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Abstract 

Insight into the molecular impact of mutations on the structure and function of proteins 

is of great importance in biology. It helps understand the evolution of proteins, 

rationalize the molecular causes of disease and, from a practical perspective, aid in 

planning experiments. In this work, three goals are pursued. Firstly, a method for 

objectively assessing the effect of mutations on protein structure is formulated. The 

random noise component in the comparison of two structures is quantified by a log 

linear regression model incorporating information on experimental quality and intrinsic 

flexibility, which can account for approximately half of all structural variation between 

alternative structures. Applying this model to the task of isolating the effects of single 

point mutations, it is shown that subtle changes in structure, induced by mutations from 

evolutionarily favourable residues to unfavourable ones, can’t be observed without 

correcting for noise. Secondly, the use of automated prediction tools for generating 3D 

structures for proteins without experimental structures is assessed. It is found that 

current state of the art automated modelling methods rival or exceed most expert 

modelling groups in terms of coverage and accuracy. However, in both cases there is still 

significant room for improvement until protein structure model reach accuracy 

comparable to experimental structures for non-trivial target proteins. Computationally 

cheap methods fare comparatively well and thus represent useful tools for the purpose 

of providing valuable structural information for systematic analyses, such as the study at 

hand. Finally, the use of machine learning methods for predicting the impact of 

mutations on protein function is assessed, using a large set of single amino acid variants 

in humans. The contribution of structural and evolutionary information to predicting the 

phenotype of mutations is tested rigorously and it is found that structural information 

provides information not present in evolutionary data. A generalised classifier using 

both sequence and structure derived information outperforms other comparable 

published methods. By validating the classifier on independent datasets we show that it 

can be used as a general purpose mutation prediction tool, and that our validation 

methods give reasonable estimates of its performance. 
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1. Introduction 

1.1 Proteins and their mutability 

1.1.1 Proteins and their role in organisms 

Proteins are important, biologically active molecules in all living organisms. Their amino acid 

sequence is encoded in the DNA, and the ultimate purpose of proteins is to ensure the 

survival and replication thereof. Their function and biophysical properties are briefly 

described in the following section.  

Proteins as workhorses of the cell 

Proteins are the molecular effectors of the life. They perform a large proportion of the 

functions necessary to the growth, survival and ultimately replication of cells and 

organisms. They are involved in almost every aspect of the life of an organism or cell, 

ranging from the replication of life’s template, DNA, over the production of energy and the 

chemical building blocks of life, to regulating a cell’s growth and its function within an 

organism. Proteins are involved in diverse tasks, which can be of catalytic (tasked with 

replication, metabolism and cell signalling) or structural nature (cytoskeletal proteins); they 

are also involved in transport of substances throughout an organism (haemoglobin, 

LDL/HDL) or across membrane barriers (acquaporin, glucose permease), as well as immunity 

(immunoglobulins). 

The importance of protein structure 

The function of a protein is intimately linked to its structural properties. For instance, the 

residues of active sites in enzymes need to be in a specific three-dimensional arrangement 

in order to catalyse reactions, as exemplified by the catalytic triad in serine proteases. 

Binding pockets of active sites need a certain shape in order to guarantee ligand specificity. 

The shape and surface properties are important for specific binding to other proteins in an 

organised and highly controlled fashion. 
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The distinctive three dimensional shape of a protein is determined by its amino acid 

sequence, meaning that the information required for a protein is encoded in the linear 

amino acid sequence. Even upon denaturation many globular proteins will refold to their 

native state once removed from the denaturing conditions. This principle, named Anfinsen’s 

paradigm after its discoverer1, has pervaded the understanding of protein folding ever since 

its inception and appears to be applicable for practically all known proteins. Protein folds, 

i.e. the relative three dimensional arrangement of secondary structure elements, are 

thought to be robust to sequence change during evolution. Naturally occurring proteins 

similar in sequence are generally also similar in structure, and only proteins very different in 

sequence tend to, but need not, be structurally distinct2. 

While these principles hold for most known proteins, there are some exceptions, which 

merit brief discussion3. The recent discovery of two distinct folds for lymphotactin4, which 

are assumed at different salt concentrations and temperature conditions, shows that it is 

possible for one sequence to undergo not just local restructuring, but global restructuring to 

the extent that the two folds have no hydrogen bonds in common. A further example is the 

class of the cysteine rich domains of cnidarians nematocyst proteins, which can natively 

interconvert between folds, each of which can be stabilized by introducing very few 

mutations5. The accepted paradigm, which posits that proteins similar in sequence also 

have similar folds, appears not to hold for such proteins; as such these proteins are 

assumed to represent evolutionary bridges between folds which permit the exploration of 

structure space. More notably, there are proteins which are not intrinsically structured. 

Proteins which are natively disordered, i.e. they do not assume a clear structural fold, have 

recently gained much interest6,7. This intrinsic disorder appears to be a property of many 

proteins involved in important cell functions such as signalling, development and cell cycle 

control8. It is however assumed that these proteins undergo structuring upon forming 

complexes with their binding partners9. 
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Determinants of protein folding and stability 

Upon transcription of the mRNA to proteins by the ribosome, proteins exist initially as an 

unstructured linear sequence of amino acids. The process it undergoes to obtain its three 

dimensional structure is known as protein folding. The number of available conformations 

that a protein can assume is in principle astronomic. Under a very simplified model, a single 

amino acid can assume three conformations, which is an underestimation of the true 

degrees of freedom, a peptide of length N can access 3N different conformations. For even 

small proteins, sampling all of these conformations is impossible to achieve in the amount 

of time a protein has to fold. This apparent contradiction implies that in order to fold in a 

reasonable time, kinetic pathways or protein folding pathways have to exist, which a 

protein can follow in order to quickly reach its native state10. Much debate exists as to the 

exact mechanisms of such pathways11, but it is clear that they must be encoded for in the 

amino acid sequence of the protein at hand. 

The stability of a protein is defined by the ratio of folded of unfolded copies of the protein 

in a system. As such, a protein’s stability determines its effective concentration in the cell, 

i.e. the concentration of folded and therefore functional molecules. Generally speaking, the 

native fold of most proteins are only transiently stable and for many known proteins is 

about -3 to -14 kcal/mol12, which is on the order of magnitude of the energetic contribution 

of a single hydrogen bond. This transient stability makes proteins susceptible to unfolding, 

or denaturation, by heat and chemical effects such as strong changes in pH or high 

concentrations of denaturants. Under physiological conditions however, the 

thermodynamic balance drives proteins to their unique folded state. Selection appears to 

maintain a minimum stability level for protein, so as to allow it to adopt its functional form 

long enough to perform its function. Insights from protein engineering13 and studies of 

proteins from hyperthermophilic bacteria14 would imply that higher stabilities would have 

been achievable by evolution. This observation leads to the conclusion that there is natural 

selection for limited protein stability15. While the precise importance of the various factors 

on protein folding and stability are still debated, some principles are generally accepted. 
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Hydrophobic and van der Waals interactions. The dense packing of a protein’s hydrophobic 

core16 for example, is an important aspect of protein structure, and is presumed to be 

important for protein stability. Evidence suggests that van der Waals interactions in the 

densely packed core are of key factors in stabilising proteins17, and have even been argued 

to be sufficient for designing well folded proteins18. A further force driving the formation of 

these tightly packed cores is the hydrophobic effect. As hydrophobic amino acid side chains 

have a favourable transfer free energy from water to hydrophobic solvents19, it is 

energetically beneficial for these to group together under the exclusion of the polar solvent. 

The fact that many proteins tend to denature when exposed to organic solvents such as 

ethanol underlines the importance of the formation of the hydrophobic core as a key 

determinant in protein structure stability20. 

Hydrogen bonding. Hydrogen bonds are argued to be one of the most important 

interactions in biology and chemistry21. The strength of hydrogen bonds in proteins is 

usually estimated to be between 1-4 kcal/mol22,23. However, it is argued that hydrogen 

bonds contribute little to the overall stability of a protein, as residues in the unfolded state 

are able to form hydrogen bonds with the water and therefore incur an energetic penalty 

when moved into the hydrophobic interior of the protein. Studies show that the desolvation 

energy of the backbone hydrogen bonding group is significant24 and that fulfilling the 

hydrogen bonding potential by secondary structure formation is necessary to eliminate this 

penalty rather than contributing positively to the stability. Theoretical studies suggest that 

the driving forces behind the folding of peptides into secondary structures are the 

hydrophobic effect and van der Waals interactions25,26. 

Electrostatics. Although salt-bridges appear to be conserved throughout evolution, 

particularly in solvent inaccessible regions27, the importance of the interaction of point 

charges in proteins is contentious. While the contribution of electrostatics to destabilisation 

due to charge-charge repulsion is well appreciated28, its effect on the overall stability of 

proteins is unclear. It is argued that for most proteins the strength of salt bridges is not 

sufficient to counter the cost of desolvation29 involved in burying a polar or charged group 
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in the hydrophobic core of a protein. Indeed, it has been shown experimentally in protein 

engineering experiments that the replacement of charged interactions by hydrophobic ones 

can increase protein stability30. The role of hydrogen bonds appears to lie in defining 

contact specificity during protein folding28, rather than contributing to the overall stability. 

They are, however, as indicated above, inferred to be of importance in proteins from 

thermophiles31. It appears that while single charge-charge interactions are insufficient to 

compensate for the removal of a charged group from water, a network of interactions, 

created by optimally placing charged residues, can help ameliorate the detrimental effects 

of desolvation32. 

Disulphide bridges. As covalent interactions, disulphide bonds potentially contribute 

significantly to the stability of some proteins. Experiments on ribonuclease T1 show a great 

loss in stability upon disulphide bridge breakage33. However the authors note that this is 

attributable mainly to the increased entropic freedom of the unfolded stated gained 

through the lost disulphide bridge, an observation supported by the studies of hen egg 

white lysozyme34. Arguably however, these proteins are not necessarily good 

representatives of all proteins; they are exceptional proteins involved in the defence against 

pathogens and as such have very different functional constraints and requirements 

compared to other proteins. 

Loss of function as a cause of disease 

Proteins are central and essential to the function of cells, tissues and ultimately the 

organism. Each one performs a function for which it has been selected by evolution, and a 

loss of this function is generally regarded as a deleterious phenotype. Mutations can have 

an impact on the function of a protein, which in turn can cause deficiencies leading to a 

diseased phenotype. Diseases due to loss of protein function can be metabolic, as in the 

case of phenylketonuria35, due to impaired transport through ion channel defects in the 

case of cystic fibrosis36 or of regulatory nature, as in the case mutations to the protein p53 

in cancer37. Critical function loss usually has such a deleterious effect that it will cause death 
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of the organism at a very early point in its development. Non-lethal, but nevertheless 

harmful mutations cause what can be commonly diagnosed as a disease; such a disease 

may be lethal at a later point in an organism’s life or it may be merely an encumbrance. If a 

change is not felt by the carrier, it is said to be neutral.  

1.1.2 Effects of mutations on proteins 

While the process of DNA replication is highly accurate, it is not perfect. With each cycle of 

DNA replication, a small number of new mutations are introduced which are random with 

respect to function. Mutations to the DNA in regions which encode for proteins may alter 

the primary sequence of the resulting peptide and thus have an effect on the biophysical 

attributes thereof. In the following, the effects of single amino acid substitutions are 

discussed. 

Loss of stability 

The loss of stability of proteins is one of the foremost causes of disease. As the proteins are 

only marginally stable, even small effects on stability alter the thermodynamic equilibrium 

to make the folded state unstable. Mutational evidence shows that mutations often, if not 

in the majority of cases, cause major changes to protein stability which are often on the 

order of magnitude of the absolute stability of the protein38. Lowered stability leads to a 

reduction in a protein’s effective concentration, which in turn causes deficiencies in its 

ability to perform its biochemical function39. A prominent example is the deficiency in 

phenylalanine hydroxylase (PAH), which leads to phenylketonuria. A significant proportion 

of these mutations are thought to be deleterious due to structure disruption and the 

consequent loss of stability40,41. A further implication of reduced stability is the possible 

aggregation of unfolded proteins through their promiscuous interaction in the densely 

populated cytosol42. While the cell has safety mechanisms in place to ensure the removal of 

un- or misfolded proteins, such as ubiquitin mediated degradation by the 26S proteasome, 

misfolding is commonly associated with numerous diseases43. 
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Increased stability 

It is known from studies of thermophiles’ proteins and from protein engineering 

experiments, that it is possible to greatly stabilize them. Nevertheless, marginal stability has 

been favoured by evolution. Thus, it can be presumed that the alteration of the 

thermodynamic properties of a protein to a more stable state will likely be non-beneficial. 

Numerous explanations have been proposed to explain this effect. 

Increased stability may lead to increased rigidity of the protein which may impinge upon an 

enzyme’s function. The link between flexibility and function is supported by studies on cold-

adapted proteins, which display high flexibility and high activity, but only low stability44. The 

phenomenon of induced fit of ligands also relies on flexibility, as for example the hinge 

motion involved in ligand binding in adenylate kinase45. In addition, specific motions, such 

as subunit and loop rearrangement are essential for catalysis in certain classes of 

enzymes46. Furthermore inhibition, which is often an allosteric effect, is reliant upon 

rearrangements of proteins. An extreme case is the regulation of pyruvate kinase by means 

of conformational change47. Gains in stability may cause a loss of flexibility which in turn is 

likely to entail a loss in regulation with obvious detrimental consequences for the cell. 

Besides the aspect of enzyme function, increased stability can have an effect on the process 

of regulation by means of degradation. Many cellular processes are mediated by the 

presence of key proteins whose removal is an obvious means of regulation. Indeed the cell 

has developed numerous ways in which to degrade such proteins in a highly regulated 

fashion, such as for example the ubiquitin system, which degrades a number of proteins 

known to be of key importance for, amongst other functions, cell cycle control48. Increasing 

the stability of a protein is likely to adversely affect its degradation as the proteasome 

requires its substrates to be unfolded49. Conceivably, an increase in stability could limit the 

rate at which this process occurs. If the timely degradation of these substrates is altered it 

can have detrimental effects on cell regulation or adversely affect the dynamic balance 

between synthesis and degradation in the cell50. 
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Misfolding 

The problems associated with protein misfolding are intimately linked to those caused by 

the reduction of stability. Misfolded proteins are in danger of interacting promiscuously 

with other copies of itself or other proteins in the crowded environment of the cell51. Such 

interactions may lead to the formation of insoluble aggregates in cells or tissues, which can 

be damaging to the cell or organisms. Highly stable aggregations of misfolded proteins, or 

fragments thereof, in the form of amyloid plaques are the cause of many conditions; the 

presence of such plaques in the nervous system is detrimental to neuronal growth and 

viability, eventually leading to the demise of affected cells or even tissues and can lead to 

neurodegenerative diseases such as Creutzfeld-Jacob’s disease and Alzheimer’s disease. 

Many other localized or systemic diseases are known to be caused by amyloid plaques52. 

Changes in interaction properties 

Proteins are often involved in binding other proteins in order to exert their biological 

function. Naturally multimeric proteins, such as haemoglobin depend upon their multimeric 

state for their correct function and their assembly requires the correct association of their 

subunits. Molecular recognition is a decisive factor in many cellular processes such as cell 

signalling and protein degradation, whereby proteins must recognize specific substrates. 

Mutations to interaction sites can interrupt many of these processes. The electrostatic 

properties of a protein, which can play an important role in defining its binding affinity and 

specificity53, can be altered by non-conservative mutations. The shape of an interaction site 

is also important in many proteins, such as transcription factors or endonucleases which are 

involved in DNA binding54. The extent to which such shape changes affect this binding are 

well enough understood as to allow the design of endonucleases which are capable of 

binding DNA motifs55. The loss of interaction properties can be seen as an extension to the 

protein stability problem, as the same forces driving protein tertiary structure formation 

also determine protein quaternary structure. 
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Loss of active site residues 

Enzymes catalyse numerous reactions in the cell, accelerating them by several orders of 

magnitude. They have to recognize their substrates to catalyse reactions and may also need 

to recruit necessary co-factors. This goal is achieved by the specific orientation of key 

residues in their active sites56, which are generally highly conserved in enzymes of common 

origin. Furthermore, non-ligand molecules must be excluded from their active sites in order 

to maximise catalytic efficiency and to avoid unwanted reactions. The conceptually simplest 

way for a mutation to affect the phenotype is by altering the active sites in enzymes. 

Changes to residues involved in any of these functions will, if they are not conservative, 

have detrimental effects on the enzyme’s function. 

Alteration of covalent modification sites 

Finally, many proteins are dependent upon modification for proper function. Proteins may 

be modulated or flagged for degradation by the addition of phosphate groups, or need to 

be glycosylated before attaining their functional state. Mutations may affect such 

posttranslational modifications and be deleterious. For example, evidence suggests that one 

of the molecular causes of cystic fibrosis is incomplete glycosylation of CTFR57, which in turn 

causes its degradation in the endoplasmic reticulum; the resulting insufficiency in copy 

numbers of this protein gives rise to the disease. Specific protein motifs are recognized by 

the enzymes performing these modifications and, when altered, may abolish this 

recognition and cause deleterious effects. 

1.1.3 Relevance of point mutation effect prediction 

Single nucleotide polymorphisms and disease 

Single nucleotide polymorphisms have been commonly defined as mutations at particular 

sites in the genome, which occur at a frequency of greater than 1% in the human 

population. These mutations are thought to occur at a rate of 1 every 290 bp in the 

genome, amounting to a total of 11 million SNPs in the human population58. SNPs have 
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been primarily of interest, as they can be associated with certain medical phenotypes such 

as predisposition to certain diseases59. SNPs themselves may, but do not necessarily need to 

be, causative of disease. Linkage to disease causing variations makes them interesting in the 

field of medicine as they act as easily identifiable markers which can aid in diagnostics. A 

certain subset of SNPs however is directly causative of the detrimental effects on an 

individual’s health. In order to identify disease causing mutations for further analysis, it is 

thus desirable to have a method of predicting their likely molecular phenotype and thus 

allowing neutral mutations to be sorted from deleterious ones. In addition to existing 

variation, there is a constant influx of new, spontaneous mutations into the population; 

humans are estimated to have a high genomic mutation rate, in particular the deleterious 

mutation rate is estimated to be U=1.6 per genome per generation60. The high frequency of 

mutations and their steady rate of influx into the gene pool underlie the desire to better 

understand the phenotypic impact of mutations. 

Protein engineering 

A further use of point mutation prediction is to aid in planning experiments involving 

mutagenesis. It may be necessary to mutate residues at a particular site in a protein while 

maintaining its three dimensional structure, or one may want to alter properties of a 

protein such as stability or enzyme specificity; all of these techniques can benefit from an 

objective assessment of the effect of point mutations. An concrete application of mutation 

prediction are experiments involving FRET61, which uses the efficiency of energy transfer 

between chromophores attached at particular sites in proteins to determine distances 

between them. The preferred target for coupling extrinsic chromophores to is the thiol 

group of cysteines; to conduct an experiment one thus has to remove undesired surface 

cysteines and introduce them at site of interest62. Predicting the impact of mutations can 

thus help reduce the range of possible mutations to a high confidence subset. 
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1.2 Modelling the effects of mutations 

1.2.1 Impact on protein structure 

The extent to which a structure is changed upon mutation is as yet unclear. It appears 

obvious that rearrangements of the protein are necessary to accommodate changes in 

amino acid size, either to ameliorate the effects of over-packing or to compensate for the 

introduction of voids. The exact extent to which this occurs is unclear, but it is desirable to 

have accurate models for gauging the effect of mutations on the molecular phenotype. The 

extent to which deleterious mutations change the structure is of interest in rationalising 

their effect on protein stability. One difficulty in estimating these effects lies with the ability 

to account for uncertainty in the exact atomic positions of atoms in proteins structures in a 

meaningful way. 

Random variation in protein structure determination 

Information on the structural impact of mutations is derived from proteins structures built 

on the basis of experimental data. The two most frequent sources of data are in the form of 

electron density maps derived by protein crystallographic means and spatial restraints 

derived from NMR experiments. Here, the focus is placed on the significance of crystal 

structures, as the data is far more abundant and the data contains estimates as to their 

reliability. In protein crystallography, several parameters are provided allowing users to 

assess the quality of the data and the reliability of the model built. The resolution contains 

information pertaining to the upper limit of resolvability of the electron density used for 

building models and it limits the precision with which atoms can be positioned. The R value 

reflects how the experimental data used to build a model correlates with the data one 

would expect to observe according to the model. The R-free value is an independent 

estimate of the R value, whereby a proportion of the data is not used to build the model, 

but set aside to be used as an independent or free validation set for calculating R63. The 

crystallographic temperature factor64, or B-factor, reflects the local movement of an atom in 

the structures; as protein crystallographic data is essentially a time averaged picture of a 
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whole ensemble of molecules, mobile elements will have a wider distribution of their 

electron density. To fit the data to this distribution, the temperature factor, which reflects 

the average displacement of an atom, is used to improve the model fit. The temperature 

factor may also contain uncertainty due to lattice disorder64; the copies of a protein in the 

crystal lattice may not be perfectly aligned and so the electron density reflects the average 

of this ensemble. Ideally, these factors need to be accounted for when assessing the 

structural influence of a mutation. 

Current understanding of mutational impact on structure 

The understanding of the impact of mutations on structures is largely based on case studies 

on well characterised proteins such as T4 lysozyme. Systematic studies on large sets of 

proteins, which could lead to a better understanding and culminate in predictive models, 

are less abundant. Such large scale analyses of the impact of mutations on protein 

structures are performed by using single point mutant pairs in the PDB65. Criterions for 

assessing the change induced usually structural metrics, such as RMSD or chi angle 

accuracy, but others have focused on the prediction of other metrics such as changes in 

protein stability. 

Possibly the most notable study of the single point mutations on structure is an 

investigation on side chain rearrangements in the vicinity of point mutations66. Using a 

sizeable set of single point mutations67, it was found that up to 95% of mutation sites 

undergo 2 or fewer side chain rearrangements, many of which were due to the inherent 

flexibility of the side chains, as determined by observing the variability in a control set of 

identical proteins. 

Predictive methods have been used to model side chain conformation changes in the 

vicinity of mutations. Feyfant and colleagues68 modelled side chain rearrangements in the 

vicinity of mutation sites. When investigating the error they found no dependence of the 

error on the B-factor. This is presumably in part due to the inclusion of poorly resolved 

structures with resolutions as low as 3.0 Angstrom, without accounting for structural 
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variation this uncertainty entails. A further limitation on the prediction of error is due to the 

use of normalized B-factors rather than the original values. Temperature factors are often 

normalized by subtracting the mean temperature factor over the entire model and dividing 

by the standard deviation. However, this procedure is not applicable to the problem of 

comparing structural error, as the temperature factor is an absolute value reflecting 

uncertainty at a site. Normalisation removes essential information which helps predict the 

expected random variation. 

Bordner and Abagyan use a large dataset of single point mutants for which data was 

available on the change in stability induced by the mutation69. They developed an elaborate 

method to predict the geometric and energetic impact of mutations. Energetic 

contributions could be predicted with an accuracy of 1.1 kcal/mol and a correlation 

coefficient of 0.82 using self-consistency validation. The method has limited applicability for 

extreme mutations such as the replacement of small residues with large ones. Errors in 

model building were large for residues with high temperature factors, despite the stringent 

criteria of removing residues with high temperature factors. 

By contrast, Serrano ad co-workers38 use a very conservative mutation protocol involving as 

few rearrangements as possible. Using structure models derived in this fashion, the change 

in stability upon mutation could be predicted with very high accuracy (correlation 

coefficient between observed and predicted stability changes of 0.83). This suggests that 

only minimal alteration of the mutation site is necessary for attaining high accuracy in 

stability change prediction. 

The significance of structural variation 

As the quality and therefore reliability of PDB structures varies considerably, limits are 

placed for the inclusion of structures and residues used in these studies. Stratified analyses 

are performed in order to control for the remaining variation66. For example, “binning” 

residues by temperature factor allows differences between residues with high and low 

temperature factor to be accounted for, but converting a continuous value into a discrete 
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ones reduces the power of a model. Furthermore, binning by value is generally performed 

separately for individual descriptors. 

To the author’s knowledge, the only attempt at controlling error while treating variables as 

continuous ones was made by Bott and co-workers70,71. Using linear regression, they 

derived a model for correlating the observed variability between equivalent atoms in pairs 

of structures with the average temperature factor of the two atoms. Using the predicted 

values for a given average temperature factor and the standard error of the model, the 

proportion of residues fluctuating due to chance can be calculated. For proteins displaying 

significant movement, an excess of variability can be observed. Nevertheless, other factors 

contributing to the random component of the variability are neglected in this model, so 

there is clearly scope for improvement in this respect. 

1.2.2 Impact on protein function 

The field of mutation phenotype prediction has been a field of much research in recent 

years. The aim of many early studies was to interpret and rationalize the effects of single 

point mutants on protein function. Later methods aimed at modelling the effects on a large 

scale in a predictive fashion. 

Information sources 

Modelling or predicting the effect of mutations on proteins requires information about the 

properties of the site in the molecule at which they occur. Two main sources of information 

are generally employed, evolutionary data and descriptors derived from protein structures. 

Evolutionary information 

A multiple sequence alignment of homologous proteins contains a vast amount of 

information about the evolutionary pressures acting on the proteins over long periods of 

time. It can be likened to a mutagenesis experiment spanning millions of years. The Neutral 

Theory of Evolution72 posits that the majority of substitutions throughout evolution are due 

to random drift. While recent evidence suggests that a substantial number of substitutions 
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have been driven by positive selection73, it is generally accepted that the majority will have 

small effects. Sites which are not of key importance thus diverge over time by means of 

small, tolerable changes. Functionally and structurally important sites however, cannot 

tolerate mutations without incurring a selective penalty. The removal of these mutants 

from a population by purifying selection leads to the removal of variation at such sites. As a 

consequence, one can infer much information about the likely impact of mutations from the 

observed variation at equivalent sites in homologous proteins. Tapping into this vast 

resource requires not only the collection and alignment of appropriate sequences, but also 

their correct interpretation. In the following, the methods commonly used for predicting 

mutational tolerance are discussed, along with their potential drawbacks. 

Substitution scoring matrices 

Scoring matrices reflect the evolutionary propensity of an amino acid to mutate to another. 

The higher the probability is that two sequences can be inter-converted by a series of 

mutations, the higher their similarity is. Scoring matrices were developed for the purpose of 

guiding sequence alignment, whereby those portions of the protein which are most similar 

are aligned. Scoring matrices were originally derived using the amino acid differences from 

very closely related proteins74. More recent methods such as those used to derive the now 

commonly used BLOSUM matrix75, use the frequency of interconversion between residues 

based on pair frequency counts in blocks of aligned protein segments. These propensities 

lend themselves to the task of predicting the phenotype of SNPs76,77; as deleterious 

mutations are likely to be removed by negative selection, they will be observed only 

infrequently, compared to selectively neutral ones. As a consequence, deleterious 

mutations will score poorly according to substitution matrices, whereas the permissible 

ones will obtain high scores. The applicability of scoring matrices however is limited and 

inferior to those scores based on sequence alignments of homologous to the protein of 

interest76 (see section “Position specific scoring matrices”). 
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Sequence conservation 

A high degree of conservation at a site in a sequence alignment of homologous proteins can 

be used to infer functional importance, whereas variability is indicative of a lack of 

functional restraint. Conservation is commonly used in the interpretation or prediction of 

deleterious mutations78. Two caveats must be borne in mind when using sequence 

conservation. Firstly, the presence of non-orthologous homologues, i.e. proteins with a 

common evolutionary origin in other species, but which are divergent in function, will 

falsely imply variability at divergent sites. Functional diversification requires the alteration 

of key functional sites in the protein, and these are driven to fixation by positive selection. 

Such sites will have a high degree of variation despite their functional importance. 

Unfortunately, no current sequence search tool can reliably distinguish between 

orthologous and non-orthologous homologues. Secondly, highly similar sequences cause 

sequence alignments to contain redundant information. Ideally, enough time has to have 

elapsed since the divergence of orthologous protein, in order for the alignment to contain 

information about neutral sites. An over-representation of recently diverged proteins in an 

alignment is thus undesirable as it leads to an underestimation of mutational tolerability at 

neutral sites. Over-representation of sequences is typically dealt with by weighting the 

information a sequence contains according to its similarity to other proteins in an 

alignment79. 

Position specific scoring matrices 

Besides general site conservation, more specific information can be extracted from a 

sequence alignment. The abundance of particular amino acids at a given site in a sequence 

alignment indicates how well this residue is likely to be tolerated. For active sites, 

conservative mutations may be tolerable if they maintain the interaction properties of the 

site. Sites in the core, or at the interfaces in the quaternary structure of a protein, may 

undergo divergence if interactions are preserved and they do not lead to over-packing. 

Thus, in an alignment of orthologous protein structures, the relative propensity for an 
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amino acid to occur at a site can be derived from the residue profile at its position in the 

alignment. 

Several methods have been proposed to quantify the impact of mutations on the 

phenotype. The most frequently used is the programme SIFT80,, which builds alignments 

while conserving detectable sequence motifs and derives amino acid propensities for sites 

based on their frequency in the alignment. These scores can be used to great effect in 

predicting the likely impact of mutations on molecular phenotype77,81,82. Similarly, in the 

research by Bork and co-workers83, the log likelihood of an amino acid occurring at a site in 

an evolutionary sequence profile relative to its overall frequency, as implemented in the 

profile analysis tool PSIC84, is used to interpret the effect of SNPs. Others have simply used 

the position specific scoring matrices produced by PSI-BLAST85 to model mutation impact76. 

Similar caveats must be issued for position specific scoring matrix methods as for 

conservation scores. Adaptive divergence at a site can falsely imply tolerability, as non-

orthologous proteins may differ at key residues, while otherwise being highly similar. There 

may also not have been enough time for random drift to give rise to variability at neutral 

sites, leading to an underestimate of variability. A further difficulty is the effect of concerted 

mutations86. If the deleterious effect of a mutation has been compensated for during the 

course of evolution then the information at both the original site and the compensatory 

mutation site in a sequence profile can misleadingly imply mutational tolerance to these 

mutations. 

Specific sequence knowledge. 

Evolutionary information can be obtained from multiple sequence alignments of 

homologous proteins. While this method can be fully automated, human intervention may 

be able to improve their reliability. Many resources are provided to supply detailed, human 

reviewed consensus sequences, which have been cross-checked against scientific literature 

in order to validate their functional importance. Such information comes either in the form 

of regular expressions capturing short protein motifs87 or longer, family based models which 
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are used to capture domain information, which include the PFAM database88. The sequence 

databases commonly used to gather evolutionary data are continually growing and 

providing new information, which may not be reflected in such static profiles. The use of 

dynamically generated sequence alignments therefore potentially has a considerable 

advantage. 

Further detailed annotations, as provided by Swissprot89 indicate the importance of 

residues in ligand binding, catalytic function and metal ion chelation. Such information has 

been incorporated into many mutation annotation schemes83, but is often omitted in favour 

of generalized, fully automated information collection methods. The use of specific 

annotation has some drawbacks making them unattractive. The information provided is 

limited to proteins which have been experimentally characterised. It thus cannot be 

incorporated into generalised prediction schemes which lay claim to comprehensiveness 

and completeness. Furthermore, they reflect only the available information at the time at 

which these resources are devised. Nevertheless these knowledge resources are valuable 

for cases in which this information is available and can be evaluated by a researcher. 

Structural information 

The use of protein structures can be useful in estimating the effects on the biophysics of a 

protein. Structures provide information about the location of a residue and its environment 

in a protein. This information can be used to assess likely biophysical implications of the 

changes which in turn can be used in predicting deleterious consequences. 

Deriving structural information 

Structural information is usually derived by mapping structures directly to structures from 

the PDBs83. However, the number of experimental structures is approximately two orders of 

magnitude lower than the number of known sequences, thus there is a deficit in structural 

information90. Information can be derived from homologous proteins83,91 or, as has been 

the case more recently, by using homology modelling to predict structures92. These 

approaches typically rely on alignments that are straightforward enough to be found by 
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basic tools such as BLAST93 or PSI-BLAST85. Current state of the art tools use more advanced 

template finding methods that can detect more remote homologues or increase structural 

coverage of the target sequence. The bi-annual CASP experiment94 evaluates to what extent 

this is the case. Using a double blind set up, predictions of soon to be determined or 

published structures are made and evaluated by independent assessors using objective 

criteria. These assessments provide guidelines for choosing appropriate methods for 

building models for particular tasks. 

Protein structures can be used in a number of different ways for interpreting or predicting 

the effect of mutations. The various uses are outlined in the following section. 

Structural rules 

The effect of mutations can be rationalized and this knowledge can be used in the 

prediction of their phenotypic effects of mutations. Many structural rules have been 

proposed83,95,96, based on the rationalisation of mutant effects in vitro, for the purpose of 

predicting or rationalizing the effect of mutations97,98. The rules are generally oriented 

towards detecting the loss of stability, as this is presumed to be the main causative factor of 

disease92. 

Structural rules employ strict but arbitrary rules for evaluating the change induced by the 

mutation, and derive a binary assessment of the likely effect. In the following an extensive, 

but not necessarily complete, list of rules used by the main studies in the field has been 

compiled. A mutation is deemed to affect structure if one or more of the following are 

observed: 

1. Disruption of the hydrophobic core of a protein by replacing a small chain side by a 

large one, thus causing over-packing. 

2. Cavity formation in the hydrophobic core by replacing a larger side chain for a 

smaller one. 

3. The introduction of a charged or polar residue into the core of a protein. 
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4. Charge repulsion by introducing an opposite charge. 

5. The removal of a cysteine involved in the formation of a disulphide bridge. 

6. The replacement of a residue involved in the formation of a salt bridge or polar 

interactions by a residue not able to maintain the interaction 

7. The removal of a hydrogen bonding partner. 

8. Introduction a proline into an alpha helix or a site with restricted backbone angles. 

9. Change in solubility by the replacement of charged/polar residues at exposed sites 

with hydrophobic ones. 

Furthermore, specific information is used for further inferring the mutational impact of 

mutations. These include: 

10. Mutations at ligand binding, catalytic or allosteric sites in the protein. 

11. Alteration of sites of post-translational modification. 

12. These rules are used, either alone96 or in conjunction with evolutionary data83. 

Structural propensities 

While structural rules can be used for the purpose of SNP prediction, they rely on broad 

generalisations and use essentially arbitrary value cut-offs in deciding the likely effect of 

mutations. A more rigorous approach would be to designate cut-offs based on observed 

propensities of mutants using known phenotypes. Differences in the site propensities 

between disease causing and neutral mutations can be elucidated and incorporated into 

predictive models. 

Amongst the first applications of this idea is a study which derived a probabilistic model for 

predicting SNP effects by using the temperature factor for inferring structural flexibility and 

therefore mutation tolerability99. A further study by Cooper and co-workers100 used a 

variety of descriptors to analyse the difference in the biophysical properties of a site. They 
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found that solvent accessibility is the most informative factor for the task predicting a likely 

clinical phenotype. Other more specialised descriptors such as the site energy and physical 

strain introduced by a mutation were only of use in a limited number of cases. De la Cruz 

and co-workers101,102,103 also analysed sequence and structural propensities of mutation 

sites; they argued that while structural propensities can be used in rationalising mutation 

effects, they add little to the information derived from sequences. 

Energy functions and statistical potentials 

While rules and propensities can be used in predicting SNP phenotypes, they are not 

universally applicable, are subject to interpretation (such as the exact definition of a 

hydrogen bond) and do not yield a quantitative assessment of mutations, but rather a 

qualitative one. Furthermore, they are only capable of binary classification based on two 

states, stability reducing or neutral and are thus not capable of identifying an increase in 

stability. The use of objective functions for estimating energy changes is an attractive 

alternative to structural rules. Two general kinds of functions are available for this purpose. 

Firstly, empirical force fields tuned using known mutational data are powerful tools which 

can be used for the task of predicting energy changes. Secondly, potentials of mean force 

use the Boltzmann relation to infer interaction energies based on contact counts from 

experimental protein structures. 

Empirical force fields such as CHARMM104, GROMOS105 and AMBER106 were devised to 

perform atomistic simulations of chemical phenomena using an approximation of a 

molecular system based on Newtonian physics. These force fields incorporate terms with 

which the forces acting on a particle of a system can be calculated. Such simulation 

packages can be used to estimate the relative energy change caused by a mutation in a 

protein78,107,108, albeit at great computational cost, which is prohibitive to routinely applying 

it to a large number of mutations. Certain conceptual short-cuts can be taken combining 

physical force fields with machine learning approaches. By using a physical description of 

the system and weighting the individual terms in the model using known mutation data, 

good compromise between physical accuracy and the strength of knowledge based 
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methods can be achieved. This method has been used to great effect to predict the stability 

changes induced by mutations38, achieving a correlation coefficient of 0.83 on a database of 

1030 mutations. 

An alternative approach is to use statistical potentials derived from known protein 

structures. Using the contact counts between atoms from known structures, the Boltzmann 

relation can be applied to derive a distance dependent pseudo-energy of interaction for an 

atom pair109. Zhou and Zhou110 have used this principle for predicting stability changes upon 

mutation, achieving a correlation of 0.67 between observed and predicted values. Such 

potentials can be assigned on a per-residue basis, rather than an atomic basis, while still 

being highly predictive111. The use of statistics from the PDB can be applied to other 

measures such as torsion angles which have been used in conjunction with other terms to 

predict mutation stability changes112. 

Classification methods 

In order to use the information outlined above for classification, the data have to be 

combined into a model which allows the prediction of the mutant phenotype. The methods 

used for this task are outlined in the following section. 

Rule based methods 

The simplest method of combining data into a predictive scheme is using empirical rules to 

predict the effect of a mutation. For each descriptor used to characterise a mutation, a rule 

is defined based either on cut-off values for continuous variables, such as solvent 

accessibility, or on the binary value for categorical descriptors, such involvement in 

hydrogen bonding. These rules are chosen either on the basis of expert opinion or in order 

to minimise the error rate for predicting a phenotype using a set of known mutations. Such 

rules have been used to predict the effect of SNPs based on structural data96. While rules 

represent a very simple way of combining data, they face some drawbacks; rules are often 

empirical rather than being optimised for the problem at hand and they cannot learn 
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interactions between descriptors unless these are taken into account during rule 

formulation. 

Decision trees 

A conceptually simple machine learning tool for combining SNP data into a predictive model 

is their incorporation into a tree-based decision model113. A decision tree repeatedly splits 

data based on the available descriptors, so as to optimally separate the classes, in this case 

sorting deleterious from neutral mutations. In graph theoretical terms, a decision tree 

consists of nodes, at which splits are performed, connected by edges, along which the data 

subsets obtained from the splits are passed. The resulting model resembles a tree: at its 

base, or root node, all the data is present; after each split, each subset is passed along an 

edge, or branch, to the next nodes, where the process is repeated, until a satisfactory level 

of class separation has been achieved. In the case of mutation phenotype prediction, this 

separation may be based on descriptors such as sequence conservation or residue burial, 

which reflect the likely mutability of a site; descriptors which are continuous (e.g. solvent 

accessibility) are converted to binary values using a decision cut-off value. The rules are 

chosen by training an appropriate algorithm114 on known data, which minimises 

classification error over the training set. Decision trees have a great benefit, in that the 

structure of the tree, and thus the decision making process, can be intuitively understood 

by a human. This conceptually simple - as compared to other machine learning tools - 

method has been used for the mutation classification problem91,115. 

Random Forest 

The machine learning tool Random Forest116 uses an ensemble of decision trees to perform 

classification and regression. A large number of decision trees are trained on a bootstrap 

sample of the data. Each tree is grown by subsequently adding nodes to the tree; for each 

node a subset of the data are used in training and a small proportion of the available 

descriptors are chosen randomly for decision making. The resulting trees are used to classify 

new data, whereby the class chosen by the majority of trees in the forest is accepted. 

Random Forests are not prone to over-fitting116  thus making it a robust tool for 
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classification. For the task of SNP prediction, Random Forests have been used to combine 

sequence and structural information117, as well as geometry descriptors derived from 

structures118. 

Support vector machines 

Support vector machines119 are a further class of powerful machine learning tools which can 

be used for classification and regression. This method finds the optimal dividing plane 

between two classes of points in a sample, by combining the descriptors associated with 

these points. By the employing kernel functions, non-linear behaviour can be achieved 

which has been shown to improve the flexibility and accuracy of such models. Support 

vector machines have been used extensively for the purpose of SNP 

classification92,113,117,120,121. 
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1.3 Problem definition 

Modelling the structural impact of mutations 

Potentially, much information pertaining to the phenotype of a mutation can be derived 

from understanding its effect on protein structure. Insights into the extent of 

rearrangement in a protein allow effects to be interpreted and rationalized. As outlined 

above, the use of force fields can allow stability changes to be predicted. The accuracy 

requirements for such models are not clear; while minimalistic approaches to in-silico 

mutation have yielded very good results in prediction stability changes upon mutation38, 

others have used much more elaborate modelling protocols69. 

The interpretation of the effects of mutations on structures is prone to problems due to 

uncertainty in structure determination by X-ray crystallography. To correctly interpret to 

what extent proteins undergo rearrangements upon mutation, many factors pertaining to 

the experimental quality of the data and the expected flexibility of the molecule have to be 

considered. In the first part of this thesis, a model for predicting the expected level of 

structural variation is derived. Using alternative structures, i.e. from proteins for which the 

structures have been solved multiple times, the basal level of random variation is to be 

determined. This expected level of random variation is employed to isolate and objectively 

quantify the effects of single point mutations on proteins. 

Extending structural coverage through comparative modelling 

The number of sequences in the current databases exceeds the number of structures by 

about two orders of magnitude90. As the structure of proteins is more conserved than the 

sequence, it is possible to use experimental structure of homologous proteins in order to 

build protein structure models for a vast number of sequences. This technique, termed 

homology or comparative modelling, is currently the most reliable method in predicting 

structures. The CASP experiment122 is an objective evaluation of the current methods by the 

protein structure prediction community. Given only the amino acid sequence of a soon-to-
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be-resolved protein, blind predictions of the three dimensional structure are made by the 

participants. 

For structural models to be useful for interpreting biological phenomena, structural 

accuracy is desired. All participating protein structure prediction methods are thus assessed 

using standard, objective criteria in order to identify their strengths and weaknesses. For 

the purpose of rationalising or predicting SNP phenotypes using structural data, homology 

models need to be built on a large scale, which in turn requires automation. Emphasis is 

thus placed on assessing automated methods, with a view to using them for the purpose of 

annotating SNPs. In addition to comparing prediction methods amongst one another, they 

are compared to one of the standard tool for template identification in homology 

modelling, PSI-BLAST85. The level of improvement of the current generation of fully 

automated modelling methods over this traditional tool is examined. 

Approaches to improving phenotype prediction 

The human variant set provided by Swiss-Prot123 constitutes a vast source of annotated 

mutation data. An automated method for classifying these mutations would be of great 

interest as it could be employed to aid in analysing new mutations, as well as being of use in 

choosing mutations in an experimental setting. While structural data have been used for 

this purpose, they have been argued to provide little information beyond that which can be 

derived from sequence alone101. The third major part of this thesis is to investigate the use 

of sequence and structural data in classifying mutations and to derive a robust mutation 

phenotype predictor. 

A new structural descriptor is introduced, namely the predicted energy change upon 

mutation. This is calculated using a mean force potential applied to protein structures of the 

wild-type and mutant structure. As mutant structures are only available in rare cases, 

protocols for modelling their structures are investigated, in terms of which is most 

informative in classifying mutations. 
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The use of sequence and structure data to classify mutations is examined using rigorous 

accuracy tests, aimed at determining their robustness. Training set size dependence of the 

classifiers is investigated as well as their robustness on unseen data. The top classifiers 

created here are compared to other methods described in the literature. 
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2. Results and Discussion 

2.1. Assessing the structural impact of mutations 

Manuscript in preparation: 

Prediction of the random component of variability in protein X-ray structures and its 

implication for interpreting the effects of single point mutations 

Abstract 

Discerning biologically relevant differences from background variability is a central issue in 

biology and underlies our ability to correctly interpret biochemical observations. Here, we 

analyse the random component of protein structure variation by means of a large scale 

analysis of alternative crystal structures of proteins. Two goals are pursued in this study. (1) 

The dependence of local and global similarity of protein pairs on molecular and 

experimental parameters is investigated, so as to derive a statistical model quantifying the 

random component of the observed variability. (2) This model is used to investigate the 

statistical significance of local structural changes observed in pairs of protein structures 

with single point mutations. 

We estimate that approximately 54% of the global variation between alternative structure 

pairs can be explained by using the crystallographic experimental parameters. Almost 52% 

of structural variability at the residue level can be explained by a linear regression model 

incorporating experimental parameters and geometrical structure features. For local, i.e. 

residue level variability, the crystallographic temperature factor is the main determinant in 

estimating the expected random variation. Using this regression model for predicting the 

expected level of variability and thus reducing the level of noise in the comparison of two 

structures, we show that the effects of conservative versus non-conservative single point 

mutants on protein structure can be observed significantly better than with uncorrected 

scores, and that evolutionarily unfavourable mutations cause greater structural deviation 

than favourable ones. 
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Introduction 

Interpretation of structural movement. Discerning biologically relevant change from 

background variability is a central issue in biology and underlies our ability to correctly 

interpret biochemical observations, e.g. recognizing biologically significant differences when 

comparing protein structures. Structural changes occur in a variety of situations such as 

upon ligand binding or mutation. Information derived from structural studies therefore has 

implications for our understanding of the biochemistry and biophysics underlying these 

phenomena. Attaching biological significance to these changes is usually left to the 

investigator or not considered at all. Numerous sources of potential noise encountered 

during experimental structure determination can be identified: (1) Differences in 

experimental conditions, such as crystallization conditions, pH, temperature, space group 

and packing of the crystal; (2) differences in data collection, crystal quality and resolution; 

(3) differences in software algorithms and in the detailed aspects of the refinement. With 

such uncertainty, there is the danger that the differences observed between structures may 

not be fully supported by the crystallographic data, and their significance may be over-

interpreted1. In addition, observed variation also includes residue side chain flexibility, 

especially at exposed sites, as well as loop movements. While such differences may be 

supported by the data, it may not be clear whether they are biologically insignificant and 

thus random, or whether they have biological relevance of which we simply have an 

incomplete understanding. 

Descriptors quantifying experimental noise. Numerous quality indicators are 

provided by the experimenter, which correlate with the quality of the structure model2 and 

can therefore be used in a predictive fashion to estimate the expected level of noise in a 

structure. The resolution reflects the quality of the crystal and can be limited by the 

diffraction data collection procedure used. The R value indicates how well the structure 

factors predicted from the atomic model correlate with the observed structure factors. As 

the R value can be subject to over-fitting during the structure building process, the 

statistical tool of jack-knifing is used to derive an R value which isn’t prone to over-fitting3: a 
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small proportion of the data is not used to build the structure model, and used instead to 

calculate an independent R value, generally termed the RFREE. At the atomic level, the 

temperature factor reflects the expected deviation of the atom around the position 

specified in the structure4. Ideally, it would reflect only uncertainties due to fast thermal 

and slow oscillatory motion, but it can be also reflect experimental error due to static 

disorder, or mosaicity, of the crystal4. Furthermore, the temperature factor can be over-

interpreted during the refinement of low resolution data5, potentially leading to over-

fitting. Both the uncertainty due to the experimental method, as quantified for example in 

crystallography by the temperature factor and R value, and the intrinsic flexibility of the 

protein, for example solvent exposed side chains and flexible loops, are tightly coupled. 

Studies to date. A number of studies have investigated the relationship between 

temperature factors and structural variation. Bott and Frane6 used a linear regression model 

to correlate the distance between equivalent atoms with their temperature factors, which 

assumed the following form: 

BbadR ∗+=)log(  

Where dR is the distance between equivalent atoms, B average temperature factor 

of the atoms, and a, b are the regression coefficients derived by linear regression. Using this 

approach they could estimate the expected level of variation for a given atom based on its 

temperature factor and convert the raw distance into a Z-score, indicating the significance 

of the variation. This method has been used to identify regions of proteins which have 

higher than average variability, and are thus more likely to be of biological importance7. 

Stroud and Fauman8 analysed the differences in atomic positions in crystal 

structures, for which multiple copies of the same peptide are present in the unit cell. They 

extracted the difference in atomic positions after superposition of the inflexible cores and 

fit their data to an empirical function of the form: 

BbeadR ⋅+=  
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Where again dR is the distance between equivalent atoms, B is the temperature 

factor of the atoms, and a, b are the regression coefficients. They found a strong correlation 

between the atomic temperature factors and the observed variation between structures in 

their set of 18 protein structures. A further observation was that the restraints imposed on 

atoms by their connectivity atoms are also important in estimating the expected structural 

variation. In a more recent study, Halle9 shows that the temperature factor is tightly 

coupled to the local packing of the protein. Using a non-redundant set of high quality 

protein structures, Halle derived a model for estimating temperature factors based on the 

contact density on a per-residue basis. The model is able to capture many intrinsic motions 

in protein structures and its predictive power illustrates that the packing density contains 

much information pertaining to the flexibility of structures. Geometrical features capturing 

packing of a site in the protein structure can potentially contain additional information not 

contained in the temperature factors. 

Implications for single point mutations. It has been observed that the structures of 

homologous proteins become more similar with decreasing divergence. However, 

alternative structures of the same proteins are not identical, but still vary to a degree 

similar to that of closely related proteins10. The special case of proteins differing by one 

difference, i.e. single point mutations, has been investigated only in few systematic studies. 

These studies employ strict but arbitrary experimental parameter cut-offs, for example 

placing limits on resolution and R factor, to exclude unreliable structures during dataset 

selection or use temperature factors cut-offs to exclude unreliably resolved atoms or 

residues. For example, the structural variation caused by mutations in single point mutant 

structure pairs has been investigated by quantifying the degree of variation in side-chain 

movement upon mutation11. It can be shown that while single point mutant structure pairs 

do vary compared to structure pairs of the same sequence, the background variation 

observed significant. Furthermore, a statistically significant dependence of side chain 

flexibility on the accessibility of the residue exists, which needs to be accounted for. This 

study however relies on using only residues with low temperature factors and does not 
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attempt to derive a predictive model for the expected level of variation on a per site basis. 

In addition some of the measures used are potentially uninformative (chi angles), limiting 

the broader applicability of these findings. The transformation of continuous variables (chi 

angles) into binary ones (“correct” or “incorrect” rotamer) may underestimate the 

variability. Furthermore, their study was limited to proteins with a fixed backbone, which 

places an artificial limit on the maximum degree of variation which can be observed. 

In this studt we extend the analyses and ideas outlined above. Several linear models 

are investigated, which incorporate an increasing number of descriptors; these include 

relevant crystallographic data, as well as geometric measures to derive a general model of 

variability. The applicability of such predictive models is tested by means of a large scale 

analysis of equivalent proteins. Finally, a generalized predictive model is used to determine 

the significance of the effect of single point mutations in proteins structures. 

Results 

Characterizing local variability. Local variability can come in the form of backbone 

shifts, rotational movement of the side chain and combinations thereof. In previous studies, 

others have treated these separately or focus on only one aspect such as the side chain 

angles. Here, we used the root mean square deviation (RMSD) of equivalent residues in the 

two alternative structures, after a global superposition based on the alpha carbon atoms, as 

the measure of variation at the amino acid level between alternative structures of proteins. 

A linear model was used to relate amino acid variability to the various descriptive factors, in 

order to derive a predictive model for estimating the expected variability and to determine 

the importance of each predictive factor in doing so. The predictors, as outlined in table 1, 

fall into two categories: descriptors for structures derived from X ray crystallography, which 

describe the quality of the data and the confidence in the refinement of the structure, i.e. 

resolution, working and independent R value (R-work and R-free) as well as the 

temperature factors of the residues. The second category consists of those which are 

derived from the geometry of the structure itself and includes solvent accessibility 

parameters and the number rotatable bonds of the amino acid, which reflect the degree of 
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freedom a residue has for adopting alternate conformations. Multiple linear regression was 

used to fit the data and predict the expected level of variation in a protein structure. 

Dataset creation. To examine the variability in protein structures we created 3 sets 

of identical proteins and one set of single point mutants. (1) The first set allows us to 

examine the degree of noise expected between structures in identical conditions by using 

protein chains from the same PDB entry (Same PDB entry Set, abbreviated to SPS). These 

proteins will be equal in terms of experimental conditions and quality. Not only are the 

experimental parameters the same (resolution, R-values), but also the experimental 

conditions, such as pH, temperature and solvent. This permits the examination of the local 

variability in absence of differences caused by altered physical conditions of the 

experiment, as well as the effect of experimenter bias. For this set, only PDB entries were 

chosen for which no non crystallographic symmetry (NCS) information in the form of 

restraints or constraints was used during refinement, thus ensuring that the similarity of 

individual chains was not an artefact of the refinement but a true reflection of the 

experimental data. (2) To examine the effect of different experimental conditions on the 

structure of proteins, a second set composed of pairs of alternative structures of same 

protein taken from different PDB entries was analysed (Different PDB entry Set, abbreviated 

to DPS). For these protein pairs, the experimental conditions may differ between both 

members and should allow us to identify the degree of additional variation thereby caused. 

In addition, the effect of experimental parameters describing the quality of the data and 

refinement can be examined. It has been observed that structures derived by the same 

authors differ less from one another than structures solved by independent groups12. It thus 

stands to reason that this effect may affect the predictability of the noise component, which 

might be expected to be reduced due to unwarranted similarity of the structures. Thus the 

DPS was chosen to include only structures, in which the authors list has at least one name in 

common. (3) In contrast to this, a third set of protein pairs was created (Different Author 

Set, abbreviated to DAS), which consisted of pairs of peptides from different PDB entries 

which had been solved by different authors. This set was used to determine how 
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independently solved structures vary and how well this variation can be captured by our 

regression models. The sets of alternative structures were selected and screened by the 

quality measures outlined in the Materials and Methods section of this report. 

RMSD as the measure of similarity. Each pair of peptide chains was superposed using 

least squares fitting of the common subset of alpha carbon atoms. Based on this 

superposition, the RMSD values for each residue were calculated and recorded. A lower 

RMSD cut-off was used to exclude structure pairs with global alpha carbon RMSD values of 

less than 0.01, because these are so similar that there is good reason to assume two such 

structures were not solved independently. An upper cut-off of 10 Ångstrom for the global 

alpha carbon RMSD was used to exclude structures with very large and obvious structural 

deviations, as the least squares global superposition of two such structures is essentially 

meaningless and one can safely assume a significant change has taken place. 

Local descriptors. The local descriptors, i.e. ones calculated on a per-residue basis, in 

order to capture the variability of specific sites in the protein (the local descriptors can be 

found in table 2). The maximum atomic temperature factor for in a given residue was used 

to capture the expected structural variation due to motion in the crystal. Using the 

maximum atomic temperature factor was preferable to taking the average over the entire 

residue, as it provided a better model fit than did the average residue temperature factor 

(data not shown). The alpha carbon (Cα) density is calculated by counting the number of 

alpha carbons in a radius of 15 Ångstroms around the alpha carbon of a residue. It is a 

measure of the general packing density around the residue and thus its ability to adopt 

alternative conformations. The rotatable bond number reflects the number of side chain 

dihedral angles which can vary and is a measure of the maximum flexibility of the amino 

acid. Information on crystal contacts was included in binary form, i.e. the value assumes 1 if 

a residue is in a contact and 0 if not. Previous studies arrive at conflicting verdicts as to the 

effect of crystal contacts. While Stroud and Fauman8 find little evidence for their effect on 

variability, a more recent study using a larger dataset12 showed that they can cause large 

movements. In addition, the steric confinement of amino acids at crystal contacts lowers 
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their temperature factors leading to a further underestimation of the expected variation. 

Although the impact in absolute terms is comparatively low, the trends observed are highly 

significant when using large sample sizes. In this study, Contact state 1&2 are binary 

descriptors indicating whether the equivalent residues in the respective structures are in a 

crystal contact. The descriptor “Equal contact state” assumes the value 1 if equivalent 

residues in the respective structures are either both in, or both not in a crystal contact. A 

residue is deemed to be in a contact if it is closer than 4 Ångstroms to another chain in the 

unit cell or is in contact with a chain brought into contact by applying the appropriate 

crystallographic symmetry operators. 

Global descriptors. Global descriptors, i.e. ones which apply to all residues in a PDB 

entry, can give insight into the expected level of noise in the structure in general. The 

resolution of an X-ray diffraction experiment indicates how good the quality of the data is 

for deriving the structure, and depends on crystal quality and experimental apparatus used. 

The values R and R-free values are measures of how well the structure fits the experimental 

data, whereby the R value is a self-consistency test using the same data for fitting as for 

testing. The R-free value represents a more statistically sound goodness-of-fit measure as it 

is derived using a subset of data not used during the refinement process13. The mean 

temperature factor of the structure is an additional indicator for unreliability in the 

refraction data or for bad refinement. 

Regression analysis. The local variability was modelled using log linear regression 

analysis. The general form of the equations used for predicting local variability is as follows: 

NN factorwfactorwfactorwInterceptrRMSDLog ∗++∗+∗+= ...)( 2211  

 Hereby, rRMSD is the RMSD between equivalent residues. The factors factor1 

to factorN are the independent descriptors used for predicting variability. The intercept and 

regression coefficients w1 to wN are determined by means of least squares fitting during 

linear regression. For the local descriptors, values were taken from only one of the two 

protein structures. By including terms from the comparison of both structures, there is the 
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possibility of over-fitting as the combination provides explicit evidence for a structural 

difference. For example, if flexible portion (such as a loop) of the protein in contact with the 

rest of the protein in one structure, but is unrestrained in the other, this will be reflected in 

the difference in the Cα density of equivalent residues in this area, despite the fact both 

conformations are in principle accessible to both structures. This difference in Cα density 

will be direct evidence that the two differ in conformation, rather than being an implicit 

descriptor of uncertainty. For the global descriptors, there are two values for each of the 

two structures being compared, one of which will be the “worse” or limiting, the other will 

be the “better” value. During regression, better results can be achieved (data not shown) by 

treating the “worse” and “better” values as such, rather than treating them as factor 1 and 

factor 2 depending on the arbitrary order in which the pairs of PDBs are assigned. 

Protein level regression model using local features. In order to estimate the random 

component of the variability, the local regression model was first applied to individual 

structure pairs. Stroud and Fauman8 noted that any coefficients derived during regression 

by machine learning methods vary from protein to protein and may not be transferable, and 

they therefore make no attempt to derive a general regression model by pooling variation 

data from different structures. To examine how well the local regression model can be fit to 

individual protein pairs, regression analysis was performed individually on each of the pairs 

in the different sets. The resulting protein level R-squared values were recorded and the 

distributions for the various test sets were plotted in a histogram (figure 1). The 

distributions are all remarkably similar for all sets; all distributions peak at the same bin 

(0.45+-0.05) and only the peak in the distribution for the SPS is at a slightly higher bin 

(0.55+-0.05). To test whether there was a significant difference between the distributions of 

R-squared values for the various sets an all-against-all comparison was performed by means 

of a two-sided unpaired Student’s t-test. The t-test (see table 4) indicates that none of the 

distributions of R-squared values differ significantly from one another at the 99% 

confidence level, and only those of the DAS and DPS differ significantly at the 95% 

confidence level. A further influence on the protein level correlations could be quality of the 
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global structure fit; large changes may worsen the superposition and decrease the protein 

level correlations. To test whether there was a link between the global variation and the 

per-protein regression model quality, the correlation between the logarithmic global Cα 

RMSD and the protein level R-squared values was calculated. The protein level regression 

model fit was shown to be correlated with the global RMSD only in the case of the SPS set, 

for which a statistically significant but generally uninformative correlation was found (R-

squared values of 0.041 and p-values of 3.857e-15). 

Generalized regression model using local features. To test to what extent the 

regression parameters are transferable, all residues from each of the pairs in the respective 

samples were pooled for regression. The resulting regression models (table 2) have lower 

explanatory value (as measured by the R-squared value) than the best models derived on a 

per-pair basis. In the smallest sample, the DAS, the regression model could explain 42.7% of 

the observed variability, which corresponds to a multiple correlation coefficient of 0.65 

between observed and predicted variability. By contrast, the distribution of the R-squared 

values derived on a pair-wise basis has its mode at 0.55 (figure 1); thus the fit of the 

regression model for the pooled sample is slightly worse than might be expected from the 

separate pair-wise correlations. For the DPS and SPS, the multiple R-squared values for the 

generalized models are 0.274 and 0.214 respectively, indicating a further loss of explanatory 

power with increased sample sizes. Amongst the local descriptors, the local temperature 

factor was the most decisive in predicting variability, followed by the Cα density and 

rotatable bond number. 

Generalized regression model using local and global features. In the comprehensive 

regression model, the local descriptors were used together with additional global 

descriptors, as listed in table 3. In the case of the DAS, a linear model using both local and 

global descriptors could account for 51.6% of the variation observed, corresponding to a 

correlation coefficient of 0.718 between observed and predicted values. The better of the 

crystallographic parameters, R-free, resolution and mean temperature factor, provide more 

information than the limiting values. For the DPS, a total of 36.7% of the variation in the 
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data could be explained, when including the global descriptors, whereby all descriptors had 

associated p-values of lower than 2e-16. As for the DAS, the better mean B-factor was more 

informative than the limiting value for the DPS set; however, the limiting R-free and limiting 

resolution were more informative for the DPS set than the better value. For the SPS, the R-

squared rises to 26.5% from the 21.4% observed for the purely local model. One of the 

possible reasons for the observed difference in correlation between the sets is a strong 

difference in the global similarity. As the local variation is linked to the global variation, the 

observed change in regression model quality could be due to variations in the global RMSD 

distributions of the different sets. Figure 2 shows the distribution of the global Cα RMSD 

values for the various sets. An unpaired, two-sided t-test showed that the sample means 

not differ significantly at the 95% confidence interval (the most significant t-test score is 

p=0.172). The standard deviation of the logarithmic global Cα RMSD distributions did 

however vary (0.881, 0.921 and 0.932 for the DAS, DPS and SPS respectively), which would 

conceivably affect the standard error of the linear models fit to the pooled residue samples. 

Predicting global changes. The measure of local variability employed here, the RMSD 

of equivalent residues, is dependent to no small degree upon global variability. The 

inclusion of global descriptors may thus be directly predictive of the global RMSD. The 

dependence of the global RMSD on the global descriptors was investigated by means of log 

linear regression. The RMSD of alpha carbon atoms from equivalent residues was used 

rather than the all atom RMSD, so as to exclude side chain movements from the calculation. 

The following regression formula is used for characterizing the variability: 

NN factorwfactorwfactorwInterceptcRMSDLog ∗++∗+∗+= ...)( 2211  

Hereby, cRMSD is the global Cα RMSD. The descriptors factor1 to factorN are the descriptors 

listed in the table 5 and the intercept and regression coefficients w1 to wN are determined 

linear regression. 

For the various sets, different descriptors were informative as to the expected 

variability (table 5). For the DAS, the better of the two mean temperature values of the two 
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structures was the only significant factor for predicting global RMSD. The regression model 

explained 53.6% of data using mainly these descriptors, which means that the expected 

RMSD can be predicted with a correlation coefficient of 0.73. For the RMSD values in the 

DPS, the proportion of variation explained dropped dramatically to 19.6%; whereby the 

limiting R-free value was the most informative in predicting RMSD. In the case of the SPS 

the resolution was the most predictive feature for estimating the variability of the 

structures, however it only accounted for a total of 8.7% of the variation. It has been 

suggested that the RMSD between two proteins may be dependent on their size14. To test 

whether this was the case, the correlation between protein length and logarithmic global 

Cα RMSD was calculated. Only in the SPS a significant correlation was observed, but the 

linear model explained only 2% of the data (R-squared=0.02271, p-value=5.214e-09; data 

not shown for the other two alternative structure sets). 

Application of the local RMSD linear regression model to single point mutations. As 

shown, the random component of the variation between two otherwise equivalent protein 

structures can be modelled using a linear combination of terms pertaining to the local and 

global quality of the structure and the expected local flexibility. This statistical model can be 

now applied to the problem of estimating the level of noise in structure comparisons, by 

deriving a normalized RMSD value for each pair of residues. The expected level of variation 

is predicted using the linear model derived from the DAS using the complete set of 

descriptors (table 3). As outlined in materials and methods, this predicted log RMSD value is 

subtracted from the observed log RMSD value and the difference is divided by the standard 

error of the linear regression model in order to derive a Z-score, i.e. the “normalized” 

RMSD.  

This practice was applied to the analysis of the structural effects of single point 

mutations. A set of structures of point mutation pairs was selected from the PDB, for which 

all structures had the necessary descriptors to perform the predictions. In order to examine 

the effect of mutations, a comparison was performed of all sites in the vicinity of a 

mutation, i.e. those pairs of equivalent residues for which at least one had at least one 
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atom 4.5 Angstrom or closer to any atom in the side chain of the residue at the mutation 

site. To describe the severity of the mutation, the SIFT15,16 score was calculated for the 

amino acid at the mutation site in each of the two variants. The SIFT score is similar in 

concept to a position specific substitution matrix, in that it provides a measure of 

evolutionary “goodness-of-fit’, i.e. how well a particular amino acid can be accommodated 

at a site, according a multiple sequence alignment of homologous proteins. The difference 

in SIFT score of between the “wild-type” and the “mutant” residue determines whether a 

single point mutant pair is deemed “conservative” or “non-conservative”. In this study, 

single point mutant structure pairs with a difference in SIFT score of greater than or equal 

to 0.8 were designated non-conservative, those with a SIFT score difference below this 

threshold were deemed to be conservative. The residues occurring in the vicinity of the 

mutation site were thus assigned to the conservative or non-conservative set. According to 

this criterion, one would expect the non-conservative mutations to be more disruptive to 

the structure than the conservative ones. 

For the first test of the effects of mutations, all residues in the vicinity of the 

mutation sites were used. Figure 3 shows the distribution of both the log RMSD as well as 

the Z-score for the two subsets. The difference in the non-normalized log RMSD shows that 

few differences are observable between the two different sets, and a Student’s t-test 

(table 6) indicates that there is no significant difference between the samples (p-

value=0.6056). The Z-score by contrast eliminates a portion of the random component of 

the variation, thus a difference between the two distributions can be observed. The t-test 

between the Z-score values in the two sets revealed a clearer picture than the simple log 

RMSD (p-value=3.275*10-16). This illustrates that slightly larger changes take place in the 

non-conservative mutants than in the conservative ones. This effect was only small, and is 

only apparent upon reducing the random component of the log RMSD values. The effect 

became more prominent, when only considering the largest residue movements. For each 

pair of structures, only the pair of mutation site neighbours with the highest displacement 

according to the Z-score was selected. As shown in figure 4, the difference in the variation 
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between the conservative and the non-conservative sets was more pronounced for the Z-

score than for the log RMSD. The t-test (table 5) shows that the difference between the 

value distribution of the non-conservative and conservative set is insignificant when the log 

RMSD is used as a metric (p-value=0.9718), but is highly significant for the Z-score (p-

value=2.850*10-4). 

The ability of the local descriptors to correctly predict the random component of the 

structural variability varies widely for individual protein pairs (figure 1). If the degree of 

structural variability cannot be predicted, the normalisation might be expected to be less 

effective and the Z-scores will be uninformative. For the final test we thus excluded pairs in 

which this is the case, by selecting a subset of the mutants for which the per-protein R-

squared values were greater than 0.7. Figure 5 shows that according to the non-normalised 

log RMSD, the conservative mutations had greater structural variability than the non-

conservative mutation ones. Once the normalisation was applied, this trend was reversed 

and variation around the non-conservative mutation sites became greater than that of the 

residues in the vicinity of conservative mutations. 

The ability of the Z-scores to discern between conservative and non-conservative 

was contrasted with the performance of a basic model, which merely distinguishes between 

buried and exposed residues. A linear model using only this information was trained on the 

DAS and applied to the mutant dataset in the same way as the comprehensive model. The 

Z-score from this basic binary model lacks much of the power of the comprehensive model. 

While it can discriminate between non-conservative and conservative mutations when 

using the full set of residues, the significance of the difference of the means (p-value=0.005) 

is not as high as when using the comprehensive model for normalisation (p-value=3.275e-

16). When using only the residues which rank highest by Z-score, the simple model cannot 

discern between the Z-score distributions of conservative and non-conservative mutation 

site residues (p-value=0.1211). 
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Discussion 

Local scores. The dependence of local variation of protein structures on factors 

describing the global and local quality of experimental structures has been analysed using 

log-linear regression. Applied on a pair-wise basis, the local model displayed an extreme 

range of goodness-of-fit values, ranging from multiple R-squared values of 0.785 for the 

best pair in the SPS set, down to values insignificantly different from zero. This 

demonstrates that the random component of the proteins structures is not always well 

predicable from the local descriptors. The temperature factor, which of all descriptors 

contains the largest proportion of the information pertaining to the variation, does not 

contain the same information for all structures. The high correlations observed do however 

show that the approach is valid in principle and that the local descriptors are capable of 

capturing much of the expected variation. But the high degree of heterogeneity in how the 

temperature factors are calculated make the general model sub-optimal. This heterogeneity 

promises to be remedied by refinement of the protein structures in the PDB using the 

original experimental data17. By using a uniform approach to structure solution (using the 

same protocols and software), bias should be eliminated and consistent estimates of 

structure quality can be obtained. Conceivably, the experimental values from structures 

solved in such a manner would improve the fit of the linear regression models proposed 

here. 

As to the applicability of the general regression model, i.e. in which all data points 

from the respective sets were pooled, we find that using only local information, up to 42.7% 

of variation can be observed in the smallest data set (DAS). The DAS had a relatively tight 

distribution of R-squared values in the protein level regression, indicating that the 

temperature factors in the pairs contain similar information, resulting in a comparatively 

good fit for the pooled data model. Linear modelling fares less well when applied to the 

pooled data from the DPS and SPS, which have broader distribution of per-protein 

correlation coefficients. It is notable that the distributions of the regression coefficients, 

which are derived on a per-protein basis, did not differ significantly between the sets, 
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indicating that no set is systematically worse in terms of the reliability of their local 

information. It appears that other factors such as the differences in global experimental 

parameters vary to such an extent that the pooled regression analysis is unable to attain 

good correlations. 

The inclusion of global factors such as resolution and R-values improved the fit of 

the general model, so that it could explain over half the local variation observed (51.6%) in 

the case of the set of structures solved independently by different groups. The predictive 

power of the model drops when applied to structures solved multiple times by the same 

group, and even further when applied to chains from the same PDB entry. While it would be 

tempting to assert that proteins solved by different groups represent truly independently 

solved structures, in which the temperature factors reflect the uncertainty in structure 

refinement, and that author bias introduces artefacts which reduce the correlation between 

random variation and crystallographic and geometric descriptors, the link is more complex. 

The regression analysis performed on a pair-wise basis indicates that the general behaviour 

of the random component of structural variation with respect to the local descriptors is not 

significantly different between the various sets; the t-test result indicates that the 

distributions of pair-wise correlation coefficients derived from the various sets do not differ 

significantly at the 99% confidence level and only differ at the 95% confidence level 

between the DAS and DPS. The difference in the explanatory power of the various general 

models is thus likely to be due to the larger number of protein pairs included in the sample 

and that the extreme differences in the per-protein correlation coefficients distribution 

adversely affects the general model. A further point is made by Stroud and Fauman8 who 

remark that regression coefficients derived from one pair of proteins may not be applicable 

to another. The more diverse a set is, the less likely it is that the parameters derived will be 

applicable to all structures, and as a consequence the fit of the regression model will be 

decreased.  

A further problem is that the regression model tended to only work well for globular 

proteins, for which the superposition is driven by a bulky, largely immobile interior. 
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Superposition methods based on a least squares fitting are largely inappropriate for non-

globular proteins, as large movements lead to a meaningless superposition and a large 

global RMSD. The variation due to the poor superposition can outweigh the differences due 

to flexibility or ambiguity. Manual curation of the dataset, eliminating such cases might lead 

to better regression results, but “cherry picking” appropriate data points would in the 

authors’ opinion make the reasoning in this study circular. One implication of this large 

spread is that, when assessing differences between structures, it may be necessary to 

develop protein family specific models for assessing significance rather than relying on a 

regression model derived from a pooled sample of heterogeneous structure pairs. The fit of 

the regression models might improved by using an iterative superposition method. This 

would eliminate the effect of structure pairs, in which one member has undergone a 

domain shift or hinge movement. These effects are currently unaccounted for except by the 

imposition of an upper RMSD cut-off; to what extent this procedure would improve the 

regression models is as yet unclear. 

Global variation prediction. The global RMSD between two proteins is correlated 

with the local RMSD; if a superposition has a low RMSD, the local RMSD of each residue will 

be correspondingly lower. In order to assess how much of the global component the 

regression analysis has captured, the correlation between the global RMSD and the global 

predictors was examined by log-linear regression. The regression analysis for the global 

RMSD values showed that the global descriptors can explain up to 53.6% of the variability in 

the RMSD in independently solved structures (DAS) and virtually all information is provided 

by the better average temperature factor of the two structures being compared. The 

proportion of the data explained by such a linear regression model varied between the data 

sets. The variability in the set derived by non-independent authors (DPS) was determined 

mainly by the limiting R-free value, highlighting the importance of this independent 

measure of structural goodness. The similarity of chains in the SPS was governed by the 

resolution of the experiment, but it only explained a small fraction of the variability. The 

reason for this reduction in explanatory power of the regression model appears to be linked 
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to the increased global variation of the structures in the set. For the alternative structure 

sets used here, the standard deviations of the logarithmic Cα RMSD distributions grow with 

increasing sample size, even though the sample means remain the same. The reason why 

the increased variation is not being explained by the regression model is unclear and may 

be related to the diversity of the protein type in the samples. The increased standard 

deviations of the logarithmic Cα RMSD distributions in the larger sets may also have an 

effect on the local residue variability. 

 Application of the local variability model to single point mutants. The task of 

identifying significant differences between structures of proteins with single point 

mutations is hampered by a considerable degree of noise due to experimental limitations 

and random motion in solvent accessible parts of the protein. By applying the 

comprehensive linear regression model for predicting the expected level of variation, a 

large degree of this variation can be accounted for, consequently isolating the signal due to 

the actual structure change. The log RMSD was converted to a Z-score by subtracting the 

predicted variation and dividing by the standard error of the regression model, using the 

linear model trained on the DAS. Applied to the full set of mutants, the difference in the 

distribution of Z-scores between the conservative and the non-conservative sets was 

significantly different, whereas the log RMSD distributions could not be told apart. The 

effect was exacerbated when regarding only the residue with the highest deflection from 

each protein in the set. In this case, the differences between conservative and non-

conservative mutation sites according to the log RMSD were insignificant, whereas for the 

Z-score, the significance is high and the two distributions were discernable clearly by eye. A 

simple linear model using only the information on whether a residue was buried, was only 

able to distinguish between conservative and non-conservative mutations when the entire 

set was used, and the significance of the estimate was far lower than for the comprehensive 

model. This shows that the standard binning procedures usually used are far less powerful 

an approach, and that factors describing the experimental quality are essential in discerning 

significant from insignificant change. 
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As many proteins in the single point mutant set did not boast a strong correlation 

between the observed variation and that expected according to local descriptors, the noise 

cannot be predicted accurately for these pairs. To best visually display the power of the 

normalization procedure, a subset of mutation pairs was chosen, for which the correlation 

between observed and expected variation for all residues is high. In these cases, the 

difference between conservative and non-conservative mutations was counter-intuitive, 

when using the logarithmic RMSD as a criterion; the conservative mutations showed a 

larger log RMSD than the non-conservative ones. When applying the Z-score, the trend was 

reversed and the non-conservative mutations showed larger differences in residues close to 

the mutation site than those in the conservative mutation set. This displays how reliance on 

RMSD, without accounting for expected variation can be misleading. Accounting for the 

noise during structure comparison thus allows the noise component in the observed 

structural change upon mutation to be reduced. The signal from the actual change can be 

increased and previously undetectable differences can be made detectable. A caveat exists 

however, in that the noise component between two structures must be well correlated with 

the local descriptors used in predicting it. In the case of single point mutant structure pairs 

where this correlation is high, the effects of the normalization were most effective.  

From a biological point of view, the observed patterns of structural change imply 

that even small movements in the structure are likely to incur a penalty in the evolutionary 

fitness of the variant. Presumably, this is due mainly to changes in stability, as this is 

assumed to be the main cause of disease phenotypes associated with SNPs in humans18. 

The small differences observed illustrate the intolerance of protein structure to non-

conservative mutation. 

Summary 

The random component of the variability between structure pairs could be 

predicted by a residue based statistical model using experimental and geometrical 

descriptors. When regression parameters were derived on a per-protein basis, almost 80% 

the structural variation could be described in exceptional cases. Pooling data generally 
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reduced the correlation, but the generalized model using the comprehensive set of 

descriptors could still explain approximately half the variability. Over 50% of the global 

variability, which is correlated with the local variability, was explained by factors describing 

experimental quality. The local linear model can be used to derive Z-scores which normalize 

structural variation. It was shown that when using these Z-scores the mutation site 

variability is higher on average for evolutionarily unfavourable mutations than for 

favourable ones. This effect was not apparent using the standard RMSD, as the noise 

component outweighs the signal. The effect was visually most prominent for structure pairs 

in which the structural variability is highly predictable using local descriptors. 
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Materials and methods 

Dataset. The dataset for the analysis consists of all chains of all structures of the 

PDB19, which consist of complete residues (no structures containing only Cα traces were 

included) do not contain ambiguously labelled residues, provide R-work and R-free values, 

as well as the resolution of the experimental data. All proteins had to be able to be 

assembled into continuous peptides, with the peptide bonds not exceeding 2.0 Angstroms 

in length. The peptide sequence had to match or at least be present in the corresponding 

the SEQRES entry in the PDB file. For pair-wise comparisons, the structures were reduced to 

the common subset of residues in the analysis in these cases. Identical sequences were 

grouped and 2 representatives were chosen at random from this group. The PDB entries 

were required to provide the appropriate crystallographic symmetry information for 

calculating crystal contacts. Any ligand with more than 5 atoms had to be present in equal 

numbers in both structures, without imposing RMSD limits on the ligands. We further 

filtered the set to include only PDBs which contained copies of the same peptide in their 

unit cell, i.e. all peptide chains in the PDB had to have the same SEQRES entry; in order to 

exclude peptides which were part of heterocomplexes (i.e. bound to nucleic acids or non-

self proteins). Proteins in different complex states can undergo large conformational 

changes and their intrinsic properties at interaction sites may no longer describe random 

variation, but biologically significant changes induced by the formation of the hetero 

complex. The datasets were compiled from this set of filtered chain pairs. The first set (the 

“Same PDB entry Set”, SPS) consisted of pairs of chains taken from PDB entries which 

contained two or more copies of the peptide, and for which no non-crystallographic 

symmetry restraints were used during refinement. The second set (“Different PDB Set” or 

DPS) was composed of pairs of different PDB files, but which were not solved by 

independent authors. As the DAS could in principle be a subset of the DPS; only pairs of 

structures were chosen for the DPS, which shared at least one author. The third set 

contained only chains taken from PDB files which had no author in common according to 

the AUTH entry of the PDB file. For each protein sequence in these sets, two representative 

structures were chosen at random. In order to avoid overrepresentation of certain protein 
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families in the sample, each set was culled at the 25% sequence identity level using the 

PISCES server, provided by the Dunbrack group20,21. The single point mutation set (SMS) was 

created using the same filters as for the other sets, except that they were not culled at the 

25% sequence identity level; instead the structures were chosen, so as to contain only 

unique mutations; for each mutation occurring in a particular sequence, only one pair of 

representative structures were chosen, thus avoiding the inclusion of pairs structures 

comprised of several alternative wild type structures paired to the same mutant. 

 Structural descriptors. Temperature factors were extracted from the atomic entries 

in the PDB files. The maximum atomic temperature factor per residue was used for 

statistical modelling. Temperature factors were capped at 150.0. The alpha carbon density 

of a residue is defined as the number of alpha carbon atoms in a 15 Ångstrom radius of the 

residue’s alpha carbon atom. For handling PDB files and extracting structural information, 

the Bio.PDB module22 of the Biopython suite was used. The program ‘contact’ from the 

CCP4 suite23 was used to calculate crystal contacts. Solvent accessibility was calculated 

using the program NACCESS24. Residues were classed as buried if their relative solvent 

accessibility was below 5%, the remainder were classed as exposed. 

Superposition and root mean squared deviation. Structure superposition was 

performed using the SVDSuperimposer class provided by the Bio.PDB python module, which 

finds the least squares fit of two sets of points by singular value decomposition. Global 

superposition was performed using all alpha carbon atoms in common between two 

structures. The root mean squared deviation (RMSD) between two sets of atoms is defined 

as: 

N

zzyyxx
RMSD

N

i
iiiiii∑

=

−+−+−
= 1

222 )21()21()21(
 

Where N is the number of atoms used, and the x, y, z values are the three dimensional 

Cartesian coordinates of corresponding atoms in the two structures. When calculating the 
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RMSD for a pair of residues, the ambiguity due to UIPAC nomenclature (Arginine NH1/NH2 

etc.) was accounted for by assigning equivalent atoms so as to minimize the residue RMSD. 

The logarithmic residue RMSD values were converted to Z-scores as follows: 

σ
predictedobserved RMSDRMSD

scoreZ
−

=_  

Where the predicted RMSD is calculated from the complete set of descriptors using the 

linear model derived using the DAS, and σ is the model’s standard error. All Statistical 

calculations and modelling were performed using version 2.6.2 of the R package25. 

Residue preference scores. SIFT15 scores were derived using the Uniref90 database26, 

a non-redundant database which is culled at the 90% sequence identity level. If the 

difference in the SIFT scores of the residues was less than 0.8, the mutation was classed as 

conservative, otherwise it was classed as non-conservative. 
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Tables 

Scope Name Information Likely impact 

Local 

Maximum residue 
temperature factor 

The largest observed atomic 
temperature factor for a residue 

Temperature factors correlate with flexibility and 
thus with expected noise in structure model 

building 

Alpha Carbon 
density 

The number of alpha carbon atoms 
within 15 Ångstroms around the 
alpha carbon of a given residue 

Contains flexibility information beyond that in the 
temperature factors; can help descriptors regard 

to static differences between models 

Rotatable Bonds 
The number of rotatable bonds in a 

residue’s side chain 

Reflects the maximum possible motion by the 
side-chain and contains implicit information 

about the size of a residue 

Crystal contacts 
Whether a residue is within 4 

Angstroms of another residue in the 
crystal lattice 

Crystal contacts, like increased packing density, 
will correlate with lower degree of movement 

Equal crystal 
contact 

Describes whether equivalent 
residues either both in or both not in 

a crystal contact 

Captures whether or not equivalent residues are 
similarly constrained and may indicate 

conformational changes 

Global 

Resolution 
Reflects the upper limit of 

resolvability of the electron density 
of a protein 

The lower the resolution, the less well structures 
can be refined, therefore uncertainty is expected 

R 
Self-consistency measure for 

assessing goodness of fit of the 
model with the experimental data 

High R values reflect uncertainty and potential 
errors. 

R-free 
Cross-validation measure for 

assessing the goodness of fit of the 
model with the experimental data 

High R-free values reflect uncertainty and 
potential errors, and represent a more reliable 

measure than the R value. 

Mean protein 
temperature factor 

Mean atomic temperature factor 
averaged over the entire structure 

High global temperature factors can reflect poor 
data and refinement quality, and thus is expected 

to correlate with variation 

Table 1. Survey of the descriptors used in the analysis. 
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 Different Author Set 

(11299 residues from 52 pairs) 

Different PDB Set 

(125998 residues from 478 pairs) 

Same PDB Set 

(348400 residues from 1487 pairs) 

Descriptor Estimate Std Error t-value p-value Estimate Std Error t-value p-value Estimate Std Error t-value p-value 

Intercept -1.2740490 0.0354210 -35.97 <2e-16 -1.1865044 0.0118112 -100.46 <2e-16 -7.98E-01 8.41E-03 -94.86 <2e-16  

Maximum residue B-factor (protein 1) 0.0269310 0.0004871 55.29 <2e-16 0.0153234 0.0001196 128.09 <2e-16 9.93E-03 9.30E-05 106.74 <2e-16  

Alpha carbon density (protein 1) -0.0110529 0.0004604 -24.00 <2e-16 -0.0114269 0.0001613 -70.82 <2e-16 -1.75E-02 1.13E-04 -154.66 <2e-16  

Rotatable bonds 0.0862014 0.0053613 16.08 <2e-16 0.0947724 0.0019427 48.78 <2e-16 1.11E-01 1.34E-03 83.17 <2e-16  

Residue In crystal contact (protein1) 0.4363304 0.0330958 13.18 <2e-16 0.677752 0.0127321 53.23 <2e-16 5.41E-01 7.66E-03 70.56 <2e-16  

Residue in crystal contact (protein 2) 0.4043220 0.0302013 13.39 <2e-16 0.5880568 0.0129253 45.5 <2e-16 5.08E-01 7.99E-03 63.56 <2e-16  

Residues in same contact state -0.9001768 0.0465331 -19.34 <2e-16 -1.3477122 0.0187197 -71.99 <2e-16 -1.12E+00 1.14E-02 -98.06 <2e-16  

Residual standard error:  0.7271 on 11292 degrees of freedom 0.8966 on 125991 degrees of freedom 1.023 on 348393 degrees of freedom 

Multiple R-squared 0.4271 0.274 0.2137 

p-value: < 2.2e-16 < 2.2e-16 < 2.2e-16 

Table 2: Multiple regression model of the logarithmic residue RMSD against the descriptors of the purely local model. 
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Different Author Set 

(11299 residues from 52 pairs) 
Different PDB Set 

(125998 residues from 478 pairs) 
Same PDB Set 

(348400 residues from 1487 pairs) 

Descriptor Estimate Std. Error t value p-value Estimate Std. Error t value p-value Estimate Std. Error t value p-value 

Intercept -3.9802242 0.0926814 -42.945 < 2e-16 -2.9411358 0.0219473 -134.01 <2e-16 -9.91E-01 1.53E-02 -64.61 <2e-16 

Worse Resolution 0.1394611 0.0250437 5.569 2.63E-08 0.3277112 0.0090182 36.34 <2e-16 -4.86E-01 5.38E-03 -90.254 <2e-16 

Better Resolution -0.4459781 0.0323169 -13.8 < 2e-16 -0.2169333 0.01077 -20.14 <2e-16 NA NA NA NA 

Worse R-free 1.3937611 0.3833374 3.636 0.000278 6.9826894 0.1478308 47.23 <2e-16 1.49E+01 9.97E-02 149.516 <2e-16 

Better R-free 5.5477235 0.4853462 11.43 < 2e-16 4.3492844 0.1777591 24.47 <2e-16 NA NA NA NA 

Worse R-work 3.9400603 0.5258276 7.493 7.23E-14 -2.4945467 0.1746826 -14.28 <2e-16 -1.27E+01 1.15E-01 -110.847 <2e-16 

Better R-work 3.3162877 0.5578511 5.945 2.85E-09 -2.8144235 0.1754275 -16.04 <2e-16 NA NA NA NA 

Worse mean B-factor -0.0126998 0.0009276 -13.691 < 2e-16 0.0043707 0.0003275 13.35 <2e-16 9.91E-04 2.14E-04 4.633 3.61E+00 

Better mean B-factor 0.0236656 0.0012781 18.517 < 2e-16 -0.015567 0.0003785 -41.13 <2e-16 NA NA NA NA 

Maximum residue B-factor (protein 1) 0.0244896 0.000559 43.808 < 2e-16 0.0149303 0.0001783 83.74 <2e-16 1.20E-02 1.46E-04 82.662 <2e-16 

Alpha carbon density (protein 1) -0.0098615 0.0004468 -22.073 < 2e-16 -0.0115021 0.0001571 -73.23 <2e-16 -1.63E-02 1.15E-04 -142.32 <2e-16 

Rotatable bonds 0.0897666 0.0050156 17.898 < 2e-16 0.0927216 0.0018453 50.25 <2e-16 1.04E-01 1.32E-03 78.772 <2e-16 

Residue In crystal contact (protein1) 0.313527 0.0306096 10.243 < 2e-16 0.5943376 0.0119025 49.93 <2e-16 5.12E-01 7.41E-03 69.056 <2e-16 

Residue in crystal contact (protein 2) 0.2991043 0.0278914 10.724 < 2e-16 0.5350133 0.0120718 44.32 <2e-16 4.76E-01 7.74E-03 61.518 <2e-16 

Residues in same contact state -0.6835369 0.0431405 -15.844 < 2e-16 -1.1782788 0.0175185 -67.26 <2e-16 -1.06E+00 1.11E-02 -95.175 <2e-16 

Residual standard error: 0.6684 on 11284 degrees of freedom 0.8361 on 125983 degrees of freedom 0.9887 on 348389 degrees of freedom 
Multiple R-squared  0.5162 0.3688 0.2652 
p-value: < 2.2e-16 < 2.2e-16 < 2.2e-16 

Table 3: Multiple regression model of the logarithmic residue RMSD against the descriptors of the comprehensive model. For the global predictors, 

“worse” refers to the variable which is more limiting to the accuracy of the structure; for instance the higher of the two mean temperature factors (B-

factors) will be classed as “worse”. 
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 Different Author Set Different PDB Set Same PDB Set Single Point Mutant Set 

Different Author Set - 0.01526381 0.05424132 0.0722033 

Different PDB Set - - 0.1178733 0.07107328 

Same PDB Set  - - - 0.6966513 

Single Point Mutant Set - - - - 

Table 4: The significance of the differences in the distribution of the pair-wise R-squared values are tested by means of an unpaired two-tail T-test. 

The p-values of the all-by-all comparison are listed. 

 

 Different Author Set Different PDB Set Same PDB Set 

Descriptors Estimate Std. Error t value Pr(>|t|) Estimate Std. Error t value Pr(>|t|) Estimate Std. Error t value Pr(>|t|) 

(Intercept) -4.84642 1.14686 -4.226 0.000122 -3.000321 0.322754 -9.296 < 2e-16 -1.17424 0.190403 -6.167 8.95E-10 

Worse Resolution 0.33059 0.36264 0.912 0.367053 0.140639 0.146556 0.96 0.337738 -0.69678 0.076548 -9.103 < 2e-16 

Better Resolution -0.6543 0.41667 -1.57 0.123678 -0.353574 0.176695 -2.001 0.045964 NA NA NA NA 

Worse R-free -1.72909 5.21765 -0.331 0.741958 8.775154 2.473828 3.547 0.000429 11.086562 1.38643 7.996 2.56E-15 

Better R-free 4.66185 6.23723 0.747 0.458876 3.826978 2.944418 1.3 0.194329 NA NA NA NA 

Worse R-work 11.34963 7.55948 1.501 0.140566 -0.815344 2.951671 -0.276 0.782492 -6.926633 1.596022 -4.34 1.52E-05 

Better R-work 1.53976 6.97455 0.221 0.826317 -4.307923 3.125078 -1.379 0.168706 NA NA NA NA 

Worse mean B-factor -0.01058 0.0118 -0.896 0.374979 0.008566 0.005059 1.693 0.091061 0.015771 0.002166 7.282 5.34E-13 

Better mean B-factor 0.066 0.01762 3.746 0.000531 0.003003 0.006331 0.474 0.63548 NA NA NA NA 

Residual standard error: 0.6536 on 43 degrees of freedom 0.833 on 469 degrees of freedom 0.8913 on 1482 degrees of freedom 

Multiple R-squared: 0.5361 0.1963 0.08692 

p-value: 2.519e-05 < 2.2e-16 < 2.2e-16 

Table 5: Multiple linear regression model of the logarithmic global alpha carbon variation against the global descriptors. The most informative 

descriptors for each set of structure pairs are in bold. As for table 3, “worse” refers to the variable which is more limiting to the accuracy of the 

structure; for instance the higher of the two mean temperature factors (B-factors) will be classed as “worse”. 
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Sample  
Mean value 

(conservative mutants) 

Mean value 

(non-conservative mutants) 
95% confidence interval of the difference t-value Degrees of freedom p-value 

All 
Log RMSD -1.1115 -1.1009 -0.0511 .. 0.0297 -0.5165 7205.392 0.6056 

Z-score -0.1481 0.1011 -0.3088 .. -0.1894 -8.1818 7247.173 3.275e-16 

Top 1 residue 
Log RMSD -0.2322 -0.2302 -0.1144 .. 0.1104 -0.0354 983.939 0.9718 

Z-score 0.9563 1.2673 -0.4785 .. -0.1434 -3.6416 984.166 0.0002850 

High correlation 
Log RMSD -0.4342 -1.2169 0.4473 .. 1.1181 4.6304 98.849 1.112e-05 

Z-score -1.2143 -0.1931 -1.4434 .. -0.5990 -4.809 85.686 6.426e-06 

Table 6: The difference in the distribution of logarithmic residue RMSD and Z-score values for residues in the vicinity of conservative and non-

conservative mutation are listed, along with the corresponding significance values. Three samples are used: all residues pooled, the top residues per 

protein and all residues from protein sample, whose variation can be predicted well (R-squared value > 0.7) with the local model.
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Figures 

 

Figure 1: The distribution of multiple R-squared values as derived on a per protein pair bases. For each pair in 

each set, linear regression of the log RMSD versus the local descriptors was performed and the derived 

multiple R-squared values were pooled on a set-wise basis and plotted. 

 

 

Figure 2: The logarithmic global Cα RMSD for the 3 alternative structure sets. The distribution of the histogram 

(right) is smoothed as outlined in M&M and the density is plotted (left). 
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Figure 3: The difference in the distributions of log RMSD values (left hand side) and Z-scores (right hand side) 

for residues in the vicinity of conservative (blue) and non-conservative (red) mutation sites (see main text for 

definition). The histograms (upper) and density distributions (lower) show that there is a significant difference 

in the distributions of Z-scores, but not for raw log RMSD values. For clarity, Z-scores below -6 were set to this 

threshold value; this procedure was not used to calculate the T-test results in table 6. 
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Figure 4: Histograms (upper) and density distributions (lower) of log RMSD values (left hand side) and the Z-

score (right hand side) for those residues neighbouring the mutation site, which had the highest displacement 

by Z-score. Blue indicates that the mutations are conservative; red is used for non-conservative values. 
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Figure 5: Histograms (upper) and density distributions (lower) of log RMSD values (left hand side) and the Z-

scores (right hand side) for all residues in the vicinity of the mutation site (see main text for definition) in 

structures for which good correlation were achieved between residue level variability and local descriptors. 

Again, blue is indicative of conservative mutations, red of non-conservative ones. 
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2.2 Assessment of template-based predictions in the CASP7 experiment 

 

In the following, two published manuscripts are included: 

• “Automated server predictions in CASP7” 

• “Assessment of CASP7 predictions for template-based modeling targets” 

 

My contributions to the publication “Assessment of CASP7 predictions for template-based 

modeling targets” were as follows: 

• Implementing the quality filtering steps (assigning “bumps” and “clashes”) 

• Calculating all GDT and AL0 scores for ranking the models 

• Performing the ranking of all models in the template-based category 

• Performing the “head-to-head” t-tests of the top ranking groups 
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INTRODUCTION

Protein structure prediction has become increasingly dependent on auto-
mated approaches in response to the mounting volume of data generated by
large scale genome sequencing and structural genomics efforts.1,2 Today,
numerous fully automated modeling servers (for review, see recent NAR
web server issue)3 and model databases4–6 are offering modeling services to
the biomedical research community. Ultimately, the development of auto-
mated prediction methods seeks to encode expert knowledge into software.
This automation allows these methods to be applied to large datasets such
as whole proteomes of different organisms, as well as providing input for
other prediction efforts. Since automated algorithmic approaches are devoid
of human bias, their accuracy and consistency can be assessed objectively,
which is an important prerequisite for their application as services for the
research community.

The CASP experiment endeavors to provide a rigorous and blind assess-
ment of state of the art methods in structure prediction.7 Although many
predictor groups participating in CASP use computational modeling proce-
dures, these methods require human intervention at many points in the
process such as performing plausibility checks, refining certain modeling
steps, and selecting final models. Although this manual intervention has
given human predictors a decisive advantage over fully automated methods
in the past, prediction servers have played an increasingly important role.
While from CASP3 to CASP5, server predictions were assessed separately as
part of the CAFASP experiments,8,9 they were part of the regular assess-
ment as of CASP6.10 During CASP7, prediction targets were sent to the
servers automatically by the Prediction Center at UC Davis. A time limit of
48 h was imposed, in effect simulating real life modeling situations, in
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ABSTRACT

With each round of CASP (Critical

Assessment of Techniques for Protein

Structure Prediction), automated predic-

tion servers have played an increasingly

important role. Today, most protein struc-

ture prediction approaches in some way

depend on automated methods for fold

recognition or model building. The accu-

racy of server predictions has significantly

increased over the last years, and, in

CASP7, we observed a continuation of

this trend. In the template-based model-

ing category, the best prediction server

was ranked third overall, i.e. it outper-

formed all but two of the human partici-

pating groups. This server also ranked

among the very best predictors in the free

modeling category as well, being clearly

beaten by only one human group. In the

high accuracy (HA) subset of TBM, two

of the top five groups were servers. This

article summarizes the contribution of

automated structure prediction servers in

the CASP7 experiment, with emphasis on

3D structure prediction, as well as infor-

mation on their prediction scope and

public availability.
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Key words: CASP7; automated modeling
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which time is often at a premium and hence long waiting
times for results are undesirable. The server predictions
were then made publicly available on the CASP7 web site
to allow predictor groups not registered as servers to use
these data as input for their own predictions.

One aim of the CASP experiment is to measure the

progress in the field. However, it has proven difficult to

devise a suitable way to estimate the individual difficulty

of a prediction target, which would allow comparing pre-

diction success based on the different target data sets of

two CASP experiments.11 During the CASP7 meeting in

Asilomar, it was suggested that the predictions based on

servers with ‘‘frozen’’ algorithms using updated databases

could serve as a baseline for measuring progress when

comparing different CASP experiments. This approach

would thereby allow the separation of improvements due

to growth of underlying sequence and structure databases

from those due to algorithmic developments.

This article provides an overview of all server methods

participating in CASP7 in the various categories, including

information on their prediction scope, public availability,

URLs, and author contact information. Additionally, we

summarize the results of servers in the assessment of the

tertiary structure prediction categories and highlight some

examples of successful predictions by servers.

SERVERS PARTICIPATING
IN CASP7

In CASP7, 93 of 305 predictor groups participated as

servers, with 68 servers in the tertiary structure predic-

tion category, 8 servers in disorder prediction, 14 servers

in domain boundary prediction, 8 in residue–residue

contact prediction, and 6 in function prediction. Tables I

and II summarize the results of a survey among the

server groups regarding the following questions:

� What is the scope of the prediction server? Which

input data are required?

� Is the server publicly available? Is the software available

for local installation?

� Will the algorithm and/or databases be updated during

the next 2 years?

� Contact details and URL for submission (if applicable).

The accuracy of server predictions in CASP7 has been

assessed together with predictions submitted by manual

predictor groups in each of the individual categories as

described elsewhere: free modeling (FM),66 template-

based modeling (TBM),67 high accuracy models (HA),68

disorder,69 domain boundary,70 contact prediction,71

and function prediction.72

Numerical assessment of the tertiary structure predic-

tion categories in CASP7 is based on several criteria.

GDT (global distance test) identifies sets of residues in

the predictions deviating from the target by not more

than a specified Ca distance cutoff for different sequence

dependent superpositions (GDT-TS: 1, 2, 4, and 8 Å;

GDT-HA: 0.5, 1, 2, and 4 Å). AL0 is defined as the per-

centage of correctly aligned residues in a sequence inde-

pendent superposition of the model and experimental

structure of the target. HBscore was introduced as an

additional measure in this round of CASP in the TBM

assessment. It is defined as the number of correctly pre-

dicted hydrogen bonds relative to the total number in the

target structure. For this calculation we excluded side

chains of residues with more than 50% relative surface ex-

posure in the target structure, and residues with incorrect

topology or involved in steric clashes in the models. For a

detailed discussion of the criteria please refer to the assess-

ment reports of the individual categories.66–68 In the fol-

lowing, we will summarize the results of servers in the

assessment of the tertiary structure prediction categories,

and highlight some examples of successful predictions.

SERVER PREDICTIONS IN THE
TBM CATEGORY

Accuracy of server predictions in the
template-based modeling category

The accuracy of server predictions has continuously

increased over the last years, and in CASP7 we observed

a continuation of this trend with servers performing very

well. In the template-based modeling (TBM) category, 68

of 187 groups were registered as prediction servers. As

described in the CASP7 TBM assessment, the top 25

groups selected based on combined z-scores of GDT-HA

and AL0 were compared by direct head-to-head compari-

son of statistically significant differences of GDT-HA,

AL0, and HBscore on common targets.67 Among these

25 groups, 6 were servers with the best group (25 Zhang-

server) ranked third overall.

Here, we aimed at a direct comparison of only servers

in this category. We have therefore recalculated the nu-

merical assessment, taking only into account the predic-

tions submitted by servers. The results are presented in

Figure 1 and Table III. The best performing group

Zhang-server (group 25) is followed by servers developed

by Soeding et al. (213 HHpred2; 214 BayesHH; 418

HHpred3), Elofsson and coworkers (47 Pmodeller6),

Baker and coworkers (4 Robetta), and Skolnick and co-

workers (307 MetaTasser).

Examples of successful server predictions

Several examples of outstanding predictions submitted

by servers were observed in CASP7, e.g. for target T0321

(PDB:2h1q), which is a structural genomics target from

Desulfitobacterium hafniense of unknown function. The

protein of 250 amino acid residues forms a two-domain

mixed ab-structure. The C-terminal domain is character-
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ized by an extended central b-sheet flanked by four a-
helices and has been classified as TBM/FM prediction

target since a significant part of the structure could not

be modeled based on the available template structure.

However, for the N-terminal domain, one server (415

SP4) recognized the structural similarity to the N-termi-

nal domain of Enolases (CATH code 3.30.390.10).73 The

C-terminal domains of enolases are TIM barrels (CATH

code 3.20.20.120) and do not resemble the second do-

main of target T0321. The submitted model by the SP4

server for domain 1 based on mandelate racemase from

Pseudomonas putida (PDB:2mnr) as template (Fig. 2)

achieved a GDT-HA of 35.2 (AL0 of 49.0), which is out-

standing when compared with a GDT-HA of 24.2 (AL0

of 0.0) of the second best prediction.

Target T0356 is also a structural genomics target, the

3-octaprenyl-4-hydroxybenzoate decarboxylase (UbiD)

from Escherichia coli (PDB:1idb). For the assessment,

T0356 has been divided into three assessment units:

domains 1 and 3 were assessed in the FM category; the

second domain, which resembled an FMN-binding pro-

tein domain (CATH code 2.30.110.10), was assessed as a

TBM target. The best available template, the structure of

an archeal FMN-binding protein from Methanobacterium

thermoautotrophicum (PDB:1eje), was used for several of

the best-submitted predictions. The structural similarity

was difficult to detect, and only predictions by eight

groups were significantly better than the remainder (Fig.

3)—among which seven were registered as servers (212

HHpred1; 213 HHpred2; 214 BayesHH; 418 HHpred3;

92 Ma-OPUS-server; 245 UNI-EID_expm; 383 UNI-

EID_bnmx). Interestingly, only one metapredictor

method (675 Fams-ace), and none of the manual predic-

tor groups made use of these server predictions.

Limitations in template detection

TBM exploits the evolutionary relationship between a

target and a template protein to infer structural similar-

ity. In cases of high sequence identity between the target

and the template, simple algorithms for sequence align-

ment are sufficient for identifying and aligning the best

template to the target. If the similarity is low, the detec-

tion and alignment of templates require more sophisti-

cated methods. A good template may exist for a target,

yet not be detectable by simple sequence-based methods.

Fold-recognition methods attempt to address the prob-

lem of detecting such remote homologs. As illustrated in

the previous two examples, this problem is still far from

being generally solved, and considerable performance dif-

ferences can be attributed to the ability of servers to

build their models on the best available templates. Here,

we sought to address two issues. The first is whether a

server was able to detect the best possible structural tem-

plate and the second is how well it would have fared in
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Table II
Contact Details for Publicly Available CASP7 Servers

Server URL Contact E-mail

3D-JIGSAW http://www.bmm.icnet.uk/�3djigsaw/ paul.bates@cancer.org.uk
3D-JIGSAW_RECOM http://www.bmm.icnet.uk/servers/3djigsaw/recomb/index.html
3Dpro http://www.ics.uci.edu/�baldig/scratch/ pfbaldi@ics.uci.edu
ABIpro http://www.ics.uci.edu/�baldig/scratch/ arandall@ics.uci.edu
BETApro http://www.igb.uci.edu/?page5tools&subPage5psss pfbaldi@ics.uci.edu
BIME@NTU_serv http://biominer.bime.ntu.edu.tw/casp7/ cychen@mars.csie.ntu.edu.tw
CaspIta-FOX http://protein.cribi.unipd.it/fox/ stefano.toppo@unipd.it
CaspIta-GOret http://protein.cribi.unipd.it/go_retriever/
CPHmodels http://www.cbs.dtu.dk/services/CPHmodels/ lund@cbs.dtu.dk
DisoPred http://bioinf.cs.ucl.ac.uk/disopred/ d.jones@cs.ucl.ac.uk
DISpro http://www.ics.uci.edu/�baldig/scratch/ pfbaldi@ics.uci.edu
Distill http://distill.ucd.ie/distill/ gianluca.pollastri@ucd.ie
DomFOLD http://www.biocentre.rdg.ac.uk/bioinformatics/DomFOLD/DomFOLD_form.html l.j.mcguffin@reading.ac.uk
DomSSEA http://bioinf.cs.ucl.ac.uk/dompred/ k.bryson@cs.ucl.ac.uk
DPS http://bioinf.cs.ucl.ac.uk/dompred/
DRIPPRED http://sbcweb.pdc.kth.se/cgi-bin/maccallr/disorder/submit.pl r.maccallum@imperial.ac.uk
FAMS http://www.pharm.kitasato-u.ac.jp/fams/fams.html kanouk@pharm.kitasato-u.ac.jp
FAMSD http://www.pharm.kitasato-u.ac.jp/fams/famsd.html
FOLDpro http://mine5.ics.uci.edu:1026/foldpro.html pfbaldi@ics.uci.edu
FORTE1 http://www.cbrc.jp/forte/ k-tomii@aist.go.jp
Frankenstein https://genesilico.pl/meta2 mgajda@genesilico.pl
FUGUE http://tardis.nibio.go.jp/fugue/; http://www-cryst.bioc.cam.ac.uk/fugue/ kenji@nibio.go.jp
GajdaPairings https://genesilico.pl/meta2 mgajda@genesilico.pl
GeneSilicoMetaServer https://genesilico.pl/meta2 andrzej@genesilico.pl
GPCPRED http://sbcweb.pdc.kth.se/cgi-bin/maccallr/gpcpred/submit.pl r.maccallum@imperial.ac.uk
gtg http://www.bioinfo.biocenter.helsinki.fi/gtg liisa.holm@helsinki.fi
HHpred1 http://protevo.eb.tuebingen.mpg.de/�toolkit/hhpred1/ johannes.soeding@tuebingen.mpg.de
HHpred2 http://protevo.eb.tuebingen.mpg.de/�toolkit/hhpred2/
HHpred3 http://protevo.eb.tuebingen.mpg.de/�toolkit/hhpred3/
Huber-Torda-Server http://www.zbh.uni-hamburg.de/wurst/ torda@zbh.uni-hamburg.de
karypis.srv http://www.cs.umn.edu/�karypis/servers/c7pred karypis@cs.umn.edu
karypis.srv.2 http://dminers.dtc.umn.edu/�rangwala/mn-fold/fp.php rangwala@cs.umn.edu
karypis.srv.4 http://www-users.cs.umn.edu/�deronne/c7pred/ deronne@cs.umn.edu
keasar-server http://www.cs.bgu.ac.il/�meshisrv/server/ keasar@cs.bgu.ac.il
LOOPP http://cbsuapps.tc.cornell.edu/loopp.aspx ron@cs.cornell.edu
Ma-OPUS-server http://sigler.bioch.bcm.tmc.edu/MaLab/CASP7-server/ jpma@bcm.tmc.edu
Ma-OPUS-server2 http://sigler.bioch.bcm.tmc.edu/MaLab/CASP7-server2/
Ma-OPUS-DOM http://sigler.bioch.bcm.tmc.edu/CASP7-DOM/
Meta-DP http://meta-dp.cse.buffalo.edu hksaini@cse.buffalo.edu
MetaTasser http://cssb.biology.gatech.edu/skolnick/webservice/MetaTASSER/ skolnick@gatech.edu
nFOLD http://www.biocentre.rdg.ac.uk/bioinformatics/nFOLD/nFOLD_form.html l.j.mcguffin@reading.ac.uk
NN_PUT_lab http://webmobis.cs.put.poznan.pl protserv@cs.put.poznan.pl
Pcons6 http://pcons.net bjorn@sbc.su.se
PFP_HAWKINS http://dragon.bio.purdue.edu/pfp thawkins@purdue.edu
Phyre-1 http://www.sbg.bio.ic.ac.uk/�phyre/ l.a.kelley@imperial.ac.uk
Pmodeller6 http://pcons.net bjorn@sbc.su.se
Possum http://foo.maths.uq.edu.au/�nick/Protein/contact.html n.hamilton@imb.uq.edu.au
PROFcon-Rost http://www.predictprotein.org/submit_profcon.html mp2215@columbia.edu
PROTINFO http://protinfo.compbio.washington.edu/protinfo_abcmfr/ ram@compbio.washington.edu
PROTINFO-AB http://protinfo.compbio.washington.edu admin@protinfo.compbio.washington.edu
Raghava-GPS-mango http://www.imtech.res.in/raghava/mango/ raghava@imtech.res.in
RAPTOR http://ttic.uchicago.edu/�jinbo/ j3xu@tti-c.org
ROBETTA http://robetta.org/submit.jsp DCChivian@lbl.gov
ROBETTA-GINZU http://robetta.org/submit.jsp
Rost-ECGO http://rostlab.org/services/ecgo/ amk2002@columbia.edu
Rost_PROFbval http://rostlab.org/services/profbval/ as2067@columbia.edu
SAM_T06_server http://www.soe.ucsc.edu/research/compbio/SAM_T06/T06-query.html sam-info@soe.ucsc.edu
SAM-T02a http://www.soe.ucsc.edu/research/compbio/SAM_T02/T02-query.html
SAM-T99a http://www.soe.ucsc.edu/research/compbio/HMM-apps/T99-query.html
SP3 http://sparks.informatics.iupui.edu yqzhou@iupui.edu
SP4 http://sparks.informatics.iupui.edu
SPARKS2 http://sparks.informatics.iupui.edu
Zhang-Server http://zhang.bioinformatics.ku.edu/I-TASSER yzhang@ku.edu

The presented information about the participating servers was collected in a survey among the registered groups after the experiment.
aThis server is obsolete and is being kept alive only for historical comparisons.
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comparison with the best template identified using a

purely sequence-based method.

The best-possible template is detected using a structure

based search of the target against the PDB entries avail-

able up until the target’s submission deadline as

described elsewhere in this issue.74 Specifically, the high-

est scoring structure according to the sequence-independ-

ent superposition generated by LGA75 was defined to be

the best template. ‘‘Pseudopredictions’’ were built based

on LGA’s structural alignment using a 4 Å superposition

cutoff, whereby the coordinates of aligned residues were

copied from the equivalent residues in the template.

For comparison, we used PSI-BLAST76 to identify and

align a template to the target sequence. The initial PSI-

BLAST profile was generated for the target sequence on

the NCBI nonredundant protein sequence database77

and subsequently used to scan the PDB for templates

available during the prediction window.

Using the lowest e-value as a criterion for choosing

PSI-BLAST hits frequently identifies short fragments of

very high similarity, but which give rise to models with a

low GDT-HA due to the low coverage of the target. In

the case of multidomain proteins, the e-value calculated

on the basis of the whole sequence is not applicable for

the individual subunits. Therefore, we filtered the PSI-

BLAST hits by maximal coverage of the individual assess-

ment units, and subsequently chose the highest ranked

PSI-BLAST hits by e-value. Pseudopredictions were built

by copying the backbone coordinates for all residues

aligned between target and template in the PSI-BLAST

alignment. No attempt was made to further improve the

alignment or to model insertions or deletions.

For 41% of targets (44 of 108), the pseudopredictions

built using the PSI-BLAST templates are within 10

GDT-HA units of the best structural template available.

In these cases, the simple sequence search correctly

identified a suitable structural template and little im-

provement would have been possible. For the remaining

64 targets, however, considerable improvement of pre-

diction quality over that of the PSI-BLAST template

would have been possible, namely by a margin of more

than 10 GDT-HA points in 64 cases and even 20 points

in 41 cases. However, it must be pointed out that for 30

of these 41 cases, the pseudopredictions based on the

optimal structural template identified by LGA have

GDT-HA scores below 50. These models are either

incomplete or the templates are structurally divergent

from the target.

We compared the performance of both sets of pseudo-

predictions, ‘‘PSI-Blast template’’ and ‘‘LGA template,’’ to

that of the best of all submitted server models, the best

overall server (25 Zhang-server) and the best metapredic-

tor server (47 Pmodeller6). Using the PSI-BLAST based

model as baseline, we subtracted its GDT-HA value from

that of the other predictions for each target and plotted

the results in Figure 4 (upper panel). The Zhang-server

Figure 1
Head-to-head comparison for the top 25 server groups showing the fraction of statistically significant wins (Student’s t-test; P-value < 0.05) on common targets.
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was able to improve over the PSI-BLAST template by a

margin of over 10 GDT-HA points in 46 cases, and by a

margin of more than 20 points in 23 cases. It was also

able to build models of comparable quality to the ‘‘LGA-

predictor’’ in the majority of cases. Only in 23 cases, the

server failed to get within 10 GDT-HA points of the

LGA-based pseudopredictor, and the predictions were

more than 20 GDT-HA points lower in eight cases.

As is apparent from Figure 4 (lower panel), the per-

formance of the PSI-BLAST approach is only weakly cor-

related with the overall structural similarity of the best avail-

able template (correlation coefficient [GDT-HA(LGA-pseu-

Figure 3
Prediction example of target T0356 domain 2. For discussion, see main document.

Figure 2
Prediction example of target T0321 domain 1. For discussion, see the main document.
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domodel) 2 GDT-HA(PSI-BLAST-pseudomodel] versus

GDT-HA(LGA-pseudomodel) 5 20.42). There were nu-

merous cases where good structural templates were available

(as identified by LGA), but were missed by PSI-BLAST.

Some cases, in which good templates existed but could

not be detected easily, have been identified and rational-

ized. One example of such a notable improvement over

the PSI-BLAST performance is T0349_D1, a NMR struc-

ture of the hypothetical protein RPA1041 from Pseudo-

monas aeruginosa. A model based on the best available

template, a secretory protein of the YscJ/FliF family part

of the E. coli type III secretion system (PDB:1yj7, chain

D), has a GDT-HA score of 66.2. The template detected

by PSI-BLAST, the structure of the L-aminopeptidase

D-ala-esterase/amidase from Ochrobactrum anthropi (PDB:

1b65), has a high target coverage of 72%, but an unfav-

orable e-value and is structurally unrelated. Conse-

quently, the resulting model achieves a GDT-HA value

of only 27.2. The reason for PSI-BLAST’s inability to

detect a better template may be due to the meager yield

of hits during the profile creation step, which conse-

quently leads to a poor profile for further scanning. It is

noteworthy that some of the better performing servers,

e.g., HHpred1, work by matching profiles generated

from the target and the potential templates. Presumably,

this two-sided approach allows the sequence gap to be

bridged successfully where the one-sided PSI-BLAST

method fails.

SERVER PREDICTIONS IN THE
HA CATEGORY

One might expect that servers will do well when evolu-

tionary relationships and sequence alignments are clear,

as is generally the case for the structures in the HA/TBM

category. To enter this category, it is necessary that there

be a good template, and in most cases, such templates

Figure 4
Server performance compared with the two pseudopredictors. Above: For each target, the performance of the different predictors is plotted relative to the GDT-HA baseline

defined by the ‘‘PSI-BLAST’’ pseudopredictor, i.e., values on the vertical axis are GDT-HA values minus the GDT-HA of the pseudoprediction based on PSI-BLAST.

Points below the x-axis performed worse than a naı̈ve PSI-BLAST alignment would have fared. Targets are ordered by increasing difference in GDT-HA between

pseudopredictions based on templates identified by LGA and PSI-BLAST, respectively. Predictions by group 25 (Zhang-server) are shown in red, 47 (Pmodeller6) in

orange, and the ‘‘LGA pseudopredictor’’ in blue. The best of all models submitted by any server group are shown in black. For comparison, the average performance of the

methods is indicated on the right side of the plot: (A) PSI-BLAST pseudo predictor, (B) Pmodeller6, (C) Zhang-server, and (D) LGA-pseudopredictor. Below: For

reference, the absolute GDT-HA value is plotted for the ‘‘LGA pseudopredictor’’ (blue) and the best server submission per target in retrospect (black).
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were successfully identified. Indeed, the trend for servers

to perform well continued in this category.

To obtain a rough overall ranking of the groups sub-

mitting predictions for the HA/TBM category, they were

sorted by the sum of the scores for GDT-HA, prediction

of side-chain v1/v2 angles, and suitability for use as mod-

els to solve the target crystal structures by molecular

replacement.68 Of the top 25 groups, four are servers.

Two of the servers are among the top five, with similar

overall scores placing them at positions 4 (186 CaspIta-

FOX) and 5 (4 Robetta). However, in contrast to the

results for the general TBM category, Zhang-server did

not appear among the top groups, coming in at position

43. This ranking is strongly influenced by the perform-

ance in rotamer prediction and molecular replacement,

where CaspItaFOX and Robetta were both highly ranked.

A number of servers did extremely well judged by the

more traditional GDT-HA score, but less well against the

other two criteria. In fact, when the predictors are ranked

by GDT-HA alone, servers are found at positions 3 (136

FOLDpro), 4 (25 Zhang-server), and 5 (137 3Dpro).

SERVER PREDICTIONS IN THE
FM CATEGORY

Servers might be expected to be at a greater disadvant-

age in FM than in TBM. For one thing, human insight

can still be useful in modeling protein structures, and it

would seem that there are more opportunities for such

intervention in FM than in TBM. Second, the time limit

for server predictions might be more of a constraint for

FM targets than for TBM. Nevertheless, servers did rather

well on FM targets in CASP7.

Although the best group in FM was clearly a human

group (20 Baker), the next set of groups includes servers.

On the basis of the pairwise GDT-TS comparison, the

Zhang-server (Group 25) was the third best FM predictor,

behind only the human-aided predictions of Baker and

Zhang himself (Group 24). By visual assessment, two serv-

ers (25 Zhang-server and 4 Robetta) were in a four-way tie

for second place according to the criteria and scoring

scheme applied in the FM category of CASP7.66 Combin-

ing GDT-TS assessment and visual assessment, there were

six groups that were among the top 20 by GDT-TS and

among the top 10 by visual assessment. Among these six

groups, three were servers (Zhang-server, Robetta, and the

metaserver group 47 Pmodeller6).

A particularly striking server prediction was the

Robetta model 2 for target T0350, which has an antipar-

allel three-stranded sheet and three flanking helices that

lie side by side against one surface of the sheet. Although

a relatively simple ab-structure, the arrangement of the

sheet and helices is unusual and appears to be a true FM

target. Nevertheless, many groups did astonishingly well

on this target, and of the models that were judged best

by visual assessment, Model 2 from Robetta had the

highest GDT-TS rank. For two other targets (T0287 and

T0314), the Zhang-server had the single best model by

GDT-TS.

DISCUSSION

In the recent years, structure prediction in CASP had

been dominated by human predictors using computa-

tional modeling procedures, which require manual inter-

vention at many steps in the process. One of the recur-

ring problems in CASP assessments has always been dis-

cerning the improvements contributed by human

intervention from the purely computational element. In

the assessment of CASP2, Thornton and coworkers used

the automated modeling service SWISS-MODEL as refer-

ence to establish a baseline of what could be achieved by

fully automated prediction.78,79 During the following

experiments, numerous predictors registered their meth-

ods as servers and were assessed separately as part of the

CAFASP experiment series.8,9 Starting with CASP6,

server predictions were assessed as part of the main

CASP experiment.10 The general opinion in the commu-

nity has been that the ‘‘human plus machine predictions’’

are superior to automated ones.8 However, it appears

that with CASP7, this view might have to be revised as 6

of the top 25 groups in the TBM category assessment

were server predictors. Overall, in both CASP5 and

CASP6 servers provided the best models (or tied with

humans) for 7% of targets as measured by GDT-TS.7 In

contrast, for the 123 target domains in CASP7, the best

model (or tied with humans) was submitted by a server

in 29% of the cases. The best prediction server (25

Zhang-server) was ranked third over all, i.e. it outper-

formed all but two of the participating groups in the

TBM category.

With the emergence of many new protein structure

prediction servers, based on diverse methods with differ-

ent strengths and weaknesses, the question of selecting

the most appropriate server for each target became pre-

vailing. Metaservers—methods that use the results of

other servers as input to generate their predictions—were

expected to have the capacity to outperform all individ-

ual autonomous servers, and challenge most human

expert predictors.80 To illustrate to what extent meta-

servers were able to select favorable models from the

pool of the CASP7 server models, we included in Figure

4 the best-performing metaserver (47 Pmodeller6), the

best individual server (25 Zhang-server), and the best of

all submitted server models. Remarkably in CASP7, the

best individual autonomous server (25 Zhang-server)

outperformed the best metaserver (47 Pmodeller6), as

well as the best manual metapredictor group (675 Fams-

ace).67 Comparing all server methods among themselves

(Fig. 1), the top ranking groups are not metamethods,
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indicating that the development of individual servers was

fruitful in the recent years, and has significantly contrib-

uted to advancing the field of protein structure predic-

tion.

There has been much debate on how to objectively

compare human and server predictions. Much effort is

expended during CASP by human predictors to gather

information from a diverse set of resources such as scien-

tific literature and specialist databases. This information

may contribute greatly to the quality of a model for

example by improving template selection and alignment

or identifying ligand-binding sites. As this work, however,

is very time consuming, it is only feasible for a relatively

small set of targets. By contrast, prediction servers are

fully automated and do not have these limitations, there-

fore their performance can be evaluated using a larger

sample size than would be possible with human predic-

tors. Several projects have been initiated with the aim of

continuous, large-scale assessment, such as LiveBench80

and EVA,81 which use a sample size not tractable for

nonautomated prediction methods. The CASP7 experi-

ment comprised the relatively large number of 100 pre-

diction targets, providing a solid basis for the numerical

and statistical analysis. In this respect, CASP7 reflects a

‘‘real life’’ situation, where one is faced with the problem

of modeling structures for an exponentially growing

number of protein sequences. Although the large number

of targets led to a technical advantage for automated

methods over human predictors, the server predictions

for all targets were publicly available early in the predic-

tion window. Thus, most of the ‘‘routine’’ work had al-

ready been done automatically and human predictors

could focus their efforts on improving the automated

predictions using expert knowledge.

The gap between human predictors and servers is clos-

ing as automated prediction servers have come of age.

However, the fundamental limitations for both human

and server predictors remain in modeling of loops and

effective refinement techniques. The observed progress in

automated, reproducible, and scalable prediction meth-

ods in CASP7 holds the promise for further improve-

ments in the future.
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INTRODUCTION

Protein structure modeling and prediction has gained significant

interest in the biological research community for its ability to pro-

vide structural models for proteins lacking experimental structures.

Template-based protein models, which exploit the evolutionary rela-

tionship between a target protein and others with known experi-

mental structures, have been used successfully in a variety of appli-

cations, such as studying the effect of mutations, designing site-

directed mutagenesis experiments, predicting binding sites, and

docking small molecules in structure-based drug discovery. A variety

of such modeling methods have been published over the last years.

As the usefulness of a protein structure model depends on the accu-

racy of the prediction, it is crucial to identify the most suitable

method for the task at hand from amongst this growing list of

resources.

The Critical Assessment of Techniques for Protein Structure Pre-

diction (CASP)1 provides an objective evaluation of current predic-

tion methods. In identifying their strengths and weaknesses this

experiment serves two purposes. For biologists, this assessment aids

in choosing the most suitable methods to meet their needs. For

researchers engaged in the development of protein structure predic-

tion techniques, detailed scrutiny of their methods and comparison

with other approaches helps pinpoint strengths and limitations, and

serves as a guide for future development. To ensure objectivity,

CASP is organized as a double-blind prediction experiment, i.e. at
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ABSTRACT

This manuscript presents the assessment of the

template-based modeling category of the seventh

Critical Assessment of Techniques for Protein

Structure Prediction (CASP7). The accuracy of pre-

dicted protein models for 108 target domains was

assessed based on a detailed comparison between

the experimental and predicted structures. The

assessment was performed using numerical meas-

ures for backbone and structural alignment accu-

racy, and by scoring correctly modeled hydrogen

bond interactions in the predictions. Based on

these criteria, our statistical analysis identified a

number of groups whose predictions were on aver-

age significantly more accurate. Furthermore, the

predictions for six target proteins were evaluated

for the accuracy of their modeled cofactor binding

sites. We also assessed the ability of predictors to

improve over the best available single template

structure, which showed that the best groups pro-

duced models closer to the target structure than

the best single template for a significant number of

targets. In addition, we assessed the accuracy of

the error estimates (local confidence values)

assigned to predictions on a per residue basis.

Finally, we discuss some general conclusions about

the state of the art of template-based modeling

methods and their usefulness for practical applica-

tions.
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the time of the experiment, the predictors do not know the

target structures, and the identity of the predictors is hid-

den from the assessors. At the end of the experiment, all

predictions and assessment data are made publicly avail-

able. Accurate and appropriate assessment of protein struc-

ture prediction is not a simple standard procedure. While

the main numerical assessment criteria have been well

established over the series of CASPs,1–4 progress and con-

vergence in the prediction methods over subsequent CASP

experiments require assessors to update existing criteria or

even introduce new ones. This ensures that the assessment

adequately appraises the overall quality of the models, as

well as those features of the predictions that are relevant to

their usefulness in specific scientific applications.

The assessment of the template-based modeling (TBM)

category in CASP7 greatly benefits from having a broad

basis for numerical and statistical analysis. With most par-

ticipating groups having submitted predictions for the ma-

jority of target proteins, a sufficiently large number of

diverse targets is available for comparing the various meth-

ods and testing the statistical significance of the differences

between them. However, we would like to emphasize that

this large number of targets, for which predictions had to

be made within the 3 months of the prediction season in

spring and summer 2006, represented an enormous work

load for the participating predictor groups.

Predictions that could largely be built based on tem-

plate structures were assessed in the TBM category. A

subset of the TBM models was additionally assessed in

the high accuracy (HA) category with respect to detailed

structural features such as side-chain orientation and

suitability for application in molecular replacement.5 In

this report, we present the results of our assessment of

the models in the TBM category of CASP7 based on nu-

merical criteria for evaluating the correctness of the over-

all structure and alignment, local residue interactions, ac-

curacy of cofactor binding sites, and improvement over

the best templates. Additionally, we evaluated the ability

of predictors to correctly assign error estimates as per

residue confidence values to their predictions. Finally, we

discuss some general conclusions about the state of the

art of template based modeling methods and their useful-

ness for practical applications.

RESULTS AND DISCUSSION

Targets, assessment units, and predictions
in the TBM category

For the assessment, prediction target structures were

split into assessment units (AU) and classified into three

categories: free modeling (FM),6 template-based model-

ing (TBM), and high-accuracy template-based models

(HA).5 Assessment units correspond to individual struc-

tural domains for single domain proteins. Multidomain

proteins, for which the relative orientation could not be

inferred from the template structure, were split into sepa-

rate AUs. Multidomain proteins with the same relative ori-

entation as the template were assessed as a single unit. Defi-

nition of assessment units and categorization criteria are

discussed in detail elsewhere.7 Traditionally, the term

‘‘target domain’’ has been used in previous CASP experi-

ments to describe the segment of a prediction target to be

assessed individually. However, depending on the context,

‘‘domain’’ denotes quite diverse concepts from an evolu-

tionary, structural, or functional perspective. Therefore, we

introduced the term ‘‘assessment unit’’ to describe the seg-

ments of a structure on which we based the assessment of

3D structure predictions. However, for historical reasons

and for easier readability, the term ‘‘domain’’ might be used

interchangeably with ‘‘assessment unit’’ in this manuscript.

In CASP7, the category of TBM comprises 108 out of

a total of 123 assessment units, for which 15,717 predic-

tions were submitted by 187 predictor groups. Sixty-eight

groups were registered as prediction servers. Among the

targets in the TBM category, 28 assessment units were

also evaluated in the high-accuracy category (HA), and

four overlapped with the definition of free modeling

(FM) and were therefore assessed in both categories. The

assessment units of the TBM category ranged in size

from 526 residues for T0334, a flavin-dependent halogen-

ase from Nocardia aerocolonigenes, to 36 residues for

T0335, a NMR structure of protein ynzC from Bacillus

subtilis. In Table I, we summarize the characteristics of

the TBM targets. Predictions were received by the Protein

Structure Prediction Center at UC Davis (in TS or AL

format) and split according to assessment unit defini-

tions. Standard numerical assessment data such as GDT-

TS, GDT-HA, AL0, and RMSD values were provided to

the assessors by the Protein Structure Prediction Center.

Assessment of the overall quality
of the models

Visual inspection of all predictions showed that, like in

previous CASP experiments, a significant number of

physically impossible models were submitted. Models

with more than 2% of the Ca atoms involved in clashes

(Ca–Ca distance <1.9 Å) or more than 10% in bumps

(Ca–Ca distance between 1.9 and 3.5 Å) and severely

fragmented predictions were flagged as physically impos-

sible. In total, 451 models were considered physically

impossible. As shown in Figure 1, the majority of these

models were submitted by only a few groups, while the

distribution over assessment units is homogenous. Since

three target structures (T0320, T0332, T0378) were meth-

yltransferases containing topological knots,8 predictions

with knots were not penalized, provided that the struc-

tures passed the Ca–Ca distance criteria outlined before.

Numerical assessment in recent CASPs has been based

on the two well-established criteria, GDT and AL0. AL0

is defined as the percentage of correctly aligned residues
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Table I
TBM Assessment Units in CASP7

Target Residues UniProt Description Best template LGA-S Seq. id

T0283 97 Q9K5V7 JCSG target 10176605, BH3980 protein, Bacillus halodurans 2b2jA 54.0 6.7
T0284 250 Q9HUU1 Member of isocitrate lyase family, Pseudomonas aeruginosa 1oqfA 87.8 30.1
T0285 99 n/a Extracytoplasmic domain from histidine kinase, Cellvibrio japonicus 1p0zG 54.6 10.1
T0286 202 A3DDK4 Lipolytic enzyme, Clostridium thermocellum 1esd 76.7 20.1
T0288 86 Q9NRD5 PDZ domain of PICK1, Homo sapiens 2fneB 93.4 32.5
T0289_1 233 Q9R1T5 Aspartoacylase, Rattus norvegicus 1yw4A 55.8 19.4
T0289_2 74 1vdzA 59.5 9.6
T0290 173 Q13427 Peptidyl-prolyl isomerase domain of cyclophilin G, Homo sapiens 1c5fM 99.2 60.5
T0291 281 P29320 Epha3 Receptor Tyrosine Kinase and Juxtamembrane Region, Homo sapiens 1jpaA 92.8 81.1
T0292_1 77 P51955 Nek2 Centrosomal Kinase, Homo sapiens 2bmcF 95.4 33.8
T0292_2 173 2acxA 85.7 28.5
T0293 198 Q86W50 Methyltransferase 10 domain-containing protein, Homo sapiens 1nv9A 66.2 20.9
T0295_1 180 Q8ILT8 Dimethyladenosine transferase, Plasmodium falciparum 1zq9B 95.2 49.2
T0295_2 95 1zq9A 96.9 41.1
T0297 211 Q97PY9 Putative platelet activating factor, Streptococcus pneumoniae 1bwp 72.8 22.6
T0298_1 148 O87014 Putative aspartate-semialdehyde dehydrogenase, Pseudomonas aeruginosa 2g17A 82.7 21.2
T0298_2 186 1pquA 88.9 16.6
T0299_1 91 Q97RI5 MCSG target APC80351, Streptococcus pneumoniae 2cg8C 68.6 13.7
T0299_2 89 1rjjA 60.2 9.1
T0301_1 200 Q9I5E5 JCSG target np_249484.1, Pseudomonas aeruginosa 1w61A 53.4 12.3
T0301_2 191 1w62A 47.0 11.8
T0302 129 Q9NS28 RGS domain of RGS18, Homo sapiens 1agrE 90.5 53.9
T0303_1 147 Q0I1W8 Phosphoglycolate phosphatase, Haemophilus somnus 2ah5A 89.0 28.4
T0303_2 77 1fezB 81.3 7.1
T0304 101 P76364 YeeU protein, Escherichia coli 2gnxA 55.9 8.3
T0305 280 P23470 Tyrosine receptor phosphatase gamma, Homo sapiens 2fh7A 95.9 53.1
T0306 95 P0AEJ8 Ethanolamine utilization protein, Escherichia coli 1d7qA 55.6 15.8
T0308 165 Q9H0F7 ADP-ribosylation factor-like protein 6, Homo sapiens 1o3yB 93.7 41.5
T0311 64 P67699 Antitoxin HigA, Escherichia coli 1rpeL 90.0 18.0
T0312 132 O30132 NESG target GR103, Archaeoglobus fulgidus 1xv2B 61.1 13.5
T0313 316 Q9BVG8 Kinesin-like protein KIFC3 motor domain, Homo sapiens 1ii6A 88.4 42.1
T0315 253 Q7A1S8 TatD deoxyribonuclease, Staphylococcus aureus 1j6oA 94.9 39.0
T0316_1 188 Q97T38 tRNA (5-Methylaminomethyl-2-Thiouridylate)-Methyltransferase TrmU,

Streptococcus pneumoniae
1kh3C 51.0 17.4

T0316_3 90 1wb3B 78.1 17.9
T0317 149 Q8BTR5 putative dual specificity phosphatase, Mus musculus 2esbA 92.4 34.5
T0318_1 154 P34629 Leucine aminopeptidase, Caenorhabditis elegans 1vhuA 38.9 4.4
T0318_2 335 1gytL 88.7 28.7
T0320_1 214 P38913 FAD synthetase, Saccharomyces cerevisiae 1sur 55.0 19.3
T0321_1 96 Q18YZ7 JCSG target ZP_00559375.1, Desulfitobacterium hafniense 1f9cA 59.3 18.8
T0321_2 148 1kxzE 48.0 8.8
T0322 128 P25734 Colonization factor antigen I subunit E, Caulobacter crescentus 2h4uD 85.4 20.8
T0323_1 101 Q9KC25 DNA-3-methyladenine glycosidase, Bacillus halodurans 1yqmA 55.7 20.8
T0323_2 116 1dizA 87.8 26.6
T0324_1 142 Q88YA8 Putative phosphoglycolate phosphatase, Lactobacillus plantarum 2fdrA 89.6 25.0
T0324_2 65 2ah5A 92.6 4.7
T0325 261 P59745 Protein EF3048, Enterococcus faecalis 1v6tA 49.1 16.1
T0326 289 Q9WZY3 Homoserine O-succinyltransferase, Thermotoga maritima 2ghrA 84.9 55.2
T0327 73 O31639 YjcQ protein, Bacillus subtlis 1lnwF 76.5 13.3
T0328 307 Q8EIU4 Putative melanin biosynthesis protein TyrA, Shewanella oneidensis 2gvkA 90.5 30.4
T0329_1 141 Q1GA24 Putative phosphoglycolate phosphatase, Lactobacillus delbrueckii 1rdfB 90.9 25.8
T0329_2 92 1rqlA 60.7 11.6
T0330_1 153 Q8KBS5 Haloacid dehalogenase-like hydrolase, Chlorobium tepidum 2ah5A 82.9 29.2
T0330_2 72 1lvhB 73.5 7.9
T0331 139 Q2ZZ07 Pyridoxamine 5'-phosphate oxidase-related protein, Streptococcus suis 1ty9A 72.3 16.4
T0332 153 Q13395 Methyltransferase Domain of Human TAR (HIV-1) RNA binding protein 1,

Homo sapiens
1zjrA 88.8 22.9

T0333_1 206 Q8KND7 CalG3, Micromonospora echinospora 1rvvB 48.9 15.7
T0333_2 148 1rvvB 69.2 25.6
T0334 526 Q8KHZ8 Flavin-dependent halogenase, Nocardia aerocolonigenes 2ajqA 94.4 56.2
T0335 36 O31818 YnzC protein, Bacillus subtilis 1yluA 96.7 0.0
T0338_1 143 O60583 Cyclin T2, Homo sapiens 1jkw 74.6 20.3
T0338_2 113 1n4mA 60.9 10.0

(Continued )
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in the 5 Å LGA sequence-independent superposition of

the model and experimental structure of the target. A

model residue is considered to be correctly aligned if the

predicted Ca atom position falls within 3.8 Å of the cor-

responding experimental atom, and there is no other Ca

atom of the experimental structure nearer. GDT (global

distance test) identifies sets of residues in the predictions

deviating from the target by not more than a specified

Ca distance cutoff for different sequence-dependent

superpositions, e.g. using distance cut-off values of 1, 2,

4, and 8 Å for GDT-TS calculation. It was suggested dur-

ing the CASP6 meeting in Gaeta that the cut-off values

applied to calculate GDT-TS may not be appropriate to

detect small differences in backbone quality.2 In our

assessment, we considered the upper cut-off value of 8 Å

as too lenient to discriminate the finer structural differ-

ences between models of template-based predictions and

therefore decided to use GDT-HA with distance cut-off

values of 0.5, 1, 2, and 4 Å in our evaluation.

Although GDT is a sequence-dependent and AL0 a

sequence-independent measure, both scores are highly

correlated and on average contain little complementary

Table I
Continued

Target Residues UniProt Description Best template LGA-S Seq. id

T0339_1 136 Q7L670 Selenocysteine lyase, Homo sapiens 1eg5B 78.3 26.1
T0339_2 267 1eg5A 87.3 37.3
T0340 82 Q15599 Second PDZ domain of human NHERF-2, Homo sapiens 1g9oA 98.0 59.8
T0341_1 148 Q6PEB2 Haloacid dehalogenase-like hydrolase domain containing protein, Mus musculus 1zjjB 90.0 27.3
T0341_2 104 1wviB 93.8 21.4
T0342 122 O75223 Protein LOC79017, Homo sapiens 2g0qA 80.4 21.5
T0345 185 P18283 Glutathionine peroxidase 2, Homo sapiens 1gp1A 97.0 68.1
T0346 172 P30414 Peptidylprolyl isomerase domain of the human NK-tumour recognition protein,

Homo sapiens
2gw2A 99.9 71.5

T0347_1 89 Q8UF59 Protein Atu1540, Agrobacterium tumefaciens 1vk1A 74.3 21.4
T0348 61 Q7NSS5 Putative Tetraacyldisaccharide-1-P 4-kinase, Chromobacterium violaceum 1rfs 58.1 16.2
T0349 57 Q6NAY9 Protein RPA1041, Pseudomonas aeruginosa 1yj7D 87.4 17.3
T0351 56 P54342 Phage-like element PBSX protein xkdW, Bacillus subtilis 1cs1C 62.8 4.6
T0354 122 Q7P0P8 Protein CV0518, Chromobacterium violaceum 2be3A 56.8 8.1
T0356_2 192 P0AAB4 3-octaprenyl-4-hydroxybenzoate decarboxylase, Escherichia coli 1ejeA 45.6 9.6
T0357 132 O30181 NESG Target GR101, Archaeoglobus fulgidus 1aco 56.3 13.5
T0358 65 P75677 Protein ykfF, Escherichia coli 1dgd 60.5 13.0
T0359 90 O75970 3rd PDZ domain of multiple pdz domain protein MPDZ, Homo sapiens 2bygA 92.9 31.0
T0360 97 Q9JY98 Protein NMB1681, Neisseria meningitidis 1dvoA 76.6 21.0
T0362 144 Q7V4A7 JCSG target NP_895880.1, Prochlorococcus marinus 2gf6A 82.9 22.7
T0363 46 Q4QNE7 NYSGRC 68057197, Haemophilus influenzae 2bb6A 79.9 13.2
T0364 147 Q88R33 JCSG target NP_742468.1, Pseudomonas putida 2av9B 79.7 14.3
T0365 207 Q8EAX1 JCSG target NP_719307.1, Shewanella oneidensis 1xwmA 67.0 13.1
T0366 84 O75970 12th PDZ domain of multiple pdz domain protein MPDZ, Homo sapiens 2fneB 93.5 26.8
T0367 123 O29944 JCSG target NP_069135.1, Archaeoglobus fulgidus 1ufbC 87.1 15.0
T0368 157 Q8KAL8 JCSG target NP_663012.1, Chlorobium tepidum 2c2lC 69.4 17.0
T0369 147 Q41IB9 JCSG target ZP_00537729.1, Exiguobacterium sibiricum 1rxqA 61.8 11.4
T0370 144 Q825J7 JCSG target NP_828636.1, Streptomyces avermitilis 1vl7B 75.4 18.8
T0371_1 162 Q11S56 Puatative HAD superfamily sugar phosphatase, Cytophaga hutchinsonii 1vjrA 80.7 27.7
T0371_2 121 1zjjA 65.6 20.2
T0372_1 126 Q8A1H2 Protein BT_3689, Bacteroides thetaiotaomicron 1ro5A 59.2 4.0
T0372_2 172 1xf8A 60.1 9.1
T0373 140 Q9HZE1 Putative transcriptional regulator protein, Pseudomonas aeruginosa 1s3jB 70.6 23.8
T0374 160 Q9HV14 Putative acetyltransferase, Pseudomonas aeruginosa 1tiqA 75.2 9.4
T0375 296 P50053 Ketohexokinase, Homo sapiens 2fv7B 67.5 18.9
T0376 306 Q8U6Y1 Dihydrodipicolinate synthase, Agrobacterium tumefaciens 1xxxB 81.3 25.0
T0378_1 89 Q7MW92 Putative RNA methyltransferase of the TrmH family, Porphyromonas gingivalis 1ipaA 74.1 22.0
T0378_2 142 1gz0C 89.6 27.4
T0379_1 140 Q7MWA6 Putative HAD-like family hydrolase, Porphyromonas gingivalis 1zd5A 83.9 27.8
T0379_2 64 2b0cA 67.2 25.5
T0380 142 Q97DI6 Pyridoxinephosphate oxidase family-related protein, Clostridium acetobutylicum 2fhqA 82.7 25.8
T0381_1 61 Q0SH23 Putative transcriptional regulator RHA06195, Rhodococcus sp. RHA1 2g7uA 99.5 45.9
T0381_2 176 2g7uD 92.7 39.8
T0382 119 Q6N8L4 MCSG target APC6185, Rhodopseudomonas palustris 1kpsB 56.8 9.8
T0383 125 Q97PP5 Protein SP_1558, Streptococcus pneumoniae 1qynB 63.2 11.8
T0384 301 Q97PV8 Gfo/Idh/MocA family Oxidoreductase, Streptococcus pneumoniae 1ydwA 84.2 22.2
T0385 125 O05815 Protein rv2844, Mycobacterium tuberculosis 1jgcB 87.2 10.9
T0386_1 206 Q6G2A9 Putative cell filamentation protein, Bartonella henselae 2g03A 63.8 24.5
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information for comparing and contrasting the different

prediction methods (Fig. 2). As both GDT and AL0 are

derived from global superpositions of Ca coordinates

only, they do not reflect important local structural features

of a protein such as backbone geometry, packing of amino

acid side-chains, and atomic interactions like hydrogen

bonds or hydrophobic contacts. To complement these

global Ca-based criteria, we introduced a local atomic

measure termed HBscore. It counts the intersection of

corresponding hydrogen bonds present in the model and

the target structure: HBscore 5 number of (H-bonds in

model \ H-bonds in target structure)/number of H-

bonds in target structure. We excluded hydrogen bonds

involving side-chain atoms of residues with more than

50% relative surface exposure in the target structure. In

the predicted structures, hydrogen bonds were not consid-

ered if they involved amino acid residues with incorrect

topology or had severe clashes with neighboring residues

(d < 1.2 Å). Hydrogen bonds were calculated using

HBPlus,9 and relative solvent accessibility of side-chains

using NACCESS (Hubbard and Thornton, 1993). The

HBscore enumeration of specific H-bond interactions

accounts for ambiguities arising from chemically equiva-

lent side-chain atoms being assigned different atom names

in IUPAC nomenclature (e.g., Glu OE1, OE2; Arg NH1,

NH2, etc.). Figure 3 illustrates HBscore for the example of

a short b-sheet. When comparing structure predictions

and actual experimental structures, high scores in global

criteria such as GDT and AL0 are necessary, but not by

themselves sufficient indicators of accuracy. Local criteria

based on specific atomic interactions provide complemen-

tary information, as illustrated in Figure 4.

Numerical evaluation and statistical significance
of the results

The assessment of the individual groups was based on

the predictions submitted as ‘‘Model 1.’’ The majority of

groups predicted more than one hundred assessment

units and consequently, for each target more than 100

Figure 1
Distribution of physically impossible models. The majority of unfeasible models were submitted by only a few groups (a), while the distribution over assessment units is

homogenous (b). [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]

Figure 2
Correlation of GDT-HA and AL0 z-scores for groups in CASP7.
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individual predictions were available for the assessment.

For groups which submitted both unrefined and refined

models, the assessment was based on the refined predic-

tion. If predictions for a target were submitted in several

fragments, the segment with the longest overlap with the

assessment unit was assessed.

The scoring scheme adopted in our assessment was

similar to the one used in previous CASP experiments.2,3

To allow the comparison of the results for targets of dif-

ferent modeling difficulty, we computed z-scores for both

GDT-HA and AL0 for each assessment unit in the fol-

lowing way: (i) For each assessment unit, average values

and standard deviations for all predictions were calcu-

lated; (ii) For those predictions, whose scores were not

more than two standard deviations below average and

which were not flagged as physically impossible, we

recomputed the means and standard deviations, and used

these to assign z-scores to all predictions; (iii) Models

Figure 3
Illustration of HBscore on the example of a short b-sheet structure.

Figure 4
Complementary information assessed by GDT-TS and HBscore. While model A better resembles the global positioning of Ca atoms of the target structure (GDT-TS: 46)

compared to model B (GDT-TS: 35), model B better reflects the H-bonding pattern in the central b-sheet structure (HBscore: 41) compared to model A (HBscore: 26).
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Table II
Mean Values and z-Scores for Individual Prediction Groups

Group Group name
Number of
predictions

Mean
GDT-HA

Mean
AL0

Mean GDT-HA
z-score

Mean AL0
z-score

Combined GDT-HA
and AL0 z-score

4 s ROBETTA 107 46.77 60.14 0.54 0.50 0.52
5 luethy 108 47.83 65.46 0.68 0.82 0.75
9 CBiS 4 5.72 0.00 0.00 0.00 n.a.
10 SAM-T06 108 44.78 56.85 0.40 0.41 0.40
11 Dlakic-MSU 10 53.24 68.94 0.26 0.17 n.a.
13 Jones-UCL 107 47.19 62.24 0.52 0.50 0.51
15 Advanced-ONIZUKA 35 20.68 10.43 0.22 0.17 0.20
16 AMBER/PB 1 54.26 88.37 0.00 0.15 n.a.
18 LUO 97 45.31 58.99 0.52 0.52 0.52
20 Baker 106 50.19 65.21 1.00 0.89 0.95
21 karypis 83 39.02 49.23 0.37 0.34 0.36
22 s karypis.srv 106 38.28 48.87 0.23 0.27 0.25
24 Zhang 107 51.49 67.87 1.06 0.97 1.02
25 s Zhang-Server 108 50.35 66.60 0.90 0.88 0.89
26 SAMUDRALA 106 47.87 61.55 0.69 0.63 0.66
27 SAMUDRALA-AB 106 46.81 60.09 0.57 0.56 0.57
28 s PROTINFO 103 44.34 55.99 0.33 0.31 0.32
29 s PROTINFO-AB 106 42.61 53.91 0.31 0.36 0.33
30 TsaiLab 52 45.86 60.48 0.22 0.22 0.22
31 Avbelj 7 15.72 0.32 0.00 0.00 n.a.
33 POEM-REFINE 19 28.66 25.75 0.47 0.43 n.a.
34 ROKKO 105 43.73 56.30 0.40 0.38 0.39
35 s ROKKY 106 42.94 53.56 0.28 0.31 0.29
38 GeneSilico 102 48.34 63.61 0.72 0.74 0.73
40 YASARA 23 56.05 74.35 0.36 0.42 0.39
43 hu 2 54.75 69.09 0.00 0.00 n.a.
44 s gtg 56 38.85 49.75 0.10 0.08 0.09
45 INFSRUCT 1 10.17 0.00 0.00 0.00 n.a.
46 s Pcons6 108 46.70 60.70 0.50 0.44 0.47
47 s Pmodeller6 108 46.98 61.06 0.58 0.52 0.55
50 SBC 105 49.05 65.18 0.78 0.72 0.75
54 PROTEO 62 8.00 1.29 0.00 0.00 0.00
60 HIT-ITNLP 104 27.98 32.74 0.04 0.05 0.05
62 Floudas 21 26.24 19.08 0.19 0.13 0.16
63 FEIG 106 36.80 48.75 0.14 0.24 0.19
64 LMM-Bicocca 29 42.37 50.29 0.21 0.14 0.18
65 Protofold 2 9.64 0.00 0.00 0.00 n.a.
66 UF_GATORS 4 16.74 18.15 0.00 0.00 n.a.
69 s panther2 78 33.10 41.68 0.05 0.06 0.06
71 Wymore 45 40.34 51.48 0.13 0.17 0.15
74 SHORTLE 91 45.97 58.28 0.36 0.37 0.36
78 Dill-ZAP 5 26.52 10.12 0.01 0.03 n.a.
83 s LOOPP 108 41.89 51.37 0.25 0.23 0.24
87 Pan 108 42.91 52.91 0.30 0.31 0.31
91 Ma-OPUS 107 44.82 56.86 0.37 0.33 0.35
92 s Ma-OPUS-server 108 43.17 53.69 0.35 0.33 0.34
102 s Huber-Torda-Server 102 39.58 47.65 0.20 0.17 0.19
103 Huber-Torda 107 42.46 52.14 0.25 0.20 0.23
105 andante 106 47.28 60.12 0.63 0.56 0.60
109 Cracow.pl 40 12.15 1.03 0.00 0.00 0.00
111 panther 82 49.27 67.44 0.21 0.26 0.24
113 Bates 108 47.41 62.36 0.63 0.60 0.62
121 Peter-G-Wolynes 24 17.35 9.26 0.07 0.18 0.12
125 TASSER 108 49.89 66.68 0.90 0.95 0.92
132 Softberry 102 39.60 51.29 0.19 0.28 0.24
135 CBSU 108 43.34 54.48 0.33 0.35 0.34
136 s FOLDpro 108 44.97 56.46 0.45 0.38 0.41
137 s 3Dpro 107 45.42 57.02 0.49 0.42 0.45
139 s ABIpro 107 14.38 6.56 0.03 0.03 0.03
168 s Distill 108 26.34 30.57 0.04 0.07 0.05
170 LMU 78 44.99 55.92 0.12 0.08 0.10
174 Bystroff 58 28.71 30.35 0.08 0.08 0.08

(Continued )
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Table II
Continued

Group Group name
Number of
predictions

Mean
GDT-HA

Mean
AL0

Mean GDT-HA
z-score

Mean AL0
z-score

Combined GDT-HA
and AL0 z-score

178 Bilab 108 42.85 53.83 0.33 0.26 0.29
179 s Bilab-ENABLE 107 41.43 52.19 0.25 0.22 0.23
186 s CaspIta-FOX 107 41.32 51.76 0.22 0.20 0.21
191 Schomburg-group 22 56.25 75.99 0.57 0.49 0.53
193 s karypis.srv.4 91 9.47 1.38 0.00 0.00 0.00
194 Scheraga 34 16.15 4.80 0.03 0.04 0.03
197 MTUNIC 103 27.91 33.33 0.07 0.12 0.10
203 forecast 103 34.68 41.59 0.16 0.14 0.15
205 NanoModel 108 40.31 51.31 0.21 0.27 0.24
208 Nano3D 63 42.51 53.89 0.29 0.30 0.29
209 NanoDesign 89 46.10 58.70 0.33 0.30 0.32
211 KIST 103 41.55 53.03 0.23 0.28 0.25
212 s HHpred1 108 47.00 61.55 0.57 0.56 0.57
213 s HHpred2 108 48.43 62.25 0.76 0.62 0.69
214 s BayesHH 108 47.40 61.21 0.62 0.54 0.58
224 ricardo 4 38.99 54.45 0.66 0.72 n.a.
226 Struct-Pred-Course 2 43.86 60.91 0.10 0.00 n.a.
234 McCormack_Okazaki 10 40.74 48.92 0.23 0.21 n.a.
239 s nFOLD 108 41.66 51.07 0.22 0.20 0.21
242 s FUGUE 105 42.46 53.02 0.20 0.17 0.19
243 s UNI-EID_sfst 104 46.33 61.00 0.39 0.40 0.40
245 s UNI-EID_expm 107 47.17 61.82 0.33 0.32 0.32
247 s 3D-JIGSAW_POPULUS 104 39.50 48.07 0.14 0.15 0.15
248 s RAPTOR 108 45.09 58.04 0.43 0.45 0.44
249 taylor 39 27.66 27.81 0.17 0.14 0.15
250 fleil 77 39.91 52.24 0.14 0.13 0.13
252 EAtorP 15 12.66 2.33 0.00 0.00 n.a.
257 s FORTE1 108 37.65 46.62 0.14 0.14 0.14
261 s mGen-3D 107 43.66 55.49 0.33 0.30 0.31
263 igor 45 13.60 3.54 0.00 0.03 0.02
267 s RAPTOR-ACE 108 45.93 60.01 0.46 0.46 0.46
268 s karypis.srv.2 108 37.12 46.51 0.19 0.22 0.20
273 BioDec 70 35.80 47.84 0.04 0.10 0.07
274 s shub 107 44.95 58.57 0.33 0.41 0.37
275 s beautshot 108 45.55 59.45 0.39 0.44 0.41
276 keasar 107 44.08 59.57 0.37 0.44 0.40
277 s keasar-server 101 41.79 55.30 0.19 0.33 0.26
278 Pushchino 4 16.43 14.92 0.02 0.03 n.a.
284 Oka 4 23.78 28.93 0.02 0.03 n.a.
297 MLee 101 42.50 52.95 0.31 0.34 0.33
298 s CIRCLE 108 46.60 61.17 0.47 0.52 0.50
302 s 3D-JIGSAW 104 38.36 46.66 0.08 0.08 0.08
304 s panther3 16 33.54 42.68 0.03 0.08 n.a.
307 s MetaTasser 108 45.44 60.61 0.62 0.63 0.62
316 s FORTE2 108 37.17 45.94 0.17 0.15 0.16
318 s FUNCTION 107 45.01 57.68 0.33 0.33 0.33
319 s FUGMOD 100 42.99 54.14 0.24 0.22 0.23
333 s forecast-s 98 36.48 45.83 0.16 0.18 0.17
337 AMU-Biology 98 45.76 57.80 0.41 0.37 0.39
338 UCB-SHI 103 47.20 59.59 0.50 0.43 0.46
347 s beautshotbase 106 46.30 58.70 0.40 0.34 0.37
349 s FAMSD 108 46.27 59.31 0.45 0.45 0.45
351 s FAMS 108 46.21 60.03 0.44 0.44 0.44
361 Doshisha-Nagoya 7 17.90 3.82 0.00 0.00 n.a.
368 s Frankenstein 56 35.92 42.73 0.14 0.08 0.11
380 s SAM-T99 87 47.82 63.20 0.28 0.27 0.28
381 s SAM-T02 104 43.17 55.00 0.24 0.24 0.24
383 s UNI-EID_bnmx 108 46.29 60.22 0.49 0.48 0.49
389 s SAM_T06_server 108 42.28 52.38 0.29 0.27 0.28
393 Distill_human 108 26.41 30.35 0.04 0.05 0.05
397 Tripos-Cambridge 10 58.42 74.17 0.31 0.23 n.a.
401 MIG 90 39.88 46.71 0.18 0.11 0.14
413 s SPARKS2 108 45.10 57.62 0.39 0.38 0.38

(Continued )
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Table II
Continued

Group Group name
Number of
predictions

Mean
GDT-HA

Mean
AL0

Mean GDT-HA
z-score

Mean AL0
z-score

Combined GDT-HA
and AL0 z-score

414 s SP3 108 46.07 59.13 0.46 0.42 0.44
415 s SP4 108 45.44 58.31 0.43 0.40 0.42
416 honiglab 100 46.57 60.06 0.42 0.45 0.43
418 s HHpred3 108 47.81 61.45 0.69 0.59 0.64
420 s 3D-JIGSAW_RECOM 104 39.32 47.35 0.09 0.08 0.08
427 CADCMLAB 102 21.78 18.45 0.03 0.03 0.03
435 s RAPTORESS 108 43.70 57.44 0.31 0.41 0.36
437 osgdj 11 15.81 5.53 0.00 0.00 n.a.
439 Sternberg 107 45.85 60.11 0.45 0.45 0.45
443 fais 79 35.67 43.46 0.21 0.28 0.25
453 Deane 18 17.99 14.93 0.09 0.09 n.a.
464 s POMYSL 52 11.69 1.70 0.00 0.01 0.01
468 s Phyre-1 104 41.08 52.90 0.20 0.21 0.20
469 s Phyre-2 107 43.19 55.77 0.30 0.33 0.31
474 PUT_lab 72 28.73 28.74 0.08 0.05 0.06
483 Hirst-Nottingham 13 15.35 2.20 0.00 0.00 n.a.
490 lwyrwicz 106 43.49 55.20 0.29 0.30 0.30
494 s CPHmodels 60 47.06 61.96 0.11 0.13 0.12
495 largo 2 52.36 76.88 1.02 1.08 n.a.
501 Bristol_Comp_Bio 4 60.84 79.70 0.06 0.06 n.a.
509 SEZERMAN 66 30.18 32.69 0.03 0.03 0.03
511 s FPSOLVER-SERVER 103 9.67 0.81 0.00 0.00 0.00
527 chaos 16 37.19 47.85 0.07 0.21 n.a.
536 Chen-Tan-Kihara 103 44.08 55.72 0.36 0.36 0.36
550 ZIB-THESEUS 94 29.90 30.93 0.05 0.09 0.07
556 LEE 106 49.16 62.17 0.87 0.71 0.79
559 GSK-CCMM 4 66.42 87.97 0.45 0.49 n.a.
564 ShakSkol-AbInitio 13 28.86 29.12 0.53 0.57 n.a.
568 CHIMERA 107 49.21 64.85 0.73 0.76 0.74
586 s MIG_FROST 47 29.20 28.49 0.07 0.04 0.05
588 s MIG_FROST_FLEX 2 38.56 44.13 0.32 0.08 n.a.
599 KORO 31 21.48 15.14 0.43 0.57 0.50
601 LTB-WARSAW 86 43.29 55.09 0.28 0.29 0.28
609 s GeneSilicoMetaServer 100 46.57 59.99 0.43 0.41 0.42
610 Dlakic-DGSA 3 51.11 73.71 0.00 0.22 n.a.
614 Brooks_caspr 21 48.72 63.11 0.60 0.45 0.52
638 Soeding 1 29.93 36.36 1.36 1.29 n.a.
640 jive 99 40.61 51.98 0.24 0.28 0.26
641 tlbgroup 14 51.54 68.97 0.18 0.24 n.a.
650 Schulten 15 43.25 52.10 0.43 0.36 n.a.
651 verify 108 48.35 63.41 0.68 0.64 0.66
654 s NN_PUT_lab 103 43.00 53.86 0.24 0.25 0.24
658 hPredGrp 107 49.15 64.19 0.72 0.69 0.71
659 CHEN-WENDY 32 63.93 81.46 0.39 0.31 0.35
664 CIRCLE-FAMS 108 48.95 64.51 0.74 0.71 0.73
671 fams-multi 108 48.51 62.92 0.64 0.63 0.64
673 ProteinShop 6 18.32 2.74 0.00 0.18 n.a.
675 fams-ace 108 49.64 65.79 0.82 0.83 0.83
677 UAM ICO BIB 96 41.95 52.80 0.36 0.39 0.38
683 MUMSSP 15 64.17 82.80 0.34 0.38 n.a.
698 MQAP-Consensus 108 49.04 64.01 0.75 0.65 0.70
705 Akagi 101 36.96 46.28 0.17 0.19 0.18
706 TENETA 106 39.39 49.01 0.18 0.18 0.18
710 Ligand-Circle 94 46.13 59.29 0.54 0.61 0.58
721 ROBETTA-late 3 33.48 44.76 0.35 0.40 n.a.
728 s Ma-OPUS-server2 71 42.47 52.02 0.29 0.28 0.29
735 EBGM 13 29.60 36.03 0.01 0.05 n.a.
736 dokhlab 18 31.10 29.24 0.13 0.16 n.a.
746 CDAC 4 13.25 0.82 0.00 0.00 n.a.
757 SSU 16 22.33 13.34 0.11 0.17 n.a.
781 SCFBio-IITD 2 27.14 0.00 0.00 0.00 n.a.
794 MerzShak 4 27.22 27.86 0.70 0.70 n.a.

n.a.: Groups with less than 20 predictions were not included in the final ranking.
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that were worse than average, i.e. had negative z-scores,

and those flagged as physically impossible were assigned

z-scores of 0. Setting the z-scores of models of average or

worse quality to zero ensures that the submitting group

is not excessively penalized in the overall scoring, thereby

encouraging the application and development of innova-

tive and somewhat riskier methods. For each group, we

calculated mean z-scores for GDT-HA and AL0, as well

as a combined mixed z-score as the average of both.

Table II summarizes the results for each predictor group:

The number of models assessed, the mean values, and

mean z-scores for GDT-HA and AL0, and the combined

GDT-HA/AL0 z-score. Prediction groups registered as

servers are marked with ‘‘s.’’ From this list, we selected

the 25 highest scoring groups based on the combined z-

score for a more detailed assessment.

The results of the top 25 groups were compared by

direct head-to-head comparison on common targets

using paired Student’s t-tests, as introduced in CASP5.3

Note that these comparisons were based on the raw

scores of GDT-HA, AL0, and HBscore values for each

prediction (Table III). For models worse than average

(i.e. negative z-scores) the raw scores were set to target

average (corresponding to z 5 0). HBscore values for all

assessment units for the top 25 groups are provided as

Supplementary Materials (Table S-I). Models flagged as

physically impossible were omitted from the head-to-

head comparison. Finally, the number of statistically sig-

nificant wins over the other groups (Student’s t-test P-

value < 0.05) on common targets was calculated for all

three measures, and summed up for each group. Figure 5

shows the fraction of statistically significant wins in the

head-to-head comparison for the top 25 groups. The six

groups ranked top according to the combined z-scores

were the same ranked highest in the head-to-head com-

parison: 24 (Zhang), 20 (Baker), 25 (Zhang-Server), 556

(LEE), 125 (TASSER), and the meta-predictor group 675

(Fams-ace). Groups 24 and 20 produced on average

models of higher quality. Remarkably, the automated

protein modeling server of group 25 generated on aver-

age models of nearly comparable quality to the two lead-

ing manual predictor groups. In contrast to earlier CASP

experiments, the methods of all top scoring groups were

highly automated computational approaches. This reflects

on one side the results of ongoing method development

in recent years, but partly may also be a sign of the time

constraints of manual groups during the modeling season

caused by the relatively large number of prediction tar-

gets in CASP7.

During the meeting in Asilomar, it became clear that

the top scoring methods—although producing models of

comparable backbone quality—differ significantly in their

algorithmic approaches, computational requirements,

modeling of side chain packing, and atomic interactions.

This indicates possible directions for further development

of the individual methods.

Improvement over the best single template

TBM procedures rely on the detection of and correct

alignment to homologous template structures. Conse-

quently, the resulting structure models are generally

Figure 5
Head-to-head comparison for the top 25 groups showing the fraction of statistically significant wins (Student’s t-test P-value < 0.05) on common targets.
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closer to the template than to the target. Recently, several

methods have been claimed by their developers to be

able to improve over the template. We have therefore

assessed whether the predictions submitted to CASP7

showed improvement over the best available single tem-

plate structure. For this purpose, the PDB was searched

for suitable templates available at the end of the predic-

tion period for each target, using LGA10 and Mam-

moth11 as described elsewhere.7 Based on the structural

alignments generated by a 4 Å LGA sequence-independ-

ent superposition, we generated pseudo-predictions by

copying the backbone coordinates of the templates. No

coordinates were assigned to unaligned residues in inser-

tions and deletions. A ‘‘virtual predictor group’’ using

these pseudo-predictions would on average outperform

all other methods by far, as shown in Figure 6. However,

for individual targets, some groups succeeded in building

models better than the pseudo-prediction based on the

single best template. The best group in this respect (24,

Zhang) managed to achieve a higher GDT-TS score than

the virtual group in more than half the assessment units

and a higher GDT-HA score in approximately one-third

of cases. Figure 7 illustrates the fraction of targets for

which each group predicted more accurate models than

the best single template (plotted on the positive y-axis)

and targets predicted worse than the best single template

(negative y-axis).

For a small number of targets, the submitted predic-

tions were significantly better than the best single tem-

plate model. The most remarkable example was target

T0283, where the best prediction showed an improve-

ment of 20.4 GDT-HA units. Several different effects may

account for the observed improvements over single tem-

plate pseudo-predictions, e.g. including information from

multiple templates, modeling of insertions, deletions,

structurally diverse regions, and refinement to improve

the overall quality of the model. A more detailed discus-

sion is provided elsewhere in this issue.12 Overall how-

ever, most of the observed improvements are rather

small. In Figure 7, predictions with differences of less

than 2.0 GDT-HA units, between the model and the best

template are shaded in black. For the majority of targets,

the observed differences are still small compared to the

overall modeling error—too small to make a significant

difference in most biological applications.

Comparison between CASP6 and CASP7

Comparisons between different rounds of CASP are dif-

ficult as targets pose very diverse challenges to the predic-

tors, and the modeling difficulty can only be roughly esti-

mated by a combination of various parameters.1,13 Over-

all, no large improvement in general model accuracy has

been observed between CASP6 and CASP7 when compar-

ing average GDT-TS values as a function of modeling dif-

ficulty (data not shown). To assess more subtle improve-

ments, we performed a comparison between CASP6 and

CASP7 by evaluating the ability of the methods to

improve their models over the best available single tem-

plate. We applied the ‘‘best template model’’ procedure

described above to the CASP6 targets classified as com-

parative modeling or homologous fold recognition targets

(CM and FR/H) based on the best template structures

used for the CASP6 assessment.2,14 Figure 8 shows the

average fraction of predictions that boast an improvement

of more than 0.0, 0.5, 1.0, 2.0, 4.0, and 8.0 GDT-HA units

over the template, for the best ten groups in CASP6 and

Figure 6
GDT-HA z-scores for all CASP7 methods in comparison with a ‘‘virtual

predictor group’’ based on optimally aligned single best template models.

Figure 7
Performance relative to the single best template. For each group, the number of

targets predicted more accurately than expected for a model based on the best

single template is plotted on the positive y-axis, targets predicted worse are

plotted negative. Small differences less than 2.0 GDT-HA units are shaded in

black.
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CASP7. Assuming that both CASP6 and CASP7 experi-

ments were of comparable difficulty—which is consistent

with a Wilcoxon Rank Sum Test (P 5 0.31) of the target

difficulty based on the scale used in CASP62—we observe

that a higher number of groups were able to generate a

larger fraction of predictions showing improvement over

the best available templates in CASP7.

The observed improvements can be attributed to sev-

eral factors. Methods that combine multiple template in-

formation have made substantial progress in recent years,

and none of the top ranked groups in CASP7 was using

single template approaches for model building. Multiple

template and fragment-based methods can also make

effective use of the increased coverage of structure space

by structural genomics and individual structure elucida-

tion efforts. Additionally, methods developed for refining

template-free models may account for the observed

improvement in cases with only limited template struc-

ture information. One of the most astonishing examples

was target T0283, where two predictor groups have sub-

mitted models that were of significantly better quality

than the remainder (Fig. 9): Group 20 (Baker) with a

GDT-HA of 59.3, and AL0 of 77.3, and group 13 (Jones)

with a GDT-HA of 45.1 and AL0 of 62.9. The best avail-

able template structure was the archaeal ammonium

transporter Amt-1 from Archaeoglobus fulgidus (PDB:

2b2j) with an RMSD of 2.54 Å, sharing only 6.7%

sequence identity with the target. The best models have

significantly lower RMSD values of 1.78 Å and 2.37 Å,

respectively. Both groups describe their methods as frag-

ment assembly approaches with a subsequent refinement

step. As illustrated in Figure 9(d), the prediction by

group 20 is characterized by remarkably accurate local

interactions and packing of side chains for a prediction

of such low similarity to the closest template and indi-

cates a successful atomic refinement of the model.

There is no optimal method for generating pseudo-

predictions for this analysis. Different parameters can be

used for identifying structural templates for a target pro-

tein, generating structural superpositions, deriving struc-

tural alignments, and building the pseudo-models.

Pseudo-predictions built using different protocols can

differ and data derived from them may vary. Neverthe-

less, the improvement observed from CASP6 to CASP7

as shown in Figure 8 is stable and largely independent of

parameter choice. It should be noted that in most cases

the amount of improvement observed for individual tar-

gets is relatively small compared to the overall modeling

error. This may explain why improvement is only

observed by using a ‘‘best template model’’ as internal

reference point for each target, while none is detected

when using the classical overall difficulty scale. A detailed

discussion on progress over previous CASP experiments

is provided elsewhere in this issue.12

Figure 8
Performance relative to the single best template in comparison between CASP6 and CASP7. The average fractions of predictions, which achieved an improvement

compared to the best template model of at least 0.0, 0.5, 1.0, 2.0, 4.0, and 8.0 GDT-HA units are shown for the best 10 groups according to this criterion in both CASP6

(blue) and CASP7 (purple). [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]
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Accuracy of binding site predictions

Active sites or cofactor binding sites in protein models

are of great interest for biologists using protein structures

or models in their daily work. For several prediction tar-

gets, the CASP organizers released the target sequence to-

gether with information about a ligand bound in the tar-

get structure, which should enable the predictors to

model functionally important residues in the binding site

more accurately. For the assessment of this aspect, we

superposed the models onto the target structure based on

only the Ca positions of residues interacting with the

ligand in the crystal structure. We evaluated the quality of

the modeled binding site using an atomic contact score

(ACS), which considers interactions between the nonhy-

drogen atoms of the protein and the ligand [Eq. (1)]:

ACS ¼

P
i;k

ðConttargeti;k � Contmodel
i;k Þ �P

i;k

Clashmodel
i;kP

i;k

Cont
target
i;k

ð1Þ

with

Conti;k ¼
1 if 2:0Å � ri;k � 4:0Å

0 otherwise

(
;

Clashi;k ¼
1 if ri;k � 1:5Å

0 otherwise

(
:

Figure 9
Examples of model quality: (a) Superposition of target structure T0283 (green)

and best template (PDB: 2b2j, orange), with an RMSD of 2.54 Å sharing 6.7%

sequence identity. The models submitted by two groups were of significantly

better quality than the remainder: Group 20 (Baker) with a GDT-HA of 59.3,

and AL0 of 77.3 shown in (b) in dark blue. The model by group 13 (Jones)

achieved a GDT-HA of 45.1 and AL0 of 62.9 and is shown in (c) in light blue.

(d) Detailed view of the side chain packing of the target structure and the model

submitted by group 20.

Figure 10
Accuracy of cofactor binding site predictions of six TBM targets. The fraction of correctly modeled atomic interactions in the binding sites (see text) is plotted against the

overall model accuracy GDT-HA.

CASP7 TBM Assessment

DOI 10.1002/prot PROTEINS 51



We evaluated the fraction of correctly modeled atomic

contacts in the predicted binding sites by enumerating

specific contacts between the protein atoms (i) and the

ligand atoms (k) using NCONT.15 The score in Eq. (1)

penalizes interactions, which are predicted shorter than

1.5 Å by classifying them as clashes. Figure 10 illustrates

the percentage of correctly modeled contacts in six pre-

diction targets with bound cofactors: S-adenosylhomo-

cysteine in T0293 and T0332, GTP in T0308, ADP in

T0313, S-adenosylmethionine in T0316, and FAD in

T0320. Except for T0316, information about the bound

ligand was provided along with the prediction target

sequence. We would like to emphasize that this analysis

of binding site accuracy is based on six examples and

therefore has limited statistical power. It only allows for a

qualitative description, but not a quantitative assessment

of the ability of individual groups to accurately model

cofactor binding sites.

The ADP binding site of T0313, a human KIFC3

motor domain, is formed by 12 residues, nine of which

are shown in Figure 11. The experimental structure with

the ADP ligand and its solvent accessible surface are

shown in gray. The best predictions (Fig. 11, green)

reproduce the atomic interactions formed by 18 back-

bone and 24 side chain atoms very well. Models using

human mitotic spindle kinesin Eg5 (PDB: 1ii6, chain A)

with bound ADP as single template reproduce both main

chain and side chain geometry successfully. However,

numerous models with accurate backbone geometry were

submitted, which fail to form an intact ADP binding site.

Figure 11 shows two examples in which the side chain of

Arg 9 protrudes into the ADP binding site (orange and

light blue), and the stacking interaction by Tyr 92 is

modeled incorrectly (light blue).

Overall, the accuracy of the predicted binding sites

varies significantly between target structures. Compared

to the other examples, T0313 represents a relatively sim-

ple modeling task as the alignment is unambiguous. For

T0313, the best groups manage to reproduce more than

90% of the ligand–protein interactions, while even in the

best predictions for T0320 this fraction is lower than

40% (Fig. 10). While there is a general trend for models

with inaccurate backbone geometry to have incorrectly

modeled binding sites, it does not hold for models with

a GDT-HA above 40. In fact, for T0313, the best five

binding site models vary in GDT-HA from 42.6 to 62.6.

Therefore, global Ca-based measures such as GDT-HA

cannot be used as the only criterion to indicate biological

relevance of a model. Also, on average no significant dif-

ference in prediction accuracy of the binding site was

observed between targets for which the bound cofactor

was announced with the prediction target, and T0316 for

which this information was not directly available to the

predictors. In conclusion, it appears that modeling bio-

logically relevant features of the target proteins as accu-

rately as possible has not received the same level of atten-

tion by all predictor groups in CASP7.

Model quality estimates

The practical application of protein models strongly

depends on their quality. However, at the time of model

generation, the correct answer is unknown and the accuracy

of the model must therefore be estimated beforehand.

We have assessed a posteriori the ability of individual

CASP7 modeling groups to assign realistic error estimates

to their predictions. For all targets in the TBM category,

we calculated the model error for each predicted amino

acid residue as the Cartesian distance between the model

Ca coordinates and the experimental target structure in a

global superposition with LGA10 using a 4 Å cut-off. For

each participating group (i.e. groups who submitted at

least two different values in the B-factor column for

more than 10 targets), the accuracy of the error estimates

(‘‘Model B-factor’’) was analyzed using a log-linear corre-

lation between the estimates and the real error (Fig. 12).

Additionally, the results of a random model predictor

were added to the analysis for comparison. To compile

the data of this null model, ‘‘Model B-factor’’ values were

Figure 11
Superposition of experimental and predicted ADP binding sites of target T0313, a human KIFC3 motor domain (stereo view). The experimental structure with the ADP

ligand and its solvent accessible surface are shown in gray, the best prediction by group 186 in green, and predictions by groups 20 in orange and 24 in light blue.
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randomly chosen from the list of model-target distances.

Since linear correlation analysis is sensitive to outliers,

the prediction results were additionally analyzed using re-

ceiver operator characteristic curves (ROC) (Fig. 13). We

classified a residue as correctly modeled if its Ca position

error is less than 3.8 Å and incorrectly if its Ca position

error is greater than or equal to 3.8 Å. For each group,

the ‘‘Model B-factor’’ of the predictions were reranked

between 0 and 1 and the enrichment of correctly identi-

fied model errors was plotted as the false positive rate

(FPR) versus the true positive rate (TPR) by varying the

discrimination threshold between 0 and 1. The TPR is

defined as the number of true positives (TP, the number

of correctly identified model errors) over the total num-

ber of model errors (positives, P), and the FPR the num-

ber of false positives (FP, identified as errors in the

model, but in reality modeled correctly) over the total

number of correctly modeled residues (negatives, N). The

Figure 12
Log-linear correlation between the estimated model error (‘‘Model B-Factor’’) and the actual error of the model for (a) group 50, (b) group 46, and (c) group 47.
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area under the curve (AUC) is used as a measure for the

accuracy in correctly identifying model errors.

The results of the correlation analysis and the ROC

curves for each of the 60 predictor groups, which submitted

model error estimates, are listed in Table IV sorted by

decreasing AUC. The best-performing methods according

to ROC curves by Eloffson and coworkers (50, SBC; 46,

Pcons6; 47, Pmodeller6) display also the highest linear cor-

relation coefficients ranging from 0.530 to 0.620. Although

many groups were using their own metric, the best groups

provided model error estimates based on an absolute met-

ric in Ångstrom as specified by the CASP format. In sum-

mary, although only 32% of the groups have provided con-

fidence values for their predictions, the results of the pres-

ent CASP experiment are encouraging. Regarding the type

of methods used, it appears that consensus-based

approaches16 using server predictions submitted to CASP7

as input outperformed other approaches based solely on

physics, statistical measures, and traditional model quality

estimation programs (MQEP).17

CONCLUSIONS

From the perspective of a method developer, the aim of

the assessment of template-based protein structure predic-

tion in CASP is to establish the state of the art in the field,

identify progress, and pinpoint bottlenecks in areas where

further research is required. From the perspective of the life

science community, template-based protein structure pre-

diction and modeling has come of age and is widely used

today as a scientific research tool. Therefore, an increas-

ingly important aspect of the assessment is also to evaluate

to what extent today’s prediction methods meet the accu-

racy requirements of different scientific applications.

In CASP7, we could base our evaluation on a large

number of predictions, which provided a solid basis to

Figure 13
ROC curves analyzing the accuracy of the estimated model error (‘‘Model B-

Factor’’) to correctly identify incorrect residues defined as Ca error greater than

or equal to 3.8 Å. Groups with highest ROC AUC are 50 (red), 46 (light blue),

and 47 (yellow).

Table IV
Assessment of Model Error Estimates

No. Groups ROC (AUC) Correlation (r ) No. Groups ROC (AUC) Correlation (r ) No. Groups ROC (AUC) Correlation (r )

1 050 0.858 0.528 21 248 0.665 0.288 41 401 0.608 0.184
2 046 0.844 0.616 22 347 0.662 0.259 42 698 0.600 0.154
3 047 0.832 0.573 23 658 0.660 0.270 43 416 0.596 0.250
4 005 0.771 0.526 24 413 0.660 0.263 44 137 0.584 0.124
5 214 0.765 0.434 25 609 0.659 0.251 45 136 0.583 0.149
6 275 0.762 0.445 26 415 0.656 0.260 46 654 0.583 0.098
7 038 0.753 0.287 27 728 0.655 0.243 47 453 0.583 0.145
8 368 0.743 0.396 28 414 0.653 0.254 48 020 0.576 0.234
9 004 0.742 0.492 29 074 0.651 0.263 49 083 0.570 0.088
10 060 0.722 0.393 30 087 0.649 0.264 50 261 0.541 0.084
11 297 0.705 0.491 31 267 0.649 0.227 51 659 0.534 0.002
12 025 0.704 0.326 32 490 0.643 0.105 52 338 0.527 0.027
13 274 0.699 0.299 33 021 0.641 0.224 53 013 0.503 0.074
14 212 0.684 0.322 34 337 0.635 0.206 54 063 0.498 0.013
15 103 0.676 0.299 35 494 0.634 0.377 55 420 0.495 0.008
16 677 0.676 0.299 36 427 0.629 0.296 56 474 0.494 0.020
17 213 0.672 0.280 37 105 0.626 0.200 57 071 0.493 0.009
18 092 0.671 0.283 38 651 0.626 0.226 58 483 0.491 0.010
19 091 0.669 0.253 39 319 0.622 0.187 59 203 0.488 0.034
20 418 0.665 0.254 40 024 0.621 0.172 60 614 0.487 0.041

For the 60 groups providing model error estimates for their predictions, the accuracy of residue-based error estimates was assessed by ROC and log-linear correlation

using differences between the individual model and the target structure as reference.
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assess the differences between the participating prediction

methods. We have adapted the numerical assessment cri-

teria to account for the scientific progress in the field of

TBM: we applied a global distance test with stricter cut-

off values (GDT-HA 0.5, 1, 2, 4 Å) to focus more on the

finer details of the predictions. Additionally, to comple-

ment GDT and AL0 scores, which are based solely on

global superpositions of Ca atoms, we introduced

HBscore as local atomic measure evaluating how well

hydrogen bond interactions in the target structure are

reproduced in the model. Local atomic measures such as

HBscore can discriminate between predictions with oth-

erwise similar Ca structures. We have observed significant

differences in the accuracy of modeling atomic interac-

tions of backbone hydrogen bonds and side chain pack-

ing, indicating areas for further improvement for many

of the participating methods.

Overall, the top scoring groups relied on highly auto-

mated computational approaches with limited manual

intervention. Remarkably, one automated modeling server

produced models of nearly comparable quality to the two

leading manual predictor groups. We analyzed the ability

of different methods to generate predictions that improve

over a model based on a single best template structure.

Compared to CASP6, a higher number of methods were

able to achieve improvement over the best template. It

appears that several methods make effective use of multi-

ple template structures. In some cases with limited tem-

plate information, the observed improvement over tem-

plate can be attributed to successful application of frag-

ment based modeling or model refinement methods.

Although the observed improvement over the best tem-

plate model is a promising step in the right direction, it is

mostly very limited and often cannot be considered as

biologically relevant. The fact that no group would out-

perform a ‘‘virtual predictor’’ submitting models based on

the single best template for each target indicates that tem-

plate identification and alignment are by no means solved

problems and constitute a major bottleneck in TBM,

besides the challenging question of model refinement.

For regions of the protein, which are of functional im-

portance, such as active sites or ligand binding pockets,

accurate reproduction of local interactions such as hydro-

gen bonds and side chain conformations is essential. For

six CASP7 target structures with bound cofactors, we

observed considerable differences between models in

terms of local model accuracy, even when their Ca struc-

tures are similar. Since the accuracy of functional regions

is a limiting factor for the scientific usefulness of the pre-

dicted structure, improvements in this area would be a

big benefit for the life science community.

According to Henry A. Bent*, ‘‘. . . a model must be

wrong, in some respects—else it would be the thing

itself. The trick is to see . . . where it’s right.’’18 In other

words, accurate estimates of the errors of a model are an

essential component of any predictive method—protein

structure prediction not being an exception. Therefore,

we have (for the first time in CASP) evaluated the accu-

racy of the expected model errors provided by the pre-

dictors for their models. Unfortunately, only one-third of

all predictor groups provided these for their predictions.

Clearly, consensus-based methods gave the most accurate

error estimates. From our point of view, confidence

measures are an essential part of a prediction method

both from a methods development and practical applica-

tion perspective, and should therefore be an integral

component of future assessments.
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2.3: Predicting the functional impact of mutations 

Manuscript in preparation: 

Predicting the functional impact of single point mutations: a test of accuracy and 

robustness of descriptors and machine learning methods. 

Abstract 

Predicting the effect of single point mutations is of central importance in biology, as 

it can help rationalise the cause of diseases in a clinical setting and aid in planning 

mutagenesis in an experimental one. Computational approaches to understanding the 

effects of mutations have thus gained much interest in recent years. In this study, several 

classifiers incorporating evolutionary and structural information are devised for the purpose 

of predicting the effects of single point mutations. Their robustness and training set size 

dependence is rigorously evaluated using mutation level and protein level cross validation. 

The top classifiers presented here are validated using systematic mutagenesis data so as to 

confirm their predictive power. It is found that using evolutionary data, structural features 

of the mutation sites and mean force potentials to predict stability changes, classifiers can 

be trained which exceed equivalent currently published ones in performance. We find that 

mutation level validation overestimates predictive power, whereas protein level validation 

provides much more robust estimates, which are confirmed by validation on unseen 

proteins. 

Introduction 

Predicting the impact of a mutation on the function of a protein is an important issue 

in biosciences. In the field of medical research, understanding the impact of a mutation on 

protein structure and function can lend insight into the molecular basis of disease, such as 

the loss of function of phenylalanine hydroxylase as the cause of phenyl ketonuria1 or the 

inactivation of p53 in cancer2. The deleterious molecular effects a mutation can have are 

diverse. They range from abolishing essential residues responsible for catalysis or regulation 

to altering a protein’s folding kinetics or decreasing stability which in turn can cause a 

severe reduction in the protein’s effective concentration or cause aggregation. 
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Understanding and predicting mutational impact on function is of great importance, 

therefore there is much interest in developing computational approaches to phenotype 

prediction. These methods employ information from two primary sources, sequence 

evolution and molecular structure. Evolutionary information is derived from sequence 

alignments of homologous proteins. Conservation scores3 or position specific scoring 

matrices4 can be derived from these alignments for the purpose of estimating the probable 

impact of mutations5. Evolutionary information has been used in protein engineering to 

dramatically increase protein thermostability6, predicting phenotypic effects of mutations 

on synthetic datasets7 and predicting the effect of mutations in humans8. Structural 

information was first used in a large scale manner to understand the impact of human SNPs 

by Bork and co-workers9,10, Chasman&Adams11 and Wang&Moult12,13, who analysed the 

structural context of mutations and developed basic classification models to rationalize and 

predict their effects on the phenotype. In further studies, the biophysical properties of 

mutation sites were analysed and informative descriptors for predicting mutation 

phenotypes were identified14,15,16. Increasingly complex classification models have been 

used to classify SNPs using evolutionary and structural data. Initially, rule-based methods 

using structural descriptors were established for the purpose of predicting the molecular 

effect of mutations10,12,17. Simple rule sets have been superseded by the use of machine 

learning methods to optimally combine the various descriptors, such as support vector 

machines18,19,20,21, decision trees18, Random Forest based schemes19,22, and neural nets23. 

However, a number of issues have been raised with regard to their robustness. Early 

rule-based methods have been shown to be prone to error, making them insufficient for the 

purpose of medical diagnosis24. Others have raised the issue robustness of the classification 

models, pointing out that training set dependence may limit their general applicability25. 

Here, the relative importance and robustness of evolutionary and structural data to predict 

mutation phenotypes is assessed. The sequence data comprises sequence profile and 

conservation scores and in terms of structural information, pseudo-energy functions are 

used in conjunction with basic biophysical descriptors. Extensive benchmarks are performed 

to assess information content of the descriptors, and their robustness to training set size 

variations. In addition, three machine learning methods are compared in terms of their 
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ability to predict mutation phenotypes. The mutation data used to train the classifiers 

presented here are from Swiss-Prot26; these variants are assigned a phenotype based largely 

on evidence in the scientific literature, but which may in case be confirmed using the 

biophysical property changes induced by a mutation. While many others have used this 

set19,27,28, predicting mutation effects using similar descriptors as were used to annotate 

their phenotypes may lead to over-estimation of accuracy. To guard against the possibility 

of circular reasoning, the best classifiers presented here are cross-validated against 

systematic mutagenesis data to confirm their transferability to new protein classes and to 

assess the reliability of the accuracy estimates.
 

Results 

Information content of descriptors 

Sequence information 

Tolerant sites in proteins evolve through a process of neutral evolution, whereas 

functionally constrained ones show less variation across species. Given a sequence 

alignment of homologous proteins, two types of information can be extracted by examining 

the amino acid composition of an alignment, namely the site conservation and the site 

residue preference. In the present study, conservation was calculated based on a sequence 

alignment of homologous proteins found by PSI-BLAST, using 2 and 3 iterations respectively; 

these scores are referred to as the site conservation scores. In addition to site-specific 

conservation scores, other evolutionary information relevant to SNP phenotype prediction 

can be derived from the degree of conservation of the entire protein20, as high conservation 

of a protein may imply involvement in an important biological function. The average 

sequence conservation and its standard deviation over all residues in a protein based on 

both alignments from the two PSI-BLAST searches were calculated and are referred to here 

as the protein conservation scores. Residue preference was calculated using the program 

SIFT. The wild-type residue score, the mutant residue score, as well as the difference 

between the two (referred to here as “delta SIFT”), were used. 

 To examine the information content of the sequence descriptors, a Random Forest 

classifier was trained on all mutations in the dataset and their relative contribution was 



 

104 

 

determined using the internal importance estimation functionality of the Random Forest 

library (for more a definition of the MDA and MDG scores, please see materials and 

methods). The average importance values of each descriptor are displayed in table 1. The 

mutant SIFT score and the delta SIFT score ranked highest by a large margin in terms of 

MDG, but were only of mediocre importance in their MDA score, while the wild type SIFT 

score was the least informative by both measures. Wild-type and mutant identity scores 

ranked a distant third and fourth by MDG, and were also mediocre in their performance by 

MDA. The protein conservation scores ranked highest by MDA, but their MDG scores were 

mediocre, while the site conservation values were the least informative of the conservation 

scores, by either measure. Thus there is contrast between the SIFT scores, which scored 

highest by MDG and the whole protein conservation scores, which scored highest by MDA. 

Structure information 

Changes in stability can affect protein function and lead to a deleterious phenotype. 

Knowledge of the effect on stability is likely to be of importance in phenotype prediction 

and structural information can be used to make estimates about the likelihood of a 

mutation affecting protein stability. Here, mutations were mapped to protein structures and 

the properties of the mutation site were used as descriptors in classification. If exact protein 

structures were not available, homology models from the Swiss-Model Repository29 were 

used. 

The standard geometric features used for characterising mutation sites included solvent 

accessibility and the secondary structure type at the position at which the mutation occurs. 

Here a more advanced method of extracting information from structures was used, namely 

by making a prediction of the stability change induced by the mutation. Atomic mean force 

potentials51, which use the observed frequency of contacts between the different classes of 

atoms in known protein structures to derive interaction energies, have been shown to be 

potent tools in assessing changes in stability of mutations52. In order to use mean force 

potentials to estimate stability changes, in-silico mutations have to be performed in order to 

obtain a structure model for the mutant protein. While tests aimed at determining the most 

accurate modelling protocol have been performed53,54, it is not entirely clear which method 

is the most consistent for the purpose of predicting stability changes. Traditionally, methods 
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are benchmarked by comparing the predicted structure to the experimental one using 

structural measures such as root mean square deviation (RMSD) or chi angle deviation of 

the amino acid residues in the vicinity of the mutation site53,54. However, it is not clear that 

structural accuracy is necessarily sufficient in estimating the reliability of predicted energy 

changes. Here, an alternative criterion is proposed, namely the comparison of modelling 

protocols based on how informative the resulting mutant structures are in predicting the 

mutation phenotype. The modelling protocols used are outlined in the materials and 

methods section of this report and are summarized in table 2. 

Information content and ranking of the structural descriptors. 

A Random Forest was trained on the complete SNP dataset using the mean force 

potential pseudo-energies, together with the geometric descriptors (solvent accessibility, 

secondary structure and the amino acid type of the wild-type and mutant residues). The 

average importance values of the structural descriptors are reported in table 3. The wild-

type and mutant amino acid residue type contained the most information out of the scores 

used here, as evidenced by their high scores in both MDA and MDG values. It is apparent 

that the most informative model-building/wild-type combination was the most basic 

approach, namely using non-energy minimised wild type structures and in-silico mutations 

performed by Promod-II (protocol “#0”). Both the MDA and MDG averages show that the 

pseudo-energies from the ANOLEA potential provided the most information of the pseudo-

energy methods. The remainder of the MFP protocols had MDA values comparable to those 

of ANOLEA-#0, their MDG values however were significantly lower. Of all the MFP scores, 

only the ANOLEA-#0 ranked higher than the solvent accessibility, which was the fourth most 

important of the descriptors used. It is also worth noting that secondary structure was 

consistently uninformative, ranking last throughout the training runs. 

Robustness of mutant phenotype prediction methods 

To test the predictive power of a classifier, it has to be tested on data not used for 

training. An obvious requirement made for validation is that the data points be independent 

of one another, which, in the case of many descriptors here, this is not the case. Protein 

conservation scores, for instance, are the same for all mutations in a given protein. This 

dependence may overestimate a classifier’s accuracy and not make robust estimates as to 
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how informative the classifier is going to be when applied to new, unseen data. A further 

point is that the split ratios used for partitioning the data into training and validation sets 

are arbitrary and vary strongly for classifiers presented in the literature. Some have used 

ten-fold cross-validation19, while others have used more rigorous validation such as a 60/40 

randomized split22. High training set/validation set ratios may give rather optimistic 

accuracy estimates and not provide good estimates as to the method’s performance on new 

data, nor does it tell the user anything about the robustness of the method to small training 

set sizes. To validate our classifiers, a randomized split was used to partition the data into 

training and validation sets. Two schemes were used, mutation level splitting (referred to as 

RS-M) and protein level splitting (referred to as RS-P). A fixed split ratio of 90/10 was used 

for the randomized split in order to assess the maximum performance of a classifier and 

report values for comparison with other published classification models. In addition, training 

set size dependence, and thus robustness, was investigated by varying the split proportion 

used between 0 and 1 in small increments. Thus the performance of a classifier can be 

expressed a function of the split proportion used for creating training and validation sets. 

Sequence information 

90/10 randomised split. The maximal performance of the sequence classifiers was 

determined using a 30-fold repetition of a 90/10 randomised split. The results of this 

validation appear in table 4. For the RS-M scheme, the full sequence classifier, which used 

both the local descriptors and the whole protein conservation values, (for an outline of the 

descriptors used here, see table 5) had an MCC far in excess of the local sequence classifier, 

which used only residue specific data (an MCC of 0.593 vs. 0.494). However, the accuracy 

dropped to essentially the same level, when performing cross validation by protein. By 

contrast, the accuracy of the local sequence classifier was practically identical for the RS-M 

scheme as for the RS-P scheme. 

Training set size dependence. In order to further test the learning behaviour of the 

classifiers, the dependence of the performance on training set size was tested. The result of 

this validation is displayed in figure 1(A). For the RS-M, the full sequence classifier increased 

steadily towards its maximum performance with increasing training set size, whereas the 

local sequence classifier reached a plateau in its performance using approximately 20% of 
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the data. When using RS-P, the local and full sequence classifiers attained the same 

maximum performance, which is comparable to the performance of the local sequence 

classifier in the RS-M. It is notable that the full sequence classifier learned more slowly than 

the local sequence classifier, as is evidenced by the shallower learning curves in figure 1(A). 

Structure information 

Above, the reliability of the mutant structure models calculated by in-silico mutation 

protocols were tested for their information content by calculating pseudo-energy 

differences between them and the wild-types structures. A conservative mutation modelling 

protocol was shown to be the most informative; nevertheless, the remainder were not 

uninformative and could still be of value in classification. In order to test the effect of 

including all pseudo-energies compared to including only the one derived using the most 

conservative protocol, the two cross-validation schemes were used. Both classifiers used the 

wild-type and mutant amino acid type, as well as the wild-type residue’s relative solvent 

accessibility and secondary structure type as factors (see table 5, column 1, 2, 12 and 13, 

respectively). The minimal structure classifier used only the most conservative wild-

type/mutant structure combination to derive a single pseudo-energy term (protocol #0, 

table 2). A second classification model, termed the full structure classifier used the 10 

pseudo energy differences derived from the ten mutant/wild-type combinations. 

The results of the structure based classifiers for the 90/10 randomized split are 

displayed in table 4. RS-M validation showed that the full structure classifier attained a level 

of performance almost comparable to that of the local sequence classifier (a balanced error 

rate of 27.6% and an MCC of 0.449), albeit at the expense of using 10 partially redundant 

mean force potential terms. The minimal structure classifier attained a significantly higher 

error rate of 34.3% and an MCC of 0.314. Using RS-P, the full structure classifier performed 

only marginally better than the minimal structure classifier, boasting an improvement in the 

MCC of 0.02. This disparity in the accuracy observed between the two different validation 

schemes is similar to that observed for the sequence classifiers and implies that a degree of 

protein specific model fitting is occurring. 

Figure 1(B) shows the MCC of the classifiers in relation to the size of the training 

proportion used. When using the RS-M scheme, the full structure classifier required almost 
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all the set as training data to reach maximum performance, but greatly exceeded the 

minimal structure classifier in performance. The robustness of the minimal structure 

classifier is evidenced by the fact it attained near-maximal accuracy using only 

approximately 20% of the data. When applying RS-P, the two classifiers reached equal 

maximum performance, which is comparable to that of the minimal structure classifier using 

RS-M. The full structure classifier not only suffered a great drop in maximal MCC, but the 

shallow incline of learning curve in figure 1(B) indicates that it required a greater proportion 

of the data to attain it than the minimal structure classifier does. 

Combined sequence and structure information 

To determine the level of improvement in the accuracy obtained using structural 

information in addition to the sequence information, two classifiers combining sequence 

and structure information were subjected to rigorous analysis. Two models were used (see 

table 5): the full combined classifier used all terms available whereas the minimal combined 

classifier combined the terms from the local sequence classifier and the minimal structure 

classifier and thus represents a minimal combination of purely local terms. 

The results of the validation by 90/10 randomised split for the combined models are 

displayed in table 4. When assessed by RS-M, the maximal performance of the combined 

full classifier (MCC=0.610) exceeded that of the full sequence classifier (MCC=0.593). The 

minimal combined classifier, which excludes the protein conservation averages and 

variances as well as most of the pseudo-energy terms, had a lower performance; the 

balanced error rate (BER) was reduced by 3.7% and the MCC by almost 7.6%. However, RS-P 

validation reduced this performance gap between the two to an insignificant level. The 

learning curves, as shown in figure 1(C), indicate that the full combined classifier had a 

shallower learning curve than the minimal combined classifier: while it did eventually match 

the minimal one in performance, it required more data to do so. 

To estimate the added value of structural information, the performance and learning 

behaviour of the full sequence, full structure and the full combined classifiers was 

compared, as seen in figure 1(D). The combined classifier incorporating full sequence and 

full structure information exceeded the full sequence classifier by a noticeable margin. The 

full structure classifier fared comparatively poorly in that it had the shallowest learning 
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curve and the lowest maximum MCC. When using RS-P, the full combined classifier still 

exceeded that of the full sequence classifier; the performance difference between the two is 

similar for both mutation level and protein level splitting. 

Performance of various machine learning tools 

So far, the machine learning method Random Forest has been used for the purpose 

of classification. The learning behaviour and performance of other methods, the support 

vector machine and the binary decision tree, were investigated using the two validation 

schemes presented. All three methods used the descriptors of the full combined classifier, 

as outlined above. Figure 1(F) shows the learning behaviour of all three methods using both 

validation schemes. Random Forest ranked highest, using both schemes, followed by the 

SVM. The disparity in the MCC between the two cross-validation schemes was highest for 

Random Forest, while the SVM showed a lower, but still significant difference. The decision 

tree, which performed consistently worse than the other methods, showed little change in 

performance between the both splitting schemes. 

Confirmation of accuracy using unseen data 

A further, even more representative test of robustness is validation on a dataset, 

which has not yet been seen and which represents a wholly new protein class. Here, a 

classifier trained on a set of human mutations was validated by making predictions on 

systematic mutation data of unrelated proteins from other organisms. Both lysozyme of the 

T4 bacteriophage34 and the Lac repressor protein35 have been subjected to systematic 

mutagenesis, whereby most of the sites in the two proteins have been mutated to almost 

every other residue. These datasets have two benefits. Firstly, a single, objective phenotype 

is being measured in isolation, thus circumventing the problem of incomplete penetrance of 

the molecular phenotype in the human SNP dataset. Secondly, all amino acids are tested at 

all sites of one protein, rather than a small number of mutations in many, very different 

proteins in the SNP dataset. By examining how well our method can classify the measured 

effects of mutations in these systems, we can establish how well the molecular phenotype is 

being learned. 

The table 6 shows the results of applying the Random Forest models using sequence 

and structure data, the full combined classifier and the minimal combined classifier, to the 
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task of predicting the phenotypes observed in the systematic mutagenesis experiments. The 

highest performance was achieved for the lysozyme mutants at 37°C; the accuracy rates for 

the full combined classifier were significantly lower than the performance estimates from 

the RS-M, but only marginally lower than those achieved during the RS-P validation. The 

minimal combined classifier performs worse than the full combined classifier on both 

counts. For the lysozyme mutants at 25°C, both classifiers perform worse, the accuracy of 

the full combined classifier being insignificantly higher than that of the minimal combined 

classifier. For the lysozyme data the false positive and false negative error rates are more 

balanced for the full combined classifier than for the minimal combined classifier, although 

the false positive rate is still considerably lower than the false negative rate. For the Lac 

Repressor data, the full combined classifier performs marginally worse than the minimal 

combined classifier, implying that despite the higher performance for the full combined 

classifier observed during validation on the human SNP set, it doesn’t necessarily guarantee 

the best results for all proteins. 

Comparison with other published methods 

The comparison with the classification tools of other authors is difficult for three 

reasons. First, the datasets used for training and validation vary between studies, making 

them not strictly comparable. Second, the validation schemes differ tremendously, and 

affect the degree to which performance estimates are comparable. Thirdly, the descriptors 

differ in their applicability; the use of descriptors drawn from knowledge bases such as 

Swiss-Prot may improve overall accuracy, but the classifiers do not work when this 

information is unavailable. Nevertheless, some performance estimates have been published 

which are derived from mutations from Swiss-Prot. While still not perfectly comparable, 

they can act as a general guide. 

In table 7, the combined classifiers, validated by 90/10 RS-M are compared to other 

published methods. Bao and Cui19 use a set of 4013 mutations from Swiss-Prot. Their set is 

strongly unbalanced with only 532 neutral mutations, the rest being deleterious. This 

imbalance reflected in their false positive and false negative rates, and is extremely 

detrimental to their reported BER and MCC. Barenboim and colleagues22 use a set of 1315 

mutation and perform 10-fold cross validation on their statistical geometry based method. 
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They achieve better error rates than Bao and Cui, owed in part to their more balanced data 

set. Ye et al 28 use a set of 3438 mutations in 522 proteins and achieve an MCC of 0.604 in 

five-fold protein level cross-validation. Hu & Yan8 achieve good results using a small set of 

sequence based descriptors to train a decision tree using the same data set as Ye et al; their 

protein level cross-validation gives an MCC of 0.607, but when applying their classifier to the 

complete Swiss-Prot dataset, their MCC drops to 0.42. In the present study, the mutations 

from the human variants pages from Swiss-Prot were used to train the classifiers. Using a far 

more diverse set of proteins, the full combined classifier has an MCC of 0.532; a higher MCC 

is attainable using mutation level validation (MCC=0.610). 

A further comparison with other methods is possible, using the systematic mutation 

datasets (see table 8). Karchin et al21 used a support vector machine based on structural and 

evolutionary data to classify mutations in the Lac repressor and T4 lysozyme mutagenesis 

datasets. By training on one dataset and validating on the other, they obtained reliable 

estimates of their classifiers’ accuracy. Their on average best method obtained an accuracy 

of 65.8% (error rate=34.2%) on Lac repressor and 71.4% (error rate=28.6%) for lysozyme; it 

was outperformed by the full combined classifier presented here. It is worth noting that 

Karchin et al. were able train better predictors for the datasets individually; they could 

attaining an accuracy of 66.8%, on the Lac repressor data (corresponding to an error rate of 

33.2%) using a minimal set of only three descriptors, and an accuracy of 74.8% 

(corresponding to an error rate of 25.2%) on the lysozyme data, using a set of 32 

descriptors. Both these methods performed well only on one dataset and were less accurate 

on average than their top predictor was. Bromberg and Rost23 also validated their method 

using the lysozyme and Lac repressor data and reported their overall accuracy (defined as 

the number of correct predictions divided by the sample size, which corresponds to 1 minus 

the error rate reported here). For the Lac repressor and lysozyme mutagenesis data, they 

report an accuracy of 72.7% (error rate = 27.3%) and 73.2 (error rate = 26.8%). Their basic 

model has a reported accuracy of 70.7 (ER=29.3) and 70.0 (ER=30.0) for the Lac repressor 

and lysozyme datasets, respectively. The minimal combined classifier compares favourably 

with their non-annotated version, outperforming it on T4 lysozyme, but performing less 

accurately on Lac Repressor. The same is observed in the comparison of the full combined 
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classifier with their annotated model: it performs better on lysozyme, but worse on Lac 

repressor. 

The issue of descriptors assigned by protein 

As mentioned above, some of the descriptors were assigned on a per-protein basis, 

i.e. for each mutation occurring in a given protein the same value was assigned; this is the 

case for the whole protein conservation scores. However, machine learning methods 

generally assume the independence of the values used for prediction. If this is not given, 

there is scope for over-training on the dataset, particularly when the validation techniques 

are not rigorous. The inclusion of per-protein factors leads to a dramatic increase in the 

apparent predictive power of the method, but it is unclear whether or not the increase in 

performance is due to a biologically explainable effect or whether it is merely due to non-

stringent validation techniques. Here, random factors were used in order to test whether a 

similar level of predictive power could be achieved. 

Random factors were assigned on a protein-wise basis, in the same manner as were 

the mean and standard deviation of the protein conservation. For each protein, four 

random real numbers between 0 and 1 were generated and assigned to each mutant from 

this protein. The effects of replacing the whole protein conservation scores are shown in 

figure 1(E). Again, the learning effects were examined using RS-M and RS-P schemes for 

dataset partitioning. The local sequence classifier was included for reference, as a base line 

of performance. Using RS-M, the random effects showed a marked improvement over the 

local classifier, although the classifier incorporating them didn’t reach the accuracy of the 

protein conservation score based method (full sequence classifier). The random effects 

displayed the same behaviour when switching from RS-M to RS-P, as did the whole protein 

conservation scores: they suffered a performance drop to level of that of the local sequence 

classifier and their learning curves became shallower. 

Discussion 

Sequence based descriptors. Sequence information is highly informative for the 

purpose of scoring SNPs. The Random Forest importance scores show that the mutant SIFT 

value and delta SIFT value, ranked highest according to the MDG value and do so by a 

considerable margin. The protein conservation scores have the highest MDA values, but 
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only by a small margin, but their MDG values are only mediocre. The site conservation 

values are surprisingly uninformative compared to the other descriptors, scoring badly in 

terms of both MDG and MDA. The two different splitting schemes, one by leaving out a 

given proportion of the mutations and the other by leaving out all mutations from a given 

proportion of the proteins, are employed to simulate a realistic situation, where the protein 

in which a mutation of interest occurs, has not yet been seen. When employing RS-M, the 

full sequence classifier significantly outperformed the local sequence classifier, whereas 

with RS-P, the two classifiers performed equally well, with their performance being 

comparable to that of the local sequence classifier as assessed by RS-M. This shows that the 

local sequence classifier does not need protein specific data to reach its maximum 

performance, whereas the full classifier does. The information learned from the average 

conservation of the protein provides little benefit when applied to other proteins. In 

addition, for RS-P, the full sequence classifier required more data to attain the same 

performance as the local method. 

Structure modelling protocols and mean force potentials. Structural information 

differs in its information content from evolutionary data, in that it provides mainly 

information pertaining to stability, rather than providing specific information on biological 

function. The use of structural data is investigated as is the use of mean force potentials to 

calculate the energy difference between the wild-type and mutant protein. The importance 

scores output by Random Forest show that the wild-type/mutant structure from mutation 

protocol #0 performed best. It appears that elaborate modelling on average only decreases 

the utility of the structure models, and that the most parsimonious approach, i.e. changing 

the structures as little as possible, is the most effective. Only the pseudo-energy differences 

derived using the simplest modelling protocol (“#0”) were more informative than the 

solvent accessibility values and thus contained information beyond a residue’s propensity to 

burial; nevertheless the use of pseudo-energy terms from other mutation protocols was 

beneficial to the overall predictive power of the classifier. Secondary structure was little 

informative on the mutation dataset, despite the fact it contains implicit information about 

the backbone geometry of the mutation site. 
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The issue of robustness of the structure based classifiers was assessed using the 

same two splitting schemes, RS-M and RS-P. The classifier incorporating all 10 pseudo-

energy terms was more effective than that using only 1 pseudo-energy, when using RS-M. 

Using a 90/10 randomised split showed that the average MCC was significantly higher for 

the full structure classifier compared to that of the minimal structure classifier; its 

performance was close to that of the local sequence classifier. However, RS-P indicates that 

using 10 pseudo-energies provides little benefit over using a single pseudo-energy term 

when applied to unseen proteins. The learning curve further shows that the additional 

pseudo-energies decrease the rate of learning when using RS-P. The effect is remarkably 

similar to performance of the full sequence classifier, which uses protein conservation 

descriptors, compared to the local sequence classifier: the full sequence classifier attained a 

higher maximum RS-M performance, was but its rate of learning for RS-P was slower. 

Combined sequence and structure classifiers. The added value of structure data over 

sequence data is assessed by combining both sets of terms into a single classifier. Using RS-

M, the full combined classifier showed a notable increase in accuracy over the full sequence 

classifier; it didn’t however show the same degree of training set size dependence as the full 

structure classifier did. RS-P shows the same steady increase in performance of the full 

combined classifier over the full sequence classifier, showing that neither is more robust 

than the other. 

Machine learning tools. Three machine learning methods have been benchmarked in 

the present work, Random Forest, SVM and decision tree. Random Forest outperformed 

both the other machine learning methods by a notable margin. The performance of the SVM 

was lower than that of the Random Forest, for both splitting schemes; the decision tree 

generally performed poorly compared to other methods, as presumably its conceptual 

simplicity did not allow it to be fit to complex patterns in the data. This simplicity however 

made decision trees very robust, as is evident from the similarity in its performance 

between RS-M and RS-P. It also required only little data to reach its maximum performance 

during RS-M, even if this was significantly lower than for the other two methods. 

Confirming the performance and performance estimates on unseen data. To further 

validate our Random Forest classifiers and to test the robustness of the accuracy estimates, 
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the full and the minimal combined classifier were used to classify mutation data from 

systematic mutation datasets. The accuracy of the classifiers on these datasets was 

generally lower than that obtained during self-consistency validation on the Swiss-Prot 

variant set. The most accurately classified set was the lysozyme-37 data; the full combined 

classifier’s accuracy approaches the accuracy achieved during the self-validation using RS-P. 

This supports the notion that RS-P provides more realistic estimates of the expected 

accuracy than RS-M. The minimal combined classifier was less accurate, which would 

initially indicate a gain in predictive power due to the additional descriptors included in the 

full combined classifier. 

For both classifiers, the classification performance for the lysozyme-25 data was 

somewhat lower than the accuracies according to RS-M and RS-M, whereby again the full 

combined classifier outperformed the minimal one, albeit by a negligible margin. The 

reduction in performance of both classifiers was presumably due to the influence of 

temperature on those mutations which cause a reduction in stability. At lower temperature 

the destabilisation of a protein will be less prominent and its stability will be sufficient for 

the effect of the mutation to go unnoticed. Due to this masking effect, a correctly predicted 

loss of stability will be seen as a classification error and lead to an increase in the false 

positive rate. 

The results for Lac repressor dataset displayed highly imbalanced false positive and 

false negative rates. This protein binds DNA as a tetramer, but the structural data is only 

taken from the monomeric form of the structure. As solvent accessibility implies tolerance 

to mutation, residues at the binding interfaces will have misleading solvent accessibility 

values. Here the minimal combined classifier fared marginally better than the full combined 

classifier, which may be indicative of increased robustness of the classifier to the limitations 

in the structural data. The general observation that none of the validation performance 

estimates approached those observed during self-validation using the RS-M scheme implies 

that it is a less robust estimator of the true performance than the RS-P scheme. Even more 

accurate estimates could presumably be achieved using even more rigorous validation 

schemes. For instance, validation at a protein family level, rather than just at the protein 

level could remove bias due to family specific traits being learned during training. 
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Comparison with other published methods. A minimalist approach has been 

presented by Bao and Cui 19, who use structural and evolutionary information to predict 

phenotypes. Our full combined classifier exceeded their performance, both when using 

mutation level and protein level validation. An unfortunate drawback to their study was the 

imbalance of deleterious and neutral SNPs, which affected their reported MCC values. By 

contrast, Dobson et al27 used a fully balanced set for training their prediction tool and 

reported an MCC of 0.49 for their set of 3821 SNPs. The application of their classifier is 

limited by the requirement of Swiss-Prot annotation, which is not universally available. By 

contrast, our full combined classifier is independent of annotation, yet still achieved an MCC 

of 0.61 and 0.532 using mutation level and protein level cross-validation, respectively. 

Others (Ye at al28, Hu and Yan8) achieved higher MCC values than our method using 

protein level cross validation. The robustness of this estimate is however unclear, as Hu and 

Yan’s classifier achieved an MCC of only 0.42 when validated on a larger, unseen set of 

Swiss-Prot mutations (21185 mutations, in their case). Both studies use a binary descriptor 

for classification, which indicates whether or not the protein a mutation occurs in is a 

member of the human leukocyte antigen (HLA) family. Ye et al argued that it allows specific 

properties of this family to be learned; however, performance estimates for only the HLA 

proteins would have to be presented to confirm this assertion. Our classifiers do not have 

such drawbacks as they use no categorical family specific information. The minimal 

combined classifier learned fast, needing only a very small proportion of the data to reach 

maximal accuracy and thus circumvents vastly over-optimistic accuracy rates. Furthermore, 

our method achieved higher performance on the lysozyme mutagenesis data than Hu&Yan 

do on Swiss-Prot data, even though lysozyme constitutes an unseen protein from a different 

organism. 

Validation on the systematic mutagenesis data from Lac repressor and T4 lysozyme 

presents allows an objective comparison to other methods. Karchin et al21 trained an SVM 

using evolutionary and structural data on either Lac repressor or T4 lysozyme, and validated 

their classifier on the other dataset. Here, the full combined classifier was shown to 

outperform their on average best classifier. Karchin et al were able to reach higher accuracy 

on the individual datasets using different descriptor combinations for their classifiers, but 
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the improvement came at the expense of a loss of accuracy when the classifier was 

validated on the other set. The accuracy of Bromberg and Rost’s method23 depended on the 

inclusion of specific annotation information; using annotation their method outperformed 

our minimal combined classifier, when omitting annotation their method performed worse 

on lysozyme, but still better on Lac repressor. On lysozyme dataset, the full combined 

classifier outperformed both the annotated and non-annotated classifiers of Bromberg and 

Rost, but was inferior on the Lac repressor set. This imbalanced behaviour is corresponds to 

the behaviour observed by Karchin et al, who obtained high accuracy on one dataset, by 

sacrificing it on the other; balancing the performance between the datasets appears to 

entail a loss in predictive power. 

The effect of random descriptors assigned by protein. The performance of the 

classifier using protein level random factors showed similar behaviour to that of the full 

sequence classifier, which uses protein conservation scores: it showed a large improvement 

over the local sequence classifier, which uses only local sequence information. This 

improvement was, however, not as great for the random values as for the protein 

conservation scores. This shows that a large proportion of the accuracy improvement by 

using per protein descriptors is due to family specific fitting; the values can be arbitrary and 

yet still allow Random Forest to derive information from them. The fact that the 4 whole 

protein conservation scores still performed better than the random effects (using 90/10 RS-

M, the classifier using 4 conservation scores attained a MCC of 0.586, where as the classifier 

using 4 random effects achieved an MCC of 0.556) shows that they still do contain 

information which is useful in classification. Like the profile methods, the random effects 

attained similar performance as the local sequence classifier using RS-P, but the learning 

curve was shallower. In all, the protein conservation averages and standard deviations 

contain more information than the random descriptors, but not as much as one would 

assume when comparing their performance to that of the local sequence classifier based on 

the RS-M accuracy estimates. The inclusion of data on protein conservation averages is 

merited if the training dataset is large enough for the slower rate of learning not to be felt. 
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Summary 

 In this work, methods for predicting the effect of mutations on the phenotype are 

rigorously validated. The use of structural information improves the overall performance 

compared to using only evolutionary data, confirming the utility of protein structure in 

mutation effect prediction. While the top classifier presented here, which uses sequence 

and structure information, exceeds other comparable methods validated on SNP datasets, 

the performance depends crucially on the type of validation used. Validation techniques 

which do not account for statistical couplings in the data may overestimate the 

performance. Protein level validation shows that a method using the minimal subset of 

descriptors can achieve a similar level of performance as a method using the full set of 

descriptors. 
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Materials and methods 

Swiss-Prot human variation dataset. The human variants listings of the Swiss-Prot 

database 26 were used, as supplied on the Uniprot web site 

(http://www.uniprot.org/docs/humsavar). In the version used (UniProt Release 55.0) there 

were 44208 distinct mutations in 8658 different proteins. For 38% of these, i.e. 17016 

mutations in 3791 proteins, structural information was available either in form of 

experimental structures or homology models from the Swiss-Model Repository29. Of the 

mapped mutations, 58.1% (9891 mutations) were disease causing and the remainder (7125 

mutations) were annotated as polymorphisms. Mutations without a confirmed phenotype 

(“Unclassified”) were excluded from the present analysis. 

Systematic mutagenesis datasets. Two systematic mutagenesis datasets were used 

for validation purposes. The complete mutagenesis of bacteriophage T4 lysozyme34 at two 

different temperatures (25°C and 37°C) provided 4030 mutations (2015 mutations at each 

temperature). For the lysozyme data, mutations were classed as neutral only if full wild-type 

activity was not reported, otherwise they were considered deleterious. The Lac repressor 

protein mutagenesis dataset 35 provided 4000 mutations. Here, only mutations which did 

not have full wild-type activity were deemed to be deleterious, otherwise they are classed 

as neutral. 

Sequence descriptors. For calculating conservation scores, sequence data was 

collected using a PSI-BLAST32 (version 2.2.16) search against the Uniref90 database33. For 

each sequence, 2 searches were performed using 2 and 3 iterations (PSI-BLAST parameter 

“j”). The search employed an iterative inclusion e-value cut off (PSI-BLAST parameter “h”) of 

10-5 and a final cut-off (PSI-BLAST parameter “e”) of 10-3. PSI-BLAST hits with less than 80% 

coverage of the target sequence were removed from the alignment. Conservation scores 

were calculated based on the BLAST alignment and using the program Scorecons3 with the 

default (“valdar01”) weighting scheme. SIFT7 was run using the Uniref90 database. The SIFT 

scores of the wild-type residue, that of the mutant residue and the difference between the 

two were calculated. In addition to the evolutionary data, the identity of the wild-type and 

the mutant residue are used as categorical descriptors during classification. 
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Structural coverage and homology models. For SNP analysis, structural data were 

obtained from structures in the PDB34. In cases where no direct structure was obtainable, 

homology models were taken from the Swiss-Model Repository29 a database of structures 

built using the Swiss-Model pipeline35. As multiple fragments may be available for each 

sequence, the fragment with the highest target template identity (over the length of the 

covered region) was used. 

Structural information. Using structures or homology models, the solvent 

accessibility was calculated using the program NACCESS36, whereby the relative solvent 

accessibility was used (i.e. the solvent accessibility relative to that of the same residue in a 

Gly-X-Gly trimer, where X is the amino acid). Secondary structure was assigned using DSSP37. 

In-silico mutation and energy difference calculation. 5 protocols were used to 

generate structure for the mutant protein. The first employs Promod-II38 to mutate the site 

of interest, followed by an energy minimisation of only the mutated residue using the 

GROMOS force field39. The second uses simple side chain replacement by SCWRL 

(version 3.040), the third additionally includes 50 rounds of energy minimisation, using the 

GROMOS force field implemented in Promod-II, of the whole structure following mutation. 

The fourth and fifth protocol use SCWRL to mutate the appropriate residue and to repack 

the side chains which have at least one atom within 10 Angstroms of the mutated residue’s 

side chain, whereby protocol 4 does not perform and energy minimisation and protocol 5 

subjects the whole protein structure model to 50 rounds of energy minimisation using the 

GROMOS force field. The five mutation protocols and 2 wild type structures yield 10 

combinations of wild-type and mutant pairs, which were analysed using 2 mean force 

potentials, resulting in 20 combinations. Two wild type structures were used in the 

calculation of the pseudo-energies, of which one was energy minimised using the GROMOS 

implementation in Promod-II, while the other was not. The ANOLEA mean force potential41 

was used to calculate pseudo-energies. It uses 40 atom types to represent the 167 atoms 

from all standard residues in proteins and incorporates a knowledge based solvation term. 

The difference in pseudo-energy between the wild-type and the mutant structure was used 

as a descriptor for classification (columns 14-23 in table 5). 
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Descriptor importance. The relative information content of the descriptors used for 

mutation classification was assessed by using the importance values provided by the 

Random Forest classifiers trained on the entire Swiss-Prot SNP dataset. Random Forest 

performs classification using an ensemble of classification trees, each built on a subset of 

the data. It provides two measures as to how informative the descriptors used are: the 

“Mean Decrease Gini” value (MDG) is a measure of a variable’s average contribution to class 

separation at the individual nodes of the trees. The difference in node impurity, as defined 

by the Gini index (ref), is calculated before and after the split on a particular variable, and is 

averaged over all nodes at which this variable is used. The “Mean Decrease Accuracy” 

(MDA) reflects the average difference in accuracy of a tree before and after the values of 

the variable being analysed are permutated. The accuracy determined on the subset of data 

used to train the tree and the MDA is the average over all trees (for more details the reader 

is referred to the Random Forest manual49). Random Forest relies on a large number of 

decision trees which are built using a degree of randomness and both its performance and 

the importance of the variables vary between different classifiers trained on the same 

dataset. Consequently, a number of repetitions of the training process need to be 

performed in order to get a reliable estimate of the importance of the factors used in 

classification. Here, the process is repeated 30 times and the importance values of each 

variable are recorded. 

Classification accuracy. Based on the number of true positives (TP), true negatives 

(TN), false positives (FP) and false negatives (FN), various performance scores can be 

calculated. A classifier’s error rate is defined as the number of incorrectly classified data 

points divided by the total sample size: 

TPTNFPFN

FPFN
ER

+++
+=  

For unbalanced datasets, i.e. those in which one class is more frequent than the other, two 

more robust scores of accuracy are available. 
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The balanced error rate (abbreviated to BER) is defined as: 
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Matthew’s correlation coefficient 50 (abbreviated to MCC) is defined as: 
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Two additional measures used here are the false positive rate (FPR) and the false negative 

rate (FNR): 
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Machine learning methods. All statistical modelling was performed using the R 

programming language42. Implementations of the various machine learning methods are 

available for R: Random Forest43 is implemented in the randomForest library44, support 

vector machines45 are supplied as part of the package e107146 and binary decision trees47 

are provided in the “tree” package48. 

 Validation. Classifier validation was performed using random splitting of the data. 

For mutation level validation, a specified proportion of the data were drawn without 

replacement from the sample, and used for training the classifier. The remainder were used 

for validation. The process was the same for protein level validation, only random drawing a 

proportion from the set of unique proteins and pooling all mutations from proteins in the 

sample. This process was repeated 30 times and the mean performance values were 

recorded. For the systematic mutagenesis datasets, the 30 Random Forests were trained 

using the entire Swiss-Prot human variation dataset and used to predict the effect of 

mutations on the mutagenesis data; the average performance values were reported. 
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Tables 

Factor Mean Decrease Accuracy Mean Decrease Gini 

Mutant residue SIFT score 0.2697141 1340.8982 

Delta SIFT score 0.265745 1190.1542 

Mutant residue identity 0.2652595 800.3748 

Wild type residue identity 0.2671678 721.3913 

Protein conservation Standard Deviation (3 iterations) 0.2703881 671.5299 

Site conservation (2 iterations) 0.2581044 650.8633 

Protein conservation Standard Deviation (2 iterations) 0.2716731 642.8701 

Mean protein conservation (3 iterations) 0.2723504 637.7788 

Mean protein conservation (2 iterations) 0.2716628 628.4365 

Site conservation (3 iterations) 0.2581864 546.602 

Wild type residue SIFT score 0.2234823 431.0573 

Table 1: Importance of the factors used in classification, derived by training Random Forest, 

using all sequence descriptors, on all data points in the Swiss-Prot human variation sample. 

The average values recorded during 30 repetitions of this procedure are displayed and 

ordered by their Mean Decrease Gini values. 

 

Protocol Wild type global energy 

minimisation 
Mutation Protocol 

Mutant global energy 

minimisation 

#0 

- 

Promod-II - 

#1 
SWRL 

- 

#2 + 

#3 SCWRL with local 

repacking 

- 

#4 + 

#5 

+ 

Promod-II - 

#6 
SWRL 

- 

#7 + 

#8 SCWRL with local 

repacking 

- 

#9 + 

Table 2: Summary of the protocols used for calculating wild-type – mutant structure pairs, 

as used for energy difference calculation. 



 

127 

 

 

Factor Mean Decrease Accuracy Mean Decrease Gini 

Mutant residue identity 0.2675565 887.5957 

Wild type residue identity 0.2721382 810.9856 

Anolea-0 0.2675859 805.7428 

Relative solvent accessibility  0.2722856 763.7696 

Anolea-9 0.2514838 565.0958 

Anolea-1 0.2662802 555.8894 

Anolea-3 0.2475920 542.4026 

Anolea-2 0.2561249 531.8517 

Anolea-6 0.2649048 525.7636 

Anolea-7 0.2586813 522.5529 

Anolea-5 0.2625828 490.3038 

Anolea-4 0.2587994 474.9356 

Anolea-8 0.2601427 465.4379 

Secondary structure 0.2226180 340.6063 

Table 3: The importance of the various structure features and pseudo-energies in classifying 

mutation phenotypes in the Swiss-Prot human variation set using Random Forest are 

displayed. The values are derived by averaging the importance values over 30 repetitions of 

the training procedure using the entire dataset. 

 

Information Model 
Randomised Split Scheme 

(by Mutant/Protein) 
FPR FNR ER BER MCC 

Sequence 

Local 
M 0.215 0.290 0.246 0.253 0.494 

P 0.222 0.294 0.253 0.258 0.483 

Full 
M 0.173 0.234 0.198 0.203 0.593 

P 0.253 0.238 0.249 0.246 0.502 

Structure 

Minimal 
M 0.284 0.402 0.333 0.343 0.314 

P 0.292 0.396 0.336 0.344 0.311 

Full 
M 0.231 0.320 0.268 0.276 0.449 

P 0.338 0.328 0.333 0.333 0.331 

Combined 

Minimal 
M 0.195 0.271 0.227 0.233 0.534 

P 0.213 0.268 0.236 0.240 0.516 

Full 
M 0.159 0.232 0.190 0.196 0.610 

P 0.226 0.237 0.230 0.232 0.532 

Table 4: The result of cross validation using a 90/10 split for creating training/test sets from 

the data. The two cross validation schemes involve forming subsets either by sampling at 

the mutation level or at the protein level. 
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Table 5: The descriptors used for classification in the various models. The wild-type (“Wt”) and mutant residues (columns 1, 2) are 

included in all models. The residues preference scores are calculated by SIFT (columns 3-5) for the wild-type (“Wt”) and the mutant, 

the difference is referred to as “Delta”. The site conservation, whole protein conservation mean and standard deviation (“Sigma”) 

over all residues in the whole protein are listed. Conservation scores are calculated using multiple sequence alignments from PSI-

BLAST, generated using 2 and 3 iterations (columns 6-8 & 9-11 respectively). The acronyms SASA and DSSP (columns 12 and 13) 

denote solvent accessible surface area and secondary structure, respectively. The ANOLEA pseudo-energy scores (columns 14-23) 

are calculated on wild-type/mutant structure pairs calculated as outlined in table 2. 

 

 Amino acid  Sequence  Structure 
 Residue type  Residue preference( 

SIFT) 
 Conservation (2 

iterations) 
 Conservation (3 

iterations) 
 General  ANOLEA Mutation/wild type combination 

Model Wt Mutant  Wt Mutant Delta  Residue Mean Sigma  Site Mean Sigma  SASA DSSP  0 1 2 3 4 5 6 7 8 9 
Local Sequence X X  X X X  X    X                 
Full Sequence X X  X X X  X X X  X X X               
Minimal 
Structure 

X X              X X  X          

Full Structure X X              X X  X X X X X X X X X X 
Minimal 
Combined 

X X  X X X  X    X    X X  X          

Full Combined X X  X X X  X X X  X X X  X X  X X X X X X X X X X 
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Model Validation FPR FNR ER BER MCC 

Combined full 

90/10 RS-M 0.159 0.232 0.190 0.196 0.610 

90/10 RS-P 0.226 0.237 0.230 0.232 0.532 

Lysozyme (37°C) 0.224 0.285 0.266 0.255 0.461 

Lysozyme (25°C) 0.280 0.356 0.313 0.303 0.361 

Lac Repressor 0.190 0.395 0.327 0.293 0.391 

Combined minimal 

90/10 RS-M 0.195 0.271 0.227 0.233 0.534 

90/10 RS-P 0.213 0.268 0.236 0.240 0.516 

Lysozyme (37°C) 0.200 0.338 0.294 0.269 0.432 

Lysozyme (25°C) 0.241 0.372 0.334 0.307 0.353 

Lac Repressor 0.217 0.346 0.303 0.281 0.411 

Table 6: Confirming of the performance estimates and predicted error rates by means of 

validating on unseen data. For reference, the results from the self-consistency 90/10 

random split validation on the Swiss-Prot variants have been included (italic). 

 

Method Validation method Requires annotation Sample size FPR FNR ER BER MCC 

Bao & Cui19 10-fold CV No 4013 0.378 0.206  0.292 0.315 

Bao & Cui19 Unseen data (Swiss-Prot) No 205 0.300 0.240  0.270 0.352 

Barenboim et al.22 10-fold CV No 1919    0.294 0.436 

Dobson et al. 27 10-fold CV Yes 1218     0.490 

Ye et al.28 5-fold protein level CV Yes 3438     0.604 

Hu & Yan8 4-fold protein level CV Yes 3438     0.607 

Hu & Yan8 Unseen data (Swiss-Prot) Yes 21185     0.420 

Combined full model protein level 90/10 RS No 17016 0.226 0.237 0.230 0.232 0.532 

Combined full model mutation level 90/10 RS No 17016 0.159 0.232 0.190 0.196 0.610 

Table 7: Comparison to other published methods applied to human variants from Swiss-

Prot. Cross validation is abbreviated to CV, randomised split to RS. Cross-validations 

reported by others were performed at the mutation level, unless explicitly stated otherwise. 
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Method Lysozyme Lac Repressor 

Ng & Henikoff4 - BLOSUM62 47.0% 54.2% 

Ng & Henikoff4 - SIFT 63.3% 68.3% 

Karchin et al. 21 – “Top five features” 71.4% 65.8% 

Bromberg & Rost23 – SNAP without annotation 70.0% 70.7% 

Bromberg & Rost23 – SNAP with annotation  73.2% 72.7% 

Combined minimal 70.6% 69.7% 

Combined full 73.4% 67.3% 

Table 8: Comparison of the accuracy of the combined classifiers to other published methods 

on T4 lysozyme and Lac repressor systematic mutagenesis data. The accuracy is defined as 1 

minus the error rate. The values for the other methods were taken from the respective 

publications, the reader is referred to these for details of the methods. 
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Figures 
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Figure 1: The Matthew’s Correlation Coefficient (MCC) of the various classifiers is displayed 
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as a function of the proportion of the data used for training. For validating a machine 

learning model, the data is partitioned into a set for training the method, which is validated 

using the remainder. Splits are performed either at the mutation level (RS-M) or at the 

protein level (RS-P); they are repeated 30 times and the average MCC is reported. Several 

comparisons are performed: (A) full sequence information versus local sequence 

information, (B) the full structure model incorporating 10 pseudo-energies versus the 

minimal structure model using only the best pseudo-energy term, (C) the full combined 

classifier and the minimal classifier, (D) a comparison of the full sequence, structure and 

combined models, (E) the whole protein conservation scores versus protein level random 

factors and (F) a comparison of three machine learning methods using the full combined 

descriptors. 
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3. Summary and Outlook 

The analysis of alternative structures shows that roughly half of the positional 

variation of the atoms in equivalent amino acids observed in independently solved 

structures can be predicted. Descriptors capturing the quality of the experimental data, the 

fit of the structure to the experimental data and geometric features of the amino acid 

residues can be combined in a log linear model for predicting the expected variation at a 

given site. Between pairs of protein structures, there is considerable variability in the degree 

to which the structural variation can be characterised, showing that despite rigorous efforts 

for filtering the alternative structures used here, numerous as yet to be determined 

confounders still upset the statistical model. Using the predicted variation and the model’s 

standard error, the absolute values for the variation can be converted to Z-scores, reflecting 

the significance, rather than the absolute magnitude of variation. This method is applied to 

analyse the impact of point mutations on structures. Here, single point mutant pairs are 

classed by their evolutionary favourability; based on the difference in likelihood of observing 

each of the residues at the mutation site in an alignment of homologous proteins, mutant 

structure pairs were classed as conservative and non-conservative. The variation of the sites 

in the vicinity of the mutation is insignificant, when using the raw measure of deviation. 

Applying the normalisation step, it emerges that the non-conservative mutations vary more 

highly than the conservative ones. This effect is exacerbated, when one analyses only 

proteins for which the overall variability can be well predicted. For these proteins, the raw 

values of variability would lead one to believe that the conservative mutation vary more 

than the non-conservative ones, whereas the Z-score reverses this effect. 

The practical applications of this model are twofold. (1) Z-scores are potentially more 

sensitive to detecting an excess of variability between structures; besides being applied to 

single point mutants, they could be used to infer structural movement in other cases, in 

which small but significant changes can occur, such as ligand binding. (2) The use of Z-scores 

rather than raw scores for benchmarking protein structure prediction methods may improve 

the accuracy estimates, particularly in the special case of point mutation prediction, which 

aims to model structural changes induced by single amino acid alterations. By knowing the 
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expected level of noise in a structure, weighting schemes can be employed to take this into 

account during assessment of prediction accuracy. 

The analysis of methods for protein structure prediction during the CASP-7 

experiment shed light on the state of the art of current prediction tools. For the purpose of 

improving structural coverage for protein sequences, 3 main findings are of particular 

importance. (1) Protein structure prediction methods are still heavily dependent on 

structural templates. The quality of the best models decreases steadily with increasing 

target difficulty and even methods which use rigorous structural sampling do not achieve 

near-native models. The fact that physics based methods are unlikely to make accurate 

predictions of protein structures in the absence of templates confirms the relevance of 

homology modelling as a tool for protein structure prediction. (2) While current modelling 

tools may not be able to solve the ab initio protein folding problem, their accuracy is vastly 

improved over basic protocols, which rely on template identification using PSI-BLAST and 

copying the template coordinates. It must be added though, that the PSI-BLAST method 

used here had a significant handicap, in that it was decided that missing loops would not be 

built. While this allows for a fair comparison by ensuring that only information from the 

template found by PSI-BLAST is used, it is an artificial restriction, which may underestimate 

the accuracy of PSI-BLAST based tools. (3) The best performing automated methods were 

not necessarily the most computationally expensive ones. The program HHSearch is a 

comparatively fast method, which uses a HMM-HMM matching method to find the best 

templates. It was only exceeded by the Zhang server, which uses more advanced fold-

recognition and structural sampling methods to predict protein structures. In all, it is 

apparent that the protein structure prediction community still has a lot to accomplish if the 

protein folding problem is to be solved, but for the purpose of increasing structural 

coverage by homology modelling, a number of new, powerful tools are now available. 

 A few potential improvements to the assessment protocols used are worth 

discussing. In previous CASP experiments, emphasis has been placed on accuracy measures 

such as GDT-TS and AL0, which are reliant on structure superposition of the alpha carbon 

backbones. These methods neglect the importance of correct contacts, which arguably is 

very important if the predicted structure is to be of any practical use in interpreting 
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biological phenomena or for generating hypotheses for experimental testing. The score 

used here, HB-score, contains information about correctly predicted side-chain interactions 

and thus provides a goodness measure for evaluating the number of correctly predicted 

contacts. Its drawback is that the secondary structure hydrogen bonds may numerically 

outweigh those involving side chains. Not only do they tend to be more numerous, but it is 

comparatively easy to predict helical secondary structures compared to the topology of the 

tertiary structure. Furthermore, the number of hydrogen bonds varies widely between 

structures making the score susceptible to variation. Two modifications could be used to 

improve the assessment of contact accuracy. First, a sequence separation criterion, such as 

a minimal distance of 6 residues along the linear amino acid sequence, would eliminate local 

contacts stemming from helical secondary structures. Second, a score based on the contacts 

between all atoms, rather than just between hydrogen bonding partners, would have the 

advantage of being independent of the sequence composition. These two modifications 

would eliminate local contact bias and weight all non-local contacts equally. 

Finally, a classification scheme is presented here for predicting the effects of single 

point mutations. The Swiss-Prot human variants dataset used here is manually annotated 

using information from the scientific literature. Nevertheless, it cannot be excluded that 

some are misclassified, which in turn could limit the maximal accuracy of classifiers trained 

on it. For instance SNPs may be merely linked to a phenotype, rather than being causative of 

it; close proximity on the chromosome of a SNP to the true causative mutation might lead to 

the SNP to be annotated as disease causing, when its molecular phenotype is actually 

neutral. Conversely, mutations which do have a molecular phenotype may be classed as 

neutral polymorphisms, if they perform a function which is either not essential or can be 

compensated for. Bromberg and Rost124 have argued that their method is limited by the 

quality of the experimental data used for training; it is conceivable that improved data will 

yield better classification models. The upper limit of mutation phenotype prediction 

accuracy is in the region of a 75-80%; this is observed for many current methods and is 

presumably due in part to the limits of data accuracy. 

For the prediction of mutant phenotypes, sequence based information is very 

powerful, the most informative descriptors being derived from position specific scoring 
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matrices. The value of whole protein conservation scores is contentious. While they allow 

for great increases in accuracy, when using mutation level cross validation, the more 

rigorous protein level validation shows that this information is not transferable between 

proteins. Structural data by itself can be highly informative, but does not appear to be very 

robust, as it is strongly dependent on the proportion of data points used in training. 

However, it can complement sequence data to a noticeable degree. The usual interpretation 

of sequence information relies on the assumption that the vast majority of changes in 

evolution are neutral, with the remainder being positively selected for. However, it is known 

that deleterious mutations can be compensated for by changes at neighbouring sites, and so 

variation in sequence alignments can falsely imply mutational tolerance. Structural 

information may complement this shortcoming, by determining the structural plasticity of a 

site. 

Prospects for future work are the inclusion of quaternary structure information as 

well as biochemical pathway information. The misclassification rate for proteins which are 

natively multimeric or bind other biomolecules, will be higher using the current method 

than need be due to the lack of information on the interactions with binding partners. The 

development of homology modelling methods for predicting quaternary structure would be 

of obvious use in this respect, and would conceivably lead to even better results in 

classification. 
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