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 Summary 

 

 

 

 

 

Current visions in cartilage repair aim at moving from fibrocartilaginous to a more 

hyaline like repair tissue by combining autologous cells of different origins (in situ 

recruited or in vitro precultivated) with repair supporting biomaterials. The role of a 

chondro-supportive biomaterial within a cartilage defect is seen to support 

infiltration/recruitment of chnodroprogenitor cells (CPC), accelerate their chondrogenic 

differentiation and to protect/modulate the newly formed tissue. 

 Overall, this thesis aimed at studying whether modification of selected substrate 

interface properties allows for modulating chondroprogenitor cell phenotype & function 

under expansion or differentiation conditions in vitro. The goal was to contribute to the 

definition of material characteristics which could be implemented in the design of 

biomaterials in order to improve current matrix assisted cartilage repair strategies and 

outcomes. 

 

Substrate composition & architecture (Chapter I) were found to modulate the 

chondrogenic differentiation of mesenchymal stem cells (MSC). Using a di block 

copolymer model substrate (Polyactive®) with a more hydrophobic composition better 

supported MSC chondrogenesis, than a more hydrophilic composition. Moreover, a 
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highly interconnected 3D fibre deposited scaffold architecture allowed for the formation 

of larger MSC aggregates and was found to considerably better support MSC 

chondrogenesis than compression molded scaffolds. 

 Restricting cell/substrate interaction specifically to an RGD-containing peptide 

ligand (Chapter II) modulated the de-differentiation of proliferating HAC and their 

subsequent capacity to form cartilaginous matrix. This demonstrated the advantage of 

small ECM fragments in combination with protein resistant materials to control 

cell/surface interaction. An important finding was the better maintenance of the HAC 

chondrocytic phenotype during expansion. It suggests, that an RGD-restricted substrate 

has the potential to improve the outcome of matrix assisted in situ cartilage repair, which 

initially requires recruited/infiltrated CPC to proliferate, while keeping/inducing their 

capacity to form cartilaginous matrix. 

 Substrate elasticity allowed for modulating the chondrogenic commitment of HAC 

(Chapter III). The finding, that a soft substrate (0.3kPa) better supported the chondrogenic 

phenotype of HAC than i.e. a stiffer substrate (75kPa) suggests this parameter to be 

promising for modulating the outcome of matrix assisted cartilage repair. 

 

Overall, this thesis demonstrates that substrate properties hold substantial potential to 

modulate CPC behaviour, which could be exploited to improve materials employed in 

matrix assisted cartilage repair. Yet, although differentially supporting CPC 

chondrogenesis, none of the substrates was per se chondro-inductive (see chapter I and 

III) but required for additional, exogenic stimuli as for e.g. transforming growth factor 

beta (TGF). Thus, modulatory substrate properties as i.e. architecture, composition, ligand 

presentation and stiffness should be combined with the instructive capacity of soluble 

stimuli to exploit the full potential of biomaterials in cartilage repair. 
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Abbreviations 

 

 

 
AA   Acrylamide; monomer 
ACI   Autologous chondrocyte implantation 
APS   Amonium persulfate 
BIS   N,N’-methylenbisacrylamide, crosslinker 
CM   Compression molded scaffold acrchitecture 
CPC   Chondroprogenitor Cells (i.e. MSC and expanded/de-diff. HAC) 
DMEM  Dulbecco’s modified Eagle’s medium 
DMSO   Dimethylsulfoxide 
DNA   Deoxyribonucleic acid 
dNTP   Deoxyribonucleosid triphosphates 
DTT   Dithiothreitol 
CDNA   Copy DNA 
CI   Type I Collagen 
CM   Complete medium 
E   Young’s modulus 
ECM   Extracellular Matrix 
EDTA   Ethylenediaminetetraacetic acid 
F-actin   Filamentous actin 
FBS   Fœtal bovine serum 
FG   Fibrin Glue 
FGF-2   Fibroblastic growth factor-2 
FN   Fibronectin 
GAG   Glycosaminoglycans 
G   Dynamic shear modulus 
G’   Shear storage modulus 
G’’    Shear loss modulus 
HAC   Human articular Chondrocytes 
HEPES  4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 
MACI   Matrix assisted autologous chondrocyte implantation 
MRNA  Messenger RNA 
MSC   Mesenchymal stem cells 
NC   Nasal chondrocytes 
MW   Molecular weight 
N0   Initial number 
N1   Final number 
p   Perimeter 
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PA   Poly acrylamide 
PBS   Phosphate buffered saline 
PBT   Poly butylene terephtalate 
PCR   Polymerase chain reaction 
PDGF-BB  Platelet-derived growth factor 
PEG   Poly ethyleneglycol 
PEGT   Poly ethylene glycol terephtalate 
RGD   Peptide sequence Arg-Gly-Asp; cell adhesion motif in FN 
RNA   Ribonucleic acid 
rRNA   Ribosomal RNA 
SEM   Scanning electron microscopy 
SFM   Serum free medium 
Sox-9   Transcription factor Sox-9 
TCPS   Tissue culture treated plastic (gas plasma treated poly styrene) 
TGF   Transforming growth factor beta 
TGFβ-1  Transforming growth factor beta 1 
TGFβ-3  Transforming growth factor beta 3 
TMED   Tetramethylethylenediamine 
UV   Ultra violet light 350nm 
ν   Poisson ratio 
w%   Weight percent (g/g) 
w/   With 
w/o   Without 
φ Shape factor phi 
µCT   Micro computed tomography 
3DF   Three dimensional fibre deposited scaffold architecture 
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General Introduction 

 

 

 

Cartilage 

 

Major Types of Cartilage 

Cartilage is a specialized avascular connective tissue comprising of only one single type 

of cell called chondrocyte which is sparsely populated in a collagen and proteoglycan rich 

hydrated extracellular matrix (ECM). Based on the biochemical composition and structure 

of the ECM, the mechanical properties and structural characteristics of the tissue, three 

major types of cartilage (elastic cartilage, fibrous cartilage and hyaline cartilage) can be 

distinguished: 

 

i) Elastic cartilage is found in the pinna of the ear, in the walls of the auditory and 

eustachian canals and tubes, as well as in the larynx and in the epiglottis. This type of 

cartilage with a more elastic property maintains tube-like structures permanently open 

and provides intermediate mechanical stability. Elastic cartilage mostly consists of 

type II collagen matrix elements and elastic fiber bundles (elastin) which manifest in 
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aligned fiber structures. This structural composition provides a tissue which is stiff yet 

elastic. 

 

 

ii) Fibrocartilage is most prominently found in areas which require greater tensile 

strength and support such as i.e. between intervertebral discs and at sites of tendons or 

ligaments connected to bone tissue. Typically, fibrocartilage is found at locations 

which are under considerable mechanical stress (i.e. tendon and ligaments) but still 

provides properties which allow flexible body movement. Accordingly, fibrocartilage 

mainly consists of type I collagen fibers which are aligned in thick fiber bundles and 

chondrocytes arranged in parallel rows between these fibers. The fibrous type of 

cartilage is usually associated with a dense connective tissue, namely the hyaline type 

cartilage which defines the third type of cartilage (1) 

 

 

iii) Hyaline type cartilage is the most abundant type of cartilage and is found in 

the nose, Larynx, trachea, bronchi, in the ventral ends of the ribs, and at the articular 

ends of the long bones. Characterized by the arrangement of the chondrocytes in 

multicellular stacks which prominently produce a type II collagen and a proteoglycan 

rich matrix, the hyaline type of cartilage provides the flexible support in nose and ribs 

but can also sustain mechanical load during body motion as shown at the surface of 

articular joints. This hyaline type of cartilage is lining as a thin layer of deformable, 

load bearing tissue at the bony ends of diarthrodial joints and is more specifically 

called articular cartilage (1). 
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Composition and Structure of Articular Cartilage 

The primary function of articular cartilage is the absorption and distribution of forces, 

generated during joint loading and to provide a lubricating tissue surface which prevents 

the abrading and degradation of the joint and the subchondral bone structure during joint 

motion. Indeed, the articular type of hyaline cartilage has to bear and tolerate enormous 

physical stress and load during its entire lifetime. 

 

At first glance, articular cartilage may appear to be a relatively primitive tissue, which 

simply consists of chondrocytes entrapped in hydrated extracellular. However, in order to 

maintain its mechanical function and integration, this tissue reveals a unique, highly 

defined structural organization that can be subdivided into two domains, the i) cartilage 

zonation and ii) the organization of the extracellular matrix: 

 

i) The structure and composition of the entire articular cartilage tissue varies 

according to the distance from the tissue surface and reflects its functional role. 

Four different zones arranged as layers horizontally to the tissue surface can be 

distinguished and are characterized according to the extracellular matrix 

composition and cellular morphology (see Fig. 1). 

 

In the superficial zone the layer of tissue is composed of flattened ellipsoid-shaped 

chondrocytes and a high concentration of thin collagen fibers arranged in parallel 

to the articular surface (2). In this layer the pericellular matrix structure mentioned 

below can not be found. The thin layer of cells is covered with an acellular sheet 

of collagen fibers (lamina splendes) which functions as a protective barrier 
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between the synovial fluid and the cartilage tissue and controls the in- and egress 

of larger size molecules (3). Its rather low permeability regulates the diffusion 

transport of nutrients and oxygen to the underlying cartilage tructures. Only within 

this zone chondrocytes synthesize and secret the superficial zone protein lubricin 

(4;5) responsible to reduce surface friction during joint motion. The specific 

arrangement of the collagen fibrils which lay in parallel to the joint surface, 

provides a high mechanical stability of the tissue layer and mainly contributes to 

the tensile stiffness and strength of articular cartilage (6-9). 

 

Below the superficial zone is the midzone where cell density is lower. It displays 

more typical morphologic features of a hyaline cartilage with spherical/rounded 

cells and an extensive extracellular matrix rich in the proteoglycan aggrecan. The 

collagen fibers are synthesized at a lower quantity but show larger diameter fibrils 

which are aligned obliquely or randomly to the articular surface and describe an 

intermediate structure between the superficial zone and the adjacent deep zone. 

 

In the deep zone, the chondrocytes have a round morphology and are arranged in 

cell columns perpendicular to the cartilage surface. The extracellular matrix 

contains a high content of glycosaminoglycans and large diameter collagen fibers 

which form arcades perpendicular to the joint surface (10). 

 

The partially calcified zone defines the boundary of cartilage tissue to the 

subchondral bone. This rather thin layer of calcified cartilage with intermediate 

mechanical properties functions as a buffer between the cartilage and bone tissue. 

The cells have a smaller volume and are partially surrounded by calcified cartilage 
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matrix. The chondrocyte in this zone usually persist in a hypertrophic cell stage 

which correlates with the expression of collagen type X. Finally this boundary 

provides an optimal integration to the subchondral bone tissue and prevents 

vascular invasion. 

 

ii) In addition to the zonal segregation, the matrix surrounding the chondrocytes 

of articular cartilage varies in its organization and can be divided in three 

compartments, such as the pericellular region adjacent to the cell body, the 

territorial region enveloping the pericellular matrix, and the interterritorial 

compartment which defines the space between these cellular regions (see Fig. 1) 

(1). 

The pericellular region which is rich in proteoglycan, decorin, aggrecan, collagen 

type VI, and cell membrane associated molecules like anchorin and decorin (11-

13) defines a narrow rim of a filamentous matrix network which fulfills the 

functions of the interlink between the chondrocyte cell body and the territorial 

matrix structure. 

 

The territorial region describes an envelop surrounding the cells or cluster of cells 

with their pericellular matrix. Thin collagen fibrils (most prominently collagen 

type II) bind to the pericellular matrix and form a basket like structure which 

protects the cell from damage during loading and deformation of the cartilage 

tissue. Moreover these structures may also contribute to transmit mechanical 

signals to the chondrocytes during joint-loading (14;15). 

The interterritorial region confines the most volume of the articular cartilage 

tissue and contains intermolecular cross linked collagen fibrils (collagen type II), 
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non collagen proteins and aggregates of glycoproteins (16). This extracellular 

matrix composition provides the tissue with its functional characteristic to absorb 

mechanical load. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Schematic drawing of articular cartilage composition and structure. Articular cartilage can be divided into four 

different zones (superficial, mid, deep and calcified) which each has a characteristic composition and structure (inserts 

show organization and relative diameters of collagen macrofibrils in different zones). Reproduced from Poole et al. 

2001(17). 
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Mechanical environment in mature cartilage 

Chondrocytes and cartilage tissue during joint motion are exposed to body weight load 

which creates a rigorous mechanical environment for articular cartilage tissue such as 

direct compression, shear, and hydrostatic pressure. The function of articular cartilage to 

undergo tissue deformation is dependent on the specific arrangement of macromolecules 

in the extracellular matrix. Especially the organization of collagen fibers into a three 

dimensional arranged collagen network can balance the swelling pressure of the 

proteoglycan-water “gel” (18;19). Cartilage is considered as a viscoelastic material 

composed of three principal phases: a solid phase composed of a dense, collagen fibrillar 

network and charged proteoglycan aggregates, a fluid phase of water and an ion phase 

with ionic species for neutralizing the charged matrix components (20;21). Under 

physiological condition these three phases define an equilibrium where the extension of 

the proteoglycan-water gel volume is restricted by the firm collagen frame (22). The 

bound water in the cartilage tissue and finally the mechanical properties of the cartilage 

tissue are influenced by the interaction of water with the large, negatively charged 

proteoglycan aggregates (23). The negatively charged proteoglycans mostly driven by 

chondroitin sulphate residues are balanced by a high concentration of cations dissolved in 

the cartilage tissue (24). 

In summary, the mechanical function of articular cartilage tissue bases on the matrix 

structure surrounding each single cell, the arrangement of the extracellular matrix fibres 

within the single zonal compartment and the proportional composition of the different 

extracellular matrix components. 
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Cartilage Develompent 

Articular cartilage as a part of the limb skeleton develops in a well defined and controlled 

multistep differentiation process of cells from the mesenchymal origin (25-27). The 

establishment of the cartilage structure follows precise and distinct patterns of cell 

differentiation and cell rearrangement driven by environmental factors such as cell-cell 

and cell matrix interaction, growth factor and morphogen mediated signaling (28;29) as 

well as defined biomechanical conditions (30). 

The steps of development are divided into distinct phases (see Fig. 2). Initially phase 

mesenchymal precursor cells migrate from the lateral mesoderm towards the presumptive 

skeletogenic site and determine the cartilage anlagen (31). Following, the epithelial-

mesenchymal interactions results in the mesenchymal condensation. The pre-

chondrogenic condensation is a prerequisite for the future establishment of the limb 

skeleton (32) and is associated with an increased cell to cell contact which facilitate the 

intercellular communication and the transfer of small molecules between the cells (33). It 

has been shown that such a high cell density is required to allow chondrogenic 

development (34) and that the level of cell condensation correlates with the stage of 

chondrogenic development (35;36). Additionally, cell-matrix interactions appeared to 

play an important role in mesenchymal condensation (37). For example the integrin 

mediated binding of chondrocytes to collagen, has been shown to be essential for 

chondrocyte survival (38;39). Next, the overt differentiation of immature pre-

chondrocytes into fully committed chondrocytes is manifested by an increased cell 

proliferation and by the up-regulation of cartilage specific matrix components like 

collagen type IIα1, IX and XI and aggrecan. In the final commitment of the chondrogenic 
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phenotype the cells reduce their proliferative activity and maintain the functional integrity 

of the mature cartilage tissue (25-27). 

The initial function of the cartilage during embryonic development is to give stability to 

the embryo and serve as a template for myogenesis and later for neurogenesis. Most of 

the embryonic cartilage is replaced by bone during a process called the endochondral 

ossification (40;41). 

 

 

 

 

 

Fig. 2 Schematic representation of the multistep process of chondrogenesis in the developing limb bud. Undifferentiated 

mesenchymal cells derived from the lateral plate mesoderm aggregate to form condensations, which prefigure the future 

skeletal pattern. These cells differentiate into chondrocytes to undergo a series of differentiation processes including 

proliferation, hypertrophy and cell death. Proliferating chondrocytes are eventually arranged into parallel columns and 

subsequently exit the cell cycle to convert into hypertrophic chondrocytes. Following the onset of hypertrophy, 

chondrocytes direct mineralization and vascular invasion. On vascularization, osteoblasts are transported by blood 

vessels into the cartilage, producing bone matrix using the residual cartilage template as a scaffold. Concomitantly, 

hypertrophic chondrocytes undergo programmed cell death and are replaced by the bone matrix. Reproduced from 

Shimizu et al. 2007 (42). 
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During the endochondral ossification, the chondrocytes progress to the hypertrophic 

phenotype, which is characterized by a massive enlargement of the cell, the onset of the 

expression of type X collagen (43), an increased expression and activity of the alkaline 

phosphatase and the carbonic anhydrase and a reduction in the synthesis of the type II 

collagens and proteoglycan. Protease inhibitors which prevent vascular invasion are also 

reduced. Vascularization of the tissue takes place, and most or all of the hypertrophic 

chondrocytes undergo apoptosis followed by their replacement by osteoblasts which in 

turn will deposit bone matrix in the free lacunae. At the cell level, the entire endochondral 

ossification process can be seen as a sequential progression of the three chondrocytic 

phenotypes: the committed mesenchymal cell, the differentiated chondrocyte and the 

hypertrophic chondrocytes (44).  

Within these developmental processes growth promoting factors act on the cell and 

contribute to establish a mature cartilage tissue. 

 

 

Soluble Growth Factors Involved in Cartilage Development 

Within the multi step cell differentiation process a number of growth factors and 

morphogens are involved and essential during chondrocyte maturation and cartilage tissue 

formation. The most prominent growth factors belong to the transforming growth factor 

(TGF-β) superfamily which are responsible for chondrocyte proliferation (TGF-β1), 

terminal differentiation (TGF-β3; bone morphogenic protein; BMP) (45) or to promote 

cell-cell interaction in the early stage of chondrogenesis (BMP) (46). The insulin like 

growth factor 1 (IGF-1) which belongs to the IGF family of peptide hormones (including 

insulin) regulates many cellular functions during cartilage maturation such as induction of 
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chondrocyte differentiation (47) and proliferation (48). In mature cartilage IGF-1 

promotes and maintains the anabolic synthesis of proteoglycan and type II collagen (49) 

and inhibits the nitric oxide-induced de-differentiation of articular chondrocytes (50). 

Furthermore members of the fibroblast growth factor (FGF) family of morphogenes 

influence processes correlated with cell division and chondrocyte proliferation and have 

been shown to promote chondrocyte proliferation in a human growth plate ex vivo culture 

system (51). 

 

Finally, only the combinatorial action of these growth and morphogenic factors 

specifically expressed in selective tissue areas in different developmental phases and at 

defined concentrations establishes the precise structure of the articular cartilage tissue. 

 

 

 

 

Articular Cartilage Defects and Self Repair 

Articular cartilage lesions, caused by trauma, osteochondritis dissecans or as a result of 

instability or abnormal loading are a common cause of disability, often associated with 

pain, reduction of joint mobility and loss of function and can ultimately lead to 

osteoarthritis. Articular cartilage has a very limited intrinsic healing capacity, related to 

the absence of vascularization and the presence of few and very specialized cells with low 

mitotic activity. According to the size of cartilage tissue damage in the cartilage surface, 

several grades of tissue injury can be distinguished which lead to different healing 

response (52-54).  
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In the case of partial thickness defects, the classical self-repair of injured cartilage tissue 

goes through conserved mechanisms of cell and tissue necrosis followed by the 

proliferation of surviving chondrocytes adjacent to the site of the lesion. Although these 

cells aggregate in clusters and demonstrate a temporary increased type II collagen 

synthesis, in long term the formed tissue shows a lost of hyaline like cartilage 

characteristics. Thus, these chondral lesions remain almost unchanged and can proceed 

towards osteoarthritic diseases (55). 

 

In the case of full thickness defects, the lesion penetrates to the subchondral bone part 

gaining access to the cells that reside in the bone marrow space including the 

mesenchymal stem cells located therein. The repair response elicited by this type of 

defect results in the formation of a fibrocartilaginous tissue in the defect void. Anyhow, 

the decreased deposition of extracellular matrix components and the formed tissue with 

fibro-cartilage structures lack the strength, the mechanical properties and duration of the 

original articular cartilage tissue as it has been demonstrated in longer time follow-up 

studies (56;57). 

 

In comparison to native cartilage, the repair tissue generated by spontaneous self healing 

commonly shows limitations in regard to its composition and mechanical durability (see 

tab. 1) The discrepancy between native cartilage and repair tissue increases the 

probability of tissue and joint degeneration (58) and thus spurred the the development of 

articular cartilage defect treatments. 
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Table 1: Cellular, biochemical and mechanical characteristics of hyaline cartilage and fibrocartilage (59) 

 

 

 

Articular Cartilage Defect Treatments 

The different strategies to treat cartilage defects vary from more conservative approaches, 

like physiotherapeutic measures or application of pharmaceuticals (i.e. corticosteroids, 

hyaluoronic acid and growth factors) towards more invasive (i.e. surgical) procedures.  

 

Arthroscopic repair procedures 

Arthoscopic lavage and debridement are often used to alleviate joint pain. Lavage 

involves irrigation of the joint during arthroscopy, while debridement is the removal of 

the damaged tissue from the joint. Both of these procedures are routinely used to alleviate 

joint pain however do not induce repair of articular cartilage (60;61). 
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Osteochondral Transfer 

Osteochondral transplantation of autogenic and allogeneic tissue has been widely used to 

treat predominantly large osteochondral defects. Allogeneic material derived from 

cadaveric donors and it is indicated for large post traumatic defects of joints. Beaver et al. 

(62) reported satisfactory long-term results with these grafts, but the logistic of implanting 

a fresh allograft and the risk of transmitting infection reduce the indication for this 

procedure only to severe cases.Instead, autologous osteochondral graft implantation, 

involves the removal of cylindrical plugs of osteochondral tissue from non load bearing 

regions of the articular cartilage and their implantation into the prepared full depth defect 

with press-fit fixation. This procedure is indicated in osteochondral defects of 3 to 5 cm2 

in young patient. It provides the re-establishing of a functional cartilage surface which 

can-absorb body weight load but has limitation in terms of poor tissue integration within 

the adjacent native cartilage tissue. Furthermore, the surgical intervention damages intact 

host tissue and might enhance the donor site morbidity (63;64). 

Even though such invasive procedures hold promise and showed acceptable results in 

some cases the outcome of these procedures shows generally limitations in terms of 

quality and reproducibility (65). 

 

 

Cell Based Cartilage Repair Techniques 

Based on chondrocytes 

The first requirement of chondrocyte based cartilage repair techniques is the excision of a 

small biopsy of healthy cartilage from the patient for cell isolation and expansion. The use 

of growth factors allows a higher cell proliferation rate (66) which reduces culture time 
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required to obtain sufficient cell numbers. Tissue engineering of cartilaginous grafts is a 

challenging technique since dedifferentiation of chondrocytes, occurring during 

expansion (67-69), has to be reversed by culturing cells in substrates supporting a 

spherical morphology, such as polymer gels (70-72) or porous polymer scaffolds (73-75). 

The combination of all these steps clearly indicates that this technique is far from being 

an intraoperative procedure and is time and money consuming. 

 

Based on bone marrow stromal cells 

Bone marrow is a highly complex and organized tissue where several types of 

differentiated cells coexist with immature cells namely hematopoietic stem cells (HSC) 

which can self-renew and differentiate into all the mature peripheral blood types, and 

mesenchymal stem cells or marrow stromal cells (MSC) that serve as long-lasting 

precursors from bone marrow, bone, cartilage, and connective tissues (76-78)  

 

 

Ex vivo procedure 

Bone marrow mesenchymal stem cells (MSC) can easily be isolated by their adhesion to 

plastic, and grown in vitro. Monolayer expanded MSC have been shown to have the 

ability to differentiate in vitro into several mesenchymal tissue cells including 

chondrocytes, osteoblast, adipocytes and tenocytes when plated in appropriated 

environments (79). In particular, chondrogenesis of MSC occurs when these cells are 

cultured in three-dimensional aggregates (“pellets”) (80-82) or cultured on porous 

polymers in the presence of Transforming Growth Factor beta (TGFβ)(83).  
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MSC mobilized by microfracturing 

Defects of articular cartilage that penetrate the subchondral bone elicit an intrinsic 

fibrocartilaginous repair process. Mesenchymal stem cells from the bone marrow have 

been proposed to be involved in this regenerative process. Treatment of cartilage defect 

by microfracture (84) results in the formation of a fibrocartilaginous tissue which does not 

exhibit the same functional and mechanical properties that native hyaline cartilage (85). 

The main differences between hyaline and fibrocartilage are summarized in table 1. 

 

Recently, Kramer et al (86) showed that MSC from bone marrow migrate to a cartilage 

defect after microfracturing the subchondral bone and that these cells when guided in vivo 

to a collagen I/III membrane at the site of the defect were capable to differentiate in vitro 

into chondrogenic cell type under specific culture conditions. These findings show that 

while the treatment by microfracturing leads to fibrocartilaginous tissue formation, the 

cells originated from bone marrow have the capacity to generate cartilaginous tissue in 

vitro when placed cultured under appropriate conditions. 

In an attempt to enhance the filling of articular cartilage defect with functional repair 

tissue, collagen matrices have been used in conjunction with microfracture (procedure 

called autologous matrix-induced chondrogenesis, AMIC) in dog and sheep models (87-

89). After studying the in vitro chondrogenic differentiation of sheep MSC in a collagen 

matrix (90) Dorotka et al. (91) studied whether the implantation of such a matrix, 

supplemented or not with autologous chondrocytes would facilitate cartilage repair after 

microfracturing. However, the implantation of the collagen matrix did not enhance the 

quality of repair observed after microfracturing unlike the matrix which was cell seeded. 

In a canine model, Breinan et al. (92) investigated the effect of treating a cartilage defect 
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by microfracturing in combination with a type II collagen scaffold and demonstrated that 

after 15 weeks, implantation of the matrix increased the amount of tissue filling in the 

defect but the tissue was predomintantly fibrous in nature. 

 

These findings suggest that current materials lack chondroinductive and/or mechanical 

properties to properly stimulate the production of hyaline cartilage by the infiltrating 

progenitor cells. 

 

 

 

Chondro Progenitor Cells 

Both mesenchymal stem cells (MSC) and expanded/de-differentiated human articular 

chondrocytes (HAC) are known to undergo chondrogenic differentiation or re-

differentiation respectively, when cultured under chondrogenic conditions. From this 

perspective, both MSC and HAC can be considered as chondro progenitor cells. 

 

 

MSC 

Reservoirs of stem cells can be found throughout several tissues of the adult body 

and are thought to contribute to tissue regeneration upon trauma, disease or aging. 

Bone marrow i.e. contains mesenchymal stem cells, which can be isolated by 

adhesion to tissue culture plastic. When exposed to various growth factors, these 

adherent cells are capable of differentiating into connective tissue lineages 

including adipocytes, osteoblasts as well as chondrocytes (93). Chondrogenesis of 
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MSC can be induced by culturing them as aggregates in chemically defined 

medium containing insulin, dexamethasone, ascorbic acid and transforming 

growth factor beta (94). 

 

 

Expanded De-differentiated Chondrocytes 

During expansion in monolayer, human articular chondrocytes (HAC) are known 

to undergo rapid de-differentiatiation (95;96). De-differentiation of chondrocytes 

manifests by cell morphological transition from round to fibroblast-like, the loss 

of large proteoglycans (e.g. aggrecan) and type II collagen production (97;98), and 

the switch to synthesis of type I collagen, fibronectin (FN), and small 

noncartilaginous proteoglycans (98;99). 

The use of specific factors during monolayer expansion of HAC has been shown 

to accelerate the process of de-differentiation but induces HAC to acquire a 

differentiation plasticity which is similar to that of MSC (100). Culturing 

aggregates (suspension or pellet culture) of expanded/de-differentiated HAC in a 

medium containing the strong chondrogenic stimulus TGFβ-3, allows for re-

induction of chondrogenic differentiation (101;102). Thus, expanded/de-

differentiated HAC are not only of clinical relevance but, owing to their plasticity, 

also serve as a potent model to investigate processes involving fate commitment 

and the maintenance of mesenchymal progenitor cells. 
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Designed Biomaterials to Control Cell Function  

Generally, a biomaterial is any material, natural or synthetic, that comprises whole or part 

of a living structure or biomedical device which performs, augments, or replaces a natural 

function. Natural materials can provide a physical environment which influences cell 

function (103;104), but often suffer from high lot-to-lot variability, potential pathogens 

(105), and the risk to elicit an immune response upon implantation due to xenogenic 

protein components (106;107). In contrast to natural materials, synthetic materials offer 

the potential for improved control, repeatability, safety and scalability. Moreover, 

synthetic materials can be specifically designed on different length scales (molecular, 

cellular and macroscopic) and thereby allow to assemble targeted, physiological 

environments for controlling cell function (108). 

In recent years it has been recognized that biomaterials have to be tailored for each 

specific therapeutic application. Among the most important material properties to be 

controlled are: i) architecture, ii) ligand presentation as well as iii) mechanical properties 

(see Fig. 3) (108). 

 

 

i) Architecture 

The architectural organization of a biomaterial can be defined on different length 

scales ranging from nano- to millimetre. In the nano- to micrometer range, 

parameters like ligand presentation, cell-material interactions, force transmission, 

molecular diffusion and cell-cell interactions are governed (109-114). At larger 

scales, the material architecture determines bulk mechanical properties, possible 

cell seeding methods, cell migration and molecular diffusion (i.e. nutrient/waste 
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exchange) (115-118). Additionally, biomaterials can either be organized as two 

dimensional (2D) or three dimensional (3D) environments: 

 

o In traditional 2D culture systems, signalling and diffusion are inherently 

asymmetric. Still, such culturing platforms allow for simple observation of 

cell-material interaction, and can be straightforwardly produced 

(109;113;119). 

 

o For 3D scaffolds and regenerative implants, three predominant architectures 

have been used: porous solids, nanofibres and hydrogels. Microporous 3D 

solids with cell porosities greater than the cell diameter (115;117;118;120) 

may effectively signal as 2D surface (108). Nanofibrous scaffolds present a 3D 

nanostructured topology that resembles the fibrillar ECM proteins in vivo 

(121-123), whereas hydrogels simulate the hydrated structural aspect of native 

ECM (96;124-127). 

 

ii) Ligand Presentation 

Ligands modulate the cell phenotype in a manner dependent on their identity (i.e. 

specificity) (128-131) mode of presentation and density (132-135). Synthetic 

peptide ligands are often used in place of large proteins or protein fragments 

because of their stability and ease of synthesis, isolation, and conjugation to 

materials (136-141). 

The ligands must be conjugated to the material for proper presentation (e.g. 

surface immobilization, polymer modification, or creation of ligand macromers). 



 - 26 - 

Peptide and protein ligands are typically conjugated to materials or material 

building blocks via primary amines (the amino terminus or lysines) or sulfhydryl 

groups (cysteines). In addition, spacer arm length and chemistry can in general be 

tuned to alter ligand availability and activity. Furthermore, the secondary and 

tertiary structures of native macromolecules frequently present ligands in a 

specific spatial conformation that promotes binding to receptors (142). 

 

 

iii) Mechanical Properties 

Apart from controlling ligand identity, density and presentation, which determine 

biomaterial/cell interaction(108), substrate mechanical properties have emerged as 

important, insoluble, mechanical cues. The mechanical properties of biomaterials 

are mainly determined by its composition, water content, and structure, which 

affect inter- and intramolecular forces as well as stress distribution. Common 

methods of altering the mechanical properties of biomaterials include modulating 

molecular composition and connectivity, thermal processing and creating 

reinforced porous composites (108). 

 

Adhesion ligands, which bind to integrins and other cell surface receptors, serve as 

mechanical transducers between the external material and the internal cytoskeleton 

of the cell, allowing cells to sense and respond to the stiffness of their 

substrates(108). Indeed, substrate mechanical properties have been shown to 

influence the phenotype of several members of the mesenchymal lineage, 

including fibroblasts(143;144), myoblasts(145;146) and osteoblasts(110). 
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Moreover mesenchymal stem cells (MSC) have been found to specify lineage and 

to commit to phenotypes with extreme sensitivity to tissue level elasticity. Soft 

substrates which mimic brain were neurogenic, stiffer substrates that mimic 

muscle were myogenic and comparatively stiffer substrates that mimic 

collagenous bone, proofed to be osteogenic (109). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Design parameters for engineering synthetic stem cell materials. (a) Ligand identity, density, and presentation 

from the material surface dictate interactions with cell surface receptors to alter cytoskeletal linkages and intracellular 

signaling pathways. (b) Receptor–ligand interactions are further modulated by material architectures, which provide a 

two-dimensional (e.g. flat surfaces, microporous solids) or three-dimensional (e.g. nanofibers, hydrogels) micro-

environment for cellular engagement. (c) Also, the elastic and viscoelastic properties of the material determine the 

interplay between cell and material mechanics. Graphs schematically depict mechanical properties: elastic properties 

via a stress (s)–strain (e) plot and viscoelastic properties via a complex modulus (G*)–frequency (f) plot. Reproduced 

from Saha et al. (2007) Designing Synthetic materials to Control Stem Cell Phenotype (147). 
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Need for Characterizing Parameters for Chondro-Supportive Biomaterials 

Up to now there is no common agreement on what specific properties a substrate (i.e. a 

scaffold) should provide to autologous chondro progenitor (expanded/de-differentiated 

HAC or MSC) cells in order for them to form hyaline rather than fibrous cartilaginous 

matrix. Consequently, there is a clear need for defining biomaterial parameters from a 

biological perspective. Thus, this thesis is dedicated to studying the influence of specific 

tuneable controllable substrate characteristics 1) surface chemistry & architecture 2) cell 

adhesion ligand type 3) substrate stiffness on the potential of human chondro progenitor 

cells to exert their expected function. 
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Thesis Outline 

 
 

 

Clinical Relevance of Biomaterial Supported Cartilage Repair 

Since cartilage has a very limited capacity for self repair (148), standard treatments in 

attempt to overcome this limitation include the technique of microfracturing. This 

involves debridement of the damaged cartilage and drilling into the subchondral bone to 

allow for mesenchymal stem cells to invade and deposit cartilagineous matrix. However, 

the formed repair tissue is fibrous in nature, generally degrades after about half to one 

year post-surgery and thus the problems return for up to 90% of the patients (149;150). 

 

Current visions in cartilage repair aim at moving from fibrocartilaginous to a more 

hyaline like repair tissue by combining autologous cells of different origins (in situ 

recruited or in vitro precultivated) with repair supporting biomaterials (151). The role of a 

chondro-supportive biomaterial within a cartilage defect is seen to support 

infiltration/recruitment of chnodroprogenitor cells, accelerate their chondrogenic 

differentiation and to protect/modulate the newly formed tissue (152). 

 

Thus, the ultimate goal is to improve current clinical outcome from fibrous tissue towards 

hyaline-like cartilage by assisting cell based and micro fracturing stimulated repair with 

supportive biomaterials. 
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Fig. 1 Schematic view of cartilage repair/regeneration sequence following micro fracturing (adapted from a stepwise 

model system for limb regeneration by Endo et al. 2004 (153)). As indicated by the grey boxes (below the time axis), 

the repair process has been grouped into two main phases consisting of i ) proliferation and ii) differentiation from 

which in vitro conditions were inferred for testing the response of condroprogenitor cells (CPC) to specifically modified 

substrate interfaces. Boxes with dashed lines delimit the boundary of each chapter and indicate the type of substrate 

property addressed therein. Chapter I aimed at modulating CPC chondrogenic differentiation through modification of 

substrate composition & architecture. Chapter II aimed at modulating the phenotype of proliferating CPC by 

exclusively restricting their interaction with the substrate to an RGD containing peptide ligand. Chapter III aimed at 

modulating CPC behaviour during differentiation by modifying the substrate elasticity. 
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General Aim 

Overall, this thesis aimed at studying whether modification of selected substrate interface 

properties allows for modulating chondroprogenitor cell phenotype & function under 

expansion or differentiation conditions in vitro. The goal was to contribute to the 

definition of material characteristics which could be implemented in the design of 

biomaterials in order to improve current matrix assisted cartilage repair strategies and 

outcomes. 

 

 

Specific Aims and Models 

This thesis is divided into three chapters. Each chapter employed its own model substrates 

to modulate CPC (MSC or expanded/de-differentiated HAC respectively) behaviour and 

had its specific aims as described below (also see Fig. 1): 

 

• Chapter I  

Scaffold Composition & Architecture Modulates Chondrogenesis of Human 

Mesenchymal Stem Cells 

Aim: Test, whether chondrogenesis of expanded bone marrow derived 

mesenchymal stem cells (MSC) can be instructed/modulated by controlled 

modification of substrate composition and architecture. 

Model: Poly (ethylene glycol)-terephtalate-poly(buthylene)-terephtalate block 

copolymer scaffolds (PolyActive®) of two contrasting compositions (low or high 

poly (ethylene glycol) content: resulting in different wettablity) and two 

architectures generated by compression moulding (CM) or three dimensional fibre 
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deposition (3DF) with similar porosity and mechanical properties, but different 

interconnecting pore architectures were used. MSC seeded on the corresponding 

substrate were cultured under differentiation conditions +/- transforming growth 

factor beta 1 (TGF). 

 

 

• Chapter II 

An RGD-Restricted Substrate Interface Allows for Expansion and 

Subsequent Redifferentiation of Human Articular Chondrocytes 

Aim: Test, whether an RGD restricted substrate interface allows for human 

articular chondrocytes (HAC) growth, modulates their proliferation associated de-

differentiation and/or their post-expansion chondrogenic capacity. 

Model: HAC interaction with the substrate was restricted to RGD by modifying 

tissue culture treated polystyrene (TCPS) with a poly-(ethylene glycol) (PEG) 

based copolymer system that renders the surface resistant to protein adsorption 

while at the same time presenting the bioactive peptide ligand 

GCRGYGRGDSPG (RGD). In an in vitro comparison, HAC were cultured on 

RGD and the standard substrate TCPS under expansion conditions. The 

chondrogenic capacity of the expanded cells was subsequently tested in pellet 

culture under differentiation conditions. 
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• Chapter III 

Effect of Matrix Elasticity on the Re-differentiation Capacity of Expanded 

Human Articular Chondrocytes 

Aim: Test, whether substrate elasticity modulates the chondrogenic commitment 

of expanded human articular chondrocytes (HAC). 

Model: Providing an environment for differentiation, expanded/de-differentiated 

HAC were cultured on type I collagen functionalized poly acrylamide (PA) 

substrates of contrasting stiffness (0.3, 21 and 75kPa, tissue culture treated plastic 

(TCPS) as infinitely stiff control).  



 - 34 - 

Chapter I 

 

 

 

SUBSTRATE COMPOSITION &  

ARCHITECTURE MODULATES 

CHONDROGENESIS OF HUMAN 

MESENCHYMAL STEM CELLS 
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INTRODUCTION 

Using two contrasting compositions of Poly (ethylene glycol)-terephtalate-

poly(buthylene)-terephtalate block copolymer scaffolds (PolyActive®; see Fig. 1), it was 

previously demonstrated that the re-differentiation capacity and cartilaginous matrix 

deposition of expanded human nasal chondrocytes (NC) could be modulated (117). In 

specific, the authors demonstrated that a hydrophilic (1000 PEG 70:30) as compared to a 

more hydrophobic (300 PEG 55:45) composition more strongly induced the chondro-re-

differentiation of NC (in absence of exogenous chondrostimuli, as i.e. TGFβ to the culture 

medium). This chondroinductive effect has mainly been attributed to an increase in the 

vitronectin/fibronectin adsorption ratio from serum by the more hydrophilic substrate 

(113). 

 

As in recent years human bone marrow derived mesenchymal stem cells (MSC) have 

been receiving increasing attention for regenerative medicine (152), we wanted to assess, 

whether the chondroinductive effect of the hydrophilic Polyactive® on NC also applies 

for expanded MSC. Thus, expanded MSC were cultured on PolyActive® scaffolds of 

different compositions under conditions published for NC (117). After four weeks of 

culture in DMEM complete medium, the MSC/scaffold constructs were histologically and 

biochemically analyzed for deposition of cartilaginous matrix. 



 - 36 - 

 

 

Fig. 1 Composition and architecture of Polyactive® model substrate used throughout 

chapter one. Left panel shows a schematic drawing of the two different di block co-

polymers with a composition denoted as a/ b:c, where a represents the poly ethylene 

(PEG) molecular weight (g/mol) and b and c represent the weight percentage (wt%) of the 

poly (ethylene glycol) terephtalate (PEGT; hydrophilic) and the poly (butylene 

terepthalate) (PBT; hydrophobic) respectively. For simplicity, substrate composition 300 

PEG 55:45 (hydorphobic) and 1000 PEG 70:30 (hydrophilic) are denoted as 300 and 

1000 respecively. Right panels show three dimensional reconstructions of compression 

molded (CM) and 3D fiber deposited (3DF) architecture scaffolds from micro computed 

tomography (µCT) scans as adapted from (117). Scale bar represents 1mm. Compositions 

and architecture were selected based on previous work indicating their suitability for 

chondrocyte culture and cartilaginous matrix formation (117). 
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STUDY 1 

 

 

 

Aim 

It was investigated, whether chondrogenesis of expanded MSC can be 

instructed/modulated by controlled modifications of substrate composition and 

architecture. As a model system, poly(ethylene glycol)-terephtalate-poly(buthylene)-

terephtalate block copolymer substrates (PolyActive®) from two contrasting 

compositions (low or high PEG content, resulting in different wettablity) were used. From 

these two compositions, scaffold architectures of similar porosity, but different 

interconnecting pore architectures were employed. 
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Methods 

 

Scaffold Fabrication 

PEGT/PBT copolymers were obtained from CellCoTec (Bilthoven, The Netherlands). 3D 

scaffolds made from 300 PEG 55:45 (300) and 1000 PEG 70:30 (1000) compositions 

(Fig. 1) were produced using either a compression molding (CM) and particle leaching 

technique (120) or a 3DF deposition technique (115;118). Briefly, CM scaffolds were 

prepared by mixing PEGT/PBT granules with sodium chloride grains (75% by volume), 

sieved to obtain particles ranging in size from 400 to 600 µm. After CM under heat and 

pressure, the polymerized PEGT/PBT block was then immersed in demineralized water 

for 48 h to remove the sodium chloride, and dried under reduced pressure in a vacuum 

oven. Porous 3DF scaffolds were constructed by successively layering a 0–901 pattern of 

molten PEGT/PBT fibers from a ∅250µm nozzle onto a computer controlled x2y2z table. 

Fibers within each layer were spaced 1.0mm apart, but were offset (staggered) by 0.5mm 

between layers to optimize the ‘‘visible’’ surface available for cell seeding. Square blocks 

of 30x30x4mm3 were produced with a consistent pore size, 100% interconnecting pore 

volume and a porosity of 56%. Cylindrical scaffolds, 2-3mm in height, 4.7mm diameter, 

were cored from the bulk of porous CM and 3DF blocks prior to cell seeding. Previous 

thermal analysis studies have demonstrated that CM and 3DF processing techniques do 

not result in changes of PEG MW or PEGT/PBT composition (118). Therefore, any 

differences seen in this study between architectures of CM and 3DF scaffolds should not 

be related to differences in scaffold composition. Due to enhanced instruction of 

chondrogenesis in de-differentiated chondrocytes on the 1000 chemistry (117), the 

variation of architecture (CM/3DF) was restricted to this composition. 
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Cell Isolation and Expansion 

Bone marrow derived mesenchymal stem cells (MSC) were obtained as described 

previously (154). In brief, one bone marrow aspirate was obtained during a routine 

orthopaedic surgical procedure involving exposure of the iliac crest, after informed 

consent. A marrow aspirate (20 ml volumes) was harvested from a healthy donor (female, 

34 years) using a bone marrow biopsy needle inserted through the cortical bone; the 

aspirate was immediately transferred into a plastic tube containing 15,000 IU heparin. 

 

Bone marrow nucleated cells were counted after staining with Crystal Violet 0.01% in 

phosphate-buffered saline (PBS, both from Sigma-Aldrich, Switzerland) and plated at a 

density of 1x105 cells/cm2 in alpha minimal essential medium containing 4.5 mg/ml D-

glucose, 0.1 mM non-essential amino acids, 1 mM sodium pyruvate, 10 mM HEPES 

buffer, 100 U/ml penicillin, 100 µg/ml streptomycin, and 0.29 mg/ml L-glutamine, 

supplemented with 10% FBS (all from Gibco, UK; αMEM complete ) supplemented with 

5 ng/ml fibroblast growth factor-2 (R&D Systems, Wiesbaden, D) to enhance 

proliferation and enrich the pluripotent MSC population (155). MSC were cultured in a 

humidified 37°C/5% CO2 incubator with medium changes twice a week. MSC were 

selected on the basis of adhesion and proliferation on the plastic substrate. Upon reaching 

subconfluency, MSC were detached using 0.05% trypsin/0.53 mM EDTA (GIBCO-BRL, 

CH) and replated at a density of 3’000 cells/cm2 (passage 1, p1). Reaching confluency 

(p2), MSC were detached and seeded onto scaffolds as described below. 
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Cell Seeding and Culture on Three Dimensional Scaffolds 

Cylindrical scaffolds were prewetted with 70% ethanol, thoroughly rinsed with 

autoclaved milliQ water, soaked in Dulbecco’s modified Eagle’s medium (DMEM) 

containing 4.5 mg/ml D-glucose, 0.1 mM non-essential amino acids, 1 mM sodium 

pyruvate, 10 mM HEPES buffer, 100 U/ml penicillin, 100 µg/ml streptomycin, and 0.29 

mg/ml L-glutamine, 10% FBS (all from Gibco, UK; DEMEM complete) and blotted dry 

on a sterile paper. Expanded MSC (p2; 2.5 Mio./scaffold) were allowed to clott in DMEM 

complete CM for 20 min. prior to statically seeding them onto scaffolds placed in dishes 

coated with a thin film of 1% agarose. Seeding volume/scaffold was adjusted to 30µl for 

the CM 300, 50µl for the CM 1000 and 37µl for the 1000 3DF to compensate for the 

differential swelling inherent to the corresponding combination of composition and 

architecture. Constructs were placed in dishes coated with a thin film of 1% agarose and 

statically cultured in 2ml DMEM complete supplemented with 10 mg/ml insulin and 

0.1mM ascorbic acid, either without or with 10ng/ml TGFβ-3 (TGF), with medium 

changes twice a week. TGF is a strong chondrostimulus (94;156) and was included in the 

culture medium as a contingency measure, in case the scaffold per se would not be 

chondro- instructive/inductive for MSC. After four weeks of culture, constructs were 

harvested and processed for gene expression as well as for histological and biochemical 

analysis. 

 

Biochemical Analysis 

Constructs cultured for four weeks were digested with protease K (0.5 ml of 1 mg/ml 

protease K in 50 mM Tris with 1 mM EDTA, 1 mM iodoacetamide, and 10 µg/ml 

pepstatin-A) for 15 hours at 56°C (157). The glycosaminoglycan (GAG) content was 
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measured spectrophotometrically using dimethylmethylene blue (158), with chondroitin 

sulfate as a standard, and normalized to the DNA amount, measured 

spectrofluorometrically using the CyQUANT Kit (Molecular Probes, Eugene, OR), with 

calf thymus DNA as a standard. GAG contents are reported as µg GAG / µg DNA. 

 

Cell Seeding Efficiency and Retention 

The number of cells was estimated by measuring the amount of DNA in protease K 

digested constructs (as described in biochemical analysis). Cell seeding efficiency was 

determined 24 hours after seeding (initial) and expressed as percentage of seeded cells 

(aliquots of 2.5 Mio. MSC from the cell suspension used for seeding onto the scaffolds 

corresponding to 100%). Cell retention was estimated by measuring the amount of DNA 

present in the constructs at the end of four weeks of culture and comparing it to the initial 

amount of DNA.  

 

Histological and Immunohistochemical Analysis 

Constructs cultured for four weeks were fixed in 4% formalin for 24 h, embedded in 

paraffin, cross-sectioned (12 µm thick), and stained with Safranin O for sulphated GAG 

(100). Sections were also processed for immunohistochemistry to visualize type II 

collagen (II-II6B3, Hybridoma Bank, University of Iowa, USA), as previously described 

(159). 

Structural integrity of the scaffold was better maintained on the 300 compared to the 1000 

composition. For the latter, sections could be retrieved only where tissue formation had 

occurred. Otherwise, only small fractures of the constructs could be captured (Fig. 2C). 

For the 3DF 1000 (Fig. 2E&F), the scaffold material was completely lost, leaving behind 
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white holes. Scaffold loss was an inevitable artefact introduced during the mounting of 

histological sections (low adhesion and swelling inherent to the 1000 composition). 

Gene Expression Analysis 

RNA was extracted from tissue constructs using 250 µl Trizol (Life Technologies, Basel, 

CH) according to the manufacturer’s instructions. Extracted RNA was treated with 

DNAse following the instructions of the Rneasy Kit (Ambion, Austin TX). cDNA was 

generated from total RNA using reverse-transcriptase Stratascript (Stratagene) in the 

presence of dNTP and DTT. Real-time PCR reactions were performed and monitored 

using the ABI prism 7700 Sequence Detection System and the Sequence Detector V 

program (Perkin-Elmer Applied Biosystems). cDNA samples were analyzed for type I & 

II collagen and for the housekeeping gene (18S ribosomal RNA), using previously 

described sequences of primers and probes (100). Each cDNA sample was assessed in 

duplicate and the collagen mRNA expression levels were normalized to the corresponding 

18S rRNA levels. 
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Results 

One day after seeding expanded MSC onto the scaffolds, the constructs with CM 

architecture revealed a higher seeding efficiency on the 300 (74±2%) compared to the 

1000 (62±2%) composition as determined by the amount of DNA. For the 1000 

composition, a change in scaffold geometry from CM to 3DF enhanced the seeding 

efficiency (72±3%). The presence of TGF did not change the seeding efficiency (<7±5% 

vs. (-) TGF) and the fraction of cells released to the medium was always below 17±3%. 

After four weeks of static culture, the retention of MSC on the PolyActive® scaffolds was 

estimated by measuring the amount of DNA present in the constructs (Fig. 3A). 

Generally, the CM scaffolds maintained their initial DNA level throughout the four weeks 

of culture, and there was even a slight increase (11±9%) in DNA on the 300 composition. 

On the 3DF architecture in contrast, the final DNA level nearly dropped to half (57±5%) 

of the initial level. Overall, MSC retention on PolyActive® did not seem to be affected by 

the presence of TGF in the culture medium. 

 

Constructs cultured for 4 weeks were formalin fixed, paraffin embedded and stained for 

glycosaminoglycans (GAG) with safranin O (Fig. 2). Despite for the CM 1000 where 

little to no tissue could be retrieved, MSC were able to deposit matrix in all conditions. In 

absence of TGF (Fig. 2A, C, E) formed tissue was predominantly fibrotic, showed no 

GAG deposition and even became necrotic in parts (Fig. 2E, upper left corner of inset 

detail view). In presence of TGF, GAG deposition was faintly more visible on the 300 

(Fig. 3B) than on the 1000 (Fig. 3D) composition with CM architecture. Strongest GAG 
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Fig. 2 Light microscopy images of safranin O stained (red: glycosaminoglycans, GAG), representative histological 

cross-sections of MSC cultured on PolyActive® for four weeks without (A, C, E) or with (B, D, F) chondrogenic 

stimulus TGF. Small insets show higher power magnifications of large sections shown in corresponding large panel. In 

F, the upper insert shows a type II collagen stained section consequtive to that stained with safranin O (directely below). 

Polyactive® composition were 300 PEG 55:45 (300; A&B) and 1000 PEG 70:30 (1000; C-F) in either compression 

molded (CM; A-D) or 3D fiber deposited (3DF; E&F) architecture. Structural integrity of the scaffold was better 

maintained for the 300 (brown structures) compared to the 1000 (violet structures) composition. For the latter, sections 

could be retrieved only where tissue formation had occurred as i.e.for C, only small fractures of the constructs could be 

captured. In E&F the scaffold material was completely lost, leaving behind white holes. Scaffold loss was an inevitable 

artifact introduced during the mounting of histological sections (low adhesion and swelling inherent to the 1000 

composition). Despite strong focal GAG staining on the 3DF 1000 (F), deposited tissue in A-E was mostly fibrotic, 

showed little to no GAG accumulation and in E (upper left corner on inset) even displayed necrotic portions. Scale bars: 

400 µm (large panels), 100 µm (insets). 
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staining and presence of rounded cells was detected on the 3DF 1000 in presence of TGF 

(Fig. 2F). Only for this condition, collagen type II could be detected by 

immunohistochemistry (Fig. 2F upper inset). 

Quantitative, biochemical analysis of accumulated GAG (Fig. 3B) matched with the 

histological findings. The marginal amounts of GAG/DNA deposited in the absence of 

TGF were increased by 2 to 4-fold in presence of TGF, reaching the highest value on 

3DF1000. 

 

Fig. 3 MSC retention and glycosaminoglycan (GAG) accumulation after 4 weeks of culture on Polyactive® scaffolds 

without or with chondrogenic stimulus TGF. Panel A displays the initial amount of DNA (white bars) and that found 

after four weeks (black bars) of culture. Despite the marginal increase in DNA on the 300 PEG 55:45 (300) 

composition, the compression moulded (CM) scaffolds in general maintained their initial DNA level throughout the 

culture period. On the 3D fiber deposited (3DF) scaffolds in contrast, initial DNA levels were almost halfed (57±5%). 

The presence of of TGF did not change this pattern. Panel B shows the amount of accumulated GAG (normalized vs. 

Amount of DNA at the end of culture) as determined biochemically. The addition of TGF raised the basal levels of 

GAG/DNA by 2 to 4-fold. The highest GAG/DNA value was reached by the 3DF 1000 while comparing the CM 

architecture only, the 300 tended towards higher GAG/DNA than the 1000 composition. Error bars represent the 

standard deviation.Comparing the CM architecture only, the 300 tended towards higher values than the 1000 

composition. 
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Expression levels of mRNA (Fig. 4) revealed more drastic differences than revealed by 

the accumulation of cartilaginous matrix but followed the same trends/patterns. Type I 

collagen mRNA (indicator of fibrocartilage) expression was always expressed more 

strongly than type II collagen (indicator of hyaline cartilage). Most drastic were the 

mRNA expression changes introduced by adding TGF, which in average raised type I 

collagen ~300-fold and type II collagen by several orders of magnitude (4.5E+6). In 

presence of TGF, highest type II collagen mRNA expression was found on the 3DF 1000 

which was four orders of magnitude higher than that found on CM of the same chemistry. 

Comparing the CM architecture only, type II collagen mRNA was more than 40 times 

higher on the 300 than it was on the 1000. 

 

 

Fig. 4 Type I & II collagen mRNA expression of MSC cultured for four weeks on Polyactive® scaffolds without or 

with TGF. Genes of interest (G.o.I) were normalized vs. housekeeping gene (HK) 18S. Panel A: type I collagen, panel 

B: type II collagen. Error bars indicate standard deviation. 
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Discussion 

Using two contrasting compositions and architectures, scaffolds made of PolyActive® 

were per se not able to induce chondrogenesis in MSC. However, in presence of exogenic 

chondrogenic stimulus TGF, chondrogenesis could be observed which tended to be better 

supported by the more hydrophobic 300 composition and was further enhanced by 

changing the scaffold architecture from CM to 3DF. These findings indicate, that 

controlling scaffold composition and architecture is important to support, but per se not 

sufficient to instruct/induce chondrogenesis in MSC. 

 

Marginal proliferation in any of the conditions excludes the possibility that 

chondrogenesis was indirectly regulated through differential cell proliferation. Although 

initially cell seeding efficiency was comparable in all the conditions, a marked loss of 

cells from 3DF 1000 scaffolds over four weeks of culture reveals a low affinity of MSC 

for this combination of composition and architecture and prompts for very careful liquid 

handling during medium changes. Since histological sections indicate that this cell loss 

did not lead to an obvious decrease in local cell density (1000 compostition; 3DF vs. CM) 

this unlikely affected chondrogenesis of the retained/remaining MSC.  

In contrast to the findings with nasal chondrocytes (117), non of the PolyActive® 

compositions and architecture compositions per se allowed for chondrogenesis in MSC. 

However, supplementing the culture medium with TGF stimulated chondrogenesis in 

MSC and revealed this process to be slightly modulated by scaffold composition and 

more strongly by its architecture. Although selectively adsorbed serum proteins (113;160) 

on the scaffold surface has been reported to instruct human chondrocyte re-differentiation 

(117), this stimulus alone does not seem to suffice for instructing chondrogenic 
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differentiation in less committed cells as i.e. MSC. In this light, it appears more 

appropriate to consider the applied scaffold materials chondro-supportive, instead of 

chondro-instructive. Also, further investigations on the influence of PolyActive® 

compostition and architecture on MSC differentiation should be perfomed in presence of 

a chondrogenic stimulus. A common approach to induce chondrogenesis in MSC, is 

supplementing the culture medium with a strong differentiation stimulus as i.e. TGFβ 

(94;156). As an alternative to, exogenous soluble differentiation stimuli, MSC could be 

exposed to paracrine signals present in an osteochondral microenvironment (161). To this 

end, a recently introduced ectopic in vivo mouse model for human cartilage repair could 

offer an experimental solution (162). Therein, a MSC/scaffold construct could be placed 

in a defined osteochondral defect (disk from human femour head explants) and cultured 

subcutaneously in a nude mouse. 

 

In presence of TGF, chondrogenesis of MSC always followed the same trend which was 

3DF 1000 > CM 300 > CM 1000. Thus both, scaffold composition and architecture 

appeared to modulate MSC chondro-differentiation. That the 300 composition better 

supported chondrogenesis, contradicts previous reports for nasal chondrocytes (NC) 

which showed superior chondrogenic differentiation on the 1000 (117). Yet, despite the 

plasticity of expanded NC (unpublished results), MSC are presumably more progenitor-

like. Thus, they could be more sensitive to passing through developmental checkpoints as 

i.e. cellular condensation to enter chondrogenic differentiation. Therefore, MSC could 

profit from higher fibronectin (FN) concentration present on the 300 than on the 1000, 

since FN plays a crucial role in aggregation of cells into mesenchymal condensations 

(163). In the developing limb bud, cellular condensation is a key step for chondrogenesis 

of mesenchymal cells as it allows for the appropriate microenvironment through 
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homotypic cell-cell interactions (for review see (164)). In contrast to MSC, to de-

differentiated chondrocytes (as i.e. NC), which already have already passed through 

condensation once, FN likely provides a different stimulus as i.e. spreading (117), which 

is known to interfere with re-differentiation (165). While this explanation is quite 

speculative, there is no doubt that that NC (neuro ectoderm) and MSC (mesoderm) are of 

quite different germ layer origin and thus likely react to the same stimulus in a different 

manner. 

The higher degree of chondrogenic differentiation mediated by the 3DF architecture 

(comparing 1000 composition only) is in line with findings for human nasal chondrocytes 

(117). Lower structural complexity and bigger average pore size of the 3DF facilitate 

diffusion rate of nutrients and gases as well as waste removal and likely contribute to this 

effect (116). Moreover, the low affinity of MSC for the 1000 composition combined with 

the low structural complexity of the 3DF architecture (i.e. high interconnectivity of the 

pores) could facilitate MSC condensation into larger aggregates. 

 

Outlook 

Due to its superior performance, follow-up investigations of substrate chemistry influence 

on MSC chondrogenesis could be restricted to the 3DF architecture. However, this should 

be preceded by an optimization of the cell culture protocol in order to prevent cell loss. 

Under optimized in vitro conditions, the effect of substrate chemistry should be 

reassessed with MSC from another donor, to test the robustness of the observed effect. 

 



 - 50 - 

STUDY 2 

 

 

 

 

 

 

 

Aim 

It was investigated, whether chondrogenesis of expanded MSC can be 

instructed/modulated by controlled modifications of scaffold composition under 

optimized in vitro conditions. As a model system, poly(ethylene glycol)-terephtalate-

poly(buthylene)-terephtalate block copolymer scaffolds (PolyActive®) with 3D fiber 

deposited (3DF) architecture of two contrasting compositions (low or high PEG content, 

resulting in different wettability) were used. 
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Methods 

Scaffold Fabrication 

See study 1. Compared to the compression molded (CM), the 3D fibre deposited (3DF) 

scaffolds better supported chondrogenesis of MSC. Thus, in this study scaffold 

architecture was focussed on 3DF. 

 

MSC Isolation and Expansion 

For this study, a bone marrow aspirate (20 ml volume) from a healthy donor (male, 44 

years) was used. MSC were isolated and expanded as described in study 1. 

 

Optimization of in vitro Culture Conditions 

Based on the findings of the previous study, the in vitro culture conditions were optimized 

for this study. In particular, i) medium composition and ii) cell retention were optimized 

as follows: 

 

i) The composition of chondrogenic differentiation medium which was adapted 

from that previously used for nasal chondrocytes, resulted in limited 

chondrogenesis of MSC (see study 1). Since foetal bovine serum suppressed 

TGFβ-1 induced chondrogenesis in synoviocytes pellet culture (166) a serum free 

medium chondrogenic medium (102) was tested as an alternative to the previously 

used serum containing medium (DMEM complete; see study 1). The 

chondrogenesis of MSC in presence or absence of serum was investigated in  
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Fig. 5 Light microscopy images of Safranin O stained (red: glycosaminoglycans, GAG), representative histological 

pellet cross-sections. To test whether chondrogenesis of MSC could be improved using a serum free medium, MSC 

were cultured as pellets in either (A) 10% serum containing DMEM complete medium as applied for study 1, or (B) 

serum free medium (SFM), or to isolate the effect of serum in (C) SFM supplemented with 10% serum. To stimulate 

chondrogenesis, all media contained 0.1 mM ascorbic acid, 10 mg/ml insulin and 10 ng/ml transforming growth factor 

beta 1 (TGF). MSC aggregated with fibrin glue (D) were also cultured in SFM chondrogenic medium. This was done to 

isolate the effect of fibrin glue on the chondrogenesis of MSC as it was included in this study to improve MSC retention 

on the 3D fiber deposited scaffolds. Scale bars: 100µm (large panels), 400µm (small panels). 
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pellet cultue (see Fig. 5A&B). In brief, aliquots of 5x105 MSC/0.5ml were 

centrifuged at 250 g for 5 min. in 1.5 ml polypropylene conical tubes (Saarstedt, 

Nümbrecht, Germany) to form spherical pellets. These pellets were cultured either 

in serum containing DMEM complete (see previous study), or in a chemically 

defined, serum-free medium (SFM), which consists of DMEM containing 4.5 

mg/ml D-glucose, 0.1 mM non-essential amino acids, 1 mM sodium pyruvate, 10 

mM HEPES buffer, 100 U/ml penicillin, 100 µg/ml streptomycin, and 0.29 mg/ml 

L-glutamine (all Gibco, UK). To isolate the effect of serum, SFM was 

supplemented with 10% FBS. Additionally, all media were supplemented with the 

chondrogenic factors ITS+1 (10 µg/ml insulin, 5.5 mg/ml transferrin, 5 ng/ml 

selenium, 0.5 mg/ml bovine serum albumin, 4.7 mg/ml linoleic acid), 1.25 mg/ml 

human serum albumin, 0.1 mM ascorbic acid 2-phosphate and 10-7 M 

dexamethasone (all Sigma Chemical, USA) and 10 ng/ml TGF-β1 (R&D, UK). 

Pellets were cultured for 4 weeks at 37°C / 5% CO2, with medium changes twice 

per week.  

Light microscopy images of safranin O stained representative histological pellet 

sections revealed that not only the SFM medium improved the chondrogenesis in 

MSC but also that serum had a negative effect thereon and even led to necrosis 

(see Fig. 5C).  

 

ii) As on the 3DF scaffold with the 1000 composition almost half of the initially 

seeded MSC were lost throughout the culture period, low concentration fibrin glue 

(FG; TISSEEL® kit, Baxter, Vienna, Austria, dilution 1:16) was used to improve 

cell retention. Fibrin glue consists of a fibrinogen aprotinin solution (contains 

Factor XIII), which coagulates when combined with thrombin and calcium 
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chloride. Taking advantage of FG mediated coagulation, homogenous cell 

distribution and quantitative seeding efficiency was achieved on 1000 3DF 

scaffolds (data not shown). To test whether FG interferes with chondrogenesis, FG 

entrapped MSC were cultured in chondrogenic differentiation medium (see Fig. 

5D). For this, aliquots of 5x105 MSC/0.5ml were centrifuged at 250 g for 5 min. in 

1.5 ml polypropylene conical tubes (Saarstedt, Nümbrecht, Germany). The pellet 

was resuspended with 52 µl of 7 mg/ml fibrinogen solution (contains aprotinin as 

a protease inhibiting FG stabilizer) and the cell suspension transferred to a conicial 

polypropylene tube containing 10 µl of 31 U/ml thrombin in solution (in 40 mM 

CaCl2) where the mixture was allowed to clot. FG entrapped MSC cultured in 

SFM supplemented with chondrogenic factors (as described above) for four weeks 

of culture (Fig. 5D) were comparable to conventional pellets (see Fig. 5B) in their 

accumulation of GAG. As FG was not found to interfere with MSC 

chondrogenesis, FG was applied in this study to optimize MSC retention on the 

3DF scaffolds as described below. 

 

 

Chondrocyte Seeding and Culture on Three Dimensional Scaffolds 

Cylindrical scaffolds were prewetted with 70% ethanol and thoroughly rinsed with 

autoclaved milliQ water. Prewetted scaffolds were soaked in DMEM complete for 1 hour. 

This allowed for differential adsorption of serum proteins on the two contrasting 

compositions, and has been described to be responsible for their difference in modulating 

chondocyte redifferentiation (113). Subsequently, the scaffolds were blotted dry on a 

sterile paper, loaded with a corresponding volume (300: 25 µl; 1000: 55 µl) of 31 U/ml 
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thrombin in 40 mM CaCl2 solution and placed in an agarose coated 12 well plate for 5 

min. before blotting dry again. Holding the scaffold with forceps, P2 expanded MSC (2.5 

Mio/scaffold) in the corresponding volume (300: 25 µl; 1000: 55 µl) of 7 mg/ml 

fibrinogen (in the supplied aprotinin solution) were seeded onto the scaffolds. Seeding 

volume/scaffold was adjusted to compensate for the differential swelling inherent to the 

corresponding composition. The cell loaded construct was placed on top of 10 µl 31 U/ml 

thrombin solution (in 40 mM CaCl2) in an agarose coated 12 well plate and allowed to 

stand for 2 min. prior to adding the corresponding medium. Constructs were statically 

cultured in 2ml of either DMEM complete or SFM supplemented with 10 mg/ml insulin, 

0.1mM ascorbic acid and 10ng/ml TGFβ-3 (TGF) for 4 weeks, with culture medium 

changes twice a week. After harvesting, constructs were processed for histological and, 

biochemical or gene expression analysis. 

 

Biochemical analysis, cell seeding efficiency & retention, histological & 

immunohistochemical analysis: see study 1. 
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Results 

One day after seeding expanded MSC onto the scaffolds using fibrin glue (FG), seeding 

was found to be quantitative and comparable on both scaffold chemistries. With 96±10% 

for the 300 and 104±11% for the 1000 composition, the seeding efficiency was more than 

20% higher than that achieved previously without FG on 3DF 1000 (see study 1). 

After four weeks of static culture, the retention of MSC on the PolyActive® scaffolds was 

estimated by measuring the amount of DNA present in the constructs (Fig. 7A). There 

was a slight loss of DNA on the 300 composition which tended to be stronger in presence 

of serum (DMEM complete; 19±10%) than in serum free medium (SFM; 11±5%). On the 

1000 in contrast, the final amounts of DNA were increased and tended to be higher in the 

absence of serum (27±13%) than in DMEM complete (8±4%). 

 

Constructs cultured for 4 weeks were formalin fixed, paraffin embedded and stained for 

glycosaminoglycans (GAG) with safranin O (Fig. 6). In all conditions, MSC were able to 

deposit matrix, which in presence of serum was predominantly fibrotic and showed no 

GAG deposition (Fig. 6A&C). All constructs were encapsulated by several layers of cells 

with flattened morphology. This capsule was denser/thicker where serum was present and 

thinnest for the 300 composition in absence of serum. Some core regions seem to have 

become necrotic as they contain a dense aggregation of nuclei (Fig. 6 lower left panels in 

A & B; blue dots). In absence of serum, GAG staining was faint on the 1000, clearly 

stronger on the 300 and for both compositions most intense just beneath the construct 

periphery. On the 300, the staining additionally reached into the core regions of the 

construct. 



 - 57 - 

 

Fig. 6 Light microscopy images of Safranin O stained (red: glycosaminoglycans, GAG), representative histological 

cross-sections. MSC cultured on PolyActive® for four weeks in either serum containing (DMEM complete: A, C) or 

serum free (SFMCh: B, D) medium supplemented with chondrogenic factors including 10 ng/ml TGF. Polyactive® 

architecture was 3D fiber deposited (3DF) with a composition of 300 PEG 55:45 (300; A&B) and 1000 PEG 70:30 

(1000; C, D). Small panels (left: core region, right: periphery) show higher power magnifications of corresponding 

overview panel. Structural integrity of the scaffold (round, brown structures) was better maintained for the 300 

compared to the 1000 composition. Scaffold loss was an inevitable artefact introduced during the mounting of 

histological sections (low adhesion and swelling inherent to the 1000 composition). Fibrin glue improved tissue 

integrity and allowed for preparing entire histological cross-sections. In all conditions, MSC were able to deposit 

matrix, which in presence of serum was predominantly fibrotic and showed no GAG deposition (A&C). All constructs 
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were encapsulated by several layers of cells with flattened morphology. This capsule was denser/thicker where serum 

was present and thinnest for the 300 composition in absence of serum. Some core regions seem to have become necrotic 

as they contain a dense aggregation of nuclei (lower left panels in A & B; blue dots). In absence of serum, GAG 

staining was faint on the 1000, clearly stronger on the 300 and for both compositions most intense just beneath the 

construct periphery. On the 300, the staining additionally reached into the core regions of the construct. Scale bars: 800 

µm (large panels), 200 µm (small panels). 

 

Quantitative, biochemical analysis of accumulated GAG (Fig. 7) matched with the 

histological findings. In presence of serum, GAG deposition remained marginal and was  

only slightly higher on the 300 (28%) than on the 1000 composition. Compared to 

DMEM complete, SFM allowed for increased GAG accumulation (300: 2.5x; 1000: 1.4x) 

and was 2.3x higher on the 300 than on the 1000 composition. Constructs with the 300 

compositon reached approximately 70% of the GAG/DNA level found in pellet controls 

(data not shown). 
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Fig. 7 MSC retention and glycosaminoglycan (GAG) accumulation over 4 weeks of culture on Polyactive® scaffolds in 

presence of (DMEM complete) or without serum (SFM). Panel A displays the initial amount of DNA (white bars). 

Measurements were only done for constructs in SFM, as they are not thought to be affected by medium composition in 

short term (24 hours). Black bars show the amount of DNA found after four weeks of culture. All conditions maintained 

their initial DNA levels or even permitted for an moderate increase (<27%) throughout the culture period. The average 

increase was higher in SFM than in presence of serum. Panel B shows the amount of accumulated GAG (normalized vs. 

the mount of DNA at the end of culture) as determined biochemically. In presence of serum, GAG deposition remained 

marginal and was only slightly higher on the 300 (28%) than on the 1000 composition. In contrast to DMEM complete 

however, SFM allowed for increased GAG accumulation (300: 2.5x; 1000: 1.4x) which was 2.3x higher on the 300 than 

on the 1000 composition. Error bars represent the standard deviation. 

 

 

 

Discussion 

Using two contrastingly different compositions, scaffolds made of PolyActive® did not 

support chondrogenesis in MSC if serum was present in the chondrogenic medium. In 

absence of serum however, chondrogenesis could be observed and tended to be better 

supported by the more hydrophobic 300 composition. This finding indicates, that 

controlling scaffold composition can be employed to support chondrogenesis in MSC, but 

strongly depends on additional soluble instructive/inductive stimuli like i.e. TGF. 
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For both substrate compositions, fibrin glue modified seeding allowed for quantitative 

seeding efficiency and cell retention, while changing to a serum free chondrogenic 

medium allowed for improved MSC chondrogenesis. 

An adverse effect of serum on MSC chondrogenesis was evident in both pellets (Fig. 5C) 

as well as in constructs (Fig. 6). This observation is in line with previous findings in 

which serum has been found to suppress TGF induced chondrogenesis in synoviocyte 

pellet culture (166). Although, constructs were cultured in serum free medium, prior to 

cell seeding substrates were soaked in serum containing medium. This should have 

allowed for composition inherent, differential serum protein adsorption which has 

formerly been argued to be the key to the differential support of chondrogenic 

differentiation on Polyactive® substrates of contrasting chemical compostition (113). 

Fibrin glue (FG) could potentially mask this proteinaceous interface amd thus was applied 

at a diluted concentration. However, under comparable culture conditions as applied in 

this study, chondrocytes were capable to degrade even higher concentrated FG after two 

to three days (167). Similar behaviour may be expected from MSC due to their ability to 

secrete fibrinolytic enzymes which facilitate the degradation of fibrin clots (168). Thus, 

altough FG may have delayed MSC/substrate-interface interaction it unlikely has been 

able to ultimately mask it. This view also finds support by the fact that although FG was 

present in this study, the trends for the substrate composition observed in study 1 could be 

reproduced. 
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CONCLUSION STUDY I & II 

Taken together, in both studys substrate composition & architecture was found to 

modulate the chondrogenic differentiation of MSC. That the di block copolymer model 

substrate (Polyactive®) with a more hydrophobic composition better supported MSC 

chondrogenesis, is likely associated with differential protein adsorption (from serum 

containing medium). However such proteinaceous interfaces are rather complex with 

regard to protein composition and conformation thereon. This conceals the specific cues 

responsible for mediating the observed effects and thus strongly prompts for reducing the 

substrate interface complexity in subsequent investigations of chondroprogenitor cell-

substrate interactions. 
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Chapter II 

 

 

 

RGD-PEPTIDE RESTRICTED 

INTERACTIONS WITH A  
PROTEIN RESISTANT 

SUBSTRATE ARE SUFFICIENT 

FOR HUMAN ARTICULAR 

CHONDROCYTE ADHESION, 
GROWTH &  MAINTENANCE OF 

CARTILAGE  
FORMING CAPACITY 
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ABSTRACT 

 

 

 

This study aimed at testing whether an RGD-restricted substrate interface is sufficient for 

adhesion and growth of human articular chondrocytes (HAC), and whether it enhances 

their post expansion chondrogenic capacity. HAC/substrate interaction was restricted to 

RGD by modifying tissue culture treated polystyrene (TCPS) with a poly-(ethylene 

glycol) (PEG) based copolymer system that renders the surface resistant to protein 

adsorption while at the same time presenting the bioactive RGD-containing peptide 

GCRGYGRGDSPG (RGD). As compared to TCPS, HAC cultured on RGD spread faster, 

better maintained their chondrogenic phenotype and had a lower spreading area. 

Attachment and proliferation, as well as type II collagen mRNA expression in the 

subsequent chondrogenic differentiation phase, were similar to those of HAC cultured on 

TCPS. In contrast, cartilaginous matrix deposition by HAC expanded on RGD was 

slightly but consistently higher. RDG (bioinactive peptide) and PEG (no peptide ligand) 

controls yielded drastically reduced attachment and proliferation, thus indicating 

specificity of RGD. The restriction of cell-substrate interactions to RGD could be 

implemented in materials for cartilage repair, whereby in situ recruited/infiltrated 

chondroprogenitor cells would proliferate while maintaining their ability to differentiate 

and generate new cartilage tissue. 



 - 64 - 

INTRODUCTION 

Human articular chondrocytes (HAC) have received great attention in the context of cell-

based repair of cartilage, which per se has a very limited regeneration capacity (148). One 

of the current therapies to overcome this limitation is to restore the damage by autologous 

chondrocyte implantation (ACI) (169). In this procedure, HAC are enzymatically 

extracted from a small articular cartilage biopsy and subsequently expanded in vitro to 

obtain a sufficient number of cells for implantation. During expansion, HAC de-

differentiate and their redifferentiation capacity is often limited (95;96). De-

differentiation of chondrocytes manifests by cell morphological transition from round to 

fibroblast-like, the loss of large proteoglycans (e.g. aggrecan) and type II collagen 

production (97;98), and the switch to synthesis of type I collagen, fibronectin (FN), and 

small noncartilaginous proteoglycans (98;99). This raises the problem, that subsequent to 

monolayer culture the de-differentiated chondrocytes have the propensity to produce 

fibrocartilaginous tissue which is of inferior mechanical quality as compared to hyaline 

cartilage. 

Tissue culture treated polystyrene (TCPS; gas plasma activated polystyrene) currently is 

the gold standard substrate for HAC monolayer expansion. It readily adsorbs proteins that 

are present in serum containing culture medium, which rapidly leads to the formation of a 

proteinaceous adlayer, determining the subsequent cell-surface interaction (170). The 

nature of such interfaces is highly complex with regard to composition and conformation 

of the adsorbed proteins (171). Since the biology of chondrocytes is highly influenced by 

interactions with specific extracellular matrix (ECM) molecules (172;173), controlled 

modification of cell culture substrates with biological motives has the potential to 

improve HAC expansion strategies. 



 - 65 - 

A typical approach to investigate substrate effects on chondrocyte phenotype has been to 

coat TCPS with specific ECM-protein solutions. As compared to on plastic substrates, 

chicken epiphysial chondrocytes longer retained their native morphology on type II 

collagen coatings (129), and rabbit articular chondrocytes better preserved their 

phenotype on type I collagen (128). In contrast, however, other studies showed that the 

expression of type I and II collagen by chondrocytes was not altered in response to 

substrates coated with either type I or II collagen or fibronectin (174;175). The 

controversial results could at least partially be due to the fact that simple application of 

natural protein layers lacks control over the presentation of active ligands to the cells 

(176). In fact, protein adsorption is generally governed by electrostatic interactions, van 

der Waals forces and short range repulsion forces and occurs randomly in various 

different orientations of the protein (177). Also, it has been demonstrated on a variety of 

surfaces including TCPS, that adsorption can induce conformational changes in several 

different proteins as for example in collagen and results in alteration of the native protein 

biological activity (for review see (178)). The uncertainties introduced by working with 

natural protein layers has driven the development and synthesis of materials which 

provide full control over the ligand-receptor interactions (179), not only for optimizing 

cell culture labware but also for the development of smart materials in regenerative 

medicine. 

The peptide sequence RGD is present in several ECM-proteins like fibronectin, collagens 

and vitronectin and not only serves as the minimal requirement for integrin-mediated cell 

anchoring (180), but also provides signals which can modulate chondrocyte morphology, 

motility, proliferation and differentiation. Mice with a cartilage specific deletion of beta 1 

integrins have abnormally shaped chondrocytes, that fail to arrange into columns within 

the growth plate and show a decreased proliferation rate (181). In the developing mouse 
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zegopod, it was even shown, that blocking α5β1 integrin interaction with RGD from the 

ECM inhibits pre-hypertrophic chondrocyte differentiation and eventually leads to 

apoptosis (182). Although a great variety of materials has been modified with RGD, their 

in vitro biological effect has largely been tested on animal cell lines and often restricted to 

cell attachment, morphology and proliferation, mostly leaving unadressed the impact on 

the cell phenotype and on the cell differentiation capacity (for review see (141)). No study 

has yet assessed primary human articular chondrocyte expansion on a fully controlled, 

RGD-restricted substrate. 

In this work, we tested whether an RGD-restricted substrate interface is sufficient to 

allow for HAC adhesion, growth and maintenance of the chondrogenic capacity. In 

particular, HAC attachment, spreading kinetics, morphology, proliferation, gene 

expression and post-expansion cartilage formation were assessed on a poly-(ethylene 

glycol) (PEG) based copolymer system that renders the surface resistant to protein 

adsorption while at the same time presenting the bioactive, RGD-containing peptide 

GCRGYGRGDSPG (RGD) (183-185). HAC culture on RGD was compared to that on 

tissue culture treated polystyrene (TCPS, standard substrate) and on control PEG 

substrates, without or with the scrambled sequence RDG. 



 - 67 - 

METHODS 

 

Fig. 1: Schematic view of the experimental design. Subsequent to isolation from three different donors (age 53-

66years), human articular chondrocytes (HAC) were expanded either on RGD-functionalized PLL-g-PEG (RGD) or the 

standard substrate, tissue culture treated polystyrene (TCPS). The scrambled sequence RDG-functionalized PLL-g-PEG 

(RDG) and PLLg-PEG served as negative controls. Subsequent to expansion, HAC were re-differentiated in pellet 

culture in presence of serum free chondrogenic medium. 

 

 

Polymer Synthesis and Characterization 

Peptide-functionalized and non-functionalized PLL-g-PEG polymers were synthesized 

and characterized as previously published (139;186) . In brief, these polymers are based 

on a PLL backbone of approximately 120 L-lysine units (average value in view of the 

polydispersity of 1.4 of the polymer; Sigma-Aldrich, Buchs, CH), a PEG side chain of 

approximately 47 ethylene glycol units (PEG MW 2 kDa, polydispersity: 1.02; Nektar, 

Bradford, UK) and a grafting ratio (g) between 3.3 and 4.6, expressed as the number of 

lysine monomers per PEG side chain. A vinyl sulfone-modified PEG chain of 3.4 kDa 

molecular weight (polydispersity: 1.01; Nektar, Bradford, UK) was used to couple the 

peptide sequences with the PLL backbone. The following peptides were used for the 
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synthesis of functionalized PLL-g-PEG polymers: the bioactive RGD-containing N-

acetyl-GCRGYGRGDSPG-amide and the scrambled (bio-inactive) N-acetyl-

GCRGYGRDGSPG-amide (both purchased from Jerini, Berlin, GER). Polymer 

architectures (grafting ratios and fractions of peptide-functionalization) were determined 

with nuclear magnetic resonance spectroscopy (NMR) whereas adsorbed polymer and 

serum masses were measured using optical waveguide lightmode spectroscopy (OWLS) 

(see Table 1 for details). All polymers used were proven to be highly resistant to non-

specific serum adsorption (<5 ng/cm2). 

 

 

Tab 1. Molecular weight, grafting ratio, peptide functionalization, polymer/protein adsorption and peptide surface 

density for all polymers used in this paper. aMeasured with NMR technique, bmeasured with OWLS technique. cSee 

Schuler, et al. 2006 (186) for details. 

 

 PEG RGD RDG 

Molecular weight PLL [kDa] 15.9 15.9 15.9 

Molecular weight lysine unit [kDa] 0.128 0.128 0.128 

Molecular weight peptide [kDa] - 1.222 1.222 

Molecular weight entire polymer [kDa] 91.1 52.8 56.8 

Grafting ratio g [-]a 3.3 7.0 6.4 

Peptide-functionalized PEG-chains [%]a - 3.4 3.7 

Polymer adsorption [ng/cm2]b 150 143 135 

Protein adsorption [ng/cm2]b < 5 < 5 < 5 

Peptide surface density ρps [pmol/cm2]c - 1.6 1.7 
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Surface Modification for Cell Culture 

For modifying the surface of tissue culture treated polystyrene (TCPS; atmospheric gas 

plasma treated polystyrene), frozen samples of dehydrated PLL-g-PEG polymer powders 

were warmed up to room temperature, dissolved in a salt buffer solution (denoted 

hereafter as HEPES2) containing 10 mM HEPES and 150 mM NaCl at pH 7.4 (to reach a 

final concentration of 0.5 mg/ml) and filter sterilized (0.22 µm filter, Milian, Basel, CH). 

TCPS dishes/flasks (TPP, Tarasdingen, Switzerland) and Thermanox® lamellae (Nunc, 

USA, for CLSM, activated with a UVO-Cleaner (Model 42-220, Jetlight Company, 

USA)) were coated at room temperature for 45 min. with 100 µl/cm2 of the above 

described polymer solutions while stirring on an orbital shaker. Supernatant polymer 

solution was aspirated and surfaces were washed twice with 200 µl/cm2 HEPES2 buffer 

solution for 5 min. For convenience, PEGylated surfaces will be named hereafter 

according to their peptide sequences (PLL-g-PEG/PEG-RGD as RGD and PLL-g-

PEG/PEG-RDG as RDG) whereas the non-functionalized PLL-g-PEG surface will be 

denoted as PEG. 

 

Cell isolation and Expansion 

Full thickness human articular cartilage samples were collected within 24 hours post 

mortem from the femoral lateral condyle of three different donors (age in years; A:53, 

B:62, C:66), with no history of joint disease, after obtained informed consent, following 

protocol approval by the local ethical commitee (No. 78/07) (Fig. 1, HAC Isolation). 

HAC were isolated upon 22-hour incubation at 37 °C in 0.15% type II collagenase and 

resuspended with Dulbecco’s modified Eagle’s medium (DMEM) containing 4.5 mg/ml 
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D-glucose, 0.1 mM non-essential amino acids, 1 mM sodium pyruvate, 10 mM HEPES 

buffer, 100 U/ml penicillin, 100 µg/ml streptomycin, and 0.29 mg/ml L-glutamine, 

supplemented with 10% FBS (all from Gibco, UK) (DMEM complete). For the first 

expansion phase, HAC from each donor were seeded onto either TCPS, RGD, RDG or 

PEG substrates at a concentration of 104 cells/cm2. HAC were cultured in CM 

supplemented with 1 ng/ml TGF-ß1, 5 ng/ml FGF-2, 10 ng/ml PDGF-BB (expansion 

medium, all from R&D, UK) in a humified 37°C/5% CO2 incubator. These specific 

growth factors have previously been shown to enhance HAC proliferation and post-

expansion redifferentiation capacity (Fig. 1, HAC Expansion) (102). HAC were detached 

at confluency (passage 1) by a treatment with 0.3% type II collagenase, followed by 

0.05% trypsin/0.52 mM EDTA (Gibco, UK), re-plated on the corresponding surfaces at a 

density of 5 x103 cells/cm2 for the second expansion step, and cultured in expansion 

medium until they reached confluency again (passage 2). 

 

Cell Attachment & Proliferation 

To determine cell attachment 24 hours after inoculation (Fig. 1, HAC Expansion), 

supernatants containing non-adherent cells were collected, counted in a Neumann 

chamber and their viability was assessed using Trypan blue (Sigma Chemical, USA). The 

non-adherent HAC from RDG and PEG were returned to the corresponding dishes at each 

medium change. Cell proliferation rate was calculated as the ratio of log2 (N/N0) to T, 

where N0 and N are the numbers of cells respectively at the beginning and the end of the 

expansion phase, and T is the time required for the expansion (102). 
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Cell Morphology 

HAC after the second confluency on TCPS or RGD were detached, reseeded onto a 

correspondingly coated lamellae at a density of 5 x103 cells/cm2 and cultured in 

expansion medium in a humified 37°C/5% CO2 incubator for three days. The lamellae 

were then rinsed with PBS (Gibco, UK). Rinsed HAC were fixed with 1% glutaraldehyde 

in PBS for 30 min. at room temperature. Substrates were rinsed with PBS before 

permeabilizing and further fixing with 2 % Octyl-polyethylene (Octyl-POE) and 0.125% 

glutaraldehyde for 5 min. Following a PBS wash, residual glutaraldehyde was reduced 

with a solution of 0.5 g/ml NaBH4 in PBS at 0°C for 20 min. After washing with PBS 

again, HAC were labeled with TRITC-phalloidin 1:900 (λEx=488 nm, Sigma Chemicals, 

USA) against actin filaments and DRAQ5 1:200 (λEx=647 nm, Alexis Biochemicals) to 

label DNA in the nuclei (all dilutions in PBS). Finally, the lamella were mounted onto a 

glass slide using mowiol-1188 (Hoechst, Frankfurt, Germany) containing 0.75 % of the 

anti-fading agent N-propyl-gallate (Sigma Chemicals, USA) and stored at 4°C in the dark. 

Fluorescence images were acquired with a Leica TCS SP CLSM, using a 63x HC PL 

APO immersion objective. The number of stacks was fixed to 20, while each stack 

(1024x1024 pixel2) was scanned at medium speed and averaged four times. 

To describe the HAC morphology and the degree of spreading, a cell shape factor φ (Eq. 

1) was used (186;187).  

 

        (1) 
 

The area A and the perimeter p required for calculating the shape factor φ were 

determined from the CLSM images using Image J version 1.37 (188). A shape factor for a 

round cell can assume values near to one. Circles have the greatest area-to perimeter ratio 

2p

Aπ4=φ
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and their shape factor φ is 1, whereas a thin, thread-like object would have a shape factor 

φ.near 0. 

 

Initial Cell Spreading, Kinetic & Motility 

Time lapse microscopy experiments were performed on an Olympus IX81 motorized, 

inverted microscope in phase contrast mode, using a 10x LCPFL objective combined with 

a 1.6x magnifying lens (to investigate initial spreading) or an UplanApo 4x objective (to 

investigate motility). The microscopes were equipped with a high resolution position 

controller to drive the motorized stage. HAC were seeded onto either TCPS or RGD in 

expansion medium at a density of 104 cells/cm2 (for studies on initial spreading) or 

7.5x103 cells/cm2 (for studies on motility) and kept in a box at 37°C / 5% CO2. The initial 

spreading kinetic of HAC was followed for 18 min. Starting 5 min. post seeding, every 

two min. an image was acquired from 15 randomly selected areas of each substrate. Using 

Image J, the spreading kinetic of 28 cells, which were at the onset of spreading, was 

determined on each surface based on the spreading area. 

 

 

Chondrogenic Assay 

The chondrogenic capacity of HAC expanded on either TCPS or RGD was investigated in 

pellet culture (Fig. 1, HAC Redifferentiation) using a chemically defined, serum-free 

medium (SFM), which consists of DMEM containing 4.5 mg/ml D-glucose, 0.1 mM non-

essential amino acids, 1 mM sodium pyruvate, 10 mM HEPES buffer, 100 U/ml 

penicillin, 100 µg/ml streptomycin, and 0.29 mg/ml L-glutamine (all Gibco, UK) 

supplemented with ITS+1 (10 µg/ml insulin, 5.5 mg/ml transferrin, 5 ng/ml selenium, 0.5 
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mg/ml bovine serum albumin, 4.7 mg/ml linoleic acid), 1.25 mg/ml human serum 

albumin, 0.1 mM ascorbic acid 2-phosphate and 10-7 M dexamethasone (all Sigma 

Chemical, USA) and 10 ng/ml TGF-β1 (R&D, UK) (chondrogenic medium) (100;189). 

Aliquots of 5x105 HAC/0.5ml were centrifuged at 250 g for 5 min. in 1.5 ml 

polypropylene conical tubes (Saarstedt, Nümbrecht, Germany) to form spherical pellets, 

which were placed onto a 3D orbital shaker (Bioblock Scientific, Frenkenkdorf, 

Switzerland) at 30 rpm. Pellets were cultured for 2 weeks at 37°C / 5% CO2, with 

medium changes twice per week, and subsequently processed for histological, immuno-

histochemical, biochemical and mRNA analysis. 

 

 

Gene Expression Analysis 

RNA was extracted from tissue constructs using 250 µl Trizol (Life Technologies, Basel, 

CH) according to the manufacturer’s instructions. Extracted RNA was treated with 

DNAse following the instructions of the Rneasy Kit (Ambion, Austin TX). cDNA was 

generated from total RNA using reverse-transcriptase Stratascript (Stratagene) in the 

presence of dNTP and DTT. Real-time PCR reactions were performed and monitored 

using the ABI prism 7700 Sequence Detection System and the Sequence Detector V 

program (Perkin-Elmer Applied Biosystems). cDNA samples were analyzed for type I, II, 

X collagen and for the housekeeping gene (18S ribosomal RNA), using previously 

described sequences of primers and probes (100). Each cDNA sample was assessed in 

duplicate and the collagen mRNA expression levels were normalized to the corresponding 

18S rRNA levels. 
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Biochemical Analysis 

HAC pellets cultured in chondrogenic medium for two weeks were digested with protease 

K (0.5 ml of 1 mg/ml protease K in 50 mM Tris with 1 mM EDTA, 1 mM iodoacetamide, 

and 10 µg/ml pepstatin-A) for 15 hours at 56°C (157). The GAG content was measured 

spectrophotometrically using dimethylmethylene blue (158), with chondroitin sulfate as a 

standard, and normalized to the DNA amount, measured spectrofluorometrically using the 

CyQUANT Kit (Molecular Probes, Eugene, OR), with calf thymus DNA as a standard. 

GAG contents are reported as µg GAG / µg DNA. 

 

Histological and Immunohistochemical Analysis 

Cell pellets cultured in chondrogenic medium were fixed in 4% formalin for 24 h, 

embedded in paraffin, cross-sectioned (5 µm thick), and stained with Safranin O for 

sulphated glycosaminoglycan (GAG) (100). Sections were also processed for 

immunohistochemistry to visualize type II collagen (II-II6B3, Hybridoma Bank, 

University of Iowa, USA), as previously described (159). 

 

Statistical Analysis 

Statistical evaluation was performed using SPSS software (version 15.0, SPSS Schweiz 

AG, Zürich, Schweiz). All mean values are presented as standard error (±SE). Differences 

between the surfaces TCPS, RGD and PEG were assessed using complying statistical 

tests as indicated at each result. The level of significance was set to p < 0.05. 
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RESULTS 

 

 

Substrate Characterization 

The RGD modified surface was determined to have a PLL-g-PEG/PEG-RGD–polymer 

concentration of 143 ng/cm2 (see Table 1). This concentration was sufficient to render the 

surface resistant to protein adsorption (< 5ng/cm2) and implies that the bio-ligand RGD 

was presented at a density of 1.6 pmol/cm2 (Table 1). Similar results were obtained for 

the control peptide RDG. 

 

 

HAC attachment, Spreading Kinetics & Proliferation 

Phase contrast microscopy observation revealed that, as early as 10 min. after seeding, 

adult human articular chondrocytes (HAC) on RGD started to spread, while on TCPS they 

still showed a more round morphology. This impression was validated by following the 

spreading kinetic of HAC every 2 min., starting 5 min. after seeding onto the 

corresponding surface (see Fig. 2). On RGD, the maximal spreading speed (88±6 

µm2/min.) was 1.9-fold higher as compared to that on TCPS (46±4 µm2/min.; p < 10-5; U-

test Mann-Whitney, two tailed). Despite this initial difference, HAC attachment (24h after 

seeding) on RGD did not significantly differ from that on TCPS, while it was lower on 

PEG (4.7-fold) and RDG (5.6-fold) (Tukey HSD test: p < 0.009; see Fig. 3A). Phase  
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contrast images confirmed attachment of HAC on TCPS and RGD and indicated a spread, 

fibroblastic cell morphology (Fig. 4). In contrast, on PEG and RDG, HAC attached to a 

very limited extent, and predominantly remained in suspension as clusters. The 

proliferation rate of HAC on RGD did not differ from that measured on TCPS, while it 

was lower on the bio-inactive surfaces PEG (2.9-fold) and RDG (3.1-fold) (p < 0.004; 

Tukey HSD test; see Fig. 3B). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: Initial spreading of human articular chondrocytes (HAC) on tissue culture polystyrene (�TCPS) and on RGD-

functionalized PLL-g-PEG ( RGD). Immediately after seeding onto the corresponding surface, the spreading kinetic 

of HAC was followed by time lapse phase contrast microscopy every two min. during 18 min. Spreading was measured 

as footprint area (n=28 for each surface) and reported as median value in um2. The dashed tangential lines indicate 

maximal the slope mmax which was siginificantly different on the two substrates (the asterisk indidicates p = 3.4x10-5; 

U-test Mann-Whitney, two tailed). Cell outlines at each timepoint (up to min. 10) visualize an example HAC from each 

surface (RGD: upper row; TCPS: lower row) which matches with the indicated trend line (solid). Error bars represent 

the standard error. 
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Fig. 3: Attachment and proliferation of adult human articular chondrocytes (HAC) on tissue culture polystyrene 

(TCPS), RGD-functionalized PLL-g-PEG (RGD) and non-functionalized PLL-g-PEG (PEG). RGD peptide surface 

density was 1.6 pmol/cm2. A The number of attached cells was determined indirectly by counting the floating cells in 

the supernatant (alive and dead) and subtracting them from the number of inoculated cells. The attachment is expressed 

as percentage of the number of inoculated cells. B The proliferation rate of HAC is expressed as N doublings per day 

(during the two expansion steps). The asterisk indicates a significant difference vs. TCPS (n = 6 experimental replicates; 

p ≤ 0.009, Tukey HSD test). 

 

 

 

Fig. 4: Phase contrast images of adult human articular chondrocytes (HAC) during expansion on tissue culture 

polystyrene (TCPS), non-functionalized PLL-g-PEG (PEG), the scrambled sequence RDG-functionalized PLL-g-PEG 

(RDG) and the RGD-functionalized PLL-g-PEG (RGD). RGD and RDG peptide surface density was 1.6 and 1.7 

pmol/cm2 respectively. Scale bars correspond to 100 µm. 
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HAC Morphology & Motility During Cell Expansion 

The average footprint area (see Fig. 5A) of HAC growing on TCPS was 19% higher than 

on RGD (Two-way Anova: p = 0.014), while the average perimeter of HAC on TCPS 

(330±22 µm) was consistently lower than on RGD (424±27 µm; Two-way Anova: p < 

107). As a consequence, the average shape factor φA on RGD (see Fig. 5A) was 2.0-fold 

lower (Two-way Anova: p < 10-7) as compared to that of HAC expanded on TCPS. This 

morphological difference also became apparent by directly comparing the CLSM images 

(see Fig. 5 C&D). On both TCPS and RGD, a homogenous fluorescence signal could be 

seen throughout an entire HAC as actin appeared to be mostly organized into fine 

filamentous structures. Only rarely, thicker actin bundles, as they are typical for stress 

fibres, were evident. Regions of highest actin-signal intensities were located at the 

lamellipodia, as well as at the filopodia-like extensions. These extensions were the most 

distinctive morphological feature of HAC adherently growing on RGD as compared to 

TCPS.  

 

Time-lapse phase contrast microscopy revealed that on RGD cell motility (3.8±0.2nm/s, 

n=230) was approximately 20% lower than on TCPS (4.7±0.2nm/s, n = 209; p = 0.002; 

Student’s t-test, two tailed). The direction of HAC migration was judged by the 

distribution of centered cell trajectories and found to be isotropic on both RGD and TCPS 

(data not shown). 
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Fig. 5: Morphology of adult human articular chondrocytes (HAC) during expansion on tissue culture polystyrene 

(TCPS) and RGD-functionalized PLL-g-PEG (RGD). The graph in A) represents the average shape factor ΦA(white 

bars) and the average footprint area in um2 (black bars) of HAC on the corresponding substrate. The asterisk indicates a 

significant difference (n = 90 per surface; p < 0.0014, two-way ANOVA). The cartoon in B) visualizes shape factor 

values which can range from zero for starfish-shaped cells to one for perfectly round shaped cells. Representative 

confocal laser scanning microscopy images of HAC on C) TCPS and D) RGD show actin stress fibres (green) and 

nuclei (blue). Note the filopodia-like structures, which appear more frequent on RGD. Scale bar corresponds to 20 µm. 



 - 80 - 

HAC De-Differentiation During Cell Expansion 

During expansion in monolayer, type II collagen mRNA expression of HAC on RGD was 

4.9-fold higher as compared to that on TCPS (p < 0.04; U-test Mann-Whitney, two tailed) 

while the level for type I collagen mRNA remained similar (see Fig. 6). Type X collagen 

was only upregulated in cells from Donor B (34-fold) and thus no significant difference 

was found on RGD vs. TCPS. 

On PEG, type II collagen mRNA was up-regulated 46-fold (p < 0.04; U-test Mann-

Whitney, two tailed). This up-regulation coincided with a 91-fold increase in type X 

collagen mRNA expression (p < 0.03; U-test Mann-Whitney, two tailed) while the 

expression level of type I collagen mRNA remained unaltered. 

 

 

 

 

 

 

 

Fig. 6: Type I (Coll I), II (Coll II) and X (Coll X) collagen mRNA expression levels of adult human articular 

chondrocytes (HAC) during expansion on RGD-functionalized PLL-g-PEG (RGD) or non-functionalized PLL-g-PEG 

(PEG) normalized vs. tissue culture polystyrene (TCPS, indicated by white dashed line). RGD peptide surface density 

was 1.6 pmol/cm2.Black bars represent m-RNA expression levels on of HAC after four weeks of culture on the 

corresponding substrate. Asterisks indicate a significant differences vs. TCPS (n = 6 experimental replicates; p < 0.05, 

U-test Mann-Whitney, two tailed). 
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HAC Re-Differentiation in Pellet Culture 

Pellets were generated with HAC expanded on TCPS or on RGD and cultured in 

chondrogenic medium for two weeks. 

The up-regulation of type II collagen mRNA during the expansion of HAC on RGD was 

not maintained in the subsequent pellet culture. Only for type X collagen mRNA a 

statistically significant (p < 0.004; U-test Mann-Whitney, two tailed) but rather limited 

up-regulation (1.7-fold) was found.  

HAC expanded on RGD generated pellets with 15% higher GAG content accumulation 

(6.3±0.2 µg/µg; p = 0.1, U-test Mann-Whitney, two tailed) than HAC expanded on TCPS 

(5.3±0.5 µg/µg). Additionally, sections of pellets from RGD expanded HAC stained 

slightly more intense for GAG (Safranin O staining) and type II collagen (Fig. 7). 

 

 

 

 

 

Fig. 7 (following page) : Histology of pellets generated from adult human articular chondrocytes (HAC) which have 

been cultured for two passages on either tissue culture polystyrene (TCPS) or RGD-functionalized PLL-g-PEG (RGD). 

RGD peptide surface density was 1.6 pmol/cm2. A) representative pellet sections stained red for glycosaminoglycans 

with Safranin O. The number at the lower right of each image shows the value for accumulated GAG/DNA in 

µg/µg(±SD, n = 4). B) representative pellet sections immunohistochemically labelled red for collagen II. Representative 

sections are displayed for each donor and surface type. As an overview, the insets present entire pellet sections. Scale 

bars correspond to 50 µm for the pellet sections and 500 µm for insets. 
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DISCUSSION 

In this in vitro study, we exploited the advantage of the PLL-g-PEG/PEG- RGD (RGD) 

model to restrict the interaction of human articular chondrocytes (HAC) with the culture 

substrate exclusively through the cell adhesion ligand RGD, even in the presence of 

serum. As compared to TCPS, RGD allowed for comparable attachment, proliferation and 

migration while supporting faster initial spreading but smaller final spreading area. The 

superior preservation of HAC chondrogenic phenotype in monolayer culture on RGD 

resulted in limited, yet consistent improvements in the post-expansion cartilage forming 

capacity in pellet cultures, although that was not reflected in the type II collagen gene 

expression. 

 

The amount of serum proteins measured on the PLL-g-PEG modified substrates was very 

low and fell below the detection limit range reported for the optical waveguide lightmode 

spectroscopy technique. (190) This protein resistant effect can be attributed to the 

architecture of the PEG brush. (191) Indeed, on PEG and RDG (scrambled cell adhesion 

sequence), HAC attached to a very limited extent and mostly remained suspended in the 

culture medium as clusters. The fact that on these bio-inactive surfaces cell attachment 

was not completely abolished could be explained by small local defects in the PLL-g-

PEG or PLL-g-PEG/PEG-RDG- layer, which likely permitted limited serum adsorption. 

These defects appeared to occur at a low frequency and merely allowed for cell anchoring 

but never for cell spreading. Only where PLL-g-PEG was modified with the cell adhesion 

ligand RGD, HAC attached and spread comparably to the way they do on TCPS. As RDG 

was not able to mediate the same effects, we assume that the effects observed in this study 

are specifically mediated by the bioligand RGD. Thus, the PLL-g-PEG/PEG-RGD culture 
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surface effectively allows for HAC/substrate interactions exclusively through RGD 

ligands, thereby circumventing the formation of a complex proteinaceous interface, even 

in presence of serum containing medium. 

 

Early after seeding, HAC spreading always appeared more advanced on RGD than on 

TCPS. This observation was confirmed by measuring an almost two fold higher initial 

spreading rate on RGD as compared to that on TCPS. Since the spreading area was 

smaller on RGD than on TCPS, the higher spreading rate on RGD was likely not due to a 

higher cell adhesion ligand density, but rather to a sterically more direct mode of 

interaction of HAC integrins with the surface bound RGD. This is consistent with the fact 

that the RGD ligand is displayed in front of an otherwise inert environment (PEG brush 

border), as opposed to the various different orientations (177) of randomly adsorbed 

serum proteins, where ligands can remain encrypted (e.g., within the FnIII modules of 

folded fibronectin (192)). Although cells have the ability to access these cryptic domains 

by applying cytoskeletal tension, (193) this active remodeling process of the protein 

adlayer would require longer time. Whether the faster spreading on RGD is really due to a 

more direct mode of interaction, would however require further investigations, beyond the 

scope of this study. 

 

HAC cultured on RGD and on TCPS attached and proliferated to an extent as previously 

reported for standard HAC culture (102;194). A drastically reduced attachment on the 

bio-inactive surfaces (PEG & RDG) coincided with a decreased proliferation rate, which 

is in line with findings for human dermal fibroblasts (186). Chondrocytes adhering to 

cartilage ECM-proteins highly express β1 integrins and knocking out these integrins in a 

mouse model led to decreased chondrocyte proliferation due to impaired G1/S transition 
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and cytokinesis (181). RGD partially activates α5β1 (195;196) but primarily αvβ3 

integrin receptor (135) and thus seems likely to have stimulated proliferation through 

integrin activated signalling. 

 

HAC cultured on RGD or TCPS assumed an elongated morphology (see Fig. 5), as 

confirmed by quantification of the shape factor (φA), which did not exceed the value of 

0.2. The lower shape factor on RGD than on TCPS does not reflect further elongation but 

can be attributed to the protrusive extensions which mainly contributed to the increased 

perimeter. Such distinctive morphological features remind of filopodia which have been 

reported to occur at the leading edge of motile cells (197). However, HAC motility on 

TCPS was found to be in the same range as reported for rabbit chondrocytes (198), and 

lower on RGD, where filopodia-like structures were primarily observed. 

 

Both the lower motility and the higher type II collagen mRNA expression of HAC 

expanded on RGD, as compared to TCPS, could be related to the reduced cell spreading 

area. In fact, cell spreading is associated with ROCK-mediated cytoskeletal tension (119) 

and is known to block chondrogenesis in mouse mesenchymal limb bud cells by 

inhibiting the expression of the transcription factor Sox9 (165). A reason for the reduced 

HAC spreading on RGD could be its lower bioactivity as compared to native ligands, 

where complementary or modulatory domains are present (135). In fact, FN, which 

readily adsorbs to TCPS (199), contains the synergistic binding site PHSRN on 9th type 

III repeat (FIII9) in addition to the RGD motif in the 10th type III repeat (FIII10). RGD is 

considered to be a poor FN mimic (135) as on its own it is not sufficient to fully activate 

α5β1 integrin but requires the synergy with PHSRN (111;200). Disturbing the 
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interdomain interaction of the FIII9-10 pair was reported to result in reduced spreading of 

baby hamster kidney cells and human endometrial stromal fibroblasts (137). 

 

The better maintenance of HAC chondrogenic phenotype on RGD resulted in consistent 

but rather marginal improvements of chondrogenesis during pellet culture, as evidenced 

by the slightly higher accumulation of GAG/DNA, staining intensity for GAG and type II 

collagen expression in the formed tissues. It is possible that enzymatic disruption of HAC 

adhesion to RGD (for establishing pellet cultures) degraded important cell surface 

proteins (201) and partially reset the instructive signal to HAC. In this regard, future 

investigations should circumvent the need for such a harvesting step. As an example, 

HAC could be expanded on an RGD-ligand restricted scaffold that could be directly 

continued into differentiation culture. Still, the presentation of RGD might have to be 

transient (during expansion), since modifying alginate with an RGD-ligand was 

previously found to inhibit MSC chondrogenesis (136;202). 

 

Beyond allowing control over the mode of cell interaction with a biomaterial interface, 

small ECM-fragments also offer to modify/tune the bioactivity of native proteins. The 

results of this study suggest that the limited bioactivity of RGD better supports the 

chondrogenic phenotype of proliferating HAC as compared to a complex proteinaceous 

adlayer containing native FN (TCPS). Thus, it would be intriguing to test whether tuning 

RGD-restricted HAC/substrate interactions could yield still higher type II collagen 

expression (as i.e. on PEG), while preserving its effect to promote proliferation (as i.e. on 

RGD). Approaches to tune HAC/RGD-restricted substrate interaction could involve 

changing the sequence of the peptide ligand (138), controlling its special array (112) or 

coupling it to substrates with different mechanical compliance than stiff TCPS (109). 
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CONCLUSION 

In summary, forcing HAC-substrate interactions through RGD peptides not only mediated 

instantaneous cell attachment but also supported cell migration, proliferation and 

maintenance of the post-expansion cartilage forming capacity. Assisting these processes 

with inductive/instructive biomaterials may be essential for improving in situ cartilage 

regeneration, stimulated by microfracturing (152;203). In microfracturing, the 

subchondral bone plate is penetrated by small perforations which allow the 

recruitment/infiltration of mesenchymal stromal cells (MSC) from the bone marrow 

(204). MSC have the potential to chondrogenically differentiate (156), but due to their 

low numbers they first need to proliferate in situ in order to possibly improve the final 

outcome (152). Thus, an RGD-ligand restricted biomaterial interface could be a valuable 

tool to assist microfracture stimulated cartilage regeneration. 
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ABSTRACT 

Culture of mesenchymal progenitor cells on substrates with different elasticity has been 

shown to modulate cell fate/commitment. We aimed this study at investigating, whether 

substrate elasticity modulates TGFβ-3 (TGF) stimulated chondrogenic re-differentiation 

of expanded/de-differentiated human articular chondrocytes (HAC). 

 

Expanded HAC from 4 donors (43-77 years) were seeded onto 2D substrates of different 

elasticity and induced to re-differentiate in a defined serum free medium containing or not 

TGF for 7 days. Type I collagen (CI) functionalized poly acrylamide (PA) films (100-150 

thickness) with a Young’s modulus of 0.26±0.08 kPa (soft), 21.32±0.79 kPa 

(intermediately stiff) and 74.88±5.13 kPa (stiff) were employed. CI coated tissue culture 

treated plastic was considered as an infinitely stiff substrate and HAC aggregate cultures 

served as a standard re-differentitation control. HAC cultured on the corresponding 

substrate were assessed for attachment, proliferation, morphology, mRNA (type I & II 

collagen), and protein (type II collagen) expression. 

 

Under re-differentiation conditions, HAC attached similarly on the different substrates 

and accomplished less than one total doubling within 7 days. On intermediately stiff to 

infinitely stiff substrates HAC assumed a fully spread fibroblastic morphology (shape 

factor φA = 0.23-0.27), whereas on the soft substrate, they remained more spherical (φA = 

0.35±0.02) and had a reduced spreading area (up to 3.2-fold). F-actin organization on the 

soft substrate was restricted cortically, while on the stiffer substrates, F-actin assembled 

into stress fibres. 

 

Type II collagen mRNA expression on the soft substrate was similar to that in aggregate 

culture and 18.1-fold higher than on infinitely stiff substrates. However, in absence of 

TGF, type II collagen mRNA remained at levels expressed by expanded/de-differentiated 

HAC. Strikingly, type II collagen protein expression was only detectable on the soft 
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substrates. Substrate elasticity modulated the re-differentiation response of expanded/de-

differentiated HAC to the chondrogenic stimulus TGF, and thus underscores mechanical 

compliance in combination with appropriate soluble signals to be an important parameter 

in designing biomaterials for cartilage repair. 
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INTRODUCTION 

Current visions in cartilage repair aim at moving from fibrocartilaginous to a more 

hyaline like repair tissue by combining autologous cells of different origins (in situ 

recruited or in vitro pre-cultivated) with repair supporting biomaterials (151). Therein, the 

role of a chondro-supportive biomaterial within a cartilage defect is seen to enhance the 

onset of chondrogenic differentiation of the progenitor cells and to protect/modulate the 

newly formed tissue (152). 

Apart from controlling ligand identity, density and presentation, which determine 

biomaterial/cell interaction(108), substrate elasticity has emerged as an important, 

insoluble, mechanical cue and has been shown to influence the phenotype of several 

members of the mesenchymal lineage, including fibroblasts (143;144), myoblasts 

(145;146) and osteoblasts (110). Moreover Mesenchymal stem cells (MSC) have been 

found to specify lineage and to commit to phenotypes with extreme sensitivity to tissue 

level elasticity. Soft substrates which mimic brain were neurogenic, stiffer substrates that 

mimic muscle were myogenic and comparatively stiffer substrates that mimic collagenous 

bone, proofed to be osteogenic. Moreover, the insoluble mechanical cue was shown to be 

additive to chemical/soluble induction of differentiation (109). 

 

Chondrocytes are considered to have a primitive precursor termed “the mechanocyte” 

which suggests, that they have inherited the ability to respond to mechanical stimuli 

(205). Indeed, chondrocytes express several members of the integrin family which, apart 

from mediating adhesion, function as mechanoreceptors that transmit information from 

the extracellular matrix (ECM) into the cell, through the activation of cell signalling 

pathways(206). This integrin mediated perception of the ECM has been found to play a 
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crucial role in regulating chondrocyte morphology, motility, proliferation as well as 

differentiation (181;182). 

Although depending on the type of cell, increased matrix stiffness generally leads to an 

increased protein phosphorylation, and stress fibre assembly (144;207). In line with this 

general rule, porcine chondrocytes flattened and spread on stiff substrates (100kPa) while 

they retained their typical round appearance on soft (4kPa), compliant matrices (208). 

 

The importance of morphology on chondrocyte function started to be recognized around 

30 years ago (209). Several findings reported the chondrocyte phenotype to be strongly 

depending on its cell shape, which changes from fibroblastiod to rounded/polygonal 

during cartilage development and is associated with a cortical actin filament organization, 

as well as the expression of extra cellular matrix proteins such as type II collagen and 

large proteoglycans (i.e. aggrecan) (210;211). Monolayer expansion of chondrocytes, 

isolated from adult cartilage, can revert this differentiation process and leads to de-

differentiated chondrocytes which cease the production of large proteoglycans and type II 

collagen (97;98) and switch to the synthesis of type I collagen, fibronectin (FN), and 

small non-cartilaginous proteoglycans (98;99). 

As a consequence considerable research efforts have focused on developing reliable 

procedures to maintain a round morphology in cultured chondrocytes. Conditions that 

support a round cell morphology and expression of the chondrocytic phenotype include 

culture in suspension (101;212), in agarose (96), in collagen gels (124), in alginate beads 

(213), and the disruption of the actin cytoskeleton by Cytochalasin D (214;215). Most 

recently, soft (4kPa) type I collagen coated polyacrylamide (PA) gels have also been 

demonstrated to induce a round morphology in porcine chondrocytes (208). However, in 

comparison to stiffer substrates, the better support of the chondrogenic phenotype by soft 
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PA gels was limited and paralleled by reduced proliferation. Proliferation is known to 

lead to rapid de-differentiation in chondrocytes (95) and thus, may have clouded the 

analyis of matrix elasticity as a direct influence on the maintenance of the chondrogenic 

phenotype. 

 

The use of specific factors during monolayer expansion of HAC has been shown to 

accelerate the process of de-differentiation, and induces HAC to acquire a differentiation 

plasticity which is similar to that of mesenchymal progenitor stem cells (100). Culturing 

aggregates (suspension or pellet culture) of expanded/de-differentiated HAC in a medium 

containing the strong chondrogenic stimulus TGFβ-3 (TGF), allows for re-induction of 

chondrogenic differentiation (101;102). Thus, expanded/de-differentiated HAC are not 

only of clinical relevance but, owing to their plasticity, also serve as a potent model to 

investigate processes involving fate commitment and the maintenance of mesenchymal 

progenitor cells. 

 

Given the mechano-sensitivity of chondrocytes in general and the differentiation 

plasticity of expanded/de-differentiated HAC in specific, we hypothesized that matrix 

elasticity as an insoluble signal allows to control the morphology of expanded/de-

differentiated HAC and thereby permits to modulate their re-differentiation stimulated by 

the soluble chondrogenic differentiation signal TGF. 

 

Among different models for investigating the substrate elasticity influence on cell 

behaviour, polyacrylamide (PA) has emerged as an important tool since it can be easily 

adjusted in elasticity by varying the concentration of the monomer acrylamide (AA) and 

the crosslinker N,N’-methylenbisacrylamide (BIS). PA itself is almost completely inert 
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for cell adhesion, but can be functionalized by covalently grafting proteins to its surface 

(216). This offers the advantage to restrict cell/substrate interaction to a selected type of 

ligand. For the present study, type I collagen (CI) was chosen as it contains the cell 

adhesion peptide sequence Arg-Gly-Asp (RGD) (217), has been used to study the 

influence of matrix elasticity on the lineage specification of mesenchymal stem cells 

(109) and plays an important role during limb bud chondrogenesis (218). 

 

To test our hypothesis, expanded/de-differentiated HAC were seeded onto 2D substrates 

of different elasticity and induced to re-differentiate in a defined serum free medium 

containing or not TGFß-3 for 7 days. CI functionalized PA films (100-150 µm thickness) 

with a Young’s modulus of 0.26±0.08 kPa (soft), 212±0.79 kPa (intermediately stiff) and 

74.88±5.13 kPa (stiff) were employed. CI coated tissue culture treated plastic was 

considered as an infinitely stiff substrate and HAC aggregate cultures served as a standard 

re-differentiation control. HAC cultured on the corresponding substrate were assessed for 

attachment, proliferation, morphology and expression of Sox-9 transcription factor, type I 

and II collagen mRNA and type II collagen protein. 
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METHODS 

 

Substrate Preparation 

Poly acrylamide (PA) gels of three different contrasting compositions, were cast onto 3-

(trimethoxysilyl)-propyl methacrylate (Sigma-Aldrich, Buchs, CH) activated glass slides, 

and functionalized with type I collagen following a protocol adapted from Beningo et al. 

2002 (219;220). Using coverglass (No. 1, Medite, CH) spacers, the gel thickness was set 

to a thickness ranging from 100 to 170 µm (confirmed by cryo SEM, data not shown). 

According to the time course measurements of the shear storage modulus G’, the 

polymerization was near complete 20 min. after initiation (see Fig. 1). Based on this 

finding, > 4 hours were considered to be safe for the polymerization to complete. 

Subsequently, the glass immobilized PA gels were washed with autoclaved MilliQ water 

followed by 50 mM HEPES pH 8.5 (Sigma-Aldrich, Buchs, CH). The PA gels were 

covered with 1 mM sulfo-SANPAH (heterobifunctional protein crosslinker, ProteoChem, 

USA) in 50 mM HEPES pH 8.5, UV activated (350 nm, 8 min., distance: 6 cm). This step 

was repeated once before thoroughly washing the substrates with PBS (Gibco, UK). 

Immediately after, the activated PA gels were functionalized with 0.2 mg/ml type I 

collagen (CI, rat tail, BD, UK) at 4°C over night. The density of surface-bound CI is 

independent of PA gel stiffness (221) and does not alter the elastic modulus of the 

substrate (145). 

All substrates were UV light sterilized (30 min. at a sterile work bench). CI functionalized 

PA gels were washed and stored in PBS until further use. 
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Substrate Characterization by Rotational Rheometry 

The polymerization time course (20 min, see Fig. 1) of three different mixtures consisting 

of acrylamide (AA, monomer) and N,N’-methylenbisacrylamide (BIS, crosslinker) was 

followed in situ in a rotational rheometer (Physica MCR 501, Anton Paar, Graz, Austria), 

fitted with a 50 mm diameter parallel plate (PP50). Shear storage modulus (G’, increases 

with the progressing degree of polymerization & crosslinking) measurements were 

conducted at room temperature (25°C), an oscillation frequency of 1 Hz and an amplitude 

of 1%. The volume for polymerization was 2 ml and initiated with 30 µl of 10% amonium 

persulfate (APS) and 30 µl of 10% tetramethylethylenediamine (TEMED). The 

concentrations for AA_BIS were: 5%_0.003%, 10%_0.2%, 20%_0.3% as described 

above and the duplicates prepared independently. To prevent drying, polymerization was 

performed in a humidified atmosphere. All of the three distinct AA/BIS compositions 

displayed variable patterns during the lag phase in which G’ was negligibly small (< 0.1 

Pa). Following the lag phase, G’ increased monotonically but ceased less than 5 min. after 

initiation of polymerization. After ~20 min. of polymerization, each of the three AA/BIS 

compositions reached its distinct plateau value (see Fig. 1 A). Degassing the AA/BIS 

solution prior to polymerization neither changed the polymerization pattern (G’ time 

course), nor the final plateau levels for G’ (data not shown). 

To measure PA under conditions more representative of in vitro cell culture conditions, 

PA slabs of 4 mm thickness were polymerized for >4h and swelling equilibrated in PBS 

at room temperature > 24h. Shear storage and loss modulus (G’ and G’’ ) measurements 

were performed using the same rheometer settings as described above. 
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The elastic modulus describes the ability of a material to deform elastically (strain) when 

a force (stress) is applied to it, is quantified as a ratio of stress to strain and expressed in 

Pascals (Pa). Depending on the mode of measurement, the elastic modulus is commonly 

reported either as Young’s modulus (E, uniaxial stress over the uniaxial strain, e.g. 

indentation) or shear storage modulus (G’, deformation of shape at constant volume, e.g. 

shearing), given the Hooke’s law holds for the material described. Since PA hydrogels 

have a vanishingly low viscous component (shear loss modulus G’’) (222) their elasticity 

can adequately be described by either E or G’. As a fact, the elastic component of PA (G’) 

was always higher (6.9 to 161.4-fold) compared to its viscous component G’’ . The shear 

storage modulus would be appropriate in the context of this work, since cells like i.e. 

fibroblasts are known to probe substrate mechanoproperties by shearing (223). However, 

the Youngs’ modulus was preferred based on its wide spread use in the field of 

mechanobiology. 

 

 Tab.1: Rheology of polyacrylamide (PA) gels. The shear storage modulus (G’) and the shear loss modulus (G’’) of PA 

gels with three different acrylamide (AA, monomer)/N,N’-methylenbisacrylamide (BIS, crosslinker) compositions was 

measured by a rotational rheometer (Physica MCR 501, Anton Paar, Graz, Austria) fitted with a 50 mm diameter 

parallel plate (PP50). Measurements were conducted at an oscillation frequency of 1 Hz and an amplitude of 1% at 

37°C in a humidified chamber. The PA gels were measured either 20 min. after initiation of polymerization directely in 

the rheometer (n=2) or after swelling equilibration (in PBS at room temperature over night, n = 4). The Young’s 

modulus (E), which is widely spread to describe substrate elasticity, was computed from the dynamic modulus G = 

G’+G’’ according to E = 2G’(1+ν). The Poisson ratio (ν) for PA is 0.464 (224) which is close to that of ideal rubber 

like materials (0.5). The values are reported as mean ± standard deviation. 
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Cell Culture 

Full thickness human articular cartilage samples were collected within 24 hours post 

mortem from the femoral lateral condyle of four donors (43 to 77 years), with no history 

of joint disease, after obtained informed consent, following protocol approval by the local 

ethical commitee (No. 78/07). HAC were isolated upon 22-hour incubation at 37 °C in 

0.15% type II collagenase and resuspended with Dulbecco’s modified Eagle’s medium 

(DMEM) containing 4.5 mg/ml D-glucose, 0.1 mM non-essential amino acids, 1 mM 

sodium pyruvate, 10 mM HEPES buffer, 100 U/ml penicillin, 100 µg/ml streptomycin, 

and 0.29 mg/ml L-glutamine, supplemented with 10% FBS (all from Gibco, UK) 

(complete medium, CM). 

HAC were expanded in CM supplemented with 1 ng/ml TGF-ß1, 5 ng/ml FGF-2, 10 

ng/ml PDGF-BB (expansion medium, all from R&D, UK) in a humified 37°C/5% CO2 

incubator. These specific growth factors have previously been shown to enhance HAC 

proliferation and post-expansion redifferentiation capacity (102). HAC were detached at 

confluency (passage 1) by a treatment with 0.3% type II collagenase, followed by 0.05% 

trypsin/0.52 mM EDTA (Gibco, UK) and re-plated at a density of 5 x103 cells/cm2 for the 

second expansion step. After passage 3, expanded HAC were taken into chondrogenic re-

differentiation culture. 

 

Chondrogenic Re-differentiation culture 

The chondrogenic re-differentiation of expanded HAC was stimulated using a chemically 

defined, serum-free medium (SFM), which consists of DMEM containing 4.5 mg/ml D-

glucose, 0.1 mM non-essential amino acids, 1 mM sodium pyruvate, 10 mM HEPES 

buffer, 100 U/ml penicillin, 100 µg/ml streptomycin, and 0.29 mg/ml L-glutamine (all 
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Gibco, UK) supplemented with ITS+1 (10 µg/ml insulin, 5.5 mg/ml transferrin, 5 ng/ml 

selenium, 0.5 mg/ml bovine serum albumin, 4.7 mg/ml linoleic acid), 1.25 mg/ml human 

serum albumin, 0.1 mM ascorbic acid 2-phosphate and 10-7 M dexamethasone (all Sigma 

Chemical, USA) and 10 ng/ml TGF-β1 (R&D, UK) (chondrogenic medium) (100;189). 

To investigate the influence of substrate stiffness on HAC re-differentiation, expanded 

HAC were cultured for 7 days on type I collagen coated PA gels of different stiffness at 

density of 2 x 104 cells/cm2. Aggregate cultures were prepared by culturing HAC at the 

same density on bare (w/o CI) tissue culture plastic (TCPS). Due to the absence of serum 

proteins, HAC display moderate initial substrate adhesion and preferentially stick to each 

other rather than to the substrate. After one day of re-differentiation culture, nearly all 

HAC have detached from the substrates and float in suspension as cellular aggregates 

similarly as described previously by Wolf et al. (2008) (101). 

 

Attachment & Proliferation 

The number of adherent HAC (N0) was determined from representative phase contrast 

light microscopy images and expressed as percentage of the number of theoretically 

seeded cells. After 7days of re-differentiation culture, the number of adherent HAC (N1) 

was counted again (as described above) to assess proliferation which was expressed by 

the total number of doublings: log2 (N1/N0). 
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Cell morphology 

HAC morphology and the degree of spreading were determined after 24hours of re-

differentiation culture. The cell shape factor φ (Eq. 1) (186;187) was calculated according 

to: 

 

        (1) 
 

The area A and the perimeter p required for calculating the shape factor φ were 

determined from phase contrast images using Image J version 1.37 (188). Rounded cells 

with high area-to perimeter ratio assume shape factor φ values close to 1, whereas 

starfish-shaped cells have a shape factor φ near 0. 

 

Fluorescence Labelling, Acquisition and Analysis 

After fixation in 4% (w/w) formaldehyde in phosphate buffer pH 7.4 (Univerity Hospital 

Pharmacy Basel, Switzerland) at 4°C over night, HAC were rinsed with PBS three times 

prior to a 10 min. permeabilization on ice with a solution containing 0.02% (w/w) Triton 

X100 (Sigma-Aldrich, Switzerland). Immediately after aspiration of the permabilization 

solution, the specimen were blocked for 1 hour at room temperature in PBS containing  

30 mg/ml BSA (Sigma-Aldrich, Switzerland). Then, the specimens were rinsed with 

labelling buffer (LB) containing 15 mg/ml BSA in PBS and incubated with the primary 

antibody for 1h at room temperature. Subsequently, the specimens were rinsed with LB 

four times for 5 min. each and incubated with the secondary antibody for 1h at room 

temperature. Finally, the slides were washed again with LB four times for 5min. each, 

2p

Aπ4=φ
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rinsed with autoclaved milliQ water, mounted with Aqueous Mounting Media (AbD 

SeroTec, Oxford, UK) and sealed with Klarlack (Lady Manhattan Cosmetics, Germany).  

All antibodies/labelling agents were diluted in LB. Vinculin was labelled with a primary 

monoclonal mouse antibody (Sigma-Aldrich, Switzerland; clone: hVIN-1; dilution: 

1:400) followed by a Cy3 conjugated IgG goat anti-mouse secondary antibody (Acris 

Antibodies, Herford Germany; dilution: 1:800).  

F-actin was detected with Alexa488 conjugated phalloidin (Invitrogen, Oregon USA; 

dilution: 1:400) and nuclei stained with DAPI (Invitrogen, Oregon USA; 4',6-diamidino-

2-phenylindole; dilution: 1:48’000). 

Sox-9 transcription factor was labelled with a monoclonal mouse antibody (Lubio-

Science, Switzerland, clone: 3F11; dilution: 1:200) followed by an Alexa546 conjugated 

IgG1 goat anti- mouse secondary antibody (Lubio-Science, Switzerland, dilution: 1:200). 

Fluorescence images were acquired on a Zeiss LSM 710 TYPE (Zeiss, Wetzlar, 

Germany) confocal laser scanning microscope under constant conditions using either a 

40x or a63x immersion objective. Eight bit z-stack images were recorded in three 

different, regions of each substrate. 

To quantify type II collagen expression pixels with a fluorescence intensity higher than 20 

(arbitrary units) were counted on each z-plane, using the Zen2008 software (version 5.0, 

Zeiss MicroImaging GmbH). The z-stack with the highest florescent counts was taken 

and normalized vs. the number of DAPI stained nuclei in the corresponding stack. 

 

Gene Expression Analysis 

After 7 days of re-differentiation culture, HAC were harvested (as described above; using 

collagenase and trypsin). RNA was extracted from the obtained cell pellets with 250 µl 
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Trizol (Life Technologies, Basel, CH) according to the manufacturer’s instructions. 

Extracted RNA was treated with DNAse following the instructions of the RNeasy Kit 

(Ambion, Austin TX). cDNA was generated from total RNA using reverse-transcriptase 

Stratascript (Stratagene) in the presence of dNTP and DTT. Real-time PCR reactions 

were performed and monitored using the ABI prism 7700 Sequence Detection System 

and the Sequence Detector V program (Perkin-Elmer Applied Biosystems). cDNA 

samples were analyzed for type I and II collagen and for the housekeeping gene (18S 

ribosomal RNA), using previously described sequences of primers and probes (100). Each 

cDNA sample was assessed in duplicate and the collagen mRNA expression levels were 

normalized to the corresponding 18S rRNA levels. 
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RESULTS 

 

 

 

 

 

 

 

 

 

Substrate Characterization 

The elasticity of swelling equilibrated polyacrylamide (PA) gels was determined by 

rotational rheometry, measuring the dynamic shear modulus (G) which consists of the 

shear storage modulus (G’) and the shear loss modulus (G’’ , see Fig. 1 and Tab. 1). The 

dynamic shear modulus (G = G’ + G’’ ) was converted into the Young’s modulus (E = 

2G’(1+ν)), which is more widely spread to describe substrate elasticity and thus referred 

to hereafter (see Tab. 1). For the Poisson ratio (ν) a value of 0.464 was assumed as it has 

been reported for PA by others (224). 

Based on the mechanical compliance of the corresponding type I collagen (CI) 

functionalized PA, the substrates employed in this work are referred to as 0.3kPa (soft), 

21kPa (intermediately stiff) and 75kPa (stiff). TCPS coated with CI (TCPS w/ CI) was 

considered to be an infinitely stiff substrate. 
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Fig. 1 Characterization of polyacrylamide substrate elasticity. (A) Time course of shear storage modulus (G’, Pa) in 

polymerizing acrylamide (PA) mixtures. The polymerization time course (20 min.) of three different mixtures 

consisting of acrylamide (AA, monomer) and N,N’-methylenbisacrylamide (BIS, crosslinker) was followed in situ in a 

rotational rheometer (Physica MCR 501, Anton Paar, Graz, Austria), fitted with a 50 mm diameter parallel plate (PP50). 

Measurements were conducted at an oscillation frequency of 1 Hz and an amplitude of 1% at 37°C in a humidified 

chamber. The volume for polymerization was 2 ml and initiated with 30 µl 10% amonium persulfate (APS) and 30 µl 

10% tetramethylethylenediamine (TEMED). The concentrations for AA_BIS were: 5%_0.003% (open circles), 

10%_0.2% (grey triangles), 20%_0.3% (black diamonds) and the duplicates prepared independently. Following the lag 

phase, G’ increased monotonically but ceased less than 5 min. after initiation of polymerization. After ~20 min. of 

polymerization, each of the three AA/BIS compositions reached its distinct plateau value. (B) G’ comparison of in situ 

polymerized PA (20 min. after initiation, black bars; n = 2) and swelling equilibrated PA (in PBS at room temperature 

over night, white bars, n = 4). Swelling equilibrated PA displayed G’ values which were 33 to 85% lower compared to 

the corresponding in situ polymerized PA. Error bars represent standard deviation. 
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HAC Attachment and Proliferation 

Phase contrast images taken 24 hours after seeding expanded/de-differentiated HAC in 

chondrogenic medium revealed a homogenous cell distribution (see Fig. 2). HAC 

attachment was comparable on of the three different PA substrates, but 17 to 28% lower 

(see Fig. 3, Kruskal Wallis, Conover, p ≤ 0.05) than on TCPS w/ CI. Throughout the 7 

days of HAC cultivation in chondrogenic medium, proliferation remained below one total 

doubling and was similar on the soft (0.20±0.17 total doublings) and the infinitely stiff 

substrate (0.25±0.16 total doublings). 

 

Fig. 2 Representative phase contrast images of expanded/de-differentiated adult human articular chondrocytes (HAC), 

24 hours after seeding onto the corresponding substrate, in chondrogenic medium. 0.3, 21 and 75kPa indicate the 

substrate elasticity (Young’s modulus) of the three contrasting, type I collagen functionalized polyacrylamide 

substrates. Tissue culture treated plastic coated with type I collagen (TCPS w/ Col I) served as an infinitely stiff control. 

Scale bar: 200 µm. 
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Fig. 3 Attachment of expanded/de-differentiated adult human articular chondrocytes (HAC) 24 hours after seeding onto 

the corresponding substrate, in chondrogenic medium. 0.3, 21 and 75kPa indicate the substrate elasticity (Young’s 

modulus) of the three contrasting, type I collagen functionalized polyacrylamide substrates. Tissue culture treated 

plastic coated with type I collagen (TCPS w/ Col I) served as an infinitely stiff control. The number of adherent cells 

was determined from representative phase contrast light microscopy images and expressed as percentage of the number 

of initially seeded cells. The asterisks indicate significant differences (Kruskal-Wallis paired (Conover); p= * < 0.05 

and *** < 0.001; n = 6). 

 

 

HAC Morphology 

In chondrogenic differentiation medium, a rounded morphology and a limited spreading 

were characteristic features of HAC, cultured on a soft substrate (see Fig. 2). 

Contrastingly, on intermediately to infinitely stiff substrates, HAC were fully spread and 

assumed an average spreading area which was more than 3.2-fold higher than on the soft 

substrate (see Fig. 4, One-Way ANOVA, Tukey HSD; p < 0.001). That on the soft 
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substrates, HAC tended to assume a round morphology was also reflected by the 

shapefactor ΦA, which was 40 to 50% higher than on intermediately to infinitely stiff 

substrates (see Fig. 4, One-Way ANOVA, Tukey HSD; p < 0.001). Despite these 

differences, the average spreading area and shape factor of HAC on intermediately stiff to 

infinitely stiff substrates was found to be similar. 

 

 

 

 

 

 

 

Fig. 4 Average area (A) and shape factor ΦA (B) of expanded/de-differentiated adult human articular chondrocytes 

(HAC), 24 hours after seeding onto the corresponding substrate, in chondrogenic medium. 0.31, 21 and 75kPa indicate 

the substrate elasticity (Youngs’ modulus) range of the three contrasting, type I collagen functionalized polyacrylamide 

substrates. Tissue culture treated plastic coated with type I collagen (TCPS w/ Col I) served as an infinitely stiff control. 

The shape factor was computed from the cell area and perimeter and can range from zero for starfish-shaped cells to 1 

for perfectly round shaped cells. Area and perimeter of adherent cells was measured on representative phase contrast 

light microscopy images. The asterisks indicate significant differences (One-Way ANOVA, Tukey HSD; p = *** < 

0.001; n ≥ = 55). 
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HAC Actin Cytoskeleton and Focal Adhesions 

Fluorescence microscopy of HAC labelled for F-actin and vinculin showed that the 

morphology observed by phase contrast microscopy (after 24 hours) was maintained after 

7 days of re-differentiation culture (see Fig. 5). On the soft substrate, HAC remained 

spherical with F-actin mainly localized cortically. On intermediately stiff to stiff substrates 

however, HAC were spread, flattened and displayed a fibrillar F-actin organization into 

stress fibres. On all substrates, vinculin was dispersed throughout the entire cytoplasm but 

appeared most intense in the perinuclear region. Aggregations of vinculin into small 

clusters were detected in lamellipodial regions of HAC cultured on intermediately stiff to 

stiff substrates. On the latter, HAC in confluent spots displayed more actin stress fibres 

than cells which were more isolated. Moreover, actin stress fibres appeared more aligned 

and distinct on stiff as compared to intermediately stiff substrates, where F-actin was more 

diffuse throughout the cytoplasm (see Fig. 6). 
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Fig. 5 Representative confocal laser scanning microscopy images (maximum projection) of expanded/de-differentiated 

adult human articular chondrocytes (HAC), labelled for F-actin (green), vinculin (red) and nuclei (blue). HAC were 

induced to re-differentiate for 7 days in chondrogenic medium, on substrates of contrasting elasticity (Young’s 

modulus) which in (A, B) was 0.31kPa, for (C, D) 21kPa and 75kPa in (E, F). Images in the right column show details 

(indicated by the white arrow) of the corresponding image to their left. (B) Shows a merge and the separate channels of 

a mid section through a single HAC with spherical morphology (as indicated by the arrow in image A). Scale bars are 

50µm for the left column and 10µm for the right column 
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Fig. 6 Representative confocal laser scanning microscopy images (maximum projection) of expanded/de-differentiated 

adult human articular chondrocytes (HAC), labelled for F-actin (green), vinculin (red) and nuclei (blue). HAC were 

induced to re-differentiate for 7 days in chondrogenic medium, on substrates on intermediately stiff (A: 21kPa) and stiff 

(B: 75kP) polyacrylamide substrates. HAC in more confluent regions formed more actin stress fibres than isolated cells. 

Moreover, actin stress fibres and aggregates of vinculin were more distinct on the stiffer than on the intermediately stiff 

substrate. Scale bar: 20µm. 

 

 

Sox-9 Expression 

After 7d of culture in chondrogenic medium on the corresponding substrates, HAC were 

immuno-labelled for transcription factor Sox-9 (see Fig. 8). Generally, frequency and 

intensity of nuclear Sox-9 localization was heterogeneous throughout the HAC 

population, but most frequent and intense in HAC cultured on the soft substrate. This also 

coincided with higher cytoplasmic concentrations as compared to in HAC cultured on 

intermediately stiff and the stiff PA substrate. 
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Fig. 7 Representative confocal laser scanning microscopy images of human articular chondrocytes (HAC) labelled for 

Sox-9 (red) and nuclei (blue). (A, B) HAC after expansion (passage 3) on infinitely stiff glass substrates. (C,D) 

Expanded/de-differentiated HAC after 7 days of re-differentiation culture in chondrogenic medium, on infinitely stiff 

glass substrates. Since Sox-9 expression was heterogeneous throughout the population, two images are shown 

representing lowest (left column) and highest Sox-9 expression (right column) for each condition. The presented images 

are midsections through the nucleus. Single planes were acquired at the z-level of highest Sox-9 intensity. Scale bar: 

50µm. 
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Fig. 8 Representative confocal laser scanning microscopy images of expanded/de-differentiated human articular 

chondrocytes (HAC), labelled for Sox-9 (red) and nuclei (blue). HAC were induced to re-differentiate for 7 days in 

chondrogenic medium, on substrates of contrasting elasticity (Young’s modulus) which in (A, B) was 0.31kPa, for (C, 

D) 21kPa and 75kPa in (E, F). Since Sox-9 expression was heterogeneous throughout the population, two images are 

shown representing lowest (left column) and highest Sox-9 expression (right column) for each condition. The presented 

images are midsections through the nucleus. Single planes were acquired at the z-level of highest Sox-9 intensity. Scale 

bar: 50µm. 
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Gene Expression  

Expanded/de-differentiated HAC cultured for 7 days on the corresponding substrate were 

analyzed for type I and II collagen mRNA expression (see Fig. 9). In control experiments, 

where TGF was omitted from the chondrogenic medium, type II collagen mRNA 

remained at levels comparable with that of expanded/de-differentiated HAC. 

Contrastingly, type I collagen mRNA was lower on the PA substrates and in aggregates 

(3.9 to 9.6-fold) but on TCPS w/CI also remained at levels comparable with that of 

expanded/de-differentiated HAC. 

 

 

 

Fig. 9 Type II (A) and I (B) collagen mRNA expression levels of expanded/de-differentiated adult human articular 

chondrocytes (HAC) after 7 days of culture in chondrogenic medium without (white bars) or with (black bars) TGF. 

0.31, 21 and 75kPa indicate the substrate elasticity (Youngs’ modulus) range of the three contrasting, type I collagen 

functionalized polyacrylamide cell culture substrates. Tissue culture treated plastic coated with type I collagen (TCPS 

w/ Col I) served as an infinitely stiff and HAC aggregate cultures (Aggr.) as positive controls. All values are normalized 

vs. the housekeeping gene 18S and the dashed line represents the mRNA expression level in expanded/de-differentiated 

HAC. Asterisks above the brackets indicate a significant differences between two corresponding bars (Kruskal-Wallis 

paired (Conover); p= * < 0.05 and ** < 0.01; n = 15, 4 donors). Open circles above the white bars indicate a significant 

difference vs. (+) TGF on the same substrate (Mann-Whitney, U-test, two tailed; n = 4, p < 0.05). 
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Inclusion of TGF in the chondrogenic medium (standard) had a strong general effect on 

type II collagen mRNA expression in HAC (Mann-Whitney, U-test, two tailed; p = 

6.0x10-6) and despite for the infinitely stiff substrate, it induced an up-regulation ranging 

from 459-fold on intermediately stiff substrates to 3642-fold in HAC aggregates (Kruskal-

Wallis paired (Conover); p < 0.05). Although less dramatic, TGF also had a general effect 

on type I collagen mRNA expression (Mann-Whitney, U-test, two tailed; p = 1.5x10-4) 

and induced an up-regulation in HAC cultured on soft (12.2-fold) and intermediately stiff 

substrates (6.2-fold; Kruskal-Wallis paired (Conover); p < 0.05). 

Type II collagen mRNA expression by HAC after 7d of culture in chondrogenic medium 

on the soft substrate was similar to that in aggregate culture and 6.4 to 18.1-fold higher 

than on stiff and infinitely stiff substrates (Kruskal-Wallis paired (Conover); p < 0.05). 

While intermediately stiff substrates still allowed for a 6.2-fold higher type II collagen 

mRNA expression (Kruskal-Wallis paired (Conover); p < 0.05), no difference was found 

between the stiff PA substrate and the infinitely stiff TCPS w/ CI. Type I collagen mRNA 

expression was not altered by substrate stiffness and remained at levels comparable to that 

in expanded/de-differentiated HAC. However the absolute mRNA expression level of 

type I collagen was more than 514-fold higher than that of type II collagen. 

 

Type II Collagen Protein Expression 

Expanded/de-differentiated HAC cultured for either 7 or 14 days on the corresponding 

substrate were analyzed for type II collagen protein expression (see Fig. 10 & 11, data 

adapted from master thesis Andreas Trüssel 2010 (225)). Fluorescent staining in the form 

of intracellular granules could only be detected in HAC cultured on soft substrates. 

Surprisingly, after 14 days of culture the fluorescent intensity (see Fig. 11, data adapted 
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from master thesis Andreas Trüssel 2010 (225)) tended to be lower as compared to after 7 

days. On the intermediately to infinitely stiff substrates, the fluorescence signal remained 

on levels comparable to that in negative control staining (secondary antibody only). 

 

Fig. 10 Representative confocal laser scanning microscopy images (maximum projection) of expanded/de-differentiated 

adult human articular chondrocytes (HAC), labelled for type II collagen (red) and nuclei (blue). HAC were induced to 

re-differentiate for 7 days in chondrogenic medium, on substrates of contrasting elasticity. The substrate elasticity 

(Young’s modulus) in (A) is 0.3kPa, for (B) 21kPa, 75kPa in (E) and infinitely stiff in (C; glass coated with type I 

collagen). Scale bar: 50µm. Data adapted from master thesis A. Trüssel 2010 (225). 
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Fig. 11 Type II collagen expression of expanded/de-differentiated adult human articular chondrocytes (HAC). HAC 

were induced to re-differentiate for 7 days in chondrogenic medium, on substrates of contrasting elasticity. The 

substrate elasticity (Young’s modulus) in (A) is 0.3kPa, for (B) 21kPa, 75kPa in (E) and infinitely stiff in (C; glass 

coated with type I collagen). The dashed line represents the fluorescence signal in HAC that were stained with the 

secondary antibody only (negative control; background fluorescence). After thresholding, the number of pixels were 

counted from confocal laser scanning microscopy images (maximum projection) of type II collagen labelled HAC, and 

expressed as kilopixels normalized vs. the number of nuclei. Scale bar: 50µm. Data adapted from master thesis A. 

Trüssel 2010 (225). 
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DISCUSSION 

 

Using type I collagen coated PA substrates of contrasting stiffness, (0.3kPa: soft, 21kPa: 

intermediately and: 75kPa stiff), we investigated the influence of substrate elasticity on 

the re-differentiation of expanded/de-differentiated HAC. The soft substrates allowed for 

attachment comparably to the intermediately to infinitely stiff substrates, but supported a 

spherical morphology, from which actin stress fibres and focal complexes were absent. 

Moreover, HAC on soft substrates displayed highest Sox-9 nuclear translocation and type 

II collagen expression (mRNA and protein). 

 

Attachment & Proliferation 

The comparability of the PA substrates with regard to adhesive ligand presentation was 

reflected by the similar degree of HAC attachment thereon. That in contrast to PA, HAC 

attachment on TCPS w/ CI was higher, could be associated with the different modes of 

protein immobilization on the two substrates. While PA was functionalized with CI by 

chemisorption (sulfo-SANPAH crosslinker), TCPS was coated with CI by physisorption. 

Both approaches are known to influence native biological protein activity and likely do so 

in a distinct but unpredictable manner (for review see (178)) and thus prompts for 

carefully comparing TCPS and PA in this regard. However, considering substrate 

elasticity to be the key parameter, protein coated TCPS as well as glass have previously 

been employed as infinitely stiff substrates (in the order of MPa) and allow to extrapolate 

the maximal stiffness of PA (~80kPa) (226;227). 
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While on all substrates HAC attachment in chondrogenic medium roughly matched which 

with values previously found under expansion conditions (140), proliferation of re-

differentiating HAC was very low on both soft and infinitely stiff substrates. This allowed 

to bypass proliferation inherent de-differentiation (95), which may have clouded the 

analysis of matrix elasticity as a direct differentiation cue in previous studies (208). 

 

Morphology & Sox9 Expression 

The soft substrates were demonstrated to permit for similar HAC morphology as can be 

achieved by well established culture conditions, which have been described to support a 

round cell morphology (96;101;124;212-215). In fact, HAC cultured on soft PA substrates 

in chondrogenic medium displayed characteristic aspects of chondrocytes in situ 

(228;229), including a round/spherical morphology, cortical actin filament organization 

and the lack of focal adhesions. Moreover, the morphogical observations in the present 

work were in good agreement with a complementary study, which assessed the 

maintenance of porcine and bovine chondrocytes in response to matrix elasticity 

(208;230). 

Contrastingly, Intermediately stiff to infinitely stiff substrates, allowed for cell spreading, 

actin stress fibre formation, and focal adhesion assembly which coincided with reduced 

Sox9 transcription factor expression/nuclear-translocation and type II collagen (mRNA 

and protein) expression. This coincidence suggests for the involvement of Rho GTPases, 

which are well characterized upstream regulators of the actin cytoskeleton (231;232) and 

have been found to influence chondrocyte differentiation and function. More specifically, 

RhoA and its effector ROCK suppress cortical actin organization, lead to stress fibre 

formation, the maturation of focal adhesions and inhibits chondrogenesis through the 
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supression of Sox9 expression (165;233). To date, Sox9 is known to be the only 

transcription factor absolutely necessary for chondrogenesis (234-236) and directly 

regulates the transcription of the collagen II gene (236-238). 

That Sox-9 expression was heterogeneous throughout the cell population may reflect the 

different zonal origins of HAC harvested from whole articular cartilage. This complicates 

the analysis of the fluorescence images and prompts for a quantitative assessment of 

nuclear Sox-9 translocation (normalized to cytoplasmic levels) to more precisely estimate 

its promotor activating levels (in progress). 

 

Chondrodifferentiation 

Matrix elasticity per se has been demonstrated to be sufficient for directing lineage 

specification of MSC (109), but it did not induce re-differentiation of HAC. This suggest, 

that although HAC expanded in presence of specific growth factors assume MSC-like 

traits (100), they might not fully acquire the degree of plasticity of their progenitors. 

Although not additional, substrate elasticity was able to modulate the soluble chondro-

inductive stimulus provided by TGF. This suggests for a cross talk between soluble and 

insoluble signals and implies that depending on the mechanical compliance of their 

environment, cells might respond differently to the same soluble signal. This has first 

been demonstrated for contractile fibroblasts, which only were able to maintain/generate 

TGF induced α smooth muscle actin (αSMA), when cultured on stiff (20kPa) but not on 

soft (8kPa) collagen gels (239).  

 

The strong up-regulation of type II collagen mRNA in HAC on soft substrates is in 

agreement with findings of a previous study using porcine chondrocytes (208). However, 
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the differences in type II collagen mRNA expression between the softest and the stiffest 

substrate were found to be more pronounced as than those reported by Schuh et al. 

(2010). This could be due to the difference in cell type and/or to the aforementioned 

proliferation associated de-differentiation. Another reason could be, that the softest 

substrate (4kPa) used by Schuh et al. (2010) was more than 10-fold stiffer as compared to 

the soft substrates (0.3kPa) employed in the present study. 

 

The reason why type II collagen was mainly found intracellularly but not extracellularly 

is unclear but could possibly be due to blocked release from HAC or low retention on the 

inert PA substrates. Interestingly, the staining was not continuous but localized into small 

granular features which were scattered throughout the entire cytoplasm. Similar, staining 

has been observed in chick chondrocytes and attributed to type II pro-collagen (209). 

Although, the type II collagen expression looks promising, these are primary results, 

which need further confirmation. 

 

Interestingly, the E modulus of the soft substrates matches well with values reported for 

mesenchymal stem cells (240). Since in the developing limb bud, mesenchymal stem cells 

aggregate to form mesenchymal condensations (205) this implies that they might greatly 

determine the mechanical properties thus suggests, that the soft substrates could have 

mimicked the mechanobiological environment present at the onset of chondrogenesis. 

In chondrogenic medium, Type I collagen mRNA expression by HAC was rather high in 

both aggregates and on soft substrates. This could be due to the fact, that 7 days of re-

differentiation is still quite short. Actually, it is known, that in the developing limb, 

Collagen I plays an important role during mesenchymal condensation but is down-

regulated as chondrogenesis progresses (218). 
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Mechanisms of Mechanotransduction 

The precise mechanisms by which substrate elasticity influences cell behaviour are still 

elusive (241). Still, the number of studies which provide mechanistic insight on the topic 

of mechanotransduction is increasing and has let to the proposal of different models. 

An extracellular model describes that if cell generated tension meets resistance from the 

ECM, it allows to free/activate latency associated protein (LAP) bound growth factors 

(i.e. TGF) which are sequestered in their inactive form throughout the ECM (207). 

However, it seems unlikely, that matrix elasticity modulated the effect of TGF by this 

mechanism, since the chondrogenic medium was supplemented with free/active TGF and 

since type I collagen (immobilized on the PA substrates) is not known to possess a TGF 

or a LAP interaction site. 

 

Other models focus on intracellular effects of matrix elasticity. The strain within a cell is 

manifested as protein extension, domain unfolding, and or protein-dissociation that 

relieves stress and/or creates sites for new binding partners, which elicits a chemical 

diffusion based signalling (241). Alternatively, external forces are thought to propagate 

into the cell nucleus through cell surface transmembrane receptors, that couple the ECM 

to cytoskeletal networks, which in turn link to nuclear scaffolds, nucleoli, chromatin and 

DNA. This channelling of forces across discrete load-bearing cytoskeletal filaments might 

promote changes in the shape, folding or kinetics of specific, load-bearing molecules or 

might modify higher-order chromatin organization and thereby alter nuclear protein-self-

assembly, gene transcription, DNA replication or RNA processing. Moreover, this model 

suggests, that tissue elasticity as an insoluble cue could specify genome organization and 

nuclear matrix composition, which could prime cells to react differently to the same 
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soluble signal through differential tethering of genes to load-bearing nuclear scaffolds 

(242). Likely, both the chemical diffusion based, and the direct nuclear 

mechanotransduction work in a complementary/integral fashion. 

 

 

OUTLOOK 

The adhesive ligand employed in this work was restricted to type I collagen, but could be 

extended to other ECM proteins as i.e. type II collagen, which has been shown to support 

the native morphology of chicken epiphysial chondrocytes (129). This suggestion also 

finds support by the fact that myogenic and osteogenic differentiation of human MSC can 

be directed by the interplay of substrate stiffness and type of adhesive ligand presented 

(243). 

Instead of using native proteins like type I collagen, engineered proteins (i.e. modified 

FN-fragments) or truncated proteins (i.e. RGD-containing peptides) could also be used as 

cell-ligands and have previously been demonstrated to modulate the behavior of human 

fibroblasts and HAC respectively (137;140). 

 

Although the two dimensional (2D) PA gels employed in the present work proofed to be a 

valuable tool, future experiments to investigate the effects of substrate elasticity on cell 

behavior should be performed in a three dimensional environment (3D). 3D culture 

systems possess fundamental advantages over 2D models as they allow cells to adopt 

their native morphology, increase cell-cell interactions and facilitate contacts with the 

ECM (244;245). Moreover, a 3D environment would be more representative of i.e. an in 

situ situation and thereby be clinically more relevant. Unfortunately, PA polymerization is 
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not compatible with living cells, and thus does not allow for cell encapsulation. A simple 

approach to bypass this technical obstacle could be culturing cells in aggregates mixed 

with PA micro particles. Together, the 2D and the 3D PA model could allow to 

investigate cell responses to the influence of substrate elasticity & architecture in 

combination with other parameters such as soluble factors and/or the type of immobilized 

cell adhesion ligand. 

A more sophisticated alternative would be i.e. PEG-based hydrogels which allow for cell 

encapsulation under physiological conditions and also can be tuned in their elasticity. 

Furthermore, PEG-based hydrogels can be doped with biological functionalities as i.e. 

matrix metalloproteinase-sensitive motifs and thus allow for enabling and controlling 

their biodedradability (246). This stands in strong contrast to most other synthetic 

materials which cannot be remodeled by cells, are limited in their degradation 

(hydrolysis) and thus may not be compatible with the de novo formation of matrix by 

cells (247). Still, PA-gels can easily be prepared in a biology lab since all the required 

ingredients are commercially available and simple to assemble. PEG-gels are not more 

complicated to assemble, yet, their building blocks cannot be bought off the shelf, but 

first have to be synthesized and characterized. 

Taken together, 2D PA gels and 3D PA microparticles could be further exploited as 

simple but potent model tools in basic biology, while for rather clinically oriented 

investigations more sophisticated materials should be considered, which not only are 

biocompatible but also can be remodeled by cells. 

 

Based on their chondroprogenitor like plasticity (100), expanded/de-differentiated HAC 

may provide a prediction on the behaviour of bone marrow derived mesenchymal stem 

cells, which are receiving increasing interest in association with in situ cartilage repair 
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approaches(152). These repair procedures involve the penetration of the subchondral bone 

plate by small perforations (microfracturing) which allow the recruitment/infiltration of 

mesenchymal stromal cells (MSC) from the bone marrow (204). MSC have the potential 

to undergo chondrogenic differentiation (156), but are thought to require the support of 

inductive/instructive biomaterials to improve microfracturing stimulated in situ cartilage 

regeneration (152;203). In this light, it appears promising to also investigate the effect of 

matrix elasticity on the chondrogenic differentiation of human MSC. 

 

 

 

CONCLUSION 

Substrate elasticity modulated the re-differentiation response of expanded/de-

differentiated HAC to the chondrogenic stimulus TGFβ-3, and thus underscores 

mechanical compliance in combination with appropriate soluble signals to be important 

parameter in designing biomaterials for cartilage repair. 
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Main Conclusion 

 

 

 
By modifying specific substrate characteristics, CPC behaviour could be modulated under 

conditions which were either permissive for proliferation or differentiation. In chapter I 

for example, substrate composition & architecture were found to modulate the 

chondrogenic differentiation of MSC. That the di block copolymer model substrate 

(Polyactive®) with a more hydrophobic composition better supported MSC 

chondrogenesis, is likely associated with differential protein adsorption (from serum 

containing medium). However such proteinaceous interfaces are rather complex with 

regard to protein composition and conformation thereon. As this conceals the specific 

cues responsible for mediating the observed effects, it consequently prompted for 

reducing substrate interface complexity in subsequent investigations (chapter II & III). 

A 3DF architecture with more highly interconnected pores and a pore size that allowed 

for the formation of larger MSC aggregates than the CM scaffolds was found to 

considerably better support MSC chondrogenesis. Taken together, the findings in chapter 

I underscore the importance to control substrate composition & architecture and point to 

their potential to modulate CPC cartilaginous matrix formation from fibrous towards 

more hyaline like. 
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Chapter II proofed, that restricting cell/substrate interaction to a specific ligand type 

(RGD-containing peptide) modulates de-differentiation of proliferating HAC and their 

subsequent capacity to form cartilaginous matrix. This demonstrated the advantage of 

small ECM fragments in combination with protein resistant materials to control 

cell/surface interaction. An important finding was the better maintenance of the HAC 

chondrocytic phenotype during expansion. It suggests, that an RGD-restricted substrate 

has the potential to improve the outcome of matrix assisted in situ cartilage repair, which 

initially requires recruited/infiltrated CPC to proliferate, while keeping/inducing their 

capacity to form cartilaginous matrix. 

 

In chapter III, substrate elasticity allowed to modulate the chondrogenic commitment of 

HAC. The finding, that a soft substrate (0.3kPa) better supported the chondrogenic 

phenotype of HAC than i.e. a stiffer substrate (75kPa) suggests this parameter to be 

promising for modulating the outcome of matrix assisted cartilage repair. 

 

All chapters clearly demonstrated the potential of substrate properties to modulate CPC 

behaviour. Yet, although differentially supporting CPC chondrogenesis, none of the 

substrates was per se chondro-inductive (see chapter I and III) but required for additional, 

exogenic stimuli as for e.g. TGF. Thus, substrate modifications hold considerable 

potential for improving matrix assisted cartilage repair but likely have to be combined 

with additional soluble stimuli to exploit their full potential. 
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Main Outlook 

 

 
For reasons of feasibility, the sequences following micro fracturing stimulated cartilage 

repair have been grouped into two main phases consisting of i ) proliferation and ii) 

differentiation. From these phases in vitro conditions were inferred for testing the 

response of condroprogenitor cells (CPC) to specifically modified substrate interfaces. 

However, aiming at in situ repair, these two phases would have to be linked. Thus, the 

supportive properties found in this thesis would have to be provided by one and the same 

material. This could be accomplished by a dynamic, clock-like material that adapts to the 

specific needs during the two different phases. As an example, such a hypothetic material 

could be an RGD-restricted, relatively stiff substrate (≥20kPA). After a duration long 

enough to allow for proliferation, the material would need to soften (~1kPa) for 

supporting chondrogenic differentiation of the augmented CPC pool. The architecture of 

the envisioned ideal material initially should allow for efficient CPC infiltration and 

distribution but also should permit the formation of cellular aggregation during 

chondrogenic differentiation. These requirements could possibly be met by a single 

architecture like the 3DF. 

As mentioned above, such a supportive material should be combined with appropriate 

soluble factors to stimulate either proliferation or induce differentiation. The release of 

these factors should be in concert with the corresponding phase of cartilage repair and 
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could be preceded by a burst of suitable cytokines to enhance CPC recruitment/ 

infiltration. 

Combining supportive substrate properties with inductive soluble stimuli, it should 

ultimately be possible to move from biomaterials which support cartilaginous repair to 

active medical devices which mediate cartilage repair. 
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