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Abstract 

Apoptosis is a form of programmed cell death that plays a central role in development 

and cellular homeostasis in higher eukaryotes. Knowledge about apoptotic regulation is 

particularly important for medical research, since apoptotic misregulation is implicated in 

many human diseases, such as Alzheimer’s and Huntington’s disease, immunodeficiency 

and cancer. Recent studies have established yeast as model to study the mechanisms of 

apoptotic regulation. Changes in chromatin configuration are implicated in apoptotic 

regulation both in yeast and in higher eukaryotes. One mechanism that alters chromatin 

configuration is the covalent modification of histones, which associate with DNA to form 

the nucleosome, the fundamental unit of chromatin. In my thesis work, I have identified 

and characterized distinct interrelated histone modifications on histone H2B and histone 

H3 as regulators of apoptosis in yeast (Chapter 2 and 3). Histone H2B ubiquitination at 

lysine K123 by the E3 ligase BRE1 is required in promoting methylation of histone H3 at 

lysine K4 and K79. These methylations are brought about by the conserved 

methyltransferases Set1p and Dot1p, respectively. We found that disruption of the E3 

ligase BRE1 or the methyltransferase SET1, which causes a lack of histone H2B K123 

ubiquitination and histone H3 K4 methylation, respectively, causes metacaspase Yca1p-

dependent apoptosis (Chapter 2 and 3). In contrast, we found that disruption of DOT1, 

which causes a lack of histone H3 K79 methylation confers apoptosis resistance (Chapter 

3). Moreover, we found that Dot1p is required for Yca1p-dependent cell death of ∆set1 

cells (Chapter 3).  

How does disruption of DOT1 confer apoptosis resistance? Yeast cells that fail to 

methylate histone H3 K79 due to DOT1 disruption exhibit defects in the DNA damage 

response. Particularly, Dot1p mediated histone H3 K79 methylation is required for 

Rad9p-dependent checkpoint activation after DNA damage. In higher eukaryotes, the 

evolutionarily conserved DNA-damage response is a signaling cascade that senses DNA 
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damage and activates cellular responses including apoptosis. Strikingly, we found that 

Rad9p is required for cell death of ∆set1 similar to Dot1p (Chapter 5), suggesting that 

Dot1p mediates apoptosis through its function in the DNA-damage response. Thus, we 

suggest that apoptosis in budding yeast is linked to the DNA damage response similar to 

apoptosis in higher eukaryotes.  

Together, these studies highlight the requirement of Dot1p-mediated histone H3 

K79 methylation for an Yca1p-dependent cell death scenario and points to a novel role of 

the conserved histone H2B/H3 crosstalk in apoptosis regulation. Moreover, our results 

imply a requirement of the DNA damage response for apoptosis induction in budding 

yeast.  

Another objective of this thesis was the characterization of the functional role of 

the HtrA1-like serine protease Nma111p in yeast apoptosis (Chapter 4). Nma111p 

functions as a nuclear serine protease that is necessary for apoptosis under cellular stress 

conditions. We have examined the role of nuclear protein import in the function of 

Nma111p in apoptosis. Nma111p contains two small clusters of basic residues toward its 

amino terminus, both of which are necessary for efficient translocation into the nucleus. 

Nma111p does not shuttle between the nucleus and cytoplasm during either normal 

growth conditions or under environmental stresses that induce apoptosis. The amino-

terminal half of Nma111p is sufficient to provide the apoptosis-inducing activity of the 

protein, and both the NLS sequences and catalytic serine 235 are necessary for this 

function. Together, we provide compelling evidence that intranuclear Nma111p activity 

is necessary for apoptosis in yeast. 
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1.1 Apoptosis 

The term apoptosis comes from Greek αποπτοσισ, whose prefix “apo” (απο) can be 

taken as separation. The suffix ptosis (πτοσισ), translating as “falling off”, has been 

generally known as the falling off of leaves from trees and refers to the morphological 

feature of the formation of apoptotic bodies (Figure 1.1). Apoptosis plays a 

complementary but opposite role to mitosis in the regulation of animal cell populations 

(Kerr et al., 1972). It is initially defined by its morphological and biochemical 

characteristics such as exposure of phosphatidylserine on the cell surface, cell shrinkage, 

apoptotic body formation, production of reactive oxygen species (ROS), chromatin 

condensation and nuclear fragmentation (Kerr et al., 1972).  Apoptosis is essential in 

normal development and homeostasis and acts as a defense mechanism in response to 

cellular abnormalities in multicellular organisms (reviewed in (Fadeel and Orrenius, 

2005)). Apoptosis occurs during normal embroyological development and during normal 

tissue turnover (Fadeel and Orrenius, 2005). Moreover, dysregulation of this cell death 

process has been postulated to play a role in the pathogenesis of a variety of human 

diseases (reviewed in (Fadeel and Orrenius, 2005)). Diminished apoptosis has been 

linked to both the development of tumors and autoimmune syndromes, whereas excessive 

apoptosis has been implicated in neurodegenerative diseases. These facets have made 

apoptotic pathways the objective of intense interest and as result, enhanced our 

understanding of the complex networks of apoptotic signal transduction pathways.  
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Figure 1.1: Apoptosis of a pig kidney cell following exposure to etoposide, a drug used in 
cancer chemotherapy. 
The dramatic cytoplasmic blebbing results in the disassembly of the cell into membrane-enclosed 
vesicles called apoptotic bodies. Adapted from (Pollard and Earnshaw, Cell Biology 2E) 

 

Apoptosis typically involves the activation of a unique class of cysteine proteases 

known as caspases (Riedl and Shi, 2004). These proteases bring about apoptosis by 

cleaving key cellular substrates after specific aspartate residues. Caspases are synthesized 

as inactive zymogens and two classes of caspases are involved in cell death, i.e. the 

initiator caspases and the effector caspases (Riedl and Shi, 2004).  

 Initiator caspases can be activated by two alternative pathways (Figure 1.2): one is 

mediated by death receptors on the cell surface — referred to as the extrinsic pathway; 

the other is mediated by mitochondria — referred to as the instrinsic pathway.  

In the extrinsic pathway, the activation of cell surface receptors stimulates the 

assembly of the death-inducing signaling complex (DISC), within which procaspase-8 is 

activated (Peter and Krammer). In the intrinsic pathway, the translocation of proapoptotic 

Bcl-2 proteins, such as Bid to the mitochondria triggers the release of cytochrome c, 
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which stimulates the apoptotic protease activating factor 1 (Apaf-1)-dependent activation 

of procaspase-9 in the apoptosome (Figure 1.2) (Peter and Krammer). Activated initiator 

caspases in turn are capable of activating effector caspases, the ultimate executors of cell 

death.  

 

 
Figure 1.2: The two main apoptotic signaling pathways  
Apoptosis can be initiated by two alternative pathways: either through death receptors on the cell 
surface (extrinsic pathway) or through mitochondria (intrinsic pathway). In both pathways, 
induction of apoptosis leads to activation of an initiator caspase: caspase-8 and possibly caspase-
10 for the extrinsic pathway; and caspase-9, which is activated at the apoptosome, for the intrinsic 
pathway. The initiator caspases then activate executioner caspases. Active executioner caspases 
cleave the death substrates, which eventually results in apoptosis. Adapted from (Igney and 
Krammer, 2002) 
 

1.1.1 Key regulator of apoptosis 

Once activated, both initiator caspases and effector caspases can be modulated by a set of 

proteins, known as inhibitor-of-apoptosis proteins (IAPs). IAPs were initially identified 

in baculoviruses and found to prevent apoptosis of the host cell (Crook et al., 1993). IAP 

homologues have been identified in mammalian cells, worms, flies and yeast (Deveraux 
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and Reed, 1999) and they are characterized by the presence of one to three copies of the 

baculovirus IAP repeat (BIR) domains (Figure 1.3). BIR domains typically comprise 70 

to 80 residues and hold a zinc ion that is coordinated by one conserved histidine and three 

cysteine residues. Via the BIR domain, IAPs are able to bind caspases, thereby 

preventing the interaction of caspases with their substrates (Riedl and Shi, 2004). 

Additionally, some IAPs contain a second zinc-binding motif known as RING domain 

(Figure 1.3), which exhibits E3-ubiquitin-ligase activity. By such a RING domain, IAPs 

recruit and direct E2-ubiquitin-conjugating enzymes to specific substrates, such as 

caspases (Hu and Yang, 2003; Suzuki et al., 2001b; Wilson et al., 2002), to catalyze the 

transfer of ubiquitin to the substrate and its subsequent degradation by the 26S 

proteasome. Furthermore, IAPs can trigger their self-degradation (Vaux and Silke, 2005), 

thereby leading to enhanced caspase activity. 

IAPs are distinguished into type-I or type-II BIR-domain-containing proteins 

(BIRPs) depending on the structure of the BIR-domains and the presence or absence of a 

RING domain (Figure 1.3). Type-II BIRPs, such as the C. elegans proteins Bir1 and Bir2, 

yeast Bir1p or human survivin are known to play roles in chromosome segregation and 

cytokinesis (Fraser et al., 1999). Moreover, the type-II BIRPs Bir1p (Li et al., 2000; Uren 

et al., 1999; Walter et al., 2006; Yoon and Carbon, 1999), survivin (Ambrosini et al., 

1997; Lens et al., 2003; Skoufias et al., 2000; Temme et al., 2003), Drosophila Deterin 

and Bruce and the murine TIAP are able to inhibit apoptosis, unlike C.elegans Bir1 and 

Bir2, by a yet unknown mechanism (Bartke et al., 2004; Hao et al., 2004; Jones et al., 

2000; Vernooy et al., 2002). 
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Figure 1.3: Schematic representation of BIR-containing proteins.  
BIR proteins are characterized by the presence of multiple domains, such as BIR, RING, CARD, 
and UBC domains. Their approximate positions are represented with the total amino acid length 
shown to the right of each protein. RING domains confer E3 ubiquitin protein ligase activity; UBC 
refers to the ubiquitin-conjugating domain, which has E2 activity. The presence of both these 
domains in components of the apoptotic machinery suggests a link between apoptosis and protein 
degradation. Adapted from (Verhagen et al., 2001). Abbreviations: BIR: baculoviral IAP repeat; 
RING: RING (really interesting new gene) zinc-finger; CARD: caspase recruitment domain; UBC: 
Ubiquitin-conjugating enzymes 

 

IAP-mediated inhibition of caspase activity, however, is not sufficient to regulate 

apoptosis. Hence, not only the activity but also the activation of caspases is tightly 

regulated. The latter involves the release of pro-apoptotic factors like cytochrome c from 

the mitochondrial inter-membrane space (Earnshaw, 1999), which facilitates the 

formation of the apoptosome. Major regulators of mitochondrial integrity and 

mitochondrion-initiated caspase activation are proteins of the Bcl-2 family (Cory and 

Adams, 2002; Danial and Korsmeyer, 2004). BCL-2 (B-cell lymphoma 2) was initially 

identified as a gene whose product causes resistance to apoptosis in lymphocytes 

(McDonnell et al., 1989; Vaux et al., 1988). Subsequent studies, however, identified a 

number of both pro- as well as anti-apoptotic Bcl-2-related proteins. The Bcl-2-family is 

defined by homology shared within four conserved regions in Bcl-2, termed BCL-2 
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homology (BH) domains, and is grouped into three subfamilies depending on their 

apoptotic properties, i.e. the pro-apoptotic Bax- and BH3 only families as well as the pro-

survival Bcl-2 family (Figure 1.4).  

 

 
Figure 1.4: Three subfamilies of Bcl2-related proteins. 
Bcl-2-related proteins are characterized by the presence of multiple copies of a Bcl-2 homology 
(BH) domain. Typically Bcl-2 family members additionally have a carboxy-terminal 
transmembrane domain (TM), with the exception of A1 and members of the BH3-only family 
(Bad, Bid, Noxa, Bmf and Puma).  
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1.2 Yeast Apoptosis 

Apoptosis is a highly regulated cellular death program that is crucial for the development 

and maintenance of multicellular organisms. In the past few years, however, it became 

evident that apoptosis might occur not only in multicellular, but also in unicellular 

organisms, such as the yeast S.cerevisiae (reviewed in (Frohlich et al., 2007)). S. 

cerevisiae shows typical apoptotic hallmarks when treated with various agents including 

hydrogen peroxide and acetic acid (Ludovico et al., 2001; Madeo et al., 1999a; 

Narasimhan et al., 2001; Severin and Hyman, 2002). Other than the morphological 

characteristics, a growing list of homologues to apoptotic regulators in metazoans has 

been identified (Figure 1.5) (Buttner et al., 2007; Fahrenkrog et al., 2004; Madeo et al., 

2002; Walter et al., 2006; Wissing et al., 2004). In addition, yeast programmed cell death 

has been linked to cellular events such as mitochondrial fragmentation (Fannjiang et al., 

2004), cytochrome c release (Ludovico et al., 2002), ageing (Fabrizio et al., 2004; Herker 

et al., 2004) and phosphorylation of histone H2B (Ahn et al., 2005) (Figure 1.5). Taken 

together, these findings support the general view that a basic machinery of apoptosis is 

present and functional in yeast.  

 

 
Figure 1.5: Regulation of the apoptotic machinery in yeast.  
The key players regulating the basic molecular machinery of apoptosis such as the caspase-like 
protein Yca1p, the inhibitor-of-apoptosis protein Bir1p, the Omi orthologue Nma111p and the 
endonucleases EndoG/Nuc1p and Aifp are conserved from yeast to higher eukaryotes (see chapter 
1.2.2). Cellular processes such as mitochondrial fragmentation and cytochrome c release from the 
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mitochondria are also conserved. Moreover, key regulators of mammalian apoptosis such as Bcl-
2-like proteins can interfere with the apoptotic machinery in yeast (see chapter 1.2.1). Question 
marks indicate interrelations, which have been hypothesised but yet not clearly demonstrated. 
Components of the putative PTP are highlighted in blue color. Proteins and processes that protect 
against apoptosis are emphasized in red. PTP: permeability transition pore, MOMP: outer 
mitochondrial membrane permeabilization. 

 

1.2.1 Heterologous expression of apoptosis regulators 

Yeast as unicellular organisms was long supposed to lack an apoptosis-like death 

program. Therefore it had been used as “clean room” for investigating the interaction of 

mammalian proteins involved in apoptosis, such as proteins from the Bcl-2 family. 

Heterologous expression of Bax, a pro-apoptotic Bcl-2 family member, results in a lethal 

phenotype in yeast, which can be antagonized by co-expression of the anti-apoptotic 

members of the Bcl-2 family, including Bcl-2 and Bcl-xL (Jurgensmeier et al., 1997; 

Poliakova et al., 2002; Sato et al., 1994) and such studies helped to identify the domains 

of Bcl-2 that are relevant for suppression of apoptosis (Hanada et al., 1995). Moreover, 

Xu and colleagues identified BI-1 (Bax inhibitor 1), an intracellular multi-membrane-

spanning protein in S.cerevisiae, which is conserved in mammals, plants, and fungi, as 

Bax antagonist (Xu and Reed, 1998), indicating that yeast harbours an intrinsic response 

machinery to Bcl-2-like proteins. This is further supported by the finding that yeast cells 

expressing Bax show typical morphological changes that characterize apoptosis (Ligr et 

al., 1998), and that Bax induces the release of cytochrome c from mitochondria (Manon 

et al., 1997), a hallmark of Bax action in mammalian cells. In contrast, Kissova et al. 

suggested that yeast cells expressing Bax show characteristics of autophagy rather than 

apoptosis (Kissova et al., 2006). However, the expression of human cellular prion protein 

(PrP) can prevent Bax-mediated apoptosis, both in human and in yeast cells (Bounhar et 

al., 2006; Li and Harris, 2005) by inhibiting the first step of Bax activation, namely a 

conformational change of Bax (Bounhar et al., 2001; Roucou et al., 2005; Roucou et al., 

2003), similarly to other known Bax inhibitors including Bcl-2. Whether yeast prion 

protein has a similar protective function remains to be investigated. 

In addition, heterologous expression of anti-apoptotic members of the Bcl-2 family 

in yeast confers a cytoprotective effect in the absence of Bax (Trancikova et al., 2004) 

and causes increased long-term survival (Longo et al., 1997) and enhanced resistance to 
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H2O2 (Chen et al., 2003). Together these findings suggest that members of the Bcl-2-

familiy can interfere with a highly conserved cell death program in yeast and higher 

eukaryotes.  

 

1.2.2 Regulators of Yeast apoptosis 

1.2.2.1 Reactive oxygen species and anti-oxidants regulate apoptosis 

During aerobic growth and in response to environmental stresses such as temperature or 

diauxic shift, lack of nutrients, and UV damage, cells produce ROS. Because these 

molecules are toxic to the cell, an elaborate system with a variety of enzymes has evolved 

that is responsible for cleaning the cell of ROS, and strict regulation of this system is 

essential for normal growth (reviewed in (Temple et al., 2005)). In this context, ROS 

have also been determined to be the main mediator of apoptosis (Madeo et al., 1999a). 

Chronologically aged yeast cells die with typical hallmarks of apoptosis, in particular 

enhanced levels of ROS, whereas a reduction of intracellular ROS has been shown to 

extend the replicative as well as the chronological lifespan (Piper, 2006). The cytosolic 

and mitochondrial superoxide dismutases, Sod1p and Sod2p, respectively, are required 

for reduction of ROS in the cells and for long-term survival of yeast (Longo et al., 1996) 

and consistently overexpression of either the two proteins increases the lifespan (Fabrizio 

et al., 2004) underlining the protective role of the antioxidant system for longevity. 

Similarly, overexpression of the non-essential yeast catalase CTT1, which reduces 

intracellular H2O2 levels, has been shown to protect cells against apoptosis induction by 

acetic acid (Guaragnella et al., 2008).  

An important factor with antioxidant and therefore anti-apoptotic activity is the 

tripeptide glutathione (Drakulic et al., 2005; Madeo et al., 1999a). The depletion of 

glutathione in yeast cells leads to massive DNA fragmentation and enhanced sensitivity 

towards H2O2 (Madeo et al., 1999a). In accordance with this observation, levels of 

cytoplasmic O-acetylhomoserine sulfhydrolase, a protein central for glutathione synthesis 

that is encoded by MET17, are enhanced in the cdc48S565G mutant (Braun et al., 2006), 

indicating that intracellular antioxidant levels are important for regulation of ROS and 

that low levels of ROS prevent the induction of programmed cell death.  
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Recently, a direct relation between actin dynamics ROS production and apoptosis 

has been demonstrated (reviewed in (Gourlay and Ayscough, 2005)). Actin-stabilizing 

drugs or mutations have been shown to lead to an increase of ROS and decreased cell 

viability, whereas destabilization of the actin cytoskeleton by deletion of SCP1 encoding 

for an actin-bundling protein causes a decrease in ROS and an increase in lifespan 

(Gourlay et al., 2004). These observations indicate the importance of maintaining the 

dynamic stage of the actin cytoskeleton for the regulation of ROS levels and the 

prevention of programmed cell death. 

The response to environmental stresses leads to an increased amount of ROS in 

yeast cells. Several proteins have been shown to protect against programmed cell death 

by regulating the stress response. SVF1 is a gene that was identified in a yeast genetic 

screen in search for factors that function in a survival pathway analogous to that of 

human Bcl-xL (Vander Heiden et al., 2002). Little evident similarity of SVF1 to known 

mammalian genes is observed, but, however, it can partly be replaced by human anti-

apoptotic Bcl-xL (Brace et al., 2005; Vander Heiden et al., 2002). Moreover, Svf1p 

facilitates diauxic shift from glycolytic to oxidative metabolism in yeast, which leads to 

enhanced levels of several antioxidant enzymes, including Sod1p, Sod2p and glutathione 

synthase (Maris et al., 2001). Svf1p also protects cells against oxidative stress caused by 

lower growth temperature, which in turn leads to the induction of antioxidant genes such 

as SOD1, GSH1 and CTT1 in the cell (Brace et al., 2005; Zhang et al., 2003), whereas 

svf1 deletion mutants are more sensitive towards oxidative stress caused by low growth 

temperature, exposure to chemical inducers or ROS precursors (Brace et al., 2005). 

Together these observations indicate that Svf1p's anti-apoptotic function is most critical 

during rapid changes in environmental conditions when protection against oxidative 

stress becomes necessary. 

In conclusion, these results emphasize the importance of an elaborate protective 

system against ROS consisting of a variety of antioxidant enzymes such as superoxide 

dismutases, catalases and enzymes for glutathione synthesis, that are responsible for the 

precise regulation of intracellular ROS levels to prevent cells from undergoing apoptosis. 

Impairment of any of these anti-apoptotic components as well as alterations in stress 
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response and metabolic pathways lead to an increase of intracellular ROS and subsequent 

cell death. 

 

1.2.2.2 Metacaspase Yca1p 

Advanced pattern based sequence homology search led to the identification of 

metacaspase YCA1 in S. cerevisiae . Yca1p has a central role in yeast apoptosis: under 

oxygen stress and during ageing, disruption of YCA1 decreases cell death and the 

formation of an apoptotic phenotype (Madeo et al., 2002). Moreover, several publications 

have shown the dependency of apoptosis inducing processes on Yca1p. For example 

Mazzoni et al. showed that increased mRNA stability upon mutations in lsm4, a protein 

involved in mRNA decapping, led to apoptosis (Mazzoni et al., 2003). The same group 

showed that apoptosis induced by stabilized mRNA depends on Yca1p (Mazzoni et al., 

2005). Deletion of YCA1 in an lsm4-mutated background prevented mitochondrial 

fragmentation and rapid cell death during chronological ageing. In addition ROS 

accumulation and DNA breakage is diminished and resistance towards H2O2 and acetic 

acid is increased (Mazzoni et al., 2005). Another interesting cellular process connected to 

YCA1 dependent apoptosis was described by Bettiga et al. (Bettiga et al., 2004). Loss of 

UBP10, which encodes a deubiquitinating enzyme that cleaves ubiquitin from histone 

H2B, led to a subpopulation of cells exhibiting typical apoptotic markers. This was 

suppressed upon YCA1 deletion, whereas its overexpression strongly increased apoptosis 

in an ubp10 background (Bettiga et al., 2004).  

 

1.2.2.3 Bir1p  

S. cerevisisae BIR1 is a gene encoding a ~108 kDa protein and based on sequence 

homology it appears to be the only member of the inhibitor-of-apoptosis protein family in 

this organism (Uren et al., 1998). Bir1p bears two type-II BIR domains at its N-terminus, 

while lacking a RING domain (Figs. 1 and 3). Bir1p localizes to the nucleus of cells due 

to a putative nuclear localization signal (NLS) and its C-terminal ~80 amino acids are 

sufficient for association with the anaphase spindle (Uren et al., 1999; Widlund et al., 

2006). Until recently, the role of Bir1p in cell division rather than in apoptosis was 
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examined intensively (Bouck and Bloom, 2005; Cheeseman et al., 2002; Gillis et al., 

2005; Li et al., 2000; Sandall et al., 2006; Silke and Vaux, 2001; Thomas and Kaplan, 

2007; Uren et al., 1999; Widlund et al., 2006; Yoon and Carbon, 1999). By two-hybrid 

studies it was shown that Bir1p interacts with components of the kinetochores, i.e. 

Ndc10p, which is a subunit of the inner kinetochore subcomplex CBF3 (Yoon and 

Carbon, 1999). Bir1p is essential for spore formation and germination, but not for 

vegetative growth and deletion of the BIR1 gene leads to a chromosome mis-segregation 

phenotype as shown by a colony color-sectoring assay (Yoon and Carbon, 1999). 

Moreover, a tandem affinity purification (TAP) approach identified an in vivo interaction 

of Bir1p with the homologues of human Aurora B kinase and inner centromere protein 

(INCENP), Ipl1p and Sli15p, respectively (Cheeseman et al., 2002), pinpointing to 

Bir1p's roles in chromosome bi-orientation, spindle stabilization, and cytokinesis (Bouck 

and Bloom, 2005; Gillis et al., 2005; Sandall et al., 2006; Thomas and Kaplan, 2007).  

In addition to the well-known role of Bir1p as a chromosomal passenger protein, it 

recently became evident that Bir1p is involved in apoptosis regulation in S.cerevisiae as 

well (Walter et al., 2006). Bir1p is cleaved by the pro-apoptotic serine protease 

Nma111p, when over-expressed from an episomal plasmid, and both proteins are directly 

interacting in vitro (Walter et al., 2006). The molecular mechanism by which Bir1p 

exhibits its anti-apoptotic function, however, has remained elusive, since Bir1p does not 

bind the yeast caspase Yca1p (Walter et al., 2006). Nevertheless, cells lacking BIR1 show 

typical hallmarks of apoptosis, such as chromatin condensation and fragmentation, DNA 

single strand breaks and accumulation of ROS, whereas over-expression of Bir1p protects 

cells against apoptosis induced by H2O2 treatment or during chronological ageing. 

Simultaneous over-expression of Nma111p reverses the protective effect of increased 

Bir1p levels, underlining the interaction between the two proteins in vivo (Walter et al., 

2006).  

Interestingly, Bir1p has recently been shown to be SUMOylated (Montpetit et al., 

2006; Wohlschlegel et al., 2004; Zhou et al., 2004), which in turn is dependent on its 

localization to the anaphase spindle and SUMO modification of Ndc10p (Montpetit et al., 

2006). Furthermore, SUMO modification of Bir1p is lost in a bir1 variant lacking the 

BIR repeats and upon spindle checkpoint activation by nocodazole, implying a role of 
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Bir1p SUMOylation in apoptosis and/or spindle checkpoint regulation, respectively. 

Moreover, Bir1p levels have been shown to fluctuate during the cell cycle and Bir1p gets 

phosphorylated in a cell cycle-dependent manner (Widlund et al., 2006). Both, regulation 

of Bir1p levels and its diverse posttranslational modifications might play a role in 

coordinating the different functions of the protein including its anti-apoptotic activity. 

 

1.2.2.4 Nma111p  

Another key player of yeast apoptosis is the HtrA2/Omi-like protein Nma111p (nuclear 

mediator of apoptosis). Under cellular stress conditions (e.g. elevated temperature or 

H2O2 treatment) the serine protease aggregates in the nucleus and yeast cells lacking 

NMA111 survive better under temperature stress conditions and show no apoptotic 

markers after treatment with H2O2 (Fahrenkrog et al., 2004). Unlike its human 

homologue, which is located in mitochondria, Nma111p has been found only in the 

nucleus and it proapoptotic activity depends on its nuclear localization and on its serine 

protease activity (Belanger et al., 2009; Fahrenkrog et al., 2004). Its human homologue 

HtrA2/Omi antagonizes XIAP, an X-linked IAP in human cells, which in turn inhibits 

downstream caspases. Similarly, Bir1p is antagonized by Nma111p. Bir1p is cleaved by 

Nma111p, when over-expressed from an episomal plasmid, and both proteins are directly 

interacting in vitro (Walter et al., 2006).  

 

1.2.2.5 Cytochrome c 

Release of cytochrome c, another hallmark of human apoptosis, also occurs in S. 

cerevisiae. During acetic acid induced apoptosis release of cytochrome c from the 

mitochondria was observed (Ludovico et al., 2002). As in mammals, this release serves as 

an essential apoptotic signal, as respiratory deficient strains and cytochrome c deleted 

strains show diminished apoptosis upon acetic acid treatment (Ludovico et al., 2002).  

 

1.2.2.6 Aif1p 

The existence and apoptotic function of an AIF homologue in yeast is another proof for 

the conservation of elements of the apoptotic machinery from yeast to man (reviewed in 
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(Modjtahedi et al., 2006)). The mode of action of S. cerevisiae Aif1p closely resembles 

that of mammalian AIF. Upon apoptosis induction by H2O2 or acetate, as well as in 

chronologically aged cultures, Aif1p translocates from the mitochondria to the nucleus 

(Wissing et al., 2004). Consistently, in an AIF1 knockout strain H2O2 and acetate induced 

apoptosis is abolished and age-induced apoptosis is delayed (Wissing et al., 2004). 

Interestingly the apoptotic function of Aif1p seems to be in part Yca1p-dependent, as cell 

survival during overexpression of Aif1p together with mild H2O2 stress was elevated from 

10 to 70% when YCA1 was deleted (Wissing et al., 2004).  

 

1.2.2.7 EndoG/Nuc1p 

EndoG is another apoptotic mammalian mitochondrial protein for which a yeast 

orthologue has been identified. EndoG is a mitochondrial nuclease first identified in rat 

(Li et al., 2001) and C. elegans (Parrish et al., 2001). During apoptosis it is released from 

mitochondria and transferred to the nucleus where it causes DNA fragmentation (Li et al., 

2001). Buttener et al extended these results to yeast by demonstrating that the yeast 

EndoG (Nuc1p) can efficiently trigger apoptotic cell death when excluded from 

mitochondria (Buttner et al., 2007). Nuc1p induces apoptosis in yeast independently of 

metacaspase Yca1p or of apoptosis inducing factor Aifp. Instead, the permeability 

transition pore, karyopherin Kap123p, and histone H2B interact with Nuc1p and are 

required for cell death upon Nuc1p overexpression (Buttner et al., 2007), suggesting a 

pathway in which mitochondrial pore opening, nuclear import, and chromatin association 

are successively involved in EndoG-mediated death.  

 

1.2.2.8 Ste20p  

Phosphorylation of histone H2B at serine 14 (H2BS14ph), catalyzed by the Mst1 kinase, 

has been linked to chromatin compaction during mammalian apoptosis (Cheung et al., 

2003). Ahn and colleagues extended these results to yeast by demonstrating that Ste20 

kinase, a yeast orthologue of Mst1, directly phosphorylates H2B at serine 10 (H2BS10ph) 

in a hydrogen peroxide-induced cell death pathway (Ahn et al., 2005). Unlike Mst1, 

Ste20 translocates into the nucleus in a caspase-independent fashion to mediate 
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phosphorylation of H2B (Ahn et al., 2005). Ahn et al. recently described an undirectional 

crosstalk relationship between two residues of the histone H2B tail, namely lysine 11 

(K11) acetylation and serine (S10) phosphorylation (Ahn et al., 2006). They propose that, 

after addition of H2O2 histone deacetylase, Hos3p catalyses deacetylation of H2BK11, 

which mediates phosphorylation of H2BS10 catalysed by Ste20 kinase.   

 

1.2.2.9  Fis1p  

Fragmentation of mitochondria is an early event of apoptosis in nematode and 

mammalian cells (Desagher and Martinou, 2000; Frank et al., 2001; Jagasia et al., 2005; 

Mancini et al., 1997). Accordingly, Fannjiang and colleagues recently showed a link 

between the mitochondrial fission machinery and apoptosis in yeast (Fannjiang et al., 

2004). Fis1p is a highly conserved protein, which plays a role in fission of mitochondria 

in yeast and mammals, i.e. it correctly distributes proteins required for fission within the 

outer mitochondrial membrane, namely Dnm1p and Mdv1p (Bleazard et al., 1999; 

Mozdy et al., 2000; Okamoto and Shaw, 2005; Otsuga et al., 1998). However, Fis1p has 

also been shown to inhibit apoptosis in S. cerevisiae as its deletion drastically enhances 

cell death in H2O2 treated cells in an Yca1p-dependent manner (Fannjiang et al., 2004). 

The mechanism by which Fis1p protects against apoptosis in S. cerevisiae remains 

unclear. However, Fis1p, like the mammalian Bcl-2 and Bcl-xL proteins (Gonzalez-

Garcia et al., 1994; Kaufmann et al., 2003; Lithgow et al., 1994; Mozdy et al., 2000; 

Nguyen et al., 1993), is anchored to the cytosolic side of the outer mitochondrial 

membrane and shares some biophysical properties with these anti-apoptotic proteins 

(Fannjiang et al., 2004). Moreover, the anti-apoptotic function of Fis1p can be 

functionally replaced by either Bcl-2 or Bcl-xL, implying that Fis1p acts in a Bcl-2-like 

manner (Fannjiang et al., 2004). 

 

1.2.2.10 Porin1  

In the mitochondrial apoptotic pathway of mammals and yeast, outer mitochondrial 

membrane permeabilization (MOMP) and the release of pro-apoptotic proteins such as 

cytochrome c from the inter-membrane space are crucial for programmed cell death. In 
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mammals, opening of a mitochondrial pore called permeability transition pore (PTP) has 

been considered one of the key mechanisms underlying MOMP (Kinnally and 

Antonsson, 2007). Yet, the nature of the pore that releases these proteins is still unknown 

and the identity of the proteins involved in its formation is controversial (Kinnally and 

Antonsson, 2007; Lawen, 2007; Ly et al., 2003; Zoratti et al., 2005). However, yeast 

possesses homologues of putative core PTP proteins like the yeast VDACs 1 and 2 

(POR1 and 2), the yeast mitochondrial cyclophilin (CPR3) and three ADP/ATP carrier 

proteins (AAC1, AAC2 and AAC3) that are believed to function in a similar manner, 

forming a yeast PTP (Manon et al., 1998). Pereira and colleagues analyzed the role of 

these proteins in apoptosis and suggested that Por1p protects against apoptosis (Pereira et 

al., 2007), since a por1 deletion strain shows enhanced apoptosis when treated with 

various death stimuli including acetic acid, H2O2, or diamide, another pro-oxidant 

compound. In contrast, deletion of CPR3 has no effect on cell death induced by any of 

these stimuli. However, Liang and colleagues showed recently that deletion of CPR3 

confers resistance to copper-induced apoptosis (Liang and Zhou, 2007). Furthermore the 

loss of all three ADP/ATP carrier proteins leads to enhanced death induced by H2O2, but 

confers protection against acetic acid (Pereira et al., 2007). Therefore Cpr3p as well as 

AAC proteins play different roles during cell death depending on the death-triggering 

cellular context. Whether or not the effects observed with the yeast strains lacking Por1p, 

Cpr3p and the AAC proteins are due to their association with the yeast PTP remains to be 

clarified. As the mammalian homologue of Por1p, VDAC, is also localized to the plasma 

membrane, where it can regulate apoptosis, Por1p might have functions in addition to 

those in the mitochondrial outer membrane. 

 

1.2.2.11 Ef2p  

An important level on which regulation of apoptosis inhibition can occur is by controlling 

translation, which became evident from studies in fission yeast. S. pombe was used as a 

model system to study apoptosis induced by HIV-1 viral protein R (Vpr) (Zelivianski et 

al., 2006). Vpr induces apoptosis in mammalian cells and is believed to contribute to 

CD4+ lymphocyte depletion, a hallmark of acquired immunodeficiency syndrome 

(AIDS) (Poon et al., 1997; Somasundaran et al., 2002). Heterologous expression of Vpr 
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in fission yeast leads to rapid cell death accompanied by some characteristics of apoptotic 

cells (Zhao et al., 1996; Zhao et al., 1998). In a genome-wide search for multicopy 

suppressors of Vpr-induced apoptosis in S.pombe, EF2 (elongation factor 2) was 

identified as anti-apoptotic Vpr suppressor (Zelivianski et al., 2006). Overproduction of 

EF2 in fission yeast as well as in human cells abolishes Vpr-induced apoptosis 

(Zelivianski et al., 2006). The anti-apoptotic property of EF2 in human cells is 

demonstrated by its ability to suppress caspase 9 and caspase 3-mediated apoptosis 

induced by Vpr (Zelivianski et al., 2006). Additionally, it reduces cytochrome c release 

induced by Vpr, staurosporine and TNFα (Zelivianski et al., 2006). Taken together these 

data suggest that EF2 acts as a highly conserved anti-apoptotic protein by a yet unknown 

molecular mechanism. However, EF2 is an evolutionarily conserved monomeric GTPase 

involved in protein synthesis and translation elongation and its activity is regulated by 

several post-translational modifications including phosphorylation and ribosylation 

(Rhoads, 1999), suggesting that EF2 may confer its anti-apoptotic effect through its 

regulatory role in protein synthesis.  

 

1.2.3 Caspase-dependent and -independent yeast apoptosis 

Saccharomyces cerevisiae can undergo cell death accompanied by diagnostic features of 

apoptosis, such as phosphatidylserine externalization, DNA fragmentation, chromatin 

condensation, cytochrome c release from mitochondria, and dissipation of the 

mitochondrial transmembrane potential. Both caspase-dependent and caspase-

independent cell death executors participate in yeast apoptosis (Figure 1.6).  
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Figure 1.6: Caspase-dependent and caspase-independent cell death. 
Exogenous and endogenous induction of yeast apoptosis leads to the activation of the basic 
molecular machinery of cell death. Both caspase-dependent and caspase-independent cell death 
scenarios exist. Mitochondrial fragmentation, disruption on the ubiquitin specific protease UBP10 
and cytochrome c release from the mitochondria are implicated in caspase dependent apoptosis, 
whereas the endonucleases EndoG/Nuc1p and Aifp as well as Ste20p mediated H2B 
phosphorylation can mediate caspase independent apoptosis. Adapted from (Madeo et al., 2009).  

 

1.2.3.1 Caspase-dependent yeast apoptosis 

Deletion of the yeast metacaspase YCA1 can protect yeast cells against multiple distinct 

forms of lethal insult. For instance, yeast cells exposed to salt (NaCl) (Wadskog et al., 

2004) or low doses of valproic acid, a short chained fatty acid with anti-tumor activity, 

undergo YCA1-dependent apoptosis (Mitsui et al., 2005).  

Exposure to toxins produced by virus-carrying killer yeast strains also leads to 

apoptosis in yeast (Reiter et al., 2005) and deletion of YCA1 in the attacked strain leads to 

reduced toxin sensitivity (Reiter et al., 2005). Similarly, heterologous expression of 

expanded polyglutamine domains, which cause protein aggregation and 

neurodegeneration in human Huntington’s disease, leads to apoptosis in yeast (Sokolov et 

al.), and this is again inhibited by YCA1 deletion (Bocharova et al., 2008).  

Recently, the involvement of ISC1, the gene encoding the inositol-

phosphosphingolipid phospholipase C, in apoptosis has been reported (Almeida et al., 

2008). Isc1p translocates to mitochondria in the post-diauxic phase and plays a role in the 

regulation of cellular redox homeostasis through modulation of iron levels. However, 
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deletion of ISC1 has been shown to shorten chronological lifespan and to enhance 

H2O2 sensitivity, which is YCA1-dependent and can be suppressed by iron chelation 

(Almeida et al., 2008).  

Moreover, yeast death triggered by defects in ubiquitination, reduced mRNA 

stability, mitochondrial fragmentation or ageing can occur at least partly in a caspase-

dependent fashion (see chapter 1.2.2.2 and 1.2.2.9)(Bettiga et al., 2004; Fannjiang et al., 

2004; Herker et al., 2004; Mazzoni et al., 2005).  

 

1.2.3.2 Caspase-independent yeast apoptosis 

Yca1p-independent apoptosis in yeast occurs during long-term development of yeast 

multicellular colonies (Vachova and Palkova, 2005) or by defective N-glycosylation in 

cells lacking Ost2p, the yeast homolog of the mammalian defender of apoptosis-1 

(DAD1) protein (Hauptmann et al., 2006). Moreover, upon defective N-glycosylation in 

the temperature-sensitive wbp1-1 mutant or after treatment with tunicamycin, yeast 

apoptosis depends on the protease activity of KEX1 (but not YCA1) (Hauptmann et al., 

2006). This recently identified apoptotic protease also plays a role in cell death induced 

by acetic acid or chronological ageing (Hauptmann and Lehle, 2008). Finally, yeast 

apoptosis triggered by Nuc1p, Aifp and Ste1p-mediated phosphorylation of histone H2B 

occur at least partly in a caspase-independent fashion (see chapter 1.2.2.6, 1.2.2.7 and 

1.2.2.8) (Ahn et al., 2005; Buttner et al., 2007; Wissing et al., 2004).  

 

1.2.4 Physiological role of yeast apoptosis 

1.2.4.1 Ageing yeast 

Ageing is considered as a physiological trigger of apoptosis in yeast (Fabrizio et al., 

2004; Herker et al., 2004; Laun et al., 2001). Two forms of ageing exist in yeast: the 

replicative life span (RLS) is defined as the number of daughter cells produced by a 

mother cell before senescence. The chronological life span (CLS) in turn is defined as the 

time a yeast cell can survive in a nondividing state (Fabrizio and Longo, 2003). Apoptotic 

cell death is present in both ageing processes (reviewed in (Rockenfeller and Madeo, 

2008)).  
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1.2.4.1.1 Replicative ageing yeast 

Accumulation of ROS, which is causally linked to yeast apoptosis, is observed in 

replicative old cells when dying (Laun et al., 2001). Consistently, additional phenotypes 

of apoptotic death such as PS exposure to the outer membrane leaflet, nuclear DNA 

fragmentation, and chromatin condensation occur in replicative old yeast mother cells 

(Laun et al., 2001), indicating that replicative old yeast cells die in an apoptotic fashion.  

The formation and accumulation of extrachromosomal rDNA circles (ERCs) is a 

major cause of yeast replicative ageing (Sinclair and Guarente, 1997). The yeast rDNA is 

a tandem array of several dozen copies of a 9.1 kb repeat, and ERCs can be formed by 

homologous recombination between adjacent rDNA repeats (Sinclair and Guarente, 

1997). At each cell division, ERCs replicate and segregate asymmetrically to the mother 

cell during mitosis (Murray and Szostak, 1983). Why their accumulation contributes to 

the ageing of the mother is unclear. However, mutations that accelerate the rate of ERC 

formation shorten replicative lifespan (Falcon and Aris, 2003), whereas those that reduce 

ERC accumulation enhance longevity (Defossez et al., 1999).  

The major genetic determinant of replicative life span in yeast is SIR2; a loss-of-

function mutation in SIR2 shortens life span while increased gene dosage extends it 

(Kaeberlein et al., 1999). Sir2p is a histone deacetylase that is required for silencing gene 

transcription at selected loci, i.e. the silent mating type cassettes HMR and HML (HM), 

telomeres, and the ribosomal DNA (rDNA) (reviewed in (Moazed, 2001a)). To date, the 

role that Sir2 plays in modulating replicative longevity in yeast has been assumed to be 

by affecting the rate of rDNA recombination and thus ERC formation (Guarente, 2000). 

Deletion of SIR2 increases rDNA recombination by 5–10-fold (Gottlieb and Esposito, 

1989), increases ERC levels (Kaeberlein et al., 1999), and reduces life span by about 50% 

(Kennedy et al., 1995).  

At the time Sir2p was first implicated in yeast longevity, little was known about the 

mechanism by which Sir2p protein was able to promote transcriptional silencing 

(Kennedy et al., 1995). Later, two groups reported that Sir2p catalyzes an NAD-

dependent histone deacetylation reaction (Imai et al., 2000; Landry et al., 2000). The 

NAD-dependent nature of Sir2p catalysis suggested a potential link between Sir2p 
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activity and the metabolic state of the cell (Guarente, 2000). Lin and colleagues found 

that reducing the glucose concentration of the media from 2 to 0.5% increased replicative 

life span by 20–30% (Lin et al., 2000). The magnitude of life span extension from this 

calorie restriction protocol is comparable to that observed upon overexpression of Sir2p. 

Furthermore, in cells lacking Sir2p life span is shortened by approximately 50%, and 

reducing the glucose concentration fails to increase life span in this short-lived mutant 

(Lin et al., 2000). This latter finding suggests that life span extension by calorie 

restriction is mediated through activation of Sir2p (Lin et al., 2000). As replicative old 

cells die in an apoptotic fashion, these data suggest a potential role for Sir2p in 

antagonizing yeast apoptosis by preventing ERCs accumulation and imply that ERCs 

accumulation induces apoptosis in yeast.  

 

1.2.4.1.2 Chronological ageing 

Chronological ageing is defined by survival rates during long-term cultivation in a non-

dividing, quiescent-like state of yeast cells (Fabrizio and Longo, 2003). Wild type yeast 

ageing chronologically show features of apoptotic death, such as DNA 

condensation/fragmentation, phosphatidylserine exposure, and caspase activation (Herker 

et al., 2004). Reactive oxygen species formation is enhanced in agreement with a central 

role for ROS in the activation of yeast apoptosis during ageing. ROS accumulation is 

decreased in a population that overexpresses YAP1 (Herker et al., 2004), a functional 

homologue to the human apoptosis regulator AP-1 (Moye-Rowley et al., 1989). As a 

consequence, survival in chronologically aged cultures is increased, suggesting that cell 

death depends on ROS accumulation. A few genetic interventions with key yeast 

apoptotic regulators have been described that delayed chronological ageing and the 

appearance of the apoptotic features associated to it. Among these are the disruption of 

the yeast caspase YCA1 gene, the Omi homologue (Nma111p), the AIF homologue 

(AIF1), and NDE1 (coding for the yeast homologue of the AIF-homologous 

mitochondrion associated inducer of death, AMID) and overexpression of the inhibitor-

of-apoptosis protein BIR1 (see chapters 1.2.2.2, 1.2.2.6, 1.2.2.4 and 1.2.2.3) (Belanger et 

al., 2009; Herker et al., 2004; Madeo et al., 2002; Walter et al., 2006; Wissing et al., 

2004). However, chronological ageing in yeast is largely regulated by nutrients such as 
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glucose (Kaeberlein et al., 2007). Calorie restriction or mutation in RAS2, CYR1/PKA, 

TOR or SCH9, which are all encoding downstream effectors of glucose signalling, extend 

the yeast chronological life span up to 300% (Fabrizio et al., 2004; Fabrizio and Longo, 

2003; Powers et al., 2006). This life span extension is mediated through transcription 

factors involved in stress resistance (Msn2, Msn4), heat shock proteins or scavenger 

enzymes for oxidative stress such as, mitochondrial superoxide dismutase (SOD) and 

catalases (Fabrizio and Longo, 2003; Fabrizio et al., 2001). Msn2 and Msn4 represent 

transcription factors stimulating the expression of stress resistance proteins (Gorner et al., 

2002). Up-regulation of these transcription factors therefore leads to increasing SOD and 

catalase levels thereby minimizing oxidative stress and cellular damage (Gorner et al., 

1998). A recent study by Wei et al. showed that the chronological life span extension in 

yeast caused by deficiencies in either the nutrient-responsive proteins Ras2p, Tor1p and 

Sch9p, or by calorie restriction is dependant on the serine/threonine kinase Rim15 (Wei et 

al., 2008). Furthermore, the deletion of Msn2/4 and Gis1, which are positively regulated 

by Rim15, cause a major reversion of the life span extending effect of calorie restriction 

(Wei et al., 2008).  

The observation that apoptotic cell death is present in both replicative and 

chronologically aged cells may be an indication that the ultimate cause of ageing is 

similar in both dividing and nondividing yeast cells. This would be consistent with the 

finding that chronologically aged cells have a reduced RLS (Ashrafi et al., 1999) and that 

some interventions (e.g., DR or reduced target-of-rapamycin (TOR) signaling) increase 

both RLS and CLS (Kaeberlein et al., 2005; Powers et al., 2006; Reverter-Branchat et al., 

2004).  

 

1.2.4.2 Cell death in yeast colonies 

During yeast colony development, regulated cell death is essential for the long-term 

survival of the colony population. Ammonia release serves as the signal for 

differentiation within the colony, adapting the population to the environment and 

reprogramming cell metabolism (Vachova et al., 2004). After the ammonia signal, cells 

displaying a complete apoptotic phenotype (ROS, chromatin condensation, TUNEL 

staining and PS exposition) are mainly located in the inner area of giant colonies 
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(Vachova et al., 2004). A sok2 deletion strain, unable to produce the ammonia signal, 

shows apoptotic markers throughout the whole colony during prolonged colony growth. 

Removal of the inner part of giant colonies after the ammonia signal led to decreased 

colony growth in the outer regions, arguing for an active role of PCD in the colony core 

to provide nutrients for outer colony regions (Vachova et al., 2004). Interestingly, PCD in 

giant colonies seems to be independent of both YCA1 and AIF1 as respective deletion 

strains behave similar to a wild type strain (Vachova and Palkova, 2005).  
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1.3 Histones and post-translational modifications of histones 

In eukaryotes, genomic DNA is packaged into chromatin, a nucleoprotein complex whose 

basic repeating unit is the nucleosome (Kornberg, 1977). The nucleosome is made up of 

146 bp of DNA wrapped around a histone octamer consisting of two copies each of H2A, 

H2B, H3, and H4 (McGhee and Felsenfeld, 1980). Histones are subject to multiple 

covalent posttranslational modifications (Figure 1.7), some of which alter intrinsic 

chromatin properties, others present or hinder binding modules for non-histone, 

chromatin-modifying complexes (Berger, 2002; Fischle et al., 2003a; Shilatifard, 2006). 

The addition/removal of chemical moieties is a dynamic process that can 

influence cellular processes including transcription, cell division, differentiation, DNA 

repair and apoptosis (Cheung et al., 2000). These well-conserved modifications, 

including acetylation, methylation, ubiquitination, and many others, generally occur on 

the N-terminal and C-terminal tails of histones that extend out from the nucleosome 

(Figure 1.7) (Kouzarides, 2007). The presence or absence of many of these modifications 

was first associated with either transcriptionally active or inactive regions of chromatin, 

leading to speculation that these chemical alterations can alter transcriptional activity 

(Allfrey and Mirsky, 1964). However, only in the late 1980’s genetic evidence for the 

importance of histones in transcription was first elucidated (Clark-Adams et al., 1988; 

Han and Grunstein, 1988). The identification of enzymes responsible for histone 

acetylation and methylation and the requirement of these modifications for transcriptional 

activity (Sterner and Berger, 2000; Zhang and Reinberg, 2001) culminated in the 

establishment of the histone code hypothesis as the dominant paradigm in the chromatin 

field (Strahl and Allis, 2000).  The authors of this hypothesis postulated that histone 

modifications served as specific marks that can be recognized and bound by effector 

proteins to promote downstream outputs such as activation or repression of gene 

expression, cell division, differentiation, DNA repair and apoptosis. Subsequent studies 

have identified protein domains on effector proteins, such as bromodomains and 

chromodomains, which bind to acetylated and methylated histone tails, respectively, 

allowing for the “reading” of the histone code (Kouzarides, 2007). As with any code, the 

inputs (i.e. the histone modifications) can be combined in a variety of configurations to 

generate novel outputs. Some combinations elicit species-specific outputs but most are 
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conserved from yeast to humans, allowing lessons learned from yeast to be applied across 

evolution.  

 

 
Figure 1.7: Posttranslational modifications on histones. 
Specific amino acid sites of posttranslational modifications (acetylation, phosphorylation, 
ubiquitination and methylation) that are known to occur on histones are indicated by colored 
symbols. Half of the structure of the nucleosome core particle H3 (yellow), H4 (blue), H2A (red) 
and H2B (green) are shown in color.  The other half is represented in grey. Adapted from: 
http://www.ag.purdue.edu/biochem/Pages/sdbriggs.aspx 

 

1.3.1 Histone ubiquitination 

In addition to small methyl and acetyl groups, histones can also be modified by much 

larger molecules, such as the 76 amino acid ubiquitin protein. The mechanism of 

ubiquitination starts with the activation of ubiquitin by the E1 ubiquitin-activating 

enzyme (Deshaies and Joazeiro, 2009). This activated ubiquitin is subsequently passed 

along to the E2 ubiquitin conjugating enzyme that ultimately catalyzes the final transfer 

to the target substrate with the assistance of a specific E3 ubiquitin ligase. Subsequent 

work has established ubiquitination as a crucial protein modification usually associated 

with the destruction of proteins when multiple ubiquitin moieties are added in a chain, 

allowing for recognition and degradation of the modified substrate by the proteasome 

(Glickman and Ciechanover, 2002). However, the addition of a single ubiquitin, termed 

monoubiquitination, can be used for signaling and the modulation of protein activity (Sun 
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and Chen, 2004). Two core histones can be modified by monoubiquitination at their C-

termini, i.e. histone H2A and H2B. The existence of ubiquitin on these histones has been 

known for a long time; in fact, histones were the first proteins that were identified to be 

ubiquitinated over thirty years ago (Ballal et al., 1975; Goldknopf and Busch, 1975). 

However, the machinery that catalyzes this reaction has only been identified within the 

last decade. Monoubiquitinated histone H2B was identified along with its cognate E2 

enzyme, Rad6p (Robzyk et al., 2000). The E3 ubiquitin ligase for this modification, 

however, remained elusive until 2003 when Bre1p was identified as the conserved E3 

ubiquitin ligase for H2B ubiquitination (Hwang et al., 2003; Wood et al., 2003a).  

The mechanism as to how Rad6p and Bre1p promote ubiquitination of histone 

H2B is highly regulated. Additional factors besides Bre1p and Rad6p are required to 

achieve ubiquitination of histone H2B in vivo, including the transcription 

elongation/processing factor PAF and the Bur1/Bur2 cyclin-dependent protein kinase 

complex (BUR complex) (Kao et al., 2004; Wood et al., 2003b; Xiao et al., 2005). As 

these factors are crucial for transcription initiation and elongation, it is assumed that 

ubiquitin is conjugated to histone H2B through a co-transcriptional mechanism that 

involves the association of Rad6p–Bre1p with components of the transcription initiation 

and elongation machinery (Wood et al., 2003b; Xiao et al., 2005). 

The identification of Bre1p as the E3 ubiquitin ligase for ubiquitination of histone 

H2B in yeast has spurred many groups to identify and characterize Bre1p homologs in 

higher eukaryotes. Mutant versions of the Arabidopsis thaliana homologue of Bre1p 

display defects in progression through the cell cycle and the developmental transition into 

a flowering state (Fleury et al., 2007; Gu et al., 2009). Developmental defects were also 

observed for mutants of the Drosophila melanogaster homolog of Bre1p, similar to those 

observed in Notch signaling mutants (Bray et al., 2005), indicating that Bre1p regulates 

Notch signaling. Unlike in plant and Drosophila, C. elegans Bre1p is involved in 

apoptosis regulation. Upon knockdown of C.elegans Bre1p germ cell apoptosis is 

induced in a p53-independent manner (Lettre et al., 2004). Finally, there are two 

homologues of Bre1p in humans, RNF20 and 40, which have been identified to exist in a 

complex, although only RNF20 appears to be necessary for H2B ubiquitination in vivo 

(Kim et al., 2005; Zhu et al., 2005). RNF20 can interact with the tumor suppressor p53 
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and can be recruited to genes in a p53-dependent manner (Kim et al., 2005). RNF20 can 

also affect the expression of HOX genes (Zhu et al., 2005), suggesting that similar to the 

Bre1p homologs in Drosophila and Arabidopsis, RNF20 is also important for 

development in humans.  

The ubiquitin moiety on histone H2B can be removed by the action of 

deubiquitinating enzymes, of which there are two in yeast, Ubp8p and Ubp10p (Emre et 

al., 2005; Gardner et al., 2005; Henry et al., 2003). Ubp8p is a novel member of the 

SAGA transcriptional coactivator complex that is recruited to active genes (Henry et al., 

2003). Mutants deleted for Ubp8p, or other members of the SAGA complex responsible 

for Ubp8p association with the complex, display an increase in H2B ubiquitination 

(Henry et al., 2003). This deubiquitinating activity appears to be required for efficient 

transcriptional activity, as ubp8Δ mutants block the recruitment of Ctk1p, the kinase 

responsible for the transcriptional elongation promoting phosphorylation of pol II (Wyce 

et al., 2007). Deletion of the second deubiquitinating enzyme in yeast, Ubp10p, also 

causes increased H2B ubiquitination levels and when combined with a deletion of Ubp8p 

shows an additive increase in H2B ubiquitination levels, suggesting that they act on 

separate populations of H2B ubiquitination. Interestingly, loss of UBP10 leads to a 

subpopulation of cells exhibiting typical apoptotic markers. This was suppressed upon 

metacaspase YCA1 deletion, whereas its overexpression strongly increased apoptosis in a 

∆ubp10 background, providing a tantalizing link between H2B ubiquitination and 

apoptosis (Bettiga et al., 2004; Orlandi et al., 2004), which will be discussed in detail in 

Chapter 2 and 5.  

 

1.3.2 Histone Methylation 

The ability of histones to be modified with a methyl group is known since the 1960s 

(Murray, 1964) and subsequent studies identified many examples of this modification in 

vivo, mostly on histone H3 (Strahl et al., 1999). Each methylated residue on histones can 

be modified by as many as three methyl groups (mono-, di-, and tri-methylation). The 

identification of the first histone methyltransferase, the nuclear receptor co-activator-

interacting protein CARM1/PRMT4 (Chen et al., 1999), provided the initial direct link 

between this well conserved histone mark with the active regulation of transcription. 
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Since then, subsequent studies in the past decade have identified numerous enzymes that 

are responsible for the methylation of known residues and have discovered novel sites of 

methylation on both histone H3 and H4 that function both in promoting and repressing 

gene expression (Kouzarides, 2007). In particular, the functions of H3 methylation on 

lysine 4 in the promotion of gene expression have been well dissected by research 

performed in the budding yeast S. cerevisiae. The initial characterization of the functional 

significance of methylated H3 K4 was performed in Tetrahymena, where the 

modification was associated with transcriptionally active macronuclei but not with 

inactive micronuclei (Strahl et al., 1999). Identification of the enzyme responsible for this 

conserved modification occurred a couple years later, when the yeast protein Set1p was 

demonstrated to be required for H3 K4 methylation in vivo (Briggs et al., 2001a; Miller et 

al., 2001; Roguev et al., 2001). Set1p exists in a complex with seven other proteins 

(Miller et al., 2001; Roguev et al., 2001), two of which (Swd2p and Spp1p) are only 

responsible for trimethylation of H3 K4 and are dispensable for mono- or dimethylation 

of H3 K4 (Schneider et al., 2005). High resolution chromatin immunoprecipitation linked 

to tiling microarray (ChIPCHIP) experiments examining H3 K4 methylation across genes 

on S. cerevisiae chromosome III display an orderly transition from tri- to di- to 

monomethylation of H3 K4 from the 5’ to the 3’ end of genes (Liu et al., 2005), pointing 

to a functional role of methylated H3 K4 in transcription (Table 1). Many reports have 

demonstrated an association of H3 K4 methylation, especially trimethylation of H3 K4, 

with transcriptionally active genes (Bernstein et al., 2002; Santos-Rosa et al., 2002) and 

Set1p has been shown to bind specifically to pol II that has been phosphorylated on Ser5 

of its C-terminal domain (CTD) to initiate transcription (Ng et al., 2003b). Given that 

MLL1, the gene encoding for the human homolog of Set1p, is subject to loss of function 

rearrangements in more than 70% of infant leukemias, research into the regulation and 

downstream functions of methylated H3 K4 will hopefully yield new insights into the 

mechanism of carcinogenesis.  

Dot1p, the methyltransferase responsible for H3 K79, was originally identified in a 

genetic screen looking for genes that, when overexpressed, disrupted telomeric silencing 

(Singer et al., 1998). Its function as a methyltransferase was established a few years later 

when Dot1p was shown to be necessary for H3 K79 methylation both in vivo and in vitro 



1.3 Histones and post-translational modifications of histones 

41 

(Lacoste et al., 2002; Ng et al., 2003a; van Leeuwen et al., 2002). Dot1p is unique 

amongst the other characterized yeast histone methyltransferases because of its lack of 

the SET domain, which is characteristic of and required for the activity of Set1p and 

Set2p, the methyltransferase for H3K36. In addition, H3 K79 methylation lies within the 

globular domain of histone H3, suggesting not only a novel mechanism of action for 

Dot1p but potentially novel downstream effects as H3 K79 methylation resides in a 

structured region of histone H3, unlike the modification of H3 K4 and K36 on the N 

terminal tail of H3. Methylation of H3 K79 could potentially alter the structure of histone 

H3 and/or the entire nucleosome to enact its functions. 

In addition to its requirement for silencing, Dot1p has been characterized to be 

necessary for multiple functions in the cell; including meiotic checkpoint control and 

DNA damage response (Table 1)(Giannattasio et al., 2005; San-Segundo and Roeder, 

2000; Wysocki et al., 2005). As the DNA damage response machinery is closely linked to 

apoptosis in yeast and higher eukaryotes (Burhans et al., 2003) a relation between H3 

K79 methylation and apoptosis may exist and will be discussed in Chapter 3 and 5. 

However, recently, the human homolog of Dot1p, hDot1, has been demonstrated to 

interact with AF10, a protein causing leukemic transformation when fused to MLL 

(human Set1). Surprisingly, hDot1 can directly induce transformation when fused to the 

leukemia-translocated fragment of MLL in a methyltransferase activity-dependent 

manner (Okada et al., 2005). Furthermore, a recent study has observed increased levels of 

histone H3 K79 methylation at MLL-fusion protein binding loci in the chromatin of 

human leukemia cells, validating hDot1-mediated H3 K79 methylation as an marker of 

leukemic transformation (Guenther et al., 2008).  

 

1.3.3 Histone H2B ubiquitination promotes methylation on histone H3 K4 and 

K79 

The discovery of H2B ubiquitination in yeast brought about a bulk of research into the 

function of this modification, culminating in the elucidation of a novel requirement for 

H2B ubiquitination in promoting methylation of H3 K4 and K79 (Figure 1.8) (Briggs et 

al., 2002; Sun and Allis, 2002). This was the first identification of a dependence of one 
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histone modification for another on separate histones and added an additional layer of 

complexity to the histone code hypothesis. 

Since the initial identification of this novel link between different histone 

modifications, the mechanism of how this link is established has been studied in more 

detail. Further refinement of the requirement for H2B ubiquitination to promote H3 

methylation came from studies that demonstrated that H2B ubiquitination is not 

necessary for mono-methylation of H3 K4 and K79, suggesting that H2B ubiquitination 

promotes the processivity of the methyltransferases and not their recruitment (Dehe et al., 

2005; Shahbazian et al., 2005).  

 

   
Figure 1.8: Cross-talk between histone H2B and H3.  
Schematic representation of four core histones (one copy of each H2A, H2B, H3 and H4) as seen 
in the context of a nucleosome. The dashed lines represent the unstructured tails. Mono-
ubiquitination (gray) of histone H2B carboxy-terminal tail at lysine K123 in H2B is shown. In a 
“trans-tail” pathway, this modification is necessary for methylation of histone H3 on lysine K4 and 
K79 (pink arrows). Adapted from: (Fischle et al., 2003b).  

 

1.3.4 Functions of H3 K4 and H3 K79 methylation in chromatin silencing 

Histone modifications can impact on many aspects of chromatin biology, including the 

maintenance of euchromatin and heterochromatin (Table 1) (Moazed, 2001a). 

Heterochromatin in yeast is generated by the action of the histone deacetylase Sir2p, 

which is necessary to maintain silencing of the three main regions of heterochromatin in 

yeast; the silent mating type cassettes HMR and HML (HM), telomeres, and the ribosomal 
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DNA (rDNA) locus (Huang, 2002). Sir2p is recruited to telomeres and HM loci by 

association with DNA binding proteins bound to sequences called silencers. By the 

removal of acetylation on histones, Sir2p can promote the binding of its interaction 

partners Sir3p and 4 to deacetylated histones, which in turn recruit more Sir2p (Moazed, 

2001b). Multiple iterations of this event allow for spread of the Sir complex away from 

silencers to generate heterochromatin (Moazed, 2001b). Sir2p intrusion into euchromatin 

is blocked by the presence of DNA sequences called boundary elements, whose 

mechanism of action still remains mysterious (Oki and Kamakaka, 2002). Before their 

identification as the modifying enzymes for the euchromatic methylation of H3 K4 and 

K79, SET1 and DOT1 were identified as genes that when deleted displayed defects in the 

silencing of a reporter gene located at the telomere, leading the authors to conclude that 

they encoded for factors that promoted heterochromatic silencing (Table 1) (Nislow et al., 

1997; Singer et al., 1998). This presented a paradox when Set1p and Dot1p were found to 

promote two marks that were associated with euchromatin and active transcription. An 

explanation for this inconsistency was resolved when an increased Sir2 protein level in 

euchromatic regions was found when Set1p and Dot1p were deleted (Tompa and 

Madhani, 2007; van Leeuwen et al., 2002; Venkatasubrahmanyam et al., 2007). Because 

Sir2p levels are limiting in the cell, it was hypothesised that the ectopic spread of 

heterochromatin in strains missing the euchromatic methylation on histone H3 titrates 

away Sir2p in telomeric regions and thus indirectly cause a decrease in silencing (Smith 

et al., 1998).  

Silencing at the third site of heterochromatin in yeast, the rDNA locus located in 

the nucleolus, is also mediated by Sir2p but via recruitment through a different set of 

proteins, i.e. the chromatin associated protein Net1p, which associates with a third 

protein, Cdc14p, to form the RENT (regulator of nucleolar silencing) complex (Straight 

et al., 1999). The mechanism of Sir2p mediated silencing at rDNA is largely unknown. 

However, studies that initially identified Set1p as the methyltransferase for H3 K4 also 

reported defects in rDNA silencing in strains missing Set1p, similar to the defects 

observed for ∆set1 mutants in telomeric silencing (Briggs et al., 2001a; Bryk et al., 2002). 

Unlike at telomeres, however, these silencing defects at rDNA are not due to the 

redistribution of Sir2p away from silenced regions, as no change in Sir2p levels at rDNA 
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was observed in Δset1 mutants (Bryk et al., 2002). Notably, ∆dot1 mutants do not display 

silencing defects at rDNA (Ng et al., 2003a), pointing to a different role of Set1p in 

silencing - at least at rDNA - as compared to Dot1p that may or may not account for the 

increased apoptosis sensitivity of ∆set1 cells (see chapter 3 and 5).  

 

Table 1: Impact of H2B ubiquitination and H3 methylations on yeast cellular functions 
 
Histone modification Functions regulated 

H2B K123 ubiquitination • Transcription (Kao et al., 2004; Wood et al., 
2003a) 

• Telomeric silencing (Hwang et al., 2003) 

• Silencing at rDNA (Sun and Allis, 2002) 

• DNA damage response (Giannattasio et al., 
2005) 

• Apoptosis (Bettiga et al., 2004) 

H3 K4 methylation • Transcription (Liu et al., 2005) 

• Telomeric silencing (Nislow et al., 1997) 

• Silencing at rDNA (Briggs et al., 2001a; Bryk 
et al., 2002) 

H3 K79 methylation • Telomeric silencing (Singer et al., 1998) 

• DNA damage response (Giannattasio et al., 
2005; Wysocki et al., 2005) 

• Meiotic checkpoint control (San-Segundo and 
Roeder, 2000) 
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1.4 Histone modifications in apoptosis 

Chromosome condensation is one of the characteristics found in cells undergoing 

apoptosis. The mechanism by which chromosomes reorganize during apoptosis is still 

unsolved, but several lines of evidences suggest that histone modifications are crucial in 

this process. In mammalian cells, the histone modification that has been uniquely 

associated with apoptosis, is histone H2B phosphorylation in the N-terminal tail as shown 

by in vivo labeling of apoptotic cells (Ajiro, 2000). In addition, a cell-free Xenopus 

chromatin condensation system shows that the H2B N-terminus, but not other histone 

tails, is essential for chromatin condensation (de la Barre et al., 2001). Moreover, it has 

been shown that histone H2B is phosphorylated at Ser 14 (H2B S14) by caspase-3-

activated Mst1p during apoptosis (Cheung et al., 2003). Ahn and colleagues extended 

these results to yeast by demonstrating that Ste20p kinase, a yeast orthologue of Mst1, 

directly phosphorylates H2B at serine 10 (H2B S10ph) in a hydrogen peroxide-induced 

cell death pathway (Ahn et al., 2005). Furthermore, yeast H2B S10ph plays a direct role 

in mediating apoptotic chromatin compaction. Accordingly, yeast H2B S10A mutants are 

resistant to cell death elicited by H2O2; in contrast, H2B S10E phosphosite mimics 

promote cell death and induce “constitutive” condensed chromatin (Ahn et al., 2005). 

Ahn and colleagues recently described an undirectional crosstalk relationship between 

two residues of the histone H2B tail, namely lysine 11 (K11) acetylation and serine (S10) 

phosphorylation (Ahn et al., 2006). They propose that, after addition of H2O2, histone 

deacetylase Hos3p catalyses deacetylation of H2B K11, which mediates phosphorylation 

of H2B S10 catalysed by Ste20 kinase.   

A rapid and extensive deubiquitination of nucleosomal H2A occurs in Jurkat T-

cells undergoing apoptosis initiated by different apoptotic stimuli (Mimnaugh et al., 

2001), pointing to a role of histone H2A ubiquitination in apoptosis. In this line, Bettiga 

and colleagues found another exciting link between histone ubiquitination and apoptosis 

in yeast (Bettiga et al., 2004). Loss of the ubiquitin specific protease that cleaves 

ubiquitin from histone H2B leads to a subpopulation of cells exhibiting typical apoptotic 

markers. This was suppressed upon metacaspase YCA1 deletion, whereas overexpression 

of Yca1p strongly increased apoptosis in an ubp10 background (Bettiga et al., 2004; 

Orlandi et al., 2004). Recently, H2B ubiquitination has been implicated in DNA repair 



1.4 Histone modifications in apoptosis 

46 

and checkpoint activation after DNA damage (Game et al., 2006; Giannattasio et al., 

2005). As the DNA damage response machinery is closely linked to apoptosis in yeast 

and higher eukaryotes (Burhans et al., 2003) the notion of a relation between histone H2B 

ubiquitination and apoptosis is further supported and will be discussed in Chapter 2 and 

5.  
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2.1 Abstract 

BRE1 encodes an E3 ubiquitin protein ligase that is required for the ubiquitination of 

histone H2B at lysine 123 (K123). Histone H2B K123 ubiquitination is involved in a 

variety of cellular processes including gene activation and gene silencing. Abolishing 

H2B ubiquitination also confers X-ray sensitivity and abrogates checkpoint activation 

after DNA damage. Here we show that the S. cerevisiae Bre1p exhibits anti-apoptotic 

activity in yeast and that this is linked to H2B ubiquitination. We found that enhanced 

levels of Bre1p protect from hydrogen peroxide-induced cell death, whereas deletion of 

BRE1 enhances cell death. Moreover, cells lacking Bre1p show reduced lifespan during 

chronological ageing, a physiological apoptotic condition in yeast. Importantly, the 

resistance against apoptosis is conferred by histone H2B ubiquitination mediated by the 

E3 ligase activity of Bre1p. Furthermore, we found that the death of ∆bre1 cells depends 

on the yeast caspase Yca1p, since ∆bre1 cells exhibit increased caspase activity when 

compared with wild type cells and deletion of YCA1 leads to reduced apoptosis sensitivity 

of cells lacking Bre1p.  
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2.2 Introduction 

Apoptosis is a form of programmed cell death that plays a central role in development 

and cellular homeostasis in higher eukaryotes. Knowledge about apoptotic regulation is 

particularly important for medical research, since apoptotic misregulation is implicated in 

many human diseases, such as Alzheimer’s and Huntington’s disease, immunodeficiency 

and cancer (Fadeel and Orrenius, 2005). Recent studies have established yeast as model 

to study the mechanisms of apoptotic regulation. Defects in distinct cellular processes, 

such as actin dynamics (Gourlay et al., 2004), vesicular fusion (Madeo et al., 1997), DNA 

replication (Weinberger et al., 2005), histone chaperone activity (Yamaki et al., 2001), or 

histone deubiquitination (Bettiga et al., 2004) are able to trigger apoptotic cell death in 

Saccharomyces cerevisiae and an apoptotic-like phenotype has also been demonstrated in 

yeast cells treated with various agents including hydrogen peroxide, acetic acid and 

pheromone (Ludovico et al., 2001; Madeo et al., 1999b; Severin and Hyman, 2002). 

Notably, the yeast apoptotic machinery has functional orthologues of key mammalian 

apoptotic regulators including the metacaspase Yca1p (Madeo et al., 2002), the apoptosis 

inducing factor AIF (Wissing et al., 2004), the endonuclease EndoG (Buttner et al., 

2007), the serine protease HtrA2/Omi (Fahrenkrog et al., 2004) and the inhibitor-of-

apoptosis protein Bir1p (Walter et al., 2006). In addition, yeast apoptosis has been linked 

to cellular events such as mitochondrial fragmentation (Fannjiang et al., 2004), 

cytochrome c release (Ludovico et al., 2002), ageing (Herker et al., 2004; Laun et al., 

2001) and phosphorylation of histone H2B (Ahn et al., 2006; Ahn et al., 2005).  

Rapid protein modifications allow the cell to promptly adapt to environmental 

changes by different cellular responses including apoptosis. The post-translational 

modification by covalent attachment of ubiquitin is one of the major biochemical 

mechanisms that regulate apoptosis (Lee and Peter, 2003). Ubiquitination controls the 

level of proteins by targeting them for proteasomal degradation. Along this line, members 

of the inhibitor-of-apoptosis protein (IAP) family are targeted for degradation, but they 

also contain a RING domain with ubiquitinating activity, by which they are able to mark 

other proteins such as caspases for degradation (Wilson et al., 2002). Additionally, mono-

ubiquitination and nonclassical poly-ubiquitination of components of the apoptotic 



2.2 Introduction 

50 

pathway further is regulating apoptosis on a molecular level beyond degradation (Huang 

et al., 2000; Lee et al., 2002; Mimnaugh et al., 2001). 

Histone proteins are well-known substrates for numerous covalent posttranslational 

modifications and these modifications are known to regulate a number of cellular 

processes including apoptosis (Ahn et al., 2006; Ahn et al., 2005; Cheung et al., 2003). 

Histone H2B is mono-ubiquitinated at Lys 123 by the ubiquitin conjugase Rad6p and the 

E3 ligase Bre1p (Hwang et al., 2003; Robzyk et al., 2000; Wood et al., 2003a). BRE1 

disruption or lysine-to-arginine substitution at residue 123 of histone H2B (H2B-K123R), 

results in a complex phenotype that includes failures in gene activation (Henry et al., 

2003; Kao et al., 2004; Wyce et al., 2007; Xiao et al., 2005) and lack of telomeric 

silencing (Briggs et al., 2001b; Dover et al., 2002; Mutiu et al., 2007; Sun and Allis, 

2002). Moreover, the C.elegans BRE1 was identified in a screen for anti-apoptotic 

proteins (Lettre et al., 2004). Only recently, histone H2B ubiquitination has been 

implicated in DNA repair and checkpoint activation after DNA damage (Game et al., 

2006; Giannattasio et al., 2005). As the DNA damage response machinery is closely 

linked to apoptosis in yeast and higher eukaryotes (Burhans et al., 2003) a relation 

between histone H2B ubiquitination and apoptosis may exist. This possibility is further 

supported by the finding that loss of the ubiquitin-specific protease UBP10, which is 

involved in cleaving the ubiquitin moiety from histone H2B, causes caspase activation 

and apoptosis in yeast (Bettiga et al., 2004). 

We aimed to get more insight into the role of histone H2B ubiquitination in 

apoptosis and found that S. cerevisiae Bre1p exhibits anti-apoptotic activity in yeast and 

that this is linked to H2B ubiquitination. Enhanced expression of Bre1p protects yeast 

cells from hydrogen peroxide-induced cell death, whereas deletion of BRE1 potentiates 

cell death. Moreover, cells lacking Bre1p show shortened lifespan during chronological 

ageing, a physiological apoptotic condition in yeast. Importantly, the resistance against 

apoptosis is conferred by histone H2B ubiquitination mediated by the E3 ligase activity 

of Bre1p. Furthermore, we found that the death of ∆bre1 cells depends on the yeast 

metacaspase Yca1p, since ∆bre1 cells exhibit increased caspase activity when compared 

to wild type cells and deletion of YCA1 leads to reduced apoptosis sensitivity of cells 

lacking Bre1p.  
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2.3 Results 

2.3.1 Bre1p protects against hydrogen peroxide-induced cell death in budding 

yeast 

The E3 ubiquitin ligase Bre1p is required for histone H2B ubiquitination (Hwang et al., 

2003; Robzyk et al., 2000; Wood et al., 2003a), which in turn is implicated in 

transcriptional regulation and DNA repair. Moreover, H2B ubiquitination appears to play 

a role in apoptosis regulation since the loss of the ubiquitin-specific protease UBP10, 

which is involved in cleaving the ubiquitin moiety from histone H2B, causes caspase 

activation and apoptosis in yeast (Bettiga et al., 2004). Notably, the C. elegans 

homologue of the S. cerevisiae Bre1p was identified as a regulator of germ cell apoptosis 

in worms (Lettre et al., 2004), further supporting the importance of H2B ubiquitination in 

apoptosis regulation. 

To explore a role for Bre1p mediated histone H2B ubiquitination in yeast 

apoptosis, wild type cells, cells lacking BRE1 (∆bre1) and cells constitutively 

overexpressing a protein-A-tagged Bre1p fusion protein (ProtA-Bre1p) under the control 

of the NOP1 promoter were exposed to 0.6 mM hydrogen peroxide (H2O2) to induce 

apoptosis. After 8 hours of incubation, cell survival was determined by clonogenicity and 

cells were tested for apoptotic markers, such as and DNA single strand breaks and 

reactive oxygen species (ROS), which are causally linked to yeast apoptosis. To do so, 

cells were stained with dihydroethidium (DHE) to visualise accumulation of ROS and 

TUNEL labelling was used to detect single stranded DNA breaks. As shown in Figure 

2.1A, yeast cells lacking BRE1 exhibited an increased sensitivity to H2O2 (31% ± 4% cell 

viability) as compared to wild type cells (53% ± 6% cell viability). This increase in 

sensitivity to H2O2 of ∆bre1 cells was accompanied by enhanced ROS production (58% 

of ∆bre1 versus 25% of wild type cells were DHE positive; Figure 2.1B and C) and by an 

increase in apoptotic DNA fragmentation and TUNEL positive cells as compared to wild 

type cells (31% versus 14% TUNEL positive cells; Figure 2.1B and D). In contrast, cells 

overexpressing ProtA-Bre1p showed resistance to H2O2 (78% ± 7% cell viability; Figure 

2.1A) and a decrease in ROS accumulation (15% DHE positive cells; Figure 2.1B and C) 

and DNA fragmentation (4% TUNEL positive cells; Figure 2.1B and D). Taken together, 

our data indicate that Bre1p exhibits anti-apoptotic activity.  
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Figure 2.1: S. cerevisiae Bre1p confers resistance to apoptosis induced by H2O2.  
(A) Wild type (wt) and ∆bre1 yeast cells harbouring the empty vector control, and ProtA-Bre1p 
over-expressing cells were treated with 0.6 mM H2O2 for 8 hours and survival was determined by 
clonogenicity. Data represent mean ± SD (n = 6; ***P < 0.001). (B) ROS accumulation and DNA 
fragmentation in wild type (wt) and ∆bre1 cells harbouring the vector control or overexpressing 
ProtA-Bre1p was determined by DHE staining and TUNEL staining, respectively. (C) DHE-
positive and (D) TUNEL positive cells were quantified by manually counting at least 500 cells. 

 

2.3.2 Disruption of BRE1 causes an early onset of cell death during chronological 

ageing 

Chronological ageing defines an ageing process of post-mitotic yeast cells that triggers 

apoptosis (Herker et al., 2004). Therefore, we next investigated whether or not Bre1p is 

involved in chronological ageing. To do so, we determined the chronological lifespan of 

cells lacking BRE1 and found that these cells showed an early onset of age-induced cell 

death when compared to wild type cells (Figure 2.2A). After 2 days in culture, BRE1 

lacking cells showed survival rates of 23% ± 4% as compared to 75% ± 5% of wild type 
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cells (Figure 2.2A). When, after two days in culture, these yeast cells were tested for 

apoptotic markers, ∆bre1 cells showed typical hallmarks of apoptosis, such as the 

production of ROS as detected by DHE staining (73% of ∆bre1 versus 13% of wild type 

cells were DHE positive; Figure 2.2B and C) and an increase in apoptotic DNA 

fragmentation as detected by TUNEL labelling (30% of ∆bre1 versus 6% of wild type 

cells were TUNEL positive; Figure 2.2B and D). These data further support the notion 

that Bre1p acts as inhibitor of apoptosis in yeast. Constitutive over-expression of ProtA-

Bre1p, however, did not significantly influence chronological lifespan of yeast cells (data 

not shown).  

 

 
Figure 2.2: Disruption of BRE1 causes an early onset of apoptosis during chronological 
ageing.  
 (A) Survival of wild type (wt) and Δbre1 cells determined by clonogenicity during chronological 
ageing. Data represent mean ± SD (n = 9). (B) ROS accumulation and DNA fragmentation in wild 



2.3 Results 

54 

type and ∆bre1 cells after two days in culture determined by DHE staining and by TUNEL 
staining, respectively. (C) DHE-positive cells were quantified after 2 days in culture using flow 
cytometry. In each experiment, 10.000 cells were evaluated. (D) TUNEL positive cells were 
quantified by manual counting of at least 500 cells. 

 

2.3.3 The E3 ligase activity of Bre1p is required for its anti-apoptotic properties 

A hallmark of Bre1p is a C-terminal C3HC4 (RING) zinc finger domain (Hwang et al., 

2003). RING domains are typically found in E3 ubiquitin ligases and frequently mediate 

the interaction with the E2 ubiquitin-activating enzyme (Deshaies and Joazeiro, 2009). 

The RING domains are therefore critical for catalysing the transfer of ubiquitin from the 

E2 to the substrate. Accordingly, the RING-domain of Bre1p confers E3 ubiquitin ligase 

activity, which is required for the ubiquitination of histone H2B (Hwang et al., 2003; 

Wood et al., 2003a). To test whether the E3 ligase activity is required to grant resistance 

to age-induced apoptosis, we mutated two conserved cysteins (i.e. C648 and C651) 

within the RING domain to glycins and complemented ∆bre1 and ∆bre1 cells expressing 

H2B-GFP (∆bre1 HTB1-GFP), respectively, with plasmid-borne ProtA-Bre1p or ProtA-

Bre1p(C648G, C651G). As the mutation of these cysteins might affect the overall folding 

of the protein, we additionally created a mutant where leucin L650 is mutated. This 

hydrophobic residue likely mediates the E2 interaction and does not affect the zinc-

coordination and hence stability of the protein.  

We first tested the functionality of the ProtA-Bre1p and ProtA-Bre1p(C648G, 

C651G) and ProtA-Bre1p(L605A) as a measure of their ability to ubiquitinate histone 

H2B. Mono-ubiquitination of histone H2B can be detected in wild-type cells harbouring a 

functional GFP-tagged allele of the HTB1 gene (encoding histone H2B) as a slower-

migrating form upon SDS-PAGE and immunoblotting of whole-cell extracts with anti-

GFP antibody. The ubiquitinated species was absent in ∆bre1 cells harbouring a GFP-

tagged allele of the HTB1 (Figure 2.3A), which is consistent with a previous study (Wood 

et al., 2003a). However, ∆bre1 HTB1-GFP cells complemented with ProtA-Bre1p 

displayed no defect in H2B mono-ubiquitination, whereas ∆bre1 HTB1-GFP cells 

complemented with ProtA-Bre1p(C648G, C651G) and ProtA-Bre1p(L605A) lacked 

ubiquitination of histone H2B similar to ∆bre1 HTB1-GFP cells (Figure 2.3A). We 
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conclude that the ProtA-Bre1p fusion protein is functional and that Bre1p requires the 

conserved cysteins C648, C651 and leucin L650 for its E3 ligase activity.  

To explore the contribution of the E3-ligase activity of Bre1p to apoptosis 

resistance, we analyzed the survival of ∆bre1 cells complemented with ProtA-Bre1p, 

ProtA-Bre1p(C648G, C651G) and ProtA-Bre1p(L650E) during chronological ageing. 

BRE1 lacking cells complemented with ProtA-Bre1p showed no significant difference in 

cell survival when compared to wild type cells (89% ± 5% cell viability versus 92% ± 5% 

cell viability after 2 days in culture; Figure 2.3B). Consistently, ∆bre1 cells 

complemented with ProtA-Bre1p and wild type cells showed similar amounts of 

apoptotic markers with ∼ 10% DHE and 5-7% TUNEL positive cells, respectively 

(Figure 2.3D-F). In contrast, ∆bre1 cells complemented with ProtA-Bre1p(C648G, 

C651G) or ProtA-Bre1p(L650E) showed an early onset of cell death during chronological 

ageing similar to ∆bre1 cells (21% ± 2% and 23% ± 1% cell viability vs. 23% ± 4% cell 

viability after 2 days in culture; Figure 2.3B). About 74% of ∆bre1 cells complemented 

with Bre1p(C648G, C651G) showed ROS accumulation and 35% were TUNEL positive, 

similar to ∆bre1 cells (74% ROS positive, 30% TUNEL positive cells; Figure 2.3D - F). 

Consistent with the chronological ageing experiments, plasmid-borne ProtA-Bre1p 

but not ProtA-Bre1p(C648G, C651G) or ProtA-Bre1p(L650E) rescues ∆bre1 cells from 

H2O2 induced cell death (Figure 2.3C). H2O2 treated cells lacking BRE1 that are 

complemented with ProtA-Bre1p showed a slightly better cell survival than wild type 

cells (67% ± 5% cell viability vs. 54% ± 6% cell viability; Figure 2.3C) and less 

apoptotic markers (16% versus 25% DHE positive cells as well as 5% versus 14% 

TUNEL positive cells; Figure 2.3D, G and H). On the other hand, ∆bre1 cells 

complemented with ProtA-Bre1p(C648G, C651G) or ProtA-Bre1p(L650E) showed H2O2 

sensitivity similar to ∆bre1 cells (35% ± 2% and 33% ± 3% cell viability versus 31% ± 

4% cell viability; Figure 2.3C). About 48% of ∆bre1 cells complemented with 

Bre1p(C648G, C651G) showed ROS accumulation and 28% were TUNEL positive, 

similar to ∆bre1 cells (58% ROS positive, 31% TUNEL positive; Figure 2.3D, G and H). 

We conclude that the E3 ligase activity of Bre1p is required for its ability to grant 

resistance to apoptosis.  
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Figure 2.3: The E3 ligase activity of Bre1p is required for apoptosis inhibition. 
 (A) Functionality of ProtA-Bre1p, ProtA-Bre1p(C648,651G) and ProtA-Bre1p(L650E) was tested 
as a measurement of the ability to ubiquitinate histone H2B. Wild type (wt), ∆bre1 and ∆bre1 cells 
complemented with ProtA-Bre1p, ProtA-Bre1p(C648G, C651G) and ProtA-Bre1p(L650E) and 
harboring a functional GFP-tagged allele of the HTB1 gene (encoding histone H2B) were grown 
in synthetic complete medium (SC) over night. Whole cell lysates were separated on a 12% 
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acrylamide gel and the blot was probed with GFP (Dianova, clone: MA1-26343; Hamburg, 
Germany) and protein-A antibody (Sigma; St Louis, US).  (B) Survival of wild type, ∆bre1, ∆bre1 
cells complemented with ProtA-Bre1p, ProtA-Bre1p(C648G, C651G) and ProtA-Bre1p(L650E) 
was determined by clonogenicity during chronological ageing. Data represent mean ± SD (n = 9). 
(C) ∆bre1 cells complemented with ProtA-Bre1p, ProtA-Bre1p(C648G, C651G) and ProtA-
Bre1p(L650E) were treated with 0.6 mM H2O2 for 8 hours and survival was determined by 
clonogenicity. Data represent mean ± SD (n = 9). (D) ROS accumulation and DNA fragmentation 
in ∆bre1 cells complemented with ProtA-Bre1p and ProtA-Bre1p(C648G, C651G) after two days 
in culture and after H2O2 treatment determined by DHE staining and TUNEL staining, 
respectively. (E) DHE-positive cells during chronological ageing were quantified after 2 days in 
culture using flow cytometry. In each experiment, 10.000 cells were evaluated. (F) TUNEL 
positive cells during chronological ageing were quantified after 2 days in culture by manual 
counting at least 500 cells. (G) DHE-positive cells were quantified after H2O2 treatment by 
manually counting at least 500 cells. (H) TUNEL positive cells were quantified after H2O2 
treatment by manually counting at least 500 cells. 

 

2.3.4 Bre1p confers apoptosis resistance by histone H2B ubiquitination 

Bre1p targets Lys123 in histone H2B for ubiquitination. We therefore asked whether the 

ubiquitination site of histone H2B is required for the anti-apoptotic property of Bre1p. To 

address this question we analyzed the chronological lifespan of the yeast strain FLAG-

htb1K123R, which expresses a FLAG tagged histone H2B variant containing a lysine-to-

arginine substitution at lysine 123 and therefore fails to be ubiquitinated H2B (Sun and 

Allis, 2002). We found that these cells showed an early onset of cell death during 

chronological ageing, similar to ∆bre1 FLAG-HTB1 cells that lack BRE1 and express 

FLAG-tagged wild type histone H2B (36% ± 7% cell viability versus 32% ± 5% cell 

viability after 3 days in culture; Figure 2.4A). 

We next determined whether the lack of Bre1p and the lack of histone H2B 

ubiquitination affect the same pathway leading to an early onset of cell death during 

chronological ageing. To do so, we disrupted BRE1 in FLAG-htb1K123R cells and 

analyzed the chronological lifespan of the resulting double mutant ∆bre1 FLAG-

htb1K123R. An additive phenotype for the double mutant is expected in the case that the 

two mutations affect the chronological lifespan of yeast independently. However, the 

double mutant strain ∆bre1 FLAG-htb1K123R showed no further decrease in survival 

during chronological ageing as compared to either single mutant (35% ± 5% cell viability 

versus 36% ± 7% and 32% ± 5% cell viability, respectively, after 3 days in culture; 

Figure 2.4A), indicating that both mutations affect the same pathway. Moreover, these 
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data suggest that Bre1p confers resistance to age induced apoptosis by mediating histone 

H2B ubiquitination. Likewise, FLAG-htb1-K123R mutant cells showed H2O2 sensitivity 

similar to ∆bre1 FLAG-HTB1 cells (66% ± 7% cell viability vs. 69% ± 7% cell viability; 

Figure 2.4B), whereas the double mutant strain ∆bre1 FLAG-htb1K123R exhibited no 

further decrease in survival as compared to either single mutant (70% ± 6% cell viability 

versus 66% ± 7% and 68% ± 7% cell viability, respectively; Figure 2.4B). Together, our 

data indicate that Bre1p diminishes apoptotic death by mediating histone H2B 

ubiquitination.  

 

 
Figure 2.4: Histone H2B ubiquitination confers apoptosis resistance. 
 (A) Survival determined by clonogenicity of wild-type cells (BRE1 FLAG-HTB1) and its 
derivates i.e. BRE1 FLAG-htb1K123R, ∆bre1 FLAG-HTB1 and ∆bre1 FLAG-htb1K123R during 
chronological ageing. Data represent mean ± SD (n = 6). (B) The same strains were treated with 
0.6 mM H2O2 and survival was determined by clonogenicity. Data represent mean ± SD (n = 6; 
***P < 0.001, **P < 0.01).  
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2.3.5 Death of ∆bre1 cells depends on the yeast metacaspase Yca1p 

Yeast cells lacking BRE1 are sensitive to apoptotic stimuli and display morphological 

marker of apoptosis upon H2O2 treatment and during chronological ageing (Figure 2.1 

and Figure 2.2). Apoptosis in yeast can occur in a caspase-dependent or caspase-

independent manner (Madeo et al., 2009). To investigate whether the yeast metacaspase 

Yca1p is involved in the death of ∆bre1 cells, we generated a ∆yca1∆bre1 double mutant 

strain. The death rate during chronological ageing was decreased in ∆bre1∆yca1 cells 

when compared to ∆bre1 cells (47% ± 3% cell viability versus 21% ± 2% cell viability 

after 2 days in culture; Figure 2.5A), indicating that Yca1p is required for cell death of 

∆bre1 cells. However, the death of ∆bre1 cells is not exclusively Yca1p-dependent 

during chronological ageing as the double mutant ∆bre1∆yca1 exhibited a higher death 

rate than wild type cells (47% ± 3% cell viability versus 75% ± 5% cell viability after 2 

days in culture; Figure 2.5A). In addition, ∆bre1∆yca1 cells displayed less ROS 

accumulation during chronological ageing when compared to ∆bre1 cells (38% versus 

74% cells were DHE positive after 2 days in culture; Figure 2.5C), but more than wild 

type cells (38% versus 13% cells were DHE positive after 2 days in culture; Figure 2.5C). 

Therefore, the death of ∆bre1 cells during chronological ageing is partially Yca1p-

dependent.  
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Figure 2.5: Death of ∆bre1 cells depends on the yeast caspase-like protein Yca1p. 
(A) Survival determined by clonogenicity during chronological ageing of wild type (wt), ∆yca1, 
∆bre1 and Δbre1∆yca1 cells. Data represent mean ± SD (n = 6). (B) DHE-positive wild type (wt), 
∆yca1, ∆bre1 and Δbre1∆yca1 cells were quantified after 2 days in culture using flow cytometry. 
In each experiment, 10.000 cells were evaluated. (C) Wild type (wt), ∆yca1, ∆bre1 and 
Δbre1∆yca1 cells were exposed to 0.6 mM H2O2 for 8h and survival was determined by 
clonogenicity. Data represent mean ± SD (n = 6). (D) DHE-positive positive cells were quantified 
after H2O2 treatment by manually counting at least 500 cells. 

 

Notably, unlike ∆bre1 cells, ∆bre1∆yca1 cells did not display apoptotic DNA 

fragmentation during chronological ageing as detected by TUNEL labelling (Figure 

2.6B), suggesting that ∆bre1∆yca1 cells dye in a necrotic rather than apoptotic fashion. In 

this line, Annexin V/propidium iodide (PI) costaining was further used to analyze 

apoptotic externalization of phosphatidylserine and necrotic membrane permeabilization. 

∆bre1 cells unlike ∆bre1∆yca1 cells displayed externalization of phosphatidylserine as 
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detected by Annexin V staining (Figure 2.6A), further supporting the notion that ∆bre1 

cell dye in an apoptotic manner whereas the death of ∆bre1∆yca1 is of necrotic nature.  

 

 
Figure 2.6: ∆bre1∆yca1 cells do not show apoptotic markers. 
 (A) Annexin V/PI costaining of ∆bre1 and ∆bre∆yca1 cells after two days in culture and after 
H2O2 treatment to determine phosphatidylserine externalization and membrane integrity.  (B) DNA 
fragmentation in ∆bre1 and ∆bre∆yca1 cells after two days in culture and after H2O2 treatment 
determined by TUNEL staining.  

 

Next we tested the response of ∆bre1∆yca1 cells to H2O2 exposure. As shown in 

Figure 2.5B, the death rate after H2O2 treatment is decreased in ∆bre1∆yca1 cells when 

compared to ∆bre1 cells (57% ± 5% cell viability versus 32% ± 5% cell viability; Figure 

2.5B). Unlike during chronological ageing, the death of ∆bre1 cells seems to be 

exclusively Yca1p-dependent after H2O2 treatment as the double mutant cells 

∆bre1∆yca1 show survival rates similar to wild type cells (57% ± 5% cell viability versus 
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50% ± 6% cell viability; Figure 2.5C). In addition, the population of ∆bre1∆yca1 cells 

with ROS accumulation after H2O2 treatment is smaller when compared to ∆bre1 cells 

but similar to wild type cells (22% DHE positive ∆bre1∆yca1 cells as compared to 57% 

DHE positive ∆bre1 and 25% DHE positive wild type cells; Figure 2.5D). Taken together 

our data indicate that Yca1p is required to activate apoptosis in ∆bre1 cells in response to 

H2O2 treatment. 

Apoptosis in yeast can also occur Yca1p-independent. Along this line, the 

mitochondria localised apoptosis inducing factor Aif1p (Wissing et al., 2004), the 

endonuclease Nuc1p/EndoG (Buttner et al., 2007) and possibly the nuclear serine 

protease Nma111p (Fahrenkrog et al., 2004) can execute caspase-independent apoptosis. 

To test if these pro-apoptotic factors are also involved in the Bre1p pathway, we 

generated distinct double mutant strains, i.e. ∆bre1∆nuc1, ∆bre1∆aif1, ∆bre1∆nma111. 

As shown in Figure 2.7, none of these strains displayed better survival during 

chronological ageing or upon H2O2 treatment as compared to ∆bre1 cells, indicating that 

these other pro-apoptotic factors do not contribute to the Bre1p pathway.  

 

 
Figure 2.7: Death of ∆bre1 cells does not depend on Nuc1p, Aif1p and Nma111p 
(A) Survival determined by clonogenicity during chronological ageing of ∆bre1∆nuc1, 
Δbre1∆aif1, ∆bre1∆nma111 and ∆bre1 cells. Data represent mean ± SD (n = 6). (B) ∆bre1∆nuc1, 
Δbre1∆aif1, ∆bre1∆nma111 and ∆bre1 cells were treated with 0.6 mM H2O2 for 8 hours and 
survival was determined by clonogenicity. Data represent mean ± SD (n = 3).  

 



2.3 Results 

63 

2.3.6 Cells lacking BRE1 show increased caspase activity 

Since disruption of YCA1 desensitises ∆bre1 cells towards apoptotic stimuli, we asked 

whether or not the caspase activity of Yca1p is involved in cell death execution of ∆bre1 

cells. To address this question, we tested if ∆bre1 cells exhibit higher caspase activity 

after induction of apoptosis when compared to wild type cells. In order to monitor 

potential caspase activation, yeast cells were incubated with FITC-labelled VAD-fmk 

(FITC-VAD-fmk). FITC-VAD-fmk binds specifically to the active centre of metazoan 

caspases, which enables a flow cytometric determination of cells with active caspases 

(Madeo et al., 2002). As FITC-VAD-fmk may have the limitation that it stains dead cells 

unspecific (Wysocki and Kron, 2004), we additionally used propidium iodide (PI) to 

distinguish between apoptotic (PI negative) and necrotic cells (PI positive). Wild type and 

BRE1 disrupted cells were compared after stimulation with 0.6 mM H2O2 or after 1 day of 

chronological ageing. As shown in Figure 2.8A, after treatment with 0.6 mM H2O2 34% 

of ∆bre1 cells showed caspase activity (FITC positive, PI negative), whereas only 23% of 

wild type cells exhibited caspase activity. Consistently, we monitored caspase activity in 

about 21% of aged ∆bre1 cells, but only in 13% of wild type cells (Figure 2.8A). To 

confirm these findings, we used the caspase substrate (L-Asp)2 rhodamine 110 (D2R), 

which is designated for the detection of caspase activity in mammalian cells. D2R is non-

fluorescent, however, upon cleavage by a caspase, the released rhodamine 110 gives rise 

to a fluorescence signal, which enables a flow cytometric determination of caspase 

activity in cells. As shown in Figure 2.8B, after 1 day of chronological ageing and after 

treatment with 0.6 mM H2O2, ∆bre1 cells exhibit higher caspase activity as compared to 

wild type cells. Taken together, our data show that ∆bre1 cells have higher caspase 

activity in comparison to wild type cells, further supporting the notion that Bre1p acts in 

an Yca1p-dependent manner.  
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Figure 2.8: Cells lacking BRE1 show increased caspase activity. 
 (A) Chronological aged wild type and ∆bre1 cells and cells treated with 0.6 mM H2O2 were 
labelled with FITC-VAD-fmk and propidium iodide (PI) and analyzed by flow cytometry. One 
representative experiment from three independent experiments with similar results is shown. (B) 
Chronological aged wild type and ∆bre1 cells and cells treated with 0.6 mM H2O2 were incubated 
with the caspase substrate (L-Asp)2 rhodamine 110 (D2R) and analyzed by flow cytometry. One 
representative experiment from three independent experiments with similar results is shown. 
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2.4 Discussion  

BRE1 encodes an evolutionary conserved E3 ubiquitin ligase that, in yeast, catalyses 

monoubiquitination of histone H2B at lysine 123 (K123). Histone H2B K123 

ubiquitination is involved in a variety of cellular processes, i.e. gene activation, gene 

silencing and checkpoint activation after DNA damage (Briggs et al., 2001b; Dover et al., 

2002; Game et al., 2006; Giannattasio et al., 2005; Henry et al., 2003; Kao et al., 2004; 

Mutiu et al., 2007; Sun and Allis, 2002; Wyce et al., 2007; Xiao et al., 2005). Here we 

uncover a novel role for Bre1p and show that S. cerevisiae Bre1p protects yeast cells 

from hydrogen peroxide-induced cell death, whereas deletion of BRE1 enhances cell 

death and leads to decreased lifespan during chronological ageing. Also, we show that 

Bre1p activity in yeast apoptosis requires its E3 ubiquitin ligase activity thereby linking 

yeast apoptosis to histone H2B monoubiquitination. Further we show that Bre1p protects 

yeast cells from death in a Yca1p-dependent manner. 

  

2.4.1 A novel function for Bre1p in programmed cell death 

Enhanced levels of Bre1p protect yeast from hydrogen peroxide-induced cell death and 

diminish the development of apoptotic hallmarks, i.e. ROS accumulation and DNA single 

strand breaks (Figure 2.1). In contrast, cells lacking Bre1p are more sensitive to H2O2 

treatment (Figure 2.1) and show decreased lifespan during chronological ageing (Figure 

2.2A), which coincided with the appearance of apoptotic markers (Figure 2.2B-D). A role 

for Bre1p in yeast cell death has not been assumed, but is consistent with the recent 

identification of its C. elegans homologue as a regulator of germ cell apoptosis in worms 

(Lettre et al., 2004). Therefore, the anti-apoptotic function of Bre1p is likely evolutionary 

conserved and it will be interesting to see if, for example, the human homologues of 

Bre1p i.e. RNF20 and RNF40, are also implicated in apoptosis regulation.  

Bre1p's ability to reduce cell death is conferred by its E3 ubiqutin ligase activity 

and histone H2B ubiquitination (Figure 2.3 and Figure 2.4). Bre1p harbours a C-terminal 

zinc-binding motif known as RING finger domain (Hwang et al., 2003) that is frequently 

found in E3 ubiquitin ligases and required for catalysing the transfer of ubiquitin from the 

E2 to the substrate (Deshaies and Joazeiro, 2009). RING domains appear critical for 

apoptosis regulation, as, for eample, members of the inhibitor-of-apoptosis protein (IAP) 
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family comprise RING domains, which enable IAPs to mark other proteins such as 

caspases for proteosomal degradation (Feng et al., 2003). Our data indicate that besides 

polyubiquitination, monoubiquitination may play a role in apoptosis. We show that ∆bre1 

cells complemented with the RING finger mutants ProtA-Bre1p(C648G, C651G) and 

ProtA-Bre1p(L659E) are lacking monoubiquitinated histone H2B (Figure 2.3A) and are 

exhibiting increased apoptosis sensitivity similar to ∆bre1 cells, whereas ∆bre1 cells 

complemented with a functional ProtA-Bre1p behave like wild type cells (Figure 2.3). 

These findings suggest that Bre1p requires its E3 ligase activity to confer H2B 

monoubiqitination and apoptosis resistance and support the notion that RING domains 

play a major role in apoptosis regulation. 

The importance of H2B monoubiquitination for the anti-apoptotic activity of Bre1p 

is further supported by our observation that htb1-K123R mutant cells, which fail to be 

ubiquitinated histone H2B, also exhibit increased apoptosis sensitivity, similar to ∆bre1 

cells (Figure 2.4A and B). Interestingly, yeast cells that exhibit enhanced levels of 

ubiquitinated histone H2B due to the lack of the ubiquitin-specific protease Ubp10p, 

which cleaves the ubiquitin moiety from histone H2B, are also prone to apoptosis 

(Bettiga et al., 2004), Therefore, the lack of histone H2B ubiquitination as well as high 

levels of histone H2B ubiquitination appear to predisposes yeast to apoptotic stimuli, 

indicating that H2B monoubiquitination needs to be tightly regulated to assure cell 

survival.  

The yeast metacaspase Yca1p appears to be essential for approximately 40% of the 

investigated cell death scenarios in yeast (Madeo et al., 2009) and we show here that 

apoptosis in ∆bre1 cells in fact depends on Yca1p, as YCA1 disruption leads to reduced 

apoptosis sensitivity of cells lacking Bre1p (Figure 2.5). Furthermore the death of ∆bre1 

cells depends neither on other pro-apoptotic factors, such as EndoG, Nma111p nor Aif1p 

(Figure 2.7), indicating that Bre1p’s anti-apoptotic activity is exclusively caspase-

dependent. Consistently, we show that ∆bre1 cell exhibit higher caspase activity as 

compared to wild type cells (Figure 2.8), suggesting that the caspase-like activity of 

Yca1p is implicated in the death of ∆bre1 cells. 
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2.4.2 Possible mechanisms 

Our data suggest that lack of histone H2B monoubiquitination leads to Yca1p-dependent 

apoptosis during chronological ageing and after H2O2 treatment. Histone H2B 

ubiquitination plays a role in the DNA damage response as well as in transcriptional 

control (Briggs et al., 2001b; Dover et al., 2002; Game et al., 2006; Giannattasio et al., 

2005; Henry et al., 2003; Kao et al., 2004; Mutiu et al., 2007; Sun and Allis, 2002; Wyce 

et al., 2007; Xiao et al., 2005). Therefore, cells lacking histone H2B ubiquitination may 

undergo Yca1p-dependent apoptosis either because of accumulated DNA damage or 

because of alterations in transcription. While H2B ubiquitination has been implicated in 

transcriptional silencing (Briggs et al., 2001a; Mutiu et al., 2007; Sun and Allis, 2002), 

other studies suggested a positive role for this modification in transcriptional initiation 

and elongation (Henry et al., 2003; Kao et al., 2004; Wyce et al., 2007; Xiao et al., 2005). 

Notably, the core apoptotic machinery, including caspases and other regulators of 

apoptosis, are regulated at the transcriptional level in higher eukaryotes (Zuckerman et 

al., 2009). Therefore, it is possible that this balance is disturbed in cells lacking H2B 

ubiquitination and up- or down regulated transcription of apoptotic regulators causes 

apoptosis of these cells. It would be interesting to see, whether YCA1 or other pro-

apoptotic proteins are transcriptionally deregulated in ∆bre1 cells. Furthermore, 

comparison of global mRNA transcripts between wild type and ∆bre1 cells could help to 

identify novel regulators of apoptosis. 

Histone H2B ubiquitination is required for Rad9p-mediated checkpoint activation 

after DNA damage and Rad51p-dependent DNA repair (Game et al., 2006; Giannattasio 

et al., 2005). Therefore, cells lacking histone H2B ubiquitination may undergo Yca1p-

dependent apoptosis because of accumulated DNA damage. However, neither ∆rad9 nor 

∆rad51 cells exhibit apoptosis sensitivity similar to ∆bre1 cells (our unpublished results), 

indicating that apoptosis in ∆bre1 is not caused by defects in Rad9p or Rad51p pathways. 

Moreover, although ∆bre1 cells exhibit sensitivity towards DNA damage induced by 

methyl methanesulfonate, hydroxyurea and UV radiation, respectively, disruption of 

Yca1p does not lead to a rescue in survival of ∆bre1 cells under these conditions (data 

not shown).  Therefore we do not consider it likely that DNA damage causes Yca1p-

dependent apoptosis in ∆bre1 cells.  
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In conclusion, we show that Bre1p confers resistance to apoptosis and Yca1p is 

required in the apoptosis pathway triggered by BRE1 disruption. Bre1p is required for 

histone H2B ubiquitination and its deletion, which influences transcriptional regulation 

and DNA repair, activates apoptosis. However, it remains to be seen whether 

transcription defects, failures in DNA repair or both processes activate the apoptotic 

program in cells lacking H2B ubiquitination. Future studies in yeast likely provide more 

details on the connection between transcription, DNA repair and apoptosis.  
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2.5 Materials and Methods 

2.5.1 Plasmids, Yeast Strains, and Culture Conditions 

To construct the plasmid pBF326 which encodes ProtA-Bre1p, the coding region of 

BRE1 was amplified from genomic DNA isolated from BY4742 cells, using the 

following primers: 5′ CAT GCC ATG GCA ATG ACG GCC GAG CCT GCT A 3′ and 

5′ CGC GGA TCC TTA CAA GTG CAC TGT CAA TAA ATC 3′. The PCR product 

was digested with NcoI and BamHI and cloned into pNOPATA1L (Hellmuth et al., 

1998). Plasmid pBF346 coding for ProtA-Bre1p(C648G, C651G) was constructed by 

site-directed polymerase chain reaction (PCR) mutagenesis using pBF326 as template 

according to the manufacturer's instructions (Stratagene, QuickChangeTM Site-Directed 

Mutagenesis Kit). 

BY4742 (MATα; his3∆1; leu2∆0; lys2∆0; ura3∆0) and derivative strain ∆bre1 

were obtained from Euroscarf. Construction of the ∆bre1Δyca1, ∆bre1∆endoG, 

∆bre1∆nma111 and ∆bre1∆aif1 double mutant strains was performed according to 

(Gueldener et al., 2002). Yeast strains YZS276 (FLAG-HTB1) and YZS277 (FLAG-

htb1K123R) were a gift from C.D. Allis (Rockefeller University, NY 10065) (Sun and 

Allis, 2002). ∆bre1 FLAG-HTB1 and ∆bre1 FLAG-htb1K123R were derived from 

YZS276 and YZS277, respectively and constructed according to (Longtine et al., 1998). 

HTB1-GFP ∆bre1 was derived from ∆bre1 strain and constructed according to (Longtine 

et al., 1998). 

Survival plating was conducted on YPAD (1% yeast extract, 2% peptone, and 2% 

glucose, 40mg/ml Adenine) media supplemented with 2% agar. For experiments testing 

oxygen stress and chronological lifespan, strains were grown in synthetic complete 

medium (SC) with 2% glucose (Fink, 1991).  

Transformation of yeast cells was performed by the lithium acetate procedure, as 

described by (Gietz et al., 1992).  
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2.5.2 Survival plating and test for apoptotic markers 

For experiments testing oxygen stress, cultures were inoculated at low cell density (2 × 

105 cells/ml) in SCGlu, grown to late log phase (OD600~2) and exposed to 0.6 mM 

hydrogen peroxide (H2O2) for 8 h.  

For survival plating, yeast cultures were diluted in water, the cell concentration 

was determined using a Neubauer counting-chamber and aliquots containing 500 cells 

were plated on YPAD plates. The number of colonies was determined after incubation for 

2 days at 30 °C. Percentage of cell survival was calculated for each strain by counting the 

number of colonies formed following H2O2 treatment relative to untreated cells.  

Apoptotic tests using DHE-staining, Annexin / PI-staining and TUNEL-staining 

were performed as described previously (Belanger et al., 2009; Buttner et al., 2007). In 

each sample 10.000 cells were evaluated using flow cytometry (FACS-Aria, BD) and 

processed using BD FACSDiva software. Alternatively around 500 DHE and TUNEL 

stained cells, respectively, were counted manually.  

For chronological ageing experiments, cultures were inoculated from fresh 

overnight cultures at low cell density (1 × 106 cells/ml) and aliquots were taken to 

perform survival plating and tests for apoptotic markers as described above.  

 

2.5.3 In vivo staining of caspase activity by flow cytometric analysis 

5x106 cells were harvested, washed once in 1 ml PBS and incubated in PBS containing 10 

µM FITC-VAD-fmk (CaspACE, Promega, Dübendorf) for 20 minutes at 30°C in the 

dark. Next the cells were washed with PBS and resuspended in PBS containing 1µg/ml 

propidium iodide (PI) and analyzed by flow cytometry (FACS-Aria, BD). Cleavage of 

the caspase substrate (aspartyl)-Rhodamine 110 (D2R) (CaspSCREEN (BioVision)) was 

measured by flow cytometry (FACS-Aria, BD) according to manufacturer's instructions.  

 

2.5.4 Immunoblotting 

Protein lysates were prepared using a lysis buffer containing 100mM NaCl, 50mM 

Tris/HCl pH 7.5, 50mM NaF, 5mM EDTA and 0.1% IGEPAL. Lysates were 

electrophoresed on 12% acrylamide-Tris HCl gels and proteins were transferred to an 
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Immobilon PVDF mambrane (Millipore; Billerica, MA). The filters were hybridized with 

anti GFP antibody (Dianova, clone: MA1-26343; Hamburg, Germany) and anti-protein-A 

antibody (Sigma; St Louis, US), respectively and the peroxidase-conjugated secondary 

anti-mouse antibody (Sigma; St Louis, US).  
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3.1 Abstract 

Histone H2B ubiquitination at lysine K123 is a prerequisite for subsequent methylation of 

histone H3 at lysine K4 and K79 by the two methyltransferases Set1p and Dot1p, 

respectively. Histone H2B K123 ubiquitination and its downstream effects on histone H3 

methylation are involved in a variety of cellular processes including transcriptional 

regulation and DNA damage response. We have previously shown that cells lacking 

histone H2B ubiquitination undergo metacaspase Yca1p-dependent apoptosis. To test 

whether apoptosis in these cells is caused by defects in histone H3 methylation, we 

analyzed the apoptosis sensitivity of ∆set1 and ∆dot1 cells.  We found that ∆set1 cells are 

prone to Yca1p-dependent apoptosis, whereas DOT1 disruption confers apoptosis 

resistance. Moreover, we found that Dot1p is required for Yca1p-dependent cell death of 

∆set1 cells. Together, these studies highlight the requirement of Dot1p mediated histone 

H3 K79 methylation for an Yca1p-dependent cell death scenario and point to a novel role 

of the conserved histone H2B/H3 crosstalk in apoptosis regulation.  
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3.2 Introduction 

Apoptosis is a form of programmed cell death that plays a central role in the development 

and cellular homeostasis in multicellular organisms. Deregulation of apoptosis 

contributes to the pathogenesis of multiple diseases including neoplastic and 

neurodegenerative disorders (Fadeel and Orrenius, 2005). Recent studies have established 

the unicellular yeast Saccharomyces cerevisiae as model to study the mechanisms of 

apoptotic regulation. It is well established that S. cerevisiae undergoes apoptosis when 

treated with various agents including hydrogen peroxide, acetic acid and pheromone 

(Ludovico et al., 2001; Madeo et al., 1999b; Severin and Hyman, 2002). Other than this, 

ageing is to date the best-studied physiological scenario of apoptosis induction in yeast. 

Two forms of ageing exist in S. cerevsiae, i.e. replicative and chronological ageing and 

apoptotic cell death is present in both ageing processes (reviewed in (Rockenfeller and 

Madeo, 2008)). The replicative life span is defined as the number of daughter cells 

produced by a mother cell before senescence. The formation and accumulation of 

extrachromosomal rDNA circles (ERCs), which depends on silencing gene transcription 

at the ribosomal DNA (rDNA), is a major cause of yeast replicative ageing (Sinclair and 

Guarente, 1997). The chronological life span (CLS) is defined as the length of time a 

yeast cell can survive in a nondividing state (Fabrizio and Longo, 2003). Few genetic 

interventions with key yeast apoptotic regulators have been described that delay 

chronological ageing and the appearance of the apoptotic features associated to it 

(Belanger et al., 2009; Herker et al., 2004; Madeo et al., 2002; Walter et al., 2006; 

Wissing et al., 2004). Particularly, disruption of the yeast metacaspase YCA1 gene delays 

cell death and the formation of an apoptotic phenotype during chronological ageing 

(Madeo et al., 2002).  

We have previously uncovered a link between histone H2B ubiquitination and 

Yca1p-dependent apoptosis in yeast (Walter et al., manuscript in revision for Journal of 

Cell Science). Cells lacking the E3 ubiquitin ligase Bre1p, which monoubiquitinates 

histone H2B at lysine 123 (H2B K123), are prone to Yca1p dependent apoptosis. 

Consistent with the idea that Bre1p acts through H2B ubiquitination, cells containing 

catalytically inactive Bre1p or a histone H2B variant containing a lysine-to-arginine 

substitution at lysine 123 and therefore fails to be ubiquitinated H2B mimic the apoptotic 
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phenotypes similar to a BRE1 deletion strain (Walter et al., manuscript in revision for 

Journal of Cell Science).  

Histone H2B ubiquitination is required in promoting methylation of histone H3 

lysine K4 and K79 (Briggs et al., 2002; Sun and Allis, 2002). These methylations are 

brought about by the conserved methyltransferases Set1p and Dot1p, respectively. Dot1p 

is required for telomeric silencing (Singer et al., 1998) and was shown to be necessary for 

methylation of H3 K79 both in vivo and in vitro (Lacoste et al., 2002; Ng et al., 2003a; 

van Leeuwen et al., 2002). In addition to its requirement for telomeric silencing, Dot1p 

has been characterized to be necessary for multiple functions in the cell, including DNA 

damage response (DDR) (Giannattasio et al., 2005; San-Segundo and Roeder, 2000; 

Wysocki et al., 2005). Set1p, the methyltransferase responsible for H3 K4 methylation, is 

required for telomeric silencing, similar to Dot1p (Nislow et al., 1997; Singer et al., 1998) 

and plays an additional role in transcriptional activation (Bernstein et al., 2002; Ng et al., 

2003b; Santos-Rosa et al., 2002) particularly, of genes involved in DNA replication and 

repair, such as replication factor C or ATP-dependent nuclease Dna2p (Nislow et al., 

1997). However, unlike Dot1p, Set1p is required for silencing at rDNA (Briggs et al., 

2001a; Bryk et al., 2002; Ng et al., 2003a), which is a major regulator of ERC formation 

and replicative ageing in yeast.  

In this study, we asked whether the apoptosis sensitivity of cells lacking H2B 

ubiquitination depends on a lack of histone H3 K4 and/or H3 K79 methylation. To do so 

we analyzed the apoptosis sensitivity as a measurement of the chronological lifespan of 

∆set1 and ∆dot1 cells.  We found that ∆set1 cells are prone to Yca1p-dependent 

apoptosis, whereas DOT1 disruption confers apoptosis resistance. Moreover, we found 

that Dot1p is required for Yca1p-dependent cell death of ∆set1 cells. Together, these 

studies highlight the requirement of Dot1p mediated histone H3 K79 methylation for an 

Yca1p-dependent cell death scenario and point to a novel role of the conserved histone 

H2B/H3 crosstalk in apoptosis regulation.  
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3.3 Results and Discussion 

Histone H2B ubiquitylation is a prerequisite for histone H3 methylation at lysine K4 and 

K79. These methylations are brought about by the conserved methyltransferases Set1p 

and Dot1p, respectively. We found previously that cells lacking histone H2B 

ubiquitylation are prone to Yca1p-dependent apoptosis (Walter et al., manuscript in 

revision for Journal of Cell Science). In this study, we asked whether the apoptosis 

sensitivity of cells lacking H2B K123 ubiquitination depends on a lack of histone H3 K4 

and/or H3 K79 methylation.  

 

3.3.1 SET1 disruption causes Yca1p-dependent cell death during chronological 

ageing 

Histone H3 K4 methylation is conferred by the methyltransferase Set1p (Nislow et al., 

1997). To test whether a lack of H3 K4 methylation predisposes yeast to apoptotic 

stimuli, we analyzed the apoptosis sensitivity of ∆set1 cells. Chronological ageing is to 

date the best-studied physiological scenario of apoptosis induction in yeast. Therefore, we 

analyzed the chronological lifespan wild type and Δset1 cells. We observed that ∆set1 

cells showed an early onset of cell death during chronological ageing when compared to 

wild type cells. After 2 days in culture ∆set1 cells showed survival of 35% ± 5%, whereas 

73% ± 6% of wild type cells were viable (Figure 3.1A). Next, we asked whether the death 

SET1 disrupted cells is of apoptotic nature. Staining with dihydroethidium (DHE) was 

used to visualize accumulation of reactive oxygen species (ROS), which are causally 

linked to apoptosis in yeast. DNA fragmentation was detected by using TUNEL staining. 

After two days in culture 72% of ∆set1 cells were DHE positive, but only 17% of wild 

type cells (Figure 3.1B-C). Consistently, ∆set1 cells unlike wild-type cells show 

apoptotic DNA fragmentation, as determined by TUNEL staining (Figure 3.1B).  

Apoptosis in yeast can occur in a caspase-dependent or caspase-independent 

manner (Madeo et al., 2009). We showed previously that cells lacking BRE1, which is 

required for H2B ubiquitination are prone to Yca1p-dependent apoptosis (Walter et al., 

manuscript in revision for Journal of Cell Science). To investigate whether the yeast 

metacaspase Yca1p is also involved in the death of ∆set1 cells, we generated a 

∆set1∆yca1 double mutant strain and analyzed its chronological lifespan. The death rate 
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during chronological ageing was decreased in ∆set1∆yca1 cells when compared to ∆set1 

cells (60% ± 8% cell viability versus 35% ± 5% cell viability after 2 days in culture; 

Figure 3.1A). When, after two days in culture, these yeast cells were tested for ROS 

accumulation, 45% of ∆set∆yca1 cells were DHE positive, whereas 72% of ∆set1 cells 

showed ROS accumulation (Figure 3.1C). Moreover, unlike ∆set1 cells, ∆set1∆yca1 cells 

did not exhibit apoptotic DNA fragmentation as detected by TUNEL labelling (Fig 1C). 

Thus, these data indicate that Yca1p is implicated in the cell death of ∆set1 cells during 

chronological ageing.  
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Figure 3.1: SET1 disruption causes Yca1p-dependent cell death during chronological ageing.  
(A) Survival of wild type (wt), ∆yca1, Δset1 and ∆set1∆yca1 cells was determined by 
clonogenicity during chronological ageing. Data represent mean ± SD (n = 3). (B) ROS 
accumulation and DNA fragmentation in wt, ∆yca1, Δset1 and ∆set1∆yca1 cells cells after two 
days in culture determined by DHE staining and by TUNEL staining, respectively. (C) DHE-
positive cells were quantified after 2 days in culture using flow cytometry. In each experiment, 
10.000 cells were evaluated. 

 
SET1 disruption results in a complex phenotype that includes failures in gene 

activation and defects in transcriptional silencing at telomeres (Bryk et al., 2002; Krogan 

et al., 2002; Nagy et al., 2002; Nislow et al., 1997). Previous work has also shown that 

Set1p is required for the repression of genes placed within the rDNA locus (Bryk et al., 
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2002; Mueller et al., 2006). As silencing gene transcription at the rDNA is regulating the 

replicative lifespan of yeast (Sinclair and Guarente, 1997) and the replicative and 

chronological lifespan are interrelated (Ashrafi et al., 1999), it is possible that failures in 

rDNA silencing trigger Yca1p dependent apoptosis in chronologically aged ∆set1 cells. 

This would be conflicting with the fact that cells lacking the histone deacelylase Sir2p, 

which are also defective in rDNA silencing do not show a early onset of age induced cell 

death during chronological ageing (Fabrizio et al., 2005). However, Set1p mediated 

rDNA silencing is independent of Sir2p mediated rDNA silencing (Bryk et al., 2002). 

Therefore, Sir2p-independent silencing defects at rDNA may account for the apoptosis 

sensitivity of ∆set1 cells. Alternatively, as transcription of genes involved in DNA 

replication and repair, such as replication factor C or the ATP-dependent nuclease DNA2 

(Nislow et al., 1997), is impaired in ∆set1 cells, DNA damage is likely accumulated in 

chronologically aged ∆set1 cells. Genome instability and DNA damage is an important 

determinant of chronological ageing in budding yeast (Fabrizio et al., 2005; Weinberger 

et al., 2007). Therefore ∆set1 cells may undergo Yca1p-dependent apoptosis during 

chronological ageing because of accumulated DNA damage.  

 

3.3.2 DOT1 disruption protects against Yca1p-dependent cell death during 

chronological ageing  

Histone H2B ubiquitylation is not only a prerequisite for histone H3 K4 methylation but 

also for K79 methylation. Therefore, we asked whether the lack of histone H3 K79 

methylation has also an impact on the chronological lifespan of S. cerevisiae. To address 

this question, we analyzed the chronological lifespan of cells lacking the 

methyltransferase Dot1p and therefore lack histone H3 K79 methylation. Unexpectedly, 

we found that disruption of DOT1 confers apoptosis resistance. We observed that ∆dot1 

cells exhibit enhanced survival during chronological ageing when compared to wild type 

cells. After 5 days in culture the ∆dot1 strain showed a survival rate of 69% ± 4%, 

whereas 56 ± 4% of wild type cells were viable (Figure 3.2A). When, after 3, 5, 7, 10 and 

13 days these yeast cells were tested for ROS accumulation as detected by DHE staining, 

more wild type cells showed ROS accumulation as compared to ∆dot1 cells at these time 

points (Figure 3.2B-C). Moreover, after 5 days in culture wild type unlike ∆dot1 cells 
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exhibit apoptotic DNA fragmentation as detected by TUNEL labelling (Figure 3.2B). 

These data suggest that Dot1p in contrast to Set1p has a pro-death role during 

chronological ageing.   

Next, we asked whether Dot1p-mediated cell death depends on Yca1p. To address 

this question, we generated a ∆dot1∆yca1 double mutant and compared its survival 

during chronological ageing with ∆dot1 and ∆yca1 cells. We expected better survival of 

the double mutant as compared to the single mutant cells, if Dot1p and Yca1p would act 

independently. However, we found that ∆dot1∆yca1, ∆dot1 and ∆yca1 cells show similar 

survival rates during chronological ageing. After 5 days in culture the ∆dot1∆yca1 strain 

showed a survival rate of 64% ± 4%, whereas 69 ± 4% of ∆dot1 and 68 ± 5% of ∆yca1 

cells but only 56 ± 4% of wild type cells were viable (Figure 3.2D). When, after five days 

in culture, these yeast cells were tested for ROS accumulation, 39% of ∆dot1∆yca1 

showed ROS accumulation, whereas 35% of ∆dot1 and 36% of ∆yca1 but 45% of wild-

type cells were DHE positive (Figure 3.2E). Together these data suggest that Dot1p and 

Yca1p act within the same pathway during chronological ageing as pro-apoptotic 

proteins.  



3.3 Results and Discussion 

82 

 
Figure 3.2: DOT1 disruption protects against Yca1p dependent cell death during 
chronological ageing.  
(A) Survival of wt and ∆dot1 cells was determined by clonogenicity during chronological ageing. 
Data represent mean ± SD (n = 3, *P<0.05). (B) ROS accumulation and DNA fragmentation in wt 
and ∆dot1 cells after two days in culture determined by DHE staining and by TUNEL staining, 
respectively. (C) DHE-positive wt and ∆dot1 cells were quantified after 1, 3, 5, 7, 10 and 13 days 
in culture using flow cytometry. In each experiment, 10.000 cells were evaluated. (D) Survival of 
wild type (wt), ∆dot1, ∆yca1 and ∆dot1∆yca1 cells was determined by clonogenicity after 1 and 5 
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days of chronological ageing. Data represent mean ± SD (n = 3, *P<0.05). (E) DHE-positive wt, 
∆dot1, ∆yca1 and ∆dot1∆yca1 cells were quantified after 5 days in culture using flow cytometry. 
In each experiment, 10.000 cells were evaluated. Data represent mean ± SD (n = 3, *P<0.05, 
**P<0.005) 

 
Dot1p lacking cells are defective in gene silencing at telomers similar to ∆set1 cells 

(Singer et al., 1998), but unlike SET1 disrupted cells ∆dot1 cells are not defective in gene 

silencing at rDNA (Ng et al., 2003a). However, in addition to its requirement for 

telomeric silencing, Dot1p has been characterized to be necessary for DDR (Giannattasio 

et al., 2005; Wysocki et al., 2005). Particularly Dot1p mediated H3 K79 methylation is 

required for Rad9p-dependent checkpoint activation after DNA damage (Wysocki et al., 

2005). The DNA-damage response is an evolutionarily conserved signaling cascade 

crucial for sensing DNA damage and activating cellular responses such as cell-cycle 

arrest, DNA repair and apoptosis. Accordingly, DNA damage response genes have also 

been implicated in yeast apoptosis. Notably, deletion of the budding yeast RAD9 gene can 

partially suppress the lethal effects of the apoptotic orc2-1 mutation in the origin 

recognition complex (Watanabe et al., 2002), suggesting that Rad9p-dependent 

checkpoint function is required for apoptosis induction in orc2-2 cells. As Dot1p is 

required for Rad9p-dependent checkpoint activation, we consider it likely that ∆dot1 cells 

fail to activate apoptosis as a result of a defective checkpoint function.  

 

3.3.3 Dot1p is required for Yca1p-dependent cell death of ∆set1 cells 

As shown in Figure 3.2A, ∆dot1 cells exhibit enhanced survival during chronological 

ageing when compared to wild type cells, suggesting that Dot1p-mediated methylation of 

histone H3 K79 induces cell death during chronological ageing. To further analyze the 

pro-death role of histone H3 K79 methylation, we asked whether the cell death of cells 

lacking histone H3 K4 methylation depends on histone H3 K79 methylation. To address 

this question, we constructed a ∆set1∆dot1 double mutant, which lacks both, histone H3 

K4 and K79 methylation. We observed a rescue in cell survival during chronological 

ageing for the double mutant as compared to ∆set1 cells. After 2 days in culture the 

∆set∆dot1 strain showed a survival rate of 69% ± 3%, whereas 35% ± 5% of ∆set1 cells 

were viable (Figure 3.3A). When, after 2 days in culture, these yeast cells were tested for 

ROS accumulation, 41% of ∆set1∆dot1 cells were DHE positive, whereas 72% of ∆set1 
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cells accumulated ROS (Figure 3.3B). These data confirm the pro-death role of Dot1p 

and suggest that Dot1p is implicated in the death of ∆set1 cells.  

We found that ∆set1 cells die in a partially Yca1p-dependent manner during 

chronological ageing (Figure 3.1A). As Dot1p is required for cell death of ∆set1 cells, we 

asked whether or not Dot1p is required specifically for Yca1p-dependent cell death of 

∆set1 cells. To address this question we generated the triple mutant ∆set1∆dot1∆yca1 and 

analyzed its survival during chronological ageing. We expected a better survival of the 

triple mutant as compared to ∆set1∆dot1 cells, if Dot1p would act in an Yca1p-

independent manner. However, the triple mutant ∆set1∆dot1∆yca1 did not show better 

survival during chronological ageing as compared to ∆set1∆dot1 cells. After two days in 

culture the ∆set∆dot1 strain showed a survival rate of 69% ± 3%, whereas 52% ± 5% of 

∆set1∆dot1∆yca1 cells were viable (Figure 3.3A). When, after two days in culture, these 

yeast cells were tested for ROS accumulation, 41% of ∆set1∆dot1 cells were DHE 

positive and 57% of ∆set1∆dot1∆yca1 cells (Figure 3.3B). Thus, the deletion of YCA1 in 

the ∆set1∆dot1 background provoked an additional decrease in viability, indicating that 

SET1DOT1 disruption and YCA1 disruption might impact identical vital functions and 

hence can mutually compensate for vitality. However, these data suggest that Dot1p is 

specifically required for Yca1p-dependent cell death of ∆set1 cells.  
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Figure 3.3: Dot1p is required for Yca1p-dependent cell death of ∆set1 cells.  
(A) Survival of wt, ∆yca1, ∆dot1, ∆set1, ∆set1∆dot1 and ∆set1∆dot1∆yca1 cells was determined 
by clonogenicity during chronological ageing. Data represent mean ± SD (n = 3). (B) ROS 
accumulation in wt, ∆yca1, ∆dot1, ∆set1, ∆set1∆dot1 and ∆set1∆dot1∆yca1 cells after two days in 
culture was determined by DHE staining. (C) DHE-positive cells were quantified after 2 days in 
culture using flow cytometry. In each experiment, 10.000 cells were evaluated. 

 

In conclusion we identified a new Yca1p-dependent cell death scenario in yeast, which is 

caused by SET1 disruption. Moreover, we identified Dot1p as a potential pro-apoptotic 

protein since DOT1 disruption confers apoptosis resistance and Dot1p is specifically 

required for Yca1p-dependent cell death of ∆set1 cells. We consider it likely that Dot1p 

exhibits pro-apoptotic activity through its role in the DNA damage response, as DDR is 

activating cellular responses including apoptosis in higher eukaryotes.  Genome 

instability and DNA damage is an important determinant of chronological ageing in 
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budding yeast (Fabrizio et al., 2005) and Set1p has been proposed to be a general 

transcriptional regulator that positively regulates genes involved in DNA replication and 

repair, such as replication factor C or the ATP-dependent nuclease DNA2 (Nislow et al., 

1997). Therefore, it is plausible that accumulated DNA damage in chronologically aged 

∆set1 cells triggers apoptosis via a Dot1p-mediated DDR.  
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3.4 Materials and Methods 

3.4.1 Plasmids, yeast strains, and culture conditions 

BY4742 (MATα; his3∆1; leu2∆0; lys2∆0; ura3∆0) and its derivatives ∆dot1, ∆yca1 were 

obtained from Euroscarf. ∆set1 was derived from BY4742 and constructed according to 

(Gueldener et al., 2002). ∆set1Δdot1 and ∆set1∆dot1∆yca1 were derived from ∆dot1 and 

constructed according to (Gueldener et al., 2002). ∆set1∆yca1 and ∆dot1∆yca1 were 

derived from ∆yca1 and constructed according to (Gueldener et al., 2002). 

Survival plating was conducted on YPAD (1% yeast extract, 2% peptone, and 2% 

glucose, 40mg/ml adenine) media supplemented with 2% agar. For experiments testing 

the chronological lifespan, strains were grown in synthetic complete medium (SC) with 

2% glucose (Fink, 1991).  

Transformation of yeast cells was performed by the lithium acetate procedure, as 

described by (Gietz et al., 1992).  

 

3.4.2 Chronological ageing and test for apoptotic markers 

For chronological ageing experiments, cultures were inoculated from fresh overnight 

cultures at low cell density (1 × 106 cells/ml) and aliquots were taken to perform survival 

plating and tests for apoptotic markers. For survival plating, yeast cultures were diluted in 

water, the cell concentration was determined using a Neubauer counting-chamber and 

aliquots containing 500 cells were plated on YPAD plates. The number of colonies was 

determined after incubation for 2 days at 30 °C. Percentage of cell survival was 

calculated for each strain by counting the number of colonies formed after indicated time 

points.  

Apoptotic tests using DHE-staining and TUNEL-staining were performed as 

described previously (Buttner et al., 2007). For quantification of DHE-staining, in each 

sample 10.000 cells were evaluated using flow cytometry (FACS-Aria, BD) and 

processed using BD FACSDiva software.  
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3.4.3 Statistical analysis 

All statistical analyzes were performed using Students T-Test (one-tailed, unpaired), with 

*P<0.05 and **P<0.005, respectively.  
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4.1 Abstract 

Programmed cell death is induced by the activation of a subset of intracellular proteins in 

response to specific extra- and intra-cellular signals. In the yeast S. cerevisiae, Nma111p 

functions as a nuclear serine protease that is necessary for apoptosis under cellular stress 

conditions, such as elevated temperature or treatment of cells with hydrogen peroxide to 

induce cell death. We have examined the role of nuclear protein import in the function of 

Nma111p in apoptosis. Nma111p contains two small clusters of basic residues toward its 

amino terminus, both of which are necessary for efficient translocation into the nucleus. 

Nma111p does not shuttle between the nucleus and cytoplasm during either normal 

growth conditions or under environmental stresses that induce apoptosis. The amino-

terminal half of Nma111p is sufficient to provide the apoptosis-inducing activity of the 

protein, and both the NLS sequences and catalytic serine 235 are necessary for this 

function. We provide compelling evidence that intranuclear Nma111 activity is necessary 

for apoptosis in yeast. 
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4.2 Introduction 

Higher organisms make use of programmed cell death or apoptosis during development, 

morphogenesis and homeostasis, to sculpt and maintain distinct tissues and organs. Cell 

death programs also exist in lower eukaryotes and the yeast S. cerevisiae, for example, 

undergoes cell death upon viral infection as well as during chronological and replicative 

ageing (Herker et al., 2004; Laun et al., 2001; Reiter et al., 2005). Moreover, apoptosis in 

yeast can be stimulated by oxidative and osmotic stress, acetic acid, nitrogen oxide, the 

yeast mating type factor alpha or decreased actin dynamics (Almeida et al., 2007; 

Gourlay and Ayscough, 2006; Ludovico et al., 2001; Madeo et al., 1999a; Severin and 

Hyman, 2002; Silva et al., 2005) In addition, the basic molecular machinery executing 

cell death is evolutionarily conserved and orthologues of caspases (Yca1p), the serine 

protease Omi/HtrA2 (Nma111p), the apoptosis-inducing factor (Aif1p), endonuclease G 

(Nuc1p) and the inhibitor of apoptosis protein (IAP) survivin (Bir1p) have been identified 

(Buttner et al., 2007; Madeo et al., 2002; Walter et al., 2006; Wissing et al., 2004). Yeast 

apoptotic death comes along with the typical diagnostic features of apoptosis, such as 

phosphatidylserine externalisation, DNA condensation and fragmentation, production of 

reactive oxygen species (ROS), cytoskeletal perturbations, histone H2B phosphorylation, 

cytochrome c release from mitochondria, and dissipation of the mitochondrial 

transmembrane potential (Ahn et al., 2005; Fannjiang et al., 2004; Gourlay and 

Ayscough, 2005; Ludovico et al., 2002; Ludovico et al., 2001; Madeo et al., 1997). 

The serine protease Nma111p belongs to the family of HtrA (high temperature 

requirement A) proteins that are defined by a characteristic combination of a catalytic 

serine protease domain with at least one PDZ (postsynaptic density 95/disc large/zona 

occludens) domain (Clausen et al., 2002; Pallen and Ponting, 1997; Ponting, 1997; Vande 

Walle et al., 2008). Nma111p harbours an internal duplication of the HtrA-like sequence, 

with the N-terminal repeat retaining the catalytic triade residues of HtrA-like serine 

proteases (Clausen et al., 2002; Pallen and Ponting, 1997; Ponting, 1997). The C-terminal 

repeat, in contrast, contains an incomplete serine protease site and is supposed to be non-

functional. Bacterial HtrA family members have been implicated in stress tolerance and 

pathogenicity, while human and Drosophila Omi/HtrA2 are mitochondrial proteins that 

contribute to apoptosis through caspase-dependent and -independent processes (Challa et 
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al., 2007; Hegde et al., 2002; Igaki et al., 2007; Suzuki et al., 2001a; Suzuki et al., 2004; 

Vande Walle et al., 2008; Verhagen et al., 2002). Nma111p, also known as Ynm3p, is 

able to promote apoptotic cell death by, at least in part, degradation of Bir1p, the only 

identified IAP in S. cerevisiae (Fahrenkrog et al., 2004; Walter et al., 2006). In addition, 

it is implicated in lipid homeostasis and exhibits chaperone activity (Padmanabhan et al., 

2009; Tong et al., 2006). In this context, both the apoptotic and the chaperone activity of 

Nma111p depends on its serine protease activity, although the actual catalytic serine has 

remained controversial (Fahrenkrog et al., 2004; Padmanabhan et al., 2009). 

Nma111p is a nuclear protein that interacts with nuclear pore complexes 

(Fahrenkrog et al. 2004). Both Yca1p, the yeast caspase, and Bir1p, the only identified 

substrate for Nma111p, are also nuclear proteins (Walter et al., 2006). Therefore, some of 

the processes that occur in the cytoplasm during mammalian apoptosis seem to occur in 

the nucleus during yeast cell death. The importance of the nucleus for the yeast apoptotic 

program is further supported by the notion that Aif1p and Nuc1p translocate from 

mitochondria to the nucleus upon induction of apoptosis (Buttner et al., 2007; Wissing et 

al., 2004). 

Here, we identify and characterize the nuclear localisation signal (NLS) of 

Nma111p and show that nuclear localisation is a prerequisite for Nma111p’s apoptotic 

activity. Nma111p exhibits a bipartite NLS and its nuclear import is mediated by the 

nuclear import receptor Kap95p. In heterokaryon assays, we found that Nma111p is not 

shuttling between the nucleus and the cytoplasm. Mutations in the NLS of Nma111p lead 

to reduced sensitivity of the mutant cells to hydrogen peroxide treatment as well as to 

prolonged life span during chronological ageing. Moreover, the N-terminal HtrA-repeat 

of Nma111p, which localises to the nucleus, is sufficient to promote apoptosis, whereas 

the C-terminal HtrA-repeat, which lacks a NLS and an active catalytic site, fails to trigger 

cell death. Together, our data show that nuclear localisation, the N-terminal HtrA-repeat 

and serine protease activity are required for the pro-apoptotic activity of Nma111p. 
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4.3 Results 

Nma111p contains an HtrA-like serine protease domain and is required for efficient 

apoptosis in yeast in response to several stresses, including elevated temperature and 

oxidative stress (Fahrenkrog et al., 2004). Interestingly, Nma111p is the only known 

HtrA-like protein that is localised primarily to the cell nucleus. In this study, we seek to 

determine if Nma111p is an exclusively nuclear protein, how Nma111p nuclear 

localisation is mediated, and if changes in nuclear localisation are important for Nma111p 

function in response to oxidative stress and/or during chronological ageing. 

 

4.3.1 Nma111p does not undergo nucleocytoplasmic shuttling 

To determine the subcellular localisation of Nma111p under normal and apoptotic 

conditions, we expressed GFP fusion proteins in cells grown to log phase and observed 

fluorescence after exposure to the oxidising agent hydrogen peroxide (H2O2). A positive 

control for nuclear localisation, the SV40 “classical NLS” fused to GFP (cNLS-GFP), is 

primarily nuclear in the absence of H2O2 (Figure 4.1A). However the cNLS-GFP 

becomes more cytosolic after exposure to the oxidising agent, possibly as a result of 

diffusion out of the nucleus due to the increased nuclear pore size in apoptotic cells 

(Mason et al., 2005). A different localisation pattern was observed for Nma111p. In the 

absence of H2O2, Nma111-GFP fluorescence is nuclear (Figure 4.1A; see also 

(Fahrenkrog et al., 2004)). After exposure to 3 mM H2O2, Nma111-GFP localisation 

remains unchanged, exhibiting intense fluorescence within the nucleus and lacking any 

detectable cytosolic staining. Thus Nma111p is predominantly present within the nucleus 

under steady state conditions in both the absence and presence of a concentration of H2O2 

that induces apoptosis in yeast.  

While the steady state localisation of Nma111-GFP fluorescence is within the 

nucleus in both the presence and absence of H2O2, it is possible that Nma111p undergoes 

nucleocytoplasmic shuttling under either or both conditions. The appearance of nuclear 

localisation under steady state conditions may simply be due to a higher rate of Nma111p 

protein import compared to export, resulting in a much greater protein concentration 

within the nucleus than the cytoplasm (DeLotto et al., 2007; Feng and Hopper, 2002; 

Selitrennik et al., 2006). To determine if Nma111p undergoes nucleocytoplasmic 
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shuttling, we performed a heterokaryon shuttling assay (Feng and Hopper, 2002) on cells 

expressing an Nma111-GFP fusion protein. Briefly, we expressed Nma111p under 

control of the GAL1 promoter in a wild type haploid yeast strain until a detectable amount 

of Nma111-GFP was visible in the nucleus. We then repressed further Nma111-GFP 

transcription by adding glucose and allowed the existing Nma111-GFP to equilibrate 

within the cells. Next, we introduced haploid cells of the opposite mating type that 

contain a kar1-1 allele. Cells with this kar1 mutation are able to undergo cytoplasmic 

fusion with cells of the opposite mating type as an early stage of diploid zygote 

formation, but are unable to complete karyogamy with a partner cell (Conde and Fink, 

1976), thus generating a heterokaryon with two distinct nuclei derived from two distinct 

populations of haploid cells. Since one nucleus is from a cell expressing Nma111-GFP 

and no new Nma111-GFP is being synthesised, the only way the second nucleus can 

become fluorescent is by importing Nma111-GFP that was exported or diffused out of the 

first. Thus, shuttling is detected through the observation of fluorescence in both nuclei of 

the zygote. Indeed, examination of heterozygotes in which one donor nucleus harbours 

Cca1-GFP, which shuttles to assist in tRNA export (Feng and Hopper, 2002), reveals the 

appearance of fluorescence in both nuclei, indicating that Cca1-GFP has been exported 

from one nucleus and some Cca1-GFP protein has been imported into the second (Figure 

4.1B). Conversely, the histone protein H2B does not shuttle (Mosammaparast et al., 

2001), so we observe fluorescence in only one nucleus of the heterokaryon. When we 

observe the pattern of fluorescence generated by Nma111-GFP in heterokaryons, we only 

see Nma111p in a single nucleus (Figure 4.1B, top row). Thus Nma111-GFP does not 

shuttle between the nucleus and cytoplasm under steady-state conditions.  

Nma111p is essential for efficient apoptosis in the presence of 3 mM H2O2 

(Fahrenkrog et al., 2004). While we had observed that Nma111p does not shuttle under 

steady-state conditions, the possibility remained that the protein is selectively exported 

under conditions that induce apoptosis. To examine whether Nma111p shuttling is 

induced under apoptotic conditions, we repeated our shuttling assay using Nma111-GFP, 

this time exposing zygotes to 3 mM H2O2 for 2h (data not shown) and 4 h (Figure 4.1C) 

after initiation of mating. In both the presence and absence of H2O2, heterokaryons 
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containing Nma111-GFP retain fluorescence in only a single nucleus. These data indicate 

that Nma111p does not leave the nucleus, even under conditions that induce apoptosis. 

 

 
Figure 4.1: Nma111p does not shuttle between the nucleus at the cytoplasm under normal or 
apoptotic conditions.  
(A) Steady-state localization of Nma111p in the presence and absence of oxidative stress. Yeast 
expressing Nma111p tagged at the C-terminus with GFP (Nma111-GFP) or a classical nuclear 
localization signal fused to GFP (cNLS-GFP) were grown in SD –Ura media, then exposed to 3 
mM hydrogen peroxide for 1 h. Cells were examined by direct fluorescence (GFP) and phase 
contrast (phase) light microscopy. Nma111p is localized to the nucleus in cells grown in either the 
presence or absence of hydrogen peroxide. (B) Test for nucleocytoplasmic shuttling of Nma111p 
under normal growth conditions. Cells expressing Nma111p, Cca1p, or histone H2B fused to GFP 
and under control of the GAL1 promoter were grown in media containing galactose to induce GFP 
fusion protein expression. The cells were then shifted to repressing conditions by the addition of 
glucose for 1 h and were mated with a kar1-1 mutant strain (MS739) to generate heterokaryons. 
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Representative zygotes are depicted (dashed outline) expressing Nma111-GFP (top), the shuttling 
tRNA processing protein Cca1-GFP (middle), and a nuclear histone H2B-GFP fusion (bottom). 
GFP localization was determined by direct fluorescence. DNA was observed by DAPI staining. 
(C) Test for nucleocytoplasmic Nma111-GFP shuttling under oxidative stress conditions. 
Nma111-GFP shuttling was tested as described above, except that 3 mM hydrogen peroxide was 
added to cells 30 minutes after mating was initiated and cells were observed 4 h later. Images 
depict representative heterokaryons incubated in the absence (- H2O2) and presence (+ H2O2) of 
hydrogen peroxide. 

 

4.3.2 The amino-terminal 35 amino acids of Nma111p are sufficient for nuclear 

targeting 

In order to investigate the targeting of Nma111p to the nucleus, we examined the amino 

acid sequence of the protein for domains that might contain potential NLSs. In silico 

examination of the entire Nma111p sequence using the PSORT (Nakai and Horton, 1999) 

or PredictNLS (Cokol et al., 2000) algorithms failed to identify any potential cNLS 

sequences (data not shown). However, careful manual analysis of the amino terminal 

region of Nma111p revealed two short basic clusters of three residues each at amino acids 

9 – 11 and 28 – 30 (Figure 4.2A). The close juxtaposition of these basic residues is 

similar to the organisation of a prototypical cNLS (Lange et al., 2007). To determine if 

these basic clusters are sufficient for mediating nuclear import of a reporter protein, we 

generated two chimeric polypeptides that respectively included the first 35 (Nma1111-35-

GFP) and first 83 (Nma1111-83-GFP) amino acids of Nma111p fused to GFP. Expression 

of these chimeras in wild-type yeast resulted in predominantly nuclear fluorescence, with 

a low level of cytosolic staining that was excluded from the vacuole (Figure 4.2B and 

2C). Thus, the first 35 amino acids of Nma111p containing the two short basic clusters 

are sufficient to function as an NLS. 

In order to determine if either or both of the clusters of basic residues in the N-

terminus of Nma111p are necessary for the NLS activity of this region, we performed 

site-directed mutagenesis on Nma1111-83-GFP to generate chimeric proteins that 

contained the first 83 amino acids of Nma111p with the lysine (K) and arginine (R) 

residues at amino acids 9 – 11 (nls1) altered to alanines to make Nma1111-83nls1∆-GFP, 

with K and R residues 28 – 30 (nls2) replaced with alanines (Nma1111-83nls2∆-GFP), and 

with both basic clusters altered (Nma1111-83-nls1∆nls2∆-GFP). Each Nma111p mutant 

was then expressed in wild type yeast and observed for localisation of fluorescence 
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(Figure 4.2B). Expression of Nma1111-83nls1∆-GFP results in substantially more 

cytosolic fluorescence than Nma1111-83-GFP, but retains some nuclear accumulation of 

the fusion protein. Nma1111-83nls2∆-GFP is similarly found in the cytoplasm and nucleus, 

with a subtly greater accumulation within the nucleus. However, alteration of both basic 

clusters from this short region at the amino-terminus of Nma111p (Nma1111-83-

nls1∆nls2∆-GFP) results in almost no nuclear accumulation above that found within the 

cytosol. Thus, while the alteration of either basic cluster affects the efficiency of nuclear 

import of this region of Nma111p, altering the entire bipartite NLS is necessary to 

severely reduce the accumulation of the GFP fusion within the nucleus. 

 

4.3.3 Kap95p is an importin for Nma111p 

The two basic amino acid clusters in the amino terminus of Nma111p that are necessary 

for efficient nuclear import have the characteristics of being a classical NLS (cNLS) 

imported by the heterodimeric Kap60p-Kap95p importin complex. In order to determine 

if Kap95p is necessary for Nma111p import, we expressed Nma1111-83-GFP in yeast cells 

expressing a temperature-sensitive kap95-3 allele and assayed for nuclear fluorescence at 

the permissive and restrictive temperatures. At the permissive temperature, Nma1111-83-

GFP expressed in a kap95-3 mutant is present both in the cytoplasm and the nucleus, with 

some accumulation in the nucleus (Figure 4.2C). However, after a 2 h shift to 37°C, 

Nma1111-83-GFP in kap95-3 cells is redistributed exclusively to the cytosol, with little 

detectable nuclear fluorescence. We did not observe this redistribution of Nma1111-83-

GFP in cells expressing mutant alleles of the karyopherins msn5 (Figure 4.2C) or crm1 

(data not shown). These observations indicate that Kap95p is the primary karyopherin for 

importing the amino-terminal “cNLS” of Nma111p.  
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Figure 4.2: Nma111p contains a bipartite nuclear localization signal near its amino-
terminus. 
 (A) Cartoon diagram of Nma111p depicting the predicted HtrA-like serine protease and C-
terminal PDZ domains. The amino-terminal 39 amino acids are magnified, with the basic residues 
of the predicted bipartite NLS in bold and underlined. (B) The N-terminal 35 amino acids of 
Nma111p are sufficient for nuclear targeting. Cells expressing fusions of the N-terminus of 
Nma111p with GFP were observed by direct fluorescence (GFP) and phase contrast (phase) light 
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microscopy. The N-terminal 83 (Nma1111-83, top row) or 35 (Nma1111-35, second row) amino acids 
of Nma111p were fused in frame with GFP and expressed under control of the NMA111 promoter. 
The Nma1111-83-GFP construct was altered by site-directed mutagenesis so that either the upstream 
NLS (“NLS1”), downstream NLS (“NLS2”), or both NLSs were replaced with three alanine 
residues. Each mutagenised construct (Nma1111-83nls1Δ-GFP, third row; Nma1-1111-83nls2Δ-GFP, 
fourth row; Nma1111-83nls1Δnls2Δ-GFP, bottom row) was then expressed in yeast under control 
of the endogenous NMA111 promoter. (C) Kap95p is essential for Nma1111-83 nuclear import. A 
plasmid expressing full-length Nma111p fused to GFP was expressed in wild-type yeast and in 
yeast strains containing a temperature-sensitive kap95 mutation (kap95-3) as well as a deletion of 
the karyopherin Kap142p/Msn5p (msn5Δ). Cells were grown to log phase at 24°C, shifted to 37°C 
for two hours, and Nma1111-83-GFP localization was observed by direct fluorescence. 

 

While these experiments suggest that the clusters of basic residues found in the 

amino-terminal 30 amino acids of Nma111p function as a bipartite NLS, we sought to 

determine if these sequences were necessary for import of the full-length Nma111p 

protein. To this end, we constructed a chimeric GFP fusion containing the entire 997 

amino acids of the Nma111p protein. Expression of this protein in wild-type cells 

resulted in entirely nuclear fluorescence, with essentially no detectable Nma111-GFP 

visible in the cytoplasm (Figure 4.3A, top row). We then generated mutants with the three 

K and R residues in either nls1 or nls2 replaced with three alanines. Replacement of 

either basic cluster with three alanine residues results in a redistribution of the Nma111-

GFP protein so that strong cytosolic fluorescence is observed with no detectable GFP 

accumulation within the nucleus (Figure 4.3A, second and third row). Removal of both 

basic clusters also results in exclusively cytosolic fluorescence (Figure 4.3A, bottom 

row). Thus, in the context of the full-length Nma111 protein, the loss of either basic 

cluster from the bipartite NLS results in a loss of nuclear Nma111p accumulation 

suggesting that both nls1 and nls2 are necessary for Nma111p nuclear import. 

We also examined the localisation of full-length Nma111p in yeast lacking 

functional Kap95p and Msn5p. Wild type, msn5∆, and kap95-3 cells were transformed 

with a plasmid expressing Nma111-GFP from its endogenous promoter. Cells expressing 

Nma111-GFP were grown at 24°C and shifted to 37°C for up to 5 h, then observed for 

intracellular fluorescence (Figure 4.3B). As observed for the Nma1111-83 fragment, full-

length Nma111-GFP is predominantly nuclear in wild type cells and in cells lacking 

Msn5p at both 24°C and 37°C. A similar nuclear localisation is observed at both the 

permissive and restrictive temperatures in cells containing a kap95-3 allele, indicating 
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that nuclear import and accumulation of full-length Nma111p is not solely dependent on 

Kap95p. 

 

 
Figure 4.3: Both NLS sequences are necessary for efficient targeting of Nma111p to the 
nucleus.  
(A) The entire coding region of NMA111 was fused in-frame with GFP under control of the 
NMA111 promoter and observed in yeast by direct fluorescence (top row). Nma111-GFP fusions 
in which nls1, nls2, or both nls1 and nls2 were replaced by alanines were also expressed and 
observed in wild-type cells. (B) Full length Nma111-GFP was expressed in wild-type, kap95ts, and 
msn5Δ cells, grown to log phase at 24°C, and shifted to 37°C for 3 h. Cells expressing GFP fusion 
proteins were observed by direct fluorescence (GFP) and phase contrast (phase) microscopy. 

 

4.3.4 NLS mutants of Nma111p lack pro-apoptotic activity 

Previously we have shown that Nma111p is able to promote apoptosis and that this pro-

apoptotic activity depends on its serine protease activity (Fahrenkrog et al., 2004). To 
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determine whether nuclear localisation of Nma111p is critical to trigger cell death, we 

next mutated the NLS1, NLS2 or both NLSs in the plasmid pNOPPATA1L-NMA111 

(Fahrenkrog et al., 2004), respectively, as described for the GFP-fusion proteins and 

transformed the resulting plasmids into ∆nma111 cells. First, we determined the 

subcellular localisation of the wild type and the resulting mutant ProtA-Nma111p fusion 

proteins by indirect immunofluorescence microscopy. ProtA-Nma111p is a nuclear 

protein in wild type and kap95-3 cells, whereas the replacement of either or both NLSs 

with three alanine residues results in a redistribution of the ProtA-Nma111p protein with 

strong cytosolic fluorescence and no detectable accumulation of the fusion proteins 

within the nucleus (Figure 4.4).  

 

 
Figure 4.4: Localisation of ProtA-Nma111p as detected by immunofluorescence microscopy. 
Indirect immunofluorescence localisation of ProtA-Nma111p wild-type cells and kap95-3 mutants 
as well as ProtA-Nma111p in which NLS1, NLS2 or both NLS1 and NLS2 were replaced by 
alanines observed in wild-type cells. Cells were stained with a primary rabbit anti-protein-A 
antibody and a secondary anti-rabbit IgG antibody labelled with Alexa Fluor 488. Shown are 
confocal fluorescence micrographs and differential interference contrast images. Scale bars: 5 µm. 
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Next, ProtA-Nma111p, ProtA-Nma111nls1∆, ProtA-Nma111nls2∆ and ProtA-

Nma111nls1∆nls2∆ cells were incubated with 0.4 mM H2O2 for 4 hours and analyzed for 

apoptotic hallmarks. Apoptotic features include chromatin condensation and 

fragmentation, single stranded DNA-breaks and accumulation of reactive oxygen species 

(ROS). As shown in Figure 4.5A, ProtA-Nma111p cells showed accumulation of ROS as 

indicated by dihydroxyethidium (DHE) staining after treatment with H2O2. DHE reacts 

with ROS and forms red fluorescent ethidium (Sharikabad et al., 2001). ProtA-

Nma111nls1∆, ProtA-Nma111nls2∆ and ProtA-Nma111nls1∆nls2∆ cells in contrast 

showed less DHE staining as compared to ProtA-Nma111p cells. Quantification of DHE 

staining revealed that about 11 % of ProtA-Nma111p cells were ROS positive, but only 

3-4% of the NLS-mutant cells (Figure 4.5B).  

 

 
Figure 4.5: Mutations in the NLS sequences of Nma111p protect against apoptosis.  
(A) Cells expressing protein A-tagged Nma111p, Nma111p nls1∆, Nma111p nls2∆ and Nma111p 
nls1∆nls2∆, respectively, were grown in selective medium, treated with 0.4 mM H2O2 and 
analyzed for apoptotic hallmarks. Reactive oxygen species (ROS) were detected by DHE staining. 
Shown are confocal micrographs and differential-interference contrast (DIC) images. Bars, 5 µm. 
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(B) Quantification of ROS accumulation using DHE staining after treatment with 0.4 mM H2O2. 
500-1000 cells were counted. (C) Survival determined by clonogenicity of yeast cells expressing 
ProtA-Nma111p compared with NLS mutants without pretreatment or with incubation in 0.4 mM 
H2O2 for 4 hours. Bars present mean ±s.d. 

 

Single-strand DNA breaks can be detected by the TUNEL assay (Gavrieli et al., 

1992; Gorczyca et al., 1993). The TUNEL test detects free 3’ ends, which are generated 

by chromosome fragmentation, by attaching labelled nucleotides with terminal 

deoxynucleotidyl transferase. Consistent with the ROS staining, ProtA-Nma111p cells 

were TUNEL positive, ProtA-Nma111nls2∆ cells were partially positive, whereas ProtA-

Nma111nls1∆ and ProtA-Nma111nls1∆nls2∆ cells were all TUNEL-negative (Figure 

4.6A, top two rows). Furthermore, AnnexinV/propidium iodide (PI) costaining was used 

to discriminate between early apoptotic (Annexin V positive, PI negative), late apoptotic 

state (Annexin V positive, PI positive), and necrotic (annexin V negative, PI positive) cell 

death. This AnnexinV/PI costaining revealed that ProtA-Nma111p cells mainly undergo 

apoptosis, whereas ProtA-Nma111nls1∆ and ProtA-Nma111nls1∆nls2∆ cells were 

neither apoptotic nor necrotic (Figure 4.6A, bottom two rows).  
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Figure 4.6: Mutations in the NLS sequences of Nma111p causes a lack of apoptotic 
hallmarks.  
Cells expressing protein-A-tagged Nma111p, Nma111p-NLS1Δ, Nma111p-NLS2Δ and 
Nma111p-NLS1ΔNLS2Δ, respectively, were grown in selective medium, treated with 0.4 mM 
H2O2 and analyzed for apoptotic hallmarks. (A) Single-strand DNA breaks were detected by the 
TUNEL test and (B) phosphatidylserine externalisation by annexin-V/PI costaining. Shown are 
confocal micrographs and differential-interference contrast (DIC) images. Scale bars: 5 µm; 2.5 
µm TUNEL Nma111p-NLS1ΔNLS2Δ. 

 
Cell survival of ProtA-Nma111p cells was further tested in a clonogenicity assay 

(Buttner et al., 2007). Treatment with 0.4 mM H2O2 for 4 hours resulted in the death of 

yeast cells expressing ProtA-Nma111p (survival rate of less than 20%), whereas ProtA-

Nma111nls1∆ and ProtA-Nma111nls1∆nls2∆ cells were largely unaffected (survival 

rates ~60 %; Figure 4.5C). Interestingly, ProtA-Nma111nls2∆ cells were more sensitive 

to H2O2 as compared to the other NLS-mutant cells with about 30% of surviving cells 

(Figure 4.5C), consistent with the stronger nuclear accumulation of the mutant proteins 

(Figure 4.2B). In the absence of H2O2, all ProtA-Nma111p show similar survival rates 

between 80-90% (Figure 4.5C). Together, these data indicate that the nuclear localisation 

of Nma111p is required for its function in response to oxidative stress.  
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4.3.5 Lack of nuclear localisation of Nma111p causes late onset of cell death 

during chronological ageing 

Chronologically aged yeast cells show features of apoptotic death and are considered to 

have undergone physiologically induced apoptosis (Fabrizio and Longo, 2008). We 

therefore investigated whether Nma111p’s nuclear localisation is relevant for cell death 

during chronological ageing. We observed that disruption of either NLS1 or NLS2 of 

Nma111p does not significantly delay the onset of cell death in chronologically ageing 

cells after 14 days in culture, whereas, by contrast, combined disruption of the two NLSs 

significantly increased survival of the cells (Figure 4.7A). The survival rates were 

reproduced in nine to twelve independent experiments. When these yeast cells were 

tested for apoptotic markers after 7 days in culture Nma111p and Nma111nls2∆ cells 

showed typical hallmarks of apoptosis, such as the production of ROS (as detected by 

DHE-staining) or DNA condensation (data not shown), whereas Nma111nls1∆ and 

Nma111nls1∆nls2∆ cells lack apoptotic markers (Figure 4.7B and C). Therefore, nuclear 

localisation of Nma111p is also fundamental for cell death during chronological ageing.  
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Figure 4.7: Chronological ageing of wild-type ProtA-Nma111p and NLS mutant cells.  
(A) Survival rates. Error bars, mean ±s.d. (B) Quantification of ROS production, (C) ROS 
detection (DHE) and visualisation of DNA (DAPI) in Nma111p and Nma111p NLS mutants after 
5 days of cultivation. Bars, 5 µm (ROS), 2.5 µM (DNA).  

 

4.3.6 The N-terminal HtrA-repeat of Nma111p is required for apoptosis induction 

Nma111p belongs to the HtrA-family of serine proteases and consists of two tandem 

HtrA-repeats, each completed with two PDZ domains (Clausen et al., 2002; Pallen and 

Ponting, 1997; Ponting, 1997). While the N-terminal HtrA-repeat harbours a complete 

catalytic triade characteristic for serine proteases, the second repeat is lacking two of the 

three active site residues (Pallen and Ponting, 1997). To test whether the N-terminal 

HtrA-repeat is required and sufficient to promote cell death, we generated two truncations 

of Nma111p that respectively expressed the N-terminal and the C-terminal HtrA-repeat 

fused to protein A. The resulting plasmids pNOPPATA1L-Nma111-N (residues 2-449) 

and pNOPPATA1L-Nma111-C (residues 450-997) were transformed into ∆nma111 cells 
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and indirect immunofluorescence microscopy revealed that ProtA-Nma111p-N was 

predominantly nuclear with some cytosolic staining, while ProtA-Nma111p-C showed no 

nuclear accumulation (Figure 4.8). Next, ProtA-Nma111-N and ProtA-Nma111-C cells 

were incubated with 0.4 mM H2O2 for 4 hours and analyzed for apoptotic markers. ProtA-

Nma111-N cells produced ROS as determined by DHE staining (Figure 4.9A), showed 

single-strand DNA breaks as detected by TUNEL staining (Figure 4.10A) and were 

AnnexinV (Figure 4.10B), whereas ProtA-Nma111-C cells showed no apoptosis marks. 

Quantification of DHE staining revealed that about 9.5% of ProtA-Nma111-N cells were 

ROS positive, but only 2.5% of the ProtA-Nma111-C cells (Figure 4.9B).  

 

 
Figure 4.8: Localisation of ProtA-Nma111p variants as detected by immunofluorescence 
microscopy. 
Indirect immunofluorescence localisation of ProtA−Nma111-N in wild-type cells and kap95-
3 mutants, as well as ProtA−Nma111-N(S235C) and ProtA−Nma111-C in wild-type cells. Cells 
were stained with a primary rabbit anti-protein-A antibody and a secondary anti-rabbit IgG 
antibody labelled with Alexa Fluor 488. Shown are confocal fluorescence micrographs and 
differential interference contrast images. Scale bars: 5 µm.  

 

Next, ProtA-Nma111-N and ProtA-Nma111-C cells were tested for cell survival 

after H2O2 treatment. While about 20% (19.6% ± 6.9 %) of the ProtA-Nma111-N cells 
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survived, ~36% (35.6% ± 14.4%) of ProtA-Nma111-C cells were resistant to hydrogen 

peroxide (Figure 4.9C).  

 

 
Figure 4.9: The N-terminal HtrA-repeat of Nma111p is mediating its pro-apoptotic activity.  
(A) ProtA-Nma111p-N, ProtA-Nma111p-C, ProtA-Nma111p-NS235C and ∆nma111 cells, 
respectively, were grown in selective medium, treated with 0.4 mM H2O2 and analyzed for 
apoptotic hallmarks. Reactive oxygen species (ROS) were detected by DHE staining and single 
strand DNA breaks by the TUNEL test. Shown are confocal micrographs and differential-
interference contrast (DIC) images. Bars, 5 µm. (B) Quantification of ROS accumulation using 
DHE staining after treatment with 0.4 mM H2O2. 500-1000 cells were counted. (C) Survival 
determined by clonogenicity of yeast cells expressing ProtA-Nma111p HtrA-truncations compared 
with nma111 mutants without pre-treatment or with incubation in 0.4 mM H2O2 for 4 hours. Data 
present mean ±s.d. 

 

We have previously shown that serine235 is required for the death promoting 

activity of Nma111p (Fahrenkrog et al. 2004). To confirm that S235 is necessary for 

Nma111p activity and not simply localisation, we mutated this serine residue to a 

cysteine by oligonucleotide site directed mutagenesis in the plasmid pNOPPATA1L-

NMA111-N. The resulting pNOPPATA1L-NMA111-NS235C was transformed into 
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∆nma111 cells and the subcellular localisation of the protein was found to be 

predominantly nuclear based on indirect immunofluorescence microscopy (Figure 4.8). 

ProtA-Nma111-NS235C cells that were treated with 0.4 mM H2O2 for 4 hours showed no 

production of ROS (Figure 4.9A) and were TUNEL and AnnexinV negative (Figure 

4.10), similar to ∆nma111 cells. Quantification of DHE staining revealed ~3.5% of the 

ProtA-Nma111-NS235C and the nma111 disrupted cells to be ROS positive (Figure 

4.9B). In consistency with these results the clonogenicity assay revealed survival rates of 

about 40% (40.3 % ± 8.6 %) for ProtA-Nma111-NS235C cells and ~30% (28.7 % ± 6.0 

%) for ∆nma111 cells (Figure 4.9C).  

 

 
Figure 4.10: Expression of the N-terminal HtrA repeat of Nma111p causes apoptotic 
hallmarks.  
ProtA−Nma111p-N, ProtA−Nma111p-C, ProtA−Nma111p-N(S235C) and Δ nma111 cells, 
respectively, were grown in selective medium, treated with 0.4 mM H2O2 and analyzed for 
apoptotic hallmarks. Reactive oxygen species (ROS) were detected by DHE staining and single-
strand DNA breaks were detected by the (A) TUNEL test and (B) phosphatidylserine 
externalisation by annexin-V/PI costaining. Shown are confocal micrographs and differential-
interference contrast (DIC) images. Scale bars: 5 µm. 

 

To elucidate the role of the Nma111p’s two HtrA-repeats under more natural 

conditions, we performed chronological ageing assays over 14 days and found that 
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expressing ProtA-Nma111-C or ProtA-Nma111-NS235C, and to ∆nma111 cells (Figure 

4.11A). When these yeast cells were tested for ROS accumulation after 7 days in culture 

18% of ProtA-Nma111-N cells showed the production of ROS whereas only 5% of 

ProtA-Nma111-C cells, 4% of ProtA-Nma111-NS235C and 3% of ∆nma111 showed 

ROS accumulation (Figure 4.11B and C).  

Taken together, the N-terminal HtrA-repeat of Nma111p is sufficient to promote 

apoptosis and its death promoting activity is reduced by a mutation of serine235 to 

cysteine.  

 

 
Figure 4.11: Chronological ageing of ProtA-Nma111p-mutant cells.  
(A) Survival rates. Error bars, mean ±s.d. (B) Quantification of ROS production, (C) ROS 
detection (DHE) and visualisation of DNA (DAPI) after 5 days of cultivation. Bars, 5 µm (ROS), 
2.5 µM (DNA). 
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4.4 Discussion 

The HtrA-like serine protease Nma111p is a nuclear protein that is able to promote 

apoptosis in yeast in a serine protease-dependent manner. We show here that Nma111p 

harbours a classical bipartite NLS within the first 35 N-terminal amino acids and 

identified Kap95p as its nuclear import receptor. Also, we show that Nma111p is a non-

shuttling protein that even under oxidative stress conditions remains nuclear. The pro-

apoptotic activity of Nma111p requires its nuclear localisation, as mutations of any 

critical residue in the bipartite NLS reduce Nma111p’s ability to mediate apoptosis. We 

show further that Nma111p’s death-promoting activity is restricted to its N-terminal 

HtrA-repeat, which harbours the NLSs and the active catalytic site of the protein. 

 

4.4.1 Nma111p is a nuclear protein that does not undergo nucleocytoplasmic 

shuttling 

Nma111p is a nuclear protein under steady-state conditions in the absence and presence 

of hydrogen peroxide added to induce apoptosis. In contrast, a nuclear reporter protein 

(i.e. cNLS-GFP) is primarily nuclear in the absence of H2O2, but the cNLS-GFP becomes 

more cytosolic after exposure to the oxidising agent (Figure 4.1A). The release of the 

cNLS-GFP from the nucleus upon H2O2 stress is most likely simply due to increased size 

of the yeast NPC permeability barrier (Mason et al., 2005). Alternatively, Nma111p 

might be “anchored” inside the nucleus due to an interaction with a thus far unknown 

binding partner.  

 

4.4.2 Kap95p is an importin for Nma111p 

Nuclear localisation of a protein typically requires the presence of a nuclear localisation 

signal. Nma111p is an exclusively nuclear protein and we have mapped a bipartite basic 

NLS within the first 35 amino acids of the protein. Such basic NLS sequences are most 

often recognized by the Kap60p/Kap95p import receptor complex and consequently the 

expression of Nma1111-83-GFP in a kap95-3 mutant leads to cytoplasmic redistribution of 

the fusion protein (Figure 4.2C). Surprisingly, full-length Nma111p is still in the nucleus 

in this kap95 mutant. Similarly, ProtA-Nma111p is nuclear, whereas ProtA-Nma111-N is 
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cytoplasmic in the kap95-3 mutant (Figure 4.4 and Figure 4.6). These data suggest that 

Nma111p gets trapped inside the nucleus due to an interaction with a thus far unknown 

binding partner and that the binding to this partner protein is mediated by the C-terminal 

HtrA-repeat. This binding partner is unlikely to be Bir1p, since Bir1p interacts with the 

N-terminal HtrA-repeat of Nma111p (Walter et al., 2006). Alternatively, more than one 

Kap mediates the nuclear import of the full-length protein, as it known for histones or 

ribosomal proteins (Mosammaparast et al., 2002; Mosammaparast et al., 2001; Rout et 

al., 1997). Post-translational modifications can also affect protein localisation and, for 

example, mask nuclear localisation signals (Poon et al., 2005). The human homologue of 

Nma111p, Omi/HtrA2, is regulated by phosphorylation (Plun-Favreau et al., 2007) and 

Nma111p is phosphorylated at serine989 in the C-terminal HtrA-repeat (Saccharomyces 

cerevisiae database). It will be interesting to see if this phoshorylation site in fact is 

implicated in the regulation of Nma111p nuclear import/retention. 

 

4.4.3 Nuclear localisation is critical for Nma111p function in yeast apoptosis 

Our previous studies have revealed that Nma111p and its only known substrate, the 

inhibitor-of-apoptosis protein Bir1p, are both nuclear proteins (Fahrenkrog et al., 2004; 

Walter et al., 2006), which indicated that the nucleus appears to play a significant role in 

yeast apoptosis. This is further supported by our data presented here, which revealed that 

Nma111p is not shuttling between the nucleus and the cytoplasm under normal and 

oxidative stress conditions (Figure 4.1). Moreover, disruption of any of the two basic 

stretches that act as NLS for Nma111p affects its ability to promote cell death in response 

to oxidative stress and during chronological ageing (Figure 4.5, Figure 4.6 and Figure 

4.7). Therefore, Nma111p function in yeast apoptosis appears not linked to mitochondria, 

which is in clear contrast to its metazoan homologue Omi/HtrA2. Omi/HtrA2 is 

predominantly localised to mitochondria and is released into the cytosol under apoptotic 

conditions, which, in turn, allows its interaction with and the degradation of the inhibitor-

of-apoptosis protein XIAP due to which executioner caspases get activated (Challa et al., 

2007; Hegde et al., 2002; Khan et al., 2008; Suzuki et al., 2001a; Suzuki et al., 2004). It 

still remains to be seen which proteins are the downstream targets of Nma111p that lead 

to the execution of apoptosis. Bir1p is one such target and degradation of Bir1p by 
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Nma111p induces apoptosis, but Bir1p does not directly inhibit the yeast caspase Yca1p 

(Walter et al., 2006). Therefore the bridging factor to the caspase or an unknown 

executioner of apoptosis in yeast remains to be elucidated, but it is most likely a nuclear 

protein. 

 

4.4.4 Serine235 versus serine236 as active catalytic site 

Nma111p consists of two tandem HtrA-repeats with the N-terminal HtrA-repeat 

harbouring a complete catalytic triade characteristic for serine proteases, while the second 

repeat is lacking two of the three active site residues (Pallen and Ponting, 1997). 

Consequently, we show here that the N-terminal HtrA-repeat of Nma111p is sufficient 

and required to induce apoptosis in response to oxidative stress and during chronological 

ageing (Figure 4.9, Figure 4.10 and Figure 4.11). The active catalytic serine of trypsin-

like serine proteases is typically embedded in a sequence motif GNSGG as consensus 

(Clausen et al., 2002; Pallen and Ponting, 1997), which in Nma111p is 234GSSGS238 

accordingly. We have previously shown that a mutation in serine235 inhibits Nma111p’s 

ability to promote cell death (Fahrenkrog et al., 2004), while others have recently shown 

that mutation of serine236 impairs its chaperone activity (Padmanabhan et al., 2009). 

Consistent with our previous data, we found here that cells that express ProtA-Nma111p-

N with a cysteine mutation in serine235 are less sensitive to oxidative stress and ageing 

induced apoptosis than cells expressing a wild-type ProtA-Nma111p-N (Figure 4.9, 

Figure 4.10 and Figure 4.11). Therefore, serine235 is unambiguously important for the 

pro-apoptotic activity of Nma111p. The controversy between our data and Padmanabhan 

et al. (2009) most likely arises from the different strain background that has been used. 

While in our background, i.e.BMA41/BMA64/W303 (Fahrenkrog et al., 2004), and in 

BY4741 wild-type cells (Zuo et al., 2005) deletion of nma111 causes no growth and 

morphological defects, it does in the YB332 background used by Padmanabhan et al. 

(Tong et al., 2006), indicating some strain specific features of the YB332 derivatives. 

Alternatively, serine235 and serine236 both are critical for the catalytic activity of 

Nma111p; serine235 primarily for its pro-apoptotic activity and serine236 primarily for 

its chaperon activity. Future studies are required to address this issue more 

systematically.  
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In summary, we have identified and characterized the nuclear localisation signal 

and nuclear import receptor of Nma111p. Moreover, Nma111p is a non-shuttling protein 

that remains in the nucleus under steady state as well as apoptotic conditions. This 

inability of Nma111p to exit the nucleus in essence excludes a role for Nma111p in the 

mitochondria-dependent apoptotic pathway in yeast. This is further supported by our data 

that indicate that Nma111p exerts its apoptotic activity in the nucleus and that nuclear 

localisation is critical for the Nma111p-dependent cell death. Therefore nuclear signalling 

cascades appear of utmost significance for the execution of apoptosis in yeast. 
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4.5 Materials and Methods 

4.5.1 Yeast strains, media, and plasmids 

Enzymes for molecular biology were purchased from New England Biolabs (Beverly, 

MA) and Sigma-Aldrich (St. Louis, MO) and were used as per manufacturer’s 

instructions. Yeast transformations were performed as described (Woods and Gietz, 

2001) as were genetic manipulations, yeast cell culture, and media preparation (Guthrie, 

1991). Plasmids pGAL::CCA-GFP and pGAL::H2B-GFP were generous gifts from A. 

Hopper (Penn State, Hershey, PA). Yeast strains and plasmids used are indicated in Table 

1. 

Plasmids pKBB282 (Nma1111-35-GFP) and pKBB280 (Nma1111-83-GFP) were 

constructed by amplifying the DNA encoding the NMA111 promoter and the first 35 and 

83 amino acids of Nma111p, respectively, and inserting the resulting DNA into 

pLDB350 (CEN URA3 GFP) by homologous recombination. For pKBB282, NMA111 

DNA was amplified using primers KOL 155 (5’-  GTA CCG GGC CCC CCC TCG AGG 

TCG ACG GTA TCG ATA AGC TTG ATA TCG AAT TCCT GCA GGC ATC AGC 

ATC AGC AAG ATC C-3’) and KOL157 (5’- TCC AAC AAG AAT TGG GAC AAC 

TCC AGT GAA GAG TTC TTC TCC TTT GCT GGC GCT TTC CAA CTG TTT CCT 

TTT TAC AAG CG–3’). For pKBB280, amplification was performed using KOL155 and 

KOL156 (5’-ATC TAA TTC AAC AAG AAT TGG GAC AAC TCC AGT GAA GAG 

TTC TTC TCC TTT GCT CAC TGA TTT AAC AAC GTT GGA GAT GG-3’). 

pLDB350 was digested with EcoRI prior to co-transformation into yeast with the 

NMA111 PCR products to stimulate homologous recombination. pKBB428 (Nma1111-

83nls1Δ-GFP) was generated by amplifying NMA111 by PCR using KOL156 and 

mutagenic primer KOL207 (5’-CAG TAA AGG TTT TTT AGA TCT ACT AAT GAC 

CAT ATC GTT GAG CAA TAT AGC TGC TGC TGA CCA TTC TAA AAT TTC CG- 

3’) and inserting the resulting product into pLDB352 as described above. pKBB430 

(Nma1111-83nls2Δ-GFP) was similarly constructed using KOL155 and KOL209 (5’-TCA 

TGG TCT GTA TAT TCT TCC TCT TGA TCT CCG GTG GCG CTT TCC AAC TGA 

GCA GCA GCT ACA AGC GAT GAT TCA CCA G-3’). pKBB394 (Nma1111-

83nls1Δnls2Δ-GFP) was generated using KOL209 and KOL207 as primers for 
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amplification. pKBB460 (Nma111-GFP) was constructed by PCR amplifying the entire 

NMA111 gene sequence, including 500 nucleotides of the upstream promoter, using 

oligonucleotides KOL155 and KOL278 (5’-CAT CAC CAT CTA ATT CAA CAA GAA 

TTG GGA CAA CTC CAG TGA AGA GTT CTT CTC CTT TGC TAG CTT TTT CAC 

TTT GGC TGT TGC C-3’) and integrating the resulting DNA into pLDB351 using 

homologous recombination as described above. pKBB465 (Nma111nls1Δ-GFP) was 

generated by site-directed mutagenesis of pKBB460 using U.S.E. mutagenesis 

(Pharmacia, New York) and mutagenic oligonucleotide KOL288 (5’-CCA TAT CGT 

TGA GCA ATA TAG CGG CAG CAG ACC ATT CTA AAA TTT CCG ATG G-3’) as 

per manufacturer’s instructions. pKBB467 (Nma111nls2Δ-GFP) was similarly generated 

using KOL289 (5’-GGT GAA TCA TCG CTT GTA GCA GCG GCA CAG TTG GAA 

AGC GCC ACC GG-3’) and pKBB466. (Nma111nls1Δnls2Δ-GFP) was made by site-

directed mutagenesis using both KOL288 and KOL289. All plasmids were rescued from 

yeast using glass bead lysis (Hoffman and Winston, 1987) and transformed into E. coli. 

pKBB439 (2µ URA3 GAL::NMA111-GFP) was constructed by PCR amplifying the 

entire coding region of NMA111 using oligonucleotides KOL277 (5’-CAA CAA AAA 

ATT GTT AAT ATA  CC TCT ATA CTT TAA CGT CAA GGA GAA AAA ACT ATA 

ATG ACC ATA TCG TTG AGC-3’) and KOL278 and inserting the resulting DNA into 

pLDB352 by homologous recombination. Expression of Nma111-GFP in media 

containing 2% galactose and the lack of expression in the presence of 2% dextrose was 

confirmed by Western blotting using anti-GFP antibodies (Roche Pharmaceuticals, 

Basel). The complete nucleotide sequence of all NMA111 fusions was confirmed using 

dideoxy nucleotide sequencing on an AbiPrism 310 Genetic Analyser (Applied 

Biosystems, Foster City, CA). 

 

4.5.2 Shuttling Assay 

Nucleocytoplasmic shuttling of Nma111p was performed by the method of Feng and 

Hopper (2002) with the following modifications. Briefly, pKBB439 (2µ URA3 

GAL::Nma111-GFP), pGAL::Cca1-GFP, and pGAL::H2B-GFP were transformed into 

BY4741. Transformants were grown overnight in SD –Ura + 2% raffinose to A600 of 0.05 
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– 0.2, then supplemented with galactose to 2% and grown for 2.5 h at 30°C. Cells were 

harvested by centrifugation and resuspended in SD –Ura containing 2% glucose and 

incubated for 2 h at 30°C. Cells were then mixed with an equivalent number of MS739 

(kar1-1) cells, centrifuged, and resuspended in 50 ml SD –Ura. A slurry of cells was 

spotted on a YPD plate and incubated at 30°C. Samples collected 3 h and 8 h after mating 

were fixed in 70% EtOH at 4°C and DAPI stained for DNA visualisation. 

 

4.5.3 Direct fluorescence microscopy 

To examine Nma111p protein localisation, plasmids pKBB282 (Nma1111-35-GFP), 

pKBB280 (Nma1111-83-GFP), pKBB428 (Nma1111-83nls1Δ-GFP), pKBB430 (Nma1111-

83nls2Δ-GFP), pKBB394 (Nma1111-83nls1Δnls2Δ-GFP), pKBB460 (Nma111-GFP), 

pKBB465 (Nma111nls1Δ-GFP), pKBB467 (Nma111nls2Δ-GFP), and pKBB466 

(Nma111nls1Δnls2Δ-GFP) were transformed into strains W303 and BY4741, grown in 

SD –Ura to A600 0.1 – 0.4, and observed by direct fluorescence microscopy using a Nikon 

E600 epifluorescence microscope. Localisation in karyopherin mutants was performed by 

transforming plasmids into PSY1102 (kap95ts), EY10609 (msn5Δ), and LDY1008 

(crm1ts). Cells were grown overnight at 25oC in SD –Ura to early log phase, then shifted 

to 37°C for 2 – 4 h and observed by direct immunofluorescence microscopy. Images were 

captured using SPOT cameras and software (Diagnostic Instruments, Inc., Sterling 

Heights, MI) and final images were produced in Adobe Photoshop CS (Adobe Systems 

Inc., San Jose CA). 

 

4.5.4 Indirect immunofluorescence microscopy 

Indirect immunofluorescence microscopy was performed as described (Fahrenkrog et al., 

2004). Primary antibodies were anti-protein A (Sigma, St. Louis, MO) diluted 1:1000. 

Secondary antibodies: Alexa 488-labelled anti-rabbit-IgG antibody (Molecular Probes, 

Eugene, OR) diluted 1:1000. Images were recorded using a confocal laser scanning 

microscope (Leica TCS NT/SP1, Leica, Vienna, Austria) and were analyzed using NIH 

Image and Adobe Photoshop CS (Adobe Systems Inc., San Jose CA). 

 



 4.5 Materials and Methods 

118 

4.5.5 Test for apoptotic markers and chronological ageing 

For dihydroethidium staining, 1x107 cells were harvested by centrifugation, resuspended 

in 1 ml of 2.5 µg/ml DHE in PBS and incubated for 15 min in the dark. Cells were 

washed with 1 ml PBS and analyzed by fluorescence microscopy. DNA was stained 

using Mowiol containing 1µg|ml DAPI as mounting medium. TUNEL assay and survival 

platings/clonogenicity assays were performed as described (Fahrenkrog et al., 2004; 

Walter et al., 2006). Chronological ageing assays were performed as described elsewhere 

(Walter et al., 2006). 

 

4.5.6 Annexin V staining 

Exposed phosphatidylserine was detected by reaction with FITC-coupled annexin V 

(Annexin V-FITC Apoptosis detection Kit I, BD Boscience). Yeast cells were washed in 

sorbitol buffer (1.2 M sorbitol, 0.1mM KPP pH7.4) and digested with zymoylase in 

sorbitol buffer for 30 min at 30°C. Next cells were washed in incubation buffer (10 mM 

HEPES, 140 mM NaCl, 5 mM CaCl2, 0.6 mM sorbitol), resuspended in  30 µl incubation 

buffer containing 6 µl propidium iodide (50 µg/ml) and 3 µl Annexin V-FITC and 

incubated for 20 min at room temperature. The cells were harvested, resuspended in 

sorbitol buffer, applied to a microscopic slide and imaged by confocal microscopy. 
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5.1 A histone Crosstalk regulates budding yeast life and death 

In this thesis, I have identified and characterized distinct interrelated histone 

modifications on histone H2B and histone H3 as regulators of apoptosis in yeast (Figure 

5.1). Histone H2B K123 ubiquitination is a prerequisite for the methylation of histone H3 

at lysine K4 and K79 by the two methyltransferases Set1p and Dot1p, respectively 

(Briggs et al., 2002; Sun and Allis, 2002). Histone H2B K123 ubiquitination and its 

downstream effects on histone H3 methylation is involved in a variety of cellular 

processes including transcriptional regulation and DNA damage response (DDR) (Briggs 

et al., 2001b; Dover et al., 2002; Henry et al., 2003; Kao et al., 2004; Mutiu et al., 2007; 

Sun and Allis, 2002; Wyce et al., 2007; Xiao et al., 2005). We found that disruption of 

DOT1, which causes a lack of histone H3 K79 methylation confers apoptosis resistance 

and that DOT1 disrupted cells fail to undergo Yca1p-dependent apoptosis (Figure 5.1 and 

Figure 3.2). In contrast, disruption of the E3 ligase BRE1 or the methyltransferase SET1, 

which leads to a lack of H2B K123 ubiquitination and H3 K4 methylation, respectively, 

causes metacaspase Yca1p dependent apoptosis (Figure 5.1, Figure 2.5 and Figure 3.1). 

Moreover, we found that Dot1p is required for Yca1p-dependent cell death of ∆set1 cells 

(Figure 5.1 and Figure 3.3). Together, this study highlights the requirement of Dot1p 

mediated histone H3 K79 methylation for Yca1p-dependent cell death and points to a 

novel role of the conserved histone H2B/H3 crosstalk in apoptosis regulation. 
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Figure 5.1: A histone Crosstalk regulates budding yeast life and death. 
Lack of distinct interrelated histone modifications confers either apoptosis sensitivity or resistance. 
Disruption of BRE1 as well as SET1 causes Yca1p-dependent cell death whereas DOT1 disruption 
confers apoptosis resistance. ∆set1∆dot1 cells fail to undergo Yca1p-dependent cell death similar 
to ∆dot1 cells.  

 

5.1.1 A role of histone H2B ubiquitination in apoptosis regulation 

We have uncovered a link between histone H2B ubiquitination and metacaspase Yca1p 

dependent apoptosis in yeast (Chapter 2, Walter et al., manuscript in revision for Journal 

of Cell Science). We found that enhanced levels of Bre1p, the E3 ligase that ubiquitinates 

H2B K123, protect from apoptosis (Figure 2.1). In contrast, cells lacking BRE1 are prone 

to metacaspase Yca1p dependent apoptosis (Figure 2.5). Consistent with the idea that 

Bre1p acts through H2B ubiquitination, cells containing a histone H2B variant with a 

lysine-to-arginine substitution at amino acid 123 and therefore fail to be ubiquitinated at 
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H2B, mimic the apoptotic phenotypes similar to a BRE1 deletion strain (Figure 2.4, 

Walter et al., manuscript in revision for Journal of Cell Science).  

Bettiga and colleagues first uncovered a potential link between histone H2B 

ubiquitination and apoptosis. They found that yeast cells that exhibit enhanced levels of 

ubiquitinated histone H2B due to the lack of the ubiquitin-specific protease Ubp10p, 

which cleaves the ubiquitin moiety from histone H2B, are also prone to apoptosis 

(Bettiga et al., 2004). These data indicate that high levels of histone H2B ubiquitination 

can predispose yeast to apoptotic stimuli similar to the lack of histone H2B 

ubiquitination. However, this study did not address whether or not ∆ubp10 cells show 

increased caspase activity is due to high ubiquitination levels of histone H2B. It is 

therefore possible that Ubp10p has other targets than ubiquitinated H2B and failure in 

deubiquitination of these targets may cause apoptosis sensitivity in these cells. To rule 

out this possibility, we analyzed the apoptosis sensitivity of ∆bre1∆ubp10. We expected 

that this double mutant would exhibit increased apoptosis sensitivity as compared to 

∆bre1 cells, if Ubp10p would act in a histone H2B-independent manner. However, ∆bre1 

and ∆bre1∆ubp10 cells showed similar apoptosis sensitivity during chronological ageing. 

After two days in culture, BRE1 lacking cells showed survival rates of 23% ± 4% as 

compared to 24% ± 2% of ∆bre1∆ubp10 cells (Figure 5.2A). When, after two days in 

culture, these yeast cells were tested for ROS accumulation, which is causally linked to 

apoptosis in yeast, 73% of ∆bre1 and 68% of ∆bre1∆ubp10 cells accumulated ROS as 

determined by DHE staining (Figure 5.2B). These data suggest that UBP10 disruption 

causes apoptosis sensitivity due to failures in histone H2B deubiquitination. Therefore, 

the lack of histone H2B ubiquitination as well as high levels of histone H2B 

ubiquitination appear to predisposes yeast to apoptotic stimuli, indicating that H2B 

monoubiquitination needs to be tightly regulated to assure cell survival.  
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Figure 5.2: Disruption of UBP10 causes no additional apoptosis sensitivity in ∆bre1 cells 
(A) Survival of wild type (wt), Δbre1, ∆ubp10 and ∆ubp10∆bre1 cells determined by 
clonogenicity during chronological ageing. (B) DHE-positive cells were quantified after 2 days in 
culture using flow cytometry. In each experiment, 10.000 cells were evaluated. 

 

5.1.2 A role of histone H3 methylation in apoptosis regulation 

To test whether apoptosis in cells lacking ubiquitinated histone H2B is caused by defects 

in histone H3 methylation, we analyzed the apoptosis sensitivity of ∆set1 and ∆dot1 cells, 

which lack methylated histone H3 K4 and histone H3 K79, respectively.  We found that 

∆set1 cells are prone to Yca1p-dependent apoptosis similar to ∆bre1 cells (Figure 3.1), 

whereas DOT1 disruption confers apoptosis resistance. Moreover, we found that ∆dot1 

cells fail to undergo Yca1p dependent apoptosis (Figure 3.2). Consistently, Dot1p is 

required for Yca1p-dependent cell death of ∆set1 cells (Figure 3.3). Together, these 

studies highlight the requirement of Dot1p mediated histone H3 K79 methylation for an 

Yca1p-dependent cell death scenario. However, the molecular mechanism as to how 
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Dot1p mediated histone H3 K79 methylation triggers apoptosis is subject off our current 

research and will be discussed in the following section.  

 

5.1.3 The DNA damage response is implicated in Dot1p mediated cell death 

How does disruption of Dot1p confer apoptosis resistance? Yeast cells that fail to 

methylate histone H3 due to DOT1 disruption exhibit defects in the DNA damage 

response (Giannattasio et al., 2005; Wysocki et al., 2005). Particularly, Dot1p-mediated 

H3 K79 methylation is required for Rad9p-dependent checkpoint activation after DNA 

damage (Wysocki et al., 2005). The DNA-damage response is an evolutionarily 

conserved signaling cascade crucial for sensing DNA damage and activating cellular 

responses such as cell-cycle arrest, DNA repair and apoptosis. Accordingly, DNA 

damage response genes have also been implicated in yeast apoptosis. Notably, deletion of 

the budding yeast RAD9 gene can partially suppress the lethal effects of the apoptotic 

orc2-1 mutation in the origin recognition complex (Watanabe et al., 2002) suggesting that 

RAD9-dependent checkpoint function is required for apoptosis induction in orc2-1 cells. 

As Dot1p is required for Rad9p-dependent checkpoint activation, we consider it likely 

that ∆dot1 and ∆set1∆dot1 cells fail to activate apoptosis as a result of a defective 

checkpoint function. To test this hypothesis, we analyzed the apoptosis sensitivity of 

∆set1∆rad9. We expected that this double mutant would exhibit decreased apoptosis 

sensitivity as compared to ∆set1 cells similar to ∆set1∆dot1 cells, if Dot1p would trigger 

apoptosis in a Rad9p-dependent manner. Strikingly, our recent results show that 

∆set1∆rad9 cells exhibit decreased apoptosis sensitivity as compared to ∆set1 cells 

(Figure 5.3A). After two days of chronological ageing ∆set1∆rad9 cells exhibit survival 

rates of 59% ± 5% as compared to 35% ± 5% of ∆set1 cells (Figure 5.3A). When, after 

two days in culture, these yeast cells were tested for ROS accumulation, 44% of 

∆set1∆rad9 and 72% of ∆set1 cells accumulated ROS as determined by DHE staining 

(Figure 5.3B). These data indicate that Dot1p mediates apoptosis in ∆set1 cells trough its 

function in checkpoint activation and suggest that the DNA damage response is 

implicated in Yca1p-dependent cell death of ∆set1 cells during chronological ageing. Our 

findings therefore imply that DNA damage causes apoptosis in ∆set1 cells during 

chronological ageing. Thus, it will be interesting to see whether ∆set1 cells are also prone 
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to apoptosis induced by exogenously induced DNA damage and whether additional 

disruption of DOT1, YCA1 and RAD9, respectively, would decrease the DNA damage 

sensitivity of ∆set1 cells. 

 

 
Figure 5.3: Rad9p is required for cell death of ∆set1 cells. 
(A) Survival of wild type (wt), Δset1, ∆rad9 and ∆set1∆rad9 cells determined by clonogenicity 
during chronological ageing. (B) DHE-positive cells were quantified after 2 days in culture using 
flow cytometry. In each experiment, 10.000 cells were evaluated. 

 

5.1.4 Perspective 

Finally, my thesis work has led to the identification of a novel regulatory function of a 

histone cross-talk in yeast apoptosis that is linked to the DNA damage response. Since 

this cross-talk and the enzyme system responsible for this process are conserved between 

higher and lower eukaryotes, the mammalian apoptotic cascade may mirror the identified 



5.1 A histone Crosstalk regulates budding yeast life and death 

127 

regulatory yeast apoptotic mechanism. In higher eukaryotes the DNA damage response is 

implicated in apoptosis mainly through the tumor suppressor protein p53, which 

assimilates input signals including DNA damage to initiate appropriate outputs such as 

apoptosis. Yeast does not encode a p53 homologue and less is known about how DNA 

damage can lead to apoptosis when p53 is inactivated. However, both p53-dependent and 

-independent apoptotic pathways in higher eukaryotes are regulated by a number of DNA 

damage response proteins such as the Rad9p homologue BRCA1 (Harkin et al., 1999; 

Holt et al., 1996). As Rad9p is required for apoptosis of ∆set1 cells (Figure 5.3), these 

findings support the notion that the described regulatory mechanism may be conserved in 

higher eukaryotes. However, future research will hopefully answer to this question and 

will provide more insights into the role of histone modifications and DNA damage 

response in apoptosis in higher eukaryotes, which could be of great relevance for 

potential medical applications 
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5.2 Nma111p needs the nucleus to induce apoptosis 

The HtrA-like serine protease Nma111p is a nuclear protein that is able to promote 

apoptosis in yeast in a serine protease-dependent manner (Fahrenkrog et al., 2004; Walter 

et al., 2006). We have shown that Nma111p harbours a classical bipartite NLS within the 

first 35 N-terminal amino acids and identified Kap95p as its nuclear import receptor 

(Belanger et al., 2009). Also, we have demonstrated that Nma111p is a non-shuttling 

protein that even under oxidative stress conditions remains nuclear (Belanger et al., 

2009). The pro-apoptotic activity of Nma111p requires its nuclear localisation, as 

mutations of any critical residue in the bipartite NLS reduce Nma111p’s ability to 

mediate apoptosis (Belanger et al., 2009). Moreover, Nma111p’s death-promoting 

activity is restricted to its N-terminal HtrA-repeat, which harbours the NLSs and the 

active catalytic site of the protein (Belanger et al., 2009). 

Our previous studies have revealed that Nma111p and its only known substrate, the 

inhibitor-of-apoptosis protein Bir1p, are both nuclear proteins (Fahrenkrog et al., 2004; 

Walter et al., 2006), which indicated that the nucleus appears to play a significant role in 

yeast apoptosis. This is further supported by the data, which revealed that Nma111p is 

not shuttling between the nucleus and the cytoplasm under normal and oxidative stress 

conditions. Moreover, disruption of any of the two basic stretches that act as NLS for 

Nma111p affects its ability to promote cell death. Therefore, Nma111p function in yeast 

apoptosis appears not linked to mitochondria, which is in clear contrast to its metazoan 

homologue Omi/HtrA2. Omi/HtrA2 is predominantly localised to mitochondria and is 

released into the cytosol under apoptotic conditions, which, in turn, allows its interaction 

with and the degradation of the inhibitor-of-apoptosis protein XIAP due to which 

executioner caspases get activated (Khan et al., 2008; Martins et al., 2002; Suzuki et al., 

2004). It still remains to be seen which proteins are the downstream targets of Nma111p 

that lead to the execution of apoptosis. Bir1p is one such target and degradation of Bir1p 

by Nma111p induces apoptosis, but Bir1p does not directly inhibit the yeast caspase 

Yca1p (Walter et al., 2006). Therefore the bridging factor to the caspase or an unknown 

executioner of apoptosis in yeast remains to be elucidated, but it is most likely a nuclear 

protein. 
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