
 

  
 
 
 
 
 

Influence of chondrocytes differentiation stage                    

on the capacity to generate                                                

cartilaginous tissue in vitro 

 

 
 

Inauguraldissertation 

 

 

zur 

Erlangung der Würde eines Doktors der Philosophie 

vorgelegt der 

Philosophisch-Naturwissenschaftlichen Fakultät 

der Universität Basel 

 

von 

 

SILVIA FRANCIOLI 
 

aus VARESE, Italy 

 

 

Basel (Schweiz), 2010 



 

Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät 
 
 
auf Antrag von     Prof. Dr. Ivan Martin (Supervisor) 

Prof. Dr. Markus Affolter (Referee) 

Prof. Dr. A. U Daniels (Co-referee) 

 

 
Basel, den 08. December 2009 
 
      Prof. Dr. Eberhard Parlow, Dekan 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

Acknowledgements 

 

 

I’m grateful to Prof Michael Heberer for giving me the opportunity to work in the Tissue 

Engineering group, thus giving me the chance to experiencing these years in such an 

interesting field of research. 

 

My sincere thanks go to Prof. Ivan Martin for his support, patience, and availability and for 

the insight view of clinically relevant research. 

 

Above all, my everlasting gratitude to Dr. Andrea Barbero for mentoring my research and 

support me along these years.  I thank you very much for sharing your expertise in cartilage 

biology and teaching me the essentials of scientific thinking and working. 

 

I sincerely thank Prof Markus Affolter and Prof Dan Daniels who accepted to be member of 

my PhD committee. 

 

I would like to thank all the people, present and past, who participated in the realization of 

this research: thanks to all members of the Tissue Engineering, Oncology, Angiogenesis 

Group and the Surgeons  for having shared so pleasant moments working with them, for their 

invaluable contributions to my personal and professional life, for lending me an hand 

whenever I was in need! 

 

I wish to thank my “FAMILY” for loving me so much and being always close to me! 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table of contents 
 

1 INTRODUCTION 1 

1.1 CARTILAGE BIOLOGY 1 
1.1.1 COMPOSITION AND STRUCTURE OF ARTICULAR CARTILAGE 2 
1.1.2 CARTILAGE ONTOGENY 5 
1.1.3 ARTICULAR CARTILAGE DEFECTS AND SELF REPAIR 9 
1.1.4 TREATMENTS FOR ARTICULAR CARTILAGE DEFECTS 10 

1.2 CARTILAGE TISSUE ENGINEERING 13 
1.2.1 CELL SOURCES TO ENGINEER CARTILAGE TISSUE 14 
1.2.2 SCAFFOLDS FOR TISSUE GENERATION 18 
1.2.3 MEDIA SUPPLEMENTS AND CULTURE ENVIRONMENT 19 
1.2.4 IN VITRO CULTURE OF CHONDROCYTES: EXPANSION STRATEGIES 21 
1.2.5 REDIFFERENTIATION AND IMPLANTATION 23 
1.2.6 AUTOMATED TISSUE ENGINEERING SYSTEM FOR CLINICAL APPLICATION 24 

1.3 AIMS OF THE THESIS 26 

2 PAPERS 28 

2.1 PAPER I: GROWTH FACTORS FOR CLINICAL-SCALE EXPANSION OF HUMAN 
ARTICULAR CHONDROCYTES: RELEVANCE FOR AUTOMATED BIOREACTOR SYSTEM 28 

2.2 PAPER II: EFFECT OF THREE-DIMENSIONAL EXPANSION AND CELL SEEDING 
DENSITY ON THE CARTILAGE-FORMING CAPACITY OF HUMAN ARTICULAR 
CHONDROCYTES IN TYPE II COLLAGEN SPONGES 38 

2.3 PAPER III: PRODUCTION OF CYTOKINES AND RESPONSE TO IL-1Β BY HUMAN 
ARTICULAR CHONDROCYTES AT DIFFERENT STAGES OF TISSUE MATURATION 58 

3 SUMMARY 82 

4 REFERENCES 88 

CURRICULUM VITAE 102 



 

7 





Introduction 
 

1 

1 INTRODUCTION 
 

 

 

1.1 CARTILAGE BIOLOGY 

 

Cartilage is a specialized avascular connective tissue comprising of only one single type of cell 

called chondrocyte which is sparsely populated in a collagen and proteoglycan rich hydrated 

extracellular matrix (ECM). Based on the biochemical composition and structure of the ECM, the 

mechanical properties and structural characteristics of the tissue, three major types of cartilage (elastic 

cartilage, fibrous cartilage and hyaline cartilage) can be distinguished. 

Elastic cartilage is found in the pinna of the ear, in the walls of the auditory and eustachian 

canals and tubes, as well as in the larynx and in the epiglottis. This type of cartilage with a more 

elastic property maintains tubes-like structures permanently open and provide intermediate mechanical 

stability. Elastic cartilage mostly consists of type II collagen matrix elements and elastic fiber bundles 

(elastin) which manifest in aligned fiber structures. This structural composition provides a tissue 

which is stiff yet elastic. 

Fibrocartilage is most prominently found in areas which require greater tensile strength and 

support such as between intervertebral discs and at sites of tendons or ligaments connected to bone 

tissue. Typically, fibrocartilage is found at locations which are under considerable mechanical stress 

(i.e. tendon and ligaments) but still provides properties which allow flexible body movement. 

Accordingly, fibrocartilage mainly consists of type I collagen fibers which are aligned in thick fiber 

bundles and chondrocytes arranged in parallel rows between these fibers. The fibrous type of cartilage 

is usually associated with a dense connective tissue, namely the hyaline type cartilage which defines 

the third type of cartilage (1). 
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The hyaline type cartilage is the most abundant type of cartilage and is found in the nose, Larynx, 

trachea, bronchi, in the ventral ends of the ribs, and at the articular ends of the long bones. 

Characterized by the arrangement of the chondrocytes in multicellular stacks which prominently 

produce a type II collagen and a proteoglycan rich matrix, the hyaline type of cartilage provides the 

flexible support in nose and ribs but can also sustain mechanical load during body motion as shown at 

the surface of articular joints. This hyaline type of cartilage is lining as a thin layer of deformable, 

load bearing tissue at the bony ends of diarthrodial joints and is more specifically called articular 

cartilage (1). 

1.1.1 Composition and structure of articular cartilage 

 
 The primary function of articular cartilage is the absorption and distribution of forces, generated 

during joint loading and to provide a lubricating tissue surface which prevents the abrading and 

degradation of the joint and the subchondral bone structure during joint motion. Indeed, the articular 

type of hyaline cartilage has to bear and tolerate enormous physical stress and load during its entire 

lifetime. 

Despite the rather primitive composition of articular cartilage, characterized by chondrocytes 

entrapped in hydrated extracellular matrix molecules such as collagen type II, IV and VI, and 

proteoglycan aggregates, the tissue shows unique, highly defined structural organization to maintain 

its mechanical and functional integration. 

Articular cartilage has two different structural characteristics: (i) cartilage zonation (ii) the 

organization of the extracellular matrix. 

(i) The structure and composition of the entire articular cartilage tissue varies according to the 

distance from the tissue surface and reflects its functional role. Four different zones arranged as layers 

horizontally to the tissue surface can be distinguished and are characterized according to the 

extracellular matrix composition and cellular morphology (Figure 1). 
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Figure 1.  Schematic drawing of the general  

structure of human articular cartilage showing  

the zones, regions and relashionship with  

subchondral bone. The insets show the relative  

diameters and organization  of collagen macrofibrils  

in different zones. (Reproduced from Poole CA  

(2); Composition and structure of articular  

cartilage). 

 

 

 

 

 

In the superficial zone the layer of tissue is composed of flattened ellipsoid-shaped chondrocytes 

and a high concentration of thin collagen fibers arranged in parallel to the articular surface (3). In this 

layer the pericellular matrix structure mentioned below can not be found. The thin layer of cells is 

covered with an acellular sheet of collagen fibers (lamina splendes) which functions as a protective 

barrier between the synovial fluid and the cartilage tissue and controls the in- and egress of larger size 

molecules (4). Its rather low permeability regulates the diffusion transport of nutrients and oxygen to 

the underlying cartilage structures. Only within this zone chondrocytes synthesize and secret the 

superficial zone protein lubricin (5, 6) responsible to reduce surface friction during joint motion. The 

specific arrangement of the collagen fibrils which lay in parallel to the joint surface, provides a high 

mechanical stability of the tissue layer and mainly contributes to the tensile stiffness and strength of 

articular cartilage (7-10).  

Below the superficial zone is the midzone where cell density is lower. This has the more typical 

morphologic features of a hyaline cartilage with more rounded cells and an extensive extracellular 

matrix rich in the proteoglycan aggrecan.  The collagen fibers are synthesized at a lower quantity but 

show larger diameter fibrils which are aligned obliquely or randomly to the articular surface and 

describe an intermediate structure between the superficial zone and the adjacent deep zone. 

In the deep zone, the chondrocytes have a round morphology and are arranged in cell columns 

perpendicular to the cartilage surface. The extracellular matrix contains a high content of 
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glycosaminoglycans and large diameter collagen fibers which form arcades perpendicular to the joint 

surface (11). 

The partially calcified zone defines the boundary of cartilage tissue to the subchondral bone. 

This rather thin layer of calcified cartilage with intermediate mechanical properties functions as a 

buffer between the cartilage and bone tissue. The cells have a smaller volume and are partially 

surrounded by calcified cartilage matrix. The chondrocyte in this zone usually persist in a hypertrophic 

cell stage which correlates with the expression of collagen type X. Finally this boundary provides an 

optimal integration to the subchondral bone tissue and prevents vascular invasion. 

(ii) In addition to this zonation, the matrix surrounding the chondrocytes of articular cartilage 

varies in its organization and can be divided in three compartments, such as the pericellular region 

adjacent to the cell body, the territorial region enveloping the pericellular matrix, and the 

interterritorial compartment which defines the space between these cellular regions (Figure 1)(1). 

The pericellular region which is rich in proteoglycan, decorin, aggrecan, collagen type VI, and 

cell membrane associated molecules like anchorin and decorin (12-14) defines a narrow rim of a 

filamentous matrix network which fulfills the functions of the interlink between the chondrocyte cell 

body and the territorial matrix structure. 

The territorial region describes an envelop surrounding the cells or cluster of cells with their 

pericellular matrix. Thin collagen fibrils (most prominently collagen type II) bind to the pericellular 

matrix and form a basket like structure which protects the cell from damage during loading and 

deformation of the cartilage tissue. Moreover these structures may also contribute to transmit 

mechanical signals to the chondrocytes during joint-loading (15, 16). 

The interterritorial region confines the most volume of the articular cartilage tissue and contains 

intermolecular cross linked collagen fibrils (collagen type II), non collagen proteins and aggregates of 

glycoproteins (14). This extracellular matrix composition provides the tissue with its functional 

characteristic to absorb mechanical load. 
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Mechanical environment in mature cartilage 

Chondrocytes and cartilage tissue during joint motion are exposed to body weight load which 

creates a rigorous mechanical environment for articular cartilage tissue such as direct compression, 

shear, and hydrostatic pressure. The function of articular cartilage to undergo tissue deformation is 

dependent on the specific arrangement of macromolecules in the extracellular matrix. Especially the 

organization of collagen fibers into a three dimensional arranged collagen network can balance the 

swelling pressure of the proteoglycan-water “gel” (17, 18). Cartilage is considered as a viscoelastic 

material composed of three principal phases: a solid phase composed of a dense, collagen fibrillar 

network and charged proteoglycan aggregates, a fluid phase of water and an ion phase with ionic 

species for neutralizing the charged matrix components (19, 20). Under physiological condition these 

three phases define an equilibrium where the extension of the proteoglycan-water gel volume is 

restricted by the firm collagen frame (21). The bound water in the cartilage tissue and finally the 

mechanical properties of the cartilage tissue are influenced by the interaction of water with the large, 

negatively charged proteoglycan aggregates (22). The negatively charged proteoglycans mostly driven 

by chondroitin sulphate residues are balanced by a high concentration of cations dissolved in the 

cartilage tissue (23). 

In summary, the mechanical function of articular cartilage tissue bases on the matrix structure 

surrounding each single cell, the arrangement of the extracellular matrix fibres within the single zonal 

compartment and the proportional composition of the different extracellular matrix components. 

1.1.2 Cartilage ontogeny 

 
Articular cartilage as a part of the limb skeleton develops in a well defined and controlled 

multistep differentiation process of cells from the mesenchymal origin (24-26). 

The establishment of the cartilage structure follows precise and distinct patterns of cell 

differentiation and cell rearrangement driven by environmental factors such as cell-cell and cell 

matrix interaction, growth factor and morphogen mediated signaling (27, 28) as well as defined 

biomechanical conditions (29). 
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The steps of development are divided in 3 phases (Figure 2). In the first phase mesenchymal 

precursor cells migrate from the lateral mesoderm towards the presumptive skeletogenic site and 

determine the cartilage anlagen (30). In the second phase, the epithelial-mesenchymal interactions 

results in the mesenchymal condensation. The pre-chondrogenic condensation is a prerequisite for the 

future establishment of the limb skeleton (31) and is associated with an increased cell to cell contact 

which facilitate the intercellular communication and the transfer of small molecules between the cells 

(32). It has been shown that such a high cell density is required to allow chondrogenic development 

(33) and that the level of cell condensation correlates with the stage of chondrogenic development (34, 

35). Additionally, cell-matrix interactions appeared to play an important role in mesenchymal 

condensation (36). For example the integrin mediated binding of chondrocytes to collagen, has been 

shown to be essential for chondrocyte survival (37, 38). Finally, in the third phase, the overt 

differentiation of immature pre-chondrocytes into fully committed chondrocytes is manifested by an 

increased cell proliferation and by the up-regulation of cartilage specific matrix components like 

collagen type IIα1, IX and XI and aggrecan. In the final commitment of the chondrogenic phenotype 

the cells reduce their proliferative activity and maintain the functional integrity of the mature cartilage 

tissue (24-26). 

The initial function of the cartilage during embryonic development is to give stability to the 

embryo and serve as a template for myogenesis and later for neurogenesis. Most of the embryonic 

cartilage is replaced by bone during a process called the endochondral ossification (39, 40). During the 

endochondral ossification, the chondrocytes progress to the hypertrophic phenotype, which is 

characterized by a massive enlargement of the cell, the onset of the expression of type X collagen (41), 

an increased expression and activity of the alkaline phosphatase and the carbonic anhydrase and a 

reduction in the synthesis of the type II collagens and proteoglycan. Protease inhibitors prevent 

vascular invasion are also reduced. Vascularization of the tissue takes place, and most or all of the 

hypertrophic chondrocytes undergo apoptosis followed by their replacement by osteoblasts which in 

turn will deposit bone matrix in the free lacunae. At the cell level, the entire endochondral ossification 

process can be seen as a sequential progression of the three chondrocytic phenotypes: the committed 

mesenchymal cell, the differentiated chondrocyte and the hypertrophic chondrocytes (42).  
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Within these developmental processes growth promoting factors act on the cell and contribute to 

establish a mature cartilage tissue. 

 

 

 

Figure 2.  The three phases of the development of a skeletal element are (from left to right): (i) migration of 

preskeletal cells (green) to the site of future skeletogenesis, which is always associated with an epithelium 

(purple) and epithelial basement membrane (brown); (ii) interactions of those cells with epithelial cell products 

resulting in initiation of a condensation (yellow); (iii) overt differentiation of chondroblasts or osteoblasts 

(blue). Reproduced from Hall and Miyake (30) 

 

 

Soluble growth factors in the cartilage development 

Within the multi step cell differentiation process a number of growth factors and morphogenes 

are involved and essential during chondrocyte maturation and cartilage tissue formation. The most 

prominent growth factors belong to the transforming growth factor (TGF-β) superfamily which are 

responsible for chondrocyte proliferation (TGF-β1), terminal differentiation (TGF-β3; bone 

morphogenic protein; BMP) (43) or to promote cell-cell interaction in the early stage of 

chondrogenesis (BMP) (44). The insulin like growth factor 1 (IGF-1) which belongs to the IGF family 

of peptide hormones (including insulin) regulates many cellular functions during cartilage maturation 

such as induction of chondrocyte differentiation (45) and proliferation (46). In mature cartilage IGF-1 

promotes and maintains the anabolic synthesis of proteoglycan and type II collagen (47) and inhibits 

the nitric oxide-induced de-differentiation of articular chondrocytes (48). Furthermore members of the 

fibroblast growth factor (FGF) family of morphogenes influence processes correlated with cell 

division and chondrocyte proliferation and have been shown to promote chondrocyte proliferation in a 

human growth plate ex vivo culture system (49). 
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Finally, only the combinatorial action of these growth and morphogenic factors specifically 

expressed in selective tissue areas in different developmental phases and at defined concentrations 

establishes the precise structure of the articular cartilage tissue. 

 

Maintenance and aging of articular cartilage 

Once the articular cartilage tissue structure is established, chondrocytes reduce their metabolic 

activity and persist in an anabolic and catabolic equilibrium of the matrix components. Although the 

two major extracellular matrix proteins, collagen type II and aggrecan, have a relatively long turnover 

time span (50), they have to be maintained in a balanced state of production and degradation. The key 

factors to maintain the equilibrium of tissue metabolism are found in the physicochemical 

environment of cartilage tissue such as: (i) mechanical load during joint motion; (ii) growth factor 

responsiveness of chondrocytes; (iii) the balanced molecular composition of the matrix (proportions of 

the matrix components). These factors contribute to the preservation of the functional properties of the 

mature articular cartilage surface. 

After the third decade in human the properties of the weight bearing articular cartilage tissue 

significantly change with progressive age (51, 52). The process of cartilage aging has been shown to 

cause changes in the mechanical properties of articular cartilage (53), in the molecular composition, 

structure and organization of the extracellular matrix (54-56) and in the synthetic and metabolic 

activity of chondrocytes (57, 58). In advanced age individual the number of cells, the size of the 

cartilage tissue and the content of bound water diminish (59). The anabolic activity of chondrocytes 

required for the balance of cartilage tissue matrix homeostasis declines and thus the imbalance of 

matrix turn-over causes the loss of tissue matrix structure. Furthermore, in line with the decreased 

ability of chondrocytes to respond to a variety of extrinsic stimuli (e.g. growth factors) the sensitivity 

to catabolic regulative cytokines is enhanced in age. Moreover the imbalance of the tissue homeostasis 

can be moreover manifested by the increased expression of catabolic mediators such as matrix 

metalloproteinases (60). Finally, these change in the molecular structure of extracellular matrix 

components leads a softening of the cartilage tissue which increase the risk of synovial joint 

degeneration, often provoking the clinical syndrome of osteoarthritis (61). 
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However, not only the reduced tissue function in elderly individuals but also the generally low 

metabolic activity of cartilage tissue in combination might explain the limitation in the self-repair 

function of cartilage with increasing age (62, 63). 

1.1.3 Articular Cartilage defects and self repair 

 
Articular cartilage lesions, caused by trauma, osteochondritis dissecans or as a result of 

instability or abnormal loading are a common cause of disability, often associated with pain, reduction 

of joint mobility and loss of function and can ultimately lead to osteoarthritis. Articular cartilage has a 

very limited intrinsic healing capacity, related to the absence of vascularization and the presence of 

few and very specialize cells with low mitotic activity. According to the size of cartilage tissue 

damage in the cartilage surface, several grades of tissue injury can be distinguished which lead to 

different healing response (64-66).  

In the case of partial thickness defects, the classical self-repair of injured cartilage tissue goes 

through conserved mechanisms of cell and tissue necrosis followed by the proliferation of surviving 

chondrocytes adjacent to the site of the lesion. Although these cells aggregate in clusters and 

demonstrate a temporary increased type II collagen synthesis, in long term the formed tissue shows a 

lost of hyaline like cartilage characteristics. Thus, these chondral lesions remain almost unchanged and 

can proceed towards osteoarthritic diseases (67). 

In the case of full thickness defects, the lesion penetrates to the subchondral bone part gaining 

access to the cells that reside in the bone marrow space including the mesenchymal stem cells located 

therein. The repair response elicited by this type of defect results in the formation of a 

fibrocartilaginous tissue in the defect void. Anyhow, the decreased deposition of extracellular matrix 

components and the formed tissue with fibro-cartilage structures lack the strength, the mechanical 

properties and duration of the original articular cartilage tissue as it has been demonstrated in longer 

time follow-up studies (68, 69). 

In conclusion, the two mechanisms of the spontaneous self healing show limitations in the 

quality and mechanical duration as compared to the native cartilage tissue and can increase the risk of 
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tissue and joint degeneration (61). Therefore, procedures to regenerate the functional properties of the 

cartilage surface are crucial to avoid the progression of secondary joint diseases. 

1.1.4 Treatments for articular cartilage defects 

 
The different strategies to treat cartilage defects vary from more conservative approaches, like 

physiotherapeutic measures or application of pharmaceuticals (i.e. corticosteroids, hyaluoronic acid 

and growth factors) towards more invasive (i.e. surgical) procedures.  

 

Arthroscopic repair procedures 

Arthoscopic lavage and debridement are often used to alleviate joint pain. Lavage involves 

irrigation of the joint during arthroscopy, while debridement is the removal of the damaged tissue from 

the joint. Both of these procedures are routinely used to alleviate joint pain however do not induce 

repair of articular cartilage (70, 71). 

Arthroscopic surgical procedures such as drilling , abrasion or microfracture used to induce 

repair of articular cartilage take advantage of the intrinsic repair response observed upon penetration 

of the subchondral bone in full thickness defects.  These techniques rely upon the formation of a blood 

clot and mesenchymal progenitor cell invasion. However, the clinical outcome is varied, which is due, 

in part, to the unpredictable nature of the repair tissue formed, in addition to the age and activity levels 

of the patient (72-74).  

 

Osteochondral Transfer 

Osteochondral transplantation of autogenic and allogeneic tissue has been widely used to treat 

predominantly large osteochondral defects. Allogeneic material derived from cadaveric donors and it 

is indicated for large post traumatic defects of joints. Beaver et al. (75) reported satisfactory long-term 

results with these grafts, but the logistic of implanting a fresh allograft and the risk of transmitting 

infection reduce the indication for this procedure only to severe cases.  Instead, autologous 

osteochondral graft implantation, involves the removal of cylindrical plugs of osteochondral tissue 

from non load bearing regions of the articular cartilage and their implantation into the prepared full 
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depth defect with press-fit fixation. This procedure is indicated in osteochondral defects of 3 to 5 cm2 

in young patient. It provides the re-establishing of a functional cartilage surface which can-absorb 

body weight load but has limitation in terms of poor tissue integration within the adjacent native 

cartilage tissue. Furthermore, the surgical intervention damages intact host tissue and might enhance 

the donor site morbidity (76, 77). 

Even though such invasive procedures hold promise and showed acceptable results in some 

cases the outcome of these procedures shows generally limitations in terms of quality and 

reproducibility (78). 

 

Cell based cartilage repair techniques 

Given the intrinsic limitations of these techniques, innovative surgical approaches have been 

developed focused at obtaining the regeneration of hyaline cartilage and its functional integration with 

the surrounding tissues, as a means to restore the normal knee function and provide durable outcome. 

Autologous chondrocytes implantation (ACI), first introduced by Brittberg in 1987 (79), as well 

as further improved and reviewed (65, 80, 81) has been proven to be clinically effective to restore the 

tissue structure of large full-thickness focal defects of the femoral condyle (82). This technique 

involves two surgical procedures: an arthroscopic harvesting of a small cartilage biopsy from a non 

weight-bearing area of the knee and the subsequent transplantation of in vitro expanded autologous 

chondrocytes, to defect site beneath a periosteal flap obtained from the tibia in the same surgical 

procedure. A large amount of evidence is currently available in the literature concerning the clinical 

results obtained with ACI indicating that the treatment is associated with improved health outcomes, 

such as pain reduction and improved joint functionality. Despite the promising clinical results obtained 

so far, the use of ACI is associated with a number of limitations essentially correlated with the 

complexity and morbidity of the procedure. While the in vitro expansion step is necessary to obtain 

sufficient cell number it induces well-known variations in biochemical and synthetic properties 

leading to cell de-differentiation and loss of chondrogenic phenotype and therefore the outcome in 

tissue quality is often limited (78, 79). In addition, the ACI technique is associated with a frequent 

occurrence of post operative periost hypertrophy. 
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With the intention to overcome these limitations, in a second generation techniques, such as 

matrix-induced autologous chondrocytes implantation (MACI), or the grafting of tissue engineered 

cartilaginous construct (TE), the cells are cultured in the same manner, but are then seeded directly 

onto a biomimetic scaffold which acts as a carrier for the cells. These approaches offers potential 

advantages, consisting in improved cell retention, the even distribution of cells and easily graft 

handling and earlier post-operative rehabilitation for the patient (83, 84).   

    In addition a tissue engineering approach with further in vitro maturation, before 

implantation, could induce cartilaginous extracellular matrix deposition achieving in principle a 

cartilaginous graft with biomechanical and biochemical properties closer to those of the native 

cartilage (85). The requirements and limitations of such in vitro tissue engineering approaches are 

discussed in the following chapter. 
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1.2 CARTILAGE TISSUE ENGINEERING  

 
 

The term “tissue engineering” was first defined by Langer and Vacanti (85) as “an 

interdisciplinary field of science that applies the principles of engineering and life sciences toward 

the development of biological substitutes that restore, maintain, or improve tissue function or a whole 

organ". In line with the improved investigations, the activities in the field of tissue engineering 

broaded and the term “tissue engineering” required an extended definition which moreover 

emphasizes the "understanding of the principles in tissue growth, which then applied, leads to 

production of functional tissue replacements for clinical use" (86).  

Cartilage tissue engineering techniques have emerged as an innovative field of research with the 

potential to recreate three dimensional cartilaginous structures. Although cells have been cultured or 

grown outside the body for many years, the possibility of growing complex, three-dimensional tissues 

(literally replicating the design and function of human tissue) is a more recent development.  Typically 

this is being attempted through the process of harvesting the patient’s own chondrocytes, expanding 

them, and after seeding them onto a biomaterial scaffold, culturing them possibly under controlled 

conditions in bioreactors allowing them to synthesize cartilaginous matrix (Figure 2).  Successful 

engineering of cartilage grafts which follows a cell-scaffold based approach requires optimized in 

vitro culture condition. The success is dependent on three key elements: i) the selection of a cell 

source, able to produce a new tissue with hyaline like cartilage characteristics; ii) the choice of the 

biomaterial which allow cell seeding and promote the chondrogenic differentiation process; iii) the 

application of bio-inductive molecules supplemented in the culture growth media (i.e. growth factors, 

cytokines, hormones, vitamins, glucose and oxygen) or physical stimuli which enable the cells to 

differentiate and to re-organize a cartilage like matrix structure. 
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The three key elements per se but also approaches combining these parameters are currently 

under investigation and open a broad field of research where only an interdisciplinary approach might 

be able to overcome the current limitations of in vitro chondrocyte differentiation and cartilage tissue 

re-formation (78). In the following sections these requirements will be discussed regarding their 

potential and limitations to successfully engineer functional cartilage tissue grafts. 

a)

b)

c)

d)

e)f)

 

Figure 2.  Representation of a typical articular cartilage lesion approach employing tissue engineered cartilage: 

a) Following a traumatic event, trauma could result in significant lesions to the cartilage surface, b) a biopsy is 

harvested arthroscopically and cells are obtained following a digestion procedure, c) cells are plated and 

expanded in monolayer culture, d) once the required number of cells is reached, cells are seeded onto 

biomaterials (scaffold), e) cell-scaffold constructs are hence cultured in vitro for an appropriate amount of time 

to promote cell redifferentiation and extracellular matrix deposition and finally f) the mature constructs is ready 

to be implanted to treat the wounded cartilage. 

1.2.1 Cell sources to engineer cartilage tissue 

 
Among the different parameters which influence the outcome of in vitro tissue engineering 

procedures, the selection and definition of a convenient cell type or cell source is the first issue to deal 

with. The indispensable demands on cells for cartilage tissue engineering are: (i) not to provoke hostile 

immune reaction (ii) not to induce tumorigenic development and (iii) to integrate within the site of 

insertion in a controlled way. 
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The requirements on these cells to moreover improve the quality of in vitro engineered cartilage 

tissue are: (i) to provide sufficient number of cells from the biopsy site which enables the culture of 

cells at a high cellular density to improve the induction of cartilage development in vitro; (ii) to 

harvest a population of cells which is able to properly recover a chondrogenic phenotype and (iii) to 

harvest the cells from body sites with low donor site morbidity caused by additional surgical 

interventions. 

The use of xenogenic (animals derived) or allogeneic (human derived) cells and tissues could 

provide a source of cells with an almost unlimited availability and with a high accessibility to different 

populations of cells to most simply engineer tissue constructs in vitro. Anyhow, the use of an 

allogeneic or xenogenic cell source is usually correlated with possible adverse immunogenic effects 

(87). 

The most evident choice for a non-immunogenic cell source is the use of autologous cells 

harvested from the patient’s own tissue. These cells provide an optimal source which does not induce 

an immunogenic respond. For the implementation in cartilage tissue engineering the most promising 

attempts have been made by the isolation of bone marrow derived mesenchymal stem cells (progenitor 

from mesenchymal origin) or by the use of chondrocytes from cartilage tissue itself. 

 

Mesenchymal Stem cells 

Stem cells have the “capacity for self-renewal or unlimited self-renewal under controlled 

conditions” and “they retain the potential to differentiate into a variety of more specialized cell types” 

(88). Therefore these are cells with multipotent differentiation capacity (89). There are a number of 

stem-cell sources, such as embryonic stem cells and induced pluripotent stem cells. However, it is the 

adult mesenchymal stem cell (MSC) that is of most interest for articular cartilage repair (90). They 

represent an autologous supply of cells which can be easily harvested from a number of different 

tissues, including bone marrow, adipose tissue, muscle, periosteum and synovium (91). Many studies 

have compared these sources in terms of their chondrogenic ability, with several focusing on 

comparison between adipose tissue and bone marrow, of which bone marrow-derived cells have 

shown superior results (92). Bone marrow derived cells are the most readily available as they can be 
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easily harvested in a relatively non-invasive manner.  They can be extensively expanded in vitro and 

kept in their undifferentiated properties when maintained in appropriate culture condition (93, 94). 

Subsequent culture of MSC in the presence of specific growth factors was shown to induce 

chondrogenic differentiation in three-dimensional micromass culture (95-97), or on polymeric cell 

carrier scaffolds  (98), even so, MSC differentiated towards the chondrogenic lineage were shown to 

express markers specific of hypertrophic chondrocytes (99, 100) thus indicating a potential instability 

of the acquired chondrocytic phenotype. Despite a series of recent studies reporting the use of MSC 

for osteochondral defect repair in different animal models (101-103), the long-term efficacy of bone 

marrow derived MSC and their contribution to the regeneration of hyaline cartilage which does not 

remodel into bone in the long term, still has to be demonstrated. 

Alternatively, allogeneic mesenchymal stem cells represent an option for cartilage repair. They have 

been shown to be immunoprivileged, therefore it is possible to deliver them in vivo without rejection 

(104, 105). They have also been shown to produce cytokines, which may help to modulate the repair 

process in vivo.  Thus far, preclinical trials have been encouraging, but it remains to be seen whether 

this type of cellular therapy may become commonplace in clinical practice. 

 Also embryonic stem cells represent a promising cell source but many ethical issues need to 

be resolved prior to their clinical application. 

 

Chondrocytes 

Brittberg et al (79) published the “original method” of using chondrocytes in suspension under 

a periosteal patch for autologous implantation. Thus, chondrocytes are the cells of choice for all 

current ACI procedures.  

The use of chondrocytes is attractive because these cells have been shown to be able to 

synthesize matrix containing Type II collagen and aggrecan (65). However, chondrocytes are in 

limited supply and they must be multiplied in culture to have an adequate number to support a repair. 

As described in chapter 1.4, following a cartilage biopsy, primary articular chondrocytes can 

be successfully maintained and expanded in monolayer culture (106, 107). The application of different 

growth factors during the monolayer culture phase enables chondrocytes to proliferate, while they 
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progressively lose their typical differentiated phenotype and appear fibroblastic (108). However, it has 

been shown that while the exposure of chondrocytes to a variety of growth factors (i.e. TGFβ-1; 

bFGF-2) enhance the de-differentiation of chondrocytes, can additionally improve the capacity to re-

gain a differentiated phenotype during subsequent culture in a permissive chondrogenic environment 

(109). Beside the treatment of the cells with soluble chondrogenic inducer the maintenance of the cells 

in a 3-dimensional environment at a high cellular density during the phase of chondrogenic re-

differentiation can additionally promote the differentiation process (110). 

Nevertheless, considering the implementation of chondrocytes harvested from adult 

individuals in cartilage engineering approaches, the resulting tissue quality shows limitations in terms 

of donor variability which might be influenced by the clinical background, the disease history or the 

age of the individual. In particular, the age of the individual, significantly reduces the capacity of the 

ex vivo cultured chondrocytes to respond to growth stimulation and thus the quality of the cartilage 

tissue produced from cells of elderly donors could be inferior (111, 112). 

The critical issues associated with the use of autologous articular chondrocytes are: the 

acquirement of the biopsy from the individual causing morbidity at the donor site and the following 

small number of available cells. In particular, the harvesting of a cartilage biopsy in the joint 

represents an additional injury to the cartilage surface, and might be detrimental to the surrounding 

healthy articular cartilage (113). To circumvent this problem an alternative approach would be based 

on the use of chondrocytes obtained from non-articular cartilage tissues. For instance, biopsies of nasal 

or ear cartilage can be harvested by a less invasive procedure than excising tissue from distinct areas 

of the joint. The potency of morbidity is also reduced by the fact that the donor site (ear and nose) is 

not subjected to high levels of physical forces, as in the joint. Various studies have been shown that 

chondrocytes derived from human nasal septum or ear cartilage proliferate and generate cartilaginous 

tissue after monolayer expansion with similar or superior capacity to those derived from articular 

cartilage (114-116). However, to demonstrate whether the tissue generated by non-articular 

chondrocytes is adequate for articular cartilage tissue repair, extensive data from in vivo orthotopic 

experimental studies and from in vitro loaded models will be needed. 
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 Both chondrocytes and mesenchymal stem cells are troubled with fibroblastic de-

differentiation and terminal differentiation to a hypertrophic phenotype in vivo. It is therefore likely 

that these cells types will require some degree of modulation to be used successfully. This may be 

provided by the use of specific biomaterials (scaffolds) or by the addition of media supplements 

(growth factors). 

1.2.2 Scaffolds for tissue generation 

 
The purpose of using biomaterial scaffolds for tissue-engineered constructs is to mimic the 3-

dimensional environment of the extracellular matrix, provide structural support to the regenerate and 

surrounding tissues, and provide an increased surface area to volume ratio for cellular migration, 

adhesion and differentiation (117). 

 A large number of scaffold designs and concepts were tested experimentally, in animal models 

and received the approval in clinical applications (118). 

An ideal scaffold material or architecture must provide the following characteristics: (i) bio-

degradable with a controlled degradation and absorption rate which allows tissue in-growth; (ii) 

biocompatible and not provoke a hostile immune response; (iii) a three-dimensional structure with 

defined porosity and interconnectivity to allow cell invasion, tissue growth and transport of nutrients 

and metabolic waste; (iv) mechanical stability for in vitro handling and subsequent implantation 

within surgical procedures; (v) and provide a suitable surface chemistry or the ability to absorb 

proteins to improve chondrocyte attachment, proliferation, or differentiation and thus to promote and 

support tissue specific development (118, 119). 

The two most commonly used solid scaffold architectures reported in the literature are porous 

sponges and non-woven fiber meshes (120). There are several biomaterial options used for articular 

cartilage tissue engineering, which can be natural or synthetic (121). 

Scaffolds based on natural biopolymeric compounds mimic and resemble the natural cartilage 

environment. Further they can be subdivided into protein-based matrices such as collagen and fibrin 

and carbohydrate-based matrices such as alginate, agarose, chitosan and hyaluronan (122). The 

presentation of bioactive surface structures can induce signals to the entrapped chondrocytes and 
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potentially stimulate the chondrogenic differentiation process which leads to the cartilage tissue 

neogenesis (123). 

Various synthetic polymer scaffold materials have been validated in cartilage tissue engineering 

such as polylactic- or polyglycolic acids (124-126), polycaprolactones, polycarbonates or co-polymer 

containing ethylene-terephthalate (127, 128). In contrast to the advantage to provide initial mechanical 

stability, non-immunogenicity and bio-resorbability these scaffold polymers have been shown to 

potentially provoke adverse cytotoxic effects due to the release of acidic products (129). Moreover 

synthetic polymers per se would not have biological properties to induce cartilage tissue regeneration. 

1.2.3 Media supplements and culture environment 

 
Soluble mediators are mostly involved during the event of cartilage growth, metabolism and 

development, such as in the mesodermal differentiation of the cartilaginous skeleton in the embryo, 

the process of endochondral bone formation and the onset of articular cartilage “repair” (25). As a 

common basis of various approaches considered for cell-based engineering of cartilage tissue, it is 

known that during the in vitro culture of chondrogenic cells, specific growth factors, cytokines, 

hormones or enzymatic co-factors (e.g. vitamins) can enhance cell proliferation, migration or cell 

differentiation, and in consequence allow to obtain sufficient cells with the potency to re-induce 

cartilaginous tissue structures. 

In general, growth factors and cytokines are cell-secreted molecules and when bound to cell 

membrane receptors can induce intracellular signaling pathways which lead to cell adhesion, 

proliferation or promote cell differentiation, by the up or down regulation of target genes. 

As compared to the morphogenic action in vivo, several growth factors and mitogens are applied 

in in vitro tissue engineering approaches.  

Basic Fibroblast growth factor (bFGF) within the FGF family is the most widely investigated in 

articular cartilage repair. It is stored bound to heparin sulphate proteoglycan in the extracellular 

matrix. It’s an important mitogen that stimulates RNA and DNA synthesis in chondrocytes (130). 

Many in vitro studies have shown that FGF plays a key role in chondrocytes proliferation (130), 
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promotes the de-differentiation process of primary chondrocyte in monolayer culture (131) and 

prevents chondrocytes from terminal differentiation (132).  

Transforming growth factor-β (TGF-β) is a member of the TGF superfamily, which also 

includes bone morphogenetic proteins (BMPs). It is secreted in an inactive form, bound to a latency-

associated peptide from which it dissociates before becoming active and binding to its target receptor 

(133). Growth media supplementation with TGF-β induces chondrogenic differentiation as shown in a 

pre-chondrogenic cell line (134) or in MSC micromass pellet culture (99), and has been reported to 

promote cell proliferation and to up-regulate aggrecan and type II collagen when applied 

synergistically with insulin or insulin like growth factor-1 (IGF-I) in chondrocyte alginate culture 

(135).  

Platelet-derived growth factor (PDGF) is a known chemo-attractant, stimulating macrophages 

and fibroblasts during healing. It is stored in platelets; hence it was recognized as a key growth factor 

in the microfracture technique attracting cells to the defect site. Not only it is a chemo-attractant, in 

vitro studies have also showed it to have an impact on chondrocytes and mesenchymal stem cell 

differentiation, enhancing matrix production and preventing the progression toward endochondral 

maturation (136-138). 

IGF-I is the main anabolic growth factor of articular cartilage. It has been shown to increase 

proteoglycan and collagen type II synthesis as well as provide chondrocyte phenotypic stability. It is 

stored in the extracellular matrix, bound to proteoglycans via IGF-1 binding proteins. It’s likely that 

the interaction between it and the binding protein regulate its activity, as an increase in catabolic 

activity causes proteolysis of these proteins, thereby modulating its release (139). 

Indeed, there are evidences that the combination of several specific growth factors during the 

phases of chondrocyte expansion and subsequent 3D micro-mass culture can have additive effects on 

the cell proliferation or chondrocyte re-differentiation process (140). 

Moreover, historically, monolayer expansion of chondrocytes is supplemented with Fetal Calf 

Serum (FCS) to support attachment and proliferation (141, 142). 

However, the use of animal serum for the generation of grafts for clinical use should be 

seriously considered since such supplements carry the remote possibility of prion or viral transmission 
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and of immune reaction against animal proteins. Substitution of animal serum with autologous serum 

would address these issues and bring human cartilage engineering nearer to a safe clinical application. 

Previous studies comparing chondrocytes growth with human serum and FCS generally reported 

superior proliferation rate of chondrocytes in human serum (143-147) and also a reduced variability 

due to the donor age of the patient (147) . 

To re-establish a proper matrix structure during the re-differentiation process in 3-dimensional 

chondrocyte culture, enzymatic co-factors can additionally be supplemented. For instance, ascorbic 

acid known as a co-factor for proline and lysine hydroxylase is required for the assembly and 

stabilization of collagen fibrils (148). 

Therefore, in this work we evaluated how the addition to the culture medium of specific growth 

factors (TGFβ-1/FGF-2/PDGF) during monolayer expansion can modulate the proliferation of human 

articular chondrocytes seeded at different cell density and in presence of reduced percentage of Human 

Serum. Moreover we assessed the ability of expanded articular chondrocytes under different 

conditions (different cell seeding density; percentage of Human Serum; monolayer vs 3D expansion), 

to re-gain a chondrogenic cell phenotype during the phase of re-differentiation (exposed to TGFβ-1/ 

insulin/ ascorbic acid) in 3 dimensional cell culture system (i.e. micro mass pellet and collagen type II 

scaffolds). 

1.2.4 In vitro culture of chondrocytes: expansion strategies 

 
Chondrocyte-based cartilage repair techniques, including the mentioned ACI, require that 

autologous articular chondrocytes isolated from a small biopsy are efficiently expanded prior to being 

grafted in the defect. However, this approach is limited by the difficulty of obtaining sufficient 

autologous chondrocytes. Finding conditions that permit fast amplification of chondrocytes while 

maintaining their capacity to generate cartilaginous tissue is an objective of different research groups. 

The main obstacle for an efficient propagation of chondrocytes derived from the fact that the cell in 

vitro expansion is intrinsically associated with cellular de-differentiation and reduced ability to re-

differentiate.  
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De-differentiation occurs when chondrocytes are cultured under conditions allowing them to 

attach and spread on a two-dimensional surface. In this environment the spherical phenotype is 

gradually lost and the cells acquire an elongated fibroblast-like morphology.  

These morphologic alterations are accompanied by profound biochemical changes, as indicated 

by the reduction or total loss of synthesis of aggrecan and type II, IX and XI collagen (cartilage-

specific proteins) and the increase in synthesis of versican and type I, III and V collagen (proteins 

associated with an undifferentiated mesenchymal cell phenotype).  

To overcome the limitation of a low initial number of cells and dedifferentiation, various 

studies have been performed in which chondrocytes are multiplied in monolayer cultures to increase 

the number of cells and then transferred into an environment supporting a spherical morphology; 

however their original phenotype is not fully re-acquired (108, 149-151). 

In an effort to overcome this problem different strategies have been proposed to expand 

chondrocytes under conditions maintaining their original phenotype. These include the culture of 

chondrocytes within 3D gels, sponges or meshes, encapsulated in alginate beads or at the surface of 

microcarrier beads (152-154). The culture techniques allow chondrocytes to remain round in shape 

and to continue the expression of cartilage-specific genes, but are limited in the extent of proliferation 

achieved (155). 

One alternative approach to obtain a large number of chondrocytes capable to generate 

cartilaginous tissues, in contrast to the above described strategy, consists in keeping cells in a more 

‘plastic’ state, thus enhancing their ability to re-differentiate. In particular, the growth factor 

combination transforming growth factor beta-1, fibroblast growth factor-2 and platelet-derived growth 

factor-BB (TFP) was shown to increase cell proliferation rate, accelerate the process of cell de-

differentiation, and to enhance the re-differentiation capacity of the expanded cells (109). 

Another approach to enhance the post-expansion differentiation capacity of chondrocytes is 

based on the coating of cell culture dishes with specific substrates. In these regards, Barbero et al. 

(156) found that chondrocytes expanded in type II collagen exhibited higher capacity to generate 

cartilaginous tissues as compared to cells expanded in plastic culture dishes.  
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1.2.5 Redifferentiation and implantation 

 
During the monolayer expansion, the chondrocytes dedifferentiate and gradually lose their 

phenotype. However the feasibility to engineer cartilage tissue starting from expanded chondrocytes is 

based on the fact that, at least to some extent, the differentiation process may be reversed when cells 

are transferred into three dimensional environments (157) under appropriate culture conditions (140, 

147). The ability of redifferentiate is particularly important when the cell-constructs are going to be 

transplanted back into the patient. 

After implantation, engineered tissue unlike native tissue must continue to grow and remodel in a 

chemical environment that is likely to contain potent catabolic mediators stemming from inflammatory 

responses resulting from the disease or the surgical intervention it-self.  

During an inflammatory response, cartilage remodeling process is initiated and cytokines such as 

Interleukin (IL)-1 and Tumor Necrosis Factor (TNF)-α, are produced in response by resident cells and 

infiltrating inflammatory cells (chondrocytes, monocytes, neutrophils). In particular, IL-1 (α and β) is 

a pro-inflammatory cytokine that plays important role in normal physiology of cartilage tissue, 

including stimulation of the turnover of extracelllular matrix. IL-1 isoforms have  been shown to have 

harmful effects on chondrocytes: they (i) inhibit the synthesis of the major physiological inhibitors of 

pro-degradative enzymes  (158), (ii) stimulate the production of prostaglandins, free radicals and NO 

(159), (iii) inhibit the synthesis of matrix components such as type II collagen and proteoglycans (160-

163), (iv) inhibit the chondrocyte differentiation- phenotype by suppressing the expression of Sox-9 

(160, 164), (v) inhibit the chondrocytes proliferation and induce cell death (164).  

These post-operative inflammatory responses have particular relevance in the context of cell based-

cartilage repair, considering that therapeutic cell preparations (single cell suspension, cell-seeded 

matrixes or cartilaginous tissues) once grafted in the joint defect will become exposed to a 

biochemical environment rich in catabolic mediators and could have long-lasting detrimental effects 

(165). 

It’s therefore important to define the appropriate stage of maturation for cell-based constructs and the 

consequential state of cell redifferentiation at which the chondrocytes result less susceptible to such 

mediators guaranteeing superior clinical outcome. 
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1.2.6 Automated tissue engineering system for clinical application 

 
A bioreactor is an apparatus in which biological and biochemical processes develop under finely 

designed environmental and operating conditions such as pH, temperature, pressure, nutrient supply, 

waste removal and biomechanical stimuli (166). 

 Recently, bioreactor culture systems have been applied to the tissue engineering field, providing 

reliable models to study tissue biology under controlled experimental conditions. Moreover, the use of 

bioreactors introducing high level of control, reproducibility and automation can be applied to the 

manufacturing process of tissue engineered products for clinical applications.  

Currently, in the case of the manufacturing process for cultured tissues aiming at autologous 

transplantation, such as autologous chondrocytes implantation (ACI), a minimum of biopsies is 

harvested from patients.  The isolated cells after shipment to special GMP production facilities are 

subjected to ex vivo expansion in a series of monolayer cultures. After the cells are expanded 

sufficiently, cells or three-dimensional grafts are returned to the hospital for implantation. Obviously, 

the resulting process of manufacturing is burdened by limitations such as the lack of standardization 

with the risk of biological contamination due to the numerous manual handling steps. Additionally, 

high cost due to the implementation of special room facilities in compliance with Good Manufacturing 

Practice (GMP) requirements are associated with manufacturing. Therefore, the application of cell-

based tissue engineering approaches in the routine clinical practice critically depends on the 

development of innovative bioreactor systems. 

An ideal bioreactor would be a single closed and automated system in which starting from a 

patient’s biopsy, are performed all the different processing phases: cell isolation, expansion, seeding 

on scaffold and differentiation. 

A controlled closed bioreactor system would therefore facilitate the streamlining and automation 

of the numerous labor-intensive steps involved in the in vitro engineering of 3D cartilage tissue in a 

manner that is reproducible, safe, clinically effective as well as economically acceptable and cost-

effective (167). 

One example is the Autologous Clinical Tissue Engineering System (ACTES), under 

development by Millenium Biologix (www.millenium-biologix.com), is a closed bioreactor system 
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aimed at fully automating the processes cartilage biopsy digestion, chondrocytes expansion and cell 

resuspension. However associated to a bioreactor system like ACTES, there are several constraints 

such as a fixed expansion surface, the possibility of a single passage and the requirement to yield a 

minimum amount of cells (12 Millions) and the necessity to reduce the percentage of autologous 

serum.  

 We aimed our study to define suitable operating conditions for systems like ACTES.  In 

particular we aimed our study at determining whether a clinical relevant number (≥12 millions) of 

human articular chondrocytes can be generated in 1 passage starting from variable initial seeding 

densities and using low percentages of human serum, assuming a defined culture surface, currently in 

use in the ACTES system. 
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1.3 AIMS OF THE THESIS 

 

Cartilage lesions resulting from trauma or degenerative diseases are one of the major factors leading to 

joint disease and disability. Articular cartilage being an avascular tissue has limited capacity for self 

repair.  

To overcome these limitations, tissue engineering techniques have emerged as an innovative field of 

research with the potential to recreate three dimensional cartilaginous tissues.  

Such approach generally rely on the expansion of a limited population of chondrocytes derived from a 

small cartilage biopsy, intrinsically associated with cellular de-differentiation (108), and on the ability 

of the expanded cells to efficiently and reproducibly re-differentiate and generate cartilaginous tissue. 

The objective of my research was to study different clinically relevant aspects of the biology of human 

articular chondrocytes, related to different phases in the process of engineering of a functional 

cartilage tissue (Figure 4). In particular, my thesis was aimed at determining:  

 

 

- whether the supplementation of growth factors enhancing chondrocyte proliferation and re-

differentiation capacity allows a reproducible and efficient clinical-scale expansion of human articular 

chondrocytes (HAC) starting from variable initial seeding densities and using low percentages of 

human serum (Study 1; Francioli et al., Tissue Eng (2007)); 

 

 

- whether the quality of cartilaginous tissues generated by HAC on three-dimensional biomimetic 

scaffolds can be enhanced by direct expansion on the scaffold, as compared to standard growth on 

plastic, or by increasing cell seeding density (Study 2; Francioli et al., Tissue Eng (submitted)); 

 

- how the extent of maturation of HAC-based cartilaginous tissues modulates the profile of chemokine 

production and the inflammatory/catabolic response to IL-1β (Study 3; Francioli et al., Clin Orthop 

Relat Res (in preparation for submission)). 
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2 PAPERS  
 

2.1 PAPER I: Growth Factors for Clinical-Scale Expansion of 

Human Articular Chondrocytes: relevance for Automated 

Bioreactor System 
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2.2 PAPER II: Effect of three-dimensional expansion and cell 

seeding density on the cartilage-forming capacity of human 

articular chondrocytes in type II collagen sponges 
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2.3 PAPER III: Production of cytokines and response to IL-1β by 

human articular chondrocytes at different stages of tissue 

maturation 
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3 SUMMARY  
 
 

Regenerative medicine holds great promise for the reconstitution of damaged tissues and organs. 

Treatment for articular cartilage injuries is a prime target for regenerative techniques, as spontaneous 

healing is poor. 

  Among the many surgical options for the treatment of such lesions, implantation of autologous 

chondrocytes is gaining increasing popularity, especially for critically sized defects (79, 91). These 

procedures include autologous cartilage implantation (ACI) (65, 80, 81, 168), the more recent matrix-

mediated ACI (MACI) (169), or the grafting of tissue engineered cartilaginous constructs (TE) (170, 

171), typically based on cultivation of cells on porous scaffolds. 

 The main aim of my PhD was to study different aspects of human articular chondrocytes (HAC) 

biology and to evaluate their relevance for the generation of a tissue engineered construct with 

properties compatible with utilization in clinical cartilage repair. 

 

Study 1 

Main results 

In the first study we showed that the use of the specific growth factor combination TGFβ-1/FGF-

2/PDGF (TFP) during the expansion of human articular chondrocytes (HAC) allows to obtain (i) a 

clinically relevant number of competent cells also if initially seeded at low densities (and therefore 

starting from a cartilage biopsy of small size), (ii) reduced variability in proliferation and cartilage 

forming capacity of cells expanded under different conditions of seeding densities  and human serum 

percentages. 

Relevance 

Cartilage biopsies are variable in size while harvesting an excess of it is a detrimental loss that 

should be minimized. Consequently, the number of chondrocytes obtainable from a biopsy is variable 



Summary & Conclusion 

83 

and relatively low for a clinical application. In addition, the final cell-based products vary in size 

according to the needs of individual patients (79). Therefore, the monolayer expansion, which is the 

core process of all the above mentioned cell-based techniques, is affected by these variables, resulting 

in low reproducibility.  

Moreover, in the last years, efforts to commercialize cell-based therapies are raising the need 

for capable, reproducible, scalable, automated manufacturing systems. 

The use of bioreactors within the hospital for automated culture of autologous cells would eliminate 

logistical issues of transferring specimens between locations, reduce the need for large and expensive 

GMP facilities and minimize operator handling with the final possible result of simplifying, reducing 

the cost and increasing the standardization of the entire process (166, 167).  

In our study we have defined culture conditions allowing to overcome some constraints related to the 

implementation of closed automated bioreactor system for the generation of implantable autologous 

cartilage products in which the cells isolable from cartilage biopsies of different sizes have to be 

expanded in only one passage on a fixed culture surface. Moreover, the system should use human 

autologous serum at low percentages, to avoid use of animal derived factors and to reduce the 

dependence of the culture on a non-standardized factor such as autologous serum. 

The concept of using specific growth factors in clinical-grade bioreactors could be applied for 

the propagation of cells from different human sources to reduce variability in the number and quality 

of expanded cells and, ultimately, in the clinical outcome of cell-based regenerative techniques. 

 

Study 2 

Main results 

In this study we demonstrated that expansion of freshly isolated HAC, in biomimetic three-

dimensional scaffold (type II collagen sponge), as compared to expansion in monolayer, better 

maintains the chondrocytic phenotype but does not enhance the cartilage-forming capacity of HAC. 

Instead, increasing the HAC seeding density in the scaffolds allowed enhanced chondrogenesis, even 

if the seeded cells had to be expanded more extensively in 2D in order to reach the required cell 
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numbers. Therefore, high seeding density of HAC in 3D scaffolds is more critical for the generation of 

cartilaginous constructs than the stage of cell differentiation reached following expansion. 

Relevance 

Study 2 

Main results 

In this study we demonstrated that expansion of freshly isolated HAC in a biomimetic three-

dimensional scaffold (type II collagen sponge), as compared to expansion in monolayer, better 

maintain the chondrocytic phenotype but does not enhance the cartilage-forming capacity. Instead, 

increasing the HAC seeding density in the scaffolds allowed enhanced chondrogenesis, even if the 

seeded cells had to be expanded more extensively in 2D in order to reach the required cell numbers. 

Therefore, high seeding density of HAC in 3D scaffolds is proposed to be more critical for the 

generation of cartilaginous constructs than the stage of cell differentiation reached following 

expansion. 

Relevance 

Monolayer expansion, the core process of cell-based cartilage repair techniques is associated 

with cell de-differentiation and loss of the chondrocytic phenotype. Therefore to overcome the 

limitations of a low initial number of cells and dedifferentiation, various studies have been performed 

in which chondrocytes are multiplied in monolayer cultures to increase the number of cells and then 

transferred at high density to a long term three dimensional culture system to regain their phenotype 

(172, 173). An alternative strategy for the utilization of the small number of chondrocytes obtained 

from a cartilage biopsy consists in their limited expansion in 2D or even in the direct culture onto 3D 

porous scaffolds (174-176). In principle, this technique would allow a better maintenance of the 

chondrocytic phenotype while reducing the extent of cell proliferation and thus the cell seeding 

density. 

We showed that the extensively dedifferentiated phenotype of chondrocytes did not appear to 

interfere with the chondrogenic program, provided that high cell density was initially established. 

Indeed, the extent of HAC passaging and consequent stage of de-differentiation did not modify the 

cartilage-forming capacity of these cells following 3D culture. This is a further proof of the extensive 
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plasticity exhibited by HAC expanded in culture under suitable conditions (109, 147). Moreover our 

results clearly indicate that a high seeding density of HAC in 3D scaffolds is more critical for the 

generation of implantable cartilaginous constructs than the stage of cell differentiation reached 

following expansion.    

 

Study 3 

Main results 

In this study, we demonstrated that the profile of chemokine production and the response to 

inflammatory/degradative stimuli by monolayer expanded HAC correlated with the differentiation 

stage of cells cultured in micromass pellets. In particular, cells within more mature tissues produced 

higher amounts of the pro-inflammatory chemokines IL-8 and MCP-1 and releases lower amounts of 

MMPs following IL-1β stimulation. 

Relevance 

Expanded chondrocytes exhibit enhanced expression of de-differentiated markers (e.g.: versican, type 

I collagen and cathepsin B) as compared to native normal chondrocytes (108, 149, 151, 177). 

Moreover, it has been reported that, similarly to OA chondrocytes, ex-vivo cultured chondrocytes 

express a variety of pro-inflammatory chemokines/chemokine receptors and cartilage degenerative 

enzymes (178-183), whose production is enhanced by increasing cell passaging and by stimulation 

with IL-1β and TNF-α (184, 185). These responses have particular relevance in the context of cell 

based-cartilage repair, considering that therapeutic cell preparations (single cell suspension, cell-

seeded matrixes or cartilaginous tissues) once grafted in the joint defect will become exposed to a 

biochemical environment rich in catabolic mediators. The cell preparation in which the chondrocytes 

are less susceptible to such mediators might guarantee superior clinical outcome. Our findings that 

chondrocytes embedded in a more abundant cartilaginous matrix release lower levels of pro-

inflammatory chemokines and exhibit less IL-1β-mediated catabolic effects suggest that the 

implantation of more mature cartilaginous tissues could guarantee superior graft survival and 

functional outcome.  
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CONCLUSION 

In conclusion, during my PhD we demonstrated that the phenotype of human articular chondrocytes 

can be strongly modulated following the exposure to specific biological and physicochemical cues. 

The findings described in this work have therefore allowed to improve the knowledge on the biology 

of cartilage cells and to define specific conditions to improve the efficiency of utilization of 

chondrocytes for clinical applications.  

My findings resulted indeed essential in the definition of the culture conditions to use in a recently 

proposed internal phase I, prospective, uncontrolled clinical trial aimed at demonstrating safety and 

feasibility in the use of engineered cartilage grafts. The specific surgical target of the trial is the 

reconstruction of a two layer defect of the alar lobule using a tissue engineered nasal cartilage graft 

and a local flap, following resection of a nonmelanoma skin cancer. 

For such trial, in fact, nasal articular chondrocytes isolated from a small cartilage biopsy in the 

nose will be expanded in monolayer with medium containing low percentage of autologous serum and 

with the previously described growth factor combination (study 1). Cells will be then seeded at high 

density onto collagenous matrices (study 2) and cultured under differentiation conditions allowing to 

generate mature cartilage graft (study 3). 

 

During my PhD I worked in a unique environment where the scientific approach, clinical and industry 

point of views were combined in order to facilitate the achievement of a final and common goal. 

Indeed the interaction with different collaborating partners (i.e., the company Millenium Biologix AG 

and orthopaedic surgeons) helped me to remain focused on investigating scientific relevant questions 

which could bring to a final cell-based product, pertinent for a clinical application.  
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