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1. Asymmetric Enamine Catalysis 
 

 

 

Organocatalysis is regarded as the application of small organic molecules as catalysts to a 

variety of organic processes and has recently become very popular for the synthesis of chiral 

molecules.[1-8] Of particular interest are the high product enantio- and/or diastereoselectivities 

and reaction yields which can frequently be obtained using organocatalysts. In comparison to 

other firmly established fields such as enzymatic catalysis and organometallic catalysis, 

organocatalysis offers several fundamental advantages: In general, organocatalysts can be 

used in a wider range of solvents and for a broader scope of substrate in comparison to 

enzymes. In addition, they are typically less toxic and less sensitive towards oxidation and 

moisture than most organometallic based reagents. However, a major drawback of 

organocatalysis is their typically low catalytic activity which often requires 10 mol% or more 

of catalyst for the reaction of interest. Based on a mechanistic classification, organocatalysis 

can generally be categorised as either Lewis base, Lewis acid, Brønsted base or Brønsted acid 

mediated.[4] An important class of Lewis base catalysis is asymmetric enamine catalysis 

which is regarded as the catalysis of electrophilic substitution reactions in the α-position of 

carbonyl compounds by primary and secondary amines proceeding via enamine 

intermediates.[9] The versatility of enamines in stochiometric reactions was demonstrated for 

α-functionalisation of carbonyl compounds by Stork et al. in 1963.[10,11] The first catalytic 

application of enamines was recorded by Hajos and Parrish[12] and Eder, Sauer and 

Wiechert[13] in the early 1970’s. L-Proline was used to catalyse the asymmetric Robinson 

annulation of an achiral triketone. The corresponding steroid precursor was obtained in 

quantitative yield (100 %) and high enantioselectivity (93 % ee, Scheme 1.1).  

 

 
Scheme 1.1. Proline catalysed Robinson annulation  (Hajos-Parrish-Eder-
Sauer-Wiechert reaction).[12,13] 
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In 2000, List, Lerner and Barbas introduced the proline catalysed intermolecular aldol 

reaction of ketones and aldehydes (Scheme 1.2a).[14] The use of proline as catalyst for intra- 

and intermolecular aldolreactions revealed that a small ‘rigid’ organic molecule could catalyse 

the same chemical reactions as a much larger enzyme (typ I aldolase) via a similar enamine-

type mechanism. Almost simultaneously MacMillan reported iminium-type catalysis of an 

asymmetric Diels-Alder reaction, catalysed by a chiral imidazolidinone (Scheme 1.2b).[15] 

These two publications initiated the launch of organocatalyis as a new important research 

field in asymmetric catalysis. 

 

a) 

 
 

b) 

 
 

Scheme 1.2. a) Proline catalysed asymmetric aldol reactions.[14] b) Imidazolidinone catalysed Diels-
Alder reactions.[15] 

 

 

In enamine catalysis an aldehyde or ketone reacts with the catalyst to form the nucleophilic 

enamine species with a HOMO of higher energy compared to the respective carbonyl 

(enol) compound. The enamine can attack an electrophile to form an iminum ion species. 

Subsequent hydrolysis of this intermediate then releases the corresponding addition 

product allowing the catalytic cycle to be completed (Scheme 1.3). Examples of 

organocatalytic reactions proceeding via enamine activation include aldol, Mannich, 

Michael and hetero Michael reactions as well as α-functionalisations of carbonyl 

compounds (Scheme 1.4).[9] 
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Scheme 1.3. Enamine activation in secondary amine catalysed reactions. 

 

a) 

 
b) 

 
c) 

 
 
Scheme 1.4. Examples of asymmetric reactions proceeding via enamine catalysis: a) Diamine catalysed aldol 
reaction in water.[16] b) Proline catalysed three-component Mannich reaction.[17] c) Diarylprolinol silyl ether 
catalysed α-amination of aldehydes.[18] 
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1.1 Enamine Catalysed Conjugate Addition Reactions of 
Aldehydes and Nitroolefins 

 

 

Conjugate addition of nucleophiles to the β-position of α,β-unsaturated compounds are 

widely used in organic synthesis.[19] In recent years a variety of catalysts and conditions for 

enamine catalysed conjugate addition reactions between aldehydes or ketones and different 

Michael acceptors, e.g. nitrostyrenes,[20] enones,[21] vinyl sulfones[22] or alkylidene malonates, 
[23] have been reported (Scheme 1.5). 

 

a) 

 
b) 

 
c)  

O
R

CO2R'

CO2R'
+

N
H

N10 mol%

THF, 4 d

O

R

R'O2C CO2R'

36-95 %, 2-73 % ee  
 
Scheme 1.5. Examples of enamine catalysed conjugate additions between ketones or aldehydes and different 
Michael acceptors: a) enones[21] b) vinyl sulfones[22] and c) alkylidene malonate.[23] 
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In particular trans-β-nitrostyrene can act as a reactive electrophile and is therefore an 

attractive Michael acceptor. Initial studies of the L-proline catalysed 1,4-addition of 

cyclohexanone to nitrostyrene revealed that this reaction proceeds smoothly to furnish the 

Michael adduct in high yield and diastereoselectivity. However, a catalyst loading of 15 

mol% was required and the observed enantioselectivity remained low (23 % ee, Scheme 

1.6).[20] This first example highlighted the need for more optimised catalysts which can 

address the drawbacks of activity and selectivity of such reactions. 

 

 
 

 
 

Scheme 1.6. L-Proline catalysed 1,4-addition reaction of cyclohexanone and nitrostyrene.[20] 

 

 

Of perhaps still greater utility than asymmetric addition of ketones to nitroolefins is the 

corresponding addition of aldehydes, since the resulting chiral γ-nitroaldehydes are versatile 

building blocks for further transformations into, for example, chiral pyrrolidines,[23-27] γ-

butyrolactones,[28] γ-amino acids,[26,29] or tetrahydropyrans.[30] Such addition reactions of 

aldehydes to nitroolefins have recently become key steps in the development of domino 

reactions.[31-35] Accordingly, many research groups have focused their efforts on the 

development of efficient organocatalysts for this reaction. Initial results achieved in 1,4-

addition reactions of ‘naked’ aldehydes to aromatic nitroolefins were published by Barbas in 

2001.[24] Enantioselectivities of up to 78 % ee were achieved by using a morpholine 

functionalised pyrrolidine catalyst. To date, a range of different primary and secondary amine 

based catalysts have been developed (Figure 1.1).[20,36-71] However, drawbacks of low 

catalytic activity and low substrate scope still remain. Furthermore, the reaction times are 

long and the reactions typically require a high excess of the aldehyde substrate (up to 10 

equivalents) since side reactions as e.g. the formation of homo-aldol product take place. 
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Barbas, 2001[24] 
 

 
 

20 mol% 
42-96 % yield 
dr = 6:1-49:1 
56-78 % ee  

 

Alexakis 2002[72] 
 

15 mol% 
70-99 % yield 
dr = 3:1-24:1 
61-85 % ee 

 
 
 

Wang 2005[54] 
 

 
 

20 mol% 
63-99 % yield 

dr = 22:1 – 50:1 
94-99 % ee 

Hayashi 2005[53] 
 

 
 

10-20 mol% 
52-85 % yield 
dr = 5:1-24:1 
68-99 % ee 

Alexakis 2006[49] 
 

 
 

15 mol% 
23-90 % yield 
dr = 4:1-19:1 
74-90 % ee 

 

Palomo 2006[28] 
 

NH

HO
O

N

Ph
Ph  
 

5-10 mol% 
67-90 % yield 
dr = 9:1->99:1 
91->99 % ee 

Jacobsen 2006[45] 
(α,α-disubst. aldehydes) 

 

 
 

20 mol% 
34-98 % yield 
dr = 2:1->50:1 

94-99 % ee 

Connon 2007[41] 
 

 
 

10-20 mol% 
76-91 % yield 
dr = 7:1-13:1 
83-95 % ee 

 

 

Figure 1.1. Selected examples of organocatalysts developed for conjugate addition reactions of aldehydes to 
nitroolefins. 
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2. Peptides as Asymmetric Catalysts 
 

 

 

Short peptides, consisting of fewer than 10 amino acid residues, can be considered in terms of 

structural complexity, somewhere in between that of small rigid organocatalysts e.g. proline 

and proline derivatives and highly complex enzymes. The first examples of peptides able to 

induce high enantioselectivities into organic molecules via asymmetric catalysis were 

published in the early 1980s. The diketopiperazine cyclo(Phe-His) was found to catalyse the 

addition of hydrogen cyanide to benzaldehyde,[73] and polymers of leucine and alanine were 

discovered as asymmetric catalysts for the epoxidation of chalcones[74,75] (Scheme 2.1). 

 

a) 

 
b) 

 

 
 

Scheme 2.1. First examples of peptides as asymmetric catalysts: a) Diketopiper-
azine catalysed hydrocyanation of benzaldehyde.[73] b) Julià-Colonna epoxidation 
using poly-L-Leu as catalyst.[74] 

 

 

Subsequently, the continued application and development of peptides as catalysts remained 

dormant for some time until new concepts of combinatorial catalyst discovery were 

developed. It was recognized that general features such as facile synthesis and modularity, 

render peptidic catalysts attractive alternatives to metal-based catalysts and other 
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organocatalysts.[76-78] In recent years, peptides have become increasingly popular as 

asymmetric catalysts for a range of important organic reactions, often providing the desired 

products under mild reaction conditions in high yields and selectivities. Important examples 

of such reactions include the use of peptide based catalysts for selective acylations,[79-81] 

aldehyde-acylimine cross coupling reactions (Stetter reactions),[82] silylations,[83] 

phosphorylations,[84] addition reactions of HCN to imines (Strecker reactions),[85] Acyl-Pictet-

Spengler reactions,[86] and ester hydrolysis[87] (Scheme 2.2).  

 

a) 

 
 

b) 

 
c) 

 
 

Scheme 2.2. Examples of important reactions catalysed by peptidic catalysts: a) Peptide catalysed 
desymmetrization by selective acylation.[81] b) Enantioselective Pictet-Spengler reaction catalysed 
by thiourea-based catalyst.[86] c) Enantioselective silyl protection of alcohols catalysed by 
imidazole-based catalyst.[83] 
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Beside these illustrations of Brønsted acid and base catalysis, peptides also show a significant 

potential as Lewis base catalysts. For example, the asymmetric nitro-Henry reactions of 

cyclohexenone and nitroalkenes catalysed by di- and tripeptides, demonstrates the possible 

function of peptides as catalysts for reactions relying on iminium catalysis (Scheme 2.3).[88,89] 

Considering enamine catalysis, a great deal of attention has been paid to peptide catalysed 

asymmetric aldol reaction, one of the most important carbon-carbon bond forming reactions. 

Whilst proline and its derivatives can be applied as small and rigid organocatalysts for this 

transformation (see Chapter 1), nature uses to some extent the metal-free type I aldolase for 

this task. In both cases, the mechanism is based on intermediate enamine formation.[7] With 

the aim to combine the best properties of the two systems, many research groups focused their 

work on the development of peptidic catalysts for asymmetric aldol reactions. Numerous 

short chained peptides were introduced, containing a secondary amine at the N-terminus 

(Scheme 2.4 a and b).[90-98] Examples are also known for certain aldol reactions catalysed by 

peptides bearing primary amines at the N-terminus (Scheme 2.4 c).[99-101] This work in general 

reveals that short peptides can indeed function as asymmetric catalysts but the low catalytic 

activity remains a major issue in most examples. 

    

 

 
 

Scheme 2.3. Example of  peptide based iminium catalysis: Asymmetric nitro-Henry reactions of 
cyclohexenone and nitroalkenes. [88,89] 

 

 

 

a) 
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b)  

 
 
 
c) 

 
 

Scheme 2.4. Specific examples of peptide-catalysed aldol reactions: a) and b) Peptides bearing a 
secondary amine at the N-terminus.[90, 91] c) Peptide with a primary amine at N-terminus.[100] 

 

 

2.1 Combinatorial Methods for the Development of 
Catalytically Active Peptides – The Catalyst Substrate 
Co-Immobilisation Method 

 

 

One of the largest challenges to the development of peptidic catalysts is the prediction and 

incorporation of desirable catalytic properties into a given peptide. This is already a challenge 

for small rigid catalysts, but even more so for short peptidic catalysts bearing many more 

degrees of rotational freedom. In nature, the process of catalyst (enzyme) development 

follows the principles of evolution. Accordingly, combinatorial chemistry is able to deliver an 

empirical approach, mimicking the natural process of random mutation and selection of the 

best catalysts among a large molecular diversity. To generate such high molecular diversity, 

combinatorial libraries which allow investigation of a large number of compounds are 

assessed for their catalytic properties. Combinatorial methods are particularly suited for the 

discovery of catalytically active peptides.[77,102,103]  

 

The constitution of individual entities (amino acids) allow the straightforward generation of 

molecular diversity, because the established protocols in solid phase peptides synthesis are 

particularly applicable to library synthesis by the split-and-mix method. The protocol for the 
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generation of such one-bead-one-compound libraries relies on successive cycles of 1. splitting 

the solid phase resin (beads) into equal portions, 2. subjecting each portion to a different 

reaction and 3. mixing of the beads. This approach leads to an exponential increase of the 

different compounds relative to the number of reactions performed. Using this method the 

molecular diversity achieved is significantly larger in comparison to parallel libraries without 

the need of automated synthesis.[104-108]  

  

If unbound reaction partners (substrates) as well as possible products are able to freely diffuse 

in the presence of a combinatorial library bearing potential catalysts, the identification of 

active library members becomes impossible even when the desired reaction takes place. To 

solve this issue an intelligent screening method is indispensible. The “catalyst-substrate co-

immobilisation method” is a general technique which allows the identification of catalysts for 

bimolecular reactions.[93,109] The principle of this method relies on the attachment of a library 

member (= potential catalyst) as well as a reaction partner A on the solid support via a bi-

functional linker. The reaction between the immobilised reaction partner A and a dissolved 

dye- or fluorophore-marked reaction partner B occurs only on those beads bearing active 

library members which are able to catalyse the reaction. The reaction process results in 

covalent attachment of the dye or fluorophore on the bead making identification of the 

catalyst feasible (Figure 2.1).  

 

 

 
 
Figure 2.1. Principle of the “catalyst-substrate co-immobilisation method”: Compound 2 catalyses the reaction 
between A and B resulting in the covalent attachment of the dye on the corresponding bead. 



18 

2.2 Tripeptides as Catalysts for Asymmetric Aldol 
Reactions 

 

  

Using the concept of catalyst-substrate co-immobilisation (see Chapter 2.1) the Wennemers 

group achieved the development of reactive peptidic organocatalysts for aldol reactions.[93] 

Thus, a levulinic acid (ketone) functionalised tripeptide library was incubated with a dye-

marked benzaldehyde derivative. After filtration and subsequent washing of the resin 

approximately 1 % of the beads appeared red. The isolation of the darkest beads and the 

decoding of the corresponding library members revealed H-Pro-Pro-Asp-NHR and H-Pro-D-

Ala-D-Asp-NHR as key sequences. According to these findings, the tripeptides H-Pro-Pro-

Asp-NH2 1 and H-Pro-D-Ala-D-Asp-NH2 2 were synthesised and tested as catalysts for the 

reaction of acetone and benzaldehyde. Indeed, both peptides proved to be efficient catalysts 

for this aldol reaction. In comparison to L-proline as organocatalyst, 1 and 2 showed a 

significantly higher activity. In this respect only 1 mol% of 1 sufficed to catalyse the 

asymmetric aldol reactions between different aldehydes and acetone in high yields and ee’s of 

up to 90 % (Table 2.1).  

 

 
Table 2.1. Aldol reactions of different aldehydes and acetone: Comparison of H-Pro-Pro-Asp-NH2 1 with  
L-proline (30 mol%) as catalyst. 
  
 

 
 

  1 mol% 1 30 mol% L-proline  
 R yield [%] ee [%] yield [%] ee [%]  
 4-NO2Ph 99 90 (S) 68 76 (R)  
 Ph 69 78 (S) 62 60 (R)  
 c-Hex 66 82 (S) 63 84 (R)  
 i-Pr 79 79 (S) 97 96 (R)  
 neo-Pent 28 73 (R) 24 22 (S)  
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The results obtained from these studies indicated that an increase in the structural complexity 

may lead to an enhancement of the catalytic activity. In addition, 1 and 2 showed opposite 

enantioselectivities, although both peptides bear a N-terminal L-proline residues. This 

demonstrated that different enantiomers are accessible by only small changes in the peptidic 

primary and thereby secondary structure.  
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3. Peptides as Catalysts for Conjugate Addition 
Reactions of Aldehydes to Nitroolefins? 

 

 

 

The successful introduction of H-Pro-Pro-Asp-NH2 1 as a catalyst for direct asymmetric aldol 

reactions led us to further investigate this system. Since studies of closely related peptides 

demonstrated that the secondary amine at the N-terminus, the carboxylic acid in the side chain 

of the aspartic acid residue, and a well-defined turn conformation are crucial for the high 

catalytic activity and selectivity of 1,[110] we assume a mechanism which is closely related to 

that proposed for proline catalysis.[111-114] This mechanism is reminiscent of that used by 

natural aldolases typ I involving enamine formation, subsequent reaction with the aldehyde, 

and proton transfer from the carboxylic acid (Figure 3.1a, see Chapter 1). However, in 

comparison to L-proline, the distance between the secondary amine and the carboxylic acid 

within peptide 1 is greater by approximately 3 Å as indicated by molecular modeling studies 

with Macro Model 8.0 (Figure 3.1).[93] Based on this model we hypothesised, that this extra 

distance of 3 Å might be spanned by two additional atoms in the structure of the electrophile, 

allowing catalysis of not only 1,2- but also 1,4-addition reactions. Therefore, H-Pro-Pro-Asp-

NH2 1 and related peptides might be applicable for Michael addition reactions.  

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.1. a) Transition state  of aldol reaction catalyzed by proline as proposed by Houk 
and List.[111-114] b) Lowest energy conformation of H-Pro-Pro-Asp-NH2 1,[93] as calculated by 
MacroModel 8.0 and schematic transition state of conjugate addition reaction. 
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Organocatalysed asymmetric conjugate addition reactions of carbon-centered nucleophiles are 

among the most useful and challenging synthetic tranformations.[6,115-118] Within this family, 

the addition of aldehydes to nitroolefins is one of most important reactions, because the 

resulting γ-nitroaldehydes are versatile building blocks for further transformations. As a 

result, many research groups focused on the development of efficient catalysts for this 

asymmetric reaction and explored a range of different primary and secondary amine based 

catalysts (see Chapter 1.1). However, these catalysts typically require a high catalyst loading 

and a high excess of the aldehyde (up to 10 equivalents). The substrate scope is often limited 

and reaction times are typically long. Furthermore, the addition of acids and/or bases is often 

needed. Due to these unsolved problems a more efficient catalytic system is highly desired.  

 

 

The objective of this thesis was the development and application of peptides as efficient 

catalysts for asymmetric conjugate addition reactions of aldehydes and nitroolefins. In 

subsequent studies, conformational characteristics of the catalyst and kinetic properties 

of the reaction system were further explored to gain insight into a possible mechanism of 

action and to increase the reaction scope. 
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 III.  

Results & Discussions 



26 

 

 
 
 
 



27 

 

4. Asymmetric 1,4-Addition Reaction of  
n-Butanal and Nitrostyrene as a Model Reaction 

 

 

 

4.1 TFA H-Pro-Pro-Asp-NH2 (1) as a Catalyst 
 

 

4.1.1 Initial Studies 
 

To evaluate the catalytic properties of the tripeptide H-Pro-Pro-Asp-NH2 1 (Figure 4.1) in 

conjugate addition reactions of aldehydes and nitroolefins we used the reaction between n-

butanal and nitrostyrene as a model reaction. 

 

 
Figure 4.1. H-Pro-Pro-Asp-NH2 

 

Peptide 1 was synthesised on a solid support (Rink Amide resin) and cleaved from the resin 

with TFA. The corresponding TFA-salt of 1 was directly used without further purification. To 

liberate the secondary amine of the N-terminal proline, a base was used in an equivalent 

amount to the catalyst. In former studies of aldol reactions using TFA peptide 1 as catalyst, 

NMM was successfully applied as such a base.[93] Thus, we also used NMM as a base for the 

initial experiments. i-PrOH was used as the solvent since both catalyst and substrates showed 

good solubility in this media. For the first experiment (Table 4.1, Entry 1) 1 mol% of the 

TFA catalyst 1 and 1 mol% of NMM was used for the reaction of 3 equivalents of n-butanal 

and 1 equivalent of nitrostyrene. The concentration with respect to nitrostyrene was 0.4 M. 

After approximately 3 h more than 90 % conversion to the corresponding γ-nitroaldehyde 3 

was observed. The syn:anti ratio of the resulting product was 10:1 and the enantiomeric 

excess was 73 %. After obtaining these very promising initial results, we systematically 
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varied the different reaction parameters of the title reaction. First we changed the catalyst 

loading and performed the standard reaction under otherwise identical conditions (Table 4.1, 

Entry 2-4). Even with 0.5 mol% of 1 the reaction went to completion, however, more than 18 

h were required whereas the diastereoselectivity (syn:anti = 11:1) and the enantioselectivity 

(73 % ee) remained unaffected. With 5 mol% or 10 mol% of 1 the reactions showed 

quantitative conversions within less than 1 h. The enantioselectivity was not influenced when 

increased quantities of catalyst were used, however, significantly lower syn:anti ratios were 

observed (5:1 and 2:1).  

 

 
Table 4.1. Initial TFA H-Pro-Pro-Asp-NH2 1 catalysed 1,4-addition reactions between n-butanal and 
nitrostyrene with the variation of catalyst loading, NMM- and aldehyde addition and concentration of the 
reaction mixture. [a] 
 

 
 

Entry Cat. 
[mol%] 

NMM 
[mol%] 

Aldehyde 
[eq] 

Conc. 
[M][b] 

Time 
[h] 

Conv. 
[%][c] 

syn : anti[d] ee (syn)
[%][d] 

1 1 1 3 0.40 ∼3 >90 10 : 1 73 

2 0.5 1 3 0.40 ∼18 >90 11 : 1 73 

3 5 1 3 0.40 <1 quant. 5 : 1 72 

4 10 1 3 0.40 <1 quant. 2 : 1 73 

5 1 none 3 0.40 ∼24 >90 13 : 1 72 

6 1 5 3 0.40 ∼3 >90 10 : 1 75 

7 1 10 3 0.40 ∼3 >90 11 : 1 74 

8 1 20 3 0.40 ∼18 >90 9 : 1 74 

9 1 1 1 0.40 ∼24 <50 n.d. n.d. 

10 1 1 2 0.40 ∼3 >90 8 : 1 73 

11 1 1 5 0.40 ∼3 >90 5 : 1 73 

12 1 1 3 0.72 ∼3 >90 11 : 1 74 

13 1 1 3 0.28 ∼5 >90 8 : 1 73 

14 1 1 3 0.21 ∼5 >90 11 : 1 73 
[a] Reactions were performed at a 0.45 mmol scale. [b] Concentration with respect to nitrostyrene.  
[c] Estimated by TLC. [d] Determined by chiral phase HPLC analysis. 
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The standard reaction without NMM (Table 4.1, Entry 5) proceeded with the same selectivity 

but much slower (>24 h). A 5 times or even a 10 times excess of NMM (Table 4.1, Entries 6 

and 7) neither influenced the reaction progress nor the selectivity, whereas a 20 times excess 

of NMM slowed down the reaction (18 h, Table 4.1, Entry 8). An excess of n-butanal proved 

to be crucial for efficient catalysis. If the aldehyde was used in an equimolar quantity to the 

nitrostyrene, the conversion was below 50 % after one day (Table 4.1, Entry 9). The observed 

conversions and enantioselectivities when using 2 or 5 equivalents of n-butanal were 

comparable with the reaction using 3 equivalents of aldehyde, however, the obtained 

diastereoselectivity was lower in both cases (syn:anti = 8:1 and 5:1, Table 4.1, Entries 10 and 

11). Finally, the influence of the overall reaction mixture concentration was tested by 

performing the reaction at higher concentration (0.72 M, Table 4.1, Entry 12) or lower 

concentration (0.28 M and 0.21 M, Table 4.1, Entries 13 and 14). The results obtained at 

higher concentrations were similar to those of the standard reaction and, as expected, the more 

diluted reactions were slower (∼5 h). However, the stereoselectivity remained the same for all 

reactions. In conclusion, these initial experiments showed that the enantioselectivity of the 

TFA H-Pro-Pro-Asp-NH2 1 catalysed conjugate addition reaction of n-butanal and 

nitrostyrene remained stable under various conditions. Based on the achieved results we 

defined the use of a base in a stochiometric amount relative to the catalyst, 1 equivalent of 

nitrostyrene and 3 equivalents of n-butanal with a 0.4 M concentration of the reaction mixture 

with respect to nitrostryrene as the standard conditions for further studies.  

 

 

4.1.2 Influence of the Base 

 
Next we tested the influence of the additional base on the reaction of n-butanal and 

nitrostyrene catalysed by TFA H-Pro-Pro-Asp-NH2 1 in i-PrOH under the previously defined 

standard conditions (Table 4.2). With other tertiary amines like DMAP (Table 4.2, Entry 2) 

and i-Pr2NEt (Table 4.2, Entry 3) results comparable to NMM (Table 4.2, Entry 1) were 

obtained, whereas the reactivity was significantly reduced when Et3N (Table 4.2, Entry 4) was 

used as an additional base. Comparable results to NMM were obtained with i-Pr2NH (Table 

4.2, Entry 5). The identical enantiomeric excess suggests that no catalytic competition 

between the peptide 1 and the additional secondary amine took place. Even PrNH2 and 

Piperidine (Table 4.2, Entries 6 and 7) could be used as basic additives which lowered the 

conversion but led to products with similar stereoselectivity. In summary these experiments 
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indicated, that the influence of the different bases as additives to the TFA salt of catalyst 1 are 

not important for the stereoselectivity of the corresponding product. For further studies we 

decided to use NMM as the base of choice. 

 

 
Table 4.2. TFA H-Pro-Pro-Asp-NH2 1 catalysed 1,4-addition reactions between n-butanal and nitrostyrene with 
different bases.[a] 
 

 
 

Entry Base Conv.  
[%] [b] 

syn : anti[c] ee 
[%][c] 

1 NMM >90 10 : 1 73 

2 DMAP quant. 8 : 1 73 

3 i-Pr2NEt ∼85 11 : 1 73 

4 Et3N ∼50 15 : 1 73 

5 i-Pr2NH ∼80 10 : 1 73 

6 PrNH2 ∼45 15 : 1 73 

7 Piperidine ∼60 11 : 1 71 
[a] Reactions were performed at a 1.1 mmol scale (0.4 M with respect to 
nitrostyrene. [b] Estimated by 1H NMR of the crude material. [c] Determined by 
chiral-phase HPLC analysis. 

 

 

4.1.3 Solvent Screening 

 
Various different solvents were then tested for the TFA H-Pro-Pro-Asp-NH2 1 catalysed 

reaction of n-butanal and nitrostyrene under standard conditions (Table 4.3). Whereas the 

reactions with primary alcohols like n-BuOH and EtOH (Table 4.3, Entries 2 and 3) as 

solvents showed comparable results to the reaction with i-PrOH (Table 4.3, Entry 1), the 

reactions with other solvents proceeded significantly slower. The poor solubility of catalyst 1 

in non-polar solvents as for example toluene (Table 4.3, Entry 7) may be the reason for the 

slow or even missing reaction progress. Higher diastereo- and enantioselectivities compared 
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to the reaction in i-PrOH were obtained in dioxane (Table 4.3, Entry 5), CHCl3 (Table 4.3, 

Entry 11), CH2Cl2 (Table 4.3, Entry 12) and EtOAc (Table 4.3, Entry 13). 

 

 
Table 4.3. TFA H-Pro-Pro-Asp-NH2 1 catalysed 1,4-addition reactions between n-butanal and nitrostyrene in 
different solvents.[a] 
 

 
 

Entry Solvent 1 / NMM 
[mol%] 

Time 
[h] 

Conv. 
[%][b] 

syn : anti[c] ee (syn)
[%][c] 

1 i-PrOH 1 ∼3 >90 10 : 1 73 

2 n-BuOH 1 ∼3 >90 10 : 1 71 

3 EtOH 1 ∼3 >90 10 : 1 71 

4 DMSO 1 ∼18 >90 6 : 1 57 

5 dioxane 1 ∼24 >90 13 : 1 81 

6 THF 1 ∼24 ∼40 n.d. n.d. 

7 toluene 1 ∼24 - n.d. n.d. 

8 ethylene glycol 1 ∼24 - n.d. n.d. 

9 t-BuOH 5 ∼1 >90 5 : 1 73 

10 acetonitrile 5 ∼1 >90 8 : 1 60 

11 CHCl3 5 ∼24 >90 14 : 1 85 

12 CH2Cl2 5 ∼24 >90 14 : 1 79 

13 EtOAc 5 ∼24 >90 9 : 1 77 

14 THP 5 ∼48 >90 10 :1 57 
[a] Reactions were performed at a 1.1 mmol scale (0.40 M with respect to nitrostyrene). [b] Estimated by TLC.  
[c] Determined by chiral phase HPLC analysis. 
 

 

To improve the solubility and therefore the activity of 1 we performed the reactions using 

mixtures of the solvent providing the most selective reaction (CHCl3) and the solvent that 

showed the fastest reaction (i-PrOH) (see Table 4.4). The best results were obtained in a 9:1 

(v/v) mixture of CHCl3 and i-PrOH, leading to the corresponding product 3 in only 6 h, with a 

conversion of >90 % and a syn:anti ratio of 10:1 (Table 4.4, Entry 2). Remarkably, the 
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enantioselectivity remained the same as that obtained in pure CHCl3 (85 % ee). Higher 

diastereoselectivities and slightly higher enantioselectivities were obtained when the reactions 

were performed in CHCl3/i-PrOH 9:1 (v/v) at decreased temperature (0 °C, Table 4.4, Entry 5 

and -15 °C, Table 4.4, Entry 6). However, the activity was significantly lower in both cases. 

The reactions required more than one day, even with the use of 3 mol% of 1.   

 

 
Table 4.4. TFA H-Pro-Pro-Asp-NH2 1 catalysed 1,4-addition reactions between n-butanal and nitrostyrene in 
different mixtures of CHCl3 and i-PrOH and at different temperatures.[a] 
 

 
 

Entry Solvent  Temp. 1 / NMM 
[mol%] 

Time 
[h] 

Conv. 
[%][b] 

syn : 
anti[c] 

ee 
[%][c] 

1 CHCl3: i-PrOH  8:2 RT 1 <6 quant. 10 : 1 81 

2 CHCl3: i-PrOH  9:1 RT 1 ∼6 >90 10 : 1 85 

3 CHCl3: i-PrOH  9.5:0.5 RT 1 ∼12 >90 12 : 1 85 

4 CHCl3: i-PrOH  9.9:0.1 RT 1 ∼20 ∼50 15 : 1 85 

5 CHCl3: i-PrOH  9:1 0 °C 3 <40 >90 20 : 1 86 

6 CHCl3: i-PrOH  9:1 -15 °C 3 ∼40 ∼80 19 : 1 86 
[a] Reactions were performed at a 1.1 mmol scale (0.40 M with respect to nitrostyrene). [b] Estimated by TLC.  
[c] Determined by chiral phase HPLC analysis. 
 

     

4.1.4 Conclusions 
 

In agreement with the rational prediction, it was shown that the tripeptide TFA H-Pro-Pro-

Asp-NH2 1 is indeed able to catalyse not only 1,2- but also 1,4-addition reactions. The 

asymmetric conjugate addition of n-butanal to nitrostyrene was chosen as a model reaction. 

Best results were obtained by using 1 mol% of 1 and NMM as a base, 3 equivalents of n-

butanal and 1 equivalent of nitrostyrene in a mixture of CHCl3/i-PrOH 9:1 (v/v) with a 

concentration of 0.4 M with respect to nitrostyrene. These conditions were later used for the 

screening of a range of related peptidic catalysts. 
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4.2 Screening of Various Catalysts Containing a  
N-Terminal Proline Residue and an Acidic 
Functionality 

 

 

Based on the initial lead structure of H-Pro-Pro-Asp-NH2 1 we synthesised a large number of 

related peptides, which contained an N-terminal proline residue and an acidic functionality. 

These peptides were then tested as catalysts for the reaction of n-butanal and nitrostyrene 

under the standard conditions discussed above (Table 4.5). For this initial screening we 

restricted ourselves to the use of L-amino acid building blocks, however, also non-

proteinogenic amino acids like β-homo aspartate, α-methyl proline and Cys(SO3H) were 

introduced. Furthermore, we varied the C-terminal end groups (carboxylic acids, 

carboxamides or a methyl ester). L-Proline itself was found to be a rather poor catalyst for the 

title reaction and under the chosen conditions (Table 4.5, Entry 1). A catalyst loading of 10 

mol% L-proline was necessary to obtain the desired product 3 in a yield of 85 % after one day 

and with a selectivity of syn:anti = 8:1 and 39 % ee. Significantly better results were obtained 

with the dipeptide TFA H-Pro-Pro-OH 4 (Table 4.5, Entry 2). With a catalyst loading of 1 

mol% and after 24 h, approximately 50 % conversion and a selectivity of syn:anti = 19:1 and 

68 % ee was observed. In contrast, the dipeptide TFA H-Pro-Asp-NH2 5 (Table 4.5, Entry 3) 

showed nearly no activity when 1 mol% of 5 was used. Remarkably, the tetrapeptide TFA H-

Pro-Pro-Asp-Pro-NH2 6 (Table 4.5, Entry 5), bearing one additional proline residue at the C-

terminus, showed a lower activity but a significantly higher selectivity in comparison to 

TFA H-Pro-Pro-Asp-NH2 1 (Table 4.5, Entry 4). Using 1 mol% of 6, the reaction required 12 

h for >90 % conversion while a syn:anti ratio of 23:1 and an enantimeric excess of 90 % was 

obtained. In this case a higher structural complexity led to an increased selectivity. We 

assume that a stabilising effect of the additional C-terminal proline on the catalyst structure, 

which would lead to a better defined transition state for the 1,4-addition reaction and therefore 

increase the enantioselectivity, is a possible explanation for the higher ee observed with 

tetrapeptide 6. In former studies, this peptide 6 was identified as a consensus sequence in a 

combinatorial experiment where a tetrapeptide split & mix library was screened for 

intermolecular aldol reactions.[119] For the aldol reaction of benzaldehyde and aceton, catalyst 

6 showed an activity comparable to TFA H-Pro-Pro-Asp-NH2 1, however, the observed 

enantioselectivity was significantly lower with the tetrapeptide. When the analogous 
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pentapeptide TFA H-Pro-Pro-Asp-Pro-Pro-NH2 7 was tested as catalyst for the standard 1,4-

addition reaction, a beneficial effect on the selectivity was not observed anymore (Table 4.5, 

Entry 6).  

 

 
Table 4.5. Asymmetric 1,4-addition reaction between n-butanal and nitrostyren:. Screening of different peptides 
containing the H-Pro-Pro motif and an acidic functionality.[a] 
 

 
 

Entry Catalyst Time 
[h] 

Conv. 
[%][b] 

syn : anti[c] ee (syn)
[%][c] 

1 H-Pro-OH [d] 24 85[e] 8 : 1 39 

2 TFA H-Pro-Pro-OH 4 24 ∼50 19 : 1 68 

3 TFA H-Pro-Asp-NH2 5 15 <10 n.d. n.d. 

4 TFA H-Pro-Pro-Asp-NH2 1 6 96[e] 10 : 1 85 

5 TFA H-Pro-Pro-Asp-Pro-NH2 6  12 >90 23 : 1 90 

6 TFA H-Pro-Pro-Asp-Pro-Pro-NH2 7 15 >90 15 : 1 85 

7 TFA H-Pro-Pro-Asp-OMe 8 12 >90 20 : 1 82 

8 TFA H-Pro-Pro-β-homo-Asp-NH2 9 12 >90 9 : 1 83 

9 TFA H-Pro-Pro-β-homo-Asp-OH 10 12 >90 20 : 1 81 

10 TFA H-Pro-Pro-Asn-OH 11 12 >90 13 : 1 87 

11 TFA H-Pro-Pro-Ser-OH 12 5 >90 12 : 1 85 

12 TFA H-Pro-Pro-His-OH 13 12 >90 6 : 1 84 

13 TFA H-Pro-Pro-Gly-OH 14 12 >90 10 : 1 76 

14 TFA H-Pro-Pro-Cys(SO3H)-NH2 15 20 <30 14 : 1 77 

15 TFA H-Pro-MePro-Asp-NH2 16 20 ∼40 9 : 1 83 

16 Me-Pro-Pro-Asp-NH2 17 [f] 15 - n.d. n.d. 

17 Ac-Pro-Pro-Asp-NH2 18 [f] 15 - n.d. n.d. 
[a] Reactions were performed at a 1.1 mmol scale (0.40 M with respect to nitrostyrene). [b] Estimated by TLC.  
[c] Determined by chiral phase HPLC analysis. [d] 10 mol%. [e] Isolated yield. [f] 10 mol%, no NMM. 
 
 

With 1 mol% of TFA H-Pro-Pro-Asp-Pro-Pro-NH2 7 an activity comparable to peptide 1 was 

observed and a selectivity of syn:anti = 15:1 and 85 % ee was obtained. TFA H-Pro-Pro-Asp-
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OMe 8 (Table 4.5, Entry 7), with a methylester instead of a carboxamide at the C-terminus 

and TFA H-Pro-Pro-β-homo-Asp-NH2 9 (Table 4.5, Entry 8), where the carboxamide is 

removed from the peptidic backbone by an additional CH2 group, showed both lower activity 

(1 mol%, 12 h, >90 % conversion) and lower enantioselectivity  in comparison to 1 (82 % ee 

and 83 % ee, respectively). Several peptides of the type H-Pro-Pro-Xaa-OH were tested as 

well (1 mol% each). Thus, the peptides TFA H-Pro-Pro-Asn-OH 11 (87 % ee, Table 4.5, 

Entry 10), TFA H-Pro-Pro-Ser-OH 12 (85 % ee, Table 4.5, Entry 11) and TFA H-Pro-Pro-

His-OH 13 (84 % ee, Table 4.5, Entry 12) showed nearly the same or even better 

enantioselectivities than 1 whereas TFA H-Pro-Pro-Gly-OH 14  proved to be less selective 

(76 % ee, Table 4.5, Entry 13). A significantly lower activity and enantioselectivity was 

observed with the peptide TFA H-Pro-Pro-Cys(SO3H)-NH2 15 (Table 4.5, Entry 14), bearing 

a sufonic acid instead of a carboxylic acid in the side chain of the third amino acid residue. 

The decreased activity of this catalyst 15 (1 mol%, 20 h, <30 %) can be rationalised with the 

lower pKa of the acid functionality. The sulfonic acid may protonate the N-terminal secondary 

amine which leads to a deactivation of catalyst 15. That the N-terminal secondary amine is 

crucial for catalysis was underlined by testing the methylated peptide 17 and the acetylated 

peptide 18, which both proved to be inactive as catalysts for the reaction of n-butanal and 

nitrostyrene, even when 10 mol% of the peptides were used. 

 

This initial screening indicated that peptides of the general type H-Pro-Pro-Xaa, containing a 

free secondary amine at the N-terminus and a carboxylic acid either in the side chain of Xaa 

or at the corresponding C-terminus, are good catalysts for the asymmetric conjugate addition 

reaction of n-butanal and nitrostyrene. The original lead structure, H-Pro-Pro-Asp-NH2 1, 

remained one of the best catalysts in terms of activity and selectivity whereas several peptides 

of the type H-Pro-Pro-Xaa-OH showed comparable catalytic properties. The highest 

enantiomeric excess of 90 % was achieved with the tetrapeptide TFA H-Pro-Pro-Asp-Pro-

NH2 6.  
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4.3 Diastereomeric Tri- and Tetrapeptides 
 

 

Based on the initial screening of Pro-Pro-Xaa type peptides, we decided to test 

diastereoisomers of the best catalysts found. First, the four diastereoisomers of the parent 

TFA H-Pro-Pro-Asp-NH2 1 were synthesised and tested as catalysts for the conjugate 

addition reaction of n-butanal and nitrostyrene under identical conditions as previously 

applied (Table 4.6). All of the diastereomeric peptides proved to be efficient catalysts, 

providing the corresponding product 3 in high yields and selectivities within 6 to 20 h using 

only 1 mol% of catalyst. Furthermore they all showed improved diastereoselectivities 

(syn:anti = 25:1-50:1, Table 4.6, Entries 2-4) in comparison to the parent peptide 1 (syn:anti = 

10:1, Table 4.6, Entry 1). Whereas TFA H-Pro-D-Pro-Asp-NH2 19 (Table 4.6, Entry 3) and 

TFA H-Pro-Pro-D-Asp-NH2 20 (Table 4.6, Entry 4) showed slightly lower enantiomeric 

excesses (81 % ee in both cases) than TFA H-Pro-Pro-Asp-NH2 1 (85 % ee, Table 4.6, Entry 

1), the diastereoisomeric peptide TFA H-D-Pro-Pro-Asp-NH2 21 (Table 4.6, Entry 2) 

provided the product with a significantly higher enantioselectivity of 95 % ee.  
 

 

Table 4.6. Asymmetric 1,4-addition reaction between n-butanal and nitrostyrene: Screening of diasteroisomeric 
peptides of the Pro-Pro-Asp-NH2 motif.[a] 
 

 
 

Entry Catalyst Time 
[h] 

Yield 
[%][b] 

syn : 
anti[c] 

ee (syn) 
[%][c] 

Abs. 
Conf. 

1 TFA H-Pro-Pro-Asp-NH2 1 6 96[d] 10 : 1 85 (R,S) 

2 TFA H-D-Pro-Pro-Asp-NH2 21 12 93[d] 25 : 1 95 (S,R) 

3 TFA H-Pro-D-Pro-Asp-NH2 19 20 92[d] 25 : 1 81 (R,S) 

4 TFA H-Pro-Pro-D-Asp-NH2 20 10 84[d] 50 : 1 81 (R,S) 
[a] Reactions were performed at a 1.1 mmol scale (0.40 M with respect to nitrostyrene). [b] Isolated yield. 
[c] Determined by chiral phase HPLC analysis.  
 
 

Notably, the peptides 1 and 21, with inverted absolute configurations at the N-terminal proline 

residue, both afforded the syn addition reaction products, but with opposite enantioselectivity. 
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TFA H-Pro-Pro-Asp-NH2 1 afforded the (R,S) and TFA H-D-Pro-Pro-Asp-NH2 21  the (S,R) 

product. This result demonstrates that a switch in the stereoselectivity of peptidic catalysts can 

be easily achieved by seemingly small changes in their primary and thereby secondary 

structure.  

 

Since the tetrapeptide TFA H-Pro-Pro-Asp-Pro-NH2 6 showed an enantiomeric excess of 90 

% in the initial catalyst screening, we also synthesised and tested its eight diastereoisomers 

for the standard reaction of n-butanal and nitrostyrene (Table 4.7). Very similar results were 

obtained for all catalysts. The peptides were able to catalyse the reactions with a catalyst 

loading of 1 mol%, providing the product 3 in very high conversions within 10 h. The 

syn:anti ratios were determined within a range of 22:1 to 58:1, and enantiomeric excesses 

between 86 % and 91 % (TFA H-Pro-D-Pro-Asp-Pro-NH2 25, Table 4.7, Entry 3). However, 

the excellent enantioselectivity of 95 % ee, achieved with tripeptide TFA H-D-Pro-Pro-Asp-

NH2 21, was not improved upon.  
 

 

Table 4.7. Asymmetric 1,4-addition reaction between n-butanal and nitrostyrene: Screening of diasteroisomeric 
peptides of the Pro-Pro-Asp-Pro-NH2 motif.[a] 
 

 
 

Entry Catalyst Conv. 
[%][b] 

syn : 
anti[b] 

ee 
[%][c] 

Abs. 
Conf. 

1 TFA H-Pro-Pro-Asp-Pro-NH2  6 89 32 : 1 90 (R,S) 

2 TFA H-D-Pro-Pro-Asp-Pro-NH2  24 90 56 : 1 90 (S,R) 

3 TFA H-Pro-D-Pro-Asp-Pro-NH2  25 quant. 43 : 1 91 (R,S) 

4 TFA H-Pro-Pro-D-Asp-Pro-NH2  22 82 41 : 1 86 (R,S) 

5 TFA H-Pro-Pro-Asp-D-Pro-NH2  26 quant. 22 : 1 86 (R,S) 

6 TFA H-Pro-Pro-D-Asp-D-Pro-NH2  27 92 41 : 1 86 (R,S) 

7 TFA H-Pro-D-Pro-Asp-D-Pro-NH2  23 93 58 : 1 90 (R,S) 

8 TFA H-Pro-D-Pro-D-Asp-Pro-NH2  28 90 40 : 1 90 (R,S) 
[a] Reactions were performed at a 1.1 mmol scale (0.40 M with respect to nitrostyrene).  
[b] Determined by 1H NMR analysis. [c] Determined by chiral phase HPLC analysis.  
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The previous finding that an exchange of L-proline with D-proline in the first position of the 

primary catalyst structure also changes the enantioselectivity of the corresponding addition 

product was underlined: TFA H-D-Pro-Pro-Asp-Pro-NH2 24 provided the (S,R)-enantiomer as 

the only diastereoisomeric catalyst. Finally, the peptides of the type H-Pro-Pro-Xaa-OH, 

which proved to be good catalysts in the initial peptide screening, were modified by 

exchanging the L-proline with the D-proline residue in the first positions. These peptides were 

then tested as catalysts for the standard reaction. Activities and diastereoselectivities of 

peptides 29, 30 and 31 (Table 4.8, Entries 1-3) were comparable with the results obtained by 

TFA H-D-Pro-Pro-Asp-NH2 21 but enantioselectivities were significantly lower in all cases 

(81-84 % ee). TFA H-D-Pro-Pro-His-OH 32 was not only less selective, but also less active 

(Table 4.8, Entry 4). Again, in all cases the formation of the (S,R)-enantiomer was favoured. 

 

 
Table 4.8. Asymmetric 1,4-addition reaction between n-butanal and nitrostyrene: Screening of peptides of the 
type H-D-Pro-Pro-Xaa-OH.[a] 
 

 
 

Entry Catalyst Time 
[h] 

Conv. 
[%][b] 

syn : 
anti[c] 

ee (syn) 
[%][c] 

Abs. 
Conf. 

1 TFA H-D-Pro-Pro-Asn-OH 29 12 >90 21 : 1 84 (S,R) 

2 TFA H-D-Pro-Pro-D-Asn-OH 30 12 ∼80 20 : 1 81 (S,R) 

3 TFA H-D-Pro-Pro-Ser-OH 31 12 >90 12 : 1 82 (S,R) 

4 TFA H-D-Pro-Pro-His-OH 32 15 ∼60 10 : 1 72 (S,R) 
[a] Reactions were performed at a 1.1 mmol scale (0.40 M with respect to nitrostyrene). [b] Estimated by TLC.  
[c] Determined by chiral phase HPLC analysis. 
 

 

From all of the tested peptidic catalysts, TFA H-D-Pro-Pro-Asp-NH2 21 clearly showed the 

highest enantioselectivity. The fact, that only 1 mol% of this catalyst suffices to obtain the 

desired product 3 after 12 h with an isolated yield of 93 %, a syn:anti ratio of 25:1 and an 

enantiomeric excess of 95 %, makes 21 a very attractive organocatalyst for the reaction of 

aldehydes to nitroolefins. 
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5. TFA H-D-Pro-Pro-Asp-NH2 (21) as a Catalyst for 
Asymmetric 1,4-Addition Reactions of Aldehydes 
to Nitroolefins 

 

 

 

To evaluate the substrate scope of TFA H-D-Pro-Pro-Asp-NH2 21 we allowed a range of 

aldehyde and nitroolefin combinations to react in the presence of 1-5 mol% of 21. Aldehydes 

were used in an excess (3 equivalents) and reactions were performed in CHCl3/i-PrOH 9:1 

(v/v) as solvent with a concentration of 0.4 M with respect to the nitroolefin. To liberate the 

secondary amine of TFA catalyst 21, an equimolar quantity of NMM was added. High to 

excellent yields (82-99 %) and stereoselectivities (syn:anti = 4:1->99:1, 88-98 % ee) were 

obtained for a variety of aldehydes and nitroolefins reacting at RT within 12-24 h (Table 5.1). 

 

 
Table 5.1. Asymmetric conjugate addition of aldehydes to nitroolefins catalysed by TFA H-D-Pro-Pro-Asp-NH2 
21. [a] 

 

 
 

Entry 21 
[mol%] 

Product  Temp. 
[°C] 

Time 
[h] 

Yield 
[%][b] 

syn:anti[c] ee 
[%][d] 

1 1   25 24 98 9:1 91 
2 5  33 -15 48 70 >99:1 97 
         
3 1   25 12 93 24:1 95 
4 3  3 -15 48 92 >99:1 97 
         
5 1   25 12 94 16:1 92 
6 3  34 -15 48 90 >50:1 96 
         
7 1   25 12 99 16:1 92 
8 5  35 -15 48 96 >99:1 96 
         
9 3   25 24 88 49:1 92 
10 5  36 -15 48 99 >99:1 96 
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11 1   25 12 89 16:1 95 
12 3  37 -15 48 95 >50:1 98 
         

13 1   25 12 99 16:1 95 
14 5  38 -15 48 95 >50:1 97 
         

15 1   25 12 99 24:1 95 
16 5  39 -15 48 99 >99:1 97 
         

17 1   25 12 99 32:1 95 
18 3  40 -15 48 97 >99:1 97 
         

19 1   25 24 96 24:1 95 
20 3  41 -15 48 97 >50:1 97 
         

21 1   25 12 88 >99:1 98 
22 3  42 -15 48 95 >99:1 99 
         

23 1   25 12 93 49:1 98 
24 1  43 0 24 84 >99:1 >99 
         

25 3   25 12 99 19:1 92 
26 5  44 -15 48 97 >50:1 94 
         

27 1   25 24 99 6:1 88 
28 3  45 -15 48 94 32:1 95 
         

29 3   25 36 88 4:1 98 
30 5  46 -15 48 55 4:1 98 
         

31 3   25 12 82 16:1 93 
32 5  47 -15 48 80 24:1 94 
         

[a] Reactions were performed with 1 eq of the β-nitroolefin and 3 eq of the aldehyde. [b] Isolated yield. 
[c]Determined by 1H NMR on the crude material. [d] Determined by chiral phase HPLC analysis.  
 

 

Yet higher stereoselectivities were achieved when reactions were performed at a lower 

temperature. These conditions required slightly greater amounts of catalyst (3-5 mol%) and 

longer reaction times, but provided diastereoselectivities of up to more than syn:anti = 99:1 

and enantioselectivities of up to more than 99 % ee. Best results were obtained using a 

nitroolefin with an electron-poor aromatic substituent (trans-β-2-(trifluoromethyl)styrene: 84-

95 % yield, syn:anti = 49:1->99:1, 98->99 % ee,  Table 5.1, Entries 21-24). However, even 

with the poorest substrate combination (aliphatic nitroolefin and propanal, Table 5.1, Entries 

29 and 30) we obtained a diastereoselectivity of syn:anti = 4:1 and enantioselectivity of 94 % 

3 
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ee. Aldehydes bearing branched substituents in the β-position (isovaleraldehyde) were also 

tolerated  but required 3-5 mol% of catalyst to provide the product in a yield greater than 88 

% (Table 5.1, Entry 9 and 10). These results demonstrate that peptide 21 is an excellent 

catalyst for conjugate addition reactions between a broad range of different aldehydes and 

aromatic as well as aliphatic nitroolefins. 1 mol% of catalyst 21 and 3 equivalents of the 

aldehyde typically suffice to provide the addition products in high yields and 

stereoselectivities. 
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6. Conformational Studies I 
 

 

 

6.1 Lowest Energy Structures of Diastereoisomeric 
Catalysts and Transition State Model 

 

 

To gain insight into a possible mechanism of action of the peptide catalysed 1,4-addition 

reactions, and in particular to understand the opposite enantioselectivity of the diastereomeric 

peptides H-Pro-Pro-Asp-NH2 1 and H-D-Pro-Pro-Asp-NH2 21, we analysed the 

conformations of the peptides using molecular modelling. Calculations were performed with 

MacroModel 8.0[120] using the OPLS-AA force field[121] and the GB/SA model for 

chloroform.[122]  The obtained lowest energy conformations of peptides 1 and 19-21 were 

compared with each other (Figure 6.1). 

 

 

 

 
Figure 6.1. Lowest energy structures of peptides 1 and 19-21, calculated by MacroModel 8.0. 

 

In the lowest energy structures all peptides adopt γ-turn conformations. The carboxylic acid 

functionalities of peptides 19 and 20 are pointing away from the secondary amines of the N-

terminal proline residues. This is in contrast to peptides 1 and 21, where the C-terminal 

carboxamides point away from the N-termini whereas the carboxylic acids are in close 

vicinity to the secondary amines. An overlay of the lowest energy structures of peptides H-

H-Pro-Pro-Asp-NH2 1 H-Pro-Pro-D-Asp-NH2 20 H-Pro-D-Pro-Asp-NH2 19 H-D-Pro-Pro-Asp-NH2 21 
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Pro-Pro-Asp-NH2 1 and H-D-Pro-Pro-Asp-NH2 21 illustrates that in the lowest energy 

structures both peptides adopt turn-like conformations that are identical apart from the N-

terminal proline residues which point in opposite directions with respect to the turn (Figure 

6.2).  

 

 

 
Figure 6.2. Overlay of the lowest energy structures of H-Pro-Pro-Asp-
NH2 1 (grey) and H-D-Pro-Pro-Asp-NH2 21 (green) and a cartoon of the 
two structures implicating the differently oriented N-terminal proline 
residues. 

 

 

Under the assumption that a s-trans enamine forms upon reaction of 1 and 21, respectively 

with the aldehyde, the two transition states of the diastereomeric peptides will behave like 

pseudo enantiomers, providing syn products with opposite absolute configuration (Figure 

6.3a). Thus, we assume that the induction of the chiral information occurs via the 

discrimination of the two enantiotopic faces of the enamine by the interaction between the 

carboxylic acid of the aspartate and the nitrogroup of the substrate. In both cases the enamine 

would react with the nitroolefin via a synclinal (gauche) transition state. This is consistent 

with a topolocical rule proposed by Seebach.[123] The nitroolefin approaches the enamine in 

such a way that the donor and the acceptor double bond are in a gauche relationship (Figure 

6.3b). The nitroolefin is oriented in such a manner, that the sterically demanding β-substituent 

is anti to the enamine double bond and that favourable electrostatic interactions between the 

nitrogen of the enamine (developing positive charge) and the nitrogroup (developing negative 

charge) can take place. 
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Figure 6.3. a) Proposed transition state structures for 21 (left) and 1 (right) leading to enantiomeric syn 
products (bottom). b) Newman projection of synclinal transition state according to the topological rule proposed 
by Seebach.[123] 
 

 

6.2 X-Ray Crystal Structure Analysis of Peptidic Catalysts 
 

 

Crystal structures can provide further important insight into the preferred conformation of 

catalysts. We were therefore pleased to obtain crystals of the peptides H-Pro-Pro-Asp-NH2 1 

and H-D-Pro-Pro-Asp-NH2 21 that were suitable for x-ray single crystal structure analysis. 

The crystals were obtained after removal of the TFA by ion exchange chromatography and 

crystallisation of the “desalted peptides” from a mixture of H2O/MeOH/THF. In the solid 

state both peptides adopt β-turn structures as indicated by a hydrogen bond formed between 

the Pro-Pro/D-Pro-Pro amide bond and the C-terminal carboxamide (Figure 6.4).  
  

 
Figure 6.4. Crystal structures of H-Pro-Pro-Asp-NH2 1 (left) and H-D-Pro-Pro-Asp-NH2 21 (right). 

a)  b) 
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In former studies by other groups, similar structures have been observed for internal Pro-

Pro/D-Pro-Pro motives within linear and cyclic peptides.[124-127] The obtained β-turn 

conformations of peptides 1 and 21 in the solid state are in contrast to the γ-turn 

conformations of the calculated lowest energy structures discussed above (see Chapter 6.1). 

However, the β-turn conformations within the solid state are rather compact, suggesting that 

packing effects could favour these structures. 

 

In analogy to the calculated lowest energy structures of H-Pro-Pro-Asp-NH2 1 and H-D-Pro-

Pro-Asp-NH2 21, an overlay of the two crystal structures demonstrates that the two 

conformations are identical apart from the N-terminal proline residues which point into 

opposite directions (Figure 6.5). 

 

 

 

 

Figure 6.5. Overlay of crystal 
structures of peptide 1 (grey) and 
peptide 21 (green). 
 

 

This is further evidence that diastereomeric peptides behave like pseudo enantiomers as 

discussed for the proposed transition state model (see Chapter 6.1).  

 

 

6.3 Importance of the Turn-Structure and the N-terminal 
Proline Residue 

 

 

In previous work by Krattiger et al. the tripeptides H-Pro-Pro-Asp-NH2 1 and H-Pro-D-Ala-D-

Asp-NH2 2 were identified as efficient catalysts for asymmetric aldol reactions (see Chapter 

2.2).[93] The use of these peptidic catalysts for aldol reactions between aldehydes and acetone 

afforded products with opposite absolute configurations. This opposite entantioselectivity was 

rationalized based on the calculated lowest energy structures of the peptides 1 and 2 using 
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MacroModel (Figure 6.6). The overlay of the two structures revealed that peptide 1 forms a 

right-handed turn and peptide 2 a left-handed turn that behave almost like mirror images. 

These oppositely handed turn-conformations explain the formation of enantiomeric aldol 

products. However, this is in contrast to the previously discussed overlay of the lowest energy 

conformations of 1 and 21 where both peptides show right-handed turns and oppositely 

directed N-terminal proline residues (see Chapter 6.1). 

 

 

 
 

Figure 6.6. Overlay of the lowest energy structures of H-Pro-D-Ala-D-
Asp-NH2 2 (grey) and H-Pro-Pro-Asp-NH2 1 (green) and a cartoon of the 
two structures implicating the differently directed turns. 

 

 

We tested TFA H-Pro-D-Ala-D-Asp-NH2 2 as catalyst for the asymmetric 1,4-addition 

reaction of n-butanal and nitrostyrene and compared the results with those obtained using 

TFA H-Pro-Pro-Asp-NH2 1 and TFA H-D-Pro-Pro-Asp-NH2 21 (Table 6.1).  

 

 
Table 6.1. Asymmetric 1,4-addition reaction between n-butanal and nitrostyrene: Comparision of peptides 1, 2 
and 21.[a] 
 

 
 

Entry Catalyst Time 
[h] 

Conv. 
[%][b] 

syn : 
anti[c] 

ee 
[%][c] 

Abs. 
Conf. 

1 TFA H-Pro-Pro-Asp-NH2 1 6 96[d] 10 : 1 85 (R,S) 

2 TFA H-D-Pro-Pro-Asp-NH2 21 12 93[d] 25 : 1 95 (S,R) 

3 TFA H-Pro-D-Ala-D-Asp-NH2 2[e] 15 73 34 : 1 87 (R,S) 
[a] Reactions were performed at a 1.1 mmol scale (0.40 M with respect to nitrostyrene). [b] Determined by 
1H NMR. [c] Determined by chiral phase HPLC analysis. [d] Isolated yield. [e] 5 mol%.  
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TFA H-Pro-D-Ala-D-Asp-NH2 2 exhibits a higher diastereoselectivity and enantioselectivity 

than TFA H-Pro-Pro-Asp-NH2 1 but is significantly less active (Table 6.1, Entry 3). 

However, in contrast to the aldol reactions, identical absolute configurations were obtained 

for the 1,4-addition products. CD-spectroscopy provided further evidence for the differently 

directed turn structures of H-Pro-Pro-Asp-NH2 1 and H-Pro-D-Ala-D-Asp-NH2 2 (Figure 6.7). 

Spectra of the peptides were measured in i-PrOH at a concentration of ∼200 μM. In the range 

of 260 – 215 nm the peptides 1 and 2 have nearly mirror-like spectra with a maximum for H-

Pro-D-Ala-D-Asp-NH2 2 and a minimum for H-Pro-Pro-Asp-NH2 1 at 223 nm. The spectum 

of H-D-Pro-Pro-Asp-NH2 21 shows a minimum as well, indicating a turn-structure more 

related to that of H-Pro-Pro-Asp-NH2 1. However, the minimum in the spetrum of 21 is at 204 

nm and significantly more intensive then in the spectrum of 1. 
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Figure 6.7. CD-spectra of peptides 1, 2 and 21, ∼200 μM in i-PrOH.  
 
 

The absolute configurations obtained with TFA H-Pro-Pro-Asp-NH2 1 and TFA H-Pro-D-

Ala-D-Asp-NH2 2 are opposite for the aldol reaction products but identical for the 1,4-addition 

reaction products. These findings indicate that not the direction of the turn within the peptide 

but the configuration of the N-terminal proline residue is determining the absolute 

configuration of the 1,4-addition product.  

H-D-Pro-Pro-Asp-NH2 21 

H-Pro-Pro-Asp-NH2 1 

H-Pro-D-Ala- D-Asp-NH2 2 
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7. Catalysts of the Type H-D-Pro-Pro-Xaa: Directed 
Modifications 

 

 

 

Based on the conformational studies described in chapter 6 we synthesised a range of peptides 

in analogy to H-D-Pro-Pro-Asp-NH2 21 with the objective to find further support for the 

proposed transition state model and to discover improved catalytically active peptides. 

Towards this goal, the importance of the carboxylic acid and the role of the C-terminus, as 

well as the spacer length between the peptidic backbone and the carboxylic acid were 

investigated.  

 

 

7.1 Importance of the Carboxylic Acid in the Side Chain 
 

 

To evaluate the importance of the carboxylic acid within the structure of H-D-Pro-Pro-Asp-

NH2 21 the analogues H-D-Pro-Pro-Asn-NH2 48 and H-D-Pro-Pro-Asp(OtBu)-NH2 49 with 

amide and ester residues, respectively, in place of the carboxylic acid were prepared. Their 

catalytic properties were then evaluated in the standard reaction of n-butanal and nitrostyrene 

(Table 7.1). Both peptides proved to be significantly poorer catalysts compared to 21, both 

with respect to their catalytic activities and stereoselectivies. Even with 3 to 6 times longer 

reactions, conversions below 44 %, syn:anti ratios below 8:1 and entantioselectivities below 

72 % ee were observed (Table 7.1, Entries 2 and 3). Thus, not only the secondary amine but 

also the carboxylic acid is important for effective catalysis. This result suggests that the 

carboxylic acid plays a crucial role in coordinating and thereby orienting the nitroolefin into a 

position that allows for the excellent stereochemical induction observed for peptidic catalyst 

21.  This is in agreement with our transition state model which involves coordination between 

the carboxylic acid of the peptide and the nitro group of the nitroolefin (see Chapter 6.1). 

However, the exact nature of their interactions (e.g. hydrogen bond formation between the 

nitronate and the carboxylic acid in the transition state) is not clear.[128] 
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Table 7.1. Asymmetric 1,4-addition reaction between n-butanal and nitrostyrene using catalysts with different 
functional groups in the side chain.[a] 
 

 
 

Entry Catalyst Time 
[h] 

Conv. 
[%][b] 

syn:anti 
[b] 

ee 
[%][c] 

1 TFA H-D-Pro-Pro-Asp-NH2 (21) 12 95 25 : 1 95 

2 TFA H-D-Pro-Pro-Asn-NH2 (48) 72 44 6 : 1 72 

3 TFA H-D-Pro-Pro-Asp(OtBu)-NH2 (49) 36 30 8 : 1 64 
[a] Reactions were performed at a 1.1 mmol scale (0.40 M with respect to nitrostyrene). [b] Determined by 
1H NMR spectroscopy of the reaction mixture. [c] Determined by chiral-phase HPLC analysis. 

 

 

7.2 Modifications at the C-Terminus  
 

 

As discussed above in chapter 6.2, the peptide H-D-Pro-Pro-Asp-NH2 21 adopts a β-turn 

conformation in the solid state, where the C-terminal carboxamide forms an H-bond with the 

oxygen of the D-Pro-Pro amide bond (Figure 7.1). Such an interaction might be important for 

stabilising the peptide in the transition state of the addition reaction and thus, for the observed 

high activity and selectivity. 

 

 

 
 
 
 
 
 
 
 
 

Figure 7.1. Crystal structure and schematic of H-D-Pro-Pro-Asp-NH2 21. 
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To evaluate the importance of the C-terminal amide for the catalytic efficiency of peptide 21, 

we prepared closely related peptides that differ in the C-terminal functional groups, and tested 

them as catalysts for the standard reaction (Figure 7.2).  

 

 
 

  X = CONH2  TFA H-D-Pro-Pro-Asp-NH2 (21) 

  X = H   TFA H-D-Pro-Pro-β-Ala-OH (50) 

  X = CO2CH3  TFA H-D-Pro-Pro-Asp-OMe (51) 

  X = CH2CONH2 TFA H-D-Pro-Pro-β-homo-Asp-NH2 (52) 

  X = CO2H  TFA H-D-Pro-Pro-Asp-OH (53) 

  X = CONHPr  TFA H-D-Pro-Pro-Asp-NHPr (54) 

  X = CONH-  TFA H-D-Pro-Pro-Asp-NH-TentaGel (55) 

 
Figure 7.2. Peptides bearing different C-terminal functional groups. 

 

Within the structures of peptides TFA H-D-Pro-Pro-β-Ala-OH 50 and TFA H-D-Pro-Pro-

Asp-OMe 51 the C-terminal carboxamide is replaced by functional groups (hydrogen and 

methyl ester, respectively) that are not able to function as H-bond donors. Within peptide 

TFA H-D-Pro-Pro-β-homo-Asp-NH2 52 an additional methylene group is introduced as a 

spacer to the carboxamide. Peptides TFA H-D-Pro-Pro-Asp-OH 53 and TFA H-D-Pro-Pro-

Asp-NHPr 54 bear carboxylic acid and secondary amide moieties, respectively, in place of the 

primary carboxamide. Finally, in analogy to peptide 54, the solid supported TFA H-D-Pro-

Pro-Asp-NH-TentaGel 55, which also bears a secondary amide on the C-terminus, was 

synthesised. To analyse the catalytic properties of peptides 50-55 the conjugate addition 

reaction between n-butanal and nitrostyrene served again as a test reaction using the 

previously established standard conditions (Table 7.2).  

 

With all of the peptidic catalysts 50-55, good to very good stereoselectivities and conversions 

after 12 h were observed (syn:anti ≥15:1,  ≥85 % ee, Table 7.2, Entries 2-7). However, none 

of the peptides performed equally as well as the parent catalyst TFA H-D-Pro-Pro-Asp-NH2 
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21 (Table 7.2, Entry 1). This demonstrates that also peptides that cannot be stabilised by an 

intramolecular H-bond to form a β-turn (or another conformation which is stabilised by an 

interaction of the C-terminal carboxamide), are reasonable asymmetric catalysts, even if the 

peptide lacks the stereogenic center of the C-terminal amino acid (catalyst 50, Table 7.2, 

Entry 2). At the same time, the results revealed that both the presence and the position of the 

C-terminal primary carboxamide are crucial for highly efficient asymmetric catalysis. Thus, 

the main contribution for the excellent asymmetric induction and catalytic activity of peptide 

21 stems from the D-Pro-Pro portion whereas the C-terminal amide is important for the fine 

tuning of the stereoselectivity. 

 

 
Table 7.2. Asymmetric 1,4-addition reaction between n-butanal and nitrostyrene using catalysts with different 
C-terminal functionalities. [a] 
 

 
 

Entry Catalyst Conv.  
[%][b] 

syn:anti 
[b] 

ee 
[%][c]

1 TFA H-D-Pro-Pro-Asp-NH2 (21) 95 25 : 1 95 

2 TFA H-D-Pro-Pro-β-Ala-OH (50) 80 26 : 1 88 

3 TFA H-D-Pro-Pro-Asp-OMe (51) 96 30 : 1 89 

4 TFA H-D-Pro-Pro-β-homo-Asp-NH2 (52) 95 19 : 1 85 

5 TFA H-D-Pro-Pro-Asp-OH (53) 82 21 : 1 85 

6 TFA H-D-Pro-Pro-Asp-NHPr (54) 85 23 : 1 92 

7 TFA H-D-Pro-Pro-Asp-NH-TentaGel (55)[d] quant. (5 h) 15 : 1 91 
[a] Reactions were performed at a 1.1 mmol scale (0.40 M with respect to nitrostyrene). [b] Determined by 
1H NMR spectroscopy of the reaction mixture. [c] Determined by chiral-phase HPLC analysis. [d] 3 mol% of 
catalyst was used. 

 

 

In the past few years the immobilisation of catalysts became an important research topic, 

since this should allow for facile catalyst recycling.[129] Peptides can be readily synthesised on 

a solid support and directly used as catalysts, therefore they are especially appropriate for this 

immobilisation strategy.[130] The TentaGel immobilised catalyst 55 showed a very high 

activity (quantitative conversion within 5 h using 3 mol% of the catalyst, Table 7.2, Entry 7), 

good diastereoselectivity (syn:anti = 15:1) and an enantiomeric excess of 91 %. This 
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enantioselectivity is comparable to the result obtained with catalyst 54 (Table 7.2, Entry 6), 

which also bears a secondary amide at the C-terminus. This finding further underlines the 

importance of the primary C-terminal carboxamide for high enantioselectivity and suggests 

that an alternative position (e.g. a functional group at Cγ) is more suitable for immobilisation 

of the peptidic catalyst on a solid support. 

 

 

7.3 Importance of the Spacer Length in the Side-Chain of 
the C-terminal Amino Acid 

 

 

Next we tested the influence of the spacer from the peptidic backbone to the carboxylic acid 

in the side chain of the C-terminal amino acid on the catalytic efficiency (Figure 7.3).  
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n = 1 TFA H-D-Pro-Pro-Asp-NH2 21 

n = 2 TFA H-D-Pro-Pro-Glu-NH2 56 

n = 3 TFA H-D-Pro-Pro-Aad-NH2 57 

n = 4 TFA H-D-Pro-Pro-Api-NH2 58 

n = 5 TFA H-D-Pro-Pro-Asu-NH2 59 

 
Figure 7.3. Peptides bearing different spacer length in the side-chain of the C-terminal amino acid.  

 

Towards this goal we compared TFA H-D-Pro-Pro-Asp-NH2 21 with the peptides TFA H-D-

Pro-Pro-Glu-NH2 56, TFA H-D-Pro-Pro-Aad-NH2 57, TFA H-D-Pro-Pro-Api-NH2 58 and 

TFA H-D-Pro-Pro-Asu-NH2 59 bearing up to four additional methylene groups as spacers 

between the backbone and the carboxylic acid. Remarkably, the glutamic acid analogue 56, 

with one additional methylene group in the side chain, proved to be an even better catalyst 

than 21 for the conjugate addition reaction of n-butanal to nitrostyrene. γ-Nitroaldehyde 3 was 

obtained in almost perfect diastereoselectivity (syn:anti = 50:1, Table 7.3, Entry 2) and an 

excellent enantioselectivity of 97 % ee. Peptide 57 with yet an additional methylene group in 

the spacer is still a very good catalyst with an efficiency that is comparable to that of the 

parent peptide 21 (Table 7.3, Entry 3). Even peptides 58 and 59 with more flexible spacers 



53 

 

exhibited reasonable catalytic efficiencies (Table 7.3, Entries 4 and 5). However, a clear 

tendency towards lower activity and selectivity with increasing spacer length was observed. If 

the spacer from the peptidic backbone to the carboxylic acid is shorter than in peptide 21, 

both activity and selectivity are significantly lower. This was established by testing the 

peptides TFA H-D-Pro-Pro-D-Asn-OH 60 and TFA H-D-Pro-Pro-D-Gln-OH 61 as catalysts 

for the standard reaction (Table 7.3, Entries 7 and 8). However, a direct comparison with 

peptide 21 is not possible, since the carboxamide is further removed by one methylene group 

in peptide 60 and two methylene groups in peptide 61, respectively.  

 

 
Table 7.3. Asymmetric 1,4-addition reaction between n-butanal and nitrostyrene using catalyst 21 analogues 
with different spacer length in the side chain of the  C-terminal amino acid. [a] 

 

 
 

Entry Catalyst Conv. 
[%][a] 

syn:anti [b] ee 
[%][c] 

1 TFA H-D-Pro-Pro-Asp-NH2 (21) 95 25 : 1 95 

2 TFA H-D-Pro-Pro-Glu-NH2 (56) quant. 50 : 1 97 

3 TFA H-D-Pro-Pro-Aad-NH2 (57) quant. 30 : 1 94 

4 TFA H-D-Pro-Pro-Api-NH2 (58) 90 27 : 1 92 

5 TFA H-D-Pro-Pro-Asu-NH2 (59) 80 24 : 1 86 

     

7 TFA H-D-Pro-Pro-D-Asn-OH (60) 76 20 : 1 81 

8 TFA H-D-Pro-Pro-D-Gln-OH (61) 45 20 : 1 87 
[a] Reactions were performed at a 1.1 mmol scale (0.40 M with respect to nitrostyrene).  
[b] Determined by 1H NMR spectroscopy of the reaction mixture. [c] Determined by chiral-phase 
HPLC analysis. 

 

 

In summary, these findings demonstrated that a considerable degree of conformational 

flexibility is tolerated in the side chain of the C-terminal amino acid. In addition they further 

underline that the D-Pro-Pro motif is the major contributor to the high asymmetric induction 

of peptidic catalysts of the type H-D-Pro-Pro-Xaa-NH2 where Xaa is an amino acid with a 

carboxylic acid in the side chain.  
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These results, combined with the observation that TFA H-D-Pro-Pro-β-Ala-OH 50 is a 

reasonably good catalyst for the 1,4-addtion reaction of n-butanal and nitrostyrene (see Table 

7.2) led us to investigate peptide analogues with variable distances of the C-terminal 

carboxylic acid from the D-Pro-Pro motif. Thus, catalysts of the type TFA H-D-Pro-Pro-NH-

(CH2)n-CO2H with n = 1-4, were synthesised and tested for the standard reaction (Table 7.4).  

 

 
Table 7.4. Asymmetric 1,4-addition reaction between n-butanal and nitrostyrene using catalyst of the type 
TFA H-D-Pro-Pro-NH-(CH2)n-CO2H. [a] 
 

 
 

Entry Catalyst Conv. 
[%][b] 

syn:anti 
[b] 

ee 
[%][c] 

1 TFA H-D-Pro-Pro-Gly-OH (62) 86 13 : 1 77 

2 TFA H-D-Pro-Pro-β-Ala-OH (50) 85 26 : 1 88 

3 TFA H-D-Pro-Pro-γ-Abu-OH (63) 93 30 : 1 89 

4 TFA H-D-Pro-Pro-5-Ava-OH (64) 95 30 : 1 89 
[a] Reactions were performed at a 1.1 mmol scale (0.40 M with respect to nitrostyrene).  
[b] Determined by 1H NMR spectroscopy of the reaction mixture. [c] Determined by chiral-phase 
HPLC analysis. 

 

 

Whereas TFA H-D-Pro-Pro-Gly-OH 62 (Table 7.4, Entry 1) proved to be a much poorer 

catalysts in terms of selectivity for the standard reaction in comparison to peptide 50, activity, 

diastereoselectivity and enantioselectivity were slightly improved using TFA H-D-Pro-Pro-γ-

Abu-OH 63 (Table 7.4, Entry 3). Similar results in comparison to peptide 50 were obtained 

with TFA H-D-Pro-Pro-5-Ava-OH 64 (Table 7.4, Entry 4). These findings demonstrate that in 

the case of peptides of the type TFA H-D-Pro-Pro-NH-(CH2)n-CO2H the position of the 

carboxylic acid only plays a minor role in terms of activity and selectivity. 
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7.4 H-D-Pro-Pro-Glu-NH2 (56) and its Diastereoisomers 
 

 

Studies of catalysts of the type H-D-Pro-Pro-Xaa-OH afforded the tripeptide TFA H-D-Pro-

Pro-Glu-NH2 56 as improved catalyst for the addition reaction of n-butanal and nitrostyrene 

(see Chapter 7.3). Next we synthesised the diastereoisomers of this peptide and tested those 

for the standard reaction, to confirm that the peptide bearing the D-Pro-Pro motif is the most 

efficient catalyst, as found in analogous experiments with the diastereoisomers of TFA H-

Pro-Pro-Asp-NH2 21 (see Chapter 4.3). Interestingly, we found that both activity and 

diastereoselectivity for TFA H-Pro-Pro-Glu-NH2 65 and TFA H-D-Pro-Pro-Glu-NH2 56 are 

similar in this reaction. However, the enantioselctivity for peptide 65 proved to be 

significantly lower (87 % ee, Table 7.5, Entry 1).  

 

 
Table 7.5. Asymmetric 1,4-addition reaction between n-butanal and nitrostyrene. Screening of diasteroisomeric 
peptides of H-Pro-Pro-Glu-NH2.[a] 
 

 
 

Entry Catalyst Conv. 
[%][b] 

syn : 
anti[b] 

ee (syn) 
[%][c] 

Abs. 
Conf. 

1 TFA H-Pro-Pro-Glu-NH2 65 quant. 50 : 1 87 (R,S) 

2 TFA H-D-Pro-Pro-Glu-NH2 56 quant. 50 : 1 97 (S,R) 

3 TFA H-Pro-D-Pro-Glu-NH2 66 77 38 : 1 84 (R,S) 

4 TFA H-Pro-Pro-D-Glu-NH2 67 52 23 : 1 74 (R,S) 
[a] Reactions were performed at a 1.1 mmol scale (0.40 M with respect to nitrostyrene). [b] Determined by 
1H NMR analysis . [c] Determined by chiral phase HPLC analysis.  
 

 

On the other hand, the peptides TFA H-Pro-D-Pro-Glu-NH2 66 and TFA H-Pro-Pro-D-Glu-

NH2 67 proved to be poorer catalysts in terms of activity and selectivity for this reaction 

(Table 7.5, Entries 3 and 4). These results are in good agreement with the obtained results 

for the diastereoisomers of H-Pro-Pro-Asp-NH2 1 (see Chapter 4.3). 
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8. TFA H-D-Pro-Pro-Glu-NH2 (56) as a Catalyst for 
Asymmetric 1,4-Addition Reactions of Aldehydes 
to Nitroolefins 

 

 

 

8.1 Substrate Scope 
 

 

A careful comparison of the catalytic efficiencies of TFA H-D-Pro-Pro-Glu-NH2 56 and 

TFA H-D-Pro-Pro-Asp-NH2 21 demonstrated that both the catalytic activity and 

stereoselectivity of peptide 56 are higher compared to those of 21 (see Chapter 7.3). Under 

the same conditions (3 equivalents of n-butanal, 1 equivalent of nitrostyrene), the conjugate 

addition reaction of n-butanal and nitrostyrene is complete within 8 h with 56 whereas 12 h 

are required with 21. This higher reactivity of 56 allowed to further reduce the excess of 

aldehyde with respect to the nitroolefin required for good yields. Using as little as 1.5 

equivalents of the aldehyde, under otherwise identical conditions, the conjugate addition 

product 3 was obtained within a slightly longer reaction time in the same high 

enantioselectivity (97% ee) and with slightly lower diastereoselectivity (syn:anti = 42:1) 

(Table 8.1, Entry 1). These improved conditions were used to evaluate the substrate scope of 

TFA H-D-Pro-Pro-Glu-NH2 56. 

 

 

8.1.1 Addition of Aldehydes to Nitroolefins 

 

In the presence of 1 mol% of 56 a range of aldehyde and nitroolefin combinations reacted 

readily with each other. The resulting γ-nitroaldehydes were obtained in excellent yields and 

stereoselectivities within 12-24 h at RT (Table 8.1). Aromatic nitroolefins bearing both 

electron-poor and electron-rich aromatic substituents (Table 8.1, Entries 6-8) as well as 

aliphatic nitroolefins (Table 8.1, Entries 9 and 10) reacted readily with aromatic as well as 

linear or β-branched aliphatic aldehydes (Table 8.1, Entries 1-10).  
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Table 8.1. Asymmetric conjugate addition of aldehydes to nitroalkenes catalysed by TFA H-D-Pro-Pro-Glu-NH2 
56. [a] 

 

 
 

Entry Product  Time 
[h] 

Yield 
[%][b] 

syn:anti[c] ee 
[%][d] 

       
1  3 16 96 42:1 97 
       
       
2  33 18 98 7:1 95 
       
       
3  35 12 98 27:1 96 
       
       

4[e]  36 18 93 61:1 96 
       
       
5  37 16 94 25:1 97 
       
       
6  41 12 97 36:1 96 
       
       
7  42 24 95 >99:1 98 
       
       

8[e]  44 24 quant. 21:1 95 
       
       

9[e]  46 14 84 6:1 98 
       
       

10  68 14 90 24:1 [c] 97 
       

       
[a] Reactions were performed with 1 eq of the β-nitroolefin and 3 eq of the aldehyde 
with a concentration of 0.4 M with respect to the nitroolefin. [b] Isolated yield.  
[c] Determined by 1H NMR on the crude material. [d] Determined by chiral phase 
HPLC analysis. [e] Use of 2 mol% of catalyst and NMM. 

 
 

 

3 
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The best results were obtained with nitroolefins bearing electron poor aromatic substituents 

(e.g. Table 8.1, Entry 7), however, even with the poorest substrate combination (aliphatic 

nitroolefin and propanal, Table 8.1, Entry 9) a diastereoselectivity of syn:anti = 6:1 and an 

enantioselectivity of 98 % ee was achieved. In comparision to TFA H-D-Pro-Pro-Asp-NH2 21 

(see Chapter 5) the improved catalyst 56 has generally an enantioselectivity that is greater by 

2-4 % ee at RT. 

 

 

8.1.2 Addition of Aldehydes to β-Nitroacrolein Dimethylacetal (69) 

 

β-Nitroacroleine dimethylacetal 69 is an interesting functionalised nitroolefin that has been 

employed in several metal- and organocatalysed conjugate addition reactions.[27,48,131-136] The 

addition of 69 with aldehydes leads to the corresponding γ-nitroaldehydes containing a second 

chemically differentiated formyl group. We tested the catalytic efficiency of TFA H-D-Pro-

Pro-Glu-NH2 56 in conjugate addition reactions of different aldehydes with β-nitroacroleine 

dimethylacetal 69, which is easily accessible via the Henry reaction of 2,2-dimethylacetal and 

nitromethane, followed by the condensation with trifluoroacetic anhydride (Scheme 8.1).[135] 

The desired Michael acceptor 69 was obtained in an overall yield of 72 %. 

 

 
 

Scheme 8.1. Synthesis of β-nitroacroleine dimethylacetal 69. 

 

Reactions with in particular aldehydes bearing functional groups in their side chains result in 

highly functionalised γ-nitroaldehydes bearing four different functional groups (Table 8.2, 

Entry 3). Gratifyingly the highly functionalised products formed not only in yields of ≥95 % 

but also with high diastereoselectivities (syn:anti = 16:1 to >99:1) and enantioselectivities 

(90-95 % ee), using 1 mol% of catalyst 56. These results demonstrate that TFA H-D-Pro-Pro-

Glu-NH2 56 is an excellent catalyst not only for aromatic and aliphatic but also functionalised 

aldehydes and nitroolefins. 
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Table 8.2. Asymmetric conjugate addition of aldehydes to β-nitroacroleine dimethylacetal 69 catalysed by 
TFA H-D-Pro-Pro-Glu-NH2 56.[a] 

 

 
 

Entry R Product Time 
[h] 

yield 
[%][b] 

syn:anti 
[c] 

ee 
[%][d] 

1 Et 
 

70 14 quant. 68:1 92% 

2[e] i-Pr 
 

71 15 95 >99:1 95% 

3 CH2CO2Me 72 15 95 16:1 90% 
[a] Reactions were performed at a 1.1 mmol scale (0.40 M with respect to nitrostyrene). 
[b] Isolated yield [c] Determined by 1H NMR on the crude material. [d] Determined by 
chiral phase HPLC analysis. [e] Use of 2 mol% of catalyst and NMM. 

 
 
 

8.2 Effect of Additives on the Catalytic Efficiency 
 

 

Since the peptidic catalysts are usually prepared by solid phase peptide synthesis and removed 

from the acid labile resin using TFA, the corresponding TFA-salts are obtained. As a result, 

the addition of a base such as NMM is necessary to liberate the secondary amine and allow 

for catalysis (see Chapter 4.1). We were curious to test whether the presence of TFA and 

NMM affects the catalytic performance of the peptidic catalyst and investigated whether the 

high catalytic efficiency of peptide H-D-Pro-Pro-Glu-NH2 56 is also achieved in the absence 

of TFA and NMM. Thus, the TFA of the TFA peptide 56 was removed by ion exchange 

chromatography and the resultig “desalted” peptide 56 tested for its catalytic efficiency in the 

standard reaction of n-butanal and nitrostyrene. In addition we tested the effect of other 

additives such as HCl/NMM, AcOH/NMM, NMM and TFA on the catalytic performance of 

the “desalted” peptidic catalyst 56 (Table 8.3). Remarkably, the “desalted” peptide 56 

performed equally as well as the TFA-salt of 56 in the presence of NMM (Table 8.3, Entry 2). 

Furthermore, also the addition of HCl•NMM, AcOH•NMM or NMM alone did not affect the 

excellent catalytic efficiency of peptide 56 (Table 8.3, Entries 3-5). 
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Table 8.3. H-D-Pro-Pro-Glu-NH2 56 catalysed 1,4-addition reaction of n-butanal to nitrostyrene with different 
additives.[a]  
 

 
 

Entry Additive Conv. 
[%][b] 

syn:anti 
[b] 

ee 
[%][c] 

1 TFA NMM quant. 50 : 1 97 

2 none quant. 50 : 1 97 

3 AcOH NMM quant. 50 : 1 96 

4 HCl NMM quant. 52 : 1 96 

5 NMM 98 50 : 1 97 

6[d] TFA 16 n.d. [e] n.d. [e] 
[a] Reactions were performed at a 1.1 mmol scale (0.40 M with respect to nitrostyrene). 
[b] Determined by 1H NMR spectroscopy of the reaction mixture. [c] Determined by 
chiral-phase HPLC analysis. [d] Reaction time of 72 h. [e] Not determined. 

 
 

 

Only the addition of TFA to the “desalted” peptide 56 reduced the catalytic activity 

dramatically, further underlining that the secondary amine is crucial for catalysis. These 

results demonstrate that no additives are necessary for high catalytic efficiency of peptide 56. 

 

 

8.3 Gram Scale Synthesis of γ-Nitroalcohol (73) 
 

 

To demonstrate that a scale up of the peptide 56 catalysed conjugate addition reaction of 

aldehydes to nitroolefins is straightforward, we performed the reaction of n-butanal and 

nitrostyrene in a quantity greater than 5 mmol. Since the corresponding γ-nitroaldehyde 3 

showed a tendency to epimerise during chromatographic purification, we reduced the 

aldehyde in situ to obtain the configurationally stable γ-nitroalcohol 73. The reaction was 

performed with only 1.1 equivalents of n-butanal, using 2 mol% of the peptidic catalyst 56 

and 2 mol% NMM at 0°C. The reduction was carried out after a reaction time of 48 h using 
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borane THF (Scheme 8.2). The desired product 73 was obtained after column 

chromatography in 95 % yield (1.2 g) and with a nearly perfect stereoselectivity (syn:anti 

>99:1, 99 % ee, Figure 8.1). 

 

 

 
 

 
Scheme 8.2. Gram scale synthesis of γ-nitroalcohol 73. 

 

 

 

 

 

 

 

 

 

 
Figure 8.1. Chiral HPLC of γ-nitroalcohol 73 (Chriacel AD-H, 210 nm).  

 

This experiment further underlines the efficiency of catalyst 56 for the conjugate addition 

reactions of aldehydes to nitroolefins. In particular the fact that the reaction between n-butanal 

and nitrostyrene occurs in a nearly atom economical manner renders this system even more 

attractive. 
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9. Conformational Studies II 

 

 

9.1 X-Ray Crystal Structure Analysis of H-D-Pro-Pro-Glu-NH2 
(56) 

 

 

Crystals of the catalyst H-D-Pro-Pro-Glu-NH2 56 which were suitable for x-ray single crystal 

structure analysis were obtained in an analogous manner to those of peptides 1 and 21. Thus, 

crystallisation occurred with the “desalted” peptide 56 from a mixture of H2O/MeOH/THF 

(see Chapter 6.2 and Experimental Section). Again, in the solid state this peptide 56 adopts a 

β-turn conformation with an H-bond between the C-terminal carboxamide and the carbonyl-

oxygen of the D-Pro-Pro peptide bond as observed with 1 and 21 (Figure 9.1).  

 

 
Figure 9.1. Crystal structure of peptide 56 

 

The carboxylic acid function of the flexible glutamate side chain points away from the 

secondary amine of the N-terminal proline residue, which could be due to packing effects. 

However, a single rotation around the Cα-Cβ bond of the glutamate residue would bring the 

carboxylic acid in close proximity to the secondary amine. Thus, the obtained structure would 

be consistent with the conformational requirements of the previously discussed transition state 

model (see Chapter 6.1). 
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9.2 NMR Studies 
 

 

9.2.1 H-D-Pro-Pro-Glu-NH2 (56) 
 
NMR studies of the “desalted” peptide H-D-Pro-Pro-Glu-NH2 56 were performed in a mixture 

of CDCl3/CD3OD/CD3OH 23:1:1 (v/v/v) in a concentration of approximately 50 mM. This 

solvent mixture provided for solubility of 56 and is closely related to the solvent mixture 

previously used for the 1,4-addition reactions (CHCl3/i-PrOH 9:1 v/v). Under these conditions 

only one conformer was detected by NMR. Furthermore, strong NOEs were observed 

between both Hδ’ of the L-proline residue and Hα of the D-proline residue with HN of the 

glutamate residue (Figure 9.2). In particular the latter long range NOE is indicative for a 

relatively well defined turn-conformation of peptide 56 in solution, which is remarkable for a 

tripeptide. In contrast, two different conformers in a ratio of 78:22 and a lack of the 

mentioned NOEs were observed in d6-DMSO under otherwise identical conditions. These 

results demonstrate that peptide 56 adopts different conformations in different solvents. This 

is moreover in agreement with the observation of a rather high influence of the solvent on the 

catalytic performance of peptides in conjugate addition reactions of aldehydes to nitroolefins 

(see Chapter 4.1.3). 

 

 

 
Figure 9.2. Selected NOEs of 56 in CDCl3/CD3OD/CD3OH 23:1:1 (v/v/v).  
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9.2.2 Enamine Formation between H-D-Pro-Pro-Glu-NH2 (56) and 
Phenylacetaldeyde 

 
The formation of an enamine species upon reaction of the secondary amine of the peptidic 

catalyst and the corresponding aldehyde substrate is supposed to be the first crucial 

intermediate within the catalytic cycle proposed for the asymmetric conjugate addition 

reactions of aldehydes and nitroolefins (see below for details, Chapter 10). To detect such an 

intermediate by NMR several unsuccessful experiments with different reactive aldehydes (n-

butanal, 3-phenylpropionaldehyde) and peptide 56 in different ratios (excess aldehyde, excess 

peptide, stochiometric ratio) and in different solvents (CDCl3, d6-DMSO, d8-i-PrOH) were 

carried out. However, mixing phenylacetaldehyde, which is an aldehyde that reacts only 

slowly with nitrostyrene in the presence of peptide 56, with an excess of the “desalted” H-D-

Pro-Pro-Glu-NH2 56 in a mixture of CDCl3/CD3OH 9:1 (v/v) under dry conditions led to the 

formation of the desired resonance stabilised enamine as well as to a second minor species 

which could not be assigned (Scheme 9.1, see Experimental Section).  

 

 
 

Scheme 9.1. Formation of the enamine between peptide 56 and phenylacetaldehyde. 
 

Within 1 h approximately 20 % of the enamine species related to 56 was formed. The 

intensity of this species was regressive over time and almost vanished after 3 d. Furthermore, 

the addition of a trace of water to an enamine containing sample caused the immediate 

disappearance of this species and the increase of the original aldehyde and peptide signals. 

The signals of enamine was partially assigned via NOESY, ROESY and TOCSY experiments 

(see Experimental Section). NOEs between the vinylic protons and the δ protons of the D-

Pro/Pro residues allowed for the determination of the enamine conformation as s-trans. This 

is in agreement with the proposed transition state model where the formation of an s-trans 

enamine is essential in order to obtain the correct stereoselectivtiy of the product (see Chapter 

6.1). 
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10. Kinetic Studies of H-D-Pro-Pro-Glu-NH2 (56) 
Catalysed Conjugate Addition Reaction of 
Aldehydes to Nitroolefins using in situ FT-IR 
Spectroscopy 

 

 

 

In order to improve the reaction conditions and to gain further insight into the reaction 

mechanism of the H-D-Pro-Pro-Glu-NH2 56 catalysed conjugate addition reactions of 

aldehydes to nitroolefins, kinetic studies using in situ FT-IR spectroscopy were carried out. In 

situ FT-IR spectroscopy is a very convenient and accurate method allowing for real time 

monitoring of e.g. product formation without the need for withdrawing samples during the 

reaction progress.[137]  

 

The reaction between n-butanal and nitrostyrene, catalysed by H-D-Pro-Pro-Glu-NH2 56, was 

used again as standard reaction (Scheme 10.1). As shown above, this reaction proved to 

proceed cleanly, providing the γ-nitroaldehyde 3 in very high yield and selectivity (dr = 50:1, 

97% ee), using 1 mol% of the catalyst (see Chapter 8.1). Since catalyst 56 was typically used 

as its TFA-salt, an equimolar amount of NMM as a base was always added in the kinetic 

experiments if not otherwise mentioned. 

 
 

 
 

Scheme 10.1. Asymmetric 1,4-addition reaction of butanal to nitrostyrene, catalysed by TFA  
H-D-Pro-Pro-Glu-NH2 56. 

 

The proposed catalytic cycle of this reaction involves the formation of the s-trans enamine I, 

followed by addition to the nitrostyrene to form the intermediate iminium ion II that is 
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hydrolysed to provide the product 3 (Scheme 10.2). All measurements in this study were 

performed by means of in situ FT-IR (SiComp probe) at RT, monitoring the NO stretching 

absorbance of the γ-nitroaldehydes at 1554 cm-1 or 1555 cm-1, respectively. As shown in the 

stack plot of the corresponding IR-spectra of the standard reaction (Figure 10.1) this 

absorbance is completely isolated and undisturbed by other IR-absorbances within the 

reaction mixture. Spectra for all following experiments were either collected every 2 min 

performing 256 scans or every minute with 154 scans. A typical experiment was carried out 

on a 2.2 mmol scale and an overall volume of 5 mL (see Experimental Section). 
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Scheme 10.2. Proposed catalytic reaction cycle for the 1,4-addition reaction catalysed by peptide 56. 
 

 
Figure 10.1. Three-dimensional stack plot of IR spectra. 

1554 cm-1 
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10.1 Initial Investigations 
 

 

In order to test whether in situ FT-IR spectroscpy is a suitable tool for the intended kinetic 

studies several initial investigations, concerning the reliability of the measurements as well as 

the stability of the reaction system, were carried out. Additional experiments to those 

described within this chapter but with minor relevance for this work are described in the 

appendix. 

 

 

10.1.1 Fraction Conversion versus In Situ Measurement 

 

To verify that the observed intensity of the absorbance corresponds to the product conversion 

we measured the absorbance vs. time profile for the title reaction and collected periodically 

samples from the reaction mixture. To determine the product conversion of the discrete 

samples we employed 1H NMR analysis, using i-PrOH as an internal standard. The reaction 

was performed in CHCl3/i-PrOH 9:1 (v/v) with a catalyst concentration of 4.4 mM, a 

nitrostyrene concentration of 0.44 M and an n-butanal concentration of 1.23 M. Figure 10.2 

shows that absorbance and data points of the product conversion laid on top of each other.  
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Figure 10.2. Conversion vs. time monitored by in situ FT-IR and 
confirmed by 1H NMR analysis. 
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Under the chosen conditions the reaction was clean and went to completion within 12 h. The 

measured absorbance corresponded to the product conversion. Therefore no further 

calibration was necessary. 

 

The addition order of n-butanal and nitrostyrene to the catalyst 56 does not influence the 

reaction progress. Figure 10.3 shows, that the conversion vs. time plots are identical when n-

butanal was allowed to equilibrate with catalyst 56 in solution for 10 min before addition of 

nitrostyrene or when the addition of n-butanal and nitrostyrene to the catalyst 56 occured 

simultaneously. Furthermore, this graph demonstrates the reproducibility of the 

measurements.  
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 Figure 10.3. Aldehyde – catalyst equilibration before nitrostyrene 
addition (blue curve) and simoultanous addition of n-butanal and 
nitrostyrene to the catalyst (red curve). [cat 56] = 4.4 mM, [n-butanal] = 
0.44 M, [nitrostyrene] = 0.44 M. 

 
 
 

10.1.2 Investigation of Catalyst Instabilities  

 

To investigate whether product inhibition or catalyst deactivation is of concern, an experiment 

described by Blackmond[138] was carried out as follows. Two reactions with different starting 

concentrations of nitrostyrene but with the same excess of n-butanal (related to the 

corresponding nitrostyrene concentration of each reaction) were performed and the reaction 

rate vs. the concentration of nitrostyrene of both reactions was plotted. Since the 
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concentration of nitrostyrene was derived from the product formation, recording of the 

reaction progress until completion of both reactions was necessary. To reach complete 

conversion within less than 4 h, both reactions of this experiment were performed with the 

same catalyst 56 concentration of 13 mM (= 2.95 mol%). The principle of this experiment 

relies on the fact, that both reaction mixtures contain the same ratio between nitrostyrene and 

n-butanal at each time. However, in the reaction mixture with higher starting concentration of 

nitrostyrene the catalyst performed more turnovers at the same nitrostyrene concentration and 

the concentration of already formed product is higher. If neither the catalyst activity is 

decreasing nor the product in the mixture is disturbing the reaction, the plots of reaction rate 

vs. nitrostyrene concentration of both reactions overlay. The two reactions were realised with 

nitrostyrene concentrations of 0.4 M and 0.35 M, respectively, and with 0.5 M excess of n-

butanal (Figure 10.4).  
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Figure 10.4. Experiments with the same excess of 0.5M. 
 
 

Indeed, the two curves overlaped, demonstrating the absence of product inhibition and/or 

catalyst deactivation. To confirm this result the experiment was repeated with a different n-

butanal excess of 0.25 M and nitrostyrene concentrations of 0.2 M and 0.17 M, respectively, 

under otherwise identical conditions. This also provided overlapping of both curves and 

underlined the absence of catalyst instabilities in this addition reaction (see Appendix for 

detailed information). 
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10.1.3 TFA Catalyst / NMM vs. Desalted Catalyst 

 

Next we desalted peptide 56 and performed the addition reaction with a catalyst concentration 

of 4.4 mM, a n-butanal concentration of 0.44 M and a nitrostyrene concentration of 0.44 M. 

In comparison to the analogous reaction with the TFA peptide 56 and NMM, no difference in 

terms of product formation vs. time was observed (Figure 10.5). For both reactions >90 % 

conversion and identical stereoselectivities (syn:anti ≈ 25:1, 97 % ee) were observed after 5 h 

(conversions were determined by 1H NMR with i-PrOH as an internal standard). This 

experiment underlined that the TFA has no influence on the catalytic properties of catalyst 56 

(see Chapter 8.2). 
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Figure 10.5. Addition reaction of n-butanal and nitrostyrene with 
the  desalted catalyst 56 (red curve) and the TFA catalyst 56 / 
NMM. 

 
 
 

10.1.4 Non-linear Effects?  

 

Before starting with the reaction progress kinetic studies of the conjugate addition of 

aldehydes to nitroolefins, we tested the peptide 56 catalysed reaction of n-butanal and 

nitrostyrene for non-linear effects.[139,140] The enantiomeric excess of the Michael adduct 3 

was correlated with different enantiomeric excesses of catalyst 56. Reactions were performed 



71 

 

with H-D-Pro-Pro-Glu-NH2 56 (= DLL) and its enantiomer H-Pro-D-Pro-D-Glu-NH2 (= LDD) 

in various degrees of optical purities ranging from 100 % ee of DLL to 100 % ee of LDD. The 

plot of the determined product ee’s vs. the ee of the catalyst mixtures clearly showed a linear 

correlation (Figure 10.6). Thus, no non-linear effect was found which strongly indicates that 

only one molecule of catalyst 56 is responsible for inducing the enantioselectivity of one 

product molecule.  
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Figure 10.6. Enantiomeric excess of product 3 vs. ee of the mixture of 
catalyst enantiomers. Reactions were performed using 1 mol% of catalyst 
mixture, 1 eq of nitrostyrene  and 3 eq of n-butanal  in CHCl3/i-PrOH 9:1 
(v/v). The ee was determined after 15 h by chiral HPLC analysis. 

 

10.2 Reaction Progress Kinetic Analysis 
 

 

Reaction progress kinetic analysis is a tool to construct graphical rate equations with a 

minimal number of experiments and represents a convenient methodology to obtain a picture 

of complex catalytic reaction behaviour.[138] According to this we performed a number of 

experiments and constructed the corresponding graphical rate equations. Theroretical 

considerations as well as the experimental set up and the results are described in the appendix. 
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The experiments showed that no integer reaction orders exist in the peptide 56 catalysed 

conjugate addition reaction of n-butanal and nitrostyrene under the chosen conditions. This 

indicates that the reaction does not have only one rate limiting step, thus, the catalyst has no 

definitive “resting state”.  

 

The methodology of reaction progress kinetic analysis is only appropriate for determining 

integer orders within the investigated reaction. Thus, a more detailed kinetic analysis was 

necessary in order to identify the rate determining reaction step.  

 

 

10.3 Determination of Reaction Orders: Log-Log Plots 

 

 

To determine the fractional reaction orders of the peptide 56 catalysed reaction of n-butanal 

and nitrostyrene the log-log plot method was applied.[141,142] This method is based on the 

construction of plots of the logarithms of initial rates vs. the logarithms of the concentrations 

of the species being varied. Importantly, only one species is varied at the time whereas the 

concentrations of all other reaction participants have to remain constant. To obtain initial 

rates, the derivatives of [product 3]/time was calculated at t = 15 min for all following 

experiments. 

 

 

10.3.1 Reaction Order with Respect to the Catalyst 

 

The reaction order with respect to catalyst 56 was studied using 6 different catalyst 

concentrations between 1.1 mM (0.25 mol%) and 6.6 mM (1.5 mol%) whereas concentrations 

of nitrostyrene and n-butanal were kept constant at 0.44 M (for detailed experimental set up 

see Appendix). The corresponding reaction profiles showed that the catalyst loading affects 

the reaction rate (Figure 10.7). To determine the reaction order with respect to catalyst 56 we 

constructed a log-log plot (Figure 10.8) of the initial reaction rates vs. the catalyst 

concentrations. Linear fitting of the data led to a slope of 0.98 (R2 = 0.98). This suggests that 
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the reaction shows first order kinetics with respect to the catalyst 56 under the chosen 

conditions. 
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Figure 10.7. Product formation vs. 
time at different catalyst loading. 
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Figure 10.8. Plot of log (initial rate) vs. log [cat 56] providing a slope of 0.98. 
 

 

10.3.2 Reaction Order with Respect to the Aldehyde 

 

Similar experiments were carried out to determine the reaction order with respect to n-

butanal. For this purpose we performed 11 different reactions varying the aldehyde 

concentration from 0.22 M to 1.43 M at constant catalyst concentration (0.44 mM) and 

nitrostyrene concentration (0.44 M) (Figure 10.9, for detailed experimental set up see 
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Appendix). The log-log plot of the initial reaction rates versus the aldehyde concentrations 

showed, that the reaction is slightly influenced by the increased amount of n-butanal (slope of 

0.35) until a certain concentration is reached ([n-butanal] ≈ 0.9 M). Afterwards the aldehyde 

concentration does not change the rate anymore and the reaction becomes zero order in 

aldehyde (Figure 10.10). This result suggests that at a certain concentration of n-butanal 

saturation kinetics are reached.  
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Figure 10.9. Formation of the product 3 vs. time at different initial [n-butanal].  
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Figure 10.10. Plot of log (initial rate) vs. log [n-butanal] providing a slope 
of 0.35 for [n-butanal] = 0.22 to 0.88 M and 0 for [n-butanal] = 0.99 to 1.21 
M. 

c(n-butanal) ≈ 0.9 M 
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To test the influence of the catalyst loading on the reaction order with respect to n-butanal and 

to confirm the observed plateau in the previous experiment, we repeated the reactions 

described above, using 2 mol% of the catalyst 56 instead of 1 mol% (for detailed 

experimental set up see Appendix). The results showed that the shape of the corresponding 

log-log plot (Figure 10.11) is comparable with the former plot at half catalyst concentration (1 

mol%, see Figure 10.10). Up to the n-butanal concentration of ∼0.7 M the slope is 0.32, then 

the plateau is reached and the slope becomes 0.  

Log [But]

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4

Lo
g 

V
0

-2.40

-2.35

-2.30

-2.25

-2.20

-2.15

-2.10

y = 0.04 x - 2.17 (R2=0.72)

y = 0.32 x - 2.13 (R2=0.97)

 
 

Figure 10.11. Plot of log (initial rate) vs. log [n-butanal] shows a 
comparable shape to the graph in figure 10.10. 

 

Under these conditions the plateau is reached at a lower concentration in comparison to the 

experiment at lower catalyst loading (∼0.9 M, see Figure 10.10). At very high n-butanal 

concentrations (1.43 M to 1.65 M) the data points do not fit with the linear regression of the 

plateau anymore. However these concentrations are very high compared to the concentration 

of n-butanal which is typically used in this reaction. 

 

 

10.3.3 Reaction Order with Respect to the Nitrostyrene 

 

The nitrostyrene concentration was varied in 7 different experiments from 0.22 M to 2.12 M 

at constant catalyst concentration (4.4 mM) and aldehyde concentration (0.44 M) (for detailed 

experimental set up see Appendix). The obtained reaction profiles showed that the 

c(n-butanal) ≈ 0.7 M 
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nitrostyrene concentration clearly affects the reaction rate, even at very high concentrations 

(Figure 10.12). In the log-log plot a linear correlation, providing a slope of 0.54 (R2 = 0.98), 

was observed (Figure 10.13).  
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Figure 10.12. Formation of the product 3 vs. time at different initial 
[nitrostyrene]. 
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Figure 10.13. Plot of log (initial rate) vs. log [nitrostyrene] 
providing a slope of 0.54. Experiments were carried out with a 
constant [n-butanal] of 0.44 M. 

 
 
The reaction order of ∼0.5 with respect to nitrostyrene is not influenced by the aldehyde 

concentration as shown in a similar experiment performed at higher n-butanal concentration 

(Figure 10.14). The reactions were carried out at a constant aldehyde concentration of 0.88 M 
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because at this concentration the zero order plateau was observed in the experiment for 

aldehyde order determination described above (see Chapter 10.3.2). The obtained slope of the 

corresponding log-log plot was 0.53 (R2 = 0.99) (for detailed experimental set up see 

Appendix). 
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Figure 10.14. Plot of log (initial rate) vs. log [nitrostyrene] 
providing a slope of 0.53. Experiments were carried out 
with a constant [n-butanal] of 0.88 M. 

 

 

10.3.4 Determination of Reaction Orders - Conclusions and Design of 
Further Experiments 

 

The observed reaction orders with respect to the aldehyde of 0.3 to 0 at low and high aldehyde 

concentrations, respectively, indicate that at high aldehyde concentrations the equilibrium is 

shifted to the enamine I which becomes the resting state of the reaction. 

 

The reaction order of ∼0.5 with respect to nitrostyrene is either an indication for dimerisation 

of the catalyst, what can be excluded since no non-linear effects were observed (see Chapter 

10.1.4), or may imply that the hydrolysis step in the reaction is closely related to the 

nitrostyrene addition step in terms of their reaction rates. 

 

In order to gain further information about the kinetics of the 56 catalysed 1,4-additon reaction 

of aldehydes to nitroolefins and in particular to explain the obtained reaction orders with 

respect to n-butanal and nitrostyrene, additional experiments were necessary. Thus, on the one 
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hand, reactions with a less reactive aldehyde were performed to address the question of how 

the aldehyde order and the plateau of zero order, respectively, change (see Chapter 10.3.5). 

On the other hand, experiments with less reactive nitrostyrenes were performed to address the 

question wheter the reaction order of ∼0.5 with respect to nitrostyrene can be influenced (see 

Chapter 10.3.6). Furthermore, the effect of water on the reaction order was described (see 

Chapter 10.3.7). 

 

 

10.3.5 Less Reactive Aldehyde: Addition of Isovaleraldehyde to Nitrostyrene  

 

Isovaleraldehyde reacts significantly slower with nitrostyrene than n-butanal. As shown above 

(see Chapter 8.1), the reaction required 2 mol% of TFA H-D-Pro-Pro-Glu-NH2 56 and NMM 

in CHCl3/i-PrOH 9:1 (v/v) and 1.5 equivalents aldehyde to obtain the desired product 36 after 

18 h in 93 % yield (Scheme 10.3). In comparison, the reaction of n-butanal and nitrostyrene 

required only 1 mol% of catalyst 56 under the same conditions and was completed after 16 h 

(see Chapter 8.2).  

 

 
 

Scheme 10.3. Asymmetric 1,4-addition of isovaleraldehyde to nitrostyrene, catalysed by H-D-Pro-Pro-
Glu-NH2  56. 

 

We determined the influence of the aldehyde on the reaction rate by performing 9 reactions at 

different isovaleraldehyde concentrations of 0.22 M to 1.76 M at constant catalyst 

concentration  (8.8 mM = 2 mol%) and nitrostyrene concentration (0.44 M) (Figure 10.15, for 

detailed experimental set up see Appendix).  

 

Again, the corresponding log-log plot showed a linear correlation with a slope of 0.31 (R2 = 

98) between an isovaleraldehyde concentration of 0.22 M and 1.32 M. Afterwards the 

additional aldehyde is not influencing the initial rate of the reaction and a plateau is reached.  
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Figure 10.15. Plot of log (initial rate) vs. log [isovaleraldehyde] 
providing  a slope of 0.31 for [isovaleraldehyde] 0.22 to 1.1 M and 
0 for [isovaleraldehyde] 1.1 to 1.76 M. 

 
 

The comparison of the two log-log plots of the reactions with n-butanal or isovaleraldehyde 

and nitrostyrene at 2 mol% of catalyst 56 showed that the initial slope of ∼0.3 is identical, 

whereas the plateau is reached at different concentrations (Figure 10.16).  
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Figure 10.16. Plot of log (initial rate) vs. log [aldehyde] of the 
reactions with different concentrations of n-butanal  (blue curve) 
and isovaleraldehyde (red curve). 
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In the case of n-butanal (blue curve) the plateau is reached at a concentration of 

approximately 0.8 M and for isovaleraldehyde (red curve) this concentration is approximately 

at 1.1 M. This indicates that for isovaleraldehyde, the less reactive Michael donor, a higher 

concentration is necessary to reach saturation kinetics. 

 

 

10.3.6 Less Reactive Nitrostyrenes: Addition of n-Butanal to  
4-Methoxynitrostyrene and 2,4-Dimethoxynitrostyrene 

 

Next we addressed the question how a less reactive nitrostyrene influences the kinetics of the 

1,4-addition reaction. 4-Methoxynitrostyrene reacts significantly slower with n-butanal than 

nitrostyrene (see Chapter 8.1). The reaction required 2 mol% of TFA H-D-Pro-Pro-Glu-NH2 

56 in CHCl3/i-PrOH 9:1 (v/v) and 1.5 equivalents of n-butanal to obtain the desired product 

44 after 24 h in quantitative yield (Scheme 10.4).  

 

 

 
 

Scheme 10.4. Asymmetric 1,4-addition reaction of n-butanal  to 4-methoxynitrostyrene, catalysed by H-D-
Pro-Pro-Glu-NH2  56. 

 

The reaction order with respect to 4-methoxynitrostyrene was determined with 5 experiments 

at constant catalyst concentration (8.8 mM) and n-butanal concentration (0.44 M). The 4-

methoxynitrostyrene concentration was varied between 0.1 M and 0.8 M (for detailed 

experimental set up see Appendix). The corresponding log-log plot showed a linear 

correlation (R2 = 0.99) with a slope of 0.84 (Figure 10.17). Since the methoxy group of 4-

methoxnitrostyrene is electron donating, the electrophilicity is lower compared to nitrostyrene 

and the process of bond formation is slower. This is a further evidence for our hypothesis that 

not only the C-C bond forming step but also the hydrolysis of the iminium ion II is rate 

determining. In the case of a less reactive nitroolefin the addition becomes slower and thus, 

“more rate determining” what causes an increase of the observed reaction order. 
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Figure 10.17. Plot of log (initial rate) vs. log [4-MeO-NS] 
providing a slope of 0.84. Experiments were carried out with 
constant [cat 56] = 8.8 mM and [n-butanal] = 0.44 M. 

 
 

To confirm the trend to higher reaction orders with less reactive nitroolefins, we performed 

the addition reaction of n-butanal to 2,4-dimethoxynitrostyrene which reacts significantly 

slower with n-butanal than 4-methoxynitrostyrene (Scheme 10.5).  

 

 

 
 

Scheme 10.5. Asymmetric 1,4-addition reaction of n-butanal to 2,4-dimethoxynitrostyrene, catalysed by H-D-
Pro-Pro-Glu-NH2 56. 
 

Reactions were carried out with different 2,4-dimethoxynitrostyrene concentrations of 0.17 M 

to 0.63 M at constant catalyst concentration (13.2 mM = 3 mol%) and n-butanal concentration 

(0.44M) (for detailed experimental set up see Appendix). A slope of 1.0 (R2 = 0.99) was 

obtained in the log-log plot (Figure 10.18). This result strongly indicates that the C-C bond 

formation step in the addition reaction is much slower compared to the hydrolysis and 

becomes completely rate determining.  
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Figure 10.18. Plot of log (initial rate) vs. log [2,4-(MeO)2-NS] 
providing  a slope of 1.0. Experiments were carried out with a 
constant [cat 56] = 13.2 mM (3 mol%)  and [n-butanal] = 0.44 M. 

 

 

10.3.7 Standard Reaction, Dry Conditions and Additional Water – Influence 
on Reaction Rates and Reaction Orders 

 

Next we tested the influence of the water content in the reaction mixture on reaction rate and 

reaction orders. The reaction does not proceed in the prescence of molecular sieves what 

indicates that water has to be present to a small extent in the reaction mixture (for details see 

Appendix). That the rate of the reaction is significantly influenced by the water content is 

shown in figure 10.19.  
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Figure 10.19.  Product for-
mation vs. time: Reaction of 
nitrostyrene [0.44 M] and n-
butanal [0.44 M] at standard 
conditions (green curve), under 
“dry conditions” (red curve) 
and with 10 mol% additional 
water (blue curve). 
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Three addition reactions of n-butanal and nitrostyrene were performed under standard 

conditions (catalyst concentration = 4.4 mM, nitrostyrene concentration = 0.44 M and n-

butanal concentration = 0.44 M), with additional water (same concentrations plus 10 mol% 

water) and under “dry conditions” (same concentrations but solvent and n-butanal dried with 

molecular sieves 3Å and dried glassware). The reaction performed under “dry conditions” 

occured significantly faster than the reaction at standard conditions. A conversion of >90 % 

was obtained in less than 5 h. 

 

10.3.7.1 Additional Water: Reaction Order with Respect to n-Butanal and Nitrostyrene 

 

Six different reactions with n-butanal concentrations between 0.55 M and 1.56 M at constant 

catalyst concentration (4.4 mM) and nitrostyrene concentration (0.44 M) with 10 mol% 

additional water (44 mM) (for detailed experimental set up see Appendix) were performed 

and a log-log plot was constructed (Figure 10.20). The data points of the log-log plot showed 

a linear correlation (R2 = 0.98) with a similar slope of 0.37 (compared to 0.35 for the reaction 

without water, see Chapter 10.3.2). However no plateau was observed at high aldehyde 

concentrations. 
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Figure 10.20. Influence on reaction order of butanal if 10  mol% 
water is added to the reaction mixture: The plot of log (initial rate) 
vs. log [n-butanal] provides a slope of 0.37. The reactions were 
performed at [cat 56] = 4.4 mM with additional water [H2O] = 44 
mM. 
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The influence of 10 mol% additional water on the reaction order with respect to nitrostyrene 

was tested with 5 different experiments at constant n-butanal concentration (0.44 M), catalyst 

concentration (4.4 mM) and water concentration (44 mM = 10 mol%). The nitrostyrene 

concentration was varied between 0.22 M and 1.10 M (for detailed experimental set up see 

Appendix). A slope of 0.73 (R2 = 0.99) was obtained with the corresponding log-log plot 

(Figure 10.21), which is significantly higher than at standard conditions (slope = 0.54, see 

Chapter 10.3.3). 
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Figure 10.21. Different nitro-
styrene concentrations and 10 
mol% water: The plot of log 
(initial rate) vs. log [nitrostyrene] 
provides a slope of 0.73. [cat 56] 
= 4.4 mM, [n-butanal] = 0.44 M 
and [H2O] = 44 mM. 
 

 
 

10.3.7.2 Dry Conditions: Reaction Order with Respect to n-Butanal and Nitrostyrene 

 

Additional experiments concerning the water content were carried out under “dry conditions”, 

allowing only the presence of water generated by enamine formation. Therefore the solvent-

mixture (CHCl3/i-PrOH 9:1 v/v) and n-butanal were dried over molecular sieves (3Å) and all 

glassware was dried for each experiment. Six reactions with different n-butanal 

concentrations between 0.22 M and 0.88 M were performed at constant catalyst concentration 

(4.4 mM) and nitrostyrene concentration (0.44 M) (for detailed experimental set up see 

Appendix). A slope of 0.29 (R2 = 0.97) was determined in the corresponding log-log plot for 

low n-butanal concentrations whereas a plateau was reached at higher concentration (∼0.7 M) 

(Figure 10.22).  
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Figure 10.22. Influence on reaction 
order of n-butanal under “dry 
conditions”: The plot of log (initial 
rate) vs. log [n-butanal] provides a 
slope of 0.29. From [n-butanal] = 
0.66 M to 0.88 M the reaction order 
is zero. Reactions were performed 
at [cat 56] = 4.4 mM and [nitro-
styrene]= 0.44 M. 

 

 

For the reactions of different nitrostyrene concentrations between 0.22 M and 1.10 M, at 

constant n-butanal concentration (0.44 M) and catalyst concentration (4.4 mM) under the “dry 

conditions” described above (for detailed experimental set up see Appendix), the log-log plot 

showed a slope of 0.42 (R2 = 0.99, Figure 10.23) which is lower compared to the 

corresponding graph for the standard reactions (slope = 0.54, see Chapter 10.3.3). 

 

Log [NS]

-0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0

Lo
g 

V 0

-2.50

-2.45

-2.40

-2.35

-2.30

-2.25

-2.20

-2.15

y = 0.42 x - 2.20 (R2=0.99)

 
 

Figure 10.23. Different nitrostyrene concentrations under “dry 
conditions”: The plot of log (initial rate) vs. log [nitrostyrene] 
provides a slope of 0.42. [cat 56] = 4.4 mM and [n-butanal] = 
0.44 M. 
 
 

c(n-butanal) ≈ 0.7 M 
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10.3.7.3 Dry vs. Standard vs. Additional Water  -  Conclusions 

 

In comparison to the standard conditions, using standard solvents and n-butanal, the reaction 

order with respect to n-butanal was not significantly influenced at low aldehyde 

concentrations if the water content of the reaction mixture was changed. However, the level of 

the observed plateau was different. In the case of the reactions with 10 mol% additional water 

no plateau was observed whereas for the reactions under “dry conditions” a plateau was found 

at a lower n-butanal concentration (Figure 10.24). This indicates that the less water is in the 

reaction mixture, the less n-butanal is necessary to reach zero order kinetics with respect to 

the aldehyde. The equilibrium between free catalyst 56 and the corresponding enamine I is 

pushed to the enamine side if additional water from the solvent and the environment is absent 

in the reaction mixture. 
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Figure 10.24. Comparison of the log-log plots of the reactions 
of different n-butanal concentrations and nitrostyrene at 
standard conditions (green curve) with additional water (blue 
curve) and under “dry conditions” (red curve). 
 

 

In the case of the experiments carried out with different nitrostyrene concentrations at 

different water content, it was shown that the overall reaction rate is lower with higher water 

content. However, the reaction order with respect to nitrostyrene was found to be higher if 

c(n-butanal) ≈ 0.7 M 

c(n-butanal) ≈ 0.9 M 
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additional water was present in the reaction mixture and lower under “dry conditions”. This 

result suggests that the C-C bond formation step and the hydrolysis step are closely related to 

each other in terms of their rate. If additional water is absent in the reaction mixture, the 

hydrolysis is slower and becomes “more rate determining” in the reaction. The observed 

dependency on nitrostyrene is lower, thus, this process is “less rate determining”. If additional 

water is present in the reaction mixture, the hydrolysis occurs faster and becomes “less rate 

determining”, therefore the observed reaction order with respect to nitrostyrene is higher. 

 

 

10.4 Summary and Conclusions 
 

 

Reaction progress analysis on the 1,4-addition reaction of aldehydes to nitroolefins was 

performed using in situ FT-IR spectroscopy. The standard reaction of n-butanal and 

nitrostyrene proved to be a clean and reproducible reaction where the observed absorbance of 

product (NO stretching absorbance) correlated with the actual product conversion. 

Furthermore the reaction showed no sign of catalyst instabilities (neither catalyst deactivation 

nor product inhibition) and no non-linear effects were observed. The “desalted peptide” H-D-

Pro-Pro-Glu-NH2 56 showed a comparable catalytic behaviour as the TFA salt of the peptide 

56 in the presence of an equimolar amount of NMM. To determine the different orders of the 

reaction, we performed experiments with different concentrations of one component, whereas 

all other concentrations of the components were kept constant. Plots of the logarithm of the 

initial rate vs. the logarithm of the different concentrations were used to determine the 

reaction order with respect to the component whose concentration was changed. It was found 

that the reaction showed first order kinetics with respect to the catalyst 56. In the case of n-

butanal, the reaction order turned out to be approximately 0.3 at low concentrations (up to 0.8 

M n-butanal) and zero order at higher concentrations. For nitrostyrene the reaction order was 

found to be approximately 0.5. A similar result was found for the reaction order with respect 

to n-butanal when the reaction was performed using a less reactive aldehyde 

(isovaleraldehyde). Again, the order was approximately 0.3 at low concentration and became 

zero order at higher concentrations. However, the concentration at which the plateau of zero 

order was reached, was higher for isovaleraldehyde (1.1 M and 0.8 M for n-butanal). The 

reaction order with respect to nitrostyrene was significantly increased by using a less reactive 
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Michael acceptor. In the case of 4-methoxynitrostyrene the reaction order was found to be 

approximately 0.8 and with 2,4-dimethoxynitrostyrene the reaction order was 1. The content 

of water strongly influenced the reaction rate. Additional water slowed down the reaction 

between n-butanal and nitrostyrene, whereas “dry conditions” increased the reaction rate. 

Considering the influence of the water content on the different reaction orders, we found that 

in the case of n-butanal a reaction order of approximately 0.3 remained and no plateau was 

reached, whereas for nitrostyrene the reaction order increased to 0.7. Under “dry conditions” 

the plateau was reached at a lower concentration of n-butanal (0.66 M in comparison to 0.8 M 

at standard conditions). The reaction order with respect to nitrostyrene decreased under “dry 

conditions” to 0.4. 

 

The results of the experiments which were performed to investigate the reaction order with 

respect to aldehyde indicate that at standard conditions the catalyst has no definitive “resting 

state” and is present as free catalyst 56 and as enamine I in the reaction mixture. However, 

this equilibrium can be influenced either by increasing the aldehyde concentration or by 

performing the reaction at lower water content (“dry conditions”). In both cases the 

equilibrium is pushed to the enamine side. The experiments concerning the reaction order 

with respect to nitrostyrene suggest that the rate of the C-C bond formation step and the rate 

of the hydrolysis of intermediate II to the product 3 are very similar. It was shown that in the 

case of using less reactive nitroolefins, the reaction orders increase. This indicates that the C-

C bond formation is slower and therefore more rate determining and the hydrolysis occurs 

faster in comparison. Additional water in the reaction increased the reaction order with 

respect to nitroolefine as well. This suggests that hydrolysis becomes faster and therefore the 

C-C bond formation step is again more rate determining.  
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11. H-D-Pro-Pro-Glu-NH2 (56) Catalysed 
Asymmetric 1,4-Additions Reactions: Optimised 
Conditions Based on Kinetic Studies 

 

 

 

11.1 Evaluation of Improved Reaction Conditions 
 

 

In the previous chapter the kinetic studies of the TFA•H-D-Pro-Pro-Glu-NH2 56 catalysed 

conjugate addition reactions of aldehydes and nitroolefins revealed that in principle the 

reaction rate can be significantly increased when reactions are carried out under dry 

conditions (Schlenk conditions). Furthermore it was found that the reaction rate of the 1,4-

addition is more dependent on the nitrostyrene than on the aldehyde concentration, thus, the 

reaction should occur faster when nitrostyrene instead of n-butanal is used in an excess. The 

peptide 56 catalysed conjugate addition reaction of n-butanal and nitrostyrene occurred 

without formation of side products (e.g. homoaldol products). Therefore, we assumed that no 

loss of yield should be obtained when the aldehyde is used as the limiting substrate. Several 

reactions of n-butanal and nitrostyrene were carried out using 1 mol% of peptide 56 and 

varying the reaction conditions (standard vs. dry conditions) as well as the excess of 

nitrostyrene (Table 11.1). In comparison to previous conditions, where 1.5 equivalents of n-

butanal and “non dry” aldehyde and solvents were used (Table 11.1, Entry 1), the reaction 

with 1.5 equivalents of nitrostyrene under otherwise identical conditions occurred more than 

twice as fast. A conversion of greater than 95 % was observed after only 7 h (Table 11.1, 

Entry 2). Importantly, the selectivity was not affected (syn:anti = 46:1, 97 % ee). When the 

reaction was carried out under dry condition with the original ratio between n-butanal and 

nitrostyrene (1.5 eq to 1 eq), the reaction was even faster and a conversion of >95 % was 

observed after only 4 h (Table 11.1, Entry 3). Whereas the diastereoselectivity was slightly 

lower (syn:anti = 32:1), the enantioselectivity remained constant (97 % ee). The fastest 

conversion was observed when the reaction was carried out under dry conditions and with 1.5 

equivalents of nitrostyrene (Table 11.1, Entry 4). In this case the reaction was complete after 

3 h and the product was obtained with a syn:anti ratio of 29:1 and an enantioselectivity of 97 
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% ee. As expected, a smaller excess of nitrostyrene increased the reaction time again. 

However, the reaction using only 1.2 equivalents of nitrostyrene and under dry conditions still 

led to complete conversion to the desired product 3 in only 5 h (Table 11.1, Entry 5). 

 

 
Table 11.1: H-D-Pro-Pro-Glu-NH2 56 catalysed asymmetric 1,4-addition reaction between n-butanal and 
nitrostyrene: Standard conditions vs. dry conditions.[a] 
 

 
 

Entry Conditions n-Butanal 
[eq] 

Nitrostyrene
[eq] 

Time
[h] 

Conv. 
[%][b] 

syn : 
anti[b] 

ee 
[%][c]

1 standard 1.5 1 16 quant. 42:1 97 

2 standard 1 1.5 7 >95 46:1 97 

3 dry 1.5 1 4 >95 32:1 97 

4 dry 1 1.5 3 >95 29:1 97 

5 dry 1 1.2 5 >95 21:1 97 

6 dry, 0 °C 1 1.5 20 >95 >99:1 98 
        
7 dry, 

0.1mol% (56) 
1 1.5 48 >90 16:1 97 

[a] Reactions were performed at a 0.44 mmol scale (0.5 M with respect to nitrostyrene). [b] Determined by 
1H NMR of the reaction mixture. [c] Determined by chiral HPLC analysis.  

 

 

Next we tested the reaction with 1.5 equivalents of nitrostyrene and under dry conditions, 

carried out at 0 °C (Table 11.1, Entry 6). In this case the product 3 was obtained after 20 h in 

nearly perfect diastereoselectivity (syn:anti = >99:1) and with an enantiomeric excess of 98 

%. The significantly faster reaction rate observed by using an excess of nitrostyrene under dry 

conditions suggests that under these conditions the catalyst loading can be further reduced. 

Thus, we performed the reaction of n-butanal and nitrostyrene with as less catalyst 56 as 

possible and with the aim to obtain a high yield within a reasonable reaction time. We were 

pleased to find that the addition reaction works with only 0.1 mol% of catalyst 56. After 48 h 

the desired product 3 was obtained in a yield of 87 %, with a diastereoselectivity of syn:anti = 

16:1 and a enantioselectivity of 97 % ee (Table 11.1, Entry 7).     
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11.2 Substrate Scope 
 

 

Reactions with different substrate combinations were performed using 1 mol% of catalyst 56. 

In these cases we were basically interested in the reaction time. On the other hand, we 

performed each reaction within 48 h using the lowest possible catalyst loading. All reactions 

were carried out with 1.5 equivalents of nitrostyrene and under dry condititions (Table 11.2) 

and led, either performed with 1 mol% or with 0.1-0.4 mol% of 56, to the corresponding 

products in high to very high yields (87-98 %) and excellent enanatioselectivities (95-99 % 

ee). However, the observed diastereoselectivities were generally lower (syn:anti = 10:1 to 

35:1, Table 11.2, Entries 1-20) than the previously obtained results for these reactions under 

standard conditions using 1.5 equivalents of aldehyde (see Chapter 8.1). The fastest reactions 

were observed between n-butanal and nitrostyrene (Table 11.2, Entries 1 and 2) or activated 

nitrostyrenes, such as 2,4-dichloronitrostyrene (Table 11.2, Entries 11 and 12) or 2-

trifluoromethylnitrostyrene (Table 11.2, Entries 13 and 14). With the use of 1 mol% of 56 

these reactions showed complete conversions within 3 h and 0.1 mol% of 56 sufficed to 

obtain full conversions within 48 h. As expected, the slowest reactions were observed with 

isovaleralehyde as challenging Michael donor (20 h with 1 mol% 56, Table 11.2, Entries 7 

and 8) and with 4-methoxynitrostyrene as a poor Michael acceptor (12 h with 1 mol% 56, 

Table 11.2, Entries 17 and 18). For both reactions 0.4 mol% of peptide 56 were necessary to 

obtain high yields after 48 h. An intermediate activity was observed with the aliphatic 

nitroolefin (E)-4-methyl-1-nitropent-1-ene and n-butanal (Table 11.2, Entries 19-20). The 

reaction with 1 mol% 56 took 7 h and 0.2 mol% of 56 was necessary to obtain a high yield 

after 48 h. Finally, the best results in terms of activity and selectivity were obtained with the 

reaction between 3-phenylpropionaldehyde and 2-trifluoromethylnitrostyrene (Table 11.2, 

Entries 15 and 16). In this case the reaction required only 4 h with 1 mol% 56, leading to the 

product 43 in 98% yield and with a syn:anti ratio of 32:1 and 99 % ee. 
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Table 11.2. Asymmetric conjugate addition of aldehydes to nitroalkenes catalysed by TFA H-D-Pro-Pro-Glu-
NH2 56. [a] 

 

 
 

Entry Product  Catalyst  
loading 

Time 
[h] 

Yield
[%][b] 

syn:anti[c] ee 
[%][d] 

        
1  3 1 mol% 3 92 29 : 1 97 
2   0.1 mol% 48 87 16 : 1 97 
        
3  33 1 mol% 7 94 20 : 1 95 
4   0.2 mol% 48 92 20 : 1 96 
        
5  34 1 mol% 6 93 22 :1 97 
6   0.1 mol% 48 98 18 :1 96 
        
7  36 1 mol% 20 89 20 :1 96 
8   0.4 mol% 48 93 21 : 1 94 
        
9  37 1 mol% 5 97 15 : 1 98 
10   0.1 mol% 48 87 16 :1 98 

        
11  41 1 mol% 3 98 24 : 1 97 
12   0.1 mol% 48 95 21 : 1 96 

        
13  42 1 mol% 3 94 32 : 1 98 
14   0.1 mol% 48 96 35 : 1 97 
        

15  43 1 mol% 4 98 32 : 1 99 
16   0.1 mol% 48 92 35 : 1 99 

        
17  44 1 mol% 12 93 11 : 1 95 
18   0.4 mol% 48 96 13 : 1 95 

        
19  68 1 mol% 7 89 15 : 1 97 
20   0.2 mol% 48 92 10 :1 98 

        
[a] Reactions using 1mol% of 56 were performed at a 0.44 mmol scale, reactions using 0.1 to 0.4 mol% 
of 56 were performed at a 2.2 mmol scale. [b]Isolated yield. [c]Determined by 1H NMR on the crude 
material. [d] Determined by chiral phase HPLC analysis. 

 

3 
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12. Asymmetric 1,4-Addition Reaction of Aldehydes 
to Nitroethylene  

 

 

 

12.1 Introduction and Initial Studies 
 

 

It was shown that aliphatic, aromatic as well as funtionalised nitroolefins react readily with 

aldehydes in the presence of peptide 56 (see Chapter 8.1 and 11.2). Next we became 

interested in employing nitroethylene, the simplest of all nitroolefins, as a Michael acceptor 

since this would afford access to monosubstituted γ-nitroaldehydes. These would allow for 

conversion into monosubstituted γ2-amino acids as important building blocks in the 

development of therapeutics or within foldamer research. (Scheme 12.1).[143-150] Common 

procedures for the synthesis of γ2-amino acids rely on the use of chiral auxiliaries.[151-153] A 

direct and more efficient route would thus facilitate their accessibility. 

 

 
 

Scheme 12.1. Potential catalytic route for the synthesis of γ2-amino acids 

 

Nitroethylene was prepared following the literature via the condensation of commercially 

available 2-nitroethanol using phthalic anhydride.[29,154-156] It has long been known that 

nitroethylene has the tendency to polymerise readily.[157] Therefore, the handling of this 

compound is challenging. We found that if the freshly synthesised nitroethylene is 

immediately dissolved in chloroform, this solution remains stable over a prolonged time 

(stored at -20 °C) and can be conveniently used as reagent. For the very first experiment we 

used 3 mol% of the original lead peptide TFA H-Pro-Pro-Asp-NH2 1 and 3 mol% NMM for 

the reaction of 1 equivalent of 3-phenylpropionaldehyde with 1.1 equivalents of nitroethylene 

in CHCl3/i-PrOH 9:1 (v/v). We were pleased to oberserve formation of the desired γ-
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nitroaldehyde. After 20 h a conversion of 87 % was determined by 1H NMR of the reaction 

mixture, however, we found that the product racemised during work up and purification upon 

which the reliable determination of the enantiomeric excess by chiral HPLC became 

impossible. The in situ reduction of the γ-nitroaldehyde would generate the configurationally 

stable γ-nitroalcohol, however, the additional effort is not convenient for the screening of a 

large number of peptides. A solution to the problem was found by using a method reported by  

Gellman et al. for the determination of the enantiomeric excess using 1H NMR analysis.[158] 

After reaction of the crude γ-nitroaldehyde with a chiral amine in the NMR tube, the in situ 

generated diastereomeric imines were detected and their ratio was determined by integration. 

This method proved to be simple, fast and accurate and therefore adequate for the screening 

of a library of peptides (for details see Experimental Section). 

 

 

12.2 Catalyst Screening for the Reaction of  
3-Phenylpropionaldehyde and Nitroethylene 

 

 

Various catalysts which were originally developed for reactions of aldehydes and nitroolefins 

were then tested for the 1,4-addition reaction of 3-phenylpropionaldehyde and nitroethylene 

under the identical conditions as mentioned for the first experiment with catalyst 1 (Table 

12.1). The same tendency as for the reactions of n-butanal and nitrostyrene in terms of 

selectivity was observed with the diastereoisomers of TFA H-Pro-Pro-Asp-NH2 1 (Table 

12.1, Entries 1-4), where TFA H-D-Pro-Pro-Asp-NH2 21 was again the most selective 

catalyst (87 % ee), providing the product with opposite absolute configuration in comparison 

to the products obtained with the other diastereoisomers. With the exception of TFA H-D-

Pro-Pro-Glu-NH2 56 and TFA H-D-Pro-Pro-Gln-NH2 75, all other peptides, including 

diastereomeric tetrapeptides of TFA H-Pro-Pro-Asp-Pro-NH2 6 or tripeptides of the type 

TFA H-Pro-Pro-Xaa-OH, TFA H-Pro-Pro-Xaa-NH2, TFA H-D-Pro-Pro-Xaa-OH and 

TFA H-D-Pro-Pro-Xaa-NH2, proved to be less selective for the test reaction than peptide 21 

(Table 12.1, Entries 5-21). Interesstingly, the peptide TFA H-D-Pro-Pro-Gln-NH2 75, bearing 

a carboxamide instead of a  carboxylic acid in the side chain of the third amino acid, showed 

the best ee of 91 % and the highest conversion with respect to nitroethylene (98 % after 20 h, 

Table 12.1, Entry 21). However, significant quantities of side products were detected in the 
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1H NMR spectrum of the reaction mixture. Thus, peptide 56 which showed slightly lower 

selectivity (88 % ee) and similar conversion with respect to nitroethylene (98 % after 20 h, 

Table 12.1, Entry 20) was used for further studies of reaction optimisation. 

 
 
Table 12.1. Asymmetric 1,4-addition reaction between 3-phenylpropionaldehyde and nitroethylene. 
Peptidescreening.[a] 

 

 
 

Entry Catalyst  Conv. 
[%][b] 

ee  
[%][c] 

Abs. 
Conf. 

1 TFA H-Pro-Pro-Asp-NH2 1 87 73 R 

2 TFA H-D-Pro-Pro-Asp-NH2 21 77 87 S 

3 TFA H-Pro-D-Pro-Asp-NH2 19 81 66 R 

4 TFA H-Pro-Pro-D-Asp-NH2 20 81 65 R 

5 TFA H-Pro-Pro-Asp-Pro-NH2 6 92 74 R 

6 TFA H-D-Pro-Pro-Asp-Pro-NH2 24 86 73 S 

7 TFA H-Pro-D-Pro-Asp-Pro-NH2 25 85 70 R 

8 TFA H-Pro-Pro-Asp-D-Pro-NH2 26 76 55 R 

9 TFA H-Pro-Pro-Asp-OMe 8 95 62 R 

10 TFA H-Pro-Pro-β-homo-Asp-OH 10 83 66 R 

11 TFA H-Pro-Pro-β-homo-Asp-NH2 9 89 61 R 

12 TFA H-Pro-Pro-Glu-NH2 14 86 66 R 

13 TFA H-Pro-Pro-Asn-OH 11 98 76 R 

14 TFA H-Pro-Pro-Cys(SO3H)-NH2 15 10 n.d. n.d. 

15 TFA H-Pro-MePro-Asp-NH2 16 67 46 R 

16 TFA H-Pro-Pro-Ser-OH 12 63 63 R 

17 TFA H-Pro-Pro-His-OH 13 54 54 R 

18 TFA H-D-Pro-Pro-Asn-OH 29 95 80 S 

19 TFA H-D-Pro-Pro-Asn-NH2 48 93 86 S 

20 TFA H-D-Pro-Pro-Glu-NH2 56 98 88 S 

21 TFA H-D-Pro-Pro-Gln- NH2 75 98 91 S 
[a] Reactions were performed at a 220 μmol scale (0.9 M with respect to nitroethylene).  
[b] Determined by 1H NMR analysis comparing aldehyde integrals of 3-phenylpropionaldehyde and 
product. [c] Determined by 1H NMR analysis using a chiral amine. 
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12.3 Reaction Optimisation 
 

 

12.3.1  Evaluation of Conditions using TFA H-D-Pro-Pro-Glu-NH2 (56) 

 

Although the initial results obtained for the peptide 56 catalysed Michael addition of 3-

phenylpropionaldehyde and nitroethylene were promising, the optimisation of this reaction 

turned out to be challenging. Many reactions were set up with the variation of different 

reaction parameters such as catalyst loading, substrate ratio, concentration and solvent. 

However, no satisfying results were achieved (Table 12.2, only examples).  

 

 
Table 12.2. Asymmetric 1,4-addition reaction between 3-phenylpropionaldehyde and nitroethylene. 
Optimization with H-D-Pro-Pro-Glu-NH2 56.[a] 
 

NO2+H

O

Bn
H

O
NO2

X mol% TFA H-D-Pro-Pro-Glu-NH2 56

X mol% NMM
RT, 20h

Bn
1 2  

 
Entry 56 

[mol%] 
1 

[eq] 
2 

[eq] 
Conc.  
[M] [b] 

Solvent Conv. 
[%][c] 

ee  
[%][d] 

1 2 1 1 1.5 CHCl3 : i-PrOH 10 : 1 69 92 

2 2 1 1 1.5 CHCl3 : i-PrOH 25 : 1 55 93 

4 2 2 1 1.5 CHCl3 : i-PrOH 25 : 1 85 96 

5 2 1 1.5 1.5 CHCl3 : i-PrOH 25 : 1 35 90 

6 2 3 1 1.36  neat CHCl3 85 91 

7 2 2 1 2.3 neat CHCl3 72 89 

8 1 2 1 2.3 neat CHCl3 28 n.d. 

9 1 3 1 2.3 neat CHCl3 60 89 

10 2 1 1.5 1 neat CHCl3 22 n.d. 

11 2 2 1 1 neat CHCl3 79 93 

12 1 2 1 1 neat CHCl3 42 95 

13 1 3 1 1 neat CHCl3 77 94 
[a] Reactions were performed at a 340 μmol scale. [b] Concentration with respect to nitroethylene.  
[c] Determined by 1H NMR analysis comparing aldehyde integrals of 3-phenylpropionaldehyde and product.  
[d] Determined by 1H NMR analysis using a chiral amine. 
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While the conversions with respect to nitroethylene were usually good, the conversions with 

respect to the aldehyde proved to be rather disappointing. In this respect, a white precipitate 

was often observed after stirring the reaction mixtures for approximately one hour, which was 

taken as an indication for polymerisation of nitroethylene. Nevertheless, an excess of 3-

phenylpropionaldehyde (Table 12.2, Entries 2, 6-9, 11-13), a decreased concentration of the 

reaction mixtures (Table 12.2, Entries 10-13) and the use of neat CHCl3 as solvent (Table 

12.2, Entries 6-13) were beneficial in terms of conversions and selectivities. Finally, we 

observed that the reaction occurred faster and cleaner when the mixture was about 10 times 

more dilute. 

 

 

12.3.2  Reaction Optimisation at Low Concentrations 

 

Further reactions between 3-phenylpropionaldehyde and nitroethylene were then performed 

with 1 mol% of TFA H-D-Pro-Pro-Asp-NH2 21 or TFA H-D-Pro-Pro-Glu-NH2 56 in CHCl3, 

at lower concentrations and using the aldehyde in an excess (Table 12.3). Both peptides were 

tested with 3 equivalents of the aldehyde at a concentration of 0.5 M with respect to 

nitroethylene (Table 12.3, Entries 1 and 2). The reaction with 56 was in this case not only 

significantly faster but also more selective (10 h, 90 % conversion, 90 % ee). A slightly 

higher activity and a notably higher selectivity was observed when the reaction with 56 was 

carried out with 3 equivalents aldehyde but at a concentration of 0.25 M with respect to 

nitroetylene (10 h, 95 % conversion, 95 % ee, Table 12.3, Entry 3). The reaction became 

slower when the aldehyde was reduced from 3 to 1.5 equivalents, however, the observed 

selectivity was greater than 95 % ee (Table 12.3, Entry 4). Best conditions were then found 

using 1 mol% of TFA H-D-Pro-Pro-Glu-NH2 56, 1.5 equivalents of 3-phenylpropionaldehyde 

and nitroethylene at a concentration of 0.1 M (Table 12.3, Entry 5). Under these conditions 

both conversion and the enantioselectivity were greater than 95 % after 15 h. A further 

decrease of the concentration to 0.05 M had a negative influence on activity and selectivity 

(Table 12.3, Entry 6). An increase of the catalyst loading to 3 mol% reduced the reaction time 

to only 5 h, however, the selectivity droped to 90 % ee (Table 12.3, Entry 7). Under the 

improved conditions the peptide TFA H-D-Pro-Pro-Gln-NH2 75 showed a selectivity of 

greater than 95 % ee but only 45 % conversion was observed after 70 h. Finally we used the 

“desalted peptide” H-D-Pro-Pro-Asp-NH2 56 with and without NMM and found that both 
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activity and selectivity were much lower in comparison to the reactions with the TFA salt of 

56. This is in contrast to the reaction between n-butanal and nitrostyrene with “desalted” 56, 

where additives had no influence on the catalytic performance (see Chapter 8.2). 

 

 
Table 12.3. Asymmetric 1,4-addition reaction between 3-phenylpropionaldehyde and nitroethylene. 
Optimization at low concentrations.[a] 
 

 
 

Entry Catalyst Aldehyde 
[eq] 

Conc. 
[M] [b] 

Time 
[h] 

Conv. 
[%][c] 

ee  
[%][d]

1 TFA H-D-Pro-Pro-Asp-NH2 21 3 0.5 30 70 85 

2 TFA H-D-Pro-Pro-Glu-NH2 56 3 0.5 10 90 90 

3 TFA H-D-Pro-Pro-Glu-NH2 56 3 0.25 10 95 95 

4 TFA H-D-Pro-Pro-Glu-NH2 56 1.5 0.25 15 90 >95 

5 TFA H-D-Pro-Pro-Glu-NH2 56 1.5 0.1 15 >95 >95 

6 TFA H-D-Pro-Pro-Glu-NH2 56 1.5 0.05 15 80 90 

7 TFA H-D-Pro-Pro-Glu-NH2 56 
(3 mol%) 

1.5 0.1 5 >95 90 

8 TFA H-D-Pro-Pro-Asp-NH2 21 1.5 0.1 50 85 90 

9 TFA H-D-Pro-Pro-Gln-NH2 75 1.5 0.1 70 45 >95 

10 TFA H-D-Pro-Pro-Asp-NH2 21 
desalted, no NMM 

1.5 0.1 70 75 90 

11 TFA H-D-Pro-Pro-Asp-NH2 21 
desalted, 1mol% NMM 

1.5 0.1 70 40 n.d. 

[a] Reactions were performed at a 220 μmol scale. [b] Concentration with respect to nitroethylene.  
[c] Determined by 1H NMR analysis comparing aldehyde integrals of 3-phenylpropionaldehyde and product. 
[d] Determined by 1H NMR analysis using a chiral amine. 

 
 

12.4 Substrate Scope 
 

 

With the best reaction parameters determined (1.5 eq aldehyde, 0.1 M nitroethylene in 

chloroform), we reacted a range of different aldehydes with nitroethylene in the presence of 1 

mol% of 56. As mentioned before, the resulting α-substituted γ-nitroaldehydes are prone to 
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racemisation upon purification by column chromatography. Thus, the aldehydes were 

typically reduced with borane to the corresponding alcohols before isolation. The conjugate 

addition reaction products were obtained in high yields and excellent enantioselectivities for a 

range of different aliphatic and functionalised aldehydes (Table 12.4). 

 
 
Table 12.4. Asymmetric 1,4-addition between aldehydes and nitroethylene catalysed by peptide 56.[a] 

 

 
 

Entry Product  Time  
[h] 

Yield  
[%][b] 

ee  
[%] [c] 

 
1 

 

 

 
76 

 
20 

 
84 

 
95 

 
2 

 

 

 
77 

 
15 

 
82 

 
98 

 
3 

 

 

 
78 

 
15 

 
90 

 
99 

 
4 

 

 

 
79 

 
45 

 
85 

 
97d 

 
5[e] 

 

 

 
80 

 
20 

 
84 

 
99 

 
6 

 

 

 
81 

 
5d 

 
67 

 
98 

 
7 

 

 

 
82 

 
15 

 
82 

 
98 

 
8 

 

 

 
 

83 

 
 

25 

 
 

86 

 
 

97d 

 
9 

 

 

 
 

84 

 
 

70 
 

 
 

78 

 
 

95d 

 
10 

 

 
85 

 
30 

 
80 

 
96d 

[a]Reactions were performed at a 0.44 mmol scale. Nitroethylene was used at a conc. of 
0.1 M in chloroform. [b] Isolated yield. [c] Determined by chiral-phase HPLC analysis 
(Chiracel AD-H). [c] Determined by 1H NMR of the crude material after the addition of 
a chiral primary amine. [d] 3 mol% of the catalyst were used. 
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In all cases the desired products 76-85 were obtained in good yields and selectivities of 95-99 

% ee. Particularly notable is that, with slightly higher amounts of catalyst (3 mol%) and 

longer reaction times, not only isovaleraldehyde but even neopentylaldehyde with a tert-butyl 

group at the α-carbon is tolerated as a substrate (Table 12.4, Entries 4 and 6). In addition, 

aldehydes bearing functional groups such as alkenes and esters also reacted readily with 

nitroethylene in the presence of only 1 mol% of peptide 56 (Table 12.4, Entries 8-10). A 

limitation with respect to the substrate scope was found in the application of β-functionalised 

aldehydes. 3-(methylthio)propionaldehyde and even the Cbz-protected 3-amino-

propionaldehyde were both reactive substrates and the corresponding addition products were 

isolated in high yields after the in situ reduction, however, the enantionselectivities remained 

poor due to racemisation. Another inapplicable substrate was benzyloxyacetaldehyde. Again, 

a high conversion but a low enantioselectivity was obtained. However, in this case we assume 

that the α-proton is very acidic what caused racemisation and thus low selectivity of the 

corresponding addition product. 

 

 

12.5 Derivatisation of γ-Nitroalcohol (82) 
 

12.5.1  Synthesis of γ-Butyrolactone (86) 

 

The γ-nitroalcohol 82 was readily converted into the chiral γ-lactone 86, using NaNO2 and 

acetic acid in DMSO (Scheme 12.2).[28] 86 was obtained in a yield of 89 % with retention of 

the optical purity as shown by chiral HPLC (Figure 12.1). Monosubstituted γ-lactones are 

useful precursors to a multitude of biologically active compounds.[159] Besides, 86 was used to 

assign the absolute configuration by comparison of the optical rotation with the literature.[160] 

 

 
Scheme 12.2. Synthesis of γ-lactone 86  from γ-nitroalcohol 82. 
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Figure 12.1. Chiral HPLC of γ-lactone 86 (97 % ee).  

 

12.5.2  Synthesis of Monosubstituted γ2-Amino Acid (87) 

 

The conversion of the conjugate addition products to γ2-amino acids proved to be 

straightforward. As an illustration, nitroalcohol 82 was oxidised to the carboxylic acid using 

Jones reagent followed by reduction of the nitro group with Raney-Ni and Fmoc protection of 

the resulting amino acid (Scheme 12.3). The Fmoc-protected γ2-amino acid 87 was obtained 

in an overall yield of 81 % with retention of optical purity as determined by 1H NMR analysis 

after the reaction of 86 with a chiral amine (for details see Experimental Section). 

 

 
 

Scheme 12.3. Synthesis of γ-lactone 87 from γ-nitroalcohol 82. 

Minutes
0 10 20 30 40 50

m
A

bs

0

500

1000

1500

33
.0

83

35
.7

42

 



102 

12.6 Conclusions 
 

 

In conclusion TFA H-D-Pro-Pro-Glu-NH2 56 is an excellent asymmetric catalyst for 

conjugate addition reactions of aldehydes to nitroethylene, affording monosubstituted γ-

nitroaldehydes in high yields and enantioselectivities requiring only a small excess of the 

aldehyde (1.5 eq) and as little as 1 mol% of the catalyst. The products can be readily 

converted into γ-butyrolactones and monosubstituted γ2-amino acids. 
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13. Summary and Outlook 
 

 

 
Within this thesis, the development of peptides as highly efficient catalysts for asymmetric 

conjugate addition reactions of aldehydes to nitroolefins is described. 

 

The tripeptide TFA•H-Pro-Pro-Asp-NH2 1 was originally developed and established as an 

efficient catalyst for asymmetric aldol reactions. Based on insight gained from conformational 

analysis it was predicted that 1 and closely related peptides may also serve as catalysts for 

asymmetric 1,4-addition reactions. Indeed, TFA•H-D-Pro-Pro-Asp-NH2 21 proved to be a 

highly effective catalyst for asymmetric conjugate addition reactions of aldehydes to 

nitroolefins. A broad scope of different substrate combinations including aliphatic and 

aromatic nitroolefins as well as linear, β-branched and aromatic aldehydes reacted readily in 

the presence of as little as 1 mol% of 21 to the desired γ-nitroaldehydes in high yields (82-99 

%), high diastereoselectivities (syn:anti = 4:1->99:1) and very high enantioselectivities (88-98 

% ee). Thus, 21 proved to be significantly more active and applicable to a broader substrate 

scope compared to other amine based catalysts that had previously been developed for 1,4-

addition reactions of aldehydes to nitroolefins. In addition, the peptidic catalyst 21 also 

offered solutions to other challenges encountered with the other amine based catalysts and 

allowed for using only a small excess of the aldehyde providing the products within a 

reasonable reaction time. 

Analysis of the structural and functional prerequisites for high catalytic efficiency within 

catalysts 21 led then to the establishment of the closely related peptide TFA•H-D-Pro-Pro-

Glu-NH2 56 as an even more effective catalyst for conjugate addition reactions of aldehydes 

and nitroolefins including the functionalised β-nitroacrolein dimethylacetal (up to quant. 

yields, syn:anti ratio up to >99:1, up to 99 % ee). Even nitroethylene, the simplest of all 

nitroolefins, reacts readily with functionalised and non-functionalised aldehydes. The 

derivatisation of the corresponding products offered a new entry into the synthesis of 

monosubstituted γ2-amino acids, previously only accessible by using chiral auxiliaries.   

Extensive kinetic studies allowed for further insight into the reaction mechanism and led to 

the establishment of improved reaction conditions. Only as little as 0.1 mol% of 56 was 

required for the corresponding reactions, which is the lowest catalyst loading that has been 
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achieved for enamine catalysis to date. A further benefit of the peptidic catalyst is that, in 

contrast to many other organocatalysts, no additives are necessary to obtain the desired 

products in very high yields and selectivities. Further conformational studies indicated that 

peptide 56 is more rigid than usual tripeptides but still bear a significant degree of 

conformational freedom. Therefore, the right degree of flexibility might be the key to the 

effectiveness of peptides as asymmetric catalysts. 

 

These studies demonstrate the high potential of short peptides as efficient catalysts and 

establish a basis for further investigations. These may include the application of peptides as 

catalysts for other 1,4-addition reactions using different Michael donors (e.g. ketones, 

malonates, nitroalkanes) and Michael acceptors (e.g. α,β-unsaturated aldehydes and ketones, 

β-disubstitued nitroolefins). Also new challenging transformations such as e.g. α-alkylation 

of aldehydes or complex cascade reactions might become accessible by using peptides as 

catalysts. 



105 

 

 

 
 

IV. 
Experimental Section 



106 

 
 
 
 
 
 
 



107 

 

14. General Aspects 
 

 

Materials and reagents were of the highest commercially available grade purchased from 

Fluka, Aldrich, Lancaster, Acros, Riedel, TCI or Alfa Aesar and used without further 

purification. Resins for solid phase synthesis were obtained from Novabiochem (Merck 

Biosciences), Rapp Polymere or Bachem AG and amino acid derivatives from Bachem AG 

or from the Poly Peptide Group. Reactions requiring anhydrous conditions were carried out 

using oven-dried glassware (overnight at 110 °C), which was assembled hot and cooled 

under nitrogen. Reactions were monitored by thin layer chromatography using aluminium-

backed Merck silica gel 60 F254 plates. Compounds were visualized by UV, ceric 

ammonium molybdate (CAM), KMnO4 and/or ninhydrin solutions. Flash chromatography 

was performed using Merck or Fluka silica gel 60, particle size 40-63 μm. Solvents for 

extractions and for column chromatography were previously distilled. Yields given are 

based upon chromatographically and spectroscopically (1H and 13C NMR) pure materials. 
1H and 13C NMR spectra were recorded on a Bruker DMX600, DPX500, DPX400 or av250 

spectrometer. Chemical shifts are reported in ppm using TMS, TSP (sodium salt) or the 

residual solvent peak as a reference. The assignement of the signals of complex compounds 

was carried out by COSY, HMQC and HMBC analysis. Ion exchange was performed using 

Dowex® resin (1x2-400) from Sigma-Aldrich or VariPureTM IPE tubes from Varian. 

Electrospray (ESI) mass spectra were recorded on a Finnigan MAT LCQ and on a Bruker 

esquire 3000plus spectrometer. Analytical grade methanol was used as the carrier solvent, 

with samples prepared to a final concentration of approximately 1 mg/mL. High resolution 

mass spectroscopy (HRMS) was carried out on an Applied Biosystems Sciex QStar Pular 

spectrometer (MS Service UNI-Bern). Elemental analysis was performed on a Perkin-Elmer 

240 Analyser (Dr. W. Kirsch, UNI-Basel). Normal Phase HPLC analysis was carried out on 

an analytical HPLC with a diode array detector SPD-M10A from Shimadzu using Chiracel 

columns (AD, AD-H, AS-H, OD-H) (250 mm x 4.6 mm) from Daicel or on a ReproSil 

Chrial-AM (250 mm x 4.6 mm) column from ‘Dr.Maisch’. GC analyses were performed on 

a Focus GC with a flame ionization detector (FID) from Brechbühler AG using a Chiraldex 

G-TA column. Optical rotations were measured on a Perkin Elmer Polarimeter 341. CD-

spectra were measured on an Applied Biophysics Chirascan spectrometer. For automated 

peptide synthesis, a Syro I Peptide Synthesizer (MultiSynTech) was employed. In situ FT-
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IR spectroscopy was carried out on a ReactIR R4000 (SiComp probe connected to an MCT 

detector with K6 conduit) from Mettler Toledo. Karl-Fischer titrations were performed with 

a Titrando KF titrator from Metrohm (Bachem AG, Bubendorf). X-ray analysis was 

performed on a Nonius KappaCCD diffractometer at 173K (M. Neuburger, UNI-Basel).  

 

 

15. General Protocols  
 

15.1 General Protocols for Solid-Phase Peptide Synthesis 
 

Peptides were prepared on solid-phase polymeric supports following the general protocols for 

manual or automated Fmoc/tBu peptide synthesis.[161] Prior to manual peptide synthesis, 

reaction vessels were silylated to reduce the tendency of the resin beads to stick to the glass 

surfaces. This was achieved through overnight agitation of reaction vessels containing a 

solution of 10 % (v/v) TMSCl in anhydrous toluene. Before use, reaction vessels were washed 

with CH2Cl2 (5x) and ‘baked out’ at 110 oC overnight. 

 

Protocol A1: Functionalisation of Rink Amide AM/MBHA and Sieber Amide resin 

Rink and Sieber resins are usually Fmoc-protected as supplied and must be deprotected prior 

to the first amino acid functionalisation as follows: 20 % (v/v) piperidine in DMF was added 

to the resin (pre-swollen in DMF and drained) and the reaction mixture was agitated for 10 

min, drained, rinsed with neat DMF, and treated with 20 % (v/v) piperidine in DMF once 

more for a further 10 min. The resin was then washed alternatively with DMF and CH2Cl2 (5x 

each). The coupling of the first amino acid occurred under the same conditions as described 

for general solid phase synthesis using HCTU/i-Pr2NEt or DIC/HOBt (Protocol B & C). 

 

Protocol A2: Functionalisation of Wang resin 

To a suspension of Wang OH resin (pre-swollen in CH2Cl2), was added a solution of the 

Fmoc amino acid (3 eq), N-methylimidazole (2.5 eq) and MSNT (3 eq) in anhydrous 

CH2Cl2 (THF may be required to aid dissolution of MSNT). The reaction mixture was 

agitated at RT for 1 h, then washed alternatively with DMF (5x) and CH2Cl2 (5x). 

Functionalisation of the resin was determined by quantitative Fmoc test.[162]  
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Protocol A3: Functionalisation of 2-Chlorotrityl chloride resin 

A preformed solution of the Fmoc amino acid (4 eq) and i-Pr2NEt (5 eq) dissolved in 

anhydrous CH2Cl2 was added to a suspension of the resin (pre-swollen in anhydrous CH2Cl2). 

The reaction mixture was agitated for 1 h and washed with a mixture of CH2Cl2/MeOH/i-

Pr2NEt (17:2:1 v/v/v, 5x), CH2Cl2 (5x), DMF (5x) and CH2Cl2 (5x). Functionalisation of the 

resin was determined by quantitative Fmoc test.[162] 

  

Protocol B1: Manual peptide synthesis using HCTU/i-Pr2NEt 

i-Pr2NEt (6 eq) was added to a solution of the Fmoc-amino acid (2 eq) and HCTU (2 eq) in 

the minimum amount of DMF necessary. The coupling cocktail was aged for 2 min and then 

added directly to the amino-functionalised resin (pre-swollen in DMF and drained). The 

reaction mixture was agitated for 45 - 60 min before washing alternatively with DMF (5x) 

and CH2Cl2 (5x). The completeness of each coupling was monitored using standard tests 

according to the functionalisation of the N-terminus (Chloranil,[163] TNBS[162, 164] or Kaiser[165] 

test). In the case of incomplete functionalisation of the resin, the entire coupling procedure 

was repeated. In the case of complete coupling, the Fmoc deprotection was performed as 

follows: A solution of 20 % (v/v) piperidine in DMF was added to the resin (pre-swollen in 

DMF) and the reaction mixture was agitated for 5 min, drained, and the piperidine treatment 

repeated a second time for 10 min. Finally the resin was thoroughly washed with DMF (5x) 

and CH2Cl2 (5x). The completeness of deprotection was monitored using standard tests 

according to the functionalisation of the free N-teminus (Chloranil,[163] TNBS[162, 164] or 

Kaiser[165] test). The entire protocol was then repeated for the next cycle. The final Fmoc 

deprotection was omited when the corresponding Boc-amino acid was employed for the last 

coupling.  

 

Protocol B2: Manual peptide synthesis using DIC/HOBt 

A solution of the Fmoc-amino acid (2 eq) and HOBt (2 eq) dissolved in the minimum amount 

of DMF necessary was added to the suspension of the amino-functionalised resin (pre-swollen 

in CH2Cl2 and drained). The mixture was agitated for 2 min before addition of DIC (2 eq) and 

then agitated for a further 45-60 min. The suspension was washed alternatively with DMF 

(5x) and CH2Cl2 (5x). The completeness of each coupling was monitored using standard tests 

according to the functionalisation of the N-terminus (Chloranil,[163] TNBS[162, 164] or Kaiser[165] 

test). In the case of incomplete functionalisation of the resin, the entire coupling procedure 
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was repeated. In the case of complete coupling, the Fmoc deprotection was performed as 

follows: A solution of 20 % (v/v) piperidine in DMF was added to the resin (pre-swollen in 

DMF) and the reaction mixture was agitated for 5 min, drained, and the piperidine treatment 

repeated a second time for 10 min. Finally the resin was thoroughly washed with DMF (5x) 

and CH2Cl2 (5x). The completeness of deprotection was monitored using standard tests 

according to the functionalisation of the free N-teminus (Chloranil,[163] TNBS[162, 164] or 

Kaiser[165] test). The entire protocol was then repeated for the next cycle. The final Fmoc 

deprotection was omited when the corresponding Boc-amino acid was employed for the last 

coupling. 

 

Protocol C: Automated peptide synthesis 

i-Pr2NEt (12 eq as a 3 M solution in N-methylpyrrolidone) was added to a solution of Fmoc-

amino acid (4 eq) and HCTU (4 eq) in DMF. The activated amino acid was added to the 

amino-functionalized resin, swollen in DMF (≈100 mM concentration) and the mixture was 

agitated for 1.5 h before washing with DMF (5x). The Fmoc deprotection was performed by 

the addition of 40 % (v/v) piperidine in DMF to the resin (preswollen in DMF). The reaction 

mixture was agitated for 3 min, drained and the piperidine treatment repeated for 10 min. 

Finally the resin was washed with DMF (7x). The entire protocol was then repeated for the 

next cycle. The final Fmoc deprotection was omited when the corresponding Boc-amino acid 

was employed for the last coupling. 

 

Protocol D: Cleavage from the solid support and isolation of peptides 

The solid supported peptides were cleaved from the resin by agitation in a mixture of acid in 

CH2Cl2 (Wang resin = TFA/CH2Cl2 1:1 v/v, Rink Amide resin = TFA/CH2Cl2 1:1 v/v and 2-

chlorotrityl chloride resin = neat TFA) for 1 h and then repeated for a further 30 min. The 

acidic filtrates were combined and removal of all volatiles under reduced pressure followed 

by precipitation with Et2O afforded the crude peptides as their trifluoroacetate salts. Peptide 

salts were then triturated with Et2O (at least 3 times) and filtered over a fine glass frit (grade 

3) or a syringe filter, dried under high vacuum and used without further purification unless 

specifically stated.  
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15.2 General Protocols for 1,4-Addition Reactions 
 

Protocol E: 1,4-Addition reaction of aldehydes to nitroolefins 

Standard conditions:  

Calculated for 1 mol% TFA H- D-Pro-Pro-Glu-NH2 56 (454.4 g/mol) 

NMM (5.0 μL, 44 μmol, 0.1 eq) was dissolved in the specified solvent (10 mL). 1 mL of this 

solution was added to the catalyst (2.0 mg, 4.40 μmol. 0.01 eq) and the mixture was stirred for 

5 min. The nitroolefin (0.44 mmol, 1 eq) and the aldehyde (0.66-1.32 mmol, 1.5-3 eq) were 

added and the reaction mixture (homogenous solution) was stirred or shaken (thermo shaker) 

at the specified temperature. The progress of the reaction was followed by TLC or by 1H 

NMR spectroscopy of the crude reaction mixture (∼100 μL + 400 μL CDCl3). After 

completion, the reaction mixture was directly separated by flash column chromatography on 

silica gel eluting with a mixture of pentanes and EtOAc. Collected fractions were 

concentrated in vacuo and the product was dried under high vaccum. 

 

Schlenk conditions:  

Glassware was heated out under N2 flow. All solvents (crown cap quality), aldehydes and 

stock-solutions were dried with molecular sieves (3 Å, activated in microwave for 2 min at 

750 W) and stored under a N2 atmosphere. Reactions were set up under a N2 atmosphere. 

 

Calculated for 1 mol% TFA H- D-Pro-Pro-Glu-NH2 56 (454.4 g/mol) 

NMM stock-solution (44 mM; 100 μL, 0.01 eq) was added to the catalyst (2.0 mg, 4.40 μmol. 

0.01 eq). The aldehyde (0.44 mmol, 1 eq), the nitroolefin stock-solution (1.34 M; 1230 μL, 

0.66 mmol, 1.5 eq) and solvent (0.5 mL) were added and the reaction mixture (homogenous 

solution) was stirred at RT. The progress of the reaction was followed by 1H NMR 

spectroscopy of the crude reaction mixture (∼100 μL + 400 μL CDCl3). After completion, the 

reaction mixture was directly separated by flash column chromatography on silica gel eluting 

with a mixture of pentanes and EtOAc. Collected fractions were concentrated in vacuo and 

the product was dried under high vaccum. 

 

Calculated for 0.1 mol% TFA H- D-Pro-Pro-Glu-NH2 56 (454.4 g/mol) 

NMM stock-solution (0.44 mM; 50 μL, 0.001 eq), the aldehyde (2.20 mmol, 1 eq) and solvent 

(3.5 mL) were added to the catalyst (1 mg, 2.20 μmol, 0.001 eq). The nitroolefin (3.30 mmol, 
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1.5 eq) was added as a solid and the reaction mixture (homogenous solution) was stirred at 

RT. The progress of the reaction was followed by 1H NMR spectroscopy of the crude reaction 

mixture (∼100 μL + 400 μL CDCl3). After completion, the reaction mixture was directly 

separated by flash column chromatography on silica gel eluting with a mixture of pentanes 

and EtOAc. Collected fractions were concentrated in vacuo and the product was dried under 

high vaccum. 

 

Protocol F: 1,4-Addition reaction of aldehydes to nitroethylene 

Calculated for 1 mol% TFA H-D-Pro-Pro-Glu-NH2 56 (454.4 g/mol) 

The aldehyde (0.66 mmol, 1.5 eq) and NMM (4.40 μmol, 0.01 eq = 2.2 mL from a 2 mM 

NMM stock-solution in chloroform) were added to the catalyst (2mg, 4.40 μmol, 0.01 eq). 

Nitroethylene (0.44 mmol, 1.0 eq = 2.2 mL from a 0.2 M nitroethylene stock-solution in 

chloroform) was added and the reaction mixture (homogenous solution) was stirred or shaken 

(thermo shaker) at RT. The progress of the reaction was followed by 1H NMR spectroscopy 

of the crude reaction mixture (∼100 μL + 400 μL CDCl3). After completion of the reaction, 

the mixture was cooled to -15 °C (ice/salt bath) and borane 1M in THF (0.75 mmol, 1.7 eq) 

was added. The mixture was stirred for 1 h at -15 °C. After completion of the reduction, the 

mixture was quenched with AcOH (2.2 mmol, 5 eq) and the solvent was evaporated. The 

crude product was directly separated by flash column chromatography on silica gel eluting 

with a mixture of pentanes and EtOAc. Collected fractions were concentrated in vacuo and 

the product was dried under high vaccum. 

 

15.3 General Protocol for Ion Exchange of Peptides 
 
 
Protocol G: Ion pair extraction with VariPure tube 

The desalting occurred by ion pair extraction using a VariPureTM IPE tube (Varian, Inc.). The 

crude TFA peptide (50-100 mg) was dissolved in water (1.5 mL) and loaded on the 

VariPureTM IPE tube which was previously rinsed with MeOH (2 mL). After eluting without 

pressure, the tube was washed with water until no more peptide was traced (TLC spots 

visualised with ninhydrin). Peptide containing fractions were pooled and lyophilised. The 

desalted peptide was obtained as a white solid (∼80%). The absence of TFA was confirmed 

by 19F NMR analysis.   

 



113 

 

16. Peptides, Building Blocks and Substrates 
 

16.1 Characterisation Index 
 

Peptides prepared by solid-phase synthesis 

 

TFA H-Pro-Pro-Asp-NH2 1 TFA H-D-Pro-Pro-Asn-OH 29 

TFA H-Pro-Pro-OH 4 TFA H-D-Pro-Pro-D-Asn-OH 30 

TFA H-Pro-Asp-NH2 5 TFA H-D-Pro-Pro-Ser-OH 31 

TFA H-Pro-Pro-Asp-Pro-NH2 6 TFA H-D-Pro-Pro-His-OH 32 

TFA H-Pro-Pro-Asp-Pro-Pro-NH2 7 TFA H-Pro-D-Ala-D-Asp-NH2 2 

TFA H-Pro-Pro-β-homo-Asp-NH2 9 TFA H-D-Pro-Pro-Asn-NH2 48 

TFA H-Pro-Pro-β-homo-Asp-OH 10 H-D-Pro-Pro-Asp(OtBu)-NH2 49 (desalted) 

TFA H-Pro-Pro-Asn-OH 11 TFA H-D-Pro-Pro-β-homo-Asp-NH2 52 

TFA H-Pro-Pro-Ser-OH 12 TFA H-D-Pro-Pro-Asp-OH 53 

TFA H-Pro-Pro-His-OH 13 TFA H-D-Pro-Pro-Asp-NH-TentaGel 55 

TFA H-Pro-Pro-Gly-OH 14 TFA H-D-Pro-Pro-Gly-OH 62 

TFA H-Pro-Pro-Cys(SO3H)-NH2 15 TFA H-D-Pro-Pro-β-Ala-OH 50 

TFA H-Pro-MePro-Asp-NH2 16 TFA H-D-Pro-Pro-γ-Abu-OH 63 

TFA Me-Pro-Pro-Asp-NH2 17 TFA H-D-Pro-Pro-Glu-NH2 56 

Ac-Pro-Pro-Asp-NH2 18 H-D-Pro-Pro-Glu-NH2 56 (desalted) 

TFA H-D-Pro-Pro-Asp-NH2 21 TFA H-D-Pro-Pro-Aad-NH2 57 

TFA H-Pro-D-Pro-Asp-NH2 19 TFA H-D-Pro-Pro-Api-NH2 58 

TFA H-Pro-Pro-D-Asp-NH2 20 TFA H-D-Pro-Pro-Asu-NH2 59 

TFA H-D-Pro-Pro-Asp-Pro-NH2 24 TFA H-D-Pro-Pro-D-Asn-OH 60 

TFA H-Pro-D-Pro-Asp-Pro-NH2 25 TFA H-D-Pro-Pro-D-Gln-OH 61 

TFA H-Pro-Pro-D-Asp-Pro-NH2 22 TFA H-Pro-Pro-Glu-NH2 65 

TFA H-Pro-Pro-Asp-D-Pro-NH2 26 TFA H-Pro-D-Pro-Glu-NH2 66 

TFA H-Pro-Pro-D-Asp-D-Pro-NH2 27 TFA H-Pro-Pro-D-Glu-NH2 67 

TFA H-Pro-D-Pro-Asp-D-Pro-NH2 23 TFA H-D-Pro-Pro-Gln-NH2 75 

TFA H-Pro-D-Pro-D-Asp-Pro-NH2 28  
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Peptides prepared by solution-phase synthesis 

 

Boc-Pro-Pro-OH 90 TFA H-D-Pro-Pro-Asp-NHPr 54 

Boc-D-Pro-Pro-OH 91 TFA H-D-Pro-Pro-5-Ava-OH 64 

TFA H-Pro-Pro-Asp-OMe 8 Boc-Pro-2-MePro-OH 92 

TFA H-D-Pro-Pro-Asp-OMe 51  

 

Synthesis of non-commercial available building blocks 

 

Fmoc- β-homo-Asp(OtBu)-OH 93 

N-Me-Pro-OH 94 

HCl H-5-Ava-OMe 95 

H-Asp(OtBu)-NHPr 96 

 

Synthesis of non-commercial available substrates 

 

(E)-1-Nitro-1-cyclohexylethene 

(E)-4-Methyl-1-nitropent-1-ene 

(E)-1-Nitro-1-heptene 

(E)-3,3-Dimethoxy-1-nitro-propene 69 

Nitroethylene 
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16.2 Peptides Prepared by Solid-Phase Synthesis 
 

Peptides on solid support were prepared eighter by automated or by manual synthesis 

(Fmoc/tBu strategy)[161] according to the general procedures and obtained as white solids and 

in yields of 70 % to 95 % unless otherwise stated. 

 

TFA H-Pro-Pro-Asp-NH2 (1) 

 

NH2

F3C O

O

N

O
O

H
N

CO2H

NH2

O

 
 

Prepared on Rink Amide AM resin (0.62 mmol/g) on a 10 mmol scale according to the 

general protocols for functionalisation of Rink Amide AM resin (Protocol A1) and for manual 

peptide synthesis using DIC/HOBt (Protocol B2). Fmoc-Asp(OtBu)-OH was used for the first 

and Fmoc-Pro-OH for the second and third coupling. Cleavage from the solid support and 

isolation of the peptide was carried out according to the general protocol (Protocol D).  

 
1H-NMR (500 MHz, d6-DMSO, 23°C): The conformers were observed in the ratio 5:2. 

Major conformer: δ = 8.15 (d, J = 8.0 Hz, 1H), 7.13 (s, 1H), 7.11 (s, 1H), 4.47 (dd, J = 8.3 Hz, 

5.9 Hz, 1H), 4.41 (dt, J = 6.7 Hz, 14.4 Hz, 1H), 4.36 (dd, J = 8.5 Hz, 5.2 Hz, 1H), 3.63 (m, 

1H), 3.45 (m, 1H), 3.24 (m, 1H), 3.16 (m, 1H), 2.65, (dd, J = 16.4 Hz, 6.3 Hz, 1H), 2.51 (dd, 

J = 16.4 Hz, 6.9 Hz, 1H), 2.39 (m, 1H), 2.12 (m, 1H), 1.97-1.79 (m, 6H); Minor conformer: δ 

= 8.57 (d, J = 8.1 Hz, 1H), 7.41 (s, 1H), 7.13 (s, 1H), 4.53 (dt, J = 5.3 Hz, 7.7 Hz, 1H), 4.42 

(m, 1H), 3.93 (t, J = 8.4 Hz, 1H), 3.52 (m, 1H), 3.42 (m, 1H), 3.35 (m, 1H), 3.27 (m, 1H), 

2.72, (dd, J = 16.5 Hz, 5.4 Hz, 1H), 2.55 (dd, J = 16.3 Hz, 8.6 Hz, 1H), 2.39 (m, 1H), 2.24 (m, 

1H), 2.04 (m, 1H), 1.97-1.79 (m, 5H).  

 
13C-NMR (125.6 MHz, d6-DMSO, 23°C): Major conformer: δ = 172.2, 171.9, 170.7, 167.1, 

60.0, 58.3, 49.3, 46.8, 45.9, 36.0, 28.9, 27.9, 24.5, 23.5; Minor conformer: δ = 172.0, 172.0, 

170.6, 166.8, 58.9, 58.4, 49.5, 47.4, 45.5, 36.3, 31.6, 27.3, 23.6, 22.0.  
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MS (ESI): m/z (%): 327.4 (100) [M+H] +, 349.5 (24) [M+Na] +. M = 326.3 calcd for 

C14H22N4O5. 

 

TFA H-Pro-Pro-OH (4) 

 

NH2

F3C O

O

N

O
O

OH

 
 

Prepared on 2-Chlorotrityl resin (1.60 mmol/g) on a 4 mmol scale according to the general 

protocols for functionalisation of 2-Chlorotrityl resin (Protocol A3) and for manual peptide 

synthesis using DIC/HOBt (Protocol B2). Fmoc-Pro-OH was used for the first and Boc-Pro-

OH for the second coupling. Cleavage from the solid support and isolation of the peptide was 

carried out according to the general protocol (Protocol D). The peptide was precipitated as a 

golden gum by addition of Et2O and dried in vacuo to a golden foam (99 %). 

 
1H NMR (400 MHz, D2O, 22°C): δ = 4.29 (t, J = 7.8 Hz, 2H), 3.41 (m, 2H), 3.30 (m, 2H), 

2.16 (m, 2H), 1.93 (m, 2H), 1.84 (m, 4H). 

 
13C NMR (100 MHz, D2O, 22°C): δ = 168.3, 60.6, 45.2, 27.2, 22.6.  

 
MS (ESI): m/z (%): 211.1 (100) [M-H]-. M = 212.2 calcd for C10H16N2O3. 
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TFA H-Pro-Asp-NH2 (5) 

 

 
 

Prepared on Rink Amide AM Resin (0.62 mmol/g) on a 150 μmol scale according to the 

general protocols for functionalisation of Rink Amide AM resin (Protocol A1) and for 

automated peptide synthesis (Protocol C). Fmoc-Asp(OtBu)-OH was used for the first and 

Fmoc-Pro-OH for the second coupling. Cleavage from the solid support and isolation of the 

peptide was carried out according to the general protocol (Protocol D).  

 
1H NMR (400 MHz, D2O, 22°C): δ = 4.68 (m, 1H), 4.41 (dd, J = 6.6 Hz, 8.6 Hz, 1H), 3.42 

(m, 2H), 2.99 – 2.80 (m, 2H), 2.46 (m, 1H), 2.18 – 2.02 (m, 3H). 

 
13C NMR (100 MHz, D2O, 22°C): δ = 177.5, 172.7, 172.4, 62.8, 53.6, 49.6, 39.0, 32.7, 26.9. 

 
MS (ESI): m/z (%): 230.1 (100) [M+H]+. M = 229.2 calcd for C9H15N3O4. 

 

TFA H-Pro-Pro-Asp-Pro-NH2 (6) 

 

 
 

Prepared on Rink Amide AM Resin (0.71 mmol/g) on a 200 μmol scale according to the 

general protocols for functionalisation of Rink Amide AM resin (Protocol A1) and for 

automated peptide synthesis (Protocol C). Fmoc-Pro-OH was used for the first, the third and 

the fourth coupling, Fmoc-Asp(OtBu)-OH was used for the second coupling. Cleavage from 

the solid support and isolation of the peptide was carried out according to the general protocol 

(Protocol D).  
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1H-NMR (400 MHz, d6-DMSO, 23°C): The conformers were observed in the ratio 7:2:1. 

Major conformer: δ = 9.38 (s, 1H), 8.51 (m, 1H), 8.33 (d, J = 7.9 Hz, 1H), 6.99 (s, 1H), 6.98 

(s, 1H), 4.77 (dd, J = 14.7 Hz, 6.9 Hz, 1H), 4.46 (m, 1H), 4.34 (m, 1H), 4.15 (m, 1H), 3.66-

3.35 (m, 4H), 3.20 (m, 2H), 2.80 (m, 1H), 2.40 (m, 1H), 2.16-1.70 (m, 12H). Signals of minor 

conformers: δ = 8.79 (d, J = 7.8 Hz), 8.15 (d, J = 7.9 Hz), 7.08 (s), 7.06 (s), 7.04 (s), 4.89-4.82 

(m), 4.21-4.18 (m).  

 
13C NMR (100 MHz, d6-DMSO, 22°C): Major conformer: δ = 173.4, 172.1, 170.6, 168.9, 

166.5, 59.7, 59.5, 58.2, 47.4, 46.7, 46.5, 45.7, 35.9, 29.2, 29.0, 27.8, 24.4, 24.1, 23.5. No 

signals of minor conformers observed. 

 

MS (ESI): m/z (%): 422.2 (100) [M-H] -. M = 423.5 calcd for C19H29N5O6. 

 

TFA H-Pro-Pro-Asp-Pro-Pro-NH2 (7) 

 

 
 
Prepared on Rink Amide AM Resin (0.62 mmol/g) on a 150 μmol scale according to the 

general protocols for functionalisation of Rink Amide AM resin (Protocol A1) and for 

automated peptide synthesis (Protocol C). Fmoc-Pro-OH was used for the first, the second, 

the fourth and the fifth coupling, Fmoc-Asp(OtBu)-OH was used for the third coupling. 

Cleavage from the solid support and isolation of the peptide was carried out according to the 

general protocol (Protocol D).  

 
1H-NMR (400 MHz, D2O, 23°C): δ = 4.96 (dd, J = 5.1 Hz, 8.8 Hz, 1H), 4.66 (m, 2H), 4.47 

(dd, J = 6.2 Hz, 8.5 Hz, 1H), 4.38 (dd, J = 5.4 Hz, 8.5 Hz, 1H), 3.80 (m, 1H), 3.69 (m, 2H), 

3.58 (m, 1H), 3.42 (m, 2H), 2.95 (m, 1H), 2.72 (dd, J = 8.8 Hz, 17.0 Hz, 1H), 2.57 (m, 1H), 

2.33 (m, 3H), 2.12 – 1.85 (m, 14H). 
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13C NMR (100 MHz, D2O, 22°C): δ = 177.1, 176.9, 176.7, 175.5, 173.2, 171.5, 63.8, 63.7, 

62.6, 62.4, 51.9, 51.3, 51.3, 51.2, 51.1, 50.1, 38.3, 33.0, 32.8, 31.8, 31.6, 28.1, 28.1, 27.3. 

 

MS (ESI): m/z (%): 521.2 (100) [M+H]+. M = 520.6 calcd for C24H36N6O7. 

 

TFA H-Pro-Pro-β-homo-Asp-NH2 (9) 

 

 
 

Prepared on Rink Amide AM resin (0.62 mmol/g) on a 2 mmol scale according to the general 

protocols for functionalisation of Rink Amide AM resin (Protocol A1) and for manual peptide 

synthesis using HCTU/i-Pr2NEt (Protocol B1). Fmoc-β-homo-Asp(OtBu)-OH 93 was used 

for the first and Fmoc-Pro-OH for the second and third coupling. Cleavage from the solid 

support and isolation of the peptide was carried out according to the general protocol 

(Protocol D).  

 
1H NMR (400 MHz, D2O, 25°C) δ = 4.47 (dd, J = 6.6 Hz, 8.6 Hz, 1H), 4.41 (m, 1H), 4.25 

(dd, J = 6.1 Hz, 8.4 Hz, 1H), 3.54 (m, 1H), 3.45 (m, 1H), 3.26 (m, 2H), 2.54 (dd, J = 2.3 Hz, 

6.8 Hz, 2H), 2.45 (dd, J = 5.1 Hz, 14.6 Hz, 2H), 2.35 (dd, J = 9.2 Hz, 14.6 Hz, 1H), 2.15 (m, 

1H), 2.00-1.80 (m, 5H), 1.75 (m, 1H). 

 
13C NMR (100 MHz, D2O, 25°C) δ = 175.8, 175.0, 173.2, 168.4, 61.2, 59.5, 48.0, 47.0, 44.5, 

39.8, 38.7, 30.0, 28.7, 24.9, 24.3. 

 
MS (ESI): m/z (%): 341.3 (100) [M+H] +. M = 340.4 calcd for C15H24N4O5. 
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TFA H-Pro-Pro-β-homo-Asp-OH (10) 

 

 
 

Prepared on Wang resin (1.0 mmol/g) on a 2 mmol scale according to the general protocols 

for functionalisation of Wang resin (Protocol A2) and for manual peptide synthesis using 

HCTU/i-Pr2NEt (Protocol B1). Fmoc-β-homo-Asp(OtBu)-OH 93 was used for the first and 

Fmoc-Pro-OH for the second and third coupling. Cleavage from the solid support and 

isolation of the peptide was carried out according to the general protocol (Protocol D).  

 
1H NMR (400 MHz, D2O, 25°C) δ = 4.48-4.30 (m, 2H), 4.19 (dd, J = 6.0 Hz, 8.4 Hz, 1H), 

3.47 (m, 1H), 3.39 (m, 1H), 3.22 (m, 2H), 2.61-2.46 (m, 3H), 2.41 (dd, J = 8.8 Hz, 16.0 Hz, 

2H), 2.08 (m, 1H), 1.94-1.73 (m, 5H), 1.68 (m, 1H). 

 
13C NMR (100 MHz, D2O, 25°C) δ = 175.0, 174.9, 173.1, 168.3, 61.2, 59.4, 48.0, 46.9, 43.9, 

38.6, 38.5, 29.8, 28.7, 24.8, 24.2.  

 
MS (ESI): m/z (%): 342.2 (100) [M+H] +. M = 341.4 calcd for C15H23N3O6. 

 

TFA H-Pro-Pro-Asn-OH (11) 

 

 
 

Prepared on Wang resin (1.0 mmol/g) on a 2 mmol scale according to the general protocols 

for functionalisation of Wang resin (Protocol A2) and for manual peptide synthesis using 

HCTU/i-Pr2NEt (Protocol B1). Fmoc-Asn(Trt)-OH was used for the first and Fmoc-Pro-OH 

for the second and third coupling. Cleavage from the solid support and isolation of the peptide 

was carried out according to the general protocol (Protocol D).  
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1H NMR (400 MHz, D2O, 25°C) δ = 4.58 (dd, J = 6.1 Hz, 6.2 Hz, 1H), 4.50 (dd, J = 6.1 Hz, 

8.5 Hz, 1H), 4.37 (dd, J = 5.3 Hz, 8.5 Hz, 1H), 3.56 (m, 1H), 3.48 (m, 1H), 3.28 (m, 2H), 2.73 

(d, J = 6.2 Hz, 2H), 2.44 (m, 1H), 2.20 (m, 1H), 2.02-1.78 (m, 6H). 

 
13C NMR (100 MHz, D2O, 25°C) δ = 175.0, 174.3, 173.8, 168.5, 60.9, 59.5, 49.8, 48.0, 47.0, 

36.4, 29.6, 28.8, 24.9, 24.2.  

 
MS (ESI): m/z (%): 327.2 (100) [M+H] +. M = 326.3 calcd for C14H22N4O5. 

 

TFA H-Pro-Pro-Ser-OH (12) 

 

 
 

Prepared on Wang resin (1.0 mmol/g) on a 2 mmol scale according to the general protocols 

for functionalisation of Wang resin (Protocol A2) and for manual peptide synthesis using 

HCTU/i-Pr2NEt (Protocol B1). Fmoc-Ser(tBu)-OH was used for the first and Fmoc-Pro-OH 

for the second and third coupling. Cleavage from the solid support and isolation of the peptide 

was carried out according to the general protocol (Protocol D).  

 
1H-NMR (500 MHz, D2O, 23°C): δ = 4.63 (m, 1H), 4.54 (m, 1H), 4.49 (m, 1H), 3.93 (dd, 

 J = 11.7 Hz, 4.6Hz, 2H), 3.70 (m, 1H), 3.59 (m, 1H), 3.39 (m, 2H), 2.55 (m, 1H), 2.35 (m, 

1H), 2.02 (m, 6H). 

 
13C-NMR (125.6 MHz, D2O, 23°C): δ =  173.7, 173.2, 168.0, 60.9, 60.4, 59.0, 54.9, 47.7, 

46.6, 29.3, 28.3, 24.5, 23.8.  

 

MS (ESI): m/z (%): 300 (100) [M+H]+. M = 299.3 calcd for C13H21N3O5. 
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TFA H-Pro-Pro-His-OH (13) 

 

 
 
Prepared on Wang resin (1.0 mmol/g) on a 2 mmol scale according to the general protocols 

for functionalisation of Wang resin (Protocol A2) and for manual peptide synthesis using 

HCTU/i-Pr2NEt (Protocol B1). Fmoc-His(Trt)-OH was used for the first and Fmoc-Pro-OH 

for the second and third coupling. Cleavage from the solid support and isolation of the peptide 

was carried out according to the general protocol (Protocol D).  

 
1H-NMR (500 MHz, D2O, 23°C): δ = 8.60 (s, 1H), 7.33 (s, 1H), 4.72 (m, 1H), 4.61 (m, 1H), 

4.43 (m, 1H), 3.67 (m, 1H), 3.57 (m, 1H), 3.39 (m, 2H), 3.31 (dd, J = 15.6 Hz, 5.2 Hz, 1H), 

3.21 (dd, J = 15.4 Hz, 7.9 Hz, 1H), 2.54 (m, 1H), 2.29 (m, 1H), 2.01 (m, 5H), 1.87 (m, 1H). 

 
13C-NMR (125.6 MHz, D2O, 23°C): δ =  173.4, 167.9, 133.3, 128.5, 117.2, 60.5, 59.0, 51.9, 

47.7, 46.6, 29.3, 28.3, 26.1, 24.5, 23.8. 

 

MS (ESI): m/z (%): 350 (100) [M+H]+. M = 349.4 calcd for C16H23N5O4. 

 

TFA H-Pro-Pro-Gly-OH (14) 

 

 
 
Prepared on Wang resin (1.0 mmol/g) on a 2 mmol scale according to the general protocols 

for functionalisation of Wang resin (Protocol A2) and for manual peptide synthesis using 

HCTU/i-Pr2NEt (Protocol B1). Fmoc-Gly-OH was used for the first and Fmoc-Pro-OH for the 

second and third coupling. Cleavage from the solid support and isolation of the peptide was 

carried out according to the general protocol (Protocol D).  
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1H NMR (400 MHz, D2O, 25°C) δ = 4.51 (dd, J = 6.9 Hz, 7.2 Hz, 1H), 4.39 (dd, J = 6.5 Hz, 

7.3 Hz, 1H), 3.93 (d, J = 18.0 Hz, 1H), 3.83 (d, J = 18.0 Hz, 1H), 3.59 (m, 1H), 3.47 (m, 1H), 

3.29 (m, 2H), 2.44 (m, 1H), 2.24 (m, 1H), 1.91 (m, 6H). 

 
13C NMR (100 MHz, D2O, 25°C) δ = 174.6, 173.3, 168.5, 60.9, 59.5, 48.1, 47.0, 41.4, 29.8, 

28.7, 24.9, 24.2. 

 
MS (ESI): m/z (%): 270.3 (100) [M+H]+. M = 269.3 calcd for C12H19N3O4. 

 

TFA H-Pro-Pro-Cys(SO3H)-NH2 (15) 

 

 
 

Prepared on Rink Amide MBHA resin (0.63 mmol/g) on a 2 mmol scale according to the 

general protocols for functionalisation of Rink Amide MBHA resin (Protocol A1) and for 

manual peptide synthesis using DIC/HOBt (Protocol B2). Fmoc-Cys(SO3H)-OH was used for 

the first and Fmoc-Pro-OH for the second and third coupling. Cleavage from the solid support 

and isolation of the peptide was carried out according to the general protocol (Protocol D).  

 
1H-NMR (600 MHz, d6-DMSO, 25°C): The conformers were observed in the ratio 1:1. 

Conformer 1: δ = 9.29 (1H), 8.61 (1H), 8.52 (d, J = 8.2 Hz, 1H), 7.04 (1H), 6.89 (1H), 4.65 

(m, 1H), 4.49 (m, 1H), 4.48 (m, 1H), 3.64 (m, 1H), 3.53 (m, 1H), 3.24 (m, 1H), 3.17 (m, 1H), 

2.98 (dd, J = (13.9 Hz, 3.1 Hz, 1H), 2.83 (dd, J = 13.9 Hz, 11 Hz, 1H), 2.35 (m, 1H), 2.18 (m, 

1H), 2.26 (m, 1H), 2.02 (m, 1H), 1.97 (m, 1H), 1.89 (m, 1H), 1.92 (m, 2H). Conformer 2: δ = 

8.99 (1H), 8.68 (1H), 8.35 (d, J = 6.4 Hz, 1H), 7.41 (1H), 7.13 (1H), 4.35 (m, 1H), 4.29 (m, 

1H), 4.18 (m, 1H), 3.51 (m, 1H), 3.39 (m, 1H), 3.17 (m, 2H), 2.85 (dd, J = 13.7 Hz, 6 Hz, 

1H), 2.78 (dd, J = 13.7 Hz, 6 Hz, 1H), 2.31 (m, 1H), 2.14 (m, 1H), 1.94 (m, 2H), 1.89 (m, 

1H), 1.81 (m, 1H), 1.81 (m, 2H). 
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13C NMR (151 MHz, d6-DMSO, 25°C): Conformer 1: δ = 172.1, 171.0, 167.5, 59.6, 58.3, 

51.6, 50.3, 46.7, 45.6, 31.0, 27.6, 24.2, 23.2. Conformer 2: 172.1, 170.1, 167.3, 60.6, 57.4, 

50.6, 50.0, 46.9, 45.8, 22.3, 22.0.  

 

HRMS (ESI) m/z: calcd for C13H23N4O6S 363.1338; found, 363.1331. 

 

TFA H-Pro-2-MePro-Asp-NH2 (16) 

 

 
 

Prepared on Rink Amide AM resin (0.35 mmol/g) on a 0.4 mmol scale according to the 

general protocols for functionalisation of Rink Amide AM resin (Protocol A1) and for manual 

peptide synthesis using HCTU/i-Pr2NEt (Protocol B1). Fmoc-Asp(OtBu)-OH was used for 

the first coupling. The second coupling was carried out by using 4.0 eq Boc-Pro-2-

methylproline-OH 94 and 4.0 eq HCTU/12.0 eq i-Pr2NEt. Cleavage from the solid support 

and isolation of the peptide was carried out according to the general protocol (Protocol D) but 

using neat TFA.  

 
1H NMR (400 MHz, D2O, 25°C): δ = 4.69 (m, 1H), 4.59 (m, 1H), 3.71 (m, 1H), 3.57 (m, 1H), 

3.38 (m, 1H), 3.26 (m, 1H), 2.87, (dd, J = 15.4 Hz, 5.3 Hz, 1H), 2.76 (dd, J = 15.4 Hz, 7.5 Hz, 

1H), 2.56 (m, 1H), 2.11 (m, 1H), 2.07-1.79 (m, 6H),1.52 (s, 3H). 

 
13C NMR (100 MHz, D2O, 25°C) δ = 176.8, 175.7, 174.5, 169.6, 64.9, 60.8, 51.2, 49.5, 48.3, 

38.2, 31.3, 30.1, 26.3, 25.5, 21.9.  

 

MS (ESI): m/z (%): 341.4 (92) [M+H]+. M = 340.4 calcd for C15H24N4O5. 

 



125 

 

TFA Me-Pro-Pro-Asp-NH2 (17) 

 

 
 

Prepared on Rink Amide AM resin (0.62 mmol/g) on a 3 mmol scale according to the general 

protocols for functionalisation of Rink Amide AM resin (Protocol A1) and for manual peptide 

synthesis using HCTU/i-Pr2NEt (Protocol B1). Fmoc-Asp(OtBu)-OH was used for the first 

coupling. The second coupling was performed with Fmoc-Pro-OH and the third coupling with 

N-Me-Pro-OH 94. Cleavage from the solid support and isolation of the peptide was carried 

out according to the general protocol (Protocol D).  

 
1H-NMR (400 MHz, d6-DMSO, 25°C): The conformers were observed in the ratio 1.5:1. 

Major conformer: δ = 9.68 (br s, 1H) 8.22 (d, J = 8.0 Hz, 1H) 7.16 (s, 1H), 7.11 (s, 1H), 4.48 

(m, 3H), 3.59 (m, 2H), 3.41 (m, 1H), 3.11 (m, 1H), 2.79 (s, 3H), 2.59 (m, 2H), 2.49 (m, 1H), 

2.18–1.70 (m, 7H). Minor conformer: 9.74 (br s, 1H), 8.71 (d, J = 8.0 Hz, 1H), 7.46 (s, 1H), 

7.16 (s, 1H), 4.53 (m, 1H), 4.33 (m, 1H), 4.85 (m, 1H), 3.59 (m, 2H), 3.41 (m, 1H), 3.11 (m, 

1H), 2.73 (s, 3H), 2.59 (m, 2H), 2.25 (m, 1H), 2.18–1.70 (m, 7H). 

 
13C NMR (100 MHz, d6-DMSO, 25 oC): Major conformer: δ = 173.2, 173.0, 172.7, 171.5, 

67.8, 60.8, 56.6, 50.3, 47.6, 36.9, 32.4, 29.8, 28.1, 25.2, 23.0. Minor conformer: 173.2, 173.1, 

172.7, 171.7, 67.8, 59.9, 56.1, 50.4, 48.1, 36.9, 32.4, 29.8, 28.3, 25.2, 22.9.  

 
HRMS (ESI) m/z: calcd for C15H25N4O5 341.1824; found, 341.1823.  
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Ac-Pro-Pro-Asp-NH2 (18) 

 

 
 

Prepared on Rink Amide AM resin (0.62 mmol/g) on a 3 mmol scale according to the general 

protocols for functionalisation of Rink Amide AM resin (Protocol A1) and for manual peptide 

synthesis using HCTU/i-Pr2NEt (Protocol B1). Fmoc-Asp(OtBu)-OH was used for the first 

coupling. The second and third coupling was performed with Fmoc-Pro-OH. N-terminal 

acetylation occured as follows: Et3N (20 eq) and Ac2O (20 eq) were added to the amine-

functionalised resin (pre-swollen in CH2Cl2) to a final concentration of ∼100 mM in CH2Cl2. 

The mixture was agitated for 1 h and then washed alternatively with DMF (5x) and CH2Cl2 

(5x). The completeness of acetylation was monitored using the standard chloranil test.[163] 

Cleavage from the solid support and isolation of the peptide was carried out according to the 

general protocol (Protocol D).  
 

1H-NMR (400 MHz, d6-DMSO, 25°C): The conformers were observed in the ratio 3:1. 

Major conformer: δ = 10.50 (br s, 1H), 7.89 (d, J = 8.2 Hz, 1H), 7.15 (s, 1H), 6.99 (s, 1H), 

4.51 (dd, J = 8.3 Hz, 3.2 Hz, 1H), 4.40 (m, 1H), 4.20 (dd, J = 8.3 Hz, 4.8 Hz 1H), 3.68 (m, 

1H), 3.52 (m, 2H), 3.34 (m, 1H), 2.68 (dd, J = 16.4 Hz, 5.5 Hz, 1H), 2.57 (dd, J = 16.4 Hz, 

7.3 Hz, 1H), 2.30–1.55 (m, 8H), 1.94 (s, 3H). Minor conformer: 10.50 (br s, 1H), 8.36 (d, J = 

8.2 Hz, 1H), 7.37 (s, 1H), 7.22 (s, 1H), 4.72 (dd, J = 8.6 Hz, 2.5 Hz), 4.47 (m, 1H), 4.30 (dd, J 

= 8.1 Hz, 4.8 Hz, 1H), 3.68 (m, 1H), 3.52 (m, 2H), 3.34 (m, 1H), 2.76, (dd, J = 16.4 Hz, 4.9 

Hz, 1H), 2.68 (dd, J = 16.4 Hz, 5.5 Hz, 1H), 2.30–1.55 (m, 8H), 1.76 (s, 3H). 

 
13C NMR (100 MHz, d6-DMSO, 25 oC): Major conformer: δ = 173.3, 173.1, 172.1, 171.7, 

168.9, 61.0, 58.2, 50.1, 48.4, 47.7, 36.5, 29.5, 29.2, 25.5, 25.1, 22.9. Minor conformer: δ = 

173.3, 173.2, 172.7, 172.7, 169.3, 59.5, 59.2, 50.2, 47.5, 46.9, 36.5, 29.4, 29.2, 25.5, 25.2, 

23.1. 

 
HRMS (ESI) m/z: calcd for C16H24N4O6Na 391.1593; found, 391.1589. 
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TFA H-D-Pro-Pro-Asp-NH2 (21) 

 

NH2

F3C O

O

N

O
O

H
N

CO2H

NH2

O

 
 

Prepared on Rink Amide AM resin (0.62 mmol/g) on a 10 mmol scale according to the 

general protocols for functionalisation of Rink Amide AM resin (Protocol A1) and for manual 

peptide synthesis using DIC/HOBt (Protocol B2). Fmoc-Asp(OtBu)-OH was used for the first 

coupling. The second coupling was performed with Fmoc-Pro-OH and the third coupling with 

Fmoc-D-Pro-OH. Cleavage from the solid support and isolation of the peptide was carried out 

according to the general protocol (Protocol D).  

 
1H NMR (400 MHz, D2O, 25°C) δ = 4.71 (dd, J = 5.3 Hz, 8.4 Hz, 1H), 4.64 (dd, J = 7.1 Hz, 

8.7 Hz, 1H), 4.46 (dd, J = 3.7 Hz, 8.6 Hz, 1H), 3.73 (m, 1H), 3.60 (m, 1H), 3.42 (m, 1H), 2.97 

(dd, J = 5.3 Hz, 16.9 Hz, 1H), 2.84 (dd, J = 8.4 Hz, 16.8 Hz, 1H), 2.55 (m, 1H), 2.31 (m, 1H), 

2.11-1.97 (m, 6H). 

 
13C NMR (100 MHz, CDCl3, 25°C) δ = 175.2, 174.5, 174.3, 168.9, 61.4, 58.8, 50.4, 48.1, 

47.1, 35.8, 29.9, 28.5, 24.7, 24.4. 

 

HRMS (ESI) m/z: calcd for C14H23N4O5 327.1668; found, 327.1661. 

 

TFA H-Pro-D-Pro-Asp-NH2 (19) 

 

 
 

Prepared on Rink Amide AM Resin (0.62 mmol/g) on a 150 μmol scale according to the 

general protocols for functionalisation of Rink Amide AM resin (Protocol A1) and for 

automated peptide synthesis (Protocol C). Fmoc-Asp(OtBu)-OH was used for the first 
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coupling. The second coupling was performed with Fmoc-D-Pro-OH and the third coupling 

with Fmoc-Pro-OH. Cleavage from the solid support and isolation of the peptide was carried 

out according to the general protocol (Protocol D).  

 
1H NMR (400 MHz, D2O, 25°C) δ = 4.75 (dd, J = 4.8 Hz, 8.4 Hz, 1H), 4.63 (m, 1H), 3.73 

(td, J = 6.5 Hz, 10.1 Hz, 1H), 3.62 (td, J = 7.0, 10.0, 1H), 3.42 (m, 2H), 2.97 (dd, J = 4.8 Hz, 

17.0 Hz, 1H), 2.85 (dd, J = 8.4 Hz, 17.0 Hz, 1H), 2.56 (m, 1H), 2.30 (m, 1H), 2.12-1.93 (m, 

6H). 

 
13C NMR (100 MHz, CDCl3, 25°C) δ = 175.4, 174.6, 174.6, 168.5, 61.5, 59.7, 50.3, 48.2, 

47.1, 35.9, 29.8, 28.6, 24.9, 24.4. 

 

HRMS (ESI) m/z: calcd for C14H23N4O5 327.1668; found, 327.1668. 

 

TFA H-Pro-Pro-D-Asp-NH2 (20) 

 

NH2

F3C O

O

N

O
O

H
N

CO2H

NH2

O

 
 

Prepared on Rink Amide AM Resin (0.62 mmol/g) on a 150 μmol scale according to the 

general protocols for functionalisation of Rink Amide AM resin (Protocol A1) and for 

automated peptide synthesis (Protocol C). Fmoc-D-Asp(OtBu)-OH was used for the first 

coupling. The second and the third coupling were performed with Fmoc-Pro-OH. Cleavage 

from the solid support and isolation of the peptide was carried out according to the general 

protocol (Protocol D).  

 
1H NMR (400 MHz, D2O, 25°C) δ = 4.77 (m, 1H), 4.64 (m, 1H), 4.51 (dd, J = 5.9 Hz, 8.5 

Hz, 1H), 3.71 (m, 1H), 3.62 (m, 1H), 3.42 (m, 2H), 2.89 (dd, J = 5.1 Hz, 15.8 Hz, 1H), 2.80 

(dd, J = 7.6 Hz, 15.7 Hz, 1H), 2.62 (m, 1H), 2.32 (m, 1H), 2.12-1.89 (m, 6H). 

 
13C NMR (100 MHz, CDCl3, 25°C) δ = 175.3, 174.6, 173.9, 168.8, 61.2, 59.8, 50.1, 48.4, 

47.3, 37.1, 30.2, 29.1, 25.2, 24.6. 
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HRMS (ESI) m/z: calcd for C14H23N4O5 327.1668; found, 327.1668. 

 

TFA H-D-Pro-Pro-Asp-Pro-NH2 (24) 

 

 
 

Prepared on Rink Amide AM Resin (0.71 mmol/g) on a 200 μmol scale according to the 

general protocols for functionalisation of Rink Amide AM resin (Protocol A1) and for 

automated peptide synthesis (Protocol C). Fmoc-Pro-OH was used for the first and the third 

coupling, Fmoc-Asp(OtBu)-OH was used for the second and Fmoc-D-Pro-OH for the fourth 

coupling. Cleavage from the solid support and isolation of the peptide was carried out 

according to the general protocol (Protocol D).  

 
1H-NMR (400 MHz, d6-DMSO, 23°C): The conformers were observed in the ratio10:5:2:1. 

Major conformer: δ = 9.44 (m, 1H), 8.55 (m, 1H), 8.42 (d, J = 7.8 Hz, 1H), 6.99 (s, 2H), 4.77 

(dm, J = 14.3 Hz, 1H), 4.48 (m, 1H), 4.31 (dd, J = 8.7 Hz, 2.9 Hz, 1H), 4.17 (m, 1H), 3.62 (m, 

2H), 3.43 (m, 2H), 3.20 (m, 2H), 2.81 (m, 1H), 2.40 (m, 1H), 2.21-1.62 (m, 12H). Signals of 

minor conformers: δ = 9.26 (m), 8.62 (d, J = 7.8 Hz), 8.36 (d, J = 7.3), 8.22 (d, J = 7.8 Hz), 

7.09 (s), 7.05 (s), 4.83 (m), 4.55 (m). 

 
13C NMR (100 MHz, d6-DMSO, 22°C): Major conformer: δ = 173.5, 172.1, 170.8, 168.9, 

166.4, 59.8, 59.7, 58.3, 47.5, 46.7, 46.5, 45.7, 35.9, 29.3, 29.2, 27.9, 24.2, 24.0, 23.6. Signals 

of minor conformers: δ = 173.4, 171.9, 170.9, 167.0, 59.3, 58.1, 45.6, 28.3, 23.8. 

 

HRMS (ESI) m/z: calcd for C19H30N5O6 424.2196; found, 424.2193. 
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TFA H-Pro-D-Pro-Asp-Pro-NH2 (25) 

 

 
 

Prepared on Rink Amide AM Resin (0.71 mmol/g) on a 200 μmol scale according to the 

general protocols for functionalisation of Rink Amide AM resin (Protocol A1) and for 

automated peptide synthesis (Protocol C). Fmoc-Pro-OH was used for the first and the fourth 

coupling, Fmoc-Asp(OtBu)-OH was used for the second and Fmoc-D-Pro-OH for the third 

coupling. Cleavage from the solid support and isolation of the peptide was carried out 

according to the general protocol (Protocol D).  

 
1H-NMR (400 MHz, d6-DMSO, 23°C): The conformers were observed in the ratio 10:5:1. 

Major conformer: δ = 9.44 (br s, 1H), 8.53 (m, 1H), 8.42 (d, J = 8.5 Hz, 1H), 7.02 (s, 2H), 

4.89 (dm, J = 15.6, 1H), 4.46 (m, 1H), 4.32 (dd, J = 8.6 Hz, 2.7 Hz, 1H), 4.18 (m, 1H), 3.63 

(m, 2H), 3.42 (m, 2H), 3.19 (m, 2H), 2.78 (m, 1H), 2.41 (m, 1H), 2.19-1.68 (m, 12H). Signals 

of minor conformers: δ = 9.32 (br s), 8.66 (d, J = 7.6 Hz), 8.03 (d, J = 8.2 Hz), 6.99 (s), 4.81 

(m), 4.54 (m), 4.12 (m). 

 
13C NMR (100 MHz, d6-DMSO, 22°C): Major conformer: δ = 173.4, 172.2, 170.5, 168.7, 

166.3, 59.8, 59.8, 58.4, 47.2, 46.7, 46.5, 45.6, 36.3, 29.6, 29.3, 27.7, 24.1, 23.9, 23.5. Signals 

of minor conformers: δ = 173.4, 173.3, 172.1, 59.1, 58.1, 35.7, 23.8. 

 

MS (ESI): m/z (%): 424.2 (100) [M+H]+. M = 423.5 calcd for C19H29N5O6. 

 



131 

 

TFA H-Pro-Pro-D-Asp-Pro-NH2 (22) 

 

 
 

Prepared on Rink Amide AM Resin (0.71 mmol/g) on a 200 μmol scale according to the 

general protocols for functionalisation of Rink Amide AM resin (Protocol A1) and for 

automated peptide synthesis (Protocol C). Fmoc-Pro-OH was used for the first the third and 

the fourth coupling, Fmoc-D-Asp(OtBu)-OH was used for the second coupling. Cleavage 

from the solid support and isolation of the peptide was carried out according to the general 

protocol (Protocol D).  

 
1H-NMR (400 MHz, d6-DMSO, 23°C): The conformers were observed in the ratio 5:3:2:1. 

Major conformer: δ =  9.42 (br s, 1H), 8.48 (m, 1H), 8.09 (d, J = 8.2 Hz, 1H), 7.16 (s, 1H), 

6.94 (s, 1H), 4.44 (m, 4H), 3.64-3.31 (m, 4H), 3.30-3.05 (m, 2H), 2.75 (m, 1H), 2.39 (m, 1H), 

2.29-1.69 (m, 12H). Signals of minor conformers: δ = 9.34 (br s, 1H), 8.56 (d, J = 8.1 Hz), 

8.00 (d, J = 8.3 Hz), 7.56 (s), 7.50 (s), 7.35 (s), 7.23 (s), 7.18 (s), 7.02 (s), 4.33-3.95 (m). 

 
13C NMR (100 MHz, d6-DMSO, 22°C): Major conformer: δ = 173.4, 171.7, 170.7, 168.9, 

166.6, 59.9, 59.5, 58.2, 47.4, 46.7, 45.9, 45.8, 36.1, 29.5, 29.2, 28.0, 24.4, 24.2, 23.5. Signals 

of minor conformers: δ = 175.2, 171.5, 168.8, 59.4, 35.7, 23.8. 

 

MS (ESI): m/z (%): 424.2 (100) [M+H]+. M = 423.5 calcd for C19H29N5O6. 
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TFA H-Pro-Pro-Asp-D-Pro-NH2 (26) 

 

 
 

Prepared on Rink Amide AM Resin (0.71 mmol/g) on a 200 μmol scale according to the 

general protocols for functionalisation of Rink Amide AM resin (Protocol A1) and for 

automated peptide synthesis (Protocol C). Fmoc-D-Pro-OH was used for the first coupling, 

Fmoc-Asp(OtBu)-OH was used for the second and Fmoc-Pro-OH for the third and fourth 

coupling. Cleavage from the solid support and isolation of the peptide was carried out 

according to the general protocol (Protocol D).  

 
1H-NMR (500 MHz, d6-DMSO, 23°C): The conformers were observed in the ratio 13:3:3:1. 

Major conformer: δ = 9.46 (br s, 1H), 8.60 (d, J = 7.8 Hz, 1H), 8.43 (m, 1H), 6.97 (s, 1H), 

6.82 (s, 1H), 4.62 (ddm, J = 14.0 Hz, 8.2 Hz, 1H), 4.46-4.37 (m, 1H), 4.31 (dd, J = 8.5 Hz, 5.0 

Hz), 4.12 (dd, J = 8.8 Hz, 4.4 Hz), 3.58 (m, 2H), 3.46 (m, 2H), 3.13 (m, 2H), 2.75 (dd, J = 

16.4 Hz, 8.5 Hz, 1H), 2.35 (m, 2H), 2.11-1.94 (m, 2H), 1.93-1.70 (m, 9H). Signals of minor 

conformers: δ = 9.27 (br s), 8.90 (d, J = 8.0 Hz), 8.83 (d, J = 8.2 Hz), 8.33 (s, J = 7.4), 7.91 

(s), 7.54 (s), 7.44 (s), 7.25 (s), 7.18 (s), 7.03 (s), 4.83 (m), 4.53 (m), 4.17 (dd, J = 8.6 Hz, 3.9 

Hz), 2.61 (m), 2.49 (m), 2.21 (m).   

 
13C NMR (126 MHz, d6-DMSO, 23°C): Major conformer: δ = 173.0, 172.3, 171.5, 169.3, 

167.2, 60.4, 60.0, 58.6, 48.3, 47.2, 47.2, 46.4, 36.3, 29.6, 29.6, 28.4, 24.8, 24.8, 24.1. Signals 

of minor conformers: δ = 174.0, 172.0, 171.2, 171.0, 169.8, 168.9, 167.2, 167.0, 60.0, 59.9, 

59.9, 59.3, 58.9, 58.8, 48.0, 47.8, 46.9, 46.2, 36.1, 32.1, 32.1, 29.7, 29.5, 28.6, 28.3, 24.7, 

24.0, 22.5, 22.4. 

 

MS (ESI): m/z (%): 424.2 (100) [M+H]+. M = 423.5 calcd for C19H29N5O6. 
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TFA H-Pro-Pro-D-Asp-D-Pro-NH2 (27) 

 

 
 

Prepared on Rink Amide AM Resin (0.71 mmol/g) on a 200 μmol scale according to the 

general protocols for functionalisation of Rink Amide AM resin (Protocol A1) and for 

automated peptide synthesis (Protocol C). Fmoc-D-Pro-OH was used for the first coupling, 

Fmoc-D-Asp(OtBu)-OH was used for the second and Fmoc-Pro-OH for the third and fourth 

coupling. Cleavage from the solid support and isolation of the peptide was carried out 

according to the general protocol (Protocol D).  

 
1H-NMR (500 MHz, d6-DMSO, 23°C): The conformers were observed in the ratio 9:5:4:2. 

Major conformer: δ = 9.35 (m, 1H), 8.45 (m, 1H), 8.01 (d, J = 8.3 Hz, 1H), 7.15 (s, 1H), 6.90 

(s, 1H), 4.50 (m, 1H), 4.42 (m, 2H), 4.12 (m, 1H), 3.60-3.03 (m, 6H), 2.70 (m, 1H), 2.35 (m, 

1H), 2.00-1.68 (m, 12H). Signals of minor conformers: δ = 8.57 (d, J = 7.8 Hz, 8.47 (d, J = 

7.3 Hz), 7.97 (s, J = 8.0), 7.61 (s), 7.54 (s), 7.23 (s), 7.20 (s), 7.18 (s), 6.95 (s), 4.57 (m), 4.26 

(m), 4.22 (m). 

 
13C NMR (126 MHz, d6-DMSO, 23°C): Major conformer: δ = 174.1, 173.1, 170.8, 168.8, 

167.4, 60.0, 59.8, 58.8, 48.9, 47.2, 47.1, 46.3, 36.1, 29.9, 29.4, 28.3, 24.7, 24.5, 24.0. Signals 

of minor conformers: δ = 60.1, 59.0, 49.0, 46.8, 46.2, 45.6, 36.0, 32.2, 32.2, 28.3, 28.0, 24.7, 

24.6, 24.0, 22.8, 22.5. 

 

MS (ESI): m/z (%): 424.2 (100) [M+H]+. M = 423.5 calcd for C19H29N5O6. 
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TFA H-Pro-D-Pro-Asp-D-Pro-NH2 (23) 

 

NH2

F3C O

O

N

O
O

H
N

N

O NH2
O

CO2H

 
 

Prepared on Rink Amide AM Resin (0.71 mmol/g) on a 200 μmol scale according to the 

general protocols for functionalisation of Rink Amide AM resin (Protocol A1) and for 

automated peptide synthesis (Protocol C). Fmoc-D-Pro-OH was used for the first and third 

coupling, Fmoc-Asp(OtBu)-OH was used for the second and Fmoc-Pro-OH for the fourth 

coupling. Cleavage from the solid support and isolation of the peptide was carried out 

according to the general protocol (Protocol D).  

 
1H-NMR (400 MHz, d6-DMSO, 23°C): The conformers were observed in the ratio 10:4:3:2. 

Major conformer: δ =  9.43 (s, 1H), 8.49 (m, 1H), 8.51 (d, J = 8.1 Hz, 1H), 6.96 (s, 1H), 6.87 

(s, 1H), 4.82 (m, 1H), 4.50 (m, 1H), 4.32 (m, 1H), 4.19 (m, 1H), 3.74-3.33 (m, 4H), 3.30-3.08 

(m, 2H), 2.75 (m, 1H), 2.37 (m, 1H), 2.21-1.52 (m, 12H). Signals of minor conformers: δ = 

9.32 (s), 8.76 (d, J = 7.7 Hz), 8.71 (d, J = 7.9 Hz), 8.48 (d, J = 8.2 Hz), 7.62 (s), 7.44 (s), 7.28 

(s), 7.25 (s), 7.06 (s), 6.91 (s), 4.68 (m), 4.59 (m).  

 
13C NMR (100 MHz, d6-DMSO, 22°C): Major conformer: δ = 173.4, 171.8, 170.8, 168.8, 

166.5, 59.9, 59.8, 58.4, 47.4, 46.7, 46.7, 45.7, 36.0, 29.5, 29.1, 27.8, 24.2, 23.9, 23.6. Signals 

of minor conformers: δ = 173.2, 171.7, 171.6, 171.5, 171.4, 171.2, 170.6, 169.3, 168.7, 166.2, 

59.6, 59.4, 59.1, 58.0, 46.3, 35.2, 31.7, 31.7, 31.5, 28.4, 24.0, 23.8, 21.6. 

 

MS (ESI): m/z (%): 424.2 (100) [M+H]+. M = 423.5 calcd for C19H29N5O6. 
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TFA H-Pro-D-Pro-D-Asp-Pro-NH2 (28) 

 

 
 

Prepared on Rink Amide AM Resin (0.71 mmol/g) on a 200 μmol scale according to the 

general protocols for functionalisation of Rink Amide AM resin (Protocol A1) and for 

automated peptide synthesis (Protocol C). Fmoc-Pro-OH was used for the first and fourth 

coupling, Fmoc-D-Asp(OtBu)-OH was used for the second and Fmoc-D-Pro-OH for the third 

coupling. Cleavage from the solid support and isolation of the peptide was carried out 

according to the general protocol (Protocol D).  

 
1H-NMR (400 MHz, d6-DMSO, 23°C): The exact ratio of conformers could not be 

determined. A minimum of three conformers are existent according to the 1H-NMR spectra. 

Major conformer: δ = 9.43 (br s, 1H), 8.63 (m, 1H), 8.29 (d, J = 8.3, 1H),  6.92 (s, 2H), 4.55 

(m, 2H), 4.36 (m, 1H), 4.17 (m, 1H), 3.71-3.31 (m, 4H), 3.20 (m, 2H), 2.77 (m, 1H), 2.38 (m, 

1H), 2.22-1.60 (m, 12H). Signals of minor conformers: δ = 9.28 (br s), 9.15 (br s), 8.52 (m), 

8.36 (m), 8.15 (d, J = 8.1 Hz), 7.56 (s), 7.53 (s), 7.23 (s), 7.22 (s), 7.19 (s), 7.18 (s). 

 
13C NMR (100 MHz, d6-DMSO, 23°C): Major conformer: δ = 173.5, 171.7, 171.0, 168.8, 

166.5, 59.8, 59.7, 58.3, 47.5, 46.8, 46.6, 45.7, 35.8, 29.3, 29.2, 27.8, 24.2, 24.0, 23.5. Signals 

of minor conformers: δ = 173.5, 173.2, 171.5, 171.0, 170.8, 168.7, 46.7, 29.4, 28.3, 28.2, 

23.9. 

 

MS (ESI): m/z (%): 446.4 (100) [M+Na]+.  M = 423.5 calcd for C19H29N5O6. 
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TFA H-D-Pro-Pro-Asn-OH (29) 

 

NH2

F3C O

O
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O

 
 
Prepared on Wang resin (1.0 mmol/g) on a 2 mmol scale according to the general protocols 

for functionalisation of Wang resin (Protocol A2) and for manual peptide synthesis using 

HCTU/i-Pr2NEt (Protocol B1). Fmoc-Asn(Trt)-OH was used for the first coupling. Fmoc-Pro-

OH was used for the second and Fmoc-D-Pro-OH for the third coupling. Cleavage from the 

solid support and isolation of the peptide was carried out according to the general protocol 

(Protocol D).  

 
1H-NMR (400 MHz, D2O, 25°C): δ = 4.55 (dd, J = 6.4 Hz, 8.5 Hz, 1H), 4.51 (dd, J = 6.4 Hz, 

8.6 Hz, 1H), 4.39 (dd, J = 5.4 Hz, 8.6 Hz, 1H), 3.46 (m, 1H), 3.40 (m, 1H), 3.33 (m, 2H), 2.70 

(dd, J = 5.8 Hz, 15.4 Hz, 1H), 2.65 (dd, J = 6.4 Hz, 15.2 Hz, 1H), 2.35 (m, 1H), 2.18 (m, 1H), 

2.12-1.70 (m, 6H). 

 
13C-NMR (100 MHz, D2O, 25°C): δ =  175.0, 174.3, 173.7, 168.5, 60.9, 59.5, 49.8, 48.0, 

47.0, 36.4, 29.6, 28.8, 24.9, 24.2. 

 

MS (ESI): m/z (%): 327.2 (100) [M+H]+. M = 326.3 calcd for C14H22N4O5. 

 

TFA H-D-Pro-Pro-D-Asn-OH (30) 

 

NH2

F3C O

O

N

O
O
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OH

O

 
 
Prepared on Wang resin (1.0 mmol/g) on a 2 mmol scale according to the general protocols 

for functionalisation of Wang resin (Protocol A2) and for manual peptide synthesis using 

HCTU/i-Pr2NEt (Protocol B1). Fmoc-D-Asn(Trt)-OH was used for the first coupling. Fmoc-
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Pro-OH was used for the second and Fmoc-D-Pro-OH for the third coupling. Cleavage from 

the solid support and isolation of the peptide was carried out according to the general protocol 

(Protocol D).  

 
1H-NMR (400 MHz, D2O, 25°C): δ = 4.62 (dd, J = 6.1 Hz, 8.5 Hz, 1H), 4.55 (dd, J = 6.1 Hz, 

8.6 Hz, 1H), 4.38 (dd, J = 5.4 Hz, 8.6 Hz, 1H), 3.52 (m, 1H), 3.45 (m, 1H), 3.34 (m, 2H), 2.80 

(dd, J = 5.8 Hz, 15.8 Hz, 1H), 2.76 (dd, J = 6.3 Hz, 15.6 Hz, 1H), 2.34 (m, 1H), 2.19 (m, 1H), 

1.95-1.70 (m, 6H). 

 
13C-NMR (100 MHz, D2O, 25°C): δ =  175.0, 174.3, 173.7, 168.5, 60.9, 59.4, 49.7, 48.0, 

47.0, 36.4, 29.6, 28.7, 24.9, 24.2. 

 

MS (ESI): m/z (%): 327.2 (100) [M+H]+. M = 326.3 calcd for C14H22N4O5. 

 

TFA H-D-Pro-Pro-Ser-OH (31) 

 

 
 

Prepared on Wang resin (1.0 mmol/g) on a 2 mmol scale according to the general protocols 

for functionalisation of Wang resin (Protocol A2) and for manual peptide synthesis using 

HCTU/i-Pr2NEt (Protocol B1). Fmoc-Ser(tBu)-OH was used for the first coupling. Fmoc-Pro-

OH was used for the second and Fmoc-D-Pro-OH for the third coupling. Cleavage from the 

solid support and isolation of the peptide was carried out according to the general protocol 

(Protocol D).  

 
1H-NMR (400 MHz, D2O, 23°C): δ = 4.63 (dd, J = 8.6 Hz, 7.0 Hz, 1H), 4.53 (m, 2H), 4.00 

(dd, J = 11.6 Hz, 4.8 Hz, 1H), 3.90 (dd, J = 12.0 Hz, 4.0 Hz, 1H), 3.73 (m, 1H), 3.60 (m, 1H), 

3.42 (m, 2H), 2.55 (m, 1H), 2.33 (m, 1H), 2.06 (m, 6H). 

 
13C-NMR (100 MHz, D2O, 23°C): δ =  174.4, 173.6, 168.3, 61.3, 61.0, 59.6, 55.3, 48.1, 47.0, 

30.0, 28.4, 24.6, 24.3. 
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MS (ESI): m/z (%): 300.1 (100) [M+H]+. M = 299.3 calcd for C13H21N3O5. 

 

TFA H-D-Pro-Pro-His-OH (32) 

 

 
 
Prepared on Wang resin (1.0 mmol/g) on a 2 mmol scale according to the general protocols 

for functionalisation of Wang resin (Protocol A2) and for manual peptide synthesis using 

HCTU/i-Pr2NEt (Protocol B1). Fmoc-His(Trt)-OH was used for the first coupling. Fmoc-Pro-

OH was used for the second and Fmoc-D-Pro-OH for the third coupling. Cleavage from the 

solid support and isolation of the peptide was carried out according to the general protocol 

(Protocol D).  

 
1H-NMR (400 MHz, D2O / CD3OD 5:1, 23°C): δ = 8.63 (d, J = 1.3 Hz, 1H), 7.34 (s, 1H), 

4.68 (dd, J = 5.2 Hz, 8.0 Hz, 1H), 4.61 (m, 1H), 4.44 (dd, J = 3.3 Hz, 8.8 Hz, 1H), 3.72 (m, 

1H), 3.58 (m, 1H), 3.50 – 3.34 (m, 3H), 3.18 (dd, J = 8.1 Hz, 15.5 Hz, 1H), 2.56 (m, 1H), 2.29 

(m, 1H), 2.12 – 1.92 (m, 6H). 

 
13C-NMR (100 MHz, D2O / CD3OD 5:1, 23°C): δ = 176.8, 176.4, 170.8, 136.3, 131.9, 120.2, 

63.7, 62.2, 55.5, 49.6, 32.5, 31.0, 29.5, 27.2, 26.9, 17.1, one signal probably below CD3OD. 

 

MS (ESI): m/z (%): 350.2 (100) [M+H]+. M = 349.4 calcd for C16H23N5O4. 
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TFA H-Pro-D-Ala-D-Asp-NH2 (2) 

 

 
 
Prepared on Rink Amide AM Resin (0.71 mmol/g) on a 200 μmol scale according to the 

general protocols for functionalisation of Rink Amide AM resin (Protocol A1) and for 

automated peptide synthesis (Protocol C). Fmoc-D-Asp(OtBu)-OH was used for the first 

coupling, Fmoc-D-Ala-OH was used for the second and Fmoc-Pro-OH for the third coupling. 

Cleavage from the solid support and isolation of the peptide was carried out according to the 

general protocol (Protocol D).  

 
1H-NMR (400 MHz, D2O, 22°C): δ = 4.40 (dd, J = 7.9 Hz, 5.3 Hz, 1H), 4.27 (dd, J = 8.6 Hz, 

6.7 Hz, 1H), 4.22 (q, J = 7.2 Hz, 1H), 3.27 (m, 2H), 2.54 (dd, J = 15.9 Hz, 5.3 Hz, 1H), 2.48 

(dd, J = 15.9 Hz, 7.9 Hz, 1H), 2.31 (m, 1H), 1.92 (m, 3H), 1.26 (d, J = 7.2 Hz, 3H). 

 
13C NMR (100 MHz, CDCl3, 22°C): δ = 177.6, 176.0, 174.3, 169.7, 59.7, 51.3, 50.0, 46.4, 

38.4, 29.5, 23.7, 16.2. MS (ESI): m/z (%): 301.4 (100) [M+H]+, 323.4 (24) [M+Na]+. 

 

MS (ESI): m/z (%): 301.4 (100) [M+H]+, 323.4 (25) [M+Na]+. M = 300.3 calcd for 

C12H20N4O5. 

 

TFA H-D-Pro-Pro-Asn-NH2 (48) 

 

NH2

F3C O

O

N

O
O

H
N

CONH2

NH2

O

 
 

Prepared on Rink Amide AM Resin (0.71 mmol/g) on a 200 μmol scale according to the 

general protocols for functionalisation of Rink Amide AM resin (Protocol A1) and for 

automated peptide synthesis (Protocol C). Fmoc-Asn(Trt)-OH was used for the first coupling. 
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Fmoc-Pro-OH was used for the second and Fmoc-D-Pro-OH for the third coupling. Cleavage 

from the solid support and isolation of the peptide was carried out according to the general 

protocol (Protocol D).  

 
1H NMR (400 MHz, D2O, 25°C) δ = 4.70 (dd,  J = 5.4 Hz, 8.6 Hz, 1H), 4.66 (dd, J = 6.8 Hz, 

8.6 Hz, 1H), 4.48 (dd, J = 3.9 Hz, 8.5 Hz, 1H), 3.76 (m, 1H), 3.62 (m, 1H), 3.44 (m, 2H), 2.87 

(dd, J = 5.5 Hz, 15.5 Hz, 1H), 2.76 (dd, J = 8.8 Hz, 15.5 Hz, 1H), 2.57 (m, 1H), 2.34 (m, 1H), 

2.14 – 1.98 (m, 6H). 

 
13C NMR (100 MHz, D2O, 25°C) δ = 177.6, 177.2, 176.6, 171.2, 63.7, 62.0, 53.1, 50.4, 49.4, 

38.9, 32.2, 30.8, 27.0, 26.7. 

 

HRMS (ESI) m/z: calcd for C14H23N5O4 326.1828; found, 326.1826. 

 

H-D-Pro-Pro-Asp(OtBu)-NH2 (49) (desalted) 

 

 
 

Prepared on Sieber Amide resin (0.41 mmol/g) at a 0.45 mmol scale according to the general 

protocols for functionalisation of Sieber Amide resin (Protocol A1) and for manual peptide 

synthesis (Protocol B1) but using 3 eq of each of amino acid derivative, 3 eq of HCTU and 9 

eq of i-Pr2NEt. Fmoc-Asp(OtBu)-OH was used for the first coupling. Fmoc-Pro-OH was used 

for the second and Fmoc-D-Pro-OH for the third coupling. The N-terminal proline fmoc group 

was removed by piperidine treatment (3 x 5 min), and the crude peptide was cleaved by 

treatment of the resin with 1% TFA/CH2Cl2 (10 x 2 min using 10 x 10 mL). After each 

acidolysis treatment, the cleavage solution containing the protected peptide was immediately 

run into a cooled (0 oC) solution of 5 % pyridine in MeOH (30 mL), and following collection 

of CH2Cl2 washings (10 x 5 mL), the cleavage solution was concentrated in vacuo almost to 

dryness. The crude peptide was dissolved in chloroform (500 μL), and the resulting golden 

coloured solution loaded onto acetate charged ion-exchange resin (Dowex  1x2-400) eluting 

with water. Product containing fractions (visualised on silica TLC by ninhydrin) were pooled 

and concentrated by centrifugal evaporation, affording the title peptide as a stiff colourless 

glass (65 %). 
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1H NMR (400 MHz, D2O, 25°C) δ = 4.71 (dd, J = 5.8 Hz, 8.4 Hz, 1H), 4.66 (dd, J = 7.1 Hz, 

8.8 Hz, 1H), 4.47 (dd, J = 3.5 Hz, 9.0 Hz, 1H), 3.75 (m, 1H), 3.62 (m, 1H), 3.44 (m, 2H),  

2.91 (dd, J = 5.8 Hz, 16.4 Hz, 1H), 2.75 (dd, J = 8.5 Hz, 16.3 Hz, 1H), 2.57 (m, 1H), 2.34 (m, 

1H), 2.14 – 1.96 (m, 6H), 1.46 (s, 9H). 

 
13C NMR (100 MHz, D2O, 25°C) δ = 177.5, 176.6, 174.1, 171.2, 86.2, 63.8, 62.1, 52.9, 50.4, 

49.4, 39.6, 32.3, 30.8, 29.9, 27.0, 26.7. 

 

HRMS (ESI) m/z: calcd for C18H31N4O5 383.2294; found, 383.2304. 

 

TFA H-D-Pro-Pro-β-homo-Asp-NH2 (52) 

 

 
 

Prepared on Rink Amide AM resin (0.62 mmol/g) on a 2 mmol scale according to the general 

protocols for functionalisation of Rink Amide AM resin (Protocol A1) and for manual peptide 

synthesis using HCTU/i-Pr2NEt (Protocol B1). Fmoc-β-homo-Asp(OtBu)-OH 93 was used 

for the first coupling. Fmoc-Pro-OH was used for the second and Fmoc-D-Pro-OH for the 

third coupling. Cleavage from the solid support and isolation of the peptide was carried out 

according to the general protocol (Protocol D).  
 
1H NMR (400 MHz, D2O, 25°C) δ = 4.63 (dd, J = 6.8 Hz, 8.8 Hz, 1H), 4.55 (m, 1H), 4.38 

(dd, J = 3.6 Hz, 8.8 Hz, 1H), 3.72 (m, 1H), 3.58 (m, 1H), 3.42 (m, 2H), 2.66 – 2.45 (m, 5H), 

2.27 (m, 1H), 2.11 – 1.93(m, 6H). 

 
13C NMR (100 MHz, D2O, 25°C) δ = 178.6, 178.0, 176.2, 171.1, 64.2, 62.4, 50.7, 49.8, 47.4, 

42.7, 41.8, 32.9, 31.2, 27.2, 27.1. 

 

HRMS (ESI) m/z: calcd for C15H25N4O5
 341.1824; found, 341.1829. 
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TFA H-D-Pro-Pro-Asp-OH (53) 

 

 
 

Prepared on Wang resin (1.0 mmol/g) on a 2 mmol scale according to the general protocols 

for functionalisation of Wang resin (Protocol A2) and for manual peptide synthesis using 

HCTU/i-Pr2NEt (Protocol B1). Fmoc-Asp(OtBu)-OH was used for the first coupling. Fmoc-

Pro-OH was used for the second and Fmoc-D-Pro-OH for the third coupling. Cleavage from 

the solid support and isolation of the peptide was carried out according to the general protocol 

(Protocol D).  

 
1H NMR (400 MHz, D2O, 25°C) δ = 4.77 (dd, J = 5.7 Hz, 6.6 Hz, 1H), 4.63 (dd, J = 7.3 Hz, 

8.5 Hz, 1H), 4.49 (dd, J = 3.3 Hz, 8.6 Hz, 1H), 3.73 (m, 1H), 3.60 (m, 1H), 3.42 (m, 2H), 2.97 

(m, 2H), 2.56 (m, 1H), 2.32 (m, 1H), 2.12 – 1.97 (m, 6H). 

 
13C NMR (100 MHz, D2O, 25°C) δ = 177.4, 177.0, 176.8, 171.1, 63.8, 62.4, 52.3, 50.7, 49.7 

38.5, 32.6, 31.2, 27.3, 27.0.  

 

HRMS (ESI) m/z: calcd for C14H22N3O6
 328.1508; found, 328.1500. 

 

TFA H-D-Pro-Pro-Asp-NH-TentaGel  (55) (solid supported) 

 

 
 

Prepared on TentaGel S NH2 resin (0.27 mmol/g) on a 70 μmol scale according to the general 

protocol for automated peptide synthesis (Protocol C). No special treatment was required for 

the functionalisation of the resin (first coupling). Fmoc-Asp(OtBu)-OH was used for the first 
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coupling. Fmoc-Pro-OH was used for the second and Boc-D-Pro-OH for the third coupling. 

The t-butyl protecting groups were removed by treatment of the resin with a mixture of 

TFA/CH2Cl2 1:2 within 2 h followed by washing with CH2Cl2 (5x), CH2Cl2 / Et3N (9:1 v/v) 

(5x), CH2Cl2 (5x) and Et2O (5x). The resin was then dried under high vacuum. 

 

TFA H-D-Pro-Pro-Gly-OH (62) 

 

 
 

Prepared on Wang resin (1.0 mmol/g) on a 2 mmol scale according to the general protocols 

for functionalisation of Wang resin (Protocol A2) and for manual peptide synthesis using 

HCTU/i-Pr2NEt (Protocol B1). Fmoc-Gly-OH was used for the first coupling. Fmoc-Pro-OH 

was used for the second and Fmoc-D-Pro-OH for the third coupling. Cleavage from the solid 

support and isolation of the peptide was carried out according to the general protocol 

(Protocol D).  

 
1H NMR (400 MHz, D2O / CD3OD 2:1, 25°C) δ = 4.61 (dd, J = 7.4 Hz, 8.3 Hz, 1H), 4.49 

(dd, J = 3.2 Hz, 8.6 Hz, 1H), 3.98 (d, J = 17.8 Hz, 1H), 3.92 (d, J = 17.8 Hz, 1H), 3.75 (m, 

1H), 3.59 (m, 1H), 3.41 (m, 2H), 2.56 (m, 1H), 2.31 (m, 1H), 2.05 (m, 6H). 

 
13C NMR (100 MHz, D2O / CD3OD 2:1, 25°C) δ = 176.9, 176.0, 170.8, 63.8, 62.3, 50.5, 

49.6, 44.1, 32.6, 31.1, 27.1, 27.0. 

 

MS (ESI): m/z (%): 270.2 (100) [M+H]+. M = 269.3 calcd for C12H19N3O4. 
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TFA H-D-Pro-Pro-β-Ala-OH (50) 

 

 
 

Prepared on Wang resin (1.0 mmol/g) on a 2 mmol scale according to the general protocols 

for functionalisation of Wang resin (Protocol A2) and for manual peptide synthesis using 

HCTU/i-Pr2NEt (Protocol B1). Fmoc-β-Ala-OH was used for the first coupling. Fmoc-Pro-

OH for the second and Fmoc-D-Pro-OH for the third coupling. Cleavage from the solid 

support and isolation of the peptide was carried out according to the general protocol 

(Protocol D).  

 
1H NMR (400 MHz, D2O / CD3OD 12:1, 25°C) δ = 4.63 (dd, J = 7.1 Hz, 8.7 Hz, 1H), 4.39 

(dd, J = 4.0 Hz, 8.9 Hz, 1H), 3.73 (m, 1H), 3.60 (m, 1H), 3.57 – 3.36 (m, 4H),  2.61 (t, J = 

6.5 Hz, 2H), 2.58 (m, 1H), 2.28 (m, 1H), 2.14 – 1.92 (m, 6H). 

 

 13C NMR (100 MHz, D2O / CD3OD 12:1, 25°C) δ = 179.0, 176.8, 171.1, 64.1, 62.3, 51.5, 

49.7, 38.3, 36.4, 32.8, 31.1, 27.8, 27.0. 

 

HRMS (ESI) m/z: calcd for C13H22N3O4 384.1610; found, 384.1604. 

 

TFA H-D-Pro-Pro-γ-Abu-OH (63) 

 

 
 

Prepared on Wang resin (1.0 mmol/g) on a 2 mmol scale according to the general protocols 

for functionalisation of Wang resin (Protocol A2) and for manual peptide synthesis using 

HCTU/i-Pr2NEt (Protocol B1). Fmoc-γ-Abu-OH was used for the first coupling. Fmoc-Pro-
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OH for the second and Fmoc-D-Pro-OH for the third coupling. Cleavage from the solid 

support and isolation of the peptide was carried out according to the general protocol 

(Protocol D).  

 
1H NMR (400 MHz, D2O, 25°C) δ = 4.63 (dd, J = 6.9 Hz, 8.9 Hz, 1H), 4.38 (dd, J = 4.1 Hz, 

8.9 Hz, 1H), 3.73 (m, 1H), 3.60 (m, 1H), 3.42 (m, 2H), 3.24 (dt, J = 3.3 Hz, 6.7 Hz, 2H), 2.56 

(m, 1H), 2.37 (t, J = 7.4 Hz, 2H), 2.28 (m, 1H), 2.13 – 1.94 (m, 6H), 1.80 (p, J = 7.1 Hz, 2H). 

 
13C NMR (100 MHz, D2O, 25°C) δ = 180.9, 176.7, 170.9, 64.1, 62.2, 51.6, 49.6, 41.5, 33.9, 

32.7, 31.1, 27.2, 26.9, 26.8. 

 

MS (ESI): m/z (%): 298.2 (100) [M+H]+. M = 297.4 calcd for C14H23N3O4. 

 

TFA H-D-Pro-Pro-Glu-NH2 (56) 

 

NH2

F3C O

O

N

O
O

H
N

NH2

O

CO2H

 
 

Prepared on Rink Amide AM resin (0.62 mmol/g) on a 15 mmol scale according to the 

general protocols for functionalisation of Rink Amide AM resin (Protocol A1) and for manual 

peptide synthesis using DIC/HOBt (Protocol B2). Fmoc-Glu(OtBu)-OH was used for the first 

and Fmoc-Pro-OH for the second coupling. Boc-D-Pro-OH was applied for the third coupling. 

Cleavage from the solid support and isolation of the peptide was carried out according to the 

general protocol (Protocol D). 

 
1H NMR (400 MHz, D2O, 25°C) δ = 4.51 (dd, J = 7.1 Hz, 8.8 Hz, 1H), 4.34 (dd, J = 3.6 Hz, 

9.0 Hz, 1H), 4.23 (dd, J = 5.2 Hz, 9.5 Hz, 1H), 3.60 (m, 1H), 3.49 (m, 1H), 3.29 (m, 2H), 2.40 

(m, 3H), 2.19 (m, 1H), 2.08-1.80 (m, 8H). 

 
13C NMR (100 MHz, D2O, 25°C) δ = 177.4, 176.2, 174.5, 168.6, 61.2, 59.6, 53.2, 48.0, 47.0, 

30.3, 29.8, 28.5, 26.4, 24.7, 24.3. 
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For detailed assignement of 1H and 13C NMR signals in d6-DMSO and 

CDCl3/CD3OD/CD3OH 23:1:1 (v/v/v) see Chapter 18.4.1. 

  

HRMS (ESI) m/z: calcd for C15H25N4O5 341.1824; found, 341.1821. 

 
Desalting of H-D-Pro-Pro-Glu-NH2  (56) 

 

The peptide desalting occurred by ion pair extraction using a VariPureTM IPE tube according 

to the general procecure (Protocol G) with TFA H-D-Pro-Pro-Glu-NH2 56 (80 mg, 176 

μmol). The desalted H-D-Pro-Pro-Glu-NH2 was obtained as a white solid (49 mg, 81 %).  

 

TFA H-D-Pro-Pro-Aad-NH2 (57) 

 

NH2

F3C O

O

N

O
O

H
N

NH2

O

CO2H
 

 

Prepared on Rink Amide AM Resin (0.71 mmol/g) on a 200 μmol scale according to the 

general protocols for functionalisation of Rink Amide AM resin (Protocol A1) and for 

automated peptide synthesis (Protocol C). Fmoc-Aad(OtBu)-OH was used for the first 

coupling. Fmoc-Pro-OH was used for the second and Fmoc-D-Pro-OH for the third coupling. 

Cleavage from the solid support and isolation of the peptide was carried out according to the 

general protocol (Protocol D).  

 
1H NMR (400 MHz, D2O, 25°C) δ  =  4.64 (dd, J = 7.0 Hz, 8.7 Hz, 1H), 4.48 (dd, J = 3.5 

Hz, 8.9 Hz, 1H), 4.28 (dd, J = 5.4 Hz, 8.8 Hz, 1H), 3.76 (m, 1H), 3.61 (m, 1H), 3.43 (m, 2H), 

2.56 (m, 1H), 2.41 (t, J = 7.2 Hz, 2H), 2.33 (m, 1H), 2.12 – 1.93 (m, 6H), 1.91 – 1.62 (m, 

4H). 

 
13C NMR (100 MHz, D2O, 25°C) δ = 181.7, 179.6, 177.2, 171.4, 63.9, 62.4, 56.6, 50.8, 49.8, 

36.5, 33.3, 32.7, 31.2, 27.4, 27.1, 23.9. 

 

MS (ESI): m/z (%):355.2 (100) [M+H]+. M = 354.4 calcd for C16H26N4O5. 
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TFA H-D-Pro-Pro-Api-NH2 (58) 

 

 
 
Prepared on Rink Amide AM Resin (0.62 mmol/g) on a 100 μmol scale according to the 

general protocols for functionalisation of Rink Amide AM resin (Protocol A1) and for 

automated peptide synthesis (Protocol C). Fmoc-Api(OtBu)-OH [= (S)-Fmoc-2-amino-

pimelic acid-7-tert-butyl ester] was used for the first coupling. Fmoc-Pro-OH was used for the 

second and Fmoc-D-Pro-OH for the third coupling. Cleavage from the solid support and 

isolation of the peptide was carried out according to the general protocol (Protocol D).  

 
1H NMR (400 MHz, D2O, 25°C) δ = 4.64 (m, 1H), 4.47 (dd, J = 3.5 Hz, 8.9 Hz, 1H), 4.27 

(dd, J = 5.5 Hz, 9.0 Hz, 1H), 3.72 (m, 1H), 3.60 (m, 1H), 3.43 (m, 2H), 2.66 (m, 1H), 2.32 (m, 

3H), 2.05 (m, 5H), 1.79 (m, 3H), 1.62 (m, 2H), 1.42 (m, 2H). 

 
13C NMR (100 MHz, D2O, 25°C) δ = 182.4, 179.7, 177.0 171.2, 63.7, 62.2, 56.5, 50.6, 49.6, 

37.0, 33.4, 32.5, 31.0, 27.6, 27.2, 26.9, 26.9 

 

MS (ESI): m/z (%): 369.2 (100) [M+H]+. M = 368.4 calcd for C17H28N4O5. 

 

TFA H-D-Pro-Pro-Asu-NH2 (59) 

 

 
 
Prepared on Rink Amide AM Resin (0.62 mmol/g) on a 100 μmol scale according to the 

general protocols for functionalisation of Rink Amide AM resin (Protocol A1) and for 

automated peptide synthesis (Protocol C). Fmoc-Asu(OtBu)-OH [= (S)-Fmoc-2-amino-
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suberic acid-8-tert-butyl ester] was used for the first coupling. Fmoc-Pro-OH was used for the 

second and Fmoc-D-Pro-OH for the third coupling. Cleavage from the solid support and 

isolation of the peptide was carried out according to the general protocol (Protocol D).  

 
1H NMR (400 MHz, D2O, 25°C) δ = 4.64 (dd, J = 7.3 Hz, 8.5 Hz, 1H), 4.48 (dd, J = 3.5 Hz, 

9.0 Hz, 1H), 4.26 (dd, J = 5.6 Hz, 9.0 Hz, 1H), 3.73 (m, 1H), 3.61 (m, 1H), 3.43 (m, 2H), 2.55 

(m, 1H), 2.37 – 2.26 (m, 3H), 2.04 (m, 5H), 1.78 (m, 3H), 1.59 (td, J = 7.3 Hz, 14.2 Hz, 2H), 

1.30 (m, 4H). 

 
13C NMR (100 MHz, D2O, 25°C) δ = 183.0, 179.7, 176.8, 171.0, 63.5, 62.0, 56.4, 50.4, 49.4, 

37.3, 33.4, 32.3, 30.8, 30.4, 27.5, 27.2, 27.0 26.7. 

 

MS (ESI): m/z (%): 383.3 (100) [M+H]+. M = 382.5 calcd for C18H30N4O5. 

 

TFA H-D-Pro-Pro-D-Asn-OH (60) 

 

NH2

F3C O

O

N

O
O

H
N

CONH2
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O

 
 
Prepared on Wang resin (1.0 mmol/g) on a 2 mmol scale according to the general protocols 

for functionalisation of Wang resin (Protocol A2) and for manual peptide synthesis using 

HCTU/i-Pr2NEt (Protocol B1). Fmoc-D-Asn(Trt)-OH was used for the first coupling. Fmoc-

Pro-OH for the second and Fmoc-D-Pro-OH for the third coupling. Cleavage from the solid 

support and isolation of the peptide was carried out according to the general protocol 

(Protocol D).  

 

1H NMR (400 MHz, D2O, 25°C) δ = 4.62 (dd, J = 6.1 Hz, 8.5 Hz, 1H), 4.55 (dd, J = 6.1 Hz, 

8.6 Hz, 1H), 4.38 (dd, J = 5.4 Hz, 8.6 Hz, 1H), 3.52 (m, 1H), 3.45 (m, 1H), 3.34 (m, 2H), 2.80 

(dd, J = 5.8 Hz, 15.8 Hz, 1H), 2.76 (dd, J = 6.3 Hz, 15.6 Hz, 1H), 2.34 (m, 1H), 2.19 (m, 1H), 

1.95-1.70 (m, 6H). 
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13C NMR (100 MHz, D2O, 25°C) δ = 175.0, 174.3, 173.7, 168.5, 60.9, 59.4, 49.7, 48.0, 47.0, 

36.4, 29.6, 28.7, 24.9, 24.2. 

 
MS (ESI): m/z (%): 327.2 (100) [M+H]+. M = 326.3 calcd for C14H22N4O5. 

 

TFA H-D-Pro-Pro-D-Gln-OH (61) 

 

NH2

F3C O

O

N

O
O

H
N

OH

O
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Prepared on Wang resin (1.0 mmol/g) on a 2 mmol scale according to the general protocols 

for functionalisation of Wang resin (Protocol A2) and for manual peptide synthesis using 

HCTU/i-Pr2NEt (Protocol B1). Fmoc-D-Gln(Trt)-OH was used for the first coupling. Fmoc-

Pro-OH for the second and Fmoc-D-Pro-OH for the third coupling. Cleavage from the solid 

support and isolation of the peptide was carried out according to the general protocol 

(Protocol D).  

 
1H NMR (400 MHz, D2O, 25°C) δ = 4.51 (dd, J = 7.1 Hz, 8.8 Hz, 1H), 4.36 (dd, J = 3.5 Hz, 

8.6 Hz, 1H), 4.28 (dd, J = 5.0 Hz, 9.2 Hz, 1H), 3.61 (m, 1H), 3.48 (m, 1H), 3.28 (m, 2H), 2.41 

(m, 1H), 2.24 (m, 3H), 2.08 (m, 1H), 1.92 (m, 7H). 

 
13C NMR (100 MHz, D2O, 25°C) δ = 178.3, 175.0, 174.2, 168.5, 61.2, 59.7, 52.6, 48.0, 47.0, 

31.5, 30.1, 28.4, 26.7, 24.5, 24.3. 

 
MS (ESI): m/z (%): 341.3 (100) [M+H]+. M = 340.4 calcd for C15H24N4O5. 

 



150 

TFA H-Pro-Pro-Glu-NH2 (65) 

 

NH2

F3C O

O

N

O
O

H
N

NH2

O

CO2H

 
 

Prepared on Rink Amide AM Resin (0.71 mmol/g) on a 200 μmol scale according to the 

general protocols for functionalisation of Rink Amide AM resin (Protocol A1) and for 

automated peptide synthesis (Protocol C). Fmoc-Glu(OtBu)-OH was used for the first 

coupling. Fmoc-Pro-OH was used for the second and the third coupling. Cleavage from the 

solid support and isolation of the peptide was carried out according to the general protocol 

(Protocol D).  

 

1H NMR (400 MHz, D2O, 25°C) δ = 4.51 (dd, J = 6.3 Hz, 8.5 Hz, 1H), 4.36 (dd, J = 6.3 Hz, 

8.2 Hz, 1H), 4.20 (dd, J = 5.5 Hz, 9.1 Hz, 1H), 3.57 (m, 1H), 3.45 (m, 1H), 3.29 (m, 2H), 2.42 

(m, 3H), 2.21 (m, 1H), 2.07-1.72 (m, 8H). 

 
13C NMR (100 MHz, D2O, 25°C) δ = 177.4, 176.2, 174.2, 168.4, 60.9, 59.5, 53.2, 48.1, 47.0, 

30.2, 29.7, 28.7, 26.5, 25.0, 24.2. 

 
MS (ESI): m/z (%): 341.3 (100) [M+H]+. M = 340.4 calcd for C15H24N4O5. 

 

TFA H-Pro-D-Pro-Glu-NH2 (66) 

 

NH2
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Prepared on Rink Amide AM Resin (0.71 mmol/g) on a 200 μmol scale according to the 

general protocols for functionalisation of Rink Amide AM resin (Protocol A1) and for 

automated peptide synthesis (Protocol C). Fmoc-Glu(OtBu)-OH was used for the first 

coupling. Fmoc-D-Pro-OH was used for the second and Fmoc-Pro-OH for the third coupling. 
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Cleavage from the solid support and isolation of the peptide was carried out according to the 

general protocol (Protocol D).  

 

1H NMR (400 MHz, D2O, 25°C) δ = 4.49 (dd, J = 7.1 Hz, 8.8 Hz, 1H), 4.34 (dd, J = 4.4 Hz, 

8.8 Hz, 1H), 4.23 (dd, J = 4.8 Hz, 9.8 Hz, 1H), 3.60 (m, 1H), 3.47 (m, 1H), 3.29 (m, 2H), 

2.47-2.37 (m, 3H), 2.19 (m, 1H), 2.07 (m, 1H), 2.01-1.78 (m, 7H). 

 
13C NMR (100 MHz, D2O, 25°C) δ = 177.4, 176.3, 174.6, 168.4, 61.3, 59.6, 53.2, 48.0, 47.0, 

30.5, 29.9, 28.5, 26.3, 24.7, 24.3. 

 
MS (ESI): m/z (%): 341.2 (100) [M+H]+. M = 340.4 calcd for C15H24N4O5. 

 

TFA H-Pro-Pro-D-Glu-NH2 (67) 

 

NH2

F3C O

O

N

O
O

H
N

NH2

O

CO2H

 
 

Prepared on Rink Amide AM Resin (0.71 mmol/g) on a 200 μmol scale according to the 

general protocols for functionalisation of Rink Amide AM resin (Protocol A1) and for 

automated peptide synthesis (Protocol C). Fmoc-D-Glu(OtBu)-OH was used for the first 

coupling. Fmoc-Pro-OH was used for the second and for the third coupling. Cleavage from 

the solid support and isolation of the peptide was carried out according to the general protocol 

(Protocol D).  

 

1H NMR (400 MHz, D2O, 25°C) δ = 4.50 (dd, J = 6.4 Hz, 8.5 Hz, 1H), 4.35 (dd, J = 7.1 Hz, 

7.7 Hz, 1H), 4.24 (dd, J = 4.7 Hz, 9.9 Hz, 1H), 3.59 (m, 1H), 3.45 (m, 1H), 3.27 (m, 2H), 

2.50-2.30 (m, 3H), 2.21 (m, 1H), 2.09 (m, 1H), 2.02-1.75 (m, 7H). 

 
13C NMR (100 MHz, D2O, 25°C) δ = 177.3, 176.3, 174.4, 168.4, 61.2, 59.5, 53.0, 48.1, 47.0, 

30.4, 29.7, 28.7, 26.4, 25.1, 24.2. 

 
 MS (ESI): m/z (%): 341.2 (100) [M+H]+. M = 340.4 calcd for C15H24N4O5. 

 



152 

TFA H-D-Pro-Pro-Gln-NH2 (75) 

 

NH2

F3C O

O

N

O
O

H
N

NH2

O

CONH2

 
 

Prepared on Rink Amide AM Resin (0.71 mmol/g) on a 200 μmol scale according to the 

general protocols for functionalisation of Rink Amide AM resin (Protocol A1) and for 

automated peptide synthesis (Protocol C). Fmoc-Gln(Trt)-OH was used for the first coupling. 

Fmoc-Pro-OH was used for the second and Fmoc-D-Pro-OH for the third coupling. Cleavage 

from the solid support and isolation of the peptide was carried out according to the general 

protocol (Protocol D).  

 
1H-NMR (400 MHz, D2O / CD3OD 5 : 1, 23°C): δ = 4.63 (m, 1H), 4.46 (dd, J = 3.0 Hz, 8.9 

Hz, 1H), 4.29 (dd, J = 4.9 Hz, 9.5 Hz, 1H), 3.74 (m, 1H), 3.61 (m, 1H), 3.42 (m, 2H), 2.55 

(m, 1H), 2.40 (t, J = 7.4 Hz, 2H), 2.33 (m, 1H), 2.17 – 1.93 (m, 8H). 

 
13C-NMR (100 MHz, D2O / CD3OD 5 : 1, 23°C): δ =180.8, 178.7, 176.9, 171.2, 64.0, 62.4, 

56.0, 50.7, 49.7, 34.3, 32.5, 31.2, 29.9, 27.4, 27.0. 

 

MS (ESI): m/z(%): 340.2 (100) [M+H]+. M = 339.4 calcd for C15H25N5O4. 
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16.3 Peptides Prepared by Solution-Phase Synthesis 
 

Boc-Pro-Pro-OH (90) 

 

 
 

Boc-Pro-OH (16.4 g, 76.1 mmol, 1.05 eq), EDC HCl (16.68 g, 87.0 mmol, 1.2 eq) and 

HOBt H2O (13.3 g, 87.0 mmol, 1.2 eq) were charged into a 1L flask and 200 mL of dry 

CH2Cl2 was added with stirring while the contents were cooled to 0oC in an ice-bath. i-Pr2NEt 

(15.0 mL, 90.6 mmol, 1.25 eq) was added dropwise over 10 min, and the resulting yellow 

solution was stirred for an additional 10 min before HCl H-Pro-OMe (12.0 g, 72.5 mmol, 1.0 

eq) was added as a solid. The resulting homogeneous yellow reaction mixture was stirred at 

RT for 4 h and diluted with 200 mL of 0.1 M HCl. The layers were separated and the aqueous 

phase extracted with CH2Cl2 (3 x 30 mL). The combined organic phases were washed with 1 

M NaHCO3 solution (100 mL), water (100 mL) and brine (100 mL). The dried (MgSO4) 

organic phases were filtered through a short plug of silicagel (10 mm, 4 cm dia) and the crude 

protected dipeptide solution was concentrated in vacuo at 30 oC. The resulting light yellow oil 

was chromatographed over silicagel eluting with 2 % (v/v) MeOH/CH2Cl2 (TLC visualised 

with ninhydrin), product containing fractions combined and concentrated in vacuo to afford 

Boc-Pro-Pro-OMe as a clear colourless oil (21.7 g, 92 %). 

 

The obtained Boc-Pro-Pro-OMe (13.7 g, 42.0 mmol, 1.0 eq) was dissolved in a mixture of 

1:1:1 (v/v/v) THF/MeOH/4M NaOH (250 mL) and the resulting cloudy mixture was stirred at 

RT for 2 h until the lower layer of oil was consumed and the starting material showed 

complete conversion by TLC (CH2Cl2/MeOH 9:1 v/v, ninhydrin). The basic aqueous layer 

was washed with CH2Cl2 (3 x 100 mL) and was then acidified (to pH 2) with concentrated 

HCl (30% aq). The resulting colourless suspension was extracted with EtOAc (5 x 75 mL). 

The combined EtOAc layers were washed with brine (1 x 100 mL) and dried over anhydrous 

Na2SO4. The solvents were evaporated in vacuo yielding a sticky foam which was dissolved 

in a minimum amount of CH2Cl2 (40 mL). Pentane (200 mL) was added slowly and the 

mixture was unltrasonicated until a colourless suspension was obtained. Evaporation of the 
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solvents and drying under high vaccum yielded Boc-Pro-Pro-OH 90 as a white solid (10.2 g, 

78 %). 

 
1H NMR (400 MHz, CDCl3, 23°C): Rotamers were observed around the tBu singlet in a 

approximate ratio 2:1: δ = 4.69 - 4.38 (m, 2H), 3.83 - 3.39 (m, 4H), 2.40 - 1.87 (m, 8H), 1.46 

and 1.40 (2 × s, (CH3)3 rotamers, 9H). 

 
13C NMR (100 MHz, CDCl3, 23°C): Mixture of rotamers: δ = 174.7, 174.4, 172.5, 172.2, 

154.6, 153.5, 80.0, 79.8, 60.0, 59.9, 57.7, 57.6, 47.3, 46.9, 46.7, 30.2, 29.4, 28.45, 28.4, 27.2, 

27.0, 25.0, 24.3, 23.7. 

 
MS (ESI): m/z (%): 313.4 (100) [M+H]+. M = 312.4 calcd for C15H24N2O5. 

 

Boc-D-Pro-Pro-OH (91) 
 

 
 

Boc-D-Pro-Pro-OH 91 was prepared in analogy to Boc-Pro-Pro-OH 90 (peptide coupling and 

soaponification), using Boc-D-Pro-OH (10.0 g, 46.5 mmol, 1.05 eq), EDC HCl (10.2 g, 53.1 

mmol, 1.2 eq), HOBt H2O (8.1 g, 53.1 mmol, 1.2 eq), i-Pr2NEt (9.2 mL, 55.3 mmol, 1.25 eq) 

and HCl H-Pro-OMe (7.3 g, 44.3 mmol, 1.0 eq). The product was obtained as a white solid 

(10.4 g, 72 % overall). 
 

1H NMR (400 MHz, CDCl3, 23°C): Rotamers were observed around the tBu singlet in a 

approximate ratio 2:1: δ = 10.21 (s br, 1H), 4.54 (m, 1H), 4.39 (m, 1H), 3.95 - 3.28 (m, 4H), 

2.45 - 1.68 (m, 8H), 1.37 and 1.33 (2 × s, (CH3)3 rotamers, 9H). 

 
13C NMR (100 MHz, CDCl3, 23°C): Mixture of rotamers: δ = 175.6, 174.3, 172.0, 171.5, 

154.9, 153.4, 143.7, 80.6, 80.4, 60.5, 57.9, 57.7, 47.5, 46.9, 46.6, 30.2, 29.1, 28.5, 28.4, 28.3, 

28.1, 28.0, 27.0, 24.8, 24.7, 24.7, 23.7. 

 
MS (ESI): m/z (%): 335.1 (100) [M+Na]+. M = 312.4 calcd for C15H24N2O5. 
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TFA H-Pro-Pro-Asp-OMe (8) 

 

 

Boc-Pro-Pro-OH 90 (500 mg, 1.6 mmol, 1.0 eq), H-Asp(OtBu)-OMe HCl (384 mg, 1.6 

mmol, 1.0 eq) and EDC HCl (368 mg, 1.9 mmol, 1.2 eq) were charged into a 50 mL flask. 

10 mL EtOAc and 1mL DMF were added with stirring. i-Pr2NEt (320 μL, 1.9 mmol, 1.2 eq) 

was added and the cloudy mixture was stirred at RT over night. The TLC (EtOAc/MeOH 

10:1 v/v) showed complete conversion of the starting material. The resulting clear solution 

was diluted with EtOAc (20 mL) and extracted with 0.1M HCl (5 mL), H2O (5 mL), 

NaHCO3 10 % aq (5 mL) and brine (2x 5 mL). The organic layer was dried (MgSO4) and 

concentrated in vacuo at 30 °C to a colourless oil which was then chromatographed over 

silicagel eluting with a gradient of neat EtOAc to 10% (v/v) MeOH in EtOAc. Product 

containing fractions were combined and concentrated in vacuo. A mixture of TFA/CH2Cl2 

2:1 (v/v) (2 mL) was added to the obtained Boc-D-Pro-Pro-Asp(OtBu)-OMe and the 

solution was stirred for 1 h. All volatailes were removed in vacuo followed by precipitation 

of the remaining oil with Et2O (10 mL). The precipitate was filtered over a syringe filter and 

triturated with Et2O (3x 3 mL). Drying under high vaccum yielded TFA H-Pro-Pro-Asp-

OMe 8 as a white solid (355 mg, 65 %). 
 
1H-NMR (400 MHz, d6-DMSO, 23°C): The conformers were observed in the ratio 4:1. 

Major conformer: δ = 9.89 (s, 1H), 8.45 (br s, 1H), 8.42 (d, J = 8.2 Hz, 1H), 4.55 (dd, J = 

13.9, 6.4 Hz, 1H), 4.46 (m, 1H), 4.11 (dd, J = 8.3, 4.8 Hz, 1H), 3.60 (m, 1H), 3.58 (s, 3H), 

3.42 (m, 1H), 3.23 (m, 1H), 3.16 (m, 1H), 2.75 (m, 1H), 2.65 (m, 1H), 2.40 (m, 1H), 2.12 (m, 

1H), 2.94–1.72 (m, 6H). Minor conformer: δ = 9.80 (s, 1H), 8.55 (br s, 1H), 8.88 (d, J = 7.6 

Hz, 1H), 4.61 (m, 1H), 4.46 (m, 1H), 4.11 (dd, J = 8.3, 4.7 Hz, 1H), 3.87 (m, 1H), 3.61 (s, 

3H), 3.60 (m, 1H), 3.45 (m, 1H), 3.23 (m, 1H), 2.78, (m, 1H), 2.60 (m, 1H), 2.40 (m, 1H), 

2.26 (m, 1H), 2.94–1.72 (m, 6H). 
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13C NMR (100 MHz, d6-DMSO, 25 oC): Major conformer: δ = 172.4, 172.3, 172.2, 171.8, 

60.2, 59.1, 52.9, 49.4, 47.6, 46.6, 36.7, 29.9, 28.7, 25.2, 24.4. Minor Conformer: δ = 172.36, 

171.91, 171.67, 171.56, 60.37, 59.16, 53.12, 49.51, 47.15, 46.37, 36.38, 29.81, 28.85, 25.13, 

24.41.  

 

HRMS (ESI) m/z: calcd for C15H24N3O6 342.1665; found, 342.1654. 
 

TFA H-D-Pro-Pro-Asp-OMe (51) 

 

 

TFA H-D-Pro-Pro-Asp-OMe 51 was prepared in analogy to TFA H-Pro-Pro-Asp-OMe 8 

using Boc-D-Pro-Pro-OH 91 (600 mg, 1.92 mmol, 1.0 eq), H-Asp(OtBu)-OMe HCl (461 

mg, 1.92 mmol, 1.0 eq), EDC HCl (442 mg, 2.3 mmol, 1.2 eq) and i-Pr2NEt (384 μL, 2.3 

mmol, 1.2 eq). The product was obtained as a white solid (427 mg, 69 % overall). 
 
1H NMR (400 MHz, D2O, 25°C) δ = 4.81 (m, 1H); 4.63 (dd, J = 7.0 Hz, 8.8 Hz, 1H), 4.48 

(dd, J = 3.3 Hz, 1H), 3.76 (s, 3H), 3.73 (m, 1H), 3.60 (m, 1H), 3.42 (m, 2H), 2.99 (d, J = 6.1 

Hz, 2H),  2.56 (m, 1H), 2.33 (m, 1H), 2.14 – 1.97 (m, 6H). 

 
13C NMR (100 MHz, D2O, 25°C) δ = 177.3, 177.0, 175.6, 171.1, 63.8, 62.4, 56.3, 52.3, 50.7, 

49.8, 38.4, 32.7, 31.2, 27.3, 27.1. 

 

HRMS (ESI) m/z: calcd for C15H24N3O6
 342.1665; found, 342.1669. 
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TFA H-D-Pro-Pro-Asp-NHPr (54) 

 

 
 

Boc-D-Pro-Pro-OH 91 (406 mg, 1.3 mmol, 1.0 eq), H-Asp(OtBu)-NHPr 96 (300 mg, 1.3 

mmol, 1.0 eq) and EDC HCl (299 mg, 1.56 mmol, 1.2 eq) were charged into a 50 mL flask. 

10 mL EtOAc and 1mL DMF were added with stirring. i-Pr2NEt (271 μL, 1.56 mmol, 1.2 

eq) was added and the mixture was stirred for 90 min. According to the TLC 

(EtOAc/MeOH 10:1 v/v) approximately 50 % of the starting material was converted. 

Therefore HOBt (88 mg, 0.65 mmol, 0.5 eq) was added and stirring was continued for 90 

min. The reaction mixture was then diluted with EtOAc (20 mL) and extracted with 0.1M 

HCl (5 mL), H2O (5 mL), NaHCO3 10 % aq (5 mL) and brine (2x 5 mL). The organic layer 

was dried (MgSO4) and concentrated in vacuo at 30 °C. The obtained colourless oil was 

then chromatographed over silicagel eluting with 10% v/v MeOH in EtOAc. Product 

containing fractions were combined and concentrated in vacuo. A mixture of TFA/CH2Cl2 

2:1 (v/v) (2 mL) was added to the obtained Boc-D-Pro-Pro-Asp(OtBu)-NHPr and the 

solution was stirred for 1 h. All volatailes were removed in vacuo followed by precipitation 

of the remaining oil with Et2O (10 mL). The precipitate was filtered over a syringe filter and 

triturated with Et2O (3x 3 mL). Drying under high vaccum yielded TFA H-Pro-Pro-Asp-

NHPr 54 as a white solid (408 mg, 68 %). 

 
1H NMR (400 MHz, D2O, 25°C) δ = 4.64 (m, 2H), 4.46 (dd, J = 3.0 Hz, 8.9 Hz, 1H), 3.73 

(m, 1H), 3.60 (m, 1H), 3.43 (m, 2H), 3.17 (m, 2H), 2.91 (ddd, J = 1.36 Hz, 6.08 Hz, 16.61 

Hz, 1H), 2.81 (ddd, J = 1.29 Hz, 7.97 Hz, 16.7 Hz, 1H), 2.56 (m, 1H), 2.31 (m, 1H), 2.14 – 

1.96 (m, 6H), 1.49 (m, 2H), 0.85 (t, J = 7.4 Hz, 3H). 

 
13C NMR (100 MHz, D2O, 25°C) δ = 177.1, 176.8, 175.0, 171.3, 63.9, 62.4, 53.7 50.8, 49.8, 

44.4, 38.6, 32.7, 31.1, 27.3, 27.0, 24.9, 13.6. 

 

HRMS (ESI) m/z: calcd for C17H29N4O5 369.2137; found, 369.2148. 
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TFA H-D-Pro-Pro-5-Ava-OH (95) 

 

 

 

Boc-D-Pro-Pro-OH 91 (820 mg, 2.62 mmol, 1.0 eq), HCl•H-5-Ava-OMe 95 (440 mg, 2.62 

mmol, 1.0 eq), i-Pr2NEt (1.0 mL, 5.77 mmol, 2.2 eq) and EDC HCl (605 mg, 3.14 mmol, 1.2 

eq) were suspended in  EtOAc (25 mL) and stirred over night at RT. To the resulting turbid 

solution was added DMF (4 mL) and after ultrasonication a colourless solution was obtained 

which was stirred for a further 2 h at RT. TLC (EtOAc/MeOH 10:1 v/v, visualised with 

ninhydrin and KMnO4) showed complete conversion. The reaction mixture was diluted with 

EtOAc (100 mL) and successively extracted with 0.1 M HCl (20 mL), H2O (20 mL), aqueous 

NaHCO3 10% (20 mL), H2O (20 mL) and brine (20 mL). The organic layer was dried 

(MgSO4), and concentrated under reduced pressure. The resulting oil was chromatographed 

over silicagel eluting with EtOAc (250 mL) and EtOAc/MeOH 20:1 (v/v) (250 mL). The 

desired Boc-D-Pro-Pro-5-Ava-OMe was obtained as a colourless oil (0.95 g, 85 %). 

 

100 mg Boc-D-Pro-Pro-5-Ava-OMe (0.235 mmol, 1.0 eq) was dissolved in 1 mL MeOH and 

260 μL (0.260 mmol, 1.1 eq) of an aqueous solution of 0.1 M NaOH was added. The reaction 

mixture was then stirred for 1 h at RT (TLC showed approximately 50 % conversion). 

Additional 0.1 M aq NaOH (260 μL, 0.260 mmol, 1.1 eq) was added and the mixture was 

stirred for another 2 h (TLC showed complete conversion). The reaction mixture was 

concentrated in vacuo and the residue was diluted in water (5 mL) before extraction with 

EtOAc (2x 5 mL). The collected organic layers were dried (MgSO4) and concentrated under 

reduced pressure. The corresponding Boc-D-Pro-Pro-5-Ava-OH was obtained as a white 

powder (80 mg) which was dissolved in CH2Cl2 (3 mL). TFA (300 μL) was added and the 

reaction mixture was stirred for 1 h at RT before all volatiles were removed in vacuo. The 

obtained oil was dried under high vacuum and afterwards lyophilised, however, the desired 

title compound 95 remained a colourless oil (81 mg, 81 % overall). 
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1H NMR (400 MHz, D2O, 25°C): δ = 4.50 (dd, J = 7.0 Hz, 8.8 Hz, 1H), 4.26 (dd, J = 4.2 Hz, 

8.9 Hz, 1H), 3.60 (td, J = 6.3 Hz, 6.3 Hz, 10.2 Hz, 1H), 3.48 (ddd, J = 3.4 Hz, 7.3 Hz, 14.2 

Hz, 1H), 3.30 (m, 2H), 3.90 (m, 2H), 2.43 (ddd, J = 6.8 Hz, 8.9 Hz, 13.0 Hz, 1H), 2.27 (t, J = 

7.1 Hz, 2H), 2.16 (ddd, J = 5.8 Hz, 8.8 Hz, 12.4 Hz, 1H), 1.70-2.00 (m, 6H), 1.36-1.52 (m., 

4H). 

 
13C NMR (100 MHz, CDCl3, 25°C) δ = 178.3, 171.4, 168.8, 62.0, 59.9, 47.5, 47.1, 39.3, 

33.0, 29.8, 28.9, 28.1, 25.4, 24.6, 21.0. 

 

MS (ESI): m/z: 312.2 [M+H]+. M = 311.2 calcd for C15H25N3O4. 

 

Boc-Pro-2-MePro-OH (92) 

 

 
 

Boc-Pro-OH (7.55 g, 35.1 mmol, 1.05 eq), EDC HCl (7.70 g, 40.2 mmol, 1.2 eq), HOBt H2O 

(6.16 g, 40.2 mmol, 1.2 eq), were charged into a 500 mL flask and 100 mL of dry CH2Cl2 was 

added with stirring and cooling to 0 oC under N2. i-Pr2NEt (2.25 eq, 75.15 mmol, 12.9 mL) 

was added over 10 min, and the resulting slightly yellow solution was stirred for an additional 

10 min prior to addition of solid HCl H-2-MePro-OMe (1.0 eq, 33.4 mmol, 6.0 g). The 

resulting homogeneous yellow reaction mixture was stirred at RT for 4 h and diluted with 100 

mL of 0.1 M HCl. The layers were separated and the aqueous phase extracted with CH2Cl2 (3 

x 30 mL). The combined organic phases were washed with 1 M NaHCO3 solution (50 mL), 

water (50 mL) and brine (50 mL). The dried (MgSO4) organic phases were filtered through a 

short plug of silicagel (10 mm, 4 cm dia) and the crude protected dipeptide solution was 

concentrated in vacuo at 30 oC. The resulting light yellow oil was chromatographed over 

silicagel eluting with 2 % (v/v) MeOH/CH2Cl2 (TLC visualised with ninhydrin), product 

containing fractions combined and concentrated in vacuo to afford the pure Boc-Pro-2-

MePro-OMe as a clear colourless oil (10.3 g, 90 %). 
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The obtained Boc-Pro-2-MePro-OMe (9.70 g, 28.5 mmol, 1.0 eq) was then dissolved in a 

mixture of 1:1:1 (v/v/v) THF/MeOH/4M NaOH (100 mL) and the resulting cloudy mixture 

was stirred at RT for 2 h until the lower layer of oil was consumed and the starting material 

showed complete conversion by TLC (CH2Cl2/MeOH 98:2 v/v, ninhydrin-dip). The basic 

aqueous layer was washed with CH2Cl2 (3 x 50 mL) and was then acidified (to pH 2) with 

concentrated HCl (30 % aq). The resulting colourless suspension was extracted with EtOAc 

(5 x 40 mL). The combined EtOAc layers were washed with brine (1 x 50 mL) and dried over 

anhydrous Na2SO4. The solvents were evaporated in vacuo yielding a sticky foam which was 

dissolved in a minimum amount of CH2Cl2 (30 mL). Pentane (150 mL) was added slowly and 

the mixture was ultrasonicated until a colourless suspension was obtained. Evaporation of the 

solvents and drying on high vacuum yielded Boc-Pro-2-MePro-OH 92 as a white solid (7.44 

g, 80 %). 

 
1H NMR (400 MHz, CDCl3, 23°C) Rotamers were observed around the tBu singlet in a 

approximate ratio 3:1: δ = 10.9 (br s, 1H), 4.29  (m, 1H), 3.69 - 3.30 (m, 4H), 2.30 - 1.83 (m, 

8H), 1.67 (s, 3H), 1.44 and 1.36 (2 × s, (CH3)3 rotamers, 9H). 

 
13C NMR (100 MHz, CDCl3): Mixtures of rotamers: δ = 178.4, 177.8, 172.4, 171.8, 154.4, 

153.7, 80.1, 79.7, 72.3, 72.9, 67.8, 67.4, 49.8, 49.2, 46.5, 46.1, 42.3, 41.6, 29.5, 29.1, 28.5, 

28.0, 25.6, 25.1, 24.5, 24.0, 20.3, 19.7. 

 
MS (ESI): m/z (%): 327.4 (100) [M+H]+. M = 326.4 calcd for C16H26N2O5. 
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16.4 Synthesis of Non-Commercial Available Building 
Blocks 

 

Fmoc-β-homo-Asp(OtBu)-OH 93 and N-Me-Pro-OH 94 were originally prepared by Dr. J. D. 

Revell during his post doctoral studies in the Wennemers group at the University of Basel 

(2004 – 2008). 

 

 

Fmoc-β-homo-Asp(OtBu)-OH (93) 

 

The synthesis of Fmoc-β-homo-Asp(OtBu)-OH 93 occurred via seven steps starting from 

dimethyl 3-oxoglutarate and ammonium acetate according to Crossley et al.[166]  

 
 

 
 
 

Dimethyl 3-aminoglutarate 

A solution of dimethyl-3-oxoglutarate (50.0 g, 287 mmol) and ammonium acetate (250 g, 

3.24 mol, 11.3 eq) in dry MeOH (800 mL) was stirred over molecular sieves (3Å; 100 g) for 2 

d at RT. The mixture was acidified to pH 3 by addition of methanolic HCl (5M). Sodium 

cyanoborohydride (22.6 g, 360 mmol, 1.25 eq) was added, and the mixture reacidified to pH 3 

and then stirred for 1 h at RT. The mixture was filtered through Celite and the methanol 

removed. The residual oil was basified to pH 9, with cooling, by addition of sodium 

hydroxide (10 M); water was then added until the solution was homogenous. The aqueous 

layer was extracted with CH2Cl2 (5 x 200 mL). The combined organic extracts were washed 

with saturated NaCl (2 x 100 mL) and dried (Na2SO4) and the solvent removed, affording the 

crude product as an oil which was distilled under reduced pressure yielding dimethyl-3-

aminoglutarate as a colourless oil (29.4 g, 58 %). 
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1H NMR (400 MHz, CDCl3, 25°C) δ = 3.61 (s, 6 H; OCH3), 3.38 (m, 1H; CH), 2.48 (d, J = 6 

Hz, 4H; CH2), 1.79 (br s, 2H; NH2).  

 

b.p. 67-70 oC at 0.07 mbar. 

 

 

Dimethyl 3-benzyloxycarbonylaminoglutarate 

To dimethyl 3-aminoglutarate (20.0 g, 114 mmol) dissolved in aq NaHCO3 (1M; 2 eq, 228 

mmol = 228 mL) was added a solution of benzyl chloroformate (19.4 g, 16.0 mL, 114 mmol) 

at 0 oC. The mixture was stirred for 3 h at RT then extracted with diethyl ether (5 x 100 mL). 

The combined ether extracts were washed with HCl (3M; 3 x 50 mL), saturated NaHCO3 (2 x 

25 mL), brine (2 x 25 mL), and dried (Na2SO4), and the solvent removed to give an oil. 

Chromatography of the oil on silica gel eluting with 30% EtOAc/n-pentanes gave dimethyl 3-

benzyloxycarbonylaminoglutarate as a colourless oil (32.15 g, 91 %). 

 
1H NMR (400 MHz, CDCl3, 25°C) δ = 7.24 (m, 5H; ArH), 5.55 (br d, 1H; NH), 5.05 (s, 

CH2Ar; 2H), 4.35 (m, 1H; CH), 3.65 (s, 6H; OCH3), 2.69 (d, J = 6 Hz, 4H; CH2).  

 

 

Methyl hydrogen (3S)-3-benzyloxycarbonylaminoglutarate 

To a mixture of dimethyl 3-benzyloxycarbonylaminoglutarate (15.4 g, 49.8 mmol) in 

phosphate buffer (0.5M; pH 8.0) (1.5 L) and acetone (45 mL) was added pig liver esterase 

(PLE; 20,000 units). The mixture was stirred at 25 oC for 7 h. The pH of the mixture was 

checked periodically and NaOH (0.1M) was added dropwise to maintain the pH at 8.0.  

The resultant solution was acidified to pH 2 by addition of concentrated HCl, and extracted 

with CH2Cl2 (4 x 500 mL). The combined extracts were washed with saturated NaCl (500 

mL), dried over Na2SO4, and concentrated in vacuo to afford the crude half-ester as a white 

solid. Recrystallisation from CHCl3/n-pentanes gave the title compound as fine, colourless 

white needles (11.8 g, 80 %). 

 
1H NMR (400 MHz, CDCl3, 25°C) δ = 8.58 (br s, 1H; CO2H), 7.30 (m, 5H; ArH), 5.75 (br d, 

1H; NH), 5.05 (s, 2H; CH2Ar), 4.30 (m, 1H; CH), 3.60 (s, 3H; CH3), 2.68 (d, J = 6 Hz, 4H; 

CH2). 

 

[α]D
25 = +0.70o (c = 6.0, CHCl3). 
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Methyl tert-butyl (3R)-3-benzyloxycarbonylaminoglutarate 

To a solution of the half-ester (6.29 g, 21.3 mmol) in dry CH2Cl2 (25 mL) was added DMAP 

(250 mg, 2.0 mmol) and tert-butanol (10 mL). DCC (4.56 g, 22 mmol) was added to the 

stirred solution at 0 oC, and after stirring at this temperature for 5 min, the mixture was 

allowed to warm to RT and stirred for a further 3 h. The mixture was filtered and the solvent 

removed. The residue was taken up in EtOAc (250 mL), refiltered, washed with HCl (1M, 

125 mL), saturated NaHCO3 (125 mL), and saturated NaCl (125 mL), and dried (Na2SO4). 

The solvent was removed to give an oil which was chromatographed over SiO2, eluting with 

CH2Cl2 to afford the pure title compound as a colourless oil (6.25 g, 84 %). 

 
1H NMR (400 MHz, CDCl3, 25°C) δ = 7.24 (m, 5H; ArH), 5.30-5.65 (br d, 1H; NH), 5.05 (s, 

2H; CH2Ar), 4.15-4.50 (br m, 1H; CH), 3.65 (s, 3H; OCH3), 2.65 (d, J = 6 Hz, 2H; CH2), 2.40 

(d, J = 6 Hz, 2H; CH2), 1.45 (s, 9H; OC(CH3)3). 

 

[α]D
25 = –1.12o (c = 3.5, CHCl3). 

 

 

tert-Butyl hydrogen (3R)-3-benzyloxycarbonylaminoglutarate 

To a stirred solution of the diester (10.5 g, 29.9 mmol) in MeOH (100 mL) was added lithium 

hydroxide solution (1M; 35 mmol, 35 mL). The solution was stirred for 2.5 h at RT, then 

diluted with water (500 mL) and extracted with CH2Cl2 (4 x 250 mL). The aqueous layer was 

acidified to pH 2 by addition of concentrated HCl and then extraced with CH2Cl2 (6 x 200 

mL). The combined extracts were washed with saturated NaCl (250 mL), dried (Na2SO4), and 

the solvent removed to afford the half-ester as a colourless gum (8.39 g, 83 %).  

 
1H NMR (400 MHz, CDCl3, 25°C) δ = 7.24 (m, 5H, ArH); 5.75 (br d, 1H, NH); 5.05 (s, 2H; 

CH2), 4.30 (m, 1H; CH), 2.70 (d, J = 6 Hz, 2H; CH2), 2.60 (d, J = 6 Hz, 2H; CH2), 1.45 (s, 

9H; OC(CH3)3). 

 

[α]D
25 = –1.1o (c = 2.4, CHCl3). 

 

 

tert-Butyl hydrogen (3R)-3-aminoglutarate 

To a solution of tert-Butyl hydrogen (3R)-3-benzyloxycarbonylaminoglutarate (6.07 g, 18.0 

mmol) in EtOAc (250 mL) was added under argon palladium on charcoal (10 % w/w, 520 
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mg) and the reaction mixture was hydrogenated at RT under atmospheric pressure for 12 h. 

Following filtration of the reaction mixture through Celite, concentration of the filtrate and 

washings afforded the title compound as a colourless glass (3.55 g, 97 %).  

 
1H NMR (400 MHz, CDCl3, 25°C) δ = 5.85 (br s, 2H; NH2), 4.38 (m, 1H; CH), 2.62 (d, J = 6 

Hz, 2H; CH2), 2.47 (d, J = 6 Hz, 2H; CH2), 1.40 (s, 9H; OC(CH3)3). 

 

Fmoc-β-homo-L-Asp(OtBu)-OH 93 

To an ice-cold stirred solution of tert-butyl hydrogen (3R)-3-aminoglutarate (3.25 g, 16.0 

mmol) and Na2CO3 (35.0 mmol) dissolved in a mixture of water (100 mL) and dioxane (50 

mL) was added dropwise a solution of 9-fluorenylmethoxycarbonyl chloride (4.66 g, 18.0 

mmol) in dioxane (50 mL) over 1 h. The rapidly stirred solution was allowed to warm to RT 

and stirred overnight, extracted with diethyl ether (2 x 100 mL) and the aqueous portion 

acidified with HCl (4 M) to a final pH of 2 at which point the title compound precipitated as a 

white curd which was filtered and washed well with ice-cold water. The filter cake was dried 

under high vacuum, affording the title compound 93 as a fine white powder (6.39 g, 94 %). 

 
1H NMR (400 MHz, CDCl3, 25°C) δ = 11.0 (bs, 1H), 7.75 (d, J = 7.5 Hz, 2H), 7.58 (d, J = 

7.3 Hz, 2H), 7.39 (dd, J = 7.3 Hz, 7.4 Hz, 2H), 7.30 (dd, J = 7.3 Hz, 7.4 Hz, 2H), 5.80 (d, J = 

9.0 Hz, 1H), 4.37 (d, J = 7.1 Hz, 2H), 4.22 (m,1H), 2.85-2.35 (m, 4H), 1.45 (s, 9H). 

 
13C NMR (100 MHz, CDCl3, 25°C) δ = 176.3, 171.1, 156.2, 144.3, 141.8, 128.2, 127.5, 

125.6, 120.5, 82.1, 67.5, 47.6, 45.5, 39.8, 38.5, 28.5. 

 
MS (ESI): m/z (%): 448.3 (100) [M+Na]+. M = 425.5 calcd for C24H27NO6. 

 

[α]D
25 = +2.4 (c = 1.00, CHCl3). 
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N-Me-Pro-OH (94)[167]  

 

 
 

To a solution of L-proline (2.0 g, 17.4 mmol, 1 eq) in MeOH (20 mL) was added 

formaldehyde (2.0 mL of 37 % w/w in H2O). 10 % Pd/C catalyst (500 mg) was added 

cautiously (under N2) and the resulting mixture was hydrogenated at atmosphere pressure 

(balloon) over 24 h. The catalyst was removed by filtration over Celite, (washing with 

MeOH) and the combined filtrates were concentrated under reduced pressure. The grey 

residue was dissolved in MeOH/toluene (1:1 v/v, 100 mL) and concentrated to provide a 

solid, which was recrystallized from methanol-diethyl ether to afford N-methyl L-proline 94 

as fine colourless needles (2.18 g, 98 %).  

 
1H NMR (400 MHz, D2O, 23°C) δ = 3.72-3.64 and 3.57-3.50 (m, 1H), 2.98-2.90 (m, 1H), 

2.75 (s, 3H), 2.35-2.25 (m, 1H), 2.00-1.76 (m, 3H). 

 
13C NMR (100 MHz, CDCl3 23°C) δ = 173.1, 70.2, 55.8, 40.3, 28.3, 22.4.  
 
MS (ESI): m/z (%): 130.1 (100) [M+H]+. M = 129.2 calcd for C6H11NO2. 

 

HCl H-5-Ava-OMe (95) 

 

 
 

A white suspension of 5-aminovaleric acid (2.5 g, 21.3 mmol, 1.0 eq) and 15 mL MeOH was 

cooled to 0 °C in an ice bath. Thionyl chloride (3.9 mL, 53.4 mmol, 2.5 eq) was added 

dropwise within 15 min and the resulting solution was refluxed over night. All volatiles 

(solvent and excess thionyl chloride) were removed under reduced pressure. The obtained 

pale yellow mass was suspended in EtOAc (20 mL), ultrasonicated and filtrated to afford the 

desired product 95 as a white powder (3.4 g, 95 %). 
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1H NMR (400 MHz, CD3OD, 25°C) δ  = 4.87 (s, 3H; NH3
+), 3.67 (s, 3H; CH3), 2.94 (t, J = 

6.80 Hz, 2H; CH2CO2CH3), 2.41 (t, J = 6.90 Hz, 2H; CH2NH3
+), 1.69 (m, 4H; 

CH2CH2CH2NH3
+). 

 
13C NMR (100 MHz, CD3OD-d4, 25°C) δ = 174.2, 51.1, 39.4, 33.0, 27.0, 21.7. 

 

MS (ESI): m/z: 132.1 [M+H]+. M = 131.18 calcd for C6H13NO2. 

 

H-Asp(OtBu)-NHPr (96) 

 

 
 

To a solution of Cbz-Asp(OtBu)-OH (2.0 g, 6.2 mmol, 1 eq) in EtOAc (30 mL) was added 

propylamine (516 μL, 6.2 mmol, 1 eq) and EDC HCl (1.4 g, 7.4 mmol, 1.2 eq). The resulting 

suspension was stirred at RT. After 2.5 h the mixture became a cloudy solution. Additional 

EDC HCl (230 mg, 1.23 mmol, 0.2 eq) was added and the mixture was stirred for 1 h. The 

TLC (EtOAc/pentanes 2:1 v/v) showed complete conversion of the starting material. The 

reaction mixture was dissolved in EtOAc (150 mL) and extracted with 0.1 M HCl (2x 20 mL), 

Na2CO3 (5 % aq; 2x 20 mL) and brine (3x 20 mL). The dried (MgSO4) organic phase was 

concentrated in vacuo to afford Cbz-Asp(OtBu)-NHPr as a colourless oil (1.82 g, 81 %). 

 

The obtained Cbz-Asp(OtBu)-NHPr (1.52g, 4.2 mmol, 1 eq) was dissolved in MeOH (15 mL) 

and palladium on charcoal (10 % w/w, 150 mg) was added. The reaction mixture was 

hydrogenated (H2 ballon) at RT for 5 h. The TLC (MeOH/EtOAc 1:10 v/v) showed complete 

conversion of the starting material. Following filtration (syringe filter), concentration of the 

filtrate in vacuo and drying under high vacuum afforded the title compound 96 as a colourless 

oil (916 mg, 96 %). 

 
1H NMR (400 MHz, D2O, 23°C) δ = 7.38 (m, 1H; CONH), 3.64 (m, 1H; H2NCH), 3.22 (dd, J 

= 6.4 Hz, 13.7 Hz, 2H; NHCH2), 2.86 (dd, J = 3.8 Hz, 16.6 Hz, 1H; CH2CO2tBu), 2.50 (dd, J 

= 8.5 Hz, 16.6 Hz, 1H; CH2CO2tBu), 1.64 (m, 2H; H2N), 1.53 (m, 2H; CH2CH3), 1.45 (s, 9H; 

C(CH3)), 0.93 (t, J = 7.4 Hz, 3H; CH2CH3). 
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13C NMR (100 MHz, CDCl3 23°C) δ = 173.3, 171.4, 81.1, 52.1, 40.9, 40.7, 28.1, 22.8, 11.4. 

 

MS (ESI): m/z (%): 175 (100) [M-Boc]+, 231.0 (30) [M+H]+. M = 230.3 calcd for 

C11H22N2O3. 

 

16.5 Synthesis of Non-Commercial Available Substrates 
 

(E)-4-Methyl-1-nitropent-1-ene[168,169] 

 

 
 

A 100 mL round-bottom flask was charged with isovaleraldehyde (5.2 mL, 48.1 mmol, 1.0 

eq) and nitromethane (2.2 mL, 49.1 mmol, 1.02 eq) in 10 mL ethanol. The solution was 

cooled to 0 °C with an ice-bath. An aqueous solution of 10 M NaOH (4.8 mL, 48.1 mmol, 1.0 

eq) was added dropwise within 20 min under vigorous stirring. A thick, white suspension was 

formed which was diluted with 10 mL of ethanol. After 10 min AcOH (2.75 mL, 48.1 mmol, 

1.0 eq) was added and the reaction mixture became a yellow solution. 10 mL of water were 

added and after 10 min the yellow solution was extracted with Et2O (2x 200 mL). The 

combined organic phases were washed with water (3x 50 mL, pH 6) dried (MgSO4) and 

concentrated in vacuo. The corresponding nitro alcohol was obtained as a yellow oil (6.5 g). 

 

The oil (6.5 g, 44.2 mmol, 1.0 eq) was dissolved in CH2Cl2 (50 mL). The obtained solution 

was cooled to -5 °C and trifluoroacetic anhydride (6.5 mL, 46.4 mmol, 1.05 eq) was added. 

Triethylamine (13 mL, 92.8 mmol, 2.1 eq) was carefully added within 20 min by syringe in a 

way the temperature remained around -5 °C. The reaction mixture was stirred for 1 h at -5 °C 

and afterwards allowed to warm to RT. The reaction mixture was diluted with CH2Cl2 (150 

mL) and extracted with saturated aq NH4Cl (2x 50 mL). The organic phase was dried 

(MgSO4) and concentrated in vacuo. The residue was filtered over a plug of silica, eluting 

with EtOAc/pentanes 1:10 (v/v). Kugelrohr-distillation (120 °C, 20 mbar) afforded the pure 

(E)-4-methyl-1-nitropent-1-ene as a yellow oil (3.2 g, 52 % overall).  
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1H NMR (400 MHz, CD3OD, 25°C) δ = 7.25 (td, J = 13.4 Hz, 9.0 Hz, 1H; CH2CH=CH), 

6.97 (td, J = 13.2 Hz, 1.3 Hz, 1H; CH=CHNO2), 2.15 (m, 2H; CHCH2), 1.77-1.89 (m, 1H; 

(CH3)2CH), 0.96 (d, J = 6.7 Hz, 1H; CH3). 

 
13C NMR (100 MHz, CDCl3, 25°C) δ = 141.5, 140.1, 37.2, 27.7, 22.2 (2). 

 

(E)-1-Nitro-1-cyclohexylethene[168,169] 

 

 
 

Preparation was according to (E)-4-methyl-1-nitropent-1-ene using cyclohexane-

carboxaldehyde (5.2 mL, 45.4 mmol, 1.0 eq), nitromethane (2.5 mL, 46.2 mmol, 1.02 eq), 

ethanol (10 mL), aq 10 M NaOH (4.5 mL, 45.4 mmol, 1.0 eq) and conc. acetic acid (2.6 mL, 

45.4 mmol, 1.0 eq). The product was obtained after filtration over a plug of silica, eluting 

with EtOAc/pentanes 1:10 (v/v), as a yellow oil (6.25g, 89 % overall). 

 
1H NMR (400 MHz, CDCl3, 25°C): δ = 7.15 (dd, J= 7.2 Hz, 13.5 Hz, 1H), 6.93 (dd, J= 1.4 

Hz, 13.5 Hz, 1H), 2.20-2.32 (m, 1H, CHCH=CH), 1.12-1.86 (m, 10H, H-cyclohexyl) 

 
13C NMR (100 MHz, CDCl3, 25°C) δ = 147.3, 138.2, 37.5, 31.4 (2), 25.6, 25.4 (2). 

 

(E)-1-Nitro-1-heptene[168,169] 

 

 
 

Preparation was according to (E)-4-methyl-1-nitropent-1-ene using n-hexanal (5.5 mL, 45.6 

mmol, 1.0 eq), nitromethane (2.5 mL, 46.4 mmol, 1.02 eq), ethanol (10 mL), aq 10 M NaOH 

(4.5 mL, 45.4 mmol, 1.0 eq) and conc. acetic acid (2.6 mL, 45.4 mmol, 1.0 eq). The product 

was obtained after filtration over a plug of silica, eluting with EtOAc/pentanes 1:10 (v/v), as a 

yellow oil (6.0 g, 92 % overall). 
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1H NMR (400 MHz, CDCl3, 25°C) δ = 7.28 (td, J = 7.5 Hz, 13.4 Hz, 1H; CH2CH=CH), 6.98 

(td, J = 1.5 Hz, 13.4 Hz, 1H; CH=CHNO2), 2.26 (m, 2H; CHCH2), 1.52 (m, 2H; CH2), 1.33 

(m, 4H; CH2), 0.90 (t, J = 7.1 Hz, 3H; CH3).  

 
13C NMR (100 MHz, CDCl3, 25°C) δ = 142.8, 139.5, 31.2, 28.4, 27.4, 22.3, 13.9. 

 

(E)-3,3-Dimethoxy-1-nitro-propene = β-Nitroacrolein dimethylacetal  (69)[135] 

 

 
 

2,2-Dimethoxyacetaldehyde (60% w/w in H2O, 20 mL, 133 mmol, 1 eq) and nitromethane 

(8.8 mL, 199.5 mmol, 1.5 eq) were dissolved in THF (30 mL) and t-BuOH (30 mL). The 

solution was stirred and cooled to 0 °C in an ice-bath and potassium tert-butoxide (746 mg, 

6.65 mmol, 0.05 eq) was added as a solid. The reaction mixture was stirred for 1 h at 0 °C and 

over night at RT. The TLC (n-hexanes/EtOAc 1:1 v/v) showed complete conversion of the 

starting material. The mixture was then diluted with water (100 mL) and the resulting aqueous 

phase was extracted with diethyl ether (2x 250 mL, 2x 100 mL). The combined organic 

phases were dried (MgSO4) and concentrated in vacuo. Drying under high vaccum yielded 

1,1-dimethoxy-3-nitropropan-2-ol as a slightly yellow oil (21g, 96 %).  

 

The obtained 1,1-dimethoxy-3-nitropropan-2-ol (10g, 60.6 mmol, 1 eq) was dissolved in 

CH2Cl2 (50 mL) and cooled to -10 °C in an ice/salt-bath. Trifluoroacetic anhydride (8.84 mL, 

63.6 mmol, 1.05 eq) was added dropwise under stirring within 15 min (exothermic, 

temperature was kept below 12 °C) and the reaction mixture was stirred for a further 30 min. 

The TLC (n-hexanes/EtOAc 1:1 v/v) showed complete conversion of the starting material. 

The mixture was then diluted with CH2Cl2 (100 mL) and extracted with saturated aq NH4Cl 

(2x 50 mL). The combined aqueous layer was back-extracted with CH2Cl2 (2x 50 mL) and the 

combined organic phases were concentrated in vacuo whereas TFA – salt was precipitating. 

After filtration, washing and concentration, chromatography of the crude product on silica gel 

eluting with EtOAc/pentanes 1:10 (v/v) gave (E)-3,3-dimethoxy-1-nitro-propene 69 as a 

yellow oil (7.0 g, 75 %). 
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1H NMR (400 MHz, CDCl3, 25°C) δ = 7.19 (dd, J = 1.4 Hz, 13.4 Hz, 1H; CH=CH-NO2), 

7.02 (dd, J = 3.3 Hz, 13.4 Hz, 1H; CH=CH-NO2), 5.12 (dd, J = 1.5 Hz, 3.3 Hz, 1H; 

(CH3O)2CH ), 3.35 (s, 6H; (CH3O)2). 

 
13C NMR (100 MHz, CDCl3, 25°C) δ = 142.6, 136.5, 97.9, 53.0 (2). 
 

CHN: Anal. Calcd for C5H9NO4: C 40.82; H 6.17; N 9.52. Found: C 40.92; H 6.02; N 9.45. 

 

Nitroethylene[29,154-156] 

 

 
 

2-Nitroethanol (5g, 54.9 mmol, 1 eq) and phtalic anhydride (9g, 60.7 mmol, 1.1 eq) were 

charged into a 50 mL flask, equipped with a magnetic stirrer and a vacuum distillation setup 

(short fractional distillation column and spider). The apparatus was evacuated to about 95 

mbar and the oil bath was heated. The solid reaction mixture became a clear solution (oil 

bath: ∼120 °C) and at 123 °C (oil bath: ∼180 °C) distillation of the product occurred. The 

distillate was collected until the distillation ceased to give a cloudy pale yellow solution, 

containing a mixture of nitroethylene and water which was immediately filtered through a 

plug of Na2SO4 (2 cm in a 20 mL syringe with filter). After isolation by Kugelrohr 

distillation, the yellow oil (1.8 g, 45 %) was immediately dissolved in chloroform (J. T. 

Baker, 7386, stabilized with about 0.75 % ethanol) and stored as this stock-solution (c ≤ 1M) 

at -20°C. The concentration of the stock-solution was confirmed from the 1H NMR analysis 

using an internal standard (i-PrOH). The nitroethylene solution was stable over prolonged 

periods (≥2 month) at -20°C. 

 
1H NMR of stock-solution in CHCl3 (400 MHz, CDCl3, 25°C): 7.14 (dd, J = 7.4 Hz, 14.9 Hz, 

1H; CH2=CH), 6.65 (dd, J = 2.2 Hz, 14.9 Hz, 1H; CH2=CH), 5.91 (br d, J = 6.0 Hz, 1H; 

CH2=CH).  
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17. 1,4-Addition Products and Derivatives 
 

17.1 Characterisation Index 
 

1,4-Addition products of aldehydes and nitroolefins 

 
(2S,3R)-2-Methyl-4-nitro-3-phenylbutanal 33 
 

 
 (2S,3R)-2-Ethyl-4-nitro-3-phenylbutanal 3 

  
 (2S,3R)-2-Propyl-4-nitro-3-phenylbutanal 34 
 

 
 (2S,3R)-2-Butyl-4-nitro-3-phenylbutanal 35 

 
 

 (2S,3R)-2-Isopropyl-4-nitro-3-phenylbutanal 36 

  
 (2S,3R)-2-Benzyl-4-nitro-3-phenylbutanal 37 
 

 
 (2S,3R)-3-(4-Bromophenyl)-2-ethyl-4-nitrobutanal 38 

  
 (2S,3R)-3-(4-Fluorophenyl)-2-ethyl-4-nitrobutanal 39 

 
 

 (2S,3R)-3-(4-Chlorophenyl)-2-ethyl-4-nitrobutanal 40 

 
 

 (2S, 3R)-3-(2,4-Dichlorophenyl)-2-ethyl-4-nitrobutyraldehyde 41 

 
 (2S, 3R)-2Ethyl-4-nitro-3-(2-trifluoromethylphenyl)butanal 42 
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 (2S, 3R)-2-Benzyl-4-nitro-3-(2-trifluoromethylphenyl)butanal 43 

 
 (2S, 3R)-2Ethyl-4-nitro-3-(4-methoxyphenyl)butanal 44 

 
 (2S, 3R)-2-Methyl-4-nitro-3-(thien-2-yl)butanal 45 

 
 (2S, 3S)-3-Cylohexyl-2-methyl-4-nitrobutanal 46 

 
 (2S, 3S)-2-Ethyl-3-nitromethyloctanal 47 

 
 (2S,3S)-2-Ethyl-5-methyl-3-(nitromethyl)hexanal 68 

 
 (2S,3S)-2-Ethyl-4,4-dimethoxy-3-(nitromethyl)butanal 70 
 

 
 (2S,3S)-2-Isopropyl-4,4-dimethoxy-3-(nitromethyl)butanal 71 

 
 

(3S,4S)-Methyl-3-formyl-5,5-dimethoxy- 

4-(nitromethyl)pentanoate 72 

 
 

(2S,3R)-3-(2,4-Dimethoxyphenyl)-2-ethyl-4-nitrobutanal 74 

 
(2S,3R)-2-Ethyl-4-nitro-3-phenylbutan-1-ol 73 

(Gramm scale synthesis)  
 

1,4-Addition products of aldehydes and nitroethylene 

 

(2S)-Methyl-4-nitrobutan-1-ol 76 
 

 (2S)-Ethyl-4-nitrobutan-1-ol 77 
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 (2S)-(2-Nitroethyl)pentan-1-ol 78 
 

 (2S)-(2-Nitroethyl)hexan-1-ol 79 
 

 (2R)-3-Methyl-(2-nitroethyl)butan-1-ol 80 
 

 (2R)-3,3-Dimethyl-(2-nitroethyl)butan-1-ol 81 
 

 (2S)-Benzyl-4-nitrobutan-1-ol 82 
 

 (2S)-(2-Nitroethyl)-cis-8-undecanal 83 

 
 (3R)-Methyl-formyl-5-nitropentanoate 84 

 
 (3S)-Methyl-formyl-5-nitroheptanoate 85 

 
 

Derivatives of 1,4-addition products 

 

(2S)-Benzyl-γ-butyrolactone 86 

 
(2S)-2-(Methylphenyl)-4-nitrobutanoic acid 88 

 
(2S)-2-(Methylphenyl)-4-aminobutanoic acid 89 

 
 

(2S)-4-(9-Fluorenylmethoxycarbonyl) 

-2-(methylphenyl)-butanoic acid 87 

 
 

Enantiomeric excess determination of Fmoc-γ-amino acid via 

formation of chiral amide 97 
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17.2 1,4-Addition Products of Aldehydes and Nitroolefins 
 

Diastereoselectivities were determined by 1H NMR analysis of the crude reaction mixture 

(∼100 μL + 400 μL CDCl3): The syn to anti integral ratio of the aldehyde signals and other 

separated signals was measured. Assignment of the stereoisomers was carried out by 

comparison with literature and chromatographic data obtained using enantiomeric peptides H-

D-Pro-Pro-Glu-NH2 56 and H-Pro-D-Pro-D-Glu-NH2 or diastereomeric peptides H-Pro-Pro-

Asp-NH2 1 and H-D-Pro-Pro-Asp-NH2 21 as catalysts for reactions performed under 

otherwise identical conditions. Peptides 56/H-Pro-D-Pro-D-Glu-NH2 and 1/21 have opposite 

enantioselectivity. 

 

Products usually epimerised during chromatography to a certain extend without affecting the 

enantiomeric excess. Only the syn isomers of the following reported products were 

characterized by NMR spectroscopy. 

 

(2S,3R)-2-Methyl-4-nitro-3-phenylbutanal (33)[24] 

 

  
 

Prepared from n-propanal and trans-β-nitrostyrene according to the general procedure 

(Protocol E). Purified by preparative chromatography on silica gel (pentanes/EtOAc 10:1 

v/v). A pale yellow oil was obtained. 

 
1H NMR (400 MHz, CDCl3, 25°C) δ = 9.72 (d, J = 1.7 Hz, 1H; CHO), 7.32 (m, 3H; Ph), 7.17 

(m, 2H; Ph), 4.80 (dd, J = 5.5 Hz, 12.7 Hz, 1H; CH2NO2), 4.68 (dd, J = 9.31 Hz, 12.7 Hz, 1H; 

CH2NO2), 3.81 (dt, J = 5.6 Hz, 9.2 Hz, 1H; CHPh), 2.79 (m, 1H; CHCHO), 1.00 (d, J = 7.3 

Hz, 3H, CH3). 

 
13C NMR (100 MHz, CDCl3, 25°C) δ = 202.2, 136.5, 129.1 (2), 128.1, 128.0 (2), 78.1, 48.4, 

44.0, 12.1. 

 

CHN: Anal. Calcd for C11H13NO3: C 63.76; H 6.32; N 6.76. Found: C 63.75; H 6.35; N 6.64. 
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The enantiomeric excess was determined by HPLC using a Chiracel OD-H column (n-

hexane/i-PrOH 90:10, 25°C) at 1 mL/min, UV detection at 254 nm: tR : (syn, major) = 23.5 

min, (syn, minor) = 34.4 min. 

 

(2S,3R)-2-Ethyl-4-nitro-3-phenylbutanal (3)[24] 

 

 
 

Prepared from n-butanal and trans-β-nitrostyrene according to the general procedure 

(Protocol E). Purified by preparative chromatography on silica gel (pentanes/EtOAc 10:1 

v/v). A colourless oil was obtained. 

 
1H NMR (400 MHz, CDCl3, 25°C) δ = 9.72 (d, J = 2.6 Hz, 1H; CHO), 7.32 (m, 3H; Ph), 7.18 

(m, 2H; Ph), 4.72 (dd, J = 5.0 Hz, 12.7 Hz, 1H; CH2NO2), 4.63 (dd, J = 9.7 Hz, 12.7 Hz, 1H; 

CH2NO2), 3.79 (dt, J = 5.0 Hz, 9.8 Hz, 1H; CHPh), 2.68 (dddd, J = 2.6 Hz, 5.0 Hz, 7.6 Hz, 

10.1 Hz, 1H, CHCHO), 1.51 (m, 2H; CH2CH3), 0.84 (t, J = 7.5 Hz; CH3). 

 
13C NMR (100 MHz, CDCl3, 25°C) δ = 203.1, 136.8, 129.1 (2), 128.1, 128.0 (2), 78.5, 55.0, 

42.7, 20.4, 10.7. 

 

CHN: Anal. Calcd for C12H15NO3: C 65.14; H 6.83; N 6.33. Found: C 65.18; H 6.97; N 6.36. 

 

The enantiomeric excess was determined by HPLC using a Chiracel AD-H column (n-

hexane/i-PrOH 99.5:0.5, 25°C) at 0.9 mL/min, UV detection at 254 nm: tR : (syn, minor) = 

36.8 min, (syn, major) = 47.9 min. 
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(2S,3R)-2-Propyl-4-nitro-3-phenylbutanal (34)[72] 

 

 
 

Prepared from n-pentanal and trans-β-nitrostyrene according to the general procedure 

(Protocol E). Purified by preparative chromatography on silica gel (pentanes/ EtOAc 15:1 

v/v). A colourless oil was obtained. 

 
1H NMR (400 MHz, CDCl3, 25°C) δ = 9.71 (d, J = 2.8 Hz, 1H; CHO), 7.33 (m, 3H; Ph), 

7.18 (m, 2H; Ph), 4.71 (dd, J = 12.8 Hz, 5.3 Hz, 1H; CH2NO2), 4.65 (dd, J = 12.8 Hz, 9.4 Hz, 

1H; CH2NO2), 3.78 (dt, J = 9.6 Hz, 5.3 Hz, 1H; CHPh), 2.71 (m, 1H; CHCHO), 1.54 – 1.11 

(m, 4H; CH2CH2CH3), 0.80 (t, J = 7.1 Hz, 3H; CH3).  

 
13C NMR (100 MHz, CDCl3, 25°C) δ = 203.2, 136.8, 129.1 (2), 128.1, 127.9 (2), 78.4, 53.8, 

43.2, 29.5, 19.8, 13.9 

 

CHN: Anal. Calcd for C13H17NO3: C 66.36; H 7.28; N 5.95. Found: C 66.33; H 7.33; N 5.93. 

 

The enantiomeric excess was determined by HPLC using a Chiracel OD-H column (n-

hexane/i-PrOH 80:20, 25°C) at 1 mL/min, UV detection at 254 nm: tR : (syn, major) = 11.7 

min, (syn, minor) = 15.9 min. 

 

(2S,3R)-2-Butyl-4-nitro-3-phenylbutanal (35)[24] 

 

 
 

Prepared from n-hexanal and trans-β-nitrostyrene according to the general procedure 

(Protocol E). Purified by preparative chromatography on silica gel (pentanes/EtOAc 10:1 

v/v). A pale yellow oil was obtained. 
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1H NMR (400 MHz, CDCl3, 25°C) δ = 9.70 (d, J = 2.8 Hz, 1H; CHO), 7.32 (m, 3H; Ph), 7.17 

(m, 2H; Ph), 4.71 (dd, J = 9.5 Hz, 12.8 Hz, 1H; CH2NO2), 4.64 (dd, J = 9.5 Hz, 12.8 Hz, 1H; 

CH2NO2), 3.78 (dt, J = 5.3 Hz, 9.6 Hz, 1H; CHPh), 2.60 (m, 1H; CHCHO), 1.54 – 1.09 (m, 

6H; CH2CH2CH2CH3), 0.78 (t, J = 7.0 Hz, 3H; CH3). 

 
13C NMR (100 MHz, CDCl3, 25°C) δ = 203.2, 136.8, 129.1 (2), 128.1, 128.0 (2), 78.4, 53.9, 

43.1, 28.5, 27.0, 22.5, 13.6.  

 

CHN: Anal. Calcd for C14H19NO3: C 67.45; H 7.68; N 5.62. Found: C 67.53; H 7.70; N 5.70. 

 

The enantiomeric excess was determined by HPLC using a Chiracel OD-H column (n-

hexane/i-PrOH 80:20, 25°C) at 1 mL/min, UV detection at 254 nm: tR : (syn, major) = 10.9 

min, (syn, minor) = 13.7 min. 

 

(2S,3R)-2-Isopropyl-4-nitro-3-phenylbutanal (36)[24] 

 

 
 

Prepared from isovaleric aldehyde and trans-β-nitrostyrene according to the general 

procedure (Protocol E). Purified by preparative chromatography on silica gel 

(pentanes/EtOAc 10:1 v/v). A pale yellow oil was obtained. 

 
1H NMR (400 MHz, CDCl3, 25°C) δ = 9.93 (d, J = 2.4 Hz, 1H; CHO), 7.32 (m, 3H; Ph), 7.19 

(m, 2H; Ph), 4.67 (dd, J = 4.4 Hz, 12.5 Hz, 1H; CH2NO2), 4.57 (dd, J = 10.0 Hz, 12.5 Hz, 1H; 

CH2NO2), 3.90 (dt, J = 4.4 Hz, 10.3 Hz, 1H; CHPh), 2.77 (ddd, J = 2.4 Hz, 4.1 Hz, 10.8 Hz, 

1H; CHCHO), 1.72 (d sept., J = 4.2 Hz, 7.1 Hz, 1H; CH(CH3)2), 1.10 (d, J = 7.2 Hz, 3H; 

CH3), 0.88 (d, J = 7.0 Hz, 3H; CH3).  

 
13C NMR (100 MHz, CDCl3, 25°C) δ = 204.3, 137.0, 129.1 (2), 128.1, 127.9 (2), 79.0, 58.7, 

41.9, 27.9, 21.6, 16.9. 

 

CHN: Anal. Calcd for C13H17NO3: C 66.36; H 7.28; N 5.95. Found: C 66.44; H 7.16; N 6.07. 
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The enantiomeric excess was determined by HPLC using a Chiracel AD-H column (n-

hexane/i-PrOH 97:3, 25°C) at 0.5 mL/min, UV detection at 254 nm: tR : (syn, minor) = 22.8 

min, (syn, major) = 26.6 min. 

 

(2S,3R)-2-Benzyl-4-nitro-3-phenylbutanal (37)[170] 

 

 
 

Prepared from 3-phenylpropionaldehyde and trans-β-nitrostyrene according to the general 

procedure (Protocol E). Purified by preparative chromatography on silica gel 

(pentanes/EtOAc 10:1 v/v). A pale yellow oil was obtained. 

 
1H NMR (400 MHz, CDCl3, 25°C) δ = 9.64 (d, J = 2.3 Hz, 1H; CHO), 7.33 – 7.11 (m, 8H; 

Ph), 6.95 (m, 2H; Ph), 4.65 (m, 2H; CH2NO2), 3.76 (dt, J = 6.1 Hz, 8.7 Hz, 1H; CHPh), 3.04 

(ddt, J = 2.3 Hz, 6.0 Hz, 8.6 Hz, 1H; CHCHO), 2.69 (m, 2H; CH2Ph). 

 
13C NMR (100 MHz, CDCl3, 25°C) δ = 203.0, 137.1, 136.6, 129.3 (2), 128.8 (2), 128.7 (2), 

128.3, 128.0 (2), 126.9, 78.0, 55.3, 43.5, 34.3. 

 

CHN: Anal. Calcd for C17H17NO3: C 72.07; H 6.05; N 4.94. Found: C 72.09; H 6.02; N 4.70. 

 

The enantiomeric excess was determined by HPLC using a Chiracel AD-H column (n-

hexane/i-PrOH 97.5:2.5, 25°C) at 1 mL/min, UV detection at 254 nm: tR : (syn, minor) = 21.9 

min, (syn, major) = 25.1 min. 
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(2S,3R)-3-(4-Bromophenyl)-2-ethyl-4-nitrobutanal (38) 

 

 
 

Prepared from n-butanal and trans-4-bromo-β-nitrostyrene according to the general procedure 

(Protocol E). Purified by preparative chromatography on silica gel (pentanes/EtOAc 10:1 

v/v). A colourless oil was obtained. 

 
1H NMR (400 MHz,CDCl3, 25°C) δ = 9.71 (d, J = 2.3 Hz, 1H; CHO), 7.48 (d, J = 8.4 Hz, 

2H; Ph), 7.07 (d, J = 8.4 Hz, 2H; Ph), 4.72 (dd, J = 4.8 Hz, 12.8 Hz, 1H; CH2NO2), 4.60 (dd, 

J = 9.9 Hz, 12.8 Hz, 1H; CH2NO2), 3.77 (dt, J = 4.8 Hz, 9.9 Hz, 1H; CHPh), 2.67 (m, 1H; 

CHCHO), 1.58–1.43 (m, 2H; CH2CH3), 0.84 (t, J = 7.5 Hz, 3H; CH3) 

 
13C NMR (100 MHz, CDCl3, 25°C) δ = 202.6, 135.9, 132.3 (2), 129.7 (2), 122.1, 78.2, 54.7, 

42.1, 20.3, 10.5. 

 

CHN: Anal. Calcd for C12H14BrNO3: C 48.02; H 4.70; N 4.67. Found: C 48.12; H 4.72; N 

4.73. 

 

The enantiomeric excess was determined by HPLC using a Chiracel AD-H column (n-

hexane/i-PrOH 98.5:1.5, 25°C) at 1 mL/min, UV detection at 254 nm: tR : (syn, minor) = 30.4 

min, (syn, major) = 42.9 min. 

 

(2S,3R)-3-(4-Fluorophenyl)-2-ethyl-4-nitrobutanal (39) 

 

 
 

Prepared from n-butanal and trans-4-fluoro-β-nitrostyrene according to the general procedure 

(Protocol E). Purified by preparative chromatography on silica gel (pentanes/EtOAc 10:1 

v/v). A colourless oil was obtained. 
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1H NMR (400 MHz,CDCl3, 25°C) δ = 9.72 (d, J = 2.4 Hz, 1H; CHO), 7.17 (m, 2H; Ph), 7.04 

(m, 2H; Ph), 4.72 (dd, J = 4.8 Hz, 12.7 Hz, 1H; CH2NO2), 4.59 (dd, J = 9.9 Hz, 12.7 Hz, 1H; 

CH2NO2), 3.80 (dt, J = 4.8 Hz, 10.0 Hz, 1H; CHPh), 2.67 (m, 1H; CHCHO), 1.58–1.43 (m, 

2H; CH2CH3), 0.84 (t, J = 7.5 Hz, 3H; CH3). 

 
13C NMR (100 MHz, CDCl3, 25°C) δ = 202.8, 162.3 (d, JCF = 247.4 Hz), 132.5 (d, JCF = 3.4 

Hz), 129.6 (2) (d, JCF = 8.1 Hz), 116.1 (2) (d, JCF = 21.6 Hz), 78.5, 54.9, 41.9, 20.3, 10.5. 

 

CHN: Anal. Calcd for C12H14FNO3: C 60.24; H 5.90; N 5.85. Found: C 60.39; H 5.96; N 

5.72. 

 

The enantiomeric excess was determined by HPLC using a Chiracel AD-H column (n-

hexane/i-PrOH 98.5:1.5, 25°C) at 1 mL/min, UV detection at 254 nm: tR : (syn, minor) = 26.6 

min, (syn, major) = 34.4 min. 

 

(2S,3R)-3-(4-Chlorophenyl)-2-ethyl-4-nitrobutanal (40) 

 

 
 

Prepared from n-butanal and trans-4-chloro-β-nitrostyrene according to the general procedure 

(Protocol E). Purified by preparative chromatography on silica gel (pentanes/EtOAc 10:1 

v/v). A colourless oil was obtained. 

 
1H NMR (400 MHz,CDCl3, 25°C) δ = 9.72 (d, J = 2.3 Hz, 1H; CHO), 7.33 (m, 1H; Ph), 7.13 

(m, 1H; Ph), 4.72 (dd, J = 4.8 Hz, 12.8 Hz, 1H; CH2NO2), 4.60 (dd, J = 9.9 Hz, 12.8 Hz, 1H; 

CH2NO2), 3.79 (dt, J = 4.8 Hz, 10.0 Hz, 1H; CHPh), 2.67 (m, 1H; CHCHO), 1.50 (m, 2H; 

CH2CH3), 0.84 (t, J = 7.5 Hz, 3H; CH3). 

 
13C NMR (100 MHz, CDCl3, 25°C) δ = 202.7, 135.3, 134.0, 129.3 (4), 78.3, 54.68, 42.0, 

20.3, 10.5. 
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CHN: Anal. Calcd for C12H14ClNO3: C 56.37; H 5.52; N 5.48. Found: C 56.29; H 5.55; N 

5.54. 

 

The enantiomeric excess was determined by HPLC using a Chiracel AD-H column (n-

hexane/i-PrOH 98.5:1.5, 25°C) at 1 mL/min, UV detection at 254 nm: tR : (syn, minor) = 27.3 

min, (syn, major) = 38.1 min. 

 

(2S, 3R)-3-(2,4-Dichlorophenyl)-2-ethyl-4-nitrobutyraldehyde (41) 

 

 
 

Prepared from n-butanal and trans-2,4-dichloro-β-nitrostyrene according to the general 

procedure (Protocol E). Purified by preparative chromatography on silica gel 

(pentanes/EtOAc 10:1 v/v). A colourless oil was obtained. 

 

 1H NMR (400 MHz, CDCl3, 25°C) δ = 9.73 (d, J = 2.1 Hz, 1H; CHO), 7.44 (d, J = 2.1 Hz, 

1H; Ph), 7.27 (m, 1H; Ph), 7.17 (d, J = 8.5 Hz, 1H; Ph), 4.85 (dd, J = 9.2 Hz, 13.0 Hz, 1H; 

CH2NO2), 4.68 (dd, J = 4.5 Hz, 13.0 Hz, 1H; CH2NO2), 4.30 (dt, J = 4.4 Hz, 9.5 Hz, 1H; 

CHPh), 2.94 (m, 1H; CHCHO), 1.57 (m, 2H; CH2CH3), 0.88 (t, J = 7.5 Hz, 3H; CH3). 

 
13C NMR (100 MHz, CDCl3, 25°C) δ = 202.4, 135.0, 134.5, 133.1, 130.3, 127.8 (2), 76.5, 

53.7, 38.7, 20.4, 10.6. 

 

CHN: Anal. Calcd for C12H13Cl2NO3: C 49.68; H 4.52; N 4.83. Found: C 49.65; H 4.55; N 

4.81. 

 

The enantiomeric excess was determined by HPLC using a Chiracel AD-H column (n-

hexane/i-PrOH 98.5:1.5, 25°C) at 1 mL/min, UV detection at 254 nm: tR : (syn, minor) = 18.0 

min, (syn, major) = 20.0 min. 
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(2S, 3R)-2Ethyl-4-nitro-3-(2-trifluoromethylphenyl)butanal (42)[43] 

 

 
 

Prepared from n-butanal and trans-β-nitro-2-(trifluoromethyl)styrene according to the general 

procedure (Protocol E). Purified by preparative chromatography on silica gel 

(pentanes/EtOAc 15:1 v/v). A colourless oil was obtained. 

 
1H NMR (400 MHz, CDCl3, 25°C) δ = 9.77 (dd, J = 1.7 Hz, 2.8 Hz, 1H; CHO), 7.73 (d, J = 

7.9 Hz, 1H; Ph), 7.58 (t, J = 7.7 Hz, 1H; Ph), 7.43 (t, J = 7.6 Hz, 1H; Ph), 7.35 (d, J = 7.8 Hz, 

1H; Ph) 4.81 (ddd, J = 1.4 Hz, 7.2 Hz, 12.6 Hz, 1H; CH2NO2) 4.63 (ddd, J = 1.5 Hz, 4.9 Hz, 

12.6 Hz, 1H; CH2NO2), 4.17 (m, 1H; CHPh), 2.91 (m, 1H; CHCHO), 1.60 (m, 1H; CH2CH3), 

1.38  (m, 1H; CH2CH3), 0.87 (dt, J = 1.5 Hz, 7.7 Hz, 3H; CH3). 

 
13C NMR (100 MHz, CDCl3, 25°C) δ = 203.0, 136.2, 132.6, 128.2 (2), 128.1, 126.9, 126.9, 

77.9, 55.5, 38.2, 21.3, 11.3. 

 

CHN: Anal. Calcd for C13H14F3NO3: C 53.98; H 4.88; N 4.84. Found: C 53.99; H 4.90; N 

4.72. 

 

The enantiomeric excess was determined by HPLC using a Chiracel AD-H column (n-

hexane/i-PrOH 99:1, 25°C) at 0.8 mL/min, UV detection at 254 nm: tR : (syn, minor) = 19.5 

min, (syn, major) = 21.6 min. 

 

(2S, 3R)-2-Benzyl-4-nitro-3-(2-trifluoromethylphenyl)butanal (43) 

 

 
 

Prepared from 3-phenylpropionaldehyde and trans-β-nitro-2-(trifluoromethyl)styrene 

according to the general procedure (Protocol E). Purified by preparative chromatography on 

silica gel (pentanes/EtOAc 10:1 to 5:1 v/v). A colourless oil was obtained. 
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1H NMR (400 MHz,CDCl3, 25°C) δ = 9.72 (d, J = 2.2 Hz, 1H; CHO), 7.75 (d, J = 7.9 Hz, 

1H; Ph), 7.60 (t, J = 7.64, 1H; Ph), 7.45 (t, J = 8.4, 2H; Ph), 7.24 (m, 3H; Ph), 7.03 (d, J = 

7.1 Hz, 2H; Ph), 4.86 (dd, J = 7.4 Hz, 12.7 Hz, 1H; CH2NO2), 4.69 (dd, J = 4.7 Hz, 12.7 Hz, 

1H; CH2NO2), 4.22 (m, 1H; CHCH2NO2), 3.36 (m, 1H; CHCHO), 2.83 (dd, J = 10.9 Hz, 14.0 

Hz, 1H; CH2Ph), 2.63 (dd, J = 4.4 Hz, 14.1 Hz, 1H; CH2Ph). 

 
13C NMR (100 MHz, CDCl3, 25°C) δ = 203.1, 137.0, 136.2, 132.7, 128.9, 128.8 (2), 128.6 

(2), 128.3, 127.9, 127.0, 125.4, 122.7, 77.4, 55.5, 39.0, 35.4. 

 

CHN: Anal. Calcd for C18H16F3NO3: C 61.54; H 4.59; N 3.99. Found: C 61.74; H 4.63; N 

3.81. 

 

The enantiomeric excess was determined by HPLC using a Chiracel AD-H column (n-

hexane/i-PrOH 98.5:1.5, 25°C) at 1 mL/min, UV detection at 254 nm: tR : (syn, minor) = 20.7 

min, (syn, major) = 27.5 min. 

 

(2S, 3R)-2Ethyl-4-nitro-3-(4-methoxyphenyl)butanal (44)[43] 

 

 
 

Prepared from n-butanal and trans-4-methoxy-β-nitrostyrene according to the general 

procedure (Protocol E). Purified by preparative chromatography on silica gel 

(pentanes/EtOAc 10:1 v/v). A pale yellow oil was obtained. 

 
1H NMR (400 MHz,CDCl3, 25°C) δ = 9.71 (d, J = 2.7 Hz, 1H; CHO), 7.09 (m, 2H; Ph), 6.87 

(m, 2H; Ph), 4.69 (dd, J = 5.0 Hz, 12.5 Hz, 1H; CH2NO2), 4.58 (dd, J = 9.8 Hz, 12.5 Hz, 1H; 

CH2NO2), 3.79 (s, 3H; OCH3), 3.47 (dt, J = 5.0 Hz, 9.9 Hz, 1H; CHPh), 2.63 (m, 1H; 

CHCHO), 1.51 (m, 2H; CH2CH3), 0.83 (t, J = 7.5 Hz, 3H; CH3).  

 
13C NMR (100 MHz, CDCl3, 25°C) δ = 203.3, 159.2, 129.0 (2), 128.5, 114.5 (2), 78.8, 55.2, 

55.2, 42.0, 20.3, 10.7. 
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CHN: Anal. Calcd for C13H17NO4: C 62.17; H 6.82; N 5.57. Found: C 61.85; H 6.68; N 5.47. 

 

The enantiomeric excess was determined by HPLC using a Chiral AM column (n-hexane/i-

PrOH 99.6:0.4, 25°C) at 1.2 mL/min, UV detection at 254 nm: tR : (syn, minor) = 52.2 min, 

(syn, major) = 77.2 min. 

 

(2S, 3R)-2-Methyl-4-nitro-3-(thien-2-yl)butanal (45)[136] 

 

 
 

Prepared from n-propanal and trans-2-(2-nitrovinyl)thiophene according to the general 

procedure (Protocol E). Purified by preparative chromatography on silica gel 

(pentanes/EtOAc 10:1 v/v). A colourless oil was obtained. 

 
1H NMR (400 MHz, CDCl3 , 25°C) δ = 9.68 (d, J = 2.7 Hz, 1H; CHO), 7.33 (d, J = 2.7 Hz, 

1H; Ph), 7.33 (t, J = 2.7 Hz, 1H; Ph), 7.33 (d, J = 2.7 Hz, 1H; Ph), 4.94 (dd, J = 12.7 Hz, 5.5 

Hz, 1H; CH2NO2), 4.84 (dd, J = 12.7 Hz, 10.1 Hz, 1H; CH2NO2), 3.92 (dt, J = 4.9 Hz, 9.7 

Hz, 1H; CHPh), 2.85-2.93 (m, 1H; CHCHO), 0.79 (d, J = 7.5 Hz, 1H; CH3). 

 
13C NMR (100 MHz, CDCl3, 25°C) δ = 201.7, 138.8, 127.1, 126.7, 125.3, 78.4, 48.8, 39.4, 

11.5. 

 

CHN: Calcd for C9H11NO3S: C 50.69; H 5.20; N 6.57. Found: C 50.64; H 5.17; N 6.58 

 

The enantiomeric excess was determined by HPLC using a Chiracel AD column (n-hexane/i-

PrOH 98.5:1.5, 25°C) at 1 mL/min, UV detection at 254 nm: tR : (syn, minor) = 31.2 min, 

(syn, major) = 43.9 min. 
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(2S, 3S)-3-Cylohexyl-2-methyl-4-nitrobutanal (46)[136] 

 

 
 

Prepared from n-propanal and trans-1-nitro-1-cyclohexyl-ethene according to the general 

procedure (Protocol E). Purified by preparative chromatography on silica gel 

(pentanes/EtOAc 15:1 v/v). A colourless oil was obtained. 

 
1H NMR (400 MHz,CDCl3, 25°C) δ = 9.69 (d, J = 0.8 Hz, 1H; CHO), 4.59 (dd, J = 5.4 Hz, 

13.3 Hz, 1H; CH2NO2), 4.39 (dd, J = 6.8 Hz, 13.3 Hz, 1H; CH2NO2), 2.77 – 2.54 (m, 2H; 

CHCHO, CHCy), 1.81 – 1.50 (m, 5H; Cy), 1.41 (m, 1H; Cy), 1.27 – 0.93 (m, 5H; Cy), 1.20 

(d, J = 7.0 Hz, 3H; CH3). 

 
13C NMR (100 MHz, CDCl3, 25°C) δ = 203.1, 75.8, 46.6, 43.5, 38.0, 31.6, 30.0, 26.4, 26.2, 

26.0, 10.7. 

 

CHN: Anal. Calcd for C11H19NO3: C 61.95; H 8.98; N 6.57. Found: C 61.92; H 8.81; N 6.53. 

 

The enantiomeric excess was determined by HPLC using a Chiracel AS-H column (n-

hexane/i-PrOH 90:10, 25°C) at 0.5 mL/min, UV detection at 210 nm: tR : (syn, major) = 18.4 

min, (syn, minor) = 19.6 min. 

 

(2S, 3S)-2-Ethyl-3-nitromethyloctanal (47) 

 

 
 

Prepared from n-butanal and 1-nitro-1-heptene according to the general procedure (Protocol 

E). Purified by preparative chromatography on silica gel (pentanes/EtOAc 15:1 v/v). A 

colourless oil was obtained. 
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1H NMR (400 MHz,CDCl3, 25°C) δ = 9.71 (d, J = 1.5 Hz, 1H; CHO), 4.42 (m, 2H; 

CH2NO2), 2.65 (m, 1H; CHCH2NO2), 2.41 (dtd, J = 1.5 Hz, 4.82 Hz, 6.33 Hz, 1H; CHCHO), 

1.59–1.23 (m, 10H; CH2), 1.00 (t, J = 7.4 Hz, 3H; CH3); 0.88 (t, J = 6.9 Hz, 3H; CH3) 

 
13C NMR (100 MHz, CDCl3, 25°C) δ = 203.1, 53.9, 37.3, 36.8, 31.6, 29.0, 26.4, 22.3, 18.6, 

13.9, 12.1. 

 

CHN: Anal. Calcd for C11H21NO3: C 61.37; H 9.83; N 6.51. Found: C 61.5; H 9.85; N 6.38. 

 

The enantiomeric excess was determined by HPLC using a Chiracel AS-H column (n-

hexane/i-PrOH 98.5:1.5, 25°C) at 0.5 mL/min, UV detection at 210 nm: tR : (syn, major) = 

21.1 min, (syn, minor) = 22.7 min. 

 

(2S,3S)-2-Ethyl-5-methyl-3-(nitromethyl)hexanal (68) 

 

 
Prepared from n-butanal and (E)-4-methyl-1-nitropent-1-ene according to the general 

procedure (Protocol E). Purified by preparative chromatography on silica gel 

(pentanes/EtOAc 20:1 v/v). A colourless oil was obtained. 

 
1H NMR (400 MHz,CDCl3, 25°C) δ = 9.72 (d, J = 1.3 Hz, 1H), 4.47 (dd, J = 6.4 Hz, 12.5 Hz, 

1H), 4.42 (dd, J = 6.6 Hz, 12.5 Hz, 1H), 2.73 (m, 1H), 2.43 (dtd, J = 1.3 Hz, 4.7 Hz, 6.0 Hz, 

1H), 1.80 (m, 1H), 1.61 (m, 1H), 1.50 (dqd, J = 4.9 Hz, 7.4 Hz, 14.8 Hz, 1H), 1.24 (m, 2H), 

1.01 (t, J = 7.4 Hz, 3H), 0.92 (d, J = 4.9, 3H), 0.90 (d, J = 4.9 Hz, 3H). 

 
13C NMR (100 MHz, CDCl3, 25°C) δ = 203.0, 77.1, 54.0, 38.3, 34.7, 25.2, 22.7, 22.0, 18.5, 

12.2. 

 

CHN: Anal. Calcd for C10H19NO3: C 59.68; H 9.51; N 6.96. Found: C 59.83; H 9.26; N 6.80. 
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The enantiomeric excess was determined by HPLC using a Chiracel AD-H column (n-

hexane/i-PrOH 99.25:0.75, 25°C) at 0.3 mL/min, UV detection at 210 nm: tR : (syn, minor) = 

29.5 min, (syn, major) = 33.0 min. 

 

(2S,3S)-2-Ethyl-4,4-dimethoxy-3-(nitromethyl)butanal (70)[48] 

 

 
 

Prepared from n-butanal and (E)-3,3-dimethoxy-1-nitropropene according to the general 

procedure in neat CHCl3. Purified by preparative chromatography on silica gel 

(pentanes/EtOAc 5:1 v/v). A colourless oil was obtained. 

 
1H NMR (400 MHz,CDCl3, 25°C) δ = 9.64 (d, J = 1.4 Hz, 1H; CHO), 4.61 (dd, J = 7.2 Hz, 

13.7 Hz, 1H; CH2NO2), 4.37 (m, 2H; CH2NO2, CH(OMe)2), 3.38 (s, 3H, OCH3), 3.36 (s, 3H, 

OCH3), 3.04 (m, 1H; CHCH2NO2), 2.55 (s, 1H; CHCHO), 1.82 (m, 1H; CH2CH3), 1.49 (m, 

1H; CH2CH3), 1.03 (t, J = 7.4 Hz, 3H; CH3). 

 
13C NMR (100 MHz, CDCl3, 25°C) δ = 202.6, 104.4, 73.3, 55.3, 55.3, 51.3, 41.1, 19.5, 12.4. 

 

CHN: Anal. Calcd for C9H17NO5: C 49.31; H 7.82; N 6.39. Found: C 49.29; H 7.56; N 6.26. 

 

The enantiomeric excess was determined by HPLC using a Chiracel AS-H column (n-

hexane/i-PrOH 95:5, 25°C) at 0.5 mL/min, UV detection at 210 nm: tR : (syn, major) = 24.1 

min, (syn, minor) = 26.4 min. 
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(2S,3S)-2-Isopropyl-4,4-dimethoxy-3-(nitromethyl)butanal (71)[48] 

 

 
 

Prepared from isovaleric aldehyde and (E)-3,3-dimethoxy-1-nitropropene according to the 

general procedure in neat CHCl3 (Protocol E). Purified by preparative chromatography on 

silica gel (pentanes/EtOAc 15:1 v/v). A colourless oil was obtained. 

 
1H NMR (400 MHz,CDCl3, 25°C) δ = 9.75 (dd, J = 0.5 Hz, 2.5 Hz, 1H; CHO), 4.61 (dd, J = 

8.9 Hz, 14.0 Hz, 1H; CH2NO2), 4.42 (dd, J = 3.0 Hz, 14.0 Hz, 1H; CH2NO2), 4.32 (d, J = 4.6 

Hz, 1H; CH(OMe)2), 3.38 (s, 3H; OCH3), 3.38 (s, 3H; OCH3), 3.04 (m, 1H; CHCH2NO2), 

2.61 (ddd, J = 2.6 Hz, 3.9 Hz, 9.0 Hz, 1H; CHCHO), 2.03 (sept.d, J = 6.7 Hz, 8.7 Hz, 1H; 

CH(CH3)2), 1.08 (d, J = 6.8 Hz, 3H; CH3), 1.03 (d, J = 6.6 Hz, 3H; CH3). 

 
13C NMR (100 MHz, CDCl3, 25°C) δ = 204.3, 105.3, 73.0, 56.0, 55.4 (2), 40.2, 27.2, 20.9, 

20.8. 

 

CHN: Anal. Calcd for C10H19NO5: C 51.49; H 8.21; N 6.00. Found: C 51.52; H 8.10; N 6.00. 

 

The enantiomeric excess was determined by HPLC using a Chiracel AS-H column (n-

hexane/i-PrOH 99:1, 25°C) at 0.8 mL/min, UV detection at 210 nm: tR : (syn, major) = 19.1 

min, (syn, minor) = 22.8 min. 

 

(3S,4S)-Methyl-3-formyl-5,5-dimethoxy-4-(nitromethyl)pentanoate (72) 

 

 
 

Prepared from methyl-4-oxybutanoate and (E)-3,3-dimethoxy-1-nitropropene according to the 

general procedure in neat CHCl3 (Protocol E). Purified by preparative chromatography on 

silica gel (pentanes/EtOAc 5:1 v/v). A colourless oil was obtained. 
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1H NMR (400 MHz,CDCl3, 25°C) δ = 9.66 (s, 1H; CHO), 4.57 (dd, J = 6.7 Hz, 13.9 Hz, 1H; 

CH2NO2), 4.41 (dd, J = 6.5 Hz, 13.9 Hz, 1H; CH2NO2), 4.33 (d, J = 5.1 Hz, 1H, CH(OMe)2), 

3.71 (s, 3H; CO2CH3), 3.39 (s, 3H; OCH3), 3.38 (s, 3H; OCH3), 3.23 (ddt, J = 3.3 Hz, 5.2 Hz, 

6.6 Hz, 1H; CHCH2NO2), 3.09 (m, 1H; CHCHO), 2.87 (dd, J = 8.20 Hz, 17.22 Hz, 1H; 

CH2CO2Me), 2.48 (dd, J = 5.21 Hz, 17.22 Hz, 1H; CH2CO2Me). 

 
13C NMR (100 MHz, CDCl3, 25°C) δ = 200.1, 172.0, 104.3, 73.4, 56.3, 55.4, 52.2, 45.7, 40.7, 

30.5. 

 

CHN: Anal. Calcd for C10H17NO7: C 45.63; H 6.51; N 5.32. Found: C 45.90; H 6.40; N 5.40. 

 

The enantiomeric excess was determined by HPLC using a Chiracel AD-H column (n-

hexane/i-PrOH 97.5:2.5, 25°C) at 0.5 mL/min, UV detection at 210 nm: tR : (syn, minor) = 

57.2 min, (syn, major) = 75.4 min. 

 

(2S,3R)-3-(2,4-Dimethoxyphenyl)-2-ethyl-4-nitrobutanal (74) 

 

 
 

Prepared from n-butanal and 2,4-dimethoxy-β-nitrostyrene according to the general procedure 

(Protocol E). Purified by preparative chromatography on silica gel (pentanes/CH2Cl2 3:1 v/v). 

A colourless oil was obtained. 

 
1H NMR (400 MHz, CDCl3, 25°C) δ = 9.68 (d, J = 2.7 Hz, 1H; CHO), 6.98 (d, J = 8.3 Hz, 

1H; Ph), 6.44 (d, J = 2.4 Hz, 1H; Ph), 6.42 (dd, J = 2.4 Hz, 8.3 Hz, 1H; Ph), 4.79 (dd, J = 9.6 

Hz, 12.4 Hz, 1H; CH2NO2), 4.60 (dd, J = 4.9 Hz, 12.4 Hz, 1H; CH2NO2), 3.92 (dt, J = 4.9 Hz, 

9.7 Hz, 1H; CHPh), 3.80 (s, 3H; OCH3), 3.78 (s, 3H; OCH3), 2.85-2.93 (m, 1H; CHCHO), 

1.37-1.55 (m, 2H; CH2CH3), 0.79 (t, J = 7.5 Hz, 1H; CH3). 

 
13C NMR (100 MHz, CDCl3, 25°C) δ = 204.3, 161.1, 158.9, 131.5, 117.1, 104.9, 99.6, 77.7, 

55.8, 55.7, 54.0, 39.5, 20.9, 11.1. 
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CHN: Anal. Calcd for C14H19NO5: C 59.78; H 6.81; N 4.98. Found: C 59.80; H 6.78; N 4.97. 

 

The enantiomeric excess was not determined. 

 

(2S,3R)-2-Ethyl-4-nitro-3-phenylbutan-1-ol (73) (gram scale synthesis) 

 

 
 

TFA•H-D-Pro-Pro-Glu-NH2 56 (62.0 mg, 0.136 mmol, 0.02 eq) was suspended in 1 mL of i-

PrOH and NMM (15 μL, 0.136 mmol, 0.02 eq), butyraldehyde (675 μL, 7.5 mmol, 1.1 eq) 

and CHCl3 (9 mL) were added. The colourless solution was then cooled to 0 °C and β-

nitrostyrene (1.01 g, 6.80 mmol, 1.0 eq) was added. The yellow solution was stirred for 24 h 

at 0 °C. TLC (pentanes/EtOAc 10:1 v/v) showed complete conversion of the reaction and 
1H NMR of the crude reaction mixture showed a dr of >99:1 of the formed Michael adduct. 

The reaction mixture was cooled to -15°C and a solution of borane in THF (1M, 8.0 mL, 8.2 

mmol, 1.2 eq) was added dropwise. After stirring for 1 h at -15 °C the TLC (pentanes/EtOAc 

5:1) showed complete conversion. The mixture was quenched with an excess of conc. AcOH 

(2.0 mL, 31.7 mmol, 4.7 eq) and concentrated under reduced pressure. The crude product was 

dissolved in CH2Cl2/pentanes 1:2 (v/v) and purified by flash chromatography over silica gel 

using pentanes/EtOAc 5:1 (v/v) to obtain 1.34 g (93%) of the desired product 73 as a 

colourless oil. 

 
1H NMR (400 MHz, CDCl3, 25°C) δ  = 7.36 (m, 2H; Ph), 7.30 (m, 1H; Ph), 7.25 (m, 2H; Ph), 

4.94 (dd, J = 12.7 Hz, 5.5 Hz, 1H; CH2NO2), 4.84 (dd, J = 12.7 Hz, 10.1 Hz, 1H; CH2NO2), 

3.79 (dd, J = 11.1 Hz, 3.4 Hz, 1H; CH2OH), 3.73 (ddd, J = 10.1 Hz, 7.7 Hz, 5.6 Hz, 1H; 

CHPh), 3.63 (dd, J = 11.1 Hz, 6.0 Hz, 1H; CH2OH), 1.79 (m, 2H; CHCH2OH and CH2OH), 

1.40 (dqd, J = 15.0 Hz, 7.5 Hz, 4.0 Hz, 1H; CH2CH3), 1.23 (qdd, J = 14.3 Hz, 9.0 Hz, 7.3 Hz, 

1H; CH2CH3), 0.92 (t, J = 7.4 Hz, 3H, CH3). 

 
13C NMR (100 MHz, CDCl3, 25°C) δ = 139.1, 129.2, 128.6, 127.9, 79.2, 62.5, 46.3, 45.8, 

21.9, 12.1. 
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CHN: Anal. Calcd for C12H17NO3: C 64.55; H 7.67; N 6.27. Found: C 64.30; H 7.66; N 6.21. 

 

The diastereomeric ratio (syn to anti) and the enantiomeric excess were determined by HPLC 

using a Chiracel AD-H column (n-hexane/i-PrOH 99.4:0.6, 25°C) at 1.2 mL/min, UV 

detection at 210 nm: tR : (anti, minor) = 101.7, (anti, major) = 107.4, (syn, minor) = 115.5 

min, (syn, major) = 119.4 min. 

 

17.3 1,4-Addition Products of Aldehydes and Nitroethylene 
 

ee determination by chiral HPLC or chiral GC: For the determination of the signals 

corresponding to the two enantiomers, reactions were performed with H-D-Pro-Pro-Glu-NH2 

56 and the enantiomeric H-Pro-D-Pro-D-Glu-NH2 under otherwise identical conditions. 

Peptides 56 and H-Pro-D-Pro-D-Glu-NH2 have opposite enantioselectivity. 

 

ee determination by 1H NMR spectroscopy: To determine the ee of the γ-nitroaldehydes a 

procedure developed by Gellman et al. was used.[158] This involves formation of 

diastereomeric imines by addition of (S)-(+)-1-methoxy-2-propylamine to the reaction 

mixture. In a typical experiment, approximately 1 mL of the reaction mixture was evaporated 

and re-dissolved in 0.5 mL CDCl3. 60 μl of (S)-(+)-1-methoxy-2-propylamine were added, the 

mixture was shaken and the 1H NMR spectrum (400 MHz, CDCl3, 25°C) measured 

immediately. The ee was determined by integration of the signals corresponding to the imine 

proton. 

 

Assignment of the absolute configuration: For the assignment of the absolute configuration, 

(2S)-benzyl-4-nitrobutan-1-ol 82 was converted into the known (2S)-benzyl-γ-butyrolactone 

86 (see below). The optical rotation of 86 was in agreement with the published data.[160,171]  
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(2S)-Methyl-4-nitrobutan-1-ol (76) 

 

 
 

Prepared from propanal and nitroethylene according to the general procedure (Protocol F). 

Purified by preparative chromatography on silica gel (pentanes/EtOAc 3:1 v/v). A colourless 

oil was obtained. 

 
1H NMR (400 MHz, CDCl3, 25°C) δ = 4.50 (m, 2H; CH2NO2), 3.59 (dd, J = 5.2 Hz, 10.6 Hz, 

1H; CH2OH), 3.50 (dd, J = 6.5 Hz, 10.5 Hz, 1H; CH2OH), 2.21 (m, 1H; CH2CH2NO2), 1.90 

(m, 1H; CH2CH2NO2), 1.78 (m, 1H; CHCH3), 1.46 (s, 1H; OH), 0.98 (d, J = 6.6 Hz, 3H; 

CH3). 

 
13C NMR (100 MHz, CDCl3, 25°C) δ = 74.0, 67.4, 33.1, 31.1, 16.2. 

 

CHN: Anal. Calcd for C5H11NO3: C 45.10; H 8.33; N 10.52. Found: C 44.99; H 8.08; N 

10.37 

 

[α]D
20 = -15.3 (c = 1.0, CHCl3, 95 % ee). 

 

The enantiomeric excess was determined by HPLC using a Chiracel AD-H column (n-

hexane/i-PrOH 95:5, 25°C) at 0.5 mL/min, UV detection at 210 nm: tR : (minor) = 39.2 min, 

(major) = 41.7 min.  

 
(2S)-Ethyl-4-nitrobutan-1-ol (77) 

 

 
 

Prepared from n-butanal and nitroethylene according to the general procedure (Protocol F). 

Purified by preparative chromatography on silica gel (pentanes/EtOAc 7:1 v/v). A colourless 

oil was obtained. 
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1H NMR (400 MHz, CDCl3, 25°C) δ = 4.51 (t, J = 7.4 Hz, 2H; CH2NO2), 3.68 (dd, J = 4.5 

Hz, 10.7 Hz, 1H; CH2OH), 3.56 (dd, J = 6.3 Hz, 10.7 Hz, 1H; CH2OH), 2.10 (m, 2H; 

CH2CH2NO2), 1.54 (m, 1H; CHEt), 1.47-1.31 (m, 2H; CH2CH3), 0.94 (t, J = 7.2 Hz, 3H; 

CH3). 

 
13C NMR (100 MHz, CDCl3, 25°C) δ = 74.2, 64.7, 39.3, 29.2, 23.5, 11.1. 

 

MS (ESI): m/z (%): 170.7 (100) [M+Na]+. M = 147.2 calcd for C6H13NO3. 

 

[α]D
20 = -0.5 (c = 1.0, CHCl3, 98 % ee). 

 

The enantiomeric excess was determined by HPLC using a Chiracel AD-H column (n-

hexane/i-PrOH 92.5:7.5, 25°C) at 0.5 mL/min, UV detection at 210 nm: tR : (minor) = 20.1 

min, (major) = 22.6 min. 

 

(2S)-(2-Nitroethyl)pentan-1-ol (78) 

 

 
 

Prepared from n-pentanal and nitroethylene according to the general procedure (Protocol F). 

Purified by preparative chromatography on silica gel (pentanes/EtOAc 3:1 v/v). A colourless 

oil was obtained. 

 
1H NMR (400 MHz, CDCl3, 25°C) δ =  4.52 (t, J = 7.4 Hz, 2H; CH2NO2), 3.68 (dd, J = 4.4 

Hz, 10.7 Hz, 1H; CH2OH), 3.54 (dd, J = 6.4 Hz, 10.7 Hz, 1H; CH2OH)), 2.10 (m, 2H; 

CH2CH2NO2), 1.62 (m, 1H; CHPr), 1.46 (s, 1H; OH), 1.46 – 1.23 (m, 4H; CH2CH2CH3), 0.92 

(t, J = 7.1 Hz, 3H; CH3). 

 
13C NMR (100 MHz, CDCl3, 25°C) δ = 74.1, 65.1, 37.6, 33.1, 29.6, 19.9, 14.2. 

 

CHN: Anal. Calcd for C7H15NO3: C 52.16; H 9.38; N 8.69. Found: C 52.31; H 9.42; N 8.50. 

 

[α]D
20 = -4.2 (c = 1.0, CHCl3, 99 % ee). 



194 

 

The enantiomeric excess was determined by HPLC using a Chiracel AD-H column (n-

hexane/i-PrOH 97.5:2.5, 25°C) at 0.5 mL/min, UV detection at 210 nm: tR : (minor) = 53.4 

min, (major) = 55.8 min. 

 

(2S)-(2-Nitroethyl)hexan-1-ol (79) 

 

 
 

Prepared from n-hexanal and nitroethylene according to the general procedure (Protocol F). 

Purified by preparative chromatography on silica gel (pentanes/EtOAc 5:1 v/v). A colourless 

oil was obtained. 

 
1H NMR (400 MHz, CDCl3, 25°C) δ = 4.44 (t, J = 7.4 Hz, 2H; CH2NO2), 3.61 (dd, J = 4.4 

Hz, 10.7 Hz, 1H; CH2OH), 3.47 (dd, J = 6.4 Hz, 10.7 Hz, 1H; CH2OH), 2.02 (m, 2H; 

CH2CH2NO2), 1.53 (m, 1H; CHBu), 1.45 (s, 1H; OH), 1.33 – 1.19 (m, 6H; CH2CH2CH2CH3), 

0.84 (t, J = 6.8 Hz, 3H; CH3). 

 
13C NMR (100 MHz, CDCl3, 25°C) δ = 74.2, 65.1, 37.8, 30.5, 29.6, 28.9, 22.8, 14.0. 

 

CHN: Anal. Calcd for C8H17NO3: C 54.84; H 9.78; N 7.99. Found: C 54.88; H 9.81; N 7.77;  

 

[α]D
20 = -4.3 (c = 1.0, CHCl3, 99 % ee). 

 

The enantiomeric excess was determined by HPLC using a Chiracel AD-H column (n-

hexane/i-PrOH 97.5:2.5, 25°C) at 0.5 mL/min, UV detection at 210 nm: tR : (minor) = 48.6 

min, (major) = 51.4 min. 
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(2R)-3-Methyl-(2-nitroethyl)butan-1-ol (80) 

 

 
 

Prepared from isovaleraldehyde and nitroethylene according to the general procedure 

(Protocol F). Purified by preparative chromatography on silica gel (pentanes/EtOAc 5:1 v/v). 

A colourless oil was obtained. 

 
1H NMR (400 MHz, CDCl3, 25°C) δ =  4.53 (m, 2H; CH2NO2), 3.72 (dd, J = 4.6 Hz, 10.7 

Hz, 1H; CH2OH), 3.59 (dd, J = 7.1 Hz, 10.7 Hz, 1H; CH2OH), 2.15 (m, 1H; CH2CH2NO2), 

2.10 (m, 1H; CH2CH2NO2), 1.76 (m, 1H; CHi-Pr or CH(CH3)2), 1.42 (m, 2H; OH, CHi-Pr or 

CH(CH3)2), 0.92 (d, J = 6.9 Hz, 6H; (CH3)2). 

 
13C NMR (100 MHz, CDCl3, 25°C) δ = 74.8, 63.9, 43.7, 28.7, 27.2, 19.6, 19.3. 

 

CHN: Anal. Calcd for C7H15NO3: C 52.16; H 9.38; N 8.69. Found: C 52.21; H 9.28; N 8.69.  

 

[α]D
20 = +5.6 (c = 1.0, CHCl3, 97 % ee). 

 

The enantiomeric excess was determined by 1H NMR (400 MHz, CDCl3, 25°C) after the 

addition of (S)-(+)-1-methoxy-2-propylamine to the crude nitroaldehyde: minor 

diastereoisomer δ =  7.48 (d, J = 5.5 Hz), major diastereoisomer δ =  7.40 (d, J = 5.9 Hz). 

 

(2R)-3,3-Dimethyl-(2-nitroethyl)butan-1-ol (81) 

 

 
 

Prepared from 3,3-dimethylbutyraldehyde and nitroethylene according to the general 

procedure (Protocol F). Purified by preparative chromatography on silica gel 

(pentanes/EtOAc 5:1 v/v). A colourless oil was obtained. 
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1H NMR (400 MHz, CDCl3, 25°C) δ = 4.65 (ddd, J = 5.6 Hz, 8.5 Hz, 13.0 Hz, 1H; CH2NO2), 

4.53 (dt, J = 7.9 Hz, 12.9 Hz, 1H; CH2NO2), 3.91 (ddd, J = 0.7 Hz, 3.7 Hz, 10.6 Hz, 1H; 

CH2OH), 3.58 (dd, J = 7.7 Hz, 10.6 Hz, 1H; CH2OH), 2.31 (m, 1H; CH2CH2NO2), 1.96 (m, 

1H; CH2CH2NO2)), 1.31 (m, 2H; OH, CHtBu), 0.94 (s, 9H; (CH3)3). 

 
13C NMR (100 MHz, CDCl3, 25°C) δ = 75.8, 63.7, 47.5, 32.6, 27.8 (3), 27.0. 

 

CHN: Anal. Calcd for C8H17NO3: C 54.84; H 9.78; N 7.99. Found: C 54.84; H 9.79; N 7.96. 

 

[α]D
20 = +11.7 (c = 1.0, CHCl3, 98% ee). 

 

The enantiomeric excess was determined by chiral GC using a Chiraldex G-TA column (30m 

x 0.25mm x 0.12 μm film thickness) at 130°C isotherm / 60 kPa (H2): tR : (minor) = 55.5 min, 

(major) = 56.5 min. 

 

(2S)-Benzyl-4-nitrobutan-1-ol (82) 

 

 
 

Prepared from 3-phenylpropionaldehyde and nitroethylene according to the general procedure 

(Protocol F). Purified by preparative chromatography on silica gel (pentanes/EtOAc 5:1 v/v). 

A colourless oil was obtained. 

 
1H NMR (400 MHz, CDCl3, 25°C) δ = 7.31 (m, 2H; Ph), 7.22 (m, 1H; Ph), 7.17 (m, 2H; Ph), 

4.47 (m, 2H; CH2NO2), 3.65 (m, 1H; CH2OH), 3.53 (m, 1H; CH2OH), 2.71 (dd, J = 7.8 Hz, 

13.7 Hz, 1H; CH2Ph), 2.63 (dd, J = 6.9 Hz, 13.7 Hz, 1H; CH2Ph), 2.12 (m, 2H; 

CH2CH2NO2), 1.94 (m, 1H; CHBn). 

 
13C NMR (100 MHz, CDCl3, 25°C) δ = 139.2, 129.0 (2), 128.6 (2), 126.4, 74.0, 64.3, 39.7, 

37.5, 29.3. 

 

CHN: Anal. Calcd for C11H15NO3: C 63.14; H 7.23; N 6.69. Found: C 63.03; H 7.41; N 6.40. 
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[α]D
20 = +10.5 (c = 1.0, CHCl3, 98 % ee). 

 

The enantiomeric excess was determined by HPLC using a Chiracel AD-H column (n-

hexane/i-PrOH 92.5:7.5, 25°C) at 0.5 mL/min, UV detection at 254 nm: tR : (minor) = 28.1 

min, (major) = 30.3 min. 

 

(2S)-(2-Nitroethyl)-cis-8-undecanal (83) 

 

 
 

Prepared from cis-8-undecanal and nitroethylene according to the general procedure (Protocol 

F) without reduction. Purified by preparative chromatography on silica gel (pentanes/EtOAc 

20:1 v/v). A colourless oil was obtained. 

 
1H NMR (400 MHz, CDCl3, 25°C) δ = 9.67 (s, 1H; CHO), 5.36 (m, 2H; CH=CH), 4.45 (m, 

2H; CH2NO2), 2.47 (m, 1H; CHCHO), 2.32 (tdd, J = 6.4 Hz, 9.0 Hz, 15.1 Hz, 1H; 

CH2CH2NO2), 2.13 (m, 1H; CH2CH2NO2), 2.02 (m, 4H; alkyl-H), 1.76 (m, 1H; alkyl-H), 1.52 

(m, 1H; alkyl-H), 1.42 – 1.29 (m, 6H; alkyl-H), 0.97 (t, J = 7.5 Hz, 3H; CH3). 

 
13C NMR (100 MHz, CDCl3, 25°C) δ = 202.8, 131.9, 128.7, 73.3, 48.4, 29.4, 29.1, 28.7, 26.9, 

26.5, 25.5, 20.5, 14.4. 

 

MS (FAB): m/z (%): 242.1 (100) [M+H]+. M = 241.3 calcd for C13H23NO3. 

 

The enantiomeric excess was determined by 1H NMR (400 MHz, CDCl3, 25°C) after the 

addition of (S)-(+)-1-methoxy-2-propylamine to the crude nitroaldehyde: minor 

diastereoisomer δ =  7.48 (d, J = 5.7 Hz), major diastereoisomer δ  =  7.40 (d, J = 6.5 Hz). 
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(3R)-Methyl-formyl-5-nitropentanoate (84) 

 

 
 

Prepared from methyl-4-oxobutanoate and nitroethylene according to the general procedure 

(Protocol F) without reduction. Purified by preparative chromatography on silica gel 

(pentanes/EtOAc 5:1 v/v). A colourless oil was obtained. 

 
1H NMR (400 MHz, CDCl3, 25°C) δ = 9.67 (s, 1H; CHO), 4.44 (m, 2H; CH2NO2), 3.65 (s, 

3H; CH3), 2.82 (m, 1H; CHCHO), 2.72 (dd, J = 6.6 Hz, 16.8 Hz, 1H; CH2CO2Me), 2.54 (dd, 

J = 6.1 Hz, 16.8 Hz, 1H; CH2CO2Me), 2.41 (m, 1H; CH2CH2NO2), 2.08 (m, 1H; 

CH2CH2NO2). 

 
13C NMR (100 MHz, CDCl3, 25°C) δ = 200.5, 171.2, 72.8, 52.3, 44.6, 33.0, 25.7. 

 

CHN: Anal. Calcd for C7H11NO5: C 44.45; H 5.86; N 7.40. Found: C 44.49; H 5.92; N 7.00. 

 

The enantiomeric excess was determined by 1H NMR (400 MHz, CDCl3, 25°C) after the 

addition of (S)-(+)-1-methoxy-2-propylamine to the crude nitroaldehyde: minor 

diastereoisomer δ =  7.61 (d, J = 4.0 Hz), major diastereoisomer δ =  7.50 (d, J = 5.2 Hz). 

 

(3S)-Methyl-formyl-5-nitroheptanoate (85) 

 

 
 

Prepared from adipic-semialdehyde-methylester and nitroethylene according to the general 

procedure (Protocol F) without reduction. Purified by preparative chromatography on silica 

gel (pentanes/EtOAc 4:1 v/v). A colourless oil was obtained. 

 



199 

 

1H NMR (250 MHz, CDCl3, 25°C) δ = 9.67 (s, 1H; CHO), 4.59 (m, 2H; CH2NO2), 3.69 (s, 

3H; CH3), 2.55 – 2.10 (m, 5H; CH2CO2Me, CHCHO, CH2CH2NO2), 1.85 – 1.50 (m, 4H; 

(CH2CH2CH2CO2Me). 

 
13C NMR (100 MHz, CDCl3, 25°C) δ = 202.2, 173.2, 73.1, 51.7, 48.2, 33.5, 27.9, 25.3, 21.8. 

 

CHN: Anal. Calcd for C9H15NO5: C 49.76; H 6.96; N 6.45. Found: C 49.93; H 6.93; N 6.30. 

 

The enantiomeric excess was determined by 1H NMR (400 MHz, CDCl3, 25°C) after the 

addition of (S)-(+)-1-methoxy-2-propylamine to the crude nitroaldehyde: minor 

diastereoisomer δ =  7.50 (d, J = 5.5 Hz), major diastereoisomer δ =  7.42 (d, J = 6.4 Hz). 

 

17.4 Derivatives of 1,4-Addition Products 
 

(2S)-Benzyl-γ-butyrolactone (86) 

 

 
 

The title compound was prepared according to a literature procedure.[28]  

(2S)-2-Benzyl-4-nitrobutan-1-ol 82 (210 mg, 1 mmol, 1 eq) was dissolved in DMSO (1.5 

mL), NaNO2 (173 mg, 2.5 mmol, 2.5 eq) and acetic acid (487 μL, 8.5 mmol, 8.5 eq) was 

added and the mixture was stirred for 12 h at RT. An excess of MgSO4 was added and the 

mixture was stirred for another 12 h at 40 °C. The mixture was allowed to cool to RT and HCl 

1M (20 mL) was added. The aqueous phase was extracted with CH2Cl2 (3 x 15 mL) and the 

combined organic layers were dried over MgSO4. The solvent was removed under vacuum 

and the crude material was purified by preparative chromatography on silica gel 

(pentanes/EtOAc 4:1 v/v) affording a colourless oil (157 mg, 89 %). 
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1H NMR (400 MHz, CDCl3, 25°C) δ = 7.32 (m, 2H), 7.25 (m, 1H), 7.16 (m, 2H), 4.34 (dd, J 

= 6.9 Hz, 9.2 Hz, 1H), 4.04 (dd, J = 6.1 Hz, 9.2 Hz, 1H), 2.86 (m, 1H), 2.78 (dd, J = 3.2 Hz, 

7.6 Hz, 2H), 2.61 (dd, J = 8.0 Hz, 17.5 Hz, 1H), 2.30 (dd, J = 7.0 Hz, 17.5 Hz, 1H). 

 
13C NMR (100 MHz, CDCl3, 25°C) δ = 176.8, 138.2, 128.8, 128.6, 126.8, 72.6, 38.9, 37.2, 

34.2. 

 

MS (ESI): m/z (%): 199.6 (100) [M+Na]+. M = 176.2 calcd for C11H12O2. 

 

CHN: Anal. Calcd for C11H12O2: C 74.98; H 6.86; Found: C 74.82; H 7.13.  

 

[α]D
20 = -8.1 (c = 1.0, CHCl3, 97 % ee). 

 

Analytical data are in agreement with the published data.[160,171]  

 

The enantiomeric excess was determined by HPLC using a Chiracel AD-H column (n-

hexane/i-PrOH 95:5, 25°C) at 0.5 mL/min, UV detection at 210 nm: tR : (minor) = 33.1 min, 

(major) = 35.7 min. 

 

(2S)-2-(Methylphenyl)-4-nitrobutanoic acid (88) 

 

 
 

To a solution of 50 mg (2S)-2-benzyl-4-nitrobutan-1-ol 82 (50 mg, 239 μmol, 1 eq) dissolved 

in acetone (500 μL) at 0 oC was added a solution of Jones reagent[172-174] (750 μL, 375 μmol, 

1.6 eq, prepared as a standard reagent, 8.0 M). The reaction mixture was allowed to warm to 

RT and stirring was continued for 12 h. The reaction was quenched with excess i-PrOH (100 

μL) and the mixture stirred for 10 min, filtered, diluted with 2 M HCl (1.0 mL) and extracted 

with Et2O (5 x 1.5 mL). Organic extracts were dried (MgSO4), filtered, concentrated in vacuo, 

and purified by flash chromatography over silica gel (5 % v/v MeOH/CH2Cl2) affording the 

title compound 88 as a viscous colorless oil (50 mg, 94 %). 
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1H NMR (400 MHz, CDCl3, 25oC,) δ = 9.52 (bs, 1H), 7.32 (m, 2H), 7.26 (m, 1H), 7.18 (m, 

2H), 4.43 (m, 2H), 3.12 (dd, J = 9.6, 16.7 Hz, 1H), 2.83 (m, 2H), 2.24 (m, 2H).  

 
13C NMR (100 MHz, CDCl3, 25oC,) δ = 179.9, 137.5, 129.1, 128.9, 127.3, 73.3, 43.9, 38.1, 

28.2.  

 

MS (ESI): m/z (%): 246.8 (100) [M+Na]+. M = 223.2 calcd for C11H13NO4. 

 

(2S)-2-(Methylphenyl)-4-aminobutanoic acid (89) 

 

 
 

To a slurry of activated Raney-nickel catalyst (3.5 mg) in MeOH (1.0 mL) was added a 

solution of (S)-2-(methylphenyl)-4-nitrobutanoic acid 88 (35 mg, 157 μmol) in MeOH (1.0 

mL) and the mixture was evacuated and purged with hydrogen gas (balloon pressure). The 

reaction was stirred under hydrogen at RT for 6 h then filtered through celite. Combined 

filtrates and MeOH washings were concentrated to dryness, and water (2.0 mL) was added. 

The aqueous solution was again concentrated to dryness, affording the title compound 89 as a 

fine white powder (28 mg, 92 %). 

 
1H NMR (400 MHz, D2O, 25oC) δ = 7.22 (m, 2H), 7.14 (m, 3H), 2.81 (t, J = 8.0 Hz, 2H), 

2.75 (dd, J = 8.6, 13.5 Hz, 1H), 2.63 (dd, J = 6.4, 13.5 Hz, 1H), 2.44 (m, 1H), 1.82-1.57 (m, 

2H). 

 
13C NMR (100 MHz, D2O, 25oC) δ = 182.9, 140.2, 129.3, 128.9, 126.8, 48.7, 38.9, 38.4, 

30.0.  

 

MS (ESI): m/z (%): 194.8 (100) [M+H]+. M = 193.8 calcd for C11H15NO2. 
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(2S)-4-(9-Fluorenylmethoxycarbonyl)-2-(methylphenyl)-butanoic acid (87) 

 

 
 

To a solution of (S)-2-(methylphenyl)-4-aminobutanoic acid 89 (25 mg, 129 μmol, 1.0 eq) in 

water (1.0 mL) was added anhydrous Na2CO3 (30 mg, 285 μmol, 2.2 eq) followed by a 

solution of 9-fluorenylmethoxycarbonyl chloride (37 mg, 142 μmol, 1.1 eq) in dioxane (1.0 

mL). The reaction mixture was stirred at RT for 12 h then concentrated to remove dioxane 

(not to dryness). Water (2.0 mL) was added and the aqueous layer was washed with Et2O (3 x 

3.0 mL). The aqueous layer was then cooled with stirring and 2 M HCl was added dropwise 

to pH 2. The Fmoc-amino acid was extracted with CHCl3 (4 x 1.5 mL) and combined extracts 

dried (MgSO4) and concentrated in vacuo, affording the title compound 87 as a colourless oil 

which solidified upon standing (50 mg, 94 %).  

 
1H NMR (400 MHz, CDCl3, 25oC) δ = 7.76 (d, J = 7.4 Hz, 2H), 7.57 (d, J = 7.4 Hz, 2H), 

7.40 (t, J = 7.4 Hz, 2H), 7.30 (t, J = 7.4 Hz, 2H), 7.25 (d, J = 7.4 Hz, 1H), 7.21 (d, J = 7.4 Hz, 

2H), 7.16 (d, J = 7.4 Hz, 2H), 4.92 (bs, 1H), 4.37 (m, 2H), 4.19 (m, 1H), 3.20 (m, 2H), 3.02 

(m, 1H), 2.68 (m, 2H), 1.76 (m, 2H). 

 
13C NMR (100 MHz, CDCl3, 25oC) δ = 180.0, 157.0, 144.3, 141.7, 139.0, 129.4, 128.9, 

128.1, 127.5, 127.0, 125.5, 120.4, 47.7, 45.0, 39.4, 38.5, 32.1, 30.2.  

 

MS (ESI): m/z (%): 438.3 (100) [M+Na]+. M = 415.5 calcd for C26H25NO4. 
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Enantiomeric excess determination of Fmoc-γ-amino acid (87) via formation of chiral 

amide (97) 

 
 

To a solution of (S)-4-(9-fluorenylmethoxycarbonyl)-2-(methylphenyl)-butanoic acid 87 (10 

mg, 24 μmol) in dry CH2Cl2 (900 μL) and dry THF (100 μL) was added (S)-(+)-1-methoxy-2-

propylamine (2 mg, 24 μmol, 1.0 eq) and the solution was cooled to 0 oC (ice bath) under 

nitrogen. HOBt (5.5 mg, 36 μmol, 1.5 eq) and EDC HCl (7 mg, 36 μmol, 1.5 eq) was added 

in one portion and the reaction mixture was stirred for 30 min at 0 oC. The reaction mixture 

was concentrated to a small volume (~200 μL) and applied directly to a preparative silica 

TLC plate. The plate was eluted with EtOAc/n-hexanes 1:2 (v/v) and the product (Rf = 0.6) 

was extracted with EtOAc, filtered and concentrated, affording the title compound 97 as a fine 

white solid (8 mg, 16 μmol, 66 %).  

 

The NMR spectra showed one major compound along with a minor compound that occurred 

to less than 2 %.  

 
1H NMR (400 MHz, CD3OD, 25oC) δ = 7.72 (d, J = 7.4 Hz, 2H), 7.57 (d, J = 7.4 Hz, 2H), 

7.31 (t, J = 7.4 Hz, 2H), 7.23 (t, J = 7.4 Hz, 2H), 7.16 (m, 2H), 7.07 (m, 3H), 4.28 (d, J = 6.6 

Hz, 2H), 4.11 (t, J = 6.8 Hz, 1H), 3.88 (dd, J = 6.2, 12.4, 1H), 3.18 (s, 3H), 3.13 (d, J = 5.8 

Hz, 2H), 3.03 (t, J = 7.7 Hz, 2H), 2.74 (dd, J = 10.0, 13.2 Hz, 1H), 2.61 (dd, J = 5.4, 13.2 Hz, 

1H), 2.41 (ddd, J = 4.9, 9.7, 14.7, 1H), 1.72 (m, 1H), 1.58 (m, 1H), 0.74 (d, J = 6.8 Hz, 3H).  

 
13C NMR (100 MHz, CD3OD, 25oC) δ = 144.4, 141.6, 139.8, 129.1, 128.3, 127.8, 127.1, 

126.3, 125.1, 122.5, 119.9, 84.0, 82.3, 75.4, 66.5, 58.0, 47.1, 44.7, 39.0, 38.9, 33.0, 16.2.  

 

MS (ESI): m/z (%): 509.6 (100) [M+Na]+. M = 486.6 calcd for C30H34N2O4. 
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18. Conformational Studies 
 

18.1 Calculations 
 

Calculations of lowest energy structures were performed with MacroModel 8.0. The 

calculations used the OPLS-AA force field[121] and the GB/SA model for chloroform.[122] 

Searching was performed using the MCMM method in blocks of 20000 steps.  

 

18.2 X-Ray Studies 
 

Crystals of H-Pro-Pro-Asp-NH2 1, H-D-Pro-Pro-Asp-NH2 21 and H-D-Pro-Pro-Glu-NH2 56, 

suitable for x-ray single crystal structure analysis were obtained as follows: The peptides were 

desalted according to the general procedure (Protocol G) using VariPureTM IPE tubes. 

Desalted peptides (∼10 mg) were transferred into small vials and dissolved in water (∼1 drop) 

and MeOH (∼3 drops). The open vials were kept in larger vials (closed) containing THF 

which was allowed to diffuse into the inner vials. Crystals were obtained within one day.   

 

H-Pro-Pro-Asp-NH2 (1) 

Formula C14H22N4O5, M = 326.35, F(000) = 696, colorless plate, size 0.08 · 0.10 · 0.33 mm3, 

orthorhombic, space group P 21 21 21 , Z = 4, a = 8.2586(3) Å, b = 12.7014(4) Å, c = 

14.4787(4) Å, α = 90°, β = 90°, γ = 90°, V = 1518.75(8) Å3, Dcalc. = 1.427 Mg · m-3. The 

crystal was measured on a Nonius KappaCCD diffractometer at 173K using graphite-

monochromated Mo Kα-radiation with λ = 0.71073 Å, Θmax = 27.851°. Minimal/maximal 

transmission 0.99/0.99, μ = 0.109 mm-1. The APEX2 software[175] has been used for 

datacollection and integration. From a total of 12460 reflections, 2067 were independent 

(merging r = 0.047). From these, 1674 were considered as observed (I>1.0σ(I)) and were used 

to refine 208 parameters. The structure was solved by direct methods using the program 

SIR92.[176] Least-squares refinement against F was carried out on all non-hydrogen atoms 

using the program CRYSTALS.[177] R = 0.0371 (observed data), wR = 0.0332 (all data), GOF 
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= 1.1648. Minimal/maximal residual electron density = -0.19/0.53 e Å-3. Chebychev 

polynomial weights[178] were used to complete the refinement. 

 

H-D-Pro-Pro-Asp-NH2 (21) 

Formula C14H24N4O6, M = 344.37, F(000) = 736, colorless block, size 0.18 · 0.19 · 0.24 mm3, 

orthorhombic, space group P 212121 , Z = 4, a = 7.28500(10) Å, b = 9.0911(2) Å, c = 

24.9631(4) Å, α = 90°, β = 90°, γ = 90°, V = 1653.27(5) Å3, Dcalc. = 1.383 Mg · m-3. The 

crystal was measured on a Nonius KappaCCD diffractometer at 173K using graphite-

monochromated Mo Kα-radiation with λ = 0.71073 Å, Θmax = 27.949°. Minimal/maximal 

transmission 0.98/0.98, μ = 0.109 mm-1. The APEX2 software[175] has been used for 

datacollection and integration. From a total of 10845 reflections, 2289 were independent 

(merging r = 0.035). From these, 1849 were considered as observed (I>3.0σ(I)) and were used 

to refine 217 parameters. The structure was solved by direct methods using the program 

SIR92.[176] Least-squares refinement against F was carried out on all non-hydrogen atoms 

using the program CRYSTALS.[177] R = 0.0261 (observed data), wR = 0.0361 (all data), GOF 

= 1.1048. Minimal/maximal residual electron density = -0.15/0.16 e Å-3. Chebychev 

polynomial weights[178] were used to complete the refinement. 

 

H-D-Pro-Pro-Glu-NH2 (56) 

Formula C15H30N4O8.25, M = 398.43, F(000) = 428, colorless block, size 0.07 · 0.11 · 0.21 

mm3, monoclinic, space group P 21 , Z = 2, a = 7.7126(2) Å, b = 13.9556(3) Å, c = 9.3730(2) 

Å, α = 90°, β = 106.4510(10)°, γ = 90°, V = 967.55(4) Å3, Dcalc. = 1.367 Mg · m-3. The crystal 

was measured on a Nonius KappaCCD diffractometer at 173K using graphite-

monochromated Mo Kα-radiation with λ = 0.71073 Å, Θmax = 34.721°. Minimal/maximal 

transmission 0.99/0.99, μ = 0.111 mm-1. The APEX2 software[175] has been used for 

datacollection and integration. From a total of 21689 reflections, 4290 were independent 

(merging r = 0.035). From these, 3541 were considered as observed (I>3.0σ(I)) and were used 

to refine 262 parameters. The structure was solved by direct methods using the program 

SIR92.[176] Least-squares refinement against F was carried out on all non-hydrogen atoms 

using the program CRYSTALS.[177] R = 0.0518 (observed data), wR = 0.0413 (all data), GOF 

= 1.0765. Minimal/maximal residual electron density = -0.60/0.51 e Å-3. Chebychev 

polynomial weights[178] were used to complete the refinement. 
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18.3 CD-Spectroscopy 
 

CD spectra were recorded with a gap width of 1 nm, a time constant of 5 s and a resolution of 

1 nm at 25 °C. CD data was stated in average molar ellipticity (Θ in deg cm1 dmol-1). Thus, 

the obtained value in mdeg was divided by the concentration (in mol/L), by the number of 

amino acid moieties and by the thickness of the cuvette (in mm). Measurements were 

performed with a silica cuvette (Hellma) with a thickness of 2 mm. Solutions contained 

approximately 70 μg/mL (6x10-4 M per amino acid moiety). 

 

18.4 NMR Studies 
 

All NMR experiments in chapter 9.2 were performed at 25 °C on a Bruker DRX-600 NMR 

spectrometer, equipped with a self-shielded z-axis field gradient, dual broadband and inverse 

probe-head. Chemical shifts were referenced to residual solvent peaks and the temperature 

was calibrated using a methanol sample. 

 

18.4.1 H-D-Pro-Pro-Glu-NH2 (56) 
 

Samples in CDCl3/CD3OH/CD3OD: 

TOCSY and NOESY experiments were performed with 2048 time points in F2 and 1024 time 

increments in the indirect dimension F1, which corresponds to acquisition times of 155 ms in 

F2 and 77 ms in F1. Mixing times were 200 ms for the TOCSY and 1.0 s for the NOESY 

experiment. The total experiment times were 3.5 hours (TOCSY) and 6.5 h (NOESY). 

 
1H-NMR (600 MHz, CDCl3/CD3OD/CD3OH, 23:1:1 v/v/v, 25°C): δ = 8.75 (d, 3JH,H = 7.3 Hz, 

1H; Glu-HN), 8.3 (br; D-Pro-NH2), 6.89 (s, 1H; Glu-CONH2), 6.38 (s, 1H; Glu-CONH2), 4.66 

(dd, 3JH,H = 8.3 Hz, 7.2 Hz, 1H; D-Pro-Hα), 4.39 (dd, 3JH,H = 7.3 Hz, 4.8 Hz, 1H; Pro-Hα), 

4.31 (m, 1H; Glu-Hα), 3.81 (m, 1H; Pro-Hδ’), 3.47 (m, 1H; D-Pro-Hδ), 3.43 (m, 1H; Pro-

Hδ), 3.33 (m, 1H; D-Pro-Hδ`), 2.45 (m, 2H; Glu-Hγ), 2.44 (m, 1H; D-Pro-Hβ), 2.16 (m, 2H; 

Pro-Hβ), 2.10 (m, 1H; D-Pro-Hγ), 2.07 (m, 1H: Glu-Hβ), 2.02 (m, 1H; D-Pro-Hγ`), 2.00 (m, 

2H; Pro-Hγ), 1.89 (m, 1H; D-Pro-Hβ`), 1.88 (m, 1H; Glu-Hβ). 
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13C-NMR (151 MHz, CDCl3/CD3OD/CD3OH, 23:1:1 v/v/v, 25°C): δ = 177.5 (Glu-CO2H), 

173.4 (Glu-CONH2), 169.9 (Pro-CO), 168.1 (D-Pro-CO), 60.8 (Pro-Cα), 58.0 (D-Pro-Cα), 

52.0 (Glu-Cα), 46.5 (Pro-Cδ), 45.6 (D-Pro-Cδ), 29.1 (Glu-Cγ), 28.3 (Pro-Cβ), 27.8 (D-Pro-

Cβ), 24.0 (Glu-Cβ), 23.8 (D-Pro-Cγ), 23.5 (Pro-Cγ). 

 

Selected NOEs: 

 

 
 
NOE: 
 
 
D-Pro-Hα - Glu-HN (1) 
Pro-Hδ’ - Glu-HN (2) 
Pro-Hα - Glu-HN (3) 
Glu-Hα - Glu-HN (4) 

 
 
Normalized 
Intensities: 
 
0.16 %  

0.49 %  

0.17 % 
0.33 % 

 

 

Samples in d6-DMSO: 

A ROESY experiment was performed with 2048 time points in F2 and 1024 time increments 

in the indirect dimension F1, which corresponds to acquisition times of 132 ms in F2 and 66 

ms in F1. Mixing time was 550 ms for the ROESY experiment and the total experiment time 

was 18 hours.  

 
1H-NMR (600 MHz, d6-DMSO, 25°C): Major conformer (77.6%): δ = 12.19 (br, 1H; Glu-

CO2H), 9.57 (br, 1H; D-Pro-NH2), 8.57 (br, 1H; D-Pro-NH2), 8.13 (d, 3JH,H = 8.3 Hz, 1H; Glu-

HN), 7.22 (s, 1H; Glu-CONH2), 7.05 (s, 1H; Glu-CONH2), 4.50 (dd, 3JH,H = 7.3 Hz, 6.8 Hz, 

1H; D-Pro-Hα), 4.38 (dd, 3JH,H = 8.8 Hz, 2.9 Hz, 1H; Pro-Hα), 4.16 (m, 1H; Glu-Hα), 3.67 

(m, 1H; Pro-Hδ`), 3.17 (m, 1H, D-Pro-Hδ), 3.43 (m, 1H; Pro-Hδ), 3.25 (m, 1H; D-Pro-Hδ`), 

2.26 (m, 1H, Glu-Hγ), 2.22 (m, 1H; Glu-Hγ), 2.40 (m, 1H; D-Pro-Hβ), 2.10 (m, 1H; Pro-Hβ), 

1.93 (m, 1H; D-Pro-Hγ), 1.92 (m, 1H; Glu-Hβ), 1.86 (m, 1H; Pro-Hβ`), 1.86 (m, 1H; D-Pro-

Hγ`), 1.91 (m, 2H; Pro-Hγ), 1.84 (m, 1H, D-Pro-Hβ`), 1.74 (m, 1H, Glu-Hβ). 
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13C-NMR (151 MHz, d6-DMSO, 25°C): Major conformer (77.6%): δ = 59.7 (Pro-Cα), 58.2 

(D-Pro-Cα), 51.6 (Glu-Cα), 46.6 (Pro-Cδ), 45.4 (D-Pro-Cδ), 30.1 (Glu-Cγ), 28.3 (Pro-Cβ), 

27.8 (D-Pro-Cβ), 27.1 (Glu-Cβ), 23.3 (D-Pro-Cγ), 23.8 (Pro-Cγ). 
 

1H-NMR (600 MHz, d6-DMSO, 25°C): Minor conformer (22.4%): δ = 12.19 (br, 1H; Glu-

CO2H), 9.41 (br, 1H; D-Pro-NH2), 8.57 (br, 1H; D-Pro-NH2), 8.28 (d, 3JH,H = 8.0 Hz, 1H; Glu-

HN), 7.44 (s, 1H; Glu-CONH2), 7.09 (s, 1H, Glu-CONH2), 4.29 (dd, 3JH,H = 7.9 Hz, 7.8 Hz, 

1H; D-Pro-Hα), 4.65 (dd, 3JH,H = 8.5 Hz, 1.3 Hz, 1H; Pro-Hα), 4.20 (m, 1H; Glu-Hα), 3.48 

(m, 1H; Pro-Hδ`), 3.25 (m, 1H; D-Pro-Hδ), 3.48 (m, 1H; Pro-Hδ), 3.18 (m, 1H; D-Pro-Hδ`), 

2.24 (m, 2H, Glu-Hγ), 2.06 (m, 1H; D-Pro-Hβ), 2.16 (m, 1H; Pro-Hβ), 1.88 (m, 1H, D-Pro 

Hγ), 1.92 (m, 1H; Glu-Hβ), 2.00 (m, 1H, Pro-Hβ`), 1.85 (m, 1H; D-Pro-Hγ`), 1.84 (m, 2H, 

Pro-Hγ), 1.72 (m, 1H, D-Pro-Hβ`), 1.80 (m, 1H, Glu-Hβ). 

 
13C-NMR (151 MHz, d6-DMSO, 25°C): Minor isomer (22.4%): δ = 59.0 (Pro-Cα), 57.9 (D-

Pro-Cα), 51.6 (Glu-Cα), 46.9 (Pro-Cδ), 44.8 (D-Pro-Cδ), 27.1 (Glu-Cγ), 31.5 (Pro-Cβ), 28.1 

(D-Pro-Cβ), 23.4 (Glu-Cβ), 21.4 (D-Pro-Cγ), 21.4 (Pro-Cγ). 

 

Selected NOEs: 

 

 

 
 
NOE: 
 
 
Pro-Hα - Glu-HN (1) 
major conformer 
minor conformer 
Glu-Hα - Glu-HN (2) 

 
 
Normalised 
Intensities: 
 
 
5.4 % 
1.0 % 
5.0 % 

 

 

18.4.2 Enamine Formation and Assignement 

 

Desalted H-D-Pro-Pro-Glu-NH2 56 (14.4 mg, 42 μmol) was dissolved in CD3OH (100 μL) 

and CDCl3 (900 μL). MgSO4 (∼30 mg) was added to the solution. Molecular sieves (4Å, 

powder) was activated in the microwave (750 Watt, 3 min) and added to a NMR tube (one 
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spatula) which was then heated out by a Bunsen burner. After filtration, the peptide solution 

(∼700 μL, ∼30 μmol) was transferred into the NMR tube. Phenylacetaldehyde (2 μL, 18 

μmol, freshly distilled and stored over CaCl2) was added. The NMR tube was shaken and the 

first measurement occurred after approximately 30 min. 

 

NH

N

O
O

H
N CONH2

CO2H

N

N

O
O

H
N CONH2

CO2H-H2O

H

O+

56

 
 

A NOESY experiment was performed with 2048 time points in F2 and 512 time increments in 

the indirect dimension F1, which corresponds to acquisition times of 143 ms in F2 and 71 ms 

in F1. Mixing time was 1.0 s, and the total experiment time was 1.5 hours. COSY, HMQC 

and HMBC experiments were performed in addition for assignment, using established pulse 

sequences. 

 

Partial assignement of the enamine species: 

Chemical Shifts (ppm) 
 

 C H 
 

1 127.6 7.25 
2 127.5 7.09 
3 122.6 7.06 
4 138.6 - 
5 98.4 5.09 
6 124.1 6.92 
7 47.8 3.22 and 3.40 
8 31.7 (?) 2.00 
9 31.0 or 28.9 2.25 
10 63.2 4.34 

 
 

 

11 - 3.88 
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19. Kinetic Studies on 1,4-Addition Reactions 
 

In situ FT-IR spectroscopy was carried out on a ReactIR R4000 (SiComp probe connected to 

a MCT detector with K6 conduit) at normal resolution (every 8 wavenumber) with a spectral 

range of 4000 – 650 cm-1 and a normal (1x) gain adjustment. The apodization method was 

Happ-Genzel. All measurements were performed at RT, either collecting spectra every 2 min 

(256 scans) or every minute (154 scans). 

 

 

Typical set up of an experiment at standard conditions: 

 

Example calculated for the reaction between n-butanal (1 eq) and nitrostyrene (1 eq), 

catalysed by H-D-Pro-Pro-Glu-NH2 56 (1 mol %): 

 

A volumetric flask (5 mL) was charged with TFA H-D-Pro-Pro-Glu-NH2 56 (10 mg, 22 

μmol, 4.4 mM related to the total volume of 5 mL). n-Butanal (200 μL, 2.2 mmol, 0.44 M), 

NMM (2.4 μL, 22 μmol, 4.4 mM)  and CHCl3/i-PrOH 9:1 (v/v) (approximately 1 mL) was 

added and the mixture was ultrasonicated until the catalyst was dissolved. Nitrostyrene was 

added from a stock solution (734 μL of a 3 M solution in CHCl3/i-PrOH 9:1(v/v) = 2.2 mmol, 

0.44 M) and CHCl3/i-PrOH 9:1(v/v) was added until the total volume of 5 mL was reached. 

The clear solution was shortly shaken and immediately transferred into a round bottom flask 

(50 mL) containing the FT-IR probe and a small magnetic stirrer. The reaction mixture was 

gently stirred during the measurement. 

 

Typical set up of an experiment at “dry conditions”: 

 

All glassware was previously heated out under N2 flow. Solvents, aldehydes and stock-

solutions were dried with molecular sieves (3Å). The reaction set up occurred in a similar way 

to the experiments under standard conditions. 
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21. Abbreviations 
 
 
δ chemical shift 
[α]D specific optical rotation 
Aad L-aminoadipic acid 
Abu aminobutyric acid 
Ac acetyl 
Ala L-alanin 
Api L-aminopimelic acid 
aq aqueous 
Asn L-asparagine 
Asp L-aspartic acid 
Asu L-aminosuberic acid 
Ava aminovaleric acid 
Bn benzyl 
Boc tert-butyl-oxycarbonyl 
bp boiling point 
Bu n-butyl 
c / conc. concentration / concentrated 
calcd calculated 
Cbz / Z carboxybenzyl 
CD circular dichroism 
c-Hex cyclohexyl 
COSY correlation spectroscopy 
Cy cyclohexyl 
Cys L-cysteine 
d days 
DEPT distortionless enhancement by polarization 
DIC diisopropylcarbodiimide 
DMAP 4-(dimethylamino)-pyrindine 
DMF dimethylformamide 
DMSO dimethyl sulfoxide 
dr diastereomeric ratio 
EDC N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide-hydrochloride 
ee enantiomeric excess 
eq / equiv. equivalents 
ESI electrospray ionisation 
Et ethyl 
FAB fast atom bomabardment 
FID flame ionisation detector 
Fmoc 9-fluoromethoxycarbonyl 
FT Fourier transformation 
GC gas chromatography 
Gln L-glutamine 
Glu L-glutamic acid 
Gly glycine 
h hours 
HCTU O-(1H-6-chlorobenzotriazole-1-yl)-1,1,3,3-tetramethyluronium 
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hexafluorophoshat 
His L-histidine 
HMBC heteronuclear multiple bond coherence 
HMQC heteronuclear multiple quantum coherence 
HOBt 1-hydrobenzotriazole 
HOMO highest occupied molecular orbital 
HPLC high performance liquid chromatography 
HRMS high resolution mass spectroscopy 
i-Pr iso-propyl 
IR infrared (spectroscopy) 
J NMR coupling constant 
Leu L-leucine 
M molar 
Me methyl 
min minutes 
MS mass spectroscopy 
MSNT 1-(2-mesitylenesulfonyl)-3-nitro-1H-1,2,4-triazole 
NMM N-methylmorpholine 
NMP N-methylpyrrolidone 
NMR nuclear magnetic resonance  
NOE nuclear Overhauser effect 
NOESY nuclear Overhauser effect spectroscopy 
Ph phenyl 
Phe L-phenylalanine 
Pr n-propyl 
Pro L-proline 
R2 square of the sample correlation coefficient 
Rf retention factor 
ROESY rotating frame Overhause effect spectroscopy 
RT room temperature 
s seconds 
Ser L-serine 
t time 
TBSCl tert-butyldimethylsilyl chloride 
t-Bu / tBu tert-butyl 
TFA trifluoroacetic acid 
THF tetrahydrofuran 
THP tetrahydropyran 
TLC thin layer chromatography 
TMS tetramethylsilane 
TMSCl trimethylsilyl chloride 
TNBS 2,4,6-trinitrobenzenesulfonic acid 
TOCSY total correlated spectroscopy 
tR retention time 
Trt / trt trityl 
Ts / tosyl para-toluene sulphonyl 
TSP 2,2,3,3-d4-3-(trimethylsilyl)propionic acid sodium salt 
Xaa random amino acid 
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22. Kinetic Studies (Chapter 10): Detailed 
Information and Additional Experiments 

 
 
According to Chapter 10.1.2 
Investigation of Catalyst Instabilities (Page 68) 
 

The experiment described in chapter 10.1.2 was repeated with different concentrations: 
[nitrostyrene] = 0.2 M / 0.17 M, 0.25 M excess of n-butanal. Both reactions overlay, 
underlining the absence of catalyst instabilities.  
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According to Chapter 10.2: 
Reaction Progress Kinetic Analysis (Page 71)[138] 

Theoretical Considerations 
For the studies of reaction progress kinetic analysis we assumed the mechanism and the 
corresponding rate equation shown in figure A. 
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Figure A. a) Proposed reaction mechanism. b) Corresponding rate equation. Note: If b is high, saturation 
kinetics in I is reached (Enamine I = resting state). If c is high, I does not built up, thus, formation of I is rate 
limiting (unbound catalyst 56 = resting state).   
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Since the standard reaction proceeds without formation of any side product and since both [n-
butanal] and [nitrostyrene] change with time, each time one molecule of n-butanal is 
converted into product, one molecule of nitrostyrene is converted as well. The introduction of 
a parameter [excess], which determines the differences in the initial concentrations of the two 
substrates leads to the following general relationship where [NS] = [nitrostyrene] and [Ald] = 
[aldehyde]: 
 
[NS] = [NS]0 – [Ald]0 + [Ald] ⇒ [NS] = [excess] + [Ald],  while [excess] does not change as 
the reaction progresses. 
 
 
Substituton of [excess] into the rate equation leads to: 
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[cat], [excess], k1, k-1 and k2 are constant, therefore [Ald] is the only variable. With the data 
pairs of ([NS], time), ([Ald], time) and (rate, time) it is possible to construct graphical rate 
equations for reactions with two substrates. 
 

Construction of Graphical Rate Equations: 
 
Experimental Set Up 
Primary data for the experiment described above was obtained by the measurement of the 
absorbance (= [product 56]) vs. time of three different reactions (Figure B), carried out at the 
same [excess] (red and blue curve) and at different [excess] (green curve) of n-butanal. Initial 
concentrations for the reactions at the same [excess] were [nitrostyrene] = 0.4 M and 0.35 M 
with [n-butanal] = 0.9 M and 0.85 M. The reaction at the different [excess] was performed 
with [nitrostyrene] = 0.4 M and [n-butanal] = 1.2 M. The catalyst loading was kept constant at 
[cat 56] = 13 mM for each reaction. 
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Figure B. [Product 3] vs. time of 
three experiments carried out at 
the same [excess] (red and blue 
curve) and at different [excess] 
(green curve) of n-butanal. [cat 56] 
= 0.013 M. 
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Plot of Graphical Rate Equations 
Derived from the rate equations earlier discussed, different plots of the primary data would 
generate following information about integer reaction orders if curves overlay: 
 
Reaction rate vs. [n-butanal]: Overlay = zero order in nitrostyrene. 
Reaction rate/[n-butanal] vs. [nitrostyrene]: Overlay = first order in n-butanal. 
Reaction rate/[nitrostyrene] vs. [n-butanal]: Overlay = first order in nitrostyrene. 
 
The corresponding plots, calculated from the obtained primary data of the previous three 
reactions revealed that an overlay of all three curves was not observed (Figure C). 
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Figure C. a) Plot of reaction rate vs. [n-butanal].
b) Plot of reaction rate/[n-butanal] vs. [nitrostyrene]. 
c) Plot of reaction rate/[nitrostyrene] vs. [n-butanal]. 
Since no overlay of all three curves was obtained, the 
reaction under the chosen conditions is neither zero 
order in nitrostyrene, nor first order in n-butanal or 
nitrostyrene. 

 
The missing overlay of the curves in figure C led us to the suggestion that no integer reaction 
orders are existent in this reaction of the peptide 56 catalysed conjugate addition reaction of 
n-butanal and nitrostyrene under the chosen conditions. This indicates that the reaction does 
not have only one rate limiting step, therefore the catalyst has no definitive “resting state”.  
 
However, the overlay of the curves with the same [excess] in each plot underlined the 
previously found result, that catalyst deactivation or product inhibition does not exist for this 
reaction. 
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According to Chapter 10.3.1 
Reaction Order with Respect to the Catalyst (Page 72) 
 
The reaction order with respect to catalyst 56 was studied with 6 different catalyst loadings 
[cat 56] =  0.25 mol% = 1.1 mM, 0.5 mol% = 2.2 mM, 0.75 mol% = 3.3 mM, 1.0 mol% = 4.4 
mM, 1.25 mol% = 5.5 mM and 1.5 mol% = 6.6 mM. Other concentrations were kept constant 
at [nitrostyrene] = 0.44 M and [n-butanal] = 0.44 M. 
 

 

According to Chapter 10.3.2 
Reaction Order with Respect to the Aldehyde (Page 73) 
 
At 1 mol% Catalyst (56): 
11 different reactions were performed, varying the aldehyde concentration [n-butanal] = 0.22 
M, 0.33 M, 0.44 M, 0.55 M, 0.66 M, 0.77 M, 0.88 M, 0.99 M, 1.10 M, 1.21 M and 1.43 M at 
constant [cat 56] = 4.4 mM and [nitrostyrene] = 0.44 M 

At 2 mol% Catalyst (56): 
The reactions were carried out with [cat 56] = 8.8 mM, [nitrostyrene] = 0.44 M and 12 
different concentrations of n-butanal 1: [n-butanal] = 0.22 M, 0.33 M, 0.44 M, 0.55 M, 0.66 
M, 0.77 M, 0.88 M, 1.10 M, 1.32 M, 1.43 M, 1.54 M and 1.65 M. 

 
According to Chapter 10.3.3 
Reaction Order with Respect to the Nitrostyrene (Page 75) 
 
At Standard Conditions: 0.44 M n-Butanal, 4.4 mM Catalyst (56) 
The nitrostyrene concentration was varied in 7 different experiments: [nitrostyrene] = 0.22 M, 
0.44 M, 0.66 M, 0.88 M, 1.10 M, 1.27 M, 2.12 M at constant catalyst [cat 56] = 4.4 mM and 
aldehyde concentration [n-butanal] = 0.44 M. 
Increased Aldehyde Concentration: 0.88 M n-Butanal, 4.4 mM Catalyst (56) 
The experiments were then repeated at a higher aldehyde concentration of [n-butanal] = 0.88 
M and [nitrostyrene] = 0.22 M, 0.44 M, 0.66 M, 0.88 M and 1.10 M. 
 
 
According to Chapter 10.3.5 
Less Reactive Aldehyde: Addition of Isovaleraldehyde to Nitrostyrene 
(Page 78) 
 
Different Isovaleraldehyde Concentrations 
The influence of the aldehyde on the reaction rate was determined by performing 9 reactions 
at different [isovaleraldehyde] = 0.22 M, 0.44 M, 0.77 M, 0.88 M, 0.99 M, 1.10 M, 1.32 M, 
1.54 M and 1.76 M at constant [cat 56] = 8.8 mM (2 mol%) and [nitrostyrene] = 0.44 M. 
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Different Nitrostyrene Concentrations (Additional Experiment) 
The reaction order with respect to nitrostyrene was determined with 5 experiments at constant 
[cat 56] = 8.8 mM and at a very high aldehyde concentration of [isovaleraldehyde] = 1.54 M. 
According to the experiments described in chapter 10.3.5, this concentration is in the range of 
the observed 0 order plateau. The nitrostyrene concentration was varied with [nitrostyrene] = 
0.22 M, 0.44 M, 0.66 M, 0.88 M and 1.10 M. The corresponding log-log plot showed a linear 
correlation (R2 = 0.99) with a slope of 0.42 (Figure A). This value is a little lower compared 
to the standard reaction between n-butanal and nitrostyrene (slope = 0.53 at [cat 56] = 8.8 
mM). This result could indicate that the hydrolysis step in this case is slower in relation to the 
C-C bond formation step in the reaction. Therefore the bond formation is “less rate 
determining” and the order with respect of isovaleraldehyde is lower. 
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Figure A. Plot of log (initial rate) vs. log 
[nitrostyrene] providing a slope of 0.42. 
Experiments were carried out with a 
constant [isovaleraldehyde] of 1.54 M. 

 

 

 
According to Chapter 10.3.6 
Less Reactive Nitrostyrenes: Addition of n-Butanal to 4-Methoxy-
nitrostyrene and 2,4-Dimethoxynitrostyrene (Page 80) 
 
Different 4-Methoxynitrostyrene Concentrations 

The reaction order with respect to 4-methoxynitrostyrene was determined with 5 experiments 
at constant [cat 56] = 8.8 mM and at [n-butanal] = 0.44 M. The 4-methoxynitrostyrene 
concentration was varied with [4-MeO-NS] = 0.1 M, 0.3 M, 0.44 M, 0.66 M and 0.8 M. 
 

4-Methoxynitrostyrene: Different n-Butanal Concentrations (Additional Experiment) 
The influence of the n-butanal concentration in this reaction was investigated by performing 7 
reactions at different [n-butanal] = 0.22 M, 0.33 M, 0.44 M, 0.67 M, 0.88 M, 1.10 M and 1.32 
M at constant [cat 56] = 8.8 mM (2 mol%) and 4-methoxynitrostyrene concentration = [4-
MeO-NS] = 0.44 M (Figure A). A slope of 0.37 (R2 = 0.95) was obtained and at a 
concentration of approximately [n-butanal] = 0.8 M the slope became flat (Figure A).  
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Figure A. Plot of log (initial rate) vs. 
log [n-butanal] providing  a slope of 
0.37 for [n-butanal] 0.22 to 0.66 M and 
0.07 for [n-butanal] 0.88 to 1.32 M. 

 

 
 

Reaction of n-Butanal  to 2,4-Dimethoxynitrostyrene 
After performing the reactions with different 2,4-dimethoxynitrostyrene concentrations at [n-
butanal] = 0.44 M and [cat 56] = 8.8 mM (2 mol%), we found that the reaction was very slow. 
Therefore the absorbance was low and the error for the corresponding derivatives was high. In 
order to obtain more accurate data we carried out the reactions of different 2,4-dimethoxy-
nitrostyrene concentrations = [2,4-(MeO)2-NS] = 0.17 M, 0.31 M, 0.44 M and 0.63 M at [n-
butanal] = 0.44 M and [cat 56] = 13.2 mM (3 mol%). 
 
 
 
According to Chapter 10.3.7 
Standard Reaction, Dry Conditions and Additional Water – Influence on 
Reaction Rates and Reaction Orders (Page 78) 
 
Influence of Water in the Reaction Mixture (Additional Experiment) 
 
The reaction of n-butanal and nitrostyrene with [cat 56] = 4.4 mM, [nitrostyrene] = 0.44 M 
and [n-butanal] = 0.44 M was performed using TFA H-D-Pro-Pro-Glu-NH2 56 under standard 
conditions (Figure A, blue curve) and under dry conditons (green curve, solvents and n-
butanal dried over freshly activated molecular sives), to demonstrate the influence of moisture 
on the reaction progress. 
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In comparison to the reaction under standard condition, the reaction under dry conditions 
proceeded significantly faster (>90 % conversion after five hours, determined by 1H NMR 
with i-PrOH as an internal standard) indicating that moisture slows down the reaction. 
Besides, the diastereoselectivity was lower (syn:anti ≈ 25:1 under dry conditions vs. 50:1 at 
standard conditions) and the enantioselectivity was not influenced (97 % ee for both 
reactions).  
 
To confirm the necessity of water the standard reaction ([cat 56] = 4.4 mM, [n-butanal] = 0.44 
M, [nitrostyrene] = 0.44 M) was carried out under dry conditions and in the presence of 
activated molecular sieves (4Å, powder). Under these conditions product formation was 
observed in the first few minutes before the reaction stopped.  
 
To examine the influence of additional water in the reaction mixture we performed different 
experiments at constant [cat 56] = 4.4 mM, [n-butanal] = 0.44 M and [nitrostyrene] = 0.44 M 
and added different amounts of water to the reaction mixture: 5 mol%, 10 mol%, 15 mol%, 20 
mol%. These experiments demonstated that already 5 mol% of additional water slow down 
the reaction significantly (Figure B). Interestingly this decrease in reaction rate shows a linear 
behaviour in the corresponding log-log plot (slope of -0.33, R2 = 0.99) as shown in figure C.  
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Additional Water: Reaction Order with Respect to n-Butanal and Nitrostyrene (Chapter 
10.3.7.1) 
Six different reaction of n-butanal ([n-butanal] = 0,55 M, 0.77 M, 0.88 M, 1.10 M, 1.32 M 
and 1.56 M) and [nitrostyrene] = 0.44 M at [cat 56] = 4.4 mM with 10 mol% additional water 
[H2O] = 44 mM were performed.  
 
The influence of 10 mol% additional water on the reaction order with respect to nitrostyrene 
was tested with 5 different experiments: [n-butanal] = 0.44 M, [cat 56] = 4.4 mM, [H2O] = 44 
mM and [nitrostyrene] = 0.22 M, 0.44 M, 0.66 M, 0.88 M, 1.10 M. 
 

Dry Conditions: Reaction Order with Respect to n-Butanal and Nitrostyrene (Chapter 
10.3.7.2) 
Additional experiments concerning the water content were carried out under dry conditions. 
Therefore the solvent-mixture (CHCl3/i-PrOH 9:1 v/v) and n-butanal were previously dried 
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over molecular sieves (3Å) and all glassware was heated out for each experiment. Six 
reactions were performed at [cat 56] = 4.4 mM, [nitrostyrene] = 0.44 M and [n-butanal] = 
0.22 M, 0.44 M, 0.55 M, 0.66 M, 0.77 M and 0.88 M. 
 
 
Reactions of different nitrostyrene concentrations were performed with [nitrostyrene] = 0.22 
M, 0.44 M, 0.66 M, 0.88 M and 1.10 M and [n-butanal] = 0.44 M at [cat 56] = 4.4 mM under 
the dry conditions described above. 
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23. NMR Data of H-D-Pro-Pro-Glu-NH2 (56) 
 
 
 
1H-NMR (600 MHz, CDCl3/CD3OD/CD3OH, 23:1:1 v/v/v, 25°C) 

 
 
 
 

NOESY (600 MHz, CDCl3/CD3OD/CD3OH, 23:1:1 v/v/v, 25°C) 
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