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i. SUMMARY 

The serine/threonine protein kinase B (PKB/Akt) is a downstream 

effector of phosphatidylinositol 3-kinase (PI3K) and a major regulator of a 

variety of cellular processes, including metabolism, transcription, survival, 

proliferation, and growth. PKB is activated by several stimuli, including 

hormones, growth factors, cytokines and, as recently reported, also by DNA 

damage. Activation of PKB requires phosphorylation at two key regulatory 

sites: Thr308 and Ser473 (of PKB!). Phosphorylation by 3-phosphoinositide-

dependent kinase-1 (PDK1) occurs on Thr308 in the activation loop of PKB. 

The phosphorylation on Ser473 within a C-terminal hydrophobic motif leads to 

full activation of PKB and mediated by two members of the PI3K-related 

kinase (PIKK) family, mTOR/rictor complex (mTORC2) or DNA-dependent 

protein kinase (DNA-PK) in a stimulus specific manner. Insulin or growth 

factor induced PKB Ser473 phosphorylation is regulated by mTORC2. In 

contrast, DNA damage-induced phosphorylation of PKB Ser473 is mediated 

by DNA-PK.  

The present study made use of genetically modified mouse models to 

investigate PKB regulation by DNA-PK, as phosphorylation of Ser473 may be 

stimulus-, signalling pathway- and/or cell type-specific. In this study, we 

investigated the role of DNA-PK in basal, insulin-induced, and DNA damage-

induced phosphorylation of PKB Ser473 under physiological conditions. We 

report that DNA-PK phosphorylated PKB on Ser473 upon DNA damage 

induced by !-irradiation in vivo. In contrast, DNA-PK was dispensable for 
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insulin and growth factor-induced PKB activation. Interestingly, analysis of 

basal PKB Ser473 phosphorylation in DNA-PKcs"/" mice showed tissue-

specific deregulation of the PKB/FoxO pathway. In particular, we provide 

evidence that persistent PKB hyperactivity in the thymus apparently 

contributes to spontaneous tumourigenesis in DNA-PKcs"/" mice. 

Lymphomagenesis could be prevented by the deletion of PKB! and implies 

deregulation of PKB in DNA-PKcs"/" thymi. 

Deregulation of PKB is implicated in various types of cancer and 

PI3K/PKB pathway is one of the most deregulated pathways in human 

malignancies. Therefore PI3K/PKB pathway is a major focus of current efforts 

for the treatment of cancer. In the second part of the study we made use of 

differential activation of PKB by upstream kinases in response to specific 

stimuli as a tool to dissect the mode of action of a small molecule inhibitor 

BBD130.
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ii. ABBREVIATIONS 

 

DDR  DNA damage response 
 
DNA DSBs DNA double strand breaks 
 
DNA-PKcs DNA dependent protein kinase catalytical subunit 
 
DN  double negative 
 
DP   double positive 
 
FoxO   Forkhead box, class O 
 

GSK3   glycogen synthase kinase 

HM  hydrophobic motif 

IGF1  insulin-like growth factor 

mTOR  mammalian target of rapamycin 

mTORC2  mTOR/rictor complex 

PDK1  3-phosphoinositide-dependent kinase-1 

PI3K   phosphatidylinositol-3-kinase 

PI(3,4,5)P3  phosphatidylinositol 3,4,5-triphosphate 

PIKK   PI3K-related kinase  

PH  pleckstrin homology 

pre-TCR  pre-T cell receptor  

rictor   rapamycin insensitive companion of mTOR 

RTK   receptor tyrosine kinase  

S6K1  p70 ribosomal protein S6 kinase 1 
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I. INTRODUCTION 

 

1. Protein kinase B (PKB/Akt)  
 

1.1 PKB structure 
 

PKB/Akt belongs to class of AGC kinases (related to AMP/GMP kinase and protein 

kinase C). PKB was identified by homology cloning as a serine/threonine protein 

kinase of the second-messenger subfamily (1,2) and concurrently as a cellular 

homolog of the v-AKT oncogene within the mouse leukaemia virus AKT8 (3,4). 

There are three isoforms of PKB in mammals, termed PKB !/Akt1, PKB"/Akt2 and 

PKB#/Akt3, which are products of distinct genes yet comprise more than 80% 

sequence identity and share a conserved structural organization that includes three 

functional domains.  

 

Figure 1. Domain structure and phosphorylation sites of PKB isoforms. PH: pleckstrin 

homology; HM: hydrophobic motif. Adapted from (5). 
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All PKB isoforms consist of an N–terminal pleckstrin homology (PH) domain, 

followed by a short !–helical linker and a catalytic (kinase) domain (Figure 1). The 

conserved threonine residue (Thr308 of PKB!/Akt1), one of the two crucial 

phosphorylation sites for activation of PKB, is located in the activation loop of the 

kinase domain.  Like in other AGC kinases, a C–terminal tail follows the kinase 

domain and this regulatory domain contains hydrophobic motif (HM) that is a 

characteristic of AGC kinase family (5). In mammalian PKB isoforms this motif is 

identical [FPQFSY] and comprise the second conserved phosphorylation site, 

Ser473 (of PKB!/Akt1).  

Phosphorylation of both Thr308 in the activation loop and Ser473 in the hydrophobic 

motif is required for full activation of PKB. The crystal structures of PKB kinase 

domain in inactive and active states were solved (6), and provided an explanation of 

how these two phosphorylation sites contributes to enzymatic activation of the 

kinase. The phosphorylation of Thr308 induces a catalytically active conformation of 

PKB and full activation is achieved by phosphorylation of Ser473, which leads to 

stabilization of the active conformation. This stabilization is due to the intramolecular 

interaction between the hydrophobic motif and its acceptor structure within the 

kinase domain, named the hydrophobic groove and phosphorylation of the 

hydrophobic motif residue leads to a disorder to order transition of the kinase domain 

(6). 
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1.2.  Activation of PKB 
 

The key role of PKB in signalling became obvious when it was shown to be a 

downstream effector of phosphatidylinositol 3–kinase (PI3K) pathway that is 

activated upon autophosphorylation of receptor tyrosine kinases induced by insulin 

or other growth factors; stimulation of G-protein coupled receptors or activation of 

integrin signalling (7-9). PKB is activated by several stimuli, including hormones, 

growth factors, cytokines and, as recently reported, also by DNA damage (8,10-12). 

 

 

Figure 3. Activation of PI3K-PKB pathway in response to several stimuli. Adapted from 

Cell Signaling. 
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The typical route of PKB activation is via receptor tyrosine kinases. Upon ligand 

binding and PI3K activation, phosphatidylinositol 3,4,5-triphosphate (PIP3) is 

produced. Inactive PKB is recruited from cytosol to the membrane via binding of its 

PH domain to PIP3. Membrane recruitment brings PKB to close proximity to 3-

phosphoinositide-dependent kinase-1 (PDK1), and co-localization of the proteins 

and conformational change in PKB upon PIP3 binding lead to phosphorylation of 

Thr308 residue of PKB by PDK1 (Figure 3). Recently, PKB and PDK1 were found as 

a preactivation complex, which is maintained in an inactive state through a PKB 

intramolecular interaction (13). Full activation of PKB is achieved by phosphorylation 

of Ser473 residue within a C–terminal hydrophobic motif (Figure 3). Several 

candidates were proposed to be the kinase responsible for phosphorylation of PKB 

Ser473 residue including PKB itself (14), PDK1 (15), integrin-linked kinase-1 (ILK1) 

(16), mitogen activated protein kinase activated protein kinase 2 (MAPKAP-K2) (17), 

protein kinase C "II (PKC"II) (18), and the members of the PI3K–related protein 

kinase family (also referred to as class IV PI3Ks) including DNA dependent protein 

kinase (DNA-PK) (19), Ataxia telangiectasia mutated (ATM) (20), and mTOR/rictor 

complex (mTORC2) (21). However, recent studies indicated that DNA–dependent 

protein kinase (DNA–PK) (11,19,22) and mTOR/rictor complex (mTORC2) (21), both 

of which are members of the PI3K–related protein kinase family (also referred to as 

class IV PI3Ks) are the most relevant ones at present and regulate PKB Ser473 

phosphorylation in a stimulus specific manner Insulin or growth factor induced PKB 

Ser473 phosphorylation is regulated by mTORC2 (21). In contrast, DNA damage-

induced phosphorylation of PKB Ser473 is mediated by DNA-PK (11) (Figure 3).  
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Once activated, PKB phosphorylates a plethora of substrates and PKB-mediated 

phosphorylation of these proteins lead to their activation or inhibition (Figure 4). 

Regulation of these substrates by PKB results in multiple cellular outcomes affecting 

survival, growth, proliferation, and metabolism (8). 

1.3. The role of PKB in cell survival and proliferation 

Several lines of evidence demonstrated the crucial role of PKB in promoting cell 

survival and induce proliferation downstream of growth factors and cell stress (8,23).  

 

Figure 4. PI3–kinase/PKB pathway. Adapted from (24). Yellow boxes indicate tumor 

suppressor genes and green boxes indicate oncogenes). 'GPG' denotes growth–promoting 

genes—that is, genes that stimulate cell proliferation or inhibit the rate of cell death or arrest. 

Diamonds (#) indicate protein–protein interactions. Arrows and T–bars indicate 

transcriptional induction and repression, respectively. Small–circled 'P' and ‘Ub’ represent 

covalently attached phosphate and ubiquitin, respectively. 
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PKB enhances the survival of cells by blocking the function of proapoptotic 

proteins and processes. PKB negatively regulates the function of proapoptotic 

protein BAD by phosphorylation on Ser136, which creates a binding site for 

14-3-3 proteins and this, leads to release of BAD from its target proteins (25). 

PKB also inhibits the expression of proapoptotic proteins through nuclear 

exclusion of Forkhead (FoxO) transcription factors (26). Phosphorylation of 

FoxOs (FoxO1,FoxO3a and FoxO4) by PKB which as well lead to 14-3-3 

binding and release from their targets and trigger their export from nucleus. 

Through this mechanism PKB blocks FoxO-mediated transcription of target 

genes that promote apoptosis and cell-cycle arrest including pro-apoptotic 

BIM (27,28) and proapoptotic cytokine Fas ligand (Fas-L) (29), and cyclin-

dependent kinase inhibitor p27Kip1 (30). PKB also phosphorylates p27 (31-33) 

and this leads to 14-3-3 binding and cytosolic sequestration (34). Another 

mechanism that PKB promotes survival is through phosphorylation of MDM2, 

an E3 ubiquitin ligase that triggers p53 degradation. MDM2 phosphorylation 

by PKB induces translocation of MDM2 to nucleus where it negatively 

regulates p53 function (35,36).  Phosphorylation by PKB also results in 

stabilization of MDM2 via decreased ubiquitination (37).  Another direct target 

of PKB, Glycogen synthase kinase (GSK3) is inactivated upon 

phosphorylation (38). A pro-survival protein MCL-1 is a direct target inhibited 

by GSK3 (39). Further, GSK3 is likely to drive cell proliferation through 

regulating the stability of proteins involved in cell-cycle entry. GSK3 mediated 

phosphorylation of G1 cyclins, cyclin D and cyclin E and transciption factors, 
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c-myc and c-jun targets these proteins for proteosomal degradation (40-43). 

Therefore PKB mediated phosphorylation and inhibition of GSK3 could result 

in cell cycle progression by stabilization of these proteins. 

1.4. Role of PKB in cell growth 

A crucial function of PKB in cell is induction of growth. Predominant 

mechanism appears to be via activation of mTOR/Raptor (mTORC1) 

signaling, which is regulated by growth factors and nutrients, and mediate 

translation initiation and ribosome biogenesis through S6K and eukaryotic 

initiation factor 4E (eIF4E)-binding protein 1 (4E-BP1) (44) (Figure 3).  

Tuberous sclerosis complex 2 (TSC2) is a negative regulator of mTORC1 

signalling (45,46). PKB phosphorylates and inhibits TSC2 thereby activates 

mTORC1 signalling (47-49). Recently, a further substrate of PKB, the proline-

rich Akt substrate of 40 kDa (PRAS40) was found to negatively regulate 

mTORC1 signalling (50,51). 

1.5. Deregulation of PKB in cancer 

The PI3K/PKB signalling pathway is crucial to many aspects of cell growth 

and survival. As PKB regulated responses could favor tumor initiation and/or 

progression it is not surprising that PI3K/PKB pathway is one of the most 

deregulated pathways in human cancers. Several cancer types showed 

deregulation of this pathway due mutations, amplifications or overexpression 

of PKB or PI3K isoforms (Table 1) (52-55). PKB Ser473 phosphorylation is 

used as a biomarker and strongly correlated with poor prognosis of several 
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cancers (56-58) rendering inhibition of PKB by targeting the components of 

PI3K/PKB pathway as an effective strategy for cancer treatment (59-62).  

 
Table 1. PI3K/PTEN/PKB signaling deregulation in human malignancies 
 
 

Cancer Type Type of alteration 

Brain PTEN mutation (glioblastoma) 

PI3K p110! mutation 

PI3K p85! mutation 

Ovarian Allelic imbalance and mutations of PTEN gene  

PI3K p110! amplification and overexpression 

PI3K p85! mutation 

PKB! mutation 

Elevated PKB! kinase activity and amplification 

PKB" amplification and overexpression 

Breast Loss of heterozygosity at PTEN locus 

PI3K p110! mutation 

PI3K p110" !amplification 

PI3K and PKB" overactivation 

Elevated PKB! kinase activity 

PKB" amplification and overexpression 

PKB! mutation 

Endometrial PTEN mutations and deletions 

PTEN silencing 

PI3K p110! mutation 

Hepatocellular 

carcinoma 

PTEN mutation 

Aberrant PTEN promotor methylation 

PKB" overexpression  

Melanoma PTEN mutation and deletion 
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PTEN silencing 

Digestive tract Aberrant PTEN transcripts 

Loss of PTEN expression  

PTEN mutation and deletions 

PI3K p85! mutation 

PI3K p110! mutation 

PKB! mutation 

PKB" overexpression and amplification 

Lung PTEN inactivation, deletion and mutation 

PI3K p110! mutation 

PKB! mutation 

Renal–cell carcinoma PTEN mutations 

Thyroid  PTEN mutations and deletions 

PKB overexpression and activation 

Lymphoid PTEN mutation 

Prostate PTEN mutations and deletions 

PKB# overexpression 

Elevated PKB! activity 

Head&Neck cancers PTEN deletion 

PI3K p110! mutation 

Pancreas cancer 

 

PKB! amplification 

PKB" amplification 

 

    Adapted from (24,54,55,63-65) 
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2. DNA dependent protein kinase 

2.1.  DNA-PKcs structure and DNA binding 

DNA dependent protein kinase catalytical subunit (DNA-PKcs) is a 

serine/threonine kinase that belongs to the phosphatidylinositol–3–kinase 

(PI3-K)–related kinase family (PIKKs) (also referred as Class IV PI3Ks), which 

includes other DNA damage-sensor enzymes Ataxia-telangiectasia mutated 

(ATM), ATM-Rad3-related (ATR) as well as nutrient-sensor kinase, 

mammalian target of rapamycin (mTOR). A common feature of this family is 

their large size. DNA-PKcs gene spans about 250 kb of the murine genome, 

encoded by a 14 kb cDNA composed of 86 exons and maps to mouse 

chromosome 16 and human chromosome 8. DNA-PKcs protein is composed 

of 4128 aminoacids and it is highly conserved between murine and human 

with 78.9% homology. The 467-kDa catalytical subunit DNA-PKcs and the Ku 

antigen complex, Ku70/K080 form the holoenzyme, DNA-PK. 

The cryo-EM structure of DNA-PKcs shows the organization of the protein into 

a bulky and largely globular ‘‘head’’ structure connected to a flat tubular ‘‘arm’’ 

segment terminating in two projecting ‘‘claws’’ (66)  (Figure 3). The long and 

distinctive N-terminal region of DNA-PKcs, probably formed by an extended 

series of HEAT1 and related helical repeats (68), maps into the long curved 

                                                
1 Huntington elongation A subunit TOR (HEAT) repeats, originally identified in PR65a 

subunit of PP2A (45) are ~40 residue long and are arranged as a pair of antiparallel 

$-helices separated by a tight turn. Multiple copies of these helix pairs stack in 
parallel to create flattened tubular structures composed of double layers of $ helices 

that typically curve to form a convex and a concave face (67. Groves, M. R., 

and Barford, D. (1999) Curr Opin Struct Biol 9, 383-389 
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tubular- shaped domains within the arm region (Figure 3,orange). The C 

terminus containing the conserved PI3K-related catalytic domain (residues 

3649–4011 in DNA-PKcs), a weakly conserved ~500 residue helical repeat 

region immediately N-terminal of this (the FAT domain), and a narrow ~100 

residue C-terminal extension at the end of the catalytic domain (FATC 

domain) (69) all locate in the head region (Figure 3, pink, green, and blue). 

 

 

Figure 3. 3D structure of DNA-PKcs taken from Rivera-Calzada et al. (66). Coloring 

depicts the assignment of domains in the sequence of DNA-PKcs (top row) into the 

3D structure. The scale bar represents 70 A°.  

 

Ser3205 autophosphorylation site lies in the head region at the central part of 

the FAT domain. The rest of the autophosphorylation sites namely, Thr2609, 

Ser2613, Thr2620, Ser2624, Thr2638 and Thr2647, is located as a cluster in 

the shoulder region. Based on docking of a PI3K#-based modeling, ATP 

binding site lies on the outer surface of head region of DNA-PKcs and would 

be accessible in the presence of bound DNA. The main autophosphorylation 
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sites are predicted to lie within the shoulder region and would be inaccessible 

to ATP binding site in the same molecule and would require phosphorylation 

by a second DNA-PKcs molecule in trans (66,70). 

2.2. The role of DNA-PK in DNA damage response 

Maintenance of genomic integrity is one of the essential aspects of life. The 

genome surveillance machinery encounters diverse genotoxic insults 

including ultraviolet or ionizing radiation and various chemicals all of which 

share the property of causing mutagenic damage to DNA (71). DNA double 

strand breaks are the major form of DNA damage induced by ionizing 

radiation and radiomimetic drugs and represent the most lethal form of DNA 

damage. A complex signaling network named DNA damage response (DDR) 

guards the genomic integrity through integration of several processes initiated 

by sensing the damage by DNA damage sensor proteins (Figure 4). DDR 

orchestrates this network through the action of sensors, transducers and 

effectors and coordination of these processes with ongoing cellular physiology 

(72). 

Pathways that are elicited by DDR to cope with the harmful damage effects 

include DNA repair, transcriptional response, DNA damage checkpoints and 

apoptosis. These responses may function independently however frequently a 

protein primarily involved in one response may participate in others (73). The 

effectiveness relies on proper spatiotemporal dynamics of the components of 

this signaling network and these dynamics is influenced by modifications of 
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the proteins such as phosphorylations and subsequent recognition by the 

components of the network itself (74). 

 

 

Figure 4. Adapted from (75). Sensing and responding to DNA double strand breaks 

(DSBs). 

The kinase activity of DNA-PKcs is strongly stimulated by DNA binding. 

Double–stranded DNA ends produced by ionizing radiation or radiomimetic 

drugs activate DNA–PK. Double stranded DNA bind to the open cavity 

between head and the palm and DNA binding elicits a substantial change in 

the overall conformation so that the palm and the head are brought in intimate 

contact (76). The FAT and the FATC domains, directly attached on the 
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opposite ends of the kinase core, may together act as a sensor that couples 

conformational changes upon DNA binding to directly activate the catalytic 

center. In line with this prediction, a widely used mouse model with severe 

combined immunodeficiency (SCID) bears a nonsense mutation on Tyr4046 

of the DNA-PKcs protein, which lead to loss of last 70 aminoacids of the 

FATC domain and a drastic reduction in its kinase activity (77).  

One distinctive feature of the large PIKK proteins in addition to their kinase 

activity is their role as scaffolds recruiting other proteins involved in 

downstream signaling. N-terminal repeats present in the PIKKs including 

DNA-PKcs suggest that they may play a role in assembling and regulating 

multiprotein complexes. 

Primary recognition of free DNA ends is mediated by Ku proteins (Figure 6), 

which is in a preformed ring structure that can sterically encircle the DNA 

without establishing sequence specific contacts (70). DNA bound Ku direct 

the recruitment of DNA-PKcs via the C terminus of Ku80. Ku interacts with 

DNA-PKcs with contact points that expand from back of the head region to the 

tubular N terminal arm, making extensive interactions with several distinct 

regions of DNA-PKcs including HEAT repeats and their projecting claws and 

contacts the head close to the expected position of the kinase domain. On the 

other hand DNA-PKcs can also bind to DNA ends independently of Ku with 

concomitant stimulation of its kinase activity (78). Upon DNA binding, dimeric 

DNA-PKcs/Ku70/Ku80 holoenzymes interact through the N-terminal HEAT 

repeats and maintain the broken DNA ends in proximity while providing a 
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platform for access of the various enzymes required for end processing and 

ligation.  

 

Figure 5. Ku70/Ku80 recognizes the DNA break and recruits DNA-PKcs. DNA-PKcs 

forms a synaptic complex between the two broken ends of DNA and helps to 

assemble the Xrcc4-ligaseIV complex, which performs the final step of DNA ligation. 

Phosphorylation of Ku70/Ku80 and Xrcc4/ligaseIV by DNA-PKcs, and also DNA-

PKcs auto-phosphorylation, regulates the progress through the NHEJ reaction 

Adapted from (79). 

 

Activated DNA-PKcs phosphorylates itself and a variety of other proteins 

including other NHEJ components. Autophosphorylation negatively regulates 

DNA binding of DNA-PKcs leading to dissociation from DNA (80,81). DNA-
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PKcs phosphorylation/ autophosphorylation facilitates NHEJ by destabilizing 

the DNA–DNA-PKcs complex, which, in turn, enables efficient ligation. 

 

3. Roles of PKB and DNA-PK in thymus 

Mammalian T cells with various functions share a complex developmental 

history. T cells develop from bone marrow stem cells but their progenitors 

migrate to the thymus where they mature.  Thymus is a lobular organ and 

consists of two regions: outer cortical region  - thymic cortex-, and inner 

medulla. Most T cell development takes place in the cortex; thymic medulla 

contains mainly mature T cells. Rather few T cell progenitors migrate into 

thymus per day but during their differentiation with an elaborate transcriptional 

programme, they undergo extensive proliferation. 

In the thymus, the immature T cells, or thymocytes, proliferate and 

differentiate, passing through a series of discrete phenotypic changes that can 

be identified by distinctive patterns of expression of various cell-surface 

proteins. T cell development requires an integration of extracellular signals to 

enforce lineage commitment at multiple defined checkpoints in a stage-

specific manner. Thymocyte progenitors enter the thymus from the venules 

and migrate to the subcapsular region (Figure 6). At this stage, they express 

neither the antigen receptor nor the two co-receptors CD4 and CD8, and 

hence called double-negative (DN) thymocytes. These cells proliferate in the 

sub-capsular region of the thymus and begin the process of gene 

arrangement. 



Introduction 

 

 

27 

 

 

 

 

Figure 6. T cell development. Adapted from (82). 
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This programmed series of arrangements, namely V(D)J recombination2 

produces a large number of immature T cells each expressing a receptor of a 

different antigen. DNA-PK deficiency lead to defective V(D)J recombination 

and as a consequence which thymocytes lacking DNA-PK are blocked at DN 

stage. Functional gene rearrangement results in the expression of pre-T cell 

receptor (pre-TCR), which is composed of the newly rearranged TCR% chain 

paired with a non-rearranged pre-T$ chain. The suitability of the TCR% chain 

is assessed at this stage namely, %-selection checkpoint, where the cells with 

a functionally rearranged TCR% chain survive while thymocytes that fail to 

express a correctly rearranged receptor undergo apoptosis. Survival through 

this checkpoint requires that cells generate a signal from the pre-TCR (83). 

Growing evidence suggest that PI3K signal transduction cascade is essential 

for thymocyte survival at this checkpoint. PKB has been shown to play an 

important role in DN- to DP-stage transition and to be essential for thymocyte 

survival and differentiation (84-86). Past this stage, the expression of the co-

receptors CD4 and CD8 on the cell surface produces double positive (DP) 

cells.  

                                                
2
 V(D)J recombination is the specialized DNA rearrangement used by cells of the 

immune system to assemble immunoglobulin and T-cell receptor genes from the 

preexisting gene segments. Because there is a large choice of segments to join, this 

process accounts for much of the diversity of the immune response. Recombination 

is initiated by the lymphoid-specific RAG1 and RAG2 proteins, which cooperate to 
make double-strand breaks at specific recognition sequences (recombination signal 

sequences, RSSs). The neighboring coding DNA is converted to a hairpin during 

breakage. Broken ends are then processed and joined with the help of several 

factors also involved in repair of radiation-damaged DNA, including the DNA-
dependent protein kinase. 
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As the cells mature they move deeper into the thymus, then rearrange $-chain 

genes followed by positive3 and negative4 selection where thymocytes are 

subject to elimination by massive apoptosis. Finally mature single positive 

(SP) T cells exit to the peripheral circulation from the medulla. 

Integration of multiple inputs controlling the T-cell development points to 

PI3K/PKB pathway as a central player. Critical signals from the pre-TCR, 

Notch, and the receptor for interleukin-7 (IL-7) dictate cellular differentiation 

from the CD4"CD8" (double negative) stage to CD4+CD8+ (double positive) 

stage (83,87). The PI3K/PKB signaling pathway is required to translate these 

extracellular signaling events into multiple functional outcomes including 

cellular survival, proliferation, and differentiation. 

 

4. Studies of knock-out mice for PKB isoforms and DNA-PK 

DNA-PKcs"/" mice display growth retardation, hypersensitivity to ionizing 

radiation, and severe immunodeficiency (88-90). Due to defects in V(D)J 

recombination, the development of T and B cells is blocked at an early 

progenitor stage in DNA-PKcs"/" mice. Moreover, DNA-PKcs"/" thymus has 

                                                
3
 Positive selection: The rescue of DP cells from apoptosis allows their maturation 

into CD4 or CD8 positive cells and is known as positive selection. By favoring the 

survival of thymocytes whose receptors can interact with self peptide:self MHC 
complexes, positive selection ensures that mature T cells can recognize and respond 

to peptides presented by self MHC molecules on antigen presenting cells. 

 
4
 Negative selection: DP cells also undergo negative selection where the cells that 

recognize self-peptide:self MHC complexes too well are induced to undergo 
apoptosis thereby eliminating the potentially self-reactive cells before they mature. 
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decreased cellularity and displays hypotrophy. Further, DNA-PKcs"/" mice 

display an increased rate of T-cell lymphoma (91). 

Studies of mutant mice carrying a null mutation for each of the three PKB 

isoforms, PKB!, PKB", and PKB#, revealed differing phenotypes, some of 

which are shared by DNA-PKcs"/" mice (Table 2). Similar to DNA-PKcs"/" 

mice, PKB!"/" mice display growth retardation and hypersensitivity to DNA 

damage (37,92-94). Furthermore, PKB!"/" mice show accumulation of early 

thymocyte subsets (84-86). PKB""/" mice display glucose intolerance and 

insulin resistance, while PKB#"/" mice have a reduced brain size (95-98). 

Deletion of PKB" and PKB# isoforms revealed that a single functional allele 

of PKB! is sufficient for mouse development and survival (99). 
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Table 2. Phenotypes of mice with single and combined ablations of PKB 

isoforms. Adapted from (84-86,92-102). 

PKB! $/$ 

Hypotrophy and decreased vascularization of placenta, 

intrauterine growth retardation, increased postnatal 

mortality, postnatal growth retardation, hypersensitivity to 

DNA damage, thymic hypocellularity in neonates and 

accumulation of early thymocyte subsets in adult mice 

PKB% $/$ 

Diabetes mellitus type II phenotype (hyperglycemia, 

hyperinsulinemia; glucose intolerance, insulin resistance), 

pancreatic " cell failure, age dependent loss of adipose 

tissue, mild growth deficiency 

PKB# $/$ 

Reduction in brain size and weight with decrease in both 

cell size and number, hypomyelination of corpus callosum, 

decrease in expression of genes involved in synaptic 

transmission 

PKB! $/$ % $/$ 

 

Develop to term but die shortly after birth; severe growth 

deficiency, impaired skin and bone development, impeded 

adipogenesis, skeletal muscle atrophy, reduction in thymic 

cellularity and partial block in the early thymocytes 

PKB! $/$ #$/$ 

 

Lethal at around embryonic day 11 (E11); multiple 

developmental defects, such as increased apoptosis in 

developing nervous system, abnormalities in the 

cardiovascular system, decreased vasculature, impaired 

differentiation of early thymocytes 

PKB% $/$ # $/$ 

Normal embryonic development and postnatal survival; 

growth deficiency, reduced brain and testis size, impaired 

glucose homeostasis 

PKB! 
+/$ 
% $/$ # $/$ 

Normal embryonic development and postnatal survival; 

severe growth deficiency 
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5. Aim of the thesis 

The general aim of this thesis is to delineate the physiological role of DNA-PK 

in regulation of PKB. Given that PKB Ser473 phosphorylation is mediated by 

both DNA-PK and mTORC2 in a stimulus dependent manner, the emphasis is 

placed on investigation of the role of DNA-PK in basal, insulin- and DNA 

damage- induced PKB phosphorylation in a physiological context. 
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Part 1: In vivo analysis of PKB/Akt regulation in DNA-PKcs-null mice 

reveals a role for PKB/Akt in DNA damage response and tumorigenesis. 
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Summary 

Full activation of protein kinase B (PKB/Akt) requires phosphorylation on Thr308 and 

Ser473. It is well established that Thr308 is phosphorylated by 3-phosphoinositide-

dependent kinase-1 (PDK1). Ser473 phosphorylation is mediated by both 

mTOR/rictor complex (mTORC2) and DNA-dependent protein kinase (DNA-PK) 

depending on type of stimulus. However, the physiological role of DNA-PK in the 

regulation of PKB phosphorylation remains to be established. To address this, we 

analyzed basal, insulin-induced and DNA damage-induced PKB Ser473 

phosphorylation in DNA-PK catalytic subunit-null DNA-PKcs"/" mice. Our results 

revealed that DNA-PK is required for DNA damage-induced but dispensable for 

insulin- and growth factor-induced PKB Ser473 phosphorylation. Moreover, DNA-

PKcs"/" mice showed a tissue-specific increase in basal PKB phosphorylation. In 

particular, persistent PKB hyperactivity in the thymus apparently contributed to 

spontaneous lymphomagenesis in DNA-PKcs"/" mice. Significantly, these tumors 

could be prevented by deletion of PKB$. These findings reveal stimulus-specific 

regulation of PKB activation by specific upstream kinases and provide genetic 

evidence of PKB deregulation in DNA-PKcs"/" mice.  

 

Introduction 

 

The serine/threonine protein kinase B (PKB), also known as Akt, is a downstream 

effector of phosphatidylinositol 3-kinase (PI3K) and a major regulator of a variety of 

cellular processes, including metabolism, transcription, survival, proliferation, and 

growth (7,8,23,103). PKB acts on a plethora of substrates, including GSK3% and 
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FoxO transcription factors (23,103-105). PKB is activated by several stimuli, 

including hormones, growth factors, cytokines and, as recently reported, also by 

DNA damage (10-12,19). Deregulation of PKB is implicated in carcinogenesis and 

diabetes (8,54,106). 

Activation of PKB requires phosphorylation at two key regulatory sites: Thr308 and 

Ser473 (of PKB$). Phosphorylation by 3-phosphoinositide-dependent kinase-1 

(PDK1) occurs on Thr308 in the activation loop of PKB. The phosphorylation on 

Ser473 within a C-terminal hydrophobic motif leads to full activation of PKB. The 

mTOR/rictor complex (mTORC2), a member of the PI3K-related kinase (PIKK) 

family, has been reported to regulate Ser473 phosphorylation (21,107-109). 

Significantly, it was shown that DNA-dependent protein kinase (DNA-PK), a further 

member of the PIKK family, also regulates PKB Ser473 phosphorylation (19). In 

addition, a role for DNA-PK in the activation of PKB by CpG-DNA has been 

established using bone marrow-derived macrophages (22). Moreover, Bozulic et al. 

(11) demonstrated recently that DNA-PK phosphorylates PKB Ser473 upon induction 

of DNA double-strand breaks. However, the regulation of PKB by DNA-PK under 

physiological conditions remained to be established. The present study made use of 

genetically modified mouse models to investigate PKB regulation by DNA-PK, as 

phosphorylation of Ser473 may be stimulus-, signalling pathway- and/or cell type-

specific.  

DNA-PK is composed of a 470-kDa catalytic subunit (DNA-PKcs) and the Ku antigen 

complex (Ku80/Ku70), and involved in V(D)J recombination, repair of DNA double-

strand breaks by non-homologous end joining, apoptosis and transcription regulation 

(110). Double-stranded DNA ends produced by ionizing radiation or radiomimetic 
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drugs activate DNA-PK, which is a primary sensor of DNA damage (111). DNA-

PKcs"/" mice display growth retardation, hypersensitivity to ionizing radiation, and 

severe immunodeficiency (88-90). Due to defects in V(D)J recombination, the 

development of T and B cells is blocked at an early progenitor stage in DNA-PKcs"/" 

mice. Moreover, DNA-PKcs"/" thymus has decreased cellularity and displays 

hypotrophy. Further, DNA-PKcs"/" mice display an increased rate of T-cell lymphoma 

(91).  

Studies of mutant mice carrying a null mutation for each of the three PKB isoforms 

PKB$, PKB%, and PKB! revealed differing phenotypes, some of which are shared by 

DNA-PKcs"/" mice. Similar to DNA-PKcs"/" mice, PKB$"/" mice display growth 

retardation and hypersensitivity to DNA damage (37,92-94). Furthermore, PKB$"/" 

mice show accumulation of early thymocyte subsets (84-86). PKB""/" mice display 

glucose intolerance and insulin resistance, while PKB#"/" mice have a reduced brain 

size (95-98). Deletion of PKB" and PKB# isoforms revealed that a single functional 

allele of PKB$ is sufficient for mouse development and survival (99). 

In this study, we investigated the role of DNA-PK in basal, insulin-induced, and DNA 

damage-induced phosphorylation of PKB Ser473 under physiological conditions. We 

report that DNA-PK phosphorylated PKB on Ser473 upon DNA damage induced by 

!-irradiation in vivo. In contrast, DNA-PK was dispensable for insulin and growth 

factor-induced PKB activation. Interestingly, analysis of basal PKB Ser473 

phosphorylation in DNA-PKcs"/" mice showed tissue-specific deregulation of the 

PKB/FoxO pathway. In particular, we provide evidence that persistent PKB 

hyperactivity in the thymus apparently contributes to spontaneous thymic 
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lymphomagenesis in DNA-PKcs"/" mice. Lymphomagenesis could be prevented by 

the deletion of PKB$ and implies deregulation of PKB in DNA-PKcs"/" thymi.  

 

Experimental procedures 

 

Mice. DNA-PKcs"/"mice (88) were kindly provided by Prof. Fredrick Alt (Howard 

Hughes Medical Institute, Harvard Medical School, USA). PKB$"/"&mice were 

described previously (94). For the generation of DNA-PKcs"/"PKB$"/" mice, DNA-

PKcs"/" mice were mated with PKB$"/" mice and the resulting DNA-PKcs+/"PKB$+/" 

progeny intercrossed. All mice had a C57BL/6;129 mixed background. Mice were 

housed according to Swiss Animal Protection legislation under specific pathogen-

free conditions. All procedures were conducted with the approval of the appropriate 

authorities.  

 

Cell culture and treatments. Mouse embryonic fibroblasts (MEFs) were grown in 

Dulbecco's modified Eagle's medium supplemented with 10% fetal calf serum (FCS), 

100 units/ml penicillin, and 100 'g/ml streptomycin. For IGF-1 and serum 

stimulation, MEFs were starved overnight prior to treatment with IGF-1 (50ng/ml) or 

serum (10% FCS) for the indicated times. 

 

Western blot analysis. Protein lysates were prepared by homogenization of various 

organs in lysis buffer (50 mM Tris-HCl pH 8.0, 120 mM NaCl, 1% NP-40, 40 mM %-

glycerophosphate, 10% glycerol, 0.05 mM phenylmethylsulfonyl fluoride, 1 mM 

benzamidine, 50 mM NaF, 1 mM Na3VO4,
 1 'M Microcystin LR). Homogenates were 
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centrifuged twice (13,000 rpm for 15 min at 4°C) to remove cell debris. Protein 

concentrations were determined using the Bradford assay (BioRad). Proteins were 

separated by 6%, 8% or 10% sodium dodecyl sulfate-polyacrylamide gel 

electrophoresis and then transferred to Immobilon-P polyvinylidene difluoride 

membranes (Millipore). Antibodies against phospho-PKB (Ser473), phospho-PKB 

(Thr308), phospho-Foxo4 (Ser193), phospho-GSK3% (Ser9), phospho-S6K (Thr389), 

phospho-PKC (Ser657) were purchased from Cell Signaling. PKC$ antibody was 

from Santa Cruz Biotechnology. Phospho-FoxO3 (Thr32) and IRS-1 antibodies were 

from Upstate Biotechnology/Millipore. DNA-PKcs (Ab-4) and actin (Ab-5) antibodies 

were from NeoMarkers.  PKB$ isoform specific antibody and PKB antibody Ab10 

were previously described (94,112). A rat monoclonal anti-!-tubulin (YL1/2)-

producing hybridoma cell line was obtained from American Type Culture Collection. 

Quantification was performed using ImageQuant TL (Amersham Biosciences) 

software. 

 

In vivo insulin stimulation. Insulin stimulation was performed on ~3-month-old DNA-

PKcs"/" mice and wild-type controls (n=8). Following an overnight fast, a bolus of 

insulin (1 U/kg body weight; human recombinant insulin; Sigma) or saline solution 

was injected via the inferior vena cava into terminally anesthetized mice. White 

adipose tissue, liver, skeletal muscle and heart were collected 20 min after 

stimulation and immediately snap frozen. Tissues were homogenized and lysed as 

described above. 
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Glucose and insulin tolerance tests. Three- month -old mice were fasted overnight 

(n=2 for wild-type; n=5 for DNA-PKcs"/"). For glucose tolerance tests, glucose (2 

g/kg of body weight; D-(+)-glucose anhydrous, Fluka) was given orally and, for insulin 

tolerance tests, insulin (1 U/kg; human recombinant insulin, Sigma) was 

administered by intraperitoneal injection as described previously (99). Blood samples 

were collected at the indicated times from tail veins and glucose levels determined 

using Glucometer Elite (Bayer).  

 

Total body "-irradiation of mice. Mice received a single exposure of 1 Gy total body 

irradiation with X-rays [Asteophysics Research Corp, TORREX 120D X-Ray system]. 

The tissues were collected after 30 min and immediately snap frozen. Tissues were 

homogenized and lysed as described above. 

 

Flow cytometry. Thymocytes in suspension were stained at 4oC for 30 min in FACS 

buffer (2% FCS in PBS) with fluorescein isothiocyanate (FITC)-or phycoerythrin 

(PE)-conjugated antibodies to CD4 and CD8 cell surface markers. Antibodies were 

from Immunotools. 

 

Histological Analysis. Organs were dissected and fixed in 4% paraformaldehyde-

phosphate-buffered saline at 4°C. After dehydration in ethanol, samples were 

embedded in paraffin. Tissues were cut into 4-µm-thick sections and stored for 

staining. For hematoxylin-eosin (Sigma) staining, sections were deparaffinized and 

stained.  
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Statistics. Data are provided as arithmetic means ± standard errors of the means 

(SEM), and n represents the number of independent experiments. Data were tested 

for significance using one-way analysis of variance (ANOVA). The P values for the 

Kaplan-Meier survival curve were determined by LogRank tests with the Holm-Sidak 

multiple comparisons procedure using SigmaStat 3.11 (Systat Software, Inc.) 

statistics software. Results at P <0.05 were considered significant.  

 

Results  

 

In vivo, DNA-PK is dispensable for PKB Ser473 phosphorylation upon insulin 

stimulation. To evaluate the involvement of DNA-PK in the regulation of PKB in 

response to insulin stimulation, we treated wild-type and DNA-PKcs"/" mice with 

insulin. The mice were fasted overnight and then injected with a bolus of insulin (1 

U/kg body weight) or a saline control. Twenty minutes after injection, liver, skeletal 

muscle, adipose and heart tissues were collected and analyzed by immunoblotting. 

PKB Ser473 was robustly (~ 20-fold for liver; ~25-fold for skeletal muscle and heart; 

~10-fold for adipose tissue, data not shown) phosphorylated upon insulin stimulation 

in all four tissues from both wild-type and DNA-PKcs"/" mice (Fig. 1A-D). Thus, we 

concluded that DNA-PK is dispensable for insulin-induced PKB Ser473 

phosphorylation in vivo. Additionally, we treated wild-type and DNA-PKcs"/" mouse 

embryonic fibroblasts (MEFs) with insulin-like growth factor (IGF-1) (Fig. 1E) or 

serum (Fig. 1F). Neither treatment resulted in impaired PKB Ser473 phosphorylation 

in DNA-PKcs"/" MEFs, indicating that DNA-PK is not essential for PKB Ser473 

phosphorylation upon IGF-1 or serum stimulation. 
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To investigate the role of DNA-PK in the maintenance of glucose metabolism, mice 

fasted overnight were subjected to an insulin or glucose tolerance test. To evaluate 

insulin sensitivity, insulin (1 U/kg) was injected intraperitoneally and blood glucose 

levels measured at the indicated time points. No significant differences in blood 

glucose levels were found between DNA-PKcs"/" mice and wild-type controls (Fig. 

2A). After oral application of glucose (2 g/kg), blood glucose levels were measured at 

the indicated times. Wild-type and DNA-PKcs"/" mice displayed a similar response to 

the glucose treatment (Fig. 2B). Hence, DNA-PKcs"/" mice display neither insulin 

resistance nor glucose intolerance. Taken together, the results show that DNA-PK is 

dispensable for PKB Ser473 phosphorylation in response to insulin and growth factor 

stimulation and is also not essential for the maintenance of glucose homeostasis. 

 

DNA-PK is the physiological PKB Ser473 kinase upon #-irradiation-induced DNA 

damage. DNA-PK is activated by DNA double-strand breaks induced by #-irradiation 

and radiomimetic drugs (110,111). To investigate the role of DNA-PK in PKB Ser473 

phosphorylation induced by #-irradiation, we analyzed the PKB response to DNA 

damage in MEFs. Phosphorylation of PKB was promoted in wild-type MEFs in a 

dose-dependent manner (~4-fold for 5 Gy and 5-fold for 10 Gy), whereas this 

response was significantly impaired ( p=0.0017 for 5 Gy and p<0.001 for 10 Gy) in 

DNA-PKcs"/" MEFs (Fig. 3A). Moreover, the levels of phosphorylated FoxO4 Ser193 

also increased in a dose-dependent manner, reaching a peak at 10 Gy (Fig. 3A). 

Further increase in DNA damage at 15 Gy irradiation led to compromised PKB and 

FoxO4 phosphorylation (Fig. 3A), which is reminiscent of the dependence of PKB 

activation on the extent of DNA damage. Further analysis showed that the 
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phosphorylation of PKB Ser473 and FoxO4 Ser193 remained impaired in DNA-

PKcs-/- MEFs compared to WT MEFs at additional time points analyzed 

(Supplemantary Fig. 1). Subsequently, we investigated DNA-PK-dependent PKB 

activation induced by !-radiation in vivo. Wild-type and DNA-PKcs"/" mice were 

subjected to 1 Gy total body irradiation and tissues collected after 30 min. PKB was 

phosphorylated on both Thr308 and Ser473 (~3.5-fold) in the brains of wild-type 

animals upon #-irradiation. Strikingly, this activation was compromised in the DNA-

PKcs"/" brain (Fig. 3B). Likewise, levels of phosphorylated FoxO4 increased in wild-

type irradiated brain (~18-fold), whereas there was no induction of FoxO4 

phosphorylation in DNA-PKcs"/" irradiated brain (Fig. 3B). Immunoblot analysis with 

an antibody that preferentially recognizes the unphosphorylated form (due to the fact 

that the peptide used for production of the antibodies against phospho-protein and 

total protein were derived from the same sequence) showed a decrease in total 

FoxO4 protein upon irradiation. This indicates a robust phosphorylation of FoxO4 

Ser193 upon DNA damage (Fig. 3B). In summary, in vivo and ex vivo results both 

indicate that PKB activation is promoted and that DNA-PK is required for 

phosphorylation of PKB Ser473 in response to DNA damage induced by !-

irradiation. Overall, this implies stimulus-specific regulation of PKB activation by 

DNA-PK. 

 

PKB is hyperactivated in DNA-PKcs#/# thymus. To investigate how loss of DNA-PK is 

reflected in basal PKB Ser473 phosphorylation, we analyzed a panel of tissues from 

wild-type and DNA-PKcs"/" mice. No differences were observed in skeletal muscle, 

liver, spleen and brain (Supplementary Fig. 1A) and a mild increase was found in 
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adipose and brown fat (~2- and 2.5–fold, respectively) (Fig. 4A and B). However, a 

robust 8-fold increase in PKB Ser473 phosphorylation was found in DNA-PKcs"/" 

thymus compared with wild-type (Fig. 4C). p70 ribosomal protein S6 kinase (S6K), 

acting downstream of PKB, has been shown to repress upstream signalling by 

induction of insulin receptor substrate-1 (IRS-1) degradation (113-115). In contrast, 

neither the phosphorylation of S6K1 on the hydrophobic motif residue Thr389 nor the 

IRS-1 protein levels were significantly different in DNA-PKcs"/" and wild-type thymus 

and adipose (Fig. 4C and Supplementary Fig. 1B). Hence, we concluded that the 

increased PKB activity in the DNA-PKcs null background was not due to defective 

S6K/IRS-1-mediated feedback regulation in these tissues. Interestingly, in some 

cases we observed increase of both S6K Thr389 phosphorylation as well as IRS-1 

protein levels in DNA-PKcs"/" brown fat (Supplementary Fig. 1B). The marked 

increase in PKB phosphorylation upon loss of an upstream kinase prompted us to 

further investigate components of the PKB signalling pathway in DNA-PKcs"/" 

thymus. Further analysis of PKB downstream targets revealed that, there was no 

significant difference in GSK3" Ser9 phosphorylation, whereas the FoxO4 

transcription factor was strongly phosphorylated in DNA-PKcs"/" thymus compared 

with the wild-type. This suggests that the PKB/FoxO pathway is deregulated in DNA-

PKcs"/" thymus (Fig. 4C). 

 

Constitutive PKB activity contributes to the development of spontaneous thymic 

lymphomas in DNA-PKcs#/# mice and can be prevented by deletion of PKB$.  PKB 

deregulation has been implicated in various types of cancer, including thymic 

lymphoma (101). Transgenic mice expressing a constitutively active PKB in T cells 
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develop T-cell lymphomas (116-118). Consistent with previous results (91), we 

observed an increased frequency of thymic lymphomas in DNA-PKcs"/" mice (Fig. 

5A). Thymic tumors already appeared in 3–month-old animals and were 30-fold 

larger than non-malignant DNA-PKcs"/" thymi (0.010± 0.001 g. vs. 0.313± 0.106 g.; 

P=0.03) (Table 1). PKB$ is highly expressed in thymocytes particularly at the early 

stages of development (84-86), where DNA-PKcs"/" T cells are arrested (88-90). 

Reasoning that persistent PKB activity in DNA-PKcs"/" thymus might contribute to 

thymic lymphoma formation, we investigated whether deletion of PKB$, prevented 

formation of thymic tumors in DNA-PKcs"/" mice. About 27% (6/22) of DNA-PKcs"/" 

mice aged 3-7 months displayed thymic tumors, as against zero in wild-type mice 

(0/14) (Fig. 5A). Significantly, none of the DNA-PKcs"/"PKB$"/" double knock-out 

(DKO) mice analyzed at 2-15 months (0/6) exhibited thymic tumors (Fig. 5A). The 

analysis of DNA-PKcs"/"PKB$"/" DKO mice over a wide age range ruled out delayed 

progression of thymic tumors. Further immunoblot analysis of DNA-PKcs"/"PKB$"/" 

DKO thymi revealed that, elevated PKB Ser473 and FoxO phosphorylation in DNA-

PKcs"/" thymi were restored to wild-type levels with deletion of PKB$ (Fig. 5B). This 

suggests that increased PKB and FoxO phosphorylation in DNA-PKcs"/" thymi is due 

to deregulation of PKB$. In line with previous reports (91), we observed reduced 

viability correlated with the occurrence of thymic tumors in DNA-PKcs"/" mice (Fig. 

6). Hence, we investigated whether deletion of PKB$ gene improved survival of mice 

lacking DNA-PKcs. The survival of DNA-PKcs"/"PKB$"/" DKO mice significantly 

increased compared with DNA-PKcs"/" mice (P<0.001). The longevity of mice 

increased from approximately 238 days for DNA-PKcs"/" to 375 days for DNA-
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PKcs"/"PKB$"/" DKO supporting the involvement of PKB deregulation in the reduced 

life span of DNA-PK-deficient mice due to tumorigenesis (Fig. 6).  

Histological analysis of thymi by hematoxylin-eosin and Ki67 staining showed tumors 

from DNA-PKcs"/" mice to consist of atypical cells with a high proliferative index (Fig. 

7A and data not shown). DNA-PKcs"/"PKB$"/" DKO thymi showed disruption of the 

cortico-medullary boundary similar to DNA-PKcs"/" thymi (see inset in Fig. 7A). To 

further investigate the role of PKB in DNA-PKcs"/" tumors, thymocytes isolated from 

wild-type, DNA-PKcs"/" and DNA-PKcs"/"PKB$"/" DKO mice were analyzed by flow 

cytometry using antibodies against CD4 and CD8 cell-surface markers (Fig. 7B). In 

DNA-PKcs"/" thymus, development of T cells was blocked at the CD4"CD8" double-

negative (DN) stage: about 80 % of DNA-PKcs"/" T cells were CD4"CD8" (DN) cells 

compared with about 2% DN-stage cells in the wild-type (Fig. 5B and Table 2). T 

cells escaped from this developmental block in tumors from DNA-PKcs"/" mice, 

where there was a marked increase in  

CD4+CD8+ double-positive (DP) cells (80%). Interestingly, flow cytometric analysis of 

T cells from the two thymus lobes of a DNA-PKcs"/" animal displayed differing 

profiles; one being totally blocked at the DN stage and the other closely resembling 

the profile of an advanced tumor (Fig. 5B). Consistent with this, the latter was 

significantly enlarged (0.008 g vs. 0.027 g). In contrast, DNA-PKcs"/"PKB$"/" DKO 

thymocytes were almost exclusively blocked DN-stage cells (Fig. 5B and Table 2), 

which suggests that PKB$ has a role in neoplastic expansion of T cells in the DNA-

PKcs"/" thymus.  
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Discussion 

 

In this study, we evaluated the in vivo role of DNA-PK in basal PKB Ser473 

phosphorylation as well as in the responses to various stimuli. We found that DNA-

PK is dispensable for insulin- and growth factor-induced PKB activation. 

Furthermore, DNA-PK is not essential for the maintenance of glucose metabolism. In 

contrast, our in vivo and ex vivo results revealed that DNA-PK is required for 

phosphorylation of PKB Ser473 upon DNA damage induced by !-irradiation. Taken 

together, this implies stimulus-specific regulation of PKB Ser473 phosphorylationby 

specific upstream kinases. The impaired phosphorylation of both PKB Ser473 and 

Thr308 residues observed in DNA-PKcs"/" cells as well as in PDK1"/" cells (11) 

treated with !-irradiation suggest the requirement of phosphorylation of these two 

sites for full activation of PKB and imply that two phosphorylation steps are tightly 

connected and interdependent (11,119). Hence, both Thr308 by PDK1 and Ser473 

phosphorylation by DNA-PK appear to be essential for activation of PKB in response 

to DNA damage induction (11). The fact that increased doses of !-irradiation led to 

compromised PKB phosphorylation suggest the dependence of PKB activation upon 

the extent of DNA damage, which is consistent with data obtained with HUVEC cells 

(11). In addition, the PKB response to !-irradiation includes phosphorylation of the 

downstream target FoxO4 (this study) as well as regulation of p21 (11) and GSK3 

(11,120) placing PKB as an important mediator of DNA damage signalling. In 

addition to its response to irradiation-induced double-strand DNA breaks, PKB is 

activated by various other DNA damage inducers. Numerous studies have 

demonstrated the importance of functional PKB signaling for survival after DNA 
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damage. Doxorubicin promotes PKB activation (Ser473 and Thr308 phosphorylation) 

in mouse embryonic fibroblasts (11). In addition, doxorubicin induced PKB activation 

was shown in several breast cancer cell lines as well as in vivo by which elevated 

myocardial PKB signaling ameliorates doxorubicin-induced congestive heart failure 

and promotes heart growth in mice. Further, a recent study showed that doxorubicin 

lead to phosphorylation of PKB and concominantly to PKB-dependent inactivation 

and nuclear exclusion of FoxO4 in human colon carcinoma cell line (121). Moreover, 

PKB activation is promoted by etoposide (122), cisplatin (123-125), and UV (37,126) 

in several different cell types. Notably, PKB$ is important for survival after UV 

irradiation, as MEFs lacking PKB$ undergo irradiation-induced apoptosis to a much 

larger extent than the wild-type MEFs (37). These studies place PKB as an important 

mediator of DNA damage signaling. 

Our results revealed deregulation of PKB phosphorylation in DNA-PKcs"/" 

mice in a tissue-specific manner. The marked increase in basal PKB Ser473 

phosphorylation in the absence of an upstream kinase is unexpected. Elevated PKB 

Ser473 phosphorylation in DNA-PK"/" tissues could most likely be mediated by 

mTORC2 and reminiscent of cross-talk between the two PKB Ser473 kinases, DNA-

PK and mTOR. This regulation might take place at multiple levels of the pathway as 

our results showed that elevated PKB Ser473 phosphorylation could also be 

observed without the accompanying changes in S6K Thr389 phosphorylation. 

Therefore, although we cannot completely rule out the contribution of a S6K 

mediated mechanism; our data suggest the existence of an alternative mechanism 

of regulation where deletion of DNA-PK could lead to its disruption and result in 

deregulation of PKB. 
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It has been suggested that mTORC2 is necessary for modulation of PKC$ 

Ser657 phosphorylation (127), and was shown that overexpression of mTORC2 

components leads to enhanced PKC$ activity. Knock-down of rictor or mTOR lead to 

impaired PKC$ phosphorylation (127,128). Further, ablation of rictor or mLST8 was 

shown to severely compromise PKC$ phosphorylation and stability (107). We 

therefore examined whether PKC$ phosphorylation was altered in DNA-PKcs"/" 

thymus. We observed increased phosphorylation of PKC$ Ser657 (Supplementary 

fig 2) supporting our hypothesis that hyperphosphorylation of PKB Ser473 could be 

mediated by mTORC2 in DNA-PKcs"/" thymus.  

Further, a recent study suggested that TSC1-TSC2 complex positively regulates 

mTORC2 independent of its effects on mTORC1 (129). Interestingly we observed 

increased total TSC2 levels in DNA-PKcs"/" thymus (data not shown). However, 

whether this has an effect on increased PKB Ser473 phosphorylation via positively 

regulating mTORC2 in DNA-PKcs"/" thymus remains to be established. 

Recent studies proposed a role for Tel2 to function as a coordinator among PIKKs 

and suggested existence of crosstalks between different PIKKs where alteration of 

one PIKK may influence other (130-133). It has been shown that Tel2, which directly 

interacts with and stabilizes the protein levels of PIKKs, including DNA-PK and 

mTOR, (131,133), It has also been proposed that Tel2 may serve as a scaffold 

protein that mediates signal transduction from PIKKs to their target proteins (132). 

However, further study is required to understand the mechanistic role of Tel2 as a 

mediator of PIKK functions. It will be intriguing to see whether Tel2 could have a role 

mediator role affecting the downstream signaling of PIKKs, in particular within the 

context of mTOR and DNA-PK. 
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We have found that the PKB/FoxO pathway is deregulated in DNA-PKcs"/" thymus 

and shown that increased PKB activity in a DNA-PKcs null background contributes to 

spontaneous formation of thymic tumors by allowing neoplastic expansion of 

thymocytes. Significantly, these tumors could be prevented by deletion of PKB$ that 

is highly expressed in thymocytes, particularly in DN- and DP-stages (84-86). 

Furthermore, subsequent deletion of PKB$ gene improves the survival of DNA-

PKcs"/" mice. However, the survival of DNA-PKcs"/"PKB$"/" DKO mice was not 

restored to that of PKB$"/" mice, which is not surprising given that DNA-PK has a 

wide variety of functions, some of which are independent of PKB$. Alternatively, the 

loss of DNA-PK in a PKB$"/" background could lead to deterioration of DNA-PK-

dependent PKB functions in tissues other than the thymus. Moreover, deregulation 

of other isoforms of PKB in DNA-PK"/" mice could possibly affect overall organismal 

fitness and survival. Finally, loss of DNA-PK independent PKB$ functions could lead 

to additive affects in DNA-PKcs"/"PKB$"/" DKO mice. Further studies using tissue 

specific DNA-PK"/"PKB$"/" double knock-out mice will be necessary to evaluate 

these possibilities. 

PKB has been shown to play an important role in DN- to DP-stage transition and to 

be essential for thymocyte survival and differentiation (84-86). Therefore, persistent 

PKB activity in the DNA-PKcs"/" thymus, where DN thymocytes predominate, could 

contribute to malignant transition. It was reported recently that conditional and 

simultaneous disruption of FoxO1, FoxO3 and FoxO4 genes in mice leads to the 

development of thymic lymphomas and that thymocytes from these mice show 

increased proliferation (134,135). Moreover, disruption of FoxO function was shown 

to accelerate Myc-driven lymphomagenesis (136). Therefore, deregulation of 
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PKB/FoxO downstream events affecting proliferation or apoptosis may play a role in 

thymic tumor induction in DNA-PKcs"/" mice. 

Given the importance of PKB activity in T-cell development and the role of PKB in 

lymphomagenesis, the signalling components leading to PKB activation in DNA-PK-

deficient thymus need to be established. Pre-T cell receptor (pre-TCR), Notch and 

interleukin-7 (IL-7) signalling provide critical signals for the survival, proliferation and 

differentiation of T cells (83,86,137-139). Activation of PI3K/PKB pathway is common 

to all three receptors and point to PI3K/PKB pathway as a central player that 

translates these signals into multiple functional outcomes. As pre-TCR signalling 

requires a functionally rearranged TCR%, which is lacking in DNA-PKcs"/" 

thymocytes as a result of defective V(D)J recombination, it is unlikely that PKB 

activity increases in response to pre-TCR signalling. Hence, deregulation of Notch 

and/or IL-7 signalling and their role in PKB activation needs to be investigated in 

DNA-PKcs"/" thymus. Frequent mutational activation of Notch has been identified in 

human T-cell acute lymphoblastic leukemia (T-ALL) and subsequently in mouse 

thymic lymphomas including those from severe combined immunodeficient (SCID) 

mice, a DNA-PK deficient mouse model (137,140,141). Recent studies provided 

evidence that Notch-1 upregulates PI3K/PKB pathway in T-ALL cells bearing Notch-

1 mutations and showed synergistic suppression of growth in cells treated with small 

molecule inhibitor of Notch and rapamycin (142,143). In other studies of T-ALL cells, 

rapamycin inhibited IL-7-mediated cell cycle progression and cellular proliferation 

(144). The rapamycin derivative, CCI-779, was shown to reduce mTORC2 signalling 

and inhibit PKB activation in hematopoietic malignancies although another study 

reported that PKB activation remained unchanged using a different rapamycin 
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derivative, RAD001 (145,146). Rapamycin treatment was shown to inhibit PKB 

phosphorylation in a tissue-dependent manner, particularly in thymus (147). It is 

plausible that PKB hyperactivity in the thymus in the absence of DNA-PK could be 

mediated by mTORC2 and tissue-specific disruption of the PKB/FoxO pathway could 

render DNA-PK deficient thymic lymphomas susceptible to rapamycin treatment. A 

number of small molecule inhibitors of DNA-PK have been developed and the 

inhibition of DNA-PK sensitizes cells to DNA damaging agents (148,149). However, 

the use of DNA-PK inhibitors needs to be evaluated cautiously in the treatment of 

thymic lymphomas as loss of DNA-PK activity could lead to increased PKB 

signalling. Taken together, these results provide genetic evidence that PKB is 

deregulated in DNA-PKcs"/" thymi and demonstrate a key role for PKB$ in thymic 

tumor progression in DNA-PKcs"/" mice. In general, the results indicate elaborate 

regulation of PKB phosphorylation by upstream kinases and its deregulation leading 

to malignant transformation.  
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Figure Legends 

 

Fig. 1. DNA-PK is dispensable for PKB Ser473 phosphorylation upon 

insulin- and growth factor-stimulation. After overnight fasting and insulin 

stimulation (1 U/kg body weight) for 20 min, tissues from 3-month-old wild-

type (WT) and DNA-PKcs!/! (KO) mice were analyzed for PKB Ser473 

phosphorylation via immunoblotting with phospho-specific antibodies: (A) 

Skeletal muscle, (B) Liver, (C) Heart, (D) Adipose tissue. Wild-type (WT) and 

DNA-PKcs!/! MEFs (KO) were stimulated with IGF-1 (50 ng/ml) (E) or serum 

(10%) (F) for various times and PKB Ser473 phosphorylation analyzed by 

immunoblotting.  
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Fig. 2. DNA-PK is dispensable for maintenance of glucose metabolism. 

For analysis of glucose metabolism, 3-month-old wild-type (WT) and DNA-

PKcs"/" (KO) mice after overnight fasting were treated with insulin (1 U/kg 

body weight) for insulin tolerance tests (A) or glucose (2 g/kg body weight) for 

glucose tolerance tests (B). The graphs depict arithmetic means ± SEM of 

blood glucose concentrations at the indicated time points following the 

treatments. 

 

Fig. 3. DNA-PK is the physiological PKB Ser473 kinase in the response 

to !-irradiation. PKB and FoxO4 phosphorylation were analyzed by 

phospho-specific antibodies in wild-type (WT) and DNA-PKcs-/- (KO) MEF 

lysates 30 min after the indicated doses of !-irradiation (A), or at indicated 

time points after 10 Gy irradiation (B). Right panels: Quantification of fold 

increase in PKB Ser473 phosphorylation after !-irradiation determined by 

phospho-PKB (p-PKB)Ser473/PKB ratio with respect to non-irradiated WT 

and KO controls. Data were tested for significance using one-way analysis of 

variance (ANOVA) with the Holm-Sidak multiple comparisons procedure. ns: 

not significant. (C) Analysis of PKB and FoxO4 phosphorylation in wild-type 

(WT) and DNA-PKcs"/" (KO) brain 30 min after 1 Gy total body !-irradiation 

(TBI) or sham irradiation. Right panel: Quantification of fold increase in p-PKB 

Ser473/actin ratio and phospho-FoxO4 (p-FoxO4) Ser193/actin ratio after !-

irradiation with respect to sham irradiated WT and KO controls. 
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Fig. 4. Analysis of basal PKB phosphorylation in DNA-PKcs"/" tissues.  

Tissues were collected from 2-month-old random-fed WT and DNA-PKcs"/" 

mice and analyzed by immunoblotting. (A) Top panel: PKB phosphorylation in 

WT and DNA-PKcs"/" (KO) adipose tissue. Bottom panel: Quantification of 

PKB Ser473 phosphorylation determined by p-PKB Ser473/PKB ratio relative 

to wild type ratio. (B) Top panel: PKB phosphorylation in WT and DNA-

PKcs"/" (KO) brown fat. Bottom panel: Quantification of PKB Ser473 

phosphorylation determined by p-PKB Ser473/PKB ratio relative to wild type 

ratio. (C) Top panel: PKB Ser473, PKB Thr308, GSK3" Ser9, FoxO3a Thr32 

and S6K Thr389 phosphorylation and total IRS-1 protein levels in WT and 

DNA-PKcs"/" (KO) thymi. Bottom panel: Quantification of PKB Ser473 

phosphorylation determined by p-PKB Ser473/PKB ratio relative to wild-type 

ratio.  

 

Fig. 5. Deletion of PKB! prevents spontaneous development of thymic 

tumors. (A) Incidence of thymic tumors from wild-type (WT), DNA-PKcs"/" 

(KO) analyzed between 3-7 months age and DNA-PKcs"/"PKB$"/" double 

knock-out (DKO) mice analyzed between 2-15 months age. (B) PKB Ser473, 

FoxO4 Ser193 and FoxO3a Thr32 phosphorylation in WT thymus, DNA-

PKcs"/" tumor and DNA-PKcs"/"PKB$"/" (DKO) thymi. 

  

Fig. 6. Deletion of PKB! improves survival of DNA-PKcs"/" mice. Kaplan-

Meier survival curves for wild-type (WT), DNA-PKcs"/", PKB$"/" and DNA-
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PKcs"/"PKB$"/" double knock-out (DKO) mice analyzed by LogRank analysis 

and the Holm-Sidak multiple comparisons procedure. The survival of DNA-

PKcs"/"PKB$"/"DKO mice significantly increased compared with DNA-PKcs"/" 

mice (P<0.001). Mice that survived longer than 2 months were included in the 

analysis. Numbers of mice analyzed: WT 52, DNA-PKcs"/" 21, PKB$"/" 26, 

DNA-PKcs"/"PKB$"/" (DKO) 13. 

 

Fig. 7. Deletion of PKB! prevents neoplastic expansion of DNA-PKcs"/" 

thymocytes. (A) Histological analysis of thymi from wild-type (WT), DNA-

PKcs"/" (KO), and DNA-PKcs"/"PKB$"/" double knock-out (DKO) mice and 

thymic tumors from DNA-PKcs"/" mice. Thymi were fixed with 4% 

paraformaldehyde, processed with paraffin, sectioned and stained with 

hematoxylin/eosin (%400 magnification; scale bar indicates 50 'm). The insets 

show %40 magnification. M: medulla C: cortex. (B) Flow cytometric analysis of 

thymocytes from WT, DNA-PKcs"/" (KO) and DNA-PKcs"/"PKB$"/" (DKO) 

mice for CD4 and CD8 markers. 

 

Supplementary Figure Legends   

 

Supplementary Fig. 1. Analysis of components of PKB signalling in DNA-

PKcs"/"  tissues. (A) PKB Ser473 basal phosphorylation levels in wild-type 

(WT) and DNA-PKcs"/" (KO) tissues. (B) pS6K Thr389, pGSK3 Ser9 and total 

IRS-1 levels in WT and KO adipose and brown fat.   
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Supplementary Fig. 2. (A) Analysis of p-PKC levels in wild-type (WT) and 

DNA-PKcs"/"  (KO) thymus. Right panel: Quantification of p-PKC/PKC levels 

(B) Immunoblot analysis of TSC2 levels in wild-type (WT) and DNA-PKcs"/" 

(KO) thymus. Right panel: Quantification of TSC/actin levels. 
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Figure 2. 
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Figure 3. 
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Figure 4. 
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Figure 5. 
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Figure 6. 
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Figure 7. 
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Supplementary Figure 1. 
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Supplementary Figure 2. 
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Table 1. Thymic weights of wild-type and DNA-PKcs"/" mice (non-malignant 
control and tumor) 
n: number of mice analyzed, SEM: standard error of mean 

 

 

*** p < 0.001 DNA-PKcs"/"non malignant thymus vs. wild type thymus 
**  p = 0.003 DNA-PKcs"/" thymic tumor vs. DNA-PKcs"/" non malignant thymus 
*   p = 0.005 DNA-PKcs"/" thymic tumor vs. DNA-PKcs"/" non malignant thymus 
 

Tissue 
Thymic weight                        

(± SEM) (g) 

Thymic/Body weight                      

(± SEM) (%) 
(n) 

Wild-type thymus 0.045 (± 0.004) 0.181 (±0.017) n = 8 

DNA-PKcs"/" 

non-malignant thymus 
0.010 (± 0.001) *** 0.038 (± 0.005) *** n = 8 

DNA-PKcs"/" 
thymic tumor 

0.313 (± 0.106) ** 1.231 (±0.450) * n = 5 
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Table 2. Percentages of T cell subsets in wild type, DNA-PKcs"/" and DNA-PKcs"/" 

PKB!"/" DKO mice.  

T cell subsets that are double negative (DN), double positive (DP), CD4(+CD8– (CD4(+), 
and CD4(CD8+ (CD8+) for CD4 and CD8 cell surface markers. Data provided as % mean 
(±SEM). 

 

T cell 
subsets 

WT 

DNA-PKcs"/" 

non-

malignant 

DNA-PKcs"/" 

enlarged 

DNA-PKcs"/" 

tumor 

DNA-PKcs"/" PKB!"/" 

DKO 

DN 1.66 (±0.14) 78.72 (± 2.12) 1.84 0.7     83.71 (±1.18) 

DP 79.99 (± 1.80) 0.55 (± 0.20) 82.47 79.66     0.1 (± 0.1) 

CD4 (+ 6.46 (± 0.47) 2.50 (± 0.62) 0.41 0.27     1.84 (± 0) 

CD8+
 1.67 (± 0.16) 0.64 (± 0.24) 2.55 4.41     0.46 (± 0.14) 
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Introduction 

 

The proto-oncogene and the serine/ threonine kinase, protein kinase B 

(PKB)/Akt is a key effector of phosphatidylinositol-3-kinase (PI3K) pathway. 

PKB is a major regulator of a variety of cellular functions including survival, 

proliferation, growth, transcription and metabolism (7,8,23). Consistent with its 

key function in cell homeostasis, PKB is activated by numerous stimuli 

including hormones, growth factors and DNA damage (8,10). Activation of 

PKB requires phosphorylation at two key regulatory sites: Thr308 and Ser473 

(of PKB!/Akt1). Phosphorylation by PDK1 occurs on Thr308 in the activation 

loop of PKB. The phosphorylation on Ser473 within a C-terminal hydrophobic 

motif leads to full activation of PKB and mediated by two members of the 

PI3K-related kinase (PIKK) family, mTOR/rictor complex (mTORC2) (21) or 

DNA-dependent protein kinase (DNA-PK) (11,19), in a stimulus specific 

manner. Insulin or growth factor induced PKB Ser473 phosphorylation is 

regulated by mTORC2 (21,107-109). In contrast, DNA damage-induced 

phosphorylation of PKB Ser473 is mediated by DNA-PK (11). In addition, a 

role for DNA-PK in the activation of PKB by CpG-DNA has been established 

using bone marrow-derived macrophages (22). Once activated, PKB acts on 

a plethora of substrates to regulate diverse cellular functions (23,103-

105,150). As PKB regulated responses could favor tumor initiation and/or 

progression it is not surprising that PI3K/PKB pathway is one of the most 

deregulated pathways in human cancers. Several cancer types showed 
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deregulation of this pathway due mutations, amplifications or overexpression 

of PKB or PI3K isoforms (52-55). PKB Ser473 phosphorylation is used as a 

biomarker and strongly correlated with poor prognosis of several cancers (56-

58) rendering inhibition of PKB by targeting the components of PI3K/PKB 

pathway as an effective strategy for cancer treatment (59-62). 

Several of the most effective targeted cancer therapies owe their action to 

synergy through inhibition of several targets (151). The requirement for 

inhibition of multiple targets likely reflects the complexity of signaling 

underlying malignant transformation and ability of cancer cells to dynamically 

adapt to stress. For instance, it has been demonstrated that use of dual 

inhibitors of PI3K and mTOR shows efficacy in glioma cells and inhibits 

proliferation (151). 

Radiotherapy and DNA damaging drugs are among the most efficient 

therapies for cancer treatment. Ionizing radiation and the topoisomerase II 

inhibitors, such as doxorubicin, are commonly used agents in the treatment of 

a wide range of cancers (152). DNA double-strand breaks (DSBs), which are 

considered the most lethal type of DNA damage, are the principal genotoxic 

lesions introduced by these agents. However, effectiveness of genotoxins is 

limited by treatment-associated toxicity and the emergence of resistance. One 

of the present efforts in oncology is to increase the potency of genotoxins so 

that efficacious doses can be lowered. One approach to accomplish this is to 

inhibit DNA-dependent protein kinase (DNA-PK), which is a part of the non-

homologous end-joining (NHEJ) machinery, one of the two major DSB repair 
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pathways in mammalian cells (110,153). DNA-PK holoenzyme consists of 

catalytic subunit (DNA-PKcs) and the Ku70/80 heterodimer. Cells deficient in 

DNA-PK are highly sensitive to ionizing radiation and radiomimetic drugs 

(88,154-160). Overexpression of DNA-PKcs can accelerate the repair of 

ionizing radiation-induced, etoposide-induced, and doxorubicin-induced DNA 

DSBs and confer resistance to these agents (161,162). A number of DNA-PK 

inhibitors were developed to enhance radio- and chemosensitivity and 

presented promising outcome in combination with radiation or chemotherapy 

in preclinical studies (148,149). Another possible role for DNA-PK in chemo- 

and radio-resistance emerged with the recent findings that DNA-PK 

phosphorylates and activates PKB in response to DNA double strand breaks 

and promote survival (11).  

Imidazo[4,5-c]quinoline derivatives have been discovered and developed as 

potent and e!ective modulators of the PI3K/PKB pathway (163). They can 

adopt different binding modes in the ATP binding cleft, to mimic the H-bond 

interactions of the adenine moiety of ATP.  BBD130 is a imidazo[4,5-

c]quinoline derivative that inhibits PI3K and control PKB activation in cellular 

and in vivo settings (163). 

In this study, we aimed to determine the ability of BBD130 to inhibit PKB 

activation upon different stimuli to dissect the mode of action of BBD130 and 

whether simultaneous inhibition of PI3K/DNA-PK would confer efficacy in 

combination with ionizing radiation.  
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Results & Discussion 

The small molecule inhibitor BBD130, originally identified as a PI3K inhibitor, 

is a potent inhibitor of DNA-PK in vitro (IC50 BBD130=58 nM) (Figure 1). To 

determine whether DNA-PK dependent PKB phosphorylation induced by DNA 

DSB-inducing agents such as !-irradiation is as well could be inhibited by 

BBD130 in cells, wild type and DNA-PKcs deficient mouse embryonic 

fibroblasts (MEFs) were pre-treated with varying concentrations of BBD130 

prior to 10 Gy !-irradiation (Fig 2). As expected, PKB was phosphorylated in 

wild type MEFs but not in DNA-PKcs deficient MEFs. Significantly, BBD130 

effectively inhibited DNA damage induced PKB phosphorylation further 

supporting the inhibition of DNA-PK by BBD130. 

Insulin and growth factor induced PKB Ser473 phosphorylation is mediated by 

mTORC2 (86). To test whether insulin induced PKB phosphorylation could be 

inhibited by BBD130, the MEFs were treated with BBD130 prior to insulin 

stimulation (Fig 3A). In line with the previous reports, the DNA-PKcs deficient 

MEFs did not show impaired PKB phosphorylation in response to insulin 

treatment. Remarkably, the pretreatment of MEFs with BBD130 showed 

inhibition of insulin-induced PKB phosphorylation in both wild type and DNA-

PKcs deficient MEFs.  Moreover pretreatment of HEK293 cells with BBD130 

showed efficient inhibition of insulin-induced PKB phosphorylation (Fig 3B). 

Further, inhibition of S6K phosphorylation on Thr389 confirmed 

downregulation of mTOR signaling (Fig 3C). 
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To further investigate the mode of action of BBD130, we made use of a 

chimeric PKB construct, which contains the C1 domain of Protein Kinase C at 

the N terminus instead of the PH domain (164). This chimeric protein termed 

C1-PKB!-!PH produces a kinase that can be activated in vivo by a second 

messenger other than phosphatidylinositol 3,4,5-trisphosphate (PIP3), namely 

phorbol ester 12-O-tetradecanoyl-phorbol-13-acetate (TPA). HEK293 cells 

transfected with C1-PKB!-!PH were pretreated with BBD130 prior to 

stimulation with TPA. The partial inhibition of PKB Ser473 phosphorylation 

with BBD130 pretreatment indicated that the PKB inhibition is partly due to 

PI3K inhibition (Fig 3D). Taken together, these results indicate that BBD130 is 

a potent inhibitor of PKB phosphorylation by acting on multiple levels of 

PI3K/PKB pathway and that BBD130 is able to downregulate PKB activation 

by inhibition of PI3K and DNA-PK. 

DNA-PK inhibitors were shown to sensitize cells to DNA damaging agents 

(30,44). We aimed to analyze if DNA-PK inhibitory effect of BBD130 result in 

sensitization of DNA-PK proficient cancer cells to DNA damage induced by "-

irradiation. For this, we utilized MO59K (DNA-PK proficient) and MO59J 

(DNA-PK deficient) human glioblastoma cell lines of which MO59J cells are 

hypersensitive to ionizing radiation. Analysis of growth inhibition following 3 

day-treatment with the inhibitor alone showed considerable sensitivity to 

increasing concentrations of BBD130 with a dose dependent decline in cell 

viability for both cells lines. However, in the absence of "-irradiation there was 

no significant difference in the IC50s for growth in DNA-PK proficient and 
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deficient cells IC50 MO59K: ~32 nM IC50 MO59J: ~27 nM (Fig 4A). In order to 

assess the sensitization of DNA-PK proficient cells to irradiation, MO59K cells 

were subjected to 10 Gy irradiation alone, 30 nM BBD130 alone or 30 nM 

BBD130 prior to 10 Gy irradiation and cell viability was determined after 1 or 3 

days (Fig 4B). The viability of MO59K cells subjected to 10 Gy irradiation was 

not significantly affected after 1 day and were about 72 % (72+2.5 %) after 3 

days. Likewise, the viability of cells that are treated with BBD130 alone was 

not affected at day 1 and reduced to 52 % (52+3 %) after 3 days. In contrast 

when the cells are subjected to 10 Gy !-irradiation in addition to treatment 

with BBD130, the viability of DNA-PK proficient MO59K glioblastoma cells 

were drastically reduced after 24 hours of treatment (75% + 7.5). Notably, the 

viability of the DNA-PK proficient cells was comparable to its DNA-PK 

deficient counterparts, which are subjected to irradiation only after 3 days. 

Percent viability of MO59J cells subjected to irradiation alone was 40% 

(40%+3.4) (data not shown), and percent viability of MO59K cells treated with 

BBD130 and !-irradiation was 41 % (41%+3.6) after 3 days. These results 

suggested that there is a synergistic affect of BBD130 and !-irradiation on 

growth inhibition of glioblastoma cells possibly through inhibition of DNA-PK.   

It has become increasingly apparent that the most effective targeted 

therapeutic agents in clinical trials are inhibitors that block multiple target 

kinases. Compounds that target major signaling nodes involved in tumor 

progression could have significant success alone or in combination with 

current treatments of cancer. We made use of differential activation of PKB by 
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upstream kinases in response to specific stimuli as a tool to dissect the mode 

of action of the BBD130. mTORC2 dependent PKB activation was assessed 

by insulin stimulation and DNA-PK dependent PKB activation was assessed 

by !-irradiation. The mechanistic rationale for the efficacy of this combination 

therapy could be described by cooperative inhibition of PI3K and DNA-PK. 

Several of the PI3K inhibitors inhibit DNA-PK (60) due to their structural 

similarity in the kinase domain. Significantly, inhibition of DNA-PK could play 

dual role in radiosensitization: by inhibition of the DNA repair as well as by 

inhibition of PKB activation induced by !-irradiation.  
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Materials and Methods 

 

In vitro kinase assays. DNA-PKcs and Ku were kindly provided by Dr. O. 

Hammarsten (Gothenburg University, Gothenburg, Sweden). Each 2.5 µg/ml 

of DNA-PKcs and Ku, 1mg/ml FSYtide, and 50 µM ATP were used for the 

assay. 

 

Cell culture, transfections and treatments. HEK293, MO59J, MO59K cells and 

mouse embryonic fibroblasts (MEFs) were grown in Dulbecco's modified 

Eagle's medium supplemented with 10% fetal calf serum (FCS), 100 units/ml 

penicillin, and 100 !g/ml streptomycin. BBD130 was synthesized by Novartis 

Pharma Ag, Basel, Switzerland. Compound was initially dissolved in DMSO to 

make 10 mM solutions, and then was serially diluted to obtain final 

concentrations for cell treatments. The construction of C1-PKBa-dPH 

expression vector was described previously (164). HEK293 cells seeded at 

0.5 x 106 per 6-cm-dish were transfected the following day, by a modified 

calcium phosphate method (165), with plasmid DNA (0.5 mg/ml). The 

transfection mixture was removed after 16-hour incubation, and cells were 

serum starved overnight before stimulation with 12-O-tetradecanoylphorbol 

13-acetate (TPA; 100 ng/ml; Sigma). For insulin treatments, cells were 

starved overnight prior to 1-hour treatment with various concentrations of 

BBD130. Cells were stimulated with 100 nM insulin (Sigma) for indicated 

times. For !-irradiation treatments, cells were starved overnight prior to 1-hour 
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treatment with various concentrations of BBD130 and subjected to a single 

exposure of 10 Gy using X-rays [Asteophysics Research Corp, TORREX 

120D X-Ray system]. Lysates were collected after 30 minutes. 

 

Western blot analysis. Protein lysates were collected in lysis buffer (50 mM 

Tris-HCl pH 8.0, 120 mM NaCl, 1% NP-40, 40 mM !-glycerophosphate, 10% 

glycerol, 0.05 mM phenylmethylsulfonyl fluoride, 1 mM benzamidine, 50 mM 

NaF, 1 mM Na3VO4,
 1 !M Microcystin LR). Homogenates were centrifuged 

(13,000 rpm for 20 min at 4°C) to remove cell debris. Protein concentrations 

were determined using the Bradford assay. Proteins were separated by 

sodium dodecyl sulfate-polyacrylamide gel electrophoresis and then 

transferred to Immobilon-P polyvinylidene difluoride membranes (Millipore). 

Antibodies against phospho-PKB (Ser473), phospho-PKB (Thr308), phospho-

S6K (Thr389) were purchased from Cell Signaling. A rat monoclonal anti-"-

tubulin (YL1/2)-producing hybridoma cell line was obtained from American 

Type Culture Collection. Quantification was performed using ImageQuant TL 

(Amersham Biosciences) software. 

 

Growth inhibition assays. The cells were seeded in triplicates and treated with 

indicated concentrations of BBD130 or subjected to 10 Gy #-irradiation. For 

combination studies, the cells were pretreated with indicated concentrations of 

BBD130 for 1 hour prior to 10 Gy #-irradiation. The cell viability was 

determined after 1- and 3-day incubation using Vi-CELL Series Cell Viability 
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Analyzer (Beckman Coulter, Inc.) according to manufacturer’s instructions. 

Data were normalized to growth of untreated control cells and presented as 

mean + SEM. IC50 calculation for growth inhibition was performed using 

Sigma Plot (SPSS Inc., IL, USA), using a standard four-parameter dose-

response equation. 
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Figure legends 

 

Figure 1. BBD130 is a potent inhibitor of DNA-PK activity in vitro. Each 

2.5 mg/ml of DNA-PKcs and Ku, 1mg/ml FSYtide, and 50 µM ATP were used 

for the assay. 

 

Figure 2. BBD130 inhibits DNA-PK dependent PKB phosphorylation 

induced by !-irradiation. MEFs were pretreated with indicated 

concentrations of BBD130 for 1 hour prior to treatment with 10Gy irradiation 

and lysed after 30 minutes. 

 

Figure 3. Inhibition of mTORC2 dependent insulin-induced PKB 

phosphorylation and mTORC1 dependent S6K phosphorylation by 

BBD130 is partly due to PI3K inhibition. A. MEFs were pretreated with 

BBD130 for 1 hour prior to stimulation with 100nM insulin and the cells were 

lysed after 30 min. B. HEK293 cells were pretreated with indicated 

concentrations of BBD130 for 1 hour prior to 100 nM insulin stimulation for 15 

minutes. C. HEK293 cells were pretreated with BBD130 [1µM] for 1 hour and 

stimulated with 100 nM insulin for the indicated times. D. HEK293 cells 

transfected with HA-C1-!PH PKB" were pretreated with BBD130 [1µM] for 1 

hour. The cells were stimulated with TPA for the indicated times. 
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Figure 4. BBD130 sensitizes DNA-PK proficient cancer cells to ionizing 

radiation. A. DNA-PK proficient and deficient cells were treated with indicated 

concentrations of BBD130. The viable cells were determined after 3 days. B. 

For combination studies, the cells were pretreated with 30 nM BBD130 for 1 

hour prior to 10 Gy !-irradiation. The cell viability was determined after 1- and 

3-day incubation. Data were normalized to growth of untreated control cells 

and presented as mean + SEM. 



Results - Part 2 

 

85 

  

Figure 1. 
 

 

 



Results - Part 2 

 

86 

 

Figure 2. 
 

 

 



Results - Part 2 

 

87 

 

Figure 3. 
 

 

 



Results - Part 2 

 

88 

 

Figure 4. 
 

 

 

 



 

89 

 

 

 

 

 

 

 

 

 

 

 

III. GENERAL DISCUSSION 



 

 

90 

 

 



General Discussion 

91 

 

III. GENERAL DISCUSSION 

  

 

Several lines of evidence indicate the crucial role of PI3K/PKB pathway in 

survival, proliferation, transcription, and metabolism (7,8,103). PKB exerts its 

functions by acting on a plethora of substrates upon activation by numerous 

stimuli (8). Full activation of PKB requires phosphorylation on two sites, 

Thr308 and Ser473, of which Thr308 phosphorylation is mediated by PDK1. 

However, the identification of the kinase responsible for the Ser473 

phosphorylation remained elusive until recently and studies have shown that 

Ser473 phosphorylation is not mediated by a single kinase and that both 

DNA-PK (11,19) and mTORC2 (21) phosphorylate PKB Ser473 depending on 

the stimuli. Given that a wide range of stimuli including growth factors, 

cytokines and DNA damage activate PKB, distinct Ser473 kinases activated 

under distinct conditions relay these signals to downstream effectors.  

In the present study, in vivo role of DNA-PK in PKB regulation was 

investigated under different conditions. 

 

DNA-PK is dispensable for insulin and growth factor induced PKB 

Ser473 phosphorylation whereas DNA-PK is required for PKB Ser473 

phosphorylation in response to DNA damage induced by ionizing 

radiation. Insulin is a well-established stimulus for PKB activation. Our in vivo 

studies showed that DNA-PK is not the physiological Ser473 kinase in 

response to insulin stimulation. Further DNA-PK is dispensable for growth 

factor induced PKB Ser473 phosphorylation. On the other hand we showed 
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that DNA-PK, which is a DNA damage activated kinase, is required for DNA 

damage induced PKB Ser473 phosphorylation. Given that PKB activation is 

promoted and that DNA-PK is required for phosphorylation of PKB Ser473 in 

response to DNA damage (11) places PKB as an important mediator of DNA 

damage signalling (166). Taken together, these results indicate that PKB 

activation is mediated by DNA-PK and mTORC2 in a stimulus dependent 

manner under physiological conditions.  

 

PKB is deregulated in DNA-PKcs!/! mice: evidence of crosstalk between 

two upstream kinases, mTORC2 and DNA-PK. 

 

Analysis of tissues from DNA-PKcs-null mice revealed that PKB is 

hyperactivated in a tissue-specific manner. Hyperactivation of PKB in the 

absence of an upstream kinase is unexpected and molecular mechanism 

underlying this phenomenon still need to be resolved. Elevated PKB Ser473 

phosphorylation in DNA-PKcs-/- tissues could most likely be mediated by 

mTORC2 and suggest a crosstalk between two upstream kinases of PKB, 

mTORC2 and DNA-PK. This regulation might take place at multiple levels of 

the pathway as our results showed that elevated PKB Ser473 phosphorylation 
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could also be observed without the accompanying changes in S6K Thr389 

phosphorylation. Therefore, although we cannot completely rule out the 

contribution of a S6K mediated mechanism; our data suggest the existence of 

an alternative mechanism of regulation. For this, further analysis of mice 

lacking both DNA-PK and mTORC2 will be required.  

Recent studies proposed a role for Tel25 to function as a coordinator among 

PIKKs and suggested existence of crosstalks between different PIKKs where 

alteration of one PIKK may influence other (130-133,173). It has been shown 

that Tel2, which directly interacts with phosphatidyl inositol-3-kinase related 

kinase family members (PIKKs) including DNA-PK and mTOR, could act as a 

stabilizer of PIKKs (131,133) or may serve as a scaffold protein that mediates 

signal transduction from PIKKs to their target proteins (132). However, further 

                                                
5
 Tel2 was discovered in mutant strains of budding yeast Saccharomyces cerevisiae 

that had abnormally short telomeres 167. Lustig, A. J., and Petes, T. D. (1986) Proc 
Natl Acad Sci U S A 83, 1398-1402 (reviewed in 131. Chang, M., and Lingner, J. (2008) 

Science 320, 60-61). In addition to maintaining telomere length in S. cerevisiae, it 

functions in DNA replication checkpoint in the fission yeast Schizosaccharomyces 

pombe and in humans (168. Shikata, M., Ishikawa, F., and Kanoh, J. (2007) J Biol Chem 
282, 5346-5355, 169. Collis, S. J., Barber, L. J., Clark, A. J., Martin, J. S., Ward, J. D., and 
Boulton, S. J. (2007) Nat Cell Biol 9, 391-401, 170. Jiang, N., Benard, C. Y., Kebir, H., 

Shoubridge, E. A., and Hekimi, S. (2003) J Biol Chem 278, 21678-21684). In the nematode 

Caenorhabditis elegans, however, hypomorphic alleles (forms of a gene in which the 

encoded protein has reduced function compared with the wildtype allele) of clk-2/rad-
5 (the TEL2 ortholog in C. elegans) cause stress during DNA replication and 

hypersensitivity to DNA double-strand breaks and reduce the rate of several 

physiological processes, including embryonic and postembryonic development, and 
reproduction (133. Takai, H., Wang, R. C., Takai, K. K., Yang, H., and de Lange, T. 

(2007) Cell 131, 1248-1259, 171. Benard, C., McCright, B., Zhang, Y., Felkai, S., 
Lakowski, B., and Hekimi, S. (2001) Development 128, 4045-4055, 172. Garcia-Muse, T., 

and Boulton, S. J. (2005) EMBO J 24, 4345-4355). Analysis of the phenotype of Tel2-null 

mouse cells showed that TEL2 directly interacts with all of the mammalian PIKKs 
(133. Takai, H., Wang, R. C., Takai, K. K., Yang, H., and de Lange, T. (2007) Cell 131, 

1248-1259).  Absence of TEL2 substantially reduced the expression level of all PIKKs 

in mouse cells. A direct physical association between Tel2 and PIKKs was also 

recently observed in fission yeast (173. Hayashi, T., Hatanaka, M., Nagao, K., 
Nakaseko, Y., Kanoh, J., Kokubu, A., Ebe, M., and Yanagida, M. (2007) Genes Cells 12, 

1357-1370). 
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study is required to understand the mechanistic role of Tel2 as a mediator of 

PIKK functions. It will be intriguing to study whether Tel2 could have a role 

mediator role affecting the downstream signaling of PIKKs, in particular within 

the context of mTOR and DNA-PK. 

The hypothesis of existence of crosstalk between DNA-PK and mTOR raises 

the question whether increased phosphorylation of PKB could also be 

observed in mTORC2 knock-out mice. The mice generated by disruption of 

mTORC2 by homozygous deletion of rictor (107,108), mLST8 (107) or mSin1 

(174) are embryonic lethal. Recently, a conditional knock-out of mTORC2 

complex has been reported (175). Interestingly, muscle-specific deletion of 

rictor resulted in increase of basal PKB Thr308 as well as FoxO1, GSK3 and 

S6K phosphorylation (175). On the other hand, the basal Ser473 

phosphorylation was reported to remain unchanged with deletion of rictor in 

the muscle (175). This could suggest that deletion of rictor may not result in 

an increase in PKB Ser473 phosphorylation albeit an increase in downstream 

events through possible alternative mechanisms. Further, it could also 

suggest the tissue specificity of the crosstalk between DNA-PK and mTORC2, 

as our results also showed that deletion of DNA-PK did not result in a change 

in PKB Ser473 phosphorylation in skeletal muscle under either fasting or 

random-fed conditions. On the other hand, we observed a concomitant 

increase in phosphorylation of both Ser473 and Thr308 in the DNA-PKcs-/- 

tissues including thymus, adipose and brown fat. Further studies by use of 
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tissue specific double knock-out mice lacking DNA-PK and mTORC2 

components will be required to fully investigate these hypotheses.  

PKB hyperactivity in the thymus apparently contributed to spontaneous 

tumorigenesis in DNA!PKcs!/! mice. Significantly, these tumors could be 

prevented by deletion of PKB", which is highly expressed in thymocytes, 

particularly in DN! and DP!stages (84-86). PKB has been shown to play an 

important role in DN! to DP!stage transition and to be essential for thymocyte 

survival and differentiation (84-86). Therefore, persistent PKB activity in the 

DNA!PKcs!/! thymus, where DN thymocytes predominate, could contribute to 

malignant transition. Furthermore, subsequent deletion of PKB" gene 

improves the survival of DNA!PKcs!/! mice. However, the survival of 

DNA!PKcs!/!PKB"!/! double knock!out (DKO) mice was not restored to that 

of PKB"!/! mice, which is not surprising given that DNA!PK has a wide variety 

of functions, some of which are independent of PKB". Alternatively, the loss 

of DNA!PK in a PKB"!/! background could lead to deterioration of 

DNA!PK!dependent PKB functions in tissues other than the thymus. 

Moreover, deregulation of other isoforms of PKB in DNA!PK!/! mice could 

possibly affect overall organismal fitness and survival. Finally, loss of 

DNA!PK independent PKB" functions could lead to additive affects in 

DNA!PKcs!/!PKB" !/! DKO mice. Further studies using tissue specific 

DNA!PK!/!PKB" !/! DKO mice will be necessary to evaluate these 

possibilities. 
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Taken together, these results indicate that PKB phosphorylation is not only 

elaborately regulated by mTORC2 and DNA-PK but also suggest existence of 

cross-talk between the two upstream kinases. The delineation of the 

mechanism how these two kinases could talk to each other will be crucial. 

 

PI3K-DNA-PK inhibitor BBD130 blocks PKB phosphorylation induced by 

DNA damage and inhibits growth.  As PKB mediated signaling events could 

favor tumor growth and/or progression, is not surprising that PI3K/PKB 

pathway is one of the most deregulated pathways in human malignancies (52-

55). Radiotherapy and DNA damaging drugs are among the most efficient 

therapies for cancer treatment (152).  A number of DNA-PK inhibitors were 

developed to enhance radio- and chemosensitivity and presented promising 

outcome in combination with radiation or chemotherapy in preclinical studies 

(148,149). Another possible role for DNA-PK in chemo- and radio-resistance 

emerged with the recent findings that DNA-PK phosphorylates and activates 

PKB in response to DNA damage (11). We made use of differential activation 

of PKB by upstream kinases in response to specific stimuli as a tool to dissect 

the mode of action of the BBD130. mTORC2 dependent PKB activation was 

assessed by insulin stimulation and DNA-PK dependent PKB activation was 

assessed by !-irradition. Combinatorial use of BBD130 and g-irradiation 

indicated that there is a synergistic affect of BBD130 and !-irradiation on 

growth inhibition of glioblastoma cells possibly through inhibition of DNA-PK.  

The mechanistic rationale for the efficacy of this combination treatment could 
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be described by cooperative inhibition of PI3K and DNA-PK. Several of the 

PI3K inhibitors inhibit DNA-PK as well due to their structural similarity in the 

kinase domain. Significantly, inhibition of DNA-PK could play dual role in 

radiosensitization: by inhibition of the DNA repair as well as by inhibition of 

PKB activation induced by !-irradiation. 
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SUMMARY

Protein kinaseB (PKB/Akt) is awell-established regu-
lator of several essential cellular processes. Here, we
report a route by which activated PKB promotes sur-
vival in response to DNA insults in vivo. PKB activa-
tion followingDNA damage requires 3-phosphoinosi-
tide-dependent kinase 1 (PDK1) and DNA-dependent
protein kinase (DNA-PK). Active PKB localizes in the
nucleus of g-irradiated cells adjacent to DNA dou-
ble-strand breaks, where it colocalizes and interacts
withDNA-PK. Levels of activePKB inversely correlate
with DNA damage-induced apoptosis. A significant
portion of p53- and DNA damage-regulated genes
are misregulated in cells lacking PKBa. PKBa knock-
out mice show impaired DNA damage-dependent in-
duction of p21 and increased tissue apoptosis after
single-dose whole-body irradiation. Our findings
place PKB downstream of DNA-PK in the DNA dam-
age response signaling cascade, where it provides
a prosurvival signal, in particular by affecting tran-
scriptional p21 regulation. Furthermore, this function
is apparently restricted to the PKBa isoform.

INTRODUCTION

Induction of DNA strand breaks activates and integrates an ex-
tensive network of cellular responses (reviewed in O’Driscoll
and Jeggo, 2006). These are critical for sustained viability in
the face of a genotoxic insult. The recruitment of DNA damage
signaling and repair proteins to sites of genomic damage consti-
tutes a primary event triggered by DNA damage (reviewed in
Rouse and Jackson, 2002). DNA-dependent protein kinase
(DNA-PKcs), ataxia telangiectasia-mutated kinase (ATM), and
Rad3-related kinase (ATR), all members of the PI3-kinase
(PI3K)-like family of kinases (PIKKs) are recruited directly to sites
of DNA damage in a similar manner (Falck et al., 2005). Conse-
quently activated, they amplify and convey the signal from the
damaged DNA to DNA-repair and cell-cycle machineries, such
as the p53 pathway (reviewed in Khanna and Jackson, 2001),
thus supporting survival. Importantly, DNA-PK, ATM, and ATR
were shown to each occupy distinct nuclear subcompartments
after DNA damage, namely unprocessed double-strand break

(DSB) ends, DSB-flanking chromatin, and single-strand DNA
(ssDNA) microcompartments, respectively. This may to some
extent explain their overlapping versus diverse functions and
choice of substrates (Bekker-Jensen et al., 2006).
One central regulator of cell metabolism, survival, and prolifer-

ation is the AGC family Ser/Thr kinase protein kinase B (PKB/Akt)
(reviewed in Brazil et al., 2004). Given the vital roles of the three
PKB isoforms PKBa, PKBb, and PKBg in normal physiology and
development, their deregulation has not unexpected conse-
quences in pathology and tumorigenesis (reviewed in Dummler
and Hemmings, 2007). Thus regulation of PKB activity is very
stringent. After mitogen stimulation, PKB is fully activated follow-
ing phosphorylation of two key residues. Thr308 in the activation
loop is phosphorylated by 3-phosphoinositide-dependent
kinase 1 (PDK1) (Alessi et al., 1997). Ser473 in the C-terminal
hydrophobic motif (HM) has been shown to be a target of the
mammalian target of rapamycin complex 2 (mTORC2) (Sarbas-
sov et al., 2005), another PIKK family member; however, its
effects on PKB regulation have been studied so far only in the
context of hormone/growth factor signaling or development
(Shiota et al., 2006).
PKB Ser473 is also phosphorylated in response to various

genotoxic treatments (Tan and Hallahan, 2003). Several compo-
nents of the PI3K-PKB pathway have been reported to be phos-
phorylated in the DNA damage response (Matsuoka et al., 2007).
Just how the signal from damaged DNA activates PKB remains
to be elucidated. We and others have identified DNA-PK as an
efficient PKB Ser473 kinase in vitro and in vivo. DNA-PK-medi-
ated phosphorylation of PKB Ser473 results in !10-fold en-
hancement of PKB kinase activity (Feng et al., 2004a). Stimula-
tion of bone marrow-derived macrophages (BMDMs) from
mice lacking the catalytic subunit of DNA-PK (DNA-PKcs) results
in defective phosphorylation and activation of PKB by CpG-DNA
(Dragoi et al., 2005).
DNA-PK holoenzyme consists of the catalytic subunit (DNA-

PKcs) and the Ku antigen complex (KU70/80) (Suwa et al.,
1994). Its activation at the DSBs and its proximal position in
the DSB signaling cascade provide a setting for it to function
as the PKB upstream kinase in the DNA damage response.
With this study, we propose that DNA-PK regulates PKB by hy-
drophobic motif Ser473 phosphorylation following induction of
DSBs in the DNA. PKB in turn provides a prosurvival signal for
the cell by affecting DNA damage-induced transcription. These
results highlight the role of DNA-PK in defining crucial PKB func-
tions in the DNA damage response.
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RESULTS

Regulation of PKB Phosphorylation on Ser473
and Irradiation-Induced Apoptosis in Response
to Induction of DNA DSBs
PKB is activated by various forms of DNAdamage and influences
cell-cycle and apoptosis parameters, promoting survival. En-
trance to a repair or a cell death program is affected by the extent
of DNA damage. To determine the range of DNA damage that
activates PKB, we titrated doses of g irradiation (g-IR) applied
to HUVEC cells from 1 to 30 Gy. We observed a proportional in-
crease in DNA DSBs by visualizing the Ser139 phosphorylation
of the histone variant H2AX (gH2AX) (Figure 1A). gH2AX forms
foci over large chromatin domains surrounding a DNA break
(reviewed in Thiriet and Hayes, 2005). An early event initiating
the IR-induced apoptosis is the loss of the mitochondrial mem-
brane potential, DJ (Taneja et al., 2001). Employing a FACS-
based assay, we assessed the apoptotic fraction of cells by

Figure 1. g-IR-Induced PKB Activation and
Apoptosis
HUVEC cells were g irradiated at indicated doses. After

30 min, cells were analyzed by immunofluorescence for

histone H2AX Ser139 phosphorylation (A). After 24 hr, ap-

optosiswasmeasured by FACS analysis using the specific

mitochondrial dye DiIC1(5). This reagent allows measure-

ment of the mitochondrial membrane potential (DJ). M1

represents viable cells, and M2 represents apoptotic cells

(B). PKB Ser473 and Thr308 phosphorylation was

analyzed 30 min after g-IR by western blotting (C). HUVEC

cells were g irradiated with 3 Gy, and PKB Ser473 and

Thr308 phosphorylation was analyzed at indicated time

points (D). (E) Schematic representation of PKB Ser473-P

regulation and DNA damage-induced apoptosis derived

from the quantitation of data from (A), (B), and (C).

measuring DJ. This population increased from
10% to 20% at lower doses of irradiation and
to !50% when cells were irradiated with 30 Gy
g-IR (Figure 1B). PKB Ser473 was phosphory-
lated 30 min post-IR (3 Gy) and remained phos-
phorylated 240 min after irradiation (Figure 1D).
PKB phosphorylation correlated with increase
in number of DSBs at lower doses of g-IR (1 to
10 Gy). At 30 Gy, however, PKB Ser473 phos-
phorylation was less than at lower doses
(Figure 1C). Combined, these data lead us to
consider PKB phosphorylation after g-IR as an
antiapoptotic mark or a molecular switch (Fig-
ure 1E), whereby cellular survival is favored
over IR-induced apoptosis, depending on the
dose applied.

PKB Activation and Ser473
Phosphorylation in Response to DNA
Damage Are DNA-PK Dependent
Genotoxic stress response pathways rely on
PIKKs as proximal response elements. As DNA-
PKcs is activated following its recruitment to the

DSBs (Uematsu et al., 2007), it may be responsible for PKB
Ser473 phosphorylation in the context of DNA damage. To test
this hypothesis, we compared g-IR- and insulin-induced PKB
Ser473 phosphorylation in HUVEC cells. DNA-PKcs was specifi-
cally inhibitedemploying a smallmolecule inhibitorNU7026 (Leahy
et al., 2004). NU7026 inhibited in vitro DNA-stimulated phosphory-
lation of PKBaSer473byDNA-PK; however, it had noeffect on the
in vitro kinase activity of PKBa (see Figures S1A and S1B available
online). A general PI3K inhibitor LY294002 was used as a control.
LY294002 pretreatment prevented PKB Ser473 phosphorylation
in both stimulating situations. In cells pretreated with NU7026,
PKB was phosphorylated only in response to insulin stimulation,
and its g-IR-induced phosphorylation was abolished (Figure 2A).
These results supported our hypothesis that generation of DSBs
is a specific signal for DNA-PKcs to phosphorylate and activate
PKB. To test this further, we measured the phosphorylation of
bothactivating residues inPKB (Figure2B)aswell as thekinaseac-
tivity of PKB (Figure 2C) following g-IR of untreated or of NU7026
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andLY294002pretreatedcells.Appropriately, theg-IR-induced in-
crease in both PKB kinase activity (6- to 7-fold) and phosphoryla-
tion of the PKB Ser473 and Thr308 was inhibited by the NU7026
and LY294002 pretreatments, arguing that the kinase activity of
DNA-PKcs is necessary for DNA damage-induced activation of
PKB. To test the specificity of the effect of DNA-PKcs inhibition
on PKB phosphorylation after g-IR, we knocked down DNA-
PKcs using siRNA. In full support of our data from the NU7026
studies, PKB phosphorylation on both Ser473 and Thr308 was
abolished in irradiated cells depleted of DNA-PKcs (Figure 2D).

Ser473-Phosphorylated PKB Forms Nuclear Foci
after g-IR and Interacts and Colocalizes with DNA-PKcs
It may be a common feature of the PIKK family members that
these kinases select their substrates based on induced proximity
(reviewed in Abraham, 2004). As DNA-PKcs recruitment to the
DSBs is crucial for its subsequent autophosphorylation and ac-
tivation, we investigated whether endogenous PKB localizes in
the vicinity of DSBs and active DNA-PK. By immunoprecipitation
and western blotting, we detected increased endogenous DNA-
PKcs-PKB complex formation after irradiation, but not in irradi-
ated cells that were pretreated with NU7026 or wortmannin.
Ethidium-bromide treatment of immunoprecipitates from irra-
diated cells did not disturb the DNA-PKcs-PKB interaction;
however, it caused the release of Ku70/80 that was found to
coimmunoprecipitate with DNA-PKcs-PKB. This indicates PKB
complexes with the DNA-PK holoenzyme rather than free, inac-
tive DNA-PKcs. (Figure 2E). We then visualized active PKB
(phosphorylated on Ser473) together with DNA-PKcs in g-irradi-
ated HUVEC cells as well as HUVEC cells treated with NU7026
prior to irradiation. Strikingly, Ser473-P immunofluorescent
staining revealed distinct foci restricted solely to the nucleus of
irradiated cells. Moreover, the foci colocalized with DNA-PKcs
immunofluorescent staining (see enlargement and colocalization
quantification, Figure 3A). NU7026 pretreatment completely
abolished PKB Ser473 phosphorylation and therefore the forma-
tion of active PKB foci, but had no effect on the nuclear localiza-
tion of DNA-PKcs (Figure 3A). As the Ser473-P foci were reminis-
cent of the gH2AX foci that mark DSBs, we performed a further
set of localization experiments visualizing the Ser473-P of PKB
together with gH2AX, again in g-irradiated HUVEC cells or cells
treated with NU7026 prior to irradiation. The g-IR-induced nu-
clear Ser473-P foci were found to colocalize with the DSBs
(see enlargement and colocalization quantification, Figure 3B).
The DNA-PKcs inhibitor pretreatment, as in our previous exper-
iments, prevented PKBphosphorylation following irradiation, but
had no effect on the proper gH2AX foci formation (Figure 3B).
Biochemical fractionation experiments confirmed the increase
in nuclear Ser473-P after irradiation in untreated but not
NU7026-treated cells, while the total PKB levels remained un-
changed (Figure 3C). Furthermore, perinuclear and nuclear
PDK1were detected in irradiated HUVEC cells (Figure S3). Over-
all, our biochemical and localization studies revealed the exis-
tence of an exclusively nuclear, active pool of PKB after g-IR.
This Ser473-phosphorylated PKB is concentrated in regions
surrounding the DSBs, where it colocalizes and interacts with
DNA-PK.

PDK1 and DNA-PK Are the Physiological PKB
Kinases in the DNA Damage Response
PDK1 plays a central role in activating AGC kinases, but its role in
the regulation of PKB in the DNA damage response by Thr308
phosphorylation is not yet documented. To address this issue
unambiguously, we made use of ES cells in which both copies
of the PDK1 gene were disrupted. In these cells, there is no de-
tectable IGF1-induced PKB Thr308 phosphorylation (Williams
et al., 2000). Phosphorylation of PKB Thr308 and Ser473 in
PDK1 proficient (PDK1+/+) or deficient (PDK1!/!) cells was mea-
sured 30min after an IR dose of 3Gy of g-IR. In thePDK1+/+ cells,

Figure 2. DNA-PKcs-Dependent PKB Activation and Ser473 Phos-
phorylation in Response to DNA Damage
(A) HUVEC cells were treated with either 3 Gy g-IR or 100 nM insulin for indi-

cated times following pretreatment with NU7026 (10 mM, 60 min) or

LY294002 (50 mM, 30 min) as indicated. Whole-cell lysates were analyzed

for PKB Ser473 phosphorylation. (B and C) HUVEC cells were treated with

3 Gy g-IR following pretreatment with the NU7026 or LY294002 inhibitors as

in (A). Whole-cell lysates were analyzed for both activating phosphorylation

sites on PKB, Ser473, and Thr308 (B). PKB was immunoprecipitated using

Ab10, and its kinase activity was measured in vitro. Data are represented as

means ± SD of duplicate determinants (C). (D) HUVEC cells were transfected

with siRNA against DNA-PKcs, or control nonsilencing siRNA (fluorescein,

siFluo). At 48 hr after transfection, cells were treated with 3 Gy g-IR and

whole-cell lysates were analyzed 30 min postirradiation. HUVEC cells were

treated with 3 Gy g-IR following pretreatment with NU7026 as in (A) and wort-

mannin (50 mM, 30 min). At 30 min postirradiation, whole-cell lysates were

analyzed as Input, and PKB was immunoprecipitated with Ab10 and the immu-

noprecipitates were probed for DNA-PKcs and Ku70/80 (E). Immunoprecipi-

tates from irradiated cells were treated with 400 mg/ml ethidium bromide in

the lysis buffer ([E], right).
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both residues were efficiently phosphorylated. This corre-
sponded to an increase in phosphorylation of GSK3a at Ser21,
which we took to be a measure of PKB activity. In the PDK1!/!

cells, however, phosphorylation of Thr308 after g-IR was not de-
tected. Although DNA-PKcs was active in these cells, as mea-
sured by p53 phosphorylation (data not shown), phosphorylation
of Ser473 was lower than in wild-type cells. This was further
reflected in the lack of phosphorylation of GSK3a (Figure 4A).

Having found immediate negative effects of DNA-PKcs inhibi-
tion or knockdown on PKB regulation after DNA damage, we

sought evidence of a role for DNA-PK as a bona fide PKB activa-
tor in DNA-PKcs knockout cells. We isolated and cultured pri-
mary prostate epithelial cells from DNA-PKcs knockout mice
harboring a mutation in the DNA-PK catalytic subunit gene
(Gao et al., 1998). DNA-PKcs proficient (DNA-PKcs+/+) or defi-
cient (DNA-PKcs!/!) cells were irradiated with 3 Gy g-IR or as
a control stimulated with insulin, and the phosphorylation status
of PKB and GSK3a was examined 30 min later. In irradiated or
insulin-stimulated DNA-PKcs+/+ cells, both Ser473 and Thr308
of PKB were phosphorylated and PKB active in terms of

Figure 3. Ser473-Phosphorylated PKB Colocalizes with DNA-PKcs and Double-Strand DNA Breaks after g-IR
Immunofluorescence staining for Ser473-P of PKB and DNA-PKcs (Ser473-P, green; DNA-PKcs, red; DNA in the merged images, blue; and colocalization of

Ser473-P and DNA-PKcs, yellow) (A), or Ser473-P and gH2AX (Ser473-P, green; gH2AX, red; DNA in the merged images, blue; and colocalization of Ser473-P

and gH2AX, yellow) (B) in HUVEC cells 30 min after 3 Gy g-IR treatment. The images are representative of the nuclear stainings observed in the experiments.

The colocalization quantification was obtained using Imaris Coloc software with the intensity threshold for analysis set at a 150 cutoff for both channels (green

channel, PKB and red channel, DNA-PKcs in [A]; green channel, PKB and red channel, gH2AX in [B]). The numbers represent percent of region of interest

(ROI) material of the PKB channel above threshold colocalized with the DNA-PK or H2AX channels in the ROI, respectively. (C) HUVEC cell lysates 30 min after

3 Gy g-IR treatment were fractionated to nuclear (N) and cytosolic (C) fractions and subcellular distribution of Ser473-P was analyzed by western blotting.
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GSK3a phosphorylation. In clear contrast, no increases in phos-
phorylation of the PKB activating residues or GSK3a were ob-
served after irradiation of DNA-PKcs!/! cells. Insulin stimulation
promoted PKB activation and GSK3 phosphorylation in DNA-
PKcs!/! cells, indicating they retain an intact insulin pathway
(Figure 4B). Altogether, irradiation-induced phosphorylation
and activation of PKB were completely abolished in the context
of either PDK1 or DNA-PKcs knockout. Thus, the integrity of
PDK1 and DNA-PK kinases appears crucial for successful PKB
activation in response to DNA damage.

Cells Lacking PKBa but Not PKBb and PKBg Resemble
the DNA-PK-Deficiency Radiosensitive Phenotype
DNA-PKcs knockout MEFs are radiosensitive (Lieber et al.,
2003). If the radiosensitivity of these cells is in part due to ineffi-
cient activation of PKB, we hypothesized that PKB knockout
MEFs would phenocopy DNA-PKcs knockout. To test this, we

Figure 4. PDK1 and DNA-PKcs Are Neces-
sary for PKB Activation during the DNA
Damage Response
(A) Embryonic stem cells derived from PDK1 wild-

type (PDK1+/+) or knockout (PDK1!/!) mice were

treated with 3 Gy g-IR. At 30 min after irradiation,

cells were lysed and whole-cell lysates were

analyzed for PKB phosphorylation (Ser473-P,

Thr308-P) or activity (GSK3 a/b-P). (B) Primary

prostate epithelial cells isolated from DNA-PKcs

wild-type (DNA-PKcs+/+) or knockout (DNA-

PKcs!/!) mice were cultured and treated at pas-

sage 3 with 3 Gy g-IR or 100 nM insulin. At 30

min after irradiation or 15 min after insulin stimula-

tion, whole-cell lysates were analyzed as in (A). (C)

MEFs proficient (DNA-PKcs+/+) or deficient (DNA-

PKcs!/!) in DNA-PKcs, wild-typeMEFs (PKBa+/+),

MEFs deficient in PKBa (PKBa!/!), or MEFs defi-

cient in PKBa where mouse wild-type HA-PKBa

was reintroducedstablyby transfection (PKBa!/!R)

were treated with 10 Gy g-IR, and 36 hr after irradi-

ation apoptosis was measured by a FACS-based

DiIC1(5) assay. Data are represented as means ±

SD of triplicate determinants. The differences in

mean values of the treatment groups were statisti-

cally significant as determined by 1-way ANOVA

test. The asterisks mark groups with the indicated

P value determined by the Holm-Sidak method

comparing the untreated and g-irradiated groups

of the same genotype. MEFs proficient (DNA-

PKcs+/+) (D) or deficient (DNA-PKcs!/!) (E) in

DNA-PKcs were treated with 5 mM doxorubicin or

with 100 nM insulin for the indicated times and an-

alyzed for PKB phosphorylation on Thr308 and

Ser473. The graphs present quantified Thr308-P

and Ser473-P levels normalized to internal PKB

controls.

compared irradiation-induced apoptosis,
in terms of mitochondrial intermembrane
potential DJ, in wild-type, PKBa knock-
out (PKBa!/!), and PKBb/g knockout
(PKBb/g!/!, double knockout) MEFs.
The number of apoptotic cells increased

by 35%–40% in PKBa!/! MEFs, as opposed to 15%–20% in
wild-type and PKBb/g!/! MEFs 24 hr after irradiation
(Figure S2E). This prompted us to test whether PKBa confers
resistance to irradiation. The expression of PKBa in PKBa!/!

MEFs was reconstituted by stable transfection (PKBa!/!R) (Fig-
ures S2A and S2B). Reintroduction of PKBa rescued the radio-
sensitivity phenotype, reducing the increase in IR-induced apo-
ptosis 24 hr after irradiation from 35% in PKBa!/! cells to 15% in
PKBa!/!R cells (Figure S2D). Finally, we directly compared the
sensitivity to g-IR-induced apoptosis of DNA-PKcs+/+, DNA-
PKcs!/!, PKBa+/+, PKBa!/!, and PKBa!/!R MEFs. At 36 hr fol-
lowing irradiation, almost 90% of DNA-PKcs!/! and PKBa!/!

cells were apoptotic. In contrast, wild-type MEFs and reconsti-
tuted PKBa MEFs exhibited 35% and 55% apoptotic cells, re-
spectively (Figure 4C). Overall, the apoptosis data suggest that
PKBa communicates the prosurvival signal emanating from
DNA-PK at the DSBs. Of note, PKBb and PKBg were expressed

Molecular Cell

DNA-PK Activates PKB in the DNA Damage Response

Molecular Cell 30, 203–213, April 25, 2008 ª2008 Elsevier Inc. 207



in the MEFs studied (Figure S2A) and a Ser473-P signal was de-
tected after DNA damage in cells lacking PKBa (Figure S2A).
Moreover, Ser473-P signal detected by immunofluorescence
in PKBa!/! MEFs revealed uniform Ser473-P distribution
throughout the cell, failing to form nuclear foci observed in
both PKBa+/+ and PKBb/g!/! MEFs (Figure S2F). This suggests
that PKBa is not selectively phosphorylated and activated after
DNA damage but rather that the PKBa isoform acts antiapoptoti-
cally in the DNA damage response.

PKB was activated in a DNA-PKcs-dependent manner follow-
ing DNA damage and influenced cell survival (Figures 2 and 4).
We compared DNA damage-induced PKB activation to that
following hormone stimulation in DNA-PKcs wild-type and
knockout MEFs. DNA-PKcs+/+ and DNA-PKcs!/! MEFs were
treated with doxorubicin (Dox), a topoisomerase II inhibitor
widely used as an anticancer drug, or insulin. Doxorubicin in-
duced PKB phosphorylation on both Thr308 and Ser473 in
a manner similar to g-IR. Interestingly, two peaks of PKB phos-
phorylation were observed, a more prominent peak after 30
min of doxorubicin treatment and a smaller peak at 240 min. In-
sulin induced a more robust PKB phosphorylation 15 min after
stimulation than doxorubicin at any time point in the experiment
(Figure 4D). Doxorubicin-induced PKB activation was abolished
in DNA-PKcs!/! MEFs throughout the time course, arguing for
a loss of PKB phosphorylation and not a delay. DNA-PKcs!/!

MEF response to insulin stimulation was, however, comparable
to that of wild-type cells (Figure 4E). Notably, in the ATM knock-

out (ATM!/!) MEFs, and ATM/ATR double knockout (ATM!/!;
ATR!/!) MEFs, there was no defect in PKB Ser473 or Thr308
phosphorylation (Figure S4A). This underlines the specificity of
DNA-PK, among the DNA damage-responsive PIKKs, for PKB
regulation. We further tested MEFs proficient (ric+/+) or deficient
(ric!/!) in rictor, a defining component of the mTORC2, for PKB
Ser473 and Thr308 phosphorylation. Both Ser473 and Thr308
were phosphorylated in ric+/+ and ric!/! cells after genotoxic
treatment. Somewhat reduced Ser473-P and Thr308-P signal
was detected in ric!/! MEFs, presumably as a consequence of
already compromised steady-state PKB phosphorylation in
these cells. As a control, no PKB phosphorylation was detected
in insulin-treated ric!/! cells (Figure S4B).

Cells Lacking PKBa Display Aberrant DNA
Damage-Induced Transcription, Including
Transcriptional Misregulation of p21
Numerous studies have implicated PKB in transcriptional regula-
tion. A very important component of the DNA damage response
is represented by transcriptional regulation. We, therefore, ex-
amined the transcriptional changes following g-IR of radiosensi-
tive MEFs lacking PKBa. Expression profiles from PKBa+/+,
PKBa!/!, and PKBa!/!R cells 4 and 24 hr after g-IR were com-
pared to control nonirradiated cells of respective genotypes. At
4 hr after g-IR, 46 genes were upregulated more then 1.5-fold
in PKBa+/+ cells. One of these genes was upregulated in the
PKBa!/! cells, and upregulation of only one gene, p21WAF1/cip1

Figure 5. Aberrant DNA Damage-Induced
Transcription in Cells Lacking PKBa, In-
cluding Transcriptional Misregulation of
p21
MEFs were treated with 10 Gy g-IR, and RNA was

prepared from three independent irradiation ex-

periments and subjected to microarray analysis.

(A) Venn diagrams showing the numbers of genes

differentially expressed in PKBa wild-type

(PKBa+/+), knockout (PKBa!/!), and PKB-recon-

stituted (PKBa!/!R) MEFs 4 and 24 hr after g-IR.

The numbers of genes reproducibly regulated

more than 1.5-fold relative to untreated control

cells are shown. Top, upregulated genes; bottom,

downregulated genes. (B) Genes deregulated in

PKBa-deficient cells (upregulated in the wild-type

4 hr after treatment, but not in knockout cells)

were compared to biological process Gene Ontol-

ogy categories; significantly represented cate-

gories are shown. Ontology terms are on the y

axis; p values for the significance of enrichment

are graphed along the x axis. The bars shown in

red are categories that include p21. (C) Genes up-

regulated and downregulated 4 hr following irradi-

ation in cells of indicated genotypes were grouped

according to transcription factor regulation. Most

significantly represented transcription factor regu-

lons are graphed along the x axis; P values for the

significance of enrichment in transcription factor

groups are graphed along the y axis. The red

bars are those categories that include p21. PKBa

wild-type (PKBa+/+), knockout (PKBa!/!), and

PKBa-reconstituted (PKBa!/!R) MEFs were treated with 10 Gy g-IR. RNA was isolated at the indicated time points to perform real-time PCR analysis. The panel

represents p21 mRNA expression levels in cells of all three genotypes at the indicated times normalized to internal GADPH controls (D).
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(p21), was restored in PKBa!/!R cells. Importantly, upregulation
of exclusively p21 was also restored 24 hr after irradiation
(Figure 5A, p21 is indicated in red). At 4 hr after g-IR, 79 genes
were downregulated more then 1.5-fold in PKBa+/+ cells, of
which 5 were also downregulated in PKBa!/! and PKBa!/!R
cells (Figure 5A). Thus, changes in gene expression were always
more prominent in PKBa+/+ cells. Reconstitution of PKBa in
knockout cells, however, did not entirely revert the phenotype
observed in PKBa!/! cells. Analysis revealed that the spectrum
of genes upregulated in PKBa+/+, but not in the PKBa!/! cells,
was remarkably enriched for genes controlling responses to
DNA damage (Figure 5B). Furthermore, grouping of those genes
according to transcription factor regulation indicated aprominent
enrichment of p53-regulated genes (Figure 5C). No significant
changes were noted in Myc or p53 mRNA levels in these exper-
iments (Figure S4). As the misregulation of p21 seemed to be
a recurrent motif in several types of analysis performed, we an-
alyzed and validated the changes in p21 mRNA in an indepen-
dent real-time PCR assay (Figure 5D). In addition, the protein
levels of p21 were found to change correspondingly, i.e., there
was a 4- to 5-fold increase in p21 protein levels 4–24 hr after
IR in both PKBa+/+ and PKBa!/!R cells, while p21 protein was
barely detectable in PKBa!/! cells throughout the whole time
course (Figure 6A). Unlike PKBa+/+ and PKBa!/!R, PKBa!/!

cells showed no decrease in the S phase of the cell cycle after
irradiation (as expected given the loss of the p21 response
[Figure S2C]). Moreover, transient transfection of untagged p21
into PKBa knockout MEFs reduced irradiation-induced apopto-
sis, as measured by decrease in the mitochondrial intermem-
brane potentialDJ in wild-type, PKBa knockout p21 transfected
(PKBa!/!p21), and PKBa knockout (PKBa!/!) MEFs. At 36 hr af-
ter irradiation, wild-typeMEFs were shown to have 30% apopto-
tic cells and PKBa!/!p21 was shown to have 65%; in contrast,
90% of PKBa!/! cells were apoptotic. Reintroduction of p21 to
PKBa!/! MEFs therefore partially restores viability after irradia-
tion. This reinforces our hypothesis that the increased irradia-
tion-induced apoptosis observed in PKBa!/! MEFs results
from an aberrant p21 response to DNA damage. To test whether
DNA-PKcs-dependent activation of PKB after IR affects p21 reg-
ulation, we pretreated HUVEC cells with NU7026 and LY294002
before irradiation (see Figure 2). In both NU7026 and LY294002

pretreated cells, p21 protein remained at basal levels, in contrast
to irradiated cells, where there was an increase in p21 protein
(Figure 6B). As was previously reported (Kachnic et al., 1999),
we also detected increased p21 protein 4–24 hr after IR in
DNA-PKcs+/+MEFs.DNA-PKcs!/! cells were low in p21withmi-
nor changes during the period of irradiation (Figure S6A), similar
to PKBa knockout MEFs (see Figure 6A). Overall, these results
indicate that PKBa participates in the p53-regulated gene
expression program and has a direct effect on p21 regulation
after DNA damage. This may explain, at least in part, why
PKBa is important for survival after DNA damage.

Mice Deficient in PKBa Show an Attenuated p21
Response to g-IR and Suffer from Increased DNA
Damage-Induced Apoptosis
In cell culture, PKBa is important for the regulation of p21 and for
survival after g-IR (Figures 4, 5, and 6 and Figure S2). To deter-
mine the in vivo contribution of PKBa to the transduction of
DNA damage signal to p21, we studied p21 and apoptotic re-
sponses in PKBa knockout mice. mRNA levels of p21 were
higher in PKBa+/+ mice kidney and spleen 8 hr after a single
dose of whole-body irradiation and reverted to near basal levels
24 hr after treatment. In PKBa!/! mice, there was a very minor
increase in p21 mRNA, peaking only at 24 hr after irradiation
and only slightly above basal (Figure 7A and Figure S7A). In
wild-type mice, p21 protein levels had increased about 2.5-fold
by 8 hr post-IR and remained elevated at 24 hr. There were no
significant changes in the initially low levels of p21 in knockout
mice tissues. Importantly, we also observed a decrease in p53
protein in irradiated PKBa!/! mice tissues compared with
PKBa+/+ (Figure 7C and Figure S7C). Protein levels of cleaved
PARP, as a mark of apoptosis induced by g-IR, were higher in
PKBa!/! mice tissues than in the wild-type (Figure 7D). Finally,
we validated the immunoblotting results by visualizing apoptotic
cells inmouse tissues employing aTUNELassay. TUNEL-stained
cells were recorded in particular areas of the spleen, with a
significantly higher frequency in PKBa!/! than in PKBa+/+

mice. Quantitation of TUNEL staining showed an "3-fold in-
crease in the mean number of apoptotic cells per selected area
in knockout mice, and an "1.3-fold increase in the wild-type
24 hr after irradiation (Figure 7E). Less striking differences

Figure 6. Loss of PKBa and Inhibition of
DNA-PKcs Cause Misregulation of p21
Protein Levels
PKBa wild-type (PKBa+/+), knockout (PKBa!/!),

and PKBa-reconstituted (PKBa!/!R) MEFs were

treated with 10 Gy g-IR. Whole-cell lysates were

analyzed for p21 protein levels bywestern blotting.

The graph presents p21 protein levels in cells of all

three genotypes at the indicated times normalized

to internal tubulin controls (A). HUVEC cells were

treated with 3 Gy g-IR following pretreatment

with the NU7026 (10 mM, 60 min) or LY294002

(50 mM, 30 min) inhibitors. Whole-cell lysates

were analyzed for p21 protein levels by western

blotting (B).
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Figure 7. Attenuated p21 Response to g-IR and Increased DNA Damage-Induced Apoptosis in Mice Deficient in PKBa
PKBawild-type (PKBa+/+) and knockout (PKBa!/!) female mice were exposed to a single dose of 3 Gy g-IR or sham irradiated (control), and sacrificed 8 or 24 hr

after irradiation. (A) Total RNAwas isolated from several organs for real-time PCR analysis. The panel presents spleen p21mRNA expression levels normalized to

internal GADPH control. (B–D) Proteins were prepared from organs and analyzed by western blotting. (B) The graph (upper panel) represents quantified spleen

p21 protein expression levels normalized to internal tubulin control. Lower panel shows western blot measurement of p21 expression levels. (C) The panel shows

western blots measuring p53 and Myc expression levels. (D) Western blots showing the protein levels of PARP. (E) Irradiation induced apoptosis (TUNEL assay)

in the spleen of PKBa wild-type (PKBa+/+, left column) and knockout (PKBa!/!, right column) mice 24 hr postirradiation. The graph presents quantitation of
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were distinguished at 8 hr after irradiation (Figure S8). Altogether,
these in vivo results support our observation in cell culture that
PKBa has a marked impact on survival after DNA damage due
to an effect on transcriptional regulation of p21 and irradiation-
induced apoptosis.

DISCUSSION

In the present study we provide a detailed analysis of the modu-
lation of PKB activity and its impact on the DNA damage re-
sponse in mammalian systems. We report a regulatory network
in which DNA-PKcs specifically activates PKB by Ser473 phos-
phorylation after induction of DSBs. Activated PKBa apparently
regulates crosstalk to the p53-dependent DNA damage-induced
gene expression program.
TwodifferentPKBstatescanbedistinguished (phosphorylated

versus dephosphorylated) in the DNA damage response, depen-
dent upon the amount of DNA damage (Figure 1). These PKB
states probably reflect the destiny of the cell population with re-
spect to survival after DNA damage. Besides using the DNA-
repair program and halting cell-cycle progression, cells also
respond to DNA insults by undergoing programmed cell death.
Our results suggest thatPKB ispart of this regulatorymechanism.
This is further supported by the demonstration that PKB is
activated directly by DNA-PKcs, a DSB responsive enzyme di-
rectly recruited to the damaged DNA and involved in DNA repair
and DNA damage-induced signaling (Figures 2, 3, and 4).
We have confirmed that PDK1 is responsible for PKB Thr308

phosphorylation in the DNA damage response using a knockout
ES cell model (Figure 4). DNA-PK phosphorylates HM Ser473 of
PKB. However, we also noted similar patterns in T loop Thr308
phosphorylation after g-IR (DNA-PKcs-dependent induction fol-
lowing irradiation although PDK1 activity was unaffected by inhi-
bition of DNA-PKcs [data not shown]) (Figures 2 and 4). This in-
dicates that the two phosphorylation steps are tightly connected
and interdependent. This may be due to conformational changes
in PKB induced by phosphorylation (Yang et al., 2002). It was
also described previously that Ser473 phosphorylation precedes
Thr308 phosphorylation, and proposed that this is important for
the phosphorylation of PKB by PDK1 (Scheid et al., 2002).
A preactivation complex of PKB and PDK1 was reported re-

cently (Calleja et al., 2007). PDK1was shown to shuttle to the nu-
cleus following mitogen stimulation (Scheid et al., 2005). We
have detected perinuclear and nuclear PDK1 in irradiated
HUVEC cells (Figure S3). It is therefore plausible that a nuclear
PDK1 pool also exists after DNA damage, as there is one of
PKB and DNA-PKcs. This provides a setting with an increased
local concentration of all three proteins, which is clearly a prereq-
uisite and a stimulus for phosphorylation events to take place,
especially as 30-phosphorylated inositides and class I PI3K
have been reported to be present in the nucleus (reviewed in
Irvine, 2003).
Feng et al. (2004a) isolated DNA-PKcs from the membrane

fraction of HEK293 cells and showed in vitro kinase activity of

the purified active kinase toward PKB Ser473. The authors found
impaired PKB phosphorylation after starvation and insulin stim-
ulation in cells lacking DNA-PKcs. The cells used by Feng and
colleagues were serum starved (quiescent), while in our current
experiments they were serum sufficient (cycling). Thus the path-
ways operating under these two cell states appear to be differ-
ent. In terms of the classical insulin response we now consider,
with all the new data since 2004, that DNA-PK does not play
a role in insulin-promoted activation of PKB in serum-sufficient
cells. It is therefore unclear whether DNA-PKcs present in the
lipid rafts (Lucero et al., 2003) plays a role outside of the DNA
damage response in facilitating rapid PKB Ser473 phosphoryla-
tion following nutrient starvation.
gH2AX foci are a cytological manifestation of DSB induction

that marks the site of the break, and many components of the
DNA damage response form IR-induced foci colocalizing with
gH2AX. Although accumulation of DNA-PKcs at the DSBs was
not obvious, the Ser473-P PKB foci we discovered were colocal-
ized with the gH2AX staining (Figure 3). This finding is important
for several reasons. First, it places active PKB at the site of DNA
damage, which of course has implications for its regulation by
DNA-PKcs. Second, this may help to explain mechanistically
why PKB is no longer phosphorylated at a very high g-IR dose
because PKB recruitment to the DSB and to DNA-PKcs may
be affected in some way by the vastly dense and complex
DNA damage generated by a high dose of irradiation.
p21 is a vital regulator of cell-cycle progression after DNA

damage. The deregulation in p21 expression we observed in
PKBa knockout systems (both cell culture andmousemodel) fol-
lowing g-IR (Figures 5, 6, and 7) was likely due to the effects of
PKBa expression and activation on the p53-regulated gene ex-
pression program (Figure 5). This possibly occurs at two levels.
As p53 does not physically engage with DSBs, PKB may be
feeding into p53 as a ‘‘messenger’’ from the DNA lesions. On
the other hand, we detected diminished p53 basal protein levels,
but no changes in its mRNA levels in PKBa knockout cells and
mice (Figure 7 and Figure S5). As a consequence, a whole array
of genes was misregulated in the DNA damage response in cells
lacking PKBa (Figure 5). p53 is linked in an autoregulatory nega-
tive feedback loop with its cellular antagonist Mdm2, to strin-
gently control p53 levels (reviewed in Levine et al., 2006).
Mdm2 is a phosphorylation target of PKB (Feng et al., 2004b;
Mayo and Donner, 2001) but also a reported target of GSK3 in
g-IR response (Kulikov et al., 2005). We have demonstrated
GSK3 phosphorylation dependent on DNA-PK- and PDK1-me-
diated activation of PKB (Figure 4). Misregulation of Mdm2
downstream of PKB was therefore likely responsible for the im-
paired p53 response to irradiation in the absence of PKBa. Fur-
thermore, we found that upregulation of p21 following DNA dam-
age was dependent on PKBa and DNA-PK (Figures 5, 6, and 7
and Figure S6). Several conflicting reports regarding the role
for DNA-PK in p53-dependent pathways in the DNA damage re-
sponse exist (Burma et al., 1999; Kachnic et al., 1999). Our data
contribute to the current knowledge on this important issue.

the TUNEL assay with the ImageAccess software. Apoptotic cells were counted in three areas per slide at 203 magnification and expressed relative to the an-

alyzed surface area. The differences inmean values between the treatment groupswere statistically significant as determined by 1-way ANOVA test. The asterisk

marks the group with the indicated P value determined by the Holm-Sidak method comparing untreated and g-irradiated groups of the same genotype.
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We focused on p21 as its regulation after g-IR was normalized
in PKBa knockout MEFs by reintroducing PKBa (Figures 5 and
6), arguing for a direct effect. Finally, the regulation of p21 by
PKB in the DNA damage response described here reflects the
IGF1-promoted muscle cell survival pathway through PKB-me-
diated induction of p21 (Lawlor and Rotwein, 2000). PKB there-
fore represents a signaling node at which a prosurvival signal
is created following input from both the plasma membrane and
the nucleus. Furthermore, as PKB isoforms have already been
shown to have various distinct functions (reviewed in Dummler
and Hemmings, 2007) it is conceivable that PKBa has a specific
role in promoting survival after DNA insult.

Our in vivo experiments provide a link between PKBa signaling
and survival in the face of genotoxic insult. Recent studies found
early tumorigenic abnormalities to induceDNAdamage signaling
activation (Bartkova et al., 2005; Gorgoulis et al., 2005). More-
over, doxorubicin induces PKB activation and PKB-regulated
gene expression in mice (Ichihara et al., 2007). p21 knockout
(p21!/!) mice develop significantly more metastatic tumors after
g-IR than p21 heterozygous (p21!/+) mice (Engelman et al.,
2007). Thus PKB remains an attractive target for intervention in
the development and treatment of malignancies, although with
caution, as cancer therapies involving DNA damage have poten-
tial to promote PKB activation and ultimately a survival signal. It
will, therefore, be necessary to identify further PKB functions
in the nucleus of irradiated cells. These would definitely provide
directions for studies of the mechanism of PKB action after
induction of DSBs, as well as opportunities for pharmacological
interference.

In sum, the results presented here demonstrate that PKBa
plays a role in the DNA damage response, a function that may
help advance our understanding of how the signal from the dam-
agedDNA is translated to a prosurvival signal at the nuclear level.
DNA-PK plays an indispensable role in activating PKB following
induction of DSBs. Further understanding of the mechanism(s)
of the DNA damage induction of PKB may also hold therapeutic
potential in cancer research, besides improving our knowledge
of the DNA damage response at the molecular level.

EXPERIMENTAL PROCEDURES

Materials
Antibodies were obtained from the following sources: Ser473-P Akt, Thr308-P

Akt, Ser21/9-P GSK3a/b, GSK3b, Ser15-P p53, and human p21were fromCell

Signaling Technologies; Ser139-P H2AX and Myc were from Upstate; Thr229

p70S6K was from Abcam; DNA-PKcs, Ku70, and Ku80 were from Neo-

Markers; mouse p21 was from Oncogene; and PDK1 was from BD Biosci-

ences. Anti-HA 12CA5, anti-myc 9E10 and anti-a-tubulin YL1/2 antibodies

were used as hybridoma supernatants. PKB isoform-specific antibodies

were obtained by immunizing rabbits with isoform-specific peptides, and

those were previously described (Yang et al., 2005), as well as PKB antibody

Ab10 (Hill and Hemmings, 2002). Doxorubicin, insulin, NU7026, and

LY294002 were from Sigma.

g-IR Treatments
Cells were plated at consistent densities 24 hr prior to treatments. Following

single-dose g-IR treatment in a TORREX 120D (Astrophysics Research

Corp.) instrument at 5 mA/120 kV and 0.13 Gy/s, cells were left to recover at

37"C for the indicated times before analysis. Single-dose total-body irradiation

of #10 week-old female mice was carried out in the same instrument, after

which the mice were caged separately before being sacrificed at the indicated

times after treatment. The mice were monitored for changes in behavior or

appearance during the recovery period.

Quantitation of DNA Damage-Induced Apoptosis,
Cell Growth, and Viability Measurements
Apoptosis was assessed by measuring changes in the mitochondrial inter-

membrane potential (Dc) by a FACS-based method, using a cationic lipophilic

dye DilC1(5) assay kit (Invitrogen). Consistent numbers of cells were plated 24

hr prior to DNA-damaging treatment, and at the indicated times after treatment

detached cells from supernatants together with attached cells were labeled

and processed according to the manufacturer’s protocol, and analyzed using

a FACSCalibur flow cytometer (Becton Dickinson). For cell growth/viability

experiments, cells were harvested daily and analyzed by trypan blue dye

exclusion method with the Vicell CoulterCounter (Beckman).

Microarray Analysis of DNA Damage-Induced
Transcriptional Changes
Total RNA was extracted from triplicate experiments using TRIzol (Invitrogen)

according to themanufacturer’s instructions. cDNAwas synthesized from 2 mg

total RNA using the SuperScript cDNA system (Invitrogen) and used to gener-

ate biotin-labeled cRNA with the Enzo BioArray High Yield RNA transcript la-

beling kit (Enzo Diagnostics, USA). After fragmentation, 10 mg cRNA was hy-

bridized with the mouse MOE430A 2.0 GeneChips (Affymetrix, Santa Clara,

USA) following the protocol recommended by Affymetrix. Gene chips were

then scanned in an Affymetrix 2500 scanner, and gene expression was

analyzed using the GeneSpring Software 7 (Silicon Genetics). The data were

submitted to one-way ANOVA (a value of p < 0.05 was considered significant).

Microarray data are deposited in GEO (GSE9146).

SUPPLEMENTAL DATA

Supplemental Data include eight figures and Supplemental Experimental Pro-

cedures and can be found with this article online at http://www.molecule.org/

cgi/content/full/30/2/203/DC1/.
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Figure S1. NU7026 Inhibits the DNA-Stimulated In Vitro Kinase Activity of 

DNA-PKcs toward PKB!, but Not PKB! Itself 

(A) Purified active PKB! (Hemmings laboratory) was assayed with 30"M of the 

specific substrate peptide R7Ftide (RPRAATF). Where indicated, NU7026 was 

added to the kinase reactions. Purified DNA-PK (Promega) was assayed with 0.1 

mg/ml FSY peptide containing Ser473 (RRPHFPQFSYSASSTA), corresponding 

to the hydrophobic motif of PKB!. Calf thymus DNA was added at 10mg/ml in the 

DNA-PK activation buffer to achieve optimal kinase activity. Where indicated, 

NU7026 was added to the kinase reactions. Data are represented as means ± 

SD of duplicate determinants.  

(B) Purified DNA-PK (Promega) was assayed with GST-PKB!418-480 as substrate. 

Calf thymus DNA was added at 10"g/ml in the DNA-PK activation buffer to 

achieve optimal kinase activity. Where indicated, NU7026 was added to the 

kinase reactions. Specific phosphorylation was monitored by Western blotting 

with the Ser473-P antibody.  

 

 

 

 

 

 

 

 



  

 



  

Figure S2. PKB! Isoform Is Important for Survival after DNA Damage 

(A) Western blot analysis of PKB isoform protein expression levels and Ser473-P 

in  PKB!+/+, PKB!-/- and PKB!-/-R MEFs treated with 5 "M doxorubicin for 30 

min.  

(B) Immunofluorescence staining for HA of re-introduced mouse wild-type HA-

PKB! in the PKB!-/-R cells. Anti-HA staining is shown in green, DNA in blue.  

(C) Wild-type mouse embryonic fibroblasts (PKB!+/+), mouse embryonic 

fibroblasts deficient in PKB! (PKB!-/-), or the mouse embryonic fibroblasts 

deficient in PKB! where mouse wild-type HA-PKB! was re-introduced stably by 

transfection (PKB!-/-R) were treated with 10 Gy #-IR. Cell cycle progression was 

monitored 8 h after irradiation. Summary panel of the FACScan experiment 

showing cell-cycle distribution of irradiated cells of the indicated genotypes 

relative to unirradiated control cells.  

(D) At 24 h after irradiation, apoptosis was measured by a FACS based DiIC1(5) 

assay.  

(E) Wild-type mouse embryonic fibroblasts (PKB!+/+), mouse embryonic 

fibroblasts deficient in PKB! (PKB!-/-), or PKB$ and PKB# (double knock-out, 

PKB$/#-/-), were treated with 10 Gy #-IR and apoptosis measured 24 h after 

irradiation. In (D) and (E) data are represented as means ±SD of triplicate 

determinants.  

(F) Immunofluorescence staining of Ser473-P in mouse embryonic fibroblasts as 

in (E) 30 min after 3Gy #-IR treatment (Ser473-P green, DNA in the merged 

images blue).  



  

 



  

Figure S3. Perinuclear and Nuclear Localization of PDK1 after !-IR 

Immunofluorescence staining for PDK1 and !H2AX (PDK1 red, !H2AX green, 

DNA in the merged images blue, and co-localization of PDK1 and !H2AX in 

yellow) (A); or PDK1 and Ser473-P of PKB (PDK1 red, Ser473-P green, DNA in 

the merged images blue, and co-localization of PDK1 and Ser473-P in yellow) 

(B) in HUVEC cells 30 min after 3 Gy !-IR treatment or following 100 ng/ml IGF-1 

treatment. The images are representative of the stainings observed in the 

experiments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 



  

Figure S4. !-IR-Induced PKB Phosphorylation PIKK-Deficient Cells 

(A) Wild-type mouse embryonic fibroblasts (wild type), mouse embryonic 

fibroblasts deficient in ATM (ATM-/-), or ATM and ATR (double knock-out,    

ATM-/-; ATR-/-) were treated with 10 Gy !-IR. Phosphorylation of both activating 

residues in PKB (Thr308 and Ser473) was measured at the indicated time points 

by Western blotting. The graph represents Ser473-P-PKB and Thr308-P-PKB 

levels in cells of all three genotypes at the indicated times normalized to internal 

PKB controls.  

(B) Wild-type mouse embryonic fibroblasts (ric+/+) and mouse embryonic 

fibroblasts deficient in rictor (ric-/-) were treated with 10 Gy !-IR. Phosphorylation 

of both activating residues in PKB (Thr308 and Ser473) was measured at the 

indicated time points by Western blotting. The graph represents Ser473-P-PKB 

and Thr308-P-PKB levels in cells of both genotypes at the indicated times 

normalized to internal PKB controls. 

 

 

 

 

 

 

 

 

 



  

 



  

Figure S5. Loss of PKB! Does Not Affect p53 and Myc mRNA Expression  

(A) Virtual Northern blots documenting regulation of p53 (left panel) and Myc 

(right panel). The plots show the regulation of these genes under the indicated 

conditions as deduced from the microarray experiment shown in Figure 4.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 



  

Figure S6. Attenuated p21 Response to !-Irradiation in DNA-PK-Deficient 

Mouse Embryonic Fibroblasts 

(A) Mouse embryonic fibroblasts proficient (DNA-PK+/+) or deficient (DNA-PK-/-) 

in DNA-PK were treated with 10 Gy !-IR. Whole cell lysates were analyzed for 

p21 protein levels at the indicated time points.  

(B) Mouse embryonic fibroblasts deficient in PKB" were transiently transfected 

with untagged p21 (PKB"-/-p21).  

(C) At 12 h after transfection, wild-type mouse embryonic fibroblasts (PKB"+/+), 

mouse embryonic fibroblasts deficient in PKB" (PKB"-/-), or mouse embryonic 

fibroblasts deficient in PKB" p21 transfected (PKB"-/-p21) were treated with 10 

Gy !-IR. At 4 h after irradiation whole cell lysates were analyzed by Western 

blotting for p21 protein levels (left panel); 36 h after irradiation apoptosis was 

measured by a FACS based DiIC1(5) assay (right panel).  

 

 

 

 

 

 

 

 

 

 



  

 



  

Figure S7. Attenuated p21 Response to ! Irradiation in Mice Deficient in 

PKB" 

Total RNA was isolated from the kidney (in the experiment shown in figure 5A) 

for realtime PCR analysis. (A) The panel presents p21 mRNA expression levels 

normalized to internal GADPH control. (B and C) Proteins were extracted from 

organs (in the experiment shown in figure 5A) and organ lysates analyzed by 

Western blotting. The graph (upper panel) presents quantified kidney p21 protein 

expression levels normalized to internal tubulin control. Lower panel shows 

Western blot measurement of p21 expression levels. (C) Western blots showing 

p53 and Myc expression levels.  

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 



  

Figure S8. Increased DNA Damage-Induced Apoptosis in Mice Deficient in 

PKB! 

(A) Irradiation induced apoptosis (TUNEL assay) in the spleen (from the 

experiment shown in figure 5D) of PKB! wild type (PKB!+/+, left column) and 

knock-out (PKB!-/-, right column) mice 8 h post-irradiation. The graph presents 

quantitation of the TUNEL assay with the ImageAccess software. Apoptotic cells 

were counted in three areas per slide at 20x magnification and expressed relative 

to the analyzed surface area. Data are represented as means ± SD of the 

triplicate determinants. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

Supplemental Experimental Procedures 

siRNA-Mediated DNA-PK and PKB Gene Silencing in Mammalian Cells 

HUVEC or HeLa cells plated at consistent confluence were transfected using 

Oligofectamine (Invitrogen) with siRNAs targeting DNA-PKcs (Feng et al., 2004a), 

PKB [sense: r(GGA CCC CAA GCA GAG GCU U)dTdT, synthesized by Qiagen], 

or a 21-nucleotide irrelevant RNA duplex (Qiagen) as a control. Cells were 

analyzed 48 or 72 hrs post-transfection. 

PKB Immunoprecipitation and In Vitro PKB Kinase Assay  

PKB immunoprecipitation and in vitro PKB kinase assay were as described 

previously, using monoclonal A4D6 [described in (Maira et al., 2001)] or 

polyclonal Ab10 anti-PKB antibodies, and the specific peptide RPRAATF 

(R7Ftide) as PKB substrate (Hill and Hemmings, 2002). 

Immunofluorescence Microscopy  

Immunofluorescence microscopy was carried out essentially as described 

previously (Hergovich et al., 2007). In brief, cells were fixed in 3% 

paraformaldehyde for 10 min at 37°C before being permeabilized using 0.2% 

Triton X-100 in PBS for 2 min at room temperature and incubated with 

appropriate antibodies. Confocal images were acquired with a laser scanning 

microscope (Olympus FV500) with the Fluoview 1000V.1 application software, 

and processed and quantitated using the Imaris program (Bitplane AG, Zurich, 

Switzerland) and Photoshop 6.0 (Adobe System Inc). 

 

 



  

Cell Lines  

Cell lines were obtained from following sources: DNA-PKcs MEF from P. A. Jeggo 

(University of Sussex, Sussex, UK), ATM-/-;ATRflox/- (Cre was expressed to 

delete the ATR allele) MEF from E. J. Brown (University of Pennsylvania, 

Philadelphia, USA), PDK1-/- ES from D. R. Alessi (MRC, Dundee, UK) and  

rictor-/- MEF from M. A. Magnuson (Vanderbilt University School of Medicine, 

Nashville, Tennessee, USA. 

Generation of Stable MEF Cell Lines by Retroviral Infection 

To produce the retroviruses, BOSC retrovirus packaging cells were transiently 

transfected with the retroviral pBABEpuro empty vector or pBABEpuro HA-PKB! 

construct by the calcium phosphate method. 48 hours after transfection, viral 

supernatants were harvested, filtered through a 0.45 µm membrane and applied 

to MEFs in 10 cm dishes with 5 µg/ml polybrene (Sigma). A second infection of 

MEFs was performed after 8-12 hours. 24 hours after retroviral infection, cells 

were selected with 3-5 µg/ml puromycin (Sigma) for 6-8 days and resistant clones 

were propagated. 

Isolation and Culture of Primary Prostate Epithelial Cells from DNA-PKcs 

Mice 

Dissected prostates were cut into small pieces and digested with 0.8 mg/mL 

collagenase (GIBCO) in DMEM/10%FCS at 37°C for 90min. Cells were filtered 

through a nylon mesh, washed twice in DMEM/10%FCS, resuspended, counted 

and plated. Cells were passaged three times, before plating for experiments at 

standard numbers. 



  

Real-Time PCR Detection of p21, myc, p53, and GADPH mRNA Levels 

Following !-IR 

Primer sequences (all for mouse proteins) were: p21 fw 5’-

GCCTTAGCCCTCACTCTGTG, rv 5’-AGGGCCCTACCGTCCTACT; myc fw 5’-

GCCCAGTGAGGATATCTGGA, rv 5’-ATCGCAGATGAAGCTCTGGT; p53 fw 5’-

AGAGACCGCCGTACAGAAGA, rv 5’-CTGTAGCATGGGCATCCTTT. ABI Prism 

7000 detection system was used in conjunction with the Primer 3 Software 

program, the SyBr Green PCR Master Mix, and the ABI Prism 7000 SDS 

Software (provided with the ABI Prism 7000). 

Statistics, Bioinformatics, and Quantitation of Western Blots 

GO term enrichment analysis was performed with the GoStat program 

(Beissbarth and Speed, 2004). MetaCore from GeneGo Inc. was used to 

formulate transcriptional modules of significantly changed genes. Western blots 

were quantified using ImageQuant software (Molecular Dynamics). 

Quantitation of DNA Damage-Induced Apoptosis in Tissues 

Apoptosis was measured by TUNEL staining (TUNEL assay kit, Invitrogen) in 

paraffin embedded organs as described previously (Yang et al., 2005). 

Vectastain ABC kit (Vector Laboratories) for color development was used as 

described by the manufacturer. For quantitation of apoptosis, the numbers of 

TUNEL-positive cells per three fields of each section were counted with the help 

of the ImageAccess software. 

 


