
Quantum Dot Josephson Junctions

in the Kondo Regime

Inauguraldissertation

zur
Erlangung der Würde eines Doktors der Philosophie

vorgelegt der
Philosophisch-Naturwissenschaftlichen Fakultät

der Universität Basel

von

Alexander T. Eichler
aus Basel BS

Basel, 2010



Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät
auf Antrag von
Prof. Dr. C. Schönenberger
Prof. Dr. J. Nyg̊ard
Dr. M. Weiss

Basel, den 08. Dezember 2009

Prof. Dr. Eberhard Parlow
Dekan



Für dich, Nadine



iv



Contents

Introduction: A New Set of Rules vii

1 Theory 1

1.1 Electrical conduction through carbon nanotubes . . . . . . . 1

1.2 Carbon nanotube quantum dots . . . . . . . . . . . . . . . . . 3

1.3 The Kondo effect . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 The BCS theory of superconductivity . . . . . . . . . . . . . 11

1.5 Andreev transport . . . . . . . . . . . . . . . . . . . . . . . . 14

1.6 The proximity effect . . . . . . . . . . . . . . . . . . . . . . . 16

1.7 The Josephson junction . . . . . . . . . . . . . . . . . . . . . 17

2 Fabrication and Measurement Methods 23

2.1 General device fabrication . . . . . . . . . . . . . . . . . . . . 23

2.2 Topgated carbon nanotube devices . . . . . . . . . . . . . . . 25

2.3 Topgated nanowire devices . . . . . . . . . . . . . . . . . . . 26

2.4 Final steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5 Room temperature measurements . . . . . . . . . . . . . . . . 28

2.6 Measurements at low temperature . . . . . . . . . . . . . . . 29

3 Even-Odd Andreev Transport due to the Kondo Effect 35

3.1 Introducing remarks . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Even charge state . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4 Odd charge state . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

v



vi Contents

4 Tuning the Josephson Current With the Kondo Effect 45
4.1 Introducing remarks . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Setup details and junction parameters . . . . . . . . . . . . . 47
4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.4 Additional data . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5 Topgated Ge/Si Nanowires with Superconducting Leads 59
5.1 Introducing remarks . . . . . . . . . . . . . . . . . . . . . . . 59
5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6 Topgated Carbon Nanotubes with Superconducting Leads 67
6.1 Introducing remarks . . . . . . . . . . . . . . . . . . . . . . . 67
6.2 Results for device A . . . . . . . . . . . . . . . . . . . . . . . 69
6.3 Results for device B . . . . . . . . . . . . . . . . . . . . . . . 72
6.4 Conclusion for devices A and B . . . . . . . . . . . . . . . . . 78

7 Summary and Outlook for Chapters 3-6 81

8 AMR Measurements in Thin Films 83
8.1 Introducing remarks . . . . . . . . . . . . . . . . . . . . . . . 83
8.2 The anisotropic magnetoresistance effect . . . . . . . . . . . . 84
8.3 Sample preparation . . . . . . . . . . . . . . . . . . . . . . . . 85
8.4 Measurement setup . . . . . . . . . . . . . . . . . . . . . . . . 85
8.5 Results for ‘AMR 4a’ . . . . . . . . . . . . . . . . . . . . . . . 86
8.6 Results for ‘AMR 6b’ . . . . . . . . . . . . . . . . . . . . . . . 88
8.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

A Fabrication and Measurement Information 99

Publication List 105

Curriculum Vitae 107

Acknowledgements 109



Introduction: A New Set of Rules

Nanoscale electronics enjoys continuous attention due to its proximity to
information technology. Driven by an unbroken craving for smaller and
faster building blocks, semiconductor industry keeps stretching the limits of
what is technologically feasible regarding the fabrication and application of
silicon transistors. With the rapid progress of miniaturization, these devices
have already left the realm of pure classical physics, and are entering that of
quantum mechanics. Information technology will have to face a new set of
rules, where electrons, carriers of charge information units, engage in a highly
correlated dance that qualitatively modifies the overall electrical behaviour
of transistors. Of course, this is not only a challenge, but also an opportunity
for revolutionary new concepts. Major technology companies have long ago
started to investigate the physics of strongly correlated electron systems,
often in close collaboration with academic research.

Two of the most topical phenomena in this context are superconductivity
and the Kondo effect. Both rely on the formation of a new ground state for
electrons, both have dramatic consequences for electrical transport at low
temperatures, and both were initially discovered and observed in extended
structures. While superconductivity relates to diffusion free transport ensu-
ing from the creation of multiple electron pairs, the Kondo effect manifests
itself as a cloud of localized conduction electrons around a single magnetic
impurity. With the advent of nanoscale fabrication techniques, it is now
possible to study such effects at the level of individual electronic states.
Quantum dots, artificial structures in which electrons behave essentially as
inside an atom, are used as highly versatile and precise tools by experimen-
tal physicists. Unlike bulk materials, quantum dots offer the chance to tune
nearly all relevant parameters of the system. Measurements of the electrical
transport through individual states in a quantum dot present information
about the physics governing these states, and their response to changes in
the system parameters.

In this thesis, we will look at measurements that were performed dur-
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viii Introduction: A New Set of Rules

ing my PhD studies in the group of Christian Schönenberger in Basel. By
attaching superconducting electrodes to a quantum dot, we realize a Joseph-
son junction, where supercurrents pass through a short constriction of non-
superconducting material. In our case, this happens to be a set of energeti-
cally discrete electronic states. By application of a gate voltage, we control
the sequential filling of these states, creating a situation that gives rise to the
Kondo effect. Thus, we are able to study the interplay between the Kondo
effect and superconductivity in great detail.

Chapter 1 presents an overview of the theoretical concepts that are used
throughout the thesis. Chapter 2 describes the device fabrication, including
the growth of carbon nanotubes as basic material for quantum dots. The
results of our experimental work are presented in chapters 3-6, followed by a
summary and outlook. Finally, chapter 8 gives an account of a side project
concerned with measurements on the anisotropic magnetoresistance in thin
films. Since the topic is not directly related to the main part of this thesis,
it is presented as a stand-alone segment.

It is with a great sense of joy and satisfaction that I look back on my
time in this group, because I had the chance to work in such a motivating
environment on such a fascinating project. I can only hope that some of this
joy is transferred to the reader, because ultimately, I believe it is joy that
drives us onwards.



Chapter 1
Theory

1.1 Electrical conduction through carbon nanotubes

Single-wall carbon nanotubes (SWCNT) combine a number of interesting
features that place them among the most versatile model systems for elec-
trical transport experiments in mesoscopic physics[1; 2]. The atomic struc-
ture of SWCNTs resembles that of a single sheet of graphene rolled into a
seamless cylinder (Fig. 1.1), and the precise roll-up direction and diameter
determine whether it is metallic or semiconducting. Carbon nanotubes often
grow in bundles or ropes, or they appear nested within each other, which
we refer to as multi-wall carbon nanotubes (MWCNT). A more complex
atomic structure obviously results in a more intricate electronic behaviour.
We will limit our discussion to SWCNTs as the most desirable material for
transport experiments on a single-electron level.

Individual SWCNTs can easily be contacted to metallic leads. By deposit-
ing two electrodes onto a previously selected SWCNT, a junction is created
between source (S) and drain (D) electrodes, which in general can consist of
a normal metal, a ferromagnet, or even a superconductor (Fig. 1.2a)[3; 4; 5].
In the next section, we will look at the formation of tunnel barriers at
the SWCNT/lead interfaces and the consequences resulting from it. At this
point, though, we treat the interfaces as perfectly transparent contacts. The
diameters of SWCNTs range from less than one to few nanometers, and
their length is typically of the order of several micrometers, which makes
it possible to define the leads in a top-down approach. Throughout this
thesis, we will assume that the substrate underneath the device consists of
highly doped Si which can be used as a backgate electrode (BG). A 400 nm
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2 Theory

Figure 1.1: The structure of an SWCNT is that of a single sheet of graphene rolled
into a cylinder. Illustration by courtesy of Dino Keller.

thick layer of SiO2 serves as an isolation between the BG and the device
(Fig. 1.2b). The fabrication process and material properties are explained
in more detail in chapter 2. When the mean free path of charge carriers
in the carbon nanotube, l, exceeds its circumference, the situation is that
of a one-dimensional conductor between two bulk metals with just one con-
duction channel[6; 7]. In a SWCNT, this conduction channel is fourfold
degenerate due to the spin degree of freedom and the orbital degeneracy,
which can intuitively be accounted for by the two orientations around the
SWCNT circumference (clockwise and anti-clockwise)[8].

The electronic mean free path l in a metallic SWCNT can exceed 1 µm[9].
For a nanotube segment with length L < l, an electron does not scatter on
its way between the two leads and the SWCNT acts as a ballistic conductor
with a vanishing four-point resistance. However, the two-point resistance
will not drop below a universal value independently of l. The corresponding
voltage drop takes place at the interface between the leads and the SWCNT,
where a current is redistributed from many channels in a lead to the four
channels available in the SWCNT. The conductance G following from this is
captured in the Landauer-Büttiker formalism[10; 11] that describes charge
transport through M transport channels with a respective transmission of
T (0 6 T 6 1):

G =
e2

h

MX
i=1

Ti (1.1)

Here, e is the electron charge. In the case of perfect transmission (T = 1)

at the interface, this formula yields a maximum conductance of 4 e2

h
for a

SWCNT sample with four channels, corresponding to a resistance of 6.45 kΩ.



1.2. Carbon nanotube quantum dots 3

In order to observe the rich physics of charge transport through quantum
dots, though, it is necessary to introduce tunnel barriers at those interfaces,
which will decrease the transmission (T < 1).

Figure 1.2: a Scanning electron microscope (SEM) picture of a SWCNT contacted
to source (S) and drain (D) electrodes. The section of the nanotube bridging the
gap between S and D, L, defines the size of the resulting QD. b The highly doped
Si substrate serves as a backgate electrode (BG). c Schematic of a QD with S and
D leads and a capacitively coupled BG. d The discrete electronic levels on the QD
are separated by the orbital energy δE and the charging energy UC .

1.2 Carbon nanotube quantum dots

In any real device, tunnel barriers form at the contact interfaces. The height
of these barriers depends in a critical fashion on the lead metal, the purity
of the interface, the diameter of the contacted SWCNT, and on whether
the SWCNT is semiconducting or metallic (see fabrication for details). The
Schottky barrier[12] appearing at a metal-semiconductor interface is respon-
sible for the fact that semiconducting SWCNTs typically have a much higher
two-point resistance than metallic ones.



4 Theory

A SWCNT contacted to source and drain electrodes via tunnelling con-
tacts is a prime example of a ‘quantum dot’ (QD)[13; 14]. Electrons from
the leads can enter or leave the QD by tunnelling through the barriers at
the interfaces, which are characterized by their coupling strength, ΓS,D, and
the capacitance of the QD to the corresponding lead, CS,D (Fig. 1.2c). The
tunnelling rates through the barriers equal ΓS,D/~. Inside a quantum dot,
the electrons are spatially confined in three dimensions and can only occupy
a set of discrete states for which they exist as standing waves (Fig. 1.2d).
The energy that separates these states is denoted ‘orbital energy’ in analogy
to the discrete electronic states of an atom, and will be written as δE. The
four electrons residing in one of these orbital states are again separated in
energy due to the Coulomb interaction arising between them, so the state
splits up into four levels1. Every electron approaching the QD will feel a
repulsion due to the charge of the electrons already dwelling there. This
Coulomb repulsion, or ‘charging energy’, is written as UC , and relates to the

total capacitance Ctot of the QD as UC = e2

2Ctot
. Generally, UC can in good

approximation be regarded as constant in metallic SWCNTs.

At this point, it is interesting to remark that while δE is a manifestation
of quantum mechanics, UC relies on a purely classical process. However, the
charging energy of a single electron is much too small to appear in a typical
macroscopic measurement. It is only due to the mesoscopic size of a QD,
and the correspondingly small capacitance Ctot, that we can observe single
electron charging in such a system.

Let us now take a look at electrical transport through a QD. We assume
that the leads consist of a normal metal with an energy-dependent electronic
occupation given by the Fermi-Dirac probability distribution function:

fFD(E) =
1

e
E−µ
kBT + 1

(1.2)

Here, E is energy, kB the Boltzmann constant, T the temperature, and µ
the chemical potential, which in general can be different for the two leads. At
low temperatures, this distribution function becomes very sharp, so we can
treat it as a step function, with all available electronic levels occupied below
µ and none above it. In Fig. 1.2d, this is represented by grey and white areas,
respectively. All levels on the QD with an energy below or equal to µ will
then be filled, and all higher levels empty. As illustrated by blue Lorentzian
shapes, each level is energy-broadened due to Γ = ΓS + ΓD. This can be
understood in terms of the Heisenberg uncertainty principle ∆E∆t & ~

2
,

1In a real device, defects in the atomic structure often lift the K-K’ degeneracy, which
leads to twofold degenerate orbitals
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which states that a process lasting a time ∆t may violate classical energy
conservation up to ∆E. In our example, if the total tunnelling rate Γ/~ is
large, electrons stay on the QD only for a short time ∆t and can borrow an
energy ∆E to enter a level that lies above µS,D and is classically inaccessible.

Figure 1.3: a A measurement of G versus the level position ε shows a peak when-
ever a level is aligned with µS and µD. In an experiment, ε is controlled by applying
a voltage VBG to the BG. b A negative voltage VSD applied to S shifts µS upwards.

Electrical transport takes place if an electron can enter the QD from one
lead (S) and leave it towards the other (D). In the QD regime, Γ < UC , δE,
so neighbouring levels overlap only slightly. As a consequence, transport of
an electron from S to D requires that a level is aligned with µS,D, as depicted
in Fig. 1.3a. If the chemical potential of the leads lies in the middle of two
levels, electrons cannot enter and leave the QD at will, so transport is low.
As a function of the level position ε, the conductance G through the QD
will therefore oscillate between peaks (‘on resonance’) and valleys (‘off reso-
nance’). This results in the so-called ‘Coulomb oscillations’ which are shown
in the inset of Fig. 1.3a. Usually, ε is controlled by a BG that is capacitively
coupled to the QD (Fig. 1.2c). Since the voltage applied to the BG, VBG, is
directly accessible in an experiment, we will from now on speak in terms of
VBG instead of ε. In addition, the small overlap between neighbouring levels
means that only one channel is effectively available for electrical transport,
even though the orbital is fourfold degenerate. Intuitively, it is obvious that
as soon as an electron occupies one of the four levels, the other three are
shifted upward by UC and cannot partake in transport. The large charging
energy thus reduces the maximum conductance on resonance to e2/h rather
than 4e2/h.
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So far, our discussion was limited to equilibrium transport, i.e. µS = µD.
We will now consider the effects of a bias voltage (VSD) applied to the leads,
such that µS = µD + eVSD (Fig. 1.3b). Note that D is on ground potential
while VSD is applied to S, and that due to the negative electron charge e,
a negative VSD shifts µS upwards and vice versa. In this case, all levels on
the QD lying between µS and µD can partake in electron transport, and
G increases whenever a new level enters this window. In the following, we
will use G to denominate the differential conductance dI/dV instead of
the linear conductance ∆I/∆V . As long as VSD = 0 or for conductors with
a linear I/V curve, there is no difference between the two quantities, but for
nonlinear I/V curves, dI/dV produces a peak whenever ∆I/∆V increases,
which facilitates the graphical representation of data. In a measurement of
G as a function of VSD and VBG, alignment of a level with µS or µD will
result in ridges of high differential conductance, as marked by blue lines
in Fig. 1.4. These high differential conductance lines form a characteristic
pattern, the so-called ‘Coulomb blockade diamonds’ (CB diamonds). Inside
a CB diamond, electron transport is blocked because no level is within the
energy window defined by µS and µD. All levels below µD are filled, and
all levels above µS remain empty, so the number of electrons on the QD is
a fixed integer N . Since CB diamonds correspond to regions where the QD
is stable against charge fluctuations, such a graph is often referred to as a
‘charge stability diagram’. By driving VBG to more positive voltages, a new
level becomes accessible, and the number of electrons on the QD changes
from N to N + 1 (bright grey to dark grey diamond). For zero bias voltage
(VSD = 0), the transition from N to N + 1 takes place exactly at the nodes
of two adjacent CB diamonds, and a measurement of G versus VBG restores
the familiar Coulomb oscillation pattern (red graph at the top).

The charge stability diagram of a QD holds much information about the
energy scales involved. From the size of a CB diamond, we can estimate
UC , and the additional size of every fourth diamond corresponds to δE.
The full width at half maximum (FWHM) of a CB peak yields Γ as long as
kBT � Γ. Furthermore, we can extract the various capacitances by looking
at the slopes of a diamond, because they determine the efficiency of VBG,
i.e. how much voltage we have to apply to the BG in order to shift ε by a
certain amount. Fig. 1.5 illustrates this in detail. In situation 1, S and D are
on the same potential and aligned with one level on the QD (bright blue). If
we apply a negative voltage VSD to S, µS shifts upwards while µD remains
fixed on ground potential. The capacitive coupling of S to the QD induces
a gating effect that shifts ε by eVSD

CS
Ctot

. In order to restore alignment of
the level with D, which is the condition for resonant tunnelling, we need
to apply a negative voltage to the BG such that ∆VBG

CBG
Ctot

= −∆VSD
CS

Ctot
.

The slope s− of the bright blue line leading from situation 1 to 2 is therefore
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Figure 1.4: A measurement of G versus VSD and VBG shows a peak whenever a
level is aligned with µS or µD . The resulting characteristic pattern (‘Coulomb
blockade diamonds’) is drawn in blue. Each diamond corresponds to an integer
number of electrons on the QD, and its size is determined by UC and δE.

∆VSD
∆VBG

= −CBG
CS

. In situation 2, eVSD = UC , and S is aligned with the upper

level (dark blue).

Figure 1.5: The slopes of the sides of a diamond are determined by the capacitances
of the QD to S, D, and the BG. If VSD is changed, VBG must be driven accordingly
to keep the level aligned and thus meet the condition for resonant tunnelling.

We can calculate the slope s+ leading from 1 to 3 in a similar way. A
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positive VSD will lower µS and shift ε downwards by eVSD
CS

Ctot
. The level is

aligned with S once more if we apply ∆VBG = ∆VSD(1− CS
Ctot

)CBG
Ctot

, and the

slope s+ is consequently s+ = CBG
Ctot−CS

. From 2 (3) to 4, it is the alignment

of the upper level with S (D) that is responsible for the resonance condition,
so the lines connecting the two edge points are drawn in dark blue. The
slopes are calculated analogously to the examples above, and turn out to be
s− (2 to 4) and s+ (3 to 4).

1.3 The Kondo effect

The Kondo effect was first studied in bulk metals. It was found that mag-
netic impurities can drastically influence the conductance through a metal.
An explanation was brought forward by Kondo that suggests the formation
of a many-body ground state[15]. In recent years, the Kondo effect has
experienced a revival in mesoscopic physics thanks to the tunability of QD
systems[16; 17; 18]. In a QD, it is possible to control the parameters that are
responsible for the Kondo effect, and thus test many theoretical predictions.

Whenever the number N of electrons occupying the QD is odd, the QD
will carry an unpaired spin s = 1/2, in contrast to s = 0 for even N . The
magnetic moment of an unpaired spin will act like a magnetic impurity in
a bulk metal, and enhance the electrical transport through the QD. Below
the so-called Kondo temperature TK , the spins of the electrons in S and
D will start screening the magnetic moment on the QD. They will form a
many-body spin singlet state extending over both leads and the QD (‘Kondo
state’). The screening is achieved by high-order spin-flip processes through
the QD, such that the effective mean value of the spin is s = 0 for timescales
much longer than one of these events. In addition to screening the unpaired
spin on the QD, these spin-flip processes open up an additional conductance
channel through the QD that manifests itself in resonances at the tunnel
barriers. The resonances are pinned to µS and µD (Fig. 1.6a). For VSD = 0,
these two resonances are aligned, and a peak inG is observed. It is important
to understand that the Kondo effect does not require the QD level to be
resonant. As long as the spin singlet state prevails, the conductance channel
will be accessible for transport even far away from resonance. As a result, a
ridge of high differential conductance (‘Kondo-ridge’) is observed throughout
a CB diamond with odd N (Fig. 1.6b).

For VSD 6= 0, the two resonances follow µS and µD and lose their align-
ment. The virtual states needed for the spin-flip processes acquire a finite
lifetime, resulting in a suppression of the resonance peak amplitude. An ap-
plied magnetic field B will cause a splitting of the energies for ‘spin-up’ and
‘spin-down’ levels and, accordingly, a splitting of the resonance peaks with
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the Zeeman energy EZe = 1
2
gµBB[18; 19]. Here, µB is the Bohr magneton,

and g = 2 the Landé factor. The splitting of the Kondo resonances reflects
the fact that the level degeneracy on the QD is lifted, and a finite energy
is necessary to enable spin-flip processes. For VSD = ±2EZe/e, this en-
ergy is provided by the potential difference between µS and µD, whereupon
two of the split resonances are again aligned (Fig. 1.6c). We see therefore
a splitting of the Kondo ridge in the stability diagram, corresponding to
VSD = ±gµBB/e (Fig. 1.6d).

Figure 1.6: a Schematic of the Kondo effect. The unpaired spin on the QD is
screened by electron spins in the leads, and a spin singlet state forms. Additional
resonances appear at the tunnel barriers due to the hybridization of electrons in
S and D. b For VSD = 0, the two resonances are aligned, and a peak in G is
observed throughout the CB diamond, the so-called ‘Kondo-ridge’. The black
symbols designate ε = 0 (square) and ε = ±UC/2 (dots). c A magnetic field causes
a splitting of the QD levels with the Zeeman energy EZe (black arrows), and thus
a splitting of the Kondo resonances at the tunnelling barriers. d The Kondo ridge
splits into two components at VSD = ±gµBB/e. A black star marks the situation
shown in Fig. 1.6c.

A theoretical understanding of the Kondo effect arises from the Anderson
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model. It describes a single, localized orbital (QD) between two electron
reservoirs (S, D). Tunnelling of electrons between the reservoirs and the
orbital is allowed, and the occupation of the orbital, N , can take values
of 0, 1, or 2. Due to the Pauli principle, two electrons can only coexist
in the orbital if they have opposite spins, such that the total spin on the
QD amounts to s = 0. Interaction with all other orbitals is neglected. For
N = 1, the Anderson model predicts the formation of a Kondo spin singlet
state as discussed above. The binding energy of this many-body state is
identified as kBTK , where kB is the Boltzmann constant. Above TK , the
Kondo singlet state is broken up by thermal excitations.

Solutions of the Anderson model make predictions about the dependence
of TK on various parameters. Close to the middle of a CB diamond (ε = 0),
N , and thus the charge, is well defined and we expect the Kondo temperature
to behave as

TK =
p
UCΓ/2 e

− π
8UCΓ |4ε2−U2

C |
, (1.3)

where ε = ±UC/2 corresponds to a resonant situation[20]. The half width at
half maximum of the Kondo resonance with respect to VSD is directly related
to the Kondo temperature (HWHM ∼ kBTK), and reflects the evolution of
TK(ε), i.e. the width increases as the level is tuned away from ε = 0.
However, we have to be aware that this analysis is only valid for ε � UC .
As we approach the resonant condition, N is not well defined anymore. We
then enter the mixed-valence regime, which is beyond the scope of this thesis.

A fully developed Kondo state turns the QD completely transparent. For
T � TK , the maximum differential conductance G0 of the Kondo resonance
depends only on the asymmetry of the coupling to the leads, as described
by the Breit-Wigner formula

G0 =
2e2

h

4ΓSΓD

(ΓS + ΓD)2
, (1.4)

where a symmetric coupling ΓS = ΓD yields G0 = 2e2/h[21]. An increase
in temperature will decrease G, until the Kondo resonance is suppressed
around TK . The temperature dependence of G/G0 follows the empirical
form

G(T ) = G0[1 + (21/s − 1)(T/TK)2]−s (1.5)

with s = 0.22 for spin s = 1/2[17].
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1.4 The BCS theory of superconductivity

We have so far been looking at electrical transport through a QD with normal
leads, as depicted in Fig. 1.3. Let us now turn our attention towards a QD
coupled to two superconducting leads. The electrical transport in the leads is
then described by the theory of Bardeen, Cooper, and Schrieffer (BCS)[22].
After a quick introduction to the BCS theory, we will review a number of
consequences resulting from superconducting leads, especially with regard
to electrical transport. Striving for a simple picture of superconductivity,
we restrain ourselves to the theory we need to interpret the results in this
thesis[23; 24; 25].

The hallmark feature of superconductivity is that the electrical resistance
R in certain metals drops to zero below a characteristic ‘critical temperature’
TC . This appears to be in contradiction to a picture that relates electrical
resistance to scattering of electrons at phonons, i.e. vibrational excitations
of the metal lattice. In such a picture, R drops with T because phonons
are suppressed, and for T = 0, it is expected that the lattice offers no
resistance to free conduction electrons at all. However, R remains finite
due to scattering at lattice defects like impurity atoms, which is largely
independent of T . Naturally, this model can account neither for a vanishing
resistance as observed below TC in superconducting materials, nor for the
fact that the transition at TC is very sharp. How can we understand such
an astounding observation?

The BCS theory provides a microscopic model to explain superconduc-
tivity. Just like the Kondo effect, superconductivity requires the formation
of a new many-body ground state. At the base of this BCS ground state
lies an attractive interaction between electron pairs in a sea of conduction
electrons. On the one hand, the CB interaction is responsible for a repul-
sive force between any two electrons, even though it will be partly shielded
by other charges around them. On the other hand, free electrons create
local distortions in the atomic lattice of the metal, which in turn can act
attractively upon other electrons. If this indirect attraction overcomes the
Coulomb repulsion, two electrons can couple to form a so-called Cooper pair
(Fig. 1.7a). In s-wave superconductors, a Cooper pair consists of two elec-
trons with opposite spin and thus possesses a total spin s = 0. Thanks to
the integer spin, Cooper pairs do not have to obey Fermion statistics, and
can occupy a many-body ground state. This is the BCS ground state Ψ,
which describes the sum of all Cooper pairs in the material. Within Ψ, all
Cooper pairs have the same momentum k∗, so their individual momenta k
relative to Ψ are zero2. Furthermore, there is a strong spatial overlap be-

2Often, Cooper pairs are described as having zero spin and momentum. This descrip-
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tween Cooper pairs, because the typical length scale of a Cooper pair wave
function, ξ0, exceeds the average distance among superconducting electrons
by far. We call ξ0 the ‘BCS coherence length’, and use it as a fundamental
parameter to characterize a superconductor.

Figure 1.7: a Two electrons with opposite spin can couple via the atomic lattice
to form a Cooper pair. This allows them to condense into the BCS ground state.
b A gap forms in the DOS of the leads. No unpaired electrons (‘quasi-particles’)
are allowed in this energy window. If Cooper pairs can tunnel through the QD, a
Josephson current will ensue.

How does the formation of a collective ground state explain the vanishing
resistance in a superconductor? As mentioned above, the most general cause
for electrical resistance is scattering of electrons, i.e. changes in momentum
of individual electrons. In Ψ, all Cooper pairs must have the same mo-
mentum, so scattering of a single Cooper pair requires a momentum change
for all other Cooper pairs accordingly. Since this would be associated with
a very high cost in energy, scattering of Cooper pairs is completely sup-
pressed, and a dissipation-free current flows through the metal. Still, this
current cannot become infinite, but is limited by the density of Cooper pairs.
In order to understand what the Cooper pair density depends on, we must
first introduce the ‘BCS gap parameter’ ∆0.

For T = 0, a certain fraction of electrons condenses into Cooper pairs at
the chemical potential µ. The exact fraction depends on material properties.
It is clear, for instance, that a change of mass of the lattice atoms will
change the phonon interaction among them, and thus the attractive force

tion neglects the collective momentum k∗, which is necessary to explain a measured
supercurrent.
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between electrons that gives rise to the formation of Cooper pairs. This
effect was verified with superconductors containing different isotopes of a
given material, and provided an early hint that phonon interaction might be
responsible for superconductivity. Electrons form Cooper pairs because this
represents an energetically lower state. The energy difference per electron is
written as ∆0, and the energy required to break up a Cooper pair amounts
to 2∆0. We call ∆0 the BCS gap parameter because it shows up as a gap
in the density of states (DOS) of unpaired electrons, NS(E). Some caution
is necessary at this point, because the excitations for unpaired electrons,
i.e. their energy spectra in the superconductor, are not identical to those
of electrons in a normal metal. To mark the difference, we will refer to
unpaired electrons in a superconductor as ‘quasi-particles’. Qualitatively,
though, the picture remains the same, because quasi-particles and electrons
stand in a one-to-one correspondence. Like in a normal metal DOS N(0), all
states far below µ are filled with electron-like quasi-particles, and all states
far above µ are empty, i.e. filled with hole-like quasi-particles3. The main
modification for quasi-particles is found in the vicinity of µ, where a gap of
width 2∆0 opens up in NS(E). Inside the gap (for energies |E − µ| ≤ ∆0),
no quasi-particles are allowed, and the corresponding states are shifted to
the edge of the gap. The resulting DOS has the form

Ns(E)

N(0)
=

( |E−µ|√
(E−µ)2−∆2

0
for |E − µ| > ∆0

0 for |E − µ| < ∆0

(1.6)

and is depicted in Fig. 1.7b. Again, grey and white areas represent electron-
like and hole-like states, respectively. The peaks at E − µ = ±∆0 are
not infinitely sharp as expected from Eq. 1.6, but slightly broadened in
anticipation of ‘realistic’ experimental data.

The BCS theory can relate the density of Cooper pairs, NCP , to the gap
parameter as NCP ∝ ∆2

0. At elevated temperatures T > 0, some of the
Cooper pairs are broken up by thermal excitations, and the gap is reduced
correspondingly. We replace therefore ∆0 by ∆ = ∆(T ). An approximate
solution[26] for ∆(T ) yields

∆(T ) = ∆0 tanh(1.74
p
TC/T − 1) (1.7)

where TC appears as the temperature at which ∆(T ) vanishes completely,
so ∆(Tc) = 0. Microscopically, this means that thermal excitations in the
atomic lattice become too strong for any Cooper pair to survive, and the
metal reverts to the normal state. For conventional superconductors, TC

3In the normal state, we referred to filled and empty electron states. In the supercon-
ducting state, we call them electron-like and hole-like quasi-particles.
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has a universal relation to ∆0, and we find ∆0 = 1.76kBTC .

Having gained a qualitative understanding of the microscopic process that
gives rise to a dissipation-free current below a critical temperature TC , we
should also devote some attention to the effect of a magnetic field. Luck-
ily, We will merely need to understand why a magnetic field can suppress
superconductivity. We can therefore skip most of this wide topic, and then
finally return to charge transport through a QD.

One of the most notable features of superconductivity is that a small
magnetic field B is completely expelled from the inside of a superconductor
(Meissner effect[27]). Whenever B penetrates the superconducting metal, a
charge flow is generated to counter the field. In the case of Cooper pairs,
this charge flow creates no dissipation, and the Cooper pairs are accelerated
until the magnetic field they generate is exactly opposite to B. However, this
charge flow comes with a cost in energy, and at some point this energy equals
the binding energy 2∆, so Cooper pairs are broken up into quasi-particles.
Depending on their size, bulk Al contacts are driven into the normal state
by a magnetic field of 0.1-0.4 T. This is very useful for studying a system in
the normal state without changing the temperature.

Now that we are aware of the major features of superconductivity, we can
go back to electrical transport through a QD. Looking at Fig. 1.7b, we can
guess some of the implications we should expect. On the one hand, it is
not obvious whether Cooper pairs can tunnel through single electrical states
on the QD at all. If so, this will induce a Josephson current, which is a
supercurrent through a small non-superconducting material. On the other
hand, quasi-particles from S cannot resonantly tunnel to empty states in D as
for normal leads, because electron-like and hole-like quasi-particle states are
separated by a gap. However, we will see how so-called Andreev-reflections
allow quasi-particle tunnelling.

1.5 Andreev transport

The upper left part of Fig. 1.8 illustrates a QD coupled to two supercon-
ducting leads with VSD = 0 and 2∆ � UC . We look at an off-resonant
situation, where tunnelling occurs through the Γ-broadened tails of neigh-
bouring levels (blue shape). With normal leads, these tails give rise to a
finite G even in the middle of a CB diamond. This is no longer possible
for superconducting leads, because the gap in NS(E) separates electron-like
and hole-like quasi-particle states, so in order to tunnel from S to D, an
electron-like quasi-particle must be excited above the gap. A superconduct-
ing DOS in the leads causes thus a suppression of background quasi-particle
tunnelling at VSD = 0 (situation 1 in center part of Fig. 1.8).
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Tunnelling from S to D becomes possible for VSD = −2∆/e (Fig. 1.8 lower
left). Electron-like states in S are now energetically aligned with hole-like
states in D, and charge transport is enabled. The onset of quasi-particle
tunnelling is marked by a peak in G (situation 2). Far from a resonant
condition, this process is independent of VBG, and we observe ridges inside
the diamond at constant bias voltage, VSD = ±2∆/e. Close to resonance,
this is not true anymore, and the peaks converge towards VSD = 0. The
exact behaviour is rather complex and will not be further discussed in this
thesis [28; 29; 30].

Figure 1.8: Direct quasiparticle tunnelling is not possible for |VSD| < 2∆/e (left
side). However, Andreev reflections can give rise to charge transport through
high order processes (right side). These processes show up as modifications in a
measurement of G versus VBG and VSD (center). Note that the CB diamonds
themselves are shifted in bias voltage. They close not at VSD = 0 on resonance,
but at VSD = ±2∆/e, reflecting the changed DOS in the leads.

We have seen that direct quasi-particle tunnelling is only possible above
|VSD| = 2∆/e, so we expect a gap of width 4∆/e where G = 0. However, we
find that higher order processes generate subgap features. The upper right
of Fig. 1.8 displays a so-called Andreev reflection[31; 32]. An electron-like
quasi-particle enters the QD from S and is reflected as a hole-like quasi-
particle at the right tunnel barrier. Charge and energy are conserved by the
appearance of a Cooper pair in D, so a net charge of 2e is transported from
S to D. The reversed process can take place with a Cooper pair coming in
from S (not shown). The charge transport is the same for both Andreev
reflections, and a peak in G is observed at VSD = ±∆/e (situation 3).

Multiple Andreev reflections (MAR) occur at even smaller bias voltages[33].
For VSD = 2∆/ne, a process involving n quasi-particles is allowed, as shown
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in the lower right part of Fig. 1.8 for n = 2 (corresponding to situation
4). However, the probability of higher order processes decreases due to the
number of tunnelling events they require. In this thesis, we will not see any
MAR for n > 2.

1.6 The proximity effect

After analysing quasi-particle tunnelling at finite VSD, we will now focus on
Cooper pair transport, i.e. supercurrent through the QD for VSD = 0. For
this, we follow the Ginzburg-Landau theory[34] and introduce a complex
order parameter ψ(r) = |ψ(r)|eiφ(r) that allows us to consider spacial varia-
tions in the superconductor. Although the BCS theory is a very successful
model for conventional bulk superconductors, it cannot easily account for
such variations, e.g. a QD. We can reconcile this new parameter ψ(r) with
our previous picture of superconductivity by viewing it as a one-particle
wave function that describes the position of a Cooper pair. |ψ(r)|2 can be
identified with the density of Cooper pairs, NCP . |ψ(r)| is therefore constant
as long as no Cooper pairs are created or destroyed, and all changes in the
behaviour of the supercurrent are related to the phase φ. The length scale
over which variations in ψ(r) take place, ξ, turns out to be identical to ξ0
for pure superconductors well below TC , but can in general differ from it.
This implies that ψ(r) does not vanish abruptly at the boundary of a super-
conducting material, but decays gradually (Fig. 1.9a). Above TC , we find
ψ(r) = 0, and the normal state is recovered. We do not need to understand
the Ginzburg-Landau theory in depth, but it is important to know where
the phase φ stems from that plays a role in the description of the Josephson
effect.

Figure 1.9: a The Ginzburg-Landau order parameter ψ(r) decays over a length
scale ξ at the interface of a superconductor. A finite Cooper pair density is there-
fore found in the normal metal close to the boundary (proximity effect). b The
proximity effect causes transport of Cooper pairs through a non-superconducting
junction like a SWCNT if the junction length L is smaller than ξ.
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The SWCNT that constitutes our QD is not a superconductor. We can
picture is as a normal metal (with quantized electrical levels) between two
superconductors separated by a distance L. For L < ξ, the two order pa-
rameters ψS,D(r) will not die out completely, and will be coupled over the
SWCNT (Fig. 1.9b). In the limit of perfect coupling, the two phases φS,D

are identical, while a phase difference ∆φ occurs for partial coupling. The
finite Cooper pair density inside the SWCNT (‘proximity effect’) gives rise
to a supercurrent IJ through the normal metal junction.

1.7 The Josephson junction

The appearance of a supercurrent IJ through a non-superconducting ma-
terial was theoretically predicted by Josephson[35]. We refer to the device
as ‘Josephson junction’, and to IJ as ‘Josephson current’. The material be-
tween the superconductors (‘weak link’) can in general be a normal metal, an
insulating barrier, or even a small constriction in the superconductor itself.
In our case, the SWCNT acts as a normal metal between two supercon-
ducting leads. The fact that the tunnel barriers at the interfaces cause the
formation of a QD, such that Cooper pairs need to tunnel through quantized
electrical levels from S to D, presents an additional complication that will
be treated later on.

The supercurrent through an ideal Josephson junction has a maximum
value IC and depends on ∆φ as

IJ = IC sin(∆φ), (1.8)

so IJ = 0 if the two superconductors are perfectly coupled and ∆φ = 0. We
call Eq. 1.8 the first Josephson equation. A Josephson current will flow for
finite phase differences, with IJ = IC at ∆φ = π/2. Indeed, the Josephson
current provides a measure of the coupling of ψS,D(r). It is apparent from
Eq. 1.8 that in order for IJ to be constant, ∆φ needs to be stable as a
function of time. However, it turns out that ∆φ can change in time as

d(∆φ)

dt
=

2eV

~
, (1.9)

where V is a voltage drop over the Josephson junction. This constitutes the
second Josephson equation. It tells us that an applied voltage will cause
the phase difference between the two superconductors to drift, such that the
Josephson current oscillates with time. A current measurement will then not
extract IC , but a reduced supercurrent or no supercurrent at all, depending
on the junction characteristics.

What value do we expect for IC? For a simple tunnel junction geometry,
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the Ambegaokar-Baratoff theory relates IC to the normal state resistance
RN of the junction. At T � TC , we get

ICRN =
π∆

2e
, (1.10)

where all material properties are included in RN . For discrete energy lev-
els between two superconductors, we obtain a result from the theory of
Beenakker and van Houten[36]. In contrast to the case of a tunnel junction,
ICRN is not constant anymore, but depends on the level position. The value
of IC is quantized with the number of participating transport channels, M ,
and goes up to

IC = M
e∆

~
(1.11)

for a constriction with L � ξ0. Note that M takes the place of RN in the
sense that it relates IC to the normal state electronic transport. However,
by inserting RN = h

e2 for a transparent SWCNT QD in the CB limit, we
do not recover the Ambegaokar-Baratoff limit. The introduction of discrete
energy levels has thus consequences for the qualitative description of the
Josephson junction. Of course, L � ξ0 is not a good approximation for a
SWCNT QD. Nevertheless, we can use Eq. 1.11 to estimate an upper limit
for the expected supercurrent, and obtain IC ∼ 25 nA.

We have so far gained a feeling for the Josephson current as a function
of a bias voltage. In the following, we will take a look at the behaviour of
Josephson junctions under a finite bias current I. Throughout this thesis,
we assume a sinusoidal IJ(φ) relation as in Eq. 1.8, because it turns out that
experimental data fit well to that assumption.

A convenient model for treating Josephson junctions under realistic condi-
tions is the resistively and capacitively shunted junction model (RCSJ)[23].
There, the real Josephson junction is represented by an ideal Josephson
junction (carrying a current IJ(φ)) in parallel to a junction capacitance CJ

and a junction resistance RJ that accounts for quasi-particle transport. In
our case, quasi-particle tunnelling is subject to CB, which means that CJ

is of the order of 10−15 F or smaller, and RJ ≥ h
2e2 . However, this is a

DC resistance. We will see that frequencies above GHz are relevant for
the junction characteristics even for a DC bias current. At such frequencies,
the electromagnetic environment provides considerable shunting through the
capacitance C between the leads, and this in turn creates a high frequency
damping. In the extended RCSJ model, a capacitance C between the leads
and a total lead resistance R are therefore taken into consideration in addi-
tion to IJ , RJ , and CJ (Fig. 1.10a)[37; 38; 39]. The dynamics of ∆φ in the
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Figure 1.10: a The extended RCSJ model takes into account a junction resistance
RJ and capacitance CJ as well as the resistance R and capacitance C of the leads.
IJ represents an ideal Josephson junction. b The dynamics of ∆φ under applied
current bias I is reminiscent of the motion of a particle in the so-called ‘washboard
potential’.

presence of an applied bias current follows from a differential equation that
is analogous to the motion of a particle of mass ( ~

2e
)2(C(1 + R

RJ
) + CJ) in

an effective ‘washboard potential’ of the form

U(∆φ) =
~
2e

(IC cos(∆φ)− I∆φ) (1.12)

and with damping that is characterized by a quality factor Q. Fig. 1.10b
illustrates this intuitive picture. At I = 0, the particle (black dot) is trapped
in a minimum of the washboard potential with barriers of height EJ = ~

2e
IC ,

where EJ is the Josephson coupling energy. Excited by thermal voltage
fluctuations, the particle tries to jump over the potential barriers with an
attempt frequency that is essentially the plasma frequency

ωp =

s
2eIC

~(C(1 + R
RJ

) + CJ)
(1.13)

for I < IC
4. As long as kBT � EJ , these attempts remain unsuccessful,

and ∆φ is constant. Increasing the current bias I corresponds to tilting the
potential landscape, as shown in Fig. 1.10b for I/IC = 0.5. The barriers
shift accordingly, and the particle has an increased probability of overcom-

4In microscopic Josephson junctions, ωp becomes large due to the small capacitances
involved. The damping provided by C at such high frequencies becomes significant
for the overall characteristics of the Josephson junction, and makes it necessary
to consider C and R in the first place[40]. For larger junctions, the effect of the
electromagnetic environment is usually negligible, and the conventional RCSJ model
is a sufficiently precise description.
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ing them. At some point, thermal fluctuations will enable it to jump over
the barrier, and depending on Q it will get trapped in the next minimum
or escape altogether. In the following paragraphs, we will review the two
important cases of underdamped and overdamped Josephson junctions.
Finally, when I ≥ IC , there exist no stable points in U(∆φ) anymore. The
particle slides down the potential drops, so IJ oscillates as described in
Eq. 1.8. The measurable supercurrent washes out completely, and effective
charge transport occurs exclusively through quasi-particle channels.

Figure 1.11: a Underdamped Josephson junctions displays hysteretic I−V curves.
IS < IC due to premature switching. b In contrast, overdamped Josephson junc-
tions show no sharp switching at all, but a smooth, non-hysteretic transition from
a dissipative supercurrent branch to the resistive branch.

One of the most important parameters of a Josephson junction is the
quality factor

Q =
1

ωp(RC + ~
2eICRJ

)
(1.14)

that determines the damping of the system for 0 < I < IC . In our mechan-
ical picture, the damping is present as friction that dissipates the ‘kinetic
energy’ of the particle as it moves along the tilted washboard potential.
In an underdamped junction, Q > 1 and the particle experiences little
friction[38]. Once it is lifted over a barrier by thermal fluctuations, there is
no mechanism to trap it again. The particle is free to slide down the poten-
tial slope (‘running state’), whereupon the measurable supercurrent drops
to zero. A plot of the voltage V dropping over the junction in response to I
is shown in Fig. 1.11a. Starting from I = 0, a positive bias current is applied
(dark green). As long as ∆φ remains trapped, this current is dissipation-
free, and no voltage results. We call this the ‘supercurrent branch’. The
position at which the junction passes into a running state is not predictable,
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because even for I < IC , the particle has a finite chance of escaping its
minimum, and this chance increases exponentially as I approaches IC . The
scattering of the switching current IS is depicted by several parallel lines.
This means that we cannot measure IC from such an I − V curve, but only
a lower limit. In order to extract the true supercurrent IC , we need to re-
peat the measurement many times and compare the distribution of IS to
the expected statistical form. Above IS , the supercurrent is washed out.
The applied I is then transported through the junction by dissipative quasi-
particle tunnelling as discussed previously (see ‘Andreev transport’), and a
finite differential resistance dV/dI arises, which is why we refer to this as the
‘resistive branch’. Upon driving I back to zero, the supercurrent is recov-
ered at the ‘retrapping current’ IR (bright green). Underdamped Josephson
junction are hysteretic, i.e. IR < IS in general.

For overdamped Josephson junctions, the situation is different[39]. In
this case, the motion of the particle in the tilted washboard potential is dom-
inated by large friction that quickly dissipates any surplus kinetic energy.
The particle will still try to overcome the potential barriers that confine
it, but even if it succeeds, it will be trapped in the next minimum rather
than go into a running state. Instead of a sharp switching, we therefore
see a smooth transition from a dissipative supercurrent branch to a resistive
branch, where the friction is finally overcome by the force driving the parti-
cle down the inclined potential (Fig. 1.11b). The I − V curve is completely
reproducible because, in fact, it already includes the statistical process that
allows ∆φ to shift. It is important to understand that the observation of
finite dV/dI at I � IC is in agreement with the supercurrent picture. The
voltage drop across the junction corresponds to the slow, but steady shifting
of ∆φ along the potential in the presence of damping. Due to the dissipative
supercurrent branch, the extraction of IC is not straightforward for this case
either. However, we can evaluate IC from a single measurement by fitting
the I − V curve to a solution of the extended RCSJ model,

I(V ) =


IcIm

»
I1−iη(Ic~/2ekBT )

I−iη(Ic~/2ekBT )

–
+

V

RJ

ff
RJ

RJ +R
, (1.15)

where η = ~V/2eRkBT , and Iα(x) is the modified Bessel function of complex
order α[39].
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Chapter 2
Fabrication and Measurement Methods

In this chapter, we describe the methods and processes used for sample
fabrication and measurements. For detailed information and recipes, please
refer to appendix A.

2.1 General device fabrication

All devices that we present in this thesis are fabricated on thermally oxidized
Si wafers. The substrate is highly doped to make it conducting, while the
SiO2 serves as a flat, insulating surface for the device (Fig. 2.1a). In order
to remove dust particles and organic impurities from the wafer, we perform
several cleaning steps before starting with the actual microfabrication.

We grow single-wall carbon nanotubes (SWCNT) on the wafer by the
chemical vapour deposition (CVD) method[41]. Wafer pieces are covered
with catalyst particles and heated to 950◦ C in a furnace under a non-reactive
atmosphere. The gas is then replaced by CH4 for 10 minutes. During this
time, CH4 molecules dissociate at the catalyst particles on the wafer surface,
and carbon atoms grow into SWCNT. The length and quality of the SWCNT
depends in a critical fashion on the growth parameters and on the exact
composition of the catalyst[42].

Individual SWCNT are contacted to metallic leads in several steps using
electron beam lithography. Fig. 2.1 illustrates this technique: The wafer is
spin-coated with a layer of polymethylmethacrylat (PMMA) from a solution
in chlorobenzene (Fig. 2.1b). The wafer is baked out to remove the solvent,
and then placed in a scanning electron microscope (SEM). Local exposure

23
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Figure 2.1: Electron beam lithography: a Si wafer with SiO2 on top. b Spin
coating with PMMA. c Patterning with electron beam. d Removal of exposed
PMMA in a chemical developer. e Metal deposition by evaporation. f Removal of
PMMA mask. A patterned metal film is left on the surface.

of the PMMA to an electron beam (Fig. 2.1c) cuts the polymer chains into
smaller pieces that can be dissolved by a chemical developer (Fig. 2.1d).
The remaining PMMA is used as a mask during the deposition of metal in
the subsequent step: The wafer is placed opposite to a metal source that
is heated under vacuum, either by an electron beam or by wires running
around the source. The wafer is covered by a film of evaporated metal from
the source (Fig. 2.1e) and finally rinsed in Acetone (Fig. 2.1f). In this last
step, the PMMA mask is dissolved, and only the metal film in direct contact
with the wafer surface is left. In this way, submicrometer-sized structures
can be patterned with the electron beam.

The first lithography provides a frame of terminals with bonding pads, and
a grid of markers serving as coordinate system in the middle of that frame
(Fig. 2.2a). We choose Au as material for this film, both because of its high
conductance and because it is easily visible under the SEM, in contrast to
e.g. Al. However, to make sure that no SWCNT accidentally creates a short
between two terminals, it is useful to underlay the Au layer with SiO2, and Ti
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for adhesion. Individual SWCNT are selected by SEM, and their position
relative to the marker grid is determined. In a second lithography, these
SWCNT are contacted to source (S) and drain (D) contacts (Fig. 2.2b). For
all devices presented here, we employ Al as bulk superconductor, and a Ti
layer to establish good electrical contact to the SWCNT. After the second
lithography, the device looks as depicted in Fig. 2.2c, and corresponds to
the setup used in chapters 3 and 4.

Figure 2.2: a In a first lithography, large pads for bonding and a marker grid are
deposited (optical microscope image). b Individual SWCNT are selected and their
position relative to the marker grid is determined. A second lithography contacts
them to S and D leads (SEM micrograph). c Schematic for a SWCNT with two
superconducting leads.

2.2 Topgated carbon nanotube devices

The devices in chapter 6 feature thin metal fingers lying on top of the device
as topgates (TG). Naturally, we desire a purely capacitive coupling between
the device and the TG. In order to avoid charge transport, we first cover
the device with an insulating layer of Al2O3 that we grow by atomic layer
deposition (ALD). The ALD recipe is calibrated to produce 5 nm of Al2O3.
Afterwards, we design the TG in a third lithography using Pd, which is non-
corroding and cheaper than Au. Fig. 2.3a shows how the Al2O3 layer covers
the structure isotropically. Since it is transparent in a SEM micrograph,
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we can still image the leads and the SWCNT at the end of the fabrication
process, as demonstrated in Fig. 2.3b.

Figure 2.3: a Schematic of a SWCNT with two leads and TG. An ALD Al2O3

layer is used to prevent charge transport from the TG to the device. b SEM
micrograph of a finished device.

2.3 Topgated nanowire devices

We follow a different approach in chapter 5, where we discuss a device con-
sisting of a Ge/Si core/shell nanowire (NW) with superconducting S and D
leads and TG. In this case, the quantum dot (QD) is not formed between
tunnel barriers at the interface of the NW to the leads, because these inter-
faces are highly transparent. Instead, we make use of the fact that the NW
consist of semiconducting material that can easily be depleted by an applied
voltage. It has been shown that TG can define tunable tunnel barriers inside
Ge/Si core/shell NW by depleting the charge carriers locally[43]. A QD is
formed between two such barriers, whose coupling to the leads can be tuned
by the TG voltage, VTG. A sketch of such a device is presented in Fig. 2.4a,
and a SEM micrograph in Fig. 2.4b. The fabrication process is very similar
to that of a SWCNT device, with the exception that the NW are deposited
from a solution instead of being grown by the CVD method. Once the Al
leads are patterned, the sample should not be exposed to temperature above
∼ 120◦ anymore to avoid unwanted annealing effects between the leads and
the Ge core of the NW. This means that subsequent PMMA bakeout steps
or ALD processing take place at reduced temperatures.

2.4 Final steps

Once the lithographical fabrication process is over, the sample undergoes a
couple of final steps before it can be cooled down. The wafer is cleaved into
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Figure 2.4: a Schematic of a NW with two leads and TG. An ALD Al2O3 layer is
used to prevent charge transport from the TG to the device. b SEM micrograph
of a finished device.

smaller pieces (max. 5 mm squared) which we glue into chip carriers. Differ-
ent glues have their advantages and disadvantages: we use two-component
epoxy for the sample in chapter 3, and undiluted PMMA for later samples.
In contrast to epoxy glue, PMMA is readily dissolved in acetone without
heating or sonicating the sample, which allows us to remove the sample from
the chip carrier and transfer it to a different measurement environment.

Each chip carrier contains 20 terminals that correspond to measurement
lines in the cryostats, and we connect these terminals to the bonding pads
on the chip through Al bonding wires. The Si substrate of the wafer is
connected to one of the terminals by silver paint (chapter 3) or by removing
some PMMA and scratching the SiO2 layer before the last evaporation step,
and bonding on the metal pad that is established thereby (chapters 4-6).
The substrate can thus act as a backgate (BG) electrode. Both methods
yield reliable connections, but silver paint is prone to creating a mess, and
the second solution is to be preferred for its reversibility. Finally, the chip
carrier is mounted into the chip socket on the cold finger of the cryostat.
The setup used in chapter 4 is not designed for chip carriers. Instead, the
sample is glued directly onto the cold finger of the cryostat, and the bonding
wires run from the bonding pads to Cu terminals on the cold plate.

These last steps are very delicate because the device is connected to macro-
scopic metal parts, and any voltage spike that occurs during handling can
cause the SWCNT or NW to burn. It is therefore crucial to employ proper
grounding for all tools and machines at this stage, especially for bonding
and mounting the sample.
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Figure 2.5: a Finished sample bonded in a chip carrier. b Room temperature
measurements of the device conductance are performed in a needle probe setup.

2.5 Room temperature measurements

It is often convenient to take conductance measurements at room tempera-
ture, either to monitor changes in individual devices during the fabrication
process, or to decide which devices are promising candidates and justify a
cooldown procedure. For this, we depend on two different setups.

In a needle probe station, the bonding pads on the chip are contacted
by metal tips whose position is controlled via micrometer screws. It is not
necessary to bond the device, and since the measurement takes place in
ambient air, mounting the sample and operating the needle probe station is
straightforward. This setup is chosen for checks between fabrication steps,
and for selection of suitable devices.

A testbox is useful to check a finished sample, including bonding wire
connections and chip carrier. Again, the measurement takes place in ambient
air and requires little time or effort. If the sample is about to be cooled down,
the last test at room temperature is preferably performed in the cryostat
itself, with a closed Faraday cage but under ambient pressure. This holds
the advantage that the sample does not need to be transferred anymore
after the test, because as mentioned before, mounting and dismounting the
sample is risky.

In either setup, the wiring is kept simple. The room temperature differ-
ential conductance GRT is probed in a voltage biased measurement with a
lock-in amplifier (current measurement mode, VAC = 1 mV). For the devices
we discuss in this thesis, all energy scales are much smaller than thermal exci-
tations at room temperature, kBTRT ∼ 25 meV. Due to thermal broadening,
the energy levels overlap strongly and it is impossible to resolve single levels
spectroscopically. Instead, a measurement of GRT yields a rough estimate
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of the maximum conductance through the device, and reveals in the case of
a SWCNT whether it is semiconducting or metallic. Metallic SWCNT are
expected to display Kondo features and superconducting proximity effect at
low temperature if GRT ≤ 100 kΩ.

2.6 Measurements at low temperature

In order to resolve single energy levels in a QD, one must lower the thermal
excitations well below the involved energy scales. On the one hand, this
is achieved by phonon cooling, i.e. decreasing the temperature Tph of the
atomic lattice excitations in the metal leads of the device. For this, we
employ a range of different cryostats. On the other hand, the effective
temperature of the conduction electrons, Tel, is reduced by filtering high
frequency noise in the leads. Since we are performing electrical transport
measurements, Tel is the relevant parameter. However, below ∼ 1 K, Tel

and Tph start to decouple, and even though we reach Tph < 100 mK in
some systems, the effective Tel can be higher. Under such circumstances,
an efficient filtering setup becomes crucial for good measurements. We will
in the following review different types of cryostats before taking a look at
electrical filters and other parameters that need to be controlled.

The most basic way of cooling a sample is to dip it into liquid Helium
(4He) with a dipstick. This is simply a hollow metal rod through which the
measurement wires are running, with the sample fixed at the lower end. 4He
evaporates at a temperature of THe = 4.2 K at 1 bar, which corresponds to
an energy of kBTHe = 360 µeV. This method is quick, easy, and reliable, but
cannot reach temperatures below 4.2 K. No filtering is used in the wiring.
Tph can be reduced by placing the dipstick inside a vacuum chamber that is
in turn immersed in a 4He bath, which we refer to as 4He cryostat. In this
case, the cooling power is provided by continuous evaporation of liquid 4He.
Through a needle valve, small amounts of 4He are introduced into the inner
vacuum chamber (IVC), where they evaporate instantly in the low pressure.
The cooling power generated by this evaporation is sufficient to achieve a
stable Tph of about 1.7 K.

A different approach is realized in a 3He cryostat. 3He is a rare isotope of
He that needs to be produced artificially and is accordingly expensive. The
boiling point of 3He is lower than that of 4He, and by evaporating 3He in a
cryostat, we reach Tph ∼ 300 mK. However, since it is unaffordable to use a
bath of 3He analogous to a 4He cryostat, a closed circuit is used where 3He
is evaporated from a liquid phase. Naturally, this implies that the cooling
power cannot be provided continuously, because after 24 to 36 hours, all 3He
is bound and needs to be recondensed (single shot operation). An outer 4He
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Figure 2.6: Schematic of a 3He/4He dilution refrigerator. 3He is represented by
light blue, 4He by dark blue.

system is responsible for precooling and liquefying the 3He. The temperature
reached with a 3He cryostat is adequate to observe superconductivity in Al
leads (TC = 1 K for Al).
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If one wants to access Tph < 100 mK, a 3He/4He dilution refrigerator
is a suitable solution (Fig. 2.6). By far the biggest part of the data shown in
this thesis was obtained in a dilution refrigerator, with Tph as low as 20 mK.
Here, the cooling mechanism depends on a mixture of the two He isotopes
which separates into a concentrated 3He rich phase and a diluted 3He poor
phase below 0.86 K[44]. Similar to any evaporation from a liquid to a gas,
3He atoms are driven across the boundary between the phases, providing
cooling power in the process. This takes place in the ‘mixing chamber’ of
the cryostat, which is consequently the coldest part of the setup. To prevent
the 3He from accumulating in the dilute phase and saturating, the 3He is
pumped away from the mixing chamber and leaves the diluted liquid in the
‘still’ at about 0.7 K. It enters the cryostat again through the ‘condenser’,
where it becomes liquid in the concentrated phase. From the condenser,
the 3He flows to the mixing chamber and into the diluted phase once more.
Again, a separate 4He system is needed for precooling, and especially to
liquefy the 3He gas in the condenser. This is done with a ‘1 K pot’ that
evaporates 4He through a needle valve in analogy to a 4He cryostat. An
outer vacuum chamber (OVC) and a liquid nitrogen bath (not shown) serve
to insulate the 4He bath.

What is the fundamental difference between a dilution refrigerator and a
3He cryostat? Essentially, both draw their cooling power from the transition
of liquid 3He from a liquid state into a diluted state, either by evaporation or
by mixing with 4He. However, the equilibrium concentration of 3He in a gas
phase tends towards zero as Tph becomes very small, and all 3He condenses
in the liquid phase. This means that the cooling power is greatly reduced
below a certain temperature, because no evaporation takes place anymore.
In contrast, the equilibrium concentration of 3He in the dilute phase of a
3He/4He mixture is finite even as Tph approaches zero, and we obtain a
cooling power well below the base temperature of a 3He cryostat.

All the aforementioned cryostats can be used in combination with a super-
conducting coil magnet immersed in the 4He bath. By varying the current
that runs through a superconducting coil, an adjustable, homogeneous field
is created. As long as the coil forms a closed, superconducting loop, the
magnet is in the so-called ‘persistent mode’. The current in the loop decays
then only very slowly (not at all in an ideal system). In order to change the
current, a small part of the coil is heated, whereupon it enters the normal
state and breaks the superconducting loop. Our magnet can produce fields
of up to 8 T at 4.2 K, although we only use fields of 1− 2 T.

One important ingredient for low temperature measurements are electrical
filters. At Tph < 1 K, the electrical temperature Tel starts to decouple from
Tph. The main obstacle against achieving low Tel is high frequency noise in
the MHz/GHz regime, which stems from stray fields of electrical instruments
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Figure 2.7: Typical setup for voltage biased measurements (see appendix A for
description of individual components). We use a SR 830 lock-in amplifier with
external I/V-converter, which is either an inhouse construction or a DL instruments
1211. Voltage sources are SR 830 (AUX out) or HP 3245A for VSD, and HP 3245A
or YK 7651 for gating. In chapter 4, a SR 560 preamplifier is used to mix AC and
DC signals instead of a transformer. ‘Π’ refers to Π-filters, and ‘F’ to different
filtering systems at low temperature, as discussed in the main text. Blue and
red mark parts of the setup that are at low temperature and room temperature,
respectively.

at room temperature. In order to prevent this noise from reaching the
sample, we need to filter the wires running through the cryostat.

The filtering is usually done in several stages. The working mechanism
of all these stages is to dissipate as much high frequency noise as possible
while letting the DC signal pass (low-pass filter)1. At room temperature,
this is achieved with LC-filters (also called Π-filters), at low temperatures
with different RLC-filters like resistive coaxial wires or microceramic capac-
itors. As an example, we mention the so-called ‘tapeworm filter’, which
consists of twisted pairs of wires packed in a Cu foil[45]. High frequency
components of the current are expelled from the core of the wires (skin ef-

1The lock-in AC modulation is low enough in frequency to be unaffected by the filtering.
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fect) and experience a higher resistance R as well as a higher inductance L
along the conductor, while the capacitive coupling to the Cu foil acts like a
short to ground for them. The efficiency of our filtering was determined by
measuring Tel via broadening of Coulomb resonances as a function of Tph, in
a regime where thermal broadening dominates over Γ-broadening[46]. The
lowest Tel obtained in these measurements was Tel ∼ 50 mK.

Figure 2.8: Typical setup for current biased measurements (see appendix A for
description of individual components). We use a SR 830 lock-in amplifier. Voltage
source is a HP 3245A, and a SR 560 preamplifier is used as mixer for AC and DC
current. The voltage preamplifier is a inhouse construction. ‘Π’ refers to Π-filter,
and ‘F’ to different filtering systems at low temperature, as discussed in the main
text. Blue and red mark parts of the setup that are at low temperature and room
temperature, respectively.

The measurement principle at low temperatures is similar to that at room
temperature, but we need to take care of a couple of parameters to optimize
the sensitivity of our setup. For instance, since we are at temperatures well
below 1 meV2, the lock-in AC modulation VAC must be reduced accordingly,
such that eVAC < kBT . However, this is a tradeoff, because a smaller
modulation causes a smaller signal/noise ratio. We typically apply VAC = 5-

2For T = 1 K, kBT/e ∼ 100 µV
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10 µeV superimposed on a bias voltage VSD and measure the current that
flows through the device as a response (Fig. 2.7). An I/V-converter amplifies
the current signal and transforms it into a voltage signal that is read out by
the lock-in amplifier. The I/V-converter introduces an offset in VSD that
needs to be identified and corrected. In all data that we present in the
following chapters, this artificial VSD offset is rectified. Fig. 2.8 shows a
typical setup for current biased measurements used in chapter 4.



Chapter 3
Even-Odd Andreev Transport due to the

Kondo Effect

We now turn towards the experimental results of this thesis by focusing on
the interaction between Andreev reflections and Kondo physics in a single-
wall carbon nanotube (SWCNT) quantum dot (QD) with superconducting
leads. In such a system, we can use the sequential filling of quantized levels,
and the accompanying alternation between odd and even occupation of the
QD, to switch Kondo correlations on and off. The same is true for supercon-
ductivity under the influence of a magnetic field. The high degree of control
allows a detailed analysis of the interaction between the two many-particle
processes. Please note that the content of this chapter has been published
in similar form [47].

Figure 3.1: a Schematic of the device, illustrating the Ti/Al/Ti composition of
the leads. The Si substrate serves as a backgate electrode. b SEM micrograph of
an actual device.

35
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3.1 Introducing remarks

The device used in this experiment corresponds to the illustrations in Fig. 3.1.
A metallic SWCNT is contacted to source (S) and drain (D) leads as de-
scribed in chapter 2. In addition to a Ti adhesion layer and an Al layer, these
contacts feature Ti cover layers to prevent oxidation of the Al (Fig. 3.1a). Al
is the actual superconductor with a bulk critical temperature of TC = 1.2 K.
From transport measurements through the SWCNT, we rather obtain a TC

of 0.9 K, which corresponds to a reduced BCS gap ∆ for the proximity in-
duced superconductivity in the Ti layer. The spacing between S and D is
approximately 300 nm. The highly doped Si substrate is used as a backgate
electrode (BG). A SEM micrograph of an actual device similar to the one
measured is shown in Fig. 3.1b.

A QD forms on the SWCNT due to tunnelling barriers at the interfaces
to S and D. When the leads are in the normal state, we expect the Kondo
effect to take place below a characteristic temperature TK when the cou-
pling strengths of the QD to the leads, ΓS,D, are large enough, and when
the number of electrons on the QD is odd (Fig. 3.2a). The spins of the
electrons in the leads screen the unpaired spin on the QD, producing ad-
ditional resonances pinned to the chemical potentials of the leads, µS,D.
If superconducting contacts are used instead of normal ones, a competi-
tion between the Kondo effect and superconductivity takes place since the
two phenomena rely on the formation of opposed spin singlet states. If
∆ > kBTK , the Kondo correlations are suppressed, whereas they persist in
the opposite regime, opening a highly conducting channel for the Josephson
effect (Fig. 3.2b) [48]. We report here on finite-bias transport through a
SWCNT QD with superconducting contacts in the most interesting regime
of intermediate coupling, where Kondo correlations are of similar magnitude
as superconducting ones.

All measurements are taken with an AC voltage of 10 µV and at a phonon
temperature of Tph ∼ 25 mK where not indicated otherwise. For the normal
state data, we use a magnetic field of 0.1 T applied perpendicular to the
wafer plane to suppress superconductivity in the leads.

3.2 Results

Fig. 3.3 summarizes the main results we will be discussing in the following.
Fig. 3.3a shows a plot of the differential conductance G in the normal state
and Fig. 3.3b the corresponding one in the superconducting state. In the
normal state a sequence of larger and smaller Coulomb blockade (CB) dia-
monds are seen (dashed lines), corresponding to a sequence of nearly equally
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Figure 3.2: a QD with two normal leads and an odd number of electrons. The
Kondo effect produces additional resonances pinned to µS and µD. b When the
leads are superconducting, a competition between Kondo correlations and Cooper
pair formation is expected. The Kondo effect prevails if kBTK > ∆.

spaced levels on the SWCNT QD, which are filled sequentially. The number
of electrons on the dot therefore alternates between odd and even.

It is also seen that G around VSD = 0 V is suppressed and featureless
in the even valleys, but is increased assuming structure in the odd ones.
In the CB diamond labelled 3, there is a pronounced peak at VSD = 0 V,
suggesting the appearance of a Kondo resonance. Indeed, the dependence
of G on temperature T (Fig. 3.3c), measured in the middle of this valley at
VSD = 0, follows the expected dependence [17]

G(T ) = G0[1 + (21/s − 1)(T/TK)2]−s (3.1)

with a Kondo temperature of TK = 0.75 K. Here, G0 is the low temperature
saturation conductance of the Kondo resonance peak, G0 ∼ 0.1e2/h, and s =
0.22. In the other odd valleys, the Kondo resonances are split by ∼ 100 µV,
which is much larger than the Zeeman splitting due to the applied magnetic
field of B = 0.1 T, amounting to ∼ 20 µV. The origin of this splitting is
at present not known, but could be due to exchange with ferromagnetic
catalyst particles or another nanotube [49].

The normal state data can be used to deduce a number of parameters.
The source, drain and backgate (BG) capacitances are CS,D ∼ 50, 100 aF
and CBG ∼ 4 aF, leading to a gate-coupling α = CBG/CΣ ∼ 0.026, where
CΣ = CS + CD + CBG. The charging energy UC = e2/CΣ and the level
spacing δE are in the range of 0.7-1 meV and 1.4-1.8 meV, respectively.
Whereas this SWCNT QD is nearly symmetric in its electrostatic coupling,
it is quite asymmetric in its electronic one. The total level broadening
amounts to Γ = ΓS + ΓD ∼ 0.2 meV with an asymmetry of ΓS/ΓD ∼ 50.
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Figure 3.3: a Differential conductance G plot as a function of bias voltage VSD

and gate voltage VBG in the normal state, at the base temperature of the cryostat
(Tph = 25 mK). Superconductivity in the leads is suppressed by a magnetic field of
0.1 T. b The same measurement with superconducting leads. Additional features
due to Andreev tunnelling are visible. c Linear conductance G measured as a
function of temperature T in the middle of charge state 3. d Detail view of the
curves overlaid in a and b for charge states 1, 3, and 4 in the normal (dashed blue)
and superconducting (red) state.

This asymmetry is deduced independently from the measured current peaks
in G at the border of the CB diamonds at finite bias and from the reduced
low temperature zero bias conductance of the Kondo ridge 3, amounting to
G0 ∼ 0.1 e2/h.

Looking next at the superconducting state, we see that the major changes
in G are confined to a voltage band of −0.26 meV < V < 0.26 meV, cor-
responding to ±2∆. Above 2∆, i.e. |V | > 2∆/e, quasi-particle current is
possible and the main modification is caused by the peak in the supercon-
ducting density of state (DOS), leading to a peak-like feature in G. Below
the 2∆-gap, first order charge transfer processes are forbidden and charge
has to be carried by higher order Andreev processes [28; 29; 30]. The first
Andreev process, which is of second order, results in a peak-like structure in
the vicinity of |V | = ∆/e. Due to the higher order, this peak and all subse-
quent ones should be smaller than the quasi-particle peak. The suppressed
G in the superconducting state is observed together with the dominant 2∆
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and the smaller ∆-peak in the middle of an even charge state (even valley),
see e.g. curve labelled 4 in Fig. 3.3d.

In contrast, in the odd charge states, the 2∆-feature is not present or does
not appear at |V | = 2∆/e. Starting to view the data from large bias voltage,
the first peak appears closer to ∆/e rather than 2∆/e, with a preceding
negative G, see curve labelled 3 in Fig. 3.3d. Hence, there is a striking even-
odd asymmetry in the finite-bias G features in the superconducting state,
which is not caused by the CB resonance at the edges of adjacent charge
states, where the situation is expected to be more complex. The even-odd
alteration of the MAR structure suggest a relation to Kondo physics. To
model this, we first extract important parameters from an analysis of the
data in the middle of an even valley where Kondo correlations are absent.

Figure 3.4: a Detail plot showing the charge states labelled 2, 3, and 4. The
vertical dashed line indicates the position in the even state 4 where the following
measurements are taken. b Measured G versus temperature VSD for different
temperatures. The curves are shifted upwards by 10−3 e2/h for clarity. c 2∆ and
∆ peak positions Epeak(T ) together with a BCS T -dependence of ∆. d Result of
a model calculation following [28].
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3.3 Even charge state

Fig. 3.4a-d discusses the temperature dependence of G in the middle of the
even charge state, at the position of the dashed line in Fig. 3.4a; Fig. 3.4b
shows the measurement taken in valley 4, and Fig. 3.4d is a model calcu-
lation. The experiment displays pronounced quasi-particle current peaks at
Epeak = ±2∆, and weaker MAR peaks at ±∆.

The evolution of Ej∆
peak(T ) with temperature T is shown in Fig. 3.4c to-

gether with an approximate BCS gap function

Ej∆
peak = Kj∆∆0 tanh(1.74

p
TC/T − 1) (3.2)

where we used the BCS correlation ∆0 = 1.76kBTC . The fit yields TC =
0.9 K, which corresponds to ∆0 = 0.135 meV, in good agreement with the
value of E2∆

peak(0). Further, we obtain K2∆ = 2.0 and K∆ = 1.15 for the
two peaks. The slight increase of K∆ above the expected value of 1 is not
accounted for. It might be due to the fact that we measure dI/dV instead
of I, which can induce small shifts in the observed voltage values. We
will use the value ∆0 = 0.13 meV as the zero temperature gap parameter
in the following. The relevant parameters expressed in units of ∆0 are:
UC = 5-8, δE = 10-14, Γ ∼ 1.5 and kBTK ∼ 0.5. The zero bias peak
in Fig. 3.4b, appearing at intermediate temperatures, can be explained by
direct tunnelling of quasi-particles that are thermally activated across the
gap.

The good agreement with the BCS relation of the peak positions motivates
the modelling of G using the BCS DOS in the leads1. The model uses An-
dreev tunnelling through a single resonant level positioned at energy ε [28].
The following parameters in units of ∆0 were used: ΓS = 1.0, ΓD = 0.03
and ε = 7. The BCS DOS was broadened by 0.1 ∆0, accounting for the
averaging in the experiment due to the ‘small’ AC bias. A remarkably good
agreement is found (Fig. 3.4d).

3.4 Odd charge state

We now turn our attention to the odd charge states. We point out that
the zero bias high-G Kondo ridge, which is associated with the Kondo res-
onance and visible in the normal state, is not seen in the superconducting
state (see Fig. 3.3a and b). This is in contrast with previous results which
correspond to larger values of TK compared to ∆ [48; 30]. Although the
Kondo resonance is not visible at zero bias in the superconducting state, we

1Model calculations performed by A. Levy-Yeyati, J. C. Cuevas, and A. Mart́ın-Rodero
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Figure 3.5: This figure illustrates our proposal to understand the appearance of the
strong ∆-feature in the odd valleys. A Kondo resonance persists on one electrode
side only. Because it is pinned to that chemical potential, it will strongly enhance
the ∆-feature in Andreev tunnelling.

suspect it to be responsible for the even-odd asymmetry of the ∆-feature in
the superconducting state.

In the Kondo regime, the single spin on the QD in the odd state is screened
by exchange with conductance electrons from the leads. If the electrons are
bound in Cooper pairs in the leads, the Kondo temperature is renormalized,
assuming a smaller value T ?

K [50]. This renormalization is sensitive to the ac-
tual parameters ΓS,D and ∆. Due to the asymmetry in the coupling, it may
happen that a Kondo resonance with a reduced width forms on the contact
with the larger coupling, whereas on the other contact the Kondo resonance
is suppressed. This is illustrated in Fig. 3.5 for a bias voltage of V = −∆/e.
Again, this scenario is modelled considering a single-level Anderson Hamil-
tonian with interaction UC = 5-10 ∆0 coupled to S and D contacts2. The
experimentally deduced ΓS,D, including the strong asymmetry, were used.
To deal with the interaction term, we use a finite UC slave-boson mean field
approach which accounts reasonably well for the low energy spectral density
in the Kondo regime [51]. The approach yields renormalized parameters ε̃,
Γ̃S,D, which depend both on the gate and on the bias voltage. These param-
eters are obtained in the normal state and introduced into the calculation
of the subgap current as in Ref. [28].

The result of the comparison is shown in Fig. 3.6: Fig. 3.6a and Fig. 3.6b
correspond to the normal state experiment and model, respectively. We
indicate the level position ε (instead of VBG) and the bias voltage VSD

in units of ∆0 to facilitate the comparison. Vertical dashed lines mark
±UC/2. Please note that the experiment corresponds to UC = 7-8, while the

2Model calculations performed by A. Levy-Yeyati, J. C. Cuevas, and A. Mart́ın-Rodero
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calculation was done UC = 5 and UC = 10, where the latter is shown here.
The Kondo resonance is reproduced with a remarkably good agreement.
Fig. 3.6c and Fig. 3.6d correspond to the superconducting state experiment
and model, respectively. Here, horizontal dashed lines indicate VSD = 2∆/e
and VSD = ∆/e. The dominance of the ∆-feature in the odd valley (3) is
clearly present, as is a similar cross-over from odd to even filling. There
are also some differences: in the experiment the ∆-feature bends to larger
VSD-values in the middle of the odd state, whereas this feature is rather flat
in the calculation.

Figure 3.6: Comparison of G in the odd valley labelled 3 with a model calculation
based on a single-level Anderson model with finite Coulomb interaction UC that
is evaluated by a mean field slave-boson approach. The experiment corresponds
to UC = 7-8, while the calculation is presented for UC = 10. We show in a the
normal state experiment, in b the normal state model, in c the superconducting
state experiment, and in d the superconducting state model.

3.5 Summary

In conclusion, we have discovered a pronounced even-odd effect in the An-
dreev structure in transport through a QD with superconducting contacts.
More precisely, the feature at VSD = ±∆/e is enhanced in charge states
with an odd number of electrons on the QD. This effect is related to the
competition between superconductivity and the Kondo effect, which takes
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place in these charge states when the leads behave as normal metals. In
the presence of superconductivity in the leads, the Kondo effect persists if
kBTK > ∆, but is suppressed is the opposite regime [48]. In our device,
the coupling of the QD to the two leads is highly asymmetric, such that
ΓS/ΓD ∼ 50. The Kondo effect is therefore suppressed on the side with low
coupling (opaque tunnel barrier), but persists on the other one (transparent
tunnel barrier), giving rise to an enhancement of the ∆-feature, but not to
the characteristic Kondo ridge around zero bias.

Similar results were obtained independently in InAs nanowires[52]. The
explanation put forward in that work relies also on the interplay between
Andreev transport and the Kondo effect, but not on the asymmetry between
ΓS and ΓD, which is smaller than in our device. Future experiments will
need to address this discrepancy.
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Chapter 4
Tuning the Josephson Current With the

Kondo Effect

In chapter 3, we studied how the Kondo effect can interact with Andreev
transport through a single-wall carbon nanotube (SWCNT) quantum dot
(QD) with superconducting leads at finite bias voltage. In a next step,
we can now analyse how Kondo correlations change the behaviour of the
Josephson current in such a system, i.e. how coherent tunnelling of Cooper
pairs through a QD is affected by the formation of a Kondo singlet state.
In order to achieve this, we need to improve the control over high frequency
dissipation processes in and around our device. We do so by deliberately
introducing additional resistors in the on-chip environment. Part of this
work was published in [53].

4.1 Introducing remarks

Fig. 4.1a shows a schematic of the device used in this experiment. A metallic
SWCNT is contacted to source (S) and drain (D) leads as described in
chapter 2. Al is a superconductor with a bulk critical temperature of TC =
1.2 K. The spacing between S and D is approximately 550 nm, and the
highly doped Si substrate is used as a backgate electrode (BG). The main
modification of this sample relative to the one presented in the previous
chapter consists of additional on-chip resistors in the Au lines leading to
the superconducting Al contacts. In Fig. 4.1b, the on-chip resistors and Al
leads are highlighted in orange and blue, respectively. In the framework of

45
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the extended resistively and capacitively shunted junction (RCSJ) model,
these resistors correspond to the parameter R (Fig. 4.1c) that influences
the characteristics of a Josephson junction at finite current bias. We define
R ∼ 2 kΩ in order to create an overdamped Josephson junction, as discussed
in chapter 1.

Figure 4.1: a Cross section of the nanotube with electrodes and backgate b Scan-
ning electron micrograph of the electrical on-chip environment of the nanotube.
c Schematic of the SWCNT Josephson junction with its environment according to
the extended RCSJ model.

Proximity induced superconductivity through carbon nanotube QD was
first explored in suspended devices with no backgate electrode (BG) [5].
More recently, tunable supercurrents could be detected in the resonant tun-
nelling conduction regime, where the transmission of the contacts approaches
unity [38]. In this regime, the discrete spectrum of the nanotube is still
preserved and the maximum value of the supercurrent is observed when
the QD is on resonance. A superconducting quantum interference device
(SQUID) was fabricated with carbon nanotubes as weak links: supercurrent
π phase shifts occurred when the number of electrons in the nanotube dot
was changed from odd to even [54], corresponding to the transition from
a magnetic to a nonmagnetic state. Sharp discontinuities in the critical
current at this 0-π transition in relation with the even-odd occupation num-
ber of the nanotube quantum dot were also observed in SWCNT junction
devices [39]. As pointed out in the SQUID experiment [54], a Josephson
current can be observed in the Kondo regime when the Kondo temperature
TK is large compared to the superconducting gap ∆, confirming previous
experiments where supercurrents were not directly determined [48; 55].
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Our device is in an intermediate coupling regime where TK is comparable
to ∆. We explore in detail the competition between Josephson and Kondo
physics by monitoring on the same device the bias dependence of the dif-
ferential conductance in the normal state and the Josephson current in the
superconducting state as a function of the gate voltage.

4.2 Setup details and junction parameters

Measurements are done in a dilution refrigerator with a base temperature of
Tph ∼ 40 mK. The cryostat is equipped with a three stage filtering system
consisting of LC filters at room temperature, resistive micro-coax wires and
finally micro-ceramic capacitors in a shielded metallic box, which also con-
tains the samples and is tightly screwed onto the cold finger. The on-chip
resistors implemented lithographically in the Au lines of the sample serve as
additional filters against voltage fluctuations (Fig. 4.1b). We use a lock-in
technique with either an AC voltage of 5 or 10 µV, measuring differential
conductance G = dI/dV , or an AC current of 10 pA, measuring differen-
tial resistance dV/dI, both as a function of an additional DC bias voltage
(VSD) or current (I), respectively. From simple electrostatic considerations,
we can calculate values for the parameters shown in Fig. 4.1c. We obtain
a rough estimate of CJ ∼ 100 aF from the charging energy UC = e2/2CJ .
The junction resistance RJ represents the contribution of quasi-particles to
dissipation at frequencies of the order of the plasma frequency of the junc-
tion, ωP . C represents the capacitance between the leads. It is mainly
determined by the capacitance of the metallic leads to the highly doped BG
within the electromagnetic horizon of the junction1, and can be estimated
to C ∼ 8 pF. Due to this large value of C, it is possible that the finite
resistivity of the BG contributes to dissipation at very high frequency. Since
we cannot neglect the effects of this high frequency dissipation, we need to
take C and R into consideration and work with the extended RCSJ model,
as explained in chapter 1.

4.3 Results

We first characterize the SWCNT QD with the electrodes driven normal by
a small magnetic field (B = 0.1 T). The charge stability diagram (plot of
G as a function of VSD and VBG) displays a regular sequence of Coulomb
blockade (CB) diamonds over a wide range of VBG. For further analysis, we
concentrate on the gate voltage region between 3 and 4 V (Fig. 4.2a). It

1We estimate the horizon as 2πc/ωp to some centimeters, depending on RJ .
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Figure 4.2: Colour scale plot showing VBG and VSD dependence of G; a normal
state, b superconducting state. White lines correspond to vertical sections of G
versus VSD in the middle of the four Kondo ridges labelled A to D. c VBG de-
pendence of the Kondo temperature TK extracted on the Kondo ridges far from
the degeneracy points. Red lines are fits to Eq. 4.1, the black line corresponds to
TC = 1.0 K. UC and Γ are given in units of ∆.

shows a fourfold periodicity in the size of the CB diamonds [8], which indi-
cates a clean nanotube with the twofold orbital degeneracy of the electronic
states preserved. We extract UC = 2.5 ± 0.3 meV as estimated from the
size of Coulomb blockade diamonds with an odd number of electrons. In
all states with odd occupation, the Kondo effect manifests itself through a
high conductance region around zero bias, the so called ‘Kondo ridge’. The
Kondo temperature TK can be estimated from the half width at half maxi-
mum (HWHM) of the peaks of these lines, which can be fitted by Lorentzian
curves [17]. TK goes through a minimum of the order of 1 K in the center
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of the ridges and increases on the edges. It is possible to follow this gate de-
pendence along the Kondo ridges A to C (Fig. 4.2c). The intensity on ridge
D is too weak for such an analysis. TK can be well fitted by the expression
predicted by the Bethe Ansatz

TK =
p
UCΓ/2 e

− π
8UCΓ |4ε2−U2

C |
, (4.1)

where ε is the energy shift measured from the particle-hole degeneracy point
where ε = 0 [20]. Taking UC = 2.5 meV as determined above, the value of TK

at ε = 0 leads to the characteristic coupling energies Γ = ΓS + ΓD between
the electrodes for each Kondo ridge (Fig. 4.2c). The VBG dependence of
TK yields the ratio α between the electrostatic energy eVBG and the Fermi
energy of the nanotube ε equal to 20 ± 1. This value agrees to within
20% with the value deduced from the normal state conductance data. This
fit is based on the single level Anderson impurity model and is only valid
when UC/Γ is sufficiently large and |ε| � UC , since close to the Coulomb
resonances, the charge number on the QD is not well defined anymore. For
all Kondo ridges, T � TK , so the maximum conductance of the ridges yields
the asymmetry of the coupling ΓS/ΓD as described by the Breit-Wigner
formula

G0 =
2e2

h

4ΓSΓD

(ΓS + ΓD)2
, (4.2)

and we obtain asymmetries of 6.8, 6.2, 2.5, and 70 for A, B, C, and D,
respectively.

By switching off the magnetic field, we allow the leads to become super-
conducting. Fig. 4.2b showsG for the same gate voltage range as in Fig. 4.2a,
but for a smaller VSD range. The BCS-like density of states (DOS) in the
electrodes leads to new features in the stability diagram, namely horizontal
lines at VSD = ±2∆/e and VSD = ±∆/e due to the onset of quasi-particle
tunnelling and Andreev reflection, respectively. We can derive the value of
the superconducting gap ∆ = 0.15 ± 0.02 meV, which corresponds well to
the expected TC ∼ 1 K for the bilayer Ti/Al.

Although they have similar TK in the normal state, the Kondo ridges A,
B, C, and D show a very different behaviour when the electrodes are su-
perconducting: the Kondo ridges A, B, and D are suppressed or reduced
in amplitude by superconductivity, reflecting that TK < TC in the center
of the Kondo ridge. Contrary to ridge A, B, and D, that show a mini-
mum at zero bias, there is a strong enhancement of conductance in ridge C,
with G reaching a value roughly four times larger than in the normal state.
Note that the states A, C, and D show an enhancement of conductance at
VSD = ∆/e to values larger than the conductance at VSD = 2∆/e. This
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effect, which is described in detail in the previous chapter, is attributed to
a situation where the Kondo resonance survives only on one side of the QD
in the presence of superconductivity due to asymmetrical coupling [47]. As
a consequence, no Kondo ridge is observed around VSD = 0 V, but G is en-
hanced for VSD = ±∆/e. An alternative explanation was brought forward
in [52] that does not involve a coupling asymmetry. However, we suggest
that the data in Fig. 4.2 supports our model. The Kondo ridges in Fig. 4.2a
show asymmetries of 70 (D), 6.8 (A), 6.2 (B), and 2.5 (C), in descending
order. Looking next at the white lines in Fig. 4.2b that represent cuts of
G versus VSD through the middle of the Kondo states, we realize that the
enhancement of the ∆-feature is most pronounced in state D, where the
asymmetry is largest. In A, the ∆-feature is only slightly elevated above the
2∆-feature, corresponding to a more symmetrical coupling. The coupling
becomes even more symmetrical in state B, where the 2∆-feature is dom-
inant over the ∆-feature. State C represents an exception, because there
the Kondo correlations survive fully in the superconducting state, as we can
see from the peak at VSD = 0 V as well as from the accordingly high TK

in Fig. 4.2c. In that case, the Kondo resonance persists on both sides of
the QD, and we observe both a zero bias ridge and an enhancement of the
∆-feature, regardless of the rather symmetrical coupling [50; 56].

Figure 4.3: a Colour scale plot of the differential resistance dV/dI as a function
of VBG and DC bias current I. b I-V characteristics for different values of VBG.
Red lines are fits using Eq. 4.3.

For a measurement of the supercurrent, the device has to be current bi-
ased. We simultaneously use AC and DC bias while measuring the resulting
voltage drop. From the AC part, we obtain data on the differential resis-
tance dV/dI (Fig. 4.3a). By numerical integration, we get I−V curves that
show a supercurrent branch and a smooth transition to a resistive branch
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with higher resistance (Fig. 4.3b). The transition between the two regimes
is not hysteretic, and the supercurrent part exhibits a nonzero resistance RS

at low bias even if we subtract the contribution of the on-chip resistances
R. This behaviour is characteristic of overdamped Josephson junctions, as
pointed out in chapter 1, and is a consequence of the electromagnetic envi-
ronment that is illustrated in Fig. 4.2 c. To extract the supercurrent, we use
a theory that explicitly includes the effect of the electromagnetic environ-
ment onto the junction in the frame of the extended RCSJ-model [38; 39].
Using the external resistor R as input parameter, we can thus extract the
critical current Ic (defined as the maximum value of |IJ(φ)| over φ) and the
junction resistance RJ , for every measured BG voltage, from a fit to

I(V ) =


IcIm

»
I1−iη(Ic~/2ekBT )

I−iη(Ic~/2ekBT )

–
+

V

RJ

ff
RJ

RJ +R
, (4.3)

where η = ~VSD/2eRkBT , and Iα(x) is the modified Bessel function of com-
plex order α [39]. This solution assumes a sinusoidal current-phase relation
IJ = sin(∆φ), where ∆φ is the difference in the Ginzburg-Landau phase
between S and D2. The resulting values are plotted as a function of VBG in
Fig. 4.4a and b. The junction conductance GJ = 1/RJ relates well to the
differential conductance GS = 1/RS extracted from the AC part of the cur-
rent biased data, especially around the resonance degeneracy points where
the conductance is high. The normal state conductance GN deviates from
GS most notably in the states B and C, where Kondo physics plays a key
role. In state B, GN > GS whereas the ridge in state C persists in the su-
perconducting state, resulting in a further enhancement of the conductance.

IC exhibits peaks at the maximum values of the conductance (Fig. 4.4b).
Its behaviour between peaks varies strongly in states with even and odd
occupation. In the following we focus on the Kondo ridges B and C. Whereas
the supercurrent on ridge C varies nearly proportionally to the conductance,
we observe a sharp drop of supercurrent on ridge B as indicated by grey
arrows in Fig. 4.4b. This is related to the fact that TK > TC on ridge
C, such that the Kondo effect persists and the excess electron on the QD
remains screened in the superconducting state (see Fig. 4.2c). In contrast,
TK < TC on ridge B near ε = 0, which results in a suppression of the
Kondo singlet state, and the QD hosts a magnetic doublet state instead.
Fig. 4.5 illustrates how the tunnelling of Cooper pairs is affected by this
difference: In the case of TK > TC , Cooper pair transport profits from the
high conductance Kondo channel, whereas for TK < TC the two electrons of
a Cooper pair have to tunnel through the QD sequentially via virtual states.

2The approximation yields excellent results, as we see in Fig. 4.3b, but we need to be
aware that in general, IJ (∆φ) can have a much more complex form.
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Figure 4.4: a Conductances GJ = 1/RJ (black circles), GS (blue line), and GN

(red line). a VBG dependence of the critical current IC extracted from fits of
Eq. 4.3 to the I-V curves in Fig. 4.3b.

This results in a suppression of IC as well as a change in the phase difference
∆φ by π. We therefore term this the ‘π state’, and refer to the passage from
one to the other as ‘0-π transition’. The phase change accompanying such
a transition can be traced in experiments with superconducting quantum
interference devices (SQUID) [54; 57].

Figure 4.5: Model picture for the 0-π transition: a For TK > TC , the unpaired
spin on the QD is screened by the Kondo effect, and Cooper pair tunnelling from
S to D is enhanced. b For TK < TC , the unpaired spin remains unscreened, and
the two electrons of a Cooper pair have to tunnel through the QD sequentially via
virtual states. This results in a suppression of IC as well as a change in the phase
difference ∆φ by π.

At this stage we compare our experimental findings to approximate zero-
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Figure 4.6: Comparison with FRG calculations: Calculated IC(ε) in units of
I0 = e∆/~ for Γ = 2∆, Γ/UC = 0.11, ΓR/ΓL = 6 in a and Γ = 2∆, Γ/U = 0.2,
ΓR/ΓL = 3 in b. Experimental data for IC(ε) are shown for Kondo ridge B in a
and Kondo ridge C in a.

temperature functional renormalization group (FRG) calculations, which
allow for extracting both the stability regions of the screened singlet and
magnetic unscreened doublet phases and the complete IJ(φ) relation within
a model of an Anderson impurity coupled to two superconducting elec-
trodes [20]3. It was previously observed that the Josephson current cannot
be simply described as a single function of the ratio TK/∆ [58]. The rel-
evant parameters are the Coulomb energy UC , the level position ε related
to VBG, and the transmission of the electrodes ΓS and ΓD compared to ∆.
In Fig. 4.6 we present a comparison of our experimental data to theoretical
calculations for IC as a function of ε, for similar values of theoretical and
experimental parameters. It is remarkable that the gate dependence of the
critical current on the Kondo ridges can be qualitatively described. In par-
ticular, theory predicts the existence of a singlet/doublet (0-π) transition on
ridge B at nearly the right value of VBG when renormalized with the charg-
ing energy UC ( grey arrows), and the absence of a 0-π transition for ridge
C, corresponding to higher values of TK . One point of disagreement between
theory and experiment concerns the amplitude of IC in the π state region
(around VBG = 3.65 V). IC is theoretically found to be reduced by only a

3Calculations performed by C. Karrasch and V. Meden.
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factor of two compared to its value in the singlet region whereas basically
no trace of superconductivity could be detected experimentally. It is known,
however, that the π-phase current computed from the approximate FRG is
too large compared to numerical renormalization group (NRG) data, which
are known to be more accurate at the center of the Kondo ridge, the only
region where NRG data can be obtained [20].

Finally, let us emphasize the importance of the asymmetry of the transmis-
sion of the electrodes which tends to reduce considerably the supercurrent.
This is particularly striking for the data on ridge D, for which ΓD/ΓS = 70,
where no supercurrent could be measured in spite of a value of TK of the
order of 1 K. This reduction of IC by the asymmetry of contacts is also
found in FRG calculations [20]. It is moreover accompanied by a modifica-
tion of the stability regions for the singlet (screened) and doublet (magnetic)
states which strongly depend on the phase difference ∆φ between the su-
perconducting electrodes. The non-magnetic singlet state is stabilized with
respect to the magnetic doublet state in the vicinity of φ = π, which results
in a strong modification of the current-phase relation which unfortunately
cannot be checked in a single IC measurement [20].

4.4 Additional data

In this section, we would like to discuss an alternative method of extracting
supercurrent values. We study a zero bias peak in voltage biased measure-
ments and verify that it can be interpreted as a supercurrent. We have the
opportunity to compare the current corresponding to this peak to the fitted
value of IC over several charge states.

The normal state data in Fig. 4.7a exhibits resonant tunnelling with G >
e2/h at VBG = 0.98 V, which is the signature of Fabry-Perot oscillations
that replace the Coulomb diamond pattern for Γ > UC [59]. When the
coupling Γ becomes large enough, neighbouring level on the SWCNT start
overlapping strongly. Rather than acting as a QD with a well defined charge
number, the SWCNT now forms an electron waveguide, and the conductance
can reach the theoretical limit of 4e2/h. The maximum G on resonance,
1.2 e2/h, corresponds to an asymmetry of ∼ 12. In our device, the Fabry-
Perot pattern is only observed over a small region. The charge state labelled
3 is clearly in the CB regime again, as is indicated by yellow dashed lines.
A rough estimate yields G0 ∼ 0.75 e2/h and HWHM ∼ 80 µeV for the
Kondo ridge that is observed there, from which we get a coupling asymmetry
ΓS/ΓD ∼ 9.5 and TK ∼ 1 K.

With superconducting leads, the charge stability diagram is modified in
the expected way. Horizontal lines at bias voltages of VSD = ±2∆/e and
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Figure 4.7: a G versus VBG and VSD in the normal state. The resonance between
the states 1 and 2 exhibits G > 1 e2/h, which indicates that the device is in the
Fabry-Perot regime. b The same measurement with superconducting leads. White
lines represent cuts of G versus VSD through the middle of the states labelled 4,
1, and 3.

VSD = ±∆/e mark the onset of direct quasi-particle tunnelling and Andreev
tunnelling, respectively. White lines over the plot are line graphs of G versus
VSD through the middle of the states labelled 4, 1, and 3. Apparently,
the ∆-feature is enhanced in the Kondo state 3, which can either be due
to a Kondo resonance persisting on one side of the QD for asymmetric
coupling [47] or to Kondo correlations surviving on both sides when kBTK >
∆ [50; 56]. Without further analysis, both explanations seem possible in this
case. Multiple Andreev reflections emerge in 4, 1, and 2, corresponding to
third order processes for VSD = ±2∆/3e.

In addition to the subgap structure, a narrow ridge shows up around
VSD = 0 mV. We exclude thermally activated direct quasi-particle tunnelling
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Figure 4.8: Comparison of values of IC obtained from current and voltage biased
data with different methods, as described in the main text. A constant BG shift
between the two measurement is corrected.

as the origin of this ridge, because the peak assigned to that effect in the
previous chapter appeared only at temperatures above 400 mK, whereas
the present data corresponds to a cryostat temperature of 40 mK. Similar
features were attributed to Andreev states under finite relaxation in the
presence of Kondo correlations [50] or a proximity induced supercurrent
in the Fabry-Perot regime [60]. In the latter case, the magnitude of the
supercurrent was estimated by half the area under the peak. Since the
zero bias ridge we observe is most pronounced in states without Kondo
physics, we follow the interpretation of [60]. Both the finite width of the
peak and its limited height can be understood in terms of the dissipation
introduced by the electromagnetic environment, as discussed in the extended
RCSJ model. We thus have the chance to compare values of IC obtained by
different methods from current and voltage biased measurements. First, we
repeat the fitting procedure that we already used around VBG ∼ 3.6 V [39].
We fit a solution of the extended RCSJ model to I-V curves from current
biased measurements. However, we do not have enough dI/dV data (AC
excitation) for this gate region. Instead, we perform the fits with I-V curves
from DC voltage measurements. We know that these measurements suffer
from very low frequency random drifts in the voltage amplifier that need to
be corrected manually, producing errors that are not accounted for in the
error bars of the fitting results. In the gate region around VBG ∼ 3.6 V, IC

fits from DC data were overall very similar to the ones from AC data, but
with 10 %-30 % larger peak values. The values of IC gained from these fits
are shown in black in Fig. 4.8.

Next, we try to extract IC from the area under the ridge in Fig. 4.7b.



4.5. Summary 57

This is tricky because of the substantial background due to MAR processes.
We look at individual cuts of G versus VSD and fit the zero bias peak to a
Lorentzian form that uses the baseline offset y0, the center of the peak x0,
the full width of the peak at half height w, and the area under the peak A
as free parameters. It is clear that such a fit can only be precise to an order
of magnitude, because it implies a bias independent background, which is
certainly not the case on resonance. Nevertheless, it is interesting to note
that the resulting values, shown in Fig. 4.8 in red, agree reasonably well with
the more precise current biased data. Please note, however, that these are
values corresponding to the full area under the peaks, in contrast to [60].
In our opinion, this result implies that the zero bias peak can be interpreted
as directly related to the supercurrent, but not used as a reliable measure
of its precise value.

4.5 Summary

In conclusion, we have studied the interaction between Kondo correlations
and a supercurrent IC in a SWCNT QD with superconducting leads. In
particular, we have analysed how IC responds to changes in the Kondo
temperature TK in a regime where kBTK ∼ ∆. In agreement with FRG
calculations, we observe the transition of the unpaired spin on the QD from a
nonmagnetic singlet state (kBTK > ∆) to a magnetic doublet state (kBTK <
∆). By tuning TK via VBG, we can control this transition.
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Chapter 5
Topgated Ge/Si Nanowires with

Superconducting Leads

In this chapter, we present transport measurements on a topgated Ge/Si
core/shell nanowire (NW) with superconducting leads. The motivation to
work with Ge/Si NW instead of single-wall carbon nanotubes (SWCNT) is
provided by the results of the previous two chapters. We have seen there
that the interplay between Kondo physics and superconductivity depends
decisively on the coupling strength between the quantum dot (QD) and the
leads, Γ = ΓS + ΓD, as well as the coupling asymmetry ΓS/ΓD. It would
therefore be highly desirable to work with a device where ΓS,D can be tuned
independently. Ge/Si core/shell NW appear very promising in this respect
because of the possibility to define tunable tunnel barriers within them by
application of topgates (TG).

5.1 Introducing remarks

The NW used in this chapter1 consist of a (semiconducting) Ge core with a
diameter of typically 10-15 nm, enclosed in a 1.7 nm thick Si mantle. Elec-
trical transport takes place via hole states through the Ge core, while the Si
mantle prevents the formation of a Schottky barrier [61] and enables ohmic
contact to source (S) and drain (D) leads. By choosing 30 nm of Al for
the leads, we obtain transparent superconductor-semiconductor contacts at
low temperatures (Fig. 5.1a). A QD is defined by TG composed of Ti/Au

1NW growth by Y. Hu in the group of C. Lieber, Harvard University.
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(5 nm/50 nm) that locally deplete the density of states (DOS) in the NW,
thus creating tunnel barriers whose transparency can be tuned by the volt-
ages applied to the TG, VTG1,2 (Fig. 5.1c) [43]. A 5 nm thick layer of Al2O3

grown by atomic layer deposition (ALD) isolates the TG from the NW.

Figure 5.1: a Cross section of the NW with S and D electrodes, TG and backgate
(BG). b Scanning electron micrograph of a NW device identical to the one mea-
sured. c Schematic representation of the desired functionality: A NW is coupled
to superconducting leads through transparent contacts. A QD is formed between
the TG which locally deplete the DOS in the semiconducting NW.

Previous studies [62] have established that a superconducting proximity ef-
fect can occur in Ge/Si core/shell NW. Multiple Andreev reflections (MAR)
and gate dependent critical currents were observed. However, the contact
separation was reported as 100-150 nm in that case, whereas we are forced
to increase it to 300 nm in order to make space for the two TG (Fig. 5.1a
and b).

5.2 Results

Fig. 5.2 presents room temperature measurements of the response of G to the
backgate (BG) voltage VBG and TG voltages VTG1 and VTG2. In Fig. 5.2b,
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Figure 5.2: Gate response of G to various gate voltages: a G versus VBG. b G
versus VTG1,2, applied to both TG simultaneously. c G versus VTG2. d G versus
VTG1.

the same voltage is applied simultaneously to both TG. All gate voltages
not indicated in a graph are floating. The device exhibits characteristic
changes in G associated with the accumulation/depletion of charge carri-
ers in a semiconductor. Since electrical transport is mediated by holes, a
negative gate voltage raises the DOS, thus increasing G. When both TG
are active, the slope of the graph is slightly steeper than for only one TG,
because the global gating effect of the individual TG on the NW DOS adds
up. From these data, we cannot determine if the TG have the desired local
gating effect.

We now turn towards measurements at low temperatures. In order to pre-
vent freezing out of the DOS in the NW, it is helpful to apply strong negative
gate voltages during cooldown. Without this method, we find that the de-
vice quickly looses its conductivity as thermal activation of charge carriers is
reduced, and cannot be reactivated at low temperatures. We therefore apply
VBG = −32 V and VTG1,2 = −4 V during cooldown procedure. Fig. 5.3a
shows a plot of G versus VBG and VSD at a temperature of 250 mK and
with a magnetic field of 0.1 T applied to suppress superconductivity. Both
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Figure 5.3: a Plot of G versus VBG and VSD in the normal state at a temperature
of 250 mK and with VTG1,2 = −4 V. b Plot of G versus VBG and VSD in the
superconducting state, this time for Tph = 25 mK and with VTG1,2 = 0 V.

TG are at −4 V, which is the maximum voltage we dare to apply without
risking an electrical breakdown in the Al2O3 layer. We see Coulomb block-
ade (CB) diamonds with varying size, indicating that the charging energy
UC is not constant over many charge states. In certain regions, UC appears
to be too small to produce well resolved CB diamonds. Yellow arrows mark
positions of charge instabilities in the dielectric surrounding the device. We
suspect the Al2O3 layer to be a major source of these instabilities, because
they turn up much more frequently here than in previous samples without
TG. No Kondo effect is observed in any of the charge states.

Next, we switch the magnetic field off to allow superconductivity in the
leads. A measurements of G versus VBG and VSD with B = 0 T is shown in
Fig. 5.3b, at a temperature of Tph = 25 mK and with VTG1,2 = 0 V. Again,
we observe CB diamonds of varying size, but this time, there is a region of
low G for bias voltages between ∼ ±0.2 mV. Presumably, this is due to the
gap in the superconducting DOS of the leads that we expect to dominate
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electrical transport between VSD = ±2∆. The distinct features at constant
bias (arrows) are cautiously interpreted as the onset of direct quasi-particle
tunnelling. The value for ∆ corresponding to the gap size, ∆ ∼ 90 µeV, is
close to the anticipated energy. By following [62], we calculate the according
BCS coherence length as ξ0 = ~νF /π∆ ∼ 300 nm with νF = 1.5×105ms−1.
Please note that this is equal to the spacing between S and D, which we could
not reduce due to limitations in the lithography process. In the absence of
clear signatures of Andreev processes like MAR, we leave superconductivity
aside and focus on the effect of the TG instead.

Figure 5.4: Plot of G as a function of VTG1 and VTG2 for B = 0 T, VSD = 0 V,
and VBG = −60 V. From the slope of the CB peaks (yellow dashed lines), we can
estimate the relative efficiencies of the two TG.

Since our goal is to study the local gating effect of the two TG, we first
need to determine their global gating effect, and learn how to cancel it.
Fig. 5.4 shows a measurement of G as a function of VTG1 and VTG2 for
B = 0 T, VSD = 0 V, and VBG = −60 V. Although interrupted by frequent
charge instabilities that manifest themselves as discontinuities with arbitrary
slopes, CB peaks can be made out for negative gate voltages. The levels on
the QD corresponding to these CB peaks shift in energy as VTG1, VTG2

change, and we can follow the evolution of the peaks in order to estimate
the relative gating efficiencies αTG1, αTG2. We obtain αTG2/αTG1 = 0.28
from the slope indicated by yellow dashed lines. This value can then be used
to drive the two TG in opposite directions such that their global gating effect
on the QD levels cancel. The only changing parameter should then be the
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asymmetry of the tunnel barriers under the TG, assuming that they respond
to VTG1 and VTG2 in the intended way.

Figure 5.5: CB peaks under the influence of changing TG asymmetry. VTG1 and
VTG2 are plotted at the bottom and top of the figures, respectively. Individual
CB peaks appear as horizontal lines. a Superconducting state with B = 0.1 T.
b Normal state with B = 0 T.

The resulting plots are shown in Fig. 5.5 for VSD = 0 V with supercon-
ducting (a) and normal (b) leads. Starting from zero voltage (right side),
VTG1 and VTG2 are driven to negative and positive voltages until they arrive
at VTG1 = −4 V and VTG2 = 1.12 V, respectively (see scales at top and
bottom of plot). In vertical direction, CB peaks can be traced as a func-
tion of VBG, as indicated by white line graphs of G versus VBG. Clearly, the
contributions of the two TG on the QD level energies cancel, because the po-
sitions of the CB peaks with respect to VBG are unaffected by the horizontal
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axis. The ratio αTG2/αTG1 = 0.28 extracted from Fig. 5.4 is obviously valid
over a large range of both VBG and VTG. Surprisingly, though, the change
in VTG1/VTG2 taking place from right to left seems to have no effect on
the amplitude of the CB peaks whatsoever. According to the Breit-Wigner
formula

G ∝
4ΓSΓD

(ΓS + ΓD)2
(5.1)

we expect to observe a modulation of the peak height with changing asymme-
try. For large asymmetry, the CB peaks should be considerably suppressed.
The constant peak height suggests that our TG have no local effect on the
QD tunnel barriers. Instead, we can only make out the global gating effect
on the NW DOS and the QD level positions. This is in contrast to the
results obtained in [63]. The only difference between the two measurements
in Fig. 5.5 is an overall lower G with superconducting leads, which is related
to the gap we observed in Fig. 5.3b.

5.3 Summary

The measurements discussed in this chapter represent our first steps towards
a Josephson device with tunable tunnel barriers. A Ge/Si core/shell NW
with superconducting leads is studied. Two TG are defined between the
leads in addition to a BG. We observe CB diamonds with varying size at
low temperatures, and a conductance gap that appears when the leads are
superconducting, and which we interpret as the suppression of quasi-particle
for bias voltages between ±2∆. However, no signature of Kondo physics or
higher order Andreev processes is found. On the one hand, we are limited by
the small UC of < 0.5 meV in certain BG regions, which makes it difficult to
resolve features inside CB diamonds spectroscopically. On the other hand,
an estimation of the superconducting BCS coherence length ξ0 yields a value
close to the spacing L between our contacts. In contrast to previous work
on Ge/Si NW Josephson junctions [62], we can therefore not claim to be
in a regime where L � ξ0. Finally, we drive our TG in opposite directions
such that the energies of the QD levels remain constant, yet are unable to
control the coupling of the QD to the leads via VTG1/VTG2, which we find
very surprising. The results motivate us to return to SWCNT based devices,
where we obtained more favourable values for Γ/UC and Γ/∆ in the past.
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Chapter 6
Topgated Carbon Nanotubes with

Superconducting Leads

In this chapter, we report on transport measurements through topgated
single-wall carbon nanotubes (SWCNT) with superconducting leads. Be-
cause of the limitation that we encountered during our work with Ge/Si
core/shell nanowires (NW) in chapter 5, we decided to return to SWCNT
based devices with a similar geometry. Indeed, the results are much more
encouraging, both with respect to Kondo physics and superconducting prox-
imity effect. We discuss data from two devices that attract our attention for
different reasons. The measurements are rather recent, and the interpreta-
tion must be regarded as work in progress.

6.1 Introducing remarks

A schematic illustration of our device is shown in Fig. 6.1a, next to a scan-
ning electron micrograph in Fig. 6.1b. A SWCNT is contacted to source (S)
and drain (D) leads composed of Ti/Al (5 nm/46 nm). The spacing between
S and D amounts to 450-500 nm. Topgates (TG) consisting of 50 nm of Pd
are added on top of a 5 nm thick Al2O3 layer grown by atomic layer de-
position (ALD). A quantum dot (QD) is defined by tunnel barriers forming
at the interfaces of the SWCNT to the leads, resulting in a finite coupling
strength ΓS,D of the QD to S or D. The TG are patterned directly at these
interfaces with the intention of controlling ΓS,D via the overlap of the orbital
part of the electron wave function on the QD with the leads. This requires
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a high precision in the alignment of the TG, which makes the lithography
process more challenging than for our previous devices. The functionality
we ultimately aim for is displayed in Fig. 6.2: by adjusting ΓS and ΓD indi-
vidually, we would like to control the level broadening and the strength of
the Kondo correlations on our QD in the presence of superconducting leads.

Figure 6.1: a Cross section of the nanotube with electrodes and backgate. b Scan-
ning electron micrograph of a finished device.

An important issue concerns the choice of dielectric to isolate the TG
from the carbon nanotube. Early devices in other groups employed a 40 nm
thick layer of SiO2 grown by plasma enhanced chemical vapour deposition
(PECVD) [64]. Later experiments relied on 4 nm of Al2O3

1 [65] or 10-15 nm
of SiO2 [46] evaporated locally under the TG. The motivation behind this
was the suspicion that the oxide layer could be responsible for scattering
in the carbon nanotube as well as charge instabilities that produce discon-
tinuities during gate sweeps. Recently, ALD grown Al2O3 has become an
attractive alternative because of the uniformity of the dielectric and the
reliability against electrical breakdown [66; 67].

Since we are looking for Kondo physics and superconducting proximity
effect, we are only interested in devices that display a room temperature
resistance below 100 kΩ. Unfortunately, we find this criterium only to be
fulfilled by metallic SWCNT, who have a high charge carrier density and
cannot be depleted locally. In the following, we will discuss data from two
metallic SWCNT ‘A’ and ‘B’. In A, we observe interesting subgap features,
while we concentrate on a TG tunable Kondo effect under ferromagnetic
exchange interaction in B. Due to a systematic error during fabrication, one
TG has a short to the device in both cases and is kept floating. In the
following, we only consider the effect of the remaining TG.

12 nm of Al was evaporated, followed by an oxidation step. This process was repeated
to obtain 4 nm of Al2O3.
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Figure 6.2: The desired functionality of a tunable Josephson QD: adjustable ΓS,D

allow for controllable level broadening and Kondo correlations in the presence of
superconducting leads.

6.2 Results for device A

Fig. 6.3a shows a measurement of the differential conductance G through
device A versus backgate (BG) voltage VBG and bias voltage VSD. The
superconducting critical field is experimentally determined to amount to ∼
0.2 T2. We apply B = 0.4 T and VTG = 0.3 V for the present measurement.
In this BG region, the device exhibits Coulomb blockade (CB) diamonds
with a charging energy UC ∼ 0.2-0.3 meV as estimated from the size of the
smallest diamonds. We do neither observe Kondo correlations nor a distinct
even-odd alternation in the size of the diamonds, so we cannot identify the
occupation of the highest orbital on the QD.

Let us analyse the conduction pattern around the resonance at VBG =
9.35 V more closely. In addition to the CB diamonds, we can see lines run-
ning parallel to the diamond edges, and very faint horizontal ridges cross-
ing the central (right) diamond at about VSD = ±0.03 mV (±0.11 mV).
We interpret these as signatures of excited states and inelastic cotunnelling
thresholds, see e.g. [65].

With B = 0 T, the leads become superconducting, and the stability dia-
gram is modified (Fig. 6.3b). Strong horizontal lines at VSD = ±0.143 mV
and ±0.088 mV are interpreted as the onset of direct quasi-particle tun-
nelling and the first Andreev reflection, respectively. Interestingly, we find
that the VSD values at which these two features appear can be increased by

2This value is unusually high. We ascribe it to the fact that the magnetic field we
apply lies in the wafer plane. The cross section of the superconducting leads in the
field is therefore very small.
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Figure 6.3: a G versus VBG and VSD with B = 0.4 T and VTG = 0.3 V. b The
same measurement repeated for B = 0 T. c Surprisingly, the normal state features
(dark blue) persist in the superconducting state. d Following [68], we propose the
existence of subgap quasi-particle states in the superconducting DOS of our leads.

∼ 10% for different VTG, but their ratio never exceeds ∼ 1.7. We specu-
late that the negative differential conductance next to the 2∆-feature (black
regions) causes a shift in the apparent position of the peak and effectively
reduces the measured ∆. Around resonance, several additional lines appear
parallel to the diamond edges, representing the energetically split CB di-
amonds due to the BCS density of states (DOS) in the leads (chapter 1).
However, the splitting is incomplete, amounting to less than ±2∆/e. Even
more surprisingly, the normal state features are still visible, in contrast to
our expectations. Similar transport behaviour was observed in InAs NW [68]
and attributed to the existence of quasi-particle states within the supercon-
ducting gap [69].

For better comparison, we extract all lines from the measurements with
normal and superconducting leads independently, and plot them together in
Fig. 6.3c. Dark blue lines correspond to features that we observe in the nor-
mal as well as the superconducting state. Dashed lines are extracted from
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the superconducting state, but their positions suggest that they originate
from normal state processes. Obviously, these features represent resonant
tunnelling through the ground state and first excited state of the QD, al-
though it is unclear why they persist when the leads are superconducting.
One possible source for subgap quasi-particle states is the Ti layer of the
leads that profits from proximity induced superconductivity. Fig. 6.3d shows
an illustration of a QD with superconducting leads that have a non-vanishing
quasi-particle DOS within the gap, as proposed in [69]. Bright blue lines in
Fig. 6.3c mark features that are clearly related to superconductivity, namely
the onset of direct quasi-particle tunnelling at VSD = ±2∆/e, the first An-
dreev reflection at VSD = ±∆/e, and CB diamond edges split apart in bias
voltage by the superconducting gap. However, the CB diamonds split up
by VSD = ±∆ instead of ±2∆. This is in agreement with a finite sub-
gap quasi-particle DOS in the leads, as one can see in Fig. 6.3d: a level is
pinned to the upper peak in the BCS DOS of S. Because of the existence of
subgap quasi-particles in D, this situation will result in resonant transport
of electrons from D to S down to a bias voltage of VSD = ∆/e. The line
then merges into the horizontal feature marking the lowest order Andreev
reflection.

Figure 6.4: G versus VBG and VTG for B = 0 T and VSD = 0 V.

Fig. 6.4 shows a measurement of G versus VBG and VTG, with B = 0 T
and VSD = 0 V. Yellow dashed lines indicate charge instabilities in an oxide
layer resulting in gating discontinuities. Apparently, the instabilities are
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sensitive both to the TG and the BG, and switch reproducibly at certain
positions within the potential landscape. The CB resonance that we studied
in Fig. 6.3 is marked by an arrow at the corresponding TG voltage. The
energies of the levels on the QD shift with VTG with well defined slopes,
reflecting the global gating effect of the TG. At second glance, we realize
that the distance between CB resonances, as well as their conductance, vary
with VTG. We ascribe this to changes in the orbital part of the electron wave
function on the QD, which influences the overlap between the QD and the
leads. Thus, although our SWCNT is metallic, we face a system of discrete
resonances with tunable amplitude. In the following, we will study a second
device where we apply this tunability to the Kondo effect.

Figure 6.5: G versus VBG and VTG for B = 0.4 T and VSD = 0 V in a second
device, B. Charge instabilities appearing at certain values of VBG are marked by
yellow arrows.

6.3 Results for device B

In Fig. 6.5, we present a similar measurement as in Fig. 6.4, but for device
B and with an applied magnetic field of B = 0.4 T. We can observe bright
lines, corresponding to resonant transport, whose position in VBG changes
with VTG. Charge instabilities (yellow arrows) seem to be insensitive to VTG

for this device, because they appear at constant VBG. The most interesting
regions of this figure are those where two resonances approach each other
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and the conductance between them increases, e.g. as highlighted by a white,
dashed frame. In the following, we will study one of these regions in detail
and discover that the feature is due to a TG dependent Kondo correlation.

Fig. 6.6a displays the same feature as inside the white frame in Fig. 6.5.
By restricting ourselves to a smaller VBG range, we can minimize the effect
of gate switching due to charge instabilities, which is a precondition for a
systematical analysis. At this point, we have no information regarding the
occupation of the QD (odd/even), but we anticipate our later results and
identify the two levels as odd (o) and even (e). Before turning our attention
to the normal state behaviour of the o diamond, we shall have a look at the
charge transport with superconducting leads.

Figure 6.6: a Plot of G versus VBG and VTG in the region we will study in the
following. The dashed lines h, k, and s mark the voltage range for subsequent mea-
surements. b Charge stability diagram with superconducting leads, corresponding
to the dashed line h in figure a. c Cuts of G versus VSD for rising temperatures
through the middle of a CB diamond. d Temperature dependence of the 2∆ peak
positions. We obtain ∆0 = 1.41kBTC instead of the usual BCS factor 1.76.
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By switching off the magnetic field, we allow the leads to become super-
conducting. Fig. 6.6b depicts a measurement of G versus VBG and VSD for
B = 0 T and VTG = −7.5 mV. The matching values of VTG and VBG are
marked in Fig. 6.6a by a horizontal line (h). We see the two CB diamonds
o and e in addition to horizontal lines that we interpret as the onset of
direct quasi-particle tunnelling at VSD = ±2∆/e, and Andreev reflections
at VSD = ±∆/e. The value of ∆ that we extract from the spacing of the
quasi-particle tunnelling peaks, 240 µeV, is associated with a critical temper-
ature TC = 790 mK, which is lower than in previous devices (chapters 3-4).
In order to obtain a more reliable value of TC , we measure G versus VSD

for different temperatures in the middle of a CB diamond without Kondo
correlations. Fig. 6.6c shows the resulting plot, where we use an offset of
10−3 e2/h between subsequent curves for better visibility. We can trace
the evolution of the peak positions with temperature, noticing that the ∆-
features are still present at the second to highest temperature (920 mK). At
1020 mK, however, all signs of superconductivity are gone. In a next step,
we determine the peak positions of both 2∆-features for every measurement
and plot them versus T (Fig. 6.6d). A fit to the BCS function

2∆(T ) = K · 1.76kBTC tanh(1.74
p
TC/T − 1) (6.1)

yields in both cases TC ∼ 970 mK and K ∼ 1.6. While this value of TC is in
good agreement with values in previous chapters, the suppression ofK below
2 is a surprise, because BCS theory predicts that ∆(0) = ∆0 = 1.76kBTC .
We note that the ∆-feature appears at VSD = ±120 µV, which is exactly
half of 2∆/e, as expected. The most obvious conclusion to be drawn from
this observations is that the BCS relation ∆0 = 1.76kBTC is not valid in our
device. Rather, we get ∆0 = 1.41kBTC .

We would now like to focus on the normal state characteristics of the CB
diamond labelled o. Fig. 6.7a shows a measurement of G in dependence of
VBG and VSD with an applied field of B = 0.4 T, and VTG = 2 mV. The
corresponding voltage range is marked in Fig. 6.6a by the dashed line k. In
addition to the edges of the CB diamond, which are very faint on its left side,
a ridge of increased G can be seen around VSD = 0 V that we attribute to
the spin-1/2 Kondo effect. The fact that no Kondo correlations are observed
in the normal state in e (data not shown) supports our interpretation of
odd/even occupation of the QD for the two levels. In order to establish if
the approaching of resonant lines and increased conductance in Fig. 6.6a is
correlated to Kondo physics, we measure G versus VSD and VTG while at
the same adjusting VBG to stay at the center of the level (ε = 0). This
means that we drive VTG and VBG in opposite directions with relative rates
determined from the slope of line s in Fig. 6.6a, and follow the development
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Figure 6.7: a G versus VBG and VSD for B = 0.4 T and VTG = 2 mV. A
Kondo ridge is observed around VSD = 0 V throughout the diamond marked by
yellow dashed lines. b G in dependence of VSD along the line s in Fig. 6.6a, with
B = 0.4 T. VBG is used to stay at the center of o as we drive VTG. The Kondo
ridge, which is split for VTG = −20 mV, evolves into a single peak at VTG = 10 mV.

of the Kondo ridge along this line. The resulting plot is shown in Fig. 6.7b.
A distinct Kondo ridge is visible at positive and small negative TG voltages.
For VTG < −5 mV, however, a dip in G develops at VSD = 0 V. For
VSD = −20 mV, the Kondo ridge is clearly split.

Why should a Kondo ridge split? As we have discussed in chapter 1, an
applied magnetic field will induce a Zeeman splitting of spin up and spin
down components that results in two Kondo ridges at VSD = ±gµBB/e,
where g = 2 for electrons in a SWCNT, and µB is the Bohr magneton. The
splitting observed for VTG = −12 mV, ∆V ∼ 50 µV, would correspond to
B = 0.21 T, which is actually much less than the applied field B = 0.4 T.
Even more mysterious is the emergence of a clear peak for more positive TG
values in Fig. 6.7b, as emphasized by a white line graph at VTG = −2 mV.
Obviously, this transition in dependence of VTG cannot be understood in
terms of Zeeman splitting alone.

In order to characterize the response of the Kondo ridge to B, we mea-
sure G as a function of B and VSD at the positions highlighted in Fig. 6.7b.
Fig. 6.8a presents the result for VTG = −2 mV. A linear background is sub-
tracted in all graphs of Fig. 6.8. At low magnetic field, superconductivity
dominates electrical transport, preventing the appearance of the Kondo ef-
fect. For | B |> 0.2 T, superconductivity is suppressed, and we can follow the
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Figure 6.8: Response of G versus VSD to an applied magnetic field B, with a
sweep direction from positive to negative field. A linear background is subtracted
in all data. a Measurement for VTG = −2 mV. At low magnetic field, the Kondo
effect is suppressed by superconductivity. For | B |> 0.2 T, we can observe linear
splitting of the two spin components with magnetic field. The crossing at finite
field indicates the presence of a ferromagnetic exchange field Bex as explained in
the main text. White dots correspond to maximum values of G, red lines represent
linear fits with g ∼ 2.24. b A similar measurement at VTG = −9 mV reveals an
avoiding in agreement with the dip in Fig. 6.7b at the respective value of VTG.
Red lines represent fits to a model assuming a constant exchange field Bex with an
angle φ relative to B. c For VTG = −12 mV the dip becomes more pronounced.

evolution of the two spin components of the Kondo ridge in B. White dots
correspond to maximum values of G, red lines represent linear fits. From the
slope of these lines, we estimate g ∼ 2.24, roughly consistent with a spin-1/2
Kondo effect. The most striking feature of the measurement is the fact that
the two spin components do not cross at B = 0 T, but at B ∼ ±0.44 T.
A white solid (dashed) line depicts the equilibrium conductance as a func-
tion of B for a sweep from B = 0.8 T to −0.8 T (vice versa). A hysteretic
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behaviour is apparent from the mirror symmetry in this data. Fig. 6.8a
is reminiscent of the Kondo effect in a system coupled to a ferromagnetic
material, where an effective exchange field Bex is introduced by tunnelling
events between the QD and the ferromagnet [70; 49; 71; 72]. In such sys-
tems, the spin up and spin down components are energetically degenerate
when Bex is compensated by B, resulting in a crossing of the lines [71; 72].
However, in contrast to the experiments described in [70; 71; 72] there are no
ferromagnetic parts in the metal film of our device, and neither in the chip
carrier or the bonding wires. The only possible source of a ferromagnetic
exchange field are Fe catalyst particles that enable the growth of SWCNT
by the chemical vapour deposition method (see chapter 2). These particles
are naturally expected to remain in the vicinity of the SWCNT after their
growth, and it is feasible that a tight coupling between the SWCNT QD
and a Fe particle results in a magnetic exchange field. Indeed, exactly this
concept was invoked to interpret a Kondo splitting at B = 0 T in a device
consisting of a SWCNT contacted to Cr/Au leads [49]. Following this work,
we propose a ferromagnetic exchange field Bex, induced by a Fe catalyst
particle close to the SWCNT QD, to be the most likely explanation for the
observation of a hysteretic crossing of the two spin components at finite B.

We notice a qualitatively different behaviour upon repeating the measure-
ment for VTG = −12 mV (Fig. 6.8b). The lines corresponding to the two
spin components of the Kondo ridge still converge at B ∼ 0.4 T, but this
time avoid each other, producing a dip at the according value of VTG in
Fig. 6.7b. Again, this can be compared to earlier results, where a misalign-
ment between B and Bex was identified as the origin of such an avoiding [71].
Red lines represent fits to a model assuming a constant exchange field Bex

with an angle φ relative to B. It is at present unclear whether this inter-
pretation is valid in our case, where crossing and avoiding are observed in
the same device and even the same charge state. Still, the TG dependent
splitting of the Kondo ridge at B = 0.4 T appears to stem from a TG de-
pendent ferromagnetic exchange field that can either result in crossing or
avoiding spin components, producing a zero bias peak (VTG = −2 mV) or
dip (VTG = −12 mV) for B = −Bex, respectively. We are currently trying
to understand this observation.

In Fig. 6.9, we present similar measurements as in Fig. 6.7b for two addi-
tional charge states. Both show a split Kondo ridge in dependence of VTG,
while VBG is adjusted simultaneously to remain at the center of the charge
state (ε = 0). The Kondo ridge in Fig. 6.9a is split at VTG = −5 mV,
evolving into a single peak around VTG = 5 mV. Interestingly, a distinct
splitting is recovered for VTG = 10 mV, demonstrating that this effect is
not monotonous with VTG. Finally, the Kondo ridge in Fig. 6.9b remains
split for the whole scan range of VTG, but the peak separation decreases
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Figure 6.9: Additional measurements of Kondo splitting at B = 0.4 T in de-
pendence of VTG in two different charge states: a Evolution of a Kondo ridge
from zero bias dip to zero bias peak between −5 mV and 5 mV TG voltage. For
VTG = 10 mV, a distinct zero bias dip (splitting) is recovered. b Kondo ridge with
decreasing peak separation between VTG = −5 mV and VTG = 5 mV.

from VTG = −5 mV to VTG = 5 mV, signalling an incomplete development
towards a zero bias peak.

Coming back to Fig. 6.5, we suggest that we have identified the mechanism
that gives rise to regions of increased G and reduced peak spacing, as inside
the white frame. Both phenomena can be attributed to the manifestation
of a Kondo effect whose behaviour around zero bias is sensitive to VTG.
More precisely, by simultaneously driving VTG and VBG, we can follow the
TG dependence of the Kondo effect while staying in the middle of a charge
state (ε = 0). We observe the evolution of a zero bias dip, corresponding to
an avoiding of the two spin components of the Kondo ridge in an external
magnetic field B, into a zero bias peak, marking a crossing at finite field.
We assign this effect to the presence of a ferromagnetic exchange field Bex,
which we suspect is created by the coupling of the SWCNT to a Fe catalyst
particle. How exactly this exchange field is influenced by VTG is at present
unclear.

6.4 Conclusion for devices A and B

In conclusion, we have studied the electrical transport through two topgated
SWCNT devices with superconducting leads. Device A exhibits a rich and
highly resolved spectroscopy, allowing us to gain information about the DOS
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for quasi-particles in the Ti/Al leads. In device B, we observe a highly
interesting effect regarding the tunability of a Kondo state by a TG voltage.
The splitting of the Kondo ridge in an external magnetic field B and in the
presence of a ferromagnetic exchange field Bex is sensitive to VTG, evolving
from a zero bias dip into a zero bias peak. This result, albeit not understood
in detail, serves to show that a wealth of new phenomena becomes accessible
through the application of TG to SWCNT QD devices, and motivates further
research in that direction.
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Chapter 7
Summary and Outlook for Chapters 3-6

In this thesis, we study quantum dots (QD) fabricated from single-wall car-
bon nanotubes (SWCNT). The SWCNT are connected to source (S) and
drain (D) leads by tunnelling contacts whose transparency is characterized
by their respective coupling parameters, ΓS and ΓD. The leads consist of a
Ti/Al double layer and become superconducting below the critical temper-
ature, TC ∼ 1 K. By application of an external magnetic field B, we can
suppress superconductivity and drive the leads into the normal state.

We measure the electrical transport through these QD systems at tem-
peratures well below 1 K. The differential conductivity G in dependency of
a bias voltage VSD and a backgate voltage VBG reflects the successive filling
of electron states on the QD, revealing whether the occupation is odd or
even. For an odd occupation and normal metal leads, the Kondo effect will
dominate transport when the coupling of the QD to the leads, Γ = ΓS +ΓD,
is large enough. The associated energy scale is parameterized by the Kondo
temperature TK . In the presence of a BCS density of states (DOS) in the
leads, a competition sets in between superconductivity and the Kondo effect.
Both processes rely on the formation of opposing spin singlet states involving
electrons in the leads. For TC > TK , the Kondo effect is suppressed, whereas
it persists in the opposite regime, TC < TK . Both regimes have previously
been studied in similar samples by electrical transport spectroscopy [48; 55].

In chapter 3, we report on the discovery of a third regime by studying a
QD with highly asymmetrical coupling, ΓS/ΓD ∼ 50. With superconducting
leads, this asymmetry gives rise to a Kondo effect pinned to one lead only,
illustrating the fact that TK dominates over TC at one contact, whereas
TC > TK at the other. As a result, we observe a significant enhancement of
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a particular feature in non-equilibrium transport, the Andreev reflection, in
states with this kind of asymmetrical Kondo effect.

In chapter 4, we expand our scope of investigation by comparing Kondo
physics to the supercurrent IC that is transported through the QD. We ex-
tract the full supercurrent by following a fitting procedure based on the ‘ex-
tended resistively and capacitively shunted junction model’ for overdamped
Josephson junctions [38; 39]. Using VBG to tune TK within one odd charge
state, we drive the QD from one regime (TK > TC) to the other (TK < TC).
Since IC is very sensitive to the Kondo effect, it acts as a probe for the
transition that occurs at the crossing between the two regimes [54]. In a
second odd charge state with larger Γ, TK is always larger than TC , and
consequently no transition is observed.

Chapters 5 and 6 document our efforts to gain more direct control over the
Kondo effect by means of topgates (TG). Ideally, such TG would allow us
to tune ΓS and ΓD individually, thus greatly increasing the possibilities for
comprehension and manipulation of these complex systems. In chapter 6,
we report on a TG dependent Kondo effect in the presence of an effective
ferromagnetic field [70; 71]. Albeit not based on direct control over ΓS,D,
this result has caught our interest and might stimulate further research in
the same direction.

Future experiments with supercurrents through QD will likely achieve a
much higher degree of control over the properties of individual devices, either
by application of TG or by embedding the QD in a superconducting quan-
tum interference device (SQUID), see [54; 57]. With the advent of novel
fabrication techniques, it might become routinely possible to obtain high
transparency contacts to semiconducting SWCNT, who offer much more
tunability in terms of ΓS,D than metallic ones. Generally, while SWCNT
seem to be a perfect system for the investigation of spin properties in QD,
they suffer from a number of problems regarding device fabrication. In addi-
tion to the inability to grow semiconducting or metallic SWCNT selectively,
the contact quality of individual SWCNT to metallic leads is subject to fac-
tors beyond the control of current fabrication techniques. If these issues can
be overcome, SWCNT QD devices will become a yet more powerful tool for
the exploration of highly correlated electron systems, and maybe even for
their application in information technology.



Chapter 8
AMR Measurements in Thin Films

In this chapter, we will give an overview over magnetoresistance measure-
ments performed on thin ferromagnetic films. Since the topic is not directly
related to the main part of this thesis, it is presented as a stand-alone seg-
ment, including some comments on sample fabrication and measurement
setup, but without a complete theory section. We started this side project in
order to support research on carbon nanotube spintronics within our group.
Our data should be helpful to understand the behaviour of these materials
when used as leads to single-wall carbon nanotubes (SWCNT) under vary-
ing magnetic fields. The project was later continued and expanded in the
project work of J. Hyötylä [73].

8.1 Introducing remarks

Spin transport through SWCNT and through graphene contacted by ferro-
magnetic leads is attracting a lot of interest due to the prospect of creating
spin selective building blocks in information technology [74; 75]. A major
challenge in this context is finding a suitable contact material that exhibits
large spin polarization as well as good electrical contact to SWCNT/graphene.
A very promising option for SWCNT is PdNi alloy (30 % Pd, 70 % Ni) with
an estimated spin polarization P 1 of 10 % [76]. However, we know little
about the exact magnetic properties of this material, especially since the
leads consist of thin films that are created by evaporation. The behaviour

1P is defined as I+−I−

I++I−
where I+, I− correspond to the currents of majority and

minority spin electrons.
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of such films can deviate from that of bulk material due to geometrical
constraints or impurities. In this work, we study the anisotropic magne-
toresistance signals of PdNi and PdNi/Co films in order to identify their
preferred magnetization orientation (easy axis).

8.2 The anisotropic magnetoresistance effect

The term ‘anisotropic magnetoresistance’ (AMR) describes the observation
that in ferromagnetic transition metals, a current experiences a resistance
that depends on the angle of the current relative to the magnetization of the
film. The phenomenological dependence can be written as

ρ(θ) = ρ⊥ + ∆ρ cos2(θ) (8.1)

where ρ⊥, ρ‖ refer to the orientation of the current relative to the magneti-
zation and ∆ρ ≡ ρ‖− ρ⊥. θ is the angle between the magnetization and the
current path. Often, but not always, ρ‖ is greater than ρ⊥. A microscopic
theory explaining this behaviour implies a two-current model (conductivi-
ties for spin up and spin down electrons are separated and additive) in a
bulk crystal where s electrons carry most of the current and s-d scattering
is dominant. The anisotropy of the magnetoresistance arises from less than
cubic symmetry in the s-d scattering caused by spin-orbit interaction [77].

When working with thin films, we have to be aware of some additional
implications:

• The size of ∆ρ depends on film thickness and surface conditions as
well as grain size.

• Substrate temperature, vacuum quality and evaporation rate during
film deposition are crucial.

• At low temperatures, surface scattering may become dominant over
bulk scattering. This can make interpretation of the data difficult.
However, a rough Drude model estimation2 of the mean free path l0 in
our films reveals l0 ∼ 1.4 nm, which is an order of magnitude smaller
than the thickness of our films. Bulk scattering should therefore still
be important.

2We used l0 = τ ∗ v0 where τ = me/ρne2 and v0 = 0.3 ∗ 106 m/s as in bulk Ni. me =

9∗ 10−31 kg (∼ free electrons), ρ = 50 nΩm from measurements, n = 1.4∗ 1029 m−3

by considering only the s electrons of the Ni
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Figure 8.1: Device schematic: a Sketch of a device mounted orthogonal to the
magnetic field. b Sketch of a number of devices mounted parallel to the magnetic
field. The orientation of the strips on the wafer corresponds to an angle between
the current and the magnetic field. c Side view displaying the composition and
thicknesses of the metallic films.

8.3 Sample preparation

We lithographically define thin strips (0.5 µm ×100 µm) as conductors be-
tween large bonding pads (Fig. 8.1a). Several of these strips are implemented
on one wafer piece at different angles (Fig. 8.1b). A thin metallic film is then
evaporated in the Balzers PLS 500 system. Evaporation pressures range
around 1.0e−7 mbar, and the sample is cooled below 273 K. We present
data on two devices. The first, labelled ‘AMR 4a’, consists of a single layer
of 20 nm PdNi, while the second, ‘AMR 6b’, is composed of 15 nm PdNi
+ 25 nm Co + 10 nm Pd (Fig. 8.1c). We will discuss both measurements
sequentially.

8.4 Measurement setup

An AVS-47 resistance bridge is used to measure the two-point resistance
of our strips at low temperatures (4.2 K in a 4He bath or 1.8 K in a 4He
cryostat). All data is taken at a voltage excitation of 300 µV after verifying
that the signal is identical to the one taken with an excitation of 100 µV.
Both setups feature a fixed magnet that we sweep between ±1 T with a rate
of 0.1 T/min, again after checking that the signal does not shift relative to
lower rates. The amplitude is suppressed by ∼ 0.01% compared to the am-
plitude at 0.05 T/min, which we think is safe to neglect. Two dipsticks with
different sample orientations allow us to mount the devices either such that



86 AMR Measurements in Thin Films

the magnetic field direction lies in the wafer plane (‘inplane’) or orthogonal
to it (‘out of plane’), as illustrated in Fig. 8.1a and b.

8.5 Results for ‘AMR 4a’

Due to details in the control of the electron beam during lithography, strips
with different angular orientation vary slightly in width. Naturally, this
leads to variations in their resistance. In order to compare data from several
strips in one graph, we normalize them with respect to their resistance at
zero magnetic induction, B = 0 T, where the strip magnetization points in
the direction of the easy axis of the film. For a ferromagnet, this is not the
case for zero applied field (µ0H = 0 T) because of the unknown intrinsic
magnetization M of the material. We use H = B/µ0 −M , where µ0 is the
permeability of free space, and determine the value of H where B = 0 T
from the hysteretic shift between magnetic field sweeps in ‘up’ and ‘down’
direction (Fig.8.2a). This shift of about 0.11 T is in agreement with inde-
pendent magnetization measurements on extended PdNi films evaporated in
our lab [76].

Figure 8.2: a Typical AMR signal of the strips on ‘AMR 4a’ with an orthogonal
magnetic field. b comparison of measurements with inplane and orthogonal mag-
netic field for one device. The angle between current and the magnetic field was
60◦ in the inplane case.

Fig.8.2a displays a typical AMR signal for the devices on ‘AMR 4a’ with
the magnetic field orthogonal to the wafer plane. The resistance is highest for
B = 0 T and saturates at high fields (µ0H = ±1 T) where the magnetization
of the film is forced to point in the direction of H. Although full saturation
is not reached at ±1 T, we will use this value as an approximation for a
qualitative discussion. The resistances peak values of the different devices
range from 700 Ω up to 3 kΩ, but all devices display the same hysteresis and
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relative peak height. The resistance change from B = 0 T to µ0H = 1 T,
normalized by the value at B = 0 T, corresponds to the relative peak height
and can be identified with ρ(θ) from Eq. 8.1. On the one hand, if the easy
axis of the strip points in the direction of H, we expect to see no peak at
all for a single domain, because the magnetization will never rotate away
from this axis. Instead, it will flip by 180◦ when H reaches the coercive field
Hcoer. This flip will ideally not be accompanied by a change in R. On the
other hand, if the easy axis and H form an angle of 90◦, the magnetization
of the film will slowly rotate out of the external field axis as B approaches
0 T, and then rotate back as H increases and forces the magnetization to
follow. Both the width of the peak (or the dip) and its magnitude therefore
indicates if the measured strip has its easy axis far from the axis of H.

Mounting the sample on a second dipstick with the wafer plane oriented
along H yields a different picture. Fig. 8.2b compares two measurements for
the same device. The lower curves correspond to an orthogonal magnetic
field as in Fig. 8.2a, while the upper curves were taken with the wafer aligned
parallel to the field. From the orientation of that specific strip on the wafer
surface, we can determine the angle between the current and the external
magnetic field H to be 60◦. The resistance at B = 0 T is not the same
in both cases, which we assign to structural changes in the sample between
two cooldowns. These data indicate that the easy axis of the film has a
strong out of plane component, since the peak width (associated with the
magnetization flip) is much narrower for this case. The same tendency is
derived from the PdNi magnetization measurements in [76].

Figure 8.3: a Different measurements for inplane external magnetic field normal-
ized by the value for B = 0 T, R0. b Fit to the expected cos2 dependency of
Eq. 8.1.

An analysis of several strips with different angles relative to the field (see
Fig. 8.3a) reveals the expected cos2 dependency (Fig. 8.3b). The resistance
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is highest when H forces the film magnetization into the direction of the
current (0◦) and decreases as the angle between the I and H increases.
However, the resistance is not flat for 90◦, which is in agreement with our
assumption of a strong out of plane component of the easy axis. It is quite
probable that the non-cylindrical cross section of our wire causes B ⊥ I
inplane and B ⊥ I out of plane to be different. As an alternative expla-
nation, we should mention that the wafer, and therefore the strip, is maybe
not perfectly aligned relative to the magnet, and the indicated angles could
be off by perhaps 5◦. A truly 90◦ measurement might yield a flat line at
R/R0 = 1.

Overall, the data from Fig. 8.2b and Fig. 8.3a suggest that the easy axis
of the film lies mostly out of plane, but has a certain inplane component
that forms an angle of almost 90◦ with the strip direction. The maximum
AMR signal ρ(θ) is seen for θ = 0◦ and amounts to nearly 2%.

Figure 8.4: ‘AMR 6b’: Measurements for different strips normalized by the max-
imum resistance of each curve for H orthogonal to the wafer plane. The peaks are
much broader than for the PdNi film, and the magnetization does not saturate at
1 T.

8.6 Results for ‘AMR 6b’

The situation is different for the second sample, labelled ‘AMR 6b’, which
consists of PdNi, Co and Pd on top of each other (see Fig. 8.1c). In this
case, the strong magnetization of Co is expected to dominate the magnetic
behaviour of the strip, forcing the PdNi to follow. Let us first have a look
at the data for a magnetic field orthogonal to the wafer plane. Fig. 8.4 dis-
plays four of these sweeps normalized by the maximum resistance of each
curve, which ranges from 370 Ω to 485 Ω. Three of the sweeps show perfect
alignment, while the fourth seems a bit more broadened. Unfortunately, no
higher magnetic field was available to drive the magnetization into satura-
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tion. However, we can conclude from the large width of the peaks that the
easy axis lies not orthogonal to the plane, as was the case for a pure PdNi
film. No hysteresis can be made out between up and down sweeps (data not
shown). This data is consistent with the results obtained for pure Pd strips
with the same geometry [73].

Fig. 8.5a shows measurements for different strips with varying angle rel-
ative to H in the wafer plane. All data are normalized by the maximum
resistance, R0, that appears for B = 0 T. In the strip that is aligned with H
(labelled 0◦), the resistance is constant save for a relatively sharp switching
at low field, whose origin we discuss in the next paragraph. The largest
change in R/R0 occurs for a strip forming an angle of 90◦ with H and
amounts to about 2.4%. The data implies that the easy axis of the mag-
netic film is inplane and parallel to the strip, and therefore to the current
I. Fig. 8.5b demonstrates that ρ(θ) follows Eq. 8.1. Again, independent
magnetization measurements with extended films of the same material are
in agreement with this data [76].

Figure 8.5: a Different measurements for inplane external magnetic field normal-
ized by the maximum resistance value, R0. b Fit to the expected cos2 dependency.

We can analyse the individual curves in detail by looking at Fig. 8.6a-
e. We notice sharp, hysteretic dips at low field in all curves save for 90◦.
Measurements with pure Co films show qualitatively identical results[73].
The explanation we propose for these switches is illustrated in Fig. 8.6i-
iv, for an angle of 45◦ between H and I. A black arrow stands for H,
while the magnetization of the film itself is represented by a red arrow. We
assume the easy axis to point along I, so as H decreases from Fig. 8.6i to
ii, the magnetization rotates until it lies parallel to the strip orientation.
From Fig. 8.6ii to iii, the magnetization performs a flip of 180◦, jumping
from one direction of its easy axis to the opposite one in order to decrease
the angle to H. Afterwards, it starts rotating away from I, until it points
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completely in the direction of H again (Fig. 8.6iv). The absence of such a
narrow dip in Fig. 8.6e agrees with this explanation, because in this case,
a magnetization reversal as described above would not change the angle
(90◦) between H and the magnetization. Since all of these switches are not
infinitely sharp, and especially since such a switch can be observed for an
angle of 0◦, we must assume that the film includes several magnetic domains
that rotate/switch independently. It is also well possible that the easy axis
has a finite component pointing out of the wafer plane, such that a certain
degree of rotation is unavoidable with our setup geometry.

8.7 Summary

We present AMR measurements for thin strips of two different materials,
PdNi and PdNi/Co. The motivation of this work was to learn more about
the magnetic characteristics of these strips as prospective contact materials
for SWCNT devices. From a qualitative interpretation of our results, we
can draw a number of conclusions:

• In both devices, an AMR signal is clearly visible and can be explained
in the framework of established phenomenological descriptions [77].

• In our samples, the easy axis of PdNi stands approximately orthog-
onal to the wafer plane, while that of Co is inplane and parallel to
the strip.

• For PdNi, the maximum AMR signal ρ(θ) is seen for θ = 0◦ and
amounts to nearly 2%. For PdNi/Co, the signal reaches 2.4% and
occurs when θ = 90◦.

The easy axis orientation parallel to the strip and the larger AMR signal
show that a Co top layer improves the magnetic characteristics of the film.
Indeed, pure Co leads are successfully used for graphene spintronics [75]. For
SWCNT devices, however, Co leads suffer from bad contact and low yield,
which is why a PdNi/Co double layer appears promising [76]. By looking
at the magnetic films only, we conclude that such a double layer has the
same advantageous properties as a pure Co film. Unfortunately, we cannot
be certain that the magnetization of the PdNi layer follows that of the Co
layer completely. The suitability of these films for spintronics experiments
with SWCNT will also depend on parameters that are beyond the scope of
this work.
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Figure 8.6: a-e The narrow dip at low magnetic field is easier to follow when the
curves of Fig. 8.5a are plotted individually. i-iv The sharp switch at low applied
field (H) can be explained with a magnetization reversal from one direction of the
easy axis (ii) to the other one (iii) while H is swept through zero and to negative
values (corresponding to an arrow in the downwards direction).
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[66] G. Götz, G. A. Steele, W.-J. Vos, and L. P. Kouwenhoven, Nano Letters
8, 4039 (2008).

[67] H. O. H. Churchill et al., Physical Review Letters 102, 166802 (2009).

[68] Y.-J. Doh, S. de Franceschi, E. P. A. M. Bakkers, and L. P. Kouwen-
hoven, Nano Letters 8, 4098 (2008).



Bibliography 97

[69] R. C. Dynes, J. P. Garno, G. B. Hertel, and T. P. Orlando, Physical
Review Letters 53, 2437 (1984).

[70] A. N. Pasupathy et al., Science 306, 86 (2004).

[71] J. R. Hauptmann, J. Paaske, and P. E. Lindelof, Nature Physics 4, 373
(2008).

[72] L. Hofstetter et al., arXiv:0910.3237v1 (2009).
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Appendix A
Fabrication and Measurement Information

• Wafer characteristics

Substrate material highly doped Si
Dopant p, Boron
Resistivity 0.003-0.005 Ωm
Thickness of SiO2 layer 400 nm
Size of wafer pieces 1 cm x 1 cm

• Cleaning procedure

1. Sonicate in Acetone (10 min)

2. Rinse in 2-propanol and dry

3. Place in UVO-cleaner for 10 minutes (model 42 by Jelight Com-
pany)

4. Place in Oxygen Plasmalab80Plus by Oxford:
gas O2

flow 16
pressure 25 mTorr
RF power 200
time 30 s

• CVD catalyst

1. Dissolve 30 mg of Al2O3 in 20 ml 2-propanol

2. Dissolve 93 mg of Fe(NO3)3-9H2O in 20 ml 2-propanol
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3. Dissolve 27 mg of MoO2Cl2 in 20 ml 2-propanol

4. Sonicate these three stock solutions for ∼ 12 h

5. Mix 0.5 ml of each stock solution together with 18.5 ml of 2-
propanol to a total volume of 20 ml

6. Sonicate final product for ∼ 12 h

• CVD process

1. Place wafer piece in UVO-cleaner for 10 minutes (model 42 by
Jelight Company)

2. Sonicate catalyst for 2 h

3. Leave catalyst standing for 10 minutes to let biggest catalyst
particles sediment

4. Apply 1-2 drops of catalyst to wafer while it is spinning at 4000 rpm

5. Place wafer in center of CVD oven on spoon (quartz glass)

6. Seal tube

7. Open gas valves to Ar(104 l/h), CH4(44 l/h), and H2(8 l/h)

8. flush for 2 minutes

9. Close valves to CH4 and H2

10. Switch furnace on, target temperature Ttar = 950 ◦C

11. When T = Ttar, open H2, close Ar, open CH4

12. Wait for 10 minutes

13. Close CH4, switch furnace off

14. When T = 550 ◦C, close H2

15. When T = 330 ◦C, close Ar, take out wafer

• E-beam lithography

1. Cover wafer with PMMA/MA 33 % (AR-P 617 from ALLRE-
SIST, undiluted)

2. Spin to obtain 100 nm film (4000 rpm, time= 40 s, ramp= 4 s)

3. bake out on hotplate (200 ◦C for 10 minutes)

4. Cover wafer with PMMA (AR-P 671.09 950K from ALLRESIST,
diluted)

5. Spin to obtain 200 nm film (4000 rpm, time= 40 s, ramp= 4 s)
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6. bake out on hotplate (180 ◦C for 10 minutes)

7. Write small/large structures with SEM (Zeiss Supra 40):
Working distance 17 mm
Acceleration voltage 20 kV
Writefieldsmall 100 µm
Aperturesmall 10 µm
Area dosesmall 240 µAs/cm2

Line dosesmall 1000 pAs/cm (expose lines twice)
Writefieldlarge 2000 µm
Aperturelarge 120 µm
Area doselarge 240 µAs/cm2

8. Develop for 90 s in 4-Methyl-2-pentanone (25 %), 2-propanol
(75 %)

9. Rinse in 2-propanol and dry

10. Evaporation in Balzers-Pfeiffer PLS 500:
Sample temperature 0 ◦C
Base pressure 10−7 mbar
Rate 2-3 Å/s

11. Lift-off in Acetone

12. Rinse in 2-propanol and dry

• ALD process

1. Mount sample in ALD chamber, pump

2. Heat up to TALD = 225 ◦C

3. Start program:

step command number time

0 pulse 0 0.1
1 wait - 10
2 pulse 2 0.04
3 wait - 10
4 goto 0 50

4. Wait until T = 80 ◦C

5. Vent chamber, take out sample
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• Bonding
Model 4523 AD by CMTec
Power1 2.31
Time1 3.9
Force1 1.2
Power2 1.68
Time2 5.9
Force2 0.8
Tail 1.9
Tear 3.3
Mode manual

• Stanford Research SR 830 DSP lock-in amplifier
Frequency 77.77 Hz
Time constant 300 ms
Signal input A-B, ground
Input impedance 10 MΩ
Reserve normal
Coupling AC
AUX Output impedance < 1 Ω

• Hewlett Packard HP 3245A universal source
Output impedance < 0.5 Ω

• Yokogawa YK 7651 programmable DC source
Output impedance ≤ 2 mΩ

• Stanford Research SR 560 low-noise preamplifier
Input impedance 100 MΩ
Source A-B
Gain 10
Coupling DC
Filter low-pass (100 Hz)
Filter slope 18 dB
Output impedance 50 Ω

• Inhouse built voltage divider
R1 10 kΩ
R2 100 Ω

• Inhouse built high gain I/V converter
Gain 109

Input coupling DC
Input impedance ∼ 5.6 kΩ at 77 Hz
Typical VSD offset 0.1 mV
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• DL Instruments 1211 current preamplifier
Gain 108

Rise time 10 ms
Input resistance 2 kΩ
Typical VSD offset 0.17 mV

• Inhouse built voltage preamplifier
Gain 100
Input impedance

• Π-filter
Attenuation at 0.3 MHz 40-60 dB

• Resistive coax wires1

Attenuation at 1 GHz 60 dB/m
Attenuation at 10 GHz 200 dB/m

• Tapeworm filter[79]
Attenuation at 1 GHz 60 dB (estimated)
DC resistance 64 Ω

• Oxford superconducting coil magnet
Maximum field at 4.2 K 8 T
Current decay in persistent mode 10−4/ h
Homogeneity over 10 mm sphere 10−3

1Attenuation values from [78]
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Publication List

Publications in journals

• Even-odd Effect in Andreev Transport through a Carbon Nanotube Quan-
tum Dot

A. Eichler, M. Weiss, S. Oberholzer, A. Levy-Yeyati, J. C. Cuevas, A.
Mart́ın-Rodero, and C. Schönenberger, PRL 99, 126602 (2007)

• Tuning the Josephson current in carbon nanotubes with the Kondo
effect

A. Eichler, R. Deblock, M. Weiss, C. Karrasch, V. Meden, C. Schönenberger,
and H. Bouchiat, PRB 79, 161407(R) (2009)

Poster contributions

• Andreev Spectroscopy of a CNT Quantum Dot

A. Eichler, M. Weiss, S. Oberholzer, and C. Schönenberger, poster
contribution for the seminar “Spin Physics of Superconducting Het-
erostructures” in Bad Honnef, December 2006

• Even-odd Effect in Andreev Transport through a Carbon Nanotube Quan-
tum Dot

A. Eichler, M. Weiss, S. Oberholzer, A. Levy-Yeyati, J. C. Cuevas,
A. Mart́ın-Rodero, and C. Schönenberger, poster at the “Frontiers in
Nanoscale and Technology” workshop in Basel, January 2008

• Spin physics in SWCNT quantum dots with ferromagnetic and super-
conducting leads

G. Gunnarsson, A. Eichler, H. Aurich, M. Weiss, J. Trbovic, and C.
Schönenberger, poster for the NCCR review panel, April 2008
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Oral presentations

• Andreev Spectroscopy of Single-Walled Nanotubes

seminar talk at the University of Konstanz, 30 November 2006

• Modulation of Andreev reflections and Josephson current by the Kondo
effect in SWCNT quantum dots

talk at the annual meeting of the Swiss Physical Society in Geneva, 27
March 2008

• Modulation of Andreev reflections and Josephson current by the Kondo
effect in SWCNT quantum dots

presentation at the European HYSWITCH project meeting in Paris,
4 April 2008

• Carbon Nanotubes as Quantum Supercurrent Transistors
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