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Summary 
 

Clopidogrel (Plavix®) is an antiplatelet drug, which is clinically used in combination with 

aspirin to reduce cardiovascular events in patients undergoing percutaneous coronary 

intervention or in patients suffering from acute coronary syndromes. Clopidogrel is a prodrug 

requiring enzymatic activation by cytochrome P450 (CYP) isoenzymes in order to inhibit 

platelet aggregation. Drug-interactions can affect clopidogrel activation and therefore cause 

interference with its pharmacodynamic effect. Clopidogrel is generally well tolerated but 

hepatotoxicity associated with clopidogrel treatment has been reported.  

Amiodarone (Cordarone®) is a class III antiarrhythmic drug used for the treatment of a wide 

spectrum of cardiac arrhythmias. Amiodarone’s therapeutic use is limited due to its numerous 

side effects such as liver toxicity. Recent in vitro investigations revealed that the N-desethyl 

metabolites of amiodarone may be partially responsible for the hepatotoxicity. Since CYP3A4 

is responsible for amiodarone metabolism, CYP3A4 induction may represent an important 

risk factor in the clinic.  

 

In the first project we investigated potential drug interactions of CYP inhibitors or substrates 

with the activation of clopidogrel or the inhibition of clopidogrel’s antiplatelet effect. Using 

human liver microsomes (HLM) or specific supersomes we reproduced activation of 

clopidogrel in vitro. We found that CYP3A4 is primarily responsible for the metabolism of 

clopidogrel. At low concentrations (< 10 µM) CYP2C19 may contribute to clopidogrel 

activation to a certain degree. Additionally, HLM in co-incubation with platelets freshly 

prepared from human blood, allowed us to investigate the pharmacodynamic effect of 

clopidogrel ex vivo. We showed that activated clopidogrel dose-dependently inhibited platelet 

aggregation, whereas platelet aggregation occurred in absence of HLM. Potent CYP3A4 

inhibitors exhibited strong inhibitory effects on clopidogrel activation and on clopidogrel’s 

antiplatelet effect. Additionally, statins metabolized by CYP3A4 impaired clopidogrel 

activation and its antiplatelet effect. In contrast, CYP2C19 inhibitors did not affect 

clopidogrel activation probably because clopidogrel itself inhibits CYP2C19 at concentration 

≥10 µM. 

 

In the second project, we investigated whether the reactive metabolite of clopidogrel is 

responsible for the observed hepatotoxicity and studied the corresponding mechanism. Our 

liver toxicity models involved HepG2 cells that overexpress human CYP3A4 or were 

supplemented with CYP3A4 supersomes. These cellular systems were able to generate the 
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active metabolite of clopidogrel, which was associated with cytotoxicity. Co-incubation with 

ketoconazole, a CYP3A4 inhibitor, attenuated the toxic effect, thereby confirming the 

CYP3A4 dependency of clopidogrel activation. Cytotoxicity was associated with the 

induction of an oxidative stress reaction and promoted apoptosis via a mitochondrial pathway. 

In contrast, the carboxylate metabolite of clopidogrel, which is generated by esterases after 

oral administration, did not cause cytotoxicity.  

 

The aim of the third project was to study the role of CYP3A4 in amiodarone-induced 

hepatotoxicity. Experiments were conducted using the same cellular activation systems as for 

clopidogrel, since CYP3A4 is also responsible for amiodarone metabolization in the liver. 

The systems proved to be powerful screening tools for CYP3A4-mediated toxicity of 

xenobiotics. We demonstrated that amiodarone metabolization is CYP3A4 dependent and 

generates MDEA and DDEA. Accordingly, MDEA and DDEA are primarily responsible for 

the observed cytotoxicity by increasing ROS production, by inducing mitochondrial damage 

and cytochrome c release and by promoting late apoptosis/necrosis. Therefore, we concluded 

that induced activity of CYP3A4 is a risk factor for hepatotoxicity associated with 

amiodarone. 
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1. Introduction 
 

 

1.1. Platelets  

Platelets play a central role in the haemostatic process, including the recognition of an injury 

site, the recruitment of additional platelets by intracellular signaling, initial adhesion to each 

other and interaction with the coagulation cascade to form a haemostatic plug. Inappropriate 

platelet activation and thrombus formation can give rise to clinical complications in arterial 

atherosclerosis and thrombosis. It is well established that the formation of platelet-rich 

thrombi plays a major role in the onset and progression of arterial thrombotic disorders and 

therefore antiplatelet therapy is the basis of treatment and prophylaxis. Thus, many 

antiplatelet approaches have been followed, aiming to interfere with one or more of the 

different events in thrombus formation.  

Platelets are fragments of large bone-marrow-derived cells called megakaryocytes. During the 

maturation of a megacaryocyte, its cytoplasm becomes compartmentalized and its plasma 

membrane ruptures. The membranes associated with each fragment then condense to form 

anucleate, disk-shaped platelets, which have a lifespan of approximately 7-10 days 1, 2. 

In hemostasis, resting platelets circulate through blood vessels without receiving activation 

signals from other cells 3. However, in response to vessel trauma, platelets spontaneously 

adhere to newly exposed adhesive proteins, particulary collagen and von Willebrand factor 

(vWF) via their respective receptors, glycoprotein (GP) VI and GPIb/V/IX. GPIb is present 

on the surface of non-activated platelets and is the major receptor for platelet adhesion. 

Platelets are activated instantly by various agonists such as thrombin, adenosine diphosphate 

(ADP), collagen and thromboxane A2 (TXA2), causing the platelets to change their shape and 

release the contents of their storage vesicles.  It is thought that all of these agonists act by a 

common pathway, which leads to increased intracellular calcium concentration through direct 

ion flux or the release of stored calcium 2, 4. These calcium-dependent processes include the 

phosphorylation of myosin light chain  (associated with a change in platelet shape) and 

activation of phopsholipase A2, leading to increased arachidonic acid, which is then converted 

by cyclooxygenases into TXA2. The release of TXA2 causes the release of ADP from platelet 

granules, which in turn stimulates the arachidonic acid pathway further, thus perpetuating the 

cycle 4. Therefore, both TXA2 and ADP are attractive targets for antiplatelet therapy. 

Platelet aggregation is the consequence of the signaling cascade initiated by GPIIb/IIIa 

receptor engagement on the surface of activated platelets. In turn, platelet activation is 

accompanied by conformational changes of the GPIIb/IIIa receptor, which increases its 
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affinity for fibrinogen. Fibrinogen, the primary polypeptide involved in platelet aggregation, 

subsequently promotes the cross-linking of adjacent platelets, leading to the formation of a 

platelet-rich thrombus 2, 4. 

 

 

1.1.1. Assaying platelet function 

The assessment of platelet function is clinically important, because changes in platelet 

adhesion behavior can have a direct impact on both hemostasis and thrombosis. 

Platelet functionality has been investigated in multiple ways in both clinical and research 

settings. For patients with cardiovascular diseases, platelet function tests are mainly used to 

predict clinical outcomes or for monitoring the antiplatelet therapy. Several kinds of platelet 

function tests have been developed over the years and among the available methods, light 

transmission aggregometry (LTA) is considered the gold standard for the study of patients 

with platelet function disorders. LTA was developed in 1962 by the researchers Born and 

O’Brien independently 5, 6 and measures the increase in light transmission through platelet-

rich plasma (PRP) that occurs when platelets are aggregated upon binding to an agonist.  

Several platelet agonist ligands are used to stimulate platelet suspensions in a light 

transmission aggregometer. The most commonly used agonists include ADP, epinephrine, 

collagen, arachidonic acid, and the thromboxane A2 analogue U46619. Another commonly 

used reagent as experimental positive control is ristocetin, which induces non-specific 

aggregation. Many other agonists are available for studies of platelet function in the clinical 

setting and more commonly, for research purposes (e.g. thrombin, the thrombin receptor 

(PAR-1) activating peptide (TRAP), vasopressin and others) 7. 

 

 

1.1.2. Light Transmission Aggregometer 

A light transmission aggregometer is a photometer consisting of a light source, a cuvette 

holder with a rotating magnet (which drives a small stirrer placed in the platelet suspension), a 

thermostat heater (which maintains the temperature of the sample), and a photoelectric cell 

that measures the light transmission across the platelet suspension (Figure 1). Upon addition 

of a platelet agonist, aggregation is reflected by increased light transmission through the 

cuvette.  
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Figure 1 Principle of LTA: as platelets aggregate in plasma, transmitted light increases 8. 

 

 

Advantages of the LTA method include the feasibility to monitor aspirin, thienopyridines and 

platelet glycoprotein (GP) IIb/IIIa inhibitor therapy 9. On the other hand, large sample 

volumes, long processing times and complex sample preparation are required. Although LTA 

is a commonly accepted method to test platelet function, yet there is no international 

standardization. Variability arises from numerous preanalytical and analytical steps that 

influence the results of LTA (e.g. blood sampling, use of anticoagulants, platelet count, 

temperature, pH, aggregometer stir speed, time). Since great experimental expertise is 

required only specialized laboratories are competent to reproducibly conduct LTA 

experiments 7. 

Flow cytometry analysis of platelet vasodilator-stimulated phosphoprotein (VASP) 

phosphorylation is a relatively new assay for the analysis of platelet function 10. VASP is an 

intracellular protein, which is non-phosphorylated at basal state. Dephosphorylation of VASP 

occurs following stimulation of the ADP receptor P2Y12. Conversely, inhibition of the P2Y12 

receptor by clopidogrel induces phosphorylation of VASP 11. Levels of VASP 

phosphorylation/dephosphorlyation thus reflect P2Y12 inhibition/activation. Therefore, 

measurement of the VASP phosphorylation state is highly sensitive and specific for 

thienopyridine treatment. Several studies demonstrated a good correlation between VASP and 

LTA assays 12-15. 
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1.2. Antiplatelet drugs 

Medical therapies targeting various molecules in the platelet activation pathways have been 

developed to prevent platelet aggregation. These agents are called antiplatelet drugs. Aspirin 

(acetylsalicylic acid) remains the most widely used and cost-effective drug in the prevention 

of platelet aggregation since the discovery of its effect over 40 years ago 8. Other clinically 

well-established antiplatelet strategies include clopidogrel or GPIIb/IIIa antagonists. Newly 

developed compounds, which are being tested in clinical studies or are still in experimental 

preclinical phases include either alternative P2Y12 inhibitors (chapter 1.3.3) and drugs that 

interact with alternative targets (Figure 2 & Box 1). 

 

 

 
 

 
Figure 2 Sites of action of platelet inhibitors. Platelet aggregation can be inhibited by targeting 

cyclooxygenase (COX)-1 (aspirin) and therefore blocking the production of TXA2, or by targeting 

platelet receptors (e.g. the TXA2 receptor, P2Y12, PAR1, and GPIIb/IIIa receptors) and thus blocking 

the action of platelet agonists.  The various antiplatelet agents and corresponding drug classes are 

listed in Box 1. GP, glycoprotein; PAR, protease-activated receptor; TXA2, thromboxane A2. 
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1.2.1. Aspirin 

Aspirin exerts its antiplatelet effect by irreversible acetylation of platelet cyclooxygenase 

(COX)-1 at serine residue 529 16, 17. This enzyme is responsible for the conversion of 

arachidonic acid to eicosanoids, which are precursors of the prostaglandins thromboxane A2 

(TXA2) and prostacycline (prostaglandin I2) (Figure 3). TXA2 is a potent vasoconstrictor and 

platelet agonist that is released when platelets are activated. Platelet activation leads to 

activation of phospholipase A2, which cleaves membrane phospholipids to release arachidonic 

acid. Arachidonic acid is converted to TXA2 by sequential actions of COX-1 and 

thromboxane synthase present in platelets. Secreted TXA2 binds to a specific Gq-coupled 

thromboxane receptor and recruits and activates surrounding platelets as part of a positive 

feedback mechanism. One study has shown that production of TXA2 was prevented by a low 

dose (100 mg) of aspirin 18. Prostacyclin is a vasodilator and platelet inhibitor synthesized by 

platelets and vascular endothelium. While aspirin permanently inhibits the rate-limiting step 

of TXA2 production by COX-1 acetylation for the entire life span of platelets (7-10 days), the 

inhibited COX-1 of vascular endothelial cells is replaced with functional enzymes and 

maintains the synthesis of prostacyclin. Therefore, aspirin inhibits platelets by both reducing 

available TXA2 and by increasing prostacylin relative to TXA2. However, other mediators in 

platelet activation (ADP, collagen, fibrinogen) can overcome the antiplatelet effect of aspirin. 

Aspirin has been shown to play a key role in the secondary prevention of atherothrombotic 

events 16 and the antithrombotic Trialists’Collaboration 17 confirms that aspirin therapy in 

patients with atherosclerotic vascular disease reduces non-fatal myocardial infarction by one 

third, non-fatal stroke by one quarter and vascular mortality by one sixth. 

Although aspirin is a cost-effective therapy, a considerable number of patients who take 

aspirin continue to experience atherothrombotic complications 19. Hence, the identification of 

more potent antiplatelet drugs is necessary especially to prevent these side effects in patients 

at higher risk. 
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Figure 3 Aspirin irreversibly acetylates COX-1 resulting in inhibition of TXA2. TXA2 = Thromboxane 

A2, COX-1 = Cyclooxygenase-1, PG = Prostaglandin, PGI2 = Prostacyclin. 

 

 

1.3. Thienopyridines  

The introduction of thienopyridines as potential adjunctive antiplatelet therapy has 

contributed significantly to the prevention and treatment of acute coronary thrombotic 

episodes. Thienopyridines belong to the family of ADP-receptor antagonists, which 

irreversibly inhibit the platelet receptor P2Y12 (chapter 1.3.2).  

 

Ticlopidine (first-generation thienopyridine) was discovered in 1972 through numerous 

screening tests performed in vivo while looking for anti-inflammatory compounds. The 

discovery of ticlopidine’s antiplatelet properties led to its development as an antithrombotic 

drug some years later. In patients, ticlopidine doses of 250, 375 and 500 mg per day inhibit 

platelet aggregation by 20-50%, 30-60% and 50-70%, respectively. Doses higher than 500 mg 

per day do not further increase the inhibition 20, 21. Ticlopidine has been shown to be effective 

in peripheral artery disease, unstable angina and cerebrovascular disease 22.  However, due to 

its unfavorable side-effect profile (neutropenia, thrombocytopenia, bleeding complications) 
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and relative lack of efficacy, this drug is rarely used nowadays, except for patients allergic to 

other antiplatelet drugs 23, 24.  

The patent for clopidogrel (second-generation thienopyridine) was first submitted in 1987, 

and clopidogrel was approved in western countries in 1997 for the prevention of ischemic 

stroke, myocardial infarction, and vascular death in patients with symptomatic atherosclerosis 

(CAPRIE trial= Clopidogrel versus Aspirin in Patients at Risk Ischemic Events) 25. In 2002, 

after the CURE (Clopidogrel in Unstable angina to prevent Recurrent Events) trial 17, the use 

of clopidogrel in addition to standard therapy (including aspirin) was approved for the 

reduction of atherothrombotic events in patients with acute coronary syndromes. The standard 

clopidogrel regimen administered to prevent stent thrombosis is a 300 mg loading dose 

followed by a 75 mg daily maintenance dose 26. Recent studies have used a 600 mg 

clopidogrel-loading dose based on superior pharmacodynamic effects compared to 300 mg 27-

29. A clopidogrel dose of 75 mg per day inhibits platelet aggregation by 40-60% at steady 

state 20, 30. 

The clopidogrel molecule carries a methoxycarbonyl group on the benzylic position (Figure 

4), which provides increased pharmacological activity and a better safety (lower incidence of 

adverse effects such as neutropenia and thrombotic thrombocytopenic purpura) and 

tolerability profile compared to ticlopidine. Clopidogrel is an S-enantiomer and the 

corresponding R-enantiomer is lacking antithrombotic activity in animal experiments, 

indicating that the S-configuration is essential for pharmacological activity. In several models 

of arterial thrombosis, clopidogrel exhibited potent, dose-dependent antithrombotic activity, 

and was approximately 50 to 100 fold more potent than ticlopidine or aspirin, respectively 22. 

 

 

 
 

 

Figure 4 Chemical structures of thienopyridines (ticlopidine and clopidogrel). 
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1.3.1. Metabolism of thienopyridines 

The thienopyridines in current clinical use are prodrugs, requiring hepatic bioactivation by the 

cytochrome P450 (CYP) isoenzymes in order to generate the active metabolite. The transient 

intermediate contains a thiol group, which covalently modifies and inactivates the ADP 

receptor P2Y12 on the platelet surface in a highly specific and irreversible manner 22, 31. At 

least 20 metabolites of ticlopidine have been identified. It was proposed that among those, 

UR-4501 (containing a carboxylic acid and a thiol group as a result of 2-oxo-thiophene ring 

opening) is the molecule responsible for the in vivo activities of ticlopidine (Figure 5) 32. 

After oral administration of clopidogrel, the majority (85%) is metabolized by esterases to 

form an inactive carboxylic acid derivative (carboxylate metabolite of clopidogrel, SR 26334) 
33-36. The conversion of clopidogrel to its active metabolite (R 130964) has been described as 

two-step, CYP-dependent process via the formation of 2-oxo-clopidogrel (Figure 5). In these 

steps, CYP3A4 seems to have a major role, with inferior involvement of CYP2B6 and 

CYP1A2. In addition, CYP2C9 and CYP2C19 may also metabolize clopidogrel to a lower 

extent 31, 37-39. 

 

 
 

 

Figure 5 Metabolic pathways of ticlopidine and clopidogrel. CYP: cytochrome P450. 

 

 

Being a substrate for cytochrome P450 raises the possibility that thienopyridines function as 

competitive inhibitors of CYP isoenzymes. In fact, potent inhibition of the activities of 

cytochrome P450 has been demonstrated in vitro: CYP2B6, CYP2C19 and CYP2D6 for 

(UR-4501) 

(R 130964) 

(SR 26334) 
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ticlopidine 40-44; CYP2C19 by 2-oxo-ticlopidine 41, 44; CYP2B6 and CYP2C19 by clopidogrel 
43, 44. Ticlopidine is known to inhibit the CYP2C19 mediated metabolism of phenytoin 45 and 

omeprazole 46. In a clinical setting it has also been reported that both clopidogrel and 

ticlopidine significantly inhibit CYP2B6-catalyzed bupropion hydroxylation, a monocyclic 

antismoking and antidepressant drug, in the clinical setting. Richter et al. 43 proposed 

previously that the mechanism-based inhibition of CYP2B6 by clopidogrel might be caused 

by disulfide bond formation between the active metabolite and the enzyme. Recent studies 

however supposed that this mechanism-based inhibition is due to chemically reactive 

metabolites produced during conversion of clopidogrel to the 2-oxo-clopidogrel 44, 47. 

 

 

1.3.2. Mechanism of action of thienoypridines on ADP receptors  

Adenosine diphosphate (ADP) is one of the most important mediators of both physiological 

hemostasis and thrombosis as mentioned in chapter 1.1 48. After platelet activation, ADP is 

released from its intracellular storage granules and further activates neighboring platelets, 

thereby amplifying this process.  

There are two main purinergic receptor types in the membrane: P2X1 and P2Y. P2X1 is a 

ligand-gated ion channel that utilizes adenosine triphosphate (ATP) as an agonist and 

mediates extracellular calcium influx leading to altered platelet shape (Figure 6). There are 

two known P2Y receptors, P2Y1 and P2Y12, both are (GTP) dependent G-protein coupled 

receptors which utilize ADP as agonist. Engagement of P2Y1 receptor leads to a series of 

signaling events that result in a weak and transient phase of platelet aggregation. In contrast, 

activation of P2Y12 receptor leads to a complex series of intracellular signaling events that 

yield in activation of the glycoprotein (GP) IIb/IIIa receptor, granule release, amplification of 

platelet aggregation and stabilization of the coagulated cells 48, 49. 

Thienopyridines selectively and irreversibly inhibit the P2Y12 receptor 22. The reactive thiol 

group of the active metabolite forms a disulfide bridge between one or two cysteine residues 

(Cys17 and Cys270) of the P2Y12 receptor, resulting in its irreversible inhibition for the life 

span of the platelet 50. In fact, platelet P2Y12 blockade prevents platelet degranulation and the 

release of prothrombotic and inflammatory mediators from the activated platelet, and also 

inhibits the transformation of the GPIIb/IIIa receptor that binds fibrinogen and links platelets. 
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Figure 6 Mechanism of action of clopidogrel and ticlopidine. The active metabolite irreversibly 

inhibits the ADP-P2Y12 receptor on platelet surface. Activation of the P2X1 and P2Y1 receptor leads to 

alteration in shape and initiates a weak and transient platelet aggregation. The binding of ADP to the 

P2Y12 receptor leads to a complex series of intracellular signaling events that yield in activation of the 

glycoprotein (GP) IIb/IIIa receptor, granule release, amplification of platelet aggregation and 

stabilization of the coagulated cells 48.  

 

 

1.3.3. New ADP-receptor antagonists 

Among the many new antiplatelet compounds that are currently being developed, different 

new P2Y12 antagonists are likely to be introduced into clinical routine soon. The third orally 

available thienopyridine prodrug, prasugrel and the two non-thieropyridine antagonists of 

P2Y12, cangrelor (intravenous administration) and AZD6140 (orally applicable) are currently 

being tested in phase III studies or are already being launched by the manufacturers, after 

having shown promising results in phase II studies in terms of efficiency and safety 51, 52. 

Prasugrel is a prodrug similar to clopidogrel, which only after hepatic metabolism turns into a 

clinically active compound. In preclinical evaluation, it is 10 times more potent than other 

thienopyridines 51, 52. Comparable efficiency and safety between prasugrel and clopidogrel 

was shown in the JUMBO-TIMI 26 study 53. In the recently published TRITON-TIMI 38 
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study, prasugrel treatment was associated with a significantly reduced rate of the primary end 

point, which was death from cardiovascular causes, nonfatal myocardial infarction or nonfatal 

stroke in patients with acute coronary syndromes, compared to clopidogrel 53. However this 

advantage did not result in a difference in overall mortality, and, more importantly there was 

an increase in rates of major bleeding, including fatal bleeding 53. 

AZD6140 and cangrelor are both reversible, nonthienopyridine P2Y12 inhibitors, which 

showed more rapid onset and cessation of action than clopidogrel and reduced bleeding risk 

in patients with acute coronary syndromes 51, 52. 

 

 

1.4. Variability in responsiveness to oral antiplatelet therapy 

Patients who are suffering from acute coronary syndrome or are undergoing percutaneous 

coronary intervention receive antiplatelet therapy to reduce the risk of atherothrombotic 

complications. Clopidogrel in combination with aspirin is the current standard of care for 

reducing cardiovascular events in these patients 54-56. However, the response to clopidogrel 

varies among patients, and clopidogrel ‘resistance’ has been observed. Such variations have 

repeatedly been associated with adverse cardiovascular outcomes in patients undergoing 

percutaneous coronary intervention 57, 58. The occurrence of ischemic events despite dual 

antiplatelet therapy is a serious clinical problem and may origin from drug non-

responsiveness.  

 

 

1.4.1. Variability in individual responsiveness to aspirin 

Emerging evidence of aspirin ‘resistance’ in the recent literature may have substantial clinical 

implications. Aspirin ‘resistance’ has been defined either as the failure of aspirin to prevent 

individuals from clinical thrombotic complications or as the failure to produce an expected 

response on a laboratory measurement of platelet activation or aggregation 29. 

The prevalence of reported aspirin ‘resistance’ can vary considerably and may in fact be 

overestimated when patient non-compliance to aspirin therapy is excluded and COX-1 

specific laboratory analyses are performed. Using arachidonic acid-induced COX-1 specific 

platelet aggregation, Tantry et al. 59 reported a 0.4% incidence of aspirin non-responsiveness 

in patients undergoing PCI and Schwartz et al. 60 reported a 0.5% incidence in patients with a 

history of myocardial infarction. This stands in contrast to 20-35% incidence of aspirin 

‘resistance’ when determining non COX-1 specific platelet aggregation regardless of 

compliance 61, 62. 
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Recent observations have demonstrated that the primary cause of aspirin failure is poor 

compliance to medication 59, 63. Another important factor is whether the patients are receiving 

concomitant administration of non-steroidal anti-inflammatory drugs (NSAIDs), such as 

ibuprofen, which interfere with the irreversible inactivation of platelet COX-1 by aspirin. 

Other potential mechanisms of aspirin resistance that have been proposed are redundant 

platelet activation pathways, increased COX-2 activity and polymorphism of platelet GPIIIa 

and COX-1 29.  

 

 

1.4.2. Variability in individual responsiveness to clopidogrel 

Accruing data show that the variability of individual responsiveness to antiplatelet therapy 

applies to clopidogrel as well. However, the nature of variability of clopidogrel 

responsiveness is different compared to aspirin, since these drugs exhibit substantially 

different pharmacologic profiles. The occurrence of ischemic events despite the use of 

clopidogrel suggests that inadequate response to treatment affects certain patients. This risk 

may be further enhanced in patients who have inadequate response to both, aspirin and 

clopidogrel therapy 29. Standardized definitions to individual responsiveness to clopidogrel 

are required but still lacking. The prevalence of clopidogrel non-responsiveness has been 

reported to be in the range of 5-40% 29, 58.  

The mechanisms underlying interindividual variability in response to clopidogrel have not 

been defined but are probably multifactorial 48. Potential factors are shown in Figure 7 and 

include genetic, clinical, and cellular factors. Among these, genetic polymorphisms of CYP 

isoenzymes, which have a major role in generating the active metabolite of clopidogrel, 

presumably affect the individual responsiveness more severely than downstream targets, such 

as platelet membrane receptors.  

Furthermore, clinical factors also have a major role in variable response profiles to 

clopidogrel 29, 48, 64. Drug-drug interactions (e.g., CYP3A4 metabolizing statins and 

omeprazole) may interfere with the pharmacodynamic effects of clopidogrel (chapters 1.4.2.3 

& 1.4.2.4). Similar to aspirin, inadequate prescription or poor compliance may play a pivotal 

role. Certain clinical scenarios such as diabetes and elevated body mass index are also 

associated with reduced clopidogrel responsiveness. This may explain why such patients have 

a greater likelihood of developing recurrent thrombotic complications despite clopidogrel 

usage 29, 48, 64. 

Cellular factors may also play a role in clopidogrel response variability. These include faster 

platelet turnover, increased platelet exposure to ADP, reduced CYP activity, upregulation of 
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P2Y-dependent signaling (P2Y1 and P2Y12), and the upregulation of P2Y-independent 

pathways 29, 48, 64.  

 

 
 

Figure 7 Proposed mechanisms leading to variability in individual responsiveness to clopidogrel. 

ADP = adenosine diphosphate; CYP = cytochrome P450; GP = glycoprotein; TXA2= thromboxane A2. 

 

 

1.4.2.1. Cytochrome P450 polymorphisms and response to clopidogrel 

Clopidogrel is a prodrug that becomes converted by cytochrome P450 (CYP) enzymes for its 

antiplatelet effect. One important mechanism for response variability to clopidogrel involves 

genetic polymorphisms that alter expression and therefore the enzymatic activity of CYP 

isoenzymes. In some cases, CYP polymorphisms may cause insufficient enzymatic activity to 

convert clopidogrel into the active metabolite.  

Clopidogrel metabolism is predominantly performed by the CYP3A system, which consists of 

the 3A4 and 3A5 isoenzymes 37. Many research groups have failed to show an association 

between CYP3A4 variants and enzymatic activity. In contrast, CYP3A5 is polymorphically 

expressed and shows marked differences between ethnic populations. Single nucleotide 

polymorphisms CYP3A5*3 and CYP3A5*6 can cause alternative splicing or protein 

truncation, which results in the absence of CYP3A5 from tissues. When CYP3A5 is 

expressed (in subjects with at least one CYP3A5*1 allele), it may account for more than 50% 

of the total CYP3A activity in the liver 65. Suh et al. 66 reported an increased frequency of 

atherothrombotic events within 6 months after coronary angioplasty among patients with the 
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CYP3A5 nonexpression genotype (CYP3A5*3) who were receiving clopidogrel therapy. 

However, further studies failed to show an association between the CYP3A5 genetic 

polymorphism and the antiplatelet effect of clopidogrel ex vivo, either in patients or in healthy 

subjects 67-69. Likewise, the results of the FAST-MI 70 study did not support a role for 

CYP3A5 genetic polymorphism in the clinical response. 

CYP2C19 is another key enzyme of clopidogrel activation 67, 69. Genetic polymorphisms of 

CYP2C19 modulate clopidogrel pharmacokinetics and pharmacodynamics in healthy 

volunteers 39, 69, as well as in patients 71. Compared to wildtype CYP2C19 expression, 

subjects carrying one or two CYP2C19 loss-of-function alleles exhibit lower plasma 

concentrations of the active clopidogrel metabolite and a decreased antiplatelet effect of 

clopidogrel in ex vivo aggregation tests. Those findings are supported by recent data from 

Mega et al 72 and the FAST-MI study 70. Both of these studies demonstrated a > 3-fold 

increase in the risk of adverse cardiovascular events among patients undergoing percutaneous 

coronary intervention who were homozygous or heterozygous for any of the CYP2C19 alleles 

known to result in a nonfunctional protein (CYP2C19*2, *3, *4, *5). 

In summary, these studies suggest that polymorphisms associated with decreased function of 

CYP2C19 or CYP3A4/5 contribute accordingly to a reduced response to clopidogrel. 

Recent reports have suggested that polymorphisms of other targets not directly involved in 

clopidogrel metabolism may also be involved in the response variability. A minor haplotype 

of the P2Y12 receptor was found to be associated with increased platelet reactivity in healthy 

subjects 48, 64, 73. However, these findings could not be confirmed by other studies testing 

patients treated with clopidogrel 70, 71. A potential role for a genetic polymorphism of the 

GPIIb/IIIa receptor has been demonstrated in small sample size studies but also failed to be 

confirmed by others 48, 74.  

 

 

1.4.2.2. Drug-drug interactions and response to clopidogrel 

A drug-drug interaction is considered clinically relevant when it occurs between two 

commonly co-administered agents and results in the need for dosage adjustment or other 

medical intervention 75. Theoretically, a clinically relevant drug interaction may exist between 

clopidogrel competing with other drugs metabolized by CYP3A (e.g. statins) and CYP2C19 

(e.g. PPIs). If the CYP3A4 or CYP2C19 catalyzed activation of clopidogrel is compromised, 

this most likely results in a reduced antiplatelet effect, which may or may not be of clinical 

relevance. The outcome of competitive interaction is generally not predictable from 

theoretical considerations or in vitro studies on CYP inhibition and Ki values obtained. The 
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outcome of an interaction depends on the relative concentration of the drugs at the enzyme 

level, their relative affinity for the CYP isoenzyme-binding site in vivo and the individual 

capacity of the enzymes 75.   

 

 

1.4.2.3. Drug-drug interactions involving CYP3A4 

Clopidogrel and 3-hydroxy-3-methyglutaryl coenzyme A reductase inhibitors (statins) are 

frequently co-administered in patients with cardiovascular disease (acute coronary syndrome, 

cerebral vascular disease, peripheral arterial disease) 76. Potentially unfavorable drug-drug 

interactions between clopidogrel and statins, which contribute to the phenomenon of 

clopidogrel response variability has been a recent topic of debate. As both clopidogrel and 

several statins (atorvastatin, lovastatin and simvastatin) are metabolized by CYP3A4, the 

antiplatelet effect of clopidogrel may be compromised by their co-administration 77, 78. In 

2003, Lau et al 77 first described this interaction between clopidogrel and atorvastatin: in 44 

patients undergoing PCI with stent implantation, concomitant treatment with atorvastatin, a 

CYP3A4 substrate, was associated with reduced antiplatelet activity of clopidogrel. They also 

showed a reduction in clopidogrel’s antiplatelet activity associated with the use of 

erythromycin and troleandomycin, two potent CYP3A inhibitors; however, the application of 

rifampin, a CYP3A inducer, was associated with enhanced antiplatelet activity. To confirm 

these observations, Lau et al. conducted another study, in which they found further evidence 

for a relationship between CYP3A4 and clopidogrel activity 78. Neubauer et al. 79 observed in 

47 patients undergoing elective PCI that pretreatment with atorvastatin or simvastatin was 

associated with a reduction in clopidogrel efficiency.  

However, subsequent studies investigating the interaction of CYP3A4-metabolized statins 

with the antiplatelet effects of clopidogrel failed to confirm the initial findings 80-85. The 

clinical significance of the lipophilic statin-clopidogrel drug-drug interaction has not been 

definitely demonstrated and remains controversial 86.  

Importantly, if competing CYP3A4 substrates interact with clopidogrel activation, such an 

interaction may become clinically more meaningful when CYP inhibitors are applied. 

Inhibitors include certain calcium antagonists, azole fungostatics and/or macrolide antibiotics. 

Indeed recent studies suggest that concomitant treatment with CYP3A4 inhibitors decreases 

the ability of clopidogrel to inhibit platelet aggregation 38, 66, 87: a study by Siller-Matula 87 

showed that co-administration of calcium-channel blockers, another frequently used class of 

cardiovascular drugs, reduced the antiplatelet effect of clopidogrel. A drug-drug interaction 

study showed that the potent CYP3A4 inhibitor ketoconazole significantly reduced the 
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generation of clopidogrel’s active metabolite. Moreover, concomitant treatment with 

ketoconazole decreased platelet inhibition in response to clopidogrel as measured by LTA 38. 

Another study showed that the CYP3A4 inhibitor itraconazole significantly decreased the 

ability of clopidogrel to inhibit platelet aggregation 66. 

 

 

1.4.2.4. Drug-drug interactions involving CYP2C19 

Patients receiving dual antiplatelet treatment with aspirin and clopidogrel are commonly 

treated with proton pump inhibitors (PPIs) aiming to reduce the risk of gastrointestinal tract 

bleeding while taking dual-antiplatelet therapy 88. Hepatic metabolization of PPIs is 

predominantly mediated by CYP2C19 and CYP3A4 89, 90 and it has been suggested that a 

potential drug-drug interaction at the level of the hepatic CYP system exists 88, 91. Importantly, 

PPIs differ in their metabolization properties as well as in their potential for drug-drug 

interactions 92. Whereas omeprazole is the PPI with the highest affinity for CYP2C19 and is 

therefore predominantly metabolized by this isoenzyme, pantoprazole and esomeprazole 

exhibit a high affinity for both CYP2C19 and CYP3A4. Moreover, pantoprazole is 

metabolized to a significant extend by a conjugating enzyme, a cytosolic sulfotransferase, and 

therefore has the lowest potential for drug-drug interactions 90, 92. Due to its specific 

dependence on CYP2C19 compared to other PPIs, a number of studies have shown that 

omeprazole has a considerable potential for drug interactions 88, 92-96. It has recently been 

reported that omeprazole decreases the antiplatelet effect of clopidogrel probably due to the 

inhibition of CYP2C19 88, 96. Since all PPIs are metabolized by CYP2C19 to a varying degree, 

they hypothesized that the reported omeprazole-clopidogrel interaction may not be a class 

effect. Indeed, contrary to the omeprazole-clopidogrel interaction, the intake of pantoprazole, 

esomeprazole or lansoprazole was not associated with a reduced platelet inhibition by 

clopidogrel 21, 93, 97. 

To date, substantial controversy regarding the clinical outcome of patients taking clopidogrel 

and PPIs remains. The US Food and Drug Administration (FDA) recently released a safety 

review about the potential interaction between these two medications 98. However, there was 

insufficient data to make any recommendations, highlighting the need for additional studies to 

evaluate the effectiveness of clopidogrel when used together with PPIs. 
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1.5. Hepatotoxicity under clopidogrel treatment 

Drug-induced liver disease occurs approximately in 1 in every 1000 patients to 1 in every 

10’000 patients at therapeutic doses 99. It is often difficult to determine the responsible drug 

since these patients are frequently under polymedication. Hepatic injury can occur from many 

drugs through a variety of mechanisms such as disruption of intracellular calcium 

homeostasis, derangement of the CYP system or stimulation of a multifaceted immune 

response against liver enzyme-drug adducts 99. Drug induced liver injury is difficult to 

diagnose especially for drugs with rare hepatic complications.  

Common adverse effects seen with clopidogrel include gastrointestinal disorders (indigestion, 

nausea, vomiting), bleeding, rash and diarrhea 20, 25, 30. However, rare and serious 

complications such as hepatotoxicity 100-110, thrombotic thrombocytopenic purpura 111, 

pancytopenia 112, systemic inflammatory response syndrome 100 and serum sickness-like 

reaction 113 have also been reported in recent years. Until now, thirteen cases 100-110 have been 

published that describe clopidogrel-induced hepatotoxicity. The time between clopidogrel 

intake and hepatic injury ranged from 4 days to 6 months after commencement of clopidogrel 

therapy and all patients except one completely recovered when the drug was discontinued 

(Figure 8). Clinically, patients developed cholestatic hepatitis or mixed hepatocellular and 

cholestatic hepatitis similar to ticlopidine 114-118. In one case a patient had a systemic 

inflammatory response syndrome indicated by rash, leucopenia, tachycardia and liver 

injury113.  

Though, the mechanisms of clopidogrel-associated hepatotoxicity still remain unclear. 

Hypersensitivity and direct toxicity have been postulated as potential mechanisms. Based on 

the available clinical-pathological observations, it appears likely that clopidogrel triggers both 

dose-independent idiosyncratic and dose-dependent toxic reaction 103, 104, 110.  

Interestingly, a cross-hypersensitivity reaction between ticlopidine and clopidogrel has not 

been described so far. Ticlopidine-induced hepatotoxicity is well known and documented in 

the literature 114-119. Clopidogrel has been successfully used as replacing drug in three patients 

with ticlopidine-induced hepatotoxicity 120. However, the vice versa strategy to use ticlopidine 

in patients with clopidogrel-induced hepatotoxicity has not been attempted, mainly due to the 

fact that ticlopidine has been associated with a higher rate of neutropenia and elevated 

transaminases than clopidogrel. 

Clopidogrel is still advertised as an effective and safe antithrombotic drug. Due to its low 

incidence of hepatotoxicity, monitoring of the liver function for patients receiving clopidogrel 

is not performed routinely. Therefore, clopidogrel should be used with caution in pre-existing 

liver disease and discontinued in case of other hepatic disorders such as jaundice or hepatitis. 
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Figure 8 Characterization of patients who developed clopidogrel induced liver injury 110. 
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2. Aims of this thesis 
 

The aim of the first project was to study drug-interactions with clopidogrel. Initially, we 

designed an in vitro system using human liver microsomes (HLM) or supersomes in order to 

study the activation of clopidogrel and the conceivable activation of the carboxylate 

metabolite. We wanted to examine drugs that inhibit the hepatic activity of CYPs, since 

interference with clopidogrel likely occurred at the level of the cytochromes. We were also 

interested in CYP substrates, which are frequently co-administered with clopidogrel (e.g. 

statins, PPIs). In a second step, we expanded our system to investigate the effect of inhibitors 

on clopidogrel’s antiplatelet effect. Using the LTA method we monitored platelet aggregation 

in response to HLM mediated clopidogrel activation and interacting drugs.  

 

In the second project we focused on the hepatotoxic potential of clopidogrel and ticlopidine in 

vitro. To address this, we established two bioactivating systems, namely HepG2 cells stably 

overexpressing CYP3A4 and HepG2 wt cells in co-incubation with CYP3A4 supersomes in 

order to generate the active metabolite of clopidogrel. We aimed to detect this active 

metabolite, which is carrying a reactive thiol group and possibly binds glutathione. Since we 

accomplished to measure a drop in the glutathione pool, it’s likely to attribute the toxic effect 

to the active metabolite. Furthermore, we used standard methods to study cytotoxicity and the 

corresponding mechanism. 

 

The aim of the third project was to study CYP3A4 dependent hepatic toxicity of amiodarone. 

We hypothesized that amiodarone hepatotoxicity is based on the CYP3A4-dependent 

generation of the two toxic metabolites MDEA and DDEA. We used the same cellular 

activating systems to investigate the conversion of amiodarone to its N-desethyl metabolites 

MDEA and DDEA. We intended to detect the generation of MDEA and DDEA in a 

quantitative way using HPLC. Furthermore, we wanted to study the mechanism of 

cytotoxicity of activated amiodarone in CYP3A4 overexpressing HepG2 cells. 
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3. Drug interactions with biotransformation and antiplatelet effect of 
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3.1. Abstract 

 

Background and purpose: The conversion of clopidogrel to its active metabolite, R-130964, is 

a two-step cytochrome P450 (CYP)-dependent process. The current investigations were 

performed to characterize in vitro the effects of different CYP inhibitors on the 

biotransformation and on the antiplatelet effect of clopidogrel.  

Experimental approach: Clopidogrel biotransformation was studied using human liver 

microsomes (HLM) or specific CYPs and platelet aggregation using human platelets activated 

with ADP. 

Key results: Experiments using HLM or specific CYPs (3A4, 2C19) revealed that at 

clopidogrel concentrations ≥10 µM, CYP3A4 is primarily responsible for clopidogrel 

biotransformation. At a clopidogrel concentration of 40 µM, ketoconazole showed the 

strongest inhibitory effect on clopidogrel biotransformation and clopidogrel-associated 

inhibition of platelet aggregation with IC50 values of 0.03 ± 0.07 µM and 0.55 ± 0.06 µM, 

respectively. Clarithromycin, another CYP3A4 inhibitor, impaired clopidogrel 

biotransformation and antiplatelet activity almost as effectively as ketoconazole. The 

CYP3A4 substrates atorvastatin and simvastatin both inhibited clopidogrel biotransformation 

and antiplatelet activity, but less potently than ketoconazole. In contrast, pravastatin showed 

no inhibitory effect. Since clopidogrel itself inhibited CYP2C19 at concentrations <10 µM, 

the CYP2C19 inhibitor lansozprazole affected clopidogrel biotransformation only at 

clopidogrel concentrations ≤10 µM. The carboxylate metabolite of clopidogrel is no CYP 

substrate and did therefore not affect platelet aggregation.  

Conclusions and implications: At clopidogrel concentrations >10 µM, CYP3A4 is mainly 

responsible for clopidogrel biotransformation, whereas CYP2C19 contributes only at 

clopidogrel concentrations ≤10 µM. CYP2C19 inhibition by clopidogrel at concentrations 

>10 µM may explain the conflicting results between in vitro and in vivo investigations 

regarding drug interactions with clopidogrel. 

 

Key words 

Clopidogrel, carboxylate metabolite of clopidogrel, CYP3A4, CYP2C19, drug interactions 
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3.2. Introduction 

 

The drugs or drug classes currently used for the inhibition of platelet aggregation include 

acetylsalicylic acid, glycoprotein IIb/IIIa receptors antagonists and the thienopyridine 

derivatives. The thienopyridines, in particular clopidogrel, have become standard drugs for 

the management of patients following percutaneous coronary intervention (PCI) and stent 

placement 121. In addition, clopidogrel is also used in patients after acute coronary syndromes 

without PCI and in aspirin intolerant patients. 

Clopidogrel is a prodrug requiring hepatic biotransformation for pharmacological activity 122. 

The active metabolite of clopidogrel (R-130964) contains a thiol group, which binds 

irreversibly to a free cysteine in the P2Y12 receptor and blocks activation by ADP 50. In 

humans, >85 % of clopidogrel is metabolized by esterases to a carboxylic acid metabolite 

(clopidogrel carboxylate, SR 26334) 33-36, which is considered to be inactive. The rest is 

converted to the active metabolite (R-130964) in a two-step, CYP-dependent process 

proceeding via the formation of 2-oxo-clopidogrel. Initial studies suggested that CYP3A4 

plays a prominent role in these metabolization steps, with lesser involvement of CYP2C19, 

CYP2B6, CYP1A2, CYP2C9 31, 37-39. A more recent in vitro study indicates that CYP2C19 is 

the most important CYP for the conversion of clopidogrel to 2-oxo-clopidogrel and CYP3A4 

for the conversion of 2-oxo-clopidogrel to the active metabolite R-130964 123. 

Studies conducted in vitro 37 and ex vivo 77, 79 suggested that the CYP3A4 substrate 

atorvastatin may attenuate the platelet inhibitory effect of clopidogrel due to interference with 

clopidogrel biotransformation by CYP3A4. These observations resulted in an intense debate 

about the clinical relevance of drug-drug interactions by lipophilic statins, drugs prescribed 

frequently to patients ingesting clopidogrel 124. This controversy remains currently 

unresolved, since subsequent studies investigating effects of atorvastatin and/or simvastatin 

on antiplatelet effects of clopidogrel failed to confirm the initial findings 80-85. More recent in 

vivo studies suggest an important role for both CYP3A4 and CYP2C19 regarding 

biotransformation and pharmacological activity of clopidogrel. Both concomitant treatment 

with strong CYP3A4 inhibitors 38, 66, 87 as well as a reduced activity of CYP2C19 in patients 

with CYP2C19 single nucleotide polymorphisms were associated with an impaired 

pharmacological activity of clopidogrel 70, 72, 125. Similar to CYP3A4, CYP2C19 substrates 

and/or inhibitors impaired biotransformation and/or pharmacological activity of clopidogrel in 

some 88, 91, 126, but not all, studies 37, 127, 128. 
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Considering the uncertainties regarding drug interactions with clopidogrel, we undertook the 

current study to determine concentration-dependent effects of inhibitors and/or substrates of 

various CYPs on in vitro biotransformation and antiplatelet activity of clopidogrel. 

 

 

 

3.3. Materials and Methods  

 

3.3.1. Materials 

Clopidogrel hydrogensulfate was isolated from commercially available tablets (Plavix®, 

Sanofi Aventis, Geneva, Switzerland) and the carboxylate metabolite of clopidogrel was 

obtained by saponification of clopidogrel (ReseaChem life science, Burgdorf, Switzerland). 

The purity was >99% for both substances as assessed by nuclear magnetic resonance 

spectroscopy (NMR). Atorvastatin was obtained from Sequoia Research Products Ldt. 

(Pangbourne, UK). NADPH regeneration system, pooled human liver microsomes (HLM; 

same batch was used for all experiments), recombinant human CYP3A4 supersomes 

(rhCYP3A4) and rhCYP2C19 were from BD Biosciences Gentest (Woburn, MA, USA). The 

CYP nomenclature conforms to BJP’s Guide to Receptors and Channels 129. Acetonitrile 

LiChrosolv for HPLC use was obtained from Merck (Darmstadt, Germany). All other 

chemicals used were purchased from Sigma or Fluka (Buchs, Switzerland). 

 

3.3.2. Kinetic studies of clopidogrel or the carboxylate metabolite of clopidogrel with 

HLM or rhCYP 

The incubation mixture (final volume 250 µl) contained varying concentrations of clopidogrel 

(5-100 µM), incubation buffer (0.1M potassium phosphate, pH 7.4), reduced glutathione (5 

mM), NADPH-regenerating system containing MgCl2 (3.3 mM), NADP+ (1.3 mM), glucose-

6-phosphate (3.3 mM) and glucose-6-phosphate dehydrogenase (0.4 U/ml) and either HLM, 

rhCYP3A4 or rhCYP2C19. Preliminary studies were performed to determine time and protein 

concentration producing a linear rate. For HLM, 10 min incubation and 0.25 mg/ml protein 

were selected, and for rhCYP3A4 10 min incubation and 10 pmol P450/ml. The 

concentrations of the substrates (clopidogrel or clopidogrel carboxylate) are given in the 

Figures. The final volume of methanol (solvent for clopidogrel) did not exceed 1.0 % of the 

total incubation volume and was identical in all incubations including controls. Each reaction 

mixture was equilibrated for 4 min at 37°C in a shaking thermomixer. The reaction was 

initiated by adding the NADPH-regenerating system and the system incubated for the 



 

  35 

respective time at 37°C. Reactions were stopped by addition of 100 µl of chilled acetonitrile 

(containing 6.5 µM naproxen as internal standard) and cooled on ice for 10 min. Precipitated 

proteins were removed by centrifugation at 10,000 g for 10 min and supernatants were 

analyzed by HPLC as described below. The fraction of substrate metabolized was calculated 

as the difference between the measured and initial clopidogrel or clopidogrel carboxylate 

concentration expressed as a percentage of the initial concentration.  

 
3.3.3. In vitro inhibition of clopidogrel metabolism  

CYP inhibition studies were performed in the presence of the respective inhibitors or 

substrates following the same incubation procedure as described for the kinetic experiments. 

Stock solutions containing inhibitors (see figures) were prepared in methanol or water. The 

final volume of methanol did not exceed ≤1.0% of the total incubation volume and was 

identical in all incubations including controls. The inhibitor concentrations are given in the 

Figures. IC50 values were calculated by non-linear regression analysis using the software 

program GraphPad Prism version 4.00 (San Diego, CA, USA). 

 

3.3.4. HPLC analysis of clopidogrel and the clopidogrel carboxylate  

Clopidogrel concentrations were determined using a LaChrom® high performance liquid 

chromatography (HPLC) system equipped with an UV detector operating at a wavelength of 

235 nm, a column oven, a quaternary pump and an autosampler. The column temperature was 

maintained at 32°C and the injection volume was 30 µl. Separation was done on a Nucleosil 

50-5-C18 column equipped with a corresponding guard column using a gradient of solvent A 

(sodium phosphate 0.01 M, pH 3.0: acetonitrile; 50:50 v/v) and solvent B (sodium phosphate 

0.01 M, pH 3.0: acetonitrile; 20:80 v/v). The gradient started at 80% A and 20% B for 2.5 

min, changed to 100% B for 3.5 min and finally returned to the starting conditions for 4 min. 

The flow rate was 1 ml/min and the total run time 10 min. The variability of the method was 

< 10% at high and low clopidogrel concentrations. Calibration curves were performed in a 

concentration range of 1.0-43.0 µg/ml.  

The carboxylate metabolite of clopidogrel was determined using the same HPLC system as 

described above, but with a different mobile phase. The mobile phase consisted of a gradient 

of solvent A (sodium phosphate 0.01 M, pH 3.0: acetonitrile; 50:50 v/v), solvent B (sodium 

phosphate 0.01 M, pH 3.0: acetonitrile; 20:80 v/v) and solvent C (sodium phosphate 0.01 M, 

pH 3.0: acetonitrile; 80:20 v/v). The gradient started at 20% A and 80% B for 2.5 min, 

changed to 100% B for 3.5 min and returned to the starting conditions for 4 min. The flow 

rate was 1 ml/min and the total run time was 10 min. Clopidogrel carboxylate was quantified 
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by comparison to a standard curve. Variability and calibration curve range were identical to 

clopidogrel. 

 

3.3.5. Ex vivo inhibition of platelet aggregation by activated clopidogrel 

Isolation of platelet rich plasma (PRP) and platelet aggregation experiments were performed 

according to Born and Cross 5. The platelet count in PRP samples was adjusted with platelet-

poor plasma (PPP) to 200-250 x109 platelets per L. Clopidogrel or clopidogrel carboxylate 

were activated in a mixture containing clopidogrel, HLM (0.25 mg/ml), incubation buffer (0.1 

M potassium phosphate, pH 7.4) and NADPH-regenerating system for different periods of 

time. Inhibitors (dissolved in methanol, concentrations in Figures) were evaporated to dryness 

at 37°C before addition of the same biotransformation mixture as above containing 

clopidogrel or clopidogrel carboxylate. In order to test the effect of glutathione (GSH), 

biotransformation experiments were performed also in the presence of 5 mM GSH. To assess 

platelet aggregation, 120 µL incubation mixture (activated clopidogrel or clopidogrel 

metabolite) was added to the same volume of platelets and preincubated at 37°C for 15min. 

Platelet aggregation was stimulated with ADP (final concentration 2.5 µM) and recorded with 

an APACT4 aggregometer (LABiTec, Ahrensburg, Germany) as the maximal percentage in 

light transmittance of the reaction mixture. The percentage of inhibition of platelet 

aggregation (IPA) was calculated from the observed maximum platelet aggregation (MPA) as 

follows 38: 

 

! 

IPA(%) =
(MPAbaseline "MPApostdose ) #100

MPAbaseline
 

 

3.3.6. Molecular modeling studies 

Molecular Modeling was performed on a structure of human cytochrome 3A4 (PDBcode: 

1W0G). All calculations were done on a Dell Precision 670 workstation using the program 

Moloc (www.moloc.ch). Clopidogrel was docked manually into the active site of the enzyme, 

which was previously modified such that an oxygen atom was placed at the position 

completing the octahedral geometry of the central Fe2+ of the heme. Multiple positions of 

clopidogrel were tried and subsequently optimized with the force field integrated in Moloc. 

All atoms of the structure were considered for calculations but only substrate atoms were 

allowed to move. An analogous procedure was applied for the more hydrophilic clopidogrel 

carboxylate. 
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3.3.7. Kinetic and statistical analysis  

Kinetic parameters of clopidogrel biotransformation were calculated according to the 

Michaleis-Menten equation using nonlinear regression (GraphPad Prism version 4.00; San 

Diego, USA):  

  

! 

v =
V

max
" S

K
m

+ S
 

v and S are biotransformation rate and substrate concentration, respectively, Vmax the maximal 

biotransformation rate and Km the Michaelis-Menten constant. IC50 values for inhibitors were 

calculated by non-linear regression analysis (GraphPad Prism version 4.00; San Diego, USA). 

P values were calculated using one-way analysis of variance (ANOVA) with Dunnet’s 

multiple comparison test for post hoc analysis. Data are presented as mean ± SEM. A p value 

< 0.05 was considered to be significant. 

 

 

3.4. Results 

 
3.4.1. In vitro metabolism of clopidogrel and the carboxylate metabolite of clopidogrel 

by HLM and rhCYP 

We used human liver microsomes (HLM) and the recombinant human enzymes CYP3A4 

(rhCYP3A4) and CYP2C19 (rhCYP2C19) for this purpose. Clopidogrel was metabolized in a 

concentration-dependent fashion following Michaelis-Menten kinetics by both HLM and 

rhCYPs. In the presence of HLM, the apparent Km was 23.1±3.7 µM and Vmax of 34.1±2.1 

nmoles/min/mg protein (Fig. 1A). In the presence of human rhCYP3A4, the corresponding 

values were of 45.9±12.4 µM (Km) and 0.62±0.09 nmoles/min/pmol P450 (Vmax) (Fig. 1B). 

As shown in Fig. 1C, clopidogrel biotransformation by rhCYP2C19 was observed only at 

clopidogrel concentrations <20 µM, indicating that clopidogrel is an inhibitor of CYP2C19 at 

higher concentrations. Its conversion rate at 10 µM clopidogrel was estimated to be 0.07 

nmoles/min/pmol P450, a value approximately 10 times lower than the Vmax obtained for 

rhCYP3A4. 

To the best of our knowledge, there are no published data regarding possible 

biotransformation of clopidogrel carboxylate, the main metabolite of clopidogrel 33, 36. In none 

of the two in vitro systems tested, concentrations of clopidogrel carboxylate decreased 

measurably during incubation, indicating that clopidogrel carboxylate is metabolized neither 

by HLM (Fig. 1D), nor by rhCYP3A4 (data not shown). 
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A (clopidogrel, HLM)     B (clopidogrel, rhCYP3A4) 

 

 

 

 

 

 

 

 

 

 

C (clopidogrel, rhCYP2C19)  D    (carboxylic acid metabolite, HLM) 

 

 

 

 

 

 

 

 

 

 

Figure 1 

Biotransformation of clopidogrel and its carboxylate metabolite. Kinetic parameters for clopidogrel 

metabolism were determined in the presence of human liver microsomes (HLM) or supersomes 

containing (rhCYP3A4 or rhCYP2C19). Where possible, data were described using the Michaelis-

Menten model. Increasing concentrations of clopidogrel (A, B, C) or of its carboxylate derivative (D) 

were incubated with HLM, rhCYP3A4 or rhCYP2C19 and analyzed by HPLC. The biotransformation 

of clopidogrel in the presence of CYP3A4 showed a clear saturation and could be described by 

Michaelis-Menten kinetics (A,B). CYP2C19 activates clopidogrel only at concentrations <20 µM (C). 

The carboxylate metabolite of clopidogrel is not metabolized by HLM (D). 
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3.4.2. Effect of specific CYP inhibitors and CYP substrates on clopidogrel 

biotransformation 

The inhibition of clopidogrel (40 µM) metabolism by various CYP inhibitors and substrates 

was investigated using HLM (Fig. 2). The oxidation of clopidogrel was significantly impaired 

by the CYP3A4 inhibitors ketoconazole and clarithromycin already at concentrations in the 

nanomolar range. Ciprofloxacin, a strong inhibitor of CYP1A2 and a weak inhibitor of 

CYP3A4 130, reduced clopidogrel oxidation by 35% at 500 µM, but not at lower 

concentrations. In contrast, inhibitors of CYP2C9 (sulfaphenazole), CYP2D6 (quinidine), 

CYP2B6 (N,N′,N″-triethylenethiophosphoramide, thioTEPA) and CYP2C19 (omeprazole) 

revealed no significant effect on clopidogrel biotransformation by HLM. For amiodarone, we 

found no significant inhibition of clopidogrel biotransformation in a concentration range of 1 

to 100 µM (data only partially shown).  

Due to the importance of CYP2C19 for clopidogrel biotransformation 70, 72, 125, CYP2C19 

inhibitors were investigated in more detail (Fig. 3). At a clopidogrel concentration of 40 µM, 

neither the proton pump inhibitors (PPIs) omeprazole (up to 100µM) and lansoprazole (up to 

100 µM), nor ticlopidine, inhibited clopidogrel biotransformation by HLM. In contrast, at 5 

µM clopidogrel, lansoprazole affected clopidogrel biotransformation in a concentration-

dependent manner, reaching significance at 100 µM. 

Since atorvastatin has been suspected to impair clopidogrel biotransformation 77, we 

investigated the impact of the CYP3A4 substrates atorvastatin and simvastatin on clopidogrel 

biotransformation by HLM. Both statins significantly inhibited clopidogrel biotransformation 

at the maximal concentration tested (10 µM). In contrast, pravastatin (no CYP3A4 substrate) 

showed no inhibitory effect at this concentration (Fig. 4). 

Inhibition of clopidogrel biotransformation by CYP inhibitors or substrates was confirmed by 

the determination of the corresponding IC50 values (Table 1). Ketoconazole showed a slightly 

stronger inhibitory effect (IC50 0.03 µM) than clarithromycin (IC50 0.33 µM). An IC50 for 

ciprofloxacin could not be determined, since 50% inhibition were not reached up to 500 µM. 

Simvastatin and atorvastatin both revealed dose-dependent inhibition of clopidogrel 

biotransformation with IC50 values of 1.28 µM and 16.9 µM, respectively. 
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Figure 2 

Effect of various CYP450 inhibitors on clopidogrel biotransformation. Clopidogrel (40 µM) was co-

incubated in the presence of human liver microsomes (HLM) with different concentrations of CYP 

inhibitors. The CYP isoenzymes affected by the respective inhibitor are indicated in italic. Data are 

expressed as the percentage of clopidogrel activated in the presence of the inhibitor compared to 

biotransformation without inhibitor (100%). Data points consist of five individual determinations. 

Data are presented as mean±SEM. *P<0.05, **p<0.001 versus control incubations. 
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Figure 3 

Effect of CYP2C19 inhibitors on clopidogrel biotransformation. Clopidogrel (40 or 5 µM) was co-

incubated with different concentrations of CYP2C19 inhibitors in the presence of human liver 

microsomes (HLM). Data are expressed as the percentage clopidogrel biotransformation in the 

presence of the inhibitor compared to biotransformation without inhibitor (100%). Data points consist 

of three individual determinations. Data are presented as mean±SEM. **P<0.001 versus control 

incubations. 
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Figure 4 

Effect of statins on clopidogrel biotransformation. Clopidogrel (40 µM) was co-incubated with 

different concentrations of statins in the presence of human liver microsomes (HLM). Data are 

expressed as the percentage clopidogrel biotransformation compared to the biotransformation without 

inhibitor (100%). Data points consist of five individual determinations. Data are presented as 

mean±SEM. *P<0.05, **P <0.001 versus control incubations. 
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3.4.3. Inhibition of platelet aggregation by activated clopidogrel 

Further, we developed a test system for analyzing platelet aggregation in incubations 

containing HLM, the drugs investigated and human platelets (Fig. 5A). Clopidogrel inhibited 

platelet aggregation concentration-dependently, reaching 67% at 200 µM. In contrast, 

clopidogrel without biotransformation by HLM showed no significant inhibition of platelet 

aggregation. To demonstrate the formation of an active metabolite, we investigated the 

antiplatelet effect of clopidogrel in the presence of 5 mM glutathione. Since glutathione is 

known to affect formation of and breaking of disulfide bonds in cells 131, we hypothesized 

that it could trap the newly formed thiol group of activated clopidogrel 50. As expected, 

addition of glutathione significantly decreased the effect of clopidogrel on platelet 

aggregation (Fig. 5B). 

 

A       B 

 

3.4.4. Clopidogrel carboxylate has no antiplatelet effect 

Clopidogrel and clopidogrel carboxylate were incubated individually with HLM for 5, 15, 30 

and 60 min prior to ADP-induced platelet aggregation. As expected, clopidogrel showed a 

time-dependent inhibitory effect on platelet aggregation, while 80 and 200µM clopidogrel 

carboxylate completely failed to inhibit platelet aggregation after incubation with HLM (Fig. 

6A, 200µM not shown).  

 

 

 

 

Figure 5 

Effect of activated clopidogrel on platelet aggregation. A: Increasing concentrations of clopidogrel 

(Clp; 10-200 µM) activated by human liver microsomes (HLM) were incubated with platelet rich 

plasma (PRP). Platelet aggregation was determined in response to 2.5 µM ADP by light transmittance 

aggregometry. Clopidogrel incubated in the absence of HLM served as a negative control. B: In the 

presence of 5 mM glutathione (GSH), the effect of clopidogrel on platelet aggregation was 

significantly decreased. GSH itself had no effect on platelet aggregation. Results are expressed as 

percentage inhibition of platelet aggregation (IPA), calculated from the maximum platelet aggregation 

in the presence of the solvent (1% methanol). Data are presented as box-plots with the median 

indicated by the line within the box (n = 8 to 12). *P<0.001 versus (A) Clp 40 µM w/o HLM or (B) 

clopidogrel 80 µM. 
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3.4.5. Interaction of clopidogrel with CYP3A4 

In order to investigate the reason for the different binding affinity of neutral clopidogrel and 

its much more hydrophilic carboxylate derivative to CYP3A4, we manually docked both 

compounds into the active site of CYP3A4. As shown in Fig. 6B, the neutral and hydrophobic 

clopidogrel fits smoothly into the hydrophobic active site of CYP3A4, which is optimized to 

recognize and bind hydrophobic substances. In contrast, the slightly smaller carboxylate 

metabolite contains a polar and solvated carboxylate functionality that does not bind in a 

productive way to the hydrophobic catalytic site of CYP3A4 (not shown). 

 

A              B 

 

 

 

 

 

 

 

 

 

 

Figure 6 

Time dependency of the effect of clopidogrel or clopidogrel carboxylic acid (80 µM) on platelet 

aggregation and interaction of clopidogrel with CYP3A4. A: Clopidogrel or clopidogrel carboxylate 

were incubated with human liver microsomes (HLM) for 5, 15, 30 or 60 min. At the indicated time 

points, aliquots were incubated with platelet-rich plasma and platelet aggregation determined in 

response to 2.5 µM ADP. Clopidogrel inhibits platelet biotransformation time-dependently whereas 

the carboxylate derivative does not affect platelet aggregation. Results are expressed as the percentage 

inhibition of platelet aggregation (% IPA), calculated from the maximum platelet aggregation obtained 

in the presence of the vehicle (1% methanol v/v). Data are presented as mean±SEM (n= 4). *P<0.05, 

** p <0.01 clopidogrel or clopidogrel carboxylate vs. incubations containing no clopidogrel (not 

shown). B: Clopidogrel (orange) interacts with the active site (blue net) of CYP3A4 (backbone, 

magenta). A heme molecule with the Fe2+ (cyan dot in center of heme) is shown in green. Note that the 

activated oxygen (red ball) above the Fe2+ of the heme is placed in an ideal position to interact with the 

2-carbon of clopidogrel (arrow). In contrast, the clopidogrel carboxylate (not shown) carries a polar 

and solvated carboxylate group preventing it from bringing the 2-carbon close enough to the activated 

oxygen and the Fe2+ of the heme, which are crucial conditions for its subsequent biotransformation. 
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3.4.6. Effect of CYP3A4 inhibitors and/or substrates on clopidogrel-associated IPA  

Finally, we addressed the question whether an inhibition of clopidogrel biotransformation by 

CYP3A4 inhibitors or substrates is associated with an inhibition of platelet aggregation. As 

shown in Table 1, ketoconazole turned out to be the most potent inhibitor with an IC50 of 0.55 

µM, confirming the results obtained in the biotransformation experiments. The inhibitory 

effect of clarithromycin was comparable (IC50 0.95 µM), whereas the statins were less 

effective inhibitors. 

 

Table 1  

IC50 (µM) values for inhibition of clopidogrel biotransformation by human liver microsomes (HLM) 

and for the antiplatelet effect of clopidogrel in the presence of CYP3A4 inhibitors or substrates. The 

assay conditions are described Methods. The clopidogrel concentration was 40 µM for all incubations. 

Data are expressed as mean±SEM of n=4-8 experiments. 

 

  

IC50 for 

biotransformation by 

HLM (µM) 

 

 

IC50 for antiplatelet effect 

(µM) 

   

Ketoconazole 0.03 ± 0.07 0.55 ± 0.06 

Clarithromycin 0.33 ± 0.09 0.95 ± 0.04 

Simvastatin 1.28 ± 0.09 1.29 ± 0.02 

Atorvastatin 16.9 ± 0.3 3.83 ± 0.07 
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3.5. Discussion 

 

In our studies, clopidogrel was metabolized in a concentration-dependent manner in all 

incubations containing CYP3A4 (Fig. 1A,B), whereas supersomes containing rhCYP2C19 

metabolized by clopidogrel only at substrate concentrations ≤10 µM. Regarding the inhibition 

of CYP2C19 by clopidogrel, our data are in accordance with recent studies 44, 132, showing 

that clopidogrel is a mechanism-based inhibitor of CYP2C19 with an IC50 in the low 

micromolar range. 

Clopidogrel is rapidly and efficiently absorbed from the GI tract 33, but more than 85% of the 

drug is converted to its carboxylate metabolite during the first passage across intestine and 

liver 36. Assuming that the maximal concentration of the carboxylate derivative of clopidogrel 

in plasma approximately corresponds to the maximal clopidogrel concentration in the liver 

(no data on the clopidogrel concentration in the liver are available), a maximal concentration 

of 5-20 µmol/L is reached in hepatocytes after ingestion of 75 mg clopidogrel 33, 36. Taking 

into account that clopidogrel inhibits CYP2C19 at concentrations >10 µM without affecting 

CYP3A4 and that, after oral ingestion of 75 mg, the hepatocellular clopidogrel concentration 

will drop below 10 µM with time, it can be expected that in vivo both CYP3A4 and CYP2C19 

contribute to clopidogrel biotransformation. These considerations therefore help to explain 

why both, strong inhibitors of CYP3A4 38, 66, 87 and genetic variants of CYP2C19 70, 72, 125, are 

associated with impaired antiplatelet activity of clopidogrel. 

In contrast to the recent study of Kazui et al. 123, in the current study, clopidogrel was 

biotransformed not only by HLM, but also by rhCYP3A4, indicating that CYP3A4 can also 

perform the conversion of clopidogrel to 2-oxo-clopidogrel. While the discrepancy is 

scientifically interesting and should be resolved by further studies, its clinical impact is 

minimal since many CYPs are involved in the biotransformation of clopidogrel 31, 37-39, 123. 

The good correlation between the inhibition of clopidogrel biotransformation and the 

antiplatelet effect by clopidogrel suggests that our systems are able to predict drug 

interactions with clopidogrel. In our study, ketoconazole, a potent inhibitor of CYP3A4, 

showed the strongest inhibitory effect on clopidogrel biotransformation and inhibition of 

platelet aggregation. These data are in good agreement with a clinical study demonstrating 

that ketoconazole not only decreases clopidogrel biotransformation but also its antiplatelet 

activity 38. 

Amiodarone is a drug prescribed often with clopidogrel and possibly interferes with its 

biotransformation 78. It is mainly metabolized by CYP3A4 in humans and is an inhibitor of 

CYP2C9, CYP2D6 and CYP3A4 133. Surprisingly, amiodarone did not affect clopidogrel 
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biotransformation in our in vitro system up to concentrations of 100 µM. This finding may be 

explained by the fact that the in vivo generated desethylamiodarone, the major metabolite of 

amiodarone, is a more potent inhibitor of human CYPs than amiodarone itself 133. A 

prolonged incubation time would possibly have been necessary to generated this metabolite 

and detect inhibitory effects of amiodarone in our system. 

Ciprofloxacin, a well known CYP1A2 inhibitor, significantly inhibited clopidogrel 

biotransformation at a concentration of 500 µM, but not at lower concentrations. In the 

studies demonstrating inhibition of CYP1A2, ciprofloxacin concentrations in the range of 10-

200 µM were used 134, 135. On the other hand, McLellan et al. 130 reported that ciprofloxacin 

significantly decreases the activity of CYP3A4 when used at high concentrations (~2 mM), 

which is in accordance with our findings. 

Our investigations with statins are in good agreement with results presented by Lau et al.77, 79 

and by Clarke and Waskell 37. Atorvastatin and simvastatin are both metabolized by CYP3A4 

and significantly inhibited clopidogrel biotransformation in vitro, whereas pravastatin showed 

no such inhibitory effect (Figure 4). Additionally, we could demonstrate that the inhibitory 

effect of atorvastatin and simvastatin on clopidogrel biotransformation resulted in an impaired 

antiplatelet effect of clopidogrel (Table 1). In agreement with our findings, Lau et al. 

demonstrated in their ex vivo study a dose-dependent attenuation of the clopidogrel-associated 

antiplatelet effects by atorvastatin 77. The results of another small ex vivo analysis using 

simvastatin confirmed the occurrence of a clopidogrel-statin interaction 79. In contrast, other 

studies investigating the influence of CYP3A4-metabolized statins on antiplatelet effects of 

clopidogrel failed to confirm these findings 80-85. Taking into account our findings, the exact 

time-points when clopidogrel and reversible CYP inhibitors such as statins are ingested may 

play a crucial role for the occurrence and possible manifestation of drug-drug interactions. 

Similar to the data reported by Clarke and Waskel 37, the CYP2C19 inhibitors omeprazole, 

lansoprazole and ticlopidine did not influence clopidogrel metabolism in our in vitro system 

at clopidogrel concentrations ≥20 µM. Our data are also in agreement with a recent clinical 

study by Siller-Matula et al.128 and with the reanalysis of the TRITON-TIMI 38 trial 127, both 

showing no significant effect of different proton pump inhibitors (PPIs) on the antiplatelet 

effect of clopidogrel. However, they are in disagreement with other clinical 88 or 

epidemiological studies 91, 126 indicating that PPIs may interfere with CYP2C19 activities and 

impair the antiplatelet effect of clopidogrel. As shown in Figure 3, PPIs such as lansoprazole 

can inhibit clopidogrel biotransformation if the clopidogrel concentration is sufficiently low. 

As discussed above, in the liver of patients treated with clopidogrel, the clopidogrel 

concentration can be assumed to drop to levels at which inhibition of clopidogrel 
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biotransformation by PPIs become potentially significant. PPIs with a strong inhibition of 

CYP2C19 such as lansoprazole, omeprazole, esomeprazole and rabeprazole 90 should 

therefore best be avoided in patients treated with clopidogrel, especially when they are treated 

also with CYP3A4 inhibitors. 

In conclusion, we could demonstrate that CYP3A4 is the most important CYP isoenzyme for 

clopidogrel biotransformation at clopidogrel concentrations >10 µM, since clopidogrel 

inhibits CYP2C19 at high concentrations. At concentrations ≤10 µM, CYP2C19 starts to 

contribute to clopidogrel biotransformation and the clopidogrel biotransformation can be 

inhibited by PPIs. The concentration-dependent interaction pattern between CYP inhibitors, 

clopidogrel and CYP3A4 and CYP2C19 helps to explain the often diverging results regarding 

clopidogrel biotransformation and pharmacological activity between studies conducted in 

vitro and in vivo. 
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4.1. Abstract 

 

Clopidogrel has largely replaced ticlopidine due to its superior safety profile and faster 

antiplatelet effect. However, rare but serious complications such as hepatotoxicity have been 

reported for clopidogrel lately. The mechanism of clopidogrel associated liver toxicity is still 

unclear. Activation of clopidogrel generates an active metabolite carrying a mercapto group, 

which may be responsible not only for the therapeutic effect, but also for the toxicity of 

clopidogrel. The current study investigates whether the reactive metabolite of clopidogrel is 

responsible for the observed hepatotoxicity and analyzes the corresponding mechanism. 

Clopidogrel (100 µM) showed cytotoxicity in experiments using the hepatocyte HepG2 cell 

line that overexpress human CYP3A4 (herein referred to as CYP3A4 cells) or in co-incubation 

with CYP3A4 supersomes (referred to as 3A4 supersomes). In contrast, wild type HepG2 

cells (referred to as HepG2 wt cells) or HepG2 wt cells in combination with control 

supersomes (referred to as control supersomes) were not affected. Accordingly, co-incubation 

with 1 µM ketoconazole, a CYP3A4 inhibitor, attenuated the toxic effect of clopidogrel in 

CYP3A4 cells and 3A4 supersomes, indicating that the generated reactive metabolite is 

responsible for the observed toxicity. Activated clopidogrel (100 µM) triggered an oxidative 

stress reaction, leading to a decrease in the intracellular glutathione content. Furthermore, 

activated clopidogrel is inducing mitochondrial damage and cytochrome c release, which 

promotes apoptosis in CYP3A4 cells. The carboxylate metabolite of clopidogrel, which is the 

major metabolite of clopidogrel in the plasma, does not show a toxic effect in CYP3A4 cells, 

3A4 supersomes or in HepG2 wt cells or control supersomes. In contrast to clopidogrel, 

ticlopidine was not activated by CYP3A4 cells and therefore revealed no toxicity under our 

experimental conditions. 

In conclusion, this study identifies the reactive metabolite of clopidogrel to be responsible for 

clopidogrel-induced toxicity in CYP3A4 cells and 3A4 supersomes. The induction of an 

oxidative stress reaction, which promotes apoptosis by a mitochondrial-dependent pathway 

represents an important mechanism for hepatotoxicity associated with clopidogrel. 

 

 

 

 

 

 



 

  51 

4.2. Introduction  

 

In patients who undergo percutaneous coronary intervention or are suffering from acute 

coronary syndromes, clopidogrel plus aspirin is the first-line antiplatelet therapy to reduce 

cardiovascular events 54-56. Clopidogrel, like ticlopidine, is a thienopyridine derivative that 

irreversibly inhibits platelet aggregation by selectively binding to the adenosine-5’-

diphosphate (ADP) P2Y12 receptor on the platelet surface. After oral administration, 

clopidogrel is rapidly absorbed and is metabolically activated by the cytochrome P450 (CYP) 

system 37, 38, 43, 78. Clopidogrel has largely replaced ticlopidine because of its superior safety 

profile and more efficient antiplatelet effects 23, 136. Common adverse effects associated with 

clopidogrel include gastrointestinal disorders (dyspepsia, nausea, vomiting), bleeding, rash 

and diarrhea 20, 25, 30. In addition, more serious adverse reactions such as thrombotic 

thrombocytopenic purpura 111, pancytopenia 112, systemic inflammatory response syndrome 
100, serum sickness-like reaction 113 and hepatotoxicity  100-110  have been observed in recent 

years. Until now, thirteen patients with clopidogrel-associated hepatotoxicity 100-110 have been 

reported. In these patients, the time between start of clopidogrel therapy and appearance of 

hepatic injury ranged from 4 days to 6 months. The pathomechanism of clopidogrel 

associated liver injury is still unclear. Recent publications argue that clopidorel can cause 

similar liver injury like ticlopidine 114-118. Clinically, the type of liver injuries associated with 

clopidogrel are either cholestatic or mixed hepatocellular and cholestatic. Hypersensitivity 

and direct toxicity have been suggested as responsible mechanisms.  

Activation of clopidogrel generates an active metabolite carrying a mercapto group, which 

covalently binds to the platelet’s P2Y12-receptor 22, 31. Most likely, this active metabolite 

interacts with other cellular proteins such as glutathione. The production of reactive 

metabolites in the liver may exert a direct toxic effect by functional modification of the target 

or by immunological mechanisms 99.  

We performed this study to investigate the hepatotoxic potential of clopidogrel and its 

carboxylate metabolite in a hepatocyte cell line. We used two systems to assess the toxicity of 

activated clopidogrel: HepG2 cells overexpressing human CYP3A4 (CYP3A4 cells) and 

HepG2 cells in combination with CYP3A4 supersomes (3A4 supersomes). Additionally, we 

also investigated cytotoxicity of ticlopidine using the same cellular systems as for clopidogrel.  
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4.3. Materials and Methods 

 

4.3.1. Materials  

Clopidogrel hydrogensulfate was isolated from commercially available tablets (Plavix®, 

Sanofi Aventis, Geneva, Switzerland) and the carboxylate metabolite of clopidogrel was 

obtained by saponification (ReseaChem life science, Burgdorf, Switzerland). The purity was 

>99% for both substances as assessed by NMR spectroscopy. Human CYP3A4 supersomes 

(with supplementation of cytochrome b5 and cytochrome P450 reductase) and insect cell 

control supersomes were from BD Gentest (Woburn, MA, USA). Cell culture supplements 

were purchased from GIBCO (Paisley, UK). Cell culture plates were purchased form BD 

Bioscience (Franklin Lakes, NJ). NADPH was ordered from Sigma-Aldrich (Switzerland) 

and the ToxiLight® BioAssay Kit from Cambrex Bio Science Rockland Inc. (USA). 

Acetonitrile LiChrosolv® for HPLC use was obtained from Merck (Darmstadt, Germany). All 

other chemicals used were purchased from Sigma or Fluka (Buchs, Switzerland).  

 

4.3.2. Cell lines and cell culture 

The hepatoma cell line HepG2 was provided by Professor Dietrich von Schweinitz 

(University Hospital Basel, Switzerland). HepG2 cells stably transduced with human 

CYP3A4 (CYP3A4 cells) were prepared as described (chapter 5.4.1 & 5.4.2). HepG2 wt cells 

and CYP3A4 cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM; with 

2mmol/L GlutaMAX®, 1.0g/L glucose and sodium bicarbonate) supplemented with 10% (v/v) 

heat-inactivated fetal calf serum, 10mM HEPES buffer, pH 7.2 and non-essential amino 

acids. The culture conditions were 5% CO2 and 95% air atmosphere at 37°C.  

 

4.3.3. Treatment of CYP3A4 cells and HepG2 wt cells  

HepG2 wt cells and CYP3A4 cells were passaged at 80-85% confluency, using trypsin. 

50’000 cells/well were allowed to adhere overnight in 96-well culture plates. Stock solutions 

of test compounds (clopidogrel, ticlopidine, the carboxylate metabolite of clopidogrel, 

ketoconazole, glutathione and diethyl-maleate) were prepared in DMSO or water. The 

reaction volume was 200 µl and DMSO concentrations never exceeded 0.2%. Cells were 

incubated with 0.1% Triton X as positive control and 0.2% DMSO as negative control. Drug 

treatment was performed for 24 h at 37°C and 5% CO2.  
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4.3.4. Treatment of 3A4 supersomes and control supersomes  

Human CYP3A4 supersomesTM (referred to as 3A4 supersomes) and insect cell control 

supersomesTM (referred to as control supersomes) were used to activate clopidogrel or 

ticlopidine. Cells were passaged and prepared for drug treatment similar as for the 3A4 cells 

and HepG2 wt cells. Test compounds were supplied to the cells in the presence of 20 pmol/ml 

CYP3A4 supersomes or control supersomes and 1 mM NADPH. 

  

4.3.5. Cytotoxicity assay (Adenylate kinase release) 

The loss of cell membrane integrity resultsis reflected in the release of adenylate kinase (AK), 

which can be detected using the firefly luciferase system (ToxiLight® BioAssay Kit, Cambrex 

Bio Science, Rockland, ME). After 24 h of incubation, 100µl assay buffer was supplied to 20 

µL supernatant from drug-treated cells in the presence or absence of ketoconazole 

(concentrations indicated in the Figures) and luminescence was measured after 5 minutes.  

 

4.3.6. Quantification of clopidogrel metabolism using HPLC 

450’000 HepG2 wt or CYP3A4 cells/well were seeded in 24-well plates and allowed to adhere 

overnight. Supersomes were used as mentioned above. Following the incubation with 

clopidogrel (10, 50 and 100 µM) for different periods of time (0, 6,12 and 24 h), 120 µl 

acetonitrile containing internal standard (6.5 µM naproxen) was added and cells were 

detached with a cell scraper. Cells were lysed by freeze-thaw cycles and the cleared lysate 

was subjected to HPLC analysis.  

We used a LaChrom® system HPLC equipped with an UV 7400 detector operating at a 

wavelength of 235 nm, a 7360 column oven, a 7100 quaternary pump and a 7200 

autosampler. The column temperature was maintained at 32°C and the injection volume was 

30 µl. Separation was performed on a Nucleosil 50-5-C18 column equipped with the 

corresponding guard column with a mixture of sodium phosphate (0.01 M, pH 3.0) and 

acetonitrile (50:50 v/v, solvent A) and sodium phosphate (0.01 M, pH 3.0) and acetonitrile 

(20:80 v/v, solvent B). The gradient was starting with 80% solvent A and 20% solvent B for 2 

min, then 100% solvent B for 4 min followed by equilibration with 80% solvent A and 20% 

solvent B for 4 min. The flow rate was 1 ml/min and the run time 10 min. The variability of 

the method was <10% at high and low clopidogrel, the carboxylate metabolite of clopidogrel 

or ticlopidine concentrations. Calibration curves were performed at a concentration range of 

1.0-43.0 µg/ml. There were no interfering peaks using cell culture medium. The clopidogrel 

concentration was determined by comparison to a standard curve. The amount of clopidogrel 
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metabolized after 6,12 and 24 h was calculated by substracting the remaining clopidogrel 

from the initial amount (zero time point) present in the incubations.  

 

4.3.7. Determination of intracellular GSH and GSSG after drug treatment 

Determination of glutathione (GSH) and oxidized glutathione (GSSG) was performed using 

the enzymatic recycling assay of Tietze 137, with the modifications described by Griffith et al 
138 as follows: cells were co-incubated with clopidogrel, ticlopidine or the carboxylate 

metabolite of clopidogrel for 24 h. Diethyl-maleate (DEM), a glutathione depleter, and H2O2 

(0.3%) served as positive controls. After incubation cells were detached, suspended in 1 ml 

1mmol/l bathophenanthrolinedisulfonic acid in 10% perchloric acid and sonicated for 30 sec 

(sonicator from Heat Systems Ultrasonics Inc., Farmingdale, NY, USA, setting 4.5). After 

centrifugation, the pellet was used for protein determination (BCA protein assay kit, Pierce, 

Rockford, IL, USA) and the supernatant for the determination of glutathione. Total 

glutathione was determined by lowering the pH with triethanolamine. For the determination 

of GSSG, derivatization with 2-vinylpyridine was performed prior to pH adjustment. For the 

enzymatic reaction, NADPH (0.21 mmol/l), DTNB (0.6 mmol/l), glutathione reductase (1 

U/ml) and were mixed with the sample or standard, respectively. The formation of TNB was 

measured at 412 nm using a plate reader and normalized to the standard curve.  

 

4.3.8. Measurement of reactive oxygen species (ROS) 

A fluorescence-based microplate assay 139 was used for the evaluation of oxidative stress in 

CYP3A4 cells and HepG2 wt cells treated with the test compounds. 2’,7’-dichlorofluorescein-

diacetate (DCFH-DA) is a membrane-permeable, nonpolar, and nonionic molecule. DCFH-

DA is hydrolyzed in the cytoplasm by intracellular esterases to nonfluorescent DCFH, which 

can be oxidized to fluorescent dichlorofluorescein (DCF) in the presence of reactive oxygen 

species (ROS). Cells were simultaneously exposed to test compounds and to DCFH-DA (5 

µM) and incubated for 6, 12 and 24 h. Fluorescence was measured at an excitation 

wavelength of 485 nm and an emission wavelength of 535 nm using a microtiter plate reader 

(HTS 700 Plus Bio Assay Reader; PerkinElmer, Beaconsfield, Buckinghamshire, UK) in 

incubations containing cells and exposure medium. 

 

4.3.9. Cytochrome c release detection by fluorescence microscopy  

Microscop cover glasses (diameter 13mm; thickness 0.17mm) were activated with (3-

aminopropyl) triethoxy-silane („Tespa“; Sigma No A3648) in acetone for 5min. 100'000 

HepG2 wt or CYP3A4 cells/well were seeded in 24-well plates and allowed to adhere on 
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supplied microscopy cover glasses overnight. 100 µM of clopidogrel (Clp), the carboxylate 

metabolite of clopidogrel (Carboxy-Clp) and ticlopidine (Tcp) were added to the cells for 12 

h. 100 µM benzbromarone served as positive control (data not shown) and 0.2% DMSO 

(DMSO ctrl) as negative control. Cells were stained with 50 nM Mitotracker Red CMXRos 

(Invitrogen No. M7512) for 30 min at 37°C and crosslinked with 4% formaldehyde (in PBS; 

Polysciences Inc.) for 15 min at 37°C. Permeabilization was performed with 0.2% TritonX-

100 followed by blocking with 5% BSA (Sigma No. A2153). Immuno staining was 

performed using a biotinylated Cytochrome C antibody (BioLegend No. 612303) at 1/20 for 

45 min in PBS 5% BSA.1/200 Streptavidin-Alexa647 (Molecular Probes No. S32354) plus 

1/1’000 DAPI (Invitrogen No. D3571) was applied in PBS 2.5% BSA for 20min. 

Subsequently, cells were mounted on Superfrost glass slides (Thermo Scientific) using the 

FluorSave reagent (Calbiochem No. 345789). An Olympus IX81 inverted microscope was 

used for this analysis in combination with the CellR software (Olympus). Images were 

exported as 16-bit TIFF files. ImageJ software (http://rsbweb.nih.gov/ij/) was used to convert 

the images to 8-bit and create merged images. Photoshop was used to trim images and adjust 

the brightness.  

 

4.3.10. Detection of apoptosis and necrosis using flow cytometry 

200’000 cells/well were seeded in 24-well plates and allowed to adhere for 24 h before drug 

treatment. Drug treatment was performed for 24 h in the presence or absence of 1 µM 

ketoconazole (KCZ). CYP3A4 cells and HepG2 wt cells were stained for 15 min with 1/20 

AnnexinV-PE (BD No. 556422) and 1/200 PI in a volume of 50 µl AnnexinV-binding buffer 

(10 mM Hepes, 150 mM NaCl, 2.5 mM CaCl2, 5 mM KCl, 1 mM MgCl2 in H2O). Flow 

cytometry was carried out on a DAKO Cyan cytometer. Benzbromarone (100 µM) 140 and 

deoxycholic acid (200 µM) 141 were used as positive controls. 

 

4.3.11. Statistical analysis 

Data are presented as mean values±SEM of at least three experiments. Statistical analyses 

were performed using Sigma Stat release 3.5 (SYSTAT Software, Inc.). Differences between 

many groups at two levels were tested by two-way analysis of variance (ANOVA) followed 

by Dunnet’s post hoc test if the data were normally distributed. In the case of not normally 

distributed data, Holm-Sidak statistics was performed. Differences between groups (e.g. 

control versus test compound incubations in CYP3A4 cells) was tested by one-way analysis of 

variance (ANOVA) followed by Dunnett’s post hoc test if ANOVA showed significant 

differences. A P-value < 0.05 was considered as significant. 
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4.4. Results 

 

4.4.1. Cytotoxicity of clopidogrel in CYP3A4 cells and 3A4 supersomes 

To study the cytotoxicity of clopidogrel we used CYP3A4 overexpressing cells and 3A4 

supersomes as previously described (chapter 5.4.1 & 5.4.2). This system was chosen since 

activation of clopidogrel is predominantly performed by human CYP3A4 37, 78 (chapter 

1.3.1). The toxicity of clopidogrel, the carboxylate metabolite of clopidogrel and ticlopidine 

was assessed using the ToxiLight® assay as described in methods. Clopidogrel showed dose-

dependent toxicity in CYP3A4 cells (compared to HepG2 wt cells) and in 3A4 supersomes 

(compared to control supersomes), confirming the generation of toxic metabolites by 

CYP3A4 after 24 h (Fig. 1A). To confirm the CYP3A4-dependent formation of toxic 

metabolites, clopidogrel (100 µM) was co-incubated with 1µM ketoconazole, a well 

characterized CYP3A4 inhibitor. Indeed, the clopidogrel induced cytotoxicity in CYP3A4 

cells and 3A4 supersomes could be prevented by ketoconazole. We also tested the carboxylate 

metabolite of clopidogrel, which is representing more than 85% of the circulating drug-related 

compound in plasma 33-36. The carboxylate metabolite of clopidogrel showed no toxic effect 

(Fig. 1B) in both activating systems (CYP3A4 cells, 3A4 supersomes) and control systems 

(HepG2 wt, control supersomes) tested. The cellular toxicity was further assessed with 

ticlopidine (Tcp). As depicted in Fig. 1C, ticlopidine exhibited a significant toxic effect in 

CYP3A4 cells at 100 µM. However, ketoconazole could not attenuate this effect, suggesting 

that CYP3A4 is not the only responsible CYP-isoenzyme to activate ticlopidine. 
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Figure 1 

Metabolic toxicity of (A) Clp, (B) Carboxy-Clp and (C) Tcp. Cytotoxicity was studied in CYP3A4 cells 

compared to HepG2 wt cells (intracellular metabolic toxicity) and 3A4 supersomes compared to 

control supersomes (extracellular metabolic toxicity) by measuring adenylate kinase release as 

described in methods. Triton-X (0.1%) was used as positive control and 1 µM ketoconazole (KCZ) to 

ensure involvement of CYP3A4. Adenylate kinase release was measured after 24 h. Mean 

values±SEM of at least six independent experiments are shown. a p<0.05 versus control incubations 

containing 0.2% DMSO; b p<0.05 versus co-incubation with 1 µM ketoconazole; c p<0.05 CYP3A4 

cells versus HepG2 wt cells or 3A4 supersomes versus control supersomes. 

 

 

4.4.2. Quantification of clopidogrel metabolism by HPLC 

The metabolism of clopidogrel in CYP3A4 cells and 3A4 supersomes was quantified using 

HPLC. Cells were incubated with clopidogrel (10, 50 and 100 µM) for 6, 12 and 24 h and 

subjected to HPLC analysis. Clopidogrel metabolism was measured in CYP3A4 cells and 

compared to HepG2 wt cells (Fig. 2A). Similarly, clopidogrel conversion was tested in 3A4 

supersomes and compared to control supersomes (Fig. 2B). The amount of clopidogrel 

metabolized was calculated by substracting the remaining clopidogrel from the initial amount 

(zero time point). In CYP3A4 cells clopidogrel is time-dependently metabolized at all 

concentrations tested. After 24 h incubation, more than half of the clopidogrel amount is 

metabolized: 6.6 ± 1.6 µM (for 10 µM), 27.9 ± 2.4 µM (for 50 µM) and 65.9 ± 6.0 µM (for 

100 µM), respectively. Co-incubation with ketoconazole (1 µM) showed a significant 

inhibition of clopidogrel metabolism in CYP3A4 cells: 3.1 ± 2.2 µM (for 10 µM), 14.2 ± 1.4 

µM (for 50 µM) and 35.5 ± 1.8 µM (for 100 µM). These data confirm the ketoconazole-

mediated prevention of clopidogrel toxicity (Fig. 1A). In HepG2 wt cells clopidogrel is not 

significantly metabolized since they are lacking CYP3A4 activity. Additionally, 3A4 

supersomes represent the activation system where clopidogrel is metabolized outside the cells 

(Fig. 2B). In CYP3A4 cells, clopidogrel is time-dependently metabolized by 3A4 supersomes: 

9.5 ± 0.8 µM (for 10 µM), 50.4 ± 1.6 µM (for 50 µM) and 70.2 ± 4.2 µM (for 100 µM), 

respectively. Interestingly, clopidogrel is almost completely metabolized after 24 h at low (10 

µM) and intermediate (50 µM) concentrations in the presence of 3A4 supersomes. However, 

this could not be observed at high (100 µM) concenrations of clopidogrel, where the effect of 

CYP3A4 was less pronounced. Ketoconazole inhibited clopidogrel metabolism in 3A4 

supersomes. Control supersomes, which are lacking CYP3A4 activity, failed to metabolize 

clopidogrel (Fig. 2B). 
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Figure 2 

Quantification of clopidogrel (Clp) metabolism by (A) CYP3A4 cells and (B) 3A4 supersomes using 

HPLC. The clopidogrel concentration (µM) in CYP3A4 cells (compared to HepG2 wt cells) and 3A4 

supersomes (compared to control supersomes) after incubation with 10, 50 and 100 µM for 6,12 and 

24 h was quantified using HPLC. 1 µM ketoconazole (KCZ) confirmed involvement of CYP3A4. For 

quantification of clopidogrel metabolism standard curves were used. Clopidogrel conversion was 

normalized to the zero time point. Mean values±SEM of three independent experiments are shown. 

*p<0.05 clopidogrel incubations versus co-incubation with  1 µM ketoconazole.  
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4.4.3. Cytotoxicity of activated clopidogrel in absence/presence of GSH 

The active metabolite of clopidogrel contains a free and possibly reactive mercapto group, 

which is considered to bind to the ADP-receptor of platelets. Most likely, the free mercapto 

group also forms covalent bindings with other cellular proteins and peptides, such as 

glutathione. To test whether the active metabolite is responsible for the cytotoxicity observed 

in CYP3A4 cells we performed toxicity experiments in the presence or absence of glutathione 

(GSH, 10 µM). Diethyl-maleate (DEM), a glutathione-depleting agent was used as positive 

control. Co-incubation of DEM and GSH decreased the toxic effect of DEM on CYP3A4- and 

HepG2 wt cells (Fig. 3). Clopidogrel (100 µM) showed toxicity only in CYP3A4 cells and co-

incubation with GSH attenuated the observed effect, consistent with the idea that the active 

metabolite of clopidogrel is responsible for cytotoxicity possibly at least in part through 

cellular GSH depletion. Significant toxicity was seen in both CYP3A4- and HepG2 wt cells 

with 1000 µM clopidogrel, although the effect was significantly enhanced in CYP3A4 cells. In 

the presence of GSH, the toxicity was decreased in CYP3A4 cells to the level of HepG2 wt 

cells. However, some toxicity remained at such a high clopidogrel concentration. The 

carboxylate metabolite of clopidogrel showed no toxicity up to 1000 µM confirming previous 

experiments (Fig. 1B). The small toxic effect induced in CYP3A4 cells by ticlopidine could be 

prevented by GSH, similar to clopidogrel.  
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Figure 3 

Cytotoxicity of clopidogrel (Clp), the carboxylate metabolite of clopidogrel (Carboxy-Clp) and 

ticlopidine (Tcp) in the presence or absence of glutathione (GSH). Adenylate kinase release was 

measured after 24 h as described in methods. Mean values±SEM of four independent experiments are 

shown. a p<0.05 versus control incubations containing 0.2% DMSO; b p<0.05 versus co-incubation 

with GSH; c p<0.05 CYP3A4 cells versus HepG2 wt cells. 

 

 

4.4.4. Glutathione pool in CYP3A4 cells after clopidogrel treatment 

Measuring the glutathione pool in CYP3A4 cells allowed us do determine the redox status 

(Fig. 4). DEM 200 µM, which was used as a positive control, induced a decrease in cellular 

GSH and a corresponding increase in GSSG (data not shown), resulting in GSH/GSSG ratio 

of 1.2±0.5 in CYP3A4 cells (10.0±2.6 control), respectively. Clopidogrel and ticlopidine 

induced a concentration-dependent drop in their GSH/GSSG ratio in CYP3A4 cells (Fig. 4), 

whereas the carboxylate metabolite of clopidogrel failed to alter the GSH/GSSG ratio. 

Treatment with 100 µM clopidogrel was associated with a decrease in cellular GSH and an 

increase in GSSG (data not shown) and accordingly the GSH/GSSG ratio of 3.0 ± 0.5 was 

significantly decreased compared to the control.  
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Figure 4 

GSH/GSSG Ratio of CYP3A4 cells treated with clopidogrel (Clp), the carboxylate metabolite of 

clopidogrel (Carboxy-Clp) or ticlopidine (Tcp) in the absence or presence of glutathione (GSH). GSH 

ratio (GSH/GSSG) was determined as described in methods. GSH = reduced glutathione (µg/mg 

protein), GSSG= oxidized glutathione (µg/mg protein). Diethyl-maleate (DEM), a glutathione-

depleting agent, served as a positive control. Mean values±SEM of four independent experiments are 

shown. *p<0.05 versus control containing 0.1% DMSO. 

 

 

4.4.5. ROS production after clopidogrel treatment 

The observed drop in the cellular glutathione content may be associated with a cellular stress 

reaction and with cellular accumulation of reactive oxygen species (ROS), since glutathione is 

needed for ROS degradation. Therefore, we determined the cellular ROS content using 2,7-

dichlorofluorescein diacetate after incubation for 6,12 or 24 h with clopidogrel, the 

carboxylate metabolite of clopidogrel or ticlopidine as described in methods. There is a time-

dependent increase of ROS formation in CYP3A4 cells in response to clopidogrel treatment 

(Fig. 5), whereas in HepG2 wt cells no increase in ROS formation was observed with neither 

of the drugs tested. After 24 h, ROS production was significantly increased in CYP3A4 cells 
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in response to clopidogrel (Fig. 5B). Co-incubation with ketoconazole attenuated the ROS 

production, consistent with the toxicity data. For ticlopidine small increase in ROS formation 

was observed in CYP3A4 cells and with ketoconazole co-incubation the increase was slightly 

diminished. 

 

A CYP3A4 cells   B HepG2 wt cells 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 

ROS formation by (A) CYP3A4 cells and (B) HepG2 wt cells after treatment with clopidogrel (Clp), 

the carboxylate metabolite of clopidogrel (Carboxy-Clp) and ticlopidine (Tcp) for 6,12 or 24 h. 

Diethyl-maleate  (DEM) 200 µM served as a positive control. 1 µM ketoconazole (KCZ) was used as 

specific CYP3A4 inhibitor. Results are shown as fold increase to control (0.2% DMSO) and are 

indicated as mean values±SEM of four individual experiments in triplicate. *P<0.05 versus control 

incubations (0.2% DMSO); # p<0.05 versus co-incubation with ketoconazole 1 µM. 

 

 

4.4.6. Mitochondrial damage and cytochrome c release after clopidogrel treatment 

ROS production can trigger the opening of the mitochondrial permeability transition pores, 

leading to a release of cytochrome c into the cytoplasm, a key event in mitochondrial-induced 

apoptosis. To investigate whether clopidogrel toxicity is mediated via this apoptotic pathway, 

mitochondrial structural damage and leakage of cytochrome c was assessed using 

immunofluorescence staining and microscopy. Clopidogrel induced mitochondrial damage 

and release of cytochrome c into the cytosol in CYP3A4 cells, indicated by the loss of co-

localization in the merged image (Fig. 6). In contrast, HepG2 wt cells were only mildly 
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affected and cytochrome c still colocalized with mitochondria. Treatment with the carboxylate 

metabolite of clopidogrel as well as ticlopidine did not affect either of the cell lines. 

Benzbromarone (positive control) induced severe mitochondrial damage and cytochrome c 

release in both, CYP3A4 cells and HepG2 wt cells (data not shown).  

 

 

 
 

Figure 6 

Mitochondrial cytochrome c release after drug treatment in CYP3A4 cells and HepG2 wt cells. 

Representative images of mitochondria (MitoTracker, red), cytochrome c (Cyt C, green) and their co-

localization (merge, yellow). Cells were incubated with clopidogrel (Clp) 100 µM, the carboxylate 

metabolite of clopidgrel (Carboxy-Clp) 100 µM or ticlopidine (Tcp) 100 µM for 12 h and cytochrome 

c release was detected by immunofluorescence staining with a monoclonal antibody against 

cytochrome c. 0.2% DMSO (DMSO ctrl) was used as negative control and showed maximal co-

localization. 100 µM benzbromarone (BB) was used as positive control (data not shown).  

 

 

4.4.7. Determination of apoptosis and/or necrosis after clopidogrel treatment 

Since mitochondrial damage is associated with apoptosis and/or necrosis 140, 142, 143 we 

assessed annexin V and propidium iodide staining of CYP3A4 and HepG2 wt cells after drug 

treatment. As part of the early apoptotic process, phosphatidylserin is externalized and 
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therefore accessible to annexin V, which can be visualized by flow cytometry. During late 

apoptosis or necrosis, propidium iodide is able to enter cells across the disintegrated 

membrane and bind DNA, thereby rendering this process late apoptosis distinguishable from 

early apoptosis. Activated clopidogrel induced an increased percentage of early apoptotic 

CYP3A4 but not HepG2 wt cells (Fig. 7). To a smaller extent clopidogrel also induced late 

apoptosis/necrosis in CYP3A4 cells (p > 0.05). In contrast HepG2 wt cells were not affected 

by the clopidogrel treatment. In agreement with our previous findings, co-incubation with 

ketoconazole attenuated the effect, again arguing that the CYP3A4-mediated generation of the 

clopidogrel metabolilte is responsible for the toxic effects and finally directing the cells into 

apoptosis. Treatment with the carboxylate metabolite of clopidogrel and ticlopidine did not 

induce apoptosis and/or necrosis in both CYP3A4 cells and HepG2 wt cells. 

 

 

A Early apoptotic cells    B Late apoptotic/necrotic cells 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 

Determination of apoptosis and/or necrosis after clopidogrel (Clp), the carboxylate metabolite of 

clopidogrel (Carboxy-Clp) and ticlopidine (Tcp) treatment. Apoptosis was assessed using 

fluorescently labeled annexin V and propidium iodide followed by flow cytometry analysis. 200 µM 

Deoxycholate (Deoxy) was used as positive control for early apoptosis and 100µM benzbromarone 

(BB) as a positive control for early and late apoptosis/necrosis 140. Mean values±SEM of three 

independent experiments are shown. a p<0.05 versus control incubations containing 0.2% DMSO; b 

p<0.05 versus incubations containing 1 µM ketoconazole; c p<0.05 CYP3A4 cells versus HepG2 wt 

cells). 
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4.5. Discussion 

 

Clopidogrel is a generally well-tolerated antiplatelet drug although serious complications such 

as hepatotoxicity may rarely occur 100-110. The mechanism of clopidogrel-induced 

hepatotoxicity is so far unknown. Clopidogrel is oxidized mainly by CYP 3A4 to an active 

metabolite carrying a mercapto group. This active metabolite is responsible for the therapeutic 

effect by inhibiting platelet aggregation but may, due to its reactivity, also be responsible for 

clopidogrel-induced toxicity, including hepatotoxicity. 

To test this hypothesis, we studied hepatotoxicity of activated clopidogrel in vitro using 

CYP3A4 overexpressing cells and 3A4 supersomes as activating systems. Our data showed 

that clopidogrel is metabolized similarly independent of whether intracellular (CYP3A4 cells) 

or extracellular (3A4 supersomes) activation was used. Consistent with the activation of 

clopidogrel we observed an increased toxicity in CYP3A4 cells and 3A4 supersomes, 

suggesting that the generation of reactive metabolites is responsible for the observed toxic 

effect. Co-incubation with the CYP3A4 inhibitor ketoconazole prevented clopidogrel 

activation and attenuated the toxic effect of clopidogrel, thereby confirming CYP3A4 as 

specific clopidogrel activator. Furthermore, glutathione decreased the toxicity supporting the 

concept of a reactive metabolite of clopidogrel, which is at least in part responsible for the 

clopidogrel induced toxicity (Fig. 3). 

The active metabolite of clopidogrel was shown to be the hydrolyzed derivative of the 

hydroxylated thiophene ring 122. This metabolite carries a reactive thiol group, which can 

block the P2Y12-receptor of platelets by forming disulfide bonds with its extracellular cystein 

residues 50. In accordance, Richter et al 43 proposed that a similar mechanism may explain 

cytochrome P450 inhibition by ticlopdine and clopidogrel. Thiophene rings have been 

associated with a significant incidence of adverse reactions in other drugs such as ticrynafen 

(tienilic acid) 144. We therefore speculate that the production of the reactive metabolite in the 

liver can be associated with „direct“ toxicity mainly due to the loss of function of the proteins 

(e.g. glutathione) modified by covalent binding of these reactive metabolites. Our findings 

support this oxidative stress reaction by showing a dose-dependent drop in the cellular 

glutathione pool in CYP3A4 cells by activated clopidogrel, most likely due to binding of 

glutathione to the active metabolite (Fig. 4). A drop in the cellular glutathione content is 

reflected in a cellular stress reaction and in cellular accumulation of reactive oxygen species 

(ROS), since glutathione is essential for ROS degradation. This was confirmed in our studies 

by showing that activated clopidogrel is time-dependently increasing ROS formation in 

CYP3A4 cells. Accumulation of ROS can lead to lipid peroxidation and protein carbonylation, 
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and as well to mitochondrial swelling due to induction of mitochondrial membrane 

permeability transition 140, 142. Pore opening induces release of cytochrome c, which is located 

on the outer surface of the inner mitochondrial membrane. After release, cytochrome c is able 

to trigger the subsequent effector steps to induce apoptosis. Structural damage of 

mitochondria and subsequent release of cytochrome c by activated clopidogrel point towards 

a mitochondria dependent pathway that ends in apoptosis in CYP3A4 cells (Fig. 6). 

Besides the described oxidative stress reaction due to depletion of glutathione, the interaction 

of cellular proteins with reactive metabolites could also lead to the formation of neoantigens, 

possibly triggering a hepatic immune response 145. In a patient with developing hepatocellular 

injury during ticlopidine treatment, activation of T lymphocytes has been described, 

suggesting the involvement of the adaptive immune system 100. Recent studies have shown 

that ticlopidine and clopidogrel are not solely activated by several CYPs but may also bind to 

certain CYPs after activation (mechanism-based inactivation of CYPs) 43. Covalent 

modification of CYPs may form new antigens, which could represent a target for 

immunological reactions 145. Such reactions have been described for hepatotoxicity associated 

with tienilic acid, where they are associated with the generation of anti-liver/kidney 

microsome (anti-LKM) antibodies 146, 147. However, such antibodies have so far not been 

described in patients suffering from liver injury induced by ticlopidine or clopidogrel.  

In humans, clopidogrel is predominantly metabolized by esterases to an inactive carboxylate 

metabolite of clopidgrel, which circulates in the plasma 33-36. Regarding the carboxylate 

metabolite of clopidogrel, we neither observed toxicity in CYP3A4 cells or 3A4 supersomes 

nor in HepG2 wt cells or control supersomes. It is therefore unlikely that this metabolite is 

responsible for the observed hepatotoxicity in patients treated with clopidogrel.  

The mechanism of ticlopidine-induced hepatotoxicity remains still unknown. The 

involvement of direct toxicity of ticlopidine or one of its metabolites was proposed 148, 149. 

Ticlopidine is metabolized through N-dealkylation, N-oxidation and/or oxidation of the 

thiophene ring by several CYP isoenzymes 32. In our study, ticlopidine showed a clear 

cytoxicity at a concentration of 100 µM in CYP3A4 cells. This effect was not attenuated by 

ketoconazole, indicating that cytotoxicity is not associated by the formation of a metabolite 

by CYP3A4. Decrease in the GSH/GSSG ratio and the production of ROS were both less 

pronounced than with clopidogrel and mitochondrial damage as well as induction of apoptosis 

were not detectable by the cellular system used in our studies. Most probably, hepatotoxicity 

associated with ticlopidine is therefore caused by a metabolite, which is formed by a CYP 

different from CYP3A4.  
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In summary, activation of clopidogrel by CYP3A4 is associated with cytotoxicity. The most 

probable mechanism is depletion of glutathione by the active metabolite, leading to ROS 

production, cytochrome c release from mitochondria and cell death by apoptosis. 

Hepatotoxicity associated with ticlopidine cannot be explained by this mechanism.  
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5.1. Abstract 

 

Amiodarone (2-n-butyl-3-[3,5 diiodo-4-diethylaminoethoxybenzoyl]-benzofuran) is a class III 

antiarrhythmic drug, which is associated with potentially life-threatening liver toxicity. 

Recent investigations revealed that the N-desethyl metabolites of amiodarone may be at least 

partially responsible for the hepatic toxicity in vitro. Since cytochrome P450 (CYP) 3A4 is 

responsible for amiodarone N-deethylation in the liver, CYP3A4 induction may represent a 

risk factor. The aim of this study was to investigate the role of CYP3A4 in amiodarone-

induced hepatotoxicity. Therefore we established and characterized stably transduced HepG2 

cells overexpressing human CYP3A4 (herein referred to as CYP3A4 cells). Furthermore we 

used HepG2 wt cells co-incubated with human CYP3A4 supersomes as an extracellular 

activation system (referred to as 3A4 supersomes). Amiodarone showed cytotoxicity in 

experiments using CYP3A4 cells or 3A4 supersomes. In contrast, amiodarone was not 

cytotoxic when incubated with HepG2 wt cells or control supersomes. Co-incubation with 

ketoconazole, a CYP3A4 inhibitor, attenuated the toxic effect of metabolized amiodarone in 

CYP3A4 cells and 3A4 supersomes, further demonstrating that the generated MDEA and 

DDEA are responsible for the observed toxicity. Accordingly, we detected MDEA and 

DDEA formation only in CYP3A4 cells and 3A4 supersomes but not in HepG2 wt cells or 

control supersomes. In agreement with previous studies, metabolized amiodarone triggered 

the production of reactive oxygen species (ROS), induced mitochondrial damage and 

cytochrome c release, promoting late apoptosis/necrosis in CYP3A4 cells. This study adds 

further evidence to the hypothesis that a high activity of CYP3A4 is a risk factor for 

hepatotoxicity associated with amiodarone. Since CYP3A4 inducers are used frequently and 

hepatotoxicity associated with amiodarone can be fatal, our observations may be important 

for patients treated with this drug. 
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5.2. Introduction  

 

Amiodarone (2-n-butyl-3-[3,5 diiodo-4-diethylaminoethoxybenzoyl]-benzofuran) is a class III 

antiarrhythmic drug with additional class I and II properties used in the treatment of a wide 

spectrum of cardiac arrhythmias 150. Amiodarone’s therapeutic use is limited because of its 

numerous side effects that include thyroidal 151, pulmonary 152, ocular 153 and/or liver toxicity 
154, 155. Amiodarone is a mitochondrial toxicant associated with uncoupling of oxidative 

phosphorylation and inhibition of the electron transport chain and β-oxidation of fatty acids 
140, 141, 156-158. The mechanisms leading to the toxicity of amiodarone are not completely 

understood, but most likely involve the accumulation of metabolites as well as the parent 

compound, finally resulting in cellular toxicity by impairing mitochondrial function 141. 

Amiodarone is metabolized to mono-N-desethylamiodarone (MDEA) 159 and to di-N-

desethylamiodarone (DDEA)  160  by N-deethylation. Waldhauser et al 141 reported that 

MDEA and DDEA are strong inhibitors of the respiratory chain and are both associated with 

ROS production. Moreover, they suggested that these metabolites are at least partially 

responsible for the hepatic toxicity in patients treated with amiodarone. Therefore, we 

hypothesized that induction of cytochrome P450 (CYP) 3A4, the main CYP isoenzyme 

responsible for amiodarone deethylation 161, may be a risk factor for hepatotoxicity associated 

with amiodarone. Since CYP3A4 inducers (e.g. antiepileptics such as phenytoin, 

phenobarbital and carbamazepine as well as rifampicin) are frequently used and amiodarone-

mediated hepatotoxicity is potentially fatal 155, it appears to be important to reveal the cellular 

mechanisms leading to this type of toxicity in more detail.  

In order to reach our aim, we established stably transduced cells overexpressing human 

CYP3A4 using the hepatocyte cell line HepG2 (CYP3A4 cells). This cellular system allowed 

us to investigate the metabolism of amiodarone and the generation of the two toxic 

metabolites MDEA and DDEA within the cells. Additionally, we employed an extracellular 

system including HepG2 wt cells and human CYP3A4 supersomes (3A4 supersomes) to 

assess possible differences to intracellular activation of amiodarone. An HPLC method 

allowed us to study and quantify the generation of MDEA and DDEA by CYP3A4 cells and 

by 3A4 supersomes. Finally, the hepatocellular toxicity of amiodarone and derivatives 

described here could be compared to a previous study 141. 
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5.3. Materials and Methods 

 

5.3.1. Materials 

Amiodarone, mono-N-desethylamiodarone and L8040 (HPLC internal standard, IS) were 

purchased from Sanofi Recherche (Brussel, Belgium). Human CYP3A4 supersomes with 

supplementation of cytochrome b5 and P450 reductase and insect cell control supersomes 

were from BD Gentest (Woburn, MA, USA). Cell culture supplements were purchased from 

GIBCO (Paisley, UK). Cell culture plates were purchased form BD Bioscience (Franklin 

Lakes, NJ). NADPH was obtained from Sigma-Aldrich (Switzerland) and the ToxiLight® 

BioAssay Kit from Cambrex Bio Science Rockland Inc. (USA). Methanol LiChrosolv for 

HPLC use was from Merck (Darmstadt, Germany). All other chemicals used were purchased 

from Sigma or Fluka (Buchs, Switzerland). 

 

5.3.2. Cell lines and cell culture 

The hepatocyte cell line HepG2 was provided by Professor Dietrich von Schweinitz 

(University Hospital Basel, Switzerland). HepG2 wild type cells (HepG2 wt cells), GFP cells 

(vector control) and HepG2 cells overexpressing human CYP3A4 (CYP3A4 cells) were 

cultured in Dulbecco’s modified Eagle’s medium (DMEM; with 2mmol/L GlutaMAX®, 

1.0g/L glucose and sodium bicarbonate) supplemented with 10% (v/v) heat-inactivated fetal 

calf serum, 10mM HEPES buffer, pH 7.2 and non-essential amino acids. The culture 

conditions were 5% CO2 and 95% air atmosphere at 37°C.  

 

5.3.3. Construction of the expression vector pCR2.1-CYP3A4 

The coding region sequence of human CYP3A4 was obtained from NCBI’s Nucleotide 

sequence database (Ref Seq NM_017460). cDNA was generated by RT-PCR from RNA 

extracted from human liver with the use of the SuperScriptTMIII RT-PCR kit (Invitrogen, Life 

Technologies) according to the manufacturer’s recommendations. The gene specific reverse 

primer (5’-TCAGGCTCCACTTACGGTGCCA-3’) was designed. Forward and reverse 

oligonucleotide sequences were used as follows: forward 5’-

TGATGCTCTCATCCCAGACTTGG-3’ and 5’-TCAGGCTCCACTTAGGTGCA, 

respectively. The amplified product was cloned into the pCR®2.1-TOPO® vector (Invitrogen, 

Life Technologies) and transformed chemically into SURE®2Supercompetent cells 

(Strategene Europe, Amsterdam, NL) according to the manufacturer’s protocols. 
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5.3.4. Production of lentivectors and transduction of HepG2 cells 

The 1513-bp fragment containing the human CYP3A4 complete coding sequence was excised 

from the pCR®2.1-TOPO® vector and subcloned into the lentiviral pWpiresGFP vector. The 

vector envelope plasmid pMD2G, the packaging plasmid pCMCΔR8.91 and the pWpiresGFP 

vector were kindly provided by Dr. Didier Trono, University of Geneva. For the production of 

virions, pMD2G, pCMCΔR8.91 and the vector pWPhCYP3A4iresGFP (or empty vector 

pWpiresGFP) were transfected into 293T cells by calcium phosphate precipitation as 

described elsewhere 162. After 12 h, the medium was replaced. The supernatant was harvested 

at 38 h post transfection, filtered and stored at -70°C.  

 

5.3.5. Expression of human CYP3A4 in HepG2 cells 

HepG2 cells (0.5x105) were seeded in six-well plates and incubated with viral supernatant 

(prepared as described above) in the presence of Polybrene® (Aldrich, Buchs, Switzerland). 

Successful transduction was assessed by fluorescence-activated cell sorting (FACS) analysis 

and cells expressing green fluorescent protein (EGFP) were separated and passaged. 

Expression of human CYP3A4 in the transduced HepG2 cells was determined with 

quantitative real-time PCR (QPCR). Total RNA was isolated using the RNeasy® (Qiagen, 

Basel, Switzerland) kit according to the manufacturer’s recommendations. SuperscriptTMII in 

combination with oligo (dT) and Random Hexamer primers (Gibco BRL, Basel, Switzerland) 

was used for reverse transcription of 2 µg total RNA. Quantification was performed on an 

ABI PRISM 7700 Sequence Detector (PE Biosystems, Rotkreuz, Switzerland). Reporter 

probes hCYP3A4 and GAPDH FAM/TAMRA were from Eurogentec (Seraing, Belgium); the 

hCYP3A4 and GAPDH forward and reverse primers were from Microsynth (Balgach, 

Switzerland).  

 

5.3.6. Human CYP3A4 protein overexpression in HepG2 cells 

CYP3A4 expression was checked by Western blot using the polyclonal hCYP3A4 antibody 

(Daiichi pure chemicals, Tokyo, Japan). Cells (106) were lysed using 1% NP-40 (Nonidet P-

40) and a protease inhibitor cocktail (Roche AG, Basel, Switzerland) plus 1 mM PMSF 

(Phenylmethylsulfonyl fluoride). Proteins were separated by electrophoresis in the presence 

of molecular weight standards (Gibco, Paisly, UK) on a 10% polyacrylamide sodium dodecyl 

sulfate (SDS) gel. Proteins were transferred onto a nitrocellulose membrane (BioradTrans-

Blot, Hercules, CA). Membranes were incubated with the 1/500 diluted goat anti-human 

CYP3A4 antibody, a secondary peroxidase-conjugated anti-goat antibody (Jackson 
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Laboratories Inc) was used for chemiluminescence detection (ECL, Amersham International, 

Little Chalfont, UK) according to the manufacturer’s protocol.  

 

5.3.7. Functional characterization of CYP3A4 cells 

CYP3A4 activity was measured using the P450-GloTM Assay kit (Promega, Wallisellen, 

Switzerland). Cells (HepG2 wt cells, GFP cells and CYP3A4 cells) were seeded at 105 cells 

per cm2 in 96-well plates and allowed to adhere overnight. 50 µM rifampicin was used as 

induction control. After 72 h the P450-GloTM Assay was performed according to the 

manufacturer’s protocol using the P450-GloTM luminogenic CYP450 substrate Luciferin-BE.  

 

5.3.8. Prodrug treatment in CYP3A4 cells or HepG2 wt cells  

HepG2 wt and CYP3A4 cells were passaged at 80-85% confluency, using trpysin. 50’000 

cells/well were allowed to adhere overnight in 96-well culture plates. Stock solutions of test 

compounds (quinidine, amitriptyline, ketoconazole and amiodarone) were prepared in DMSO. 

The reaction volume was 200 µl and DMSO concentrations never exceeded 0.2%. Cells were 

incubated with 0.1% Triton X as positive control and 0.2% DMSO as negative control. Drug 

treatment was performed for 24 h at 37°C and 5% CO2.  

 

5.3.9. Prodrug treatment using 3A4 supersomes or control supersomes 

Human CYP3A4 supersomesTM (referred to as 3A4 supersomes) and insect cell control 

supersomesTM (referred to as control supersomes) were purchased from BD-Gentest. Cells 

were passaged and prepared for drug treatment similar as for the 3A4 cells and HepG2 wt 

cells. Test compounds were added to the cells in the presence of 20 pmol/ml CYP3A4 

supersomes or control supersomes and 1 mM of the co-factor NADPH.  

 

5.3.10. Cytotoxicity assay (Adenylate kinase release) 

The loss of cell membrane integrity is reflected in the release of adenylate kinase (AK), which 

can be detected using the firefly luciferase system (ToxiLight® BioAssay Kit, Cambrex Bio 

Science, Rockland, ME). After 24 h, 100 µl assay buffer was supplied to 20 µl supernatant 

from drug-treated cells in the presence or absence of ketoconazole (concentrations indicated 

in the Figures) and luminescence was measured after 5 min. 

 

5.3.11. Quantification of amiodarone, MDEA and DDEA using HPLC 

450’000 HepG2 wt or CYP3A4 cells/well were seeded in 24-well plates and allowed to adhere 

overnight. Supersomes were used as mentioned above. After incubation with amiodarone (10, 
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25 or 50 µM) for 24 h cells, 30 µl of internal standard (IS) was added and cells were detached 

using a cell scraper. Cells were lysed by freeze-thaw cycles and the cleared lysate was 

subjected to HPLC analysis.  

We used a Merck Hitachi HPLC equipped with a column oven (L7300), an autosampler 

(L7200) hold at 25°C, interface (L7000), UV-detector (L7400) operating at a wavelength of 

254 nm, pump (L7100) and a Reprosil SI 80 column from Dr. Maisch GmbH (Ammerbuch / 

Germany). For the measurements in cell culture medium a guard column (LiChrospher® Si60 

5 µm, Merck / Germany) was used. The method was based on a validated method used for the 

quantification of amiodarone and its major metabolite mono-N-desethylamiodarone (MDEA) 

in serum developed at our institution. This method was adapted for the quantification of 

amiodarone, MDEA and di-N-desethylamiodarone (DDEA). The variability of the method 

was < 10% at high and low concentrations of amiodarone, MDEA an DDEA. The mobile 

phase consisted of solvent A (97% methanol / 3% ammoniumsulphate buffer pH 8.7) and 

solvent B (90% methanol / 10% ammoniumsulphate buffer pH 8.7). The gradient changed 

according to the following conditions: after 50% A and 50% B for 5 min increase to 100% B 

in 5 min and back to 50% A and 50% B in 5 min. The flow rate was 1.5 ml/min and the total 

run time 15 min. The injection volume was 20 µl. Quantification of amiodarone and its 

metabolites was by comparison to a standard curve. 

 

5.3.12. Measurement of reactive oxygen species (ROS) 

A fluorescence-based microplate assay 139 was used for the evaluation of oxidative stress in 

wt cells and CYP3A4 cells treated with the test compounds. 2’,7’-dichlorofluorescein-

diacetate (DCFH-DA) is a membrane-permeable, nonpolar, and nonionic molecule. DCFH-

DA is hydrolyzed in the cytoplasm by intracellular esterases to nonfluorescent DCFH, which 

is oxidized to fluorescent dichlorofluorescein (DCF) in the presence of reactive oxygen 

species (ROS). Cells were simultaneously exposed to test compounds and to DCFH-DA (5 

µM) and incubated for 6, 12 and 24 h. Fluorescence was measured at an excitation 

wavelength of 485 nm and an emission wavelength of 535 nm using a microtiter plate reader 

(HTS 700 Plus Bio Assay Reader; PerkinElmer, Beaconsfield, Buckinghamshire, UK) in 

incubations containing cells and exposure medium.  

 

5.3.13. Cytochrome c release detection by fluorescence microscopy  

Microscop cover glasses (diameter 13mm; thickness 0.17mm) were activated with (3-

aminopropyl)triethoxy-silane („Tespa“; Sigma No A3648) in acetone for 5min. 100'000 

HepG2 wt or CYP3A4 cells/well were seeded in 24-well plates and allowed to adhere on 
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supplied microscopy cover glasses overnight. Amiodarone (50µM) was added to the cells for 

8 h. 100 µM benzbromarone served as positive and 0.2% DMSO (DMSO ctrl) as negative 

control. Cells were stained with 50 nM Mitotracker Red CMXRos (Invitrogen No. M7512) 

for 30min at 37°C and crosslinked with 4% formaldehyde in PBS (Polysciences Inc.) for 

15min at 37°C. Permeabilization was performed with 0.2% TritonX-100 followed by 

blocking with 5% BSA (Sigma No. A2153). Immuno staining was perfored using a 

biotinylated cytochrome c antibody (BioLegend No. 612303) at a diution 1/20 in PBS 

containing 5% BSA for 45 min. Streptavidin-Alexa647 (Molecular Probes No. S32354) at a 

dilution 1/200 plus 1/1’000 DAPI (Invitrogen No. D3571) were applied in PBS 2.5% BSA for 

20min. Subsequently, cells were mounted on Superfrost glass slides (Thermo Scientific) using 

the FluorSave reagent (Calbiochem No. 345789). An Olympus IX81 inverted microscope was 

used for analysis in combination with the CellR software (Olympus). Images were exported 

as 16-bit TIFF files. ImageJ software (http://rsbweb.nih.gov/ij/) was used to convert the 

images to 8-bit and to create merged images. Photoshop was used to trim images and to adjust 

the brightness.  

 

5.3.14. Detection of apoptosis and necrosis using flow cytometry 

200’000 cells/well were seeded in 24-well plates and allowed to adhere for 24h before drug 

treatment. Drug treatment was performed for 24 h in the presence or absence of 1 µM 

ketoconazole (KCZ). CYP3A4 cells and HepG2 wt cells were stained for 15 min with 1/20 

AnnexinV-PE (BD No. 556422) and 1/200 propidium iodide in a volume of 50 µl AnnexinV-

binding buffer (10mM Hepes, 150mM NaCl, 2.5mM CaCl2, 5mM KCl, 1mM MgCl2 in H2O). 

Flow cytometry was carried out on a DAKO Cyan cytometer. Benzbromarone (100 µM) 140 

and deoxycholic acid (200 µM) 141 were used as positive controls. 

 

5.3.15. Statistical analysis 

Data are presented as mean values±SEM of at least three experiments. Statistical analyses 

were performed using Sigma Stat release 3.5 (SYSTAT Software, Inc.). Differences between 

many groups at two levels were tested by two-way analysis of variance (ANOVA) followed 

by Dunnet’s post hoc test if the data were normally distributed. In the case of not normally 

distributed data, Holm-Sidak statistics was performed. Differences between groups (e.g. 

control versus test compound incubations in CYP3A4 cells) was tested by one-way analysis of 

variance (ANOVA) followed by Dunnett’s post hoc test if ANOVA showed significant 

differences. A P-value < 0.05 was considered as significant. 
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5.4. Results 

 

5.4.1. Characterization of human CYP3A4 in stably transduced HepG2 cells 

FACS analysis revealed successfully transduced HepG2 cells, which were co-expressing 

EGFP and CYP3A4 (data not shown). To verify CYP3A4 overexpression, we measured 

mRNA expression of human CYP3A4 using RT-PCR (Fig. 1A). Quantitative real time PCR 

showed a > 65-fold increase of CYP3A4 mRNA in the transduced cells (referred to as 

CYP3A4 cells). Expectedly transduction with the empty vector (referred to as GFP cells) 

showed no elevation of CYP3A4 mRNA. CYP3A4 protein expression was investigated from 

cellular lysates of HepG2 wt, GFP or CYP3A4 cells (Fig. 1B). Western blot analysis revealed 

increased CYP3A4 protein expression exclusively in CYP3A4 cells. Pretreatment with the 

CYP3A4-inductor rifampicin slightly increased human CYP3A4 protein expression. The 

functionality of the human CYP3A4 construct in HepG2 cells was assessed by measuring 

CYP3A4 activity using the P450-GloTM Assay kit as described. Consistent with the RNA and 

protein expression data, CYP3A4 cells showed increased CYP3A4 activity (>2.5 fold) 

compared HepG2 wt and GFP cells (Fig. 1C). Pretreatment with rifampicin further increased 

CYP3A4 activity in all cell lines tested. These data indicate that CYP3A4 cells are a 

functional, intracellular activation system for CYP3A4. 
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Figure 1 

Characterization of human CYP3A4 (hCYP3A4) in stably transduced HepG2 cells. (A) 

Characterization of hCYP3A4 mRNA expression by quantitative PCR. Data are presented as fold 

change relative to the expression of hCYP3A4 in wt cells (n=4) *P< 0.01. (B) Characterization of 

hCYP3A4 protein expression by Western blotting. Representative Western blot showing hCYP3A4 

(52 kDa) and β-actin (43 kDa) protein expression in HepG2 wt, GFP and CYP3A4 cells. Human 

CYP3A4 was detected using a polyclonal hCYP3A4-antibody. Treatment with rifampicin 50µM is 
indicated. (C) Functional characterization of CYP3A4 cells. CYP3A4 activity was measured using the 

P450-GloTM Assay kit. Cells were incubated with P450-GloTM luminogenic CYP450 substrate 

Luciferin-BE and analysis was performed as described in methods. Luminescence was normalized to 

HepG2 wt cells incubated with medium. Mean values±SEM are shown of 6 experiments performed. 

*P<0.05; **P<0.01 versus control. 
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5.4.2. Characterization of CYP3A4 cells to study metabolic toxicity 

To determine the metabolic activity of CYP3A4 cells we tested different compounds that 

require CYP-mediated activation to manifest their cytotoxic effects (e.g. quinidine) 163. 

CYP3A4 cells  (= intracellular activation) were compared to HepG2 cells co-incubated with 

CYP3A4 cDNA expressing microsomes as a system with extracellular activation (3A4 

supersomes). 100 µM quinidine was associated with a slight cytotoxicity in HepG2 wt cells 

(Fig. 2A). The toxic effect was significantly increased in CYP3A4 cells, confirming CYP3A4-

mediated generation of toxic metabolites. Ketoconazole, a well described inhibitor of 

CYP3A4 activity, attenuated the effect. In the extracellular activation system, 100 µM 

quinidine also showed only slight cytotoxicity in the presence of control supersomes (Fig. 

2B). Again, the effect was significantly increased using 3A4 supersomes. Co-incubation with 

ketoconazole abolished the toxic effect of quinidine in 3A4 supersomes. CYP3A4-mediated 

detoxification of amitriptyline was used as an additional control experiment (Fig 2 C,D) 163. 

In both systems, the presence of CYP3A4 reduced the toxic effect of amitriptyline (1 µM 

amitriptyline in CYP3A4 cells and 50 µM amitriptyline in 3A4 supersomes). Co-incubation of 

amitriptyline with 1 µM ketoconazole abrogated the effect. Taken together, these results 

demonstrate both activation systems can be used to investigate CYP3A4-mediated toxicity. 
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A intracellular activation    extracellular activation 
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Figure 2 

Evaluation of metabolic toxicity in CYP3A4 cells. (A) Metabolic toxicity of quinidine in CYP3A4 cells 

compared to HepG2 wt cells (intracellular activation) and 3A4 supersomes compared to HepG2 cells 

incubated with control supersomes (extracellular activation). Adenylate kinase release was measured 

after 24 h exposure to quinidine (10, 100 µM). Cell lysis with Triton-X (0.01%) served as positive 

control. Co-incubation with 1 µM ketoconazole (KCZ) was used to specifically inhibit CYP3A4. (B) 

Metabolic toxicity of amitriptyline in CYP3A4 cells compared to wt cells and 3A4 supersomes 

compared to control supersomes. Amitriptyline (1,10,100 µM) was added for 24 h before measuring 

cytotoxicity. Mean values±SEM are shown of at least six independent experiments. a p<0.05 versus 

control incubations containing 0.2% DMSO; b p<0.05 versus co-incubation with ketoconazole; c 

p<0.05 CYP3A4 cells versus HepG2 wt cells. 

 



 

  81 

5.4.3. Metabolic toxicity of amiodarone 

The toxicity of amiodarone on hepatocytes has been previously investigated 140, 141, 156-158, 164. 

Waldhauser et al. 141 discovered that the two main metabolites MDEA and DDEA are at least 

partially responsible for the hepatocellular toxicity caused by amiodarone. The major 

metabolic conversion of amiodarone, N-deethylation to mono-N-desethylamiodarone 

(MDEA), is catalyzed by CYP3A 161. Using CYP3A4 cells and 3A4 supersomes, we aimed to 

investigate the metabolism of amiodarone and the subsequent generation of metabolites. 

Indeed, increasing amiodarone concentrations (10, 25 and 50 µM) induced corresponding 

cytotoxicity in CYP3A4 cells (Fig. 3A) Since 50 µM amiodarone failed to induce cytotoxicity 

in HepG2 wt cells, the effect could be specifically attributed to the generation of toxic 

metabolites by CYP3A4. Co-incubation with 1µM ketoconazole partly inhibited the cytotoxic 

effect of amiodarone in CYP3A4 cells. In the presence of CYP3A4 or control supersomes, 

amiodarone promoted dose-dependent toxicity in both systems but was significantly more 

pronounced in the presence of 3A4 supersomes (Fig. 3B). Co-incubation with ketoconazole 

lowered the CYP3A4-mediated effect to base line toxicity. 

 

A intracellular activation   B extracellular activation 

 

 

 

 

 

 

 

 

 

 

Figure 3 

Metabolic toxicity of amiodarone. (A) Cytotoxicity of amiodarone in CYP3A4 cells (intracellular 

activation) or (B) 3A4 supersomes (extracellular activation) by measuring adenylate kinase release as 

described in Figure 2. Triton-X (0.01%) mediated cell lysis served as positive control and 1 µM 

ketoconazole (KCZ) was used as specific CYP3A4 inhibitor. Drug treatment was performed for 24h. 

Mean values±SEM are shown of at least six independent experiments. a p<0.05 versus control 

incubations containing 0.2% DMSO; b p<0.05 versus co-incubation with ketoconazole; c p<0.05 

CYP3A4 cells versus HepG2 wt cells. 
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5.4.4. Quantification of amiodarone metabolism using HPLC 

The formation of the two main metabolites MDEA and DDEA can be detected and quantified 

by HPLC. Amiodarone, MDEA and DDEA concentrations were determined after 24 h of 

treatment with either 25 µM (A) or 50 µM (B) amiodarone (Table 1). The metabolites MDEA 

and DDEA were exclusively detected in CYP3A4 cells or 3A4 supersomes after 24 h of 

amiodarone treatment. Accordingly, the amiodarone concentration decreased after 24 h. In 

contrast, HepG2 wt cells and control supersomes did not generate detectable concentrations of 

the metabolites independent of the initial amiodarone concentration. 

 

(A) 25 µM amiodarone treatment 
 CYP3A4 cells HepG2 wt cells 

Metabolizing 

time (h) 
amiodarone 

(µM) 

MDEA 

(µM) 

DDEA 

(µM) 

amiodarone 

(µM) 

MDEA 

(µM) 

DDEA 

(µM) 

0 18.7 ±4.4 0 0 18.0 ±3.3 0 0 

24 12.0 ±  1.9 7.9 ±  1.8 0.6 ±  0.6 17.2 ±1.3 0 0 

 

 3A4 supersomes Control supersomes 

Metabolizing 

time (h) 

amiodarone 

(µM) 

MDEA 

(µM) 

DDEA 

(µM) 

amiodarone 

(µM) 

MDEA 

(µM) 

DDEA 

(µM) 

0 19.6±4.8 2.3±2.3 0 24.0±2.9 0 0 

24 10.1±1.5 15.5±4.5 1.99±0.7 18.4±5.9 0 0 

 

 (B) 50 µM amiodarone treatment 
 CYP3A4 cells HepG2 wt cells 

Metabolizing 

time (h) 
amiodarone 

(µM) 

MDEA 

(µM) 

DDEA 

(µM) 

amiodarone 

(µM) 

MDEA 

(µM) 

DDEA 

(µM) 

0 45.8±5.2 0 0 54.7±4.3 0 0 

24 33.9±2.6 15.5±2.8 2.3±0.8 34.7±2.1 0 0 

 

 3A4 supersomes Control supersomes 

Metabolizing 

time (h) 

amiodarone 

(µM) 

MDEA 

(µM) 

DDEA 

(µM) 

amiodarone 

(µM) 

MDEA 

(µM) 

DDEA 

(µM) 

0 46.8±8.6 1.9±1.9 0.8±0.8 47.3±5.4 0 0 

24 23.4±3.5 15.6 ±  3.1 3.0±0.6 43.0±8.5 0 0 

 

Table 1 Quantification of amiodarone metabolism by HPLC 
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5.4.5. ROS production of metabolized amiodarone  

ROS formation can be a consequence of the inhibition of the electron transport chain 140, 

which has been shown for amiodarone as well as the two synthesized metabolites MDEA and 

DDEA in isolated rat hepatocytes 141. We therefore investigated whether there is a difference 

in ROS formation by CYP3A4 cells compared to HepG2 wt cells incubated with amiodarone 

(Fig. 5). CYP3A4 cells and HepG2 wt cells were treated with amiodarone (25 and 50 µM) for 

6, 12 and 24 h and ROS production was assessed as described in methods. Stress conditions 

were generated by depleting cellular glutathione with 200µM diethyl maleate (DEM) 

administration or by adding 0.3% H2O2 (data not shown). In CYP3A4 cells, 50µM 

amiodarone promoted a time-dependent increase in ROS formation (Fig. 5 A), whereas 

HepG2 wt cells did not show this behavior (Fig. 5B). Co-incubation with 1µM ketoconazole 

attenuated ROS production in CYP3A4 cells.  

 

 

A  CYP3A4 cells    B  HepG2 wt cells 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 

ROS formation by (A) CYP3A4 cells and (B) HepG2 wt cells after treatment with amiodarone (Amio) 

for 6,12 and 24 h. Diethyl maleate (DEM) 200 µM served as positive control. 1 µM ketoconazole 

(KCZ) was used as a specific CYP3A4 inhibitor. Results were normalized to control (0.2% DMSO) 

and mean values±SEM are shown of four individual experiments performed. *P<0.05 versus control 

incubations containing 0.2% DMSO; # p<0.05 versus co-incubation with ketoconazole. 
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5.4.6. Mitochondrial damage and cytochrome c release caused by amiodarone  

Production of ROS can be associated with mitochondrial disruption, leading to a release of 

cytochrome c into the cytoplasm, a key event in mitochondrial dependent apoptosis and/or 

necrosis 140. We investigated mitochondrial damage and leakage of cytochrome c by 

fluorescence microscopy. For this, we labeled mitochondria with the fluorescent MitoTracker 

reagent and cytochrome c with a monoclonal antibody. As shown in Fig. 6, 50µM amiodarone 

induced mitochondrial damage and subsequent release of cytochrome c in CYP3A4 cells (as 

evidenced by a loss of co-localization of mitochondria and cytochrome c in the merged 

picture). In contrast, HepG2 wt cells exhibited strict co-localization of mitochondria and 

cytochrome c upon amiodarone treatment, demonstrating again the importance of CYP3A4 

for amiodarone-associated toxicity. Benzbromarone (100 µM), a previously described 

mitochondrial toxin 140 induced mitochondrial damage and cytochrome c release in both, 

Hep2 wt and CYP3A4 cells. 

 

 
 

Figure 6 

Mitochondrial cytochrome c release detected by fluorescence microscopy. Representative images of 

mitochondria (MitoTracker, red), cytochrome c (Cyt C, green) and their co-localization (merge, 

yellow) are shown. Cells were treated with 50 µM amiodarone for 8 h and cytochrome c release was 

detected by immunofluorescence staining with a monoclonal antibody against cytochrome c. 0.1% 

DMSO (DMSO ctrl) was used as negative control and showed maximal co-localization. 

Benzbromarone (BB) was used as positive control and caused loss of co-localization in both CYP3A4 

and HepG2 wt cells. 
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5.4.7. Determination of amiodarone-induced apoptosis and/or necrosis  

The ability of metabolized amiodarone to induce early or late stages of apoptosis was 

investigated using annexin V/propidium iodide staining, which is often used to distinguish 

between the two 140. CYP3A4 cells showed a significant increase in late apoptosis/necrosis 

after 24 h of amiodarone treatment (25 and 50 µM) (Fig. 6B). Co-incubation with 1 µM 

ketoconazole attenuated the effect. Interestingly, there is no significant increase in the 

percentage of early apoptotic cells (Fig. 6A). However, this result supports the previous 

finding, that most hepatocytes undergo late apoptosis/necrosis in the presence of 100 µM of 

amiodarone, MDEA or DDEA 141. 

 

 

A  early apoptosis   B late apoptosis/necrosis 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 

Determination of apoptosis and/or necrosis following amiodarone treatment. Apoptosis was assessed 

using fluorescence labeled annexin V and propidium iodide followed by flow cytometry analysis. 200 

µM Deoxycholate (Deoxy) was used as a positive control for early apoptosis and 100 µM 

benzbromarone (BB) as a positive control for early and late apoptosis/necrosis 140. 1 µM ketoconazole 

(KCZ) was used as specific CYP3A4 inhibitor. Mean values±SEM of three independent experiments 

are shown. a p<0.05 versus control incubations containing 0.2% DMSO; b p<0.05 versus co-

incubation with ketoconazole; c p<0.05 CYP3A4 cells versus HepG2 wt cells. 
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5.5. Discussion 

 

Amiodarone (2-n-butyl-3-[3,5 diiodo-4-diethylaminoethocybenzoyl]-benzofuran) is 

metabolized through mono- 159 and bi-desalkylation 160 to the corresponding secondary 

MDEA and primary amine DDEA, respectively. The primary amine can subsequently be 

transaminated and oxidized to the corresponding acid or primary alcohol 160. In a previous 

study we have demonstrated that amiodarone as well as the main metabolites MDEA and 

DDEA are hepatotoxic 141. These compounds inhibit the respiratory chain, impair 

mitochondrial β-oxidation, and/or uncouple oxidative phosphorylation 140, 141, 158. It is very 

likely that the metabolites (MDEA and DDEA) are at least partially responsible for the 

hepatic toxicity in patients treated with amiodarone. Therefore, induction of CYP3A4, the 

main cytochrome P450 isoenzyme responsible for amiodarone deethylation 161, may largely 

contribute to the observed hepatotoxicity. To address this question, we established two 

bioactivation systems, namely an intracellular (CYP3A4 cells; HepG2 cells overexpressing 

hCYP3A4) and an extracellular activating system (3A4 supersomes; HepG2 cells supplied 

with CYP3A4 supersomes). This allowed us to investigate whether there was a difference in 

toxicity depending on the site of metabolite formation (intra- or extracellular). At the same 

time, we could determine whether the metabolites were sufficiently stable in order to 

penetrate the cell membrane, possibly providing important information for the in vivo 

situation. To validate the two activation systems, we used the test compound quinidine 163, 

which requires metabolic activation through CYP3A4 to manifest cytotoxicity. 3-

hydroxyquinidine is the main toxic metabolite of quinidine, causing heart, renal and a hepatic 

injury 165. Quinidine showed dose-dependent cytotoxicity in both cell systems studied when 

compared to the control incubations (HepG2 wt cells and control supersomes) (Fig. 2A). 

Besides quinidine, we also tested amitriptyline 163 to assess the detoxification capacity of the 

two systems. Amitriptyline is associated with cardiac and CNS toxicity 163 and is detoxified 

by 10’-hydroxylation via CYP3A4. In both systems tested, amitriptyline exhibited a reduced 

cytotoxicity in the presence compared to the absence of CYP3A4 (Fig 2B).  CYP3A4 

dependency was further confirmed by using ketoconazole as CYP3A4 inhibitor. Our results 

clearly show that there is no difference between intra- and extracellular metabolite formation. 

Taken together, our data for quinidine and amitriptyline are consistent with those reported by 

Vignati et al. 163, who used transiently transfected HepG2 cells with CYP3A4 as well as 

HepG2 cells co-incubated with CYP3A4 supersomes.  
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We next tested the toxicity of amiodarone in CYP3A4 cells and 3A4 supersomes, as 

amiodarone is mainly metabolized by N-deethylation via CYP3A4 161. Since Waldhauser et 

al. 141 has shown that both N-desethyl-metabolites are cytotoxic, we were interested whether 

the generation of these metabolites is the reason for cytotoxicity in CYP3A4 cells compared to 

HepG2 wt cells, which did not metabolized amiodarone. After incubation for 24 h with cells 

containing CYP3A4 (CYP3A4 cells or HepG2 co-incubated with CYP3A4 supersomes, 3A4 

supersomes) amiodarone showed a dose-dependent significant increase in cytotoxicity, 

suggesting the formation of toxic metabolites in both systems. Consistently we detected the 

generation of MDEA and DDEA exclusively CYP3A4 cells and 3A4 supersomes, whereas 

HepG2 wt cells or control supersomes failed to do so. These results indicated that MDEA 

and/or DDEA are responsible for the cytotoxicity of amiodarone in both CYP3A4 containing 

systems. For further mechanistic investigations we used the CYP3A4 cells as test system due 

to the easier handling and cost saving. 

The exact mechanisms leading to cytotoxicity of amiodarone are still not completely 

understood, but are assumed to involve accumulation of metabolites as well as the parent 

compound. Resulting cellular toxicity possibly arises from impaired mitochondrial function. 

Our findings on mitochondrial toxicity of amiodarone are in accordance with data from 

previous studies 141. Several other studies have described hepatic mitochondrial toxicity of 

amiodarone in vivo 157 and in vitro 156 140-142, 158, 164. Taking into account that MDEA and 

DDEA are strong inhibitors of the respiratory chain and both are associated with ROS 

production and a remarkable cytotoxicity 141, 164, we addressed the question whether induction 

of CYP3A4 represents a risk factor for hepatotoxicity associated with amiodarone. With our 

established in vitro model (CYP3A4 cells, representing an CYP3A4 induction system) it 

should be possible to answer this question. Compared with amiodarone in HepG2 wt cells, 

where only a weak cytotoxicity was observed, ROS production, cytochrome c release, 

mitochondrial damage and induction of apoptosis and/or necrosis were much more 

pronounced in CYP3A4 cells. The involvement of CYP3A4 for the cytotoxic effect of 

amiodarone was further confirmed by using ketoconazole as an inhibitor of CYP3A4 

mediated metabolism. Our data may be relevant for patients treated with amiodarone, since 

hepatotoxicity associated with this drug could be more pronounced in patients treated 

concomitantly with CYP3A4 inducers.  

In conclusion, we were able to develop and characterize a cell-based system for studying 

metabolism and cytotoxicity of amiodarone, a well known mitochondrial toxin. While 

amiodarone itself revealed only a slight cytotoxicity in our cellular models, cytotoxicity of 

amiodarone was significantly increased after metabolism by CYP3A4. Since CYP3A4 
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inducers are used frequently and since hepatotoxicity associated with amiodarone is 

potentially fatal, our in vitro observations may be clinically important and should therefore be 

further investigated. 
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6. Discussion  
 

Drug interactions remain an important concern in clinical practice and drug development. A 

number of clinical drug interactions have been attributed to the induction and/or inhibition of 

cytochrome P450s (CYPs). The clinical consequences range from lack of therapeutic efficacy 

to severe toxicity and, in extreme cases, to fatality. The CYP isoenzymes are a family of 

monooxygenases that catalyze the metabolism of a variety of endogenous and exogenous 

compounds, including xenobiotics, steroids and fatty acids. Among the human CYP enzymes 

CYP1A2, 2C9, 2C19, 2D6, and 3A4 have been described to contribute to the metabolism of 

the vast majority of drugs 166. The human CYP3A subfamily includes CYP3A4, 3A5, 3A7 

and 3A3, but CYP3A4 notably has the highest abundance in the liver (less than 40%) and 

metabolizes more than 50% of the clinically used drugs 167, 168. This high metabolic activity 

and broad range of target substrates provides the basis for many drug interactions.  

Drug interactions with clopidogrel are an important clinical factor contributing to the response 

variability of clopidogrel 29, 48, 64. Clopidogrel is a prodrug that requires in vivo conversion 

mainly by CYP3A4 to an active metabolite in order to exert its antiplatelet effect 37, 38, 77. 

Given the important role of CYP3A4 in the bioactivation of clopidogrel, drugs that inhibit this 

enzyme may reduce the antiplatelet effect of clopidogrel. Regarding drug interactions 

affecting clopidogrel activation, the currently available data are controversial. Therefore, this 

thesis investigates clopidogrel drug interactions, its cytotoxicity and how these parameters 

affect clopidogrel functionality.  

 

In the first part of this thesis we designed an in vitro model to study drug interactions with 

clopidogrel. We utilized human liver microsomes since they include representative CYP 

enzymes expressed in the liver. Using HPLC, we could trace the microsome-mediated 

metabolization of clopidogrel in presence of various CYP inhibitors. In agreement with 

others37, 38, 77 we found that clopidogrel is mainly metabolized by CYP3A4. We could confirm 

these findings by using CYP3A4 supersomes, which exclusively express CYP3A4. 

Furthermore, clopidogrel conversion was abolished by specific inhibition of CYP3A4 with 

ketoconazole. These experiments clearly show that clopidogrel metabolization is dependent 

on CYP3A4 and validate our in vitro model as powerful tool to study drug interactions. 

Clopidogrel metabolization correlated with functional assays, namely the aggregation of 

platelets, which is the primary pharmacodynamic effect of clopidogrel. Platelet aggregation 

was strictly depended on the clopidogrel dose and CYP3A4 inhibitors could interfere with its 

antiplatelet effect.  
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The carboxyl metabolite of clopidogrel defines 85% of drug-related compound in the body. 

This carboxylic acid derivative could theoretically be activated and contribute to the 

antiplatelet effect of clopidogrel. However, this metabolite was not metabolized by CYP3A4 

in our systems and could not prevent platelet aggregation. We assume that the carboxyl 

metabolite does not bind the active site of CYP3A4 due to unfavorable electrostatic 

interactions, which may explain our findings. This was indirectly confirmed by Sanofi (the 

manufacturer of Plavix®), since they measured a pKa ≈ 4 for the carboxyl metabolite 

(unpublished communication).  

Interestingly, atorvastatin and simvastatin interact with the metabolization of clopidogrel in 

our in vitro system. As a consequence, these statins also lowered the antiplatelet effect of 

clopidogrel in our experiments, which has been debated in the literature. On the other hand, 

pravastatin, which is not metabolized by CYP3A4, did not influence clopidogrel activation. 

Therefore these results argue for a drug interaction between clopidogrel and atorvastatin or 

simvastatin. However, it remains to be elucidated whether our findings can be extrapolated to 

a more physiological situation. 

Clopidogrel is also activated by CYP2C19 in our experiments, but only at low concentrations 

(≤ 20µM). The concentration of clopidogrel in the liver is unknown. However, based on the 

carboxyl metabolite concentration in plasma, we estimated the clopidogrel concentration in 

hepatocytes to be in the range of 10-20 µM. This suggests that clopidogrel potentially 

interacts with both CYP3A4 and CYP2C19 under physiological conditions. Another hint for a 

role of CYP2C19 in converting clopidogrel comes from two studies 67, 125, which investigated 

patients with CYP2C19 polymorphisms. The authors found that the efficacy of clopidogrel 

was diminished due to the reduced contribution of CYP2C19. Along the same lines, the PPI 

omeprazole, which is primarily metabolized by CYP2C19 and to a lower degree by CYP3A4, 

interfered with the antiplatelet effect of clopidogrel 88. This further argues that CYP2C19 is 

also involved in clopidogrel activation. Similarly, a recent clinical study reported that 

omeprazole diminished the antiplatelet effect of clopidogrel probably due to the inhibition of 

CYP2C19, although the authors did not explicitly investigate this interaction 93. However, 

other PPIs with high affinities for both CYP3A4 and CYP2C19 did not show an interaction 

with clopidogrel 93, 97. Therefore, the identification of CYP2C19 as clopidogrel metabolizing 

enzyme is challenging and its significance requires further investigation. 

The first part of this thesis describes a powerful in vitro system to study drug interactions with 

clopidogrel. We demonstrated that drugs interfering with clopidogrel activation are 

responsible for a diminished antiplatelet effect associated with clopidogrel. However, further 
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investigations are necessary to estimate how predictable our in vitro findings are for the 

clinics. 

 

 

The second part of this thesis specifically investigates the hepatotoxicity of clopidogrel. Since 

clopidogrel requires metabolic activation we decided to design a cellular activation system to 

study clopidogrel’s toxicity.  

Traditionally, primary hepatocytes were employed since they contain a great number of drug 

metabolizing enzymes in an active state. However, the use of human hepatocytes is limited 

due to poor availability and high costs. Moreover, experimental outcome is associated with 

significant variability 169, 170. Therefore we selected the hepatocyte cell line HepG2 as 

representative model although they contain only limited CYP activity 171, 172. Residual HepG2 

cytochrome activity was not sufficient to mediate clopidogrel metabolism and therefore we 

stably transduced these cells with human CYP3A4. The resulting CYP3A4 overexpressing 

cell line metabolized clopidogrel in a time- and dose-dependent manner and could be 

inhibited with a specific CYP3A4 inhibitor. Similar results were obtained when HepG2 wild 

type cells were used in combination with CYP3A4 supersomes. This validates our cellular 

system to study CYP3A4 dependent clopidogrel activation and resulting cytotoxicity. In wild 

type cells, a toxic effect could only be measured at concentrations (1 mM) that obviously 

exceed the physiological concentrations of clopidogrel in the liver. 

The metabolic activation of clopidogrel subsequently generated a toxic effect, which is most 

likely mediated by the active metabolite. Presumably this metabolite is highly reactive due to 

its thiol group, which prevents it from being directly detected in our assays. We approached 

this issue by measuring the decrease in the intracellular glutathione content. Indeed, the 

CYP3A4 mediated conversion of clopidogrel was associated with a drop in the cellular 

glutathione content. These results indicate that the reactive metabolite of clopidogrel is mostly 

responsible for the cytotoxicity.  

In a next step, we aimed to identify a mechanism for the observed toxicity. We found that a 

mitochondrial dependent pathway leads to apoptosis in our CYP3A4 overexpressing cells. An 

oxidative stress reaction (as evidenced by decreased glutathione levels) promotes elevated 

ROS levels, cytochrome c release from damaged mitochondria and the exposure of early 

apoptotic markers on the cell surface. Importantly, the carboxyl metabolite, which is 

generated by esterases outside the liver, did not show detectable toxicity in our assays, 

therefore excluding this metabolite as candidate for cytotoxicity associated with clopidogrel.  
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Taken together, we could show that clopidogrel is converted in a CYP3A4 dependent way to 

a reactive metabolite, which is at least partly responsible for the cytotoxic effects. Our cellular 

system allowed us to study clopidogrel-associated toxicity in great detail and reveal the 

mechanism responsible for hepatic cell death. However, it remains important to compare 

these in vitro results to a more physiological situation, especially when CYP3A4 is not 

overexpressed.  

 

 

Taking advantage of our in vitro activation system, we measured the cytotoxicity of the 

antiarrhythmic agent amiodarone in the third part of this thesis. Since amiodarone is mainly 

metabolized by CYP3A4 161, we speculated that the CYP3A4 cells or 3A4 supersomes could 

convert amiodarone to MDEA and DDEA, which would explain the cytotoxicity. Indeed, 

cytotoxicity of amiodarone was significantly increased after metabolism by CYP3A4 in both 

of our activation systems. By HPLC we detected the generation of MDEA and DDEA 

uniquely in CYP3A4 overexpressing cells and 3A4 supersomes. Therefore we provide direct 

evidence that these two metabolites are generated upon CYP3A4 induction and are 

responsible for the toxic effect associated with amiodarone. In contrast, amiodarone exhibits 

only a weak toxic effect in HepG2 wild type cells (in absence of CYP3A4 activity). Only the 

induced metabolism of amiodarone in CYP3A4 overexpressing cells led to an increase in 

ROS formation, mitochondrial damage and subsequent release of cytochrome c and finally 

triggered apoptosis and/or necrosis. Inhibiting CYP3A4 activity with ketoconazole 

significantly reduced all events related to amiodarone cytotoxicity, thereby proving that the 

effect was specific.  

Our in vitro system reflects a clinical situation where CYP3A4 is induced. CYP3A4 inhibitors 

such as rifampicin or phenytoin are frequently administered concomitantly with amiodarone. 

Herein we give direct evidence that hepatotoxicity of amiodarone is more pronounced when 

CYP3A4 activity is increased. 

In summary, our results attribute the cytotoxic effect of amiodarone in large part to excessive 

CYP3A4 enzymatic activity, which generates the metabolites MDEA and DDEA and likely 

represents a situation, where patients experience induced CYP3A4 activity. Since 

hepaotoxicity caused by amiodarone can even be fatal in rare cases 155, our observations 

contribute to the understanding of amiodarone cytotoxicity in the clinics and require further 

investigations. 
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