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Summary 

The current trend in developing asymmetric catalysts is towards creating specialized molecules 

with tailored functions for increased selectivity in classes of substrates rather than general 

catalysts capable of broad application.  In addition, the capacity to generate groups of catalysts 

with incremental changes to overall structure allows for a more detailed analysis of contributions 

to the structure selectivity relationships for a variety of substrates. This information can then be 

used to identify ideal catalysts or improve selectivity and activity of for a particular system.   

 Asymmetric hydrogenation of substituted alkenes with chiral iridium N,P complexes that 

were developed from the achiral Crabtree Complex have proven to be extraordinary selective 

and active catalysts.  Screening a series of trisubstituted alkenes on 1
st
 and 2

nd
 generation 

catalysts indicated a strong enantioselectivity dependence on the phosphorus and pyridine 

substituents.  In particular, the substituents in the ortho position of the pyridine ring were found 

to have significant control over the catalyst.    

 

  The synthesis of the 3
rd

 generation of chiral pyridyl phosphinite catalysts takes advantage 

of a flexible late phase incorporation of the functional groups which govern the selectivity of the 

asymmetric hydrogenation to span a range of steric and electronic properties.  The screening of 

these catalysts in the asymmetric hydrogenation of several classes of trisubstituted alkenes 

provided clear insight to the factors controlling enantioselectivity which were proven to vary 

greatly with the nature of the substrate and catalyst.  Several catalysts with exceptional 

selectivity were identified for multiple examples of trisubstituted alkenes which had proven 

difficult with previous system. 
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1.1 Introduction 

The development of highly enantioselective rhodium-diphosphine catalysts in the early 70s  

marked the beginning of a new era in asymmetric synthesis. For the first time practically useful 

enantioselectivities could be obtained with synthetic chiral catalysts. The well-known L-Dopa 

process developed by Monsanto at that time
[1]

 demonstrated that these catalysts can be applied 

on an industrial scale, and since then hydrogenation has played a dominant role in industrial 

asymmetric catalysis.
[2]

 Today, asymmetric hydrogenation remains a corner stone of the modern 

organic chemists’ repertoire of reliable catalytic methods for the construction of optically active 

compounds.
[3]

 High enantioselectivity, low catalyst loadings, essentially quantitative yields, 

perfect atom economy, and mild conditions are attractive features of this transformation as 

evident in the ever growing list of publications using these methods.  

 A plethora of chiral phosphine ligands are known which induce very high 

enantioselectivity in rhodium- and ruthenium-catalyzed hydrogenations. However, the range of 

alkenes that can be hydrogenated with high enantiomeric excess is still limited. Both rhodium 

and ruthenium catalysts require the presence of a coordinating functional group adjacent to the 

C=C bond, hydrogenation of dehydro-amino acid derivatives or allylic alcohols being typical 

substrate classes. A caveat of this reactivity in regard to unfunctionalized alkenes is that these 

catalysts generally display low reactivity and unsatisfactory enantioselectivity. Thus, their 

application has been restricted largely to certain classes of properly functionalized substrates. 

 Some years ago the Pfaltz group discovered a new class of chiral iridium N,P-ligand 

complexes which overcame the limitations of the rhodium and ruthenium based systems.
[4]

 Early 

transition metal metallocenes catalysts capable of asymmetric hydrogenation of a range of 

unfunctionalized alkenes in excellent enantioselectivities have been reported but under onerous 

conditions.
[5]

 Moreover, iridium N,P based systems showed exceptionally high activity in the 

hydrogenation of unfunctionalized tri- and even tetrasubstituted alkenes. In this respect, they 

resembled the Crabtree catalyst, [Ir(pyridine)(Cy3P)(COD)]PF6 (Cy = cyclohexyl, COD = 

cyclooctadiene),
[6]

 which provided the stimulus for this work. In addition, promising results were 

also obtained with certain functionalized alkenes for which no suitable catalysts were available. 

In this chapter, we discuss the special properties and scope of these catalysts with special 

emphasis on recent developments.
[7] 
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1.2 Mechanistic Studies 

1.2.1 Initial Studies: An Unexpected Anion Effect 

Initial studies with iridium complexes derived from chiral phosphinooxazolines (PHOX ligands) 

and (E)-1,2-diphenyl-1-propene as substrate gave encouraging results (Scheme 1).
[4a,8]

 With 4 

mol% of catalyst (X = PF6
-
) at 10-50 bar hydrogen pressure up to 98% ee could be obtained. 

However, the turnover numbers were disappointingly low. 

 

Scheme 1  

 Kinetic studies demonstrated that with 4 mol% of catalyst in a 0.3 M solution of alkene at 

7 bar hydrogen pressure the reaction was extremely fast and reached completion within less than 

one minute.
[9]

 Lower catalyst loadings resulted in decreased conversion. Although the initial rate 

was still high at 1 mol% catalyst loading a rapid and essentially complete deactivation of the 

catalyst was observed before 50% of the alkene was consumed. Deactivation is a known problem 

of the Crabtree catalyst, which is attributed to the formation of inactive hydride-bridged 

trinuclear complexes.
[6]

 In the case of Ir(PHOX) complexes as well NMR analysis of deactivated 

reaction mixtures suggested the presence of such hydride-bridged species. In subsequent studies 

a trinuclear Ir(PHOX)-hydride complex was isolated and characterized by NMR and X-ray 

analysis.
[10]

 This complex proved to be remarkably stable and all experiments to convert it back 

into a catalytically active species failed. 

 Attempts to increase conversion by variation of the solvent, hydrogen pressure, or the 

catalyst and substrate concentration were unsuccessful. Coordinating solvents and additives such 

as amines, or coordinating anions such as halides, carboxylates, and even the very weakly 

coordinating triflate ion were found to deactivate the catalyst. The best results were obtained in 

anhydrous dichloromethane or 1,2-dichloroethane using cationic Ir-PHOX complexes with 

hexafluorophosphate as counterion. Rigorous exclusion of moisture and oxygen resulted in 

increased conversion. When the reaction was set up in carefully dried dichloromethane in a glove 



Chapter 1  

Iridium Catalyzed Asymmetric Hydrogenation of Alkenes with Chiral N,P and C,N Ligands 

 

4 

 

box, full conversion could be achieved with only 0.5 mol% of catalyst. However, reactions at 

such low catalyst loadings were difficult to reproduce. 

 After extensive experimentation a simple solution for avoiding catalyst deactivation was 

discovered, when testing an Ir-PHOX catalyst with tetrakis[3,5-

bis(trifluoromethyl)phenyl]borate (BArF
–
) as counterion.

[4a]
 Iridium complexes with this bulky, 

apolar and extremely weakly coordinating anion
[11]

 did not suffer from deactivation and full 

conversion could be routinely obtained with catalyst loadings as low as 0.02 mol%.
[12]

 In 

addition, the BArF salts proved to be much less sensitive to moisture than the corresponding 

hexafluorophosphates. Tetrakis(pentafluorophenyl)borate and tetrakis(perfluoro-tert-

butoxy)aluminate were equally effective with very high turnover frequency whereas catalysts 

with hexafluorophosphate and tetrafluoroborate gave only low conversion while reactions with 

triflate were completely ineffective (Figure 1).  

Figure 1. Order of reactivity of the complexes [Ir(PHOX)(COD)]X by TOF measured at 4˚C 

with E-α-methylstilbene as substrate. 

 How can these bulky, extremely weakly coordinating anions prevent catalyst 

deactivation? A comparative kinetic study of catalysts with different anions provided a plausible 

answer.
[12]

 With PF6
-
 as counterion the rate dependence on alkene concentration was first order, 

whereas the rate order observed for the corresponding BArF
–
 complex was close to zero. This 

striking difference may be explained by the stronger coordination of PF6
-
 or formation of a tight 

anion pair which slows down the addition of the alkene to the catalyst to such an extent that it 
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becomes rate-limiting. In contrast the essentially non-coordinating BArF
–
 ion does not interfere 

with alkene coordination and the catalyst remains saturated with alkene even at low substrate 

concentration. The slower reaction of the PF6
–
 salt with the alkene could explain its higher 

tendency to undergo deactivation. If we assume that deactivation is caused by the formation of 

hydride bridged species leading to an inactive trinuclear complex, then the critical step in the 

catalytic cycle is the reaction of the Ir-hydride intermediate with the alkene. If alkene insertion is 

very fast, as in case of the BArF
–
 counterion, hydrogenation dominates over the deactivation 

pathway, whereas with the PF6
-
 analogue the alkene reacts more slowly and deactivation 

becomes a significant competing process. 

 Virtually every iridium catalyst of the formula [Ir(L*)(COD)]
+
 [X]

-
 for asymmetric 

alkene hydrogenation that has appeared after the initial counterion effect studies was based on 

BArF
–
 as the preferred anion.

 [7d]
  The anion effect is broadly applicable in iridium catalyzed 

reductions as experiments with a direct analogue of the Crabtree catalyst of the formula 

[Ir(pyridine)(Cy3P)(COD)]BArF indicates (Figure 2). 

 

Figure 2.  Comparison of Crabtree catalyst with the BArF analogue. 

Hydrogenation of δ-terpinene (Figure 2) proceeded in higher conversion with Crabtree’s catalyst 

with BArF counter ion rather than the normal PF6.  The BArF counter ion performed better in all 

instances where the more coordinating PF6 salt failed to reach complete hydrogenation.
 [13]

 

1.2.2 NMR Investigations of Iridium PHOX Hydride Complexes 

In early work of Crabtree and co-workers, alkene dihydride intermediates formed during 

hydrogenation of cyclooctadiene using [Ir(pyridine)(PCy3)(COD)]PF6 in dichloromethane at 0˚C 

were detected by NMR spectroscopy.
[14]

 In a more recent complementary study Mazet et al 

found that when [Ir(PHOX)(COD)]BArF complex 1 was treated with hydrogen at -40 
˚
C for 5 
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min in [D8]-THF, alkene dihydride intermediates were formed which were characterized by 

NMR spectroscopy.
[15a]

 Two new signals appeared in the hydride region that were assigned to a 

single dihydride complex 2c formulated as [Ir(PHOX)(H)2(COD)]BArF (Scheme 2). 

 

Scheme 2  

 The predominance of isomer 2c over 2a or 2b is consistent with Crabtree’s findings, who 

convincingly demonstrated that in the reaction of H2 with [Ir(pyridine)(PR3)(COD)]PF6 the 

formation of an Ir-H bond trans to the N ligand is electronically favored.
[17]

 Highly selective 

formation of isomer 2c results from H2 addition to the more sterically encumbered face of the 

starting complex because dihydrogen addition to the sterically more accessible face leading to 
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isomer 2d would build up steric strain between the chelating COD ligand and the isopropyl 

group in the oxazoline ring and the pseudoaxial P-phenyl group. When the solution containing 

complex 2c was warmed to 0˚C under hydrogen a gradual consumption of isomer 2c was 

observed accompanied by the appearance of two new hydride complexes 3c and 3d with 

concomitant formation of cyclooctane. 

1.2.3 Computational Studies and Additional Experiments 

DFT (Density Functional Theory) calculations on the complete structures of complexes shown in 

Scheme 2 have been carried out by Mazet et al.
[15]

 The fully minimized structures of the four 

possible cis-dihydrides formed by oxidative addition of H2 to [Ir(PHOX)(COD)]
+
 were 

calculated. The most stable structure corresponded to the reaction product 2c that was shown to 

be formed exclusively in the NMR experiment. Isomers 2a and 2d were 10.6 and 4.9 kcal/mol 

higher in energy, whereas for isomer 2b no stable chelate structure could be located due to 

severe steric interactions which prevent the formation of an Ir-N bond. The four possible 

[Ir(PHOX)(H)2(solvent)2]
+
 complexes 3a-d resulting from hydrogenation of the cyclooctadiene 

ligand were also examined and again the two most stable structures corresponded to the isomers 

observed in the NMR experiments. These results show that steric interactions are very important 

and may dominate over electronic factors. Consequently, computational studies of potential 

reactions pathways should be based on full catalyst and substrate structures rather than simple 

model systems. 

 Unfortunately, attempts to observe and characterize intermediates under catalytic 

conditions have been unsuccessful so far. When considering which intermediates may be formed 

during catalysis, one of the first issues which becomes apparent is what ligands are coordinated 

to iridium during catalysis. An alkene dihydride iridium complex which incorporates a bidentate 

N,P ligand has a sixth coordination site available for an additional ligand. Whereas coordination 

of a second molecule of alkene seems highly unlikely due to steric hindrance, dihydrogen and 

dichloromethane may both be effective ligands for iridium. 

 Thus two plausible catalytic cycles have been considered, one via an Ir dihydride 

complex A the other via an IrH2(η
2
-H2) complex B (Figure 4). The first is analogous to the well-

established mechanism for rhodium diphosphine-catalyzed hydrogenation of alkenes going 

through Ir(I) and Ir(III) intermediates.
[16]
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Figure 3. Possible Ir(III) and Ir(V) hydride intermediates (S = solvent). 

 Experimental support for an Ir(I)-Ir(III) mechanism was provided by Chen and 

Dietiker.
[18]

 They reported an elegant experimental investigation of the hydrogenation of styrene 

with [Ir(PHOX)(COD)]BArF in the gas phase by means of electrospray ionization tandem mass 

spectrometry. By means of reversible deuterium labeling the investigators found masses 

corresponding only to intermediates with a mass corresponding to a dihydride complex with no 

presence of a trihydride species and concluded that no Ir(V) species with PHOX could be present 

in the catalytic reaction. 

 Based on DFT calculations Brandt et al proposed a catalytic cycle via Ir(III) and Ir(V) 

intermediates in which an additional dihydrogen molecule coordinated to an Ir-dihydride 

undergoes oxidative addition during migratory insertion.
[19]

 However, since an extremely 

truncated model for the ligand and substrate (ethylene) was used which neglected the severe 

steric interactions present in the actual catalysts it seems premature to rule out an Ir(I)-Ir(III) 

cycle. From subsequent calculations on the full catalyst and substrate structures which were 

based on the postulated Ir(III)-Ir(V) cycle, a simple qualitative quadrant model was derived for 

rationalizing the observed enantioselectivities. Further studies by the same investigators on a 

complete complex with stereoelectronic contributions from both trans α- and β-methylcinnamic 

esters were investigated and applied to the model (Figure 4).
[20]

  The authors concluded that in 

the case of the trans-β-methylcinnamic ester electronic and steric factors cooperated in their 

model to give high enantioselectivity. In the case of the trans-α-methylcinnamic ester steric 

interactions placed the migrating hydride onto the alpha carbon which would be electronically 

disfavored and thus lead to lower selectivities, both substrate selectivity observations being 

reflected by experimental results. 
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Figure 4. Anderssons quadrant model. 

 Fan et al also reported DFT calculations on the complete ligand and substrate structures 

with an iridium carbene based complex for an Ir(III)-Ir(V) catalytic cycle which reproduced the 

correct selectivity order for three different substrates.
[21]

  Calculations on complete ligands and 

real substrates that reproduce experimentally determined enantioselectivities gives plausible 

credence to these authors’ computational experiments. 

 Preliminary studies by Meuwly and Roseblade
[15b-c]

 indicated that calculated pathways 

beginning from [Ir(P^N)(H)2(η
2
-H2)(η

2
-alkene)]

+
 complexes lead to predicted 

enantioselectivities which are opposite to the experimentally observed values. While competing 
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kcal/mol), calculated transition states energies were in reasonable agreement with the 

experimentally observed enantioselectivities. Taking into account that CH2Cl2 as the solvent is 

present in much higher concentration than H2, the Ir(I)-Ir(III) and Ir(III)-Ir(V) cycles become 

energetically very similar, making it difficult to distinguish between them based on calculations 

alone. 

 Thus, additional experimental and computational studies will be needed to draw 

definitive conclusions regarding the mechanism of Ir-catalyzed asymmetric hydrogenation. The 

Ir(I)-Ir(III) and Ir(III)-Ir(V) cycles seem to be similar in energy, so it may well be that depending 

on the catalyst, substrate and the hydrogenation conditions, one or the other pathway will be 

preferred, or both cycles could operate in parallel. 

1.3 Asymmetric Hydrogenation of Trisubstituted Alkenes 

1.3.1 Asymmetric Hydrogenation of Standard Test Substrates  

Largely unfunctionalized trisubstituted alkenes are the most commonly investigated 

hydrogenation substrates in iridium catalyzed reductions.
[7]

  As previously stated, strongly 

coordinating groups such as basic amines, alcohols, and strongly donating Lewis bases can in 

general slow the iridium catalysts down to a point where they are not effective.   However, a 

number of alkenes with moderately Lewis basic functionalities such as acids, alcohols, esters, 

ketones, ethers, halogens and other similar groups adjacent or in proximity to the C=C bond have 

been successfully reduced with very high functional group tolerance and stereoselectivity.  There 

is an increasing appearance of more coordinating functionalities such as enamines, indoles, 

imines and even pyridines, all of which will be touched on later sections of this chapter. 

 A survey of a list of typical ligands with reasonable asymmetric induction for the 

reduction of a commonly tested set of trisubstituted alkenes (Table 1) reveals several common 

features (Figure 5).  Virtually all of the ligands consist of a heterocycle with a sp
2
 hybridized 

nitrogen atom as a hard σ donor and a strong soft donor moiety such as a trisubstituted 

phosphorus atom or an N-heterocyclic carbene forming the second portion of the chelating 

ligand.  Six membered metallacycles are the most investigated with the exception of the seven 

membered carbene ligand 9, the seven membered spirocycles SpinPHOX 15a-c, and the rigid 

spiroindanes SiPHOX 16a-d.  Stereogenic units have been incorporated with varying degrees of 
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success in all regions of the metallacycle backbone.  Although some ligands display a wider 

range of acceptable enantioselectivity no single catalyst can be said to be generally applicable to 

all alkenes.  The current trend is towards good selectivity in a given class of substrates with 

modifications to many of the existing scaffolds in an attempt to improve selectivity for important 

targets.  

 Many similarities to the classic PHOX ligand 5a-c are clearly visible from the given 

ligand list in figure 5. As indicated by NMR and computational studies (see section 2.2 and 2.3) 

the coordinated alkene takes a position in a trans orientation from the soft donation moiety (i.e. 

phosphorus or carbene substituent) and adjacent to the nitrogen atom.  In the PHOX system this 

places the alkene into close proximity with the stereogenic center of the ligand to create a well 

defined chiral environment.  Ring size of the metallacycle plays an extremely important role in 

governing catalyst reactivity.  Catalysts derived from ligands 8a-f and 10a-d are some of the 

most selective catalysts known for unfunctionalized trisubstituted alkenes.
[20, 21-24]

  While they 

have proven very selective for trisubstituted alkenes they fail to produce high selectivity or 

reactivity with the substrate classes of tetrasubstituted alkenes, terminal alkenes, and 1,3-dienes.  

     The catalyst derived from ligand 9 perform well with several classes of alkenes albeit with 

slightly lower enantioselectivities in reduction of trisubstituted alkenes but are remarkably 

reactive towards 1,3-dienes.
[7a, 20]

  Further examples of size of the iridium metallacycle 

controlling selectivity and reactivity comes from the substrate profile of the 5-membered iridium 

chelates from ligands 12a-e, which reduce tetrasubstituted alkenes under mild conditions and 

high conversions but give unacceptable enantioselectivity with less substituted alkenes.
[7c]

   

 On consultation of Table 1 it becomes apparent that small changes in overall geometry 

about the metal center as well as the donation capabilities to the metal center can have a drastic 

effect on the selectivity.   PHOX ligand 5b compared with the later permutation of SimplePHOX 

ligand 7a have the same 4-tert-butyl-4,5-dihydrooxazole moiety as a stereo defining group and 

nearly the same steric environment about the phosphorus atom yet they give drastically different 

enantioselectivity. ThrePHOX 6a-f ligands are highly selective and active catalysts which 

incorporate effective modifications on the PHOX progenitor. In comparison to both PHOX and 

the later derivative SimplePHOX the stereogenic unit of ThrePHOX has been moved to the 

center of the backbone and transmits chirality to both sides of the chelate.
[25a-c] 
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 Other features of note are observed when the phosphinite group of SimplePHOX is 

replaced by a phosphine in the newer NeoPHOX ligand 14a-c, resulting in some small 

improvements in enantioselectivity but with the added advantages of a phosphine over the more 

reactive phosphinite.
[25d]

  The lack of overall changes to selectivity for these simple substrates 

may reflect that alteration in overall geometry, most importantly the bite angle, matter more to 

reactivity then electronic changes to the soft donor group.  Ligands 20a-b provide reasonable 

selectivity but actually less than the parent SimplePHOX and at a cost of a more complicated 

synthesis, strong indication that optimal interactions were disrupted by the excess chiral and 

steric encumbrance.
[25e]

 

 Other examples of adding too much bulk in the context of the general substrates comes in 

the form of ligand 24.
[26]

  While the ligand maintains many of the stereochemical features of 

ligand 5c the added bulk leads to much lower enantioselectivities and conversion by disrupting 

interactions necessary for substrate binding.  Similar effects are seen with ligands 21a-d, which 

are closely related to the very active catalysts derived from 8a-c, 10a-d, and 11a-b with the 

exception of the deleterious addition of extra ring rigidity and steric encumbrance from the 

carbon bridge.
[27a]
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Figure 5.  Frequently used N,P and C,N ligands. 
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Figure 5 continued.   
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 Table 1.  Asymmetric hydrogenation of standard substrates with chiral N,P and C,N iridium 

catalysts. 

 

 
Ligand  

ee %
a
 

Substrate 5 6 7 8 9 10 11 

25a 
 

b 

97 

a 

99 

a 

98 

a-c 

99 

 

99 

a-d 

99 

a 

99 

25b 
 

b 

81 

a 

99 

a 

91 

a-c 

99 

 

97 

a-d 

99 

a 

90 

25c Ar

 

b 

63 

e 

92 

a 

89 

a 

98 

 

80 
- - 

25d 

 

b 

72 

f 

95 

a 

95 

a 

92 
- 

b 

55 

b 

94 

25e 
 

b 

96 (95) 

a 

92 

a 

97 

a 

97 

 

93 

b,d 

97 

b 

98 (95) 

25f 
 

b 

84 (96) 

f 

96 

a 

94 

a 

99 
- 

b,d 

98 

b 

93 

a)  All conversions less than 99% are noted next to the enantioselectivity in brackets, Ar = 4-MeOC6H4. 
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Table 1  Continued. 

 
 

Ligand  

 ee %
a
 

Substrate 13 14 17 18 20 21 24 

25a 
 

c 

98 

a 

98 
99 

a-b 

99 

b,g 

99 

a 

94 (35) 
78 

25b 
 

c 

99 

a 

89 
99 

b 

99 

d 

94 

a 

94 
- 

25c Ar

 

- 
c 

96 
92 

a 

95 

f 

88 

a 

43 (18) 
- 

25d 

 

c 

95 

b 

96 
96 - 

e 

83 

a 

97 
89 (95) 

25e 
 

- 
b 

96 
93 

b 

92 

 

- 

a 

45 (5) 
99 

25f 
 

a 

88 

a 

95 
99 

b 

99 (85) 

c 

98 

a 

55 (10) 
82 

a)  All conversions less than 99% are noted next to the enantioselectivity in brackets, Ar = 4-MeOC6H4. 

 

       

Scheme 3  
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 While Table 1 is an important tool for many of the studies the current trend is to more 

elaborate and increasingly difficult substrates within a particular class of alkenes.  Andersson and 

coworkers have published several variations of the 1,2-diaryl substrate 25a for the fairly more 

difficult 1,1’diaryl class of trisubstituted alkenes (Scheme 3).
[28]

  The authors note that the 

products form an important class of compounds that are pharmaceutically relevant and difficult 

to prepare by other available methods.  

 Reduction of all of the reported geminal diaryl substrates were completely under the 

control of the third stereo defining R-group.  Particularly difficult were the sterically demanding 

29 and the electron poor alkene 30, both of which required heating to produce poor to moderate 

yields.   

 The reduction of simple trisubstituted alkenes derived from 25d has found use in the 

enantioselective total synthesis of pseudopteroxazole 31c, demethyl methoxycalamenene 32c, 

and both enantiomers of mutisianthol 33c (Scheme 4).
[25d, 29]

 

 SimplePHOX 7a proved a useful tool to force the diastereomeric reduction of alkene 31a 

to pseudopteroxazole precursor 31b in perfect diastereoselectivity and 90% yield with only trace 

amounts of over reduced product.  NeoPHOX catalyst from ligand 14b, a closely related system 

to 7a, furnished product 32b in 93% ee which was then easily recrystallized to enantiopure 

material with 58% recovery.  The R enantiomer of 33b was synthesized by use of catalyst from 

ligand 8a in 90% ee and 98% yield with the fully aromatized naphthalene as 2% byproduct.  A 

higher catalyst loading of 2 mol% of catalyst from 7a was used to produce the S enantiomer in 

80% ee with 13% of the fully aromatized naphthalene byproduct occurring even when using 50 

bar of hydrogen pressure.   Lower catalysts loadings gave increased amounts of aromatization 

byproduct and lower enantioselectivity.   
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Scheme 4 

 Asymmetric hydrogenation of cyclic alkenes is not the sole application of this 

methodology in synthesis and the current trend in research is to use these catalysts in building 

more elaborately functionalized molecules.   

1.3.2 Asymmetric Hydrogenation of Purely Alkyl Substituted Alkenes 

The development of chiral homogeneous catalysts with the capacity to reduce purely alkyl 

substituted alkenes with high asymmetric induction and yield has been a long standing problem.  

Most iridium catalysts that perform well with nothing more coordinating than a phenyl group 

adjacent to the alkene fail to give good asymmetric induction in the absence of an aromatic 

substituent in close vicinity to the C=C bond.
[7]

   

 As a first step to solving this problem Bell et al started an active screening project 

utilizing E and Z isomers of compound 34a as a model (Scheme 5).
[23]

  Although 34a contains an 

aromatic substituent for analytical purposes the functional group has been moved 3 bonds away 

from the carbon carbon double bond.  If any coordination took place through this remote site the 

effect was expected to be weak. Out of the screening effort pyridine phosphinite ligands 8a-c 
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were identified as excellent ligands giving high enantioselectivity and conversion.  Both E and Z 

isomers gave acceptable enantioselectivity.  As observed in other cases the E and Z isomers were 

converted to opposite enantiomers. In order to rule out any small interactions from the distal 

aromatic ring the completely alkyl substituted alkene 35a was reduced under standard 

conditions.  Fittingly ligand 8a provided the branched chiral alkane 35b in 92% 

enantioselectivity. 

 

Scheme 5 

 

Scheme 6.   
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Scheme 7 

       Because cis and trans alkenes are converted to products of opposite configuration, it 

becomes possible to introduce two or more stereogenic centers with the desired relative and 

absolute configuration in a single step through hydrogenation of a di- or polyene by adjusting the 

geometry of the individual C=C bonds. This is demonstrated by the highly enantio- and 

diastereoselective preparation of γ-tocopherol 36b, a component of vitamin E, from γ-tocotrienyl 

acetate 36a (Scheme 6).   

 In a subsequent publication the fully optimized stereospecific synthesis of each individual 

diastereomer and its corresponding enantiomer with catalyst loadings of 8c from 0.1 to 0.25 

mol% was reported (Scheme 7).
[24]

  Electron withdrawing protecting groups attached to the 

allylic alcohol slowed down the reaction rate and higher catalyst loadings were required to 

achieve full conversion.  The authors conducted a grams scale synthesis of (R,R)-37b in 

comparable yield and enantioselectivity to the test reactions, illustrating the practicality of this 

approach. 
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1.3.3 Asymmetric Hydrogenation of Fluorinated Alkenes 

Chiral organofluorides are increasingly in demand as the pharmaceutical and materials industries 

seek to take advantage of the special properties these halides impart.  A lack of methods to 

provide chiral monofluorides and trifluoromethyl groups has given the group of Andersson 

impetus to create new asymmetric hydrogenation routes to these valuable halides.
[30]

   

 

Figure 6.  Scaffold morphing to improve dehalogenation profile. 

 A brief scope of α-fluorocinnamic acid derivatives with both trisubstituted and 

tetrasubstituted C=C bonds were reduced with mixed results (Scheme 8).
[30a]

  The vinyl fluorides 

proved extremely difficult for catalysts that usually perform superbly on more frequently studied 

substrates.  Elevated temperatures and pressures were required to obtain moderate to good 

conversions with closely related substrates.  A struggle with dehalogenation occurred with the 

harsher conditions required for this difficult reaction.  The group noticed that phosphoramide 

ligands 13a-c gave lower amounts of dehalogenation and new phosphoramide 26 was developed 

by the group to incorporate the best of both of their original ligands (Figure 6).  This catalyst 

gave improved enantioselectivity and less dehalogenation (Scheme 8). 

 
Scheme 8 
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Scheme 9 

 Evidently vinylfluorides represent a new challenge to iridium asymmetric hydrogenation. 

It is noteworthy that no examples of asymmetric reduction of vinyl fluorides without adjacent 

coordinating groups have been reported in the literature.
[7d]

  

 Trifluoromethyl substituted alkenes appear to also be problematic substrates for 

asymmetric hydrogenation as very long amounts of time and high pressures were required to 

achieve appreciable yields with ligand 10b (Scheme 9).
[30b]

  Nevertheless, useful yields and 

excellent enantioselectivities were obtained for most examples. 

1.3.4 Asymmetric Reduction of Vinylboronates 

Boronic esters have been used in a wide range of transformations.  These useful reagents have 

been transformed into numerous functional groups and are essential reagents for several C-C 

bond forming reactions.  Transition metal catalyzed hydroboration of alkenes often leads to 

mixtures of branched and linear products.  Several groups have reported asymmetric reductions 

of vinyl boronic esters
[31a-c]

 with chiral rhodium P,P complexes, however, the first iridium 

catalyzed reduction was reported by (Scheme 10).
[31d]

 

 

Scheme 10 
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 In contrast to normal trisubstituted aryl alkenes, a strong pressure effect was observed in 

this case. Interestingly, for substrate 44a catalysts hydrogenation with Ir(13d) demonstrated 

opposite pressure dependant enantioselectivity of substrate 45a with catalyst Ir(46).  Poor 

enantioselectivity was obtained for substrates that did not contain an aromatic ring adjacent to 

the alkene.   

1.3.5 Diastereoselective Reduction of Alkenes  

Although functional group directed enantioselective hydrogenation tends to fall in the realm of 

rhodium and ruthenium catalysts there are many examples of diastereoselective hydrogenations 

with Crabtree’s catalyst that are controlled by coordination of the iridium center to a Lewis basic 

functional group (Figure 7).  When one considers that iridium catalysts do not require 

coordinating groups for hydrogenation activity and purely steric interactions suffice for 

enantioface discrimination then protection of the directing group with a large noncoordinating  

moiety could reverse the direction of attack by the catalyst to create the opposite diastereomer 

protected equivalent (Figure 7). 

 

 

Figure 7.  Diastereoselective hydrogenation based on catalyst and substrate control. 

 Diastereoselective hydrogenations of this type have been reported by Burgess and 

coworkers
[32-33]

 using chiral protected and unprotected allylic and homo allylic alcohols as 

substrates with their carbene catalyst Ir(9).  Catalyst control was found to be dominant but 

depending on the position and nature of the oxygen substituents moderate to strong match/ 

mismatch effects were observed. 

 This approach has been used to synthesize a variety of valuable 1,3-deoxypolyketide 

chirons, 1,3-hydroxymethyl chirons, vicinal dimethyl chirons, and aldol like products from 
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trisubstituted alkenes (Scheme 11).  High diastereomeric ratios could be obtained often in greater 

than 90% for most cases. 

 A reasonably large difference in diastereomeric excess was observed between product 

47b with an adjacent methyl ester and 48b with a primary alcohol in the equivalent position.
[33a]

  

It was noted by the authors that in cases involving a 1,3 system changing the pendant group from 

a primary allylic alcohol to a methyl ester caused a reversal of facial selectivity.
[32a, 33b]

  The 

same effect was absent in the 1,2 systems 51b and 52b studied.  The diastereomeric ratio in the 

latter case was attributed mainly to catalyst control.
[33b]

    

 

Scheme 11. 
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1.3.6 Redox Rearrangement of Allylic Alcohols to Chiral Aldehydes 

Mazet et al have reported an efficient asymmetric isomerization reaction of allylic alcohols [34].  

In a preliminary report they utilized the BArF analogue of Crabtree’s complex to efficiently 

catalyze a hydride transfer from the α position of the allylic alcohol to the β position of the 

alkene with a concomitant formation of a formyl group.  A subsequent report detailed a 

remarkable enantioselective variant of this process catalyzed with Ir(12g) and (12h) (Scheme 

12).   

 

Scheme 12 

 The iridium catalyst was activated by briefly purging the system with atmospheric 

pressure of hydrogen to remove the COD ligand followed by degassing the system with vacuum 

and inert atmosphere to avoid over reduction. High enantioselectivities were obtained in 

moderate to good yields with a limited range of substrates.  The system studied was very 

sensitive to ligand geometry, namely 5-membered metallacycles were much more efficient than 

6-membered analogues and bulky substrates with aromatic substituents were required for high 

selectivity. 

1.3.7 Conjugate Reduction 

Catalytic asymmetric conjugate reductions represent one of the most venerable and investigated 

reaction types in catalysis.  Conjugate reductions with rhodium and ruthenium diphosphine based 

catalysts have been heavily investigated and substituted α,β-unsaturated acids and esters are 

frequent substrates for these systems.  Iridium N,P based reductions are more recent and far less 

investigated but offer chemoselectivity advantages under certain circumstances.
[35a]

  Ester 25f is 

the most regularly investigated conjugate reduction substrate and has been a general benchmark 

for evaluating the selectivity and reactivity of iridium N,P based catalysts for many years.  It has 

also been described that the trans-α-methylcinnamic esters have been particularly difficult 

substrates for reduction and this has been rationalized by computational methods.
[20]

 Nearly all 
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systems that have been investigated are based on a cinnamic acid core with different substitution 

patterns about the α and β carbons.  Varying degrees of electrophilic groups have been 

incorporated to the conjugate system such as ketones, esters, acids, amides, diphenylphosphine 

oxides, and phosphonates.
[32-33, 35-37]

   

 Iridium catalyzed reduction of α,β-unsaturated ketones has been investigated most 

recently by the groups of Bolm and Hou, respectively.    

Table 2. Enantioselective hydrogenations of linear α,β-unsaturated ketones. 

 
substrate Substrate Yield % ee % 

54a 
 

89 81 

54b 

 

94 89 

54c 

 

94 97 

54d 

Ph O

Ph

 

86 92 

54e 
 

93 81 

54f 
 

70 79 

 

 As Table 2 indicates ligand 23c proved effective for substrates with large branched 

groups on the beta positions.  The best selectivity was obtained for 54c which was substituted 

with aromatic groups on both sides of the substrate and a large branched alkyl attached to the β 

position.
[35a]

  Entries 54e and 54f are encouraging and may indicate that this method could be 

extended to more broadly useful compounds.  The investigators performed a solvent study and 

determined the reaction to be equally selective in toluene and dichloromethane so the former was 

used presumably for its industrial attractiveness. 
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 A broader range of substrates have been reduced with substitution at the α position of 

α,β-unsaturated ketones using ligand 5c.
[35b-c]

  

Table 3.  Enantioselective hydrogenations of α-substituted α,β-unsaturated ketones. 

 

substrate R
1 

R
2
 R

3
 yield (conv) % ee % 

55a Ph Me Me 91
a
 (100

b
) 98

a
 (98

b
) 

55b Ph Me Et 91
a
 98

a
 

55c Ph Me Ph 96
a
 (100

b
) 99

a
 (97

b
) 

55d Ph Ph Me 94
a
 98

a
 

55e 4-MeOC6H4 Et n-Pr (100
b
) (98

b
) 

55f Et Me Ph 89
a
 87

a
 

55g H Bn Ph 84
a
 86

a
 

55h 2-MeC6H4 Me Me 89
a
 98

a
 

55i 2-MeOC6H4 Me Me 90
a
 99

a
 

55j 2-ClC6H4 Me Me 89
a
 98

a
 

55k 3-MeOC6H4 Me Me 93
a
 99

a
 

55l 3-ClC6H4 Me Me 92
a
 98

a
 

55m 3-NO2C6H4 Me Me 91
a
 98

a
 

55n 4-MeOC6H4 Me Me 97
a
 98

a
 

55o 4-ClC6H4 Me Me 92
a
 99

a
 

55p 4-NO2C6H4 Me Me 88
a
 99

a
 

a) Hydrogenations were carried out in toluene.
[35b]

  b)  Hydrogenations were carried out in dichloromethane.
[35c]
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 Table 3 indicates that reduction of α substituted unsaturated ketones is extremely efficient 

with PHOX 5c.  Unfortunately, substrates lacking any aromatic ring within close proximity to 

the alkene were reportedly not reduced.
[35c]

  However, a wide range of functional groups were 

shown to be tolerated by Bolm et al.
[35b]

  Most impressively, nitroaromatic compounds were well 

tolerated under the conditions used, highlighting the extraordinary chemoselectivity that can be 

obtained with iridium N,P catalysts.  Perhaps one of the most productive features of these studies 

is the ability to create a stereogenic center with high degrees of substitution and perfect acyclic 

stereocontrol while maintaining an unencumbered site α to the carbonyl group for further 

elaboration.   

 Substituted α,β-unsaturated amides have also been reduced with high enantioselectivity 

and conversion with ligand 24.
[36a]

  Here as well the investigations relied heavily on substrates 

with adjacent aromatic rings and α substitution.  Catalyst loadings were moderately higher than 

with other systems with 2 mol% used.  Table 4 indicates that ligand 24 can tolerate a wide range 

of substituents on the amide nitrogen but fairs best with the more sterically demanding groups 

such as isobutyl or benzyl.  The use of more coordinating groups such methoxyethyl 56e or the 

versatile Weinreb amide 56f results in a moderate to severe erosion of enantioselectivity. Some 

of the more sterically demanding substrates such as 56h were reduced with a moderate loss of 

enantioselectivity.   

 Recently developed ligand SIPHOX 16a-d proved a valuable tool in the asymmetric 

reduction of α,β-unsaturated acids [36b].  In a complete break with what is typically observed 

with iridium based N,P ligands SiPHOX catalysts  were observed to reduce the strongly 

coordinating carboxylic acid triethylamine  salt of α methylcinnamic acid in excellent 

enantioselectivity and yield (Table 5).  Equally surprising is the use of methanol as a solvent, 

which normally inhibits reductions mediated by iridium N,P catalysts.   
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Table 4.  Asymmetric hydrogenation of α-substituted α,β-unsaturated amides with ligand 24. 

R1

O

NHR3

[Ir(24)(COD)]BArF
2 mol%

R1

O

NHR3

H2 50 bar 24 hr
R2 R2

 

substrate R
1 

R
2
 R

3
 ee % 

56a Ph Me Ph 96 

56b Ph Me n-Bu 84 

56c Ph Me i-Bu 93 

56d Ph Me Bn 95 

56e Ph Me (CH2)2OMe 90 

56f Ph t-Bu i-Bu 96 

56g Ph Bn i-Bu 97 

56h Ph 2-Napht i-Bu 87 

56i 3-ClC6H4 Et i-Bu 98 

56j 4-MeOC6H4 Et i-Bu 96
a 

56k Ph Et i-Bu 97 

56l Ph i-Pr i-Bu 96 

56m Ph n-Bu i-Bu 95 

56n Ph MeO i-Bu 95 

56o i-Pr H Bn 93 

56p n-Pr H Bn 84 

56q i-Bu H Bn 87 

56r Me H Ph 95 

56s Ph Me OMe, Me 75
b
 

a) 3 Mol% of catalyst was used. b) Weinreb amide. 
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Table 5.  Asymmetric hydrogenation of cinnamic and tiglic acid derivatives. 

R1

O

OH

[Ir(16b)(COD)]BArF
0.25 mol%

R1

O

OH

R2 R26 atm H2 MeOH

0.5 eq TEA 57a-q or 0.5 eq Cs2CO3 57r-w  

substrate R
1 

R
2
 Yield % ee % 

57a Ph Me 99 99.2 

57b 2-MeC6H4 Me 97 99 

57c 3-MeC6H4 Me 98 99 

57d 4-MeC6H4 Me 98 99 

57e 2-MeOC6H4 Me 98 99 

57f 3-MeOC6H4 Me 99 98 

57g 4-MeOC6H4 Me 97 99 

57h 2-ClC6H4 Me 97 96 

57i 3-ClC6H4 Me 98 99 

57j 4-ClC6H4 Me 97 98 

57k 3-BrC6H4 Me 97 99 

57l 4-BrC6H4 Me 97 98 

57m 4-CF3C6H4 Me 98 97 

57n 2-naphthyl Me 96 99 

57o furan-2-yl Me 98 98 

57p Ph i-Pr 97 99 

57q Ph Ph 95 94 

57r Me Me 92 99.1 

57s Et Me 93 98 

57t n-Pr Me 89 99 

57u i-Bu Me 97 90 

57v n-Pr Et 89 99.4 

57w Me n-Pr 92 98 
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Scheme 13 

 Table 5 indicates an extremely efficient catalyst with very low catalyst loadings for such 

a highly coordinating environment.  Functional group tolerance appears to be excellent with 

groups as reactive as arylbromides being converted in close to perfect yield.   

 Cesium carbonate was found to be a far more efficient additive for purely alkyl derived 

substrates 57r-w.  Very useful enantioselectivities were obtained for all entries with the 

exception of a tertiary isobutyl derived alkene 57u which was converted with a respectable 90% 

ee. The yields were slightly lower for purely alkyl derived substrates but full conversions were 

reported by the authors. 

 Scheme 13 depicts an interesting application of this methodology in the synthesis of a 

crucial intermediate for the blood pressure lowering drug Aliskiren with the less encumbered 

ligand 16c.  In the presence of excess amounts of triethylamine 58b was produced in 96% yield 

and 98% ee.  Catalysts loadings were optimized at 0.016 mol% or S/C ratio of 6000.  At S/C 

ratio of 10000 a slight loss of enantioselectivity and yield was noticed. 

 Vinyl phosphine oxides and phosphonates are highly electron deficient and can undergo 

conjugate reduction much like their carbonyl counter parts.  The group of Andersson has 

reported an enantioselective reduction of both to yield chiral phosphine oxides and phosphonates 

(Table 6).
[37]

   

  



Chapter 1  

Iridium Catalyzed Asymmetric Hydrogenation of Alkenes with Chiral N,P and C,N Ligands 

 

32 

 

Table 6. Asymmetric reduction of vinyl diphenylphosphine oxides and phosphonates 

 

substrate R
1 

R
2
 R

3
 Conv % ee % 

59a Ph Ph H 99 99 

59b Ph 4-MeOC6H4 H 99 99 

59c Ph 4-CF3C6H4 H 93 99 

59d Ph 2-MeC6H4 H 99 99 

59e Ph C6H11 H 99 99 

59f Ph t-Bu H 98 90 

59g Ph CH2CH2OH H 99 99 

59h OEt Ph E-CO2Et 10 90 

59i OEt Ph Z-CO2Et 99 99 

59j OEt Bn E-CO2Et 99 99 

59k OEt Ph H 99 99 

59l OEt CH2CH2OAc E-CO2Et 99 99 

 

 The authors did not report on trisubstituted diphenylphosphine oxides but apparently the 

results are excellent with what is usually a difficult 1,1’ unsubstituted pattern about the alkene.  

The investigation found near perfect selectivity and yields for most of the reported compounds 

when using 26 as a ligand.  However, a very slow reaction was noted for the E alkene 59h while 

hydrogenation of E configured alkene 59j preceded smoothly, indicating a delicate balance 

between structure and reactivity.  Other anomalous behavior of the substrates 59h-j is both E and 

Z configured alkenes produce the same enantiomer.  



Chapter 1  

Iridium Catalyzed Asymmetric Hydrogenation of Alkenes with Chiral N,P and C,N Ligands 

 

33 

 

1.4 Asymmetric Hydrogenation of 1,1’-Disubstituted Alkenes 

1,1’-Disubstituted alkenes are a challenging substrate class when compared to the more widely 

investigated trisubstituted alkenes.  Although they react very quickly, obtaining high 

enantioselectivity with most ligands has been problematic.  Blankenstein and Pfaltz reported the 

first iridium N,P based catalyst capable of reducing 1,1’ disubstituted alkenes in useful 

selectivity with SerPHOX 60 (Scheme 14).
[25a]

  The authors discovered a very strong dependence 

on hydrogen pressure with the highest selectivity obtained at atmospheric pressure of hydrogen.  

The later developed catalyst Ir(6b) was found to give higher enantioselectivities and is now 

commercially available as the BArF COD complex.
[38a]

   

 A large combined research effort of the three groups of Diéguez, Andersson, and Bӧrner 

initiated a combinatorial study utilizing the SerPHOX and ThrePHOX backbones in combination 

with a chiral biarylphosphinite moiety, ligands 18 and 19.
[38b]

  A library of 96 possible phosphite 

oxazoline ligands was synthesized with systematic changes to the backbone and with special 

attention to the biaryl phosphite group.   

 

Scheme 14 

 Ligand 19 was found to be highly selective for the hydrogenation of 1-aryl, 1’-alkyl 

alkenes and ligand 18b was found to be selective for 1-aryl, 1’-hindered aryl alkenes (Table 7). 
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Table 7.  Asymmetric reduction of 1,1’disubstituted alkenes. 

 

substrate L Ar
 

R Conv% ee% 

61a 19 Ph Et 100 99 

61b 19 4-MeOC6H4 Et 100 99 

61c 19 4-CF3C6H4 Et 100 96 

61d 19 Ph n-Bu 100 94 

61e 19 Ph i-Bu 100 93 

61f 19 Ph neopentyl 100 90 

61g 19 Ph i-Pr 100 97 

61h 19 Ph cyclohexyl 100 97 

61i 19 Ph t-Bu 100 99 

61j 18a 2-furyl n-Bu 100 99 

61k 19 2-thienyl n-Bu 100 96 

61l 19 2-pyridyl Et 100 99 

61m 19 2-pyridyl t-Bu 100 99 

61n 18b Ph 2-naphthyl 100 99
a
 

61o 18b Ph 2-MeC6H4 99 99
a 

61p 19 4-CF3C6H4 4-MeOC6H4 100 63
a 

61q 19 Ph CH2OH 100 95
a
 

61r 19 Ph CH2OAc 100 91
a
 

61s 19 Ph CH2TMS 100 96
a 

61t 19 4-MeOC6H4 CF3 100 75
a 

a) Reaction was run at 50 bar hydrogen. 
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 Ligand 19 performs excellently with the wide variety of 1,1’disubstituted alkenes 

reported.  Substrates 61a-m are efficiently reduced at 1 bar of hydrogen in high 

enantioselectivity with very little dependence on the bulk of the alkyl substituents.  Strongly 

coordinating alkenes such as 61l and 61m typically perform poorly in iridium catalyzed 

hydrogenations but reduction with 19 clearly breaks this rule and the substrates are reduced in 

excellent selectivity and yield.    

 The more sterically demanding 61n-o were easily reduced by Ir(18b), perhaps due to a 

more open and accommodating catalyst structure.  Other changes to note are the higher pressure 

(50 bar) required to reduce the chelating substrates 61q-r, the hindered 61s, and the electron poor 

61t.  The diarylmethylene substrate 61p reveals that enantioface discrimination is also possible 

based on electronic rather than steric effects.  Both aryl groups have very similar steric demands 

but distinguish themselves by their π donor and π acceptor properties.  The remarkable ee of 63% 

may be explained by the different interaction of the iridium center with the electron poor and the 

electron rich aryl group and/or alignment of the catalyst dipole with the substrate dipole created 

by electron donor and acceptor groups. 

1.5 Asymmetric Hydrogenation of Tetrasubstituted Alkene 

Tetrasubstituted alkenes remain a challenging class of substrate. Buchwald and co-workers have 

shown that chiral zirconocene complexes can catalyze the hydrogenation of tetrasubstituted 

alkenes with high enantioselectivity.
[5a-b]

 However, high catalyst loadings, long reaction times 

and high pressures are a disadvantage of this system.  

 Schrems et al identified a number of P,N ligands which have given encouraging results 

for this class of substrate.
[39]

 Surprisingly the structurally simple readily accessible 

phosphinooxazoline 12a, originally reported by Sprinz and Helmchen,
[40]

 and subsequent 

analogues 12b-e proved to be the most efficient ligands for several substrates (Table 8).  

 For a few select cases the cyclic alkene 62a-c with simple primary alkyls as substituents 

were readily hydrogenated with SimplePHOX ligand 7a and 7c. Importantly, no epimerization at 

the benzylic position was observed and hydrogenation gave entirely cis product with most 

substrates.  Aromatization of the dihydronapthelene substrates 63a-b was a frequent side 

reaction, even at high pressures.
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Table 8.  Asymmetric reduction of tetrasubstituted alkenes. 

 

Substrate  R L P t ee% Conv% 

61a - MeO 12c 1 bar 4 h 97 99 

61b - F 12d 5 bar 4 h 89 99 

 

Substrate R
1 

R
2 

L P t ee% Conv% 

62a Me Me 12a 5 bar 4 h 94 99 

   7c 5 bar 4 h 95 99 

62b Et Me 12a 50 bar 4 h 93 99 

   7a 50 bar 4 h 94 98 

62c n-Bu Me 12a 50 bar 4 h 94 99 

   7a 50 bar 4 h 95 97 

62d Ph Me 12a 5 bar 4 h 95 99 

62e Me Ph 12a 50 bar 4 h 88 20 

62f Et Ph 12a 50 bar 4 h 93 23 

 

             For some substrates a dependence of  enantioselectivity on pressure was observed with 

low to moderate pressures being optimal for many combinations.  Ligand 12c in combination 

with substrate 62a gives an enantioselectivity of 92% at 50 bar of pressure and 97% at 1 bar, 

similar to the trend found in the early studies of the 1,1’ disubstituted substrates.   
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Table 8. Continued. 

 

Substrate 
 

R
 

L P t ee% Conv% 

63a Me Me 12a 50 bar 4 h 73 99 

 Me Me 6a 5 bar 4 h 77 46 

63a Ph Me 12b 5 bar 4 h 91 32 

 

 Substrate L P mol% ee% Conv%  

 64 5a 50 bar 2.0 94 99  

   50 bar 1.0 93 99  

   50 bar 0.5 93 99  

   50 bar 0.1 90 99  

  12e 5 bar 2.0 96 99  

 

 Yet even more important is the observation that ligands with identical configurations 

gave products of opposite configuration solely on the basis of the substituent on the stereogenic 

center.  For instance, ligand S-12a gives the (-) reduction product of 63a in 65% ee at 50bar, 

changing the ligand to S-12f under identical reaction conditions gives the (+) product in 39% ee.   

Clearly the critical interactions with these catalysts and substrates are highly subject to the 

extremely crowded environment about the metal center and very small changes to either the 

substrate or ligand can lead to large changes in overall selectivity and yield.   

  Mastery of tetrasubstituted alkenes greatly expands the tools available for the synthesis of 

chiral carbon skeletons and tetrasubstituted alkenes have the added value of possibly creating 

two stereogenic centers simultaneously.   

 



Chapter 1  

Iridium Catalyzed Asymmetric Hydrogenation of Alkenes with Chiral N,P and C,N Ligands 

 

38 

 

1.6 Asymmetric Hydrogenation of Trisubstituted Alkenes with Heteroatoms  

Asymmetric hydrogenation of a C=C bond with a heteroatom substituent leads to highly valued 

chirons which can often be elaborated into more complex functionalized molecules.    Most 

asymmetric hydrogenation routes to these chirons have relied on ruthenium or rhodium 

diphosphine complexes.
[1-3, 7a]

  Iridium N,P and C,N complexes are the newest addition to 

catalysts capable of asymmetric hydrogenation of heteroatom substituted alkenes and in spite of 

the typical sensitivity of the complexes towards Lewis bases many successful hydrogenations of 

such alkenes have been reported in the recent literature.  Indoles, enamines, enol esters, enol 

ethers, chromenes, furans, quinolines, and pyridines have all been successfully reduced with 

useful enantioselectivities using chiral iridium complexes and each shall be touched upon in the 

following section.  

1.6.1 Enol Esters and Ethers 

Zhu and Burgess have reported an asymmetric conjugate reduction of 1,3-enol ether esters 

(Table 9) and 1,3-enol ether alcohols (Table 10).
[41]

  Initial reaction conditions reached full 

conversion of E-1-methoxy-1-phenylethene using ligand 9 albeit with a very low 

enantioselectivity of 29%.   

 Asymmetric hydrogenation of 65a-h with ligand 9 indicates a difficult reaction.  

Enantioselectivities are moderate to good with the best selectivity for the amide 65g.  Strong 

steric effects were observed with increasing the size of the ester with giving an increase in ee.  

The steric crowding at the alkoxy bearing C atom was also observed to have a large effect on the 

enantioselectivity.  Substituents larger than methoxy groups greatly eroded the selectivity as 

observed for the ethoxy ether 65e.  Secondary alkyl groups were completely deleterious to 

hydrogenation activity with an abysmal conversion of 15% for substrate 65f. 
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Table 9. Asymmetric Hydrogenation of Vinyl Ether Esters. 

 

 

Table 10.  Asymmetric Hydrogenation of Vinyl Ether Alcohols. 

[Ir(9)(COD)]BArF
1 mol%

50 bar H2
DCM

CH2OR
3

R2

R1 CH2OR
3

R2

R1

 

substrate R
1
 R

2 
R

3
 ee% 

66a Me OMe H 96 

66b Me OEt H 98 

66c n-Bu OMe H 93 

66d i-Pr OMe H 91 

66e
a Me OMe TBDPS 89 

66f
a Me OMe Ac 92 

a) K2CO3 was not required for this case. 

 

 

substrate R
1
 R

2 
R

3
 Conv% ee% 

65a Me OMe CO2H 99 63 

65b Me OMe CO2Me 85 60 

65c Me OMe CO2Et 99 78 

65d Me OMe CO2-t-Bu 99 88 

65e Me OEt CO2Et 99 66 

65f OMe i-Pr CO2Me 15 nd 

65g Me OMe CO2NEtOMe 90 90 

65h Me OMe COPh 5 nd 



Chapter 1  

Iridium Catalyzed Asymmetric Hydrogenation of Alkenes with Chiral N,P and C,N Ligands 

 

40 

 

 Asymmetric hydrogenation of vinyl ether alcohols proceeded in better selectivity than the 

ester counterparts but acid sensitivity was observed for 66a-d and a stoichiometric equivalent of 

potassium carbonate relative to the substrate was required to neutralize any acidic contaminants.  

Larger groups on either side of the alkene eroded enantioselectivity but not to the same degree as 

with substrates 65a-f.    

 Cheruku et al have investigated a series of enol esters.
[42a]

  A preliminary experiment to 

determine the optimal protecting group with a small group of catalysts identified 

diphenylphosphinates as the optimal esters (Table 11).  

Table 11. Ligand and Substrate Optimization Studies. 

 

R L 13a L 13b
 

L 11a L 10b 

TMS 
a
 

a
 

a
 

a
 

CH3 
a
 

a
 

a
 

a
 

Ac 
a
 

full conv 

rac 
a
 no conv 

PO(OEt)2 
complex 

mixture
b
 

full conv 

65% ee 
a
 no conv 

POPh2
 30% conv 

82% ee 

full conv 

95% ee 

41% conv 

63% ee 
no conv 

a) A complex mixture was obtained, b) Ethylbenzene was the major product.  

 Ligand 13b in combination with diphenylphosphinate as the ester group gave the chiral 

phenylethyl diphenylphosphinate 67b with full conversion and high enantioselectivity of 95%.  

Although it may seem that the diphenylphosphinate ester group is not ideal in terms of atom 

economy it should be noted that it is an excellent leaving group and can be readily displaced with 

a number of good nucleophiles.  A study of both 1,1’-disubstituted vinyl phosphinates and 

trisubstituted vinyl phosphinates was conducted and the results are summarized in Table 12.  
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Table 12. Asymmetric Hydrogenation of Enol Phosphinates. 

 

substrate R
1
 R

2 
Conv% ee% 

68a Ph H 99 95 

68b 4-MeC6H4 H 97 96 

68c 4-t-BuC6H4 H 93 94 

68d 4-MeOC6H4 H 48
a
 98 

68e 4-BrC6H4 H 99 99 

68f 4-CF3C6H4 H 99 99 

68g 4-NO2C6H4 H 99 92 

68h β-naphthyl H 99 85 

68i cyclohexyl H 99 92 

68j t-Bu H 99 99 

68k Ph Me 99 96 

68l Ph Et 90 92 

68m Ph i-Pr 89 90 

68n Ph CO2Et 99 99 

68o 4-MeC6H4 CO2Et 99 99 

68p 4-CF3C6H4 CO2Et 99 99 

68q 4-BrC6H4 CO2Et 99 98 

68r Me CO2Et 99 99 

68s Et CO2Et 99 99 

68t i-Pr CO2Et 99 99 

68u ClCH2 CO2Et 95
b 

93
b 

68v t-Bu CO2Et 98 93 

68w t-Bu Et 99 90 

68x i-Pr Me 99 91 

a) Reaction was run with 2 mol% catalyst and 10 mg poly(vinylpyridine) resin b) run at 2 mol% catalyst. 
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 Asymmetric hydrogenation of both 1,1’-disubstituted vinyl phosphinates and the 

trisubstituted phosphinates with ligand 13b were highly successful.  Enantioselectivities were 

very high for many useful combinations including bulky alkyl groups on the stereogenic center.  

Substrate 68d was very acid sensitive and an acid scavenger with increased amounts of catalyst 

was required to obtain reasonable results.  Allylic chloride 68u also required higher catalyst 

loading but was reduced efficiently and in high enantioselectivity. In many cases the 

enantioselectivity was higher than what can be obtained from reduction of the corresponding 

ketones with ruthenium based catalysts.
[42a]

 

1.6.2 Asymmetric Hydrogenation of Furans and Chromenes 

Chiral reduced heterocycles containing only oxygen are common throughout organic synthesis 

and are highly sought after compounds.  Asymmetric hydrogenation offers an atom economical 

approach to these compounds in a single clean step.  However, hydrogenation of prochiral furans 

and dehydropyrans has proven difficult, mostly attributed to the increased stability of aromatic 

compounds and the electron rich nature of these substrates [43a].  For a long time no suitable 

chiral catalysts were available until iridium N,P catalyst provided a solution for these 

problematic hydrogenation reactions. 

 ThrePHOX 6b proved a valuable tool in the reduction of chromenes 71a-k all of which 

were reduced in greater than 90% enantioselectivity.  The very electron rich thiochromene 71h 

required higher temperature and lower conversion was observed but the enantioselectivity 

remained in the useful range. 

 A series of furans and benzofurans were reduced in excellent enantioselectivity and 

conversion using iridium complexes derived from pyridine-phosphinite ligands.  Tertiary butyl 

derived phosphinites were the preferred donor groups with ligand 8a giving the highest 

enantioselectivity the most consistently. Higher temperatures and longer reaction times were 

required to obtain good conversion for all cases, most notably 69e reacted very sluggishly at 

40˚C. 
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Table 13. Asymmetric hydrogenation of substituted 4H-chromenes. 

 

substrate R
1
 R

2 
X Conv% ee% 

71a Me H O 93 95 

71b 4-MeC6H4 H O 99 98 

71c 2-FC6H4 H O 99 99 

71d 4-BrC6H4 H O 95 91 

71e 4-ClC6H4 6-Cl O 90 97 

71f Ph 7-MeO O 99 99 

71g 2-furyl H O 99 97 

71h Ph H S 73
a 

91
a 

71i Ph H O 99
 

99
 

71j cyclohexyl H O 99
 

95
 

71k Ph 7-(CH=CH)2-8 O 99
 

96
 

a) Reaction was conducted at 40˚C. 

 

O
tBu2P N

Ph

O (CH2)4Ph

69a
Ligand 8a
84% conv
78% ee

O

69b
Ligand 8a
99% conv
93% ee

CO2Et

O

69c
Ligand 8a
93% conv
98% ee

Ligand 70
O

69d
Ligand 70
99% conv
92% ee

O

69e
Ligand 69b
99% conv
92% ee

CO2Et

 

Figure 8. Asymmetric hydrogenation results for substituted furans. 
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   These results mark the very first successful catalytic reduction of furans in high 

enantioselectivity and greatly expand the methods available for the synthesis of enantiopure 

heterocycles.   

1.6.3  Asymmetric Hydrogenation of Enamines and Indoles 

Much like the enol systems discussed in section 6.1 enamines are predictably difficult substrates 

for most iridium asymmetric hydrogenation catalysts.  Both substrate and product contain basic 

functionalities which may act as inhibitors to the catalyst.  Extended aromatic enamines such as 

indoles may be even more difficult substrates for asymmetric hydrogenation with an additional 

energetic barrier to overcome.  Initial reports by Andersson indicated a very difficult reaction 

indeed (Table 14).
[44a]

  Higher enantioselectivities were later reported by Baeza and Pfaltz (Table 

14).
[44b]

   

 Moderate enantioselectivities were obtained with ligand 13b at room temperature.  

Simply changing from a diethyl amine moiety 72a to a pyrolidine 72g caused a precipitous drop 

in enantioselectivity for both ligands 13b and ThrePHOX 6b.  An electronic effect was observed 

for ligand 13b with a drop from good selectivity with enamine 72b with a methyl group in the 

para position of the aromatic ring to poor selectivity with the stronger π donating para-methoxy 

group with 72c.     

 Steric interaction was also clearly an issue for all of the systems investigated.  Most 

notable is the large difference in reactivity between ThrePHOX 6b and PHOX 5c based catalysts 

with respect towards the substituents bound to the nitrogen atom.  ThrePHOX consistently 

performed best with N-methyl-N-benzyl enamines while PHOX preferred a N-methyl-N-phenyl 

derivative.  Lowering the temperature had a favorable outcome on enantioselectivity but slowed 

the reaction and caused drops in conversion for 5c and 6b.   
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Table 14. Asymmetric Reduction of Enamines. 

 

substrate R
1 

R
2 

R
3
 Conv% ee% 

72a Et Et Ph 99
a 
(99

c
) 84

a 
(54

c
) 

72b Et Et 4-MeC6H4 99
a 

87
a 

72c Et Et 4-MeOC6H4 99
a
 64

a
 

72d Et Et 4-CF3C6H4 99
a
 77

a
 

72e Et Et 2-naphthyl 99
a
 64

a
 

72f Me Ph Ph 99
a 
(98

b
) 79

a 
(91

b
) 

72g N,N’-(CH2)4 Ph 66
a 
(99

c
) 33

a
 (8

c
) 

72h N,N’-(CH2-CH2)2O Ph 75
a
 30

a
 

72i Me 4-MeOC6H4 Ph 99
b
 90

b
 

72j Me 4-ClC6H4 Ph 99
b
 90.5

b
 

72k Me Bn Ph 99
cd

 92.5
cd

 

72l Me Bn 4-MeOC6H4 93
c
 74

c
 

72m Me Bn 4-ClC6H4 93
c
 74

c
 

72n Me Bn 2-furan 93
ce

 74
ce

 

72o Me Bn t-Bu 53
b
 21

b
 

a) Run with 0.5 mol% ligand 13b at room temperature and 50 bar H2 [44a]. b) Run with 0.5 mol% ligand 5c at -

20˚C [44b]. c) Run with 0.5 mol% ligand 6b at -20˚C [44b]. d) MTBE was used as solvent. E) Run at 0˚C. 
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Scheme 15 

 A variety of ligands was used to hydrogenate 73a, 74a-b, 75a-b, and 76a with moderate 

results.  Steric interactions were magnified and that may explain why nearly all of the substrates 

in Scheme 16 give less then optimal results.  N-methyl-N-phenyl-amine derived enamines 74a 

and 75a were resistant to hydrogenation where the analogous N-methyl-N-benzyl-amine based 

enamines were completely converted with SimplePHOX ligand 77 with moderate 

enantioselectivity. 
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Scheme 16 

 It should also be mentioned that a very active and selective catalyst in the form of a 

monodentate phosphoramidite in combination with iridium was very successful in the reduction 

of cyclic enamines but the discussion of this work is beyond the scope of this chapter (Scheme 

16).
[44c]

  Enantioselectivities were reported as excellent with atmospheric pressure sufficing for 

full conversion in most cases. 

 Baeza and Pfaltz also investigated indoles which reacted very sluggish but excellent 

enantioselectivity could be obtained (Table 15).
[45]

   

 Hydrogenation of protected 2-indoles required higher catalyst loading and higher 

temperatures then used for enamines but many substrates were hydrogenated in high 

enantioselectivity and yield.  Both electron donating groups and electron withdrawing groups 

interfered with catalysis but the reaction with indole 79b could be pushed to completion by 

changing the solvent to chlorobenzene and increasing the temperature to 110 ˚C with very little 

loss in enantioselectivity.  Nitroindole 79d was completely unreactive and no hydrogenation 

products were observed.  The boc protecting group was exchanged for acyl or tosyl groups in a 

few cases and with a beneficial effect to conversion for some indoles.  Indole 79i was extremely 

difficult to reduce but useful levels of product and enantioselectivity could be obtained with 

ligand 8a.  Indoles with substitution in the 3 position were very difficult to hydrogenate and 

reactions with esters in this position completely failed.  However, simple methyl derivative 79k 

was hydrogenated in excellent ee and yield. 
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Table 15. Asymmetric Hydrogenation of Indoles. 

 

substrate mol% (L) T R
1 

R
2 

R
3
 R

4
 Conv%

a 
ee%

a 

79a 4 (8a) 60 ˚C boc Me H H 89 99 

79b 4 (8a) 
60 ˚C 

110 ˚C
 b

 
boc Me H MeO 

68 

85
b
 

99 

98.5
b
 

79c 4 (8a) 60 ˚C boc Me H F 64 98.5 

79d 4 (8a) 60 ˚C boc Me H NO2 0 nd 

79e 1 (6b) 25 ˚C boc Ph H H 94
d 

88
d
 

79f 1 (6b) 

 

25 ˚C 
 

boc CO2Et H H 
66

d
 

88
c
 

92
d 

93
c
 

79g 2 (8a) 60 ˚C Ac CO2Et H H 97 99 

79h 2 (80) 25 ˚C Tosyl Me H H 94 99 

79i 4 (8a) 110 ˚C
b 

Tosyl Ph H H 70
b 

98
b 

79j 4 (8a) 60 ˚C Tosyl Me H H 95 99 

79k 2.5 (8a) 60 ˚C Tosyl H Me H 97 98 

a) Reaction was run at 100 bar unless otherwise noted, b) chlorobenzene as solvent, 110 ˚C, c) 2 mol% of catalyst, 

DCM, 25 ˚C, d) reaction was run at 75 bar. 

 

1.6.4 Asymmetric Hydrogenation of Quinolines and Pyridines 

Asymmetric hydrogenation of nitrogen heterocycles is a relatively unexplored and open field.  

Only a handful of iridium N,P based systems have been used successfully to hydrogenate 

substituted quinolines and the more stable pyridines.  Lu et al were the first to report a successful 

asymmetric hydrogenation of 2 substituted quinolines with ligand 24 (Table 16).
[46a]

  A few 

reports using diphosphines and monophos variations followed until Lu and Bolm published a 

second iridium N,P based asymmetric hydrogenation of similar quinolines with ligand 23a 

(Table 16).
[46b]
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Table 16. Asymmetric Hydrogenation of Quinolines. 

 

substrate R
1 

R
2
 

Yield%
a
 

Conv%
b
 

ee%
a
 

ee%
b
 

81a Me H 
95

a 

95
 b

 

90
a 

87
 b

 

81b Et H 
95

a 

62
 b

 

91
a 

77
 b

 

81c n-Pr H 62
 b

 80
 b

 

81d i-Bu H 53
 b

 75
 b

 

81e n-pentyl H 
94

a 

90
 b

 

92
a 

65
 b

 

81f Me Me 
93

a 

95
 b

 

92
a 

75
 b

 

81g Me F 
86

a 

43
 b

 

89
a 

64
 b

 

81h Me MeO 95
 b

 78
 b

 

81i Ph H 45
a 

3
a 

81j (CH2)2Ph H 92
a 

72
a 

a) Reaction was conducted at 40 bar H2, 1 mol% [(24)Ir(COD)]Cl and 5 mol% I2.
[46a]

 b) Reaction was conducted at 

60 bar H2, 1 mol% [(23a)Ir(COD)]BArF.
[46b]

 

  

 Ligand 24 was surprisingly effective in the presence of 5 mol% iodine without the use of 

BArF as a counterion.  Reduction of sterically demanding substrates was a problem for both 

systems and aromatic substitution on the 2 position of the quinoline abolished the 

enantioselectivity and poor conversion was obtained.  Electron donating and withdrawing groups 

also damaged the enantioselectivity although less for Zhou’s system.  Nevertheless, useful 

enantioselectivity and yield could be obtained for simple alkyl derivatives.   

 A single paper from Charette and coworkers details the catalytic asymmetric 

hydrogenation of N-iminopyridinium ylides to substituted piperdines using  PHOX ligand 82 in 

combination with iodine (Table 17).
[46c]
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Table 17. Asymmetric Hydrogenation of N-Iminopyridinium Ylides. 

 

substrate R Yield% ee% 

83a 2-Me 90 (84
a
) 90 (97

a
) 

83b 2-Et 96 (78
a
) 83 (94

a
) 

83c 2-nPr 98 (75
a
) 84 (95

a
) 

83d 2-Bn 97 58 

83e 2-CH2OBn 85 76 

83f 2-(CH2)3OBn 88 88 

83g 2,3-dimethyl 
91 

(>95:5 cis:trans) 
54 

83h 2,5-dimethyl 
92 

(57:43 cis:trans) 
86/84 

a) Numbers in parentheses are after a single recrystallization. 

 

 Moderate to good enantioselectivities were obtained for nearly all examples but the 

products from 83a-c could be recrystallized to higher enantiomeric purity.  Addition of iodine 

was critical for catalysis as was the use of a ligand with electron-poor para-fluorophenyl groups 

on the phosphorous atom.  Substitution at the 3 position of the pyridine ring was described as 

being difficult for both the quinolines and pyridine systems.  The resulting hydrazine derivatives 

could be easily converted to piperdines by reduction with Raney nickel or under Birch 

conditions.  
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1.7 Asymmetric Hydrogenation of Imines 

Given the importance of chiral amines to synthetic chemistry as well as other fields asymmetric 

hydrogenation of imines has attracted wide interest but limited success compared to C=C and 

C=O bond reduction.  The first asymmetric hydrogenation of imines was carried out in the 

seventies with ruthenium and rhodium based catalysts, followed later by titanium and zirconium 

systems.
[47]

  Buchwald found that Britzinger type ansa titanocenes were highly selective for the 

reduction of cyclic imines, albeit at long reaction times, high catalyst loading and with high 

pressures.
[48a]

  Crabtree found that pyridine phosphine complexes of iridium were highly active 

in the reduction of imines.
[6]

  The asymmetric synthesis of Metolachlor, an important 

agrochemical used in the protection of maize, is the first example of an industrially useful 

enantioselective reduction of imines catalyzed by an iridium complex with a Josiphos type 

ligand.
[48b]

  The first use of iridium N,P complexes in the asymmetric hydrogenation of imines 

was reported by Pfaltz and coworkers in 1997.
[48c]

   

 Many of the systems studied required high catalyst loadings, very high pressures, 

elevated temperatures, and long reaction times.  Several problems can be encountered with 

imines such as hydrolysis to starting materials, dimer and trimer formation, presence of enamine 

and syn/anti isomers.
[47]

  Additionally, with the exception of N-aryl-imines the resulting amines 

are far more basic then the imine substrates and may cause a larger degree of product inhibition 

of the catalyst.  Many recent advances have been made with iridium systems other than N,P 

ligands such as diphosphines and monodentate phosphoramidites.
[49]

 

 Initial studies with PHOX indicated a lack of an anion effect, replacement of PF6
-
 by 

SbF6
-
, or BF4

-
 as counter ion had no apparent effect on the overall reaction.  However, nearly all 

reported catalysts within the last decade utilize BArF as a counterion, perhaps for the higher 

catalyst stability, easier handling and general reactivity towards a broader range of substrates.   
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Figure 9.  Ligands for asymmetric hydrogenation of imines. 

 Andersson reported the use of ligand 13a in the asymmetric hydrogenation of substituted 

acetophenone based N-aryl imines (Table 18).
[50a-b]

 New ligands 84 and 85 were reported by the 

groups of Bolm and Knochel, respectively, for asymmetric hydrogenation of imines with 

improved enantioselectivities and yields (Figure 9).
[50c-d]

  Two similar chiral spirocycle based 

ligands SpinPHOX 15 and SiPHOX 16 proved highly effective in the asymmetric hydrogenation 

of these difficult substrates.
[51]

  Baeza and Pfaltz reported three structurally similar catalysts 

based on PHOX in an expanded look at the earlier work and found excellent selectivity and 

activity at low catalyst loadings.
[52]

   

 Essentially all studies have used acetophenone based N-aryl ketimines as substrates or 

derivatives thereof.  Some of the N-aryl groups are easily deprotected to yield branched α-aryl 

primary amines which can be further functionalized.       
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Table 18.   Asymmetric Hydrogenation of Acetophenone Based N-Aryl Ketimines. 

 

   
Ligand 

ee% 

Imine R
1 

R
2 

5a
a 

13a
 b

 14d
c 

15a
d 

16a
e 

77
f 

84
g 

85
h 

86a H H 90 90
 

94 91 93 96 - 84 

86b H 4-MeO 96 89 94 90 - 95 96 85 

86c H Ar
i 

- - - - - - - 94 

87a 2-Me H - 83
 

- - - - - - 

87b 2-Me 4-MeO - - - - - - 94 - 

87c 2-Me Ar
i
 - - - - - - - 94 

88a 3-Me 4-MeO - - - - - - 93 - 

88b 3-Me Ar
i
 - - - - - - - 93 

91a 4-Me H - - - 88 94 - - - 

91b 4-Me 4-MeO - - - - - - 96 - 

92 4-AcO Ar
i
 - - - - - - - 94 

93 4-MeO H - 86
 

90 - 94 94 - - 

94a 4-MeO 4-MeO - 86 - - - - 94 - 

94b 3-MeO 4-MeO - - - - - - 96 - 

94c 2-MeO 4-MeO - - - - - - 90 - 

95a 3-Cl H - - - 93 93 - - - 

95b 3-Br H - - - 93 92 - - - 

96a 4-Cl H 96 - 95 93 90 96 - - 

96b 4-Cl 4-MeO - 89 - 91 - - 95 - 

96c 4-Cl Ar
i
 - - - - - - - 92 

97a 4-Br H - - - 91 91 - - - 

97b 3-Br H - - - 93 92 - - - 

98a 4-CF3 H - - - 92 - - - - 

98b 4-CF3 Ar
i
 - - - - - - - 89 

99a H 4-Cl 89 - 92 - 97 94 - - 

99b H 4-Br - - - 89 96 - - - 

100 3,4-Xy H - - - 95 94 - - - 

Conditions: a) 0.5 mol% cat, DCM, 5 bar H2 0˚C, b) 0.5 mol% cat, DCM, 20 bar H2, c) 0.5 mol% cat, DCM, 5 bar 

H2 -20˚C, d) 1.0 mol% cat, DCE, 1 atm H2 10˚C, e) 1.0 mol% cat, MTBE, 1 atm H2, 10˚C, 4Å MS, f) 0.5 mol% cat, 

DCM, 5 bar H2 -20˚C, g) 0.5 mol% cat, 2 mol% I2, tol, 20 bar H2, h) 1.0 mol% cat, 4:1 toluene: methanol, 10 bar H2, 

i) Ar = 4-MeO-3,5-Me2-C6H2. 
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Table 19.  Asymmetric Hydrogenation of Imines. 

 

 
Ligand 

ee% 

Imine R
1 

R
2 

R
3 

13a
a
 14d

b
 15b

c 
84

d 
85

e 

101a Ph Et Ph 78 82 92 - - 

101b Ph Et 4-MeO-C6H4 - - - 92 - 

101c Ph Et Ar
f 

- - - - 94 

102 α-napth Me 4-MeO-C6H4 - - - 98 - 

103a β-napth Me Ph 91 - - - - 

103b β-napth Me 4-MeO-C6H4 - - - 69 - 

103c β-napth Me Ar
f
 - - - - 93 

103c β-napth Me Bn - - 93 - - 

104a 

 

Ph 90 - - - - 

104b 4-MeO-C6H4 - - - 91 - 

104c Bn - - 96 - - 

104d Me - - 98 - - 

104e i-Bu - - 96 - - 

a) Conditions: 0.5 mol% cat, DCM, 20 bar H2, b) 0.5 mol% cat, DCM, 5 bar H2 -20˚C, c) 1.0 mol% cat, DCM, 20 

atm H2 10˚C, d) 0.5 mol% cat, 2 mol% I2, toluene, 20 bar H2, 20 hours, e) 1.0 mol% cat, 4:1 toluene: methanol, 10 

bar H2, 25˚C, 20 hr, f) Ar = 4-MeO-3,5-Me2-C6H2.  

 

 Several authors have conducted investigations of the N-aryl moiety to optimize 

interactions for each individual catalyst.  All of the catalysts in Table 18 function well at 1 mol% 

catalyst loading and with ambient to moderate pressures of hydrogen.  Non-coordinating solvents 

were preferred with the exception of Knochel’s ligand 85 which gave the highest 

enantioselectivity in a mixture of 25% methanol in toluene.  

 Although all of the substrates tested in Tables 18 and 19 have a very high degree of 

similarity some useful trends can be identified for each individual catalyst.  Different conditions 

were used for different catalyst systems, possibly reflecting different mechanisms for each 
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individual system.  For instance, addition of iodine was found to give inferior results with PHOX 

and related ligands, yet Bolm’s ligand 84 requires iodine for catalysis, a result more in agreement 

with iridium diphosphine complexes.
[47]

  Other interesting deviations are the optimal conditions 

reported by Knochel with ligand 85 which calls for 25% methanol in toluene as a solvent. This 

result stands in stark contrast to Zhou’s ligand 16a which is inhibited by methanol in imine 

hydrogenations.   

 PHOX 5a, SimplePHOX 77, and NeoPHOX 14d are very closely related in bite angle 

and overall geometry, however these catalysts differ in the electronic properties on the phosphine 

moiety.  All of these ligands gave excellent enantioselectivity in close agreement with each other 

reflecting the importance of geometry and bite angle over electronic properties.
[52]

  The authors 

also reported a strong temperature effect on selectivity with lower temperature giving higher 

enantioselectivity.  Catalysts loadings as low as 0.1 mol% were effective for several substrate 

and catalyst combinations but with an increased pressure requirement to reach useful 

conversions.  

 In comparison ligand 13a generally gave moderate to good enantioselectivities over a 

limited range of substrates, larger substituents were not tolerated well with imine 87a reaching 

only 52% conversion albeit at 0.5 mol% catalyst loading.   This system appeared to be the most 

sensitive to the size of the substrate, changing a methyl group such as in imine 86a with an ee of 

90% for an ethyl group as in 101a decreased the enantioselectivity to 78%.   

 Ligand 84 gave excellent enantioselectivity for most of the reported substrates but some 

sensitivity to steric hindrance was also clear.  Changing from α-naphthyl methyl ketimine 102 

with an ee of 98% for β-naphthyl derived 103b drops the enantioselectivity to 69%.   

 Inferior results with N-benzyl compared to N-aryl imines have been reported for many 

iridium based systems.
[51b]

 Han et al compensated for this same negative effect with SpinPHOX 

15a by replacing the pendant isopropyl group with a bulkier tert-butyl group in 15b, 

demonstrating control of the system can be obtained by simple ligand modification.  The added 

bulk of 15b made it possible to reduce the very challenging N-alkyl substituted imines 104d-e in 

excellent enantioselectivity.   
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Knochel took a different approach by optimizing the substrate N-aryl group while investigating 

ligand 85.  Introduction of two meta-methyl groups in the 4-methoxyphenyl substituent increased 

the enantioselectivity from 84% with imine 86a to 94% with 86c.   

Electronic effects seem to have very little influence on the overall enantioselectivity with both 

electron donating and withdrawing groups giving very small changes to the enantioselectivity 

when all other variables were the same.  Substrate geometry seems to play a much more 

influential role with this particular class of substrates. 
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2.1 Introduction 

Catalytic asymmetric hydrogenation is one of the most widely used and reliable catalytic 

methods for the preparation of optically active compounds.
[1] 

 State of the art catalysts are 

capable of delivering excellent enantioselectivity with very low catalyst loadings and atom 

economy that approaches ideal for many substrates.  For these reasons asymmetric 

hydrogenation is the most utilized synthetic catalytic asymmetric methodology in industry and 

forms the critical transformation in several commercial scale processes.
[2]

  Logically, discovery 

of high performance chiral catalysts depends on the development of appropriate ligands
[3]

 and 

this field is in constant development with new generations of ligands appearing every year.   

 Chiral rhodium- and ruthenium diphosphine based catalysts are known which induce very 

high enantioselectivity in asymmetric hydrogenations.
[4-7]

 However, the range of alkenes that can 

be hydrogenated with rhodium and ruthenium catalysts with high enantiomeric excess is limited 

as they require the presence of a coordinating group next to the C=C bond. With 

unfunctionalized alkenes, these catalysts generally demonstrate a loss of reactivity and 

unsatisfactory enantioselectivity in comparison.  Iridium complexes such as the Crabtree catalyst 

on the other hand are more active in the reduction of C=C bonds without adjacent coordinating 

functional groups and stronger coordinating functional groups are frequently observed as 

inhibitors of iridium based catalysts.  However, there is an increased appearance of iridium based 

catalysts with good to excellent selectivity and activity with substrates as strongly coordinating 

as substituted pyridines and enamines (see section 1.6 and 1.7). 

 In an endeavor to synthesize chiral catalysts that more closely match the Crabtree 

catalyst, complexes 105 and 106 were synthesized and evaluated in our group.
[8, 9]

 We were 

encouraged by the results to pursue catalysts with a 5-membered ring backbone 107a-b and a 6-

membered analogue 109 in hopes of reaching higher enantioselectivities with a more rigid 

system.  Complexes 107a, 107b, and 109 proved to be remarkably active and selective in the 

enantioselective hydrogenation of purely alkyl substituted alkenes,
[10, 11]

 furans,
[12]

 and indoles
[13]

  

as well as playing a featured role in a handful of total syntheses.
[14-16]
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Figure 10.  Complexes 105 and 106 -1
st
 generation chiral iridium N,P complexes modeled after Crabtree’s 

catalysts, 107a,b and 109 -2
nd

 generation Crabtree mimics, catalyst 108a-h and 110a-c -3
rd

 generation catalysts. 

 The current trend in catalyst development in this field is not towards more general 

catalysts capable of handling all possible substitution patterns around a C=C bond but to 

customize a catalyst for  improvement in a given class of substrates.  It would therefore be highly 

advantageous to have an adaptable system that could be quickly modified to improve 

enantioselectivity.  This chapter presents a flexible synthesis of a variety of N,P complexes based 

on the scaffolds 107 and 109 as well as practical aspects of the synthesis of the 2
nd

 and 3
rd

 

generation catalysts. 
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2.2 Practical synthesis and investigation of 2
nd

 generation catalysts 

The initial synthesis by Kaiser
[12]

 of the 2
nd

 generation complexes relied entirely on chiral 

preparative HPLC to generate enantiopure pyridyl alcohols.  While HPLC resolution is relatively 

fast and can deliver enantiopure materials the capital investment is prohibitive and many 

laboratories lack the means to take advantage of this technique.  Additionally, the route utilized 

expensive reagents and chromatography for every step.  Phosphinites are especially air sensitive 

ligands and cannot be stored for long periods of time therefore a change to a more stable 

phosphine moiety was also desired.  On the other hand, the iridium BArF complexes are stable to 

normal organic conditions and can be handled in air with little decomposition but these 

organometallic complexes require prudent storage conditions.   

 

Scheme 17  Conditions: a) ketone (3 eq), 130 ˚C, 2 hours, distillation, 80-95% yield, b) NH2OH-HCl (2 eq), 

ethanol, reflux 6-8 hours, distillation, 85% yield, c) H2O2, HOAc, quantitative, d) acetic anhydride, 25 ˚C, 1hr, 80 

˚C, 4hr, 80% yield, e) K2CO3, MeOH, quantitative, e) Enzymatic resolution, Candida Antarctica lipase B 

(Novozyme 435), vinyl acetate (5-20 equivalents), diisopropyl ether, 65 ˚C, 28 hours, R-115a,b >99% ee 50% yield, 

S-116a,b 99% ee 40-45% yield.  

 Synthesis of racemic alcohols 116a,b was optimized with the expressed purpose of 

avoiding chromatography and maximizing yields with simple reagents (Scheme 17).  Mannich 

base 111 was thermally reacted with either cyclohexanone or cyclopentanone to give the bridged 

hydrate 1,5-hemi-diketal from the 1,5 diketone on standing with ambient moisture (Scheme 18).   
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Scheme 18 Conditions: a) ketone (3eq), 130 ˚C, no reaction, b) HOAc (1 mol%),  CyNH2 (3.5 mol%), 86% yield. 

 The Mannich base 111 under goes E1cB elimination with concomitant formation of an 

enamine from the eliminated dimethylamine and a cycloketone.  Subsequent addition of the 

enamine with the Michael acceptor 117 gives the 1,5-diketone 119 which under goes cyclization 

with an equivalent of water to give the hydrate 112.  Evidence for the enamine was given by the 

lack of reactivity of acrylonitrile with cyclohexanone under thermal conditions to give the 1,5-

ketonitrile 120.  However, the nitrile could be easily generated in high yield by the neat reaction 

of a single equivalent of ketone and nitrile with catalytic amounts of cyclohexylamine and acetic 

acid with refluxing. 

 The 2-phenylpyridyl scaffolds 113a,b were formed by ring closure with hydroxylamine 

hydrochloride followed by in situ oxidation of the resultant dihydropyridine in refluxing ethanol.  

The resulting pyridines could be purified by either distillation or precipitation of the 

hydrochloride salt out of acetone with concentrated acid.  Oxidation of the pyridine nitrogen with 

a peracid such as acetic peracid or MCPBA with heat gives clean formation of the N-oxide.  

Trace impurities and color can easily be removed by recrystallization of the N-oxide from 

toluene.  Boekelheide rearrangement of the N-oxide to the racemic pyridyl acetates 115a,b 
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occasionally gives elimination byproducts, especially if greater quantities of a stronger acid are 

present.   

 

 

Figure 11.  Plot of kinetic resolution of racemic 116a. 

 Transesterfication with methanol and finely powdered potassium carbonate furnishes the 

racemic alcohols 116a,b.  Kinetic resolution with Candida Antarctica was first reported for 

closely related pyridyl alcohols by Uenishi.
[17, 18]

  Optimization of the kinetic resolution followed 

by precipitation of S-116a,b with an equivalent of phthalic anhydride was reported recently from 

this laboratory.
[19]

  The enantioselectivity of the lipase gives the R-acetates of 115a,b with a 

constant enantioselectivity of greater than 99% (Figure 11).  Maximum ee for both the acetate 

and alcohol is achieved with 16 hours with 10% weight to weight immobilized lipase to pyridyl 

alcohol.  Temperature, rate of mixing and number of equivalents of acylating reagent all affect 

the ee of the reaction and the rate. 
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Scheme 19 Conditions: a) DMAP (1eq), Ar2PCl (1eq), b) NaH (2.5 eq), (tert-Bu)2PCl (1 eq), c), (IrCODCl)2 

(0.5eq), NaBArF (1.1 eq).  

 The resulting enantiopure alcohols were converted to the iridium complexes by a reaction 

sequence outlined in Scheme 19.  Diarylphosphinite complexes 107a and 109 were synthesized 

with a single equivalent of DMAP and diarylphosphine chloride followed by filtration of the 

resulting slurry into a solution of (IrCODCl)2 and NaBArF to generate the iridium complex in 

66% yield.  Di-(tert-butyl)phosphinite complex 107b was synthesized by deprotonation of the 

pyridyl alcohol in a mixture of DMF and THF in the presence of the phosphine chloride, vacuum 

removal of the volatiles followed by filtration into a solution of an iridium source and counterion 

to give 79% yield of the complex after chromatography.    

 Mulitgram synthesis of catalysts 107a,b and 109 is now possible with the use of easily 

accessed reagents.  This will greatly aid other organic chemists who wish to use these highly 

active and selective hydrogenation catalysts.   

 While the synthesis of the second generation catalysts has been improved issues exist 

with using this committed and linear approach to catalyst development.  Some complications 

with phosphinite moieties are their instability for long term storage where phosphines or 

phosphine oxides can be stored for extended periods and can be easily prepared for use with a 

fresh source of metal to avoid catalyst decomposition.  However, changing the soft donor 

phosphonite for a phosphine could affect the overall reactivity of the complex and lead to a 

different reactivity profile as seen in the next section.   
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2.3 Phosphine analogues of the second generation catalyst 

Kaiser synthesized phosphine based systems 121a,b and 122 (Table 20).
[20]

 Verendel and 

Andersson
[21]

 have reported the synthesis of a pyridyl phosphines based on a pinene skeleton 

124a,b as well with similar results.  This section deals with the synthesis of 123a,b and the 

postulated decomposition pathways that lead to its deactivation. 

 Initial signs of different reactivity of the phosphines in comparison to the phosphinite 

analogues were evident from the yields of complexation.  Much lower yields, and in the case of 

123b virtually no yield, indicated a degradation pathway was present and active.  Phosphine 

complexes that gave the highest yield were also the least encumbered or had wider bite angles 

such as 121a,b. 

Table 20. Comparison of complexation yields and initial screening results for phosphines. 

 

Complex 

   
 

%yield for 

complexation 

a- 51% yield 

b- 57% yield 
22% yield 

a- 17% yield 

b- not isolated 

a- 20% yield 

b- 30% yield 

Reduction  

results 

ee%  (conv%) 

a- 6% ee (99%) 

b- 53% ee (6%) 
88% ee (99%)  b- 0% ee (2%) 

a- 95% ee (20%) 

b- na ee (0%) 

121a,b and 122 are reported by Kaiser,
[20]

 124a,b are reported by Verendel.
[21]
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Scheme 20  Conditions: a) n-BuLi (1.1 eq), paraformaldehyde (1.5 eq), 61% yield, b) SOCl2 (30 eq), 95% yield, 

c) KPPh2 (1eq), H2O2 ( excess), 68% yield, chiral AD column, d) PhSiH3, e) (IrCODCl)2 (0.5 eq), NH4PF6 (2 eq), f) 

(IrCODCl)2 (0.5 eq), NaBArF (1 eq). 

 Synthesis of the phosphines for 123a,b was carried out as described in Scheme 20.  

Deprotonation of the benzylic position with a slight excess of n-BuLi followed by addition of 

solid paraformaldehyde resulted in the pyridyl alcohol 125 in 61% yield.  Use of larger amounts 

of paraformaldehyde resulted in poly-acetals which formed intractable gel phases.  Chlorination 

with thionyl chloride as solvent yielded the metastable chloromethyl pyridine 126 which was 

used immediately.  Phosphinide addition with potassium diphenylphosphinide followed by 

quenching and oxidation with hydrogen peroxide yielded the phosphine oxide 127 in 68% yield.  

The phosphine oxide was easily resolved by chiral HPLC.  Reduction with phenylsilane followed 

by filtration through alumina under Schlenk conditions yielded the phosphine 128.  Phosphorus 

NMR indicated a clean conversion to the desired phosphine (Figure 12).  
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Figure 12. 
31

P monitoring of the complexation sequence in the attempted synthesis of 123b. 

 Complexation of the resulting phosphine with (IrCODCl)2 resulted in the formation of 

two species by 
31

P NMR with an expected signal at 12ppm for the coordinated phosphine and a 

new species at 0 ppm.  Addition of NH4PF6 followed by chromatography yielded a very low 

quantity of the desired complex, of which x-ray quality crystals were obtained (Figure 13).  The 

phosphine complex 123a was virtually identical to the phosphinite systems previously studied 

and no obvious deviations in reactivity were apparent from the structure.   

 

-20-15-10-5051015202530354045
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Figure 13.  Ortep drawing of 123a, COD and PF6 are omitted for clarity.   

 

Scheme 21 

 Initial attempts to synthesize 123b failed to produce complexes stable to chromatography 

and monitoring of the complexation sequence by 
31

P NMR revealed the addition of the non-

coordinating BArF counterion caused the new signal at 0 ppm to become the sole resonance.  The 

new 
31

P peak was right shifted where most additions of weaker counterions left shift the 

phosphorus signal due to increased Lewis acidity of the metal center.  The 
1
H NMR gave 

complex spectra from which no intelligible information could be gathered.  In an attempt to 

ascertain whether the complexes could be used in catalytic reactions an in situ complexation/ 

asymmetric hydrogenation strategy was developed.  In comparison with PHOX phosphine 129  
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Figure 14.  Side product and comparison to Watts complex. 

which reduced substrate 25a in 88% ee and full conversion pyridyl phosphine 128 completely 

failed to react even when prepared under rigorous exclusion of moisture and oxygen (Scheme 

21).  Given these data phosphine derived pyridyl N,P ligands are unstable under conditions 

required for hydrogenation catalysts and give poor catalysis.  A possible reason for this could be 

cyclometalation of the 2-aryl position to make a C,N,P tridentate chelate analogous to the Watts 

complex (Figure 14).
[22, 23]

  Further experiments with phosphinite based systems in the Pfaltz 

group led to the isolation of phosphinite analogues of the proposed side product in figure 13.
[24]

  

Oxidative addition of C-H bonds are favored by electron rich group 8 metals such as iridium and 

rhodium,
[25]

 increased electron density on the metal center from a stronger σ donating phosphine 

ligand would promote such a reaction.  From these results modification of the aromatic ring with 

stabilizing groups to block orthometalation is a logical step. 

2.4 Development of a flexible synthesis for 3
rd

 generation catalysts 

Development of a ligand system which allows for the quick modification of the catalyst would 

allow for probing of how structure influences function with incremental changes to the system.  

It would therefore be advantageous to have an adaptable system that could be quickly modified 

to identify and improve enantioselectivity trends at will.  This section presents a flexible 

synthesis of a variety of N,P complexes based on the catalysts 107a,b and 109. Chapter 3 details 

the application of these catalysts in the successful asymmetric hydrogenation of several examples 

of trisubstituted alkenes that gave unsatisfactory results with previous generations of catalysts. 

 Data from earlier work has allowed us to develop some guidelines that hav led to more 

selective and active catalysts in the reduction of weakly coordinating trisubstituted alkenes.  

Catalysts with both di-(tert-butyl) and di-(ortho-tolyl)phosphinites in combination with a  5-

membered ring backbone such as 107a,b gave superior enantioselectivity than the less bulky 
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phosphinite analogues. However, catalysts with a 6-membered ring based scaffold such as 109 

perform best with di-(ortho-tolyl)phosphinites and often give better results compared to the di-

(tert-butyl)phosphinite analogues or complexes with a less sterically demanding phosphinite.  

We also found the substituent in the ortho position of the pyridine ring to be critical to both 

activity and selectivity with the optimal size and shape being phenyl.  Larger groups such as tert-

butyl were not tolerated in this position while smaller groups gave lower enantioselectivity.  This 

substitution dependence of the catalyst was seen as an opportunity to extend the reactivity and 

selectivity profile of the catalyst.   

 

Scheme 22  Conditions: a) Swern, b) R-MeCBS, BH3THF, 30 ˚C, 88% ee (99% recrystallized), c) Pd(PPh3)4 (5 

mol%), ArB(OH)2 (3 eq), Na2CO3/H2O, EtOH,MeOCH2CH2OMe, reflux 16 h, 99% yield, d) 1,2-diols R = Me, i-Pr, 

and Ph, p-TsOH (cat.), benzene, reflux, 16 h, 79-85% yield, (e) o-F-C6H4B(OH)2, 5 mol % of Pd2dba3, 10 mol % of 

P(t-Bu)3, Cs2CO3, THF, reflux, 16 h, 81-93% yield,  (f) Ph2PH, KOt-Bu, 18-crown-6, THF, rt, 24 h, 72% yield.  
 

 In order to explore further structural modifications we required a flexible synthesis that 

would allow for the incorporation of a variety of aromatic substituents on the pyridine ring at a 

later phase of the route.  Shortly after our initial publications Liu et al reported a route to nearly 

the same complexes that utilized a Suzuki coupling to install the aromatic group with a late 

intermediate.
[26]

  Lyle
[27-29]

 et al used the same strategy prior to Liu’s work to build a chiral ketal 

based P,N ligand, albeit with different placement of the phosphorus moiety (Scheme 22).   
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Scheme 23 Conditions: a) NH4OAc (1eq), cyclopentanone (1 eq), ethyl acetoacetate 136 (1 eq), 135 ˚C 18 hrs, 

19% yield,  b) H2SO4, 0 to 29 ˚C, 3 hours, 43% yield, c) PhPOCl2 (4 eq), 110 ˚C, 18 hrs, 80% yield, d) H2O2, HOAc, 

100 ˚C, 93-94% yield, e) acetic anhydride, 25 ˚C, 1hr, 80 ˚C, 4hr, 77-81% yield, f) K2CO3, MeOH, 88-97% yield. 

 

 Racemic alcohols 130a,b were prepared with a modified route essentially following the 

reports of Lyle and Liu (Scheme 23).   Pyridone 137a was prepared in a very low yield of 19% 

therefore an alternative preparation of 137b from nitrile 120 was accomplished according the 

procedure of Meyers.
[30]

  An improvement of 37% overall yield of 137b was achieved but at the 

cost of additional time and the use of very caustic and toxic reagents.  Chlorination of the 

pyridones proved difficult with most electrophilic reagents such as thionyl chloride or 

phosphoryl chloride yielding complex tar like mixtures.  Use of the milder phenylphosphoryl 

chloride yielded the desired 2-chloropyridines in high yield.  Oxidation with in situ generated 

peracetic acid generated the N-oxide in greater than 90% yield.  Boekelheide rearrangement of 

the N-oxide followed by deprotection by transesterfication gave the racemic alcohols 130a,b in 

over 70% yield for two steps.   

 Both groups reported high yields of in the cross coupling of the chlorides with simple 

boronic acids under optimized conditions.  Unfortunately the routes relied upon the use of 

solvent conditions not amendable to less soluble boronic acids, large excess of reagents, and all 

attempts to use less reactive boronic acids or slightly different conditions failed to produce 

appreciable amounts of product (Scheme 24).  Noting that there are very few reports of coupling 

hindered boronic acids with 2-pyridyl chlorides in the literature we decided to replace the 
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chlorine for a bromine atom but our efforts led to low yield of product and complex mixtures.  

This replacement is logical but Liu and Lyle’s routes relied on optimization of chlorides without 

mention of attempts to synthesize more reactive 2-halopyridines, this may be due in part to 

difficulty in preparing the intermediates.   

 

Scheme 24 

 Realizing the hydroxyl group created a chelating structure with the adjacent pyridine ring 

that could be responsible for slow to nonexistent catalyst turnover we decided to investigate two 

possible strategies to circumvent this problem, one incorporating the Suzuki coupling before the 

hydroxylation (Scheme 25) and a second route via a silyl protected hydroxyl group (Scheme 26).  

 The Nolan NHC catalyst 144 proved to be extremely effective for the coupling of 

hindered, insoluble boronic acids with aryl chlorides.  Use of microwave tubes as reactors 

allowed a slight increase in temperature which helped to dissolve highly insoluble coupling 
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reagents and a static inert atmosphere which prolonged catalyst lifetime.  A slight excess of 

boronic acid was used to ensure complete conversion of the 2-chloropyridine.    

 

Scheme 25 Conditions :  catalyst 144 (1-2 mol%), ArB(OH)2 (1.2 eq), IPA, 4M NaOH (3 eq), 105-115 ˚C, 141a 

86%, 141b 87%, 141c 97%, 141d 90%, b) MCPBA (2-3 eq), c) acetic anhydride, 107 ˚C, yield for b,c  142a 50%, 

142b 66%, 142c 39%, 142d 50%, d) chiral HPLC, e) 4M NaOH, THF, 65 ˚C. 

 Oxidation with MCPBA gave exothermic reactions with the 2-mesityl-pyridines 142a,b 

in greater than 90% yield while anthracene derivatives 142c,d required mild heating to 42 ˚C to 

reach completion.  Boekelheide rearrangement required higher temperatures for all of the 

sterically hindered 2-arylpyridines and lower yields were obtained, especially for the easily 

oxidized anthracene derivatives.  Pyridyl esters 142a-c were amendable to enantiomeric 

separation by chiral preparative HPLC but 142c,d were far less soluble in the mobile phases used 

for this technique.  Derivative 142c was marginally soluble, requiring nearly triple the amount of 

solvent than the mesityl analogues and thus limiting the amount of material that could be 

separated in a reasonable amount of time.  Pyridyl ester 142d was to insoluble to be of practical 

use in this technique.  The bulky 2-arylpyridines required strong base and heat to hydrolyze the 

acetyl group and all attempts to use less harsh conditions failed to produce any product. 
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Figure 15.  Ortep of R-143g, hydrogen atoms are omitted for clarity. 
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Scheme 26 Conditions: a) TBDMSCl (2.5 eq), imidazole (3 eq), DMF, overnight, 86-98%, b) catalyst 144 4 

mol%,  ArB(OR)2 (1.5-2eq), NaOH (3 eq), 50 ˚C, 16 h, 86%, c) TBAF -3H2O (3 eq), THF, 50˚C, 79-84%, d) 

Novozyme 435, DIPE, vinyl acetate, e) NaOH, THF, 65 ˚C, f) K2CO3, MeOH, 90-95%, g) Swern, 95%, h) (-)DIPCl 

(1.5 eq), THF, -50 ˚C, 2 days, ethanolamine (1.5 eq), 51% yield 99% ee. 

 All attempts to resolve the racemic alcohols of the 2-mesityl derivatives 143a,b and the 

2-anthracyl analogues 143g,f with CALB failed to produce any detectable amounts of product.  

Likewise, kinetic resolution of the esters 142a-d with CALB also failed to produce any product.  

We attribute the loss of reactivity in both the forward and reverse reactions to a locked 

perpendicular ring system that blocks the approach of the alcohol to the reactive site in the 
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enzyme. X-ray crystal structures of the R-alcohol 143g indicated a very sequestered hydroxyl 

group buried in a six-membered ring formed from hydrogen bonding with a second pyridyl 

alcohol to form a dimer and a second interaction between two anthracene groups bound together 

by edge face C-H-π interactions that completed an encumbered tetramer (Figure 15). 

 

Figure 16.  Plot of enantioselectivity of kinetic resolution of 130a,b vs time.   

 Fortunately we were able to resolve the chlorides 130a,b with some success.  In small 

test resolutions we followed the enantioselectivity with time to gain a better understanding of the 

reaction parameters and optimal time (Figure 16). We found that the racemic tetrahydroquinoline 

130b gave excellent enantioselectivity in production of the R-acetate 140b with a shallow sloped 

linear behavior; the S-alcohol 130b was produced in 99% ee within 28 hours albeit with a small 

loss of enantioselectivity of the R-acetate.  The R-acetate 140b could be easily recrystallized 

from cold pentane with 56% return of the product in 99% ee.  The 5-membered bicyclic racemic 

130a proved to be much more difficult to resolve with a lower ee in the initial acyl ester 140a 

formed and a far more dramatic loss of ee with the R-acetate 140a over time.  However, the S-

alcohol of 130a could be obtained with 99% ee with a small loss of yield.   
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 In contrast to the 2,6-disubstituted-2’-arylpyridylalcohols the bulky 3,5-di-tert-butyl-4-

methoxyphenyl derivatives 143c,d were easily resolved with CALB in high enantiomeric 

excess.
[31]

  This result clearly indicates that bulk is not an issue but accessibility of the enzyme to 

the hydroxyl group on the substrate.   

Scheme 27 

 Dissatisfied with the resolution of 130a we attempted a number of asymmetric reductions 

of the parent ketone with a commercial oxazaborolidine catalyst and found similar results to 

those of Liu
[26]

 and Xie
[32]

 who reported enantioselectivities up to 93% ee (Scheme 27).  While 

reproduction of the results of Liu were not fruitful modification of the reducing reagent to 

catecolborane, replacing the THF with DCM as solvent,  and cooling the reaction to -20 ˚C an ee 

of 90% could be achieved.  We were somewhat more successful using (-)-DIPCl in a 

stoichiometric reduction which generated the desired S-alcohol 130a in 99% ee and 51% yield.  

The reduction was extremely sensitive to temperature and addition technique with addition of the 

solid DIPCl to a -50 ˚C solution in THF and stirring for two days at that temperature providing 

the optimal yield and selectivity. 

 All of the pyridyl alcohols and acetates traveled at very similar Rf values on silica gel 

thus making purification highly problematic.  The solution to address this problem in a 

reproducible manner was the formation of a stable silyl ether with the isolated reaction mixture 

followed by a simple column.  The non-polar silyl ethers washed easily of the silica gel with 
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non-polar mixtures of DCM and hexane while the more polar acetates were retained and could 

be eluted with a higher polarity solvent.   

 Subsequent Suzuki couplings of 146a,b with 1.5 to 2 equivalents of boronic acid at a 50 

˚C resulted in greater than 90% yield of the desired 2-arylpyridines.  Catalyst 144 was quite 

effective, coupling a handful of very difficult boronic acids at moderate temperatures with 

146a,b (Scheme 28).   

 

Scheme 28 a) Reference [31]. 

 Nearly all of the products in Scheme 28 were achieved in sgreater than 90% yield with 

the exception of the very difficult 151 which was obtained in a useful 67% yield, products 147-

149 were produced in near perfect yield by Müller
[31]

 using this methodology.  The silyl 

protecting group also had the added benefit of reducing the polarity of the desired compound and 

facilitating purification by column chromatography.  The resulting silyl ethers were sluggish in 

the deprotection step with TBAF, likely due to the limited approach of the fluorine to the silicon 

atom but gentle heating furnished the desired alcohols in high yield.  
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108a 108f (mirror image) 

  

108e 110a 

 

Figure 17.  Ortep drawings of 108a, 108f
[31]

 (mirror image), 108e, and 110a with COD ligand and counterion 

omitted for clarity. 

Scheme 29 Conditions: a) DMAP (1 eq), Ar2PCl (1 eq), THF, 24h, b) complex 152 1eq, c) KH 1.5 eq, DMF, 

ClP(tert-Bu)2, 2 days, d) reference [31]. 
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108a 

 

Ir-P 2.27 Å 

Ir-N 2.17 Å 

P-Ir-N < 85.5˚ 

 

Ir-C 

 Distance α = 3.19 Å 

Distance β = 3.34 Å 

108e 

 

Ir-P 2.37 Å 

Ir-N 2.16 Å 

P-Ir-N < 88.8˚ 

 

Ir-C 

 Distance = 3.61 Å 

110a 

 

Ir-P 2.28 Å 

Ir-N 2.24 Å 

P-Ir-N < 85.1˚ 

 

Ir-C  

Distance = 3.50 Å 

Figure 18.  Bond lengths, distances, and angles for 3
rd

 generation chiral Crabtree complexes, X = BArF anion, 

Naph = β-naphthyl, Anth = 9-anthracyl, mesityl = 2,4,6-tri-methylbenzene. 

 A reaction sequence of the chiral alcohol with diarylphophine chlorides and DMAP as an 

activating base followed by a simple filtration through silica gel into a solution of Ir(COD)2BArF 

or  [Ir(COD)Cl]2 and NaBArF generated the desired complexes in reasonable yields for most of 

the catalysts (Scheme 29). 

 Formation of tert-butyl derived phosphinites was more challenging, the reactions 

required concentrated conditions and potassium hydride as base in DMF with extended reaction 

times.  Concentration of the reaction mixture was a critical parameter with the reaction 

proceeding within reasonable time at higher concentration and slowing down to impractical 

levels (ca 7-10 days) under more dilute conditions.   

 X-ray quality crystals of complexes 108a, 108e, 108f,
[31]

 and 110a were grown from 

mixtures of DCM and pentane.  The solid state structures indicate a very congested environment 

about the metal center for all of the catalysts with both the ortho and meta substituents of the 

pendant biaryl moiety coming in close contact with substituents on the phosphorus atom (Figure 

17).  
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 A list of relevant bond angles,  distances, and bond lengths indicates catalyst 108a has the 

shortest distance between the coordinating nitrogen and phosphorus atom and a more acute bite 

angle (Figure 18).  This complex also has the shortest contact distance to the pyridyl 2-aryl ring 

moiety coming within 3.19 Å of the α position and 3.34 Å of the ipso-β position of the naphthyl 

ring indicating close approach of the metal to the ligand. X-ray crystallography study of catalyst 

110a revealed a phosphorus iridium bond of 2.28 Å, a nitrogen iridium bond distance of 2.24 Å, 

and an acute value of 85.1˚ for the P, Ir, N bite angle.  The distance of the iridium metal atom to 

the ipso-9-anthracyl carbon was 3.50 Å, similar to the phosphine thiazole based N,P iridium 

complexes reported by Hedberg et al.
33

  Mesityl derivative 108e had regular length bonds of 2.16 

Å for the Ir-N bond and 2.37 Å for the Ir-P bond.   The P, Ir, N bite angle for 108e of 88.8˚ falls 

in to slightly more acute than the 90˚ angle for a perfect square planar complex.   

2.5 Conclusion 

A practical route to laboratory scale preparations of 2
nd

 generation chiral pyridyl phosphinite 

catalysts has been developed.  Key features of the synthesis are the optimized, chromatography 

free synthesis of the majority of intermediates and enzymatic resolution of the racemic alcohols 

in greater than 99% ee for both enantiomers.  Phosphine replacement of the phosphinite group of 

these ligands leads to unstable complexes which undergo ortho metalation of a pendant aromatic 

ring to yield complexes which are catalytically inactive in asymmetric hydrogenation.   

 A flexible synthesis to a 3
rd

 generation of chiral pyridyl phosphinite catalyst has been 

developed to allow late stage diversification of substituents which control selectivity and activity 

of the resulting catalysts.  The late phase variable step and crucial transformation of the synthesis 

involves the Suzuki cross coupling of pyridyl chlorides with electron rich and sterically hindered 

boronic acids in high yield.   
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“Dans les champs de l'observation le hasard ne favorise que les esprits préparés.” 

“In the fields of observation chance favors only the prepared mind.” –Louis Pasteur 
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3.1 Introduction  

Synthesis of a series of asymmetric catalysts with incremental changes to overall structure allows 

for the probing of structure selectivity relationships (SSR).  Previous work from the 1
st
 and 2

nd
 

generation chiral Crabtree’s catalyst has allowed for the identification of SSR for the asymmetric 

hydrogenation of a number of trisubstituted alkenes and serves as an excellent starting point for 

extension of the high selectivity of these catalysts to substrates that have proven difficult to 

surmount.   

Table 21.  Comparison of phosphorus substituents and pyridine substituent on ee. 

 

cat # structure 
ee% 

(er) 
∆∆G ‡

�� 

153a 

 

55%  

 

(77.5/ 22.5) 

-0.72 kcal·mol
-1 

 

-3.1 kJ·mol
-1 

 

153b 

 

90%  

 

(95/ 5) 

-1.7 kcal·mol
-1 

 

-7.3 kJ·mol
-1

 

153c 

 

91%  

 

(95.5/ 4.5) 

-1.8 kcal·mol
-1 

 

-7.6 kJ·mol
-1

 

107a 

 

97%  

 

(98.5/ 1.5) 

-2.5 kcal·mol
-1 

 

-10.4 kJ·mol
-1

 

X = BArF anion, values are taken from reference [1].  
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 Earlier work in the asymmetric hydrogenation of trisubstituted alkenes with the 2
nd

 

generation of catalysts indicated a strong enantioselectivity dependence on the nature of the 

substituents on the phosphorus atom and the group in the 2-position of the pyridine ring (Table 

21).  

 Kaiser’s data
[1]

 indicated an increase in steric interaction about the iridium center by 

replacing hydrogen atom substituted 153a with the phenyl derivative 153b increased the ee% by 

35% ee or 1 kcal·mol
-1

 difference in terms of activation energy.  A similar trend and nearly 

identical ee% change was observed when replacing the di(cyclohexyl)phosphinite analogue 153a 

with the di-(ortho-tolyl)phosphinite complex 153c.  The highly selective 107a combines the 

individual optimization results into a single catalyst for an increase of 42% ee or 1.8 kcal·mol
-1

 

∆∆G ‡
�� improvement from the starting complex 153a.  While the inherent SSR is clear in this 

example this trend does not necessarily apply to other P,N catalysts and substrates.  However, 

good performance of a highly active and selective catalyst in a single class of substrates is 

common.  

 While enantiopurity has most often been reported as ee% contributions of structural 

changes to overall SSR of related catalysts are best evaluated in terms of the differences to the 

activation barriers of the individual enantiomers.  Energy differences of the enantio determining 

transition states were calculated with the relationship: ∆∆G ‡
�� =  −��	
 (kenant maj/ kenant min), for 

convenience the fraction of the minor enantiomer can be calculated from the ee with the 

equation: minorenant = (100-|ee|)/2.  Another useful quantity for describing relative rates is the 

enantiomeric quotient (e.q. or q in this chapter) which is defined as the enantiomeric ratio with a 

denominator equal to 1. 

3.2 Substrates out of reach of the 2
nd

 and 3
rd

 generation chiral pyridyl phosphinite catalysts 

While 2
nd

 and 3
rd

 generation chiral pyridyl phosphinite catalysts are remarkably selective for 

trisubstituted alkenes these catalysts have consistently given inferior results with the substrate 

classes of imines (section 1.7), 1,1’-disubstituted alkenes (section 1.4), and tetrasubstituted 

alkenes (section 1.5). Table 22 indicates very poor to no selectivity for the reduction of imines 

and 1,1’-disubstituted alkenes.   Catalysts 108b and 108c were especially unreactive towards 

imine 86a at 50 bar of H2.    Catalyst 108a, while showing some conversion, failed to produce 
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any detectable ee.  These catalysts were somewhat more reactive towards the easily reduced 1,1’-

disubstituted alkene 61b but failed to produce useful levels of enantioselectivity. 

Table 22.  Difficult substrates for 3
rd

 generation chiral pyridyl phosphinite catalysts. 

 
# Substrate ee% (conv) 

86a
a 

 

0 (45) no conv no conv 

61b
b 

 

59 (100) 6 (100) 10 (100) 

 Catalyst 

   
 # 108a 108b 108c 

X = BArF anion, , Naph = β-naphthyl, Anth = 9-anthracyl, a) reactions were conducted at 50 bar H2, b) reactions 

were conducted at 1 bar H2. 

3.3 Asymmetric hydrogenation of substrates with weak coordinating functional groups 

catalyzed by 3
rd

 generation chiral pyridyl phosphinite catalysts, initial SSR 

Iridium based catalysts are the only homogeneous catalysts capable of the asymmetric 

hydrogenation of alkenes without adjacent coordinating functional groups with useful levels of 

activity and ee (section 1.1).  Noncoordinating substrates 25a-c are the most investigated 

substrates in this specific class and serve as useful reference points in an iridium catalysts 

activity/ selectivity profile.  However, given the large number of catalysts that can now reduce 

these substrates in perfect selectivity and yield, the limited use of such substrates in other 

synthesis, and the possibility of better performance with substrate classes with greater synthetic 

utility makes weaker performance with these alkenes less important.  
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 Chiral pyridyl phosphinite catalyst R-107a of the 2
nd

 generation is capable of reducing 

substrate 25a in greater than 99% ee and yield giving the R configured product for the E 

configured alkene.  The results of the 3
rd

 generation catalysts 108a-c, 108f-h,
[2]

 and 110c are 

given in Table 23. 

Table 23.  Asymmetric hydrogenation results for 3
rd

 generation catalysts with substrate 25a. 

 

# structure
a 

ee% 

∆∆G ‡
�� 

# structure
a 

ee% 

∆∆G ‡
�� 

S-108a 

 

98 (S) 

 

-2.7 
��
�
���  

S-108g
b 

 

99.2 (S) 

 

-3.3 
��
�
���  

S-108b 

 

95 (S) 

 

-2.2 
��
�
���  

S-108h
b 

 

99 (S) 

 

-3.1 
��
�
���  

S-108c 

 

 93 (S) 

 

-2.0 
��
�
���  

S-110c
b,d 

 

99 (S) 

 

-3.1 
��
�
���  

R-108f
b 

 

94 (R) 

 

-2.1 
��
�
���  

R-107a
c 

 

≥ 99 (R) 

 

≥ -3.1 
��
�
���  

a) X = BArF anion, Ar = 3,5-di-tert-Bu-4-MeOPh, Naph = β-naphthyl, Anth = 9-anthracyl, reactions were conducted 

at 50 bar H2 and all conversions were quantitative unless otherwise noted, b) reference [2], c) reference [1], d) 73% 

conversion.   
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 Considering catalyst 107a as an optimized point of reference it can be seen that a finite 

amount of steric interaction is tolerated about the iridium metal center with substrate 25a.  The 

interaction of phosphorus substituents and the 2-arylpyridine groups was apparent.  Use of 

sterically more demanding aryl groups in the pyridine ortho position limits the tolerance/ 

requirements for the size of the phosphinite substituents.  From X-ray crystallography studies of 

related 2,6-disubstituted complexes the perpendicularly locked biaryl anthracene derivatives 

108b,c retain the shortest contact distances to the phosphinite substituents and also give the 

lowest enantioselectivities.  Increasing the size from β-naphthyl analogue 108a to the 9-anthracyl 

derivative 108b incurs a loss of 0.5 kcal·mol
-1 

in differentiation energy.  This steric interaction 

trend also holds true for the 3,5-di-tert-butyl-4-methoxyphenyl derivatives 108f,g.  While the 

greater degree of rotational freedom and space seems to accommodate the bulky substrate 25a 

direct comparison of 108f with the bis(ortho-tolyl) analogue 108g marks the tolerance limit with 

a significant loss in activation energy difference of 1.2 kcal·mol
-1

 and a drop in enantiomeric 

ratio (er) from  (99.6:0.4) to (97:3).  Also note worthy is the increase in conversion of 73% for 

the 6-membered ring analogue 110c, increasing 3 fold from the 22% conversion of the closely 

related 2
nd

 generation analogue 109 with a simple phenyl group in the 2-pyridyl position, both 

catalysts gave the same high enantioselectivity of 99% ee.   

 Substrate 25b has been noted as being somewhat more difficult to hydrogenate with 

higher enantioselectivity in the past, however several highly selective catalysts are known at 

present time.  Catalysts 108a-c demonstrate interesting SSR in this substrate that is quite 

different from the larger α-methylstilbene 25a (Table 24).   

 Apparently with the smaller and less sterically demanding E configured alkene 25b as 

substrate bulkier substituents about the iridium N,P catalyst are favored for high 

enantioselectivity.  Table 24 illustrates the advantage in using energy calculations or 

enantiomeric ratio over the enantioselectivity in determining contributions of change in structure 

to the overall selectivity of the series of catalysts.  Making observations solely on ee can be very 

misleading when evaluating the contributions from increasing the phosphorus substituent size 

from the diphenylphosphinite analogue 108b which gives 98.5% ee, or an er of (99.25:0.75) i.e. 

an enantiomeric quotient (q) of 132, with the di-(ortho-tolyl)phosphinite derivative 108c which 

gives 99.1% ee, or an er of (99.55:0.45) and a quotient of 221.  While enantiomeric quotient and 
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er are more informative about SSR and the relative rate of catalysis, energy calculations are a 

more sublime description and directly reflect events in the transitions state.    

Table 24.  Asymmetric hydrogenation of 25b. 

 

# structure 

ee 

(er) 

∆∆G ‡
�� 

# structure 

ee 

(er) 

∆∆G ‡
�� 

S-108a 

 

96 (S) 

�98
2 � 

-2.3 
��
�
���  

S-108c 

 

99.1 (S) 

�99.55
0.45 � 

-3.2 
��
�
���  

S-108b 

 

98.5 (S) 

�99.25
0.75 � 

-2.7 
��
�
���  

R-107a
a
 

 

> 99 (R) 

> �99.5
0.5 � 

> -3.1 
��
�
���  

X = BArF anion, Naph = β-naphthyl, Anth = 9-anthracyl, all reactions were conducted at 50 bar H2 and all 

conversions were quantitative unless otherwise noted, a) reference [1]. 

 While phenyl groups can be considered as weakly coordinating functional groups many 

transition metals are well known to form stable complexes with them.  Furthermore, many 

catalysts which perform well in the asymmetric reduction of alkenes conjugated to aromatic 

systems fail to produce useful levels of enantioselectivity when those aromatic systems are 

removed (section 1.3.2).  Substrates 34a with E and Z configurations were evaluated with a small 

series of catalysts to gain further understanding of how the changes made in the 3
rd

 generation 

chiral pyridyl phosphinite catalyst series affect the SSR of trisubstituted alkene reduction when 

the substrates phenyl group is removed from the site of reduction (Table 25).  
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Table 25.  Asymmetric hydrogenation results for E- and Z- 34a. 

 

 substrate Z-34a 
ee% 

(q) 

∆∆G ‡
�� 

 substrate E-34a 
ee% 

(q) 

∆∆G ‡
�� # structure

a 
# structure

a 

S-108a 

 

94.9 (R) 

 

(38.2) 

 

-2.2 
��
�
���  

S-108a 

 

92.4 (S) 

 

(25.3) 

 

-1.9 
��
�
���  

S-108b 

 

98.9 (R) 

 

(181) 

 

-3.1 
��
�
���  

S-108b 

 

95.6 (S) 

 

(44.5) 

 

-2.2 
��
�
���  

S-108c 

 

99.1 (R) 

 

(221) 

 

-3.2 
��
�
���  

S-108c 

 

96.5 (S) 

 

(56.1) 
 

-2.4 
��
�
���  

R-107a
b
 

 

98 (S) 

 

(99) 

 

-2.7 
��
�
���  

R-107a
b
 

 

94 (R) 

 

(32.3) 
 

-2.1 
��
�
���  

a) X = BArF anion, Naph = β-naphthyl, Anth = 9-anthracyl, all conversions were quantitative unless otherwise noted, 

b) reference [1].  The enantiomeric quotient, q, is the enantiomeric ratio with a denominator of 1.   

 Difficulty in reduction of E configured alkenes relative to the Z isomers with alkyl 

derived alkenes such as 34a and 37a has remained a consistent challenge for the chiral pyridyl 

phosphinite catalysts.  However, catalyst 108c exhibits a nearly two fold increase in 

enantiomeric ratio and a decrease of 0.3 kcal in terms of activation energy compared to catalyst 



Chapter 3  

Asymmetric Hydrogenation of Trisubstituted Alkenes with 3rd Generation Chiral Pyridyl Iridium N,P Complexes 

 

91 

 

R-107a with E-34a.  Comparing the reactivity of substrate E-34a with Z-34a we observe a 4-fold 

increase in er for catalysts 108b,c, a 3 fold increase for catalyst 107a, and a 1.5 fold increase for 

108a. This trend closely matches the degree of steric crowding adjacent to the metal center, 

indicating that increasing steric interaction between the catalyst and substrate increases the 

selectivity for the more reactive Z isomer of this substrate.  Thus “tuning” the substrate 

configuration as well as the catalyst can lead to dramatic increase in terms of enantiomeric ratio 

and activation energy. For this substrate the least sterically demanding catalyst 108a with the 

more difficult isomer E-34a gave (96.2: 3.8) er while the most sterically demanding catalyst 

108c with the better substrate Z-34a gave an er of (99.55: 0.45), a 10 fold increase in 

enantioselectivity.   

Table 26.  Asymmetric reduction of E,E-farnesol. 

 
# structure

a 
3S 7R 3R 7R 3R 7S 3S 7S ee% (q) 

S-108c 

 

3.86 95.66 0.43 0.05 99.9 (1910) 

R-110a
 

 

1.02 1.51 4.42 93.05 -96.8 (61.6) 

a) X = BArF anion, Anth = 9-anthracyl, all conversions were quantitative unless otherwise noted. 

 Increasing the degree of steric interaction also increases the enantioselectivity for the E 

isomer of 34a.  The sterically hindered anthracene derivative 108c gives a 70% greater 

enantiomeric ratio than the phenyl analogue 107a.  This trend holds true in the enantioselective 

hydrogenation of E,E-farnesol
[3]

 (Table 26).    
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 Using the data from reference [3] a 99.3% ee is obtained with catalyst 109 at 1 mol% 

catalyst loading which translates to an enantiomeric quotient value of 285.  In a direct 

comparison of the effect of increased bulk catalyst 110a gives a lower ee of 97%, this precipitous 

loss of selectivity is not entirely surprising with a very sterically demanding catalyst.  However, 

using the more open catalyst 108c the enantioselectivity increases to a near perfect 99.9% ee 

with an enantiomeric quotient of 1910 a 6.7 fold increase over catalyst 109 and a 31 fold increase 

over catalyst 110a, indicating exceptional selectivity.   

3.4 Asymmetric reduction of dihydronaphthaleness 

Dihydronaphthalene substrate 25d has proven difficult for most catalysts.  The first reaction to 

achieve 99% ee was obtained with catalysts 110a,b (Table 27).  The sterically more demanding 

catalysts gave the best enantioselectivities in general.  Catalyst 108a (not listed in table) gave 

abysmal levels of enantioselectivity.  Catalyst 110a stood out as the best performer, giving an 

enantiomeric quotient of 284 while 110b gave the second highest q value of 221. 

 Given the success of these catalysts with 25d a more difficult substrate in the form of the 

isopropyl dihydronaphthalene 154a was attempted (Table 28).  Competing side reactions 

produced the tetrasubstituted alkene 154c and the oxidation product naphthalene 154d in small 

but measurable quantities.  This substrate demonstrates a slightly different trend in 

enantioselectivity in relation to the catalyst backbone ring size in comparison to studies on E,E-

farnesol with the more selective catalysts formed from the 6-membered ring series.  Catalyst 

108c gives an er of (95.3: 4.7) while 110a gives an er of (98:2), this equates to 0.5 kcal·mol
-1 

energy difference.  Increasing the pressure, concentration, and catalyst loading of 110a had a 

beneficial effect on the enantioselectivity and product distribution which gave an excellent 

enantiomeric ratio of (99:1) and 96% conversion. 

 In order to test the limits of what was possible with catalyst 110a substrate 157a was 

synthesized from the α-tetralone 155 (Scheme 30).  The tertiary alcohol 156 was synthesized by 

addition of tert-butyl lithium to the ketone. The benzylic cation formed by elimination of water 

from 156 was so favorable that alkene 157a was present in roughly equal portions to the alcohol 

when using ammonium chloride as a quenching acid.  The reaction was driven to completion by 

stirring the mixture over dry 4Å molecular sieves in DCM.   
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Table 27.  Asymmetric hydrogenation results for 25d with 3
rd

 generation catalysts. 

 

# structure
a 

ee% 

∆∆G ‡
�� 

# structure
a 

ee% 

∆∆G ‡
�� 

S-108b 

 

95 (R) 

 

-2.2 
��
�
���  

S-108g
b
 

 

98 (R) 

 

-2.7 
��
�
���  

S-108c 

 

97 (R) 

 

-2.5 
��
�
���  

S-108h
b
 

 

98 (R) 

 

-2.7 
��
�
���  

S-108d 

 

99.0 (R) 

 

-3.1 
��
�
���  

R-110a 

 

99.3 (S) 

 

-3.3 
��
�
���  

S-108e 

 

97 (R) 

 

-2.5 
��
�
���  

S-110b 

 

99.1 (R) 

 

-3.2 
��
�
���  

R-108f
b 

 

94 (S) 

 

-2.1 
��
�
���  

S-110c
b
 

 

98 (R) 

 

-2.7 
��
�
���  

a) X = BArF anion, Anth = 9-anthracyl, mesityl = 2,4,6-tri-methylbenzene, Ar = 3,5-di-tert-Bu-4-MeOPh, b) 

reference [2]. 
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Table 28.  Asymmetric hydrogenation results for 154a with 3
rd

 generation catalysts. 

 

# 

mol% 
structure

a
 

ee% 

∆∆G ‡
�� 

% 154b % 154c % 154d 

S-108c 

1 mol% 

 

90.6 (R) 

 

-1.8 
��
�
���  

96 - 4 

S-108f
b 

1 mol% 

 

95 (R) 

 

-2.2 
��
�
���  

98 - 2 

R-110a 

1 mol% 

 

96 (S) 

 

-2.3 
��
�
���  

80 1.8 2 

R-110a
c 

2 mol% 

 

98 (S) 

 

-2.7 
��
�
���  

96 1.8 0.8 

a) X = BArF anion, Anth = 9-anthracyl, Ar = 3,5-di-tert-Bu-4-MeOPh, ee and conversion for all products was 

determined by GC, b) reference [2],  c) reaction was run at 2 mol% catalyst loading, 0.25M substrate concentration 

and 75 bars of H2 for 3 hours. 
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Scheme 30 Conditions: ZnCl2 (0.12 eq), tert-butylLi (1.1 eq), 24 hr, NH4Cl, b) 4Å mol sieve, 

11% yield total yield.   

Table 29.  Asymmetric reduction of 157a with catalyst 110a. 

 

mol% 110a ee% conv% 157c conv% 157c er ∆∆G ‡
�� 

1
a 

86 59 4 �93
7 � -1.5 

��
�
���  

2
a 

96 79 21 �98
2 � -2.3 

��
�
���  

2
b 

97 87 13 �98.5
1.5 � -2.5 

��
�
���  

3
b
 91 99 trace �95.5

4.5 � -1.8 
��
�
���  

X = BArF anion, Anth = 9-anthracyl a) reaction was run at 0.2M substrate concentration,  b) reaction was run at 

1.0M substrate concentration. 

 Reduction of 157a proved slow with very high pressures and long reaction times required 

to reach full conversion.  Even at 100 bar H2 pressure oxidation to the naphthalene was a 

troubling side reaction.  Increasing the concentration and catalyst loading helped to control this 

greatly but at the price of enantioselectivity when using 3 mol% catalyst loading.  Optimal 

conditions could increase the apparent activation energy difference by a 1 kcal·mol
-1

, a 

significant improvement.   
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Table 30.  Summary for the reduction of dihydronaphthalenes with catalyst 110a. 

 

substrate mol% pressure R ee ∆∆G ‡
�� q % prod % s.prod 

25d 1 50 bar Me 99.3 3.3 284 100 - 

154a 2 75 bar i-Pr 98 2.7 99 96 2.4 

157a 2 100 bar t-Bu 97 2.5 63.8 87 13 

 As can be seen from Table 30, while the apparent enantioselectivity is very high for 

catalyst 110a asymmetric hydrogenation becomes more difficult as steric hindrance is increased 

on the substrate.  The methyl analogue 25d is hydrogenated with a 2.9 fold selectivity increase 

over the isopropyl analogue 154a and a 4.5 fold increase relative to the tert-butyl derivative 157a 

in terms of enantiomeric ratio.  The product distribution also reflects the difficulty in 

hydrogenation and the sterically demanding substrates give more byproducts as would be 

expected.   

3.5 Asymmetric hydrogenation of allyilic alcohols and conjugate reduction of α,β-

unsaturated esters 

Asymmetric reduction of alkenes with adjacent coordinating functional groups is a vastly 

important topic and it has received voluminous amounts of attention in the literature (see section 

1.1, 1.3.5, 1.3.7, and 1.6).  Substrates 25e and 25f, derived from cinnamic acids, have been 

featured in many asymmetric hydrogenation screens and are general reference points.  Although 

many catalysts give ee’s in to the high nineties with these substrates, few catalysts cross the 99% 

ee threshold.  Additionally, substrate 25e has been observed to undergo rearrangement to 

aldehydes in some investigations (see section 1.3.6).  These types of substrates have the added 

disadvantage of having inhibitory behavior towards iridium hydrogenation catalysts.  In spite of 

these detriments, many examples of excellent activity and selectivity in iridium catalyzed 

hydrogenation of the more coordinating alkenes equals or surpasses that of the rhodium and 

ruthenium systems.   
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Table 31.  Hydrogenation results for catalyst E-α-methylcinnamylalcohol, substrate 25e. 

 

# structure
a
 

ee% 

(conv) 

∆∆G ‡
�� 

# structure
a 

ee% 

(conv) 

∆∆G ‡
�� 

S-108a 

 

95 (R)   

 

(full) 

 

-2.2 
��
�
���  

R-108f
c 

 

12 (S) 

 

(62%) 

 

-.05 
��
�
���  

S-108b 

 

80 (R) 

 

(full) 

 

-1.3 
��
�
���  

S-108g
c
 

 

93 (R) 

 

(full) 

 

-2.0 
��
�
���  

S-108c 

 

29 (R) 

 

(25%) 

 

-0.4 
��
�
���  

S-108h
c
 

 

92 (R) 

 

(70%) 

 

-1.9 
��
�
���  

S-108d 

 

88 (R) 

 

(full)
b
 

 

-1.6 
��
�
���  

R-110a 

 

84 (S) 

 

(full) 

 

-1.4 
��
�
���  

S-108e 

 

72 (R) 

 

(full) 

 

-1.1 
��
�
���  

S-110b 

 

57 (R) 

 

(34%) 

 

-0.8 
��
�
���  

a) X = BArF anion, Naph = β-naphthyl, Anth = 9-anthracyl, mesityl = 2,4,6-tri-methylbenzene, Ar = 3,5-di-tert-Bu-

4-MeOPh, b) over 80% converted to 2-methyl-3-phenyl-propanal, c) reference [2].  All reactions were conducted at 

50 bar of H2 for 16 hours.  
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 Allylic alcohol 25e was reduced with a similar SSR trend to substrate 25a but proved to 

be more sensitive to the precise steric environment of the catalyst (Table 31).  We attribute the 

loss of activity with the larger ligands to catalyst inhibition by the more strongly coordinating 

primary hydroxyl group competing for a limited amount of space with the alkene leading to a 

less reactive system.  The best performing catalyst was 108a which also had the least sterically 

demanding groups, coming very close to the ee% of 107a,
[4]

 but in terms of enantiomeric ratio 

108a gave a q value of 39 while 107a was 1.7 fold higher with an enantiomeric quotient of 66.  

The di(tert-butyl)phosphinite catalyst 108f gave very poor results with 12% ee and 62% 

conversion in comparison with the closely related di(o-tolyl)phosphinite catalyst 108g which 

gave 93% ee and full conversion.  A similar trend can be seen when changing from the bulky 

ortho-tolyl substituted 108c, which gives abysmal enantioselectivity of 29%, a 25% yield, and an 

enantiomeric ratio of (64.5: 35.5), to the less demanding diphenylphosphino derivative 108b 

which gives 80% ee, 99% yield, and an er of (90:10). 

 Steric parameters seem to have far greater consequences for this class of substrate, 

namely 2-methyl-3-phenyl-propanal, which is produced in trace quantities with catalyst 107a, 

became the predominant product with the highly congested 108d. This finding is consistent with 

the work of Mazet (section 1.3.6) who has optimized this 1,3 hydride shift into a viable 

asymmetric process by maximizing steric interactions with the allylic alcohol in a highly 

restricted pocket about the iridium metal center.  Clearly the addition of very sterically 

demanding aromatic substituents about the metal center creates a more sensitive system and 

changes that are typically well tolerated with other substrates can have drastic effects under these 

circumstances. 

 Having established the 3
rd

 generation chiral pyridyl phosphinite catalysts as effective in 

the reduction of challenging substrates we turned our attention to the conjugate reduction of ester 

158a. The mesityl derived catalysts 108d and 108e reduced the α,β-unsaturated ester in 94% ee 

and greater than 99% conversion (Table 32).  Both S configured catalysts gave the desired R-

158b with identical enantiomeric quotient of 32 and -2.0 kcal·mol
-1 

in terms of activation energy.  
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Table 32.  Asymmetric hydrogenation summary results of α,β-unsaturated esters 158a and 159a.  

 

substrate R
1 

R
2
 catalyst ee% q ∆∆G ‡

�� 

158a Me H S-108d 94 (R) 32 -2.0 
��
�
���  

158a   S-108e 94 (R) 32 -2.0 
��
�
���  

159a H Me S-108e 96 (-) 49 -2.3 
��
�
���  

All reactions were conducted at 50 bar of H2 for 16 hours and all hydrogenations reached full conversion. 
  

 The reduction of α-substituted esters has been a long standing challenge with iridium N,P 

catalyzed hydrogenations. Andersson has proposed a rationale for this with a computational 

model which indicates a steric and electronic mismatch effect for α-methyl cinnamic acid methyl 

ester with an iridium N,P hydride complex (section 1.2.3). 

 We attempted the reduction of 159a and we were surprised to find higher 

enantioselectivity then with the β-methyl analogue 158a.  Catalyst S-108a reduced the α-methyl-

α,β-unsaturated ester with 96% ee to (-) 159b with an enantiomeric quotient of 49, a 1.5 fold 

increase over the β-methyl analogue and an added 0.3 kcal·mol
-1

 in terms of activation energy.   

 A thorough analysis on a series of esters easily prepared from commercially available α-

methylcinnamic acid was quite revealing (Tables 33-35).  Hydrogenations of cinnamic esters 

160a-c were quite slow and high pressure with longer reaction times were required to reach full 

conversion.  Catalyst 108e was clearly the standout with 97% ee for 161a, 161b and 99.8% ee 

for 161c.  The size effect of the ester alkyl group appears to be considerable and very sensitive to 

the catalyst substrate interaction.  Most impressively, a 15 fold increase in enantiomeric ratio is 

observed between the asymmetric hydrogenation of the ethyl and isopropyl cinnamic esters with 

108e as catalyst.  Larger ester groups also increased the enantioselectivity for other catalysts by a 

significant measure.  It also appears that the substituents on the phosphorus atom play a crucial 

role.   
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Table 33.  Asymmetric hydrogenation results for substrate 160a.  

 

# structure
a 

ee% 

(q) 

∆∆G ‡
�� 

# structure
a 

ee% 

(q) 

∆∆G ‡
�� 

S-108a 

 

7 (R)
c
   

 

(1.2) 

 

-80 
�
�
��� 

R-108f
b 

 

76 (S) 

 

(7.3) 

 

1.2 
��
�
���  

S-108b 

 

83 (R) 

 

(10.8) 

 

-1.4 
��
�
���  

S-108g
b
 

 

29 (R) 

 

(1.8) 

 

-0.35 
��
�
���  

S-108c 

 

87 (R) 

 

(14.4) 

 

-1.6 
��
�
���  

R-110a 

 

89 (S) 

 

(17.2) 

 

-1.7 
��
�
���  

S-108d 

 

82 (R)
d 

 

 

(10.1) 

 

-1.4 
��
�
���  

S-110b 

 

86 (R) 

 

(13.3) 

 

-1.5 
��
�
���  

S-108e 

 

97 (R) 

 

(65.6) 

 

-2.5 
��
�
���  

S-110c
b 

 

15 (R) 

 

(1.4) 

 

-0.18 
��
�
���  

a) X = BArF anion, Naph = β-naphthyl, Anth = 9-anthracyl, mesityl = 2,4,6-tri-methylbenzene, Ar = 3,5-di-tert-Bu-

4-MeOPh, b) reference [2], c) 8% conversion, d) 77% conversion. 
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Table 34.  Asymmetric hydrogenation results for substrate 160b.  

 

# structure
a 

ee% 

(q) 

∆∆G ‡
�� 

# structure
a 

ee% 

(q) 

∆∆G ‡
�� 

S-108a 

 

3 (R)
c
   

 

(1.06) 

 

-35
�
�
��� 

R-108f
b 

 

95 (S) 

 

(39) 

 

2.2 
��
�
���  

S-108b 

 

80 (R)
d
 

 

(9) 

 

-1.3 
��
�
���  

S-108g
b
 

 

8 (R) 

 

(1.17) 

 

-94 
�
�
��� 

S-108c 

 

83 (R) 

 

(10.8) 

 

-1.4 
��
�
���  

R-110a 

 

92 (S) 

 

(24) 

 

-1.9 
��
�
���  

S-108d 

 

80 (R)
e 
 

 

(9) 

 

-1.3 
��
�
���  

S-110b 

 

81 (R) 

 

(9.5) 

 

-1.3 
��
�
���  

S-108e 

 

97 (R) 

 

(65.6) 

 

-2.5 
��
�
���  

S-110c
b 

 

6 (R) 

 

(1.13) 

 

-71 
�
�
��� 

a) X = BArF anion, Naph = β-naphthyl, Anth = 9-anthracyl, mesityl = 2,4,6-tri-methylbenzene, Ar = 3,5-di-tert-Bu-

4-MeOPh, b) reference [2], c) 97% conversion, d) 17% conversion, e) 88% conversion. 
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Table 35.  Asymmetric hydrogenation results for substrate 160c.  

 

# structure
a 

ee% 

(q) 

∆∆G ‡
�� 

# structure
a
 

ee% 

(q) 

∆∆G ‡
�� 

S-108a 

 

20 (R)
c
   

 

(1.5) 

 

-0.24 
��
�
���  

R-108f
b 

 

93 (S) 

 

(27.6) 

 

-2.0 
��
�
���  

S-108b 

 

91 (R)
d 

 

(21.2) 

 

-1.8 
��
�
���  

S-108g
b
 

 

46 (R) 

 

(2.7) 

 

-0.6 
��
�
���  

S-108c 

 

93 (R) 

 

(27.6) 

 

-2.0 
��
�
���  

R-110a 

 

97 (S) 

 

(65.6) 

 

-2.5 
��
�
���  

S-108d 

 

92 (R)
e 
 

 

(24) 

 

-1.9 
��
�
���  

S-110b 

 

91 (R)
f 

 

(21.2) 

 

-1.8 
��
�
���  

S-108e 

 

99.8 (R) 

 

(999) 

 

-4.1 
��
�
���  

S-110c
b 

 

0
g 

 

(0) 

 

-1.5 
��
�
���  

a) X = BArF anion, Naph = β-naphthyl, Anth = 9-anthracyl, mesityl = 2,4,6-tri-methylbenzene, Ar = 3,5-di-tert-Bu-

4-MeOPh, b) reference [2]  c) 18% conv, d) 81% conv, e) 69% conv, f) 70% conv, g) 58% conv. 
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In a similar comparison the di-(ortho-tolyl)phosphinite analogue catalyst 108d gives good 

enantioselectivity with substrate 108c in 92%ee and an enantiomeric quotient of 24.  However, 

the closely related di-(tert-butyl)phosphinite derivative 108e gives a much higher enantiomeric 

quotient of 999, a forty fold increase in selectivity.  This difference in selectivity between closely 

related catalysts high lights how small changes to the catalyst can lead to drastic changes in 

selectivity and activity.   

 The results from reduction of 160a-c stand in sharp contrast to those obtained with the 

allylic alcohol 25e which has a closely related geometry to the α-methyl cinnamic esters.  Both 

systems contain a methyl group α to the coordinating oxygen function, E geometry about the 

C=C bond and a conjugated phenyl group but demonstrate opposite trends of SSR with the range 

of tested catalysts.  Structure selectivity relationship studies with allylic alcohol 25e identified 

the best performance with a sterically more accessible catalyst whereas the α-methyl-cinnamic 

esters 160a-c functions better with large substituents surrounding both the metal center and the 

ester group. However, both classes of substrates give the same configuration of product from the 

same catalyst enantiomer.  Burgess has also seen large differences in selectivity between allylic 

alcohols and methyl ester analogues in diastereoselective reductions, but in contrast to our 

system the alcohol directed the reduction to the opposite enantioface compared to the ester (see 

section 1.3.4).  These results suggest a change in binding modes between these two classes of 

substrates which implicates a change in the structural requirements for high enantioselectivity. 

  
162 

80% ee, 100% conversion, -1.3 
��
�
���  

163 

No conversion 

 
 

164 

88% ee, 100% conversion, -1.6 
��
�
���  

165 

23% ee, 35% conversion, -0.3 
��
�
���  

Figure 18.  Asymmetric hydrogenation results of difficult substrates with catalyst 108e, all 

hydrogenations were carried out at 50 bar H2 pressure for 16 hours. 
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 Several challenging α,β-unsaturated esters were hydrogenated with catalyst 108e with 

lesser degrees of success (Figure 18).  Substrate 163 has proven to be a very difficult substrate 

for several catalytic systems and in the case of 108e, completely failed in hydrogenation.  

Substrate 165, an important intermediate for the synthesis of the drug Aliskiren, was reduced 

with abysmal selectivity and conversion, likely due to the chelating polyether inhibiting the 

catalyst.  Further evidence for this is the successful reduction of the closely related ester 164 

which gives a reasonable selectivity of 88% ee and full conversion.   

 3.6 Conclusion 

The evaluation of the 3
rd

 generation of chiral pyridyl phosphinite catalysts in the asymmetric 

reduction of trisubstituted alkenes has provided additional insight to the factors governing 

structure selectivity relationships for a number of substrates.  This chapter marks the highest 

enantioselectivities recorded to date for the asymmetric hydrogenation of dihydronaphthalenes, 

E,E-farnesol, and α substituted α,β-unsaturated esters. 
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4.1 Introduction 

Organic fluorides are a fast growing class of organic halides due in large part to the 

pharmaceutical industries increased interest.  Until recently strategies that incorporate fluorine 

into a chiral structure were rare.  The vast majority of catalytic methods rely on carbonyl 

activation chemistry to incorporate fluorine from an electrophilic source typified by reagents 

such as N-fluorobenzenesulfonimide (NFSI).
1,2

  One of the earliest successful strategies involved 

reduction of 2-fluoro-2-alkenoic acids with a ruthenium BINAP system with high 

enantioselectivities and yields (Scheme 31).
3
  It is interesting to note that both E and Z 

fluoroalkenoic acids gave rise to the same enantiomer where as alkenoic acids with a methyl 

substituent in the 2 position give opposite configurations under similar conditions. 

OH

O

F

F

CO2H

(R)-Ru-BINAP

91% ee

83% ee

OH

O

F

 

Scheme 31. 

 Andersson has recently reported the asymmetric hydrogenation of a limited range of 

fluoro-cinnamic esters and alcohols (section 1.3.3).  Although high enantioselectivity could be 

obtained no examples of fluoroalkenes without adjacent coordinating groups was reported.   

 Synthesis of stereopure vinyl fluorides is an active research area with much interest 

vested by both the pharmaceutical and optoelectronic fields.  The labs of Burton
4-35

 and Haufe
36-

46
 have provided the largest share of the research in this area.   

4.2 Synthesis of vinyl fluorides 

Stereospecific synthesis of vinyl fluoride 168 was achieved by a Suzuki
12,47,48

 route utilizing a 

modified procedure to produce α,α’-bromo-fluoro-styrenes
49

 in E/Z mixtures and subsequent 

palladium coupling to synthesize fluorostilbene product. Subsequent chromatography and 

recrystallization provides the desired substrate in moderate yields (50%) and excellent 
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stereopurity (>99.9%).  Fluorostyrene 171 was generated from the corresponding styrene via a 

Br-F addition followed by elimination to the vinyl fluoride (Scheme 32). 

 

Scheme 32 Conditions: a) CuCl (10 mol%), NH4OH, CBr3F (1 eq), E/Z:3/1, 34% yield, b) 

Pd2(dba)3 (1 mol%), P(t-Bu)3HBF4 (4 mol%),  ArB(OH)2 (1.2 eq),  room temp, 99% Z,  50 - 80% 

yield, c) (TEA)3-HF (4 eq), NBS (1.2 eq), 30% yield, d) KOH (2.5 eq), DMSO, 78% yield. 

4.3  Attempted asymmetric reduction of fluoroalkenes 

   

 

 

Scheme 33 

Fluoroalkenes 168 and 171 were highly unreactive towards hydrogenation in spite of high 

catalyst loadings (4 mol%), very high pressures, and extended reaction times (Scheme 33).  

Despite all efforts, these substrates remained completely intact. Addition of a hard lewis acid 

however produced a new reaction product.  Fluoroalkene 168 underwent a metathesis with the 

lithium triflate to produce a triflate enol ether which rapidly decomposed with moisture and acid 
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to the corresponding ketone 172.  Conversion to the ketone was quantitative when using 2 

equivalents of lithium triflate. 

4.4 Conclusion 

Reduction of vinyl fluorides without adjacent coordinating groups is not feasible with the current 

state of the art.  Studies with coordinating vinyl fluorides by other labs have indicated a difficult 

reduction at best and the products are easily obtained in higher yield by other methods which do 

not require expensive late transition metal based catalysts.  However, a new substitution reaction 

of a fluoride with a triflate anion has been discovered.   

4.5 References 

[1] Cahard, D.; Xu, X.; Couve-Bonnaire, S.; Pannecoucke, X. Chem. Soc. Rev. 2010, 39, 558-568. 

[2] Ma, J.-A.; Cahard, D. Chem. Rev. 2008, 108, PR1-PR43. 

[3] Saburi, M.; Shao, L.; Sakurai, T.; Uchida, Y. Tetrahedron Lett. 1992, 33, 7877. 

[4] Wang, Y.; Burton, D. J. Org. Lett. 2006, 8, 1109. 

[5] Wang, Y.; Lu, L.; Burton, D. J. J. Org. Chem. 2005, 70, 10743. 

[6] Xu, J.; Burton, D. J. J. Org. Chem.2005, 70, 4346. 

[7] Burton, D. J.; Jairaj, V. J. Fluorine Chem. 2005, 126, 797. 

[8] Xu, J.; Burton, D. J. J. Fluorine Chem. 2004, 125, 725. 

[9] Burton, D. J.; Jairaj, V. J. Fluorine Chem. 2004, 125, 673. 

[10] Lim, C.; Burton, D. J.; Wesolowski, C. A. J. Fluorine Chem. 2003, 119, 21. 

[11] Xu, J.; Burton, D. J. Tetrahedron Lett. 2002, 43, 4565. 

[12] Xu, J.; Burton, D. J. Tetrahedron Lett. 2002, 43, 2877. 

[13] Liu, Q.; Burton, D. J. Org. Lett.  2002, 4, 1483. 

[14] Xu, J.; Burton, D. J. Org. Lett.  2002, 4, 831. 

[15] Liu, Q.; Burton, D. J. Tetrahedron Lett. 2000, 41, 8045. 

[16] Guneratne, R. D.; Burton, D. J. J. Fluorine Chem. 1999, 98, 11. 

[17] Wesolowski, C. A.; Burton, D. J. Tetrahedron Lett. 1999, 40, 2243. 

[18] Blumenthal, E. J.; Burton, D. J. Isr. J. Chem. 1999, 39, 109. 

[19] Davis, C. R.; Burton, D. J. J. Org. Chem. 1997, 62, 9217. 

[20] Lu, L.; Burton, D. J. Tetrahedron Lett. 1997, 38, 7673. 

[21] Xue, L.; Lu, L.; Pedersen, S. D.; Liu, Q.; Narske, R. M.; Burton, D. J. J. Org. Chem. 1997, 62, 1064. 

[22] Davis, C. R.; Burton, D. J. Tetrahedron Lett. 1996, 37, 7237. 

[23] Xue, L.; Lu, L.; Pedersen, S.; Liu, Q.; Narske, R.; Burton, D. J. Tetrahedron Lett. 1996, 37, 1921. 

[24] MacNeil, K. J.; Burton, D. J. J. Org. Chem. 1995, 60, 4085. 

[25] Burton, D. J. ACS Symp. Series 1994, 555, 297. 



Chapter 4  

Synthesis and Asymmetric Hydrogenation of Vinyl Fluorides 

 

109 

 

[26] Burton, D. J. Molecular Structure and Energetics 1988, 8, 149. 

[27] Heinze, P. L.; Burton, D. J. J. Org. Chem. 1988, 53, 2714. 

[28] Hansen, S. W.; Spawn, T. D.; Burton, D. J. J. Fluorine Chem. 1987, 35, 415. 

[29] Burton, D. J.; Hansen, S. W. J. Fluorine Chem. 1986, 31, 461. 

[30] Heinze, P. L.; Burton, D. J. J. Fluorine Chem. 1986, 31, 115. 

[31] Burton, D. J.; Hansen, S. W. J. Am. Chem. Soc. 1986, 108, 4229. 

[32] Cox, D. G.; Gurusamy, N.; Burton, D. J. J. Am. Chem. Soc. 1985, 107, 2811. 

[33] Burton, D. J.; Cox, D. G. J. Am. Chem. Soc. 1983, 105, 650. 

[34] Burton, D. J.; Hahnfeld, J. L. J. Org. Chem. 1977, 42, 828. 

[35] Wheaton, G. A.; Burton, D. J. J. Fluorine Chem. 1976, 8, 97. 

[36] Kirk, K. L.; Yoshida, S.; Haufe, G.; Meyer, O. G. J.; Rosen, T. C.; Application: WO 2005007614. 

[37] Rosen, T. C.; Yoshida, S.; Froehlich, R.; Kirk, K. L.; Haufe, G. J. Med. Chem. 2004, 47, 5860. 

[38] Haufe, G.; Rosen, T. C.; Meyer, O. G. J.; Frohlich, R.; Rissanen, K. J. Fluorine Chem. 2002, 114, 189. 

[39] Rosen, T. C.; Haufe, G. Tetrahedron Asymm. 2002, 13, 1397. 

[40] Haufe, G.; Meyer, O. G. J.; Muck-Lichtenfeld, C. Coll. Czech. C.C. 2002, 67, 1493. 

[41] Ernet, T.; Maulitz, A. H.; Wurthwein, E.-U.; Haufe, G. Perkin Trans. 1 2001, 1929. 

[42] Oldendorf, J.; Haufe, G. J. pr. Ch. 2000, 342, 52. 

[43] Meyer, O. G. J.; Frohlich, R.; Haufe, G. Synthesis 2000, 1479. 

[44] Bogachev, A. A.; Kobrina, L. S.; Meyer, O. G. J.; Haufe, G. J. Fluorine Chem. 1999, 97, 135. 

[45] Ernet, T.; Haufe, G. Tetrahedron Lett. 1996, 37, 7251. 

[46] Saluzzo, C.; Alvernhe, G.; Anker, D.; Haufe, G. Tetrahedron Lett. 1990, 31, 2127. 

[47] Eddarir, S.; Rolando, C. J. Fluorine Chem. 2004, 125, 377. 

[48] Chen, C.; Wilcoxen, K.; Strack, N.; McCarthy, J. R. Tetrahedron Lett. 1999, 40, 827. 

[49] Nenajdenko, V. G.; Korotchenko, V. N.; Shastin, A. V.; Balenkova, E. S.; Brinner, K.; Ellman, J. A. Org. Syn. 

2005, 82, 93. 

  



 

 

 

Chapter 5 

Experimental 
 

 

 

 

 

 

 

 

 

  

  

  



 

5.1 General  

All air and moisture sensitive reactions were carried out in an inert atmosphere using standard 

Schlenk techniques or in an inert atmosphere glove box (MBraun Labmaster 130).  Absolute 

solvents were purchased from Fluka or obtained from a Pure-Solv
TM

 drying system.   

Column chromatographic purifications were performed on Merck silica gel 60 (particle size 43-

60 µm) under 0.1 – 2 bar nitrogen pressure.  The eluents were technical grade and purified by 

distillation prior to use.   

All reagents were purchased from Acros, Aldrich, Alpha, Fluka, Strem or Lancaster and used 

without further purification unless otherwise noted.   

5.2 Analytical Methods 

NMR-Spectroscopy:  NMR spectra were measured either on a Bruker Advance 400 (400 MHz) 

or a Bruker Advance DRX 500 (500MHz) spectrometer equipped with BBO broadband probe 

heads.  The chemical shift δ value is given in ppm.  The chemical shift δ values were corrected to 

7.26 ppm (
1
H NMR) and 77.0 ppm (

13
C NMR) for CHCl3, 5.32 ppm (

1
H NMR) and 54.0 ppm 

(
13

C NMR) for CH2Cl2, 4.78 ppm and 3.35 ppm (
1
H NMR) and 49.3 ppm (

13
C NMR) for 

CH3OH, 7.16 ppm (
1
H NMR) and 128.0 ppm (

13
C NMR) for C6H6, 2.50 ppm (

1
H NMR) and 

39.5 ppm (
13

C NMR) for (CH3)2SO.  The assignment of 
1
H and 

13
C signals was partly made by 

2D-NMR, namely COSY, HMQC, HMBC and NOSY.  
13

C were recorded in 
1
H decoupled 

mode.  Multiplets were assigned with s (singlet), d (doublet), t (triplet), q (quartet), quint 

(quintet), sext (sextet), m (multiplet).  The index br stands for broad. 

Mass Spectrometry (MS):  Mass spectra were measured by Dr. H. Nadig (Department of 

Chemistry, University of Basel) on a VG70-250 (electron ionization (EI)) mass spectrometer or a 

MAR 312 (fast atom bombardment (FAB)) mass spectrometer.  FAB was preformed with 3-

nitrobenzyl alcohol (NBA) as matrix.  ESI MS spectra were measured on a Finnigan MAT LCQ 

and a on a Varian 1200L triple Quad MS/MS.  The signals are given in mass to charge ratio 

(m/z).  The fragment and intensities are given in brackets.  All values are rounded to the nearest 

whole number.  

Infrared Spectroscopy (IR):  Infrared spectra were measured on a Perkin Elmer 1600 series FTIR 

spectrometer.  Solid samples were measured as KBr discs or as thin films on NaCl plates.  
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Absorption bands are given in wave numbers ṽ ( cm
-1

).  The peak intensity is assigned with s 

(strong), m (medium) and w (weak).  The index br stands for broad.  

Melting Point (m.p.):  Melting points were measured on a Büchi 535 melting point apparatus and 

are uncorrected. 

Optical Rotation ([α]
20

D ):  Optical rotations were measured on a Perkin Elmer Polarimeter 341 in 

a 1 dm cuvette at 20 ˚C.  The concentration (c) is given in g/100 mL. 

Gas Chromatography (GC):  Gas chromatograms were collected on a Carlo Erba HRGC Mega2 

Series 800 (HRGS Mega2) instruments.  Achiral separations were performed on a Restek Rtx-

1701 column (30m x 0.25mm x 0.25µm) and for chiral separations ϐ and γ cyclodexterine 

columns (30m x 0.25mm x 0.25µm) were used.   

High Performance Liquid Chromatography (HPLC):  HPLC analyses were measured on 

Shimadzu systems with SCL-10A system controller, CTO-10AC column oven, LC10-AD pump 

system, DGU-14a degasser and SPD-M10A Diode Array or UV/VIS detector.  Chiracel brand 

chiral columns from Daicel Chemical Industries were used with models OD-H, OJ-H, AD-H, 

OB-H or IC in 4.6 x 250 mm size.   

Semipreparative High Performance Liquid Chromatography (HPLC):  Seperations by 

semipreparative HPLC were performed on a Shimadzu system with SIL 10Advp autosampler, 

CTO 10 Asvp column oven, LC 10 Atvp pump system, FCV 10 Alvp degasser and SPD M10 

avp diode array detector.  Chiralcel brand columns from Diacel Chemical Industries were used 

with models OD and AD in size 2 x 25 cm.   

Thin Layer Chromatography (TLC):  TLC plates were obtained from Whatman (Partisil, 250 µm 

x 20 cm x 20 cm, florescent model K6F) and the glass was scored and plates broken into 20 x 

100 mm size with a glass cutter.  TLC were visualized with UV light (254 nm, 366 nm) or with 

basic permanganate solution or ceric ammonium molybdate solution. 

Gas Chromatography with Mass Spectrum detection (GC/MS):  HP6890 gas chromatograph with 

a HP5970A detector equipped with a Machery and Nagel Optima5 5% 

polyphenylmethylsiloxane column, 25 m x 0.2 mm id and 35 µM film thickness, flow set to 20 

psi of hydrogen carrier gas, a 20/1 split ratio.   The oven was programmed for a starting 
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temperature of 100 ˚C, a 2 minute holding time at that temperature, a 10 ˚C/minute ramp with a 

final temperature of 270 ˚C and a holding time of 10 minutes at that temperature. 

Elemental Analysis (EA):  Elemental analyses were measured at the Department of Chemistry 

University of Basel Microanalytical Laboratory by Mr. W. Kirsch on a Leco CHN-900 analyser.   

5.3  Buildup of 1,5 dicarbonyl building blocks and intermediates 

Intermediate 111: 3-(Dimethylamino)-1-phenylpropan-1-one 

 

Dimethylamine hydrochloride (52.7 g, 0.65 mol) and paraformaldehyde (19.89 g, 0.22 mol) were 

weighed into a round bottom flask equipped with a heavy magnetic stir bar.  Ethanol (100 mL, 

absolute) and 1 mL of concentrated hydrochloric acid were added to the dry reagents with 

mixing.  Acetophenone (60 g, 58.5 mL, 0.5 mol) was added to the solution and the reaction was 

heated to reflux for 3 hours.  The hot solution was poured into 450 mLs of acetone and allowed 

to cool for 2 hours.  The resulting crystals were vacuum filtered, washed with acetone and dried 

on high vacuum for several hours.  The free base was liberated by addition of saturated 

potassium carbonate to an ice cold solution of the hydrochloride salt with strong stirring and an 

additional 200 grams of ice to assist cooling.  The solution was adjusted to 9.5 by checking with 

pH indicator strips.  The cold mixture was extracted with diethyl ether (3 x 150 mL), the 

fractions were combined and washed with ice cold brine (200 mLs), dried over magnesium 

sulfate, filtered and concentrated on a rotovap without heating in a room temperature water bath 

to yield a viscous clear oil (35.4 g, 0.2 mol, 91% yield).  A 
1
H NMR was quickly taken to ensure 

reasonable quality and the Mannich base was used immediately in the formation of the 1,5 

diketone.  

Chemical Formula: C11H15NO Molecular Weight: 177.2 

1
H NMR (400 MHz, CDCl3) δ 7.97 (d, J = 7.4 Hz, 2 H), , 7.57 (t, J = 7.4 Hz, 1 H), 7.47 (t, J = 

7.7 Hz, 2 H), 3.26 (t, J = 7.3 Hz, 2 H), 2.88 (t, J = 7.3 Hz, 2 H), 2.38 (s, 6 H). 
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Intermediate 112a: 2-Phenyloctahydrocyclopenta[b]pyran-2,7a-diol 

 

Freshly prepared 3-(dimethylamino)-1-phenylpropan-1-one (111), (35.4 g, 0.2 mol) was 

combined with cyclopentanone (95 g, 100 mL, 1.13 mol) in a round bottom flask and the 

resulting solution was heated to 145 ˚C for 3 hours.  The remaining cyclopentanone was removed 

by vacuum distillation to result in a viscous yellow oil which was further purified by kugelrohr 

distillation to yield the crystalline hydrate when left in contact with air overnight (45 g, 0.192 

mol, 96%).  

Chemical Formula: C14H18O3 Molecular Weight: 234.3 

1
H NMR (400 MHz, CDCl3) δ 7.96 (d, J = 7.3 Hz, 2H), 7.54 (t, J = 7.4 Hz, 1H), 7.45 (t, J = 7.6 

Hz, 2H), 3.18 – 3.03 (m, 2H), 2.35 – 1.96 (m, 6H), 1.85 – 1.73 (m, 2H), 1.56 (ddd, J = 16.7, 

10.7, 6.6 Hz, 1H). 

13
C NMR (101 MHz, CDCl3) δ 221.0, 199.8, 136.8, 133.0, 128.5, 128.0, 48.2, 38.1, 36.1, 29.9, 

24.2, 20.6. 

MS (e.i. 70 eV): m/z (%) 216.1 (15), 133.1 (9), 120.1 (60), 105.0 (100), 77.0 (32). 

Intermediate 112b: 2-Phenyloctahydro-2H-chromene-2,8-diol 

 

Prepared in an analogous manner to 112a, yield 98%.  

Chemical Formula: C15H20O3 Molecular Weight: 248.3 

1
H NMR (400 MHz, CDCl3) δ 7.98 (d, J = 7.7 Hz, 2H), 7.55 (t, J = 7.4 Hz, 1H), 7.45 (t, J = 7.6 

Hz, 2H), 3.15 – 3.08 (m, 1H), 2.97 (ddd, J = 16.9, 8.2, 6.7 Hz, 1H), 2.48 – 2.37 (m, 2H), 2.35 – 
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2.26 (m, 1H), 2.19 – 2.02 (m, 3H), 1.91 – 1.84 (m, 1H), 1.75 – 1.61 (m, 4H), 1.46 (qd, J = 12.1, 

3.7 Hz, 1H). 

13
C NMR (101 MHz, CDCl3) δ 213.2, 200.2, 136.8, 132.9, 128.5, 128.0, 49.9, 42.2, 36.3, 34.5, 

28.1, 25.0, 24.4. 

MS (e.i. 70 eV): m/z (%) 230.1 (24), 133.1 (14), 120.1 (82), 111.1 (11.1),105.0 (100), 77.0 (41). 

Intermediate 120: 3-(2-Oxocyclohexyl)propanenitrile
[1-3]

 

 

Cyclohexanone (120g, 128 mLs, 1.19 mol), acrylonitrile (64.8g, 80.0 mL, 1.22 mol), 

cyclohexylamine (4.3 g , 5.0 mL, 43.4 mmol) and acetic acid (525 mg, 0.5 mL,  8.7 mmol) were 

mixed together in a round bottom flask and heated to 120 ˚C for 3 hours.  The resulting liquid is 

fractionally distilled under vacuum (0.6 mbar, 110 ˚C) to result in a clear oil (154 g, 1.02 mol, 

86% yield). 

Chemical Formula: C9H13NO Molecular Weight: 151.2 

1
H NMR (400 MHz, DMSO) δ 2.42 (ddd, J = 19.6, 12.5, 6.7 Hz, 3H), 2.20 (dd, J = 13.3, 4.3 Hz, 

1H), 2.07 (dtd, J = 12.0, 6.0, 3.3 Hz, 1H), 1.99 (ddd, J = 9.4, 6.0, 3.0 Hz, 1H), 1.91 (dt, J = 21.2, 

7.3 Hz, 1H), 1.82 – 1.72 (m, 1H), 1.72 – 1.48 (m, 2H), 1.42 (td, J = 13.6, 7.5 Hz, 1H), 1.28 (qd, J 

= 12.5, 3.8 Hz,1H). 

MS (e.i. 70 eV): m/z (%) 151.1 
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5.4 Synthesis of fused ring substituted 2-pyridones 

Intermediate 137a: 4-Methyl-6,7-dihydro-1H-cyclopenta[b]pyridin-2(5H)-one
[4-6]

 

 

Ethyl acetoacetate (136), (116 g, 107 mL, 1 mol), cyclopentanone (84 g, 88.5 mL, 1 mol) and 

ammonium acetate (77.8 g, 1 mol) were combined together in a 1000 mL flask and heated to 135 

˚C for 18 hours with a reflux condensor and water cooling.  The reflux condensor was replaced 

with a large simple distillation head and a long cooling condensor with a vacuum adapter and 

250 mL receiving flask attached at the distilate end.  The reaction mixture was partially 

concentrated by vacuum distilling off the remaining cyclopentanone and acetic acid (ca 90 mL) 

to yield a very dark, high viscosity solution.  The product precipitates as an orange solid 

overnight, collected by vacuum filtration and the filter cake is washed with 50 mLs of diethyl 

ether and 50 mls of water.  Recrystalized from ethanol or ethyl acetate (100mL) or water 

(roughly 700 mLs) to yield 29 grams of a white crystaline solid. 

Chemical Formula: C9H11NO Molecular Weight: 149.2  

MP: 240 ˚C. 

1
H NMR (400 MHz, CDCl3) δ 6.91 (s, 1H), 2.99 (t, J = 7.8 Hz, 2H), 2.82 (t, J = 7.5 Hz, 2H), 

2.23 (s, 3H), 2.18 – 2.06 (m, 2H). 

13
C NMR (101 MHz, CDCl3) δ 160.2, 150.9, 148.4, 120.5, 115.0, 31.0, 28.3, 22.3, 19.7. 

MS (e.i. 70 eV): m/z (%) 216.1 (15), 133.1 (9), 120.1 (60), 105.0 (100), 77.0 (32). 

IR (ṽ): 3271s, 2916w, 16341, 1535m, 1435m, 1219w, 1173m, 1111w, 957m cm
-1

. 
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Intermediate 137b: 5,6,7,8-Tetrahydroquinolin-2(1H)-one
[1, 3]

 

 

The commercially available 2-pyridone was prepared according to Meyers et. Al. with the 

following procedure and notes: 3-(2-Oxocyclohexyl)propanenitrile
 
(120), (30 g, 20.8 mmol) is 

added to ice cold 98% sulfuric acid (200 mL) under argon with overhead stirring via a dropping 

funnel over a period of 45 minutes with internal temperature monitoring.  On completion of the 

addition the orange reaction mixture is allowed to warm to room temperature, bubbling of sulfur 

dioxide is apparent as the reaction proceeds.  If addition is carried out to quickly a large 

exotherm is observed and little or no product will be obtained.  On warming the reaction mildly 

exotherms to 29 ˚C and bubbles become more prevalent.  The reaction is stirred for an additional 

45 minutes (ca 3 hours total time) and the reaction was carefully poured over a mixture of 1kg of 

crushed ice and 430 mLs of 32% ammonium hydroxide chilled in a large ice bath with vigorous 

stirring and cooling.  The resulting aqueous solution (pH 9) is extracted with chloroform (9 x 150 

mLs), the layers are combined and concentrated at the rotovap to yield 19 grams of crude 

product which is recrystallized from 1L of hot water which was concentrated to 600 mLs by 

normal distillation.  The resulting long white needles are filtered off by vacuum filtration and 

dried by pulling air over the filtrate for 2 hours to result in 14 grams of semi-pure product which 

is further purified by sublimation (0.1 mbar, 100 ˚C, water cooling) to result in 13 grams of pure 

product as a white powder. 

Chemical Formula: C9H11NO Molecular Weight: 149.2  

MP: 204 ˚C.  

1
H NMR (400 MHz, DMSO) δ 13.24 (s, 1H), 7.16 (d, J = 9.1 Hz, 1H), 6.35 (d, J = 9.1 Hz, 1H), 

2.67 (t, J = 5.9 Hz, 2H), 2.45 (t, J = 5.8 Hz, 2H), 1.80 – 1.68 (m, 4H). 

13
C NMR (101 MHz, CDCl3) δ 162.2, 142.9, 142.5, 117.0, 111.7, 26.1, 25.4, 22.17, 21.2. 

Elemental Analysis: for C9H11NO calculated C, 72.46; H, 7.43; N, 9.39 found C, 72.41; H, 7.36; 

N, 9.39. 
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5.4  Chlorination of 2-pyridones 

General procedure:  Solid 2-pyridone (15.7 g, 0.105 mol) and phenylphosphoryl dichloride (55.7 

g, 40 mL, 0.285 mol) were added to a 100 mL round bottom flask equipped with a strong egg 

shaped stir bar, a reflux condenser and an inert gas bubbler, a Teflon sleeve was placed between 

the reflux condenser and flask to prevent the joints from fusing together.  The resulting slurry 

was heated to 135 ˚C under an argon atmosphere during which time the solids dissolved.  The 

resulting orange solution was stirred for 16 hours at this temperature.  A 2 L flask was charged 

with 500 grams of ice, 60 grams of potassium carbonate, 200 mLs of water, 200 mLs of 

chloroform and a large and powerful stir bar for mixing viscous slurries.  The flask was set in a 

large ice water bath and the still warm (ca 80 ˚C) highly viscous black reaction mixture was 

poured gently into the ice/ base quench mixture with a high rate of mixing.  It is important to 

note that the cold reaction mixture forms a black tar which is extremely difficult to work with 

and ground glass joints fuse together if the entire joint is not protected by a Teflon sleeve.  

Precautions should be taken as a very exothermic release of gas ensues with the addition of 

strong acid to potassium carbonate, strong mixing and cooling assist this greatly.  The remains of 

the reaction are washed into the stirring quench mixture with chloroform and the pH is adjusted 

to 8.5 with the careful addition of portions of potassium carbonate and frequent checking with 

pH indicator strips.  Highly alkaline media will result in pyridone formation and moderate pH of 

8.5-9.2 should be maintained.  The mixture is poured into a large separatory funnel and the 

layers are separated.  The aqueous layer is back extracted with chloroform (2 x 200 mLs), the 

layers are combined and dried over magnesium sulfate.  The filtered organics were concentrated 

at a rotovap and the resulting black mixture was purified by Kugelrohr distillation (0.06 mbar, 

120-150 ˚C, dry ice cooling) to result in a white solid which slowly darkens on contact with air 

and light and melts at very moderate temperatures.  Note: the products are very pungent, volatile 

and some people develop a headache and nausea when exposed to the vapors.    
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Intermediate 138a: 2-Chloro-4-methyl-6,7-dihydro-5H-cyclopenta[b]pyridine
[6-8]

 

 

Produced by the general method to yield 15.3 grams of colorless waxy solid which slowly 

darkens in contact with air and light, 87% yield. 

C9H10ClN Molecular Weight: 167.6 

1
H NMR (400 MHz, CDCl3) δ 6.91 (s, 1H), 2.99 (t, J = 7.8 Hz, 2H), 2.82 (t, J = 7.5 Hz, 2H), 

2.23 (s, 3H), 2.19 – 2.05 (m, 2H). 

13
C NMR (101 MHz, CDCl3) δ 160.2, 150.9, 148.4, 120.5, 115.0, 31.0, 28.3, 22.3, 19.7. 

MS (e.i. 70 eV): m/z (%) 216.1 (15), 133.1 (9), 120.1 (60), 105.0 (100), 77.0 (32). 

IR (ṽ): 3271s, 2916w, 16341, 1535m, 1435m, 1219w, 1173m, 1111w, 957m cm
-1

. 

MP: 51˚C. 

Elemental Analysis: for C9H10ClN calculated C, 64.48; H, 6.01; N, 8.36 found C, 64.26; H, 6.08; 

N, 8.23. 

Intermediate 138b: 2-Chloro-5,6,7,8-tetrahydroquinoline 

 

The commercially available compound was prepared using the general procedure outlined above 

in an identical fashion yielding 14.08 grams, 80.3% as a colorless waxy solid. 

Chemical Formula: C9H10ClN Molecular Weight: 167.6 

1
H NMR (400 MHz, CDCl3) δ 7.65 (d, J = 8.0 Hz), 7.39 (d, J = 8.0 Hz), 3.23 (t, J = 6.4 Hz), 3.07 

(t, J = 6.2 Hz), 2.25 – 2.18 (m), 2.17 – 2.10 (m). 

13
C NMR (101 MHz, CDCl3) δ 158.2, 147.7, 139.5, 131.0, 121.1, 32.2, 28.0, 22.6, 22.4. 
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5.5  Synthesis of 2-aryl substituted pyridines 

General method A:
[9] 

A 250 mL round bottom flask was charged with 2-Phenyloctahydro-2H-

chromene-2,8-diol (112b), (16.7 grams, 67.0 mmol), hydroxylamine hydrochloride (9.35 g, 134 

mmol) and 50 mLs of absolute ethanol.  A water cooled reflux condensor was placed on the flask 

and the reaction was heated to 110 ˚C with for 5 hours.  The reaction was allowed to stand at 

room temperature overnight and the reaction mixture was concentrated to dryness on a rotovap.  

The crude solid was worked up by addition of saturated solution of sodium bicarbonate unitl 

basic pH was reached (ca 8.5), the aqueous layer was extracted with ether (2 x 200 mLs), the 

organic layers were combined and washed with brine (2 x 100 mLs), dried over magnesium 

sulfate, filtered and concentrated at the rotovap to yield 14.58 grams of semipure product.  This 

material was taken up in techincal grade acetone (150 mLs), cooled in an ice salt bath and 

concentrated  hydrochloric acid was added dropwise (7 mLs).  A white precipitate was 

immediately visible and persisted with the addition of more acid until the reaction mixture 

became a very thick slurry.  The slurry was stirred for 30 minutes in the cold bath and the 

precipitate was then isolated by filtration.  The filtrate was washed with acetone (2 x 40 mLs) 

while breaking up the filtrate with a spatula and ensuring efficent washing.  The resulting solids 

were transferred to a large round bottom flask and dried on the rotovap for 1 hour at 70 ˚C and 

then on high vacuum for several hours to yield 13.7 grams of the hydrochloride 83%.  The 

hydrochloride salt is easily freed by dissolving in dichloromethane and washing with two washes 

of saturated bicarbonate.   

General method B:
[10] 

A 5 mL microwave tube was charged with 2-pyridylchloride (167 mg, 1 

mmol), 2-aryl boronic acid or ester (1.15 mmol) and the Nolan palladium NHC carbene catalyst 

chloro[(1,2,3-n)-3-phenyl-2-propenyl][1,3-bis(2,6-di-i-propylphenyl)-4,5-dihydroimidazol-2-

ylidene]palladium(II) (1.9 mg, 2.92 µmol, 0.3 mol%).  A stir bar was added and the microwave 

tube was sealed with a  high presure microwave septum.  The reaction vessel was purged with 

argon for 15 minutes by a needle inlet and release needle through the septum.  Degassed 

isopropanol (3 mLs) was added via syringe and the contents were stirred and briefly sonicated 

until all had dissolved.  Degassed aqueous sodium hydroxide (120 mg, 3 mmol) in 250 µL of 

water was added, the needles were removed and the reaction was heated to 100 ˚C for 48 hours.  

The vial is then cooled and decapped.  The contents were washed into a round bottom flask and 

the volatiles were removed at a rotovap.  The crude solids were taken up in dichloromethane, 
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washed with saturated sodium bicarbonate (3 x 20 mLs), brine (1 x 20 mLs) and the organics 

were dried over magnesium sulfate.  The volatiles were removed at a rotovap and the solids were 

taken up in dry hydrochloric acid in ether resulting in the immediate precipitation of a powder 

which was collected on a glass frit, washed with hexane and the hydrochloride pyridine salt was 

collected by dissolving in chloroform.  The chloroform solution was neutralized with saturated 

bicarbonate, dried over magnesium sulfate and concentrated to yield the pure 2-arylpyridine.   

Intermediate 113a: 2-Phenyl-6,7-dihydro-5H-cyclopenta[1]pyridine 

 

Produced by general method A except using 2-phenyloctahydrocyclopenta[b]pyran-2,7a-diol 

(112a), (35.6 grams, 0.152 mol), hydroxylamine hydrochloride (15.84 grams, 0.228 mol), and 

twice the described volumes to result in 35 grams of pure pyridine hydrochloride salt 99%.  

Chemical Formula: C14H13N Molecular Weight: 195.3 

Intermediate 113b: 2-Phenyl-5,6,7,8-tetrahydroquinoline 

 

Produced by general method A in exact detail.  83% Yield 13.7 grams (55.7 mmol) of the 

hydrochloride salt as an off white powder. The following spectral data is for the hydrochloride 

salt, all data of the free pyridines were in good agreement with the literature.
[9]

 

Chemical Formula: C15H15N Molecular Weight: 209.3  

1
H NMR (400 MHz, CDCl3) δ 8.11 – 8.05 (m, 1H), 8.02 (d, J = 8.2 Hz, 1H), 7.72 (d, J = 8.2 Hz, 

1H), 7.57 – 7.55 (m, 3H), 3.69 (t, J = 6.3 Hz, 2H), 2.93 (t, J = 6.2 Hz, 2H), 2.07 (s, 1H), 2.00 – 

1.85 (m, 4H). 
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Intermediate 141c: 2-(Anthracen-9-yl)-4-methyl-6,7-dihydro-5H-cyclopenta[b]pyridine 

 

Produced by general method B with the following modifications:  2-Chloro-4-methyl-6,7-

dihydro-5H-cyclopenta[b]pyridine (138a), (415 mg, 2.49 mmol) was weighed into a 20 mL 

microwave tube with 2-(anthracen-9-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (anthracene-9-

pinacolboronic ester, 870 mg, 2.86 mmol), the Nolan NHC catalyst (144), (16 mg, 24.9 µmol, 1 

mol%) and a stir bar.  A stir bar was added and the microwave tube was sealed with a  high 

presure microwave septum.  The reaction vessel was purged with argon for 15 minutes by a 

needle inlet and release needle through the septum.  Degassed isopropanol (12 mLs) was added 

via syringe and the contents were stirred and briefly sonicated until all had dissolved.  Degassed 

aqueous sodium hydroxide (4M, 1.87 mL, 7.46 mmol) was added, the needles were removed and 

the reaction was heated to 105 ˚C for 48 hours.  The vial is then cooled and decapped.  The 

contents were washed into a round bottom flask and the volatiles were removed at a rotovap.  

The crude solids were taken up in dichloromethane, washed with saturated sodium bicarbonate 

(3 x 60 mLs), brine (1 x 60 mLs) and the organics were dried over magnesium sulfate.  The 

volatiles were removed at a rotovap and the solids were taken up in dry hydrochloric acid in 

ethanol resulting in a yellow solution which was concentrated to dryness. Ether was added to the 

solids with sonication and scratching with a spatula.  The resulting yellow powder was collected 

on a glass frit, washed with hexane, small portions of ether, and the hydrochloride pyridine salt 

was collected by dissolving in chloroform.  The chloroform solution was neutralized with 

saturated bicarbonate, dried over magnesium sulfate and concentrated to yield the pure 2-

arylpyridine as a bright yellow solid (748 mg, 2.42 mmol, 97%). 

Chemical Formula: C23H19N Molecular Weight: 309.4 
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1
H NMR (500 MHz, CDCl3) δ 8.50 (s, 1H), 8.03 (d, J = 8.5 Hz, 2H), 7.65 (d, J = 8.8 Hz, 2H), 

7.46 – 7.42 (m, 2H), 7.37 – 7.33 (m, 2H), 7.10 (s, 1H), 3.17 (t, J = 7.7 Hz, 2H), 3.05 (t, J = 7.5 

Hz, 2H), 2.37 (s, 3H), 2.26 (p, J = 7.7 Hz, 2H). 

13
C NMR (126 MHz, CDCl3) δ 165.39, 155.84, 143.02, 135.88, 134.82, 131.47, 130.31, 128.38, 

127.08, 126.50, 125.54, 125.12, 125.01, 34.60, 29.27, 22.60, 19.02. 

MS (e.i. 70 eV): m/z (%) 310.4 (12), 309.4 (59), 308.4 (100), 293.3 (2), 292.3 (5), 291.3 (6), 

290.2 (2), 140.7 (3), 140.4 (3).  

Intermediate 141a: 2-Mesityl-4-methyl-6,7-dihydro-5H-cyclopenta[b]pyridine 

 

Synthesized by general method B with the following modifications to the amounts used and 

purification: 2-pyridylchloride (138a), (850 mg, 5.09 mmol), 2,4,6-mesitylboronic acid (959 mg, 

5.85 mmol), Nolan NHC catalyst (144) (64 mg, 9.98 µmol, 2 mol%), 12 mLs of isopropanol, and 

4M NaOH (3.8 mLs, 15.3 mmol) were used.  Heated to 115˚C to overcome the insolubility of 

resulting boric eight complex, precipitate becomes loose and reaction mixture becomes less 

cloudy at higher temperature.  Dry hydrochloric acid in ethanol (3 mLs of acetyl chloride in 30 

mLs of absolute ethanol) was added to the crude solid after aqueous workup and removed at the 

rotovap followed by toluene (20 mLs) with subsequent removal by rotovap of the solvent to aid 

in crystallization.  Isolation was identical to general method in all other regards yielding 1.1 

grams (86%) of free pyridine after basic workup as an oil.  Product can be purified by 

chromatography (3.5 X 15 cm silica gel, dry load), 30% ethyl acetate in hexane, Rf of product = 

0.5.   

Chemical Formula: C18H21N Molecular Weight: 251.4 

1
H NMR (400 MHz, CDCl3) δ 6.89 (s, 2H), 6.77 (s, 2H), 3.05 (t, J = 7.8 Hz, 2H), 2.92 (t, J = 7.5 

Hz, 2H), 2.29 (s, 3H), 2.27 (s, 3H), 2.16 (dt, J = 11.0, 7.7 Hz, 2H), 2.01 (s, 6H). 
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13
C NMR (101 MHz, CDCl3) δ 164.8, 157.8, 142.8, 138.2, 136.8, 135.8, 133.7, 128.1, 122.8, 

34.4, 29.1, 22.4, 21.0, 20.2, 18.9. 

MS (e.i. 70 eV): m/z (%) 252.3 (6), 251.2 (37), 250.0 (100), 237.2 (1.3), 236.2 (8), 235.2 (7), 

234.2 (5). 

IR (neat ,ṽ): 2930, 2858, 1612, 1590, 1563, 1460,  1393, 1258, 1181, 1116, 957, 849 cm
-1

. 

Elemental Analysis: for C18H21N calculated C, 86.01; H, 8.42; N, 5.57 found C, 85.59; H, 8.52; 

N, 5.74. 

Intermediate 141d: 2-(Anthracen-9-yl)-5,6,7,8-tetrahydroquinoline
[11]

 

 

Prepared by general procedure B.  Yield of 283 mg (90%) of bright yellow solid after basic 

workup.   

Chemical Formula: C23H19N Molecular Weight: 309.4 

1
H NMR (400 MHz, CDCl3) δ 8.51 (s, 1H), 8.03 (d, J = 8.5 Hz, 2H), 7.64 (dd, J = 8.8, 0.9 Hz, 

2H), 7.57 (d, J = 7.7 Hz, 1H), 7.46 – 7.42 (m, 2H), 7.36 (ddd, J = 8.6, 6.5, 1.3 Hz, 2H), 7.24 (d, J 

= 7.7 Hz, 2H), 3.06 (t, J = 6.3 Hz, 2H), 2.95 (t, J = 6.2 Hz, 2H), 2.05 – 1.91 (m, 4H). 

13
C NMR (101 MHz, CDCl3) δ 155.4, 150.5, 144.9, 136.8, 131.4, 131.2, 131.0, 129.4, 127.9, 

127.6, 125.91, 124.7, 124.6, 28.4, 28.1, 21.7, 21.4.  

MS (e.i. 70 eV): m/z (%) 310.4 (12), 309.4 (59), 308.4 (100), 280.3 (18), 279.3 (5), 278.3 (8), 

290.2 (2), 140.0 (7), 139.3 (5). 
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Intermediate 141b 2-Mesityl-5,6,7,8-tetrahydroquinoline 

 

Synthesized by general method B with the following modifications to the amounts used and 

purification: 2-pyridylchloride (138b), (954 mg, 5.70 mmol), 2,4,6-mesitylboronic acid (1.11 

mg, 5.85 mmol), Nolan NHC catalyst (74 mg, 11.4 µmol, 2 mol%), 12 mLs of isopropanol, and 

4M NaOH (3.8 mLs, 15.26 mmol) were used.  Heated to 115 ˚C to overcome the insolubility of 

resulting boric eight complex, precipitate becomes loose and reaction mixture becomes less 

cloudy at higher temperature.  Dry hydrochloric acid in ethanol (3 mLs of acetyl chloride in 30 

mLs of absolute ethanol) was added to the crude solid after aqueous workup and removed at the 

rotovap followed by toluene (20 mLs) with subsequent removal by rotovap of the solvent to aid 

in crystallization.  Isolation was identical to general method in all other regards yielding 1.25 

grams (87%) of free pyridine after basic workup as an oil.  Product can be purified by 

chromatography (3.5 X 15 cm silica gel, dry load), 30% ethyl acetate in hexane. 

Chemical Formula: C18H21N Molecular Weight: 251.4 

1
H NMR (400 MHz, CDCl3) δ 7.39 (d, J = 7.7 Hz, 1H), 6.93 (d, J = 7.8 Hz, 1H), 6.91 – 6.88 (s, 

2H), 2.95 (t, J = 6.4 Hz, 2H), 2.81 (t, J = 6.3 Hz, 2H), 2.29 (s, 3H), 2.02 (s, 6H), 1.97 – 1.90 (m, 

2H), 1.89 – 1.82 (m, 2H). 

13
C NMR (101 MHz, CDCl3) δ 156.9, 156.8, 137.9, 137.0, 136.9, 135.8, 129.7, 128.2, 121.7, 

32.5, 28.6, 23.2, 22.8, 21.0, 20.2. 

MS (e.i. 70 eV): m/z (%) 252.3 (6), 251.2 (41), 250.0 (100), 236.2 (1.7), 235.2 (7), 234.2 (5), 

223.2 (2.7), 222.2 (9), 221.3 (2). 

IR (neat ,ṽ): 2924, 2850, 1614, 1591, 1561, 1458,  1393, 1252, 1181, 1111, 957, 842 cm
-1

. 

Elemental Analysis: for C18H21N calculated C, 86.01; H, 8.42; N, 5.57 found C, 86.13; H, 8.42; 

N, 5.52. 
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5.6  Oxidation of ortho substituted pyridines to pyridine-N-oxides 

General method A:  Ortho functionalized pyridine (53.9 mmol) was dissolved in acetic acid (75 

mLs) and 32% hydrogen peroxide was added to this mixture which was then heated to 100˚C for 

18 hours.  The volatiles were removed at the rotovap and the resulting slurry was dissolved in 

DCM (300 mLs) and partitioned with 5% sodium bicarbonate (2 x 150 mLs),water (2 x 150 

mLs), and brine (2 x 100 mL).  The organic layer was dried over magnesium sulfate, filtered and 

concentrated to dryness to yield essentially pure product (53.6 mmol) which could be further 

purified by taking up in a minimal amount of toluene (ca 60 mLs) and leaving in the freezer 

overnight (47.3 mmol). 

General method B:   Ortho functionalized pyridine (1.62 mmol) was dissolved in 10 mLs of 

DCM and commercially quality 77% MCPBA was added (500 mg, 2.89 mmol).  The flask was 

equipped with a reflux condenser and the reaction was heated to 42˚C while monitoring the 

disappearance of starting material by TLC (2-4% TEA in DCM).  Reaction is complete within 4 

to 6 hours and quenched immediately to prevent over oxidation.  The reaction was quenched 

with a workup by extraction with saturated bicarbonate diluted in water (1:3 v/v, 3 x 50 mL), 

water (2 x 50 mL) and brine (2 x 50 mL).  The organic layer was dried over sodium sulfate, 

filtered and concentrated at the rotovap for essentially pure product in a yield range of 70-96%.   

Intermediate 139a: 2-Chloro-4-methyl-6,7-dihydro-5H-cyclopenta[b]pyridine-N-oxide
[5, 8]

 

 

Produced in an identical manner to general method A.  Yield 9.30 grams (50.6 mmol) of white 

crystalline material from 53.9 mmol of starting material (94% isolated yield).   

Chemical Formula: C9H10ClNO Molecular Weight: 183.6 

MP: 172 ˚C. 

1
H NMR (400 MHz, CDCl3) δ 7.11 (s, 1H), 3.19 (t, J = 7.6 Hz, 2H), 2.92 (t, J = 7.6 Hz, 2H), 

2.23 (s, 3H), 2.19 – 2.05 (m, 2H). 
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13
C NMR (101 MHz, CDCl3) δ 163.4, 153.4, 133.8, 133.7, 125.3, 30.7, 30.4, 22.0, 18.0. 

MS (e.i. 70 eV): m/z (%) 183 (83), 166 (100), 151 (18), 131 (52), 77 (18). 

IR (ṽ): 3032w, 1805w, 1659w, 1512w, 1458m, 1381m, 1227s, 1173s, 1072m, 910s cm
-1

. 

Intermediate 139b: 2-Chloro-5,6,7,8-tetrahydroquinoline -N-oxide
[1, 7, 8, 11, 12]

 

 

 

Produced in an identical manner to general method A.  Yield 9.2 grams (50.3 mmol) of white 

crystalline material from 53.9 mmol of starting material (93% isolated yield). 

Chemical Formula: C9H10ClNO Molecular Weight: 183.6 

1
H NMR (400 MHz, CDCl3) δ 7.23 (d, J = 8.3 Hz, 2H), 6.92 (d, J = 8.3 Hz, 2H), 2.95 (t, J = 6.6 

Hz, 2H), 2.74 (t, J = 6.0 Hz, 2H), 1.92 – 1.84 (m, 2H), 1.78 – 1.70 (m, 2H). 

13
C NMR (101 MHz, CDCl3) δ 150.5, 139.1, 134.2, 125.8, 122.9, 28.3, 25.5, 21.7, 21.4. 

Intermediate 114b: 2-Phenyl-5,6,7,8-tetrahydroquinoline-N-oxide
[9]

 

 

Produced by method A except using 20.4 grams (97.6 mmol) of starting pyridine 2-phenyl-

5,6,7,8-tetrahydroquinoline, 150 mL of acetic acid and 13.3 mLs of 32% hydrogen peroxide 

resulting in 19.9 grams (88.8 mmol), 91% yield. 

Chemical Formula: C15H15NO Molecular Weight: 225.3 

1
H NMR (400 MHz, CDCl3) δ 7.79 – 7.75 (m, 2H), 7.48 – 7.38 (m, 3H), 7.22 (d, J = 8.1 Hz, 

1H), 7.08 (d, J = 8.1 Hz, 1H), 3.01 (t, J = 6.5 Hz, 2H), 2.81 (t, J = 6.1 Hz, 2H), 1.97 – 1.89 (m, 

2H), 1.80 (dtd, J = 9.2, 6.2, 2.8 Hz, 2H). 
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13
C NMR (101 MHz, CDCl3) δ 149.5, 146.9, 135.0, 133.4, 129.4, 129.0, 128.1, 126. 123.4, 28.7, 

25.2, 22.1, 21.6.  

Intermediate 141a-N-oxide: 2-Mesityl-4-methyl-6,7-dihydro-5H-cyclopenta[b]pyridine-N-oxide 

 

Produced by general method B except running the reaction at room temperature on 1 gram (4.00 

mmol) of 2-arylpyridine 141a, addition of 1.5 grams (6.00 mmol) MCPBA is quite exothermic.  

An additional 250 mg (1.41 mmol) of oxidant is added 2 hours into reaction to drive the reaction 

to completion, total time 5 hours.   Aqueous workup was identical to that outlined in general 

method B, yielding 950 mg (3.55 mmol, 89%) as a viscous clear wax which crystallized on 

standing for a few hours.   

Chemical Formula: C18H21NO Molecular Weight: 267.4 

1
H NMR (400 MHz, CDCl3) δ 6.92 (s, 2H), 6.83 (s, 1H), 3.24 (t, J = 7.7 Hz, 2H), 2.97 (t, J = 7.6 

Hz, 2H), 2.31 (s, 3H), 2.25 (s, 3H), 2.26 – 2.17 (m, 2H), 2.05 (s, 6H). 

13
C NMR (101 MHz, CDCl3) δ 152.5, 147.4, 139.2, 138.3, 136.8, 132.5, 130.2, 128.2, 126.7, 

30.5, 30.3, 21.9, 21.1, 19.8, 18.1. 

  



Chapter 5  

Experimental 

 

129 

 

Intermediate 141c-N-oxide: 2-(Anthracen-9-yl)-4-methyl-6,7-dihydro-5H-cyclopenta[b]pyridine-

N-oxide 

 

Produced by general method B on 700 mg (2.26 mmol) of 2-arylpyridine 141c with 557 mg 

(2.26 mmol) of MCPBA and heating to 42 ˚C.  An additional 125 mg (0.71 mmol) of MCPBA 

was added 3 hours into the reaction to drive the reaction to completion.  Workup was identical to 

that on general method B to yield 521 mg (1.6 mmol, 71% yield) as a yellow solid.  

Chemical Formula: C23H19NO Molecular Weight: 325.4 

1
H NMR (500 MHz, CDCl3) δ 8.57 (s, 1H), 8.04 (t, J = 9.7 Hz, 2H), 7.55 (d, J = 8.6 Hz, 2H), 

7.47 – 7.43 (m, 2H), 7.42 – 7.39 (m, 2H), 7.09 (s, 1H), 3.34 (t, J = 7.6 Hz, 2H), 3.11 (t, J = 7.6 

Hz, 2H), 2.33 (s, 3H), 2.36 – 2.27 (m, 2H). 

13
C NMR (126 MHz, CDCl3) δ 153.4, 145.9, 140.7, 133.0, 131.8, 130.8, 129.1, 129.0, 127.9, 

126.8, 125.8, 125.6, 31.1, 30.8, 22.5, 18.5. 

Intermediate 141d-N-oxide: 2-(Anthracen-9-yl)-5,6,7,8-tetrahydroquinoline-N-oxide
[11]

 

 

Produced by general method B except using 501 mg (1.62 mmol) of 2-arylpyridine 141d and 397 

mg (1.619 mmol) of MCPBA to yield 506 mg (1.55 mmol, 96%) as a colorless solid. 

Chemical Formula: C23H19NO Molecular Weight: 325.4 

1
H NMR (500 MHz, CDCl3) δ 8.57 (s, 1H), 8.05 (d, J = 8.4 Hz, 2H), 7.51 (d, J = 8.6 Hz, 2H), 

7.47 – 7.43 (m, 2H), 7.41 – 7.38 (m, 2H), 7.25 (d, J = 6.8 Hz, 1H), 7.20 (d, J = 7.9 Hz, 1H), 3.07 
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(t, J = 6.4 Hz, 2H), 2.95 (t, J = 6.1 Hz, 2H), 2.00 (dt, J = 12.1, 6.2 Hz, 2H), 1.90 (dt, J = 11.3, 5.9 

Hz, 2H). 

13
C NMR (126 MHz, CDCl3) δ 155.3, 150.2, 145.5, 136.2, 131.8, 130.5, 129.1, 128.9, 128.3, 

126.9, 126.3, 125.8, 125.6, 29.2, 25.4, 22.5, 22.2. 

Intermediate 141b-N-oxide: 2-Mesityl-5,6,7,8-tetrahydroquinoline-N-oxide 

 

Produced by general method B except using 800 mg (3.18 mmol) of 2-arylpyridine 141b and 

1.17 g (4.78 mmol calculated for 70% b/w).  A significant exotherm occurred on addition of the 

oxidant so the reaction was stirred at room temperature.  Stirred for 5 hours and worked up as in 

general method B to yield 810 mg (3.03 mmol, 95%) as a clear solid. 

Chemical Formula: C18H21NO Molecular Weight: 267.4  

1
H NMR (400 MHz, CDCl3) δ 7.04 – 6.97 (m, 2H), 6.93 (s, 2H), 2.99 (t, J = 6.5 Hz, 2H), 2.82 (t, 

J = 6.1 Hz, 2H), 2.31 (s, 3H), 2.04 (s, 6H), 1.98 – 1.86 (m, 2H), 1.86 – 1.76 (m, 2H). 

13
C NMR (101 MHz, CDCl3) δ 149.2, 147.0, 138.3, 136.6, 134.7, 130.7, 128.2, 125.1, 123.9, 

28.7, 24.9, 22.1, 21.7, 21.1, 19.7. 

5.7  Boekelheide rearrangement of pyridines of N-oxides 

General method: Pyridine-N-oxide (37.3 mmol) was added to a round bottom flask with 60 mLs 

of acetic anhydride.  The reaction was stirred for 1 hour at room temperature and then a reflux 

condenser was placed on the reaction vessel followed by heating to 80 ˚C for 5 hours.  The 

reaction was cooled and the condenser was exchanged for a vacuum distillation head.  The 

volatiles were vacuum distilled off and the resulting viscous oil was taken up in 100 mLs of 

DCM and washed with saturated sodium bicarbonate (3 x 100 mLs), brine (100 mLs), dried over 

magnesium sulfate, filtered and concentrated to dryness at a rotovap.  The crude product can be 

purified by chromatography (3.5 X 15 cm silica gel, dry load) or carried through to ester 

hydrolysis. 
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Intermediate 140a: 2-Chloro-4-methyl-6,7-dihydro-5H-cyclopenta[b]pyridin-7-yl acetate
[5-8]

 

 

Produced in exact detail with the general method resulting in 6.85 grams (30.4 mmol, 81%) of a 

colorless solid in good accordance with the literature. 

Chemical Formula: C11H12ClNO2 Molecular Weight: 225.7 

1
H NMR (400 MHz, CDCl3) δ 7.09 (s, 1H), 6.03 (dd, J = 4.3, 4.3 Hz, 1H), 3.04-2.91 (m, 1H), 

2.78 (ddd, J = 16.3, 8.8, 5.0 Hz, 1H), 2.66 (dddd, J = 14.2, 8.8, 7.5, 5.3 Hz, 1H), 2.29 (s, 3H), 

2.11 (s, 3H), 2.11-2.05 (m, 1H). 

13
C NMR (101 MHz, CDCl3) δ 175.8, 165.5, 149.1, 145.9, 135.1, 121.8, 61.5, 34.0, 28.6, 22.4, 

18.8. 

MS (e.i. 70 eV): m/z (%) 182 (100), 165 (60), 154 (10), 130 (12), 43 (16). 

IR (ṽ): 2955w, 2854w, 1736s, 1589m, 1435m, 1366m, 1304w, 1227s, 1103m, 1042s, 934m, 

887m, 864w, 733w, 687w, 633w cm
-1

. 

Intermediate 140b: 2-Chloro-5,6,7,8-tetrahydroquinolin-8-yl acetate
[1, 11, 13, 14]

 

 

Produced with the general method except using 9.0 grams (49.2 mmol) of 139b.  Resulting in 8.5 

grams (37.7 mmol, 77%) of a colorless solid in good accordance with the literature. 

Chemical Formula: C11H12ClNO2 Molecular Weight: 225.7 
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1
H NMR (400 MHz, CDCl3) δ 7.41 (d, J = 8.1 Hz, 1H), 7.19 (d, J = 8.1 Hz, 1H), 5.85 (t, J = 4.4 

Hz, 1H), 2.83 (dt, J = 17.0, 5.0 Hz, 2H), 2.76 – 2.65 (m, 1H), 2.21 – 2.12 (m, 1H), 2.10 (s, 3H), 

2.04 – 1.95 (m, 1H), 1.95 – 1.88 (m, 1H), 1.88 – 1.78 (m, 1H).  

13
C NMR (101 MHz, CDCl3) δ 170.6, 154.1, 149.2, 140.3, 132.9, 124.3, 70.8, 29.0, 28.1, 21.8, 

18.5.  

Intermediate 142c: 2-(Anthracen-9-yl)-4-methyl-6,7-dihydro-5H-cyclopenta[b]pyridin-7-yl 

acetate 

 

Produced by the general method except 500mg (1.54 mmol) of the pyridine-N-oxide was 

dissolved in 10 mLs of acetic anhydride and heated to 107 ˚C for 20 hours.  Workup is identical 

to the general procedure accept the product was additionally purified by chromatography (2 X 15 

cm silica gel, dry load) with 30% ethyl acetate/ hexane as an eluent to yield 400 mg (1.09 mmol, 

71%) of pure product.   

HPLC conditions: ADH column, 1% isopropanol in heptanes with a flow rate of 0.5 mLs/min 

and a temperature of 25 ˚C.  Elution times Tr = 22 and Ts = 32 minutes.  Semiprep conditions AD 

column, 0.5% isopropanol in hexanes with a flow rate of 6.0 mLs/min and a temperature of 25 

˚C TR = 58 min and Ts = 82 min.   

Chemical Formula: C25H21NO2 Molecular Weight: 367.4 

1
H NMR (400 MHz, CDCl3) δ 8.52 (s, 1H), 8.52 (s, 1H), 8.03 (dd, J = 8.4, 5.2 Hz, 2H), 7.67 – 

7.64 (m, 1H), 7.57 (dd, J = 8.8, 0.8 Hz, 1H), 7.48 – 7.42 (m, 2H), 7.40 – 7.32 (m, 2H), 7.27 (s, 

1H), 6.17 (dd, J = 7.4, 3.7 Hz, 1H), 5.30 (d, J = 2.2 Hz, 2H), 3.19 (ddd, J = 14.6, 9.0, 6.0 Hz, 

1H), 3.00 (ddd, J = 16.5, 9.0, 4.5 Hz, 1H), 2.79 (dddd, J = 13.4, 9.0, 7.4, 5.9 Hz, 1H), 2.42 (s, 

3H), 2.27 – 2.18 (m, 1H), 2.06 – 2.06 (m, 1H). 
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MS (e.i. 70 eV): m/z (%) 368.2 (3), 367.2 (15), 308.2 (37), 307.2 (95), 306.1 (100), 305.1 (7), 

304.1 (5), 293.12 (2.5), 292.12 (11), 291.1 (13), 154.1 (2), 153.6 (7), 153.1 (4), 152.6 (2), 146.6 

(3), 146.1 (10), 145.6 (7). 

Elemental Analysis: for C25H21NO2 calculated C, 81.72; H, 5.76; N, 3.81 found C, 81.34; H, 

5.93; N, 3.53. 

Intermediate 142d: 2-(Anthracen-9-yl)-5,6,7,8-tetrahydroquinolin-8-yl acetate 

 

Produced by a modified Boekelheide rearrangement with trifluoroacetic anhydride. The 

pyridine-N-oxide (506 mg, 1.55 mmol) was added to a young tube and (816 mg, 540µL, 3.88 

mmol) of trifluoroacetic anhydride was added at 0 ˚C.  The reaction was allowed to warm to 

room temp and followed by TLC (9:1:0.2 DCM: ether: TEA) Rf noxide= 0.5, Rf product= 0.7.  No 

reaction was observed for several hours so the sealed young tube was heated to 50˚C overnight.  

Some starting material remained so the reaction was cooled, an additional 5 mLs of 

trifluoroacetic anhydride and 5 mLs DCM, sealed and heated for 16 hours.  When all the starting 

material had been consumed the volatiles were removed by vacuum and a liquid nitrogen cooled 

trap to collect the very caustic and reactive trifluoroacetic acid and anhydride.  The resulting 

crude material appeared to have both the hydrolyzed and esterified alcohols present so the entire 

mixture was stirred in 20 mLs absolute methanol and potassium carbonate for 4 hours.  After 

filtration and concentration the desired alcohol was purified by chromatography (2 X 15 cm 

silica gel, dry load) with a gradient eluent of ethyl acetate hexane starting from 100% hexane and 

working to 50% ethyl acetate.  Yield of 310 mg of alcohol (61%).   

The parent alcohol (48 mg, 0.147 mmol) was acylated with DMAP (36 mg, 0.295 mmol) and 

acetic anhydride (30 mg, 0.295 mmol) in DCM.  Worked up the reaction by extraction with 

saturated sodium bicarbonate (3 x 5 mLs), brine (2 x 5 mL) and dried by passing through a 

pipette column of sodium sulfate, concentrated to dryness to yield essentially pure product (41 

mg, 75%).   
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HPLC conditions:  The product was analyzed on the OD-H, 10% isopropanol in heptanes with a 

flow rate of 0.5 mLs/min and a temperature of 25 ˚C.  Elution times T1= 22 and T2= 32 minutes.  

The ester proved to insoluble for purification by preparative HPLC, 40 mg completely 

crystallizes out of 2 mLs of isopropanol.   

Chemical Formula: C25H21NO2 Molecular Weight: 367.4 

1
H NMR (500 MHz, CDCl3) δ 8.52 (s, 1H), 8.04 (d, J = 8.4 Hz, 2H), 7.73 – 7.63 (m, 3H), 7.45 

(t, J = 7.4 Hz, 2H), 7.38 (t, J = 6.6 Hz, 3H), 6.01 (s, 1H), 2.37 (d, J = 11.5 Hz, 1H), 2.22 (s, 1H), 

2.17 (t, J = 12.8 Hz, 1H), 2.07 (d, J = 14.4 Hz, 1H), 2.05 (s, 3H), 1.96 (d, J = 6.2 Hz, 1H). 

13
C NMR (126 MHz, CDCl3) δ 170.2, 166.3, 155.9, 153.4, 137.3, 134.8, 132.2, 131.5, 131.4, 

130.2, 130.0, 128.4, 128.3, 127.5, 126.4, 126.3, 126.0, 125.7, 125.5, 125.0, 71.6, 28.8, 28.32, 

21.4, 18.2.  

Intermediate 142b: 2-Mesityl-5,6,7,8-tetrahydroquinolin-8-yl acetate 

 

Produced by the general method except 800mg (3.00 mmol) of the pyridine-N-oxide was 

dissolved in 10 mLs of acetic anhydride and heated to 107˚C for 20 hours.  Workup is identical 

to the general procedure accept the product was additionally purified by chromatography (3.5 X 

15 cm silica gel, dry load) with a gradient of ether and DCM starting from 0% ether and working 

to 5% changing the concentration by 2.5% for every two column lengths. Product Rf  = 0.65 in 

2% ether in DCM and streaks badly.  Yield after column is 750 mg (2.42 mmol, 81%).   

HPLC conditions: OD column, 5% isopropanol in heptanes with a flow rate of 1.0 mLs/min and 

a temperature of 25 ˚C.  Elution times 5.7 and 6.5 minutes.  Semiprep conditions OD column, 

0.5% isopropanol in hexanes with a flow rate of 6.0 mLs/min and a temperature of 25 ˚C TS = 

30.8 min and TR = 39.2 min. 

Chemical Formula: C20H23NO2 Molecular Weight: 309.4 
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1
H NMR (400 MHz, CDCl3) δ 7.50 (d, J = 7.9 Hz, 1H), 7.09 (d, J = 7.9 Hz, 1H), 6.92 (s, 2H), 

5.91 (t, J = 4.1 Hz, 1H), 2.91 (dt, J = 16.7, 4.6 Hz, 1H), 2.85 – 2.76 (m, 1H), 2.30 (s, 3H), 2.26 

(dd, J = 6.4, 3.5 Hz, 1H), 2.11 – 2.06 (m, 1H), 2.04 (s, 9H), 2.01 – 1.91 (m, 1H), 1.91 – 1.82 (m, 

1H). 

13
C NMR (101 MHz, CDCl3) δ 170.2, 157.7, 152.8, 137.4, 137.2, 135.9, 131.2, 128.4, 124.3, 

71.5, 28.8, 28.2, 21.4, 21.0, 20.2, 18.2. 

Intermediate 142a: 2-Mesityl-4-methyl-6,7-dihydro-5H-cyclopenta[b]pyridin-7-yl acetate 

 

Produced by the general method except 1.00g (3.74 mmol) of the pyridine-N-oxide was 

dissolved in 10 mLs of acetic anhydride and heated to 107˚C for 20 hours.  Workup is identical 

to the general procedure accept the product was additionally purified by chromatography on 

silica gel with a gradient of ether and DCM starting from 0% ether and working to 5% changing 

the concentration by 2.5% for every two column lengths. Product Rf= 0.7 in 2% ether in DCM 

and streaks badly.  Yield after column (3.5 X 15 cm silica gel, dry load) is 650 mg (2.10 mmol, 

56%).   

HPLC conditions: ADH column, 1% isopropanol in heptanes with a flow rate of 0.75 mLs/min 

and a temperature of 25 ˚C.  Elution times 11.7 and 23.7 minutes.  Semiprep conditions AD 

column, 1% isopropanol in hexanes with a flow rate of 6.0 mLs/min and a temperature of 25 ˚C 

min TS = 20.3 min and TR = 39.0.  

Chemical Formula: C20H23NO2 Molecular Weight: 309.4  

1
H NMR (500 MHz, CDCl3) δ 6.96 (s, 1H), 6.90 (s, 2H), 6.08 (dd, J = 7.4, 3.7 Hz, 1H), 3.12 – 

3.00 (m, 1H), 2.88 (tt, J = 9.0, 5.5 Hz, 1H), 2.76 – 2.63 (m, 1H), 2.33 (s, 3H), 2.30 (s, 3H), 2.24 

– 2.09 (m, 1H), 2.07 (s, 3H), 2.02 (s, 6H).  
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13
C NMR (126 MHz, CDCl3) δ 171.0, 159.6, 159.5, 144.1, 137.6, 137.3, 135.8, 135.1, 128.3, 

125.3, 78.1, 30.4, 26.5, 21.4, 21.1, 20.3, 18.8.  

5.8 2-Chloropyridylalcohols: Racemates and enantioselective methods for preparation of 

single enantiomers and the necessary intermediates.    

5.8.1 Racemic 2-chloropyridylalcohols 

General method:  The parent 2-chloropyridylalcohol acetate ester was deprotected by placing 

27.0 mmol of the starting material into an oven dried round bottom flask with 215 mmol of 

finely divided potassium carbonate and 100 mLs of absolute methanol.  The reaction was sealed 

with a septum and stirred at a high rate of mixing.  The reaction was monitored with TLC.  When 

the starting material was completely consumed the reaction was diluted with dichloromethane 

(200 mLs) and passed through a pad of celite.  The filter was washed with DCM (2 x 50 mL) and 

the resulting solution was extracted with water (300 mL) and the aqueous layer was back 

extracted with DCM (4 x 50 mL), the organic layer was dried over magnesium sulfate, filtered 

and concentrated at a rotovap to yield the crude product which was then purified by 

chromatography.   

Intermediate 130a: 2-Chloro-4-methyl-6,7-dihydro-5H-cyclopenta[b]pyridin-7-ol
[7, 8]

 

 

Produced in identical fashion to the general example and in good agreement with the literature to 

yield 4.36 grams (23.8 mmol, 88%) from 6.10 grams of starting material.  Purified by 

chromatography (5.5 X 17 cm silica gel, dry load), Rf= 0.4 for product in 1:1 ethyl acetate/ 

hexane. 

Chemical Formula: C9H10ClNO Molecular Weight: 183.6  

MP: 108 ˚C. 

1
H NMR (400 MHz, CDCl3) δ 7.03 (s, 1H), 5.17 (dd, J = 7.4, 5.8 Hz, 1H), 2.94 (ddd, J = 16.3, 

9.0, 4.1 Hz, 1H), 2.75 – 2.66 (m, 1H), 2.55 (dddd, J = 13.4, 8.5, 7.6, 4.1 Hz, 1H), 2.27 (s, 3H), 

2.05 (dddd, J = 13.6, 9.1, 6.6, 5.8 Hz, 1H). 
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13
C NMR (101 MHz, CDCl3) δ 164.6, 149.9, 147.3, 134.7, 123.5, 74.2, 32.2, 25.5, 18.5. 

MS (e.i. 70 eV): m/z (%) 182 (20), 155 (100), 127 (29), 91 (15), 77.0 (7). 

IR (ṽ): 3420s, 2970w, 1589m, 1535m, 1435m, 1373m, 1188s, 1096s, 1065m, 1018m, 957m, 

887w, 856s cm
-1

. 

Elemental Analysis: for C9H10ClNO calculated C, 58.86; H, 5.49; N, 7.63; found C, 58.84; H, 

5.42; N, 7.51 

Intermediate 130b: 2-Chloro-5,6,7,8-tetrahydroquinolin-8-ol
[1, 11, 12]

 

 

Produced by the general method except using 1.2 grams (5.37 mmol) of acetate, 1.2 grams (8.69 

mmol) of potassium carbonate and 20% of the volumes for extraction as described.  Yield after 

chromatography (3.5 X 15 cm silica gel, dry load) 970 mg (5.30 mmol, 97%), in good agreement 

with the literature. 

Chemical Formula: C9H10ClNO Molecular Weight: 183.6 

1
H NMR (400 MHz, CDCl3) δ 7.37 (d, J = 8.1 Hz, 1H), 7.13 (d, J = 8.1 Hz, 1H), 4.68 (t, J = 6.6 

Hz, 1H), 3.63 (d, J = 1.1 Hz, 1H), 2.84 – 2.67 (m, 2H), 2.27 – 2.18 (m, 1H), 1.90– 1.72 (m, 2H). 

5.8.2 Swern oxidation of 2-pyridyl alcohols to provide ketones 

Intermediate 131: 2-Chloro-4-methyl-5H-cyclopenta[b]pyridin-7(6H)-one 

NCl
O

 

A 500 mL Schlenk flask is dried under vacuum with a heat gun and allowed to cool to room 

temperature under an active vacuum.  The flask is placed under an inert atmosphere and charged 

with 150 mL of dry chloroform (amylenes as inhibitor).  Oxalyl chloride (1.37 mL, 16.3 mmol) 

was added and the solution was cooled to -78 ˚C.  DMSO (3.9 mL, 54.9 mmol) was added and 

the reaction was stirred 10 minutes.  The parent alcohol (2.50 g, 13.6 mmol) dissolved in dry 
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chloroform (120 mL) was added and the resulting mixture was stirred at -78 ˚C for 15 minutes.  

Triethylamine (9.56 mL, 68.8 mmol) was added and the reaction was allowed to come to room 

temperature.  The reaction mixture was quenched with saturated sodium bicarbonate with slow 

pipette addition at first followed by pouring into sodium bicarbonate solution (200 mL), followed 

by extraction with brine (3 x 100 mL), drying of the organic layer over magnesium sulfate, 

filtration and concentration to yield a crude dark product.  The crude material was purified by 

chromatography (3.5 X 15 cm silica gel, dry load) with MTBE/ hexane 50:50 to yield 2.34 g 

(12.9 mmol, 95%) as a white solid.   

Chemical Formula: C9H8ClNO Molecular Weight: 181.6  

MP: 166 ˚C. 

1
H NMR (400 MHz, CDCl3) δ 7.29 (s, 1H), 3.01 (dd, J = 6.6, 4.7 Hz, 2H), 2.77 – 2.72 (m, 2H), 

2.39 (s, 3H). 

13
C NMR (101 MHz, CDCl3) δ 203.6, 153.5, 153.0, 149.2, 148.5, 128.4, 34.8, 21.8, 17.6. 

MS (e.i. 70 eV): m/z (%) 181 (100), 153 (42), 139 (34), 118 (27), 91 (18), 77 (12), 51 (8). 

IR (ṽ): 3062w, 2988w, 1713s, 1582m, 1435m, 1389w, 1281m, 1258w, 1204m, 1111s, 914w, 

872s, 733m, 648m cm
-1

. 

5.8.3  Asymmetric reduction of 2-chloro-4-methyl-5H-cyclopenta[b]pyridin-7(6H)-one with 

R-methyl-CBS and catecholborane or (-)B-Chlorodiisopinocamphylborane 

Intermediate S-130a: (S)-2-chloro-4-methyl-6,7-dihydro-5H-cyclopenta[b]pyridin-7-ol 

 

CBS reduction:  Ketone (88 mg, 0.485 mmol) and R-methyl-CBS (10 mol%) are added together 

in a 50 mL Schlenk flask in the glove box with a stir bar.  The flask is equipped with a rubber 

septum and brought outside the glove box.  Absolute DCM (20 mL) was added and the reaction 

was cooled to -20 ˚C in an isopropanol bath cooled with a digital refrigerated circulator.  

Catecholborane (116 mg, 0.967 mmol) was diluted in 2 mLs of absolute DCM and added 
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dropwise over 15 minutes.  The reaction was stirred for 48 hours at that temperature.  The 

reaction was quenched with 4M lithium hydroxide (2 mL) and the reaction was removed from 

the cold bath and stirred for 30 minutes at that temperature.  Water was added (10 mL), the 

layers were separated and the organic layer was passed through a short filtration column of silica 

(pipette column, 2 cc), the silica was washed with ethyl acetate and the organics were combined 

and concentrated to yield essentially pure product in 90.8% ee (S selective), which matched the 

racemic product its spectra. 

HPLC:  Separated on a chiral ADH column with a mobile phase of 10% isopropanol in heptanes 

with a flow rate of 0.5 mLs/minute and 25 ˚C, TS = 13.2 minutes, TR = 14.8 minutes. 

(-)B-Chlorodiisopinocamphylborane reduction:  Optimized conditions:  Ketone 131 (0.5 grams, 

2.76 mmol) was added to a Schlenk flask in the glove box with absolute THF (20 mL).  The 

flask was brought outside the box and cooled in a circulated bath at -50 ˚C for thirty minutes.  (-

)DIP-Cl (1.3 g, 4.06 mmol) was added as a solid under argon at that temperature, the flask was 

sealed and stirred at that temperature for two days.  Diethanolamine (426 mg, 391µL, 4.06 

mmol) was added cold and the reaction was allowed to stir for 1 hour while the 

diethylolaminoboranate is precipitated.  The solution is filtered on a Schlenk frit under argon and 

the filtrate washed with 5 mLs of THF.  The solution is worked up with 4 mLs of 4M lithium 

hydroxide, transferred to a separatory funnel and DCM is added (200mL).  The solution is 

extracted with water (2 x 200 mL), followed by brine (100 mL).  The organic layer was dried 

over magnesium sulfate, filtered and concentrated to yield the crude product.  The product was 

purified by chromatography (2 X 15 cm silica gel, dry load) with a gradient of ethyl acetate/ 

hexanes starting from pure hexanes and ending with 30% ethyl acetate.  Yield of 256 mg (1.39 

mmol, 50.6%).  Product ee of 99.1% using HPLC conditions above. 

[α]
20

D = -25 at a concentration of 0.12. 

5.8.4  Asymmetric kinetic resolution of pyridyl alcohols with Candida Antarctica Lipase B 

General procedure A: A 25 mL Schlenk flask equipped with a micro stir bar and rubber septum 

was dried under vacuum with a heat gun.  The flask was placed under argon and the pressure was 

turned off to prevent the unwanted aerosol of the dry reagents.  Racemic pyridyl alcohol (50 mg, 

0.272 mmol) and Candida Antarctica Lipase B immobilized on resin, Novozyme® 435 (5 mg), 
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were added quickly in succesion and the flask was placed under vacuum and then backfilled with 

argon for three cycles.    Dry, degased diisopropyl ether (10 mL, inhibited with BHT) was 

transferred to the flask by syringe under argon.  The flask was placed into a 67 ˚C oil bath and 1 

mL of vinyl acetate was added.  The reaction was stirred at this temperature and aliquots of 100 

µL were taken at regular intervals with a syringe.  The aliquot was passed through a micronfilter 

into an HPLC vial, the volatiles were dried under a stream of nitrogen and 1 mL of HPLC grade 

isopropanol was added and the aliquot analyzed by chiral HPLC.  The reaction was removed 

from the heat after the enantioselectivity had reached 99% for either the alcohol or ester and 

cooled in an ice bath.  The contents were removed with a needle and syringe and filtered through 

a large micronfilter.  The volatiles were removed at the rotovap and tert-butyldimethylsilyl 

chloride (106 mg, 0.680 mmol) and imidazole (55.5 mg, 0.816 mmol) were added to the flask 

with a stir bar and septum.  The contents were purged with an inert atmosphere through needles 

in the septum and dry DMF (1 mL) was added.  The reaction was stirred overnight and  worked 

up by the addition of 3 mLs of ethyl acetate, extracted with water (4 x 4 mL), saturated 

ammonium chloride (2 x 2 mL),  dried over magnesium sulfate, filtered and concentrated to 

dryness.  A small column with a three solvent gradient was used to purify the sample by 

chromatography (1 X 10 cm silica gel, dry load) the products starting with 25% DCM in hexane 

and working to 100% DCM in steps of 25% every two column lengths followed by 10% ethyl 

acetate/ DCM to move the ester.  Reaction is selective for the R acetate and S alcohol.
[15, 16]

 

General procedure B: A 500 mL 4 neck reactor equipped with an overhead stirrer, condenser, 

inert gas inlet and bubbler was flame dried under a purge of argon.  Racemic pyridyl alcohol 

(830 mg, 4.52 mmol) and Candida Antarctica Lipase B immobilized on resin, Novozyme® 435 

(130 mg), were added under gentle argon purge in succesion and the flask was sealed with a 

ruber septum.    Dry, degased diisopropyl ether (120 mL, inhibited with BHT) was transferred to 

the reactor by a double ended cannula pressure transfer under argon.  The flask was placed into a 

67 ˚C oil bath and 20 mL of vinyl acetate was added.  The reaction was stirred at 900 rpm at this 

temperature and aliquots were taken and treated the same as in the general procedure A in the 

text above.  The reaction was removed from the heat after the enantioselectivity had reached 

99% for either the alcohol or ester and allowed to cool for ease of manipulation, filtered, the 

filter was washed with ethyl acetate (20mL), and the resin was recovered.   The volatiles were 

removed at the rotovap and tert-butyldimethylsilyl chloride (1.75 g, 11.4 mmol) and imidazole 
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(930 mg, 13.7mmol) were added to the flask with a stir bar and septum.  The contents were 

purged with an inert atmosphere through needles in the septum and dry DMF (20 mL) was 

added.  The reaction was stirred overnight and was worked up by the addition of 50mLs of ethyl 

acetate, extracted with water (4 x 100 mL), saturated ammonium chloride (2 x 50 mL),  dried 

over magnesium sulfate, filtered and concentrated to dryness.  Purified by column 

chromatography (3.5 X 15 cm silica gel, dry load), TBDMS ether elutes very rapidly in 50% 

DCM/ hexane, acetyl ester was eluted with 30% ethylacetate hexane.  The TBDMS protecting 

group could be removed by heating the protected ether with 3 equivalents of TBAF trihydrate in 

dry THF with heating to 50 ˚C for 5 hours followed by aqueous workup.  The acetate protecting 

group could be removed by using the same conditions for the racemate. 

Intermediate 145a: (S)-7-(tert-butyldimethylsilyloxy)-2-chloro-4-methyl-6,7-dihydro-5H-

cyclopenta[b]pyridine 

 

Produced by general method A, yield 31.5 mg (0.106 mmol, 40%).  99.3% Enantioselectivity 

measured from the parent alcohol. 

HPLC:  Separated the parent alcohol on a chiral ADH column with a mobile phase of 5% 

isopropanol in heptanes with a flow rate of 0.5 mLs/minute and 40 ˚C, T(R)-acetate = 12.69 minutes, 

T(S)-acetate= 13.68 minutes, T(S)-alcohol= 17.2 minutes, T(R)- alcohol = 19.49 minutes.  

Chemical Formula: C15H24ClNOSi Molecular Weight: 297.9 

1
H NMR (500 MHz, CDCl3) δ 6.82 (s, 1H), 4.96 (t, J = 5.3 Hz, 1H), 2.78 (dt, J = 14.7, 10.8 Hz, 

1H), 2.55 – 2.43 (m, 1H), 2.32 – 2.20 (m, 1H), 2.08 (s, 3H), 1.86 (dq, J = 8.7, 4.7 Hz, 1H), 0.77 

(s, 9H), 0.05 (s, 3H), -0.00 (s, 3H).  

13
C NMR (126 MHz, CDCl3) δ 150.6, 146.8, 135.0, 123.7, 76.2, 34.1, 26.3, 26.0, 18.8, -3.8, -4.3. 

MS (FAB NBA): m/z (%): 298.1 (52), 282.1 (17), 240.1 (100), 166.0 (61), 73.0 (32).  
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Elemental Analysis: for C15H24ClNOSi calculated C, 60.48; H, 8.12; N, 4.70 found C, 60.62; H, 

8.39; N, 4.59. 

Intermediate 145b: (S)-8-(tert-butyldimethylsilyloxy)-2-chloro-5,6,7,8-tetrahydroquinoline 

 

Synthesized with general procedure B in identical detail.  Yield of the protected silyl ether 563 

mg (1.90 mmol, 41.7% yield) 99% enantioselectivity based on HPLC analysis of parent alcohol. 

HPLC:  Separated on a chiral ADH column with a mobile phase of 5% isopropanol in heptanes 

with a flow rate of 0.5 mLs/minute and 40 ˚C, T(R)-acetate = 12.05 minutes, T(S)-acetate=13.82 

minutes, T(S)-alcohol= 15.8 minutes, T(R)- alcohol = 17.23 minutes.Chemical Formula: C15H24ClNOSi 

Molecular Weight: 297.9  

1
H NMR (400 MHz, CDCl3) δ 7.32 (d, J = 8.1 Hz, 1H), 7.10 (d, J = 8.1 Hz, 1H), 4.74 (t, J = 4.5 

Hz, 1H), 2.78 (dt, J = 17.0, 5.3 Hz, 1H), 2.72 – 2.57 (m, 1H), 2.13 – 1.94 (m, 2H), 1.94 – 1.81 

(m, 1H), 1.73 (tdd, J = 8.3, 6.0, 2.9 Hz, 1H), 0.91 – 0.87 (m, 9H), 0.21 (d, J = 3.1 Hz, 3H), 0.10 

(d, J = 3.1 Hz, 3H). 

13
C NMR (126 MHz, CDCl3) δ 158.5, 148.6, 140.0, 131.4, 123.2, 69.8, 32.5, 28.3, 26.3, 26.1, 

18.7, -3.7, -4.6. 

MS (FAB NBA): m/z (%): 298.1 (35), 282.1 (17), 240.1 (100), 166.0 (34), 73.0 (26).  
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Intermediate R-130b: (R)-2-chloro-5,6,7,8-tetrahydroquinolin-8-ol 

 

Synthesized by general method B from hydrolysis of the ester after chromatography (2 X 15 cm 

silica gel, dry load) and enantio enrichment by recrystallization of the parent ester (432 mg, 1.92 

mmol, 97% ee) from 7 mLs of hot hexane cooled to -20 ˚C overnight. Enriched ester was 

hydrolyzed under identical conditions to the racemate, resulting in 300 mg (1.64 mmol, 36% 

yield) in 99% enantioselectivity.    

[α]
20

D = -88 at a concentration of 0.71.  

Intermediate S-130b: (S)-2-chloro-5,6,7,8-tetrahydroquinolin-8-ol 

 

Produced by general method A except the silyl ether formation was omitted and the resulting 

alcohol was purified by chromatography (1 X 7 cm silica gel, dry load), 20% ethyl acetate in 

hexane to yield 18 mg (98.4 µmol, 36% yield) in 99% ee. 

[α]
20

D = +90.5 at a concentration of 0.54. 

5.9 Synthesis of 2-diarylphophorylmethyl-2-phenyl-cycloalkylpyridines and attempted 

complexation with Iridium. 

5.9.1 Formation of methanol intermediates from addition of lithium metalated pyridines 

and carbonyl reagents.  

Intermediate 125: (2-Phenyl-5,6,7,8-tetrahydroquinolin-8-yl)methanol 
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2-Phenyl-5,6,7,8-tetrahydroquinoline (113b), (3.3 g, 15.7 mmol) was added to a flame dried 

Schlenk flask under argon and absolute THF (50 mL) was introduced via syringe.  The flask was 

cooled to -78 ˚C and n-butyl lithium (10.8 mL, 17.36 mmol) 1.6 M in hexane was added 

dropwise over 15 minutes.  The reaction was stirred for 1 hour at this temperature and 

paraformaldehyde (707 mg, 23.6 mmol) was added under argon.  The reaction was allowed to 

warm to room temperature over three hours, during which time most of the solid 

paraformaldehyde dissolved into the reaction mixture.  The reaction was quenched with saturated 

ammonium chloride (100 mL) and stirred overnight in the slightly acidic solution to assist in 

breaking up formaldehyde oligamers.  The mixture was poured into a large separatory funnel and 

ethyl acetate (200 mL) and water (500 mL) were added.  The organic layer was washed with 

water (2 x 500 mL), brine (2 x 100 mL), dried over magnesium sulfate, filtered and concentrated 

to dryness.  The crude material was purified by chromatography (3.5 X 15 cm silica gel, dry 

load) using a gradient of ethyl acetate hexane from 0 to 50% to elute the pure product in 61% 

yield as an off white solid (2.28 g, 9.60 mmol). 

Chemical Formula: C16H17NO Molecular Weight: 239.3 

1
H NMR (400 MHz, CDCl3) δ 7.90 – 7.86 (m, 2H), 7.55 – 7.43 (m, 4H), 7.43 – 7.37 (m, 1H), 

6.26 (s, 1H), 4.08 – 3.54 (m, 2H), 3.11 (dq, J = 15.0, 4.9 Hz, 1H), 2.94 – 2.68 (m, 2H), 2.13 – 

1.89 (m, 2H), 1.91 – 1.66 (m, 1H), 1.59 – 1.33 (m, 1H). 

Diphenyl(2-phenyl-6,7-dihydro-5H-cyclopenta[b]pyridin-7-yl)methanol 

 

2-Phenyl-6,7-dihydro-5H-cyclopenta[1]pyridine (990 mg, 5.07 mmol) was added to a flame 

dried Schlenk flask under argon and absolute THF (20 mL) was introduced via syringe.  The 

flask was cooled to -78 ˚C and N-butyl lithium (3.17 mL, 5.07 mmol) 1.6 M in hexane was 

added dropwise over 15 minutes.  The reaction was stirred for 1 hour at this temperature and 

benzophenone (922 mg, 5.07 mmol) was added under argon.  The reaction was allowed to warm 

to room temperature over three hours, during which time most of the solid paraformaldehyde 
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dissolved into the reaction mixture.  The reaction was quenched with saturated ammonium 

chloride (30 mL) and stirred 10 minutes in the slightly acidic solution.  The mixture was poured 

into a separatory funnel and ethyl acetate (100 mL) and water (200 mL) were added.  The 

organic layer was washed with water (2 x 100 mL), brine (2 x 50 mL), dried over magnesium 

sulfate, filtered and concentrated to dryness.  The crude material was purified by by 

chromatography (3.5 X 15 cm silica gel, dry load) using ethyl acetate/ hexane of 5% to elute the 

pure product in 80% yield as an off white solid (1.53 g, 4.05 mmol). 

Chemical Formula: C27H23NO Molecular Weight: 377.5 

1
H NMR (400 MHz, CDCl3) δ 7.95 (d, J = 7.1 Hz, 2H), 7.55 (dd, J = 15.1, 7.7 Hz, 3H), 7.50 – 

7.36 (m, 6H), 7.32 (t, J = 7.2 Hz, 1H), 7.16 – 7.00 (m, 6H), 4.32 (t, J = 7.6 Hz, 1H), 2.96 – 2.64 

(m, 1H), 2.48 – 2.32 (m, 2H), 2.32 – 2.20 (m, 1H). 

5.9.2  Chloromethylpyridine 

Intermediate 126: 8-(Chloromethyl)-2-phenyl-5,6,7,8-tetrahydroquinoline  

 

(2-Phenyl-5,6,7,8-tetrahydroquinolin-8-yl)methanol (125), (2.28 g, 9.54 mmol) was taken in 10 

mL of DCM and 20 mL of thionyl chloride was added.  The resulting solution was heated to 

reflux under an argon atmosphere for 2 hours.  The reaction volatiles were removed by high 

vacuum with a liquid nitrogen trap attached with a short piece of chemically inert vacuum hose 

to catch the caustic by products and excess reagent.  The resulting yellow oil was taken up in 100 

mL of DCM and washed in a separatory funnel with saturated bicarbonate (2 x 50 mL), brine (2 

x 50 mL), dried over magnesium sulfate, filtered and concentrated at the rotovap to yield the 

pure chloride in 95% yield (2.34 g, 9.08 mmol).  The product slowly reacts with itself at room 

temperature and should be used immediately. 

Chemical Formula: C16H16ClN Molecular Weight: 257.8 

1
H NMR (400 MHz, CDCl3) δ 8.00 (dt, J = 3.2, 1.8 Hz, 2H), 7.52 (d, J = 8.0 Hz, 1H), 7.49 – 

7.42 (m, 3H), 7.42 – 7.35 (m, 1H), 4.34 (dd, J = 10.5, 3.4 Hz, 1H), 4.02 (dd, J = 10.5, 8.7 Hz, 
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1H), 3.41 – 3.22 (m, 1H), 2.92 – 2.70 (m, 2H), 2.30 – 2.09 (m, 1H), 2.09 – 1.87 (m, 2H), 1.87 – 

1.68 (m, 1H). 

13
C NMR (101 MHz, CDCl3) δ 156.2, 154.4, 139.8, 138.0, 131.9, 129.0, 127.1, 118.6, 49.4, 43.6, 

29.3, 26.8, 20.9. 

5.9.3  Formation of phosphine oxides 

Intermediate 127: 8-((Diphenylphosphoryl)methyl)-2-phenyl-5,6,7,8-tetrahydroquinoline 

 

8-(Chloromethyl)-2-phenyl-5,6,7,8-tetrahydroquinoline (126), (500 mg, 1.94 mmol) was added 

to a dry Schlenk flask and placed under an inert atmosphere of argon.  Absolute THF (10 mL) 

was added and the flask was cooled to 0 ˚C at which time commercially available potassium 

diphenylphosphide (1.95 mL, 1.95 mmol) was added via syringe and the reaction was allowed to 

warm up to room temperature overnight.  The reaction was quenched with water (10 mL) and 

hydrogen peroxide (32%, 15 mL).  The oxidation was allowed to stir for 4 hours with good 

mixing and the contents of the flask were transferred to a separatory funnel with 20 mLs of ethyl 

acetate.  The organic layer was washed with water (2 x 50 mL), bicarbonate (1 x 25 mL), brine 

(2 x 50 mL), dried over magnesium sulfate, filtered and concentrated at the rotovap to yield the 

crude phosphine oxide which was purified by chromatography (2 X 15 cm silica gel, dry load) 

with a gradient elution of ethyl acetate/ hexane from 0 to 100% ethyl acetate, taking steps in 

polarity of 25%.  Yield of 558 mg (1.32 mmol, 68%). 

Chemical Formula: C28H26NOP Molecular Weight: 423.5 

1
H NMR (400 MHz, CDCl3) δ 8.19 – 8.07 (m, 2H), 8.07 – 7.97 (m, 2H), 7.82 – 7.70 (m, 2H), 

7.57 – 7.46 (m, 6H), 7.42 (dtd, J = 8.3, 7.3, 1.8 Hz, 5H), 3.69 (ddd, J = 15.4, 8.1, 1.7 Hz, 1H), 

3.53 – 3.26 (m, 1H), 2.94 – 2.62 (m, 2H), 2.40 (ddd, J = 24.5, 15.9, 10.3 Hz, 2H), 2.08 – 1.94 

(m, 1H), 1.94 – 1.82 (m, 1H), 1.80 – 1.67 (m, 1H). 

31
P NMR (162 MHz, CDCl3) δ 30.44 (d, J = 9.5 Hz).  
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Intermediate 127b: 8-((Dio-tolylphosphoryl)methyl)-2-phenyl-5,6,7,8-tetrahydroquinoline 

 

Under inert atmosphere conditions di-o-tolylphophine chloride (540 mg, 2.17 mmol) was added 

in absolute THF to pieces of sodium metal (99.9 mg, 4.34 mmol) in a young tube inside the 

glovebox.  The reaction was capped, brought outside the box and heated to 70 ˚C for 5 hours.  

On heating the initial color was yellow with large amounts of sodium chloride precipitating.  The 

solution darkened to a red color as the anion was formed.  After most of the sodium had been 

consumed the reaction was cooled to room temperature and the solution was filtered into a 

Schlenk flask containing 8-(chloromethyl)-2-phenyl-5,6,7,8-tetrahydroquinoline (559 mg, 2.17 

mmol) in absolute THF (10 mL).  The reaction was allowed to stir for 5 hours.  The reaction was 

quenched with water (10 mL) and hydrogen peroxide (32%, 15 mL).  The oxidation was allowed 

to stir for 4 hours with good mixing and the contents of the flask were transferred to a separatory 

funnel with 20 mLs of ethyl acetate.  The organic layer was washed with water (2 x 50 mL), 

bicarbonate (1 x 25 mL), brine (2 x 50 mL), dried over magnesium sulfate, filtered and 

concentrated at the rotovap to yield the crude phosphine oxide which was purified by 

chromatography (2 X 15 cm silica gel, dry load) with a gradient elution of ethyl acetate/ hexane 

from 0 to 100% ethyl acetate, taking steps in polarity of 25%.  Yield of 637 mg (1.41 mmol, 

65%).  The product can be purified by semipreprative HPLC. 

HPLC:  Separated on a chiral ADH column with a mobile phase of 10% isopropanol in heptanes 

with a flow rate of 0.5 mLs/minute and 25˚C, T1= 26.0 minutes, T2 = 61.7 minutes.  Semiprep 

conditions: chiral AD column with 10% isopropanol in heptanes with a flow rate of 6 

mLs/minute and 25˚C, T1= 51.0 minutes, T2 = 121.4 minutes. 

Chemical Formula: C30H30NOP  Molecular Weight: 451.5 

1
H NMR (400 MHz, CDCl3) δ 8.51 (dd, J = 12.1, 7.7 Hz, 1H), 8.09 – 7.97 (m, 2H), 7.80 – 7.67 

(m, 1H), 7.51 (d, J = 7.9 Hz, 1H), 7.49 – 7.38 (m, 5H), 7.38 – 7.30 (m, 2H), 7.23 (dd, J = 10.6, 
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5.2 Hz, 2H), 7.17 (dd, J = 7.5, 4.1 Hz, 1H), 3.86 – 3.70 (m, 1H), 3.54 – 3.32 (m, 1H), 2.78 (tq, J 

= 16.8, 5.8 Hz, 2H), 2.48 (dt, J = 10.5, 5.5 Hz, 1H), 2.42 (d, J = 6.7 Hz, 6H), 2.10 – 1.98 (m, 

1H), 1.98 – 1.85 (m, 1H), 1.75 (qdd, J = 11.1, 5.6, 2.8 Hz, 1H). 

13
C NMR (101 MHz, CDCl3) δ 154.4, 142.4 (d, J = 8.5 Hz), 141.7 (d, J = 8.5 Hz), 140.0, 138.14, 

133.56 (d, J = 10.0 Hz), 126.0 (dd, J = 11.7, 7.3 Hz), 36.8, 34.8, 34.0, 30.6, 29.3, 25.7, 21.7 (dd, 

J = 14.4, 4.0 Hz), 21.0. 

31
P NMR (162 MHz, CDCl3) δ 32.57. 

5.9.4 Phosphine oxide reduction and complexation 

Intermediate 128: 8-((diphenylphosphino)methyl)-2-phenyl-5,6,7,8-tetrahydroquinoline 

 

8-((Diphenylphosphoryl)methyl)-2-phenyl-5,6,7,8-tetrahydroquinoline (127), (65 mg, 0.153 

mmol) was added to a young tube and phenylsilane (600 µL, 526.2 mg, 4.86 mmol) was added 

under argon and the contents were heated to 120 ˚C for 20 hours.  The volatiles were removed by 

vacuum at 100 ˚C for several hours.  The flask was allowed to come to room temperature and 

brought inside the box.  Degassed silica gel (4 grams) was added with 20 mLs of absolute 

toluene and the slurry was stirred for 3 hours, the silica gel was filtered off and then washed with 

5 mLs of absolute THF.  The volatiles were then removed by vacuum outside the box and the 

resulting viscous glaze was brought back inside the box for manipulation into an NMR tube.  

The 
1
H NMR and 

31
P were taken in dry degassed CDCl3 the phosphine was used immediately for 

complexation.   

Chemical Formula: C28H26NP Molecular Weight: 407.5 

1
H NMR (400 MHz, CDCl3) δ 7.96 (d, J = 7.4 Hz, 2H), 7.71 – 7.63 (m, 2H), 7.43 (dd, J = 6.7, 

5.3 Hz, 2H), 7.41 – 7.11 (m, 11H), 3.16 (ddd, J = 13.9, 4.8, 3.1 Hz, 1H), 3.04 – 2.87 (m, 1H), 

2.78 – 2.58 (m, 2H), 2.18 – 2.00 (m, 2H), 1.83 (ddt, J = 15.6, 8.6, 5.6 Hz, 2H), 1.71 – 1.53 (m, 

1H).  
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31
P NMR (162 MHz, CDCl3) δ -22.53. 

Complex 123a: Iridium(I) [(1,2,5,6-ƞ)-1,5-cyclooctadiene][ 8-((diphenylphosphino-ĸP)methyl)-

2-phenyl-5,6,7,8-tetrahydroquinoline-ĸN]-, hexafluorophosphate(-) 

 

8-((Diphenylphosphino)methyl)-2-phenyl-5,6,7,8-tetrahydroquinoline (128), (50 mg, 0.123 

mmol) was added to a Schlenk flask and dissolved in absolute DCM (4 mL).  Chloro-1,5-

cyclooctadiene iridium(I) dimer (41.2 mg, 61.4 µmol) was added under argon and the reaction 

was allowed to stir for 3 hours.  Ammonium hexafluorophosphate was added (24 mg, 0.147 

mmol) and the reaction stirred for 2 hours.  The resulting slurry was filtered and the reaction 

concentrated to dryness at the rotovap, the resulting impure material was dried onto 500 mg of 

silica gel and chromatographed on a small column, ether to remove unreacted phosphine and 

then DCM to elute the product, yield 17.8 mg (20.9 µmol, 17%) as an orange solid.  

Recrystallized from 200 µL of DCM and 2 mL of pentane, suitable for Xray diffraction.  

Chemical Formula: C36H38F6IrNP2 Molecular Weight: 852.8 

1
H NMR (400 MHz, CDCl3) δ 7.78 (d, J = 8.0 Hz, 1H), 7.73 (t, J = 7.4 Hz, 1H), 7.61 – 7.58 (m, 

3H), 7.53 (d, J = 7.5 Hz, 3H), 7.48 (dd, J = 14.9, 4.6 Hz, 7H), 7.42 – 7.31 (m, 5H), 4.51 (t, J = 

6.7 Hz, 1H), 4.33 (dd, J = 15.9, 9.5 Hz, 1H), 4.17 (t, J = 7.0 Hz, 1H), 3.18 – 3.08 (m, 1H), 2.95 

(s, 2H), 2.52 (ddd, J = 14.8, 10.7, 5.9 Hz, 4H), 2.32 (ddd, J = 16.6, 13.4, 8.1 Hz, 2H), 1.99 (d, J = 

6.3 Hz, 2H), 1.82 – 1.70 (m, 4H), 1.42 – 1.34 (m, 1H). 

13
C NMR (101 MHz, CDCl3) δ 160.2 (d, J = 54.7 Hz), 141.7, 139.2, 135.6, 133.3 (d, J = 11.2 

Hz), 132.0 (d, J = 14.3 Hz), 131.2, 131.0 (d, J = 9.4 Hz), 130.25, 130.0 (d, J = 9.7 Hz), 129.60 

(d, J = 10.1 Hz), 125.1, 124.5, 88.4 (d, J = 5.3 Hz), 68.7 (d, J = 84.9 Hz), 41.1 (d, J = 5.6 Hz), 

36.3 (d, J = 4.9 Hz), 35.8, 32.16 (d, J = 14.0 Hz), 30.1, 29.8, 29.7, 29.5, 28.6, 23.9, 20.3. 

19
F NMR (376 MHz, CDCl3) δ -73.67, -75.57.  
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31
P NMR (162 MHz, CDCl3) δ -0.11, -130.60 – -162.11 (m).  

MS (MALDI): 708.2 (100%), 706.2 (57%), 709.2 (39%), 707.2 (23%), 710.2 (7.4%). 

Complex 123b: Attempted synthesis of Iridium(I) [(1,2,5,6-ƞ)-1,5-cyclooctadiene][ 8-

((diphenylphosphino-ĸP)methyl)-2-phenyl-5,6,7,8-tetrahydroquinoline-ĸN]-tetrakis[3,5-

bis(trifluoromethyl)phenyl]borate(-) 

 

All manipulations for the next two steps were carried out in the glove box.  8-

((Diphenylphosphino)methyl)-2-phenyl-5,6,7,8-tetrahydroquinoline (123b), (32 mg, 0.123 

mmol) was added to a NMR tube with absolute deuterated DCM (0.5 mL).  Chloro-1,5-

cyclooctadiene iridium(I) dimer (26.4 mg, 39.3 µmol) was added and the tube was capped with a 

tight rubber 5 mm septum which was then fixed in place with copious amounts of parafilm.  The 

resulting red solution was shaken thoroughly and allowed to react for 3 hours, after which time a 

proton and phosphorous NMR were obtained.  A very peculiar proton spectrum indicated very 

broad peaks from which little structural information could be obtained.  The phosphorous NMR 

indicated a 10 to 1 ratio of the expected resonance with a new resonance at 0 ppm. 

1
H NMR (400 MHz, CD2Cl2) δ 8.07 – 7.98 (m, 1H), 7.91 (ddd, J = 9.9, 6.5, 3.2 Hz, 1H), 7.75 – 

7.70 (m, 1H), 7.68 – 7.59 (m, 1H), 7.48 (d, J = 8.0 Hz, 1H), 7.39 (t, J = 7.5 Hz, 2H), 7.34 – 7.26 

(m, 4H), 5.53 (ddd, J = 7.2, 5.2, 1.9 Hz, 1H), 5.22 (d, J = 1.0 Hz, 1H), 4.96 (s, 1H), 4.22 – 4.06 

(m, 1H), 3.84 (t, J = 13.3 Hz, 1H), 3.51 (d, J = 12.3 Hz, 1H), 2.74 (dt, J = 10.8, 7.6 Hz, 1H), 2.62 

(ddd, J = 14.7, 10.7, 5.8 Hz, 1H), 2.48 (d, J = 34.7 Hz, 1H), 2.40 – 2.30 (m, 1H), 2.25 – 1.99 (m, 

3H), 1.82 (dd, J = 12.9, 6.5 Hz, 1H), 1.75 – 1.48 (m, 2H), 1.45 (d, J = 9.3 Hz, 1H), 1.41 (s, 3H), 

1.25 (dd, J = 9.9, 5.6 Hz, 1H), 1.18 (s, 1H), 0.99 (s, 1H), 0.88 – 0.78 (m, 1H). 

31
P NMR (162 MHz, CD2Cl2) δ 11.48, -0.34. 
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The NMR tube was then brought back inside the box, the parafilm was cut from the tube with a 

sharp scissors and the contents were poured into a vial with sodium tetrakis[3,5-

bis(trifluoromethyl)phenyl]borate dissolved in 0.6 mLs of deuterated DCM.  The resulting 

solution was filtered through a micronfilter into a NMR tube.  The tube was capped and sealed 

with parafilm and a proton and phosphorous NMR were obtained.  The phosphorous NMR 

indicated that the new peak at 0 ppm was the sole species. Attempts at chromatography (pipette 

column 2 cc silica gel) resulted in loss of almost all mass, resulting in 2 mg of orange material 

which did not match any of the crude intermediate spectra. 

1
H NMR (400 MHz, CD2Cl2) δ 7.72 (s, 1H), 7.56 (dd, J = 24.3, 11.8 Hz, 1H), 7.44 (s, 1H), 7.29 

(d, J = 7.9 Hz, 1H), 4.51 (s, 1H), 4.29 (s, 1H), 4.08 (s, 1H), 3.22 (s, 1H), 3.16 – 3.09 (m, 1H), 

2.82 (d, J = 5.7 Hz, 1H), 2.69 (t, J = 13.5 Hz, 1H), 2.59 – 2.52 (m, 1H), 2.41 (dd, J = 19.6, 7.3 

Hz, 1H), 2.29 – 2.15 (m, 1H), 2.03 – 1.83 (m, 1H), 1.81 – 1.68 (m, 1H), 1.61 (s, 1H), 1.50 (s, 

1H), 1.40 – 1.23 (m, 1H), 1.19 (s, 1H), 1.09 (d, J = 8.8 Hz, 1H), 0.86 (s, 1H). 

31
P NMR (162 MHz, CD2Cl2) δ -0.34. 

5.10 Suzuki reaction of hindered boronic acids and esters with 2-chloropyridine-O-

terbutyldimethylsilyl ether derivatives 

General procedure A:  2-Chloropyridine-O-TBDMS ether (100 mg, 0.336 mmol), boronic acid 

(0.672 mmol), and Nolan NHC catalyst (8.6 mg, 13.7 µmol, 4 mol%) were added to a 5 mL 

microwave tube with a stir bar, the tube was sealed with a microwave septum and the contents 

were thoroughly purged with 2 bars of argon through a needle inlet/outlet for 15 minutes.  

Sodium tert-butoxide (0.29 M, 2.5 mL, 0.725 mmol) was added under purge.  The purge needles 

were removed and the contents of the flask were pulverized with a sonicator for 15 minutes.  The 

reaction was stirred at 50 ˚C for 24 hours.  The reaction was worked up by extraction with DCM 

(25 mL) and water (2 x 25 mL), followed by brine (1 x 25 mL).  The organic layer was dried 

over magnesium sulfate, filtered and concentrated at the rotovap to provide crude product which 

was purified by column chromatography (1 X 10 cm silica gel, dry load) with a hexane/ DCM 

gradient starting from pure hexane and working in 20% change in solvent every 2 column 

lengths.  Product typically elutes in the 40-60% range of DCM while the byproduct from 

protonation of the boronic acid reagent comes earlier.   
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General procedure B:  2-Chloropyridine-O-TBDMS ether (100 mg, 0.336 mmol), boronic acid 

(1.08 mmol), and Nolan NHC catalyst (8.6 mg, 13.7 µmol, 4 mol%) were added to a 20 mL 

microwave tube with a stir bar, the tube was sealed with a microwave septum and the contents 

were thoroughly purged with 2 bars of argon through a needle inlet/outlet for 15 minutes.  

Isopropanol was degassed by bubbling argon through the solvent in a septumed flask with 

needles and with stirring for 20 minutes, 10.0 mL was added to the microwave tube by syringe 

and the contents were sonicated with stirring for 20 minutes.  Thoroughly degassed (as for the 

isopropanol) aqueous sodium hydroxide (4.0 M, 500 µL, 2.0 mmol) was added under purge.  The 

purge needles were removed and the contents of the flask were pulverized with a sonicator for 5 

minutes.  The reaction was stirred at 50 ˚C for 24 hours.  The reaction was worked up by 

extraction with DCM (50 mL) and water (2 x 50 mL), followed by brine (1 x 50 mL).  The 

organic layer was dried over magnesium sulfate, filtered and concentrated at the rotovap to 

provide crude product which was purified by column chromatography (1 X 10 cm silica gel, dry 

load) with a hexane/ ethyl acetate gradient starting from pure hexane and working in 15% change 

in solvent every 2 column lengths until 75% ethyl acetate is reached. 

General procedure C:  2-Chloropyridine-O-TBDMS ether (315 mg, 1.06 mmol), boronic acid 

(2.12 mmol), and Nolan NHC catalyst (27 mg, 42.4 µmol, 4 mol%) were added to a 20 mL 

microwave tube with a stir bar, the tube was sealed with a microwave septum and the contents 

were thoroughly purged with 2 bars of argon through a needle inlet/outlet for 15 minutes.  

Isopropanol was degassed by bubbling argon through the solvent in a septumed flask with 

needles and with stirring for 20 minutes, 14.0 mL was added to the microwave tube by syringe 

and the contents were sonicated with stirring for 20 minutes.  Thoroughly degassed (as for the 

isopropanol) aqueous sodium hydroxide (4.0 M, 795 µL, 3.18 mmol) was added under purge.  

The purge needles were removed and the contents of the flask were pulverized with a sonicator 

for 5 minutes.  The reaction was stirred at 50 ˚C for 24 hours.  The reaction was worked up by 

extraction with DCM (100 mL) and water (2 x 100 mL), followed by brine (1 x 100 mL).  The 

organic layer was dried over magnesium sulfate, filtered and concentrated at the rotovap to 

provide crude product which was purified by column chromatography (2 X 16 cm silica gel, dry 

load) with a hexane/ DCM gradient starting from pure hexane and working in 20% change in 

solvent every 2 column lengths until pure DCM is reached.  
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Intermediate 143i-OTBDMS: 7-(Tert-butyldimethylsilyloxy)-2-(2-fluorophenyl)-4-methyl-6,7-

dihydro-5H-cyclopenta[b]pyridine 

 

Synthesized by general procedure A.  Yield 110mg (0.309 mmol, 92%). 

Chemical Formula: C21H28FNOSi Molecular Weight: 357.5 

1
H NMR (400 MHz, CDCl3) δ 8.11 (td, J = 7.9, 1.9 Hz, 1H), 7.51 (d, J = 2.1 Hz, 1H), 7.33 

(dddd, J = 8.1, 7.0, 4.9, 1.9 Hz, 1H), 7.26 – 7.21 (td, J = 7.9, 1.9 Hz, 1H), 7.12 (ddd, J = 11.6, 

8.1, 1.2 Hz, 1H), 5.24 (dd, J = 7.1, 4.9 Hz, 1H), 3.01 (ddd, J = 16.2, 8.7, 5.0 Hz, 1H), 2.80 – 2.68 

(m, 1H), 2.45 (dddd, J = 13.4, 8.5, 7.1, 5.0 Hz, 1H), 2.31 (s, 3H), 2.12 – 2.00 (m, 1H), 0.99 – 

0.96 (m, 9H), 0.28 – 0.24 (m, 3H), 0.20 – 0.18 (m, 3H).  

13
C NMR (101 MHz, CDCl3) δ 164.5, 162.2, 159.7, 152.4, 144.0, 134.8, 131.6 (d, J = 3.1 Hz), 

130.1 (d, J = 8.5 Hz), 129.5, 128.6, 128.3 (d, J = 11.5 Hz), 124.8, 124.7, 116.4 (d, J = 23.5 Hz), 

76.8, 34.2, 26.4, 26.3, 19.2, 19.00, -3.8, -4.2.  

19
F NMR (376 MHz, CDCl3) δ -117.91. 

MS (FAB NBA): m/z (%): 359.1 (20), 358.1 (100), 357.1 (9), 301.1 (24), 300.1 (96), 299.0 (6.4), 

227.1 (21), 226.1 (93), 225.0 (11). 

Intermediate rac-143e-OTBDMS: 7-(Tert-butyldimethylsilyloxy)-4-methyl-2-(naphthalen-2-yl)-

6,7-dihydro-5H-cyclopenta[b]pyridine 

 

Synthesized by general method A.  Yield 127 mg (0.326 mmol, 97%) as an oil.   
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Chemical Formula: C25H31NOSi Molecular Weight: 389.6 

1
H NMR (500 MHz, CDCl3) δ 8.54 (s, 1H), 8.24 (dd, J = 8.6, 1.7 Hz, 1H), 7.92 (d, J = 8.3 Hz, 

2H), 7.89 – 7.82 (m, 1H), 7.58 (s, 1H), 7.54 – 7.43 (m, 2H), 5.28 (dd, J = 7.1, 5.3 Hz, 1H), 3.02 

(ddd, J = 16.0, 8.7, 4.7 Hz, 1H), 2.82 – 2.67 (m, 1H), 2.59 – 2.42 (m, 1H), 2.35 (s, 3H), 2.14 – 

1.97 (m, 1H), 1.02 (s, 9H), 0.30 (s, 3H), 0.25 (s, 3H).  

13
C NMR (126 MHz, CDCl3) δ 164.6, 156.5, 144.3, 137.6, 134.6, 133.9, 133.8, 129.0, 128.5, 

128.0, 126.5, 126.4, 126.3, 125.2, 120.8, 76.8, 34.3, 26.4, 26.2, 19.2, 19.1, -3.89, -4.1. 

Intermediate rac-143f-OTBDMS: 2-(Anthracen-9-yl)-7-(tert-butyldimethylsilyloxy)-4-methyl-

6,7-dihydro-5H-cyclopenta[b]pyridine 

 

Produced by general method A.  Yield 125 mg (2.85 mmol, 85%) as a high viscosity oil. 

Chemical Formula: C29H33NOSi Molecular Weight: 439.7  

1
H NMR (500 MHz, CDCl3) δ 8.51 (s, 1H), 8.02 (t, J = 9.6 Hz, 2H), 7.80 (d, J = 8.8 Hz, 1H), 

7.70 (d, J = 8.8 Hz, 1H), 7.49 – 7.40 (m, 2H), 7.38 – 7.30 (m, 2H), 7.16 (d, J = 8.0 Hz, 1H), 5.28 

(dd, J = 6.6, 3.0 Hz, 1H), 3.27 – 3.12 (m, 1H), 2.94 – 2.82 (m, 1H), 2.48 (ddt, J = 13.5, 8.6, 6.7 

Hz, 1H), 2.37 (s, 3H), 2.24 – 2.13 (m, 1H), 0.90 (d, J = 5.7 Hz, 9H), 0.14 (s, 3H), 0.08 (d, J = 5.9 

Hz, 3H).  

13
C NMR (126 MHz, CDCl3) δ 165.0, 156.9, 143.9, 136.3, 134.9, 131.9, 131.8, 130.7, 130.5, 

128.8, 128.5, 127.6, 127.5, 127.3, 126.9, 125.7, 125.7, 125.5, 125.3, 76.9, 34.1, 26.8, 26.3, 22.7, 

19.1, 18.8, 14.5, -3.8, -4.2. 

IR (neat ,ṽ): 2927, 2854, 1669, 1591, 1459, 1360,  1316, 1254, 1084, 1027, 1113, 881 cm
-1

. 
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Intermediate S-143e-OTBDMS: (S)-7-(tert-butyldimethylsilyloxy)-4-methyl-2-(naphthalen-2-

yl)-6,7-dihydro-5H-cyclopenta[b]pyridine 

 

Synthesized by general method A with enantiopure 2-chloropyridine.  All spectral properties 

matched those of the racemate.  Yield 122 mg (0.313 mmol, 93%). 

Intermediate S-143f-OTBDMS: (S)-2-(anthracen-9-yl)-7-(tert-butyldimethylsilyloxy)-4-methyl-

6,7-dihydro-5H-cyclopenta[b]pyridine 

 

Synthesized by general method A with enantiopure S-2-chloropyridine.  All spectral properties 

matched those of the racemate.  Yield 139 mg (0.316 mmol, 94%) as an oil. 

Intermediate rac-150-OTBDMS: 7-(tert-butyldimethylsilyloxy)-4-methyl-2-(2,3,5,6-

tetramethylphenyl)-6,7-dihydro-5H-cyclopenta[b]pyridine 

 

Synthesized by general method B with racemic 2-chloropyridine.  Purified material readily 

crystallizes out of 1 mL of hexane.  Yield 129 mg (0.326 mmol, 97%).  

Chemical Formula: C25H37NOSi Molecular Weight: 395.7 
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1
H NMR (500 MHz, CDCl3) δ 6.99 (s, 1H), 6.62 (s, 1H), 5.22 – 5.09 (m, 1H), 4.69 (s, 1H), 3.03 

– 2.87 (m, 1H), 2.74 – 2.57 (m, 1H), 2.41 (qd, J = 12.9, 5.9 Hz, 1H), 2.24 (d, J = 3.4 Hz, 9H), 

2.15 (s, 6H), 2.09 – 1.99 (m, 1H), 0.95 (s, 9H), 0.23 (s, 3H), 0.18 (s, 3H). 

13
C NMR (126 MHz, CDCl3) δ 164.7, 152.1, 150.6, 146.8, 134.8, 134.6, 123.9, 123.7, 119.4, 

76.2, 34.1, 26.3, 26.0, 24.9, 20.2, 18.8, 18.8, 12.0, -3.8, -4.3. 

MS (FAB NBA): m/z (%): 397.1 (3), 396.2 (5), 395.1 (3). 

Intermediate rac-151-OTBDMS: 7-(Tert-butyldimethylsilyloxy)-2-(2-isobutoxy-6-

methoxyphenyl)-4-methyl-6,7-dihydro-5H-cyclopenta[b]pyridine 

 

Synthesized by general method B with racemic 2-chloropyridine.  Product is a clear high 

viscosity oil.  Yield 100 mg (0.227 mmol, 67%). 

Chemical Formula: C26H39NO3Si Molecular Weight: 441.7 

1
H NMR (500 MHz, CDCl3) δ 7.35 (t, J = 8.3 Hz, 1H), 7.10 (s, 1H), 6.71 (dd, J = 12.5, 8.4 Hz, 

2H), 5.31 (dd, J = 6.3, 2.9 Hz, 1H), 3.82 (s, 3H), 3.75 (p, J = 8.9 Hz, 2H), 3.23 – 3.08 (m, 1H), 

2.84 (ddd, J = 15.8, 8.5, 3.7 Hz, 1H), 2.45 (tt, J = 13.8, 6.9 Hz, 1H), 2.37 (s, 3H), 2.23 – 2.13 (m, 

1H), 2.06 – 1.90 (m, 1H), 1.01 (s, 9H), 0.92 (dd, J = 15.6, 9.4 Hz, 6H), 0.29 (s, 3H), 0.17 (s, 3H). 

13
C NMR (126 MHz, CDCl3) δ 163.8, 158.8, 158.1, 153.2, 142.6, 134.1, 129.3, 126.5, 120.8, 

105.8, 104.6, 77.0, 75.4, 56.3, 34.3, 28.5, 26.6, 26.3, 19.5, 19.4, 18.9, 18.7, -3.8, -4.2. 

MS (FAB NBA): m/z (%): 442.1 (2), 441.1 (5), 386.1 (7), 385.1 (26), 384.1 (100). 
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Intermediate S-143g-OTBDMS: (S)-2-(anthracen-9-yl)-8-(tert-butyldimethylsilyloxy)-5,6,7,8-

tetrahydroquinoline 

 

Synthesized by general method C with 550 mg (1.85 mmol) enantiopure (S)-8-(tert-

butyldimethylsilyloxy)-2-chloro-5,6,7,8-tetrahydroquinoline.  Product is a clear high viscosity 

oil.  Yield 760 mg (1.73 mmol, 93%). 

Chemical Formula: C29H33NOSi Molecular Weight: 439.7 

1
H NMR (500 MHz, CDCl3) δ 8.52 (s, 1H), 8.04 (dd, J = 8.4, 2.9 Hz, 2H), 7.74 (d, J = 8.8 Hz, 

1H), 7.66 (d, J = 8.8 Hz, 1H), 7.59 (d, J = 7.7 Hz, 1H), 7.45 (dd, J = 14.7, 7.2 Hz, 2H), 7.34 (dd, 

J = 13.9, 6.0 Hz, 2H), 7.30 (d, J = 7.7 Hz, 1H), 4.92 (s, 1H), 3.01 (dt, J = 16.8, 4.6 Hz, 1H), 2.94 

– 2.80 (m, 1H), 2.25 (dd, J = 22.8, 18.1 Hz, 1H), 2.19 – 2.08 (m, 1H), 2.02 (dd, J = 24.7, 12.0 

Hz, 1H), 1.86 (dd, J = 9.4, 3.5 Hz, 1H), 0.87 (s, 9H), 0.08 (d, J = 6.9 Hz, 3H), -0.06 (s, 3H). 

13
C NMR (101 MHz, CDCl3) δ 158.07, 155.46, 137.39, 136.15, 131.84, 131.77, 131.14, 130.59, 

130.45, 128.80, 128.49, 127.55, 127.50, 126.79, 125.99, 125.76, 125.49, 125.31, 70.39, 32.72, 

28.76, 26.28, 18.63, 17.88, -3.71, -4.45.  

MS (FAB NBA+KCl): m/z (%): 442.1 (10), 441.1 (34), 440.1 (83), 439.1 (8), 384.1 (11), 383.1 

(33), 382.1 (100). 

IR (neat ,ṽ): 2928, 2854, 1671, 1593, 1458, 1354,  1311, 1251, 1085, 1027, 881, 835, 776, 753 

735 cm
-1 

Elemental Analysis: calculated: C, 79.22; H, 7.57; N, 3.19 found: C, 79.09; H, 7.61; N, 3.01 
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Intermediate R-143g-OTBDMS: (R)-2-(anthracen-9-yl)-8-(tert-butyldimethylsilyloxy)-5,6,7,8-

tetrahydroquinoline 

 

Synthesized by general method C with enantiopure (R)-8-(tert-butyldimethylsilyloxy)-2-chloro-

5,6,7,8-tetrahydroquinoline.  Product is a clear high viscosity oil.  Yield 440 mg (1.00 mmol, 

94%).  Product matched the opposite enantiomer in perfect agreement in spectra and properties.  

Chemical Formula: C29H33NOSi Molecular Weight: 439.7 

5.11  Sterically encumbered 2-arylpyridyl alcohols, racemates and enantiomers 

General method A, cleavage of tert-butyldimethylsilyl ethers:  The 2-arylpyridyl silyl ether 

(0.200 mmol) was taken up in 5 mL of dry THF and solid tetrabutylammonium fluoride 

trihydrate (195 mg, 0.600 mmol) was added and the reaction was heated to 50 ˚C for 4 hours.  

The reaction was monitored by TLC, if the conversion was incomplete and additional amount of 

TBAF was added and the heating continued (100 mg, 0.307 mmol).  The heating was stopped 

when full conversion was achieved by pouring the reaction after cooling to room temperature 

into an appropriately sized separatory funnel, addition and washing of the flask into the funnel 

with 25 mLs of ethyl acetate and extraction with water (3 x 30 mL).  The organic layer was 

washed with brine (2 x 25 mL), dried over).  The organic layer was dried over magnesium 

sulfate, filtered and concentrated at the rotovap to provide the pure product.   

General method B: The parent acetate ester (0.565 mmol) was deprotected by placing of the 

starting material into an oven dried round bottom flask with 10 mL of THF with 1 mL of  4M 

sodium hydroxide.  The reaction was heated to 65 ˚C at a high rate of mixing and the reaction 

was monitored with TLC.  When the starting material was completely consumed the reaction 

was diluted with ethyl acetate (20 mLs) and transferred to a separatory funnel.  The organic layer 

was washed with water (2 x 20 mL) and the aqueous layer was back extracted with ethyl acetate 

(5 mL).  The organic layer was washed with brine (2 x 20 mL), dried over magnesium sulfate, 
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filtered and concentrated at a rotovap to yield the product.  If further purification was necessary 

the product was chromatographed (1 X 10 cm silica gel, dry load) with ethyl acetate/ hexane 1:4. 

Intermediate S-143a: (S)-2-mesityl-4-methyl-6,7-dihydro-5H-cyclopenta[b]pyridin-7-ol 

 

Synthesize by general method B from 165 mg of the S ester to yield 135 mg (0.505 mmol, 89%) 

of product after chromatography (1 X 10 cm silica gel, dry load) with 20% ethyl acetate to 

remove trace impurities. 

Chemical Formula: C18H21NO Molecular Weight: 267.4 

1
H NMR (500 MHz, CDCl3) δ 6.91 (s, 2H), 6.88 (s, 1H), 5.38 – 4.97 (m, 1H), 3.77 (s, 1H), 2.96 

(ddd, J = 16.1, 9.1, 3.9 Hz, 1H), 2.86 – 2.66 (m, 1H), 2.61 – 2.42 (m, 1H), 2.31 (d, J = 5.9 Hz, 

6H), 2.12 – 1.78 (m, 7H). 

13
C NMR (126 MHz, CDCl3)

 δ 164.4, 158.9, 144.5, 137.9, 137.6, 136.2, 133.7, 128.5, 124.9, 

75.3, 32.5, 26.2, 21.4, 20.6, 19.0. 

MS (e.i. 70 eV): m/z (%) 268.2 (7), 267.2 (37), 266.2 (48), 250.2 (5), 249.2 (22), 248.2 (100), 

235.2 (2), 234.2 (11), 233.1 (10), 232.1 (6). 

Elemental Analysis: for C18H21NO calculated C, 80.86; H, 7.92; N, 5.24; found C, 79.20; H, 

7.70; N, 4.55. 

Intermediate rac-143b: 2-Mesityl-5,6,7,8-tetrahydroquinolin-8-ol 

 

Synthesized by taking the racemic ester (100 mg, 0.323 mmol) in 20 mL of dry methanol and 

adding 1 gram of very finely divided potassium carbonate to a stirred mixture. Extractive workup 
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with 50 mL of DCM and 50 mL of water, separated and the organic layer was dried over 

magnesium sulfate, filtered and concentrated resulting in 85 mg (0.323 mmol) of product.   

Chemical Formula: C18H21NO Molecular Weight: 267.4 

1
H NMR (400 MHz, CDCl3) δ 7.48 (d, J = 7.8 Hz, 1H), 7.06 (d, J = 7.8 Hz, 1H), 6.96 (s, 2H), 

4.72 (dd, J = 14.1, 8.5 Hz, 1H), 4.13 (s, 1H), 2.98 – 2.77 (m, 2H), 2.45 – 2.24 (m, 4H), 2.03 (d, J 

= 15.4 Hz, 7H), 1.94 – 1.76 (m, 2H). 

Intermediate rac-143h: 4-Methyl-2-(piperidin-1-yl)-6,7-dihydro-5H-cyclopenta[b]pyridin-7-ol 

 

Synthesized from the racemic 2-chloro-4-methyl-6,7-dihydro-5H-cyclopenta[b]pyridin-7-ol 

(130a), (134 mg, 0.732 mmol) placed in a microwave tube with potassium carbonate (500 mg, 

3.62 mmol) and piperdine (500 mg, 5.88 mmol) and DMF was added (10 mL).  The tube was 

capped and microwaved at 200 ˚C for 20 minutes.  The reaction was worked up by transferring 

the contents to a separatory funnel with 50 mL of ethyl acetate and extracting with water (3 x 

100 mL), brine (50 mL), drying over magnesium sulfate, filtration, and concentration of the 

crude product onto silica gel for column chromatography.  Chromatographed (1 X 10 cm silica 

gel, dry load) with 20% ethyl acetate hexane to yield 88 mg (0.379 mmol, 52%) of pure product.   

The enantiomers were separated on the AD column with a flow of 6 mL/min and polarity of 20% 

isopropanol in hexane at room temp, Ts = 22 min and Tr = 50 min.   

Chemical Formula: C14H20N2O Molecular Weight: 232.3 

1
H NMR (500 MHz, CDCl3) δ 6.37 (s, 1H), 5.02 (t, J = 6.7 Hz, 1H), 3.47 (d, J = 5.4 Hz, 4H), 

2.81 (ddd, J = 15.2, 9.0, 3.4 Hz, 1H), 2.67 – 2.56 (m, 1H), 2.56 – 2.43 (m, 1H), 2.18 (d, J = 8.0 

Hz, 3H), 1.93 (ddt, J = 13.1, 9.0, 6.7 Hz, 1H), 1.62 (s, 6H).  

13
C NMR (126 MHz, CDCl3) δ 162.0, 161.2, 145.6, 124.4, 107.6, 75.7, 47.4, 33.0, 25.9, 25.6, 

25.1, 19.5. 



Chapter 5  

Experimental 

 

161 

 

Intermediate S-143b: (S)-2-mesityl-5,6,7,8-tetrahydroquinolin-8-ol 

 

Synthesized by general method B from 158 mg (0.511 mmol) ester.  Yield 129 mg (0.482 mmol, 

94%). 

Chemical Formula: C18H21NO Molecular Weight: 267.4 

1
H NMR (500 MHz, CDCl3) δ 7.47 (d, J = 7.8 Hz, 1H), 7.06 (d, J = 7.8 Hz, 1H), 6.95 (s, 2H), 

4.72 (t, J = 6.9 Hz, 1H), 4.08 (s, 1H), 3.00 – 2.76 (m, 2H), 2.34 (d, J = 10.0 Hz, 4H), 2.05 (d, J = 

13.4 Hz, 7H), 1.98 – 1.75 (m, 2H). 

13
C NMR (126 MHz, CDCl3) δ 158.1, 157.1, 138.0, 137.9, 137.5, 136.3, 129.5, 128.8, 123.8, 

69.4, 30.9, 28.5, 21.5, 20.7, 20.1. 

MS (e.i. 70 eV): m/z (%) 268.2 (8), 267.2 (38), 266.2 (39), 250.2 (8), 249.2 (28), 248.2 (100), 

235.2 (2), 234.2 (10), 233.1 (6), 232.1 (6). 

[α]
20

D = +57.4 at a concentration of 0.51. 

Elemental Analysis: for C18H21NO calculated C, 80.86; H, 7.92; N, 5.24; found C, 80.75; H, 

7.93; N, 5.00. 

Intermediate S-143f: (S)-2-(Anthracen-9-yl)-4-methyl-6,7-dihydro-5H-cyclopenta[b]pyridin-7-ol 

 

Synthesized by method B from 94 mg (0.214 mmol) of TBDMS ether.  Yield after 

chromatography using 5% ether in DCM is 55 mg (0.169 mmol, 79%).  
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Chemical Formula: C23H19NO Molecular Weight: 325.4 

1
H NMR (500 MHz, CDCl3) δ 8.52 (s, 1H), 8.04 (dd, J = 8.5, 3.0 Hz, 2H), 7.66 – 7.52 (m, 2H), 

7.50 – 7.40 (m, 2H), 7.38 – 7.33 (m, 1H), 7.33 – 7.29 (m, 1H), 7.18 (s, 1H), 5.24 (t, J = 6.3 Hz, 

1H), 4.04 – 3.53 (m, 1H), 3.10 – 2.92 (m, 1H), 2.87 – 2.71 (m, 1H), 2.46 (dd, J = 19.2, 14.7 Hz, 

1H), 2.36 (s, 3H), 2.04 – 1.88 (m, 1H).  

13
C NMR (126 MHz, CDCl3) δ 164.9, 156.9, 144.7, 135.4, 134.7, 131.7, 130.6, 130.5, 128.8, 

128.7, 127.7, 127.1, 126.6, 126.5, 126.0, 125.4, 125.3, 75.3, 32.4, 26.3, 19.0. 

Intermediate S-143e: (S)-4-methyl-2-(naphthalen-2-yl)-6,7-dihydro-5H-cyclopenta[b]pyridin-7-

ol 

 

Synthesized by general method A except using 40 mg (0.103 mmol) of starting silyl ether and 

producing 25.1 mg of alcohol (91.2 µmol, 89%). 

Chemical Formula: C19H17NO Molecular Weight: 275.3 

1
H NMR (400 MHz, CDCl3) δ 8.44 (s, 1H), 8.11 (dd, J = 8.6, 1.8 Hz, 1H), 7.96 – 7.89 (m, 2H), 

7.86 (dd, J = 5.2, 4.2 Hz, 1H), 7.55 (s, 1H), 7.53 – 7.46 (m, 2H), 5.29 (dd, J = 7.2, 6.1 Hz, 1H), 

3.27 (s, 1H), 3.00 (ddd, J = 16.2, 9.0, 3.9 Hz, 1H), 2.89 – 2.68 (m, 1H), 2.68 – 2.48 (m, 1H), 2.35 

(s, 3H), 2.20 – 1.98 (m, 1H). 

Intermediate S-143g: (S)-2-(anthracen-9-yl)-5,6,7,8-tetrahydroquinolin-8-ol 
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Synthesized by general method A except using 700 mg (1.59 mmol) of the silyl ether, 2 g (6.36 

mmol) of tetrabutyl ammonium fluoride trihydrate in 50 mL of absolute THF and stirring for 18 

hours under argon followed by heating to 60 ˚C for 2 hours to remove the last traces of starting 

material.  A trace of the R enantiomer was present in the HPLC so the product was purified by 

fractional recrystallization from toluene (500 mg in 20 mL).  Scalemic product crystallizes while 

enantiopure remains in solution. Yield of enantiopure 350 mg (1.07 mmol, 68%).  X-ray quality 

crystals were grown from 300 mg in 12 mls of boiling isopropanol followed by cooling to -20˚C 

overnight for quantitative return of material.   

HPLC conditions: ODH column, 30% isopropanol in heptanes with a flow rate of 0.5 mLs/min 

and a temperature of 25 ˚C.  Elution times TS = 9 minutes and TR = 18minutes.  

Chemical Formula: C23H19NO Molecular Weight: 325.4 

1
H NMR (400 MHz, CDCl3) δ 8.55 (s, 1H), 8.06 (d, J = 8.4 Hz, 2H), 7.64 (t, J = 8.4 Hz, 2H), 

7.59 (d, J = 8.8 Hz, 1H), 7.48 (dd, J = 17.6, 10.5 Hz, 2H), 7.42 – 7.31 (m, 3H), 4.84 (t, J = 7.0 

Hz, 1H), 3.98 (s, 1H), 3.23 – 2.82 (m, 2H), 2.56 – 2.28 (m, 1H), 2.29 – 2.06 (m, 1H), 2.06 – 1.85 

(m, 2H). 

13
C NMR (101 MHz, CDCl3) δ 158.6, 155.5, 137.6, 135.2, 131.8, 130.6, 130.5, 130.4, 128.9, 

128.8, 127.9, 126.6, 126.4, 126.3, 126.2, 126.0, 125.6, 125.5, 69.4, 31.0, 28.7, 20.0. 

MS (e.i. 70 eV): m/z (%) 327.1 (3), 326.1 (23), 325.1 (100), 324.1 (73), 309.1 (3), 308.1 (19), 

307.1 (68), 306.1 (82), 305.1 (5), 304.1 (10), 297.1 (2), 296.1 (7), 294.1 (5),. 

[α]
20

D = +4.0 at a concentration of 1.10. 

Intermediate R-143g: (R)-2-(anthracen-9-yl)-5,6,7,8-tetrahydroquinolin-8-ol 
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Synthesized by general method A except using 420 mg (0.957 mmol) of the silyl ether, 3 g (9.5 

mmol) of tetrabutyl ammonium fluoride trihydrate in 50 mL of absolute THF and heating to 60 

˚C for 6 hours.  Fractional recrystallization from 12 mL of toluene to precipitate the scalemic 

product yields the enantiopure product in the remaining solvent, 268 mg (0.824 mmol, 86%).  

The product matched the opposite enantiomer in its spectral and physical properties.   

HPLC conditions: ODH column, 30% isopropanol in heptanes with a flow rate of 0.5 mLs/min 

and a temperature of 25 ˚C Elution times Ts = 9 minutes and Tr = 18.  

Chemical Formula: C23H19NO Molecular Weight: 325.4 

5.12  Phosphonite formation and iridium complexation  

General method:  Pyridyl alcohol (87.9 µmol) and DMAP (10.7 mg, 87.9 µmol) were added to a 

4 mL vial with a small stir bar.  The vial was loosely capped and brought inside the box.  

Absolute THF (500 µL) was added to the vial and the contents were stirred into solution.  

Chlorodiphenylphosphine (19.4 mg, 87.9 µmol) was weighed into a separate vial and (500 µL) 

was added.  The solution was transferred to the stirring mixture of DMAP and pyridyl alcohol 

with a syringe and the contents of the vial and syringe were washed into the reaction mixture 

with THF (3 x 250 µL).  An immediate white precipitate was formed on addition of the 

chlorophosphine and the reaction was stirred for 30 minutes.  The slurry was filtered through a 

small pipette plug of silica and the silica washed with an additional THF (2 x 1 mL) into a young 

tube with a stir bar.  The tube was sealed, brought outside the box and the volatiles were 

removed on a Schlenk line.  Absolute DCM (5 mL) was added to the tube under argon followed 

by solid iridium(I), bis[(1,2,5,6-ƞ)-1,5-cyclooctadiene]-, tetrakis[3,5-

bis(trifluoromethyl)phenyl]borate) (112.7 mg, 88.6 µmol).  The tube is sealed and resulting 

solution is stirred for 2.5 hours at 45 ˚C.  The reaction is then cooled and the contents are rotary 

evaporated onto silica, loaded onto a column (1 X 10 cm silica gel, dry load) prepared with 

hexane and chromatographed with the appropriate combination of ether/hexane and then DCM.  

The resulting red solids are recrystallized from DCM/ hexane to obtain solid X-ray quality 

crystals.   
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Complex S-108a: Iridium(I) [(1,2,5,6-ƞ)-1,5-cyclooctadiene][ (S)-7-(diphenylphosphinooxy-ĸP)-

4-methyl-2-(naphthalen-2-yl)-6,7-dihydro-5H-cyclopenta[b]pyridine-ĸN]-tetrakis[3,5-

bis(trifluoromethyl)phenyl]borate(-) 

 

Synthesized by the general method to yield 107 mg (65.9 µmol, 73%).  Chromatographed (1 X 

10 cm silica gel, dry load) with 30% ether in hexane to remove byproducts, 50% DCM hexane 

and final elution with pure DCM.  

Chemical Formula: C71H50BF24IrNOP Molecular Weight: 1623.1  

MP: 198-200 ˚C 

1
H NMR (500 MHz, CDCl3) δ 8.21 (s, 1H), 7.95 – 7.82 (m, 3H), 7.71 – 7.62 (m, 11H), 7.62 – 

7.54 (m, 2H), 7.51 – 7.44 (m, 3H), 7.42 (s, 4H), 7.41 – 7.32 (m, 6H), 6.40 – 6.22 (m, 1H), 4.48 

(s, 1H), 4.22 (s, 1H), 3.01 (dddd, J = 17.3, 14.1, 9.2, 2.4 Hz, 2H), 2.86 (ddt, J = 24.3, 16.0, 8.1 

Hz, 2H), 2.69 – 2.58 (m, 1H), 2.57 – 2.45 (m, 1H), 2.29 (s, 3H), 2.08 – 1.94 (m, 1H), 1.83 (dd, J 

= 15.3, 7.8 Hz, 2H), 1.71 (dt, J = 13.7, 9.2 Hz, 1H), 1.60 – 1.48 (m, 1H), 1.22 – 1.12 (m, 1H), 

1.06 – 0.93 (m, 1H), 0.53 (dt, J = 13.3, 9.2 Hz, 1H).  

13
C NMR (126 MHz, CDCl3) δ 162.1 (dd, JBC = 99.6, 49.9 Hz), 161.0, 160.2 (d, JPC = 3.6 Hz), 

150.1, 138.3, 136.5, 136.1, 135.6, 135.2, 134.6, 133.4, 132.6, 132.2, 131.7, 130.7 (d, JPC = 14.1 

Hz), 130.1, 129.7 (d, JPC = 11.0 Hz), 129.4 (d, J = 10.9 Hz), 129.2, 128.9, 128.7 (dd, JFC = 18.5, 

12.6 Hz), 128.2, 126.0, 125.8, 124.7, 123.9, 121.7, 117.9, 99.4 (d, JPC = 9.5 Hz), 90.4 (d, JPC = 

14.9 Hz), 85.7, 69.5, 63.8, 36.3, 34.4, 30.1 (d, JCP = 10.2 Hz), 28.7, 26.7, 24.5, 19.2. 

31
P NMR (162 MHz, CDCl3) δ 146.2.  

19
F NMR (376 MHz, CDCl3) δ -63.5.  

MS (FAB, NBA): 763.3 (2), 762.3 (10), 761.3 (41.5%), 760.2 (100), 759.2 (31), 758.2 (62),  

654.1 (3), 653.1 (6), 652.1 (7), 651.1 (18), 650.1 (22), 648.1 (15). 
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IR (ṽ): 2955w, 1611, 1481, 1456, 1437, 1354, 1277, 1125, 1043, 1016, 999, 965, 927, 886, 854, 

838, 743, 712, 682, 669 cm
-1

. 

[α]
20

D = +20.4 at a concentration of 0.71.  

Elemental Analysis: for C71H50BF24IrNOP calculated C, 52.54; H, 3.10; N, 0.86; found C, 52.46; 

H, 3.07; N, 0.72. 

Complex S-108i: Iridium(I) [(1,2,5,6-ƞ)-1,5-cyclooctadiene][ (S)-7-(diphenylphosphinooxy-ĸP)-

4-methyl-2-(piperidin-1-yl)-6,7-dihydro-5H-cyclopenta[b]pyridine-ĸN]-tetrakis[3,5-

bis(trifluoromethyl)phenyl]borate(-) 

 

Synthesized by the general method except using 13 mg (56 µmol) of pyridyl alcohol, 6.8 mg (56 

µmol) of DMAP, 12.3 (56 µmol) of chlorodiphenylphosphine and 71.2 mg (56 µmol) of 

iridium(I)(COD)2BArF to yield 40 mg (25.3 µmol, 45%). 

Chemical Formula: C66H53BF24IrN2OP Molecular Weight: 1580.1 

MP: 168-171 ˚C 

1
H NMR (500 MHz, CDCl3) δ 7.64 (s, 8H), 7.54 – 7.46 (m, 2H), 7.44 (s, 4H), 7.40 – 7.28 (m, 

6H), 7.21 (ddd, J = 9.6, 6.6, 2.9 Hz, 2H), 6.49 (s, 1H), 6.34 (dd, J = 12.5, 7.1 Hz, 1H), 5.53 – 

5.41 (m, 1H), 4.73 (dd, J = 7.4, 3.6 Hz, 1H), 3.75 (s, 1H), 3.47 (s, 2H), 3.21 – 3.08 (m, 2H), 2.93 

– 2.85 (m, 1H), 2.81 (dd, J = 16.0, 9.9 Hz, 1H), 2.69 (dt, J = 16.2, 8.3 Hz, 1H), 2.64 – 2.57 (m, 

1H), 2.53 (ddd, J = 20.9, 10.2, 5.3 Hz, 1H), 2.44 – 2.27 (m, 2H), 2.13 (s, 3H), 2.07 (dt, J = 10.9, 

5.6 Hz, 2H), 2.01 (dt, J = 13.4, 9.0 Hz, 1H), 1.84 – 1.72 (m, 1H), 1.64 – 1.52 (m, 3H), 1.49 (s, 

2H), 1.41 – 1.29 (m, 3H). 

13
C NMR (126 MHz, CDCl3) δ 164.7, 162.1 (dd, JBC = 99.7, 49.8 Hz), 158.0 (d, JPC = 12 Hz), 

135.2, 132.4, 132.1, 131.8 – 131.7 (d, JPC = 9 Hz), 131.3, 131.0 (d, J PC = 14.1 Hz), 129.9, 129.6 
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(d, J PC = 11.0 Hz), 129.4 (d, J PC = 2.9 Hz), 129.3 (d, J PC = 2.2 Hz), 129.17 (dd, JPC = 21, 10 

Hz), 128.9 (dd, JPC = 22.5, 11.5 Hz), 128.2, 126.0, 123.9, 121.7, 117.8, 114.6, 103.8 (d, J = 11.3 

Hz), 96.4 (d, J = 12.6 Hz), 87.2, 64.8, 59.1, 37.4, 33.3, 30.7 (d, J = 10.9 Hz), 29.1, 25.6, 25.1, 

23.9, 19.5. 

31
P NMR (162 MHz, CDCl3) δ 147.2.  

19
F NMR (376 MHz, CDCl3) δ -62.7.  

MS (FAB, NBA): 719.3 (9), 718.3 (40), 717.3 (100), 716.3 (31), 715.3 (69),   611.2 (2), 610.2 

(4), 609.2 (11), 608.2 (21), 607.2 (49), 606.2 (23), 605.2 (45), 604.2 (15).   

[α]
20

D  =  +54.0 at a concentration of 0.50. 

Elemental Analysis: for C66H53BF24IrN2OP calculated C, 50.17; H, 3.38; N, 1.77; found C, 

50.06; H, 3.32; N, 1.51. 

Complex S-108b: Iridium(I) [(1,2,5,6-ƞ)-1,5-cyclooctadiene][ (S)-2-(anthracen-9-yl)-7-

(diphenylphosphinooxy ĸP)-4-methyl-6,7-dihydro-5H-cyclopenta[b]pyridine-ĸN]-tetrakis[3,5-

bis(trifluoromethyl)phenyl]borate(-) 

 

Synthesized by the general method except using 23.6 mg (72.6 µmol) of pyridyl alcohol, 8.8 mg 

(72.6 µmol) of DMAP, 16 mg (72.6 µmol) of chlorodiphenylphosphine and 71.2 mg (72.6 µmol) 

of iridium(I)(COD)2BArF to yield 89 mg (49.0 µmol, 68%). 

Chemical Formula: C75H52BF24IrNOP Molecular Weight: 1673.2 

MP: 98-101 ˚C 

1
H NMR (400 MHz, CDCl3) δ 8.71 (s, 1H), 8.11 (dd, J = 8.2, 5.1 Hz, 2H), 7.72 (s, 8H), 7.61 (qd, 

J = 6.7, 4.0 Hz, 4H), 7.55 (td, J = 6.0, 2.4 Hz, 2H), 7.50 (dd, J = 9.6, 3.9 Hz, 7H), 7.49 – 7.41 (m, 

5H), 7.40 – 7.33 (m, 4H), 6.73 (d, J = 8.7 Hz, 1H), 6.30 – 6.19 (m, 2H), 5.13 (s, 1H), 3.75 (s, 

1H), 3.35 – 3.20 (m, 1H), 3.04 (ddd, J = 17.2, 9.5, 4.4 Hz, 1H), 2.99 – 2.88 (m, 1H), 2.89 – 2.74 
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(m, 1H), 2.70 – 2.55 (m, 1H), 2.47 (s, 3H), 2.27 – 2.09 (m, 1H), 2.05 (t, J = 7.4 Hz, 1H), 1.63 

(dd, J = 14.5, 9.0 Hz, 2H), 1.46 – 1.40 (m, 2H), 1.01 (dd, J = 15.7, 9.9 Hz, 2H), 0.66 – 0.47 (m, 

2H), 0.21 – 0.05 (m, 1H). 

13
C NMR (101 MHz, CDCl3) δ 163.5 – 160.7 (dd, JBC = 99.6, 49.9 Hz), 159.0, 150.1, 139.4, 

135.2, 134.0, 133.5 (d, JPC = 6.5 Hz), 132.9, 132.4 (d, J PC = 14.7 Hz), 132.1, 131.2 (d, J PC = 5.1 

Hz), 131.1, 130.94 (d, J PC = 11.4 Hz), 130.6 (d, J PC = 13.2 Hz), 130.4 (d, J PC = 5.6 Hz), 129.7 

(d, J PC = 10.7 Hz), 129.5, 129.3 (d, J PC = 2.5 Hz), 129.2, 129.1, 129.0 (m BC), 128.9 – 128.8 (m 

FC), 128.6, 127.7, 126.4 (d PC, J = 17.5 Hz), 124.8, 123.7 (d, J = 12.8 Hz), 120.9, 117.9, 95.1 (d, 

JPC  = 7.8 Hz), 87.5 (d, JPC = 18.7 Hz), 84.63 (s, 1H), 69.4, 68.1 , 36.3, 35.8, 29.8 (d, J PC = 10.0 

Hz), 27.8, 27.5, 24.6, 19.2. 

31
P NMR (162 MHz, CDCl3) δ 149.2.  

19
F NMR (376 MHz, CDCl3) δ -63.1. 

MS (FAB, NBA): m/z: 813.3 (2), 812.3 (12), 811.3 (48), 810.2 (100), 808.2 (65),  809.2 (37), 

704.2 (6), 703.2 (10), 702.2 (15), 701.2 (11), 700.2 (11).      

IR (ṽ): 2887w, 1737w, 1608, 1485, 1463, 1438, 1352s, 1272s, 1157, 1112s, 1093, 999w, 958, 

885, 838, 738, 711, 696, 680, 669, 642, 619 cm
-1

. 

[α]
20

D  =  +39.4 at a concentration of 0.60. 

Elemental Analysis: for C75H52BF24IrNOP calculated C, 53.84; H, 3.13; N, 0.84; found C, 53.78; 

H, 3.17; N, 0.77. 

Complex S-108c: Iridium(I) [(1,2,5,6-ƞ)-1,5-cyclooctadiene][ ((S)-2-(anthracen-9-yl)-7-(dio-

tolylphosphinooxy-ĸP)-4-methyl-6,7-dihydro-5H-cyclopenta[b]pyridine-ĸN]-tetrakis[3,5-

bis(trifluoromethyl)phenyl]borate(-) 
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Synthesized by the general method except using 24.2 mg (74.5 µmol) of pyridyl alcohol, 9.1 mg 

(74.5 µmol) of DMAP, 18.5 mg (74.5 µmol) of chlorodiphenylphosphine and 94 mg (74.5 µmol) 

of iridium(I)(COD)2BArF to yield 87 mg (51.1 µmol, 69%).  

Chemical Formula: C77H56BF24IrNOP Molecular Weight: 1701.2 

MP: 103-105 ˚C 

1
H NMR (500 MHz, CDCl3) δ 8.64 (s, 1H), 8.10 (d, J = 8.5 Hz, 1H), 8.00 (d, J = 8.5 Hz, 1H), 

7.69 (s, 8H), 7.55 (s, 1H), 7.45 (d, J = 12.4 Hz, 5H), 7.43 – 7.37 (m, 2H), 7.33 – 7.28 (m, 2H), 

7.21 (dd, J = 21.2, 13.3 Hz, 3H), 7.10 (dd, J = 24.6, 16.6 Hz, 1H), 6.93 (s, 2H), 6.20 (m2H), 5.02 

(s, 1H), 3.13 (d, J = 7.5 Hz, 1H), 2.98 (dd, J = 16.2, 8.5 Hz, 2H), 2.82 – 2.48 (m, 4H), 2.38 – 

2.24 (m, 4H), 2.24 – 1.90 (m, 6H), 1.85 (dd, J = 15.8, 8.0 Hz, 1H), 1.78 – 1.39 (m, 3H), 1.29 – 

1.08 (m, 2H), 0.84 (ddd, J = 31.4, 25.0, 19.3 Hz, 2H), 0.51 (d, J = 9.9 Hz, 1H). 

13
C NMR (126 MHz, CDCl3) δ 162.1 (dd, JBC = 99.7, 49.8 Hz), 159.9, 150.4, 141.4 (d, JPC = 

30.5 Hz), 139.6, 135.2, 133.3, 132.5, 131.3, 131.0, 130.8, 130.3, 129.7-129.6 (m), 129.5, 129.3, 

129.2 (dd, JPC = 21, 10 Hz), 128.9 (dd, JPC = 22.5, 11.5 Hz), 128.1 (d, JFC = 21.6 Hz), 126.4 (d, J 

PC = 6.9 Hz), 126.1, 124.7, 123.9, 121.7, 117.9 (t, JPC = 14.6 Hz), 85.0, 36.4 – 36.1 (m), 33.6, 

29.8 (d, JPC = 10.2 Hz), 27.6, 25.4, 23.1(d, JPC= 10.5 Hz), 19.1. 

31
P NMR (162 MHz, CDCl3) δ 149.2.  

19
F NMR (376 MHz, CDCl3) δ -63.1. 

MS (FAB, NBA): m/z: 841.3 (3), 840.3 (13), 839.3 (50), 838.3 (100.0), 837.3 (34), 836.3 (66), 

733.2 (2.4), 732.2 (6), 731.2 (16), 730.2 (40), 729.2 (39), 728.2 (53), 727.2 (31), 726.2 (43), 

725.2 (15).    

IR (ṽ): 2882w, 1737w, 1608, 1463, 1354s, 1273s, 1157, 1112s, 1037, 960, 885, 839, 738, 712, 

669, 622 cm
-1

. 

[α]
20

D  =  +44.0 at a concentration of 0.92. 

Elemental Analysis: for C77H56BF24IrNOP calculated C, 54.36; H, 3.32; N, 0.82; found C, 53.98; 

H, 3.35; N, 0.67. 

  



Chapter 5  

Experimental 

 

170 

 

Complex S-110b: Iridium(I) [(1,2,5,6-ƞ)-1,5-cyclooctadiene][ (S)-8-(dio-tolylphosphinooxy-ĸP)-

2-mesityl-5,6,7,8-tetrahydroquinoline-ĸN]-tetrakis[3,5-bis(trifluoromethyl)phenyl]borate(-) 

 

Synthesized by the general method except using 25.8 mg (96.8 µmol) of pyridyl alcohol, 11.8 

mg (96.8 µmol) of DMAP, 24 mg (96.8 µmol) of chlorodiphenylphosphine and 122.7 mg (96.8 

µmol) of iridium(I)(COD)2BArF to yield 128 mg (77.8 µmol, 81%). 

Chemical Formula: C72H58BF24IrNOP Molecular Weight: 1643.2 

MP: 203-04 ˚C 

1
H NMR (500 MHz, CDCl3) δ 7.76 (s, 8H), 7.65 (d, J = 7.9 Hz, 1H), 7.56 (s, 4H), 7.40 (dt, J = 

13.1, 7.3 Hz, 3H), 7.24 (s, 1H), 7.22 – 7.11 (m, 3H), 7.08 (d, J = 15.9 Hz, 1H), 6.95 (s, 1H), 6.73 

(d, J = 52.5 Hz, 1H), 6.42 (d, J = 5.0 Hz, 1H), 5.58 (s, 1H), 3.88 (s, 1H), 3.46 (d, J = 45.0 Hz, 

1H), 3.19 – 2.72 (m, 6H), 2.67 (d, J = 12.9 Hz, 1H), 2.53 – 2.23 (m, 7H), 2.23 – 1.86 (m, 9H), 

1.81 (s, 4H), 1.27 (dd, J = 19.8, 12.6 Hz, 4H). 

13
C NMR (101 MHz, CDCl3) δ 162.1 (dd, JBC = 102.0, 46.9 Hz), 141.7, 140.9, 137.0, 135.3 (d, 

JPC = 26.4 Hz, 6H), 132.7, 130.8, 129.6 (d, JPC = 30.7 Hz), 128.9 (t, JFC = 13.4 Hz), 126.7 (d, J = 

11.1 Hz), 126.3, 123.6, 120.9 – 120.6 (mPC), 117.8, 99.2, 64.9, 37.2 (d, JPC = 27.5 Hz), 34.6, 30.3 

(d, JPC = 9.6 Hz), 28.5, 27.9, 25.3, 22.5, 21.4, 21.0, 17.3.  

31
P NMR (202 MHz, CDCl3) δ 158.2 (broad), 146.4 (broad). 

MS (FAB, NBA): m/z: 783.3 (2), 782.3 (10), 781.3 (43), 780.3 (100), 779.3 (29), 778.3 (60), 

674.2 (4), 673.2 (10), 672.2 (27), 671.2 (29), 670.2 (52), 669.2 (23), 668.2 (33).    

IR (ṽ): 2929w, 2357, 1737w, 1614, 1460, 1352s, 1271s, 1159, 1117s, 1037, 960, 931, 877, 854, 

839, 757, 744, 711, 692, 680, 668, 638, 619 cm
-1

. 
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[α]
20

D  =  +37.0 at a concentration of 0.38. 

Elemental Analysis: for C72H58BF24IrNOP calculated C, 52.63; H, 3.56; N, 0.85; found  C, 

52.49; H, 3.66; N, 0.70. 

Complex S-108d: Iridium(I) [(1,2,5,6-ƞ)-1,5-cyclooctadiene][ (S)-7-(dio-tolylphosphinooxy-ĸP)-

2-mesityl-4-methyl-6,7-dihydro-5H-cyclopenta[b]pyridine-ĸN]-tetrakis[3,5-

bis(trifluoromethyl)phenyl]borate(-) 

 

Synthesized by the general method except using 31.0 mg (115.9 µmol) of pyridyl alcohol, 14.1 

mg (115.9 µmol) of DMAP, 24 mg (115.9 µmol) of chlorodiphenylphosphine and 147.5 mg 

(115.9 µmol) of iridium(I)(COD)2BArF  to yield 139 mg (84.6 µmol, 73%). 

Chemical Formula: C72H58BF24IrNOP Molecular Weight: 1643.2 

MP: 162-165 ˚C 

1
H NMR (500 MHz, CDCl3) δ 7.87 (d, J = 79.0 Hz, 1H), 7.64 (s, 8H), 7.44 (s, 4H), 7.27 (dd, J = 

17.3, 9.4 Hz, 3H), 7.16 (d, J = 25.9 Hz, 3H), 6.96 (s, 3H), 6.82 (s, 1H), 6.26 (s, 2H), 5.25 (d, J = 

28.2 Hz, 1H), 3.47 (s, 1H), 3.20 (d, J = 3.1 Hz, 1H), 2.99 (s, 1H), 2.91 – 2.78 (m, 1H), 2.65 (s, 

4H), 2.50 – 2.30 (m, 2H), 2.25 (d, J = 9.0 Hz, 3H), 2.21 (d, J = 18.7 Hz, 4H), 2.07 (t, J = 35.5 

Hz, 5H), 1.77 (s, 4H), 1.49 (s, 2H), 1.27 (dd, J = 14.5, 7.4 Hz, 2H), 1.18 (s, 2H). 

13
C NMR (126 MHz, CDCl3) δ 162.1 (dd, JBC = 99.5, 49.9 Hz), 141.57 – 141.27 (m), 140.8, 

138.7, 135.2, 132.6, 131.7, 129.7 – 128.8 (mPC), 128.8, 128.2, 126.6 – 126.4 (m), 126.0, 123.8 

121.7, 117.8, 33.6, 29.7, 28.0 – 27.9 (mPC), 27.2, 26.1, 23.2 (d, JPC = 16 Hz), 21.4, 21.0, 19.0. 

31
P NMR (202 MHz, CDCl3) δ 163.8, 151.0. 

11
B NMR (160 MHz, CDCl3) δ -6.58. 
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MS (FAB, NBA): m/z: 783.3 (2), 782.3 (10), 781.3 (43), 780.3 (100), 779.3 (30), 778.3 (60), 

674.2 (3), 673.2 (6), 672.2 (18), 671.2 (24), 670.2 (39), 669.2 (20), 668.2 (30).    

IR (ṽ): 2929w, 2357, 1737w, 1614, 1460, 1352s, 1271s, 1159, 1117s, 1037, 960, 931, 877, 854, 

839, 757, 744, 711, 692, 680, 668, 638, 619 cm
-1

. 

[α]
20

D  =  +32.0 at a concentration of 0.34. 

Elemental Analysis: for C72H58BF24IrNOP calculated C, 52.63; H, 3.56; N, 0.85; found C, 52.59; 

H, 3.50; N, 1.08.  

Complex S-110a: Iridium(I) [(1,2,5,6-ƞ)-1,5-cyclooctadiene][ ((S)-2-(anthracen-9-yl)-8-(dio-

tolylphosphinooxy-ĸP)-5,6,7,8-tetrahydroquinoline-ĸN]-tetrakis[3,5-

bis(trifluoromethyl)phenyl]borate(-) 

 

Synthesized by the general method except using 31.0 mg (115.9 µmol) of pyridyl alcohol, 14.1 

mg (115.9 µmol) of DMAP, 24 mg (115.9 µmol) of chlorodiphenylphosphine and 147.5 mg 

(115.9 µmol) of iridium(I)(COD)2BArF  to yield 139 mg (84.6 µmol, 73%). 

Chemical Formula: C77H56BF24IrNOP Molecular Weight: 1701.2 

MP: 231-232 ˚C 

1
H NMR (400 MHz, CDCl3) δ 8.73 (s, 1H), 8.18 (d, J = 8.6 Hz, 1H), 8.09 (d, J = 8.5 Hz, 1H), 

7.81 – 7.69 (m, 9H), 7.69 – 7.56 (m, 2H), 7.56 – 7.46 (m, 6H), 7.46 – 7.27 (m, 6H), 7.13 – 7.02 

(m, 1H), 6.89 (d, J = 7.8 Hz, 1H), 6.60 (s, 1H), 6.34 (t, J = 11.0 Hz, 1H), 5.26 (d, J = 26.9 Hz, 

1H), 3.51 (s, 1H), 3.07 (d, J = 17.1 Hz, 1H), 2.94 (ddd, J = 17.5, 13.5, 7.6 Hz, 1H), 2.78 – 2.52 

(m, 4H), 2.39 – 2.17 (m, 3H), 2.13 (d, J = 15.5 Hz, 3H), 2.02 (dd, J = 24.2, 7.4 Hz, 2H), 1.65 

(ddd, J = 78.0, 27.9, 9.5 Hz, 4H), 1.24 (dd, J = 27.5, 6.3 Hz, 1H), 1.07 – 0.90 (m, 1H), 0.88 – 

0.64 (m, 2H), 0.27 (dd, J = 11.1, 7.8 Hz, 1H). 
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13
C NMR (126 MHz, CDCl3) δ 162.1 (dd, JBC = 99.5, 49.9 Hz), 159.8, 141.6, 136.4 – 136.2 

(mBC), 135.2, 134.4 – 133.6 (mPC), 132.8 (d, JPC = 9.75 Hz), 132.2, 131.4, 131.0, 130.4, 129.7, 

129.4, 129.3, 129.1, 129.1 – 129.0 (mPC), 128.9 – 128.7 (mPC), 128.2, 127.9 – 127.8 (mFC), 

126.7, 126.5, 126.3, 124.7, 123.6, 120.9, 117.9, 66.5, 36.6, 34.7, 30.9 – 29.6 (d, JPC = 9.75 Hz), 

28.7, 27.6, 24.7, 22.7 – 21.9 (d, JPC = 4.6 Hz), 17.4. 

31
P NMR (162 MHz, CDCl3) δ 149.2.  

19
F NMR (376 MHz, CDCl3) δ -63.1. 

MS (FAB, NBA): m/z: 841.3 (4), 840.3 (13), 839.3 (49), 838.3 (100.0), 837.3 (33), 836.3 (62), 

733.2 (3), 732.2 (6), 731.2 (19), 730.2 (42), 729.2 (33), 728.2 (50), 727.2 (22), 726.2 (24), 725.2 

(10).    

IR (ṽ): 2882w, 2359, 1737w, 1608, 1463, 1352s, 1274s, 1159, 1117s, 1064, 970, 958, 885, 869, 

838, 804, 712, 669, 621 cm
-1

. 

 [α]
20

D  =  +69.0 at a concentration of 0.28. 

Elemental Analysis: for C77H56BF24IrNOP calculated C, 54.36; H, 3.32; N, 0.82; found C, 54.35; 

H, 3.37; N, 0.71. 

Complex R-110a: Iridium(I) [(1,2,5,6-ƞ)-1,5-cyclooctadiene][ ((R)-2-(anthracen-9-yl)-8-(dio-

tolylphosphinooxy-ĸP)-5,6,7,8-tetrahydroquinoline-ĸN]-tetrakis[3,5-

bis(trifluoromethyl)phenyl]borate(-) 

 

Synthesized by the general method except using 127.0 mg (390.0 µmol) of pyridyl alcohol, 47.5 

mg (390.0 µmol) of DMAP, 97 mg (390.0  µmol) of chlorodiphenylphosphine and 595.0 mg 

(468.0 µmol) of iridium(I)(COD)2BArF to yield 400 mg (235.1 µmol, 60%).  The physical 

properties matched the opposite enantiomer.   

Chemical Formula: C77H56BF24IrNOP Molecular Weight: 1701.2 
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[α]
20

D  =  -71.0 at a concentration of 0.25. 

Complex S-108e: Iridium(I) [(1,2,5,6-ƞ)-1,5-cyclooctadiene][ S)-7-(di-tert-butylphosphinooxy-

ĸP)-2-mesityl-4-methyl-6,7-dihydro-5H-cyclopenta[b]pyridine-ĸN]-tetrakis[3,5-

bis(trifluoromethyl)phenyl]borate(-) 

 

In the glove box the alcohol (50 mg, 189.0 µmol) is added to a dry Young tube with a stir bar.  

Potassium hydride (11.1 mg, 280.5 µmol) was carefully added to reaction vessel followed by di-

tert-butylchlorophosphine (34.0 mg, 189.0 µmol) added as a solution in dry DMF (150 µL).  The 

sides of the vessel were rinsed with dry DMF (2 x 150 µL), the reaction vessel was sealed and 

brought outside the box.  The reaction was stirred for 48 hours, at which time a liquid nitrogen 

cold trap was attached with a short line directly to the reaction vessel.  The flask was cooled to 0 

˚C and carefully evacuated to avoid bumping.  After the gas bubble had ceased the vessel was 

placed in a mildly warm water bath to assist removal of DMF, periodically change the bath for 

more warm water.  The flask was left at high vacuum in a warm water bath for 3 hours to result 

in a red foam.  The flask was sealed under vacuum and brought back inside the glove box.  Dry 

THF (500 µL) was added and the liquid was filtered into a vial containing a solution of 

iridium(I)(COD)2BArF (240 mg, 189.0 µmol) in 1 mL of THF with the use of a syringe and 

micron filter.  The reaction vessel was washed and filtered into the vial with additional THF (2 x 

500 µL).  The resulting dark red solution was stirred for 6 hours and then brought outside the 

box, stripped onto silica gel and chromatographed (1 X 10 cm silica gel, dry load) with 50/50 

hexane/ ether followed by elution of the product with DCM.  The resulting dark red material was 

recrystallized from 1 mL of DCM/ 4 mL of hexane layered carefully and allowed to stand in the 

refrigerator for 48 hours to yield dark red crystals of X-ray quality.  Yield 120 mg (76. 2 µmol, 

40%).  The mother liquor was concentrated and a second batch of crystals was obtained from 

DCM/ hexane (25 mg, 15.9 µmol, 8.4%).    
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Chemical Formula: C66H62BF24IrNOP Molecular Weight: 1575.2 

MP: 113-115 ˚C 

1
H NMR (500 MHz, CDCl3) δ 7.71 (s, 8H), 7.52 (s, 4H), 7.16 (s, 1H), 7.06 (s, 1H), 6.92 (s, 1H), 

5.48 (t, J = 5.8 Hz, 1H), 5.44 (s, J = 16.7, 10.8 Hz, 1H), 5.02 (s, 1H), 4.08 – 3.82 (m, 1H), 3.16 

(p, J = 7.8 Hz, 1H), 3.06 (dt, J = 16.9, 8.3 Hz, 1H), 2.91 (dd, J = 17.2, 8.4 Hz, 1H), 2.64 (s, 3H), 

2.45 (ddd, J = 33.2, 15.0, 8.1 Hz, 2H), 2.36 (d, J = 3.3 Hz, 6H), 2.25 – 2.11 (m, 1H), 2.04 (tdd, J 

= 16.3, 10.9, 5.7 Hz, 1H), 1.99 – 1.91 (m, 1H), 1.80 (dd, J = 15.5, 7.5 Hz, 1H), 1.74 – 1.62 (m, 

4H), 1.45 (d, J = 13.4 Hz, 9H), 1.23 – 0.98 (m, 3H), 0.82 (d, J = 14.3 Hz, 10H).
  

13
C NMR (126 MHz, CDCl3) δ 162.5 (dd, JBC = 99.5, 49.9 Hz), 160.6, 150.0, 140.2, 138.1, 

137.5, 136.0 (d, JPC = 30.9 Hz), 134.8, 132.4, 129.3 (d, JPC = 5.2 Hz), 129.0, 128.8 (m  

BC), 128.5, 127.8, 125.6, 123.4, 121.3, 117.4, 92.7 (d, JPC = 5.7 Hz), 85.8, 80.8 (d, JPC = 18.1 

Hz), 71.1, 57.6, 53.4, 40.3 (dd, JPC = 70.1, 19.7 Hz), 37.5 (d, JPC = 3.8 Hz,), 35.3, 31.6, 29.8 – 

29.4 (mPC), 28.6, 28.0 (d, J = 6.3 Hz), 27.7, 27.3, 24.9, 24.3, 22.6, 20.8 (d, J = 21.9 Hz), 18.5, 

14.10. 

31
P NMR (162 MHz, CDCl3) δ 139.5.   

MS (FAB, NBA): m/z: 714.3 (7), 713.3 (36), 712.3 (100), 711.3 (26), 710.3 (60), 606.2 (5), 

605.2 (21), 604.2 (52), 603.2 (17), 602.2 (39).    

IR (ṽ): 2929, 2879w, 2354, 1737w, 1610, 1463, 1456s, 1352, 1271s, 1164, 1122s, 1047, 1037, 

962, 885, 838, 808, 715, 667, 636 cm
-1

. 

 [α]
20

D  =  -9.0 at a concentration of 0.52. 

Elemental Analysis: for C66H62BF24IrNOP calculated C, 50.33; H, 3.97; N, 0.89; found C, 50.01; 

H, 4.18; N, 0.92. 
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5.13 Synthesis of Iridium(I) bis[(1,2,5,6-ƞ)-1,5-cyclooctadiene]- tetrakis[3,5-

bis(trifluoromethyl)phenyl]borate(-)   

 

Chloro(1,5-cyclooctadiene)iridium(I) dimer (130.7 mg, 194.6 µmol) was added to a dry 25 mL 

flask and dissolved by stirring in 8 mL of absolute DCM.  Cyclooctadiene (63.1 mg, 71.7 µL, 

584 µmol) was added by syringe and the reaction was stirred for 30 minutes at room temperature.  

Sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (362 mg, 408.6 µmol) was added as a 

solid and the very dark red solution was stirred for 2 hours at room temperature.  The solution 

was filtered through a 2 gram silica pipette column which was washed with an additional 7 mL 

of DCM.  The solvent was concentrated at a rotovap to dryness.  The resulting crude mixture was 

taken up in 5 mL of DCM, filtered through a micron filter and layered with 5 ml of hexane.  

Crystallization at -20 ˚C overnight followed by cold vacuum filtration and washing with -20˚C 

hexane (2 x 25 mL) provided very large dark red high symmetry crystals of X-ray diffraction 

quality which were dried on a high vacuum for 3 hours to provide 470 mg of pure product (370 

µmol, 95%). 

Chemical Formula: C48H36BF24Ir Molecular Weight: 1271.8 

1
H NMR (400 MHz, CDCl3) δ 7.69 (d, J = 2.3 Hz, 2H), 7.54 (s, 1H), 4.99 (s, 2H), 2.49 – 2.33 

(m, 2H), 2.33 – 2.16 (m, 2H). 

13
C NMR (101 MHz, CDCl3) δ 162.0 (dd, JBC = 99.7, 50.0 Hz), 135.2, 129.3 (ddd, JBC = 57.5, 

18.7, 15.6 Hz), 124.9 (d, 
1
JFC = 272.7 Hz), 118.2 – 117.7 (mBC), 101.5, 30.7. 

19
F NMR (376 MHz, CDCl3) δ -63.5. 
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5.14 Substrates and intermediates 

Intermediate 167: 1-(2-Bromo-2-fluorovinyl)-4-methylbenzene
[17]

 

 

(4-Methylbenzylidene)hydrazine (810 mg, 6.03 mmol) was added to a twenty five mL flask with 

copper(I) chloride and 10 mL of DMSO.  The solution was placed into an ice bath and 

concentrated ammonia (6 mL, 32%) was added followed by tribromofluoromethane (590 µL, 

1.63 g, 6.03 mmol).  The reaction was allowed to come to room temperature and stirred 

overnight.  The reaction was poured into a separatory funnel with 100mLs of ether, washed with 

water (2 x 50 mL), brine (2 x 50 mL), and the separated organic layer was dried over magnesium 

sulfate, filtered and concentrated.  Chromatography (3.5 X 15 cm silica gel) with hexane as an 

eluent provided 450 mg (2.09 mmol, 34.7%) product in a 1 to 3 ratio of cis to trans bromide as a 

colorless oil which quickly goes dark on exposure to light, temperature and air. All data matched 

well with the reported literature. 

Chemical Formula: C9H8BrF Molecular Weight: 215.1 

1
H NMR (400 MHz, CDCl3) δ 7.38 (E, d, J = 8.1 Hz, 0.6 H), 7.29 (Z, d, J = 8.2 Hz, 2H), 7.16 

(E/Z, t, J = 8.8 Hz, 2.6 H), 6.63 (E, d, J = 15.2 Hz, 0.3H), 5.94 (Z, d, J = 33.1 Hz, 1H), 2.36 (E, 

s, 1H), 2.34 (E, s, 3H). 

19
F NMR (376 MHz, CDCl3) δ -67.61 (d, J = 15.3 Hz), -69.98 (d, J = 33.1 Hz). 

Substrate 168: (Z)-1-(2-fluoro-2-(4-methoxyphenyl)vinyl)-4-methylbenzene 

 

 

1-(2-Bromo-2-fluorovinyl)-4-methylbenzene (1.2 g, 4.89 mmol), 

palladium(0)dibenzylideneacetone (22.4 mg, 24.5 µmol, 1 mol%), tri-tert-butylphosphonium 

tetrafluoroborate (56.7 mg, 195 µmol, 4 mol%), cesium fluoride (2.58 g, 17.2 mmol), and p-
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methoxyphenylboronic acid (880 mg, 5.8 mmol) were all placed together in a 25 mL round 

bottom flask which was sealed with a rubber septum, purged for 10 minutes with argon and dry, 

degassed DME (15 mL) was added.  The reaction was stirred for 3 days after which time the 

contents were filtered through a pad of celite, concentrated onto silica gel and chromatographed 

with 20% DCM in hexane.  The resulting E/Z mixture was recrystallized from hexane to give 

550 mg (2.27 mmol, 46%) of the pure Z isomer. 

Chemical Formula: C16H15FO Molecular Weight: 242.3 

1
H NMR (400 MHz, CDCl3) δ 7.63 – 7.54 (m, 2H), 7.51 (d, J = 8.2 Hz, 2H), 7.18 (t, J = 9.6 Hz, 

2H), 6.98 – 6.86 (m, 2H), 6.15 (d, J = 40.1 Hz, 1H), 3.85 (s, 3H), 2.36 (s, 3H). 

19
F NMR (376 MHz, CDCl3) δ -115.44 (d, J = 40.1 Hz). 

Intermediate 170: 1-(2-Bromo-1-fluoroethyl)-4-tert-butylbenzene 

 

N-bromosuccinamide (2.3 g, 12.9 mmol) was added to 30 mL of DCM followed by hydrofluoric 

acid triethylamine complex (3/1) (6mL) at 0 ˚C.  The reaction was allowed to stir for 20 minutes 

to form the interhalon and 4-tert-butylstyrene (1.62 g, 10.1 mmol) was added to a flask.  The 

reaction was stirred for 4 hours at room temperature, poured into a separatory funnel and washed 

with 2 M hydrochloric acid (3 x 50 mL).  The organic layer was dried over magnesium sulfate, 

filtered and concentrated onto silica gel which was quickly chromatographed with 100% hexane 

and switching to 35% DCM in hexane to remove most of the product quickly.  The fractions 

were concentrated to dryness and used immediately in the next step.  Compound is highly 

unstable, yield of 750 mg (28.7%).   

Chemical Formula: C12H16BrF Molecular Weight: 259.2 

1
H NMR (400 MHz, CDCl3) δ 7.45 – 7.41 (m, 2H), 7.29 (dd, J = 8.7, 0.4 Hz, 2H), 5.60 (ddd, J = 

46.9, 8.2, 3.9 Hz, 1H), 3.78 – 3.50 (m, 2H), 1.33 (d, J = 2.0 Hz, 9H). 
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19
F NMR (376 MHz, CDCl3) δ -173.90 (ddd, J = 47.0, 27.0, 14.5 Hz). 

Substrate 171: 1-tert-butyl-4-(1-fluorovinyl)benzene 

 

1-(2-Bromo-1-fluoroethyl)-4-tert-butylbenzene (750 mg, 2.89 mmol) was added to a 25 mL flask 

with DMSO (10 mL) and potassium hydroxide (400 mg, 7.14 mmol) was dissolved in 400 µL of 

water and added dropwise to the reaction.  The reaction was then stirred for 6 hours and poured 

into a separatory funnel with 20 mL of diethyl ether and washed with 50 mL of 0.5 M HCl, water 

(2 x 50 mL) and brine (2 x 50 mL).  The organic layer was dried over magnesium sulfate, filtered 

and concentrated at the rotovap to yield the crude material which was purified by kugelrohr 

distillation (5 mTorr, 100 ˚C) to obtain 400 mg (2.25 mmol, 78%) as a clear oil which was used 

in hydrogenation experiments immediately.  The compound decomposes slowly at -20˚C to give 

a black tar like substance.   

Chemical Formula: C12H15F Molecular Weight: 178.2 

1
H NMR (400 MHz, CDCl3) δ 7.53 – 7.47 (m, 2H), 7.43 – 7.37 (m, 2H), 4.99 (dd, J = 50.0, 3.4 

Hz, 1H), 4.80 (dd, J = 17.9, 3.4 Hz, 1H), 1.34 (d, J = 4.0 Hz, 9H). 

19
F NMR (376 MHz, CDCl3) δ -108.94 (dd, J = 50.0, 18.0 Hz). 

Intermediate 158: Ethyl 3-methyl-5-phenylpent-2-enoate
[18]

 

 

Potassium tert-butoxide (5.35 g, 55.7 mmol) was transferred to a large Young tube which was 

evacuated and placed under argon.  Absolute THF (50 mL) was added to the tube by cannula 

followed by triethyl phosphonoacetate (10.4 g, 46.44 mmol) was syringed into the reaction 

vessel at room temperature.  A mild exotherm occurred on addition and a homogenous solution 

was obtained after 30 minutes of stirring at ambient temperature.  The reaction mixture was 
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cooled to -50 ˚C for 30 minutes and 4-phenyl-2-butanone (6.53 g, 44.12 mmol) was added cold 

and the reaction allowed to warm to room temperature overnight.  The reaction was quenched 

with water (25 mL) and washed with into ethyl acetate (100 mL) into a separatory funnel.  Brine 

was added (50 mL) and the layers shaken and separated.  The organic layer was washed with 

more brine (2 x 100 mL), dried over magnesium sulfate, filtered and concentrated at the rotovap 

to yield the crude material which was purified by kugelrohr distillation (5 mTorr, 100˚C) to 

obtain 7.0 g (32.2 mmol, 69%) as a slightly yellow oil. 

Chemical Formula: C14H18O2 Molecular Weight: 218.3 

1
H NMR (400 MHz, CDCl3) δ 7.29 (t, J = 7.3 Hz, 2H), 7.19 (dd, J = 13.4, 7.1 Hz, 3H), 5.70 (dd, 

J = 10.1, 1.2 Hz, 1H), 4.15 (q, J = 7.1 Hz, 2H), 2.85 – 2.73 (m, 2H), 2.54 – 2.38 (m, 2H), 2.21 

(dd, J = 4.7, 1.1 Hz, 3H), 1.28 (t, J = 7.1 Hz, 3H).  

Intermediate 158: (E)-3-methyl-5-phenylpent-2-enoic acid
[19]

 

 

Ethyl 3-methyl-5-phenylpent-2-enoate (5.20 g, 23.8 mmol) was dissolved in 25 mL of methanol 

and added to a flask containing sodium hydroxide (2.80 g, 70.0 mmol) in 100 mL of water.  The 

resulting slurry was heated to 100 ˚C for 4 hours during which time the slurry became a clear 

solution.  The reaction was cooled to 0 ˚C and the solution was acidified with concentrated 

hydrochloric acid to a pH of 2, during which time the acid precipitated as a white powder.  The 

resulting slurry was taken up and transferred with 200 mL of diethyl ether to a separatory funnel.  

The layers were thoroughly shaken, and the organic layer was separated and washed with brine 

(3 x 100 mL).  The organic layer was dried over magnesium sulfate, filtered and concentrated to 

dryness at a rotovap.  The resulting crude acid was taken up in ethyl acetate (ca 4 grams of crude 

in 50 mL) and cyclohexylamine (3.13 g, 3.6 mL, 31.5 mmol) was added dropwise to the quickly 

stirring solution, immediate white precipitate was formed, the solution became a thick slurry on 

complete addition of the cyclohexylamine.  An additional 120 mL of ethyl acetate was added to 

the slurry followed by heating to reflux with strong stirring.  On dissolution of the precipitate the 

solution was allowed to cool to room temperature, and then further cooled to -20 ˚C in an ice salt 
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bath.  The resulting white precipitate was filtered off by vacuum filtration and the filtrate washed 

with a 50 mL portion of diethyl ether cooled in the ice salt bath.  A small portion of the 

precipitate was partitioned with 2 M HCl and ethyl acetate, the layers separated and the organic 

layer was dried over magnesium sulfate, concentrated and the small aliquot analyzed by GC to 

find a 95:5 ratio of cis/trans isomers in favor of the trans.  The precipitate was (3 grams) was 

taken up in 100 mL of ethyl acetate and recrystallized and treated as before to find a ratio of 99 

to 1.  The resulting 2.4 grams of salt was taken up in DCM (50 mL) and 2 M HCl (100 mL).  The 

slurry was mixed into solution until no precipitate was present, the layers were separated and the 

organic layer was washed with additional 2 M HCl (2 x 50 mL) and brine (2 x 50 mL), dried 

over magnesium sulfate, filtered and the solution was concentrated to dryness at a rotovap.  The 

resulting acid (1.6 g) was taken up in hot hexane (6 mL) and allowed to stand overnight at -20˚C.  

The resulting large clear crystals were quickly isolated by vacuum filtration to yield 1.2 g (6.31 

mmol).   

Chemical Formula: C12H14O2 Molecular Weight: 190.2 

1
H NMR (400 MHz, CDCl3) δ 11.76 (s, 1H), 7.31 (dd, J = 10.1, 4.5 Hz, 6H), 7.25 – 7.14 (m, 

9H), 5.71 (d, J = 1.2 Hz, 3H), 2.81 (dd, J = 9.3, 6.8 Hz, 6H), 2.59 – 2.38 (m, 6H), 2.22 (d, J = 1.2 

Hz, 9H). 

GC: General conditions, the injector was set to 270 ˚C, oven temperature 100 ˚C held for 3 

minutes and a ramp of 7˚C/min to 230˚C for 10 minues, detector was set to 250 ˚C and a pressure 

of 60 kPa.  Ttrans =  27.1 min Tcis = 27.8 min. 

Substrate 158a: (E)-ethyl 3-methyl-5-phenylpent-2-enoate
[18]

 

 

(E)-3-methyl-5-phenylpent-2-enoic acid (1.20 g, 6.30 mmol) was refluxed in a mixture of 

absolute ethanol (50 mL) and 10 grams of magnesium sulfate with a catalytic amount of p-

toluene sulfonic acid.   The reaction was allowed to reflux under an inert atmosphere for 8 hours 

after which time the reaction was cooled, filtered, concentrated and the concentrate was 

dissolved in ether and saturated sodium bicarbonate (50/ 100 mL).  The organic layer was 
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thoroughly shaken with the aqueous mixture, washed with brine (2 x 50 mL), dried over 

magnesium sulfate, filtered and concentrated at the rotovap.  Kugelrohr distillation gave 750 mg 

(3.44 mmol, 54.6%) of pure product which was indiscernible from the cis trans miture by NMR.   

Chemical Formula: C14H18O2 Molecular Weight: 218.3 

Substrate 163: 4-methylfuran-2(5H)-one
[21]

 

 

3-Methylbut-2-enoic acid (6.00 g, 60.0 mmol), N-bromosuccinamide (11.8 g, 66.2 mmol) and 

1,1'-azobis(1-cyclohexanecarbonitrile) (400 mg, 1.64 mmol, 2.7 mol%) were added to a dry three 

neck 100 mL flask equipped with a Schlenk line adapter, reflux condenser and Schlenk bubbler.  

The apparatus was evacuated and back filled with argon 3 times followed by the addition of 60 

mL of carbon tetrachloride which had been degassed and transferred via cannula.  The reaction 

was heated under argon for 3 hours during which time a significant amount of succinamide 

precipitated out of solution.  The reaction was allowed to cool, followed by further cooling with 

an ice bath for 30 minutes to precipitate all the byproducts.  The reaction mixture was filtered by 

vacuum, the filter cake was washed with DCM (2 x 50 mL) and the solvent was poured into a 

separatory funnel and carefully worked up with the addition of ice cold solution of sodium 

hydroxide (2.69 grams, 67.3 mmol) in 60 mL of water.  The layers were separated setting aside 

the aqueous layer for further synthesis.  The organic layer was washed with water (2 x 50 mL) 

and the washes were added to the previous extracts.  The organic layer was further washes with 

brine (2 x 50 mL), filtered, dried over magnesium sulfate and partially concentrated without heat 

at the rotovap.  The resulting liquid was purified by distillation yielding 2.1 grams (21.4 mmol, 

35.7 %) of pure product matching the commercially available material and literature data. 

Chemical Formula: C5H6O2 Molecular Weight: 98.1  

1
H NMR (400 MHz, CDCl3) δ 5.94 – 5.69 (m, 1H), 4.71 (dd, J = 1.7, 0.8 Hz, 2H), 2.24 – 1.99 

(m, 3H). 
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(E)-ethyl 4-chloro-3-methylbut-2-enoate
[21]

 

 

The aqueous layer from the above step was acidified with 2 M HCl (50 mL) and extracted with 

diethyl ether (4 x 50 mL), the combined organic layers were washed with brine (3 x 25 mL), 

dried over magnesium sulfate and concentrated at the rotovap.  Dry HCl in absolute ethanol was 

generated by adding absolute ethanol (100 mL) to a purged 200 mL three neck flask containing 

20 grams of sodium chloride and a reflux condenser equipped with a Schlenck bubbler.  The 

flask was cooled in an ice bath and acetyl chloride (7 mL) was added dropwise with strong 

stirring.  The apparatus was brought out of the cold bath and the viscous oil from the previous 

step was taken up in 20 mL of absolute ethanol and added to the strongly acidic solution of 

ethanol.  The mixture was heated to reflux overnight, cooled, filtered, and poured into a large 

separatory funnel containing 100 mL diethyl ether and 250 mL ice cold water.  The organic layer 

was extracted with additional water (3 x 100 mL), followed by 5% bicarbonate (2 x 100 mL), 

and brine (2 x 25 mL).  The organic layer was dried over magnesium sulfate, filtered and 

partially concentrated to 20 mL, the organics were transferred to a smaller flask and the 

remaining volatiles were purified by normal distillation followed by careful vacuum distillation 

using a water aspirator and an in line liquid nitrogen trap to prevent loss of product.  The 

receiving flask was cooled in a dry ice acetone bath, product distills at 70 to 85˚C at roughly 50 

mbar.  The product was found to contain a small amount of bromide so the resulting oil was 

taken up in DCM (10 mL) and 1 gram of tetrabutyl ammonium chloride was added and the 

reaction was stirred for overnight.  The solution was extracted with water (5 x 10 mL), brine (2 x 

10 mL), dried over magnesium sulfate, filtered and concentrated without heat, yielding 910 mg 

(5.60 mmol, 9.3%).  

Chemical Formula: C7H11ClO2 Molecular Weight: 162.6 

1
H NMR (500 MHz, CDCl3) δ 5.96 (s, 1H), 4.18 (q, J = 7.1 Hz, 2H), 4.04 (s, 2H), 2.23 (s, 3H), 

1.28 (t, J = 7.1 Hz, 3H). 

13
C NMR (126 MHz, CDCl3) δ 166.4, 152.3, 119.4, 60.5, 50.3, 17.1, 14.6. 
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GC/MS:  Modified temperature program of 80˚C for 3 minutes followed by a ramp of 10˚C/ 

minute, 270˚C final temperature and holding there for 10 minutes.  Retention time of 8.2 minutes 

for the chloride and 9.3 minutes for the bromide.   

MS (EA, 70mV): m/z: 165.2 (1), 164.2 (10), 163.2 (1), 162.2 (34), 136.2 (24), 134.2 (71), 119.2 

(42), 117.2 (120), 99.2 (21), 98.2 (71), 97.2 (27), 91.2 (16), 89.2 (48), 53.2 (161). 

Elemental Analysis: for C7H11ClO2 calculated C, 51.70; H, 6.82; found C, 51.64; H, 6.91. 

4-Bromonaphthalen-1-ol
[22]

 

 

Synthesized by a modified literature procedure, ω-napthol (7.28 g, 50.56 mmol) was dissolved in 

200 mL of DCM and was stirred at a high rate of mixing while a solution of NBS (10.8 g, 60.7 

mmol) in DCM (500 mL) was added dropwise over 45 minutes.  The resulting solution was 

stirred for 16 hours and the reaction progress checked by TLC (25% DCM/hexane, product Rf = 

0.3, start material Rf = 0.9).  The reaction was then heated to reflux for 1 hour and stirred for an 

additional 3 hours while cooling to room temperature, during which time the starting material 

was completely consumed.  The reaction was poured into a separatory funnel with 100mLs of 

DCM, washed with 2M HCl (3 x 200 mL), brine (2 x 100 mL), and the separated organic layer 

was dried over magnesium sulfate, filtered and concentrated to dryness to yield a dark oil which 

crystallized on standing (10.8 g).  The crude was taken up and recrystallized in 100 mL of 

refluxing heptanes, filtered hot, and allowed to cool to room temperature during which time large 

needles grew out of the mother liquor.  The needles were isolate by vacuum filtration and 

washed with ice cold hexane, transferred to a round bottom flask and dried on the rotovap to 

yield a first crop of 3.8 grams of pure material.  A second crop of crystals was obtained by 

concentrating the mother liquor to dryness, taking up the remaining material in 60 mLs of 

refluxing heptanes, filtered hot and the cooling solution provided an additional 3.7 grams of pure 

material after washing with cold hexane and drying on a rotovap.  Total yield of 7.5 grams (33.6 

mmol, 66%) with the physical and spectral properties in good agreement with the literature.   
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Chemical Formula: C10H7BrO Molecular Weight: 223.1 

1
H NMR (400 MHz, DMSO) δ 10.51 (s, 1H), 8.25 (dd, J = 37.6, 8.0 Hz, 1H), 8.03 (t, J = 10.3 

Hz, 1H), 7.68 – 7.61 (m, 2H), 7.59 – 7.51 (m, 1H), 6.83 (d, J = 8.1 Hz, 1H). 

13
C NMR (400 MHz, DMSO) δ 153.3, 131.8, 130.1, 127.8, 126.0, 125.9, 125.5, 122.7, 109.8, 

108.9. 

MS (EA, 70mV) m/z: 224.9 (11), 224.0 (99), 223.0 (12), 222.0 (100), 116.1 (9), 115.0 (96), 

114.0 (15). 

(4-Bromonaphthalen-1-yloxy)(tert-butyl)dimethylsilane 

 

4-Bromonaphthalen-1-ol (3.40 g, 15.3 mmol), tert-butyldimethylsilyl chloride (4.56 g, 30.5 

mmol) and imidazole (3.15 g, 45.7 mmol) were added to a dry 50 mL flask with a stir bar and 

rubber septum.  The flask was purged with argon for 5 minutes and absolute DMF (20 mL) was 

added and the mixture was stirred overnight.  The reaction was poured into a separatory funnel 

with 100 mL of ether, extracted with water (3 x 100 mL), brine (2 x 50 mL), the organic layer 

was separated and dried over magnesium sulfate, filtered, and concentrated to dryness at a 

rotovap.  The resulting crude material was recrystallized from hot heptanes (20mL) and filtered 

hot.  Upon cooling the recrystallization gave glass like cubes on standing at room temperature 

overnight.  Yield 4.6 (13.6 mmol, 89%).   

Chemical Formula: C16H21BrOSi Molecular Weight: 337.3 

1
H NMR (400 MHz, CDCl3) δ 8.19 (dd, J = 13.7, 8.4 Hz, 2H), 7.66 – 7.56 (m, 2H), 7.56 – 7.48 

(m, 1H), 6.75 (d, J = 8.1 Hz, 1H), 1.10 (d, J = 2.9 Hz, 9H), 0.47 – 0.11 (m, 6H). 

13
C NMR (400 MHz, CDCl3) δ 151.6, 132.9, 129.6, 129.2, 127.5, 127.0, 125.9, 123.1, 113.8, 

113.1, 25.8, -4.3. 
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Tert-butyl(4-(3,4-dichlorophenyl)naphthalen-1-yloxy)dimethylsilane 

 

(4-Bromonaphthalen-1-yloxy)(tert-butyl)dimethylsilane (1.01 g, 2.98 mmol), 3,4-

dichlorophenylboronic acid (626 mg, 3.28 mmol), and palladium acetate (6.7 mg, 29.8 µmol, 1.0 

mol%) were added to a 100 mL Schlenk flask with a stir bar and sealed with a septum.  In two 

separate flasks were placed sodium carbonate (966 mg, 8.94 mmol) dissolved in water (10 mL) 

and DMF (10 mL), the flasks were sealed with septa and degassed with argon bubbled through 

needles for 15 minutes.  The DMF was transferred to the Schlenk flask and the contents 

dissolved with stirring over 5 minutes.  The degassed aqueous base was then added and the 

reaction was heated to 50 ˚C for 4 hours, during which time the solution went from palladium 

black to a grey color as the catalyst was consumed.  The flask was then cooled, the contents were 

transferred to a separatory funnel with 50 mL of ether and the organic layer was washed with 

water (3 x 50 mL) and brine (2 x 50 mL).  The organic layer was separated and  dried over 

magnesium sulfate, filtered and concentrated onto silica gel.  The crude material was purified by 

chromatography (100% hexane, Rf = 0.5 for product, 0.9 for starting material, 3.5 X 20 cm silica 

gel, dry load).  Some starting material was recovered (132 mg, 13%) and 630 mg (1.56 mmol, 

52%) of  the product was obtained as a white solid. 

Chemical Formula: C22H24Cl2OSi Molecular Weight: 403.4 

1
H NMR (400 MHz, CDCl3) δ 8.37 – 8.26 (m, 1H), 7.82 – 7.77 (m, 1H), 7.59 (d, J = 2.0 Hz, 

1H), 7.45 (d, J = 8.4 Hz, 1H), 7.50 – 7.44 (m, 2H), 7.32 (dd, J = 8.4, 2 Hz, 1H), 7.25 (d, J = 7.4 

Hz, 1H), 6.92 (d, J = 7.8 Hz, 1H), 1.24 – 1.08 (m, 9H), 0.41 – 0.32 (m, 6H).  

13
C NMR (101 MHz, CDCl3) δ 152.3, 141.4, 132.9, 132.7, 132.4, 131.4, 131.0, 130.5, 130.0, 

128.4, 127.5, 127.1, 125.7, 125.6, 123.4, 112.3, 26.3, 18.9, -3.8. 
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MS (EA, 70mV) m/z: 407.1 (2), 406.1 (9), 405.1 (12), 404.1 (45), 403.1 (18), 402.1 (64), 350.0 

(4), 349.0 (16), 348.0 (24), 347.0 (73), 346.0 (37), 314.0 (2), 313.0 (13), 312.0 (13), 311.0 (8), 

310.0 (35), 298.0 (2), 297.0 (12), 296.0 (7), 295.0 (31).  

Elemental Analysis: for C22H24Cl2OSi calculated C, 65.50; H, 6.00; found C, 65.58; H, 5.95.  

4-(3,4-Dichlorophenyl)naphthalen-1-ol 

OH

Cl

Cl  

Tert-butyl(4-(3,4-dichlorophenyl)naphthalen-1-yloxy)dimethylsilane (500 mg, 1.24 mmol) was 

added to a Schlenk flask and the flask was placed under an inert atmosphere of argon, THF (25 

mL was added to the flask followed by tetrabutyl ammonium fluoride trihydrate (1.7 g, 4.12 

mmol).  The reaction was stirred at 50 ˚C for 5 hours during which time the solution goes black 

from the resulting anion.  The reaction is cooled and the THF is removed by vacuum/ cold trap 

directly from the Schlenk flask.  The contents are dissolved in ethyl acetate (25 mL) and washed 

with 2 M HCl (2 x 25 mL), water (4 x 100 mL), brine (2 x 50 mL), dried over magnesium 

sulfate, filtered and concentrated at the rotovap.  Purified by column chromatography (50% 

DCM/ hexane, Rf = .42 for product, 2 x 16 cm silica gel, dry load), yielding 321 mg (1.11 mmol, 

89%) as a white solid. Chemical Formula: C16H10Cl2O Molecular Weight: 289.2  

1
H NMR (400 MHz, DMSO) δ 10.40 (s, 1H), 8.24 (dd, J = 6.6, 3.1 Hz, 1H), 7.73 (d, J = 8.2 Hz, 

1H), 7.70 (t, J = 3.3 Hz, 1H), 7.66 (d, J = 2.0 Hz, 1H), 7.49 (dd, J = 6.5, 3.3 Hz, 2H), 7.42 (dd, J 

= 8.3, 2.0 Hz, 1H), 7.28 (d, J = 7.8 Hz, 1H), 6.95 (d, J = 7.8 Hz, 1H). 

13
C NMR (101 MHz, DMSO) δ 153.5, 141.1, 131.5, 131.5, 131.0, 130.4, 130.2, 129.5, 127.8, 

127.4, 126.8, 124.7, 124.5, 124.4, 122.4, 107.6. 
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Substrate 157a: 4-tert-butyl-7-methoxy-1,2-dihydronaphthalene  

 

Anhydrous zinc chloride (1 g, 7 mmol) was added to a 250 mL Schlenk flask with absolute THF 

(100 mL).  Tert-butyl lithium (1.6 M, 50 mL, 80 mmol) was added at -20 ˚C and the reaction was 

allowed to stir at that temperature for 1 hour.  6-Methoxy-α-tetralone (12 g, 68.2 mmol) was 

added to the reaction mixture as a solid.  The resulting reaction was stirred overnight at room 

temperature.  The next morning the reaction was cooled to 0 ˚C and a solution of saturated 

ammonium chloride (40 mL) was carefully added with vigorous stirring by pipette portions over 

20 minutes.  The solution was allowed to warm to room temperature and stirred for an additional 

half hour.  The contents of the flask were transferred to a separatory funnel with 100 mL of ethyl 

acetate, washed with additional ammonium chloride (2 x 100 mL), water (3 x 100 mL), brine (2 

x 100 mL) and dried over magnesium sulfate.  NMR of the crude material indicated that roughly 

a third of the product had been converted with half of the converted product as the desired 

alkene.  The crude mixture of 6-methoxy-α-tetralone and tert-butylated product was partially 

purified by column chromatography with 100% hexane.  The crude mix of desired alkene, 

alcohol and a slight trace of tetralone (3 grams) were taken up in 100 mL of DCM and 25 grams 

of activated 4Å molecular sieves and the reaction was sealed with a rubber septum and stirred 

overnight.  Crude NMR indicated that the remaining alcohol had been converted to the alkene.  

Column chromatography (5.5 X 22 cm silica gel) with hexane furnished the desired product as 

1.6 grams (7.4 mmol, 11%) of viscous oil which crystallized into a white solid on standing at 

room temperature.   

Chemical Formula: C15H20O Molecular Weight: 216.3 

1
H NMR (400 MHz, CDCl3) δ 7.57 (d, J = 8.1 Hz, 1H), 6.76 – 6.72 (m, 2H), 5.98 (t, J = 4.9 Hz, 

1H), 3.82 (s, 3H), 2.65 (t, J = 7.8 Hz, 2H), 2.21 – 2.11 (m, 2H), 1.34 (s, 9H). 

13
C NMR (101 MHz, CDCl3) δ 157.7, 144.9, 141.0, 128.2, 127.3, 122.1, 114.1, 110.5, 55.5, 35.3, 

31.4, 30.3, 23.8. 
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MS (EA, 70mV) m/z: 217.3 (11), 216.3 (66), 201.3 (34), 186.3 (13), 173.3 (25), 159.3 (113), 

144.2 (38), 128.2 (28), 115.2 (40.  

Elemental Analysis: for C15H20O calculated C, 83.29; H, 9.32; found C, 83.44; H, 9.50. 

(E)-2-oxo-2-phenylethyl 2-methylbut-2-enoate 

 

Tiglic acid (1 g, 10.0 mmol) was dissolved in 20 mL of absolute DCM and triethylamine (1.53 

mL, 1.11 g, 11 mmol) was added.  Alpha-bromoacetophenone (1.83 g, 9.15 mmol) was added 

and the reaction was allowed to stir for 5 hours.  The solution was poured into a separatory 

funnel with bicarbonate (50 mL), washed with additional bicarbonate (2 x 50 mL), water (2 x 50 

mL), 0.5 M HCl (2 x 50 mL), brine (2 x 50 mL) and the organic layer was dried over sodium 

sulfate, filtered and concentrated to dryness.  The product was recrystallized by heating in 

hexane (10 mL), filtration and cooling to -20 ˚C overnight.  Yield of 1.39 grams of a white low 

melting solid (6.37 mmol, 64%). 

Chemical Formula: C13H14O3 Molecular Weight: 218.2.  

1
H NMR (400 MHz, CDCl3) δ 7.94 (dt, J = 8.5, 1.6 Hz, 1H), 7.63 – 7.58 (m, 1H), 7.52 – 7.46 

(m, 1H), 7.04 (qq, J = 7.1, 1.5 Hz, 1H), 5.40 (s, 1H), 1.91 (p, J = 1.4 Hz, 3H), 1.84 (dq, J = 7.1, 

1.3 Hz, 3H). 

5.15 In Situ complexation applied to a Phox catalyzed asymmetric hydrogenation 

Iridium(I)(COD)2BArF (6.35 mg, 4.99 µmol, 2 mol%) was weighed into a 4 mL vial.  (S)-2-(2-

(dio-tolylphosphino)phenyl)-4-isopropyl-4,5-dihydrooxazole “PHOX” (2.20 mg, 5.49 µmol, 2.2 

mol%) and (E)-prop-1-ene-1,2-diyldibenzene (48.6 mg, 250 µmol) were weighed out and added 

to the vial in air.  Fresh absolute DCM (500 µL) was added to the vial followed by a rapid color 

change from dark violet to light orange as the complexation consumes the metal precursor.  A 

stir bar is added and the vial is placed into an autoclave.  The reactor is purged with hydrogen for 

30 seconds and pressurized to 50 bar of hydrogen.  The reaction was stirred for 8 hours and the 

pressure was carefully released.  The solvent was removed by rotary evaporation and the 
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resulting oil was taken up in ether, filtered through a plug of silica and the solvent was rotary 

evaporated off to yield 41 mg (209 µmol , 83.6%) of pure reduced alpha-methyl-stilbene in 

88.5% ee in R configuration.   

5.16 Hydrogenation products and general procedures for asymmetric reduction 

General procedure A, standard conditions:  The individual precatalyst metal complexs were each 

weighed into reaction vials (1 µmol, 1 mol%).  The substrate was weighed into separate vial (400 

µmol) and absolute DCM (2000 µL) was added fresh from either a Fluka crown cap bottle or a 

Grubbs type solvent system.  The substrate was dissolved and transferred to the reaction vials 

(500 µL/ reaction, 100 µmol/ reaction), followed by the addition of a stir bar and the vials were 

then placed into an autoclave.  The autoclave was purged with hydrogen for 30 seconds and then 

the system was sealed and pressurized to a given pressure between 50 and 100 bar.  The reaction 

was stirred at 900 rpm for a given length of time between 2 and 24 hours.  The autoclave was 

vented and the individual vials were placed on a hot plate adapted with a multivial aluminum 

heating block set to 50 ˚C.  The individual reactions were concentrated with stirring in the block 

for 1 hour while silica gel pipette columns were prepared.  The resulting viscous oil was taken up 

in 0.5 mL of diethyl ether, passed through the pipette column (1.5 cc silica gel) and collected in a 

small vial, the column was washed with an additional amount of ether (1.5 mL) and the solution 

was concentrated on the same heating block.  A small portion of the sample was taken in 

isopropanol and analyzed by chiral HPLC or in hexane and analyzed by GC.   

General procedure B:  Identical to procedure A except a variable amount of precatalyst was 

weighed out (2-5 µmol, 2-5 mol%) and the substrate was prepared for 500 mM or (100 µmol 

substrate)/(200 µL) in absolute DCM.   

Product 159b: (R)-ethyl 2-methyl-5-phenylpentanoate 

 

HPLC conditions: Chiral OB-H with a flow rate of 0.8 mL/min and a polarity of 97:3 heptanes to 

isopropanol at 20 ˚C, T1 = 9.1 minutes and T2 = 14.8 minutes. Enantiomers were identified by 

peak reversal between opposite configured catalysts S-7e and R-9a, conversion by GC.  
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Chemical Formula: C14H20O2 Molecular Weight: 220.3 

1
H NMR (400 MHz, C6D6) δ 7.18 – 7.14 (m, 2H), 7.06 (dd, J = 14.7, 7.2 Hz, 3H), 3.95 (q, J = 

7.1 Hz, 2H), 2.43 (t, J = 7.7 Hz, 2H), 2.38 – 2.27 (m, 1H), 1.69 (dddd, J = 12.9, 10.6, 7.8, 5.4 Hz, 

1H), 1.64 – 1.44 (m, 2H), 1.39 – 1.25 (m, 1H), 1.05 (d, J = 7.0 Hz, 3H), 0.95 (t, J = 7.1 Hz, 3H). 

13
C NMR (101 MHz, C6D6) δ 175.9, 142.4, 128.7, 128.6, 126.1, 59.9, 39.6, 36.1, 33.7, 29.4, 

17.3, 14.3. 

1
H NMR (500 MHz, CDCl3) δ 7.28 (d, J = 7.5 Hz, 1H), 7.26 (m, 1H), 7.18 (t, J = 7.9 Hz, 3H), 

4.12 (q, J = 7.1 Hz, 2H), 2.61 (t, J = 7.6 Hz, 2H), 2.50 – 2.38 (m, 1H), 1.71 (dt, J = 14.2, 7.4 Hz, 

1H), 1.62 (dt, J = 15.2, 7.5 Hz, 2H), 1.46 (dt, J = 19.7, 6.7 Hz, 1H), 1.24 (t, J = 7.1 Hz, 3H), 1.14 

(d, J = 6.9 Hz, 3H). 

13
C NMR (126 MHz, CDCl3) δ 177.2, 142.6, 128.8, 128.7, 126.1, 60.5, 39.8, 36.2, 33.8, 29.5, 

17.5, 14.7. 

MS (EI, 70 eV): m/z: 220.4. 

[α] 20

D  =  -16.0 at a concentration of 0.14 and ee = 95.6%. 

Product 161b: (R)-ethyl 2-methyl-3-phenylpropanoate 

 

HPLC conditions: Chiral OB-H with a flow rate of 0.8 mL/min and a polarity of 97:3 heptanes to 

isopropanol at 25 ˚C, T1 = 10.4 minutes and T2 = 11.5 minutes. 

Chemical Formula: C12H16O2 Molecular Weight: 192.3 

1
H NMR (500 MHz, CDCl3) δ 7.28 - 7.26 (m, 2H), 7.20 (t, J = 7.4 Hz, 1H), 7.17 (d, J = 7.4 Hz, 

2H), 4.09 (q, J = 7.1 Hz, 2H), 3.01 (dt, J = 21.8, 10.9 Hz, 1H), 2.78 – 2.60 (m, 2H), 1.19 (t, J = 

7.1 Hz, 3H), 1.15 (d, J = 6.7 Hz, 3H).  

13
C NMR (126 MHz, CDCl3) δ 176.5, 139.8, 129.4, 128.7, 126.7, 60.7, 41.9, 40.1, 17.2, 14.6. 



Chapter 5  

Experimental 

 

192 

 

[α] 20

D  = -33.0 at a concentration of 0.17 and ee = 97%. 

Elemental Analysis: for C12H16O2 calculated C, 74.97; H, 8.39; found C, 74.58; H, 8.46. 

Product 161a: (R)-methyl 2-methyl-3-phenylpropanoate 

 

HPLC conditions: Chiral OB-H with a flow rate of 0.8 mL/min and a polarity of 97:3 heptanes to 

isopropanol at 25 ˚C, TR = 10.8 minutes and TS = 11.6 minutes. 

Chemical Formula: C11H14O2 Molecular Weight: 178.2  

1
H NMR (500 MHz, CDCl3) δ 7.29 - 7.26 (m, 2H), 7.20 (t, J = 7.2 Hz, 1H), 7.16 (d, J = 7.5 Hz, 

2H), 3.64 (s, 3H), 3.03 (dd, J = 13.3, 6.7 Hz, 1H), 2.78 – 2.70 (m, 1H), 2.66 (dd, J = 13.3, 7.8 

Hz, 1H), 1.15 (d, J = 6.9 Hz, 3H). 

13
C NMR (126 MHz, CDCl3) δ 177.0, 139.8, 129.4, 128.8, 126.7, 52.0, 41.8, 40.1, 17.1. 

[α] 20

D =  -34.0 at a concentration of 0.16 and ee = 96.6%. 

Product 161c: (R)-isopropyl 2-methyl-3-phenylpropanoate 

 

HPLC conditions: Chiral OB-H with a flow rate of 1.0 mL/min and a polarity of 100% heptanes 

at 20 ˚C, TR = 7.45 minutes and TS = 8.15 minutes, substrate Tsub = 9.45 minutes. 

Chemical Formula: C13H18O2 Molecular Weight: 206.3  

1
H NMR (500 MHz, CDCl3) δ 7.28 - 7.25 (m, 2H), 7.19 (dd, J = 14.3, 7.2 Hz, 3H), 4.96 (hept, J 

= 6.1 Hz, 1H), 2.99 (dd, J = 11.9, 5.6 Hz, 1H), 2.77 – 2.58 (m, 2H), 1.19 (d, J = 6.2 Hz, 3H), 

1.14 (d, J = 6.4 Hz, 3H), 1.12 (d, J = 6.2 Hz, 3H). 
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13
C NMR (126 MHz, CDCl3) δ 176.1, 139.9, 129.4, 128.7, 126.6, 67.8, 42.0, 40.1, 22.1, 22.1, 

17.2. 

[α] 20

D  =  -43.0 at a concentration of 0.13 and ee = 99.1%. 

Elemental Analysis: for C13H18O2 calculated C, 75.69; H, 8.80; found C, 75.88; H, 8.97.  

Product 157b: (R)-1-tert-butyl-6-methoxy-1,2,3,4-tetrahydronaphthalene 

 

Synthesized by procedure B.  HPLC conditions: Chiral OD-H with a flow rate of 1.0 mL/min 

and a polarity of 100% heptanes at 20˚C, T1 = 6.3 minutes and T2 = 8.7 minutes, substrate Tsub = 

14.7 minutes, aromatic side product Tar =10.7. 

Chemical Formula: C15H22O Molecular Weight: 218.3 

1
H NMR (400 MHz, CDCl3) δ 7.06 (d, J = 8.4 Hz, 1H), 6.66 (dd, J = 8.4, 2.8 Hz, 1H), 6.62 (d, J 

= 2.7 Hz, 1H), 3.79 (s, 3H), 2.75 – 2.54 (m, 3H), 2.02 – 1.89 (m, 1H), 1.89 – 1.80 (m, 2H), 1.51 

– 1.37 (m, 1H), 0.90 (s, 9H). 

13
C NMR (101 MHz, CDCl3) δ 157.6, 141.9, 132.5, 131.2, 113.6, 110.6, 55.5, 47.1, 36.3, 30.7, 

28.9, 25.8, 22.8. 

 [α]
20

D =  -24.0 at a concentration of 0.22 and ee = 96.0%. 



Chapter 5  

Experimental 

 

194 

 

5.17 References 

[1] Mazet, C.; Roseblade, S.; Kohler, V.; Pfaltz, A. Org. Lett. 2006, 8, 1879-1882. 

[2] Castelijns, A. M. C. F.; Dielemans, H. J. A.; (DSM N.V., Neth.). Application: EP 

EP, 1993, p 8 pp. 

[3] Meyers, A. I.; Garcia-Munoz, G. J. Org. Chem. 1964, 29, 1435. 

[4] Sakurai, A.; Midorikawa, H. Bull. Chem. Soc. Jap. 1968, 41, 165. 

[5] Voss, F. Masterarbeit, Univeristy Of Basel, 2007. 

[6] Liu, Q.-B.; Yu, C.-B.; Zhou, Y.-G. Tetrahedron Lett. 2006, 47, 4733. 

[7] Lyle, M. P. A.; Narine, A. A.; Wilson, P. D. J. Org. Chem. 2004, 69, 5060. 

[8]  Lyle, M. P. A.; Wilson, P. D. Org. Lett. 2004, 6, 855. 

[9] Kaiser, S.; Smidt, S. R.; Pfaltz, A. Angew. Chem. Int. Ed. 2006, 45, 5194. 

[10] Navarro, O.; Marion, N.; Mei, J. G.; Nolan, S. P. Chem. Eur. J. 2006, 12, 5142. 

[11] Zimmerman, S. C.; Zeng, Z.; Wu, W.; Reichert, D. E. J. Am. Chem. Soc. 1991, 113, 183. 

[12] Xie, Y.; Huang, H.; Mo, W.; Fan, X.; Shen, Z.; Shen, Z.; Sun, N.; Hu, B.; Hu, X. Tetrahedron: Asymmetry 

2009, 20, 1425. 

[13] Zimmerman, S. C.; Zeng, Z. J. Org. Chem. 1990, 55, 4789. 

[14] Roseblade, S. J.; Pfaltz, A. Synthesis-Stuttgart 2007, 3751. 

[15] Uenishi, J.; Hamada, M. Synthesis 2002, 625. 

[16] Maywald, M.; Pfaltz, A. Synthesis 2010 3654. 

[17] Shastin, A. V.; Muzalevsky, V. M.; Balenkova, E. S.; Nenajdenko, V. G. Mendeleev Comm. 2006, 179. 

[18] Schonleber, M.; Hilgraf, R.; Pfaltz, A. Adv. Synth. Cat. 2008, 350, 2033. 

[19] von Matt, P.; Pfaltz, A. Tetrahedron: Asymmetry 1991, 2, 691. 

[20] Jeon, H.-S.; Yeo, J. E.; Jeong, Y. C.; Koo, S. Synthesis 2004, 2004, 2813. 

[21] Gu, L.; Wang, B.; Kulkarni, A.; Geders, T. W.; Grindberg, R. V.; Gerwick, L.; Hakansson, K.; Wipf, P.; 

Smith, J. L.; Gerwick, W. H.; Sherman, D. H. Nature 2009, 459, 731. 

[22] Ganguly, N. C.; De, P.; Dutta, S. Synthesis 2005, 1103. 

 

 



 

 

 

Chapter 6 

Appendix 
 

 

 

 

 

 

 

 

 

 



 

6.1 Crystallographic Data 

 

The X-ray structures were measured by Mr. Markus Neuburger (Department of 

Chemistry,University of Basel) on a Nonius KappaCCD diffractometer, solved using direct 

methods (SIR92
[1]

) and refined with Crystals
[2]

 by Mr. Markus Neuburger, Dr. Silvia Schaffner 

and Mr. Marcus Schrems (Department of Chemistry, University of Basel). Hydrogen atoms were 

added geometrically. 

 

 

 123a R-143g 

formula  C36H38F6IrNP2 C23H19NO 

Mr [gmol
-1

] 852.86 325.41 

shape plate block 

color red colorless 

crystal system triclinic Triclinic 

space group P -1 P 1 

crystal size [mm
3
] 0.03_0.12_ 0.18 0.08_0.17_0.26 

a [Å] 9.6179(5) 7.6503(2) 

b [Å] 11.2735(5) 12.8616(4) 

c [Å] 15.4148(8) 18.8654(6) 

α [°] 79.979(2) 106.2280(10) 

β [°] 80.975(3) 98.815(2) 

γ [°] 87.440(2) 101.2650(10) 

V [Å
3
] 1625.25(14) 1704.86(9) 

Z 2 4 

F(000) 844.00 688.00 

Θ range for data collection [°] 1.835-29.171 1.704-30.526 

ρcalcd [gcm
-3

] 1.743 1.268 

absorption coeff. µ [mm
-1

] 4.268 0.077 

measured reflections 25816 36112 

independent reflections 7106 10342 

used reflections
[b]

 5952 9563 

parameters refined 415 901 

R
[c]

 0.0527 0.0408 

Rw
[d]

 0.0490 0.0472 

goodness of fit 1.1406 1.1103 

[a] All data were collected using Mo Kα (λ = 0.71073 Å) at 173 K. [b] Observation criterion: I > 

3σ(I). [c] R = Σ||F0| - |FC|| / Σ|F0|. [d] Rw = {Σ[w(F0 - FC)
2
] / Σ[w(F0)

2
]}

1/2
. 
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 S-108a S-108e S-110a 

formula C71H50BF24IrNOP   C66H62BF24IrNOP C77H56BF24IrNOP 

Mr [gmol
-1

] 1623.14 1656.36 1701.25 

shape plate block  block 

color red orange red 

crystal system triclinic orthorhombic triclinic 

space group P -1 P 21 21 21 P 1 

crystal size [mm
3
]  0.11_0.17_0.31 0.10_ 0.13_ 0.19 

a [Å] 13.9209(3) 13.5137(6) 12.8218(4) 

b [Å] 15.6412(4) 19.4816(9) 14.8360(5) 

c [Å] 17.1341(4) 27.1434(11) 18.8757(6) 

α [°] 104.9140(10) 90 96.898(2) 

β [°] 106.3840(10) 90 99.557(2) 

γ [°] 102.4700(10) 90 95.874(2) 

V [Å
3
] 3286.93(14) 7146.0(5) 3487.6(2) 

Z 2 4 2 

F(000) 1608 3316.40 1692 

Θ range for data 

collection [°] 
0.995-28.788 0.996-30.507 0.995- 32.031 

ρcalcd [gcm
-3

] 1.640 1.539 1.620 

absorption coeff. µ 

[mm
-1

] 
2.169 2.037 2.049 

measured reflections 254629 121195 116236 

independent reflections 81216 21519 47604 

used reflections
[b]

 31557 18688 40264 

parameters refined 955 993 1964 

R
[c]

 0.0358 0.0264 0.0273 

Rw
[d]

 0.0889 0.0285 0.0307 

goodness of fit 1.0548 1.1252 0.9675 

[a] All data were collected using Mo Kα (λ = 0.71073 Å) at 173 K. [b] Observation criterion: I > 

3σ(I). [c] R = Σ||F0| - |FC|| / Σ|F0|. [d] Rw = {Σ[w(F0 - FC)
2
] / Σ[w(F0)

2
]}

1/2
. 
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6.2 List of abreviations 

Å Angstrom (10
-10

 M) 

Ac acyl 

Anth anthracyl 

Ar Aromatic 

BArF Tetrakis[3,5-bis(trifluoromethyl)phenyl]borate 

Bn benzyl 

boc tert-butoxycarbonyl 

Bu butyl 

Bz benzoyl 

cal calorie 

CALB Candida Antarctica lipase B 

calc. calculated 

Cat, cat catalyst 

COD cyclooctadiene 

Conv, conv conversion 

Cy cyclohexyl 

d doublet 

DCM dichloromethane 

DFT density functional thereom 

DIPCl B-Chlorodiisopinocamphylborane 

DIPE diisopropylether 

DMAP 4-dimethylaminopyridine 

DME 1,2-dimethoxyethane 

DMF N,N’-dimethylformamide 

DMSO dimethylsulfoxide 

ee enantiomeric excess 

EI electron impact 

ent, enant enantiomer 

eq equivalent 

er enantiomeric ratio 
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ESI electron spray ionization 

Et ethyl 

EtOAc ethyl acetate 

EWG electron withdrawing group 

FAB fast atom bombardment 

GC gas chromatography 

HPLC high pressure liquid chromatography 

hr hour 

i-Bu, 
i
Bu isobutyl 

IPA isopropyl alcohol 

i-Pr, 
i
Pr isopropyl 

J coupling constant 

k rate constant 

kcal kilocalorie 

kJ kilojoule 

L Liter 

M Molar 

M Metal  

m meta 

m/z mass charge ratio 

Me methyl 

Mesityl 2,4,6-trimethylbenzene 

mL milliliter 

mol mole 

MS mass spectrometry 

Naph naphthyl 

n-Bu normal-butyl 

NMR nuclear magnetic resonance 

n-Pr normal-probyl 

o ortho 

Ph phenyl 
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q Enantiomeric quotient, (er with denominator = 1) 

q quartet 

quint quintet 

rac racemic 

Rt retention time 

rt room temperature 

sep septet 

t triplet 

TBAF tetrabutylammonium fluoride 

TBME tert-butylmethyl ether 

t-Bu, 
t
Bu, tert-Bu teriaryt-butyl 

THF tetrahydrofuran 

TLC thin layer chromatography 

TMS trimethylsilyl 

Tol tolyl, toluene 

tosyl tosylate 

Xyl xylyl 

α alpha position 

β beta positon 

δ part per million 

λ nanometer 

µ micro 

π pi orbital 

Σ sum 

σ sigma orbital 
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