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Summary  

2. Summary 

Breast cancer, the main cancer in women, occurs in approximately 27% of all yearly diagnosed 

cancer cases. It is estimated that one out of eight women will develop breast cancer in her lifetime. 

Therefore it is not surprising that this disease ranks second as a cause of cancer death in women, 

after lung cancer (American Cancer Society, Cancer Facts and Figures 2009). Based on these 

numbers, many studies have been undertaken in the area of breast cancer and since 1990, death 

rates from breast cancer have been decreasing, mainly due to earlier detection and improved 

treatments. Since the 1970s, hormonal therapies targeting the estrogen receptor have been very 

successful for treatment of estrogen receptor positive (ER+) breast cancers that consist of about 

60% of the cases. More recently, therapies targeting the ErbB2 receptor tyrosine kinase that is 

overexpressed in about 20% of breast cancer have shown to be of benefit for this subset of breast 

cancer patients. However, not every patient responds to these treatments or patients become 

resistant, thus for both therapies there is a high risk of relapse. Consequently, novel therapies are 

required and will likely arise from an improved understanding of the disease biology.   

Recent studies have shown that members of the fibroblast growth factor receptor (FGFR) family 

of tyrosine kinase receptors are deregulated in breast cancer. Indeed FGFR1 gene is amplified in 

9% of breast cancers and single nucleotide polymorphisms in FGFR2 gene are strongly 

associated with an increased probability to develop breast cancer. Using models of breast 

carcinoma (4T1, 4TO7, 168FARN and 67NR cell lines), our study aimed at a better 

understanding of how FGFRs contribute to breast tumorigenesis. Furthermore we analysed the 

effects of blocking the activity of these receptors in cell lines and primary tumors. 

In vitro, we showed that 4T1, 4TO7, 168FARN and 67NR cell lines co-express FGF ligands and 

FGFRs, suggesting an autocrine loop activating FGFRs which leads to the constitutive basal 

activation of downstream signaling pathways, mainly MAPK and PI3K/AKT. Using TKI258, a 

tyrosine kinase inhibitor blocking FGFRs, we inhibited the basal activity of FGFRs. This 

inhibition resulted in a decrease of ERK1/2 and AKT activity, confirming that FGFR signaling 

maintains the activity of MAPK and PI3K/AKT pathways. Furthermore, interfering with 

autocrine FGFR signaling dramatically impaired proliferation of the four cell lines and apoptotic 

cell death was observed in 4T1 and 4TO7. Using constitutively active mutants, we demonstrated 

that Ras and AKT contribute to cell survival downstream of FGFRs and that 4T1 cells expressing 

these constructs are partially rescued from the effects of TKI258. Interestingly, when we 
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combined inhibitors of MEK (UO126) or PI3K (LY294002) with TKI258, we increased the 

sensitivity of 4T1 cells to TKI258 induced cell death. 

 In vivo, we describe that TKI258 treatment inhibits FGFR signaling in mice bearing 4T1-

induced tumors. In addition, daily oral treatment of mice bearing 4T1- or 67NR- induced tumors 

with TKI258 over 14 days, significantly reduces tumor outgrowth and decreases 4T1 lung 

metastasis, showing that blockade of FGFR has strong anti-tumor and anti-metastatic activities.  

Two microarray analyses performed on treated 4T1 cells or 4T1 tumors, led to the identification 

of genes that were regulated after TKI258 treatment. Detailed analyses showed that some of these 

genes were known to contribute to the metastatic process (matrix metalloproteinases and 

extracellular matrix proteins) or to cell cycle progression (cyclins and E2F transcription factors). 

Comparison of these TKI258-regulated genes with publicly available databases of breast cancer 

patients identified a cohort of patients showing overexpression of genes down-regulated upon 

TKI258 treatment, and these patients have a higher probability of metastatic disease compared to 

the other patients. These highly expressed genes might therefore reflect activation of receptor 

tyrosine kinase signaling pathways like FGFR in 4T1 tumors. 

 

In summary our results show that targeting FGFRs using a TKI has an impact on various 

biological characteristics of FGFR driven models of breast cancer, including proliferation and 

survival. In addition, our observations show that blockade of FGFR signaling can be achieved in 

vivo and this leads to reduction of tumor outgrowth as well as decreased metastases formation. 

Finally, our meta-analysis on genes that are changed in 4T1 treated cells and tumors provides 

evidences that results obtained using animal models of a diseases are meaningful in terms of 

prognostic and can be translated to breast cancer patients. 

   

 

 



Introduction 

3. Introduction 

3.1.  The Fibroblast Growth Factor (FGF) tyrosine kinase receptor family  

In complex organisms, cells have to behave in an appropriate and well controlled manner and 

they should only respond to specific stimuli. These stimuli are varied, ranging from soluble 

secreted factors, to molecules bound in the plasma membrane of a neighboring cell. These 

extracellular signals have to be sensed by the cells, integrated across the plasma membrane, 

amplified and interpreted in a way that induces a correct response. During evolution, different 

strategies have been developed in order to accomplish this challenge. One of these is the presence 

of transmembrane receptors that interact with extracellular stimuli and integrate them in the 

internal cell compartment. One class of receptors is the family of receptor tyrosine kinases (RTK). 

This family consists of 58 members that can be divided into 20 different subfamilies based on 

sequence homologies and conserved structural features. 

 

The subfamily IV is comprised of the Fibroblast Growth Factor (FGF) Receptors and includes 

four structurally related type I growth factor receptors: FGFR1, FGFR2, FGFR3 and FGFR4. 

Common to all members is an extracellular domain composed of two or three immunoglobulin-

like (Ig-like) loops, a stretch of eight consecutive acidic residues (the acidic box) situated 

between the first and the second Ig-like fold, a single hydrophobic transmembrane region and a 

cytoplasmic tail containing a split tyrosine kinase domain (Johnson et al., 1990; Johnson & 

Williams, 1993). Ligand binding to the extracellular domain induces formation of receptor homo 

or hetero-dimers (Bellot et al., 1991), leading to activation of the tyrosine kinase domain, 

phosphorylation of specific residues within the cytoplasmic domain of the activated receptors and 

phosphorylation of adaptor proteins. These phosphorylated residues serve as docking sites for 

specific signaling complexes that activate different signal transduction cascades, which in turn 

regulate key cellular processes including cell growth, proliferation, migration and differentiation 

(Klint & Claesson-Welsh, 1999). 

3.2.  FGFs and their receptors (FGFRs) in evolution 

The components of the FGFR signaling pathway, including the ligands (FGFs) and receptors 

(FGFRs), are conserved through evolution and genes encoding FGFs and FGFRs have been 
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identified in multicellular, but not in unicellular organisms (Itoh & Ornitz, 2004; Ornitz & Itoh, 

2001) .  

 

The nematode Caenorhabditis elegans is the first species that possess components of the FGF 

signaling pathway. Two fgfs (egl-17 and let-756) and one fgfr (egl-15) have been identified in 

this organism. Mutations in the egl-15 gene affect the migration of sex myoblasts (SM) and also 

result in larval arrest and scrawny body morphology (DeVore et al., 1995). The egl-17 null 

mutants partially recapitulate the phenotype of egl-15 mutants with respect to the defect in SM 

migration, suggesting that this gene acts as a ligand for egl-15 during SM migration and that at 

least one other ligand is responsible for the other phenotypes (Burdine et al., 1997). Indeed, 

mutants for the let-756 gene do not display a SM migration defect, however they show similarity 

to other aspects of the egl-15 mutant phenotype, in particular with the stage of lethality and the 

physiology of the worms, suggesting that let-756 is another ligand for egl-15 (Roubin et al., 

1999). More recent studies confirmed that let-756 is probably acting as ligand for egl-15 (Huang 

& Stern, 2004). 

 

In the fruitfly Drosophila Melanogaster, three fgfs (branchless, pyramus and thisbe) and two 

fgfrs (breathless and heartless) have been identified. The breathless receptor has been shown to 

play a role in anterior-posterior migration of the midline glial cells (Klambt et al., 1992) and, 

together with its ligand branchless, plays essential roles in the migration of tracheal cells out of 

the tracheal pits and in branch patterning (Sutherland et al., 1996). There is evidence to suggest 

that pyramus and thisbe are ligands for the heartless receptor and that together they regulate the 

migration of early mesodermal cells and patterning of the early mesoderm in the embryo (Beiman 

et al., 1996; Gisselbrecht et al., 1996; Stathopoulos et al., 2004). 

 

In the widely used vertebrate model organism zebrafish (Danio Rerio), the fgf family is 

comprised of 27 members and the fgfr family of 4 receptors (Itoh & Konishi, 2007; Scholpp et al., 

2004; Sleptsova-Friedrich et al., 2001; Thisse et al., 1995; Tonou-Fujimori et al., 2002). Several 

fgf mutants have been generated and described. The phenotypes are multiple and highlight the 

roles of the fgf genes in brain development, pectoral fin bud formation, haematopoiesis, 

erythrocyte differentiation and formation of the otic placode and vesicle. Approaches with 
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membrane-bound dominant negative and constitutively active receptors have been used to study 

the functions of the different receptors. The use of constitutive active mutants revealed an 

increase in dorsalisation of the embryo, increased formation of the posterior brain and inhibition 

of forebrain formation for all four Fgfrs. Dominant negative mutants for Fgfr1, 2 and 3 showed 

impaired development of posterior structures, brain anomalies and small heads, whereas 

dominant negative FGFR4 showed only defect in the posterior structure (Ota et al., 2009). 

3.3.  FGF/FGFR network in mammals 

In mammals, four FGF receptors have been characterized and can be activated by 22 FGFs. 

Moreover, in comparison to invertebrates, further levels of complexity and regulation of the 

FGF/FGFR interactions have been achieved. On one hand, alternative splicing has increased the 

functional diversity of FGFRs by regulating the total number of Ig-like domains present on the 

receptors (two or three) and by allowing different isoforms of the C-terminal part of the third Ig-

like loop. On the other hand, ligand-receptor interactions have also been refined in space by the 

added requirement of specific cofactors like glycosaminoglycan, Klotho or Klotho in order to 

initiate a response. Both the increase in complexity of the receptors, and the need for spatially 

restricted cofactors, diversifies FGF signaling, permitting it to contribute to development, 

angiogenesis, metabolism and regulation of cell proliferation, cell differentiation and migration. 

Importantly, deregulation of FGF signaling has been associated with several human diseases like 

dwarfism, rickets and cancer.  

3.3.1. FGFR ligands 

There are 22 mammalian FGFs, each encoded by a single gene. These 22 FGFs share 13 to 71% 

amino acid identity and are divided into 7 subfamilies (Figure 3-1) (Itoh & Ornitz, 2004), ranging 

in size from ~160 to 260 amino acid residues and have molecular weights from 17 to 34 kDa. 

Structural studies have shown that the conserved FGF core region consists of 12 antiparallel -

strands, of which the 1-2 loop and 10-12 region are involved in binding to the major co-

receptors heparin and heparan sulfate proteoglycan (HSPG) (Ornitz & Itoh, 2001). Expression of 

the different FGFs has been widely studied, mainly in development. A summary of the FGF 

classification is presented below. 
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Figure 3-1 Phylogenetic analysis of the human FGF gene family 

The family of the human FGF genes is divided in 7 subfamilies. The canonical FGFs are clustered 
in the subfamilies 1, 4, 7, 8 and 9. They bind to heparin and most of them are secreted into the 
extracellular space using the classical endoplasmic reticulum-Golgi secretion pathway. FGF1, 2, 9, 
16 and 20 use another, not yet characterized, secretion mechanism. Members of the hFGF 
subfamily act as hormones in an endocrine manner and do not interact with heparin, but require 
co-receptors like kotho and klotho. The iFGF subfamily members are not secreted and remain in 
the intracellular compartment. Interestingly, their activity appears to be independent of FGFRs. 
Adapted from (Itoh, 2007). 

 

The FGF1 subfamily consists of two members, FGF1 and FGF2, also known as acidic FGF 

(aFGF) and basic FGF (bFGF), respectively. FGF1 has been described as the “universal” ligand, 

capable of activating all of the FGFR subtypes. FGF2’s spectrum of activity is slightly more 

restricted than that of FGF1, however it is the second broadest activator of the FGFR subtypes 

(Zhang et al., 2006). Four different FGF2 isoforms can be synthesized by the use of three in-

frame CUG codons located upstream of the standard AUG start codon, resulting in longer 

polypeptides. Neither member of this FGF subfamily has the classical amino-terminal signal 

peptide required for secretion out of cells, however they are both found on the cell surface and 

associated with the extracellular matrix, suggesting that they can be released from damaged cells 
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or that they use a different mechanism than the classical secretory pathway in order to be released 

from the intracellular compartment (McNeil et al., 1989; Mignatti et al., 1992). Both FGF1 and 

FGF2 have an amino-terminal nuclear localization motif and are detected in the nucleus, however 

the biological function of nuclear-localized FGFs is still unclear (Hu et al., 2000; Powers et al., 

2000). 

 

Members of the FGF4 subfamily are secreted from the cells and include FGF4, FGF5 and FGF6. 

Secretion occurs via the classical endoplasmic-reticulum-Golgi pathway and during this process a 

signal peptide consisting of hydrophobic amino acids, present on the amino-terminal part of 

newly translated FGFs, is cleaved. Interestingly, all three members of this family were found to 

be glycosylated. This modification seems to negatively regulate FGF4 activity (Bellosta et al., 

1993), however it does not appear to be involved in modulation of FGF5 and FGF6 activity 

(Clements et al., 1993; Pizette et al., 1991). 

 

Four ligands comprise the FGF7 subfamily, namely FGF3, FGF7, FGF10 and FGF22. Members 

of this family possess an amino-terminal signal peptide that allows them to be secreted and 

glycosylation sites. In addition, different isoforms of FGF3 are synthesized, all of which contain a 

C-terminal nuclear localization sequence. FGF7, also known as keratinocyte growth factor (KGF), 

and FGF10 are mainly secreted by mesenchymal cells and act on epithelial cells expressing the 

appropriate receptor subtype. Finally, although FGF22 possesses a signal peptide, overexpression 

studies showed, that it is mainly localized within the cell and at the cell surface however without 

being released (Beyer et al., 2003). 

 

The FGF8 subfamily consists of three members (FGF8, FGF17 and FGF18) all of which possess 

an amino-terminal signal peptide and are secreted. FGF8, also called androgen-induced growth 

factor (AIGF), is found in at least seven isoforms in the mouse. These isoforms differ in their 

amino-termini, but retain the signal peptide required for secretion.  

 

All three members of the FGF9 subfamily (FGF9, FGF16 and FGF20) lack a classical cleavable 

amino-terminal signal peptide nevertheless, these FGFs are still secreted into the extracellular 
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space, suggesting that the members of the FGF9 subfamily utilize an alternate ER-Golgi-

independent pathway for secretion. 

 

The members of the hormone-like (hFGF) subfamily (FGF19, the human ortholog of FGF15, 

FGF 21 and FGF23) all act in an endocrine manner. Crystallographic studies have shown that the 

heparin binding site of the hFGFs diverges from that of the canonical FGFs, resulting in a 

decreased affinity for heparin and thus enhanced diffusion of these factors (Goetz et al., 2007; 

Harmer et al., 2004). However, specificity of signal transduction to key organs is achieved by 

hFGFs via their interaction with the alternative co-receptors Klotho or Klotho, which is 

necessary to fully activate FGFRs on their target tissues. 

 

Finally, the intracellular FGF (iFGF) subfamily, also named FGF homology factors (FHFs), 

consists of four members (FGF11, FGF12, FGF13 and FGF 14) that lack the classical signal 

peptide required for secretion and therefore, as their name suggests, remain localized within the 

cell. These iFGFs all appear to function in an FGFR independent way and furthermore contain a 

nuclear localization signal. In addition, FGF13 has been found to be expressed in several 

isoforms but their role is still not understood. 

3.3.2. Architecture of the FGF receptors 

All FGFs, with the exception of the iFGFs, mediate their cellular responses by binding to and 

activating a family of four type I transmembrane receptors (FGFR1-4) (Figure 3-2). These 

receptors are encoded by four distinct genes located on four different chromosomes: 8p11.2 

(FGFR1), 10q26 (FGFR2), 4p16.3 (FGFR3), and 5q35.1 (FGFR4). Sequence homology at the 

amino-acid level is high between the different receptors and FGFR2, 3 and 4 share 70%, 61% 

and 53% amino acid sequence identity respectively with FGFR1 (Zhang et al., 1999). 

 

The extracellular portion of FGFRs consists of about 360 amino acids and is composed of three 

Ig-like domains designated D1-D3. A stretch of seven to eight consecutive acidic amino acids 

(the acid box) is localized between D1 and D2 and serves as a binding site for heparin. A single 

transmembrane-spanning domain of around 20 amino acids links the extracellular part to the 80 

amino acids long intracellular juxtamembrane domain. This juxtamembrane domain is required 

  - 6 -  



Introduction 

for the constitutive, ligand- and phospho-tyrosine-independent, association of FGFRs with two 

major adaptor proteins, namely fibroblast receptor substrate 2  and  (FRS2and FRS2) (Ong 

et al., 2000). The tyrosine kinase domain immediately follows the juxtamembrane domain and is 

composed of approximately 280 amino acids. The particularity of the FGFR kinase domain is the 

presence of a 15 amino acids long non-catalytic insert that splits the tyrosine kinase into two parts 

(Klint & Claesson-Welsh, 1999). The 60 amino acid long C-terminal tail of the FGFR serves as 

binding site for signaling molecules.  

 

Various isoforms of the FGFRs are produced via differential splicing or exon skipping (Figure 

3-2). Soluble receptors were first characterized for FGFR1 (Johnson et al., 1990). These receptors 

are secreted and contain two or three Ig-like domains, however they lack the transmembrane and 

intracellular domains. They are thought to act as modulators of FGFR signaling by binding to 

free FGFs and sequestering them from activatable full length receptors (Hanneken, 2001). To 

date, soluble receptors were described for all four members of the FGFR family (Jang, 2002; 

Kishi et al., 1994). 

 

 

Figure 3-2 Structure of FGFRs. 

FGFRs contain an N-terminal signal peptide which is required for their membrane localization. 
The extracellular part consists of 3 Ig-like loops (D1-D3) and an acid box between D1 and D2. 
The extracellular domain of FGFRs is subject to differential splicing. The main splicing event 
occurs in the D3 loop and affects ligand binding properties. The intracellular tyrosine kinase 
domain is linked to the ligand binding domain through a unique transmembrane part. 
(Eswarakumar et al., 2005) 
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Isoforms lacking the D1 domain have also been described (Johnson et al., 1990) and are more 

sensitive to ligand induced signaling. Indeed, D1 plays an autoinhibitory role by acting as a 

competitor of FGF for receptor binding, thereby lowering the affinity of FGFRs for their ligands 

(Kiselyov et al., 2006; Wang et al., 1995). Interestingly, alternative splicing of exons 8 and 9 of 

FGFR1, 2, 3 but not 4, leads to changes in the C-terminal part of their D3 domains and gives rise 

to the so-called IIIb and IIIc receptor isoforms (Figure 3-2) (Johnson et al., 1991; Miki et al., 

1992; Werner et al., 1992a). These alternative forms display different ligand binding properties 

and their expression pattern is well defined and hardly overlap. Indeed, it has been shown that the 

IIIb isoforms are generally expressed in epithelial cells, whereas the IIIc isoforms are found on 

mesenchymal cells. This split pattern of expression allows interesting cross-talk to occur between 

epithelial and mesenchymal layers during development.  

 

Figure 3-3 shows a summary of the ligand-receptor interactions between the FGFs and the 

different splice variants of the FGFRs.  

  

 

Figure 3-3 Relative activity of FGFs on FGFRs 

Mitogenesis-based comparison of receptor specificity of the FGF family. (Zhang et al., 2006) 
*Data from (Ornitz et al., 1996), # were not tested 
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Intracellular C-terminal splice variants have been described for FGFR2 (Itoh et al., 1994; 

Tannheimer et al., 2000). These three isoforms have different signaling properties due to the 

presence or absence of a tyrosine residue required for the binding of PLC. Moreover, they 

confer different invasive phenotypes to breast cancer cells when ectopically expressed (Moffa et 

al., 2004). 

3.3.3. Heparan sulfate proteoglycans, Klotho and Klotho as coreceptors 

Proteoglycans (PG) are membrane bound extracellular matrix proteins containing carbohydrate 

side chains named glycosaminoglycans (GAG). GAGs are repeated units of disaccharides that 

possess a negative charge due to the presence of sulfate and carboxyl groups. Heparin and the 

complex heparan sulfate proteoglycan (HSPG), have been shown to play a key role in the FGF 

signaling pathway. The repeated disaccharide units of heparin sulfate consist of a 2-O-sulfated or 

unmodified hexuronic acid (-D-glucuronic acid (GlcA) or -L-iduronic acid (IdoA)) and either 

an N-sulfated or N-acetylated D-glucosamine (GlcN). The N-sulfated-glucosamines (GlcNSO3) 

may in addition be O-sulfated at C3, C6 or both and the N-acetylated-glucosamine (GlcNAc) may 

be O-sulfated at C6. The combination of these different structural units into disaccharides and 

their subsequent arrangement into chains creates an extraordinarily large potential for structural 

diversity (Coombe & Kett, 2005). The interaction between FGFs and HSPG has been shown to 

be relevant for FGF-dependent binding to and activation of FGFRs. In addition, FGFs fail to 

activate FGFRs in cells lacking endogenous HSPG or in cells treated with heparanase. This 

suggests that the interaction between FGFs and HSPG is required for FGFs to signal via FGFRs. 

Moreover, by binding with high affinity to FGFs, HSPG creates local reservoirs of ligands that 

can be released in the presence of specific proteases into the extracellular space, therefore, 

spatially and temporally regulating the availability of these ligands. Alternately, this interaction 

may stabilize FGFs against proteolytic degradation by keeping them in a constrained 

environment not accessible to proteases. 

 

The three members of the hFGF subfamily have only weak affinity for HSPG (Goetz et al., 2007; 

Harmer et al., 2004) and therefore require different co-receptors to activate FGFRs. The Klotho 

and Klotho genes encode for homologous, single transmembrane domain proteins that bind to 

FGFRs. The expression of Klotho is restricted to a few tissues, primarily the kidney and the 
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chorroid plexus in the brain. Complexes between Klotho and FGFR1-IIIc, FGFR2-IIIc and 

FGFR4 have been described, and results in a significant increase in affinity of the complex for 

the FGF23 ligand (Kurosu et al., 2006). The tissue expression of Klotho differs from that of 

Klotho as it is found predominantly in the liver and white adipose tissue. Here as well, interaction 

between FGFR1-IIIc, FGFR4 and Klotho has been demonstrated. Interaction of Klotho with 

these different FGFRs regulates the activities of FGF15/19 and FGF21 on target tissues (Kuro-o, 

2008). 

3.4.  Activation of receptor tyrosine kinases (RTKs) 

Activation of receptor tyrosine kinases (RTKs) has been intensively studied and all evidence 

suggests that dimerization of RTKs is a prerequisite for activation of the tyrosine kinase domain 

(Schlessinger, 2000). Within the FGFR family, dimerization can occur between two identical 

receptors (homodimerization) and there are reports suggesting that FGFRs can form heterodimers 

that are able to transphosphorylate themselves (Bellot et al., 1991). The classical view of RTK 

activation begins with the binding of ligand to the extracellular domain of a receptor. This step 

either induces conformational changes within the extracellular parts of the receptors themselves, 

unmasking domains involved in dimerization (EGFR family), or acts as a crosslink between two 

receptors, thus bringing them into close proximity of one another (VEGFR family). Ligand 

mediated interactions between two receptors induce further conformational changes within their 

extracellular domains, which are transduced to the intracellular part via the transmembrane 

domain. These intracellular conformational changes result in activation of the tyrosine kinase 

domains via phosphorylation of tyrosine residues within the intracellular part. These modified 

residues act then as docking sites for adaptor proteins that activate downstream signaling 

cascades. 

3.4.1. The symmetric Two-End model for FGFR dimerization 

The structures of several FGFs were solved (Blaber et al., 1996; Osslund et al., 1998) and the first 

crystal structure of FGF2 bound to the domains D2 and D3 of FGFR1 was determined in 1999 

(Plotnikov et al., 1999). Large amount of data on FGF/FGFR complexes is now available since 

these initial works were rapidly followed by the structures of other complexes, namely 

FGF1/FGFR1, FGF2/FGFR2 (Plotnikov et al., 2000) and more recently, FGF10/FGFR2-IIIb 
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(Yeh et al., 2003). Interestingly, these structures possessed several common features that allowed 

a better understanding of the molecular mechanisms governing FGF-FGFR binding specificity. In 

the resulting two-end model, two FGFs, two FGFRs and two heparin oligosaccharides cooperate 

to interact and form a symmetric functional dimeric unit (Figure 3-4) (Ibrahimi et al., 2005; 

Mohammadi et al., 2005b). 

 

  

 

Figure 3-4 The two-end model of FGF-FGFR-heparin complex 

One FGF2 (yellow) binds to the D2 (green) and D3 (blue) domains of one FGFR1-IIIc, therefore 
forming a monomeric ligand-receptor complex. Two monomers interact and form a dimeric 
complex by direct interaction between the receptors and by interaction between the ligand of one 
monomer with the D2 domain on the receptor from the other monomer. Heparin stabilizes the 
complex by interacting with ligand and receptor. (Mohammadi et al., 2005a) 

 

This model proposes that a functional signaling complex forms as follows: a single FGF first 

interacts with a single FGFR through surfaces of the receptor’s D2 and D3 Ig-like domains. Two 

of these monomers are then brought together via interaction between the ligand from one 

monomeric unit and the D2 domain of the receptor of the second FGF-FGFR complex. This 

produces a dimer consisting of two FGFs and two FGFRs. Stabilization of the dimer is further 

enhanced by direct receptor-receptor contacts. The close proximity of the two FGF-FGFR 

monomers results in formation of a positively charged canyon between the D2 domains that 

extends across the adjoining ligands. Two heparin molecules can bind in this canyon, each of 
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them promoting monomer stability by increasing FGF-FGFR primary interaction, as well as 

stabilizing the dimeric complex by enhancing secondary receptor-receptor interactions (Ibrahimi 

et al., 2005; Mohammadi et al., 2005a; Schlessinger et al., 2000). 

3.4.2. Activation of the tyrosine kinase domain of FGF Receptors 

Following ligand induced dimerization of the receptors, the intracellular tyrosine kinase domains 

get activated and phosphorylate several tyrosine residues on the kinase domain themselves, on 

the receptors and on other adaptor proteins. Resolution of the structure of FGFR1 kinase aided in 

the elucidation of the mechanisms of FGFR activation (Mohammadi et al., 1996). In brief, the 

FGFR1 kinase domain is divided into two lobes termed the N- and C-terminal domains. ATP is 

coordinated by residues in the N-terminal lobe, whereas substrate binding and catalysis are 

achieved by residues in the C-terminal lobe. When the kinase is inactive, the activation loop is 

positioned in such a manner that the binding site for substrate peptides is blocked, while the ATP 

binding site is still accessible. In addition to this physical function, autophosphorylation of 

tyrosine residues within the activation loop is critical for maintaining the kinase in an active state.  

There are at least seven tyrosine residues within the intracellular part of FGFR1 that have been 

shown to be phosphotylated; Y463, Y583, Y585, Y653, Y654, Y730 and Y766. The role of the 

individual phospho-tyrosine residues remains unknown, with the notable exceptions of 

Y653/Y654 on the activation loop and Y766 on the C-terminal tail, where phosphorylation is 

needed for activation of the kinase and binding of PLC, respectively. However, recent work has 

shown that the sequential phosphorylation of tyrosine residues in the intracellular part of FGFR1 

occurs in three stages. The first step consists of autophosphorylation of Y653, resulting in a 50- 

to 100-fold stimulation in kinase activity. The second step is the temporal phosphorylation of 

Y583 in the non catalytic insert of the kinase, Y463 in the juxtamembrane region, Y766 in the C-

terminal tail and Y585 in the non catalytic insert of the kinase, potentially creating docking sites 

for adaptor and signaling proteins. Finally Y654 in the activation loop gets phosphorylated, 

resulting in a total 500- to 1000-fold increase in the receptor’s kinase activity (Furdui et al., 2006; 

Lew et al., 2009). 
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3.5.  Activation of intracellular signaling pathways 

Phosphorylation of the intracellular tyrosine residues provides specific docking sites for Src 

homology 2 (SH2) or phosphotyrosine-binding (PTB) domain-containing adaptor proteins and 

signaling molecules (Schlessinger, 2000). Interestingly, of the seven FGFR phosphorylated 

tyrosine residues, only Y766 has been confirmed to act as docking site. Indeed, this conserved 

residue is required for the binding of PLC, through its SH2 domain, to FGFRs and its 

subsequent tyrosine phosphorylation and thus activation by the active receptor (Figure 3-5) 

(Mohammadi et al., 1991). Active PLC cleaves phosphatidyl-inositol-4,5-bisphosphate to 

inositol trisphosphate (IP3) and diacylglycerol (DAG). IP3 promotes the release of calcium from 

the endoplasmic reticulum while DAG and calcium activate protein kinase C (PKC), leading to 

cytoskeletal rearrangement. Indeed it has been shown that mutation of tyrosine 766 of FGFR1 

into a phenylalanine inhibits FGF2 induced shape change and stress fiber formation in porcine 

aortic endothelial cells, without affecting FGF2 induced proliferation (Cross et al., 2000).  

 

With the exception of PLC, FGFRs do not directly recruit adaptor or signaling proteins to 

phosphorylated tyrosine residues. Indeed FGFRs constitutively interact in a phosphorylation 

independent manner with the family of the FRS2 adaptor proteins (Figure 3-5) (Kouhara et al., 

1997). The FRS2 family consists of two highly homologous proteins (FRS2 and FRS2) that 

are targeted to the plasma membrane via a myristylated N-terminal domain and contain a PTB 

domain which mediates its direct and constitutive binding to FGFRs in a ligand and phospho-

tyrosine independent manner. Upon activation of the FGFR kinase, phosphorylation of the six 

and five tyrosine residues of FRS2 and FRS2 respectively, occurs. These residues then act as 

docking sites for the adaptor Grb2 and the phosphatase Shp2, both of which mediate activation of 

the mitogen-activated protein kinase (MAPK) pathway, therefore playing a key role in FGF 

dependent mitogenesis (Kouhara et al., 1997); (Lundin et al., 2003). Moreover, in response to 

FGF stimulation, Gab1 is recruited to Grb2, resulting in its phosphorylation on tyrosine residues 

and activation of the PI3-kinase/AKT survival pathway downstream of active FGFRs (Ong et al., 

2000). 
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Figure 3-5 Major proteins binding to FGFRs and downstream signaling pathways 

Two major proteins directly interact with FGFRs. On one hand, PLC binds through its SH2 
domain to the phosphorylated tyrosine 766 in the C-terminal tail and gets activated. Active PLC 
cleaves PIP2 into DAG and IP3, leading to regulation of calcium levels. On the other hand, FRS2 
constitutively bind FGFRs through its PTB domain. Upon FGF stimulation, FRS2 gets 
phosphorylated on tyrosine that recruit adaptor required for the activation of MAPK and PI3K-
AKT pathways. Adapted from (Beenken & Mohammadi, 2009). 

 

Several other signaling molecules have been described as being activated downstream of FGFRs 

however, it is still unclear if they directly interact with the receptors: 

The non-receptor tyrosine kinase Src is activated in vitro upon FGF stimulation (Landgren et al., 

1995; Zhan et al., 1994) and contributes to cell migration (LaVallee et al., 1998). Recent data has 

shown that Src is recruited to activated FGFR1 through FRS2 and modulates the signaling 

dynamics of FGFR1 as well as transport of FGFR1 to the plasma membrane (Sandilands et al., 

2007). 

 

The adaptor proteins Crk and Shb have been shown to directly interact with the phosphorylated 

tyrosine 463 and 766, respectively of FGFR1 and become tyrosine phosphorylated. Both these 

  - 14 -  



Introduction 

proteins have been implicated in regulating the activation of the MAPK pathway downstream of 

FGFRs (Cross et al., 2002; Larsson et al., 1999). 

 

The adaptor protein Grb14 also gets recruited to phosphorylated Y766 of FGFR1 where it acts as 

a negative regulator of FGF signaling and inhibits MAPK, AKT and PLC activation (Cailliau et 

al., 2005; Reilly et al., 2000). 

 

Finally, activation of Stat1 and Stat3 can be achieved downstream of FGFRs and they are 

believed to play a role in cell proliferation and survival (Hart et al., 2000). 

 

Once activated, these intracellular signaling pathways converge in the nucleus, where they 

activate a number of transcription factors, including Ets domain containing factors, c-jun and c-

fos. Changes in the level of target genes determine the biological response to receptor activation 

that, in the case of FGFRs, may vary from mitogenesis, migration, survival and differentiation. 

3.6. Regulation of FGFR signaling 

FGFR signaling induces key cellular processes which when misregulated can lead to several 

diseases. Therefore FGFR signaling needs to be tightly controlled in space and time. As 

previously mentioned, spatial regulation is achieved by the co-expression of specific FGFRs and 

co-receptors at the surface of FGF responsive tissues and organs. Temporal regulation of FGFR 

signaling can be achieved in several ways: On the one hand, internalization and subsequent 

degradation of the catalytically active receptors located at the plasma membrane rapidly 

decreases the number of molecules present at the cell surface, therefore diminishing the 

amplitude of the signal. Upon FGF stimulation and activation of the kinase domain, the E3 

ubiquitin ligase Cbl is recruited to FRS2 indirectly via Grb2, subsequently leading to 

ubiquitination of FRS2 and FGFR and thus degradation of these two proteins (Wong et al., 2002; 

Xian et al., 2007).  

 

On the other hand, active FGF signaling positively influences the expression of several feedback 

regulators:  
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The sprouty proteins were the first described feedback modulators of the FGF pathway and their 

expression is regulated by FGFs.  They act as general inhibitors of the Ras-MAPK pathway at 

different levels and through various mechanisms, of which sequestration and inhibition of Grb2, 

as well as direct binding and prevention of activation of Raf, are the best characterized (Mason et 

al., 2006; Thisse & Thisse, 2005).  

 

The Sef protein is a receptor-like glycoprotein that contains a single transmembrane domain and 

has no known catalytic activity. The prototypic Sef is located at the plasma membrane, but some 

isoforms are cytoplasmic (Ron et al., 2008). The expression of Sef is induced by FGF signaling 

and Sef proteins function as feedback-induced antagonists of FGF signaling, however, the 

mechanisms underlying this activity are still unclear (Furthauer et al., 2002; Lin et al., 2002). It 

has been proposed that transmembrane Sef could act at the level of the FGFRs themselves, 

whereas cytosolic Sef specifically regulates the MAPK pathway at the level of MEK (Thisse & 

Thisse, 2005; Tsang & Dawid, 2004).  

 

The MKP proteins contain an N-terminal, high-affinity ERK binding domain and a C-terminal 

phosphatase domain. Within this family, expression of MKP1 and MKP3, also called Dusp1 and 

Dusp6, is positively regulated by FGF signaling. Both members provide feedback mechanisms to 

attenuate the FGFR signaling pathway, via dephosphorylation and inhibition of ERK1/2 activity 

(Thisse & Thisse, 2005; Tsang & Dawid, 2004). 

3.7.  Non canonical FGFR signaling 

FGF signaling is also influenced and regulated by other FGF binding proteins without tyrosine 

kinase activity and by transmembrane proteins that directly interact with and modulate FGFR 

activity (Figure 3-6) (Murakami et al., 2008).  

 

The syndecans is a family of heparan sulfate proteoglycans that bind to FGFs with low affinity 

(~100-fold less than the FGF-FGFR interaction). The syndecans were first identified as co-

receptors modulating and facilitating the formation of FGF-FGFR signaling complexes 

(Bernfield & Hooper, 1991). The intracellular tail of these proteins is important for binding and 

activation of cytoplasmic proteins like Rac1 and PKC(Zimmermann & David, 1999). Deletion 
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of the syndecans’ tail abrogates FGF induced cell proliferation, suggesting that the intracellular 

tail of syndecans contributes to FGF signaling (Volk et al., 1999). 

 

Classical integrin ligands are components of the extracellular matrix. However, association of 

FGF1 with integrins can activate FGFR1 and the classical downstream signaling pathways (Mori 

et al., 2008).  

 

 

Figure 3-6 Non-canonical FGF signaling 

Non-canonical pathways are divided into two groups: On the left of the canonical pathway (purple 
box) are the ligand independent non-canonical FGFR pathway (N-cadherin and NCAM) and on 
the right are the ligand (FGF)-dependent pathways (Syndecan and Integrin). From (Murakami et 
al., 2008). 

 

Neural cell adhesion molecule (NCAM) contains five Ig-like loops and two fibronectin type III 

domains. NCAMs are mainly involved in homophilic interactions with other NCAM, thereby 

mediating cell-cell adhesion, but can as well interact with proteins from the extracellular matrix. 

Recent data reviewed by Hinsby (Hinsby et al., 2004) showed that NCAMs function as signaling 

receptors for GDNF. NCAM may also serve as a ligand for FGFR1 (Hinsby et al., 2004), and 

direct interaction between FGFR4 and NCAM, as well as activation of FGFRs upon NCAM 

binding have been reported (Cavallaro et al., 2001; Kiselyov et al., 2003). Interestingly, on one 
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hand NCAM’s interaction with FGFR stimulates cell-matrix adhesion (Cavallaro et al., 2001) 

while on the other hand it reduces FGF stimulated signaling as well as proliferation (Francavilla 

et al., 2007).  

 

Finally, N-cadherins, involved in calcium dependent cell-cell adhesions can bind to FGFRs. The 

interaction between N-cadherin and FGFR modifies FGFR signaling and inhibits ligand-induced 

internalization of the receptor and its subsequent degradation, therefore resulting in an increase in 

FGFR signaling (Cavallaro & Christofori, 2004; Murakami et al., 2008).  

3.8. FGF signaling in physiological processes 

FGF receptors are widely expressed and almost all tissues express one or several FGFs. FGF 

signaling has been implicated in various processes: Early patterning and dorso-ventral axis 

formation (Thisse & Thisse, 2005), embryonic development where FGF signaling controls cell 

migration and gastrulation through regulation of E-cadherin via the transcription factor snail 

(Ciruna & Rossant, 2001), limb development (Xu et al., 1999), neuronal induction and patterning 

of the brain (Ford-Perriss et al., 2001), kidney and lens development (Bates, 2007; Robinson, 

2006) as well as regulation of metabolism. To examine the contribution of this signaling pathway 

to development and its physiological role in vivo, whole body knockouts (KO), conditional 

knockouts (cKO), as well as knockin and transgenic mouse models expressing dominant negative 

FGFRs have been generated. 

3.8.1.  Role of FGF receptors and their ligands in development 

In the absence of Fgfr1, embryos die prior to, or during gastrulation at day E9.5-12.5. These 

mutant embryos fail to develop properly due to problems in embryonic cell proliferation and 

migration, as well as defective pattern formation (Deng et al., 1994). Interestingly, specific 

knock-out of the Fgfr1-IIIc isoform displayed a similar phenotype as the total Fgfr1 KO, whereas 

mice with Fgfr1-IIIb KO were viable and without obvious phenotype. These results display the 

important role that the FGFR1-IIIc isoform plays in embryonic development and emphasize that 

each isoform of FGFR1 has a specific and non overlapping function during development 

(Partanen et al., 1998; Yamaguchi et al., 1994).  
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Fgfr2 KO embryos do not survive later than E4.5-5.5 (Arman et al., 1998). Targeted deletion of 

the third Ig-like loop (D3) of Fgfr2 results in embryonic lethality no later than E10.5, due to 

defects in the placenta and limb bud formation (Xu et al., 1998). An isoform specific KO 

approach has allowed closer examination of the phenotypes related to deletion of the IIIb or IIIc 

splice variant of Fgfr2. The IIIb isoform KO mice are viable until birth but do not survive after 

birth due to a failure in lung formation. Other defects associated with this model include the lack 

of anterior pituitary, forelimbs and hindlimbs. In addition, skeletal and skin abnormalities were 

observed (De Moerlooze et al., 2000). The IIIc isoform KO mice are viable but exhibited delayed 

ossification, dwarfism and a reduced length of the limb bones proportional to the reduced size of 

the whole skeleton. Interestingly, and in contrast to Fgfr2-IIIb KO, no developmental limb 

defects were observed in Fgfr2-IIIc KO animals (Eswarakumar et al., 2002). Here again isoform 

specific KO approaches emphasize the different roles played by the individual splice variants of 

Fgfr2 in development. 

 

Fgfr3 loss of function is not lethal and the phenotype includes skeletal overgrowth of long bones 

and vertebrae, kyphosis and inner ear defects (Colvin et al., 1996; Deng et al., 1996). Further 

analysis of the bone defects showed that it is caused by high proliferation, expansion and 

hypertrophy of chondrocytes. 

 

Fgfr4 KO animals are viable and do not exhibit obvious abnormalities, suggesting that either 

Fgfr4 is not essential during development or that other members of the family can compensate for 

its ablation (Weinstein et al., 1998). 

 

Many studies have been devoted to the knock-out of Fgfs. For clarity, the KO studies described 

herein are grouped according to the different FGF subfamilies. 

 

FGF1 subfamily: There is no obvious phenotype in the Fgf1 KO animals (Miller et al., 2000), 

however the Fgf2 mutants display neuronal, skeletal and skin phenotypes (Dono et al., 1998). 

Double KO animals for Fgf1 and Fgf2 are not doing worse than the phenotype observed in Fgf2 

KO animals (Miller et al., 2000).  
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FGF4 subfamily: Fgf4 deletion is embryonic lethal at day E5.5, due to defects in trophoblast 

proliferation (Feldman et al., 1995). Fgf5 is involved in regulation of hair growth and KO 

animals exhibit abnormally long hair (Hebert et al., 1994). Fgf6 null animals have impaired 

muscle regeneration (Floss et al., 1997). 

 

FGF7 subfamily: Fgf7 ablation results in mice with a hair follicle defect (Guo et al., 1996) and 

decreases the number of nephrons in the kidney (Qiao et al., 1999). Fgf3 is required for correct 

tail and inner ear development (Mansour et al., 1993). Fgf10 KO animals showed postnatal death 

due to severely impaired development of the limbs, lungs and kidney (Min et al., 1998; Sekine et 

al., 1999). No KO of Fgf22 has been described to date. 

 

FGF8 subfamily: Fgf8 KO embryos die at day E8.5 as a result of gastrulation failure (Sun et al., 

1999). Moreover, mutant animals that possess both a hypomorphic and a null allele for Fgf8 

exhibit deletion of brain region and limb, as well as aberrations in heart, eye and craniofacial 

development (Meyers et al., 1998). Ablation of Fgf17 leads to abnormalities in the midline 

cerebral development (Xu et al., 2000). Fgf18 KO mice survive embryonic development but die 

at an early neonatal period. The phenotype of Fgf18 KO animals shares features with the Fgfr3 

KO animals, with respect to skeletal development (Liu et al., 2002; Ohbayashi et al., 2002). In 

addition, Fgf18 KO affects in lung development (Usui et al., 2004). 

 

FGF9 subfamily: Fgf9 KO led to postnatal lethality and the pups have a striking phenotype that 

consists in male-to-female sex reversal. The lungs of these animals show extreme hypoplasia, 

which is the most probable cause of death (Colvin et al., 2001a; Colvin et al., 2001b). Fgf16 

deletion results in embryonic lethality at day E11.5, due to a failure in heart development; facial 

defects were also observed (Lu et al., 2008b). No KO model of Fgf20 have been described, 

however, it is expressed in the developing limbs (Hajihosseini & Heath, 2002) and cochlea. In 

addition, treatment of cochlear explants cultures with an antibody blocking FGF20 abolished 

normal hair cell development (Hayashi et al., 2008). 

 

hFGF subfamily: FGF19 expression was detected in human fetal cartilage, skin, retina as well as 

adult gall bladder (Xie et al., 1999). The phenotype of the Fgf15 KO (the mouse ortholog of 
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FGF19) animals consists of many phenotypes: small and depleted gall bladder, reduced 

neurogenesis and increased proliferation in the cortex (Borello et al., 2008; Wright et al., 2004). 

Targeted disruption of Fgf21 has been reported and the mice are viable with no obvious 

developmental problems (Hotta et al., 2009). The Fgf23 KO mice are viable but have severe 

growth retardation, abnormal bone phenotype, metabolism disorder, infertility and a short 

lifespan (Shimada et al., 2004). 

3.8.2. FGF signaling in mammary gland development 

Mammary gland development in mice occurs in two distinct phases: the embryonic and the 

postnatal phases. The embryonic phase initiates with the appearance of the milk line, consisting 

of a localized thickening of the ectoderm. At day E11.5, five pairs of mammary gland primordia 

(also called placodes) develop along the milk line. During the following days, these epithelial 

structures invade the surrounding mesenchyme and by E16 there is formation of a rudimentary 

ductal tree. From day E18.5 until puberty, the mammary gland does not undergo any striking 

changes. The postnatal phase starts at puberty when the ducts elongate and invade the mammary 

fat pad in response to circulating ovarian hormones. Structures called terminal end buds (TEBs) 

form at the tips of the mammary ducts and are responsible for growth of the ductal trees, 

ramification and invasion into the adipose tissue. The TEBs are multi-layered highly proliferative 

structures that contain a cap cell layer at the leading edge and multiple layers of body cells 

(Figure 3-7). Upon invasion into the fat pad and elongation of the ducts, part of the body cells 

will undergo apoptotic cell death to allow formation of the hollow lumen of the ducts. The body 

cells that do not die will generate the luminal epithelial cells of the mature ducts and the cap cells 

will develop into the myoepithelial cells required for milk secretion during lactation. This process 

takes place until postnatal weeks 10-12, after which the TEBs regress, leaving a fully functional 

mammary gland. Further remodeling of the mammary gland occurs during pregnancy, when the 

epithelial cells become highly proliferative and subsequently differentiate to form the 

lobuloalveolar structures responsible for milk production. Upon parturition, these structures 

regress by means of an apoptotic process called involution and remodeling of the stroma occurs. 

Once involution is complete, the remaining ductal tree structures resembles the one present after 

puberty. During its lifespan the mouse mammary gland can undergo repeated cycles of pregnancy, 
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lactation and involution (Dillon et al., 2004; Jackson et al., 1997a; Schwertfeger, 2009; Spencer-

Dene et al., 2001).  

 

 

Figure 3-7 Architecture of terminal end bud (TEB)  

Terminal end buds (TEBs) consist of highly proliferative multilayered structures. The cells of the 
cap layer are involved in motility of the end buds and give rise to the myoepithelial cells, whereas 
the cells from the body layer will form the luminal cells of the ducts. Both layers have a high rate 
of mitosis, allowing the end bud to be a highly dynamic structure but in addition, the body cells 
undergo apoptosis, to allow formation of a hollow lumen in the duct. Degradation of the 
extracellular matrix at the front of the end bud allows elongation of the duct and motility of the 
end bud. (Sternlicht et al., 2006) 

 

Several FGFs (FGF4, FGF7, FGF8, FGF9, FGF10 and FGF17) and FGFRs (FGFR1-IIIb and 

FGFR2-IIIb) are expressed during the various embryonic and postnatal steps of mammary gland 

development and contribute to development of this organ (Coleman-Krnacik & Rosen, 1994; 

Hens & Wysolmerski, 2005; Pedchenko & Imagawa, 2000). 

 

Transgenic mice with targeted expression of dominant negative FGFR1-IIIc and FGFR2-IIIb in 

the mammary gland revealed that only FGFR2-IIIb has a role in postnatal lobuloavleolar 

development of the mammary gland (Jackson et al., 1997a; Jackson et al., 1997b). Further studies 

showed that FGFR2-IIIb is also required for embryonic development of at least four out of the 

five placodes and KO animals for Fgf10 or Fgfr2-IIIb fail to initiate and maintain mammary buds 
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during embryogenesis (Mailleux et al., 2002). In addition, attenuation of endogenous FGFR2-IIIb 

signaling in the mammary gland by inducible reversible expression of a soluble FGFR2-IIIb that 

acts as a ligand trap, showed that FGFR2-IIIb signaling plays a critical role during developmental 

stages of the mammary gland, where it controls the induction, the survival and proliferation of the 

placodes. Expression of this soluble FGFR2-IIIb at postnatal developmental stages show a 

decrease in formation and maintenance of the TEBs together with a decrease in proliferation and 

survival of the luminal epithelial cells with no effects on the regenerative potential of epithelial 

progenitor cells (Parsa et al., 2008). Another approach using cKO of Fgfr2-IIIb in the mammary 

gland showed duct elongation and branching defect, accompanied by a decrease in proliferation 

and invasion of the TEBs upon deletion of Fgfr2-IIIb (Lu et al., 2008a). These results suggest 

that FGFR2-IIIb is involved in embryonic as well as postnatal development of the mammary 

gland. 

3.8.3. FGF signaling in skin homeostasis and repair 

FGF7 also known as keratinocyte growth factor (KGF) was originally discovered as a mitogenic 

factor for a mouse keratinocyte cell line, suggesting that it may play an important role in the skin. 

Targeted expression of a truncated dominant-negative FGFR2-IIIb to suprabasal keratinocytes 

under the keratin 14 promoter led to epidermal atrophy and disorganization, as well as hair 

follicles morphology defects. Moreover, the rate of keratinocyte proliferation was strongly 

decreased (Werner et al., 1994). Fgfr2-IIIb KO animals do not survive beyond birth. However, at 

term, they show severe skin abnormalities like decreased thickness and decreased proliferation of 

the basal layer keratinocytes and they exhibit defects in number and distribution of hair follicles. 

Interestingly, Fgf10 KO animals showed similar but less severe phenotypes (Petiot et al., 2003). 

These data suggest that FGF10 indeed signals via FGFR2-IIIb and they together contribute to 

skin development. As Fgfr2-IIIb KO animals die short after birth, conditional KO models using 

the Cre-lox system were developed (Sauer, 1998). Crossing of mice bearing floxed Fgfr2-IIIb 

with mice expressing the Cre recombinase under the keratin 5 promoter allowed specific deletion 

of Fgfr2-IIIb in the epidermis. Detailed analysis of the phenotypes demonstrates expression of 

FGFR2-IIIb is required for correct hair and sebaceous gland development. In addition, cutaneous 

inflammation was observed and hyperthickening of the epiderm as well as papilloma formation 

appeared in aging mice (Grose et al., 2007).  
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The role of skin as a barrier against invading microorganisms is well understood. However, 

damages or injuries to skin decrease its efficiency to function as a proper barrier.  Wound healing 

is the repair process that is initiated immediately after injury and it has been described that KGF 

expression is strongly induced during wound healing (Komi-Kuramochi et al., 2005; Werner et 

al., 1992b). Interestingly, transgenic animals expressing a dominant negative FGFR2-IIIb in the 

epidermis show a severe delay in wound re-epithelialization, suggesting a role for this receptor in 

wound repair. Surprisingly, Kgf KO animals did not show any phenotype with respect to skin and 

do not show a defect in wound healing, suggesting that compensation mechanisms probably 

occur in these animals (Werner & Grose, 2003). 

3.8.4. Hormone-like FGFs as metabolism regulators 

The metabolic FGFs (FGF19, FGF21 and FGF23) were shown to be involved in glucose, lipid, 

bile acid, phosphate and vitamin D metabolism in an endocrine manner. The lack of a heparin-

binding domain allows these FGFs to be efficiently secreted and released in the circulation 

(Goetz et al., 2007). Nevertheless, these factors still require a co-factor, Klotho or Klotho, in 

order to bind to and activate FGFRs. 

 

The best characterized role of FGF19/FGF15 is in bile acid homeostasis. In the intestine, 

FGF19/FGF15 expression is upregulated by the farnesoid X receptor (FXR), a nuclear hormone 

receptor that is a key regulator of bile acid synthesis. FGF19/FGF15 is released in the circulation 

and binds to FGFR4 through interaction with Klotho in the liver, where it causes 

downregulation of CYP7A1, leading to a reduction of bile acid synthesis. In addition to hormonal 

control of bile acid biosynthesis, FGF19/FGF15 is a regulator of gallbladder filling and both 

Fgfr4 and FGF19/Fgf15 KO animals have small, depleted gallbladders (Jones, 2008). Another 

metabolic contribution of this growth factor was found in transgenic mice expressing FGF19 in 

the muscle under the myosin light chain promoter (Tomlinson et al., 2002). Indeed, these animals 

have a decrease in white adipose tissue and retain a lean phenotype under high fat diet (Figure 

3-8 a).  

 

FGF21 is released mainly from the liver but is as well found in pancreas, adipose tissue and 

muscle. Its expression is regulated upon fasting by the peroxisome proliferator-activated 
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receptors (PPAR and PPAR) (Kharitonenkov, 2009), and it requires Klotho as a coreceptor to 

activate FGFR1-IIIc and FGFR2-IIIc (Kurosu & Kuro-o, 2008; Suzuki et al., 2008). The target 

tissues of FGF21 are multiple (adipose tissue, pancreas and liver) (Figure 3-8 b) and the effects of 

FGF21 stimulation were first described in adipocyte, where it induces an increase in glucose 

uptake by upregulation of the glucose transporter GLUT1 (Kharitonenkov et al., 2005). Similar to 

the FGF19 transgenic mice, animals with over-expression of FGF21 in the liver were resistant to 

diet induced obesity, and have improved metabolic profiles. In contrast, FGF21 deficiency led to 

increased body weight, development of fatty liver and reduced oxygen consumption.  

 

FGF23 primarily originates from bone and requires Klotho as a co-receptor. Interestingly, Fgf23 

KO animals and Klotho mutant mice have similar phenotypes showing premature aging, 

increased renal expression of Cyp27b1 (1-hydroxylase), high vitamin D in the blood, 

hyperphosphataemia and impaired bone mineralization, as well as ectopic calcification in soft 

tissues (Shimada et al., 2004; Tsujikawa et al., 2003). As co-expression of Klotho and FGFRs is 

found in the kidney and in the parathyroid gland (Ben-Dov et al., 2007; Liu et al., 2008), the 

effects of FGF23 signaling were studied in details in these tissues. In the kidney, FGF23 binds to 

FGFR1-IIIc and has two major effects: it decreases the levels of Cyp27b1/Cyp24 (24-

hydroxylase) that in turn reduces production of active vitamin D (Saito et al., 2003). In the 

parathyroid gland, FGF23 by activating FGFR1 or FGFR3 inhibits parathyroid hormone (PTH) 

production and secretion, leading to a drop of PTH concentration in the serum. This decrease in 

PTH leads to a decrease of Cyp27b1 in target tissues and a decrease of vitamin D (Urakawa et al., 

2006). The effects of FGF23 on parathyroid gland and kidney have in common a lowering of 

vitamin D, that in turn affects reabsorption of phosphate in the kidney through regulation of the 

expression of Na/Pi cotransporters (Npt2a and Npt2c) and absorption of phosphate in the intestine 

(Figure 3-8 c) (Beenken & Mohammadi, 2009; Kurosu & Kuro-o, 2008; Kurosu & Kuro, 2009). 
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Figure 3-8 hFGFs and their role in metabolism 

a) Regulation of FGF19 by FXR receptor in the intestine and its role in the regulation of bile acid 
synthesis through Klotho mediated activation of FGFR4 in the liver. 

b) FGF21 mediates PPAR induced fasting response through tissue specific klotho dependent 
activation of FGFR1-IIIc or FGFR2-IIIc. 

c) FGF23 production in the bone is upregulated in response to high serum phosphate and vitamin 
D. FGF23 activates FGFR1 or FGFR3 with the Klotho coreceptor in the parathyroid gland and 
decreases PTH release, which downregulate. FGF23 also directly acts on FGFR1-IIIc and Klotho 
on the kidney where it modulates 1-hydroxylase levels. This leads to changes in Vitamin D 
expression and decrease phosphate absorption in the intestine as well as decrease phosphate 
reabsorption from the Kidney. Adapted from (Beenken & Mohammadi, 2009) 

3.9. Deregulation of FGF signaling 

FGFs and their receptors have been associated with multiple biological activities and several 

developmental processes. Knockout and knockin approaches highlighted the fact that tightly 

regulated FGF signaling is required for growth and development of healthy organisms. However, 

various mechanisms can lead to uncontrolled and deregulated FGF signaling reviewed in 

(Eswarakumar et al., 2005; Grose & Dickson, 2005). Deregulation of FGF signaling as well as 
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other signaling pathway can be achieved by several mean (the biology of cancer, Weinberg, 

Garland Science): Co-expression of a ligand and its receptor by the same cell leads to a 

constitutive autocrine activation of the downstream signaling pathways. Overexpression of 

ligands may increase the signals received by a cell, thus leading to an inappropriate response to 

the stimuli. Protease mediated shedding of ligands from their co-receptor and their release into 

the blood stream, allows a broader and uncontrolled activity of the ligands on tissues where they 

normally do not induce a response. Isoform switching can cause active signaling in inappropriate 

tissues. Point mutations as well as gain or loss of function mutations can deregulate a signaling 

pathway. Studies of the kinetics of phosphorylation and activation of the kinase domain of 

FGFR1, showed that activation of this receptor occurs in a two-step mechanism mediated by 

ordered and regulated autophosphorylation (Furdui et al., 2006). Interestingly, follow up studies 

demonstrated that oncogenic point mutation in the kinase domain disrupt this order of 

autophosphorylation, thereby leading to aberrant activation of downstream signaling molecules 

(Lew et al., 2009). Ligand independent activation of a receptor can be achieved either by 

structural alterations leading to constitutive activity of the kinase domain or by overexpression of 

the receptor. Genetic rearrangements like gene amplification, translocation and fusion can 

deregulate the expression of a gene or lead to expression of constitutively active mutant lacking 

regulatory domains. Finally, polymorphisms have been shown to modulate the expression of 

certain genes as well as the activity of proteins. All these processes of deregulating a signaling 

pathway have been reported for FGF signaling and contribute to development of several diseases. 

3.9.1. Deregulation of FGF signaling in human diseases.  

Craniosynostosis occurs with a frequency of approximately 1 in 2500 individuals and consists in 

the premature fusion of the skull sutures. Nine craniosynostosis syndromes have been described, 

showing different severities in abnormal skull sutures as well as limb abnormalities. All these 

syndromes were linked with germ line point mutations in FGFR1 or FGFR2. The majority of 

mutations are located in the ligand binding area, in the Ig-like domain III (Wilkie, 2005). Most of 

these mutations consist of a loss or gain of a cysteine residue that induce increase of affinity for 

the ligand or ligand-independent dimerization and activation of the receptors (Eswarakumar et al., 

2005; Marie et al., 2005; McIntosh et al., 2000). 
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Fgfr3 KO animals showed elongated bones therefore, it is not surprising that activating mutations 

in FGFR3 have been associated with human dwarfism (Deng et al., 1996). In the most common 

form of this disease (achondroplasia), FGFR3 mutations occur in the transmembrane domain and 

lead to increase of both kinase activity and stability of the mutant FGFR3, thereby activating 

FGFR signaling in a ligand independent manner. The activating mutations in FGFR3 are thought 

to act in part through the activation of STAT and lead to a decrease in chondrocyte proliferation 

and therefore a decrease of the hypertrophic zone in the growth plates (Coumoul & Deng, 2003; 

L'Hote & Knowles, 2005). 

 

FGF3 mutations are associated with a rare form of sensorineural hearing loss, called Michel 

aplasia. This disease is characterized by a complete loss of the inner ear structures, however the 

effect of the FGF3 mutations on FGFR signaling have not yet been studied (Krejci et al., 2009). 

 

Lacrimo-auriculo-dento-digital (LADD) syndrome is an autosomal dominant disease 

characterized by hearing loss, dental and digital anomalies. Missense mutations in FGF10, 

FGFR2 and FGFR3 have been found in patients suffering from this syndrome (Milunsky et al., 

2006; Rohmann et al., 2006). The contribution of these mutations to the disease is probably 

through a loss of function mechanism (Lew et al., 2007; Shams et al., 2007). 

 

Loss of function mutations in FGF8 interfering with its binding on FGFR1 as well as mutations 

in FGFR1 lead to Kallmann’s syndrome. This disease is a developmental disorder characterized 

by absent or delayed puberty, hypogonadism, low serum levels of gonadotropins and defective 

sense of smell (anosmia) (Dode & Hardelin, 2009; Dode et al., 2003; Hardelin & Dode, 2008). 

 

Parkinson disease which affects approximately 1% of the population has symptoms including 

tremor, bradykinesia and rigidity. The main cause of the disease is due to a loss of dopaminergic 

neurons through an apoptotic death. Three single nucleotide polymorphisms (SNPs) were found 

on FGF20 and showed significant association with the disease (van der Walt et al., 2004). These 

SNPs have been shown to increase FGF20 translation, leading to upregulation of -synuclein, 

that is one of the agents causing the disease (Beenken & Mohammadi, 2009; Krejci et al., 2009). 
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Several disorders are caused by mutations in FGF23. Autosomal dominant hypophosphataemic 

rickets (ADHR) is a disorder of renal phosphate wasting, defective cartilage mineralization and 

defective bone mineralization. The mutation responsible for this disease disrupts a cleavage site 

for subtilisin-like proprotein convertase, rendering FGF23 less susceptible to degradation, 

therefore increasing the biological activity of FGF23 and leading to the disease (Beenken & 

Mohammadi, 2009; Krejci et al., 2009). Inactivating mutations of the PHEX endopeptidase in X-

linked hypophosphataemic rickets leads to increased level of circulating FGF23. On the other 

hand, decreased FGF23 signaling due to destabilizing mutations causes pathologies like familial 

tumoral calcinosis that is characterized by hyperphosphataemia and deposition of calcium 

crystals in periarticular spaces. Mutations in Klotho have been implicated in the same type of 

disease, showing the importance of FGF23, Klotho axis in this disease. 

3.9.2. Aberrant FGF signaling in human cancers 

The effects of inappropriate FGF signaling have been intensively examined in tumorigenesis and 

it appears that FGFRs and their ligand contribute to progression of various cancers. 

 

Figure 3-9 Mechanisms of translocation and fusion 

Translocation of part the FGFR1 gene (the kinase domain) and fusion with ZNF198 (the 
dimerization domain) leads to formation of a fusion protein that consist of the dimerisation 
domain of ZNF198 and the kinase domain of FGFR1. Interaction of two fusion proteins mediated 
by their dimerization domain allows the kinases to get constitutively activated and therefore signal 
in an uncontrolled manner (Grose & Dickson, 2005). 
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In hematological malignancies, chromosomal translocation and fusion of FGFR1 with different 

partners has been described and plays an important role in myeloproliferative syndromes (MPS). 

Translocation between FGFR1 and a partner gene causes a disease characterized by myeloid 

hyperplasia, eosinophilia and lymphoblastic lymphoma that is called 8p11 myeloproliferative 

syndrome (EMS). The cause of this disease results in the fusion between the kinase domain of 

FGFR1 and a dimerization domain, leading to constitutive tyrosine kinase activity of the fusion 

protein (Figure 3-9). This in turn protects the cells expressing this fusion protein from apoptosis 

(Eswarakumar et al., 2005; Grose & Dickson, 2005). In addition to FGFR1, translocation and 

fusion with a dimerization domain, as well as activating mutations, were described for FGFR3 in 

multiple myeloma (L'Hote & Knowles, 2005). 

 

In the prostate, FGFs are required for development, growth and maintenance of prostatic tissue. 

Therefore it is not surprising that deregulated FGF signaling in the prostate leads to malignancy. 

Indeed, expression of various FGFs (FGF1, FGF2, FGF6, FGF8, FGF9 and FGF17) has been 

described in prostate cancer. In addition, FGF8 expression correlates with advanced tumor stage 

and is associated with decreased survival (Cronauer et al., 2003; Dorkin et al., 1999; Mattila & 

Harkonen, 2007). Expression of FGFR1 was found in 20% of moderately differentiated and 40% 

of poorly differentiated cancers, arguing that with transformation and progressive loss of 

differentiation, there is an increase of FGFR1 expression in prostate cancer. In addition, chemical 

activation of FGFR1 in the prostate epithelium of transgenic animals leads to development of 

hyperplasia (Acevedo et al., 2007; Kwabi-Addo et al., 2004; Winter et al., 2007). Another 

interesting observation was made in prostate tumors upon disease progression; namely an isoform 

switch from the normally epithelia-expressed FGFR2-IIIb, to the mesenchymally-expressed 

FGFR2-IIIc (Grose & Dickson, 2005). The switch in FGFR2 isoforms to the mesenchymal form 

may induce a change from paracrine to autocrine activation of the signaling downstream of 

FGFRs, since the epithelial-cell derived FGF ligands may activate the FGFR2-IIIc isoform in the 

tumor cells. 

 

FGF1 and FGF2 are increased in the urine of patients with bladder cancers (Cronauer et al., 

2003). Expression of other FGFs (FGF5 and FGF8) was also reported in bladder cancer. As for 

prostate carcinoma, it seems that low expression or loss of the isoform IIIb of FGFR2 is 
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associated with poor prognosis, suggesting that in bladder cancer, this receptor could act as a 

tumor suppressor. Activating mutations of FGFR3 located either on the ligand binding domain or 

in the kinase domain were described in 40% of the cases and FGFR3 has been shown to be 

required for bladder cancer cell proliferation  (Cronauer et al., 2003; Grose & Dickson, 2005; 

Knowles, 2008). 

 

Several other human cancers show deregulation of FGF signaling. In pancreatic cancer high 

expression of several FGFs (1, 2, 5 and 7) and most of the FGFRs was observed, leading to an 

autocrine activation of the receptors and downstream signaling pathway (Kornmann et al., 1998). 

Activating mutations in FGFR2 have been found in 10% of endometrial cancers (Byron et al., 

2008; Byron & Pollock, 2009). Other mutations in FGFRs were found in lung cancer (FGFR2) 

(Davies et al., 2005), ovarian cancer as well as colorectal and gastric cancer (FGFR2 and FGFR3) 

(Jang et al., 2001; Katoh, 2008).  

3.9.3. FGF signaling in mammary tumors and in human breast cancers 

Breast cancer is the main diagnosed cancer in women (27% of the cases) and is the major cause 

of death in women between 35 and 59 years old (American Cancer Society, Cancer Facts and 

Figures 2009). However, what we call breast cancer is not a homogenous disease and gene 

expression studies performed on breast tumors showed that this pathology can be divided in at 

least 5 subtypes; namely Luminal A, Luminal B, ERBB2+, Basal-like and Normal Breast-like 

(Figure 3-10) (Perou et al., 2000; Sorlie et al., 2001; Sorlie et al., 2003).  

 

Luminal A and B subtypes are estrogen receptor positive (ER+), with the highest expression level 

of ER in the luminal A, while the other subtypes are all characterized by low or absent expression 

of ER. The ERBB2+ subtype has an amplification of the ERBB2 gene, leading to high expression 

of the receptor tyrosine kinase ErbB2. The basal-like subtype has high expression of keratins 5 

and 17 and laminin. Normal breast-like group shows high expression of genes normally 

expressed by adipose tissues or non-epithelial cell types. Interestingly, these different subtypes of 

breast cancer show distinctive prognoses, with the best prognosis for luminal A and the worst for 

the basal-like subtype (Figure 3-10) (Perou et al., 2000; Sorlie et al., 2001). 
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Figure 3-10 Prognoses of different subtypes of breast cancer 

Kaplan-Meier analysis of breast cancer outcome. The study was recording time to development of 
distant metastasis in 97 cases of breast cancer (Sorlie et al., 2003). 

 

The assumption that FGFs could contribute to mammary tumorigenesis started with studies 

investigating the integration sites of the mouse mammary tumor virus (MMTV) (Nusse & 

Varmus, 1982). Indeed additional studies showed that the MMTV integrates commonly near 

genes coding for members of the FGF signaling pathway (Fgf3, Fgf4, Fgf6, Fgf8, Fgf10 and 

Fgfr2) (Mattila & Harkonen, 2007; Peters et al., 1989; Theodorou et al., 2004; Theodorou et al., 

2007). To validate these observations, transgenic animal models were developed that express 

FGF3 or FGF8 in the mammary gland under the control of the MMTV promoter and all the 

animals developed mammary tumors (Daphna-Iken et al., 1998; Muller et al., 1990). Another 

approach expressed a chemically activable FGFR1 kinase domain under the MMTV promoter 

(Welm et al., 2002). Prolonged treatment of the animals with a chemical inducing dimerization 

and activation of the kinase domain led to invasive lesions in the mammary gland. Interestingly, 

an in vitro study comparing the activity and signaling properties of inducible FGFR1 kinase 

versus inducible FGFR2 kinase showed that both receptors can induce proliferation, however 

only FGFR1 signaling was sustained and promoted an invasive phenotype. One mechanism 

proposed for these differences in activity is the increased internalization and down-regulation of 
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FGFR2 after its activation, possibly via interaction with the ubiquitin ligase Cbl (Xian et al., 

2007).  

 

In contrast to the clear contribution of FGFs to mouse mammary tumors, the role of FGFs in 

human breast cancer is still unclear. Considering the genes involved in MMTV induced mouse 

mammary tumors, FGF4 and FGF6 are the growth factors about which the least data are available. 

FGF4 is located within the 11q13 genetic locus that is commonly amplified in about 18% of 

breast cancers (Karlseder et al., 1994), however no data have been published concerning the 

expression of FGF4 in breast tumors. The expression of FGF6 has been described as being more 

restricted than FGF1 and FGF2 in a panel of breast cancer tumors and cell lines (Penault-Llorca 

et al., 1995), however no recent study aimed at better analyzing the pattern of FGF4 and FGF6 

expression in breast tumors. FGF3 (int-2) is also located in the 11q13 amplicon (Karlseder et al., 

1994), and amplification of FGF3 correlates with increased aggressiveness in node-negative 

breast carcinoma (Fioravanti et al., 1997). FGF8 was found elevated in malignant compared to 

non-malignant breast tissues (Marsh et al., 1999) and FGF10 is overexpressed in breast 

carcinoma (Theodorou et al., 2004). Data concerning FGF2 are ambiguous: it has been shown to 

be expressed at lower levels in human breast cancer (Colomer et al., 1997; Luqmani et al., 1992), 

but at the same time, elevated FGF2 expression in breast tumors is associated with more 

aggressive form of the disease and is elevated in the serum of patient with breast cancer (Sliutz et 

al., 1995; Visscher et al., 1995). In addition, high level of FGF2 correlates with resistance to 

paclitaxel (Gan et al., 2006). FGF1 expression data are as well controversial, as FGF1 was found 

to a lower extent in breast tumor when compared to normal tissue (Bansal et al., 1995) but other 

studies showed that FGF1 is higher in cancer than in benign tumors (Yoshimura et al., 1998). 

These controversial results could reflect different types of breast tumors examined and warrant 

further analysis of the level of FGF1 and FGF2 in breast cancer patients. 

 

With respect to FGFRs, high expression of FGFR1, FGFR2 and FGFR4 mRNA was detected in 

22%, 4% and 32% of breast cancer respectively and gene amplification of FGFR1 was found in 

9% of tumors (Jacquemier et al., 1994; Penault-Llorca et al., 1995). Recent studies analyzed in 

detail the 8p11-12 amplicon, containing FGFR1. Because it is not always overexpressed when 

amplified, it is not clear if FGFR1 is always the driving oncogene on the 8p11-12 amplicon (Ray 
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et al., 2004). An interesting observations is that when amplified and overexpressed, FGFR1 

associates with poor prognosis and it is by itself an independent prognostic factor for overall 

survival (Elbauomy Elsheikh et al., 2007; Gelsi-Boyer et al., 2005). In addition, genetic 

alterations involving FGFR1 amplification and overexpression were found in classic lobular 

carcinomas (Reis-Filho et al., 2006). Despite some conflicting data on its expression in the 8p11-

12 amplicon, FGFR1 is an interesting drugable target that needs to be considered in FGFR1 

overexpressing tumors. 

 

Recently, two genome-wide association studies identified single nucleotide polymorphisms 

(SNPs) that located on FGFR2. One study looked at alleles associated with breast cancer 

susceptibility in patients with a strong family history of breast cancer, and found that the most 

significantly associated SNP was located within the intron 2 of FGFR2 (Easton et al., 2007). The 

second study was performed on postmenopausal patients with invasive breast cancer (Hunter et 

al., 2007). Here, four SNPs were found, all located in the intron 2 of FGFR2. A follow up of the 

study from Easton et al., showed that the SNP on FGFR2 had a stronger association with: 

estrogen positive (ER+) than with ER- tumors, lower grade than higher grade and with node 

positive than negative tumors (Garcia-Closas et al., 2008). Interestingly, it has been reported that 

the major SNP in FGFR2 described in the Easton study increases the binding of the transcription 

factors Oct-1/Runx2, that could leading to an increase in the expression of FGFR2 (Meyer et al., 

2008). Finally, another study showed that FGFR2 is up-regulated in luminal A and basal subtypes 

(Nordgard et al., 2007). 

 

One SNP from Guanine to Adenine was described in codon 388 of FGFR4, which generates 

receptors with either a glycine (Gly) or an arginine (Arg) at the residue 388 in the transmembrane 

domain of FGFR4 (Bange et al., 2002). In vitro data shows that the FGFR4 Arg388 gives a more 

motile phenotype to breast cancer cells. In patients, the contribution of the Arg388 SNP to breast 

cancer progression is controversial. Bange and colleagues report that this allele is significantly 

overrepresented in the group of breast cancer patients with positive axillary lymph node and early 

relapse (Bange et al., 2002), suggesting this allele as a poor prognostic factor in breast cancer. 

Thussbas et al., showed that the Arg388 genotype is a marker for breast cancer progression in 

patients with adjuvant systemic therapy, particularly chemotherapy, and this could be linked with 
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therapy resistance (Thussbas et al., 2006). However Jezequel and colleagues found that this SNP 

is not relevant for breast cancer prognosis (Jezequel et al., 2004). Another interesting study shows 

that in patients, levels of FGFR4 predict failure on tamoxifen therapy, suggesting that FGFR4 

causes tamoxifen resistance in estrogen receptor positive (ER+) tumors (Meijer et al., 2008). It 

would be interesting to know the status of the, the Arg388 SNP in the patients used in this study, to 

see if it correlates as well with a poorer prognosis than the wild type allele.  

3.10. Metastatic spread of cancer cells 

The majority of mortality in cancer patients is not due to the primary tumor but is caused by 

spread of cancer cells that grow in distant organs. The whole process consisting of escape, spread 

and growth at distant organs is called the metastatic process. In order to establish distant colonies 

and grow away from the primary tumor, cancer cells have to go through a complex multistep 

process (Figure 3-11) (Bacac & Stamenkovic, 2008; Gupta & Massague, 2006).  

 

Detachment 

Altered cellular adhesion is the first step of the metastatic process. In comparison to normal 

epithelia, transformed and malignant cells show diminished tight and adherent junctions as well 

as desmosomes. Cadherins are important mediators of adherent junctions in epithelia. Indeed, it is 

well documented that the loss of E-cadherin alone or together with an increased expression of N-

cadherin drastically changes the adhesive properties of tumor cells (Cavallaro & Christofori, 

2004). This switch in cadherin expression is part of a broader program called epithelial-to-

mesenchymal transition (EMT). EMT is the conversion of epithelial cells to highly motile cells 

expressing mesenchymal rather than epithelial markers. Several transcription factors (such as 

Snail, Slug and Twist) have been implicated in this process, in development but as well in tumor 

progression (Ciruna & Rossant, 2001; Yang et al., 2004; Yang et al., 2006). Cell-cell interactions 

are important in regulation of adhesion and integrins that mediate cell-extracellular matrix 

interactions also emerge as important mediators of the malignant phenotype (Guo & Giancotti, 

2004). 
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Degradation of the basement membrane and extracellular matrix 

The basement membrane is the first barrier that protects from invasion. It is composed of well-

organized glycoproteins and proteoglycans (collagen, laminin, perlecan). In order to invade into 

the stroma, tumor cells need to proteolytically disrupt the basement membrane. The major 

enzymes involved in this process are matrix metalloproteinases (MMPs) (Benaud et al., 1998). 

MMPs can be membrane bound or secreted proteins and in addition to degradation of the 

basement membrane, they can release growth factors from the reservoir that in turn can promote 

tumor growth. Beyond basement membrane, the cells contact the extracellular matrix that they 

need to disrupt as well. Here again the MMPs as well as other proteases play an important role 

(Duffy et al., 2000). Degradation and remodeling of the extracellular matrix allows cancer cells to 

move and invade the environment close to the tumor. 

 

Intravasation 

In order to colonize distant organs, cancer cells must enter the vascular network. An active way 

of intravasation has been reported involving MMPs for the degradation of the vascular basement 

membrane, thus allowing the cells to enter into the circulation (Kim et al., 1998). Other ways of 

intravasation, are possible, in which tumor cells take advantage of the leakiness of tumor vessels 

and enter the blood stream in a more passive way. For both ways of intravasation, it is not yet 

clear if the tumor cells need to directly interact with the endothelial cells prior to entering the 

blood stream (Dua et al., 2005). Interestingly, detection of early metastasis usually occurs in the 

first draining lymph node close to the tumor and only later in other organs. These observations 

suggest that some tumor cells leave the primary tumor by invading the lymphatic vessels. After 

invasion of the lymph node, in a passive or active way, the cells are transported to the vena cava 

and enter the blood stream, thus allowing them to reach distant organs (Sleeman et al., 2009).  

 

Survival in circulation 

Once tumor cells have invaded the blood stream, they can on the one hand have access to all 

organs, but on the other hand they have to survive in a hostile environment. Circulating tumor 

cells are exposed to several stresses, including physical damage due to shear forces and 

interaction with killer immune cells. As tumor cells in the circulation lose all adhesive support, 
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which in a normal cell would induce death by anoikis, they also have to find a way to become 

resistant to this type of cell death (Bacac & Stamenkovic, 2008; Gupta & Massague, 2006). 

 

Extravasation  

The process of extravasation consists of escaping out of the blood stream into a target tissue. The 

precise mechanisms by which a cell can leave the vasculature are still not fully understood, 

however, at least two hypotheses have been described. The first is that a tumor cell, due to size 

constraint (especially if it aggregates with components of the blood, like platelets) gets trapped in 

the capillaries and can physically not move. Once immobilized, the cancer cell again starts 

proliferating and the forces applied by the growing metastasis might disrupt the capillary wall 

and allow the cells to invade the new environment.  

 

The second way cells could escape the vasculature is by using a mechanism similar to those used 

by immune cells. Indeed, tumor cells do express several chemokine receptors at their plasma 

membrane, which act as receptors for secreted factors. The different concentration of ligand is 

sensed by the tumor cells and acts as a guiding factor to determine where the cells will 

extravasate. 

 

Interestingly several studies on breast cancer have determined sets of key genes that need to be 

expressed by the tumor cells in order to give organ specific metastasis (lung or bone) (Minn et al., 

2005a; Minn et al., 2005b; Sloan & Anderson, 2002). Moreover recent publications have 

suggested that by the early secretion of certain factors, tumors have the ability to prepare the 

microenvironment of distant organs to receive metastatic cells and allow or even promote their 

proliferation (McAllister et al., 2008). 

 

Growth in secondary sites 

After extravasation, the tumor cells may proliferate or stay dormant for many years. For some 

cancer, in particular breast cancer, it has been reported that metastases occur as long as 20 years 

after removal of the primary tumor. The reasons for this are likely to be multiple: 

Micrometastases are not able to promote angiogenesis and therefore the balance between cell 

proliferation and cell death is almost at equilibrium; inability of the metastatic cell to restart the 
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cell cycle machinery; non permissive environment due to the lack certain factors required by the 

cells for growth and proliferation (Weinberg, 2008). 

 

 

Figure 3-11 Summary of the metastatic process 

The progression from a non-invasive in situ carcinoma to growing metastases in distant organs 
requires several steps. First the cells in the tumor should no longer adhere to each other. Then they 
need to degrade the basement membrane and the extracellular matrix in order to be able to move 
away from the tumor. This step requires expression of proteases. Once the motile cells meet a 
lymph or blood vessel, they need to intravasate, survive into these vessels and extravasate in a 
distant place. After extravasation, the cells should restart to proliferate in order to grow as 
metastatses. (Bacac & Stamenkovic, 2008). 

 

3.11. Targeting FGF signaling 

As already mentioned, FGF signaling contributes to cell proliferation, cell survival, migration and 

invasion. When deregulated, these processes are involved in the development of diseases, thus it 
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is not surprising that both academic and industrial researchers are focusing on targeting FGF 

signaling. The approaches are multiple, but the most promising ones can be classified into two 

main categories: The antibody based strategies and the small molecular weight kinase inhibitors. 

3.11.1. Antibody based therapies 

Several monoclonal antibodies were developed that specifically bind to FGF2 or FGF8. These 

neutralizing antibodies bind to the ligands and sterically inhibit activation of the FGFRs by these 

FGFs.  

 

Early studies showed that subcutaneous tumor growth of K1000 cells is suppressed in vivo upon 

injection of a neutralizing antibody targeting FGF2 (Hori et al., 1991). Interestingly, a strong 

decrease in tumor angiogenesis was reported in the treated groups. These observations opened the 

door for investigations of the role that FGFs, in particular FGF2, play in angiogenesis. Other 

publications report the role of FGFRs and their ligand in proliferation, migration and tubular 

morphogenesis of endothelial cells. The actual view is that in cancer, FGFs secreted by the tumor 

act on the one hand in an autocrine manner promoting tumor growth, and on the other hand act in 

a paracrine manner on endothelial cells, therefore promoting tumor angiogenesis (Compagni et 

al., 2000; Rusnati & Presta, 2007). It is now well accepted both FGF2 and VEGF play roles in 

healthy as well pathological angiogenesis and that they can be targeted by neutralizing antibodies 

(Auguste et al., 2003; Cross & Claesson-Welsh, 2001; Presta et al., 2005). 

 

FGF8 is highly expressed in breast cancers, therefore approaches to neutralize FGF8 using 

antibodies are obvious (Tanaka et al., 1998). Indeed several studies showed that preventing a 

specific isoform of FGF8, to bind to its receptors (FGFR2-IIIc, FGFR3-IIIc and FGFR4) 

efficiently reduces tumor growth in mouse models of breast and prostate cancers (Maruyama-

Takahashi et al., 2008; Shimada et al., 2005). 

 

Mice expressing FGF19 in the skeletal muscle develop hepatocellular carcinomas (Nicholes et al., 

2002). In addition FGF19 was found to be highly expressed in lung squamous cell and colon 

carcinomas (Desnoyers et al., 2008). A monoclonal antibody that selectively blocks the 

interaction of FGF19 with FGFR4 abolished FGF19-mediated activity in vitro, inhibited growth 
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of colon tumor xenografts in vivo and effectively prevented hepatocellular carcinomas in FGF19 

transgenic mice (Desnoyers et al., 2008). Detailed analysis of the molecular mechanisms showed 

that deregulation of the -catenin pathway plays an important role in FGF19 mediated growth of 

colon tumors and colon cancer cell lines. Indeed, treatment with the anti-FGF19 rescued cells 

from deregulated β-catenin signaling. These findings suggest that the inactivation of FGF19 

could be beneficial for the treatment of colon and liver cancer as well as other malignancies 

involving interaction of FGF19 and FGFR4 (Desnoyers et al., 2008; Pai et al., 2008). 

 

Recently a function-blocking monoclonal antibody specific to FGFR3 (R3Mab) was developed. 

The epitope recognized by R3Mab prevents FGF binding to the receptor and subsequent 

dimerization and activation of the FGFR. Remarkably, not only ligand induced activity of wild-

type receptors and downstream signaling was blocked, but the disulfide-linked, ligand-

independent dimerization of a mutant FGFR3 (FGFR3S249C) and subsequent activation of 

downstream signaling pathways were as well inhibited. In addition, this study showed that in 

animal models of FGFR3 driven bladder carcinoma and multiple myeloma, R3Mab exert a strong 

antitumor activity by disrupting FGFR signaling and by inducing antibody-dependent cell-

mediated cytotoxicity (Hadari & Schlessinger, 2009; Qing et al., 2009). 

 

Another interesting approach consists in conjugating a cytotoxic drug to antibodies that will 

specifically interact with mutated or overexpressed targets on cancer cells. This technique allows 

targeted delivery of the drug and should decrease the side effects. 

3.11.2. Small molecule tyrosine kinase inhibitors based therapies 

Small molecular weight tyrosine kinase inhibitors (TKIs), that block the activity of the tyrosine 

kinase and activation of their downstream pathways are nowadays used in the clinics to treat 

some cancers (Levitzki & Gazit, 1995). Several TKIs showed activity towards FGFRs, among 

them TKI258 (Renhowe et al., 2009), PD173074 (Pardo et al., 2009; Skaper et al., 2000), 

SU5402 (Mohammadi et al., 1997), SU4984 (Mohammadi et al., 1997) and BIBF1120 (Hilberg 

et al., 2008). The structure of the kinase domain of FGFR1 was solved in complex with several 

inhibitors (Mohammadi et al., 1998) and this led to a better understanding of the mechanism of 

action of these molecules. Indeed TKIs bind the catalytic pocket of the kinase domain, compete 
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with ATP, thus rendering the kinase domain catalytically inactive and therefore inhibiting 

downstream signaling pathways. A tremendous amount of data has been collected about the 

effects of FGFR inhibitors using several in vitro and in vivo models of diseases. Interestingly, it 

has been shown that FGFR inhibition in cancer models affects tumor cell growth, survival, 

migration and invasion, as well as angiogenesis (Hilberg et al., 2008; Koziczak et al., 2004; 

Koziczak & Hynes, 2004; Reis-Filho et al., 2006). 

 

TKI258 is a promising compound that blocks FGFRs. The effects of this inhibitor have been 

tested in several model among them multiple myeloma, colon cancer and myeloproliferative 

disease, where it efficiently block proliferation and tumor growth (Chase et al., 2007; Grand et al., 

2007; Lee et al., 2005; Lopes de Menezes et al., 2005; Trudel et al., 2005; Xin et al., 2006). 

Interestingly, this compound has been given to human in a phase I clinical study on patient with 

advanced solid tumors (Sarker et al., 2008). TKI258 was well tolerated with an acceptable safety 

profile. In addition, antitumor activity was seen in melanoma and gastrointestinal tumors. These 

positive results warrant further trials with this compound.   

3.11.3. Alternative therapies 

Other approaches have been designed and used to target FGF signaling: Engineering of soluble 

receptors that bind circulating FGFs and sequester them away from the receptors. Liposome 

mediated delivery of antisense cDNA targeting FGFs or FGFRs (Wang & Becker, 1997). 

Inhibition of FGF-FGFR or FGF-HSPG interactions by the use of peptides. 

 

Interestingly, it has been shown that FGFs can as well be used as therapeutics in the treatment of 

several pathologies. FGF1 is used as recombinant molecule in cardiovascular disorders 

(Schumacher et al., 1998). FGF4 has been administered by gene therapy techniques but the 

studies were discontinued (Flynn & O'Brien, 2008). A truncated FGF7 has been approved for the 

treatment of chemoradiation-induced oral mucositis in patients undergoing bone marrow 

transplantation (Spielberger et al., 2004). FGF18 is in phase I clinical trial for its effects on 

osteoarthritis (Ellsworth et al., 2002). 
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4. Rationale of the work 

Targeted therapies are available for breast cancer patients and consist of endocrine treatment for 

ER positive tumors and trastuzumab treatment for ErbB2 overexpressing tumors. However, not 

all breast tumors express these targets and in addition, the recurrence of disease upon endocrine 

therapies is elevated and not all ErbB2 overexpressing cancers are sensitive to trastuzumab. 

Therefore, new targets are required. 

 

High expression of ligand, amplification and overexpression of FGFR1, SNPs in FGFR2 are as 

many possibilities to deregulate FGF signaling that have been described in breast cancer. Several 

tyrosine kinase inhibitors have been developed, that block the kinase activity of FGFRs. These 

compounds have been intensively tested in several models of cancer. However, despite the 

evidence that FGF signaling contributes to breast cancer, only few studies have been performed 

to validate FGFRs as targets in breast cancer and they were mainly performed in vitro. 

 

Based on this evidence that FGF signaling is important for the development of breast cancer, this 

work aims at understanding if FGFRs are valid targets in breast cancer and how FGFRs 

contribute to tumor growth and metastasis in vivo.  

 

To investigate the contribution of FGFRs to the formation of tumors, we used a model consisting 

of four mouse mammary tumor cell lines named 4T1, 4TO7, 168FARN and 67NR (Aslakson & 

Miller, 1992). These lines are all derived from the same mouse mammary tumor and all form 

tumors when injected in the mammary gland of BALB/c animals. However, the metastatic 

properties of these lines are different: The 67NR are non-invasive due to their incapacity to 

intravasate. The 168FARN line spreads to the draining lymph node but does not enter the blood 

stream. The line 4TO7 spreads via the blood to the lungs but is inefficient in growing as 

metastatic nodules. Finally, the 4T1 line is able to disseminate from the primary tumor and are 

detected in the lymph node and in the blood. In addition this line grows as visible metastatic foci 

in the lungs (Aslakson & Miller, 1992). 

 

A preliminary screen performed in our lab showed that the 4T1 cells were sensitive to treatment 

with PD173074, a known inhibitor of FGFRs. We therefore investigated the expression of FGFRs 
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and their ligands in this line and the three other sisters lines and tested their sensitivity to FGFR 

inhibitors.  

 

Using the 67NR cells, we studied in vivo the contribution of FGFR1 to the metastatic process. 

Finally, using the 4T1 line, we tested in vivo the effect of FGFR inhibition on tumor growth and 

metastasis formation. To do this, we took advantage of TKI258, a well characterized and 

promising FGFR inhibitor that is currently in clinical development. 
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Abstract 

Members of the fibroblast growth factor receptor (FGFR) family have essential roles in normal 

physiology and in cancer where they control diverse processes. FGFRs have been associated with 

breast cancer development and models to study their role in cancer and their targeting potential 

are desirable. Here, we present an in vitro and in vivo analysis of FGFRs in the mammary cancer 

cell lines 67NR and 4T1. We show that both cell lines co-express FGFRs and ligands and display 

autocrine FGFR signaling activity. Fibroblast growth factor receptor substrate 2 (FRS2), a 

downstream mediator of FGFR is constitutively tyrosine-phosphorylated and multiple signaling 

pathways are active. Treatment of 67NR and 4T1 cultures with TKI258, an FGFR tyrosine kinase 

inhibitor caused a rapid decrease in FRS2 phosphorylation, decreased the activity of ERK1/2, 

AKT and PLC, blocked proliferation and induced 4T1 apoptotic cell death via blockade of the 

PI3K/AKT pathway.  In vivo, one dose of TKI258 rapidly lowered FRS2 phosphorylation, 

ERK1/2 as well as AKT activity in mammary tumors. Long-term treatment of 4T1 and 67NR 

tumor-bearing mice had a significant impact on primary tumor outgrowth and 4T1 tumor induced 

lung metastases. A meta-analysis was carried out to identify prognostic markers in human breast 

tumors and targets with roles in TKI258-anti-tumor activity. Of interest are the down-regulated 

matrix metalloproteases (MMP), in particular MMP-9, which is essential for metastatic spread of 

4T1 tumors.  
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Introduction 

Deregulated activity of receptor tyrosine kinases (RTK) has been implicated in breast cancer 

development. ErbB2 overexpression has been intensely studied in breast cancer and has been 

successfully targeted with antibodies and small molecular tyrosine kinase inhibitors (TKI). 

Considering that only 20% of patients are eligible for ErbB2 directed treatments, it is essential to 

uncover other therapeutic targets.  The association between fibroblast growth factors (FGF) and 

mammary cancer was first established in MMTV-induced tumors (Peters et al., 1989) and 

elevated levels of FGF8 have been found in human breast tumors (Mattila & Harkonen, 2007). 

FGF receptor (FGFR)1 amplification has been reported in sub-types of breast cancer (Reis-Filho 

et al., 2006) and FGFR1 levels have been linked to poor survival rates (Chin et al., 2006). 

Intriguingly, genome-wide screens aimed at uncovering breast cancer associated genes identified 

single nucleotide polymorphisms in FGFR2 (Easton et al., 2007; Hunter et al., 2007). Based on 

the increasing evidence supporting the relevance of FGFRs in breast cancer, we have explored 

the role of this family of receptors in breast cancer models.  

 

There are four FGFR receptors and 22 FGF-related ligands (Beenken & Mohammadi, 2009). 

Heparin or heparin sulfate proteoglycans mediate ligand-receptor interactions, forming a ternary 

complex that induces receptor dimerization, autophosphorylation and activation (Eswarakumar et 

al., 2005; Schlessinger et al., 2000). We show here that 4T1 and 67NR mammary tumor cells 

(Aslakson & Miller, 1992) co-express multiple FGFRs and ligands and display autocrine FGFR 

activity. Accordingly, many targets of FGFR signaling: the docking protein fibroblast growth 

factor receptor substrate 2 (FRS2), Src, PLC, Shp-2, STAT3 and PI3K/AKT (Klint & Claesson-

Welsh, 1999; Kouhara et al., 1997; Ong et al., 2001) are active in both mammary tumor cell lines.  

 

We investigated the effects of FGFR inhibition using TKI258, an FGFR TKI (Lee et al., 2005). 

In vitro treatment of 4T1 and 67NR cultures with TKI258 decreased the activity of numerous 

signaling proteins and blocked cell proliferation. In vivo treatment of tumor-bearing mice with 

TKI258 led to a strong reduction of mammary tumor growth and for the aggressive 4T1 model, a 

decrease in lung metastasis. Moreover, we provide evidence that FGFR blockade downregulates 

key players involved in the metastatic process, in particular MMP9 and the transcription factor 
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Twist, which have both been shown to be major regulators of lung metastasis in this model 

(Fayard et al., 2009; Yang et al., 2004). 

 

Materials and Methods 

Kinase inhibitors 

TKI258 (Lee et al., 2005) was provided by Drs. D. Graus-Porta and C. Garcia-Echeverria, and 

NVP-BEZ235 was provided by Dr. M. Maira (NIBR, Basel); STI571 and PTK787 were obtained 

from NIBR, Basel. All inhibitors were prepared as 10mM stocks in DMSO.  

 

Reagents, antibodies, plasmids, cell culture and viral infections 

FGF2 was from Sigma-Aldrich (St. Louis, MO, USA); UO126 was from Promega (Madison, WI, 

USA). The following antibodies were used: FGFR2 (3116), FGFR3 (3163), Pser473-AKT (9271), 

AKT (9272), Ptyr196-FRS2 (3864), Pthr202/tyr204-ERK1/2 (9101), ERK1/2 (9102), Ptyr705-STAT3 

(9131), Asp175-cleaved caspase 3 (9661) and PARP (9542) from Cell Signaling (Danvers, MA, 

USA); PLC(sc-81), FRS2 (sc-8318) and CyclinD1 (sc-20044) from Santa-cruz Biotechnology 

Inc. (Santa Cruz, CA, USA); alpha-tubulin from NeoMarkers (Fremont, CA, USA); actin from 

Chemicon (Billerica, MA, USA); MMP9 from Abcam (Cambridge, UK); E-cadherin, p27Kip1 and 

STAT3 from BD transduction lab (San Jose, CA, USA); Ptyr418-Src from Biosource (Carlsbad, 

CA, USA), Src and Ptyr783-PLC from Upstate (Billerica, MA, USA); phospho-tyrosine (Ptyr) 

was detected with mAb 4G10 (gift from Dr. J. Mestan, NIBR, Basel). cDNA encoding 

myristylated-AKT was a gift from Dr. B. Hemmings (FMI, Basel). The 4T1 and 67NR mouse 

mammary carcinoma cell lines, obtained from Dr. J. Yang (University of California, San Diego) 

and EcoPack-293 (Clontech, Mountain View, CA, USA) were cultured in DMEM, 10% heat 

inactivated FBS (Sigma), supplemented with penicillin and streptomycin (Sigma). Retroviruses 

were produced by transient transfection of EcoPack-293 cells 8g of the following vectors: 

pBabe-neo or Myr-AKT-pBabe-neo using Fugene (Roche, Basel Switzerland) with a ratio 

Fugene:DNA 1:6. Three days post transfection, supernatants were collected, filtered and used 

immediately for over-night infection of 4T1 cells (6cm plates with polybrene at a final 

concentration of 8g/ml). Selection was performed with 1000g/ml G418. 
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Lysates, immunoprecipitations and western blot analyses 

Whole cell lysates were extracted in NP-40 buffer (50mM Hepes (pH 7.4), 150mM NaCl, 25mM 

-glycerophosphate, 25mM NaF, 5mM EGTA, 1mM EDTA, 15mM PPI and 1%NP40), 

supplemented with leupeptin (10g/ml), aprotinin (10g/ml), vanadate (2mM), DTT (1mM) and 

PMSF (1mM) and immunoblotted as previously described (Matsuda et al., 2009). Over-night 

serum-starved cultures were pre-treated for 60 minutes with 1M TKI258 or DMSO then 

stimulated for the indicated time with 50ng/ml FGF2. For prolonged FGFR inhibition cells in 

serum were treated with 1M TKI258 or DMSO and harvested at the indicated times. 

Immunoprecipitations (IPs) were performed following standard procedures (Koziczak et al., 

2004). Extraction from tissues and tumors was performed with NP-40 buffer (1ml/100mg). 

Homogenization of the samples was performed using a polytron and debris was removed by 

centrifugation. Supernatants were boiled in sample buffer.  

 

Purification of tyrosine-phosphorylated peptides 

Peptides containing Ptyr residues were purified from trypsinized cell lysates using a two-step 

procedure.  Briefly, after treatment with TKI258 (1M for 60 minutes), cells were harvested in 

lysis buffer (20 mM HEPES pH 8.0, 9 M Urea, 1 mM Sodium orthovanadate, 2.5 mM sodium 

pyrophosphate, 1 mM sodium beta-glycerophosphate) reduced and alkylated and digested with 

trypsin after dilution to 2M urea. Tryptic peptides were acidified to 1% TFA and desalted on 

SepPak C18 cartridges. Immunoaffinity purification using anti-phosphotyrosine antibodies was 

performed. After elution, peptides were desalted on Poros R3 and further purified on TiO2  

microcolumns (Thingholm & Larsen, 2009). 

 

Mass Spectrometry 

For LC-MS/MS, the peptides were eluted from the TiO2 column with ammonia (Thingholm & 

Larsen, 2009), lyophilized, resuspended in 5% formic acid and injected onto a 15 cm x 75 m 

ProteoPep 2  PicoFrit column (New Objectives), connected to an LTQ-OrbiTrap XL mass 

spectrometer (Thermo). Buffer A consisted of H2O with 0.1 % formic acid and Buffer B of 80 % 

acetonitrile with 0.1 % formic acid. Peptides were separated using a 120 min gradient from 2% B 

to 50% B. Data acquisition was done using a ‘Top 5 method’, where every full MS scan was 

followed by 5 data-dependent scans on the 5 most intense ions from the parent scan.  The 
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minimal threshold for MS/MS selection was set at 1500, dynamic exclusion was used with repeat 

count 2 and a 60 sec exclusion window. MSMS spectra were acquired in the ion-trap with 10’000 

ions using CID, 30 ms activation time, and 35% normalized collision energy. 

Database searches were performed with Mascot Server using the mouse IPI database (version 

3.55). Mass tolerances were set at 10 ppm for the full MS scans and at 0.8 Da for MSMS. Search 

results were validated using Scaffold (Proteome Software) and peptide identifications accepted 

which exceeded the 95% confidence level. In case of ambiguous assignments, spectra were 

manually interpreted for confirmation of identity and localization of the phosphorylation site. 

 

Flow Cytometry 

Cell cycle profiles were analyzed after 24 hours of DMSO or 1M TKI258 addition to 4T1 and 

67NR cultures as follows. Cells were trypsinized and resuspended in 500l ice cold PBS, 120g 

RNase A and 60l of propidium iodide (50g/ml in 50mM Na Citrate pH7.6) were added, then 

115l of Lysis buffer (20mM Na-citrate pH4.0, 26.8mM NaCl, 0.6% NP-40, 30mM EDTA and 

30mM EGTA). Cell cycle distribution was measured after 30 minutes on ice with a FACScalibur 

Flow Cytometer (Becton Dickinson, Franklin Lakes, NJ, USA). 

 

Proliferation and apoptosis assays 

Antiproliferative effects of TKI258 were evaluated in 96-well plates over 24-48 hours using a 

bromodeoxyuridine (BrdU) ELISA kit (GE-healthcare, Little Chalfont, UK) as described (Sini et 

al., 2005). The cytotoxic effects of TKI258, UO126 and NVP-BEZ235 were evaluated in 96-well 

plates 24-48 hours after treatment by measuring total cell number and cell death using the YO-

PRO assay (Invitrogen, Carlsbad, CA, USA) as described (Beuvink et al., 2005).  

 

In-vivo treatments and analysis of tumor and metastasis formation 

Animal experiments were done according to the Swiss guideline governing animal 

experimentation and approved by the Swiss veterinary authorities. 4T1 and 67NR cells (5x105 or 

106) were injected in the fourth mammary fat pad of 10 wk old BALB/c mice (RCC, Basel, 

Switzerland). Once palpable, tumors were measured daily and volume was calculated using: 

height x ((diameter/2)2  x ). Mice were randomly distributed into treated or control groups when 

tumors reached 50-100 mm3 and treated with vehicle (water), TKI258 (p.o., once daily at 20, 40 
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or 50 mg/kg) or with vehicle (PEG300) and PTK787 (p.o. once daily at 25 or 50mg/kg) for the 

indicated times. For experimental metastasis, 2.5x105 4T1 cells were injected into tail veins, 5 

days later mice were randomized and treated with water or TKI258 (p.o., once daily, 9 days at 40 

mg/kg). At the endpoint, mice were sacrificed and tumors and lungs were dissected. Lungs were 

placed in Bouin’s solution to visualize and count metastases. Pictures of the left lungs were taken 

with a Leica MacroFluo Z6 (Leica, Wetzlar, Germany) and the number of nodules as well as the 

surface occupied by the metastasis was quantified using image access software. 

 

Immunohistochemistry 

Tumors were fixed 24 hours in PBS containing 4% paraformaldehyde then incubated 24 hours in 

PBS containing 15% sucrose. Fixed tissues were embedded in OCT media and frozen at -80°C. 

Immunohistochemistry was performed on 8m thick sections using the antibodies: cleaved-

caspase 3 and phospho-histone H3 (Cell signaling) and CD31 (BD Bioscience). Stainings were 

carried out with the Discovery XT Staining Module (Ventana Medica Systems S.A.). 

 

RNA extraction, RT-PCR and real-time PCR 

RNA from growing 4T1 cells or from cells treated with DMSO or 500nM TKI258 for 16 hours 

was extracted using the Qiashredder and RNeasy Mini Kit coupled with RNase-free DNase set 

(Qiagen, Venlo, The Netherlands Qiagen) following the manufacturer’s instructions. RNA from 

tissues and tumors were obtained from snap frozen tumor pieces, following extraction with 

TRIzol reagent (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s protocol. RNAs 

were washed using the RNeasy Mini Kit (Qiagen) and treated with RNase-free DNase set 

(Qiagen). cDNA was obtained from 2.5g of total RNA, using the Ready-to-go You-Prime First-

Strand Beads kit (GE-healthcare, Little Chalfont, UK) with oligos-dT primers (Promega). Semi-

quantitative PCR was performed as follow: 2l of 10X Buffer (Roche), 0.2l of Taq polymerase 

(5U/l Roche), 0.4l of 10mM dNTP mix (Roche), 0.1l of each primer (100M), 1l of cDNA, 

filled to a final volume of 20l with sterile H2O. Thermal cycling reaction using an Icycler device 

(Bio-Rad, Reinach, Switzerland) was: 94°C for 2 min; followed by 25 to 35 cycles of 95°C for 30 

sec, 60°C for 30 sec, 72°C for 45 sec for detection of FGFR1 and FGFR2: 96°C for 2 min; 

followed by 35 cycles of 95°C for 30 sec, 58°C for 30 sec, 72°C for 45 sec for detection of 

FGFR3: 94°C for 5 min; followed by 35 cycles of 94°C for 30 sec, 60°C for 30 sec, 72°C for 45 
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sec for detection of FGF1. The amplified products were further extended by additional incubation 

at 72°C for 10 min. PCR products were then loaded on a 1% agarose gel containing ethidium 

bromide. Quantitative RT-PCR was performed with ABI prism 7000 (Applied Biosystems, 

Austin, TX, USA) using Absolute QPCR SYBR Green ROX Mix (THERMO Scientific, 

Waltham, MA, USA) following the manufacturer’s guidelines. All quantitations were normalized 

to -actin. FGFRs primers, GAPDH and -actin primers for semi-quantitative PCR and real-time 

PCR were previously described (Kurosu et al., 2007; Ozawa et al., 1997). Other primers were as 

follow: MMP1 forward CCTTCCTTTGCTGTTGCTTC, reverse 

CTCCTTGCCATTCACGTTTT. MMP3 forward CAGACTTGTCCCGTTTCCAT, reverse 

GGTGCTGACTGCATCAAAGA. MMP9 forward GCATACTTGTACCGCTATGGT, reverse 

TGTGATGTTATGATGGTCCC. MMP10 forward CAGGTGTGGTGTTCCTGATG, reverse 

GGAGAAAGTGAGTGGGGTCA. Twist forward ACATCGACTTCCTGTACCAGGTC, 

reverse AACAATGACATCTAGGTCTCCGG. E-Cadherin forward 

CAAGGACAGCCTTCTTTTCG, reverse TGGACTTCAGCGTCACTTTG. 

 

Gene expression analysis  

First, RNA from TKI258- or vehicle- treated 4T1 cells (triplicate experiments) was amplified and 

labeled using the Ambion MesageAMP III RNA Amplification Kit (Applied Biosystems). The 

same protocol was applied on RNA from three tumors treated 14 days with TKI258 or with 

vehicle. Biotinylated, fragmented cRNA was hybridized to Affymetrix Mouse Gene 1.0 ST Array 

(Affymetrix, Santa Clara, CA, USA). The data analysis and gene filtering was performed using 

R/Bioconductor (Gentleman et al., 2004). Signal condensation was performed using only the 

RMA from the Bioconductor Affy package. Differentially expressed genes were identified using 

the empirical Bayes method (F-test) implemented in the LIMMA package and adjusted with the 

False Discovery Rate (FDR) method (Wettenhall & Smyth, 2004). Hierarchical clustering and 

visualization was performed in R. Probe sets with a Log2 average contrast signal of at least 5, an 

adjusted p-value < 0.05 and an absolute Log2 fold change of > 0.585 (1.5-fold in linear space) 

were selected leading to the identification of 2064 and 543 genes changed in cells and tumors, 

respectively upon TKI258 treatment. The complete microarray data are available in the Gene 

Expression Omnibus (GEO; accession number,GSE19222) 
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Second, we analyzed the TKI258-regulated genes in available data sets. The GEO database 

(www.ncbi.nlm.nih.gov/geo) was used for breast cancer patient cohorts: TRANSBIG (GSE7390) 

and ERASMUS (GSE2034) and for a tumor model (GSE15299). Data were processed and 

normalized using MAS 5.0 (GSE7390, GSE2034) or RMA (GSE15299) algorithms as described 

in the GEO database. Affymetrix probesets were mapped to in vitro and in vivo regulated genes 

using the NetAffx web site (http://www.affymetrix.com/analysis/index.affx). Hierarchical 

clustering was done with Cluster 3.0 (de Hoon et al., 2004; Eisen et al., 1998) 

(http://bonsai.ims.u-tokyo.ac.jp/~mdehoon/software/cluster/index.html) on log2 median centered 

data using uncentered correlation and average linkage clustering algorithms. Trees were 

displayed by Java Tree View v1.1.1 (http://jtreeview.sourceforge.net). Kaplan-Meier analysis 

was done using JMP IN 5.1 (SAS Institute Inc., Building S, Cary, C) and relative p-values 

calculated with Log-rank test. P-values of the overlaps were calculated using Fisher’s exact test.  

Functional classification analysis was performed using Ingenuity Pathway Analysis (Ingenuity 

Systems Inc., Redwood City, CA). Gene-set enrichment analysis was done with GSEA 

(Subramanian et al., 2005) using default settings by collapsing probesets to unique genes and 

taking probesets median expression value. Significance of the enrichment was estimated by 1000 

random gene sets permutation.  

 

Results 

Constitutive FGFR signaling in 4T1 and 67NR tumor cells 

BALB/c mice develop mammary tumors following injection of 67NR and 4T1 tumor cell lines; 

4T1 tumors are more aggressive, forming distant lung metastases (Aslakson & Miller, 1992). 

Both cell lines were examined for FGFR and FGF expression by RT-PCR. 4T1 cells express 

FGFR1, FGFR2 and FGFR3 (Figure 5-1 A), with FGFR2 expressed at the highest level (not 

shown). 67NR cells express FGFR2 and FGFR3. FGF1, which activates all receptors was found 

in both lines (Figure 5-1 A). A western analysis confirmed that FGFR2 and FGFR3 are expressed 

(Supplementary Figure 1A). It was not possible to examine FGFR1 since commercial antibodies 

are not available for western analysis. As co-expression of FGFRs and FGF1 was observed in 

67NR and 4T1 cells, we tested the hypothesis that these tumor cell lines have autocrine FGFR 

activity.  

  - 54 -  

http://www.ncbi.nlm.nih.gov/geo
http://www.affymetrix.com/analysis/index.affx
http://jtreeview.sourceforge.net/


Results: Submitted Manuscript  

A

C TKI258- + - +
WCL IP FRS2

FRS2

Grb2

Shp2

TKI258

Gab1

- +

IP: Gab1

WCL

Gab1

Ptyr

B

FGF1

FGFR1

GAPDH

FGFR2

FGFR3

4T
1

6
7

N
R

H
2

O

B
ra

in

D

FRS2

FGF2 5’ 15’-

Vehicle

AKT

5’ 15’-

TKI258

Ptyr

FRS2
IP: FRS2

PLC 

Ptyr
IP: PLC 

Ptyr196  FRS2

P-AKT

P-ERK1/2

ERK1/2

4T1

P-S TAT3

STAT3

P-Src

Src

Ptyr

PLC 
IP: PLC 

S
ta

rv
e

d

1
0

%
 F

C
S

AKT

FRS2

Ptyr196  FRS2

Ptyr

FRS2
IP: FRS2

P-ERK1/2

S
ta

rv
e

d

1
0

%
 F

C
S

4T1

ERK1/2

P-AKT

5’ 15’-

Vehicle

5’ 15’-

TKI258

67NR

FRS2

FGF2

PLC 

Ptyr

IP: PLC 

Ptyr196  FRS2

P-ERK1/2

ERK1/2

S
ta

rv
e

d

1
0

%
 F

C
S

67NR

FRS2

Ptyr196  FRS2

P-ERK1/2

ERK1/2

PLC 

Ptyr783  PLC 

FGFR3

IP: FGFR3

WCL

FGFR3

Ptyr

TKI258 - +

 

Figure 5-1 FGFR signaling in 4T1 and 67NR cells 

A, Semi-quantitative RT-PCR for FGFRs and FGF1, with GAPDH as a loading control. B, Lysates 
were prepared from cells in full serum or serum starved and immunoblot analyses performed with 
the indicated antibodies. FRS2 and PLC IPs were probed for Ptyr content. C, Lysates were 
prepared from cells in full serum, after 1 hour with 1M TKI258. IPs of FGFR3 and Gab1 were 
probed for Ptyr content; IPs of FRS2 were probed for associated Shp-2 and Grb2. As controls, 
whole cell lysates (WCL) and IPs were reprobed with the respective serum. D, Serum-starved 
cultures were pretreated with 1M TKI258 or DMSO for 1 hour prior to FGF2 stimulation. WCL 
were prepared and immunoblot analyses performed with the indicated antibodies. FRS2 and PLC 
IPs were probed for Ptyr content. 
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The activity of signaling proteins downstream of FGFR was measured in lysates of 4T1 or 67NR 

cells grown in full medium or serum-starved (Figure 5-1 B). FRS2 is a major adaptor protein 

linking FGFRs to various pathways (Kouhara et al., 1997; Ong et al., 2001). Probing of FRS2 

immunoprecipitates (IPs) from 4T1 cells revealed high levels of phospho-tyrosine (Ptyr); the 

level of Ptyr196-FRS2, a docking site for Grb2 (Kouhara et al., 1997) was also elevated in both 

cell lines (Figure 5-1 B). Furthermore, total Ptyr and Ptyr783 was detectable in PLC and the 

levels of P-ERK1/2, P-AKT, P-STAT3 and P-Src were also high (Figure 5-1 B). With the 

exception of P-AKT, which was slightly lower in serum-starved 4T1 cells, there was little or no 

effect following serum deprivation on the activity of the other signaling proteins (Figure 5-1 B). 

Taken together, these results provide strong evidence supporting the hypothesis that 4T1 and 

67NR cells possess autocrine FGFR activity.   

 

TKI258 lowers FGFR activity and blocks signaling pathways  

To gain more insight into the intracellular pathways controlled by FGFR, we used TKI258, an 

FGFR inhibitor (Lee et al., 2005; Renhowe et al., 2009). Initially, a global phospho-proteomic 

screen was undertaken to identify proteins undergoing changes in Ptyr in response to TKI258 

treatment of 4T1 cells. Lysates made from controls and cultures treated 1 hour with TKI258 were 

subjected to tryptic digestion prior to IP with Ptyr specific antibodies. Pulled-down peptides were 

subjected to LC-MS/MS for detection and quantification of Ptyr changes. Supplementary Table 1 

lists peptides that were significantly changed in two independent analyses. One FGFR2-specific 

Ptyr-peptide from the kinase domain was 1.67-fold decreased, demonstrating that TKI258 

blocked FGFR signaling. FRS2, Mapk3 and Gab1-specific Ptyr-peptides were also strongly 

decreased following FGFR inhibition. FGFR3-specific Ptyr peptides were not detected in this 

analysis, however, IPs of the receptor from lysates of treated cells revealed a loss of total Ptyr 

(Figure 5-1 C left panel). FGFR1 levels are low in 4T1 cells, however, manual inspection of the 

LC-MS/MS data revealed lower levels of one FGFR1-specific Ptyr peptide (data not shown).  

These results suggest that all the FGFRs in 4T1 cells are active and blocked by TKI258. 

 

Gab1 and FRS2 IPs (Figure 5-1 C middle panel and D) from lysates of inhibitor-treated cells 

revealed lower Ptyr content compared to controls; Ptyr196-FRS2 levels were also strongly 

decreased in TKI258-treated 4T1 and 67NR cells (Figure 5-1 D). Moreover, decreased levels of 
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Shp-2 and Grb2 were complexed with FRS2 in TKI258-treated 4T1 cells (Figure 5-1 C right 

panel) and FRS2 shifted dramatically on SDS-PAGE (Figure 5-1 C right panel and D), reflecting 

lower activity of MAPK, which phosphorylates multiple threonine residues on FRS2 (Lax et al., 

2002). P-AKT and Ptyr-PLC levels were also decreased in inhibitor-treated cells; no effect on 

constitutive STAT3 or Src activity was seen (Supplementary Fig.1B). Taken together, these 

results confirm the phospho-proteomic analysis and show that TKI258 has a strong effect on 

FGFR-mediated signaling.    

 

TKI258 treatment blocks 4T1 and 67NR cell proliferation 

Next, effects of FGFR-inhibition on cell proliferation were examined. Using BrdU incorporation, 

we observed a dose-dependent decrease in S-phase cells, with an 80% decrease at the highest 

dose (Figure 5-2 A). Furthermore, flow cytometry of propidium iodide stained cells revealed a 

strong G1 accumulation in TKI258-treated cultures (Figure 5-2 B). Cyclin D1 protein (Figure 5-2 

C) and RNA (data not shown) decreased rapidly following TKI258 treatment, and in 4T1 cells 

there was an increase in p27 levels (Figure 5-2 C). There was also a strong increase in dying cells 

in TKI258-treated 4T1, but not 67NR cultures, as shown by a YO-PRO assay (Figure 5-2 D). 

Cell death proceeds via apoptosis since increased levels of cleaved-caspase3 and -PARP were 

detected (Figure 5-2 C); neither were detected in TKI258-treated 67NR cells (Figure 5-2 C). 

Together these data show that blockade of autocrine FGFR activity in both mammary cancer cell 

lines has a strong impact on their proliferation, and decreases survival of 4T1 cells.  
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Figure 5-2 Effects of TKI258 on 4T1 and 67NR cells 

A, Cells were treated 48 hours with the indicated concentrations of TKI258; BrdU was added 2 
hours before experiment-end. The percentage of incorporated BrdU relative to controls is plotted. 
B, Cultures were treated 24 hours with 1M TKI258 and flow cytometry was performed on 
propidium iodide stained cells; % of G1 cells is indicated. C, Cultures were treated with 1M 
TKI258 for the indicated times and WCL were immunoblotted with the indicated antibodies; 
tubulin served as control. D, Cultures were treated 48 hours with different concentrations of 
TKI258; cell death was detected with the YO-PRO assay and plotted relative to the vehicle-treated 
control 

 

Rescue of TKI258-mediated 4T1 cell death by expression of Myr-AKT.  

TKI258 decreases P-ERK1/2 and P-AKT (Figure 5-1 D). Thus, to analyze the pathways 

responsible for TKI258’s activity, the MEK inhibitor, UO126, and the PI3K inhibitor, NVP-

BEZ235 (Maira et al., 2008), were used to target the MAPK and PI3K/AKT pathways, 

respectively.  In UO126-treated 4T1 cultures, proliferation was 50% decreased at the maximal 

dose (Figure 5-3 A), however, there was no evidence of apoptosis (data not shown). NVP-

BEZ235 blocked proliferation by 50% and induced cell death (Figure 5-3 B). These results 

suggest that active FGFR signaling maintains high PI3K/AKT pathway activity that is essential 

for 4T1 cell survival. To explore this further, a vector expressing active AKT (Myr-Akt) and a 

control vector (pBN) were introduced into 4T1 cells and pools were examined for TKI258 
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sensitivity. Myr-Akt-expressing cells were 2-fold less sensitive than controls to TKI258 treatment 

(Figure 5-3 C) and maintained high levels of P-Myr-Akt in the presence of TKI258 (Figure 5-3 

D). Taken together, these results show the importance of the PI3K/AKT pathway for survival of 

4T1 cells.   
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Figure 5-3 PI3K/AKT signaling is required for 4T1 survival 

A, Cultures were treated 24 hours with different concentrations of UO126; cell number was 
determined and plotted relative to control cultures. B, Cultures were treated 24 hours with different 
concentrations of NVP-BEZ235; viable- (left) and dead-cell-number (right) was determined and 
plotted relative to controls. C, Cells stably expressing vector control or Myr-AKT were treated 24 
hr with different concentrations of TKI258 and fold-increase in cell death relative to controls was 
determined using the YO-PRO assay. D, WCLs prepared from vector control or Myr-AKT 
cultures treated with 1M TKI258 for different times were immunoblotted with the indicated 
antibodies. 
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Decreased mammary tumor growth in TKI258-treated mice 

Next in vivo effects of TKI258 were examined. First, a single 50mg/kg dose was administered to 

4T1 tumor-bearing mice, then tumors were collected 2, 8 and 24 hours after dosing and lysates 

prepared from 3-tumor bearing mice per time point were analyzed. Vehicle-treated mice had high 

levels of Ptyr196-FRS2, active ERK1/2 and active AKT (Figure 5-4 A). Importantly, within 2 

hours of TKI258 administration there was a significant decrease in Ptyr196-FRS2 and P-ERK1/2 

levels in the tumors; P-AKT levels decreased to a lesser extent (Figure 5-4 A). Ptyr196-FRS2 

levels remained low 24 hours after treatment; while active ERK1/2 and AKT started to rise by 8 

hours (Figure 5-4 A). These results show that TKI258 rapidly blocks the FGFR pathway in vivo 

in the tumors.  

 

Next we tested long-term effects of TKI258 treatment. Mice bearing 4T1- and 67NR- induced 

tumors were randomly distributed into treated or control groups. 4T1-tumor-bearing mice were 

dosed daily at 20 and 40mg/kg for 14 days; 67NR-tumor-bearing mice were dosed at the 

indicated times with 40mg/kg for 16 days. Non-significant changes in body weight were 

observed in TKI258-treated animals (Supplementary Figure 2A). Importantly, there was a 

significant reduction in tumor outgrowth and in tumor weight in the TKI258-treated groups of 

4T1- and 67NR-bearing tumors (Figure 5-4 B and C and Supplementary Figure 2B), showing that 

blockade of FGFR has strong anti-tumor activity.   

 

To determine the mechanisms underlying TKI258 activity, 4T1-induced tumors collected on day 

24 were examined for vessel density, proliferation and apoptosis. Quantification of CD31-stained 

sections and cleaved caspase-3 stained sections revealed a significant decrease in vessel density 

and a significant increase in cell death in TKI258-treated animals (Figure 5-4 D top and middle). 

There was no significant change in the mitotic marker P-histone H3 (Figure 5-4 D bottom). 

Taken together, these results suggest that TKI258 inhibits tumor outgrowth mainly by impairing 

cell survival, which might result from decreased P-AKT (Figure 5-4 A) and decreased vessel 

density. TKI258’s effects are rapid, showing significant difference in tumor volume in the treated 

groups within 3 days, however, consistent long-term tumor shrinkage was not observed (Figure 

5-4 B and C). 

  - 60 -  



Results: Submitted Manuscript  

B

A

Ptyr196 FRS2

P-ERK1/2

FRS2

ERK1/2

Vehicle
2h 8h 24h24h

TKI258 50mg/kg

AKT

P-AKT

D

C
le

av
ed

 c
as

p
as

e 
3 

p
o

si
ti

ve
 

ce
lls

 (%
)

   0

0.4

0.8

 1.2

 1.6

*

vehicle

40mg/kg

0

1

2

 3

 4

Ph
o

sp
h

o
-h

is
to

n
e 

H
3 

p
o

si
ti

ve
 

ce
lls

 (%
)

vehicle

40mg/kg

0

4

8

12

16

*

Tu
m

o
r a

re
a 

co
ve

re
d

 b
y 

C
D

31
 

st
ai

n
in

g
 (%

)

vehicle

40mg/kg

*

M
ea

n 
tu

m
or

 v
ol

um
e 

(m
m

3)
 +

/- 
st

d 
er

r 
of

 m
ea

n

vehicle

40mg/kg

20mg/kg

0

1000

500

1500

2000

10 16 22 2420181412
Days post tumor cells injection

* *
*

*
* *

*
* *

*
*

*4T1 tumors

Start of treatment

C

0

400

800

1200

7 13 19 211715119 23

vehicle

40mg/kg

67NR tumors

Start of treatment

Start of treatment

Start of treatment

M
ea

n 
tu

m
or

 v
ol

um
e 

(m
m

3)
 +

/- 
st

d 
er

r 
of

 m
ea

n

Days post tumor cells injection

*

 

 

Figure 5-4 In vivo effects of TKI258 

A, Mice bearing 4T1 tumors were treated once with TKI258 or water control. At the indicated 
times, tumors were collected, lysates prepared and immunobloted with the indicated antibodies. 
Mice bearing B, 4T1 and C, 67NR tumors were randomized into treatment groups and B, 4T1 
tumor-bearing mice were treated daily with TKI258 (40mg/kg or 20mg/kg) or water for 14 days. 
Statistical analysis was performed using one way ANOVA: *, P<0.005. C, 67NR tumor-bearing 
mice were treated with TKI258 (40mg/kg) or water for 5 days, followed by 2 days off-treatment, 
as indicated. Statistical analysis was performed using Mann-Whitney Test: *, P<0.05. D, 4T1 
tumors from the 40mg/kg 14-day treated TKI258 or control group were harvested; frozen sections 
were stained for CD31, cleaved caspase3 or phospho-histone H3. CD31 positive area was 
measured and plotted as percent of tumor area (top). Cleaved caspase3 positive and total cells 
were counted and plotted as a %. Phospho-histone H3 positive and total cells were counted and 
plotted as a %. Statistical analysis was performed using t-test: **, P<0.01; *, P<0.05. 
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TKI258 treatment decreases lung metastasis 

To analyze TKI258’s effects on metastasis, lungs of 4T1 tumor-bearing mice sacrificed on day 24 

were removed, stained with Bouin’s fixative and metastatic nodules were quantified. In vehicle-

treated animals multiple large nodules were evident; while the extent of lung metastasis was 

dramatically reduced in TKI258-treated mice (Figure 5-5 A top). Quantification of foci number 

and % covered by metastases revealed a significant decrease in both parameters (Figure 5-5 A, 

lower panels). To assess TKI258’s effects directly in the lungs, 4T1 cells were injected through 

the tail vein and 5 days later TKI258 was administered for 9 days (Figure 5-5 B). TKI258 had a 

slight, non-significant effect on foci number (Figure 5-5 B top); while the % covered by 

metastases was significantly decreased (Figure 5-5 B bottom). Thus, FGFR blockade also impairs 

the ability of 4T1 cells to grow in the lungs following tail vein injection.  

 

Array data on TKI258 treated 4T1 cells and tumor-bearing mice 

To find genes changed by TKI258, a genome-wide transcriptome analysis was performed and 

differentially regulated genes were identified. From triplicates of 16 hours TKI258- or vehicle-

treated 4T1 cells, 2064 significantly changed probesets (1648 annotated genes) were identified. 

The same analysis performed on triplicate tumors from 14-day TKI258-treated versus vehicle-

treated mice, led to the identification of 543 genes (254 annotated genes); 65 genes overlapped 

between the data sets and 61 showed the same trend in vitro and in vivo (Supplementary Table 2). 

Consistent with a reduction in the extent of lung metastasis, many genes related to cell motility 

and invasion were identified. In particular, several matrix metalloproteases (MMPs) (MMP1, 

MMP3, MMP9, MMP10 and MMP13), involved with extracellular matrix degradation (Duffy et 

al., 1996; Duffy et al., 2000) were down-regulated by TKI258 treatment. A quantitative RT-PCR 

analysis showed that within 8 hours of TKI258 addition there was >80% decrease in MMP1, 3, 9 

and 10 levels in 4T1 cells (Figure 5-5 C); MMP-9 protein was almost undetectable after 24 hours 

of treatment (Figure 5-5 D). Interestingly, all these MMPs have AP-1 binding sites in their 

promoter (Yan & Boyd, 2007), connecting TKI258-mediated ERK inhibition to their decreased 

expression.  
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Figure 5-5 Effects of TKI258 on metastasis 

A, top, Representative pictures of lungs from 14-day treated TKI258 or control mice; front and 
back view of left lobes. Bottom, Quantification of metastatic foci (left) and lung % covered by 
metastases (right) in control and TKI258-treated groups (n=6). Statistical analyses were performed 
using Kruskal-Wallis test: *, P<0.05 (right) or one-way ANOVA test: *, P<0.05 (left). B, top, 4T1 
cells were injected in tail veins and 5 days later mice were treated with 40mg/kg TKI258 or 
vehicle for 9 days before collecting lungs. Quantification of metastatic foci and % of lung covered 
by metastases in control and TKI258 treated groups (n=3) performed as in panel A. Statistical 
analyses were performed using student T-test: *, P<0.05. C, Quantitative real-time RT-PCR with 
primers for different MMPs was performed on RNA from TKI258-treated 4T1 cells. D, WCLs 
from TKI258-treated 4T1 cells were immunoblotted for MMP9; tubulin served as loading control. 
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TKI258-regulated genes identify clusters of human breast tumors with increased metastatic 

potential. 

Based on the ability of TKI258 to reduce metastases and perturb genes involved in cell motility 

and invasion, we tested whether TKI258-regulated genes might be enriched for prognostic 

markers in human breast tumors. Two cohorts of breast cancer patients available in the GEO 

database were used: TRANSBIG (GSE7390) with 198 patients and ERASMUS (GSE2034) with 

286 patients. 1648 human orthologous genes affected by in vitro- and 254 genes affected by in 

vivo-TKI258 treatment were analyzed. Unsupervised hierarchical clustering analysis in both 

cohorts identified a group of patients characterized by overexpression of the same subset of 64 

TKI258- in vitro regulated genes (Cluster 1A); 99.4% of these genes are negatively regulated by 

TKI258 (Figure 5-6 A and Supplementary Table 3). The clustering analysis was also performed 

with genes affected by in vivo treatment, which identified two patient groups overexpressing 

distinct gene-sets (Cluster 1B, 62 merged genes; Cluster 2B, 42 merged genes; Figure 5-6 B) that 

overlapped in both cohorts (Cluster 1B, 42 overlapping genes, P = 4.06-29; Cluster 2B, 15 

overlapping genes, P = 4.14-11; Supplementary Table 3). 

 

Kaplan-Meier analysis revealed that in both cohorts Cluster 1A and Cluster 2B patients had a 

worse prognosis compared to other patients (Figure 5-6 C and D upper panels). The difference in 

metastasis-free survival was even stronger in the sub-group of basal-like patients (Figure 5-6 C 

and D lower panels). Conversely, patients in Cluster 1B had a better prognosis compared to 

others (Figure 5-6 D, green line). Of note is the fact that the majority of Cluster 1B genes (49 out 

of 62 genes, Supplementary Table 3) were up-regulated by the inhibitor, while the majority of 

genes in Cluster 1A and 2B (99.4% and 65%, respectively; Supplementary Table 3) were 

negatively regulated by TKI258. Cluster 1A and Cluster 2B cohorts contain almost the same 

patients (Supplementary Figure 3A and B), while the overlap between the subsets of over-

expressed genes characterizing these clusters is very low (3 common genes, Supplementary 

Figure 3C). This suggested that Cluster 1A and 2B genes might identify distinct pathways and 

mechanisms that contribute to tumor progression. Of note, Ingenuity Pathway (IPA) functional 

analysis revealed that cell cycle and DNA replication functions are more enriched in Cluster 1A 

genes, while cellular movement and inflammatory response functions are more enriched in 

Cluster 2B genes (P <0.05, Fisher’s exact test; Supplementary Figure 4). In summary, our 
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analysis of genes regulated by TKI258 has led to the identification of breast cancer patients in 

which a fraction of TKI258-downregulated genes are highly expressed and are prognostic. Indeed, 

these patients tend to have a poor prognosis, in particular in the basal-like group. This cluster of 

highly expressed genes might reflect activation of signaling pathways that we identified in our 

analysis of FGFR in 4T1 tumors. 

 

 

Figure 5-6 Meta-analysis of TKI258-regulated genes in human breast tumors 

A, Unsupervised hierarchical clustering of TKI258-regulated genes identified in vitro in 4T1 cells 
(1648 genes) in the TRANSBIG and ERASMUS cohorts. Red tree and box indicate Cluster 1A 
patients and relative overexpressed genes in the cluster, respectively. B, Unsupervised hierarchical 
clustering of genes regulated by TKI258 in 4T1 tumors (254 genes) in the TRANSBIG and 
ERASMUS cohorts. Yellow tree and box and green tree and box indicate Cluster 2B and Cluster 
1B patients and relative overexpressed genes in the clusters, respectively. C, Kaplan-Meier plots 
of Cluster 1A patients (red line) compared to the others (grey line) and plots considering only 
patients with basal-like tumors. P-values were computed using log-rank t-test. D, Kaplan-Meier 
plots of patients in Cluster 1B (green line) and Cluster 2B (orange line) compared to others (grey 
line) and by considering only patients with basal-like tumors. P-values were computed using log-
rank t-test. 
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Discussion 

Despite recent advances in breast cancer treatment there are patients for whom no targeted 

therapies are available (Rakha & Ellis, 2009). Based on evidence implicating FGFRs as breast 

cancer risk factors (Easton et al., 2007; Hunter et al., 2007; Meyer et al., 2008) and the 

identification of FGFR amplification and overexpression in specific sub-groups (Nordgard et al., 

2007; Reis-Filho et al., 2006), further studies on the potential of targeting this receptor family in 

breast cancer are warranted. In the work presented here we show that 4T1 and 67NR mammary 

cancer cells display autocrine FGFR activity due to co-expression of receptors and ligands. 

Furthermore, we show that multiple signaling pathways activated by FGFRs (Eswarakumar et al., 

2005) are inhibited by TKI258 treatment of both tumor cell lines and FGFR inhibition blocks 

proliferation and causes a strong reduction in mammary tumor outgrowth and lung metastases. 

We identified the essential role of the PI3K/AKT pathway in 4T1 survival by expressing Myr-

AKT in the cells, which rescued them from TKI258-induced apoptosis. Taken together our 

results suggest that in breast tumors with active FGFR signaling, anti-FGFR therapeutics 

including TKIs or antibodies might show clinical efficacy. 

 

In addition to FGFRs, TKI258 inhibits VEGFR and PDGFR family members (Lee et al., 2005). 

Thus, 4T1 cells were tested for sensitivity to the pan-VEGFR inhibitor PTK787 (Wood et al., 

2000) and the PDGFR family inhibitor STI571 (Buchdunger et al., 1996). Neither inhibitor had a 

significant effect on proliferation or survival of 4T1 cultures (Supplementary Figure 5A and B). 

Moreover, treatment of 4T1 tumor-bearing mice with PTK787 had not effect on tumor outgrowth 

(Supplementary Figure 5C). Taken together these results suggest that the major effects of TKI258 

are related to FGFR blockade. In vivo, TKI258 treatment of both breast tumor models had a 

significant impact on tumor outgrowth, however, no tumor regression was observed. Despite the 

significant increase in cleaved caspase-3 observed in vitro in 4T1 cells and in vivo in the tumors, 

TKI258 only slowed tumor outgrowth. Furthermore, unlike in vitro treatment, TKI258 did not 

cause a decrease in proliferation markers in the tumors. This suggests that cell death caused by 

TKI258 was insufficient to overcome growth promoting signaling in the in vivo setting. It is 

likely that tumor cells use other factors supplied by the tumor environment to survive in vivo. 

Tumors rarely respond to treatment with a single agent and in the future it will be important to 

test if FGFR inhibition in combination with other anti-tumor agents causes tumor regression. 
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We have recently uncovered a novel pathway essential for 4T1 lung metastasis (Fayard et al., 

2009). Protease nexin-1 (PN-1), an extracellular serpin, controls MMP-9 transcription via binding 

its receptor, LRP-1.  PN-1 silenced 4T1 cells have decreased MMP-9 levels and impaired 

metastatic potential, which could be restored by re-expressing MMP-9 in them (Fayard et al., 

2009). Interestingly, TKI258 lowers expression of both (Supplementary Tables 4 and 5), showing 

how FGFR uses multiple pathways to control proliferation, survival and metastatic spread of this 

breast cancer model. The metastatic process is complex and tumor cells need to overcome many 

barriers in order to reach and grow in distant organs (Gupta & Massague, 2006). The microarray 

analysis revealed a number of TKI258-regulated genes that are known to be involved in 

metastasis (Supplementary Tables 4 and 5), including integrins, extracellular matrix proteins and 

transcription factors. For example, collagen type IV 5 that has been shown to be down-regulated 

in invasive cancers (Tanaka et al., 1997) was increased by TKI258 treatment (Supplementary 

Table 4 and 5). Moreover, two important mediators of epithelial-mesenchymal transition (EMT), 

E-cadherin and the Twist transcription factor were also altered by TKI258 treatment 

(Supplementary Table 4 and Supplementary Figure 6A and B). During development FGFR 

induces EMT (Ciruna & Rossant, 2001), a transition that is characterized by loss of epithelial 

properties and an increased mesenchymal phenotype (Miettinen et al., 1994; Vincent-Salomon & 

Thiery, 2003). Interestingly, Twist knock-down 4T1 cells have been shown to form primary 

mammary tumors, with impaired metastatic potential (Yang et al., 2004). 

 

Gene expression signatures of tumors have become important tools not only to define cancer 

subtypes and prognosis, but also for defining combined oncogenic pathway activity in tumors 

(Bild et al., 2006; Potti et al., 2006). It has also been shown that 'biased' approaches (i.e. relying 

on experimental models) are very powerful in identifying cancer signatures less influenced by 

tumor genetic heterogeneity (Bianchi et al., 2008). Therefore, we took advantage of the “TKI258 

gene signature” to study its expression profile in publicly available breast cancer patient cohorts 

with long-term follow-up. We identified patient cohorts overexpressing clusters of genes down-

regulated by TKI258 (Cluster 1A and 2B), which have a higher probability of metastatic disease 

compared to the other patients. The two identified genetic signatures are very stable since their 

prognostic significance was confirmed in both independent cohorts of analyzed patients  
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Another important aspect of using a ‘biased’ approach is the possibility to link cancer gene 

expression signatures to precise molecular alterations, which in the work presented here is 

TKI258-mediated blockade of FGFR signaling. Interestingly, we found that Cluster 2B, selected 

from the in vivo experiment, was enriched for genes encoding proteins involved in inflammatory 

response and cellular movement. This suggests that blocking signaling pathways downstream of 

FGFR exerts effects not only in the cancer cells but also on the tumor microenvironment. To test 

this, Cluster 2B genes were compared to genes uncovered in a recent study of an invasive cancer 

model in which gene expression in the tumor epithelium and the stroma was monitored (Reuter et 

al., 2009) (GSE15299). Remarkably, when a gene-set enrichment analysis was performed 

(GSEA), Cluster 2B genes were top scoring in terms of enrichment and significance in the 

stromal component of the invasive cancer (NES, 2.06; P <0.001; Supplementary Table 6). On the 

other hand, Cluster 1A genes, which were selected after in vitro TKI258 treatment were top 

scoring in the epithelial component of the tumor (NES, 2.19; P <0.001; Supplementary Table 6). 

Taken together, these results suggest that in human tumors inhibition of an RTK like FGFR 

might result in a concomitant transcriptional re-programming of genes that are important for 

tumor-stroma interaction and cancer progression.  

 

In summary, FGFRs appear to be a valuable target for treatment of sub-groups of breast cancer 

patients. We show here that many biological aspects of the tumor, from cell proliferation to 

invasion and metastasis, are dependent on FGFR signaling and blockade of these receptors has a 

strong influence on tumor growth and metastasis formation. 

 

Acknowledgements 

We thank Drs. D. Graus-Porta, C. Garcia-Echeverria and M. Maira for providing inhibitors and 

helpful suggestions and Dr. B. Hemmings for the Myr-Akt cDNA. We thank Dr. B. Fayard for 

helpful comments on the manuscript. The work of JHD was partially supported by TRANSFOG 

FP6 IP funding (LSHC-CT-2004-503438). The laboratory of NEH is supported by the Novartis 

Research Foundation. 



Results: Submitted Manuscript  

Supplementary figures and tables 

 

Supplementary Figure 1 
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A, Western blot analysis of 4T1 lysates probed with specific antisera for FGFR2, FGFR3 and 
tubulin as a loading control. B, Cells were starved over-night in serum free media and pretreated 
with 1M TKI258 or DMSO for 60 minutes prior stimulation with FGF2 for the indicated times. 
Whole cell lysates were subjected to western blot with antibodies specific for active forms of 
STAT3 and Src and reprobed with antisera for non-phosphorylated forms. 

 

Supplementary Figure 2 
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A, Weight of mice bearing 4T1 tumors and upon daily treatment with 20mg/kg, 40mg/kg TKI258 
or water for 14 days. B, Weight of 4T1 tumors injected into the mammary gland of Balb/C mice. 
When the tumors reached 100mm3, the mice were randomized into 3 groups and were orally 
treated daily with TKI258 (40mg/kg or 20mg/kg) or water for 14 days. Statistical analysis was 
performed using one way ANOVA: *, P<0.001. 
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Supplementary Figure 3 
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A, Overlap of patients from the ERASMUS cohort, with respect to their belonging to cluster 1A or 
2B. B, Overlap of patients from the TRANSBIG cohort, with respect to their belonging to cluster 
1A or 2B. C, Overlap of the genes between cluster 1A and 2B 

 

Supplementary Figure 4 
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IPA analysis of bio-functions in Cluster 1A and 2B genes. The significance of the enrichment of 
bio function categories is displayed for both the two gene sets (light blue, Cluster 1A; dark blue, 
Cluster 2B). Y-axes, the minus logarithm base 10 of p-values (Fisher’s exact test). Threshold 
indicates –Log (P = 0.05) which is used as cutoff. 
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Supplementary Figure 5 
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A, Comparison between the effects of 1M TKI258 and increasing concentration of PTK787 on 
cell number (left) and cell death (right) using the YO-PRO assay after 24 hours of treatment. The 
effects were compared to vehicle treatment. B, Comparison between the effects of 1M TKI258 
and increasing concentration of STI571 on cell number (left) and cell death (right) using the YO-
PRO assay after 24 hours of treatment. The effects were compared to vehicle treatment. C, Tumor 
growth analysis of 4T1 cells injected into the mammary gland of Balb/C mice. When the tumors 
reached 30mm3, the mice were randomized into 4 groups (n=6) and were orally treated daily with 
PTK787 (50mg/kg or 25mg/kg), TKI258 (50mg/kg) or PEG300 for 9 days. Statistical analysis was 
performed using one way ANOVA: **, P<0.001; *, P=0.002 for TKI258 treated group versus both 
PTK787 treated groups and PEG300.  
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Supplementary Figure 6 
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A, 4T1 cells were treated with 1M TKI258 for the indicated times. Total RNA was extracted and 
quantitative real-time RT-PCR was run on cDNA with primers specific for E-cadherin and Twist. 
B, 4T1 cells were treated with 1M TKI258. At the indicated times, cell lysates were performed 
and blotted with a specific E-cadherin antibody. Tubulin was used as a loading control. 

 

 

Supplementary Table 1 

Changes in phospho-tyrosine content of peptides in TKI258 versus vehicle treated 4T1 cells

Description

Gab1 GRB2-associated-binding protein 1

Mapk3 Mitogen-activated protein kinase 3

Etl4 Isoform 6 of Sickle tail protein

Erh;LOC100042777 Enhancer of rudimentary homolog

Frs2 Fibroblast growth factor receptor substrate 2

Nans N-acetylneuraminic acid synthase

Tnk2 Isoform 1 of Activated CDC42 kinase 1

Fgfr2 fibroblast growth factor receptor 2

Tjp1 Tight junction protein ZO-1

Mapk14 Isoform 1 of Mitogen-activated protein kinase 14

Dok1 Docking protein 1

657 VDY660VVVDQQK 666

191 IADPEHDHTGFLTEY205VATR 209

4 EIVY7AR9 

89 EKIY92VLLR 96

304 LVY306ENINGLSIPSASGVR 321

66 ALERPY71TSK 74

869 VSSTHY874YLLPERPPYLER 886

650 DINNIDY656YKK 659

1170 YRPEAQPY1177SSTGPK 1183

174 HTDDEMTGY182VATR 186

442 GFSSDTALY450SQVQK 455

Sequence log2 ratios Average*

-5.16 ± 0.11

-3.79 ± 0.25

-2.99 ± 0.66

-2.30 ± 0.22

-1.84 ± 0.33

-1.73 ± 0.29

-1.56 ± 0.77

-0.74 ± 0.04

1.02 ± 0.48

1.09 ± 0.39

1.27 ± 0.47

*Mean ± SD (n = 2). 
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Supplementary Table 2 

 

Genes commonly up- or down-regulated in vivo and in vitro upon TKI258 treatment

Gene symbol

Hp
Ogn
Angpt1
Adh1
Pdgfc
Enpp2
Pdgfrl
C3
Vegfc
Slc44a3
Rbp1
Cyp1b1

Sesn3
Saa3
Tmie
Gdpd2

Cldn4
Irs1
Sned1
Pde5a
Bdh2
Dcn
Acox2
Fmo1
Adhfe1
Rasl11b
A330049M08Rik
Add3
Mettl7a1
Col4a5
Tmem176a
D4Bwg0951e

Inmt
Figf
Tmc4
Mgst1
Spry4
Angptl2
Nup35
Kif18a
Impdh2
Csgalnact1

Mmp9
Il11
Mettl7b
F630043A04Rik
3110006E14Rik
OTTMUSG00000017540
Sema7a

Nptx1
Fabp5
Sema6d

9030611O19Rik
Lipg
Mmp10
Mmp1b

Mmp3
Mmp1a

Mcpt8
Calr4
Mmp13

NM_017370
NM_008760
NM_009640
NM_007409
NM_019971
NM_015744
NM_026840
NM_009778
NM_009506
NM_145394
NM_011254
NM_009994

NM_030261
NM_011315
NM_146260
NM_023608

NM_009903
NM_010570
NM_172463
NM_153422
NM_027208
NM_007833
NM_053115
NM_010231
NM_175236
NM_026878
BC005730

NM_013758
NM_027334
NM_007736
NM_025326
BC030404

NM_009349
NM_010216
NM_181820
NM_019946
NM_011898
NM_011923
NM_027091
NM_139303
NM_011830
NM_172753

NM_013599
NM_008350
NM_027853
BC117501

ENSMUST00000065118
ENSMUST00000101675

NM_011352
NM_008730
NM_010634
NM_172537

BC085288
NM_010720
NM_019471
NM_032007

NM_010809
NM_032006

NM_008572
NM_001033226

NM_008607

Probeset ID Ratios
in vivo

3.3615
3.2445
2.8679
2.7637
2.7329
2.3098
2.2528
2.2293
2.2040
2.1818
2.1715
2.1425

2.0861
2.0620
1.9705
1.9444

1.8833
1.8333
1.7981
1.7644
1.7382
1.7322
1.7306
1.7129
1.6677
1.6669
1.6241
1.5741
1.5544
1.5441
1.5384
1.5150

1.5144
1.5091
1.5070
1.5063
0.6569
0.6564
0.6519
0.6360
0.6339
0.6269

0.6257
0.6251
0.6151
0.6103
0.6057
0.5934

0.5641
0.5534
0.5513
0.5500

0.5479
0.5405
0.5304
0.5203

0.4561
0.4115

0.4083
0.3971
0.3451

P-value
in vivo

0.0063
0.0079
0.0006
0.0053
0.0018
0.0265
0.0123
0.0064
0.0073
0.0003
0.0006
0.0085

0.0015
0.0415
0.0016
0.0126

0.0195
0.0031
0.0180
0.0051
0.0185
0.0108
0.0009
0.0466
0.0021
0.0091
0.0087
0.0363
0.0094
0.0011
0.0430
0.0050

0.0042
0.0257
0.0339
0.0136
0.0237
0.0015
0.0041
0.0053
0.0228
0.0036

0.0338
0.0013
0.0081
0.0010
0.0046
0.0217

0.0088
0.0018
0.0024
0.0003

0.0006
0.0008
0.0324
0.0021

0.0000
0.0049

0.0209
0.0020
0.0036

Description

 haptoglobin
 osteoglycin

 angiopoietin 1
 alcohol dehydrogenase 1 (class I)

 platelet-derived growth factor, C polypeptide
 ectonucleotide pyrophosphatase

 platelet-derived growth factor receptor-like
 complement component 3

 vascular endothelial growth factor C
 solute carrier family 44, member 3
 retinol binding protein 1, cellular

 cytochrome P450, family 1, subfamily b, polypep-
tide 1

 sestrin 3
 serum amyloid A 3

 transmembrane inner ear
 glycerophosphodiester phosphodiesterase domain

containing 2
 claudin 4

 insulin receptor substrate 1
 sushi, nidogen and EGF-like domains 1
 phosphodiesterase 5A, cGMP-specific

 3-hydroxybutyrate dehydrogenase, type 2
 decorin

 acyl-Coenzyme A oxidase 2, branched chain
 flavin containing monooxygenase 1

 alcohol dehydrogenase, iron containing, 1
 RAS-like, family 11, member B

 RIKEN cDNA A330049M08 gene
 adducin 3 (gamma)

 methyltransferase like 7A1
  collagen, type IV, alpha 5

 transmembrane protein 176A
 DNA segment, Chr 4, Brigham & Women's

Genetics 0951 expressed
 indolethylamine N-methyltransferase

 c-fos induced growth factor
 transmembrane channel-like gene family 4

 microsomal glutathione S-transferase 1
 sprouty homolog 4 (Drosophila)

 angiopoietin-like 2
 nucleoporin 35

 kinesin family member 18A
 inosine 5'-phosphate dehydrogenase 2

 chondroitin sulfate N-acetylgalactosaminyltransfer-
ase 1

 matrix metallopeptidase 9
 interleukin 11

 methyltransferase like 7B
 RIKEN cDNA F630043A04 gene
 RIKEN cDNA 3110006E14 gene

 predicted gene, OTTMUSG00000017540
 sema domain, immunoglobulin domain (Ig), and

GPI membrane anchor, (semaphorin) 7A
 neuronal pentraxin 1

 fatty acid binding protein 5, epidermal
 sema domain, transmembrane domain (TM), and

cytoplasmic domain, (semaphorin) 6D
 RIKEN cDNA 9030611O19 gene

 lipase, endothelial
 matrix metallopeptidase 10

 matrix metallopeptidase 1b (interstitial collage-
nase)

 matrix metallopeptidase 3
 matrix metallopeptidase 1a (interstitial collage-

nase)
 mast cell protease 8

 calreticulin 4
 matrix metallopeptidase 13

Ratios
in vitro

3.2595
2.5271
5.3224
2.8519
6.7471
3.4469
2.8600
6.5605
2.1761
2.9568
2.5176
3.1896

3.7766
8.6781
1.9888
12.4670

1.8585
1.5176
2.1402
2.1471
3.7656
4.0357
2.4702
5.3716
3.2613
2.2551
2.0573
1.6564
1.6628
2.2696
2.3997
2.6011

3.8086
2.2880
2.0344
3.9337
0.3714
0.5600
0.6072
0.6240
0.5790
0.3387

0.3696
0.3580
0.4392
0.6305
0.2836
0.6044

0.4689
0.2360
0.6020
0.6026

0.2358
0.2557
0.4114
0.1793

0.1352
0.2960

0.4728
0.3885
0.4896

P-value
in vitro

0.0025
0.0023
0.0001
0.0041
0.0001
0.0003
0.0003
0.0001
0.0020
0.0006
0.0002
0.0002

0.0001
0.0009
0.0010
0.0004

0.0009
0.0031
0.0004
0.0008
0.0003
0.0037
0.0012
0.0007
0.0002
0.0022
0.0021
0.0020
0.0127
0.0004
0.0006
0.0005

0.0018
0.0203
0.0025
0.0003
0.0012
0.0005
0.0015
0.0022
0.0241
0.0001

0.0005
0.0006
0.0028
0.0015
0.0004
0.0386

0.0068
0.0002
0.0039
0.0015

0.0004
0.0004
0.0012
0.0001

0.0003
0.0003

0.0010
0.0016
0.0009
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Supplementary Table 3 

Genes grouping in cluster 1A 

F B X O5 UP UP DOWN
F E N1 UP UP DOWN
F L J 20105 UP UP DOWN
F R M D4A UP DOWN
G AR T  UP DOWN
G E M I N6 UP DOWN
G F OD1 UP DOWN
G I NS1 UP UP DOWN
G I NS3 UP DOWN
G M NN UP DOWN
G PAT C 4 UP UP DOWN
H SPD1 UP DOWN
I F R D1 UP UP DOWN
I M PDH 1 UP DOWN
I T G A6 UP DOWN
J T V 1 UP DOWN
K C NK 5 UP DOWN
K C NN4 UP DOWN
K I AA0179/R r p1b UP DOWN
K I AA0664 UP DOWN
K I AA0859 UP DOWN
K I F 18A UP UP DOWN
K L K 10 UP DOWN
L I PG  UP DOWN
L OC 651423 UP UP
L R P8 UP UP DOWN
L SM 7 UP DOWN
M C M 10 UP UP DOWN
M C M 3 UP UP DOWN
M DN1 UP DOWN
M E 2 UP UP DOWN
M E T T L 1 UP DOWN
M I NA UP DOWN
M L F 1I P UP UP DOWN
M PP6 UP DOWN
M T H F D1 UP DOWN
M Y B B P1A UP DOWN
M Y B L 2 UP UP DOWN
M Y C  UP DOWN
NASP UP UP DOWN
NAT 10 UP DOWN
NC L  UP DOWN
NE S UP DOWN
NK R F  UP DOWN
NM E 1 UP DOWN
NOC 4L  UP DOWN
NSUN5 UP DOWN
NUP107 UP UP DOWN
NUP160 UP UP DOWN
NUP43 UP DOWN
NUP85 UP DOWN
ODC 1 UP DOWN
OR C 1L  UP DOWN
PA2G 4 UP DOWN
PADI 2 UP DOWN
PB K  UP UP DOWN
PC OL C E 2 UP DOWN
PDSS1 UP UP DOWN
PH L DA2 UP DOWN
PL K 4 UP UP DOWN
POL 3G UP UP DOWN

POL Q UP DOWN
POL R 1E  UP DOWN
POL R 2H  UP DOWN
POP1 UP DOWN
PPA1 UP DOWN
PPAN UP DOWN
PR I M 1 UP UP DOWN
PR K AR 2A UP UP DOWN
PT DSR /J M J D6 UP DOWN
PUS7 UP UP DOWN
PV R  UP DOWN
PW P1 UP DOWN
PW P2H  UP DOWN
R AD51AP1 UP UP DOWN
R AD54L  UP UP DOWN
R AI 14 UP DOWN
R B M X 2 UP DOWN
R C L 1 UP DOWN
R PP30 UP DOWN
R PP40 UP UP DOWN
R R M 2 UP UP DOWN
R R S1 UP DOWN
R UV B L 2 UP DOWN
SAC S UP DOWN
SE T D6 UP DOWN
SF N UP DOWN
SH M T 2 UP DOWN
SK P2 UP DOWN
SL C 19A1 UP DOWN
SL C 2A1 UP DOWN
SL C 39A14 UP DOWN
SNR PA1 UP UP DOWN
T B R G 4 UP UP DOWN
T DP1 UP UP DOWN
T F R C  UP DOWN
T G F A UP DOWN
T I M M 10 UP DOWN
T I M M 8A UP DOWN
T I M M 9 UP DOWN
T I PI N UP UP DOWN
T K 1 UP UP DOWN
T M E M 48 UP UP DOWN
T M E M 97 UP DOWN
T NF R SF 21 UP DOWN
T R I M 27  UP DOWN
T R I P13 UP UP DOWN
T SR 1 UP DOWN
T UB B 6 UP DOWN
UC H L 5 UP UP DOWN
UM PS UP DOWN
UPP1 UP UP DOWN
USP36 UP DOWN
UT P18 UP DOWN
W DH D1 UP UP DOWN
W DR 12 UP DOWN
W DR 43 UP DOWN
X PO4 UP DOWN
Y AR S2 UP DOWN
Y R DC  UP DOWN
ZNF 259 UP DOWN
ZR F 1/DNAJ C 2 UP DOWN

ADD2 UP DOWN
AM PD2 UP DOWN
ASF 1B  UP UP DOWN
B L M  UP UP DOWN
C 11OR F 75 UP DOWN
C 13OR F 34 UP UP DOWN
C 14OR F 169 UP DOWN
C 18OR F 24 UP UP DOWN
C 1OR F 181 UP DOWN
C 1QB P UP DOWN
C 21OR F 45 UP UP DOWN
C 6OR F 66 UP UP DOWN
C 6OR F 75 UP UP DOWN
C 9OR F 40 UP DOWN
C C DC 86 UP DOWN
C C DC 99 UP UP DOWN
C C NB 1I P1 UP DOWN
C C NE 1 UP UP DOWN
C C NE 2 UP UP DOWN
C C NF  UP DOWN
C DC 25A UP UP DOWN
C DC 45L  UP UP DOWN
C DC 7 UP UP DOWN
C DT 1 UP UP DOWN
C E P55 UP UP DOWN
C G I -115 UP UP DOWN
C L SPN UP UP DOWN
C X 3C L 1 UP DOWN
C Y C S UP DOWN
DDX 18 UP DOWN
DDX 21 UP UP DOWN
DDX 39 UP UP DOWN
DK C 1 UP UP DOWN
DNA2L  UP UP DOWN
DONSON UP UP DOWN
DPH 2 UP DOWN
DUSP9 UP DOWN
E 2F 3 UP UP DOWN
E 2F 8 UP UP DOWN
E SPL 1 UP UP DOWN
E T V 5 UP DOWN
E X O1 UP UP DOWN
F AB P5 UP UP DOWN
F B L  UP DOWN

Gene name Tr
en
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oh
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Genes in cluster 1A
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Genes grouping in cluster 1B and 2B 

Gene name Tr
en

d 
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 E
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 c
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25

8Genes in cluster 2B

ACSL1 UP UP
ADD3 UP UP
ANGPT1 UP UP UP
APOC1 UP UP
BMP2 UP DOWN
BUB1 UP DOWN
CDC25C UP DOWN
CHEK2 UP DOWN
CHGN UP DOWN
COL4A2 UP DOWN
CXORF15 UP DOWN
CYP1B1 UP UP
CYP7B1 UP UP
DEPDC1 UP DOWN
DSG1 UP DOWN
DSG3 UP UP DOWN
EGFR UP UP UP
FABP5 UP UP DOWN
GPM6B UP UP UP
HMGB3 UP DOWN
HMMR UP DOWN
IGFBP3 UP DOWN
ITGAX UP DOWN
KCNJ2 UP UP DOWN
KIF18A UP DOWN
LGALS7 UP UP DOWN
LIPG UP UP DOWN
MAP2 UP UP
MMP1 UP UP DOWN
MMP13 UP DOWN
MMP9 UP UP DOWN
OIP5 UP DOWN
PDGFC UP UP
PHACTR1 UP UP
RBP1 UP UP UP
ROR1 UP UP UP
S100A9 UP DOWN
SERPINE2 UP DOWN
SLC1A3 UP UP
SLC5A3 UP UP DOWN
SLC6A2 UP UP
SRD5A1 UP UP DOWN
ST3GAL5 UP DOWN
TLR7 UP DOWN
TMEM176A UP UP
TRIM29 UP UP DOWN

Gene name Tr
en

d 
in

 E
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 c
oh
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t
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d 
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G
 c
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s 
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8

A2M UP UP UP
ADAMTS5 UP UP UP
ADD3 UP UP UP
ADH1C UP UP
ADIPOQ UP UP UP
AGTRL1 UP UP UP
ANGPTL2 UP UP DOWN
AOX1 UP UP UP
AQP7 UP UP UP
BACE1 UP UP
BDH2 UP UP
C10ORF10 UP UP DOWN
C3 UP UP UP
CD36 UP UP UP
CD93 UP UP DOWN
CFD UP UP UP
CFD UP UP
CHGN UP DOWN
CHRDL1 UP UP UP
CIDEC UP UP UP
COL14A1 UP UP UP
COL4A2 UP DOWN
CXCL12 UP UP UP
CYP1B1 UP UP
DCN UP UP UP
DPT UP UP UP
DUSP1 UP UP DOWN
EFEMP1 UP UP UP
EMCN UP UP DOWN
ENPP2 UP UP UP
FABP4 UP UP UP
FIGF UP UP UP
FMO1 UP UP UP
FXYD1 UP UP UP
GHR UP UP
GPD1 UP UP UP
GPD1 UP UP
GPR116 UP UP DOWN
GPX3 UP UP
HP UP UP UP
ITM2A UP UP UP

LEP UP UP UP
LPL UP UP UP
METTL7A UP UP
MMP3 UP UP DOWN
NID2 UP UP DOWN
NNMT UP UP UP
OGN UP UP UP
PCK1 UP UP UP
PDGFC UP UP
PDGFRL UP UP UP
PGDS UP DOWN
RARRES2 UP UP UP
ROR1 UP UP
SERPINE2 UP DOWN
SFRP4 UP UP UP
SFRP4 UP UP
SNED1 UP UP
SPRY4 UP DOWN
STEAP1 UP UP
TMEM176A UP UP
VEGFC UP UP UP

Genes in cluster 1B 1st part
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Genes in cluster 1B 2nd part
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Supplementary Table 4 

 

Genes related to an invasive phenotype modulated upon TKI258 treatment in vitro

Gene symbol

Cdh17
Mmp3
Mmp1b
Mmp1a
Plaur
Cxcr3
Mmp9
Timp1
Mmp10
Itga2
Nes
Mmp13
Itgb7
Plau
Cd44
Bmp7
Col8a1
Itga6
Jun
Twist1

Timp2
Cgn
Itga1
Ing4
Vcam1
Itgb3
Synpo2
Icam1
Ptprf
Cldn4
Jup
Sdc3
Krt19
Cdh1
Col4a5
Ephb3
Itgb5
Ephb6
Mmp11
Lamb2
Thbs1
Col6a1
Mcam
Krt14
Dcn
Cdon

NM_019753
NM_010809
NM_032007
NM_032006
NM_011113
NM_009910
NM_013599

NM_001044384
NM_019471
NM_008396
NM_016701
NM_008607
NM_013566
NM_008873
NM_009851
NM_007557
NM_007739
NM_008397
NM_010591
NM_011658

NM_011594
NM_001037711
NM_001033228

NM_133345
NM_011693
NM_016780
BC158045

NM_010493
NM_011213
NM_009903
NM_010593
NM_011520
NM_008471
NM_009864
NM_007736
NM_010143
NM_010580
NM_007680
NM_008606
NM_008483
NM_011580
NM_009993
NM_023061
NM_016958
NM_007833
NM_021339

Probeset ID Ratio (TKI258/control)

0.09
0.14
0.18
0.29
0.31
0.33
0.37
0.38
0.41
0.42
0.48
0.49
0.58
0.60
0.61
0.62
0.63
0.64
0.64
0.69

1.51
1.51
1.53
1.58
1.59
1.72
1.72
1.73
1.77
1.86
1.88
1.91
1.91
2.13
2.27
2.35
2.37
2.39
2.54
2.73
2.75
2.85
3.16
3.45
4.04
4.11

P-value

0.00005
0.00027
0.00009
0.00029
0.00012
0.00048
0.00122
0.00025
0.00115
0.00086
0.00037

0.0009
0.0045
0.0037

0.002
0.0012
0.0026
0.0022
0.0018
0.0001

0.0013
0.006

0.0274
0.0036

0.00076
0.0012
0.0113
0.0017
0.0006
0.0009
0.0006
0.0009
0.0015
0.0003
0.0003
0.0017
0.0003
0.0017
0.0004
0.0003
0.0003
0.0002
0.0003
0.0026
0.0037
0.0002

Description

cadherin 17
matrix metallopeptidase 3
matrix metallopeptidase 1b
matrix metallopeptidase 1a

plasminogen activator, urokinase receptor
chemokine (C-X-C motif) receptor 3

matrix metallopeptidase 9
tissue inhibitor of metalloproteinase 1

matrix metallopeptidase 10
integrin alpha 2

nestin
matrix metallopeptidase 13

integrin beta 7
plasminogen activator, urokinase

CD44 antigen
bone morphogenetic protein 7

collagen, type VIII, alpha 1
integrin alpha 6
Jun oncogene

Twist

tissue inhibitor of metalloproteinase 2
cingulin

integrin alpha 1
inhibitor of growth family, member 4
vasculat cell adhesion molecule 1

integrin beta 3
synaptopodin 2

intercellular adhesion molecule 1
protein tyrosine phosphatase, receptor type, F

claudin 4
junction plakoglobin

syndecan 3
keratin 19
cadherin 1

collagen, type IV, alpha 5
Eph receptor B3
integrin beta 5

Eph receptor B6
matrix metallopeptidase 11

laminin, beta 2
thrombospondin 1

collagen, type VI, alpha 1
melanoma cell adhesion molecule

keratin 14
decorin

cell adhesion molecule-related
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Supplementary Table 5 

 

Genes related to an invasive phenotype modulated upon TKI258 treatment in vivo

Gene symbol

Mmp13
Mmp1a
Mmp3
Angpt2
Mmp1b
Mmp10
Serpine2
ItgaX
Dsg3
Bmp2
Cldn1
IL11
Mmp9
Angptl2
Itga9
Col4a2
Cdc25c

Col4a5
Col14a1
Cldn3
Fndc1
Dcn
Tusc5
Cldn4
Cxcl12
Vegfc
Angpt1

NM_008607
NM_032006
NM_010809
NM_007426
NM_032007
NM_019471
NM_009255
NM_021334
NM_030596
NM_007553
NM_016674
NM_008350
NM_013599
NM_011923
NM_133721
NM_009932
NM_009860

NM_007736
NM_181277
NM_009902

NM_001081416
NM_007833
NM_177709
NM_009903

NM_001012477
NM_009506
NM_009640

Probeset ID Ratios (TKI258/control)

0.34
0.41
0.46
0.48
0.52
0.53
0.53
0.55
0.57
0.58
0.59
0.62
0.62
0.65
0.66
0.66
0.66

1.54
1.55
1.56
1.61
1.73
1.78
1.88
1.96
2.20
2.86

P-value

0.0035
0.0048

0.00003
0.0167
0.0021
0.0323
0.0463
0.0281
0.0363
0.0046
0.0465
0.0013
0.0337
0.0014
0.0030
0.0111
0.0006

0.0011
0.0247
0.0102
0.0441
0.0107
0.0137
0.0195
0.0107
0.0072
0.0005

Description

matrix metallopeptidase 13
matrix metallopeptidase 1a
matrix metallopeptidase 3

angiopoietin 2
matrix metallopeptidase 1b
matrix metallopeptidase 10

serine peptidase inhibitor, clade E, member 2
integrin alpha X
desmoglein 3

bone morphotenetic protein 2
claudin 1

interleukin 11
matrix metallopeptidase 9

angiopoietin-like 2
integrin alpha 9

collagen, type IV, alpha 2
cell division cycle 25 homolog C

collagen, type IV, alpha 5
collagen, type XIV, alpha 1

claudin 3
fibronectin type III domain containing 1

decorin
tumor suppressor candidate 5

claudin 4
chemokine (C-X-C motif) ligand 12

vascular endothelial growth factor C
angiopoietin 1  

 

Supplementary Table 6 

 SCC – Stroma  

Gene List Size NES NOM p-value FDR q-value
Cluster 2B  36 2.06 <0.001 <0.001 
Cluster 1A 97 1.45 0.024 0.028 
 SCC – Epithelium  

Gene List Size NES NOM p-value FDR q-value
Cluster 1A 100 2.19 <0.001 <0.001 
Cluster 2B 45 1.42 0.041 0.027 

 

gene-set enrichment analysis (GSEA) of Cluster 1A and 2B genes in epithelial and stromal 
component of invasive squamous carcinoma (SCC) (Reuter et al., 2009). Size, number of genes 
mapped on affymetrix chips and available for the analysis.  NES, normalized enrichment GSEA 
score. Nominal p-values (NOM p-value) and false discovery rate q-values (FDR q-value) were 
computed based on the probability distribution of enrichment score of 1000 random gene lists. 
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5.2.  Unpublished results 

In addition to the results presented in the submitted research article, other experiments and 

analyses were performed. These additional experiments were aimed at a better understanding the 

role of FGFR signaling in different cell lines and at studying the individual contribution of the 

FGFR family members to the tumorigenic and metastatic process. Moreover, we tested if 

combination of treatments with TKI258 and other inhibitors could be an interesting approach to 

increase the effects of FGFR blockade. 

5.2.1. FGFR inhibition in mouse mammary carcinoma cell lines 

Aslakson and Miller described four mouse mammary carcinoma cell lines (4T1, 4TO7, 

168FARN and 67NR) that all form mammary tumors when injected into the fat pad of BALB/c 

mice but display different metastatic properties (Figure 5-7) (Aslakson & Miller, 1992). 

 

 

Figure 5-7 Tumorigenic and metastatic properties of 4T1, 4TO7, 168FARN and 67NR 

The 67NR line is non metastatic and appears to be unable to intravastate as they were never 
detected in the circulation. The non metastatic line 168FARN cells spread through the lymphatics 
and clonogenic cells can be recovered from lymph nodes. The line 4TO7 is able to complete all 
steps of the metastatic process except the final one that consists of growing as metastatic nodules 
in distant organs. The 4T1 line is highly metastatic and forms visible lung metastases after 
injection in the mammary gland. 
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First we examined the expression of FGFRs by RT-PCR and western blot in these four mouse 

mammary carcinoma cell lines. 4T1, 4TO7 and 168FARN cells express FGFR1, FGFR2 and 

FGFR3, with 168FARN having a lower amount of FGFR3. FGFR1 was not detected in the 67NR 

(Figure 5-8 A and B). FGFR4 was not detected in any of these cell lines. Expression of FGF1 and 

FGF2, which are the ligands with the broadest activity towards the several isoforms of FGFRs 

was investigated and FGF1 was detected in 4T1, 4TO7 and 67NR, but not in 168FARN cells. In 

contrast, the 168FARN were the only ones were expression of FGF2 was detected (Figure 5-8 C).  
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Figure 5-8 Expression of FGFRs and ligands in 4T1, 4TO7, 168FARN and 67NR cells 

A, Semi-quantitative RT-PCR for FGFRs, performed on cDNA from 4T1, 4TO7, 168FARN and 
67NR cells grown in full medium. GAPDH was used as loading control, cDNA from brain and 
embryo were used as positive controls and H2O as negative control. B, Lysates of cells growing in 
full medium were probed with specific FGFR2 and FGFR3 antibodies. Tubulin was used as a 
loading control. C, Semi-quantitative RT-PCR for different FGFs, performed on cDNA from 4T1, 
4TO7, 168FARN and 67NR cells grown in full medium. GAPDH was used as loading control, 
cDNA from brain and embryo were used as positive controls and H2O as negative control. 

 

The 4T1, 4TO7, 168FARN and 67NR cell lines were isolated from a spontaneous mammary 

carcinoma arising in a BALC/c mouse that was foster-nursed by a C3H female, a mouse strain 

that harbors endogenous milk-borne mouse mammary tumor virus (MMTV). We therefore 
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investigated whether these cells have high expression of FGF3, FGF4, FGF8 and FGF10 that are 

known to be insertional hot spot for the MMTV provirus (Mattila & Harkonen, 2007; Peters et al., 

1989; Theodorou et al., 2004; Theodorou et al., 2007). FGF4 was the only ligand detected in the 

four cell lines, suggesting that its expression could be caused by MMTV insertion in the primary 

tumor from which the four cell lines were derived (Figure 5-8 C upper panel). In addition, we 

detected expression of FGF10 in 4TO7 and 168FARN cells (Figure 5-8 C lower panel). FGF8 

was not detected in the tumor cell lines and the PCR for FGF3 never gave a signal in the positive 

control (data not shown). As co-expression of FGF receptors and FGFs was observed in the four 

cell lines, we tested the hypothesis that these mammary tumor cell lines have autocrine FGFR 

activity. 

 

The activity of signaling proteins downstream of FGFR was measured in lysates of cells grown in 

full medium or serum-starved with or without FGF2 stimulation (Figure 5-9). FRS2 is an adaptor 

protein that gets tyrosine phosphorylated by active FGFRs and links these receptors to various 

pathways (Kouhara et al., 1997; Ong et al., 2000). The level of Ptyr196-FRS2, a docking site for 

Grb2 was high in the four cell lines. Furthermore, high level of P-ERK1/2 was detected and with 

the exception of the 168FARN, P-PLC was high in all the cell lines (Figure 5-9). Serum 

deprivation had little to no effects in 4T1, 4TO7 and 67NR. However following serum starvation, 

the 168FARN showed a marked decrease on ERK1/2 activity. In addition, 168FARN cells were 

the only ones that showed consistent increased ERK1/2 activity 5 and 15 minutes after FGF2 

stimulation and increased PLC activity upon FGF2 addition (Figure 5-9). Taken together, these 

results provide strong evidence supporting the hypothesis that 4T1, 4TO7, 168FARN and 67NR 

cells possess autocrine FGFR activity that can even be stimulated in the 168FARN. 
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Figure 5-9 Active FGFR signaling in mouse mammary carcinoma cell lines 

Lysates were prepared from cells in full serum or serum starved and stimulated for the indicated 
times with FGF2. Immunoblot analyses were performed with the indicated antibodies. 

 

To investigate the intracellular pathways controlled by FGFRs, we used TKI258, a selective 

FGFR TKI (Lee et al., 2005; Renhowe et al., 2009; Sarker et al., 2008). As shown in Figure 5-1, 

TKI258 treatment of 4T1 and 67NR cells blocks several signaling pathway. Here we extended 

this analysis to the 4TO7 and 168FARN cells and observed that TKI258 treatment decreases both, 

basal and FGF2 induced, Ptyr196-FRS2 and ERK1/2 activity in these two cell lines (Figure 5-10). 

Compared to control IPs, PLC IPs from lysate of inhibitor treated cells revealed lower Ptyr 

content (Figure 5-10). There was no effect of TKI258 on the constitutive activity of Stat3 (Figure 

5-10), suggesting that an autocrine loop independent of FGFR keeps this pathway active. These 

results show that TKI258 has a strong effect on constitutive autocrine FGFR signaling in 4TO7 
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and 168FARN cells. In addition, TKI258 treatment of 168FARN cells prevents FGF2 induced 

activation of ERK1/2. 
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Figure 5-10 TKI258 blocks intracellular signaling in 4TO7 and 168FARN cells  

Cultures were serum-starved over-night then pretreated with 1M TKI258 or DMSO for 1 hour 
prior to stimulation with FGF2 for the indicated times. Lysates were prepared and immunoblot 
analyses were performed with the indicated antibodies. PLC IPs were probed for Ptyr content. 

 

Next we tested the effects of FGFR inhibition on cell proliferation. Using BrdU incorporation to 

measure S-phase, we observed a dose-dependent decrease in proliferation with an 80% decrease 

at the highest dose in the 4T1 and a 50% to 60% decrease in the other cell lines (Figure 5-11 A). 

As already seen upon treatment with TKI258 in Figure 5-2, we observed a strong dose-dependent 

increase of cell death in 4T1 cells upon treatment with PD173074, another TKI selective for 

FGFRs. The effect of FGFR inhibition using PD173074 on 67NR cell death was minor (Figure 

5-11 B black and white bars). Interestingly, we found that in the 4TO7 line, cell death was 

induced in a dose-dependent manner upon blockade of FGFRs, however the treatment had little 

to no effect on the 168FARN (Figure 5-11 B dark and light gray bars). These data show that 

blockade of autocrine FGFR activity has a strong impact on the proliferation of these four 

mammary cancer cell lines. In addition, we show that cell death is induced in 4T1 and 4TO7 cells 

in a dose dependent manner upon FGFR inhibition. 
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Figure 5-11 FGFR inhibition affects proliferation and survival in mammary carcinoma cell 

lines 

A, Cells were treated for 24 hours with increasing concentration of TKI258; BrdU was added 2 
hours before the end of the experiment. The percentage of incorporated BrdU relative to vehicle 
treated cells is plotted. B, Cells were treated 24 hours with the indicated concentration of 
PD173074 and cell death was detected with the YO-PRO assay and plotted relative to the vehicle-
treated control. 

 

5.2.2. Overexpression of FGFR1 in 67NR 

In early mammalian development, FGFR1 is required for the expression of the transcription 

factor snail that downregulates the levels of E-cadherin, allowing proper gastrulation (Ciruna & 
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Rossant, 2001). The downregulation of E-cadherin is part of the EMT process that allows 

epithelial cells to change morphology and acquire motility and invasive phenotypes. EMT is 

believed to play an essential role in the early steps of metastatic dissemination of tumor cells.  
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 Figure 5-12 Ectopic expression of FGFR1 in 67NR 

A, Semi-quantitative RT-PCR for FGFR1 in 67NR cells stably transfected with empty vector or 
Myc-FGFR1. 4T1 cells were used as positive control for detection of FGFR1 and H2O was used 
as negative control. B, Pool of cells expressing the empty vector or Myc-FGFR1 were starved 
over-night and stimulated with FGF2 for the indicated time. Myc-FGFR1 was IP with an antibody 
recognizing the Myc tag and probed with Ptyr to test the activity of FGFR1. Lysates were probed 
with the indicated antibodies to test for active pathway. C, Semi-quantitative RT-PCR for FGFR1, 
snail and twist in 67NR pools or clones stably transfected with empty vector or Myc-FGFR1. 
GAPDH was used as loading control. 

 

As FGFR1 is not expressed in the non-metastatic 67NR cells, we ectopically expressed a myc-

tagged FGFR1-IIIc in the 67NR cells and selected pools and clones. Correct expression of the 

construct was confirmed by RT-PCR (Figure 5-12 A and C, top two panels) and IP followed by 

western blot for the Myc-tag (Figure 5-12 B, second panels). Even though 67NR express FGF1 

that has the property to activate all FGFRs, IP of the Myc-FGFR1 and immunoblot for Ptyr 

showed that the ectopic Myc-FGFR1 is not active in serum-starved cells. This result shows that 

in 67NR cells, ectopic FGFR1 is not activated by the endogenous FGF1, suggesting that either 

the level of ligand is too low or that these cells do not express the correct co-receptors that allows 
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formation of FGF1-FGFR1 complexes and activation of this receptor. However, Myc-FGFR1 

gets phosphorylated on tyrosine residues following FGF2 stimulation of the cells (Figure 5-12 B 

top panel). In addition, FGF2 induced ERK1/2 activation was slightly higher in the cells 

expressing Myc-FGFR1 compared to control (Figure 5-12 B, bottom panel). The morphology of 

the 67NR cells was not affected by ectopic expression of FGFR1, suggesting that no EMT 

occurred. According to this, we did not detect changes in the expression of snail upon 

introduction of FGFR1 (Figure 5-12 C, third panel), but we found two clones (clone 14 and clone 

20) that had detectable levels of twist, that is normally absent from 67NR cells (Figure 5-12 C, 

fourth panel) and that plays a role for EMT and invasion in 4T1 cells (Yang et al., 2004). 

Together these results show that ectopic FGFR1 is expressed in 67NR cells, but does not get 

activated by the endogenous FGFs. However Myc-FGFR1 gets tyrosine phosphorylated and 

activated upon stimulation of the cells with FGF2. Interestingly, we found that two clones 

expressing Myc-FGFR1 had expression of Twist that is normally not found in the 67NR cells. 

 

Next we compared the tumor growth properties of 67NR-vector and 67NR-Myc-FGFR1 cells in 

BALB/c mice. First we injected pools of 67NR cells, transfected with empty vector or with the 

Myc-FGFR1 into the 4th mammary gland of mice and followed tumor growth (Figure 5-13 A). 

Expression of the ectopic Myc-FGFR1 in the tumors was confirmed by RT-PCR and western blot 

(Data not shown). However we did not observe significant differences in tumor size and 

histological quantification of the mitotic marker phospho-histone H3 (PHH3) didn’t show 

increase in proliferation in tumors overexpressing Myc-FGFR1 compared to control tumors 

(Figure 5-13 B). Then, we investigated the properties of the different clones that we selected, to 

form tumors in the mice. We decided to pool three empty vector clones (clones 1, 2 and 8 from 

Figure 5-12 C), four clones expressing Myc-FGFR1 (clones 3, 5, 17 and 19 from Figure 5-12 C) 

and to keep as single clones the two that were expressing twist (clone 14 and clone 20 from 

Figure 5-12 C). Expression of Myc-FGFR1 was tested in whole cell lysates and after IP of the 

Myc-tagged FGFR1 in the newly made pools of clones (empty vector and Myc-FGFR1 

expressing) and single clones (clone 14 and clone 20) (Figure 5-13 C). Clone 14 showed the 

highest expression of ectopic FGFR1, clone 20 had similar level than the pool of Myc-FGFR1 

clones and no signal was detected on the empty vector pool of clones (Figure 5-13 C). We then 

injected these pools of clones and single clones into the 4th mammary gland of BALB/c mice and 
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followed tumor growth (Figure 5-13 D). The tumors onset was similar in the four groups, with 

tumors being palpable at day 7 post-injection. In addition, we did not detect significant changes 

in tumor size after 29 days of growth (Figure 5-13 D). These results show that ectopic expression 

of FGFR1 in 67NR cells does neither influence tumor growth nor proliferation of tumor cells. In 

addition, we found that the two clones expressing Twist did not have increased tumor growth 

when compared to empty vector or to 67NR-Myc-FGFR1 where Twist was not expressed.  
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Figure 5-13 Effect of FGFR1 expression on tumor growth 

A, 5x105 cells were injected in 50l PBS into the 4th mammary gland of Balb/C mice. Tumor 
growth was measured three times a week using a caliper. B, 67NR-vector and 67NR-Myc-FGFR1 
mammary tumors were harvested at the indicated days after injection and prepared for histology. 
Frozen sections were stained for phospho-histone H3 (PHH3). The number of mitotic cells was 
determined by counting PHH3 positive and total cells in each field and plotted as a %. C, three 
vector clones and four Myc-FGFR1 expressing clones were pooled together, whereas clones 14 
and 20 were kept as clonal culture. Proteins were extracted from culture in serum condition and IP 
was performed with an anti-Myc antibody (9E10). Blots were performed with the 9E10 antibody 
to analyse Myc-FGFR1 expression and tubulin was used as loading control. D, 106 cells were 
injected in 100l PBS into the 4th mammary gland of Balb/C mice. Tumor growth was measured 
using a caliper. 
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To analyze if ectopic expression of FGFR1 in 67NR was sufficient to render these cells 

metastatic, we aimed to detect disseminated 67NR cells in the lungs. To do this, we extracted 

RNA of lungs from tumor bearing mice 29 days after injection into the 4th mammary gland with: 

a) the pool of empty vector clones, b) the pool of Myc-FGFR1 clones, c) the clone 14 or d) the 

clone 20. Detection of metastatic cells in the lungs of the animals was performed via RT-PCR 

amplification of the specific transcript for transfected 67NR, the neomycin resistance gene NPT2 

(Figure 5-14 A). Neither FGFR1 expressing cells (Pool Myc-FGFR1 clones, clone 14 or clone 

20) nor empty vector pools could be detected in the lungs of the animals 29 days after injection 

into the mammary gland (Figure 5-14 A). This result suggests that, as already observed by 

Aslakson and Miller, the 67NR are not metastatic (Aslakson & Miller, 1992) and ectopic 

expression of FGFR1 does not change their invasive properties in vivo. 

 

To confirm that the RT-PCR based technique was sensitive enough to detect metastatic cells in 

the lungs, we performed a second set of experiments, where we injected the pool of empty vector 

clones, the pool of Myc-FGFR1 clones, the clone 14 or the clone 20 directly into the blood 

stream of the animals via their tail vein. We collected the lungs and extracted lung RNA 14 days 

after injection and performed a NPT2 specific RT-PCR (Figure 5-14 B). Interestingly, we found 

that the 67NR-vector pool cells were able to colonize the lungs and form visible metastatic 

nodules after tail vein injection (Figure 5-14 C). Even though we observed different level of 

metastases formation and different amount of tumor cells were found in the lungs, all pools of 

tumor cells injected via the tail vein formed metastases in the lungs (Figure 5-14 B). These results 

show that the 67NR are capable to form metastatic nodules in the lungs when they are injected 

directly into the blood stream. This means that these cells are impaired in their early metastatic 

spread and are not able to escape from the primary tumor. FGFR1 expression did not influence 

the metastatic properties of these cells when injected into the fat pad or into the blood stream, 

showing that FGFR1 in this model is not required for metastasis formation. 
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Figure 5-14 Metastatic properties of 67NR cells  

A, Semi-quantitative RT-PCR performed on RNA from lungs of BALC/c mice 29 days after 
injection into the 4th mammary gland with: a) Pool of empty vector clones, b) Pool of Myc-FGFR1 
expressing clones, c) Myc-FGFR1 and twist expressing clone 14, d) Myc-FGFR1 and twist 
expressing clone 20. GAPDH was used as a loading control, H2O and normal lung were used as 
negative controls, a vector containing the NPT2 gene was used as positive control. B, Semi-
quantitative RT-PCR performed on RNA from lungs of Balb/C mice 14 to 15 days after injection 
into the tail vein with: a) Pool of empty vector clones, b) Pool of Myc-FGFR1 expressing clones, 
c) Myc-FGFR1 and twist expressing clone 14, d) Myc-FGFR1 and twist expressing clone 20. 
GAPDH was used as a loading control, H2O and normal lung were used as negative controls, a 
vector containing the NPT2 gene was used as positive control.  C, Hematoxylin and Eosin (H&E) 
staining of lungs from a mouse injected in the tail vein with 67NR cells reveals the presence of 
macroscopic metastatic nodules.  
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5.2.3. Knock-down of FGFRs in 4T1 cells 

As ectopic expression of FGFR1 did not change the metastatic properties of the 67NR, we 

decided to downregulate the expression of different FGFRs in metastatic 4T1 cells. In an attempt 

to uncover which of the 3 expressed FGFRs might be responsible for the tumor phenotype, we 

used a shRNA approach. We infected 4T1 cells with viral particles that contained the pLKO 

vector in which specific shRNA designed to individually silence members of the FGFR family or 

the LacZ control were cloned. We first tested the effects of the individual shRNA on the 

expression of FGFR1, FGFR2 and FGFR3. We found that the control cells stably expressing 

LacZ shRNA had variable amount of FGFR1, suggesting that 4T1 have different populations of 

cells with variable levels of FGFR1 expression. However, a strong decrease in FGFR1 mRNA 

was found in the cells expressing the shFGFR1-B and shFGFR1-D vectors (Figure 5-15 A). 

Downregulation of FGFR2 was not efficient using single shRNAs (Figure 5-15 B). We therefore 

tried to combine different shRNAs targeting FGFR2, but the downregulation was not more 

efficient than using single shRNAs (Data not shown). Two out of three shRNA targeting FGFR3 

showed a 50% reduction in FGFR3 mRNA (Figure 5-15 C).  

 

We then tested whether the cells with downregulated FGFRs exhibit a proliferation defect using 

BrdU incorporation (Figure 5-15 D). The proliferation of parental 4T1 was used as standard and 

we found that the control cells stably expressing LacZ shRNA showed some variation compared 

to the parental 4T1 (higher and lower proliferation rate for shRNA LacZ2 and shRNA LacZ3, 

respectively). The effect of FGFR downregulation led to a maximum of 20 to 30 % decrease of 

proliferation for cells stably expressing shRNA FGFR1-B, FGFR1-D, FGFR3-B and FGFR3-

B+C (Figure 5-15 D black bars). Silencing FGFR2, even using combination of several shRNA, 

had no effect on cell proliferation. Overall downregulating single FGFRs, had minor effects on 

cell proliferation, when compared to the strong effect of blocking the activity of all three FGFRs 

using a TKI. Although not completely conclusive, these data suggest that all three FGFRs might 

contribute to the proliferative phenotype. Alternatively, the cell lines with the strongest down-

regulation may not have proliferated and were lost during the selection process.    
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Figure 5-15 Stable downregulation of FGFRs using shRNA 

A, B and C, 4T1 cells were infected with virus containing different shRNAs targeting FGFR1, 
FGFR2 or FGFR3. LacZ shRNA was used as a non targeting control shRNA. Stable pools of cells 
were selected and total RNA was extracted. Quantitative real-time RT-PCR was run on cDNA 
with primers specific for FGFR1 (A), FGFR2 (B) or FGFR3 (C). The results are shown as ratio of 
FGFR level compared to LacZ, normalized for GAPDH expression. D, Cells were starved over 
night and BrdU was added 2 hours before experiment-end. The percentage of incorporated BrdU 
relative to parental 4T1 cells is plotted. 

 

As the constitutive expression of shRNA in 4T1 cells did not show strong effects on cell 

proliferation and survival, we decided to use an inducible shRNA approach. The 4T1 were 

infected with viruses containing the Tet-on-pLKO vector (Wiederschain et al., 2009), that allows 

doxycyclin induced expression of shRNA targeting FGFRs or LacZ (Figure 5-16).     
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Figure 5-16 Inducible knock-down of FGFR1 and FGFR2 in 4T1 cells 

A and B, 4T1 cells were infected with virus containing different inducible shRNAs targeting 
FGFR1, FGFR2. LacZ shRNA was used as a non targeting control shRNA. Stable pools of cells 
were selected and total RNA was extracted. Quantitative real-time RT-PCR was run on cDNA 
with primers specific for FGFR1 (A), FGFR2 (B). The results are shown as ratio of FGFR levels in 
doxycyclin treated samples compared to non treated cultures and normalized for GAPDH 
expression.  

 

Interestingly, we observed that 4T1 cells stably expressing inducible shRNA targeting FGFR1 

showed a decrease in mRNA for FGFR1 24 hours after treatment with doxycyclin, suggesting 

that the system is functional. However, 48 hours after treatment, only the cells with shFGFR1-A 

had low FGFR1 mRNA, whereas the expression of FGFR1 went back to the basal level in 

shFGFR1-B and was even higher than basal in shFGFR1-D (Figure 5-16 A). Another surprising 
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observation is the level of FGFR1 that strikingly increases upon induction of the LacZ1 shRNA 

(Figure 5-16 A, black bars). Two out of three inducible shRNA targeting FGFR2 (shFGFR2-A 

and shFGFR2-G) showed only a weak decrease in FGFR2 mRNA 24 hours after induction with 

doxycyclin and the level went back to the basal level 48 hours after treatment (Figure 5-16 B, 

dark and light grey bars), whereas shFGFR2-i did not decrease FGFR2 expression (Figure 5-16 B, 

white bars). Together these results show that downregulation of FGFRs in 4T1 cells is not 

achieved in a convincing manner using constitutive as well as inducible expression of shRNA. 

The reasons for these observations could be due to technical problems, as 4T1 cells are difficult 

to transfect or infect and they express relatively low levels of FGFRs, which render the detection 

of the receptors difficult.  

5.2.4. Active Ras partially rescue TKI258 induced cell death 

As showed in Figure 5-3, inhibition of MEK with UO126 impairs cell proliferation with no 

induction of cell death and blockade of PI3K using BEZ235 decreases cell number and affects 

cell survival. To further analyze the contribution of these different pathways to proliferation and 

survival of 4T1 cells, we expressed active AKT (Myr-AKT) (Figure 5-3) and observed that active 

AKT partially rescue TKI258 induced cell death. To investigate the contribution of the MAPK 

pathway, we stably expressed a constitutively active Ras (mutant V12), a wild-type Ras and the 

empty vector in 4T1 and selected pools of cells. Expression of the ectopic Ras proteins was 

confirmed by western blot using a Ras antibody as well as an antibody directed against the Ha tag 

of the constructs (Figure 5-17 A). The different pools were treated for 13 to 24 hours with 

TKI258 1M and cell lysates were analyzed for ERK1/2 activity. Surprisingly, we did not detect 

an increase of the basal ERK1/2 activity upon expression of active Ras-V12 or WT-Ras in the 

4T1, moreover, TKI258 induced decrease of ERK1/2 activity was not rescued by either of the 

Ras constructs (Figure 5-17 A). To confirm that the Ras-V12 mutant was functional, we 

transiently transfected HEK293 cells with this construct. We observed a strong increase of the 

basal ERK1/2 activity when the Ras-V12 was expressed (Figure 5-17 B), showing that active Ras 

construct activates the MAPK pathway in HEK293 cells. Then we examined the pools of 4T1 

Ras-V12, WT-Ras and pLHCX cells for their sensitivity to TKI258. We found that 4T1 cells 

expressing active Ras were 4 times less sensitive to TKI258 induced cell death than cells 

expressing WT-Ras or empty vector (Figure 5-17 C). Together these results show that Ras-V12 is 
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constitutively active and induces ERK1/2 activity in HEK293 cells. However, in 4T1, ERK1/2 

basal level seems to be independent of Ras-V12 and this construct did not rescue TKI258 induced 

blockade of ERK1/2 activity. In addition, ectopic expression of the mutant Ras partially rescues 

TKI258 decreased cell survival. Together, these results suggest that Ras-V12 partially overcome 

TKI258 induced cell death, through a mechanism that is independent of ERK1/2. These 

observations are interesting, as it has been reported that Ras signaling does not only activate 

ERK1/2 but as well PI3K and other downstream effectors (Kodaki et al., 1994). It would 

therefore be interesting to look at AKT activity in the V12-Ras 4T1 upon TKI258 treatment. 
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Figure 5-17 Active Ras partially rescue TKI258 induced cell death 

A, Pools of 4T1 cells stably expressing Ras-V12, WT-Ras or pLHCX were treated with TKI258 
for the indicated times. Cell lysates were probed with specific antibodies to test the expression of 
the constructs and ERK1/2 activity. B, HEK293 cells were transiently transfected with pLHCX or 
Ras-V12. Cell lysates were probed with antibodies to test the expression of the construct and 
ERK1/2 activity. C, Cells stably expressing vector control, WT-Ras or Ras-V12 were treated 24 
hours with the indicated concentrations of TKI258 and the fold increase in cell death relative to 
vehicle treated cells was determined using the YO-PRO assay.   
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5.2.5. Combination of TKI258 with MEK and PI3K inhibitors 

Interestingly, we found that TKI258 has a strong effect in vitro on 4T1 cells proliferation and 

survival, however it did not induce tumor shrinkage in the animals. Therefore we also 

investigated if blocking of FGFRs in combination with other inhibitors of downstream signaling 

pathways might have a stronger effect than TKI258 alone (Figure 5-18). 
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Figure 5-18 Combination of MEK and PI3K inhibitors with TKI258 

A, 4T1 cells were treated with the indicated concentration of TKI258 and 0, 1, 5 or 20 M of 
LY294002 (white, black, red and blue bars respectively). Cell death was analyzed after 24 hours 
of treatment using YO-PRO assay. Statistical analysis for each treatment and interaction of 
treatment combination was performed using two-way ANOVA: *, P<0.001 for TKI258 treatment, 
for LY294002 treatment and for interaction between TKI258 and LY294002. B, 4T1 cells were 
treated with the indicated concentration of TKI258 and 0, 1, 5 or 20 M of UO126 (white, black, 
red and blue bars respectively). Cell death was analyzed after 24 hours of treatment using YO-
PRO assay. Statistical analysis for each treatment and interaction of treatment combination was 
performed using two way ANOVA: *, P<0.001 for TKI258 treatment, and for interaction between 
TKI258 and UO126.   
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We examined effects of the MEK inhibitor UO126 and the PI3K inhibitor LY294002 on cell 

survival, alone or in combination with TKI258. Treatment of 4T1 cells with LY294002 at 20M 

led to a slight but significant increase in cell death (Figure 5-18 A, compare white and blue bars 

in the vehicle treated cells), this correlates well with the data obtained in Figure 5-3 B, where an 

increase of apoptosis was observed in the 4T1 upon treatment with BEZ235. However we never 

detected cell death with UO126 at any tested concentration (Figure 5-18 B, compare white and 

blue bars in the vehicle treated cells). A four fold increase in cell death was detected in cultures 

treated with 250nM TKI258 as compared to control treatment (Figure 5-18 A and B, white bars). 

Interestingly, addition of sub-optimal doses of LY294002 (5M) or UO126 (1 and 5M) to 

250nM TKI258 strongly potentiated TKI258 induced cell death in comparison to treatment with 

single agent (Figure 5-18 A and B, compare the white bar to black and red bars in TKI258 

250nM treated cultures). Together these results suggest that targeting FGFR in combination with 

other inhibitors blocking key nodes in signaling pathways downstream of receptor tyrosine 

kinases, strongly potentiate mammary carcinoma cell death as compared to single treatment. It 

will be interesting in the future to test combination of treatments for their effects in vivo on tumor 

outgrowth 

5.3.  Materials and methods for supplemental experiments 

Reagents, antibodies, plasmids, cell culture and viral infections 

FGF2 was from Sigma-Aldrich (St. Louis, MO, USA); UO126 was from Promega (Madison, WI, 

USA), LY294002 was from cell signaling (Danvers, MA, USA), TKI258 was a gift from Drs. D. 

Graus-Porta and C. Garcia-Echeverria (NIBR, Basel, CH), PD173074 was a gift from Dr. P. 

Manley (NIBR, Basel, CH). The following antibodies were used: FGFR2 (3116), FGFR3 (3163), 

Ptyr196-FRS2 (3864), Pthr202/tyr204-ERK1/2 (9101), ERK1/2 (9102), Ptyr705-STAT3 (9131) and 

Pser10-Histone H3 (9701) from Cell Signaling (Danvers, MA, USA); PLC(sc-81), FRS2 (sc-

8318), Myc (9E10) and CyclinD1 (sc-20044) from Santa-cruz Biotechnology Inc. (Santa Cruz, 

CA, USA); alpha-tubulin from NeoMarkers (Fremont, CA, USA); STAT3 from BD transduction 

lab (San Jose, CA, USA); Ras and Ptyr783-PLC from Upstate (Billerica, MA, USA); Ha (MMS-

101P) from Covance, P-tyrosine (Ptyr) was detected with mAb 4G10 (gift from Dr. J. Mestan, 

NIBR, Basel). cDNA encoding Ha-HRas-V12 was a gift from Dr. M. Bentires-Alj (FMI, Basel). 

The Ha-HRas-WT was obtained by site directed mutagenesis of the V12 mutant using the 
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QuickChange XL Site-directed Mutagenesis Kit (Stratagene). pMIRB plasmid encoding Myc-

FGFR1-IIIc was a gift from Dr. D. Ornitz (Washington University, St-Louis, MO, USA). pLKO 

vectors containing shRNA targeting FGFRs were from Sigma and the shRNA sequences were as 

follow:  

shFGFR1-A: 

CCGGCTTGCCTCTAAGAAGTGTATACTCGAGTATACACTTCTTAGAGGCAAGTTTTT 

shFGFR1-B: 

CCGGCCTGGAGCATCATAATGGATTCTCGAGAATCCATTATGATGCTCCAGGTTTTT 

shFGFR1-C: 

CCGGCGAGGATAACGTAATGAAGATCTCGAGATCTTCATTACGTTATCCTCGTTTTT 

shFGFR1-D: 

CCGGCATATCGACTACTACAAGAAACTCGAGTTTCTTGTAGTAGTCGATATGTTTTT 

shFGFR1-E: 

CCGGTGGAGTTAATACCACCGACAACTCGAGTTGTCGGTGGTATTAACTCCATTTTTG 

shFGFR2-A: 

CCGGGCACACACTTACAGAGCACAACTCGAGTTGTGCTCTGTAAGTGTGTGCTTTTT 

shFGFR2-B: 

CCGGGCCACCAACCAAATACCAAATCTCGAGATTTGGTATTTGGTTGGTGGCTTTTT 

shFGFR2-D 

CCGGCCTCTCTACGTCATAGTTGAACTCGAGTTCAACTATGACGTAGAGAGGTTTTT 

shFGFR2-E: 

CCGGGCCATCTCATCTGGAGATGATCTCGAGATCATCTCCAGATGAGATGGCTTTTT 

shFGFR2-F: 

CCGGCGAGTATGAGTTGCCAGAGGACTCGAGTCCTCTGGCAACTCATACTCGTTTTT 

shFGFR2-G: 

CCGGCGGGCAAGTAGTCATGGCTGACTCGAGTCAGCCATGACTACTTGCCCGTTTTT 

shFGFR2-H: 

CCGGGCCAGGGATATCAACAACATACTCGAGTATGTTGTTGATATCCCTGGCTTTTT 

shFGFR2-i: 

CCGGGCATCGCATTGGAGGCTATAACTCGAGTTATAGCCTCCAATGCGATGCTTTTT 
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shFGFR3-A: 

CCGGGCGGGCAATTCTATTGGGTTTCTCGAGAAACCCAATAGAATTGCCCGCTTTTT 

shFGFR3-B: 

CCGGCCTTGGAATCTAACTCCTCTACTCGAGTAGAGGAGTTAGATTCCAAGGTTTTT 

shFGFR3-C: 

CCGGGCCACTTCAGTGTGCGTGTAACTCGAGTTACACGCACACTGAAGTGGCTTTTT 

 

Forward and reverse oligos with the sequences of the described shRNA were ordered at 

Mycrosynth (Balgach, CH), annealed and cloned into the pLKO-Tet-on (Gift from Dr. D. 

Wiederschain, DMP, Cambridge, MA, USA) using the AgeI and EcroR1 restriction sites. 

 The 4T1, 4TO7, 168FARN and 67NR mouse mammary carcinoma cell lines, obtained from Dr. 

J. Yang (University of California, San Diego), EcoPack-293 (Clontech, Mountain View, CA, 

USA) and HEK293-T (from Dr. M. Bentires-Alj) were cultured in DMEM with 10% heat 

inactivated FBS (Sigma), supplemented with penicillin and streptomycin (Sigma).  

Retroviruses production was performed by transient transfection of EcoPack-293 cells with 8g 

of the following vectors: pLHCX2, Ha-WT-Ras or Ha-V12-Ras using Fugene (Roche, Basel 

Switzerland) with a ratio Fugene:DNA 1:6. Three days post transfection, viruses were collected, 

filtered and used immediately for over-night infection of 4T1 cells (6cm plates with polybrene at 

a final concentration of 8g/ml). Selection of pools was performed with 500g/ml hygromycin. 

Lentiviruses production was performed by transient transfection of HEK293-T cells with 8g of 

pLKO or pLKO-Tet-on, 0.4g pHDM-tat1b, 0.4g pHDM-HgPM2, 0.4g pRC-CMV-RaII and 

0.8g pHDM-VSV-G using PEI (Polysciences, Eppelheim, Germany) with a ratio PEI:DNA 4:1, 

in serum-free media. One day after transfection, the media was changed to media containing 10% 

FBS and four days post transfection, supernatant were harvested, filtered and used for over-night 

infection on 4T1 cells (6cm plates with a final polybrene concentration of 8g/ml). Selection of 

pools was performed with 10g/ml puromycin. 

Stable transfection of 67NR cells was performed with 8g of pMIRB or Myc-FGFR1-pMIRB in 

800l of Optimem using 16l of lipofectamine. One day after transfection, the medium was 

changed and selection of pools and clones started with 1mg/ml G418. 
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RNA extraction, RT-PCR and real-time PCR 

RNA from growing parental lines (4T1, 4TO7, 168FARN or 67NR), from FGFR1 transfected 

67NR, from pLKO transfected 4T1 or from pLKO-Tet-on transfected 4T1 treated with doxycylin 

for 24 or 48 hours was extracted using the Qiashredder and RNeasy Mini Kit coupled with 

RNase-free DNase set (Qiagen, Venlo, The Netherlands Qiagen) following the manufacturer’s 

instructions. RNA from lungs was obtained from snap frozen pieces. RNA extraction was 

performed with TRIzol reagent (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s 

protocol. RNAs were washed using the RNeasy Mini Kit (Qiagen) and treated with RNase-free 

DNase set (Qiagen). cDNA was obtained from 2.5g of total RNA, using the Ready-to-go You-

Prime First-Strand Beads kit (GE-healthcare, Little Chalfont, UK) with oligos-dT primers 

(Promega). Semi-quantitative PCR was performed as follow: 2l of 10X Buffer (Roche), 0.2l of 

Taq polymerase (5U/l Roche), 0.4l of 10mM dNTP mix (Roche), 0.1l of each primer 

(100M), 1l of cDNA, filled to a final volume of 20l with sterile H2O. Thermal cycling 

reaction using an Icycler device (Bio-Rad, Reinach, Switzerland) were: 94°C for 2 min; followed 

by 25 to 35 cycles of 95°C for 30 sec, 60°C for 30 sec, 72°C for 45 sec for detection of FGFR1 

and FGFR2: 96°C for 2 min; followed by 35 cycles of 95°C for 30 sec, 58°C for 30 sec, 72°C for 

45 sec for detection of FGFR3: 94°C for 5 min; followed by 35 or 30 cycles of 94°C for 30 sec, 

60°C for 30 sec, 72°C for 45 sec for detection of FGF1 and FGF2 or FGF10 (Forward: 

CTGGAGATAACATCAGTGGAAATCG, Reverse: GAGCAGAGGTGTTTTTCCTTCTT): 

94°C for 5 min; followed by 35 cycles of 94°C for 30 sec, 58°C for 30 sec, 72°C for 45 sec for 

detection of FGF4:  96°C for 2 min; followed by 5 cycles of 96°C for 30 sec, 62°C for 30 sec 

(0.5°C decreases every cycles), 72°C for 35 sec followed by 25 cycles of  94°C for 30 sec, 57°C 

for 30 sec, 72°C for 35 sec for detection of Twist (Forward: 

ACATCGACTTCCTGTACCAGGTC, Reverse: AACAATGACATCTAGGTCTCCGG) and 

Snail (Forward: CTCTGAAGATGCACATCCGAA, Reverse: 

GGCTTCTCACCAGTGTGGGT): 95°C for 2 min; followed by 35 cycles of 95°C for 30 sec, 

59.5°C for 30 sec, 72°C for 2 min for detection of NPT2 (Forward: 

TTGAGCCTGGCGAACAGTTCG, Reverse: GAGGCTATTCGGCTATGACTG). he amplified 

products were further extended by additional incubation at 72°C for 10 min. PCR products were 

then loaded on a 1% agarose gel containing ethidium bromide.  
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Quantitative RT-PCR was performed with ABI prism 7000 (Applied Biosystems, Austin, TX, 

USA) using Absolute QPCR SYBR Green ROX Mix (THERMO Scientific, Waltham, MA, 

USA) following the manufacturer’s guidelines. All quantitations were normalized to GAPDH. If 

not specified in the text, primers for semi-quantitative PCR and real-time PCR were previously 

described (Kurosu et al., 2007; Ozawa et al., 1997). 

 

Lysates, immunoprecipitations and western blot analysis 

Whole cell lysates were extracted in NP-40 buffer (50mM Hepes (pH 7.4), 150mM NaCl, 25mM 

-glycerophosphate, 25mM NaF, 5mM EGTA, 1mM EDTA, 15mM PPI and 1%NP40), 

supplemented with leupeptin (10g/ml), aprotinin (10g/ml), vanadate (2mM), DTT (1mM) and 

PMSF (1mM) and immunoblotted as previously described (Matsuda et al., 2009). Over-night 

serum-starved cultures were pre-treated for 60 minutes with 1M TKI258 or DMSO then 

stimulated for the indicated time with 50ng/ml FGF2. Immunoprecipitations (IPs) were 

performed following standard procedures (Koziczak et al., 2004).  

 

Proliferation and apoptosis assays 

Antiproliferative effects of TKI258 were evaluated in 96-well plates over 24 hours using a 

bromodeoxyuridine (BrdU) ELISA kit (GE-healthcare, Little Chalfont, UK) as described (Sini et 

al., 2005). Antiproliferative effects of shRNA targeting FGFRs in pools of stably infected 4T1 

cells were evaluated using BrdU ELISA kit. In brief, cells were seeded in 96-well plates for 24 to 

48 hours and BrdU was added 2 hours before the end of the experiment. The cytotoxic effects of 

PD173074, were evaluated in 96-well plates 24 hours after treatment by measuring cell death 

using the YO-PRO assay (Invitrogen, Carlsbad, CA, USA) as described (Beuvink et al., 2005). 

The same assay was used to measure the rescue of TKI258 dose dependent induced cell death 

using control, WT-Ras or V12-Ras expressing 4T1 cells. Finally the effects of combining 

different concentrations of TKI258 with increasing concentrations of UO126 or LY294002 were 

tested on cell survival after 24 hours of treatment using the YO-PRO assay. 

 

Injection into mammary gland 

Animal experiments were done according to the Swiss guideline governing animal 

experimentation and approved by the Swiss veterinary authorities. Pools of 67NR cells (5x105 
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cells in 50l PBS) expressing empty vector or Myc-FGFR1 were injected into the fourth 

mammary fat pad of 10 wk old BALB/c mice (RCC, Basel, Switzerland). Starting 7 days after 

injection, tumors were measured three times a week and volume was calculated using: height x 

((diameter/2)2x ). Pooled empty vector clones, Myc-FGFR1 clones, clone 14 and clone 20 (106 

cells in 100l PBS) were injected into the fourth mammary gland of 10 wk old BALB/c mice 

(RCC, Basel, Switzerland) and tumor growth was followed as previously described. For 

experimental metastasis, pooled vector clones, Myc-FGFR1 clones, clone 14 and clone 20 (106 

cells in 100l PBS) were injected into tail veins. At the endpoint, mice were sacrificed and 

tumors and lungs were dissected. Pieces of lungs and tumors were snap frozen for RNA extract 

and prepared for immunohistochemistry. 

 

Immunohistochemistry 

Tumors and lungs were fixed 24 hours in PBS containing 4% paraformaldehyde then incubated 

24 hours in PBS containing 15% sucrose. Fixed tissues were embedded in OCT media and frozen 

at -80°C. Immunohistochemistry was performed on 8 m thick sections using the antibodies: 

phospho-histone H3 (Cell signaling). Stainings were carried out with the Discovery XT Staining 

Module (Ventana Medica Systems S.A.). Standard hematoxylin and eosin staining was 

performed on lungs to detect macro-metastases. Quantification of the phospho-Histone H3 

positive cells was performed using image access software. 
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6. Discussion and outlook 

Breast cancer is the most commonly occurring cancer among women; in 2009 it accounted for 

27% of all newly diagnosed cancers. Despite improvement in techniques for detection of breast 

cancer and development of new targeted therapies, this cancer still ranks second as a cause of 

cancer death in women. The main reasons for this elevated mortality rate are a high risk of 

relapse and resistance to treatments. The contribution of fibroblast growth factors (FGF) 

signaling pathway to breast cancer was first reported in mice, where genomic integration of the 

mouse mammary tumor virus (MMTV) was shown to lead to overexpression of several Fgfs and 

subsequently to cause development of mammary carcinomas (Figure 6-1).  
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Figure 6-1 Deregulation of FGFR signaling in breast cancer 

FGFs are common hot spots for integration of the MMTV provirus 1)(Theodorou et al., 2007), 2) 
(Peters et al., 1989), 3)(Theodorou et al., 2004), 4)(MacArthur et al., 1995). Deregulation of FGF 
signaling has been reported in human breast cancers 5)(Naidu et al., 2001), 6)(Fioravanti et al., 
1997), 7)(Berns et al., 1995), 8)(Jacquemier et al., 1994), 9)(Bansal et al., 1997), 10)(Zammit et al., 
2002), 11)(Marsh et al., 1999), 12)(Adnane et al., 1991), 13)(Ray et al., 2004), 14)(Reis-Filho et 
al., 2006), 15)(Hunter et al., 2007), 16)(Easton et al., 2007), 17)(Meijer et al., 2008), 18)(Bange et 
al., 2002), 19)(Thussbas et al., 2006).  
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In addition to its role in mouse mammary tumors, FGF signaling has been studied in human 

breast cancer. Aberrant expression of ligands and receptors due to amplification of genes were 

reported. Polymorphisms in the FGFR2 gene have been linked with breast cancer and have been 

shown to deregulate the expression of this receptor (Figure 6-1). A polymorphism in FGFR4 

gene has been linked with decreased survival and resistance to adjuvant chemotherapy (Figure 

6-1). 

In this study we show that autocrine FGFR signaling can be blocked in vitro and in vivo using a 

tyrosine kinase inhibitor (TKI) that blocks FGFRs (TKI258) in models of breast cancer. We 

report that blockade of FGFRs affects cell proliferation as well as survival and strongly reduces 

tumor growth of orthotopically injected mammary carcinoma cells. In addition, we observed that 

upon treatment with TKI258, lung metastases were decreased in the 4T1 model. To understand 

how FGFR inhibition mediates these mechanisms, we analyzed differential gene expression from 

FGFR inhibitor treated 4T1 cells or 4T1 tumors, compared to controls. While comparing these 

lists of genes to publicly available breast cancer datasets, we found that genes downregulated by 

TKI258 were highly expressed in clusters of patients with poor prognostic. Therefore, it would be 

interesting to know if these cancers are driven by a receptor tyrosine kinase like FGFR, which 

could be targeted using a TKI.  

 

Autocrine activation of FGFR signaling 

We report in Figure 5-1 and Figure 5-9 that the four cell lines (4T1, 4TO7, 168FARN and 67NR) 

described by Aslakson and Miller (Aslakson & Miller, 1992) possess an autocrine active FGFR 

signaling. The activation of FGFRs is well understood and the interactions between the different 

ligands and receptors are well characterized (Figure 6-2). As FGF1 is the universal ligand for all 

FGFR isoforms, its expression was tested in the four cell lines and detected in 4T1, 4TO7 and 

67NR but not in 168FARN. We first hypothesize that co-expression of FGF1 with several FGFRs 

in these lines might be the cause of the autocrine activity. However, data from Figure 5-12 

contradict this hypothesis and show that at least in 67NR, the endogenous FGF1 is not sufficient 

to activate ectopic Myc-FGFR1. The mechanisms underlying secretion of FGF1 are not yet fully 

understood and it might well be that in these cells, FGF1 is not secreted and stays intracellular. In 

addition, the contribution of heparan sulfate proteoglycan (HSPG) as co-receptor for FGF is well 
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documented and one other possibility why endogenous FGF1 fails to activate ectopic FGFR1 

might be that 67NR cells don’t express the correct co-receptor for FGF1 at their surface.  
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Figure 6-2 Ligand-receptor specificity of the FGF/FGFR family 

 

Another possible mechanism leading to constitutive activation of RTK is via activating point 

mutations. We cloned FGFR1 from 4T1 cells and sequenced it, looking for activating mutations 

on this gene. No mutations were found on FGFR1, but as we did not sequence FGFR2 and 

FGFR3, we cannot exclude that these two receptors may be mutated and, therefore, constitutively 

activate the common downstream effectors of FGFR signaling (ERK, AKT or PLC). 

Interestingly, these four cell lines showed heterogeneity in their FGF expression. As these lines 

are all derived from the same tumor that appeared in a BALB/c mice that was foster-nursed by a 

C3H female, a mouse strain that harbors endogenous milk-borne mouse mammary tumor virus 
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(MMTV), it is possible that different integration site of MMTV in the primary tumor led to 

different selection of the cell lines (two lines out of the four express FGF10). However we found 

that FGF4 or FGFR2, genes known to be overexpressed by MMTV insertion were detected in the 

four cell lines and therefore could be responsible for autocrine FGFR signaling (Figure 5-8).  

 

Differential response to FGFR inhibitor 

As these four cell lines displayed autocrine activation of FGFR signaling, we treated them with 

different TKIs (TKI258 or PD173074) to block FGFR activity. We found that treatment with the 

FGFR inhibitors strongly decreased ERK1/2 and PLCactivity in all four cell lines (Figure 5-1 

and Figure 5-10). Interestingly, we found that in the 4T1, the AKT pathway was also decreased 

when FGFR signaling was inhibited and expression of a constitutively Myristylated-AKT in 4T1 

cells partially rescued TKI258 induced cell death (Figure 5-3). Cell survival was differentially 

affected in the four cell lines upon FGFR inhibition (Figure 5-2 and Figure 5-11). Therefore, it 

would be interesting to broaden the analysis of the effect of FGFR blockade on AKT activity to 

the other cell lines. It would particularly be interesting to see if a general conclusion can be made 

between modulation of AKT activity and induction of cell death upon FGFR blockade.  

In addition to MAPK, AKT and PLC, we found that Stat3 and Src were constitutively active in 

these cell lines. It has been described in the literature that FGFRs modulate Stat3 and Src 

activation (Hart et al., 2000; Landgren et al., 1995; Zhan et al., 1994), however we did not see 

changes in the activity of these proteins upon inhibition of FGFRs in our experiments 

(Supplementary Fig.1 and Figure 5-10). These results suggest that other pathways are responsible 

for Stat3 or Src activity. As these molecules are known to contribute to the tumorigenic 

phenotype by regulating proliferation and/or migration of cells, it would be interesting to 

understand what keeps them active and what their contribution to the cancer phenotype is in an 

FGFR dependant model. Approaches using selective Src inhibitors, Jak inhibitor acting upstream 

of Stats or dominant-negative Stat molecules could be used to answer these questions. 

 

In vivo effects of TKI258 

Targeting FGFRs in 4T1 cells affects several mechanisms involved in cancer progression. In 

particular, we showed that 4T1 cells undergo apoptosis when treated with TKI258 even in the 

presence of serum (Figure 5-2). These observations suggest that blockade of FGFR signaling is 
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enough to induce cell death and that other growth factors found in the serum are not sufficient to 

prevent TKI258 induced apoptosis. Based on these in vitro results, we predicted that TKI258 

treatment of 4T1 tumor-bearing mice would lead to tumor regression. Even though we observed 

decreased of tumor growth, we did not see tumor shrinkage upon prolonged treatment with 

TKI258 (Figure 5-4). Interestingly, after 14 days of treatment, tumors from the treated groups 

were growing with kinetics similar to the control tumors a few days after injection. These striking 

differences between in vitro and in vivo effects show that the tumor microenvironment strongly 

influences the response of tumor cells to an inhibitor such as TKI258. 

To investigate the differences in TKI258-treated tumors compared to control, we performed a 

microarray analysis on tumors after 14 days of treatment. Interestingly, we found that genes 

coding for several ligands (Nrg4, Vegf-C, Pdgf-C) or even for a receptor tyrosine kinase (Egfr) 

were upregulated in the TKI258 treated group (data not shown). Upregulation of these ligands 

could lead to formation of new autocrine loop in the tumors, therefore activating tyrosine kinase 

receptors other that the ones efficiently blocked by TKI258 thus promoting growth even in the 

presence of the compound.   

 

Using a combination of inhibitors in tissue culture, we investigated what intracellular pathways 

co-operate to promote cell survival. We found that treatment of 4T1 cells with TKI258 

simultaneously with MEK or PI3K inhibitors showed at least an additive effect on cell death. 

These observations show that when used in combination with UO126 or BEZ235, we can 

decrease the dose of TKI258 required for induction of cell death from 250M to 50M (Figure 

5-18). The next obvious experiment to perform is to compare in vivo the effect of the 

combination relative to each treatment. It would therefore be very interesting to see if we can 

induce regression of the tumors in vivo by using such a combination of inhibitors. 

 

Angiogenesis is the process by which tumors acquire new blood vessels which supply the tumor 

with oxygen and nutrients required for growth. Targeting angiogenesis to inhibit tumor growth 

was proposed some decades ago (Folkman & Ingber, 1992) and nowadays, angiogenesis 

blocking-treatments are used as first line medication in certain cancers (colon cancer) (Alekshun 

& Garrett, 2005; Diaz-Rubio, 2004). The main target of antiangiogenic therapies is the VEGF 

signaling pathway that can be blocked either using an anti-VEGF antibody (Bevacizumab) or a 
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TKI blocking the VEGFRs (PTK787). As TKI258 targets VEGFRs, we compared the effects of 

blocking selectively VEGFRs using PTK787 and blocking both FGFRs and VEGFRs using 

TKI258 (Supplemental Figure 5). The results obtained showed that inhibition of VEGFR alone 

has no effect on tumor growth whereas TKI258 treatment leads to a strong reduction of tumor 

size compared to control. These results suggest that VEGFRs are not required for 4T1 tumor 

growth. We can therefore hypothesize that either 4T1 tumors use other angiogenic factors like 

FGF2 to recruit blood vessels and that they are independent of VEGFRs for proliferation.  

 

Predicting resistance mechanisms 

In order to predict resistance to FGFR inhibitors, we treated 4T1 cells with a sublethal dose of 

TKI258 or DMSO for 16 hours and analyzed changes in gene expression. This approach allowed 

us to detect genes that are upregulated upon FGFR inhibition and that could be involved in the 

activation of pathways conferring resistance to TKI258. We found that some genes known to 

regulate growth and proliferation were upregulated upon TKI258 treatment. Of special interest, 

were members of the PDGF/PDGFR signaling as well as members of the Stat transcription factor 

family (Figure 6-3).  

 

It is surprising that PDGFR and PDGF ligands get upregulated as TKI258 blocks as well PDGFR. 

This result suggests that expression of PDGFR and PDGFs is regulated by a signaling pathway 

that is modulated by TKI258 treatment. However, we consider unlikely that this signaling 

pathway is involved in resistance to TKI258 treatment, because PDGFRs are as well blocked by 

this inhibitor. Interestingly we found that members of the Stat family were upregulated and they 

can modulate growth and survival of cancer cells. In addition it has been shown that in the 4T1 

model, Stat3 is required for tumor formation in the mice (Ling & Arlinghaus, 2005). Further 

analyses investigating the contribution of PDGFR and Stats to TKI258 resistance mechanisms are 

warranted. 
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Figure 6-3 IPA of genes regulated in 4T1 cells after TKI258 treatment 

In red, ingenuity pathway analysis of genes that are upregulated in 4T1 cells 16 hours after 
TKI258 treatment. In green genes that are downregulated upon FGFR inhibition. 

 

TKI258 regulated genes identify two subgroups of breast cancer patients 

We have shown in Figure 5-6 that genes regulated after TKI258 treatment of 4T1 cells identified 

one cluster (1A) of breast cancer patients and genes regulated after TKI258 treatment of tumor 

bearing mice identified two clusters (1B and 2B) of breast cancer patients. Interestingly, we 

found that patients from cluster 1A almost completely overlapped with the ones from cluster 2B. 

The particularity of these patients is that they have a worse prognosis compared to the general 

cohort and they have high expression of genes that were mainly downregulated after TKI258 

treatment in vitro and in vivo. It would therefore be interesting to analyze if these patients have 

component or mutations that could drive an autocrine FGFR signaling or if any other TKI258 

target (VEGFR, PDGFR or others) are active in the breast tumors of these patients. If this appears 

to be true we can hypothesize that these patients might benefit from TKI258 treatment. 
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The interpretation of the results concerning patients that belong to the cluster 1B and show a 

better prognosis than the general cohorts is more complex. These patients show high expression 

of genes that are mainly upregulated in the TKI258 treated tumor bearing mice. These patients 

probably don’t have an active autocrine receptor tyrosine kinase signaling, as they already have 

high expression of genes that are upregulated upon inhibition of RTK with TKI258. This 

probably means that these patients would not respond to TKI258 treatment, and it would 

therefore be interesting to understand what the driving force of these cancers is in order to be able 

to give them the best treatment possible. 

 

TKI258 in the clinics 

TKI258 already went through phase I clinical trial in patients with advanced solid tumors (Sarker 

et al., 2008). The aim of this study was to determine the maximum tolerated dose and analyze the 

pharmacokinetics and pharmacodynamics of TKI258. Thirty-five patients were enrolled in this 

study and the results showed an acceptable safety profile for the patients. Furthermore, antitumor 

activity was observed in a patient with metastatic melanoma and in another one with an imatinib-

refractory gastrointestinal stromal tumor. Since TKI258 is a rather well-tolerated compound that 

showed antitumor effects in advanced tumors, we can hypothesize that TKI258 will enter phase II 

clinical trials. It would therefore be interesting to see if selection of breast cancer patients with 

aberrant FGFR signaling like FGFR1 amplification or FGFR2 SNP will benefit more from this 

treatment than patient without deregulated FGFR signaling. However, the interesting inhibitory 

profile of TKI258, and specially the fact that it target angiogenesis by inhibiting VEGFR could 

make it an interesting anti-angiogenic drug even in cancer that are not FGFR driven. 

 

In summary, we show that FGFR signaling contribute to several aspects of carcinogenesis, 

ranging from proliferation and cell survival, to modulation of pro-invasive phenotype. 

Furthermore, we show that targeting autocrine FGFR signaling in vivo in a breast cancer model 

has strong antitumor and antimetastatic effects. Finally we show that a subgroup of breast cancer 

patient, with high expression of a subset of genes regulated by TKI258, has a poor prognosis. 

Together, these interesting results strongly support investigating the role of FGFRs in breast 

cancer.  
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8. Abbreviations 
 
 
ACC2 acetyl-CoA carboxylase 2 
ADHR autosomal dominant 

hypophosphataemic rickets 
aFGF acidic fibroblast growth factor 
AIGF androgen-induced growth 

factor  
ATP adenosintriphosphate 
bFGF basic fibroblast growth factor 
BrdU bromodeoxyuridine 
Ca2+ calcium 
Cbl casitas B-lineage lymphoma 
cKO conditional knockout 
CYP24 cytochrome P450, family 24 
CYP27B1 cytochrome P450, family 27, 

subfamily B, polypeptide 1 
CYP7A1 cytochrome P450, family 7, 

subfamily A, polypeptide 1 
Da dalton 
DAG diacylglycerol 
DMEM dulbeccos modified eagles 

medium 
Dox doxycyclin 
Dusp dual specificity phosphatase 
EGF(R) epidermal growth factor 

(receptor) 
EMS 8p11 myeloproliferative 

syndrome 
EMT epithelial-to-mesenchymal 

transition 
ERK extracellular signal-regulated 

kinase 
ER estrogen receptor 
FACS fluorescence activated cell 

sorting 
FAK focal adhesion kinase 
FBS fetal bovine serum 
FGF(R) fibroblast growth factor 

(receptor) 
FHF fibroblast growth factor 

homology factors 
FNIII fibronectin type III 
FRS2 fibroblast receptor substrate 2 
FXR fanesoid X receptor 

 
 
 
 
Gab1 GRB2-associated binding 

protein 1  
GAG glycosaminoglycan 
GAPDH glycerhaldehyde-3-phosphate 

dehydrogenase 
GDNF(R) glial cell derived neurotrophic 

factor (receptor) 
GEO gene expression omnibus 
GlcA -D-glucuronic acid 
GlcN  D-glucosamine  
GlcNAc N-acetylated-glucosamine  
GlcNSO3  N-sulfated-glucosamines  
GLUT1 glucose transporter member 1 
Grb2 growth factor receptor-bound 

protein 2 
GSEA gene-set enrichment analysis 
 H&E hematoxylin and eosin 
hFGF hormone-like fibroblast growth 

factor 
HSPG heparan sulfate proteoglycan  
IdoA -L-iduronic acid 
iFGF intracellular fibroblast growth 

factor 
Ig-like immunoglogulin-like 
IP immunoprecipitation 
IP3 inositoltriphosphate 
kDa kilo Dalton 
KGF keratinocyte growth factor 
KO knockout 
LADD lacrimo-auriculo-dento-digital 
LC-MS/MS liquid chromatography-mass 

spectrometry/mass 
spectrometry 

mAb monoclonal antibody 
MAPK mitogen-activated protein 

kinase 
MAP2K mitogen-activated protein 

kinase kinase 
MEK cf: MAP2K 
MKP mitogen-activated protein 

kinase phosphatase 
MMP matrix metalloproteinase 
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MMTV mouse mammary tumor virus 
MPS myeloproliferative syndrome 
MS mass spectrometry 
Myr-AKT Myristylated AKT 
 
NCAM neural cell adhesion molecule 
NPT2a Na+-phosphate cotransporter 

type IIa 
NPT2c Na+-phosphate cotransporter 

type IIc  
O/N over-night 
PBS phosphate buffered saline 
PDGF(R) platlet-derived growth factor 

(receptor) 
PEG polyethylene glycol 
PEI polyethylenimine 
PG proteoglycans 
PH pleckstrin homology 
PHEX phosphate regulating 

endopeptidase homolog, X-
linked 

PHH3 phospho-histone H3 
PI3K phosphatidylinositol-3-kinase 
PIP2 phosphatidyl-inositol-4,5-

bisphosphate 
PKC protein kinase C 
PLC phospholipase C 
PN-1 protease nexin-1 
PPAR peroxisome proliferator-

activated receptor 
PTB phosphotyrosine-binding 

domain 
PTH parathyroid hormone 
PTK protein tyrosine kinase 
PTPN11 protein tyrosine phosphatase, 

non-receptor type 11 
Ptyr phosphor-tyrosine 
RTK receptor tyrosine kinase 
SCC squamous cell carcinoma 
SCD1 stearoyl-CoA desaturase 1 
Sef similar expression to Fgf genes 
SH2 Src homology 2 
SH3 Src homology 3 
Shb Src homology 2 domain 

containing adaptor protein B 
Shp2 cf: PTPN11 
shRNA short hairpin RNA 

SM sex myoblasts 
SMC smooth muscle cell 
SNP single nucleotide 

polymorphism 
SOS son of sevenless 
SP signal peptide 
Stat signal transducer and activator 

of transciption 
TEB terminal end bud 
TFA trifluoroacetic acid 
TiO2 titanium dioxyde 
TKI tyrosine kinase inhibitor 
TM transmembrane 
VEGF(R) vasculat endothelial growth 

factor (receptor) 
WCL whole cell lysate 
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