deficient E. coli host strain,108 which makes it possible to include large upstream 

regulatory sequences of a gene in a BAC. Besides large accommodation, BACs have high 

cloning efficiency; they are easy to purify and remain intact because they exist as 

supercoiled circular DNA that are relatively resistant to shearing; they are highly stable 

and unlikely to undergo rearrangements. These advantages have made BACs an 

important tool to study gene functions in transgenic systems.   

 

Recombinogenic Engineering 

Conventional cloning methods that rely on the use of restriction enzymes and DNA 

ligases limit the engineering of large DNA molecules, such as BACs. In recent years, the 

development of homologous recombination-based strategies in E. coli allows a wide 

range of modifications of DNA molecules. Homologous recombination occurs through 

homology arms, the sequence of which is shared by the two DNA molecules that could 

recombine, thus providing a precise and specific way to exchange genetic information 

between two DNA molecules. Using phage recombination to carry out genetic 

engineering has been called recombinogenic engineering, or recombineering.109 

 

E. coli is inherently not ready for transformation by double stranded DNA (dsDNA), 

because RecBCD exonuclease in E. coli can rapidly digest exogenously introduced linear 

DNA.110 The introduction of a defective -prophage system, termed Red, into the E. coli 

chromosome can inhibit RecBCD and mediate homologous recombination. -Red system 

encodes three genes, Gam, Exo and Bet, which are important for recombination. Gam 

encodes an inhibitor of the E. coli RecBCD exonuclease activity and thereby protects the 

foreign linear DNA from degradation by RecBCD. Double strand breaks in DNA are the 

initiation sites for this recombination. Exo encodes a 5’-3’ exonuclease that degrades 

nucleotides from 5’ ends of the break and leaves 3’ overhangs. Bet encodes a pairing 

protein that binds to the 3’ single strand tails and mediates its annealing and homologous 

recombination with complementary DNA. The expression of these proteins is under the 

tight control of a temperature sensitive -cI857 repressor. (Figure 4) At 32°C, the 

expression of these genes is suppressed by the repressor. Shifting bacteria to 42 °C for as 

short as 15 minutes will inactivate the repressor, and the three genes are transcribed from 
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the strong -pL promoter. Finally, the very efficient homologous recombination occurs 

through homologies of only 50 bp or less. 111 

 

 

Figure 4. Defective -prophage is integrated into the E. coli chromosome. Expression 

of gam, bet and exo is under the control of PL promoter and temperature-sensitive cI857 

repressor. At 32°C, the repressor inhibits the transcription of gam, bet, and exo. At 42°C, 

the repressor is inactivated, and gam, bet and exo are expressed.  

 

General steps to generate a BAC recombinant using recombineering 

The following steps are generally used in recombineering in BACs (Figure 5).112  

1. Amplifying a cassette by PCR with flanking regions of homology. 

2. Introducing a BAC into a strain that carries recombination function. 

3. Transforming the cassette into bacteria containing a BAC and recombination functions. 

4. Generating a recombinant in vivo. 

5. Detecting a recombinant by selection, counterselection or by direct screening. 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
Figure 5. General steps of recombineering.  
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RESULTS I: 

 

 

Clonal heterogeneity in polycythemia vera patients with 

JAK2 exon12 and JAK2-V617F mutations 
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 Abstract 

 

We studied the lineage distribution of JAK2 mutations in peripheral blood of 8 

polycythemia vera (PV) patients with exon 12 mutations and in 21 PV patients with 

JAK2-V617F. Using a quantitative allele discrimination assay, we detected exon 12 

mutations in purified granulocytes, monocytes and platelets of 8 patients studied, but 

lymphoid cells showed variable involvement and the mutation was absent in T cells. A 

similar distribution was observed in patients with JAK2-V617F and clonal analysis 

showed that the mutation is very rare in peripheral blood T cells. Endogenous erythroid 

colonies (EECs) grew in all patients analyzed. One patient displayed erythroid colonies 

homozygous for the exon 12 mutation with evidence for mitotic recombination on 

chromosome 9p. In several patients with exon 12 mutations or JAK2-V617F, a substantial 

proportion of EECs were negative for both JAK2 mutations. One patient carried two 

independent clones: one with an exon 12 mutation and a second with JAK2-V617F. The 

lineage distributions of exon 12 mutations and JAK2-V617F are similar and do not 

explain why exon 12 mutations and JAK2-V617F can cause different phenotypes. The 

finding of clonal heterogeneity is compatible with the hypothesis that additional clonal 

events are involved in the pathogenesis of PV. 
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Introduction 

 

An acquired activating mutation in exon 14 of the Janus kinase 2 (JAK2-V617F) is 

commonly found in patients with myeloproliferative disorders (MPD), with the highest 

incidence in polycythemia vera (PV).69-72,113 Mutations in exon 12 of JAK2 are detected 

selectively in patients with PV that are negative for JAK2-V617F and in some patients 

with idiopathic erythrocytosis.82 Interestingly, different mutant JAK2 exon 12 alleles 

surrounding amino acid 539-545 were identified (Figure 1). The JAK2-V617F and exon 

12 mutations represent clonal markers useful to track the hematopoietic lineages involved 

in MPD. In patients with MPD, JAK2-V617F is present in purified hematopoietic stem 

cells, in myeloid lineages of the peripheral blood and in variable proportions of lymphoid 

cells.77-80,114 The presence of JAK2-V617F in T cells remains controversial.78-81,114 Using a 

sensitive novel assay, we quantitated the involvement of exon 12 mutations in purified 

peripheral blood lineages and in erythroid progenitor assays. In addition, we addressed 

the question of whether JAK2-V617F is present in T cells by clonal analysis.  
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Materials and Methods 

 

Patients 

The screening for JAK2 exon 12 mutations in MPD patients was performed by DNA 

sequencing using primers 5’-CAAAGTTCAATGAGTTGACCCC-3’, and 5’-

TGCTAACATCTAACACAAGGTTGG-3’, which are located in JAK2 exon 12 

neighbouring introns. Patients from whom frozen cells were available were included for 

further study. The diagnosis of MPD was made according to the World Health 

Organization.115,116 Two patients with JAK2 exon 12 mutation (Vi064, Vi327) were from 

Vienna, Austria. All other patients were from Basel, Switzerland. The collection of 

patient samples was approved by the local ethics committees. Written consent was 

obtained from all patients.  

 

Cells, DNA and RNA 

Isolation of granulocytes, platelets, and peripheral blood mononuclear cells (PBMC) was 

performed as described.68,69,117 PBMCs were sorted into CD3+CD56- (T cells), CD3-CD56+ 

(Natural Killer cells), CD14+ (monocytes) and CD19+ (B cells) fractions using a 

FACSVantage SE (Becton Dickinson, Franklin Lakes, USA). Gates were set for maximal 

purity of the sorted cell populations. Fluorescein isothiocyanate (FITC) conjugated 

monoclonal antibodies against CD56, CD14 and isotype controls and phycoerythrin (PE) 

conjugated antibodies against CD3, CD19 and isotype controls were from Becton 

Dickinson (San Jose, CA). RNA isolation from platelets and cDNA synthesis were 

performed as described.117 DNA from single colonies was isolated using Chelex-100 

Resin (Biorad, Hercules, CA).118  

 

Quantification of JAK2 exon 12 mutations 

JAK2 exon 12 mutations were detected and quantitated using an allele discrimination 

assay (Figure 2). For genomic DNA we used the primers 5'-FAM-

ACTTTCAGTGTATTTTGAAGTGAT-3', and 5'-GTTTCTTGAATGTAAATCAAGAA 

AACAGA-3' and for RNA/cDNA the primers 5'-FAM-AAACTGTTCGCTCAGACAAT 
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-3' and 5'-GTTTCTTCTCTTCGTACGCCTTTA-3' were used. The PCR products were 

separated by capillary electrophoresis and the peak fluorescent intensities were measured 

on an ABI3130 Genetic Analyzer (Applied Biosciences, Carlsbad, CA). The calculation 

of the percentages of the JAK2 exon 12 mutant allele were calculated using the formula: 

%mut=(height of mut-peak)/(height of mut-peak + wt-peak)x100. Microsatellite PCR and 

gene copy number analyses for chromosome 9p were described previously.69,119  

 

Quantification of JAK2 exon 14 mutation by allele-specific PCR119 

DNA standard for quantification were prepared by mixture different ratios of normal 

human PBMC genomic DNA (JAK2 wild type) and DNA from DAMI cell lines 

(homozygous for JAK2-V617F) (Figure 3). The allele-specific PCR to detect JAK2-

V617F was carried out using 20 ng of genomic DNA, 45 nM forward primer JAK2-F (5’- 

GTTTCTTAGTGCATCTTTATTATGGCAGA-3’) and 22.5 nM each of the allele-

specific reverse primers JAK2-R-T (5’- 6Fam-AAATTACTCTCGTCTCCACAGAA-3’) 

and JAK2-R-G (5’- 6Fam-TTACTCTCGTCTCCACAGAC-3’) in a buffer containing 50 

mM KCl, 10 mM Tris pH 8.0 and 1.5 mM MgCl2. Thirty PCR cycles with denaturing at 

94°C for 30 seconds, annealing at 61°C for 30 seconds, and extension at 72°C for 30 

seconds were applied. The PCR products were analyzed using the ABI3130 Genetic 

Analyzer (Applied Biosystems, Carlsbad, CA). The percentage of chromosomes carrying 

the G>T transversion representing the JAK2-V617F allele (%T) were calculated using the 

same formula as above. 

 

Detection of the JAK2-V617F mutation by single nucleotide primer extension 

(SNaPshot Assay) 

The SNaPshot Multiplex Kit (Applied Biosystems, Carlsbad, CA) was used to detect 

JAK2-V617F mutation in platelet RNA samples following the manufacturer’s protocol. 

Primers 5’-CGTACGAAGAGAAGTAGGAG-3’ and 5’-CCCATGCCAACTGTTTAGC 

A-3’ were used to amplify JAK2 from platelet cDNA. The primer 5’-

AAGCATTTGGTTTTAAATTATGGAGTATGT-3’ was used for the SNaPshot primer 

extension reactions. 
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Colony assays 

Erythroid colony assays with peripheral blood cells were performed using commercial 

reagents as previously described.117 Media #04531 (without Epo) from Stem Cell 

Laboratories (Vancouver, BC, Canada) were used for EEC cultures, whereas media 

#04441 (with 3U/ml human recombinant Epo) were used to grow BFU-E. PBMCs from 

patients were plated at a density of 5 105 cells/ml methycellulose media and grown at 

37°C. At day14, single erythroid colonies were picked and DNA from single colonies 

was isolated using Chelex-100 Resin (Biorad, Hercules, CA).118 Alternatively, DNA and 

RNA from single colonies were isolated using the peqGold-TriFast reagent (Peqlab 

Biotechnologie, Erlangen, Germany). Reverse transcription was carried out using High 

Capacity cDNA Reverse Transcription kit (Applied Biosystems, Foster City, USA). To 

confirm the erythroid lineage identity of EECs, expression of glycophorin A was used as 

a marker. Primers used were; human glycophorin A forward, 5’-CATCTCATCACAGAC 

AAATGATACG-3’ and reverse, 5’-TCAGAGAAATGATGGGCAAGT-3’. Expression 

of -actin was used as a control for the quality of cDNA. The primers used were: 

forward, 5’-CTCTTCCAGCCTTCCTTCCT-3’ and reverse, 5’-ATGCTATCACCTCCC 

CTGTG-3’.  

 

T cell cloning 

PBMCs of patients with JAK2-V617F were cloned as described.120 Briefly, cells were 

stimulated with PHA (1μg/ml), IL-2 (100U/ml), and irradiated (35Gy) allogeneic PBMCs 

(5x105 cells/ml) in RPMI-1640 medium (GIBCO, Paisley, UK) supplemented with 5% 

human serum. DNA from individual clones was analyzed for the presence of JAK2-

V617F. Flow cytometry analysis of clones positive for JAK2-V617F with antibodies 

against CD3 and CD56 was performed on a CyanADP flow cytometer using Summit 

software (DakoCytomation, Fort Collins, USA).  

 

Statistical analysis 

We used linear and ordinal regression to analyze the correlations between disease 

duration and the percentage of mutant allele and between the percentage of mutant allele 
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and the number of lineages involved. SPSS version 15.0 (SPSS Inc., Chicago, IL) was 

used for the analysis. 
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Results 

 

We screened 143 patients with myeloproliferative disorders and 10 patients with 

secondary erythrocytosis for the presence of JAK2-V617F and JAK2 exon 12 mutations. 

Among these patients, 70 were PV, 54 were ET and 19 were PMF. In accordance with 

what have been reported by Scott LM 82, JAK2 exon 12 mutations were only found in 

patients with PV, not in ET, PMF or secondary erythrocytosis. We found 5 out of 11 

JAK2-V617F negative PV patients carried JAK2 exon 12 mutations. Interestingly, one 

patient carries both JAK2-V617F and a JAK2 exon 12 mutation. The screening result was 

summarized in Table 1. We found 5 different JAK2 exon 12 mutations in 6 PV patients in 

our cohort (Figure 1). Until now, altogether 14 different JAK2 exon 12 mutations 

including point mutation, 3 or 6 base pair deletion and insertion have been reported.82-88 

 

Table 1. JAK2 exon 12 mutations screening in MPD patients. 

 

PV, polycythemia vera; ET, essential thrombocythemia; PMF, primary myelofibrosis; 

SE, secondary erythrocytosis; del, deletion. Data from Basel in reference 83. 

 

In our further study, we included 21 JAK2-V617F positive PV patients, all of the 6 PV 

patients carrying JAK2 eoxn 12 mutations from our cohort and 2 patients with JAK2 

exon12 mutations from Vienna. The clinical data of patients involved in this study is 

listed in Table 2. 

disease number of number of number of patients

type patients patients with 3-6 bp del in exon12

+ 59 1

- 11 5

+ 35 0

- 19 0

+ 8 0

- 11 0

+ 0 0

- 10 0

+ 0 0

- 4 0

PMF

SE

V617F

normals

PV 70

54

19

10

4

ET
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Figure 1. Schematic presentation of JAK2 exon 12 mutations and JAK2-V617F. 

The location of exon 12 mutations and JAK2-V617F in the Jak2 protein is shown (top). 

The amino acid changes caused by the individual exon 12 mutations are shown below 

using the single letter code. The frequency of each mutation is expressed by the number 

of cases reported so far. All cases with mutation in JAK2 exon 12 published to date82-88 

and own cases are shown. UPN, unique patient number. 
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Table 2. Clinical features at diagnosis of patients carrying JAK2 exon12 mutations 

and JAK2-V617F mutation. 

 

UPN, unique patient number; Hb, hemaglobin; Hct, hematocrit; WBC, white blood cell 

count; Plt, platelet count; ND, not done. Numbers in bracket in the red cell mass column 

indicate expected normal red cell mass in each individual patient tested. Numbers in bone 

marrow trephine: 0 indicates not typical for PV, 1 indicates typical cytology, 2 indicates 

typical histology, and 3 indicates both were typical. 

 

 

To quantitate the presence of JAK2 exon 12 mutations in hematopoietic lineages, we 

developed a sensitive allele discrimination assay that exploits the frequent presence of 

deletions of 3 or 6 bases in patients with JAK2 exon 12 mutation (Figure 2). And for 

quantification of JAK2-V617F, we had previously developed sensitive allele-specific 

PCR assay (AS-PCR)119 (Figure 3). Using these assays we could reliably detect 1% of 

mutant alleles.  

exon12 Red cell  serum Epo level (U/l) palpable  bone marrow 
UPN Hb (g/L)Hct (%) WBC (10^9/LPlt (10^9/L) mass (normal 12-23 U/L) splenomegaly trephine details
p002 F/52 226 0.66 6.1 215 ND <2.0 yes no 3
p041 M/57 214 0.68 7.5 297 40.8 17.2 yes no 0
p138 F/71 194 0.64 8.6 102 ND 1 yes no 3
p021 M/59 200 0.56 9.4 388 ND 5.2 yes no 0
p166 F/55 170 0.54 9 956 ND 0.1 yes no 3
p221 F/37 171 0.58 9.3 689 ND 3 yes yes 3

Vi064 F/67 199 60 11.2 700 ND <2.5 yes no 0
Vi327 F/80 177 62 5.7 253 ND ND yes no 0

Sex/Age
Blood paramaters at diagnosis

EEC

exon14 Red cell  serum Epo level (U/l) palpable  bone marrow 
UPN Hb (g/L)Hct (%) WBC (10^9/LPlt (10^9/L) mass (normal 12-23 U/L) splenomegaly trephine details
p104 M/76 163 0.49 10.3 630 32.5 (25) 4.4 yes no 3
p021 M/59 200 0.56 9.4 388 ND 5.2 yes no 3
p023 M/71 209 0.65 11 645 ND 0 yes no ND
p115 F/91 170 0.52 11.5 764 ND ND yes no ND
p052 F/85 178 0.5 6.3 302 ND ND yes no ND
p026 M/73 194 0.57 11.3 447 ND 3.6 yes no 2
p022 M/31 161 0.48 14.4 270 37.2 (25.5) 1.1 yes no 2
p038 F/62 207 0.62 10.9 427 ND 1.7 yes yes 3
p025 M/77 207 0.62 11.3 459 45.1 (26) 12.4 yes no ND
p046 F/72 202 0.63 9.5 284 ND 0.1 yes no ND
p033 M/77 191 0.6 12.6 726 ND 1.2 yes no ND
p103 F/82 182 0.49 11.3 382 ND 1.3 yes no 3
p069 M/39 219 0.67 6.1 187 ND 3 yes yes 2
p024 M/56 175 0.51 11 927 ND 2 yes yes 2
p093 M/62 163 0.47 6.5 585 34.4 (24.5) 3.9 yes no 3
p116 M/40 166 0.52 9.6 598 40 (28) 4.4 yes yes 3
p053 M/70 225 0.71 8.6 238 ND 2.3 yes no 3
p136 M/76 203 0.52 9.5 598 ND 2.9 yes no 2
p070 M/73 217 0.68 9.6 289 ND 0.3 yes yes ND
p035 M/73 208 0.66 18.5 337 ND 9.7 yes yes ND
p016 M/74 187 0.6 12.2 1084 ND ND yes yes ND

Sex/Age EEC
Blood paramaters at diagnosis
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Figure 2. Allele discrimination assay to quantitate JAK2 exon 12 mutations. 

A) Design of the PCR assay. One of the primers was fluorescently labeled (asterisk). 

Exon 12 mutations with deletions of nucleotides will yield PCR products that differ in 

length from the wild type allele. B) Mixtures of plasmids containing wild type JAK2 and 

JAK2 exon 12 mutation were used as standard.  The chromatograms of a dilution series 

for an exon 12 mutation with a 6 nucleotides deletion (I540-E543delinsMK) is shown. C) 

Standard curve. Quadruplicate reactions were performed and the percentages of exon 12 

mutation in the DNA templates (x-axis) were plotted against the ratios of the fluorescent 

intensities (y-axis). Error bars indicate standard deviation. Separate standard curves were 

generated with cloned fragments for each of the other exon 12 mutations studied (not 

shown) 
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Figure 3. Allele-specific PCR to quantitate JAK2-V617F mutation.  

A) Strategy of allele-specific PCR. Arrows indicate primer positions: one common 

forward primer and two fluorescently labeled reverse primers (marked by asterisks). Note 

that one of the labeled primers is extended by 3 nonhomologous nucleotides to allow 

separation of the PCR products by size. B) Analysis of the linearity of the JAK2-V617F 

allele-specific PCR. The reactions were performed using homozygous wild-type (G) and 

homozygous mutant (T) genomic DNA dilutions with increasing proportion of the 

homozygous mutant DNA. Quadruplicate reactions were performed. The G and T peak 

fluorescence ratios were determined and plotted for each genomic DNA dilution. Error 

bars indicate standard deviation. C) The chromatograms of five DNA samples from panel 

B are shown.  
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We studied the lineage distribution of JAK2 mutations in peripheral blood of 8 PV 

patients with mutations in exon 12 and in 21 PV patients with JAK2-V617F (Figure 4). 

Five different JAK2 exon 12 mutations were observed by sequencing and all of them 

contained deletions of 3 or 6 bases (Figure 1). Peripheral blood cells were fractionated 

into granulocytes, platelets and mononuclear cells, which were further sorted into 

monocytes, Natural Killer (NK) cells, B and T cells. In all patients analyzed, exon 12 

mutations were detectable in granulocytes, platelets and monocytes, with the highest 

allelic ratios in most cases present in platelets and the lowest in monocytes (Figure 4, 

upper panel). Similarly, the JAK2-V617F mutation was present in granulocytes, platelets 

and with the exception of p104 also in monocytes (Figure 4, lower panel). Interestingly, 

in patient p021 we detected two different JAK2 mutations: N542-E543del (exon 12) and 

JAK2-V617F (exon 14). Both mutations were present in granulocytes, platelets and 

monocytes, with the exon 12 mutation showing higher allelic ratios than JAK2-V617F.  

 

In contrast to the myeloid lineages, in which the exon 12 mutations or JAK2-V617F were 

always detectable, the lymphoid lineages showed large inter-individual differences 

(Figure 4). Only 3/8 patients (38%) with exon 12 mutations displayed detectable signal in 

lymphoid cells. In patients p221 and Vi064, a small subset of NK cells carried the 

mutation and only patient Vi327 showed an allelic ratio greater than 10% in NK and B 

cells. JAK2-V617F showed variable engagement of lymphoid lineages as well, with NK 

cells being most frequently involved (14/21, 67%) and in some cases showing very high 

(>70%) allelic ratios (p016, p033, p035, p103). B cells had low JAK2-V617F allelic 

ratios (<15%), except in one patient (p035). T cells of all patients were negative for exon 

12 mutation and only 2/21 patients (p016 and p035) displayed JAK2-V617F in T cells, 

albeit with allelic ratios below 5%. To unambiguously determine the presence of JAK2-

V617F in T cells, we established T and NK cell clones from peripheral blood of 10 PV 

patients with high JAK2-V617F allelic ratios. In 4/10 patients JAK2-V617F positive 

clones were obtained and these clones represented only 1% of the total clones analyzed 

(Figure 4). Surprisingly, only a single JAK2-V617F positive clone in patient p035 

consisted of T cells, whereas JAK2-V617F positive clones in all other patients were NK 
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cells (Figure 5). Thus, T cells in peripheral blood only very rarely carry the JAK2-V617F 

mutation. 

 

Figure 4.  Lineage distribution of JAK2 exon 12 mutations (top) and JAK2-V617F 

(lower part). 

Numbers in boxes indicate the percentages of chromosomes 9 with exon 12 mutations 

and the shading of boxes corresponds to the ranges shown at the bottom. UPN, unique 

patient number; F, female; M, male; GRA, granulocytes; NK cells, natural killer cells; nd, 

not determined. Numbers in column for T cell cloning indicate JAK2-V617F positive 

clones/total clones analyzed. The phenotypes of JAK2-V617F positive clones were 

determined by flow cytometry. NK cell phenotype: CD3-CD56+; T cell phenotype: 

CD3+CD56-. *Note that patient p021 was positive for exon 12 mutation N542-E543del 

and for JAK2-V617F. 
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A correlation between the disease duration and the allelic ratios of JAK2-V617F in 

granulocytes, platelets, monocytes and NK cells was noted (Figure 6A), but no such 

correlation was found for exon 12 mutations (not shown). The percentages of mutant 

alleles also correlated with the number of lineages involved for both the exon 12 

mutations and JAK2-V617F (Figure 6B). 

 

 

 

 

 

Figure 5. Phenotypic analysis of JAK2-V617F positive clones. 

A) Flow cytometry analyses. One JAK2-V617F positive clone from patient p035 

consisted of CD3+CD56- T cells. All other positive clones from patients p136 and p116 

were CD3-CD56+ Natural Killer cells. B) Allele-specific PCR for JAK2-V617F. The T 

cell clone from p035 was homozygous for JAK2-V617F, whereas the clones from 

patients p136 and p116 were heterozygous for JAK2-V617F. 
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Figure 6. Statistical analysis. 

A) Correlation between disease duration and the percentages of JAK2 mutations. The R 

squared, and p values are shown in each plot. B) The correlations between the number of 

lineages involved and the percentages of JAK2 exon 12 mutations (left panel) and the 

percentages of JAK2-V617F (right panel) in granulocytes are shown. 
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To examine the presence of the JAK2 mutations in the erythroid lineage we performed 

colony assays in methylcellulose and determined the allelic ratios for each individual 

colony (Figure 7). Erythroid colonies that grew in the absence of Epo (EECs) were 

detected in all patients, although in some cases the total number of EECs was very small 

(Vi327, Vi064, p138, and p115). In 6 patients the exon 12 mutation was present in all 

EECs examined (Figure 7A). Among them, 4 patients carried the same exon 12 mutation 

(E543-D544del). The rest of patients with exon 12 mutations had some EECs with wild 

type JAK2. In 10/12 patients with JAK2-V617F, the mutation was found in all EECs, 

whereas in the remaining patients we detected variable proportions of EECs without 

JAK2 mutations (Figure 7B). The erythroid phenotype of the colonies was confirmed by 

the presence of glycophorin A mRNA (Figure 8). Sequencing of the entire JAK2 coding 

region in these colonies did not reveal any additional JAK2 mutations. Interestingly, in 

the patient with two different JAK2 mutations (p021) none of the erythroid colonies 

carried both mutations simultaneously, indicating that the exon 12 mutation and JAK2-

V617F represent two separate clones. In patient Vi327 we found a homozygous exon 12 

mutation in 4/32 colonies examined (Figure 7A). In this patient the allelic ratio of the 

exon 12 mutation was above 50% in granulocytes, platelets and monocytes (Figure 4). 

The homozygous colonies also exhibited loss of heterozygosity on chromosome 9p 

(9pLOH) (Figure 9). Copy number analysis of JAK2 by real time PCR excluded gene 

amplification or deletion as the mechanism (not shown). In contrast, all PV patients with 

JAK2-V617F exhibited at least some homozygous colonies (Figure 7B). Only patient 

p021, who carries both JAK2 mutations, did not display homozygous colonies. 
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Figure 7. Distribution of JAK2 mutations in erythroid progenitors. 

The total number of erythroid colonies analyzed and the percentages of colonies with 

homozygous or heterozygous JAK2 mutation or wild type JAK2 are shown. Colony 

assays in methylcellulose were performed with peripheral blood cells of patients with 

JAK2 exon 12 mutations (A) or JAK2-V617F mutation (B). Single erythroid colonies 

were picked and analyzed individually. Horizontal bars indicate the percentages of 

colonies with homozygous mutation (black boxes), heterozygous mutation (gray boxes) 

or wild type JAK2 (white boxes). For each patient 2 bars are shown, the upper 

representing colonies grown in the presence of erythropoietin (Epo +), the lower 

representing colonies grown without erythropoietin (Epo -). The unique patient numbers 

(UPN) and the allelic ratios of the JAK2 mutations (%mut or %T) in granulocytes (GRA) 

are shown in the two left columns and the total number of erythroid colonies analyzed is 

shown in the right column. *Note that in patient p021 colonies positive for exon 12 

mutation and colonies with JAK2-V617F were found. None of these colonies carried both 

mutations simultaneously. 
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Figure 8. Expression of glycophorin A in singe colonies. 

Single colonies with erythroid morphology were picked and RT-PCR analysis was 

performed with primers specific for human glycophorin A (forward, 5’-

CATCTCATCACAGACAAATGATACG-3’ and reverse, 5’-TCAGAGAAATGATGGG 

CAAGT-3’). Beta actin (forward, 5’-CTCTTCCAGCCTTCCTTCCT-3’ and reverse, 5’-

ATGCTATCACCTCCCCTGTG-3’) was used as a control for the quality of cDNA. A) 

Analysis in 3 patients is shown. wt, colonies with only wild type JAK2; GPA, 

glycophorin A. Only colonies expressing glycophorin A were included in the result 

presented in Figure 7. B) All colonies with wild type JAK2 were re-analyzed for 

glycophorin A. Colonies with non-erythroid morphology (CFU-G, CFU-M and CFU-

GM) are shown as negative controls. 
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Figure 9. Molecular analysis of individual erythroid colonies of patient Vi327. 

T cell DNA from patient Vi327 was used as control (top row). Allele discrimination 

assay shows presence of homozygous E543-D544del mutation in 4 burst forming unit-

erythroid (BFU-E) colonies (left panel). Two microsatellite markers D9S1779 and 

D9S1852 demonstrate loss of heterozygosity on chromosome 9p (9pLOH) in the same 

colonies (middle and right panel). Numbers indicate allele sizes. 
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Discussion 

 

Our findings show that the lineage distributions of exon 12 mutations and JAK2-V617F 

are similar (Figure 4). Thus, the lineage distribution does not explain why exon 12 

mutations are associated solely with a PV phenotype, 82 while JAK2-V617F can also be 

found in essential thrombocythemia and primary myelofibrosis. The reason for the large 

inter-individual variation in the allelic ratios of mutant JAK2 in lymphoid lineages is 

unclear. A correlation between disease duration and the allelic ratios of JAK2-V617F was 

noted for the myeloid lineages and for NK cells, but not for B cells (Figure 6). In the 

original report, JAK2 exon 12 mutations have not been observed in T cells,82 and were 

also absent in our study using a more sensitive detection assay. The presence of JAK2-

V617F in T cells is controversial, since it has been described in T cells from most PV 

patients in one study,80 but was rare in other reports.78,79,114 All these studies were 

performed using bulk cell populations. Our clonal analysis unambiguously shows that 

peripheral blood T cells only rarely carry the JAK2-V617F mutation (Figure 4B and 5). 

JAK2-V617F positive CD34+ progenitors from MPD patients were shown to be capable 

of differentiating into T cells in thymic organ cultures in vitro.78 However, in patients this 

occurs very infrequently, possibly due to low frequency of de novo T cell genesis in 

adults.  

 

Growth of EECs with only wild type JAK2 has recently been reported in PV patients 

positive for JAK2-V617F121-123. In contrast, no wild type EECs in PV patients were found 

by others.71,73,82,84 Our results confirm the finding of EECs with only wild type JAK2 and 

indicate EECs can arise from additional as yet unknown mechanisms. These results 

suggest clonal heterogeneity of erythroid progenitors not only in patients with JAK2-

V617F, but also in some patients with exon 12 mutations. Until now, exon 12 mutations 

were found exclusively in the heterozygous state. Here we show that progression to 

homozygosity occurred in a patient (Vi327) with exon 12 mutation and involved mitotic 

recombination resulting in 9pLOH (Figure 9), as commonly found in patients 

homozygous for JAK2-V617F.69 A second case of homozygosity was found in another 

patient with exon 12 mutation by sequencing,83 but material for clonal analysis was not 
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available in this patient. In contrast to the rare occurrence of homozygosity in patients 

with exon 12 mutations, the erythroid colonies of patients with JAK2-V617F invariably 

showed a proportion of homozygous colonies, as reported.73 The only exception in our 

series was patient p021, in whom we found two different JAK2 mutations (Figure 7). 

Analysis of single erythroid colonies in this patient demonstrated that two independent 

clones were present, one carrying an exon 12 mutation (N542-E543del) and the other 

with JAK2-V617F (Figure 7). Again, some EECs were negative for both JAK2 mutations 

in this patient. Concurrent presence of JAK2-V617F with MPL515 mutations was 

previously found in 3 patients with primary myelofibrosis and 3 patients with essential 

thrombocythemia.90,124 The allelic ratios for MPL515 were higher than those for JAK2-

V617F at all time points studied, but clonal analysis was not reported. Therefore, it 

remains to be determined if these cases represent sequential somatic mutations that 

occurred in the same clone. Thus, our patient p021 is the first case with a documented bi-

clonal pattern.  

 

In summary, we show that the distribution of exon 12 mutations and JAK2-V617F are 

similar and do not explain why exon 12 mutations and JAK2-V617F can cause different 

phenotypes. Both mutations are very rare or absent in T cells. The likelihood of multiple 

lineage involvement increased with higher allelic ratios of the JAK2 exon 12 and JAK2-

V617F mutations and the allelic ratios of JAK2-V617F correlated with disease duration. 

Absence of the exon 12 and JAK2-V617F mutations in EECs from several patients 

suggests the existence of additional mutation(s) responsible for Epo hypersensitivity or 

independence. The presence of two independent clones, one with an exon 12 mutation 

and another with JAK2-V617F, further demonstrates clonal heterogeneity. These results 

are compatible with a model in which a stem cell or progenitor carries an as yet unknown 

mutation that is sufficient to cause growth of EECs and increase the likelihood for 

acquiring somatic mutations in JAK2.  
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RESULTS II 

 

 

Effect of JAK2-V617F and JAK2 exon12 mutations on 

terminal erythroid differentiation in patients with 

polycythemia vera ––– a pilot study 
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Abstract 

 

Somatic activating JAK2 mutations are found in more than 99% of patients with 

polycythemia vera (PV). Among them, about 95% PV patients carry JAK2-V617F 

mutation and about 4% patients carry JAK2 exon 12 mutations. Burst forming unit-

erythroid (BFU-E) is the earliest progenitor committed to the erythroid lineage, and the 

presence of homozygous BFU-Es is a common feature of most PV patients with JAK2-

V617F. However, in about half of PV patients with JAK2-V617F, the homozygous 

erythroid colonies only constitute a small proportion of the total number of BFU-Es, and 

more than half patients with JAK2 exon 12 mutations have only very few BFU-Es 

carrying the mutations. To address the question how a small number of cells with JAK2 

mutations can cause overproduction of red blood cells, we simultaneously determined the 

amount of mutant JAK2 in BFU-Es as well as in purified reticulocytes from peripheral 

blood of PV patients with JAK2-V617F or JAK2 exon 12 mutations. Reticulocytes were 

isolated from peripheral blood by leukodepletion with high purity. Preliminary results 

showed that some PV patients had similar levels of JAK2 mutation in granulocytes and 

reticulocytes while others had much higher JAK2 mutation in reticulocytes than in 

granulocytes. In the latter subset of patients, the ratio of JAK2 mutation in reticulocytes 

was significantly higher than that in BFU-Es, indicating the cells carrying JAK2 mutation 

proliferated more efficiently during terminal differentiation from BFU-Es to 

reticulocytes. Future directions including analysis of a larger cohort of samples and 

examination of clonal origin of reticulocytes using X-chromosome inactivation assays 

will further elucidate the impact of JAK2 mutations on erythroid terminal differentiation. 

 

 

 

 

 



 49 

Introduction 

 

Burst forming unit-erythroid (BFU-E), is the earliest progenitor committed to the 

erythroid lineage.
125

 The number of BFU-E colonies grown in methylcellulose culture 

corresponds to the number of erythroid progenitors in the blood or bone marrow. BFU-Es 

undergo a number of differentiation and proliferation stages and give rise to enucleated 

reticulocytes. Reticulocytes retain in the bone marrow for 24-48 hours before released 

into peripheral circulation, where they gradually lose their residual RNA and become 

fully matured red blood cells.
126

 Reticulocytes are the latest population of erythroid 

lineage that can be traced by the presence of RNA. 

 

In patients with polycythemia vera (PV), more than 95% carry JAK2-V617F mutation 

and almost all JAK2-V617F negative PV carry JAK2 exon 12 mutations.
69-72,82

 The 

distinguishing feature of PV is the excessive production of mature red blood cells, which 

results in increased hemoglobin and hematocrit. Bone marrow transplantation assays with 

Jak2-V617F or Jak2 exon 12 mutations and transgenic mouse models with JAK2-V617F 

showed that JAK2 mutations are sufficient to cause PV phenotype, suggesting mutant 

JAK2 is a major factor driving over-expansion of erythrocytes.
70,82,101-105

  

 

Most PV patients with JAK2-V617F had homozygous erythroid colonies as a result of 

mitotic recombination, which is rare in ET patients and PV patients with JAK2 exon 12 

mutations.
69,73,123

 Presence of homozygous colonies is considered as one of the cellular 

parameters to distinguish between JAK2-V617F positive PV and ET. However, in our 

previous study
127

 (See also Results I, Figure 7B), we observed in about half of PV 

patients with JAK2-V617F, the homozygous erythroid colonies only constitute a small 

proportion of the total number of BFU-Es, and at the same time, the percentage of JAK2-

V617F in granulocytes is below 60%. Albeit there are almost no homozygous colonies in 

PV patients with JAK2 exon 12 mutations, similar pattern that only a small percentage of 

BFU-Es carries the mutation is observed in more than half of patients in our cohort 
127

 

(See also Result I, Figure 7A). To explain how such a small proportion of JAK2-V617F 

homozygous progenitors or progenitors with heterozygous JAK2 exon 12 mutations can 
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lead to a substantial increase in red cell population, we hypothesized the homozygous 

BFU-Es with JAK2-V617F or heterozygous BFU-Es with JAK2 exon 12 mutations 

proliferate and differentiate into mature erythroblasts in a more efficient manner and 

dominate red blood cell production in a cell autonomous pattern. Data from preliminary 

experiments provide evidence that during terminal differentiation from BFU-Es to 

reticulocytes, the frequency of mutant allele got increased, indicating a substantial 

amplification occurred. 
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Materials and Methods 

 

Patient samples 

Eight PV patients with JAK2-V617F, two PV patients with JAK2 exon 12 mutations, one 

PV patient with no known JAK2 mutation and three ET patients with JAK2-V617F were 

included in this study. All patients were from Basel, Switzerland. The diagnosis of 

myeloproliferative disorders (MPD) was assigned using World Health Organization 

(WHO) criteria. The collection of patient samples was approved by the local ethics 

committees. Written consent was obtained from all patients. EDTA anticoagulated 

peripheral blood was collected and processed within 4 hours after collection.   

 

Isolation of reticulocytes 

Reticulocytes were isolated from 20 ml of human ETDA peripheral blood following a 

process of leukodepletion.
128,129

 Briefly, after centrifugation the blood at 700 g for 10 

min, the plasma and the buffy coat layers were removed by aspiration. The packed red 

blood cells were washed 3 times with 50 ml 0.9% NaCl and centrifuged at 1200 rpm for 

10 min to remove platelets. At the third wash, red blood cells were resuspended in 2 ml 

0.9% NaCl and layered on top of a column consisting of 2 ml 1:1 mixture (by weight) of 

-cellulose (C-8002, Sigma) and sigmalcell type 50 microcrystalline cellulose (S-5504, 

Sigma). After the blood went into the column completely, the column was eluted with 2 

ml 0.9% NaCl (Figure 1). The reticulocyte-enriched eluate was washed twice with 0.9% 

NaCl and pelleted by centrifugation. 

 

Purity control of reticulocytes 

To check the purification efficiency, complete blood counts including reticulocytes 

before and after the purification process were performed using an Advia 120 Hematology 

Analyzer (Bayer, Leverkusen, Germany).  

 

RNA isolation from reticulocytes 

The reticulocytes-enriched pellet was lysed with peqGold-TriFast reagent (Peqlab 

Biotechnologie, Erlangen, Germany), mixed thoroughly and stored in –80°C prior to 
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processing. The RNA isolation was performed as recommended by the manufacturer’s 

protocol. Reverse transcription was carried out using High Capacity cDNA Reverse 

Transcription kit (Applied Biosystems, Foster City, USA). 

 

Erythroid colony assay 

Erythroid colony assay was performed using the same sample as the one in reticulocyte 

isolation. Media #04441 (with 3U/ml human recombinant Epo) (Stem Cell Technologies, 

Vancouver, Canada) were used to grow BFU-Es. PBMCs from patients were plated at a 

density of 5 105 cells/ml methycellulose media and grown at 37°C. At day14, single 

erythroid colonies were picked and DNA from single colonies was isolated using Chelex-

100 Resin (Biorad, Hercules, USA).118  

 

Quantification of JAK2-V617F in reticuloctyes 

Allele-specific PCR was used to quantify the presence of JAK2-V617F in BFU-E 

colonies and allele discrimination assay was used to quantify JAK2 exon 12 mutations.127 

The expression level of JAK2-V617F was quantified by Real-Time PCR (RT-PCR) as 

described130 using Taqman® Universal PCR Master Mix (Applied Biosystems, 

Branchburg, USA) on a 7500 Fast Machine (Applied Biosystems, Foster City, USA). 

Two forward primers specific to JAK2 wild type and JAK2-V617F respectively, one 

common reverse primer and a FAM-labeled probe specifically recognizing the amplicon 

are used. The sequences are as follows: 

JAK2-WT forward: 5’ -GCGCGGTTTTAAATTATGGAGTATGTG-3’; JAK2-V617F 

forward: 5’-GCGCGGTTTTAAATTATGGAGTATGTT-3’, the common reverse primer 

5’-CCGCTTTTTCAGATATGTATCTAGTGATCC-3’ and 6-FAM probes 5’-

TGGAGACGAGAATATTCTGGTTCAGGAGTTTG-3’. 
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Results and Discussion 

 

Several methods are used to purify reticulocytes or isolate reticulocytes RNA. We tried 

and compared a couple of methods and selected the one based on leukodepletion. The 

first method is based on the observation that mature red blood cells as well as 

reticulocytes are lysed by red cell lysis buffer (8.3g/L NH4Cl, 1.0g/L KHCO3, 0.1 mM 

EDTA). After pelleting other type of cells by centrifugation, the reticulocytes RNA is 

present in the supernatant, and can be precipitated by acid. Because the mature red blood 

cells do not contain DNA and RNA, and reticulocytes do not contain DNA, the resultant 

precipitation is RNA from reticulocytes. However, it is impossible to monitor the purity 

of RNA. Theoretically, only red cells are lysed by the buffer, but during blood processing 

and lysis, some cells are dead and release their content (DNA and RNA) into the lysis 

solution, contaminating the reticulocyte RNA, which is hard to control. A second method 

is based on Dynabeads-mediated positive selection. Briefly, beads coupled with CD71 

antibody are mixed with blood cells and the CD71 positive cells are bound to the beads, 

and thus separated from other types of cells. It is also difficult to judge the purity of 

reticulocytes, because the beads are not easy to get rid of thus makes immunostaining or 

FACS analysis of purity difficult. The third method is the one we finally decided to use in 

this study. It is based on the capacity of the special cellulose to retain leukocytes in the 

matrix of a column, while the red blood cells including reticulocytes can pass through 

(Figure 1).128,129 We modified the original method in the following ways. First we 

centrifuge the blood to remove platelet rich plasma and buffy coat. Second, to remove the 

remaining platelets, we washed the red cell pellet before and after passing the column. 

We can routinely do the blood count before and after purification process to infer the 

purity of the reticulocytes. Using this method, we normally get rid of more than 99% of 

leukocytes and platelets (Table 1). After removal of platelet rich plasma and buffy coat, a 

main part of leukocytes and the majority of platelets were removed. The rest of 

leukocytes were further removed by passing the cellulose column. Thus following this 

processing procedure, RNA isolated from reticulocytes-enriched pellet well represents 

reticulocytes RNA with high purity. 
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Figure 1. Work flow of reticulocytes isolation based on leukodepletion. Fresh 

peripheral blood was first centrifuged to separate platelet rich plasma, buffy coat and red 

blood cells. The red blood cells were washed 3 times with 0.9% NaCl and loaded on top 

of a column made of 1:1 (by weight) -cellulose and microcrystalline cellulose. The 

leukocytes were kept in the column (left) and the red blood cells including reticulocytes 

passed through the column (right).  
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Table 1. WBC, platelet, and reticulocyte count from whole blood, before and after 

purification.  

Abbreviations: WBC, white blood cell; PLT, platelet; RETIC, reticulocyte; NA, not 

available. Pre, before passing the column; post, after passing the column. 

 

Depending on the availability of patient samples during the period of study, and the 

percentage of mutant allele in the granulocytes, we conducted experiment with samples 

from 8 PV patients with JAK2-V617F, 2 PV with JAK2 exon 12 mutations, 1 PV with no 

known JAK2 mutation and 3 ET patients with JAK2-V617F. Most patients had a 

heterozygous pattern in their granulocytes except one patient (p116), who had a 

homozygous pattern in his granulocytes. The clinical data of these patients were listed in 

Table 2. RNA from reticulocytes was prepared from all patients included in this study. As 

a pilot experiment, we performed erythroid progenitor assay in 5 PV patients with JAK2-

V617F and one PV patients with JAK2 exon 12 mutation using the same sample for 

reticulocyte isolation. We can analyze in parallel the mutation status in erythroid 

progenitors as well as terminally differentiated reticulocytes from the same time point. 

Because reticulocytes do not have nuclei, thus no DNA, we measured the expression of 

mutant JAK2 at RNA level. Our previous finding showed linear correlation between the 

percentage of JAK2-V617F mRNA and the allelic ratio of JAK2-V617F in genomic 

DNA,105 and therefore we believe that mRNA level would reflect the ratio of mutant 

whole blood Pre Post whole blood Pre Post whole blood Pre Post

p039G 6.07 0.68 0.01 200 0 0 47 33.5 19.7

p019D 7.53 2.15 0.09 1230 2 0 NA 74.5 33

p022I 11.68 3.61 0.2 411 1 1 129 55.3 42.9

p116M 14.73 1.55 0.03 474 4 1 132 37.1 27

p024N 10.03 2.17 0.09 930 1 1 102 39.5 28.5

p214C 6.86 1.16 0.12 273 1 1 25 23.6 13.7

p038H 6.51 2.84 0.03 375 2 1 70 43.3 45.4

p023S 10.58 0.52 0.03 405 0 0 142 29.5 22.1

p204B 6.09 0.37 0.03 460 2 2 70 18.1 8.3

p138K 14.28 1.97 0.01 71 3 1 188 31.9 25.8

p166E 11.59 4.96 0.14 1102 0 0 126 63.4 42.5

p018K 12.7 5.76 0.4 92 0 1 44 104.4 81.5

p192C 10.1 3.87 0.25 787 1 1 88 43 38.9

p199C 6.3 1.59 0.04 507 1 1 64 53.5 22.9

unique patient number
PV JAK2 wild type

PV JAK2  exon 12 mut

ET JAK2 -V617F

PV JAK2 -V617F

diagnosis and WBC (10^9/l) PLT (10^9/l) RETIC (10^9/l)
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JAK2 positive cells. We then analyzed the expression of mutant JAK2 in reticulocytes to 

infer the amount of cells carrying the mutations. 

 

Table 2. Clinical data from patients included in this study. 

Abbreviations: Hb, hemoglobin, normal range 120-160 g/l for female and 140-180 g/l for 

male; HCT, hematocrit, normal range 0.36-0.46 l/l; WBC, white blood cells, normal 

range 3.5-10.0 109/l; PLT, platelet, normal range 150-450 109/l; retic, reticulocyte, 

normal range 40-140 109/l.   

 

We first measured the expression of mutant JAK2 in reticulocytes by quantitative Real-

Time PCR (qRT-PCR) and identified two subgroups of PV patients with JAK2-V617F 

mutation. One group of patients had similar level of JAK2 mutation in their granulocytes 

and reticulocytes (p039G, p019D, p022I, p116M, named group A). The 3 patients with 

ET (p018K, p192C, p199C) had the similar pattern (Table 3, upper panel and Figure 2A). 

In contrast, the other group of PV (p024N, p214C, p038H, p023S, P204B) showed higher 

level of mutations in their reticulocytes than in the granulocytes. The two patients with 

JAK2 exon 12 mutations (p138K, p166E) belong to this group (Table 3, lower panel and 

Figure 2B). Patient p039 do not have JAK2-V617F or exon 12 mutations in his 

granulocytes, although it is possible that the low amount of cells carrying the mutation 

JAK2-V617F Hb HCT WBC PLT Retic 

GRA (g/l) (l/l) (x10^9/l) (x10^9/l) (x10^9/l)

p039G M/62 0 133 0.4 6.07 200 47 Hydroyurea

p019D F/60 49 113 0.34 7.53 1230 NA Lanvis

p022I M/34 55 143 0.45 11.68 411 129 phlebotomy

p116M M/43 92 142 0.43 14.73 474 132 phlebotomy

p024N M/59 68 146 0.46 10.03 930 102 phlebotomy

p214C F/78 4 147 0.43 6.86 273 25 hydoxyurea

p038H F/65 74 135 0.43 6.51 375 70 phlebotomy

p023S M/74 39 168 0.46 10.58 405 142 hydoxyurea

p204B M/78 60 120 0.35 6.09 460 70 hydoxyurea

p138K F/73 36 115 0.42 14.28 71 188 phlebotomy

p166E F/49 29 144 0.47 11.59 1102 126 none

p018K F/81 47 94 0.27 12.7 92 44 not known

p192C M/44 17 129 0.41 10.1 787 88 not known

p199C F/52 2 100 0.29 6.3 507 64 hydroxyurea

treatment
diagnosis and

Sex/age
unique patient number

PV JAK2 wild type

PV JAK2  exon 12 mut

ET JAK2 -V617F

PV JAK2 -V617F
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might not be detected in the bulk of granulocytes. If the JAK2 mutation is the causative 

mutation in this patient, the mutation should be present in a proportion of erythroid 

progenitors and reticulocytes. However, we failed to detect known JAK2 mutations either 

from erythroid progenitors or reticulocytes. This indicates another yet unknown mutation 

might contribute to the PV phenotype in this patient. (Table 3) 

 

 

Table 3. JAK2 mutation analysis in reticulocytes and erythroid progenitors.     

 

Abbreviations: GRA, granulocyte; RETIC, reticulocyte; heter, heterozygous; homo, 

homozygous; BFU-E, burst forming unit-erythroid; ND, not done; NA, not available. The 

JAK2 mutant allele ratio in BFU-Es was calculated as follows: Heterozygous colony has 

one mutant allele and homozygous colony has two mutant alleles. So the mutant allele 

ratio = (number of heterozygous colony+2  number of homozygous colony)/2 number 

of total colonies analyzed.  

 

 

 

 

GRA RETIC BFU-E BFU-E mutant allele
JAK2 mut% JAK2 mut% heter% homo% ratio in BFU-E

p039G M/62 0 0 0 0 0

p019D F/60 49 48 ND ND NA

p022I M/34 55 57 ND ND NA

p116M M/43 92 99 6.7 93.3 96.7

p018K F/81 47 47 ND ND NA

p192C M/44 17 26 ND ND NA

p199C F/52 2 9 ND ND NA

p024N M/59 68 83 31.3 10 25.7

p214C F/78 4 24 9 0 4.5

p038H F/65 74 90 1.4 40.8 41.5

p023S M/74 39 74 12.5 15 21.2

p204B M/78 60 81 ND ND NA

p138K F/73 36 53 23.7 0 11.9

p166E F/49 29 55 ND ND NA

PV JAK2  exon 12 mut

ET JAK2 -V617F

PV JAK2 -V617F

diagnosis and

PV JAK2 -V617F

Sex/age
unique patient number
PV JAK2 wild type
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Figure 2. Comparison of the percentage of mutant JAK2 in granulocytes and 

reticulocytes defined two subgroups. Patients of group A had similar amount of mutant 

JAK2 in granulocytes to that in reticulocytes. Patients of group B had mutant JAK2 in 

reticulocytes significantly higher than that in granulocytes. Paired student t-test was used. 

GRA, granulocyte; RETI, reticulocyte. 

 
For pilot experiment, five PV patients from group B (4 with JAK2-V617F and 1 with 

JAK2 exon 12 mutation) and one PV patient homozygous for JAK2-V617F from group A 

were chosen for erythroid progenitor assay in methylcellulose in the presence of EPO. 

The percentage of heterozygous and homozygous colonies is listed in Table 3. As 

reported, most PV patients with JAK2-V617F carried some homozygous colonies.73 The 

distribution of heterozygous and homozygous colonies varies among patients, though the 

number of patients is limited. In PV patients with JAK2-V617F, one patient (p038H) 

predominantly yielded wild type and homozygous colonies, but very few heterozygous 

colonies. Another patient (p214C) had only a small number of heterozygous colonies, and 

all other erythroid colonies were wild type.  

 

Based on the percentage of heterozygous and homozygous colonies, we calculated the 

percentage of mutant JAK2 in the total erythroid progenitors, and compared it with the 

mutant JAK2 in reticulocytes (Figure 3). Heterozygous colony has one mutant allele, and 

homozygous colony presents two mutant alleles. So the mutant allele ratio was calculated 

as (number of heterozygous colony+2  number of homozygous colony) /2 number of 

total colonies analyzed. The result showed that the relative ratio of mutant JAK2 in 
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reticulocytes was more than two fold higher than that in BFU-Es. The increase in the 

percentage of mutant JAK2 in a cell population reflected a selective advantage of cells 

carrying mutations. JAK2-V617F occurs in hematopoietic stem cells (HSCs), but in PV 

patients, the mutant allele frequency was similar between HSC and more differentiated 

progeny, including common myeloid progenitor (CMP), granulocyte-macrophage 

progenitor (GMP), and megakaryocyte-erythroid progenitor (MEP).77 Thus our data 

suggested that cells with JAK2 mutations were selectively amplified in these patients 

during terminal erythroid differentiation from BFU-Es to erythroblasts. Amplification of 

erythroid cells with JAK2 mutation has been observed by in vitro culture bone marrow 

CD34+CD38+ progenitors in the presence of EPO, showing increased JAK2 mutant alleles 

after 7 days.123 Instead of using in vitro culture system to grow erythroblasts, primary 

reticulocytes from patients were directly investigated in our study, which is more 

representative and less affected by culture conditions.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Comparison of the ratio of mutant JAK2 in erythroid progenitors and 

reticulocytes. The amount of mutant JAK2 was much higher in reticulocytes than in 

erythroid progenitors except p116M, who had almost all colonies carrying the mutation. 
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We provided evidence that in a proportion of PV patients, the amplification of cells 

carrying JAK2 mutations occurred at the late stage of erythropoiesis, but this cannot be 

solely attributed to the presence of homozygous JAK2-V617F colonies since some 

patients who did not have homozygous JAK2-V617F colonies also had the mutation 

amplified (p214C). In vitro liquid culture of erythroid progenitors from PV patients 

showed more cells from PV patients were in proliferation state as compared with normal 

controls, possibly due to increased phosphorylation of PI3-Akt/PKB pathway, which is 

involved in cell proliferation and cell cycle regulation.131 Activation of PI3-Akt pathway 

by JAK2-V617F might confer potent proliferation ability on the cells at the late stage of 

erythropoiesis. Further experimental data will be needed to support this hypothesis. 

  

For further information, analysis of a larger cohort of samples, especially of those who 

have clear PV phenotype but with low mutant JAK2 percentage in their granulocytes 

(such as below 20%) will be required. On the other hand, more patients who have similar 

amount of mutant JAK2 in their granulocytes and reticulocytes (group A) will also be 

included to clarify if there is any dosage change of mutant JAK2 during the 

differentiation of erythroid progenitors into reticulocytes in this group. In addition, X-

chromosome inactivation based clonality assays on reticulocytes from female patients 

will be in favor of illustrating if the expanded reticulocytes are of clonal origin or not. 

The accomplishment of these coming works would advance our understanding of the role 

of JAK2 mutations in extensively producing mature red blood cells in PV patients.  
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RESULTS III 

 

 
Transgenic mouse models to study the function of JAK2 

exon 12 mutations and JAK2 exon 16 mutations in 

myeloproliferative disorders 
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Abstract 

 

JAK2-V617F, JAK2 exon 12 mutations and JAK2 exon 16 mutations are acquired 

activating mutations involved in the pathogenesis of a series of blood disorders. JAK2-

V617F is associated with polycythemia vera (PV), essential thrombocythemia (ET) and 

primary myelofibrosis (PMF); JAK2 exon 12 mutations only lead to PV with isolated 

erythropoiesis, while exon 16 mutations define a subgroup of acute lymphoblastic 

leukemia (ALL) that are associated with trisomy 21. The mechanisms by which different 

myeloproliferative phenotypes associate with the same JAK2-V617F mutation and 

mutations in the same JAK2 gene cause different phenotypes are currently unclear. To 

study the molecular pathogenesis of different JAK2 mutations, we chose the most 

frequent JAK2 exon 12 (N542-E543del and E543-D544del) and exon 16 (R683G) 

mutations and generated transgenic mouse models with inducible expression of these 

mutations. Using highly efficient recombination engineering technique and bacterial 

artificial chromosome (BAC), we generated JAK2 exon 12 mutant transgene constructs 

with the exon 12 sequence placed in the inverse orientation and flanked by antiparallel 

loxP sites. Similarly, the JAK2 transgene construct with R683G was made to have the 

sequences encoding the kinase domain placed in the inverse orientation and flanked by 

antiparallel loxP sites. Three transgenic founders with JAK2 N542-E543del and two 

transgenic founders with JAK2 E543-D544del have been obtained. Crossing of these 

founders with VavCre or MxCre transgenic mice is expected to induce expression of 

mutant human JAK2. Detailed blood count, pathological abnormalities and genotype-

phenotype relationship analysis will be performed. Microinjection of the JAK2-R683G 

construct is currently ongoing.  
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Introduction 

 

Activating somatic JAK2 mutations are frequently found in patients with 

myeloproliferative disorders (MPD). JAK2-V617F is the first JAK2 mutation discovered 

that is involved in the pathogenesis of 95% PV, and about 50% of ET and PMF 

patients.69-72 Gain-of-function JAK2 exon 12 mutations were subsequently found in the 

majority of PV patients who are negative for JAK2-V617F. JAK2 exon 12 mutations 

induce clinical phenotype with isolated erythrocytosis, which is different from PV 

patients with JAK2-V617F.82 Recently, somatically acquired JAK2 exon 16 mutant alleles 

affecting a highly conserved arginine residue at 683 (R683) have been described in 18%-

28% of patients with Down’s syndrome-associated acute lymphoblastic leukemia (DS-

ALL).132,133 The occurrence of exon 16 mutations is associated with trisomy 21. It has 

been shown that the cooperation of GATA1 mutation with trisomy 21 associated 

overexpression of several genes resulted in Down’s syndrome related acute 

megakaryocyte leukemia.134,135 Although the pathogenesis of JAK2 exon 16 mutations is 

presently unknown, a similar mechanism might exist for ALL in Down’s syndrome. 

However, its elucidation will need development of experimental models of the 

disorder.132,133  

 

The most common JAK2 exon 12 mutation is N542-E543del followed by E543-D544del, 

while the most frequenct exon 16 mutation is R683G. Each of these JAK2 mutations has 

the ability to transform cytokine-dependent cell lines to cytokine independence and cause 

constitutive JAK-STAT activation. These observations raise the question of whether 

mutations in different positions of JAK2 have intrinsically different kinase activities 

leading to different signaling in hematopoietic cells, which results in different 

phenotypes. 

 

Retroviral-mediated expression of JAK2-V617F in mouse bone marrow transplantion 

models demonstrated that the expression of mouse Jak2-V617F is sufficient to induce a 

PV-like phenotype with increased hematocrit, leukocytosis, extramedullary 

hematopoiesis and subsequent myelofibrosis.70,101-104 Similar bone marrow transplantation 
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assays with JAK2-K539L (an exon 12 mutation) resulted in expansion of erythroid 

lineages and mild expansion of the granulocyte lineage as compared to JAK2-V617F, but 

no megakaryocytes expansion was observed.82 A pilot bone marrow transplantation study 

using I682-D686del (an exon 16 mutation) caused myeloproliferative disorders similar to 

that caused by V617F.136 

 

Three groups have established transgenic mouse models expressing human JAK2-V617F 

in the hematopoietic systems.105,106,107 The expression of JAK2-V617F results in an MPD 

phenotype in these mouse models suggesting the presence of JAK2-V617F is sufficient to 

cause the disease. Mice expressing higher level of JAK2-V617F develop a PV-like 

phenotype, while mice with lower expression of JAK2-V617F display an ET-like 

phenotype, which indicates the dosage of mutant gene might contribute to the 

manifestation of disease phenotype.105  

 

Currently, no transgenic mouse model for JAK2 exon 12 or exon 16 mutations is 

available. Using a bacteria artificial chromosome (BAC) as transgene carrier and a 

homology-mediated recombination (recombineering) strategy, we are generating 

inducible transgenic mouse models in which mutant JAK2 can be expressed in the blood 

system in the presence of VavCre or MxCre. BACs usually contain important regulatory 

sequences required for normal gene expression, so it is relatively easy to get dose-

dependent and integration site independent transgene expression, which makes BACs a 

good choice for making transgenic mice.137,138 Recombineering strategies with a galK-

based selection system take advantage of phage recombination functions that generate 

recombinant relying on homologies of 50 bp or less, which allows genomic DNA in 

BACs to be modified easily.  

 

The functional differences of different JAK2 mutations and molecular mechanisms 

underlying diverse disease phenotypes caused by JAK2 mutations will be studied in vivo 

by comparison of transgenic mice containing JAK2-V617F, JAK2 exon 12 mutations and 

JAK2 exon 16 mutations. 
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Material and Methods 

 

Bacterial strains  

All strains used for BAC recombination were maintained at 32°C because of the 

temperature-inducible prophage. Bacterial strain SW102 (SW101 galK),
137

 was used for 

the construction of BACs containing JAK2 exon12 mutations. Bacterial strain EL250 

(DY380 (cro-bioA)<>araC-PBAD Flpe)
139

, which possesses araC and the arabinose 

promoter-driven flpe recombinase gene, was used for the construction of the BAC 

containing JAK2-R683G. The genotype of DY380 is DH10B [ c1857 (cro-bioA) <>Tet] 

galK
+
 gal490, and the genotype of SW101 is DY380 gal

+
.
137

 

 

BAC constructs for JAK2 exon 12 mutations  

The human JAK2 N542-E543del and human JAK2 E543-D544del transgenes were 

constructed based on the already existing human JAK2 WT BAC construct.105 This 192 

kb long construct, which is modified from BAC CTD2025A15 (CalTech D human BAC 

library), contains 96 kb 5’-upstream sequence, JAK2 genomic sequence from exon 1 to 

intron 12, JAK2 cDNA sequence from exon 13 to 25, a polyadenylation signal from SV40 

and an FRT site. 

 

BAC and plasmids for JAK2-R683G mutation 

The human JAK2 exon16-R683G transgene was constructed using BAC CTD2025A15 

(CalTech D human BAC library), which is approximately 190 kb long and contains part 

of the JAK2 gene reaching from 96 kb upstream of exon 1 to the first 1 kb of intron 12. 

The BAC integration construct flip-flop (FF) was a gift from Dr. R Tiedt.
105

 It was 

assembled from the rest of intron 12 with 100 bp overlap, a lox66 site in intron12, cDNA 

encoding JAK2 exons 13-25, a polyadenylation signal from SV40, a lox71 site after pA 

site, an ampicillin resistance cassette flanked by Frt sites and 100 bp of sequence 

homologous to the BAC vector pBeloBAC11. The segment between the loxP sites was in 

an inverted orientation. The bacteria strain EL250, which can be transiently induced to 

express Flpe recombinase was used to propagate the BAC and for subsequent 

homologous recombination.  
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Procedures to generate BAC with JAK2 exon 12 mutations 

Minimal media and indicator plates 

The preparation of minimal media and indicator plates were done following standard 

protocols.
137

 

Gal positive selection: M63 + agar (15 g/l; Roth, Karlsruhe, Germany) + D-galactose 

(0.2%; Sigma, Stienheim, Germany) + D-biotin (1 mg/l; Supelco, Bellefonte, USA) + L-

leucine (45 mg/l; Sigma, Stienheim, Germany) and chloramphenicol (12.5 mg/ml; Sigma, 

Stienheim, Germany). 

Gal counterselection: M63 + agar + glycerol (0.2%; Sigma, Stienheim, Germany) + D-

biotin (1 mg/l) + L-leucine (45 mg/l) +DOG (0.2%; Sigma, Stienheim, Germany) and 

chloramphenicol (12.5 mg/ml).  

Gal indicator plates: MacConkey agar (Difco, BD Biosciences) + D-galactose (1%) and 

chloramphenicol (12.5 mg/ml).  

Washing solution: 1  M9 medium (6 g/L Na2HPO4, 3 g/L KH2PO4, 1 g/L NH4Cl, 0.5 g/L 

NaCl) 

 

PCR amplification of the galK targeting cassette 

The galK targeting cassette for JAK2 exon 12 was PCR amplified using 1 ng of pgalK 

plasmid as template.
137

 The plasmid contains wild type galK open reading frame and an 

em7 promoter. The following primers were used: 

 JAK2-galK-F 5’-TAAGGAAGTGATTATAATTTTGAATGTATGAAGTAACTAAGAAGAA 

ATATCCTGTTGACAATTAATCATCGGCA-3’and JAK2-galK-R 5’-CAAAAAGAAAAT 

TAAGATTCCATTCTTAGGATAATTAAGATAATTAATTTTCAGCACTGTCCTGCTCCT

T-3’. 

The sequence homologous to JAK2 intron 11 and 12 is in italics and the sequence 

recognizing galK is underlined. PCR conditions are as follows, 94°C 2min, followed by 

30 cycles of 94°C 15 sec, 60°C 30 sec, 72°C 1 min, and a final extension for 15 min. 2 l 

DpnI was added per 25 l reaction, and incubated at 37°C for 1 hour to remove 

remaining plasmid template. The DpnI-digested PCR product was gel-purified, and 100 

ng was used for recombineering. 
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Preparation of electrocompetent cells and electroporation  

500 l overnight culture of SW102 was diluted in 25 ml Luria–Bertani (LB) medium in a 

50 ml conical flask and grown at 32°C until OD600 value reached 0.6. Then, 10 ml of 

culture was transferred to another 50 ml flask and induced at 42°C for exactly 15 min in a 

waterbath. The remaining culture was left at 32°C as uninduced control. After 15 min the 

two samples were cooled in ice water slurry for 15 min and centrifuged for 5 min at 

5000g at 0°C. The pellet was washed twice with 10 ml ice-cold ddH2O. After the second 

washing, the supernatant was removed completely, and the pellet (50 l each) was kept 

on ice until electroporated with BACs or PCR products. An aliquot of 25 l was taken for 

each electroporation in a 0.1 cm cuvette (BioRad) using a Bio-Rad gene pulser at 25 μF, 

1.75 kV with a pulse controller set at 200 .  

 

GalK positive selection 

The JAK2 WT BAC was introduced into empty SW102 bacteria using electroporation. 

Electrocompetent SW102 cells containing JAK2 WT BAC was prepared as described 

above, and electroporated with galK targeting fragments. The bacteria were recovered in 

1 ml LB for 1 h in a 32°C shaking block. Then, 1 ml of the bacteria were pelleted and 

washed twice with 1 ml of 1 M9 salts. After the second wash, the pellet was resuspended 

in 1 ml of 1 M9 salts and plating 100 l or 100 l after 1:10 dilution on M63 minimal 

medium plates. The plates were cultured at 32°C for 3 days. Two colonies from the plate 

were streaked on indicator plate and a single dark red Gal
+
 colony (JAK2-galK BAC) was 

used for future galK negative selection step. 

 

Construction of inducible flip-floped human JAK2 exon12 N542-E543del and human 

JAK2 exon12 E543-D544del fragments for recombineering 

A 465 bp fragment containing either JAK2 exon12 N542-E543del or JAK2 exon12 E543-

D544del was PCR amplified from granulocyte DNA of PV patients using primer pair 

2075 (forward), 5’-CAAAGTTCAATGAGTTGACCCC-3’ and 2076 (reverse), 5’-

TGCTAACATCTAACACAAGGTTGG-3’, which are located in intron 11 and intron 12, 

respectively. The PCR product was cloned into the TOPO TA cloning vector (Invitrogen 
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Carlsbad, USA) and sequenced to make sure no other mutation is present. These plasmids 

were used as templates for the next PCR step.  

 

To make the inducible flip-floped transgene, a lox71 site was introduced between intron 

11 and primer 2076 while a lox66 site was introduced between primer 2075 and intron12. 

The following primers were used, with underline showing the homology arm in intron 11 

and 12, italics showing sequence of lox71 (forward) and lox66 (reverse), and bold 

showing the same sequence as primer 2076 and 2075 respectively.  

lox71 intron forward: 5’-TAAGGAAGTGATTATAATTTTGAATGTATGAAGTAAC 

TAAGAAGAAATATTACCGTTCGTATAGCATACATTATACGAAGTTATTGCTAACA

TCTAACACAAGGTTGG-3’; lox66 intron reverse: 5’-CAAAAAGAAAATTAAGAT 

TCCATTCTTAGGATAATTAAGATAATTAATTTATAACTTCGTATAGCATACATTAT

ACGAACGGTACAAAGTTCAATGAGTTGACCCC-3’ 

The PCR conditions were 94°C for 2 min, 30 cycles of 94°C for 30 sec, 60°C for 30 sec, 

72°C for 1 min, and final extension for 15 min. The PCR product was digested with DpnI 

and gel purified to serve as the targeting fragment for recombineering. This PCR product 

has the inverted sequence of mutant JAK2 exon 12. 

 

galK counterselection 

300 ng purified PCR fragment containing inverted mutant JAK2 exon 12 was 

electroporated into competent SW102 bacteria containing JAK2-galK BAC. The bacteria 

were then recovered in 1ml LB at 32°C for 4.5 hours, washed twice with 1 ml of 1 M9 

salts, plated onto Gal counter selection plates, and grown at 32°C for 3 days. 20 colonies 

were picked and screened for successful recombination and correct sequence. 

 

Verification of positive recombinants 

The selected Gal negative clones were analyzed in the following steps. First, PCR 

screening to detect successful recombination based on the size of PCR product. The 

primers 2435, 5’-TGGAAATTCCTTGAAATAATGAGC-3’ and 2436, 5’-TCTTGAGA 

ACTTGGGAGTTGC-3’ were used, which were located outside lox intron primers. PCR 

conditions were: initial denature at 94°C for 5 min, followed by 30 cycles of 94°C 30 sec, 
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60°C 30 sec, 72°C 40 sec and a final elongation for 15 min. Second, the clones with 

successful recombination were sequenced with BigDye® Terminator v3.1 Cycle 

Sequencing Kit and AB 3130 genetic analyzer (Applied Biosystems, Darmstadt, 

Germany) using the same primer pair as above, which covered the region of homologous 

recombination. Finally, a clone with correct sequence was chosen and analyzed by XhoI, 

PacI and SalI digestion of BAC DNA using unmodified JAK2-WT BAC DNA as a 

control. Digested DNA was run in a pulse field gel (CHEF-DRII, Biorad, Hercules, 

USA). The conditions were: 6V/s, 1 to 25s linear ramping for 16 hours at 14 °C. The 

clone with correct sequence and restriction pattern was selected for microinjection. 

 

Cloning strategy for JAK2 flip-floped exon16-R683G BAC construct 

Overlap extension PCR
140

 was used to introduce the point mutation into JAK2 exon16. 

The wild type human JAK2 cDNA was used as template to introduce the JAK2 exon16 

R683G mutation. The unique BsiWI restriction site in primer 2575 and HpaI restriction 

sites in primer 2581 were present naturally in the sequence of human JAK2 exon 13 and 

exon 22 respectively. 

 

Firstly, two separate PCR reactions using primer pair 2575/2577 and 2576/2581 were set 

up to get two PCR products with overlapping ends. The sequences of the primers are: 

2575, 5’-TTAAAGGCGTACGAAGAGAAGTAGGAGAC-3’; 2577, 5’-TTTCCTGTCT 

TCCTGTCTTCTTCTCCGAT-3’; 2576, 5’-TGTGCCAAAAATATTCTGCTTATCGGA 

GA-3’ and 2581, 5’-TCTTGTGGCAAGACTTTGGTTAACCCAAA-3’. Primers 2577 

and 2576 are mutagenic primers divergently oriented but overlapping at their 5’� ends. 

PCR conditions were: initial denature at 94°C for 5 min, followed by 30 cycles of 94°C 

30 sec, 60°C 30 sec, 72°C 40 sec and a final elongation for 15 min. The two intermediate 

PCR products with overlapping ends were mixed and 1:500 diluted to serve as the 

template in the second round of PCR using primers 2575 and 2581. PCR conditions were 

the same as above except elongation for 1 min instead of 40 sec. The final PCR product 

was gel purified and cloned into the TOPO TA cloning vector (Invitrogen, Carlsbad, 

USA) for sequencing. A clone containing JAK2-R683G and without other mutation was 

selected. The plasmid was digested with BsiWI and HpaI. The BsiWI/HpaI fragment was 
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gel purified and ligated into BsiWI and HpaI digested BAC integration construct FF, thus 

giving rise to BAC JAK2 R683G integration construct FF. The BAC integration fragment 

was obtained by digesting BAC JAK2-R683G integration construct FF with EcoRI and 

AgeI.  

 

The resultant BAC integration fragment was subsequently transformed into 

electrocompetent EL250 cells containing BAC CTD2025A15 and recovered at 32°C for 

1 h. The transformants were spread on an LB plate with both Amp (100 μg/ml) and 

chloramphenicol (12.5 μg/ml) and grown at 32°C overnight. A clone with double 

resistance was selected and the ampicillin cassette was removed by the transiently 

expressed Flpe recombinase.
139

 Briefly, a 5 ml overnight culture was added into 20 ml of 

LB with chloramphenicol and grown until OD600 0.4. 0.2 ml of sterile 10% L-arabinose 

was added to induce Flp expression for 1 hour. The culture was diluted and plated on LB 

with chloramphenicol, then grown at 32°C overnight. The colonies were subjected to 

sequencing and restriction enzyme digestion for verification. The correct BAC with 

JAK2-R683G was ready for microinjection. 

 

Pronuclear microinjection 

For oocyte injection, BAC DNA was isolated from 200 ml overnight culture with the 

Nucleobond BAC 100 DNA purification kit (Macherey-Nagel, Dueren, Germany). 50 μg 

BAC DNA was digested with SalI overnight at 37°C to remove the vector backbone. Five 

milliliter Sepharose CL4b column (GE healthcare, Uppsala, Sweden) was equilibrated 

with 30 ml injection buffer (10 mM Tris HCl pH7.5, 0.1 mM EDTA). Digested DNA was 

run through the column and eluted with 10 ml injection buffer. Ten 0.5 ml fractions were 

collected and 10 μl from each fraction was used to run pulse field gel electrophoresis for 

testing the quality of purified BAC fragments. The fraction with OD260/280 ratio higher 

than 1.8 was chosen for pronuclear injection. Purified BAC DNA was microinjected into 

pronucleus of C57BL/6 zygotes and transferred to foster mice. The microinjection was 

done at the Transgenic Mouse Core Facility at Biozentrum, University of Basel. 
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Genotyping and copy number analysis 

For genotyping the presence of human JAK2 transgene, DNA was isolated from toe 

sections of newborn mice using Wizard  SV 96 Genomic DNA Purification System 

(Promega, Madison, USA). PCR was performed using human JAK2 specific primers 

1403, 5’-GAGCAAGCTTTCTCACAAGC-3’ and 1404, 5’-AATTCTGCCCACTTT 

GGTGC-3’ that amplify a 530 bp fragment. The number of integrated transgene copies 

was determined by real-time polymerase chain reaction (Real-time PCR) with Power 

SYBR Green PCR Master mix on a 7500 Fast Machine (Applied Biosystems, Foster 

City, USA). The primers 1748, 5’-GTGGCAGCAACAGAGCCTATC-3’, 1749, 5’-

GGAGCTTCAGCACCTCGAGAT-3’ for human JAK2, and 1950, 5’-

TGGCAGCAGCAGAACCTACA-3’ and 1951, 5’-GGAGCTTCAGCCCCACG-3’ for 

mouse Jak2 were used. The threshold cycles (CT) for human JAK2 and mouse Jak2 were 

simultaneously measured for each sample in duplicates.  
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Results 

 

Generation of BAC constructs with JAK2 exon 12 N542-E543del or JAK2 exon 12 

E543-D544del. 

To make an inducible BAC construct with JAK2 exon 12 N542-E543del and JAK2 exon 

12 E543-D544del, we modified our previous BAC construct with wild type human JAK2. 

We used a highly efficient phage-based E. coli homologous recombination system with a 

selectable galK marker, allowing genomic DNA in bacterial artificial chromosomes to be 

modified without using restriction enzymes or DNA ligases. Using as short as 50 bp of 

homology, recombination is accomplished efficiently.  

 

We started with JAK2 wild type BAC
105

 containing 96 kb of JAK2 upstream genomic 

sequence, JAK2 genomic sequence from exon 1 to intron 12, JAK2 cDNA sequence from 

exon 13-25, and a polyadenylation signal from SV40 (Figure 1A). JAK2 wild type BAC 

was electroporated into SW102 cells, which were unable to grow in galactose minimal 

medium because of lacking the galK cassette. A constitutively active galK expression 

cassette was amplified from pgalK plasmid with arms homologous to JAK2 intron 11 and 

intron 12 respectively (Figure 1A). SW102 cells containing JAK2 WT BAC were heat-

induced and made electrocompetent, then electorporated with galK cassette. SW102 cell-

mediated homologous recombination enabled the galK cassette to replace wild type JAK2 

exon 12. Gal
+
 recombinant colonies (JAK2-galK BAC) were selected on galactose 

minimal plates at 32°C for 3 days with chloramphenicol to maintain the BAC. To get a 

pure Gal
+
 clone, two colonies were streaked on MacConkey galactose indicator plates. 

One single bright red Gal
+
 colony was picked and used in the subsequent recombineering 

step. (Figure 1B)  
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Figure 1. Generation of BAC constructs with JAK2 exon 12 mutations by 

recombineering. A) galK positive selection. Wild type JAK2 exon12 in the JAK2 WT 

BAC (up) was replaced by a galK expression cassette (low) by selection on M63 minimal 

plates with galactose and chloramphenical. B) galK negative selection. The galK cassette 

is replaced by a PCR fragment with inverted mutant JAK2 exon 12 (N542-E543del or 

E543-D544del, indicated by red arrow) flanked by loxP sites (black and gray triangle) 

and 50 bp homology. This was achieved by negative selection using minimal medium 

containing 2-deoxy-galactose (DOG) with glycerol as the sole carbon source. C) 

Inducible transgene construct. Cre-mediated recombination will flip the orientation of 

exon 12 into the correct position to allow normal transcription of JAK2 mRNA. 

Recombination will give rise to one wild type loxP and one double mutant lox71/66 site, 

which disables further recombination by Cre-recombinase. 
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A 465 bp fragment containing either N542-E543del or E543-D544del was cloned from 

granulocyte DNA of PV patients. Clones with the desired mutations but no other 

mutations based on sequencing analysis were selected. These clones were used as 

template for the next PCR amplification. A PCR fragment with desired mutations and 

inverted JAK2 exon 12 sequence was amplified using a primer pair containing 50 bp 

homologous sequence with JAK2 intron 11 and intron 12 respectively. To make inducible 

flip-floped JAK2 exon 12 N542-E543del or exon 12 E543-D544del transgenes, loxP sites 

were inserted just adjacent to the homologous arm (Figure 1B). In this configuration, no 

full length human JAK2 protein can be made since splicing from exon 11 to exon 13 will 

result in a frame shift creating a stop codon. Transgenic founder mice will be crossed 

with VavCre and MxCre transgenic mice to induce expression of Cre recombinase. 

Recombination of anti-parallel loxP sites by Cre will result in flipping the orientation of 

the exon 12 sequence, restoring a functionally active transgene (Figure 1C). To ensure no 

additional recombination, mutant loxP sequences were used (lox66 in the forward primer 

and lox71 in the reverse primer), so that after one recombination a double mutant loxP 

site is produced, which is unable to respond to Cre recombinase. 

 

200 ng of DpnI-digested, gel-purified JAK2 exon 12-inverted fragment was 

electroporated into heat-induced electrocompetent SW102 Gal
+
 cells containing JAK2-

galK BAC. Upon recombination, the galK expression cassette was replaced with inverted 

mutant JAK2 exon 12 in the BAC (Figure 1B). The cells were washed with M9 salts to 

remove any remaining rich medium and selected against galK on plates with minimal 

media containing glycerol, 2-deoxy-galactose (DOG) and chloramphenicol for 3 days. 

Galactokinase, the product of the galK gene, phosphorylates DOG and produces toxic 2-

deoxy-galactose-1-phosphate, so only cells without the galK cassette can survive. Twenty 

galK negative colonies from each construct were picked and subjected to PCR screening 

using primer pairs located outside the homologous region. Correct recombination gave 

rise to a product of 860 bp, while no recombination or rearrangement gave products with 

wrong sizes (data not shown). 18 out of 20 clones for N542-E543del, and 12 out of 20 

clones for E543-D544del underwent correct recombination, showing high efficiency of 

this method.  8 clones from each construct were selected for sequencing using primers 
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covering the entire region of homologous recombination. Figure 2 shows that the correct 

JAK2 exon 12 mutations were introduced after recombination. To determine whether any 

unexpected deletions, insertions or other recombination were generated during this 

procedure, two clones with correct sequence from each exon 12 mutation and the original 

wild type clone were selected for restriction analysis by XhoI and PacI and run on a pulse 

field gel, (Figure 3A). All of the four analyzed JAK2 exon 12 mutant BAC clones had the 

same restriction pattern as the original unmodified JAK2 WT BAC, suggesting no 

additional events had occurred. Thus the correct BAC constructs with JAK2 N542-

E543del or E543-D544del were generated and ready for pronuclear injection. 

 

Purification of the linear BAC DNA for pronuclear injection. JAK2 N542-E543del 

BAC clone 8 and JAK2 E543-D544del BAC clone 5 were used for oocyte injection. 50 

μg BAC DNA was digested with SalI to remove the vector backbone and purified over a 

Sepharose CL-4B column. Ten fractions were collected and 10 μl from fractions 4 to 10 

were run on a pulse field gel to detect the integrity of the linear BAC and separation from 

BAC backbone (Figure 3B). 

 

Production of the BAC transgenic mice. Two different concentrations of purified BAC 

DNA (1 ng/μl and 0.25 ng/μl) were used for pronuclear injection into fertilized C57BL/6 

mouse zygotes. Newborns were obtained with both concentrations. For the JAK2 N542-

E543del BAC construct, 22 newborn mice were obtained, and three of them (N1, N2 and 

N3) contained the transgene as confirmed by genotyping using human JAK2 specific 

primers (Figure 4A). For the JAK2 E543-D544del BAC construct, 23 newborn mice were 

obtained, and two of them (D1 and D2) contained the transgene (Figure 4B). Transgene 

copy number in all founder mice was measured using quantitative Real-time PCR by 

comparing the CT value of human JAK2 with mouse Jak2 (Table 1). N3 has around 7 

copies, D2 has around 2 copies, and all other founders have one copy. These mice will be 

crossed with VavCre and MxCre transgenic mice. The double transgenic mice will flip 

the inverted JAK2 exon 12 sequence leading to transcription of mutant JAK2 and detailed 

characterization will be carried out.   
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Figure 2. Sequence of BAC constructs for exon 12 and 16 mutations. 

A) Alignment of wild type and mutated JAK2 exon 12 and exon 16 sequence with 

corresponding amino acids. The red characters indicate mutations. B) Sequencing for 

exon 12 and exon 16 mutations in the BAC constructs. Upper panel, JAK2 N542-E543del 

compared with wild type sequence; middle panel, JAK2 E543-D544del compared with 

wild type sequence; lower panel, JAK2-R683G compared with wild type sequence. The 

deleted nucleotides are shown within the red boxes. Arrows show the positions where 

mutations occur.  
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Figure 3. Restriction analysis and purification of BAC clones. A) XhoI and PacI 

restriction analysis of BAC DNA by pulse field gel electrophoresis. Unmodified wild 

type construct and two of each JAK2 exon 12 mutant constructs after galK 

conterselection were digested with XhoI and PacI. N, JAK2 N542-E543del; D, JAK2 

E543-D544del, numbers indicate the clone numbers. B) Purification of linearized BAC 

using Sepharose CL-4B column. JAK2 N542-E543del BAC is shown. SalI digestion 

removes most part of the BAC backbone. Fractions from 4 to 10 were run on a pulse field 

gel. The 6 kb fragment is the backbone, while the 186kb fragment contains the JAK2 

transgene.  

 
 
 
 
 
 
 
 
 

Figure 4. Genotyping for the presence of transgene in newborn mice. Human JAK2 

specific primers were used. DNA from human JAK2-V617F transgenic mice was used as 

positive control (pc). A) Genotyping for JAK2 N542-E543del transgene. Three transgenic 

founders were obtained. B) Genotyping for JAK2 E543-D544del transgene. Two 

transgenic founders were obtained.  
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Generation of BAC construct with JAK2 exon 16 R683G mutation. 

We modified BAC integration construct FF (Figure 5B) to introduce JAK2 R683G in the 

sequence and recombined it with BAC CTD2025A15 (Figure 5A). By site-directed 

mutagenic overlap extension PCR, we introduced JAK2-R683G into a PCR-amplified 

fragment from wild type human JAK2 cDNA, containing JAK2 sequence from exon 13 to 

exon 22, and flanked by naturally present BsiWI and HpaI restriction sites (Figure 6A). 

The PCR fragment was cloned into the TOPO TA cloning vector and checked for correct 

sequence. A clone with JAK2-R683G, named JAK2-R683G intermediate, was selected 

for the next step. The BsiWI/HpaI fragment was cut out from the JAK2-R683G 

intermediate plasmid and subcloned into the BAC integration construct FF, replacing the 

counterpart in the construct, and we named it BAC integration construct FF R683G 

(Figure 6B, step 1). The BAC integration fragment was cut out by EcoRI and AgeI from 

BAC integration construct FF R683G (Figure 6B, step 2), and used for recombination 

with BAC CTD2025A15 in EL250 cells. Clones with resistance to both Amp and 

Chloramphenicol were selected and expression of Flpe recombinase was induced by L-

arabinose to remove the Amp cassette (Figure 6B, step 3, Figure 5C). We then performed 

sequencing analysis of JAK2 exon 16 and restriction pattern analysis to confirm the right 

BAC clone (Figure 2B lower panel and Figure 7). The digestion pattern was the same as 

predicted by vector NTI software, indicating no other recombination occurred. This final 

JAK2 R683G BAC construct now contained 96 kb 5’-upstream sequence of JAK2, JAK2 

genomic sequence from exon 1 to the first 1 kb of intron 12, and inverted JAK2 cDNA 

exon 13-25 (with R683G) plus a polyA site, flanked by anti-parallel lox71 and lox66 

sites. No full-length JAK2 protein can be made in this configuration. As with the BAC 

constructs with exon 12 mutations, recombination of the antiparallel loxP sites will flip 

the orientation of the cDNA fragment from exon 13 to the polyA site, restoring the 

functionally active JAK2 transgene. The construct now is waiting for oocytes injection to 

generate transgenic mice.   
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Table 1. Copy number analysis of founders for JAK2 transgene by real-time PCR. 

 

 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Structure of BAC CTD2025A15 and BAC integration construct FF. 

A) BAC CTD2025A15 contains 96 kb of JAK2 5’ upstream sequence, JAK2 genomic 

sequence from exon 1 to the first 1kb of intron 12. B) BAC integration construct FF 

contains the remaining sequence of JAK2 intron 12, cDNA of exons 13-25 in an inverted 

orientation, and an Amp cassette flanked by Frt sites. C) Final construct with JAK2 

R683G. pA, polyadenylation signal; SA, splice acceptor. 

copy number

CT1 CT2 average CT1 CT2 average 2*2^(-delta CT)

N1 26.20 26.17 26.19 25.05 24.95 25.00 1.19 0.9

N2 26.90 26.77 26.83 24.76 24.82 24.79 2.04 0.5

N3 23.68 23.45 23.57 25.30 25.35 25.33 -1.76 6.8

D1 26.13 26.15 26.14 24.31 24.34 24.33 1.81 0.6

D2 24.18 24.13 24.15 24.14 24.29 24.22 -0.07 2.1

negative ctrl 35.70 35.84 35.77 24.10 24.03 24.06 11.71 0.0

10 copy ctrl 23.05 23.04 23.04 25.36 25.36 25.36 -2.31 9.9

20 copy ctrl 23.12 23.20 23.16 26.62 26.45 26.53 -3.37 20.7

1 copy ctrl 27.11 27.22 27.16 26.16 26.25 26.20 0.96 1.0

human jak2 mouse jak2
mouse number delta CT
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Figure 6. Strategy to make BAC integration fragment containing JAK2 R683G 

mutation. A) Schematic diagram of site-directed mutagenesis by overlap extension PCR. 

Block represents template DNA containing wild type human JAK2 cDNA sequence from 

exon 13 to exon 22. Arrows represent primers. The site to introduce the R683G mutation 

is indicated by red dots. First, two separate PCR reactions were set up using primer pairs 

2575/2577 or 2576/2581. PCR products using primer pair 2575/2577 gave rise to product 

a, while primer pair 2576/2581 gave rise to product b, which have overlap in their ends. 

In the second step, the two intermediate PCR products were mixed and diluted as the 

template for the second round of PCR using primer pair 2575/2581. The unique BsiWI 

and HpaI restriction sites in primer 2575 and 2581 were present naturally in the sequence 
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of human JAK2 exon 13 and exon 22, respectively. B) Strategy of generating the BAC 

integration fragment. Step 1: the final PCR product from A was digested with BsiWI and 

HpaI and inserted to the BAC integration construct FF in an inverted orientation. Step 2: 

the integration fragment was cut out using EcoRI and AgeI and recombined with BAC 

CTD2025A15 by homologous recombination. Step 3: the Amp selection marker was 

removed by arabinose-induced expression of Flpe recombinase.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Restriction analysis of two final BAC clones with JAK2-R683G. The 

digestion pattern is the same as predicted by vector NTI software. 
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Discussion 

 

MPD includes a heterogeneous group of diseases characterized by excessive production 

of various myeloid lineages of blood cells. Various JAK2 mutations are found to be 

responsible for the pathogenesis of MPD. JAK2-V617F is found to be present in the 

majority of PV and a large proportion of ET and PMF patients.69-72 While PV patients 

have a tendency to progress from heterozygous to homozygous JAK2-V617F by means of 

homologous recombination, ET patients usually stay at heterozygous state stably.69,73 

JAK2 exon 12 mutations occur in PV patients who are negative for JAK2-V617F with 

clinical manifestation of isolated erythrocytosis. Newly identified JAK2 exon 16 

mutations involving R683 define a subgroup of acute lymphoblastic leukemia that is 

associated with trisomy 21. The occurrence of homozygosity is rare in PV patients with 

JAK2 exon 12 mutations and DS-ALL patients with exon 16 mutations.82,127,132  

 

Transgenic mouse model is a very useful tool for studying human gene function and 

regulation in the whole organism, which could recapitulate human diseases that involves 

deregulation of a particular protein. It is not completely clear why JAK2-V617F is 

associated with a wide spectrum of phenotypes, while JAK2 exon 12 mutations can only 

lead to PV and JAK2 exon 16 mutations are related to DS-ALL. Three research groups 

have established transgenic mouse models expressing human JAK2-V617F. The results 

showed evidence that low levels of JAK2-V617F favor magekaryopoiesis, while higher 

levels of JAK2-V617F promote erythropoiesis and granulopoiesis, suggesting the mutant 

gene dosage might contribute to the onset of phenotype.105-107 

 

To further define the pathologic role of various JAK2 mutations, and study the functional 

differences between different JAK2 mutations, we are establishing several transgenic 

lines inducibly expressing JAK2 exon 12 and JAK2 exon 16 mutations. Fourteen different 

JAK2 exon 12 mutant alleles and five JAK2 exon 16 mutant alleles have been reported so 

far.82-84,86-88,132 We chose two of the most frequent exon 12 mutations (N542-E543del and 

E543-D544del) and one of the most frequent exon 16 mutations (R683G) to develop 

transgenic mouse lines. 
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Bacterial artificial chromosomes (BACs) can accommodate large genomic DNA 

fragments, which make it possible to include large upstream regulatory sequences of a 

gene in a BAC. Using highly efficient prophage-based Escherichia coli homologous 

recombination systems, we have generated three BAC constructs containing human JAK2 

exon 12 or exon 16 mutations. Constitutive expression of JAK2-V617F transgene in mice 

has led to death before establishment of transgenic lines,105 so we used the Cre-loxP 

system to realize inducible expression of JAK2 mutants by inverting the sequence of exon 

12 (for exon 12 constructs) or cDNA13-25 (for the R683G construct) and flanking them 

with loxP sites. The expression of Cre recombinase will be obtained by crossing the mice 

with VavCre or MxCre transgenic mice, and the transcription of mutant human JAK2 

mRNA is naturally under the control of JAK2 promoter. So far, we have successfully 

obtained 3 transgenic founder mice with JAK2 N542-E542del (N1, N2 and N3) and 2 

transgenic founder mice with JAK2 E543-D544del (D1 and D2). The BAC construct with 

JAK2 R683G is ready for pronuclear injection. To induce activation of the transgene, we 

will cross the mice with the VavCre and MxCre transgenic mice141,142 to get double 

transgenic mice. In VavCre mice, expression of Cre recombinase is directed by the Vav 

promoter, which has been shown to be restricted to hematopoietic systems, so the double 

transgenic mice should have expression of mutant JAK2 exon 12 only in their blood 

systems. In MxCre mice, the expression of Cre is under the control of interferon 

inducible Mx1 promoter, which can be induced by injection of polyinosine-polycytosine 

(pIpC). In these mice, DNA recombination is mediated in bone marrow at high 

efficiency, so it is widely used in studies of hematopoiesis.142 

 

In the five transgenic founders, N3 and D2 have more than one copy (7 and 2 

respectively) as determined by real-time PCR, the others have around one copy or less. 

Low copy numbers of transgenes are normal for introducing BAC DNA into the zygotes 

because of the large size of BAC DNA compared to plasmid DNA, although higher copy 

numbers can be observed occasionally.  

 
As we did for the JAK2-V627F transgenic mice, the integration site of the transgene will 

be determined by fluorescence in situ hybridization (FISH) and spectral karyotyping 
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(SKY) analysis. The exact integration site can be identified by restriction digest and 

circular ligation followed by PCR and sequencing. Clarifying the integration sites will tell 

us how the multicopies are arranged in the genome and if they interrupt functions of 

flanking genes, which could also contribute to pathogenesis. 

 
In the first set of experiments, all transgenic founder mice will be crossed with MxCre 

mice and the offspring positive for double transgenes will be injected with pIpC to induce 

Cre expression. We will observe the presence of abnormalities in blood counts and 

whether there is an MPD-like phenotype developing following Cre-mediated 

recombination. JAK2 exon 12 mutations only occur in PV patients at low percentage and 

rarely transform to homozygosity. Therefore, we expect that the transgenic mice with 

exon 12 mutations will exhibit predominantly increased erythropoiesis. 

 

If we can get at least one transgenic line of each construct with phenotype, we will follow 

the blood counts of each line and make a series of comparisons between VavCre N strain 

mice, and MxCre N strain mice, between VavCre D strain mice, and MxCre D strain 

mice, and between N strain and D strain mice. The phenotype of mice with human JAK2-

V617F transgene was shown to be correlated with the ratios between the expression 

levels of mutant JAK2 and mouse wild type Jak2. MxCre FF1 mice, which had a higher 

JAK2-V617F expression, developed a PV-like phenotype, while the VavCre FF1 mice 

having a lower JAK2-V617F expression resulted in ET-like phenotype.105 The influence 

of expression levels of the exon 12 mutations on the phenotypic outcome will be 

determined. Our N3 mouse has around 7 copies, so it is possible to get MxCre N3 mice 

with different number of active transgene copies by adjusting Cre expression level 

through altering the number of pIpC injections as shown in JAK2-V617F transgenic 

mice105. It will be interesting to see how different mutant gene dosages affect the 

presentation of phenotype, and if the two different JAK2 exon 12 mutations will cause the 

same phenotype. 

 

The BAC construct with JAK2-R683G is ready for pronuclear injection. After the mice 

are born and genotyped, the analysis procedure will be similar to that of JAK2 exon 12 
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mutant transgenic mice in regard to copy number measurement, integration site analysis, 

induction of Cre expression by crossing with VavCre and MxCre mice and blood count 

analysis, etc. The simultaneous occurrence of JAK2 exon 16 mutations and trisomy 21 in 

DS-ALL indicates multigene involvement in chromosome 21 might contribute to the 

development of ALL in Down’s syndrome patients, since recipient mice transplanted 

with bone marrow cells expressing Jak2 exon 16 I682-D686del only displayed a MPD-

like phenotype.136 It is interesting to see what kind of phenotype developed in the 

transgenic mice with JAK2-R683G. This mouse model will be a useful tool to discover 

the yet unknown genes that interact with JAK2-R683G to drive the phenotype to B 

lymphoid specific leukemia. 

 

The further analysis using these transgenic models will include the comparison of the 

expression profiles of JAK2-V617F and JAK2 exon 12 as well as JAK2 exon 16 

transgenic mice. It will elucidate downstream targets regulated by different JAK2 

mutations, which might contribute to distinct phenotypes caused by different mutations 

that are all constitutively activated. Furthermore, these mouse models could also be used 

to test the effects of Jak2 inhibitors on the MPD phenotype. The diverse inhibitors could 

exert different efficiency on blocking activity of different JAK2 mutations, which might 

reflect structural dissimilarity behind interaction of compounds with different mutants 

and shed light on how configurational differences lead to divergent phenotypes. 
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PERSPECTIVES 
 

Myeloproliferative disorders (MPD) are a group of related diseases characterized by 

excessive production of one or more terminally differentiated non-lymphoid blood cell 

lineages. A somatically acquired JAK2-V617F mutation is the most frequent genetic 

lesion found in PV, ET and PMF. More than 95% of PV and about 50% of ET and PMF 

patients carry this mutation.69-72 Besides JAK2-V617F, JAK2 exon 12 mutations 

contribute to the pathogenesis of most PV patients who are negative for JAK2-V617F.82 

The mutations in JAK2 lead to constitutive activation of the JAK-STAT signaling 

pathway resulting in unregulated proliferation of blood cells. JAK2 plays a central role in 

mediating signaling from cytokine receptors required for normal hematopoiesis such as 

receptors for erythropoietin (EPOR), thrombopoietin (MPL), and granulocyte colony-

stimulating factor (GCSFR).30 Sequencing of these candidate receptors led to the 

identification of MPL mutations, which are present in about 5% of PMF patients and 1-

9% of ET patients.
89-93

 These findings provided crucial insights into the genetic basis of 

MPD, but many questions are still open regarding the molecular pathogenesis of MPD. 

 

Identification of disease-causing mutations in JAK2 and MPL mutation negative 

patients 

Although JAK2-V617F can be found in almost all PV and half of ET and PMF patients, 

the disease-causing mutations in the rest of MPD patients remain mysterious. Analysis of 

the differences in experimental and clinical features of JAK2-V617F positive and JAK2-

V617F negative MPD cannot separate them into distinct subsets based on the presence of 

JAK2-V617F.
143

 The subsequent identification of JAK2 exon 12 mutations in PV and 

MPL mutations in ET and PMF patients indicates that in JAK2-V617F negative MPD, 

other somatic mutations responsible for aberrant signaling may act in a similar fashion as 

JAK2-V617F. Considering the important role of JAK-STAT signaling in hematopoiesis, 

maybe partially through the crosstalk with MAPK and PI3K pathways, high throughput 

sequencing of all components in these pathways including positive and negative 

regulators will possibly lead to identification of novel mutations participating in the 

pathogenesis of MPD. 
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Additional genetic events leading to clonal hematopoiesis 

Retroviral expression of mutant Jak2 in mouse bone marrow transplantation assays 

demonstrated that mouse Jak2-V617F or Jak2 exon 12 mutations were sufficient to 

induce a PV-like phenotype, and mice transduced with Jak2-V617F developed 

myelofibrosis later on.70,101-104 JAK2-V617F transgenic mice displayed a PV or ET 

phenotype, depending on the expression levels of mutant human JAK2 versus wild type 

mouse Jak2, which suggested that the presence of JAK2-V617F is sufficient to cause the 

disease.105 However, accumulating evidence indicates that there are probably additional 

genetic events contributing to the development of MPD. Our previous data119 showed that 

in some MPD patients, the percentage of granulocytes and platelets with JAK2-V617F 

was often markedly lower than the percentage of clonal granulocytes determined by X-

chromosome inactivation assays in female patients, suggesting that in a proportion of 

MPD patients JAK2-V617F occurred on the background of clonal hematopoiesis caused 

by other genetic events. In addition, studies of families with myeloproliferative disorders 

demonstrate that JAK2-V617F was not transmitted via germ line, but that family 

members rather inherited genetic predisposition for acquisition of JAK2 mutations.144 

Moreover, AML that occurred in JAK2-V617F MPD patients frequently became JAK2-

V617F negative during the transformation, and clonality analysis results supported the 

hypothesis that the MPD clone and AML clone might originate from a common JAK2-

V617F negative ancestor.145 JAK2 mutation-negative erythroid endogenous colonies 

(EEC) were found in a number of PV patients, which hint at the existence of unknown 

mutation(s) in addition to JAK2 mutations.121,122,127 Furthermore, the coexistence of JAK2-

V617F and JAK2 exon 12 mutations in different clones and the presence of JAK2 wild 

type EECs from the same patient provided additional evidence that the acquisition of 

JAK2 mutations has occurred within an already abnormal clone, which harbored 

unknown mutation(s) contributing to cytokine hypersensitivity and increase the 

likelihood for acquisition of JAK2 mutations.127 The inheritable or acquired alleles 

cooperating with JAK2 mutations remain to be identified, and whether these alleles 

contribute to the manifestation of MPD phenotype needs to be elucidated. The ongoing 

screening based on SNP array analysis and gene expression profiling of JAK2 mutation-

negative EECs is expected to help in addressing these questions. 
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One mutation, three types of diseases 

The JAK2-V617F mutation is associated with PV, ET and PMF.
69,72

 The question why 

the same mutation causes three related but clinically and pathologically distinct 

phenotypes in patients remains unclear. Patients with PV can progress from JAK2-V617F 

heterozygosity to homozygosity as a result of mitotic recombination, which is rare in ET 

patients, suggesting that there are important genetic differences between PV and ET.
73

 

Frequent presence of homozygous erythroid colonies in PV patients and data from bone 

marrow transplantation and transgenic mouse models are consistent with the notion that 

JAK2-V617F gene dosage influences the MPD phenotype. Low expression of JAK2-

V617F transgene favors expansion of the megakaryocyte lineage, mimicking ET; 

intermediate expression was accompanied by trilineage expansion with increased 

erythropoiesis, granulopoiesis and thrombopoiesis, whereas high expression from 

retroviral vectors resulted in erythroid expansion, but normal granulopoiesis and 

megakaryopoiesis.
105

 Moreover, the host genetic background may also contribute to 

phenotypic diversity among MPDs, as different strains of mice (Balb/c or C57BL6) have 

variations in the degree of leukocytosis and myelofibrosis.
103,104

 Analysis of single 

nucleotide polymorphisms (SNPs) on EPOR, MPL, GCSFR and JAK2 locus in MPD 

patients identified unique SNPs in JAK2 that were specifically associated with PV or 

ET.
146

 These results need to be confirmed in a larger or different cohort. High resolution 

SNP array analysis within and surrounding the JAK2 region may facilitate identification 

of specific alleles involved in MPD pathogenesis. 

 

Different mutations in the same gene – different phenotype 

While we are still wondering how a single JAK2-V617F is implicated in three apparently 

different MPD phenotypes, we are also curious about how mutations in different regions 

of the same gene (JAK2-V617F, JAK2 exon 12 mutations and JAK2 exon 16 mutations) 

cause different phenotypes. All of these mutations confer a similar cytokine independent 

growth advantage on cytokine-dependent cell lines such as BF3/EPOR cells in vitro. But 

in vivo, JAK2-V617F could be found in PV, ET and PMF patients; JAK2 exon 12 

mutations only cause PV with distinct clinical features from those of JAK2-V617F; JAK2 

exon 16 mutations involving R683 define a subgroup of acute lymphoblastic leukemia 
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that arises in the context of trisomy 21. Given that the in vitro cytokine independence was 

obtained only with coexpression of mutant JAK2 and type I cytokine receptors, such as 

EPOR,147 it is hypothesized that differential interaction of different mutant JAK2 with 

different cytokine receptors might lead to transmission of divergent downstream signals. 

More detailed studies will lead to illustration of functional and structural differences 

among different JAK2 mutations. We are now establishing inducible transgenic mouse 

models with JAK2 exon 12 mutations or with JAK2 R683G. The phenotype and 

pathological analysis of those mice will help us to understand the in vivo functions and 

the molecular pathogenesis of these mutations.  

 

Development of JAK2 inhibitors for therapeutic treatment of PV, ET and PMF  

Most of the current therapies of MPD are confined to alleviating symptoms and 

preventing thrombohaemorrhagic events, rather than eliminating malignant cells. Like the 

BCL/ABL fusion gene found in CML, the landmark discovery of JAK2 mutations in the 

majority of MPD patients designates a critical therapeutic target for treatment. Since the 

constitutive activation of JAK2 caused by mutations results in oncogenic transformation 

in vitro and in vivo, inhibition of JAK2 activity would be an essential step to diminish 

excessive expansion of mature cells and block development of MPD. However, JAK2 

acts as a central regulator of hematopoiesis, so the treatment should be tuned to suppress 

aberrant activation but avoid destroying normal roles of JAK2. The application of large-

scale small molecule library screening will identify more and more pharmaceutical 

compounds targeting JAK2. Our transgenic mouse models with JAK2 mutations will 

provide a valuable tool for assessing effectiveness and safety of specific inhibitors in a 

preclinical scenario.  
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Clonal heterogeneity in polycythemia vera patients with JAK2 exon12 and
JAK2-V617F mutations
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We studied the lineage distribution of
JAK2 mutations in peripheral blood of
8 polycythemia vera (PV) patients with
exon 12 mutations and in 21 PV patients
with JAK2-V617F. Using a quantitative
allele discrimination assay, we detected
exon 12 mutations in purified granulo-
cytes, monocytes, and platelets of 8 pa-
tients studied, but lymphoid cells showed
variable involvement and the mutation

was absent in T cells. Endogenous ery-
throid colonies grew in all patients ana-
lyzed. One patient displayed erythroid
colonies homozygous for the exon 12
mutation with evidence for mitotic recom-
bination on chromosome 9p. In some
patients with exon 12 mutations or JAK2-
V617F, a proportion of endogenous ery-
throid colonies were negative for both
JAK2 mutations. One patient carried

2 independent clones: one with an exon
12 mutation and a second with JAK2-
V617F. The finding of clonal heterogene-
ity is compatible with the hypothesis that
additional clonal events are involved in
the pathogenesis of PV. (Blood. 2008;111:
3863-3866)

© 2008 by The American Society of Hematology

Introduction

Mutations in exon 12 of JAK2 are detected selectively in patients
with polycythemia vera (PV) that are negative for JAK2-V617F
and in some patients with idiopathic erythrocytosis.1 The JAK2-
V617F and exon 12 mutations represent clonal markers useful to
track the hematopoietic lineages involved in myeloproliferative
disorder (MPD).2-6 In patients with MPD, JAK2-V617F is present
in purified hematopoietic stem cells, in myeloid lineages of the
peripheral blood, and in variable proportions of lymphoid cells.7-11

Using a novel sensitive assay, we quantitated the involvement of
exon 12 mutations in purified peripheral blood lineages and in
erythroid progenitor assays. In addition, we addressed the question
of whether JAK2-V617F is present in T cells by clonal analysis.

Methods

Patients

The screening for JAK2 exon 12 mutation in MPD patients was performed
by DNA sequencing.12 All patients except p024 fulfilled the diagnostic
criteria of PV according to the World Health Organization (Table S1,
available on the Blood website; see the Supplemental Materials link at the
top of the online article).13,14 Patient p024 was initially diagnosed with
essential thrombocythemia, and several months later phlebotomies were
started because of rising hemoglobin (175 g/L). Two patients with JAK2
exon 12 mutations (Vi064, Vi327) were from Vienna, Austria. All other
patients were from Basel, Switzerland. The collection of patient samples
was approved by the “Ethik Kommission Beider Basel” and the “Ethik
Kommission der Universität Wien und des Allgemeinen Krankenhauses der
Stadt Wien-AK.” Written consent was obtained from all patients in
accordance with the Declaration of Helsinki.

Cells, DNA, and RNA analyses

Isolation of granulocytes, platelets, and peripheral blood mononuclear cells
was performed as described.5,15 Sorting of peripheral blood mononuclear
cells, colony assays in methylcellulose, T-cell cloning,16 and the SNaPshot
assay for RNA samples are described in Document S1. The allele
discrimination assay for detection and quantification of JAK2 exon
12 mutations is described in Figure S1. Allele-specific polymerase chain
reaction (PCR) for the detection of JAK2-V617F and microsatellite PCR for
chromosome 9p were performed as reported.5,17

Statistical analysis

We used SPSS version 15.0 (Chicago, IL) to calculate linear and ordinal
regression for the correlations between disease duration and the percentage
of mutant allele and between the percentage of mutant allele and the number
of lineages involved.

Results and discussion

We studied the lineage distribution of JAK2 mutations in peripheral
blood of 8 PV patients with mutations in exon 12 and in 21 PV
patients with JAK2-V617F (Figure 1). Five different JAK2 exon
12 mutations were observed by sequencing, and all of them
contained deletions of 3 or 6 bases (Figure 1A). We devised a novel
assay to quantitate JAK2 exon 12 mutations with a sensitivity of
1% mutant alleles (Figure S1). In all patients analyzed, exon
12 mutations were detectable in granulocytes, platelets, and
monocytes, with the highest allelic ratios in most cases present in
platelets and the lowest in monocytes (Figure 1B top panel).
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Similarly, the JAK2-V617F mutation was present in granulocytes,
platelets, and with the exception of p104, also in monocytes (Figure
1B bottom panel). Interestingly, in patient p021, we detected
2 different JAK2 mutations: N542-E543del (exon 12) and JAK2-
V617F (exon 14). In granulocytes, platelets, and monocytes of
patient p021, the exon 12 mutation was present in higher allelic
ratios than JAK2-V617F.

Only 3 of 8 patients (38%) with exon 12 mutations displayed
detectable signal in lymphoid cells. In patients p221 and Vi064, a

small subset of natural killer (NK) cells carried the mutation, and
only patient Vi327 showed an allelic ratio greater than 10% in NK
and B cells. JAK2-V617F also showed variable engagement of
lymphoid lineages, with NK cells being most frequently involved
(14 of 21, 67%) and in some cases showing very high (� 70%)
allelic ratios (p016, p033, p035, and p103). B cells had low
JAK2-V617F allelic ratios (� 15%), except in one patient (p035).
JAK2 exon 12 mutations have not been observed in T cells by DNA
sequencing,1 and were also absent in our study using a more

Figure 1. Distribution of JAK2 mutations in periph-
eral blood lineages. (A) The location of exon 12
mutations and JAK2-V617F in the Jak2 protein is
shown (top). The amino acid changes caused by the
individual exon 12 mutations are shown below using
the single letter code. Previously described mutations
(asterisk) and newly found mutations (no asterisk) are
shown with the unique patient numbers (UPN) of the
patients included in this study. (B) Lineage distribution
of JAK2 exon 12 mutations (top) and JAK2-V617F
(bottom part). Numbers in boxes indicate the percent-
ages of chromosomes 9 with exon 12 mutations, and
the shading of boxes corresponds to the ranges shown
at the bottom. UPN indicates unique patient number; F,
female; M, male; GRA, granulocytes; NK cells, natural
killer cells; nd, not determined. Numbers in column for
T-cell cloning indicate JAK2-V617F positive clones/
total clones analyzed. The phenotypes of JAK2-V617F
positive clones were determined by flow cytometry. NK
cell phenotype: CD3�CD56�; T-cell phenotype:
CD3�CD56�. * Note that patient p021 was positive for
exon 12 mutation N542-E543del and for JAK2-V617F.
(C) Phenotypic analysis of JAK2-V617F positive clones.
Flow cytometic analyses. One JAK2-V617F positive
clone from patient p035 consisted of CD3�CD56�

T cells. All other positive clones from patients p136 and
p116 were CD3�CD56� NK cells (top panel). Allele-
specific PCR for JAK2-V617F showing T-cell clone
from p035 was homozygous for JAK2-V617F, whereas
the clones from patients p136 and p116 were heterozy-
gous for JAK2-V617F (bottom panel).
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sensitive detection assay. Only 2 of 21 patients (p016 and p035)
displayed JAK2-V617F in T cells. The presence of JAK2-V617F in
T cells from PV patients has been described in one study10 but was
rare in other reports.8,9,18-22 All these studies were performed using
bulk cell populations. We established T- and NK-cell clones from
peripheral blood of 10 PV patients with high JAK2-V617F allelic
ratios. In 4 of 10 patients, less than 1% of the total clones were
JAK2-V617F positive (Figure 1B). Surprisingly, only a single
JAK2-V617F positive clone in patient p035 consisted of T cells,
whereas JAK2-V617F positive clones in 2 of 3 patients examined
were NK cells (Figure 1B,C). JAK2-V617F positive CD34�

progenitors from MPD patients were shown to be capable of
differentiating into T cells in thymic organ cultures in vitro.9

However, in patients, maturation of JAK2-V617F positive T cells
occurs very infrequently, possibly because of low frequency of de
novo T-cell genesis in adults. A correlation between the disease
duration and the allelic ratios of JAK2-V617F in granulocytes,
platelets, monocytes, and NK cells was noted (Figure S2), but no
such correlation was found for exon 12 mutations (not shown). The

percentages of mutant alleles also correlated with the number of
lineages involved for both the exon 12 mutations and JAK2-V617F
(Figure S2).

Erythroid colonies that grew in the absence of Epo (EECs) were
detected in all patients (Figure 2), although in some cases the total
number of EECs was small (p041, Vi327, and p115). In 2 patients
with exon 12 mutations (p002 and p041) and one patient with
JAK2-V617F (p136), we found EECs with only wild-type JAK2
sequences in 2 independent experiments. The erythroid phenotype
of the colonies was confirmed by the presence of glycophorin A
mRNA (Figure S3). Sequencing of the entire JAK2 coding region
in these colonies did not reveal any additional JAK2 mutations.
Growth of EECs with only wild-type JAK2 has recently been
reported in PV patients positive for JAK2-V617F.21,23,24 In contrast,
no wild-type EECs in PV patients were found by others.1,3,25,26 Our
results confirm the finding of EECs with only wild-type JAK2 and
suggest clonal heterogeneity of erythroid progenitors, not only in
patients with JAK2-V617F but also in some patients with exon
12 mutations. Interestingly, in the patient with 2 different JAK2

Figure 2. Distribution of JAK2 mutations in erythroid progenitors and loss of heterozygosity on chromosome 9p (9pLOH) analysis in patient Vi327. The total number
of erythroid colonies analyzed and the percentages of colonies with homozygous or heterozygous JAK2 mutation or wild-type JAK2 are shown. Colony assays in
methylcellulose were performed with peripheral blood cells of patients with JAK2 exon 12 mutations (A) or JAK2-V617F mutation (B). Single erythroid colonies were picked and
analyzed individually. Horizontal bars indicate the percentages of colonies with homozygous mutation (■ ), heterozygous mutation (;), or wild-type JAK2 (�). For each patient,
2 bars are shown: the upper representing colonies grown in the presence of erythropoietin (Epo�) and the lower representing colonies grown without erythropoietin (Epo�). The
unique patient numbers (UPN) and the allelic ratios of the JAK2 mutations (%mut or %T) in granulocytes (GRA) are shown in the 2 left columns, and the total number of
erythroid colonies analyzed is shown in the right column. *Note that in patient p021 colonies positive for exon 12 mutation and colonies with JAK2-V617F were found. None of
these colonies carried both mutations simultaneously. (C) Molecular analysis of individual erythroid colonies of patient Vi327. Data from 1 of 4 BFU-E homozygous for the
E543-D544del mutation is shown. T-cell DNA from patient Vi327 was used as control (top row). Allele discrimination assay shows the presence of a homozygous E543-D544del
mutation (left panel). Two microsatellite markers, D9S1779 and D9S1852, demonstrate loss of heterozygosity on chromosome 9p (9pLOH) in the same colony (middle and
right panels). Numbers indicate allele sizes.
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mutations (p021), none of the erythroid colonies carried both
mutations simultaneously (Figure 2), indicating that the exon
12 mutation and JAK2-V617F represent 2 separate clones. Concur-
rent presence of JAK2-V617F with MPLW515 mutations was
previously found in 3 patients with primary myelofibrosis and
3 patients with essential thrombocythemia.27,28 The allelic ratios for
MPLW515 were higher than those for JAK2-V617F, but clonal
analysis was not reported. Therefore, it remains to be determined
whether these cases represent sequential somatic mutations that
occurred in the same clone. Thus, our patient p021 is the first case
with a documented biclonal pattern. The finding of clonal
heterogeneity is compatible with a model in which a stem cell or
progenitor carries a predisposing mutation that increases the
likelihood for acquiring somatic mutations in JAK2 or other as yet
unknown gene(s).

In patient Vi327, we found a homozygous exon 12 mutation in
4 of 32 colonies examined (Figure 2A). In this patient, the allelic
ratio of the exon 12 mutation was more than 50% in granulocytes,
platelets, and monocytes (Figure 1B). The homozygous colonies
exhibited loss of heterozygosity on chromosome 9p (9pLOH;
Figure 2C). Copy number analysis of JAK2 by real-time PCR
excluded gene amplification or deletion as the mechanism (not
shown). Two other cases of homozygous exon 12 mutations were
recently found by sequencing, but the mechanism has not been
studied.12,26 All PV patients with JAK2-V617F exhibited at least
some homozygous colonies (Figure 2B), as reported.25 The only
exception in our series was patient p021, in whom we found
2 different JAK2 mutations. The reason why exon 12 mutations are

more invariably associated with increased erythropoiesis than
JAK2-V617F remains to be determined.
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