Ranieri, Gabriele. (2008) Générateurs de l'anneau des entiers d'une extension cyclotomique. Journal of Number Theory, 128 (6). pp. 1576-1586.
|
PDF
- Submitted Version
Available under License CC BY-NC-ND (Attribution-NonCommercial-NoDerivatives). 99Kb |
Official URL: http://edoc.unibas.ch/dok/A5262033
Downloads: Statistics Overview
Abstract
Let $p$ be an odd prime and $q = p^m$, where $m$ is a positive integer. Let $zeta_q$ be a $q$th primitive root of $1$ and $mathcal{O}_q$ be the ring of integers of $mathbb{Q}(zeta_q)$. I. Ga'al and L. Robertson showed that if $(h_q^+, p(p-1)/2) = 1$, where $h_q^+$ is the class number of $mathbb{Q}(zeta_q + overline{zeta_q})$, then if $alpha in mathcal{O}_q$ is a generator of $mathcal{O}_q$ either $alpha$ is equal to a conjugate of an integer translate of $zeta_q$ or $alpha + overline{alpha}$ is an odd integer. In this paper we show that we can remove the hypothesis over $h_q^+$. In other words we prove that if $alpha$ is a generator of $mathcal{O}_q$, then either $alpha$ is a conjugate of an integer translate of $zeta_q$ or $alpha + overline{alpha}$ is an odd integer.
Faculties and Departments: | 05 Faculty of Science > Departement Mathematik und Informatik > Mathematik |
---|---|
UniBasel Contributors: | Ranieri, Gabriele |
Item Type: | Article, refereed |
Article Subtype: | Research Article |
Publisher: | Elsevier |
ISSN: | 0022-314X |
Note: | Publication type according to Uni Basel Research Database: Journal article |
Language: | English |
Identification Number: | |
edoc DOI: | |
Last Modified: | 14 Nov 2017 14:36 |
Deposited On: | 22 Mar 2012 13:57 |
Repository Staff Only: item control page