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Summary

The computer industry has seen an immense development in the last decades. Personal com-

puters have become available for everybody living in industrialized countries with rapidly

increasing performance in terms of speed and storage capacities. However, the performance of

nowadays’ computers is fundamentally limited by the laws of classical physics: a classical bit

can only take on either of the two distinct values ‘0’ or ‘1’. In contrast, a quantum computer

could, in principle, make direct use of quantum phenomena, such as state superpositions – a

quantum bit can be in both states ‘0’ and ‘1’ simultaneously –, to perform complex computa-

tional tasks much faster than any classical computer.

The idea of building computers that work according to the laws of quantum physics has

opened various fields of research, one of which is the search for the best physical system to use as

a quantum bit (qubit). One important criterion for determining the optimal qubit system is the

lifetime of state superpositions. Typically, once initialized, such superpositions are destroyed

on remarkably short timescales due to interactions with the environment – a process which is

referred to as decoherence –, posing the question which physical qubit candidate system might

show a high-enough robustness against the influence of the ‘outside world’ to allow for viable

quantum computation.

In this thesis, we will consider three particular realizations of one specific and very promising

type of qubit candidate system: an electron (or hole) confined to a quantum dot – a nanoscale

structure within a (typically semiconducting) material –, where the spin states ‘↓’ and ‘↑’ of

our electron (or hole) encode the logical states ‘0’ and ‘1’. Our task will be to study the decay

of spin-state superpositions in such quantum-dot systems. The main objective of this thesis

is to understand the most important physical processes that lead to spin decoherence and to

show ways to suppress this undesirable effect. It turns out that at low temperatures, the main

source of decoherence is the coupling of the electron (hole) to the surrounding nuclear spins.

This thesis is divided into three logical parts, corresponding to the three qubit candidate

systems under consideration. First we will study electron-spin qubits in III-V semiconductor

quantum dots, where the electron spin interacts with the nuclear spins of the semiconduct-

ing host material via the isotropic Fermi contact hyperfine interaction. Second we consider

quantum-dot-confined heavy holes and the decoherence of their (pseudo-)spin states due to

anisotropic interactions with the nuclear spins. Third and last, we study electron-spin qubits

made from carbon-nanotube and graphene quantum dots. Quantum dots made of carbon have

the advantage of a low abundance of spin-carrying nuclear isotopes, therefore reducing deco-

herence effects significantly.
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Summary

For each of the systems under consideration, we will carry out analytical calculations on

the nuclear-spin interactions and the spin dynamics of the qubit. Although one main goal of

this thesis is to show ways to extend spin decoherence times, we will also focus on physically

more fundamental questions. Not only the timescale of the decay is relevant for the system’s

applicability as a qubit, but also the form of the decay which can vary significantly from system

to system. For example, the decay of spin-state superpositions can follow an exponential, super-

exponential or power-law decay, and can even pass through various stages. This is not only

of academic interest, but also important for practical purposes, such as the implementation of

quantum error-correction schemes in a potential quantum computer.
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Chapter 1

Preface: Dealing with Decoherence

The dream of building computers that work according to the rules of quantum mechanics

has strongly driven research over the last decade, theoretically and experimentally, and in

many fields of basic and applied sciences including physics, chemistry, and computer science.

About ten years ago, Grover (1997) and Shor (1997) presented novel algorithms, making direct

use of quantum phenomena such as interference and entanglement to crucially speed up data

searching and prime factorization of large numbers used, e.g., for data encryption. In order to

turn quantum computers into a reality, however, many important and unsolved problems need

to be addressed, not only in engineering but also (and especially) in basic physics.

One issue of central importance is the physical implementation of the quantum bit (short:

qubit) – the quantum analog of the bit processed by today’s digital computers. While classical

bits can assume any one of the distinct states 0 or 1, qubits can also be in a coherent superposi-

tion of these two states: both 0 and 1. This is where the huge speedup potential of the quantum

computer lies: every qubit can be initialized in a superposition of states and therefore many

computational operations can be carried out in parallel rather than one by one. In principle,

any quantum-mechanical system with two distinct states could be used to encode quantum

information, and it comes thus as no surprise that a large variety of candidate qubit systems

in many subfields of physics and chemistry have been proposed over the years. Examples are

nuclear spins, cold atoms, trapped ions, quantum optical systems, Josepshon junctions, exci-

tons in semiconductors, electrons or holes in quantum dots, impurities, molecular magnets,

NV-centers in diamond, and many more.

Throughout this thesis, we will focus on one particular solid state implementation: spin

qubits in quantum dots. However, the fundamental challenges described below are shared by

essentially all physical implementations.

One of the major problems towards building a quantum computers is the limited decoher-

ence time: the qubit is not isolated from its environment, and the unavoidable coupling between

the two causes a fast decay of the qubit-state superpositions – see Fig. 1.1(a). This process

is called decoherence, and the associated decoherence times are rather short, typically in the

nano- to microsecond range for solid state systems. However, they can easily vary over many

orders of magnitude when changing physical parameters such as temperature, gate potentials,

1



1. Preface: Dealing with Decoherence

Figure 1.1: (a) Decoherence manifests itself in the decay of spin-state superpositions: the state
‘↑ and ↓’ becomes ‘↑ or ↓’. (b) The decoherence process typically passes through
various stages. For example, an electron spin interacting with a ‘narrowed’ nuclear
spin bath shows an initial quadratic and power-law decay of coherent superpo-
sitions, followed by an exponential decay at intermediate times and a long-time
power-law tail.

magnetic fields, material or isotope composition, confinement geometry, etc.

Building a quantum computer is thus not simply an engineering problem with planable

progress. Instead, one quickly faces a complex non-equilibrium problem involving many un-

wanted interactions with the outside world – especially in solid state systems, where everything

starts to interact with everything at some fine enough level – raising the principal question

if these interactions will ever allow sufficient coherence on a larger scale. Moreover, realistic

decoherence is not of some ‘generic type’, but rather system-specific. Thus, the devil is in the

detail, and only understanding those details can reveal strategies to deal with decoherence,

and to eventually find the best qubit. For instance, quantum error-correction schemes, which

are essential for scalable quantum computation, almost exclusively assume a Markovian deco-

herence model, characterized by a single exponential decay in time. However, this is typically

oversimplified, and we understand now that there can be an entire ‘zoo of decoherence laws’,

even in one and the same system, with a time decay that proceeds through several different

stages. An illustrative example of this dynamics is given in Fig. 1.1 (b) for spins in quantum

dots, from today’s point of view one of the most promising qubit candidates. It is this fun-

damental aspect which has added to the fascination and the strive for detailed knowledge of

decoherence and which has opened up a completely new field of research over the past few

years.

The qubit in a quantum dot – a small region within a semiconductor – consists of a single

electron whose spin states ↓ and ↑ represent the logical states 0 and 1 (Loss and DiVincenzo,

1998; Hanson et al., 2007). Such quantum-dot electrons can be initialized in any spin state,

the state can be read out, and two neighboring spins can be coupled and decoupled. Thus, all

basic prerequisites for universal quantum computation are fulfilled (Cerletti et al., 2005). An

attractive feature of this qubit system is that it can be operated in an all-electrical way, despite

the fact that the quantum information is stored in the magnetic moment of the electron spin.

This allows the use of standard gate technologies which are flexible, fast, and inherently scal-
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able. The desired size would be a ‘quantum chip’ that contains about 10,000 qubits. Currently,

only two spin qubits have been implemented, but many more seem feasible.

Research so far has mainly focused on GaAs (and also InAs) semiconductors mostly because

of the advanced nanofabrication techniques available for them (Hanson et al., 2007). The

quantum dots come in various forms such as gate-defined, strain-induced, self-assembled, in

nanowires, etc. In these materials, the cause of decoherence at milli-Kelvin temperatures are

nuclear spins: typically a million of them reside inside a quantum dot and they all couple to

the single electron spin via the hyperfine interaction (Coish and Loss, 2004). They create a

random magnetic field which leads to fluctuations in the electron spin precession – a random

‘staggering’ – and thus to decoherence. This happens fast, typically within tens of nanoseconds.

In stark contrast to this, the mere flip of the electron spin, i.e., a transition from ↑ to ↓
(typically due to lattice vibrations), can be extremely slow, even exceeding seconds (Amasha

et al., 2008). For quantum computation to be viable, the coherence of a single qubit must be

preserved during roughly 10,000 qubit operations. Although two-qubit operations to generate

entanglement have already been demonstrated on a remarkably short timescale of only about

0.2 nanoseconds (Petta et al., 2005), the decoherence time compared to this is still not long

enough. From today’s point of view, a minimum decoherence time of several microseconds

would be desirable. However, the situation is not hopeless, and several strategies have been

proposed – and some implemented successfully – to deal with the problem of short decoherence

times, and some of them will be discussed throughout this thesis.

A standard method to extend coherence, borrowed from nuclear magnetic resonance, is

to apply magnetic field pulses (spin-echo sequences), which partly reverse the electron spin

dynamics, thereby prolonging its coherence, even up to microseconds (Koppens et al., 2008).

Another idea is to prepare the nuclear spin bath in some less noisy state with a narrowed

distribution width (Coish and Loss, 2004). Such state preparations have already been success-

fully implemented in gated and self-assembled quantum dots (Greilich et al., 2007; Reilly et al.,

2008). The dynamics of an electron spin interacting with a narrowed nuclear-spin bath vary

drastically from the non-narrowed situation, as we will show in Chapters 3 and 4 of this thesis.

Another strategy is to polarize the nuclear spins dynamically by spin-blockaded transport

(Ono and Tarucha, 2004), or by cooling to ultra-low temperatures (milli-Kelvin or below) with

the goal to freeze out the nuclear spins in a high magnetic field. Furthermore, as recently

proposed (Braunecker et al., 2009a,b), it is also possible to induce a magnetic phase transition

in the nuclear spin system, with a transition temperature that is strongly enhanced from the

micro- to the milli-Kelvin regime by correlations effects present in one- or two-dimensional

electron gases. For the polarization method to be effective, a polarization of close to 100%

would be necessary. As for now, however, no more than 60% polarization have been achieved

experimentally (Bracker et al., 2005).

Very recently, proposals have been made to use the spin of a confined hole as a quantum

bit, rather than that of an electron, due to surprisingly long spin relaxation times recently

predicted and observed (Heiss et al., 2007). A hole is simply a vacancy in the valence band of

a semiconductor – a ‘non-existing electron’ – which behaves like a real particle. It has been

shown theoretically (Fischer et al., 2008) that the hole couples to the nuclear environment in

3



1. Preface: Dealing with Decoherence

a qualitatively different way – ‘Ising-like’ –, and that hole-spin decoherence times easily reach

several tens of microseconds, even without manipulations on the nuclear spins (see Chapter 5)

In addition, nuclear state preparations might be more efficient than for electrons, potentially

prolonging the decoherence time even further. The possibility to initialize and read out single

hole spins in flat dots has already been demonstrated (Gerardot et al., 2008), and first hole-spin

decoherence-time measurements have been carried out (Brunner et al., 2009), confirming the

theoretically predicted timescales.

The presence of nuclear spins is not only a nuisance, but can also be exploited to one’s

advantage. Manipulating the nuclear spins allows for control over the electron spin, and the

necessary coupling between two qubits can even be mediated by nuclear spins (Petta et al.,

2005). Moreover, the nuclear-spin system itself is considered suitable for information storage,

as it is known to be more robust against perturbations from the environment due its much

weaker magnetic coupling.

There also remains the possibility of exploring new materials. Quantum dots in carbon-

based materials such as nanotubes, graphene or diamond, or in type-IV semiconductors (es-

pecially Si/Ge nanowires) have been investigated recently with a view towards spin qubits.

These materials have the advantage of low abundances of spin-carrying nuclear isotopes, thus

exhibiting significantly weaker nuclear-spin interactions of the confined electron. For instance,

natural carbon consist of 99 percent nuclei with zero spin, and only of one percent nuclei with

non-zero spin. Coherent dynamics of single spins in diamond have already been reported (Han-

son et al., 2008), and decoherence times of order microseconds have been measured (Jelezko

et al., 2004). For quantum dots in graphene (a single atomic layer of graphite) and carbon

nanotubes, theory predicts a rather weak coupling of the confined electron to the nuclear spins

(Fischer et al., 2009), as shown in Chapter 7 of this thesis. First experiments, however, have

seen a fast spin decoherence in carbon nanotubes (Churchill et al., 2009a,b), and it is a subject

of ongoing research to resolve this discrepancy.

Finally, many proposals for hybrid systems have been made recently, suggesting the cou-

pling of, e.g., spins to long-wavelength photons in stripline cavities. This opens up the possibil-

ity to store the quantum information in one qubit type and process the information in another

one, combining so-to-speak the best of all worlds.

No doubt, there is still a long way to go before a practical quantum computer will be a reality

– and in order to achieve this goal basic research on decoherence will be crucial. For instance,

the question of scalability will have to be addressed: for a useful quantum computer, tens of

thousands of qubits would be required, all coupled in some controllable way. Nevertheless, the

slow but steady progress over the last decade is encouraging, and many workers in the field

are cautiously optimistic that the goal will be reached eventually.
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Chapter 2

Introduction: Nuclear-Spin
Interactions in Semiconductor

Quantum Dots

2.1 Open systems and quantum master equations

Throughout this thesis, we will be confronted with having to deal with systems with an enor-

mously large number of degrees of freedom. For instance, the Hilbert space of N spin-12 particles

has a dimension of 2N , where N is typically on the order of 104 to 106. Solving an equation

of motion for such a large system is virtually impossible, even numerically. Fortunately, it is

often possible to divide the total system into some part whose dynamics we would like to study

and some other part whose time evolution may be irrelevant to us. So instead of solving the

equations of motion for the total system, we can tackle the technically much easier task of

studying the dynamics of the small relevant part (the ‘open system’ S) which interacts with

the large irrelevant part (the ‘bath’ or ‘environment’ E) – see also Fig. 2.1. In this section we

will introduce the concept of an open quantum system and derive a closed equation of motion

(‘master equation’) which we will use in the rest of this thesis to describe the dynamics of open

systems. Our derivation closely follows the one given by Breuer and Petruccione (2002).

Let us assume that the state of the total system S + E is described by a density matrix

ρ, while the states of system and environment are described by ρS and ρE , respectively, such

that

ρS(E) = trE(S)ρ, (2.1)

where trS(E) denotes the partial trace over the system (environment) degrees of freedom.

Suppose the Hamiltonian of the total system can be written as

H = H0 + V, (2.2)

where H0 denotes the unperturbed part of the Hamiltonian, which can include both system

and environment degrees of freedom and which can be solved exactly, and where V denotes a

perturbation.

5



2. Introduction: Nuclear-Spin Interactions in Semiconductor Quantum Dots

system
open

S

environment
E

Figure 2.1: Open quantum system S interacting with an environment E.

In order to derive a closed equation of motion for the reduced density matrix ρS, it is

convenient to introduce a projection superoperator P, which projects the total density matrix

ρ onto some relevant part Pρ. In principle P can have any form that obeys the following

conditions: (i) P2 = P (P is a projector) and (ii) trS{ρAS} = trS{PρAS} (P does not change

the expectation value of any system operator AS). We also introduce the inverse projector Q,

whis is defined via P + Q = 1 and which projects the total density matrix onto its irrelevant

part Qρ = ρ− Pρ. The standard choice of the projector P is given by

Pρ = (trEρ) ⊗ ρE ≡ ρS ⊗ ρE , (2.3)

in analogy to Eq. (2.1). The standard projector (2.3) projects the total density matrix ρ onto

a product state of system and environment. In principle, other choices of P are possible which,

e.g., project onto correlated system-bath states (Breuer et al., 2006; Breuer, 2007; Fischer and

Breuer, 2007; Ferraro et al., 2008; Huang and Yi, 2008).

We start our derivation of a closed master equation for the relevant part Pρ from Liouville’s

equation for the total density matrix ρ,

d

dt
ρ(t) = −i [H, ρ(t)] ≡ −iL ρ(t), (2.4)

where we have introduced the Liouvillian L. Applying P and Q yields

P
d

dt
ρ(t) =

d

dt
Pρ(t) = −iPL ρ(t), (2.5)

Q
d

dt
ρ(t) =

d

dt
Qρ(t) = −iQL ρ(t), (2.6)

since P and Q do not depend on time. Inserting P + Q = 1 into Eqs. (2.5) and (2.6) leads to

d

dt
Pρ(t) = −iPLP ρ(t) − iPLQ ρ(t), (2.7)

d

dt
Qρ(t) = −iQLP ρ(t) − iQLQ ρ(t). (2.8)

6



2.1. Open systems and quantum master equations

A formal solution of (2.8) is given by

Qρ(t) = G(t, t0)Qρ(t0) − i

∫ t

t0

dsG(t, s)QLPρ(s) (2.9)

with the propagator

G(t, s) = T← exp

{

−i
∫ t

s
ds′QL(s′)

}

. (2.10)

Here, we allow for a time-dependent Liouvillian L, such that T← denotes chronological time

ordering. Inserting Eq. (2.9) into Eq. (2.7), we obtain the so-called Nakajima-Zwanzig master

equation for the reduced density matrix Pρ:

d

dt
Pρ(t) = −iPL(t)P ρ(t) − iPL(t)G(t, t0)Qρ(t0) −

∫ t

t0

dsPL(t)G(t, s)QL(s)Pρ(s). (2.11)

Eq. (2.11) is an exact equation describing the time evolution of the relevant part Pρ. In general,

it is, however, impossible to solve Eq. (2.11) direcly because of the complicated structure of the

convolution integral. In most cases, it is therefore necessary to resort to some approximation

scheme. It will be convenient to intruduce the memory kernel or self-energy

Σ(t, s) = −iPL(t)G(t, s)QL(s)P. (2.12)

We now carry out some simplifications on Eq. (2.11) which will give us the basis to work

with for the rest of this thesis.

1. If the initial system-bath state is a product state, i.e. if Pρ(t0) = ρ(t0), then Qρ(t0) = 0

and the inhomogeneity (the second term on the right-hand side of Eq. (2.11)) vanishes.

2. If the Hamiltonian (2.2) does not depend explicitly on time, we have

G(t, s) = e−iQL(t−s) = G(t− s), Σ(t, s) = Σ(t− s). (2.13)

3. Let us assume that in Eq. (2.2), the energy scales associated with H0 are much larger

than those associated with V . It is then possible to carry out a systematic expansion of

the memory kernel in powers of the perturbation V by writing L = L0 +LV and iterating

Dyson’s identity

eiQ(L0+LV )t = eiQL0t − i

∫ t

0
dt′ e−iQL0(t−t′)QLV e

−iQLt′ (2.14)

up to the desired order in LV . As we will see later on, it is often convenient to solve

the Nakajima-Zwanzig equation (2.11) in Laplace space (up to some order in LV ). The

Dyson identity may then be written as

1

s+ iQL
=
∞
∑

k=0

1

s+ iQL0

(

−iQLv
1

s+ iQL0

)k

, (2.15)

where we have iterated the operator identity

1

A+B
=

1

A

(

1 −B
1

A+B

)

(2.16)

for A = s+ iQL0 and B = iQLV .
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2. Introduction: Nuclear-Spin Interactions in Semiconductor Quantum Dots

2.2 Electron-nuclear spin interactions

In this section, we give a microscopic derivation of the nuclear-spin interactions that will be

considered througout this thesis. The interaction of a relativistic electron with the electromag-

netic field created by a nucleus is described by the Dirac Hamiltonian

HD = α · π + βmc2 + qV, (2.17)

where m is the electron rest mass, q = −|e| is the electron charge, π = c(p−qA), c is the speed

of light, p is the momentum, V and A are the scalar and vector potential of the electromagnetic

field induced by the nucleus, and

α =

(

0 σ

σ 0

)

, β =

(

1 0

0 −1

)

(2.18)

are the 4× 4 Dirac matrices with σ being the vector of Pauli matrices and 1 the 2× 2 identity

matrix.

The Dirac Hamiltonian (2.17) acts on a 4-spinor ψ = (χ1, χ2)
t, where χ1 and χ2 are 2-

spinors describing the electron and the positron, respectively. Using this notation, the Dirac

equation HDψ = Eψ, with E = mc2 + ǫ, may be written as a pair of coupled equations for the

χj :

(ǫ− qV ) χ1 − σ · π χ2 = 0, (2.19)

−σ · π χ1 + (2mc2 − qV + ǫ) χ2 = 0. (2.20)

Isolating χ2 in Eq. (2.20) and inserting into Eq. (2.19) yields the following eigenvalue equation

for the electron:
(

σ · π 1

2mc2 − qV + ǫ
σ · π + qV

)

χ1 = ǫχ1. (2.21)

In the non-relativistic limit (ǫ− qV )/mc2 → 0, χ1 and χ2 decouple and Eq. (2.21) reduces to

the Pauli equation HPχ1 = ǫχ1 with the Pauli Hamiltonian

HP =
1

2m
(p− qA)2 − q~

2m
(∇×A) · σ + qV. (2.22)

In general, one has to take into account the relativistic effect of a coupling between the

electron and positron 2-spinors. It is, however, possible to systematically decouple χ1 and χ2

in orders of 1/mc2 by successively applying unitary transformations to the Dirac Hamiltonian

(2.17). This method takes into account relativistic corrections to the Pauli equation and is

known as the Foldy-Wouthuysen transformation. In lowest order, this method leads to an

eigenvalue equation HFWχ1 = ǫχ1 for the electron spinor, where HFW contains the Pauli

Hamiltonian and the first relativistic corrections:

HFW = HP − q~

4m2c2

(

E× π

c

)

· σ − q~2

8m2c2
∇ ·E, (2.23)

where we have introduced the electric field E = −∇V .
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2.2. Electron-nuclear spin interactions

The terms of interest are those that couple the nucleus (giving rise to E and A) through

their charge and magnetic moment to the electron (with spin σ and momentum p). These

terms are

Hso = − q~

4m2c2
(E× p) · σ, (2.24)

Hihf =
q2~

4m2c2
(E×A) · σ, (2.25)

Hahf = − q~

2m
(∇×A) · σ, (2.26)

Hang = − q

m
A · p, (2.27)

and are referred to as spin-orbit interaction, isotropic hyperfine interaction, anisotropic hyper-

fine interaction, and the coupling of electron orbital angular momentum to the nuclear spin,

respectively.

The spin-orbit interaction manifests itself via a splitting of the electron spin states at

k 6= 0 (away from the center of the Brillouin zone), even at zero external magnetic field.

This splitting can be due to the bulk inversion asymmetry (BIA) of the crystal, or due to

structure inversion asymmetry (SIA) caused, e.g., by a confinement potential (Winkler, 2003).

In III-V semiconductor quantum dots, both effects can be relevant: the zincblende-type crystal

structure of III-V semiconductors lacks a center of inversion symmetry, causing BIA, while

the strong two-dimensional confinement of the quantum dot leads to SIA. However, the spin-

orbit interaction depends on temperature, as it is typically mediated by phonons. At low

temperatures (typically lower than 1K for III-V semiconductor quantum dots) the spin-orbit

contribution to the dephasing of the electron spin is typically much smaller than the effect

of the nuclear-spin interactions. We will therefore neglect spin dephasing due to spin-orbit

interactions in this thesis.

The importance of nuclear-spin interactions stongly depends on the system under consid-

eration. For most quantum dots at low temperatures, the main mechanism leading to spin

decoherence of electrons is the isotropic hyperfine interaction (2.25) – see Chaps. 3 and 4 –,

while for holes the anisotropic hyperfine interaction (2.26) and the coupling to orbital angular

momentum (2.27) are most relevant – see Chap. 5. It is convenient to replace the nuclear-spin

interactions (2.25) - (2.27) by equivalent effective Hamiltonians of the form (Abragam, 1961;

Stoneham, 1972)

Heff
ihf =

µ0
4π

8π

3
2µBγNδ(r)S · I, (2.28)

Heff
ahf =

µ0
4π

2µBγN
3(n · S)(n · I) − S · I

r3(1 + d/r)
, (2.29)

Heff
ang =

µ0
4π

2µBγN
L · I

r3(1 + d/r)
. (2.30)

Here, µ0 is the vacuum permeability, γN = gNµN is the nuclear gyromagnetic ratio, gN is the

nuclear g-factor, µB (µN ) is the Bohr (nuclear) magneton, r is the vector pointing from the

nucleus to the electron, r = |r|, n = r/r, d ≃ Z×1.5×10−15 m is a length of nuclear dimension

(Z is the effective nuclear charge), S (I) is the electron (nuclear) spin operator, and L is the

9



2. Introduction: Nuclear-Spin Interactions in Semiconductor Quantum Dots

electron orbital angular momentum operator. Eqs. (2.28) - (2.30) will serve as a starting point

for all considerations throughout this thesis.

2.3 Band structure of III-V semiconductors

In this section, we want to sketch how the bandstructure of a III-V semiconductor can in

principle be derived from miscroscopic considerations. We will refrain from showing a complete

derivation, since this is a subject of many excellent textbooks (see, e.g., Winkler (2003) or Yu

and Cardona (2005)), but rather give an idea about which ingredients need to be taken into

account.

Our starting point is the Schrödinger equation for a particle with rest mass m0 in a periodic

potential V0:
(

p2

2m0
+ V0(r)

)

ψnk(r) = En(k)ψnk(r), (2.31)

where ψnk(r) = eik·runk(r) is the Bloch function of the particle. Applying p2 to the Bloch

function, we can rewrite Eq. (2.31) as a function for the lattice-periodic Bloch amplitude

unk(r) alone:
(

p2

2m0
+ V0(r) +

~
2k2

2m0
+

~

m0
k · p

)

unk(r) = En(k)unk(r). (2.32)

For III-V semiconductors, the extrema of the relevant bands are at the Γ-point (k = 0), where

we have
(

p2

2m0
+ V0(r)

)

un0(r) = En0un0(r). (2.33)

The solutions of Eq. (2.33) form a complete set of basis functions, and once En0 and un0(r)

are known, we can include the k-dependent terms in Eq. (2.32) perturbatively.

Since spin-orbit coupling plays an important role concerning the bandstructure, we also

need to take into account the Pauli spin-orbit term (2.24). In the basis {un0σ} (including spin

σ =↑, ↓) we can now express the Hamiltonian

H =
p2

2m0
+ V0(r) +

~
2k2

2m0
+

~

m0
k · p− q~

4m2c2
(E×P) · σ, P = p + ~k, (2.34)

as an infinite-dimensional matrix with elements 〈un0|H|un′0〉. For practical purposes, we will

need restrict ourselves to some finite amount of energy bands (labelled by n) in the vicinity

of the fundamental band gap. Typically, one takes into account the conduction band (CB)

and the heavy-hole (HH), light-hole (LH) and split-off (SO) valence bands (see also Fig. 2.2),

leading to an effective 8 × 8 Hamiltonian (four bands including spin).

The explicit form of the Bloch amplitides at the Γ-point depends on the periodicity

of the potential V0. For III-V semiconductors, V0 has the symmetry of the zincblende lat-

tice. Although it is not possible to derive an explicit form for the functions un0 within the

framework of the so-called k · p theory shown above, their behavior under symmetry oper-

ations can be determined via group theory (Dresselhaus et al., 2008). With this informa-

tion, it is possible to write the Hamoltonian (2.34) up to second order in k in the basis
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2.3. Band structure of III-V semiconductors

|3/2;±1/2〉v

|3/2;±3/2〉v

|1/2;±1/2〉c

|1/2;±1/2〉v
split-off band

heavy-hole sub-band

conduction band

light-hole sub-band

Eg

∆SO

k = 0

Figure 2.2: Band structure of bulk III-V semiconductors near the Γ-point.

{uCB0↑, uCB0↓, uHH0↑, uHH0↓, uLH0↑, uLH0↓, uSO0↑, uSO0↓} as

HK =











HCB V1 V2 V3
V †1 HHH V4 V5

V †2 V †4 HLH V6

V †3 V †5 V †6 HSO











, (2.35)

with the 2×2 matrices Hn and Vm. This is the so-called 8×8 Kane Hamiltonian and it can be

interpreted as follows: The 2× 2 Hamiltonians Hn describe the unperturbed electron states in

the band n, while the off-diagonal blocks Vm couple the bands to each other. An explicit form

of the 2 × 2 blocks is given in Appendix B.1 for the quasi-two-dimensional case of a quantum

well (see, e.g., Winkler (2003) for the bulk case).

It is now possible to project the 8 × 8 Kane Hamiltonian onto the band of interest using

quasi-degenerate perturbation theory (see, e.g., Appendix B of Winkler (2003)). In lowest

order this procedure will lead to a Hamiltonian whose eigenstates are just the unperturbed

states un0 (where n is the band we have projected onto), while higher-order corrections to

the wavefunctions will describe hybridization between the bands. We will come back to this in

more detail in Chapter 5.

From the explicit form of the Kane Hamiltonian given in Appendix B.1, we can see that

at k = 0 the HH and LH states are energetically degenerate (see Fig. 2.2). However, it is

possible to lift this degeneracy by confining the crystal to two dimensions, which in practice is

typically achieved by growing thin layered structures of different semiconducting materials (Yu

and Cardona, 2005). Once the degeneracy is lifted, we are left with a good two-level system
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2. Introduction: Nuclear-Spin Interactions in Semiconductor Quantum Dots

|3/2;±3/2〉v
heavy-hole sub-band

conduction band

Eg

|3/2;±1/2〉v

|1/2;±1/2〉v
split-off band

light-hole sub-band∆SO

k = 0

∆LH

|1/2;±1/2〉c

Figure 2.3: Band structure of a III-V semiconductor quantum well near the Γ-point.

in the HH and LH sub-bands, which is important when viewed in the context of hole-spin

quantum bits (see Chapter 5).
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Chapter 3

Electrons in III-V Semiconductors:
Effective-Hamiltonian Approach

3.1 Introduction

We have discussed in Chapter 1 that a promising physical implementation of a quantum bit is to

use the spin states of electrons in confined structures (Loss and DiVincenzo, 1998; Hanson et al.,

2007; Leuenberger and Loss, 2001; Vrijen et al., 2000; Jelezko et al., 2004). A series of recent

experiments on electron spin states in quantum dots (Petta et al., 2005; Koppens et al., 2006),

electrons bound to phosphorus donors in silicon (Abe et al., 2004), NV centers in diamond

(Jelezko et al., 2004; Childress et al., 2006; Hanson et al., 2006), and molecular magnets

(Ardavan et al., 2007) have shown that the hyperfine interaction between confined electron

spins and nuclear spins in the surrounding material is the major obstacle to maintaining

coherence in these systems.

Previous studies of this decoherence mechanism have pointed to the non-Markovian nature

of a slow nuclear-spin environment, leading to non-exponential coherence decay (Khaetskii

et al., 2002; Merkulov et al., 2002; de Sousa and Das Sarma, 2003; Breuer et al., 2004; Coish

and Loss, 2004; Erlingsson and Nazarov, 2004; Yuzbashyan et al., 2005; Deng and Hu, 2006;

Al-Hassanieh et al., 2006; Witzel and Das Sarma, 2007; Yao et al., 2007; Koppens et al., 2007;

Chen et al., 2007; Fischer and Breuer, 2007). These results suggest that it may be necessary to

revise quantum error correction protocols to accommodate such a ‘nonstandard’, but ubiquitous

environment (Terhal and Burkard, 2005). Here we show that virtual flip-flops between electron

and nuclear spins can lead to well-defined Markovian dynamics, giving a simple exponential

decay in a large Zeeman field and for particular initial conditions, i.e., a ‘narrowed’ nuclear-spin

state (Coish and Loss, 2004; Klauser et al., 2006; Stepanenko et al., 2006; Giedke et al., 2006).

Once such a state is prepared, it can be maintained over an astonishingly long time scale,

exceeding hours (Greilich et al., 2007), since spin diffusion processes are highly suppressed

near confined electron spins (Klauser et al., 2008). Recently, great progress has been made in

experimentally realizing such state narrowing (Greilich et al., 2006, 2007; Reilly et al., 2008;

Greilich et al., 2009; Latta et al., 2009; Vink et al., 2009; Xu et al., 2009). Moreover, we
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3. Electrons in III-V Semiconductors: Effective-Hamiltonian Approach

calculate the decoherence time T2, revealing the dependence on many external parameters for

a general system.

3.2 Effective Hamiltonian: Schrieffer-Wolff transformation

We begin from the Hamiltonian for the Fermi contact hyperfine interaction between a localized

spin-1/2 S and an environment of nuclear spins (see Chapter 2),

Hhf = bSz + b
∑

k

γkI
z
k + S · h, (3.1)

with the Overhauser operator defined by

h =
∑

k

AkIk. (3.2)

Here, Ik is the nuclear spin operator for the spin at site k with associated hyperfine coupling

constant Ak, b = g∗µBB is the electron Zeeman splitting in an applied magnetic field B

and γk is the nuclear gyromagnetic ratio in units of the electron gyromagnetic ratio (we set

~ = 1): γk = gIkµN/g
∗µB . For an electron with envelope wave function ψ(r), we have Ak =

v0A
ik |ψ(rk)|2, where Aik is the total coupling constant to a nuclear spin of species ik at site

k and v0 is the volume of a unit cell containing one nucleus. For convenience, we define A =
√

∑

i νi (Ai)2, where νi is the relative concentration of isotope i. The envelope function ψ(r)

of the bound electron has finite extent, and consequently there will be a finite number ∼ N of

nuclei with appreciable Ak. For typical quantum dots, N ∼ 104−106, and for donor impurities

or molecular magnets, N ∼ 102 − 103. In Eq. (3.1) we have neglected the anisotropic hyperfine

interaction, dipole-dipole interaction between nuclear spins, and nuclear quadrupolar splitting,

which may be present for nuclear spin I > 1/2. The anisotropic hyperfine interaction gives

a small correction (due to hybridization with the p-type valence bands) for electrons in a

primarily s-type conduction band (Abragam, 1961), such as in III-V semiconductors. Nuclear

dipole-dipole coupling can give rise to dynamics in the spin bath, which can lead to electron-

spin decay due to spectral diffusion on a time scale found to be TM ∼ 10 − 100µs for GaAs

quantum dots (de Sousa and Das Sarma, 2003; Yao et al., 2006; Witzel and Sarma, 2006). These

times are one to two orders of magnitude longer than the T2 we predict for a GaAs quantum

dot carrying N = 105 nuclei (see Fig. 3.3, below). For smaller systems, we expect the decay

mechanism discussed here to dominate dipole-dipole effects substantially. The quadrupolar

splitting has also been measured for nanostructures in GaAs, giving inverse coupling strengths

on the order of 100µs (Yusa et al., 2005), comparable to the dipole-dipole coupling strength,

so quadrupolar effects should become relevant on comparable time scales.

For large b, we divide Hhf = H0 + Vff into an unperturbed part H0 that preserves Sz and

a term Vff that leads to energy non-conserving flip-flops between electron and nuclear spins
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3.2. Effective Hamiltonian: Schrieffer-Wolff transformation

(Coish and Loss, 2004):

Hhf = H0 + Vff , (3.3)

H0 = (b+ hz)Sz + b
∑

k

γkI
z
k , (3.4)

Vff =
1

2
(S+h− + S−h+) . (3.5)

Our goal is to find an effective Hamiltonian that eliminates the flip-flop term Vff at leading

order. We apply a unitary transformation:

H = eSHhfe
−S , (3.6)

where S = −S† to ensure unitarity. We now expand Eq. (3.6) in powers of S, retaining terms

up to O
(

V 3
ff

)

, assuming S ∼ O (Vff):

H = H0 + Vff − [H0, S] − [Vff , S] +
1

2
[S, [S,H0]] + O

(

V 3
ff

)

. (3.7)

To eliminate Vff at leading order, we must choose S to satisfy Vff − [H0, S] = 0. The S that

satisfies this relation is given by

S =
1

L0
Vff , L0O = [H0, O] , (3.8)

which is of order Vff , justifying our previous assumption: S ∼ O (Vff). Re-inserting Eq. (3.8)

into Eq. (3.7), we find, up to corrections that are third-, or higher-order in Vff :

H = H + O
(

V 3
ff

)

, (3.9)

H = H0 +
1

2
[S, Vff ] . (3.10)

Directly evaluating Eq. (3.8) with H0 defined in Eq. (3.4) and Vff defined in Eq. (3.5) gives

S =
1

2

∑

k

Ak

(

1

b+ hz + Ak
2 − bγk

S+I−k − 1

b+ hz − Ak
2 − bγk

S−I+k

)

. (3.11)

Inserting Eq. (3.11) into Eq. (3.10) gives

H = |↑〉 〈↑|H↑ + |↓〉 〈↓|H↓, (3.12)

H↑ =
1

2
(b+ hz) + b

∑

k

γkI
z
k + h↑, (3.13)

H↓ = −1

2
(b+ hz) + b

∑

k

γkI
z
k − h↓. (3.14)

Here, the contributions resulting from the term second-order in Vff are given explicitly by

h↑ =
1

8

∑

k,l

AkAl

(

1

b+ hz +Ak/2 − bγk
I−k I

+
l + I−l

1

b+ hz −Ak/2 − bγk
I+k

)

, (3.15)

h↓ =
1

8

∑

k,l

AkAl

(

1

b+ hz −Ak/2 − bγk
I+k I

−
l + I+l

1

b+ hz +Ak/2 − bγk
I−k

)

. (3.16)
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3. Electrons in III-V Semiconductors: Effective-Hamiltonian Approach

We can rewrite H in terms of spin operators using |↑〉 〈↑| = 1
2 +Sz and |↓〉 〈↓| = 1

2 −Sz, which

gives

H = (ω +X)Sz +D, (3.17)

X = (1 − Pd) (h↑ + h↓) , (3.18)

D = b
∑

k

γkI
z
k +

1

2
(h↑ − h↓) , (3.19)

ω = b+ hz + Pd (h↑ + h↓) . (3.20)

In the above expressions, we have introduced the diagonal projection superoperator

PdO =
∑

l

|l〉 〈l| 〈l|O |l〉 , (3.21)

where the index l runs over all nuclear-spin product states |l〉 =
⊗

k

∣

∣Ikm
l
k

〉

. We now apply the

commutation relation
[

I+k , I
−
l

]

= 2Izkδkl and expand the prefactors in Eqs. (3.15) and (3.16)

in terms of the smallness parameter

Ak

b+ hz − bγk
∼ 1

N

A

b
≪ 1. (3.22)

At leading order in the expansion, we find h↑,↓ ≈ h
(0)
↑,↓, where

h
(0)
↑ =

1

8

∑

k,l

AkAl

b+ hz − bγk

(

I−k I
+
l + I−l I

+
k

)

, (3.23)

h
(0)
↓ =

1

8

∑

k,l

AkAl

b+ hz − bγk

(

I+k I
−
l + I+l I

−
k

)

. (3.24)

By commuting the nuclear spin operators, Eqs. (3.23) and (3.24) can be rewritten to give

h
(0)
↓ = h

(0)
↑ +

1

2

∑

k

A2
k

b+ hz − bγk
Izk . (3.25)

This relation allows us to approximate the various terms in Eqs. (3.18), (3.19), and (3.20):

X ≈ (1 − Pd)
(

2h
(0)
↑

)

,

=
1

4

∑

k 6=l

AkAl

b+ hz − bγk

(

I−k I
+
l + I−l I

+
k

)

, (3.26)

D ≈
∑

k

(

bγk −
A2

k

4 (b+ hz − bγk)

)

Izk , (3.27)

ω ≈ b+ hz + Pd

(

2h
(0)
↑

)

+
1

2

∑

k

A2
k

b+ hz − bγk
Izk

= b+ hz +
1

2

∑

k

A2
k

b+ hz − bγk

(

Ik(Ik + 1) − (Izk)2
)

. (3.28)
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3.3. Markov approximation

Neglecting further corrections that are smaller by the factor bγk/ω ∼ γk ∼ 10−3 in Eq. (3.26)

and terms of order .
∑

k
A2

k
b+hz−bγk ∼ A2

Nb in Eqs. (3.27) and (3.28), we arrive at

H = (ω +X)Sz +D, (3.29)

with

ω ≃ b+ hz, (3.30)

D ≃ b
∑

k

γkI
z
k , (3.31)

X ≃ 1

2

∑

k 6=l

AkAl

ω
I−k I

+
l . (3.32)

The terms of order ∼ A2/Nb may become important on a time scale τ ∼ Nb/A2. In our

treatment, this time scale is long compared to the bath correlation time τc ∼ N/A in the

perturbative regime A/b < 1, and so neglecting these terms is justified.

3.3 Markov approximation

For large b, Hhf leads only to an incomplete decay of the longitudinal spin 〈Sz〉t (Coish and

Loss, 2004). However, it is still possible for the transverse spin 〈S+〉t to decay fully (Deng and

Hu, 2006) through a pure dephasing process, which we now describe in detail. We assume that

the electron and nuclear systems are initially unentangled with each other and that the nuclear

spin system is prepared in a narrowed state (an eigenstate of the operator ω: ω |n〉 = ωn |n〉)
through a sequence of weak measurements (Klauser et al., 2006; Giedke et al., 2006; Stepanenko

et al., 2006), polarization pumping (Ramon and Hu, 2007), frequency focusing under pulsed

optical excitation (Greilich et al., 2007), or by any other means. For these initial conditions, the

dynamics of the transverse electron spin 〈S+〉t are described by the exact equation of motion

(Coish and Loss, 2004):

˙〈S+〉t = iωn 〈S+〉t − i

∫ t

0
dt′Σ(t− t′) 〈S+〉t′ , (3.33)

with the memory kernel (or self energy)

Σ(t) = −itrS+Le−iQLtQL |n〉 〈n|S−. (3.34)

Here, L and Q are superoperators, defined by their action on an arbitrary operator O: LO =

[H,O], QO = (1 − |n〉 〈n| trI)O, where trI indicates a partial trace over the nuclear spin system

(see Chapter 2.1).

To remove fast oscillations in 〈S+〉t we transform to a rotating frame, in which we define

the coherence factor

xt = 2 exp [−i(ωn + ∆ω)t] 〈S+〉t (3.35)

and associated memory kernel

Σ̃(t) = exp [−i(ωn + ∆ω)t] Σ(t), (3.36)
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3. Electrons in III-V Semiconductors: Effective-Hamiltonian Approach

with frequency shift determined self-consistently through

∆ω = −Re

∫ ∞

0
dtΣ̃(t). (3.37)

Additionally, we change the integration variable to τ = t − t′. The equation of motion for xt
then reads

ẋt = −i
∫ t

0
dτ Σ̃(τ)xt−τ . (3.38)

If Σ̃(τ) decays to zero sufficiently quickly on the time scale τc ≪ T2, where T2 is the decay

time of xt, we can approximate xt−τ ≈ xt and extend the upper limit on the integral to t→ ∞
(Markov approximation), giving an exponential coherence decay with a small error ǫ(t):

xt = x0 exp (−t/T2) + ǫ(t),
1

T2
= −Im

∫ ∞

0
dtΣ̃(t). (3.39)

The non-Markovian correction ǫ(t) can be bounded precisely if Σ̃(t) is known (Fick and Sauer-

mann, 1990):

|ǫ(t)| ≤ |ǫ(t)|max = 2

∫ t

0
dt′
∣

∣

∣

∣

∫ ∞

t′
dt′′Σ̃(t′′)

∣

∣

∣

∣

. (3.40)

Eq. (3.40) gives a hard bound on the validity of the Markov approximation, and consequently,

any corrections to the exponential decay formula. Fig. 3.1 demonstrates an application of Eqs.

(3.39) and (3.40) for decay in a homonuclear spin system, which we discuss below.

We note that the integral in Eq. (3.39) becomes undefined if the memory kernel has an

asymptotic time dependence Σ̃(t) ∼ 1/tα, where α ≤ 1, and consequently the Markov approx-

imation breaks down in this case. A weaker version of Markovian violation can occur more

generally for α ≤ 2, in which case the bound, Eq. (3.40), may still be small for times t ∼ T2,

but grows unbounded in time. This situation occurs, for example, in the ohmic spin-boson

model (DiVincenzo and Loss, 2005).

3.4 Homonuclear system

If only one spin-carrying nuclear isotope is present, then γk = γ, independent of the nuclear site.

We then approximate Σ(t) to leading order in the perturbation V = XSz (Born approximation,

see Appendix A.2) by expanding Eq. (3.34) through iteration of the Dyson identity,

e−iLQt = e−iL0Qt − i

∫ t

0
dt′e−iL0Q(t−t′)LV Qe

−iLQt′ , (3.41)

where LVO = [V,O]. Higher-order corrections to the Born approximation will be suppressed

by the small parameter A/ωn (Coish and Loss, 2004). Inserting the result into Eq. (3.39) we

find:
1

T2
= Re

∫ ∞

0
dte−i∆ωt 〈X(t)X〉 , X(t) = e−iωtXeiωt. (3.42)

Here, 〈· · · 〉 = 〈n| · · · |n〉 denotes an expectation value with respect to the initial nuclear state.

Eq. (3.42) resembles the standard result for pure dephasing in a weak coupling expansion, where
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Figure 3.1: Exponential decay xt = exp (−t/T2) (solid line) and maximum error bounds
xt ± |ǫ(t)|max (dashed lines), found by numerical integration of Eq. (3.40) with
parameters for a two-dimensional quantum dot (before Eq. (3.50)), I = 3/2 and
A/b = 1/20. For comparison, we show the decay curves for super-exponential forms
exp{− (t/T2)

2} and exp{− (t/T2)4} (dot-dashed lines) and rapidly decaying bath
correlation function C(t)/C(0) (dotted line, see Eqs. (3.42) and (3.43)).

X(t) would represent the bath operator in the interaction picture with an independent bath

Hamiltonian. However, for the spin bath there is no such weak coupling expansion, and X(t)

appears in the interaction picture with ω, the same operator that provides an effective level

splitting for the system. Additionally, the general result for a heteronuclear system including

inter-species flip-flops cannot be written in such a compact form.

Previously, it has been shown by Coish and Loss (2004) that a Born-Markov approximation

to second order in Vff leads to no decay. In contrast, a Born-Markov approximation applied

to the effective Hamiltonian leads directly to a result that is fourth order in Vff – as can be

seen from Eq. (3.42) – describing dynamics that become important at times longer than the

second-order result. It is not a priori obvious that the effective Hamiltonian, evaluated only to

second order in Vff , can be used to accurately calculate rates to fourth order in Vff . We have,

however, verified that all results for the decay rates that we present here are equivalent to a

direct calculation expanded to fourth order in Vff at leading order in A/b≪ 1 (see Chapter 4).

If the initial nuclear polarization is smooth on the scale of the electron wave function,

the matrix elements of operators like I±k I
∓
k can be replaced by average values. Neglecting

corrections that are small in A/Nb≪ 1, this gives (see also Appendix A.3):

C(t) = 〈X(t)X(0)〉 =
c+c−
4ω2

n

∑

k 6=l

A2
kA

2
l e
−i(Ak−Al)t. (3.43)

Above, we have introduced the coefficients

c± = I(I + 1) − 〈〈m(m± 1)〉〉 (3.44)

and the double angle bracket indicates an average over Izk eigenvalues m (Coish and Loss,

2004).
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3. Electrons in III-V Semiconductors: Effective-Hamiltonian Approach

In the limit N ≫ 1 we can include the term k = l in Eq. (3.43) and perform the continuum

limit Σk →
∫

dk with small corrections. For an isotropic electron wave function of the form

ψ(r) = ψ(0) exp

{

−1

2

(

r

r0

)q}

(3.45)

containing N nuclei within radius r0 in d dimensions, the hyperfine coupling constants are

distributed according to

Ak = A0 exp

{

−
(

k

N

)q/d
}

, (3.46)

where k is a non-negative index, and we choose A0 to normalize Ak according to A =
∫∞
0 dkAk

(Coish and Loss, 2004) – see also Appendix A.1.

After performing the continuum limit, C(t) will decay, with characteristic time τc given

by the inverse bandwidth of nuclear flip-flop excitations τc ∼ 1/A0 ∼ N/A. For large b, 1/T2
will be suppressed due to the smallness of X (see Eq. (3.32)), whereas τc remains fixed. At

sufficiently large b, it will therefore be possible to reach the Markovian regime, where τc is short

compared to T2: τc/T2 ≪ 1. Evaluating the time integral in Eq. (3.42), we find the general

result to leading order in A/ωn (see Appendix A.3):

1

T2
=
π

4
c+c−f

(

d

q

)(

A

ωn

)2 A

N
, (3.47)

with

f(r) =
1

r

(

1

3

)2r−1 Γ(2r − 1)

[Γ(r)]3
, r > 1/2. (3.48)

In Eq. (3.47), A/N sets the scale for the maximum decay rate in the perturbative regime, the

coefficients c± set the dependence on the initial nuclear polarization p (e.g., with I = 1/2,

we have c+c− = (1 − p2)/4), A/ωn < 1 gives the small parameter which controls the Born

approximation, and f(d/q) is a geometrical factor (plotted in Fig. 3.2). f(d/q) is exponentially

suppressed for d/q > 1 (f(r) ∝ (1/3)2r−1(1/r)r, r > 1), but f(d/q) → ∞ for d/q − 1/2 → 0+.

Due to this divergence, no Markov approximation is possible (within the Born approxima-

tion) for d/q ≤ 1/2. We understand the divergence in f(d/q) explicitly from the asymptotic

dependence of C(t) at long times:

C(t) ∝ 1/t2d/q , t≫ N/A, d/q < 2. (3.49)

Surprisingly, there is a difference of nearly two orders of magnitude in 1/T2 going from a

two-dimensional (2D) quantum dot with Gaussian envelope function (d = 2, q = 2, d/q=1) to

a donor impurity with a hydrogen-like exponential wave function (d = 3, q = 1, d/q = 3), if

all other parameters are fixed (see Fig. 3.2).

We now specialize to an initial uniform unpolarized spin bath, which is nevertheless nar-

rowed: ω |n〉 = b |n〉, with equal populations of all nuclear Zeeman levels, i.e., 〈〈m〉〉 = 0 and
〈〈

m2
〉〉

= 1
3I(I + 1). For a 2D quantum dot with a Gaussian envelope function (d = q = 2) we
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Figure 3.2: Geometrical factor f(d/q) from Eq. (3.48), where d = 1, 2, 3 is the dimension
and q characterizes the electron envelope function ψ(r) = ψ(0) exp [− (r/r0)q /2].
The dashed line at d/q = 1/2 indicates the limit of applicability of the Markov
approximation.

find, from Eqs. (3.47) and (3.48):

1

T2
=
π

3

(

I(I + 1)A

3b

)2 A

N
. (3.50)

There are two remarkable features of this surprisingly simple result. First, the condition for

the validity of the Markov approximation, T2 > τc ∼ N/A will be satisfied whenever A/b < 1,

which is the same condition that validates a Born approximation. Second, 1/T2 has a very

strong dependence on the nuclear spin (1/T2 ∝ I4). Thus, systems with large-spin nuclei such

as In (IIn = 9/2) will show relatively significantly faster decay (see, e.g., Fig. 3.3).

3.5 Heteronuclear system

For sufficiently large b, i.e. |γk − γk′ | b ≫ |Ak −Ak′ | ∼ A/N , heteronuclear flip-flops between

two isotopic species with different γk are forbidden due to energy conservation. In this case,

1/T2 is given in terms of an incoherent sum,

1

T2
= Γ =

∑

i

Γi, (3.51)

where Γi is the contribution from flip-flops between nuclei of the common species i. Assuming

a uniform distribution of all isotopes in a 2D quantum dot with a Gaussian envelope function,

we find (see also Appendix A.3)

Γi =
1

T i
2

= ν2i
π

3

(

Ii(Ii + 1)Ai

3b

)2
Ai

N
. (3.52)
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Figure 3.3: Decay rates for an InxGa1−xAs quantum dot with In doping x = 0.05. Here, we have
assumed N = 105 and used values of νi and Ai for GaAs from Ref. (Paget et al.,
1977): A

75As = 86µeV, A
69Ga = 74µeV, A

71Ga = 96µeV, ν75As = 0.5, ν69Ga =
0.3(1 − x), ν71Ga = 0.2(1 − x). The hyperfine coupling for In in InAs was taken
from Liu et al. (2007): A

113In ≈ A
115In ≈ AIn = 170µeV , νIn = x/2.

The quadratic dependence on isotopic concentration νi is particularly striking. Due to this

dependence, electron spins in GaAs, where Ga has two naturally occurring isotopic species,

whereas As has only one, will show a decay predominantly due to flip-flops between As spins.

This is in spite of the fact that all isotopes in GaAs have the same nuclear spin and nominally

similar hyperfine coupling constants (see Fig. 3.3). Interestingly, we note that the relatively

large flip-flop rates for In and As, due to large nuclear spin and isotopic concentration, respec-

tively, may partly explain why only Ga (and not In or As) spins have been seen to contribute

to coherent effects in experiments by Ono and Tarucha (2004) on electron transport through

(In/Ga)As quantum dots: The same effect may also explain why polarization appears to be

transferred more efficiently from electrons to As (rather than Ga) in GaAs quantum dots.

3.6 Conclusions

We have shown that a single electron spin can exhibit a purely exponential decay for narrowed

nuclear-spin bath initial conditions and in the presence of a sufficiently large electron Zeeman

splitting b. This work may be important for implementing existing quantum error correction

schemes, which typically assume exponential decay of correlation functions due to a Markovian

environment. In the limit of large Zeeman splitting b > A, where a Born-Markov approximation

is valid, we have found explicit analytical expressions for the decoherence time T2, giving

explicit dependence’s on the electron wave function, magnetic field, bath polarization, nuclear

spin, and isotopic abundance for a general nuclear spin bath. Moreover, within the Born-Markov

approximation, we have found a divergence in the decoherence rate 1/T2 for a one-dimensional

quantum dot, indicating a breakdown of the Markov approximation in this case.
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Chapter 4

Electrons in III-V Semiconductors:
Direct Approach

4.1 Introduction

In the previous chapter, we have seen that, in the absence of refocusing pulses, and at time

scales that are short compared to the relevant time scale for the nuclear dipolar interaction, the

spin of a confined electron interacting with a narrowed nuclear-spin environment decoheres due

to dynamics induced by flip-flop processes between the electron and nuclear spins mediated by

the hyperfine interaction. In the presence of a large Zeeman splitting due to an applied magnetic

field, direct electron spin-flips are energetically forbidden, giving rise to pure dephasing of the

electron spin. Under these conditions, the electron-spin dynamics pass through various stages

with a zoo of different decay laws, obtained by various methods (see Fig. 1.1(b)): an exact

solution for a fully-polarized nuclear system and leading-order generalized master equation

(GME) have both shown a short-time (partial) power-law decay (Khaetskii et al., 2002, 2003;

Coish and Loss, 2004), an effective-Hamiltonian and short-time-expansion approach shows

that the initial partial decay is followed by a quadratic decay shoulder (Yao et al., 2006; Liu

et al., 2007), and a Born-Markov approximation applied to the same effective Hamiltonian – as

shown in the previous chapter – shows that the majority of the decay is typically exponential

in the high-field (perturbative) regime (Coish et al., 2008; Cywiński et al., 2009a,b). Finally,

an equation-of-motion approach has shown a long-time power-law decay to zero (Deng and

Hu, 2006, 2008).

In this chapter, we show that each of these results can be obtained in a systematic way

from a single unified approach, by extending the generalized master equation (GME) intro-

duced by Coish and Loss (2004) to higher order. In addition to recovering previous results at

all time scales, we find important qualitatively new features, including a modulation of the

decay envelope (even for a fully isotropic hyperfine interaction). Moreover, we give sub-leading

corrections (in the inverse electron Zeeman splitting 1/b) to the decoherence rate 1/T2 cal-

culated in Chapter 3. These corrections suggest an interesting non-monotonic dependence of

1/T2 on b. Neither the envelope modulations, nor the sub-leading corrections to 1/T2 can be
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4. Electrons in III-V Semiconductors: Direct Approach

found from dynamics under the effective Hamiltonian alone. The results presented here there-

fore show limits to the validity of some previous approaches based on high-order expansions of

a leading-order effective Hamiltonian, and should be directly compared and contrasted to the

results presented in Chapter 3.

4.2 Hamiltonian and generalized master equation

We consider the Hamiltonian for a localized electron spin-1/2 (with associated spin operator

S), interacting with a bath of nuclear spins Ik via the Fermi contact hyperfine interaction. We

allow generally for a Zeeman splitting b = gµBB of the central spin S and site- (or species-)

dependent Zeeman splitting bγk in the bath for a nuclear spin Ik at site k. The Hamiltonian

for this system is (setting ~ = 1)

H = bSz + b
∑

k

γkI
z
k + S · h; h =

∑

k

AkIk, (4.1)

where the hyperfine coupling constant at site k is given by Ak = v0A
jk |ψ(rk)|2 if the nucleus

at site k is of isotopic species jk with associated total hyperfine coupling constant Ajk , ψ(rk) is

the electron envelope wavefunction, evaluated at site rk (the position of the kth nuclear spin),

and v0 is the atomic volume.

In Eq. (4.1) we have neglected the nuclear dipole-dipole interaction, which can give rise to

additional internal dynamics in the nuclear spin system, and consequent decay of the electron

spin (Klauder and Anderson, 1962; de Sousa and Das Sarma, 2003; Witzel and Sarma, 2006; Yao

et al., 2006; Cywiński et al., 2009a). Dipole-dipole-induced nuclear spin dynamics are highly

suppressed in the presence of an inhomogeneous quadrupolar splitting 1 (Maletinsky et al.,

2009), or Knight-field gradient in a small quantum dot (the “frozen-core” or diffusion-barrier

effect, see Ramanathan (2008) for a review). The relevant decoherence rate due purely to the

hyperfine interaction is enhanced for a small dot (1/T2 ∼ 1/N for a quantum dot containing

N nuclear spins), whereas the dipole-dipole-induced nuclear dynamics are suppressed for a

small dot due to the frozen-core effect. Thus, there will always be some dot size N where the

nuclear dipolar interactions can be neglected, even up to times that are long compared to the

electron-spin decoherence time.

1Hyperfine-induced long-range nuclear pair flips have a bandwidth of ∼ A/N for large electron Zeeman
splitting b > A, whereas the short-range nuclear dipolar interactions induce excitations with a narrow bandwidth
∼ δAnn, where δAnn is the typical difference in nearest-neighbor hyperfine coupling constants. In the presence
of a nonuniform gradient in the Zeeman energy or secular (Izk -preserving) quadrupolar splitting, we expect
hyperfine-mediated pair flips to be allowed, while dipolar pair flips are suppressed, at least in the regime where
A/N & ∆Emax and ∆Enn > δAnn ∼ (1/N)1/dA/N , where d is the dimensionality of the dot, ∆Enn is the
typical difference in the quadrupolar splitting or Zeeman energy between neighboring nuclei and ∆Emax is
the maximum difference in quadrupolar splitting or Zeeman energy between any two nuclei in the dot. The
inequalities will be satisfied for a range of ∆Enn and ∆Emax whenever the gradient in quadrupolar or Zeeman
energy is nonuniform on the scale of the dot. This will be true, e.g., for local disorder due to random doping of In
atoms in a InxGa1−xAs quantum dot. For a uniform gradient, we estimate ∆Emax ∼ N1/d∆Enn, which saturates
the bounds. While this estimate demonstrates the existence of such a regime, a more complete calculation taking
both hyperfine interaction and nuclear dipolar interactions fully into account would be required to establish the
complete range of validity.
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4.2.1 Initial conditions

We choose product-state initial conditions

ρ(0) = ρS(0) ⊗ ρI(0), (4.2)

where ρI(S) = trS(I)ρ is the reduced density matrix for the nuclear (electron) system. Such

an initial state can be prepared through fast strong pulses applied to the electron spin or by

allowing an electron to tunnel rapidly into a localized orbital (Coish and Loss, 2004).

Typically, nothing will be known about the nuclear-spin system at the beginning of an

experiment, and the density matrix ρI(0) will be well-characterized by a completely random

(infinite temperature) mixture. Randomized initial conditions for the nuclear-spin bath result

in a rapid Gaussian decay of the transverse electron spin in the presence of a strong Zeeman

splitting b (Khaetskii et al., 2002; Merkulov et al., 2002; Schliemann et al., 2002, 2003; Coish

and Loss, 2004; Petta et al., 2005). This rapid decay, due to static fluctuations in the initial

conditions, can be removed by performing a measurement of the z-component of the slowly-

varying nuclear field hz (Coish and Loss, 2004). There have been several theoretical proposals

(Stepanenko et al., 2006; Klauser et al., 2006; Giedke et al., 2006) to measure the nuclear-

spin system into an eigenstate of hz and there are now several experiments where similar

state preparation has been achieved through dynamical pumping (Greilich et al., 2007; Reilly

et al., 2008; Greilich et al., 2009; Vink et al., 2009; Latta et al., 2009; Xu et al., 2009). After

preparing the nuclei in an eigenstate of the operator hz, the nuclear system will be described

most generally by an arbitrary mixture of g degenerate hz-eigenstates |ni〉 (i = 1, 2, . . . , g):

ρI(0) =
∑

i

ρii |ni〉 〈ni| +
∑

i 6=j

ρij |ni〉 〈nj| , (4.3)

where

hz |ni〉 = hzn |ni〉 ∀i. (4.4)

In this paper, we will assume that there is no ‘special’ phase relationship between the different

hz-eigenstates, which allows us to approximate ρI(0) by the diagonal part of Eq. (4.3)

ρI(0) ≈
∑

i

ρii |ni〉 〈ni| , (4.5)

where, for any particular i, the state |ni〉 is given by a product of Izk -eigenstates:

|ni〉 =
⊗

j,kj

∣

∣

∣
Ijm

i
kj

〉

(4.6)

with spin operator Izkj associated with the nuclear spin of isotopic species j at site kj :

Izkj

∣

∣Ijmkj

〉

= mi
kj

∣

∣Ijmkj

〉

, and where Ij ≤ mi
kj

≤ Ij.

We will find it convenient to define the average of an arbitrary function of Iz-eigenvalues

f j(m) for the subset of nuclear spins of species j by:

〈〈

f j(m)
〉〉

≡
∑

i

ρii 〈ni| f j(Izkj ) |ni〉 , (4.7)
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where we assume a uniformly polarized nuclear-spin system throughout this article, making the

average on the right-hand side independent of kj. Specifically, this condition will be satisfied

whenever a sufficiently large number g ≫ 1 of degenerate hz-eigenstates contribute to the

average so that
∑

i ρii can be replaced by the same probability distribution
∑

m Pj(m) for all

sites kj (see also Appendix B of Coish and Loss (2004)):

∑

i

ρii 〈ni| f j(Izkj) |ni〉 =

Ij
∑

m=−Ij
Pj(m)f j(m). (4.8)

4.2.2 Generalized master equation

In this section we derive an exact equation of motion for the transverse components of the

electron spin alone, taking the dynamics of the coupled electron-nuclear spin system into

account (see also Chapter 2.1). Our starting point is the von Neumann equation for the full

density matrix ρ̇ = −i [H, ρ] = −iLρ. To find the reduced dynamics of the electron spin

alone, we rewrite the von Neumann equation in the form of the Nakajima-Zwanzig generalized

master equation (Fick and Sauermann, 1990; Breuer and Petruccione, 2002). Introducing a

projection superoperator P that preserves the initial condition Pρ(0) = ρ(0), the Nakajima-

Zwanzig generalized master equation can be written as

Pρ̇(t) = −iPLPρ(t) − i

∫ t

0
dt′Σ(t− t′)Pρ(t′), (4.9)

Σ(t) = −iPLQe−iLQtQLP. (4.10)

Additionally, the projector P must satisfy P2 = P and is typically chosen to preserve all system

variables Sα: trSαρ(t) = trSαPρ(t). Here, Q is the complement projector: Q = 1− P. For the

special case of the Hamiltonian (4.1) and the initial condition (4.5), we choose the projection

superoperator P = ρI(0)trI and find that the exact equation of motion for the transverse

electron spin (S± = Sx ± iSy) is of the form (Coish and Loss, 2004)

d

dt
〈S+〉t = iωn 〈S+〉t − i

∫ t

0
dt′Σ(t− t′) 〈S+〉t′ , (4.11)

Σ(t) = tr [S+Σ(t)S−ρI(0)] , (4.12)

where ωn = b+ hzn.

4.2.3 Rotating frame

We define the coherence factor xt, which measures the transverse components of the electron

spin in a frame co-rotating with the spin at frequency ωn + ∆ω through

xt = 2e−i(ωn+∆ω)t 〈S+〉t , (4.13)

and the associated self-energy

Σ̃(t) = e−i(ωn+∆ω)tΣ(t), (4.14)
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with Lamb shift ∆ω due to virtual excitations of the bath:

∆ω = −Re

∫ ∞

0
dtΣ̃(t). (4.15)

This gives an equation of motion for xt:

ẋt = −i∆ωxt − i

∫ t

0
dt′Σ̃(t− t′)xt′ . (4.16)

Eq. (4.16) is an exact equation of motion for the coherence factor xt, and therefore serves as

an important starting point for systematic approximations in the rest of this article.

4.3 Self-energy expansion

In the absence of an exact closed-form expression for Σ̃(t), we must resort to an approximation

scheme. For a large electron-spin Zeeman splitting b, and due to the large difference between

the magnetic moments of electron and nuclear spin (γk ∼ 10−3), it is appropriate to separate

the Hamiltonian (4.1) into an unperturbed piece that preserves Sz and a flip-flop term, which

induces energy non-conserving flip-flops between electron and nuclear spins: H = H0 + Vff ,

where

H0 = ωSz + b
∑

k

γkI
z
k , ω = b+ hz , (4.17)

Vff =
1

2

(

h+S− + h−S+
)

. (4.18)

We can then write Σ̃(t) in powers of Vff by performing a Dyson-series expansion (see Eq. (2.14))

of Eq. (4.10) and inserting the result into the definition (4.12) (Coish and Loss, 2004):

Σ̃(t) = Σ̃(2)(t) + Σ̃(4)(t) +O
(

V 6
ff

)

. (4.19)

Progressively higher-order terms in the expansion involve a larger number of flip-flops between

the electron and nuclear bath spins. Consequently, higher-order terms are suppressed by the

energy cost for such flip-flops, provided by the electron spin splitting b for an unpolarized

nuclear bath. In particular, up to factors of order unity and an overall common prefactor, the

size of the 2(n+ 1)th-order term is given by (see also Appendix A of Coish and Loss (2004)):

Σ̃(2[n+1])(t) ∝
(

I(I + 1)A

b

)n

. (4.20)

For a nuclear spin of order unity (I ∼ 1), the condition for the validity of a perturbative

expansion in terms of Vff , i.e., the condition for convergence of the series in Eq. (4.19), is then

given approximately by (Coish and Loss, 2004; Deng and Hu, 2006; Coish et al., 2008)

b & A, (4.21)

which is the same condition as for the Born-Markov approximation in Chapter 3.
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4. Electrons in III-V Semiconductors: Direct Approach

In the Born approximation, the self-energy Σ̃(t) is replaced by the leading-order non-

vanishing term in the expansion of Eq. (4.19): Σ̃(t) ≈ Σ̃(2)(t). To understand the evolution of xt
within the Born approximation, it is convenient to introduce the function ψ(t) =

∫∞
t dt′Σ̃(2)(t′),

which allows us to rewrite the equation of motion (4.16) as (Fick and Sauermann, 1990)

ẋt = −i(ψ(0) + ∆ω)xt +
d

dt
R(t), (4.22)

where R(t) = i
∫ t
0 dt

′ψ(t − t′)xt′ . In a standard Born-Markov approximation, the dynam-

ics induced by R(t) are neglected. The real part of ψ(0) cancels any remaining precession:

−Reψ(0) = ∆ω (see Eq. (4.15)) and the imaginary part of ψ(0) gives rise to a purely exponen-

tial decay of xt with decay rate Γ = −Imψ(0). It has been shown by Coish and Loss (2004) that

the decay rate for this system within a Born-Markov approximation vanishes: Γ = 0. Within

a Born approximation, all non-trivial dynamics in the rotating frame are therefore induced by

the non-Markovian remainder term R(t). The remainder term R(t) has been investigated in

detail by Khaetskii et al. (2002, 2003) and Coish and Loss (2004) and leads to a partial decay

of the coherence factor of order |R(t)| ∼ O
[

1
N

(

A
b

)2
]

on a time scale ∼ N/A, with long-time

power-law tails (Coish and Loss, 2004). In the rest of this chapter, we include the effects of the

Born approximation in inducing the Lamb shift (4.15), but neglect the . O(1/N) corrections

due to R(t) in the perturbative regime. Additionally, we will go beyond the Born approxima-

tion by including the fourth-order correction to the self-energy in the expansion of Eq. (4.19),

which we show induces a more dramatic decay, albeit at a longer time scale.

We now approximate the self-energy by including all terms at second and fourth order in

electron-nuclear spin flip-flops

Σ̃(t) ≈ Σ̃(2)(t) + Σ̃(4)(t). (4.23)

Inserting (4.23) into (4.16) we find, neglecting the dynamics with amplitude suppressed by

∼ 1/N in the perturbative regime due to R(t):

ẋt = −i
∫ t

0
dt′Σ̃(4)(t− t′)xt′ , (4.24)

∆ω ≈ −Re

∫ ∞

0
dtΣ̃(2)(t). (4.25)

The integro-differential equation (4.24) is difficult to solve, in general. However, in terms

of Laplace-transformed variables, this equation becomes an algebraic equation, which can be

solved directly. Introducing the Laplace transform of some function f(t),

f(s) =

∫ ∞

0
dt e−stf(t), Re(s) > 0, (4.26)

we rewrite Eqs. (4.24) and (4.25) as

x(s) =
x0

s+ iΣ̃(4)(s)
, (4.27)

∆ω ≈ −ReΣ̃(2)(s = 0+). (4.28)
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4.3. Self-energy expansion

Im[s]

β
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β0
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Figure 4.1: Contour used to evaluate the Bromwich inversion integral (in the rotating frame
defined by Eq. (4.13)). The dynamics of the coherence factor xt are determined by
a single pole at s0 = −1/T2 and three branch cuts (see main text). The pole is
offset from the branch cuts by the Lamb shift ∆ω and the excitation bandwidth
(separation between branch points) is given by the size of the hyperfine coupling
to a single nucleus at the center of the quantum dot, A/N .

Here, the initial value of the coherence factor is denoted by x0 = xt|t=0. We have calculated

the self-energy Σ̃ in Appendix A.4, including terms up to fourth order in Vff .

The dominant contributions to Σ̃(s) occur for |s| ≪ |ωn| in the rotating frame (high-

frequency, s ≃ iωn in the lab frame). We have expanded the second- and fourth-order self-

energies in this limit, as described in Appendix A.4. Corrections to this expansion are smaller

than the retained contributions by a factor of A/Nωn ≪ 1. For explicit calculation, it is useful

to specialize to the case of a homonuclear system (where γk = γ for all k) and a two-dimensional

quantum dot with Gaussian envelope function, leading to coupling constants (Coish and Loss,

2004; Coish et al., 2008) Ak = (A/N)e−k/N . Performing the continuum limit (
∑

k →
∫

dk) and

evaluating the relevant energy integrals for a uniformly polarized nuclear spin system leads to

Σ̃(4)(s− i∆ω) = iα [F+(s)J+(s) + F−(s)J−(s) − s] , (4.29)

∆ω ≃ −Σ̃(2)(s = 0+) =
1

8
(c+ + c−)

A

ωn

A

N
, (4.30)

with

α =
c+c−

24

(

A

ωn

)2

, (4.31)

and where c± = I(I + 1) − 〈〈m(m ± 1)〉〉 are the coefficients introduced by Coish and Loss

(2004) with 〈〈· · · 〉〉 indicating an average over the mixture of Izk -eigenvalues, described by Eq.
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Figure 4.2: Comparison of the contribution from the pole at s0 in Fig. 4.1 with exponentially de-
caying residue (blue dashed line) with the full fourth-order result, obtained numer-
ically (red solid line). For comparison, the re-exponentiated short-time quadratic
decay is also shown (black dotted line) with a parabolic decay having the same
time scale (orange dash-dotted line). We take the initial condition x0 = 1, assume
an unpolarized nuclear spin system [with ωn = b, c± = 2

3I(I + 1), which follows
from

〈〈

m2
〉〉

= I(I + 1)/3 if all Zeeman levels have equal population], and have
chosen I = 3/2 and A/b = 1/3.

(4.7). Additionally, we have introduced the functions

F±(s) =

(

N

A

)2(

s± i
A

N

)2(

s∓ 2i
A

N

)

, (4.32)

J±(s) = log

(

s± i
A

N

)

− log(s). (4.33)

After inserting (6.18) into (4.27), we find that the Laplace-transformed coherence factor

has three branch points, and if the principle branch is chosen for all branch cuts and at large

electron Zeeman splitting (b≫ A), there is one pole at s = s0 (see Fig. 4.1). These non-analytic

features determine the dynamics of the coherence factor (see below). The equation-of-motion

method adopted by Deng and Hu (2006, 2008) bears some similarity to the current approach.

However, the excitation bandwidth (distance between branch points) found by Deng and Hu

(2006, 2008) is half that found here (A/2N rather than A/N), leading to a difference (by a

factor of 2) for relevant decay time scales. We comment on other differences, below.

4.4 Spin dynamics

We find the time-dependent coherence factor by evaluating the Bromwich inversion integral

xt = lim
γ→0+

1

2πi

∫ γ+i∞

γ−i∞
dsestx(s), (4.34)
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Figure 4.3: Long-time decay. At long times, the exponential decay envelope is modulated by
branch-cut contributions at a frequency given by the Lamb shift ∆ω. Parameters
are as in Fig. 4.2.

which can be rewritten in terms of an integral over the closed contour CB and branch-cut

integrals βj , j = 0,+,− (see Fig. 4.1):

xt =
1

2πi

∮

CB

dsestx(s) −
∑

j

βj(t)

= Res
[

estx(s), s = s0
]

−
∑

j

βj(t). (4.35)

In Eq. (4.35), we have applied the residue theorem to write the integral over CB in terms of a

residue at the pole s0.

Since the rotating frame is chosen to give s0 = −1/T2 purely real, we find the general result

xt = P0e
−t/T2 −

∑

i

βi(t), (4.36)

with P0 given by Eq. (4.46), below. The coherence factor is characterized by two terms: an

exponential, which dominates in the perturbative regime (A . b, see Fig. 4.2), and a sum of

branch-cut integrals, which give rise to modulations of the decay envelope and a dominant

long-time power-law decay (see Fig. 4.3).

4.4.1 Envelope modulations and long-time decay

From direct asymptotic analysis of the branch-cut integrals, we find β±(t) ∝ 1/t3, while β0(t) ∝
1/t2 at long times. Since the pole contribution decays exponentially, the leading long-time

asymptotics of xt are thus given by β0(t). Evaluating the prefactor, we find the long-time limit

(valid for t≫ max [1/∆ω, (6α/∆ω) ln |N∆ω/6αA|]):

β0(t) ∼ − 6αx0
(2παA/N − i∆ω)2

e−i∆ωt

t2
, (4.37)
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4. Electrons in III-V Semiconductors: Direct Approach

which gives the long-time behavior of the coherence factor with initial condition x0 = 1 (see

Fig. 4.4):

Re[xt] ∼
C cos (∆ωt+ φ)

t2
, (4.38)

where

C =
6α

(2παA/N)2 + ∆ω2
, (4.39)

φ = −2 arctan

(

∆ωN

2παA

)

. (4.40)

The modulations at a frequency ∆ω in Eq. (4.38) can be understood on physical grounds in

the following way: The short-time dynamics of the electron spin are controlled by nuclear spins

near the center of the dot, which are coupled most strongly. The effective precession frequency

of the electron spin is therefore renormalized by the shift ∆ω due to virtual flip-flop processes

with nuclei near the center for most of the decay envelope. The long-time decay, however,

is controlled by weakly-coupled nuclei far from the center of the dot, which cannot strongly

shift the electron-spin precession frequency. The long-time dynamics therefore occur at the

‘bare’ precession frequency ωn. The difference in frequency between the dominant (short-time)

and sub-dominant (long-time) behavior leads to a relative beating at the frequency difference

∆ω. We note that the physical origin of this envelope modulation is completely different from

the more typical case of electron spin-echo envelope modulation (ESEEM), which is often

observed in systems with an anisotropic hyperfine interaction (Rowan et al., 1965; Mims, 1972;

Childress et al., 2006; Witzel et al., 2007). The modulations described here occur even in

the present case of a purely isotropic interaction and without spin echoes. The two cases can

be experimentally distinguished through a difference in the magnetic-field dependence of the

modulation frequency. Finally, we note that the modulations found here are reminiscent of

modulations in branch-cut contributions that have been highlighted previously for the spin-

boson model (DiVincenzo and Loss, 2005).

Another striking feature of Eq. (4.38) is the long-time power-law tail. This differs from the

long-time exponential decay found by Liu et al. (2007) and Cywiński et al. (2009a,b) using

re-summation and re-exponentiation techniques. The same long-time power-law decay (∝ 1/t2)

has previously been predicted by Deng and Hu (2006, 2008) based on an equation-of-motion

method, but without mention of the phase shift or envelope modulations predicted by Eq.

(4.38). To compare the results given here directly with those of Deng and Hu (2006, 2008), we

consider the case of I = 1/2 with an unpolarized nuclear-spin bath. This gives

C =
4

(A/N)2

(

1 + O
[

(

A

b

)2
])

, (4.41)

φ = −π + O
[

(

A

b

)3
]

. (4.42)

Although the power law found here matches that reported by Deng and Hu (2006, 2008), and

the modulations or phase shift can be ignored in the limit A/b ≪ 1, the prefactor C (which
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Figure 4.4: Comparison of the full numerical branch-cut integral −∑i Re [βi(t)] with the long-
time asymptotic expression given by Eq. (4.38). Parameters are as in Fig. 4.2.

is2 C = O
[

(b/A)2
]

in the work of Deng and Hu (2006, 2008)) is qualitatively different. In

particular, here we find that the power-law contribution with modulations can have substantial

weight (of order unity) in the perturbative regime A . b. This is clear from Fig. 4.4, where we

show that the branch-cut contributions can contribute approximately 10% of the total decay

amplitude.

4.4.2 Decay shoulder

For small t, we perform a Taylor-series expansion of xt:

xt = xt|t→0+ + ẋt|t→0+t+
1

2
ẍt|t→0+t

2 + . . . . (4.43)

From Eq. (4.24) and the initial value theorem we find ẋt|t→0+ = 0 and ẍt|t→0+ = −iΣ̃(4)(t =

0) = −i lims→∞ sΣ̃(4)(s). Inserting Eq. (A.53) for Σ̃(4)(s) and choosing x0 = 1 gives:

xt ≃ 1 − t2

τ2
, τ ≃

√

2ω2
n

c+c−
(
∑

k A
2
k

)2 . (4.44)

Eq. (4.44) gives the same short-time decay reported by Liu et al. (2007), which was taken

to describe a Gaussian coherence decay: xt ≃ x0 exp
[

−(t/T2,A)2
]

. Here we note that the

Gaussian approximation is only valid for times less than the actual decay time (t ≪ τ) in the

perturbative regime (b & A) since the dominant decay is exponential in this regime for a typical

(two-dimensional parabolic) quantum dot, as we have shown in Chapter 3 and illustrated here

in Fig. 4.2. Re-exponentiation also fails for the fourth-order solution at lower magnetic field,

as we show in Sec. 4.5, below.

2A/b in our notation is equivalent to N/Ω in the dimensionless units of Deng and Hu (2006, 2008).
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4. Electrons in III-V Semiconductors: Direct Approach

For a uniform unpolarized nuclear spin system, and for an electron with Gaussian envelope

function in two dimensions, we find

τ ≃ 6
√

2

I(I + 1)

(

b

A

)(

N

A

)

. (4.45)

We compare the initial decay found using this formula with the full non-Markovian solution in

Fig. 4.2. While the short-time decay shoulder is well-described by a Gaussian, the full decay

envelope is much better described by the dominant exponential solution. At larger Zeeman

splitting b, the distinction between Gaussian and exponential becomes significantly more pro-

nounced.

4.4.3 Exponential decay

We evaluate the residue at the pole s0 in Fig. 4.1, giving

P0 =
1

1 + i d
dsΣ̃(4)(s)

∣

∣

∣

s=−1/T2

. (4.46)

For a two-dimensional parabolic quantum dot, with an unpolarized nuclear system, we find

P0 = 1 + O
(

[

A
b

]2
ln
[

A
b

]

)

. Thus, when A < b, a Markov approximation is justified (resulting

in a dominant exponential decay), in agreement with the results presented in Chapter 3.

In the Markovian regime, the decay rate for the exponentially decaying pole can be deter-

mined through (Coish et al., 2008) 1/T2 = −ImΣ̃(4)(0+). From the self-energy given in Eq.

(A.53) of Appendix A.4, this gives

1

T2
=
πc+c−

4ω2
n

∑

k,k′

A2
kA

2
k′δ(Ak −Ak′ − ∆ω). (4.47)

We note that the decoherence rate vanishes in the limit of full polarization p → 1 since

1/T2 ∝ c+c− and, e.g., c+c− ∝ (1 − p2) for I = 1/2. This is consistent with the exact solution

in this limit given by Khaetskii et al. (2002).

The Markovian decay rate (4.47) depends on the density of states for pair flips at an energy

determined by the Lamb shift ∆ω ∝ A/ωn. The presence of ∆ω in the energy-conservation

condition can be understood physically as arising from the rapid initialization that we assumed,

giving rise to the product-state initial condition (4.2). At the instant the flip-flop interaction Vff
is ‘turned on’, the electron spin experiences only the bare precession frequency ωn. However,

after an interaction time scale t ∼ 1/ωn (see Appendix A.6), the renormalized precession

frequency ωn + ∆ω gives the electron energy splitting, and so the correct energy-conservation

condition for nuclear-spin pair flips contains the difference of these two quantities (i.e., ∆ω).

The dependence on ∆ω shown in Eq. (4.47) results in an interesting (in general, non-monotonic)

dependence of 1/T2 on magnetic field 3. In contrast, the effective-Hamiltonian approach that

3This non-monotonic dependence of 1/T2 on the electron-spin splitting is reminiscent of a similar effect
found in the spin-boson model. There, a non-monotonic dependence of the decoherence rate as a function of
energy splitting is found when properly accounting for renormalization factors (DiVincenzo and Loss, 2005).
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Figure 4.5: Decoherence rates Γi from Eq. (4.50) and total decoherence rate 1/T2 =
∑

i Γi

for an electron spin in a GaAs quantum dot containing N = 105 nuclei with g-
factor |g| = 0.4. The decoherence rate shows a non-monotonic behavior, reach-
ing a pronounced maximum. This is in contrast to the leading-order result de-
veloped in Chapter 3 and in contrast to the results from other higher-order ex-
pansions (Cywiński et al., 2009b). We have used hyperfine coupling constants
A

69Ga = 74µeV, A
71Ga = 96µeV, A

75As = 86µeV and relative abundances
ν69Ga = 0.3, ν71Ga = 0.2, ν75As = 0.5, which have been estimated by Paget et al.
(1977) (see also Table 1 of Coish and Baugh (2009)).

was adopted in Chapter 3 and by Yao et al. (2006), Liu et al. (2007), and Cywiński et al.

(2009a,b) incorporates the leading-order frequency shift as an additive constant directly into

the electron-spin Zeeman splitting, and so it does not enter into the formula for 1/T2. The

Lamb shift that comes out of the same procedure used here, but starting from the effective

Hamiltonian, has a higher-order dependence ∆ω ∝ (A/ωn)2 (see the discussion following Eq.

(A.25)), so the effective-Hamiltonian treatment does not recover the correct magnetic-field

dependence given by Eq. (4.47), although the leading-order ∆ω ≃ 0 behavior is recovered

correctly. This is not surprising, since the effective Hamiltonian is only strictly valid to leading

order in A/ωn. Through explicit calculation at higher orders, we have checked that the leading

correction to the Markovian decay rate at sixth order in Vff is O
[

(A/ωn)4
]

(see Appendix

A.5), and so the expression given here is at least correct up to and including terms of order

O
[

(A/ωn)3
]

.

Specializing to a two-dimensional quantum dot with Gaussian envelope function and eval-

uating the energy integrals in the continuum limit gives

1

T2
=

8πc+c−
3(c+ + c−)2

A

N
(ǫ5 − 3ǫ3 + 2ǫ2)Θ(1 − ǫ), (4.48)

where

ǫ =
c+ + c−

8

∣

∣

∣

∣

A

ωn

∣

∣

∣

∣

. (4.49)
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Figure 4.6: Total decoherence rate 1/T2 =
∑

i Γi (solid line) with Γi from Eq. (4.50) for an
electron spin in a InxGa1−xAs quantum dot containing N = 105 nuclei with g-
factor |g| = 0.5 and In doping x = 0.3. We show individual contributions from
Γ75As (dotted) and ΓIn (dashed). Contributions from the gallium isotopes are not
visible on this scale. For this plot, we have taken hyperfine coupling constants for
the gallium and arsenic isotopes as in Fig. 4.5 and have used A

113In = A
115In =

AIn = 110µeV from Liu et al. (2007) (see Table 1 of Coish and Baugh (2009)).

First, we note that the sub-leading contribution to 1/T2 in Eq. (4.48) (∝ ǫ3) is suppressed only

by one power of A/ωn (up to corrections of order unity). Second, this sub-leading correction has

the opposite sign of the leading (∼ ǫ2) term, potentially leading to a non-monotonic dependence

of 1/T2 on the electron Zeeman splitting when ǫ ∼ 1. This non-monotonic dependence can be

understood in the following way: As the electron Zeeman energy decreases from a large value

b ≫ A, the perturbative Lamb shift ∆ω ∝ 1/b increases, eventually reaching the edge of the

band of single nuclear pair-flip excitations when ∆ω ∼ A/N , at which point there are no more

energy-conserving flip-flop processes. For still lower magnetic fields, higher-order processes are

required to conserve energy, but we find that these processes are further suppressed by the small

parameter c+c− for a polarized nuclear spin system (c+c− ∝ (1− p2) for nuclear spin I = 1/2)

(see Appendix A.5). The qualitative non-monotonic magnetic-field dependence described by

Eq. (4.48) will therefore apply at least in the case of a polarized nuclear spin system, even

when higher-order terms in Vff are taken into account.

It is straightforward to extend the analysis of this section to the case of a heteronuclear

system. Provided the difference in nuclear Zeeman energies exceeds the excitation bandwidth

(|(γi−γj)b| > A/N), the decoherence rate is given by a sum of contributions from each nuclear

species i: 1/T2 =
∑

i Γi, where, for a two-dimensional quantum dot with Gaussian envelope
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4.5. Non-perturbative regime: b . A

function, we find

Γi = πν2i αi

(

ǫ3i − 3ǫi + 2
) Ai

N
Θ (1 − ǫi) , (4.50)

ǫi =

∣

∣

∣

∣

N∆ω

Ai

∣

∣

∣

∣

, ∆ω =
∑

i

νi

(

ci+ + ci−
)

8ωn

Ai

ωn

Ai

N
, (4.51)

and where we have introduced

αi =
ci+c

i
−

24

(

Ai

ωn

)2

, (4.52)

with coefficients ci± = Ii(Ii + 1) −
〈〈

mi(mi ± 1)
〉〉

for each isotopic species i. We show the

magnetic-field dependence of the decoherence rate 1/T2 from Eq. (4.50) in Fig. 4.5 for a GaAs

quantum dot, and in Fig. 4.6 for an InGaAs quantum dot with a typical indium doping of

x = 0.3. The dependence of the 1/T2 curve on indium doping x for an InGaAs quantum dot

is illustrated in Fig. 4.7, where we see that the position of the maximum in the 1/T2 curve

depends strongly on the concentration of the large-spin isotope (indium). An experimental

confirmation of this dependence of the maximum in 1/T2 as a function of indium doping would

be a strong confirmation of this theory.

4.5 Non-perturbative regime: b . A

Although the expression we have given for the self-energy is strictly valid only in the pertur-

bative regime (b ≫ A), here we explore the non-Markovian dynamics of this solution outside

of the regime of strict validity and comment on where the results become unphysical.

We find the positions of poles and evaluate residues and branch-cut integrals numerically

to find the coherence factor in this regime. We consider the case of an unpolarized homonuclear

spin system with spin I = 3/2, appropriate to GaAs. As the electron Zeeman splitting b is

lowered from b ≫ A, we find there is a critical value of b (near b ≃ 2A), below which there is

a second pole (at s = s1) with exponentially-decaying residue. The coherence factor xt is then

given by a sum over two pole contributions and three branch-cut integrals:

xt =
∑

i=0,1

Pi(t) −
∑

j=0,+,−
βj(t). (4.53)

For b = 2A (top panel of Fig. 4.8), there are two exponentially-decaying pole contributions,

giving rise to a bi-exponential decay with strong envelope modulations corresponding to the

difference in the imaginary part of the two poles. At smaller Zeeman energy A/2 . b . A

(e.g., b = A in the center panel of Fig. 4.8), the pole at s = s0 leaves the continuum band and

merges with the imaginary axis, leading to a constant contribution P0(t) = P0, independent

of t. For still lower Zeeman splitting b . A/2 (b = A/2 in the lower panel of Fig. 4.8), the

second pole at s = s1 leaves the continuum band at lower frequency and also merges with the

imaginary axis. In this regime, the only decay in the fourth-order solution is due to the small

contribution from branch cuts, although envelope modulations remain.
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Figure 4.7: Decoherence rate 1/T2 for an electron spin in a InxGa1−xAs quantum dot containing
N = 105 nuclei with g-factor |g| = 0.5 and In doping of x = 0, x = 0.3, and
x = 0.5. Hyperfine coupling constants are as given in the caption of Fig. 4.6.
The exponential decay rate shown here will be an accurate description of the full
decay in the Markovian regime T2 & τc, where τc is the bath correlation time. This
regime is reached without nuclear polarization (p = 0) whenever the perturbative
self-energy expansion is valid (see Chapter 3): A . b (τc ≃ N/A for A . b).
At finite polarization, 1/T2 will be further reduced (e.g., 1/T2 ∝ 1 − p2 for a
system with nuclear spin I = 1/2), resulting in a dominant exponential decay
even at lower electron spin splitting. Thus, at least for large nuclear polarization
p → 1, the qualitative behavior shown here will accurately describe the magnetic-
field dependence of coherence decay. The behavior at b . A cannot be accurately
determined for p = 0 without including higher-order corrections.

The effects in the two lower panels of Fig. 4.8 demonstrate the danger of re-exponentiation

of short-time behavior for a system where strong non-Markovian (history-dependent) effects

become important. The non-decaying fractions shown in Fig. 4.8 are, however, unphysical

consequences of extending the solution to a regime of electron Zeeman splitting where it does

not apply. We expect higher-order corrections to the self-energy to broaden the continuum band

as higher-order nuclear pair flips are included, resulting in several exponential decay time scales

as the electron Zeeman energy is lowered. Nevertheless, we have found that processes that can

broaden the continuum band will be suppressed even at small electron Zeeman splitting b . A,

provided the nuclear-spin system is polarized (see Appendix A.5), and so some of this behavior

will survive at least for a polarized nuclear-spin environment. Whether perturbation theory can

be controlled at any polarization for b < A through an adequate resummation of relevant terms

and short-time approximation, as suggested by Cywiński et al. (2009a,b), is still unclear with

the present method.
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Figure 4.8: Decay envelopes calculated from numerical evaluation of branch-cut integrals and
pole contributions for a two-dimensional quantum dot with Gaussian envelope func-
tion (solid lines). Dashed lines show the contributions from the dominant pole
at s = s0. When the electron Zeeman splitting b is below some critical value
b < bc ∼ A, a second exponentially-decaying pole appears, leading to a biexponen-
tial decay with strong envelope modulations (top, b = 2A). When b is decreased
further, the dominant pole moves to the real axis (middle, b = A). At still smaller
values of b, the sub-dominant exponential pole has a vanishing decay rate (bottom,
b = A/2), leading to sustained oscillations. All plots correspond to an unpolarized
narrowed nuclear bath with I = 3/2. Insets illustrate the approximate relative
positions of poles (circles) and branch points (crosses) in each case.
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4.6 Conclusions

We have investigated transverse-spin dynamics for an electron confined to a quantum dot,

interacting with a bath of nuclear spins via the Fermi contact hyperfine interaction. Using

one unified technique, we have recovered results that have previously been reported using

several different methods. These results include an initial partial decay, followed by a quadratic

shoulder, a dominant exponential decay (discussed in Chapter 3), and a long-time power-

law tail. Our results for the long-time behavior differ from those given by Yao et al. (2006),

Liu et al. (2007), and Cywiński et al. (2009a,b). Here, we have found a long-time power-law

decay (∼ 1/t2), in contrast to the long-time exponential decay found by those authors. While

the decay law ∼ 1/t2 matches that found previously by Deng and Hu (2006, 2008) using

an equation-of-motion approach the prefactor found in the present work has a qualitatively

different dependence on magnetic field. In contrast to earlier works, which argue in favor of a

regime of Gaussian decay (Yao et al., 2006; Liu et al., 2007), here we find that re-exponentiation

of the short-time quadratic decay shoulder is never justified. In the perturbative regime b & A,

the system is Markovian, being well-described by a single-exponential decay (see also Chapter

3). As the electron Zeeman splitting is lowered to b . A, we find strong non-Markovian effects

(sustained oscillations and multiple decay rates), which once again invalidate re-exponentiation

of the short-time decay shoulder.

In addition to recovering previous results, we have found qualitatively new behavior, in-

cluding modulations of the decay envelope and sub-leading corrections to the decoherence rate

for the dominant exponential decay. Our calculation gives an interesting non-monotonic depen-

dence of the decoherence rate 1/T2 on magnetic field. These two results (envelope modulations

and a non-monotonic dependence of the decoherence rate on magnetic field, both of which

should be readily accessible in experiment) are not recovered in dynamics under a leading-

order effective Hamiltonian, such as in Chapter 3, suggesting caution should be exercised in

interpreting results of high-order expansions involving the effective Hamiltonian.
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Chapter 5

Holes in III-V Semiconductors

5.1 Introduction

In Chapters 3 and 4 we have discussed the spin decoherence of an electron confined to a

quantum dot and interacting with a narrowed bath of nuclear spins via the Fermi contact

hyperfine interaction. We have seen that preparing the nuclear spins in a narrowed state can

prolong the electron-spin coherence time significantly: up to and beyond microseconds (see

Figs. 4.5 and 4.6). If, however, no special effort is made to control the nuclear environment,

the electron-spin coherence times are much shorter, typically on the order of nanoseconds

(Merkulov et al., 2002; Khaetskii et al., 2002; Coish and Loss, 2004; Petta et al., 2005).

In this chapter, we want to describe another promising approach to the problem of short

coherence times, which we have already mentioned in Chapter 1, i.e., to encode quantum

information not into the spin of an electron but into the spin of a heavy hole. Recent experi-

ments have shown initialization and readout of single hole spins in self-assembled quantum dots

(Heiss et al., 2007; Ramsay et al., 2008; Gerardot et al., 2008), and control over the number

of holes in single gated quantum dots (Komijani et al., 2008), prerequisites for single-hole-

spin dephasing-time measurements. Ensemble hole-spin dephasing times have recently been

measured in p-doped quantum wells (Syperek et al., 2007). Hole-spin coherence times in III-

V semiconductor quantum dots have been anticipated to be much longer than electron-spin

coherence times due to a weak hyperfine coupling relative to conduction-band electrons (Flis-

sikowski et al., 2003; Shabaev et al., 2003; Woods et al., 2004; Bulaev and Loss, 2005; Laurent

et al., 2005; Bulaev and Loss, 2007; Serebrennikov, 2008; Burkard, 2008). In this chapter, we

shown that, in contrast, the coupling of a heavy hole (HH) to the nuclear spins in a quantum

dot can be rather strong, potentially leading to coherence times that are comparable to those

for electrons. However, in the quasi-two-dimensional (Q2D) limit, this interaction takes-on a

simple Ising-like form,

H =
∑

k

Ah
k szI

z
k , (5.1)

where Ah
k is the coupling of the HH to the kth nucleus, sz is the hole pseudospin-12 operator,

and Izk is the z-component of the kth nuclear-spin operator Ik. The form of this effective

Hamiltonian, which should be contrasted to the Heisenberg-type interaction (3.1) of an electron
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5. Holes in III-V Semiconductors

with nuclear spins, has profound consequences for the spin dynamics. Coherence times can be

dramatically extended by preparing the slowly-varying nuclear field in a well-defined state

(“narrowing” the field distribution) (Coish and Loss, 2004; Giedke et al., 2006; Stepanenko

et al., 2006; Klauser et al., 2006; Reilly et al., 2008; Greilich et al., 2006, 2007). For an electron

spin interacting with nuclei via the contact hyperfine interaction, narrowing is effective only up

to the time scale where slow internal nuclear-spin dynamics or transverse-coupling (“flip-flop”)

terms become relevant. As we will explain below, heavy holes confined to two dimensions have

negligible flip-flops, potentially leading to significantly longer spin coherence times. The strong

coupling of the HH to the nuclear spins is not due to confinement but is also present in bulk

crystals, while the Ising-like interaction is a feature of Q2D systems.

5.2 Nuclear-spin interactions

5.2.1 Hamiltonians

For a relativistic electron in the electromagnetic field of a nucleus with non-zero spin at position

Rk, there are three terms that couple the electron spin and orbital angular momentum to the

spin of the nucleus (see Chapter 2.2): the Fermi contact hyperfine interaction (hk1), a dipole-

dipole-like interaction (the anisotropic hyperfine interaction, hk2), and the coupling of electron

orbital angular momentum to the nuclear spin (hk3). Setting ~ = 1, these interactions are

described by the following Hamiltonians (Stoneham, 1972):

hk1 =
µ0
4π

8π

3
γSγjk δ(rk) S · Ik, (5.2)

hk2 =
µ0
4π

γSγjk
3(nk · S)(nk · Ik) − S · Ik

r3k(1 + d/rk)
, (5.3)

hk3 =
µ0
4π

γSγjk
Lk · Ik

r3k(1 + d/rk)
. (5.4)

Here, γS = 2µB , γjk = gjkµN , µB is the Bohr magneton, gjk is the nuclear g-factor of isotopic

species jk, µN is the nuclear magneton, rk = r − Rk is the electron-spin position operator

relative to the nucleus, d ≃ Z × 1.5 × 10−15 m is a length of nuclear dimensions, Z is the

charge of the nucleus, and nk = rk/rk. S and Lk = rk×p denote the spin and orbital angular-

momentum operators of the electron, respectively.

Nuclear-spin interactions are typically much weaker than the spin-orbit interaction. It is

therefore appropriate to form effective Hamiltonians with respect to a basis of eigenstates of

the Coulomb and spin-orbit interactions. The 8 × 8 Kane Hamiltonian, which describes the

band structure of a III-V semiconductor, provides such a basis (Winkler, 2003; Yu and Car-

dona, 2005). The Kane Hamiltonian is usually written in terms of conduction-band (CB) and

valence-band (consisting of HH, light-hole (LH), and split-off sub-band) states. We derive an

approximate basis of eigenstates in the HH sub-band by projecting the 8×8 Kane Hamiltonian

onto the two-dimensional HH subspace.

To form effective Hamiltonians, we must approximate the crystal-Hamiltonian eigenfunc-
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5.2. Nuclear-spin interactions

tions given by Bloch’s theorem for a single band n:

Ψnkσ(r) =
1√
NA

eik·runkσ(r), (5.5)

where NA is the number of atomic sites in the crystal, and the Bloch amplitudes unkσ(r) have

the periodicity of the lattice.

We will approximate the k = 0 Bloch amplitudes un0σ(r) within a primitive unit cell by a

linear combination of atomic orbitals – see Eq. (5.15), below. Near an atomic site, the CB Bloch

amplitudes have approximate s-symmetry (angular momentum l = 0), whereas the HH and

LH Bloch amplitudes have approximate p-symmetry (l = 1). Adding spin, the z-component of

total angular momentum of a HH is mJ = ±3/2, whereas a LH has mJ = ±1/2. In the Q2D

limit, i.e., going from the bulk crystal to a quantum well (whose growth direction we take to be

[001]), a splitting ∆LH develops between the HH and LH sub-bands at k = 0 (see Fig. 2.3). We

estimate ∆LH ≃ 100 meV for a quantum well of height az ≃ 5 nm in GaAs, much larger than

the hyperfine coupling (see Appendix B.1). The splitting ∆LH is essential since it produces a

well-defined two-level system in the HH sub-band, and we can restrict our considerations to

the manifold of mJ = ±3/2 states.

5.2.2 Interactions in an atom

Before addressing confinement in quantum dots, we illustrate that the interaction of an electron

in a hydrogenic p orbital with the spin of the nucleus (which we choose to be at Rk = 0) is

generally non-zero. Moreover, when projected onto the manifold of mJ = ±3/2 states, this

interaction takes-on a simple Ising form. Although our final analysis will apply to any III-V

semiconductor, we will take GaAs as a concrete example.

The effective screened nuclear charges Zeff “felt” by the valence electrons (in 4s and 4p

orbitals) in Ga and As atoms have been calculated by Clementi and Raimondi (1963). The

4s orbitals and 4p orbitals (with orbital angular momentum mL = ±1) are given in terms

of hydrogenic eigenfunctions with the replacements Z → Zeff by Ψ400(r) = R40(r)Y
0
0 (θ, ϕ)

and Ψ41±1(r) = R41(r)Y ±11 (θ, ϕ), respectively. Including spin and evaluating matrix elements

of the Hamiltonians (5.2)-(5.4) with respect to hydrogenic 4s states leads to effective spin

Hamiltonians of the form (Abragam, 1961; Stoneham, 1972) h4s1 = AsS · Ik and, due to the

spherical symmetry of the wavefunction, h4s2 = h4s3 = 0. The same procedure with the 4p states

leads to effective Hamiltonians h4p1 = 0 (since p-states vanish at the origin) and h4p2 + h4p3 =

ApszI
z
k , where sz = ±1

2 corresponds to mJ = ±3/2. As and Ap denote the coupling strengths

of electrons in 4s and 4p orbitals, respectively. Evaluating all integrals exactly gives

Ap

As
=

1

5

(

Zeff(κ, 4p)

Zeff(κ, 4s)

)3

, κ = Ga, As. (5.6)

Quite significantly, after inserting the values for Zeff given by Clementi and Raimondi

(1963) into Eq. (5.6), we find that the ratio of coupling strengths is fairly large – on the order

of 10%: Ap/As ≃ 0.14 for Ga, and Ap/As ≃ 0.11 for As. Since hk2 and hk3 do not contribute to

the hyperfine interaction of an electron in an s orbital, research on hyperfine interaction for
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5. Holes in III-V Semiconductors

electrons in an s-type conduction band has focused on the contact term hk1 , neglecting the other

interactions. The fact that hk1 , in contrast, gives no contribution for an electron in a p orbital

has led to the claim that electrons in p orbitals (and holes) do not interact with nuclear spins.

Eq. (5.6) shows that hk2 and hk3 can contribute significantly. Furthermore, while the interaction

of a 4s-electron with the nuclear spin is of Heisenberg type, within the manifold of mJ = ±3/2

states, the interaction of a 4p-electron is Ising-like at leading order (virtual transitions via the

mJ = ±1/2 states may lead to non-Ising corrections). This result is a direct consequence of

the Wigner-Eckart theorem and the fact that the Hamiltonians (5.2)-(5.4) can be written in

the form hki = vk
i · Ik, where vk

i are vector operators in the electron (spin and orbital) Hilbert

space.

5.2.3 Interactions in a quantum dot

We now return to the problem directly relevant to a HH in a two-dimensional quantum well.

We consider an additional circular-symmetric parabolic confining potential in the plane of the

quantum well defining a quantum dot. Neglecting hybridization with other bands, which we

estimate to be typically on the order of 1% (see Appendix B.1), the pseudospin states for a

HH within the envelope-function approximation read

|Ψσ〉 = |φ;uHH0σ〉|σ〉, (5.7)

where |φ;uHH0σ〉 and |σ〉 (σ = ±) denote the orbital and spin states, respectively. The orbital

wavefunctions are given explicitly by

〈r|φ;uHH0σ〉 =
√
v0 φ(r)uHH0σ(r). (5.8)

Here, v0 is the volume occupied by a single atom (half the volume of a two-atom zinc-blende

primitive unit cell), and φ(r) = φz(z)φρ(ρ) is the envelope function. The radial ground-state

envelope function is a Gaussian:

φρ(ρ) =
1√
πl

exp

(

− ρ2

2l2

)

, (5.9)

where ρρρ = (x, y), ρ = |ρρρ|, l = l0 [1 + (Bz/B0)2]−1/4, Bz is the component of an externally

applied magnetic field along the growth direction and B0 = Φ0/πl
2
0 where Φ0 = h/|e| is a flux

quantum. A typical dot Bohr radius of l0 = 30 nm gives B0 ≃ 1.5 T.

In a solid, the HH is delocalized over the lattice sites of the crystal. The nuclei do not interact

solely with the fraction of the HH in the same primitive unit cell (‘on-site’ interaction), but also

with density localized at more distant atomic sites (long-ranged interactions). We neglect the

long-ranged interactions, which lead to corrections on the order of 1% relative to the on-site

interaction (see Appendix B.3). If the envelope function varies slowly on the length scale of a

primitive cell, we find (combining hk2 and hk3) Ah
k = Ajk

h v0|φ(Rk)|2, where

Ajk
h = −µ0

4π
γSγjk

〈

3 cos2 θk + 1

r3k(1 + d/rk)

〉

p.c.

. (5.10)

44



5.3. Spin Decoherence

Here, 〈· · · 〉p.c. denotes the expectation value with respect to uHH0σ(r) over a primitive unit cell

(σ = ± give the same matrix elements), and θk is the polar angle of rk. The magnetic moment

of a HH is inverted with respect to that for an electron. This results in a change of sign in Eqs.

(5.2)-(5.4) and leads to the minus sign in Eq. (5.10) and of the values in columns (i) and (ii)

of Table 5.1.

5.2.4 Non-Ising corrections

There will be small corrections to the form of the effective Hamiltonian given in Eq. (5.1). Eval-

uating off-diagonal matrix elements of (5.3) and (5.4) with the approximate Bloch amplitudes

(5.15) yields non-Ising terms, whose associated coupling strengths A⊥h we find to be small:

A⊥h < 0.06Aj
h. Higher-order virtual transitions between the mJ = ±3/2 states via the LH

sub-band are suppressed by ∼ Ah
k/∆LH ≪ 1. Hybridization with other bands can also lead to

non-Ising corrections. For unstrained quantum dots, we find that these corrections are small:

typically on the order of 1% of the values given in Table I (see also Appendix B.1). Strain

can lead to considerably stronger band mixing and, hence, to significantly larger non-Ising

corrections to Eq. (5.1).

5.3 Spin Decoherence

Now that the effective Hamiltonian (5.1) has been established, we can analyze the dephasing

of a HH pseudospin in the presence of a random nuclear environment. In an applied magnetic

field, pseudospin dynamics of the HH are described by the Hamiltonian

H = (b⊥ + hz) sz + b‖sx, (5.11)

where hz =
∑

k A
h
kI

z
k is the nuclear field operator, b⊥ = g⊥µBBz is the Zeeman splitting due to

a magnetic field Bz along the growth direction, and b‖ = g‖µBBx is the Zeeman splitting due to

an applied magnetic field Bx in the plane of the quantum dot. g⊥ and g‖ are the components of

the HH g-tensor along the growth direction and in the plane of the quantum dot, respectively

(we assume the in-plane g-tensor to be isotropic).

If no special effort is made to control the nuclear field, the field value will be Gaussian-

distributed in the limit of a large number of nuclear spins (Coish and Loss, 2004). The variance

for a random nuclear-spin distribution is (see Appendix B.4)

〈

h2z
〉

= σ2 ≃ 1

4N

∑

j

νjI
j(Ij + 1)(Aj

h)2, (5.12)

where N = πl2az/v0 is the number of nuclei within the quantum dot. The nuclear-field fluctua-

tion σ therefore inherits a magnetic-field dependence from l (see Eq. (5.9)). A finite nuclear-field

variance will result in a random distribution of precession frequencies experienced by the hole

pseudospin, inducing pure dephasing (decay of the components of hole pseudospin transverse

to B).
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Figure 5.1: Dephasing of HH pseudospin states (solid lines in (a) and (c)). The decay is Gaus-
sian for an out-of-plane magnetic field Bz (a) (see Eq. (5.13)) and given by a
slow power law at long times (∼ 1/

√
t) for an in-plane magnetic field Bx (c) (see

Eq.(5.14)). We have chosen |B| = 10 mT in (a) and (c). Magnetic-field dependen-
cies of the relevant coherence times are shown for a field that is out-of-plane (b) and
in-plane (d). We have assumed g‖ = 0.04 (Marie et al., 1999) and a zero-field lateral
dot size l0 = 30 nm and height az = 5 nm, leading to N = πl20az/v0 = 6.5 × 105

nuclei within the dot at Bz = 0. We have taken v0 = a3L/8, where aL = 5.65 Å is
the GaAs lattice constant. The dashed lines in (a) and (c) show the dephasing of
CB electron spin states in the high-field limit, |B| ≫ σe/geµB, where ge is the elec-
tron g-factor, and σe is obtained from Eq. (5.12) by replacing Aj

h by the electron

hyperfine coupling constants Aj
e.

First, we consider the case b‖ = 0. For a hole pseudospin initially oriented along the x

direction, we find a Gaussian decay (see Fig. 5.1 (a)) of the transverse pseudospin in the

rotating frame 〈s̃+〉t = exp(−ib⊥t)
(

〈sx〉t + i 〈sy〉t
)

:

〈s̃+〉t =
1

2
exp

(

− t2

2τ2⊥

)

, τ⊥ =
1

σ
. (5.13)

This is the same Gaussian decay that occurs for electrons (Merkulov et al., 2002; Khaetskii

et al., 2002; Coish and Loss, 2004). Here, since the magnetic field is taken to be out-of-plane, we

must take account of the diamagnetic “squeezing” of the wavefunction. This squeezing affects

the number N of nuclear spins within the dot and hence, the finite-size fluctuation σ. The

coherence time τ⊥(Bz) = 1/σ(Bz) = τ⊥(0)
[

1 + (Bz/B0)2
]−1/4

then decreases for large Bz (see

Fig. 5.1 (b)). This undesirable effect can be avoided for confined electron spins by generating

a large Zeeman splitting through an in-plane (rather than out-of-plane) magnetic field. This

option may not be available for a HH where, typically, g‖ ≪ g⊥.
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5.4. Estimates of the coupling strengths

j Aj
h (µeV) Aj

e (µeV)

(i) (ii) (iii) (iv)
69Ga -7.1 -13 40 74
71Ga -9.0 -17 51 94
75As -8.2 -12 59 89

Aα =
∑

j νjA
j
α (α = e, h) -8.0 -13 52 86

Table 5.1: Estimates of the coupling strengths for a HH (Aj
h) and a CB electron (Aj

e) for the
three isotopes in GaAs. Columns (i) and (iii) show values obtained from a linear
combination of hydrogenic eigenfunctions, using free-atom values of Zeff calculated
by Clementi and Raimondi (1963). Column (iv) gives the accepted values of Aj

e

from Paget et al. (1977). Column (ii) shows the rescaled values from column (i) (see
text). In the last row we give the average coupling constants weighted by the natural
isotopic abundances: ν69Ga = 0.3, ν71Ga = 0.2, ν75As = 0.5.

The situation changes drastically for an in-plane magnetic field (b⊥ = 0). In this case, since

the hyperfine fluctuations are purely transverse to the applied field direction, the decay is given

by a slow power law at long times (see Fig. 5.1 (c)) and the relevant dephasing time increases

as a function of the applied magnetic field (see Fig. 5.1 (d)). In the limit b‖ ≫ σ and for a HH

pseudospin initially prepared along the ẑ-direction, we find

〈sz〉t ≃
cos
(

b‖t+ 1
2 arctan(t/τ‖)

)

2[1 + ( t
τ‖

)2]1/4
, τ‖ =

b‖
σ2
. (5.14)

The derivation of Eq. (5.14) is directly analogous to that for the decay of driven Rabi oscillations

(Koppens et al., 2007).

5.4 Estimates of the coupling strengths

To estimate the size of Aj
h, we need an explicit expression for the HH k = 0 Bloch amplitudes.

We approximate uHH0σ(r) within a Wigner-Seitz cell centered halfway along the Ga-As bond

by a linear combination of atomic orbitals, following Gueron (1964):

uHH0σ(r)
∣

∣

∣

r∈WS
= Nαv

(

αvΨGa
41σ(r + d/2) +

√

1 − α2
vΨAs

41σ(r− d/2)
)

. (5.15)

Here, d = a
4 (1, 1, 1) is the Ga-As bond vector, a is the lattice constant, αv describes the

relative electron sharing at the Ga and As sites in the HH sub-band, and Nαv is a normalization

constant, chosen to enforce
∫

WS d
3r|uHH0σ(r)|2 = 2, where the integration is performed over the

Wigner-Seitz cell defined above. To simplify numerical integration, we replace the Wigner-Seitz

cell by a sphere centered halfway along the Ga-As bond, with radius given by half the Ga-Ga

nearest-neighbor distance. We find the electron sharing in the CB from the densities given by

Paget et al. (1977) to be α2
c ≃ 1/2 (see Appendix B.2) and assume the same (α2

v = 1/2) for Eq.

(5.15). Using Zeff for free atoms (Clementi and Raimondi, 1963), we evaluate Eq. (5.10) with
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the ansatz (5.15), by numerical integration, giving the values shown in Table 5.1, column (i).

We check the validity of this procedure by writing the CB Bloch amplitudes as in Eq. (5.15),

replacing the 4p-eigenfunctions by 4s-eigenfunctions. Evaluating the coupling constants for the

CB (Aj
e) from hk1 gives the numbers in column (iii). The accepted values of Aj

e from Paget et al.

(1977) are shown in column (iv) for comparison. Our method produces Aj
e to within a factor

of two of the accepted values. Our procedure, which relies on free-atom orbitals, most likely

under-estimates the electron density near the atomic sites, which should be enhanced in a solid

due to confinement. Assuming the relative change in density going from a free atom to a solid

is the same for the CB and HH band, we rescale the results in column (i) by the ratio of the

values in columns (iv) and (iii), giving column (ii). Due to the approximations involved, we

expect the values in columns (i) and (ii) only to be valid to within a factor of two or three.

5.5 Conclusions

We have shown that the interaction of a quantum-dot-confined heavy hole with nuclear spins

is stronger than previously anticipated. We have estimated the associated coupling strength

to be on the order of 10µeV in GaAs – only one order of magnitude less than the hyperfine

coupling for electrons. However, the interaction turns out to be Ising-like which has profound

consequences for hole-spin decoherence. Since no flip-flop terms occur in the effective Hamilto-

nian (5.1), the main source of decoherence is given by the broad frequency distribution of the

nuclear spins. Recent theoretical and experimental studies have shown that state-narrowing

techniques are capable of strongly suppressing this source of decoherence, which makes the

heavy hole an attractive spin-qubit candidate.

Very recently, experimental results on hole-spin relaxation in self-assembled quantum dots

have been released (Gerardot et al., 2008; Eble et al., 2009). Gerardot et al. report an extremely

weak coupling of HH spin states, which is explained by our theory to be a direct consequence

of the Ising-like nuclear-spin interaction (negligible flip-flop terms). Eble et al., in contrast,

find very short hole-spin relaxation times on the order of 15 nanoseconds. This is due to the

strong strain present in the particular dots used in this experiment, resulting in a considerable

HH-LH mixing and a highly non-Ising interaction (large flip-flop terms).
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Chapter 6

Holes in III-V Semiconductors:
Narrowed Nuclear-Spin Bath

6.1 Introduction

In the previous chapter, we have discussed the interaction of a heavy hole (HH) confined to a III-

V semiconductor quantum dot (QD) with the spins of the nuclei residing in the host material.

We have seen that the for HHs, the form of the nuclear-spin interaction is predominantly Ising-

like, in contrast to the Heisenberg-type interaction of electrons. We have found an ensemble-

hole-spin decoherence due to the inhomogeneous broadening of the nuclear magnetic field

(Overhauser field), whose associated decoherence time dramatically depends on the direction

(and magnitude) of the externally applied magnetic field.

Several possibilities to suppress decoherence due to inhomogeneous broadening have been

proposed (see Chapter 1), one of which is to prepare the nuclear spins in a so-called narrowed

or frequency-focused state (Coish and Loss, 2004; Klauser et al., 2006; Stepanenko et al., 2006).

On the experimental side, enormous progress has been achieved in preparing such narrowed

states (Greilich et al., 2006, 2007; Reilly et al., 2008; Greilich et al., 2009; Latta et al., 2009;

Xu et al., 2009; Vink et al., 2009), which have been shown to persist over astonishingly long

timescales exceeding hours (Greilich et al., 2007). As we have discussed in Chapters 3 and 4, for

electrons interacting with a narrowed nuclear bath, spin decoherence happens due to nuclear

pair flip processes induced by the transverse hyperfine interaction, and the associated single-

spin decoherence time T2 can be several orders of magnitude longer than the ensemble-spin

decoherence time T ∗2 (Coish et al., 2008; Cywiński et al., 2009b). For HHs, with their predom-

inantly Ising-like coupling to nuclear spins (Fischer et al., 2008), this transverse interaction

(perpendicular to the Ising axis) can be expected to be very small, potentially leading to very

long single-hole-spin decoherence times T2.

In this chapter, we study the spin dynamics of a HH confined to a III-V semiconductor QD

and interacting with a narrowed nuclear-spin bath. We show that band hybridization leads to

non-Ising (transverse) terms in the hyperfine Hamiltonian, whose magnitude depends on the

geometry of the QD. This transverse coupling induces nuclear pair-flip processes, leading to
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6. Holes in III-V Semiconductors: Narrowed Nuclear-Spin Bath

fluctuations of the Overhauser field and to exponential single-hole-spin decoherence. We show

that for typical unstrained quantum dots the associated timescale T2 has a lower bound on

the order of tens of microseconds and that it can be tuned over many orders of magnitude

by changing external parameters such as the applied magnetic field. Thus, it is in principle

possible to operate hole-spin QDs in a regime where the hyperfine interaction is practically

switched off and where other decoherence mechanisms, such as nuclear dipole or spin-orbit

interactions, will become relevant and, hence, experimentally observable.

6.2 Hybridized states

We start from the 8 × 8 Kane Hamiltonian describing states in the conduction band (CB),

heavy-hole (HH), light-hole (LH) and split-off (SO) bands of bulk III-V semiconductors (see

Appendix C of Ref. Winkler (2003)). The Kane Hamiltonian can be ‘folded down’ to an effective

2× 2 Hamiltonian whose eigenstates describe the spin states in the band of interest, where the

admixture of neighboring bands is taken into account perturbatively (Winkler, 2003). Using

this procedure, we find the following hybridized HH pseudospin states (see Appendix B.5):

|Ψ±〉 ≃ N
(

|u±HH;φ00HH〉|±HH〉 ∓ λCB |u±CB;φ0±CB〉|±CB〉 ± λLH |u±LH;φ1±LH〉|±LH〉
)

. (6.1)

Here, we have assumed a parabolic confinement potential VQD = m‖ω
2
‖(x

2+y2)/2+m⊥ω2
⊥z

2/2

defining the QD, where m⊥ = m0/(γ1−2γ2) and m‖ = m0/(γ1+γ2) are the HH effective masses

along the growth axis z (taken to be along [001]) and in the xy-plane, respectively, γ1 and γ2
are the Luttinger parameters, m0 is the free-electron mass, ω⊥ = ~/(m⊥a2z) with quantum-well

height 2az , ω‖ = ~/(m‖L
2) with quantum-dot radius L, and N enforces proper normalization

of the wavefunctions. The condition for the validity of Eq. (6.1) is given by az ≪ L, which is

needed for the perturbation expansion on the Kane Hamiltonian. The amount of CB and LH

admixture is determined by the dimensionless prefactors

λCB = iβCB
P√

2LEg

, λLH =

√
3

2
√

2

γ3
γ2
βLH

azL

L2 − a2z
, (6.2)

where P is the interband momentum, Eg is the fundamental band gap, and

βCB =
4(γ1 + γ2)

(1 + γ1 + γ2)2

√
2(γ1 − 2γ2)1/4

√

1 + (γ1 − 2γ2)
, βLH =

[

1 −
(

γ2
γ1

)2
]

(γ21 − 4γ22)3/4

γ
3/2
1

(6.3)

come from envelope-function overlap integrals of the form 〈φ00HH|k±kz|φ1±LH〉 and account for the

difference in effective masses between the bands.

Near the Γ-point, the spin-orbit-coupled states can be approximated by

|uCB±〉|±CB〉 ≃ |s〉| ↑, ↓〉, (6.4)

|uHH±〉|±HH〉 ≃ |p±〉| ↑, ↓〉, (6.5)

|uLH±〉|±LH〉 ≃
1√
3

(
√

2|pz〉| ↑, ↓〉 ∓ |p±〉| ↓, ↑〉), (6.6)
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in terms of s- and p-symmetric Bloch states (|p±〉 = (|px〉 ± i|py〉)/
√

2) and real-spin states

| ↑, ↓〉 with respect to the growth axis (Winkler, 2003). The envelope functions appearing

in Eq. (6.1) are defined via their position representations 〈r|φijα 〉 = φiα(z)φjα(x, y) (i = 0, 1,

j = 0,±), where φ0α(x, y) = φ0α(x)φ0α(y), φ±α (x, y) = (φ1α(x)φ0α(y) ± iφ0α(x)φ1α(y))/
√

2, and

φnα(x) is the nth harmonic-oscillator eigenfunction along the x-direction in band α. Due to

terms appearing in the Kane Hamiltonian which are linear in the crystal momentum k and

which couple neighboring bands, the admixture of CB and LH states features excited-state

envelope functions. This has profound physical consequences which will be discussed below.

For a quantum dot with L = 10nm and az = 2nm, we estimate |λCB| ≃ 0.02, |λLH| ≃ 0.11 for

GaAs. The split-off-band contribution to the HH states is very small has thus been neglected

in Eq. (6.1).

6.3 Nuclear-spin interactions and effective Hamiltonian

As we have already discussed in Chapter 5, there are three interactions that couple the HH –

whose pseudospin states have been derived in Eq. (6.1) – to the spins of the surrounding nuclei:

the Fermi contact interaction hk1 , the anisotropic hyperfine interaction hk2 , and the coupling

of orbital angular momentum to the nuclear spins hk3 , which are represented by the following

Hamiltonians (setting ~ = 1) (Stoneham, 1972):

hk1 =
µ0
4π

8π

3
γSγjk δ(rk) S · Ik, (6.7)

hk2 =
µ0
4π

γSγjk
3(nk · S)(nk · Ik) − S · Ik

r3k(1 + d/rk)
, (6.8)

hk3 =
µ0
4π

γSγjk
Lk · Ik

r3k(1 + d/rk)
. (6.9)

Here, γS = 2µB , γjk = gjkµN , µB is the Bohr magneton, gjk is the nuclear g-factor of isotopic

species jk at lattice site k, µN is the nuclear magneton, rk = r−Rk is the electron-spin position

operator relative to the kth nucleus with spin Ik, d ≃ Z × 1.5 × 10−15 m is a length of nuclear

dimensions, Z is the charge of the nucleus, and nk = rk/rk. S and Lk = rk×p denote the spin

and orbital angular-momentum operators of the HH, respectively.

In order to derive an effective spin Hamiltonian for the HH, we take matrix elements

〈Ψτ |hki |Ψτ ′〉 (τ, τ ′ = ±, i = 1, 2, 3) with respect to the hybridized HH wavefunctions (6.1).

Due to the δ-function in Eq. (6.7), only the CB admixture contributes to the Fermi contact

interaction, since p-states vanish at the positions Rk of the nuclei. On the other hand, the terms

in Eq. (6.1) associated with HH and LH states contribute to matrix elements of Eqs. (6.8) and

(6.9), while the CB admixture does not contribute due to symmetry (hk2) and vanishing orbital

angular momentum (hk3). Adding up all contributions, and taking into account a Zeeman term

due to a magnetic field B along the z-direction (Faraday geometry), we find the following

effective spin Hamiltonian describing the hole-nuclear-spin interactions:

H = (b+ hz)Sz +
1

2
(h+S− + h−S+). (6.10)
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6. Holes in III-V Semiconductors: Narrowed Nuclear-Spin Bath

Here, b = ghµBB is the Zeeman energy of the HH, gh is the HH g-factor along the magnetic-

field direction z, and µB is the Bohr magneton. The Overhauser-field components are defined

by

hz =
∑

k

Az
kI

z
k , h± =

∑

k

A±k I
±
k , (6.11)

where I±k = Ixk ± iIyk and where Az
k and A±k denote the longitudinal and transverse hyperfine

coupling of the HH to the kth nuclear spin, respectively.

The hybridized states in Eq. (6.1) are predominantly HH-like. We have shown in Chapter

5 that taking matrix elements of the Hamiltonians (6.7)-(6.9) with respect to pure HH states

(i.e., neglecting band hybridization) results in an Ising Hamiltonian hzSz. The longitudinal

coupling constants are thus dominated by the HH contribution, Az
k ≃ Az

k,HH, and the transverse

(non-Ising) terms in Eq. (6.10) are only due to hybridzation with CB and LH states, A±k =

A±k,CB +A±k,LH. Explicitly, the longitudinal and transverse coupling constants are given by

Az
k,HH ≃ Ajk

HHv0|φ0(zk)|2|φ0(xk, yk)|2, (6.12)

A±k,CB ≃ Ajk
CBv0|φ0(zk)|2φ∗±(xk, yk)φ∓(xk, yk), (6.13)

A±k,LH ≃ Ajk
LHv0|φ1(zk)|2φ∗∓(xk, yk)φ±(xk, yk), (6.14)

respectively, where v0 is the volume occupied by one nucleus and Ajk
α is the hyperfine coupling

strength of isotope jk associated with band α. Introducing the average Aα =
∑

j νjA
j
α, where

νj denotes the abundance of isotope j, we estimate AHH ≃ −13µeV (Fischer et al., 2008),

ACB ≃ 0.02µeV, and ALH ≃ 0.05µeV for a GaAs QD with L = 10nm and az = 2nm. In

contrast to the interaction of an electron with nuclear spins, the hole-nuclear-spin interaction

given in Eq. (6.10) is highly anisotropic. ACB ∝ |λCB|2 and ALH ∝ |λLH|2 have a strong

dependence on the QD geometry, therefore the non-Ising terms in Eq. (6.10) can be ‘tuned’ to

be more CB or LH-like.

6.4 Hole-spin dynamics

We now study the dynamics of the transverse spin component S+ describing the coherence

of the HH pseudospin states. To this end, we use the Nakajima-Zwanzig master equation (see

also Chapter 4)

〈Ṡ+〉t = iωn〈S+〉t − i

∫ t

0
dt′ Σ(t− t′)〈S+〉t′ , (6.15)

where ω = b+ hz, ω|n〉 = ωn|n〉, and |n〉 denotes a narrowed state of the nuclear-spin system.

Σ(t) = tr{S+Σ̂(t)S−|n〉〈n|} is the self-energy (or memory kernel) describing the transverse-

spin dynamics, where Σ̂(t) = −iPLQe−iLQtQLP, P is a projector onto a product state of HH

and nuclear spins, Q = 1 − P, and LO = [H,O] for some operator O acting on the total

Hilbert space of HH and nuclear spins (Coish and Loss, 2004). It is convenient to perform a

Laplace transform f(s) =
∫∞
0 dt e−stf(t) on the integro-differential equation (6.15), yielding

an algebraic equation of the form

S+(s+ iωn) =
〈S+〉0

s+ iΣ(s+ iωn)
(6.16)
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Figure 6.1: Decoherence rate 1/T2 from Eq. (6.21) as a function of the HH Zeeman energy
ωn = ghµBB + pIAHH. For L = 10nm and az = 4nm, we estimate N ≃ 7.3 × 104.
Inset: 1/T2 for Zeeman splittings up to 10µeV, corresponding to magnetic fields of
B ≃ 1T or a polarization p ≃ 1 (axes in the same units as in the main figure).

in the frame rotating with frequency ωn. Eqs. (6.15) and (6.16) are exact equations describing,

in general, non-Markovian dynamics of the transverse HH-spin component. The structure of the

self-energy Σ(s) is, however, very complex, so we have to resort to an approximation scheme.

The energy scales associated with the transverse coupling V = (h+S− + h−S+)/2 are much

smaller than those associated with the longitudinal coupling H0 = (b + hz)Sz (see above),

and we expand the self-energy in powers of hole-nuclear-spin flip-flop processes induced by V :

Σ(s) = Σ(2)(s) + Σ(4)(s) + O(V 6). Odd orders in V vanish because of the Zeeman mismatch

between HH and nuclear spins which energetically forbids such processes. For a nuclear spin I

of order unity, the smallness parameter which controls this expansion is given approximately

by A⊥/ωn (see Appendix A of Coish and Loss (2004)), where A⊥ =
√

A2
CB +A2

LH. For a GaAs

QD with L = 10nm and az = 2nm, A⊥ < ωn = ghµBB + pIAz (Az = |AHH|) for an external

field B & 0.5mT or a nuclear-spin polarization p & 0.5%.

We evaluate the second- and fourth-order self-energy contributions explicitly, following the

procedure described in Appendix A.4 for the electron case. We find, for a homonuclear system

in the frame rotating with frequency ωn,

Σ(2)(s + iωn) ≃ −c+ + c−
4ωn

∑

k

|A±k |2, (6.17)

Σ(4)(s + iωn) ≃ −ic+c−
4ω2

n

∑

k1,k2

|A±k1 |
2|A±k2 |

2

s+ i(Az
k1

−Az
k2

)
, (6.18)

where the sums run over all nuclear sites k. We have introduced c± = I(I + 1)−〈〈m(m± 1)〉〉,
where I is the nuclear spin, m = −I, . . . , I, and the double angle bracket indicates averaging

over the Izk eigenvalues m (Coish and Loss, 2004).
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We emphasize that the structure of the self-energies Σ(2) and Σ(4) bears some similarity

with our previous results on electron-spin decoherence (compare directly with Eqs. (A.50) and

(A.53)). However, there are two important differences compared to the electron case: (i) The

appearance of different coupling constants Az
k and A±k in Eqs. (6.17) and (6.18) is due to the

anisotropy of the hyperfine Hamiltonian (6.10) and provides an additional smallness factor

A⊥/Az ≪ 1 to the self-energy (6.20). (ii) The spatial dependence of the transverse coupling

constants differs from the longitudinal ones due to the appearance of excited-state envelope

functions. In particular, this means that nuclear spins at the edge of the QD (rather than in its

center as in the electron case) couple most strongly to the HH along the transverse direction

– an effect which manifests itself directly in the appearance of a distinct minimum in the

decoherence rate 1/T2 (see Fig. 6.1).

We now evaluate the second- and fourth-order self-energy in the continuum limit (changing

sums to integrals), following Coish et al. (2010). Since az ≪ L (see above), we can perform a

two-dimensional limit by averaging over the z-dependence in the hyperfine coupling constants

Az
k and A±k . From Eq. (6.17), we see that the second-order self-energy Σ(2) is purely real,

leading to no decay but a frequency shift ∆ω = −ReΣ(2)(s + iωn), or

∆ω =
c+ + c−

16N

A2
⊥
ωn

, (6.19)

where N is the number of nuclear spins enclosed by the envelope function. The fourth-order

self-energy becomes (see Appendix B.6)

Σ(4)(s+ iωn) ≃ −ic+c−
4N

A⊥
Az

A3
⊥
ω2
n

∫ 1

0
dx

∫ 1

0
dy

x(log x)2 y(log y)2

s+ i(x− y)
(6.20)

in the continuum limit, where x = exp{−r21}, y = exp{−r22}, and ri =
√

x2i + y2i /L (i = 1, 2).

Here, we have approximated |A±k |2 ≃ |A±k,CB|2 + |A±k,LH|2 since the overlap term vanishes under

spatial averaging. The appearance of polynomial prefactors r4, represented by the log functions

in the numerator of Eq. (6.20), is a direct consequence of the excited-state envelope functions

describing the distribution of transverse coupling constants A±k within the quantum dot.

The transverse-spin dynamics of the HH are described by the non-analytic structure of the

right-hand side of Eq. (6.16) (see also Chapter 4.4 and in particular Fig. 4.1). Inserting the

self-energies Σ(2) and Σ(4) into Eq. (6.16), we find one pole at s ≃ i∆ω − Γ, whose negative

real part gives decoherence rate of the HH: Γ = 1/T2 ≃ −ImΣ(4)(iωn + i∆ω+0+) (see Chapter

4.4.3), where 0+ denotes a positive infinitesimal. Evaluating Eq. (6.20), we find

1

T2
=
πc+c−

4N

A⊥
Az

A3
⊥
ω2
n

∫ 1

ǫ
dxx[log x]2(x+ ǫ)[log(x+ ǫ)]2, (6.21)

where ǫ = N |∆ω/AHH|. The integral in Eq. (6.21) can now be evaluated numerically for any

value of ǫ (i.e., of ωn).

In Fig. 6.1, we show the hole-spin decoherence rate 1/T2 as a function of the Zeeman energy

ωn = ghµBB+pIAHH (0 ≤ p ≤ 1 is the degree of nuclear-spin polarization). The non-monotonic
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Figure 6.2: Maximum of the decoherence rate 1/T2 as a function of the QD height az. For
increasing az, the maximal value of 1/T2 decreases (see main plot) and the position
of the maximum is shifted (see inset).

behavior of 1/T2 for small ωn appears when ǫ ∝ 1/ωn approaches unity. We emphasize that

the range of validity of this result is given by ǫ < 1, which is much less restrictive than the

condition A⊥/ωn < 1 suggested by the self-energy expansion:

ǫ =
c+c−

16

A⊥
Az

A⊥
ωn

≪ A⊥
ωn

. (6.22)

For electrons, we have found non-monotonic behavior of 1/T2 as well (see Fig. 4.5), albeit

with a different dependence on ǫ and around magnetic fields of several tesla. In contrast, for

holes, the non-monotonicity occurs at much lower fields (B ≃ 0.1mT for the parameters used

in Fig. 6.1), and the rate 1/T2 features an additional dip which is a footprint of the excited-

state envelope functions appearing in Eq. (6.1). The huge difference in energy scales has very

important consequences for the tunability of the hole-spin decoherence rate: by increasing the

externally applied magnetic field (or the degree of nuclear-spin polarization), it is possible to

decrease 1/T2 over many orders of magnitude within the experimentally accessible range of

magnetic fields (see inset of Fig. 6.1). This means that this system offers the possibility to

entirely ‘turn off’ hyperfine-associated spin decoherence. As a consequence, hole-spin quantum

dots may be operated in a regime where other interactions, such as spin-orbit or direct nuclear

dipole interactions, will be the dominant source of spin decoherence and will therefore become

experimentally observable. We emphasize that Eq. (6.21) is still valid at B = 0, as long as

ǫ < 1 (i.e., for non-zero nuclear-spin polarization).

The degree of band hybridization, and therefore the decoherence rate 1/T2, depends on the

geometry of the QD, i.e., on L and az. For flat QDs the amount of LH admixture to the HH

states (6.1) is decreased, leading to smaller non-Ising terms in the Hamiltonian (6.10). On the

other hand, the envelope wavefunction of a flat dot encloses less nuclear spins (for fixed L).

These two effects lead to an increase of the maximal decoherence rate for smaller az (see Fig.

6.2), and a shift of its position as a function of B (see inset of Fig. 6.2).
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6.5 Conclusions

We have shown that in HH quantum dots, band hybridization leads to a hole-nuclear-spin

coupling which is transverse to the growth axis of the semiconductor and which depends on

the geometry of the QD. If the nuclear spins are prepared in a narrowed state, this transverse

coupling induces an exponential hole-spin decoherence due to hyperfine-mediated nuclear-pair-

flip processes. We have shown that the associated decoherence time T2 can be tuned over many

orders of magnitude by sweeping an external magnetic field from sub-millitesla to tesla ranges.
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Chapter 7

Electrons in Carbon Nanostructures

7.1 Introduction

In Chapter 1 we have discussed the idea of spin-based quantum computation and the related

problem of short decoherence times, which are typically due to interactions with the ubiquitous

nuclear spins. For III-V semiconductor quantum dots, with their high abundance of spin-

carrying nuclear isotopes, the associated decoherence times are quite short, usually of order

nanoseconds (Merkulov et al., 2002; Khaetskii et al., 2002; Coish and Loss, 2004; Petta et al.,

2005), if no manipulations on the nuclear system are performed.

One way of overcoming the problem of short decoherence times is to build quantum dots

from semiconductors with lower abundances of spin-carrying isotopes, potentially resulting in

weaker nuclear-spin interactions. Carbon structures naturally consist of 99% 12C with nuclear

spin 0 and only of 1% 13C with nuclear spin 1
2 , and are therefore promising materials for building

quantum dots featuring long spin decoherence times. This extraordinary property of carbon

materials, as well as their comparatively weak spin-orbit interactions, has led to proposals of

fabricating quantum dots in graphene ribbons with armchair boundaries (Trauzettel et al.,

2007) and in carbon nanotubes (CNTs) (Bulaev et al., 2008).

Although it was not yet possible to experimentally realize a single-electron quantum dot

in graphene, Coulomb-blockade measurements in gated graphene quantum dots have already

been carried out successfully (Schnez et al., 2009; Ponomarenko et al., 2008). Experiments

on single electrons in CNTs have advanced even more (Tans et al., 1997; Bockrath et al.,

1997; Kong et al., 2000; Minot et al., 2004; Jarillo-Herrero et al., 2004; Mason et al., 2004;

Biercuk et al., 2005; Cao et al., 2005; Sapmaz et al., 2006; Onac et al., 2006; Gräber et al.,

2006; Jørgensen et al., 2006; Meyer et al., 2007; Kuemmeth et al., 2008; Steele et al., 2009).

Very recently, first measurements on nuclear-spin interactions and electron-spin dynamics in

CNTs have been performed by Churchill et al. (2009a,b), reporting an unexpectedly strong

hyperfine interaction of order A ≃ 100µeV in 13C enriched CNTs. Furthermore, theoretical

and experimental NMR studies on fullerenes (Pennington and Stenger, 1996) have been carried

out as well as ab initio calculations on hyperfine interaction in small graphene flakes (Yazyev,

2008).
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7. Electrons in Carbon Nanostructures

Figure 7.1: Sketch of the systems under consideration throughout this work: (a) a single elec-
tron confined to a quantum dot defined by two barriers on a graphene ribbon; (b)
a single-electron quantum dot defined in a carbon nanotube. Externally applied
magnetic fields are indicated by the red arrows.

In this chapter we analytically calculate the interaction of a single electron confined to a

graphene ribbon or a CNT (see Fig. 7.1) with the spins of the surrounding 13C nuclei. For

CNTs we find an interesting interplay between isotropic and anisotropic hyperfine interactions

which depends on the CNT geometry and which leads to a highly anisotropic Knight shift

and an unusual alignment of the nuclear spins around a CNT circumference (in the ground

state). Furthermore, we calculate the decoherence dynamics of the electron spin and find that,

even without manipulating the nuclear spins, the hyperfine-associated decoherence times can

be on the order of tens of microseconds or longer, depending on the relative abundance of 13C

nuclei. These timescales are much longer than the ones typically found for III-V semiconductor

quantum dots, making carbon-based quantum dots promising spin-qubit candidates.

7.2 Bonds and bands

The carbon atom features six electrons: two core electrons and four valence electrons. In a

solid, the four valence electrons (which are in 2s and 2p states) form the bonds with the

nearest-neighbor atoms. In two-dimensional graphite, or graphene, each atom has three nearest

neighbors, and three of the four valence electrons form sp2-hybridized bonds (called σ-bonds)

with those neighbors, while the fourth electron is in a so-called π-state perpendicular to the

σ-bonds (Saito et al., 1998). The π-electrons in graphene determine the band structure near

the Fermi energy, while the σ-electrons form more remote bands. A conduction-band electron

58



7.2. Bonds and bands
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Figure 7.2: Definitions used throughout this work: a1 and a2 denote the basis vectors of the
honeycomb lattice, Rj are the relative nearest-neighbor positions, c and t are the
circumferential and transverse vectors, respectively, and θ = θnm is the chiral angle
between c and a1.

is therefore in a π-state.

A CNT can be regarded as a graphene sheet that had been rolled up along some direction

c, defining a symmetry axis t of the CNT. The circumferential and translational vectors are

defined in terms of the basis vectors a1 and a2 as (see Fig. 7.2)

c = na1 +ma2, t = t1a1 + t2a2. (7.1)

Here, n,m ∈ N0 are the chiral indices, and t1 = (2m + n)/dR, t2 = −(2n + m)/dR with dR
being the greatest common divisor of 2n+m and 2m+n. We denote the chiral angle between

c and a1 by θ = θnm.

The curvature of the CNT causes a geometrical tilting of the σ-bonds which results in an

sp-hybridization of the conduction-band states. Kleiner and Eggert (2001) have studied this

effect perturbatively in lowest order in the small parameter 2π/L, where L =
√
n2 + nm+m2

is the circumference of the CNT in units of the lattice constant a ≃ 2.5 Å. For typical CNTs

we have 2π/L < 1. However, the parameter can approach unity for ultra-small nanotubes. At

this point, our theory breaks down.

The wavefunction of a conduction-band electron in a periodic crystal is given by Bloch’s

theorem: Ψkσ = 1√
NA
eik·rukσ(r), where NA is the number of atomic sites in the crystal and

the Bloch amplitude ukσ(r) has the periodicity of the lattice. Similar to our treatment of

heavy holes in Chapter 5, we approximate the Bloch amplitude ukσ(r) at the K and K’ points

(the minima of the conduction band) by a linear combination of hydrogenic orbitals, uσ(r) =
∑

R
π(r−R), where (Kleiner and Eggert, 2001)

π(r) = Nnm

{

ψ2p⊥(r) +
π

2
√

3L

(

ψ2s(r) + sin(3θ′nm)ψ2pt(r) + cos(3θ′nm)ψ2pc(r)
)}

, (7.2)
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and the sum runs over all lattice sites in the CNT. In the above, ψ2s represents a hy-

drogenic 2s orbital, ψ2pt , ψ2pc and ψ2p⊥ are, respectively, the 2p orbitals along the trans-

verse, circumferential, and radial direction of the CNT, and Nnm normalizes the Bloch am-

plitude to two atoms per unit cell. θ′nm is the angle between c and R1, and we can write

sin(3θ′nm) = (n−m)(2n2 + 5nm+ 2m2)/2L3 and cos(3θ′nm) = 3
√

3nm(n+m)/2L3 in terms of

the chiral indices (Kleiner and Eggert, 2001). The hydrogenic orbitals consist of a radial and an

angular part, e.g., ψ2s(r) = R20(r)Y 0
0 (ϑ,ϕ). We will choose a local coordinate system at each

lattice site, such that ψ2pt , ψ2pc , and ψ2p⊥ correspond to hydrogenic 2p orbitals in z-, y-, and

x-direction, respectively (see below). The radial components of the hydrogenic orbitals depend

on an effective screened nuclear charge Zeff ‘seen’ by the electron (Clementi and Raimondi,

1963).

Our choice of the Bloch amplitude implicitly assumes that the electron is tightly bound to

the nuclei, i.e., that the radial component of π(r) drops off fast on the scale of the nearest-

neighbor distance. We have estimated that |π(r + Rn.n.)|2/|π(r)|2 ≃ 10−3 for any nearest-

neighbor lattice vector Rn.n., justifying our assumption.

In a quantum dot, the electron is delocalized over many lattice sites and its Bloch amplitude

is modulated by an envelope function Φσ defined by the confinement potential (see Bulaev

et al. (2008) for the envelope function of a quantum dot defined by a rectangular confinement

potential in a semiconducting CNT). Including the spin states |σ〉 = | ↑, ↓〉, we write the

electron states as

|Ψσ〉 = |Φσ;uσ〉|σ〉, (7.3)

where, in the envelope-function approximation, 〈r|Φσ;uσ〉 = Φσ(r)uσ(r). Since we did not

include spin-orbit interactions in our model, the orbital wavefunction is independent of the

spin state, and we may omit the subscript σ: Φσ(r) = Φ(r) and uσ(r) = u(r).

7.3 Nuclear-spin interactions

7.3.1 Carbon nanotubes

As we have seen in Chapter 2.2, there are three terms that couple the spin of the confined elec-

tron to the nuclear spins in the CNT: the Fermi contact interaction, the anisotropic hyperfine

interaction and the coupling of electron orbital angular momentum to the nuclear spins. These

interactions are represented by the Hamiltonians

hk1 =
µ0
4π

8π

3
γSγjk δ(rk) S · Ik, (7.4)

hk2 =
µ0
4π

γSγjk
3(nk · S)(nk · Ik) − S · Ik

r3k(1 + d/rk)
, (7.5)

hk3 =
µ0
4π

γSγjk
Lk · Ik

r3k(1 + d/rk)
, (7.6)

respectively, where γS = 2µB , γjk = gjkµN , µB is the Bohr magneton, gjk is the nuclear g-factor

of isotopic species jk, µN is the nuclear magneton, µ0 is the vacuum permeability, rk = r−Rk

is the electron-spin position operator relative to the nucleus, d ≃ Z × 1.5× 10−15 m is a length
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of nuclear dimensions, Z is the charge of the nucleus, and nk = rk/rk. S and Lk = rk × p

denote the spin and orbital angular-momentum operators (with respect to the kth nucleus)

of the electron, respectively. The cutoff 1 + d/rk comes from the Dirac equation (see Chapter

2.2) and avoids unphysical divergences from expectation values of the Hamiltonians hk2 and hk3 .

In the problem considered here, this cutoff may be omitted for the following reasons: (i) The

expectation values of hk2 and hk3 with respect to an s-state vanish identically due to the spherical

symmetry of the wavefunction and the vanishing orbital angular momentum, respectively. The

expectation values with respect to a p-state are non-zero, but the p-wavefunction goes to zero

sufficiently fast at the position of each nucleus, thus avoiding a divergence. (ii) As mentioned

above, the electron wavefunction does not extend significantly to the nearest-neighbor lattice

sites. Hence, within our tight-binding approximation, the orbital π(r) centered around some

nucleus cannot cause a divergence at the position of a nearest neighbor.

We note that the orbital angular momentum Lk which appears in Eq. (7.6) is associated

with the electronic motion around the kth nucleus and is described by the Bloch part of the

electron wavefunction. On the other hand, it has been shown by Latil et al. (2001), that inter-

atomic currents can occur along the nanotube circumference to which another orbital angular

momentum L may be associated which is described by the envelope part of the electron wave-

function. However, the hyperfine coupling strength is defined via the Bloch part of the electron

wavefunction and therefore a consideration of the coupling between the valley degrees of free-

dom via envelope-function-associated angular momenta is beyond the scope of the analysis

presented here.

We will consider CNTs and graphene with different abundances of the nuclear isotopes 12C

and 13C. While 12C does not carry a nuclear spin, the nuclear gyromagnetic ratio of 13C is

non-vanishing and given by γ13C = 7.1 × 10−27 J/T.

The Fermi contact interaction (7.4) yields a finite contribution for s-states, but vanishes

for p-states. The anisotropic hyperfine interaction (7.5) and the coupling of orbital angular

momentum (7.6) vanish for s-states because of their spherical symmetry and zero orbital

angular momentum, but yield a finite contribution for p-states. Therefore, when considering

CNTs, all three interactions (7.4) - (7.6) have to be taken into account because of the sp-

hybridized electron states (7.2), while for graphene, only the interactions (7.5) and (7.6) are

relevant, due to the purely p-type wavefunction (corresponding to the limit n,m → ∞ in Eq.

(7.2)).

We first calculate matrix elements of the interactions (7.4) - (7.6) with respect to the elec-

tron wavefunction (7.3), which will lead to effective spin Hamiltonians and to the associated

coupling strengths in the CNT case. Throughout this section, we will consider a CNT that

consists only of spin-carrying 13C isotopes. The possibility of different nuclear isotope abun-

dances will then be taken into account in Sec. 7.5. From the CNT results, it will be possible

to perform the ‘graphene limit’, which we postpone to Sec. 7.3.2.

We start with the Fermi contact interaction and calculate

〈Ψσ|hk1 |Ψσ′〉 =
2µ0γSγ13C

3

∑

k

|u(rk)|2|Φ(rk)|2〈σ|S · Ik|σ′〉, (7.7)

assuming that the electron-spin density does not depend on the lattice site, which is justified if,
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e. g., the envelope function Φ(r) describes the ground state of the quantum dot. The effects of a

site dependence of the electron-spin density have recently been considered by Pályi and Burkard

(2009). Evaluating the spin matrix elements leads to the following effective spin Hamiltonian:

H1 =
∑

k

A
(1)
k S · Ik, (7.8)

with coupling constants A
(1)
k = A1v0|Φ(rk)|2 (where v0 is the volume of a primitive unit cell)

and the associated coupling strength

A1 =
µ0γSγ13CZ

3
eff

3πa30
N2

nmβ
2
nm, (7.9)

where we have introduced βnm = π/2
√

3L, and a0 is the Bohr radius. The normalization factor

Nnm can be determined by normalizing Eq. (7.2) to two atoms per unit cell:

Nnm = 2

√

L2

π2 + 4L2
. (7.10)

We have evaluated Eq. (7.9) for CNTs of different chiralities in Table 7.1. For typical CNTs,

the coupling strength A1 is about three orders of magnitude smaller than that for an electron

in a GaAs quantum dot (AGaAs
1 ≃ 90µeV, see Paget et al. (1977)), for two reasons: (i) The

hybridization prefactor Nnmβnm is on the order of 0.05 and enters quadratically into A1. (ii)

The effective nuclear charge (which enters in third power into A1) is ZC
eff ≃ 3.2 for carbon, but

ZGa
eff ≃ 7.1 for gallium and ZAs

eff ≃ 8.9 for arsenic (Clementi and Raimondi, 1963).

The sign of the isotropic interaction is positive for all nanotube diameters, in contrast

to results reported previously by Semenov et al. (2007), where spin relaxation of conduction

electrons has been calculated numerically and a sign change of the hyperfine coupling constant

A1 has been found for small nanotube diameters. This is due to the fact that Semenov et al.

(2007) have included the coupling of the 1s core electrons to the nuclear spins, which, however,

is irrelevant for the hyperfine interaction of a conduction electron and, hence, for the electron

spin dephasing considered here.

Now we look at the anisotropic hyperfine interaction. Due to symmetry, the s-part of the

hybridized wavefunction does not contribute. Taking matrix elements 〈Ψσ|hk2 |Ψσ′〉 just like

above, we arrive at an effective Hamiltonian

H2 =
∑

k

(

A
(2,x)
k SxIxk +A

(2,y)
k SyIyk +A

(2,z)
k SzIzk

)

, (7.11)

with coupling constants A
(2,j)
k = Aj

2v0|Φ(rk)|2 and the coupling strengths

Aj
2 =

µ0γSγ13CZ
3
eff

120πa30
N2

nmλj , (7.12)

where

λx = 1 − 1

2
β2nm, (7.13)

λy = −1

2
− 1

2
β2nm sin2(3θ′nm) + β2nm cos2(3θ′nm), (7.14)

λz = −1

2
+ β2nm sin2(3θ′nm) − 1

2
β2nm cos2(3θ′nm). (7.15)
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(10, 0) (20, 0) (5, 10) (9, 15) (5, 5) (10, 10) (20, 20)

A1 0.19 0.05 0.12 0.05 0.26 0.07 0.02

Ax
2 0.59 0.60 0.59 0.60 0.58 0.60 0.61

Ay
2 −0.29 −0.30 −0.30 −0.30 −0.29 −0.30 −0.30

Az
2 −0.30 −0.30 −0.30 −0.30 −0.30 −0.30 −0.30

Table 7.1: Estimated hyperfine coupling strengths (in µeV) for nanotubes of different chirali-
ties (n,m).

We see that the coupling induced by the anisotropic hyperfine interaction is different in all

three spatial directions. Recall that we have labeled our axes such that z, y, and x refer to

the translational, circumferential, and radial directions, respectively. We show typical values

for Aj
2 in Table 7.1. The direction of strongest hyperfine interaction is radial to the nanotube.

The fact that Ax
2 ≃ −2Ay

2 ≃ −2Az
2 for the CNTs in Table 7.1 comes directly from the angular

integration in the expressions 〈Ψσ|hk2 |Ψσ′〉, leading to Eq. (7.11): the admixture of ψ2pt and

ψ2pc to the π-orbital in Eq. (7.2) is very small, such that the integration approximately reduces

to the ψ2p⊥ term (the ψ2s term does not contribute by symmetry). It is interesting to note the

competing signs: the Fermi contact interaction (expressed via A1) enhances the anisotropic

hyperfine interaction along the radial direction, but reduces it along the circumferential and

transverse directions. Furthermore, the signs of the hyperfine coupling along different directions

indicate ferro- and antiferromagnetic alignment of the nuclear spins with respect to the electron

spin (in the ground state). We will come back to this in Sec. 7.4.

Finally, we address the coupling of electron orbital angular momentum. Calculating matrix

elements of hk3 , it is straightforward to see that this interaction vanishes identically by applying

the operators Lj to the hydrogenic orbitals appearing in Eq. (7.2), then evaluating 〈Ψσ|hk3 |Ψσ′〉
and summing up all contributions.

7.3.2 Graphene

We consider the ‘graphene limit’ corresponding to let n,m→ ∞ in all expressions in Sec. 7.3.1.

Then βnm → 0 and Nnm → 1 and, denoting quantities related to graphene with a tilde,

Ã1 = 0, Ãz
2 = Ãy

2 = − Ã
x
2

2
= −µ0γSγ13CZ

3
eff

240πa30
. (7.16)

Inserting numbers, this yields Ãz
2 = Ãy

2 ≃ −0.3µeV and Ãx
2 ≃ 0.6µeV. Note that in our

notation the x-direction is perpendicular to the graphene plane.

Surprisingly, these numbers are not much different from those estimated for Aj
2 in Sec. 7.3.1.

Naively, one might have expected a weaker hyperfine interaction in graphene (as compared to

CNTs) due to its flatness and the vanishing contact interaction (7.4). As it turns out, however,

even for small CNTs the contact interaction is only a small correction to the anisotropic

hyperfine interaction (7.5), so that the latter is the main hyperfine contribution for both CNTs

and flat graphene.
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Figure 7.3: Alignment of the nuclear spins (in the ground state) due to the anisotropic Knight
shift. The electron is assumed to be prepared in the eigenstate of Sx̃ with eigenvalue
+1/2, see Eq. (7.19), and points along x̃ at each nuclear-spin site.

7.4 Hyperfine-induced anisotropic Knight shift

In Secs. 7.2 and 7.3, we have formulated the hyperfine problem in terms of a local coordinate

system at each nucleus. In this section, we want to look at the Knight shift of the 13C nuclear

spins due to hyperfine interaction with the conduction electron. The isotropic Knight shift due

to interaction with both the sp-hybridized conduction-band electron and the 1s core electron

has been studied by Yazyev and Helm (2005). Electron-spin resonance spectra of 13C in π-

electron radicals have been analyzed by Karplus and Fraenkel (1961).

From our considerations in Sec. 7.3.1 it is clear that the Knight shift induced by the

anisotropic hyperfine interaction (∼ Aj
2/N) exceeds the isotropic Knight shift (∼ A1/N) by

roughly one order of magnitude (N is the number of nuclei in the dot). The Knight shift in

CNTs (and graphene) is therefore highly anisotropic.

We introduce the following global coordinate system: x̃ = x cos ζ − y sin ζ, ỹ = x sin ζ +

y cos ζ, z̃ = z, such that the x̃ỹ-plane cuts out a cross section of the CNT and ζ is the coordinate

describing the position on this cross section (see Fig. 7.3).

The electron is assumed to be prepared in a fixed state and to be delocalized over the CNT

cross section. At each lattice point occupied by a 13C nucleus, the nuclear spin will align itself

in such a way that the hyperfine energy is minimized in the ground state of the nuclear spins.

This ground state can only be achieved for temperatures that are small with respect to the

energies associated with the Knight shift: kBT < (A1 +Aj
2)/N ∼ 1 peV . . . 1 neV, where kB is

the Boltzmann constant. We write the Hamiltonian describing the hyperfine interaction of one
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nucleus with the delocalized electron as

H ′hf = ST A I = S̃T Ã Ĩ, (7.17)

where ST = (Sx, Sy, Sz), A = diag(Ax, Ay, Az), I = (Ix, Iy, Iz)T , S̃T = ST R†, Ã = RAR†,
and Ĩ = R I, with the rotation R given by

R =







cos ζ − sin ζ 0

sin ζ cos ζ 0

0 0 1






. (7.18)

The operators carrying a tilde hence describe the interaction in the global coordinate system

(x̃, ỹ, z̃), and the coupling tensor is given by

Ã =







Ax cos2 ζ +Ay sin2 ζ (Ax −Ay) sin ζ cos ζ 0

(Ax −Ay) sin ζ cos ζ Ax cos2 ζ +Ay sin2 ζ 0

0 0 Az






.

Here, Aj = A1+Aj
2 is the sum of isotropic and anisotropic hyperfine couplings along the (local)

j-direction (j = x, y, z), see Eqs. (7.9) and (7.12). Recall that Ax > 0 and Ay, Az < 0 for CNTs

(see Sec. 7.3.1). For an electron spin in an eigenstate of Sx̃, the interaction reads

H x̃
hf = (Ax̃x̃I

x̃ +Ax̃ỹI
ỹ)Sx̃ (7.19)

with Ax̃x̃ = Ax cos2 ζ +Ay sin2 ζ and Ax̃ỹ = (Ax −Ay) sin ζ cos ζ.

In Fig. 7.3 we show the alignment of the nuclear spins (assuming the nuclear spins to be

in their ground state) due to the anisotropic Knight shift induced by the hyperfine interaction

with a conduction electron whose spin is prepared in the eigenstate of Sx̃ with eigenvalue +1/2,

i.e., pointing along the x̃-direction at each nuclear site. We have assumed that the electron is

evenly distributed around the CNT cross section, which can be seen to be justified from the

envelope functions calculated by Bulaev et al. (2008) for semiconducting CNTs subject to

a rectangular confinement potential. We observe an interesting interplay between ferro- and

antiferromagnetic coupling along the two spatial directions, which is a direct consequence of

the CNT geometry and the strong anisotropy of the hyperfine interaction. In particular, the

hyperfine interaction does not vanish when we average over the CNT circumference. This could

lead to other interesting effects. For instance, it has been shown by Braunecker et al. (2009a,b)

that in a Luttinger liquid, a non-vanishing average hyperfine field can lead to a transition

into a helically ordered phase (along the tube axis) of the nuclear spins below some critical

temperature.

7.5 Electron-spin decoherence

7.5.1 Carbon nanotubes

Based on our analysis in Sec. 7.3, the electron-spin dynamics in a CNT are described by the

following hyperfine Hamiltonian:

Hhf = h · S, hj =
∑

k

Aj
kI

j
k, (7.20)
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Figure 7.4: Electron-spin decoherence time τc in a (20,0) CNT as a function of the relative
13C abundance N13/N , under the condition of a magnetic field Bz & 5 mT along
the symmetry axis of the CNT. We have chosen a completely unpolarized nuclear
system (p = 0) and N = 6 × 105, see text below Eq. (7.23). Inset: Electron-spin
dynamics in CNTs with 13C abundances of 1% (solid blue curve) and 99% (dashed
red curve), in the frame rotating with ω + pN13, see Eq. (7.22).

where Aj
k = Ajv0|Φ(rk)|2 and Aj = A1 +Aj

2, see Eqs. (7.9) and (7.12).

We assume that an external magnetic field Bz has been applied along the symmetry axis of

the CNT (see Fig. 7.1 (b)), and that the induced Zeeman splitting between the spin states is

larger than the hyperfine coupling strength: b = gµBBz > Aj. Assuming g ≃ 2, this corresponds

to very moderate fields of Bz & 5 mT. Within this limit, relaxation-induced decoherence is

suppressed by the small parameter Aj/b, and the main source of decoherence is pure dephasing

due to nuclear-field fluctuations along the CNT symmetry axis. The relevant Hamiltonian is

given by the z-part of Eq. (7.20) and the Zeeman term:

H = (b+ hz)Sz. (7.21)

Assuming that all nuclei carry non-zero spin, the dynamics of the transverse spin is then given

by a Gaussian decay with timescale given by
√
N/Az, where N is the total number of nuclear

spins in the quantum dot (Coish and Loss, 2004).

One advantage of carbon-based nanostructures is the low natural abundance of the spin-

carrying isotope 13C. In order to investigate this advantage, we allow for arbitrary 13C abun-

dances: we denote the total number of nuclei in the quantum dot (defined via the envelope

function, see below) by N , and by N12 and N13 the number of 12C and 13C nuclei, respectively,

such that N = N12 + N13. This generalization has two relevant effects: (i) Summing over all

N nuclei, we get
∑

k A
z
k = η Az, i.e., the total hyperfine coupling is weakened by the ratio

η = N13/N . (ii) The polarization p of the nuclear-spin system (0 ≤ p ≤ 1) is determined only

by the distribution of spin-up and spin-down 13C nuclei, while being unaffected by the 12C

nuclei.
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For N13 ≫ 1 we can use the central limit theorem (compare with Coish and Loss (2004))

which yields the following Gaussian dynamics for the transverse electron spin (written in the

frame rotating with frequency (ω + pηAz/2)/~, where ω = b − bN with the nuclear Zeeman

energy bN = gNµNBz):

〈S+〉t = 〈S+〉0 e−t
2/τ2c . (7.22)

Here, S+ = Sx + iSy, with the electron-spin operators Sj = σj/2 and the Pauli operators σj .

The characteristic timescale for the decay is given by (Coish and Loss, 2004)

τc =
2~

√

1 − p2
N√
N13Az

. (7.23)

We can see from Eq. (7.23) that the decoherence time τc has an interesting non-linear depen-

dence on the abundance of 13C nuclei.

The total number N of nuclei in the quantum dot is determined by the quantum-dot

confinement. Assuming a rectangular confinement along the symmetry axis (Bulaev et al.,

2008) and a (20,0) CNT of length 300 nm, we estimate N ≃ 6×105. We show the electron-spin

decoherence time τc as a function of the relative 13C abundance in Fig. 7.4 for a completely

unpolarized nuclear bath (p = 0). We see that decoherence times of several tens of microseconds

can be expected for higher 13C abundances. For the natural 13C abundance of about 1%, we

estimate τc & 200µs from Eq. (7.23). The inset of Fig. 7.4 shows the Gaussian decay of the spin

coherence (Eq. 7.22) for CNTs containing 1% (solid line) and 99% (dashed line) 13C nuclei.

We note that further increase of the decoherence time τc, say by a factor of x, would require

isotopic purification and the reduction of the natural 13C abundance by about a factor of x2.

The decoherence law in Eqs. (7.22) and (7.23) of course breaks down at the point when only

a few nuclear spins are present in the dot.

7.5.2 Graphene

For an electron confined to a graphene quantum dot, the contact interaction vanishes identically

(Ã1 = 0, see Eq. (7.16)), and only the anisotropic hyperfine interaction contributes to spin

decoherence. We assume an externally applied magnetic field Bx perpendicular to the graphene

plane (see Fig. 7.1 (a)), giving rise to a Zeeman splitting b̃ = g⊥µBBx, where g⊥ ≃ 2 is the

electron g-factor in the out-of-plane direction. If the Zeeman splitting is much larger than the

energy associated with the transverse hyperfine terms, b̃≫ Ãz
2, Ã

y
2, the electron-spin dynamics

are governed by a Gaussian decay similar to the CNT case (7.22), but with a characteristic

timescale given by

τ̃c =
2~

√

1 − p2

N√
N13Ã

x
2

. (7.24)

For a quantum dot with width W = 30 nm and length L = 30 nm, we estimate the total

number of nuclei to be N ≃ 4 × 105. We show τ̃c as a function of the relative 13C abundance

in Fig. 7.5: for higher 13C abundances, decoherence times τ̃c & 1µs can be expected, while for

the natural 13C abundance of 1%, we estimate τ̃c & 80µs.
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Figure 7.5: Electron-spin decoherence time τc in graphene as a function of the relative 13C
abundance N13/N , under the condition of a magnetic field Bx & 5 mT perpendic-
ular to the graphene plane. We have chosen p = 0 and N = 4 × 105 (see text in
Sec. 7.5.2). Inset: Electron-spin dynamics in graphene with 13C abundances of 1%
(solid blue curve) and 99% (dashed red curve), in the rotating frame.

7.5.3 Comparison and discussion

It is interesting to note that the electron-spin decoherence times in graphene are shorter than

in CNTs. Naively, one would assume that the CNT curvature and the associated hybridization

would lead to an enhancement of the nuclear-spin interactions due to the contact interaction

(7.4). As it turns out, however, the contact interaction in a CNT has a competing sign as

compared to the anisotropic hyperfine interaction along the CNT symmetry axis and, hence,

effectively reduces the total hyperfine coupling strength along the direction of the external

magnetic field. For ultra-small CNTs it might happen that the total hyperfine coupling along

the symmetry axis approaches zero 1. This, however, is beyond the validity of our theory.

For typical CNTs, the dominant contribution to the nuclear-spin interactions in CNTs

comes from the anisotropic hyperfine interaction. This is because the amount of s-orbital

admixture in the hybridized wavefunction of a conduction-band electron is rather small: on

the order of a few percent.

In our considerations throughout this section, we have neglected the hyperfine terms which

are transverse to the externally applied magnetic field, i.e., radial and circumferential in the

case of a CNT, and in-plane in the case of graphene. This gives a good first approximation

of the decoherence time, as long as the external magnetic field is large enough to suppress

spin flips induced by the hyperfine terms transverse to the external field. For both CNTs and

graphene, magnetic fields of order B & 5 mT are sufficiently strong to achieve this.

1We emphasize that this result is different from the ones given by Yazyev and Helm (2005) and Semenov
et al. (2007), where only the isotropic hyperfine interactions of the nuclear spins with the 1s and 2s electrons
have been considered.
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A1 [µeV] Ax
2 [µeV] Ay,z

2 [µeV]

our values (CNT) 0.05 0.6 −0.3

our values (Graphene) 0 0.6 −0.3

Yazyev (2008) (Graphene flakes) −0.2 0.6 −0.3

Pennington and Stenger (1996) (C60) 0.1 0.9 −0.5

Goze-Bac et al. (2002) (CNT) 0.04 0.9 −0.5

Table 7.2: Comparison of our hyperfine coupling strengths with the values from previous
publications for comparable systems. We give our values for a (20,0) zigzag nanotube
and for graphene. See Sec. 7.6 for a detailed discussion.

7.6 Comparison with previous work

In Table 7.2 we compare our results for the hyperfine interaction in graphene and CNTs with

those given in earlier publications for comparable systems. The values given by Yazyev (2008)

for the hyperfine interactions in small graphene flakes were derived from DFT calculations

including the σ-bands. The values for the anisotropic hyperfine interaction are similar to our

results but a non-vanishing (and even negative) value for the isotropic hyperfine interaction is

reported, which is, however, associated with the coupling between the nuclear spins and the 1s

core electrons, which is irrelevant for the dephasing of the conduction electron. Pennington and

Stenger (1996) give estimates for the hyperfine interaction in fullerenes and report coupling

constants which are slightly larger than our values. The relatively large value for the isotropic

hyperfine interaction can be explained by the stronger curvature in C60 molecules, leading to

stronger sp-hybridization of the electron states, as compared to CNTs. Goze-Bac et al. (2002)

have estimated the hyperfine interaction in CNTs based on measurements of the chemical shift

of 13C.

Churchill et al. (2009a) have estimated the hyperfine interaction in carbon nanotubes from

transport measurements in double quantum dots, but do not comment on the anisotropy of

the interaction. A hyperfine coupling strength of ∼ 100µeV for pure 13C CNTs is reported in

their work, in clear contrast to our results. Currently, this discrepancy is not understood. One

possible explanation (Trauzettel and Loss, 2009) for this might be that the theory developed

by Jouravlev and Nazarov (2006) for standard GaAs quantum dots and used by Churchill

et al. (2009a) to deduce the hyperfine coupling strength gets modified by the valley degeneracy

occurring in CNT and thus this could lead to different conclusions. Another possible explana-

tion raised by Churchill et al. (2009a) could be that the effective electron-nuclear interaction

gets greatly enhanced by electron-electron interactions and the one-dimensional character of

the system. A similar renormalization was recently noticed in the context of nuclear magnetic

ordering in CNT by Braunecker et al. (2009a,b). Clearly, this is an interesting open problem,

which, however, requires separate study.
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7.7 Conclusions

We have calculated the nuclear-spin interactions and the resulting spin dynamics of an elec-

tron confined to a CNT or graphene quantum dot. In graphene, only the anisotropic hyperfine

interaction couples the electron to the nuclear spins, due to the purely p-type electron wave-

function. In a CNT, curvature induces an sp-hybridization of the electron orbital, opening a

new channel of spin decoherence via the Fermi contact interaction. However, for typical CNTs,

the Fermi contact interaction is only a small correction to the anisotropic hyperfine interaction,

the latter being the main source of nuclear-spin-induced decoherence of the electron spin. We

found the total hyperfine coupling strength of an electron with the 13C nuclei to be less than

1µeV for both graphene and CNTs quantum dots – about two orders of magnitude smaller

than the hyperfine interaction of an electron in a GaAs or InAs quantum dot.

We have used a simple model for the sp-hybridization in CNTs, from which we have derived

the hyperfine interaction. We have checked, however, that a numerical tight-binding band

structure calculation yields hybridization on the same order of magnitude as the geometrical

approach used in this work (Schmidt, 2009). Nevertheless, a more rigorous band structure

calculation including also the influence of the CNT σ-bands would be desirable in the future.

For CNTs, we have found an interesting interplay of hyperfine couplings along different

spatial directions, leading to a highly anisotropic Knight shift and an alignment of the 13C

nuclear spins around the CNT in the ground state of the nuclear spins. This result is particularly

interesting when viewed in context of the hyperfine-induced nuclear phase transition predicted

by Braunecker et al. (2009a,b) for a Luttinger liquid, which requires a non-vanishing mean

value of the hyperfine field. The strong anisotropy of the hyperfine field that we have found

in our work thus gives further evidence that such phase transitions could occur in CNTs.

We emphasize that this anisotropy is present in CNTs of any chirality, in particular also in

metallic CNTs. The results presented here have been used very recently in the context of

transport though CNT quantum dots (Pályi and Burkard, 2009), taking also into account the

valley degrees of freedom.

Furthermore, we have estimated typical electron-spin decoherence times in CNT and

graphene quantum dots. We have shown that relaxation-induced decoherence due to nuclear

spins can be suppressed by applying a magnetic field of order 5 mT to the system, leaving only

pure dephasing due to fluctuations of the nuclear magnetic field. We have estimated that for

a (20,0) zigzag CNT quantum dot containing N ≃ 6 × 105 nuclei, and for a magnetic field

applied along the CNT symmetry axis, the associated decoherence time is of order τc & 1µs,

depending on the relative 13C abundance. We emphasize that our analytical treatment of the

hyperfine problem applies to CNTs of any chirality. For a graphene quantum dot containing

N = 4 × 105 nuclei, and for a magnetic field applied perpendicular to the graphene plane, the

decoherence time is of order τ̃c & 0.5µs, again depending on the relative 13C abundance.

The hyperfine interaction in the systems we have considered here is rather weak. Therefore,

it could, in principle, be that other mechanisms, such as spin-orbit interactions, limit the

lifetime of spin-state superpositions on timescales comparable to those we have estimated here

(see Bulaev et al. (2008) for details).

The decoherence times we have estimated throughout this work are among the longest
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reported so far. This makes quantum dots based on carbon materials attractive spin-qubit

candidates. In particular, the tunability of the average hyperfine coupling strength via the

abundance of spin-carrying 13C nuclei could be used to achieve an optimal balance between a

long electron-spin decoherence time and a sufficiently strong coupling to control the electron-

spin state by manipulating the nuclear-spin system.
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Chapter 8

Conclusions and Outlook

In this last chapter we will take a step back and have a look at how the results presented in this

thesis can been seen from a more general perspective. Our starting point in Chapter 1 had been

the question whether or not it might be possible to build a (spin-based) quantum computer one

day. We have discussed the problem of short decoherence times in detail throughout this thesis

– one of the main obstacles towards viable quantum computation – and we have also discussed

several strategies to circumvent this problem, each having certain practical advantages and

disadvantages.

Electron-spin quantum dots in III-V semiconductors, in particular GaAs quantum dots,

are by now understood very well, both theoretically and experimentally, and an enormous

experimental progress has been observed over the last years. By now it is not only possible to

initialize and readout single-spin states in such systems, but also to manipulate single spins

coherently and to couple and decouple two qubits on demand. Thus, in principle, all basic

prerequisites for using confined electron spins in III-V semiconductors as viable qubits are

fulfilled. One essential remaining problem is to couple an array of many electron-spin qubits in

such a way that individual spins can be addressed and that two-qubit operations can be carried

out coherently on any pair of electron spins of the array. There has been a lot of progress in this

direction, but the larger the array of qubits gets, the more challenging it becomes to construct

and operate gates to carry out the desired qubit operations.

Another problem to work on would be to initialize the nuclear spin bath in a perfectly

narrowed state. So far, a narrowing of the broad nuclear-spin frequency distribution to a

couple of narrow peaks has been achieved, but it would be very desirable to go down to one

single delta-peak. In this case, it would be experimentally possible to observe the well-defined

exponential decoherence we have described in Chapters 3 and 4. On the other hand, quantum

error-correction schemes relying on such an exponential decay, should be generalized to be able

to handle also other types of decay, such as super-exponential or power-laws.

The idea to use confined hole spins as qubits is very recent and, thus, theoretical and exper-

imental progress is not as advanced as compared to electrons. However, as we have described

in Chapter 5, holes couple to nuclear spins in such a way that decoherence can be suppressed

very effectively, even without preparing the nuclear spin bath in a narrowed state. However,

there are several theoretical and experimental challenges. For instance, as we have discussed,
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strain can lead to an enhancement in the off-diagonal nuclear-spin coupling and thus to shorter

decoherence times. It would be therefore desirable to fabricate strain-free hole-spin quantum

dots by gating a two-dimensional hole gas (2DHG) just like in the electron case. It turns out,

however, that this is experimentally slightly more challenging than in the electron case, and it

was so far not possible to operate a gated quantum dot in the single-hole regime. A promising

alternative might be nanowires which are grown in alternating layers of a donor and an accep-

tor material in such a way that they consist of a stack of quasi-two-dimensional discs which

could then be gated to define either electron or hole quantum dots. On the theoretical side, it

would be important to identify the main sources that lead to hybridization of the heavy-hole

band with the neighboring bands and to be able to quantify the amount of mixing in terms of

the relevant physical parameters. Since the strain in self-assembled quantum dots is typically

neither uniform nor linear (i.e., it cannot be described by a linear strain tensor), this problem

is technically very challenging.

Once it has been made possible to fabricate strain-free single-hole quantum dots and to ini-

tialize and readout its spin states, it would be necessary to implement schemes for single-qubit

and two-qubit operations (such as π/2 rotations and
√

SWAP operations) with inspiration

from the electron case. This would open up the possibility of, e.g., applying hole-spin-echo

pulse sequences. Nuclear state narrowing should be possible just as in the electron case, allow-

ing for the possibility to study the weak off-diagonal hole-nuclear-spin coupling in detail and

to explore its dependence on, e.g., strain or the quantum-dot geometry.

Carbon nanostructures offer the big advantage of a low abundance of spin-carrying nuclear

isotopes, as we have seen in Chapter 7 for the case of graphene and carbon nanotube quantum

dots. Graphene has been realized experimentally only a couple of years ago, and so far no

experimental studies on electron-spin decoherence in graphene quantum dots have been carried

out. One problem is that it is hard to fabricate graphene ribbons with well-defined boundaries

(e.g., zig-zag or armchair), and it would be a major experimental step to find ways to change

this. Although spin blockade measurements have been carried out in both graphene and carbon

nanotube systems, it has not yet been possible to confine a single electron in these systems,

which would be a prerequisite for exploring their single-spin physics. Another open question

is the role of the valley degrees of freedom in carbon systems. There are some indications

that this additional pseudospin might also couple to the nuclear spins, potentially leading to

faster spin decoherence. An interesting topic to study theoretically would be the question how

the anisotropy of the hyperfine interaction affects the spin decoherence in both graphene and

CNTs. Furthermore, a more rigorous derivation of the sp-hybridized electron wavefunctions in

CNTs, e.g., based on k · p calculations, would be desirable.

Whether or not a quantum computer will exist one day is unclear from today’s point of

view. What can be said is that there is a long way to go still, and a lot of fundamental research

will still be needed.
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Appendix A

Additional details on ‘Electrons in
III-V semiconductors’

A.1 Effective-Hamiltonian approach: Continuum limit

In this section, we describe how the dimensionality d and envelope wave function shape pa-

rameter q are defined. For further details on the definition of these quantities, see Coish and

Loss (2004). For a homonuclear spin system, the hyperfine coupling constants are given by

Ak = Av0 |ψ(rk)|2 , (A.1)

where A is the total hyperfine coupling constant, v0 is the volume occupied by a single-nucleus

unit cell, and ψ(r) is the electron envelope wave function. We assume an isotropic electron

envelope:

ψ(rk) = ψ(0) exp

{

−1

2

(

rk
aB

)q}

, (A.2)

where aB is the dot Bohr radius, defined as the radial distance enclosing N nuclear spins, and

rk is the radial distance enclosing k spins. In d dimensions:

vol(k spins)

vol(N spins)
=

v0k

v0N
=

(

rk
aB

)d

. (A.3)

Inserting Eqs. (A.3) and (A.2) into Eq. (A.1) yields

Ak = A0 exp

{

−
(

k

N

)q/d
}

. (A.4)

To determine the k = 0 coupling A0, we enforce the normalization

∑

k

Ak = Av0
∑

k

|ψ(rk)|2 ≈ A

∫

d3r |ψ(r)|2 = A. (A.5)

This gives

A = A0

∫ ∞

0
dk exp

{

−
(

k

N

)q/d
}

. (A.6)
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Making the change of variables u =
(

k
N

)q/d
, we find

A = A0
d

q
N

∫ ∞

0
duu

d
q
−1
e−u = A0N

d

q
Γ

(

d

q

)

, (A.7)

which gives the final form for Ak:

Ak =
A

N d
q Γ
(

d
q

) exp

{

−
(

k

N

)q/d
}

. (A.8)

A.2 Effective-Hamiltonian approach: Born approximation

In this section we give further detail on the Born approximation. We begin from the equa-

tion of motion for the transverse spin in the rotating frame xt after applying the Markov

approximation, neglecting the correction ǫ(t) (following Eq. (3.38)):

ẋt = −i
∫ ∞

0
dτ Σ̃(τ)xt, (A.9)

Σ̃(t) = e−i(ωn+∆ω)tΣ(t), (A.10)

Σ(t) = −iTrS+LQe
−iLQtLQ |n〉 〈n|S−. (A.11)

In general, it is not simple to find the exact form of the self energy (memory kernel) Σ(t).

Fortunately, it is possible to generate a systematic expansion in the perturbation V = XSz ∝
1/b, valid for sufficiently large Zeeman splitting b > A (Coish and Loss, 2004):

Σ(t) = Σ(2)(t) + Σ(4)(t) + · · · , (A.12)

where Σ(n)(t) indicates a term of order ∼ O(V n) ∼ O
[

(

A
b

)n
]

. The expansion is performed

most conveniently in terms of the Laplace-transformed variable

Σ(s) = L [Σ(t)] =

∫ ∞

0
dt e−st Σ(t). (A.13)

We expand the propagator

L
[

e−iLQt
]

=
1

s+ iLQ
(A.14)

by dividing the full Liouvillian into unperturbed and perturbed parts: L = L0 + LV , where L0

and LV are defined by their action on an arbitrary operator O through L0O = [H0, O] and

LVO = [V,O]. To obtain an expansion in terms of the perturbation LV , we now iterate the

Dyson identity in Laplace space:

1

s+ iLQ
=

1

s+ iL0Q
− i

1

s+ iL0Q
LV Q

1

s+ iL0Q
+ O

(

L2V

)

. (A.15)

Inserting the iterated expression (A.15) into the Laplace-transformed version of Eq. (A.11), we

find the self energy in Born approximation (to second order in V ) is

Σ(2)(s) = −iTr

[

S+

(

1 − iL0Q
1

s+ iL0

)

×LV
1

s+ iL0
LV |n〉 〈n|S−

]

. (A.16)
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We have simplified the above expression using the following identities for the projection super-

operators Q = 1− |n〉 〈n|TrI and P = 1 − Q:

PL0P = L0P, (A.17)

PLV |n〉 〈n| = 0, (A.18)

QL0Q = QL0, (A.19)

which can be proven directly. To further reduce the above expression, we evaluate the action

of L0 and LV on the electron spin operator S−:

LV S− = −1

2
L
+
XS−, L0S− =

(

−1

2
L+ω + LD

)

S−, (A.20)

where

L+XO = [X,O]+ , L+
ωO = [ω,O]+ , LDO = [D,O] , (A.21)

and here we denote anticommutators with a ‘+’ subscript: [A,B]+ = AB +BA. This leads to

Σ(2)(s) = − i

4
TrI

[(

1 +
i

2
L+ωQ

1

s− i
2L

+
ω

)

× L
+
X

1

s+ i
(

LD − 1
2L

+
ω

)L
+
X |n〉 〈n|

]

. (A.22)

Now, noting that

Q |n〉 〈n| = 0, Q |k〉 〈k| = |k〉 〈k| − |n〉 〈n| , (A.23)

we can evaluate Eq. (A.22) directly, giving

Σ(2)(s + iωn) = − i

2

∑

k

|Xkn|2
(

s+ i
2δωnk

s+ iδωnk

)

×
(

1

s+ i
(

δDkn + 1
2δωnk

) +
1

s− i
(

δDkn − 1
2δωnk

)

)

, (A.24)

where δDkn = Dk − Dn, δωnk = ωn − ωk, and ωk, Dk are the eigenvalues associated with

eigenstate |k〉: ω |k〉 = ωk |k〉, D |k〉 = Dk |k〉. Additionally, we have denoted Xkn = 〈k|X |n〉.
From Eqs. (A.9), (A.10), and (A.13), the electron-spin decoherence rate within a Born-

Markov approximation will now be given by

1

T2
= −Im Σ(2)(s = i(ωn + ∆ω) + 0+), (A.25)

where 0+ denotes a positive infinitesimal. Our goal here is to find the leading-order dependence

of 1/T2 on 1/b for large Zeeman splitting: b > A. We therefore set

∆ω = −Re Σ(2)(s = i(ωn + ∆ω) + 0+) ∼ O
(

A

N

(

A

b

)2
)

≈ 0, (A.26)
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since this term will lead to higher-order corrections in 1/b within the perturbative regime.

Additionally, noting that the matrix element Xkn induces a flip-flop for spins at two sites k1,2,

we find |δDkn| = |b (γk1 − γk2)| and |δωkn| = |Ak1 −Ak2 |. In the case of a homonuclear system

γk1 = γk2 , we can set δDkn = 0 in Eq. (A.24). Otherwise, in a sufficiently large magnetic

field |b (γk1 − γk2)| > |Ak1 −Ak2 |, we find a negligible contribution to the decoherence rate for

terms from two different isotopic species (where γk1 6= γk2), i.e., heteronuclear flip-flops no

longer conserve energy, although homonuclear flip-flops (for which γk1 = γk2) will still occur.

Restricting the sum to homonuclear flip-flops and setting δDnk = 0 in this regime gives

Σ(2)(s + iωn) = −i
∑

j

∑

k

∣

∣

∣
Xj

kn

∣

∣

∣

2 1

s+ iδωnk
, (A.27)

where Xj
kn = 〈k|Xj |n〉 and Xj is restricted to run over flip-flops between nuclei of the common

species j at sites denoted by the indices kj , lj :

Xj =
1

2

∑

kj 6=lj

Aj
kj
Aj

lj

ω
I−kjI

+
lj
. (A.28)

Inserting Eq. (A.27) for a homonuclear system (one isotopic species j) into Eq. (A.25) and

inverting the Laplace transform leads directly to Eq. (3.42) of the main text.

A.3 Effective-Hamiltonian approach: Decoherence rate

Applying Eq. (A.25) (setting ∆ω ≈ 0) with Eq. (A.27) gives the rate

1

T2
= π

∑

j

∑

k

∣

∣

∣
Xj

kn

∣

∣

∣

2
δ (δωkn) , (A.29)

which can be found directly from the formula

1

x± i0+
= P 1

x
∓ iπδ(x), (A.30)

where P indicates that the principle value should be taken in any integral over x. Rewriting

Eq. (A.29) using the definition of Xj given in Eq. (A.28):

1

T2
=
π

4

∑

j

∑

kj 6=lj

c
jkj
− c

jlj
+

ωkωn
(Aj

kj
)2(Aj

lj
)2 δ(Aj

kj
−Aj

lj
), (A.31)

where kj and lj are restricted to run over sites occupied by isotopic species j. The coefficients

c
jkj
± give the expectation value of the operator I∓kjI

±
kj

with respect to the initial state:

c
jkj
± = 〈n| I∓kjI

±
kj
|n〉 = Ij(Ij + 1) − 〈n| Izkj(Izkj ± 1) |n〉 . (A.32)

With small corrections of order A/Nb≪ 1, we can replace ωk ≃ ωn in the denominator of Eq.

(A.31). If the various nuclear isotopes are uniformly distributed with isotopic concentrations
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νj , we allow the sum over kj , lj to extend over all sites k, l at the expense of a weight factor

νj for each index:
∑

kj 6=lj

≈ ν2j
∑

k 6=l

. (A.33)

Additionally, we assume that the system is uniformly polarized on the scale of variation of

the hyperfine coupling constants so that the coefficients cjk± can be replaced by average values

cj± = 〈〈cjk± 〉〉 (double angle brackets indicate an average over all sites) and taken out of the

sum. Finally, we change the sums over sites to a double integral using the prescription and

coupling constants described in Appendix A.1, neglecting the small O (1/N) correction due to

the requirement k 6= l:
∑

k 6=l

→
∫ ∞

0
dk

∫ ∞

0
dl. (A.34)

These approximations give

1

T2
=

π

4ω2
n

∑

j

ν2j c
j
−c

j
+

∫ ∞

0
dk

∫ ∞

0
dl(Aj

k)2(Aj
l )

2 δ(Aj
k −Aj

l ). (A.35)

Inserting the coupling constants defined by Eq. (A.8) and evaluating the integrals gives

1

T2
=
π

4
f

(

d

q

)

∑

j

ν2j c
j
−c

j
+

Aj

N

(

Aj

ωn

)2

, (A.36)

with the geometrical factor f(d/q) given by Eq. (3.48) of the main text. Eq. (A.36) reduces to

Eqs. (3.47), (3.50), and (3.52) of the main text in the special cases discussed there.

A.4 Direct approach: Self-energy expansion

Here we give the explicit self-energy up to fourth order in Vff . The full self-energy superoperator

is given by

Σ(s) = Σ(2)(s) + Σ(4)(s) +O(V 6
ff ), (A.37)

where

Σ(2)(s) = −iTr {S+LV G(s)LV S−ρI(0)} , (A.38)

with

G(s) =
1

s+ iL0
, L0O = [H0, O] , LVO = [Vff , O] . (A.39)

The fourth-order result is

Σ(4)(s) = iTr {S+ (1 − iL0QG(s))LV G(s)LVQG(s)LV G(s)LV S−ρI(0)} . (A.40)

More explicitly, using Eq. (4.5) for the initial nuclear state we find Σ(p)(s) =
∑

l ρllΣ
(p)
l (s),

where

Σ
(2)
l (s) = − i

4

∑

k

(

[h−]nlk
[h+]knl

s+ iδωkn − iωI
knl

+
[h+]nlk

[h−]knl

s+ iδωkn + iωI
knl

)

, (A.41)
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Σ
(4)
l (s) =

i

16

∑

k1k2k3

{

[h+]nlk1
[h−]k1k2 [h+]k2k3 [h−]k3nl

[G↑]k1nl
[G+]k2nl

[G↑]k3nl
(1 − δnlk2)

+ [h−]nlk1
[h+]k1k2 [h−]k2k3 [h+]k3nl

[G↓]nlk3
[G+]nlk2

[G↓]nlk1
(1 − δnlk2)

+ [h−]nlk1
[h+]k1k2 [h+]k2k3 [h−]k3nl

(

1 − i
(

[

L+
0

]

k2k2
−
[

L+
0

]

nlnl

)

[G+]k2k2

)

×
[(

[G↓]k2k1 [G+]
k2nl

[G↑]
k3nl

+ [G↑]k3k2 [G+]
nlk2

[G↓]
nlk1

)

(1 − δnlk2)

+
(

[G↑]k3k2 + [G↓]k2k1

)

[G−]k3k1

(

[G↑]k3nl
+ [G↓]nlk1

)]}

. (A.42)

Here, we denote matrix elements [h±]nk = 〈n|h± |k〉. Further, δωnk = 1
2 (hzn − hzk) and ωI

nk =

〈n|ωI |n〉 − 〈k|ωI |k〉, where ωI = b
∑

k γkI
z
k , and we have introduced

[Gα]kk′ =
1

s+ i [Lα
0 ]kk′

, (A.43)

with

L0 |↓〉 〈↑| |k〉
〈

k′
∣

∣ =
[

L+
0

]

kk′
|↓〉 〈↑| |k〉

〈

k′
∣

∣ , (A.44)

L0 |↑〉 〈↓| |k〉
〈

k′
∣

∣ =
[

L−0
]

kk′
|↑〉 〈↓| |k〉

〈

k′
∣

∣ , (A.45)

L0 |↑〉 〈↑| |k〉
〈

k′
∣

∣ =
[

L↑0

]

kk′
|↑〉 〈↑| |k〉

〈

k′
∣

∣ , (A.46)

L0 |↓〉 〈↓| |k〉
〈

k′
∣

∣ =
[

L↓0

]

kk′
|↓〉 〈↓| |k〉

〈

k′
∣

∣ . (A.47)

The dominant contributions to the self-energy occur at high frequency (s ≃ iωn) in the lab

frame. For |s− iωn| ≪ ωn, and ωn ≫ δωnk, ωn ≫ ωI
nlk

, we have:

[G↑]knl
≈ [G↓]knl

=
1

iωn

(

1 +O

[

A

Nωn

])

, (A.48)

which allows us to approximate Eqs. (A.41), (A.42) by their high-frequency forms for a uni-

formly polarized system. We additionally go to the rotating frame; from the definition of Σ̃ in

Eq. (4.14), we have

Σ(s+ iωn) = Σ̃(s − i∆ω), (A.49)

which gives

Σ̃(2)(s − i∆ω) ≈ − 1

4ωn

∑

i

νi
(

ci+ + ci−
)

∑

k

(

Ai
k

)2
. (A.50)

In the above expression, the sum over i indicates a sum over different nuclear-spin isotopes

with abundances νi and hyperfine coupling constants Ai
k. The high-frequency form of the

fourth-order self-energy is then:

Σ̃(4)(s − i∆ω) =
−i

16ω2
n

∑

ij

νiνjc
i
−c

j
+

∑

k1k2

(Ai
k1)2(Aj

k2
)2

×
[

1

s+ ixij12 − iγij
+

1

s− ixij12 − iγij
+

(

s

s+ i2γij

)

(

2

s+ i2xij12
− 1

s+ ixij12 + iγij

)

+

(

s

s− i2γij

)

(

2

s+ i2xij12
− 1

s+ ixij12 − iγij

)]

, (A.51)
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where xij12 = (Ai
k1

−Aj
k2

)/2, γij = b(γi − γj), and the coefficients ci± are:

ci± = Ii(Ii + 1) − 〈〈m(m± 1)〉〉 , (A.52)

With the average 〈〈· · · 〉〉 defined in Eq. (4.7). For a homonuclear system, we have γij = 0 and

xij12 = x12 = (Ak1 − Ak2)/2, and replace
∑

ij νiνj → 1. In this case, assuming a uniformly-

polarized nuclear-spin system, the self-energy is given simply by

Σ̃(4)(s− i∆ω) = −ic+c−
4ω2

n

∑

k,k′

A2
kA

2
k′

s− i(Ak −Ak′)
. (A.53)

This self-energy differs from that found in Chapter 3 at leading order in an effective-

Hamiltonian treatment, where the Lamb shift ∆ω is incorporated directly into the bare preces-

sion frequency ωn. In addition, we stress that the more general self-energy for a heteronuclear

system (A.51) is not recovered with the effective Hamiltonian (compare with Eq. (A.24)).

Assuming a two-dimensional parabolic quantum dot (with Gaussian envelope function)

leads to coupling constants Ak = (A/N)e−k/N (see Eq. (3.46) for d = q = 2). Performing

the continuum limit, i.e., replacing
∑

k1,k2
→
∫

dk1dk2, and evaluating the resulting energy

integrals, we arrive at Eq. (6.18) of the main text.

A.5 Direct approach: Higher-order corrections

All results in Chapter 4 are valid up to fourth order in the electron-nuclear flip-flop terms

Vff . As the electron Zeeman splitting is lowered from b ≫ A, higher-order corrections to the

self-energy may become relevant. In this section, we give explicit conditions under which higher-

order corrections may be neglected, even for b ∼ A. As in Section A.4, the self-energy at any

order may be approximated by its high-frequency form (at s ≃ iωn) whenever A/Nb ≪ 1.

This allows for a significant simplification in the high-order expansion in terms of Vff . With

corrections to the self-energy that are smaller by factors of order 1/N ≪ 1 and A/Nb≪ 1, we

find the high-frequency form of the self-energy to be given by

Σ(s) ≃ −iTrI

[(

G−1+ Q−1 +
i

2
L+ω

)

σ
1

1 + σ
ρI(0)

]

, (A.54)

where we have introduced

G+ =
1

s− i
2L

+
ω
, σ = − iQ

4ωn
G+ (HL + HR) , (A.55)

defined in terms of the superoperators (which act on an arbitrary operator O):

HLO = h+h−O, HRO = Oh−h+, L+ωO = {ω,O} , (A.56)

where {, } indicates an anticommutator.

The high-frequency form of the self-energy can now be found directly from Eq. (A.54) with

a more moderate constraint on the electron Zeeman splitting (A/Nb≪ 1). A direct evaluation
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of Eq. (A.54) at arbitrary order and resummation is non-trivial, but we can generate arbitrary

higher-order terms with the geometric series:

1

1 + σ
= 1 − σ + σ2 − · · · . (A.57)

Every factor of σ is associated with a nuclear-spin pair flip, giving rise to a factor of c+ or c−,

which depend on the nuclear polarization, and a factor of the small parameter A/ωn. The term

at (2k)th order in Vff contains k factors of σ, and consequently k powers of A/ωn. This suggests

that the sixth-order self-energy can in general give corrections of order ∼ (A/ωn)3, which may

modify the sub-leading corrections of this size given by the Markovian decay formula (4.47).

However, by direct calculation using the above expansion, we find the leading contributions to

the Markovian decay rate at sixth order to be

−ImΣ(6)(s = iωn + 0+) = O
[

(

A

ωn

)4
]

. (A.58)

Furthermore, we find that the Σ(6) corrections do not lead to a broadening of the continuum

band. The first non-vanishing corrections to the Markovian decay rate which do lead to a

broadening of the continuum band contain two nuclear-spin pair-flip excitations. These terms

occur first at eighth order in Vff and are suppressed by the factor (c+c−)2, which is smaller

than the fourth-order corrections by a factor c+c− for a polarized nuclear-spin system (e.g.,

c+c− ∝ (1 − p2) for nuclear spin I = 1/2). This result demonstrates that the qualitative

decrease in the decoherence rate at low electron Zeeman splitting shown in Figs. 4.5, 4.6, and

4.7 will not be significantly modified by higher-order corrections, at least in the case of a large

polarization, where perturbation theory still applies at a smaller value of the electron Zeeman

splitting.

A.6 Direct approach: Interaction time

Here we clarify the time scale at which various terms in the generalized master equation can

become relevant. In particular, we intend to quantify the time scale over which the Lamb shift

attains its full value (the “interaction time” indicated in Sec. 4.4.3). Our starting point is Eq.

(4.9) for the transverse components of the electron spin in the lab frame. After expanding the

self-energy: Σ(t) =
∑

n Σ(n)(t), this becomes

d

dt
〈S+〉t = iωn 〈S+〉t − i

∫ t

0
dt′Σ(2)(t− t′) 〈S+〉t′ − i

∫ t

0
dt′Σ(4)(t− t′) 〈S+〉t′ + · · · . (A.59)

The first term on the right-hand side gives rise to a rapid precession of 〈S+〉t at the frequency

ωn. Going to a rotating frame at this frequency, i.e.,

〈S̃+〉t = e−iωnt〈S+〉t, K̃(t) = e−iωntΣ(2)(t), (A.60)

and neglecting the higher-order corrections ∼ Σ(4), etc., we find

d

dt
〈S̃+〉t ≃ −i

∫ t

0
dt′K(t− t′)〈S̃+〉t′ . (A.61)
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At short times t ≪ 1/∆ω, where ∆ω gives the typical amplitude of the right-hand side of

Eq. (A.61), we can approximate the spin expectation value by a constant in the integrand:

〈S̃+〉t′ ≃ 〈S̃+〉0. Within the range of validity of this approximation, integrating the equation of

motion gives

〈S̃+〉t ≃ e−iφ(t)〈S̃+〉0, φ(t) =

∫ t

0
dt′
∫ t′

0
dt′′K̃(t′′). (A.62)

At times shorter than the self-energy correlation time t ≪ τc ∼ N/A, and for ωn ≫ A/N ,

the memory kernel can be well-approximated by K̃(t) ≃ −iωn∆ω(2)eiωnt with second-order

Lamb shift ∆ω(2) = −Re
∫∞
0 dtK(t). Inserting this approximation for K̃(t) and performing the

remaining integrals gives

φ(t) ≃ −i∆ω(2)

(

1 − eiωnt

ωn
+ it

)

. (A.63)

After a very short time scale (t ≫ 1/ωn), the t-linear term dominates, giving a purely real

phase:

φ(t) ≃ ∆ω(2)t, t≫ 1/ωn. (A.64)

The long-time limit t≫ 1/ωn is consistent with the earlier assumed short-time approximations

t≪ ∆ω ≃ ∆ω(2) and t ≪ N/A, whenever A/N,∆ω ≪ ωn.

From the above analysis, the Lamb shift attains its full value on a very short time scale

∼ 1/ωn provided ωn ≫ ∆ω. Within the sudden approximation, the interaction time is therefore

determined by t & 1/ωn.
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Appendix B

Additional details on ‘Holes in III-V
semiconductors’

B.1 Heavy-hole states

In this section we give details on our derivation of an approximate basis of heavy-hole (HH)

eigenstates in a quantum dot. We will approximate the ground-state quantum-dot envelope

function in the HH sub-band by

φ(r) = φz(z)φρ(ρ), (B.1)

φρ(ρ) =
1√
πl

exp

(

− ρ2

2l2

)

, (B.2)

φz(z) =

√

2

az
sin

(

πz

az

)

, z = [0 . . . az], (B.3)

where az is the width of the confinement potential along the growth direction (for definition of

the other symbols see Eq. (5.9)). We will then estimate the size of the splitting ∆LH between

the HH and the light-hole (LH) band and the degree of hybridization with the conduction band

(CB), LH and split-off (SO) sub-bands.

We start from the 8 × 8 Kane Hamiltonian given in Chapter 2.3 for bulk zinc-blende-type

crystals, which is written in terms of the exact eigenstates (near k = 0) of an electron in

the CB, HH, LH and SO band, usually denoted by |1/2;±1/2〉c, |3/2;±3/2〉v , |3/2;±1/2〉v ,

and |1/2;±1/2〉v , respectively. We neglect terms that are more than two orders of magnitude

smaller than the fundamental band-gap energy Eg
1 and perform the quasi-two-dimensional

limit by assuming that a confinement potential has been applied along the growth direction. If

the confinement potential is sufficiently strong (i.e., if the quantum well is sufficiently narrow),

the energy-level spacing will be large and the electron will be in the ground state at low

temperatures. Any operator acting on the z-component of the electron envelope function can

1In terms of the notation used by Winkler (2003), these are the terms proportional to C, B7v , and B±
8v.

These terms will not lead to considerable corrections for our purposes. However, the terms Ck± could become
relevant when considering higher-order effects in the spin-orbit interaction, such as the cubic Dresselhaus terms
which were derived by Bulaev and Loss (2005).
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then be replaced by its expectation value with respect to the z-component of the ground-state

envelope function. For the Kane Hamiltonian this means that we can replace powers of the

z-component ~kz of the crystal momentum ~k by expectation values. Assuming an infinite

square-well potential of width az confining the electron along the growth direction, the ground

state is given by Eq. (B.3). Calculating the expectation value of kz and k2z with respect to the

ground state, we find 〈kz〉 = 0 and 〈k2z〉 = π2/a2z. This allows us to write the Kane Hamiltonian

in the following form:

HK =











HCB V1 V2 V3

V †1 HHH V4 V5

V †2 V †4 HLH V6
V †3 V †5 V †6 HSO











, (B.4)

where

HCB =

(

A 0

0 A

)

, HHH =

(

B 0

0 B

)

,

HLH =

(

C 0

0 C

)

, HSO =

(

D 0

0 D

)

,

V1 = 1√
2

(

−E 0

0 E∗

)

, V2 = 1√
6

(

0 E∗

−E 0

)

,

V3 = 1√
3

(

0 −E∗
−E 0

)

, V4 =
√

3

(

0 F

F ∗ 0

)

,

V5 =
√

6

(

0 −F
F ∗ 0

)

, V6 =
√

2

(

−G 0

0 G

)

,

and

A = Eg + ~
2(k2x + k2y + 〈k2z〉)/2m′,

B = −ǫ[(γ′1 + γ′2)(k
2
x + k2y) + (γ′1 − 2γ′2)〈k2z 〉],

C = −ǫ[(γ′1 − γ′2)(k
2
x + k2y) + (γ′1 + 2γ′2)〈k2z 〉],

D = −ǫγ′1(k2x + k2y + 〈k2z〉) − ∆SO,

E = Pk+,

F = ǫ[γ′2(k2x − k2y) − 2iγ′3kxky],

G = ǫγ′2(k
2
x + k2y − 2〈k2z〉).

Here, ǫ = ~
2/2m0 and m0 is the free-electron mass, whereas m′ is the effective mass of a CB

electron. Furthermore, k± = kx ± iky, γ′j denote the Luttinger parameters, P is the inter-band

momentum, and ∆SO is the spin-orbit gap between the LH and the SO bands. Experimental

values for these parameters can be found in Table B.1.

We assume a circular-symmetric parabolic confinement potential with frequency ω0 in the

xy-plane defining a quantum dot. Including a magnetic field along the growth direction, the

ground state is approximately described by the Gaussian given in Eq. (B.2). The envelope

function of the quantum dot is then the product of the in-plane and out-of-plane components,

as given in Eq. (B.1).
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In the quasi-two-dimensional limit, a gap

∆LH = 〈B − C〉 = −~
2γ′2
m0

(

〈k2x〉 + 〈k2y〉 − 2〈k2z 〉
)

(B.5)

develops between the HH and LH sub-bands, lifting the HH-LH degeneracy (see Fig. 2.3). Here,

〈· · · 〉 denotes the expectation value with respect to (B.1). The in-plane level spacing scales like

∼ 1/l2, where l is the dot Bohr radius. The in-plane level spacing is much smaller than the

level spacing along the growth direction since, for typical dots, a2z ≪ l2. Neglecting 〈k2x〉 and

〈k2y〉 compared to 〈k2z〉 in Eq. (B.5) and inserting 〈k2z〉 = π2/a2z for a square-well potential, we

estimate

∆LH ≃ 2π2γ′2~
2

a2zm0
≃ 100 meV (B.6)

for az ≃ 5 nm, using γ′2 ≃ 2.06 for GaAs (see Table B.1). The HH-LH splitting is thus much

larger than the typical energy scale associated with the hyperfine interaction (Ae ≃ 90µeV for

CB electrons in GaAs).

To derive the approximate electron eigenfunctions in the HH sub-band of the quantum

well, we start from the Kane Hamiltonian (B.4). We use quasi-degenerate perturbation theory

up to first order in 1/E (where E stands for Eg, ∆LH, or ∆LH + ∆SO), taking HHH as the

unperturbed Hamiltonian (Winkler, 2003). This leads to a band-hybridized state of the form

|Ψσ
HH,hyb〉 = Nσ

∑

n

λσn|φnσ;un0σ〉. (B.7)

Here, σ = ±, 〈r|φnσ;un0σ〉 =
√
v0φnσ(r)un0σ(r) is the product of envelope function and k = 0

Bloch amplitude in band n (CB, HH, LH or SO), the prefactors λσn describe the degree of band

hybridization, and Nσ enforces proper normalization.

In first order quasi-degenerate perturbation theory, the hybridization with the CB and

the LH and SO sub-bands is described by the interaction terms V1, V4, and V5 in Eq. (B.4),

respectively. We estimate the degree of hybridization by applying these operators to a two-

spinor containing the in-plane ground-state envelope function (B.2) of the HH sub-band. For

the hybridization with the conduction band, we find (for B = 0)

− 1

Eg
V1

(

φρ(ρ)

φρ(ρ)

)

=

(

λ+CB φCBρ+(ρ)

λ−CB φCBρ−(ρ)

)

, (B.8)

where

φCBρ±(ρ) =
i√
2

(ψ10(ρ) ± iψ01(ρ)). (B.9)

Here, ψnm(ρ) = ψn(x)ψm(y) and ψn(x) is the nth harmonic-oscillator eigenstate. The envelope

function of the admixed CB state is a superposition of excited harmonic-oscillator eigenfunc-

tions. The prefactor

λ±CB = ± P√
2Egl0

(B.10)

determines the degree of sp-hybridization. Using values from Table B.1 and assuming a quan-

tum dot with dot Bohr radius l0 ≃ 30 nm (B = 0), we estimate λ±CB ≃ 10−2. Similarly, we
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P (eVÅ) 10.5⋆ γ′1 6.98†

Eg (eV) 1.52⋆ γ′2 2.06†

∆SO (eV) 0.34⋆ γ′3 2.93†

Table B.1: Values of band parameters used in this section; ⋆ taken from Winkler (2003); † taken
from Vurgaftman et al. (2001).

estimate λ±LH ≃ λ±SO ≃ 10−3, assuming a dot height az ≃ 5 nm. The admixture of CB, LH and

SO states to the HH state is thus on the order of 1% and has therefore been neglected in our

considerations.

We emphasize that sp-hybridization will lead to a coupling of the HH to the nuclear spins

via the Fermi contact interaction (5.2). Since the Fermi contact interaction is of Heisenberg-

type, sp-hybridization will directly lead to non-Ising corrections to the effective Hamiltonian

given in Eq. (5.1). The size of these corrections is determined by the degree of sp-hybridization

which is on the order of 1% (see above).

B.2 Estimate of the Fermi contact interaction

In Eq. (5.15), we have approximated the HH k = 0 Bloch amplitudes within a Wigner-Seitz

cell by a linear combination of atomic orbitals. Similarly, we approximate the k = 0 Bloch

amplitude in the CB by

uCB0σ(r)
∣

∣

∣

r∈WS
= Nαc

(

αcΨ
Ga
400(r + d/2) −

√

1 − α2
cΨAs

400(r− d/2)
)

, (B.11)

independent of σ. Here, Ψ400(r) = R40(r)Y 0
0 (θ, ϕ), αc describes the relative electron sharing

between the Ga and As atom in the Wigner-Seitz cell chosen to be centered halfway along the

Ga-As bond, and Nαc normalizes the Bloch amplitude to two atoms in a primitive unit cell.

The radial wavefunction depends implicitly on the effective nuclear charges Zeff(κ, 4s), where

κ = Ga,As.

We will estimate the relative electron sharing in the CB by calculating the electron densities

at the sites of the nuclei from Eq. (B.11) and comparing to accepted values taken from Paget

et al. (1977). We will then estimate the Fermi contact interaction of a CB electron using free-

atom effective nuclear charges taken from Clementi and Raimondi (1963) (Zeff (Ga, 4s) ≃ 7.1,

Zeff(Ga, 4p) ≃ 6.2, Zeff(As, 4s) ≃ 8.9, and Zeff(As, 4p) ≃ 7.4) and normalizing the Bloch

amplitude over a Wigner-Seitz cell.

We approximate the electron densities at the Ga and As sites within a primitive unit cell

from Eq. (B.11):

dGa = |uCB0σ(−d/2)|2 ≃ N2
αc
α2
c |ΨGa

400(0)|2, (B.12)

dAs = |uCB0σ(+d/2)|2 ≃ N2
αc

(1 − α2
c)|ΨAs

400(0)|2. (B.13)

We estimate the corrections to the right-hand sides to be on the order of 1% due to overlap

terms. We take the ratio dGa/dAs and equate this with the ratio of the values from Paget et al.
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(1977), d′Ga = 5.8 × 10−31 m−3 and d′As = 9.8 × 10−31 m−3. This allows us to write αc as a

function of the two effective nuclear charges:

αc =

[

1 +
d′As

d′Ga

(

Zeff(Ga, 4s)

Zeff(As, 4s)

)3
]−1/2

. (B.14)

Recalling that Nαc normalizes the Bloch amplitude to two atoms over a Wigner-Seitz cell, we

write

Nαc =

[

1

2

∫

WS
d3r

∣

∣

∣
αcΨ

Ga
400(r + d/2) −

√

1 − α2
cΨ

As
400(r− d/2)

∣

∣

∣

2
]−1/2

. (B.15)

For all numerical integrations, we approximate the Wigner-Seitz cell by a sphere centered

halfway along the Ga-As bond with radius equal to half the Ga-Ga nearest-neighbor distance.

Inserting (B.14) and (B.15) into (B.12) and (B.13), we solve the two coupled equations

dGa(Zeff(Ga), Zeff (As)) − d′Ga = 0, (B.16)

dAs(Zeff(Ga), Zeff (As)) − d′As = 0, (B.17)

for the two effective nuclear charges. This yields Zeff(Ga) ≃ 9.8 and Zeff(As) ≃ 11.0. Inserting

these values back into Eq. (B.14), we estimate the electron sharing within the primitive unit

cell to be

α2
c ≃ 0.46. (B.18)

For comparison, inserting free-atom effective nuclear charges into Eq. (B.14) yields a similar

value: α′2c ≃ 0.54.

Now we estimate the Fermi contact interaction of a CB electron starting from the free-

atom effective nuclear charges Zeff(κ, 4s) obtained from Clementi and Raimondi (1963). We

use αc ≃ 1/
√

2 and normalize the k = 0 Bloch amplitude to two atoms over a Wigner-Seitz cell,

following Eq. (B.15). From the normalized Bloch amplitudes we estimate the Fermi contact

hyperfine interaction by evaluating

Aj
e =

2µ0
3

γSγj|uCB0σ(Rj)|2. (B.19)

Here, Rj = ∓d/2 for Ga and As, respectively (j indexes the nuclear isotope). Evaluating for

the isotopes in GaAs, this gives the values shown in column (iii) of Table 5.1.

Replacing the Wigner-Seitz cell by a sphere with radius Rs equal to half the Ga-Ga nearest-

neighbor distance in our numerical integrations overestimates the expectation value of [r3k(1 +

d/rk)]−1 in Eq. (5.10). To estimate the error, we perform an integration over a sphere with

radius R′s = (Rs + Rmax)/2, where Rmax denotes the radius of the smallest sphere that fully

contains the Wigner-Seitz cell. From this, we estimate the relative error to be less than 30%.

B.3 Estimate of the long-ranged interactions

In this section, we estimate the corrections to the HH coupling strength in Eq. (5.10) due

to long-ranged dipole-dipole interactions and long-ranged L · I interactions. To this end, we
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consider a single nucleus interacting with a HH that is delocalized over the lattice sites in

the quantum dot. We start from the Hamiltonians given in Eqs. (5.3) and (5.4). We define

effective radii aeff(κ, 4p) = a0/Zeff(κ, 4p), where a0 ≃ 5.3 × 10−11 m is the Bohr radius. The

effective radii define an approximate length scale for the spread of the site-localized functions

Ψκ
41σ(r) and are much smaller than the GaAs lattice constant aL ≃ 5.7×10−10 m. The nucleus

thus effectively ‘sees’ sharp-peaked electron densities centered around the more distant lattice

sites. We choose the nucleus to be at site Rk and estimate the interaction with the electron

density at more distant atomic sites by approximating the electron densities by δ-functions.

Adding up contributions from hk2 and hk3 , we arrive at an effective Hamiltonian describing the

long-ranged interactions: Hk
lr = Ak

lrszI
z
k , where Ak

lr =
∑

l;l 6=kA
kl
lr is the associated coupling

strength and Akl
lr = v0|φ(Rl)|2

∫

d3rk{δ(rk − Rkl)(h
k
2 + hk3)} describes the coupling of the

electron density at site Rl to the nucleus at site Rk (Rkl = Rl −Rk). In order to estimate the

size of the long-ranged interactions relative to the on-site interactions, we take into account

nearest-neighbor couplings for the long-ranged part, i.e., we replace
∑

l;l 6=k → ∑

l=n.n.. The

interaction with electron density located around more distant nuclei is suppressed by ∼ 1/R3
kl.

Assuming that the quantum-dot envelope function varies slowly over the nearest-neighbor

distance (φ(Rl) ≃ φ(Rk) for l nearest neighbor of k), we estimate the ratio of long-ranged and

on-site interactions (Table 5.1, column (i)) to be

Alr

Ah
≃ 7 × 10−3, (B.20)

on the order of 1%, where Ak
lr = Alrv0|φ(Rk)|2.

We remark that, in principle, the electron g-factor can deviate from the free-electron g-factor

due to spin-orbit interaction. According to Yafet (1961), this renormalization is negligible for

the on-site interaction, but could become relevant for the long-ranged interaction. However,

for the estimate in Eq. (B.20), we have taken the free-electron g-factor.

B.4 Variance of the nuclear field

Here we calculate the nuclear-field variance for a HH interacting with nuclei in a quantum dot.

In particular, we evaluate

σ2 =
〈

h2z
〉

, (B.21)

where 〈· · · 〉 = TrI (ρ̄I · · · ) indicates the expectation value with respect to the infinite-

temperature thermal equilibrium density matrix ρ̄I and we recall hz =
∑

kA
h
kI

z
k . For an

uncorrelated and unpolarized nuclear state, we have
〈

IzkI
z
k′
〉

= 〈Izk〉
〈

Izk′
〉

= 0, k 6= k′, which

gives

σ2 =
∑

k

(

Ah
k

)2
〈(Izk)2〉. (B.22)

Using 〈(Izk )2〉 = Ijk
(

Ijk + 1
)

/3 for an infinite-temperature state, Ah
k = Ajk

h v0|φ(Rk)|2, and as-

suming that the nuclear isotopic species with abundances νj are distributed uniformly through-

out the dot gives

σ2 =
1

3
I0
∑

j

νjI
j(Ij + 1)(Aj

h)2, (B.23)
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where

I0 = v20
∑

k

|φ(Rk)|4. (B.24)

Assuming that the envelope function φ(r) varies slowly on the scale of the lattice, we replace

the sum in Eq. (B.24) by an integral:

v0
∑

k

|φ(Rk)|4 →
∫

d3r|φ(r)|4. (B.25)

Inserting the envelope functions (B.2) and (B.3) for a quantum dot with height az and

radius l and evaluating the integral in Eq. (B.25), we find

I0 =
3

4

1

N
. (B.26)

Here, N is the number of nuclear spins within the quantum dot, given explicitly by

N =
πl2az
v0

. (B.27)

Inserting Eq. (B.26) into Eq. (B.23) directly gives Eq. (5.12).

B.5 Band hybridization

In this section, we show how to derive the hybridized heavy-hole states from the 8 × 8 Kane

Hamiltonian. In Appendix B.1, we have written the Kane Hamiltonian in the two-dimensional

limit by replacing powers of the crystal momentum kz by expectation values. This is a good

assumption as long as one is only interested in an order-of-magnitude estimate of the degree

of hybridization (such as in Chapter 5). In order to capture the correct parameter dependence

of the degree of band hybridization, however, it is necessary to start from the bulk version of

the Kane Hamiltonian, which reads (Winkler, 2003)

HK =











HCB V1 V2 V3

V †1 HHH V4 V5
V †2 V †4 HLH V6

V †3 V †5 V †6 HSO











, (B.28)

where the relevant blocks are given by

HHH =

(

B 0

0 B

)

, V1 = 1√
2

(

−E 0

0 E∗

)

,

V4 =

(

2
√

3 J
√

3F√
3F ∗ −2

√
3 J∗

)

, V5 =

(

−
√

6J −
√

6F√
6F ∗ −

√
6 J∗

)

,

with

B = −ǫ[(γ1 + γ2)(k2x + k2y) + (γ1 − 2γ2)k2z ],

E = Pk+,

F = ǫ[γ2(k
2
x − k2y) − 2iγ3kxky],

J = ǫγ3k−kz.
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Here, ǫ = ~
2/2m0, m0 is the free-electron mass, k± = kx ± iky , γj denote the Luttinger pa-

rameters, and P is the inter-band momentum.

We choose a parabolic confinement potential

Vdot = Vz(z)Vxy(x, y), Vz(z) =
m⊥ω⊥

2
z2, Vxy(x, y) =

m‖ω‖
2

(x2 + y2), (B.29)

where ω⊥ = ~/(m⊥a2z) and ω‖ = ~/(m‖L
2) with HH effective masses m⊥ = m0/(γ1− 2γ2) and

m‖ = m0/(γ1 + γ2) along the growth direction and in the plane of the dot, respectively, and

az and L denote the accordant confinement lengths.

In order to calculate the hybridized HH states perturbatively, we take the eigenfunction of

HHH + Vdot as the unperturbed envelope function, whose position representation is given by

〈r|φ00HH〉 = φ0HH(z)φ0HH(x, y), (B.30)

with harmonic-oscillator eigenfunctions

φ0HH(z) =
1

√√
πaz

exp

{

−1

2

z2

a2z

}

, φ0HH(x, y) =
1√
πL

exp

{

−1

2

x2 + y2

L2

}

. (B.31)

The hybridized HH states can now be evaluated by a perturbation expansion as follows: defining

a two-spinor |Ψ0〉 = (|φ00HH〉, |φ00HH〉)t, the hybridized HH spin states are the components of

|Ψhyb〉 =
∑

n

(

− 1

Eg
|Ψn

CB〉〈Ψn
CB|V1 +

1

∆LH
|Ψn

LH〉〈Ψn
LH|V †4

+
1

∆LH + ∆SO
|Ψn

SO〉〈Ψn
SO|V †5

)

|Ψ0〉. (B.32)

The summation runs, in principle, over all states in the accordant band. However, due to

the cylindrical symmetry of the dot, only one matrix element per band yields a non-vanishing

contribution to the sum. For instance, 〈φ00CB|k±|φ00HH〉 = 0 due to the vanishing angular integral,

but 〈φ0±CB|k±|φ00HH〉 6= 0. From the overlap integrals, we obtain the factors βCB and βLH (for the

CB and LH contributions) given in Eq. (6.3) of the main text.

The HH-LH splitting ∆LH is given by the difference in ground-state energies in the HH and

LH bands: ∆LH = EHH − ELH, where

EHH = −~
2

2

(

2
γ1 + γ2
m0L2

+
γ1 − 2γ2
m0a2z

)

, ELH = −~
2

2

(

2
γ1 − γ2
m0L2

+
γ1 + 2γ2
m0a2z

)

. (B.33)

This leads to a HH-LH splitting of

∆LH =
2~2γ2
m0

L2 − a2z
L2a2z

. (B.34)

Carrying out the perturbation expansion following Eq. (B.32) and inserting the quantities

given above, we arrive at the hybridized states given in Eq. (6.1) of the main text.
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B.6 Continuum limit

Here we show in detail how to calculate the decoherence rate Γ = 1/T2 from the fourth-order

self-energy in the continuum limit. We start from Eq. (6.18),

Σ(4)(s+ iωn) ≃ −ic+c−
4ω2

n

∑

k1,k2

|A±k1 |
2|A±k2 |

2

s+ i(Az
k1

−Az
k2

)
(B.35)

We now replace sums by integrals according to v0
∑

k →
∫

d3r, where v0 is the volume oc-

cupied by one nucleus and the integration is carried out over all space. Averaging over the

z-dependence of the coupling constants, A(x, y) =
∫∞
−∞ dz A(x, y, z) we write Σ(4) in terms of

a four-dimensional spatial integral:

Σ(4)(s + iωn) ≃ −i c+c−
4π2N

A4
⊥

ω2
nAz

×
∫ ∞

0
dr1r1

∫ ∞

0
dr2r2

∫ 2π

0
dθ1

∫ 2π

0
dθ2

r41r
4
2e
−2r2

1e−2r
2
2

s + i(e−r
2
1 − e−2r

2
2)
, (B.36)

where we have introduced spherical coordinates xi = ri cos θi, yi = ri sin θi, and where s =

sN/Az . We have also rewritten Nv0 = πazL
2 (the volume of the QD). The angular integrals

simply contribute a prefactor of 4π2. The radial integrals can be solved by introducing new

variables x = e−r
2
1 , y = e−r

2
2 , such that

Σ(4)(s+ iωn) ≃ −ic+c−
4N

A4
⊥

ω2
nAz

∫ 1

0
dx

∫ 1

0
dy

x(log x)2 y(log y)2

s + i(x− y)
. (B.37)

From our considerations in Chapters 3 and 4, we know that the right-hand side of the equation

of motion in Laplace space,

S+(s+ iωn) =
〈S+〉0

s+ iΣ(s+ iωn)
(B.38)

features a pole at s = i∆ω − Γ, where Γ = −ImΣ(4)(iωn + i∆ω − 0+) and where 0+ denotes a

positive infinitesimal. Evaluating Σ(4) at s = iωn + i∆ω − 0+ and using

lim
η→0

1

ξ ± iη
= P 1

ξ
∓ iπδ(ξ), (B.39)

where P denotes that the principle value should be taken in any integration involving the

above expression, we arrive at an integral of the form

I =

∫ 1

0
dx

∫ 1

0
dy f(x, y)

(

P 1

x− y + ∆ω
− iπδ(x − y + ∆ω)

)

, (B.40)

Taking the imaginary part according to Γ = −ImΣ(4)(iωn + i∆ω − 0+) leads directly to Eq.

(6.21) of the main text.
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