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Chapter 1

Introduction

Sometimes friends, which work in unrelated, different fields from physics ask me
about our work and want to know what we are actually doing and what my thesis is
about. An answer to this question might be a good and understandable addition to
my thesis. The conversation might go as follows: You know how classical computers
work. The basic unit is a bit, which is a system that can be in two states, for instance
a transistor that behaves like a switch turned on or turned off. By manipulating
these bits, calculations can be done in a binary number system. Physicists had
the idea to use quantum bits or qubits as the basic building block for a quantum
computer. Qubits are, as usual bits, two-state systems but they are modeled with
quantum theory. The quantum world, obeying the laws of quantum mechanics, is
distinct from the classical world, evolving according to Newton’s laws. The two basis
states are orthogonal elements of a vector space. The idea is to use special quantum
behavior as engineers to build a quantum computer. Qubit implementations have
been realized in diverse experiments. For example, in Japan a team [Nakamura99]
has performed experiments with a qubit. They used a small superconducting island
separated by a Josephson tunnel junction from a superconducting reservoir. The two
states correspond to the situation when an excess Cooper pair has either tunneled
onto the island or has stayed in the reservoir.

The two-state system (qubit) is the simplest non-trivial quantum mechanical sys-
tem, because in contrast to a one-state system transitions are possible from one to
the other state. In classical mechanics these would be in accordance with the situa-
tion where a particle could be at two positions at the same time. We could draw a
graph like shown in Fig. 1.1 to see the time evolution of the particle. As soon as the
particle has left one position or state it is in the other, it is never at both positions
simultaneously. In contrast, quantum mechanics works differently and contradicts
everyday life experience such that the particle can be at the two distinct positions at
the same time. The two-state system is then said to be in a coherent superposition of
the two states. This peculiar property of the superposition can be used for quantum
computing and is necessary in order to perform some powerful quantum algorithms.
With the help of these algorithms one can perform certain task much faster than with
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Figure 1.1: Classical and quantum two-state systems. In the classical case the particle is
always at a definite position at a time ¢, as opposed to the quantum behavior, where the
two states can be in a coherent superposition and probabilities to find the Cooper-pair in
the reservoir or on the island have to be introduced.

a usual computer [Nielsen00], which has made quantum information popular and led
to a tremendous growth of the field during the past decade.

And now we come to our work. You can imagine that it is very hard to isolate
two states from the rest of the world, which can be considered as a huge system with
infinitely many degrees of freedom. The surrounding environment (bath) interacts
with the two-state system, i.e., exchanges energy and perturbes it. What is now the
effect of the environment? The result is that the superposition or the interference
property of the qubit state, which distinguishes it from a classical bit, is destroyed
over a certain timescale. The destruction is described by a decay as shown in Fig. 1.3.
It has the qualitative a shape of a radioactive decay: some quantity gets smaller and
disappears after a certain time. This decay is called decoherence. In Fig. 1.3 the
off-diagonal element of the density matrix, which quantifies decoherence, is used to
show the decoherent dynamics of a qubit.

Since superpositions of the two qubit states, which are necessary for quantum
computing, are destroyed due to the interaction with the environment, scientists try
to understand the mechanism of decoherence and try to find ways to suppress it.
Over the past years, several models for the environment have been proposed, which
are basically a large quantum system with many degrees of freedom. The total sys-
tems (qubit and environment together) are referred to as quantum dissipative systems
[Weiss00]. One important recent development in physics is the experimental test of
the macroscopic quantum coherence [Nakamura99, Cottet02, Vion02, Chiorescu03].
The decay of the coherent oscillations turned out to be sufficiently weak, such that



1.1 Decoherence example, Markoffian, and non-Markoffian behavior 7

coherent oscillations could be observed. Still, decoherence represents a serious limi-
tation for these experiments.

Quantum information processing and further issues of decoherence, namely the
measurement problem, the appearance of a classical mechanics out of the quantum
world are fields connected to all these experiments. In this thesis we will focus on
the decoherence of two-state systems, being a key feature in the design of qubits.

1.1 Decoherence example, Markoffian, and
non-Markoffian behavior

The effect of decoherence on a two-state system is that a coherent superposition
of the two states is destroyed within a certain time scale, which is known as the
decoherence time. The dynamics of a completely isolated the two-state system is
coherent. Such a situation is never realized in practice, because in a physical setup
there is always some coupling to the surrounding environment. Therefore, if one
would like to create a model for decoherence, one can couple the two-state system to
a much larger system or environment, which produces the described effect. To set an
example of such an environment, we can consider a classical fluctuating external force,
acting on the two-state system. A case in point is the loss of coherence in the Cooper-
pair box experiment, where the simplest description of decoherence is achieved using
a fluctuating gate voltage [Nakamura99|. If the environment acts like a classically
fluctuating potential, then the system does not react back on the environment. Such
an environment is called a non-dynamical environment because there is no significant
effect on it.

The degree of coherence can be quantified with the density matrix: The system
is in a coherent superposition of the basis states |[+) and |—), if the density matrix
is not diagonal in the |+), |—) representation. If the system is in a pure state, it is
called completely coherent. In contrast, if the density matrix is diagonal it is referred
to as an incoherent superposition of the basis states |+), |—) [Blum96]. The density
matrix becomes diagonal over the time scale of the decoherence time

B R IR 0

which quantifies decoherence.

The decay varies depending on the surrounding environment. To illustrate this
concept, let us exemplify the specific results of such a decay due to a fluctuating
classical Gaussian noise force B(t). We take a look at the Hamiltonian of a two-state
system with energy splitting 2¢ and fluctuations B(t)

H(t) = [e+ B(t)6, . (1.2)

Such a system could be a spin in a static and fluctuating magnetic field applied in
the z-direction, see Fig. 1.2. A Gaussian process is a random process where, at every
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Figure 1.2: Spin in “magnetic field” applied in the z-direction fluctuating around its mean
€ with strength B(t).

point in time B(-) has a Gaussian probability distribution. A Gaussian process is
characterized by the first two moments (B(t)) and (B(t)B(0)), i.e., all the higher
moments can be expressed by the first two. The correlation function (B(t)B(0)) or
its Fourier transform *

(BB), = % / " dtet e (B()B(0)) | (1.3)

describe the correlations of the random process B(-) at various points in time. To be
more precise, let us choose the following correlation function

2
1
(BB), = 2

1.4
T (w? — 4w?)? + dw?y? (1.4)

and a vanishing mean (B(t)) = 0. Our choice of the correlation function describes
so-called colored noise, where the memory and the history of the process plays a role.
The solution for the off-diagonal element of the density matrix, with respect to the
G, eigenbasis {|+),|—)}, for one specific sample B(t) of the Gaussian random process

pr—(t) = exp [-2iet —i®(t)] p1-(0), (1.5)

where ®(t) = 2 f(f d7B(7) is a phase depending on the time integral over the sample.
B(t) has to be averaged over many different Gaussian noise fields, i.e., we form a
superposition of many samples, each of them having a slightly different time evolution.
In the beginning, at ¢ = 0 the solutions all look the same with the same phase.

I This convention for the Fourier transform will be used throughout the whole thesis.
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Figure 1.3: Decay under the action of a colored-noise field with the correlation function
(BB),, given by Eq. (1.4) starting from the 6, eigenstate (|+)+|—))/+/2 as initial condition.
Dashed line: analytical result, see Appendix A.1. Solid line: numerical simulation, averaged
over many samples of numerically generated Gaussian processes. The parameters are:
wo =1 and v = 0.1/(2m).

However, as time evolves, they become more and more out of phase [Marquardt03].
They become randomized, such that on the average, a decay of the off-diagonal
element shown in Fig. 1.3 occurs. The off-diagonal element of the density matrix is
shown in the interaction picture with respect to 4 = €4, in order to emphasize the
special features of the decay. For small times wot < 1 the decay is of Gaussian shape
and in the long-time limit wot > 1, we find an exponential decay. Furthermore,
the decay is pure dephasing because, in the chosen model, only the off-diagonal
elements are affected, i.e., no thermalization of the diagonal elements takes place.
Moreover, the dynamics is non-Markoffian. To illustrate this, let us look at the special
case of white noise correlations, where the correlation function would be given by
(B(t)B(0)) = 6(t) or (BB),_, = 1/(2m). Further, the time evolution in the interaction
picture is determined by

p—(t) = e ps(0). (1.6)

Here, we have obtained an exponential decay. The environment has no memory or
history. There is no connection between different time points of the external noisy
field due to the environment. They are uncorrelated. This is what is referred to as
a Markoffian process, unlike the colored noise case, where correlations of the noise
field with times in the past are important. The same result could be obtained using
a Markoff approximation, see, e.g., Chapter 2, which becomes exact in the limit of
white-noise correlations, i.e., the bath-correlation time is zero.
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1.2 Linear and Nonlinear Environments

In the last section we saw that quantum coherence can be destroyed by an external
fluctuating force. This was an example of a non-dynamical environment. More
generally, one can introduce dynamical environments. This is achieved by defining
a second quantum system with many more degrees of freedom than the two-state
system. A common choice is an environment which consists of many mutually non-
interacting harmonic oscillators, with mass my, momentum pi, and coordinate Zy:

N A Pe | Wi o
%onm—azE ckxk—i—g %—i— 5 Tk - (1.7)
k
k k

Each of these oscillators has a different frequency wy and a different coupling strength
ci to the two-state system. Moreover, the coupling —&, >, k@i is assumed to be
linear. Such an environment is called a linear oscillator bath. Linear baths can have
different spectral distributions of the couplings ¢, which determines the bath spectral

o . _ 2
densities J(w) = 3y ché(w — wg)/(2mywy). Ohmic bath-spectral densities, where

J(w) = aw, are common choices, although many studies assume a power law form.
One other possibility is to choose an oscillator bath with a peaked bath spectral
density. Here, there are well-defined peaks present at characteristic frequencies, i.e.,
the system couples to an environment, featuring rather strong resonances. Prominent
examples are discussed in [Garg85, Thorwart00, Thorwart03, Wilhelm03a, Kleff03a).
In our work the same peaked non-ohmic bath spectral density shows up, e.g., due to
the special choice of the measurement device, see Chapter 4. One group of popular
environments is linear oscillator baths characterized by an appropriate bath spectral
density. Photon and phonon baths, for example, are linear environments. However,
the environment has a much more complicated structure in most cases.

When we talk about nonlinear environments, we think of environments which de-
viate from the linear oscillator bath. Therefore, one deals usually with nonlinear envi-
ronments. Nonlinear environments, e.g., spin baths [Stamp00, Khaetskii02, Coish04]
have received recent interest in the field of spin-based quantum computing [Loss98].
A spin bath is fundamentally different from an oscillator bath. It is a bath consisting
of spins, each of which has only a few accessible states. Complementary to a linear
oscillator bath the energy of a spin bath saturates at temperatures above the exci-
tation energy. Every nonlinear bath is between these two extreme cases [Weiss00].
Another case-in-point was recently discussed in the context of the Nakamura experi-
ment, where it is not clear which mechanism is responsible for the loss of coherence
due to 1/f noise. In [Paladino02], a microscopic model of bistable fluctuators, each
of them characterized by a switching rate and an effective bias voltage acting on a
qubit was considered. It is not clear how many of such fluctuators are really involved
in the decohering process, maybe only a few. The limit of a similar nonlinear bath
corresponding to one such fluctuating charge is treated in our work, see Chapters 2
and 3.

Often, the general environments are approximated phenomenologically by linear
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baths with an appropriate bath spectral density. One can show that this replacement
becomes exact for small system-bath coupling, see Chapter 2, but in the general case,
the two types of environments behave differently. For quantum computing one seeks
the ideal of a completely controllable qubit system, weakly interacting with its envi-
ronment. This constitutes the essential starting point for a qubit operation. Now one
might ask why one needs to investigate nonlinear baths, because they can be mim-
icked by linear ones in the low-coupling limit of interest. For quantum computation,
it is necessary to examine nonlinear environments for couplings which are small, but
still high enough, such that the linear bath approximation might fail. This is exactly
the regime of our interest, where we would like to reveal the differences between linear
and nonlinear baths. A further reason is the following. Even if the induced decay
rate is small, one can see non-Markoffian processes. This is the case if the bath has
a peaked bath spectral density. Such non-Markoffian processes can depend on the
linear or nonlinear nature of the bath.

1.3 Flow equation method

The flow-equation approach is a nice tool to treat quantum dissipative systems. The
entire framework has been developed recently [Wegner94, Kehrein96b]. The flow
equations are ordinary differential equations derived from a continuous basis trans-
formation. Usually, a Hamiltonian is diagonalized using a set of discrete unitary
transformations. The basic idea of the flow equations is to replace this discrete trans-
formation by a continuous one. Thus, in principle, the flow equation formalism deals
with infinitely many infinitesimal transformation steps. To carry out the transfor-
mation, the Hamiltonian 7 is understood to be a function of a real flow parameter
l

H(0) — (). (1.8)

(0) is the initial operator and J#(I — oo) is the simplified effective Hamiltonian.
The continuous transformation is effected by % (1)

() = ()02 ). (1.9)

By introducing an infinitesimal generator 7 one can write the continuous transforma-
tion in analogy with the time evolution of the usual Schrodinger equation as

%%ﬂ(l) - [ﬁ(l),,%ﬂ(l)] , (1.10)

with the initial condition .#(0) = . for the differential equation.

If one is interested in a certain observable &', one has to transform it with the
same transformation % (I). We are especially interested in correlation functions which
depend on the Hamiltonian .7 of the total system (&'(t)&(0)) -

(O1=0(t) 01=0(0)) s(1=0) = (O1=00(t) O15500(0)) (1= 00) - (1.11)
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Note that the trace appearing in the definition of the correlation function is basis
independent. For each [ of the flow, we have a different possible basis. It is, of
course, most convenient to evaluate the correlation function for [ — oo, where the
Hamiltonian is supposed to have a simplified form. That is why the success of the
flow equation method depends crucially on the choice of generator. Wegner proposed
the following choice

(1) = [4(1), 2 ()], (1.12)

where (1) is the diagonal part of (). At least for finite dimensional systems one
can show that
lim 7(l) =0, (1.13)

l—00

which means that the initial Hamiltonian is always transformed to a block diagonal
form, but a complete diagonalization is not guaranteed. Wegner’s choice is certainly
a good starting point, but generally the generator has to be adapted to the concrete
problem under investigation. In Chapter 3 we use a modified generator which is
appropriate for linear oscillator bath environments.

To illustrate and motivate the method, let us discuss a concrete indroductory
example. Let us assume, we wish to diagonalize the two-state Hamilton operator
given with respect to a certain basis:

H= [6 A} . (1.14)

The eigenvalues are given by E. = ++v/€2 + A2. Now we would like to do the same
using the flow equation formalism. It is clear that generally this does not make sense
in such a situation, but it is instructive to apply the method first in a well-understood,
analytically solvable case. To start with, we understand the Hamiltonian as function

of the flow parameter
H(l) = [2((% _A€((ll))] : (1.15)

where H(0) = H, i.e. €(0) = € and A(0) = A. We choose now for Hy(l) the canonical
choice of Wegner, i.e., the diagonal part of the Hamiltonian

Hy(l) = [e(l) 0 ] . (1.16)
This leads to the following anti-hermitian generator 7(()
o0 = [Ha@). 7)) = 2020 [ ) g (1.17)

Finally, we can write down the flow equations

d d {e(l) A()
gH0 = [A(l) —e 1)] =), 7l = [—4
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Figure 1.4: Solution of the flow equations starting from an initial Hamiltonian H(0) = o,+1
specified by €(0) = A(0) = 1. The flow equations lead to the result exponentially quickly.

Note that the Hamiltonian is a linear combination of the two basis operators o, and o,
with coefficients (1) and A(l). The I-derivative leads to a derivative of the coefficients,
therefore the right-hand side dH(l)/dl remains a superposition of the same basis
operators. The left-hand side [n(l), H(l)] turns out to be a linear combination of
the same basis. There are no new basis operators generated compared to the ones
contained in dH (l)/dl. Therefore the flow equations are closed in this elementary
example.
The whole procedure leads to two distinct ordinary differential equations

d )
Celt) = 4eDAW)
%A(l) = _4e(12A(). (1.19)

These two equations can be solved analytically,

e(l) =

(A2 + 62)6268(A2+e2)l 2
A2 + €2e8(A2+€?)l

A(l) =

(1.20)

(A2+62)A26—8(A2+62)l 2
€2+ A2e-8(A%2+e2)l ’

which is in general not possible for more complicated systems, where one has to
integrate the differential equations numerically. The behavior of the solution is shown
in Fig. 1.4. In the limit / — oo the Hamiltonian is of diagonal form because we get

€(l = 00) =ve2+ A% and A(l - 00) =0

%(Hoo):[ﬁ(HOO) A(Hoo)]:[m 0

A(l = 00) —e(l = o) 0 JETA? (1.21)
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cantilever
R A

spin

RF microcoill

Figure 1.5: MRFM setup

We have seen that this example is solvable with flow equations without using any
approximation. The reason for this is that the flow can be closed. However, this is
not possible in the general case. We will use the flow-equation formalism to treat
the dissipative four-state system, see Chapter 3. There we will see that we have to
neglect certain terms in order to close the flow. Naturally, we must to justify the
approximation scheme later on.

1.4 Single-spin quantum measurement

So far we have only mentioned that the phase coherence of the qubit is lost due
to unwished and uncontrollable decohering effects. The laws of quantum mechanics
lead to additional peculiar behavior completely unrelated to macroscopic everyday-life
experience. A quantum superposition is destroyed by the measurement, in contrast
to classical physics, where perturbations due to a measurement can in principle be
made negligibly small. Because the final stage of the read-out is governed by the
laws of classical physics, a transition from the “quantum world” to the “classical
world” is inevitable. The classical stage of the experiment is necessary and leads to
controversies. We will not focus on these problems, but discuss a concrete model of a
measurement of a spin one-half using magnetic resonance force microscopy (MRFM)
[Sidles95], which might one day accomplish single-spin detection, one of its ultimate
goals.

The idea of an MRFM measurement is to combine the principles of magnetic
resonance imaging with the atomic precision of a scanning probe microscope. Fig. 1.5
shows a typical experimental setup. The key components are a sensitive cantilever
probe with a high-coercivity ferromagnetic tip, a radio-frequency coil to manipulate
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the spin at its Larmor frequency, and finally a fiber-optic interferometer to detect
the tip motion. The applied magnetic fields are chosen such that adiabatic spin flips
occur at a rate which equals the cantilever resonance frequency. The interaction
between the magnetic tip and the magnetic moment of the spin leads to a spin-state
dependent motion of the cantilever, which can be detected using optical methods.

Treating the system in an open way, interacting with a large surrounding environ-
ment, can be used to model certain types of quantum measurements. In contrast to a
projective measurement, in a more realistic measurement model the measurement is
done by a quantum device with a read-out variable which can be probed macroscop-
ically. The MRFM-measurement setup can be modeled as an indirect measurement.
This means that the quantum system, the spin, is measured via the cantilever which
is also assumed to be a quantum object. To read out the result, the cantilever posi-
tion is measured macroscopically by a classical laser interferometer. The decoherent
dynamics of the system occurs in a controlled way, in the sense that we can decide
when it should start. Contrary to a projective measurement, such a weak measure-
ment does not occur instantaneously. Distinct time scales turn out to be important.
A further discussion of these issues will be presented in detail in Chapter 4.

1.5 Leakage

So far the disturbance of quantum information processing due to decoherence has
been reviewed. In contrast, in Chapter 5 we briefly discuss another perturbing effect,
namely leakage. What is leakage? In the Cooper-pair box system the lowest two
energy levels were used to implement the qubit, i.e., they constitute the computa-
tional basis. These two states are well-separated from the other levels. But still, a
population transfer to higher levels may take place while controlling the qubit. This
effect is denoted as leakage [Fazio99]. We investigate these effects in the context of a
recent experiment in Saclay with a Josephson qubit [Cottet02, Vion02].

1.6 OQOutline

This thesis consists largely of a discussion of unconventional environments. It is orga-
nized in the following way. The first topic which is addressed in our work constitutes
a new model for an environment, motivated by recent experiments. It is an exam-
ple of a nonlinear bath having a variety of manifestations in miscellaneous realms of
physics. To learn about the special behavior of a nonlinear environment we compare
it with the results of a linear bath with an appropriate bath spectral density. The
nonlinear bath is discussed in Chapter 2, where we focus on high temperatures, and
in Chapter 3, where we treat the low-temperature limit. At low temperatures we are
largely concerned with using flow equations.

The second major topic we investigate is adressed in Chapter 4, where we outline
the in-depth analysis of the measurement of a spin one-half using magnetic resonance
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force microscopy. Finally, we provide a brief summary and give an outlook, reporting
some open questions.



Chapter 2

Non-Markoffian Effects of a
Nonlinear Bath

We analyze a model of a nonlinear bath consisting of a single two-level system coupled
to a linear bath. This allows us to study the effects of a nonlinear, non-Markoffian
bath in a particularly simple situation. First, we analyze the effects of this bath on
the dynamics of a spin by calculating the decay of the equilibrium correlator of the
spin’s z-component. The purpose of this work is to compare the exact results with
those obtained by substituting a linear bath for the original nonlinear bath. On the
whole, we show results for two limits, namely, low and high temperatures. In this
chapter we concentrate on high temperatures.

2.1 Introduction

The linear bath of oscillators plays a prominent role in discussions of dissipation and
decoherence [Caldeira83b, Caldeira83c, Weiss00]. Moreover, in the classical limit,
the force fluctuations derived from a linear bath correspond to a Gaussian random
process. Although this is a generic case (due to the central limit theorem), there
are physical situations when non-Gaussian random processes are important. Here,
we examine the simplest possible quantum-mechanical bath whose fluctuations corre-
spond to classical telegraph noise: a single two-level system subject to a white noise
force. The effects of this nonlinear bath are analyzed by coupling it, in turn, to a
spin, whose relaxational dynamics under the action of the bath is calculated.

In the literature, another type of physically relevant nonlinear bath is often dis-
cussed: the spin bath [Stamp00, Khaetskii02], consisting of a large number of spins
which are coupled to the system under consideration. Our model system is simpler
since it contains only a single “nonlinear element”, the two-level system. In our sys-
tem, irreversibility is generated, not from a larger number of spins, but by the coupling
to the linear bath. Although designed as a drastically simplified model system, it may
be physically relevant, e.g., for charged tunneling systems [Paladino02] in the vicinity
of a mesoscopic quantum-coherent device (e.g. a Cooper-pair box [Nakamura99]),

17
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Figure 2.1: Possible application of the nonlinear-bath model: A Cooper pair box under the
influence of fluctuating gate charges.

which lead to electrostatic potential fluctuations and which are, themselves, also sub-
ject to dissipation and decoherence by their environment, see Fig. 2.1. Viewed as
a whole, our model consists of two coupled two-level systems, one of which is cou-
pled to a linear bath. Of course, such systems have been studied before, both in the
context of the quantum measurement problem [Zurek81] and decoherence of coupled
qubit systems. The model of two spins (qubits) coupled to an environment has been
analyzed in detail in [Loss98], [Dube01], [Governale01], and [Thorwart02]. However,
our perspective and the questions addressed in this work are different from these ap-
proaches, since we are interested primarily in the differences arising from substituting
the nonlinear bath (in the form of the dissipative two-level system) by a linear bath
(see Fig. 2.3). This question is relevant, since, in many physical situations where
the precise nature of the bath decohering a given system is unknown, it is treated
as a linear bath, with some given correlation function. It is, therefore, desirable to
understand in more detail the type and magnitude of possible errors introduced by
such an approximation, in cases where the coupling cannot be assumed to be weak.

The basic strategy is to calculate the equilibrium correlator of the two-level sys-
tem exactly (which can be done without any further approximation in the limit of
infinite temperature) and to compare the results to three common approximations.
One approximation involves replacing the nonlinear bath by a linear bath, whose
correlation function is chosen to be the same as that of the nonlinear bath. Other
approximations involve a Markoffian master equation and a weak-coupling, applied
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to the dynamics of the spin under the influence of the bath.

Let us now sketch the general structure of the chapter, which is organized as
follows: Before we give the model Hamiltonian in Sec. 2.6, we recall in Secs. 2.2
2.5 some general features of linear and nonlinear environments. Secs. 2.8, 2.10, 2.11
and 2.13, describe the four different approaches, which are defined by specifying the
evolution equation for the density matrix in each case. For each approach, we explain
how the equilibrium correlator of the z-component of the spin may be obtained by
solving these equations. Finally, we present plots showing numerical results for the
spin correlator, along with a comparison of the different approaches.

2.2 The linear oscillator bath

Before we discuss our model of a nonlinear environment, we introduce the common
model for an environment or bath known as the linear oscillator bath [Caldeira83b,
Caldeira83c, Weiss00]. The Heisenberg equations of motion are linear for the oper-
ators of the oscillator bath problem and this is the origin of the name. The bath
consists of a large number of non-interacting oscillators, each with a distinct fre-
quency and a different coupling strength to the system under consideration. The
spectral distribution of all these couplings is described by the bath-spectral density.
The Hamiltonian for system, bath, and interaction is given by

%:%Jrz[ﬁer’“w’%(ﬁ;k— G q)z]. (2.1)
k

2my, 2 myw?
k

The operators p, and Z, are the momentum and coordinate of the k-th oscillator
and my, wy are the associated mass and frequency respectively. Note that the inter-
action part of the Hamiltonian is also linear in the oscillator coordinates. .#% is the
system Hamiltonian and ¢ is an operator which acts only on the system part of the
Hilbert space. These operators are left unspecified. The coupling strength of the k-th
oscillator to the system is ¢, and the bath-spectral density is defined by

mrWg

7 c?
J(w) = —Z E§(w— wp). (2.2)
k
A common choice for J(w) would be a linear frequency dependence
w
J(w) = awf(—) . (2.3)

A bath with such a spectral density is called an ohmic bath. f(x) is the cutoff function
which is defined such that J(w) is negligible for w > we. In the rest of this thesis
we assume a sharp cutoff, i.e. f(z) = O(1 — z). Note that the Hamiltonian . also
contains a counter-term which does not depend on the dynamical variable z; of the
environment. This additional potential term compensates the renormalization of the
system potential.
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We rewrite the linear oscillator bath Hamiltonian in terms of creation and annihi-
lation operators with Bose commutation relations. We use 2 = (1/v/2mgwg) (b} +bg)

and pp = i\/mkwk/2(l3£ — ?)k) and obtain

2
g Ck A7t 3 Ck 2

H = A+ [wab—iqb + b)) + q}. 2.4

5 - FokTK 2m Wy (b + br) 2myw? (24)

If ¢ = 1, which is true for our systems, where § = &, and § = 1 ® &, respectively, we
find

H=H+) [wki),tl}k — Mg (0 + Bk)] +E. (2.5)
k

The constant energy shift E leads to a global phase and does not play a role when
we calculate correlation functions. This shift is therefore omitted in further consid-
erations in this chapter and Chapter 3. The )\, are found to be

Ck
vV kawk

and the bath spectral density in terms of the )\, is given by

Jw)=m Z A0 (w — wy) . (2.7)

Ap = (2.6)

One way of studying the decoherence of a two-state system or a spin is to couple
it to a linear oscillator bath. Here we introduce the relevant popular spin-boson
model. This is a well-studied model which has yielded considerable insight into
the decoherence of two-state systems. The spin-boson model is governed by the
Hamiltonian

H = Nog+ €6, — G, Me(bf+bx) + > wiblby. (2.8)
k k

The special case of € = 0 is called the symmetric spin-boson system. In this chapter
and in Chapter 3 we will present numerical solutions of the spin-boson problem. The
model will appear in to places: First when we calculate the bath-spectral density of
the nonlinear bath and second, when we perform the linear bath approximation on
the nonlinear bath, see Sec. 2.11.

The case A = 0 describes a pure dephasing situation without relaxation to thermal
equilibrium. This case can be solved in closed form. We will use this solution in
Chapter 4, where a time-dependent coupling occurs.

2.3 The Feynman-Vernon influence functional

Feynman’s path integral is a very clear approach to the physics of quantum mechanics,
although lacking in mathematical rigor. This formalism can be applied to open
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quantum systems to give a very ostensive description of the reduced dynamics. In

this section we recall the main ideas and results for the Feynman-Vernon influence

functional applied to the linear oscillator environment first obtained in [Feynman63].
The state of the whole system can be written as a path integral

lb(qt,Xt,t) _ /@q@XeiSs[QHiSz[q,X]-HSB[X}w(qo’XO’(])’ (2.9)

where the actions Sglg|, Sr[g, X] and Sg|[X] belong to the system, interaction and
environment. We make the assumption of factorized initial conditions

¥(qo0, Xo0,0) = 10(q0) x0(Xo) , (2.10)

which means that the system and the reservoir are independent at ¢ = 0. The state
of the whole system can be written as a path integral over the free non-interacting
system combined with a path integral over the interaction part

Vg, Xit) = /@qeiss[qwo(%)/@Xeisl[q’X]HSB[X]Xo(Xo)

B /@qeiSO[q]wo(Qo)x(Xt|q(‘)) : (2.11)

where

x(X¢lq() / P X Sl X1+iSeX]y 0 (X) (2.12)

X(X¢|g(-)) is the bath state evolved from xo(X,) under the action of the c-number
path ¢(-). The system drives the reservoir via the c-number ¢(-). The density matrix
of the whole system can be found to be

p(ar, a0, X7, X5, t) = (g7, X7, O)v(as, X5, )" (2.13)

The reduced density matrix is obtained by taking a trace over the reservoir degrees
of freedom (integral over X;)

plaz ait) = [ axi[ [ 90 Sl ()]
<[ [ gaest <o<>x(xt|q<(->>]*, (215)

which defines the Feynman-Vernon influence functional .%#[¢”, ¢<| and leads to

o4, 45, 1) /9q>@q< W$slaZ1=5s ) 2 (g < po(qg . 455, 0) . (2.16)
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The density matrix po(qg, g5, 0) = ¥o(gg5 )1o(gs)* is the initial density matrix of the
system and .#[q”, ¢<] is the influence functional given by

Zla”,q7] :/dXtX(Xt|q>('))X(Xt|q<('))* = (% (1,0]q%)x0|% (t,019” ) x0),

(2.17)
For the case of finite temperatures a thermal average over x, is necessary

Flg”,q%] = Zz'trp {e—ﬂffBTAei Jo ds (@< () =i fy dsﬁfz(«f(S))} ’ (2.18)

where Zp = trB{e_WfB } is the partition function and TA is the anti-time ordering.

A shorter notation is possible using a Keldysh time-ordering along a contour C' in
the complex plane

Flq] = Z3 {e—ﬂjfofce—ifc W@(qw} - <Tce—ifc wza(q<f)>>ﬂ , (2.19)

where ¢(7) = ¢”(7) on the forward path 0 — ¢ and ¢(7) = ¢<(7) on the backward
path ¢ — 0. The reduced dynamics can then be written as

(@ a5, t) = / Dq S5 Z (gl po(a3, 45, 0) (2.20)

The action is integrated along the contour C

Sslg] = fédTLs(q, q), (2.21)

where ¢ = %.

Our aim is now to apply these results to the oscillator environment. Specializing
to the linear oscillator bath environment, we use the interaction given in Eq. (2.1)

H = —Qchxk =X . (2.22)
k

We can introduce the bath-correlation function for the linear bath
(XX () = Kg(t —t") +iK(t—1), (2.23)
where Kg(t) and K;(t) are its real and imaginary part

Kr(t) = %/OOO dwJ(w) cos(wt) coth (%) (2.24)

and
K;(t) = ——/0 dwJ (w) sin(wt) . (2.25)
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After a cumulant expansion we get for the Feynman-Vernon influence functional

Flg| = o7 fo 07 fo dr' (TeX M) yanar’) (2.26)

where (), = Zg'trg{-} is the thermal average. The cumulant expansion cannot be
done for a general nonlinear environment. This is a special feature of the linear bath
with linear coupling. For nonlinear environments higher-order correlation functions
do play a role, e.g., four-time correlation functions being averages of four operators.

Using the expressions for the bath-correlation function, the influence functional
can then be put into the form

Foal = oo (- [ [0 0) - @it ) + 0
+lg7(7) = ¢“(OKr(r = )¢ (7) = ¢*()]}) (2.27)

and finally introducing relative coordinates R = (¢~ +¢<)/2 and r = (¢~ — ¢~)/2 we
find

F[R,r] = exp (%/0 dwd (w /dT/ dT 2ir (1) sin(w(r — 7)) R(")
—r(7) cos(w (T—T))Coth( > )T(T')}), (2.28)

or in terms of the bath-correlation function:

F[R,r] = exp /dT/ dT 2ir(1)Kr(t — 7)R(T")
+r(7)Kg(r — 7' T‘(T)}) (2.29)

Note that we have made no assumption about the bath-spectral density of the lin-
ear oscillator bath. For later use in Chapter 4, we simplify Eq. (2.29) further for
the special choice of an ohmic bath-spectral density, as in Eq. (2.3), according to
[Caldeira83b]. In the limit wc — oo the imaginary part of the correlation function

becomes p
Ki(t) = adté( ). (2.30)

Integrating the first term in the exponent of .#[R, r| by parts, we obtain
t T

21'/ d’T/ dr'r(T)Ki (1 — 7")R(T")

=2 -7 ! 2.31

za/ dT/ dr'r(r T_T)a(T /VR() (2.31)
t

— % / drR(r)r(r)5(0) + ia / drR(r)r(r), (2.32)
0 0
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where w
5(0)= lim —<, (2.33)

we—xX T

which exactly cancels the counter-term introduced in Eq. (2.1), because

1 wco 2
e 2 [Tal oy a (2.34)
0 k

s s 2mywy,

We obtain the final result for the Ohmic bath-spectral density:

y[R,T]:exp(—ia/ drR(r /dT/ dr'r(T) K p(r — 7')r(r )}) (2.35)

Now, together with this ohmic influence functional one must use a system action
which no longer includes the counter-term. We will see later in Chapter 4, where
this result for the Ohmic bath spectral density is used further, that this action leads
to decoupled equations of motion (see Eq. (4.50) and Eq. (4.51)). Decoupling the
equations of motion makes their solution simpler.

2.4 Non-linear environments

Every environment which is not a linear oscillator bath with linear coupling, we call
a nonlinear bath. In contrast to the linear oscillator bath, the physics of nonlinear
environments is surveyed to a lesser extent. Many problems in this field remain
unsolved.

To quote an example, let us look at the spin bath [Caldeira93, Stamp00, Khaetskii02].
The total Hamiltonian consists of three parts

H = Hs+ 7+ Hp . (2.36)
The interaction and the bath Hamiltonian are defined by
== Ji® ok (2.37)
k
and
_ Wk ~k
Ay = zk: 0% (2.38)

We can regard the spins of this bath as the projection onto the first two levels of each
oscillator in the oscillator bath.

Nonlinear couplings also lead to nonlinear baths. One recent example [Makhlin03a,
Makhlin03b] is a Josephson qubit controlled at an optimal point where quadratic low-
frequency noise plays a role

1
H = —i[AEéz + AX3%6, + (Y 6,]. (2.39)

The Hamiltonian describes a quadratic longitudinal and a linear transverse coupling.
X and Y are assumed to be Gaussian noise sources.
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2.5 Non-linear baths in the weak-coupling limit

If we wish to learn about the special behavior of our nonlinear bath, we have to
compare it with a linear one, i.e., the quantum system is analyzed twice, once by
coupling it to a nonlinear bath and then to a linear one. To quantify the deviations
we need a limit, where the two completely different environments lead to the same
behavior of the system, and moreover, we also need to know how to choose the
linear bath by defining an appropriate bath spectral density. In this section we will
see that every non-linear bath behaves like a linear oscillator bath, if the coupling
between bath and system is sufficiently small [Caldeira93, Weiss00]. The oscillator
bath which shows a similar behavior as the nonlinear one is characterized by a bath-
spectral density, which depends on the nonlinear environment. Additionally, one
has to choose, for each temperature, a different bath spectral density, in order to
approximate the nonlinear bath in an optimal way. The derivation of this optimal
choice is given in this section.
To begin, we assume to have a general system, interaction, and bath

H = K + i+ Hy, (2.40)
where 7% represents the system Hamiltonian. .7 is a separable interaction
H =10 B, (2.41)

where Z acts on the system and B acts on the environment part of the Hilbert
space. Further, we use the convention that the operator B also contains the coupling
strength between system and bath, i.e., Bis equal to the coupling strength times some
operator which acts on the bath part of the Hilbert space. Finally, 73 describes the
environment,.

The Feynman-Vernon influence functional [Caldeira93| is given by

Fla,y) = Zg'trg {e7P78 Ay (0,8) Ay (£,0)} (2.42)
where
Ayy(0,) = Ty exp [z /0 t dmz%(y(f))}e%t, (2.43)
Agur(t,0) = =B exp [ i /0 t deé(x(T))] , (2.44)
and
S (x(7)) = 7B A (x(1))e B! (2.45)

is the interaction Hamiltonian, written in the interaction representation. This result
can be obtained from Eq. (2.18) using the relation

Pe—ifo droti(e(r) _ p—idtptrpo—i g droti(a(r)) (2.46)

Y
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where z(7) is the forward path ¢~ (7) and y(7) is the backward path ¢<(7), respec-
tively. We are interested in the weak- coupling expansion of the influence functional
and calculate the expressions up to second order in the interaction strength. We get

An00) ~ [1+i [ A (y(r))

‘/0 ar / dr' 7 (y(r)) A (y(7')) | 7o (2.47)

and

t ~
Aw(t0) ~ 14 / dr (2 (7))
0

- /0 dr /0 ! A () A (). (2.48)
The second order approximation of the influence functional is found to be
Floy] ~ 1- / dr / ar' (A (=) Ay () + (o) A2 (r)
(y(7) i ((0))) — (i (y(0)) Ha(a(r)))] | (2.49)

where (-) denotes the thermal average over the bath. (% (z(7))) is assumed to be
zero, so all linear terms vanish. In the next step we express the influence functional
in terms of the bath correlation function (B(7)B(0))

Floy] ~ 1- / dr / ar'[y()y(r)(B(7)B(7)) + 2(r)a (') (B(7) B())
~y(R)a () B()B()) — y()a(r)(B(r)B(r))] . (2.50)
Using the operator identity
AB = %[A, Bl + %{A,B} (2.51)
this can be rearranged to give
Floal = 1= [ ar [0 [3 (o) 4 26) (u00) = 20} (B, B
4 (y() —olr ))(y( ) = 2(r)){B("), B - (2:52)

We introduce relative coordinates R = (z +y)/2 and r = x — y, respectively, in order
to find

F(R,r] ~ 1—/ dr/ dr’ —r(T)R("){[B("), B(1)])
3B >B(T>}>]. (2:53)
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To proceed, we introduce the Fourier transform of the bath-correlation function

BB)L = o [ de BOBO), (2.54)
We have
(BB)L = L((BBYS +(BB)L,) + s(BB). — (BB)L,). (2.55)
For the symmetric part:
SUBBIT 4 (BBYT) = o= [ dee'S (B0, BO)). (256)
and for the anti-symmetric part:
SUBBT = BB = o [~ e (o), BO)). (257)

In terms of the symmetric and antisymmetric parts, we find

1 e
ZF[R,r] ~ 1 —/ dT/ dr’ / dw —2r(T)R(T )[2(<BB)§ — (BB)TW)]e—W )
+r(r)r(r) [§(<BB>w + (BB)_w)] e ] (2.58)
Using the fluctuation dissipation theorem,
(BB)', =e?(BB)T, (2.59)

so we find

ZR,r] = 1- A dr /OT dr' O°° dw(BB),(1+e ) [T(T)T(T') cos(w(r — 7))

—2ir(T)R(7") tanh(%u) sin(w(7 — T'))} : (2.60)

Since we consider only terms up to second order in J, we can use 1 — 22 ~ e, valid
for small x < 1, leading to

FIRr) & el [ar [Cant [T auBB 0+ o) costetr — )
—2ir(T)R(T") tanh(%d) sin(w(1 — T’))] }. (2.61)

Comparing this result with the influence functional for the linear bath environment,
Eq. (2.29), we see that the nonlinear bath is similar to the linear one for low coupling
J, if one chooses the bath spectral density of the linear bath to be

JT

nonhnear

(w) =7(BB)L(1 — e™P¥) . (2.62)
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This is the main result of this section. To summarize, the effects of a nonlinear
environment are described up to second order in the coupling by a linear bath with
a temperature-dependent bath-spectral density.
For later purposes we note two special cases. First, the zero temperature case
used in Chapter 3
J? (w) = n(BB)?, (2.63)

nonlinear

and second, the infinite temperature result used in this chapter

FR,r] ~ exp{—/0 dr /OT dr' /_00 dw(BB),r(t)r(t") cos(w(r — 7))}, (2.64)

where the influence functional is the one for a classical fluctuating Gaussian noise
force B(t), with the correlation function (BB), = (BB)1 =,

2.6 The nonlinear-bath model

We consider a two-level system S coupled to another two-level system B, which rep-
resents an example of a nonlinear dissipative bath, since it is coupled to an oscillator
bath via X = — )", ¢xZ (see Fig. 2.2). The total Hamiltonian is given by

H = es6° + Ng6S + J6568 + N6P + 68X + A5 (2.65)
where - )
mrWw; .
o = . kg2l 2.66
' ; [277% Ty (2.66)

Here, the parameters eg and Ag serve to define any desired two-level system S. The
system S is coupled to B via 62, with the coupling strength between S and B being
given by J, which is therefore the system-bath coupling strength to the nonlinear
bath. Furthermore, the coupling strength of the two state system B to the oscillator
bath F' determines, as we will see below, the structure of the nonlinear bath. The
bath-spectral density is assumed to be Ohmic, see Eq. (2.3). Still, we have not made
any restriction to a certain temperature range. In the sections below we will specialize
to the limiting case of infinite temperature, where X becomes a purely classical noise
force. Results valid in the low-temperature limit are then presented in Chapter 3.
The dissipative dynamics of S can be characterized in terms of several different

quantities. Here we will analyze the decay of the equilibrium correlator (67 (¢)57 (0)).

2.7 Infinite temperature results

There are two ways to define the border between system and bath in our system
described by Eq. (2.65). The first is to consider one spin to be the system and the
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System Nonlinear bath

Qubit Two—level  Qscillator bath
system

2 | n5+ el . 20| -

J — a,y
S B F

Figure 2.2: System qubit S, denoted by its two energy levels, coupled to the nonlinear bath.
The nonlinear bath consists of another two-level system B and a linear oscillator bath F'. J
constitutes the system-bath coupling. « parametrizes the coupling strength between B and
F at finite temperatures and v determines the coupling strength at infinite temperature. «
(7y) is an internal parameter of the bath defining different structured nonlinear environments.

other spin to belong to the bath, as we do here (see Fig. 2.3b). The bath then consists
of the spin B and the oscillators F' together. This makes it nonlinear. The second
way to define system and bath is shown in Fig. 2.3c. There we have a system of two
interacting spins, coupled to a linear bath. This is how we perform the calculations,
but we interpret the system-bath borders of the model as shown in Fig. 2.3b. Note
that the nonlinear bath is therefore determined by defining the system-bath borders.
Solving the full model of a system of two interacting spins coupled to a linear bath
at arbitrary temperatures and coupling strengths represents a formidable problem in
itself. It has been analyzed in the past using the Feynman-Vernon influence functional
[Feynman63], both analytically [Dube01] (in certain limiting cases), and numerically
[Thorwart02]. For our purposes, we will be content with first analyzing a technically
simpler special case: high temperatures 7" — oo.

In this limit the linear bath behaves like a classical Gaussian noise force. This
can be seen by evaluating the expressions for the oscillator bath correlation function
given in Eq. (2.24) for T — oo. One obtains Kg(t) = 27 sin(wct) /¢, which becomes
a delta distribution for an infinite bath cutoff: Kg(t) — 2aT4(t), for we — oo.
The limit of infinite temperature 7' of the bath is taken such that the overall noise
strength v = 2aT remains constant: a — 0 while 7" — oo and K(t) vanishes, see
Eq. (2.25). Tt follows that (X (t)X (#')) is a real and symmetric function. This is why
the Ohmic bath corresponds to a classical white noise fluctuating force F'(¢) in the
high-temperature limit [Lesovik02]. This leads to the following Hamiltonian

H =560 + Ng65 + J6568 + A6P +6BF(1). (2.67)
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Figure 2.3: (a) Schematic representation of two stochastic processes corresponding to a
classical two-level fluctuator, or “telegraph noise” (top), and a Gaussian process (bottom),
yielding the same power spectrum (right). (b) In our model, the two-level fluctuator B is
coupled to a noise force F' and therefore represents a (nonlinear and non-Markoffian) bath
that acts on a system S. (¢) The exact master equation description (Approach 1 in main
text) treats S and B as a composite system, subject to F.
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The oscillations of 62(t) at the frequency 2A are noisy, due to the action of the
fluctuating force F'(t) with the correlation function

(F)F(0)) = (X(6)X(1) = 16(1). (2.68)

Miscellaneous structured nonlinear baths B+ F' are defined by varying the parameter
7.

Under these circumstances, the dissipative dynamics of S+ B under the action of
F can be described exactly by using a Markoffian master equation. Note that this is,
of course, unrelated to the validity of a master equation description for the action of B
on S alone, which we will discuss below. The limit of infinite temperature is dictated
mostly by the desire to have a comparatively strong decay of the correlator of 62 (¢)
(with a decay rate on the order of B’s transition frequency 2A), while still retaining
the validity of a Markoffian master equation description (for the full system S + B).
The concept of generating colored noise by coupling to a degree of freedom subject
to white noise is also employed in classical stochastic mechanics, see [Kampen92] and
[Risken89].

In the following considerations, we obtain exact results which are compared with
those obtained using three commonly used approximations: a Markoffian master
equation for the spin dynamics, a weak-coupling approximation, and the substitution
of a linear bath for the original nonlinear bath. In the following, we will call the exact
solution “Approach 17, while “Approach 2” refers to a master equation applied to
S alone, “Approach 3” replaces the nonlinear by a linear bath, and “Approach 4” is
the weak-coupling approximation.

2.8 The exact solution: “Approach 1”

Derivation of the master equation - First we derive the exact master equation de-
scription, which is used for the action of F' on the combined system B + S

d ., : . . B A .
giPse(t) = —ilHsp, psp(t)] = 7pss(t) + V67 pss(t)57 - (2.69)
Hsp is the Hamiltonian for the system B+ .S alone. We start with the von Neumann
equation

d (F A(F . A(F

i=Psn(t) = [(1), p33 (D) = [#sp + 67F (1), py ()] (2.70)
where ﬁg;) (t) is the density matrix for one realization of the force F(t). J#(t) is
the Hamiltonian for the system B + S under the action of the force F'(t). Rewriting
Eq. (2.70) in integral form, we obtain

5 ) - p5(0) = (~i) / drl Mg + 5P F(r), (). (2.71)
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Now we iterate Eq. (2.71) once
d . . NP
SHR0) = (), AP0+ (—i) [6BF (), (2.72)

dt SB
K300+ (-0 [ drlotin + PG A0

A

In the next step we average over F'(-) and use (F(t)) = 0 and </3f912 (t)> = psn(t).
Note that, for a white noise force, F'(t) averages factorize like

(FOF@AR(T)) = (FOFE) (p53() . (2.73)

since f)gFB) (7) depends only on the previous history of F'(-). Therefore we find
d . : R
gPset) = (=) Hsp, psp(t)] (2.74)

+ i [ ar[o? 6 psato)]| FOF )

This leads to Eq. (2.69) by using Eq. (2.68). Note that, unlike the usual master
equation, no secular approximation [Blum96] has been used in deriving this equation,
which means the resulting decay rate does not have to be small when compared to
the transition frequencies of the system S + B. This is possible because the bath
correlation function is a delta function, which also makes the equation exact. We
remark further that Eq. (2.69) is solved directly in the basis where 62 and 67 are
diagonal. A transformation to the interaction picture (as is commonly performed for
the usual master equation description) would lead to explicitly time-dependent terms
in this equation.

Decay of the equilibrium correlator - We want to obtain the equilibrium correlator
of 67 (t),

(@505 0) = {APef 1550} - (2.75)

It is convenient to rewrite Eq. (2.75) in terms of the projector onto the spin-up state

of S, P=[1)g (T]s = (1 + %)
(65(t)5%(0)) = 4 <13(t)13(0)> 1. (2.76)

Here, we have used p( °d — L1 The correlator of P(t) can be found by calculating the
probability to find the system S in the state “up” at the time ¢, if it had been “up”
at the time 0. This has to be averaged over all realizations of the random process
F()

(P0PO) = girs (Wt P AP 2O N - @)
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Here Up(t) is the time-evolution operator for S + B under the action of a given
realization of F'(-). This equation is valid only because, in the limit of infinite tem-
perature considered here, the probability of finding “spin up” at a certain instant
of time is independent of the history of F'(-). The expression (2.77) is nothing but
the population pgi1(t) of the state [1)4 for a time-evolution starting from the initial

condition of “spin up”, psp(0) = P® ﬁ%")

A

(B@PW©)) = Spsu(lt) (278)
Note that pgi1 decays towards 1/2, such that (675 ()65 (0)) vanishes for ¢ — oo (as it
should be). We have used the fact that the correlator is symmetric in time, since the
potentially antisymmetric imaginary part vanishes (again, due to the limit of infinite
temperature). ps(t) can be calculated by applying the master equation that describes
the action of F' onto S + B. Put differently, Eq. (2.78) constitutes an example of
the quantum regression theorem. Using pg, we calculate the Fourier transform of the
equilibrium correlator of 63 (t)

1 oo iwt /A ~
K (w) = o dt e (67 ()57 (0))
1 [T ,
- - / dt 6 (pgr ([t]) — 1/2) . (2.79)

K? (w) is a real-valued and symmetric function and the integral over all frequencies
gives 1.

Time-evolution of the density matriz - The master equation (2.69) for the density
matrix p (= psp) in the four-dimensional Hilbert space of S + B represents a system
of linear differential equations with constant coefficients. The latter are given by a
complex-valued 16 x 16 matrix C that corresponds to the “superoperator”! on the
right-hand side of the master equation. The solution is the complex vector p, which
consists of the 16 components of the density matrix p

i _

dt
The entries of C' can be read-off directly from Eq. (2.69). The formal solution of
Eq. (2.80),

—Cp. (2.80)

p(t) = eCp(0) | (2.81)
can be expressed in terms of the right-eigenvectors | p(j)>, the left-eigenvectors <p(j)‘
and the eigenvalues \J) of C

p(t) =D 107 (P1p(0)) X" (2.82)

LSuperoperators are ordinary operators. They constitute linear maps between operators, which
also can be viewed as elements of a vector space.
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C is not necessarily hermitian, so the \¢) are usually complex-valued (with non-
negative real parts) and the ‘ p(j)> do not form an orthonormal basis (however,
<p(i)‘ p(j)> = §;; by construction). In order to obtain pgi;(t), we have to perform
the trace over B, pgsi1(t) = pspi111(t) + pspi2i2(t). (In pspsy sy the indices s, s’ refer
to S, while b, b refer to B.) We will use the same notation for the components of
oY%, which is a complex vector. Then we obtain

N )
o : y + (PP1p(0)
/ dte™ psi(t) = Z(ngl)n + P%)u)w :

0 j

(2.83)

Taking the real part of this expression gives K2 (w), see Eq. (2.79).

Numerical results - The following steps have been performed in order to calcu-
late the correlator K% (w) of 67 (t): The entries of the matrix C are obtained from
Eq. (2.69). The eigenvalues and eigenvectors of C' are calculated numerically and
used to get K3 (w) according to Eqgs. (2.83) and (2.79).

The relevant parameters in our model are €5, Ag, A, the coupling strength J,
and the strength ~ of the noise force F'. We choose the time scale such that A = 1.
The results discussed in the following have been calculated for Ag = 1.2 (S and B
“almost in resonance”).

To begin our discussion, we note some generic features of the results obtained for
approaches 1 and 2. Since, in these cases, K° (w) is essentially the Fourier transform
of a density matrix relaxing according to a master equation, it consists of several
Lorentzian peaks. Their number is constrained to be less than the maximum number
of transition frequencies of the respective system (6 for S + B in Approach 1, and
1 for S in Approach 2, plus possible zero-frequency “pure” relaxation). In practice,
degeneracies between transition frequencies and selection rules reduce that number
to 2 (or 5) for Approach 1, and 1 (or 2) for Approach 2, for e = 0 (or €5 # 0), see
discussion in Appendix A.2 and Figs. 2.4, 2.5 and 2.6.

In the limit of weak coupling, J — 0, all that remains is a broadened peak at
the transition frequency 2Ag of system S alone. In that limit, the results for all
approaches coincide, as expected (see Figs. 2.9 and 2.10). With increasing J, the
peaks are broadened and shifted, and additional peaks may appear (in the case of
approaches 1,3 and 4).

The most notable difference from the master equation of Approach 2 is the ap-
pearance of a second peak at the transition frequency 2A of the two-level fluctuator
B. At small J, the strength of this peak grows like J?, while its width is fixed (de-
pending on 7). In this way, the power spectrum of the bath fluctuations shows up in
the short-time behavior of the correlator of the system S. This behavior cannot be
captured by the master equation (Approach 2).

Increasing J leads to a frequency shift and a change in the width of the “original”
peak at 2Ag, much like that predicted by the simpler Approach 2. However, in
the description of the exact Approach 1, these changes are due to the change in
eigenfrequencies and eigenvectors of the combined system S + B. At small J, the
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Figure 2.4: The Fourier-transform K2, (w) of the equilibrium correlator of &3 (t), for different
values of J =0.25, 0.5, 0.75 and 1 from topmost to lowest graph. The values of the other
parameters are: A = 1, Ag = 1.2,v/(27) = 0.01 and eg = 1. The heights of the third
dephasing peak are ~ 19.1,~ 5.6 and ~ 1.9 for J=0.25, 0.5 and 0.75, respectively. In
the lowest graph the dephasing peaks are numbered from one to four according to the
transitions shown in Fig. 2.6.
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Figure 2.5: Spectrum of the two-spin system S + B. In the unbiased case eg = 0 and low
coupling ~y, there are two distinct transitions possible, leading to two dephasing peaks of
the equilibrium correlator.

results of approaches 1 and 2 can be shown to coincide using perturbation theory.
Deviations from Approach 2 appear at higher values of J, where the energy shift of
Approach 1 only grows linearly with J (see Figs. 2.9 and 2.10, lower graphs). On the
contrary, the frequency of the second peak is suppressed to zero. This behavior can
easily be found by diagonalizing the Hamiltonian for the combined system B + S in
the limit J — oo, when one obtains two pairs of degenerate energy levels, separated
by 2.J.

Regarding the dependence on the noise strength v, the same qualitative remarks
apply as for Approach 2 (see discussion below, in Sec. 2.10). However, it is interesting
to note that there is a frequency shift with increasing v in Approach 1 as well (see
Fig. 2.8), in spite of the fact that the additional terms in the nonsecular master
equation (2.69) seem to describe a purely relaxational dynamics. This is contrary to
the behavior known from the usual form of the master equation, Eq. (2.86), where the
energy shifts can be read-off directly from the imaginary coefficients in the equation.

2.9 The bath-correlation function

In this section we calculate the equilibrium correlator of 62(¢), which is needed as
input for the master equation describing the relaxation of S alone (Approach 2),
the numerical sampling of random processes (Approach 3), and the weak-coupling
approximation (Approach 4).

This is done by calculating the relaxation of pp(t) under the action of F, start-
ing from the initial condition p5(0) = [1)5 (1|5 and applying the same formulas as
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Figure 2.6: Spectrum of the two-spin system S + B. In the biased case es # 0 and low
coupling ~y, there are four distinct transition possible, leading to four dephasing peaks of
the equilibrium correlator plus a relaxation peak at zero frequency.

above (with B instead of S) for the master equation (2.69) adapted to the two-
dimensional Hilbert space of B (with a 4 x 4 matrix C). <a (0)) undergoes
damped oscillations.

The Fourier transform of the correlator of B = J&P defines the “bath spectrum”

(BB) = - / " g e (B B(0)) (2.84)

It is real and symmetric in the limit of infinite temperature considered here, and is
therefore equivalent to a classical colored noise force. As explained above, (BB)  is
found by applying the master equation (2.69) to B alone.

The result for the Fourier transform is given by

u (BB), 8A%y 1
. 2.
Kealw) = J? 7 (w? —4A2)2 + 4w%y? (2:85)

This consists of broad peaks of width + (for 4* < 4A?), which is proportional to the
strength of the noise force F' and may be comparable to the transition frequency 2A
itself (see Fig. 2.7). Thus, B indeed represents a noisy two-level fluctuator, which
acts on S as a nonlinear (non-Gaussian) and non-Markoffian (colored) bath.
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2.10 The master equation: “Approach 2” 39

2.10 The master equation: “Approach 2”

As has been explained above, we will use the master equation description not only
for the action of F' on the combined system S + B (see Eq. (2.69)), but also for the
action of F'4+ B on S alone. This constitutes the approximate “Approach 2”7, involving
the usual kind of master equation, which is valid only for sufficiently weak coupling
J, since it is derived by applying both the Markoff and secular approximation (see
[Blum96] and [Gardiner00]). In the unperturbed eigenbasis of system S, it reads

d = .
%pSkj = _(Fk + Fj =+ Fk]’ =+ Z(Ak — A]) (286)
+i(Ey, — Ej))psk; + 0k Y psul Anl*2m (BB) g, g, -

14k

Equation (2.86) describes the relaxation of the reduced density matrix pg of system S
alone, under the action of the coupling J6767 to the bath B+F. We have introduced
the abbreviation A = 65.

The decay rates are defined by

Iy = WZ|Akn|2<BB>Ek—En

and the energy shifts are given by

— 2 <BB>w
Ay = Zn: | A /dw—Ek ot (2.88)

Here the indices and energies refer to the unperturbed eigenstates of the original
Hamiltonian of S alone: % = €565 + Ag65. The integral should be understood as
a principal value integral.

There is a systematic way to derive the Markoffian master equation, which we
will describe in the following. As a starting point, one can use the generalized master
equation for the reduced dynamics given in [Fick83, Loss03, DiVincenzo04]. No
approximation has been made so far

%ﬁs(t) = —iZLsps(t) — Z/o dry(7)ps(t = 7)

(1) = —itrpLepe?Y Lsnpn . (2.89)

The Liouvillian maps are defined by Zp = [, p|, pp = e P /Z is the equilibrium
bath density matrix, 2 is the projection operator 2 = 1—pgtrp. it is further assumed
that trp#%ppp = 0 and the initial state is given as a product p(0) = ps(0) ® pg.
In the case of the weak-coupling approach, one is interested in weak coupling to the
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bath. By performing a systematic expansion in powers of the coupling, the lowest
order term in this expansion is calculated by replacing e *2<7 by e~*2(£s+<8)7 The
weak coupling ? approximation, or exact Born approximation, leads to the following
equation

Sstt) = i[5 ps(0)] - / e [65.67 5763 pglt - 1) (B(r) B(0)

+ /Ot dr [65, e*i‘?fSTﬁS(t _ T)é‘fei‘%gﬁ} (B(0)B(r)). (2.90)

This weak-coupling equation will be studied further in Section 2.13.

As opposed to the weak-coupling equation, the Markoffian master equation in-
cludes a second approximation. Note that the weak-coupling equation has a con-
volution form, it has memory and the behavior of the density matrix at the time ¢
depends on its past. On the other hand, the motion of the system is damped due to
the coupling to the environment, which destroys the memory. One can therefore make
a second key assumption by substituting ps(t — 7) by ps(t). The bath-correlation
time 7p is a measure for the time during which some memory of the interaction is
retained. It depends on the bath. The bath-correlation function decays on this time
scale. If the bath-correlation time is much smaller than the decay or damping time of
the system then the upper integration limit can be extended to infinity with negligible
error under the Markoff approximation

i) = =i ps0)] = [ ar[of o0 (B BO)

[T arfas e T psate T (BOB). (2.01)

At infinite temperature the equation can be simplified further since the correlation
function becomes symmetric in time. Finally, we can write down the equation in the
eigenbasis of % and we obtain the Markoffian master equation Eq. (2.86).

Let us now discuss the solution of the master equation, Eq. (2.86). The time-
evolution of ps is found from Eq. (2.86) using the same approach as in Sec. 2.8,
involving the diagonalization of a superoperator C'. In the present case, C' corresponds
to the 4 x 4 matrix whose entries are read-off from Eq. (2.86). Therefore, the equation
corresponding to Eq. (2.83) only contains p%), instead of the sum inside the brackets.

Numerical results - First the action of F' onto B is considered, to obtain the
correlation function (BB),. This result is given in Eq. (2.85). It is used to set up the
master equation describing the action of F' + B onto S, Eq. (2.86). Its coefficients
define a 4 x 4 “C-matrix”, which is diagonalized. The results are inserted into the
appropriately modified Eq. (2.83), in order to obtain K? (w).

2What we call the weak-coupling approach is what is denoted as exact Born approximation in
[Loss03].
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Figure 2.8: The Fourier-transform K2, (w) of the equilibrium correlator of 3 (t), for different
values of the noise strength v/(27)=0.001, 0.01, 0.05 and 0.1 from topmost to lowest graph.
The values of the other parameters are: A =1, Ag =1.2,J = 0.5 and €¢g = 0. Approaches
1 and 4: solid line, Approach 2: dashed line, Approach 3: dash-dotted line.
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Naturally, the behavior of Approach 2 is simplest to analyze, since it is the text-
book example of a master equation applied to a single two-level system. Since the
correlator (BB), is proportional to J2, both the shift of the transition frequency
and the width of the peak(s) increase like J?, for arbitrarily large J. In contrast,
the dependence of the peak width and the frequency shift on the noise strength ~
is non-monotonic. This dependence is determined by the evolution of (BB), (see
Eq. (2.85) and Fig. 2.7) with increasing . For very small 7, the two-level fluctuator
B performs very weakly damped oscillations at the frequency 2A. Unless it is exactly
at resonance with the system S, the dissipative effects of B on the dynamics of S will
be weak in that regime. The decay rate of S, which is given by the power spectrum of
B evaluated at 2Ag, grows linearly in 7y (for 42 < (A% — A?)?/A%). The transition
frequency of S is shifted upwards or downwards, depending on whether the main
weight of the spectrum of B is located below or above Ag(A < Ag or A > Ag).
For increasing 7y, B performs more strongly-damped oscillations. In the limit of large
7, the spectrum (BB),, is peaked around zero frequency (see Fig. 2.7) such that the
decay rate of S decreases again (like 1/7), after having gone through a maximum.
The magnitude of the energy shift will also decrease for increasing -y, simply because
the contributions of the power spectrum of B lying to either side of 2Ag will tend
to cancel each other. However, in the limit v — oo, the shift always saturates at
a positive value which is independent of A. These facts can be read off from the
analytical result for Approach 2 (written down in the special case of €5 = 0)

1 r

K5 (w)=— : 2.92
=) 27 32—;1 I'? 4+ (w — swp)? (292)

Here, the peak width is given by T' = 2J? ReX(2A5) = 27 (BB),,, , the shifted
transition frequency is wy = 2Ag — 2J°Im X(2A5), and we have defined X (w) =
(27 + iw)/(—w? + 4A2% + 2iw).

The master equation is expected to come close to the true result as long as the
conditions of the Markoff and secular approximation are fulfilled. This means the
coupling strength J has to be so small that the resulting decay of S proceeds slowly
compared with the transition frequency itself (secular approximation) and with the
correlation time of the bath (Markoff approximation). The latter is given by 75 = 1/~

if 2 <4A? and 75 = 1/(y — /72 — 4A2) if 42 > 4A2

2.11 The nonlinear bath replaced by a linear bath:
“Approach 3”

In approach 3 we replace the nonlinear bath by a linear one. If the two-level fluctu-
ator B were replaced by a harmonic oscillator [Garg85, Wilhelm03a], this procedure
of substituting a linear bath with an appropriate correlation function for the combi-
nation of F' and B would be exact. Here, it is an approximation whose reliability we
want to analyze by comparison with the exact solution. In our case, the fact that
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Figure 2.9: The Fourier-transform K3, (w) of the equilibrium correlator of 3 (t), for different
values of the coupling strength J =0.1, 0.5, 0.75 and 1.0 from topmost to lowest curve. The
values of the other parameters are: A =1, Ag = 1.2, v/2mr = 0.1 and eg = 0. Approaches
1 and 4: solid line, Approach 2: dashed line, Approach 3: dash-dotted line.
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the power spectrum (BB)_, given in Eq. (2.85), is real and symmetric means that B
can be treated as a classical Gaussian random process. Therefore, we must solve a
Langevin equation for the density matrix

d . . .
S (1) = =il Ao (1), 07 ()] (2.98)
with the stochastic time-dependent Hamiltonian
%toch(t) = 655'25 + Aga'zf + B(t)é’f . (294)

We calculate (numerically) the time-evolution of ﬁgB) (t) under the action of the
stochastic time-dependent Hamiltonian defined in Eq. (2.94), which depends on B(t).
The density matrix ﬁgB) (t) must be averaged over a statistical sample of different
field configurations B(t). The numerical generation of these random fields B(t) is
described in Section 2.12. The description of open quantum systems by a stochas-
tic Schrodinger equation has recently attracted increasing attention [Ankerhold00,
Gardiner00, Stockburger(2].

Since Approach 3 takes the full bath spectrum (BB)  as input, this spectrum
may also show up in the result for the system correlator K% (w), as is indeed the
case. Figure 2.8 demonstrates that this effect is most pronounced for small values
of 7, where the bath spectrum has a relatively sharp structure (the noise field B(-)
acting on S deviates strongly from white noise). In these cases, the qualitative agree-
ment between Approach 3 and Approach 1 (“exact solution”) is much better than
that between Approach 2 (“master equation”) and Approach 1 (see also Fig. 2.12).
Nevertheless, there are deviations: In particular, there is no visible shift of the peaks
in Approach 3 with increasing J. They become wider and more asymmetric (this
applies especially to the peak at frequency 2Ag). For higher values of v, the linear
bath (Approach 3) shows, in general, less structure than the exact solution, obtained
for the actual nonlinear bath.

2.12 Numerical generation of the random field

Let us now describe how we generate the noise force B(t) numerically (see Fig. 2.11).
Computer programs can generate Gaussian random numbers with variance equal to
one. If one is interested in having the time sample of a noise force B(t) with a
certain given correlation between two time points (B(t)B(t')), it is best to consider
the Fourier transforms B, and (BB) . If the Gaussian process is given in Fourier
space B, the time evolution B(t) of the noise force can be found via FFT (Fast
Fourier Transform). This is convenient because for the integration of the differential
equations (Eq. (2.93)), we need the noise sample to be defined only at discrete time
points. The generated noise force samples should be longer than the integration time
of the differential equations. Otherwise the periodicity of the sample generated via a
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Figure 2.10: The Fourier-transform K2, (w) of the equilibrium correlator of &% (¢), for dif-
ferent values of the coupling strength J =0.1, 0.5, 0.75 and 1.0 from topmost to lowest
curve. The values of the other parameters are: A =1, Ag = 1.2, 7/2r = 0.1 and €5 = 1.
Approach 1: solid line, Approach 2: dashed line, Approach 3: dash-dotted line, Approach
4: dotted line.
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Figure 2.11: Sample of the colored Gaussian noise field B(t). The parameters for the bath
correlation function (BB)  are A =1, v/2r = 0.1 and J = 0.5.

FFT shows up in the solution of the spin dynamics. The real and imaginary parts of
B, are independent Gaussian variables given by

BB),\ 3
Re B, = (< A >“’) x Gaussian random number (2.95)
w
BB) \ 3
ImB, = (< A >‘”) x Gaussian random number , (2.96)
w

where Aw is the frequency step in Fourier space. The samples are produced by
generating the Fourier coefficients of B as independent complex Gaussian random
variables of appropriate variance, given by the power spectrum (BB) . The product
with the variance gives the correct variance for each w in the generated noise fields.
Re B, and Im B, are only generated for positive frequencies w because we take into
account symmetry conditions to make B(t) real. The field B(t) itself is obtained
using a Fast Fourier Transform (FFT). After averaging, we may use

A

(PPO)) = 5 (0 (297)

and Egs. (2.77) and (2.79) in order to obtain K% (w). To this end, the Fourier trans-
form of pg11(|t]) is calculated numerically, using a FFT on a time-grid of sufficiently
small step size At and sufficiently large length. The results displayed in the figures
have been obtained using 10* samples and a frequency resolution of Aw = 2/800.
The curves have been smoothed by averaging over 5 to 20 adjacent frequency bins.
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2.13 The weak-coupling approximation:
“Approach 4”

Instead of the Markoff approximation one can use a weak-coupling approximation
[Gardiner00]. This keeps the full information contained in the correlator (BB) ,
at the price of introducing a kernel for the master equation which has no longer a
convolution form. We briefly describe the derivation of the weak-coupling equation
in a way alternate to that given in Section 2.10. We use the von Neumann equation
in the interaction picture with respect to 4 = F# — ¥ . Iterating the von Neumann
equation up to second order leads to

Shu(t) = i), r(0) (2:99)

‘/ot ar[%0), [%(r), ()]

The density matrix is replaced by an approximate factorized density matrix p;(t) =
ps1(t) ® pp(0), where the bath remains described by a thermal equilibrium distribu-
tion. The reduced system dynamics become

< psi(t) = —itral (1) 55(0) © pp(0)] (2.99)

t
- [ driea [0, () psr(0) © m(0)]]
0
where a trace over the bath, which also includes F', has been taken. Now we introduce

the interaction operator V', which is given by V = A® B. In our case, B has zero
mean and its correlator is symmetric, see Eq. (2.85). We get

d .
%051(75) = (2.100)

-/ e [Ar(0), [Ar(t = ). psr(t - ]| (B)BO))

Going back to the Schrédinger picture and inserting A = 62 then leads to the follow-
ing weak-coupling equation, which is second order in J

< pst) = ~il#5, ps ) (2.101)

_ / dr[55,e [65, st - ]| (B)B(O))

This is the same equation as Eq. (2.90) for infinite temperature, i.e., with a symmetric
bath-correlation function. This equation is conveniently solved by using the Laplace
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transform. The Laplace transform of the equilibrium correlator of the bath B is
connected to the Fourier transform in the usual way

Cppls) = / dte=* (B(t)B(0) (2.102)
0
*° BB
= / BB _ p_ st
o StW s2 + 2vs + 4A?

Using the Laplace transform, the system of differential equations becomes a system
of linear algebraic equations, which can be solved by matrix inversion. All the results
can be obtained analytically. However, here we only present the special case of e =0

1 R { s +4Cpg(s)

K, (w) ==
ZZ(w) m 52 + 40313(8) + 4A%.

s:_iw} . (2.103)

The case €5 # 0 is given in Appendix A.3. These analytical results are then evaluated
with the appropriate numerical values of the parameters.

In general, we expect the weak-coupling solution to be somewhat worse than the
simulation of the linear bath with colored noise correlations (Approach 3), since it is
an approximation to the latter case. However, the result for the special case eg = 0
turns out to coincide with the exact solution (Approach 1). The second peak is
present in contrast to the Markoff approximation. The solution for e = 1 (or, more
generally, es # 0) is good for small system-bath coupling J. It fails for increasing
J, where Approach 3 seems to be the better approximation, provided €g is not too
small (see discussion above).

2.14 Conclusions

We have discussed a model of a nonlinear bath, consisting of a single two-level system
subject to a classical white-noise force. Its action on a qubit has been analyzed
using four different approaches. Numerical results for various special cases have been
obtained and discussed. The regimes where the different approaches work well became
clear: The standard Markoff approximation yields good results as long as the coupling
strength is so small that the decay is slow compared to the transition frequency and
the bath correlation time. However, if the bath spectrum displays sharp structures,
their effects on the correlator of the system are only retained in the weak-coupling
equation with its memory kernel. As expected, both approaches fail for the regime of
large system-bath coupling. In that regime the linear bath may still represent a good
approximation to the original nonlinear bath. Again, this applies, in particular, when
the bath spectrum has a strongly peaked structure. However, deviations between the
linear and the original nonlinear bath are clearly visible. Although we have only
discussed a particular type of a nonlinear bath, we expect the statements about the
regimes where the different approximations work to be valid for more complicated
systems as well.
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Figure 2.12: The Fourier-transform K3,(w) of the equilibrium correlator of &5 (t), for dif-
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Approaches 1 and 4: solid line, Approach 2: dashed line, Approach 3: dash-dotted line.
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From the point of view of computational effort, the stochastic simulation of Ap-
proach 3 is clearly the worst, because the differential equations must be integrated
numerically many times to obtain the statistical average. The master equation and
the weak-coupling approximation require the least effort, in particular because ex-
plicit analytical expressions could be found for our model.



Chapter 3

Flow Equation Results for Low
Temperatures

In the previous chapter the nonlinear bath was discussed for high temperatures. In
this chapter we concentrate on the opposite (low temperature) limit of the same model
system. We saw that the investigation of the effects of our nonlinear bath consists of
solving dissipative two- and four-state systems. Within the linear bath approximation
we had to use a non-Ohmic bath spectral density, corresponding to colored noise
in the high-temperature limit. Such systems of one or two spins coupled to linear
oscillator baths have been studied in-depth using different methods, such as functional
integral approaches [Leggett87, Dube01], master equations [Loss98, Governale01], and
numerical calculations within the quasi-adiabatic propagator path integral method
[Thorwart02]. In this work we use a different approach: the numerical flow equation
renormalization method.

First, we derive flow equations for the more general system consisting of two spins
coupled to oscillator baths, i.e., we examine the dissipative four-state system. Flow
equations are a nice tool to analyze correlation functions. The numerical integration
of the flow equations allows us to study the nonlinear bath model by analyzing the
spin-spin correlation functions. The numerical results are obtained at zero temper-
ature. As in Chapter 2, these results are then compared with those obtained from
a linear bath with a non-ohmic bath spectral density. The bath-spectral density is
chosen in such a way that the linear bath leads to the same results as the original
nonlinear bath in the limit of small enough system-bath coupling strength. The bath
and system correlation functions are both calculated using flow equations. By carry-
ing out the comparison, we are able to study the effects of the nonlinear bath at zero
temperature.

3.1 Introduction

Using the flow-equation method one works in a Hamiltonian framework. The whole
procedure is non-perturbative, as it relies on a unitary transformation and has an

o1
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energy-scale separation built in. The effective Hamiltonian simplifies due to the fact
that the coupling between bath and system disappears and equilibrium functions can
be obtained easily. Note that the flow-equation results cannot be obtained using
Feynman-diagrammatic techniques. The method is non-perturbative, e.g., neither a
Born nor Markoffian approximation are applied, which is what makes it attractive
and new. Some drawbacks are that the flow equations for the observables are not
closed, and a special ansatz is used. Here we choose a linear ansatz, which works
only for low temperatures 7" smaller than the typical low-energy scale of the system
Hamiltonian Hg.

The flow-equation method itself was introduced by Wegner [Wegner94] and by
Glasek and Wilson [Wilson93]. The extension to dissipative systems was developed
in [Neu96, Kehrein96a, Kehrein96b, Mielke98]. What is new in our work is that
we apply the method to a general two-spin (four-state) system coupled linearly to
oscillator baths. The flow equations are designed to yield correlation functions for
non-ohmic baths as well, which, as we will see below, makes it possible to treat
the linear bath approximation to our nonlinear problem on the same footing. In
[Kehrein96a, Stauber02a, Kleff03a, Kleff03b], subohmic, superohmic, and a peaked
structured environment analogous to the one used in Chapter 4, defined in Eq. (4.31),
were studied with flow equations. Similarly, the linear-bath approximation leads to a
new peaked structured bath-spectral density, to our knowledge, never studied before.
The basic strategy is to calculate first the equilibrium correlator of the two-level
system exactly. Then we calculate it within the common linear-bath approximation,
where the linear-bath correlation function is chosen to be the same as that of the
nonlinear bath.

The rest of this chapter is divided into six sections: First we recall the general
framework of the flow equation applied to dissipative systems. It only reflects the ma-
jor steps in the derivation. After this brief introduction, we quote the flow equations
for the general two-spin system coupled to linear oscillator baths. The flow equations
for the nonlinear-bath system and its linear approximation are both special cases of
these general flow equations. At the end of the chapter, we have collected a discussion
of the numerics and a comparison of the results.

3.2 The general framework for a dissipative sys-
tem

By using the flow equation technique, we would like to approximately diagonalize a
model Hamiltonian' H containing a linear oscillator bath. In our case the bath is
that introduced in Chapter 2 (given in Eq. (2.65)). We diagonalize the Hamiltonian
by means of a unitary transformation

H()=UWOHU)'. (3.1)

'In this chapter we omit the hats for the operators.



3.2 The general framework for a dissipative system 53

U(l) depends on the flow parameter [. The flow parameter [ has the dimension
1/energy?. Therefore, the value of [ represents the square of the inverse energy scale,
which is decoupled. The unitary transformation can be written in differential form

» dH ()

= = ), 1) (32)
with the anti-Hermitian generator
au(l). .
a0 = U0y, (3.3

where the initial condition is H(0) = H. Using 7n(l) in the canonical form n =
[Ho, H(1)], where Hy = >, wy bibe : is the linear oscillator bath, leads to the fixed
point H(I — oo) = Hy. The commutator? [n, H] contains coupling terms which
are bilinear in the bosonic operators. We neglect these terms by truncating the
Hamiltonian after linear bosonic terms. The bilinear terms are included by modifying
the generator with an additional bilinear term as follows [Kehrein96b, Stauber(02a]

n = [Ho, H] + anq F (b + blt)(bq - b:;) Ce (3.4)

The colons indicate normal ordering, which is defined by : O := O — (O) for an
operator O. The normal order is defined with respect to the non-interacting Hamil-
tonian. The coefficients 7, are chosen in such a way that the bilinear terms are not
generated. Simply because this can not be done exactly, we neglect terms which have
the normal ordered form: system operator times a bilinear bosonic operator.

3.2.1 The model Hamiltonian

The system which couples to the bath is described by a general Hamiltonian Hg,
which is not yet specified. It couples linearly to the bosonic degrees of freedom of
a linear oscillator bath. This is the only restriction, i.e., one can also treat non-
ohmic (especially peaked) bath-spectral densities, which have gained recent interest
[Garg85, Wilhelm03a, Thorwart03]. The general Hamiltonian of the system plus
environment is given by

H=Hs+Y Hf(bp+b))+iY Hy(by—b))+> wp:bbe:.  (35)
k k k

The operators H,", H, are the part of the system-bath interaction which acts on
the system and b, and bL are the usual bosonic creation and annihilation operators.
We note that in [Kehrein96b], the generator 7 was chosen such that the Hamiltonian
remains form invariant without the term i ", H; (by —b\). Our approach is different
because we allow the generation of such terms and we take a generator similar to the
one used in [Stauber02a] for the dissipative two-state system.

2From now on all the | dependencies are supressed in the formulas when not necessary.
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3.2.2 Flow equations for the Hamiltonian

The continuous unitary transformation, which is applied to the Hamiltonian Eq. (3.5),
is defined by a generator n. For the generator we use the following ansatz

n=1iY  Ar(be+0L) + > Brlbr — L) + > mg ¢ (b + L) (bg — b)) - - (3.6)

kq

Note that the generator is antihermitian, as it should be (1, = 0 for £ = ¢). Ay and
By, will be specified later by the canonical choice of the generator. As explained before,
the last bilinear term in 7 is introduced to eliminate effective couplings between
different bosonic modes with energies wy. During the flow, starting with the initial
condition H(0) = H, the coupling constants become functions of the flow parameter [
and evolve in such a way that the final Hamiltonian is Hy. During the transformation,
Hj does not depend on [, since the flow equations for the energies wy () can be shown
to be trivial in the thermodynamic limit (when the number of bath modes N goes
to infinity [Neu96]). Therefore, the renormalization of the bath modes wy, vanishes in
the thermodynamic limit. Note further that, with this choice of the generator, one
can construct the exact solution of the problem in the case of a harmonic oscillator
or a free particle coupled to a bosonic bath [Kehrein96b]. The commutator of n with
H is found to be

[’I], H] = izkak(bk — b};) + Zkak(bk + bL)
+i Yy [Ag, Hs(be + b}) + > _[By, Hs] (b — b})
+i ) ([Ag, HJT) : (br + ) (bg + b)) +1 ) [Ag, H (204 + 1)

kq

+i Y ([Ar, Hf 1= ([Ar, HF)) ¢ (b + b)) (bg + b)) -

+ > [Br, HJ]: (b — b)) (bg + b)) : + > [Br, Hyfl4

+i ) ([Br, Hy 1)« (by — bL)(bg — ) = =i > _[Bi, Hy|(2ny +1)

+iY (B, Hy] = ([Bi, H; 1)) : (b — b)) (bg — b) :
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—Z[Ak,H ]+ (b + b}) (b — b)) - +2Ak,H I+ (3.7)

-2 Z Mg H )

+anqwk : (b, — b)) (b, — 0F) - +anqwq (b +bE) (by + )

kq kq

The expectation value (O) is defined by (O) = tr{Oexp(—5Hs)}/tr{exp(—5Hs)},
where the trace is taken over the system alone and not over the bath. For zero
temperature, (O) is the ground-state expectation value. nj, = 1/(e®“* — 1) is the
Bose distribution function. We choose 7, such that couplings between different bath
modes do not occur. To achieve this, we require the following condition

nkqwk+nqkwq+i<[3kaH;]>+7:<[Banl;]> :Oa (38)
which eliminates terms of the form : (b, — b}) (b, — b}) : and also
quwq+77qkwk+i<[AkaH;]>+i<[Aq=H:]> =0, (3.9)

which eliminates terms of the form : (by, + b}) (b, + bi) :. These two conditions for 7,
can be solved

tha = o { e 1B 1) + o (B )

wq k

—iwg ([Ax, H[]) — iwg ([Ag, H{]) } : (3.10)

When the two above conditions are satisfied, only terms which contain couplings of
the system to two bosonic modes remain. Following [Kehrein96b, Stauber02a], we
neglect these normal-ordered higher-order terms, which are

0> ([Ak H)T = ([Ae, HT)) ¢ (b + 5 (bg + 1)) -

> (B, Hf ]+ (b — b})(by + b)) -

kq

P (B Hy ) = ([Be Hy ) = (b = b)) (b — b)) :

> Ak Hy ]+ (b + ) (b — b) - (3.11)

kq

They are of the form of an operator acting on the system Hilbert space multiplied
by a bilinear combination of bosonic operators. A rough estimate of these terms and
their importance can be obtained if one integrates the corresponding coefficients over
the flow parameter [.
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3.2.3 Flow equations for the observables

For a subsequent calculation of correlation functions, the observables have to be
subjected to the same sequence of infinitesimal transformations as the Hamiltonian.

dO
o = n,O]. (3.12)

The flow of the observables cannot be closed and thus a linear ansatz has to be chosen,
which is only valid for temperatures smaller than the typical low-energy scale of the
system coupling to the linear oscillator bath

O=0s+> Of(bp+b})+i> O (b —b}). (3.13)
k k

We neglect higher normal-ordered terms in the expression for O and obtain the flow
equations for the observables

doO . . _
d_ls = i) [Ar, O]k +1) =i > [B, O](2nk + 1)
k k
+ Z[BkaOljh— + Z[Ak, Oy l+ (3.14)
k k
dor .
d—lk = Z[Ak, 05] + 2 Zq:nqu;— (315)
dO, . _
d—lk = —i[By, Os| — QankOq : (3.16)
q

The correlation functions of interested are defined by

tr{e—ﬂHoeitHoOe—itHoO}
B tr{lg ® e~AHo}

For [ — oo we deal with the trivial fixed-point Hamiltonian Hy. Correlation functions
can be calculated easily because Hj is only the bath Hamiltonian without interaction
, i.e., Hy commutes with all the system operators. The correlation function describing
the dissipative behavior of the system can, of course, only be obtained if the decou-
pling procedure works properly and the coefficients to the corresponding operators
decay completely for the chosen parameter regime. In our concrete model we confirm
the decoupling numerically.

(0(1)0) (3.17)

3.3 Flow equations for the dissipative four-state
system

Armed with the terminology of the general flow equations, we can now pursue a spe-
cialization to the dissipative four-state system. First, the flow equations are obtained
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for the most general two-spin system coupling to linear oscillator baths at finite low
temperatures. Many other systems can be analyzed with the same flow equations
given below. Later, we will focus on our special system, Eq. (3.27), which is a special
case of the following Hamiltonian

H= ZAaﬂzaﬂJrZZA 7S s (b, + b))
+ZZZHk aﬁ bk—bT —i—Zwk bbk . (318)

The X,p are tensor products of the Pauli matrices ¥,3 = 0, ® 0 and the Greek
indices are always summed from zero to three. oy is the unit matrix. The resulting
flow equations are listed in Appendix A.4 and constitute the first main result of this
chapter. The flow equations are nonlinear ordinary coupled differential equations
and they have the same structure as those obtained in [Stauber(02a] due to the same
truncation procedure. For the operators A; and B showing up in the generator,
Eq. (3.6), we find for the canonical choice of 7

— Z Sagkef wy, (3.19)
af
and
= BapAplw (3.20)
af

The result for 7, is listed in Appendix A.5.
Let us now turn to the observable flow. The most general linear ansatz which will
be useful in the following analysis is given by

O = Zﬁ hBS 5 + Z Zﬂ 12505 (by, + 1)
a k «
+iY O U s by — b)) (3.21)
k  ap

The observable flow equations Eq. (3.12) are closed according to the same normal
ordering scheme as above and are listed in Appendix A.6. By evaluating (O(t)O) =
tr{e PHocitHoQe~itHo )} /tr{¥gy ® e PHo} one can find the correlation functions

(O(t)0) = h*h® + h"h% + KB + h¥7hY

+ Z [(nk + e “kep + ngeFey| (3.22)
k
where
Ck = g g T g (3.23)

O R K+ v 1y
— i =l — v — vy (3.24)

00,00 0i, 0 40, 40 _ _ij ij
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The Fourier transform of the correlation function is given by

(00),, = (h*h® + h%h% + KK + h7h7)6(w)

+3 [(nk +1)5(w — wi) e + npd(w + wk)ck} , (3.25)
k
where the Fourier transform is defined by
1 [ ~
(00), = 5 / dte™* (O()O) . (3.26)

With these formulas, different correlation functions can be calculated. They can
also be used to obtain correlation functions for distinct operators, i.e., <O(1)(t)0(2)>.
The only difference in the result for ¢, is that now a sum of products of the form
,u,(cl)ozuf)oz occurs and therefore the number of flow equations is increased. Which
correlation function one wants to calculate is determined by the initial conditions of
the observable flow equations. Further, the zero-temperature results can be obtained

by setting ny = 0 in all the equations given above.

3.4 Flow equations for the nonlinear bath

As a model for a nonlinear bath we study the same system as in Chapter 2. The
system consists of a two-level system S coupled to a bath, which consists of another
two-level system B coupling to a linear oscillator bath F'

H = €50+ Agod + JoSaP + AP
+ 0P Abe + b)) + > wi 1 bl - (3.27)
k k

Here the parameters eg and Ag serve to define any desired two-level system S. This
system is coupled to B via o2, with the coupling strength between S and B being

z)

given by J. The )\ are defined in the following way, see Eq. (2.7)
1
Z NO(w — wy) = ;aw@(l —w/we), (3.28)
k

with the bath cutoff w, and the system-bath coupling «. Again, we will analyze
the dissipative dynamics of S by studying the decay of the equilibrium correlator
(o3 (t)o5(0)) by calculating its Fourier transform

+oo

KS(w) = — / dt & (o5 (1)05(0)) . (3.29)
—00
K? (w) is real-valued and the integral over all frequencies yields 1. This sum rule is a
sensitive test of the validity of the numerical results. Furthermore, K2 (w) vanishes
on the negative real axis at zero temperature.



3.4 Flow equations for the nonlinear bath 59

Let us now write down the flow equations for the specific case eg = 0. Only 5N +7
nontrivial® equations are left (N is the number of bath modes)

d AOO
dl

dAOl
dl

dAlO
dl

dAZ?
di

d A33
dl
AP
dl
d\3!
dl

dk?
dl
dri!
dl
dy!
dl
d h13
dl
d h30
dl

—2 37 (AP AN + kR k22
4 Z KOZADB Wy
4 Z Ky AP w
k
—4 Z Ky AR w
k
—4 z KA Wy

—wiAP — 2k A%y + 262 APy + 2 Z 77kq)‘03
q

—wiAt — 2k ALy + 2602 AP Wy, + 2 Z nkq)\?’l
q

—w2KY — 2B Ay, + 23 AB Y, — 2 Z nqkmoz
q

PR — AT AL L, + BAZG, — 23 !
q

2l€k2h13wk + 2&21h30wk + 2 Z nkq,u(lll

q

02,11
—2 E K My Wk
k

—2) K (3.30)
k

The first equation for the coefficient A% constitutes an energy renormalization. It is
not necessary to take this equation into account for the numerical integration of the
correlation functions. Note further that the Hamilton flow equations are independent
of the observable flow equations. But the converse is not true: the observable flow
equations depend on the Hamilton ﬂow equations. Further, if for a certain bath mode
k the coupling parameters k3%, k2!, A% and A}' vanish, then all the flow equations

3We call a flow equation trivial whenever the derivative with repsect to [ is equal to zero.
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become trivial. Thus, if a mode is decoupled while integrating the flow equations, a
smaller system can be used to integrate further. This fact can be used to achieve fast
numerics as we will see below. Comparing this general Hamiltonian with Eq. (3.27)
specifies the non-vanishing initial conditions

AY(0) = Ag
AsO(O) — €g
AB(0)=J
AY(0)=A (3.31)
)‘23(0) = )‘k )
and for the observable-flow equations
RP(0) =1. (3.32)
The 7y, coefficients are given by (k # ¢)
1
Meg = T {2wk |:(/\23K)21 <222) + /\21/§22 <233> — /\23522 <201> — /\zlﬁgl <210> )wk
q k
+ (APRE (Sa2) + XK (S33) — Ak (Sor) — Ak (o) )wq} (3.33)

- 2wq [( — H22)\21 <233> — Kil)\g?’ <222> + l€22)\23 <201> + Hzl)\gl <210> )wk
+ ( - HSZ)\zl <233> - ,{31)\23 <222> + 14)22)\23 <E()1> + lﬁgl)\zl <210> )wq} } s

where the only non-vanishing expectation values are
<200> == 1

<201> —_ A(A?S'—i_|A||AS|)
AllAs|/T? + A + A% +2]A|As]

As(A? + |A[|Asl)

Y = — 3.34

(Fho) Al|As|/ T2+ AZ + A + 2[A[[Ag] (334
AAg

b = — = 3.35
) = AT (3.55)
() = 3JAA5+J|A||AS|—AAS\/J2+A2+A§+2|A||AS|+1

& A|A[|As|\/T2 + A2+ AZ + 2[A[[Ag] 4

J

(Xs3)

a V2 + A2+ AZ 1 2]AlJAg]

For our special choice of parameters, h'® and h3° vanish for [ — oo. At T = 0 the
correlation function can then be evaluated according to Eq. (3.25) by setting O = o
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and thus analyzing the decay of the equilibrium correlator

KE.(w) = 3 (b (= 00))0(w — wy). (3.36)

The flow equations for the biased case e€s # 0 are listed in Appendix A.8. The
equilibrium correlator then further contains a delta-distribution contribution 6 (w).

For a peaked, structured, bath, the equilibrium correlator can also be obtained
using different approximate methods to verify the findings, e.g., a Markoff approxi-
mation or weak-coupling approximation can be applied to calculate the influence of
the linear bath F' on the system S + B together, see Appendices A.9 and A.10. The
master equation is expected to come close to the true result as long as the condi-
tions of the Markoff and secular approximation are fulfilled. This means the coupling
strength J has to be so small that the resulting decay of S proceeds slowly compared
with the transition frequency itself (secular approximation) and with the correla-
tion time of the bath (Markoff approximation). The weak-coupling approximation,
keeping memory effects, should lead to even better results. The results of these two
approximations are shown in Fig. 3.1 in comparison with the flow equation result.
The agreement is reasonable within the scope of the applicability of the distinct ap-
proximations schemes. In Figs. 3.12 and 3.13 the Markoff approximation is plotted
with a dotted line. For o = 0.025, deviations become clearly significant.

3.5 The linear-bath approximation

In this section we study an approximation to the nonlinear bath. We do this by
replacing the composite bath B and F' by a linear oscillator bath acting on the
system S. What we obtain is a spin-boson system with a non-ohmic peaked bath
spectral density, as we will see below

H = Asaf + 650’5 + 0'5 Z)\k(bk + bL) + Zwk : bLbk <y (337)
k k

where the bath-spectral density is chosen according to Eq. (2.63), given by the bath
correlation function J(w) =7 (BB), =7 Y, A\id(w — w).

We start our discussion by calculating the bath-correlation function, or its Fourier
transform as in [Stauber02a]. The Fourier transform of the correlator of B = JoB
defines the “bath spectrum” (BB) . In the case of zero temperature (BB)  vanishes
for negative frequencies. The Hamiltonian of the bath alone is given by

Hpp = Aof + 02 Ae(be + b)) + > wp: bfbe - (3.38)
k k

This is the initial Hamiltonian for the flow equations. For the purpose of calculating
the bath-correlation function, one has to solve the symmetric spin-boson problem.
This cannot be done in a closed analytical way [Weiss00, Grifoni99]. One alternate
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Figure 3.1: The Fourier-transform K2, (w) of the equilibrium correlator of % (t), for different
values of the system-bath coupling J = 0.25,0.5,0.75 and 1 from topmost to lowest graphs.
One graph is split into two parts showing the regions around the peaks. The values of
the other parameters are: A =1, Ag = 1.2,a/(27) = 0.01, eg = 0, wg = 5, N = 5000,
I = 500, except the lowest graphs, where N = 10000, [ = 1000 . All graphs show results
of the nonlinear bath, where the approximations are applied to obtain the influence for
weak-coupling strength « of the linear bath F' on the system S + B. Flow equations: solid
line, weak-coupling approximation: dashed line. Dotted line: Markoff approximation
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method involves flow equations, which we apply again. The truncation scheme in-
cludes (as before) all coupling terms which are linear in the bosonic modes. The flow
equation method is not restricted to any particular bath type, i.e., the bath-spectral
density of the linear bath can be chosen freely.

For the Hamiltonian flow there are two nontrivial initial conditions A% (0) = A,
AB(0) = A, see Fig. 3.2 and the following set of differential equations

dAOl
o= A e
k
dxp? 03 o1, 03
o = — WA — 2AM K20, + 2 Z MkqMg
d’§22 2 .02 oA01103 02
= kb 2A N wg — 2 ankﬁiq . (3.39)

The 7y, are given by

2(wi + wg))\23/$22 + 4wkwq/\23/£22

nkq = CUQ . UJI% . (3.40)
q

The energy is renormalized by a constant

157 = 30 (0 + ot 5.1

The nontrivial observable flow is given by

dh03
= R e
k
dﬂgl 027,03 01
o= 2wy + 2 > ki (3.42)

q

starting from the initial condition A%(0) = 1 and p'(0) = 0. Note that the spin-
boson system is a limiting case of the general dissipative four-state system. This fact
can be used as a check of the two-spin flow equations.

For the symmetric spin-boson system h% vanishes for | — oco. At T = 0 the
correlation function is given by

(BB), = Z(,ugl (I = 00))%6(w — wy) - (3.43)

k

The results for the bath correlation function (BB)  are shown in Fig. 3.3 and
Fig. 3.4. (BB)_ consists of one peak at the frequency ~ 2A, for small coupling «.
For larger coupling it is shifted towards lower frequencies. Due to the fact the bath
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Figure 3.2: Schematic of the flow for [ = 0 and [ — oo. Different quantities are plotted in
the indicated intervals of the horizontal axis, as a function of frequency (where appropriate).
The topmost graph (a) shows the initial conditions for the flow equations starting with an
ohmic bath-spectral density, evolving to the final state shown in graph (b), where the bath
correlation function (BB),, can be found. Note, that x)* has finite values during the flow.
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Figure 3.3: The (BB), correlation function for different values of o. The parameters are:
J =1, A=1and we = 10. The height of the a = 0.001 peak is ~ 20.7.
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Figure 3.4: The (BB),, correlation function for different values of . The parameters are:
J =1, A=1and we = 5. The height of the a = 0.005 peak is ~ 5.2.
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F ' is an ohmic one, the position of the maximum of (BB)  is given approximately by
2A(2A /w,.)?/("=22) " which is a result obtained within an adiabatic renormalization
scheme [Weiss00]. In our results, the relation is best fulfilled for a/(27) < 0.025. An
exact relation, valid at zero temperature, is the Shiba relation given by

lim BB _ 4o (/Omdw%)Q. (3.44)

w0t W wJ? w

Here, the Shiba relation is shown for an Ohmic bath spectral density. This low-
frequency behavior can only be found by solving the asymptotic flow equations
[Stauber02a], which is not done in this work (note the deviation from linearity for
small w < 1 in Fig. 3.3 and Fig. 3.4. Thus, the bath-spectral density shows a res-
onance at a characteristic frequency and behaves ohmic at small frequencies. This
is why we expect the results to be comparable to the ones obtained in [Kleff03b,
Thorwart03], where a bath spectral density of the form given in Eq. (4.31) was used.
But we stress that here, in contrast, the linear bath is modified with a second two-
state system, compared to an additional oscillator. In the weak-coupling limit, where
a < 1, we find

16J2A2

(BB), = O(w)O(1 —w/we) (3.45)

aw
[4A?% — w? = 2ow?log((we/w)? — 1)]? + [20w?]?

The difference between the above and Eq. (4.31) is apparent in the weak-coupling
limit. In Fig. 3.5 we show numerical results for the weak-coupling and Markoff ap-
proximation, derived in Appendices A.10 and A.9, for increasing a. For lower coupling
strengths (o < 0.01) we find good agreement between the different approaches. How-
ever, for higher coupling, e.g. a = 0.1, the flow equations fulfill the Shiba relation
to a reasonable extent, where the other two approaches fail, see Fig. 3.5. For larger
coupling the sum rule fj;o (BB), = J? is best fulfilled for the flow equations.

To obtain the final result for the linear bath approximation we use the (BB),
correlation function as a bath spectrum J(w) = 7 (BB) , and solve the flow equations
for the spin-boson system with this non-ohmic spectrum. The results are discussed
in Section 3.7.

To close this section, we make a short note regarding higher-order correlation
functions with respect to the flow equations used here. Higher-order correlation
functions are important to understand the behavior of a nonlinear bath. In Chapter 2
we saw that for small-enough system-bath coupling strength, the nonlinear bath
is identical to a linear one. In this limit, the two-time bath correlation function
played a crucial role. For higher coupling strength, higher-order correlation functions
become relevant. The linear bath has the special feature that higher-order correlation
functions factorize into two-time correlation functions, since due to the Gaussian
nature of the linear bath, the cumulant expansion breaks off at second order. The
nonlinear case has generally no such feature, but we will see that the correlation
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Figure 3.5: The (BB),, correlation function for different values of . The parameters are:
J=1,A=1and wec = 5. Solid line: Flow equations, dotted line: Markoff approximation,
dashed double dotted line: weak-coupling approximation. In the lowest graph we show, as
a check of the Shiba relation, the linear line which has a slope given by the numerical value
of the left-hand side of Eq. (3.44). It can be compared with the slope of the corresponding
correlation functions at low frequencies.

functions obtained with the flow equations factorize. The reason for this is the choice
of a linear ansatz for the observable flow:

o.(1) = W% (1) o, 4+ pu(1)ow (b + b) - (3.46)
In the limit [ — oo we find for the symmetric spin-boson system
0. (1 = 00) = p (I = 00)a, (b + b1), (3.47)

and H(l - o00)=Hy =), wkabk. So for I — oo the observables behave like linear
oscillator variables and all higher-order correlation functions factorize.

3.6 Details of the numerical calculation

The flow equations are coupled ordinary differential equations. The integration
method which turns out to be the most appropriate one is the fourth-order Runge
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Kutta method with variable step size [Numerical Recipes]. The reason for this is that
there are regions where a certain subset of the differential equations does not change
much anymore and larger integration steps can be used, see discussion below.

For the bath modes w; we have used a linear energy spacing dw and a sharp
cutoff function f(z) = ©(1 — z). The results do not depend on these choices. The
bath modes wy are then given by wy = (k — 1/2)dw and the coupling constants A
are found to be Ay = (1/2a/(27)\/k — 1/2)6w, where éw = w,/N and N is the
number of bath modes used for the numerics. For the two-spin system the number of
differential equations is 64NV + 32 in the most general case, 5N + 7 for the nonlinear
bath with es = 0, 10N + 14 for the nonlinear bath with es # 0 and 3N + 2 for the
symmetric spin boson system. We have used up to N = 10000 bath oscillators. For
the particular choice €5 = 0, the correlation function at discrete frequencies is given
by K5 (wi) = (pi')?/dw. All the h®? coefficients vanish for increasing flow | — oo,
as expected.

We choose the diagonal fixed-point Hamiltonian to be the noninteracting linear
oscillator bath, which is scale-independent. Since there is no asymptotic scale present,
the flow equations will first decouple the high-energy modes and then the low-energy
modes. The same feature is found for the correlation functions, see Fig. 3.6. They
are first determined for high energies and the low-energy behavior is calculated last.
The frequency regions of interest are centered on the peaks which appear at the
shifted transition frequencies of the two-spin system. The spectral function around
these resonances is determined by a stable flow away from the asymptotic regime,
which must be treated in a different way [Kehrein96b, Stauber02a, Stauber02b]. In
practice, the flow equation can only be integrated up to I* ~ (dw)™2. We find that
the integration can be stopped for much lower values; the system is decoupled with
a high accuracy for [ > 20, see again Fig. 3.6.

Let us discuss the consequences for the numerics. The coupling constants of the
Hamiltonian, )\zﬂ , and Iigﬂ decay while the flow parameter [ is varied from zero to
infinity. If we take a closer look at the flow equations, we observe that the differential
equations for a certain mode k£ become trivial as soon as the )\:/3 and Iizﬁ are approx-
imately zero. First the higher modes are decoupled. In the end, there is only a low
frequency region left where changes take place, see Fig. 3.6. This is why, in practice,
all the differential equations outside of this region can be replaced by trivial ones in
the program. This accelerates the calculation significantly.

The correlation function is given as a bilinear form in the ,ugﬂ and V,?’B . The
coefficients ,ugﬂ and 1/,':’3 turn out to be zero at certain points. For the special case
of the nonlinear bath with es = 0, only p;! remains, which vanishes (intersects the
frequency axis) at different points w < 2. This feature is contained in the flow
equations and was also observed in [Kehrein96b] for the dissipative two-state system.
The correlation function, bilinear in y}!, therefore has unphysical zero points, which
constitute a finite-size effect, only disappearing in the thermodynamic limit.

There are different possibilities to address this problem. In [Kehrein96b] it was
observed that for a certain value of the flow parameter, the decoupled two-state
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system behaved like a dissipative harmonic oscillator. Further, it was shown that for
the dissipative harmonic oscillator there exists a conserved quantity which could be
added at a certain value of [ in order to complete the correlation function. Another
possible way to deal with this problem is to integrate to a large value of [, such
that the higher frequencies of the right peak are decoupled, as in Fig. 3.6. Then, to
continue the integration in a restricted frequency range with a denser resolution of
the bath modes. Finally, only a tiny gap is left which can then be closed by hand.

Furthermore, all the “Gibbs phenomena” like spikes around this singularity, are
due to a finite number of bath modes NV, i.e., we assume that the phenomena will
disappear for increasing N. These spikes, generated via an amplifying effect, are not
completely understood. Probably, they occur always if the change in the correlation
function happens too abruptly. This suggestion is motivated by the observation
that the same feature appears, if the cutoff is chosen too close to the characteristic
frequency of the system. There, we find that, due to the intrinsic properties of the
differential-equation system, a spike appears at the cutoff frequency. The system
always needs a certain frequency range to spread out smoothly.

The sum rules are fulfilled with an accuracy of ~ 0.5% when not otherwise men-
tioned.

Two different values were used for the bath cutoff: w, = 5 and w, = 10. The
results depend on the choice of the bath cutoff w.. However, the qualitative behavior
is independent of the cutoff and remains the same for different large-enough w,.

Flow equations give the best results for small coupling . This does not mean
that the approach is perturbative in the usual sense, but the neglected terms in the
truncation procedure are smaller in the low-coupling limit.

3.7 Comparison of nonlinear with linear bath

The relevant parameters in our model are €5, Ag, A, the coupling strength J, and
the coupling strength « to the linear bath F'. As in Chapter 2, we choose the time
scale such that A = 1. Furthermore, the results discussed in the following have
been calculated for Ag = 1.2, close to 1, to keep the decay strong without being in
resonance. The temperature is set to zero (T = 0). The two parameters «, J are
varied.

To begin our discussion, we note some generic features of the results obtained
for the two approaches: linear and nonlinear bath. Since K2, (w) is essentially the
Fourier transform of relaxational dynamics, it consists of several “Lorentzian like”
peaks. Their number is constrained to be less than the maximum number of 6 tran-
sition frequencies for S + B in the case of the nonlinear-bath system. In practice,
degeneracies between transition frequencies and selection rules reduce that number,
e.g., to 2 for the unbiased case, see Fig. 3.7. More peaks, than one transition fre-
quency expected for a two level system, are observed in the case of the linear-bath
approximation. It turns out that the second peak is induced by the peaked bath
spectral density. To summarize, we have found for the unbiased case two peaks for
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Figure 3.6: Fourier transform of the equilbrium correlator for increasing flow parameter [
(solid line), compared with the final result of a Markoff approximation (dotted line). We
see that the higher modes are decoupled first, i.e., the peak on the right hand is visible
already up for [ = 7. At [ = 20 the sum rule is fulfilled with a high accuracy ~ 0.5%. This
result is better than the Markoff approximation used to calculate the influence of the linear
bath F on the system S + B, which should also lead to good results for a/(27) = 0.01. The
sum rule is naturally not valid at the beginning of the flow. The parameters are: A = 1,
Ag=12,J =1, a/(2m) = 0.01, N = 8000, and wc = 5.
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Figure 3.7: Spectrum of the two-spin system S + B. In the unbiased case es = 0 and for
weak coupling « there are two distinct transition possible from the ground state at zero
temperature, leading to two dephasing peaks in the equilibrium correlator.

the linear and the nonlinear bath. With the two peaks, one can associate two different
decoherence times. Both approaches show a similar behavior for increasing coupling
J, where we observe a larger separation between the two peaks. For the unbiased
case €g # 0, we expect at least three peaks for weak coupling «, see Fig. 3.8. Addi-
tional possible zero-frequency delta-distribution contributions show up for the biased
case, due to the definition of the correlation functions. Moreover, in contrast to the
high-temperature results, no “pure” relaxation is seen in the biased case.

Let us now focus on the unbiased case, i.e., e = 0. In the limit of weak cou-
pling, J — 0, all that remains is a broadened peak at the transition frequency
2Ag of system S alone. In that limit, the results for the two approaches coin-
cide, as expected. See topmost plots of Figs. 3.10-3.13, where the Fourier trans-
form of the equilibrium correlator is shown for increasing system-bath coupling J,
while «/(27) = 0.1,0.05,0.025, 0.01 is kept constant. According to the discussion in
Chapter 2, we expect that for small J the nonlinear and the linear bath results fall
together, i.e., in this limit a weak-coupling approximation [Gardiner00] or a Markoff
approximation [Blum96] are valid and one can therefore not distinguish between lin-
ear and nonlinear bath. Furthermore, the bath spectral density was chosen such that
the two approaches agree for small enough coupling.

With increasing .J, the peaks are broadened and shifted, and additional peaks
may appear (see Figs. 3.10 and 3.11). Indeed, the most notable difference from a
master equation used for coupling of S and the nonlinear bath is the appearance of a
second peak around the transition frequency 2A of the two-level fluctuator B. In this
way, the power spectrum of the bath fluctuations appears in the short-time behavior
of the correlator of the system S. This behavior cannot be captured by a master
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Figure 3.8: Spectrum of the two-spin system S + B. In the biased case eg # 0 and for
weak coupling « there are three distinct transition possible from the ground state at zero
temperature, leading to three dephasing peaks in the equilibrium correlator.

equation, where only one peak is present, see Appendix A.9. Here, for the chosen
parameters the linear and nonlinear baths agree very nicely for J = 0.25, rather
to our surprise, also very well up to J = 0.5. For J > 0.5 the deviations become
significant. Increasing .J leads to a frequency shift and a change in the width of the
“original” peak at 2Ag. These changes are due to the change in eigenfrequencies and
eigenvectors of the combined system S + B. If we keep J = 1 constant and compare
the results for different increasing «, see Fig. 3.9, the differences between linear and
nonlinear bath depend on the ratio J/a. A small «/(27) = 0.005 or a;/(27) = 0.01
corresponds to a structured bath (Figs. 3.3, 3.4) and the results show that the peak
shape is similar for nonlinear and linear baths, but the peak position is different. We
stress that for higher coupling, a/(27) = 0.05, or a/(27) = 0.1, the nonlinear bath
acquires new structures (other peaks) and the shape of the peak deviates significantly
from the linear bath. Thus, the qualitative differences between linear and nonlinear
baths are smaller for a structured bath.

Since the linear bath takes the full bath spectrum (BB)  as input, this spectrum
may also show up in the result for the system correlator K% (w), as is indeed the
case. The Figures 3.10-3.13 demonstrate that this effect is independent of the a’s
considered here, in contrast to the infinite temperature limit, where this effect was
most pronounced for small v, where the bath spectrum has a relatively sharp struc-
ture. To emphasize this point, we note that even the asymmetric shape of the bath
spectral density (BB)  is mapped to the equilibrium correlator, see, e.g., Figs. 3.10
and 3.11 compared with Fig. 3.4. This is an effect of the non-ohmic structure of the
bath, which could not be observed for an ohmic linear bath. It can further only be
observed when S and B are in resonance, i.e. for low frequencies the bath spectral
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Figure 3.9: The Fourier transform K7, (w) of the equilibrium correlator of 3 (t), for different
structured nonlinear baths with «/(27) = 0.005,0.01,0.05 and 0.1 from topmost to lowest
graph. The values of the other parameters are: A =1, Ag =1.2,J =1, eg =0, wg = 5,
N = 5000, I = 500. Nonlinear bath: solid line, linear bath: dashed line. Dotted line:
Markoff approximation. In Sec. 3.6 we discuss the singularities appearing in the correlators,
e.g., in the lowest graph at frequency w = 0.8.
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density behaves ohmically. The second peak, which appears for higher coupling J, is
therefore determined by the bath correlation function (BB)  with one peak in the
vicinity of the system transition frequency and another given by the energy scale
2Ag = 2.4. For increasing system-bath coupling J, both peaks are shifted away from
each other. Within the linear-bath approximation, the peak around 2Ag is shifted
to higher frequencies to a lesser extent and the second peak around 2A is shifted to
lower frequencies, more pronounced compared to the nonlinear bath.

The qualitative agreement between the linear and nonlinear bath is especially
good up to intermediate coupling strengths, as discussed previously. Nevertheless,
there are deviations: In particular, the shifts are different. In contrast to infinite
temperature there is a visible shift of the peaks for the linear bath, while changing
the parameters J and a. Further, the peaks become wider and more asymmetric,
but not as pronounced as the peak around 2Ag for infinite temperature. For higher
values of o, the linear bath, in general, shows less structure than the actual nonlinear
bath, but still the asymmetric shape of the peaks is mimicked to some extent.

Finally, to close this section let us turn to the biased case es # 0. Fig. 3.14
shows the equilibrium correlator of 67 (¢) for two different values of the bias: eg =
0.5 and e = 1. For comparison, the Markoff approxmation is also shown, which
should lead to reasonable results for «/(27) = 0.01, but the agreement between
the two approaches is worse than for the unbiased case. We note that the flow
equations do not describe the third peak. What is the reason for this? Flow equations
constitute unitary change of basis. Therefore, we expect the same results for each
unitarily equivalent Hamiltonian. As soon as approximations are made, things do
change, since, depending on the representation of the Hamiltonian, different terms
have different significance. Our approximation scheme leads to better results for the
unbiased case. This was also seen in [Stauber02a] for the spin-boson problem, where
shifts of the bosonic modes were introduced and tuned to an optimal point in order
to deal with this problem. We leave such an analysis in the case of the dissipative
four-state system for future work.

3.8 Conclusions

The first main result of this chapter is the derivation of the flow equations for the two-
spin system coupled to linear baths. With this framework, not only the correlation
functions of our nonlinear bath model can be studied, but correlation functions for
any four-state system coupled linearly to oscillator baths. An additional key aspect
is that there is no restriction for these baths to have an ohmic spectrum.

As an application of these general flow equations, a model of a nonlinear bath
was discussed, consisting of a single two-level system subject to a linear oscillator
bath. Its action on another two-level system at zero temperature has been analyzed
and compared with the results due to a linear oscillator bath substituted for the
nonlinear one. Many numerical results for various special cases have been obtained
and discussed.
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Figure 3.10: The Fourier transform K2, (w) of the equilibrium correlator of &5 (t), for dif-
ferent values of the system-bath coupling J = 0.25,0.5,0.75 and 1 from topmost to lowest
graph. The values of the other parameters are: A =1, Ag = 1.2,a/(27) = 0.1, g = 0,
we =5, N = 5000, I = 500. Nonlinear bath: solid line, linear bath: dashed line.
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Figure 3.11: The Fourier transform K3,(w) of the equilibrium correlator of &5 (¢), for dif-
ferent values of the system-bath coupling J = 0.25,0.5,0.75 and 1 from topmost to lowest
graph. The values of the other parameters are: A =1, Ag = 1.2,a/(27) = 0.05, es = 0,
we =5, N = 5000, [ = 500. Nonlinear bath: solid line, linear bath: dashed line.
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Figure 3.12: The Fourier transform K3,(w) of the equilibrium correlator of 5 (¢), for dif-
ferent values of the system-bath coupling J = 0.25,0.5,0.75 and 1 from topmost to lowest
graph. The values of the other parameters are: A =1, Ag = 1.2,a/(27) = 0.025, eg = 0,
we = 5, N = 5000, I = 500. Nonlinear bath: solid line, linear bath: dashed line, and
Markoff approximation used to calculate the influence of the linear bath F on the system
S + B: dotted line.
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Figure 3.13: The Fourier transform K2, (w) of the equilibrium correlator of &% (t), for dif-
ferent values of the system-bath coupling J = 0.25,0.5,0.75 and 1 from topmost to lowest
graph. The values of the other parameters are: A =1, Ag = 1.2,a/(27) = 0.01, es = 0,
we = 5, N = 5000, I = 500. Nonlinear bath: solid line, linear bath: dashed line, and
Markoff approximation used to calculate the influence of the linear bath F' on the system
S + B: dotted line.
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Figure 3.14: The Fourier transform K2, (w) of the equilibrium correlator of 63 (t), for two
different values of the bias e = 0.5 topmost €5 = 1 lowest graph. The values of the other
parameters are: A =1, Ag = 1.2,/(27) = 0.01, J=1, we = 10, I = 100. For eg = 0.5,
N = 2000 bath modes were used, the height of the delta peak at zero frequency is 0.229
and the sum rule leads to a value 1.048. For eg = 1, N = 1000 bath modes were used, the
height of the delta peak at zero frequency is 0.544 and the sum rule leads to a value 1.149.
Nonlinear bath: solid line and Markoff approximation used to calculate the influence of the
linear bath F on the system S + B: dotted line.



3.8 Conclusions 81

For small system-bath coupling the equilibrium correlator contains only one peak
which can also be obtained using a Markoff approximation. In contrast the linear bath
can also describe the second peak appearing for larger coupling strengths. At least
two frequencies are therefore present in the time evolution of the two-state system,
and furthermore, the decoherence is strongly increased if the system and bath are in
resonance. As expected, the linear-bath approximation fails for the regime of large
system-bath coupling. In that regime the linear bath may undoubtedly represent a
good approximation to our actual nonlinear bath up to couplings on the order of half
of the system energy scale. In the strong coupling regime, on the order of the system
energy scale, the agreement of the peak shapes is qualitatively better, when the bath
spectrum has a strongly peaked structure. Here, deviations of the linear from the
original nonlinear bath became clearly visible. All things considered, we have only
discussed the simplest example of a nonlinear bath. We believe that the linear bath
approximation might lead to reasonable results in the intermediate-coupling regime,
also for other, possibly more sophisticated systems.

As part of the problem, we have to mention the computational effort involved
in evaluating the flow equations. For the linear bath aproximation one must solve
the flow equations twice. Still, one needs less calculation power than for the flow
equations for the dissipative four-state system. This can be attributed to the smaller
number of necessary differential equations.
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Chapter 4

Quantum Dissipative Dynamics of
the Magnetic Resonance Force
Microscope in the Single-Spin
Detection Limit

We study a model of a magnetic resonance force microscope (MRFM) based on
the cyclic adiabatic inversion technique as a high-resolution tool to detect single
electron spins. We take an open quantum system approach to investigate the quantum
dynamics of spin and cantilever in the presence of coupling to an environment. To
obtain the reduced dynamics of the combined system of spin and cantilever, we use
the Feynman-Vernon influence functional and find results valid at any temperature
and at arbitrary system-bath coupling strength. We propose that the MRFM can be
used as a quantum measurement device, i.e., the MRFM can be used to detect not
only the modulus of the spin, but also its direction.

4.1 Introduction

Magnetic resonance imaging technologies (MRI, NMR, ESR) are widely used to char-
acterize physical, chemical, and biological samples. What makes them so powerful is
that they are non-destructive and capable of probing the three-dimensional structure
of the sample [Slichter90]. Recently, looking at structures at the molecular or atomic
level has become important in a number of scientific disciplines. Magnetic resonance
force microscopes (MRFMs) have been developed to bring magnetic resonance imag-
ing technologies to such an ultimate resolution. The MRFM combines conventional
magnetic resonance technology with probe microscope technology, e.g., atomic force
microscopy, to image individual molecules or atoms [Sidles95]. In an MRFM, a mag-
netic particle mounted on a cantilever interacts with nuclear or electron spins in the
sample via the very weak magnetic dipole force. When modulated at resonance with
the cantilever oscillation frequency, even a weak magnetic force induces sufficiently

83



84 4 Quantum Dissipative Dynamics of the MRFM

large vibrations of the cantilever. By probing the resulting vibrational motion of the
cantilever, it is possible, in principle, to detect spins with molecular or atomic reso-
lution. The cyclic adiabatic inversion (CAI) technique has been proposed [Sidles95]
as a promising method to modulate the magnetic force.

The future of the MRFM depends crucially on the development of proper me-
chanical micro-resonators, e.g., cantilevers [Bocko96]. Remarkable progress has been
made in this direction and the detection of attonewton- or subattonewton-scale forces
has already been achieved already [Stowe97, Mamin0O1]. Recently, a nanomechanical
flexural resonator at microwave frequencies has also been realized [Huang03]. The
development of the proper technology to detect nanometer-scale mechanical motion
is also important. Optical interferometry or electrical parametric transducers are the
most common examples [Stowe97, Mamin0O1]. In recent work, a single-electron tran-
sistor capacitively coupled to a nanomechanical resonator has been used to detect
the vibrational motion of the resonator even in the quantum regime [Knobel(03].

Progress in MRFM and related technologies has also attracted theoretical interest,
especially regarding the question of single-spin detection using the MRFM. Mozyrsky
et al. [Mozyrsky03] have studied the relaxation of a spin, treating the cantilever as a
classical noise source. Berman and co-workers [Berman03a, Berman03b] have stud-
ied a CAl-based MRFM and treated both the spin and the cantilever as quantum
systems that are subject to environmental effects. They addressed two interesting
and important issues: First, which component is measured in an MRFM single-spin
measurement and second, whether the two spin states (up and down) lead to dis-
tinctively different cantilever motions. They solved the time-dependent Schrodinger
equation numerically for the spin-plus-cantilever system in the absence of coupling
to the environment. In the presence of an environment, they constructed a general-
ized master equation in the high-temperature limit, and solved it numerically. We
note that their master equation is based on the Markov approximation, and is not
in Lindblad form [Lindblad76, Diosi93] (the normalization and the positivity of the
density matrix are not guaranteed).

In this chapter, we study the measurement of single spins with the MRFM based
on the CAI technique. The starting point of our work is closely related to the work by
[Berman03a, Berman03b]. In the absence of the coupling to the environment, we solve
the time-dependent Schrodinger equation exactly and confirm the numerical results
by Berman et al. [Berman03a, Berman03b] Taking the influence of the environment
into account, we use an open quantum system approach [Breuer02, Weiss00]. To cal-
culate the dynamics of the spin during the measurement process, we take an effective-
bath approach, and obtain the exact solution for the reduced density matrix of the
spin which is valid at all temperatures (within the CAl-scheme). To find the cantilever
dynamics, we solve the Feynman-Vernon influence functional[Feynman63, Grabert88]
in order to obtain the reduced density matrix of the spin-plus-cantilever system. The
results are valid at any temperature as well as for an arbitrary coupling strength.
This analytical approach allows us to interpret the results in a transparent way and
to investigate the issue of whether the MRFM can be used as a quantum measurement
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device to probe the spin state.

This chapter is organized as follows: In Section 4.2 we introduce the model and
discuss our adiabatic Born-Oppenheimer approximation scheme in connection with
the CAl-technique. In Section 4.4 we present the exact solution of the time-dependent
Schrodinger equation for the spin-plus-cantilever system without coupling to the en-
vironment, the results of which will be compared with those in the dissipative case in
later sections. In Section 4.5, we assay the quantum dissipative dynamics of the spin
alone using an effective-bath approach. The dynamics of the cantilever are discussed
in Section 4.6. The physical implications of the solution are analyzed systematically.
In Section 4.7 and 4.8 the system is discussed for high and intermediate temperatures
using a master equation approach. These results are contained as a special case of the
results in Section 4.6, but if one is interested only in this special limit, where a master
equation calculation is valid, then the analysis becomes much easier. The possibility
to use the MRFM as a quantum measurement device is discussed in Section 4.10.
Finally, in Section 4.11 we draw our conclusions.

4.2 Model of the MRFM

The system which we consider is a MRFM setup based on the cyclic adiabatic in-
version technique. In this technique the external time-dependent magnetic fields
are chosen in such a way (see below) that the frequency of the spin inversion is on
resonance with the mechanical motion of the cantilever. This resonance condition
amplifies the ultra-weak magnetic force between spin and cantilever so much that the
information of the spin state can be transferred to the cantilever motion. As shown
in Fig. 4.1, the setup consists of a ferromagnetic particle mounted on the tip of a
cantilever, a strong static magnetic field B) applied in the z-direction, and an rf field
B, (t) rotating with frequency wys in the z-y plane modulated by ¢(t). The total
magnetic field is given by

B cosfwiit — ¢(t)]
B(t) = BJ_(t) + B|| = | —B| sin[wrft — ¢(t)] . (4.1)
By

The “sample” consists of a spin interacting with these different magnetic fields. The
first one is the non-uniform magnetic field of the ferromagnetic particle, which inter-
acts with the magnetic moment of the spin via the magnetic dipole-dipole interaction.
It is assumed that the magnetic moment of the ferromagnetic particle m points in the
z direction. The second magnetic field is the uniform and static field in the positive
z direction, which determines the ground state of the spin. Finally, the third field
is a rotating radio frequency (rf) field which induces transition between the ground
and the excited state of the spin. Let us first define the Hamiltonian of the spin and
the cantilever alone without dissipation. This is given by

0B, S5y P> N mow? 22

— —qurB(t) -8 —
H(t) = —gupB(t) - S — gup 5 o 5

(4.2)




86 4 Quantum Dissipative Dynamics of the MRFM

cantilever

magnetic
particle

n
;spin
\

Figure 4.1: MRFM measurement device. A cantilever carrying a magnetic particle is subject
to a static magnetic field B in the z direction, and a time-dependent field B | (¢) rotating
with frequency w,s in the z-y plane. The cantilever is coupled to a sample spin by a magnetic
force 7.
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where S and S, are the usual spin operators. 0B,/0z has a constant value inde-
pendent of z, i.e., the gradient is evaluated at a certain point zy. my and wy are the
effective mass and the natural frequency of the cantilever. g is the g-factor of the spin
and pp is the Bohr magneton. Further, Z is the position operator and p, is the mo-
mentum operator of the cantilever. The Hamiltonian describes a spin in a magnetic
field B(¢) interacting via a linear coupling to an ideal harmonic oscillator, which is
assumed to oscillate only in the z direction. From now on, we use a unit system such
that i = kp = wg = €y = 1, where £y = y/h/muwy is the harmonic-oscillator length.
We define €, = gupBj to be the Larmor frequency and €, = gupB, to be the Rabi
frequency. The Hamiltonian can be recast in the following form

€, . €L ro i o 332 32
H({t)=——26,— = |64 L He] —no,2+ % + = (4.3)
2 2 2 2
The 6 operators are Pauli matrices and 6. = (6, + i6,)/2. The strength of the
dipole-dipole force between the ferromagnetic particle and the spin is described by
the parameter n = (gug/2)0B,/0z.
To continue the calculations, it is convenient to move to a frame rotating with
the rf field by performing a transformation [Messiah61]

H — A AHd — it o (4.4)

with & = exp {i[e,t — ¢(¢)]6.}. The resulting Hamiltonian reads [Berman03a,
Berman03b)]

1 o1, 132
H) = —5[e —wa+ )]0, - Jas —moz+ B+ S (45)

As in usual NMR setups, the rotation frequency w,s fulfils the following condition:
wrf = €, . This means that the average frequency of the applied modulated rf field wy¢
equals the Larmor frequency ¢, of the spin. Using this condition, we obtain

1. .. 1 . . pr 32
H(t) = —50(1)0; — ge16s —nG2+ 5 + (4.6)

So far no approximation has been made.

The idea of the CAl-based MRFM is as follows: The frequency modulation ¢(t)
of the rf field is assumed to be harmonic and causes adiabatic inversions of the spin,
which in turn exert an oscillating force on the cantilever. At resonance, i.e., if the
frequency of the rf field is equal to wy = 1, the time derivative of the frequency
modulation has the typical form

B(t) = dosin(t - ¢). (4.7)

While the resonance condition is fulfilled the vibration amplitude of the cantilever
can be large even for a very small magnetic force strength 7.
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Figure 4.2: Definition of the adiabatic basis.

Equation (4.6) describes a spin which couples to a harmonic oscillator and is
itself subject to a time-dependent effective magnetic field Beg(t) = €1, + é(t)e,
appearing in the rotating frame, where e, and e, are unit vectors in the rotat-
ing system. The Hamiltonian in Eq. (4.6) is not exactly solvable. Here we make
a plausible approximation based on the following observations. For typical exper-
imental parameters[Berman(03a, Berman03b]|, B.g varies slowly compared with the

Rabi oscillation frequency: [Beg(t)|/|Beg(t)| < €(t) = 1/€2 + ¢2(t). According to
the adiabatic theorem [Avron87, Messiah61], the spin part of the solution should be
determined by the adiabatic evolution; i.e., the spin “follows adiabatically” the ef-
fective field Beg(t). It is therefore convenient to choose the basis states |x.(¢)) and
|x—(t)) quantized along the axis parallel to Beg(t), see Fig. 4.2 (notice that there is
no Berry phase because the solid angle enclosed by Beg(t) is zero). In this basis, the
Hamiltonian in Eq. (4.6) is recast to

2 22

H(t) = —%e(t)f'z — n%% Z+ 77:(—;)7}2 + % + % . (4.8)
7, and 7, are the Pauli matrices with respect to the frame rotating adiabatically with
Beg(t). We further note that the spin dynamics is much faster than the cantilever
motion, €(t) > €, > 1. The situation is reminiscent of the Born-Oppenheimer
approximation [Ashcroft76], where the nuclei interact with the average charge density
of the electrons, which move much faster. In our system the nuclei correspond to
the harmonic oscillator which is interacting with the averaged motion of the spin.
Therefore one can drop the third term in Eq. (4.8). (The deviation of the spin due
to this term is also negligibly small since 1| (2(t)) | < €(t), see below). Using this
approximation we finally obtain the following Hamiltonian, which is the basis of the
further considerations in the paper

H(t) = e —nfO)Rz+ 2 + % , (4.9)
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where f(t) = ¢(t)/e(t). This form is justified in a more rigorous way in the next
Section 4.3, also taking into account the influence of the environment (see below).

So far we have described a model for an idealized system of spin and cantilever. In
reality they are coupled to various environments, which lead to decoherence as well as
damping. In particular, the cantilever is inevitably under the influence of phonons or
other vibrational modes which are close in frequency to the single mode in question.
The (direct) environmental effects for the spin, e.g., hyperfine interaction, spin-lattice
relaxation, etc., are relatively small. Therefore, for simplicity, we assume an Ohmic
bath of oscillators [Caldeira83b, Caldeira83a, Caldeira81, Weiss00] directly coupled
to the cantilever but not to the spin. Then the total Hamiltonian for the spin and
the cantilever plus the oscillator bath is given by

n2 2 2
P mrWy (. Cr .
ar (1) = A — i 4.1
Hial(t) = H (1) + }k j [ka + Tk (3 mkw,%z) } (4.10)
All the relevant features of the Ohmic bath are characterized by the spectral density
-y % g = ow®
J(w) = 22 (w—wg) = awB (1 —w/we), (4.11)

where « is a dimensionless parameter characterizing the coupling between the system
and the environment and w¢ is the cutoff frequency. The spin dynamics and the
probability distribution of the cantilever will not depend on the cutoff.

We describe the system of spin plus cantilever in terms of the reduced density
matrix p(t) = trppior(t) by tracing out the bath. In the realistic typical experimental
situation, the cantilever always remains in contact with the environment. Thus, the
cantilever and bath are not in a product state at the beginning of the experiment.
For the calculation with the influence functional, we can take this fact into account,
assuming that the cantilever and the bath were in a factorized state at a time ¢ = t,.
In the limit £, — —oo we get then the realistic initial state for the cantilever at the
time ¢t = 0. If we would start with a factorized state between cantilever and bath,
the solution would be very sensitive to the initial condition of the cantilever, see
Section 4.5.

Furthermore, it is assumed that the interaction between the spin and the cantilever
is turned on at ¢t = 0, i.e., f(¢) = 0 for ¢ < 0. The measurement happens at times
t > 0. The initial state 5(0) of the density matrix is a product state,

p(0) = p)(0)5(0) (4.12)

where 5 is the density matrix for the spin only and p(©) describes the cantilever in
thermal equilibrium with the bath. From the CAI scheme and from the associated
adiabatic approximation discussed above, it then follows that the density matrix at
times ¢t > 0 has the form

(5,2 p(t) 5", ) = p{5 (0)p (2, 7', ) (4.13)
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Namely, the dynamics of the density matrix p(¢) is completely determined by the
) . (C) /
spin-dependent cantilever part p, (2, 2/, ).
Here the spin-dependent cantilever part should not be confused with the density

matrix for the cantilever only, which is given by

N s c s c
Pz, 2 t) = Z (s,2| p(t) |s, 2"y = ,OSLJ)F(O),OSLJZ(Z, Z.8)+ 000z, 2, 1) . (4.14)
s==

Analogously, the density matrix for the spin only at time ¢ > 0 is given by

29 (t) = o (0) / dz o9 (2, 2,1) (4.15)

oo

There are several ways to prepare the spin in a particular state [Weiss00], and we

will assume a general state pgf,) (0).

4.3 Estimation of the spin-flip rate

The cyclic adiabatic inversion scheme implies two basic assumptions: (i) The varia-
tion of the external driving ¢(¢) is slow enough to allow for an adiabatic approxima-

tion [Messiah61], i.e., ‘qﬁ(t)‘ < €2. (ii) The time scales of the spin dynamics and the

cantilever dynamics are well separated (e, > 1) such that the Born-Oppenheimer
approximation is justified. Yet, the finite rates of change in the external driving
and the cantilever position will induce spin flips. The periodic adiabatic energies
By ~ +(é&2 + ¢(t))"/?/2 are shown in Fig. 4.3. When the energy bands come
closest to each other the situation ressembles the exactly solvable Landau-Zener
problem [Avron87, Grifoni98]. Therefore the spin-flip rate can be estimated by the
Landau-Zener transition (adiabatic transition) rate. For this purpose, we rewrite
Egs. (4.6) and (4.10) in the form

1 . 1 .
H7(t) = —EF(t)O'z ~ 5€L00 (4.16)

where F'(t) = ¢(t) + 2n (2(t)). The back-action of the cantilever has been accounted
for by its time-dependent average position, and the contribution from it will be es-
timated below in a self-consistent way based on the results in Section 4.6. The
probability that the spin flips against the effective magnetic field Beg(t) during one
period (i.e., 2m/wp) is then given by

2
meL

PLZ >~ exp(— » ) y (417)

where we have taken v = max ‘F(t)‘ to estimate the worst case.
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Figure 4.3: The periodic adiabatic energy levels (solid line) approximated by the Landau-
Zener adiabatic energy levels EY2 = £(e2 + 1%t2)1/2/2 (dashed line) for ¢9 = 1000 and
€, = 400. The probability that the spin flips against the effective magnetic field Beg ()
during one period can therefore be estimated with the Landau-Zener transition probability
P17 depending on the ratio between the time 71,7 = €, /v spent in the crossover region and
the coherent tunneling time 7., = 2611.

It follows from Eqs. (4.7) and (4.64) that

v < max ‘qﬁ(t)‘ + 2nmax

4 sip] = gy 127
7 (z(t))‘ =¢o+2 5 fo- (4.18)

Therefore, assuming typical values for the parameters, ¢g ~ 1000, €; ~ 400, n ~ 1,
and a ~ 0.001, we have fy ~ 1 and

62
Py<exp|—-nm—=L |} ~1077. 4.19
LZ p ( b0 + 2772f0/0z> ( )

Note that the back-action of the cantilever is stronger for larger Q-factors of the
cantilever (@ ~ 1/a) since the maximum velocity of the cantilever increases with the
Q-factor.

4.4 Coherent solution without bath

Before we analyze the full dissipative Hamiltonian in Eq. (4.10), it will be instructive
to consider the problem without a bath, Eq. (4.9). The time-dependent Hamiltonian
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in Eq. (4.9) is diagonal and the Schrédinger equation can therefore be solved analyt-
ically for arbitrary functions €(¢) and f(¢) of ¢ (of course, the variation of €(t) and
f(t) in time should be sufficiently slow that the Hamiltonian Eq. (4.9) is meaningful,
i.e., our approximations are applicable).

The result for the time-evolution operator % (to,t1) = T exp [—i fttl2 dt'%(t')] (f
is the time-ordering operator) is given by

?

%(tQ,tl) = exp |:i0(t1,t2) + 5 /tt2 dt' e(t,) ’7A'z:| @(%zf(tg))%(tg — tl)@T(f'zf(tl)) y

(4.20)

where .
() = in% /0 dt' e (¢ (4.21)
U(t) = exp (—ita'a) . (4.22)

@ = (2 +ip,)/V/2 is a bosonic annihilation operator for the harmonic oscillator and
2(€) is a displacement operator[Gardiner00] defined for a complex number & by

9(€) = exp(éal — £°a). (4.23)

The coefficient c(t1,t2) in Eq. (4.20) is a real function of ¢; and t», which doesn’t have
to be specified further because it drops out of the following calculations.

To illustrate the dynamics generated by the time-evolution operator in Eq. (4.20),
we analyze a specific case. Suppose that we start at time ¢ = 0 with the cantilever
in a coherent state

¥(z,0) = \}7? exp —%f + V262 — (Re&)? (4.24)
and with the spin in a linear superposition with amplitudes c; and c_
X(0)) = c1lx+(0)) + c-[x-(0)) - (4.25)
The total wave function at t = 0 is given by
[¥(2,0)) = ¥(2,0) [x(0)) , (4.26)

and at a later time ¢ > 0, by

W(2,1)) = crthi (2, 0) x4 (1) + ¢ ¥ (2,)[x (1)) - (4.27)

The cantilever wave function in Eq. (4.27) for each spin component is given by

wi (Z, t) =

. . ! / / 1 2 / / 2
{zc(t, 0) + 1/0 dt’ e(t") — 5% T V2. (t)z — [Re &L(t)] }(4, s

1
N exp
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where
€L(t) = £&(1) + e . (4.29)

Therefore, the average position of the cantilever is (2(¢)), = V2Re &, (t) for spin s =
+, respectively, whereas the average momentum is given by (p,(t)), = v2Im¢&, (¢).
Here it is interesting to note (in comparison with the results below) that exactly at
resonance [see Eq. (4.7)], |£(¢)] in Eq. (4.21) [and hence €. (¢)| in Eq. (4.29)] contains
a term which increases linearly with time ¢. In other words, the oscillation amplitude
of the cantilever becomes indefinitely larger as time passes. This is not surprising
since we are driving an ¢deal oscillator at the resonance frequency, and in fact this
is what allows the MRFM to detect ultra-small forces. In reality, the cantilever is
subject to various environmental effects and the oscillation amplitude is bounded
from above (i.e., the Q-factor is finite). This is the case that we will study below.

Before we study the system plus oscillator bath, let us make a short remark
about the off-diagonal elements of the reduced spin density matrix. Even though
the cantilever is not yet coupled to the oscillator environment, and the system con-
sists only of the spin interacting coherently with the cantilever, the reduced spin
dynamics turn out to evolve incoherently, i.e., the off-diagonal elements decay. This
can be understood as follows: The off-diagonal elements of the spin density matrix
are only nonzero if the oscillator wavepackets corresponding to spin up and down
overlap. Without a bath, the separation of the spin-up and the spin-down wavepack-
ets becomes indefinitely larger as discussed before, due to the driving. Although the
wavepackets oscillate and overlap for a certain time, the density matrix becomes diag-
onal, since the overlapping time decreases due to the increasing oscillation amplitude
of the cantilever.

4.5 Dynamics of the spin

Now we take the influence of the bath into account. In this section, we analyze the
dynamics of the spin. As described above, there are several environmental effects for
the spin. In this calculation, we assume that such effects, directly affecting the spin,
are small compared to the interaction with the measuring device, i.e., the cantilever
coupled to the oscillator bath. Thus, the decoherence time of the spin in the absence
of the cantilever is assumed to be much longer than the time we need for the mea-
surement. These different time scales are necessary to provide cyclic inversions of the
spin.

A similar situation appears in the well-known Stern-Gerlach experiment, where
the environment first collapses the trajectory of the particle which causes collapse of
the spin. As in our calculation, other decoherence mechanisms, which act directly on
the spin, are neglected.

When we are interested in the dynamics of the spin alone (the dynamics of the
cantilever will be discussed in the following section), we can regard the cantilever as a
part of the environment. The bath mow contains one additional harmonic oscillator.
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This is why the bath spectral density must be modified. One expects a non-Ohmic
spectral density with a peak around the cantilever frequency. By transforming to
normal coordinates one can find the new bath spectral density. Garg et al. [Garg85]
have shown that the problem is equivalent to a spin coupled linearly to an oscillator
bath

1 R e e
Hialt) = =57 = (7 Y o (b,t + bk) +5 wiblh. (4.30)
k k

The distribution of the oscillator frequencies wy and the coupling constants g, are
now characterized by a non-Ohmic spectral density

Jer(w) = Zg,%é(w —wg) =

1 aw
T (W2 —1)2 + (aw)?’

(4.31)

To investigate the spin dynamics, we write the reduced density matrix of the spin
PO (t) = traZhon (t) pros (0) 24 (2) (4.32)

in terms of the time-evolution operator % (t) associated with % (t) in Eq. (4.30).
In analogy to Eq. (4.20), the time-evolution operator is given by

o (1) = exp [5 / dt’e(t')@} [ 2G.eue)e it (4.33)
k

where .
6ult) =inge [ dre I f(), (430
0
and & is now the displacement operator for the kth mode of the bath, i.e., & should
be replaced by by in Eq. (4.23).
For the initial state it (0), we assume [see Eqgs. (4.12)]

e*ﬂwkazi)k

Z (4.35)

Pro (0) = p19(0)
k

For such an initial state the cantilever is in thermal equilibrium with all oscillators
of the bath at the time £ = 0. Another initial condition, where the cantilever is in a
coherent state at the beginning of the measurement, is discussed below. In this case,
the density matrix for the spin is given by

w20 =i 0 e 1057 [Cate)| [[@ e zam), . @30)

k

where (---), is the average with respect to the kth oscillator in the bath.
Equation (4.36) shows that the diagonal elements of the density matrix (s = s)
are constant in time

P () = pl2(0). (4.37)
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In other words, there is no spin relaxation and the spin dynamics undergoes pure
dephasing since there are no transverse fields. This is consistent with the adiabatic
approximation we made at the beginning.

On the other hand, the off-diagonal elements (s # s') are expected to vanish
rapidly with time. This can be seen from [see Eq. (4.36)]

P2 (1) = p{% (0) exp [—F(t) +i /0 t dt’e(t’)} , (4.38)

where

r(t) =2 I (#) coth (;"—;) , (4.39)

or in terms of the spectral density function

2

/ t dt'e™? f(t) (4.40)
0

Figure 4.4 shows |p; (t)| evaluated using Eqgs. (4.38) and (4.40). To compare our
results with those of Berman et al. [Berman03a, Berman03b], who assumed an initial

['(t) = 27 /Ooo dw Joir (w) coth (%)

product state of cantilever and bath, the inset of Fig. 4.4 shows | pfl (t)| for a Gaussian
initial state of the cantilever. To obtain these results we evaluate the path-integral
formulas in Appendix A.11 with ¢, = 0 instead of taking the limit {; — —oo. If we
compare the main part of Fig. 4.4 with the inset, the strong dependence on the initial
conditions is evident. The additional features shown in the inset are a consequence of
the oscillatory relaxation of the cantilever to its thermal equilibrium state if one starts
with an initial product state of cantilever and bath. On increasing the coupling «,
the oscillatory behavior becomes less visible since the cantilever relaxes immediately
to its thermal state.

4.6 Dynamics of the cantilever

In Section 4.4 we described the driven dynamics of the otherwise isolated system
of spin and cantilever determined by the Hamiltonian in Eq. (4.9). In this section,
we now take into account the influence of the environment starting from the Hamil-
tonian given in Eq. (4.10). The reduced dynamics are obtained analytically with
the Feynman-Vernon influence functional [Feynman63, Grabert88] for arbitrary cou-
pling strength « to the bath and for arbitrary temperature 7". The advantage of this
method, as compared to [Berman03b], is that no master equation is used and that
there is no restriction on the number of basis functions used to numerically integrate
the problem.

The reduced dynamics of the cantilever obtained with the influence functional are
given by

ng) (Zfa Z}: t) = / dzidZZ{Jss’ (Zf7 Z}a t; Ziy Zz{: to)ﬂgg) (Zia Zz{: tO) ; (441)
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Figure 4.4: Main plot: |p4_(¢)| for different temperatures 7' = 0, 1,2, 5,10, 100, for ¢y =
1000, €; = 400, n = 0.3, a = 0.006, and we = 1000. The initial condition for cantilever
and bath is the thermal equilibrium state. Inset: same quantity for an initial product state
of cantilever and bath. Initially, the cantilever wave function is a Gaussian with width
o = /2. In both cases, p(s) (0) =1/2 for s,s' = +.
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where

Jost (25, 27, 5 215 25, o) = /.@z@z' exp(iSss(2,2']), (4.42)

s,s' = £, and the action, see Eq. (2.35), is defined by

Susles ] = S0 = S3) = § [ drfe(r) = #(D][e() + /)

to

w5 [ ar [ ar'e) = #niKatr 7)) - £ (4.43)

This form of the action is only valid for an Ohmic bath[Caldeira83b|. Furthermore,
Kg(7) is the real part of the bath correlation function

Kg(1) = Re (X(7)X(0)), (4.44)

where X (t) = 3, cxdx(t). Finally,

S8 = [ drl5 () - 32(0) + nsf(0)x() + 5e()s (4.45)

to

is the bare action without oscillator bath.
The action can be simplified further by introducing relative coordinates defined
by R=(z+2')/2 and r = z — 2'. The action is then found to be

¢ .ot ¢

S.[R, 7] = S%I[R, r]—a/ dTR(T)T(T)—{-%/ dT/ dr'r(T)Kr(t—7")r(7"), (4.46)
to to to

with

Stlkr) = [ dr{&(r)i(r) = B () + nf (DR - )

to

o @r(r)(s + ) + 5elr)(s =)} (1.47)

In the next step, the action is expanded around the classical path. The classical
equations of motion can be found by minimizing this action

5553’

= 4.48
or 0 ( )
and 5s
). 4.4
sp =0 (4.49)

The classical equations of motion read

R(7) + aR(1) + R(7) = Fg(1), (4.50)
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7(1) — ar(1) + (1) = F.(1), (4.51)
Fr(1) = %nf(T)(S +5') + Z/t dr'Kg(r — ")r(r'), (4.52)
(1) =nf(r)(s =5, (4.53)

with classical solutions R (7T), 7«(7), respectively. Note that the solutions are com-
plex [Marquardt02], and the dependence on s,s’ of all these quantities has been
suppressed. The classical solutions, which are given in Appendix A.11, are linear in
the boundary values Ry, rf, R; and r;. Therefore, Syy[Rq, 7] is a bilinear form in
these variables. We obtain

1
Jso(Re,re,t; Ry iy ty) = ——ex (iSSSf Ry, 7. ), 4.54
(ffzzo)N(t)P [Ret; el (4.54)
where all contributions from the fluctuations around the classical path are contained
in the time-dependent, but spin-independent normalization constant N (¢), which can
be obtained from the normalization condition

Z/ dR;pss(Ry,7p =0,1) = 1. (4.55)
s=£ >

The Gaussian form of the expressions leads to a final reduced density matrix of
Gaussian form if the initial density matrix is Gaussian, which is true for a coherent
state. Therefore, we deal with Gaussian wave packets in the dissipative case as well.
The explicit formulas are discussed in detail in Appendix A.11, where the solution
for the reduced dynamics is obtained starting from a Gaussian wave packet at time
to. We then take the limit t; — —oo such that the information about the initial state
is lost at time ¢ = 0.

We will now give analytical expressions of the density matrix for the diagonal and
off-diagonal elements with respect to the spin degree of freedom. Let us first discuss
the result for s = 5

1 1 1
C _ 2 2 ..
pgs)(Ra T, t) - \/%O'R €Xp {_E[R — Ts (t)] - T‘_?T + ZTl's(t)} y (456)

where the final coordinates have been replaced by R = Ry and r = ry. The widths
of the Gaussian peaks are independent of the spin. The width in the R-direction is
given by

o2 :/oodeeff w) coth adl . 4.57
k= (@) coth (5 (4.57)

or increases with temperature. This is because the cantilever position suffers thermal
fluctuations. The width in the r-direction is found to be

1 we 9 w
— = h{—]. 4.
= /0 dww? Jegt (w) cot (2T) (4.58)



4.6 Dynamics of the cantilever 99

Note that, as is well-known, the momentum width diverges with the cutoff frequency
we which was defined after Eq. (4.11). This is why we retained the dependence on
the cutoff in this integral. The spin dynamics and the probability distribution of the
cantilever will not depend on the cutoff. Unlike o, o, decreases with temperature;
this is natural since the cantilever approaches a classical oscillator as temperature
increases. The temperature behavior of these two integrals can be read-off in the
limit of small o < 1, viz.,

1 1 1
2 I
o5 R = S coth (2T> (4.59)

We now investigate the probability density to find the particle at position z at the
time ¢. This is obtained by setting z = 2/, i.e., R =z and r = 0 in Eq. (4.56)

P2 2,t) = pfl(O)p‘ﬂ(R:z r=0,4)+p2 (0D (R =27 =0,1)
S
= p(0)

+ p0)—=—

fRexp{ QZ[z—m()]}

\/%OR p{— [Z—fv ()]} (4.60)

We obtain Gaussian wave packets moving according to
sin [wR(t - t’)}

WR

F(t') . (4.61)

t
zs(t) = ns/ dt'e—5tt)
0

This expression depends on the spin s = +. The oscillator frequency wr = /1 — (/2)?
is renormalized due to the coupling to the bath. Furthermore, x(¢) is the solution
of the coordinate of a classical dissipative driven harmonic oscillator with a spin-
dependent driving force nsf(t) starting from the initial conditions z4(0) = 0 and
%5(0) = 0. So the result becomes very clear, because the classical solution is well-
known to be an oscillating function, which goes through a transient regime and for
t > 1/a the amplitude of the oscillation saturates at a finite value. The oscillation is
periodic (but not necessarily sinusoidal) in time with unit period (T = 27 /wp). Con-
sequently, for t > 1/« the density matrix will show a generic steady-state behavior
independent of the details of the initial preparation of the system.

The density matrix pgf)(R r,t) behaves quite differently with respect to the co-
ordinates R and r. As a function of R, p{S’(R,r,t) is a Gaussian distribution with
standard deviation o and average (R(t)) = x5(t). On the other hand, %4(¢) is the
velocity of a classical oscillator (see above). It shows oscillatory behavior in ¢ and r
superimposed on the Gaussian envelope with width o, (see Figs. 4.5-4.8). Thus, the
off-diagonal elements pgc)(z, Z',t) (z # 2') exhibit an oscillatory behavior in t. How-
ever, this should not be confused with a coherent oscillation, which is not expected
in this long-time limit. The oscillation is a consequence of the external driving f(¢)
(i.e., frequency modulation ¢(t)). The elements that are diagonal in both s and z

P52, z,t) do not show such an oscillation.
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The behavior of z4(t) can be illustrated by approximating f(¢) by its primary
oscillation amplitude

f(t) = fosin(¢) + (higher harmonics), (4.62)
where A
fo= 3 (L) B/ - Ki-di] (4.63

Here, K(z) and E(z) are the complete elliptic integrals of the first and second kind
[Abramowitz72]. One obtains

cos(t o, | cos(wgrt sin(wgt
zs(t) ~ nSfo(—J—i-e_ft[ (wrt) | sin(wrt) )
Q (67 2wR
+(higher harmonics) . (4.64)

This solution shows the main features of the spin-dependent separation z(t), namely
the transient behavior and the steady-state oscillations: z4(t) &~ —nsfy cos(t)/a. It is
interesting to notice that the average cantilever motions are exactly in opposite phases
(shift by 7) for spin up (s = +1) and down (s = —1). This was also concluded from
the numerical simulation presented in [Berman(03a, Berman03b]. Thus, the MRFM
can be used as a quantum measurement device (as well as to detect the state or
presence of the spin), see below. Therefore, if we start initially with the two spin
components populated, pfl(O),p(_Sl(O) > 0, then p(O) (R, r,t) = pfl(O)pSFCJZ(R, r,t) +
p%) (0) P9 (R, r,t) will show two peaks moving in opposite directions as time goes on,
see discussions above and Figs. 4.5-4.8. It should be stressed that to separate the
two peaks with sufficient resolution, the widths of the peaks, Eq. (4.57), should not
be larger than the maximum separation, 7fo/c, see Eq. (4.64). Clearly, this criterion
restricts the maximum operation temperature of the device. Figures 4.5-4.8 show
the typical behavior of the density matrix p{®)(R,r,t) of the cantilever if we choose
pgf,) (0) = 1/2 (for s,s" = +) as the initial state. As the coupling to the environment «
increases, the distance between the peaks shrinks and they are harder to distinguish
(see Figs. 4.5 and 4.6). A similar behavior is observed as the temperature increases
with « fixed (see Figs. 4.7 and 4.8).

Now we turn to the off-diagonal elements s = —¢'
pO (Ryryt) = ——~— exp {-LQ[R — O — i G (t) — T(t) + / t dt’e(t’)} ,
’ V2nog 20 207 0
(4.65)
where
oo W i ! ! !
Is(t) = 2773/ dwJegs (w) coth (—) / dt'f(t') cos (w(t — t')), (4.66)
0 277 Jy

and

w

G(t) = 2ns /0 " oo T () coth (o) /0 () sin (w(t - t)) (4.67)



4.7 Master equation 101

In the r-direction, pg’i)s(R, r,t) has a Gaussian shape centered at (,(t)/o? with
width o,. In the R-direction, it is an oscillatory function imposed on a Gaussian
envelope with width or. Overall, the function pg?_)s (R, r,t) decays with ¢ in the same
way as shown in Fig. 4.4, i.e., pgg)(R, r,t) for s # s’ can be observed only in the
transient regime. The decay is described by the function I'(t), see Eq. (4.40). Note
that a trace over the cantilever dynamics leads us back to the results obtained in a

different way in Section 4.5.

4.7 Master equation

In this section a similar calculation as in Section 4.6 is done, again taking the influence
of the environment into account. However, instead of the path integral approach, we
use now a generalized master equation [Gardiner00, Breuer02]. We obtain a general
solution to it, and discuss its physical implications. The results obtained here are the
limit of the results from Section 4.6 for small system bath coupling o and intermediate
up to high temperatures. Surprisingly, the master equation turns out to be valid for a
large temparature range when compared to the exact solution obtained in Section 4.6.

There are several methods widely used in the literature, to derive a generalized
master equation. One of the most popular methods is a perturbative expansion in
the system-environment coupling of the von Neumann-Liouville equation and sub-
sequent Markov approximation. This method as been used previously [Berman03a,
Berman03b], and led to a master equation similar to that considered by Caldeira and
Leggett [Caldeira85]. However, this method has certain drawbacks. It is based on
the assumption that the temperature is much higher than the bath cutoff frequency
(T > w¢) and it is not obvious whether the resulting equation is valid at interme-
diate temperatures (T 2 w¢). Furthermore, the master equation for the particular
system in question is not in the Lindblad form [Lindblad76]; the normalization and
the positivity of the density matrix are not guaranteed. Therefore it is worthwhile to
find out to what extent the master equation is valid.

In this paper we follow Didsi [Diosi93| and derive a generalized master equation
which can be put in the Lindblad form and is valid in the intermediate-temperature
regime as well as in the high-temperature limit. In this method, one uses a high-
temperature expansion of the bath correlation function [see Eqs. (4.68) and (4.69)
below|. This expansion is different from the usual Markov approximation.

One represents the reduced density matrix p for the spin plus cantilever system
in the real-time path-integral form. The effective action in the path-integral can be

evaluated by expanding the bath correlation function to second order [Diosi93] in
1T,

Re <X(t)X(O)> = 2aTd(t) — 6%%5(75) , (4.68)
Tm <X(t)f((0)> = a%g(t), (4.69)
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Figure 4.5: |p(®) (R, r,t)| for a time series in the steady-state regime starting at time t,, at
which the two peaks are not separated, e.g., t,, = 988. The units have been chosen such
that both the natural frequency wq of the cantilever and its harmonic oscillator length are
equal to 1. Ty = 27 /wp, @ = 0.006, T' = 100; the other parameters are as in the caption of
Fig. 4.4. The interference fringes are due to the driving.
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Figure 4.6: |p{©)(R,r,t)| for a time series in the steady-state regime for o = 0.012 and

T = 100.
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Figure 4.8: |p{®)(R,,t)| for a time series in the steady-state regime for o = 0.012 and

T =10.
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with X = 37, cx@. The function 5(t) = sin(wet)/(nt) in Eqgs. (4.68) and (4.69) will
be approximated by a delta distribution &(¢) ~ 6(¢) and whenever 6(0) appears, we
shall retain its regularized value 6(0) = wc /7. The resulting master equation for the
reduced density operator p is given by

%ﬁ(t) — i), ﬁ(t)]—ﬂ[é {p,p(H)}]

= De.[2,[2,0(0)]] = Dyplp; [0, p()]] = 2D [2, [, p(1)]],  (4.70)
where the Dekker coefficients are defined by
o' awe

2r P T e
The master equation in Eq. (4.70) is of exactly the same form as in [Diosi93], with a
time-dependent Hamiltonian. As shown in [Diosi93], the master equation (Eq. (4.70))
can be recast in the Lindblad form. Compared with the Caldeira-Leggett high-
temperature master equation [Caldeira85] (usual Markov approximation), we see that
the term with the prefactor D,, is missing in the usual Markov approximation.

Substituting Eq. (4.13) into Eq. (4.70), one obtains the master equation for the
cantilever part

9 O, sy ‘9_2_ PN _Lip_ e
P (2700 = 92 92) "1 —#)
+ i%e(t) (s —8) +inf(t)(zs — 2's") (4.72)
1 NT R N
— 5oz(,z—z)(a—g)—i-Qsz(z—z)(za——i-z£>

0? 0 0 0?
— D, (z—2)+ D,, ( +2—— + ) ]pgs,) (z,2',t).

D,,=aT, D,,= (4.71)

022 0z 0z 027

Equation (4.72) is a linear second-order partial differential equation. It is convenient
to make a change of variables from z and z' to the relative and center of mass
coordinates r = z — 2’ and R = (z + 2')/2, and to perform a Fourier transform with
respect to R,

1 [e.e]
pgg’:) (r,Q,t) = 2—/ dR eZRngs,) (r,R,t). (4.73)
™ —0Q0
The equation for p,y (7, Q,t) is given by
0 0 0 1
= — —r— t)(s — s
4@ [Qar 1 + iz =)

s fo) |- g + 150 (474)

0Q 2

0
+ 2D,rQ — ara — D, r? — Dpr2] pgg) (r,Q,t).
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Equation (4.74) is a first-order quasilinear partial differential equation, and can
be solved exactly by means of the theory of quasilinear partial differential equa-
tions [Smirnov75]. However, since the cantilever is a rather large object, we are
mainly interested in the cases where the cantilever evolves from a semiclassical state
of the cantilever (either a coherent state or a mixed state with Gaussian distribution),
i.e., a Gaussian form of the initial (before interacting with the spin) density matrix
for the cantilever. One can further justify such an initial state by noting that in
realistic experimental situations, the cantilever always remains in contact with the
environment. This initial condition is convenient because any state evolving from a
Gaussian state is always Gaussian (see Section 4.6). Alternatively, instead of working
with an exact solution, it is natural to use the following Gaussian ansatz

1 1
ng) (r,Q,t) =exp | — §CL117’2 - 5022622 —a127Q +bir + 0Q + ¢, (4.75)

where, for brevity, we have suppressed time arguments and spin indices in a1 (%),
etc. The advantage of the ansatz is that there is no restriction on the number of
basis functions used to numerically integrate the master equation [Berman03b]. It
should be remembered that for each spin component of the density matrix we have
to use an independent ansatz; the coefficients depend, in general, on two spin indices.
To determine the coefficients aq1(t), etc., we substitute Eq. (4.75) into the master
equation Eq. (4.74). It is seen that the coefficients satisfy a set of ordinary coupled
inhomogeneous linear differential equations, which in a matrix notation are written
as

a(t) + Aa(t) = u, (4.76)
b(t) + Bb(t) = v(t), (4.77)

and
) = i%e(t) + nf(t)bQ(t)] (s — ). (4.78)

The vectors a and b are defined by

il (1)
a) = [enlt)| . b0 = [10)] (4.79)
a12(t)
and the matrices A and B by
2 0 2 1
A=10 0 -2/, B:[_O‘1 0].
-1 1 «

~—~

4.80)

The inhomogeneous parts of Eqs. (4.76) and (4.77) are given by the vectors

+DZZ
u=2|+Dy|, (4.81)
-D

Zp
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and

anf(t) [1 ’ s = S,

0
alz(t)] '

§ = =S5,
CLQQ(t)

v(t) = (4.82)

—2snf(t)

respectively. The solutions to the ordinary linear different equations (Eqs. (4.76) and
(4.77)) can be written formally as

a(t)=e " [a(0) — A'u] + A7y, (4.83)
t /
b(t) = e~ P'b(0) + / dt e Py (t) (4.84)
0
where the exponentials e 4* and e B¢ can be obtained readily, for instance
—Bt _ _—at/2 sin(wgt) [—a/2 -1
e e {cos(th) + on | 1 a2l (4.85)

Once pgg) (r,@,t) is known, the density matrix in relative and “center of mass” coor-

dinates r and R can be obtained from an inverse Fourier transform in the coordinate

/2 1 1
ng) (7'; R, t) = —ﬂ— exp { - 5@117'2 + blT’ - —2 (R — 1a19T + 'l:bQ)Q + C} . (486)
22

a22

The matrix A has three eigenvalues o and « & i2wg, where wg = /1 — a2/4 is
the oscillator frequency renormalized due to the coupling to the bath. The matrix B
has eigenvalues «/2 + iwp. The homogeneous part of the solution for a(t) therefore
decays exponentially over the time 1/«, and that of b over time 2/«a. Consequently,
for t > 1/« the density matrix will show a generic behavior independent of the details
of the initial preparation of the system. We now discuss the steady-state behavior in
this limit more explicitly. We first summarize a few important general properties of
a(t), b(t), and ¢(t). From Eq. (4.83), we see that

a(o0) = A™'u = const. (4.87)

Therefore, (i) ai1, ags, and ais are all constant in time and real. (Recall also that
they are independent of spin). Equation (4.84) exhibits the asymptotic behavior

1
isnUp(t) E s=s,
b(t) ~ (4.88)
aia(oc) '
—2snUg(t) , §=—s,
929 OO
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where Up(t) is a 2 x 2 matrix defined by

¢
Us(t) = / dt’ =Bt f(y) (4.89)
0
One can show that (for ¢ > 1/a) Ug(t) is periodic (but not necessarily sinusoidal) in
time with unit period (79 = 27/wy in natural units). It immediately follows that (ii)
b1(t) and by(t) are periodic functions of time t with unit period and that (iii) by(¢)
and by (t) are purely imaginary for s = s' and real for s = —s'. We also note that (iv)
c(t) = ¢(0) = const. for s = ¢, see Eq. (4.78).

The properties (i)—(iv) summarized above do not demand an expansion in « and
1/T, but nevertheless such an expansion is useful for more explicit and clearer pre-
sentation of the results. At intermediate and high temperatures (7" 2 w¢) and for
sufficiently small o (o < 1), one has

1 1
— 2 [D,.+D,]~T(1 , 4.
n= ¢ 1Dt Dyl =T (14 55 ) (4.90)

1
gy = — [Dzz + (14 0?) Dy, — 204sz}
4.91
<1+1—2awc/7r> , (4.91)

N ©

~
~

1277

«

19 = _Dpp = _ﬁ ~0 (492)

One can also obtain

_Jh

Ug(t) o

{sin(t) [(1] (1)]-1—005(15) [_01 —Bl]—i-ﬁ(a)—i-(higher harmonics)}, (4.93)

where fy is the primary oscillation amplitude of f(t), see Eq. (4.63). The density
matrix in Eq. (4.86) is then reduced to a simple form [see also Eq. (4.92)]

Q22

2 1 1
pgf,) (r,R,t) = 4 /a—w exp { - §a11r2 + by (t)r — S [R+ b (t)]* + c(t)} . (4.94)
22

The widths in the » and R directions are found to be

1 1
and -
AR~ VT <1 + %"f”) , (4.96)

respectively. Eq. (4.59) was derived from an expansion of the widths obtained with
the path integral for small a. According to the approximation scheme used for the
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master equation, Eq. (4.95) and Eq. (4.96) should correspond to the high temperature
expansion of o, and og in Eq. (4.59). This is clearly true.

For s = §' (diagonal in spin space), by (t) is purely imaginary [see (iii) above] and
corresponds, as before, to the velocity, whereas

(R(t)) = —ibo(t) = _877_fo cos(t) (4.97)

[0
is the position of a classical driven harmonic oscillator. In the high-temperature
weak-coupling limit we find a simple criterion for the separation of the peaks and

therefore the possibility of the measurement, namely
nfo/a > VT. (4.98)

For s = —s' (off-diagonal in spin space), bi(t) and bo(t) are now real. Therefore,
pgf,) (r, R,t) has a Gaussian shape centered at b(t)/a11 ~ —(s — s')(nfo/c) cos(t)
being, again, the high temperature limit of Eq. (4.65).

Furthermore, in this case, ¢(t) is no longer constant in time. Numerical integration
of the equation of motion (Eq. (4.78)) shows that it is a monotonically decreasing
function of ¢ (t > 1/a). The function psy (7, R,t) decays in the same way as shown

in Fig. 4.4.

4.8 The correlation function

So far we have discussed the dynamics of the cantilever in terms of the density
matrix. In this subsection, we investigate dynamic fluctuations of the cantilever, i.e.,
we calculate the two-time correlation function for the cantilever z-coordinate

(Z(t+1)2(t)) = troys{tre{2(t + 7)2(t) psys ® pB}}, (4.99)

where fpgys is the system density matrix (spin and cantilever together) and pg is the
oscillator bath density matrix. Again, the results in this section are only valid in the
high temperature weak coupling limit, i.e., we use the master equation results. We
assume to have a nonequilibrium factorized initial density matrix. Z(¢ + 7) and 2(¢)
are Heisenberg-picture system operators. We can rewrite the correlation function as

(2(t+7)2()) = try {2trp{e 2 p(t)e T} (4.100)
For this purpose, we define
Z(t+1,t) = tre{e™ T 2po: (1) T}, (4.101)
which, when traced, gives the correlator

(z(t+7)2(t)) = troys2 Z (t + 7, 1) . (4.102)
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Then, according to the quantum regression theorem|[Gardiner00] 2 (¢ + 7,t) satisfies
the same master equation (Eq. (4.70)) with respect to 7. Therefore, one can obtain
the correlation function by repeating the analysis in the previous subsections. The
only difference is the initial condition

F(t,1) = 2poys(t) . (4.103)

Following the lines of the previous subsection gives the correlation function

E+nEE) = D AP0 +7))s(2()s

s==%1

+ e o7/ [cos(wRT) + -2 sin(wgT) | age(t)
2wR

e—a'r/Q

— i [1 4+ 2ia12(t)] sin(wgT), (4.104)

QLL)R

where (Z(t))+ are the average values of the position z in the spin state s = 1 alone.
In Eq. (4.104),
(Zt+71)20t) — (2t +7))2(1)) (4.105)

does not vanish even in the limit 7 — oo. This is because of the adiabatic assump-
tion for the spin; the spin never flips. In reality, the spin flips for 7 2 717, where
1/mz is the Landau-Zener transition rate (adiabatic transition rate), see Section 4.3.
Therefore, the expression in Eq. (4.104) is valid only for 7 < 7.

4.9 Classical limit of the cantilever

Classical dynamics takes place in the phase space. The study of the transition from
quantum to classical mechanics is facilitated by employing the Wigner transform of
the density matrix p{®)(z, 2/, t), which is given by

1 [ :
W(z,p) = > / dye’pyp(c) (z — %, 2z + y) ] (4.106)

—0o0

For the cantilever motion we obtain

Wizp) = %j—;{wexp o7 (0 = G 0= 20
+ e Pexp [—% (z —z_(t))" — % (p— :c(t))2] } . (4.107)

The Wigner density turns out to be positive for all the times ¢ > 0. Therefore, it
can be interpreted as a classical probability distribution. A truly quantum state of
the cantilever would have an alternating sign what makes it impossible to regard the
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Figure 4.9: Sketch of the motion of the Wigner density starting at the time ¢y with |cy|? =
lc_|> = 1/2. The Gaussians are separated at the time #; and evolve in the steady-state
regime at the times to and ¢3. The Gaussians with the plus sign correspond to the spin-up
state and the ones with the minus sign to the spin-down state.
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function as a probability distribution in phase space. In our case W (z, p) represents a
mixture of localized wave packets moving according to the position and momentum of
a classical driven harmonic oscillator. In contrast to the spin dynamics, no transition
from classical to quantum behavior takes place. Fig. 4.9 shows the motion of the
Wigner density. The Gaussians are shown to be well-separated in the steady-state
regime for a case in which the measurement would be possible. In the beginning of
the experiment, the Gaussians with widths op and 1/0, in the z and p direction,
repectively, are located at the point z = 0, p = 0 and later, they begin to separate.

4.10 MRFM as a quantum measurement device

In the orthodox theory, the quantum measurement is described as a wave function
collapse, which reduces the quantum state (in our case, the spin) in a non-unitary way
to one of the two possible eigenstates of the spin z component, the observed quantity,
with corresponding state-dependent probabilities. The von Neumann theory of the
quantum measurement is one possibility to produce a classical outcome at the end of
the measurement. Before we analyze the weak-measurement scheme, let us look at
the magnetic resonance force microscope measurement according to the Copenhagen
interpretation, where a “sharp” border line is drawn between classical and quantum
parts of the measuring device. The quantum part is the spin state

X) = cilxg) +elx—) (4.108)

given at the time point when the projective measurement would happen. In contrast,
the cantilever, probing the spin, is assumed to be a classical object described by the
following Hamilton function

2 2
H(t)=Fnf(t)z+ EZ + 5 (4.109)
The effect of the spin in the MRFM measurement is assumed to lead to a positive
or negative resonant driving force Ff(t) = Ffosin(t) depending on the state of the
spin. This leads to two distinct motions of the macroscopically observable classical
cantilever, according to the spin state, immediately before the instantaneous projec-
tion. Thus, one of the two possible spin values is detected. In a repeated set of
measurements, these values occur with probabilities Py = |c,|*> and P_ = |c_|*.

In a more realistic measurement model, the measurement is done by a device
which is also a quantum system, the so-called quantum probe, with a read-out vari-
able which can be probed macroscopically. The classical measurement device then
detects the quantum probe instead of probing the quantum object directly. In the
quantum theory of measurement, this falls into the category of the indirect quantum
measurement scheme [Breuer02]. Our setup exemplifies such an indirect measure-
ment (Fig. 4.10). In our case, the quantum object is the spin, the quantum probe
corresponds to the cantilever, and the classical measurement device can be, e.g., a
fiber-optic interferometer.
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Figure 4.10: Indirect measurement scheme

Let us briefly discuss the different time scales for our weak measurement [Makhlin01].
During the measurement, the spin looses its phase coherence, usually on a short time
scale 74. Fig. 4.4 shows the decay of the off-diagonal elements of the spin and therefore
the typical decoherence times during the measurement. We considered pure dephas-
ing: The off-diagonal elements of the reduced spin density matrix vanish, while the
diagonal entries remain unchanged:

s _ |p++(0) p+-(0) s _ |p++(0) 0
p)(0) = [p+(0) p(O)] — St > 1) = [ 0 p__(o)] . (4.110)
During the decay of the off-diagonal elements, the information about the initial state
of the spin is transferred to the quasiclassical, macroscopic state of the cantilever. For
an appropriate choice of the parameters and suitable conditions of the environment,
the information about the spin state can be read-out after another time scale called
the measurement time T7,,..s. In our measurement, this time corresponds to the
moment, when the oscillation amplitude has reached a high enough value such that
the wavepackets can be distinguished. Note that Tyeas = 74, i.e., the coherence is
always destroyed during a measurement.

In the end, there should also be a thermalization of the density matrix of the
spin, i.e., the diagonal elements of the spin density matrix go to their stationary or
thermal values:

(s) (5) _ Ao

P (t) = P (t > Tmix) = IR (4.111)
Furthermore, the detector reacts back on the spin and destroys the information con-
tained in the initial state. This time scale is the mixing time 7. In our setup this
is the time when spin flips occur. In our setup the mixing time is on the order of the
Landau-Zener transition time 7 ~ 7.z . The mixing time should be much larger
than the measurement time in order to make the measurement possible. The param-
eters must be chosen such that the occupation probabilities of the spin state do not
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change before the information is read out. One finds the criterion 74 < Tieas <K Tmix-
This condition is obviously fulfilled in our case. If the mixing time would be smaller
than the measurement time, the measurement would be impossible because the diag-
onal elements containing the probabilities of the initial spin state would thermalize
and the information would be lost.

What is measured with the MRFM setup? Answer: The amplitudes of the spin
with reference to the effective magnetic field. At time t = 0, the spin has certain
amplitudes to be up or down with respect to the effective magnetic field. Because
the spin follows the effective magnetic field adiabatically, these amplitudes remain
unchanged to a high accuracy. If the spin is up at time ¢ = 0, then the the cantilever
oscillates with a certain phase. If the spin is down at time ¢ = 0, then the the
cantilever oscillates exactly with a phase shifted by m compared to the up case.
One of the conclusions of the analysis presented here is that the cantilever oscillates
with the same amplitude for both initial spin states (up and down). Probing the
amplitude of the cantilever vibration can only determine the absolute value of the
spin in the direction of Beg(0), but not its sign. However, the oscillations for the
initial spin-up and spin-down states are completely out of phase (phase difference
of 7), see Section 4.6. This fact was also noted by Berman et al. [Berman03a] in
their numerical simulations. Hence, there is the possibility to use the MRFM as a
quantum measurement device, i.e., to detect the direction of the spin with the MRFM
by probing the (discrete) relative phases of the cantilever oscillations. A conceivable
scheme to measure the relative phases of the cantilever oscillations is to use a reference
spin which is prepared in a definite known state, for example, by applying a strong
magnetic field in a desired direction. The two signals from the reference spin and the
spin in an unknown state are superimposed to determine the relative phase of the
unknown spin.

4.11 Conclusions

We have studied the CAl-based MRFM as a high-resolution tool to detect single spins.
The quantum dynamics of the spin-plus-cantilever system was analyzed in terms of
the reduced density matrices, p)(¢) (for the spin) and p(®)(¢) (for the cantilever),
in the presence of coupling to the environment. Using an effective bath model, we
were able to determine the dynamics of the spin during the measurement process.
Our results remain valid at all temperatures as long as the adiabatic approximation is
satisfied. We have solved the influence functional for the combined system of spin and
cantilever to obtain the quantum dissipative dynamics of the cantilever. These results
are valid for all temperatures and coupling strengths. Finally, we have proposed that
the MRFM can be used as a quantum measurement device, i.e., not only to detect
the absolute value of the spin, but also to detect its direction.
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Chapter 5

Leakage of Josephson qubits

In several proposals and recent experiments with superconducting qubits [Nakamura99,
Cottet02, Chiorescu03] a vector in a restricted two-dimensional Hilbert space is used
as a qubit, the basic unit of quantum information. The quantum hardware therefore
operates in a two-dimensional subspace of a Hilbert space of high dimensionality.
While controlling the system with an external potential, one might excite higher
states beyond the two states. This drawback may affect the whole quantum infor-
mation process. The loss of amplitude into higher states is known as leakage. A
mathematical definition and studies of leakage were made in [Fazio99]. There, oper-
ations were studied using instantaneous switching, e.g, single qubit operations were
implemented by suddenly switching the offset charge to the degeneracy point. Here,
we are interested in other pulse forms, especially those used in the Saclay experiment
[Vion02], and the consequences of leakage.

5.1 Leakage of Josephson qubits during a NMR-
like microwave pulse operation

The system under investigation, the Cooper-pair box, consists of a superconducting
island with a small capacitance, separated from a superconducting reservoir by two
Josephson tunnel junctions, see Fig. 5.1. Each of these Josephson junctions has a
Josephson energy E;/2. The state of the “box” is controlled via a capacitance C, by
an external gate voltage V,(t). The Hamiltonian of the box is given by [Tinkham]

A#0) = Bo (N = Ny(1)) — By cos(d) (5.1)

where N is the number of excess Cooper pairs on the island and gﬁ is the conjugate
phase operator and N,(t) = C,V,(t)/(2e). There are two energy scales, the Josephson
energy E;, and the charging energy F-. Leakage depends on the ratio of these
energies defining distinct energy spectrums. The two extreme limits correspond to
a “rotor” spectrum for £; = 0, and a “harmonic oscillator” spectrum for Fc = 0.
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Figure 5.1: The experimental setup used in Saclay. The box consists of a small supercon-
ducting island separated by two Josephson junctions from a superconducting reservoir. The
phase d,, is due to an external imposed magnetic flux of magnitude ¢gdyy,-

The pulse used in the Saclay experiment at the gate has, in the most ideal case, the

following form

Ny(t) = 5+ nlt) = £ + A(t) cos(e) (5.2)

where A(t) is the pulse shape. Leakage is worst for a rectangular pulse, defined by
At)y=AlO() —O((t-T)], (5.3)

where 7' is the pulse duration. We consider excitations around the working point
N, = 1/2. At this point the qubit is defined by the ground state and the first excited
state of the Hamiltonian

Hy = Ec(N —1/2)2 — E; cos(9) . (5.4)

Further, we work in a regime, where Ecx ~ E; and neither N nor qg are good quantum
numbers.

The frequency of the oscillating gate voltage matches the transition frequency of
the lowest two energy levels, i.e. w = Fy — Ey. With such NMR-like pulses any state
|¥) = «|0)+ 5|1) can be prepared. The population probabilities of the states defining
the qubit show Rabi oscillations, see below. In the following we study leakage, the
population of higher states, during such an operation using a rectangular pulse shape.
The ideal Rabi oscillation result is perturbed.

5.2 The model in a restricted Hilbert space

To study leakage, we restrict the Hilbert space to an eight-dimensional subspace. This
choice is motivated two-fold: The first reason is that the numerical analysis shows
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Figure 5.2: Probabilities p;(t) to be in the eight different states as a function of the time
t. The amplitude is chosen to be A = 0.2. py(t) and p;(t) in the topmost graphs show
Rabi oscillations, which deviate from a perfect sinusoidal behavior due to leakage to the
six non-computational states. The non-computational states are populated with maximal
probabilities on the order of 4 — 5% respectively.

that the results do not change significantly anymore going beyond six levels and on
the other hand the structure of the energy spectrum. For our choice of parameters we
are still far away from the harmonic oscillator spectrum. The energy levels turn out
to be in pairs together, which are well-separated from each other. The level splitting
of each pair gets smaller for increasing energy. We include the next three pairs and
include six additional levels to the computational subspace. This leads to reasonable
results in the regime Es ~ E;. Note that if E; is chosen much larger than E¢
then all the energy levels become equidistant and higher levels should be taken into
account, i.e., our approach is not valid anymore.

For the numerical results we choose the time scale such that E- = 1. Let us now
list the values of the parameters used in the Saclay experiment. The ratio of the
characteristic energies is given by E;/Ec = 1.27. The pulse duration was varied in
the range 0..1us, while a maximal nominal pulse amplitude of V, = max;(V,(t)) ~
1221V was applied. The observed decoherence time was on the order of 0.5us. The
amplitude A = CyV,/(2e) can be calculated from the gate voltage using the value
C, = 107'"F for the gate capacitance. This leads to an amplitude A, which is
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Figure 5.3: Typical leakage as a function of time ¢ using an amplitude A = 0.2. Solid line:
four levels, dotted line: six levels and dashed line: eight energy levels taken into account.
The result for six and eight energy levels does not show any significant difference. Therefore,
about six energy levels are enough to study leakage in our parameter regime.

maximally on the order of ~ 0.004. Therefore it turns out that the leakage for this
specific amplitude is negligibly small (compared with all the other perturbing effects
like 1/ f noise) according to the results in Fig. 5.4.

In order to obtain numerical results results for leakage the Schrodinger equation
can be integrated using the Hamiltonian given in Eq. (5.1) in the restricted Hilbert
space spanned by the eight lowest energy levels. All the results are presented with
reference to the eigenbasis of the Hamiltonian .74, see Eq. (5.4). The eight eigenstates
and eigenvalues are numbered from zero to seven. In Fig. 5.2 we show the probabilities
for the population of the eight states as a function of time starting at the time t =0
in the ground state. The amplitude A = 0.2 is chosen comparatively high (with
respect to the amplitude used in the Saclay experiment) to see a pronounced effect.
We find that leakage out of the computational basis

L(t) = 1= (0w ()" + [(1[w(1)) ) (5.5)

remains smaller than 5%, see Fig. 5.3. The Rabi oscillations py(t) and p;(¢) do not
have the ideal sinusoidal from. There are higher frequent oscillations with a smaller
amplitude added. The frequency of these oscillations corresponds to the transition
frequency between the different energy levels, see Section 5.3. The population of the
higher levels contains more higher frequent oscillations. Fig. 5.4 shows the maximal
leakage out of the computational basis as a function of the amplitude A. The results
were obtained by integrating the Schrodinger equation numerically over a time span
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Figure 5.4: Maximal leakage evaluated for times ¢ < 1000 as a function of the amplitude
A of the applied oscillating gate voltage. Solid line: four levels, dotted line: six levels and
dashed line: eight energy levels taken into account. The results for six and eight energy
levels coincide with high accuracy. For A ~ 0.4 a small deviation shows up, i.e., for even
higher amplitudes more energy levels would have to be taken into account.

on the order of the experimental observed decoherence time. For the leakage a time
evolution, as shown in Fig. 5.3, was found. Then the maximum of the leakage, which
is the sum of the maximal probabilities to be in the leakage states max;(3.7_, p;),
was evaluated for different amplitudes A.

5.3 A perturbative approach

For a small driving amplitude A, relevant in the Saclay experiment, one can obtain
analytical results using a perturbative approach in order to solve for the time evo-
lution, or the population of the states |2) and |3). Considering these two additional
states is enough to get the major contribution to leakage. The Hamiltonian given in
Eq. (5.1) can be recast into the form

A#0) = Bo (N - Ny(1)) - % (IN+ DN+ N =)V, (56)

where in the charge representation, where N is diagonal, the diagonal elements

Hyy = o (N - N,(0))’ (5.7
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and the off-diagonal elements

E,
2
can be read off. For the perturbative approach we use the four lowest energy levels.
In the charge basis we find the matrix

Hynii=— (5.8)

QEC + ?)E‘Ecn(t) —% OE 0
—=L Ecn(t) —=L 0
— 2 2
0 0 —% 2EC - 3Ecn(t)

where for convenience a term E¢(N,(t)>—n(t)) times the unity matrix was subtracted,
which would modify the global phase of the states and does not affect the result for
the probabilities. 73 in the considered subspace can be diagonalized analytically.
The eigenvalues are found to be

By = Ec — Ey /4~ \JE% + EcE; /2 + 5E3/16

By = Ec + Ey /4~ \/ % — EcE, /2 + 5E3/16

By = B¢ — Ey/A+ \|E% + EcE; /2 + 5E3/16

By = Ec + Ey/4+ \/E% — EcE; /2 + 5E3/16 (5.10)

In the following, we work in the eigenbasis of .74). In the eigenbasis the whole Hamil-
tonian H (t) is given by

Ey () 0 Vos(t)

H(t) = ’7%@) VzEl%t) V%gt) Vzg(t) (5.11)
Vao(t) 0 Vie(t) Es

where all the time dependent entries are proportional to n(¢) and can be found an-
alytically. The qubit states are denoted by |0) and |1) and the rest of the space is
spanned by the leakage basis states |2) and |3).

In the next step, we split the Hamiltonian H(¢) in two parts Hy(t) and dV (¢)

Ey, ~n(t) 0 0
Hot) = | ™) , (5.12)

(5.13)
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OV (t) can be treated as a time-dependent small perturbation. We find the following
equations for the unperturbed system and the perturbation of the state

10| Wo(t)) = Ho(t)|Wo(t)) (5.14)

and
10,00 (1)) = OV ()| Wo(t)) + Ho(t)|0W (1)), (5.15)
where [U(t)) = [Uo(t)) + |0U(¢)). The states |¥y(¢)) and |§U(¢)) can be expressed as

[Wo(t)) = Zai(t)m (5.16)
and ,
09 (1)) = Zbei(t)li) (5.17)

The initial conditions are given by the only non-vanishing amplitude of the ground
state ao(0) =1

[Wo(0)) = [0) (5.18)
and

|0W(0)) =0. (5.19)

We find ay(t) = az(t) = 0. The results for the amplitudes to be in state 2 and 3 are
further given by

dbo(t) = —i exp(—iEQt)/O dr exp(iEy7)Vor (T)aq (1)

Sby(t) = —i exp(—iFst) /0 ' dr exp(iBym) Vo (T)ao(7) (5.20)

The probabilities to be in states 2 and 3 are given by

pa(t) = ‘ /0 i exp (i Bym)Var (T)ar (1)

2

2

ps(t) = ‘/0 dr exp(iE37)Vao(7)ao(7) (5.21)

In the next step we determine the amplitudes ag(t) and a;(t). The time evolution
generated by Hy(t) can be found using the rotating wave approximation, because the
whole system is driven at the qubit transition frequency w = E; — Ey. The evolution
in the qubit subspace is governed by the Hamiltonian

PP = (it )
o (oo O
YA(t) cos(wt) B

N Ey f(t) exp(iwt)
~ (f(t) ) (5.22)

exp(—iwt) E,
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where P = |0)(0[ + [1)(1| is the projector onto the qubit subspace and f(t) = ZA(t).
With the ansatz

|W(t)) = co(t) exp(—iEpt)|0) + c1(t) exp(—iE1t)|1) (5.23)

one finds in the case of resonance w = E; — F, the following two coupled differential
equations for the amplitudes

ieot) = F(Her (1)
.d
zacl(t) = f(t)co(t) - (5.24)

For the initial conditions ¢(0) = 1 and ¢;(0) = 0, the solution is given by

co(t) = cos (/Ot de(T))

c1(t) = —isin (/Ot de(T)). (5.25)

In the end, we find
t
ao(t) = cos (%/ dTA(T)) exp(—iEpt)
0
v [
a,(t) = —isin (5 / dTA(T)) exp(—iEt). (5.26)
0

The rotating wave approximation holds for |f| < |w|, where f = vA and A is the
amplitude of the pulse.

For the rectangular pulse form, the probabilities to be in the states 2 and 3 at
time T are given by

T
po(T) = VZA? dtexp (i(Fy — Fq)t
21 5

X cos(wt) sin (%At) ‘2

/T dt exp (’L(Eg — Eo)t)

0

p3(T) = VgA?

2

X cos(wt) cos <%At> , (5.27)

where V3, and V3 are defined by Vo, (t) = Varn(t) and Vi (t) = Vson(t).
To leading order in the small amplitude A, we find for t < T

E) — E5)? cos?(wt) + w?sin?(wt)] sin®(yAt/2)
[(BL — Ez)? — w??

5 |(E3 — Ey) + exp(—i(Eo — E3)t)

p(t) ~ a3l

1
(Eo — E3)? — w?]
2

X cos(yAt/2)[(Ey — E3) cos(wt) + iw sin(wt)]| . (5.28)

b3 (t) ~ A2VE’>20 [
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Figure 5.5: The currents in the superconducting loop Ix(d) as a function of the phase §
over the box.

The probability p,(t) contains the two frequencies 2w and yA appearing in Fig. 5.2.

To close this chapter let us make a short note about the influence of the leakage on
the read-out mechanism [Cottet03]. A Josephson junction with a Josephson energy
E; much larger than that of the box was used to perform the read-out. This read-out
junction forms a superconducting loop together with the box, see Fig. 5.1. The loop is
biased with a magnetic flux ¢yd,, (where ¢y = 1/(2¢)). The read-out junction switches
to a finite-voltage state if the bias current [, has the critical value I{* = E'J/ ®o-
To perform the measurement the read-out junction is biased by a current slightly
lower than the critical current. The states of the box lead to distinct currents I
in the superconducting loop. The current through the read-out junction is given
by I, — I;(5, Ny = 1/2). If the current I; enhances the current through the read-
out junction to a value higher than the critical value, a switching of the read-out
junction occurs with an increased switching probability Py. The currents Iy and [,
have opposite sign, see Fig. 5.5. This leads to distinct switching probabilities, which
makes the measurement possible. The currents I, which depend on the state |k) of
the box, are shown in Fig. 5.5. The currents are found by evaluating

16, Ny = 1/2)) = by S Bu(6, Ny = 1/2). (5.20)

The eigenvalues F) depend on the phase § via the Josephson energy E;(§) = EY cos(6/2).
If the system is in the states |k) with probabilities p, before the measurement, the
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switching probability of the read-out junction is given by

7
Pswitch(IPa T, Ng = 1/2a 5m) = Zpkpk(IPa T, Ng = 1/21 (S’m) . (530)

k=0

I, is the applied probing current, 7 its duration, and o, is the phase due to the
external magnetic field. Optimal read-out conditions would occur if the parameters
T, Om, and I, are tuned to values, such that the probability P, is one and P, vanishes.
This cannot be achieved with the setup used in Saclay. According to Fig. 5.5, the
magnitudes of the currents I are smaller or of the same order as the currents I
and I;. For certain values of § they vanish, e.g., § = m. Therefore, we expect
that the higher states lead to a switching of the read-out junction with probabilities
P, — P; with values between Py and P;. This fact would disturb the measurement,
see Eq. (5.30), if the probabilities po — p; would be sufficiently large. This is not the
case for the parameter regime considered in the Saclay experiment (see above).

5.4 Conclusions

Leakage of a Josephson qubit operated in the regime of the recent Saclay experiment
was investigated. The NMR-like microwave pulse operation leads to Rabi oscillations
of the qubit. A numerical analysis of the problem including totally eight states
was made by calculating the population of the higher states. The magnitude of the
leakage during the pulse operation was obtained as a function of the amplitude of the
oscillating gate voltage. We find that leakage turns out to be negligibly small for the
experimental relevant parameter values.



Chapter 6

Summary and Open Questions

In the first part of this thesis we have devoted considerable attention to the decoher-
ence of a two-state system due to an unconventional nonlinear environment and in
the second part, a detailed analysis of a measurement of a spin one-half using a mag-
netic resonance force microscope was carried out. These investigations concerning
the dissipative dynamics of two-state systems are important in the context of recent
experiments and theoretical considerations, e.g., in the field of quantum information.

The idea of the Chapters 2 and 3 was to use a specific model for a nonlinear bath to
learn about the differences between linear and nonlinear environments for arbitrary
system-bath coupling strength. The analyzed nonlinear bath consists of a single
two-level system subject to a linear oscillator bath. The effects of its action on a two-
state system were examined by calculating spin-spin correlation functions. The high
temperature limit was studied. The results stemming from different popular approx-
imation schemes, i.e., Markoff and weak-coupling approximation have been analyzed
and discussed in detail and various parameter regimes have been investigated. The
Markoff approximation yields good results as long as the coupling strength is small
enough, such that the decay is slow compared to the bath correlation time and the
transition frequency. However, if the bath spectrum displays sharp structures, their
effects on the correlator of the system are only described by the weak-coupling equa-
tion with its memory kernel. Both approaches fail for the regime of large system-bath
coupling. In contrast, replacing the nonlinear bath approximately by a linear bath
may still represent a good approximation to the original nonlinear bath. The bath
spectral density for this linear bath is chosen in such a way that it coincides with the
nonlinear one at low system-bath coupling. This approach, though valid only in the
weak-coupling regime, might fail while increasing the system-bath coupling strength.
We discussed its validity in detail.

We find that, as opposed to the Markoff and the weak-coupling approximations the
substitution with a linear bath might still be a good approximation for the nonlinear
bath also for higher coupling strength, which applies especially for a peaked structured
bath with a sharply peaked bath spectral density.

In Chapter 3 the nonlinear bath model was analyzed at zero temperature using
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flow equations. The use of this non-perturbative method to treat the dissipative
four-state system goes beyond the weak-coupling limit. The analysis was carried
out by first obtaining flow equations for the general dissipative four-state system
coupling to linear baths with not necessarily Ohmic bath-spectral densities. The
basic strategy was to calculate first the equilibrium correlator of the two-level system
exactly using flow equations. Then it was calculated within the common linear-bath
approximation, where the linear-bath correlation function is chosen to be the same as
that of the nonlinear bath. The linear bath approximation involves the solution of the
spin-boson problem with flow equations, first with an Ohmic bath-spectral density to
obtain the linear-bath correlation function and second with exactly this linear-bath
correlation function, which consitutes a new peaked bath-spectral density. In light
of the above considerations, we have learned that the phenomenological linear-bath
description can lead to results agreeing, to a large extent, with the ones obtained
from the nonlinear bath even in the intermediate-coupling regime. As far as peak
shapes are concerned, the agreement between the two approaches turned out to be
better for a peaked bath spectral density similar to the high temperature case.

Second, in Chapter 4, we discussed an indirect, weak quantum measurement of
a single spin by a magnetic resonance force microscope. The goal of various experi-
mental groups is to reach the ultimate goal of single-spin detection, which seems to
be possible within present-day technology. The quantum dynamics of the spin-plus-
cantilever system were analyzed in terms of the reduced density matrices for the spin
and for the cantilever, in the presence of coupling to the environment. Two differ-
ent ways were used to obtain the dynamics of the density matrix: the path-integral
method and a master-equation approach. The path-integral results are valid for all
temperatures and coupling strengths, as long as the adiabatic approximation is satis-
fied. It was shown that the spin is measured in the direction of the effective magnetic
field. The cantilever shows two distinct trajectories depending on the spin direction.
These two oscillations are completely out of phase, which makes it possible to use
the setup as a measurement device, i.e., not only the absolute value of the spin can
be detected, but also its direction can be determined.

Chapter 5 contains a discussion of leakage, which turns out to be negligibly small
in the Saclay experiment. A number of technical details are given in Appendices A.1-
A.12.

To close this chapter let us turn to some open quesions. A question showing up
in our specific model, discussed in Chapter 2, is the following: Why does the weak-
coupling solution for the unbiased case become exact in the high-temperature limit
and therefore coincides with the exact approach 17 Thence, a possible extension
includes an analysis of the higher-order terms in the weak-coupling equation going
beyond the weak-coupling limit. Generally, higher-order correlation functions are
important for the analyis of nonlinear environments, since the cumulant expansion
does not break off.

In future considerations, one should also derive the asymptotic flow equations and
find out if they fit into the universal behavior scheme observed for other similar flow
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equations. Asymptotic flow equations can also determine the low frequency behavior
of the correlation functions, i.e., one should see if the Shiba relation is also valid for
the dissipative four-state system.

Especially for the biased case, one should investigate the effect of shifts of the
bosonic modes. The reason to use such an additional unitary transformation is the
following one. For each unitarily equivalent Hamiltonian, one obtains the same re-
sults. When approximations are made, things might change, because depending
on the representation of the Hamiltonian, different terms gain different significance.
Thus, one possibility to improve the accuracy of the flow equations is to introduce
a shift of the bosonic modes. Additional parameters could be tuned to an optimal
point, where the sum rule is fulfilled best.

Another direction for future work could be to try different generators, i.e., a
different fixed-point Hamiltonian consisting, for example, of the free bath Hamiltonian
and the free four-state system without interaction between them. This might be
advantageous. The influence on the zero values in the correlation functions owing
to the finite number of bath modes would be especially valuable. Moreover, it could
also be expedient to use higher-order truncation schemes for the flow equations.

Furthermore, higher order correlation functions are helpful to learn about fur-
ther differences of nonlinear and linear environments. Using a linear ansatz for the
bosonic operators in the observable flow, the correlation functions factorize, like the
correlation functions belonging to a linear environment. This is why higher-order
correlation functions could not be investigated up to now. It would be valuable to
use higher-order truncation schemes and modify the ansatz for the observable flow in
order to calculate higher-order correlation functions.

Yet another interesting nonlinear bath is a nonlinear bath due to nonlinear cou-
pling, which could probably be studied in a convenient way using flow equations.

More insight may be gained by examining the nonlinear bath in the range of
temperatures between the two limiting cases covered in this work. This leaves the
door open for the use of the quasi-adiabatic propagator path integral method or other
numerical methods which might be helpful to learn about intermediate temperatures,
specifically in the stronger-coupling regime. Another extension would be the analysis
of the transition between the the two limiting cases of the nonlinear bath and the
linear bath. In such an analysis one must replace the two-level system B by a spin
of larger magnitude in order to observe the transition to the linear bath.

There are several open interesting questions connected to the MRFM: one is the
choice of the environment and the discussion of other decohering sources neglected in
our work. Hence, direct decohering mechanisms acting on the spin should be included
and especially their influence on the measurement should be analyzed further. The
dissipative dynamics of an open quantum system are sensitive to the low-frequency
behavior of the spectral density of the environment. While the Ohmic model is a
plausible model, it will be worthwhile to identify the sources of the environmental
fluctuations and construct a physical model of the environment starting from a more
microscopic theory of the cantilever.
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Appendices

A.1 Spin in a fluctuating field

Here, we discuss the derivation of the results for the spin in a fluctuating magnetic
field, presented in Sec. 1.1. The Hamiltonian is given by

H(t) = €6, + B(t)5, . (A.1)

The Gaussian process is characterized by its mean (B(t)), assumed to be zero, and
the correlation function (B(t)B(t')), or its Fourier transform C'(w)

c(t—t)=(B@t)B(t)) = / N dwC (w)e™ =t (A.2)

—00

We will concentrate on two specific examples, namely white noise
Cw) =k, (A.3)

which stems from an Ohmic bath spectral density at infinite temperature, and colored-
noise correlations originating from the linear approximation to the nonlinear bath
treated in Chapter 2, also at infinite temperature

8AZy 1

] A4
T (w? — 4A2)2 + 4w?y? (A4)

C(w) = (BB), = J*

Let us now discuss the solution for the dynamics. The diagonal elements remain
unchanged py, (t) = py4(to) and p__(t) = p__(ty), while the off-diagonal elements
decay. The solution for the specific sample of a Gaussian random process

po (1) = exp {—Qie(t ) — 2 / t dTB(T)] pe(to) (A.5)

to

must be averaged over many different Gaussian noise fields. For a Gaussian field,
with arbitrary correlation function (B(s)B(u)), the following identity holds

(exp(iX)) = exp (—%Var(X) +1 (X}) . (A.6)
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Now we use this identity for our problem. At every point in time, the field B(.) has
a Gaussian distribution:

<exp <_2¢ /t:dTB(T)>> ~ exp (—% <4 /t " dsB(s) / tduB(u)>)

- exp(—Q/t:ds/t:du(B(s)B(u))). (A7)

Using Eq. (A.2) and the integral

/t ds /t duemimm Sin(%((i); W) ) (A.8)
we find the result
et = exp |2t —10) -2 [ aoC@) T o). (a9

For white noise correlations C'(w) = k, the integral

[ee] in(<(t —t 2
/ P s A G D) P NP (A.10)

. (5)?

has to be solved. For colored noise, the integral

I(t —ty) = /oo dw (BB), Sin(%(i)—Q t))? _ 2/00 d (BB), 1 — cos(w(t — ty))

- (UZJ —0 w2
(A.11)
must be calculated. For Ima < 0 (we consider only the case v* < 4A?) and ¢ > 0
we find
1 — cos(zt) [t 1 exp(—iat)
do———— =271 | — — . A12
/oo ¢ 2%(r — ) o [Qa 202 * 202 ( )

If we use the following representation of the correlation function

J%i Y +w - tw
(z) = >z e{wa(x+i7—iw+x+i’y+iw)}’ ( )

where w = i4/4A% — 42, we obtain

2

Ity = Re{%[(7+w)<wi7 - e>;})32((102;3)27_21>

CIRIE ST ) Y
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A.2 Selection rules

Here we would like to determine the possible transitions of the system, discussed in
Chapter 2 and 3, leading to different peaks in the Fourier transform of the equilibrium
correlator. The Hamiltonian for S + B alone is given by
Hsp = €560 + Ng6S + J5568 + AGE. (A.15)
We define & = 65 ® 62 with 222 = 1 and [, 2] = 0. This symmetrie leads to
degeneracies. We obtain two eigenvalue problems
Hspli) = A7)
Pliy = +li), (A.16)

where the eigenvalues ); are numbered from lowest to highest. The spectrum contains
degeneracies in the transition frequencies. The eigenvalues are

i\/J2+A2 + A% + €% 12\/A2A§+ J2eg + Aeg . (A.17)

This is why we find generally —\; = Ay and —Ay = A3, see Figs. 2.5 and 2.6. Due
to these regularities, we find four distinct frequencies for the biased case €5 # 0. No
further symmetry is observed, which leads to the same number of dephasing peaks
in the Fourier transform of the equilibrium correlator.

For the unbiased case e¢s = 0 we find that the following matrix elements vanish
(2|68(3) = 0 and (1/62]4) = 0. This leads to the transitions shown in Fig. 2.5,
induced by the operator 62 coupled to the driving force F(t). For 65, we find the
same selection rules. The equilibrium correlator for v =0

(@5 (1)87) =Y mil(ilo7 ) Pe A (A.18)
ij
therefore contains two characteristic frequencies |Ay — A1| = |A4 — A3| and |A\3 — A\;| =

|As — A2/, corresponding to two delta function peaks in the Fourier transform, which
are broadened for increasing 7.

A.3 Equilibrium correlator for Approach 4

One result of the equilibrium correlator for eg # 0 left out in Sec. 2.13 is listed below:

K7 (w) = %Re { (ig - é) |5:—iw} : (A.19)

where
O(s) = 2( — 16F (s)sez\* + M (4G (s) + s)A%(s> + 4sCpp(s) + 2A%)

+ex[s(16F(s)” + (4G(s) + 5)*) + 2(4G(s) + 3s)A%] + 4se§}) (A.20)
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W(s) = 5( — 16F(s)se5N” + M{(4G(5) + ) A3(s” + 4sCinls) +4A3)

A Appendices

+e3[s(16F(s)® + (4G(s) + 8)?) + 8(2G(s) + s)A%] + 486%-}) (A.21)

and

A.4 The flow equations for the Hamiltonian

. CBB(S - 2’1,)\) — CBB(S + 22/\)
B 2i

F(s)

G(S) _ CBB(S — 22/\) ;— CBB(S + 22)\) ’

A=4/A% + €.

(A.22)

(A.23)

(A.24)

Below we list the result for the dissipative four-state system discussed in Sec. 3.3. A
sum over ¢, 7, and p respectively is supressed in the formulas.

dAOO
dl

d AOn
dl

dAnO
dl

dAnm
dl

—2 37 (APAL + XIXT + APAY + A0
k
kOKP 4 KK 4 kY K 4 /{};01{};0) W
23 (= 200N — 220" — 2Pkt — 240K
k
(kYA 4 /{f)\fz — AV — )\fj/{il]eim@nk + 1))wk
2 Z ( — 2/\2i/\2i — 2)\20/\20 — 2/{2%2” — 2/4,2()/620
k
(KON 4 /-@Zj)\ﬁg — N0l )\Zj/iﬁg]eim(an + 1))u);C
9 _2/\00/\nm_2)\0m)\n0_2 00 nm __ 9 0m ,.n0
Z k "k k Nk Ki K K Ki
k

ij \pl ij  .pl
(Ag X =+ K5 K, ) €ipn€jim
10 yIm im 10 20 Im wm .10

(ngi/\’,;l + /{Zi)\gl — Agiﬁzl — /\Zimgl)eﬂm} (2n, + 1))wk
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(A.25)
d)\OO
PE 2 gy
q
dA%" 240n 0i A 01 Ji A dl 0n
dl = —wk)\k + 2(/§3k A + K)k AJ )Gilnwk +2 Z nkq/\q
q
d)\ZO 2310 i0 A 10 iJ AL n0
dl = _kak + Q(Kk A + Hk: A J)Eiank + 2 Z nkq)‘q
q
d]; — _wz)\zm +9 ((I{%ZAM + HZZAOI)eilm + (K%OAlm + /f;cmAlo)eiln> W
+ 2 A
q
dI{OO
= R 2
q
dﬁ;On . A
d? = —wzlﬁgn — 2()\2ZAOZ + )\i’A’l)eimwk -2 Z nqklign
q
dﬁzo 2 n0 i0 A 10 ij ALj n0
g = TWRR 200, A" + N AY ) eippwy — 2 anklﬂiq (A.26)
q
dh;nm . . . .
d]Z = —wikP™ — 2(()\21A"l + AAM) i + (ALAM™ 4 )\zmAlo)éiln>wk

=2 ey
q
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A.5 The generator coefficients

Below we list the coefficients 7, obtained in Sec. 3.3.

Nkq

+ 4+ + A+ L+ A+ 4+

_I_

wi — wy
A B2 € jim (Snm) + A KR €t (Sm)
)\2% €itn (Son) + )\fcofifl%iln (Xno)
)\fclliflleiln (Xon) + )\Zjﬁfljeiln (Zno) )wi
()\O%k €itm (Snm) + )\ZOfik €itn (Snm)

AP K €t (Snm) + A" K3 €itn (Srm )
)\O%k €itn (Son) + )\f]%k €itn (Xno)

)\z%k €in (Son) + /\f]jfiggﬁizn (Xno) )wq]
2 [ (RN et (Sm) + KNt (S
/{Zj)\glejlm (Sam) + K" A€t (Som)
ngi)\gleiln (Son) + lfioz\éoﬁiln (Xno)
/{fj)\gleiln (Zon) + /izj/\fljeiln (Zno) )wi
(mgi/\zleilm (Xnm) + Iﬁzo/\fcmﬁiln (Enm)

KA €t (Snm) + KA e (Sm)

K,gi/\glqln <20n> + /fflo/\gcoeiln <En0>

RN i (Son) + RN e (Sno) Yo }

The expectation values of ¥,5 are defined by

tr{2,s exp(—FHs)}
tr{exp(—8Hs)} ’

<Ea,3> =

where Hg is the Hamiltonian of the two-spin system.
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5 {ka [(Agimgleilm (Epm) + )\fco/fémeiln (Enm)

(A.27)

(A.28)
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A.6 The flow equations for the observables

The flow equations for the observables from Sec. 3.3 are

d h,OO
dl

d hOn
dl

d hnO
dl

dhnm
dl

dy’

dl

dpd®

dl

dp”

dl

nm

dpy
di

+ o+ +

0i, 04 0, 30 00,00 ij  ij
—2 E :</\klu'k + Ak b A g A A g
k
Ky vt + KRV 4+ kU + ki vy )wk

237 (= A = AW = NP = A
k

20 in 00. 0n in . 40 On_,00
KgVy — Kg Vg — KV — K Vg

0+ ! = AR = N e+ 1) )

2 (= A = N — Nl — N
k

R R = R

i0 .10 ij g 0,10 iy lj
(K g + B 1y — Mg v — N v € (2ng + 1) )wy
00, nm 0m , n0 n0, 0m nm 00
2§ :(_/\kﬂk = N Hg — Aoy = AR
k
00, nm 0m_ ,n0 n0.,0m nm. ,00
KV —Kg Vg — KV — K Vg
ij pl ij_ pl
()‘k My + K Vg )Eipn‘fjlm
im 10

i0 Im i0_ Im im_ [0
[("fk M+ R e — A Ve — ALY )€in

(Iigiﬂz,l + K,Ziugl _ Agiyl?l _ Azillgl)ﬁilm] (an —+ 1))wk
2 Z MeqHy
q

2(kY A% + K1 hI €y + 2 Z Tkqhly"
q

2(kPAO + K W) ey + 2 Z Tkqhly
q

9 ( ( Hgi S K;;czi hOl) itm + ( /‘520 Bim Hzm th) eiln) Wy + 2 Z Mkghl™

q
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dy,go 00
dl - _2;77‘1’9”(1

dvd
dl

n0
dvj;

dl

nm
dvy,

dl

= —Q(Agihw -+ )\fhﬂ)eilnwk -2 Z 7’]qkl/2n
q

= —Q(Azohlo + /\Zjhlj)Gilnwk -2 Z quV;LO (A29)
q

= -2 ((Agihnl + ANPR g + (NORI™ + A;’;nhw)eiln)wk —2) g™

q

A.7 Formulas for the Pauli matrix tensor products

To derive the flow equations in Sec. 3.3, the following formulas are useful, since one
often has to calculate commutators of the ¥;; operators

[Eija Ekl] = Q’iéiknéﬂzno + 2i€jln5ik20n . (A30)
For the commutator of a superposition of the same operators, we find

27;370]' ynlejlmznm + 2ifEiOyZm 6ilnznm

TopYvs [Eaﬁa 275]
Qixnjyolejlmznm + 22.ximleﬁilnEnm
20Z0;Yo1€jin Y0 + 21Ti0Y10€iin Xm0 (A.31)

+ + +

2023 Yit€jin0n + 20T55Y15€itn2n0

where the z,4 and y,45 are arbitrary complex numbers. For the anti-commutator we
obtain

[Xij, Bl + = —2€ikn€jimEnm + 204051 (A.32)

and for the anti-commutator of a superposition we find

220 Ynj2n0 + 2Ti0Yin2on + 2Z00Ynm>nm
220905200 + 2Zin¥YioXon + 2T0mYnonm
2200YnoXno + 2T00Yonon + 2TnoYomXnm
2210Y002n0 + 2ZonYo0X0on + 2ZnmYooXinm
2205105200 + 2T50¥i0200 + 2T00Y00 200 (A.33)

25595200 — 204 Yki€ikn€jimXnm -

TapYrs| Lags Lys)+

+ o+ o+ 4+
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A.8 Flow equations for the biased case

Below we note the result for the biased system eg # 0, see Sec. 3.4.

dAOO
= Y (A AN AP R A
k
dAOl
dl = 4 Z KZ22A23W]C
k
dAlO
dl = 4 Z K/zlAzl(A)k
k
dAP
dl = 4 Z 1622)\;1610-’]9
k
dA®
0= Ak
k
dAQQ
T = —4 Z ke AR wy
k
dA33
= A e
k
d/\03
TR = AP - 2P Ay 4 26 A+ 2 A
q
d/\ll
d_; _ _wz)\}g + 2/{22A13wk + 2&21A30wk +92 anq)\;l
q
d)\?’l
d—; = —wiA + 262 A%y, — 262 AWy + 2 Z kg Ny (A.34)
q
d/€02
T = R — P AT+ 2 AP+ 2 APy 2D s
q
d/‘dil 2. 21

= —wikp +2APA20 — 2 ANy + 20 APy — 2 Z nqknzl
q

dl
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The flow equations for the observables are

d hOO
dl

dhOl
dl

dth

dl

dhlS
dl

d h30
dl

d h22

di

d h33
dl

dyp®

dl

dy!

dl

dyi!

dl
dl/22
dl
dy,%l
dl

—2 ) (AR + A+ A
k

23 (W2 + X
k
2 Z (/{iluzl + Azly,fl)wk
k
23 (kPutt + AR
k
_QZ (K%lﬂllcl i )\I1€1y131)
k
237 (W + AP
k
)
k

W

_9 Z (/gg?uzl + A2 ) wy
%
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31 31, ,.02,02 , .21 21
g My TRV TRV )wk

—2/{22h01wk + 2/<cilh22wk + 2 Z 77qu23

q

2/4;22h13wk + 2/<cilh30wk + 2 Z nkq,u;l

q

2&22h33wk — 2/~cilh10wk + 2 Z nkq,ugl

q

_2)\23h01wk + 2)\z1h33wk -+ 2)\11€1h13wk -2 Z 77qu((1)2 (A35)
q

AR w — 223 W wk + 20 B wy — 2 g

q
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The 7y, coefficients are

nkq

{ka )\03 21 222>+)\ K) <233>+/\ K, <213> /\231'{22 <201>

< /\31 21 <210> )wk + ()\03 <222> + /\11 02 <213>

2

q
)\31 2 <233> — AP (Sor) + AL (Sa0) — A2 (S0} g (A.36)
2wq [( — lﬁ)k2)\31 <E33> 1{22)\;1 <213> — lfil/\g?) <222> -+ K)22/\23 <E()1>
K2 (Sg0) + KNS (S10) g + (= K2AL (Sy) — KOZAS! (Slgg)

K](Q]l)\%?) <222> + ligZ)\g?’ <E()1> — Hgl)\}cl <230> + Iigl)\zl <210> )wq} } .

The non-vanishing expectation values are found to be

1
AGS
wp
JA,gGS
B w1 W2
E% + wy
W1 Woy
3JAA5 + 65(J2 + A2 + Jes) + (J + 65)’(1)1 + (—AAS + Jes)’wg + WiwWo
4w wy

—-J

AAg

w1

_AS

A2 + w1

w1 W2
A% + E?g + wy
w1Wsa

—A (A.37)

J2 + AQ =+ wy
—€s )
w1 W2

=/ A2AL + (J? + A?)é (A.38)
S S

wQE\/J2+A2+A§+6§+2w1. (A.39)
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A.9 The master-equation solution for the nonlin-
ear bath

In Secs. 3.4,3.5 a master-equation solution was compared with the flow-equation
results. Here, we present its derivation. The special case of small-enough o cor-
responding to a peaked, structured, bath spectral density, can be treated using a
Markoffian master equation to calculate the influence of the linear bath F' on the
system S + B. This does not restrict the choice of the system-bath coupling J. It
leads to the following equation with respect to the eigenbasis of H|n) = E,|n), see,
e.g., [Blum96]

pm m( Z (—i(Eyy — En)SmnOrmint + Rornen] pum (£) | (A.40)
where
Rm’mn’n == Z 5mnrj—n'kkn’ + 1-\;L—mm 'n! + Ixvzmm n’ Z 6" 'm’ I‘nk:km (A41)
k

We assume here that R,y = 0 if E,v — E,, — E + E, # 0, which constitutes
the secular approximation, i.e., the coarse-grained time evolution occurs over longer
time scales than the system time evolution. Furthermore,

L in = QuikQunN(E, — E,) (A.42)
Lrkin = Q@uiQunL(Em — Ey) (A.43)
where Q = 62, Qmi = (m|Q|k) and
L(z) = /000 ds exp(—izs) <XX($)> (A.44)
N(z) = L(—z)*. (A.45)

For the Ohmic bath spectral density with a sharp cutoff, we find
L(z) = azO(z)O(1 — z/wc) + i04 [we + zlog(we — x) — zlog(|z])] . (A.46)
T

The time evolution of the density matrix for a certain initial condition p(0) can be
found by integrating

(1) = “o(t). (A.47)

C is, as in Chapter 2, again a 16 x 16 matrix. The correlation function is obtained
using linear response theory and the Kubo formula [Enz92]

5 <A(t)> — tr {5,3@)21} , (A.48)
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with the initial condition §5(0) = —i[V, peg] At, where po, = e P /tr{e=PHs},
<%A@>:—m{@¢ﬂmVﬁAh:4QvawAm. (A.49)
eq

In our application, we have A= 6% and V= 6%. The Fourier transform of the equi-
librium correlator K2, (w) can be calculated using the fluctuation-dissipation theorem
[Schwabl97, Rickayzen80] at T' =0

KEW) = 1=y [ e (050,05 (4.50)

where )
lim ——— = 0O(w) . (A.51)

At T = 0 the equilibrium correlator K2 (w) vanishes on the negative w-axis. Using
that ([65(¢),65]) is an anti-symmetric function we find

K2 (w) = @(w)l/ dt sin(wt) {[67 (1), f]>eq = @(w)i/ooo dtsin(wt)tr {opt)oc} :

T Jo s —1At
(A.52)
The time integral can be evaluated using the diagonalized matrix C' in the time
evolution of the density matrix

/dmmm@m:/dmmmﬂ@@

0 0

:/ dt sin(wt)be8C) =15 5(0) = bedPs@/AHON=15,50)  (A.53)
0

provided Re\; < 0. b is the transformation which diagonalizes the matrix C' given
with respect to the eigenbasis of Hg. Therefore, the initial condition §p(0) must be
evaluated in the same basis. The result for the vector bed2e(@/A+<*)p=15(0) with 16
entries is rewritten as a 4 X 4 matrix M and used in the formula for the equilibrium
correlator Eq. (A.52)

K5 () = 0(w) “tr { [0 ]} (A.54)

which can be evaluated numerically.

The same master equation can also be used to calculate an approximation for the
bath correlation function. The result can be obtained using the same calculation as
above. We note only the results for the unbiased case.

J? —a a

(BB), = 6( ) (w+b)%+a? + (w—="0b)2+a%]’ (A.55)

where
a=—Re{N(—2A) + L(-2A)} = —2A« (A.56)
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and
b = —2A—Im{N(-2A)+ L(—-2A)}
= QATa [log(we + 2A) + log(we — 2A) — 21og(2|Al)] . (A.57)

A.10 The weak-coupling solution of the nonlinear
bath

We use the weak-coupling approximation to solve the model of the nonlinear bath
and compare it with the flow-equation results in Secs. 3.4, 3.5. We use the weak-
coupling approximation [Gardiner00] between system S + B together and system F.
This approximation does not affect the coupling between S and B. The advantage
of the weak-coupling approximation is that the discussion can be extended to finite
temperatures. The only restriction is that the coupling strength « to the linear bath
must be small enough to keep the approximation valid. The regime of such small
coupling strengths corresponds to a nonlinear bath with peaked structure, i.e., we
expect the (BB),, to have sharp peaks around the frequency 2A.
First, we recall the weak-coupling equation also used in Chapter 2

pt) = —ilHsp, p(t)] —/O dr (62,6 755768 p(t — 7)e557) ] (X (1) X (0))
+ /0 dr [65, &5 (1 — )6 P (X (0)X (7)) (A.58)

To obtain the correlation function (BB) , we replace .#5p by #p. If we look at the
weak-coupling equation for infinite temperature, which means we set (X (t)X(0)) =
~v4(t), we find again the exact master equation used in Chapter 2 for “Approach 1”.
Thus, the weak-coupling approximation becomes exact in this limit.

The Laplace transforms of the Ohmic linear bath correlation function with sharp

cutoff is found to be

K'(s) = %slog ( - i—i’) (A.59)
K" (s) = —% [wc — sarctan (w?c)} , (A.60)

where the Laplace transform [Doetsch67, Leuthold94] is defined by
Lf(t)=F(s)= / dte "' f(t). (A.61)
0

The weak-coupling equation is most conveniently solved in the eigenbasis of Hgp and
it contains convolutions, which become products in Laplace space.

A(s)R(s) = p(0), (A.62)



A.10 The weak-coupling solution of the nonlinear bath 145

where A(s) is a 16 x 16 matrix and R(s) is a vector with 16 entries containing the
Laplace transforms of the 16 elements of the density matrix. What is left to obtain the
Laplace transform of the density matrix is the inversion of the matrix A(s). Knowing
the time evolution of the density matrix is enough to find the equilibrium correlator
in the weak-coupling limit. This is done as follows.

(07 (t+7)57 (1)) = trsp{tre{67 (t + 7)67 (t)psp ® pr}}, (A.63)

where psp is the two-spin density matrix S 4+ B and pr is the oscillator bath density
matrix of system F. 67(¢) is a Heisenberg-picture system operator. We can rewrite
the correlation function as

(7 (t+1)07 () = trsp{o]tre{e™ 767 pror (1) }} . (A.64)
For this purpose, we define
Z(t+7,8) = trefe 765 pi (1)), (A.65)
which when traced, gives the correlator
(65(t+T1)55(t)) = trspoy Z(t+T,1). (A.66)

Z(t + 7,t) satisfies the same weak-coupling equation (Eq. (A.58)) with respect to 7,
starting from the initial condition

Z(t,t) =67 psa(t). (A.67)

The whole procdedure is exemplified by showing the derivation of the (BB) -
correlation function at zero temperature. We consider system B and F' alone. The
weak-coupling equation for the density matrix of system B is found to be

p11(t) = iApia(t) —iApa(t)
p12(t) = iAp11(t) — iApap(t) — 4/0 dr f(T)pr2(t — 7) + 4/0 drg(T)par(t — 1)

+ 2 /Ot drh(T) (Pn(t —T) + paa(t — T))

pa(t) = —iApii(t) +ilpy(t) +4 /Ot drg(T)pr2(t — 7) — 4 /Ot drf(T)par(t — 7)
+ 2 /0 drh() (pust —7) + puolt — 7)) (A.68)
pa2(t) = —iApia(t) +ilpa(t),

where we have defined

(7) sin(2A7) . (A.69)
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We find
A(s)R(s) = p(0), (A.70)

where now A(s) is the 4 x 4 matrix

s —iA 1A 0
—iA—2H(s) s+4F(s) —4G(s) A —2H(s)
iA—2H(s) —4G(s) s+4F(s) —iA —2H(s)
0 1A —1A S

A(s) (A.71)

Il

and R(s) is the vector containing the Laplace transforms of the density matrix

(s)
R(s) = E g . (A.72)
(s)

The matrix A(s) can be inverted and we find the Laplace transform of the solution
for the density matrix for weak-coupling

R(s) = A7 (s)p(0) . (A.73)
The inverse matrix B = A !(s) is given by

s(4K'(s) + s) + 2A2

Bu(s) = s(s(4K'(s) + s) + 4A2)
iA
B = dg(s)+ ) 1402
B iA
BE T TSAK(s) + ) + 4A?
2A2
Buls) = s(s(4K'(s) + s) +4A2)
Bo(s) = 2H (s) iA
2 s(AM(s) +s) | s(4K'(s) + s) + 4A2
Buls) = 5(fm+ : )
2T o\uM(s) + s | s(AK'(s) + s) + 4A2
Bun(s) = 2(2G(s)s + A2)
% (4M(s) + 5)(s(4K'(s) + s) + 4A?)
Bos(s) = 2H(s) 1A

s(4M(s)+s) s(AK'(s) + s) + 4A?2
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By (s) 2H(s) iA
BT S@M(s) +5)  s(AK'(s) + s) + AA2
Ba(s) = 2(2G(s)s + A?)

i (4M(s) + 5)(s(4K'(s) + s) + 4A2)
Buls) = (g + : )
% 2\4M(s) +5  s(AK'(s) + s) + 4A2

B 2H (s) iA

Bsa(s) = s(4M(s) + s) N s(4K'(s) + s) + 4A2 (A.74)
5 B 2A?

41 (8) o 3(5(4K’(8) + S) + 4A2)

iA

Biofs) = _3(4K'(s) + 5) + 4A2?
5 B iA

13(s) = S(AK'(s) + 5) + 4AZ
Buls) = s(4K'(s) +s) + 2A

s(s(4K'(s) + s) +4A2)’
where we have used that
K'(s) = F(s)+G(s)
M(s) = F(s) = G(s) = L{K'(t) cos(2At)} =
= %[ arctan (Lm) + 8A arctan (%) — 4A arctan (M>

s s
— dwe A + 4A? 2 2 L dweA + 4A?
L+ slog <wc+s wc + )—i—slog (wc—l—s + dweA + )

52
(1+55)]
— slog

G(s) = L{K'(t)sin(At)’} = —K'( ) — %M(s)
H(s) = L{K"(t)sin(2At)} =
= —4& [4A arctan (@) + 4A arctan (M>

() L (e

g2 52

We need the equilibrium density matrix in order to calculate the two-time correlation
function of the 6Z-operator. Knowing the Laplace transform the equilibrium density
matrix can be found easily using the following theorem

lim u(t) = lim sU(s) . (A.76)

t—00 s—0

We can start from any initial condition and will end in the equilibrium state after an
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infinitely long time. Therefore, for any initial condition we find
1 1 -1
~eq __ —

which is equal to gy = e~PAGT /Z. The result is reasonable because in the weak-
coupling limit the density matrix always remains a tensor product and there is no
other physically reasonable state to relax to at a given temperature.

We obtain first the following correlation function

S:(t) = 5 (0:(0),0:1) — (G212 (A.79)

which is a symmetric function in time and further, for our system we have (5),, = 0.

The Fourier transform S, (w) is also a symmetric function in w and is connected to
the bath correlation function for w > 0 as follows

(BB), = 2J%0(w)8,(w) . (A.79)

The formula contains a factor of J? due to the definition of (BB) . (BB)_ vanishes on
the negative axis w < 0, which can be seen from the fluctuation-dissipation theorem

o [ e (B0, BO) = (- ) (BB), 50

From the the time evolution of the density matrix we can deduce the Laplace trans-
form

B AK'(s) + s
5:05) = SR (5 + 5) 1 4A2 (A.81)
and the Fourier transform
~ 1
Sz(CL)) = ; Re {Sz(8)|s:—iw+0+} (A82)
~ 1 16A%R(w)
S:() = AT T 3 AT\ + JwR@)E (4.83)
where o
Rw)= ReK'(s = —iw+0") = §w® (1—-w/we) (A.84)
Iw)=mK'(s = —iw+0") = —%wlog (]1 — wg/w?) - (A.85)

The high temperature limit Eq. (2.85) is obtained by setting K'(s) = 7/2 and K"(s) =
0. In this limit, the bath correlation function is given by (BB) = S,(w).

In the next step the Shiba relation is checked. This relation is an exact general
result, valid at zero temperature, and is given by
S,(w) 2

: _“ — \2
},lif(l) |(,<J| - T‘_OZ(’R'XZ) (A86)
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for an Ohmic bath-spectral density. In order to check the validity of the relation in
the Born limit, we calculate

X=(t) = i0(2) ([6:(2), 62]) (A.87)

or its Fourier transform Y, (w) in order to obtain the static susceptibility

Xz = Xz(w=10). (A.88)
The Fourier transform .
%Z(w) = %XZ(S)‘s:—iw—f—O"‘ (A89)

is again calculated via the Laplace transform, given by

4A
() = ) A.90
Xe(8) = SRi(5) + 5) + A2 (4.90)
For the left side of the Shiba relation, we find
_ S,w) a1
1 =——. A91
w50 W] 2r AZ (4.91)
and for the static susceptibility, we obtain
11
Xz = ——. A.92

Therefore, the Shiba relation is fulfilled in the Born limit for weak coupling «.

A.11 Path-integral formulas

In this appendix we will fill in some of the details left out of Section 4.6. It is
convenient to define v = «/2 as the friction constant. The classical solutions to
Egs. (4.50,4.51) are given by

1 : y(T—to
ra(T) = sin (wnlt —1o)) {7“2- sin (wr(t —7))e (r—to)
+[r; — rp(t)] sin (wr (T — to))e"’(T’t)} + (1), (A.93)
1 : —y(T—to
Ra(r) = (wr(t - to)) {RZ’ sin (w(t —7))e

Ry — Ry(H)] sin (wr(r —t0))e 70} + Ry(r), (A.94)
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where ,
ro(7) = / dr'G,(r — 7V Fu (), (A.95)
to
R,(T) = / dr'Gr(T — ) Fr(7"), (A.96)
to
and the Green’s functions are defined by
. sin(wgT)
Gr(r) =0O(r)e ""——=, (A.97)
WR
L Sin(wgT)
G (1) =0O(r)e" ———. (A.98)
WR
The influence functional for s’ = s is found to be
JSS(Rfanat; R’iariatO) = (A99)
INOL o (; (DR — LRy e — |
5y XP i[Kp(t)Ryry + Ki(t)Rir; — L(t)Riry — N(t)Ryr;

tai(t)rs + ag(t)rg] — A(t)r} = B(t)ryri = C(t)r?),

where the functions appearing in the influence functional are all real and defined by

Ky(t) = wgcot (wr(t —to)) — 7, (A.100)
K;(t) = wrcot (wr(t —t)) +7, (A.101)
wre (tt0)
L(t) = , A.102
0 sin (wgr(t — to)) ( )
Y(t—to)
N(t) = —2F° , (A.103)
sin (wg(t — to))
1 e~
Alt) = = A.104
® 2sin® (wg(t — o)) ( )
t t
X / dT/ dr' sin (wr(1 — t0)) Kr(1 — 7') sin (wgr(7' — to))e”’(ﬁw) ,
to to
6_7(t+t0)
B(t) = (A.105)

Sil’l2 (U)R(t - t()))

t t
X / dT/ dr'sin (wr(t — 7)) Kr(1 — ') sin (wg(t' — 1)) e+,
to to
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1 e 2o
5 (wR t - t() )

/ dr / dr' sin (wr(t — 7)) Kn(r — ') sin (wa(t — 7)),

o) =

(A.106)

ap(t) = z(t) — Ks(t)z(t), (A.107)

a;(t) = N(t)z(t), (A.108)

z(T) = ns /tT dr'Gr(r — ) f(7), (A.109)
z(r) =ns /tT dr'0,Gr(t — ") f(7'). (A.110)

In all of these expressions, the dependence on %, has been suppressed.

Let us now discuss the solution for the density matrix. At time ¢ = t, we start in
a product state of the cantilever and bath. The cantilever density matrix is assumed
to be a Gaussian wave packet with width o at ¢t = ¢y,

§D (2,2 1) = \/_U (—%(z Y )) (A.111)

One could start from a more general initial state, but we will later take the limit
to — —oo, such that all the information regarding the initial state is lost completely
at time ¢ = 0. The experiment starts at time ¢ = 0 by switching-on the magnetic
field. At this time the cantilever has interacted with the bath for a very long time
and is in equilibrium with the bath, i.e., it is no longer in a product state.

The general solution for the diagonal elements of pgg), starting from this initial
condition, is

PO (R, rp,t) = “\V(ﬁ)‘ \/2"7 Xp{[ (—A(t)+[232(t)—8A(t)C(t)

_LT(t)]atél(A(t)Kf(t) L#)B(#)Kilt) + C()L()]>U4)

+iry (af (t) — 4lai(t) B(t) — 2a;(t)C(t)]o” + 4K;(t)[ag () Ki(t) + ai(t)L(t)]a4)
+iRsry (Kf(t) + 4[2C(t) K (t) + B(t)N(t)]o”

HAKG ([ Ky (1) Ki(t) — L(t)N(t)]04> —2[a;(t) — N(t) R0

/D(t)} . (A.112)

where
D(t) =1+ 8C(t)o* + KZ(t)o*. (A.113)
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In the limit ¢y — —oc we obtain the final result presented in Eq. (4.56).

The influence functional for s’ = —s is found to be given by

Js—s(Ry,1p, 85 Ry iy to) = (A.114)
IN(®)|
2T

t
+A;(t) Ry + Ai()R; + / dre(r) )

to

exp (i[Kf(t)Rfo + Kz(t)Rﬂ‘Z — L(t)Rﬂ‘f — N(t)RfTi

xexp (= A)r = Blt)ryrs — C()r2 + bi(t)ri + by(t)ry +b(t))

where

Ap(t) = 9(t) — Ki(t)y(t), (A.115)

Ailt) = Ltyy(0), (A.116)

¢ ¢ sin (wr(T — tg))e 7"
be(t) =2A@)y(t) — | dr | dr'y(7")Kg(r — 7') ( - (r—t z) , (A117)
to to Sin (LUR(t t()))

t t sin (wgr(t — 7))e?—t0)
(o) = B — [ ar [ arye) ke - 2RI g
to sin (wg(t — o))

- \ t L sin (wr(T — tg))e 7=
b(t) = —-AQ@)y (1) + / dT/tO dr'y(r) Kg(r — ') sin (wR(t - to))

T)Kgr(T — my(r'), (A.119)

~~

l\Dlr—t
s*\w
~
\]
\H
~
\\'\
QQ

y(T) = 2ns /T dr'G.(r =) f(7"), (A.120)

to

J(r) = 2ms / r0,.G(r — V(). (A121)

to
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This leads to the following general expression for the off-diagonal elements of pgf,):
@ (Ry,rs,t) = 7|N(t)| 20 ex - A@ 2(t) —
s —s(Re,mr,t) = ps |7 + [2B*(t) — 8A(t)C(t
Ps, ( Hlr ) \/% m f ( ) [ ( ) ( ) ( )
L(t)

—=3 0" — 4(AW KX + LOBO K1) + o<t>L(t>1)o4)

+ry (bf(t) + [—4B(t)b; (t) + 8bs (t)C(t) + A;(t) L(¢)]o?
HA[A; (1) B Ki(8) + by () K2(E) + 24:(6)C (£ L(t) + bi(t) K (t)L(t)]a4>
+iRyry (Kf(t) +4[2C(t) K (t) + B(t)N(t)]o?

+4K;(t)[K(t)K;i(t) — L(t)N (t)]04>

+iRy (A () +8A4;)C(t)0” + AK;(t)[Af (t) Ky(t) + Ai(t)N (t)]a4>

+2[bi(t) — iN(t)R;]P0? — @02 A4 [ABC ) + bi(t)Ki(t)]o“] /D(t)

t

+i | dre(r) + b(t)} . (A.122)

to

The reduced dynamics of the spin alone are found by tracing out the cantilever
coordinates. The result is

. A2
A = A0 e (— A0+ Ay - SEO
_%[Af(t)m(t) + AN + i/to dre(r)) . (A.123)
In the limit t; — —oc, one finds
P () = 8%, (0) exp (= T(t) +i /t t dre(7)) . (A.124)

and the decay rate I'(¢), see Eq. (4.40), can be obtained after a straightforward but
tedious calculation. In the same limit, we obtain the result for the density matrix
presented in Eq. (4.65). In this limit the dependence on the initial conditions is lost.
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A.12 Relaxation of a non-thermal initial state

If we want to study the dependence on the initial conditions, we have to set ¢y = 0.
There are three contributions: One proportional to o2, another proportional to
1/0?, and one independent of o (o is the width of the wave packet at ¢ = 0).
The 1/02-term is found to be

A

802 N2(t)

e 2" sin(wgt)? .,
T o2 U 8wl (o

sin(wgt) cos(wgt) 7y sin(wgt)?, .

A12

snlenc e g0t (.125)

a cos(wpt)? _ sin(wgt) cos(wgrt) 72 sin(th)Q] 2(4))

8 dwr 8w

and the o2-term is

2 o™t 1

~ S AR + AON WP = T gl cosont) + ysinCwrt) 7 ()
+[wg cos(wgt) + v sin(wgt)|[2wry cos(wrt) + (v — w3) sin(wgt)]y(t)y(t)
_% 2wy cos(wat) + (72 — wh) sin(wrt)2y2(0)} . (A.126)

The o-independent term is
c@) | Ar()bi(t)

vE N =T

— A5 (t)

+(2n)z[J_R Fy(t) /0 " o (w) coth (%) /0 Car (') cos(wt')

+F.(1) /000 dw Jegt (w) coth (%) /Ot dt' f(t') cos(wt')

1
—— 0% F2(t) — o2 F,(t) F.(t)
2 WR

1
- 2 2
2wxo;

_17_2 2 2 2
~0%F2(1) F2(t) (A.127)
2wp
F
R

S

W

b [ o) com (22) [ at @sinen).

where .
Fy(t) = / dt' sin(wgt"e " f(t) (A.128)
0

and

F.(t) = /0?t dt' cos(wrt e " f(t'). (A.129)
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