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Abstract

In this thesis, I calculate the spin-dependent next-to-leading order QCD corrections to the differ-
ential scattering cross section for W boson production by proton-proton collisions. Apart from
the relevant Feynman diagrams, the crossing functions are derived as well, allowing a complete
description of the hadronic scattering cross section to NLO as a function of hadron polarisation.
This quantity can be used to calculate the polarisation asymmetry, which is very well suited for
direct experimental measurement. Exploiting this possibility to directly compare theoretical re-
sults with experimental findings, one will be able to gain deeper insight into the spin-dependent
parton distribution functions, which in turn will help in making further progress towards solving
the proton spin puzzle.
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Preface

This is the account of how
all was in suspense,
all calm,
in silence;
all motionless,
all pulsating,
and empty was the expanse of the sky.

Popol Vuh, creation story

The task of my PhD thesis was to calculate the different contributions at next-to-leading order
(short “NLO”) to the differential scattering cross section for the process pp → W± → `±ν:

• the partonic scattering cross sections following from the NLO Feynman diagrams:

– the vertex diagram (virtual correction), qq̄ → W± → `±ν

– the gluon bremsstrahlung diagram (real correction), qq̄ → W±g → `±νg

– the quark bremsstrahlung diagram (real correction), qg → W±q → `±νq or with q ↔ q̄;

• the phase spaces for these diagrams, especially for the 2 → 3 processes, with appropriate
slicing (separation of soft and collinear parts) where necessary;

• the crossing functions, which include contributions from unresolved particles.

Combining these parts makes it possible to express the hadronic differential scattering cross section
at next-to-leading order.

This thesis is organised as follows:
The first chapter is dedicated to a short introduction into the subject, a motivation for the task
undertaken and its connection to experiments as well as an outlook on what can be learned from
the comparison of these theoretical predictions to experimental findings. In chapter 2, the different
diagrams are drawn and the hadronic differential scattering cross section is derived to NLO. All the
required quantities are listed, including the crossing functions, which are introduced and calculated.
The next three chapters (3, 4, 5) show in detail the calculation of the matrix elements squared (or
multiplied with the LO matrix element) and the relevant phase spaces, including slicing. From these
quantities, the contributions to the differential scattering cross section are then derived. Chapter 6
collects the results from the calculations of the Feynman diagrams and shows that the singularities
cancel, as expected. Picking up the findings of chapter 2, the hadronic scattering cross section is
finally written to NLO and the components shown. The conclusions from the calculation and a
short outlook can be found in chapter 7.
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1 Introduction

Beginning my studies the first step pleas’d me so much,
I have hardly gone and hardly wish’d to go any farther,
But stop and loiter all the time to sing it in ecstatic songs.

Walt Whitman: Beginning my studies

Within the standard model, the hadrons (protons and neutrons) are made up of three valence
quarks, characterising their parent hadron, and sea quarks, which spring in and out of existence as
quark-antiquark pairs and are the product of vacuum fluctuations. The quarks, denoted generically
by q, and their antiparticles, denoted by q̄, come in six flavours: up (u) and down (d) in the first
generation, strange (s) and charm (c) in the second generation, and bottom (b) and top (t) in the
third generation. Quark masses range from mu ≈ 1.5 MeV through mc ≈ 1.3 GeV up to mt ≈ 180
GeV. They are held together by massless gluons (g) which are their own antiparticles. Collectively,
quarks and gluons are called partons, a name conceived in the first days of the model when an
experimental verification still had to be found.
A natural assumption then is that the different properties of a hadron are made up from those of its
constituent partons. Of interest here is the spin: being a fermion, a proton has a spin of 1/2. The
quarks themselves, since they are fermions as well, have a spin of 1/2, too, and by combining their
spins make up the hadron’s spin. Unfortunately, as experiments have shown, this simple model
does not correspond to reality, i.e. measurements.
With the notation (a proper definition of the entity q follows further down)

∆q := q+
+ + q−− − q+

− − q−+ and q := q+
+ + q−− + q+

− + q−+ ,

where the upper index describes the helicity (whether the spin is parallel or anti-parallel to the
momentum) of the parton and the lower one the helicity of the parent hadron, the flavour-singlet
axial charge can be defined:

∆Σ := ∆u + ∆d + ∆s

which is a measure of the spin distributed over the valence quarks.
While one would expect

∆Σ = 1

if the hadron’s entire spin were distributed solely among these quarks, experimental measurements,
starting with the European Muon Collaboration [30,31] in 1988, have found quite a different figure
for the proton, with a modern value of

∆Σ = 0.33± 0.03 (stat.)± 0.05 (syst.) .

Why the valence quarks contribute so little to their hadron’s spin and where the missing spin
contribution is to be found came to be known as the proton spin puzzle (for a recent review,
see e.g. [3] and references therein). Since the occurrence of this enigma, a lot of effort has been
made towards understanding the spin content of the hadrons and how it is distributed among their
constituent partons. Possible solutions include strong gluon polarisation, sea quark polarisation,
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1 Introduction

topological effects and contributions from angular momentum as well as relativistic motion of the
partons. Apart from theoretical work, dedicated experiments have been carried out at CERN,
DESY, JLab, BNL’s RHIC and SLAC.
From a theorist’s point of view, the constituents’ spin is contained inside the parton distribution
functions (PDFs), usually denoted fH

h (x) or h(x), which describe the probability of finding a parton
of flavour h inside a hadron H carrying the momentum fraction x of its parent hadron. The PDFs
are the non-perturbative part of the expression connecting the hadrons’ differential scattering cross
section with the partons’ – perturbatively calculable – cross section:

dσAB =
∑
ab

1∫
0

dx1

1∫
0

dx2 fA
a (x1)fB

b (x2) dσab(x1, x2)

Finding suitable parametrisations of the PDFs by fitting the predictions to the measurements and
thereby refining the functions derived from theory has been a major topic in research [35, 21]. In
a first step, these parametrisations have been constructed for spin-averaged partons and only rel-
atively recently have the groups begun to incorporate spin-dependency into these functions [27].
This in turn makes the comparison of polarised measurements with predictions from theory possible
and at the same time very important. After all, if one is able to quantitatively describe the PDFs,
the distribution of spin inside a hadron can be very accurately described and a large step towards
the solution of the spin puzzle has been made. Of course, the other way round works as well: By
finding a solution to the spin problem, one will gain greater insight into the spin-dependency of
the partons which in turn can be used to increase the precision of the PDFs. The path taken by
research has been something intermediate and while one still has large uncertainties in the PDFs,
they are no longer large enough to be able to swallow the missing spin. These findings have led to
further progress and very recently a solution to the spin problem has been proposed [22]. This in
turn will renew interest in the PDFs and make it even more important to find possible processes
which can be described theoretically as well as measured with great precision.

One such process is the production of W bosons by proton-proton (pp) collisions. Currently,
such experiments are carried out at Brookhaven’s RHIC, in an energy range allowing this process.
Furthermore, W boson production is a tool very well suited to explore the PDFs because these
particles are produced by the weak interaction, which is a pure V-A interaction (i.e. “vector −
axial vector” coupling within the standard model, conserving helicities). Thus, the helicities of
the participating quarks and antiquarks are fixed in the reaction. In addition, the W couples to a
weak charge that correlates directly to flavours, if one concentrates on one generation. Indeed, the
production of W s in pp collisions is dominated by u, d, ū, and d̄, with some contamination from s,
c, s̄, and c̄, mostly through quark mixing. With a W boson mass of MW ≈ 80 GeV, the masses of
these quarks can be neglected, resulting in greatly simplified expressions (the error introduced lies
well below the order of the series expanson in the coupling constant). Therefore, W production is
considered an ideal tool to study the spin-flavour structure of the nucleon.
The asymmetry of W boson production with respect to the leptons’ rapidity distribution,

A(y`) =
dσ(`+)/dy` − dσ(`−)/dy`

dσ(`+)/dy` + dσ(`−)/dy`

with dσ(`±)/dy` the differential scattering cross section for the process pp̄ → W± → `±ν as a func-
tion of lepton rapidity, has been studied at leading order [19] in conjunction with measurements by
the CDF collaboration at Fermilab’s Tevatron collider.
In the case of only one proton polarised, the leading-order production of W+s via ud̄ → W+ (and
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W−s completely analogously via ūd → W−) can be built up from four different cases where either
the u or the d̄ stem from the polarised proton and have either positive or negative helicity. Colliding
with the other parton coming from the unpolarised proton, they form the W+ boson, which decays
subsequently:

Figure 1.1: The four possible situations for the case of one proton polarised and one unpolarised (+
is right-handed, − is left-handed helicity).

The parity-violating asymmetry is defined as the difference of left-handed and right-handed pro-
duction of W s, divided by the sum and normalised by the beam polarisation:

AW+

L =
1
P
× N−(W+)−N+(W+)

N−(W+) + N+(W+)
.

One can construct this asymmetry from either one of the polarised beams and by summing over
the helicity states of the other beam. The production of left-handed weak bosons violates parity
maximally (because the antilepton in the final state would then also be left-handed). Therefore,
if for example the production of the W+ proceeded only through the process where the u quark
is polarised (as depicted in Figure 1a), the parity-violating asymmetry would directly equal the
longitudinal polarisation asymmetry of the u quark in the proton:

AW+

L =
u−−(x1)d̄(x2)− u−+(x1)d̄(x2)
u−−(x1)d̄(x2) + u−+(x1)d̄(x2)

=
∆u(x1)
u(x1)

.

Similarly for the case where only the d̄ is polarised (Figure 1b):

AW+

L =
d̄+
−(x1)u(x2)− d̄+

+(x1)u(x2)
d̄+
−(x1)u(x2)− d̄+

+(x1)u(x2)
= −∆d̄(x1)

d̄(x1)
.

In general, the asymmetry is a superposition of the two cases [6], expressed with the corresponding
scale MW and as a function of the vector boson rapidity y (x1,2 ∝ e±y):

AW+

L (y) =
∆u(x1,MW 2)d̄(x2,MW 2)−∆d̄(x1,MW 2)u(x2,MW 2)

u(x1,MW 2)d̄(x2,MW 2) + d̄(x1,MW 2)u(x2,MW 2)
.

For W−, the asymmetry is obtained by interchanging u and d.

By identifying the rapidity of the W boson relative to the polarised proton, it is possible to obtain
a direct measurement of the quark and antiquark polarisations while distinguishing the different
quark flavours. AW+

L approaches ∆u/u in the limit y � 0, whereas for y � 0 the asymmetry
becomes −∆d̄/d̄. In practice one can probe, e.g., the polarised antiquark distributions at RHIC
for x ≤ 0.12 from AL(y ≤ 0) [13].
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1 Introduction

Because a direct detection of the W boson is impossible, one has to infer the boson rapid-
ity y from the measurable lepton rapidity y`. The W ’s rapidity is related to the lepton ra-
pidity in the W rest frame (y∗` ) and in the laboratory frame (ylab

` ) by ylab
` = y∗` + y, where

y∗` = 1/2 · ln[(1 + cos θ∗)/(1 − cos θ∗)], with θ∗ the decay angle of the lepton in the W rest frame,
and cos θ∗ can be determined from the transverse momentum of the lepton with an irreducible
uncertainty of the sign, if one neglects the transverse momentum of the W .

Since RHIC is a pp collider, the antiquarks stem from a proton as well and a measurement of
the asymmetry will therefore reveal further information on the distribution of sea quarks. In the pp̄
experiments, the contribution of sea quarks has been strongly suppressed with respect to valence
quarks and the measurements have permitted only little insight into the (anti)quark sea. RHIC is
now aiming at filling this important gap, which is all the more relevant because recent experiments
have shown a large SU(2) symmetry breaking in the antiquark sea [32].

The aim of my PhD thesis is to increase the precision of the predictions by calculating the
polarisation-dependent differential scattering cross section to next-to-leading order. An increase
in precision for this quantity directly results in a greater precision in the asymmetry and thus a
stronger constraint on the PDF fits. This, however, comes at a price: One has to deal with infrared
and ultraviolet divergences in the mathematical expressions and find suitable methods to obtain
sensible – i.e. finite or at least mathematically well-defined – results. All the relevant diagrams
have been considered already in my M.S. thesis [36], but the calculations for the ones contributing
at NLO have been carried out only up to the scattering matrix element. The mathematically sen-
sitive process of squaring the expressions, carrying out the integrations, and dealing with the phase
space has been left for this work. In addition to the Feynman diagrams, the crossing functions
have to be calculated as well, completing the list of ingredients necessary for a description of the
hadronic differential scattering cross section to NLO. Only the calculations for the production of
W+ bosons will be shown explicitly; by choosing the appropriate flavour of the PDF, the results
can be trivially adapted to describe W− bosons instead.
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2 NLO corrections and perturbative QCD

Latin me that, my trinity scholard, out of eure sanscreed
into oure eryan!

James Joyce: Finnegans Wake

2.1 Next-to-leading-order approximation of the scattering cross section

The NLO approximation of the differential scattering cross section for hadron collisions can be
written (within the QCD-improved parton model) as the convolution of the partonic cross section
with the parton structure functions (which are effective parton distribution functions) F :

dσH1H2 =
∑
ab

∫
dx1dx2 FH1

a (x1)FH2
b (x2) dσab(x1, x2) ,

where the xi are the partons’ momentum fractions of their parent hadrons Hi. Expanding the
differential cross section and the effective structure functions in a series in the coupling constant
yields:

dσab = dσLO
ab + αsdσNLO

ab +O(α2
s)

FH1
a (x1) = fH1

a (x1, µF ) + αsC
H1
a (x1, µF ) +O(α2

s) .

The CH
a (x, µF ) are called crossing functions and account for unresolved partons, as shown below;

the fH
a (x, µF ) are the parton distribution functions (PDFs) appearing in the DGLAP equations.

Both are dependent on the factorisation scale µF .
Combining the three expressions, we get for the cross section:

dσH1H2 =
∑
ab

∫
dx1dx2

{
fH1

a (x1, µF )fH2
b (x2, µF )

[
dσLO

ab (x1, x2) + αsdσNLO
ab (x1, x2)

]
+ αs

[
CH1

a (x1, µF )fH2
b (x2, µF ) + fH1

a (x1, µF )CH2
b (x2, µF )

]
dσLO

ab (x1, x2) +O(α2
s)
}

. (2.1)

Thus, for the complete differential cross section at next-to-leading order one needs the NLO con-
tribution to the cross section as well as the crossing functions. The expression dσNLO

ab contains
the NLO diagrams, shown in the next section; the crossing functions will be calculated in the re-
mainder of this chapter. To calculate with well-defined expressions and pole structures, one applies
a trick, detailed in [16], when calculating the phase space for the bremsstrahlung contributions:
Simply put, one calculates the contribution to dσNLO

ab with the wrong phase space and cancels this
mistake with the appropriate contribution to the crossing function. This procedure ensures that
the crossing function is a finite quantity and that the pole structure of the gluon bremsstrahlung
diagram exactly cancels the one of the vertex diagram. Without it, one would have to balance these
three quantities against each other to obtain a finite contribution to the differential scattering cross
section, making the calculations cumbersome. This procedure only works because the NLO contri-
butions to the differential cross section can be written as a prefactor times the LO cross section!
Thus, we may safely move the prefactors from one bracket to another in eq. 2.1.

5



2 NLO corrections and perturbative QCD

Going to higher orders in the coupling constant not only increases the precision of the predic-
tion, it also lessens the dependence on the factorisation scale µF since this scale-dependence tends
to cancel among the contributions of different order. Therefore, higher-order corrections are im-
portant not only from a point of view of precision and predictive power but also in light of an
unphysical scheme dependence.

2.2 The relevant diagrams

At NLO, the relevant Feynman diagrams making up d∆σNLO
ab are the vertex correction and the

contributions from bremsstrahlung:

g
W+

d̄

u

e+

ν

Figure 2.1: The vertex correction

W+

d̄

u

g

e+

ν
W+

g

u

d

e+

ν

Figure 2.2: The bremsstrahlung corrections (plus the u ↔ d̄ diagrams)

Only these diagrams contribute because the scattering matrix to NLO squared can be written as∣∣SNLO
∣∣2 =

∣∣SLO + SV +O(α2
s)
∣∣2 +

∣∣SB
∣∣2

=
∣∣SLO

∣∣2 + 2
(
SLO

)†
SV +

∣∣SB
∣∣2 +O(α2

s) ,

where SV and SB are the contributions of the vertex and the (two) bremsstrahlung diagrams,
respectively. Since all combinations not shown are of higher order, only three terms contribute at
O(αs).
The corresponding matrix elements have already been calculated in my M.S. thesis [36] and will
be taken from there.

2.3 Organisation of the calculation

The expressions resulting from these diagrams are mostly divergent, as has to be expected in such
calculations. However, through careful treatment and with a proper technique, these divergences
can be made manifest and therefore be dealt with. For that purpose, the integrals appearing in
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2.4 Crossing functions and treatment of phase space

the vertex correction (chapter 3) will be calculated using dimensional regularisation (d = 4−2ε) to
express the divergences in poles of ε (for other regularisation procedures see appendix A). In the
case of gluon bremsstrahlung (chapter 4), the poles will be a result of the phase space which has
to be treated with care. Upon summation, the pole structure of the different contributions to the
differential scattering cross section should cancel and leave a finite expression in which the limit
ε → 0 can be taken safely, according to the theorems by Block & Nordsieck [5] and Kinoshita, Lee
& Nauenberg [17, 20]. However, the phase space is not as straight-forward as one would expect
for all diagrams and there’s also a calculational trick necessary in the case of the bremsstrahlung
processes, developed by [16]. Furthermore, as shown above, the total NLO cross section requires
not only the calculation of the contribution from these diagrams but also the so-called crossing
functions. This task will be carried out in the remaining sections of this chapter. In the following
chapters (3, 4, and 5), the contributions from the different diagrams will be derived, including the
phase spaces. Finally, in chapter 6, the different parts will be summed up appropriately, as shown
in this chapter, to give the complete NLO scattering cross section.

2.4 Crossing functions and treatment of phase space

The crossing function receives two contributions owing to the fact that we cannot distinguish
two partons whose invariant mass is smaller than some resolution parameter smin. Thus, we get a
contribution from the case where one initial-state parton emits collinear radiation with an invariant
mass smaller than smin. Already mentioned above, the trick with the phase space generates the
second contribution to the crossing functions: By crossing a pair of collinear final-state partons to
the initial state, one gets the proper pole structure such that the gluon bremsstrahlung expression
cancels the poles of the vertex correction and at the same time ensures that the crossing function is
a finite quantity. This, however, requires that we make good for the wrong phase space (we do not
have two collinear initial-state partons but one initial-state parton which emits collinear radiation
into the final state) by subtracting this contribution from the crossing function. Schematically, the
crossing function looks like

CH
a (x) ∼

∑
c

 1∫
x

dz

z
fH

c

(x

z

)
P̂ d

c→a(z)− fH
a (x)

1∫
0

dz P̂ d
a→c(z)

 s−ε
min

ε
,

where both contributions are divergent but sum up to a finite expression; c is the unobserved
parton in the initial state. To lowest order, the (d-dimensional) splitting function P̂ d

c→a(z) can
be interpreted as the probability of finding a parton of type c inside a parton of type a with the
fraction z of its parent parton’s momentum. Its index has to be read as ‘final state → initial state’.

As already mentioned, if two of the participating particles are collinear, the matrix element fac-
torises into one factor containing the collinear behaviour and one the process without radiation:
In the case in question where parton a emits a collinear parton 1 and parton c, the latter contribut-
ing to the reaction with parton b, one finds

|M(a + b → 1 + 2 + 3)|2 = ĉa→1c |M(b + c → 2 + 3)|2

where

ĉa→1c := 8παs
P̂ d

c1→a(z)
z

1
|sa1|

.

If two initial-state particles a and 1 are collinear and combine to c, a similar expression

|M(. . . , a, 1, . . .)|2 = ĉa1→c |M(. . . , c, . . .)|2

7



2 NLO corrections and perturbative QCD

with
ĉa1→c := 8παsP̂

d
a1→c(z)

1
sa1

is found.

The phase space for the decay p → u + h with u collinear to p is

dP 4−2ε
coll. (p → h + u) =

(4π)ε

16π2Γ(1− ε)
z dz d|spu| [(1− z)|spu|]−ε Θ(smin − |spu|) .

2.4.1 Initial-state collinear radiation

The differential cross section for initial-state collinear radiation can be written as

dσinitial =
∫

dx1dx2

∑
a

fH2
b (x2)

{
fH1

a (y)ĉa→1cdP d
coll.(a → c + 1) δ(x1 − yz) dy

}
dσLO

bc (x1, x2) ,

from which follows the crossing function

αsC
H1
c,initial(x1) =

∑
a

fH1
a (y)ĉa→1cdP d

coll.(a → c + 1) δ(x1 − yz) dy

= −αs

2π

1
Γ(1− ε)

(
4πµ2

smin

)ε 1
ε

∑
a

1−z2∫
x1

dz P̂ 4−2ε
c1→a(z)

(1− z)−ε

z
fH1

a

(x1

z

)
.

The upper integration boundary follows from the constraint that the unobserved parton 1 must
not be soft with regard to its neighbouring parton:

s12 > smin ⇔ (1− z)sc2 > smin ⇔ z < 1− smin

sc2
=: 1− z2 ,

where one assumes there is no possibility to distinguish whether a or c are in the initial state.
Since one has the two processes qq̄ → W±g → `±νg and gq → W±q → `±νq (as well as the ones
with q ↔ q̄), the index a can be either a quark or a gluon and the sum contains the corresponding
two splitting functions

P̂ 4−2ε
qg→q(z) = CF

[
1 + z2

1− z
− ε(1− z)

]
P̂ 4−2ε

qq̄→g(z) = TF
z2 + (1− z)2 − ε

1− ε
;

the index c, on the other hand, is always a quark (or antiquark, but that only changes the PDF
involved).
With the definition

[F (z)]+ := lim
β→0

Θ(1− z − β)F (z)− δ(1− z − β)

1−β∫
0

dy F (y)


and using the identity

1−z2∫
x1

dz
g(z)

(1− z)1+ε
=

1∫
x1

dz
g(z)

[(1− z)1+ε]+
+ g(1)

z−1
2 − 1

ε
,
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2.4 Crossing functions and treatment of phase space

one is able to rewrite the z integral over P̂ 4−2ε
qg→q in the crossing function above as

1−z2∫
x1

dz

z

[
1 + z2

(1− z)1+ε
− ε(1− z)1−ε

]
=

1∫
x1

dz

{
2
z−ε
2 − 1

ε
δ(1− z) +

1 + z2

z [(1− z)1+ε]+
− ε

(1− z)1−ε

z

}
.

The integral over the other contributing splitting function, P̂ 4−2ε
qq̄→g, need not be evaluated because

it contains no divergence.
Thus, the crossing function for initial-state collinear radiation is:

CH1
q,initial(x1) = − 1

2π

1
Γ(1− ε)

(
4πµ2

smin

)ε 1
ε

∑
a

1∫
x1

dz

z
fH1

a

(x1

z

)
Ja→q1(z, z2) (2.2)

with

Jq→qg(z, z2) := CF

[
2
z−ε
2 − 1

ε
δ(1− z) +

1 + z2

[(1− z)1+ε]+
− ε(1− z)1−ε

]
Jg→qq̄(z) := P̂ 4−2ε

qq̄→g(z) (1− z)−ε .

2.4.2 Correction for two collinear final-state partons crossed into initial state

The differential cross section for the case where one crosses two collinear final-state particles into
the initial state is

dσfinal =
∫

dx1dx2

∑
a

fH2
b (x2)

{
fH1

c (x1) ĉa1→c dP d
coll.,final(c → a + 1)

}
dσLO

bc (x1, x2) ,

from which follows the crossing function (again, c is a quark)

αsC
H1
q,final(x1) = fH1

q (x1)
∑

a

ĉa1→q dP d
coll.,final(c → a + 1)

= −αs

2π

1
Γ(1− ε)

(
4πµ2

smin

)ε 1
ε

fH1
q (x1)

∑
a

1−z2∫
0

dz z−ε(1− z)−εP̂ 4−2ε
a1→q(z) ,

where the integration boundaries result from the requirement that the hard partons be resolved

s12 > smin ⇔ (1− z)sc2 > smin ⇔ z < 1− smin

sc2
=: 1− z2

and the phase space is
dP 4−2ε

coll.,final = z−ε dP 4−2ε
coll. .

Since the parton c is fixed to be a quark (or antiquark) and the splitting function is associated
with it, there’s no contribution from the process gq → W±q → `±νq to this part of the crossing
function. As a consequence, the summation over a vanishes as well.
The z integration (over the remaining splitting function) can be carried out with the help of the
incomplete beta function

1−z2∫
0

dz z−ε

[
1 + z2

(1− z)1+ε
− ε(1− z)1−ε

]
= 2

[
z−ε
2 − 1

ε
− 3

4
+
(

π2

6
− 7

4

)
ε +O(ε2) +O(smin)

]
.

9



2 NLO corrections and perturbative QCD

Thus, the crossing function in this case is:

CH1
q,final(x1) = − 1

2π

1
Γ(1− ε)

(
4πµ2

smin

)ε 1
ε

fH1
q (x1) Ia1→q(z2) (2.3)

with

Iqg→q(z2) := CF · 2
[
z−ε
2 − 1

ε
− 3

4
+
(

π2

6
− 7

4

)
ε +O(ε2) +O(smin)

]
.

2.4.3 The crossing function

Combining the expressions above, eqs. 2.2 and 2.3, one finds for the total crossing function

CH1
q (x1) = CH1

q,initial(x1)− CH1
q,final(x1)

=
∑

a

1∫
x1

dz

z
fH1

a

(x1

z

)
Xa→q(z) ,

with

Xa→q(z) := − 1
2π

1
Γ(1− ε)

(
4πµ2

smin

)ε 1
ε

[Ja→q1(z, z2)− Ia1→q(z2) δ(1− z)] (2.4)

and

Xq→q(z) = − 1
2π

CF

Γ(1− ε)

(
4πµ2

smin

)ε 1
ε

·
{

1 + z2

[(1− z)1+ε]+
− ε(1− z)1−ε +

[
3
2
−
(

π2

3
− 7

2

)
ε +O(ε2)

]
δ(1− z)

}
Xg→q(z) = − 1

2π

1
Γ(1− ε)

(
4πµ2

smin

)ε 1
ε

P̂ 4−2ε
qq̄→g(z) (1− z)−ε .

As a result of this procedure, the double pole cancels in the sum. The remaining one will be
absorbed in the mass factorisation.

2.5 Mass factorisation and the crossing function

The parton distribution function is conventionally renormalised at the factorisation scale µF and
thus made finite

fH
h (x) = fH

h (x, µF ) + αs

∑
p

1∫
x

dz

z
fH

p

(x

z
, µF

)
Rp→h(z) +O(α2

s)

by using the appropriate counterfunction R. For the processes in question, these are

Rscheme
q→q (z, µF ) =

1
2π

CF

Γ(1− ε)

(
4πµ2

µF

)ε 1
ε

{
1 + z2

(1− z)+
+

3
2
δ(1− z) + εf scheme

q→q (z)
}

Rscheme
g→q (z, µF ) =

1
2π

1
Γ(1− ε)

(
4πµ2

µF

)ε 1
ε

{
P̂ 4

qq̄→g(z) + εf scheme
g→q (z)

}
,
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2.5 Mass factorisation and the crossing function

where f scheme
a→q is the renormalisation scheme-dependent mass-factorisation term chosen such that

fMS
a→q(z) ≡ 0 ∀a. This can be inserted into the expression for the effective structure function –

which is the only physical quantity and therefore has to be finite – and leads to

FH
h (x) = fH

h (x) + αsC
H
h (x)

= fH
h (x, µF ) + αsC

H
h (x, µF ) +O(α2

s) ,

where the O(αs) contribution has been absorbed into the crossing function, making it factorisation-
scale dependent:

CH
h (x, µF ) =

∑
p

1∫
x

dz

z
fH

p

(x

z
, µF

)
[Xp→h(z) + Rp→h(z, µF )] .

In our processes h ≡ c = q, but there are two possibilities for p ≡ a. For the case where a = q, the
expression with the + description in eq. 2.4 has to be expanded according to

1∫
x

dz
1 + z2

[(1− z)1+ε]+
=

1∫
x

dz
1 + z2

(1− z)+
− ε

1∫
x

dz (1 + z2)
[
ln(1− z)

1− z

]
+

+O(ε2)

and one finds after a series expansion in ε

Xq→q + Rq→q =
CF

2π Γ(1− ε)

{[
1 + z2

(1− z)+
+

3
2
δ(1− z)

]
ln

smin

µ2
F

+(1 + z2)
[
ln(1− z)

1− z

]
+

+ (1− z) +
(

π2

3
− 7

2

)
δ(1− z) +O(ε)

}
.

In the case of a = g, the corresponding expression becomes

Xg→q + Rg→q =
1

2π Γ(1− ε)

{
P̂ 4

qq̄→g(z) ln
smin

µ2
F

+ P̂ 4
qq̄→g(z) ln(1− z)− P̂ ε

qq̄→g(z) +O(ε)
}

.

Summing up the two contributions, one finds the total crossing function (n.b. after mass factori-
sation and where the limit ε → 0 has been taken):

CH1
q (x1, µF ) =

1∫
x1

dz

z
fH1

q

(x1

z
, µF

)
· CF

2π

{[
1 + z2

(1− z)+
+

3
2
δ(1− z)

]
ln

smin

µ2
F

+(1 + z2)
[
ln(1− z)

1− z

]
+

+ (1− z) +
(

π2

3
− 7

2

)
δ(1− z)

}

+

1∫
x1

dz

z
fH1

g

(x1

z
, µF

)
· 1
2π

{
P̂ 4

qq̄→g(z) ln
smin

µ2
F

+ P̂ 4
qq̄→g(z) ln(1− z)

}
. (2.5)

As can be seen, all the poles either cancelled or have been absorbed, leaving a mathematically well-
defined expression in which the limit ε → 0 could be taken. The crossing function for an antiquark
is obtained by simply replacing the quark PDF by the one for an antiquark in this expression,

CH1
q̄ (x1, µF ) = CH1

q

(
fH1

q → fH1
q̄

)
.

11



2 NLO corrections and perturbative QCD

2.6 Spin-dependency

2.6.1 NLO approximation of the scattering cross section

If the hadrons are polarised, this spin-dependency is passed down to the partons and one finds for
the differential scattering cross section

d∆σH1H2 =
∑
ab

∫
dx1dx2 ∆FH1

a (x1)∆FH2
b (x2) d∆σab(x1, x2) ,

with

d∆σab = d∆σLO
ab + αsd∆σNLO

ab +O(α2
s)

∆FH1
a (x1) = ∆fH1

a (x1, µF ) + αs∆CH1
a (x1, µF ) +O(α2

s)

and the definitions already introduced above

fH
q ≡ q := q+

+ + q−− + q+
− + q−+ and ∆fH

q ≡ ∆q := q+
+ + q−− − q+

− − q−+ .

Combining these expressions, the spin-dependent cross section can be written as

d∆σH1H2 =
∑
ab

∫
dx1dx2

{
∆fH1

a (x1, µF )∆fH2
b (x2, µF )

[
d∆σLO

ab (x1, x2) + αsd∆σNLO
ab (x1, x2)

]
+ αs

[
∆CH1

a (x1, µF )∆fH2
b (x2, µF ) + ∆fH1

a (x1, µF )∆CH2
b (x2, µF )

]
d∆σLO

ab (x1, x2)

+O(α2
s)
}

. (2.6)

2.6.2 Crossing function

In the case of spin-dependent partons, the contributions to the crossing functions include the spin-
dependent splitting functions (see e.g. [10,34])

∆P̂ 4−2ε
qg→q(z) = CF

[
1 + z2

1− z
+ 3ε(1− z)

]
∆P̂ 4−2ε

qq̄→g(z) = TF [2z − 1− 2ε(1− z)]

and lead to the two expressions:

∆CH1
q,initial(x1) = − 1

2π

1
Γ(1− ε)

(
4πµ2

smin

)ε 1
ε

∑
a

1∫
x1

dz

z
∆fH1

a

(x1

z

)
∆Ja→q1(z, z2)

∆CH1
q,final(x1) = − 1

2π

1
Γ(1− ε)

(
4πµ2

smin

)ε 1
ε

∆fH1
q (x1) ∆Ia1→q(z2)

with

∆Jq→qg(z, z2) := CF

[
2
z−ε
2 − 1

ε
δ(1− z) +

1 + z2

[(1− z)1+ε]+
+ 3ε(1− z)1−ε

]
∆Jg→qq̄(z) := ∆P̂ 4−2ε

qq̄→g(z) (1− z)−ε

∆Iqg→q(z2) := CF · 2
[
z−ε
2 − 1

ε
− 3

4
+
(

π2

6
− 3

4

)
ε +O(ε2) +O(smin)

]
.
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2.6 Spin-dependency

In complete analogy to the spin-independent case, the renormalisation terms contain the spin-
dependent splitting functions instead of the spin-independent ones and also a spin-dependent mass-
factorisation term. Thus, one finds for the total spin-dependent crossing function:

∆CH1
q (x1, µF ) =

1∫
x1

dz

z
∆fH1

q

(x1

z
, µF

)
· CF

2π

{[
1 + z2

(1− z)+
+

3
2
δ(1− z)

]
ln

smin

µ2
F

+(1 + z2)
[
ln(1− z)

1− z

]
+

− 3(1− z) +
(

π2

3
− 3

2

)
δ(1− z)

}

+

1∫
x1

dz

z
∆fH1

g

(x1

z
, µF

)
· 1
2π

{
∆P̂ 4

qq̄→g(z) ln
smin

µ2
F

+ ∆P̂ 4
qq̄→g(z) ln(1− z)

}
. (2.7)

With these results (eqs. 2.5 and 2.7) we are now able to calculate the cross section to NLO, as
shown in eqs. 2.1 and 2.6. The second – still missing – ingredient for the complete differential
scattering cross section at NLO is dσNLO

ab ; its components will be calculated in the next three
chapters.
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3 Vertex correction

[...] On a huge hill,
Cragged and steep, Truth stands, and he that will
Reach her, about must and about must go,
And what the hill’s suddenness resists, win so.

Dr. John Donne: Seek True Religion!

3.1 Dissecting the scattering matrix element

From my M.S. [36] thesis follows the scattering matrix element of the vertex graph (in Feynman
gauge):

Sfi =
g2
sg

2
w

8
Vqq′CF δ(4)(ki

1 + ki
2 − kf

1 − kf
2 )

1

(kf
1 + kf

2 )2 −M2
W + i0

·
∫

d4q
1

q2 + i0
v̄(ki

2)γµ
q/− /ki

2 + md

(q − ki
2)2 −m2

d + i0
γν
(
1− γ5

) q/ + /ki
1 + mu

(q + ki
1)2 −m2

u + i0
γµu(ki

1)

· ū(kf
2 )γν

(
1− γ5

)
v(kf

1 ) .

The integral to be solved is therefore:

Iν :=
∫

d4q
v̄(ki

2)γµ(q/− /ki
2 + md)γν(1− γ5)(q/ + /ki

1 + mu)γµu(ki
1)[

(q − ki
2)2 −m2

d + i0
] [

(q + ki
1)2 −m2

u + i0
]
(q2 + i0)

. (3.1)

Defining the integrals (n.b.: with a negative sign before ki
1 to recover symmetry)

K(0) :=
∫

d4q
1[

(q − ki
2)2 −m2

d + i0
] [

(q − ki
1)2 −m2

u + i0
] (3.2)

J (1)
µ :=

∫
d4q

qµ[
(q − ki

2)2 −m2
d + i0

] [
(q − ki

1)2 −m2
u + i0

]
(q2 + i0)

(3.3)

J (2)
µν :=

∫
d4q

qµqν[
(q − ki

2)2 −m2
d + i0

] [
(q − ki

1)2 −m2
u + i0

]
(q2 + i0)

(3.4)

J (0) :=
∫

d4q
1[

(q − ki
2)2 −m2

d + i0
] [

(q − ki
1)2 −m2

u + i0
]
(q2 + i0)

(3.5)

and using dimensional continuation (d = 4− 2ε), one can write the original integral (eq. 3.1) as

Iν = v̄(ki
2)
{

2(1− ε)K(0)γν(1− γ5)− 4(1− ε)J (2) ναγα(1− γ5)− 4(ki
1k

i
2)J

(0)γν(1− γ5)

− 2J (1) αγα

[
2(ki ν

1 − ki ν
2 ) + mdγ

ν
]
(1− γ5) + 4J (1) α(ki

1 α − ki
2 α)γν(1− γ5)

+2muJ (1) αγαγν(1 + γ5) + 4mdJ
(1) ν(1− γ5)

}
u(ki

1) , (3.6)
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3 Vertex correction

where the following relations have been used:

{γµ, γν} = 2gµν
{
γµ, γ5

}
= 0

γµγαγµ = (2− d)γα

γµγαγβγµ = 4gαβ + (d− 4)γαγβ

γµγαγβγλγµ = −2γλγβγα − (d− 4)γαγβγλ

(/kj −mj)u(kj) = 0 ū(kj)(/kj −mj) = 0
(/kj + mj)v(kj) = 0 v̄(kj)(/kj + mj) = 0 .

3.2 On-shell or off-shell? Massive or massless?

At this point, one has to choose whether to calculate with quarks on- or off-shell because the on-
shell limit does not commute with dimensional continuation (d = 4− 2ε) of the integration.
In principle, theory cannot neglect quark masses – on the other hand, the expressions including a
nonvanishing quark mass become very cumbersome and the mass-dependent terms contribute only
little if not negligibly to the differential cross section. Especially in comparison to the W mass,
one may safely neglect the masses of the contributing quarks (the heavier quarks’ contribution is
strongly suppressed by the CKM matrix elements).
To get a hand on the relevant technique, the integrals are first calculated off-shell and massive, i.e.
the most general case, and afterwards on-shell and massless. The calculation proceeds along the
lines of [29,18].

3.3 Off-shell and massive integrals

3.3.1 Calculating K(0)

The first integral to be calculated is

K(0) :=
∫

d4q
1[

(q − ki
2)2 −m2

d + i0
] [

(q − ki
1)2 −m2

u + i0
] . (3.2)

Using Feynman parametrisation first and shifting the integration variable by
q 7→ q + αki

1 + (1− α)ki
2 gives

K(0) =
∫

d4q

1∫
0

dα
{
α
[
(q − ki

1)
2 −m2

u + i0
]
+ (1− α)

[
(q − ki

2)
2 −m2

d + i0
]}−2

=
∫

d4q

1∫
0

dα
{
q2 − α2(ki

1 − ki
2)

2 + α
[
(ki

1 − ki
2)

2 −m2
u + m2

d

]
−m2

d + i0
}−2

=:
∫

d4q

1∫
0

dα
{
q2 − a2(α) + i0

}−2
.

The integration over q can now be carried out, using dimensional regularisation, with the dimension
4− 2ε:∫

d4−2εq (q2 − a2 + i0)−2 = iπ2−ε Γ(ε) (a2)−ε = iπ2

(
1
ε
− γE − lnπ − ln a2 +O(ε)

)
,
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3.3 Off-shell and massive integrals

where γE is the Euler-Mascheroni constant appearing in the Laurent series expansion of (a2)−ε.
For convenience, the divergent term 1/ε is combined with γE and lnπ to give Nε := 1/ε−γE− lnπ.
To take into account the unit-dependency of a2, one writes a2 = µ2 · a2

µ2 with µ some regularisation
mass, leading to

K(0) = iπ2 µ−2ε

1∫
0

dα

[
Nε − ln

a2(α)
µ2

]
,

which can be integrated out straight-forward to give, with q := ki
1 − ki

2:

K(0) = iπ2 µ−2ε

{
Nε + 2− ln

mumd

µ2
−

m2
u −m2

d

(ki
1 − ki

2)2
ln

mu

md

−

√
q4 − 2q2(m2

u + m2
d) + (m2

u −m2
d)

2

2q2

·

ln

√
q4 − 2q2(m2

u + m2
d) + (m2

u −m2
d)

2 − q2 −m2
u + m2

d√
q4 − 2q2(m2

u + m2
d) + (m2

u −m2
d)

2 + q2 + m2
u −m2

d

− ln

√
q4 − 2q2(m2

u + m2
d) + (m2

u −m2
d)

2 + q2 −m2
u + m2

d√
q4 − 2q2(m2

u + m2
d) + (m2

u −m2
d)

2 − q2 + m2
u −m2

d

+O(ε)

 . (3.7)

3.3.2 Calculating J
(1)
µ

Because of its Lorentz structure, the integral

J (1)
µ :=

∫
d4q

qµ[
(q − ki

2)2 −m2
d + i0

] [
(q − ki

1)2 −m2
u + i0

]
(q2 + i0)

(3.3)

can be decomposed as
J (1)

µ = ki
1 µ JA + ki

2 µ JB ,

from which JA and JB follow, with N := (ki
1k

i
2)

2 − ki 2
1 ki 2

2 :

JA =
1
N

[
(ki

1k
i
2) ki µ

2 J (1)
µ − ki 2

2 ki µ
1 J (1)

µ

]
JB =

1
N

[
(ki

1k
i
2) ki µ

1 J (1)
µ − ki 2

1 ki µ
2 J (1)

µ

]
.

Since obviously JB = JA(ki
1 ↔ ki

2,mu ↔ md), it is sufficient to calculate JA, which can be written
using the integrals defined above (eqs. 3.2, 3.5):

JA =
1

2N

{[
(ki

1k
i
2)− ki 2

2

]
K(0) +

[
(ki

1k
i
2)(k

i 2
2 −m2

d)− ki 2
2 (ki 2

1 −m2
u)
]
J (0)

−(ki
1k

i
2)
∫

d4q
1[

(q − ki
1)2 −m2

u + i0
]
(q2 + i0)

+ ki 2
2

∫
d4q

1[
(q − ki

2)2 −m2
d + i0

]
(q2 + i0)

}
.

The two intergals to be carried out are identical, up to ki
1 ↔ ki

2 and mu ↔ md:∫
d4q

1[
(q − ki

1)2 −m2
u + i0

]
(q2 + i0)

= iπ2µ−2ε

[
Nε + 2− ln

m2
u

µ2
− ki 2

1 −m2
u

ki 2
1

ln
m2

u − ki 2
1

m2
u

+O(ε)
]

.
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3 Vertex correction

From this follows, by combining the results:

J (1)
µ =

(ki
1k

i
2) (ki

1 + ki
2)µ − ki 2

2 ki
1 µ − ki 2

1 ki
2 µ

2N
K(0)

+ ki
1 µ

(ki
1k

i
2)(k

i 2
2 −m2

d)− ki 2
2 (ki 2

1 −m2
u)

2N
J (0)

+ ki
2 µ

(ki
1k

i
2)(k

i 2
1 −m2

u)− ki 2
1 (ki 2

2 −m2
d)

2N
J (0)

− iπ2 µ−2ε
ki

1 µ(ki
1k

i
2)− ki

2 µki 2
1

2N

[
Nε + 2− ln

m2
u

µ2
− ki 2

1 −m2
u

ki 2
1

ln
m2

u − ki 2
1

m2
u

+O(ε)
]

− iπ2 µ−2ε
ki

2 µ(ki
1k

i
2)− ki

1 µki 2
2

2N

[
Nε + 2− ln

m2
d

µ2
−

ki 2
2 −m2

d

ki 2
2

ln
m2

d − ki 2
2

m2
d

+O(ε)
]

. (3.8)

3.3.3 Calculating J
(2)
µν

In analogous fashion to J
(1)
µ , this integral (eq. 3.4) can be decomposed as well:

J (2)
µν =

gµν

4
K(0) +

(
ki

1 µki
1 ν − gµν

ki 2
1

4

)
JC

+
(

ki
2 µki

2 ν − gµν
ki 2

2

4

)
JD +

(
ki

1 µki
2 ν + ki

2 µki
1 ν − gµν

(ki
1k

i
2)

2

)
JE . (3.9)

From this follows

JE =− (ki
1k

i
2)

2N
K(0)

+
2N + 3ki 2

1 ki 2
2

2N2

{
ki

2 ν

[∫
d4q

qν[
(q − ki

1)2 −m2
u + i0

] [
(q − ki

2)2 −m2
d + i0

]
+ (ki 2

1 −m2
u)J (1) ν −

∫
d4q

qν

(q2 + i0)
[
(q − ki

2)2 −m2
d + i0

]]

+ ki
1 ν

[∫
d4q

qν[
(q − ki

1)2 −m2
u + i0

] [
(q − ki

2)2 −m2
d + i0

]
+ (ki 2

2 −m2
d)J

(1) ν −
∫

d4q
qν

(q2 + i0)
[
(q − ki

1)2 −m2
u + i0

]]}

− 3(ki
1k

i
2)

4N2

{[
ki 2

1 ki
2 ν + ki 2

2 ki
1 ν

] ∫
d4q

qν[
(q − ki

1)2 −m2
u + i0

] [
(q − ki

2)2 −m2
d + i0

]
+ ki 2

2 (ki 2
1 −m2

u)
[
ki 2

1 JA + (ki
1k

i
2)JB

]
+ ki 2

1 (ki 2
2 −m2

d)
[
(ki

1k
i
2)JA + ki 2

2 JB

]
− ki 2

2 ki
1 ν

∫
d4q

qν

(q2 + i0)
[
(q − ki

2)2 −m2
d + i0

] − ki 2
1 ki

2 ν

∫
d4q

qν

(q2 + i0)
[
(q − ki

1)2 −m2
u + i0

]} ,
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3.3 Off-shell and massive integrals

with the integrals∫
d4q

qν[
(q − ki

1)2 −m2
u + i0

] [
(q − ki

2)2 −m2
d + i0

]
= iπ2µ−2ε

{
ki ν

1 + ki ν
2

2

[
Nε − ln

q2(1− u1)(1− u2)
µ2

]
+ ki ν

2

[
u1 ln

u1 − 1
u1

+ u2 ln
u2 − 1

u2
+ 2
]

+
ki ν

1 − ki ν
2

2

[
u2

1 ln
u1 − 1

u1
+ u2

2 ln
u2 − 1

u2
+ u1 + u2 + 1

]
+O(ε)

}

∫
d4q

qν

(q2 + i0)
[
(q − ki

2)2 −m2
d + i0

]
= iπ2µ−2ε ki ν

2

2

{
Nε +

m2
d

ki 2
2

(
2−

m2
d

ki 2
2

)
ln

m2
d − ki 2

2

m2
d

− ln
m2

d − ki 2
2

µ2
+

2ki 2
2 −m2

d

ki 2
2

+O(ε)
}

,

where u1 and u2 have been defined as

u1,2 :=
q2 −m2

u + m2
d ±

√
(q2 −m2

u + m2
d)

2 − 4q2m2
d

2q2
.

Knowing JE , one can calculate JC

JC =
ki 2

2

N

(
ki

2 µki
2 ν

ki 2
2

−
ki

1 µki
2 ν

(ki
1k

i
2)

)
J (2) µν − ki 2

2

(ki
1k

i
2)

JE

and JD = JC(ki
1 ↔ ki

2,mu ↔ md). With these (JE , JC , and JD), the integral J
(2)
µν , eq. 3.9, is

solved completely and analytically.

3.3.4 Calculating J (0)

The most tedious integral in this context is

J (0) :=
∫

d4q
1[

(q − ki
1)2 −m2

u + i0
] [

(q − ki
2)2 −m2

d + i0
]
(q2 + i0)

, (3.5)

which can be written, again using Feynman parametrisation, as

J (0) = 2

1∫
0

dα

α∫
0

dβ

∫
d4q

{
(1− α)

[
(q − ki

1)
2 −m2

u + i0
]

+(α− β)
[
(q − ki

2)
2 −m2

d + i0
]
+ β

(
q2 + i0

)}−3
.

Shifting the variable q 7→ q +(1−α)ki
1 +(α−β)ki

2 enables one to carry out the q integration, while
the second shift β 7→ β + αx transforms the integrand into

β2ki 2
2 + β

[
ki 2

2 −m2
d − 2(ki

1k
i
2)
]
− α

{
ki 2

1 + m2
u + (1− x)

[
ki 2

2 −m2
d − 2(ki

1k
i
2)
]}

− 2αβ
[
(1− x)ki 2

2 − (ki
1k

i
2)
]
+ m2

u ,
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3 Vertex correction

with the definition

x := 1 +
−(ki

1k
i
2) +

√
N

ki 2
2

.

Abbreviating Ñ(β) := ki 2
1 + m2

u + (1 − x)
[
ki 2

2 −m2
d − 2(ki

1k
i
2)
]

+ 2β
[
(1− x)ki 2

2 − (ki
1k

i
2)
]

and
inverting the order of integration

1∫
0

dα

(1−x)α∫
−α

dβ =

1−x∫
0

dβ

1∫
β/(1−x)

dα−
−x∫
0

dβ

1∫
−β/x

dα ,

the α integral can be carried out, leading to

J (0) = iπ2

1−x∫
−x

dβ
ln
{
−β2ki 2

2 − β
[
ki 2

2 −m2
d − 2(ki

1k
i
2)
]
+ Ñ(β)−m2

u

}
Ñ(β)

− iπ2

1−x∫
0

dβ
ln
{
−β2ki 2

2 − β
[
ki 2

2 −m2
d − 2(ki

1k
i
2)
]
+ β

1−xÑ(β)−m2
u

}
Ñ(β)

+ iπ2

−x∫
0

dβ
ln
{
−β2ki 2

2 − β
[
ki 2

2 −m2
d − 2(ki

1k
i
2)
]
− β

x Ñ(β)−m2
u

}
Ñ(β)

.

Subtracting zero in the form of

0 = iπ2

1−x∫
−x

dβ
ln
{
−β2

0ki 2
2 − β0

[
ki 2

2 −m2
d − 2(ki

1k
i
2)
]
−m2

u

}
Ñ(β)

− iπ2

1−x∫
0

dβ
ln
{
−β2

0ki 2
2 − β0

[
ki 2

2 −m2
d − 2(ki

1k
i
2)
]
−m2

u

}
Ñ(β)

+ iπ2

−x∫
0

dβ
ln
{
−β2

0ki 2
2 − β0

[
ki 2

2 −m2
d − 2(ki

1k
i
2)
]
−m2

u

}
Ñ(β)

with β0 chosen such, that Ñ(β0) ≡ 0, i.e.

β0 :=
ki 2

1 + m2
u + (1− x)

[
ki 2

2 −m2
d − 2(ki

1k
i
2)
]

2
√

N
, (3.10)

and performing the transformations (and using the definitions) in the different integrals, respec-
tively,

β 7→ β + x β1 := β0 + x Ñ(β − x)− Ñ(β1 − x) = 2
√

N(β − β1)

β 7→ β

1− x
β2 :=

β0

1− x
Ñ((1− x)β)− Ñ((1− x)β2) = −2

√
N(1− x)(β − β2)

β 7→ −β

x
β3 := −β0

x
Ñ(−xβ)− Ñ(−xβ3 = 2

√
Nx(β − β3) ,
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3.3 Off-shell and massive integrals

leads to

J (0) =− iπ2

2
√

N

1∫
0

dβ
1

β − β1
ln

(1− β)2ki 2
2 − (1− β)(ki 2

2 −m2
d)

(1− β1)2ki 2
2 − (1− β1)(ki 2

2 −m2
d)

+
iπ2

2
√

N

1∫
0

dβ
1

β − β2
ln

(1− β)2ki 2
1 − (1− β)(ki 2

1 −m2
u)

(1− β2)2ki 2
1 − (1− β2)(ki 2

1 −m2
u)

− iπ2

2
√

N

1∫
0

dβ
1

β − β3
ln

(β − u1)(β − u2)
(β3 − u1)(β3 − u2)

,

with

u1,2 :=
q2 + m2

u −m2
d ±

√
(q2 + m2

u −m2
d)

2 − 4q2m2
u

2q2
and q := ki

1 − ki
2 .

These three integrals all lead to Spence functions, defined as

Sp (x) := −
x∫

0

dt
ln(1− t)

t
,

which appear directly in the final result

J (0) = − iπ2

2
√

N

{
Sp
(

β1

β1 − 1

)
+ Sp

(
β1

β1 − β̃1

)
− Sp

(
β1 − 1

β1 − β̃1

)
− Sp

(
β2

β2 − 1

)
− Sp

(
β2

β2 − β̃2

)
+ Sp

(
β2 − 1

β2 − β̃2

)
+ Sp

(
β3

β3 − u1

)
− Sp

(
β3 − 1
β3 − u1

)
+ Sp

(
β3

β3 − u2

)
− Sp

(
β3 − 1
β3 − u2

)}
, (3.11)

where β̃1 := m2
d/ki 2

2 and β̃2 := m2
u/ki 2

1 .

3.3.5 Combining the integrals

Putting the results of the integrals K(0) (eq. 3.7), J
(1)
µ (eq. 3.8), J

(2)
µν (eq. 3.9), and J (0) (eq. 3.11)

into the expression for the original integral (eq. 3.6) enables one to further simplify it. Writing it
down explicitely would be page-filling, though, and has been left out at this place.
The results have been compared to [2, 18], taking into account the well-known typos in the first
and finding two discrepancies with respect to the latter: Comparing JD to their eq. 50, I don’t get
the summand −1 in the first bracket, and in their expression for y0 in eq. A17, which corresponds
to my β0 in eq. 3.10, there seems to be a summand −p2 missing in their last bracket.

Finally, the scattering matrix element is thus

Sfi =
g2
sg

2
w

8
CF Vqq′ δ(4)(ki

1 + ki
2 − kf

1 − kf
2 )

Iν · ū(kf
2 )γν

(
1− γ5

)
v(kf

1 )

(kf
1 + kf

2 )2 −M2
W + i0

. (3.12)
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3.4 On-shell and massless integrals

In these two limits, taken in that order, one takes ki 2
n = m2

n = 0 ∀n. Through this, the analytical
expressions for the integrals in question become much simpler than in the most general case (see
above). Since these two limits don’t commute with dimensional continuation, one cannot just take
them in the expressions already calculated. But by now the treatment of such integrals is well
known and the calculations can be further shortened by using the following formulæ (for the sake
of generality including the mass terms [24]):∫

ddp
[
p2 + 2(pq)−m2

]−α = (−1)d/2 iπd/2 Γ
(
α− d

2

)
Γ(α)

[
−q2 −m2

]−α+d/2

∫
ddp pµ

[
p2 + 2(pq)−m2

]−α = (−1)1+d/2 iπd/2 Γ
(
α− d

2

)
Γ(α)

qµ
[
−q2 −m2

]−α+d/2

∫
ddp pµpν

[
p2 + 2(pq)−m2

]−α = (−1)d/2 iπd/2 1
Γ(α)

[
−q2 −m2

]−α+d/2

·
{

qµqνΓ
(

α− d

2

)
+

1
2
gµν(−q2 −m2)Γ

(
α− 1− d

2

)}
.

3.4.1 Calculating K(0)

Taking these two limits in the integral

K(0) :=
∫

d4q
1[

(q − ki
2)2 + i0

] [
(q − ki

1)2 + i0
]

and using Feynman parametrisation we find

K(0) = iπ2−ε Γ(ε)
[
2(ki

1k
i
2)
]−ε

1∫
0

dα α−ε(1− α)−ε .

With the help of the Euler β-function integral

1∫
0

dx xm(1− x)n =
Γ(1 + m)Γ(1 + n)

Γ(2 + m + n)
for Re{m,n} > −1

one can rewrite the expression above into

K(0) = iπ2−ε
[
2(ki

1k
i
2)
]−ε Γ(ε) [Γ(1− ε)]2

Γ(2− 2ε)
,

whose factors depending on ε are expanded in a Laurent series, leading to

K(0) = iπ2µ−2ε

{
Nε − ln

2(ki
1k

i
2)

µ2
+ 2 +O(ε)

}
with Nε = 1/ε− γE − lnπ as defined above.
Expanding only the gamma functions yields:

K(0) = iπ2µ−2ε

(
µ2

Q2

)ε

·
[
1
ε

+ 2 +O(ε)
]

π−εe−γEε , (3.13)

where Q2 := −q2 = 2(ki
1k

i
2) has been taken into account.

22



3.4 On-shell and massless integrals

3.4.2 Calculating J
(1)
µ

The integral

J (1)
µ :=

∫
d4q

qµ[
(q − ki

2)2 + i0
] [

(q − ki
1)2 + i0

]
(q2 + i0)

can be calculated as shown above:

J (1)
µ = iπ2µ−2ε

ki
1 µ + ki

2 µ

2(ki
1k

i
2)

{
Nε − ln

2(ki
1k

i
2)

µ2
+ 2 +O(ε)

}
.

Again, this expression can be written as

J (1)
µ = iπ2µ−2ε

ki
1 µ + ki

2 µ

Q2

(
µ2

Q2

)ε

·
[
1
ε

+ 2 +O(ε)
]

π−εe−γEε . (3.14)

3.4.3 Calculating J
(2)
µν

The same goes for this integral, which turns out to be

J (2)
µν = iπ2 µ−2ε

4(ki
1k

i
2)

{[
ki

1 µki
1 ν + ki

2 µki
2 ν + gµν(ki

1k
i
2)
] [

Nε − ln
2(ki

1k
i
2)

µ2
+ 2 +O(ε)

]
−
[
ki

1 µki
2 ν + ki

2 µki
1 ν − gµν(ki

1k
i
2)
]
[1 +O(ε)]

}
or, once again leaving certain factors exact,

J (2)
µν =

iπ2µ−2ε

2Q2

(
µ2

Q2

)ε{[
ki

1 µki
1 ν + ki

2 µki
2 ν + gµν(ki

1k
i
2)
] [1

ε
+ 2 +O(ε)

]
−
[
ki

1 µki
2 ν + ki

2 µki
1 ν − gµν(ki

1k
i
2)
]
[1 +O(ε)]

}
π−εe−γEε . (3.15)

3.4.4 Calculating J (0)

This integral, which is by far the most tedious one in the general case, is solved quite easily in the
on-shell, massless case:

J (0) = −iπ2 µ−2ε

4(ki
1k

i
2)

{
1
ε2

+ N2
ε + ln2 2(ki

1k
i
2)

µ2
−2Nε ln

2(ki
1k

i
2)

µ2
− π2

6
+O(ε)

}
,

which can also be formulated as

J (0) = − iπ2µ−2ε

Q2

(
µ2

Q2

)ε

·
[

1
ε2
− π2

12
+O(ε)

]
π−εe−γEε . (3.16)

3.4.5 Combining the integrals

Putting the integrals (eqs. 3.13 - 3.16) into the original expression for the matrix element (eq. 3.6),
one has to take into account the negative sign of ki

1. Use of the relations v̄(k)/k = 0 and /k u(k) = 0
leads to

Iν = −iπ2µ−2ε

(
µ2

−Q2

)ε

· v̄(ki
2)γ

ν(1− γ5)u(ki
1) ·
[

2
ε2

+
3
ε

+ 8− π2

6
+O(ε)

]
π−εe−γEε . (3.17)

The last factor is often written as e−γEε = 1/Γ(1− ε)
[
1 + ε2π2/12 +O(ε3)

]
.

In principle, one has additional real terms in eq. 3.17, which stem from the negative sign inside
the logarithm, if one makes a series expansion of the factor (−µ2/Q2)ε. These do not contribute,
however, since the scattering matrix element is |S1 + S3|2 = |S1|2 + 2Re{S∗1S3} + |S3|2, and can
therefore be neglected.
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3 Vertex correction

3.5 Contribution to the differential cross section

To calculate the vertex’s contribution to the differential cross section, one has to multiply it with
the corresponding expression of the leading-order contribution. As in the calculation of the LO,
we write Sfi =: i(2π)d δ(d)(ki

1 + ki
2 − kf

1 − kf
2 ) M , thereby defining M . With the definitions

g2
w = 4

√
2GF M2

W , g2
s = 4παs, and coupling constant renormalisation gs 7→ gsµ

d−4, from above
(eq. 3.12) follows

MV = −i

√
2αs

(2π)3+2ε
CF Vqq′

µ2εGF M2
W

(kf
1 + kf

2 )2 −M2
W + i0

Iν · ū(kf
2 )γν

(
1− γ5

)
v(kf

1 ) .

The corresponding expression of the LO graph is:

MLO =
1√
2
Vqq′

GF M2
W

(kf
1 + kf

2 )2 −M2
W + i0

v̄(ki
2)γ

µ
(
1− γ5

)
u(ki

1) · ū(kf
2 )γµ

(
1− γ5

)
v(kf

1 ) ,

and therefore one can write

MV =
αs

2π
CF

(
µ2

−Q2

)ε [
− 1

ε2
− 3

2ε
− 4 +

π2

12
+O(ε)

]
(4π)εe−γEε ·MLO .

The different polarisation states in the quark current can be projected out by means of

uR =
1 + γ5

2
(uL + uR) ūR = (ūL + ūR)

1− γ5

2

uL =
1− γ5

2
(uL + uR) ūL = (ūL + ūR)

1 + γ5

2

and analogous relations for v, which restore the summation over spin states needed for Casimir’s
theorem. Thus, it is evident that in the the LO matrix element the only contributing polarisations
are v ≡ vL and u ≡ uL, since (1− γ5)(1 + γ5) = 0; it is non-vanishing only for left-handed initial-
state particles. The same holds for the vertex matrix element (see, for example, eq. 3.17), because
it has an identical spinor term.
For the NLO correction, one needs the polarisation difference of the matrix elements squared, which
is defined by

∆ |M|2 := |M|2LL − |M|2LR − |M|2RL + |M|2RR .

In this case, due to the vanishing of all matrix elements with right-handed initial-state particles, it
is identical to the matrix element squared calculated above.
Finally, the polarisation difference of the differential cross section can be written as

d∆σV = −αs

2π
CF

(
4πµ2

Q2

)ε [ 1
ε2

+
3
2ε

+ 4− 7π2

12
+O(ε)

]
e−γEε · d∆σLO . (3.18)

3.6 Physical Gauge

Calculating in physical (axial) gauge, the polarisation sum has additional terms according to∑
λ

ε†µ(~q, λ) εν(~q, λ) = −gµν +
qµnν + nµqν

(qn)
,
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3.6 Physical Gauge

where n is an arbitrary, light-like gauge-fixing vector, constrained by physical considerations. This
leads to an additional term in the numerator of Sfi which can be treated in complete analogy to
above: We define

Ĩν :=
∫

d4q
v̄(ki

2)γ
α(q/− /ki

2)γ
ν(1− γ5)(q/ + /ki

1)γ
βu(ki

1)[
(q − ki

2)2 + i0
] [

(q + ki
1)2 + i0

]
(q2 + i0)

·
qαnβ + nαqβ

(qn)
(3.19)

and are thus able to write the entire scattering matrix element as Sfi ∝ (Iν+Ĩν)·ū(kf
2 )γν

(
1− γ5

)
v(kf

1 ),
where Iν stems from Feynman gauge and Ĩν from the additional terms in physical gauge.
Defining the following integrals

I(0)(ki
1, k

i
2) :=

∫
d4q

1[
(q − ki

2)2 + i0
] [

(q + ki
1)2 + i0

]
(qn)

I(1)
µ (ki

1, k
i
2) :=

∫
d4q

qµ[
(q − ki

2)2 + i0
] [

(q + ki
1)2 + i0

]
(qn)

H(1)
µ (ki

1, k
i
2) :=

∫
d4q

qµ[
(q − ki

2)2 + i0
] [

(q + ki
1)2 + i0

]
[q2 + i0] (qn)

H(2)
µν (ki

1, k
i
2) :=

∫
d4q

qµqν[
(q − ki

2)2 + i0
] [

(q + ki
1)2 + i0

]
[q2 + i0] (qn)

,

the original intergal (3.19) can be expressed by these quantities:

Ĩν = v̄(ki
2)
{

2K(0)γν + 4J (1) αki
1 αγν + 2I(1) ν/n

+ 2I(0)
[
(ki

1n)− (ki
2n)
]
γν − 4H(1) α

[
ki

2 α(ki
1n) + ki

1 α(ki
2n)
]
γν

− 4H(2) ανki
2 α/n + 2H(2) αβki

2 αγβγν/n− 2H(2) αβki
1 αγβ/nγν

}
(1− γ5)u(ki

1) . (3.20)

3.6.1 Calculating I(0)

The calculation of this integral proceeds along the general lines used above, leading to

I(0) = 2iπ2−ε µ−2ε

Q2

(
µ2

−Q2

)ε Γ(1 + ε)Γ(1− ε)Γ(−ε)
Γ(1− 2ε)

1∫
0

dα

(1− α)2
,

where one demands that (ki
1n) != 0 != (ki

2n) to ensure physical gluons. To deal with the divergence
in the α integral, we integrate from 0 to 1− δ, δ > 0, which leads to:

I(0) = 2iπ2−ε µ−2ε

Q2

(
µ2

−Q2

)ε Γ(1 + ε)Γ(1− ε)Γ(−ε)
Γ(1− 2ε)

(
1
δ
− 1
)

. (3.21)

3.6.2 Calculating I
(1)
µ

In analogous fashion follows

I(1)
µ = −iπ2−ε µ−2ε

Q2

(
µ2

−Q2

)ε Γ(1 + ε)Γ(1− ε)Γ(−ε)
Γ(1− 2ε)

·
(

1
δ
− 1
){

ki
1 µ − ki

2 µ +
nµ

2

(
1
δ
− 1
)}

.

(3.22)
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3 Vertex correction

3.6.3 Calculating H
(1)
µ

In this case, on needs the Feynman parametrisation for four propagators, which is

1
a1a2a3a4

= Γ(3)

1∫
0

dα

1−α∫
0

dβ

1−α−β∫
0

dγ {αa1 + βa2 + γa3 + (1− α− β − γ)a4}−4 .

This leads to

H(1)
µ = −2iπ2−ε µ−2ε

Q4

(
µ2

−Q2

)ε Γ(1 + ε)Γ(1− ε)Γ(−ε)
Γ(1− 2ε)

·
(

1
δ
− 1
){

ki
1 µ − ki

2 µ +
nµ

4

(
1
δ
− 1
)

1 + 2ε

1 + ε

}
. (3.23)

3.6.4 Calculating H
(2)
µν

Here, we find

H(2)
µν = −iπ2−ε µ−2ε

Q4

(
µ2

−Q2

)ε Γ(1 + ε)Γ(1− ε)Γ(−ε)
Γ(1− 2ε)

(
1
δ
− 1
){

nµnν

6

(
1
δ
− 1
)2 1 + 2ε

1 + ε

+ ki
1 µki

1 ν + ki
2 µki

2 ν +
1
2
(
nµki

1 ν + ki
1 µnν − nµki

2 ν − ki
2 µnν

)(1
δ
− 1
)

−
[
ki

1 µki
2 ν + ki

2 µki
1 ν − gµν

(ki
1k

i
2)

1 + ε

]
1 + ε

ε

}
. (3.24)

3.6.5 The total contribution from physical gauge

Inserting eqs. (3.21) - (3.24) into Ĩν (eq. 3.20), the entire expression vanishes. Hence, there is no
contribution from the additional terms of the physical gauge (relative to the Feynman gauge).
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4 Gluon bremsstrahlung correction

Sing out the song; sing to the end and sing
The strange reward of all that discipline.

William Butler Yeats: The Phases of the Moon

4.1 The matrix element

The scattering matrix element for the two possible gluon bremsstrahlung diagrams (the d̄ or the u
quark emitting the gluon)

d̄(ki
2)

u(ki
1)

g(g) u(ki
1)

d̄(ki
2)

g(g)

has already been calculated in my M.S. thesis [36] as well:

Sfi = i(2π)4 δ(4)(ki
1 + ki

2 − kf
1 − kf

2 − g) · gsg
2
w

8
Vqq′ Ta

1
q2
1 −M2

W + i0

· v̄(ki
2)
[
ε/(ki

2, λ)
q/2 −md

q2
2 −m2

d

γµ(1− γ5)− γµ(1− γ5)
q/3 + mu

q2
3 −m2

u

ε/(ki
2, λ)

]
u(ki

1)

· ū(kf
2 )γµ

(
1− γ5

)
v(kf

1 ) ,

with q1 := kf
1 + kf

2 , q2 := ki
2 − g, and q3 := ki

1 − g.
For convenience, we define again Sfi =: (2π)4 i δ(4)(ki − kf ) ·M , as well as the lepton and quark
currents

Lµ := ū(kf
2 )γµ

(
1− γ5

)
v(kf

1 )

Jµ := v̄(ki
2)
[
ε/(ki

2, λ)
q/2 −md

q2
2 −m2

d

γµ(1− γ5)− γµ(1− γ5)
q/3 + mu

q2
3 −m2

u

ε/(ki
2, λ)

]
u(ki

1) .

To calculate the contribution to the differential cross section, one needs

∣∣MB
∣∣2 :=

∑
s,λ,a

|M |2 =
∑
s,λ,a

∣∣Vqq′
∣∣2 tr [T ∗

a Ta]
[
gsg

2
w

8
1

q2
1 −M2

W + i0

]2

· Jµ †Jν · L†µLν ,

with the sum running over final state spins, polarisation of the gluon, and colour (the colour factor
is tr [T ∗

a Ta] = CF ). The sum over final state spins yields∑
s

L†µLν = 8
[
kf

1 µkf
2 ν + kf

1 νk
f
2 µ − (kf

1kf
2 ) gµν + iεαβµνk

f α
1 kf β

2

]
. (4.1)

The quarks’ polarisation will be incorporated using the projection operator, as shown above (chap-
ter 3).
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4 Gluon bremsstrahlung correction

Calculating in Feynman gauge (physical gauge will be considered in Section 4.4), the polarisation
sum over the product of the gluon’s polarisation vectors is∑

λ

ε†µ(~k, λ) εν(~k, λ) = −gµν . (4.2)

For (R,R), where the first index describes the polarisation of ki
1 and the second one the spin

orientation of ki
2, we find

Jµ †Jν = 0 and thus
∣∣MB

∣∣2
RR

= 0 .

For (L,R), the result is

Jµ †Jν = 16
(

md

q2
2 −m2

d

)2 [
ki µ

1 ki ν
2 + ki µ

2 ki ν
1 − (ki

1k
i
2)g

µν + iεαβµνki
1 αki

2 β

]
,

leading to ∣∣MB
∣∣2
LR

= 8CF

∣∣Vqq′
∣∣2 [ gsg

2
w

q2
1 −M2

W + i0
md

q2
2 −m2

d + i0

]2

(ki
1k

f
1 )(ki

2k
f
2 ) .

For (R,L), the symmetry in quark masses is restored, as

∣∣MB
∣∣2
RL

= 8CF

∣∣Vqq′
∣∣2 [ gsg

2
w

q2
1 −M2

W + i0
mu

q2
3 −m2

u + i0

]2

(ki
1k

f
1 )(ki

2k
f
2 ) .

For (L,L), the calculation becomes a bit more involved. A first result is∑
s,ε

Jµ †Jν = 4
tr
[
q/2/k

i
2q/2γ

ν/ki
1γ

µ(1− γ5)
]

(q2
2 −m2

d)
2

+ 4
tr
[
/ki

2γ
νq/3/k

i
1q/3γ

µ(1− γ5)
]

(q2
3 −m2

u)2

− 4
tr
[
/ki

1/k
i
2γ

µq/3q/2γ
ν(1− γ5)

]
+ tr

[
/ki

2/k
i
1γ

µq/2q/3γ
ν(1 + γ5)

]
(q2

2 −m2
d)(q

2
3 −m2

u)
.

Using trace theorems and the well-known relations among Dirac matrices, one then finds∑
s,ε

Jµ †Jν = − 16
[

q2
2

(q2
2 −m2

d)
2

+
q2
3

(q2
3 −m2

u)2

] [
ki µ

1 ki ν
2 + ki µ

2 ki ν
1 − (ki

1k
i
2)g

µν − iεαβνµki
1 αki

2 β

]
+ 32

(ki
2q2)

(q2
2 −m2

d)
2

[
ki µ

1 qν
2 + qµ

2 ki ν
1 − (ki

1q2)gµν − iεαβνµki
1 αq2 β

]
+ 32

(ki
1q3)

(q2
3 −m2

u)2

[
qµ
3 ki ν

2 + ki µ
2 qν

3 − (q3k
i
2)g

µν − iεαβνµq3 αki
2 β

]
− 32

(q2
2 −m2

d)(q
2
3 −m2

u)

{
−2(ki

1k
i
2)
[
ki µ

1 ki ν
2 + ki µ

2 ki ν
1 − (ki

1k
i
2)g

µν − iεαβνµki
1 αki

2 β

]
+ (ki

1k
i
2)
[
(ki µ

1 + ki µ
2 )gν + gµ(ki ν

1 + ki ν
2 )− (ki

1g)gµν − (ki
2g)gµν

−iεαβνµ(ki
1 αgβ + gαki

2 β)
]

+
[
(ki

1g) + (ki
2g)
] [

ki µ
1 ki ν

2 + ki µ
2 ki ν

1 − (ki
1k

i
2)g

µν − iεαβνµki
1 αki

2 β

]
− (ki

1g)
[
2ki µ

2 ki ν
2 − ki 2

2 gµν
]
− (ki

2g)
[
2ki µ

1 ki ν
1 − ki 2

1 gµν
]

−ki 2
1

[
ki µ

2 gν + gµki ν
2 − 2ki µ

2 ki ν
2

]
− ki 2

2

[
ki µ

1 gν + gµkiν
1 − 2ki µ

1 ki ν
1

]
− ki 2

1 ki 2
2 gµν

}
.
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4.1 The matrix element

Assuming ki 2
1,2 = m2

u,d and multiplying the above result with eq. 4.1, the squared and summed-over
matrix element is∣∣MB

∣∣2
LL

= 2CF

∣∣Vqq′
∣∣2 [ gsg

2
w

q2
1 −M2

W

]2

2
[
(ki

1k
f
1 )(ki

1k
f
2 )− (ki

1k
f
2 )(ki

2k
f
1 ) + (ki

2k
f
1 )(gkf

2 )
]
−m2

u(kf
1kf

2 )

(ki
1g)

+
2
[
(ki

2k
f
1 )(ki

2k
f
2 )− (ki

1k
f
2 )(ki

2k
f
1 ) + (ki

1k
f
2 )(gkf

1 )
]
−m2

d(k
f
1kf

2 )

(ki
2g)

+ 2(ki
1k

i
2)

2(ki
1k

f
2 )(ki

2k
f
1 )− (ki

1k
f
2 )(gkf

1 )− (ki
2k

f
1 )(gkf

2 )
(ki

1g)(ki
2g)

+
(ki

1k
f
2 )− 2(gkf

2 )
(ki

1g)2
(ki

2k
f
1 ) m2

u +
(ki

2k
f
1 )− 2(gkf

1 )
(ki

2g)
(ki

1k
f
2 ) m2

d

+ m2
u

(ki
2k

f
1 )(gkf

2 ) + (ki
2k

f
2 )(gkf

1 )− 2(ki
2k

f
1 )(ki

2k
f
2 )

(ki
1g)(ki

2g)

+ m2
d

(ki
1k

f
1 )(gkf

2 ) + (ki
1k

f
2 )(gkf

1 )− 2(ki
1k

f
1 )(ki

1k
f
2 )

(ki
1g)(ki

2g)

+m2
um2

d

(kf
1kf

2 )
(ki

1g)(ki
2g)

}
.

Using the definitions g2
s = 4παs · µ2ε (for d = 4 − 2ε) and g2

w = 4
√

2 GF M2
W brings the prefactor

into the usual form: [
gsg

2
w

q2
1 −M2

W + i0

]2

→ 128 π αsµ
2ε

[
GF M2

W

q2
1 −M2

W + i0

]2

.

At this point it is sensible to neglect quark masses, which simplifies the result somewhat:

1
256

∑
Jµ †JνL†µLν = −(ki

1k
f
1 )(ki

2k
f
2 )
[

1
(ki

1g)
+

1
(ki

2g)

]
+

(ki
1k

f
1 )(kf

2g)
(ki

2g)
+

(ki
2k

f
2 )(kf

1g)
(ki

1g)

+
(ki

2k
f
1 )(ki

2k
f
2 )

(ki
2g)

+
(ki

1k
f
1 )(ki

1k
f
2 )

(ki
1g)

− (ki
1k

i
2)

(ki
1g)(ki

2g)

[
−2(ki

1k
f
1 )(ki

2k
f
2 ) + (ki

1k
f
1 )(kf

2g) + (ki
2k

f
2 )(kf

1g)
]

(4.3)

Expressing the scalar products with the help of scalar invariants of the process [7]

2(ki
1k

i
2) = s = sab 2(kf

1kf
2 ) = s2 = s23

2(ki
1k

f
1 ) = −t2 = sb3 2(ki

2k
f
1 ) = s− s1 + t2 = sa3

2(ki
1k

f
2 ) = s2 + t2 − t1 = sb2 2(ki

2k
f
2 ) = s1 + t1 − t2 = sa2

2(ki
1g) = s− s2 + t1 = sb1 2(ki

2g) = −t1 = sa1

2(kf
1g) = s− s1 − s2 = s13 2(kf

2g) = s1 = s12

we find ∑
Jµ †JνL†µLν = −128

(s1 + t1 − t2)2 + t22
(s− s2 + t1) t1

s2 .
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4 Gluon bremsstrahlung correction

From this follows the only non-vanishing matrix element squared for the bremsstrahlung process
(neglecting quark masses)

∣∣MB
∣∣2
LL

= 256παsµ
2εCF

∣∣Vqq′
∣∣2 [ GF M2

W

q2
1 −M2

W + i0

]2

·
s2
a2 + s2

b3

sa1sb1
s23 ,

where the index on the Mandelstam variable s represents the particles of the process a+b → 1+2+3
with 1 being the gluon.

Figure 4.1: Feynman diagram of the process in question with particle labels.

In analogous fashion, the leading-order matrix element squared can be written as

∣∣MLO
∣∣2
LL

= 32
∣∣Vqq′

∣∣2 [ GF M2
W

q2
1 −M2

W + i0

]2

· sa2sb3 ≡ ∆
∣∣MLO

∣∣2 ,

(the second relation has been shown above) and thus, one may write the bremsstrahlung matrix
element squared as

∣∣MB
∣∣2
LL

= 8αsµ
2εCF ·

s2
a2 + s2

b3

sa1sb1

s23

sa2sb3
·
∣∣MLO

∣∣2
LL

. (4.4)

The Mandelstam variables sa1, sb1, sa2, and sb3 are all negative since they combine an initial-state
momentum with one from the final state.

Again, the quantity required for the NLO corrections is the polarisation difference:

∆ |M|2 := |M|2LL − |M|2LR − |M|2RL + |M|2RR ,

which in this case is just
∆
∣∣MB

∣∣2 ≡ ∣∣MB
∣∣2
LL

.

4.2 Contributions to the scattering matrix element

For this process, the phase space has to be sliced into two separate parts: one where the emitted
gluon is collinear to one of the quarks and one where the gluon is soft. Very much care has to be
taken to match these two disjoint regions onto each other without having them overlap.

4.2.1 The collinear region – behaviour of the phase space

In the case of a collinear final-state particle, one defines the fraction of the incoming particle’s four-
momentum transferred to the W boson as z by sbc =: zsab, where 1 is collinear to a. The region
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4.2 Contributions to the scattering matrix element

itself is then defined by |sa1| < smin with smin some cutoff. Therefore, the (d = 4−2ε)-dimensional
phase space factorises according to [15,16]:

1
2sab

dP d(a + b → 1 + 2 + 3) = dP d
coll.(a → 1 + c) · 1

2sbc
dP d(b + c → 2 + 3) .

The two factors on the right-hand side are

dP 4−2ε
coll. (a → 1 + c) =

(4π)−2+ε

Γ(1− ε)
· [(1− z)|sa1|]−ε · z dz · d|sa1|Θ(smin − |sa1|)

dP 4−2ε(b + c → 2 + 3) = dP 4−2ε(b + c → Q) · dQ2

2π
· dP 4−2ε(Q → 2 + 3)

=
(

sbc

sab

)−ε

dP 4−2ε(a + b → 2 + 3) .

Combining the two formulas above, the phase space (including the flux factor) needed for this
diagram follows as:

1
2sab

dP 4−2ε(a + b → 1 + 2 + 3) =
[z(1− z)|sa1|]−ε

(4π)2−εΓ(1− ε)
dz d|sa1|Θ(smin − |sa1|)

· 1
2sab

dP 4−2ε(a + b → 2 + 3) . (4.5)

4.2.2 The collinear region – behaviour of the matrix element

From eq. 4.4 follows the polarisation difference of the matrix element squared for the bremsstrahlung
process

∆
∣∣MB

∣∣2
coll.

= 8παsµ
2εP̂ 4

qg→q(z)
1
|sa1|

·∆
∣∣MLO

∣∣2 , (4.6)

taking into account sb3 = zsa2, |sb1| = (1 − z)sab and with the (unregularised), four-dimensional
Altarelli splitting function

P̂ 4
qg→q(z) = CF (1 + z2)/(1− z) .

If we had calculated the traces in d = 4− 2ε dimensions, we would have found

P̂ 4−2ε
qg→q(z) = CF

[
(1 + z2)/(1− z)− ε(1− z)

]
instead. To take this dimensional dependence into account we simply replace P̂ 4 by P̂ 4−2ε.

4.2.3 The collinear region – contribution to the differential scattering cross section

The combination of the expressions above (eqs. 4.6 and 4.5) requires integrating out the unobserved
gluon. This, however, has to be done with care, as one must distinguish the collinear region from
the soft one. The soft region for this process is defined by, additionally, sb1 < smin. Thus, to stay
in the collinear part of phase space we have to enforce

|sb1| > smin ⇔ 1− smin

sab
> z .

The collinear part of the differential scattering cross section is therefore

d∆σB
coll. = d∆σLO · αsµ

2ε

2π

(4π)ε

Γ(1− ε)
·

1− smin
sab∫

0

dz P̂ 4−2ε
qg→q(z) [z(1− z)]−ε ·

smin∫
0

d|sa1| |sa1|−1−ε .
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4 Gluon bremsstrahlung correction

Integration over z can be done by means of the identity for the incomplete beta function

1−δ∫
0

dz za−1(1− z)b−1 =

1∫
0

dz za−1(1− z)b−1 − δb

b
[1 +O(δ)] ,

hence we find

1−δ∫
0

dz P̂ 4−2ε
qg→q(z) [z(1− z)]−ε = 2

δ−ε

ε
− Γ2(1− ε)

Γ(2− 2ε)
(1− ε)(4− ε)

2ε
+

1
ε
O(δ) .

The integral over |sa1| yields
smin∫
0

d|sa1| |sa1|−1−ε = −1
ε
s−ε
min .

Together, this leads to the following contribution to the differential scattering cross section:

d∆σB
coll. = −d∆σLO · αs

2π
CF

(
4πµ2

smin

)ε [ 4
ε2

(
sab

smin

)ε 1
Γ(1− ε)

− Γ(1− ε)
Γ(1− 2ε)

(1− ε)(4− ε)
ε2(1− 2ε)

+O
(

smin

sab

)]
, (4.7)

where we have taken into account the two possible diagram layouts (i.e. either the quark or the
antiquark emitting the gluon) which result in a factor of 2.

4.2.4 The soft region – behaviour of the phase space

The phase space factorises again, as in the collinear case [15]:

dP 4−2ε(a + b → 1 + 2 + 3) = dP 4−2ε
soft (a → 1 + c, b) · dP 4−2ε(c + b → 2 + 3) , (4.8)

with the soft factor taking the form

dP 4−2ε
soft (a → 1 + c, b) =

(4π)−2+ε

Γ(1− ε)
d|sa1|d|sb1|

sab

[
|sa1||sb1|

sab

]−ε

Θ(smin − |sa1|)Θ(smin − |sb1|) .

4.2.5 The soft region – behaviour of the matrix element

The soft behaviour is dominated by the most divergent term in eq. 4.3

∑
Jµ †JνL†µLν ∼ 512

(ki
1k

i
2)(k

i
1k

f
1 )(ki

2k
f
2 )

(ki
1g)(ki

2g)
= 256

sab

sa1sb1
sa2sb3

and therefore, the soft contribution to the matrix element squared is

∆
∣∣MB

∣∣2
soft

= 16παsµ
2εCF ·

sab

|sa1||sb1|
·∆
∣∣MLO

∣∣2 . (4.9)
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4.3 Combination of collinear and soft contributions

4.2.6 The soft region – contribution to the differential scattering cross section

Combining eqs. 4.8 and 4.9, we find for the soft contribution to the scattering cross section

d∆σB
soft = d∆σLO · αsµ

2ε

2π
CF

(4π)ε

Γ(1− ε)
2sε

ab ·
smin∫
0

d|sa1| |sa1|−1−ε ·
smin∫
0

d|sb1| |sb1|−1−ε ,

which leads to

d∆σB
soft = d∆σLO · αs

2π

CF

Γ(1− ε)

(
4πµ2

smin

)ε(
sab

smin

)ε

· 2
ε2

. (4.10)

4.3 Combination of collinear and soft contributions

The polarisation difference of the differential cross section for this bremsstrahlung process is the
combination of eqs. 4.7 and 4.10:

d∆σB = d∆σLO·αs

2π
CF

(
4πµ2

smin

)ε [
− 2

ε2

1
Γ(1− ε)

(
sab

smin

)ε

+
Γ(1− ε)
Γ(1− 2ε)

(1− ε)(4− ε)
ε2(1− 2ε)

+O
(

smin

sab

)]
,

which can be brought to its final form by expanding in a series in ε and neglecting terms of
O(smin/sab):

d∆σB =
αs

2π
CF

(
4πµ2

sab

)ε [ 2
ε2

+
3
ε

+ 7− 5π2

6
+ 3 ln

sab

smin
− 2 ln2 sab

smin
+O(ε)

]
e−γEε · d∆σLO .

(4.11)

4.4 Physical gauge

Calculating in physical (axial) gauge changes the polarisation sum (cf. eq. 4.2) into∑
λ

ε†µ(~k, λ) εν(~k, λ) = −gµν +
kµnν + nµkν

(kn)
,

where one has introduced the light-like gauge vector n. The additional terms, however, only
contribute to the imaginary part of the matrix element squared and hence do not change the
contribution to the scattering cross section.
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5 Quark bremsstrahlung correction

La volpe lascia il pelo,
non abbandona il vizio.
Marchese mio, giudizio,
o vi farò pentir!

Giuseppe Verdi: La Traviata

5.1 Dissecting the matrix element

For the parton subprocess of p + p → W + X with a gluon in the initial state, one has to take into
account two possible diagrams:

g(ki
2, ε, a)

u(ki
1, c)

d(kf
3 , c′) g(ki

2, ε, a)

d̄(ki
1, c)

ū(kf
3 , c′)

This leads to the following matrix element:

Mfi = −gsg
2
w

8
V ∗

qq′ T a
cc′

1
q2
1 −M2

W + i0
· ū(kf

2 )γµ(1− γ5)v(kf
1 )

·
[
ū(kf

3 )ε/
q/2 −md

q2
2 −m2

d + i0
γµ(1− γ5)u(ki

1)− v̄(ki
1)γ

µ(1− γ5)
q/2 + mu

q2
2 −m2

u + i0
ε/v(kf

3 )
]

with q1 := kf
1 +kf

2 the four-momentum of the W boson and q2 := ki
2−kf

3 the one of the (anti)quark
drawn vertically. Here, the calculation will be made in d = 4 dimensions and quark/lepton masses
shall be neglected after the first fews steps.
The contribution to the differential cross section is therefore

|Mfi|2 =
∣∣Vqq′

∣∣2 T a †
cc′ T a

cc′

[
gsg

2
w

8
1

q2
1 −M2

W + i0

]2

· Jµ †Jν · L†µLν (5.1)

where the lepton and quark currents have been abbreviated:

Lµ := ū(kf
2 )γµ(1− γ5)v(kf

1 )

Jµ := ū(kf
3 )ε/

q/2 −md

q2
2 −m2

d + i0
γµ(1− γ5)u(ki

1)− v̄(ki
1)γ

µ(1− γ5)
q/2 + mu

q2
2 −m2

u + i0
ε/v(kf

3 )

=: Jµ
1 + Jµ

2 .

Because of the different Dirac spinors in Jµ
1,2, one gets

Jµ †Jν = Jµ †
1 Jν

1 + Jµ †
2 Jν

2 ,
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5 Quark bremsstrahlung correction

which is sensible since one doesn’t have the same initial-state particles in the two diagrams.
And because final-state polarisation of the leptons is not observed, we may sum over it, leading to∑

s

L†µLν = 8
[
kf

1 µkf
2 ν + kf

1 νk
f
2 µ − (kf

1kf
2 ) gµν + iεαβµνk

f α
1 kf β

2

]
. (5.2)

The polarisation of the gluon, however, is an observed quantity and can be treated in the following
way (see, e.g., [14, 38,4, 9]):

ε±ρ (ki
2, n)

[
ε±λ (ki

2, n)
]† = tr

[
1∓ γ5

2
γρ/k

i
2γλ/n

]
1

4(ki
2n)

,

where n is some arbitrary, light-like vector to ensure physical polarisation (i.e. one has to calculate
in physical gauge). Finally, the colour factor can also be computed since this degree of freedom
cannot be measured: ∑

c,c′

T a †
cc′ T

b
cc′ = δab TF .

5.2 The different spin combinations

The polarisation state of the quarks can be accounted for by using the – by now – well-known
polarisation projection operator.

For (R,R), where the first letter describes the polarisation state of the initial-state (anti)quark’s
Dirac spinor and the second one the polarisation of the gluon, the expression for Jµ vanishes because
of (1 + γ5)(1− γ5) = 0 and therefore

|Mfi|2RR = |M1|2RR + |M2|2RR = 0 .

For (R,L) the same mechanism produces

|Mfi|2RL = |M1|2RL + |M2|2RL = 0 .

For (L,R) we get

Jµ †
1 Jν

1 =
1

(q2
2 −m2

d + i0)2
· 1
4(ki

2n)
tr
[
1 + γ5

2
γρ/k

i
2γλ/n

]
· tr
[
(/ki

1 + mu)γµ(1− γ5)(q/2 −md)γλ(/kf
3 + md)γρ(q/2 −md)γν(1− γ5)

]
=

1
(q2

2 −m2
d + i0)2

· 1
(ki

2n)
·
[
ki

2 ρnλ + nρk
i
2 λ − (ki

2n)gρλ + iεαβλρk
i α
2 nβ

]
·
{

tr
[
/ki

1γ
µq/2γ

λ/kf
3γρq/2γ

ν(1− γ5)
]

+ m2
d tr
[
/ki

1γ
µγλ/kf

3γργν(1− γ5)
]}

. (5.3)

To deal with the trace of six or eight gamma matrices, one has to use some ingenious tricks:

q/2γ
λ/kf

3γρq/2 = 2qλ
2 · /k

f
3γρq/2 + 2qρ

2 · γ
λ/kf

3q/2 − 2(q2k
f
3 ) · γλγρq/2 − q2

2 · γλ/kf
3γρ

γλ/kf
3γρ + γρ/kf

3γλ = 2
(
kf ρ

3 γλ + γρkf λ
3 − gλρ/kf

3

)
.
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5.2 The different spin combinations

Applying them yields, with γαγνγα = −2γν ,

[
ki

2 ρnλ + nρk
i
2 λ − (ki

2n)gρλ

]
tr
[
/ki

1γ
µq/2γ

λ/kf
3γρq/2γ

ν(1− γ5)
]

= 2(ki
2k

f
3 )
{
2(q2n) tr

[
/ki

1γ
µq/2γ

ν(1− γ5)
]
− q2

2 tr
[
/ki

1γ
µ/nγν(1− γ5)

]}
+ 2(kf

3n)
{
2(ki

2q2) tr
[
/ki

1γ
µq/2γ

ν(1− γ5)
]
− q2

2 tr
[
/ki

1γ
µ/ki

2γ
ν(1− γ5)

]}
and analogously

[
ki

2 ρnλ + nρk
i
2 λ − (ki

2n)gρλ

]
tr
[
/ki

1γ
µγλ/kf

3γργν(1− γ5)
]

= 2(kf
3n) tr

[
/ki

1γ
µ/ki

2γ
ν(1− γ5)

]
+ 2(ki

2k
f
3 ) tr

[
/ki

1γ
µ/nγν(1− γ5)

]
,

which can be put into eq. 5.3. From here onwards, it is sensible to neglect quark masses, as done
in the other diagrams as well. This gives

Jµ †
1 Jν

1 =
2

(q2
2 + i0)2

· 1
(ki

2n)

{
2(ki

2k
f
3 )(q2n) tr

[
/ki

1γ
µq/2γ

ν(1− γ5)
]
− q2

2(k
i
2k

f
3 ) tr

[
/ki

1γ
µ/nγν(1− γ5)

]
+ 2(ki

2q2)(k
f
3n) tr

[
/ki

1γ
µq/2γ

ν(1− γ5)
]
− q2

2(k
f
3n) tr

[
/ki

1γ
µ/ki

2γ
ν(1− γ5)

]
+

i

2
εαβλρk

i α
2 nβ tr

[
/ki

1γ
µq/2γ

λ/kf
3γρq/2γ

ν(1− γ5)
]}

. (5.4)

The trace in the last line of eq. 5.4 can be expanded using the formulas above, the definition
q2
2 = (kf

3 )2 − 2(gkf
3 ), and the on-shell and massless limits (kf

3 )2 = 0, resulting in

tr
[
/ki

1γ
µq/2γ

λ/kf
3γρq/2γ

ν(1− γ5)
]

= −4qλ
2 tr

[
/ki

1γ
µ/kf

3/ki
2γ

ργν(1− γ5)
]

+ 4ki ρ
2 kf λ

3 tr
[
/ki

1γ
µq/2γ

ν(1− γ5)
]

− 4(ki
2k

f
3 )qρ

2 tr
[
/ki

1γ
µγλγν(1− γ5)

]
+ 2(ki

2k
f
3 ) tr

[
/ki

1γ
µγλ/ki

2γ
ργν(1− γ5)

]
, (5.5)

where the second term vanishes when put into eq. 5.4 due to the antisymmetry of the Levi-Civita
symbol. Traces of six gamma matrices can be expressed as a sum over traces of four gamma
matrices:

tr
[
γαγβγδγλγµγν

]
= gµν tr

[
γαγβγδγλ

]
− gλν tr

[
γαγβγδγµ

]
+ gδν tr

[
γαγβγλγµ

]
− gβν tr

[
γαγδγλγµ

]
+ gαν tr

[
γβγδγλγµ

]

tr
[
γαγβγδγλγµγνγ5

]
= gαβ tr

[
γδγλγµγνγ5

]
− gαδ tr

[
γβγλγµγνγ5

]
+ gβδ tr

[
γαγλγµγνγ5

]
+ gλµ tr

[
γαγβγδγνγ5

]
− gλν tr

[
γαγβγδγµγ5

]
+ gµν tr

[
γαγβγδγλγ5

]
.
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5 Quark bremsstrahlung correction

Expressing the two remaining traces of six gamma matrices in eq. 5.5 with these expansions,
putting it back into eq. 5.4, and using antisymmetry again, we find

Jµ †
1 Jν

1 =
1

2(ki
2k

f
3 )2(ki

2n)

{
2(ki

2k
f
3 )
[
(ki

2n)− 2(kf
3n)
]
tr
[
/ki

1γ
µq/2γ

ν(1− γ5)
]

+ 2(ki
2k

f
3 )2 tr

[
/ki

1γ
µ/nγν(1− γ5)

]
+ 2(ki

2k
f
3 )(kf

3n) tr
[
/ki

1γ
µ/ki

2γ
ν(1− γ5)

]
+ 2iεαβλρk

i α
2 nβkf λ

3

(
gµρ tr

[
/ki

1/k
f
3/ki

2γ
ν
]

+ gνρ tr
[
/ki

1γ
µ/kf

3/ki
2

]
− gµν tr

[
/ki

1/k
f
3/ki

2γ
ργ5
]

−ki ρ
1 tr

[
γµ/kf

3/ki
2γ

ν
]

+ ki ν
1 tr

[
γµ/kf

3/ki
2γ

ργ5
]
− ki µ

1 tr
[
/kf

3/ki
2γ

ργνγ5
])

+ 2iεαβλρk
i α
2 nβkf ρ

3 (ki
2k

f
3 ) tr

[
/ki

1γ
µγλγν

]
+ iεαβλρk

i α
2 nβ(ki

2k
f
3 )
(
gµρ tr

[
/ki

1γ
λ/ki

2γ
ν
]

+ gνρ tr
[
/ki

1γ
µγλ/ki

2

]
− gµν tr

[
/ki

1γ
λ/ki

2γ
ργ5
]

−ki ρ
1 tr

[
γµγλ/ki

2γ
ν
]

+ ki ν
1 tr

[
γµγλ/ki

2γ
ργ5
]
− ki µ

1 tr
[
γλ/ki

2γ
ργνγ5

])}
.

Now is the time to write the traces and the products of Levi-Civita tensors explicitly:

tr
[
γαγβγδγλ

]
= 4

(
gαβgδλ − gαδgβλ + gαλgβδ

)
tr
[
γαγβγδγλγ5

]
= 4iεαβδλ

εµνδλεµνστ = −2
(
δδ
σδλ

τ − δδ
τδ

λ
σ

)
εµνδλεµκστ = − δλ

τ δδ
σδν

κ + δλ
σδδ

τδ
ν
κ + δλ

τ δδ
κδν

σ

− δλ
κδδ

τδ
ν
σ − δλ

σδδ
κδν

τ + δλ
κδδ

σδν
τ .

From this follows

Jµ †
1 Jν

1 =
4

(ki
2k

f
3 )2(ki

2n)

{
(ki

2k
f
3 )(ki

2n) iεαβµνki
1 α(ki

2 β − kf
3 β)− (ki

2k
f
3 )(kf

3n) iεαβµνki
1 αki

2 β

+ 2(ki
2k

f
3 )(kf

3n)
[
ki µ

1 kf ν
3 + ki ν

1 kf µ
3 − (ki

1k
f
3 )gµν + iεαβµνki

1 αkf
3 β

]
+ (ki

2k
f
3 )2 iεαβµνki

1 αnβ

+ iεαβλρk
iα
2 nβkf λ

3

[
(ki

1k
f
3 )(ki ν

2 gµρ − ki µ
2 gνρ)− (ki

1k
i
2)(k

f ν
3 gµρ − kf µ

3 gνρ)− ki ρ
1 (kf µ

3 ki ν
2 − kf ν

3 ki µ
2 )
]

− (ki
2k

f
3 ) iεαβλρk

i α
2 nβ

[
(ki

1k
i
2)g

µρgνλ − ki λ
1 (ki ν

2 gµρ − ki µ
2 gνρ)

]}
.

Combining this result with the lepton current L†µLν , eq. 5.2, leads to the comparably simple result

Jµ †
1 Jν

1 L†µLν = 256
(ki

1k
f
1 )(kf

2kf
3 )(kf

3n)

(ki
2k

f
3 )(ki

2n)
,

which has been checked with the help of FORM [33]. Putting it into eq. 5.1 yields:

|M1|2LR =
∣∣Vqq′

∣∣2 TF

[
gsg

2
w

q2
1 −M2

W + i0

]2

· 4(ki
1k

f
1 )(kf

2kf
3 )(kf

3n)

(ki
2k

f
3 )(ki

2n)
.

To find the final expression, we use the definitions g2
s = 4παs and g2

w = 4
√

2 GF M2
W , which gives

|M1|2LR = 512 αsπ
∣∣Vqq′

∣∣2 TF

[
GF M2

W

q2
1 −M2

W + i0

]2 (ki
1k

f
1 )(kf

2kf
3 )(kf

3n)

(ki
2k

f
3 )(ki

2n)
.
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All the other contributions to the matrix element can be computed in analogous fashion. The
results are:

|M2|2LR = 512 αsπ
∣∣Vqq′

∣∣2 TF

[
GF M2

W

q2
1 −M2

W + i0

]2

(ki
1k

f
2 )

{
(ki

2k
f
1 )− (kf

1kf
3 )

(ki
2k

f
3 )

[
1− (kf

3n)
(ki

2n)

]
+

(kf
1n)

(ki
2n)

}
,

whereas for (L,L) we get

|M1|2LL = 512 αsπ
∣∣Vqq′

∣∣2 TF

[
GF M2

W

q2
1 −M2

W + i0

]2

(ki
1k

f
1 )

{
(ki

2k
f
2 )− (kf

2kf
3 )

(ki
2k

f
3 )

[
1− (kf

3n)
(ki

2n)

]
+

(kf
2n)

(ki
2n)

}
and

|M2|2LL = 512 αsπ
∣∣Vqq′

∣∣2 TF

[
GF M2

W

q2
1 −M2

W + i0

]2 (ki
1k

f
2 )(kf

1kf
3 )(kf

3n)

(ki
2k

f
3 )(ki

2n)
.

They, too, have been checked with the help of FORM.

According to literature [38, 4, 9], the choice of the gauge vector n is entirely arbitrary as long
as it suffices the two conditions imposed: n2 = 0 and n /= ki

2. What is more, a judicious choice
may simplify the results very much. Thus, one may choose n := kf

2 , which leads to the following
expressions:

|M1|2LR ∝ sb3
s2
12

sa1sa2

|M1|2LL ∝ sb3
s2
c2

sa1sa2

|M2|2LR ∝ sb2
s2
c3

sa1sa3

|M2|2LL ∝ sb2
s2
13

sa1sa3
,

where the definitions and labels of Figure 4.1 have been used. Since in the process g+ q̄ → q̄+`±+ν
the label of the initial-state q̄ is the same as the one of the initial-state q in the LO matrix element,
the final-state labels 2 and 3 will be interchanged relative to the LO expression.

5.3 Contributions to the scattering cross section

Like in the gluon bremsstrahlung diagram, one has to distinguish between soft and collinear di-
vergences. As the procedures have been shown in some detail above, the elaborations will be kept
rather short here.

5.3.1 The collinear region

Again we denote the fraction of the radiated (anti)quark’s four-momentum to be (1− z) times the
gluon’s:

|sb1| = (1− z)sab

|sc2| = z|sab|
s12 = (1− z)|sa2|
sbc = zsab .
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5 Quark bremsstrahlung correction

Thus, one finds

|M1|2LR ∝ −(1− z)2
|sa2||sb3|
|sa1|

|M1|2LL ∝ −z2 |sa2||sb3|
|sa1|

|M2|2LR ∝ −z2 |sa3||sb2|
|sa1|

|M2|2LL ∝ −(1− z)2
|sa3||sb2|
|sa1|

,

from which follow, with the definition

∆ |Mi|2 := |Mi|2LL − |Mi|2LR − |Mi|2RL + |Mi|2RR for i = 1, 2 ,

the polarisation differences

∆ |M1|2 = −8παsµ
2εTF

1
|sa1|

∆P̂ 4−2ε
q→g (z) ·∆

∣∣MLO
∣∣2

∆ |M2|2 = 8παsµ
2εTF

1
|sa1|

∆P̂ 4−2ε
q→g (z) ·∆

∣∣MLO
∣∣2 ,

where we have denoted the spin-dependent splitting function [34] as

∆P̂ 4−2ε
q→g (z) = 2z − 1− 2ε(1− z) .

The phase space remains the same as in the gluon bremsstrahlung diagram, eq. 4.5, and we find
for the polarisation-difference of the differential cross sections

d∆σ1,coll. = −αs

2π
TF

(4πµ2)ε

Γ(1− ε)

1−z2∫
0

dz [z(1− z)]−ε∆P̂ 4−2ε
q→g (z) ·

smin∫
0

d|sa1| |sa1|−1−ε · d∆σLO

d∆σ2,coll. = −d∆σ1,coll. .

Evaluating the intergals in the manner detailed in chapter 4, they lead to

1−z2∫
0

dz [z(1− z)]−ε∆P̂ 4−2ε
q→g (z) = − 1

1− ε
z1−ε
2 +

2ε

2− ε
z2−ε
2 − ε

1− 2ε

Γ2(1− ε)
Γ(1− 2ε)

+O(z2)

smin∫
0

d|sa1| |sa1|−1−ε = −1
ε
s−ε
min ,

which, inserted in the expression above, result in

d∆σ1,coll. =
αs

2π

TF

Γ(1− ε)

(
4πµ2

smin

)ε{ 2
2− ε

z2−ε
2 − 1

ε(1− ε)
z1−ε
2

− 1
1− 2ε

Γ2(1− ε)
Γ(1− 2ε)

+O(z2)
}
· d∆σLO (5.6a)

d∆σ2,coll. = −d∆σ1,coll. , (5.6b)

with z2 := smin/sab.
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5.3 Contributions to the scattering cross section

5.3.2 The soft region

Taking the soft-quark limit, kf
3 → 0, leads to the expressions

|M1|2LR → 0

|M1|2LL → −|sa2||sb3|
|sa1|

|M2|2LR → −|sa3||sb2|
|sa1|

|M2|2LL → 0 .

Using the phase space expression derived above (eq. 4.8), and evaluating the integrals yields

d∆σ1,soft =
αs

2π

TF

Γ(1− ε)

(
4πµ2

smin

)ε 1
ε(1− ε)

(
smin

sab

)1−ε

· d∆σLO (5.7a)

d∆σ2,soft = −d∆σ1,soft . (5.7b)

5.3.3 Combination of collinear and soft contributions

Combining the collinear and soft expressions, eqs. 5.6 and 5.7 respectively, the poles cancel, leaving
well-defined quantities:

d∆σ1 =
αs

2π

TF

Γ(1− ε)

(
4πµ2

smin

)ε
{

2
2− ε

(
smin

sab

)2−ε

− 1
1− 2ε

Γ2(1− ε)
Γ(1− 2ε)

+O
(

smin

sab

)}
· d∆σLO

d∆σ2 = −d∆σ1 .

Expanding these terms in a series in ε, we find

d∆σ1 = −αs

2π

TF

Γ(1− ε)

(
4πµ2

sab

)ε
{

1 +O

[(
smin

sab

)2
]

+O(ε)

}
· d∆σLO ,

where one may safely ignore terms of O
[
(smin/sab)

2
]

as well as of O(ε) and expand the gamma
function to obtain the final results:

d∆σqg ≡ d∆σ1 = −αs

2π
TF

(
4πµ2

sab

)ε

e−γEε · d∆σLO (5.8a)

d∆σq̄g ≡ d∆σ2 = −d∆σ1 . (5.8b)
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6 The total NLO correction

[...] catholicus interpres [...] solidam etiam explicationem
reperire entiatur, quæ [...] certis quoque profanarum
disciplinarum conclusionibus debito modo satisfaciat.

Pope Pius XII: Divino afflante Spiritu

The different contributions to the NLO correction d∆σNLO
ab , see eq. 2.6, calculated in the previous

chapters now have to be added up to give the total contribution at O(αs). The indices a and b can
in this case be either a quark, an antiquark, or a gluon.

If we have only quarks in the initial state, there are contributions from the vertex as well as
from the gluon bremsstrahlung:
From the vertex follows, eq. 3.18,

d∆σV = −αs

2π
CF

(
4πµ2

Q2

)ε [ 1
ε2

+
3
2ε

+ 4− 7π2

12
+O(ε)

]
e−γEε · d∆σLO ,

where Q2 = sab is the center-of-mass energy, and from the gluon bremsstrahlung, eq. 4.11,

d∆σB =
αs

2π
CF

(
4πµ2

sab

)ε [ 2
ε2

+
3
ε

+ 7− 5π2

6
+ 3 ln

sab

smin
− 2 ln2 sab

smin
+O(ε)

]
e−γEε · d∆σLO .

The total contribution to the scattering matrix at NLO squared can be written as∣∣SNLO
∣∣2 =

∣∣SLO
∣∣2 + 2

(
SLO

)†
SV +

∣∣SB
∣∣2 +O(α2

s) ,

from which follows directly the scattering cross section. Summing up the contributions from vertex
and gluon bremsstrahlung, we find:

αs d∆σNLO
qq̄ ≡ d∆σB + 2 d∆σV

=
αs

2π
CF

(
4πµ2

sab

)ε [
−1 +

π2

3
+ 3 ln

sab

smin
− 2 ln2 sab

smin
+O(ε)

]
e−γEε · d∆σLO .

As can be seen, the poles in ε cancel against each other and the resulting expression is free of any
singularities in the limit ε → 0. It is very important to notice that all the poles cancel, i.e. the UV
as well as the IR ones, as expected by Bloch & Nordsieck [5] and Kinoshita, Lee & Nauenberg [17,20].

The contributions from the diagrams with a gluon in the initial state are (eqs. 5.8):

αs d∆σNLO
qg ≡ d∆σqg = −αs

2π
TF

(
4πµ2

sab

)ε

e−γEε · d∆σLO

αs d∆σNLO
q̄g ≡ d∆σq̄g = −d∆σgq .
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6 The total NLO correction

From my M.S. thesis [36] follows the polarisation difference of the leading-order differential cross
section

d∆σLO =
1

12π

(
GF M2

W

ŝ−M2
W

)2 ∣∣Vqq′
∣∣2 sab

(
1− tanh ŷ`

cosh ŷ`

)2

dy`

as a function of lepton rapidity y` with

ŷ` := y` −
1
2

ln
xa

xb

sab = s · xaxb ,

where s is the proton-proton center-of-mass energy and xi the ith parton’s momentum fraction of
its parent hadron. With that result, all the NLO contributions are now completely known.

Taking all these corrections into account, one is finally able to write the differential scattering
cross section for W boson production by proton-proton collision at next-to-leading order (eq. 2.6):

d∆σp1p2 =
∫

dx1dx2

{
∆q(x1, µF )∆q̄(x2, µF )

[
d∆σLO

qq̄ (x1, x2) + αsd∆σNLO
qq̄ (x1, x2)

]
+ αs

[
∆Cp1

q (x1, µF )∆q̄(x2, µF ) + ∆q(x1, µF )∆Cp2
q̄ (x2, µF )

]
d∆σLO

qq̄ (x1, x2)

+ ∆q(x1, µF )∆g(x2, µF )αsd∆σNLO
qg (x1, x2)

+∆q̄(x1, µF )∆g(x2, µF )αsd∆σNLO
q̄g (x1, x2) + (1 ↔ 2) +O(α2

s)
}

,

where q(x) ≡ fH
q (x) and similar for the other partons. All the perturbative quantities appearing in

this expression have been calculated; the non-perturbative ones (the PDFs) need to be parametrised
(e.g. [35, 21, 27]). The quark flavours are u and d with some small contamination from c and s
(suppressed by the corresponding CKM matrix element). Thus, the scattering matrix element at
next-to-leading order is completely described, can in principle be calculated – or used to calculate
other quantities – and compared to experimental measurements.
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7 Conclusion and Outlook

If we shadows have offended,
Think but this, and all is mended,
That you have but slumber’d here
While these visions did appear.
And this weak and idle theme,
No more yielding but a dream.

William Shakespeare: A Midsummer Night’s
Dream

In the previous chapters the different contributions to the spin-dependent differential scattering
cross section at next-to-leading order have been calculated: the NLO Feynman diagrams as well
as the crossing functions. Combined together, they allow a complete description of the hadronic
scattering cross section at NLO, which in turn can be used to calculate the polarisation asymmetry.
As expected from the theorems of Bloch & Nordsieck and Kinoshita, Lee & Nauenberg, the UV
and IR divergences have cancelled and left a mathematically well-defined expression in the limit
of (exactly) 4 dimensions, i.e. the physical limit. Obtaining the pole structures has not been
straight-forward in all the diagrams: Some sophisticated tricks for a correct phase space slicing and
matching, introduced in the literature, have had to be applied to remain on firm mathematical –
and ultimately physical – ground. Notwithstanding these difficulties, it has been a very interesting
and instructive endeavour, in the course of which I have been amazed by the robustness and the
well-tunedness of the model as well as the elaborate methods and procedures specifically developed
for such calculations.
A further point of note is the large difference between the solution of the integrals in the massive
and in the massless case. This clearly highlights the strong dependence on the particle masses,
most of which can only be neglected in comparison to the mass of the produced intermediate W
boson. Again, this is an argument strongly in favour of W physics and its possibilities.

Having calculated the spin-dependent differential scattering cross section for W boson production
by proton-proton collisions to NLO, the next step would be to use these expressions to implement
the polarisation asymmetry numerically in order to take care of detector properties and obtain
results comparable to experimental measurements. This, however, lies beyond the scope of this
work.
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A Regularisation methods – theory and example

Viel erforscht’ ich,
erkannte viel;
wichtiges konnt’ ich
machem künden,
machem wehren,
was ihn mühte,
nagende Herzens-Not.

Richard Wagner: Siegfried

To get familiar with and see how the most important regularisation procedures work, I applied
them to scalar three-dimensional QED where I calculated the vacuum polarisation and regularised
the occurring divergences.

In scalar QED3, the Lagrangian and (perturbative) interaction Hamiltonian (to leading order in e)
are given by:

L := ∂µΦ†∂µΦ−m2Φ†Φ + ie Φ†á∂ µΦAµ + e2Φ†ΦAµAµ − 1
4
FµνF

µν

Hint = −ie : Φ†á∂ µΦ : Aµ with Φ†á∂ µΦ := Φ† · ∂µΦ− ∂µΦ† · Φ .

Second-order terms in the interaction Hamiltonian appear as a normalisation term of the electron-
electron scattering tree diagram.

The Feynman diagram for the vacuum polarisation p p′ leads to:

Sfi =
e2

2
δ(3)

(
p− p′

) [
εµ (~p, κ) ε∗ν

(
~p′, κ′

)
+ εν (~p, κ) ε∗µ

(
~p′, κ′

)]
·
∫

d3k
4kµkν − 2kµpν − 2kνpµ + pµpν

(k2 −m2 + i0)
[
(k − p)2 −m2 + i0

] .

We are mainly interested in the integral part of Sfi, which is

Iµν
3 (p) :=

∫
d3k

pµpν − 2kµpν − 2kνpµ + 4kµkν

(k2 −m2 + i0)
[
(k − p)2 −m2 + i0

] ,

and shows IR as well as UV divergent behaviour. It can be split into three separate components:

Iµν(p) := pµpνI1(p)− 2pνIµ
2 (p)− 2pµIν

2 (p) + 4Iµν
3 (p) ,
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with the definitions

I1(p) :=
∫

d3k
1

(k2 −m2 + i0)
[
(k − p)2 −m2 + i0

]
Iµ

2 (p) :=
∫

d3k
kµ

(k2 −m2 + i0)
[
(k − p)2 −m2 + i0

]
Iµν

3 (p) :=
∫

d3k
kµkν

(k2 −m2 + i0)
[
(k − p)2 −m2 + i0

] .

According to naive dimensional analysis, the most UV divergent expression behaves like:

Iµν
3 ∝

∞∫
0

k2 dk
k2

k4
=

∞∫
0

dk ,

clearly showing the occurence of an infinity at the upper integration boundary.

A.1 Pauli-Villars regularisation

Introduced in 1949 by W. Pauli and F. Villars [23] building on work by E.C.G. Stückelberg, R.P.
Feynman and D. Rivier, the propagator is replaced by

1
q2 −m2 + i0

7→ 1
q2 −m2 + i0

− 1
q2 − Λ2 + i0

with Λ � 1 (in the end Λ →∞ to recover the original expression). The integrand doesn’t change
for small q, but is cut off smoothly for large |q| & Λ.
Generalising this procedure, one finds the substitution prescription

I(m) 7→
n∑

i=0

ci I (Λi)

with c0 = 1 and Λ0 = m, and the following conditions to eliminate linear and logarithmic diver-
gences:

n∑
i=0

ci = 0 and
n∑

i=0

ciΛi = 0 .

A.1.1 I1

Applying naive power counting to the first integral, we see that it is convergent and can therefore
be calculated using Feynman parameters:

I1(p) =
iπ2

p
ln
∣∣∣∣p + 2m

p− 2m

∣∣∣∣ ,

with the short-hand notation p :=
√

p2. This result (as well as the following ones) holds for the
kinematic range of 0 ≤ p2 ≤ 4m2.
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A.1 Pauli-Villars regularisation

A.1.2 Iµ
2

In this case, the procedure outlined above has to be applied: Transformation of the propagators

1
q2 −m2 + i0

7→ 1
q2 −m2 + i0

− 1
q2 − Λ2 + i0

leads to

Iµ
2 =

∫
d3k

kµ
(
m2 − Λ2

)2
(k2 −m2 + i0) (k2 − Λ2 + i0) [(k − p)2 −m2 + i0] [(k − p)2 − Λ2 + i0]

.

Subtraction at p = 0 defines
Iµ

2 (p) =: Iµ
2 (0) + Ĩµ

2 (p)

with the components

Iµ
2 (0) =

∫
d3k

kµ
(
m2 − Λ2

)2
(k2 −m2 + i0)2 (k2 − Λ2 + i0)2

Ĩµ
2 (p) =

∫
d3k

kµ
(
m2 − Λ2

)2
(k2 −m2 + i0) (k2 − Λ2 + i0)

·
{

−1
(k2 −m2 + i0) (k2 − Λ2 + i0)

+
1

[(k − p)2 −m2 + i0] [(k − p)2 − Λ2 + i0]

}
.

Taking the limit Λ →∞ in both of these integrals yields

Iµ
2 (0) = 0

Ĩµ
2 (p) =

∫
d3k

−kµ
[
p2 − 2(kp)

]
(k2 −m2 + i0)2 [(k − p)2 −m2 + i0]

,

the latter of which is now convergent. Using Feynman parametrisation

1
ABC

= 2

1∫
0

dα

α∫
0

dβ [(α− β)A + βB + (1− α)C]−3

and momentum translation leads to

Ĩµ
2 =

∫
d3k 2

1∫
0

dα

α∫
0

dβ
[
2(pk) kµ − (1− 2β)p2kµ + 2βpµ(pk)− (1− 2β)βp2pµ

]
·
[
k2 − β(β − 1)p2 −m2 + i0

]−3
.

Because the integration is symmetric, the integrals proportional to an odd power of k disappear
and we find, with the replacement kµkν = gµνk2/3,

Ĩµ
2 = 2pµ

1∫
0

dα

α∫
0

dβ

∫
d3k

[
2
3
k2 − (1− 2β)βp2

]
·
[
k2 − β(β − 1)p2 −m2 + i0

]−3
,
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which can now be Wick rotated (k0 7→ ik4) and integrated over k to

Ĩµ
2 =

iπ2

2
pµ

1∫
0

dα

α∫
0

dβ

{
2√

β(β − 1)p2 + m2
+

(1− 2β)βp2

[β(β − 1)p2 + m2]3/2

}

= iπ2pµ

1∫
0

dα
α√

α(α− 1)p2 + m2

=
iπ2pµ

2p
ln
∣∣∣∣p + 2m

p− 2m

∣∣∣∣ = Iµ
2 (p) .

A.1.3 Iµν
3

The same procedure may be applied in this case, too, leading to

Iµν
3 =

iπ2

4
p

{
−
(

gµν − pµpν

p2

)[
2m

p
+

p2 − 4m2

2p2
ln
∣∣∣∣p + 2m

p− 2m

∣∣∣∣]+
pµpν

p2
ln
∣∣∣∣p + 2m

p− 2m

∣∣∣∣} .

A.1.4 Combining the integrals

Putting the three integrals together, one obtains

Iµν = −iπ2p ·
(

gµν − pµpν

p2

)
·
[
2m

p
+

p2 − 4m2

2p2
ln
∣∣∣∣p + 2m

p− 2m

∣∣∣∣] ,

again for the kinematic range of 0 ≤ p2 ≤ 4m2.

A.2 Dimensional regularisation

This method, also called dimensional continuation, has been used for quite some time in statistical
mechanics (e.g. [12, 37]). It was first applied to quantum field theory by G. ’t Hooft and others in
1972 [28].

Changing the dimension of an integral, e.g.∫
d3q

q3
7→
∫

ddq

q3
,

makes it (UV) convergent for certain values of d (in the example above for d < 3).

This already leads to the general procedure of this method: calculate in d = n − 2ε instead of
n dimensions which makes the divergences manifest in poles of ε and – if possible – take the limit
ε → 0.

If one has dimension-dependent quantities (like Dirac gamma matrices), care has to be taken
to properly continue them into arbitrary dimensions!
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A.2 Dimensional regularisation

A.2.1 I1

Using Feynman parametrisation

1
AB

=

1∫
0

dα [αA + (1− α)B]−2

and performing the momentum translation kµ 7→ kµ + αpµ, the integral can be written as

I1(p) =
∫

d3k

1∫
0

dα
[
k2 −m2 + α(1− α)p2 + i0

]−2
.

Changing the integration dimension to d = 3− 2ε and using the general relation (for a derivation
see e.g. [24,8]) ∫

ddk

(
k2
)r

(k2 − a2)m = i(−1)r−m π
d
2

Γ
(
r + d

2

)
Γ
(
m− r − d

2

)
Γ
(

d
2

)
Γ(m) (a2)m−r− d

2

,

the momentum integral can be carried out (with the limit ε → 0), after which the α-integral
becomes simple:

I1(p) = iπ2

1∫
0

dα√
α(α− 1)p2 + m2

=
iπ2

p
ln
∣∣∣∣p + 2m

p− 2m

∣∣∣∣ .

The fact that the limit ε → 0 could be taken without generating divergences highlights the fact
that this integral in only apparently divergent, in fact can be calculated (with proper technique)
and leads to a finite result.

A.2.2 Iµ
2

The same procedure as before is applied to this integral, leading to

Iµ
2 (p) =

∫
d3k

1∫
0

dα (kµ + αpµ)
[
k2 −m2 + α(1− α)p2 + i0

]−2
.

Integrating symmetrically makes the intergal proportional to kµ disappear, leaving

Iµ
2 (p) = iπ2

1∫
0

dα
αpµ√

α(α− 1)p2 + m2
=

iπ2pµ

2p
ln
∣∣∣∣p + 2m

p− 2m

∣∣∣∣ .

A.2.3 Iµν
3

Once again we use Feynman parametrisation and momentum translation to obtain

Iµν
3 (p) =

∫
d3k

1∫
0

dα
[
kµkν + α (kµpν + pµkν) + α2pνpν

]
·
[
k2 −m2 + α(1− α)p2 + i0

]−2
,
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where the intergals proportional to an odd power of k vanish.
Rewriting kµkν = gµνk2/3 and performing (d = 3− 2ε)-dimensional integration, we get

Iµν
3 (p) = iπ2

1∫
0

dα

[
gµν
√

α(α− 1)p2 + m2 + pµpν α2√
α(α− 1)p2 + m2

]
,

which can be integrated-out straightforward to

Iµν
3 (p) =

iπ2

4
p

{
−
(

gµν − pµpν

p2

)
·
[
2m

p
+

p2 − 4m2

2p2
ln
∣∣∣∣p + 2m

p− 2m

∣∣∣∣]+ gµν 4m

p
+

pµpν

p2
ln
∣∣∣∣p + 2m

p− 2m

∣∣∣∣} .

A.2.4 Combining the integrals

Recalling the splitting of the original integral and combining the different results, we find

Iµν = pµpνI1 − 2pµIν
2 − 2pνIµ

2 + 4Iµν
3

= −iπ2p ·
(

gµν − pµpν

p2

)
·
[
2m

p
+

p2 − 4m2

2p2
ln
∣∣∣∣p + 2m

p− 2m

∣∣∣∣]+ 4iπ2gµνm ,

which differs from the solution with Pauli-Villars regularisation (see above) by a local term 4iπ2gµνm.
Such local terms are permitted by the theory because of the integral’s degree of divergence (see
below) and have to be fixed using physical constraints.
Following from this, the scattering matrix element is

Sfi = −e2π δ(3)
(
p− p′

) gκκgκ′κ′

2ωp

[
εµ (~p, κ) ε∗ν

(
~p ′, κ′

)
+ εν (~p, κ) ε∗µ

(
~p ′, κ′

)]
·
{

iπ2p ·
(

gµν − pµpν

p2

)
·
[
2m

p
+

p2 − 4m2

2p2
ln
∣∣∣∣p + 2m

p− 2m

∣∣∣∣]− 4iπ2gµνm

}
.

A.2.5 The seagull graph

Calculating the contribution of the fermion-line contraction in the seagull graph (one of the above-
mentioned higher-order terms: Hint = −e2 : Φ†Φ AµAµ :) gives

Sseagull
fi = −2πe2 gκκgκ′κ′

2ωp
2εµ (~p, κ) εµ ∗ (~p ′, κ′

)
δ(3)(p− p′)

∫
d3k

k2 −m2 + iε

= −e2πδ(3)(p− p′)
gκκgκ′κ′

2ωp
2εµ (~p, κ) εµ ∗ (~p ′, κ′

)
· 4iπ2m,

which exactly cancels the local term in the scattering matrix element of the vacuum polarisation,
that only appears if one uses dimensional regularisation.

A.3 The causal approach

A.3.1 An introduction

This method is the only mathematically well-defined procedure to cope with the divergences. As
we will see, it actually avoids creating them in the first place! But its machinery is quive involved,
making it very complicated to calculate higher-order diagrams. For a detailed introduction and
further applications see e.g. [25,1].
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The usual formal way of writing the S-matrix is

S = 1+
∞∑

n=1

(−i)n

n!

∫
d4x1 · · · d4xn T [Hint(x1) · · ·Hint(xn)] .

Since we end up with divergences, there must be something wrong with the expression above. The
problem lies with the definition of the time-ordered product of interaction Hamiltonians

T [Hint(x1) · · ·Hint(xn)]
def.
=
∑
Π

Θ
(
x0

Π1 − x0
Π2

)
· · ·Θ

(
x0

Π(n−1) − x0
Πn

)
· Hint (xΠ1) · · ·Hint (xΠn) ,

where one multiplies the operator-valued distributions T1 := −iHint with Heaviside distributions,
which isn’t mathematically sound (i.e. well-defined)! E.C.G. Stückelberg, N.N. Bogoljubov, H.
Epstein and V.J. Glaser (see. [11] and references therein) noted that it’s possible to avoid the UV
divergences if one used the causal structure of the theory. The IR divergences do not seem to
appear either at first glance, but they are hidden in the adiabatic limit g → 1 and have to be
treated separately.
Starting from a mathematically well-formed expression

S(g) = 1+
∞∑

n=1

1
n!

∫
d4x1 · · · d4xn Tn(x1, . . . , xn) · g(x1) · · · g(xn) ,

with Tn the n-point distribution and g ∈ S
(
R4
)
, the inverse of S is given by

S−1(g) = 1+
∞∑

n=1

1
n!

∫
d4x1 · · · d4xn T̃n(x1, . . . , xn) · g(x1) · · · g(xn) ,

where, using the formal series expansion 1/(1 + T ) = 1 +
∑

n(−T )n,

T̃n(X) :=
n∑

r=1

(−1)r
∑
Pr

Tn1(X1) · · ·Tnr(Xr)

and the sum runs over all partitions of X into r disjoint, non-empty subsets. Avoiding a direct
definition of Tn, one defines instead

A′
n(x1, . . . , xn) :=

∑
P2

T̃n1(X) Tn−n1(Y, xn)

R′
n(x1, . . . , xn) :=

∑
P2

Tn−n1(Y, xn) T̃n1(X),

where the sum runs over all partitions of {x1, . . . , xn−1} = X ∪ Y , X /=∅, into two disjoint subsets
with |X| = n1 ≥ 1 and |Y | ≤ n− 2.

Allowing for X = ∅ yields

An(x1, . . . , xn) :=
∑
P 0

2

T̃n1(X) Tn−n1(Y, xn) = A′
n + Tn(x1, . . . , xn)

Rn(x1, . . . , xn) :=
∑
P 0

2

Tn−n1(Y, xn) T̃n1(X) = R′
n + Tn(x1, . . . , xn).
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Exploiting causality reveals the support properties:

supp Rn(Y, xn) ⊆ Γ+
n−1(xn)

supp An(Y, xn) ⊆ Γ−n−1(xn),

with the n-dimensional generalisation Γ±n of the closed forward (+) and backward (−) light cone.

While An and Rn are not known (because they contain the Tn we are looking for), A′
n and R′

n can
be constructed by induction. Their difference, however, is identical:

Dn = R′
n −A′

n = Rn −An ,

with causal support in Γ+
n−1 ∪ Γ−n−1.

The exact way in which Dn is split into An and Rn using the support properties contains the
crux of the whole process!
Expand the distribution in external fields:

Dn(x1, . . . , xn) =
∑

k

:
∏

i

Ψ̄(xi) dk
n(x1, . . . , xn)

∏
j

Ψ(xj) :
∏
m

A(xm) ,

with dk
n(x) = r(x)− a(x) having the same causal support as Dn(x).

Analysing the behaviour of d̂k
n(p) in the limit p → ∞ determines its so-called degree of divergence

ω:

• if ω < 0, the trivial splitting with Heaviside distributions poses no problems and one finds

r̂(p) =
i

2π

∞∫
−∞

dt
d̂(tp)

1− t + i0

• if ω ≥ 0, one has to amend this according to

r̂(p) =
i

2π

∞∫
−∞

dt
d̂(tp)

(t− i0)ω+1 (1− t + i0)
(A.1)

Combining all the above, one gets the following “recipe”:

• from T1 = −iHint construct R′
n and A′

n inductively, from which r′ and a′ follow

• write down Dn and consecutively dk
n, determine the degree of divergence ω, and split into

retarded and advanced parts, r and a, respectively

• t = r − r′ = a− a′ from which Tn follows.

Another important finding is (r and r̃ are obtained using different ways of splitting):

r − r̃ =
∑
|a|≤ω

Ca Daδ(x) ,

with Ca ∈ R and Da the multi-index differentiation operator. This means that in the case of ω ≥ 0,
r is determined only up to local terms, which have to be fixed using physical constraints!
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A.3.2 Example: the causal approach to vacuum polarisation

Starting all over again (see also [26]), we remember the interaction Hamiltonian T1(x) := −iHint(x) =

−e : Φ†(x)
á

∂ µΦ(x) : Aµ(x) and write thus

A′
2(x, y) = −e2 : Φ†(x)

á

∂ µΦ(x) : : Φ†(y)
á

∂ νΦ(y) : : Aµ(x)Aν(y) : ,

R′
2(x, y) = −e2 : Φ†(y)

á

∂ µΦ(y) : : Φ†(x)
á

∂ νΦ(x) : : Aµ(x)Aν(y) : ,

and
D2(x, y) = R′

2(x, y)−A′
2(x, y) .

Using Wick’s theorem on normal ordering, this leads to, e.g., the first term in A′
2

: Φ†(x) ∂µΦ(x) : : Φ†(y) ∂νΦ(y) : = : Φ†(x) ∂µΦ(x) Φ†(y) ∂νΦ(y) :

+ : Φ†(x) ∂νΦ(y) : i∂µ
xD(+)(x− y)− : ∂µΦ(x) Φ†(y) : i∂ν

y D(−)(y − x)

+ ∂µ
xD(+)(x− y) ∂ν

y D(−)(y − x) ,

with D(±) the positive/negative frequency part of the Pauli-Jordan distribution.
Since normal ordering of the terms in Dn doesn’t obscure causal support, one can do distribution
splitting for every diagram separately.

We’re only interested in the vacuum polarisation, whose D2 is

D2(x, y) = −e2 : Aµ(x) Aν(y) :

·
[
∂ν

y D(+)(y − x) ∂µ
xD(−)(x− y)− ∂ν

y D(−)(y − x) ∂µ
xD(+)(x− y)

+ ∂µ
y D(+)(y − x) ∂ν

y D(−)(x− y)− ∂µ
xD(−)(y − x) ∂ν

y D(+)(x− y)

− ∂µ
x∂ν

y D(+)(y − x) D(−)(x− y) + ∂µ
x∂ν

y D(−)(y − x) D(+)(x− y)

−D(+)(y − x) ∂µ
x∂ν

y D(−)(x− y) + D(−)(y − x) ∂µ
x∂ν

y D(+)(x− y)
]

.

For further calculation, we change to momentum space and write:

D2(x, y) =: dµν(x, y) : Aµ(x)Aν(y) : with d̂µν(k) =:
e2

(4π)2

(
gµν − kµkν

k2

)
d̂(k) .

After some calculation, one finds

d̂(k) =

√
k2

2
Θ(k2 − 4m2) sgn(k0)

(
1− 4m2

k2

)
,

which behaves like |k| for k →∞. Therefore, ω = 1.

Remembering eq. A.1, we now easily write

r̂(k0) =
ik2

0

2π

∞∫
−∞

dp0
|p0|Θ(p2

0 − 4m2) sgn(p0)
(p0 − i0)2 (k0 − p0 + i0)

· 1
2

(
1− 4m2

p2
0

)

=
ik2

0

4π

∞∫
4m2

ds

s3/2

s− 4m2

k2
0 − s + i0k0

.
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From R′
2 follows (with similar definitions as for D2)

r̂′(k0) = −k0

2
Θ(k2

0 − 4m2)Θ(−k0)
(

1− 4m2

k2
0

)
and therefore

t̂(k0) = r̂(k0)− r̂′(k0) =
ik2

0

4π

∞∫
4m2

ds

s3/2

s− 4m2

k2
0 − s + i0

.

Integrating out and using the definition of t̂µν (similar to d̂µν) gives:

t̂µν(k) = −2
ie2

(4π)3

(
gµν − kµkν

k2

)√
k2

[
2m√
k2

+
k2 − 4m2

2k2
ln

∣∣∣∣∣
√

k2 + 2m√
k2 − 2m

∣∣∣∣∣
]

.

Comparison

Comparing the results of all three procedures, one sees that they all lead to the same result (up
to local terms and normalisation). It is also clear that, whilst providing the mathematically most
sound path, the causal approach becomes cumbersome for higher-order calculations. Thus, the
most widely used way to deal with divergences is dimensional regularisation, which is also used in
this work. Nevertheless, it has been very instructive to see how these different approaches work in
detail and also to see that they really lead to the same result, making the choice of procedure a
matter of taste.
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Poincaré, 19 (1973), pp. 211–95.

[12] M. E. Fisher and D. S. Gaunt, Ising model and self-avoiding walks on hypercubical lattices
and ‘high-density’ expansions, Phys. Rev. A, 133 (1964), pp. 224–40.

[13] T. Gehrmann, QCD corrections to double and single spin asymmetries in vector boson pro-
duction at polarized hadron colliders, Nuc. Phys. B, 534 (1998), pp. 21–39.
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