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Abbreviations and nomenclature 

 

ES Embryonic stem cell 

DNMT DNA methyltransferase  

MBD Methyl-CpG-binding domain protein 

Pol II RNA polymerase II 

TF DNA-sequence specific transcription factor 

HDAC Histone deacetylase 

KAT Histone acetyltransferase 

KMT Histone lysine methyltransferase 

KDM Histone lysine demethylase 

PRMT Protein arginine methyltransferase 

PcG Polycomb group protein 

PRC Polycomb repressive complex 

PTM Post-translational histone protein modification 

me any methylation state of an arginine or lysine 

me1 mono-methylation 

me2 di-methylation 

me3 tri-methylation 

me2/3 colocalization of di- and tri-methylation of the same lysine 

piRNA Piwi-interacting short RNA species 

dpc days post coitum of mouse embryonic development 

ERV Endogenous retroviral element 

IAP Intracisternal A particle (low copy retroviral-like element) 

 

 

 

 

Protein names  in capitals irrespective of mouse or human origin 

Gene names italic 
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Tight control of gene expression programs is crucial to govern cell function and 

identity at any developmental stage. Epigenetic modifications of chromatin have emerged as 

important determinants for chromatin structure and gene expression. It has been 

hypothesized that epigenetic mechanisms contribute to the establishment and maintenance 

of cell type specific gene expression patterns and could stabilize the restriction of 

developmental potential via repression of genes from distinct cellular lineages. We set out to 

test this hypothesis by defining genome-wide dynamics and targets of epigenetic 

reprogramming in a neuronal differentiation system.  

DNA methylation, which is a potent and stable repressive modification, is increasing 

during differentiation of embryonic stem cells into neurons. Many de novo methylation targets 

encode pluripotency-associated and germline specific genes and only few appear to be 

specific for alternative lineages. Coinciding with de novo DNA methylation at CpG-rich 

promoters we detect a loss of H3K4 methylation, a hallmark of transcriptionally permissive 

chromatin. This suggests that DNA methylation might lock-in a silent state of early embryonic 

genes which need to be stably repressed in somatic cells. The unidirectionality of DNA 

methylation dynamics is furthermore in agreement with the epigenetic restriction model 

depicted above which predicts an increase of epigenetic repression during cellular 

differentiation.  

To gain further insight into the dynamics of epigenetic repression we subsequently 

expanded the analysis towards the Polycomb pathway employing the same neuronal 

differentiation model. Polycomb-mediated repression was previously shown to be essential 

for embryonic patterning and maintaining developmental potential in stem cells via 

repression of key developmental transcription factors. During neuronal differentiation, 

Polycomb repression is resolved at activated genes while novel targets appear at both the 

multipotential neuronal progenitor state and the terminally differentiated neuron state. Such 

plasticity was unexpected since current models predicted that Polycomb repression is set up 

early in development and then either lost upon gene activation or maintained if the gene is 

not induced. In contrast to this model we find that the number of targets at each state is 

comparable and progenitor specific targets are enriched for genes expressed in post-mitotic 

neurons. This suggests that Polycomb is not only important in stem cells and early 

embryonic development for safe-guarding genes which can be activated upon induction of 

differentiation. Our results indicate that Polycomb could have a similar role in progenitor 

cells, which can still develop into a limited number of terminal subtypes.  

The genome-wide analysis further revealed that stem cell specific Polycomb targets 

undergo preferential de novo DNA methylation during differentiation, which hints towards a 

potential interplay between Polycomb and DNA methylation. 
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In a collaborative effort with the laboratory of Matthew Lorincz we further aimed at 

addressing a potential interplay between DNA methylation and H3K9 methylation. Using G9a 

(a KMT mediating euchromatic H3K9me2) knock-out stem cells we observe that DNA 

methylation is significantly reduced at endogenous retroviral elements (ERVs) and densely 

methylated CpG-rich promoters. This reduction in methylation did however not lead to 

transcriptional reactivation of ERVs and suggests that an additional mechanism must exist to 

silence these repeats. Upon introduction of a catalytic mutant G9a protein into the knock-out 

stem cells, the DNA methylation defect was partially restored. This indicats that G9a but not 

its catalytic activity is necessary for efficient DNA methylation at ERVs and promoters. These 

data reveal a crosstalk between the H3K9 methylation and DNA methylation pathways, 

which however awaits further characterization. 

Our data demonstrate that there are at least two distinct epigenetic modes of 

repression which nonetheless might crosstalk for target specification. Stable repression is 

conferred by DNA methylation and/or H3K9 methylation. It is essential for permanent repeat 

silencing and locking-in silent states throughout further development. In turn a more transient 

pathway with cell type and developmental stage specific targets is mediated by Polycomb. 

This mode of repression might confer robustness to specific cellular states via repressing 

genes that can be activated upon further differentiation but which need to be tightly controlled 

to avoid precocious activation. 
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Development involves tightly regulated differentiation processes during which 

pluripotent cells in the early embryo give rise to the many distinct cell types of the adult 

organism. During this phase, developmental potential of the differentiating cells is gradually 

decreasing and specificity towards a single terminal fate is acquired. This entails dramatic 

changes of gene expression programs, which need to be adjusted to the respective 

developmental state and cell function. Importantly, transcriptional programs need to be 

robust to govern cell identity and function and to avoid dedifferentiation, trans-differentiation 

or transformation at any state. Conversely in pluripotent stem cells, multipotential progenitor 

cells or tissue-specific stem cells gene expression patterns also need to be plastic in order to 

allow changes upon further differentiation. This balance of stability versus plasticity presents 

an inherent regulatory challenge for developing organisms (Reik, 2007).  

The major regulators of gene activity are DNA sequence specific transcription factors 

(TF). Every cell type has a characteristic set of TFs which orchestrate the cell type specific 

transcriptional program (Vaquerizas et al., 2009). However, the eukaryotic packaging of DNA 

into chromatin imposes a steric barrier for TF access to DNA. Therefore it is conceivable that 

molecular mechanisms which shape or modify chromatin structure reside upstream of DNA 

sequence based activities and present an opportunity for regulating and stabilizing DNA-

templated events such as transcription, replication and repair.  

Over the last decade, an increasing body of evidence suggests that chromatin-based 

regulatory mechanisms in conjunction with sequence specific transcription factors could 

contribute to establishment and maintenance of cell type specific gene expression programs. 

The following paragraphs will summarize current knowledge on chromatin structure, 

chromatin remodeling, transcription initiation and promoter structure, epigenetic modifications 

of chromatin and their potential interplay during cellular differentiation in relation to my PhD 

thesis project. 
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2.1. Mammalian genome structure and its impact on transcription 

initiation 

 

Over evolutionary time, genome sizes increased in parallel to organismal complexity. 

Remarkably, gene number increased less dramatically and appears decoupled from total 

genome size, a phenomenon termed the C-value enigma (Gregory, 2001). For example the 

roundworm C. elegans has a 30 times smaller genome than humans but contains roughly the 

same number of genes. This illustrates that vertebrate and in particular mammalian genomes 

accumulated non-coding DNA consisting mostly of remnants of transposable elements, 

inactive retroviruses and repetitive elements which make up most of the total genome while 

only about 1.5% of the sequence is protein-coding (Lander et al., 2001). It is still a matter of 

debate if and how this accumulation might be beneficial for evolution. It was suggested that 

these apparently parasitic genomic elements must present an evolutionary advantage 

otherwise they should have been eliminated by selection. For example transposons were 

implicated in shuffling of transcription factor binding sites conferring rapid evolution of novel 

regulation and functions to existing genes. Further transposons were suggested to enhance 

genome plasticity via elevating the frequency of genomic rearrangements (Britten, 1997; 

Deragon and Capy, 2000). In contrast, it was proposed that the self-replicating nature of 

transposons is sufficient to explain their existence and maintenance by natural selection 

without apparent benefits for the host (Doolittle and Sapienza, 1980). In support of that 

transposon and even a plasmid which reduces fitness of the host became fixed in yeast 

populations (Futcher et al., 1988; Zeyl et al., 1996). Interestingly, the likelihood for becoming 

fixed is much higher in sexually reproducing yeast than in asexual populations, which 

strongly supports the hypothesis that transposon accumulation might simply be a 

consequence of obligate sexual reproduction (Bestor, 2003). This hypothesis further predicts 

that sexually reproducing species should have a larger number of transposons than 

asexually reproducing species. This seems plausible considering that 45% of the human 

genome is derived form transposons (Lander et al., 2001).  

 Irrespective of this, the unfavorable ratio between coding and non-coding DNA leads 

to an increase in transcriptional noise, unspecific initiation and eventual dilution of 

transcription factor pools due to randomly occurring binding sites. In order assure correct 

gene expression, this needs to be counteracted. Such a concept of noise suppression was 

already suggested 50 years ago by C.H. Waddington in an attempt to explain phenotypic 

stability of species over time despite genotype or environmental variations (Waddington, 

1957). Waddington moreover hypothesized that determinants on top of DNA sequence, 

which he termed “epigenetic”, might confer the observed “buffering” and robustness of 

phenotypes. A similar idea was later entertained to explain how evolution can cope with 
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increasing gene number and genome size especially during the two marked changes in 

organismal complexity: the origin of eukaryotes and later at the origin of vertebrates. It was 

hypothesized that these two major transitions were only possible due to the parallel evolution 

of new mechanisms to control transcriptional noise, an unavoidable byproduct of increasing 

genome complexity (Bestor, 1990; Bird, 1995). The prokaryote-to-eukaryote transition was 

paralleled by the appearance of nucleosomes, which already greatly lower the chance of 

aberrant transcription initiation as compared to naked DNA. The later invertebrate-to-

vertebrate step was accompanied by genome-wide DNA methylation, which has been shown 

to be an efficient repression mechanism (Bird, 2002).  

Genome-wide DNA methylation had a dramatic impact on the overall genomic 

sequence since methylated cytosines are prone to spontaneous deamination resulting in the 

generation of a tymidine. Hence, DNA methylation imposes a much higher mutation rate to 

CG dinucleotides as compared to any other dinucleotide. This manifests in a global depletion 

of CpG dinucleotides in vertebrate genomes over time (Bestor and Coxon, 1993). 

Remarkably, several ten thousands of genomic regions nearly maintained their original CpG 

content, indicating that they were somehow protected from DNA methylation in germ cells. 

These CpG-rich sequences were termed CpG islands and remarkably many (up to 70%) 

mammalian gene promoters contain such CpG-rich sequences [Fig. 1; (Antequera and Bird, 

1993; Gardiner-Garden and Frommer, 1987)].  

Ubiquitously expressed “house-keeping” genes are in their majority under the control 

of CpG island promoters, while CpG-poor promoters mostly drive tissue-specific genes 

(Schug et al., 2005). In addition, large scale CAGE-tag based mapping of transcription start 

sites (TSS) demonstrated that CpG-rich promoters do rarely have a uniquely defined TSS 

but transcription rather initiates over an interval of 10-60bp. CpG-poor promoters on the other 

hand usually have a precisely defined TSS and many rely on TATA-binding protein mediated 

transcriptional initiation (Bajic et al., 2006; Carninci et al., 2006; Schug et al., 2005; 

Vaquerizas et al., 2009); reminiscent of TSS definition in invertebrates. 
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Similar to gene proximal sequences, CpG islands outside of promoters are highly 

conserved. This positive selection for maintaining CpGs suggests that CpG islands in 

general have regulatory and/or functional relevance in the vertebrate genomes (Bernstein et 

al., 2006; Tanay et al., 2007). Indeed, many non-promoter CpG islands might function as 

enhancers (Heintzman et al., 2007).  
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2.2. Chromatin 

 

Prokaryotic genomes are much smaller than those of eukaryotes and usually 

organized in one circular DNA molecule which is compacted by supercoilling with the help of 

specific scaffold proteins (Dame, 2005). Because prokaryotes do not possess membrane-

bound cellular organelles their DNA localizes to a distinct territory in the cell termed the 

nucleoid. The evolution of eukaryotes led to a dramatic increase in DNA content per cell and 

to the occurrence of two features which are tightly linked to the increase in genome size: the 

nucleus (and other membrane-bound organelles), and a distinct form of organizing genomic 

DNA termed chromatin, which is a complex structure of the DNA, proteins and RNA [Fig. 2; 

(Felsenfeld and Groudine, 2003)].  
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2.2.1. The nucleosome – basic scaffold of chromatin structure 

The fundamental building blocks of chromatin are the nucleosomes, which consist of 

globular histone protein cores around which the DNA is wrapped 1.65 times, corresponding 

to 147bp of DNA. These histone cores are composed of an octamer with two copies of each 

of the four highly conserved canonical histones H2A, H2B, H3 and H4 (Luger et al., 1997).  

The individual histones have a positively charged globular histone-fold domain which 

binds to the negatively charged DNA via electrostatic interactions. The unstructured C- and 

N-terminal histone tails, some of which protrude outside of the nucleosomes, are subject to 

various post-translational modifications. These modifications are thought to directly impact 

the affinity to DNA, the interaction with neighboring nucleosomes and/or the recruitment of 

chromatin binding proteins (see below). If not further compacted, the nucleosomes are 

arranged in a linear fashion along the DNA molecule, leading to a so-called “beads-on-a-

string” structure with 10-60 bp of “free” linker DNA between the individual nucleosomes (Fig. 

2). This form of chromatin is generally found at active genes. Upon incorporation of histone 

H1 the chromatin structure can be further compacted. H1 binds to the linker DNA between 

the nucleosomes and leads to a transcriptionally inert higher order structure termed 30nm 

fiber [Fig. 2; (Robinson and Rhodes, 2006)]. Of note, such 30 nm fiber could not yet be 

detected in vivo and its existence is controversial (Tremethick, 2007). Microscopycal studies 

instead identified larger fiber-like structures in mammalian nuclei ranging form 60-80 nm in 

interphase up to 750 nm in metaphase when chromosomes are highly condensed (Kireeva et 

al., 2004). This could reflect further compaction of a 30 nm fiber with the help of yet to be 

discovered scaffold proteins (Fig. 2). Interestingly, in yeast the weakly conserved H1 

homolog HHO1 is not essential (Ushinsky et al., 1997) and deletion does not affect global 

chromatin organization (Downs et al., 2003), suggesting that it could serve other functions 

than chromatin organization. Indeed, it was shown that HHO1 can block DNA repair via 

homologous recombination, which implicates HHO1 rather in genome surveillance than in 

chromatin organization (Downs et al., 2003). In contrast, in Drosophila H1 is essential for 

development and correct heterochromatin formation (Lu et al., 2009). Mammals contain at 

least six somatic H1 isoforms and mice do not display a phenotype upon deletion of one of 

these, which is probably due to partial redundancy among the H1 isoforms. Only mice 

lacking three isoforms have a significantly reduced total H1 level. These mice are not viable 

anymore and display a broad range of defects (Fan et al., 2005). Together, the data from 

mouse and fly indicate that H1 and accordingly proper higher order chromatin organization 

are essential for metazoan development.  
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2.2.2. Histone variants 

In addition to the canonical core histones a variety of histone variants exist for H2A, 

H2B and H3. Only for few of these function and assembly factors are known. For example 

histone H3.3 is incorporated in actively transcribed regions to replace canonical H3 (Mito et 

al., 2005; Wirbelauer et al., 2005). Further, the H3 variant CenH3 (in mouse/human termed 

CENPA, in Drosophila Cid) exclusively localizes to centromeres and is essential for proper 

centromer functioning and chromosome segregation (Black and Bassett, 2008). Other 

variants, such as H2A.Z are less well understood and have been implicated in both gene 

activation and transcription as well as repression of gene activity (Draker and Cheung, 2009).  

Interestingly, most protein sequence alterations between histone variants and their 

canonical counterparts occurred at the exposed surface. Moreover, many of these histone 

variants are constitutively expressed throughout the cell cycle as opposed to the canonical 

histones, which are only expressed during S phase when DNA replication takes place. 

Together, this led to the hypothesis that histone variants provide a means to modulate 

nucleosomal stability and local chromatin structure independent of DNA replication. They 

might thus contribute to cell type specific gene regulation and chromatin organization [for a 

more detailed overview of histone variants, their assembly and putative functions see 

(Kamakaka and Biggins, 2005; Malik and Henikoff, 2003; Sarma and Reinberg, 2005)].  

 

2.2.3. Chromatin dynamics and remodeling 

Chromatin decreases DNA accessibility for transcription factors and the 

transcriptional machinery when compared to naked DNA (Struhl, 1999; Workman and 

Kingston, 1998). As a consequence, chromatin imposes basic repression to genes by 

preventing spurious binding of transcription factors and transcriptional initiation without 

appropriate stimuli. In contrast, in prokaryotes, which do not package their DNA into 

chromatin, most genes are in a transcriptionally active ground state (Struhl, 1999). The 

evolution of chromatin led to a shift in gene-regulatory paradigms from a basal active state to 

a basal repressed state. Hence, transcription in eukaryotes generally requires activators 

(Struhl, 1999) and probably chromatin remodeling to increase accessibility of transcription 

factors to the DNA template (Clapier and Cairns, 2009; Workman and Kingston, 1998). In an 

elegant study, Lam and colleagues demonstrated that the amount of physiological 

stimulation required to activate a promoter indeed depends on the position of transcription 

factor binding motifs within the nucleosomes (Lam et al., 2008). Moreover, these results 

provide evidence that chromatin remodeling and nucleosome sliding can significantly impact 

the level of gene activation by occluding or exposing regulatory sequences. In the past years, 

two mechanisms have been proposed to potentially mediate chromatin remodeling and 

modify accessibility of chromatinized DNA: Widom and collegues proposed that non-
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catalyzed thermodynamic fluctuations of nucleosomes could lead to transient exposure of 

regulatory sites and allow transcription factor binding. Upon binding of one factor the 

dislocation of the nucleosomes would be stabilized and further activators including the RNA 

polymerase II holoenzyme could be recruited to initiate transcription (Polach and Widom, 

1996).  

The second and probably major pathway is mediated by ATP-dependent chromatin 

remodeling complexes. These have been shown to slide, replace and/or evict nucleosomes 

in order to modulate DNA sequence accessibility for transcription factors and transcriptional 

regulation [reviewed in (Clapier and Cairns, 2009)]. Eukaryotes contain at least four families 

of chromatin remodeling complexes with partially distinct functions: SWI/SNF, ISWI, CHD, 

and INO80 family remodeling complexes (Clapier and Cairns, 2009; Jiang and Pugh, 2009). 

All these remodeler families are conserved from yeast to humans and all share an ATPase 

domain. Nonetheless the flanking domains involved in substrate recognition and interaction 

with other proteins are highly divergent.  

SWI/SNF family remodelers have a broad range of activities and slide and/or eject 

nucleosomes at many loci in the genome. This class of remodelers is further characterized 

by containing a Bromo domain that specifically recognizes acetylated histone tails (a 

hallmark of active genes; see below) and other acetylated proteins. Therefore it is not 

surprising that SWI/SNF complexes were implicated in transcription but not in chromatin 

assembly. 

ISWI type remodelers have been implicated in activating as well as in repressive 

functions, which entirely depends on the other complex members. For example the CHRAC 

and ACF complexes assist regular nucleosomal spacing and thereby facilitate chromatin 

assembly and transcriptional repression (Fyodorov et al., 2004). In contrast, the NURF 

complex randomizes spacing and facilitates RNA polymerase II transcription initiation 

(Mizuguchi et al., 1997). ISWI family remodelers have a characteristic SANT and SLIDE 

domains which form a nucleosomes recognition module. Interestingly, they preferably bind 

unacetylated histone tails suggesting an involvement in specific targeting (Boyer et al., 

2004).  

CHD family remodelers have characteristic chromodomains which are crucial for 

recruitment and remodeling activity (Brehm et al., 2004). Many chromodomains have specific 

affinity for methylated histones (see below). Similar to ISWI remodelers, CHD family 

remodelers have also been shown to assist both, gene activation and repression, depending 

on the overall complex composition. 

INO80 family remodelers function in transcriptional activation, DNA repair and in case 

of the SWR1/SRCAP containing complexes they also mediate incorporation of the histone 

variant H2A.Z (Kobor et al., 2004).  
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Despite the numerous purified remodeling complexes the many shared subunits 

make it inherently difficult to assign unique functions to each of these complexes. It is 

emerging that not the remodeling activities but rather the subunits of the remodeling 

complexes confer functional and target specificity, which adds another level of complexity 

and regulatory potential. Supporting this, genetic studies revealed that certain remodelers 

and/or subunits are essential to animal development, while others caused only mild 

phenotypes or tissue-specific defects (Clapier and Cairns, 2009). Such tissue-specificity is 

further supported by evidence that remodeling complexes have tissue-specific subunit 

composition which might customizes the function and targeting towards the respective cell 

type. For example, the neuronal BAF chromatin remodeling complex (SWI/SNF-like) displays 

developmental stage specific subunit composition which is essential for normal neuronal 

development. In dividing neuronal stem/progenitor cells, it contains BAF45a and BAF53a 

subunits which are essential for progenitor self-renewal. Upon differentiation and mitotic exit, 

these two progenitor-specific subunits are replaced by the post-mitotic neuron-specific 

BAF45b, BAF45c and BAF53b subunits (Lessard et al., 2007).  

In contrast to such cell type specific activities, chromatin remodelers are generally 

implicated in transcriptional initiation and elongation due to their ability to move, reconstruct, 

or eject nucleosomes and thereby exposing the underlying DNA for regulatory factors. 

Genetic evidence form Drosophila suggests that the dBrahma complex, a SWI/SNF family 

remodeler, generally facilitates transcription via RNA polymerase II (Pol II). Upon reduction of 

dBrahma, Pol II was greatly reduced at polytene chromosomes (Armstrong et al., 2002), 

implying a direct connection between remodeling activity and Pol II recruitment. However, 

currently it is unclear if chromatin remodeling is a prerequisite for, coinciding with or a 

consequence of transcription initiation and further work addressing this is required. 
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2.3. Epigenetic modifications of chromatin 

 

As eluted above chromatin is essential for DNA organization however it also presents 

a barrier to any DNA-templated event, which can be alleviated by chromatin remodeling 

processes. Superimposed upon the level of genomic DNA sequence and physical chromatin 

organization is a layer of “epigenetic” information, which we have only just begun to explore 

and understand. The term epigenetic was originally coined by Conrad Waddington 

(Waddington, 1942), which he described as “the causal interaction of genes and their 

products, which bring the phenotype into being”. Over the years epigenetics became a 

collection of phenomena which could not be explained by pure genetics. As a consequence 

the definitions of epigenetics vary considerably. While there is a general agreement that 

epigenetics refers to phenomena that change the expression state of a genetic locus without 

changing the underlying DNA sequence, the discrepancy of definitions is largely about the 

heritability of these phenomena. Strictly, to be epigenetic, a phenomenon has to be inherited 

during mitosis without relying on the initial trigger (Ptashne, 2007). Due to the inherent 

difficulty to distinguish between sequence-independent self-propagation of epigenetic states 

and a re-establishment after cell division mediated by sequence-dependent recruitment of 

enzymatic activities, most chromatin modifications are termed epigenetic without knowing the 

molecular mechanisms that mediate propagation (Bird, 2007). Notably, DNA methylation 

presents the only epigenetic modification for which a sequence independent propagation 

mechanism has been identified. 

 

2.3.1. Post-translational modifications of core histones 

DNA-bound histone proteins contain over 60 sites which are subject to post-

translational modifications (PTMs) such as acetylation, methylation, ubiquitination, 

phosphorylation, sumoylation and others (Kouzarides, 2007). These modifications mostly 

take place at the N-terminal tails of histone H3 and H4, which protrude out of the 

nucleosomes cores (Fig. 3).  
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As a result the PTMs are accessible to non-histone proteins and present a way to 

specifically recruit non-histone protein complexes to chromatin. A second possible regulatory 

role of PTMs is direct interference with binding of DNA around nucleosomes via altering the 

electric charge of histones. At first, these chromatin modifications and the overall chromatin 

structure were thought to be stable and simply providing a structural scaffold. However, the 

discoveries that the yeast transcriptional coactivator Gcn5 bears histone acetylation activity 

(Brownell et al., 1996), while the corepressor Rpd3 mediates histone deacetlyation (Taunton 

et al., 1996) for the first time directly linked transcriptional regulation to PTMs. A few years 

later Suv39h, a previously identified transcriptional regulator and suppressor of variegation in 

Drosophila (Tschiersch et al., 1994), and its yeast homolog Clr4 were shown to specifically 

methylated lysine 9 at histone H3 [H3K9; (Rea et al., 2000)]. This subsequently led to a 

change of paradigms towards a regulatory role of chromatin and PTMs  of histones in DNA-

templated processes. Ultimately, the discovery of histone demethylases indicated that PTMs 

are much more dynamic than previously anticipated (Shi et al., 2004).  

Although many of these PTMs are considered to be epigenetic and are thought to be 

inherited during mitotic cell divisions, so far the propagation mechanisms are unknown for all 

of these modifications. Below I will restrict the discussion of PTMs towards methylation and 

acetylation of lysine residues on histone H3 and H4 which are directly related to my PhD 

project. 
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2.3.1.1. Histone acetylation 

Lysines are the major source of the net positive charge of histone octamers and 

therefore crucial for binding the negatively charged phosphate backbone of DNA. For 

transcription, replication or DNA repair it is important that histone-DNA interactions can be 

modified in order to facilitate passage of polymerases. All four core histones bear lysine 

residues which are subject to acetylation (Fig. 3) and deacetylation by specific histone 

acetyltransferases (KAT) and deacetylases (HDAC) (Kouzarides, 2007). Generally, 

acetylated lysines on histones H2B, H3 and H4 are highly correlated with active transcribed 

regions (Pokholok et al., 2005; Schubeler et al., 2004; Wang et al., 2008). This is thought to 

be due to neutralization of the positive charge of lysines upon acetylation, which lowers the 

electrostatic interactions with the negatively charged phosphate backbone of DNA and 

consequently weakens the DNA-histone interaction. Indeed, acetylation increases DNA 

accessibility, destabilizes nucleosomes and leads to an increase of non-histone protein 

binding to DNA in vitro (Lee et al., 1993; Vettese-Dadey et al., 1996; Wolffe and Hayes, 

1999). Thus, it is conceivable that acetylation of individual lysines conveys little specificity, 

but rather the cumulative effect of acetyl groups at multiple lysines would be important for 

regulating DNA accessibility.  

One marked exception is acetylation of lysine 16 of histone H4 (H4K16), which was 

shown to directly interfere with higher order chromatin structure formation via preventing 

interactions between neighboring nucleosomes (Robinson et al., 2008; Shogren-Knaak et al., 

2006). Moreover, H4K16 acetylation plays a specific role in Drosophila dosage compensation 

(Bell et al., 2008; Kind et al., 2008).  

Many proteins in chromatin-associated complexes contain highly conserved Bromo-

domains which specifically bind to acetylated lysines. This indicates that there might be more 

specific regulatory potential to acetylation than previously anticipated (Taverna et al., 2007). 

However, an “acetylation-code” (Kurdistani et al., 2004) appears unlikely. Global distributions 

of histone H3 and H4 lysine acetylation marks are largely overlapping and highly correlated 

with transcription (Wang et al., 2008). Further, genetic evidence from yeast revealed that 

substitution of individual lysines with the exception of H4K16 did not produce specific 

phenotypes (Dion et al., 2005). These data favor a transcription-coupled “cumulative” 

acetylation model with additive functions for acetylation marks. Importantly, this does not 

exclude additional specific functions for a few individual acetylated lysines such as H4K16ac 

in higher order chromatin compaction (Shogren-Knaak et al., 2006) and H3K56ac in 

nucleosome assembly during DNA repair (Das et al., 2009). 

 



  Introduction: Epigenetic modifications of chromatin 

  20 

2.3.1.2. Histone methylation 

Methylation of histones can either occur at lysine or arginine residues (Fig. 3). In 

contrast to acetylation, mono- (me1), di- (me2) and tri-methylation (me3) states of the same 

residue are observed. These differential methylation states present another level of 

regulatory potential which indeed appears to be exploited. Several lysines display diverging 

functions and localization in the genome depending on their methylation state (Barski et al., 

2007; Peters and Schubeler, 2005). Arginine methylation is performed by protein arginine 

methyltransferases (PRMTs) and is antagonized by PADI4 (Klose et al., 2006; Zhang and 

Reinberg, 2001). Lysine methylation is carried out by specific lysine methyltransferases 

(KTMs), which all contain a conserved SET-domain with the exception of Dot1/KTM4 (Zhang 

and Reinberg, 2001). Lysine methylation can be removed by two distinct classes of histone 

demethylases (KDMs): the LSD1 enzyme and the JmjC protein family (Klose et al., 2006). In 

contrast to acetylation, methylation does not neutralize the charge of nucleosomes and is 

therefore thought to serve as a signal or recruitment platform for chromatin modifying and 

regulatory proteins. So far three protein domains have been found to specifically recognize 

methylated lysines: Tudor domains, chromodomains and PHD-finger domains. Each domain 

has characteristic affinities for different lysines and methylation states which further depend 

on other domains of the respective protein and its interaction partners [review in (Martin and 

Zhang, 2005; Taverna et al., 2007)].  

Chromatin immunoprecipitation experiments have revealed that active genes are 

methylated at lysine 4 of histone H3 (H3K4), H3K36 and H3K79 [Fig. 4; (Barski et al., 2007; 

Pokholok et al., 2005; Saunders et al., 2006; Schubeler et al., 2004)]. These modifications 

are thus thought to have a role in transcription. This is supported by data from yeast 

indicating that Set1 and Set2, which methylate H3K4 and H3K36, directly interact with factors 

bound to the Pol II complex (Krogan et al., 2003a; Krogan et al., 2003b). Genetic evidence 

also predicts a recruitment of Dot1 (a H3K79 KMT) to chromatin via elongating Pol II (van 

Leeuwen et al., 2002). H3K4me peaks around the transcription start site and is gradually 

diminished further 3’. H3K36me and H3K79me display a broader distribution within the gene 

body, starting just downstream of the H3K4me peak [Fig. 4; (Bell et al., 2007; Wirbelauer et 

al., 2005)]. Consistent with a role for H3K36me in transcription, data from yeast denote that 

H3K36me prevents cryptic initiation via recruiting a histone deacetlyase to the body of genes, 

which presumably leads to a less accessible chromatin structure (Carrozza et al., 2005).  

H3K4 methylation has been implicated in transcriptional activation pathways since 

many chromatin remodeling and co-activator complexes bear a module which specifically 

recognizes H3K4me2/3. For example a PHD-domain in the NURF chromatin remodeling 

complex specifically recognizes H3K4me3 and might facilitate transcriptional activation via 
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opening the chromatin structure around H3K4me2/3 modified promoters (Wysocka et al., 

2006).  

More recent data from mammalian systems indicates that in contrast to invertebrates 

H3K4me2/3 are not exclusively marking actively transcribed regions [Fig. 4; (Bernstein et al., 

2006; Guenther et al., 2007; Mikkelsen et al., 2007; Roh et al., 2006; Weber et al., 2007)]. 

Interestingly, these loci are CpG-rich sequences and many bear low but detectable levels of 

Pol II and acetylated histone H3 (Guenther et al., 2007; Roh et al., 2006). As a consequence 

virtually all CpG-rich promoters reside in chromatin carrying H3K4 di-/tri-methylation 

independent of transcriptional activity. This is in sharp contrast to CpG-poor promoters. 

These are only H3K4 methylated when transcribed, which is reminiscent of the situation in 

invertebrates such as Drosophila and yeast (Pokholok et al., 2005; Schubeler et al., 2004). 

Inactive loci display a different set of methylation marks mainly consisting of 

methylation of H3K9, H4K20, and H3K27. H3K9 and H4K20 di- and tri-methylation play 

essential roles in heterochromatin maintenance at pericentromeric repeat regions and are 

further present at repetitive, transposable and retroviral elements in mammalian genomes 

(Lehnertz et al., 2003; Mikkelsen et al., 2007; Peters et al., 2003). Only few regulatory 

regions have so far been identified to be methylated at H3K9 and/or H4K20. These are 

mostly CpG-poor promoters of large gene families such as the olfactory receptor clusters or 

zinc finger proteins (Mikkelsen et al., 2007; Vogel et al., 2006), suggesting that recognition is 

based on the repetitive nature of their genomic organization. H3K9 methylation is carried out 

by 5 known KMTs with distinct specificities: Suv39h1 and Suv39h2 are mostly responsible for 

methylation in constitutive heterochromatin in pericentric and telomeric regions. G9a, GLP 

and Setdb1 rather localize to euchromatin and have roles in silencing of repetitive and 

retroviral elements (Kouzarides, 2007).  

H3K9me2/3 was further shown to recruit HP1 to chromatin, which is an integral 

component of heterochromatin and essential for repression (Lachner et al., 2001). Further 

evidence indicates that H3K9 methylation crosstalks to DNA methylation. For example direct 

interactions between DNMT1 and the H3K9 KMT G9a, and between DNMT3b and HP1 have 

been reported (Esteve et al., 2006; Lehnertz et al., 2003). The latter is important for correct 

establishment of pericentric heterochromatin (Lehnertz et al., 2003). Feldman and coworkers 

suggested a stepwise model for gene silencing initiated by a G9a complex which methylates 

H3K9. This methylation mark subsequently recruits HP1, which further recruits DNMTs to 

mediate stable repression by DNA methylation (Cedar and Bergman, 2009; Feldman et al., 

2006). While this appears as an attractive model for a step-wise establishment of facultative 

heterochromatin, it awaits further experimental prove. 
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H3K27 di- and tri-methylation in turn is excluded from regions carrying H3K9 

methylation and predominantly localizes to CpG-rich regions, which strongly implies different 

functions of these two repressive histone methylation marks (see below).  
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2.3.2. Polycomb-mediated repression 

The antagonistic trithorax-group (TrxG) and Polycomb-group (PcG) proteins are well 

characterized transcriptional gene regulators which have been first identified as Hox gene 

regulators guiding embryonic patterning in Drosophila (Bantignies and Cavalli, 2006; 

Ringrose and Paro, 2007; Schuettengruber et al., 2007; Schwartz and Pirrotta, 2007; 

Sparmann and van Lohuizen, 2006). Remarkably, PcG proteins underwent an expansion 

during evolution of vertebrates. Many paralogs arose, which has been suggested to 

contribute to cell type specific gene regulation; an essential requirement for the observed 

increase in organismal complexity (Whitcomb et al., 2007).  

Beyond their role in embryonic development, PcG proteins have been implicated in 

maintaining pluripotency and cell identity via repression of key developmental regulators in 

embryos and ES cells (Bernstein et al., 2006; Boyer et al., 2006; Lee et al., 2006). PcG 

proteins have further been shown to play a role in cell differentiation, cell fate plasticity 

(Caretti et al., 2004; Ezhkova et al., 2009; Klebes et al., 2005; Lee et al., 2005) and 

proliferation (Blais et al., 2007; Martinez et al., 2006). In addition, their mis-regulation is 

associated with neoplastic development (Sparmann and van Lohuizen, 2006). ES cell lacking 

Ezh2, Eed or Suz12 can be maintained in culture, suggesting that Polycomb is not essential 

for propagation of pluripotent stem cells. However, all mutant cells show a modest 

upregulation of a number of differentiation genes which are normally under the control of 

Polycomb. Upon induction of differentiation the mutant cells either die or do not differentiate 

to term, which is in line with the early embryonic lethal phenotypes in vivo (Chamberlain et 

al., 2008; Erhardt et al., 2003; O'Carroll et al., 2001; Pasini et al., 2007). 

Biochemical purification experiments revealed that at least two separate multimeric 

PcG complexes or Polycomb repressive complexes (PRC) with distinct enzymatic activities 

exist [Fig. 5; reviewed in (Bantignies and Cavalli, 2006; Schwartz and Pirrotta, 2007; 

Sparmann and van Lohuizen, 2006)]. PRC2 contains Ezh2 which mediates di/tri-methylation 

of lysine 27 of Histone H3 [H3K27me2/3; (Czermin et al., 2002; Muller et al., 2002)], the 

hallmark of Polycomb repressed genes. PRC1 on the other hand contains four conserved 

core components and mediates H2A lysine 119 mono-ubiquitination [H2AK119u1; (Wang et 

al., 2004)]. PRC1 is thought to cooperate with PRC2 for binding at target genes enriched in 

H3K27me3, and to mediate repression by inhibiting chromatin remodeling, blocking 

transcription and/or by mediating chromatin compaction [Fig. 5; (Levine et al., 2004; 

Margueron et al., 2008)]. The precise mechanisms by which PRC complexes regulate gene 

expression are unclear but their overlapping genomic distributions suggest concerted actions 

(Boyer et al., 2006; Ku et al., 2008). At the level of higher-order chromatin organization, a 

clustering of silenced genes into sub-nuclear compartments termed PcG-bodies seems to be 

important and could provide a means to coordinate repression of multiple genes (Bantignies 
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et al., 2003; Grimaud et al., 2006; Lanzuolo et al., 2007; Terranova et al., 2008; Tiwari et al., 

2008).  

 

 

 

 

Interestingly, in mammals Polycomb mediated H3K27me3 very often coincides with 

H3K4me2/3 in close proximity, a configuration termed bivalent chromatin due to the opposing 

effects of the two modifications (Azuara et al., 2006; Bernstein et al., 2006; Bracken et al., 

2006; Mikkelsen et al., 2007). While it has been put forward that such a bivalent configuration 

could “poise” genes for activation at a later time point (Bernstein et al., 2006; Spivakov and 

Fisher, 2007), no experimental evidence for such a scenario exists.  

 At some Drosophila genes, PcG proteins bind to regulatory elements called PREs 

(Polycomb Response Elements) to silence nearby genes, suggesting that Polycomb targets 

are encoded in the DNA sequence (Ringrose and Paro, 2007). In mammals, despite large-

scale mapping efforts, no such DNA sequence elements for PcG recruitment could be 

identified so far. This, together with the low sequence conservation of Drosophila PREs, 

might reflect that many different sequence-specific transcription factors can recruit Polycomb 

and therefore identification of a consensus PRE is not possible. For example in cancer cells 
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the transcription factor SNAIL was shown to recruit Polycomb proteins to the E-cadherin 

promoter coinciding with its transcriptional silencing (Herranz et al., 2008). 

In addition to the elusive targeting, propagation of H3K27me3 and Polycomb 

complexes during replication is poorly understood. A recent report suggested that PRC2 

directly binds to H3K27me3 and thereby ensures propagation of the mark during mitosis 

(Hansen et al., 2008). Another report suggested that PRC1 remains bound to the DNA during 

replication in an in vitro system (Francis et al., 2009). However in vivo propagation remains 

to be addressed in more detail.  

Several recent reports suggest interplay between the Polycomb pathway and DNA 

methylation. Direct protein-protein interaction was reported for Ezh2 and DNMT1 in cancer 

cell lines (Vire et al., 2006), which however is controversial and has not been reproduced in 

non-transformed cells. In addition, several recent studies suggested preferential aberrant 

DNA methylation in human cancer cell lines and primary cancers at promoters that are 

Polycomb targets in unrelated human ES cells in culture (Ohm et al., 2007; Schlesinger et 

al., 2007; Widschwendter et al., 2007). These studies hint towards a potential targeting 

pathway of DNMTs via Polycomb, however no direct prove exists so far. 

 

2.3.3. DNA methylation 

In prokaryotes, cytosine and adenine methylation are involved in multiple processes 

such as DNA repair and pathogen defense [reviewed in (Reisenauer et al., 1999)]. 

Eukaryotes contain exclusively cytosine methylation which in mammals is limited to cytosines 

in CpG dinucleotides. In plants and fungi cytosines in CpNpG or even CpNpN context can be 

methylated, too. Interestingly, not all eukaryotes methylate their genomes and moreover 

levels of DNA methylation can vary greatly between members of the same phylogenic class. 

For example in the class of fungi DNA methylation is absent in yeast (Antequera et al., 1984) 

but present at moderate levels in Neurospora crassa (Selker et al., 2003). Among plants, 

maize contains high levels of methylation (Rabinowicz et al., 2003) while Arabidopsis 

thaliana displays moderate amounts of methylated cytosines (Zhang et al., 2006). Further, 

Drosophila melanogaster has only low abundant DNA methylation in early larval stages 

(Phalke et al., 2009) whereas the honey bee Apis melifera has substantial levels also at adult 

stages (Wang et al., 2006). The roundworm Caenorhabditis elegans contains no methylated 

cytosines (Simpson et al., 1986), however it is not known if other worms eventually 

methylated their DNA. In contrast, all vertebrates analyzed so far display genome-wide DNA 

methylation with up to 80% of all CpG dinucleotides being methylated (Suzuki and Bird, 

2008).  
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2.3.3.1. Eukaryotic DNA methyltransferases 

Four distinct families of DNA methyltransferases (DNMT), grouped according to 

homologies in their catalytic domains, have been identified in eukaryotes. Below, I will mainly 

focus on mammalian DNMTs since some methylation pathways and enzymes in plants 

appear unique with no counterpart in animals. A comprehensive description of DNA 

methyltransferases in animals, fungi and plants is provided in a review by Goll and Bestor 

(Goll and Bestor, 2005).  

 

DNA methyltransferase 1 family 

DNMT1 was the first eukaryotic DNA methyltransferase to be identified (Bestor et al., 

1988). It was subsequently found that it has a preference for hemi-methylated DNA, making 

it a prime candidate for propagation and stable maintenance of DNA methylation patterns 

through mitosis (Stein et al., 1982). This is further supported by direct interactions of DNMT1 

with Pcna (Chuang et al., 1997) and Uhrf1 (also known as NP95 and ICBP90), which recruits 

DNMT1 to hemimethylated DNA at replication forks (Arita et al., 2008; Avvakumov et al., 

2008; Bostick et al., 2007; Sharif et al., 2007). Upon loss of Uhrf1, global DNA methylation 

levels are severely reduced and intracisternal A particle (IAP) and long interspersed nuclear 

element 1 (LINE-1) retrotransposons are transcriptionally activated (Sharif et al., 2007), 

reminiscent of the phenotype of DNMT1-/- ES cells and embryos [see below; (Okano et al., 

1999; Walsh and Bestor, 1999)].  

Extensive genetic studies revealed that DNA methylation is essential for normal 

development. Mice carrying a homozygous deletion for DNMT1 die at 8.5 days post coitus 

[dpc; (Li et al., 1992)]. At the same time, this argues against a general role of DNA 

methylation in regulating tissue-specific and developmental genes due to the survival of the 

embryos up to 8.5 dpc. Furthermore, fibroblasts lacking DNMT1 showed only a handful of 

genes with strong upregulation upon loss of DNA methylation (Jackson-Grusby et al., 2001). 

Thus, the lethal phenotype was mostly attributed to loss of imprinting and reactivation of 

transposons and probably other repetitive elements (Walsh and Bestor, 1999).  

In embryonic stem (ES) cells with a homozygous deletion for DNMT1, genomic DNA 

methylation levels are dramatically reduced to about 5% remaining methylation compared to 

wild type ES cells (Lei et al., 1996). Moreover, normally imprinted genes lost their monoallelic 

expression and were either silenced or expressed from both alleles (Li et al., 1993). In 

addition mutant embryos inactivate both X chromosomes due to reactivation of Xist on the 

active X upon loss of DNA methylation-mediated Xist repression (Panning and Jaenisch, 

1996). While DNMT1-/- ES cells can be maintained over a long period of time, they were 

reported to undergo cell-autonomous apoptosis upon induction of differentiation, which is 

consistent with the in vivo phenotype (Jackson et al., 2004; Li et al., 1992). 
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Remarkably, in vitro DNMT1 shows even higher activity on unmethylated substrate 

than the two known de novo methyltransferases, implying that DNMT1 might also play a role 

for de novo methylation (Okano et al., 1998a).  

 

DNA methyltransferase 3 family 

The members of the DNMT3 family, i.e. DNMT3A and DNMT3B, were identified as de 

novo methyltransferases based on the inability of DNMT3A-/- / DNMT3B-/- ES cells to 

methylated newly integrated retroviral DNA (Okano et al., 1999). Remarkably, individual 

mutants do not show impaired de novo methylation of inserted DNA, implying that DNMT3A 

and DNMT3B might have in part overlapping functions in ES cells and early embryos (see 

below). In vitro, both enzymes catalyze methylation of unmethylated and hemi-methylated 

substrates without preference for one or the other (Okano et al., 1998a). Homozygous 

DNMT3A-/- mice survive to term but are runted and die within a few weeks after birth with 

multiple defects including loss of germ cells in males. A DNMT3B knock-out is more severe 

and embryos display growth and neuronal defects already at early stages and die around 9.5 

dpc. Embryos lacking both DNMT3A and DNMT3B display a synergistic effect and die 

around 8.5 dpc. They are mostly devoid of DNA methylation, although to a lesser extent than 

DNMT1-/- embryos. Further these mutants lack somites, which indicates that growth and 

development are arrested shortly after gastrulation, reminiscent of DNMT1 mutants (Okano 

et al., 1999). Further, endogenous C-type retroviruses and IAPs were hypomethylated, again 

comparable to DNMT1-/- embryos but nevertheless the cause of embryonic lethality is not 

evident from these genetic experiments. 

DNMT3L, the third member of the mammalian DNMT3 family, has no catalytic activity 

due to non-conservative amino acid substitutions in the catalytic domain. It is exclusively 

expressed in the germline and early embryonic stages (including embryonic stem cells) 

where it acts as crucial cofactor of DNMT3A for establishing maternal imprints during oocyte 

development (Bourc'his et al., 2001). Further, DNMT3L is essential for silencing 

retrotransposons during early male germline development, successful meiosis and 

spermatogenesis (Bourc'his and Bestor, 2004). Homozygous DNMT3L mutant mice are 

viable but both male and female mice are infertile due to the afore mentioned germline 

defects.  

Plants sport an additional RNA-directed DNA methylation (RdDM) pathway, which is 

mediated by the DNMT3 homologs Drm1 and Drm2. Both proteins have been shown to 

interact with components of the small interfering RNA pathways in Arabidopsis and are 

targeted to repeats and transposons via small RNAs which arose from transcription of these 

elements. At their targets, Drm1 and Drm2 confer CpN, CpNpG and CpG methylation. In 

vertebrates such an RdDM pathway has not been identified yet. Recent advances in 
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understanding repeat silencing in germ cells indicated that short non-coding RNA pathways 

are essential for silencing of transposable elements and potentially reside upstream of DNA 

methylation of these elements, however the mechanistic details have not been worked out 

yet (see also paragraph “Targeting DNA methylation”). 

 

DNA methyltransferase 2 family 

All organisms which contain a DNMT1- and DNMT3-family enzyme also contain a 

DNMT2 homolog. Strikingly, DNMT2 is the best conserved and most widely distributed 

eukaryotic methyltransferase and in some species it is the only DNA methyltransferase 

homolog. However, so far various labs detected either no (Dong et al., 2001; Okano et al., 

1998b; Yoder and Bestor, 1998) or only minute (Kuhlmann et al., 2005; Kunert et al., 2003; 

Tang et al., 2003) DNA methyltransferase activity of DNMT2. Moreover, DNMT2-/- mice are 

perfectly viable and do not display any noticeable phenotype, suggesting either a different or 

more specialized function for DNMT2 compared to the other DNMTs. Two recent reports 

identified DNMT2 of mammals, dipterans and plants as RNA methyltransferase specific to 

aspartic acid tRNA (Goll et al., 2006; Jurkowski et al., 2008). However, the cellular function of 

tRNA methylation remains elusive and given that homozygous knock-outs do not have any 

detectable phenotype in mouse, Drosophila and Arabidopsis under laboratory conditions, it 

remains to be tested if environmental stress would elicit a detectable response in the 

mutants. Given that DNMT2 has virtually no DNA methyltransferase activity, this might also 

explain the diverging methylation patterns in closely related invertebrate species. As eluted 

above, S. pombe has a DNMT2 homolog but does not methylated it’s DNA while N. Crassa 

contains DNMT1 and DNMT3 homologs and methylates DNA. Similarly among insects, D. 

melanogaster only carries a DNMT2 homolog and has only very little genomic methylation 

while A. melifera contains DNMT1 and 3 homologs and substantial amounts of methylated 

cytosines (Wang et al., 2006). 

Interestingly, DNMT2 was suggested to methylate DNA during the first hours of 

Drosophila embryogenesis. This methylation serves as a trigger to silence retrotransposons 

and stably maintain certain telomeric repeat sequences via a histone methylation dependent 

pathway (Phalke et al., 2009). In absence of DNMT2, somatic cells express considerable 

levels of retrotransposons; however flies lacking DNMT2 are normal and fertile. An 

explanation for this might be that in germ cells retrotransposons are silenced via RNAi-based 

mechanisms that is independent of DNMT2 (Klenov et al., 2007; Vagin et al., 2006). 

 

Chromomethylases 

Chromomethylases have a characteristic chromodomain and are only found in plants 

(Henikoff and Comai, 1998). The Arabidopsis genome includes three chromomethylase 
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homologs: Cmt1, Cmt2 and Cmt3. They have been shown to confer CpNpG methylation and 

upon loss of chromomethylases retrotransposons become reactivated. However even after 

several generations of self-fertilization no obvious phenotype was found in plants lacking 

Cmts. It has been suggested that CpNpG methylation reinforces and replaces CpG 

methylation in regions with low levels of CpGs. Indeed, reduction of both, CpG and CpNpG 

methylation leads to a synergistic effect with double mutants displaying a higher increase in 

transposons reactivation than either single mutant (Kato et al., 2003). 

 

2.3.3.2. DNA methylation patterns and functions in animals 

It is emerging that invertebrates mostly contain “mosaic” methylation patterns with 

domains of dense methylation interspersed by methylation-free regions. Methylation often 

localizes to gene bodies [e.g. Ciona intestinalis; (Suzuki and Bird, 2008; Suzuki et al., 2007)]. 

Interestingly, genes which display gene body methylation exhibit higher evolutionary 

conservation. Moreover, these genes are expressed at moderate levels, while genes 

expressed at very high levels rarely show gene body methylation. Based on this, it was 

suggested that gene body methylation could be utilized to prevent spurious transcriptional 

initiation within genes transcribed at low levels (Suzuki et al., 2007). Nevertheless, this model 

lacks validation and thus the function of mosaic DNA methylation in invertebrates remains 

elusive. 

In contrast to mosaically methylated invertebrate genomes where methylated and 

unmethylated regions coexist at more or less equal rations, vertebrates methylate up to 98 % 

of their genome including genes, repeats and transposons (Suzuki and Bird, 2008). The 1-2 

% of the genome that is devoid of methylation corresponds to CpG islands, which appear to 

be protected from DNA methylation (see below). Hence it is not surprising that gene body 

methylation is also present in vertebrates (Eckhardt et al., 2006; Weber et al., 2005) and it is 

conceivable that it could prevent spurious transcription initiation, which however needs to be 

tested. Besides gene body methylation, vertebrates generally methylate repetitive and 

transposable elements which represent over 60 % of the total genomic DNA in mammals 

(Lander et al., 2001). DNA methylation is essential for stably silencing certain types of 

retrotransposons, while others are not reactivated in DNA methylation mutants (Bourc'his 

and Bestor, 2004; Rollins et al., 2006; Walsh and Bestor, 1999; Walsh et al., 1998). In 

addition to repeat silencing, DNA methylation is important for X-inactivation (Heard et al., 

1997), genomic imprinting (Li et al., 1993) and maintaining chromosome stability and 

genome integrity. For example mutations in DNMT3B lead to ICF syndrome, which is 

molecularly characterized by chromosomal rearrangements and hypomethylation at 

centromeres (Xu et al., 1999). ES cells lacking either DNMT1 or DNMT3A and 3B have an 

increased frequency of telomere recombination (Gonzalo et al., 2006) and mice with reduced 
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DNMT1 activity display higher mutation rate and increased loss of heterozygosity due to 

increased meiotic recombination (Chen et al., 1998).  

The role of DNA methylation in tissue specific gene expression is discussed 

controversially. Early studies involving single genes showed that DNA methylation changes 

of promoters can indeed follow their transcriptional activity but not in an obligatory fashion 

(Futscher et al., 2002; Walsh and Bestor, 1999). More recent genome-wide studies revealed 

that most CpG-rich promoters are unmethylated in ES cells as well as in differentiated cell 

types and somatic tissues (Farthing et al., 2008; Fouse et al., 2008; Illingworth et al., 2008; 

Meissner et al., 2008; Mohn et al., 2008; Rollins et al., 2006; Weber et al., 2007). These 

reports also revealed that 2-5% of CpG island promoters acquire DNA methylation during 

cellular differentiation and development. Interestingly, the majority of differential DNA 

methylation between somatic tissues seems to locate outside of promoters at CpG-rich 

sequences, indicating that DNA methylation might have a role in regulating activity of distal 

regulatory elements such as enhancers (Eckhardt et al., 2006; Illingworth et al., 2008; Irizarry 

et al., 2008; Song et al., 2005). In summary, these reports do not support a general role for 

DNA methylation in regulating tissue-specific gene expression. Nevertheless they indicate 

that a subset of genes is stably repressed by DNA methylation; maybe to confer robustness 

to the differentiated state of the cells. 

DNA hyper- and hypo-methylation was further proposed to contribute to cellular 

transformation and progression of several types of cancers. Frequently aberrant methylation 

of tumor suppressor genes and cell cycle regulators are found in cancer, suggesting that 

DNA methylation contributes to malignancy and stabilizes the erroneous gene expression 

program in these cells (Feinberg et al., 2006; Jones and Baylin, 2007). However, also in this 

case it is debatable if aberrant DNA methylation is an early event and could therefore 

contribute to transformation and malignancy or if it is a late event, which potentially 

contributes to progression of the disease. 

 

2.3.3.3. DNA methylation patterns and functions in plants and fungi 

Compelling evidence from plants and fungi suggests that DNA methylation is crucial 

for genome immunity. Several recent reports showed that virtually all transposable elements 

are DNA methylated in Arabidopsis thaliana (Cokus et al., 2008; Lister et al., 2008; Vaughn 

et al., 2007; Zhang et al., 2006; Zilberman et al., 2007). The fungus Neurospora crassa goes 

even a step further and not only methylates transposons but subsequently deaminates 

methyl-cytosines. This introduces C-to-T transversions and leads to mutations and functional 

impairment of transposable elements; a process termed repeat-induced point mutation [RIP; 

(Galagan and Selker, 2004; Lewis et al., 2009)]. 
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Moreover, studies in plants revealed that gene bodies of basally but not low or very 

highly expressed genes contain dense methylation, reminiscent of C. intestinalis. Upon 

deletion of Met1, the plant DNMT1 homolog, and subsequent loss of gene body methylation 

only very little transcriptional changes were observed (Zilberman et al., 2007). Thus, the 

function of this gene body methylation remains as elusive as in mammals with the best guess 

being the blocking of spurious initiation. Together this implies that in plants and vertebrates, 

gene body methylation serves an evolutionary conserved role, or alternatively, that gene 

body methylation has no functional relevance but is rather a consequence of a default 

methylation pathway that targets any sequence which is not protected against DNA 

methylation (see below). 

 

2.3.3.4. Targeting DNA methylation 

Even tough heavily studied, targeting of DNA methyltransferases to their specific 

target sequences remains poorly understood. Recently, two reports demonstrated that 

DNMT3L specifically interacts with histones devoid of H3K4 methylation, providing a hint how 

DNA methylation could be targeted and how DNA could be protected from de novo 

methylation (Jia et al., 2007; Ooi et al., 2007). Other reports suggest that DNMTs can be 

recruited via sequence-specific transcription factors such as Myc (Brenner et al., 2005) or 

Pu.1 (Suzuki et al., 2006), or by specific post-translational histone modifications and histone 

modifying enzymes. For example, H3K9 methylation is required for targeting DNA 

methylation towards pericentric major satellite repeats (Lehnertz et al., 2003) or to the 

promoter of Oct4 during cellular differentiation (Feldman et al., 2006). Moreover, Suv39h1/2, 

Setdb1 and G9a (all H3K9 methyltransferases), heterochromatin protein 1 (HP1), and Ezh2 

(a H3K27 methyltransferase) have been implicated to recruit DNA methyltransferases in 

experiments mostly carried out in cancer cell lines (Epsztejn-Litman et al., 2008; Fuks et al., 

2003; Vire et al., 2006). Despite all these putative interactions no predictive model about 

targeting of DNA methylation could be derived and most interactions await further functional 

characterization in non-transformed cells and in vivo. 

In plants DNA methyltransferases (Cmt3, Drm1 and Drm2) can be targeted towards 

repeats and transposons via small non-coding RNA species (Matzke et al., 2007), while in 

fungi no such pathway has been observed (Freitag et al., 2004b). Due to the absence of an 

RNA-dependent RNA polymerase in mammals, it was thought that such a pathway is most 

likely not existent in vertebrates. The recent discovery of short germline specific RNA 

species, termed piRNAs, stimulated new speculations about the existence of an RNA-based 

targeting of DNA methylation in order to silence mobile elements. Indeed, upon deletion of 

the Argonaut homologs Piwil2 or Piwil4 DNA methylation is lost at transposable elements. In 

line with these data, deletion of DNMT3L causes an increase of short RNAs mapping to 
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transposons (Aravin et al., 2008; Aravin et al., 2007; Carmell et al., 2007; Kuramochi-

Miyagawa et al., 2008). Together these results suggest that in the germline the piRNA 

pathway resides upstream of DNA methylation of transposable elements. However, the 

recruitment of DNMTs to piRNA targets remains to be determined.  

 

2.3.3.5. DNA demethylation 

DNA can be demethylated passively via blocking maintenance during DNA replication 

and thereby avoiding methylation of the newly synthesized DNA strand. Alternatively it has 

been proposed that DNA methylation can be removed actively via specific enzymes. While 

such a pathway has been identified in plants, active DNA demethylation is highly 

controversial in mammals as there is no compelling biochemical evidence for an efficient 

active demethylation pathway [reviewed in (Ooi and Bestor, 2008)]. During mammalian 

development there are two waves of epigenetic reprogramming when DNA methylation and 

PTMs are partially removed and reset (Reik, 2007): first in the pre-implantation embryo and 

later during primordial germ cell (PGC) development. The reprogramming of DNA 

methylation during pre-implantation development occurs very fast at the paternal genome as 

revealed by immuno-fluorescence staining for 5-methylcytosine. This would argue for an 

active demethylation process rather than passive “dilution” over subsequent cell divisions as 

it is probably the case on the maternal genome. However, this model is based on stainings 

with one antibody specific to methylated cytosine and a handful individual sequences 

assessed by bisulfite sequencing, thus the extent of demethylation is not clear. Remarkably, 

methylation of parentally imprinted sequences is protected from demethylation (Hirasawa et 

al., 2008; Nakamura et al., 2007).  

During the second reprogramming event in PGCs, the cells are dividing and 

distinguishing between active removal or passive loss of DNA methylation is therefore 

difficult and further investigation is required.  

Numerous studies reported active demethylation and proteins such as MBD2 [methyl-

binding domain 2; (Bhattacharya et al., 1999)], Tdg [thymidine DNA glycosylase; (Jost, 

1993)], Gadd45a (Barreto et al., 2007) and even DNMT3A and DNMT3B (Kangaspeska et 

al., 2008; Metivier et al., 2008) were suggested to mediate DNA demethylation. However, 

many characterized demethylase activities were either never followed up or were proven not 

reproducible by other labs as in the cases of MBD2 and Gadd45a (Jin et al., 2008). Taken 

together, the current data in vertebrate systems neither proves the existence of active 

demethylation nor excludes its necessity and/or existence. 

In plants, the evidence for active demethylation is much more convincing and 

exclusively encompasses DNA glycosylases. Mechanistically, methylcytosines are 

deaminated, resulting in a thymidine which is then excised out of the DNA and replaced by 
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an unmodified cytosine via base excision repair (Gehring et al., 2006). For example the DNA 

glycosylase DEMETER was shown to be specifically required for removing DNA methylation 

from the MEDEA gene in female gametophytes, resulting in a paternally imprinted MEDEA 

gene after fertilization (Gehring et al., 2006). The other three proteins with demethylase 

activity (ROS1, DML2, and DML3) belong to the same gene family as DEMETER but are 

more ubiquitously expressed. Upon mutation of all three of them, DNA methylation 

significantly increases at several hundred loci (Penterman et al., 2007a; Penterman et al., 

2007b; Zhu et al., 2007). Remarkably, the aberrant methylation preferentially takes place at 

5’ and 3’ ends of genes, suggesting that in plants, unmethylated regulatory regions are 

actively protected against aberrant DNA methylation by a demethylation pathway.  

Even though imprinting mechanisms in plants and mammals show remarkable 

similarities, they evolved independently. This is nicely illustrated by the way differential DNA 

methylation is set up in the maternal and paternal germline. During PGC development in 

mammals many epigenetic marks are erased and reset. Accordingly, differential methylation 

is established by de novo methylation mediated by a DNMT3A-DNMT3L complex in a parent 

of origin specific manner. In plants however, no such epigenetic reprogramming takes place 

and differential methylation is conveyed by demethylating one allele which is normally fully 

methylated in somatic cells (Zilberman, 2008).  

 

2.3.3.6. Methyl-CpG binding proteins 

Currently, three methyl-CpG binding protein families are known in vertebrates and 

plants: methyl-CpG-binding domain (MBD) proteins, Kaiso-like proteins and SRA-domain 

proteins [reviewed in (Clouaire and Stancheva, 2008; Dhasarathy and Wade, 2008; Hendrich 

and Tweedie, 2003)]. In general, these proteins are believed to bind to methylated DNA and 

to further recruit chromatin remodeling and modifying complexes, which assist in 

transcriptional repression. In addition, due to the high abundance and focal presence on 

chromatin, certain MBDs were implicated in chromatin organization and higher order 

structure formation (Brero et al., 2005; Clouaire and Stancheva, 2008). Below I will briefly 

summarize current knowledge about MBD proteins, which is the best characterized family. 

Mammals contain five proteins (MeCP2, MBD1, MBD2, MBD3, and MBD4) which 

share a common and evolutionary conserved MBD sequence motif. In addition, a 

bioinformatics study identified 6 additional polypeptides which contain such a conserved 

MBD motif (Roloff et al., 2003). However so far none of these putative methyl-binding 

proteins was further characterized. In vitro and to some extent in vivo, the MBD domains of 

MeCP2, MBD1, MBD2, and MBD4 have been shown to preferentially bind to DNA harboring 

methylated CpGs. Further, they colocalize with foci of densely methylated satellite DNA, 
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which together suggested that MBD proteins might be readers of the DNA methylation mark 

(Hendrich and Bird, 1998).  

MeCP2, the first MBD to be biochemically characterized, interacts with the Sin3A 

histone deacetylation co-repressor complex, which is crucial for MeCP2-mediated repression 

(Jones et al., 1998; Nan et al., 1998). Moreover, a vast number of other interaction partners 

have been reported, among them proteins of the repressive CoREST and NCoR/SMRT 

complexes, H3K9 KMT activity and the chromatin remodeling factors ATRX and Brm1 

(reviewed in (Clouaire and Stancheva, 2008). MeCP2 deficiency in humans causes Rett 

syndrome, a severe autism spectrum disorder. Due to its location on the X-chromosome, 

male embryos with mutant MeCP2 die perinatally, while females show a mosaic expression 

of the wild type and mutant MeCP2 alleles. In addition, skewed X-chromosome inactivation 

can lead to diverse severity of the disorder. Mice carrying mutant MeCP2 recapitulate many 

human Rett symptoms and are widely used to study the disease (Chahrour and Zoghbi, 

2007). Recent studies revealed that, in contrast to previous believes, Rett is not a 

neurodevelopmental or neurodegenerative disease because the re-expression of MeCP2 in 

mutant mice completely alleviated the neurological symptoms of Rett (Guy et al., 2007). This 

indicates that neurons develop normally and are not damaged in the absence of MeCP2, 

however MeCP2 is essential for their proper function. Recent large scale ChIP-chip data 

suggested that only a minority of MeCP2 binding sites co-localizes with genes and/or 

methylated CpG islands while most of the identified binding sites were outside of genes and 

CpG islands. Moreover, genes bound by MeCP2 were mostly active which suggest that 

MeCP2 might also have other functions than transcriptional control of methylated genes 

(Yasui et al., 2007).  

MBD1 not only binds methylated CpGs but also unmethylated DNA and was 

therefore suggested to have repressive functions at both methylated and unmethylated CpG 

islands (Fujita et al., 2000). Interestingly, the domain responsible for binding to unmethylated 

DNA contains a CXXC motif, which is thought to specifically recognize unmethylated CpG 

islands and which is also present in DNMT1 and MLL [an H3K4 KMT; (Voo et al., 2000)]. 

However, to date it is unclear what the role of MBD1 is. Mice lacking MBD1 are viable and 

fertile but have reduced neurogenesis and other mild neurological defects (Zhao et al., 

2003). The interaction of MBD1 with Setdb1, Suv39 (both H3K9 methyltransferases) and 

HP1 (which binds to H3K9me2/3) suggests a role in mediating H3K9 methylation in the 

context of DNA methylated sequences. Moreover it was found that during S-phase the 

MBD1/Setdb1 complex is displaced from chromatin and associates with Caf1 (chromatin 

assembly factor 1) at progressing replications forks, where it methylates H3K9 at the time 

when the new nucleosomes are incorporated into the nascent DNA (Sarraf and Stancheva, 
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2004). This provides a potential mechanism for propagating H3K9 methylation through 

mitosis. 

MBD2 was found to be a member of the NuRD repressive complex but other than 

MBD3, its absence does not result in embryonic lethality, suggesting independent functions 

(Hendrich et al., 2001). MBD2 knock-out mice only display some neuronal defects but are 

otherwise viable and fertile (Hendrich et al., 2001).   

MBD3, which has no methyl-CpG specificity, is a member of the chromatin 

remodeling and histone deacetylation complex NuRD (Wade et al., 1999; Zhang et al., 

1999); however its role in the NuRD corepressor complex is unknown. Strikingly, MBD3 is 

the only MBD protein with an embryonic lethal phenotype in mutant mice (Hendrich et al., 

2001). 

MBD4 was more recently found to contain DNA glycosylase activity and rather than 

reading the DNA methylation it was shown to reduce the mutability of methylated CpGs in 

the genome. MBD4 recognizes T-G mismatches, which arise due to spontaneous 

deamination of methylated cytosines, and triggers base excision repair pathways to fix such 

missmatches before they eventually get propagated during mitosis (Millar et al., 2002; Wong 

et al., 2002).  

SRA proteins such as UHRF1 play an important role in maintenance of DNA 

methylation (Arita et al., 2008; Avvakumov et al., 2008; Bostick et al., 2007; Sharif et al., 

2007), and the diversity in plants suggests that they might also serve other functions. Similar 

to some MBDs, Kaiso-like proteins were also found to act as transcriptional repressors in 

conjunction with histone deacetylase complexes (Yoon et al., 2003), however very little is 

known about this family of methyl-CpG binding proteins.  

Even though many interaction partners have been described, the phenotypes of the 

individual knock-out mice do not support developmentally crucial functions in reading DNA 

methylation. All DNMTs are essential for proper development, while MBD3, which does not 

bind to methylated DNA, is the only essential member of the MBD family. This might be due 

to partial redundancy among MBDs, but nevertheless it demonstrates that functions of 

methyl-CpG binding proteins still remain elusive. 
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2.4. Scope of thesis 

 

During mammalian development, the fusion of two highly specific gametes results in 

a single totipotent cell that ultimately gives rise to an organism comprising over 1013 cells. 

Although all these cells do have the same genetic material, they have very distinct 

morphological and functional properties based on their characteristic gene expression 

programs. While gene expression is largely defined by the transcription factors present in a 

given cell type, it is speculated that epigenetic mechanisms contribute to establishing and 

maintaining such cell type specific gene expression programs. This model is further 

supported by the finding that the epigenome is partially reprogrammed during early 

embryonic development [reviewed in (Reik, 2007)]. Moreover, electron microscopy data 

suggested that chromatin is more condensed (Francastel et al., 2000) and mobility of 

heterochromatin protein 1 (HP1) is reduce in differentiated cells compared to undifferentiated 

cells (Meshorer et al., 2006). However, magnitude, dynamics and targets of this epigenetic 

reprogramming process remain poorly understood. When I started my PhD project in 2005 it 

was emerging that mammals do not contain one “epigenome” but rather that every somatic 

cell type has its own characteristic epigenetic landscape, which is tightly linked to the cell 

type specific gene expression pattern. This novel concept was greatly stimulated by the 

discovery of enzymes which can remove acetylation and methylation marks from core 

histones (Shi et al., 2004; Taunton et al., 1996). This provided direct evidence that epigenetic 

modifications are reversible and can be dynamically regulated in order to change the 

epigenetic state of a cell. However, no comprehensive datasets were available to back up 

this hypothesis. Moreover, given that cell type specific epigenomes exist, it seemed 

important to ask at what time point during development and cellular differentiation these cell 

type specific patterns would be established and how this would interplay with gene 

transcription. In addition, several protein-protein interaction data hinted towards a crosstalk 

between repressive pathways. These data were merely generated in vitro or from cancer cell 

lines and no functional in vivo evidence was available.  

Studying epigenetic reprogramming in vivo in the early embryo has severe technical 

limitations due to the low number of cells and only allows immunofluorescence stainings for 

chromatin modifications, in situ hybridization and/or PCR analysis for individual loci. To 

circumvent this and to allow a more comprehensive analysis, we chose to make use of a 

recently established in vitro ES cell differentiation system (Bibel et al., 2004). This enabled us 

to generate large amounts of highly pure cell population of three distinct developmental 

stages. By then, it was accepted that DNA methylation has an important role in silencing of 

repetitive elements, genomic imprinting, x-inactivation and maintaining genome integrity, 

however it was still controversial if and to what extent DNA methylation contributes to cell 
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type specific gene regulation (Walsh and Bestor, 1999). Moreover, based on microscopy 

data and reduced mobility of chromatin proteins in differentiating cells compared to stem 

cells it was speculated that cellular differentiation would entail successive increase of 

epigenetic restriction from a very plastic pluripotent state towards a highly restricted 

unipotent terminally differentiated state (Meshorer and Misteli, 2006). To test this hypothesis, 

we first monitored the genome-wide dynamics and targets of DNA methylation during 

neuronal differentiation. Subsequently, we expanded the analysis towards Polycomb, which 

is a distinct repressive pathway with known functions in controlling key developmental 

regulators (Sparmann and van Lohuizen, 2006). According to the model, Polycomb targets 

are specified early in development and then either maintained if the gene is not activated or 

lost upon gene activation (Sparmann and van Lohuizen, 2006). However, it was not clear if 

such early specified Polycomb targets maintain the repression till the terminally differentiated 

state in case they are never activated. Another immediate question was if Polycomb would 

target additional genes in differentiating cells and contribute to epigenetic restriction and 

maintaining cell identity once stem cells lose pluripotency.  

In order to relate potential changes in DNA methylation and Polycomb-mediated 

H3K27me3 to gene activity and a “transcriptionally permissive” chromatin state we further 

mapped Pol II and H3K4me2 using the same promoter microarrays.  
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3.1. Lineage-Specific Polycomb Targets and De novo DNA 

Methylation Define Restriction and Potential of Neuronal 
Progenitors 

Mohn F., Weber M., Rebhan M. Roloff T.C., Richter J., Stadler M.B., Bibel M.,  

and Schübeler D. 

 

 

Summary 

Pluripotent embryonic stem (ES) cells isolated from mouse blastocysts represent an 

early developmental stage before embryonic lineage-specification. This makes them a good 

model to study early epigenetic reprogramming events which coincide with lineage 

specification and later terminal differentiation. In this study we made use of a well-defined 

neuronal differentiation model (Bibel et al., 2004) to investigate the plasticity of the 

epigenome during the loss of developmental potential and the gain of neuron-specific 

features. We profiled DNA methylation, Polycomb-mediated H3K27m tri-methylation, RNA 

polymerase II occupancy and H3K4 di-methylation distribution on over 15’000 promoters in 

pluripotent ES cells, multipotent neuronal progenitors and unipotent terminally differentiated 

post-mitotic neurons. This enabled us to monitor two distinct phases of cellular differentiation: 

the loss of pluripotency during lineage commitment, and the terminal differentiation of the 

committed progenitor cells. We observed that DNA methylation at gene promoters is 

increasing during lineage-commitment, which provides experimental support for a long 

standing hypothesis (Reik, 2007; Weber et al., 2007). This finding is also in agreement with 

other recent studies investigating DNA methylation during differentiation and comparing 

different somatic cell types (Farthing et al., 2008; Illingworth et al., 2008; Meissner et al., 

2008; Rollins et al., 2006; Weber et al., 2007). Interestingly, DNA methylation appears to 

preferentially target genes under the control of a weak CpG island promoter. Many of these 

function in early embryonic development and in maintaining pluripotency. This suggests that 

DNA methylation could have a role in securing the repression of the pluripotency program 

and thereby avoiding dedifferentiation and/or trans-differentiation. This is supported by 

findings from Mikkelsen and colleagues, who reported that the efficiency of reprogramming 

somatic cells into induced pluripotent stem (iPS) cells is greatly enhanced if cells are treated 

with the demethylating drug 5’aza-cytidine (Mikkelsen et al., 2008). Further, as the de novo 

DNA methylation takes place almost exclusively during lineage commitment of stem cells to 

neuronal progenitor cells, the data suggest that DNA methylation at CpG island promoters 

has little or no regulatory impact on the terminal differentiation and subtype specification. 
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However, due to detection limitations of our genome-wide approach we cannot rule out that 

methylation changes at individual CpGs can impact gene expression in a cell type specific 

manner as it was put forward for Bdnf regulation (Martinowich et al., 2003).  

Interestingly, many de novo methylated promoters are not active in stem cells, suggesting 

that DNA methylation can not simply be a consequence of transcriptional shut down but 

rather needs to be specifically targeted to these regions. While the targeting mechanism 

remains elusive, one clue comes from the global distribution of H3K4me2. In ES cells 

virtually all unmethylated CpG-rich (i.e. strong and weak CpG islands) reside in chromatin 

marked by H3K4me2, irrespective of transcriptional activity. Upon de novo DNA methylation, 

H3K4me2 is lost which is in agreement with the mutual exclusivity of these two antagonistic 

marks in somatic cells (Weber et al., 2007) and suggests that DNA methylation is stably 

locking in a silent state of CpG-rich promoters of pluripotency and germline specific genes.  

Polycomb-mediated H3K27me3 was previously shown to target many key 

developmental transcription factors in ES cells (Boyer et al., 2006; Lee et al., 2006) and to be 

crucial for embryonic development [reviewed in (Schwartz and Pirrotta, 2007)]. In contrast to 

DNA methylation which displays a unidirectional gain during lineage commitment, we show 

that H3K27me3 behaves very dynamic. Novel genes are targeted while others are activated 

and lose the H3K27me3 mark at both stages of differentiation, during lineage commitment of 

stem cells to neuronal progenitors as well as during terminal neuronal differentiation of the 

progenitor cells. This plasticity was rather unexpected as the classical model of Polycomb-

mediated repression predicts that targets are already specified early in development and 

then either maintain the repressive H3K27me3 mark if the gene is not activated or lose it 

upon activation (Ringrose and Paro, 2007; Schuettengruber et al., 2007; Schwartz and 

Pirrotta, 2007; Sparmann and van Lohuizen, 2006). Strikingly, many genes which are 

inactive and unmodified in stem cells and which become Polycomb targets upon 

differentiation into neuronal progenitors have neuronal functions. At first glance this appears 

counterintuitive. However given that these genes are still inactive at the progenitor stage but 

eventually become activated upon terminal differentiation, it is reminiscent of the situation in 

stem cells. Our data suggests that Polycomb could act as a safe-guard mechanism to avoid 

spurious transcription in absence of a strong activation signal at genes which could be 

activated at a given cell stage but need to be kept silent such as developmental regulators in 

ES cells or neuronal genes in neuronal progenitor cells.  

Remarkably, H3K27me3 targets are almost entirely CpG-rich promoters, indicating a 

targeting bias for the still elusive recruiting factors of Polycomb complexes. This preference 

for CpG-rich sequences furthermore provides a DNA sequence based explanation for the 

existence of so-called bivalent chromatin domains, where the repressive H3K27me3 and the 

active H3K4me2/3 marks colocalize (Bernstein et al., 2006) because CpG-rich sequences 
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are H3K4 methylated by default. Thus any further targeting of CpG-rich sequences by 

Polycomb will result in the formation of a bivalent chromatin configuration. If true this also 

predicts that such bivalent chromatin can not be specific to ES cells as originally proposed 

(Azuara et al., 2006; Bernstein et al., 2006), which we and others indeed have shown 

(Bracken et al., 2006; Meissner et al., 2008; Pan et al., 2007; Squazzo et al., 2006). 

Interestingly, genes which are H3K27me3 modified in ES cells have a 4.5 fold 

increased likelihood of becoming DNA methylated upon differentiation as compared to other 

inactive genes in ES cells. Several recent studies suggested preferential aberrant DNA 

hypermethylation in human cancer cell lines and primary cancers at promoters that are 

Polycomb targets in unrelated human ES cells (Ohm et al., 2007; Schlesinger et al., 2007; 

Widschwendter et al., 2007). Thus, our data are compatible with a model in which 

H3K27me3 can trigger de novo DNA methylation during normal somatic differentiation at a 

subset of promoters, indicating that such crosstalk does occur but is not cancer-specific per 

se. Further, our data argue against a reported direct interaction of Polycomb proteins with 

DNMTs (Vire et al., 2006). A direct interaction would predict a marked overlap between DNA 

methylation and H3K27me3 targets, which we and others do not find in non-transformed 

cells. 

Based on our analysis we propose that DNA methylation and Polycomb-mediated 

repression represent two distinct paradigms of epigenetic repression. DNA methylation is 

stably maintained and displays only a modest increase during early differentiation with a 

preference for pluripotency-associated genes, suggesting a function in stabilizing 

differentiated states. This is further consistent with a minor role in regulating cell type specific 

gene expression and a dominant role for DNA methylation in repeat and retrotransposons 

silencing (Walsh and Bestor, 1999). Polycomb on the other hand is a more dynamic and 

transient repression pathway, which potentially prevents precocious activation of 

developmental stage specific targets without appropriate stimuli. This might confer 

robustness to both intermediate and terminal stages of cellular differentiation.  
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SUMMARY

Cellular differentiation entails loss of pluripotency
and gain of lineage- and cell-type-specific character-
istics. Using a murine system that progresses from
stem cells to lineage-committed progenitors to
terminally differentiated neurons, we analyzed DNA
methylation and Polycomb-mediated histone H3
methylation (H3K27me3). We show that several hun-
dred promoters, including pluripotency and germ-
line-specific genes, become DNA methylated in line-
age-committed progenitor cells, suggesting that
DNA methylation may already repress pluripotency
in progenitor cells. Conversely, we detect loss and
acquisition of H3K27me3 at additional targets in
both progenitor and terminal states. Surprisingly,
many neuron-specific genes that become activated
upon terminal differentiation are Polycomb targets
only in progenitor cells. Moreover, promoters marked
by H3K27me3 in stem cells frequently become DNA
methylated during differentiation, suggesting con-
text-dependent crosstalk between Polycomb and
DNA methylation. These data suggest a model how
de novo DNA methylation and dynamic switches in
Polycomb targets restrict pluripotency and define
the developmental potential of progenitor cells.

INTRODUCTION

The process of cellular differentiation is generally unidirectional

and stably maintained. Reversion to stem cell status or transdif-

ferentiation to alternative lineages is rarely observed without cel-

lular transformation. This reduction of developmental potential

was proposed to entail epigenetic restriction such as chromatin

or DNA modifications, which can modulate DNA accessibility.

These epigenetic mechanisms would in turn stabilize cell-type-

specific gene expression patterns and reduce the likelihood
that stem cell-specific or lineage-unrelated genes will be reacti-

vated (Reik, 2007).

The repression of developmental gene regulation through

histone modifications is best illustrated by the Polycomb group

proteins (Ringrose and Paro, 2007). These conserved transcrip-

tional repressors are required for correct body patterning as they

control Hox gene expression (Schwartz and Pirrotta, 2007; Spar-

mann and van Lohuizen, 2006). A hallmark for Polycomb-medi-

ated repression is methylation of lysine 27 of histone H3

(H3K27), which is set up by the Polycomb repressive complex

2 (PRC2) (Czermin et al., 2002; Muller et al., 2002). This mecha-

nism targets genes encoding key transcription factors in mouse

and human embryonic stem cells (ESCs) (Boyer et al., 2006; Lee

et al., 2006), yet repression can be overcome during differentia-

tion by transcriptional activators. Thus, Polycomb can be viewed

as a reversible repression pathway for genes poised to be acti-

vated, ensuring that activation is only induced by a strong and

specific stimulus.

This model implies that most targets are specified in stem cells

and early embryo and then either maintain H3K27me3 or lose it

upon transcriptional activation during development (Ringrose

and Paro, 2007). However, it remains open whether Polycomb

operates on additional targets in multipotent progenitor cells.

Unlike embryonic stem cells, progenitors are restricted to a cer-

tain lineage but have the potential to differentiate into distinct

terminal cell types upon stimulation. In CNS neurogenesis, for

example, radial glial cells have been identified as progenitors

that can differentiate into diverse neuronal subtypes (Goldman,

2003; Gotz and Barde, 2005). Although well documented, it is not

known how such progenitor-specific ‘‘multipotency’’ is estab-

lished and resolved upon terminal differentiation.

Many promoters of key regulators further bear the ‘‘active’’

lysine 4 methylation mark on histone H3 (H3K4) in addition to the

repressive Polycomb-mediated H3K27 methylation (Bernstein

et al., 2006; Mikkelsen et al., 2007; Pan et al., 2007; Zhao et al.,

2007). While the determinants of this bivalency of active and

repressive marks are not known, it has been hypothesized to

be an ESC-specific chromatin state involved in creating a poised

state amendable to rapid induction (Bernstein et al., 2006).

DNA methylation in the context of CpG dinucleotides is a

distinct repression pathway in mammals that is considered to
Molecular Cell 30, 755–766, June 20, 2008 ª2008 Elsevier Inc. 755
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mediate stable silencing (Goll and Bestor, 2005). It is essential for

embryonic development (Okano et al., 1999), and methylation of

promoters or regulatory regions is involved in X-inactivation in

female mammals (Heard et al., 1997), in genomic imprinting (Li

et al., 1993), and in silencing of parasitic elements (Goll and

Bestor, 2005). However, the role of DNA methylation in tissue-

specific gene expression is controversial: single gene studies

showed that changes in DNA methylation at promoters can

reflect changes in transcriptional activity but do not follow it in

an obligatory fashion (Futscher et al., 2002; Walsh and Bestor,

1999).

It has been widely assumed that promoters in ESCs lack DNA

methylation. This is based on the fact that ESCs are derived from

blastocystes after a global DNA demethylation event (Howlett

and Reik, 1991; Mayer et al., 2000). Furthermore, it was pro-

posed that promoter methylation might be incompatible with

the ability of such cells to activate a wide range of tissue-specific

genes during subsequent differentiation (Reik, 2007). In a recent

study of promoter DNA methylation in human sperm and primary

fibroblasts, we observed that several promoters methylated in

fibroblasts are unmethylated in sperm (Weber et al., 2007).

This suggested that part of the promoter methylation detected

in differentiated human somatic cells is set postfertilization. Nev-

ertheless, how this finding translates to global DNA methylation

in ESCs and multipotent progenitor cells in relation to their devel-

opmental potential remained an open question.

In vitro differentiation of mouse ESCs provides an opportunity

to study the characteristics of pluripotency and epigenomic

changes that coincide with cellular differentiation. However,

most in vitro differentiation systems do not progress through

a defined lineage-committed progenitor state toward one

defined terminal cell type, although this progression is typical

in vivo, e.g., in hematopoiesis or brain development. Here, we

take advantage of a robust differentiation model for neurogene-

sis in which ESCs differentiate first into a highly pure population

of Pax6-positive radial-glial neuronal progenitor cells and later

into terminally differentiated glutamatergic pyramidal neurons

(Bibel et al., 2004). Using this unique system, we track ge-

nome-wide epigenetic modification by Polycomb and DNA

methylation during both the lineage commitment of ESCs and

their terminal differentiation. These experiments present a com-

prehensive map of promoter DNA methylation during cellular dif-

ferentiation and lead to a model of progenitor regulation. They

reveal gain of DNA methylation during lineage commitment to re-

strict pluripotency and a parallel acquisition of Polycomb repres-

sion to new target genes poised to be activated in subsequent

terminal differentiation.

RESULTS

Profiling of Promoter Epigenetic States
during Cellular Differentiation
To define changes in DNA methylation and chromatin during cel-

lular differentiation, we exploited a model which encompasses

the synchronous generation of multipotent Pax6-positive radial

glial cells from mouse ESCs with >90% efficiency (Bibel et al.,

2004, 2007; Plachta et al., 2004). They are bona fide neuronal

progenitors based on morphology, marker gene expression,
756 Molecular Cell 30, 755–766, June 20, 2008 ª2008 Elsevier Inc.
and their ability to recapitulate in vitro the differentiation pathway

of Pax6-positive radial glial cells during cortical development

in vivo (Bibel et al., 2004; Heins et al., 2002; Plachta et al., 2004).

Moreover, they are developmentally restricted to certain sub-

types of neurons as shown by transplantation experiments in

the chick embryo (Plachta et al., 2004). These progenitors can

be terminally differentiated in vitro with equally high efficiency

(�90%) into postmitotic glutamatergic neurons, characterized

by the formation of synaptic connections and defined electro-

physiological properties resembling cortical glutamatergic

neurons (Figure 1A) (Bibel et al., 2004, 2007).

The formation of such uniform cell populations representing

subsequent developmental stages allowed to monitor epige-

nome changes during two distinct differentiation phases. The

first phase, when stem cells differentiate into multipotent neuro-

nal progenitor cells, entails loss of pluripotency and acquisition

of lineage specificity. The second phase, when progenitors

differentiate into pyramidal neurons, reflects acquisition of a ter-

minally defined identity. At each cellular state, we determined the

transcriptome, DNA methylation using the MeDIP technique

(Weber et al., 2005), as well as the presence of several histone

marks and RNA-polymerase II by chromatin-IP (ChIP). As an ex-

perimental read-out for MeDIP and ChIP experiments, we used

oligonucleotide tiling microarrays that represent 26,275 putative

mouse promoter sequences (Figure 1C). Epigenome and tran-

scriptome analysis were done on replicates of independent dif-

ferentiations and revealed high reproducibility (Figure 1B and

Figure S1).

For determining gene activity, we used both mRNA expression

data, as determined by Affymetrix transcriptome analysis, as

well as RNA Polymerase II (Pol II) abundance on promoters.

We find that presence of Pol II is, in most cases, an excellent pre-

dictor of transcript abundance (Figure S2). Nevertheless, in

a subset of genes, Pol II is present at the promoter, but no

mRNA can be detected (Figure S2), which is in agreement with

a recent report showing that a fraction of promoters is bound

by stalled Pol II in human cells, ready to be rapidly induced

(Guenther et al., 2007).

Data analysis was restricted to 15,100 start sites, which we

validated as bona fide promoters (Supplemental Experimental

Procedures). We have recently shown that presence of DNA

methylation at promoters in human somatic cells is dependent

on their CpG density (Weber et al., 2007). Motivated by this find-

ing, we classified the mouse promoter set into CpG-poor pro-

moters and into weak and strong CpG islands (Figure S3 and

Experimental Procedures).

Promoter Methylome in Mouse ESCs and during Lineage
Commitment and Neuronal Differentiation
The analysis of 15,100 promoters reveals that DNA methylation

of CpG islands is largely absent in ESCs: only 0.5% of strong

CpG island promoters are hypermethylated in ESCs. CpG-

poor promoters, on the other hand, we find to be mostly methyl-

ated (Figure S4), consistent with a recent report on DNA methyl-

ation in stem cells (Fouse et al., 2008). Intriguingly, of the few

methylated CpG islands in ESCs, many control germline-specific

genes (e.g., Dazl, Tuba3, Piwil1, and Spo11; Figure S4). Using

RNA Pol II as a measure for transcriptional activity, we find that
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this CpG island methylation is incompatible with promoter ac-

tivity since Pol II is excluded from sites of DNA methylation

(Figure S4). In contrast, methylation on CpG-poor promoters is

compatible with presence of Pol II and, thus, with promoter ac-

tivity (Figure S4), which is in line with our recent findings in human

somatic cells (Weber et al., 2007). The overall absence of meth-

ylated CpG islands in ESCs indicates that DNA methylation can-

not be a general mechanism to repress promoter activity in

ESCs. Nonetheless, DNA methylation is present in ESCs: CpG-

poor promoters in ESCs appear methylated to a similar extent

as in somatic cells (data not shown).

To see if promoter methylation changes during differentiation,

we generated an analogous profile for terminally differentiated

neurons (Figure 2A). We find that the global pattern of promoter

methylation is preserved between both developmental stages

with CpG-poor promoters being methylated and the majority of

CpG island promoters remaining unmethylated. However, at the

same time, we observe a gain of DNA methylation during neuro-

nal differentiation on 2.3% (n = 343) and a loss of DNA methyla-

tion on 0.1% (n = 22) of all tested promoters (Figure 2A). Single-

gene controls by PCR and bisulfite sequencing confirm the

microarray predictions for both loss and gain of DNA methylation

(Figures 2B and 2C). Demethylation events are frequently linked

to gene activation upon terminal neuronal differentiation, and six

out of eight of these demethylated and activated genes are brain

Figure 1. Cellular Differentiation System and Genomics

Setup

(A) Mouse embryonic stem cells (ES) are differentiated to neuronal

progenitors (NP) and, further, to terminal pyramidal glutamatergic

neurons (TN). ESCs are stained for alkaline phosphatase, NPs for

Pax6 (marker for radial glia), and TNs for NeuN (marker for postmi-

totic neurons) and Synaptophysin (Syp; marker for synapses).

During differentiation, retinoic acid (RA) is added after cellular ag-

gregate (CA) formation at day 4 after removal of Lif (d4), and cellu-

lar aggregates are dissociated by day 8 (NP) and further differen-

tiated into terminal neurons on adherent substrate (see the

Experimental Procedures).

(B) mRNA expression profiles of pluripotency factors (Oct4 and

Nanog), NP-specific genes (Pax6 and Nes), and TN-specific genes

(Mapt and Syp) from two independent differentiation experiments

(gray and black lines).

(C) DNA methylation analysis by MeDIP and protein analysis by

ChIP for H3K27me3, H3K4me2, and RNA polymerase II (Pol II)

were performed for all three cellular stages. Samples were hybrid-

ized to microarrays covering 1.5 kb around the transcription start

sites of 26,275 putative promoters, from which 15,100 were vali-

dated, classified according to CpG content, and used for further

analysis.

specific, such as Lrrtm2 (Figure 2B). This suggests that

tissue-specific loss of promoter DNA methylation does

occur as previously suggested; however, in the system

studied, it is a rare event.

The reciprocal gain of methylation occurs 23 times

more frequently, resulting in hypermethylation of sev-

eral hundred promoters (Figures 2A and 2C). Strik-

ingly, however, we see that the majority of differentia-

tion-coupled de novo methylation events are already

present at the neuronal progenitor state with few

changes occurring during the subsequent terminal differentia-

tion (Figure 2D). Thus, DNA methylation changes correlate

most strongly with commitment to a multipotent progenitor

state, i.e., the step through which ESCs lose pluripotency, rather

than with terminal differentiation. This is reflected in the biologi-

cal function of the targeted genes. We find a striking enrichment

for genes required for pluripotency of ESCs: seven out of 14 plu-

ripotency-associated genes are de novo methylated; a rate 20

times higher than expected by chance (p < 2.2 3 10�16, c2

test). Thus, our unbiased analysis shows that de novo methyla-

tion is a prevalent mechanism for the repression of pluripo-

tency-associated genes not limited to Oct4 and Nanog (Deb-

Rinker et al., 2005; Gidekel and Bergman, 2002). This pathway

is particularly selective for promoters containing weak CpG is-

lands: in this case, six out of seven promoters of pluripotency

genes became methylated in neuronal progenitor cells

(Figure 2E and Figure S5). Moreover, the target bias for weak

CpG islands is not unique to pluripotency genes but is common

among all de novo methylated promoters (Figure 2F). We con-

clude that weak CpG islands are preferentially controlled by

DNA methylation during somatic differentiation.

Other promoters targeted for de novo methylation control

germline-specific genes, such as Papolb, which is essential

for spermatogenesis (Kashiwabara et al., 2002); Dmrtc7, a

gene involved in male meiosis (Kim et al., 2007); and Zar1, an
Molecular Cell 30, 755–766, June 20, 2008 ª2008 Elsevier Inc. 757
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Figure 2. Predominant Gain of DNA Methylation during Neuronal Differentiation

(A) Scatter plot comparing averaged DNA methylation values from replicate microarrays for all 15,000 promoters in ES (y axis) versus TN (x axis). 343 promoters

(red) significantly gain DNA methylation during differentiation, and 22 promoters (green) lose DNA methylation (see the Experimental Procedures).

(B) Example of a region containing a demethylated promoter (Lrrtm2; green box). The lines display methylation enrichment detected on the microarrays in ES

(gray, dotted), NP (gray, dashed), and TN (black). Bisulfite sequencing of the region around the transcription start of Lrrtm2 confirms the loss of methylation

detected by microarray. Each circle represents a CpG either methylated (filled) or unmethylated (open).

(C) Examples of chromosomal regions containing promoters, which become DNA methylated during differentiation (red boxes). Bisulfite sequencing confirms de

novo methylation around the transcription start for the promoters in bold (see also Figure 2E and Figure S6).

(D) Time course profiles for a random selection of 26 de novo methylated promoters. The dotted red line indicates the averaged profile for all de novo methylated

promoters. Summarized schematic time course profiles (bottom) of all de novo methylated promoters illustrate that 81% gain DNA methylation from ES to NP.

(E) PCR validation of differentiation-coupled hypermethylation of promoters regulating pluripotency genes. PCR amplification of input (In) and immunoprecipitate

(IP) after MeDIP was performed on ES, NP, TN, and primary mouse cortex (Cx). For further tissues and bisulfite sequencing, see Figure S5.

(F) Histogram showing promoter class distribution for all and for de novo methylated promoters. De novo methylated promoters are strongly enriched for weak

CpG islands (p < 2.2E-16, c2 test).
oocyte-specific gene required for the oocyte-to-embryo transi-

tion (Wu et al., 2003). Furthermore, targets include Dnmt3L

(Figure 2C and Figure S6), a germline-specific cofactor for the

de novo methyltransferases Dnmt3a and Dnmt3b, which is es-

sential for establishing genomic imprinting marks during germ

cell development (Bourc’his et al., 2001).

Finally, many de novo methylation targets are neither pluripo-

tency-related nor germline-specific genes. Among them, we find

genes with essential roles in early embryonic development such

as Lefty1 and Lefty2, which guide left-right asymmetry in early

embryonic development (Meno et al., 1998). Gene ontology anal-

ysis of all de novo methylated promoters identified an additional

group of somatically expressed tissue-specific genes related to

signaling and extracellular matrix (Figure S6). Among these is Fes

(Feline Sarcoma Oncogene), a protein-tyrosine kinase involved

in innate immune response and inflammation (Greer, 2002);

Amn (Amnionless), a transmembrane protein essential for am-

nion formation during embryonic development (Kalantry et al.,

2001); and Cldn5 (Claudin 5), a component of tight junctions in-

volved in formation of the blood-brain barrier (Nitta et al., 2003).
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It is important to note that all pluripotency-associated targets

and germline-specific genes that we found to undergo differen-

tiation-coupled de novo methylation are methylated in vivo

in the brain (cortex) and in all other mouse primary tissues

tested (Figure 2E and Figures S5 and S6). For other tested tar-

gets, hypermethylation was detected in seven of ten cases in

mouse cortex even though cortex consists of various neuronal

subtypes and other nonneuronal cells. These targets show vari-

able methylation in nonneuronal tissues, suggesting that their

de novo methylation is not soma wide, but neuron specific

(Figure S6).

Taken together, we find that terminal differentiation of ESCs

leads to a predominant gain of DNA methylation at several hun-

dred promoters, which share features with respect to promoter

sequence composition and gene function. Surprisingly, we ob-

serve relatively few changes between neuronal progenitors and

terminal neurons. This indicates that promoter hypermethylation

is less dynamic during the transition to a terminally differentiated

state and instead characterizes the transition from pluripotent

ESCs to a lineage-restricted progenitor state.
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De Novo Methylation Is Incompatible
with Active Chromatin
Next, we assessed the effect of de novo DNA methylation on

promoter activity and chromatin structure. We find that de

novo methylated promoters are devoid of Pol II in neuronal

progenitors and in terminally differentiated neurons, confirming

that DNA methylation at CpG island promoters precludes tran-

scription (Figure 3A). Interestingly, more than half (62%) of these

targets are already transcriptionally inactive in ESCs prior to de

novo DNA methylation (Figure 3A). At these genes, DNA methyl-

ation is not simply induced by differentiation-coupled shutdown

of transcription. Instead, additional genetic or epigenetic cues

may be needed to trigger hypermethylation (see below).

As an indicator for ‘‘active chromatin,’’ we monitored dimethy-

lation of lysine 4 of histone H3, which was previously shown to be

a marker of active genes in several eukaryotes tested (Barski

et al., 2007; Pokholok et al., 2005; Schübeler et al., 2004). Nota-

bly, we observe equal presence of H3K4 di- and trimethylation at

promoters in agreement with previous global profiling experi-

ments (Figure S7) (Barski et al., 2007; Heintzman et al., 2007).

We detect H3K4me2 at almost all active genes (97%) in ESCs

independent of promoter structure (Figure 3B and Figure S7). In

addition, H3K4me2 is present on most CpG island promoters of

inactive genes (Figure 3B and Figure S7), suggesting that, in

mammals, H3K4me2 is not exclusively located to actively tran-

scribed genes and could serve additional functions. Importantly,

this is restricted to CpG-rich (weak and strong CpG island)

promoters, since we do not find many inactive CpG-poor pro-

moters associated with H3K4me2 (Figure 3B). Thus, CpG-rich

promoters reside in a chromatin environment implicated in

Figure 3. De Novo DNA Methylation Defines Gene Silencing and

Loss of Active Chromatin

(A) Heat map illustrating the transcriptional status and chromatin conformation

for all 343 de novo DNA-methylated promoters (y axis). 38% are bound by Pol

II (red) in ES whereas 62% are not bound by Pol II (green). Upon differentiation,

de novo methylated promoters mostly lose Pol II or remain Pol II negative. In

contrast, 99% are H3K4me2 positive (yellow) prior to de novo methylation,

irrespective of transcriptional state, but lose H3K4me2 when DNA methylated.

(B) Bar graph showing that CpG-rich promoters are H3K4 methylated (yellow)

irrespective of transcriptional state in ES (for NP and TN see Figure S7). A sim-

ilar result is obtained for H3K4 trimethylation, which colocalizes with H3K4

dimethylation at almost all promoters (Figure S7 and data not shown).
gene activation, even in the absence of transcription (Guenther

et al., 2007; Pan et al., 2007; Zhao et al., 2007). Furthermore,

this default H3K4 methylation of CpG-rich promoters is indepen-

dent of the cellular state as we observe it in ESCs, progenitors,

and terminal neurons (Figure S7). This shows that K4 dimethyla-

tion is present at CpG islands irrespective of activity, yet those

CpG islands that become DNA methylated lose H3K4me2

(Figure 3A and Figure S7), as has been predicted based on stud-

ies in human primary cells (Weber et al., 2007).

Plasticity of Polycomb Targets at Progenitor
and Terminal State
Polycomb-mediated repression provides the molecular basis of

a cellular memory system that propagates transcriptional states

through cell division (Ringrose and Paro, 2007). However, while

DNA methylation is considered a stable epigenetic silencer,

Polycomb-mediated repression is reversible, as targets such

as Hox genes are activated in a cell-type-specific manner (Agger

et al., 2007; Bracken et al., 2006; Lan et al., 2007; Lee et al., 2007;

Mikkelsen et al., 2007). Transcriptional repression by Polycomb

entails PRC2-mediated trimethylation of lysine 27 of histone H3

(H3K27me3) (Cao et al., 2002). To ask how Polycomb repression

changes during lineage commitment and terminal differentiation

and, further, how this reprogramming relates to the observed

changes in DNA methylation, we mapped H3K27me3 during

neuronal differentiation.

Lineage-specific transcription factors and Hox gene clusters

are primary targets of H3K27me3 in ESCs, which is in agreement

with work by others (Bernstein et al., 2006; Boyer et al., 2006). As

expected, H3K27me3 and Pol II are anticorrelated and conse-

quently most (86%) Polycomb targets are not bound by RNA

polymerase (Figure S8). However, a subset of H3K27me3-modi-

fied promoters is bound by Pol II, suggesting that they can coin-

cide as previously reported (Bracken et al., 2006; Pan et al., 2007).

Upon lineage commitment, genes with functions in the devel-

opment of anatomical structures, morphogenesis, and early em-

bryonic development lose H3K27me3 and become activated

(Figure 4A and Table S1). H3K27me3 targets that lose the mod-

ification during terminal differentiation from progenitor to pyrami-

dal neuron are highly enriched for genes involved in neuronal

development, ion transport, and neurotransmitter regulation

(Group 1 in Figures 4B and 4C and Table S1), in line with previous

findings that many neuronal genes are targeted by Polycomb in

ESCs (Boyer et al., 2006; Pan et al., 2007). Most of them (68%)

are transcriptionally active in terminal neurons. This group of

genes, thus, supports current models that repression by Poly-

comb is set early in development but is lost in a lineage-specific

manner upon gene activation (Ringrose and Paro, 2007;

Schwartz and Pirrotta, 2007).

Surprisingly, however, and in parallel to this loss, we observe

a coincident gain of Polycomb-mediated H3K27me3 at other tar-

gets (Figure 4A). This unexpected plasticity results in a rather

constant number of genes that are repressed by Polycomb at

any developmental state (Figure 4A). Indeed, we find the majority

of K27me3 positive promoters to be cell-state specific. When

asking if these are enriched for certain biological functions, we

noticed that genes that become H3K27me3 in progenitor cells

are involved in neurogenesis and function in differentiated
Molecular Cell 30, 755–766, June 20, 2008 ª2008 Elsevier Inc. 759



Molecular Cell

DNA Methylation and Polycomb Marks in Neurogenesis
neurons (Group 2 in Figures 4B and 4C and Table S1). Thus,

upon commitment to a neuronal lineage, many genes that will

be expressed only in terminal neuronal subtypes become novel

Polycomb targets in neuronal progenitors.

In agreement with this model, we find that many progenitor-

specific targets (54%) become activated and lose Polycomb-

repression upon terminal differentiation (Group 3 in Figures 4B

and 4C). Importantly, these genes are silent in both stem cells

and progenitors, but only H3K27me3 in progenitors as con-

firmed by real-time PCR (Figure 4D and Figure S8). This class

of over 200 genes is enriched for neuronal function, ion transport,

and cell motility and includes Grid1, a glutamate receptor; Syt1,

a Ca2+ sensor involved in neurotransmitter release (Geppert

et al., 1994); Scn1b, a neuronal voltage-gated sodium channel;

Figure 4. Polycomb Targets Are Highly

Dynamic and Stage Specific

(A) Illustration of H3K27me3 target dynamics dur-

ing neuronal differentiation. Arrows indicate loss

(�) and gain (+) of Polycomb targets between the

cellular states. ‘‘n’’ indicates the total number of

H3K27me3 modified promoters at every individual

state.

(B) Heatmap for all promoters that are H3K27me3

positive in at least one cell state. Only 43% remain

H3K27me3+ throughout the differentiation, while

the majority behaves highly plastic (see text).

(C) GO term analysis for genes that lose

H3K27me3 in terminal differentiation to TN (Group

1, black), for genes that become Polycomb targets

in NP (Group 2, gray), and for Polycomb targets

that are specific for NP and lose H3K27me3 during

terminal differentiation (Group 3, white). p values

are listed next to bars, while NA indicates no signif-

icant enrichment in the respective group.

(D) Validation of microarray results for NP-specific

H3K27m3 targets by ChIP and real-time PCR. Blue

bars represent H3K27me3 enrichments, and red

lines indicate Pol II enrichment (left y axis, numbers

normalized to an intergenic control). Black lines in-

dicate mRNA levels (Affymetrix, right y axis). Syt1,

Sema4f, Grid1, and Scn1b are induced upon ter-

minal differentiation and lose H3K27 methylation.

Hes3 and Adrb2 are not activated and keep

H3K27me3. Error bars indicate ± SEM of averages

from at least two independent differentiation ex-

periments.

(E) Examples of genes that become repressed in

NP (Zic3) or TN (Sall4 and Uhrf1) coinciding with

a gain of H3K27me3.

and Sema4f, a brain-specific semaphorin

potentially involved in axon guidance

(Figure 4D and Table S1). Other genes be-

come Polycomb-repressed in neuronal

progenitors but keep the H3K27me3

mark and are not induced in pyramidal

neurons (Figures 4B and 4D). This group

contains genes that define functions

characteristic of nonglutamatergic neu-

rons such as Adrb2 (beta-2-adrenergic

receptor) and Hes3 (hairy and enhancer of split 3) (Figure 4D

and Figure S8).

Finally, among the promoters that become Polycomb-re-

pressed only in the postmitotic terminal neurons, we find the

cell-cycle regulators cyclinD1 (Ccnd1) and Uhrf1. Uhrf1 has fur-

ther been shown to be essential for maintenance DNA methyla-

tion during cell division (Bostick et al., 2007; Sharif et al., 2007),

a property that is no longer required in postmitotic cells. Further-

more, we find Zic3 and Sall4, both pluripotency-associated

genes that do not undergo de novo DNA methylation but are

silenced during differentiation (Figure 4E).

In summary, PRC2 targets appear to be highly plastic during

neurogenesis and novel targets of Polycomb-repression surface

at both the progenitor and the terminal neuron state, implying
760 Molecular Cell 30, 755–766, June 20, 2008 ª2008 Elsevier Inc.
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cell-type specific Polycomb targeting. Progenitor-specific tar-

gets include genes that need to be activated upon further termi-

nal differentiation, suggesting an anticipation and regulation of

further differentiation choices in multipotent progenitor cells by

the Polycomb pathway.

Bivalent Chromatin Domains Are Dynamic and
a Function of Promoter Structure
Many Polycomb targets in ESCs have been shown to reside in

a chromatin state characterized by the dual presence of ‘‘repres-

sive’’ H3K27 methylation and ‘‘active’’ H3K4 methylation (Bern-

stein et al., 2006). Since this ‘‘bivalency’’ was hypothesized to

be an ESC-specific chromatin state that poises for differentia-

tion-coupled activation (Bernstein et al., 2007), we wondered

about the H3K4 methylation of progenitor- and terminal neu-

ron-specific targets of Polycomb. We find that in progenitors,

95% of novel H3K27me3 targets form bivalent chromatin (Figure

5A). This suggests that progenitor-specific Polycomb targets be-

have similarly to ESC-specific targets, not only in regards to po-

tential activation upon further differentiation (see above), but also

in their chromatin state.

We and others have recently shown that H3K4 methylation is

present at CpG-rich promoters in the human and mouse ge-

nomes even when these promoters are inactive (Barski et al.,

2007; Guenther et al., 2007; Weber et al., 2007). Importantly, al-

most all of the bivalent promoters contain CpG islands (93%), in-

dicating that promoter sequence composition may be the critical

parameter that favors the parallel presence of K4 and K27 meth-

ylation. This model is further supported by the target preference

of PRC2 toward CpG islands. We find that 85% of all PRC2 tar-

get sites are CpG-rich, which means they belong to the weak or

strong CpG island class (Figure 5B and Figure S9). Again, this

occurs irrespective of cellular state. A similar CpG island prefer-

ence can be deduced from published data sets on PRC2 target

genes in ESCs (Figure S9). This excludes the criticism of an ex-

perimental bias arising from our focus on stringently filtered pro-

moter elements. Thus, this PRC2 preference for CpG islands,

Figure 5. Bivalent Domains during Differentiation and Their

Dependency on Promoter Sequence

(A) Venn diagram of H3K27me3 and H3K4me2 showing that the major-

ity of Polycomb targets are also H3K4 methylated and, thus, in a ‘‘biva-

lent’’ state. This is the case in all three cellular states, yet to a different

degree. Note that new bivalent domains form at any differentiationstep.

(B) Distribution of H3K4me2- and H3K27me3-positive promoters

relative to promoter CpG content in stem cells. Venn diagram of

H3K27me3 and H3K4me2 showing that H3K27me3 is more frequent

in weak and strong CpG islands, as is bivalency, since these pro-

moters are mostly H3K4 methylated.

which are H3K4 methylated based on their sequence, in-

dicates that bivalent chromatin is not limited to ESCs.

Polycomb Targets in ESCs Become DNA
Methylated during Lineage Commitment
Unexpectedly, we do find that promoters that are marked

by H3K27me3 in ESCs are 4.5 times more likely to be-

come de novo DNA methylated during neuronal differen-

tiation than promoters that are not PRC2 targets (Figure 6). This

accounts for a significant fraction of promoters that acquire de

novo DNA methylation. In particular, two-thirds of de novo meth-

ylation targets, which are not transcribed in ESCs (Figure 3A),

carry Polycomb-mediated H3K27me3. This establishes that Pol-

ycomb targets in stem cells are subject to de novo methylation

during normal development, which is compatible with the model

that Polycomb repression and de novo DNA methylation are

linked.

Since most H3K27me3 targets are in a bivalent chromatin

structure (see above), we wondered if DNA methylation could

provide a means to resolve bivalent domains. There appear to

be two major ways of resolving bivalency during cellular differen-

tiation. One is gene activation, which coincides with a loss of

H3K27 methylation. The second involves loss of H3K4 methyla-

tion, although the repressive H3K27me3 mark is kept, and the

gene is not activated (data not shown). Many of these bivalent

promoters, which resolve bivalency by loss of H3K4me2, are in-

deed de novo DNA methylated (21%). Thus, de novo DNA meth-

ylation could lock genes in a silent state, which were poised to be

activated in ESCs.

DISCUSSION

Using a well-defined cellular differentiation model, we monitored

reprogramming of the epigenome during three consecutive de-

velopmental states that represent stem cells, lineage-committed

progenitors, and terminally differentiated neurons. Our findings

are as follows: methylation of CpG islands occurs during loss

of pluripotency, and primarily weak-CpG islands and pluripo-

tency genes become de novo methylated and stably silenced.

Surprisingly, we detect little additional promoter DNA hyperme-

thylation as cells terminally differentiate. In contrast, Polycomb-

dependent H3K27me3 is found to be present on promoters at all

stages of differentiation. Its presence changes as cells pass

through the progenitor state, with distinct populations of genes

both gaining and losing H3K27 methylation. Strikingly, at the
Molecular Cell 30, 755–766, June 20, 2008 ª2008 Elsevier Inc. 761
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progenitor state, the Polycomb mark becomes enriched on neu-

ronal subtype specific genes, including those that will be ex-

pressed in the pyramidal lineage studied here and others that

would be expressed only in other neuronal subtypes. This argues

that Polycomb primes for both activation and inactivation during

terminal differentiation in a progenitor-specific fashion. Thus, we

present evidence that Polycomb-mediated gene regulation is

utilized to define the developmental potential of multipotent pro-

genitor cells, which challenges the view that targets are mostly

predetermined in stem cells.

Finally, we see a strong bias of CpG islands for being con-

trolled by H3K27me3, which provides a DNA sequence rationale

for a cell-type-independent presence of ‘‘bivalent’’ chromatin.

The implications of these findings are discussed below.

Gain of Promoter DNA Methylation
during Lineage Commitment
We find ESCs to be mostly free of methylated promoter CpG is-

lands, although CpG-poor promoters are methylated at similar

levels as those in differentiated cells. Together with a recent re-

port on DNA methylation in stem cells (Fouse et al., 2008), this

provides unbiased experimental support for the popular hypoth-

esis that ESCs specifically lack CpG-rich promoter methylation,

possibly to maintain their ability to activate any gene later on.

However, it also suggests that promoter DNA methylation is

not the prevalent mechanism for transcriptional repression in

ESCs. Consistently, ESCs can proliferate, but not differentiate,

in absence of the maintenance methyltransferase Dnmt1 (Jack-

son et al., 2004; Li et al., 1992). Upon commitment to a defined

neuronal lineage, only few promoters lose methylation, although

many become activated. It remains to be tested if this rare loss

of methylation is involved in regulation of these genes or if it

is a consequence of transcriptional activation (Lin and Hsieh,

2001). Importantly, as cells achieve the progenitor state, we ob-

serve a gain of DNA methylation on several hundred promoters,

Figure 6. De Novo DNA Methylation of Stem Cell Polycomb Targets

Bar graph illustrating the percentage of promoters, which undergo differen-

tiation-coupled de novo DNA methylation. H3K27-methylated promoters

(H3K27me3+) in stem cells are 4.5 times more likely to become de novo

DNA methylated than H3K27-unmethylated promoters (H3K27me3�; blue

bars). The same preference is observed when we control for any potential

bias from housekeeping genes that are constitutively active by only using pro-

moters that are Pol II negative in stem cells (white bars; p < 2.2E-16, Wilcox

rank-sum test).
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which is 23-fold more frequent than the reciprocal loss. De novo

methylation results in loss of a marker of active chromatin

(H3K4me2) and absence of polymerase recruitment, which is

maintained upon terminal differentiation. The population of de

novo methylated genes is enriched for pluripotency- and germ-

line-specific genes, arguing that DNA methylation has a major

role in ensuring the stable repression of transcripts that are re-

quired for ESC maintenance. Accordingly, our model predicts

that de novo methylation of these genes is not restricted to neu-

rogenesis. Indeed, we find pluripotency- and germline-associ-

ated genes methylated in all somatic cells tested. This is likely

to be a process conserved throughout mammalian species, since

promoter methylation of germ-line specific genes was also re-

ported in human soma (Shen et al., 2007; Weber et al., 2007).

A second class of genes that become DNA methylated in ra-

dial-glial progenitors contains genes that are selectively acti-

vated in other somatic lineages, even in subregions of the brain

(Su et al., 2004). This suggests that DNA methylation could also

contribute to lineage choice and/or restriction in neurogenesis.

Nonetheless, we do not observe additional de novo methylation

upon terminal differentiation. We conclude that de novo methyl-

ation has a minor role in the terminal steps of radial glial cell dif-

ferentiation as compared to its function in lineage commitment

and loss of pluripotency. It remains to be tested whether this

holds for differentiation in other lineages.

We note a remarkable bias of de novo methylation for weak

CpG islands. As this promoter class has also been shown to

be more prone to hypermethylation in human primary fibroblasts

(Weber et al., 2007), it appears a conserved target between hu-

man and mouse. Furthermore, we see a 4.5-fold increased fre-

quency of de novo DNA methylation of promoters that bear the

Polycomb H3K27me3 mark (Figure 6). This observation is com-

patible with a role for Polycomb in targeting DNA methyltransfer-

ase activity, which, if indeed the case, could account for 45% of

all observed de novo methylated promoters. Nonetheless, this

group reflects only a minor fraction of all Polycomb targets

(6%). Thus, while H3K27 increases the frequency for de novo

methylation, it is clearly not sufficient by itself to target DNA

methylation as might be predicted from reported interaction be-

tween DNA methyltransferases and the H3K27 methyltransfer-

ase EZH2 in human cancer cell lines (Vire et al., 2006). Several

recent studies suggested preferential aberrant DNA methylation

in human cancer cell lines and primary cancers at promoters

that are Polycomb targets in unrelated human ESCs in culture

(Ohm et al., 2007; Schlesinger et al., 2007; Widschwendter

et al., 2007). Our data are compatible with a model in which

H3K27me3 can trigger de novo DNA methylation during normal

somatic differentiation at a subset of promoters, indicating that

such crosstalk does occur but is not cancer-specific per se. Mis-

regulation of this process could indeed contribute to cancer-

specific aberrant promoter methylation.

Importantly, DNA methylation precludes H3K4me2, and

hence, its function could be to reduce the risk of reactivating

CpG-rich promoters that we show bear this mark of ‘‘active’’

chromatin when DNA unmethylated. Thus, in contrast to bivalent

chromatin, which poises promoters for activation, DNA methyla-

tion could be employed to lower the chance of spurious activa-

tion, which is more likely to occur in a chromatin environment
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permissive for transcription. While such stabilization of an off-

state has already been suggested for methylation at the Oct4

promoter (Feldman et al., 2006), we argue that this is likely to

be a general mechanism for locking in the silent state of pluripo-

tency- and germline-associated genes in order to prevent reac-

tivation once stem cells commit to a certain lineage. De novo

methylation could serve a similar function for those genes, which

are already transcriptionally silent in stem cells but nevertheless

become methylated upon differentiation.

Polycomb Targets Are Developmental Stage Specific
Our results indicate that only a subset of Polycomb targets is

specified in ESCs and that, upon cell-fate commitment, novel lin-

eage-specific genes become H3K27me3 in progenitor cells.

Many of these progenitor-specific Polycomb targets are key

genes of subsequent developmental fates, and their repression

can again be overcome upon terminal differentiation (Figure 4B).

It is important to note that many of these genes are not tran-

scribed in ESCs, which could reflect absence of activators or al-

ternative means of repression. This is particularly interesting

since a different set of neuronal genes is already targeted by

Polycomb in stem cells, implying the need for active repression

for some neuronal genes even in stem cells.

Regardless, the progenitor-specific and transient repression

by Polycomb suggests that Polycomb functions to ensure that

further developmental decisions are firmly controlled by robust

induction signals strong enough to overcome the effect of

H3K27 methylation. These dynamic Polycomb targets behave

very different to Hox genes, which we only observe as actively

transcribed or Polycomb repressed, fitting the general model

of default Polycomb repression (Ringrose and Paro, 2007;

Schwartz and Pirrotta, 2007). The observation of context-depen-

dent targeting might rely on the recruitment of Polycomb by se-

quence-specific transcription factors. This model is compatible

with recent reports of distinct Polycomb targets in transformed

human cell lines (Bracken et al., 2006; Squazzo et al., 2006), hu-

man T cells (Barski et al., 2007; Roh et al., 2006), and differenti-

ating stem cells (Pasini et al., 2007), which, however, could not

be placed in the developmental history of the studied cell types.

Importantly, our findings also suggest a possible function of

Polycomb for the regulation of adult stem cells, as the radial glial

cells studied here have been delineated as multipotent progeni-

tor cells of in vivo neurogenesis in the adult CNS (Malatesta et al.,

2003).

Bivalent Domains Are a Consequence of Promoter
Sequence and Polycomb Target Preference
We show that both DNA methylation and Polycomb modify CpG-

rich promoters (Figure 2 and Figure S9) that control tissue-spe-

cific genes. These CpG island promoters display a mark of active

chromatin (H3K4me2), even when not transcribed, as long as

they are not DNA methylated. When analyzing H3K27me3 tar-

gets, we find that 85% belong to the CpG-rich promoter classes

and bear H3K4 methylation by default. Therefore, we propose

that a bivalent (K4/K27) chromatin state is a consequence of

PRC2 target bias and is not ESC-specific. Indeed, we show

that bivalent domains form de novo at progenitor and terminally

differentiated states, invariably at unmethylated CpG-rich pro-
moters (Figures 5A and 5B). In addition to this reorganization,

41% of ESC bivalent domains are preserved after differentiation

into terminal pyramidal neurons. This agrees with a recent report

that 43% of similarly modified ESC domains persist in fibroblasts

(Mikkelsen et al., 2007). However, this same study reports many

fewer bivalent domains in hyperproliferative neuronal stem cells

(Mikkelsen et al., 2007), which are derived by monolayer differen-

tiation and result in a population clearly distinct from the radial-

glial cells we analyzed here (Conti et al., 2005). We observe little

fluctuation in the number of bivalent promoters, as loss is largely

compensated by newly formed bivalent domains at progenitor

and terminal states. This result is compatible with the frequency

of Polycomb targets in terminally differentiated human T cells

and mouse fibroblasts (Mikkelsen et al., 2007; Roh et al.,

2006). Since terminal neurons were not profiled by Mikkelsen

and colleagues, we can only speculate that cellular heterogene-

ity of neuronal stem cells, which would dilute cell-type specific

targets, might account for this discrepancy (Merkle et al., 2007).

It is noteworthy that the presence of H3K4 methylation at inac-

tive CpG island promoters has so far only been observed in

mammals, which show global DNA methylation and resulting di-

versity in promoter CpG content (Barski et al., 2007; Guenther

et al., 2007; Weber et al., 2007). In organisms that lack wide-

spread DNA methylation such as Drosophila melanogaster,

H3K4me2 appears to mark exclusively active promoters (Schüb-

eler et al., 2004). It thus seems conceivable that bivalent chroma-

tin states and their dependence on Polycomb and unmethylated

CpG islands are restricted to vertebrates.

In summary, these results show that mammalian pluripotent

ESCs are unique with respect to targets of Polycomb and DNA

methylation, but not with respect to the histone modifications es-

tablished at these sites. Our global analysis of two repressive

epigenetic pathways has provided a blueprint of the epigenome

during three consecutive stages of mammalian neurogenesis

and suggests a model to explain the developmental potential

of progenitor cells. They are restricted through silencing of pluri-

potency-associated genes by DNA methylation, while gain of

neuronal plasticity is defined by lineage-specific targets of Poly-

comb.

EXPERIMENTAL PROCEDURES

Cell Culture and Tissue Samples

Wild-type embryonic stem cells were derived form blastocysts (3.5 PC) of

mixed 129-C57Bl/6 background and cultivated on feeder cells (37�C, 7%

CO2). Differentiation was performed essentially as described (Bibel et al.,

2007). In brief, ESCs were deprived of feeder cells during 3 to 4 passages,

then 4 3 106 cells were used for formation of cellular aggregates (CAs). CAs

were cultivated in nonadherent bacterial dishes for 8 days. Retinoic acid

(5 uM) was added from day 4 to day 8. Subsequently, CAs were dissociated

and plated on cationic substrate coated with laminin. Forty-eight hours later,

a medium enriched with supplements was added for 8 days of terminal neuro-

nal maturation.

Primary tissue samples were dissected from wild-type mice 4–6 weeks after

birth. Samples were homogenized, and genomic DNA was isolated for subse-

quent MeDIP.

Immunofluorescence

Immunofluorescence stainings were performed as previously described (Bibel

et al., 2004) using the following antibodies and dilutions: Pax6, mouse
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monoclonal (1:100, Developmental Studies Hybridoma Bank); NeuN, mouse

monoclonal (1:200, Chemicon); and Synaptophysin, mouse monoclonal,

(1:200, Sigma). For Alkaline Phosphatase stainings, a Kit (Chemicon, Cat.

No. SCR004) was used according to the manufacturer’s protocol.

DNA Methylation Profiling by MeDIP

MeDIP was performed as previously described (Weber et al., 2007) using 3 mg

sonicated (300–1000 bp) genomic DNA as starting material and 10 mg antibody

against 5-methylcytidine (Eurogentec, BI-MECY-1000). For PCR, 20 ng soni-

cated genomic input DNA and 1/40 of a MeDIP reaction were used. For micro-

array analysis, 7 unamplified MeDIP reactions were pooled and hybridized

together with sonicated genomic input DNA as reference. Final promoter

methylation log2 ratios of IP over input signal represent the average of three

independent experiments, including one dye swap.

Chromatin-IP

ChIP experiments were done as described in Weber et al. (2007), starting with

70 mg of chromatin and 5 mg of the following antibodies: anti-trimethyl-H3K27

(Upstate, no. 07-449), anti-dimethyl-H3K4 (Upstate, no. 07-030), and anti-RNA

Pol II (Santa Cruz Biotechnology, no. SC899). For hybridization to microarrays,

samples were amplified by LMPCR. Promoter log2 values are the averages of

at least two biological replicate experiments, including one dye swap microar-

ray hybridization.

LMPCR

For amplification of ChIP samples, we performed ligation-mediated PCR

(LMPCR) using an entire ChIP and 30 ng of the corresponding input chromatin

according to the protocol by Li et al. (2003).

Selection of Pluripotency Genes

A list of 14 pluripotency genes was collected from literature (for references, see

the Supplemental Experimental Procedures). The list consists of genes that

were shown to play a role in maintaining pluripotency in embryonic stem cell

and/or are essential for integrity and developmental potential of the inner cell

mass of mouse blastocysts.

Bisulfite Sequencing

1 mg genomic DNA was bisulfite converted with the EpiTec Bisulfite Kit

(QIAGEN). Regions of interest were amplified by PCR and cloned by TOPO-

TA cloning (Invitrogen). Primers for PCR amplification are listed in Table S2.

Prior to sequencing, plasmids forming individual clones were amplified using

the PlasmidAmp Kit (QIAGEN) according to the manufacturer’s protocol.

Bioinformatics

Microarray design, GO-term analysis, GNF-Symatlas expression data match-

ing, microarray hybridization and analysis, promoter annotation and filtering,

and additional references are described in the Supplemental Experimental

Procedures.

ACCESSION NUMBERS

Microarray raw data are deposited at GEO (www.ncbi.nlm.nih.gov/geo,

accession number GSE11489) and processed, and normalized values can

be accessed via the author’s website (http://www.fmi.ch/groups/schubeler.

d/web/data.html).

SUPPLEMENTAL DATA

The Supplemental Data include nine figures, two tables, and Supplemental Ex-

perimental Procedures and can be found with this article online at http://www.

molecule.org/cgi/content/full/30/6/755/DC1/.
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Supplemental Experimental Procedures 

 

Microarray design. MeDIP and ChIP samples were hybridized to promoter tiling microarrays 

(MM5_min_promoter_array, NimbleGen Systems Inc.) representing 26’275 putative 

promoters. On average every probe set spans 1.5kb (+200 to -1300 bp respective to the 

transcription start site, TSS) with 15 repeat-masked 50-mer oligonucleotides spaced 100 bp 

apart on average. For microarray hybridization and analysis see Supplemental Experimental 

Procedures. Final promoter log2 ratios of IP over input signal represent the average of at 

least two independent experiments, including one dye swap. 

 

Microarray hybridization and analysis. Sample labeling, hybridization and array scanning 

were performed by NimbleGen Systems Inc. according to standard procedures. For analysis 

raw fluorescent intensity values were used to calculate log2 of the bound/input ratios for each 

individual oligo. DNA methylation arrays were further loess normalized to account for 

potential labeling dye artifacts in the low signal range. The log2 ratios of all oligos from one 

promoter which are located within a 900bp window around the TSS (+200 to -700) were 

averaged to determine a single log2 value per promoter. Subsequently, for comparison all 

arrays were normalized to a median log2 = 0 and scaled to have the same median absolute 

deviation using the LIMMA package in R (Smyth, 2004; Smyth and Speed, 2003).  

 For DNA methylation experiments, we considered weak and strong CpG island 

promoters with a log2 > 0.4 to be DNA hypermethylated. This cutoff was verified by PCR and 



   

 

bisulfite sequencing (Supplementary Fig. 3, data not shown, and ref. (Weber et al., 2007)). 

To identify differentially methylated promoters between ES cells and neurons, we calculated 

p-values by applying an empirical Bayes method which takes into account the variances 

between individual replicate experiments (Smyth, 2004). De novo methylated promoters 

were identified using the following criteria: (i) a p-value <0.01, (ii) a log2 ratio in ES cells < 

0.4, (iii) a delta methylation value (log2 ratio in neurons – log2 ratio in ES cells) > 0.3 and (iv) 

a log2 ratio in neurons above the running median of DNA methylation (log2 ratios) versus 

CpG content. According to these criteria we identified 343 promoters to be significantly de 

novo methylated (Supplementary Fig. 8). The same strategy was employed to find 

significantly demethylated promoters with a log2 ratio in ES cells > 0.4, -0.3 as minimal delta 

methylation value and a log2 ratio below the running median in neurons. Like this 22 

promoters were identified to be significantly demethylated. 

In ChIP-on-chip experiments, enriched promoters were defined by assuming a 

normally distributed background signal. We adapted an approach used previously for 

identifying enriched probes on oligonucleotide tiling arrays (Li et al., 2003). Briefly, in order to 

estimate such a background distribution, we fitted two Gaussians, corresponding to 

background and enriched signals, to promoter log2 ratios, using R and the Mclust package 

(Fraley, 2003, 2002). This method will find the most probable parameters of the two normal 

distributions based on the experimental data, by starting with random values and iterating 

until convergence. With the estimated background distribution, we can assign a P-value to 

each promoter log2 ratio reflecting significance of enrichment. The P-value cutoff used to 

define significant enrichment can be interpreted as the tolerated false positive rate (Figure 

S8). For RNA Pol II and H3K4 methylation, a P-value cutoff of 0.05 was used. For H3K27 

methylation a more stringent P-value cutoff of 0.001 was applied and four replicates were 

performed in stem cells to account for the higher variability between replicates. Validation by 

an independent experimental approach (ChIP-realtime PCR) was performed for all ChIP-chip 

experiments (Figure S8 and data not shown). 



   

 

 All calculations were done in R using the packages “LIMMA” and “Mclust” (refs. 

(Fraley, 2003, 2002; Smyth, 2004; Smyth and Speed, 2003) and 

http://www.bioconductor.org, http://www.r-project.org). 

 Microarray data has been uploaded to the GEO database and can be accessed via 

the following link XXXX. 

 

Affymetrix expression analysis. RNA for the 3 differentiation stages from two independent 

differentiation experiments was extracted using Trizol reagent (Invitrogen) according to the 

manufacturer’s protocol. Sample preparation and hybridization to Affymetrix MOE430 v2.0 

GeneChip arrays was performed as described previously (Sinkkonen et al., 2008).  

 

Promoter annotation and filtering. Promoter filtering was performed using a similar 

strategy as previously for the human genome (Weber et al., 2007), with modifications: We 

retrieved from the UCSC genome annotation database (http://genome.ucsc.edu) the RefSeq 

gene predictions, Ensembl gene predictions, mRNA counts and spliced ESTs counts starting 

within 150bp of the predicted transcription start site (TSS). The criteria for promoter filtering 

were adopted as follows: Promoters require either (i) a RefSeq gene and at least one mRNA, 

(ii) a RefSeq gene and at least 5 spliced ESTs, (iii) an Ensemble gene and at least 3 

mRNAs, (iv) an Ensembl gene and at least 2 mRNAs and 5 spliced ESTs, or (v) at least 3 

mRNAs and 5 spliced ESTs. All annotations refer to the mouse mm5 genome assembly, 

which was used for the design of the respective Nimblegen promoter microarray.  

 

Promoter classification. Promoter classes were defined as previously described (Weber et 

al., 2007), with modifications to account for the different CpG dinucleotide distribution and 

GC content of the mouse genome (Bajic et al., 2006; Waterston et al., 2002). CpG-poor 

correspond to LCP, weak CpG islands to ICP and strong CpG islands to HCP. The CpG 

observed vs. expected ratios were calculated in 500bp windows (sliding 1 bp at every step) 

within the 1.5kb promoter sequence covered by the oligos (+200bp on each end to account 



   

 

for resolution limited by DNA fragment size of about 500 bp). The 500bp window with the 

highest ratio (CpGo/e_500) was then used for promoter classification into 3 groups. 

Promoters with a CpGo/e_500 > 0.8 were classified as strong CpG island promoters (88% 

CpG islands according to previously defined criteria (Gardiner-Garden and Frommer, 1987)), 

promoters with CpGo/e_500 between 0.45-0.8 were islands were classified as weak CpG 

island promoters (67% CpG islands (Gardiner-Garden and Frommer, 1987)), and promoters 

with a CpGo/e_500 < 0.45 were termed CpG-poor promoters (6% CpG islands (Gardiner-

Garden and Frommer, 1987)) containing promoters. 

 

GO term analysis. Gene Ontology term enrichment analysis was performed using GO Stat, 

Fatigo and GO::TermFinder in parallel to rule out any bias due to the statistical methods the 

individual tools use (Al-Shahrour et al., 2006; Beissbarth and Speed, 2004; Boyle et al., 

2004). As a background set we applied the full set of probes present on our promoter 

microarrays. The set of de novo methylated promoters was further curated manually to 

increase sensitivity by only considering the 100 best annotated genes according to 

Swissprot. Transcripts were mapped to Swissprot Protein IDs and a scoring scheme that 

emphasizes the length of the text in the CC function field, the number of keywords, and takes 

into account the level of characterization of other types of information present in Swissprot 

entries was used for classification (Wu et al., 2006).  

 

Matching to GNF-Symatlas expression data. Expression data from the GNF-Symatlas 

database (Su et al., 2004) was matched via Ensembl gene IDs. Ubiquitously expressed 

genes (HK, i.e. “housekeeping” genes) were defined as genes with an expression value of 

>200 in at least 55 out of 61 tissues. Genes expressed in less than 5 tissues and with at least 

one expression value of >200 were classified as tissue-specific (TSp) genes. Like that a total 

number of 4804 promoters could be classified as either HK (2941) or TSp (1863) (see 

Supplementary Fig. 2). As expected HK are enriched in the strong CpG island promoter 

class (1.4x), slightly underrepresented in the weak CpG island class (0.8x) and depleted form 



   

 

the CpG-poor promoters (0.3x) in regard to overall class frequencies. TSp show an opposite 

distribution as they are depleted in the strong CpG island promoter class (0.6x), close to 

expected in the weak CpG islands (1.1x) and overrepresented in the CpG-poor promoters 

(1.8x). 

 

Selection of pluripotency genes. Selected pluripotency genes including references: Tbn 

(Voss et al., 2000), Foxd3 (Hanna et al., 2002), Sall4 (Zhang et al., 2006a), Sox2 (Avilion et 

al., 2003), Nanog (Chambers et al., 2003), Pou5f1 (also known as Oct4) (Nichols et al., 

1998), Tbx3, Esrrb, Tcl1, Dppa4, (Ivanova et al., 2006), Gdf3 (Levine and Brivanlou, 2006), 

Tdgf1 (also know as Cripto) (Koestenbauer et al., 2006; Xu et al., 1999), Zic3 (Lim et al., 

2007), Zfp42 (also know as Rex1) (Zhang et al., 2006b), 

 

(Barski et al., 2007; Bernstein et al., 2006; Boyer et al., 2006; Heintzman et al., 2007; 

Mikkelsen et al., 2007; Saxonov et al., 2006; Schug et al., 2005; Vinogradov, 2005) 
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Figure S1. Reproducibility of transcriptome (mRNA expression), MeDIP-chip (5mC) and ChIP-

chip (H3K27me3, H3K4me2, Pol II) between biological replicates. (A) Representative examples of 

pair-wise comparisons of log2 (IP/Input) measurements for all promoters in two independent neuronal 

differentiations. (B) Table showing the range of Pearson correlation coefficients (R) between individual 

replicates performed on independent neuronal differentiations. We performed 4 independent replicates 

for H3K27me3 in ES cells (*) and 3 independent replicates for DNA methylation (5mC, **) at all three 

cellular states.  Other experiments were done in independent duplicates. 

 



   

 

 

 

Figure S2. Correlation between polymerase occupancy at promoters and mRNA abundance. (A) 

Density plot comparing the distribution of mRNA levels measured with Affymetrix arrays (X-axis) for 

promoters scored as polymerase bound (Pol II+) and unbound (Pol II-). X-axis = relative expression 

value (log2). Note the low abundance of Pol II+ promoters with low mRNA levels, which validates the 

use of Pol II occupancy as a predictor of activity. Nonetheless, this small portion of promoters could be 

bound by stalled polymerase, ready for rapid induction. (B) Plotted is the mRNA expression value (X-

axis) versus the probability of being scored Pol II+ (Y-axis). For plotting purposes only, genes were 

ranked according to their mRNA expression value and divided in 100 bins of equal gene numbers. 

Each column presents the percentage of Pol II+ genes in one bin (grey). The relationship between the 

probability of being Pol II+ at the promoter and mRNA levels was analyzed using logistic regression, 

which is a statistical method used if there are only two potential outcomes for one of the two variables. 

The resulting logistic regression curve (thick line) and 95% confidence intervals (outer lines) reveal a 

strong correlation between mRNA levels and percentage of Pol II+ promoters illustrating again the 

predictive power of Pol II for transcriptional activity at most genes. 

 



   

 

 

 

Figure S3. Promoter classification and tissue-specific expression of linked genes. (A). Density 

plots showing the CpG ratio observed/expected for all 15.100 high-confidence promoters. The total 

distribution (left) consisting of CpG-poor and CpG-rich promoters was split into 2 non-overlapping 

populations (right) of strong CpG islands (50% of total, dark blue) and CpG-poor promoters (23%, light 

blue). The remaining intermediate group was classified as weak CpG island promoters (27%, blue; 

see Experimental Procedures). (B) Histogram displaying the distribution of promoters according to the 

number of tissues where the linked genes show an expression value above 200 in the Symatlas 

database. Genes show either ubiquitous expression in most of the 61 probed tissues or very restricted 

expression in only few tissues (grey boxes). Promoters linked to genes expressed above 200 in 55 or 

more tissues were classified as ubiquitously expressed, i.e. “housekeeping” (HK), whereas genes 

expressed above 200 in at least one but less than 6 tissues were classified as tissue-specific (TSp). 

(C) The bar graph shows the distribution of HK and TSp among promoter classes. As expected HK are 

enriched in the strong CpG island promoter class (1.4x), slightly underrepresented in the weak CpG 



   

 

island class (0.8x) and depleted form the CpG-poor promoters (0.3x) in regard to overall class 

frequencies. TSp show an opposite distribution as they are depleted in the strong CpG island promoter 

class (0.6x), close to expected in the weak CpG islands (1.1x) and overrepresented in the CpG-poor 

promoters (1.8x), which confirms previous reports (Saxonov et al., 2006; Schug et al., 2005; 

Vinogradov, 2005). 

 



   

 

 

 

Figure S4. Promoter DNA methylation in ES cells. (A) Scatter-plot displaying DNA methylation 

values (log2 IP/Input) in relation to CpG content for all promoters in the three promoter classes. Note 

that for CpG-poor promoters DNA methylation increases linear with CpG content (black line indicates 

the linear regression curve, R = 0.44), indicating that the majority is DNA methylated by default (ref. 2). 

The red line indicates the cutoff for CpG island hypermethylation that is set at log2 (IP/Input) = 0.4. 



   

 

Bisulfite sequencing of examples from the respective classes (yellow dots) are shown below the 

scatter plots. The black bar below the gene pictogram indicates the region analyzed. (B) Density plot 

for DNA methylation levels of active (PolII bound) promoters of the individual classes. The red line 

indicates the DNA methylation cutoff. Note that in the grey shaded area (DNA methylated promoters) 

almost no promoters of the strong and weak CpG island class are found whereas a significant amount 

of CpG-poor promoters are DNA methylated and expressed. 



   

 

 

 

Figure S5. De novo methylation of pluripotency-associated genes. (A) Table indicating de novo 

methylation for all pluripotency genes. Note the uniform de novo methylation of weak CpG island 

promoters. (*) Esrrb is methylated at all stages. (B) Single-gene analysis of promoter DNA methylation 

of pluripotency-associated genes (see also Figure 2) in primary tissue samples (Li= liver, Lu= lung, Mu 

= muscle, He = heart, Ki = kidney). (C) Validation of de novo methylation for promoters of pluripotency 

genes by bisulfite sequencing. Open circles indicate unmethylated and full circles methylated CpGs, 

respectively. The black bar below the gene scheme shows the analyzed region respective to the 



   

 

transcription start site (arrow). As a negative control Sox2 is included which does not undergo 

significant DNA methylation changes during differentiation (see also Figure 2). 

 



   

 

 

 

Figure S6. De novo methylation of germline-specific and other tissue-specifc genes. (A) Single-

gene analysis of promoter DNA methylation of germline-specific genes (upper part) and somatic 

tissue-specific genes (lower part) in differentiating ES cells and primary tissue samples (Cx= cortex, 

Li= liver, Lu= lung, Mu = muscle, He = heart, Ki = kidney). Note that while most testis-specific genes 



   

 

are methylated in all somatic tissues, other tissue-specific genes are mostly unmethylated in non-

neuronal tissues. Black boxes mark those tissues in which the respective gene is expressed according 

to Symatlas. (B) Bisulfite sequencing validates de novo methlyation of some genes analysed in (A). 

Further, two examples of constitutively methylated CpG-poor promoters (Bcas1, Orm1; see also 

Figure S4) and one of the few CpG-poor promoters which gains DNA methylation (Lefty1) during 

differentiation are shown. (C) Gene onthology (GO) term analysis of de novo methylated promoters. 

The graph represents the enrichment of GO-terms among de novo methylated promoters (black bars) 

compared to all promoters (grey bars).  Only significant GO-terms are shown (P<0.05). 

 



   

 

 

 

Figure S7. H3K4 methylation is present at inactive CpG-rich promoters if these are DNA 

unmethylated. (A) Density plot for H3K4 methylation for active (PolII+) and inactive (PolII-) promoters 

in stem cells (ES), neuronal progenitors (NP) and terminally differentiated neurons (TN). (B) Same plot 

as in (a) except inactive promoters are grouped and colored according to CpG class. (C) Boxplot 

showing the gain of DNA methylation at promoters which lose H3K4me2. (D) Scatter-plot comparing 

DNA methylation levels (X-axis) with H3K4 methylation (Y-axis) in neurons. The dotted lines illustrate 



   

 

the cutoffs used for classifying DNA methylated and H3K4 methylated promoters. Note the strong 

negative correlation indicating that DNA methylation and H3K4me2 are mutually exclusive (R = -0.67). 

(E) Venn diagram showing the overlap between H3K4me2 and H3K4me3 positive promoters in stem 

cells indicating that H3K4 di-and trimethylation are highly correlated at the level of promoters (pairwise 

comparison: R = 0.85), which can also be deduced form previous global mapping data (Barski et al., 

2007; Heintzman et al., 2007). 

 



   

 

 

 

Figure S8. Illustration and validation of Polycomb targets and microarray cutoffs. (A) Illustration 

of cutoffs used for defining significantly enriched promoters in ChIP-chip experiments (see 

Supplemental Experimental Procedures). Briefly, two Gaussians were fitted into the distribution of log2 

values (black) representing the background distribution (blue) and enriched promoters (red). P-values 

reflect significance of enrichment relative to the blue background curve. For H3K27me3 ChIP-chip a P-

value cutoff of 0.001 was chosen based on validation by an independent method (see C). (B) 



   

 

Examples of H3K27me3 levels at the HoxB cluster in ES, NP and TN (grey bars, left y-axis) ChIP-chip 

experiments. The red line indicates Pol II levels as a measure for gene activity (right y-axis). Shown 

are the log2 ratios (IP/Input) from the microarrays. (C) Validation by ChIP and quantitative real-time 

PCR (qPCR) of H3K27me3 positive and negative promoters at the three cellular stages (ES = stem 

cell, NP = neuronal progenitor, TN = terminal neuron) identified in ChIP-chip experiments. Plus and 

minus signs below the diagrams indicate the call for being H3K27me3 positive or negative based on 

the P-value cutoff. Error bars indicate SEM of at least two biological replicate experiments. (D) Scatter 

plot comparing H3K27me3 and RNA Pol II in ES cells. NP and TN are very similar (data not shown). 

Note the negative correlation and the low number of highly H3K27me3 and Pol II positive promoters 

(upper right quadrant), indicating that Pol II is in most cases excluded form H3K27me3 modified 

promoters. 

 



   

 

 

 

Figure S9. Targeting bias of Polycomb and comparison with published data on Polycomb 

targets in ES cells. (A)  Distribution of promoter classes within the H3K27me3 targets (H3K27me3+) 

compared to all promoters. (B) Density plot for CpG ratio observed/expected for all promoter classes 

with superimposed density plots for targets H3K27 methylation (blue) and H3K4 methylation (yellow) 

at all three differentiation stages. (C) Histogram showing the distribution of all analyzed promoters 

according to the ratio of CpG observed / CpG expected. Superimposed are density plots for targets of 

H3K27me3 as well as Polycomb repressive complex 1 (Phc1, Rnf2) and 2 (Suz12, Eed) members 

identified by Boyer et al. (2006). Compare to Figure 5. Note the strong bias of H3K27me3 and 



   

 

Polycomb targets towards CpG island promoters in our dataset aswell as in these published data. (D) 

Venn diagram illustrating the overlap of Polycomb targets in stem cells identified in our analysis and in 

previously published datasets by Boyer et al. (2006) and Mikkelsen et al. (2007). The comparisons 

include only sequences which were present in both studies. (E) Venn diagram showing the overlap of 

identified bivalent domains with data by Bernstein et al. (2006). 

 



   

 

Table S1: Complete GO term lists of H3K27me3 targets that appear or dissolve between 

differentiation stages. Green P-values indicate over-representation in the analyzed gene list 

compared to the control set of all non-Polycomb targets present on the microarray, red P-

values indicate under-representation. Black boxes specify clusters of GO terms that are 

derived from the same gene-list or from sublists which differ in less than 3 genes. Gene 

names of target genes which give rise to the GO term clusters are listed in the column 

“Genes in respective GO term cluster” for each cluster. “Targets” indicates number of genes 

in respective group of interest, “Total” indicates number of genes in the respective control set 

used for GO term analysis. P-values are corrected for the false positive discovery rate by 

Benjamini-Hochberg correction for multiple testing. 

 
 

Table S2: Primer sequences. 

PCR primers 
Gene Sense/Antisense Sequence 
H19 ICR s GCATGGTCCTCAAATTCTGCA 
  as GCATCTGAACGCCCCAATTA 
b-Actin s AGCCAACTTTACGCCTAGCGT 
  as TCTCAAGATGGACCTAATACGGC 
Dppa4 s GTTGAGGGTGGGACCAGAA 
  as TCCAGCAGTCTCCATCTTGA 
Papolb (Tpap) s TGTCCTCTATCCCCAAGCAG 
  as GAGTATGGGCTGGCAGAAGA 
Smc1l2 (Smc1b) s TGATGCAGGTGAACCTCTTG 
  as CGCGAGACTTCGAAAAGAAT 
Zar1 s AAAAAGCCCTACCACCTGCT 
  as TCCCCTACAAATCCTTGCTG 
Amn s AGATGCTAAAGCCGCTGAGA 
  as GCTCTCACAGATGCGGACTT 
Nppb s GAGCAGGAAGCAAGGACTGT 
  as GGGGTGGGGTTATCTCTGAT 
Osmr s AATCAACTACGGGGCAAGTG 
  as ACCAGGAGCAAATTCCTGTG 
Meox2 s AGCAATGGGAACTGGAAATG 
  as AACTGCTTTCAGGGGGAAAT 
Ctsc s ACCCTGTCCCTCCCTACATC 
  as GGAGCAGATGGCAGAGAAAG 
Dnmt3L s ATCCACCCTCTGTCATTTGC 
  as TGGGGTAGGGGTAGGAGAAG 
Gdf3 s ATAAGGCTGCATGGTCGTCT 
  as TCTGAGGGGCTGAGAAGAGA 
Rex1 (Zfp42) s TCTAGGCGGCTAGGAGTTCA 
  as ACCTTGAGCGCTTCTCATTG 



   

 

Fes s GCCCGTGTTCCACATAAACT 
  as AAGCAGGAATCAGGAACTGG 
Tdgf1 s CAGCCAAGATCTCCGTGTAG 
  as CCACCTGAGGGTCCTACTCA 
Pou5f1 (Oct4) s ACCTCCGTCTGGAAGACACA 
  as TCACCTAGGGACGGTTTCAC 
Nanog s TGCAGGTGGGATTAACTGTG 
  as CAACGGCTCAAGGCGATAGA 
Sox2 s GCCAATATTCCGTAGCATGG 
  as GCTGGGGAACCTTTGTATCC 
Tcl1 s TCCTACACGGTGAGCATGAG 
  as TCCAGAAGTCCACGTTGTTG 

Primers for bisulfite sequencing 
Sox30 s AGGTGTTTTTATATTTGAGAATGATTAGAA 
  as ATTAAAACCCTTCCAAAACCTTAACTA 
Tsp50 s TAAAAATTGTTATTGAAGTTAAGTTTGG 
  as CTAAACCCTTTCTCTAAATCCCTATAC 
Orm1 s GTATAAAGTTGGTTTGAGGGAATATT 
  as AAAAATAACCTCCTACAATAAACAAATC 
Bcas1 s AGGTTTGTTGGTTGAATATATAGAGTAG 
  as ATAATAAAAATAACACCCAAAATCAAC 
Acox2 s GTTAGAGTATTGTATGAGGTTTTGTTGT 
  as TTTAACACTAATTCTTCACTAACACCAT 
Tcl1 s GTGTAGGTGTTTTTGTTTTGTGTGTT 
  as CAAACCCATATTTTCAAAAATAAATTTC 
Tdgf1 s AAAAGAAAGATATGTTAAATGAGAGAGGTT 
  as ATCCCTTAAAAACAAACAAAAAATCTC 
Fes s TTAGGAATTAGATTGGAGGTTTTTAATAG 
  as AATCCATCCCCACTACATTTTAAAT 
Sox2 s GGGTTTTGTTTTATTTTGGTTTTAGTT 
  as AAACAACAAAATACTTTTCCCTTTTTAC 
Lefty1 s TTTATGTTGGGATTGAATTTAGGGT 
  as AAAAAATAACCATCCCTTCCACAT 
Gdf3 s   TAGGGTAGGGTTAATAGAAGGAAGTTAA 
  as CCTTACATATCACAAACACACTAATATCTA 
Dnmt3L s GTATTTTGGAGGGATTATTGGTTAT 
  as AAAAAAAACTAATTAAAAAAAACCTTACC 
Smc1l2 (Smc1b) s GTTAATGATGTAGGTGAATTTTTTGAAA 
  as AAATAAAAATTTCCAAATCTAAACAACC 
Dppa4 s TTAGATTTATAGTTGTTAGGAGTAGGGG 
  as AAATAAAAAACCCTCATTTAAAAAACC 
Dazl s GATTTTTGTTATTTTTTAGTTTTTTTAGGAT 
  as AAAATTCTCTCAACTAACCTAACTTATTTCT 
Tuba3 s ATTTTATTAATGATTGGATGTGGTTTAA 
  as AAATAAACAACTACTCACACAAACTTCC 
Gtf2a1lf (Alf) s AGTGAGGTATGGTAAAAATAGGAATAATATT 
  as TACCCTAAAACCTAAATAACCTCAATTAA 
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3.2. DNA methylation in ES cells requires the lysine 

methyltransferase G9a but not its catalytic activity 

Dong K.B., Maksakova I.A., Mohn F., Leung D., Appanah R., Lee S., Yang H.W., Lam L.L., 
Mager D.L., Schübeler D., Tachibana M., Shinkai Y., Lorincz M. C. 

 

 

Summary 

DNA methylation has been shown to be essential for silencing of endogenous 

retroviruses (ERV) such as intra cisternal A particles (IAP), which are severely upregulated in 

DNMT1 deficient mouse embryos (Walsh et al., 1998). Recent data indicated that these 

repetitive elements are further embedded in chromatin decorated with H3K9me2 and/or 

H3K9me3 (Martens et al., 2005; Mikkelsen et al., 2007; Peters et al., 2003). However, the 

exact interplay of H3K9me2/3 and DNA methylation for repressing these repetitive elements 

are not known. It was shown that the Suv39h1/2 enzymes, which are essential for pericentric 

heterochromatin maintenance, play no major role in H3K9 methylation and DNA methylation 

at ERVs (Lehnertz et al., 2003; Peters et al., 2003). Thus we set out to investigate whether 

G9a and its close homolog GLP/EuHMTas1 could be the enzymes involved in mediating 

H3K9me2 and DNA methylation at ERVs. Both proteins form a heteromeric complex 

localizing predominantly to euchromatin and mediate euchromatic H3K9 methylation 

(Tachibana et al., 2005). We find that L1 (LINE 1 retrotransposons), IAP and MLV (murine 

leukemia virus) elements show a strong decrease in DNA methylation in G9a-/- and also GLP 
-/- ES cells, but no transcriptional reactivation can be detected. This indicates that G9a and 

GLP are required for efficient DNA methylation at ERVs, but not for their transcriptional 

silencing. Notably, the loss of DNA methylation is slightly less severe than in DNMT1-/- ES 

cells, which show reactivation of IAPs. It might therefore be that DNA methylation levels are 

not below a critical threshold in order to allow reactivation of the repetitive elements. 

Alternatively, because H3K9me2 levels are only modestly reduced in G9a-/- ES cells while 

H3K9me3 and HP1a binding to the ERVs remains unchanged, a DNA methylation and G9a 

independent repressive pathway could backup the loss of DNA methylation. Setdb1, the only 

H3K9 KMT not yet tested for a function in ERV silencing, would be an obvious candidate. 

 Upon reintroduction of a catalytically inactive G9a transgene into G9a-/- ES cells, the 

DNA methylation defect is partially rescued. Moreover, not only DNA methylation at ERVs is 

affected in the G9a knock-out but also promoter regions of normally densely methylated 

genes show a reduction of DNA methylation which is partially rescued by a mutant G9a 

transgene similar to ERVs. Together our analysis suggest that DNA methylation, in contrast 

to plants and fungi (Freitag et al., 2004a; Jackson et al., 2002), does not depend on H3K9 

methylation and is more likely to be directly recruited via G9a itself. This model is in 

agreement with data from Feldman and coworkers indicating that G9a can trigger DNA 
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methylation at the Oct4 promoter during cellular differentiation (Feldman et al., 2006). Given 

the effect observed on single copy genes, this pathway appears to affect global DNA 

methylation patterns which is supported by a report suggesting that direct interaction of G9a 

and DNMT1 might have a role in propagation of H3K9 methylation and DNA methylation 

during replication (Esteve et al., 2006).  
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Histone H3K9 methylation is required for DNA methyla-

tion and silencing of repetitive elements in plants and

filamentous fungi. In mammalian cells however, deletion

of the H3K9 histone methyltransferases (HMTases)

Suv39h1 and Suv39h2 does not affect DNA methylation

of the endogenous retrovirus murine leukaemia virus,

indicating that H3K9 methylation is dispensable for

DNA methylation of retrotransposons, or that a different

HMTase is involved. We demonstrate that embryonic stem

(ES) cells lacking the H3K9 HMTase G9a show a significant

reduction in DNA methylation of retrotransposons, major

satellite repeats and densely methylated CpG-rich promo-

ters. Surprisingly, demethylated retrotransposons remain

transcriptionally silent in G9a�/� cells, and show only a

modest decrease in H3K9me2 and no decrease in

H3K9me3 or HP1a binding, indicating that H3K9 methyla-

tion per se is not the relevant trigger for DNA methylation.

Indeed, introduction of catalytically inactive G9a trans-

genes partially ‘rescues’ the DNA methylation defect ob-

served in G9a�/� cells. Taken together, these observations

reveal that H3K9me3 and HP1a recruitment to retrotran-

sposons occurs independent of DNA methylation in ES

cells and that G9a promotes DNA methylation independent

of its HMTase activity.

The EMBO Journal (2008) 27, 2691–2701. doi:10.1038/

emboj.2008.193; Published online 25 September 2008
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Keywords: chromatin; DNA methylation; ERV; H3K9

methylation; HP1a

Introduction

Retrotransposons, including long terminal repeat (LTR) and

non-LTR elements, are widely dispersed in the euchromatic

compartment in higher mammals (Kuff and Lueders, 1988;

Medstrand et al, 2002), constituting B37% of the mouse

genome (Mouse Genome Sequencing Consortium, 2002). A

subset of these elements are transcriptionally competent,

placing a significant mutational load on their hosts

(Maksakova et al, 2006). To minimize the likelihood of

retrotransposition, a number of pathways that function at

the transcriptional or post-transcriptional stages of the repli-

cative cycle have evolved to inhibit the expression of these

parasitic elements. DNA methylation for example, has an

important function in transcriptional silencing of retrotran-

sposons in mammalian cells (Li et al, 1992; Yoder et al, 1997;

Walsh et al, 1998), as illustrated by the high level of expres-

sion of the intracisternal A particle (IAP) endogenous

retrovirus (ERV) in mouse embryos deficient in the DNA

methyltransferase (DNMT), Dnmt1 (Walsh et al, 1998). DNA

methylation also has a critical function in transcriptional

silencing of repetitive elements and their relics in filamentous

fungi and plants (Goyon et al, 1996; Lindroth et al, 2001;

Zhou et al, 2001), substantiating the importance of this

epigenetic mark in suppressing transposable elements in

distantly related eukaryotes.

Repetitive elements in eukaryotes are also marked by

specific covalent histone modifications (Bernstein et al,

2007). Methylation of lysine 9 of the histone H3 tail (H3K9)

in particular, has an important function in silencing of these

elements in yeast (Nakayama et al, 2001), filamentous fungi

(Tamaru and Selker, 2001), plants (Jackson et al, 2002) and

animals (Martens et al, 2005). Recent genome-wide studies

reveal that ERVs are marked by H3K9 dimethylation

(H3K9me2) and/or H3K9 trimethylation (H3K9me3) in mur-

ine cells (Peters et al, 2003; Martens et al, 2005; Mikkelsen

et al, 2007); however, the specific histone methyltransferases

(HMTases) responsible have not been identified.

Intriguingly, the H3K9 HMTase DIM-5 is required for CpG

methylation in Neurospora (Tamaru and Selker, 2001) and the

H3K9 HMTase KRYPTONITE is required for CpNpG methyla-

tion in Arabidopsis (Jackson et al, 2002), suggesting the

existence of an evolutionarily conserved silencing pathway

in which H3K9 methylation promotes de novo DNA methyla-

tion of repetitive elements (Freitag and Selker, 2005;

Stancheva, 2005). However, the role, if any, that H3K9

methylation has in DNA methylation of retrotransposons in

mammalian cells has not been systematically addressed.

Five HMTases in the ‘Suv39’ subfamily of SET (Suv39,

Enhancer of Zeste, Trithorax) domain-containing proteins

with H3K9 catalytic activity, including Suv39h1 and the

closely related Suv39h2, G9a and the closely related GLP/

EuHMTase1 and SETDB1/Eset, have been characterized in

mammalian cells. On the basis of its sequence similarity to

SETDB1, the sixth Suv39 family member, SETDB2/CLLD8, is
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also likely to have specificity for H3K9 (Mabuchi et al, 2001;

Kouzarides, 2007). Although Suv39h1 and Suv39h2 double-

negative (Suv39h1/2�/�) embryonic stem (ES) cells show a

dramatic reduction in H3K9me3 and DNA methylation at

major satellite repeats, IAP elements show no reduction in

H3K9 methylation (Peters et al, 2003; Martens et al, 2005;

Mikkelsen et al, 2007) and murine leukaemia virus (MLV)

ERVs show no reduction in DNA methylation (Lehnertz et al,

2003) in these cells. Taken together, these results indicate that

Suv39h1 and Suv39h2 do not have a major function in H3K9

methylation or DNA methylation of LTR retrotransposons in

mammalian cells.

In contrast to the Suv39h HMTases, G9a and GLP/

Eu-HMTase1, which form a heteromeric complex in vivo,

are widely dispersed in the euchromatic compartment and

deletion of either leads to a dramatic decrease in H3K9me1

and H3K9me2 in ES cells (Tachibana et al, 2002, 2005). A

recent analysis revealed that B300–400 genes show altered

expression in G9a�/� cells (Sampath et al, 2007) and several

studies have shown that G9a regulates the expression and/or

DNA methylation status of specific genes (Feldman et al,

2006; Ikegami et al, 2007). However, experiments aimed at

determining whether G9a influences the expression and/or

DNA methylation states of interspersed repetitive elements

have not been reported.

Here, we investigated the function that G9a and GLP have

in DNA methylation and silencing of potentially active ERVs

and non-LTR retrotransposons. We show that DNA methyla-

tion of these elements, and a subset of non-repetitive se-

quences including CpG-rich promoters, is reduced in G9a�/�

cells and that Dnmt3a recruitment to retrotransposons is

decreased in these cells. However, H3K9me3 enrichment

and HP1a binding are unaltered, demonstrating that an

alternative H3K9 HMTase marks ERVs and that H3K9 methy-

lation per se is not sufficient to promote DNA methylation of

these elements. In support of this model, we show that the

introduction of two different G9a transgenes that lack cata-

lytic activity into G9a�/� cells partially ‘rescues’ the observed

DNA methylation defect, indicating that G9a promotes DNA

methylation of retrotransposons independent of its catalytic

activity.

Results

G9a is required for DNA methylation

of retrotransposons

To establish whether G9a is required for DNA methylation of

ERVs, genomic DNA isolated from TT2 wild-type (wt) and

G9a�/� ES cells (Tachibana et al, 2002) (Supplementary

Figure S1) was analysed by Southern blotting using the

methylation-sensitive restriction enzyme HpaII and probes

specific for IAP and MLV ERVs, of which there are B1200 and

B60 copies in the mouse genome, respectively (Figure 1A

and B). Genomic DNA samples isolated from Dnmt1�/� (Lei

et al, 1996), Suv39h1/2�/� (Peters et al, 2001) and the wt

parent ES cell lines from which they were derived were

analysed in parallel. A dramatic reduction in DNA methyla-

tion of both ERVs was detected in the G9a�/� line relative to

the wt control. At the resolution of Southern blot analysis,

this reduction in methylation is not distinguishable from that

observed for the Dnmt1�/� ES line, or TT2 genomic DNA

digested with the methylation-insensitive isoschizomer MspI.

To obtain a more accurate measure of the methylation

status of these elements, high-resolution bisulphite sequen-

cing analysis was conducted using primers specific for the

CpG-rich 50LTR regions of IAP and MLV elements. A 42.5-

fold decrease in the mean number of mCpGs per molecule

sequenced was detected in the G9a�/� line relative to the wt

parent line (Figure 1D and E), with a subset of sequenced

molecules in the G9a�/� line showing almost complete loss of

methylation in these regions. A decrease in DNA methylation
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Figure 1 DNA methylation of MLV, IAP and LINE1 retrotranspo-
sons is reduced in G9a�/� cells. Genomic DNA isolated from G9a�/�,
G9a�/�Tg, Dnmt1�/�, Suv39h1/2�/� (Suv�/�) and the wt parent
lines TT2, J1 and R1, respectively, was digested with MspI (M) or
the methylation-sensitive restriction enzyme HpaII (H) and subject
to Southern blotting using probes specific for (A) IAP, (B) MLV or
(C) LINE1 retrotransposons. The G9a�/� line shows a dramatic
decrease in DNA methylation at each of these repetitive elements
that is reversed in the G9a�/�Tg line. In contrast, the Suv39h1/2�/�

line shows no DNA methylation defect at IAP or MLV repeats. (D, E)
Bisulphite analysis of the 50LTR regions of IAP and MLV elements
was conducted on TT2, G9a�/�, G9a�/�Tg (15-3), Dnmt1�/� and
Dnmt3a/b�/� cells. For each molecule sequenced (horizontal bar),
filled ovals represent the presence of an mCpG. The mean number
of mCpGs per molecule sequenced is shown to the right of each set
of sequenced samples. The mean % of mCpGs relative to the wild-
type line is also shown (in parentheses).
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across the LTR and downstream regions of the potentially

active class II ERV MusD (Mager and Freeman, 2000), of

which there are B90 full-length copies in the mouse genome,

was also detected in the G9a�/� line (Supplementary Figure

S2). All three of these LTR retrotransposons show an even

more severe DNA methylation defect in Dnmt1�/� cells

(Figure 1D and E; Supplementary Figure S2). Consistent

with the observations of Chen et al (2003), early passage

Dnmt3a/b�/� cells (Okano et al, 1999) show a significantly

more severe DNA methylation defect for MLV elements than

IAP elements. Interestingly, whereas IAP elements show a

less severe defect in Dnmt3a/b�/� cells than in G9a�/� cells,

the reverse is true of MLV repeats. Thus, although it is clear

that G9a is required for DNA methylation of distantly related

ERVs in murine ES cells, the degree of demethylation is

distinct from that observed for Dnmt1�/� or Dnmt3a/b�/�

cells. In contrast, no reduction in DNA methylation of MLV or

IAP elements was detected in Suv39h1/2�/� cells (Figure 1A

and B), consistent with a previous report showing that

Suv39h1 and Suv39h2 are not required for DNA methylation

of MLV (Lehnertz et al, 2003).

DNA methylation of LINE1 (L1) elements, non-LTR retro-

transposons that comprise B20% of the mouse genome

(Mouse Genome Sequencing Consortium, 2002), also

depends on the presence of both Dnmt1 and Dnmt3a and/

or Dnmt3b in ES cells (Liang et al, 2002). To determine

whether G9a has a function in DNA methylation of this

class of interspersed repeats, Southern blot analysis was

conducted with a probe that spans the promoter region of

the L1Md-A2 subfamily of L1 elements. A significant decrease

in DNA methylation of L1 elements is also apparent in G9a�/�

cells, although this defect is not as severe as that detected in

the DNMT mutant lines (Figure 1C). Taken together, these

observations indicate that G9a influences DNA methylation

of both LTR and non-LTR retrotransposons in ES cells.

To determine whether G9a is also required for DNA

methylation of tandem repeats in ES cells, Southern blot

analysis using a probe specific for major satellite repeats

(present at approximately 700 000 copies per cell) was con-

ducted using the methylation-sensitive restriction enzyme

HpyCH4IV (Supplementary Figure S3). Consistent with a

previous report showing that Suv39h1 and Suv39h2 are

required for methylation of major satellite repeats (Lehnertz

et al, 2003), a dramatic reduction in DNA methylation of

major satellite repeats was detected in Suv39h1/2�/� cells.

Unexpectedly, a dramatic reduction in DNA methylation of

this class of repeats was also detected in the G9a�/� line,

revealing that G9a is required for DNA methylation of

pericentromeric heterochromatin as well.

Introduction of a G9a transgene rescues the DNA

methylation defect observed in G9a�/� cells

Reintroduction of Dnmt3a, Dnmt3a2 (the predominant iso-

form of Dnmt3a in ES cells; Chen et al (2002)) or Dnmt3b1

into Dnmt3a/b�/� ES cells restores DNA methylation of MLV

and IAP elements (Chen et al, 2003), indicating that the de

novo DNMTs are capable of reestablishing DNA methylation

patterns in these cells. To determine whether reintroduction

of G9a is capable of reversing the DNA methylation defect

observed in G9a�/� cells, the methylation status of these

elements was also analysed in a G9a�/� line stably expressing

a wt G9a transgene (G9a�/�Tg) (Tachibana et al, 2002) at a

level similar to that of the endogenous protein

(Supplementary Figure S1). Strikingly, the DNA methylation

state of MLV, IAP, L1 (Figure 1) and MusD (Supplementary

Figure S2) retrotransposons and major satellite repeats

(Supplementary Figure S3) in the G9a�/�Tg resembles that

of the original wt parent line (TT2) rather than the G9a�/�

line from which they were directly derived. These observa-

tions indicate that loss of DNA methylation in G9a�/� ES cells

is not an irreversible process and that reintroduction of G9a is

sufficient for the reestablishment of DNA methylation in

G9a-deficient ES cells.

GLP is required for DNA methylation of

retrotransposons

As G9a forms a complex with the closely related HMTase

GLP, and both are required for the deposition of the H3K9me2

mark (Tachibana et al, 2005), we next determined whether

GLP is also required for DNA methylation of retrotranspo-

sons. Genomic DNA isolated from wt TT2 and GLP�/� ES

cells (Tachibana et al, 2005) was analysed by Southern

blotting as above, using probes specific for IAP, MLV

(Supplementary Figure S4) and L1 elements (data not

shown). A significant DNA methylation defect is apparent

for all three elements in the GLP�/� line as well, with IAP

elements showing the most dramatic decrease. Furthermore,

introduction of a wt GLP transgene into the GLP�/� line

(generating the GLP�/�Tg line (see Supplementary Figure

S1; Tachibana et al, 2005) rescues the IAP DNA methylation

defect and partially rescues the MLV methylation defect,

revealing that DNA methylation can be reestablished on

reintroduction of this HMTase as well. Consistent with

these results, bisulphite sequencing analysis of polytrophic

MLV elements reveals an B40% reduction in DNA methyla-

tion across the 50LTR in the GLP�/� line relative to the wt

control, and a partial rescue of this methylation defect in the

GLP�/�Tg line (Supplementary Figure S4). Thus, both G9a

and GLP have a function in DNA methylation of retrotran-

sposons in ES cells.

DNA methylation at non-repetitive genomic regions

is reduced in G9a�/� cells

To determine whether this DNA methylation defect extends to

non-repetitive elements in the genome, we carried out MeDIP

(Weber et al, 2005) on genomic DNA isolated from TT2,

G9a�/� and G9a�/�Tg ES cells and analysed the methylation

status of 11 single-copy genomic regions, including 9 CpG-

rich promoters shown previously to be methylated in ES cells

(Mohn et al, 2008) (Figure 2A). Strikingly, all of the regions

that are highly methylated in the TT2 line show a significant

decrease in the G9a�/� line, including the germline-specific

gene Mage-a2, shown previously to be aberrantly expressed

in G9a�/� cells (Tachibana et al, 2002). As for the repetitive

elements, DNA methylation is increased at most of these

regions in the G9a�/�Tg line. The DNA methylation defect

was confirmed through bisulphite sequencing of the Dazl

and Tuba3 promoter regions, both of which show an B40%

reduction in DNA methylation in the G9a�/� line (Figure 2B).

The degree of demethylation across the Dazl promoter is

similar to that observed in Dnmt1�/� and Dnmt3a/b�/� ES

cells. In contrast, the degree of demethylation across the

Tuba3 promoter in G9a�/� cells more closely resembles that

observed in the Dnmt3a/b�/� line. Thus, although DNA
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methylation of CpG-rich promoter regions is also dependent

on G9a, the degree to which G9a influences DNA methylation

state depends on the genomic context.

DNMT expression is not dramatically altered

in G9a�/� cells

The observed DNA methylation defect prompted us to ad-

dress whether Dnmt1, Dnmt3a, Dnmt3b or DNMT-like

(Dnmt3L) are downregulated in G9a�/� ES cells.

Quantitative RT–PCR analysis did not reveal a significant

difference in mRNA levels of any of the DNMT family

members in these lines (Figure 3A). Similarly, quantitative

western blot analyses revealed a o2-fold difference in Dnmt1

or Dnmt3a2 expression levels and an B2-fold higher level of

Dnmt3b expression in the G9a�/� line than the wt parent line

(Figure 3B). These data indicate that the DNA methylation

defect observed in G9a�/� cells is unlikely to be a conse-

quence of decreased DNMT expression.

Dnmt3a recruitment is reduced

in G9a�/� ES cells

Introduction of Dnmt3a, Dnmt3a2 or Dnmt3b1 is sufficient to

restore DNA methylation of retrotransposons in highly de-

methylated Dnmt3a/b�/� ES cells (Chen et al, 2003), indicat-

ing that de novo DNMT activity is required to maintain

retrotransposons in a densely methylated state. To determine

whether DNMT recruitment to such elements is perturbed in

G9a�/� cells, chromatin immunoprecipitation (ChIP) was

conducted using Dnmt1-, Dnmt3a/Dnmt3a2- or Dnmt3b-

specific antibodies and unmodified histone H3 as an internal

control. For Dnmt1 and Dnmt3b, ChIP experiments with

two different antibodies specific for each did not yield

conclusive results (data not shown). In contrast, a significant

reduction in enrichment of Dnmt3a was detected in the

LTR regions of MLV, IAP and MusD retrotransposons in

the G9a�/� line (Figure 4A). Thus, the decrease in DNA

methylation observed in G9a�/� cells can be attributed at
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Figure 2 DNA methylation of promoter regions is reduced in G9a�/� cells. (A) MeDIP followed by quantitative PCR of nine CpG-rich promoter
regions and two imprinting control loci (ICR) shown previously to be methylated in ES cells (Mohn et al, 2008) was conducted on wt, G9a�/�

and G9a�/�Tg lines. IAP and MusD amplicons were included as positive controls. An active housekeeping gene (Gapdh) and a CpG-poor
intergenic region (Interg) were included as negative controls. A bar graph illustrating DNA methylation changes in G9a�/� and G9a�/�Tg ES
cells relative to wt ES cells (set to 1) is shown. The fold change is normalized to an unmethylated control gene (Hprt). Numbers in parentheses
indicate the enrichment in MeDIP relative to Hprt. Error bars indicate the s.e.m. of at least three independent experiments. A lower level of
methylation was detected in the G9a�/� line than the wt or rescued lines for all of the genes that show a high level of methylation in the TT2
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least in part to a decrease in the efficiency of recruitment of de

novo DNMT activity.

To independently assess whether deletion of G9a not only

impairs maintenance of DNA methylation on already methy-

lated loci but also influences the efficiency of de novo DNA

methylation on previously unmethylated DNA, TT2 wt,

G9a�/�, J1 wt and Dnmt3a/b�/� ES cells were infected with

the MLV-based retroviral vector MFG–GFP and the DNA

methylation status of the proviral LTR was analysed at

day 18 post-infection (Figure 4B). As expected, infected

Dnmt3a/b�/� cells show virtually no DNA methylation at this

time point. Strikingly, infected G9a�/� cells also show a sig-

nificantly lower level of DNA methylation (42.5-fold) than the

parent line from which they were derived. Although not

as dramatic as the methylation defect observed in the

Dnmt3a/b�/�-deficient cell line, this observation indicates

that G9a is required for efficient de novo methylation in ES cells.

G9a is not required for transcriptional silencing

of retrotransposons

As Dnmt1 was previously shown to be required for silencing

of IAP elements in embryos (Walsh et al, 1998), we next

determined whether the defect in DNA methylation of retro-

transposons in G9a�/� cells is associated with aberrant

expression of these potentially active endogenous elements.

Expression of MLV and LINE1 elements was not detected

above background levels in wt, G9a�/�, Dnmt1�/� or

Dnmt3a/b�/� lines by northern blotting (Figure 5A and

data not shown). In contrast, IAP elements of each subtype

(I, ID1 and II) (Kuff and Lueders, 1988) (Figure 5B) and MusD

elements (Supplementary Figure S5) are expressed at a signi-

ficantly higher level in the Dnmt1�/� line than the G9a�/�

line, relative to the parent lines from which they were

derived. Although not as dramatic as that observed in the

Dnmt1�/� line, aberrant IAP expression was also observed in

the Dnmt3a/b�/� line by RT–PCR (Figure 5C). As the G9a and
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Figure 3 Expression of DNMTs in G9a�/� cells. (A) RNA was
isolated from TT2 wt and G9a�/� cells and expression levels of
Dnmt1, Dnmt3a, Dnmt3b and Dnmt3L were determined by real-
time quantitative RT–PCR, normalized to b-actin (RT–reverse tran-
scriptase). Values represent the mean (±s.d.) expression level
relative to the wild-type line, from three independent experiments.
(B) Western blot analyses using quantitative two-colour fluores-
cence imaging was performed on nuclear extracts isolated from TT2
and G9a�/� cells, using antibodies specific for Dnmt1, Dnmt3a and
DNMT3b and TFII-I as an internal control. Extract isolated from
DNMT-deficient cells was used as a control for antibody specificity.
Relative protein expression levels, normalized to TFII-I, are shown
beneath each blot.
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Figure 4 G9a�/� ES cells show defects in recruitment of Dnmt3a to
ERVs and de novo methylation of introduced retroviruses.
(A) Formaldehyde-fixed chromatin was isolated from TT2 and
G9a�/� lines and ChIP was conducted using nonspecific IgG or
antisera raised against Dnmt3a or unmodified histone H3. Real-time
PCR using primers specific for the LTR regions of MLV, IAP and
MusD ERVs was carried out and values are presented as percentage
of input precipitated (±s.d.) relative to the input in the representa-
tive experiment shown. A significant reduction in Dnmt3a enrich-
ment in the G9a�/� line relative to the wt control is clearly apparent.
(B) TT2 wt, G9a�/�, J1 wt and Dnmt3a/b�/� (3a/b�/�) lines were
infected with the retroviral vector MFG–GFP and passaged in the
absence of selection. Genomic DNA was isolated on day 18 post-
infection and analysed by bisulphite genomic sequencing.
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DNMT deletions were generated in ES cells of differing

genetic backgrounds, it is not possible to attribute the differ-

ences in ERV expression exclusively to the genes deleted.

Nevertheless, taken together with the DNA methylation data,

these results indicate either that the level of residual DNA

methylation is sufficient to maintain potentially active retro-

elements in a silent state in TT2 G9a�/� cells, or that an

alternative repressive pathway exerts an effect on these

elements independent of DNA methylation.

IAP and MusD ERVs show reduced H3K9 dimethylation

in G9a�/� cells, whereas H3K9 trimethylation and HP1a
binding are unaffected

Several groups have reported that ERVs and other repetitive

sequences are marked by H3K9me2 and/or H3K9me3 in

murine ES cells (Peters et al, 2003; Martens et al, 2005;

Mikkelsen et al, 2007). As G9a is responsible for the majority

of H3K9me2 in euchromatin (Tachibana et al, 2002), we next

wished to determine whether ERVs show a decrease in either

of these marks in G9a�/� cells. In addition, as methylation of

H3K9 creates a binding site for the HP1 family of transcrip-

tional repressor proteins (Lachner et al, 2001; Smallwood

et al, 2007), we also wished to determine whether recruit-

ment of HP1a is disrupted in the absence of G9a.

ChIP experiments using chromatin isolated from TT2 and

G9a�/� cells and antisera specific for H3K9me2, H3K9me3a,

HP1a and unmodified H3 revealed an B2-fold reduction in

H3K9me2 in the G9a�/� line in the LTR regions of IAP and

MusD elements, in the absence of a significant change

in H3 occupancy (Figure 6A and B). Consistent with a

previous report indicating that H3K9me2 is decreased in the
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Figure 6 ERVs show a reduction in H3K9 dimethylation in G9a�/�

cells, but no reduction in H3K9 trimethylation or HP1a binding. TT2
wt and G9a�/� ES cells were analysed using ChIP with specific for
H3K9me2, H3K9me3, HP1a, unmodified H3 and nonspecific IgG
(IgG) as a control. Quantitative real-time PCR was conducted using
primers specific for IAP or MusD retrotransposons or major satellite
repeats. (A) Mean enrichment values are presented as percentage of
input precipitated (±s.d.), relative to the input in the representative
experiment shown. (B) Plotting the mean relative enrichment
(±s.d.) of H3K9me2 and H3 from three independent experiments
reveals an B2-fold decrease in H3K9me2 in the G9a�/� line relative
to the parent line (*Po0.05, by Student’s t-test) but no difference in
H3 occupancy at these elements. (C) Relative to the R1 wt parent
line, Suv39h1/2�/� (Suv�/�) ES cells show a dramatic decrease in
H3K9me3 only at major satellite repeats.
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pericentromeric compartment in G9a�/� ES cells (Rice et al,

2003), an B2-fold decrease in H3K9me2 was also observed at

major satellite repeats, indicating that G9a activity is not

confined to the euchromatic compartment and perhaps ex-

plaining why major satellite repeats show a DNA methylation

defect in G9a�/� cells. As we are simultaneously surveying

the modification status of histones associated with multiple

copies of each repeat, we cannot discriminate between com-

plete loss of H3K9me2 at approximately half of the repeats, or

a uniform B2-fold decrease in this mark across all repeats.

Nevertheless, these observations indicate that a significant

number of IAP and MusD retrotransposons are direct

targets of G9a.

Strikingly, no decrease in H3K9me3 or HP1a binding was

detected at IAP or MusD retrotransposons in the G9a�/� line

(Figure 6A), indicating that an alternative H3K9 HMTase is

responsible for the deposition of the H3K9me3 mark at these

elements. Although the HMTases Suv39h1 and Suv39h2 are

required for H3K9me3 of major satellite repeats (Peters et al,

2003), they do not have a major function in the deposition of

the H3K9me3 mark at IAP or MusD retrotransposons, as

H3K9me3 enrichment is not reduced at these elements in

Suv39h1/2�/� ES cells either (Figure 6C). In contrast, the

promoter region of the G9a-regulated Mage-a2 gene, which is

significantly enriched for H3K9me2 in wt but not G9a�/� cells

(Tachibana et al, 2002; Supplementary Figure S6), showed

only very low levels of H3K9me3 enrichment in either line.

Taken together, these results indicate that an HMTase with

specificity for H3K9 other than G9a, Suv39h1 or Suv39h2 is

responsible for H3K9 trimethylation of ERVs and that the

deposition of this mark occurs independent of the DNA

methylation state of these elements.

In contrast to G9a�/� cells, Dnmt1�/� cells show no

decrease in H3K9me2 across the LTR regions of IAP and

MusD elements when normalized to unmodified histone H3

(Figure 7), indicating that Dnmt1 is not required for the

deposition of this mark by G9a. Surprisingly, HP1a binding

and H3K9me3 across the LTR region of IAP and MusD

elements also show only a modest or no reduction, respec-

tively, despite the fact that these elements are hypomethy-

lated and aberrantly expressed in Dnmt1�/� cells. The

simplest explanation for this observation is that only a

small number of proviruses of each class are actually tran-

scribed in Dnmt1�/� cells and in turn depleted of H3K9me3

and HP1a. Alternatively, severely hypomethylated IAP and

MusD elements may be transcriptionally active despite the

presence of these repressive marks. In either case, these

observations clearly demonstrate that H3K9me3 and HP1a
binding at these elements are not dependent on the presence

of dense DNA methylation.

Introduction of a catalytically inactive G9a transgene

partially rescues the DNA methylation defect observed

in G9a�/� cells

The observation of a decrease in DNA methylation of ERVs in

G9a�/� cells, despite the presence of a high level of residual

H3K9 methylation, is surprising, given the known function of

K9 methylation in controlling DNA methylation in plants and

filamentous fungi (Jackson et al, 2002; Freitag and Selker,

2005). To directly address whether DNA methylation of

repetitive elements in mammalian cells is dependent on the

catalytic activity of G9a, we took advantage of the previously

described observation that the DNA methylation defect ob-

served in G9a�/� cells is rescued by the introduction of a wt

G9a transgene (see Figure 1).

Constructs encoding two G9a mutants (G9a�/�Tg(C1168A)

and G9a�/�Tg(Y1120V;Y1207F)), each of which harbour

amino-acid substitutions in the SET domain that reduce

catalytic activity to o1% of that of wt G9a, but do not affect

the ability of the encoded protein to form a complex with

GLP (see Tachibana et al, this issue), were stably introduced

into the G9a�/� line. Western blot analyses of cell lines stably

expressing each of these transgenes revealed that the exo-

genous wt and mutant proteins are produced at the expected

molecular weight (Figure 8A). Furthermore, quantitative

western blot analysis reveals that GLP is expressed at similar

levels in the wt, G9a�/� and G9a�/� Tg lines, confirming that

the expression of G9a does not significantly influence the

stability of its binding partner GLP (Tachibana et al, 2005)

(Figure 8B). As expected, Southern blot analysis with an IAP-

specific probe reveals that DNA methylation is reduced in the

G9a�/� parent line and restored to wt levels in the

G9a�/�Tg(wt) line (Figure 8C). Strikingly, DNA methylation

of IAP elements is also increased in cells expressing either of

the catalytic mutants, albeit not to the same level as observed

for the wt transgene (Figure 8C–E). DNA methylation

levels at MusD (Supplementary Figure S7) and L1 repeats

(data not shown) were also significantly increased in the

G9a�/�Tg(C1168A) line relative to the parent G9a�/� line.
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Figure 7 H3K9 methylation and HP1a binding at MusD, IAP and
major satellite repeats in Dnmt1�/� cells. ChIP was conducted on J1
wt and Dnmt1�/� ES cells using antibodies specific for H3K9me2,
H3K9me3, HP1a and unmodified H3. Nonspecific IgG was used as a
control. Real-time PCR of reverse-crosslinked material using primers
specific for IAP, MusD or major satellite repeats was conducted in
triplicate and enrichment (±s.d.) is presented as the mean percen-
tage of input material immunoprecipitated, normalized to unmodi-
fied H3. IAP elements show a modest reduction in H3K9me3 and
HP1a binding in the Dnmt1�/� line, but no change in H3K9me2
enrichment. No significant difference in any of these features was
detected at MusD or major satellite repeats.
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Importantly, the level of H3K9me2 enrichment in the

G9a�/�Tg(C1168A) line remains significantly below that ob-

served for the TT2 and G9a�/�Tg(wt) lines (Figure 8F).

Furthermore, rescue of the DNA methylation defect in the

G9a�/�Tg(C1168A) line is accompanied by recruitment of

Dnmt3a to the IAP LTR, although at a level lower than that

observed in the wt parent line or the G9a�/� line rescued with

the wt G9a transgene (Figure 8F). Taken together, these

results reveal that independent of its catalytic activity, G9a

promotes de novo DNA methylation through enhancing

recruitment of Dnmt3a.

Discussion

We demonstrate that G9a is required for DNA methylation of

representative LTR and non-LTR retrotransposons and a

number of CpG-rich promoters in murine ES cells.

However, unlike the H3K9 HMTases in plants and filamen-

tous fungi (Jackson et al, 2002; Freitag and Selker, 2005), G9a

promotes DNA methylation of repetitive elements indepen-

dent of its catalytic activity. How might G9a influence DNA

methylation, given that H3K9 methylation per se does not

seem to be the predominant trigger? Although it is possible
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cells. The G9a�/� line 2-3 was stably transfected with constructs encoding a wt G9a transgene G9a�/�Tg(wt), or the mutant G9a transgenes
G9a�/�Tg(C1168A) and G9a�/�Tg(Y1120V;Y1207F). Each of the latter transgenes harbour amino-acid substitutions in the SET domain that
reduce the catalytic activity of the encoded protein to o1% of that of the wt protein. (A) Western blot analysis of cell lines expressing each of
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that deletion of G9a influences DNA methylation through an

indirect mechanism, given that H3K9me2 is decreased at

each of the genomic regions analysed, we favour the possi-

bility that G9a–GLP exert an effect in cis to promote DNA

methylation. Indeed, two groups recently reported that in

somatic cells, G9a interacts directly with Dnmt1 in a

complex that includes PCNA (Esteve et al, 2006; Sharif

et al, 2007), indicating that Dnmt1 and G9a coordinate

H3K9 methylation and maintenance DNA methylation at

the replication fork.

Our survey of the DNA methylation status of a number of

repetitive and single-copy genomic sequences reveals that the

extent of the defect in G9a�/� ES cells is generally not as

severe as that in Dnmt1�/� ES cells. Although we did detect

an interaction between G9a and GLP through co-immuno-

precipitation, as described earlier (Tachibana et al, 2005), we

were unable to detect an interaction between G9a and any of

the DNMTs in ES cells (MCL and SL, unpublished data). On

the other hand, we did find that Dnmt3a recruitment to the

promoter regions of LTR retrotransposons was reduced in the

G9a�/� line relative to the wt control.

Thus, although we cannot confirm whether G9a influences

Dnmt1 activity in ES cells, we propose that G9a regulates DNA

methylation in these cells at least in part by promoting de novo

DNMT activity in cis. In support of this model, we find that

introduced MLV-based retroviral vectors, which are unmethy-

lated at the time of integration, are not efficiently de novo

methylated in G9a�/� cells and show a defect in silencing

similar to that observed in Dnmt3a/b�/� ES cells infected

with the same virus (KBD and MCL, in preparation). As

maintenance methylation by Dnmt1 is reported to be

an inefficient process in ES cells (Liang et al, 2002), continual

de novo methylation may be required to preserve DNA methy-

lation homoeostasis. Alternatively, active demethylation by an

as yet unidentified DNA demethylase may necessitate ongoing

de novo methylation by Dnmt3a and/or Dnmt3b to maintain

steady-state levels of this epigenetic mark.

Intriguingly, despite the fact that the potentially active IAP

and MusD retrotransposons show a dramatic reduction in

DNA methylation in G9a�/� cells, these interspersed repeti-

tive elements remain transcriptionally inactive. As G9a�/�

cells show a somewhat higher level of residual DNA methyla-

tion than Dnmt1�/� ES cells, in which these elements are

aberrantly expressed, it is possible that potentially active

ERVs are expressed only when DNA methylation density

drops below a critical threshold. Consistent with this

model, unlike Dnmt1-null mice, which show high levels of

IAP expression (Walsh et al, 1998), compound heterozygous

mice carrying a hypomorphic Dnmt1 allele over a null allele

show genome-wide hypomethylation but no detectable IAP

expression (Howard et al, 2008).

Alternatively, as H3K9me3 enrichment and HP1a binding at

IAP and MusD elements are not dramatically reduced in G9a�/�

or Dnmt1�/� cells, it is possible that an alternative repressive

pathway maintains the vast majority of ERVs in a silent state

independent of DNA methylation. Our observations clearly

show that an HMTase with specificity for H3K9 other than

G9a, GLP, Suv39h1 or Suv39h2 marks LTR retrotransposons in

ES cells, leaving SETDB1, which shows di- and tri-methyl

HMTase activity towards H3K9 in vitro and in vivo (Wang

et al, 2003), or the closely related SETDB2, as the remaining

candidates in the Suv39 family of HMTases for this activity.

Given the well-documented deleterious effects of retrotran-

sposition on genomic integrity, the existence of a DNA methyla-

tion-independent silencing pathway may serve to minimize

proviral expression during those stages in embryonic develop-

ment when DNA methylation levels are relatively low, such as

following fertilization or in the developing germ line.

Intriguingly, deletion of the Piwi protein Mili leads to derepres-

sion of L1 and IAP ERVs and the loss of DNA methylation at L1

elements (Aravin et al, 2007), revealing that Piwi-interacting

RNAs (piRNAs) generated by transposable elements in the germ

line are required to maintain these elements in a silent state.

Such piRNAs may have a function in the targeting of H3K9

HMTase activity to homologous repetitive elements prior to de

novo DNA methylation of these elements.

We show that G9a is required for DNA methylation in ES

cells not only of repetitive elements but also of the CpG-rich

promoter regions of a number of genes that are normally

densely methylated in ES cells. These results are consistent

with those reported by Tachibana and colleagues (see accom-

panying paper by Tachibana et al), and indicate that in

addition to the deposition of the H3K9me2 mark, the G9a–

GLP complex may have a genome-wide influence on DNA

methylation homoeostasis in ES cells. As GLP expression is

downregulated in primordial germ cells, coincident with

genome-wide DNA demethylation in these cells (Seki et al,

2005, 2007), it is possible that the G9a–GLP heteromeric

complex has a function in the programmed changes in DNA

methylation that occur not only following fertilization but

also in the developing germ line.

Materials and methods

Cell lines
J1 wt (129S4/SvJae), Dnmt1c/c (Dnmt1�/�) (Lei et al, 1996),
Dnmt3a and Dnmt3b double-negative (Dnmt3a/b�/�) (Okano et al,
1999), TT2 wt (c57BL/6xCBA), G9a�/� (clones 2-3 and 22-10),
G9a�/�Tg (clone 15-3) (Tachibana et al, 2002), GLP�/�, GLP�/�Tg
(Tachibana et al, 2005), G9a�/�Tg(wt), G9a�/�Tg(C1168A) (clone
G4), G9a�/�Tg(Y1120V;Y1207F) (clone G7), R1 wt (129X1/
SvJ� 129S1) and Suv39h1 and Suv39h2 double-negative
(Suv39h1/2�/�) (Peters et al, 2001) ES cells were passaged every
48–72 h in DMEM supplemented with 15% FBS (HyClone), 20 mM
HEPES, 0.1 mM non-essential amino acids, 0.1 mM 2-mercaptoetha-
nol, 100 U/ml penicillin, 0.05 mM streptomycin, leukaemia-inhibi-
tory factor and 2 mM glutamine on gelatinized plates.

Bisulphite sequencing and MeDIP analyses
Genomic DNA was subject to sodium bisulphite conversion using
the EZ DNA Methylation-Gold kit (Zymo Research) as described
earlier (Appanah et al, 2007). MeDIP was conducted as described
earlier (Weber et al, 2007). Detailed protocols are provided in the
Supplementary data.

Northern and Southern blot analyses
Southern blot analyses, restriction digests, membrane transfers and
preparation of the DNA probe were performed by standard
methods. A detailed protocol is provided in the Supplementary data.

Quantification of proviral mRNA levels
RNA was isolated using Tri reagent (Sigma) according to the
manufacturer’s protocol. DnaseI-treated RNA was subject to first-
strand cDNA synthesis using RevertAid H Minus kit (Fermentas) in
the presence or absence of reverse transcriptase. Quantitative
RT–PCR using MLV-, IAP- and MusD-specific primers, or b-actin-
specific primers as an internal control (all primer sequences
are listed in Supplementary Table 1), was conducted with
EvaGreen dye (Biotium) on an Opticon 2 thermal cycler (Bio-
Rad). Relative expression levels were determined by normalizing to
the b-actin gene.
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Antibodies and ChIP experiments
ChIP for histones (Appanah et al, 2007) and non-histone proteins
(O’Geen et al, 2007) was conducted as described. Details are
provided in the Supplementary data.

Western blot analysis
Nuclear extractions were conducted as described (Tachibana et al,
2002). Western blot analyses were conducted using the Odyssey
Infrared Imaging System (LI-COR Biosciences), as described in the
Supplementary data.

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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Supplementary Methods 
 
Bisulphite sequencing analyses. Nested or semi-nested PCR was conducted on 

converted DNA using primers specific for each of the elements analyzed (primer 

sequences are listed in Supplementary Information, Table 1). Amplification products 

were cloned via T/A cloning using the pGEM-T easy kit (Promega) and individual clones 

were sequenced using BigDye v3.1 chemistry. Sequences were analyzed using 

Sequencher software (Gene Codes). The mean number of methylated CpGs 

(mCpGs)/molecule sequenced is presented for each set of samples. As the number of 

CpGs in the 5’LTR regions of ERVs is heterogeneous, a CpG density “key” is not shown 

for these elements. 

 

Northern and Southern analysis. Genomic DNA was extracted using DNAzol 

(Invitrogen) according to the manufacturer’s instructions. For each digested sample, 2-3 

mg of genomic DNA was loaded per lane. LTR-specific probes were used for analysis of 

IAP and MLV elements. Probes were labeled with [α-32P]dCTP using the Random 

Primers DNA Labeling System (Invitrogen). Membranes were pre-hybridized in 

ExpressHyb (BD Biosciences) at 60°C for 3-5 hours, hybridized overnight at the same 

temperature in fresh ExpressHyb, washed according to the manufacturer’s protocol and 

exposed to film.  

 
For Northern analyses, total RNA was extracted using the RNeasy RNA isolation kit 

(Qiagen) according to the manufacturer’s instructions. For each lane, 5-8 mg of RNA was 

denatured, subject to electrophoresis in a 0.8% agarose, 1.9% formaldehyde gel in 
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1xMOPS buffer and transferred overnight to a Zeta-probe nylon membrane (Bio-Rad). 

MusD, IAP and MLV specific probes were labeled with [α-32P]dCTP as above. 

Membranes were pre-hybridized at 68°C for 3-5 hours, hybridized overnight at the same 

temperature in fresh ExpressHyb, washed according to the manufacturer’s protocol and 

exposed to film. The probes for the MusD gag region and the IAP pol gene were 

synthesized by PCR from C57BL6 genomic DNA. 

 

ChIP experiments. ChIP for histones was conducted as described (Appanah et al, 2007). 

Briefly, 2.4-4x107 exponentially growing ES cells were incubated in the presence of 1% 

(v/v) formaldehyde for 10 minutes at 37°C and chromatin was sonicated to fragment 

sizes of 300-1000bp using the Bioruptor sonicator (Diagenode). Purified, reverse-

crosslinked material was resuspended in 50 ml elution buffer (Qiagen) and quantified by 

real-time quantitative PCR using 2 μl of template with EvaGreen dye and hot-start Taq 

polymerase (Fermentas). ChIP for non-histone proteins was conducted as described 

(O'Geen et al, 2007). Purified rabbit IgG (10μg, Sigma) was used as a control. Antibodies 

specific for H3 (2.5μg; Abcam, ab1791), H3K9me2 (5μg; Upstate, 07-441), H3K9me3 

(5μg; Upstate, 07-442 or 2.5-5μg; Abcam, ab8898), HP-1α (kind gift of Stephen Smale), 

and Dnmt3a (5μg; Imgenex, IMG-268A) were used. Of note, while Dnmt3a2 is the 

predominant protein recognized by the Dnmt3a “specific” antibody, this reagent also 

shows weak cross-reactivity with Dnmt3b1, as determined by Western blotting (Chen et 

al, 2002). 
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Reactions were carried out in triplicate (conditions available upon request). For each 

amplicon, the amount of input and immunoprecipitated DNA was calculated using the 

standard curve method. The “percent of input” was subsequently calculated by taking the 

ratio of these values. For the major satellite amplicon, DNA was diluted 1:500 prior to 

PCR. 

 

MeDIP and real-time PCR. Genomic DNA was isolated from 2-3 independent passages 

of wildtype, G9a-/- and G9a-/-Tg ES cells and prepared for MeDIP as previously described 

(Weber et al, 2007). In brief, 2μg sonicated (300-1000bp) genomic DNA was precipitated 

with 2μg antibody against 5-methylcytidine (Eurogentec, BI-MECY-1000) and bound 

DNA was recovered with 8μl M-280 Sheep anti-mouse IgG Dynabeads (Invitrogen). For 

real-time PCR, 30 ng sonicated genomic input DNA and 1/40 of a MeDIP reaction were 

used as template and quantified with SYBR Green PCR mastermix (Applied Biosystems) 

using standard cycling conditions on an ABI Prism 7000 detection system. Relative 

enrichments were determined by normalizing against an active gene (Hprt). Reactions 

were performed in duplicates, averaged for each PCR and standard errors were calculated 

between the averaged duplicate reactions of biological replicate experiments. Primers for 

DNA methylated loci in ES cells were chosen based on a recent genome-wide study 

(Mohn et al, 2008) and are listed in Supplementary Table 1. 

 

Western analysis. For Western blotting, 60-100 μg of nuclear extract was added per lane 

and quantitative western analyses were conducted using the Odyssey Infrared Imaging 

System (LI-COR Biosciences), according to the manufacturer’s protocol. Antibodies 
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used include: G9a (1:2000; PPMX, A8620A), GLP (1:1000; PPMX, B0422), Suz12 

(Kind gift from Yi Zhang), Bmi1 (1:6000; Upstate, 05-637), TFII-I (1:2000; kind gift of 

Ivan Sadowski), Dnmt1 (1:300; Imgenex, IMG-261A), Dnmt3A (1:300; IMG-268A) and 

Dnmt3b (1:1000; Imgenex, IMG-184A). 
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Supplementary Figure Legends 

 

Supplementary Figure S1. Western analyses of G9a and GLP expression in the TT2, 

G9a-/-, G9a-/-Tg, GLP-/- and GLP -/-Tg lines. (A) Nuclear extract was isolated from 

TT2, G9a-/- and G9a-/-Tg lines and analyzed by Western blotting using antibodies 

specific for G9a and Suz12 as a loading control. While no G9a expression was detected 

in the G9a-/- line, a significant level of G9a expression was detected in the G9a-/-Tg line. 

(B) Similarly, while no expression of GLP was detected in the GLP-/- line, a significant 

level of GLP was detected in the GLP -/-Tg line. These data confirm that G9a and GLP 

transgenes are stably expressed in the G9a-/-Tg and G9a-/-Tg lines, respectively. 

 

Supplementary Figure S2. MusD ERVs show a dramatic reduction in DNA 

methylation density in G9a-/- cells.  Bisulphite analysis of TT2, G9a-/-, Dnmt1-/- and 

G9a-/-Tg was conducted using primers specific for the 5’ LTR and downstream regions 

of MusD. In the G9a-/- and Dnmt1-/- lines, these class II ERVs show a significantly 

lower level of methylation across the LTR and downstream region than in the TT2 line.  

Introduction of a G9a transgene (G9a-/-Tg) rescues the observed DNA methylation 

defect. The mean number of CpGs/molecule sequenced is shown to the right of each set 

of sequenced samples, along with the mean % of mCpGs relative to the wildtype line (in 

parentheses). 

 

Supplementary Figure S3. Major satellite repeats show a DNA methylation defect in 

G9a-/- ES cells.  Genomic DNA isolated from R1 and Suv39h1/2-/- lines as well as TT2, 
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G9a-/-, G9a-/- (2-3), G9a-/-Tg (15-3), J1, Dnmt1-/- and Dnmt3a/b-/- lines was digested 

with the methylation-sensitive restriction enzyme HpyCH4IV and subject to Southern 

analysis using a probe specific for major satellite repeats. The G9a-/- line shows a DNA 

methylation defect similar to that observed in the Suv39h1/2-/-, Dnmt1-/- and Dnmt3a/b-/- 

lines, but not in the parent lines from which these mutants were derived. This defect is 

reversed in the G9a-/-Tg line. 

 

Supplementary Figure S4. DNA methylation of MLV and IAP ERVs is reduced in 

GLP-/- cells. (A) Genomic DNA isolated from TT2 wt, GLP-/- and GLP-/-Tg lines was 

digested with HpaII (H) and subject to Southern blotting using probes specific for MLV 

or IAP elements. While the GLP-/- line shows a dramatic reduction in DNA methylation 

relative to the TT2 parent line, the GLP -/-Tg line shows a significantly higher level of 

DNA methylation of both ERVs. (B) Bisulphite analysis confirms that a significantly 

lower level of methylation is present across the 5’ LTR of endogenous MLV elements in 

the GLP-/- line. The mean number of mCpGs/molecule sequenced (combined with the 

data shown in Figure 1d for the TT2 line) is shown to the right of each set of sequenced 

samples, along with the mean % of mCpGs relative to the wildtype line (in parentheses). 

 

Supplementary Figure S5. MusD ERVs are transcriptionally silent in G9a-/- cells. 

(A) Northern analysis or RNA isolated from J1, Dnmt3a/b-/-, Dnmt1-/-, TT2, G9a-/- and 

G9a-/-Tg lines reveals aberrant expression of MusD elements (~7.5 kb) in the Dnmt1-/- 

line, but not the Dnmt3a/b-/- or G9a-/-, or G9a-/-Tg lines. Longer exposure of the blot 

revealed a low level of expression in the wt and G9a-/- lines (data not shown). (B) 
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Quantitative RT-PCR (+/-RT) using primers specific for MusD elements revealed a 

significantly higher level of expression in the Dnmt1-/- line than the G9a-/- line, 

consistent with the results obtained by Northern blotting. 

 

Supplementary Figure S6. The promoter region of the Mage-a2 gene is marked by 

H3K9me2 but not H3K9me3 in wildtype ES cells. ChIP was conducted on wt and G9a-

/- ES cells using antisera specific for H3K9me2, H3K9me3, unmodified H3 and non-

specific IgG as a control. Real-time PCR was carried out using primers specific for the 

promoter region of the Mage-a2 gene. Enrichment (+/-SD) is presented as the percentage 

of input material immunoprecipitated. A significantly lower level of enrichment of 

H3K9me2 was detected in the G9a-/- line than the wt parent line at the promoter region 

of the Mage-a2 gene. In contrast, both lines showed only very low levels of enrichment 

of H3K9me3 in this region. The lower level of H3 occupancy observed in the G9a-/- line 

likely reflects transcription-coupled depletion of nucleosomes in the promoter region of 

the Mage-a2 gene, which is aberrantly expressed in this line (Tachibana et al, 2002).  

 

Supplementary Figure S7. Stable expression of a catalytically inactive G9a 

transgene in G9a-/- ES cells rescues the DNA methylation defect at MusD elements. 

Bisulphite analysis of the G9a-/- line 2-3 stably transfected with constructs encoding a wt 

G9a transgene G9a-/-Tg(wt), or the mutant G9a transgenes G9a-/-Tg(C1168A) was 

conducted using primers specific for the 5’ LTR and downstream regions of MusD. The 

mean number of mCpGs/molecule sequenced is shown, along with the mean % of 

mCpGs relative to the wildtype line (in parentheses). Taken together with the data shown 
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in figure S2 (bar graph), these data confirm that expression of catalytically inactive G9a 

rescues the DNA methylation defect observed in the parent G9a-/- line. Interestingly, the 

clone expressing the wildtype transgene, which is expressed at significantly higher levels 

than the endogenous protein (see Figure 7A) shows a higher level of methylation than the 

TT2 parent line, suggesting that expression of endogenous G9a is limiting with respect to 

its influence on DNA methylation in ES cells. 
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Table 1. Primers used in this study 
RT-PCR 
β-actin                                                   +  

-  
TCATGAAGTGTGACGTTGACATCCGT 
CCTAGAAGCACTTGCGGTGCACGATGGAG 

MusD                                                     + GTGGTATCTCAGGA(G/A)GAGTGCC 
GGGCAGCTCCTCTATCTGAGTG  

IAP                                                        + 
                                                               _ 

AAGCAGCAATCACCCACTTTGG 
CAATCATTAGATG(T/C)GGCTGCCAAG 

Dnmt1                                                   + 
                                                               _ 

TCGGCTGAACAACCCCGGCACCAC 
CTTCAGCACCATGGAGCGTCTGTAGG 

Dnmt3a                                                 + 
                                                               _ 

GTCCGCAGCGTCACACAGAAGC 
TCTTTGGCGTCAATCATCACGG 

Dnmt3b                                                 + 
                                                               _ 

AGGTTTATATGAGGGCACAGGAAGGC 
CATGTTGGACACGTCCGTGTAGTGAGC 

Dnmt3L                                                 + 
                                                               _ 

ACTGAGGATGACCAAGAGACAAC 
CTCTTCAGCCCTGGAATGTTGCTC 

Bisulfite analysis                                                     Y= C or T,  R= A or G 
MLV                      1st round:                 + 
(RLTR4_Mm-int)                                 - 
                              2nd round:                 + 

                                                     - 

TATTTTGTAAGGTATGAAAAAGTATTAGAGT 
AAATCRATAATCCCTAAACAAAAATCTCCA 
TAAATTTGTGTGTTTGTTAATGTTTTGATT 
AAATCRATAATCCCTAAACAAAAATCTCCA 

IAP 5’LTR           1st round:                 + 
               - 

                              2nd round:                 + 
                                                             - 

GGYGTTGATAGTTGTGTTTTAAGTGGTAAAT 
ATTCTAATTCTAAAATAAAAAATCTTCCTTA 
GATAGTTGTGTTTTAAGTGGTAAATAAATA 
ATTCTAATTCTAAAATAAAAAATCTTCCTTA 

MusD 5’LTR        1st round:                 + 
               - 

                             2nd round:                  +   
- 

AAATTTGAGTTTTGATTAGTATGAAATTGT 
AATCTAATATTTCTTCTTCCTTAAACCATA 
AAATTTGAGTTTTGATTAGTATGAAATTGT 
AACTTTAAACCCTTTCTTCTTCCACCTAAA 

Dazl                       1st round:                 + 
               - 

                             2nd round:                  +   
- 

GGTTYGAGTTTTATTGATAGATAGATGGAT 
AACACCCTACAACTCAACTCTACTATAA 
GATTTTTGTTATTTTTTAGTTTTTTTAGGAT 
AAAATTCTCTCAACTAACCTAACTTATTTCT 

Tuba3                       1st round:              + 
               - 

                             2nd round:                  +   
- 

TTAGGGGYGGTTTTAGGTTTTATATTTTAT 
ATTACCACCAAACATAACACACATCTATAA 
ATTTTATTAATGATTGGATGTGGTTTAA 
AAATAAACAACTACTCACACAAACTTCC 

ChIP analysis 
Major satellite                                      + 

- 
GACGACTTGAAAAATGACGAAATC� 
CATATTCCAGGTCCTTCAGTGTGC 

IAP (LTR)                                             + 
- 

CTCCATGTGCTCTGCCTTCC 
CCCCGTCCCTTTTTTAGGAGA 

MusD (LTR)                                         + 
- 

CCCTTCCTTCATAACTGGTGTCGCA 
TAGCATCTCTCTGCCATTCTTCAGG 

Mage-a2                                                + 
- 

TTGGTGGACAGGGAAGCTAGGGGA 
CGCTCCAGAACAAAATGGCGCAGA 

Primers used for generating Probes 



Supplementary Information      Dong et al. 
 

MusD (gag)                                           + 
                                   - 

GAGTTGTTTCAGGCCAGAGGAGTAAGG 
GGGCAGCTCCTCTATCTGAGTG 

IAP (LTR) Southern                            + 
- 

CAGAAGATTCTGGTCTGTGGTGTT 
GAATTCATACAGTTGAATCCTTCT 

IAP (pol) Northern                              + 
- 

AAGCAGCAATCACCCACTTTGG 
CAATCATTAGATG(T/C)GGCTGCCAAG 

MLV (LTR)                                          +   
- 

CATGTGAAAGACCCCACCTGTAG 
AGTCGGATGCAACTGCAAGAGGG 

Major satellite                                      +  
- 

GACGACTTGAAAAATGACGAAATC� 
CATATTCCAGGTCCTTCAGTGTGC 

LINE1 (L1Md-A2)                               + 
- 

TCCCAACATAGAGTCCTGAG 
TCAGTGGGCAGAGTATTCTC 

Primers used for meDIP 
MusD f 
MusD r 

CCCTTCCTTCATAACTGGTGTCGCA 
TAGCATCTCTCTGCCATTCTTCAGG 

IAP f 
IAP r 

CTCCATGTGCTCTGCCTTCC 
CCCCGTCCCTTTTTTAGGAGA 

Mage f 
Mage r 

TTGGTGGACAGGGAAGCTAGGGGA 
CGCTCCAGAACAAAATGGCGCAGA 

Gapdh f 
Gapdh r 

CTCTGCTCCTCCCTGTTCC 
TCCCTAGACCCGTACAGTGC 

Sycp1 f 
Sycp1 r 

TGGACCAACCGTTAAATTGAG 
GCGCTCCTTTATGAAGACGA 

Brdt f 
Brdt r 

GCGGGTGAGTCCCATAAAG 
CGATCACCCTTTCAGTTTGC 

Interg3 f 
Interg3 r 

ATGCCCCTCAGCTATCACAC 
GGACAGACATCTGCCAAGGT 

Rho f 
Rho r 

CTGGAGCCATGTGGAGAAGT 
GGTGGAGGCCCTTAGGTAAA 

Il12a f 
Il12a r 

CAGTGTCCACGATGGAGAGA 
ACCACACTCAGAGCGAAAGC 

Lrrtm2 f 
Lrrtm2 r 

CTTCCCGCAGCTGTTAGTTC 
TCGCAGCACATAAGCAAATC 

H19_ICR f 
H19_ICR r 

GCATGGTCCTCAAATTCTGCA 
GCATCTGAACGCCCCAATTA 

Hprt f 
Hprt r 

AGCGTTTCTGAGCCATTGCT 
GCAAAAAGCGGTCTGAGGAG 

Dazl f 
Dazl r 

AATGCCCGCAGAAATAGAAA 
TTCGGGCATTTATTTGAAGG 

Spo11 f 
Spo11 r 

CCAAACCAGGCAGAAATGTT 
ATCTCTGGGGTCGAGGTTTT  

Gtl_ICR f 
Gtl_ICR r 

CTTTTGTTGACCACAACCCTTG 
AATCCCACCACAGCTTCTTAGC  

Tuba3 f 
Tuba3 r 

GCGCAGATAACATACGCAGA 
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3.3. Genetics and epigenetics: stability and plasticity during cellular 

differentiation 

Mohn F. and Schübeler D. 
 

 

Summary 

From an evolutionary perspective, epigenetic repressive pathways such as DNA 

methylation and Polycomb co-evolved in parallel to the dramatic increase in genome-size 

observed in vertebrates. Based on this it was previously proposed that evolution could only 

proceed owing to these novel inventions which might serve to lower the load of non-specific 

transcription in genomes that mostly consist of repetitive and transposable elements (Bestor, 

1990; Bird, 1995). This model predicts partitioning of the genome into accessible genic and 

regulatory regions and inaccessible repetitive and non-coding regions mediated in part by 

epigenetic pathways. In this review we propose that epigenetic mechanisms not only act on 

such a global scale but also locally help to damped spurious transcription at CpG-rich 

promoters which mostly reside in transcriptionally permissive chromatin even when inactive. 

We further argue that DNA sequence composition has a strong impact on the epigenetic 

landscape and the target specification of repressive pathways such as Polycomb, DNA 

methylation and H3K9 methylation.  

Vertebrate genomes are globally depleted of CpG dinucleotides, which is at large due 

to the mutagenic effect of DNA methylation (Weber et al., 2007). CpG islands are protected 

against DNA methylation in the germline and therefore kept their original CpG content (see 

Introduction). While most genes contain a CpG island in their promoter about 20-30% of 

mammalian promoters are CpG-poor (Ioshikhes and Zhang, 2000; Saxonov et al., 2006). 

Beyond their differential sequence composition, these two promoter classes are regulated in 

fundamentally distinct ways in terms of transcription initiation and also regarding epigenetic 

mechanisms. CpG-poor promoters essentially behave like invertebrate genes and in general 

appear to not require additional repression when activating signals are missing. CpG-rich 

promoters on the other hand always reside in transcriptionally permissive chromatin and 

therefore might require active repression to safe-guard this state and to prevent illegitimate 

transcription initiation in absence of specific signals. Remarkably, the Polycomb pathway 

almost exclusively targets CpG-rich sequences (Bernstein et al., 2006; Mikkelsen et al., 

2007; Mohn et al., 2008; Tanay et al., 2007) for repression which is in line with our 

hypothesis. But considering that CpG island promoters mostly control ubiquitously expressed 

genes, this is not very intuitive. Nevertheless, we find that over 1000 tissue-specific genes 

are controlled by CpG-rich promoters. Remarkably CpG-rich promoters appear evolutionary 

older than CpG-poor promoters, which suggests that Polycomb targets evolutionary ancient 
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genes which might have been more ubiquitously expressed in invertebrates but then 

acquired a more specific regulation to allow further evolution of organismal complexity. This 

would also explain the absence of additional repressive modifications at tissue-specific CpG-

poor promoters because many of these genes are specific to the vertebrate and/or 

mammalian lineage and evolved coinciding with or after the genome-wide depletion of CpGs. 

Taken together, sequence features and epigenetic pathways might have co-evolved 

in order to partition the genome. The resulting accessible regulatory regions and inaccessible 

repetitive and non-coding regions facilitate appropriate gene regulation and prevent spurious 

transcriptional initiation outside of promoters on a global scale and at tissue-specific CpG-

rich promoters in a locus-specific fashion. 

 

 

 



Genetics and epigenetics: stability and
plasticity during cellular differentiation
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Review
Stem cells and multipotent progenitor cells face the
challenge of balancing the stability and plasticity of their
developmental states. Their self-renewal requires the
maintenance of a defined gene-expression program,
which must be stably adjusted towards a new fate upon
differentiation. Recent data imply that epigenetic mech-
anisms can confer robustness to steady state gene
expression but can also direct the terminal fate of lin-
eage-restricted multipotent progenitor cells. Here, we
review the latest models for how changes in chromatin
and DNA methylation are regulated during cellular differ-
entiation. We further propose that targets of epigenetic
repression share common features in the sequences of
their regulatory regions, thereby suggesting a co-evol-
ution of epigenetic pathways and classes of cis-acting
elements.

Epigenetic mechanisms and chromatin modulate gene
expression
The tight control of gene expression programs at a given
developmental stage is crucial to govern cell function and
identity. The balance of stability versus plasticity in tran-
scriptional programs presents an inherent regulatory chal-
lenge for developing organisms [1]. This difficulty is most
obvious in mammalian embryonic stem (ES) cells, which
have the potential to develop into every cell type of the
adult organism. At the same time, these cells can be readily
maintained in a pluripotent state ex vivo under defined
culture conditions but can also be induced rapidly to
differentiate.

The most important mediators for turning on or off
expression of particular genes are DNA-sequence-specific
transcription factors. Over the past few years, a large body
of evidence indicated that chromatin-based regulatory
mechanisms, in addition to transcription factors, could
have important roles in establishing and maintaining
transcriptional programs. This layer of control comprises
post-translational modifications of DNA-bound histones,
DNA methylation and chromatin remodeling [2,3]. All
these pathways are currently referred to as being epige-
netic, which, by stringent definition, involves a sequence-
independent inheritance pattern during cell division in the
absence of the initial trigger [4]. Currently, however, the
mode of propagation is only known for DNA methylation
[5], whereas several models have been proposed for post-
translational histone modifications, including the involve-
ment of positive-feedback loops [2,6,7]. Such models are
Corresponding authors: Mohn, F. (fabio.mohn@fmi.ch); Schübeler, D.
(dirk@fmi.ch)
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compatible with the phenotypes observed in relevant
knockout models and predict a self-perpetuation of modi-
fications after the deposition of new nucleosomes, which is
supported by protein interaction data [2,6,8]. However, it is
inherently difficult to clearly distinguish between
sequence-independent self-propagation of chromatin
states and a re-establishment after cell division mediated
by sequence-dependent recruitment of proteins or RNA,
which in turn modify chromatin. To circumvent a discus-
sion of the use of the term epigenetics, we will hereafter
refer to a recent definition, which states that lasting chro-
matin changes can be termed epigenetic irrespective of
proof of inheritance [9] (this nevertheless emphasizes the
need for further investigation into if and how chromatin
modifications can be inherited).

In eukaryotes, the packaging of DNA into nucleosomes
provides a basic layer of repression because it reduces DNA
access [10–12]. In a simplified view, any additional change
in chromatin structure could thus further restrict access
for DNA-binding factors or relieve repression and, there-
fore, potentially reside upstream of sequence-based regu-
lation. These epigenetic modifications are thought to
modulate DNA accessibility for transcription factors and
the transcription machinery itself. Although the exact
molecular mechanisms and their interplay with epigenetic
modifications in controlling accessibility remain incomple-
tely understood, it is hypothesized that they operate by
directly blocking transcription-factor binding and/or by
establishing higher-order chromatin structures, which
would be either permissive or restrictive for transcription.
The best studied example for the latter is histone H4 Lys16
(H4K16) acetylation, which can prevent higher-order
structure formation, thus, indicating that H4K16 acety-
lation is directly involved in mediating an accessible chro-
matin state [13]. Conversely, it seems that Polycomb target
genes localize to structures termed Polycomb bodies and
adopt a higher-order confirmation, which excludes active
chromatin and is thought to enhance repression [14,15].

Here, we review recent insight into epigenome changes
during cellular differentiation and their potential impact on
gene regulation and further developmental potential. In
particular,wediscuss evidence thatCpG-rich andCpG-poor
promoters are differentially regulated by epigenetic path-
ways, which is compatiblewith amodel of genome partition-
ing through chromatin modifications in vertebrates.
Genome partitioning by chromatin
Over evolutionary time, genome sizes increased
along with organismal complexity. For example, the
2.005 Available online 29 January 2009 129
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roundworm Caenorhabditis elegans genome (�108 base
pairs [bp]) is 30 times smaller than the human genome
(�3 � 109 bp). However, both contain approximately the
same number of genes (�20 000), showing that increased
organismal complexity and genome size is not paralleled
by a rise in gene number (the so-called C-value enigma
[16]). In humans, and vertebrates in general, genome
expansion results largely from the accumulation of repeti-
tive and transposable elements, which is suggested to be a
consequence of obligatory sexual reproduction [17]. As a
result, only a small portion of vertebrate genomes encode
proteins or regulatory RNA [18]. The transcriptional
machinery therefore faces the challenge of locating cis-
regulatory regions in a ‘sea’ of seemingly non-functional
DNA sequence. One might expect that the complexity of
sequence motifs that are recognized by transcription
factors has similarly increased to enable specific binding
to defined genomic sites. Surprisingly, however, eukar-
yotic transcription-factor-recognition motifs tend to be as
short (6–8 bp) as those in prokaryotes and, in many cases,
their binding sites are degenerate [19]. To illustrate the
problem, consider that any 6-mer recognition motif occurs
by chance every 4096 bp. If we assume a random sequence
distribution, this would predict >781 200 binding sites in
the human genome, which, for a given transcription
factor, needs to be multiplied by the number of degen-
erate motifs it can recognize. In vivo, only a subset of
these millions of sites is occupied, raising the question of
how specificity is generated. One prominent way is coop-
erative binding of multiple factors [20]. In addition, the
large genomes of higher eukaryotes require further struc-
turing to direct transcription factors to appropriate tar-
gets and to reduce random binding, which in turn would
dilute the pool of available factors and potentially lead to
inappropriate gene regulation [21]. Epigenetic pathways
that modify chromatin and DNA also coevolved along
with increasing genome size. They are thus bona fide
candidates to function in a potential partitioning of the
genome into ‘accessible’ genic and regulatory compart-
ments and ‘inaccessible’ repeat-containing regions.
Indeed, previous work indicated that two major evol-
utionary steps, the origin of eukaryotes and the origin
of vertebrates, were only possible owing to the parallel
evolution of new mechanisms to control ‘transcriptional
noise’ as an otherwise unavoidable by-product of increas-
ing genome complexity [22]. The prokaryote-to-eukaryote
transition was paralleled by the appearance of nucleo-
somes, which, compared with naked DNA, reduce the
chance of aberrant transcription initiation [10,11]. The
invertebrate-to-vertebrate step was accompanied by the
advent of genome-wide DNA methylation, a modification
that enables efficient transcriptional repression [23,24]. A
second major repressive epigenetic pathway that co-
evolved in multicellular organisms along with increasing
genome size and organismal complexity is mediated by
Polycomb group (PcG) proteins. PcG proteins underwent
marked expansion over evolutionary time [25], which is in
line with the concept that increasing genome size requires
additional repressive mechanisms to enhance specificity
of transcription initiation and suppression of ‘transcrip-
tional noise’.
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DNA methylation shapes mammalian promoter
structure and stabilizes pluripotency shut-down during
differentiation
DNA methylation is an efficient epigenetic repression
pathway, which, in vertebrates, occurs only at cytosines
in the context of CpG dinucleotides. It is catalyzed by three
DNA methyltransferases (Dnmts), which are all essential
[5]. Dnmt1- or Dnmt3b-deficient mouse embryos die by
embryonic day 10.5 and Dnmt3a-deficient mice are born
occasionally but suffer serious malformations and die
within weeks [5]. Species that undergo widespread DNA
methylation in their genome have lost CpG dinucleotides
over evolutionary time. This is a direct consequence of
DNA methylation because it results from increased C-to-
T transitions that occur after deamination of methylated
cytosines [26–28]. This loss, however, is non-uniform
because certain regions are ‘CpG-rich’ and display the
expected frequency of CpGs. They are referred to as
CpG islands [29,30] and represent a large fraction of cis-
regulatory sequence because�60% of all mammalian gene
promoters are CpG-rich [26,31,32]. In addition, several
studies indicate that many non-promoter CpG islands
probably serve an important regulatory function as distal
regulators such as insulators and enhancers [33]. The
localized depletion of CpGs results in a characteristic
bimodal distribution of CpGs across vertebrate genomes
(Figure 1). In invertebrates, DNA methylation is only
present in some species, in which it occurs in mosaic
patterns that are not genome-wide; consequently, no
depletion or resulting bimodal CpG distribution is
observed [34,35] (Figure 1b).

Recent genome-wide surveys revealed that DNA meth-
ylation at CpG-rich sequences is very low in stem cells [36–

38]. During cellular differentiation, hypermethylation can
occur at CpG island promoters and at CpG-rich sequences
outside of promoter regions [37,38]. Remarkably, almost no
demethylation is detected, indicating that DNA-methyl-
ation-mediated epigenetic repression increases during lin-
eage-specification. Direct comparisons of differentiated cell
types support this conclusion [28,39–41]. Notably,
sequence-based detection methods such as microarrays
and high-throughput sequencing, which have been
employed for these studies, cannot comprehensively
measure repetitive DNA, leaving the dynamics of DNA
methylation at non-unique sequences an open question.

Many of the identified targets of differentiation-coupled
de novo DNA methylation are promoters of stem-cell- and
germline-specific genes [28,38,39]. One interpretation of
this selectivity is that DNA methylation might stably
repress the pluripotency program and prevent its aberrant
reactivation and de-differentiation under physiological
conditions. Experimental support for this model comes
from a recent report showing that reprogramming of
somatic cells into ‘induced pluripotent’ stem (iPS) cells is
greatly enhanced upon treatment with the DNA methyl-
transferase inhibitor 5-aza-cytidine [42]. Collectively, the
genetic and molecular data are compatible with a role for
DNA methylation in the shut-down of pluripotency and,
eventually, cellular specification. Nevertheless, formal
proof for this model is still missing because the require-
ment of DNA methylation for development could reflect its



Figure 1. CpG distribution is markedly different in the genomes of vertebrates and invertebrates. Invertebrate genomes show homogenous distribution and no depletion of

CpG dinucleotides. Vertebrate genomes, by contrast, are globally depleted for CpG dinucleotides, except at CpG-islands, which often mark regulatory elements such as

enhancers and promoters. (a) Representative examples of mouse promoters with up to 40-fold different abundance of CpG dinucleotides. CpG-poor: olfactory receptor 381

(Olfr381) and estrogen-related receptor b (Esrrb); CpG-rich: HoxA1. In each case, a 1.3-kb window around the transcription start site (red arrow) is shown. Each vertical line

represents an individual CpG dinucleotide. (b) CpG dinucleotide distribution at promoter sequences in a vertebrate (Mus musculus) and two invertebrate (C. elegans and D.

melanogaster) genomes. For each genome, we calculated the CpG content of annotated transcription start sites and calculated the relative abundance as the ratio of

observed CpGs versus the number of CpGs expected based on sequence composition assuming equal abundance of all bases in a 1.3-kb window. The resulting ratio is

plotted as a histogram for all promoters. Vertebrates (here, mouse) show a bimodal distribution of promoter CpGs with two major peaks corresponding to CpG-poor (left

peak) and CpG-rich (right peak) promoters. Invertebrates, illustrated by D. melanogaster and C. elegans, do not show such a distribution; instead, the major peak of CpG

content is close to 1, indicating that invertebrates contain the expected number of CpGs in their promoters.
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function in repeat inactivation [24] and maintenance of
differentiated states rather than their establishment.

Profound differences in the regulation of CpG-rich
versus CpG-poor promoters
In vertebrates, CpG-rich and CpG-poor promoters differ
not only in sequence and DNA methylation but also in the
spatial precision of transcriptional initiation and in their
chromatin states. Massively parallel Cap-analysis gene
expression (CAGE)-tag sequencing revealed that tran-
scription initiates at defined nucleotide positions in
CpG-poor promoters, which mostly rely on the initiation
factor TATA-box-binding protein (TBP). At CpG-rich pro-
moters, transcriptional start sites (TSS) are loosely defined
and initiation can occur in a region spanning 10–60 bp
[32,43]. This finding seems to contrast with the general
precision of initiation reported for in vitro systems, how-
ever, these biochemical assays were performed almost
exclusively with TBP-dependent CpG-poor promoters.
The underlying difference(s) in TSS definition and regula-
tion remains elusive, but a hint comes from genome-wide
profiles of histone modifications (see later).

H3K4 methylation at CpG islands
Several recent studies show a differential distribution of
active chromatin marks, such as methylation of Lys4 of
histone H3 (H3K4me), at CpG-rich versus CpG-poor pro-
moters. H3K4me creates a chromatin signal that is recog-
nized by a large number of multiprotein complexes and
which has been implicated in many gene activation path-
ways [44,45]. CpG-poor promoters harbor di- or tri-meth-
ylated H3K4 only when the gene is actively transcribed.
This is reminiscent of the situation in invertebrates in
which promoter H3K4methylation reflects the active state
[46,47]. By contrast, CpG-rich promoters behave differ-
ently: they are methylated at H3K4 constitutively and
independently of the transcriptional activity of the corre-
sponding gene [28,38,48,49]. Furthermore, a study in T
cells showed that CpG-rich promoters are hyperacetylated
at H3 in a transcription-independent manner [50]. Inter-
estingly, low levels of RNApolymerase (Pol) II levels can be
detected atmany of these inactive CpG islands [49], raising
the question of whether active histone modifications are a
cause or consequence of this low and inefficient Pol II
recruitment. It is conceivable that these promoters, albeit
inactive, reside in an ‘open’, transcriptionally permissive
environment, which leads to occasional Pol II binding but
does not enable productive elongation [51]. This state,
however, requires the absence of DNA methylation
[28,36–38], implying that unmethylated CpG-rich
elements are recognized by trans-acting factors that med-
iate the unique chromatin state of CpG islands (Figure 2).
Such factors could include chromatin modifying enzymes
(e.g. mixed-lineage leukemia [MLL] H3K4methyltransfer-
131



Figure 2. CpG-poor and CpG-rich promoters are differentially regulated, which is

reflected in their chromatin configuration in the transcriptionally inactive state.

CpG-poor promoters, which are often regulated via TBP (blue)-dependent

pathways, only carry H3K4me and H3 and H4 acetylation (H3/H4ac) marks

(yellow) when actively transcribed by Pol II (red). CpG-rich promoters are mostly

DNA unmethylated (white lollipops), decorated by H3K4me and H3/H4ac and

display low levels of Pol II even when inactive. This state could be mediated by

proteins that recognize unmethylated CpG motifs, such as CXXC domain proteins

(X, orange). When repressed by PcG proteins (purple), the active environment

persists, indicating transient repression. Upon DNA methylation (black lollipops)

of CpG-rich promoters, active histone modifications and Pol II can no longer be

detected, indicating more stable silencing.
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ases) containing CXXC domains, which bind preferentially
to unmethylated CpGs [52]. Moreover, this ‘active’ chro-
matin environment at CpG-rich sequences could protect
regulatory elements against DNA methylation and a
resulting loss of ‘accessibility’. Direct evidence for H3K4
methylation protection against DNA methylation comes
from a structural analysis of Dnmt3L, a germline-specific
co-factor essential for de novo methylation of imprinting
control regions [53,54]. Dnmt3L in complex with the de
novo methyltransferase Dnmt3a can only bind nucleo-
somes that are unmodified at H3K4, whereas H3K4 meth-
ylation blocks this interaction and prevents DNA
methylation. Hence, it is tempting to speculate that an
H3K4-dependent pathway also operates during stem-cell-
differentiation-coupled de novomethylation. By definition,
de novo methylation can only occur at unmethylated
sequences, which, at large, are the CpG-rich sequences
in the genome [21,28,36–38,40]. The fact that H3K4 meth-
ylation and DNA methylation are mutually exclusive [28]
predicts that de novo methylation of CpG-rich sequences
coincides with a loss of H3K4 methylation, which is indeed
the case during stem-cell differentiation [37,38].
132
Only a small fraction of CpG-rich sequences is de novo
DNAmethylated during cellular differentiation, hence, the
majority of CpG-rich regulatory regions in mammalian
genomes are accessible at any developmental stage. By
contrast, the non-regulatory CpG-poor part of the genome
would reside in a less accessible chromatin environment,
which in turn might reduce the binding of transcription
factors to randomly occurring sites.

In support of the concept that DNA sequence features
are sufficient to establish an accessible chromatin state, a
recent study in mosaic mice carrying human DNA indi-
cated that homologous transcription factors can establish
tissue-specific transcription and H3K4 methylation in clo-
sely related species [55].

Lessons from Polycomb
PcG-mediated gene repression regulates gene transcrip-
tion during development. Originally discovered in Droso-
phila melanogaster as a system that controls Hox gene
expression for correct body patterning [56,57], Polycomb
has a broad regulatory potential in mouse and human ES
cells because it targets many developmental transcription
factors [58,59]. PcG-mediated repression entails histone
H3 Lys27 trimethylation (H3K27me3), which is set by the
Polycomb repressive complex 2 (PRC2) [56,57]. Polycomb
repression can be overcome upon gene activation by
specific stimuli once pluripotent cells are induced to differ-
entiate, whereas non-induced Polycomb targets maintain
H3K27me3 and PRC2 occupancy [58]. These data led to the
model that Polycomb targets are specified early in devel-
opment and continue to be repressed unless activated.
However, this view has been challenged by a series of
recent studies that reveal additional, non-stem-cell-speci-
fied Polycomb targets in various primary and transformed
mammalian cell types [38,60–66]. For example, in
neuronal progenitors, genes required for further develop-
mental fates comprise differentiation-specific PcG targets
[38]. Together, these findings support a model in which
Polycomb repression could act not only in pluripotent stem
cells to ensure proper lineage choice, but also in progenitor
cells to guide their further developmental potential by
ensuring proper regulation of subtype-specific genes.
These findings further exemplify that stem cells are not
necessarily unique with regard to the epigenetic mechan-
isms they employ but, rather, are unique in the genomic
targets of these pathways. Cell-type-specific recruitment is
probably mediated by transcription factors. For example,
many targets of Oct4, a key transcription factor in the
control of stem-cell pluripotency, carry the repressive
H3K27me3 mark, pointing to a mechanism by which
PcG proteins can be recruited to cell-type-specific targets
[58]. Moreover, in cancer cells, PcG proteins are recruited
by the transcription factor Snail1 to silence E-cadherin
expression, which often correlates with increasing inva-
siveness and malignancy of the cancer owing to detach-
ment from the extracellular matrix upon E-cadherin loss
[67].

Several recent reports showed that H3K27me3 in mam-
malian cells is largely confined to CpG-rich sequences
[33,38,62,68]. This is unexpected because the majority of
tissue-specific genes, the bona fide targets of Polycomb



Figure 3. Genes can be grouped as housekeeping or tissue-specific based on a broad or restricted activity in different tissues. Most housekeeping genes are under the

control of CpG island promoters. Nevertheless, many CpG island promoters control tissue-specific genes, which tend to regulate ancestral genes. (a) Gene expression data

for 61 mouse tissues were retrieved from Symatlas (http://symatlas.gnf.org) [87] and CpG content was determined for all promoters in the dataset (n = 13 729) as described

in Figure 1. A histogram is shown of the CpG ratios for all genes, including both tissue-specific and broadly expressed housekeeping genes. All genes display a similar

bimodal distribution (top left) as shown in Figure 1 [69]. As expected, ubiquitously expressed ‘housekeeping’ genes (expression value >200 in >50 tissues out of 61;

n = 5481) are mostly CpG-rich. However, tissue-specific genes (expression value >200 in <11 tissues out of 61; n = 5294) show almost equal numbers of CpG-rich and -poor

promoters. These CpG-rich tissue-specific genes are preferably regulated by DNA methylation and Polycomb, whereas CpG-poor promoters seem not to require active

repression. (b) Interestingly, ‘old’ genes (i.e. conserved from invertebrates) are mostly CpG-rich, whereas ‘newer’ genes, which arose in the vertebrate lineage, are more

often controlled by CpG-poor promoters.
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regulation, are under the control of CpG-poor promoters
[69] (Figure 3). This surprising preference towards CpG-
rich elements indicates a sequence contribution to the yet-
to-be-determined targeting mechanism of the Polycomb
machinery (see later). It furthermore provides a DNA-
sequence-based explanation for the existence of so-called
‘bivalent’ chromatin domains, which harbor both H3K4
methylation and H3K27 methylation. As outlined earlier,
CpG-rich promoters are ubiquitously marked by H3K4me.
Thus, any CpG-rich sequence targeted by Polycomb will
consequently form a bivalent domain carrying both the
‘activating’ H3K4 and the ‘repressive’ H3K27 methylation
mark [68]. This model is compatible with the finding that
bivalent domains are not a unique feature of pluripotent
cells but, instead, are also present in differentiated cell
types and can even form de novo during cellular differen-
tiation [38,61–64]. In agreement with a CpG island expla-
nation for bivalent chromatin, both marks are mutually
exclusive inD.melanogaster [70], the genome of which does
not contain global DNA methylation or CpG islands.

It remains to be tested if some aspects of the regulatory
functions of Polycomb are unique to mammalian (and
probably vertebrate) promoters, which display bivalency.
One possibility is that, in addition to the function in
invertebrates, Polycomb repression could be used to reduce
partially intrinsic transcriptional noise at selected CpG
island promoters because these reside in an ‘accessible’
chromatin state with detectable levels of Pol II even when
inactive (Figure 2 and Box 1).

Control of CpG-poor promoters
In vertebrates, CpG-poor promoters are largely DNA
methylated independently of activity state. When they
are not active, they are neither H3K4 methylated nor
bound by Pol II [38,49,62]. Thus, they are reminiscent of
inactive promoters in lower eukaryotes such as yeast, in
which nucleosomal packaging and the resulting decreased
sequence accessibility seem sufficient to mediate a stable
off-state [10]. Similarly to the general situation in yeast,
and unlike CpG-rich promoters, CpG-poor promoters con-
tain very precise start sites that are set by sequence-
specific activators (see earlier). Interestingly, Orford and
colleagues reported a set of CpG-poor promoters in hema-
topoietic progenitor cells (erythroid-myeloid-progenitors
[EML]), which show H3K4 dimethylation (H3K4me2) at
lineage-specific targets in the absence of transcription [71].
These EML-specific H3K4me2-marked promoters control
several hematopoietic genes, which are expressed in either
erythroid or myeloid lineages. Upon stimulation of EML
cells towards erythroid differentiation, H3K4me2 positive
erythroid genes are activated and retain H3K4me2,
whereas myeloid-specific genes remain silent but lose
the H3K4me2 mark. Hence, in this system, H3K4 meth-
ylation seems to mark lineage-specific genes in progenitor
cells for later activation. In the absence of transcription,
H3K4 methylation might lead to a more accessible chro-
matin environment at these CpG-poor promoters and it
remains to be tested whether they are also occupied by Pol
II or Polycomb, similarly to the situation at CpG-rich
promoters.

Despite this example, ‘open’ chromatin is usually absent
at inactive CpG-poor promoters. This finding might
explain why they tend to rely less frequently on additional
epigenetic repression, illustrated by the marked bias of
Polycomb binding for CpG-rich promoters [33,68]. At the
same time, H3K9 methylation and heterochromatin
133
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Box 1. Is lineage choice driven by transcriptional

oscillations from CpG-rich promoters?

Most evidence in mammalian systems and derived models indicates

that tight control of gene ‘on’ and ‘off’ states defines cell identity. In

many prokaryotic systems, however, stochastic gene expression

and oscillations of transcription levels seem to function as triggers

or switches in decision making [81]. Such events also occur in

mammalian cells, for example, in the stochastic expression of

odorant receptors in the mouse sensory neurons [82]. A recent

report showed that clonal populations of mouse hematopoietic

progenitor cells sorted for either high or low expression of the stem-

cell marker Sca-1 can reconstitute the full parental spectrum of Sca-1

expression within a few days after isolation [83]. Notably, not only is

Sca-1 expression different, but the entire expression program is

markedly altered between the sorted populations and reverts back

to the average of the unsorted pool of hematopoietic progenitors

within a few days. Cells expressing low Sca-1 levels are prone to

erythroid differentiation, whereas cells expressing high Sca-1 levels

are more prone to differentiate into a myeloid lineage, indicating

that these apparently random fluctuations have functional implica-

tions [83]. Interestingly, recent data showed that ES cells are also

more heterogeneous than previously thought and seem to oscillate

between different states. For example, Nanog, a transcription factor

important for maintenance of pluripotency, and Stella, a protein

specifically expressed in pre-implantation embryos and the germ

line, show fluctuating expression in ES cells, which has an impact

on the differentiation potential of the cells [84,85]. On a related note,

caudal type homeobox 2 (Cdx2) and Eomes, two key transcription

factors of the trophoblast lineage, show stochastic expression in the

early blastocyst, which eventually is sufficient to promote expres-

sion of the Elf5 transcription factor and induction of trophoblast

differentiation [86]. However, in the inner cell mass (ICM) and in ES

cells, the Elf5 promoter is DNA methylated and the sporadic activity

of Cdx2 and Eomes is not sufficient to activate Elf5. Consequently,

the ICM remains pluripotent and will give rise to all cells of the

embryo but will not contribute to trophectoderm [86]. These

examples illustrate how stochastic gene expression, in combination

with epigenetic pathways, can contribute to cell-fate decision

switches. Moreover, it is tempting to speculate that these random

fluctuations are facilitated by promoter structure and, thus, mostly

occur at CpG-rich promoters, which seem to be less stringently

controlled than CpG-poor promoters. Along the same line, it will be

interesting to determine if other genes show similar behavior and

how this relates to decision making in vivo.
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protein 1 (HP1), which binds H3K9 methylated nucleo-
somes, seem to confer repression to some CpG-poor pro-
moters [62,72]. These H3K9 targets are often members of
large gene families such as olfactory receptors and Krüp-
pel-associated box (KRAB)-zinc finger genes, which are
clustered in the genome. Their repetitive nature might
explain the recruitment of H3K9 and HP1, which have a
crucial role in silencing centromeric and intergenic repeats
at constitutive heterochromatin [8]. Remarkably, H3K9
methylation does not occur at CpG-rich promoters [62],
indicating that H3K9 and H3K27 methylation function at
separate targets that differ in sequence composition.

Promoter structure and epigenetic regulation
Transient and more stable forms of epigenetic repression
are targeted to particular promoter classes based upon
CpG content. The observed bias of tissue-specific DNA
methylation and Polycomb repression toward CpG islands
seems surprising because CpG islands are thought to
mostly regulate housekeeping genes [43,69]. This, how-
ever, is an oversimplification. Several thousand CpG-rich
promoters control genes that are expressed in a tissue-
134
specific manner (Figure 3). These promoters reside in
accessible chromatin, as indicated by H3K4 methylation,
and low, but detectable, Pol II levels (Figure 2). Their
chromatin state might reflect a form of genome partition-
ing thatmaintains regulatory regions accessible and free of
DNA methylation. As a consequence, this open structure
might require active repression via chromatin and DNA
methylation to stabilize gene ‘off’ states. The transcription-
ally permissive environment at CpG-rich promoters could
furthermore result in stochastic transcription from inac-
tive or oscillatory expression at active promoters, which
has been implicated in contributing to cell fate decisions
(Box 1). Moreover, recent studies found divergent short
sense and antisense transcripts at the transcription start
sites of active genes, which might reflect less stringent
control of transcription initiation owing to the accessible
environment at CpG-rich promoters [73–76].

How did these remarkably different promoter classes
evolve? To maintain high concentrations of CpG over
evolutionary time, CpG islands must be unmethylated in
the germline. At first glance, tissue-specific genes con-
trolled by CpG islands tend to have arisen in invertebrates
before the advent of global DNAmethylation. For example,
nearly all Hox genes are under the control of CpG island
promoters. Conversely, vertebrate-specific classes of genes,
such as those encoding immunoglobulins or olfactory
receptors, tend to be under the control of CpG-poor pro-
moters (Figure 3). It thus seems plausible that promoter
classes primarily reflect the evolutionary history of the
genes they control rather than their precise biological
function. Further work is required to better understand
the evolution of cis-regulatory regions; however, CpG-rich
and CpG-poor promoters seem to be regulated differently,
not only at the level of DNA methylation but also in their
selective use of the Polycomb system.

Concluding remarks and future perspectives
Stem-cell-based differentiation models have proven infor-
mative for studying the cellular changes that accompany
the loss of pluripotency and terminal differentiation.
Because these systems can be genetically modified and
generate pure populations of primary, non-transformed
cells with defined developmental potential and function,
they will continue to provide important information.
Indeed, in this context, the application of modern genomics
and proteomics tools can be used to identify regulatory
principles that can be tested in vivo. Such approaches will
also guide our understanding of epigenetic gene regulation;
however, limitations of these systems should not be
ignored. Rapidly dividing stem cells are often compared
with post-mitotic differentiated cells bearing the risk that
‘stem-cell-specific’ characteristics are actually general fea-
tures of mitotically dividing cells. In addition, current in
vitro stem-cell systems do not enable the study of asym-
metric cell division, a key feature of stem-cell maintenance
in vivo, nor the testing of potential asymmetric segregation
of epigenetic information on chromatin.

Equally importantly, most current assays that map
sites of epigenetic modifications, such as chromatin immu-
noprecipitation (ChIP) coupled to microarrays or massive
parallel sequencing, cannot account for heterogeneity
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within pools of cells. New developments that enable ChIP
to be performed on few cells [77] or high-throughput
sequencing of bisulfite-converted DNA [37,78] will increase
resolution and enable the identification of differences in
populations of cells as in rare primary cells, for example, in
the early embryo. Another important question for the
future concerns the role of non-coding RNAs in differen-
tiation processes; indeed, these RNAs can target sites of
chromatin changes in several organisms, including
vertebrates, and help to regulate DNA methylation in
plants [79].

In this review, we have highlighted the interplay be-
tween promoter sequence features and chromatin and
DNA modifications. A logical next step will be to identify
the exact contribution of a given DNA sequence motif to
chromatin-regulatory processes. Such information might
provide a key to understanding targeting pathways and
the propagation of epigenetic states and potentially link
them to extracellular signaling pathways that are crucial
for stem-cell function in vivo [80].
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Several pathways exist that are involved in chromatin-based gene repression. During 

my PhD studies I have investigated the genomic distribution and developmental plasticity of 

DNA methylation and Polycomb-mediated repression as two prominent modes of gene 

silencing. My results together with recent data from other groups suggest a stable mode of 

repression mediated by DNA methylation and/or H3K9 methylation and HP1, which is 

responsible for silencing repetitive elements and a number of gene promoters. This 

repression is set up early in development and appears incompatible with active chromatin 

and high levels of transcription. Polycomb mediated repression on the other hand appears to 

be more dynamic, cell state specific and can be overcome by specific activation signals. This 

would suggest a more transient mode of repression, which is dedicated to safe-guard “noisy” 

lineage specific CpG island promoters residing in transcriptionally permissive chromatin.  

Below I will discuss the main findings of my PhD project and the impact of the 

underlying DNA sequence on observed epigenetic targeting and reprogramming. 

 

4.1. Targeting of DNA methylation and its relationship to H3K4 methylation  

The question how CpG islands remain unmethylated is fundamental for our 

understanding of the preservation of CpG islands over evolutionary time. Various evidence 

suggest that H3K4 methylation protects CpG islands form DNA methylation and thus from 

loss of CpGs due to DNA methylation dependent mutations. Hence the mechanism by which 

CpG-rich sequences are recognized and protected is likely to provide insight into the 

targeting of DNA methylation. Further it might also shed light on the shaping of genome 

sequence via interplay of antagonistic genetic and epigenetic pathways over evolutionary 

time. 

We and others have shown that CpG-rich sequences are generally marked by 

H3K4me2/3 independent of cellular state and transcription (Guenther et al., 2007; Mikkelsen 

et al., 2007; Mohn et al., 2008; Weber et al., 2007). Most of these CpG-rich sequences are 

not DNA methylated in somatic cells, representing the only regions in vertebrate genomes 

which are not DNA methylated by default. Further, in order to maintain their CpG content, 

these regions have to be unmethylated in the germline (Antequera and Bird, 1993). Notably 

those CpG islands which are DNA methylated in somatic cells are devoid of H3K4 

methylation (Meissner et al., 2008; Mohn et al., 2008; Weber et al., 2007) and our results 

demonstrate that H3K4 methylation is lost coinciding with de novo DNA methylation during 

cellular differentiation. This mutual exclusivity of DNA methylation and H3K4 methylation is 

compatible with a model that H3K4 methylation could protect CpG islands from becoming 

DNA methylated. If true, the H3K4 methylation mark would have to be removed by 

sequence-specific recruitment of H3K4 KDMs. Consequently, DNA methylation would not 
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involve sequence-specific recruitment of DNMTs but rather occur due to loss of protection 

from DNA methylation, which appears to be the default state for the rest of the genome. 

Alternatively, H3K4 KDMs and DNMTs could be recruited together as part of a “de novo DNA 

methylation complex”. In a third scenario, DNMTs could be recruited in a sequence-specific 

fashion and confer de novo methylation of an H3K4 methylated locus. The subsequent loss 

of H3K4 methylation could be passive via cell division, if the DNA methylation interferes with 

further activity of H3K4 KMTs. In our analysis we find that H3K4 methylation levels are 

dramatically reduced at the neuronal progenitor state when de novo DNA methylation has 

occurred. Interestingly, K4 levels at de novo methylated promoters are even further reduced 

during terminal differentiation (Mohn et al, 2008, Fig. 3A), which would support the passive 

dilution model upon targeted de novo DNA methylation. Such local removal of active histone 

modifications and putative compaction of chromatin around methylated CpG islands is further 

supported by biochemical data suggesting association of MBDs with co-repressor complexes 

containing HDACs and KMTs [reviewed in (Clouaire and Stancheva, 2008)]. In line with a 

protective function for H3K4me, recent reports showed that the DNMT3L/DNMT3A complex 

only recognizes nucleosomes with unmethylated H3K4 (Jia et al., 2007; Ooi et al., 2007). 

This would support a model entailing active removal of H3K4 methylation prior to de novo 

DNA methylation. However a similar DNMT3L-mediated targeting process of DNMTs during 

somatic differentiation appears unlikely because DNMT3L expression is down-regulated 

early in embryonic development and its promoter gets DNA methylated upon induction of 

differentiation. Moreover, DNMT3L mutant mice develop normally and do not recapitulate the 

dramatic phenotypes of DNMT mutants (Bourc'his et al., 2001).  

Of note, ES cells lacking both de novo methyltransferases DNMT3A and DNMT3B 

differentiate into post-mitotic neurons indistinguishable form corresponding wild-type cells, 

while DNMT1 knock-out cells fail to complete differentiation (Mohn and Schübeler, 

unpublished data), which is in agreement with previous findings using less defined 

differentiation models (Jackson et al., 2004; Okano et al., 1999). While the DNA methylation 

status of the DNMT3 mutant cells need to be investigated it can be hypothesized that de 

novo methylation of CpG-rich sequences during cellular differentiation is not essential for the 

differentiation process itself. Consequently the lethality caused by DNMT mutants could 

reflect the essential function of DNA methylation in repeat silencing, regulation of imprinting 

and genome stability.  

 

4.2. Pol II and H3K4 methylation: Who is first? 

Inactive CpG islands are always H3K4 methylated as reported by us and others 

(Guenther et al., 2007; Mikkelsen et al., 2007; Mohn et al., 2008; Weber et al., 2007). Many 

of them bear low but detectable levels of Pol II without detectable full-length mRNA 
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production (Guenther et al., 2007). This raises the question whether H3K4me is deposited 

with or without the involvement of Pol II. Either H3K4 methylation is deposited independently 

of Pol II, maybe via CxxC-domain containing H3K4 KMTs such as MLL or transcription 

factors which specifically recognize unmethylated CpG-rich sequences, and create a 

“transcriptionally permissive” chromatin environment. This in turn could attract transcription 

initiation factors and Pol II resulting in short non-productive visits of Pol II at such promoters, 

which lack the necessary activation signals to promote successful transcription initiation. 

Alternatively, occasional transcription initiation might occur at CpG-rich sequences due to 

unspecific binding of transcription factors. Due to missing elongation factors and improper 

activation this would again lead leading to non-productive recruitment of Pol II and by that 

conferring H3K4 methylation to these regions in a Pol II dependent pathway.  

 

4.3. How does Polycomb mediate repression? 

In contrast to DNA methylation we find that Polycomb-mediated H3K27me3 is very 

dynamic during cellular differentiation. The numbers of novel and resolved targets are 

roughly equal during both lineage commitment, when stem cells lose pluripotency, and 

during terminal neuronal differentiation, when progenitor cells mature into functional post-

mitotic neurons. Together with recent findings reporting novel Polycomb targets in somatic 

cells and cancer cell lines (Azuara et al., 2006; Bracken et al., 2006; Mikkelsen et al., 2007; 

Pan et al., 2007; Squazzo et al., 2006) this suggests that Polycomb not only has a role in 

early development, but also during cellular differentiation and in terminally differentiated cells. 

These findings however do not address the mode of action and the events taking place at the 

molecular level. Immunofluorescence and chromosome looping data from flies indicates that 

Polycomb repressed genes would coordinately localize to so called Polycomb bodies which 

are devoid of Pol II and active histone modifications (Lanzuolo et al., 2007). In mammals 

such accumulations of Polycomb targets have not been reported. Nonetheless, recent 

evidence from mouse indicates that Polycomb could create a local repressive environment 

excluding Pol II and leading to locus contraction or higher order chromatin structure changes 

(Terranova et al., 2008; Tiwari et al., 2008). These structural changes could contribute to 

repression via rendering a locus less accessible to the transcriptional machinery. Along the 

same line recent electron microscopy data and in vitro experiments indicate that a PRC2 

complex containing Ezh1 could be responsible for locus contraction at sites of H3K27me3 

modification (Margueron et al., 2008). These data would in principle support the long 

standing model of epigenetic restriction. It predicts that repressive modifications such as 

H3K27me3, H3K9me and DNA methylation would lead to a decrease of DNA accessibility 

and thereby reduce the likelihood of transcription factor binding and transcriptional activation 

in the absence of strong and specific signals. The mutual exclusivity of DNA methylation and 
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H3K9 methylation with active marks such as H3 and H4 acetylation and H3K4 methylation 

further supports this. Hhowever in case of Polycomb-mediated repression in mammals, this 

does not hold true (see below).  

 

4.4. Polycomb is strongly biased towards CpG-rich sequences 

We and others have shown that Polycomb targeting is strongly biased towards CpG-

rich sequences. These  are by default in a “transcriptionally permissive” environment 

characterized by H3K4 methylation even when inactive (Azuara et al., 2006; Bernstein et al., 

2006; Bracken et al., 2006; Mikkelsen et al., 2007; Mohn et al., 2008; Pan et al., 2007; 

Squazzo et al., 2006). Therefore most Polycomb targets contain both the repressive H3K27 

and the active H3K4 methylation marks; a so-called bivalent chromatin state (Bernstein et al., 

2006). This is incompatible with the previously mentioned accessibility model unless 

repressive marks would be dominant over active modifications.  

Interestingly, and somewhat in contrast to the locus contraction and repression idea, 

it was proposed that bivalent chromatin would “poise” genes for later activation and facilitate 

their transcriptional induction (Bernstein et al., 2006; Spivakov and Fisher, 2007). However, 

there is no evidence supporting such a gene “poising” via chromatin modifications despite 

the fact that many ES cell specific Polycomb targets are activated during differentiation. 

Moreover given that virtually all CpG islands are H3K4 methylated by default, a bivalent 

chromatin state might rather reflect transient repression of an otherwise accessible region in 

order to ensure correct expression of such critical genes.  

Consistent with this idea is the fact that in Drosophila, which does not display a 

bimodal CpG distribution at promoters (Fig. 1), H3K4 and H3K27 methylation are generally 

exclusive and the frequency of bivalent domains is minute compared to mammals 

(Schuettengruber et al., 2009). 

 

4.5. Impact of epigenetic repression on DNA accessibility 

Naively, if the difference in strength of repression between distinct epigenetic 

pathways is real, it should be detectable in terms of DNA accessibility and chromatin 

structure. Accessibility would thus gradually decrease ranging from “high” at promoters of 

actively transcribed genes, to intermediate at CpG-rich promoters of inactive genes without 

additional epigenetic repression, to low at inactive non-CpG island and CpG-rich promoters 

with additional Polycomb repression, and ultimately to very low at DNA methylated CpG 

islands and H3K9me3/HP1 bound regions. Although a popular model concerning the impact 

of epigenetic modifications on chromatin structure, experimental data demonstrating such a 

mode of action is still lacking.  
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Equally important, the field currently ignores upstream signaling pathways which 

integrate extrinsic and intrinsic signals and probably induce the changes we observe on the 

chromatin level.  
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