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Summary 

Malaria remains a major public health problem that is exacerbated by poor 

implementation of control measures, and by the spread of drug-resistant parasites and 

insecticide resistant vectors. Preventive measures, including those targeted at vectors, are one 

of the four basic elements of the global malaria control strategy. The control methods to use 

should be selective and specific to the control area. The success of the approach of selective 

and targeted interventions requires a good stratification of control areas, which should be 

based on mapping of malaria risk and vector species distribution.  

 

The goal of this thesis was to enhance our understanding of the relationship between 

the distribution of members of Anopheles gambiae complex and climatic and environmental 

conditions, to describe their spatial and temporal distribution, to quantify their unique 

contribution to malaria transmission, and to produce attributed malaria risk maps of Mali. We 

used Bayesian geostatistical modeling, implemented via Markov chain Monte Carlo 

simulation (MCMC), which can quantify the relationship between environmental factors and 

the species distribution by taking into account the spatial dependence present in the data in a 

flexible way that allows simultaneous estimation of all model parameters. In addition, 

Bayesian kriging enables model-based prediction together with the prediction error, a feature 

which is not possible in the classical kriging. 

The analyses described in chapters 2 and 3 identified environmental factors related to 

the distribution of a) the two major species (An. arabiensis and An. gambiae s.s.) which 

compose the An. gambiae complex and b) the chromosomal (Bamako, Mopti, Savanna 

Hybrids) forms of An. gambiae s.s., and produced maps of the geographical distribution of the 

species and chromosomal forms. Estimation of the contribution of species and chromosomal 

forms to malaria transmission in Mali is described in Chapter 4; the spatio-temporal 
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distribution of An. gambiae complex densities and its chromosomal (Mopti, Bamako, 

Savanna, Hybrids) forms in a Sudan savanna village is examined in Chapter 5; the  

investigation of malaria vector ecology during the dry season and its implication for vector 

control is described in Chapter 6, and Chapter 7 presents the spatial pattern of malaria 

transmission in the rice cultivation area of the Office du Niger. 

 

The maps produced in chapters 2 & 3 showed higher frequencies of An. arabiensis in 

the drier Savanna areas and An. gambiae s.s. in the flooded/irrigated areas of the inner delta of 

Niger river, the southern Savanna, along rivers and in the Sahel. The Mopti form was found in 

the same ecological area as An. arabiensis. In addition, it occupied the flooded/irrigated areas 

of the inner delta of Niger River. The Savanna form prefers the Sudan Savanna areas and the 

Bamako form was confined around Bamako city and in part of Sikasso region (South of 

Mali). Analyses in Chapter 4 indicated that high malaria risk was associated with insecticide 

resistance gene (kdr) carriers (Bamako/Savanna chromosomal) and Hybrids compared to the 

non-carriers An. arabiensis and the Mopti chromosomal form, although the association was 

not significant. The attributed risk maps of the different species and subspecies indicated that 

in the middle West and South East part of the country malaria transmission risk is mainly due 

to An. arabiensis, in the irrigated/flooded areas malaria risk is attributed to the Mopti form, in 

the southern part to the Savanna/Bamako forms and in the southern areas of the region of 

Kayes to the hybrids. Thus these results suggest that insecticide control measures must be 

strengthened in the Sahelian (epidemic prone area) and irrigated/flooded areas where An. 

arabiensis and the Mopti chromosomal form, which have no or lower frequency of insecticide 

resistance gene, prevail. Any vector control by means of insecticides in the Southern part of 

the country, where the S molecular form (Savanna and Bamako) predominates, must be 

accompanied by a close insecticide resistance monitoring system.  
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The analyses carried out in Chapter 5 and 6 on the spatial distribution of the sibling 

species of An. gambiae complex in a savanna village showed that the distribution of mosquito 

densities was concentric with higher densities clustering at the periphery of the village at the 

beginning of the rainy season and during the dry season. This distribution was patchy during 

the middle and the end of the rainy season. The chromosomal forms were sympatric 

throughout the seasons. There was a spatial clustering in their relative frequency distribution 

changing over time in the village. The Mopti chromosomal form was the most abundant at the 

beginning and middle of the rainy season and the Bamako form at the end of the rainy season. 

Larval habitats monitoring showed that in the main village of Bancoumana nearly all larval 

habitats were human-made, rain-dependent and dried out 10-12 weeks after the end of the 

rainy season. At the same time, numerous natural puddles highly productive for anopheline 

larvae even during the dry season were located in the fishermen’s hamlets. These were 

adjacent to the receding Niger River bed and 5 km away from the main village. Larval 

habitats in Bancoumana were re-colonized shortly after rainfall suggesting that mosquitoes 

emerging from the riverbed are an important source for the rain-fed water bodies of 

Bancoumana. This observation indicates that control interventions targeting the Mopti form 

should be implemented at the beginning and middle of the rainy season, while those targeting 

the Bamako form should be done at the end of the rainy season. In addition, appropriate 

vector control implemented in the fishermen’s hamlet during the dry season and at the 

periphery of the main village at the beginning of the rainy season may be feasible, sustainable 

at low cost and may ameliorate malaria transmission in this area.   

 

In chapter 7, the analyses of malaria transmission parameters in the rice cultivation 

area of the Office du Niger indicated a strong spatial correlation in mosquito densities, which 

is related to the rice cultivation environment. However, the spatial correlation observed in the 

parous rate (PR) and human blood index (HBI) was weak suggesting that these parameters are 
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more closely related to local conditions such as population behavior and economic status, 

and/or the presence of animals rather than similar environment over large areas. Since both 

the PR and HBI measure the vector-human contact rate, and hence the potential for malaria 

transmission intensity, attention must be paid to the local variations when implementing 

control strategies in rice cultivation areas. 

 

This work makes a substantial contribution to the mapping of the spatial distribution 

of malaria vector species and subspecies which was previously limited by the lack of field 

data and appropriate statistical analyses. It also provides valuable information for 

conventional vector control as well as future implementation for genetically manipulated 

mosquitoes control method.  
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Zusammenfassung 

Malaria ist noch immer eines der größten Probleme der Gesundheitswissenschaften, 

welches durch uneffiziente Ausführung von Kontrollmaßnahmen und durch die Verbreitung 

von Resistenzen in Parasiten und Vektoren gegen Medikamente und Insektizide 

verschlimmert wird. Vorbeugende Maßnahmen, wie Vektorregulierungen, sind eines von vier 

Hauptelementen der weltweiten Malaria Regulierungsstrategie. Der Wahl der 

Kontrollmethoden sollten Entscheidungen zur Zusammenstellung einer gezielten 

Vorgehensweise zur zeitlichen und räumlichen Vektorregulierung vorausgehen. Der Erfolg 

der gezielt ausgewählten Interventionen benötigt eine Aufteilung von Kontrollgebieten mit 

Hilfe von räumlich, aber auch zeitlich beachtenden Kartierungen des Malariarisikos und den 

Verteilungen der Vektorarten. 

 

Das Ziel dieser Arbeit war es erstens das Verständnis von den Beziehungen zwischen 

den relativen Häufigkeitsverteilungen von Abstammungen des An. gambiae Komplexes und 

klimatischen und ökologischen Faktoren zu erweitern, zweitens deren räumliche und zeitliche 

Verteilungen zu bestimmen, und drittens ihren einmaligen Beitrag zur Malaria Verbreitung zu 

quantifizieren und die darauf zurückzuführenden Karten des Malariarisikos für Mali zu 

erstellen. Wir nutzten Bayes’sche geostatistische Modellierungen, die durch Markov Ketten 

und Monte Carlo Simulationen (MCMC) umgesetzt wurden, welche die Beziehung zwischen 

ökologischen Faktoren und der Artenverteilung unter Beachtung der flexiblen räumlichen 

Abhängigkeit der Daten widerspiegeln. Dies erlaubte eine simultane Abschätzung aller 

Modelparameter. Zusätzlich liesen Baye’sches Kriging eine modelbasierte Vorhersage samt 

Vorhersagefehler zu, was nicht durch klassisches Kriging ermöglicht worden wäre. 

Die Analysen in den Kapiteln 2 und 3 identifizieren die ökologischen Faktoren die mit der 

Verteilung der zwei häufigsten Arten (An. arabiensis und An. gambiae s.s.) des An. gambiae 
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Komplexes und ausserdem der chromosomalen Formen (Bamako, Mopti, Savanna, Hybrids) 

von An gambiae s.s. in Verbindung stehen. Zudem wurden in diesen Kapiteln die Karten der 

geografischen Verteilung der Arten und der chromosomalen Formen erstellt. Kapitel 4 

bestimmt die Mitwirkung von Spezien und chromosomalen Formen an der 

Malariaverbreitung in Mali. Kapitel 5 untersucht die räumlich-zeitliche Verteilung der An. 

gambiae Komplex-Dichte und ihrer chromosomalen Formen (Mopti, Bamako, Savanna, 

Hybrid) in einem Dorf in der sudanesischen Savanne. Kapitel 6 erforscht die Malariavektor-

Ökologie während der Trockenperiode und ihre Folge auf die Vektorkontrolle.  Zum Schluss, 

wird in Kapitel 7 das räumliche Muster der Malariaverbreitung in der Reiskultivierung im 

Office du Niger untersucht. 

 

Die erstellten Karten aus Kapitel 2 und 3 zeigen höhere Häufigkeiten von An. 

arabiensis in den trockeneren Regionen der Savanne auf und für An. gambiae s.s. in den 

gefluteten/bewässerten Teilen des inneren Niger Deltas, der südlichen Savanne, entlang der 

Flüsse und im Sahel. Die Mopti-Form teilt sich die selben ökologischen Regionen wie An. 

Arabiesis. Zusätzlich belegt sie allerdings noch die gefluteten/bewässerten Teile des inneren 

Niger Deltas. Die Savanna-Form bevorzugt die sudanesischen Savannen und die Bamako-

Form ist begrenzt auf das Gebiet um Bamako Stadt und Teile der Sikasso Region (im Süden 

Malis). Die Analysen aus Kapitel 4 machen deutlich, dass hohe Malaria Risiken mit den 

Insektizid-Resistenzgenen (kdr) tragenden chromosomalen Formen (Bamako/Savanna) 

assoziiert sind, im Gegensatz zu der nicht Resistenzgen tragenden Form Mopti.  Allerdings 

war dieser Zusammenhang nicht statistisch signifikant. Die entsprechenden Risikokarten der 

verschiedenen Arten und Unterarten lassen den Schluss zu, dass im mittleren Westen und im 

Südosten des Landes das Malariaverbreitungsrisiko hauptsächlich auf An. arabiensis 

zurückzuführen ist. In gefluteten/bewässerten Gebieten ist das Malariarisiko gekoppelt mit der 

Mopti Form in den südlicheren Regionen bis zu den Savanna/Bamako Formen und mit der 
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Hybrid-Form in den südlichen Gebieten der Region Kayes. Diese Resultate legen nahe, dass 

Kontrollmaßnahmen besonderes im Sahel (epidemischen abgelegenes Gebiet) und 

gefluteten/bewässerten Gebieten mit An. arabiensis und der Mopti Form, welche nur selten 

oder gar keine Resistenzgene gegen Insektizide trägt, überwiegen. Jegliche Vektorkontrolle, 

die Insektizide im südlichen Teil des Landes einsetzen will, wo die S-molekulare Form 

(Savanna und Bamako) vorherrscht, muss von einem intensiven Insektizid-

Überwachungsprogramm begleitet werden.  

 

Die Untersuchungen der räumlichen Verteilungen der Geschwisterarten des An. 

gambiae Komplexes in einer Ortschaft der Savanne aus Kapitel 5 und 6 zeigten, dass die 

Verteilung der Moskitodichte konzentrisch war, mit hohen Vorkommen an den Grenzen der 

Ortschaft zu Beginn der Regenzeit und während der Trockenzeit. Diese Verteilung war 

lückenhaft während der Mitte der Regenzeit und zu deren Ende. Die chromosomalen Formen 

waren über alle Zeiten sympatrisch. Es fand eine räumliche Ballung in ihren relativen 

Häufigkeitsverteilungen innerhalb des Dorfes statt, die sich mit der Zeit veränderte. Die 

Mopti chromosomale Form war die am häufigsten vorkommende Form zu Beginn und in der 

Mitte der Regenzeit und die Bamako Form herrschte am Ende der Regnzeit vor. 

Untersuchungen der Lebensräume für die Larve zeigten, dass im Hauptort von Bancoumana 

nahezu alle Habitate vom Menschen gemacht wurden, sie vom Regen abhängig waren und 

nach 10 bis 12 Wochen nach Ende der Regenzeit wieder austrockneten. Es gibt aber auch 

noch zahlreiche natürliche Wasseransammlungen die selbst während der Trockenzeit noch 

besonders günstig für die Larven der Anopheles sind und sich in den Fischereigebieten 

befinden. Diese liegen benachbart zum Flussbett des Nigers und sind etwa 5 km vom 

Hauptort entfernt. Die Lebensräume der Larven in Bancoumana wurden bereits kurzzeitig 

nach einem Regenfall erneut besiedelt, was darauf schließen lässt dass Moskitos aus dem 

Flussbett einen wichtigen Träger für diese regengespeisten Wasserquellen in Bancoumana 
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darstellen. Die oben genannten Beobachtungen zeigen, dass Kontrollmaßnahmen, die auf die 

Mopti Form abzielen, zu Beginn und in der Mitte der Regenzeit gestartet werden sollten. 

Dahingegen sollten die Maßnahmen die auf Bamako abzielen am Ende der Regenzeit 

eingeführt werden. Zusätzlich könnten entsprechende Vektorkontrollen in Fischereigebieten 

innerhalb der Trockenzeit und an der Grenze zum Hauptort am Beginn der Regenzeit auf 

einem geringen Kostenniveau ausführbar sein, die die Malariaverbreitung in diesem Gebiet 

verbessern. 

 

In Kapitel 7 wurden Analysen zu Parametern der Malariaausbreitung in Gebieten der 

Reiskultivierung im Office du Niger durchgeführt, der einer starken räumliche Korrelation zur 

Moskitodichte zugrunde liegt, vermutlich begründet durch die Umgebung der 

Reiskultivierung. Die räumliche Abhängigkeit, welche durch die Parous-Rate (PR) und den 

menschlichen Blutindex (HBI) gemessen wurde, war gering. Das legt den Schluss nahe, dass 

diese Parameter stärker mit den lokalen Bedingungen wie Bevölkerungsverhalten und 

ökonomischen Status, der Anwesenheit von Tieren usw. zusammen hängen als mit ähnlichen 

Umgebungen über weite Flächen. Da beide Messungen (PR und HBI) die Vektor-Mensch-

Kontaktrate widerspiegeln, und daher auch das Potential haben die 

Malariaverbreitungsintensität darzustellen, muss die Aufmerksamkeit auf lokalen 

Veränderungen liegen wenn Kontrollmaßnahmen in Gebieten der Reiskultivierung 

durchgeführt werden. 

 

Diese Arbeit steuert einen großen Teil zur Kartierung der räumlichen Verteilung von 

Malariaüberträgerarten und –unterarten bei, die bisher durch das Fehlen von Felddaten und 

geeigneten statistischen Analysen begrenzt war. Zudem stellt es außerdem wertvolle 

Informationen für konventionelle Vektorkontrollen bereit, sowie auch für zukünftige 

genetisch manipulierte Moskitokontrollmaßnahmen. 
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Résumé 

La malaria demeure un problème important de santé publique qui est aggravé par une 

mauvaise mise en œuvre des mesures de contrôle, et à la résistance des parasites aux 

antipaludiques et des vecteurs aux insecticides. Les mesures préventives, y compris celles de 

la lutte contre les vecteurs, sont l'un des quatre éléments de base de la stratégie globale de 

lutte contre la malaria. Les méthodes de lutte à utiliser devraient être sélectives et spécifiques 

à la zone d’intervention. Le succès de l'approche des interventions sélectives et ciblées exige 

une bonne caractérisation eco- épidémiologieques des zones d’intervention qui devrait être 

basées sur la cartographie de la distribution du risque et des espèces vectrices de la maladie. 

 

L’objectif de ce travail était d’approfondir notre compréhension de la relation entre les 

facteurs climatiques et environnementales et la distribution des membres d’An. gambiae 

complex , de décrire leur distribution spatiale et temporale, de quantifier leur contribution à la 

transmission du paludisme, et de produire des cartes de risque de la maladies due à chacun 

d’entre eux au Mali. Nous avons employé la méthode de modélisation Bayésienne utilisant la 

chaînes de simulation de Markov Monte Carlo (MCMC), qui est capable d’estimer la relation 

entres les facteurs environnementaux et la distribution des espèces de vecteurs en tenant 

compte de la dépendance spatiale présente dans les données d'une manière flexible permettant 

l'évaluation simultanée de tous les paramètres des modèles. En outre, le kriging Bayésien 

permet de faire la prédiction tout en estimant les erreurs commises, ce qui n’est pas possible 

avec la méthode de kriging classique.   

 

Les analyses décrites dans les chapitres 2 et 3 ont identifié des facteurs 

environnementaux liés à la distribution : a) des deux principales espèces (An. arabiensis et 

An.gambiae s.s.) qui composent le complexe An. gambiae au Mali, et b) des formes 
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chromosomiques (Bamako, Mopti, Savane Hybrides) d'An. gambiae s.s., et ont permises de 

produire les  cartes de distribution  géographique des espèces et des formes chromosomiques 

du complex. L'évaluation de la contribution des espèces et des formes chromosomiques à la 

transmission de la malaria au Mali est décrite dans le chapitre 4 ; la distribution spatio-

temporelle des densités d’An. gambiae complex et de ses formes chromosomiques (Mopti, 

Bamako, la savane, hybrides) dans un village de la savane soudanienne du Mali est examinée 

dans le chapitre 5 ; l’étude de l'écologie des vecteurs et son implication pour la stratégie de 

lutte contre les vecteurs est décrite dans le chapitre 6, et enfin le chapitre 7 présente les 

résultats de l’analyse spatiale des paramètres de la transmission du paludisme dans la zone de 

riziculture irriguée de l’Office du Niger, Mali.  

 

Les cartes produites dans les chapitres 2 et 3 ont montrées des fréquences élevées 

d’An. arabiensis dans les zones de savane sèches et celles d’An. gambiae s.s. dans les zones 

inondées et/ou irriguées du delta intérieur du fleuve Niger, la savane humide, le long des 

fleuves mais aussi dans le Sahel. La forme chromosomique Mopti partage la même zone 

écologique avec An. arabiensis. En plus elle occupe  les zones inondées et/ou irriguées du 

delta intérieur du fleuve du Niger. La forme chromosomique Savane préfère les régions de la 

savane humide et la forme chromosomique Bamako était confinée autour de la ville de 

Bamako et une partie de la région de Sikasso (Sud du Mali). Les analyses du chapitre 4 ont 

montré une association entre un risque élevé du paludisme et les formes chromosomiques 

porteurs du gène de résistance aux insecticides (kdr) (Bamako/Savane) ainsi que les formes 

hybrides comparés aux non-porteurs que sont An. arabiensis et la forme chromosomique 

Mopti, bien que l'association n'était pas significative. Les cartes du risque du paludisme 

attribué aux différentes espèces et sous-espèce du complex An. gambiae ont montré la 

transmission est principalement due à An. arabiensis dans les parties centre-Ouest et Sud-Est 

du pays, dans les zone d'irrigation/ inondées, elle est due  à la forme chromosomique Mopti; 
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dans la partie méridionale aux formes chromosomiques Savane/Bamako et dans la partie 

méridionale de la région de Kayes aux hybrides. Ainsi ces résultats suggèrent que des mesures 

de contrôle d'insecticide doivent être renforcées dans la partie Sahelienne (secteur enclin 

épidémique) et des zones d'irrigation et d’inondation où sévissent An. arabiensis et la forme 

chromosomique Mopti, qui ont la plus faible fréquence du gène de résistance aux insecticide 

jusqu’à présent. Toute méthode lutte à base d’insecticide dans la partie Sud du pays où la 

forme moléculaire S (Savane et Bamako) prédomine devrait être étroitement accompagnée 

d’un système de surveillance de résistance aux insecticide. 

 

Les analyses effectuées dans les chapitres 5 et 6 sur la distribution spatiale des espèces 

du complex An. gambiae dans un village de la savane soudanienne du Mali ont prouvé que la 

distribution des densités de moustique était concentrique avec les densités les plus élevées 

groupées à la périphérie du village au début de la saison des pluies et pendant la saison sèche. 

Cette distribution était inégale en milieu et à la fin de la saison des pluies. Les formes 

chromosomiques étaient sympatriques tout au long des différentes saisons. Il y avait une 

aggregation spatiale dans la distribution de leurs fréquences relatives qui changeait au cours 

des saisons dans le village. La forme chromosomique Mopti était la plus abondante au début 

et au milieu de la saison des pluies et la forme chromosomique Bamako à la fin de la saison 

des pluies. Le suivi des gîtes larvaires a prouvé que dans le village mère de Bancoumana 

presque tous les gîtes larvaires étaient dues aux activités humaines et étaient dépendants des 

pluies. Ils s’asséchaient 10-12 semaines après la fin de la saison des pluies. Au même 

moment, de nombreux petits points d’eau fortement productifs en larves d'anophèle tout au 

long de la saison sèche ont été trouvés dans les hameaux des pêcheurs situés le long du fleuve 

Niger. Les gîtes larvaires à Bancoumana étaient recolonisés peu après la tombé des premières 

pluies. Ceci suggère que les moustiques émergeant du lit du fleuve pourraient être une source 

importante d’ensemencement  des gîtes de Bancoumana. Cette observation indiquent que des 
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interventions de lutte visant la forme chromosomique Mopti devraient être mises en œuvre au 

début et au milieu de la saison des pluies, alors que celles qui visent la forme Bamako 

devraient être faites à la fin de la saison des pluies. En outre, une méthode de lutte 

antivectorielle appropriée mise en œuvre dans le hameau des pêcheurs pendant la saison sèche 

et à la périphérie de son village mère au début de la saison des pluies pourrait être  faisable, 

soutenable à moindre coût et qui pourrait améliorer la transmission du paludisme dans la 

zone.  

 

Dans le chapitre 7, les analyses spatiales des paramètres de la transmission du 

paludisme dans la zone de riziculture de l’Office du Niger  ont montré une forte corrélation 

spatiale dans les densités de moustique, qui est probablement liée à l'environnement de la 

culture de riz. Cependant, la corrélation spatiale observée dans le taux parité (P.R.) et le tau 

d’anthropophilie (HBI) était faible suggérant que ces paramètres sont plutôt étroitement liés 

aux conditions locales telles que le comportement de la population et le statut économique, 

et/ou la présence des animaux plutôt que la similarité dans l’environnement.  Puisque le PR et 

HBI mesurent le degré de contact vecteur-homme, et par conséquent le potentiel de 

transmission du paludisme, une attention particulière doit être accordée aux variations locales 

lors de la mise en œuvre  des stratégies de lutte dans les zones de riziculture. 

 

Ce travail apporte une contribution substantielle dans la cartographie de la distribution 

spatiale des espèces et sous-espèce des vecteurs de la malaria qui était précédemment limitée 

par le manque de données et des analyses statistiques appropriées. Il fournit également des 

informations précieuses pour la méthode de lutte conventionnelle des vecteurs aussi bien que 

pour la future méthode de lutte basée sur la manipulation génétique des moustiques. 
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1. Introduction  

The term malaria means “bad air” as it was believed that it was caused by breathing 

the foul-smelling gases arising from marshy places. Although the signs and symptoms of 

malaria were known to physicians from early Egyptian times, the causative agent was first 

identified in 1880 by the French pathologist, Laveran. The role played by mosquitoes in the 

transmission of malaria was only identified in 1898 by Ronald Ross, a British bacteriologist.  

 

Nowadays, malaria is still one of the most severe public health problems worldwide. 

The disease is found across the globe in a near continuous belt through countries including 

India, Indonesia, and through the tropical parts of southern and central America (Figure 1.1). 

It is a leading cause of death and disease in many developing countries, where young children 

and pregnant women are the groups most affected. According to the World Health 

Organization (World malaria report 2005): some 3.2 billion people live in areas at risk of 

malaria transmission in 107 countries and territories; between 350 and 500 million clinical 

episodes of malaria occur every year; at least one million deaths occur every year due to 

malaria and about 60% of the cases of malaria worldwide and more than 80% of the malaria 

deaths worldwide occur in Africa, south of the Sahara. 

 

1.2. Biology and epidemiology of malaria 

Malaria is a vector born disease caused by protozoan parasites of the genus 

Plasmodium. There are four species of malaria parasites which can infect humans in natural 
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conditions: P. falciparum, P. vivax, P. ovale and P. malariae. The parasites are transmitted 

from person to person by female mosquitoes of the genus Anopheles. 

The epidemiology of malaria results from the interaction between vector, parasite, 

human and physical environments and socio-economical situations. Thus, the sub-Saharan 

Africa region is more adversely affected than all other regions in the world because of: i) the 

presence of a very efficient mosquito vector (Anopheles gambiae) which assures high 

transmission; ii) the predominance of falciparum (P. falciparum), which causes the most 

severe form of malaria; iii) the local weather conditions which often allow transmission to 

occur year round; iv) the scarcity of resources and socio-economic instability which hinder 

efficient malaria control activities. In other areas of the world malaria is a less prominent 

cause of deaths, but can cause substantial disease and incapacitation, especially in rural areas 

of some countries in South America and South-East Asia.  

 

 

 
                       Source: http://www.who.int/tdr/dw/malaria2004.htm 

 

  Areas where malaria transmission occurs 
  Areas with limited risk 
  No malaria 

 
Figure 1.1: Global distribution of Malaria 
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1.2.1. Malaria parasite in human 

The life cycle of malaria is depicted in figure 1.2. After an infected bite from a female 

Anopheles mosquito, the sporozoïtes reach the liver in half an hour and invade the liver cells. 

The liver cells form a vacuole which separates the parasite from the host cytoplasm. Within 

this vacuole, the spororozoïtes start their intracellular asexual division leading to the 

schizonte. At the completion of this phase, thousands of erythrocitic merozoïtes are released 

in the blood from each liver cell.  In the blood, successive broods of parasites grow inside the 

red cells and destroy them, releasing daughter parasites (merozoïtes) that continue the cycle 

by invading other red cells.  

 

This whole cycle of invasion-multiplication-release-invasion takes about 48 hours for 

P. falciparum. During this process, the content of the infected cells that are released with the 

lysis of the red blood cell stimulate the Tumor Necrosis Factor (TNF) and other cytokines, 

which results in the characteristic clinical manifestation of the disease.  A small proportion of 

the merozoïtes undergo transformation into gametocytes. For P. falciparum, matures 

gametocytes appear in the peripheral blood after a period of 8-11 days of the primary attack, 

they rise in number in three weeks and decline thereafter, but circulate for several weeks.  

 

1.2.2. Malaria parasite in the vector 

When, during another blood meal from an infected person, gametocytes are picked up 

by a female Anopheles mosquito, they start another different cycle of growth and 

multiplication (sporogony) in the mosquito. The male and female gametes fuse and form into 

a zygote. This zygote transforms into an ookinete which penetrates the gut wall and becomes 

and oocyst. The oocyst divides asexually into numerous sporozoïtes which reach the 

mosquito's salivary glands. When the Anopheles mosquito takes a blood meal on another 
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human, the sporozoïtes are injected with the mosquito's saliva and start another human 

infection when they parasitize the liver cells. Thus the mosquito carries the disease from one 

human to another (acting as a "vector").  

 
Source: http://www.who.int/tdr/diseases/malaria/lifecycle.htm 

 
Figure 1.2: The life cycle of P. falciparum 

 
 

1.2.4. The breeding cycle of the mosquito 

The mosquito goes through four separate and distinct stages of its life cycle: egg, 

larva, pupa, and adult (Figure 1.3). Each of these stages can be easily recognize by its special 

appearance. Anopheline mosquitoes always lay their eggs on the surface of the water one at a 

time (50-200), with preference for swamps or shallow water. Mostly eggs hatch into larvae 

within 48 hours. The larva lives in the water and comes to the surface to breathe. Larvae shed 

(moult) their skins four times, growing larger after each moult. Most larvae have siphon tubes 

for breathing and hang from the water surface. The larvae feed on micro-organisms and 

organic matter in the water. The eggs development into adult requires about 7 to 14 days 

depending on water temperature. On the fourth moult the larva changes into a pupa. The pupal 

stage is a resting, non-feeding stage. This is the time the mosquito turns into an adult. It takes 

about 2-3 days before the adult is fully developed. When development is complete, the pupal 
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skin splits and the mosquito emerges as an adult. The newly emerged adult rests on the 

surface of the water for a short time to allow itself to dry and all its body parts to harden. The 

wings have to spread out and dry properly before the mosquito can fly.  

Only female mosquitoes bite animals and require a blood meal to develop their eggs. 

Male mosquitoes do not bite, but feed on the nectar of flowers. They fly only short distances 

of few kilometers. Their preferred breeding location is close to human houses. Two to three 

days after a full blood meal is taken during the night or dawn, the female anopheline lays 

around hundred eggs. Thus it is clear that the ecology of mosquitoes is determined by the 

availability of the aquatic habitats and human environment. 

 

 

     
 

Figure 1.3: The life cycle of anopheline mosquito 
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1.2.5. Vector ecology 

The biology and ecology of mosquitoes are intimately related to climate and 

environment. The survival of adult mosquitoes, hence the successful development of the 

malaria parasite in the mosquito, depends mainly on the ambient temperature and relative 

humidity. The minimum temperature required for the development and transmission of human 

malaria parasites by mosquito is about 15oC for P.  vivax and 18-19oC for P.  falciparum. The 

mean optimum relative humidity is at least 60% (Service, 1993). The altitude is a constraint 

for malaria transmission because of the low temperature. The near-surface humidity 

associated with rainfall enhances mosquito breeding habitats availability, flight activity and 

host-seeking behaviour. However excess rainfall can also alter the abundance and types of 

aquatics habitats available to mosquito for oviposition. The availability of suitable breeding 

habitats depends not only on rainfall but also on soil type (moisture, texture etc) (Horsfall and 

Porter, 1946; Peters 1965) and human activities (agriculture, construction etc). Man made 

ecological changes can lead to the formation of new ecological settings. Subsequently, there 

are changes in malaria vector species abundance and distribution and the pattern of the 

transmission.  

 

1.3. Malaria vectors in Africa 

Among the 30 to 40 malaria vector species in the world, An. gambiae complex and An. 

funestus are the primary vectors in Africa. The secondary malaria vectors are An. nili complex 

and An. moucheti. Here we will focus only on An. gambiae complex, the major malaria vector 

in Africa and Mali. 
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1.3.1. Anopheles gambiae complex 

An. gambiae complex mosquitoes belongs to the order of Diptera, family Culicidae, 

sub-family Anophelinae and genus Anopheles. There is a great difficulty to identify its actual 

species because they are so closely related and they are virtually indistinguishable in term of 

shape, form and color. They can be only identified by experts who are trained to analyze the 

chromosome banding pattern (Figure 1.4) and the biochemical characteristics of certain 

enzymes in the mosquito.  Why it is necessary to put so such effort for the sake of identifying 

malaria mosquito species? The reason is that each of these so-called sibling species has its 

own specific physiological requirements and these are in turn reflected in its behavior, host 

and ecological preferences. In turn, these characteristics have a direct bearing on its vectorial 

capacity.   

   The first suspicion of An. gambiae s.l. heterogeneity came from the pronounced 

various levels in its population vectorial efficiency in different areas coupled with some 

morphological variations. The heterogeneities in its responses to house spraying with 

insecticides for malaria control definitely confirmed its complexity (Coluzzi et al., 1979).  

 

The first species recognized were the so-called salt-water forms, breeding on the West 

and East African Cost (Dutton, 1903; Ribband, 1944; Muirhead Thomson, 1948, 1951). An. 

gambiae s.l. was recognized by Davidson (1962) as six sibling species based on their 

reproductive barriers and cytotaxonomic characters. While the names An. melas Theobald 

(1903) and An. merus Donitz (1902) were well established for the western and eastern salt-

water species respectively, a non-Linnean nomenclature was used for the others four members  
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Figure 1.4: The banding pattern of An. gambiae complex chromosomes. 

 

of the complex, which were designed as species A, B, C and D. From synonymy with An. 

gambiae, White (1975) proposed An. gambiae (senso stricto) Giles (1902) for species A, An. 

arabiensis Patton (1905) for species B and An. quadriannulatus Theobald (1911) for species 

C. No formal name is yet available for species D. A seventh species was reported by White 

(1985) as An. bwambae, breeding in thermal springs and confined in Uganda. 

  

The recognition of An. melas and An. merus was initially based on ecological 

evidence, coupled with slight morphological distinctions. For An. gambiae, An. arabiensis, 

An. quadriannulatus and species D, it was required complex laboratory techniques such as 

crossing experiments (Davidson & Jackson, 1962; Davidson, 1962, 1964; Paterson et al., 

1963; Davidson & White, 1972), chromosomal investigation (Coluzzi, 1966; Coluzzi & 

Sabatini, 1967, 1968, 1969; White, 1972 and Davidson & Hunt, 1973), allozyme analysis 

(Miles, 1978), high performance liquid chromatography of cuticular hydrocarbons (Carlson & 

Service, 1980) and molecular methods (Collins et al. 1987; Hill & Crampton, 1994), which 

provided for each of the six sibling species reliable and sufficiently practical cytotaxonomic 
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characters. Nowadays the above characters are being used alternatively or together at 

operational level to distinguish the seven species of the Afro-tropical malaria vector of An. 

gambiae s.l. 

 

An. gambiae Giles (species A) referred to as An. gambiae senso stricto is undergoing a 

complicated process of incipient speciation, particularly in West Africa, and is already 

characterized at both chromosomal (Coluzzi et al., 1985; Touré et al., 1998) and molecular 

(della Torre et al, 2001; Gentile et al., 2001) levels. Five chromosomal (Bamako, Mopti, 

Savanna, Forest and Bissau) and two molecular (M and S) forms have been identified.  

 

 

In Mali, An. gambiae s.l. is the most abundant and widespread species. It is composed 

of An. arabiensis and An. gambiae s.s. An. gambiae s.s. comprises three chromosomal 

(Bamako, Mopti and Savanna) taxa and two molecular (M and S) forms. Savanna and 

Bamako taxa prevail in relatively humid savannas during the rainy season. Bamako is 

associated with riverside zones of the upper Niger River and Savanna with rain-dependent 

breeding sites. An. arabiensis and Mopti range from Sudan savannah to Sahel areas, breeding 

also during the dry season where permanent water is available (Coluzzi et al., 1985; Touré et 

al. 1998). 

 

1.3.2. Anopheles funestus complex 

An. funestus is the other important vector of malaria in Africa. It is a complex of nine 

species, with only An. funestus funestus recognized as a major vector. An. funestus funestus 

comprises one genetic population in several places, but two distinct chromosomally 

characterized populations (Kiribina and Folonzo) in Burkina Faso (Costantini et al., 1999) 



Chapter 1: Introduction 
__________________________________________________________________________________________ 

10 

and three populations in Senegal (Lochouarn et al., 1998). In Mali very few studies are done 

on the genetic aspects of An. funestus. 

 

1.4. Geographic distribution of the major malaria species in Africa 

Figure 1.5 shows the distribution of the two most important malaria vectors species in 

Africa. The two main species of An. gambiae complex are An. gambiae s.s. and An. 

arabiensis.  Largely sympatric, they are the most broadly distributed species in Africa. They 

are found from the southern limits of the desert to the south of the continent through-out most 

of the continent including Madagascar (Powell et al., 1999). The other species of An. gambiae 

complex are: An. quadriannulatus narrowly distributed in south-East Africa and Ethiopia; An. 

merus and An. melas confined to the East and West coast, respectively because of their 

ecological differentiation into salt water; An. bwambae known only from the Semliki forest of 

Uganda where it breeds in mineral springs. Confined in specific areas, the adults of An. 

merus, An. melas and An. bwambae may contact the adults of the other members of the 

complex. 

 

 
Source: http://www.itg.be/itg/DistanceLearning/LectureNotesVandenEndenE/imagehtml/ppages/CD_1074_067c.htm 

 

Figure 1.5: Geographic distribution of the main malaria vectors in Africa 
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1.5. Vector control  

Vector control aims to decrease contacts between humans and vectors of human 

disease. The current control method recommended by the World Health Organization is an 

integrated vector management (IVM), which includes insecticide treated nets (ITNs), indoor 

residual spray (IRS), and environmental management. The two former methods have 

drawbacks because of the development of insecticide resistance and the difficulties in 

achieving high coverages (Killeen et al 2002, 2004) in Africa. Larval control through source 

reduction and routine application of larvicide, which has been a key element in eradicating 

malaria in many parts of the world (Kitron et al 1989; Killeen et al 2002; Utzinger et al 2001) 

is largely neglected in sub-Sahara Africa, partly because of the perceived difficulty of 

identifying larval habitats in rural areas.  

 

With the completion of the An. gambiae genome sequence and the development of 

molecular tools, novel methods for malaria control are emerging that are based on the use of 

genetically modified mosquito species that function as vectors for parasite transmission 

(Catteruccia, 2006). The main principles of genetic control are based on propagation of 

sterility or other desirable genetic factors in successive generations (Touré et al., 2004). A 

major concern regarding the introduction and spread of refractoriness genes is the possibility 

that they can not be integrated into natural malaria vector populations because of gene flow 

barriers (Lanzaro et al., 2003) and/or putative genetic adaptation to the environment (Alphey 

et al., 2002; Morlais et al., 2005). 

 

The morphological similarity of sibling species, their ecological and behavioral 

differences and their reproductive isolation highlight the values of mapping their relative 

frequency to support targeted control measures. 
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1.6. Mapping malaria vector in Africa 

Because of the laborious methods to identify the sibling species, field data are sparse 

to support malaria vector spatial distribution models (Lindsay et al., 1998). However, maps of 

malaria vectors spatial distribution have been produced. Most of them were only displaying 

the relative frequency of species at sampled locations (Touré et al., 1998; Coetzee et al., 

2000; Onyabe & Conn, 2001) or using climatic suitability conditions of the species (Lindsay 

et al., 1998) or climate data (Bayoh et al. 2001). The most elaborated distribution map 

produced so far is the ecological niche modeling (Levine et al., 2004).  All the predicted 

distribution maps currently available are at continental or sub-regional scale. 
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1.6. Objectives of the thesis 

The main objective of this research was to assess association between the members of An. 

gambiae complex and climatic and environmental factors and to map their distribution in 

relationship to malaria transmission in Sudan Savanna and irrigated rice cultivation areas of 

Mali. The specific objectives were: 

• To assess association between climate and environmental factors and the relative 

frequencies of the main species (An. gambiae s.s. and An. arabiensis) of An. gambiae 

complex in Mali and to produce continuous maps of their spatial distribution. 

• To assess association between climate and environmental factors and the relative 

frequencies of the chromosomal forms (Mopti, Bamako, Savana, Hybrids) of An. 

gambiae s.s. in Mali and to produce continuous maps of their spatial distribution 

• To quantify the contribution of the different taxa of An. gambiae complex to malaria 

transmission and to produce maps of their attributed malaria risk in Mali. 

• To assess the spatial and seasonal distribution of An. gambiae complex densities and 

the chromosomal forms of An. gambiae s.s. in Bancoumana, Mali. 

• To investigate dry season malaria vector ecology in a Sudan savanna village of Mali. 

• To analyze the spatial pattern of malaria transmission parameters in the rice 

cultivation area (Office du Niger) of Mali. 

•  
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Abstract 

Variations in the biology and ecology and the high level of genetic polymorphism of malaria 

vectors in Africa highlight the value of mapping their spatial distribution to enhance 

successful implementation of integrated vector management. The objective of this study was 

to collate data on the relative frequencies of Anopheles gambiae s.s. and An. arabiensis 

mosquitoes in Mali, to assess their association with climate and environmental covariates, and 

to produce maps of their spatial distribution. Bayesian geostatistical logistic regression 

models were fitted to identify environmental determinants of the relative frequencies of An. 

gambiae s.s. and An. arabiensis species and to produce continuous maps of their geographical 

distribution. The frequency of An. arabiensis was positively associated with the normalized 

difference vegetation index, the soil water storage index, the maximum temperature and the 

distance to water bodies. It was negatively associated with the minimum temperature and 

rainfall. The predicted map suggests that, in West Africa, An. arabiensis is concentrated in the 

drier savannah areas, while An. gambiae s.s. prefers the southern savannah and land along the 

rivers, particularly the inner delta of the Niger River. Because the insecticide knockdown 

resistance (kdr) gene is reported only in An. gambiae s.s. in Mali, the maps provide valuable 

information for vector control. They may also be useful for planning future implementation of 

malaria control by genetically manipulated mosquitoes. 

 
Keywords: Anopheles arabiensis,  Anopheles gambiae s.s.,  Bayesian inference, 
                     geostatistics,  kriging,  malaria 
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2.1. Introduction 

There are approximately 400 species of mosquitoes of the genus Anopheles 

(Culicidae) of which 30- 40 transmit human malaria. In Africa, malaria transmission is mainly 

associated with Anopheles gambiae sensu lato (An. gambiae s.l.) and An. funestus. An. 

gambiae s.l. constitutes a complex of seven species with different abilities to transmit the 

parasite (White, 1974; Coluzzi et al., 1979; Coluzzi, 1984, 1994). In West Africa, the An. 

gambiae complex dominates, comprising mainly An. gambiae s.s. and An. arabiensis of 

which the former is itself undergoing a complicated process of incipient speciation. So far, 

five chromosomal (Bamako, Mopti, Savannah, Forest and Bissau) and two molecular (M and 

S) forms of An. gambiae s.s. have been identified (Coluzzi et al., 1985; Touré et al., 1998). 

 

The species of An. gambiae s.l. and the genetic populations of An. gambiae s.s. vary in 

relative frequency, both seasonally and geographically. These remarkable differences in the 

biology and ecology and the high level of genetic polymorphism of the An. gambiae s.l. 

species highlight the value of mapping their spatial distribution to enhance effective 

implementation of integrated vector management (IVM) (Touré et al., 2004). 

 

Maps of the spatial distribution of An. gambiae s.l. species have been produced by 

displaying the relative frequency of species at sampled locations (Touré et al., 1998; Coetzee 

et al., 2000; Onyabe and Conn, 2001), by climatic suitability conditions of the species 

(Lindsay et al., 1998) and by ecological niche-modeling (Levine et al., 2004). The latter links 

vector data with climatic factors using artificial-intelligence algorithms. However, only sparse 

data are available with which to build spatial distribution maps (Lindsay et al., 1998) and 

most of the predicted distribution maps currently available have been developed at the 

continental or sub-regional scale. 
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In Mali, the Malaria Research and Training Center (MRTC), University of Bamako, 

have gathered a countrywide dataset on An. gambiae s.l. species (An. arabiensis and An. 

gambiae s.s.) and sub-species (Bamako, Mopti and Savanna). We have now compiled, both 

published (Touré et al., 1998) and unpublished data from this database and used Bayesian 

geostatistical modeling to assess the spatial distribution of the two major vector species (An. 

gambiae s.s. and An. arabiensis) of An. gambiae s.l. in Mali. To our knowledge this is the first 

effort to produce maps of malaria vector species distribution adjusted for climatic factors 

using groundtruth data, and rigorous spatial statistical modeling at the country level. 

 
2.2. Materials and methods 

2.2.1. Description of the study area 

The study area covers most of the territory of Mali in West Africa, i.e. a region 

between the latitudes 10° and 25° north and the longitudes 12° west and 4° east. Mali has an 

area of 1,240,000 Km2 and a population estimated at 13,000,000 inhabitants in 2003 by the 

United Nations. The country is relatively flat, altitudinal variations are minimal, ranging from 

200 to 350 m above sea level. The year is divided into two main seasons varying in length 

according to the latitude: a dry season (October–May) and a rainy season (June–September) 

characterized by lower temperatures and increased humidity. 

 

Mali is drained by two major river systems (Senegal and Niger) and characterized by 

the following six eco-geographic strata: 

   1. the southern Sudan savannah with an annual rain of 1300-1500 mm from May to October 

      and a mean annual thermal amplitude of 5-6ºC; 

   2. the northern Sudan savannah with about 700-1300 mm annual rainfall distributed over 

       less than 6 months; 

   3. the Sahelian zones with 200-700 mm of annual rain distributed over three months and 
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        mean annual thermal amplitude of about 12ºC; 

   4. the sub-Saharan zone with less than 200 mm of annual rain and 16ºC of annual average 

       thermal amplitude; 

   5. the inner delta of the Niger River, a kind of “internal sea” between the northern Sudan 

      savanna and the Sahelian zones, about 300 km long and 100 km wide, which influences 

   the climate of the area, especially by reducing the average annual thermal amplitude; and 

   6. the Sahara desert where drought limits mosquito breeding. 

 

Except in the most northerly part in the Sahara desert, the country is endemic for 

malaria (hyperendemic to hypoendemic when moving from South to North). The main 

malaria vectors are An. gambiae s.l. and An. funestus. An. gambiae s.l. is composed of An. 

arabiensis and three chromosomal forms of An. gambiae s.s. named Bamako, Mopti and 

Savannah (Touré et al., 1983). 

 

2.2.2. Vector data 

Both published (Toure et al., 1998) and unpublished data of the different research 

activities of the MRTC, University of Bamako, Mali, were collated in a unique database. The 

data were obtained from cross-sectional and longitudinal surveys carried out between 1981 

and 2004. Most surveys were conducted during the wet season (June-November). Survey sites 

were mainly small human settlements located in rural areas representing various eco-climatic 

zones of Mali. The database includes data collected from 94 locations and contains: (i) the 

total number of specimens; (ii) the count of An. gambiae s.s. and An. arabiensis; and (iii) the 

time of the survey (month and year). The specimens were differentiated by the chromosomal 

identification techniques (Coluzzi, 1968; Hunt, 1973) and/or by polymerase chain reaction 

(PCR) (Scott et al., 1993). The use of similar standardised techniques for sampling and 

processing mosquitoes across surveys ensured data consistency. 
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2.2.3. Climatic and environmental data 

Factors used in this study were temperature, rainfall, the normalized difference 

vegetation index (NDVI), distance to water bodies, soil water storage (SWS) index, land use, 

agro-ecological zones and suitability to malaria transmission, a binary variable defined from 

environmental factors (Gemperli et al., 2006). A list of the data sources and spatial resolution 

is given in Table 2.1. 

 
Table 2.1: Climatic data sources and spatial resolution used in the study. 
 
Factor Spatial resolution Source 

Temperature 5 km2 Hutchinson et al. (1996) 

Rainfall 5 km2 Hutchinson et al. (1996) 

NDVI 8 km2 NASA-AVHRR Land data sets, Agbu & 
James, 1994 

Land use 1 km2 USGS-NASA 

Water bodies 1 km2 African Data Sampler World Resources 
Institute (1995) 

Soil Water Storage Index 5 km2 Droogers et al. (2001) 

Agro-ecological Zone Vector Coverage FAO (1978) 

 
For each location, temperature and rainfall data were available as monthly long-term 

averages. NDVI data were also summarized by monthly long-term averages of the original 

decadal values during the period of 1985 to 1995. The agro-ecological zones (AEZ) were 

distinguished on the basis of the length of the growing period and were defined as follow: (i) 

the Equatorial Forest zone (>270 days); (ii) the Guinea Savannah zone (165- 270 days); (iii) 

the Sudan Savannah zone (90-165 days); and (iv) the Sahelian zone (<90 days). In Mali only 

the last three AEZs can be found. 

 
2.3. Data analysis 

A buffer zone of 2 km around each data point was created using IDRISI 3.2 (Clark 

Labs, Clark University, MA, USA). The mean value of all pixels (with resolutions between 1 
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to 8 km2 depending on the environmental factor) in this buffer area was calculated and used as 

the value of the given climatic and environmental factor. To take into account the possible lag 

time, between the rainfall and NDVI with the mosquito abundance, four summary measures 

(sum for rainfall and average for NDVI) were calculated for each one of the two climatic 

conditions: 

   1. the mean climatic value during the month of collection (mean_1); 

   2. the mean climatic value during the previous month (mean_2); 

   3. the mean climatic value during the month of collection and the previous month (mean_3); 

  4. and the climatic value during the collection month and the two previous months (mean_4). 

 

Vector data obtained from surveys extended over a period longer than a month were 

available, but cumulative for the whole period instead of monthly. In this case the midpoint 

month was used to relate the climatic factors. 

 

Bivariate logistic regression models were fitted in STATA 9.0 (Stata Corporation, 

USA) to assess the relation between the proportion of An. gambiae s.l. vectors identified as 

An. arabiensis and the climatic and environmental factors. The Akaike’s information criterion 

(AIC) was used to select the best summary measure and lag time for the rainfall and NDVI. 

The statistical significance of the environmental factors was assessed using the likelihood 

ratio test (LRT). All factors significant at the 15% significance level were entered into a 

Bayesian geostatistical multiple logistic regression model. The model took into account 

spatial heterogeneity by including the location-specific random effects φi at the sampling 

location level. In particular, we assumed that the An. arabiensis frequency Yi at the sampling 

location i follows a binomial distribution, that is Yi ~ Bn (pi , Ni), where Ni corresponds to the 

total number of An. arabiensis and An. gambiae s.s. mosquitoes collected, and pi represents 

the An. arabiensis proportion at the location i. We further assumed that φi models a latent 
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spatial process, that is φ = (φi ,... φN)T ~ MVN (0,Σ), with the covariance matrix Σ a function 

of distance between locations, irrespective of the locations themselves (stationarity) and of the 

direction (isotropy). We adopted an exponential correlation function, that is Σij = σ2 exp(-ρdij) 

where σ2 is the spatial variance, ρ the parameter that models the rate of correlation decay, and 

dij the distance between the locations i and j. Based on the above specification, the minimum 

distance for which the spatial correlation becomes less than 5% is calculated by 3/ρ; (Ecker 

and Gelfand, 1997). The model parameters were estimated using Markov chain Monte Carlo 

(MCMC) simulation methods. 

 

Bayesian kriging was used to predict the species frequency at 85,000 locations that 

were not sampled (Diggle and Tawn, 1998). The Bayesian model fit was carried out in 

WinBUGS 1.4. (Spiegelhalter et al., 2004), whereas the model prediction was implemented in 

Fortran 95 (Compaq Visual Fortran, Professional 6.6.0) using standard numerical libraries 

(NAG, The Numerical Algorithms Group Ltd). 

 
2.4. Results 

The results of the bivariate logistic regression analyses are shown in Table 2.2 which 

indicates that, among the four NDVI and rainfall measures considered in the study, the ones 

which fitted the An. arabiensis proportion best (giving smaller AIC) were the NDVI mean 

value during month of collection and the sum of rainfall mean value during month of 

collection and the two previous months, respectively. 

 

The bivariate analyses also revealed that the agro-ecological zone, distance to water 

bodies, land use, transmission suitability, SWS index, minimum and maximum temperature 

were significantly associated with the relative frequency of An. arabiensis, which increases 

from the Guinea to the Sahelian AEZ. The crop/grass land mosaic and water body categories 
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of land use, the minimum temperature and the suitability to the transmission were negatively 

associated with the An. arabiensis frequency at a significant level. 

 

All the factors above were entered into a Bayesian geostatistical model. The results of the 

spatial multiple regression model showed that the sum of the mean rainfall during collection 

month and the two previous months and the minimum temperatures were the only factors 

negatively associated with the relative frequency of An. arabiensis. None of the land use 

categories were significantly related to the proportional presence of this mosquito strain. 

Comparing the different categories of the variables between the bivariate and the multiple 

regression models, the following changes were observed: the Sahel category of the AEZ and 

the crop/grass land mosaic and water body categories of land use changed from significant in 

the bivariate model to not significant in the multiple regression model; the 4-10 km distance 

category of the distance to water bodies, the NDVI mean value during the month of 

collection, and the two previous months (the one included in the multiple regression model) 

changed from negatively significant in the bivariate model to positively significant in the 

multiple regression model; the mean maximum temperature which was not significant in the 

bivariate model became positively significant in the multiple regression model. 

 

Assuming that spatial correlation is a function of distance between locations, 

irrespective of the locations themselves (stationary) and of the direction (isotropic), the 

minimum distance at which that correlation was less than 5% was as much as 1333.4 km 

(95% CI = 913.4-1520.1). 
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Table 2.2: Bivariate and multiple spatial logistic regression models of An. arabiensis relative 
                  frequency with climate and environmental variables.   
 

  Bivariate analysis Spatial model 
Variables Lag* Coef. 95% CI p-value (AIC) Median 95% CI 

Agro-ecological zones 
   Guinea savannah - 0.00  0.00  
   Sudan savannah - 2.16 2.07, 2.25 2.01 0.25, 3.49 
   Sahel - 2.72 2.55, 2.89 

 

<0.001 2.49 -1.21, 5.54 
Distance to water bodies (Km) 
   < 4  - 0.00  0.00  
   4 - 10  - -0.29 -0.38, -0.20 1.58 0.65, 2.58 
   >10 - 20  - 0.82 0.77, 0.87 1.51 0.52, 2.50 
   > 20  - 1.77 1.65, 1.89 

 

<0.001 
2.02 0.77, 3.36 

Land use categories 
   Savannah - 0.00  0.00  
   Crop/grass land/       - -2.07 -2.38, -1.77 -0.65 -2.80, 1.53 
   Grass land - -0.02 -0.09, 0.06 0.51 -1.58, 2.91 
   Shrub land - -0.39 -1.02, 0.24 -2.50 -7.05, 1.69 
   Water bodies - -0.95 -1.72, -0.18 -0.19 -2.91, 2.46 
   Barren/sparsely - 0.23 -0.14, 0.60 

 

 

 
-1.24 -5.58, 2.32 

Suitability to the transmission 
   Not suitable - 0.00  0.00  
   Suitable - -0.15 -0.21, -0.08 

 
0.10 -0.02, 0.22 

Rainfall 
   Mean_1 0 -0.0001 -0.0003, 0.57(50410.8) -  
   Mean_2 1 0.0003 0.0000, 0.0005 0.02(50405.7) -  
   Mean_3 1 0.0000 -0.0001, 0.44(50410.5) -  
   Mean_4 2 0.0001 0.0000, 0.0002 0.004(50402.9) -0.01 -0.006, -0.004 
NDVI 
   Mean_1 0 -0.32 -0.49, -0.16 0.0001(50396.6 -  
   Mean_2 1 -0.08 -0.25, 0.08 0.3285(50410.6 -  
   Mean_3 1 -0.22 -0.39, -0.05 0.0129(50404.9 -  
   Mean_4 2 -0.33 -0.52, -0.150 0.0005(50398.9 1058.0 8.67, 12.40 
Temperature 
   Mean minimum - -0.003 -0.004, -0.002 <0.001 -0.02 -0.042, -0.004 
   Mean maximum - -0.007 -0.008, 0.006 <0.001 0.21 0.18, 0.24 
SWS index  - 0.22 0.13, 0.31 <0.001 1.71 1.43, 2.01 
Spatial parameters 
  ρ  - - - - 4.00 2.63, 4.56 
   2σ  - - - - 0.04 0.02, 0.06 

 

NB: Mean_1 = climatic mean value during month of collection; Mean_2 = climatic mean value during the 
previous month; Mean_3 = climatic mean value during month of collection and the previous month; Mean_4 = 
climatic mean value during collection month and the 2 previous months; * lag time (in month) between the 
environmental variables and the collection date (month) of vector data. 
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Figure 2.1 shows the observed relative frequencies of An. arabiensis and An. gambiae 

s.s. in the 94 locations. A lower frequency of An. arabiensis was observed in the southern and 

northern savannah while higher frequencies were observed in the Sahelian zone, with the 

exception of the inner delta of Niger. 

 

Maps of the predicted proportions of An. arabiensis are shown in Figure 2.2 which 

depicts a south to north distribution pattern of An. arabiensis relative frequency with a 

moderate proportion of An. arabiensis in the southern savannah, a higher proportion in the 

northern savannah and Sahelian zones (apart from the inner delta of the Niger river where An. 

arabiensis was almost absent) and a lower one in the sub-Sahara zone. 

 

 
 
Figure 2.1: Observed relative frequencies of An. arabiensis and An. gambiae s.s. in 94  
                sampling locations in Mali, West Africa. The green color represents the relative 
                frequencies of An. gambiae s.s. and the red the relative frequencies of An. 

                arabiensis. 
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Figure 2.2: Map of predicted relative frequencies of An. arabiensis. The An. arabiensis  
                 proportion is also lower along the rivers irrespective of the eco-climatic zone. 
                 Estimates of the prediction error are shown in Figure 2.3. 

 

Figure 2.3:  Map of prediction error of the relative frequencies of An. arabiensis. The 
                  prediction error is lowest along the rivers and increases with the distance from 
                  water bodies. In contrast, the prediction error is relatively high in the sub-Sahara 
                  zone where very few surveys were carried out. 
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2.5. Discussion 

In this study, we compiled published and unpublished vector data in a unique database 

and using Bayesian geostatistical modeling, identified climatic and environmental factors 

associated with the relative frequency of the two major malaria mosquito vector species (An. 

gambiae s.s. and An. arabiensis) of An. gambiae s.l. in Mali, and assessed their spatial 

distribution. We used an approach considering different measures of rainfall and NDVI and 

performed bivariate logistic regressions to select the measures which fitted the data best using 

the AIC criterion. This was done to select the subset of variables to be fitted into the spatial 

model because Bayesian variable selection is not straightforward and requires specialized 

software which is not currently available. The approach adopted has been used also in other 

applications of spatial Bayesian modeling (Gemperli et al., 2006; Gosoniu et al., 2006). The 

results show that the cumulated rainfall value during the survey and during the two previous 

months, and the NDVI value during the survey month, fitted the data better than the other 

rainfall and NDVI measures assessed. This suggests that the An. gambiae complex species 

composition is more sensitive to the cumulated rainfall over previous months than to the value 

during the survey month. The observed lag time period between rainfall and vector abundance 

can enhance operational malaria earlywarning systems (MEWS) based on rainfall estimates 

(Grover-Kopec et al., 2005; Thomson et al., 2006). 

 

The two sibling species of the An. gambiae complex (An. arabiensis and An. gambiae 

s.s.) exist across the whole study area. The estimates of the spatial model for the proportion of 

An. arabiensis showed a positive association between the NDVI values, the SWS index, the 

maximum temperature, and the distance to the water bodies. Minimum temperature and 

rainfall were negatively related to the relative frequencies of An. arabiensis. The predicted 

map in Figure 2.2 represents the median relative frequency of An. arabiensis over the 

transmission period (June to November). This is broadly in agreement with the ecological 
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distribution of An. arabiensis in Mali (Toure et al., 1998). An. arabiensis is concentrated in 

the drier savannah areas and An. gambiae s.s. in the inner delta of Niger, the southern 

savannah and along the rivers. The occurrence of An. arabiensis in the drier savannah reflects 

the known preference of this species for drier conditions. The occurrence of An. gambiae s.s. 

in the arid regions (Sahel) has been shown to be associated with the ‘Mopti’ chromosomal 

form (Toure et al., 1994). Many studies across Africa have described the likely adaptation of 

An. arabiensis to drier conditions than An. gambiae s.s. (Coetzee et al., 2000; Onyabe and 

Conn, 2001; Kirby and Lindsay, 2004; Levine et al., 2004). The general association of this 

mosquito strain with river systems is illustrated by its positive association with the SWS index 

and NDVI. Laboratory and field experimentation also showed that An. arabiensis adults are 

better adapted to hotter conditions than An. gambiae s.s. (Robert, 1998; Kirby and Lindsay, 

2004). The ability for An. arabiensis to withstand the dry season may explain the weak and 

negative association of An. arabiensis relative frequency with rainfall. 

 

The same pattern of south to north distribution of An. arabiensis relative frequencies 

was observed with the transmission model (Gemperli et al., 2006). However, in contrast to the 

distribution of An. arabiensis, the transmission model showed higher entomological 

inoculation rate in the south and moderate to low in the middle and northern part of country. 

This suggests that An. arabiensis may contribute less to the transmission than An. gambiae 

s.s. 

 

Figure 2.2 depicts the spatial distribution of An. arabiensis and An. gambiae s.s. over 

the whole transmission period. Other studies (White, 1974; Coluzzi et al., 1979; Coluzzi, 

1984, 1994) have shown that the temporal distribution is one of the key elements in malaria 

epidemiology and vector control which has valuable implication for vector stratification and 

adequate planning of both vector control and research activities. Our study did not take into 
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account temporal aspects for two reasons: firstly temporally disaggregated environmental data 

were not available for all survey years, especially not for the surveys conducted in the early 

1980s; secondly the vector data were generally reported pooled from several surveys. 

Nevertheless, our effort was to produce predicted maps of the spatial distribution of An. 

arabiensis and An. gambiae s.s. species adjusted for climatic factors using spatial statistical 

modeling supported by consistently observed vector data. The advantage of our study over 

preceding ones is that we used statistical analysis which quantifies the relationship between 

environment-vector data and identifies significant determinants instead of only using 

geographical information system. The Bayesian approach we used takes into account the 

spatial dependence present in the data in a flexible way and calculates inherently the standard 

errors of the parameter estimates as well as the prediction error without relying on 

approximations or asymptotic results. The map of the prediction error indicates the confidence 

we can have on the model prediction for the study area. 

 

A practical implication of our findings is their relevance in monitoring of insecticide 

resistance encoded by the kdr gene. In Mali resistant alleles of kdr have been reported only in 

the chromosomal form Savannah of An. gambiae s.s. (Fanello et al., 2003). Based on these 

results, insecticide resistance monitoring and management must be primarily focused on the 

humid savannah, along the rivers and in the inner delta of Niger where a higher frequency of 

An. gambiae s.s. is encountered. Understanding the spatial distribution of An. gambiae s.l. 

species and sub-species may also be a prelude to a successful implementation of genetic 

control, such as the use of transgenic technologies to make mosquitoes refractory to the 

parasite. IVM strategies that target particular vector populations will need information at high 

spatial and temporal resolutions on the distribution of the sibling species of An. gambiae 

complex. 
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Abstract 

Background Maps of the distribution of malaria vectors are useful tools for stratification of 

malaria risk and for selective vector control strategies. Although the distribution of members 

of the Anopheles gambiae complex is well documented in Africa, a continuous map of the 

spatial distribution of the chromosomal forms of An. gambiae s.s. is not yet available at 

country level to support control efforts. Methods Bayesian geostatistical methods were used 

to produce continuous maps of the spatial distribution of the chromosomal forms of An. 

gambiae s.s. (Mopti, Bamako, Savanna and their hybrids/recombinants) based on their 

relative frequencies in relation to climatic and environmental factors in Mali. Results The 

maps clearly show that each chromosomal form favours a particular defined ecoclimatic zone. 

The Mopti form prefers the dryer northern Savanna and Sahel and the flooded/irrigated areas 

of the inner delta of the Niger River. The Savanna form favours the Sudan savanna areas, 

particularly the South and South-Eastern parts of the country (Kayes and Sikasso regions). 

The Bamako form has a strong preference for specific environmental conditions and it is 

confined to the Sudan savanna areas around urban Bamako and the Western part of Sikasso 

region. The hybrids/recombinants favour the Western part of the country (Kayes region) 

bordering the Republic of Guinea Conakry. Conclusions The maps provide valuable 

information for selective vector control in Mali (insecticide resistance management) and may 

serve as a decision support tool for the basis for future malaria control strategies including 

genetically manipulated mosquitoes. 

Key words:  
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3.1. Introduction 

Malaria remains one of the main public health problems in Africa and researchers are 

developing new vector control methods focused on the genetic manipulation of mosquitoes. 

The principles of the genetic control methods are based on the propagation of sterility or other 

desirable genetic factors in successive generations of mosquitoes [1,2]. The most likely 

approach to implement genetically modified mosquitoes in malaria control is the introduction 

and spread of refractoriness genes in wild mosquito populations [3,4]. A major concern 

however regarding the spread of refractoriness genes is the possibility that they cannot be 

integrated into natural malaria vector populations because of gene flow barriers [5] and/or 

putative genetic adaptation to the environment [6]. Therefore, when developing target control 

methods, the structure of vector populations, the force of ecological associations and the 

resulting plasticity of the vectors to local environmental conditions should be considered. 

 

The distributions of mosquito species are related to climate, and in West Africa, it 

appears that the different chromosomal forms of An. gambiae s.s. (Mopti, Bamako, Savanna, 

Forest and Bissau) occur sympatrically but are segregated environmentally [7-9]. In West 

Africa published data were compiled to demonstrate that climate variables can be used to map 

the distribution of An. gambiae s.s chromosomal forms [10]. Similar studies have been carried 

out in Kenya [11] and Nigeria [12]. In addition to climate, anthropogenic environmental 

alterations such as rice cultivation and irrigation may also affect species composition [13]. 

 

In Mali, the An. gambiae complex is composed of An. arabiensis, and An. gambiae 

s.s.. Three chromosomal (Mopti, Bamako, Savanna) and two molecular (M and S) forms of 

An. gambiae s.s. have been described and coexist [8,14-16]. The S-molecular form comprises 

Bamako and Savanna chromosomal forms. A map of their relative frequencies has been 
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produced for a number of specific locations in Mali [15]. Analysis of mosquito data from 16 

sites throughout Mali showed a significant negative association between rainfall and the 

distribution of the Mopti chromosomal form [17]. Variation in the seasonal abundance and 

infection rates among chromosomal forms of An gambiae s.s. in Mali was also observed [18]. 

 

The ecological distribution of each chromosomal form seems to be related to a 

particular epidemiological pattern of the disease. The knock down resistance (kdr) allele in 

the para sodium channel gene, which confers resistance to pyrethroid insecticides, is found in 

the S-molecular form, but could not be detected in the Mmolecular form populations from the 

same localities [19]. Therefore producing a continuous map of the spatial distribution of their 

relative frequencies in relation to climate and environmental factors may be useful for 

conventional and prospective genetically manipulated vector control methods. In this study, 

published and unpublished vector data were compiled to assess the relationship between the 

relative frequencies of the different chromosomal forms of An. gambiae s.s. with climate and 

environmental factors, and to produce continuous maps of their spatial distribution. 

 

3.2. Material and Methods 

3.2.1. Description of the study area 

The study area covered most of the territory of Mali in West Africa, between 10 and 

25º latitude North and 12º longitude West and 4º longitude East. The Country has an area of 

1,240,000 square kilometers and an estimated population (United Nations, 2003) of 

13,000,000 inhabitants. It is drained by two major rivers (Senegal and Niger) and has 4 

distinct eco-climatic zones: i) Southern Sudan savanna with an annual rainfall of 1300-1500 

mm from May to October and mean annual thermal amplitude (difference between the mean 

maximum and the mean minimum temperature) of 5 to 6ºC; ii) Northern Sudan savanna with 
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about 700—1300 mm annual rainfall distributed over 4 to 5 months; iii) Sahelian zones with 

200-700 mm of annual rainfall distributed over three months and mean annual thermal 

amplitude of about 12ºC; iv) Sub-Sahara zone with less than 200 mm of annual rain and 16ºC 

of annual average thermal amplitude. 

 

Mali is a relatively flat country, altitudinal variations are minimal, ranging from 200 to 

350 m above sea level. There are two main seasons varying in length according to latitude: a 

dry season (November–April) and a rainy season (May–October) characterized by lower 

temperatures and an increase in humidity. Except for the Sahara desert, the country is entirely 

endemic for malaria (hyperendemic to hypoendemic from South to North). The main malaria 

vectors are An.gambiae s.l. and An.funestus. An.gambiae s.l. is composed of An. arabiensis 

and three chromosomal forms of An.gambiae s.s named Bamako, Mopti and Savanna [20] and 

two molecular (M and S) forms [21]. 

 

3.2.2. Data sources and description 

3.2.2.1. Vector data 

All available published [15] and unpublished data on chromosomal forms of An. 

gambiae s.s. in Mali were collated from cross-sectional and longitudinal surveys carried out 

between 1981 and 2004 by the Malaria Research and Training Centre (MRTC), University of 

Bamako, Mali. Most surveys were conducted during the wet season (June-October). Survey 

sites were mainly small human settlements from 79 distinct rural sites representing various 

eco-climatic zones of Mali. Because of small distances separating some collection sites, data 

were aggregated resulting in a set of 71 locations. The database included data collected on i) 

the total number of An. gambiae s.s. specimens, ii) the count of chromosomal (Mopti, 
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Bamako, Savanna and their hybrids/recombinants) forms, and iii) the survey period (month 

and year). Mosquitoes were collected and processed across surveys following a standardized 

method to ensure data consistency. Identification of chromosomal forms was by cytogenetic 

method [22,23]. 

 

3.2.2.2. Climatic and environmental data 

The climatic and environmental variables which were used in this study included 

temperature, rainfall, normalized difference vegetation index (NDVI), distance to water 

bodies, soil water storage (SWS), land use, agro-ecological zones (AEZ) and suitability for 

malaria transmission. The last one is a binary variable defined from environmental factors 

related to malaria transmission with cut-off values [24]. The data sources and spatial 

resolution are the same as described in previous work [25].  

For each location, temperature and rainfall data were available as monthly long term 

averages. NDVI data were also summarized by monthly long term averages of the original 

decadal values during the period between 1985 and 1995. The agroecological zones (AEZ) 

were distinguished on the basis of the length of the crop growing period and were defined as 

follow: Equatorial Forest zone (> 270 days), Guinea savanna zone (165 – 270 days), Sudan 

savanna zone (90 – 165 days) and the Sahelian zone (< 90 days). In Mali only the last three 

AEZ are found. 

 

3.3. Data analysis 

Bivariate multinomial regression models were fitted in STATA 9.0 (STATA 

Corporation, USA) to assess the association between the relative frequencies of chromosomal 

forms of An. gambiae s.s with climatic and environmental factors. The multinomial outcome 

data represent the following four chromosomal forms: Mopti, Bamako, Savanna, and others 
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(hybrids Bamako-Savanna and Savanna-Mopti). The Mopti form was considered as the 

baseline category. The mosquito data obtained at a specific location were linked to the 

environmental and climate data by drawing a buffer of 2 km around each location and 

calculating the environmental value by the average of environmental values of all pixels in 

this buffer. 

 

To take into account the possible lag time between the rainfall and NDVI with the 

mosquito abundance [26], four summary measures were calculated for each of the two 

climatic conditions: i) the climatic value during the month of collection (concurrent), ii) the 

climatic value during the previous month (lag one month), iii) the mean (or total) climatic 

value during the month of collection and the previous month (2 months average) and iv) the 

mean (or total) climatic value during the collection month and the two previous months (3 

months average). The mean was used as a summary measure for NDVI and the total was 

considered as a summary measure for rainfall. Vector data obtained from surveys extended 

over a period longer than a month were available cumulatively for the whole period instead of 

monthly. In this case the midpoint month was used to relate the climatic factors. The Akaike’s 

Information Criterion (AIC) was used to select the best summary measure and lag time for the 

rainfall and NDVI. The statistical significance of the environmental factors was assessed 

using the likelihood ratio test (LRT). All factors with a 15% significance level were entered in 

a Bayesian geostatistical multinomial regression model. The model took into account spatial 

heterogeneity by including location-specific random effects at the level of sampling location 

for each multinomial category (except the baseline). Bayesian kriging was used to assess the 

spatial patterns of the different chromosomal forms. A description of the geostatistical model 

is given in the appendix. 

 



Chapter 3: Spatial distribution of An. gambiae s.s. chromosomal forms 

__________________________________________________________________________________________ 

41 

3.4. Results 

Twenty six thousand three hundred twenty eight mosquitoes (26328) were assigned to 

one of the 3 chromosomal forms: Mopti, Bamako, and Savanna that represented 57.1%, 

19.0% and 18.6% of the chromosomally identified mosquitoes, respectively. The remaining 

5.3% were hybrids of Mopti-Savanna or Savanna-Bamako and the recombinants (Table 3.1). 

The three eco-climatic zones were sympatric areas for at least 2 of the chromosomal forms. 

Mopti form was the most abundant, prevailing in all eco-climatic areas with an increasing 

frequency from South to North (from 51.8% to 95.3%). The opposite situation was observed 

with Savanna form (1.8% to 25% from North to South). Bamako form was absent in the 

Sahelian zone. The highest frequency (6.3%) of hybrids/recombinants was observed in the 

North Sudan savanna. 

 

Table 3.2 presents the results of the bivariate multinomial regression analyses between 

the chromosomal forms and the environmental and climatic factors used in the analysis. 

Among the four NDVI and rainfall measures considered in the study, the ones which fitted the 

distribution of chromosomal forms best (giving smaller AIC) were NDVI mean value and 

total rainfall value during the month of mosquito collection and the 2 previous months 

respectively. The results indicate a positive association of the suitability for transmission, the 

climatic values of NDVI and rainfall (Measure_4) and the SWS index with the relative 

frequencies of Savanna, Bamako and the hybrids/recombinants chromosomal forms, relative 

to the Mopti form used as baseline. The Bamako chromosomal form was positively associated 

with distances of 4—10 km to water bodies and crop/grass/mosaic land use categories, while 

the hybrids/recombinants chromosomal form was positively associated with Guinea savanna 

AEZ. All other parameters or category of parameters included in the analysis were negatively 
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associated with Savanna, Bamako and hybrids/recombinants chromosomal forms except 

distance of >10 – 20 km to water bodies with Savanna form were not significant. 

 

 
Table 3.1: Relative frequencies of An. gambiae s.s.chromosomal forms by eco-climatic zone 
                  In Mali. 
 

Chromosomal forms of An.gambiae s.s.  

Eco-climatic zones 

 

Number of 
localities 

Bamako  

form 

Mopti  

form 

Savanna  

form 

Hybrids/ 

Recombinants  

 

Total 

Southern Sudan 
Savanna 

10 934 
(20.4%) 

2375 

(51.8%) 

1181 

(25.8%) 

91 

(2.0%) 

4581 

Northern Sudan 
savanna 

33 4060 
(20.4%) 

10907 

(54.8%) 

3693 

(18.6%) 

1248 

(6.3%) 

19908 

Sahelian 

 

36 0 

(0.0%) 

1752 

(95.3%) 

33 

(1.8%) 

54 

(2.9%) 

1839 

Overall 

 

79 4994 

(19.0%) 

15034 

(57.1%) 

4907 

(18.6%) 

1393 

(5.3%) 

26328 

 

 

The multivariate spatial multinomial regression model showed a positive association 

between the SWS index and suitability for transmission and negative association between the 

minimum temperature and all the chromosomal forms (Table 3.3). In addition, positive 

association was observed between NDVI and Savanna form, between maximum temperature 

and Bamako form and between rainfall, maximum temperature and the hybrids/recombinants. 

Negative association was observed between North savanna, Sahel and Savanna form; between 

the minimum temperature and Bamako and between distances of 4—20 km to water bodies, 

AEZ and the hybrids. The SWS index and suitability for transmission were positively 

associated and the minimum temperature negative associated with all chromosomal forms in 
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both models. The AEZs significantly associated with all chromosomal forms in the bivariate 

analyses were no longer significant in the spatial model for Bamako form. The maximum 

temperature for Bamako and the hybrids/recombinants and the rainfall for the 

hybrids/recombinants remained significant in the spatial analysis. The distance at which 

correlation between 2 locations was less than 5% was 428.2 km (101.2, 1755.2), 1113.4 km 

(327.0, 2135.6) and 953.2 km (318.1, 2090.0) for Savanna, Bamako and the 

hybrids/recombinants chromosomal forms respectively, indicating a large spatial correlation 

in the data. 

 

Figure 3.1 shows the observed relative frequencies of the different chromosomal 

forms in 71 locations across the country. The spatial distribution maps (Figs 3.2, 3.3, 3.4, 3.5, 

3.6, 3.7, 3.8 and 3.9) show clearly an ecological aggregation of the different chromosomal 

forms. The Mopti form (Figs 3.2-3.3) shows a South-North distribution pattern with an 

increasing frequency reaching up to 100% in the inner delta of Niger River and the Sahelo-

Saharian part of the country. The Savanna form (Figs 3.4-3.5) is present in the Sudan savanna 

area at the South and South-Eastern parts of the region of Kayes and Sikasso respectively. 

Bamako chromosomal form (Figs 3.6-3.7) is confined to the Western part of the region of 

Sikasso and the hybrids/recombinants of Bamako-Savanna, Mopti-Savanna (Figs 3.8-3.9) are 

observed in the South-Western part of the region of Kayes. 
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Table 3.2: Bivariate association between chromosomal forms and climate and environmental parameters arising from multinomial regression 
                   model. Odds ratios are relative to Mopti chromosomal form.  

 
 

Parameters  Savanna  Bamako  Hybrids  p-value (AIC) 

 OR (95%CI) OR (95%CI) OR (95%CI)  
Agro-ecological zones (AEZ)     
     Guinea savanna 1.00 1.00 1.00  
      Sudan savanna 0.91 (0.84—0.98) 0.87 (0.80—0.94) 1.42 (1.23—1.63) < 0.001 
     Sahel 0.30 (0.26—0.33) 1.03 (0.94—1.12) 0.73 (0.61—0.88)  
Distance to water bodies     
   < 4 km 1.00 1.00 1.00  
   4 - 10 km 0.59 (0.55—0.63) 1.10 (1.03—1.18) 0.39 (0.34—0.44)  
   >10 - 20 km 0.95 (0.87—1.05 0.80 (0.72—0.89) 0.76 (0.65—0.89) < 0.001 
   > 20 km 0.32 (0.25—0.42) 0.22 (0.15—0.30) 0.32 (0.21—0.49)  
Land use     
     Savanna 1.00 1.00 1.00  
     Crop/Grass/Mosaic land 0.34 (0.31—0.37) 1.20 (1.12—1.29) 0.60 (0.52—0.69) < 0.001 
     Others 0.09 (0.07—0.13) 0.10 (0.07—0.14) 0.35 (0.25—0.49)  
Suitability to transmission     
     Not suitable 1.00 1.00 1.00  
     Suitable 4.44 (4.14—4.76) 1.67 (1.57—1.78) 2.90 (2.60—3.24) < 0.001 
Rainfall     
     Measure_1 1.06 (1.03—1.10) 1.00 (0.96—1.03) 1.23 (1.18—1.29) <0.001 (58461.76) 
     Measure_2 1.60 (1.55—1.65) 0.99 (0.96—1.03) 1.31 (1.24—1.37) <0.001 (57481.14) 
     Measure_3 1.32 (1.28—1.36) 0.99 (0.96—1.03) 1.29 (1.23—1.35) <0.001 (58134.34) 
     Measure_4 1.87 (1.81—1.93) 1.07 (1.04—1.11) 1.51 (1.44—1.59) <0.001 (56806.59) 

NDVI     
     Measure_1 2.09 (2.02—2.17) 1.13 (1.09—1.16) 1.71 (1.62—1.81) <0.001 (56443.11) 
     Measure_2 2.69 (2.59—2.79) 1.24 (1.20—1.28) 1.73 (1.63—1.83) <0.001 (55413.54) 
     Measure_3 2.45 (2.36—2.54) 1.18 (1.15—1.22) 1.75 (1.65—1.85) <0.001 (55830.97) 
     Measure_4 2.81 (2.70—2.92) 1.19 (1.15—1.23) 1.80 (1.70—1.91) <0.001 (55171.33) 

Temperature     
     Mean minimum 0.995(0.984—0.987) 0.995(0.994—0.996) 0.992(0.990—0.994) <0.001 
     Mean maximum 0.981(0.980—0.983) 0.993(0.992—0.994) 0.985(0.984—0.987) <0.001 
SWS  28.79 (23.59—35.14) 2.15 (1.67—2.77) 7.57(5.39—10.63) <0.001 



 

 

 

 

 

 

Figure 3.1: Observed relative frequencies of the chromosomal forms in 71 locations in Mali, 
                West Africa. The orange represents Mopti, the red Savanna, the green 
                Bamako and the purple the Hybrids/recombinants relative frequencies 
 
 
 
 
 
 
 
 
 
 
 



 

 
Table 3.3: Odds ratios for presence of different chromosomal forms estimated from the geo-
statistical Bayesian multiple multinomial regression model. 
 

Savanna Bamako Hybrids/Recombinants Parameters 

Posterior median 
(95%CI) 

Posterior median 
(95%CI) 

Posterior median 
(95%CI) 

      Rainfall 0.95 (0.83—1.08) 1.09 (0.99—1.20) 1.22 (1.03—1.46) 

     Max temperature 0.74 (0.47—1.07) 6.09 (4.29—7.99) 2.32(1.34—3.97) 

     Min temperature 0.41(0.22—0.99) 0.07 (0.04—0.14) 0.28 (0.14—0.58) 

     NDVI 1.46 (1.30—1.65) 1.04 (0.96—1.13) 1.03 (0.88—1.19) 

     SWS 2.02 (1.42—2.84) 5.98 (4.45—8.04) 3.25 (1.99—5.32) 

Distance to water 
bodies 

   

      < 4 km 1.00 1.00 1.00 

      4 to 10 km 0.20 (0.05—0.89) 1.52 (0.40—7.01) 0.42 (0.17—0.89) 

      >10 to 20 km 0.94 (0.15—7.88) 1.64 (0.14—14.05) 0.18 (0.04—0.74) 

      > 20 km 0.69 (0.09—4.49) 3.66(0.22—56.66) 0.31 (0.07—1.33) 

Suitability to 
transmission 

   

      Suitable 1.00 1.00 1.00 

      Not suitable 4.72(3.43—6.63) 24.76 (16.03—
37.77) 

3.53 (2.34—5.65) 

Agro-ecological 
zones (AEZ) 

   

     South savanna 1.00 1.00 1.00 

     North savanna 0.29 (0.07—2.00) 2.92 (0.31—29.56) 0.24 (0.06—0.82) 

     Sahel 0.01 (0.00—0.79) 0.00 (0.00—13.85) 0.05 (0.00—0.92) 

Spatial parameters    

      3/ ρ ** (km) 428.2 (101.2—
1755.2) 

1113.4 (327.0—
2135.6) 

953.2 (318.1—2090.0) 

      2σ  9.95 (4.45—37.00) 24.95 (8.29—
67.78) 

8.57 (3.47—22.58) 

*Odds ratios are relative to Mopti form 
**Distance (km) with spatial correlation < 5% 

 

 



 

 
Figure 3.2: Map of the predicted proportion of the Mopti chromosomal form of An. 
                  gambiae s.s. in Mali, West Africa. 
 
 

 
 
Figure 3.3: Map of the prediction errors of the Mopti chromosomal form of An.  

                  gambiae s.s. in Mali, West Africa. The black dots represent the data locations. 
 
 
 
 
 



 

 
 

Figure 3.4: Map of the predicted proportion of the Savanna chromosomal form of  
                  An. gambiae s.s. in Mali, West Africa. 
 

 
Figure 3.5: Map of the prediction errors of the Savanna chromosomal form of An. gambiae 
                   s.s. in Mali, West Africa. The black dots represent the data locations. 



 

 
 
Figure 3.6: Map of the predicted proportion of the Bamako chromosomal form of An. 

               gambiae s.s. in Mali, West Africa. 
 
 

 
 
Figure 3.7: Map of the prediction errors of the Bamako chromosomal form of An. 
                   gambiae s.s. in Mali, West Africa. The black dots represent the data locations. 



 

 
 
Figure 3.8: Map of the predicted proportion of the hybrids chromosomal form of An. 
                   gambiae s.s. in Mali, West Africa. 
 
 

 
Figure 3.9: Map of the prediction errors of the hybrids chromosomal form of An. 
                   gambiae s.s. in Mali, West Africa. The black dots represent the data locations. 
 

 

 

 



 

3.5. Discussion 

The predicted maps of the different chromosomal forms of An. gamabiae s.s. represent 

an average relative frequency over the malaria transmission season in Mali (June to 

November). They may not reflect the exact situation –which is temporally dynamic– because 

(i) data were obtained from cross-sectional surveys carried out during a single point of time, 

and (ii) Long term averages of climatic and environmental factors were used because some of 

these factors were not available during the survey times. Despite the long duration of the data 

collection, standardized techniques were used for sampling and processing mosquitoes across 

surveys rendering the mosquito database consistent. 

 

The analysis of the observed data showed that at least two of the chromosomal forms 

were sympatric in each of the three eco-climatic zones of Mali. The Mopti chromosomal form 

was prevalent in all eco-climatic zones indicating that this type can easily adapt to different 

environmental and climatic conditions. Its chromosomal arrangement bc/bc and u/u may play 

an important role in its adaptation to diverse environment [15]. Indeed, seasonal variations of 

the frequency of Mopti chromosomal arrangement show that the frequency of bc karyotype 

decreases in the rainy season and increases in the dry season, but the frequencies of u 

karyotype show the reverse variation [17]. The Bamako form which is normally present along 

river systems, was absent around the Niger River in the Sahelian zone showing the preference 

of this type to more humid climate. The Savanna form was present in all eco-climatic zones, 

but with higher frequency in the South Sudan savanna. The three chromosomal forms were 

sympatric in the Northern Sudan savanna where the highest relative frequencies of the hybrids 

Mopti-Savanna and Bamako-Savanna were also observed. 

 

The spatial distribution maps clearly show that, in spite of their sympatry, the spatial 

distribution of the different chromosomal forms is not random. Each chromosomal form 



 

favours a particular defined eco-climatic zone as reported by previous studies [7,10,15,27]. 

The Mopti form (Figs 2-3) is present country wide but prefers the dryer northern Sahel and 

the flooded/irrigated areas of the delta of Niger River. Because of it association with flooded 

plains and irrigated fields, it also breeds continuously even throughout the dry season [15]. 

The Savanna form (Figs 3.4-3.5) favours the Sudan savanna areas and is particularly 

predominant in the South and South-Eastern parts of the country (Kayes and Sikasso regions). 

The Bamako form (Figs 3.6-3.7) has strong preference to specific environmental conditions 

and it was confined in the Western part of Sikasso region and around Bamako town which 

also gave the name to this type [14]. 

 

The hybrids/recombinants (Figs 3.8-3.9) are observed in the Western part of the 

country (Kayes region), a wooded area, at the border of the Republic of Guinea Conakry. The 

spatial distribution of these inversions shows a strong association with ecological/climatic 

zones [7,27]. The border of the Republic of Guinea Conakry and Kayes is a transitional area 

between the forest (with high inversion diversity within mosquito populations with more 

standard and heterozygous carriers) and Savanna (with more homozygous carriers). Field 

population studies revealed a low frequency of hybrids between Mopti and Savanna and 

between Bamako and Savanna as well as a complete reproductive isolation between Bamako 

and Mopti [20]. Therefore, the hybrids/recombinants observed here are likely to be from 

Bamako-Savanna because these 2 forms are sympatric in this part of the country. It has also 

be reported that the karyotypes identified as hybrids are in fact not hybrids, but the 

consequence of low frequency polymorphisms in one or the other taxon [28]. The high spatial 

correlation observed in the data may probably be due to the effect of environmental factors 

which influence large areas. 

 



 

The only spatially-continuous map of An. gambiae s.s. chromosomal form distribution 

produced so far was for West Africa [10]. Our introduced approach, however, yielded a more 

finely resolved An. gambiae s.s. chromosomal form spatially-continuous distribution for Mali. 

Based on current knowledge on vector resistance to pyrethroids in Mali [19], these maps 

provide valuable information for selective and targeted malaria vector control in Mali. Indeed, 

the Mopti chromosomal form –which have not yet developed resistance to insecticide— 

prevails in the Sahelian and irrigated/flooded areas, while the S molecular form (Savanna and 

Bamako) –which carries the kdr gene— is more abundant in the southern part of the country, 

particularly in Sikasso and Kayes regions. Although any vector control by means of 

insecticides must be accompanied by a resistance monitoring system, particular attention must 

be paid to the southern part of the country. 

 

The maps may also be useful for planning future implementation of malaria control by 

genetically manipulated mosquitoes. However, more bio-ecological and gene flow studies 

among the different chromosomal forms are needed before undertaking any field 

implementation of control by genetically manipulated mosquitoes. In addition, temporal 

distribution maps of the chromosomal forms would be useful to complete the stratification for 

targeted vector control. Indeed, in areas where the chromosomal forms occur sympatrically; 

their relative frequencies change seasonally, most likely in response to annual fluctuations in 

climate [29]. However, collecting temporal genotyped data is not an easy task because of the 

skilled and labor intensive techniques required for field identification of the chromosomal 

forms. 

 

3.6. Conclusions 

Our study represents more finely resolved spatially-continuous distribution maps of 

An. gambiae s.s. chromosomal form in Mali. The maps provide valuable information for 



 

selective vector control in Mali (insecticide resistance management) and may serve as a 

decision support tool for the basis for future malaria control strategies including genetically 

manipulated mosquitoes. 
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3.8. Appendix 

3.8.1. Geostatistical multinomial regression model  

Let ikY  be the observed frequency of mosquito chromosomal form k at location i 

where k=1,2,3,4 denote the Mopti, Bamako, Savanna , and hybrid forms, respectively. It was 

assumed that ikY  arise from a multinomial distribution, that is 

( ) ( )1 2 3 4 1 2 3 4, , , ~ , , , ,i i i i i i i i iY Y Y Y Mult n π π π π  with parameters 
ikπ  and 

in  is the total number of 

An. gambiae s.s collected at location i. Spatial correlation was introduced on the location-

specific random effects ikφ which are modeled together with the covariate effects on the logit 

parameters, that is 
4

log Tik
i k ik

i

X
π

β φ
π

 
= + 

 
 where kβ are covariate parameters related to the kth 

multinomial category, k=1,2,3.  

 

It was also assumed ikφ  to model a latent isotropic Gaussian spatial process, that 

is 1( ,... ) ~ (0, )k k Nk kMVNφ φ φ= Σ , with covariance matrix kΣ  and that spatial correlation 



 

between any pair of locations is a function of distance between locations, that is 

( ) 2 exp( )k k k ijij
dσ ρΣ = −  where 2

kσ is the spatial variance related to the multinomial category k, 

kρ  is the parameter that models the rate of correlation decay and dij the distance between the 

locations i and j. Based on the above specification, the minimum distance for which the 

spatial correlation becomes less than 5% is calculated by [1]. The model parameters were 

estimated using Markov Chain Monte Carlo (MCMC) simulation methods. Bayesian kriging 

was used to predict the species frequency at 85,000 unsampled locations [2]. The Bayesian 

model fit was carried out in WinBUGS 1.4. (Imperial College and MRC, UK), whereas the 

model prediction was implemented in Fortran 95 (Compaq Visual Fortran, Professional 6.6.0) 

using standard numerical libraries (NAG, The Numerical Algorithms Group Ltd). 

3.8.2. Model fit  

The parameters of the above models were estimated using Markov Chain Monte Carlo 

(MCMC) simulation methods.  In accordance with the Bayesian model specification, prior 

distributions were adopted for the model parameters. Vague normal prior distributions were 

chosen for 
−

β  parameters with large variances (i.e., 10,000), gamma prior for r , inverse 

gamma priors for kσ and uniform priors for 3,2,1, =kkρ . A single chain sampler was run with 

a burn-in of 5,000 iterations. Convergence was assessed by inspection of ergodic averages of 

selected model parameters. Bayesian kriging was used to predict the species frequency at 

85,000 unobserved locations [2]. The Bayesian model fit was carried out in WinBUGS 1.4. 

(Imperial College and MRC, UK), whereas the model prediction was implemented in Fortran 

95 (Compaq Visual Fortran, Professional 6.6.0) using standard numerical libraries (NAG, The 

Numerical Algorithms Group Ltd). 
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Abstract 

Reliable maps of malaria risk and knowledge of the contribution of vector species and 

subspecies to transmission are important tools for selecting areas of priority for malaria 

control and appropriate intervention. In this study we obtained a recent malaria risk map of 

Mali as well as attributed malaria risk ma ps for the different chromosomal variants of An. 

gambiae complex using Bayesian geostatistical modeling. The different chromosomal forms 

of An. gambiae s.s contribute equally to malaria transmission during the dry survey period 

(1981-1990). During the survey period 1991-2004, An. arabiensis contribution was 

significantly lower compared to the Mopti form. The kdr allele carriers (Bamako/Savanna) 

were associated with higher malaria parasite risk. The revised malaria risk map was in 

agreement with the eco-geographical description of malaria in Mali. Malaria transmission is 

mainly due to An. arabiensis in the middle West and South East part of the country, to the 

Mopti form in the irrigated/flooded areas,  to the Savanna/Bamako forms in the southern part, 

and to the hybrids in the southern areas of the region of Kayes (West of the country).  

 

Keywords: An. gambiae, chromosomal forms, Bayesian geostatistics, multinomial, binomial, 
Markov chain Monte Carlo (MCMC), krigging. 
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4.1. Introduction  

Malaria remains one of the major tropical health challenges in the world. The number 

of deaths dues to the disease is estimated to 1.1-1.3 million (World Health Reports 1999-

2004). Almost 90% of these deaths occur in sub-Sahara Africa, especially among children and 

pregnant women. The majority of malaria infections in Africa are caused by Plasmodium 

falciparum, predominantly transmitted by members of An. gambiae complex. An. gambiae 

complex consists of, at least, six sibling species exhibiting varying degrees of ecological, 

behavioral and vectorial capacities (Costantini et al, 1999). The chromosomes of all sibling 

species in An. gambiae complex show polymorphic inversions (Coluzzi et al 1979). In Mali, 

the An. gambiae complex consists of An. arabiensis and An. gambiae s.s., which has at least 

three inversion karyotype named Bamako, Mopti and Savanna (Touré et al. 1989). In previous 

work, we produced spatial distribution maps of the relative frequencies of An. arabiensis and 

An. gambiae s.s (Sogoba et al. 2007) as well as for the different karyotypes of An. gambiae 

s.s. (Mopti, Bamako, Savanna and hybrids/recombinants). These maps showed distinct 

geographical preferences of the species and the chromosomal karyotypes of An. gambiae 

complex.  

 

The geographical distribution of vector species plays an important role in malaria 

epidemiology. Differences in vectorial capacity and behavior are contributing factors in the 

role of individual species in the epidemiology of malaria transmission (Petrarca and Beier, 

1992; Fontenille et al., 1997). However, little is known about how the different species and 

chromosomal karyotypes of An. gambiae complex are related to malaria transmission 

intensity. One of the direct ways to assess this relationship is to estimate the contribution of 

each species and chromosomal karyotype to the entomological inoculation rate (EIR). Such 

exercise at larger areas will be expensive and time-consuming. Although studies have shown 

that the  relationship between malaria prevalence and EIR is not linear (Mbogo et al. 2003), 
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the parasite prevalence in a population is related to the intensity of the transmission and it  can 

be used to estimate EIR and vise versa (Gemperli et al. 2006). Data on parasite prevalence are 

available in the Mapping Malaria Risk in Africa (MARA) project database, the most 

comprehensive database of malaria survey data in Africa. The MARA database allows not 

only assessing the relation between malaria risk and vector subspecies distribution but also 

producing malaria risk maps attributed to each subspecies. A number of predicted malaria 

prevalence maps in Mali have been produced using different statistical approaches in order to 

improve their accuracy (Kleinschmidt et al. 2000; Gemperli et al 2006; Gosoniu et al., 2006). 

These maps are based on data collected until 1998 however some of our vector surveys took 

place after this year. The MARA database has not been updated over the last 10 years and it 

may not reflect the current situation of disease risk in Mali. The main objective of this study 

was to assess the relationship between malaria risk and the vector species distribution. To 

address this aim, we (i) linked the MARA and vector databases by predicting the subspecies 

distribution at the MARA locations ii) quantified the contribution of each subspecies to 

malaria risk and iii) produced malaria risk maps in Mali  attributed to each vector subspecies.  

 

4.2. Material and methods 

4.2.1. Data description 

4.2.1.1. Prevalence data 

Data on malaria endemicity were obtained from the Mapping Malaria Risk in Africa 

(MARA/ARMA, 1998), which is a geo-referenced database of all available published and 

unpublished malariometric survey data in 44 countries including Mali. These surveys record 

the presence of P. falciparum in blood smears. The latest recorded data for Mali was in 1998. 

We updated the database for Mali with survey data collected up to 2004 using the same data 

extraction proforma of MARA/ARMA. For the purpose of our study, we extracted the 
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prevalence data for children of 1-15 years old and for the total population in epidemic prone 

areas (all location at altitude more than 15 degree North). Data were obtained from 121 

locations well distributed widely in all the eco-climatic zones of the country.     

4.2.1.2. Vector data 

The vector data were obtained from published (Touré et al., 1998) and unpublished 

surveys carried out during various research activities of the Malaria Research and Training 

Center (MRTC) of the Faculty of Medicine, University of Bamako, Mali. They were collected 

from cross-sectional and longitudinal surveys from 1981 to 2004, generally conducted during 

the wet season (June – November). The database is described in detail in Sogoba et al., 

(2007). 

4.2.1.3. Environmental data 

The environmental and climatic factors which were used to predict both malaria 

endemicity and vector relative frequencies were obtained using remotely sensed. Data on 

Normalized Vegetation Index (NDVI) was extracted from the NOAA/NASA Pathfinder 

AVHRR Land Project. Temperature and rainfall data were obtained from the topographic and 

climate database for Africa (Hutchinson et al., 1996). Data on land use type were obtained 

from United State Geological Survey and the NASA’s Distributed Active Archive Center 

(Anderson et al., 1979). Water bodies data and data on soil water storage were extracted from 

the African Data Sampler and from Droogers et al. (2001), respectively. For more details on 

the sources and spatial resolution of these data refer to Sogoba et al. (2007). 

 

4.3. Statistical analysis 

The main objective of this study was to assess the relationship between malaria risk 

and the distribution of the vector species and subspecies. To address this aim we i) linked the 

MARA and vector subspecies databases by predicting the vector subspecies at the MARA 
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locations ii) quantified the contribution of each subspecies to malaria risk and iii) produced 

continuous malaria risk maps in Mali attributed to each vector subspecies by combining the 

malaria risk map with maps of the distribution of each subspecies in the country. 

 

The MARA and vector subspecies databases contain data at different locations. To 

align the databases, we developed a predictive model of the mosquito subspecies based on the 

relation between the frequency of subspecies and environmental factors by fitting multinomial 

geostatistical models on the subspecies data. This model was employed to predict the vector 

species and subspecies frequency at the MARA survey locations using Bayesian kriging. 

Bayesian kriging was also employed to produce continuous maps of the distribution of vector 

species and subspecies for the whole country. The multinomial categories were representing 

the following five species or chromosomal forms: Mopti, An. arabiensis, Bamako, Savanna, 

and Hybrids/recombinants. The Mopti form was considered as the baseline category. 

Summary measures of the environmental factors were used to link them with the vector data. 

In particular, rainfall and NDVI were summarized by long term averages as follow: i) the 

climatic value during the month of collection (measure_1), ii) the climatic value during the 

previous month (measure_2), iii) the mean (or total) climatic value during the month of 

collection and the previous month (measure_3) and iv) the mean (or total) climatic value 

during the collection month and the two previous months (measure_4). The climate value was 

the arithmetic mean for NDVI and the total for rainfall. 

 

To quantify the contribution of each subspecies to malaria risk a logistic geostatistical 

regression model was fitted relating the MARA survey data to the frequency distributions of 

species and subspecies. The malaria survey data were considered as the outcome measure and 

the logits of each subspecies frequency with reference to the frequency of the Mopti form 

were treated as the explanatory variables. 
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In order to produce malaria risk maps attributed to each vector subspecies a spatial 

logistic regression model was fitted relating the malaria survey data to environmental 

predictors. These models were used to predict the malaria risk at the unobserved locations and 

produce a continuous malaria risk map. The environmental data, namely NDVI, SWS index, 

rainfall, minimum and maximum temperature were summarized at each survey location by 

long term averages during the following months: 1) January – December 2) May – November 

3) May – October, 4) June – November, and 5) June – October. Time intervals 2) to 5) were 

linked to the malaria transmission seasons in the different eco-climatic zone in Mali. For the 

land use variable, a buffer of 2 km around each data point was created and the relative 

frequencies of the pixels of the different land use categories inside this buffer were calculated. 

We grouped together urban and built-up dry and barren or sparsely vegetated land (category 

1), crop/grass, crop/wood mosaic shrub and grassland (category 2) and Savanna, water bodies 

and irrigated cropland and pasture (category 3). The predicted malaria prevalence map was 

combined with maps of vector subspecies distribution to obtain malaria risk maps attributed to 

each vector subspecies in the country as described in the appendix. 

 

Bivariate non-spatial regression models (binomial and multinomial) were fitted in 

STATA v9.0 (STATA Corporation, USA) to select predictors and their summary measure  

which best fitted the data (malaria risk and species/subspecies frequency distributions, 

respectively) as indicated by the Akaike’s information criterion (AIC). The statistical 

significance was assessed using the likelihood ratio test (LRT). All factors significant at the 

15% significance level were entered into a Bayesian multivariate geostatistical model 

(binomial or multinomial depending on the outcome). 

 

Model parameters were estimated using Markov chain Monte Carlo (MCMC) 

simulation methods. The Bayesian model fit was carried out in WinBUGS 1.4. (Spiegelhalter 
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et al., 2004), whereas the model prediction was implemented in Fortran 95 (Compaq Visual 

Fortran, Professional 6.6.0) using standard numerical libraries (NAG, The Numerical 

Algorithms Group Ltd). 

 

A description of the geostatistical multivariate binomial and multinomial models is 

given in the Appendix. 

 

4.4. Results  

Vector data were available from 1981 onwards. During 1981-1990, a total of 15762 

mosquitoes were identified in species and chromosomal karyotypes over 71 locations 

throughout the country. Table 4.1 presents the relative frequencies of the different taxa of An. 

gambiae complex per year in Mali. Their overall relative frequencies were 44.6%, 20.4%, 

29.8% and 5.2% respectively for Mopti, An. arabiensis, Bamako/Savanna and the 

hybrids/recombinants, respectively. From 1991-2004 and in the same order the relative 

frequencies of members of An. gambiae complex were 25.3%, 28.1%, 43.2% and 3.5% for a 

total of 18530 mosquitoes identified. Significant difference in the overall relative frequencies 

of members of An. gambiae complex was observed.  

 

The bivariate non-spatial multinomial regression models showed that long term 

averages of NDVI and rainfall  during the month of mosquito collection (measure_1) fitted 

best (giving smaller AIC) the species and subspecies data (Table 4.2). These factors were used 

in the Bayesian spatial multivariate multinomial regression models.  Temperature, distance to 

water bodies and suitability to transmission were also significantly related to the mosquito 

data (P < 0.0001). 
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Table 4.1: Relative frequencies of the different taxa of An. gambiae complex per year in Mali 

Total An. arabiensis 
(%) 

Bamako 
(%) 

Mopti 
(%) 

Savanna 
(%) 

Hybrids 
(%) 

Years 
 

Period 1 

1981 1079 17.4 16.3 61.2 3.0 2.1 
1982 2709 11.3 35.1 41.1 10.2 2.2 
1983 4824 15.5 7.3 42.1 27.0 8.1 
1984 2964 29.1 8.7 45.4 9.8 6.9 
1985 1863 24.3 16.0 39.3 16.3 4.2 
1986 409 49.1 15.6 24.7 8.8 1.7 
1987 141 0.7 25.5 66.0 4.3 3.5 
1988 617 10.2 0.2 88.0 0.8 0.8 
1989 1156 33.8 15.7 35.6 11.0 3.9 
1990 - - - - - - 

Overall 15762 20.4 14.7 44.6 15.1 5.2 

 Period 2 

1991 - - - - - - 
1992 1306 11.1 15.6 22.1 48.7 2.5 
1993 1828 31.2 9.2 33.9 22.8 2.9 
1994 3131 23.6 22.9 37.6 10.3 5.7 
1995 3178 22.5 8.4 57.0 8.7 3.4 
1996 2320 31.5 10.0 48.0 6.9 3.7 
1997 1287 19.3 13.6 54.0 9.5 3.6 
1998 1878 15.9 20.7 50.1 12.3 1.1 
1999 1967 38.5 13.3 38.5 7.5 2.2 
2000 198 61.1 0.0 38.9 0.0 0.0 
2001 - - - - - - 
2002 995 29.5 11.3 41.0 15.6 3.3 
2003 181 36.5 4.4 32.6 23.8 2.8 
2004 261 0.4 54.0 23.4 6.1 16.1 

Overall 18530 25.3 14.4 43.2 13.6 3.5 

 

The results of the spatial multivariate multinomial model are presented in Table 4.3. 

Rainfall was negatively associated with the frequency of An. arabiensis and positively related 

to the frequency of Savanna chromosomal form in comparison to Mopti subspecies. Except 

the minimum temperature and the distance of >10-20 km to water all other environmental 

factors were positively related to An. arabiensis.  Maximum temperature, NDVI and 

suitability to transmission were positively associated with the Bamako chromosomal form. 

More recent entomological surveys indicated lower frequencies of Bamako and Savanna 
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forms and higher frequencies of An. arabiensis in comparison to the Mopti form. The Savanna 

chromosomal form was also positively associated with maximum temperature, NDVI and 

suitability to transmission and negatively associated with SWS index, and distance of 4-10 km 

from water. NDVI and suitability to transmission were positively related to the hybrid form. 

SWS index and distances > 10 km to water bodies were negatively related to hybrid in 

comparison to Mopti. Strong spatial correlation was observed in the frequency distribution of 

all the species and subspecies of An. gambiae complex.   

The results of the relative contribution of the different chromosomal entities of An. 

gambiae complex to the transmission are presented in Table 4.4. During both survey periods 

(1981-1990 and 1991-2004), the Bamako/Savanna chromosomal forms showed higher 

contribution to the transmission (32.3, 95% CI = 9.1—89.1 and 38.6, 95% CI = 19.5—88.8) 

followed by the hybrid form (28.0, 95% CI = 6.8—82.7 and 22.1, 95%CI = 15.1—78.9), the 

Mopti form (23.4, 95%CI = 12.2—66.9 and 20.8, 95%CI = 22.7—61.8) and finally by An. 

Arabiensis (16.3, 95%CI = 5.1—68.4 and 18.5, 95%CI = 13.0—68.0) even though the 

difference was not significant. This indicate that about 83.7% and 81.5% of the transmission 

was due to An. gambiae s.s. against 16.3% and 18.5% by An. arabiensis during the respective 

survey periods. The range of spatial correlation in the potential for the different sibling species 

to transmit the disease was very strong during the drought period of 1981-1990 (Median = 

314.58 km, 95% CI = 0.1—899.0) and weak during the relatively wet period of 1991-2004 

(Median = 0.08, 95%CI = 0.05—0.37). 
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Table 4.2: Bivariate association between chromosomal forms and climate and environmental parameters arising from multinomial regression 
                  model. Coefficients are relative to Mopti chromosomal form.  
 

 
 
 
 

Environmental 
factors 

An. arabiensis 
Coef. (95% CI) 

Bamako 

Coef. (95% CI) 
Savanna 

Coef. (95% CI) 
Hybrids  

Coef. (95% CI) 
 AIC LRT 

Rainfall       

     Measure_1 -0.002 (-0.002, -0.002) -0.002 (-0.002, -0.001) 0.002 (0.002, 0.001) 0.001 (0.001, 0.001) 92192.53 χ
2 = 3381.9; P<0.001 

     Measure_2 -0.002 (-0.002, -0.002) -0.002 (-0.002, -0.002) 0.002 (0.002, 0.003) 0.002 (0.001, 0.002) 92909.99 χ
2 = 2664.5; P<0.001 

     Measure_3 -0.006 (-0.006, -0.005) -0.004 (-0.004, -0.004) 0.005 (0.004, 0.005) 0.003 (0.002, 0.003) 92471.78 χ
2 = 3102.7; P<0.001 

     Measure_4 -0.003 (-0.003, -0.003) -0.002 (-0.003, -0.002) 0.003 (0.003, 0.003) 0.003 (0.002, 0.003) 93934.03 χ
2 = 1640.4; P<0.001 

Temperature       
     Mean minimum 0.020 (0.019, 0.022) 0.017 (0.016, 0.018) -0.019 (-0.021, -0.017) -0.012 (-0.015, -0.009) 92732.36 χ

2 = 2842.1; P<0.001 

     Mean maximum 0.004 (0.003, 0.006) 0.068 (0.064, 0.071) 0.011 (0.009, 0.014) 0.022 (0.018, 0.027) 93484.18 χ
2 = 2090.3; P<0.001 

NDVI       
     Measure_1 -7.01 (-7.27, -6.74) -3.40 (-3.70, -3.10) 2.57 (2.22, 2.92) 0.63 (0.08, 1.18) 91430.96 χ

2 = 4143.5; P<0.001 

     Measure_2 -5.77 (-6.00, -5.53) -3.75 (-3.03, -2.48) 3.52 (3.15, 3.89) 1.79 (1.22, 2.36) 91580.5 χ
2 = 3994.0; P<0.001 

     Measure_3 -6.03 (-6.27, -5.80) -2.88 (-3.15, -2.61) 2.11 (1.80, 2.42) 0.41 (-0.07, 0.91) 91784.31 χ
2 = 3790.2; P<0.001 

     Measure_4 -0.021 (-0.022, -0.020) -0.010 (-0.011, -0.009) 0.013 (0.012, 0.015) 0.011 0.008, 0.013) 92144.52 χ
2 = 3429.9; P<0.001 

Distance to water 
bodies 

      

   < 4 km 0.00 0.00 0.00 0.00   

   4 - 10 km 1.92 (1.85, 2.00) -1.10 (-1.22, -0.95) 0.80 (0.71, 0.89) -0.37 (-0.57, -0.18)   

   >10 - 20 km 0.82 (0.75, 0.89) -6.79 (-8.18, -5.41) -0.28 (-0.36, -0.19) -0.56 (-0.71, -0.42) 88207.29 χ
2 = 7383.2; P<0.001 

   > 20 km 1.55 (1.41, 1.69) -4.55 (-5.94, -3.17) -0.60 (-0.87, -0.33) -0.68 (-1.11, -0.24)   

SWS index -1.64 (-1.76, -1.53) -1.36 (-1.49, -1.23) 1.17 (1.04, 1.30) 0.85 (0.63, 1.06) 93514.35 χ
2 = 7383.2; P<0.001 

Suitability to 
transmission 

      

     Not suitable 0.00 0.00 0.00 0.00   

     Suitable -1.03 (-1.10, -0.95) 0.49 (0.36, 0.62) 2.32 (2.04, 2.60) 1.42 (1.13, 1.81) 93541.13 χ
2 = 2033.3; P<0.001 
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Table 4.3: Posterior estimates for presence of An. arabiensis and the different chromosomal forms of An. gambiae s.s. estimated from the  
                 geo-statistical Bayesian multiple multinomial regression model. The Mopti form is the baseline. 
 

An. arabiensis Bamako Savanna HYBRIDS/RECOMBINANTS Environmental factors 
Posterior median (95%CI) Posterior median (95%CI) Posterior median (95%CI) Posterior median (95%CI) 

      Rainfall -0.004 (-0.005, -0.003) 0.001 (-0.001, 0.003) 0.002 (0.000, 0.003) 0.000 (-0.002, 0.003) 
     Max temperature 0.010 (0.006, 0.014) 0.024 (0.017, 0.031) 0.007 (0.001, 0.013) 0.008 (-0.003, 0.018) 
     Min temperature 0.004 (-0.002, 0.010) -0.001 (-0.010, 0.007) -0.004 (-0.013, 0.005) -0.002 (-0.019, 0.011) 
     NDVI 9.61 (7.81, 11.83) 6.95 (4.31, 9.40) 4.44 (1.46, 7.29) 4.21 (0.06, 8.42) 
Distance to water bodies     
      < 4 km 0.00 0.00 0.00 0.00 
      4 to 10 km 1.29 (0.26, 2.44) 0.05 (-1.19, 1.22) -1.77 (-2.98, -0.54) -0.75 (-1.76, 0.18) 
      >10 to 20 km 1.23 (-0.33, 2.70) -0.41 (-2.32, 1.44) -0.05 (-1.55, 1.46) -1.68 (-3.13, -0.30) 
      > 20 km 1.57 (0.03, 3.00) -0.61 (-3.20, 1.75) -0.55 (-2.32, 1.18) -1.45 (-3.00, -0.07) 
      SWS 0.61 (0.28, 0.94) -0.55 (-1.06, 0.00) -0.62 (-1.14, -0.17) 0.14 (-0.57, 0.85) 
Suitability to transmission     
      Suitable 0.00 0.00 0.00  
      Not suitable 0.19 (0.02, 0.36) 2.17 (1.73, 2.67) 0.92 (0.55, 1.30) 0.73 (0.26, 1.21) 
Periods     
     1981-1990 0.00 0.00 0.00 0.00 
     1991-2004 0.67 (0.55, 0.79) -0.65 (-0.78, -0.52) -0.55 (-0.70, -0.40) -0.19 (0.42, 0.02) 
     
Spatial parameters     
      3/ ρ (km) 219.7 (53.5, 866.3) 988.1 (246.3, 2132.2) 996.1 (312.7, 2132.2) 976.8 (307.0, 2097.4) 

      2σ  4.87 (2.72, 13.77) 18.01 (5.69, 53.46) 19.05 (6.75, 48.71) 9.06 (3.58, 25.28) 

 
 
 
 
 
 
 



 

Table 4.4:  The relative contribution of the different chromosomal entities of An. gambiae  
                   complex to malaria transmission in Mali. 
 
Periods Chromosomal  entities 95% CI 
Period 1 (1981 – 1990) Percentage of transmission  
      Mopti 23.4 (12.2, 66.9) 
      An. arabiensis 16.3 (5.1, 68.4) 
      Bamako/Savanna 32.3 (9.1, 89.1) 
      hybrids 28.0 (6.8, 82.7) 
Spatial parameters   
     range = 3/ ρ  (Km) 314.58 (0.1, 899.0) 

      2σ  8.70 (3.7, 22.2) 

   
Period 2 (1991 – 2004)   
      Mopti 20.8 (22.7, 61.8) 
      An. arabiensis 18.5 (13.0, 68.0) 
      Bamako/Savanna 38.6 (19.5, 88.8) 
      hybrids 22.1 (15.1, 78.9) 
Spatial parameters   
      range = 3/ ρ (Km) 0.08 (0.05, 0.37) 

      2σ  0.94 (0.60, 1.57) 

 

 
The bivariate logistic regression (non-spatial) analyses indicate that suitability to 

transmission over the year (January-December), mean NDVI value during May-October, 

SWS index, rainfall and maximum temperature values during June-November and the 

minimum temperature value during  June-October best fit the prevalence data (Table 4.5). The 

above summaries of environmental factors gave the smallest AIC value. 

 

The results of the Bayesian geospatial multivariate logistic regression model are 

presented in table 4.6. The SWS index and maximum temperature were negatively associated 

with malaria prevalence. Malaria risk was lower during 1981-1990 and higher prior to 1980 

than the baseline period (1991-2004). A positive association was observed between rainfall 

and minimum temperature with malaria prevalence. All other environmental factors included 

in the model did not show a significant association with malaria prevalence. 

 



 

Table 4.5: Bivariate association of malaria prevalence with the climatic and  
                  environmental factors estimated by (non-spatial) logistic regression analysis. 
 
Variables OR 95%CI* AIC 

    

NDVI    
    Jan-Dec 19.7 16.8, 23.2 143306.85 
    May-Nov 9.4 8.4, 10.5 143201.12 
    May-Oct 9.6 8.6, 10.7 143016.50

†
 

    Jun-Nov 7.8 7.0, 8.6 143218.33 
    Jun-Oct 7.7 7.0, 8.5 143017.93 
SWS index    
    Jan-Dec 12.2 9.9, 15.0 144121.70 
    May-Nov 4.3 3.8, 4.8 144132.01 
    May-Oct 3.4 3.1, 3.8 144190.80 
    Jun-Nov 3.6 3.2, 3.9 144120.01

†
 

    Jun-Oct 2.8 2.6, 3.1 144179.14 
Rainfall    
    Jan-Dec 1.011 1.011, 1.012 142834.81 
    May-Nov 1.007 1.006, 1.007 142843.43 
    May-Oct 1.006 1.006, 1.006 142842.96 
    Jun-Nov 1.006 1.006, 1.007 142829.56

†
 

    Jun-Oct 1.005 1.005, 1.006 142829.86 
Minimum temperature    
    Jan-Dec 1.005 1.004, 1.007 144614.15 
    May-Nov 0.962 0.960, 0.964 143031.22 
    May-Oct 0.960 0.958, 0.961 142481.24 
    Jun-Nov 0.963 0.961, 0.965 142977.06 
    Jun-Oct 0.961 0.959, 0.962 142326.49

†
 

Maximum temperature    
    Jan-Dec 0.952 0.950, 0.953 141940.53 
    May-Nov 0.972 0.971, 0.973 141386.14 
    May-Oct 0.976 0.975, 0.977 141427.29 
    Jun-Nov 0.970 0.969, 0.971 141164.76

†
 

    Jun-Oct 0.975 0.974, 0.976 141216.45 
Suitability to transmission    
    Jan-Dec 1.18 1.17, 1.19 142734.73 
    May-Nov 1.26 1.25, 1.27 142381.15 
    May-Oct 1.49 1.47, 1.52 141162.97

†
 

    Jun-Nov 1.26 1.25, 1.27 142445.83 
    Jun-Oct 1.49 1.47, 1.52 141249.82 
Land use

‡    
    Category 1 0.968 0.967, 0.969 140072.36 
    Category 2 0.998 0.998, 999 144585.25 
    Category 3 1.007 1.007, 1.008 143100.81 
Distances to water bodies    
    < 4 km 1.00   
    4- 20 km 1.64 1.59, 1.69 142917.85 
    > 20 km 2.19 2.08, 2.30  
Study period    
    1991-2004 1.00   
    1981-1990 0.47 0.45, 0.49 142667.98 
    < 1980 1.25 1.20, 1.31  
 

‡ 1=Urban/Barren/dry land, 2=crop/grassland mosaic, 3=water/irrigated crop/savanna, † Variables which best fit 
the data. *The P-values calculated from the Likelihood Ratio Test were all <0.001 



 

Table 4.6: Posterior estimates of the multivariate spatial logistic regression model of malaria 
              risk given as odds ratios.  
 
Variables Posterior 

Median (OR) 
95%CI 

NDVI   
    May-Oct 1.48 0.83, 2.82 
SWS index   
    June-November 0.53 0.41, 0.71 
Rainfall   
    June-November 2.62 1.16, 5.75 
Minimum temperature   
    June-October 2.73 1.66, 4.50 
Maximum temperature   
    June-November 0.44 0.20, 0.99 
Land use

‡
   

    Water/irrigated crop land/savanna (cat3) 1.00  
    Urban/barren/sparsely vegetated/dry land (cat1) 0.83 0.69, 1.00 
    Crop/grassland/mosaic (cat2) 1.14 0.89, 1.44 
Length of transmission   
    > 4 months 1.00  
    2-4 months 2.29 0.99, 5.30 
    0 month 1.10 0.34, 3.43 
Distance to the nearest water bodies   
    < 4 km 1.00  
    4- 20 km 1.32 0.90, 2.09 
    > 20 km 1.17 0.70, 2.05 
Time periods   
    1991-2004 1.00  
    1981-1990 0.33 0.20, 0.54 
   < 1980  1.40 0.88, 2.24 
Spatial parameters   
     range = 3/ ρ  (Km) 0.08 0.05, 0.34 

      2σ  0.91 0.68, 1.23 

 
 

Figure 4.1 and 4.2 depict the spatial distribution of malaria risk and the prediction 

error respectively, during the survey period 1991-2004. The map showed high malaria risk in 

the Southern part, a moderate risk in the middle and lower risk in the Northern part of the 

country. This distribution pattern is in agreement with the eco-geographical description of the 

epidemiology of malaria in Mali. 

 



 

 

 
 
 

 
 
 
Figure 4.1: Map of predicted malaria prevalence during survey period 1991-2004. 
 
 

 
 
 
Figure 4.2: Map of prediction error of malaria prevalence during survey period 1991-2004. 



 

 Figure 4.3 to 4.6 present the attributed malaria risk to each species and subspecies. 

The Malaria risk is mainly due to An. arabiensis (Figure 4.3) in the middle West and South 

East part of the country, to the Mopti form (Figure 4.4) in the irrigated/flooded, to the 

Savanna/Bamako forms (Figure 4.5) in the southern part, and to the hybrids (Figure 4.6) the 

southern areas of the region of Kayes (West of the country).  

 

 

 

 

Figure 4.3: Maps of the attributed malaria risk to Anopheles. arabiensis in Mali.  



 

 

Figure 4.4: Maps of the attributed malaria risk to Mopti chromosomal form of Anopheles 

                   gambiae  s.s. in Mali. 

 

Figure 4.5: Maps of the attributed malaria risk to Bamako/Savanna chromosomal form of  
                   Anopheles gambiae  s.s. in Mali. 



 

 

Figure 4.6: Maps of the attributed malaria risk to the hybrids/recombinant chromosomal form  
                   of Anopheles  gambiae  s.s. in Mali. 
 
 

4.5. Discussion 

We assessed the relationship between malaria risk and the vector species distribution, 

quantified the contribution of the different subspecies to malaria transmission and produced 

an attributed malaria risk map for each species and subspecies. Suitability to transmission and 

NDVI, which are influenced by rainfall in arid regions (Iwasaki, 2006) were significantly 

related to the frequency of all members of An. gambiae complex in Mali. Association of An. 

arabiensis with dry conditions and of Savanna chromosomal form with wet conditions was 

confirmed by our analyses (Touré et al., 1998). The higher frequency of An. arabiensis 

observed during the relatively wet survey period (1991-2004) was surprising because of the 

usual association of this species to dry conditions (Kirby and Lindsay, 2004; Levine et al., 

2004). This situation could be due to the availability of breeding places preferred by An. 

arabiensis. Also this species was positively associated with most of the environmental factors 

included in our analyses suggesting its ability to prevail in various eco-climatic conditions 



 

found in Mali. In addition, our data showed a strong spatial correlation between the 

frequencies of all member of An. gambiae complex supporting the adaptation of the members 

to diverse environmental and climatic conditions. 

 

All the sibling species of An. gambiae complex were equally contributing to malaria 

transmission during both survey periods (1981-1990 and 1991-2004) (Table 4.4). Compared 

to the chromosomal forms (Mopti, Bamako/Savanna and hybrid/recombinant) of An. gambiae 

s.s., An. arabiensis contribution was much lower during both survey periods probably because 

of its higher exophilic and zoophilic tendency (Mahande et al 2007). During the drought of 

the 1981-1990 a slightly increase in the contribution of An. arabiensis to transmission 

compared to the relatively wet period (1991-2004) was observed. During this period most of 

the livestock in the Sahel was decimated. Thus, An. arabiensis, which inherentely feeds on 

both animals and human (Tirados et al. 2006), may have been directed to human host only. 

This can explain its contribution to transmission as much as the other chromosomal form of 

An. gambiae s.s.  

 

Our analyses showed a significant negative association between the malaria risk with 

the maximum temperature and the SWS index. The negative association with temperature can 

be explained by the fact that low temperature delays development of P. falciparum parasite in 

the mosquito (Macdonald, 1957; Detinova, 1962). The negative association with SWS was 

surprising, but it could be partly due to irrigation since it has been reported low malaria risk in 

the irrigated/flooded inner delta of the Niger River, Mali (Dolo et al., 2004, Sissoko et al., 

2004). Rainfall was positively related to malaria prevalence. In fact, in the Sahel, the range 

temperature required (18-32oC) for the completion of the parsite development within the 

mosquito (Macdonald, 1957) is observed yearound. The potential and intensity of malaria 

transmission is largely influenced by the rainfall, which creates the breeding habitats and 



 

enhance adult mosquito survival (Craig et al., 1999). Therefore, the amount and temporal 

distribution of the rainfall is the main driving factor of malaria transmission in the Sahelian 

Africa. 

 

The analysis of the updated MARA data (Table 4.5) showed a significant decrease in 

malaria prevalence during 1981-1990. Similar observations were reported from neighboring 

Sahelian countries of Niger and Senegal where up to 80% of reduction in malaria prevalence 

was observed (Faye et al., 1995; Mouchet et al., 1996). These authors explained their findings 

by the drought which affected the Sahel at that period limiting the availability of mosquito 

larval habitats. Subsequent to a slight increase in rainfall during 1991-2004 compared to the 

drought period (1981-1990), an increase in malaria risk was also observed. The same 

observation was made by Konate et al., (2001) in Senegal; Labbo et al., (2004) in Niger; 

Thomson et al. (2006), and Kent et al., (2007).   Other factors such as environmental changes 

due to human activities, the resistance of parasite to drugs and of the vectors to insecticides as 

well as the poor implementation of control interventions could have contributed to this 

situation. Indeed, to response to the crucial needs of food in the Sahelian countries subsequent 

to the drought, governmental and non-governmental organizations (NGOs) invested in the 

building of small dams and irrigation systems for vegetable and rice cultivation. These 

agricultural activities generally create suitable conditions for vector breeding and extend 

malaria transmission season length. In addition, there was the spread of parasite resistance to 

drugs and mosquito to insecticides across the continent of Africa during the last decade.  An 

overall of 30% of resistance to CQ was reported by the National malaria control program of 

Mali. A malaria epidemic investigation in Kidal, (Northern Mali) reported a resistance of 27-

40% of P. falciparum to chloroquine (CQ) (Djimde et al., 2004). About 90.5% resistance to 

CQ and 7% to Sulfadoxine Pyrimithamine (SP) were reported in southern Mali (de Radigues 



 

et al. 2006). Fanello et al. (2003) reported up to 83% of relative frequency of the Knock dawn 

(kdr) allele in the Savanna chromosomal form of An. gambiae complex in southern Mali. 

 

We produced a malaria risk map only for the survey period of 1991-2004 because this 

may reflect more accurately the actual situation of the disease. This map showed high malaria 

risk in the Southern part, a moderate risk in the middle and lower risk in the Northern part of 

the country. This distribution pattern is in agreement with the eco-geographical description of 

the epidemiology of malaria in Mali (Doumbo et al. 1989).  

 

 The attributed malaria risk maps of the different species and subspecies indicated that 

malaria transmission is driven by An. arabiensis in many part of the country namely in the 

middle West and South East part. This can be explained by the ability of this sibling species 

to survive under different climatic conditions even throughout the dry season (Touré et al., 

1998). In the irrigated/flooded areas malaria risk is supported by the Mopti form. In the 

southern part of Mali, the transmission is mainly due to the Savanna/Bamako form. Malaria 

risk is mainly driven by the Hybrid forms in the southern areas of the region of Kayes.       

 

This study indicated that malaria risk varies over time in Mali with lower risk 

associated to the drier period. All the members of An. gambiae complex are contributing to 

malaria transmission in Mali. An. arabiensis contributes to transmission across most of the 

territory but at very low intensity compared to the populations of An. gambiae s.s.  
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4.7. Appendix 

We describe 1) the geospatial logistic regression model fitted to obtain a map of the 

malaria risk in Mali  2) the geospatial multinomial model employed to predict the frequency 

distribution of the subspecies at the locations we had observed malaria survey data as well as 

to produce a map of the distribution of subspecies in Mali 3) the geospatial logistic regression 

model fitted to assess the relation between malaria risk and the distribution of the subspecies 

and 4) the approach used to obtain the malaria risk maps attributed to each subspecies. 

 

4.7.1. Logistic regression model for malaria prevalence 

Let 
iN  be the number of persons examined, at location 

is , i = 1, …, n , and 
iY be the 

number of those found positives with malaria parasite in a blood sample and 

T

ipiii XXXX ),...,,( 21=  be the vector of p associated environmental predictors observed at 

location is . We assume that iY  arise from a binomial distribution, that is ~ ( , )i i iY Bn p N , with 

parameter ip  measuring malaria risk at location is  and model the relation between the 

malaria risk and environmental covariates iX  via the logistic regression ,)(log βT

ii Xpit =  

where T

p ),....,( 21 ββββ = are the regression coefficients. This model assumes independence 

between the surveys. To take into account the spatial correlation present in the data we 

introduce location specific random effects (error term) iφ  at each location is  that 

i

T

ii Xpit φβ +=)(log , which model a latent spatial process, that is 

),0(~),....( ∑= MVN
T

Ni φφφ . The covariance matrix Σ  is a function of distance between 

locations, irrespective of the locations themselves (stationarity) and of the direction (isotropy). 



 

We adopted an exponential correlation function, that is  2 exp( )ij ijdσ ρΣ = −  where 2σ  is the 

spatial variance, ρ  is the parameter that models the rate of correlation decay, and dij is the 

distance between the locations is  and js . Based on the above specifications, the minimum 

distance for which the spatial correlation becomes less than 5% is calculated by 3
ρ

 (Ecker 

and Gelfand, 1990). 

 

4.7.2. Geostatistical multinomial regression model  

 
Let ikY  be the observed frequency of mosquito chromosomal form k at location i 

where k = 1, 2,3,4,5 denote the Mopti, An. arabiensis, Bamako, Savanna , and hybrid forms, 

respectively. We assume that ikY arise from a multinomial distribution, that is 

( ) ( )1 2 3 4 5 1 2 3 4 5, , , , ~ , , , , ,i i i i i i i i i i iY Y Y Y Y Mult n π π π π π  with parameters ikπ  and in  is the total 

number of An. gambiae complex collected at location i. We introduce spatial correlation on 

location-specific random effects 
ikφ which are modeled together with the covariate effects on 

the logit parameters, that is 
5

log Tik
i k ik

i

X
π

β φ
π

 
= + 

 
 where kβ are covariate parameters related 

to the th
k  multinomial category, k=1,2,3,4.  We further assumed a latent isotropic Gaussian 

spatial process 1( ,... ) ~ (0, )k k Nk kMVNφ φ φ= Σ  at each multinomial category k with covariance 

matrix kΣ  defined as above that is  ( ) 2 exp( )k k k ijij
dσ ρΣ = −  where 2

kσ is the spatial variance 

related to the multinomial category k, kρ  is the parameter that models the rate of correlation 

decay and dij the distance between the locations i and j. 

 



 

4.7.3. Assessing the relation between malaria risk and mosquito subspecies 

 
We assessed the relation between malaria risk and mosquito subspecies by fitting the 

following logistic spatial regression model: 
4

0
1 5

log ( ) log ij

i j i

j i

it p b b
π

φ
π=

= + +∑ , where 
ip is the 

malaria risk at location i, , 1,...5ij jπ = are the frequencies of the An. arabiensis, 

Bamako/Savanna, hybrid, Mopti subspecies, respectively at location i, and 
iφ is a spatial 

random effect modeled as described in Section 4.7.1, jb are coefficients corresponding to the 

logits of the subspecies’ frequencies. 

 

 4.7.4. Model fit  

The parameters of the above models were estimated using Markov Chain Monte Carlo 

(MCMC) simulation methods.  In accordance with the Bayesian model specification, we 

adopted prior distributions for the model parameters. We choose vague normal prior 

distributions for the regression parameters β
−

 having large variances (i.e., 10,000), inverse 

gamma priors for 2
kσ and uniform priors for , 1, 2,3, 4k kρ = . We ran a single chain sampler 

with a burn-in of 5,000 iterations. Convergence was assessed by inspection of ergodic 

averages of selected model parameters. The Bayesian model fit was carried out in WinBUGS 

1.4. (Imperial College and MRC, UK), whereas the model prediction was implemented in 

Fortran 95 (Compaq Visual Fortran, Professional 6.6.0) using standard numerical libraries 

(NAG, The Numerical Algorithms Group Ltd). 

 
 
 
 



 

4.7.5. Producing malaria risk maps attributed to mosquito subspecies 

Maps of malaria risk and of the distribution of mosquito subspecies in Mali have been 

produced using Bayesian kriging (Diggle and Tawn, 1998) and the models described in 4.7.1 

and 4.7.2.  These maps are based on predictions made over 85,000 unsampled locations and 

they were converted to malaria risk maps attributed to each subspecies. In particular the 

malaria risk 
ikq attributed to subspecies k at location i was calculated by 

ik i k ikq p w π=  where 

ip is the malaria risk at location i, 
ikπ is the frequency of subspecies k at i and 

5

1

exp( )

exp( )

k
k

j

j

a
w

a
=

=

∑
is a weight corresponding to the transmission potentials of subspecies k. ja  

are regression coefficients arised from bivariate logistic regressions of each subspecies 

frequency on the malaria risk.  
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Abstract 

Differences in the ecology of sibling species of malaria vectors may be reflected in different 

spatial and temporal distributions within areas where their ranges overlap. We have now 

assessed the spatial and seasonal distribution of An. gambiae complex adult densities and the 

relative frequencies of the chromosomal forms of the sibling species of An. gambiae s.s. in 

relation to the local environmental factors in a Sudan savanna village in Mali.  Bayesian 

geospatial negative binomial and multinomial models were fitted to mosquito densities and 

subspecies composition data, respectively. The mosquito densities were over-dispersed at the 

onset of the rains and during the dry season with a concentric clustering of higher densities at 

the periphery of the village. A patchy clustering distribution of mosquito density was 

observed during the middle and end of the rainy season. The chromosomal forms were 

sympatric over all seasons, with a spatial and temporally dynamic clustering in their relative 

frequency distribution. The Mopti chromosomal form was the most abundant at the beginning 

and middle, and the Bamako form at the end of the rainy season. The minimum distance of 

the spatial correlation between chromosomal forms was 1.13 km and the maximum one was 

up to 10 km (except for the hybrids in October).  Vector densities were control targeting the 

periphery of the village at the onset of the rains and during the dry season can ameliorate 

malaria situation. More focused micro-ecological studies are required to better understand the 

ecological differences between the chromosomal forms and their distinct contributions to 

disease transmission.  

 

Key words: An. gambiae, Chromosomal forms, Bayesian geostatistics, multinomial, negative 

binomial, Markov chain Monte Carlo (MCMC), kriging.  
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5.1. Introduction 

Malaria transmission is a dynamic and complex process which is not yet understood 

enough to eradicate the disease. The degree of vector-human contact determines the malaria 

transmission risk. Vector abundance and transmission patterns are largely influenced by 

environmental and climatic factors (Thomson et al., 1996). The risk of transmission can vary 

from one geographical area to another and in the same geographical area from one village to 

another (MBogo et al., 2003). Moreover, there are local differences in malaria transmission 

over time and space in the same village (Staedke et al. 2003). Distance to breeding sites (Cano 

et al. 2005, Oesterholt et al., 2006) and type of houses (Bagayoko, 2001, van der Hoek et al. 

2003) are local environmental factors frequently associated with high mosquito density.  

 

Another important factor in malaria transmission is the distribution of vector species in 

space and time. The species and subspecies of An. gambiae complex have different breeding 

site preferences (Toure et al. 1998a, della Torre et al., 2002; Eidillo et al., 2002). The Mopti 

form shows the closest association with the domestic environment and larval habitats created 

by human activities; the Savanna form is more frequent in rain-dependent temporary breeding 

sites whereas the Bamako form is associated with riverine areas of the upper River Niger. 

Fanello et al. (2003) also explain differences in insecticide resistance among sympatric 

species and subspecies of An. gambiae complex in cotton cropping areas of Mali by the 

segregation of their breeding habitats. Thus, the availability of suitable breeding habitats for 

one or another species or subspecies will determine its abundance and contribution to malaria 

risk. Other factors such as relative humidity can affect the spatial and temporal distribution of 

the different chromosomal forms. For example the Mopti form can better survive in the dry 

season while the Savanna form tends to disappear during this period (Touré et al., 1998). 

Reliable information on the spatial distribution of An. gambiae complex species and/or 
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subspecies throughout the transmission season in relation with local environmental factors 

might thus be useful for targeted control.  

 

In previous work, we analyzed the spatial distribution of An. gambiae complex species 

(Sogoba et al., 2007) and subspecies and assessed the relation between their frequency 

distributions and malaria prevalence across the whole country of Mali. These analyses showed 

a clear geographical preference for each species and subspecies. We have now analyzed the 

spatial and seasonal distribution of An. gambiae complex adult densities and the relative 

frequencies distribution of the chromosomal forms of An. gambiae s.s. in relation to 

environmental factors at local level within a single Sudan savanna village.  

 

5.2. Materials and methods 

5.2.1. Study site 

The village of Bancoumana is located 60 km southwest of Bamako (12.20N, 8.20W) 

in the south savanna zone of Mali,5 km from the left bank of the Niger River. In 1996 a socio-

demographic study conducted by the Malaria Research and Training Center of the Faculty of 

Medicine, Pharmacy and Dentistry of the University of Bamako (MRTC/FMPOS) indicated 

that the village had about 8000 inhabitants living in 1771 houses (1237 with iron roofs and 

534 with straw roofs) grouped in 340 compounds.  

 

A map of the village (Figure 1) with the location of the 340 compounds, the major 

larval breeding sites, the main roads, and the major communal buildings (clinics, school) with 

a resolution of 1-3 m has been produced using Differential Global Positioning System 

(DGPS) (Bagayoko, 2000). The village is subdivided into four clusters or blocks by the main 

roads. The primary economical activity is agriculture. There are two main seasons: the rainy 
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season from June to November and the dry season from December to May.  Much of the land 

between the village and the river is flooded during the rainy season, and is used to grow rice, 

with millet and sorghum grown nearby. During the dry season the flooded area is used for 

gardening. There is also a canaal about 0.5 to 1 meter deep through the village, the legacy of a 

failed irrigation project. 

 

The major malaria vector is An. gambiae s.l. (Touré et al. 1998b; Bagayoko, 2000).  

The malaria prevalence in children less than 5 varies from about 30 to 50% during the dry 

season up to 75% during the rainy season (Doumbia, 2002; Dolo et al., 2003). 

 

 

Figure 5.1: Map of the village of Bancoumana showing the location of the 340 compounds  
                     and the major potential larval breeding sites 

.
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5.2.2. Mosquito sampling and processing 

Mosquitoes were collected in monthly cross-sectional surveys using pyrethrum spray 

catches (PSC). Collections were performed during the day in human sleeping houses from 

1996 to 1999 in June, August, October and March, representing the onset, the middle, and end 

of rainy season and the dry season, respectively. The collections were performed during the 

last fortnight of each month in 180 randomly selected houses. The sampling of these houses 

was constrained to respect the proportion of house-roof type (thatch roof vs. metal roof) in the 

study site. Sampling was also constrained to prevent multiple houses from being selected 

within single compound (aggregation of houses). The total number of mosquitoes, the house 

identification number, the type of the house and the number of people whom slept the 

previous night in that house were recorded. Mosquitoes were kept in the Carnoy’s fixative. 

 

Mosquito densities were measured using the count of mosquitoes sampled per house. 

Abdomens of the half-gravid mosquitoes were used for chromosomal identification (ovaries). 

Chromosome preparations were made by extracting ovaries from each abdomen sample 

following established protocols (Coluzzi et al., 1968; Hunt, 1973).  Species and chromosomal 

form identification were carried out by examining the banding patterns of polytene 

chromosomes by phase-contrast microscopy using the polytene chromosome map for the An. 

gambiae complex developed by Coluzzi, et al (unpublished).  

5.2.3. Environmental variables 

The local environmental variables collected and included in the analysis were the 

housing type (straw and iron roofs), the distance of each collection point to the nearest 

potential larval habitat, canal and edge of the village. House type was recorded at the time of 

mosquito data collection. The minimum distance of each collection point to larval breeding 

sites, main canal, and edge of the village were extracted using Arc GIS.  
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5.3. Data analysis 

The main objectives of this study were to assess the spatial and seasonal distribution of 

i) An. gambiae complex adult densities and ii) the frequency distribution of the chromosomal 

forms of An. gambiae s.s.  

 

Mosquito density data were analyzed using spatial negative binomial regression 

models. These models were fitted to relate mosquito count data per house with the local 

environmental factors. Negative binomial regression was employed because most of the 

houses had no or small number of mosquito counts and only few had large numbers. These 

models were also used to predict mosquito density at unobserved locations and produce a 

density map for each season. The seasons were represented by the following months: June 

(beginning), August (middle), October (end) of the rainy season and March (dry season). 

 

An. gambiae s.s. chromosomal forms data were analyzed using multinomial 

geostatistical models. These models related the frequency distributions of the species and 

subspecies data (outcome measures) to environmental predictors. They were also used to 

predict the vector species and subspecies data at unobserved locations. The multinomial 

categories represented the following four species or chromosomal forms: Mopti, Bamako, 

Savanna, and Hybrids/recombinants. The Mopti form was considered as the baseline category. 

 

Both analyses considered the following environmental factors: the house type (straw 

or iron roof), distance to the nearest larval habitat, distance to the canal and the distance to the 

edge of the village. 
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Bivariate non-spatial regression models (binomial and multinomial) were fitted in 

STATA v9.0 (STATA Corporation, USA). The statistical significance was assessed using the 

likelihood ratio test (LRT). All factors were entered into a Bayesian multivariate geostatistical 

model (negative binomial or multinomial depending on the outcome). The parameters of the 

geostatistical models were estimated using Markov chain Monte Carlo (MCMC) simulation 

methods. The Bayesian model fit was carried out in WinBUGS 1.4. (Spiegelhalter et al., 

2004), whereas the model prediction was implemented in Fortran 95 (Compaq Visual Fortran, 

Professional 6.6.0) using standard numerical libraries (NAG, The Numerical Algorithms 

Group Ltd).  

 

A description of the geostatistical multivariate negative binomial and multinomial 

models is given in the Appendix 

 

5.4. Results 

Table 5.1 presents the geometric mean (GM) density of An. gambiae s.l. by year and 

season. The overall highest mean density was observed in August and the lowest in March. 

The mean density decreased progressively over the successive years of the study for all 

seasons except in June 1998 and in October 1997 where a slight increase was observed 

compared to the first year of study. In March there was a rapid increase in the densities 

between 1997 and 1998. 
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Table 5.1: Geometric mean (GM) density per house of An. gambiae s.l. by year and season 
               (months represent the seasons). 
 

June  August  October  March   

Years GM*  95%CI GM 95%CI GM 95%CI GM  95%CI 

1996 4.4 (3.6, 5.3) 8.9 (6.9, 11.6) 2.8 (2.2, 3.4) - - 

1997 4.2 (3.3, 5.3) 7.8 (5.9, 10.3) 3.9 (3.1, 4.8) 0.01 (-0.01, 0.02) 

1998 5.5 (4.4, 6.8) 3.0 (2.4, 3.8) 3.3 (2.6, 4.2) 0.18 (0.10, 0.23) 

1999 1.0 (0.8, 1.2) 5.2 (3.9, 8.0) 2.3 (1.8, 2.9) 0.02 (0.00, 0.04) 

Overall 3.4 (3.0, 3.8) 5.9 (5.1, 7.7) 3.0 (2.7, 3.4) 0.06 (0.04, 0.08) 

NB: N=156 *GM = geometric mean 
 

 

The results of the bivariate associations between the environmental factors and the 

mosquito count are presented in Table 5.2. All the environmental factors were significantly 

associated with mosquito density in June and in October except the distance to the breeding 

sites and the distance to the edge of the village, respectively. In August, the year of study and 

the house type were the only environmental factors significantly associated with mosquito 

density. The house type was significantly associated to mosquito density in all months except 

March.  

 

The Bayesian geostatistical negative binomial models (Table 5.3) showed that 

mosquito densities were higher in 1998 than 1996 and that houses with straw roof had higher 

densities than houses with iron roof. The association between mosquito densities and distance 

to potential breeding sites was weakly positive (except in March).  Lower mosquito densities 

were observed throughout 1999. Any other factor was not significantly related to mosquito 

density.  
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There was an over-dispersion of mosquito densities in general and particularly at the 

beginning of the rainy season (Negative Binomial r = 1.3 [95%CI: 1.1—1.5]). A range 

parameter ρ/3  of 2.1 km (1.4, 11.8) was observed in mosquito densities during the dry 

season (March). During the other seasons, it was 1.7 km. 

 

Figures 5.2 - 5.5 are maps of mosquito densities and their prediction errors during 

different seasons.  At the beginning of the rainy season (June), there is a concentric 

distribution pattern with higher densities at the periphery of the village (Figure 5.2). This 

pattern disappears in August (Figure 5.3) and October (Figure 5.4) where patchy clusters of 

highest densities are observed across the village. During the dry season (March), the 

concentric distribution pattern reappears with higher densities at the South-Eastern part of the 

village facing the Niger River (Figure 5.5). 
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Table 5.2: Bivariate association between An. gambiae s.l. density and environmental parameters arising from non-spatial negative binomial 
regression model.  

Early rainy seasonJune Mid rainy season Late rainy season Dry season Environmental factors 

Coef. LRT*  P-Value Coef. LRT  P-Value Coef. LRT  P-Value Coef. LRT  P-Value 

Years         

         1996 0.00 0.00 0.00 - 

         1997 0.03 -0.11 0.25 0.00 

         1998 0.19 -0.69 0.13 3.02 

         1999 -1.17 

 

2χ = 157.26 

P < 0.001 

-0.40 

 

2χ = 42.30 

P < 0.001 

-0.15 

2χ = 13.97 

P = 0.0029 

0.69 

 

2χ = 42.27 

P < 0.001 

House type         

       Iron roof 0.00 0.00 0.00 0.00 

      Straw roof 0.28 

2χ = 6.60 

P = 0.0102 0.62 

2χ = 34.81 

P < 0.001 0.59 

2χ = 33.98 

P < 0.001 0.39 

2χ = 1.24 

P = 0.2647 

Distance to canal         

     0 – 500m 0.00 0.00 0.00 0.00 

    501 – 750m -0.49 -0.27 -0.50 -0.95 

    751–1000m -0.41 -0.14 -0.19 -1.21 

       > 1000m -0.17 

 

2χ = 11.01 

P = 0.0117 

-0.16 

 

2χ = 2.80 

P = 0.4235 

-0.15 

 

2χ = 11.56 

P = 0.0091 

-0.15 

 

2χ = 8.78 

P = 0.0323 

Distance to breeding sites 0.0001 2χ = 1.34 

P = 0.2465 

0.000 2χ = 0.11 

P = 0.7389 

0.0002 2χ = 4.02 

P = 0.0449 

0.0004 2χ = 0.95 

P = 0.3306 

Distance to village’s edge  0.003 2χ = 31.93 

P < 0.001 

0.00 2χ = 0.28 

P = 0.5978 

0.000 2χ = 0.01 

P = 0.9060 

0.008 2χ = 14.72 

P < 0.001 
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Table 5.3: Association between An. gambiae s.l. densities and environmental parameters arising from the geo-statistical Bayesian multiple negative 

               binomial regression model. 

 
June August October March Environmental 

factors 

 

Coef. 95%BCI* Coef. 95%BCI Coef. 95%BCI Coef. 95%BCI 

Years         
    1996 0.00  0.00  0.00  -  
    1997 0.04 (-0.19, 0.26) -0.12 (-0.46, 0.19) 0.39 (0.15, 0.64) 0.00  
    1998 0.32 (0.11, 0.56) -1.22 (-1.54, -0.88) 0.21 (-0.06, 0.44) 2.96 (1.93, 4.31) 
    1999 -1.59 (-1.85, -1.33) -0.27 (-0.60, 0.07) -0.11 (-0.35, 0.13) 0.43 (-1.11, 1.93) 
House type         
     Iron roof 0.00  0.00  0.00  0.00  
     Straw roof 0.40 (0.18, 0.64) 1.15 (0.80, 1.47) 0.81 (0.58, 1.06) 0.22 (-0.63, 1.17) 
Dist.to breeding sites 4.2e-04 (6.4e-06, 4.8e-04) 1.0e-03 (4.5e-04, 1.6e-03) 6.3e-04 (1.2e-04, 1.2e-03) -3.8e-04 (5.1e-05, 8.3e-04) 
Distance to the canal         
   0–500 m 0.00  0.00  0.00  0.00  
   500–750 m -0.29 (-0.93, 0.34) 0.51 (-0.58, 1.43) -0.43 (-1.04, 0.19) -0.25 (-1.50, 0.95) 
   750–1000m 0.20 (-0.83, 1.06) 0.93 (-0.47, 2.12) -0.01 (-0.90, 0.90) -0.07 (-1.57, 1.35) 
   > 1000 m 0.10 (-1.01, 1.16) 1.32 (-0.28, 2.86) -0.03 (-1.09, 1.07) -1.69 (-3.44, -0.06) 
Dist. to village’s edge 0.00 (-0.01, 0.00) 0.00 (-0.01, 0.01) 0.001 (-0.003, 0.004) -0.01 (-0.02, 0.00) 
Spatial parameters         
   3/ ρ **(km) 1.74 (1.35, 6.92) 1.67 (1.35, 3.67) 1.69 (1.34, 4.87) 2.06 (1.36, 11.83) 

   r 1.27 (1.07, 1.51) 0.59 (0.51, 0.67) 0.80 (0.68, 0.95) 0.97 (0.83, 1.66) 

  2σ  1.66 (0.79, 6.90) 3.67 (1.73, 11.03) 1.99 (0.82, 6.32) 1.02 (0.28, 4.18) 

* Bayesian credible interval 
**Distance (km) with spatial correlation < 5% 
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Figure 5.2: The predicted density (left) and it prediction error (right) maps of An. gambiae  

                   s.l. in June in Bancoumana, Mali. The gray indicates the unsampled area. 
 
 
 

 
 
 
Figure 5.3: The predicted density (left) and it prediction error (right) maps of An. gambiae  

                   s.l. in August in Bancoumana, Mali. The gray indicates the unsampled area. 
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Figure 5.4: The predicted density (left) and it prediction error (right) maps of An. gambiae  

                   s.l. in October in Bancoumana, Mali. The gray indicates the unsampled area. 
 
 
 

 
 
 
Figure 5.5: The predicted density (left) and it prediction error (right) maps of An. gambiae  

                   s.l. in March in Bancoumana, Mali. The gray indicates the unsampled area. 
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Table 5.4 shows the relative frequency of the different chromosomal forms of An. gambiae 

s.s. The Mopti chromosomal form was by far the most abundant over the study period and 

during all seasons except in October where the Bamako chromosomal form was the most 

prevalent. The highest relative frequency of the hybrid chromosomal form was in October. 

  

Bivariate (non-spatial) multinomial regression models were used to analyze factors 

associated with the relative frequencies of different chromosomal forms by season  (Table 

5.5).  Significantly associated factors were the house type in August and October, and the 

distance to the edge of the village in June and August. 

 

In the geostatistical multinomial models (Table 5.6) housing type was the only good 

predictor of the karyotype composition. Straw roof houses are positively associated with the 

Savanna form in June and August and the Bamako form in August and October. The distances 

at which spatial correlation between were less than 5% (range) are shown by karyotype and 

season in Table 5.6, These range from 1.13 km to a maximum of 11.3 km (except for the 

hybrid in August where the estimate of the range is very imprecise).  
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Table 5.4: Relative frequencies of the chromosomal forms (Mopti, Bamako, Savanna, Hybrids) of An. gambiae s.s. by year and seasons  
              (months represent the seasons). 
 

Early rainy season Mid rainy season Late rainy season  

Years Count Bamako  

(%) 

Savanna 

(%) 

Hybrids* 

(%) 

Count Bamako 

(%) 

Savanna 

(%) 

Hybrids 

(%) 

Count Bamako 

(%) 

Savanna 

(%) 

Hybrids 

(%) 

1996 233 13.7 5.2 4.7 642 9.0 5.1 3.4 202 44.6 7.9 6.4 

1997 542 13.7 8.9 3.7 115 12.2 8.7 1.7 116 44.8 6.0 2.6 

1998 262 17.6 16.4 0.0 158 32.3 24.1 0.0 120 50.0 9.2 1.7 

1999 49 40.6 6.1 2.0 74 29.7 10.8 4.3 85 82.4 5.9 4.7 

Overall 1086 15.8 9.8 2.9 989 14.7 9.0 2.7 523 52.0 7.5 4.2 

* Hybrids between Mopti-Savanna, Bamako-Savanna and the recombinants 
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Table 5.5: Bivariate association between chromosomal forms and environmental parameters arising from multinomial regression model.  
               The coefficients are relative to the Mopti chromosomal form. 
 

June August October Environmental 

factors Bamako Savanna Hybrids LRT* Bamako Savanna Hybrids LRT Bamako Savanna Hybrids LRT  

House type  

    Iron 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

    Straw 0.02 0.50 -0.53 

2χ = 6.8 

P=0.0767 0.67 0.26 1.01 

2χ = 15.4 

P=0.0015 0.59 0.04 0.13 

2χ =9.5 

P=0.0232 

    Distance to 

    breeding sites 

 

0.0002 

 

-0.0002 

 

-0.0007 

2χ = 3.2 

P=0.3606 

 

0.0002 

 

0.0004 

 

0.0003 

2χ = 1.9 

P=0.6018 

 

0.0001 

 

0.0007 

 

0.0009 

2χ = 5.5 

P=0.1379 

Distance to village’s edge 

    0-200 m 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

    201-300 m -0.23 -0.14 -0.51 0.37 0.12 -0.17 0.16 0.35 0.12 

    301-400 m -0.08 -0.32 0.15 0.67 0.14 -0.40 -0.39 -0.40 -0.03 

    > 400 m -0.52 -0.24 0.82 

 

2χ = 9.3 

P=0.0050 

1.22 1.11 1.03 

 

2χ = 20.5 

P=0.0152 

-0.15 -0.40 0.19 

 

2χ = 5.0 

P=0.8332 

Distance to the canal 

    0–500 m 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

    500–750 m -0.29 -0.13 -0.02 0.48 0.03 0.39 0.62 0.41 0.61 

    750–1000m -0.39 -0.27 -0.13 0.79 -0.19 0.40 0.07 0.18 0.52 

    >1000 m 0.82 1.15 0.51 

 

 

2χ = 9.3 

P=0.4102 0.87 0.53 0.86 

 

 

2χ = 16.1 

P=0.0641 0.32 -0.82 0.08 

 

2χ = 15.6 

P=0.3009 

* Likelihood Ratio Test 
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Table 5.6: Posterior estimates of the parameters of the multiple geostatistical multiple multinomial 
                regression model. 

June August October 

Bamako Savanna Hybrids Bamako Savanna Hybrids Bamako Savanna Hybrids 

Environmental 
factors  
 

Median 
(95%BCI*) 

Median 
(95%BCI) 

Median 
(95%BCI) 

Median 
(95%BCI) 

Median 
(95%BCI) 

Median 
(95%BCI) 

Median 
(95%BCI) 

Median 
(95%BCI) 

Median (95%BCI) 

House type 
    Iron roof 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
    Straw roof 0.16 

(-0.33, 0.66) 
0.34 

(0.24, 0.97) 
-0.21 

(-1.37, 1.03) 
0.54 

(0.04, 1.09) 
0.59 

(0.01, 1.16) 
0.64 

(-0.29, 1.57) 
0.89 

(0.34, 1.39) 
0.12 

(-0.81, 1.01) 
0.57 

(-0.59, 1.89) 
    Distance to 
    breeding sites 

-1.4e-04 
(-9.1e-04, 5.1e-04) 

-3.1e-04 
(-1.4e-03, 7.2e-

04) 

-2.2e-04 
(-2.5e-03, 3.0e-

03) 

-2.1e-03,  
(-1.3e-03, 1.3e-

03) 

5.5e-04 
(-7.7e-04, 2.3e-

03) 

2.5e-04 
(-1.5e-03, 2.4e-

03) 

1.0e-04 
(-7.4e-04, 8.1e-

04) 

2.1e-04 
(-1.4e-03, 1.7e-

03) 

-7.6e-04 
(-2.8e-03, 1.7e-03) 

Distance to village’s edge 
    0-200 m 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
     
    200-300 m 

-0.12 
(-0.69, 0.33) 

0.03 
(-0.63, 0.67) 

-0.37 
(-2.01, 1.67) 

0.26 
(-0.38, 1.07) 

0.38 
(-0.61, 1.30) 

1.15 
(-0.40, 3.50) 

0.08 
(-0.40, 0.61) 

-0.44 
(-1.36, 0.52) 

-0.08 
(-1.40, 1.27) 

    
    300-400 m 

0.19 
(-0.59, 1.03) 

0.01 
(-1.17, 1.13) 

-0.58 
(-3.26, 2.20) 

0.00 
(-0.93, 1.06) 

-0.20 
(-1.63, 1.05) 

1.11 
(-0.78, 4.01) 

0.52 
(-0.15, 1.32) 

-0.37 
(-1.99, 0.89) 

0.66 
(-1.84, 3.05) 

    
    >400 m 

-0.22 
(-1.46, 1.08) 

0.58 
(-0.63, 2.01) 

0.98 
(-1.74, 4.14) 

-0.24 
(-1.18, 1.11) 

-0.92 
(-2.65, 0.52) 

1.47 
(-0.86, 4.44) 

0.10 
(-0.67, 0.92) 

0.11 
(-1.19, 1.51) 

1.46 
(-0.84, 4.27) 

Distance to the canal 
    0-500 m 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
 
    500-750 

-0.45 
(-1.37, 0.38) 

-0.30 
(-1.44, 0.73) 

1.85 
(-0.77, 6.33) 

0.70 
(-0.32, 1.16) 

0.96 
(-0.26, 2.09) 

0.26 
(-1.57, 2.34) 

0.78 
(0.01, 1.59) 

0.12 
(-1.61, 1.82) 

-1.04 
(-4.06, 1.21) 

   
    750-1000 

-0.60 
(-2.03, 0.62) 

-0.17 
(-1.40, 1.35) 

2.01 
(-1.00, 7.06) 

0.61 
(-0.62, 1.68) 

0.51 
(-1.14, 2.03) 

-0.10 
(-2.52, 2.16) 

0.42 
(-0.53, 1.30) 

0.12 
(-1.53, 2.39) 

-2.24 
(-6.26, 0.36) 

     
    >1000 

-0.31 
(-1.81, 0.78) 

0.25 
(-1.07, 1.94) 

2.20 
(-1.24, 8.74) 

0.58 
(-0.84, 1.92) 

0.02 
(-2.02, 1.46) 

0.55 
(-1.39, 2.81) 

0.83 
(-0.09, 1.76) 

0.39 
(-1.38, 2.73) 

-051 
(-4.79, 1.82) 

Spatial parameters 

   Range = 3/ ρ (km) 1.64 
(1.13, 5.79) 

1.56 
(1.13, 4.28) 

1.77 
(1.15, 11.31) 

1.73 
(1.13, 7.71) 

1.64 
(1.13, 6.17) 

1.67 
(1.13, 6.15) 

1.66 
(1.14, 6.04) 

1.81 
(1.16, 9.20) 

1.70 
(1.14, 459) 

      2σ  0.64 
(0.06, 4.80) 

0.92 
(0.06,4.50) 

8.82 
(0.22, 134.0) 

0.30 
(0.02, 7.77) 

0.80 
(0.03, 8.14) 

0.58 
(0.02, 7.18) 

0.13 
(0.01, 1.22) 

0.46 
(0.02, 11.0) 

2.49 
(0.02, 23.1) 

* Bayesian credible interval;  



 

The different subspecies are sympatric over all seasons with clear spatio-temporal 

patterns (Figures 5.6-5.8). Overall, the Mopti chromosomal form was the most abundant, 

particularly during the beginning (Figure 5.6) and middle (Figure 5.7) of the rainy season 

(June and August). The Bamako form was clustered in the North-Eastern part of the village at 

the beginning of the rainy season, occupied the South-Western part during the middle of the 

rainy season and was found almost everywhere in the village at the end of that season (except 

the South-Eastern part). The Savanna chromosomal form was concentrated in the Northern 

part of the village at the beginning of the rainy season. During the middle of the rainy season, 

it was found from South-West to North-East part of the village having the highest frequency 

in the center. At the end of the rainy season (Figure 5.8), the Savanna form was present 

mainly at the periphery of the village. The hybrid chromosomal forms showed low 

frequencies in the center of the village at the beginning of the rainy season. The highest 

frequencies were observed in the middle and at the end of the rainy season and it were present 

everywhere in the village, particularly in the South-Eastern part. 

 
 
 
 
 
 
 
 



 

 
 
 
Figure 5.6: Spatial distribution of the proportion of the chromosomal of An. gambiae s.s. in 
                   June in Bancoumana, Mali. 
 
 
 
 
 
 
 
 
 



 

 
 
 
Figure 5.7: Spatial distribution of the proportion of the chromosomal of An. gambiae s.s. in 
                   August in Bancoumana, Mali 
 
 
 
 
 
 
 
 
 



 

 

Figure 5.8: Spatial distribution of the proportion of the chromosomal form of An. gambiae 

                   s.s. in October in Bancoumana, Mali 



 

5.5. Discussion 

In this study, we investigated the spatial and seasonal distribution of An. gambiae complex 

densities and the chromosomal variants of An. gambiae s.s. in a savanna village of Mali in 

relation with the local environmental conditions. Our data showed spatial, seasonal and year 

to year variations in the distribution of mosquito densities. The annual and seasonal variations 

could be explained by annual and seasonal variations in the rainfall. There was a positive 

association between the number of mosquitoes found in a house and its distance from the 

nearest breeding habitat. This observation is contrary to previous results (Minakawa et al., 

2002; Zhou et al., 2007). However, it is supported by a number of other studies (Trape et al., 

1992; Oesterholt et al., 2006)  

 

 There was an over-dispersion in the distribution of mosquito densities at the beginning 

and during the dry season, with concentric clustering of higher densities at the periphery of 

the village as has been seen elsewhere (Smith et al. 1995; Ribeiro et al., (1996). These 

findings can be explained by results from Sogoba et al. (2007) who reported mainly man-

made breeding sites around Bancoumana that were replenished at the start of the rainy season. 

There were very few breeding habitats during the dry season at the side of the village away 

from the Niger River.  On the other hand, there were many and active dry season breeding 

sites in the bed of the Niger. The patchy distribution pattern observed in August (middle of 

rainy season) and October (end of rainy season) can be explained by numerous foot and tire 

prints everywhere in the village at that time (Sogoba et al. 2007).  

 

 The maps confirm the typical seasonal variations in mosquito densities in savanna 

areas (Taylor et al., 1993; Shililu et al., 2004). The positive association of mosquito densities 

with the straw roof housing type (poorly constructed) has been reported by many other studies 



 

(Bagayoko, 2000; van der Hoek et al. 2003) and can be explained by the suitable 

microclimatic and resting conditions they may offer to mosquitoes.  

 

The geostatistical multivariate multinomial models confirmed the relationship between 

housing type and the relative frequencies of the different karyotypes.  The maps of the 

proportions of the different chromosomal forms also show spatial and seasonal clustering, 

with the Mopti form being the most abundant at the beginning and the middle of the rainy 

season and the Bamako form taking over at the end of the rainy season.  There are many 

possible explanations for these patterns, including stochastic effects of choice of oviposition 

sites, or unobserved parameters such as indoor relative humidity and temperatures, 

microecology of the breeding sites, or differential effects of personal protection measures. 

The positive association of straw roof housing type with Savanna in June and Bamako forms 

in August and October, respectively, is probably related to the high humidity and moderate 

temperatures generally observed in these houses (Gamage-Mendis et al. 1991; Bagayoko et 

al., 2001) which are the prefered conditions for the above chromosomal forms (Touré et al., 

1984).  

 

The range parameters for the models for the karyotypic composition are relatively 

high compared to mosquitoes flying range, indicating that they are not explained by patterns 

of active dispersion. This is explained by the fact that karyotype frequencies are similar in 

neighboring areas because of  environmental similarities. Passive migration directed by the 

wind could also contribute to the high values of the range parameters. 

 

Our results suggest that interventions targeting the Mopti form should concentrate at 

the beginning and in the middle of the rainy season, while those targeting the Bamako form 

should be  at the end of the rainy season. In addition, appropriate vector control targeting the 



 

periphery of the village at the beginning of the rainy season and during the dry season can 

ameliorate the malaria situation in seasonal malaria transmission areas.  However, more 

studies focused on micro-environmental factors at house level are required to better 

understand the micro-ecological difference between the chromosomal forms and their unique 

contribution to the disease transmission.  
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5.7. Appendix 

 

5.7.1. Geostatistical negative binomial regression model  

Let iY  be the mosquito count in house i. We assumed that iY  arises from a negative 

binomial distribution, ~ ( , )i iY Nb rµ  with mean iµ , dispersion parameter r and probability 

density function 

( 1)!
( | , ) , 0

!( 1)!

ir y

i i
i i i

i i i

y r r
f Y y r r

y r r r

µ
µ

µ µ

   + −
= = >   

− + +   
 (1). 

The negative binomial model assumes that the variance of the counts, var( )iY  is equal to 

2var( ) *i i iY kµ µ= +    (2) 



 

with the aggregation parameter 1k r= . The Poisson distribution arises as r → ∞ (or 

equivalently 0k → ) and thus var( )i iY µ= . 

We introduce covariates iX  and house-specific spatial random effects iφ on the log( )iµ , that 

is log( ) T

ii iXµ β φ= + , where β  is the vector of regression coefficients. We assume that the 

random effects model a continuous spatial process that is 1 1( , ,..., ) ~ (0, )T

N MVNφ φ φ φ= Σ , has 

a multivariate normal distribution with variance-covariance matrix 2 exp( )il ildσ ρΣ = − , 

where 
ild  is the shortest straight-line distance between house i and l, 2σ is the geographic 

variability (the sill), and ρ  is a smoothing parameter that controls the rate of correlation 

decay with increasing distance. 

 

5.7.2. Geostatistical multinomial regression model  
 

Let ikY  be the observed frequency of mosquito chromosomal form k at location i 

where k=1,2,3,4 denote the Mopti, Bamako, Savanna , and hybrid forms, respectively. We 

assume that ikY arise from a multinomial distribution, that is 

( ) ( )1 2 3 4 1 2 3 4, , , ~ , , , ,i i i i i i i i iY Y Y Y Mult n π π π π  with parameters ikπ  and in  is the total number of 

An. gambiae s.s collected at location i. We introduce spatial correlation on location-specific 

random effects ikφ which are modeled together with the covariate effects on the logit 

parameters, that is 
4

log Tik
i k ik

i

X
π

β φ
π

 
= + 

 
 where kβ are covariate parameters related to the th

k  

multinomial category, k=1,2,3.  

We further assumed that ikφ  model a latent isotropic Gaussian spatial process, that 

is 1( ,... ) ~ (0, )k k Nk kMVNφ φ φ= Σ , with covariance matrix kΣ  and that spatial correlation 

between any pair of locations is a function of distance between locations, that is 

( ) 2 exp( )k k k ijij
dσ ρΣ = −  where 2

kσ is the spatial variance related to the multinomial category k, 



 

kρ  is the parameter that models the rate of correlation decay and dij the distance between the 

locations i and j. Based on the above specification, the minimum distance for which the 

spatial correlation becomes less than 5% is calculated by 3
kρ

(Ecker and Gelfand, 1997).  

5.7.3. Model fit  

Model parameters were estimated using Markov Chain Monte Carlo (MCMC) simulation 

methods.  We chose vague normal prior distributions for 
−

β  parameters with large variances 

(i.e., 10,000), gamma priors for r, inverse gamma priors for kσ and uniform priors 

for 3,2,1, =kkρ . We ran a single chain sampler with a burn-in of 5,000 iterations. 

Convergence was assessed by inspection of ergodic averages of selected model parameters. 

Bayesian kriging was used to predict the species frequency at 85,000 unsampled locations 

(Diggle and Tawn, 1998). The Bayesian model fit was carried out in WinBUGS 1.4. (Imperial 

College and MRC, UK), whereas the model prediction was implemented in Fortran 95 

(Compaq Visual Fortran, Professional 6.6.0) using standard numerical libraries (NAG, The 

Numerical Algorithms Group Ltd). 
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Abstract 

In Mali, anopheline mosquito populations increase sharply during the rainy season, but are 

barely detectable in the dry season. This study attempted to identify the dry season mosquito 

breeding population in and near the village of Bancoumana, Mali, and in a fishing hamlet 5 

km from this village and adjacent to the Niger River. In Bancoumana, most larval habitats 

were human made, and dried out in January–February. In contrast, in the fishing hamlet, 

productive larval habitats were numerous and found mainly during the dry season (January–

ay) as the natural result of drying riverbeds. Adult mosquitoes were abundant during the dry 

season in the fishermen hamlet and rare in Bancoumana. To the extent that the fishermen 

hamlet mosquito population seeds Bancoumana with the advent of the rainy season, vector 

control in this small hamlet may be a cost-effective way to ameliorate malaria transmission in 

the 40-times larger village. 

 

Key words: Anopheline, larvae, larval habitat, dry season, Bancoumana, fishing hamlet. 
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6.1. Introduction 

Vector control is one of the major elements of the World Health Organization (WHO) 

global malaria control strategy in 2005 that primarily focused on indoor residual spraying and 

the use of insecticide-treated nets. However, these control measures have drawbacks, 

including insecticide resistance and difficulties in achieving high coverage (Killeen et al., 

2002; 2004). Larval control through source reduction and routine application of larvicides was 

a key intervention in eradicating malaria in many parts of the world (Kitron and Spielman, 

1989; Utzinger et al., 2001; Killeen et al., 2002), but this control has been largely neglected in 

recent decades in sub-Saharan Africa, partly because of the perceived difficulty of identifying 

larval habitats in rural areas. Larval control can be effective where larval habitats occur 

seasonally or are relatively limited and well defined (Fillinger and Lindsay, 2006).  

 

In areas of Sudan savanna with seasonal malaria transmission, larval habitats of the 

Anopheles gambiae complex are considerably reduced during the dry season (Taylor et al., 

1993; Charlwood et al., 2000). Adult vector densities are thus also very low in the dry season, 

but increase sharply at the onset of the rainy season (Lindsay et al., 1991; Mbogo et al., 

1995). Permanent breeding sites during the dry season may serve to seed the additional larval 

habitats formed during the rainy seasons (Toure et al., 1998; Charlwood et al., 2000). 

Therefore, dry season larval control might prevent this sharp increase, and thus play an 

important role in integrated vector control strategies (Fillinger et al., 2004). However, it has 

also been suggested that adult mosquitoes survive the dry season by estivating in yet 

undetermined locations (Omer et al., 1970; Taylor et al., 1993).  

 

We report the mapping, characterization, and monitoring of larval habitats for the 

presence of anopheline larvae and the monitoring of the distribution of adult anopheline 

mosquitoes in a rural savanna area of Mali. We consider whether analyses of the factors 
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influencing the fluctuations of adult and larval abundance, and in particular the dry season 

ecology, provide a basis for a selective larval control strategy. 

 

6.2. Materials and methods 

6.2.1. Description of the study site  

The study was carried out in the village of Bancoumana, which is located at 60 km 

southwest of Bamako (12° 20 N, 8° 2 W) and in a fishing hamlet 5 km from this village 

adjacent to the Niger River (Bozokin) (Figure 6.1). 

 

The total population of Bancoumana is approximately 8,000 inhabitants, 

predominantly of the Malinké ethnicity living in 340 compounds. The main economic activity 

is agriculture. The fishing hamlet has approximately 300 inhabitants of Bozo ethnicity living 

in 10 compounds. The land between the village and the river is used for growing rain-fed rice 

during the rainy season (usually June to October) and for growing other crops (onions, 

tomatoes) during the dry season (November to May). 

 

There is intense malaria transmission during the rainy season and for the next two 

months (Dolo et al., 2003). The major vectors are An. gambiae (approximately 95.5%) and 

An. arabiensis (approximately 4.5%) (Touré et al., 1998). The mean monthly entomologic 

inoculation rate was 2.8 infectious bites per person with marked seasonal variations 

(Bagayoko M, 2000). The prevalence of Plasmodium falciparum infection in children less 

than five years of age varies from approximately 30–50% during the dry season to 75% 

during the rainy season (Doumbia S, 2002). 

 

  



Chapter 6: Monitoring larval habitat: implications for malaria vector control 

__________________________________________________________________________________________ 

116 

6.2.2. Identification and characterization of potential anopheline breeding sites  

From June 2004 to December 2005, we performed a monthly active search to identify 

and geo-locate all larval habitats in both Bancoumana and the fishing hamlet. The search was 

extended to a perimeter 2 km around the two study sites and also included the Niger River 

riverbed. The search was carried out by three entomologists assisted by two local guides who 

had good knowledge of the area. Villagers were questioned about their awareness of open 

water bodies around the villages, particularly during the dry season. 

 

 

Figure 6.1: Map showing the village of Bancoumana, Mali, and the fishing hamlet 
                    (Bozokin) adjacent to the Niger River with the location of the compounds in both 
                    villages and the larval habitats (Bancoumana) 
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A unique identification number was assigned to each water body according to its 

location (block), type (ponds, brick pit, puddles, and tire prints), and the order in which it was 

identified. Geographic coordinates for all identified water bodies were recorded using a global 

positioning system (GPS) (GeoXM; Trimble Navigation Ltd., Sunnyvale, CA) with a spatial 

margin of error of 2–5 meters. All surface waters were mapped and sampled with a WHO 

standard mosquito dipper to determine the presence or absence of immature mosquitoes. 

During each monthly survey, investigators recorded information on characteristics of the 

water bodies (type of larval habitat, the presence of vegetation and other co-occurring 

arthropods, exposure to sunlight, water turbidity and transparency, and the color of the 

bottom), and productivity (presence or absence of anopheline larvae). An. gambiae s.l. 

mosquito larvae were morphologically identified and separated from other species by 

experienced entomologists. A polymerase chain reaction method was used to identify 

molecular forms (M and S) (Favia et al., 2001) on a random sample of anopheline larvae 

selected from each monthly collection. 

 

6.2.3. Monitoring adult mosquito density.  

In both Bancoumana and the fishing hamlet, standard indoor pyrethrum spray catches 

(PSC) (Service 1993) were used to collect adult mosquitoes during the dry season (December 

2004 and May 2005). Collections were performed during the last two weeks (16th–27th) of 

each month. 

 

In Bancoumana, we updated the existing geo-referenced base map established with 

GeoExplorer 3R GPS receivers (Trimble Navigation Ltd.) with an accuracy of 1–3 m 

(Bagayoko M, 2000. Thèse de Doctorat de Spécialité de l’ISFRA). This map includes 

landmarks and all housing compounds and larval habitats. A unique identification number 
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was assigned to each compound. Adult mosquito collections were conducted in 180 houses 

sampled to represent the two types of housing (thatch roof versus metal roof) and located in 

180 different compounds randomly selected from the list of the 340 compounds of the village. 

The identification number assigned to each selected compound was marked on the door of the 

house using a permanent marker. In the fishing hamlet, mosquito collection was performed in 

all 10 housing compounds that composed the hamlet. 

 

Adult An. gambiae s.l. and An. funestus from both sites were identified 

morphologically. The total number of An. gambiae s.l. and An. funestus, the identification 

number, the type of the house, and the number of people sleeping in them were recorded onto 

appropriate data sheets. In the laboratory, a sample (at least 120 specimen) of An. gambiae s.l. 

was further identified to species (An. gambiae s.s. and An. arabiensis) and sub-species 

(molecular forms M and S) (Favia et al., 2001). 

 

6.3. Data analysis 

Statistical analysis was carried out with STATA version 9.0 (Stata Corporation, 

College Station, TX). Logistic regression models were used to determine the key factors 

influencing anopheline larvae presence in larval habitats. The key factors included in the 

models were type of water bodies, their size and depth, turbidity and transparency of the 

water, bottom color, presence and abundance of vegetation, and the co-occurrence of other 

arthropods. The chi-square test was used to compare the proportion of the different type of 

water bodies positive for anopheline larvae.  

 

6.4. Ethics 

This study did not involve human subjects. The inherent ethical considerations with 

the execution of this research were related to pyrethrum spray catches. No house was sprayed 
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without the approval of its owner. The insecticide used was a pyrethroid marketed under the 

name of Premium Killer� (NIRA BVBA, Antwerp, Belgium). This product has a weak 

persistence, has no human toxicity under normal conditions of use, and is intended for use as 

an indoor spray. The treated house is reusable a few minutes after spraying. The study was 

reviewed and approved by the ethical committee of the Faculty of Medicine and Pharmacy of 

the University of Bamako, Bamako, Mali. 

 

6.5. Results 

6.5.1. Characteristics of water bodies 

6.5.1.1. Bancoumana 

From June 2004 to December 2005, 63 major water bodies were identified in and 

around the village of Bancoumana. Overall, these belonged to four major types (Figure 6.2) 

comprising brick pits (74.6%), tire prints (14.3%), puddles (9.5%), and ponds (1.6%). There 

were temporal variations in the number of water bodies in the village of Bancoumana (Figure 

6.3). During the rainy season (June–September), tire prints formed a slightly increased 

proportion (16.4%). There were innumerable small water bodies created by human footprints 

and cattle hoof prints; however, these usually did not persist for more than two weeks and 

were not counted. At the end of the rainy season (October–November), brick pits accounted 

for up to 83.3% (n = 8) of the water bodies. Ten weeks after the rainy season ended (January 

and February corresponding to the dry cold season), we did not find any additional water 

bodies. Figure 6.4 shows the frequency distribution of the different type of water bodies 

positive and negative for anopheline larvae during the dry season (December 2004–May 

2005). In March 2005, subsequent to 60 mm of rain, 26 of the 63 water bodies (41.3%) were 

replenished. These comprised brick pits (65.4%), ponds (19.2%), tire or foot prints (11.5%), 

and rain puddles (3.8%). 
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There was no significant difference (χ2 =7.5, P = 0.058) between brick pits (59.0%), 

tire prints (62.9%), puddles (80.0%) and ponds (42.9%) for anopheline larvae. The highest 

proportion of anopheline-positive water bodies was observed in August 2005 (92.7%, n = 55) 

and the lowest was observed in November 2005 (37.5%, n = 8). In December 2004, the only 

potential breeding site was a single brick pit but this was negative for anopheline larvae. 

Among the replenished water bodies after the rainfall of March 2005, 66.7% of the brick pits 

(n = 21) and the tire prints (n = 3) were positive for anopheline larvae. In April, three 

additional ponds were found between Bancoumana and the fishing hamlet, but all were 

negative for anopheline larvae. Accordingly, in the immediate surroundings of Bancoumana, 

only four potential larval habitats were found, although we could not find anopheline larvae in 

them. In May, at the onset of the rainy season, 45 water bodies were found, mainly composed 

of brick pits (73.3%), but no anopheline larvae were found in any of them. 

 

 
 
Figure 6.2: Typical potential larval habitats in Bancoumana and Bozokin: ponds (A), brick 
                      Pits (B), river bed puddles footprints (C). 
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Figure 6.3: Temporal variation of watered major larval habitats in the village of  
                     Bancoumana : June-September (rainy season), October-November (end of rainy 
                     season), December-February (cold dry season), March-May (hot dry season 
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Figure 6.4: Frequency of the different type of larval habitats positive and negative for 
                     anopheline larvae during the dry season in Bancoumana village.  
 
 
 

6.5.1.2. Fishing hamlet  

During the period when all larval habitats were almost dried out in the village of 

Bancoumana (dry season), numerous water puddles (Figure 6.2) created in the riverbed by the 

drying river were found highly positive for anopheline larvae. Unlike the larval habitats 

observed in Bancoumana, all water bodies found in the fishing hamlet were natural and most 

often full of larvae. No vegetation was found in these larval habitats but other cooccurring 

arthropods were often present, and the water was always clear. 
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6.5.2. Key environmental factors associated with anopheline larvae in water 

          bodies.  

6.5.2.1. Bancoumana.  

Table 6.1 shows the results of the bivariate regression between the presence/absence 

of anopheline larvae and the environmental variables in the village of Bancoumana. Water 

turbidity and transparency, other co-occurring arthropods, and vegetation presence and 

abundance were significantly associated with the presence/absence of anopheline larvae in the 

water bodies. Water bodies with vegetation (odds ratio OR = 5.1, 95% confidence interval 

[CI] = 3.4–7.5), other co-occurring arthropods (OR = 3.0, 95% CI = 1.9–4.6), and a brownish 

bottom (OR = 2.4, 95% CI = 1.5–3.6) were much more likely to contain anopheline larvae 

than when vegetation and other co-occurring arthropods were absent, and when the bottom 

was a different color. Compared with opaque but non-turbid water, both turbidity and 

transparency (OR = 0.5, 95% CI = 0.4–0.8) decreased the chance of finding anopheline 

larvae. The multivariate logistic regression analysis indicated that only larval habitats with 

other co-occurring arthropods (OR = 3.0, 95% CI = 1.8–4.9) and vegetation (OR = 8.7, 95% 

CI = 4.7–16.3) were much more likely to contain anopheline larvae than all other larval 

habitats; vegetation abundance was negatively associated with larvae. 

6.5.2.2. Fishing hamlet  

The water bodies were exclusively natural puddles with clear water, not vegetated, and highly 

positive for anopheline larvae. No further analysis to assess associations between anopheline 

larvae presence and the environmental variables was performed. 
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6.5.3. Monitoring adult mosquito density during the dry season 

6.5.3.1. Bancoumana.  

During the dry season (December 2004 to May 2005) in Bancoumana, mosquitoes 

were nearly undetectable in human dwellings (Figure 6.5). Overall, only 175 mosquitoes were 

collected in 1,078 spray collections (mean mosquito density = 0.16, 95% CI = 0.11–0.21). 

The few mosquitoes collected in Bancoumana were clustered at the side of the village facing 

the fishing hamlet (Figure 6.6). 

6.5.3.2. Fishing hamlet 

During the dry season (December 2004 to May 2005) in the fishing hamlet, mosquito 

density was relatively high throughout the study period (Figure 6.5), and peaked in December 

when the mosquito density in Bancoumana was very low. The mean mosquito density was 

8.16 per house (95% CI = 7.4–9.0). Overall, 506 mosquitoes were collected in only 62 spray 

collections compared with 175 in 1,078 collections in Bancoumana.  

 

6.5.4. Estimates of larval An. gambiae molecular form frequencies in the two 

          villages  

A comparison between the molecular forms frequencies of anopheline larvae collected 

in the riverbed and in the rain-fed larval habitats of the main village was done after the heavy 

rain in March 2005. The mosquito population was identical in the fishing hamlet and 

Bancoumana village with a predominance of the M form, 79.0% (n = 286) and 79.4% (n = 

34), respectively. 
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Table 6.1: Bivariate analysis between the presence of anopheline larvae and environmental 
                 factors 
 

      Parameters Total Positives Odds Ratio 95% CI 
Type of water bodies 

      Ponds 14 8 1.0  
      Brick pits 368 214 1.1 (0.4–3.2) 
      Puddles 40 32 3.0 (0.8–11.1) 
      Tire prints 70 44 1.3 (0.4–4.1) 
Size categories 

      < 1m 21 14 1.0  
      1–5 m 220 125 0.7 (0.3–1.7) 
      >5–10 m 120 72 0.8 (0.3–2.0) 
      > 10m 126 87 1.1 (0.4–3.0) 
Turbidity of water 

      Clear 165 117 1.0  
      Turbid 322 181 0.5 (0.4–0.8) 
Water transparency 

      Opaque 360 181 1.0  
      Transparent 161 117 0.5 (0.4–0.8) 
Water bodies bottom’s color 

      Not visible 327 181 1.0  
      Brownish 141 105 2.4 (1.5–3.6) 
      Other 19 12 1.4 (0.5–3.6) 
Vegetation presence 

      Absent 196 76 1.0  
      Present 291 222 5.1 (3.4–7.5) 
Vegetation abundance 

      None 196 76 1.0  
      Less abundant 155 109 3.7 (2.4–5.9) 
      Abundant 136 113 7.8 (4.6–13.2) 
Co-occurrence arthropods 

      Absent 339 183 1.0  
      Present 148 115 3.0 (1.9–4.6) 
Depth of water bodies 

      < 25 cm 360 209 1.0  
      25–50 cm 91 59 0.9 (0.5–1.6) 
      51–75 cm 19 14 1.1 (0.5–2.2) 
      76–100 cm 15 7 1.0 (0.5–1.8) 
    100–150 cm 5 4 1.2 (0.0–11.0) 
      > 150 cm 4 3 2.0 (0.7–2.1) 
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Figure 6.5: Variation in An. gambiae s.l. mean density per house in the village of  
                     Bancoumana (dark barplots) and the fishermen’s hamlet (white barplots) during 
                     the dry season. The error bars represent the 95%CI.   

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.6: Spatial distribution of An. gambiae s.l. total count per house and potential larval 
                     habitats during the dry season in Bancoumana (December 2004 – May 2005).  
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6.6. Discussion 

We mapped and characterized larval habitats in two ecologic settings: Bancoumana, 

where no permanent water is present, and a fishing hamlet lying adjacent to the Niger River. 

Our study focused on An. gambiae s.l., which is the main vector for malaria transmission and 

accounts for 98% of the mosquitoes versus only 2% for An. funestus (Diuk-Wasser et al., 

2005). An. funestus is mostly observed towards the end of the rainy season (October–

November). In Bancoumana, nearly all larval habitats were human-made and rain-dependent, 

attesting to the human-dependent ecology of Afrotropical Anopheles (Coluzzi, 1999). By 10–

12 weeks after the end of the rainy season, most water bodies have dried and few mosquito 

larvae can be found. As a result, the number of adult mosquitoes collected in the houses 

became very small. The study confirmed previous reports of undetectable transmission in 

Bancoumana during the dry season (Toure et al., 1998). 

 

Although the dry season in the study area typically lasts from November through 

April–May, a short rainfall lasting a few days often occurs in March or April. Because this 

period corresponds to the maturation of mangoes, this phenomenon is called “mango-rain”. 

After such rainfall in March 2005, larval habitats, mainly composed of brick pits, were 

replenished with water and became positive for anopheline larvae. This shows the rain 

dependency of overwhelmingly human-made larval habitats and indicates that in Bancoumana 

mosquitoes probably laid their eggs quickly at the onset of the rainy season. The near absence 

of watered larval habitat in January and February, when no rain was observed, supports the 

hypothesis. However, this refilling of most larval habitats does not translate into high 

anopheline larvae productivity in the subsequent months of April and May 2005, presumably 

because of higher temperature (> 40°C), and low relative humidity (minimum = 26%, 

maximum = 62%) occurring in these months. Studies in Kenya showed a reduction from 55–

57% in the survivorship of An. gambiae s.l. larvae in open larval habitats associated with an 
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increase of 3–3.4°C in their average daily water temperature compared with full forest-canopy 

coverage (forest habitats) and partial canopy coverage (forest edge habitats) larval habitats. 

 

The greater dependency of An. gambiae s.l. on humid conditions has also been 

described (Charlwood et al., 2000). However, at the same period (dry season) in the fishing 

hamlet adjacent to the receding Niger River riverbed; there were numerous small natural 

puddles that were highly productive for anopheline larvae. As a result, the mosquito density 

was higher in the hamlet during the dry season than in Bancoumana. The quick re-

colonization of the larval habitats shortly after a rainfall in Bancoumana suggests that 

mosquitoes that emerged from the riverbed are an important seed of the rain-fed water bodies 

of Bancoumana. The distance of 3–5 km that separates the river and the village is well within 

the flight range of An. gambiae (Kaufmann and Briegel, 2004). We did not find any potential 

obstacles to the flight of mosquitoes between Bancoumana and the fishing hamlet. Moreover, 

the different molecular forms of An. gambiae larvae after the first rain after the dry season had 

near identical frequencies in the two sites. It thus appears that the vectors in the two villages 

are from a common population. If the small fishing village was targeted for larval and adult 

mosquito control during the dry season (February and March), it could have a substantial 

impact on malaria transmission in surrounding areas such as the main village of Bancoumana. 

 

The high anopheline larvae productivity of the larval habitats created by the receding 

riverbed parallels the ecology of An. culicifacies in Sri Lanka (Konradsen et al., 1998) more 

than the usual situation of An. gambiae in Africa. However, in various areas with seasonal 

malaria transmission in Africa, it has proved possible to identify local reservoirs of 

transmission during the dry season (Omer and Cloudsley-Thompson, 1970; Charlwood et al., 

2000). Identifying sources of mosquito larvae during the dry season may provide a basis for 
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selective larval control, which may impact on subsequent malaria transmission in the rainy 

season. 

 

In this area of seasonal malaria transmission, most productive larval habitats are 

human-made and rain-dependent, drying out within 10–12 weeks after the rainy season ends. 

Not very far away, numerous highly productive anopheline larvae may be found in favorable 

ecologic conditions (e.g., along the receding riverbed), which may sustain malaria 

transmission at a low level during the dry season and may serve as inoculums in surrounding 

areas. This scenario is similar to those in other areas of seasonal malaria transmission and 

provides an opportunity for a mosquito control strategy targeting dry season larval control and 

environmental management. 
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Abstract 

The effects of rice growth environment on malaria transmission, taking into account spatial 

correlation, were assessed in the Office du Niger, Mali. Between April 1999 to January 2001, 8 

quarterly entomological surveys were conducted in 18 villages in 3 agricultural zones. Vector 

densities in sleeping houses were related to rice crop, rice development stages, vegetation 

abundance, water state and seasons. They were high throughout the rice growing seasons, 

increased as the rice crop developed and decreased as vegetation became abundant. They also 

showed large spatial correlations (up to 30.6 km). The vectorial capacity exhibited both seasonal 

and village to village variation. Parity and the human blood index were weakly related to adult 

densities and showed low spatial correlations (up to 3.4 km), suggesting that small area variation 

in malaria transmission results mainly from variations in vector-human contact. Control strategies 

in rice cultivation areas should pay attention to this local variation.  

 
Keywords: Malaria transmission, An. gambiae s.l., An. funestus, Office du Niger, Mali. 
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7.1. Introduction 

Many studies have been carried out in Africa to assess the impact of rice cultivation on 

malaria. However, no consistent association has been found between irrigated rice fields and 

malaria transmission measured by classical entomological methods (Ijumba et al., 2001). It has 

been reported that transmission intensity in irrigated settlements is higher, similar or lower than in 

neighboring villages outside the irrigation scheme depending on the malaria situation before the 

implementation of the irrigated projects (Ijumba et al., 2001; Carnevale et al., 1999). 

 

Little attention has been paid to the spatial variation in malaria transmission in the rice 

agro-ecosystems because they are generally monocultures and are considered to be homogenous. 

However, rice-growing environments change during rice development and vary significantly 

within and between countries (Khush 1984; Bambaradeniya et al., 2001). This variability affects 

the risk of malaria transmission in large irrigated rice cultivation areas. 

 

The Office du Niger, in the district of Niono, Mali, represents one such area where 2 main 

environments result from an ongoing renovation process: renovated and non-renovated (Figure 

7.1). Our previous study used remote sensing data to map anopheline breeding sites and described 

the relation between mosquito densities, survival rates, zoophilic rates, and vectorial capacity in 

order to explain the low prevalence of malaria (Diuk-Wasser et al., 2004; 2005). In the current 

study we reanalyze the same data to assess the effects of rice growth environmental features on 

malaria transmission in order to get an insight into the spatial variation of malaria risk within a 

large-scale irrigated rice cultivation area. This work was complemented by repeated cross-

sectional anopheline larval collections in selected rice plots, which will be published elsewhere. 
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7.2. Materials and methods 

7.2.1. Study area. 

The study was carried out in the Office du Niger area (Figure 7.1) located in the inner 

delta of the river Niger, 350 km northeast of Bamako in the prefecture of Niono, in the region of 

Segou. This area comprises a colonial-era irrigation system that has undergone upgrading and 

repair since the 1980s. At the time of the study the Niono and Ndebougou zones were renovated, 

unlike the Molodo zone, and a surface of 68,000 hectares (ha) was used for rice cultivation 

(Coluzzi and Petrarca, 1973). 

 

The district of Niono has about 360,000 inhabitants with 180,000 living in the irrigated 

area. About 44% of the population is under 15 years old and only 20% is literate. The production 

system is based on animals (cow, donkey etc) which are used for ploughing, for producing 

organic fertilizer and as pulling. Some farmers are also involved in the production of meat and 

milk. 

 

Depending on the quality of water supply and regimen control, there are 3 categories of 

rice plots: controlled, shallow water regimen plots which are cropped either once or twice a year 

and unbounded plots with maximum sustained water depths. The first 2 categories have adequate 

delivery and disposal of excess water, whilst the last one has a poor draining system. In the 

renovated zones, all plots are shallow controlled water plots while in the un-renovated zone of 

Molodo all 3 plot types are encountered. 
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7.2.1.1. Study sites 

18 villages were selected in the 3 agricultural zones of Niono, Ndebougou and Molodo 

(Figure 7.1). The selection criteria were: 1) a minimum distance of 2-km between 2 selected 

villages; 2) accessibility in all seasons, and 3) village cooperation. Each selected village was geo-

referenced using handheld GPS receivers (Trimble ® Geo-Explorer II). A population census 

indicated that the median number of inhabitants per village was 963 (Minimum 600, Maximum = 

2080). 

 

Figure 7.1: Study area showing the irrigation scheme, the agricultural zones, and the study  
                 villages. 
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7.2.1.2. Rice growth cycle 

The typical rice cultivation cycle occurs from June to December and includes 1) a sowing-

transplanting phase (June-August), 2) a growing phase (August-November) and 3) an after-

harvest phase (November- December). A second and shortercultivation cycle (or off-season crop) 

takes place from January to May. The duration of the rice cycle varies between 120 to 150 days, 

depending on the rice variety. 

 

Following the practice of the Office du Niger administration we categorized the growing 

stages of the rice as follows: (i) fallow/ploughing (no rice), (ii) early vegetative (tilling), (iii) 

vegetative (elongation), (iv) reproductive/flowering (gaining), (v) maturation (mature grain). In 

addition we recorded whether fields were fertilized, pre-irrigated, or were undergoing irrigation. 

 

We also recorded crop type (rice/vegetable/fallow), vegetation abundance, rice state 

(sparse/dense), water turbidity, soil type and rice plot types (Table 7.1). 

 

7.2.2. Mosquito collections and processing 

Between April 1999 to January 2001, 8 crosssectional surveys were carried-out in 18 

villages to determine mosquito adult abundance, manbiting (MBR or ma) rates, parity rate (PR or 

P), human blood index (HBI or a), and hence, the vectorial capacity (VC or C). The surveys were 

scheduled according to rice cropping activities and carried-out in March 1999 and 2000 (dry hot 

season), August 1999 and 2000 (rainy season), October 1999 and 2000 (end of rainy season) and 

January 2000 and 2001 (dry and cold season). Mosquitoes were collected using pyrethrum spray 

catches (PSC) and human bait catches (HBC). 
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PSC was carried-out during daytime in houses using an aerosol of 0.3% pyrethrum sold 

under the label of Timor. During each survey, 30 compounds (conglomerate of houses) were 

randomly selected from the list of compounds in each village. The collection was performed in 1 

house per compound by 2 teams of 3 collectors each, during 2 consecutive days in each village. 

The total number of mosquito collected and the number of sleepers in the house were recorded. 

 

In each village, HBCs were performed at night by 2 collectors using a mouth aspirator 

(Detinova, 1962). and sitting inside and outside of each 1 of 2 sentinel houses, at least 200 m 

distant from each other, from 6:00 pm. to 6:00 AM (Coluzzi and Petrarca, 1973). 

 

Mosquitoes were morphologically identified and malaria vectors (An. gambiae s.l. and An. 

funestus) were selected from other Anopheles. Mosquitoes from HBC ovaries were dissected and 

their tracheoles examined to determine their physiological parity8. Blood meals of blood fed and 

semi- gravid mosquitoes, from PSC, were used to determine the human blood index by enzyme 

linked immunosorbent assay (ELISA) (Beier et al., 1988). The Polymerase Chain Reaction 

(PCR) method was used to determine the species of An. gambiae s.l. (An. gambiae s.s. vs An. 

arabiensis). The potential malaria transmission was estimated by the vectorial capacity,  

C = ma
2
Pn / (_logP) of An. gambiae s.l., which is the abundant vector (Garett-Jones, 1964). C 

represents the expected number of inoculations to human from an infected person per time unit; 

ma is the human-biting density; a is the product of the human-biting habit (estimated to be 2 days 

in Mali) and the human blood index (proportion of mosquitoes fed on human); P is the average 

daily survival of the female mosquito and n is the mean extrinsic period of development of the 

parasite in the mosquito (estimated to be 12 days in the study area). We applied the parity status 
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method to estimate mosquito longevity (Davidson, 1954). This approach does not incorporate 

effects of unstable age structure of mosquito population or irregular feeding pattern (Service, 

1976). However the large time intervals of 3 months between our surveys did not allow us to 

apply alternative methods (Charlwood and Alecrim, 1997; Mehugh, 1990; Briet, 2002). 

 

7.3. Statistical analysis 

The data were entered and cleaned in SPSS 11.0 (SPSS Inc. Chicago, USA) and analysed 

in STATA 8.0 (Stata Corporation, USA) and WinBUGS 1.4 (Imperial College and MRC, UK). 

Mosquito densities and man-biting rates (ma) were summarised by geometric means. Poisson 

regression analyses were performed to assess the bivariate relations between mosquito density 

and a set of rice-growth related predictors. A Bayesian spatial Poisson model was fitted in 

WinBUGS on the vector density data with explanatory those variables which appeared significant 

at a 15% significance level in the bivariate regressions. This model was used to quantify spatial 

correlation in mosquito density and to adjust the significance of the predictors under the presence 

of these correlations. In particular, we assumed that the mosquito density itY in village i   and 

survey t  follow a Poisson distribution, that )(~ itoit PY µ . Spatial correlation was modelled by 

village-specific random effects iφ , )72(,.....1 == NNi  that assumed to arise from a multivariate 

normal distribution ),0(~),...( 1 ∑= MVN
T

Nφφφ , with covariance matrix ∑ . We further assumed 

that spatial correlation is a function of distance between locations, irrespective of the locations 

themselves (stationarity) and of the direction (isotropy). We adopt an exponential correlation 

function, that is ),exp(2
ijij dρσ −=∑  where 2σ  is the spatial variance, ρ  models the rate of 

correlation decay and dij the distance between the centroïds of villages i  and j . For the 

exponential correlation structure specified above, the minimum distance that correlation becomes 
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less than 5% is given by ρ/3  (Ecker and Gelfand, 1997). Temporal correlation was introduced 

by assuming an autoregressive process )1(AR  of order 1 on fortnight-specific random effects 

.48,...1=tν The predictors as well as the spatial and temporal effects were modeled on the log 

scale of the mean parameter itµ  of the Poisson distribution which corresponds to the average 

mosquito density in village i  and fortnight t . that is ti

T

it
it X νφβµ =+=

−−
)log(  where 

it
X
−

is the 

predictors of vector and 
−

β  are the coefficients of the predictors. A non spatial-temporal Bayesian 

model was also fitted in WinBUGS. The Deviance Information Criterion (DIC) was used to 

assess the goodness-of-fit of the models (Spiegelhalter et al., 2002). The smaller the DIC is, the 

better the fit.  

 

In a separate analysis we linked the larval density data with the vector adult data using a 

Bayesian spatial Poisson model in order to assess the relation between larvae and vector related 

transmission indicators. In particular, we extracted from the larvae data set those collections made 

a fortnight prior to the adult data collection allowing a 2 week lag for the larvae to become adults. 

The Pearson’s chi-square test was applied to assess seasonality in the parous rate (PR) and human 

blood index (HBI). A Bayesian spatial logistic regression was employed to look at the relation 

between HBI and mosquito density. The Kruskal Wallis (KW) test was used to compare the 

median vectorial capacity by season and by agricultural zone. Bayesian spatial Poisson models 

were fitted in WinBUGS to assess the relation between the adult density and environmental 

factors as well as adult density and larval density. Previous studies (Service, 1976) have already 

shown that An. gambiae complex and An. funestus were responsible for malaria transmission in 

the area, therefore we focused on these species only. 
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7.4. Results 

7.4.1. Vectors population composition and structure 

A total number of 366,657 specimens of malaria vectors (An. gambiae s.l. and An. 

funestus) were collected. An. gambiae s.l. was the predominant species with a relative frequency 

of 90.2%. Higher frequencies of An. funestus were observed at the end of the rainy and during the 

dry cold season, specifically in villages located in the non-renovated zone of Molodo. 

Results from the PCR identification-based method show that An. gambiae s.l. was 

composed of 93.1% of An. gambiae s.s. and 6.9% of An. arabiensis (n = 891). The highest 

relative percentage of An. arabiensis (31.2%, n = 93) was observed at the end of the rainy season. 

7.4.2. Malaria transmission parameters  

Figure 7.2 presents the variation of the geometric mean density per house, the parity ratio 

(PR) and the human blood index (HBI) of both An. gambiae s.l. and An. funestus. Over the study 

period, the mean density per house was 69.5 (95%CI: 52.7—86.3) for An. gambiae s.l. and 5.6 

(95%CI: 4.4—6.8) for An. funestus. The mean PR and HBI were 60.3% (95%CI: 59.4—61.3, n = 

10705) and 34.7% (95%CI: 33.9—35.4, n = 15980) for An. gambiae s.l. and 74.4% (95%CI: 

72.9—75.9, n = 3323), 32.2% (95%CI: 30.9—33.4, n = 5854) for An. funestus, respectively. On 

average, the daily survival rate was 77.7% for An. gambiae s.l. and 86.3% for An. funestus. The 

highest mosquito density period corresponded to the lower HBI and PR for both An. gambiae s.l. 

and An. funestus. Particularly in August 2000 where the highest density (252.5, 95%CI: 205.4—

299.6) for An. gambiae s.l. was observed, the HBI (17.0% 95%CI: 15.6—18.5) and the PR (57.8, 

95%CI: 56.0—59.5) were also very low. 

 



Chapter 7: Rice cultivation and malaria transmission potential 

______________________________________________________________________________________________ 

142 

The median vectorial capacity (interquartile range) was 0.33 (0.01—1.03), 0.11(0.01—

0.79), 0.00 (0.0—0.10) and 0.01(0.0—0.10), during the dry cold, the dry hot season, the rainy and 

at the end of the rainy season respectively. The vectorial capacity differs significantly between 

the seasons (KW = 21.33, df = 3, P < 0.001). In particular, the highest vectorial capacity was 

observed in the dry cold season which showed the lowest mosquito density. The median vectorial 

capacity was not significantly higher (KW = 4.97, P = 0.083) in the nonrehabilitated agricultural 

zone of Molodo (0.1, 0.0—0.61) than in the rehabilitated zones of Niono (0.02, 0.0—0.44) and 

NDebougou (0.0, 0.0—0.54). 

7.4.3. Spatial analysis of malaria transmission parameters  

Bivariate and multiple nonspatial and spatial Poisson models were fitted to assess the 

association between mosquito density and rice growth related environmental features (Table 7.1). 

The goodness of fit criterion indicates that the spatial multiple model fits the data better (DIC = 

4360.0) than the non-spatial one (DIC = 5092.8). The good predictors of vector density were rice 

crop, rice development stages, vegetation abundance, water state, and seasons. Field types, which 

was a good predictor of mosquito density in the non-spatial model was no longer significant in 

the spatial multiple Poisson model. Tilling stage of rice, which was not significantly correlated 

with mosquito density in the multiple independent model became negatively related in the spatial 

model. The association of abundant vegetation category to mosquito density changed from 

positive in the multiple independent model to negative in the spatial one. This clearly illustrates 

how the standard statistical method, which assumes independence of observations, can over or 

underestimate the standard error, hence the significance, of the covariates when they are used to 

analyze spatially correlated data (Cressie, 1993). In fact, the data reveal a spatial correlation up to 
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distance of 30.0 km (95% CI = 22.2, 133.2), which was not accounted for in the non-spatial 

model. 

 

A separate multiple spatial Poisson model (detailed results not shown) was fitted to assess 

association between larval density in rice fields and adult density in human settlements. The 

model estimated a density ratio, DR = 1.005 (95% CI = 1.0013, 1.0016) for every increase of 

adult density by 1 mosquito. When adjusted for the environmental covariates, the larval density 

was no longer significant. Spatial correlation was strong and diminished to less than 5% at 35.5 

km (95%CI =21.1, 427.4).  

 

Spatial logistic models showed that seasonality was significantly associated with PR and 

HBI for both species, An. gambiae sl and An. funestus (Table 7.2). Also both species were less 

likely to be fed on human during the rainy, end of rainy and dry hot seasons compared to the dry 

cold season. An. gambiae s.l. was less likely to be parous during the dry hot and rainy seasons 

compared to the dry cold season. The odds of parity in An. funestus was significantly higher 

during the dry hot season (OR = 8.27, 95%CI = 4.95—13.29) and significantly lower during the 

rainy and end of rainy season relative to the dry cold one. Mosquito density was significantly 

associated with the PR and HBI only for the An. funestus species but not for the An. gambiae s.l. 

The minimum distances at which there was no spatial correlation in the PR and the HBI were 

3.36 km (1.41—21.29), 3.17 km (1.41—19.96) for An. gambiae s.l. and 2.56 km (1.39—15.13), 

2.17 km (1.39—7.31) respectively for An. funestus. 
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Figure 7.2: Variation in An. gambiae s.l. (top) and An. funestus (bottom) density (bars), parity 
                      rate (white dots) and human blood index (black dots) over the study period. The 
                      bars represent the 95%CI.  
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Table 7.1: Estimates of the effects of rice growth on adult mosquito densities 
 

Bivariate independent Multiple independent Multiple spatial   
 Variables Estimates 95% CI Estimates 95%CI Estimates 95%CI 

Rice crop        
 No rice 1.0  1.0  1.0  

 Rice 1.2 1.2—1.3 1.2 1.1—1.3 1.4 1.3—1.5 
Rice stages        
 No rice 1.0  1.0  1.0  

 
Tilling

⊗
 

2.1 2.1—2.2 1.04 0.95—1.13 0.8 0.7—0.8 

 Elongation 1.3 1.2—1.3 1.7 1.5—1.9 1.6 1.4—1.9 

 Gaining 0.8 0.8—0.9 3.9 3.4—4.5 2.5 2.1—3.1 

 Maturation 0.3 0.3—0.4 1.3 1.1—1.6 0.9 0.7—1.1 
Field types        
 Single crop 1.0  1.0  1.0  

 Double crop 0.9 0.9—1.0 1.1 1.0—1.1 1.4 0.8—2.4 

 Ind. Managed 1 0.9—1.1 1.3 1.2—1.4 1.2 0.5—3.1 
Seasons        
 Dry cold 1.0  1.0  1.0  

 Dry hot 12.8 11.3—14.4 12.2 10.6—14.1 14.9 12.8—17.3 

 Rainy 29.8 26.6—33.4 37.6 32.7—43.2 39.4 34.0—45.7 

 End rainy 2.8 2.5—3.2 2.3 1.8—2.8 2.5 1.9—3.2 
Vegetation abundance       
 No vegetation 1.0  1.0  1.0  

 Less abundant 0.7 0.6—0.7 0.3 0.3—0.3 0.3 0.3—0.3 

 Abundant 3.2 3.1—3.4 1.2 1.1—1.3 0.8 0.7—0.8 

 Very abundant 2.1 1.9—2.4 1 0.9—1.1 0.9 0.8—1.1 

Rice state        

 
No rice

±
 

1.0  - - - - 

 Sparse 16.9 13.9—20.5 - - - - 

 Partly Covered 14.2 11.6—17.3 - - - - 

 Covered 5.6 4.6—6.9 - - - - 
Agricultural activities       

 No rice 1.0  1.0  1.0  

 Pre-irrigation 2.1 1.9—2.4 0.7 0.6—0.8 0.7 0.6—0.8 

 Transplanting 2.1 1.9—2.4 0.6 0.5—0.7 0.7 0.6—0.8 

 Grass removal - - 1.0 0.0—3.40E+08 1.0 0.0—3.2E+8 

 Fertilizing 1.5 1.3—1.7 0.2 0.1—0.2 0.1 0.1—0.2 

 Irrigation 1.1 1.0—1.2 0.2 0.2—0.3 0.2 0.2—0.2 

 No activity 0.7 0.6—0.8 0.6 0.6—0.7 0.5 0.4—0.5 

 Protect birds 0.1 0.09—0.2 0.2 0.1—0.2 0.2 0.1—0.2 

 Canal cleaning 0.3 0.2—0.3 0.3 0.2—0.3 0.4 0.3—0.6 

 Water drainage 0.3 0.2—0.4 0.7 0..5—1.0 1.1 0.8—1.6 

 Harvesting 0.1 0.08—0.1 0.7 0.6—0.9 0.8 0.6—1.0 

 Market gardening 0.5 0.4—0.5 1 0.0—3.50E+08 1.0 0.0—3.2E+8 
Water state        
 No water 1.0  1.0  1.0  

 Dusty 0.5 0.5—0.6 0.1 0.1—0.1 0.1 0.1—0.1 

 Turbid 1.8 1.7—1.9 0.6 0.5—0.7 0.8 0.7—0.9 

 Clear 1.1 1.0—1.1 1.1 1.0—1.1 1 0.9—1.1 
Soil types        
 Clay 1.0  - - - - 

 Mixed 0.9 0.9—0.9 - - - - 
Spatial parameters        
 Correlation decay ( ρ ) - - - - 10.9 2.4—15.8 

 Spatial Variance ( 2σ ) - - - - 0.7 0.2—2.1 

Goodness of fit       
 DIC  -  5092.81  4359.99 

* Covariant effects are density ratios. Estimates are posterior means. CI = confidence interval; BCI = Bayesian credible interval; 

DIC = deviance information criteria.  
⊗

Two decimal places guiven to show non-significance  
±

Excluded because of collinearity    
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7.5. Discussion 

The aim of this study was to assess malaria transmission parameters in a large scale 

irrigated rice cultivation area taking into account the spatial correlation present in the data. The 

main species, which we were found, were An. gambiae s.l. and An. funestus. These are also the 

most common species in West African rice cultivation areas (Dolo et al., 2004; Koudou et al., 

2005). Among these 2 species, An. gambiae s.l was predominant accounting on average for 90% 

(n = 366,657) and was particularly abundant during the rainy season of 1999 and 2000 and the 

dry hot season of 1999 (second agricultural cycle). The lowest density of An. gambiae s.l. during 

the second agricultural cycle period of 2000 was related to restrictions imposed in rice cropping 

by the agricultural department to clean the draining system. During this period, the remaining 

stagnant water in the canals was used by An. funestus as breeding habitats (Klinkenberg et al., 

2003). At the end of the rainy and during the dry cold season, the frequencies of both species 

reached similar levels. This seasonal variation in the frequency ratio of the 2 species is commonly 

observed and it is related to their ecology (Mouchet and Brengues, 1990). The sun-loving An. 

gambiae s.l. colonizes rice fields at the transplanting period and is replaced by the shade-loving 

An. funestus when rice plants cover the fields.  

 

The negative association between the adult density with the PR and HBI in the Office du 

Niger has been already reported and has been also observed in neighboring Burkina Faso 

(Doannio et al., 2002; Dolo et al., 2004; Diuck-Wasser et al., 2005). The most likely explanation 

is that when the mosquito density increases individuals take more protective measures (i.e. bed 

net use) which may divert mosquitoes to animals such as cattle. This argument is supported by 

the exceptionally low HBI of the very anthropophilic species of An. funestus in spite of its very 

high parity rate. Whereas a negative association between adult density and HBI has been 
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observed in the Office du Niger, Mali (Klinkenberg et al., 2003; Dolo et al., 2004) and Burkina 

Faso (Daonni et al., 2002), a recent study conducted in Côte d’Ivoire suggested a positive 

association reporting HBI up to 95% during high density periods (Koudou et al., 2005).  

 

The vectorial capacity was relatively low with a seasonal and village to village variation. 

The median vectorial capacity was higher in the non-renovated zone of Molodo than the 

renovated zones of Niono and NDebougou but the statistical significance was borderline. The 

inadequate water disposal system of the non-renovated zone may have raised the relative 

humidity that aids mosquito survival1 and therefore the vectorial capacity. The higher prevalence 

of An. funestus in this zone may have also contributed to this finding. The deficiency in the 

draining system of this agricultural zone has created deep, vegetated and persistent water bodies 

which are used by An. funestus as breeding habitats. However it is important to note that in this 

study our estimate of vector survival did not take into account the recruitment rate in mosquito 

population which can have an impact on the parity ratio and hence on season specific vectorial 

capacity estimates. Unfortunately, the large sampling interval of our data did not allow us to use 

alternative approaches. However the possible bias in the estimates of the vectorial capacity 

should not reflect in the comparison between locations since the same method was applied. 
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Table 7.2: Multiple spatial logistic regression of parity ratio (PR) and human blood index (HBI) on adult mosquito density adjusted 
      for seasonal effects  
 

An. gambiae s.l. An. funestus Parameters 
Parous rate  

OR (95%CIs)* 
HBI  

OR (95%CIs) 
Parous rate  
OR (95%CIs) 

HBI  
OR (95%CIs) 

Seasons     

 Dry cold 1.0 1.0  1.0 1.00 

 Dry hot 0.63 (0.49—0.80) 0.41 (0.37—0.46) 8.27 (4.95—13.29) 0.47 (0.40—0.55) 

 Rainy 0.32 (0.24—0.41) 0.37 (0.31—0.44) 0.68 (0.24—1.63) 0.69 (0.59—0.80) 

 End of rainy 1.12(0.80—1.46) 0.48 (0.43—0.54) 0.75 (0.58—0.96) 0.27 (0.23—0.33) 

Density 1.00 (1.00—1.00) 1.00 (1.00—1.00) 0.97 (0.96—0.98) 1.01 (1.01—1.02) 

Correlation decay (ρ) 99.03 (15.66—235.50) 104.90 (16.70—235.80) 130.00 (22.03—238.20) 153.50 (45.59—240.00) 

Spatial variance (σ
2
) 0.17 (0.08—0.36) 0.12 (0.06—0.24) 0.23 (0.09—0.52) 0.07 (0.03—0.16) 
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Our data showed that shallow controlled plots used for the 2 agricultural cycles (twice a 

year) produced fewer larvae than all other plots types. The better draining system has certainly 

shortened the time they serve as breeding sites for anopheline. Indeed research on water 

management in rice plots reported the numerous and lasting breeding habitats even after 

harvesting in inefficiently drained plots (Klinkenberg et al., 2003; Temel, 2004). However more 

studies are required to rigorously support this observation because restriction was made in 

cropping during the second year of our study period. 

 

Adult densities showed marked seasonality however they were large enough to sustain 

transmission throughout the year. This is almost certainly due to the current cultivation methods, 

characterized by overlaps between several agricultural cycles (Klinkenber et al., 2003; Koudou et 

al., 2005). In spite of the high densities during the rainy season, the potential for transmission was 

lower than in the dry season. This could be explained by the decreases in the HBI (a measure of 

vector–human contact) and in the PR (a measure of vector longevity) at that time period (Figure 

7.2). In the dry season, lower vector densities may lead to relaxation of individual protection. 

Vector-human contact may also be higher during the dry hot season because people spend longer 

periods outside. 

 

Spatial correlation in mosquito density data was significant in distances up to 30.6 km 

indicating that the number of mosquitoes per house is related to the number of mosquitoes up to 

30.6 km apart. This strong spatial correlation is likely to be related to the rice cultivation 

environment which is associated with mosquito abundance because of the suitable conditions it 

creates. In addition our analysis does not include climate related parameters such as rainfall and 
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temperature which are spatially structured and might also explain the residual spatial correlation. 

Spatial correlation in PR was relatively low (up to 3.36 km and 3.17 km for An. gambiae s.l. and 

An. funestus, respectively). Similarly spatial correlation in HBI is up to 2.56 km and 2.17 km for 

An. gambiae s.l. and An. funestus, respectively. This weak spatial correlation suggests that PR 

and HBI are more related to local conditions such as population behavior and economical status, 

presence of animals rather than similar environment over large areas. A spatial analysis 

performed to assess the effect of mosquito density on the PR and the HBI did not show any 

significant association other that between PR of An. funestus and mosquito density (OR = 0.97, 

95%CI = 0.96—0.98). The importance of local environment may also explain the difference we 

observed in the vectorial capacity from village to village and between the agricultural zones. A 

separate model linking larvae and adult density suggested that larvae density was significantly 

related to the mosquito density per house. This association disappeared when we adjusted the 

density for rice growth environmental factors. 

 

This study is the first to quantify the amount of spatial correlation in rice cultivation areas 

and to assess the effect of rice growing on malaria transmission taking into account this 

correlation. Our results show that in the Office du Niger, rice cultivation has created 

environmental conditions favorable to the occurrence of the 2 major malaria vectors which, with 

current agricultural practices is leading to a year round transmission with a marked seasonality. 

 

Local variation was observed in mosquito parity ratio and human blood index, which both 

measure the vector-human contact rate and hence the potential for malaria transmission intensity. 

Attention must be paid to this local variation when implementing control strategies. Similar 
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studies elsewhere in Africa are needed if we are to understand whether these are general features 

of malaria transmission in large scale irrigated ecosystems. 
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Chapter 8 

________________________________________________________________ 

General discussion and conclusions 

The wide spectrum of malaria transmission patterns resulting from heterogeneity of vector 

populations and the limitations of current control tools underscore a need to address the 

challenges of vector control with tailored interventions responsive to local conditions and 

transmission patterns. The success of such an approach requires accurate information on vector 

biology and ecology, malaria transmission and epidemiology, in relationship to local 

environmental conditions, and a good stratification of control areas with respect to time and space 

(Toure et al., 2004). The goal of this thesis was to enhance our understanding of the relationship 

between the relative frequencies distribution of members of An. gambiae complex and climatic 

and environmental conditions, to produce their spatial and temporal distribution, to quantify their 

unique contribution to malaria transmission, and to produce their attributed malaria risk maps in 

Mali. More specifically we: (i) identified environmental factors related with the distribution of a) 

the two major species (An. arabiensis and An. gambiae s.s.) which compose the An. gambiae 

complex and b)  the chromosomal (Bamako, Mopti, Savanna Hybrids) forms of An. gambiae s.s.; 

(ii) produced maps of the geographical distribution of the species and chromosomal forms; (iii) 

assessed the contribution of species and chromosomal forms to malaria transmission in Mali; (iv) 

examined the spatio-temporal distribution of An. gambiae complex densities and its chromosomal 

(Mopti, Bamako, Savanna, Hybrids) forms in a Sudan savanna village; (v) investigated the 

malaria vector ecology during the dry season and its implication for vector control, and (vi) 
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assessed the spatial pattern of malaria transmission in the rice cultivation area of the Office du 

Niger. 

 

Previous studies have produced maps of the distribution of the An. gambiae complex by 

displaying the relative frequency of its species at sampled locations (Coetzee et al., 2000; Onyabe 

& Conn, 2001; Toure et al. 1998). Maps of the distribution of species (Lindsay et al., 1998) and 

subspecies (Bayoh et al., 2001) at continental and regional scales have been produced based on 

climatic suitability conditions, standard statistical models assuming independence of the 

observations and ecological niche-modeling (Levine et al., 2004). However, malaria vectors 

species frequencies are spatially correlated because neighboring areas are sensitive to similar 

climatic and environmental factors influencing species distribution in a similar way.  Analyzing 

spatially correlated data assuming independence lead to overestimation of the statistical 

significance of the covariates (Cressie, 1993). In our study, we used Bayesian geostatistical 

modeling and vector field data from village to country level. The Bayesian geostatistical 

modeling, implemented via Markov chain Monte Carlo simulation (MCMC) quantifies the 

relationship between environmental factors and the species distribution by taking into account the 

spatial dependence present in the data in a flexible way that allows simultaneous estimation of all 

model parameters. In addition, Bayesian kriging enables model-based prediction together with the 

prediction error, a feature which is not possible in the classical kriging.  

 

A detailed discussion on the findings was given in each chapter previously. Here we 

report a summary of the main contributions of the work and their implication in malaria control.  

In chapter 2, we found that the relative frequencies of the two major species (An. arabiensis and 

An. gambiae s.s) of An. gambiae complex were associated with the cumulative rainfall during the 
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survey and during the two previous months instead of the rainfall of the survey month. An. 

arabiensis was associated with dry and An. gambiae s.s. with wet conditions. Thus, the spatial 

distribution map of their relative frequencies showed higher frequencies of An. arabiensis in the 

drier Savanna areas and An. gambiae s.s. in the flooded/irrigated areas of the inner delta of Niger 

river, the southern Savanna, along rivers and in the Sahel. The occurrence of An. gambiae s.s in 

the arid regions (Sahel) has been shown to be associated with the ‘Mopti' chromosomal form 

(Touré et al. 1994), which also prefers dry conditions.  

 

Using the same geostatistical approach in chapter 3, we analyzed data of the relative 

frequencies of the chromosomal forms (Mopti, Bamako, Savanna and theirs Hybrids) of An. 

gambiae s.s., which showed that at least two of the chromosomal forms were sympatric, though 

each of them had a preference for one of the three eco-climatic zones of the country. The Mopti 

form was sharing the same ecological area with An. arabiensis. In addition, it occupied the 

flooded/irrigated areas of the inner delta of Niger River. The Savanna form prefers the Sudan 

Savanna areas and the Bamako form was confined around Bamako city and in part of Sikasso 

region. The ecological distribution of the different chromosomal forms seems to be related to 

difference in their preference for larval breeding habitats. The Savanna chromosomal form breeds 

more frequently in temporary rain-dependent breeding places, which are more likely to be present 

in savanna areas; the Mopti form was observed more frequently in semi-permanent to permanent 

breeding places, which are in general man-made; and the Bamako form breeds more often on the 

edges of temporary streams (Touré et al., 1998; Edillo et al., 2002). Fanello et al. (2003) 

explained the higher frequency of the pyrethroid kdr gene observed in the savanna compared to 

its sympatric and synchronous Mopti and Bamako forms by the differences in their preference for 

different breeding habitats. The chromosomal arrangement bc/bc (associated to dry conditions) 
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and u/u (associated to wet conditions) of the Mopti chromosomal form may play an important 

role in its adaptation to diverse environments (Touré et al. 1998).                              

 

The practical implication of the findings of chapter 2 & 3 is that they provide valuable 

information for monitoring insecticide resistance encoded by the kdr gene and selective and 

targeted malaria vector control in Mali. Indeed, based on the current knowledge, the kdr gene has 

been frequently reported in An. gambiae s.s. and particularly in its chromosomal form Savanna 

and not yet in the other taxa in Mali (Fanello et al., 2003). Therefore, insecticide control 

measures must be emphasized in the Sahelian (epidemic prone area) and irrigated/flooded areas 

where An. arabiensis and the Mopti chromosomal form prevail. Any vector control by means of 

insecticides in the Southern part of the country, where the S molecular form (Savanna and 

Bamako) predominates, must be accompanied by a close insecticide resistance monitoring 

system. Even though more bio-ecological and gene flow studies among the different species and 

chromosomal forms are needed before undertaking any field implementation of genetically 

manipulated mosquito control, the maps may be useful for planning future implementation of this 

control method.  

 

Malaria control resource allocation must be proportional to the risk of malaria 

transmission if decision makers are aware of which areas are at higher risk than others and which 

species are responsible of the transmission. Maps of malaria risk of Mali have been produced 

(Kleinschmidt et al. 2001; Gemperli et al. 2006; Gosoniu et al. 2006). These maps are based on 

data collected until 1998. Chapter 4 includes a revised malaria risk  map based on more recent 

data. This map should  reflect more accurately the current malaria risk in Mali. The malaria risk 

map was combined with maps of the geographical distribution of subspecies to produce attributed 
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malaria risk maps for each subspecies. Our analyses showed that all the chromosomal forms of 

An. gambiae s.s. were equally contributing to malaria transmission during the survey period of 

1981-1990. However, during the relatively wet period (1991-2004), High malaria risk was 

associated with insecticide resistance gene (kdr) carriers (Bamako/Savanna chromosomal) 

compared to the non-carrier Mopti chromosomal form, though the association was not significant.  

The revised predicted malaria prevalence map based on surveys during 1991-2000 showed a 

South to North distribution of malaria risk. Higher malaria risk was observed in the Southern 

part, a moderate risk in the middle and lower risk in the Northern part of the country. This 

distribution pattern is in agreement with the eco-geographical description of the epidemiology of 

malaria in Mali (Doumbo et al. 1989). The attributed risk maps of the different species and 

subspecies indicated that in the middle West and South East part of the country malaria 

transmission risk is mainly due to An. arabiensis, in the irrigated/flooded areas malaria risk is 

attributed to the Mopti form in the southern part to the Savanna/Bamako forms and in the 

southern areas of the region of Kayes to the hybrids.  

 

The analysis of the updated MARA data showed a significant decrease in malaria 

prevalence during 1981-1990 which could be due to low rains in that period. Similar observations 

were reported from neighbor Sahelian countries of Niger and Senegal where up to 80% of 

reduction in malaria prevalence was observed (Faye et al., 1995; Mouchet et al., 1996). An 

increase in malaria risk was observed during 1991-2004 in comparison to the drought period 

(1981-1990)  which can partly be explained  by the high amount of rainfall during this period 

(Konate et al., 2001; Labbo et al., 2004; Thomson et al. 2006; Kent et al., 2007).  Other factors 

such as environmental changes due to human activities, the resistance of parasite to drugs and of 
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the vectors to insecticides as well as the poor implementation of control interventions could have 

contributed to this situation. 

 

Integrated Vector Management (IVM) strategies targeting a particular area and vector 

populations in time require information at high spatial and temporal resolutions on the 

distribution of adult vector densities as well as its sibling species and subspecies. In chapter 5, we 

assessed the spatial and seasonal distribution of An. gambiae complex adult densities and the 

relative frequencies of the chromosomal forms of An. gambiae s.s. in relation with the local 

environmental factors in the village of Bancoumana, Mali using data over four years. Our data 

showed spatial, seasonal and year to year variations in the distribution of mosquito densities. 

Spatial and seasonal variations in the relative frequencies of the chromosomal forms of An. 

gambiae s.s. were also observed. The annual and seasonal variations could be explained by 

annual and seasonal variations in the rainfall. Surprisingly, we found a positive, but weak 

association between the number of mosquitoes found in a house and its distance from the nearest 

breeding habitat. This observation is contrary to previous results (Minakawa et al., 2002; Zhou et 

al., 2007). Nevertheless, the spatial distribution maps of mosquito densities showed a concentric 

clustering pattern with higher densities at the periphery of the village at the beginning of the rainy 

season and during the dry season. This distribution was patchy during the middle and the end of 

the rainy season. Temporal dynamics of larval habitats may explain such distribution pattern. The 

chromosomal forms were sympatric over all seasons. There was a spatial clustering in their 

relative frequency distribution changing over time in the village. The Mopti chromosomal form 

was the most abundant at the beginning and middle of the rainy season and the Bamako form at 

the end of the rainy season. The range parameters for the frequencies of the chromosomal forms 

were relatively high compared to mosquito flying range. This is explained by the fact that the 
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frequencies of the chromosomal forms are similar in neighboring areas due to related 

environmental and climatic factors which favor the breeding and survival of mosquitoes. Passive 

migration directed by the wind could also contribute to the high values of the range parameters.  

Our results suggest that control interventions targeting the Mopti form should be implemented at 

the beginning and middle of the rainy season, while those targeting of the Bamako form should 

be done at the end of the rainy season. In addition, appropriate vector control targeting the 

periphery of the village at the beginning of the rainy season and during the dry season can 

ameliorate the malaria situation in seasonal malaria transmission areas.   

 

In Chapter 5, we monitor larval habitats and mosquito densities in and around the village 

of Bancoumana, Mali, in order to provide a basis for the development of  vector control strategies 

during the dry season. Our results showed that in the main village of Bancoumana nearly all 

larval habitats were human-made, rain-dependent and dried out 10-12 weeks after the end of the 

rainy season. As a result, the number of adult mosquitoes collected in the houses became very 

small. In the fishermen’s hamlets adjacent to the receding Niger River riverbed, there were 

numerous small natural puddles that were highly productive for anopheline larvae even during the 

dry period. As a result, the mosquito density was higher in those hamlets than in the main village. 

Larval habitats in Bancoumana were re-colonized shortly after a rainfall suggesting that 

mosquitoes that emerged from the riverbed are an important seed of the rain-fed water bodies of 

Bancoumana.  Although the distance of 3–5 km that separates the river and the village seems to 

be out of the flight range of An. gambiae complex in Mali (Dolo et al), studies from elsewhere 

reported that this distance is within the flight range of An. gambiae complex (Kaufmann et al. 

2004). These findings suggest that vector control in the fishermen’s hamlet during the dry season 

may be feasible, sustainable, at low cost and may ameliorate malaria transmission in the main 
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village. Similar scenarios may exist in other areas with seasonal malaria transmission as in the 

main village and can provides an opportunity for a mosquito control strategy targeting dry season 

larval control and environmental management in sub-Sahara Africa.  

 

A challenge for African countries is accommodating irrigated agriculture required to 

respond to food needs, and diseases associated with irrigation. Rice cultivation is traditionally 

related to vector-borne diseases, especially malaria. The changes in the malaria transmission 

pattern due to the development of irrigation are subject of debate (Ijumba et al. 2002). However, 

little attention is paid to the spatial variations in malaria transmission in rice cultivation areas. In 

chapter 7, we assessed malaria transmission parameters in a large scale irrigated rice cultivation 

area taking into account the spatial correlation present in the data. The data showed a strong 

spatial correlation in mosquito densities certainly related to the rice cultivation environment. 

However, our analysis does not include climate related parameters such as rainfall and 

temperature which are spatially structured and might also explain the residual spatial correlation.  

The most interesting findings were the weak spatial correlation observed in the parous rate (PR) 

and human blood index (HBI) suggesting that these parameters are more related to local 

conditions such as population behavior and economical status, presence of animals etc rather than 

similar environment over large areas. Since both PR and HBI measure the vector-human contact 

rate and hence the potential for malaria transmission intensity, attention must be paid to this local 

variation when implementing control strategies in rice cultivation areas. 

 

Conclusion 

The Bayesian geospatial analyses used in these studies enable the analysis of complex 

data like the morphologically indistinguishable species and subspecies of An. gambiae complex 
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in relation to environmental and climatic factors in Mali. This enhances our understanding of the 

relationship between climatic and environmental factors and the relative frequency distribution of 

An. gambiae complex species and subspecies. We were also able to assess the relative 

contribution of the different chromosomal variants to malaria transmission as well as to map their 

attributed malaria risk. 

 

 This work makes a substantial contribution in the mapping of the spatial distribution of 

malaria vector species and subspecies which was limited by the lack of field data and appropriate 

statistical analyses. Our findings provide relevant information for both operational control and 

academic research activities. 

 

In the control context, the species and chromosomal forms distribution maps are useful for 

insecticide based vector control because they identified areas were insecticide resistant and 

susceptible species or subspecies are present. In addition, they provide information for targeted 

control of a specific species or subspecies. The results of this work provide the basis for malaria 

control strategies during the dry season which may cost less and showed that large areas of rice 

cultivation must not be considered as a whole when implementing control interventions  

 

In the academic research context, though more focused research still needed in order to 

better understand the micro-ecology and gene flow among the different chromosomal variants, 

the produced maps provide the basis for future implementation of genetically manipulated 

mosquitoes in malaria control. 
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