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Summary

Chlorinated paraffins (CPs) have been produced since 1930 and are still used in a wide 

variety of consumer products and industrial processes. In the last decades, CPs 

represented one of the largest group of chlorinated hydrocarbons produced in North 

America and Europe. In spite of the knowledge of their long-range transport, 

bioaccumulation, potential of carcinogen for rats and mice, and toxicity for aquatic 

organisms, information on the levels and fate of CPs in the environment is insufficient. 

This results from analytical difficulties associated with the quantification of CPs 

because of the complex composition of commercial formulations. Production and use of 

short chain CPs (SCCPs, C10-13) have been regulated in the European Community and in 

Switzerland due to their significant bioaccumulation and toxic potential. Furthermore, 

SCCPs are now under evaluation for inclusion into the Stockholm Convention on 

Persistent Organic Pollutants (POPs). 

The aim of this work was to investigate several aspects of the environmental fate of CPs 

in Switzerland and in the Alps. For this purpose, available analytical methodologies for 

sediments and biota were adapted and improved for soil/humus, compost and conifer 

needles. Furthermore, a unified analytical approach suitable for the determination of 

CPs in various matrices is presented, which has the benefit of a standardized clean-up 

after a matrix specific extraction. The extraction and clean-up is kept as simple and 

efficient as possible in order to make this methodology applicable in routine 

laboratories environment. The very selective clean-up allowed to eliminate interferences 

and enables the use of low resolution mass spectrometry (LRMS). 
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Gas chromatography combined with electron ionization tandem mass spectrometry (EI-

MS/MS) was used for the determination of total CPs (sum of short, medium (MCCPs, 

C14-17), and long chain CPs (LCCPs C>17)). SCCP and MCCP levels as well as congener 

group patterns (n-alkane chain length, chlorine content) could be evaluated by electron 

capture negative ionization low resolution mass spectrometry (ECNI-LRMS). 

The alpine region was the target area, since the Alps are surrounded by regions with 

significant industrial activities and a high population density. Due to barrier effects, 

high precipitation rates and low ambient temperatures, the Alps are supposed to act as a 

geographical and meteorological trap for atmospheric pollutants including semivolatile 

organic compounds. 

The first study presents altitude profiles and the spatial distribution of CP levels in 

humus layers and spruce needles collected within the Monitoring Network in the Alpine 

Region for Persistent and other Organic Pollutants (MONARPOP) project. CPs were 

present in all samples; their concentrations varied between 7 and 199 ng g-1 dry weight 

(dw) and from 26 to 450 ng g-1 dw in humus and needle samples, respectively. Elevated 

concentrations were observed for altitude profiles in humus samples taken between 700 

and 900 m as well as between 1300 and 1500 m. A clear vertical tendency could not be 

ascertained for the individual altitude profiles. No correlation could be observed in the 

needle samples due to higher variations of the data. Data for environmental airborne 

CPs on spruce needles are presented for the first time providing evidence that spruce 

needles are a suitable passive sampling system for the monitoring of atmospheric CPs. 
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CP levels were determined in ten soil samples from reference sites of the Swiss national 

soil monitoring network (NABO). The aim of this study was to achieve the load of CPs 

in Switzerland. For this purpose, EI-MS/MS was used for the determination of total CP 

amounts. Total CP concentrations were between 34 and 151 ng g-1 dw. These 

concentrations are comparable to soil concentrations from the MONARPOP project. 

ECNI-LRMS measurements revealed SCCP concentrations of 2-51 ng g-1 dw and 

MCCP concentrations of 15-85 ng g-1 dw. 

Furthermore, three compost samples from Switzerland were analyzed. EI-MS/MS 

analysis revealed concentrations of 182-614 ng g-1 dw for total CPs and ECNI-LRMS 

measurements of 57-140 ng g-1 dw for SCCPs and 29-245 ng g-1 dw for MCCPs. 

A dated sediment core from Lake Thun covering the last 120 years was analyzed to get 

an overview of the historical trend of the CP deposition. Studies of dated sediment cores 

are an excellent way to investigate concentration trends over decades. Total CP 

concentrations showed a steep increase in the 1980s and a more or less stable level of 

50 ng g-1 dw since then. The concentration-time profile was in good agreement with the 

available information on global production data. Levels of higher chlorinated SCCPs 

have risen in recent years. In addition, the degree of chlorination of SCCPs has strongly 

increased during the past 40 years, which may indicate its use as an additive for 

polymers, paints and coatings. CPs were also compared with polychlorinated biphenyls 

(PCBs) analyzed in these dated sediment slices. The peak level of CPs exceeded that of 

PCBs by about a factor of three. Comparison of both temporal trends showed an 

increase of CPs when PCB levels declined. 
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Generally, the total CP levels were considerably higher than the indicator PCB levels 

analyzed in all studies. 

Summary
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1 Introduction

1.1 Persistent Organic Pollutants 

Persistent organic pollutants (POPs) are defined as chemical substances that possess 

certain toxic properties and resist degradation. Furthermore, POPs accumulate in living 

organisms as well as in terrestrial and aquatic ecosystems due to transport by air, water, 

and migratory species. They are transported over long distances even to remote regions 

far from their sources, where they have never been used or produced. Therefore, POPs 

are a cross-border problem on which international action is indispensable. This group of 

priority pollutants consists of pesticides (such as DDT), industrial chemicals (such as 

polychlorinated biphenyls, PCBs) and unintentionally produced by-products of 

industrial processes (such as polychlorinated dibenzo-p-dioxins and dibenzofurans). 

International treaties have been declared to protect human health and the environment 

from POPs and to eliminate or reduce the release of POPs in the environment. In 2001, 

the Stockholm Convention was formally signed to control production, import, export, 

disposal and use of POPs. Due to similar properties, chlorinated paraffins are 

considered as a ‘new’ POP candidate. Especially short chain chlorinated paraffins are 

now under discussion to be included into the Stockholm Convention on POPs. They 

have been recently incorporated into the list of priority hazardous substances of the 

European Water Framework Directive (European Community, 2000). However, the 

application of medium chain chlorinated paraffins is currently increasing (WHO, 1996). 
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1.2 Chlorinated Paraffins 

1.2.1 Production and Products 

Chlorinated paraffins (CPs), also known as polychlorinated n-alkanes (PCAs) or 

chloroparaffins (see synonyms and common trade names in Table 1.1), are industrial 

chemicals introduced in the 1930s (Muir et al., 2000). These complex mixtures with 

chlorine contents between 30 and 70% were formed by chlorination of n-alkanes 

applying UV irradiation and/or high temperature and pressure (Tomy et al., 1998). The 

final product consists of several thousands of different homologues, diastereomers and 

enantiomers (Shojania, 1999). 

Table 1.1 Common trade names and synonyms of chlorinated paraffins (CPs).

Chlorinated Paraffins 

A 70 Chlorocarbons EDC-tar Paraffin waxes chlorin. 

Adekacizer E Chlorofin Electrofine Paraffins, chloro 

Arubren Chloroflo Enpara Paroils, chlorin. 

Cereclor Chloroparaffin waxes Hordaflam Poliks 

Chlorcosane Chlorowax Hordaflex Polychlorin. alkanes (PCA) 

Chlorez Chlorparaffin Hordalub Polychloro alkanes 

Chlorin. alkanes Cloparin Hulz Tenekil 

Chlorin. paraffin waxes Cloparol KhP Toyoparax 

Chlorinated waxes Clorafin CW Meflex Unichlor 

Chloroalkanes Derminolfett / -öl Monocizer Witaclor 
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CPs of the general formula CnH2n+2-zClz are subcategorized (see Table 1.3) into short 

chain (SCCPs, C10-13), medium chain (MCCPs, C14-17), and long chain compounds 

(LCCPs, C>17) according to the principal n-alkane resource derived from petroleum 

fractions (Tomy et al., 1998). These fractions contain impurities, such as isoparaffins 

outside of the defined range, alkenes, branched alkanes, and aromatic compounds, 

which can also become chlorinated (POPRC, 2007). 

1.2.2 Applications

Over 200 CP formulations (Serrone et al., 1987) are in use for a wide range of industrial 

applications such as flame retardants and/or plasticizers in plastics, sealants, paints, 

textiles and coatings, as additives in metal working fluids, and as fat liquors for leather 

and furs (Campbell and McConnell, 1980; GDCh, 1992; Tomy et al., 1998). 

Commercial products can contain between 1 and 20% of CPs, however, for special 

applications (e.g. metal working) it can be as much as 80% or more. The chlorine 

content of the applied technical SCCP mixtures ranges between 50 and 70%. The 

industrially produced MCCP mixtures usually contain between 40 and 60% of chlorine. 

CPs with high chlorine content were mainly used as flame retardants (WHO, 1996; 

Bayen et al., 2006). They can act as flame retardants by releasing hydrochloric acid 

(HCl), which inhibits the flame. This vapor gas inhibition is strongly enhanced in 

presence of a Group V metal oxide such as antimony. Therefore, modern commercial 

CP products contain often antimony trioxide (see mechanism in Figure 1.1). 

Further additives are epoxides and organotin compounds to inhibit the release of HCl at 

elevated temperatures (GDCH, 1992; WHO, 1996; European Commission, 2000). 
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Figure 1.1 Mechanism of antimony trioxide as additive in CP flame retardant products. 
Antimony trioxide alone does not act as a flame retardant, but reaction with HCl 
lead to antimony trichloride (SbCl3), which is a radical scavenger and a vapor 
barrier to smother the flame.

Since their introduction in the 1930s (WHO, 1996), the world consumption of CPs has 

grown steadily as shown in Table 1.2. Global production estimates for 1993 were 

reported to be approx. 300’000 t y-1 (Tomy et al., 1998). Based on the available 

information on recent and earlier production data (WHO, 1996; Tomy et al., 1998) a 

total amount of more than 7’000’000 t of CPs has been produced since. Nevertheless, 

these estimations are based on production data from only North America and Europe, 

and nothing is known about the production amounts in industrial upcoming countries 

such as India and China. 

Table 1.2 Estimated worldwide consumption of CPs between 1930 and 1993.

Year Estimated global consumption [t y-1]

1930s Introduced 

1964 38’000-50’000 

1977 230’000 

1993 300’000 

Estimated total amount >7’000’000 t 

Data from Tomy et al. (1998) and Iozza et al. (2008) 

Sb2O3 + 2 HCl  2 SbOCl + H2O ca. 250 °C 

5 SbOCl  Sb4O5Cl2 + SbCl3 245-280 °C 

4 Sb4O5Cl2  5 Sb3O4Cl + SbCl3 410-475 °C 

3 Sb3O4Cl  4 Sb2O3 + SbCl3 475-656 °C 
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There had been a general decline in the amounts of SCCPs used within Europe, 

particularly for metal working and leather processing due to SCCP production 

restrictions in the last years. Between 1994 and 1997, the use of SCCPs within the 

European Union had been reduced from 13’000 to 4’000 t (European Commission, 

2000). MCCPs are now substitutes for SCCPs in several applications. The consumption 

of MCCPs has already surpassed that of SCCPs (WHO, 1996). The MCCP production 

capacity in Europe is currently in the range of 45’000 to 160’000 t annually 

(European Commission, 2000). There was no known production of CPs in Switzerland. 

However, they are imported as both raw material or just processed products. The Swiss 

Federal Office for the Environment (BAFU) estimated SCCPs imports for 1994 to be 

about 70 t annually (Bolliger and Randegger-Vollrath, 2003). 

1.2.3 Physico-chemical Properties 

CPs are colorless or yellowish and thermally stable up to more than 200 °C (WHO, 

1996). They are low to highly viscous or glassy to waxy solids depending on chain 

length and chlorine content (see Table 1.3) (GDCh, 1992). 

Table 1.3 General physico-chemical properties of CPs.

Category Chain length Physical state Density at 20 °C [g cm-3]

Short chain 
SCCP C10-13

Cl <65%: liquid 
Cl >65% (<30 °C): glassy solid 

1.18-1.59 

Medium chain 
MCCP C14-17 Liquid 1.095-1.345 

Liquid and highly viscous to 
glassy 1.055-1.300 Long chain 

LCCP C>17

Solid 0.89-ca. 1.63 

Data from GDCh (1992) 
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1.2.3.1 Vapor Pressure, Water Solubility, Henry’s Law Constant, and Octanol-

Water Partition Coefficient 

Due to the complexity of CP mixtures, environmentally important physico-chemical 

properties such as water solubility, vapor pressure, octanol-water partition coefficient 

(KOW), and Henry’s law constant (HLC) vary within large ranges and are governed by 

two factors: the carbon chain length and the degree of chlorination. The specific 

physico-chemical properties of various CPs are summarized in Table 1.4. 

The log KOW values of CPs are in general above 4.4 and show that CPs are practically 

insoluble in water. The vapor pressures of SCCPs are in the range of other chlorinated 

organochlorines known to undergo long-range atmospheric transport such as PCBs and 

toxaphenes. They decrease with increasing chain length and chlorine content 

(Drouillard et al., 1998b). HLCs for SCCPs are within 0.7-18 Pa m3 mol-1 and similar as 

for some organochlorine pesticides suggesting that SCCPs can remobilize from water to 

air or from moist soil to air (Drouillard et al., 1998b). MCCPs with higher chlorine 

content have relatively low HLCs (<0.36 Pa m3 mol-1). In general, HLCs decrease with 

increasing chlorine contents (Drouillard et al., 1998b). However, HLC values for CPs 

do not show similar large differences between SCCPs, MCCPs and LCCPs as observed 

for vapor pressure and water solubility. 
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Table 1.4 Environmentally relevant physical properties of CP mixtures and single congeners.

Compound % Cl PV
 a,b,c

[mPa]
HLC a,c

[Pa m3 mol-1]
SW

 a,d,e

[ g l-1] log KOW
 a,b,e,f

SCCPs      

C10-13 49 n.a. n.a. n.a. 4.39-6.93 

C10-13 63 n.a. n.a. n.a. 5.47-7.30 

C10-13 71 n.a. n.a. n.a. 5.37-8.69 

C10H17Cl5 56 4.0-5.4 at 25 °C 2.62-4.92 692-975 n.a. 

C10H13Cl9 71 0.24 at 20 °C 0.83 400 5.64 

C11H19Cl5 48 1.3-2.0 at 25 °C 0.68-1.46 546-962 6.04-6.40 

C12H19Cl7 59 n.a. n.a. n.a. 7.00 

C13H23Cl5 49 0.32 at 20 °C 4.18 30 6.61 

C13H16Cl12 70 2.8 10-4 at 20 °C 0.34 0.49 7.21 

MCCPs      

C14-17 45 2.27 at 20 °C 
160 at 80 °C 

n.a. n.a. 5.52-8.21 

C14-17 52 0.13-0.27 at 20 °C 
1.07 at 45 °C 
6.0 at 60 °C 
51 at 80 °C 

10.9 n.a. 5.47-8.01 

C14H26Cl4 42 0.25 at 20 °C 24.1 3.5 n.a. 

C14H23Cl7 56 0.01 at 20 °C 0.36 14 n.a. 

C17H32Cl4 37 4 10-3 at 20 °C 51.3 2.9 10-2 n.a.

C17H27Cl9 58 1.7 10-5 at 20 °C 0.01 0.66 n.a. 

LCCPs      

C18-26 34-54 n.a. n.a. n.a. 8.70-12.68 

C18H34Cl4 36 7.9 10-4 at 20 °C 33 9.4 10-3 n.a.

C18H30Cl8 54 1.1 10-5 at 20 °C 0.07 8.6 10-2 n.a.

C20H33Cl9 54 1.9 10-7 at 20 °C 0.02 5.3 10-3 n.a.

C26H44Cl10 50 6.3 10-12 at 20 °C 0.003 1.6 10-6 n.a.

% Cl: chlorine content, PV: vapor pressure, HLC: Henry’s law constants, SW: water solubility,
log KOW: octanol-water partition coefficient, n.a.: not available 
References: a) Tomy et al. (1998),b) European Commission (2000), c) Drouillard et al. (1998b),
d) Drouillard et al. (1998a), e) POPRC (2007), f) Sijm and Sinnige (1995) 
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1.2.3.2 Thermal Degradation 

Excessive heating of CPs results in release of HCl, which is beneficial for the usage of 

CPs as flame retardants and metal cutting fluids (Muir et al., 2000). Bergman et al.

(1984) reported pyrolysis experiments which showed that the decomposition products 

formed were dependent on the CP chlorine content. The major decomposition products 

of a synthesized C12 mixture containing 59% Cl were a large number of aromatic 

hydrocarbons as well as numerous polychlorinated aromatic compounds (benzenes, 

toluenes, naphthalenes and biphenyls). A C12 mixture containing 70% Cl yielded higher 

quantities of chlorinated aromatics and formation of mono- and dichlorodibenzofurans.

It was unclear if the latter were created directly from CPs or by degradation of also 

formed PCBs (Bergman et al., 1984). 

1.2.4 Toxicology

Although industrial exposures as well as secondary exposure via the food chain might 

be of special concern to human health, very little toxicological information is available 

from human studies (WHO, 1996). Herzberg (1947) reported about seven cases of 

chlorine acne after consumption of CPs as dripping for fried potatoes. 

Available toxicity data indicate low acute toxicity of CPs (WHO, 1996). Severe 

negative effects were observed for aquatic biota after chronic exposures to SCCPs 

(Tomy et al., 1998; European Commission, 2000; POPRC, 2007). Furthermore, some of 

the documented effects of SCCPs in rodents included liver, thyroid, and kidney 

carcinomas (WHO, 1996; European Commission, 2000; OSPAR Commission, 2001; 

POPRC, 2007). 
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The no observed adverse effect level (NOAEL) for general toxicity is 100 and 

1000 mg kg-1 day-1 for rats and mice, respectively (POPRC, 2007). The International 

Agency for Research on Cancer (IARC) categorized SCCPs in group 2B as ‘possibly 

carcinogenic to humans’ (WHO, 1996). 

1.2.5 Releases into the Environment 

There is no evidence of any significant natural source of CPs. Tomy et al. (1998) 

proposed that anthropogenic releases of CPs may occur during production, storage, 

transportation, industrial and consumer usage of CPs containing products, disposal and 

burning waste as well as land filling of products such as PVC, textiles, painted 

materials, and cutting oils. However, the major discharges into the environment are 

supposed to be from production and industrial usage. The possible sources of release to 

water from production sites include spills, facility wash-down and storm water run-off. 

Furthermore, CPs in metal working fluids may be liberated into aquatic environments 

from drum disposal, carry-off and spent bath use (Environment Canada, 1993). Finally, 

these discharges end up in the environment via the effluents of wastewater treatment 

plants.

The major emission source of SCCPs in the European Union was from metal working 

applications (European Commission, 2000). A further significant source is from losses 

during the service life of products containing CPs such as PVC, other plastics, paints, 

and sealants (European Commission, 2000). These releases are supposed to end up 

foremost in urban or industrial soil and wastewater. 
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1.2.6 Environmental Fate 

Only few data are available about the environmental fate of CPs due to the complex 

nature of the mixtures and the difficulties in measuring low concentrations. Based on a 

comparison of the physical-chemical properties of CPs compared to other 

environmentally related substances, CPs are supposed to adsorb to soil, sediments and 

atmospheric particles (Environment Canada, 1993; WHO, 1996). 

1.2.6.1 Degradation in the Environment 

CPs are generally considered to be persistent, since photolysis, hydrolysis, and 

oxidation are insignificant routes of transformation at ambient temperatures. However, 

several government assessments and published reviews concluded that slow 

biodegradation in the environment may occur particularly in the presence of adapted 

micro-organisms (Environment Canada, 1993; WHO, 1996; European Commission, 

2000).

Aerobic microorganisms are able to degrade a range of CPs. This biodegradation 

depends on the previous acclimatization of the microbes, the chain length, and the 

degree of chlorination of the CPs. The longer the carbon chain and the higher the 

chlorine content, the less the degradation (Environment Canada, 1993). 



CHLORINATED PARAFFINS 15 

1.2.6.2 Transport and Mobility 

Few data are available on transport and mobility of CPs from sites of 

industrial/manufacturing, use, or disposal. Calculated Henry’s law constants of some 

CPs are similar to those of chlorinated pesticides such as toxaphene, chlordane and 

aldrin, which are known to be transported via the atmosphere (Environment Canada, 

1993). A half-life of 0.81-10.5 days has been estimated for SCCPs in air. However, the 

high adsorption of CPs to atmospheric particles at low temperatures may limit the 

atmospheric degradation pathway (POPRC, 2007). Long-range atmospheric transport of 

CPs is documented by the occurrence of CPs in remote areas like the Arctic (Tomy et 

al., 1999a; Borgen et al., 2000; Reth et al., 2006). Tomy et al. (1999a) showed a higher 

amount of the more volatile lower chlorinated SCCPs in samples from the Arctic 

compared to technical mixtures. Partial fractionation of the original technical 

composition may occur during atmospheric transport and phase transition. 

1.2.6.3 Bioaccumulation

Despite a high bioaccumulation potential reflected in the physico-chemical data, only 

few studies of bioconcentration factors (BCFs) or biomagnification factors (BAFs) have 

been published (POPRC, 2007). Measurement of BCFs and BAFs is demanding due to 

the low water solubility of CPs and subsequent slow uptake rates. This requires long 

exposure periods to achieve a steady-state equilibrium (POPRC, 2007). 
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 BCFs vary significantly between <1 to 138’000 depending on animal species and CP 

mixture (WHO, 1996). Fisk et al. (2000) suggested that MCCPs may be more easily 

bioaccumulated than SCCPs due to the reduced biotransformation resulting from the 

longer carbon chain lengths. 

1.2.7 Environmental Levels 

The currently existing data show a ubiquitous presence of CPs in the environment. To 

date, they have been reported in abiota and biota (Hüttig and Oehme, 2005; Reth et al.,

2005a; P ibylová et al., 2006; Brändli et al., 2007) from industrial, urban, rural and 

remote areas (Tomy et al., 1999a; Nicholls et al., 2001; Štejnarová et al., 2005; Stern et 

al., 2005). Table 1.5 summarizes typical CP levels present in different environmental 

matrices. 
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Table 1.5 Overview of reported environmental CP levels in different matrices. 

Sample Sampling location Concentration Reference 

Air Allert, Canada <1-8.5 pg m-3 SCCPs (Stern and Tomy, 2000) 

 Egbert, Canada 65-924 pg m-3 SCCPs (Stern and Tomy, 2000) 

Spitzbergen,
Norway 9-57 pg m-3 SCCPs (Borgen et al., 2000) 

 Bear Island, Norway 1’800-10’600 pg m-3 SCCPs (Borgen et al., 2002) 

Lancaster, United 
Kingdom 5-1’085 pg m-3 SCCPs (Peters et al., 2000) 

Hazelrigg, United 
Kingdom <185-3’430 pg m-3 SCCPs (Barber et al., 2005) 

  <811-14’500 pg m-3 MCCPs (Barber et al., 2005) 
    

Moss Norway 3-100 ng g-1 ww SCCPs (Schlabach et al., 2002) 
    

Sewage sludge Czech Republic <0.002-0.40 g g-1 dw 
SCCPs (P ibylová et al., 2006) 

  <0.002-2.3 g g-1 dw MCCPs (P ibylová et al., 2006) 

 Switzerland 30 g g-1 dw MCCPs (Schmid and Müller, 1985) 

 United Kingdom 1.8-93.1 g g-1 dw 
SCCPs+MCCPs (Nicholls et al., 2001) 

  6.9-200 g g-1 dw SCCPs (Stevens et al., 2003) 

  30-9’700 g g-1 dw MCCPs (Stevens et al., 2003) 
    

River Sediment Czech Republic <2-347 ng g-1 dw SCCPs (P ibylová et al., 2006) 

  <2-5’575 ng g-1 dw MCCPs (P ibylová et al., 2006) 

 Germany 47-75 ng g-1 dw SCCPs (Hüttig, 2006) 

  75-153 ng g-1 dw MCCPs (Hüttig, 2006) 

 France 28-51 ng g-1 dw SCCPs (Hüttig, 2006) 

  24-85 ng g-1 dw MCCPs (Hüttig, 2006) 

 Norway 21-66 ng g-1 dw SCCPs (Hüttig, 2006) 

  63-137 ng g-1 dw MCCPs (Hüttig, 2006) 

 Spain 250-3’040 ng g-1 dw SCCPs (Parera et al., 2004) 

 United Kingdom <200-65’100 ng g-1 dw 
MCCPs (Nicholls et al., 2001) 

ww: wet weight; dw: dry weight 
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1.2.8 Regulations

In 1995, the OSPAR Convention for the Protection of Marine Environment of the 

North-East Atlantic adopted a decision on SCCPs (PARCOM Decision 95/1, 

OSPAR Commission, 2001). It included a ban on the use of SCCPs in all fields of 

application. A phasing out of SCCPs was considered due to their presence in the aquatic 

environment of industrial and non-industrial areas as well as in aquatic and terrestrial 

organisms, their persistence, their toxicity to aquatic organisms, their bioaccumulation 

in certain species, their carcinogenicity in rats and mice and due to availability of less 

environmentally hazardous substitutes. Therefore, all sale and use of SCCPs should be 

prohibited by the end of 1999. Similar to OSPAR, the Baltic Marine Environment 

Protection Commission (HELCOM, Helsinki Commission) has included SCCPs on 

their list of harmful substances (HELCOM, 2002). SCCPs are listed as priority 

hazardous substances in the field of water policy within the Water Framework Directive 

of the EU (European Community, 2000) requiring an extensive monitoring of SCCPs in 

Europe from 2006 onwards. Use in metal working fluids as well as in leather fat liquors 

was restricted in the European Union (European Community, 2002). However, this 

directive did not cover SCCPs as polymer additives (another main application in 

Europe).

In 2005, the European Community proposed SCCPs to be added to the ‘UNECE 

Convention on Long Range Transboundary Air Pollution, Protocol on Persistence 

Organic Pollutants’, due to their consistency with the criteria of decision 1998/2 of the 

Executive Body for persistence, potential to cause adverse effects, bioaccumulation and 

potential for long range transport. 
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In December 2006, the Parties to the UNECE POPs Protocol agreed that SCCPs should 

be considered as a POP as defined under the Protocol (POPRC, 2007). 

No regulations exist on MCCPs and LCCPs, though MCCPs and LCCPs are currently 

used in probably the same quantities as SCCPs before. 

1.2.9 State of the Art of CP Analysis 

Technical CP mixtures contain thousands of different congeners (homologues and 

isomers) which cannot be resolved by any chromatographic and mass spectrometric 

technique. CP chromatograms show broad humps of unresolved CP isomers. Moreover, 

reference materials for calibrations as well as matrix-matched reference materials are 

lacking. Zencak and Oehme (2006) presented a review of current analytical methods 

employed in the years 2001-2006 and their applicability to different matrices. However, 

suitable analytical methods are needed, since SCCPs were included into the hazardous 

substance list of the European Water Framework Directive and environmental levels of 

CPs should be monitored from 2006 onwards (European Community, 2000). 

Currently, the most applied analytical methods for CPs are based on gas 

chromatography coupled with mass spectrometry (GC/MS) combined with electron 

capture negative ionization (ECNI). However, also electron capture detection (ECD) is 

still applied for the determination of CPs (Randegger-Vollrath, 1998; Nilsson et al.,

2001; Friden et al., 2004). 
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Recently, complementary techniques were reported such as using an alternative reagent 

gas mixture based on methane and dichloromethane for negative ion chemical 

ionization (CH4/CH2Cl2-NICI) MS (Zencak et al., 2003), electron ionization tandem 

mass spectrometry (EI-MS/MS) (Zencak et al., 2005) or carbon skeleton reaction gas 

chromatography (Koh et al., 2002). Moreover, techniques have been proposed such as 

positive ion chemical ionization (PICI) MS (Castells et al., 2004a), comprehensive two-

dimensional GC combined with electron capture negative ion detection time-of-flight 

mass spectrometry (GC×GC/ECNI-TOF-MS) (Korytár et al., 2005c), metastable atom 

bombardment (MAB) ionization (Moore et al., 2004) or liquid chromatography 

combined with chloride-enhanced atmospheric pressure chemical ionization (LC-Cl--

APCI) (Zencak and Oehme, 2004). 

Aim of the Work 
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2 Aim of the Work 

The general objective of this work was to obtain information about the environmental 

distribution of CPs in the Alps and their surrounding areas. For this purpose, methods 

for the analysis of CPs in conifer needles and soil (humus) had to be developed. The 

aim of the method development was to combine new methodology with techniques 

developed in previous studies to a simple, reliable and versatile analytical approach for 

the determination of CPs in various matrices. Another major goal was the collection of 

environmental data for the evaluation of the spatial, altitudinal, and chronological 

distribution of CPs. 

Specific goals were: 

To develop a method for the quantification of CPs in spruce needles providing 

evidence that they are a suitable passive sampling system for the monitoring of 

CPs distributed via the atmosphere (PAPER I).

To apply the developed analytical methods to the determination of CPs in soil 

samples from the Swiss Soil Monitoring Network (NABO), in spruce needles 

and humus collected by the Monitoring Network in the Alpine Region for 

Persistent and other Organic Pollutants (MONARPOP) (PAPER II). These data 

should allow examining the spatial exposure and a possible altitudinal variation 

of CP deposition in Switzerland and in the Alps. 
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To investigate a dated sediment core from Lake Thun covering the past 120 

years for the evaluation of the historical trend of the CP deposition. Comparison 

of the data with global production and polychlorinated biphenyl (PCB) 

deposition was a further goal (PAPER III).
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3 General Discussion 

3.1 Analytical Methodology 

3.1.1 State of the Art 

Analysis of CPs is a demanding task due to the complex composition of CP products, 

the large number of CPs present and the lack of pure reference solutions as well as 

matrix-matched reference materials (Muir et al., 2000; Zencak and Oehme, 2006). 

Therefore, only a limited number of methods exist for the analysis of CPs in 

environmental matrices and even fewer are suitable for routine analysis. 

Most of the extraction and clean-up techniques used for the determination of persistent 

organochlorines can be transferred to the analysis of CPs, which is an advantage. 

Nevertheless, further considerable adaptations are needed. In particular, the clean-up 

has to be optimized to the applied detection technique minimizing interferences which 

are especially critical when low resolution mass spectrometric methods are employed 

(Reth et al., 2005a; Zencak et al., 2005). In the following, requirements and critical 

aspects of each step of the analysis of CPs will be discussed. 

3.1.1.1 Sample Extraction

CPs are usually isolated from environmental matrices with the same procedures applied 

for other organochlorines. The selection of the extraction method depends on the sample 

matrix. The most frequently used technique for solid matrices is Soxhlet extraction 

(Nicholls et al., 2001; Hüttig and Oehme, 2005; Štejnarová et al., 2005) due to its 

robustness and low costs despite the high solvent and time consumption. 
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However, other techniques can also be applied such as pressurized liquid extraction 

(Tomy and Stern, 1999), microwave-assisted extraction (Parera et al., 2004) and solid-

phase extraction (Nicholls et al., 2001; Castells et al., 2004b). Non-polar to semi-polar 

organic solvents such as dichloromethane (DCM), n-hexane (nHex), a mixture of both 

(DCM/nHex) or toluene are used for the extraction of CPs. Matrices containing large 

amounts of elemental sulfur disturbing the GC analysis, are treated with activated 

copper for the elimination of sulfur during the extraction (Tomy and Stern, 1999; Hüttig 

and Oehme, 2005). 

3.1.1.2 Sample Clean-up 

The sample clean-up is the most critical step since it has to remove other interfering 

organic compounds which extracted together with CPs (e.g. pesticides, PCBs, 

polybrominated diphenyl ethers PBDEs, toxaphenes, and chlordanes). It is one of the 

most challenging steps of CP analysis. Therefore, a wide variety of clean-up procedures 

has been published in the literature. Treatment by sulfuric acid (Coelhan, 1999; Nicholls

et al., 2001; Hüttig and Oehme, 2005; Reth et al., 2005a; Štejnarová et al., 2005) or gel 

permeation chromatography (Tomy et al., 1997; Coelhan, 1999) is used to eliminate 

matrix components such as lipids and other organic materials. Adsorbents such as 

Florisil (Tomy et al., 1997; Hüttig and Oehme, 2005; Reth et al., 2005a), silica gel 

(Coelhan, 1999; Nicholls et al., 2001; Štejnarová et al., 2005), and aluminum oxide 

(Marvin et al., 2003; Parera et al., 2004) are frequently applied for fractionation. 
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3.1.1.3 Gas Chromatographic Separation 

Currently, no gas chromatographic technique is able to separate partly or completely the 

extremely large number of different isomers (>10’000) in CP mixtures into single 

congeners. The most commonly applied stationary phase is 5%-phenyl-

methylpolysiloxane (e.g. DB5-MS, Ultra2), but others could also be used such as 100% 

methylpolysiloxane (Nilsson et al., 2001) and 35%-phenyl-methylpolysiloxane (Zencak

et al., 2003). Whatever stationary phase is applied, the CP chromatograms are 

characterized by a few broad humps showing a large number of co-eluting peaks over a 

retention time of several minutes as shown in Figure 3.1. A short column technique was 

proposed by Coelhan (1999). His attempt was to simplify the GC analysis, because 

separation of the mixture cannot be achieved anyway. Therefore, the sample was 

introduced into the MS via a very short column and CPs elute all in one peak within few 

seconds. However, it may also contain other interferences not removed by the clean-up, 

which can lead to an overestimation of the CP quantity. Comprehensive two-

dimensional gas-chromatography (GC GC) coupled with ECD, a fast scanning single 

quadrupole MS, or a time-of-flight MS improved considerably the separation of CPs 

(Korytár et al., 2005a; 2005b; 2005c). However, this type of instrumentation is very 

expensive, needs expert knowledge and it is very time-consuming for data processing. 

Therefore, it is not suitable for routine analysis, but opens up interesting new 

possibilities of compound profile studies of CPs. 
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Figure 3.1 Chromatograms of a reference SCCP mixture (55.5% Cl) detected by EI-MS/MS 
(A: m/z 102  67) and ECNI-MS (B: reconstructed ion current (RIC) for [M-Cl]-

ions of C12Cl5-10; C: [M-Cl]- ion of the congener group C12H19Cl7, m/z 376.9). 
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3.1.1.4 Detection

Mass spectrometry involving ECNI detection with methane as reagent gas is commonly 

used for CP determination due to its high selectivity and sensitivity when recording 

single ions of the [M-Cl]- isotope clusters (Schmid and Müller, 1985; Tomy et al., 1997; 

Castells et al., 2004a; Zencak et al., 2005). Moreover, ECNI with high resolution mass 

spectrometry (HRMS) was recommended as detection method, since it is a very 

selective method eliminating interferences from CP fragments with the same nominal 

m/z values or from other organochlorine compounds (Tomy et al., 1997). Due to the 

high costs of HRMS instruments, this method is not available in many laboratories. 

Nevertheless, low resolution MS (LRMS) methods based on ECNI or on electron 

ionization tandem mass spectrometry (EI-MS/MS) are well-suited for routine analysis 

despite some limitations (Castells et al., 2004a; Reth and Oehme, 2004; Zencak et al.,

2005). However, a highly efficient clean up is mandatory to avoid interferences from 

both matrix and other POPs (Parera et al., 2004; Reth and Oehme, 2004; Hüttig and 

Oehme, 2005). The major limitation of all ECNI methods is that errors of up to 300% 

are introduced, when reference standards are used with another CP composition than the 

samples (Tomy et al., 1999b; Coelhan et al., 2000; Zencak et al., 2005). Low 

chlorinated CPs (<5 chlorine atoms) are not detected by ECNI-MS due to their low 

electron affinity. Furthermore, the evaluation of all congener and homologue groups by 

ECNI-MS is very time-consuming due to the large number of GC-MS runs and the 

corresponding data processing (Reth et al., 2005b). 
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Zencak et al. (2003) showed that the use of an alternative reagent gas mixture (methane 

and dichloromethane) enhanced the formation of chloride adduct ions [M + Cl]-. This 

technique reduced mass interferences between the CP congeners, suppressed the 

ionization of other organochlorines and resulted in similar response factors for CPs with 

different chlorine contents. Moreover, it could detect lower chlorinated CPs (Cl3-5).

Unfortunately, this technique is not suitable for routine analysis, since the use of 

dichloromethane causes a quick loss of sensitivity due deposition of carbon residues in 

the ion source. 

3.1.1.5 Identification and Quantification 

Identification and quantification are the most demanding steps of CP analysis due to the 

high number of CP isomers present. 

Reth and Oehme (2004) showed that ECNI detection at low resolution can lead to 

systematic errors due to gas chromatographic and mass spectrometric overlap between 

CP congeners (CxHyClz and Cx+5Hy+12Clz-2; x = 10-12; e.g. mass overlap between [M-

Cl]- ion of C10H15Cl7 and [M-Cl]- ion of C15H27Cl5). Nevertheless, the quantification of 

major congener groups is not affected. However, a proper identification of the CP 

congeners (C10-17Cl5-10) based on retention time, chromatographic signal shape and 

correct isotope ratio is essential. 

The ECNI response factors of different technical CP mixtures and single compounds 

vary strongly (Zencak et al., 2003). Congeners with higher chlorine content have higher 

response factors. Therefore, the selection of the CP reference standard has a significant 
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influence on the results and may lead to systematic errors up to several hundred percents 

if not properly carried out (Tomy et al., 1999b; Zencak et al., 2005). 

Recently, a novel quantification procedure was described by Reth et al. (2005b) which 

enabled a reliable quantification even if the chlorine content of sample and reference 

standards is different. These authors found a linear correlation between the response 

factor of CPs in a technical mixture and the degree of chlorination. This approach 

allowed the compensation of response factor differences between sample and applied 

reference standard. Therefore, it is mandatory to use the available reference CP mixtures 

(e.g. from Ehrenstorfer: SCCP 51%, 55%, and 63% Cl; MCCP 52% and 57% Cl) with 

different chlorine content to compensate such effects. 

3.1.2 Before Starting Analyzing CPs 

Contamination and blank problems are severely limiting factors. They are caused by the 

ubiquitary use of CPs e.g. as sealants (Randegger-Vollrath, 1998) and paints (Zencak 

and Oehme, 2004) as well as due to the high desorptivity of CPs on glass surfaces. 

Therefore, it is fundamental to check blanks during method development and 

throughout analyses. 

In particular, it is important to clean the glassware thoroughly. Cross contamination via 

glassware could be minimized by the following procedure. First, all glassware is 

washed in a dishwasher, then immersed into a detergent solution (5% RBS®35

concentrate, Fluka) for 12 hours and finally rinsed with high purity solvents (e.g. DCM 

and nHex). After this cleaning procedure, it is mandatory to heat all glassware to 450 °C 
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for at least two hours and to rinse them again with the same solvents prior to use. It is 

recommended to start with new glassware. 

Glass wool and glass fiber filters should be heated to 450 °C, as well for two hours. 

Chemicals used for sample clean-up such as Florisil®, anhydrous sodium sulfate and 

silica gel can be used after heating them overnight at 220 °C. Teflon stopcocks can 

cause a problem as well. For this reason, they should be cleaned with solvents. 
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3.1.3 Concept of an Analytical Scheme 

What is necessary to perform routine CP analysis in e.g. a service laboratory? An 

analytical pathway is presented in Figure 3.2, which is suitable and applicable in any 

kind of laboratory as a routine standard method. The presented extraction procedures 

and standardized clean-up are applicable to all kind of sample extracts. It allows the 

determination of CPs in various matrices (animal tissues, sediments, human milk, 

soil/humus, compost, and spruce needles). The whole concept is based on a simple, 

cost-efficient, and modular system which avoids expensive techniques such as 

pressurized liquid extraction, microwave-assisted extraction, and high resolution MS. 

Extraction is matrix specific (see Figure 3.2) followed by a standardized clean-up 

applicable to all kind of samples (Hüttig and Oehme, 2005; Reth et al., 2005a; Reth et 

al., 2006). 

However, also the extraction procedures have some parameters in common. Except for 

milk samples, all matrices were extracted with DCM/nHex (1+1, v/v). Soxhlet 

extraction was preferred for dried samples. Liquid extraction provided optimal results 

for biota after drying by homogenization with sodium sulfate. A simple solvent 

extraction over night was sufficient to achieve high recoveries of CPs for plant material. 

The extraction of human milk samples is more complex due to the separation of the 

lipid fraction. 
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Figure 3.2 Scheme of analytical procedures for the determination of chlorinated paraffins in 
different materials.
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The clean-up procedure was the same for all samples. It consisted of a silica gel column 

impregnated with sulfuric acid. Hereby, interfering compounds degradable by sulfuric 

acid were removed such as waxes and lipids. If the extract is not colorless and/or clear 

this part has to be repeated. Finally, a deactivated Florisil® column was applied to 

separate CPs from other organochlorines such as toxaphenes and PCBs. 

It is recommended to perform quantification by a triple quadrupole in the EI-MS/MS 

mode (Zencak et al., 2004) for routine analysis. It has an huge advantage compared with 

other quantification methods, which are either highly complex and time consuming (e.g. 

ECNI) or too expensive (e.g. HRMS). This method allows determining the sum of short, 

medium, and long chain paraffins within 10 minutes (Zencak and Oehme, 2006). 

For the first time spruce needle, compost, humus, and soil samples were included in this 

analytical approach. Soil (see chapter 3.2.2), humus (see PAPER II), and compost (see 

chapter 3.2.3 and (Brändli et al., 2007)) samples were extracted in the same way as 

sediment samples. A new extraction was developed for spruce needles (see PAPER I).

The combination of the described extraction and clean-up methodologies resulted in 

chromatograms with a low background showing the typical CP profile without 

interferences (see EI-MS/MS chromatograms in Figure 3.3). 
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Figure 3.3 EI-MS/MS chromatograms (m/z 102 [C5H7Cl]+ m/z 67 [C5H7]+) of CPs in 
different sample matrices and of a standard mixture of short (55% Cl), medium 
(57% Cl) and long chain (49% Cl) chlorinated paraffins (1+1+1). Poultry egg 
samples were analyzed with extraction procedure for animal tissue. 
Chromatograms of river sediment, human milk, poultry egg, and fish liver provided 
by courtesy of J. Hüttig (2006) and M. Reth (2006).
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3.2 Evaluation of CP Levels in the Alps and in Switzerland 

3.2.1 Alps as a Trap for POPs 

Mountains are a topographical and meteorological trap for atmospheric pollutants 

including semivolatile organic compounds (SOCs). Reasons are barrier effects, high 

precipitation rates, and low ambient temperatures (cold condensation) (McLachlan and 

Horstmann, 1998; Daly and Wania, 2005). 

Furthermore, the canopy of forests is acting as an efficient trap due to the high organic 

content amplifying the transfer of SOCs from the atmosphere to soil via leaves and 

needles. Therefore, forest ecosystems are reservoirs for organochlorines due to the litter 

fall (McLachlan and Horstmann, 1998; Schmid et al., 2005). 

The Alps are an important geographical division in Central Europe representing a 

barrier for atmospheric circulation. Moreover, they are surrounded by industry regions 

with a dense population. Transport, fate and effect of POPs are influenced by 

meteorological processes. POP contamination of various biota and abiotic media has 

occasionally been reported even from remote spots in the Alps (Weiss et al., 2003; 

Schmid et al., 2005; Nizzetto et al., 2006; Tremolada et al., 2008). However, the 

geographic distribution of POPs across the Alps was not investigated in detail. 

Moreover, CP levels from the Alps have never been reported. 
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The Monitoring Network in the Alpine Region for Persistent and other Organic 

Pollutants (MONARPOP) project included a cross-alpine survey of POPs in 

mountainous forest ecosystems to reveal geographical and altitudinal patterns on a 

transnational scale and to understand the relevance of high mountains in the global 

atmospheric transport of POPs (Moche et al., 2005). 

This study presents CP levels in humus layers and spruce needles collected within the 

MONARPOP project from various regions of the European Alps (Switzerland, Austria, 

Germany, Slovenia, and Italy) to obtain a first overview about the environmental fate 

(see Figure 3.4). Furthermore, this study presents the first data for humus and spruce 

needles.

Figure 3.4 Sampling locations of the Monitoring Network in the Alpine Region for Persistent 
and other Organic Pollutants (MONARPOP) selected for the analysis of CPs.
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Sampling sites were selected with special attention to remoteness and species 

homogeneity (>80% Norway spruce) of adult stands. Spruce needles (six months old) 

were collected due to their epicuticular wax layer, which has been shown to trap and 

accumulate lipophilic compounds (Buckley, 1982; Gaggi et al., 1985). Humus was 

selected because of its property as a natural sink for POPs. The high organic carbon 

content favors the accumulation of POPs. 

3.2.1.1 Spatial Distribution of CPs in the Alpine Ecosystem - MONARPOP 

First data about CP levels in the European Alps are presented in PAPER I and PAPER II.

Figure 3.5 summarizes the CP concentrations in humus and spruce needles from 

selected locations at a standard altitude (1400 ± 150 m) in the Alps in autumn 2004. The 

analyses were performed by GC-EI-MS/MS determining the sum of SCCP, MCCP and 

LCCP levels within one run. Therefore, results are presented as total CPs (totCPs). 

Figure 3.5 Overview of the spatial distribution of totCPs in humus and spruce needles from 
the Alps taken within the MONARPOP project.
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TotCP levels were between 21 and 96 ng g-1 dw (mean 48 ng g-1 dw) in humus and 

between 35 and 450 ng g-1 dw (mean 126 ng g-1 dw) in spruce needles. These results 

show that CPs are widely distributed in the Alps and reached regions with little or no 

industrialization.

Two hypotheses of origin are possible: 

The main CP load to the Alps originates outside the Alps. 

The alpine range is a barrier for long-range atmospheric CP transport. 

Both imply that the lowest concentrations should be expected at the center and the 

highest at the border of the Alps. The two highest CP levels in humus were located in 

the northern part of the Alps, whereas two of the three highest CP levels in spruce 

needles were located in the south. Although concentrations varied between the two 

matrices, highest concentrations occurred only at the fringe of the alpine region. This 

was also observed for other pollutants within the MONARPOP project, e.g. PBDEs 

(Knoth et al., 2008), dioxin and dioxinlike PCBs (Offenthaler et al., 2007). 

Nevertheless, further studies are needed to make an accurate assessment. 
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3.2.1.2 Altitudinal Distribution of CPs in the Alps - MONARPOP 

In the framework of the MONARPOP project, seven altitude profiles were sampled in 

order to investigate the vertical distribution of organic pollutants in different regions of 

the Alps. Each altitude profile consisted of four to five subplots between 700 and 

1900 m in spruce forests reaching from valley ground to upper tree limit and with 

avoidance of known local sources in the vicinity. Locations of the seven profiles are 

shown in Figure 3.4. 

TotCP concentrations in humus and spruce needles from these altitude profiles are 

discussed in PAPER I. TotCPs were found in all samples from valley to upper tree limit. 

As shown in Table 3.1 the concentrations varied between 7 and 199 ng g-1 dw in humus 

and between 26 and 450 ng g-1 dw in spruce needles. 

Table 3.1 Summary of totCP concentrations in alpine humus layers (n = 31) and in spruce 
needles (n = 27) obtained by GC-EI-MS/MS.

Sample matrix TotCP concentration [ng g-1 dw] 

 n min max mean SD median MDL 

Humus 31 7 199 39 37 28 2.5 (n = 6) 

Spruce needles 27 26 450 84 82 56 1.8 (n = 5) 

dw: dry weight; SD: standard deviation; P: percentile; MDL: method detection limit 

Most of the humus (n = 25; 10-50 ng g-1 dw) and spruce needle (n = 22; 20-100 ng g-1

dw) samples showed a background concentration (see Figure 2 in PAPER II). 

Furthermore, mean needle concentrations (mean 84 ng g-1 dw) were about two-fold 

higher compared to humus (mean 39 ng g-1 dw). This could not be observed for the 
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other POPs studied by the MONARPOP project. There, concentrations in humus were 

always higher than in needles. One explanation could be that CPs have a higher affinity 

to the spruce needles. 

CPs were found in higher located and remote sampling stations indicating a long-range 

transport of CPs. This observation is consistent with studies in the arctic (Tomy et al.,

1997; Tomy et al., 1999a; Borgen et al., 2000; Reth et al., 2006), where the presence of 

CPs was demonstrated in this remote region. 

Altitude profiles of totCPs in humus and spruce needle samples are shown in Figure 3 

of PAPER II. No coherent trend could be observed for the different locations. This could 

be due to different parameters influencing the respective sampling location such as 

meteorological aspects, local influence and the position of each plot. 

In some sampling stations, CP levels were higher at the lowest altitude, which might be 

due to the vicinity to densely populated valleys. 

As mentioned, meteorology influences the input of CPs into the Alps. A higher 

precipitation rate, more fog or more inversion layer events can lead to an increased 

input. Studies of these parameters indicated such influences for other POPs (Ribes et 

al., 2002; Tremolada et al., 2008). For humus, a slight correlation was observed 

between CP levels and altitude (see Figure 5 in PAPER II).
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Besides higher CP concentrations at low altitudes (700-900 m), a second maximum was 

present around 1400 m, which could be due to a higher occurrence of fog, more 

precipitation or inversion layers. Since levels in spruce needles were quite scattered, 

future research should include a more detailed study of meteorological parameters on 

CP accumulation. 

Generally, totCP levels in humus and needles were highest compared to other POPs 

present in the same samples from the MONARPOP network (see Table 2 in PAPER II).

This was also reported by a study of POP concentrations in the U.K. atmosphere 

(Barber et al., 2005). 

A comparison of CP altitude profiles in humus with those for PCBs and PBDEs (see 

Figure 3.6 and Figure 3.7), revealed the same concentration variability for some 

locations (Klosters, Berchtesgarden, Eschenlohe). This indicated a similar origin. 
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Figure 3.6 Comparison of CP and PCB altitude profiles in humus from the Alps. 
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Figure 3.7 Comparison of CP and PBDE altitude profiles in humus from the Alps.
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3.2.2 CP Levels in Soil from Switzerland - NABO 

In 1986, the Swiss ordinance relating to impacts on the soil (OIS) initiated the operation 

of a reference national soil monitoring network (NABO). The main objective of this 

network is the monitoring of anthropogenic contaminants in the environment. The 

NABO program includes 105 reference sites (Desaules and Dahinden, 2000). The sites 

are distributed throughout Switzerland including rural/remote areas as well as urban, 

urban fringe and industrial regions (Desaules and Studer, 1993). For selected soil 

samples, Schmid et al. (2005) presented PCDD/F and PCB concentrations. Bucheli et

al. (2004) elucidated polycyclic aromatic hydrocarbons (PAH) and biogeochemical 

parameters such as total organic carbon (TOC) and black carbon (BC). No data on CP 

concentrations in samples from the NABO network were available so far and to the best 

of the authors’ knowledge, there is only one publication, in which CPs were determined 

in soil (Nicholls et al., 2001). Unfortunately, all concentrations in this study were below 

the limit of detection (Nicholls et al., 2001). 

Only a few data about CP levels in the Swiss environment were available so far. In 

1985, Schmid and Müller reported 5 ng g-1 ww of MCCPs in sediment from Lake 

Zürich, 200 ng g-1 ww in human adipose tissue, and 30 000 ng g-1 in sewage sludge 

from an industrialized region (Schmid and Müller, 1985). Reth (2006) detected between 

19 to 42 ng g-1 ww of total CP concentration in brown trout samples from the rivers 

Liechtensteiner Binnenkanal (n = 3) and Necker (n = 3) as well as 25 ng g-1 ww in lake 

trout sample from the alpine lake “Lei da Diavolezza”. 
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The aim of this present work was to achieve the load of CPs in Switzerland. Ten soil 

samples (0–10 cm, including the top humus layer) were collected at reference sites by 

the Swiss national soil monitoring network (NABO) between March and July 2002. 

Locations and ancillary data on the sample sites are presented in Figure 3.8 and in Table 

3.2. Further information about these soil samples are also published (Bucheli et al.,

2004; Schmid et al., 2005). 

Figure 3.8 Sampling locations of the Swiss Soil Monitoring Network (NABO) selected for the 
analysis of CPs.

EI-MS/MS was used for a fast determination of the total CP amount. Total CP 

concentrations were between 34 and 151 ng g-1 dw (see Table 3.2). 
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Table 3.2 Total CP concentrations (ng g-1 dw) obtained by EI-MS/MS in Swiss soil 
monitoring network (NABO) samples.
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The high level at sample site no. 48 could not be confirmed by follow-up measurements 

(see following chapter 3.2.2.1). Therefore, this site was excluded in the following 

discussion. Total CP levels in soil were compared with concentrations in humus 

samples from the Alps (see chapter 3.2.1.1 and 3.2.1.2). Soil levels (34-151 ng g-1 dw; 

mean: 57 ng g-1 dw) were in the same range as humus levels (21-96 ng g-1 dw; mean: 

48 ng g-1 dw). It seems that the background levels are similar for both Switzerland and 

the whole alpine region. 

Hüttig and Oehme (2005) reported between 5 and 499 ng g-1 dw of totCPs in sediments 

from the North and Baltic Sea for samples from 2001 to 2003. This is higher than the 

concentrations found in this study. TotCP concentrations were between 19 to  

42 ng g-1 ww in six brown trout samples from the Swiss rivers Liechtensteiner 

Binnenkanal and Necker, and 25 ng g-1 ww in one lake trout sample from the Swiss 

alpine lake Lei da Diavolezza (Reth, 2006). 

Total CP levels are considerably higher than the sum of the indicator PCB 

concentrations (sum of PCB #28, 52, 101, 118, 138, 153, and 180) in these samples 

(Schmid et al., 2005). The same relationship was observed for the samples of the 

MONARPOP network (see chapter 3.2.1.2). 

Furthermore, ECNI-LRMS was applied for the determination of SCCP and MCCP 

concentrations (see Table 3.3) and for elucidation of congener group patterns (see 

Figure 3.9 and Figure 3.10). 
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Table 3.3 SCCP and MCCP concentrations and chlorine contents determined by ECNI-
LRMS in samples of the Swiss soil monitoring network (NABO). 

Sample
site no. 

SCCPs
[ng g-1 dw] 

Cl content 
[%]

MCCPs
[ng g-1 dw] 

Cl content 
[%]

S+MCCPs 
[ng g-1 dw] 

2 21 62.0 20 54.2 42 

18 2 61.8 30 54.9 32 

24 11 61.6 20 54.7 31 

43 5 62.1 37 55.4 42 

47 13 62.5 35 55.8 48 

48 73 61.0 749 52.5 821 

62 16 60.8 21 53.9 37 

92 15 60.5 15 54.2 30 

98 14 60.8 20 54.2 34 

99 51 60.1 85 54.3 136 

dw: dry weight; italic: samples from site no. 48 are excluded in the discussion (see chapter 
3.2.2.1) 

MCCP concentrations (15-85 ng g-1 dw) were similar or higher than for SCCPs (2-

51 ng g-1 dw). The chlorine content of SCCPs was between 60.5 and 62.5%, whereas 

that of MCCPs varied between 53.9 and 55.4%. The results obtained by ECNI-LRMS 

and EI-MS/MS were generally in good agreement within a factor of two. Difference 

could be traced back to the detection of congeners with 1-4 chlorine atoms as well as to 

the presence of long-chain CPs (C>17) both only detectable with the EI-MS/MS method. 
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Figure 3.9 A and B show the average SCCP congener group patterns of the following NABO 
samples: A 62, 92, 98, 99; B 2, 18, 24, 47. Standard deviations are assigned. C and 
D show the SCCP congener group pattern of NABO samples 43 and 48 (highest 
level), respectively.

Four different pattern types were observed. Congeners with eleven and thirteen carbon 

atoms were most abundant among SCCPs in the average pattern of samples 62, 92, 98 

and 99, whereas eleven and twelve carbon atom congeners dominated in samples 2, 18, 

24 and 47. Two further samples (43 and 48: highest level) did not fit with these average 

patterns. In addition, sample 48 (highest level) is the only sample that differs from the 

other samples in the MCCP pattern (see Figure 3.10). MCCPs with seven chlorine 

atoms were predominant in most of the samples, whereas six chlorine atoms prevailed 

in sample 48. 
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Figure 3.10 MCCP congener group patterns of the following NABO samples: A all samples 
excluding sample 48 (standard deviations are assigned); B only sample 48 (highest 
level).

Figure 3.11 shows the relative amounts of SCCPs and MCCPs in the samples. Samples 

18, 43, 47 and 48 (highest level) have considerably higher MCCP than SCCP 

concentrations. 

Figure 3.11 Proportion of SCCP and MCCP in NABO samples.



EVALUATION OF CP LEVELS IN THE ALPS AND IN SWITZERLAND 51 

3.2.2.1 Sample 48 – Oberriet 

The high concentration value and the atypical CP congener pattern of site 48 compared 

to the other sites in the first analysis campaign initiated more investigations to confirm 

this result. Table 3.4 shows a compilation of the results. 

Table 3.4 Total CP concentrations in soils from sampling site 48 from four sampling 
campaigns (PCDD/PCDF 2002, regular 1997, 2002 and 2007).

Analysis Sample Campaign Sampling
Year

TotCP conc.
[ng g-1 dw] Comments

1 48 PCDD/PCDF 2002 1463 

2 48 PCDD/PCDF 2002 13 

3 48 PCDD/PCDF 2002 18 

4 48 PCDD/PCDF 2002 97 

Sampling depth 0-10 cm; 
dried at room 
temperature, ground with 
a vibrating cup mill, filled 
in a glass jar stored in the 
dark at room temperature 

5 48 1.3 Regular 1997 19 

6 48 1.4 Regular 2002 9 

7 48 1.5 Regular 2007 69 

8 48 1.5 Regular 2007 79 

Sampling depth 0-20 cm; 
dried at 40 °C, ground 
with a jaw crusher, sieved 
<2 mm, filled in honey 
jars and stored in the dark 
at cellar temperature 

dw: dry weight 

The high value (1463 ng g-1 dw) could not be confirmed. Further analysis of site 48 

using samples from the PCDD/PCDF campaign revealed total CP levels between 13 and 

97 ng g-1 dw. Furthermore, four samples were analyzed from the regular campaigns, 

which differed in sampling depth (0-20 cm instead of 0-10 cm) and sample preparation 

(e.g. drying temperature). Total CP concentrations were 19 ng g-1 dw for the sample 

taken in 1997, 9 ng g-1 dw for year 2002 and 69 and 79 ng g-1 dw for the two analyzed 

samples from year 2007. The first high value could not be confirmed by any regular 

campaign. 
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3.2.3 CPs in Compost

Compost is an important recycling fertilizer having nutritional effects on soil. However, 

it can contain significant amounts of pollutants that enter compost via atmospheric 

deposition and by the input material. 

Three Swiss compost samples were analyzed in collaboration with the Swiss Federal 

Institute of Aquatic Science and Technology (EAWAG, Dübendorf, Swizerland) and 

Agroscope Reckenholz-Tänikon Research Station (ART, Zürich, Switzerland). An 

efficient clean-up method is required due to the specific properties of compost. It is 

described in chapter 3.1.3. 

The concentrations summarized in Table 3.5 were between 57–140 ng g-1 dw for 

SCCPs, 29–245 ng g-1 dw for MCCPs (both determined with ECNI-LRMS) and  

182-614 ng g-1 dw for total CPs (obtained with EI-MS/MS). 

Table 3.5 Overview of the SCCP, MCCP, total CP levels in three compost samples.

Sample
No.

SCCP conc. 
[ng g-1 dw] 

Cl
[%]

MCCP conc. 
[ng g-1 dw] 

Cl
[%]

SCCP+MCCP
[ng g-1 dw] 

totCP conc. 
[ng g-1 dw] 

1 117 62.5 29 58.5 146 182 

10 140 63.3 245 59.2 384 614 

16 57 61.0 138 57.9 194 268 

dw: dry weight 
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The results obtained by EI-MS/MS and ECNI-LRMS were generally in good 

agreement. The total CP concentration determined by EI-MS/MS was 20-37% higher 

then the respective sum of SCCPs and MCCPs. 

These concentrations were lower than the values in sewage sludge (Nicholls et al.,

2001; Stevens et al., 2003), but generally higher than those of Swiss soils (see chapter 

3.2.2) and alpine humus (see chapter 3.2.1). It is not surprising that CPs were found in 

compost, since they belong to high production chemicals and are incorporated into a 

various number of products for daily use that end up in organic waste. 

CP levels were also highest in compost compared to other POPs present in these 

samples such as PCBs and PBDEs (Brändli et al., 2007). Figure 3.12 shows the SCCP 

congener and homologue group patterns determined by ECNI-LRMS in three compost 

samples. CPs with eleven carbon atoms were most abundant in sample no. 1 and no. 10 

which is typical for technical SCCP mixtures. CPs with thirteen carbon atoms were 

highest in sample no. 16. SCCPs with seven and eight chlorine atoms were dominant. 
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Figure 3.12 SCCP congener and homologue group patterns in compost samples determined by 
GC-ECNI-LRMS.

The MCCP congener and homologue group patterns determined by ECNI-LRMS are 

shown in Figure 3.13. Among MCCPs, C14 chain length was predominant in all 

samples. The most abundant congeners were MCCPs with seven and eight chlorine 

atoms. Both the congener and homologue patterns are similar to technical MCCP 

mixtures. 
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Figure 3.13 MCCP congener and homologue group patterns in compost samples determined by 
GC-ECNI-LRMS. 
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3.2.4 Chronological Evaluation of CPs in a Lake Sediment Core 

Studies of dated layers of sediment cores are an excellent way to investigate 

concentration trends over time. PAPER III gives an overview of the temporal trend of CP 

concentrations in a dated sediment core covering the past 120 years. This sediment core 

was taken from Lake Thun near the mouth of the river Aare and the village Därligen 

(see Figure 3.14). 

Figure 3.14 Sampling location of the analyzed sediment core from Lake Thun (Switzerland).

Lake Thun is located in the alpine region of the Canton Bern in the centre of 

Switzerland and has a surface area of 47.69 km2, a mean depth of 136 m, and a volume 

of 6.42 km3. Lake Thun is situated in a rural, densely populated catchment area without 

known point sources such as e.g. metal and polymer industry. 
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PAPER III shows that total CP levels increased by 500% within two decades (1970s and 

1980s) and leveled off thereafter (see Figure 1 in PAPER III and in Figure 3.15). 

Moreover, the concentration-versus-time profile is in good agreement with the available 

information on global production data. 

Figure 3.15 Historical time trends of total CP (green line), SCCP (blue line), and MCCP (red 
line) concentrations in a sediment core from Lake Thun. The global CP production 
(grey background) is also given. Analysis was performed by GC-EI-MS/MS and 
GC-ECNI-LRMS.
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Based on the calculated flux profile of this core (see Figure 6B in PAPER III), 

the input of total CPs is still rising and has its maximum in the surface layer (2004, 

164 g m-2 y-1). The evaluation of the ECNI-LRMS measurements revealed an increase 

of higher chlorinated SCCPs in recent years (see Figure 2A and 3 in PAPER III), which 

may indicate the ongoing use of CPs as an additive for plastics, paints and coatings. 

However, a shift of the relative inputs from SCCPs to MCCPs was observed after year 

2000 in the surface layer (see Figure 3 and 4A in PAPER III and in Figure 3.15). It is not 

yet clear, if this change of the CP composition can be attributed to effectiveness of the 

regulations of the EU Water Framework Directive and the preceding discussions about a 

general ban of SCCPs, but it may open up an important topic for future researches. For 

example, the ban of PCBs has had a substantial effect on the input to the environment 

(Zennegg et al., 2007; Bogdal et al., 2008). Therefore, PCBs were analyzed in this 

dated sediment core from Lake Thun as well (see Figure 6A in PAPER III). Figure 6A 

illustrated also how fast the ban of use of PCB for open systems in Switzerland in 1972 

influenced the environmental release. The temporal trends of PCB (sum of the six 

indicator congeners) and total CP levels showed an increase of CPs when PCB levels 

declined (see Figure 6A in PAPER III). This is in line with a partial replacement of PCBs 

by CPs. Furthermore, the peak level of CPs exceeded that of PCBs by a factor of three. 

Conclusion and Outlook 
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4 Conclusion and Outlook 

In the last decades, the volume of CP production increased and, consequently, the input 

into the environment. Therefore, there is an urgent need for information on 

environmental CP concentrations. However, the number of publications concerning CPs 

rapidly decreased in the recent years, although numerous unclear aspects still require 

further research. This could be due to the demanding and tedious analytical methods. 

Although several methods have been published for the analysis of CPs, their application 

is generally not convenient. Therefore, it is still very important to improve currently 

available methods and to develop more simple, rugged and versatile techniques. 

The developed analytical scheme consists of module-based extraction and clean-up 

methods, which allows the determination of CPs in different matrices. In this way, it 

was possible to determine CPs in spruce needles, soils (humus) and compost samples 

with a similar sample preparation for the first time. It could be shown that CPs were 

ubiquitously present in the environment and could even transported to remote regions of 

the Alps as shown in this work. 

The time-dependence of SCCP and MCCP input into the environment is very 

interesting. SCCPs are now partially banned or regulated by several environmental 

agencies. The dated sediment core from Lake Thun revealed already a shift of the 

relative levels from SCCPs to MCCPs. Obviously, the CP producing industry replaced 

SCCPs with MCCPs. This may be an important topic for future research. 
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A further aspect is the newest development of mixed-halogenated analogues of CPs, 

which is promoted by the CP industry. These products would pose even a bigger 

challenge for the analyst. Therefore, it should be addressed as quickly as possible. 

Moreover, it would be interesting to analyze dust and indoor air samples from work and 

home places since CPs may be applied in carbonless toner for printers and as flame 

retardants for miscellaneous electronic equipments such as computers and television. 

Indoor air has been identified as an important source of chemical exposure, and house 

dust has been demonstrated to be an important exposure pathway for children. 

Furthermore, studies of brominated flame retardants showed high levels in dust. These 

analyses could also help to answer the question, if the increasing CP levels in the 

environment might also have toxicological consequences for humans. 
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a b s t r a c t

Conifer needles are used for the monitoring of atmospheric persistent organic pollutants. The objective of
the present study was to develop a method for the detection of airborne chlorinated paraffins (CPs) using
spruce needles as a passive sampler. The method is based on liquid extraction of the cuticular wax layer
followed by chromatographic fractionation and detection of CPs using two different GCMS techniques.
Total CP concentrations (sum of short (SCCP), medium (MCCP) and long chain CPs (LCCP)) were deter-
mined by EI-MS/MS. SCCP and MCCP levels as well as congener group patterns (n-alkane chain length,
chlorine content) could be evaluated using ECNI-LRMS. For the first time, data on environmental
airborne CPs on spruce needles taken within the Monitoring Network in the Alpine Region for Persistent
and other Organic Pollutants (MONARPOP) are presented providing evidence that spruce needles are
a suitable passive sampling system for the monitoring of atmospheric CPs.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Conifer needles are suitable as passive sampler for air pollutants.
A number of publications described the accumulation of airborne
organic compounds in the cuticular wax layer of conifer needles
such as PCBs, PCNs, DDTs, HCHs, and dioxins (Buckley, 1982; Gaggi
et al., 1985; Eriksson et al., 1989; Jensen et al., 1992; Kylin et al.,
1994; Strachan et al., 1994; Levy et al., 2007; Wyrzykowska et al.,
2007). Air pollutants in the vapor phase are trapped in the waxy
surface, while particle-associated compounds are deposited on the
needle surface (Kylin et al., 1994; Strachan et al., 1994). Particularly,
conifer needles are well-suited as passive samplers exhibiting
a high interception capacity for rain, fog and snow (Umlauf and
McLachlan, 1994). Moreover, conifers do not loose their canopy in
autumn and, therefore, sampling is possible at all seasons. The
amount of accumulated air pollutants generally increases with
needle age (Hellström et al., 2004; Romanic and Krauthacker,
2004). Furthermore, the high prevalence of spruce forests in
temperate areas allows comparisons of geographical, seasonal, and
temporal variations of levels of air pollutants (Eriksson et al., 1989;

Jensen et al., 1992; Levy et al., 2007; Romanic and Krauthacker,
2007; Wyrzykowska et al., 2007).

Chlorinated paraffins (CPs), also known as polychlorinated
n-alkanes (PCAs),were introduced in the 1930s. CPs are produced by
the reaction of specific n-alkane fractions from petroleum distilla-
tionwith chlorine. Theyare differentiated into threemain categories
according to their carbon chain length: short chain CPs (SCCPs,
C10–13), medium chain CPs (MCCPs, C14–17) and long chain CPs
(LCCPs, C>17) (Muir et al., 2000). The chlorination degree of CPs can
vary between 30 and 70% (Muir et al., 2000). CPs are in use for awide
range of industrial applications such as flame retardants and plas-
ticizers in sealants, paints and coatings, and as additives in metal
working fluids (Campbell and McConnell, 1980; Tomy et al., 1998).

CPs are persistent chemicals and their physical properties
(log KOW 4.4–8, depending on the chlorination degree) imply a high
potential of bioaccumulation as well as of global long-range
atmospheric transport (Muir et al., 2000). Their presence was
detected in the Canadian (Tomy et al., 1999, 2000) and European
Arctic (Reth et al., 2006). Moreover, CP levels in the environment
increased in the last decades. In a sediment core from Lake Thun,
Switzerland, Iozza et al. observed a substantial rise of CP levels in
the 1980s (Iozza et al., 2008).

The acute toxicity of CPs is low (WorldHealth Organization,1996).
Nevertheless, SCCPs showed chronic toxicity in aquatic organisms
and are carcinogenic in rats and mice (OSPAR Commission, 2001).
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Therefore, SCCPs were categorized in group 2B as ‘possibly carcino-
genic to humans’ by the International Agency for Research on Cancer
(IARC) (World Health Organization, 1996). Due to their higher
tendency of bioaccumulation (World Health Organization, 1996) and
higher toxicity of SCCPs than MCCPs and LCCPs they have also been
included in the list of priority hazardous substances of the European
Water Framework Directive (European Community, 2000). For the
same reasons, SCCPs are now under discussion to be included in the
StockholmConventiononPOPs (PersistentOrganicPollutants Review
Committee (POPRC) 2004). Consequently, environmental CP levels
should be monitored more comprehensively.

Technical CP mixtures contain thousands of different congeners
(homologues and isomers) which cannot be resolved into single
congeners by any chromatographic and mass spectrometric tech-
nique. Currently, three analytical methods for CPs are used based
on gas chromatography coupled with mass spectrometry (GCMS).
All methods fully exploit the specificity of mass spectrometry:

- Tandem mass spectrometry (EI-MS/MS) is based on fragment
ions with lowmass-to-charges ratios, which are common to all
CPs. The response factors of different CP mixtures are inde-
pendent from their chlorine content (Zencak et al., 2004,
2005).

- Electron capture negative ionization with low resolution mass
spectrometry (ECNI-LRMS) records single ions of the [M–Cl]�

isotope clusters ions (Schmid and Müller, 1985; Castells et al.,
2004; Zencak et al., 2005).

- Electron capture negative ionization with high resolution mass
spectrometry (ECNI-HRMS) is a very selective method elimi-
nating interferences from CP fragments with the same nominal
m/z values or from other organochlorine compounds (Tomy
et al., 1997) not removed by preceding clean-up procedures.
Due to the high costs of HR instruments, this method is not
available at many laboratories.

LRMS methods based on ECNI or on EI-MS/MS are well-suited
for routine analysis (Castells et al., 2004; Zencak et al., 2005).
However, a highly efficient clean-up is mandatory to avoid inter-
ferences from both matrix and other POPs (Parera et al., 2004; Reth
and Oehme, 2004; Hüttig and Oehme, 2005).

Only a few more analytical methods are described in the liter-
ature enabling quantitative routine analysis of CPs (Pellizzato et al.,
2007). Moreover, only few laboratories analyze CPs worldwide
(UNECE ad hoc Expert Group on POPs, 2003), although they are
ubiquitously present in the environment including remote areas.
Therefore, limited information is available about environmental
levels, metabolic pathways and toxicokinetics of CPs compared to
other polychlorinated environmental pollutants such as poly-
chlorinated biphenyls (PCBs), dioxins, and organochlorine pesti-
cides (Muir et al., 2000; Pellizzato et al., 2007).

The aim of the present work was to develop an integral
analytical method for the determination of CPs in conifer needles.
This required the development of a sample clean-up procedure
handling the waxy matrix. The properties of the wax differ from
lipids present in fish or mammals. Moreover, separation and
quantification had to be optimized to minimize interferences from
the remaining sample matrix. Besides a detailed method descrip-
tion, first data about CP environmental levels in spruce needles
from the Alps taken within the MONARPOP project are presented
including recommendations concerning the appropriate handling
of spruce needles as passive sampling material.

With support from the European Union the project MONARPOP
(Monitoring Network in the Alpine Region for Persistent and other
Organic Pollutants) was set up in 2003 by Austria, Germany, Italy,
Switzerland, and Slovenia to investigate input, pathways and fate of

atmospheric anthropogenic contaminants such as POPs in the Alps
(Moche et al., 2005). The monitoring of anthropogenic contami-
nants including CPs and using spruce needles as passive sampling
material is one of the objectives within this project.

2. Experimental

2.1. Chemicals and solvents

Cyclohexane, dichloromethane (DCM) and n-hexane (nHex) for residue analysis
were obtained from Biosolve (Vallenswaard, Netherlands). The internal standard
13C10-trans-chlordane (100 ng ml�1, solution in n-nonane, purity 99%) was purchased
by Cambridge Isotope Laboratories (Andover, USA). Reference SCCP (C10–13, chlorine
contents of 51.5, 55.5 and 63.0%) and reference MCCP mixtures (C14–17, chlorine
contents of 52.0 and 57.0%) with concentrations of 100 ng ml�1 in cyclohexane as
well as 3-hexachlorocyclohexane (3-HCH, solution in cyclohexane, 10 ng ml�1) were
supplied from Ehrenstorfer GmbH (Augsburg, Germany). Florisil� PR (60–100 mesh)
and anhydrous sodium sulfate (Pestanal�) were obtained from Fluka (Buchs,
Switzerland). Silica gel for column chromatography (230–400 mesh, 0.045–
0.063 mm) and sulfuric acid (98%) were purchased from Merck KGaA (Darmstadt,
Germany).

2.2. Spruce needle samples

Spruce needle samples from eight selected sampling sites distributed in the Alps
were taken in five countries (Austria, Germany, Italy, Slovenia, and Switzerland) in
autumn 2004 (see Table 1). All sampling sites were located in alpine remote forests
of Norway spruce (>80% specific purity) being 30 or more years old and of at least
0.5 ha surface. 3–5 spruce needle branches were cut from the 7th whirl (from top) of
two dominant adult trees in October 2004. Six months old twigs were collected,
transported on dry ice and stored at �20 �C until further processing. After immer-
sion into liquid nitrogen needles were separated from twigs, immediately trans-
ferred to precleaned brown glass containers and stored at �20 �C. Ancillary
information about the spruce needle samples will be published by Offenthaler et al.
(2009).

2.3. Needle extraction

In a 250 ml Duran glass bottle (Schott�), 20–25 g of fresh needles were spiked
with the internal standard (10 ng of 13C10-trans-chlordane) and extracted by shaking
at room temperature (ca. 22 �C) with 150 ml of dichloromethane/n-hexane 1 þ 1
(DCM/nHex, v/v) for 16 h. The extract was filtered through a glass funnel of 115 mm
diameter filled with glass wool (Riedel-de Haën, Seelze, Germany) directly into
a Turbo Vap vessel (Zymark, Hutchinson, USA) of 200 ml. A second portion of 30 ml
DCM/nHex was added to the needles and the procedure repeated. The combined
extracts were concentrated to 1 ml using a Turbo Vap 500 (Zymark, Hutchinson,
USA).

2.4. Extract clean-up

A 20 mm i.d. glass column was filled from bottom to top with 1 g of anhydrous
sodium sulfate, 20 g of silica gel impregnated with concentrated sulfuric acid (44%)
and 1 g of anhydrous sodium sulfate. It was rinsed with 20 ml of DCM/nHex 1 þ 1
(v/v). The sample extract was transferred to the column, and CPs were eluted with
70ml of DCM/nHex 1þ1 (v/v). The eluatewas evaporated to 0.5mlwith a Turbo Vap
500. After dilution with 10 ml of nHex the extract was reduced to 0.5 ml and the
latter procedure was repeated.

A further clean-up step was carried out on a chromatographic column con-
taining 16 g of Florisil� deactivated with 1.5% water and conditioned with 20 ml of
nHex. After passing the extract to the column, the first fraction obtained with 75 ml
of nHex and 5 ml of DCM was discarded. CPs were collected in a second fraction of
60 ml of DCM, which was concentrated to 0.5 ml. 10 ml of cyclohexane were added,
the volume was reduced to 100 ml with a Turbo Vap 500 and this step was repeated.
Then, 10 ng of 3-HCH in 10 ml of cyclohexane were added as recovery standard.

2.5. Instrumentation

Quantification was performed on a gas chromatograph CP-3800 coupled to
a 1200L triple quadrupole mass spectrometer (Varian, Walnut Creek, USA). The gas
chromatograph was equipped with a fused silica capillary column (15 m length,
0.25 mm i.d.) coated with 0.25 mm of crosslinked 5% phenyl-methylpolysiloxane
(DB5-MS, J&W Scientific, Folsom, USA). Helium (99.996%, Sauerstoffwerk Lenzburg,
Lenzburg, Switzerland) at a constant flow of 2 ml min�1 was used as carrier gas. The
temperature of the split/splitless injector was set to 275 �C. Splitless injections
(3.0 min) of 2.5 ml were carried out with a Combi Pal autosampler (CTC Analytics,
Zwingen, Switzerland). The following temperature program was used: 100 �C
(3min), thenwith 50 �Cmin�1 to 300 �C (isothermal for 3 min). The temperatures of
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the transfer line and of the ion source were 280 �C and 200 �C, respectively. The
detailed GC-EI-MS/MS parameters are published elsewhere and hence only briefly
described (Zencak et al., 2004). Mass spectrometry measurements were carried out
by both EI-MS/MS and ECNI-MS. EI mass spectra were recorded at 70 eV electron
energy with a filament emission current of 150 mA and a scan cycle time of 0.25 s.
Argon (99.5%, Sauerstoffwerk Lenzburg) at a pressure of 0.13 Pa was employed as
collision gas. The mass spectrometer was regularly tuned to optimal performance
using perfluorotributylamine fragment masses atm/z 69, 219, and 502. The selection
of the fragmentmasses as described by Zencak et al. (2004) was slightlymodified for
the determination of the total CP amount: m/z 91 / m/z 53 (collision energy:
�10 eV),m/z 102/m/z 67 (�10 eV) andm/z 104/m/z 67 (�10 eV). The precursor
ion at m/z 383 [M � Cl]þ and the product ion at m/z 276 [M–4Cl]þ were selected for
the detection of the internal standard 13C10-trans-chlordane (�28 eV).

GC-ECNI-LRMS parameters for the determination of SCCP and MCCP levels as
well as homologue profiles and degrees of chlorination are described elsewhere
(Reth et al., 2005a; Hüttig and Oehme, 2006). The temperature program was as
follows: 100 �C (2 min), with 15 �C min�1 to 280 �C (2.5 min), with 20 �C min�1 to
300 �C (2.5 min). Methane (99.995%, Carbagas, Rümlang, Switzerland) was
employed as reagent gas at an ion source pressure of 730 Pa. The ion source was
tuned to optimum performance using perfluorotributylamine fragment masses at
m/z 283, 452 and 633. The most abundant signal within the isotope clusters of the
[M–Cl]� fragment ion (CPs with 5–10 chlorine atoms and of 3-HCH recovery
standard) and of the molecular ion of 13C10-trans-chlordane were selected for the
detection in the selected ion monitoring (SIM) mode (total dwell time 0.250 s
per cycle).

2.6. Pre-treatment of glassware and chemicals

Cross contamination via glassware was minimized by the following measures.
All glassware was washed in a glassware washer, then immersed into a detergent
solution (5% RBS�35 concentrate, Fluka) for 12 h and rinsed with DCM and nHex.
This was followed by heating to 450 �C overnight and rinsing with the same solvents
prior to use. Chemicals used for sample clean-up such as Florisil�, anhydrous sodium
sulfate, and silica gel were heated overnight at 220 �C. Glass wool was heated to
450 �C overnight.

3. Results and discussion

3.1. Evaluation of a suitable extraction and clean-up procedure

Extraction at room temperature of the fresh, intact needles with
a mixture of DCM and nHex was chosen to solve the waxy layer and
to exclude as far as possible undesirable interfering substances
from the needle body such as chlorophyll and essential oils. Gel
permeation chromatography is not able to separate CPs from such
compounds. However, column chromatography with silica gel
impregnated with sulfuric acid is suitable to remove interfering
compounds from the needle matrix. It changes the dark green
opaque raw extract of the needles to a colorless and clear solution.
Finally, chromatography on Florisil allows separating CPs from
other organochlorines such as chlordanes, PCBs and toxaphenes.

This is essential since other organochlorines with similar mass-to-
charge ratios and retention times can interfere the detection of CPs
by LRMS methods (Reth et al., 2005a).

3.2. Detection, identification and quantification

Detection, speciation and quantification of CPs were accom-
plished at two levels using two different GCMS procedures: (i) Total
CPs (totCPs) were determined by a recently developed mass spec-
trometric technique based on EI-MS/MS (Zencak et al., 2004) which
enables the simultaneous detection of SCCPs, MCCPs, and LCCPs;

Table 1
CP concentrations in conifer needles from the Alps determined by GC-ECNI-LRMS (SCCPs and MCCPs) and by GC-EI-MS/MS (total CPs). Samples 8.1 and 8.2 are replicates.
Sample 8.3 þ SCCP 55.5 and sample 8.4 þ MCCP 52.0 are samples spiked with 100 ng of reference SCCPs or MCCPs before analysis.

Sample
number

Sampling
location

Altitude
[m]

Date ECNI-LRMS Calculated
SCCP þ MCCP
[ng g�1 fw]

EI-MS/MS Recovery
IST [%]

Recovery
CPs [%]

SCCP conc.
[ng g�1 fw]

Chlorine
content [%]

MCCP conc.
[ng g�1 fw]

Chlorine
content [%]

Total CP conc.
[ng g�1 fw]

Sample 1 Val Visdende (IT) 1325 05.10.2004 43 61.6 95 57.8 138 194 63
Sample 2 Klosters (CH) 1410 27.10.2004 31 62.0 27 56.4 58 83 60
Sample 3 Eschenlohe (DE) 1450 11.10.2004 9 63.4 10 56.4 19 21 56
Sample 4 Pokljuka (SL) 1397 08.10.2004 7 63.6 20 56.4 27 24 57
Sample 5 Wechsel (AT) 1510 07.10.2004 19 61.8 6 55.7 25 22 65
Sample 6 Alpe Gotta (IT) 1451 18.10.2004 44 64.0 29 55.8 73 69 52
Sample 7 Rauris (AT) 1470 28.09.2004 5 62.7 10 55.8 16 16 81
Sample 8.1 Berchtesgarden (DE) 1420 07.10.2004 12 63.1 5 55.7 17 16 65
Sample 8.2 Berchtesgarden (DE) 1420 07.10.2004 13 62.6 5 55.8 18 17 59
Sample 8.3 þ

SCCP 55.5
Berchtesgarden (DE) 1420 07.10.2004 17 61.3 7 56.0 24 22 72 78

Sample 8.4 þ
MCCP 52.0

Berchtesgarden (DE) 1420 07.10.2004 13 62.7 11 56.5 24 23 70 89

fw: fresh weight; IST: internal standard; IT: Italy; CH: Switzerland; DE: Germany; SL: Slovenia; AT; Austria.

Fig. 1. GC-EI-MS/MS chromatograms (m/z 102 / 65) of a spruce needle sample from
the Alps and an SCCP reference standard with 55.5% Cl.
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(ii) More detailed data regarding the chlorine content as well as the
congener and the homologue patterns of CPs were obtained by an
ECNI-LRMSdetectionmethod (Reth et al., 2005a;Hüttig andOehme,
2006). Reth and Oehme (2004) showed that ECNI measurements at
low resolution can lead to systematic errors due to gas chromato-
graphic and mass spectrometric overlap between CP congeners.
Therefore, a proper identification of the CP congeners (C10–17Cl5–10)
of retention time, chromatographic signal shape and correct isotope
ratio is essential. Furthermore, the quantification procedure
described by Reth et al. (2005b) was applied to enable a reliable
quantification even at differences between chlorine content of
sample and reference standards. Three SCCP (51%, 55%, and 63% Cl)
and two MCCP references (52% and 57% Cl) with different chlorine
content were applied to compensate for such effects.

3.3. Quality control

Limits of detection (LOD) at a signal-to-noise ratio of 3:1
(detection of the most abundant congener groups) were between
0.1 and 0.5 ng ml�1 for a reference SCCP mixture (55.5% chlorine
content) and between 0.2 and 0.7 ng ml�1 for a reference MCCP
mixture (52% chlorine content) determined by ECNI-LRMS. The
detection limits for EI-MS/MS were 0.09, 0.16 and 0.23 ng ml�1

respectively for m/z 102 / m/z 67, m/z 91 / m/z 53 and m/z
104 / m/z 67 applying a reference SCCP mixture (55.5% chlorine
content).

Method blanks included extraction and clean-up. Blank
concentrations were 1.3 � 0.2 ng g�1 fresh weight (fw) totCPs
assuming a mean sample weight of 18.2 g (n ¼ 5).

In order to test the reproducibility of the analytical method each
two aliquots (sample aliquot 8.1 and 8.2) of the same sample
(sample 8) were processed separately. The deviation between these
two samples was 10% for totCPs,10% for the sum of SCCPs and 6% for
the sum of MCCPs. The calculated chlorine contents of the two
aliquots were 62.6% and 63.1% for SCCPs and 55.7% and 55.8% for
MCCPs. Two further aliquots (sample aliquot 8.3 and 8.4) were
processed separately after spiking with 100 ng of reference SCCPs

(55% chlorine content) and with 100 ng of reference MCCPs (52%
chlorine content), respectively. Deviations from expected values
obtained by ECNI-MS were 22% for SCCPs and 11% for MCCPs.
Recoveries of the internal standard were between 52 and 81%
(mean 64%) for all analyzed samples.

The efficiency of this clean-up and detection method is clearly
demonstrated by the ECNI and EI-MS/MS chromatograms of an
extract without stocking showing the typical CP profile essentially
free of interferences (see Figs. 1 and 2) and by the reproducibility
and recovery of the reference and internal standards.

3.4. CP levels in needle samples

CPs were determined in eight alpine spruce needle samples
from the MONARPOP project with both EI-MS/MS and ECNI-LRMS.
Results are summarized in Table 1. Total CP concentrations were
between 16 and 194 ng g�1 fw. SCCP levels quantified by ECNI-
LRMS according to Reth et al. (2005b) varied between 5.4 and
44 ng g�1 fw and MCCP concentrations between 5.2 and
95 ng g�1 fw. The chlorine content of SCCPs andMCCPs obtained by
ECNI was within 61.6–64.0% and 55.7–57.8%, respectively.

3.5. Homologue and congener patterns of CPs in spruce needles

Fig. 3 shows the homologue patterns and SCCP/MCCP ratios of
the needle samples. The ratio between SCCPs and MCCPs covered
a wide range (0.3–3.2). Moreover, the samples can be arranged in
two groups according to their SCCPs homologue patterns. C11 is the
major homologue group for samples no. 1, 2, 3, and 8 and C10 for
samples no. 4, 5, 6, and 7. C14 is the dominant MCCPs chain length
for all samples, which showed similar MCCP patterns. The corre-
sponding congener group patterns are shown in Fig. 4. Congeners
with 7–8 chlorines were most frequent for SCCPs and MCCPs.
Samples 4–7 contained shorter chained SCCPs compared to current
technical SCCP mixtures (Reth et al., 2006). Tomy et al. (1998)
observed in air samples an enrichment of lower chlorinated lower
chain length congeners, as well. They related their observationwith

Fig. 2. GC-ECNI-LRMS chromatograms of C11H17Cl7 (m/z 360.9) and of C14H23Cl7 (m/z 403.0) of an alpine spruce needle sample and an SCCP reference standard with 55.5% Cl,
respectively (i: unknown interference).

S. Iozza et al. / Environmental Pollution 157 (2009) 3218–3224 3221



the findings of Drouillard et al. (1998), who remarked that shorter
chained and lower chlorinated congeners are the most volatile
components of technical CP mixtures due to their higher Henry’s
Law Constant.

3.6. Comparison with other airborne pollutants in conifer needles

Since Kylin and Sjödin (2003) observed a higher accumulation
rate during summer compared to the remaining seasons for

hexachlorocyclohexanes (HCHs) in conifer needles, spruce needles
were collected in the early autumn period within the MONARPOP
project to ensure a highest possible accumulation.

The CP levels in conifer needles determined in this first study
were compared with levels published for other POPs in Table 2. As
can be seen, totCP levels are highest. This is consistent with a study
of POP levels in ambient air of the U.K. by Barber et al. (2005).
Concentrations were highest for SCCPs and MCCPs compared to
other POPs such as PCBs. However, due to the unknown accumu-
lation characteristics of conifer needles for CPs, a direct comparison
of levels in needles with concentrations in air is not possible at the
moment.

Fig. 3. Ratios of SCCPs and MCCPs (A), SCCP homologue group pattern (B: mean of
samples 1–3 and 8 and mean of samples 4–7), and MCCP homologue group pattern (C:
mean of samples 1–3 and 8 and mean of samples 4–7) in analyzed needle samples
from the Alps obtained by GC-ECNI-LRMS. Samples 8.1 and 8.2 are replicates. Standard
deviations are assigned.

Fig. 4. Average SCCP congener group patterns of needle samples 1–3 and 8 (A) as well
as of samples 4–7 (B) and average MCCP congener group pattern of the needle samples
1–8 determined by GC-ECNI-LRMS. Standard deviations are assigned.
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3.7. Comparison with other passive samplers

Compared to synthetic passive sampler materials such as poly-
urethane foams (PUFs) and semi-permeable membrane devices
(SPMDs) conifer needles exhibit several benefits: (i) Conifer nee-
dles are an inexpensive sampling material requiring no installa-
tions or maintenance such as protection against climatic conditions
(sunlight or wind) (Zhu et al., 2007); (ii) Conifers are widespread in
temperate areas; (iii) The same tree can be used over a sampling
period of several years. Moreover, retrospective studies on
temporal trends of airborne pollutants are possible due to the long
lifetime of the needles. However, collection of conifer needles in the
forest and defined age determination requires much experience.
Furthermore, the analysis of the needle matrix is highly demanding
compared to synthetic passive samplers.

Levy et al. (2007) compared accumulation of PCDD/F in spruce
needles and SPMDs. They concluded that needles can take up
compounds from both particles and the gas phase and thus cover
the whole range of PCDD/F homologues. In contrast, SPMDs
preferentially accumulate compounds from the gas phase such as
lower chlorinated PCDD/Fs. Due to the physical properties of CPs
the World Health Organization estimates an atmospheric
transportation preferentially adsorbed to particles (World Health
Organization, 1996) which makes SPMDs less suitable for passive
sampling.

4. Conclusions

An analytical method was developed which enables the use of
spruce or other conifer needles as a passive samplermaterial for the
determination of airborne CPs. For the first time, CP concentrations
in spruce needles are presented. This study affords also compari-
sons with other studies in the future, since conifer forests, especial
spruce forests, are widespread present. Spruce needles provide
a suitable matrix system for evaluating CP concentrations. Thereby,
spruce needles can be used to determine the regional exposures

from a single-year-class, as well as, the time trend between
year-classes. The results from this preliminary study were used
for a further extended investigation (Iozza et al., 2009), in which
the here described analytical method was used to evaluate the
concentrations of airborne CPs determined in spruce needles and in
humus in a program (MONARPOP) aimed at mapping the distri-
bution of CPs and other organic pollutants in the European Alps.

Acknowledgement

The authors want to express their gratitude to the project
partners of MONARPOP (M. Kirchner, G. Jakobi, I. Sedivy, N. Kräuchi,
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a b s t r a c t

Chlorinated paraffins (CPs) are toxic, bioaccumulative, persistent, and ubiquitously present in the envi-
ronment. CPs were analyzed in humus and needle samples, which were taken within the Monitoring
Network in the Alpine Region for Persistent and other Organic Pollutants (MONARPOP) at sampling sites
of 7 different altitude profiles in the Alps. Gas chromatography combined with electron ionization
tandem mass spectrometry (EI-MS/MS) was used for the determination of total CPs (sum of short,
medium and long chain CPs). CPs were found in all samples; the concentrations varied between 7 and
199 ng g�1 dry weight (dw) and within 26 and 460 ng g�1 dw in humus and needle samples, respectively.
A clear vertical tendency within the individual altitude profiles could not be ascertained. Within all
altitude profiles, elevated concentrations were observed in humus samples taken between 700 and
900 m and between 1300 and 1500 m. In the needle samples no similar correlation could be observed
due to higher variation of the data.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Chlorinated paraffins (CPs) are highly complex mixtures of
polychlorinated n-alkanes containing thousands of homologues
and stereoisomers. They are produced by the reaction of chlorine
with selected n-alkane fractions from petroleum distillation.
According to their carbon chain length CPs are divided into three
main categories: short chain CPs (SCCPs, C10–13), medium chain CPs
(MCCPs, C14–17) and long chain CPs (LCCPs, C>17). Furthermore, the
chlorination degree of CPs can vary between 30 and 70% depending
on the field of application (Muir et al., 2000). Over 200 CP

formulations are in use for a wide range of industrial applications,
such as flame retardants and plasticizers, and as additives in metal
working fluids, in sealants, paints and coatings (Campbell and
McConnell, 1980; Alcock et al., 1999). Since their introduction in the
1930s, the global production of CPs has increased steadily. Reported
estimated world consumption was 38–50 kt yr�1 in 1964 and
230 kt yr�1 in 1977. From 1993 to the present time the global
production seems to have leveled off at 300 kt yr�1 (Muir et al.,
2000). Nevertheless, these estimations are based on production
data only from North America and Europe and nothing is known
about the production amounts in industrial upcoming countries
such as India and China.

The physical properties of CPs imply a high potential for bio-
accumulation as well as for global long-range atmospheric trans-
port (Muir et al., 2000). Among the different CP mixtures, SCCPs
have been classified as toxic to aquatic organisms, and carcinogenic
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to rats and mice (OSPAR Commission, 2001). Moreover, the Inter-
national Agency for Research on Cancer (IARC) categorized SCCP in
group 2B as ‘possibly carcinogenic to humans’ (World Health
Organization, 1996). Because of the greater bioaccumulation
(World Health Organization, 1996) and toxicity of SCCPs than
MCCPs and LCCPs, production and use have been banned in the
European Community. It is assumed that the quantity of imported
SCCPs is still huge, although the production of SCCPs has been
voluntarily reduced from 13,000 tons in 1994 to 4000 tons in 1998
by the European industry (OSPAR Commission, 2001). In the
meantime, SCCPs are included in the list of priority hazardous
substances of the European Water Framework Directive (European
Community, 2000) and the ‘Persistent Organic Pollutants Review
Committee’ (POPRC, 2004) is evaluating to include SCCPs in the
Stockholm Convention on Persistent Organic Pollutants (POPs).

The release into the environment can occur through different
pathways such as emission during production, transport, and
industrial use, as well as leaching from plastics, paints, and sealants
(Tomy et al., 1998). Up to now, limited information is available
about environmental CP concentrations compared to other
persistent organochlorine compounds like PCBs, DDT, or toxa-
phenes (Muir et al., 2000). However, a permanent monitoring of
CPs has become more and more important due to their ubiquitous
presence in the environment in a variety of matrices (Tomy et al.,
2000; Barber et al., 2005; Hüttig and Oehme, 2005; Reth et al.,
2005, 2006; Thomas et al., 2006; Brändli et al., 2007). In addition,
the levels in the environment increased with the production
amount in the last decades (Iozza et al., 2008).

Mountains are a geographical and meteorological trap for
atmospheric pollutants including semivolatile organic compounds
because of barrier effects, high precipitation rates, and low ambient
temperatures (cold condensation) (McLachlan and Horstmann,
1998; Daly and Wania, 2005). Particularly, the Alps are surrounded
by regions of significant industrial production with a dense pop-
ulation. Several investigations on the behavior of POPs in the Alps
were conducted in various matrices (e.g. in fish: (Grimalt et al.,
2001; Vives et al., 2004; Schmid et al., 2007), in deposition: (Carrera
et al., 2002; Nizzetto et al., 2006a); in snow: (Herbert et al., 2004;
Finizio et al., 2006); in ice cores: (Villa et al., 2003; Maggi et al.,
2006), in sediments: (Grimalt et al., 2001), in soils: (Schmid et al.,
2005; Tremolada et al., 2008); in needles: (Weiss et al., 2003;
Nizzetto et al., 2006b), and in air: (Jaward et al., 2005; Finizio et al.,
2006)). In contrast to these local studies, MONARPOP (Monitoring
Network in the Alpine Region for Persistent and other Organic
Pollutants) is intended to a more transboundary assessment of the
POP input in the Alps. Five states within the region of the Alps
(Austria, Germany, Italy, Switzerland, and Slovenia) have launched
this project with support from the European Union (Moche et al.,
2005). The major aim of this network is to monitor anthropogenic
contaminants within this environment.

Conifer needles are covered by an epicuticular wax layer, which
has been shown to trap and accumulate lipophilic compounds
(Buckley, 1982; Gaggi et al., 1985). Air pollutants in the vapor phase
can diffuse into the waxy surface, while particle-associated
compounds are deposited on the needle surface (Kylin et al., 1994;
Strachan et al., 1994). Since conifers do not shed their canopy in
autumn, the amount of accumulated air pollutants generally
increases over years with needle age (Hellström et al., 2004;
Romanic and Krauthacker, 2004). Therefore, needles have been
used for monitoring to investigate both the local and the regional
distribution of lipophilic air pollutants (Eriksson et al., 1989; Jensen
et al., 1992; Weiss et al., 2003; Hellström et al., 2004).

Humus is a natural sink for POPs. The high organic carbon
content favors the accumulation of POPs. Beside the direct
absorption from the atmosphere by trapping compounds from the

vapor phase and by deposition of particle-bound pollutants, the
input of POPs to the humus increases by litter fall (McLachlan and
Horstmann, 1998).

This study presents altitude profiles of CP levels in humus layers
and spruce needles collected within the MONARPOP project.
Instrumental analysis was performed using electron ionization
tandem mass spectrometry (EI-MS/MS) to determine the total CP
concentration (totCPs; sum of SCCPs, MCCPs, and LCCPs) (Zencak
et al., 2004).

2. Experimental

2.1. Chemicals and solvents

Cyclohexane, dichloromethane (DCM), and n-hexane (nHex) for residue analysis
were obtained from Biosolve (Vallensvard, Netherlands). Reference SCCP (chlorine
content of 55.5%) and MCCP mixtures (chlorine content of 52.0%) with concentra-
tions of 100 ng ml�1 in cyclohexane as well as 3-hexachlorocyclohexane (3-HCH,
solution in cyclohexane, 10 ng ml�1) were purchased from Ehrenstorfer GmbH
(Augsburg, Germany). 13C10-trans-chlordane (100 ng ml�1, solution in n-nonane,
purity 99%) was supplied by Cambridge Isotope Laboratories (Andover, USA). Silica
gel for column chromatography (230–400 mesh, 0.045–0.063 mm), sulfuric acid
(98%), and copper powder (63 mm) were purchased from Merck KGaA (Darmstadt,
Germany). Florisil� PR (60–100 mesh) and anhydrous sodium sulfate (Pestanal�)
were obtained by Fluka (Buchs, Switzerland). Sodium sulfate, Florisil�, and silica gel
(230–400 mesh, 0.045–0.063 mm; Merck KGaA, Darmstadt, Germany) were dried at
220 �C overnight.

2.2. Site selection

Humus and spruce needle samples from seven selected locations representing
altitude profiles in the Alps were taken in five countries (Austria, Germany, Italy,
Slovenia, and Switzerland) in autumn 2004 (see Fig. 1). Sampling sites were selected
with a special attention to remoteness and specific homogeneity (>80% Norway
spruce) of adult stands. Every altitude profile consisted of four to five subplots
reaching from valley ground to upper tree limit between 700 and 1900 m above sea
level (a.s.l.) to examine the vertical CP distribution. Beside these altitude profile
locations, all sampling sites of the MONAPOP network are situated at an altitude of
1400 � 150 m. Therefore, this height can be regarded as a standard altitude.
Ancillary information about the site selection will be published by Offenthaler et al.
(2009).

2.3. Spruce needles samples

3–5 Branches were cut from the top 7th whirl of two dominant adult spruce
trees in October 2004. Six months old twigs were collected, pooled, and transferred
at�50 �C (dry ice) to airtight glass jars to the analyzing lab and then stored at�20 �C
until further processing. Needles were separated from twigs after immersion into
liquid nitrogen, immediately filled into airtight and light-protected glassware, and
stored at �20 �C.

2.4. Humus samples

The humus layer was taken within a 30 � 30 cm area. Sampling depth corre-
sponded to the variable thickness of the humus layer (mean depths: 0.8–23.8 cm).
The material from seven to ten pits along a 5 � 30 m rectangular grid was pooled for
one sample. This yielded up to 60 l of humus per sampling plot. Humus samples
were lyophilized, ground to particle diameter <0.5 mm and filled into airtight and
light-protected glass containers.

2.5. Extraction and clean-up

Details of the applied extraction and clean-up procedures are given elsewhere
(Hüttig and Oehme, 2005; Iozza et al., 2009) and, hence, are only briefly described.
For all analysis 10 ng of 13C10-trans-chlordane in 10 ml of cyclohexane were used as
internal standard (ISTD).

2.5.1. Humus
20 g of dried and homogenized samples were spiked with ISTD and then Soxhlet

extracted with 200 ml of dichloromethane and n-hexane (DCM/nHex, 1 þ1, v/v) for
8 h. Activated copper powder was added to eliminate sulfur.

2.5.2. Spruce needles
20 g of fresh spruce needle samples were spiked with ISTD and cold extracted

under shakingwith 150ml of dichloromethane and n-hexane (DCM/nHex,1þ1, v/v)
for 16 h. After decanting, the needles were washed twice with additional 30 ml of
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DCM/nHex (1 þ1, v/v). Subsequently, combined extracts were concentrated to 1 ml
with a Turbo Vap 500 (Zymark, Hutchinson, USA).

The following clean-upmethod was applied to both sample extracts, humus and
spruce needles. After solvent evaporation, the extract was further treated by column
chromatography on 20 g of silica gel impregnated with concentrated sulfuric acid
(44%). CPs were eluted with 70 ml of DCM/nHex (1 þ 1, v/v). Further fractionation
was carried out on 16 g of Florisil� (1.5% water content) eluted with 75 ml of nHex
and 5 ml of DCM (prefraction) and 60 ml of DCM (main fraction). The latter fraction
contained all CPs and was concentrated to 0.5 ml, and the solvent was changed to
cyclohexane. Finally, the extract was reduced to 100 ml, and 10 ng of 3-HCH in 10 ml of
cyclohexane were added as recovery standard.

All spruce needle and humus CP concentrations refer to dry mass, which was
determined by oven-drying at 105 �C.

2.6. Instrumentation

Parameters of the GC-EI-MS/MS analysis are published in detail elsewhere
(Zencak et al., 2004) and, hence, are only briefly described. Instrumental analysis
was performed on a gas chromatograph CP-3800 coupled with a 1200L triple
quadrupole mass spectrometer (Varian,Walnut Creek, USA). The gas chromatograph
was equipped with a split/splitless injector and a fused silica capillary column
(15 m length � 0.25 mm i.d.) coated with 0.25 mm of crosslinked methyl-
phenylpolysiloxane (DB5-MS, J&W Scientific, Folsom, USA). Helium (99,999%, Car-
bagas, Basel, Switzerland) was employed as carrier gas at a constant flow of
2 ml min�1. The injector temperature was set to 275 �C. Splitless injections of 2.5 ml
volume were carried out with a Combi Pal autosampler (CTC Analytics, Zwingen,
Switzerland). The temperature programwas as follows: 1 min isothermal at 100 �C,
increased at 50 �C min�1 to 300 �C, then isothermal for 4 min. The transfer line
temperaturewas set to 280 �C and the ion source temperature to 200 �C. The EI mass
spectra were recorded at 70 eV electron energy with a filament emission current of
150 mA and a scan time of 0.25 s per cycle. Argon (99.5%, Sauerstoffwerk Lenzburg)
was employed as collision gas at a pressure of 0.13 Pa. The mass spectrometer was
tuned to optimal performance using perfluorotributylamine masses at m/z 69, 219,
502. The following fragmentations and collision energies were used for the deter-
mination of the total CP amount: m/z 91 / m/z 53 (collision energy: �10 eV), m/z
102 /m/z 67 (�10 eV) and m/z 104 / m/z 67 (�10 eV). The precursor ion m/z 383
and the product ionm/z 276 were selected for the detection of the internal standard
13C10-trans-chlordane (�28 eV).

2.7. Quality assurance

Background and cross contaminations were kept at minimum by a special
treatment of the glassware used. Further details were published elsewhere (Iozza
et al., 2008).

Method blanks were analyzedwith the above described extraction and clean-up
procedure. The method detection limit (MDL) was determined as the sum of the
mean concentration and three times the standard deviation of six (humus) and
five (spruce needles) blank measurements. Hereby, blank concentrations were
calculated on an assumed mean sample weight of 20.3 g of lyophilized humus
and 19.7 g of fresh needles. MDLs were 2.7 and 4.1 ng g�1 dry weight (dw) for humus
and spruce needles, respectively. Recoveries of the internal standard ranged
between 58 and 110% (mean 75%) for humus samples and between 52 and 107%

(mean 67%) for spruce needle samples. More details are available elsewhere (Iozza
et al., 2009).

3. Results and discussion

3.1. Analytical approach

Spruce needle and humus samples were analyzed to obtain an
overview of the load of CPs in the Alps. Humus samples were
processed in the same way as sediment samples as described
elsewhere (Hüttig and Oehme, 2005; Iozza et al., 2008) whereas
a newmethod was developed for spruce needle (Iozza et al., 2009).
The CP determination was carried out with the recently developed
EI-MS/MSmethod described by Zencak et al. (2004). This technique
allows the determination of total CP concentration (totCPs; sum of
SCCPs, MCCPs, and LCCPs) within one fast measurement. The
analysis with EI-MS/MS revealed several benefits compared to
ECNI-MS methods such as the independence of the response factor
of the reference standard from chlorine content and a short analysis
run time (10min). The evaluation of the data is not demanding and,
consequently, the data processing time is short. These benefits
contribute to an overall cost-efficient routine analysis of total CP
levels including the recently regulated SCCPs and the now more
frequently applied MCCPs.

3.2. TotCP levels in spruce needles and in humus

CPs were detected in all spruce needle and humus samples. The
totCP levels summarized in Table 1 ranged between 7 and
199 ng g�1 dw in humus and between 26 and 450 ng g�1 dw in
spruce needles. Overall, mean needle concentrations (mean
66 ng g�1 dw) were by a factor of 1.5 higher compared to humus
(mean 40 ng g�1 dw) at a standard altitude (1400� 150 m; without
Val Visdende). The levels in humus and in spruce needles were
approx 10 and 40 times higher compared to total PCB concentra-
tions (sum of PCB 28, 52, 101, 138, 153 and 180; mean
4.5 mg kg�1 dw humus and 1.2 mg kg�1 dw ½-year old spruce
needles) in this region (Weiss et al., 2003).

A frequency histogram of totCP levels in humus and spruce
needles is shown in Fig. 2. Most of the humus samples (n ¼ 25)
exhibited a concentration between 10 and 50 ng g�1 dw (50th
percentile: 28 ng g�1 dw). A similar frequency was also observed
for dried needle samples (20–100 ng g�1 dw, n ¼ 22, 50th
percentile: 56 ng g�1 dw), which is considered as a general

Fig. 1. Map of the seven sampling sites in the European Alps.

S. Iozza et al. / Environmental Pollution 157 (2009) 3225–3231 3227



background. As shown for both matrices in Fig. 2, some values
distinctly protrude above the determined background levels. The
highest levels were 199 ng g�1 dw (humus) and 450 ng g�1 dw
(spruce needles) (see Table 1).

3.3. Altitude profiles of totCP levels in humus

Altitude profiles of totCPs in humus are shown in Fig. 3. No
general trend could be observed for the different locations. The
gradients from Val Visdende (Italy) and Berchtesgaden (Germany)
showed a concentration increase with altitude. Levels at Eschen-
lohe (Germany) and Klosters (Switzerland)were generally higher at
the lowest altitude, which might be due to the vicinity of densely
populated valleys. Moreover, the highest concentration in humus
was found at Eschenlohe (199 ng g�1 dw at 830 m a.s.l.). No change
by altitude was observed for the sampling sites Wechsel (Austria)
and Pokljuka (Slovenia). A maximum was found between the
lowest and the highest altitude in Rauris (Austria).

3.4. Altitude profiles of totCP levels in spruce needles

Also here, the altitude profiles of totCP levels did not show any
coherent trend for all sites (Fig. 3). CP levels increased with altitude
at some places (Pokljuka, Slovenia and Rauris, Austria). The altitu-
dinal gradient from Wechsel (Austria) shows similar CP levels (33
and 31 ng g�1 dw) at the two lowest altitude stations and a leap of
60% for the three highest stations (53, 52, and 52 ng g�1 dw). In
Germany, a decrease with height was found for both sampling sites
(Berchtesgaden: 113–38 ng g�1 dw; Eschenlohe: 86–47 ng g�1 dw).
In Klosters (Switzerland), the highest CP level was observed at the
lowest altitude. After a steep decrease, the CP concentrations
increased with the altitude. The highest CP concentration in spruce
needles of all locations was found in Val Visdende (450 ng g�1 dw at
1325 m a.s.l.). No straight forward explication was found.

3.5. Comparison between humus and spruce needle data

A correlation between humus and spruce needle altitude
profiles is hardly possible since these twomatrices act differently in
the environment. Spruce needles have a large surface area covered
with a waxy layer trapping pollutants from the atmosphere. The
humus layer consists of much organic matter and accumulates
organochlorine pollutants both from direct atmospheric deposition
and from litter fall such as needles (Weiss, 2002). Humus accu-
mulates organochlorine pollutants over a long period (3–5 years)
whereas spruce needles taken in the sampling for this study
represents an accumulation time of a half year.

Three altitude profiles (Rauris, Wechsel, both Austria, and
Eschenlohe, Germany) revealed a comparable mean concentration
in spruce needles and humus. At Berchtesgaden (Germany), Pokl-
juka (Slovenia) and Klosters (Switzerland) levels were higher in

Table 1
TotCP concentrations in alpine humus layers (n ¼ 31) and in spruce needles (n ¼ 27)
obtained by GC-EI-MS/MS. Results in bold are from samples taken at a ‘‘standard’’
altitude (1400 � 150 m) typical for all MONARPOP sampling sites.

Location Country Altitude [m] TotCP concentration
[ng g�1 dw]

Humus Needles

Rauris Austria 1134 14
1381 61 26
1470 48 35
1614 49 70
1779 12 45

Wechsel Austria 732 49 33
898 32 31

1117 45 53
1282 28 52
1510 33 52

Klosters Switzerland 1300 61
1410 21 169
1520 26 49
1600 16 60
1700 14 98

Eschenlohe Germany 830 199 86
1030 15 70
1230 13 56
1450 35 44
1650 25 47

Berchtesgaden Germany 805 31 113
1005 15 125
1210 32 96
1420 82 38

Val Visdende Italy 1123 15
1325 450
1553 59
1656 108

Pokljuka Slovenia 1200 7 41
1397 22 59
1551 23 80
1671 14 193

Minimum 7 26
Maximum 199 450
Meana 40 66
Standard deviationa 21 47
Method detection limit (MDL) 2.5 (n ¼ 6) 1.8 (n ¼ 5)

dw: dry weight; bold: standard altitude sites (1400 � 150 m).
a Mean and standard deviation is calculated with the results from the standard

altitude sites without the site from Val Visdende since the humus and needle
samples were not from the same altitude.

Fig. 2. Frequency histogram of total CP levels in spruce needles and in humus layers
from the Alps obtained by GC-EI-MS/MS.

S. Iozza et al. / Environmental Pollution 157 (2009) 3225–32313228



spruce needles than in humus (see Fig. 4). The opposite was not
observed.

The trends of CP accumulation in humus and in spruce needles
for each location in Eschenlohe, in Rauris and in Wechsel show

a correlation (Fig. 3). A crossing trend is observable in Berchtes-
gaden (Germany). The altitudinal gradient analyzed in spruce
needles show a decreasing trend whereas the CP concentration
measured in humus increased. Each altitude profiles from Pokljuka
(Slovenia) and Klosters (Switzerland) show different trends.

3.6. Influence of meteorological parameters

Several parameters can lead to an increased input of CPs into the
Alps such as a higher precipitation rate, more fog, or more inversion
layer events. Ribes et al. (2002) showed the influence of the latter
for mountain soils from Teide (Tenerife island, Spain). Concentra-
tions were highest in the inversion layer section for industrial
related compounds such as pentachlorobenzene and poly-
chlorinated biphenyls (PCBs) as well as for agriculture related
compounds such as DDTs, hexachlorobenzene HCB and hexa-
chlorocyclohexanes (HCHs) except g-HCH. Tremolada et al. (2008)
observed a correlation between precipitation rate and levels of
persistent organic pollutants.

Fig. 5 correlates CP levels with altitude. Generally, CP concen-
trations were highest at low altitudes (700–900 m a.s.l.). A second
maximum was observed between 1300 and 1500 m a.s.l. for the
range 900–1900 m. This could be due to higher occurrence of fog,
more precipitation or inversion layers around 1400m. Details of the
site meteorology are discussed by Kirchner et al. (2009). However,
levels in needle samples were scattered possibly due to the rather
short accumulation period (6months) compared to humus built-up
(3–5 years). Future research should include a possible relationship
between meteorological parameters and CP accumulation.

3.7. Comparison of CP levels with other matrices

Total CP levels in humus were also compared with sediment
concentrations determined by EI-MS/MS due to lack of soil data.
Hüttig and Oehme (2005) reported between 5 and 499 ng g�1 dw of
totCPs in sediments from the North and Baltic Sea samples from
2001 to 2003 which is much higher than the concentrations found
in this study. The analysis of a sediment core in Lake Thun,
Switzerland, revealed a totCP concentration of 51 ng g�1 dw at the
surface slice in the year 2004 (Iozza et al., 2008), which is consistent
with the background concentration reported here.

Fig. 3. Altitude profiles of CPs in humus and spruce needles from the Alps.

Fig. 4. Average CP concentrations in humus and spruce needles from sites selected for
altitude profiles. Standard deviations are assigned.
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3.8. Comparison of CP levels with other airborne persistent
pollutants

Table 2 compares totCP concentrations with those of other
pollutants determined in humus at the height profiles Klosters,
Berchtesgaden, and Wechsel during the project MONARPOP. TotCP

levels were generally higher compared to polychlorinated biphe-
nyls (PCBs) and polybrominated diphenylethers, as well as
hexachlorocyclohexanes.

Schmid et al. (2005) determined PCBs in Swiss soils. They found
PCB levels (sum of 7 PCBs no. 28, 52, 101,118, 138, 153, and 180)
between 1.7 and 3.2 ng g�1 dw in the Jura mountains (n ¼ 3; 622–
1215 m a.s.l.) and between 0.86 and 8.4 ng g�1 dw in the Alps
(n ¼ 7; 455–2120 m a.s.l.). HCB levels between <0.02 and
0.93 ng g�1 dw and total PCB levels between 0.61 and 8.9 ng g�1 dw
was observed in the Italian Alps (Tremolada et al., 2008). Again,
totCP levels were higher than the PCB and HCB concentrations
reported above.

There are only a few studies of POP levels in conifer needles
from the Alps. PCB (sum of the six indicator PCBs no. 28, 52, 101,
138, 153, and 180) and HCB levels of six months old spruce needles
were between 0.2 and 2.0 ng g�1 dw and between 0.5 and
0.9 ng g�1 dw, respectively in the Slovenian and Austrian Alps in
2000 (Weiss et al., 2003). Six month old spruce needle samples
from the Italian Alps at two different altitudes were investigated by
Nizzetto et al. (2006b). HCB levels were 0.44 ng g�1 dw at 1400m as
well as 0.48 ng g�1 dw at 1800 m and PCB levels were
1.51 ng g�1 dw at 1400 m as well as 1.59 ng g�1 dw at 1800 m. Also
here, totCP levels were higher.

4. Conclusion

Analyses of humus and spruce needles revealed that CPs are
widely distributed in the Alps. CPs were found in higher located and
remote sampling stations consolidating the ability of CPs for long-
range transport. Generally, totCP levels in humus and needles are
higher than for other POPs. This observation is consistent with
a study of POP concentrations in the UK atmosphere by Barber et al.
(2005), where also CP levels were highest.

Acknowledgements

MONARPOP was funded by the EU Interreg III B Programme
‘‘Alpine Space’’ and by the participating national partners (the lis-
ted institutions of the authors and, in particular, the Austrian
Federal Ministry for Agriculture, Forestry, Environment and Water
Management, the Bavarian State Ministry of the Environment,
Public Health and Consumer Protection, and the Swiss Federal
Office for the Environment). Furthermore, we are indebted to the
Swiss Federal Office for the Environment (FOEN - BAFU) for
financial support.

References

Alcock, R.E., Sweetman, A., Jones, K.C., 1999. Assessment of organic contaminant
fate in waste water treatment plants. I: selected compounds and physico-
chemical properties. Chemosphere 38, 2247–2262.

Barber, J.L., Sweetman, A.J., Thomas, G.O., Braekevelt, E., Stern, G.A., Jones, K.C.,
2005. Spatial and temporal variability in air concentrations of short-chain (C10–
C13) and medium-chain (C14–C17) chlorinated n-alkanes measured in the U.K.
atmosphere. Environmental Science and Technology 39, 4407–4415.
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Knoth, W., Kräuchi, N., Levy-Lopez, W., Luchetta, A., Magnani, T., Oehme, M.,
Offenthaler, I., Perthen-Palmisano, B., Schmid, D., Schramm, K.-W., Schrott, H.,
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A dated sediment core from Lake Thun covering the last 120
years was analyzed to get an overview of the historical trend of
the chlorinated paraffin (CP) and polychlorinated biphenyl
(PCB) deposition, because CPs and PCBs have/had similar
applications as plasticizers and flame retardants. Total
CP concentrations (sum of short chain (SCCP), medium chain
(MCCP), and long chain CPs (LCCP)) showed a steep increase
in the 1980s and a more-or-less stable level of 50 ng g-1 dry
weight (dw) since then. The concentration-time profile is in good
agreement with the available information on global production
data. The quantification of higher chlorinated SCCPs using
electron capture negative ionization low resolution mass
spectrometry (ECNI-LRMS) revealed an increase in recent
years. In addition, the degree of chlorination of SCCPs has
strongly increased during the past 40 years, which may indicate
its use as an additive for plastics, paints, and coatings.
Furthermore, PCBs were analyzed in dated sediment slices.
The PCB concentrations (sum of the six indicator congeners)
peaked around 1969 (18 ng g-1 dw) and decreased to 1.3 ng g-1

dw in the surface layer corresponding to 2004. The peak
level of CPs exceeded those of PCBs by about a factor of 3.

Introduction

Chlorinated paraffins (CPs), also known as polychlorinated
n-alkanes (PCAs) or chloroparaffins, are industrial chemicals
introduced in the 1930s (1). Their actual global annual
production is estimated to approximately 300 000 tons (1).
Based on the most recently available information on pro-
duction data (2) a total amount of more than 7 000 000 tons
of CPs has been produced since their introduction. They are
mainly used as additives in metal working fluids, as flame
retardants, and as plasticizers (3). CPs are subdivided into
short chain (SCCPs, C10–13), medium chain (MCCPs, C14–17),
and long chain compounds (LCCPs, C>17) with chlorine
contents between 30 and 70% (1). CPs with high chlorine
content (>65%) are mainly used as flame retardants (2).

Because of their persistence, CPs are ubiquitous in the
environment, and they have a high potential for bioaccu-
mulation (log KOW ) 4.4–8, depending on the chlorination
degree) (1). Whereas the acute toxicity of CPs is generally
low, chronic toxicity in aquatic organisms has been observed
for SCCPs (2). Furthermore, SCCPs are carcinogenic in rats
and mice (4) and were categorized in group 2B as “possibly
carcinogenic to humans” by the International Agency for
Research on Cancer (IARC) (2). They have been included in
the list of priority hazardous substances of the European
Water Framework Directive (5). In addition, SCCPs are now
under discussion to be included in the Stockholm Convention
on persistent organic pollutants (POPs) (6).

Currently, information on environmental levels is scarce
as compared to other POPs such as polychlorinated biphenyls
(PCBs), dioxins, and organochlorine pesticides. The main
reason is the demanding analysis of CPs in environmental
matrices due to their complex composition. So far, worldwide,
only a few data on CP levels in lakes (7–10) as well as in the
Swiss environment are available (11–13). A review of current
analytical methods employed in the past five years and their
applicability to different matrices was presented by Zencak
and Oehme (14).

PCBs were used for similar applications as CPs, such as
additives in cutting oils, paints, coatings, sealings, and as
plasticizers. Although the toxicity of PCBs is higher than of
CPs (2, 15), the environmental behavior of both contaminants
is similar. Industrial production of PCBs started in the 1930s
and ceased in the 1970s. About 1 300 000 tons of PCBs were
produced during this period (16). The use of PCBs was
prohibited for open systems such as printing inks, sealants,
and cutting oils in Switzerland in 1972 (17). In 2004, the
Stockholm Convention on POPs issued a ban of PCBs in 128
countries (6).

The aim of this work was to get an overview of the temporal
trends of CP and PCB concentrations in a dated sediment
core from Lake Thun covering the past 120 years. Studies of
dated sediment cores are an excellent way to investigate
concentration trends over decades. Time-related profiles of
CPs and PCBs were discussed and were compared with other
studies. Moreover, evidence of a partial substitution of PCBs
by CPs was evaluated. Furthermore, similarities and differ-
ences in the observed congener group patterns were studied.

Two analytical techniques were applied for the in-depth
characterization of CPs. First, screening of CP levels in 15
sediment slices was performed using a recently developed
technique (18) based on gas chromatography (GC) combined
with electron ionization tandem mass spectrometry (EI-MS/
MS). This method enables the determination of total SCCPs,
MCCPs, and LCCPs (total CPs, totCPs). Electron capture
negative ionization low resolution mass spectrometry (ECNI-
LRMS) supplied additional information for the characteriza-
tion of CPs regarding the degree of chlorination as well as
the congener and the homologue patterns in all slices from
the past 40 years (19, 20). This is a demanding task because
gas chromatographic and mass spectrometric overlap of
SCCPs and MCCPs can lead to corruption of quantitation
results. To minimize such effects, possible interferences have
to be identified and eliminated (21). Therefore, the method
of Reth et al. was employed to allow a minimization of such
interferences (22).

Materials and Methods
Sampling. A sediment core from Lake Thun was taken on
May 18, 2005 near the mouth of the river Aare (46°39′53″ N,
7°48′54″ E, near the village Därligen) at a depth of 60 m using
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a gravity corer. Lake Thun is located in the alpine region of
the Canton Bern in the center of Switzerland and has a surface
area of 47.69 km2, a mean depth of 136 m, and a volume of
6.42 km3. Lake Thun is situated in a rural, densely populated
catchment area without known point sources such as, for
example, metal and polymer industries. The core was 1.1 m
in length and 56 mm in diameter. It was cut into 1 cm slices
that were lyophilized, weighed, homogenized, and stored in
glass jars in the dark before dating and analysis.

Sediment Core Dating and Flux Calculations. Dating of
the sediment core by 137Cs and 210Pb (23) analysis as a function
of depth revealed an average sedimentation rate of 0.45 cm
per year (see Supporting Information Figure S1). Thus, the
1 cm thick surface layer corresponds to the deposition of
year 2004.

Fluxes (μg m-2 y-1) were calculated for each sediment
slice:

Flux)
ctotCP × rsed × wts

vs
(1)

where ctotCP is the total CP concentration in each slice obtained
by EI-MS/MS (μg g-1 dry weight), rsed is the sedimentation
rate in each slice (m y-1), wts is the total dry weight (dw) of
the sediment slice (g) and vs is the volume of the slice (m3).

Chemicals. Cyclohexane, dichloromethane (DCM), n-
hexane (nHex) and toluene for residue analysis were obtained
from Biosolve (Vallenswaard, Netherlands). Reference SCCP
(chlorine contents of 51.5, 55.5, and 63.0%) and MCCP
mixtures (chlorine contents of 52.0 and 57.0%) with con-
centrations of 100 ng μL-1 in cyclohexane as well as
ε-hexachlorocyclohexane (ε-HCH, solution in cyclohexane,
10 ng μL-1) were purchased from Ehrenstorfer GmbH
(Augsburg, Germany). 13C10-trans-chlordane (100 ng μL-1,
solution in n-nonane, purity 99%) and 13C12-PCBs standard
mixture containing the congeners 28, 52, 101, 138, 153, 180
were supplied by Cambridge Isotope Laboratories (Andover,
USA). 15N3-musk xylene (1-tert-butyl-3,5-dimethyl-2,4,6-
trinitrobenzene, 15N3-MX) was synthesized in our laboratories
(24). Copper powder (63 μm), silica gel for column chro-
matography (230–400 mesh, 0.045–0.063 mm), and sulfuric
acid (98%) were obtained from Merck KGaA (Darmstadt,
Germany). Florisil PR (60–100 mesh) and anhydrous sodium
sulfate (Pestanal) were purchased from Fluka (Buchs, Swit-
zerland). Florisil, sodium sulfate, and silica gel were dried
overnight at 220 °C.

Extraction and Clean-up. Details of the applied cleanup
procedure are given elsewhere (25, 26) and, hence, are only
briefly described. A 5–10 g portion of dried and homogenized
sediment was spiked with the corresponding internal stan-
dards (CP analysis: 10 ng of 13C10-trans-chlordane; PCB
analysis: 8 ng of a 13C12-PCB-mixture) and then Soxhlet
extracted with 200 mL of DCM and nHex (DCM/nHex, 1:1,
v/v) for 8 h. Sulfur was eliminated by the addition of activated
copper powder. After solvent evaporation, sample matrix
not persistent to sulfuric acid was removed by column
chromatography on 20 g of silica gel impregnated with
concentrated sulfuric acid (44%). PCBs and CPs were eluted
with 70 mL of DCM/nHex (1:1, v/v). Further fractionation
was carried out on a glass column packed with 16 g of Florisil
(1.5% water content) that was eluted with 75 mL of nHex and
5 mL of DCM (first fraction) followed by 60 mL of DCM
(second fraction). The first fraction containing PCBs was
concentrated to 0.5 mL, and the solvent was changed to
toluene. The remaining solvent was concentrated to about
100 μL, which was transferred to a GC vial containing the
recovery standard (9.84 ng of 15N3-MX). The second fraction
containing all CPs was concentrated to 0.5 mL, and the solvent
was changed to cyclohexane. Finally, the extract was reduced
to 100 μL, and 10 ng of ε-HCH in 10 μL of cyclohexane were
added as recovery standard.

Quality Assurance. Extreme care was taken to keep
background and cross contamination at a minimum. All
glassware was washed in a glassware washer and immersed
in a detergent bath (5% RBS35 concentrate, Fluka) for 12 h.
Then, glassware and glass fiber thimbles (30 × 100 mm, 603G,
Wathman, Schleicher & Schuell, Meidsone, England) were
rinsed with DCM and nHex and heated to 450 °C overnight.
Prior to use, glassware was rinsed with the same solvents.

Method blanks were analyzed using the above-mentioned
extraction and cleanup procedure. Blank concentrations
calculated assuming a mean sample weight of 8.5 g dw were
3.3 ng g-1 dw and 0.1 ng g-1 dw for totCPs and ΣPCBs,
respectively.

A “prechlorine industry” sediment slice (1899) was
analyzed to detect possible cross-contamination during
sampling. Whereas CP concentrations were similar to method
blank levels (approximately 200% of method blank) con-
centrations of PCBs were slightly higher than the respective
method blank levels (approximately 400% of method blank).
In addition, the same sample was spiked with 30 ng of
reference SCCPs (55% chlorine content) and 8 ng of a PCB
mixture (congener 28, 52, 101, 138, 153, 180). The recoveries
were 82 and 102%, respectively.

Reproducibility of the analytical method was tested by
separate processing of the two halves of the same sediment
slice (1993). The difference of these two samples was 14% for
totCPs, 3% for the sum SCCPs, 8% for the sum of MCCPs,
and 11, 2.8, 7.5, 23, 58, and 39% for the PCB congeners 28,
52, 101, 138, 153, and 180, respectively. The calculated
chlorine contents of the two halves were 67.8 and 68.2% for
SCCPs and 55.9 and 56.2% for MCCPs.

Instrumental Analysis of CPs. Instrumental analysis was
performed on a gas chromatograph CP-3800 coupled to a
1200L triple quadrupole mass spectrometer (Varian, Walnut
Creek, USA) using EI-MS/MS and ECNI-LRMS. The gas
chromatograph was equipped with a split/splitless injector
and a fused silica capillary column (15 m × 0.25 mm) coated
with 0.25 μm of cross-linked methylphenylpolysiloxane (DB5-
MS, J&W Scientific, Folsom, USA). The injector temperature
was set to 275 °C. The transfer line temperature was 280 °C,
and the ion source temperature was 200 °C. Splitless
injections (3.0 min) of 2.5 μL volume were carried out with
a Combi Pal autosampler (CTC Analytics, Zwingen, Swit-
zerland).

GC-EI-MS/MS. Instrumental parameters are published
elsewhere in detail and, hence, are only briefly described
(18). The temperature program for the GC-EI-MS/MS analysis
was as follows: 3 min isothermal at 100 °C, increased at 50
°C min-1 to 300 °C, then isothermal for 3 min. Helium
(99.996%, Sauerstoffwerk Lenzburg, Lenzburg, Switzerland)
was employed as carrier gas at a constant flow of 2 mL min-1.
The EI mass spectra were acquired at 70 eV electron energy
with a filament emission current of 150 μA and a scan time
of 0.25 s scan-1. Collision-induced dissociation (CID) gas
pressure (argon, 99.5%, Sauerstoffwerk Lenzburg) was set to
0.13 Pa. The mass spectrometer was regularly tuned to
optimal performance using perfluorotributylamine for both
quadrupoles at m/z 69, 219, and 502. The fragmentation
masses were slightly modified for the determination of the
total CP amount: m/z 91 f m/z 53 (collision energy: -10
eV), m/z 102fm/z 67 (-10 eV), and m/z 104fm/z 67 (-10
eV). The precursor ion m/z 383 [M - Cl]+ and the product
ion m/z 276 [M - 4Cl]+ were selected for the detection of the
internal standard 13C10-trans-chlordane (-28 eV).

GC-ECNI-LRMS. Parameters for the determination of
homologue profiles and degrees of chlorination by ECNI-
LRMS are described elsewhere (19, 20). The temperature
program for the GC-ECNI-LRMS analysis was as follows:
isothermal at 100 °C for 2 min, increase at 15 °C min-1 to 280
°C and isothermal for 4 min, then increase at 50 °C min-1
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to 300 °C and isothermal for 1.6 min. The mass spectrometer
was employed in the ECNI mode with methane (99.995%,
Carbagas, Rümlang, Switzerland) as reagent gas at an ion
source pressure of 730 Pa. The transfer line temperature was
set to 280 °C, and the ion source temperature was set to 200
°C. The ion source was tuned to optimum performance using
perfluorotributylamine at m/z 283, 452, and 633. The most
abundant isotopes of the [M - Cl]- ions of CPs with 5–13
chlorine atoms and of the [M]- ion (m/z 419.8) of 13C10-
trans-chlordane were recorded in the selected ion monitoring
(SIM) mode (0.250 s dwell time per cycle). The most abundant
isotope of the [M - Cl]- ion (m/z 254.9) was selected for the
recovery standard ε-HCH.

ECNI-LRMS Identification and Quantification. Identi-
fication of the CP congener groups was performed by
comparison of retention time, signal shape, and correct
isotope ratio according to Reth and Oehme (21). The applied
quantification procedure was described by Reth et al. (22).
Using this method, a reliable quantification can be achieved
even if the degree of chlorination of the samples and of the
reference standards are different. For this purpose, three
SCCP (51, 55, and 63% Cl) and two MCCP references (52 and
57% Cl) from Ehrenstorfer were used as described in ref 21.

PCB Analysis by GC-EI-HRMS. PCBs were determined
using GC EI high resolution (HR) MS according to Schmid
et al. (27).

Results and Discussion
Screening of Total CP Levels by GC-EI-MS/MS. The historical
time trend of totCP concentrations in Lake Thun between
1899 and 2004 is shown in Figure 1. Each data point represents
the average age of the respective sediment sample. Levels
start at 5 ng g-1 dw for the deeper, preindustrial sediment
slice, which is in the range of the blank concentrations, and
rise slowly from the 1950s to the 1970s. Then, the totCP level
increased more rapidly in the 1980s and became more or
less stable in the 1990s to present. The maximum concen-
tration of 58 ng g-1 dw was observed in 2000. The totCP
concentration in the surface slice (2004) was slightly lower
than the maximum level (51 ng g-1 dw). This trend is
consistent with the few data available on global production
(2), also shown in Figure 1.

Because totCP data determined by EI-MS/MS from other
lake sediments are missing, the obtained data were compared
with levels in other environmental matrices. Reth reported
between 19 and 42 ng g-1 wet weight (ww) of totCPs in six
brown trout samples from the Swiss rivers Liechtensteiner
Binnenkanal and Necker and 25 ng g-1 ww in one lake trout
sample from the Swiss alpine lake Lei da Diavolezza (12);

totCP concentrations were between 5 and 499 ng g-1 dw in
sediments from the North and Baltic Sea sampled from 2001
to 2003 (26).

CP Characterization by GC-ECNI-LRMS. Sediment
samples after 1961 were analyzed by GC-ECNI-LRMS to
determine “ECNI chlorine content” and chain length. The
total ECNI chlorine contents of these sediment slices are
shown in Figure 2. The degrees of ECNI chlorination of SCCPs
were between 63.7 and 69.5% (surface: 67.5%). A very rapid
increase could be observed during the 1980s. Obviously, these
ECNI chlorine contents were rather high as compared to the
chlorine contents of technical SCCP mixtures, being in the
range 49-71%. Typically, CPs with high chlorine content are
used as additives in plastics, paints, and coatings and not in
metal working fluids. From these open system applications
CPs can easily be released into the environment, including
water systems. This change in chlorine content could be
indicative for a change in the application of CPs.

The degree of ECNI chlorination of MCCPs was between
53.3 and 56.6% (surface: 56.1%).

A continuous increase of the ECNI chlorine content of
SCCPs and MCCPs could be observed for the past 20 years.
It is not possible to decide whether this shift is a consequence
of increased usage of technical CP mixtures with higher
chlorine content in recent years or if there is a significant
dechlorination/biotransformation of CPs in older sediments.

SCCP and MCCP Concentrations. SCCPs and MCCPs
were detected in all analyzed sediment slices (Figure 3).
Comparison of the time profiles of totCPs, SCCPs, and MCCPs
revealed that the rapid increase of totCP concentrations in
the 1980s is mainly caused by SCCPs, whereas MCCP levels
changed much less. The maximum SCCP concentration was
33 ng g-1 dw in 1986 (Figure 3), and the level of the surface
sediment was 21 ng g-1 dw of SCCPs. MCCP concentrations
increased since 1965 and reached a maximum in the surface

FIGURE 1. Historical time trend of total CP concentration (black
line) in a sediment core from Lake Thun. Blank levels (dotted
line) and global CP production (grey line) are also given.
Analysis was performed by GC-EI-MS/MS.

FIGURE 2. Degree of chlorination of the SCCP (A) and MCCP (B)
congeners in a dated sediment core from Lake Thun obtained
by GC-ECNI-LRMS.
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sediment (26 ng g-1 dw) (Figure 3). SCCP and MCCP
concentrations are compared in Figure 4A. The SCCP/MCCP
ratio increased continuously from 1965 to 1993. A decrease
of SCCPs and a shift to more MCCPs in the SCCP/MCCP
ratio were observed after 2000 in the surface slice. Future
research is planned to verify this decrease, which could be
attributed to an effect of the regulations of the EU Water
Framework Directive and the preceding discussions about
a general ban of SCCPs.

The few data available for SCCP levels in surface lake
sediments are from Canada (7, 8). The SCCP concentration
in the Lake Thun surface sediment was considerably lower
than in Lake Ontario (lake-wide average 49 ng SCCPs g-1 dw)
(7), the southern basin of Lake Winnipeg (176 ng SCCPs g-1

dw) and Fox Lake (257 ng SCCPs g-1 dw) (8). Only concen-
trations of Lake Nipigon are similar to Lake Thun (18 ng
SCCPs g-1 dw) (8). Three Canadian lakes had lower sediment
concentrations (Ya Ya Lake 1.6 ng SCCPs g-1 dw, Hazen Lake
4.5 ng SCCPs g-1 dw, and the northern basin of Lake Winnipeg
8.0 ng SCCPs g-1 dw) (8).

For MCCPs in lake sediments there are even less studies
available. Tomy and Stern reported a MCCP concentration
in a surface lake sediment (Lake Erie, Canada, 68 ng MCCPs
g-1 dw) (10), which was about three times higher than the
maximum MCCP level in the surface sediment from Lake
Thun. In 1985, Schmid and Müller found 5 ng MCCPs g-1 ww
in surface sediment from Lake Zürich (11). The ww level in
the respective sediment layer of Lake Thun is about four
times higher, but these data cannot be directly compared
because of a different analytical quantification method and
not well-documented sampling.

Studies on river sediments revealed higher CP concentra-
tions than surface sediment from Lake Thun, mainly due to
the industrial catchment areas of these rivers (various rivers
in the Czech Republic<2–347 ng g-1 dw SCCPs and<2–5575
ng g-1 dw MCCPs (28); river Besos, Spain 0.25–3.04 μg g-1 dw
SCCPs (29); various rivers in Germany, France, and Norway
21–75 ng g-1 dw SCCPs and 24–153 ng g-1 dw MCCPs (30)).

So far, the only available data on historical profiles in
sediments are findings on SCCPs in sediments from Canadian
lakes. One profile from Lake Ontario (station 1007) exibited
a maximum in 1970 with a concentration of about 800 ng g-1

dw SCCPs, which decreased to 410 ng g-1 dw SCCPs in the
surface layer of 1996 (7). The other one (station 1034) has its
maximum in the surface sediment (19 ng g-1 dw SCCPs in
1998) (7). In an investigation of six sediment cores from
Canadian lakes, Tomy et al. reported concentration maxima

between the 1980s and the 1990s that were in the same range
as in the sediment core from Lake Thun, but no clear temporal
trend could be observed (8).

Homologue Patterns of CPs. In all sediment layers, C11

and C12 were the most abundant homologue groups within
SCCPs (range: 66–87%; average: 79%; surface layer: 76%; see
Figure 4B), which corresponds to technical SCCP mixtures
(31). Within MCCPs, the C14 homologue group was most
abundant (range: 41–64%; average: 48%; surface: 64%; see
Figure 4C), which is also typical for technical mixtures.

Congener Patterns of CPs. Since the 1960s, a significant
shift from lower to higher chlorinated congeners is observed
in the pattern (see Figure 5 and Supporting Information
Figures S2-4). Figure 5 shows the SCCP congener group
pattern of sediment from 1961 (A) and of surface sediment
from 2004 (B). SCCPs (C10–13 chains) with eight chlorine atoms
were predominant in 1961, whereas SCCPs with 9-10
chlorine atoms prevailed in surface sediment.

Comparison with PCB. Figure 6A shows the historical
time profiles of CPs and PCBs (sum of the six indicator PCBs
No. 28, 52, 101, 138, 153, and 180) in the sediment core from
Lake Thun. PCBs emerged after 1940, and levels culminated
around 1968, reaching a maximum concentration of 18 ng
g-1 dw. Thereupon, the concentrations decreased continu-
ously to 1.3 ng g-1 dw in the most recent surface layer from
2004. The swift decline after 1968 reflects the restrictions of
PCB use. In Switzerland, the usage of PCBs in open systems
was banned in 1972. At the same time, CP production started

FIGURE 3. Historical time trends of SCCP (solid line) and MCCP
(dashed line) concentrations obtained by GC-ECNI-LRMS.

FIGURE 4. Chain length composition (A) as well as SCCP (B)
and MCCP (C) homologue patterns of the sediment core from
Lake Thun obtained by GC-ECNI-LRMS.
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to rise, partially as a consequence of its use as a substitute
for PCBs and mainly due to the increased application of CPs
as metal working fluids, plasticizers, and flame retardants.
This change is reflected in the temporal trend of the CP levels
shown in Figure 6A, as well. Furthermore, the peak con-
centration of 58 ng g-1 dw CPs is about 3 times higher than
for PCBs (18 ng g-1 dw), which correlates well with the higher
global production of CPs. A similar concentration profile of
PCBs in a sediment core from the lake Greifensee located

near Zürich was reported by Zennegg et al. (32); however,
the maximum concentration (130 ng g-1 dw, sum of the six
indicator PCBs) was about 7 times higher, which is well
compatible with more the urban and industrialized catch-
ment area of this lake.

Fluxes and Inventory of CPs and PCBs. Annual CP and
PCB (sum of the six indicator congeners) fluxes based on the
respective concentrations measured in the sediment core
from Lake Thun (see Figure 6B) were calculated using eq 1.
The deposition flux of PCBs reached its maximum around
1969 (43 μg m-2 y-1). This corresponds to a total annual PCB
input of 2 kg y-1 into the sediment of the whole lake.
Maximum deposition of CPs was observed in the most recent
sediment layer, with 164 μg m-2 y-1, corresponding to 8 kg
y-1 for the whole lake. Total inventories estimated on the
basis of these fluxes were 49 kg for PCBs and 185 kg for CPs.
These data are in line with relative production amounts of
the two chemicals for the whole period between 1935 and
2004 as given in the Introduction.

The calculated flux from the surface layer (164 μg m-2

y-1) was higher for Lake Thun than for the Canadian lakes
(0.45–147 μg m-2 y-1) (7, 8). Only one lake (Lake Ontario, 170
μg m-2 y-1) was comparable (7). Moreover, the SCCP flux
was estimated for a sediment core from a lake in the Canadian
Arctic (Devon Island). It showed a similar increase during
the past 20 years (9). However, a maximum as observed for
1957 could not be detected for Lake Thun.

In conclusion, the sediment core from Lake Thun revealed
a considerable deposition of CPs during the past 30 years.
Comparison of the temporal trends of PCB and CP levels
showed an increase of CPs when PCB levels declined. This
is in line with a partial replacement of PCBs by CPs. The
calculated fluxes and the high chlorine content provided an
indication of a possible contamination by weak local sources
releasing technical CP mixtures. However, further studies
analyzing sediments from a defined spatial distribution and
from the feeding rivers are necessary to obtain more
information about local sources and possible transformation
pathways.
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FIGURE S1. 137Cs (A) and unsupported 210Pb (B) activity as a function of depth for the dating of the9
sediment core.10
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FIGURE S2. SCCP and MCCP congener group patterns of the 1961, 1965, 1969, and 1976 sediment 13
slice from Lake Thun determined by GC-ECNI-LRMS.14
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FIGURE S2. SCCP and MCCP congener group patterns of the 1980, 1982, 1984, and 1986 sediment 16
slice from Lake Thun determined by GC-ECNI-LRMS.17
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SI FIGURE S3. SCCP and MCCP congener group patterns of the 1993, 2000, and 2004 sediment slice 19
from Lake Thun determined by GC-ECNI-LRMS.20
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