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Summary 2 

 

Summary 
 

 
Target of rapamycin (TOR) is the main controller of cell growth and metabolism in response 

to nutrients, growth factors and the cellular energy status.  TOR is a serine/threonine kinase 

conserved from yeast to mammals and is found in two functionally and structurally distinct 

multi-protein complexes named TOR complex 1 (TORC1) and TORC2.  Mammalian TORC1 

(mTORC1) contains mTOR, mLST8, raptor and PRAS40, while mTORC2 contains mTOR, 

mLST8, rictor, mSin1, and PRR5. mTORC2 is activated in response to growth factors, such 

as insulin and insulin-like growth factor 1 (IGF1), and its main functions involve the regulation 

of actin cytoskeleton dynamics and phosphorylation of several AGC kinases in their 

hydrophobic motif. TORC1 is directly inhibited by the immunosuppressant and anti-cancer 

drug rapamycin, whereas TORC2 is not.  Thus, use of rapamycin provides a simple and 

straightforward method to specifically study the TORC1 signaling branch.  There is no known 

TORC2-specific inhibitor, so genetic manipulation is required to study its biological 

function(s). 

 

 This thesis describes new in vivo and in vitro functions of mTORC2.  The first part 

deals with the in vivo function of mTORC2 in adipose tissue.  The adipose tissue, in addition 

to its function as a long-term fat storage depot, also has endocrine functions, plays an 

important role in the regulation of whole body glucose and lipid metabolism and is one of the 

most insulin-responsive tissues in the body.  To study mTORC2 function in adipose tissue, 

we have generated mice that lack the mTORC2-essential component rictor specifically in 

adipose tissue.  Phenotypic characterization revealed the unexpected finding that these mice 

were larger due to an increase in lean tissue mass and that they had elevated serum IGF1 

levels.  Furthermore, the knockout mice were hyperinsulinemic, but glucose tolerant.  

Overall, these findings suggest an important role for adipose mTORC2 in controlling full body 

growth and whole body glucose metabolism.  

 The second part of this thesis describes a new in vitro function of mTORC2 in 

fibroblasts.  We have taken advantage of the raptor and rictor floxed mice to isolate mouse 

embryonic fibroblasts (MEFs), which were then used to establish inducible raptor and rictor 

knockout MEF cell lines.  After initial characterization of these two cell lines, a deeper 

analysis of the role of mTORC2 in the actin-mediated process of cell migration was 

performed.  We have found that mTORC2 is required for cell migration and for regulating the 

activity of the Rho GTPases Rac1, Cdc42, and RhoA.  We have extended this study by 
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showing that mTORC2-dependent cell migration is also required in oncogenic cells, which 

suggests that mTORC2 could have an important function in the development of cancer and 

metastasis.  
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The TOR signaling pathway 
 

Rapamycin is an antifungal metabolite that was initially isolated from soil samples from the 

Easter Island (locally known as Rapa Nui) in the 1970s and that was found to have inhibitory 

effects on cell proliferation of mammalian cells.  Further studies led to the identification of the 

TOR (target of rapamycin) kinase in the budding yeast Saccharomyces cerevisiae (Heitman 

et al., 1991).  Yeast cells bearing mutations in the TOR genes were resistant to rapamycin, 

which normally forms a complex with the peptidyl-prolyl cis/trans isomerase FKBP12 to bind 

to and inhibit the TOR kinase.  TOR is a Ser/Thr kinase and is conserved in every eukaryote 

examined so far, including yeasts, algae, slime mold, plants, worms, flies and mammals 

(Wullschleger et al., 2006).  Recently, TOR was also identified in the protozoan parasite 

Trypanosoma brucei (Barquilla et al., 2008).  The main function of TOR is the regulation of 

cell growth, and its function is critical for a cell or organism since disruption of the gene is 

lethal in all eukaryotes (Kunz et al., 1993; Long et al., 2002; Menand et al., 2002; Oldham et 

al., 2000).  For example, mice deficient for mammalian TOR (mTOR) die very early during 

embryonic development (Gangloff et al., 2004; Murakami et al., 2004).  The importance of a 

functional TOR signaling pathway is further underscored by the high incidence of the TOR 

pathway being involved in human diseases.  Dysfunctional TOR signaling is associated with 

many forms of cancer, and is linked to diseases such as tuberous sclerosis complex (TSC) 

or diabetes. 

TOR is a central controller of cell growth and is regulated in response to nutrients, 

growth factors and cellular energy status.  To fulfill its function within the cell TOR is found in 

two structurally and functionally distinct multiprotein complexes, TOR complex 1 (TORC1) 

and TORC2.  In mammals, rapamycin-sensitive TORC1 (mTORC1) contains mTOR, mLST8, 

and its specific components raptor and PRAS40 (Fonseca et al., 2007; Hara et al., 2002; Kim 

et al., 2002; Kim et al., 2003a; Loewith et al., 2002; Oshiro et al., 2007; Sancak et al., 2007; 

Thedieck et al., 2007; Vander Haar et al., 2007; Wang et al., 2007).  mTORC2 is rapamycin 

insensitive and contains mTOR, mLST8 and the specific components rictor, mSin1, and 

PRR5 (Frias et al., 2006; Jacinto et al., 2006; Jacinto et al., 2004; Pearce et al., 2007; 

Sarbassov et al., 2004; Thedieck et al., 2007; Woo et al., 2007; Yang et al., 2006). 

In the following, TOR itself and the individual complexes, along with their upstream 

regulators and downstream substrates, will be described in more detail. 
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The TOR kinase 

 
The TOR genes, TOR1 and TOR2, were initially identified in the budding yeast S. cerevisiae 

(Heitman et al., 1991), where they share 67% primary sequence identity.  While some yeasts 

and the protozoan parasite T. brucei have two TOR genes, higher eukaryotes only have a 

single TOR gene, but they all encode for a very large protein of ∼ 280 kDa in size.  The TOR 

proteins share high sequence homology among all eukaryotes and they belong to the same 

kinase family known as phosphatidylinositol kinase-related kinase (PIKK) family (Abraham, 

2001; Keith and Schreiber, 1995).  Although the TOR kinase domain resembles the catalytic 

domain of the lipid kinases phosphatidylinositol 3-kinases, TOR is a serine/threonine protein 

kinase and is the founding member of the PIKK family that includes the ATM, ATR, TOR, 

SMG-1, TRRAP and DNA-PK subfamilies of PIKKs (Abraham, 2004).   

 The TOR proteins are composed of numerous highly conserved domains (Figure I-1).  

The amino-terminal part contains a large stretch of tandem HEAT repeats.  This motif is 

common among Huntingtin, Elongation factor 3, the A subunit of PP2A and TOR.  The HEAT 

repeats are composed of 40-50 amino acids and form a structure of two tandem anti-parallel 

α-helices that are thought to mediate protein-protein interactions (Perry and Kleckner, 2003).  

Towards the carboxy-terminal domain the HEAT repeats are followed by a moderately 

conserved FAT (FRAP, ATM and TRRAP) domain, which is a shared domain of the PIKK 

family and is always found together with the highly conserved FATC (FAT C-terminus) 

domain at the very carboxy-terminal end of the protein.  The FAT and FATC domains are 

believed to interact with each other to modulate kinase activity.  Next to the FAT domain is 

the FRB (FKBP-Rapamycin Binding) domain that allows binding of the FKBP-rapamycin 

complex, thereby leading to allosteric inhibition of the kinase.  The kinase domain of the 

protein lies next to the FRB domain.  Furthermore, a repressor domain was identified in 

mTOR and comprises a region of 20 amino acids (2430-2450) located directly upstream of 

the FATC domain.  Deletion of this region results in increased TOR kinase activity (Sekulic et 

al., 2000).  This repressor domain also contains two phosphorylation sites: Thr2446 is 

phosphorylated by AMP-dependent kinase (AMPK) (Cheng et al., 2004) and Ser2448 is 

phosphorylated by the TOR substrate S6K1 (Chiang and Abraham, 2005; Holz and Blenis, 

2005).  However, the physiological meaning of these phosphorylation sites is not well 

understood.  Additionally, an autophosphorylation site was identified at Ser2481, but the 

physiological relevance is also not well defined (Peterson et al., 2000).  Only recently, it was 

suggested that this phosphorylation is specific to only one of the two complexes and 

resembles the kinase activity of the complex (Copp et al., 2009).  A schematic summary of 

the various domains within the TOR kinase is depicted in Figure I-1.   
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The abundance of several putative protein-protein interaction domains clearly suggested that 

TOR might associate with many cellular proteins.  This assumption was also supported by 

gel filtration experiments demonstrating that TOR consistently migrated in a 2 MDa complex 

(Kim et al., 2002; Loewith et al., 2002).  These ideas led to the identification of several 

binding partners of TOR that were subsequently found to define the two functionally distinct 

multiprotein complexes, TOR complex 1 (TORC1) and TORC2.  The complexes will be 

described in more detail in the next part.  

 

 
Figure I-1.  Illustration of the domain structure of mammalian TOR.   
For more details see text. 
 
 

TOR complex 1 

 

Composition and localization 

In yeast, TORC1 is comprised of either TOR1 or TOR2, LST8 (lethal with sec thirteen), 

KOG1 (kontroller of growth), and TCO89 (89-kDa subunit of TOR complex one) (Loewith et 

al., 2002; Reinke et al., 2004).  TCO89 is the only non-essential component of yeast TORC1 

and no homologue was found in higher eukaryotes.  Deletion of any other member of the 

complex is lethal in yeast (Heitman et al., 1991; Loewith et al., 2002).  Interestingly, only 

when assembled with the TORC1 components, the FKBP12-rapamycin inhibitory complex 

can bind to the FRB domain and block the activity of TOR.   

Mammalian TORC1 (mTORC1) consists of mTOR, mLST8 and the KOG1 homologue 

raptor (Hara et al., 2002; Kim et al., 2002; Kim et al., 2003a; Loewith et al., 2002).  A full 

body knockout of any component of mTORC1 in mice results in early embryonic lethality 

(Gangloff et al., 2004; Guertin et al., 2006).  mLST8 (previously also known as GβL) is a 36 

kDa protein that consists entirely of seven WD40 repeats (about 40 amino acids with 
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conserved W and D forming four anti-parallel β strands) allowing protein-protein interaction 

(Kim et al., 2003a).  The molecular function of mLST8 within mTORC1 is still ambiguous.  

Initial studies suggested that the constitutive binding of mLST8 to mTOR was important for 

the activity of mTORC1 (Kim et al., 2003a).  However, more recent findings in mLST8-/- 

mouse embryonic fibroblasts (MEFs) revealed that mLST8 is dispensable for mTORC1 

function (Guertin et al., 2006).  Also, in S. cerevisiae no clear data could be obtained on the 

role of LST8 in regulating TORC1.  raptor is a 150 kDa protein and contains a highly 

conserved amino-terminal region followed by three HEAT repeats and seven WD40 repeats.  

raptor is a positive regulator of mTOR activity and functions as a scaffold protein to couple 

mTOR to its substrates (Hara et al., 2002; Kim et al., 2003a; Schalm et al., 2003).  Inhibition 

of mTORC1 by rapamycin results in the disruption of raptor binding to mTOR (Kim et al., 

2002; Oshiro et al., 2004).  

Despite several approaches in various labs, the localization of TORC1/mTORC1 

within the cell is not clearly defined.  However, a common finding of all studies in yeast 

suggests that TORC1 associates with membranes.  Binding of TORC1 to the plasma 

membrane, vacuolar membrane and also endosomal membranes was demonstrated (Araki 

et al., 2005; Cardenas and Heitman, 1995; Chen and Kaiser, 2003; Kunz et al., 2000; Reinke 

et al., 2004; Sturgill et al., 2008; Wedaman et al., 2003), but the physiological significance of 

TORC1 association to distinct membranes is not understood, as well as the question whether 

TORC1 localization is a regulated and dynamic process.  In mammalian cells the localization 

of mTOR to endomembranes is consistent with the findings in yeast.  But mTOR localization 

also remains ambiguous as individual studies proposed different compartmental localization 

of mTOR, including mitochondrial, endoplasmic reticulum and Golgi apparatus membranes 

(Desai et al., 2002; Drenan et al., 2004).  One study even suggests a nuclear localization of 

mTOR (Bachmann et al., 2006).  Recently, new findings propose a regulated localization of 

mTOR to specific endomembranes upon activation by amino acids (Sancak et al., 2008). 

 

 

Upstream regulators of mTORC1 

mTORC1 integrates three major inputs to regulate catabolic and anabolic processes that 

collectively determine cell growth and metabolism.  Growth factors (insulin/insulin-like growth 

factor) and nutrients (amino acids) activate mTORC1, while a low cellular energy status 

inhibits mTORC1 (also see Figure I-2).   

 

Activation by insulin occurs via the well-established insulin/PI3K/Akt pathway.  Insulin binding 

to its receptor activates a cascade of phosphorylation and recruitment events leading to the 

phosphorylation and activation of Akt (also known as PKB), which then can activate 
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mTORC1 via two pathways.  The main pathway involves an inhibitory phosphorylation of the 

TSC1/TSC2 (tuberous sclerosis complex 1 and 2) complex, a GTPase activating protein 

(GAP) towards the Rheb GTPase (Garami et al., 2003; Inoki et al., 2003a; Inoki et al., 2002; 

Manning et al., 2002; Potter et al., 2002; Tee et al., 2003; Zhang et al., 2003).  When the 

TSC1/TSC2 complex is inactive Rheb is in its active GTP-bound form and can directly bind 

and activate mTORC1 (Long et al., 2005a; Long et al., 2005b; Smith et al., 2005).  However, 

the molecular mechanism of how Rheb activates mTORC1 is not clear.  Akt can further 

activate mTORC1 by an inhibitory phosphorylation of the protein PRAS40 (Proline-rich Akt 

substrate) that otherwise binds raptor and thereby inhibits mTORC1 (Fonseca et al., 2007; 

Oshiro et al., 2007; Sancak et al., 2007; Thedieck et al., 2007; Vander Haar et al., 2007; 

Wang et al., 2007). 

 

 
Figure I-2: Overview of the mTOR signaling pathway.  For more details see text. 

 

Regulation of mTORC1 by the cellular energy status also involves the TSC1/TSC2 complex.  

If energy levels (glucose availability) are low within the cell, the AMP/ATP ratio is increased 

and sensed by AMPK.  AMP directly binds to and allosterically activates AMPK to allow full 

activation of AMPK by the tumor suppressor LKB1 (Shaw et al., 2004b).  LKB1 
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phosphorylates and activates AMPK, which in turn phosphorylates TSC2 and activates the 

TSC1/TSC2 complex causing inhibition of mTORC1 (Corradetti et al., 2004; Inoki et al., 

2003b; Shaw et al., 2004a).  Overall, active AMPK turns on ATP-generating catabolic 

pathways, such as fatty acid oxidation and glycolysis, and shuts off ATP-consuming anabolic 

processes, such as translation and fatty acid synthesis.   

 

The major nutritional input that regulates mTORC1 activity is the supply of amino acids.  

Amino acids, in particular leucine and arginine, are essential for mTORC1 activation, since 

insulin alone is not sufficient to activate mTORC1 (Hara et al., 1998).  The molecular 

mechanism how amino acids activate mTORC1 is not fully understood, however, several 

studies investigated single steps of mTORC1 activation to narrow down the proteins involved 

in amino acid activation of mTORC1.  In cells lacking either TSC1 or TSC2 the mTORC1 

pathway remains sensitive to amino acid starvation, suggesting that amino acids activate 

mTORC1 downstream of the TSC1/TSC2 complex (Smith et al., 2005).  Further studies 

suggested that amino acids regulate Rheb binding to mTORC1 (Long et al., 2005b).  Only 

recently, a new regulator of the mTORC1 signaling branch was identified.  The Rag proteins 

belong to the family of small GTPases and were shown to regulate mTORC1 activity in the 

presence of amino acids (Kim et al., 2008; Sancak et al., 2008).  Amino acids increase the 

binding of active Rag to mTORC1 thereby promoting the intracellular localization of mTOR to 

the proximity of its activator Rheb.  Overexpression of a constitutively active mutant of Rag 

rendered the mTORC1 branch insensitive to amino acids.   

Several other studies proposed another mechanism how amino acids signal to 

mTORC1 independent of the TSC1/TSC2-Rheb-Rag branch and they include the positive 

mTORC1 regulators hVps34 (vacuolar protein sorting 34) (Byfield et al., 2005; Nobukuni et 

al., 2005), a class III PI3 kinase, and MAP4K3 (mitogen-activated protein kinase kinase 

kinase kinase 3) (Findlay et al., 2007).   

 

Besides the three major inputs – nutrients, growth factors and cellular energy status – that 

regulate mTORC1 activity, additional pathways can influence mTORC1 signaling.  These 

include positive regulation via the Wnt signaling pathway (Inoki et al., 2006), mitogenic 

activation by the lipid second messenger phosphatidic acid (PA) (Fang et al., 2003; Fang et 

al., 2001; Ha et al., 2006; Kam and Exton, 2004; Sun et al., 2008) and negative regulation via 

cellular stresses such as hypoxia through REDD1 and 2 (Regulated in Development and 

DNA Damage Response genes 1 and 2) (Brugarolas et al., 2004; DeYoung et al., 2008; 

Reiling and Hafen, 2004). 
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Downstream effectors of mTORC1 

In mammals, mTORC1 regulates various cellular processes including ribosome biogenesis, 

translation, transcription, autophagy, and mitochondrial metabolism (Soulard and Hall, 2007).  

Despite influencing a broad range of cellular processes only two direct substrates for 

mTORC1 have been identified so far:  S6K (p70 S6 kinase) and 4E-BP1 (eIF4E-binding 

protein 1, also known as PHAS-I) (Brunn et al., 1997; Burnett et al., 1998).  Both proteins 

contain a TOS (TOR signaling) motif, a five amino acid sequence that allows binding of the 

substrates to raptor, and which is crucial for mTOR-dependent phosphorylation (Nojima et 

al., 2003; Schalm and Blenis, 2002; Schalm et al., 2003).   

 

S6K belongs to the family of AGC kinases (protein kinases A, G and C) and once activated 

phosphorylates the ribosomal protein S6 to activate translation.  S6K contains several mTOR 

phosphorylation sites, but the main site required for S6K activation is Thr389, which is 

located in the hydrophobic motif (Pearson et al., 1995).  Phosphorylation in the hydrophobic 

motif is required for interaction of S6K with phosphoinostide-dependent kinase 1 (PDK1) and 

subsequent phosphorylation and full activation by PDK1 at Thr229 in the activation loop 

(Alessi et al., 1998; Pullen et al., 1998).  The hydrophobic motif and the activation loop, along 

with the mode of activation, are common to all AGC kinases.  Several other rapamycin-

sensitive phosphorylation sites in S6K were also described (Isotani et al., 1999; Pearson et 

al., 1995; Saitoh et al., 2002). 

In addition to being a downstream effector of mTORC1 signaling S6K also has an 

important regulatory function on the upstream insulin signaling pathway, which is defined as 

the negative feedback loop.  Upon activation of mTORC1, activated S6K phosphorylates 

IRS1 at multiple inhibitory sites thereby promoting degradation of IRS (Harrington et al., 

2004; Haruta et al., 2000; Shah et al., 2004; Tremblay et al., 2007; Ueno et al., 2005; Um et 

al., 2004).  As a consequence, further Akt signaling by insulin is attenuated and cells are in 

an insulin-resistant state.   

 

4E-BP1 is a small protein (12 kDa) and negatively regulates translation initiation.  

Hypophosphorylated 4E-BP1 binds to and sequesters eIF4E (eukaryotic initiation factor 4E).  

mTORC1 phosphorylates 4E-BP1 at multiple sites and thereby causes the dissociation from 

eIF4E (Gingras et al., 1999; Gingras et al., 2001; Mothe-Satney et al., 2000).  Upon release 

from 4E-BP1, eIF4E recruits additional factors, which will finally result in the assembly of the 

small ribosomal subunit and the recruitment to the mRNA to initiate translation.  

 

Overall, upon activation mTORC1 positively regulates translation initiation via activating 

phosphorylation of S6K and inhibitory phosphorylation of 4E-BP1. 
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TOR complex 2 

 

The following part on TOR complex 2 is part of a manuscript prepared for an invited review 

for publication in TiBS (Trends in Biological Sciences).  It covers the major findings on TOR 

complex 2 in budding yeast, fission yeast, slime mold, worm, flies and mammals.  

 

 

TORC2 in budding yeast 

TOR was initially identified in the budding yeast Saccharomyces cerevisiae, in a genetic 

selection for spontaneous rapamycin resistant mutants (Heitman et al., 1991).  In contrast to 

other eukaryotes, yeast (budding and fission yeast) contains two TOR genes, TOR1 and 

TOR2.  The existence of two TORs in yeast facilitated the study of TOR signaling as it 

initially helped to identify two separate TOR signaling branches.  Biochemical studies later 

demonstrated the existence of two functionally distinct TOR complexes that correspond to 

and thereby confirm the two previously identified branches.  Whereas rapamycin-sensitive 

TORC1 contains either TOR1 or TOR2, rapamycin-insensitive TORC2 contains only TOR2 

of the two TORs.  TORC2 consists also of AVO1, AVO2, AVO3, LST8 and BIT61 (Loewith et 

al., 2002; Reinke et al., 2004) (Figure I-3a). AVO1, AVO3 and LST8 are essential, conserved 

proteins required for kinase activity.  In contrast, AVO2 and BIT61 are not essential, and no 

clear homologous counterparts have been identified so far in higher eukaryotes, although 

BIT61 and the mammalian TORC2 (mTORC2) component proline-rich protein 5 (PRR5) 

share low sequence similarity (Hayashi et al., 2007; Woo et al., 2007).  Studies investigating 

the molecular organization of TORC2 in yeast revealed that TORC2 is oligomeric, likely a 

TORC2-TORC2 dimer (Wullschleger et al., 2005).   

 Even before the two TOR complexes were identified, TOR2, but not TOR1, was 

known to regulate the cell cycle-dependent polarization of the actin cytoskeleton (Schmidt et 

al., 1996), thereby implicating TOR2, and hence later on TORC2, in the spatial control of 

yeast cell growth.  Further studies showed that the aberrant depolarization of the actin 

cytoskeleton in TORC2 temperature sensitive mutants could be suppressed by 

hyperactivation of the cell wall integrity pathway, which involves Protein Kinase C1 (PKC1).  

In fact, several genetic studies revealed that PKC1, via the Rho-like GTPases RHO1 and 

RHO2 and their GDP/GTP exchange factor ROM2, mediates TORC2 signaling to actin 

organization (Bickle et al., 1998; Helliwell et al., 1998a; Helliwell et al., 1998b; Loewith et al., 

2002; Schmidt et al., 1997).  However, further molecular details on the activation of this 

pathway required the identification of TORC2 substrates.  In 2005, Kamada et al. identified 

the first yeast TORC2 substrate, Yeast Protein Kinase 2 (YPK2) (Kamada et al., 2005).  
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YPK2 is an AGC kinase and closely related to mammalian serum and glucocorticoid induced 

protein kinase-1 (SGK1).  TORC2 activates YPK2 by directly phosphorylating Ser641 and 

Thr659 in the turn and hydophobic motifs, respectively (Figure I-3a). Recent results showed 

that TORC2 activity is also required for the phosphorylation of the turn motif in PKC1 

(Facchinetti et al., 2008), although it is unclear whether TORC2 phosphorylates PKC1 

directly.  In addition to YPK2, Slm proteins, which bind phosphatidylinositol-4,5-bisphosphate 

(PIP2), have been characterized as direct TORC2 substrates.  Slm1 and Slm2 can regulate 

actin organization independently of YPK2 (Fadri et al., 2005).  However, a constitutively 

active mutant of YPK2 suppresses the lethality provoked by the complete loss of TORC2 

(Kamada et al., 2005), suggesting that YPK2 is the main TORC2 effector.  Most TORC2 

mediated functions, including actin remodeling, are now believed to be mediated via YPK2. 

Aronova et al. (Aronova et al., 2008) recently described a new function for TORC2.  

They showed that TORC2, via YPK2, controls the sphingolipid biosynthetic pathway and 

hence mediates de novo ceramide biosynthesis.  Other studies have shown that YPK2 and 

its homologue YPK1 are also involved in regulating eisosome assembly and turnover in a 

sphingolipid-dependent manner (Luo et al., 2008).  Eisosomes are protein complexes near 

the plasma membrane involved in the early steps of endocytosis.  Whether TORC2 is also 

directly involved in the regulation of endocytosis remains to be confirmed.  Interestingly, 

GFP-tagged TOR2 localizes to punctate structures in the proximity of the plasma membrane, 

which resemble eisosomes (Sturgill et al., 2008). 

 Thus, the downstream effectors and functions of TORC2 in S. cerevisiae are coming 

into focus, the upstream regulators of TORC2 remain completely unknown. 

 

 

 TORC2 in fission yeast 

Schizosaccharomyces pombe, like S. cerevisiae, has two TOR homologues, Tor1 and Tor2.  

However, and this easily leads to confusion, fission and budding yeast TOR proteins are 

numbered in the opposite way, as the S. pombe proteins were named based on order of 

discovery rather than based on function.  Budding yeast TOR2 is the sole TOR protein found 

in TORC2, whereas in fission yeast Tor1 is the main determinant of TORC2 (Matsuo et al., 

2007), suggesting that S. pombe Tor1 is functionally equivalent to S. cerevisiae TOR2. S. 

pombe TORC2 is composed of Tor1, Sin1, Ste20, Wat1 (also known as Pop3) and Bit61 

(Figure I-3b). S. pombe Tor1 is not essential for normal growth but is required for survival 

under stress conditions, proper G1 arrest, and sexual development (Kawai et al., 2001; 

Weisman and Choder, 2001).  Surprisingly, in contrast to other organisms, rapamycin has no 

effect on normal growth in S. pombe.  Initially, rapamycin was found to affect sexual 

development; later experiments showed that Tor1-mediated amino acid uptake in fission 
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yeast is also rapamycin sensitive (Weisman et al., 1997; Weisman et al., 2001; Weisman et 

al., 2005).  As rapamycin blocks Tor1-mediated functions, it was believed that rapamycin in 

fission yeast inhibits TORC2 function.  However, Petersen and Nurse recently showed that 

rapamycin can also inhibit Tor2, and hence TORC1, but in a nutrient-dependent manner 

(Petersen and Nurse, 2007).  Currently, it remains unclear why rapamycin does not arrest 

fission yeast growth as in other eukaryotes.  Furthermore, the molecular details on how 

rapamycin inhibits TORC2 and possibly TORC1 are not well understood. 

 To identify potential substrates of fission yeast Tor1, Matsuo et al. performed a high-

copy suppressor screen of a Tor1 sterility mutant and isolated Gad8 as a potential candidate 

(Matsuo et al., 2003).  Gad8 is a Ser/Thr kinase belonging to the AGC kinase family and is 

the fission yeast homologue of YPK2 in budding yeast and SGK1 in other organisms.  

Matsuo et al. demonstrated that the activity and phosphorylation status of Gad8 depend on 

Tor1 activity.  On a molecular level, they showed that the critical Tor1 phosphorylation sites 

in Gad8 are Ser527 and Ser546, the turn and hydrophobic motif sites, respectively (Figure I-

3b). These findings contributed very early to the idea that TOR complexes regulate many 

AGC kinases. 

 

 

TORC2 in Dictyostelium 

Dictyostelium discoideum is a powerful model organism to study mechanisms of cell 

movement and chemotaxis.  This slime mold is a unicellular eukaryotic organism that, upon 

starvation, forms multicellular aggregates.  This developmental program depends on 

chemotaxis toward a high extracellular level of cyclic AMP secreted by neighboring cells.  

Lee et al. showed that the underlying mechanism of cell movement and aggregate formation 

depends on TORC2 (Lee et al., 2005).  TORC2 in D. discoideum comprises Tor, Lst8, Rip3 

(AVO1 in S. cerevisiae) and Pia (AVO3 in S. cerevisiae) (Figure I-3c), and cells deficient for 

any of these components lose speed, cell polarity and directionality, i.e., they display an 

overall defect in chemotaxis.  Furthermore, Lee et al. demonstrated that cells lacking any 

TORC2 component exhibit reduced PKBA and PKBR1 activity, two Akt (also known as 

protein kinase B) homologues and AGC kinase family members that are required to fully 

activate the chemotactic response. 

 Chemoattractant signaling triggers several cellular responses.  One well 

characterized response is the production of phosphatidylinositol 3,4,5-triphosphate (PIP3) at 

the leading edge of motile cells. It is well established that PIP3 production is an important 

step in regulating chemotaxis; however, chemotaxis still occurs in the absence of PIP3 (Chen 

et al., 2003; Hoeller and Kay, 2007), and a recent study provided insight on the molecular 

pathway regulating PIP3-independent chemotaxis.  Kamimura et al. (Kamimura et al., 2008) 
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showed that TORC2 is activated in a PIP3-independent manner by a heterotrimeric G protein 

and by cytosolic Ras GTPases.  This signaling leads to activation of the PKBs, mainly 

PKBR1, which in turn phosphorylate several downstream targets to ultimately regulate 

directed cell movement.  These findings suggest a possibly direct regulation of TORC2 by 

Ras.  This idea is further supported by the presence of a Ras-binding domain in Rip3 (Ras-

interacting protein-3), the mSin1 homologue in D. discoideum, which, when mutated, causes 

an impaired chemotactic response (Lee et al., 2005). Kamimura et al. also confirmed that 

TORC2 activity is required to phosphorylate the hydrophobic motif in PKBA and PKBR1 and 

thus to activate these AGC kinases (Lee et al., 2005).  Overall, these studies in D. 

discoideum underscore the importance of TORC2 in actin remodeling and cell movement, 

and could provide insight on the role of TORC2 in actin organization in other organisms.  D. 

discoideum might also be a particularly valuable system for unraveling the upstream 

regulation of TORC2.  So far, only very little is known about the upstream regulation of 

TORC2 in other organisms, and it would be of interest to know whether Ras-mediated 

activation of TORC2 is conserved in other organisms. 

 
 

TORC2 in worms and flies 

Recently, two independent studies have demonstrated that TORC2 is also present in the 

nematode Caenorhabditis elegans (Jones et al., 2009; Soukas et al., 2009).  Both studies 

identified CeRictor in a screen for mutants with altered lipid storage and showed that loss-of-

function mutants in CeRictor are viable, but developmentally delayed with a reduced overall 

body size (Figure I-3d).  Increased fat storage in the mutant worms suggests an important 

role for TORC2 in regulating fat metabolism.  Interestingly, an sgk1 null mutant, but not a 

mutant with impaired AKT signaling, phenocopies a CeRictor mutant, and a constitutively 

active SGK1 suppresses a CeRictor mutation.  Thus, TORC2 in worms appears to signal 

mainly through SGK1.  This, combined with findings in yeast suggesting that the SGK1 

homolog YPK2 is the main TORC2 effector, lends doubt to whether Akt is the primary 

effector of TORC2 in other eukaryotes. Loss of mTORC2 in mammals has only little effect on 

Akt activity (see below). 

 

Similar to TORC2 mutants in worms, rictor and sin1 mutants of the fly Drosophila 

melanogaster are viable, but reduced in body size (Hietakangas and Cohen, 2007; Lee and 

Chung, 2007).  Also in flies, TORC2 is the main kinase phosphorylating Akt at the 

hydrophobic motif (Figure I-3e).  Although loss of TORC2 normally causes only a mild growth 
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Figure I-3: The conserved TORC2 pathway. TORC2 structure and function are conserved 
in (a) budding yeast (S. cerevisiae),  (b) fission yeast (S. pombe), (c) slime mold (D. 
discoideum), (d) worms (C. elegans), (e) flies (D. melanogaster) and (f) mammals. In all 
organisms, TORC2 is composed of the TOR kinase (orange), LST8 (yellow), AVO3 or its 
homologue (green), and AVO1 or its homologue (brown). In S. cerevisiae, S. pombe and 
mammals, additional TORC2 components were identified (white). All shown TORC2 
substrates (blue) are members of the AGC kinase family. The AGC kinases share a 
conserved mode of regulation involving phosphorylation of their hydrophobic motif (red), turn 
motif (pink), and activation loop (gray).  TORC2 phosphorylates the hydrophobic motif in all 
shown kinases.  TORC2 has so far been shown to phosphorylate the turn motif, directly or 
indirectly, in YPK2, Gad8, and mammalian Akt and PKCα.  PDK1, which is also conserved in 
all organisms shown, phosphorylates the activation loop.  
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defect in flies, Hietakangas and Cohen (Hietakangas and Cohen, 2007; Lee and Chung, 

2007) made the interesting observation that loss of TORC2 strongly inhibits hyperplasia 

caused by elevated phosphatidylinositol-3-kinase (PI3K) signaling, suggesting that TORC2-

regulated Akt activity might be more important in conditions of elevated Akt signaling. 

 
 

TORC2 in mammals 

Mammalian TORC2 was identified in 2004.  At that time, TORC2 was known to consist of 

mTOR, mLST8 and the TORC2-specific component rictor (Jacinto et al., 2004; Sarbassov et 

al., 2004).  More recently, two additional complex-specific components were identified - the 

AVO1 homologue mSin1 (Frias et al., 2006; Jacinto et al., 2006; Yang et al., 2006), and the 

BIT61 family members PRR5 and PRR5L (also known as Protor1 and Protor2) (Pearce et 

al., 2007; Thedieck et al., 2007; Woo et al., 2007).  Except for PRR5 and PRR5L, all 

mTORC2 components are essential and knockout of any one of them in mice results in 

developmentally delayed embryos that die in midgestation around embryonic day E10.5 

(Guertin et al., 2006; Jacinto et al., 2006; Shiota et al., 2006; Yang et al., 2006).  

 Similar to TORC2 in S. cerevisiae, mTORC2 cannot be directly inhibited by 

rapamycin.  However, in a few cell lines, prolonged rapamycin treatment can inhibit mTORC2 

activity indirectly (Sarbassov et al., 2006).  In their study, Sarbassov et al. showed that long-

term rapamycin treatment prevents de novo mTORC2 assembly and thereby inhibits 

mTORC2 activity, but only in a few of the many cell lines examined.  The effect of rapamycin 

on mTORC2 assembly appears to be due to rapamycin binding free mTOR and to an indirect 

consequence of rapamycin’s inhibition of protein synthesis and thus the synthesis of new 

mTOR. 

 A recent study by Copp et al. (Copp et al., 2009) showed that mTOR is 

phosphorylated in an mTORC-specific manner.  mTOR phosphorylation at Ser2448 is 

predominantly, but not exclusively, associated with mTORC1 whereas mTOR in mTORC2 is 

specifically phosphorylated at Ser2481.  Copp et al. suggest that the mTORC2 specific 

phosphorylation at Ser2481 could be used as a biomarker for mTORC2 sensitivity to 

rapamycin.  However, to date, the functional importance of these phosphorylation sites is 

completely unknown, and it is important to point out that these sites should always be used 

along with other complex-specific readouts to definitively specify complex activation. 

 

The first function ascribed to mTORC2, based on the previously known function of TORC2 in 

yeast, is the regulation of the actin cytoskeleton.  Knockdown of mTORC2-specific 

components in cultured cells results in alteration of the actin cytoskeleton.  Furthermore, also 

as in yeast, it was suggested that mTORC2 signals to the actin cytoskeleton via 
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RhoGTPases and PKC (Jacinto et al., 2004; Sarbassov et al., 2004).  However, while two 

research groups have independently observed an altered actin cytoskeleton upon 

knockdown of mTORC2-specific components, opposite phenotypes were observed.  Jacinto 

et al. observed that mTORC2 is required for cell spreading and actin fiber assembly.  In 

contrast, the findings by Sarbassov et al. suggest that loss of mTORC2 promotes actin fiber 

assembly.  More recently, a role for mTORC2 in regulating the actin cytoskeleton was 

questioned when no obvious alterations in the actin cytoskeleton were observed in 

embryonic fibroblasts derived from rictor knockout mice (Guertin et al., 2006; Shiota et al., 

2006).  The apparent discrepancies on mTORC2-mediated actin regulation could possibly be 

related to the different systems studied. The early knockdown studies looked at actin 

changes immediately after loss of mTORC2, but used different cell lines, whereas the 

subsequent studies looked at knockout cells permanently deficient for mTORC2.  One 

possible explanation could be that cells constitutively lacking mTORC2 might adapt by using 

other mechanisms to regulate actin cytoskeletal organization.  Several other studies using 

different approaches have supported a role for mTORC2 in actin-regulated processes.  

Misregulated mTORC2 activity results in altered cell motility in various cell types, including 

different cancer cells where migration plays an important role in metastasis (Dada et al., 

2008; Liu et al., 2006; Masri et al., 2007). Overall, the molecular mechanism by which 

mTORC2 regulates the actin cytoskeleton remains unclear. 

 

In 2005, the first direct substrate of mTORC2, Akt, was identified.  mTORC2 was found to be 

a long sought-after kinase phosphorylating Ser473 in the hydrophobic motif of Akt (Figure I-

3f) (Hresko and Mueckler, 2005; Sarbassov et al., 2005).  Although earlier knockdown 

studies of rictor showed decreased phosphorylation also of Thr308 in the activation loop, 

further studies in knockout mice suggested that phosphorylation of Thr308, by 

phosphoinositide-dependent kinase 1 (PDK1), does not depend on prior Ser473 

phosphorylation (Frias et al., 2006; Guertin et al., 2006; Jacinto et al., 2006; Shiota et al., 

2006).  The independent phosphorylation of Thr308 and Ser473 contrasts with the 

hierarchical phosphorylation of Thr229 and Thr389 in S6K; phosphorylation by mTORC1 

(Thr389) is required for subsequent phosphorylation by PDK1 (Thr229) (reviewed in (Mora et 

al., 2004)).  Furthermore, rather than being inactive, Akt without Ser473 phosphorylation 

appears to remain largely active as determined by the phosphorylation state of the Akt 

substrates glycogen synthase kinase 3 (GSK3), Tuberous Sclerosis Complex protein 2 

(TSC2), Bad and the forkhead class O transcription factors 1/3a (FoxO1/3a).  Only FoxO1/3a 

and possibly Bad show decreased phosphorylation upon loss of Ser473 phosphorylation 

(Guertin et al., 2006; Jacinto et al., 2006; Yang et al., 2006).  Thus, mTORC2-mediated Akt 

phosphorylation does not seem to determine absolute activity, but rather appears to 
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determine substrate specificity.  It is also possible that under conditions of low Akt activity, 

some Akt substrates can be phosphorylated by another kinase.  For example, under 

conditions of insulin resistance when Akt is no longer active, GSK3 is phosphorylated by S6K 

(Zhang et al., 2006).  Furthermore, it has been shown that FoxO can also be phosphorylated 

by SGK1 (Brunet et al., 2001), another mTORC2 substrate, providing a possible explanation 

for why cells with reduced mTORC2 activity show reduced FoxO phosphorylation but not 

reduced GSK3 phosphorylation.  

 

Following the identification of Akt as an mTORC2 substrate, other AGC kinases were 

identified as additional substrates.  In particular, many groups focused on the 

phosphorylation of PKC.  Sarbassov et al. showed that PKCα phosphorylation (at the 

hydrophobic motif) and activity depend on mTORC2 (Sarbassov et al., 2004).  However, this 

study suggested that the control of PKCα by mTORC2 is indirect.  Ikenoue et al. (Ikenoue et 

al., 2008) and Facchinetti et al. (Facchinetti et al., 2008) later showed that mTORC2 is 

required for phosphorylation of all conventional PKCs and the novel PKCε at their 

hydrophobic motif and, in addition, at their turn motif, thereby controlling post-translational 

processing and stability of PKC (Figure I-3f).  Loss of mTORC2 activity results in a reduction 

in total protein levels of PKC. Ikenoue et al. and Facchinetti et al., also showed that mTORC2 

directly phosphorylates the turn motif in Akt.  Interestingly, only phosphorylation of the 

hydrophobic motif, but not the turn motif, of PKC and Akt occurs in a growth-factor 

dependent manner.  Overall, whether mTORC2 is the direct kinase of PKC remains an open 

question, as no study to date has been able to demonstrate direct in vitro phosphorylation of 

either site on any PKC isoform by mTORC2.  Furthermore, it remains unclear how strongly 

mTORC2 activity influences PKC-mediated signaling events. 

 

As discussed above, YPK2 and Gad8 were identified early on as TORC2 substrates, in 

budding and fission yeast, respectively.  Both AGC kinases have close homology to the 

mammalian SGK kinase family.  However, SGK1 was identified in mammals as an mTORC2 

substrate only very recently (Garcia-Martinez and Alessi, 2008).  mTORC2 phosphorylates 

SGK1 at its hydrophobic motif site (Figure I-3f) and thereby regulates SGK1’s activity toward 

its physiological substrate n-myc downstream regulated 1 (NDRG1). Given the very modest 

reduction in Akt activity upon loss of mTORC2, as discussed above, is Akt a major mTORC2 

effector?  Studies in both yeast and worms suggest that SGK is the main TORC2 effector in 

these organisms. Whether SGK1 is also the most important physiological substrate of 

TORC2 in mammals is not clear.  SGK1-SGK3 double knockout (DKO) mice have a mild 

phenotype, including a defect in renal function that does not affect embryonic development 

(Grahammer et al., 2006).  In contrast, Akt1-Akt2 DKO mice and Akt1-Akt3 DKO mice are 
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impaired in development, and the latter display a phenotype similar to that of rictor knockout 

mice (Guertin et al., 2006; Peng et al., 2003; Shiota et al., 2006; Yang et al., 2005).  

Furthermore, loss of either rictor (Guertin et al., 2009) or Akt1 (Chen et al., 2006) suppresses 

the development of prostate neoplasia in Pten (phosphatase and tensin homolg) deficient 

mice.  These findings are similar to those in D. melanogaster where tissue hyperplasia and 

increased Akt activity induced by Pten loss are reduced upon loss of rictor.  Curiously, loss of 

rictor in the Pten prostate cancer mouse model reduces Akt phosphorylation at both Thr308 

and Ser473.  Overall, Akt still seems to be an important mTORC2 effector, at least upon 

enhanced signalling through the PI3K pathway. 

 

While the processes downstream of TORC2 are coming into focus, knowledge on TORC2’s 

upstream regulators is almost completely lacking.  In yeast, absolutely nothing is known 

about extracellular or intracellular signals controlling TORC2.  In mammalian cells, mTORC2 

phosphorylates Akt upon serum stimulation, in particular growth factors such as insulin and 

insulin-like growth factor 1 (IGF1), suggesting that mTORC2 is regulated by the PI3K 

pathway (Frias et al., 2006; Ikenoue et al., 2008; Jacinto et al., 2006; Yang et al., 2006).  

This observation alone does not indicate that intrinsic mTORC2 kinase activity is stimulated 

by the PI3K pathway.  Activation of PI3K leads to the production of phosphatidylinositol 3,4,5 

trisphosphate (PIP3) and recruitment of Akt to the plasma membrane where it is 

phosphorylated by PDK1 and a possibly constitutively active, membrane-bound mTORC2.  

Thus, mTORC2 could be constitutively active and its regulated phosphorylation of Akt is 

controlled at the level of Akt localization.  However, arguing against this possibility and in 

favor of a model in which the PI3K pathway stimulates intrinsic mTORC2 kinase activity are 

the observations that mTORC2-dependent mTOR autophosphorylation at Ser2481 (Copp et 

al., 2009) and in vitro mTORC2 activity are stimulated by growth factors (Frias et al., 2006; 

Yang et al., 2006).  Furthermore, mTORC2 appears to phosphorylate SGK1 in response to 

growth factors even though SGK1 lacks a PH domain and is activated independently of 

membrane recruitment.  Taken together, these latter findings suggest that growth factors, via 

the PI3K pathway, stimulate intrinsic mTORC2 kinase activity.   

 How might growth factors activate mTORC2 kinase activity?  Despite several 

indications that growth factors stimulate mTORC2 activity, it remains a mystery how the 

growth factor signal is relayed within the cell to activate mTORC2.  A recent report suggests 

that growth factors could signal to mTORC2 via the TSC1-TSC2 complex (a complex of the 

two tuberous sclerosis complex proteins 1 and 2).  Huang et al. (Huang et al., 2008) have 

proposed that the TSC1-TSC2 complex, a GTPase activating protein (GAP) that lies 

upstream of and negatively regulates mTORC1, also regulates mTORC2 function by binding 

directly to mTORC2.  In contrast to the negative regulation of mTORC1 by TSC1-TSC2, 
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TSC1-TSC2 is proposed to positively regulate mTORC2 activity in a GAP-independent 

manner.  The GTPase Rheb, which lies directly downstream of TSC1-TSC2 and activates 

mTORC1 (Manning and Cantley, 2003), does not appear to lie upstream of mTORC2.  The 

observation that TSC1-TSC2 GAP-activity is not required for mTORC2 activation suggests 

that the mechanism is not via mTORC1 and the negative feedback loop, which is a hallmark 

of activated mTORC1 signaling.  The mTORC1 substrate S6K directly phosphorylates insulin 

receptor substrate (IRS) thereby promoting degradation of IRS (Tremblay et al., 2007).  As a 

consequence, further Akt signaling by insulin is attenuated and cells are in an insulin-

resistant state.  Indeed, Huang et al. argue that TSC-mediated activation of mTORC2 is not 

via the negative feedback loop.  The way in which TSC1-TSC2 binding to mTORC2 

regulates mTORC2 activity as well as potential GAP-independent activities for TSC1-TSC2 

remain poorly understood. 

 Is mTORC2 found at the plasma membrane and is mTORC2 localization regulated?  

In the Pten prostate cancer mouse model, where PI3K signaling is increased, rictor and 

Ser473-phosphorylated Akt are enriched at the plasma membrane.  Furthermore, Partovian 

et al. (Partovian et al., 2008) demonstrated that a Syndecan-4 deficiency reduces mTORC2 

localization to detergent-insoluble membrane fractions (rafts) in endothelial cells.  

Interestingly, Syndecan-4, which is a single-pass transmembrane proteoglycan, recruits 

PKCα to the plasma membrane and thereby regulated PKCα activity; this, in turn, is required 

for proper mTORC2 localization to the rafts and subsequent Akt activation.  However, the 

mechanism by which PKCα regulates mTORC2 recruitment is not known, and is further 

complicated by the fact that PKCα is known to be a downstream target of mTORC2. 

  Although we have some insights into how mTORC2 might be regulated, it will be a 

major breakthrough to identify upstream regulators of the TORC2 signaling branch, in both 

yeast and mammals. 

 

 

Concluding remarks and future perspectives 

We have summarized and highlighted the major recent findings on TORC2 in various 

organisms.  The sum of all studies clearly shows conserved functions of TORC2 across 

organisms (Figure I-1).  In plants and algae, many components of the TOR signaling 

pathway have been elucidated and Arabidopsis Thaliana TOR (AtTOR) is important in the 

control of plant growth (Anderson et al., 2005; Deprost et al., 2007; Diaz-Troya et al., 2008; 

Mahfouz et al., 2006).  However, no rictor or Sin1 homologue has been identified in A. 

thaliana or the green alga Chlamydomonas reinhardtii questioning the existence of TORC2 in 

photosynthetic organisms.  Interestingly, TORC2 was recently identified in the protozoan 

parasite Trypanosoma brucei, which causes sleeping sickness in humans (Barquilla et al., 
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2008).  In contrast to other eukaryotes, rapamycin treatment of T. brucei inhibits cell growth 

by exclusively preventing TORC2 assembly, without affecting TORC1. 

 
TORC2, together with its sibling complex TORC1, is the main kinase that phosphorylates 

and thereby regulates the activity of several AGC kinases.  TORC2 also regulates actin 

cytoskeletal organization in most systems studied.  However, it remains unclear how TORC2 

specifically regulates this process in the context of diverse physiological processes that 

involve motility, such as embryogenesis, inflammation, metastasis, or wound healing.   

Several studies have shown that a full body knockout of any mTORC2 component is 

embryonic lethal.  As a next step, it would be highly interesting to determine how mTORC2 in 

individual organs influences whole body growth and metabolism.  Conditional knockout 

studies of the mTORC2-specific component rictor in skeletal muscle display minimal 

phenotypes (Bentzinger et al., 2008; Kumar et al., 2008), suggesting that the role of 

mTORC2 in muscle is less important.  Loss of rictor in adipose tissue, however, results in a 

more dramatic phenotype.  Adipose mTORC2 negatively controls whole-body growth and 

also influences glucose metabolism by influencing IGF1 and insulin levels, respectively (work 

of this thesis: Cybulski et al., 2009). 

 

Does mTORC2 have a role in diseases such as cancer or metabolic disorders?  Guertin et 

al. (Guertin et al., 2009) made the interesting observation that mTORC2 is important for the 

development of prostate cancer induced by Pten loss, but is not important for non-cancerous 

prostate epithelial cells.  Moreover, as conditional knockout studies show a role for mTORC2 

in regulating glucose metabolism, mTORC2 could play a role in the development of type 2 

diabetes ( work of this thesis: Cybulski et al., 2009; Kumar et al., 2008).  The involvement of 

mTORC2 in diseases is only starting to be considered.  Future studies might reveal the need 

for drugs that specifically inhibit mTORC2, such as rapamycin for mTORC1. 

 

 

mTOR associated diseases 

 

Dysregulated mTOR signaling is often linked to tumor formation (Guertin and Sabatini, 

2007).  mTOR itself is not mutated in tumors or cancers, but many upstream regulators and 

downstream effectors that are functionally linked to the mTOR signaling pathway are well-

known proto-oncogenes or tumor suppressors.  The most evident link between aberrant 

mTOR signaling and tumor formation is found in patients with tuberous sclerosis complex, a 

disease characterized by hamartomas (begin tumors) caused by inactivating mutations of the 
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tumor suppressors TSC1 and TSC2 (Inoki et al., 2005).  Hamartomas are also found in 

patients with Peutz-Jeghers syndrome (PJS).  In PJS mTOR signaling is increased due to a 

loss of function mutation in the negative upstream regulator LKB1.  Further proto-oncogenes 

that are commonly activated in cancers and that result in increased mTOR signaling are 

PI3K, Akt/PKB, Rheb and S6K1, while inactivating mutations in the tumor suppressors PTEN 

and 4E-BP1 have the same effect (Wullschleger et al., 2006).  So far, the direct link between 

cancer and mTOR is limited to the mTORC1 signaling branch and rapamycin and its 

derivatives have already been tested in clinical studies for cancer treatment.  However, little 

is known about the role of the mTORC2 signaling branch in cancer.  First indications that 

mTORC2 signaling can be misregulated in cancers come from studies that show that 

mTORC2 is required for the development of prostate cancer caused by PTEN deletion 

(Guertin et al., 2009).  

 

Several studies in mice have shown that mTORC1 signaling in various metabolic tissues 

plays an important role in regulating whole body energy metabolism (Polak and Hall, 2009) 

and dysregulation of mTOR signaling is associated with metabolic disorders such as obesity 

and diabetes.  As described above, constitutive activated mTORC1 signaling inhibits IRS via 

the negative feedback loop from mTOR-S6K resulting in a strong inhibition of the insulin-

mediated PI3K pathway.  As a consequence, cells become desensitized to insulin, causing 

insulin resistance.   

Far less is known about mTORC2 and its role in regulating whole body energy 

metabolism.  First knockout studies revealed that, at least in muscle, loss of mTORC2 results 

in little-to-no phenotype.  Muscle-specific rictor knockout mice are slightly glucose tolerant 

but don’t show any further metabolic abnormalities (Bentzinger et al., 2008; Kumar et al., 

2008). 
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Adipose tissue 
 
It was believed for a long time that the adipose tissue solely functions as a fat storage 

compartment within the body.  However, during the last few years intensive research has 

replaced this view by the notion that adipose tissue also has a central role in lipid and 

glucose metabolism and functions as an endocrine organ.  Adipose tissue is an important 

player in the regulation of energy homeostasis (Figure I-4).   

 

Adipose tissue is considered to be a vital 

organ, is unique to vertebrates and is 

found in most mammals, birds, reptiles 

and amphibians.  It is mainly composed 

of the fat-storing adipocytes, which can 

determine up to 85% of the white adipose 

tissue mass, but adipose tissue also 

comprises other cell types, such as 

macrophages, fibroblasts, preadipoyctes, 

nerve and endothelial cells.  Adipocytes 

have a great capacity to store fat and can 

expand to a size larger than most other 

cell types.  The fat is stored within a 

single large lipid droplet that can 

represent approximately 90% of the cell 

volume of an adipocyte (Haugen and 

Drevon, 2007).  In addition to white 

adipose tissue, also brown adipose tissue exists.  Brown adipocytes store fat in multiple lipid 

droplets and they contain a large number of mitochondria, which give them their brown 

appearance.  In contrast to the fat storage function of white adipose tissue, brown adipose 

tissue has a primary function in heat generation and adaptive thermogenesis by means of 

uncoupling of the proton gradient from ATP production.  Due to this function brown adipose 

tissue has an important role in the thermoregulation of small, hibernating rodents.  In 

humans, brown adipose tissue is found in newborns but is largely replaced by white adipose 

tissue in adults (Cannon and Nedergaard, 2004). 

 

In the following part the role of white adipose tissue in fat storage, fat release, its function as 

an endocrine organ, as well as associated diseases will be described in more detail.  

 

       Figure I-4: Interplay of metabolic tissues.   
       Adapted from Shi and Burn, 2004. 
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Fat storage and release 

 

The primary role of adipose tissue, in particular of the adipocyte cell, is to store energy in the 

form of triacylglycerol (TAG) during times when input exceeds expenditure and to break 

down this stored lipid into free fatty acids (FFA) when energy is required (Haugen and 

Drevon, 2007).  TAGs are lipid molecules composed of three fatty acids attached to a 

glycerol backbone.  Fatty acids can be saturated or unsaturated.  The main source of FFAs 

comes from the diet, but upon shortage, FFAs can also be synthesized by the body from 

glucose in a process called de novo lipogenesis.  In the diet, fat is mainly stored as TAGs, 

and many fats that originate from animals are mainly composed of saturated fatty acids, 

whereas vegetable-derived fats often contain a high percentage of unsaturated fatty acids. 

 

Upon food intake, dietary fats are first digested in the stomach and upper small intestine 

through the action of stomach acids, bile salts, and digestive enzymes, such as lipases.  In 

the intestinal cells, the absorbed fat is re-assembled into TAGs and packaged together with 

cholesterol, fat-soluble vitamins and carrier lipoproteins into small particles called 

chylomicrons that are then secreted into the blood stream.  Except for the liver, most organs 

are able to extract the lipids from the chylomicrons with the help of lipoprotein lipases, which 

are secreted by the individual organs and are found in the capillaries of mainly heart, skeletal 

muscle and adipose tissue, but also other non-liver organs.  Lipoprotein lipases break the 

TAGs down into free fatty acids.  While the heart and skeletal muscle metabolize the fatty 

acids for energy production, the adipose tissue stores the fatty acids by forming new TAGs.  

Once the chylomicrons are depleted of TAGs and remain loaded with cholesterol, they are 

known as chylomicron remnants that are taken up by the liver (Shi and Burn, 2004).   

Between meals, the liver can also synthesize TAGs from glucose, which are then 

distributed to the body in the form of very low density lipoproteins (VLDL).  VLDLs provide 

fatty acids mainly to the heart and skeletal muscle for oxidation and as more and more TAGs 

are removed, the composition of the VLDL changes and it becomes an intermediate-density 

lipoprotein (IDL).  Further loss of TAGs results in smaller and denser particles called low 

density lipoproteins (LDL), that are then enriched in cholesterol.  LDLs provide cholesterol to 

peripheral tissues.  LDL is often referred to as the ‘bad’ cholesterol fraction, since an excess 

of LDL in the blood stream is a major cause of atherosclerosis.  The ‘good’ cholesterol 

fraction is known as high density lipoprotein (HDL).  HDL is assembled in the blood and 

transports excess cholesterol away from or out of tissues back to the liver for eventual 

disposal.   

As mentioned before, the adipose tissue stores dietary fat as TAG.  FFAs that are 

released from lipoproteins (mainly chylomicrons) by lipoprotein lipase enter the adipocytes 
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through both passive diffusion and active transport.  FFAs are toxic to cells, so once inside 

the cell they are transported via fatty acid-binding proteins and converted to acyl coenzyme A 

(acyl-CoA).  This activated form of FFA can then be either oxidized by mitochondria for 

energy generation (more common in other cells), or be transported to the endoplasmic 

reticulum for esterification with glycerol 3-phosphate that is generated by glucose 

metabolism.  The formation of TAGs requires several enzymatic steps and once synthesized 

the TAGs are stored away into lipid droplets. 

 

During fasting or exercise, fatty acids and glycerol are released from the adipose tissue into 

the blood stream in order to supply peripheral tissues with sufficient energy.  The process of 

lipid mobilization by releasing FFAs is called lipolysis.  In the fed state, lipolysis is inhibited by 

insulin, while in the starved state epinephrine and other lipolytic hormones promote the 

breakdown of stored TAGs.  At least three adipocyte lipases are required to release the three 

fatty acids bound to one glycerol backbone.  Adipose TAG lipase (ATGL) removes the first 

fatty acid, followed by hormone-sensitive lipase (HSL) that degrades the diacylglycerols into 

monoacylglycerols.  The last step requires monoglyceride lipase.   

Activation of lypolysis through lipolytic hormones causes an increase in intracellular cyclic 

AMP (cAMP) levels and activation of cAMP-dependent protein kinase A (PKA).  Activated 

PKA phosphorylates and activates HSL, which regulates the rate-limiting step of lipolysis.  

PKA also phosphorylates perilipin, a lipid-droplet-coating protein, that when phosphorylated, 

facilitates access of HSL to the lipid droplet, and hence lipolysis.  Once released into the 

blood, FFAs are transported in an albumin-bound form to different tissues that can oxidize 

them, mainly liver, heart, kidney and muscle (Shi and Burn, 2004). 

 

 

Endocrine functions 

 

Adipose tissue has long been believed to be solely a fat storage depot, but it is now clear 

that adipose tissue is a complex and highly active metabolic and endocrine organ.  It has the 

capacity to actively communicate by sending and receiving different types of signals.  

Adipose tissue expresses many receptors that allow it to respond to endocrine and autocrine 

signals, such as insulin, glucagon, catecholamines, insulin like growth factor 1 (IGF1) and 

many others.  On the other hand, it also secretes a variety of factors, including metabolites 

and proteins that derive from both adipocyte and nonadipocyte fractions.  These 

metabolically active adipose-derived factors are commonly known as “adipokines” and they 

affect whole body energy metabolism and the function of many organs and tissues including 



Introduction 28 

muscle, liver, vasculature, and brain.  Adipokines act in an autocrine, paracrine and/or 

endocrine manner and are involved in glucose and lipid metabolism, inflammation, 

coagulation, blood pressure and feeding behavior (Kershaw and Flier, 2004; Wang et al., 

2008). 

The two best-characterized and most studied adipokines are leptin and adiponectin.  

Leptin is a small protein secreted from adipocytes and its serum levels correlate with adipose 

tissue mass as well as the nutritional status (Friedman, 2009).  However, leptin levels are not 

directly influenced by short-term nutritional status (food intake) but rather reflect the long-

term nutritional status.  Leptin acts through the sympathetic nervous system to negatively 

regulate appetite and food intake.  Its binding to the leptin receptor in the hypothalamus 

results in the reduction of neuropeptide-Y (NPY) and agouti regulated protein (AgRP) activity, 

two orexigenic neuropeptides, while increasing the activity of the anorexigenic neuropeptides 

pro-opiomelanocortin (POMC) and cocaine- and amphetamine related protein (CART).  

Leptin was discovered in 1994 as the product of the obese (ob) gene.  Mice with a mutation 

in the ob gene are extremely obese due to the lack of functional leptin, resulting in a reduced 

feedback signal to stop eating.  Besides its central role in regulating food intake and energy 

expenditure, leptin also influences lipid metabolism by increasing hepatic lipid oxidation and 

lipolysis in skeletal muscle and adipocytes (Hajer et al., 2008). 

Adiponectin is another protein hormone that is produced exclusively by adipocytes and is 

regarded as an insulin sensitizer that plays an important role in the development of insulin 

resistance.  In contrast to most other adipokines, serum adiponectin levels negatively 

correlate with adipose tissue mass (Garaulet et al., 2007).  Adiponectin improves insulin 

sensitivity by reducing hepatic glucose production and enhancing insulin action in the liver 

and skeletal muscle. 

Many additional adipokines and their associated role in regulating whole body energy 

metabolism have been identified (Kershaw and Flier, 2004; Wang et al., 2008).  The 

following table gives an overview of the functional groups of adipokines and the major factors 

involved: 

Functional category Factors 

Lipid metabolism Cholesteryl ester transfer protein (CETP), Lipoportein lipase (LPL), 

Retinol binding protein 4, Apolipoprotein E, Steroid hormones 

Glucose metabolism and 

insulin resistance 

Adiponectin, Resistin, Visfatin, Omentin, Vaspin, Leptin, TNFα 

Food intake Leptin 

Inflammation Tumor necrosis factor α (TNFα), Interleukin-6 (IL-6), Adiponectin, 

Resistin, C-reactive protein (CRP), Adipsin 

Vasculature Angiotensin, Vascular endothelial growth factor (VEGF), 

Adrenomedullin, Plasminogen activator inhibitor-1 (PAI-1) 
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Adipose tissue associated diseases 

 

Body fat has the very important function of storing fatty acids for times of low energy 

availability.  However, the right amount of body fat is very important as too much or too little 

fat are a serious health risk. 

Obesity, an excess of body fat results from an imbalance of caloric intake and energy 

expenditure, but also genetic factors can influence the progression of obesity.  Obesity is 

strongly associated with many diseases, in particular diabetes and cardiovascular diseases 

(Hajer et al., 2008).  As mentioned before, adipose tissue has an important function as an 

endocrine organ to control whole body energy homeostasis and obesity is often associated 

with marked changes in the secretory function of the adipose tissue that promotes the 

development of diseases.  

Obesity-linked type 2 diabetes is due to a combination of insulin resistance and 

dysfunction of the insulin-secreting pancreatic β-cells (Guilherme et al., 2008; Lingohr et al., 

2002).  Insulin resistance results from an impaired insulin responsiveness of skeletal muscle 

resulting in diminished glucose uptake.  In a first step, normal glucose levels can be 

maintained by increased insulin production/secretion by pancreatic β-cells.  However, when 

the pancreatic β-cells fail to secrete enough insulin to compensate for insulin resistance, 

blood glucose levels rise and diabetes will ensue.  Several adipose-derived factors, such as 

adiponectin, TNFα, leptin, IL6 and FFAs, are known to affect insulin sensitivity of peripheral 

tissues, and they furthermore have effects in the pancreas leading to β-cell failure (Hajer et 

al., 2008). 

Obesity is also a major risk factor for hypertension and cardiovascular diseases, in 

particular coronary heart disease (Bays, 2009).  High blood glucose levels (resulting from 

type 2 diabetes), elevated blood pressure, elevated TAGs, low plasma HDL and high plasma 

LDL are associated with obesity and are all known to increase the risk for coronary heart 

disease. 
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Cell migration  
 
Cell migration is involved in many physiological and pathophysiological processes including 

embryogenesis, angiogenesis, nerve growth, tissue repair, inflammation, invasion or 

metastasis (Franz et al., 2002), and normally requires the orchestrated movement of cells in 

a particular direction to a specific location. 

Cell migration is a very dynamic and highly coordinated process, which involves rapid 

changes in the dynamics of actin filaments, together with the formation and disassembly of 

cell adhesion sites.  The migration process can be divided into five different steps (Ridley et 

al., 2003).  Directed cell movement is initiated by protrusion of the leading edge and 

formation of new actin filaments followed by adhesion to the matrix.  The third step in the 

migratory process is cell-body contraction resulting from forces generated through 

actomyosin interactions.  The next event involves the release of cell contacts at the rear of 

the cell and the cycle ends with the recycling of membrane receptors from the rear to the 

front, which relies mainly on protein trafficking.  Each step of the cycle requires a highly 

coordinated restructuring of the actin cytoskeleton.  The protrusive structures at the leading 

edge of a motile cell are called lamellipodia and filopodia.  A lamellipodium is a thin, flat and 

sheet-like protrusion that is filled with a branched network of actin filaments, while filopodia 

are thin, spike-like structures that are filled with tight parallel bundles of filamentous actin.  

The main regulators of the actin cytoskeleton, and hence important regulators of direct cell 

migration, are the Rho GTPases (Hall, 1998; Heasman and Ridley, 2008). 

 

Rho GTPases belong to the family of small GTPases and are mainly known for their role in 

controlling actin cytoskeletal assembly and contraction, but RhoGTPases are also involved in 

other important processes including regulation of cell polarity, microtubule dynamics, 

vesicular transport pathways and gene transcription (Jaffe and Hall, 2005).  RhoGTPases 

function as molecular switches that cycle between an active GTP-bound form and an inactive 

GDP-bound form.  The cycling of Rho GTPases between these two states is regulated by 

three sets of proteins. (1) Guanine nucleotide exchange factors (GEFs) facilitate the 

exchange process, (2) GTPase-activating proteins (GAPs) facilitate inactivation of GTP-

bound Rho by increasing GTPase activity, and (3) guanine nucleotide dissociation inhibitors 

(GDI) prevent dissociation of GDP and thereby prevent activation.  Upon activation, Rho 

proteins interact with and activate downstream effector proteins to stimulate a variety of 

processes. 

Mammalian RhoGTPases comprise a family of 20 members, but the most highly 

conserved and most extensively studied Rho GTPases are RhoA, Rac1 and Cdc42.  RhoA is 

implicated in the formation of stress fibers and focal adhesions, Rac1 promotes 
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lamellipodium formation and Cdc42 functions in the formation of filopodia (Ladwein and 

Rottner, 2008; Mattila and Lappalainen, 2008). 

Fibroblasts are commonly used to study the basic mechanisms of cell migration 

because they contain the fundamental machinery for cell migration. 

 
 
 

Aims of the Thesis 
 
Full body knockout of any mTORC2-component in mice results in embryonic lethality 

emphasizing the importance of this complex at least in embryogenesis.  However, very little 

is known about mTORC2 function in individual tissues and its role in whole body metabolism.  

Furthermore, compared to the mTORC1 signaling branch, the mTORC2 signaling branch is 

less characterized and little is known about its upstream regulators and downstream 

functions.  Therefore, the aim of this thesis was to gain new insights into the in vivo and in 

vitro functions of mTORC2. 

The first part focuses on the in vivo function of mTORC2 and describes the 

phenotypic characterization of adipose-specific knockout mice of the mTORC2-specific 

component rictor.  mTORC2 signaling is activated upon insulin stimulation and adipose 

tissue is one of the most insulin-sensitive tissues in the body strongly suggesting a role for 

mTORC2 in this tissue. 

The second part of this thesis focuses on the in vitro function of mTORC2 and 

analyses its role in cell migration.  Using an inducible knockout mouse embryonic fibroblast 

(MEF) cell line for rictor, the effects of loss of mTORC2 were investigated.   
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Part 1:   Phenotypic characterization of rictor adipose‐
specific knockout mice 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Abstract 

 
Mammalian Target Of Rapamycin (mTOR), a highly conserved protein kinase that controls 

cell growth and metabolism in response to nutrients and growth factors, is found in two 

structurally and functionally distinct multiprotein complexes termed mTOR complex 1 

(mTORC1) and mTORC2.  mTORC2, which consists of rictor, mSIN1, mLST8, and mTOR, is 

activated by insulin/IGF1 and phosphorylates Ser473 in the hydrophobic motif of Akt/PKB.  

While the role of mTOR in single cells is relatively well characterized, the role of mTOR 

signaling in specific tissues and how this may contribute to overall body growth are poorly 

understood.  To examine the role of mTORC2 in an individual tissue, we generated adipose-

specific rictor knockout mice (rictorad-/-).  rictorad-/- mice are increased in body size due to an 

increase in size of non-adipose organs including heart, kidney, spleen, and bone.  

Furthermore, rictorad-/- mice have a disproportionately enlarged pancreas and are 

hyperinsulinemic, but glucose tolerant, and display elevated levels of insulin-like growth 

factor 1 (IGF1) and IGF1 binding protein 3 (IGFBP3).  These effects are observed in mice on 

either a high fat or a normal diet, but are generally more pronounced in mice on a high fat 

diet (HFD).  Our findings suggest that adipose tissue, in particular mTORC2 in adipose 

tissue, plays an unexpectedly central role in controlling whole body growth.  

 

 

Introduction 

 
Mammalian Target Of Rapamycin (mTOR), a highly conserved protein kinase that controls 

cell growth and metabolism in response to nutrients and growth factors, is found in two 

structurally and functionally distinct multiprotein complexes termed mTOR complex 1 

(mTORC1) and mTORC2 (Wullschleger et al., 2006).  mTORC1 contains raptor, mLST8, 

PRAS40 and mTOR, and is sensitive to the immunosuppressant and anti-cancer drug 

rapamycin (Hara et al., 2002; Kim et al., 2002; Loewith et al., 2002; Vander Haar et al., 

2007).  mTORC2 consists of rictor, mSIN1, mLST8 and mTOR, and is insensitive to 

rapamycin although long-term rapamycin treatment can indirectly inhibit mTORC2 in some 

cell types (Jacinto et al., 2006; Jacinto et al., 2004; Sarbassov et al., 2004; Sarbassov et al., 

2006; Yang et al., 2006).  The best-characterized substrates of mTOR are S6K and 4E-BP 

via which mTORC1 controls translation, and Akt/PKB via which mTORC2 may control cell 

survival and possibly other processes (Hresko and Mueckler, 2005; Polak and Hall, 2009; 

Sarbassov et al., 2005).  mTORC2 also phosphorylates and activates SGK1, and 



Results – Part 1 38 

phosphorylates and stabilizes PKCα (Facchinetti et al., 2008; Garcia-Martinez and Alessi, 

2008; Ikenoue et al., 2008; Sarbassov et al., 2004).  As mTORC1 can be pharmacologically 

inhibited with rapamycin, it is relatively well characterized and has been implicated in various 

disorders including cancer, cardiovascular disease, obesity and diabetes (Wullschleger et al., 

2006).  In contrast, as there is no specific inhibitor of mTORC2, mTORC2 signaling is less 

well characterized and its physiological role is unclear.  Knockout studies have underscored 

the importance of both complexes as full body deletion of any component of either mTOR 

complex results in embryonic lethality (Guertin et al., 2006; Jacinto et al., 2006; Shiota et al., 

2006; Yang et al., 2006).  rictor-deficient embryos fail to develop beyond day E10.5 and 

arrest as slightly smaller and developmentally delayed embryos compared to littermate 

controls (Guertin et al., 2006; Shiota et al., 2006). 

While the general role of mTOR in single cells is relatively well characterized, the role 

of mTOR signaling in specific tissues and how this may contribute to overall body growth and 

whole body metabolism are poorly understood (Polak and Hall, 2009).  Adipose-specific 

raptor knockout mice are resistant to diet-induced obesity and have improved glucose 

metabolism (Polak et al., 2008).  Conditional knockout of raptor in skeletal muscle results in 

slight glucose intolerance, muscle dystrophy, and death by the age of 6 months (Bentzinger 

et al., 2008).  Knockout of rictor specifically in skeletal muscle results in little-to-no phenotype 

and thus provided little insight on the physiological role of mTORC2 at least in muscle 

(Bentzinger et al., 2008; Kumar et al., 2008). 

Adipose tissue is a fat storage depot and an endocrine organ that controls energy 

metabolism, appetite and fertility in response to nutrients and insulin (Haugen and Drevon, 

2007; Shi and Burn, 2004).  Interestingly, the equivalent tissue in Drosophila, the fat body, 

controls full body growth in response to nutrients.  Colombani et al (Colombani et al., 2003) 

have demonstrated that down regulation of TOR signaling, most likely mTORC1, specifically 

in the fat body results in a reduction in overall body size.  Excess adipose tissue (obesity) 

leads to many metabolic disorders including type 2 diabetes, cardiovascular diseases and 

cancer.  Given the central role of mTOR as a nutrient sensor and the increasing prevalence 

of obesity, it is important to understand the role of adipose mTOR in controlling whole body 

growth and metabolism.  In this study, we examined the role of mTORC2 in adipose tissue.  

To circumvent the embryonic lethality caused by full body ablation of any component of 

mTORC2, we used the Cre/LoxP system to knock out rictor specifically in adipose tissue.  

Strikingly, rictorad-/- mice are enlarged due to an increase in lean tissue mass resulting from 

elevated levels of IGF1.  Furthermore, the knockout mice are hyperinsulinemic yet glucose 

tolerant.  These results suggest the existence of an mTORC2-dependent adipose to 

liver/pancreas signaling axis that controls full body growth and metabolism.  



Results – Part 1 39 

Results 

 
Generation and confirmation of adipose-specific rictor knockout mice.   

To delete rictor in adipose tissue, we generated mice in which exons four and five of the 

rictor gene were flanked by loxP sites (rictorfl/fl).  The rictorfl/fl mice were crossed with mice 

expressing cre recombinase under control of the adipose-specific, fabp4/aP2 gene promoter 

(He et al., 2003) (Fig. II-1A).  Adipose-specific rictor knockout mice (rictorad-/-) lacked rictor 

protein in adipose tissue but not in liver, heart, kidney, spleen, brain or macrophages (Fig. II-

1B and II-S1), indicating that rictor was indeed deleted specifically in adipocytes.   Adipose 

tissue of rictorad-/- mice exhibited reduced Akt Ser473 phosphorylation and reduced PKCα 

levels, indicating that mTORC2 signaling was defective (Fig. II-1B).  As expected, Akt Thr308 

phosphorylation and phosphorylation of the Akt substrate GSK3 were not affected in adipose 

tissue.   

  

rictorad-/- mice are enlarged due to an increase in lean mass.   

Body weight of rictorad-/- and control wild type littermates (rictorfl/fl) was monitored during a 10 

week time course in mice 8 to 18 weeks of age.  At 8 weeks of age, knockout and control 

mice were of similar weight.  On a normal diet (chow), rictorad-/- mice gained weight at a 

slightly higher rate than control mice such that they were 4% heavier at the end of the time 

course (Fig. II-1C).  The increased body weight of rictorad-/- mice compared to control mice 

was more pronounced on a HFD (Fig. II-1D).  After ten weeks on a HFD (started at 8 weeks 

of age), the rictorad-/- mice were 17% heavier than control rictorfl/fl mice, but were already 

significantly heavier after only 5-6 weeks on the HFD.  Body length of the rictorad-/- mice was 

also increased (Fig. II-1E), suggesting that the increase in weight was due to an overall 

increase in body size rather than an increase only in fat mass.  Indeed, whole body dexa 

scan analysis of mice after 6 weeks on a HFD revealed an increase specifically in lean tissue 

mass (Fig. II-2A); no difference was observed in the total amount of fat mass after 6 weeks 

on a HFD (Fig. II-2B).   

To investigate further the increase specifically in lean tissue mass, individual organs 

of rictorad-/- and rictorfl/fl mice, fed either a chow or high fat diet for 10 weeks, were excised 

and weighed (Fig, II-2C-J).  On a chow diet, the heart, kidneys, spleen, and pancreas were 

40%, 28%, 38%, and 41% heavier, respectively, in rictorad-/- mice compared to rictorfl/fl control 

mice.  On a HFD, the heart, kidneys, spleen and pancreas were 40%, 47%, 62%, and 129% 

heavier, respectively, in rictorad-/- mice (Fig. II-2C-F).  Interestingly, the pancreas was heavier 

in the rictorad-/- mice on both diets but was disproportionately heavier (129%) on the HFD, 

compared to other organs (Fig. II-2F).  The liver was also heavier (75%) in rictorad-/- mice, but 
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only on the HFD (Fig. II-2G).  Furthermore, as revealed by whole body dexa scan analysis, 

rictorad-/- mice exhibited a 15% increase in bone mineral content with no change in bone 

mineral density, indicating that overall bone size was also increased (Fig. II-2H).  Thus, all 

lean tissues examined were enlarged as a result of an mTORC2 deficiency in adipose tissue. 

After ten weeks on a HFD, the inguinal fat pad was not significantly increased in 

rictorad-/- mice compared to control rictorfl/fl mice (Fig. II-2I), although the epididymal fat pad 

was increased 30% (Fig. II-2J).  This is consistent with the dexa scan analysis described 

above which detected no increase in overall fat mass after six weeks on a HFD.  Thus, 

rictorad-/- mice are larger than control mice due to an increase mainly, if not exclusively, in 

lean tissue mass.  Surprisingly, this effect was particularly evident in mice on a HFD.  

Furthermore, given the increase in lean mass with little-to-no increase in overall fat mass, 

rictorad-/- mice are leaner than control mice.  This leanness could account for the relatively 

mild increase in full body weight (17%) compared to the observed increases in weights of 

individual organs. 

 

rictorad-/- mice exhibit normal WAT morphology and have increased liver steatosis.   

To investigate further the effect of rictorad-/- on adipose tissue, we performed histology on the 

epididymal fat pad.  The epididymal fat pads from rictorad-/- and control rictorfl/fl mice were 

indistinguishable with regard to fat cell size and morphology (Fig. II-3A).  We also examined 

histological sections of the liver, a secondary fat storage organ.  Hepatic cells from HFD-fed 

rictorad-/- mice contained particularly enlarged lipid droplets, indicative of more advanced 

steatosis (Fig. II-3B).  Quantification of liver triglycerides confirmed the increased fat 

accumulation in the liver of rictorad-/- mice compared to control rictorfl/fl mice (Fig. II-3C).  The 

amount of glycogen in the liver was not changed in rictorad-/- mice compared to control mice 

(Fig. II-S2).  Thus, the increase in hepatic fat accumulation likely accounts for the particularly 

enhanced size (75% increase) of the liver in HFD-fed rictorad-/- mice, as described above. 

 

rictorad-/- mice have altered levels of cholesterol and adiponectin.   

To characterize further the phenotype of rictorad-/- mice, we examined several blood 

metabolites and hormones that could be affected upon altered adipose function.  Free fatty 

acids and triglyceride levels were unchanged in rictorad-/- mice compared to rictorfl/fl mice. 

Cholesterol levels were increased in rictorad-/- mice, but only on a chow diet.  Serum leptin 

and IL-6 were also unchanged, but serum levels of adiponectin were decreased 

approximately 30% in rictorad-/- mice, on either a chow or high fat diet (Table II-1). 
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rictorad-/- mice are hyperinsulinemic but glucose tolerant.   

To assess the role of adipose mTORC2 in whole body glucose metabolism, we first 

examined blood glucose and insulin levels.  On a chow or high fat diet, blood glucose levels 

were similar or slightly lower in both fasted (overnight) and fed rictorad-/- mice compared to 

control rictorfl/fl mice (Fig. II-4A,B).  However, insulin levels were significantly increased in 

fasted or fed rictorad-/- mice compared to control mice, on a chow or high fat diet (Fig. II-

4C,D).  To further investigate the effect of mTORC2-deficient adipose tissue on insulin levels, 

we performed a morphometric analysis on the pancreas.  Consistent with an enlarged 

pancreas, pancreatic islets were at least two-fold larger but otherwise morphologically 

unchanged in rictorad-/- mice compared to control rictorfl/fl mice (Fig. II-4E,F).  Furthermore, the 

increase in size of the islets correlated with an increase in total weight of β cells (Fig. II-4G) 

The increase in size of the pancreas and insulin producing islets, even disproportionately 

increased in HFD-fed knockout mice, likely account for the hyperinsulinemia of rictorad-/-mice.  

We next performed a glucose tolerance test on rictorad-/- and control rictorfl/fl mice, on a 

chow or high fat diet.  Hyperinsulinemia, as observed in the rictorad-/- mice, is normally a 

response to insulin resistance and generally correlates with glucose intolerance.  However, 

unexpectedly, the hyperinsulinemic rictorad-/- mice were similarly glucose tolerant (chow diet) 

or even more glucose tolerant (HFD) than rictorfl/fl mice on the corresponding diets (Fig. II-

5A,B).  Furthermore, rictorad-/- mice produced higher levels of blood insulin in response to an 

injected glucose bolus, compared to rictorfl/fl control mice (Fig. II-S3).  Thus, rictorad-/- mice 

remain glucose tolerant under conditions (HFD) where wild type mice are unable to do so.  In 

addition, the hyperinsulinemia of rictorad-/- mice does not correlate with glucose intolerance 

but may rather reflect a primary effect of mTORC2-deficient adipose on the pancreas.  Such 

a primary effect on the pancreas could underlie the disproportionately large size of the 

pancreas in rictorad-/- mice. 

rictorad-/- mice are more glucose tolerant than control mice.  Is this due to increased 

insulin sensitivity, to the observed elevated levels of insulin, or to both?  To distinguish these 

possibilities, we examined the insulin sensitivity of rictorad-/- and rictorfl/fl mice.  rictorad-/- mice 

were slightly insulin resistant compared to the wild type control mice, based on less efficient 

clearance of blood glucose in response to injected insulin (Fig. II-5C).  To investigate further 

this insulin resistance, we examined Akt Thr308 and Ser473 phosphorylation in muscle, 

adipose tissue and liver of insulin-injected rictorad-/- and rictorfl/fl mice.  Mice were injected with 

either saline or insulin and, after 15 minutes, tissues were excised and processed for 

immunoblotting to detect Akt phosphorylation.  Insulin stimulated Thr308 and Ser473 

phosphorylation in both the rictorad-/- and control rictorfl/fl mice in all three tissues, but this 

stimulation was less robust in the rictorad-/- mice (Fig. II-5D).  Thus, rictorad-/- mice are 

modestly insulin resistant, possibly due to reduced levels of the insulin-sensitizer adiponectin 
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(Table II-1).  Furthermore, these results suggest that the glucose tolerance of rictorad-/- mice 

is due to an elevated level of insulin that overcomes a weak insulin resistance. Elevated 

levels of IGF1 (see below) might also contribute to the glucose tolerance of rictorad-/- mice 

(Liao et al., 2006). 

As expected, insulin failed to stimulate mTORC2-dependent Akt Ser473 

phosphorylation in adipose tissue of rictorad-/- mice (Fig. II-5D).  However, insulin stimulated 

Akt Thr308 and GSK3 phosphorylation in adipose tissue of rictorad-/- mice, suggesting that 

mTORC2-deficient adipose tissue remains insulin responsive.  To further investigate the 

insulin responsiveness of mTORC2-deficient adipose tissue, we assayed glucose uptake in 

isolated, insulin-treated adipocytes.  While basal and insulin-stimulated glucose uptake were 

lower in rictor-deficient adipocytes, both rictorad-/- and wild type adipocytes displayed a three-

fold stimulation in response to insulin (Fig. II-5E), confirming that mTORC2-deficient 

adipocytes remain insulin responsive.   

 

rictorad-/- mice have elevated serum IGF1.   

Organismal growth is controlled largely by growth hormone (GH) and IGF1 (Butler and Le 

Roith, 2001; Dupont and Holzenberger, 2003).  GH is produced in the pituitary gland and 

acts by stimulating IGF1 production in the liver. To understand further the increased body 

size of rictorad-/- mice, we measured serum levels of GH and IGF1.  IGF1 serum levels were 

significantly increased in rictorad-/- mice compared to control rictorfl/fl mice, on either a chow 

(21%) or high fat diet (58%) (Fig. II-6A).  The increase in IGF1 levels correlated with an 

increase in IGF1 mRNA levels in the liver, the main IGF1 secreting organ, and in adipose 

tissue (Fig. II-6B).  In parallel, IGF1 binding protein 3 (IGFBP3) serum levels were also 

elevated in rictorad-/- mice, on a chow or high fat diet (26% and 39%, respectively) (Fig. II-6C).  

IGFBP3 is the major IGF1 binding protein that together with acid-labile subunit (ALS) 

stabilizes IGF1 in the serum (Duan and Xu, 2005; Yakar et al., 2005).  In contrast, GH serum 

levels were unchanged (Fig. II-6D), suggesting that elevated levels of IGF1 in the blood were 

not due to altered, GH-mediated signaling from the pituitary gland.  The increased levels of 

IGF1 likely account for the increased body size and furthermore contribute to the glucose 

tolerance of rictorad-/- mice.  
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Discussion 

 
Here we describe the generation and characterization of mice lacking rictor specifically in 

adipose tissue.  rictor is an essential and specific subunit of mTORC2.  The most striking and 

unexpected observation was that rictorad-/- mice are increased in body size due to an 

increase in size of non-adipose tissue.  Furthermore, rictorad-/- mice have elevated levels of 

IGF1 and insulin.  The hyperinsulinemia is likely due to a disproportionately increased 

pancreas and increased β cell mass.  The increase in IGF1 levels is due to a GH-

independent increase in IGF1 expression in adipose tissue and the liver.  Overall, our results 

suggest that mTORC2 in adipose tissue controls an adipose to pancreas/liver signaling axis 

that ultimately controls whole body growth and glucose metabolism.   

How might mTORC2 in adipose control the pancreas and liver?  mTORC2 in adipose 

tissue may positively control expression and/or secretion of a factor(s) that negatively 

regulates these organs.  Alternatively, adipose mTORC2 could negatively control a factor(s) 

that positively regulates the pancreas and/or liver.  In either case, adipose mTORC2 would 

negatively regulate the pancreas and liver such that a knockout of adipose mTORC2 results 

in increased insulin production by the pancreas and increased IGF1 secretion by the liver 

(Fig. II-6E).  The physiological significance of this negative regulation of the pancreas and 

liver by adipose mTORC2 may be related to the fact that mTORC2 is itself stimulated by 

insulin and IGF1 (Wullschleger et al., 2006).  Insulin/IGF1-responsive mTORC2 in adipose 

tissue may be part of a negative feedback endocrine loop acting on the pancreas and liver to 

maintain insulin and IGF1 homeostasis (Fig. II-6E).  Consistent with such a negative 

feedback loop, an adipose-specific knockout of IGF1 receptor results in elevated levels of 

IGF1 and larger mice but unchanged levels of GH (Kloting et al., 2008), similar to the 

adipose-specific mTORC2 knockout described here.  Thus, according to this model, insulin 

and IGF1 activate mTORC2 in adipose tissue and this, in turn, leads to down regulation of 

insulin and IGF1 production in the pancreas and liver, respectively.  It will be of interest to 

determine if disruption of this putative feedback loop between organs plays a role in 

metabolic or growth disorders.  In this context, it is relevant to note that the feedback loop 

appears to be particularly important in response to a high fat diet, as suggested by our 

observation that the growth phenotype of rictorad-/- mice is more pronounced on a high fat 

diet.   

What is the mTORC2-regulated factor(s) that could be signaling from adipose tissue 

to the pancreas and/or liver?  It must be something other than leptin, IL-6, or free fatty acids 

as these factors are unchanged in rictorad-/- mice (Table II-1).  IGF1 expression is increased 

in adipose tissue in rictorad-/- mice, suggesting that IGF1 could be a factor by which adipose 
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mTORC2 signals to other organs.  However, IGF1 produced by adipose tissue would likely 

not be a major factor in signaling to the pancreas and liver because there are few-to-no IGF1 

receptors in the liver, and because the liver is the major producer of circulating IGF1.  The 

secreted factor(s) that signals from adipose to the pancreas and liver remains to be 

determined.  

The downstream effectors of mTORC2 that mediate the effects described here are 

unknown.  mTORC2 controls many AGC family kinases (Jacinto and Lorberg, 2008; Polak 

and Hall, 2009), and we have shown that an mTORC2 deficiency in adipose tissue results in 

reduced Akt Ser473 phosphorylation and reduced levels of PKCα.  It seems unlikely that the 

phenotype described here is due to loss of Akt Ser473 phosphorylation as loss of Akt Ser473 

phosphorylation only mildly affects Akt activity.  PKCα is poorly characterized in adipose 

tissue and it thus remains to be determined whether loss of PKCα plays a significant role.  

Recent findings suggest that the TORC2 substrate and AGC kinase SGK1 plays an 

important role in TORC2 downstream signaling and thus possibly in the phenotype described 

here (Garcia-Martinez and Alessi, 2008; Jones et al., 2009; Soukas et al., 2009).  However, 

SGK1 also remains to be characterized in adipose tissue.  

In summary, our results and the recent results of Kloting et al (Kloting et al., 2008) 

suggest that adipose tissue, and in particular IGF1-mTOR signaling in adipose tissue, plays 

an unexpectedly central role in controlling whole body growth.  This notion is further 

supported by Colombani et al (Colombani et al., 2003) who demonstrated that TOR in the fly 

fat body controls whole body growth, via a hormonal mechanism.  However, mice and flies 

do not appear to be completely analogous, as adipose mTORC1 in mice does not control 

systemic growth positively, as suggested for flies (Polak et al., 2008).  In mice, adipose 

mTORC2 controls systemic growth negatively. 

 

 

Methods 

 

Mice.  LoxP sites were introduced into the intron upstream exon 4 and into the intron 

downstream of exon 5 using a neo cassette flanked with frt sites as a selectable marker (Fig. 

1A).  Expression of Cre recombinase deletes exons 4 and 5 and causes a frameshift in the 

rictor open reading frame.  The vector containing the targeting construct was introduced into 

embryonic stem cells of the129S1/SvlmJ mouse strain and positive ES cells were selected 

by G418 resistance.  Targeted stem cells were injected into blastocysts of C57BL/6J mice to 

obtain chimeric mice.  Injection of ES cells into blastocysts and subsequent generation of 

chimeric mice was performed at the Institut Clinique de la Souris (ICS), Strasbourg, France.  
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After germline transmission, mice were crossed with C57BL/6J mice expressing Flp 

recombinase to remove the neo cassette and subsequently with C57BL/6J Flp deleter mice 

to obtain rictorfl/flmice. The rictorfl/fl mice lack the neo cassette and behave like wildtype.  Mice 

with an adipose-specific deletion of rictor (rictorad-/-) were obtained by crossing rictorfl/fl mice 

with C57BL/6J mice expressing Cre recombinase under the control of the adipocyte-specific 

fabp4/aP2 gene promoter (He et al., 2003) (purchased from JAX Laboratories), which is 

expressed relatively late in adipogenesis (Tontonoz et al., 1994), leading to knockout of rictor 

only in mature adipocytes in neonates.  rictorad-/- mice were born at the expected Mendelian 

ratio.  For all experiments, male mice that had been backcrossed at least 5 times with the 

C57BL/6 strain were used.  Littermates with the lox/lox genotype (rictorfl/fl) were used as 

control group in all experiments and are indistinguishable from wildtype mice. .  All mouse 

experiments described were approved by the Kantonales Veterinaeramt of Kanton Basel-

Stadt. 

 

Metabolic studies.  At 8 weeks of age male mice were either fed a normal chow diet (4.5% 

calories from fat, Kliba Nafag) or put on a high fat diet (60% calories from fat, Harlan 

Research Diets) and monitored for 10 weeks.  Body weight was recorded weekly.  

Quantification of blood metabolites was performed using commercially available kits. 

 

Dual energy x-ray absorptiometry (Dexa) scan analysis.  Dexa scan analysis was 

performed with the ultra high-resolution densitometer PIXImus (GE Medical systems) 

allowing precise measurement of bone density and body composition (fat and lean mass).  

Bone mineral content and density and body composition were recorded on anesthetized 

mice. 

 

Histological analysis.  Liver tissues were prepared for cryosectioning and sections were 

stained with Oil Red O and hematoxylin.  Pancreas and adipose tissue were fixed in 4% 

formaldehyde and paraffin-embedded using a standard protocol.  Adipose tissue sections 

were prepared and stained with hematoxylin and eosin (H&E).  For islet size quantification 

pancreatic sections (8µm) were cut in regular intervals and sequential sections were stained 

with H&E.  All sections were photographed and the area of every islet was quantified using 

the ImageJ software.  In average, 40 islets per pancreas were analyzed.  For quantification 

of β cell mass, β cells were stained using rabbit antibodies against insulin and detected with 

a secondary antibody conjugated with horseradish peroxidase (Vectastain ABC kit, Vector 

Labs) followed by incubation in DAB peroxidase substrate solution and subsequent 

counterstaining with hematoxylin.  Images of the entire pancreatic section were obtained 

using a digital microscope (Coolscope, Nikon) and sections were analyzed using ImageJ 
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software.  The β cell mass was calculated by the percentage of β cell area and pancreas 

weight.  For immunofluorescence, pancreatic sections were stained for insulin and glucagon 

using rabbit antibodies against insulin and mouse antibodies against glucagon.  Immune 

complexes were detected with secondary antibodies conjugated with TexasRed or FITC, 

respectively. 

 

Glucose uptake into adipocytes.  Adipocytes were isolated from epididymal and inguinal 

fat pads by 60’ digestion in KRBH buffer containing 1% BSA and 1100U/ml collagenase.  

Cells were starved for an additional 60’ in KRBH buffer containing 1% BSA.  During the last 

30’ 100nM insulin was added.  To measure glucose uptake, isolated adipocytes were 

washed once in HBS buffer (140mM NaCl, 20mM Hepes pH7.4, 5mM KCl, 2.5mM MgSO4, 

1mM CaCl2) and incubated for 10’ in transport solution (HBS containing 10uM 2-deoxy 

glucose and 0.5uCi/ml 3H 2-deoxy glucose).  Cells were washed 3 times in cold PBS and 

radioactivity was measured by scintillation counter.  Glucose uptake was normalized to cell 

number, which was determined by qPCR on intronic DNA.  Primers used were 5’-

CTACAGATGTGGTAAAGGTCCGC-3’, 5’-GCAATGGTCTTGTAGGCTTCG-3’. 

 

Quantitative PCR.  Total RNA was isolated from frozen tissues using TriZOL reagent 

(Invitrogen).  3µg total RNA was reverse transcribed using Superscript II reverse 

transcriptase (Invitrogen) and random nonamers.  qPCR was performed using the power 

SYBR green mix (Applied Biosystems) and normalized to Polr2a expression. The following 

primers were used: Polr2a sense 5’-AATCCGCATCATGAACAGTG-3’, Polr2a antisense 5’-

CAGCATGTTGGACTCAATGC-3’; IGF1 sense 5’-GCTGCTGAAGCCATTCATTT-3’, IGF1 

antisense 5’-TTGCTCTTAAGGAGGCCAAA-3’. 

 

Statistical analysis.  All data are shown as mean ± s.e.m.  Statistical significance between 

two groups was determined using unpaired, two-tailed Student’s t-test. * P<0.05; ** P<0.01. 
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Figures and Tables 

 
 

 
 
Fig. II-1.   Adipose-specific rictor knockout mice have increased body weight. (A) Adipose-
specific rictor knockout mice (rictorad-/-) were generated using the Cre/LoxP system (see 
Experimental procedures).  (B) Immunoblot showing knockout of rictor and impaired 
mTORC2 signaling in adipose tissue of two littermates. A short (right) and long (left) 
exposure are shown.  Residual rictor protein in rictorad-/- in the long exposure is likely from 
stromal vascular cells in the adipose tissue that do not express aP2-Cre.  (C) Weight curves 
of rictorfl/fl (n=16) and rictorad-/- (n=14) male mice 8 to 18 weeks of age maintained on a chow 
diet.  (D) Weight curves of rictorfl/fl and rictorad-/- male mice fed a HFD for 10 weeks (n=10 per 
genotype).  (E) Body length determined by measuring nasal-to-anal distance.  Mice were put 
on HFD at the age of 8 weeks. Values in D - F are mean ± s.e.m.  *P<0.05; **P<0.01, rictorad-

/- vs. rictorfl/fl. 
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Fig. II-2.   rictorad-/- mice have increased lean mass. (A and B) Lean mass (A) and fat 
mass (B) in rictorfl/fl and rictorad-/- mice was determined by dexa scan analysis.  Mice were 
maintained on a chow diet or fed a HFD for 6 weeks (n=6-8 per group).  (C – J), Weight of 
individual organs.  Individual organs were excised and weighed.  Mice were maintained on a 
chow diet or fed a HFD for 10 weeks.  Bone mineral content was determined by dexa scan 
analysis as in (A) and (B).  Values in (A – J) are represented as mean ± s.e.m (n=11-27 per 
genotype; n=5 in (F)). *P<0.05; **P<0.01, rictorad-/- vs. rictorfl/fl.  
 

 

 

 

 

 
 
Fig. II-3.  rictorad-/- mice have unaltered adipose tissue morphology and increased 
hepatic steatosis.  (A) Representative image of H&E stained sections of epididymal fat.  (B) 
rictorad-/- and rictorfl/fl develop hepatic steatosis after HFD. Representative image of liver 
sections stained with Oil Red O and hematoxylin.  (C) Quantification of liver triglycerides in 
mice fed a chow diet (n=4 per group) or a HFD for 10 weeks (n=16 per group). 
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Fig. II-4.  rictorad-/- mice are hyperinsulinemic.  (A and B) Blood glucose from overnight 
fasted or fed mice either on chow diet (A) or HFD for 10 weeks (B) (n=10-15).  (C and D) 
Blood insulin form overnight fasted or fed mice either on chow diet (C) or HFD for 10 weeks 
(D) (n=10).  (E) Quantification of average islet area represented in arbitrary units (AU). n=3-5 
per group.  (F) Representative image of an islet in rictorfl/fl and rictorad-/- mice immunostained 
for insulin (red) and glucagon (green).  Nuclei were stained with DAPI (blue).  Images were 
taken at the same magnification and islets are shown at the same scale.  (G) Quantitative 
analysis of β cell mass of rictorfl/fl and rictorad-/- mice on chow diet. 
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Fig. II-5.   rictorad-/- mice have improved glucose tolerance after HFD.  (A and B) Glucose 
tolerance tests in overnight-starved mice fed a chow diet (A) or HFD for 10 weeks (B).  Mice 
were injected with glucose (2g/kg, i.p.) and blood glucose was subsequently measured at the 
indicated time points (n=10-16).  *P<0.05, **P<0.01, rictorad-/- vs. rictorfl/fl. n=9-10 per group.  
(C) Insulin sensitivity test in fed mice on a chow diet. Mice were injected with insulin 
(0.75IU/kg, i.p.) and blood glucose was subsequently measured at the indicated time points 
(n=10-11, P>0.05).  (D)  Immunoblot of in vivo insulin stimulated adipose tissue and muscle.  
21-week old mice fed a chow diet were starved over night and aneasthesized, followed by 
i.p. injection of saline or 150mU/g body weight insulin.  After 15 minutes adipose tissue, 
muscle and liver were removed and snap frozen.  Lysates were run on a SDS-PAGE and 
immunoblotted for phosphorylated and total Akt, and phosphorylated and total GSK3.  (E)  
Basal and insulin-stimulated glucose uptake was measured on isolated adipocytes from 
rictorfl/fl and rictorad-/- mice on chow diet.  Glucose uptake was normalized to cell number and 
data are shown in arbitrary units (n=5).  
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Table II-1.  Blood metabolites.  Clinical chemistry and hormone values of mice fed a chow 
diet or HFD for 10 weeks.  Values are mean ± s.e.m (n=9-10 per group) *P<0.05, **P<0.01. 
 

Fig. II-6.  rictorad-/- mice have elevated levels of 
IGF1.  (A) Blood IGF1 levels in mice fed a chow 
diet or HFD for 10 weeks.  (B) IGF1 mRNA 
expression in adipose tissue (epididymal) and liver 
of mice fed a chow diet was determined by 
quantitative RT-PCR.  IGF1 expression was 
normalized to Polr2a expression and is shown in 
arbitrary units (AU).  (C and D) IGFBP3 (C) and 
GH (D) levels were determined in mice fed a chow 
diet or HFD for 10 weeks.  Values in (A – D) are 
represented as mean ± s.e.m.  *P<0.05; **P<0.01, 
rictorad-/- vs. rictorfl/fl (n= 8-10).  (E) Model of 
adipose mTORC2 regulating whole body growth.  
Adipose mTORC2 negatively regulates IGF1 and 
insulin production by liver and pancreas, 
respectively, and thereby controls systemic growth 
and metabolism. 
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Supplementary data 

 

 

 
 
Fig. II-S1.  Immunoblot showing specific knockout of rictor in adipose tissue but not in other 
tissue examined. 
 

 

 

 

 
 
Fig. II-S2.  Quantification of hepatic glycogen content in rictorad-/- and rictorfl/fl mice fed a chow 
diet (n=4 per group) or a HFD for 10 weeks (n=10 per group). 
A small piece of frozen liver tissue was dissolved at 95°C for 30 min in 0.3ml 0.5M KOH.  
25µl of 6% Na2SO4 and 750µl 100% MeOH were added to cooled samples.  Samples were 
incubated for 1h at -80°C and centrifuged at 14 000 rpm at 4°C for 5 min.  200µl of 2mg/ml 
amyloglucosidase in 0.2M sodium acetate buffer (pH 4.9) was added to the pellet for 60 min 
of incubation at 37°C.  10µl of sample was used for glucose assays (GAHK-20 kit, Sigma).  
Glycogen standard curve was prepared using glycogen (G1767, Sigma) dissolved in 0.5M 
KOH. 
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Fig. II-S3.  Glucose tolerance test in mice fed a chow diet (A and B) or HFD for ten weeks (C 
and D).  Mice were injected with glucose (2g/kg, i.p.) and blood glucose (A and C) and insulin 
(B and D) were simultaneously measured at the indicated time points. *P<0.05, **P<0.01, 
rictorad-/- vs. rictorfl/fl. n=9-10 per group. 



Results – Part 1 54 

Additional results 

 
As described in the manuscript above, we suggest that mTORC2 in adipose tissue 

negatively regulates IGF1 and insulin production by liver and pancreas, respectively.  One 

possibility how this regulation might occur, is that mTORC2 in adipose tissue may control 

expression and/or secretion of a factor(s) that in turn regulates these organs.  To address 

this point, we undertook global gene expression analysis to identify genes for which 

expression is altered in adipose tissue deficient for mTORC2.  We used the Affymetrix Gene 

Chip Mouse Gene 1.0 ST Array, which covers more than 28’000 genes.  Since the growth 

phenotype was more pronounced on a HFD, we limited the microarray analyses to 

epididymal adipose tissue RNA from rictorad-/- and rictorfl/fl mice (n=3) that were fed a HFD for 

10 weeks.   

We identified a set of 194 genes whose mRNA levels were upregulated at least 1.4-

fold in rictorad-/- mice compared to rictorfl/fl mice and expression of 71 of these genes was 

increased at least twofold.  mRNAs of 217 genes were downregulated at least 1.4-fold in 

rictorad-/- mice compared to rictorfl/fl mice, 33 of them at least twofold.  To be of further interest 

as a possible candidate, genes with altered expression should initially fulfill the following 

requirements: (1) Altered expression has to be validated by qPCR.  (2) Expression has to be 

altered on both diets since serum IGF1 and insulin levels were increased in rictorad-/- mice 

compared to rictorfl/fl mice on a chow and high fat diet.  (3) Genes with altered expression 

should encode for a secreted protein.   

Using the IPA Software we identified at least 12 genes that were upregulated and 5 

genes that were downregulated and encode for proteins with a defined location in the 

extracellular space.  Proteins of the extracellular space include proteins that are secreted into 

the circulation, as well as proteins that are constituents of the extracellular matrix.  We 

decided to validate by qPCR the mRNA levels of adiponectin and several other genes that 

encode for secreted proteins (Glipr1, Cilp, QPCT, RBP4, Retnla).  Independently of the third 

criteria, we also chose two genes that were shown to be involved in regulating adipose tissue 

and whole body energy metabolism (Cpe and KLB).  In addition, we decided to verify RBP7 

gene expression by qPCR, which encodes a cellular protein and is related to RBP4, which in 

turn contributes to insulin resistance.  RBP7 was the most strongly downregulated gene in 

the microarray data.  The selected genes and their function are listed in Table II-S1; 

information was obtained from the Biobase proteome database.  

The microarray data revealed a 1.5-fold decrease in adiponectin mRNA levels.  This 

decrease correlated well with the observed decrease in serum adiponectin levels in rictorad-/- 

mice compared to rictorfl/fl mice described in the manuscript above and, thus, was a good 
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initial control for the validation of the microarray dataset.  The decrease at the transcriptional 

level could be confirmed by qPCR in rictorad-/- mice compared to rictorfl/fl mice on a HFD (Fig. 

II-S4).  However, on a chow diet mRNA levels were not significantly decreased, despite 

decreased serum levels, indicating that it is more difficult and not as straightforward to 

predict a correlation between the data obtained by microarray analysis and changes in the 

level of a secreted factor.   

Regarding the other genes that we chose for further validation by qPCR, altered 

mRNA expression was confirmed for nearly all genes on mice fed a HFD.  However, on a 

chow diet, mRNA expression of only one gene was significantly altered.  RBP4 mRNA levels 

were significantly decreased in rictorad-/- mice compared to rictorfl/fl mice on both diets (Fig. II-

S4).  RBP4 is a retinol binding protein and it is the only specific transport protein for retinol 

(vitamin A) in the circulation that delivers retinol to tissues (Quadro et al., 1999).  More recent 

findings identified RBP4 as an adipokine that contributes to insulin resistance in obesity and 

type 2 diabetes (Yang et al., 2005).  As suggested by decreased mRNA expression, rictorad-/- 

mice would likely have decreased serum RBP4 levels and should therefore have enhanced 

insulin sensitivity.  However, rictorad-/- mice are slightly insulin resistant.  Furthermore, no 

growth phenotype was described in mice with a full body knockout of RBP4 (Quadro et al., 

1999), making it unlikely that this factor accounts for the elevated IGF1 and insulin serum 

levels in the rictorad-/- mice. 

 

Initial analysis of the microarray data revealed no promising candidate whose altered 

expression could account for altered levels of a secreted factor that could regulate IGF1 and 

insulin secretion.  However, a more profound and extended analysis of the data might be 

required, considering the fact, as mentioned above, that serum adiponectin levels are 

reduced on both diets, but only on a high fat diet this is manifested also at the transcriptional 

level.  This could also be true for many other genes, which would also not fulfill the 

requirements set at the beginning. 

  Even though the initial goal was to search for candidate genes that encode for 

secreted proteins, other genes appearing in the microarray dataset would also be of potential 

interest in further understanding the role of mTORC2 in regulating adipose tissue function.  

The IPA software allows the assignment of individual genes into biological function 

categories.  An mTORC2-deficiency in adipose tissue influenced transcription of genes 

participating mainly in cellular movement (60 genes), cell morphology (71 genes), lipid 

metabolism (43 genes) and small molecule biochemistry (66 genes), suggesting that 

mTORC2 might have further functions in adipose tissue in addition to the ones described in 

this work.  It should also be kept in mind that gene expression of most validated genes was 

altered only in rictorad-/- mice fed a HFD, but not in rictorad-/- mice fed a chow diet, suggesting 
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that mTORC2 in adipose tissue might be particularly important after a HFD challenge.  This 

is also supported by the more pronounced growth phenotype of rictorad-/- mice on a HFD.  

  

 

Table II-S1: Overview of genes and their function that were further analyzed by qPCR. 
Gene Description Fold 

change 
Function 

Glipr1 Glioma pathogenesis-
related 1 

+7.0 Secreted; plays a role in induction of apoptosis, 
regulates reactive oxygen species level, inhibits 
angiogenesis and promotes JUN kinase activity 

QPCT Glutaminyl-peptide 
cyclotransferase 

+2.8 Extracellular; binds to zinc ion, may play a role in 
protein modification process; human QPCT gene is 
associated with hypertension, pheochromocytoma, 
and papillary thyroid carcinoma; identified in an 
insulinoma cell line 

Cilp Cartilage intermediate 
layer protein nucleotide 
pyrophosphohydrolase 

+2.4 Secreted; human Cilp is a putative phosphoprotein 
phosphatase and is associated with osteoarthritis 
and lumbar disc disease  

Cpe Carboxypeptidase E +2.1 Sorting receptor of the secretory pathway; enzyme 
responsible for final proteolytic processing step of 
prohormone intermediates, gene mutation is 
associated with hyperproinsulinemia; increase in 
human CPE autoantibody correlates with diabetes 
mellitus type 1; Cpe knockout mice become obese 
at app. week 10, have impaired glucose tolerance 
and are insulin resistant 

Adipoq Adiponectin -1.5 Secreted; mediates glucose, cholesterol, and lipid 
metabolism; human ADIPOQ is associated with 
various cancers, diabetes, HIV infection, 
acromegaly, obesity, coronary, inflammatory, 
eating, and metabolic disorders 

RBP4 Retinol binding protein 4 -2.1 Secreted; a cofactor transporter that plays a role in 
vitamin transport and glucose and vitamin 
metabolism; human RBP4 is associated with 
obesity and type 2 diabetes; serum levels are 
elevated in insulin-resistant animals 

Retnla Resistin like alpha -2.5 Secreted; acts in protein synthesis, activation of 
MAPKK and PKB, regulates angiogenesis, cell 
differentiation and proliferation, macrophage 
activation, and vasoconstriction; reduced 
expression in adipose tissue of ob/ob and db/db 
mice 

KLB Klotho beta -2.9 Transmembrane protein; coreceptor protein that 
binds Fgfr1 and Fgfr4, plays a role in fibroblast 
growth factor receptor signaling pathway, Fgf21-
mediated glucose uptake, and Slc2a1 expression 
in adipocytes, acts as a cofactor for Fgf21 activity 

RBP7 Retinol binding protein 7 -4.0 Cellular; required for retinoid incorporation into 
milk, may play a role in maintaining normal retinoic 
acid homeostasis in the heart and cardiovascular 
system 
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Figure II-S4: qPCR analysis of genes that revealed altered expression in the 
microarray analysis.  mRNA expression of indicated genes in adipose tissue of rictorad-/- 
and rictorfl/fl mice fed a chow or high fat diet was determined by qPCR.  Expression levels 
were normalized to Polr2a expression and are shown in arbitrary units (AU).  The upper 
panel shows genes with increased expression in adipose tissue of rictorad-/- mice, the lower 
panel shows genes with decreased expression in adipose tissue of rictorad-/- mice. Values are 
represented as mean ± s.e.m.  *P<0.05; **P<0.01 (n= 8-10).  P-values refer to rictorad-/- vs. 
rictorfl/fl on the individual diets.  
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Supplementary Methods 

 
Microarray 

Tissue was homogenized in 1ml Trizol Reagent (Invitrogen) using a Mixer Mill MM 301 

(Retsch) in the presence of 3 stainless steel beads.  Isolated total RNA was furtherpurified on 

RNA Clean & Concentrator-5 columns (Zymo Research). 

Total RNA preparations were analyzed using an Agilent 2100 bioanalyzer.   

cDNA Target was synthesized, fragmented, biotin-labeled using the WT Target Labeling and 

Control Reagents (Affymetrix) starting from 270 ng total RNA according to the procedure 

described in the GeneChip Whole Transcript Sense Target Labeling Assay Manual, Version 

4 (Affymetrix).   A Nano-drop was used to determine all RNA and DNA concentrations.  On 

average 33 µg of cRNA from each reaction was obtained. For each sample 10µg was used 

to generate cDNA.  On average 7.2 µg of cDNA from each reaction was obtained.  For each 

sample 5.5 µg of cDNA was fragmented and the resulting fragments of approximately 40-70 

nucleotides were monitored with the Bioanalyzer using the RNA Nano 6000 Chip.  All 

synthesis reactions were carried out in 0.5ml tubes using a PCR maching to ensure the 

highest possible degree of temperature control.   

The hybridization cocktail (80ml) containing fragmented biotin-labeled target DNA at a final 

concentration of 25 ng/ml was transferred into Affymetrix Gene Chip Mouse Gene 1.0 ST 

Arrays (Affymetrix) and incubated at 45°C on a rotator in a hybridization oven 640 

(Affymetrix) for 17h at 60 rpm.  The arrays were washed and stained on a Fluidics Station 

450 by using the Hybridization Wash and Stain Kit using the Fluidics Procedure 

FS450_0007.  The GeneChips were processed with an Affymetrix GeneChip® Scanner 3700 

7G.  DAT image files of the microarrays were generated using Affymetrix GeneChip 

Command Console.  Data were initially analyzed using XRAY software (Biotique) and later 

with the IPA (Ingenuity Pathways Analysis) Software (Ingenuity Systems).  The IPA software 

allows the identification of biological networks, global functions and functional pathways of a 

particular dataset.  The dataset representing genes with altered expression profile derived 

from the microarray analysis was imported into the IPA tool.  The basis of the IPA program 

consists of the Ingenuity Pathway Knowledge Base, which is derived from known functions 

and interactions of genes published in the literature.  Each gene product is assigned to 

functional categories. Some genes may participate in multiple functions and therefore some 

redundancy exists in gene number.   
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qPCR 

Total RNA was isolated from frozen tissues using TriZOL reagent (Invitrogen).  3µg total 

RNA was reverse transcribed using Superscript II reverse transcriptase (Invitrogen) and 

random nonamers.  qPCR was performed using the power SYBR green mix (Applied 

Biosystems) and normalized to Polr2a expression. The following primers were used: Polr2a 

sense 5’-AATCCGCATCATGAACAGTG-3’, Polr2a antisense 5’-

CAGCATGTTGGACTCAATGC-3’; Glipr sense 5’-AACCGAGCATTCTATCAG-3’, Glipr 

antisense 5’-GAAGCCATCCAGACTATC-3’; Cpe sense 5’-GTGCTTTCTGCCAATCTG-3’, 

Cpe antisense 5’-CTGCTGTCATCGTCATTC-3’; Cilp sense 5’-

ATTGGCTCTATGAAATATCTCTG-3’, Cilp antisense 5’-AGGCTGGACTCTTCTCAC-3’; 

QPCT sense 5’-ACGACTTGAGACCATTGC-3’, QPCT antisense 5’-

AGGACCGATAGCCATAGG-3’; RBP4 sense 5’-GCAAGACAACATCATCGC-3’, RBP4 

antisense 5’-GAGAAAGGAGGCTACACC-3’; KLB sense 5’-ATGCCACATACTGCTTCC-

3’, KLB antisense 5’-GTAGTTATGCCACACTTTCG-3’; RBP7 sense 5’-

GTTACCTGGGAGAATGAC-3’, RBP7 antisense 5’-TGTTGCTGGAGATGTATC-3’; 

Retnla sense 5’-CCTCCACTGTAACGAAGACTCTC-3’, Retnla antisense 5’-

GCAAAGCCACAAGCACACC-3’ 
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Part 2:  mTORC2 is required for cell migration 
 

The following part describes the role of mTORC2 in cell migration.  In collaboration with my 

colleague Vittoria Zinzalla we have analyzed the role of mTORC2 in cell migration in two cell 

lines.  The first cell line is a mouse embryonic fibroblast (MEF) cell line with an inducible 

knockout of rictor.  The second cell line is a 3T3-NIH fibroblast cell line with an inducible 

overexpression of activated H-Ras, which will result in transformation of these cells.   

In this work, I have mainly generated and characterized the inducible MEF cell lines, while 

Vittoria Zinzalla has performed the experiments in the inducible H-Ras fibroblast cell line.   
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Abstract 

 
mTOR complex 2 is an essential kinase complex that is activated by growth factors and 

phosphorylates the kinases Akt and SGK1 at their hydrophobic motifs to fully activate them.  

mTORC2 is composed of mLST8, mSin1, rictor and the serine/threonine kinase mTOR.  

Upregulation of the mTOR signaling pathway is a common event in many tumors.  However, 

most cancer studies addressed the role of mTOR dysregulation using the drug rapamycin, 

which specifically inhibits mTOR that functions in mTOR complex 1.  Therefore, less is 

known about the role of mTORC2 in cancer biology.  Here, we have generated a new mouse 

embryonic fibroblast cell line bearing an inducible knockout of the mTORC2 essential 

component rictor (iRicKO).  Initial characterization of the cell line revealed that loss of rictor 

results in reduced cell proliferation.  Furthermore, we show that loss of rictor increases 

mTORC1 assembly and S6K phosphorylation and thereby leads to increased cell size.  To 

further investigate the role of mTORC2 in actin-dependent processes we analyzed cell 

motility and found reduced cell migration upon induction of rictor knockout.  This reduced 

migratory behavior is due to impaired activity of the RhoGTPase family members Rac1, 

Cdc42, and RhoA.  In addition, we also show that mTORC2 is upregulated and its activity is 

required for cell motility in H-Ras-transformed fibroblasts.  Therefore, we provide evidence 

for the role of mTORC2 in cell migration of normal and oncogenic cell lines suggesting an 

important function of mTORC2 in the development of cancer and metastasis.  

 

 

Introduction 

 

The mammalian Target of Rapamycin (mTOR) is an evolutionary highly conserved 

serine/threonine kinase that is centrally involved in the control of cell growth, proliferation and 

metabolism (Wullschleger et al., 2006).  mTOR is involved in several human diseases, 

including cardiovascular diseases, obesity, and diabetes, and it is estimated that 70% of 

human cancers are associated with malfunctions of the mTOR signaling pathway.   

mTOR functions in one of two distinct multiprotein complexes named mTOR complex 

1 (mTORC1) and mTORC2 (Jacinto et al., 2004; Loewith et al., 2002; Sarbassov et al., 

2004).  mTORC1 contains mTOR, mLST8 and raptor and is sensitive to the 

immunosuppressant and anti-cancer drug rapamycin.  mTORC1 is activated by nutrients, 

such as amino acids, growth factors, such as insulin, and responds to the cellular energy 
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status.  The most extensively studied function of mTORC1 is the regulation of translation via 

phosphorylation of S6 kinase and 4E-binding protein 1 (4E-BP1), but also autophagy, 

mitochondrial metabolism and transcription are regulated by mTORC1 (Soulard and Hall, 

2007).  mTORC2 contains mTOR, rictor, mLST8 and mSin1 and is resistant to direct 

rapamycin inhibition.  Growth factors can increase mTORC2 activity, but the underlying 

mechanism is yet unknown.  mTORC2 plays a fundamental role in controlling the activity of 

Akt/PKB and SGK1; it phosphorylates both kinases at their hydrophobic motif site - Akt at 

Ser473 and SGK1 at Ser422 (Garcia-Martinez and Alessi, 2008; Hresko and Mueckler, 2005; 

Sarbassov et al., 2005).   

mTORC2 plays an important role in the regulation of actin cytoskeleton dynamics 

(Jacinto et al., 2004; Sarbassov et al., 2004).  Knockdown of any component of mTORC2, 

including mTOR, mLST8, rictor and mSin1, causes a similar alteration of cell morphology 

and cell adhesion.  In addition, mTORC2 regulates protein kinase C α (PKCα) activity by 

regulating its phosphorylation and stability (Facchinetti et al., 2008; Ikenoue et al., 2008).  

PKCα plays an important role in cytoskeleton organization (Larsson, 2006).  However, the 

molecular mechanism by which mTORC2 controls actin cytoskeleton dynamics is not 

understood.  It was shown that cell movement and chemotaxis highly depend on TORC2 in 

Dictyostelium, a powerful model organism to study these two mechanisms (Kamimura et al., 

2008; Lee et al., 2005).  Loss of any component of TORC2 results in loss of speed, cell 

polarity and directionality, overall affecting chemotaxis.  Furthermore, it was shown that in 

Dictyostelium cytosolic Ras GTPases can activate TORC2 thereby leading to the activation 

of the PKBs, followed by several phosphorylation events on signaling proteins that regulate 

directed cell movement.  In this study, we have analyzed the role of mTORC2 in controlling 

cell migration in the inducible rictor knockout MEF cell line. Our data suggest that mTORC2 

promotes cell migration by maintaining the reciprocal balance between the RhoGTPases.  

Migration of tumor cells is a prerequisite for cancer cell invasion and metastases and 

the underlying signaling mechanisms are complex.  The role of the Ras signaling pathway in 

tumor initiation is well established, but whether and how it contributes to invasion and 

metastasis is not well understood (Campbell and Der, 2004; Furge et al., 2001).  Given the 

more aggressive and lethal phenotype for metastatic tumors, it is necessary to gain further 

knowledge on the signaling mechanisms that lead to tumor cell migration and subsequently 

to invasion and metastases.  A better understanding of these molecular mechanisms can 

lead to new approaches in the design of more effective therapies.  Ras-oncogenes are 

mutated in 30% of all human cancers leading to constitutively activated Ras GTPases that 

are insensitive to GAP stimulation (Barbacid, 1987; Bos, 1989).  One way how H-Ras, one of 

the ras genes, can regulate tumor metastasis is by increasing cell migration (Kim et al., 

2003b; Moon et al., 2000).  However, the signaling molecules implicated in these processes 
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have not been fully characterized.  In this study, we have analyzed the role of mTORC2 in 

oncogenic H-Ras-mediated cell migration.  Our findings suggest that H-Ras activates 

mTORC2, as detected by increased phosphorylation of Akt at Ser473, and that this complex 

is an important signaling intermediary in H-Ras-mediated cell migration. 

 

 

Results 

 
Generation of inducible raptor and rictor knockout MEF cell lines 

While the function of mTORC1 can be easily studied by rapamycin treatment, we lack an 

mTORC2 specific inhibitor and hence we rely on genetic manipulation to study the function of 

mTORC2.  To circumvent the rapamycin insensitivity of mTORC2 and obtain further insights 

into the TOR signaling branch mediated by mTORC2, we took advantage of the Cre/LoxP 

technology to generate inducible knockout mouse embryonic fibroblasts (MEFs) deficient for 

either the mTORC1-specific component raptor or the mTORC2-specific component rictor.  In 

contrast to a constitutive knockout MEF cell line the inducible system allows a very tight and 

temporal regulation of recombination and thereby resulting in a very efficient knockout.  

Furthermore, it allows us to study immediate changes upon loss of mTOR complex integrity 

and circumvents the possibility of cell adaptation.  Primary MEFs were isolated from mice 

homozygously floxed for raptor or rictor, respectively (Bentzinger et al., 2008; Polak et al., 

2008).  After immortalization with the simian virus 40 (SV40) large T antigen cells were 

infected with retroviruses carrying a tamoxifen-inducible Cre recombinase (CreERT2) and 

selected for stable integration (Fig. III-1A).  CreERT2 is a fusion protein of a mutated 

estrogen receptor to the Cre recombinase, which remains in an inactive form within the cell 

(Feil et al., 1996; Leone et al., 2003).  Only upon addition of the synthetic estrogen receptor 

ligand 4-hydroxytamoxifen (4-OHT) CreERT2 is activated, thereby allowing temporal control 

of gene recombination that leads to the knockout of the gene of interest.  The resulting MEF 

cell lines bearing an inducible raptor or rictor knockout were named iRapKO and iRicKO, 

respectively.   

Time course analysis of 4-OHT addition to the cell lines revealed that rictor or raptor 

proteins were no more detectable after 3 days of 4-OHT treatment (Fig III-1B).  Therefore, for 

all subsequent experiments cells were pre-treated with 4-OHT for at least 3 days.  Control 

cells without CreERT2 (control) were used to exclude any 4-OHT-induced effect that was not 

related to the induction of the knockout of rictor or raptor.   

To verify that loss of either raptor or rictor in our cell system results in the expected 

changes within the mTOR signaling pathway, we analyzed the downstream targets of the 
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mTORC1 and mTORC2 signaling branches upon insulin stimulation.  Loss of rictor results in 

a strong reduction of Akt Ser473 phosphorylation that also leads to a decrease in 

phosphorylation of FoxO1/3a, two Akt substrates, whose phosphorylation is affected when 

Akt is not phosphorylated at the hydrophobic motif (Guertin et al., 2006) (Fig III-1C).  In 

agreement with previous findings loss of mTORC2 activity also leads to a decrease in PKCα 

protein levels (Facchinetti et al., 2008; Guertin et al., 2006; Jacinto et al., 2006).  As 

expected, in 4-OHT-treated iRicKO cells mTORC1 activity and its downstream signaling 

remain unaffected upon insulin stimulation as observed by unchanged S6K phosphorylation.  

Furthermore, 4-OHT alone has no effect on the mTOR signaling pathway in control cells.  

4-OHT treated iRapKO cells show a strong reduction in S6K Thr389 phosphorylation, 

as well as an increase in Akt Ser473 phosphorylation, confirming the specific loss of 

mTORC1 activity in iRapKO cells (Fig III-1D).  The observed increase in Akt Ser473 

phosphorylation is due to loss of the negative feedback loop that normally inhibits upstream 

signaling by the insulin pathway during prolonged stimulation of mTORC1 and S6K 

(Harrington et al., 2004; Shah et al., 2004; Um et al., 2004).  Therefore, loss of mTORC1 or 

mTORC2 signaling in induced iRapKO or iRicKO cells, respectively, correlates well with 

findings from other cell systems where mTORC1 or mTORC2 activity was diminished.  This 

allows us to use these cell lines to further study the functions of mTORC1 and mTORC2.  In 

the following we have mainly continued on further characterizing the iRicKO cells. 

 

Loss of rictor impairs cell proliferation 

We determined whether loss of rictor in our cell system affects cell proliferation by comparing 

growth rates of untreated iRicKO cells and iRicKO cells pre-treated with 4-OHT for 3 days to 

induce rictor knockout.  Equal number of cells were seeded and counted daily for 6 days.  

Non-induced iRicKO cells proliferated more rapidly than induced iRicKO cells (Fig. III-2A).  4-

OHT alone had no effect on proliferation of control cells.  Consistently, the population 

doubling (PD) of each group after 6 days confirmed the differences in growth rates shown by 

daily counts.  PD for induced iRicKO cells was reduced by 30% as compared to untreated 

iRicKO cells, while untreated and 4-OHT-treated control cells showed exactly the same PD.  

To further examine the reduced proliferation rate in rictor knockout-induced iRicKO cells we 

analyzed the cell cycle distribution under normal growth conditions measuring the DNA 

content by flow cytometry.  Loss of rictor resulted in an alteration in cell cycle distribution, 

with 45% of the cells arrested at G1/G0 phase while only 36% of untreated iRicKO cells were 

found in G1/G0 phase (Fig. III-2B).  Furthermore, treatment with 4-OHT for 6 days, 

resembling a long-term loss of rictor, increased the ratio of cells arrested at G1/G0 phase 

(65%) even further.  Therefore, rictor is required for normal cell proliferation. 
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Loss of rictor results in increased cell size and S6K phosphorylation. 

While cell proliferation was impaired in rictor knockout-induced iRicKO cells due to an 

increase in G1/G0 arrest we furthermore found by FACS analysis that rictor-deficient iRicKO 

cells, under normal growth conditions, were increased in cell size as measured by the 

forward scatter distribution (Fig. III-2C).  Increased cell size was apparent after 3 days of 4-

OHT treatment and became even more obvious after 6 days of 4-OHT treatment.  Increased 

cell size is indicative of increased cell growth that is mainly regulated by mTORC1 via S6K 

phosphorylation.  Therefore, we closer analyzed S6K phosphorylation at the mTORC1 site 

Thr389 under normal growth conditions after loss of rictor in the iRicKO cells.  3 days after 

induction with 4-OHT there was a small but significant increase in basal S6K Thr389 

phosphorylation, and this increase became even more apparent after 4 or 6 days of 4-OHT 

treatment (Fig. III-2C).  The observed increase in S6K phosphorylation suggested an 

increase in mTORC1 activity.  Since in rictor-deficient cells mTORC2 cannot be formed, we 

assumed that this could lead to an increase in mTORC1 assembly.  To investigate this 

hypothesis we have treated iRicKO cells with or without 4-OHT for 6 days and subjected the 

cell extracts to immunoprecipitation with an anti-mTOR antibody.  In untreated cells, raptor 

and rictor co-immunoprecipitated with mTOR, while in rictor deficient cells only raptor co-

immunoprecipitated with mTOR.  Furthermore, raptor binding to mTOR was clearly increased 

in 4-OHT treated cells compared to untreated cells (Fig. III-2D).  Overall, we found that under 

normal growth conditions induction of rictor knockout increases mTORC1 assembly leading 

to increased S6K Thr389 phosphorylation and cell size.  

 

Loss of rictor inhibits cell migration and affects RhoGTPase activity 

Regulation of the actin cytoskeleton by mTORC2 has been described (Jacinto et al., 2004; 

Sarbassov et al., 2004); and, moreover, recent findings in Dictyostelium show the 

involvement of TORC2 in controlling cell polarity and chemotaxis (Kamimura et al., 2008; Lee 

et al., 2005).  Therefore, we investigated the role of mTORC2 in directed cell migration in the 

iRicKO cells.  We first treated the cells with 4-OHT for 3 days and then performed serum-

induced transwell assays to determine cell motility.  Induction of rictor knockout showed a 

significant decrease (app. 70%) in the number of migrating cells when stimulated with serum 

(Fig. III-3A).  In contrast, 4-OHT did not impair serum-induced migration of control cells.  This 

suggests that mTORC2 is involved in the regulation of cell motility. 

The Rho family of GTPases, including Cdc42, Rac1 and RhoA are critical regulators 

of cell polarization and directional migration.  The balance between the activity of these small 

GTPases determines the migratory behavior in fibroblasts (Fukata et al., 2003).  Initial 

studies on the characterization of mTORC2 suggested the involvement of this complex in 

regulating the formation of active, GTP-bound Rac1 (Jacinto et al., 2004).  Therefore, we 
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analyzed whether mTORC2 regulates serum-mediated cell migration in the iRicKO cells 

through signaling to the Rho family GTPases Cdc42, Rac1 and RhoA.  After induction of 

rictor knockout with 4-OHT for 3 days we detected the activity of Cdc42, Rac1 and RhoA in 

serum-stimulated cells using pull down assays.  Briefly, a fusion protein of glutathione-S-

transferase (GST) and the CRIB domain of the Rac1/Cdc42 effector molecule PAK only 

allows binding of the activated, GTP-loaded Rac1/Cdc42.  Similar, the Rho binding domain of 

the Rho effector Rhotekin fused to GST was used to pull down activated, GTP-bound RhoA.  

As expected, we observed that 4-OHT treatment alone did not affect Cdc42, Rac1 and RhoA 

activity in the control cells (Fig. III-3B).  In contrast, rictor knockout significantly decreased 

the levels of GTP-bound Rac1 and Cdc42 after 5 min (Fig. III-3B) and 10 min (data not 

shown) of serum-stimulation, suggesting that mTORC2 is required for their activation.  Since 

growth factor-induced Rac1 and Cdc42 activation has been shown to down-regulate RhoA in 

fibroblasts (Sander et al., 1999), we also analyzed RhoA activity by measuring the amount of 

GTP-bound RhoA after 5 min (Fig. III-3B) and 10 min (data not shown) of serum-stimulation.  

Induction of rictor knockout increased RhoA activity, while at the same time decreasing 

Cdc42 and Rac1 activity, suggesting that mTORC2 is required to inhibit RhoA in cells 

stimulated with serum.  All together these data suggest that in the absence of mTORC2 the 

reciprocal balance between Cdc42/Rac1 and RhoA activities is lost, leading to an impaired 

migratory behavior in the MEFs. 

 

mTORC2 activity is involved in oncogenic Ras induced cell migration.  

The guanine nucleotide-binding protein Ras acts as a molecular switch connecting 

extracellular signals with a complex network of intracellular signal transduction pathways that 

mediate a variety of cellular responses including proliferation and differentiation (Karnoub 

and Weinberg, 2008).  The three Ras proto-oncogenes, H-, N- and K-Ras, are amongst the 

most commonly mutated genes in all human cancers.  In fact, mutational activation of Ras 

proteins promotes oncogenesis by disturbing a multitude of cellular processes, such as gene 

expression, cell cycle progression and cell proliferation, as well as cell survival and cell 

migration.  Key steps in invasion and metastasis include alterations in cell adhesion, cell–

matrix and cell–cell interactions, and the acquisition of an increased migratory phenotype.  

These cellular properties are regulated, in part, by Rho family GTPases and their control of 

actin organization.  The aberrant activities of Rho GTPases have been implicated in 

contributing to a metastatic and invasive phenotype (Sahai and Marshall, 2002; Schmitz et 

al., 2000).  The induction of cell migration through Ras has been shown to be critically 

dependent on Rho GTPase function (Zohn et al., 1998). 
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In the previous part we have shown that induction of rictor knockout inhibits cell 

migration and affects RhoGTPase activity. These data suggest a link between the Ras and 

mTORC2 signaling pathways in regulating cell migration behavior.  

To investigate whether mTORC2 signaling is directly affected by Ras mutation, we 

analyzed Akt Ser473 phosphorylation in NIH3T3 fibroblasts harboring a tetracycline-inducible 

expression of a constitutively active mutant of H-Ras (NIH3T3/tet-on/H-RasG12R) (Park et 

al., 2006).  The expression of H-RasG12R was detectable 6 h after addition of doxycycline 

and remained highly elevated for at least 72 h (Fig III-4A).  The phosphorylation of the Ras 

downstream effector Erk1/2 (Thr202/Thr204), as well as the phosphorylation of Akt Ser473 

were both increased within 6 h of doxycycline addition.  In agreement with the role of 

oncogenic H-Ras in cell transformation (Park et al., 2006), the cells underwent morphological 

transformation between 2 and 3 days after addition of doxycycline (data not shown).  To 

verify that mTORC2 is responsible for the phosphorylation of Akt at Ser473 after induction of 

oncogenic H-Ras, we analyzed the effect of rictor knockdown in NIH3T3tet-on/H-RasG12R 

cells pre-treated with doxycycline for 3 days.  As shown in Fig. III-4B, siRNA-mediated 

knockdown of rictor strongly reduced the level of Akt Ser473 phosphorylation.  These data 

establish that the increased Akt phosphorylation at Ser473 in cells expressing H-RasG12R 

depends on rictor and suggest that the mTORC2 signaling pathway is activated by the 

induction of oncogenic H-Ras. 

Next, we investigated the role of mTORC2 in the control of cell migration in the 

inducible oncogenic H-Ras fibroblasts (NIH3T3tet-on/H-RasG12R) using two different cell 

motility assays.  As shown by the wound healing assay, we found that in cells pre-treated 

with doxycycline for 3 days to induce oncogenic transformation, rictor knockdown 

significantly inhibited cell motility (Fig. III-5A).  To confirm the inhibition of cell migration upon 

loss of mTORC2, we performed the Transwell assay.  As expected, we observed that 

doxycycline treatment for 3 days increased serum-stimulated cell migration by 4 fold, which 

is in agreement with the role of oncogenic H-Ras in inducing cell migration.  In contrast, a 

significant inhibition of cell migration was observed upon knockdown of rictor in oncogenic 

transformed cells (Fig. III-5B).  Reduced expression of rictor and decreased phosphorylation 

of its substrate Akt at Ser473 in cells expressing siRNA was confirmed (Fig. III-5B).   

As shown in Fig III-3B, induction of rictor knockout in the iRicKO cells inhibits cell 

migration and affects the activity of the RhoGTPases Rac1, Cdc42, and RhoA.  Furthermore, 

properly activated RhoGTPases are required for the induction of cell migration through Ras.  

Since mTORC2 is required for the activation of cell migration by oncogenic H-Ras 

expression, this suggests that mTORC2 also regulates RhoGTPase activity in transformed 

NIH3T3tet-on/H-RasG12R cells.  Therefore, we analyzed Rac1 activity in these cells upon 

rictor knockdown.  In agreement with the findings in the iRicKO cells, knockdown of rictor in 
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NIH3T3tet-on/H-RasG12R cells pre-treated with doxycycline for 3 days caused a significant 

decrease in the level of GTP-bound Rac1 after 10 min of serum-stimulation (Fig. III-5C).  

Taken together, these data show that mTORC2 signaling plays an important role in the 

activation of RhoGTPases and cell migration by oncogenic H-Ras expression.  

  

 

Discussion 

 
Our data suggest that mTORC2 promotes cell migration by maintaining the reciprocal 

balance between Cdc42/Rac1 and RhoA activities in MEFs.  Furthermore, we show that in 

fibroblasts transformed with oncogenic H-Ras the observed increases in Akt Ser473 

phosphorylation and cell migration depend on mTORC2.  To investigate the role of mTORC2 

in cell migration we generated an inducible rictor knockout MEF cell line (iRicKO).  Initial 

characterization of these cells under normal growth conditions revealed that upon loss of 

rictor, iRicKO cells showed decreased proliferation but increased cell size.  The observed 

increase in cell size correlated with elevated S6K Thr389 phosphorylation and mTORC1 

assembly.  Currently, the mechanisms that regulate the formation of individual TORCs are 

unknown.  Recent data suggest that under steady-state conditions, rictor and raptor 

associate with mTOR at near stoichiometric levels and that the ratios of rictor or raptor bound 

to mTOR seem to be inversely related in different cell lines (Sarbassov et al., 2005).  

However, in previous studies siRNA-mediated knockdown of rictor did not seem to 

significantly influence the amount of raptor subsequently associated with mTOR (Sarbassov 

et al., 2006).  Our data, using the inducible system, are consistent with a balance between 

the two complexes: under normal growth conditions the induction of rictor knockout releases 

mTOR from mTORC2 and makes mTOR available to interact with raptor, thereby enhancing 

mTORC1 activity and cell growth. Therefore, our inducible knockout system appears to be 

more appropriate to study dynamic changes in mTOR signaling upon loss of rictor, as 

compared to cells with constitutive knockout of rictor or knockdown-mediated reduction in 

rictor protein levels.  

Using the iRicKO cells we could show that loss of rictor inhibits cell migration and 

affects RhoGTPase activity.  Consistent with our data, previous reports have shown that 

mTORC2 regulates the actin cytoskeleton through the GTPase Rac1 (Hernandez-Negrete et 

al., 2007; Jacinto et al., 2004).  Furthermore, a recent study has identified the regulation of 

Rac1 activity by mTORC2 as an important mediator of PGE2 – induced endothelial cell 

migration (Dada et al., 2008).  In this study, we identified the molecular mechanism involved 

in mTORC2-mediated cell migration.  Loss of rictor leads to a decrease in Cdc42/Rac1 
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activity and a simultaneous increase in RhoA activity upon serum stimulation.  One of the 

major determinants of cell motility in fibroblasts is the correct reciprocal balance between 

Cdc42/Rac1 and Rho activities (Sander et al., 1999), and we have demonstrated that 

mTORC2 is required for the correct balance between the increased Cdc42/Rac1 activity and 

consequent RhoA inhibition.  Consequently, the loss of this balance determines the impaired 

migration behavior in our rictor-deficient MEFs.   

To investigate a potential role of mTORC2-dependent cell migration in cancer cells 

we went on to show that mTORC2 is indeed required for cell migration in fibroblasts 

transformed with oncogenic H-Ras.  Ras interacts with and regulates multiple downstream 

effectors that stimulate diverse cytoplasmic signaling activities required for induction of cell 

migration.  One of the most commonly studied signal transduction routes downstream of 

oncogenic Ras activation is the PI3K pathway (Rodriguez-Viciana et al., 1997).  However, 

the PI3K-dependent molecular mechanism that leads to increased cell motility is not well 

understood.  It was shown that PI3K can activate Rac GEFs to promote the activation of the 

small GTPase Rac1, leading to increased cell migration (Han et al., 1998; Nimnual et al., 

1998).  Our data also show that mTORC2, whose activity has been shown to be PI3K-

dependent (O'Reilly et al., 2006), is required in oncogenic H-Ras mediated activation of cell 

motility and that RhoGTPases are affected in the absence of mTORC2.  H-Ras mediated 

activation of cell motility is only partially rescued by rictor knockdown.  This could be 

explained since H-Ras also activates the other complex of mTOR, mTORC1, as reported 

previously (Shaw and Cantley, 2006).  In fact, our unpublished data and findings by others 

support a role for mTORC1 in cell migration that was shown to be dependent on protein 

synthesis via the 4E-BP1/eIF4E and S6K pathways (Liu et al., 2006).  Overall, we suggest 

that mTORC2 can play an important role in the control of Ras-mediated tumor invasion and 

metastasis through the control of cell migration.  Consistent with our findings in the inducible 

oncogenic H-Ras expressing cell line, recent reports have emphasized the role of mTORC2 

in cell motility in tumors.  Increased mTORC2 activity promotes glioma migration and 

invasiveness and rictor is required for elevated levels of phosphorylated Akt Ser473, which 

correlated with increased anchorage-independent growth and migration (Masri et al., 2007). 

Moreover, a recent study by Qiao et al. showed that mTORC2 activity regulates the 

metastatic potential of a series of human breast cancer cell lines that derived from 

successive biopsies from a single patient (Qiao et al., 2007).   

 Overall, our findings point out the importance of mTORC2 activity in cell migration, in 

particular in oncogenic H-Ras-transformed cells.  We could show that mTORC2 is an 

important mediator of the Ras signaling pathway and is required at least for some of its 

oncogenic functions.  The high frequency of cancers with elevated Ras signaling, as well as 

the generally lethal phenotype resulting from cancer spreading and metastases, emphasizes 
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the importance of continuously improving the design of more effective therapies.  The role of 

mTORC2 in cancer only starts to be solved and mTORC2 could evolve into a potential drug 

target in the treatment of tumor invasion and metastasis.   

 

 

Materials and Methods 

 

Cell culture and transfections 

NIH3T3tet-on/H-RasG12R cells were obtained from Young Yil Bahk (Park et al., 2006). The 

expression of H-Ras was induced by treatment of the cells with doxycycline (2µg/ml) for the 

indicated periods of time.  All cell lines used were cultured in Dulbecco’s-modified Eagle 

medium (DMEM, 4500mg/l glucose) supplemented with 10% fetal bovine serum (FBS).  For 

experiments where cells were deprived of serum, cells were washed with phosphate-buffered 

saline, and incubated in serum-free DMEM.  For restimulation experiments, cells were 

serum-starved for 3 hours and then treated with DMEM containing 100 mM insulin for 30 

minutes.  Cells were harvested with lysis buffer that contained 50 mM Tris pH 8.0, 150 mM 

NaCl, 0.5 mM EDTA, 1% (v/v) Triton-X-100, supplemented with protease inhibitor cocktail 

(Roche).  Lysates were incubated for 30 minutes at 4°C, then cleared by a spin at 1000 g for 

5 minutes.  Supernatants were collected and used for immunoblots. Transfections with rictor 

and control siRNA were performed as described (Jacinto et al., 2004).  

 

Generation of iRicKO and iRapKO, inducible Rictor and Raptor knock out MEF cell 

lines. 

Mouse embryonic fibroblasts (MEFs) were isolated from either rictorloxP or raptorloxP mouse 

embryos at E12.5 and grown in DMEM supplemented with 10% FBS.  60mm dishes with 

primary cells were transfected with 2mg of a plasmid expressing simian virus 40 (SV40) large 

T antigen (kindly provided by Dr. David Ron; New York University School of Medicine. New 

York, USA).  Immortalized MEFs were infected for 48h with retroviruses carrying a 

tamoxifen-inducible Cre recombinase (CreERT2) in the presence of 5mg/mL polybrene 

(Sigma).  MEFs with stable integration of CreERT2 were subsequently selected in the 

presence of 3mg/mL puromycin (Sigma).  The resulting cell lines allowing inducible Rictor or 

Raptor knock out were named iRicKO and iRapKO, respectively.  Immortalized MEFs that 

were not infected were used as controls.  Cells were treated for at least 3 days in the 

presence of 1mM 4-hydroxytamoxifen (4-OHT; Sigma) to induce Rictor or Raptor knockout. 
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Cloning and retroviral production 

Retroviruses were produced by transfection of the ecotropic Phoenix packaging cell line with 

pMSCV vector.  The CreERT2 fragment was cloned from pCDNA3-CreERT2 (kind gift from 

Dr. Patrick Matthias; Friedrich-Miescher-Institute, Basel, Switzerland) into pMSCVpuro using 

EcoR1 restriction sites. 

 

Immunoblotting 

Protein extracts were resolved on SDS-PAGE and transferred to nitrocellulose membranes 

(Whatman). Immunoblots were performed using the following antibodies: rictor, raptor, Akt 

pS473, FoxO3a pT32/FoxO1 pT24, FoxO3, PKCα, S6K, S6K pT389, S6, S6 pS235/236 

(Cell Signaling); RhoA, H-Ras, PKCα pS657, ERK1/2, ERK1/2 pT202/Y204 (Santa Cruz); 

actin (Chemicon); Cdc42 (Pierce) and Rac1(Upstate). 

 

Immunoprecipitation 

mTOR immunoprecipitations were performed as described previously (Jacinto et al., 2004). 

 

Cell proliferation assay and flow cytometry 

50’000 cells that were either pre-treated or not with tamoxifen for 3 days were plated in 

duplicate in 60 mm dishes and cultured for up to 6 days under normal growing conditions.  

Cells were counted daily to establish growth curves.  The number of population doublings 

(PD) is calculated as follows: PD=ln(Nf/Ni)/ln2, where Nf and Ni are final and initial cell 

numbers, respectively. 

Cell cycle distribution and cell size were analysed by flow cytometry (Becton Dickinson FACS 

Calibur).  MEFs were harvested and stained with propidium iodide (PI) and cells were 

analysed for cell cycle distribution. Cell size was determined by measuring the forward 

scatter distribution.  

 

Wound healing assay 

Cells were cultured in six-well plates to reach confluence and then serum-starved for 24h.  

Wounds were introduced to the confluent monolayer of cells with a plastic pipette tip to 

generate a cleared scratch. The medium was changed to remove any floating or damaged 

cells.  The cells were incubated at 37°C, and cell movement into the wound area was 

photographed at different time points. 

 

Transwell assay 

Cell migration assays were performed using an 8-µm pore size Transwell system (Corning 

Inc., Corning, NY, USA).  Briefly, overnight serum-starved cells were trypsinized and 
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resuspended in serum-free DMEM at a density of 5 x 105 cells/ml. The top chamber of the 

Transwell was loaded with 0.1ml of the cell suspension, while the bottom chamber was 

loaded with 0.6ml DMEM containing 10%FBS.  After incubation at 37°C for 16h noninvasive 

cells on the upper surface of the membrane were removed with a cotton swab.  Cells that 

invaded were fixed with 4% paraformaldehyde, stained with crystal violet, and photographed.  

For quantification, the membranes were detached and solubilized in 10% acetic acid, and the 

intensity of the colored solution was quantified by spectrophotometrical analysis at 595 nm.  

 

Effector domain pulldown assays 

Rho, Rac, and Cdc42 activity were determined by pull down assays as described elsewhere 

(del Pozo et al., 2000; Ren et al., 2000). The pull down assays were performed with 

glutathione-agarose immobilized GST-Rhotekin (for RhoA) or GST-PAK1 (for Cdc42 or 

Rac1) effector domain.  Total lysates and bound proteins were analyzed by immunoblotting. 
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Fig. III-1.  Generation and initial characterization of iRapKO and iRicKO MEF cell lines.  A, 
Scheme illustrating the generation of the inducible raptor and rictor knockout MEF cell lines, 
which were named iRapKO and iRicKO, respectively.  B,  Time course analysis of 4-OHT-
dependent loss of raptor and rictor protein levels.  Cells were treated up to 3 days with 4-
OHT and protein levels were analysed by Immunoblot.  C,  Immunoblot analysis of the insulin 
stimulated mTOR signaling pathway after the induction of rictor knockout.  Cells were serum 
starved only or starved and restimulated with insulin for 30 minutes.  D,  Immunoblot analysis 
of the insulin stimulated mTOR signaling pathway after the induction of raptor knockout.  As 
C. 
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Fig. III-2.  Induction of rictor knockout impairs cell proliferation and increases cell size.  A, 
Graphs representing growth curves of 4-OHT treated and untreated iRicKO and control cells.  
Cells were either pre-treated with 4-OHT for 3 days (dashed lines) or not (full lines) and then 
equal numbers of cells were seeded.  iRicKO cells (triangle) and control cells (circle) were 
counted daily to establish the growth curves.  B, Cell cycle distribution of untreated (day 0) 
and 4-OHT treated (day 3 and 6) iRicKO cells.  Cells were stained with propidium iodide (PI) 
and cell cycle distribution was analysed by flow cytometry.  Percentage of cells in G0/G1 
phase is given for each graph.  C,  Cell size analysis of untreated (day 0) and 4-OHT treated 
(day 3 and 6) iRicKO cells.  Cells were subjected to FACS analysis and cell size was 
determined by forward scatter distribution.  D,  Co-immunoprecipitation of raptor and rictor 
with mTOR.  iRicKO cells were treated with (+) or without (-) 4-OHT for 6 days and cell 
extracts were subjected to IP by an anti mTOR antibody.  Co-immunoprecipitated (IP mTOR) 
or total proteins (cell extract) were immunoblotted with specific antibodies to each of the 
TORC components and its signaling pathway.  Data are representative of 2-3 independent 
experiments.  
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Fig. III-3.  Induction of rictor knockout decreases cell motility and affects RhoGTPase activity.  
A,  Transwell assay of iRicKO and control cells pretreated with (+) or without (-) 4-OHT for 3 
days.  Equal numbers of serum starved cells were loaded on the top chamber of the 
transwell and allowed to migrate towards the serum (10%) containing medium in the bottom 
chamber for 16 h.  The infiltrated membranes were stained with crystal violet and quantified.  
A representative image of stained filters is shown in the upper panel.  B,  RhoGTPase activity 
assays of iRicKO and control cells pretreated with (+) or without (-) 4-OHT for 3 days.  GST-
pull downs were performed on cell extracts from serum-starved cells that were re-stimulated 
for 5 minutes.  To assess Cdc42/Rac1 and RhoA activation, GTP-loaded Cdc42/Rac1 and 
RhoA were isolated by pull-down with PAK-CRIB and Rhotekin-RBD fused to GST, 
respectively.  Immunoblot analysis of rictor, total and GTP-bound Cdc42, Rac1 and RhoA is 
shown.  
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Fig. III-4.  mTORC2 activity is elevated in fibroblasts transformed with oncogenic Ras.  A, 
Time course analysis of doxycycline-induced expression of H-RasG12R.  NIH3T3 fibroblasts 
harbouring a tetracycline-inducible expression of a constitutively active mutant of H-Ras 
(NIH3T3/tet-on/H-RasG12R) were treated with doxycycline for the indicated time points.  
Indicated protein and phosphorylation levels were analysed by immunoblotting.  B, 
Immunoblot analysis of NIH3T3/tet-on/H-RasG12R cells pre-treated with doxycycline for 3 
days and subsequently treated with siRNA against rictor. 
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Fig. III-5.  mTORC2 activity is required for oncogenic Ras induced cell migration.  A,  Wound 
healing assay of transformed NIH3T3/tet-on/H-RasG12R treated with control or rictor siRNA.  
Representative images at 0 and 7.5 h time points (upper panel) after applying the wound and 
quantification of relative cell motility (lower panel).  Bars are shown as mean ± SD.  B,  
Transwell assay of transformed NIH3T3/tet-on/H-RasG12R treated with control or rictor 
siRNA. A representative image of stained filters is shown in the upper panel.  The infiltrated 
membranes were stained with crystal violet and quantified (lower panel, left). Immunoblot 
anaysis is shown to confirm knockdown of rictor (lower panel, right).  C,  Rac1 activity assay 
of transformed NIH3T3/tet-on/H-RasG12R treated with control or rictor siRNA.  GST-pull 
down was performed on cell extracts from serum-starved cells that were re-stimulated for 10 
minutes.  Immunoblot analysis of rictor, total and GTP-bound Rac1 is shown.  
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The goal of this thesis was to get a better understanding of the in vivo and in vitro functions 

of mTORC2.   

 

 The first part of this thesis focused on studying the in vivo function of mTORC2 in 

mice.  Since a full body knockout of any mTORC2 component is embryonic lethal (Guertin et 

al., 2006; Jacinto et al., 2006; Shiota et al., 2006; Yang et al., 2006), we took advantage of 

the Cre/LoxP system that allows us to study mTORC2 function in individual tissues.  In this 

work, we have focused on elucidating the role of mTORC2 in adipose tissue and described 

the phenotypic characterization of adipose-specific knockout mice of the mTORC2-specific 

component rictor.  In the past years, adipose tissue has evolved as a highly metabolic tissue 

that plays an important role in regulating whole body energy metabolism.  mTORC2 signaling 

is activated upon insulin stimulation and adipose tissue is one of the most insulin-sensitive 

tissues in the body, strongly suggesting a role for mTORC2 in this tissue.  

 We could show that mTORC2 in adipose tissue is important in controlling whole body 

metabolism and furthermore, we observed an unexpected role for adipose mTORC2 in 

controlling full body growth.  The most surprising and striking phenotype was that rictorad-/- 

mice were heavier than control rictorfl/fl mice due to an increase in lean mass.  This 

phenotype was more pronounced on a HFD.  Increased body size most likely results from 

increased serum levels of IGF1 in rictorad-/- mice.  Furthermore, rictorad-/- mice were 

hyperinsulinemic, but glucose tolerant.  Since IGF1 is mainly secreted from the liver, and 

insulin is secreted from the pancreas, our findings suggest the existence of an mTORC2-

dependent adipose to liver/pancreas signaling axis that controls full body growth and 

metabolism.   

 In this work we did not yet succeed in identifying the signal that could derive from 

adipose tissue to regulate IGF1/insulin secretion from the liver/pancreas.  In a first approach, 

we speculated that mTORC2 in adipose tissue may control expression of a secreted factor 

that in turn regulates the liver/pancreas.  Therefore, we performed a global gene expression 

analysis on adipose tissue RNA from rictorad-/- and rictorfl/fl mice.  However, initial analysis of 

the data did not give any promising hit and a more profound and extended analysis of the 

data might be required.  Furthermore, in the first approach, our search was limited to a 

secreted protein factor, but might need to be extended also to a non-protein factor such as a 

lipid, since lipids were shown to regulate systemic metabolism, as well.  Dysregulation of lipid 

metabolism is a critical contributor to metabolic diseases (Ginsberg et al., 2006).  For 

example, chronically elevated plasma free fatty acids (FFAs) from the adipose tissue are 

linked with the onset of peripheral insulin resistance and hepatic steatosis and have a role in 

the pathogenesis of type 2 diabetes (Boden and Shulman, 2002; Ginsberg et al., 2006).  
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More recently, a new class of hormones – lipokines – was identified in mice (Cao et al., 

2008).  Lipokines are adipose-derived lipid hormones that regulate systemic metabolism.  

Cao et al. identified C16:1n7-palmitoleate as a lipokine that improves insulin sensitivity in 

muscle and blocks fat accumulation in the liver.  Whether mTORC2 in adipose tissue also 

regulates production and secretion of a lipokine remains to be determined.  Interestingly, 

studies performed in yeast have shown that TORC2 regulates ceramide production (Aronova 

et al., 2008).  It would be of interest to perform a lipidomic analysis of lipids in the blood or 

adipose tissue itself of rictorad-/- mice and compare it to the lipid profile of rictorfl/fl mice.   

 

The second part of this thesis focused on investigating new in vitro functions of mTORC2.  

Previous studies in yeast and mammals have shown that TORC2 is important for the 

regulation of actin cytoskeletal dynamics (Jacinto et al., 2004; Sarbassov et al., 2004; 

Schmidt et al., 1996).  We have re-addressed this function of mTORC2 and studied its role in 

cell migration, a process that depends on a highly coordinated and dynamic actin 

cytoskeleton.  We could show in fibroblasts that cell migration highly depends on mTORC2 

and that mTORC2 regulates the activity of the main members of the RhoGTPase family, 

Rac1, Cdc42 and RhoA, which are critical regulators of the actin cytoskeleton.  Cell migration 

is a central process during embryogenesis.  However, developing mouse embryos lacking 

either one of the mTORC2 components rictor or mLST8 only die around midgestation, which 

occurs around embryonic day E10.5, but develop normal during the early steps of embryonic 

development such as gastrulation, neurulation, and formation of the cardiovascular system 

(Guertin et al., 2006; Shiota et al., 2006).  Since these morphogenetic processes involve 

coordinated and directional migration of cells, the observations in rictor and mLST8-deficient 

embryos rather suggest an mTORC2-independent regulation of cell migration during 

embryogenesis.   

 Cell migration is not only involved in physiological processes, such as 

embryogenesis, but also in pathophysiological processes, such as metastasis, which is the 

movement or spreading of cancer cells from one organ or tissue to another.  In this study, we 

have also investigated the role of mTORC2-mediated cell migration in tumor cells using a 

transformed fibroblast cell line that expresses oncogenic H-Ras.  Knockdown of rictor 

strongly affected cell migration in these cells and furthermore resulted in impaired activation 

of the RhoGTPase Rac1 upon serum stimulation, strongly suggesting a role for mTORC2 in 

tumor cell migration.  Our in vitro results suggest that mTORC2 could be a potential target for 

the treatment of cancer and metastasis, however, further studies are now required to confirm 

that mTORC2-mediated cell migration plays an important role in the progression of 

metastases also in vivo.   
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 To study cell migration in this work, we have generated an inducible rictor KO mouse 

embryonic fibroblast (MEF) cell line (iRicKO).  In parallel, we have also generated an 

inducible raptor KO MEF cell line (iRapKO), and initial characterization of both is described in 

this work.  The established cell lines are very powerful tools to study mTORC1 and mTORC2 

signaling independently and are advantageous over other systems that also result in 

downregulation of mTORC signaling.  The inducible knockout system is more efficient than a 

transient knockdown, which generally does not result in a complete loss of the protein.  

Furthermore, in contrast to a constitutive knockout MEF cell line, the inducible system allows 

a very tight and temporal regulation of recombination, resulting in a very efficient knockout, 

which allows to study immediate changes upon loss of mTOR complex integrity and 

circumvents the possibility of cell adaptation.  In addition, isolation of constitutive knockout 

MEFs requires that the embryos can develop at least to E10.5.  raptor or mTOR constitutive 

knockout MEFs do not exist, because raptor- or mTOR-deficient embryos die during early 

development at around E5.5- E7.0, which is too early for MEF isolation. 

The inducible cell lines might be very helpful in studying global changes upon loss of 

either raptor or rictor.  We have already performed a global gene expression analysis with 

iRicKO cells.  However, only very few genes showed an altered expression, strongly 

suggesting that mTORC2 does not directly control gene transcription.  The microarray 

analysis was performed on cells that were treated with tamoxifen for 3 days, resembling 

short-term loss of mTORC2.  It is possible that a longer treatment, resembling a long-term 

loss of mTORC2, would influence expression of more genes, but these changes would be 

likely more indirect.   

In addition to studying the mTORC1 and mTORC2-specific transcriptome, the 

inducible knockout MEFs could also be very helpful in studying the mTORC1 and mTORC2-

specific phosphoproteome, which could lead to the identification of new downstream 

effectors of the mTOR signaling pathway.   
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Appendix: Adipose mTORC1 controls energy 
homeostasis 
 
The following part describes the phenotypic characterization of an adipose-specific knockout 

of the mTORC1-specific component raptor in mice.  In parallel to my main projects described 

above, I also collaborated with my colleague Pazit Polak to develop the following project and 

plan the required experiments.  The experiments were mainly performed by Pazit Polak.   
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