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Summary 
 

Malaria is one of the major public health problems for low income countries, a major 

global health priority, and it has also a dramatic economic impact. Funding for 

malaria control is on the rise and both international donors and governments of 

malaria endemic countries need tools and evidence to assess which are the best and 

most efficient strategies to control malaria.  

Standard tools traditionally used to assess the public health and economic impact of 

malaria control interventions, such as efficacy trials and static cost-effectiveness 

analyses, capture only short term effects. They fail to take into account long term and 

dynamic effects due to the complex dynamic of malaria, and to the interactions 

between intervention effectiveness and health systems. 

This thesis is part of a wider research project, conducted by the Swiss Tropical 

Institute, aimed at developing integrated mathematical models for predicting the 

epidemiologic and economic effects of malaria control interventions. The thesis 

specifically combines innovative mathematical models of malaria epidemiology with 

innovative modeling of the health system and of the costs and effects of malaria 

control interventions. These approaches are applied to simulate the epidemiological 

impact and the cost-effectiveness of hypothetical malaria vaccines. 

 

Chapter 1 describes why malaria is a public health priority, the increasing relevance 

of conducting economic analyses in the health sector, the economic evaluation 

framework, and the economic consequences of malaria.  

Chapter 2 presents an approach to dynamically modeling the case management of 

malaria in Sub-Saharan Africa.  

Chapter 3 describes an approach to costing the delivery of a hypothetical malaria 

vaccine through the Expanded Programme on Immunization (EPI), on the basis of the 

information available on the likely characteristics of the vaccine most advanced in 

development. The results show that, although the vaccine price determines most of 

the total delivery costs, other costs are relevant and should be taken into account 

before planning its inclusion into the EPI. 

Chapter 4 and 5 combine modeling of malaria transmission and control with 

predictions of parasitologic and clinical outcomes, to assess the epidemiological 

effects and the potential short and long term cost-effectiveness of a pre-erythrocytic 

vaccine delivered via the EPI. The results suggest a significant impact on morbidity 

and mortality for a range of assumptions about the vaccine characteristics, but only 
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small effects on transmission intensities. They also suggest that at moderate to low 

vaccine prices, a pre-erythrocytic vaccine providing partial protection, and delivered 

via the EPI, may be a cost-effective intervention in countries where malaria is 

endemic.  

Chapter 6 simulates the cost-effectiveness of three different vaccine types: Pre-

erythrocytic vaccines (PEV), Blood stage vaccines (BSV), mosquito-stage 

transmission-blocking vaccines (MSTBV), and combinations of these, each delivered 

via a range of delivery modalities (EPI, EPI with booster, and mass vaccination 

combined with EPI). The simulations presented in this Chapter show that PEV are 

more effective and cost-effective in low transmission settings. In contrast to PEV, 

BSV are predicted to be more effective and cost-effective at higher transmission 

settings than low transmission.  Combinations of BSV and PEV are predicted to be 

more efficient than PEV, in particular in moderate to high transmission settings, but 

compared to BSV, combinations are more cost-effective in mostly moderate to low 

transmission settings. Combinations of MSTBV and PEV or PEV and BSV do not 

increase the effectiveness or the cost-effectiveness compared to PEV and BSV alone 

when delivered through the EPI.  However, when applied with EPI and mass 

vaccinations, combinations with MSTBV provide substantial incremental health 

benefits at low incremental costs in all transmission settings. This highlights the 

importance of developing other vaccine candidates as they have potential to facilitate 

a PEV/BSV combination vaccine to be more beneficial. Chapter 6 simulations 

indicate that the transmission setting and the vaccine delivery modality adopted are 

important determinants of the cost-effectiveness of malaria vaccines. Alternative 

vaccine delivery modalities to the EPI may sometimes, but not always, be more cost-

effective than the EPI.  In general, at moderate vaccine prices, most vaccines and 

delivery modalities simulated are likely to present cost-effectiveness ratios, which 

compare favorably with those of other malaria interventions.  

Chapter 7 discusses the implications of approaches and results presented in the thesis, 

their limitations and potentials. The approach used in this research represents the first 

attempt to develop dynamic models of malaria transmission and disease to evaluate 

the cost-effectiveness of malaria control interventions. Combining advanced 

stochastic simulation modeling of malaria epidemiology with health system dynamic 

modeling is a crucial innovation proposed by the approaches presented in this thesis. 

In fact, while it is well known that the interactions between malaria and health 

systems take place under temporal and spatial heterogeneity, integration of health 

system metrics in epidemiological modeling is rarely done. The cost-effectiveness 



 V 

analyses are based on an approach to model the health system characteristics of the 

settings where a new intervention, such as a malaria vaccine, will be implemented, 

The rationale of this approach rests on: a) the need to capture the long term health and 

economic impact due to the interactions between malaria control interventions and 

the health system - e.g. the impact on the health system of variations in transmission 

intensity due to an intervention; b) the recognition that policy makers are more 

interested in cost-effectiveness predictions that are specifically tailored to their health 

system context rather than on a hypothetical one. 

The approaches developed provide a platform that could be used to model the effects 

of integrated strategies for malaria control. The increase in computer power available 

makes possible simulating complex scenarios with several dimensions/variables in a 

relatively short time. This, coupled with the increasing availability of information on 

malaria endemic countries health systems, should be exploited to further modeling 

health system dynamics, which is fundamental to assess integrated malaria control 

strategies.  

The models and the approaches presented could be applied to inform decisions at 

several levels. Further applications might include simulating the epidemiology, the 

costs and consequences of packages of interventions, allowing estimating both 

effectiveness and (technical and allocative) efficiency. This would, thus, help policy 

makers to determine which intervention or, most likely, which package of 

interventions, might be most effective and efficient in a particular area. Additionally, 

it would be possible to simulate the implications of coverage extension of malaria 

control interventions, and of different strategies and service delivery modalities that 

can reach the poorest.  

The approaches developed could also allow identification of areas where intensified 

malaria control is the only feasible option, areas where malaria elimination is more 

likely to be achieved, the incremental cost-effectiveness of proceeding to elimination 

once a high level of control has been achieved, the optimal transmission levels at 

which to change strategy, and, in principle, economies of scope and or synergies in 

effectiveness and cost-effectiveness of new strategies. These are all research areas 

that have been identified as fundamental in the research agenda to be set up following 

the recent call for malaria elimination. 
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Zusammenfassung 

Malaria ist eines der grösseren gesundheitlichen Probleme für Länder mit niedrigem 

Einkommen. Auf Grund der grossen wirtschaftlichen und Krankheitsbedingten 

Auswirkungen kommt der Prävention und der Behandlung der Malaria eine hohe 

Priorität zu. In den vergangenen Jahren hat die Verfügbarkeit von finanziellen Mitteln 

zur Malariabekämpfung zugenommen. Sowohl internationale Geldgeber  wie auch 

die Regierungen der betroffenenen Länder benötigen Werkzeuge und 

wissenschaftliche Belege um entscheiden zu können, welches die besten und 

effizientesten Strategien zur Malariabekämpfung sind. Standardverfahren zur 

Beurteilung der gesundheitlichen und wirtschaftlichen Auswirkungen von 

Malariainterventionen, wie zum Beispiel Wirksamkeitsstudien und Kosten-Nutzen-

Analysen, können nur Fragen nach den kurzfristigen Auswirkungen beantworten. 

Langfristigen und dynamischen Effekten wird hierbei jedoch nicht berücksichtigt. 

Solche können auftreten als Folge der komplexen Dynamik der Malaria oder der 

Wechselwirkungen zwischen Gesundheitssystemen und Wirksamkeit von 

Interventionen.  

Diese Dissertation ist Teil eines grösseren Forschungsprojektes am Schweizerischen 

Tropeninstitut, welches zum Ziel hat mathematische Modelle zu entwickeln, um die 

epidemiologischen und wirtschaftlichen Auswirkungen von Malariainterventionen 

vorherzusagen. Die vorgelegte Arbeit kombiniert spezifisch innovative 

mathematische Modelle der Malariaepidemiologie und deren Interaktionen mit 

Gesundheitssystemen sowie Kosten und Auswirkungen von 

Malariabekämpfungsstrategien. Diese Ansätze werden kombiniert um die 

epidemiologischen Auswirkungen und die Kostenwirksamkeit von hypothetischen 

Malariaimpfungen zu simulieren. 

Kapitel 1 erklärt weshalb Malaria eine Priorität ist im öffentlichen Gesundheitswesen, 

beschreibt die wachsende Relevanz ökonomischer Analysen im Gesundheitsbereich, 

umrahmt die Methoden ökonomischer Auswertung, und erläutert die wirtschaftlichen 

Konsequenzen der Malaria. 

Kapitel 2 präsentiert einen Ansatz zur dynamischen Modellierung des Fallbehandlung 

in Subsahara- Afrika. Kapitel 3 beschreibt einen Ansatz zur Ermittlung der Kosten 

einer hypothetischen Malariaimpfung die durch ein nationales Impfprogramm 

(„Expanded Programme on Immunization“ (EPI)) eingesetzt wird. Dieser Ansatz 

basiert auf den verfügbaren Informationen über die zu erwartenden Eigenschaften 

gegenwärtig am weitesten entwickelten Impfung. Die Resultate zeigen, dass, obwohl 
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der Preis des Impfstoffes den grössten Anteil an den Gesamtkosten eines 

Impfprogramms stellen, andere Faktoren relevant sind und berücksichtigt werden 

sollten vor der Aufnahme einer Impfung in ein Impfprogramm.  

Kapitel 4 und 5 kombinieren die Modellierung von Malariaübertragung und -

kontrolle mit Vorhersagen der klinischen Folgen, mit dem Ziel einer Beurteilung der 

epidemiologischen Konsequenzen und möglicher kurz- und langzeit-Kosteneffizienz 

einer prä-erythrozytischen Impfung („pre-erythrocytic vaccine“), wenn diese durch 

ein nationales Impfprogramm verabreicht wird. Die Resultate zeigen - über einen 

grossen Bereich von Annahmen bezüglich der Eigenschaften einer Impfung - einen 

grossen Effekt auf Morbidität und Mortalität, jedoch nur kleine Effekte auf die 

Transmissionsstärke. Im  weiteren legen die Resultate nahe, dass bei mittlerem bis 

tiefem Impfstoffpreis eine teilwirksame, prä-erythrozytische Impfung, verteilt über 

ein Impfprogramm, durchaus eine kosteneffiziente Intervention sein kann in malaria-

endemischen Ländern. 

Kapitel 6 simuliert die Kosteneffizienz dreier verschiedener Impfungstypen: „Pre-

erytrhocytic vaccines“ (PEV), „Blood stage vaccines“ (BSV), „mosquito-stage-

transmission-blocking vaccines“ (MSTBV), und Kombinationen derselben, 

ausgeliefert über eine Anzahl verschiedener Verteilungsmodalitäten (EPI, EPI mit 

„booster“, und Massenimpfprogramm in Kombination mit EPI). Die Simulationen, 

welche in diesem Kapitel präsentiert werden, zeigen, dass PEV's am wirksamsten und 

kosteneffizientesten bei niederer Transmissionsstärke sind. Im Gegensatz zu PEV's 

sind BSV's laut den Resultaten wirksamer und kosteneffizienter in Situationen mit 

höherer Transmission. Kombinationen von BSV und PEV sind laut den Vorhersagen 

wirksamer und kosteneffizienter als PEV alleine, besonders bei mittlerer bis hoher 

Transmission. Im Vergleich zu BSV sind sie jedoch am kosteneffizientesten bei 

mittlerer bis schwacher Transmission. Kombinationen von MSTBV und PEV oder 

PEV und BSV erhöhen weder Wirksamkeit noch Kosteneffizienz im Vergleich zu 

PEV und BSV alleine, wenn verteilt via nationalem Impfprogramm. Wenn jedoch 

Kombinationen mit MSTBV gleichzeitig via Impfprogramm und Massenimpfung 

benützt werden, zeigt sich ein beträchtlicher inkrementeller gesundheitlicher Gewinn 

bei minimalen zusätzlichen Kosten, was für alle Transmissionsszenarien gilt. Dies 

unterstreicht,  wie wichtig es ist, andere Impfstoffkandidaten weiterzuentwickeln, da 

diese das Potential haben, einer PEV/BSV-Kombination zu grösserer Wirksamkeit zu 

verhelfen. Die Simulationen in Kapitel 6 zeigen, dass Transmissionsstärke und 

Auslieferungsmodalität wichtige Determinanten sind für die Kosteneffizienz einer 

Malariaimpfung. Alternative Auslieferungsmodalitäten können - aber müssen nicht - 
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kosteneffizienter sein als EPI. Im Allgemeinen schneiden die meisten Impfungstypen 

und Auslieferungsmodalitäten bei mässigen Impfstoffpreisen gut ab im Vergleich zu 

anderen Malariainterventionen. 

Kapitel 7 diskutiert die in der Dissertation präsentierten Ansätze und Resultate im 

Hinblick auf ihre mögliche Implikationen und Auswirkungen. Der in dieser 

Forschungsarbeit gewählte Ansatz repräsentiert den ersten Versuch, dynamische 

Modelle der Übertragung von und Erkrankung an Malaria zu entwickeln, um damit 

die Kosteneffizienz von Malariainterventionen zu evaluieren. Stochastische 

Modellierung der Malariaepidemiologie in Kombination mit dynamischer 

Modellierung von Gesundheitssystemen stellt eine wichtige Innovation der in der 

Dissertation vorgestellten Ansätze dar. Tatsächlich wurde eine Integration von 

Messung von Gesundheitssystemen und epidemiologischen Modellen bis anhin selten 

versucht, obwohl es hinreichend bekannt ist, dass Interaktionen zwischen der 

Epidemiologie der Malaria und den Gesundheitssystemen stattfinden, und zudem eine 

räumliche und zeitliche Heterogenität aufweisen. Die Kosteneffizienzanalysen 

basieren auf einer Methode, welche versucht die Eigenschaften der 

Gesundheitssysteme in Gebieten zu modellieren, wo eine neue Intervention, wie z.B. 

eine Malariaimpfung, angewandt werden würde. Dieses Vorgehen beruht auf der 

Einsicht, dass a) es notwendig ist, langfristige Einflüsse auf Gesundheit und 

Ökonomie als Folge von Wechselwirkungen zwischen 

Malariabekämpfungsmassnahmen und dem Gesundheitssystem zu prognostizieren 

(z.b. den Einfluss von Veränderungen in der Übertragungsstärke – als Folge einer 

Intervention - auf die Gesundheitssysteme); b) dass politische Entscheidungsträger 

stärkeres Interesse an Kosteneffizienzvorhersagen haben, wenn diese speziell auf die 

jeweilige Situation zugeschnitten sind. 

Die erarbeiteten Vorgehensweisen könnten verwendet werden um die Effekte von 

integrierten Malariabekämpfungsstrategien abzuschätzen. Die Zunahme an 

verfügbarer Rechenkraft macht es möglich, komplexe Szenarien mit vielen 

Variablen/Dimensionen in relativ kurzer Zeit zu simulieren. Diese Möglichkeit sollte, 

zusammen mit der zunehmenden Verfügbarkeit von Informationen über die 

Gesundheitssysteme in malariaendemischen Ländern, genutzt werden, um 

dynamische Modelle von Gesundheitssystemen weiterzuentwickeln. Dies ist von 

grosser Wichtigkeit im Hinblick auf die Beurteilung von integrierten 

Malariabekämpfungsstrategien.  

Die präsentierten Methoden und Modelle könnten angewandt werden um 

Entscheidungsprozesse auf verschiedenen Ebenen zu unterstützen. Als weitere 
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Anwendung wäre es zudem möglich, die Epidemiologie, Kosten und Konsequenzen 

ganzer Interventionspakete zu simulieren, was eine Abschätzung sowohl von 

Effektivität wie auch (technischer und allokativer) Effizienz ermöglichen würde. Dies 

würde es dann für politische Entscheidungsträger möglich machen, zu beurteilen, 

welche Massnahmen (oder welches Massnahmenpaket) am wirksamsten und 

effizientesten wären in einem spezifischen Gebiet. Zusätzlich wäre es möglich die 

Auswirkungen einer Erweiterung des Abdeckungsgrades von Interventionen zu 

simulieren, wie auch die Auswirkungen von verschiedenen Versorgungsmodalitäten 

um die Ärmsten zu erreichen.  

Eine weitere Anwendung der entwickelten Methoden wäre die Identifikation von 

Gebieten wo eine intensivierte Malariakontrolle die einzig vernünftige Option 

darstellt im Vergleich zu Gebieten, wo eine Eliminierung eher machbar erschiene, die 

Ermittlung der inkrementellen Kosteneffizienz des Fortschreitens zu einer 

Elimination nachdem ein hohes Mass an Kontrolle bereits erreicht ist, die Ermittlung 

der optimalen Übertragungsintensität für einen Strategiewechsel, und, grundsätzlich, 

die Identifikation von Verbundeffekten und Synergien in Wirksamkeit und 

Kosteneffizienz von neuen Strategien. All diesen Aspekten wird innerhalb der 

Forschungsagenda basierend auf dem im Jahre 2008 erfolgten Aufruf zur Ausrottung 

der Malaria, eine grosse Priorität eingeräumt. 
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Chapter 1: Introduction 

 
Malaria is one of the major public health problems for low income countries, a major 

global health priority, and it has also a dramatic economic impact. Funding for 

malaria control is on the rise and both international donors and governments of 

malaria endemic countries need tools and evidence to assess which are the best and 

most efficient strategies to control malaria. Predictive models are therefore needed for 

assessing the public health and economic consequences of adopting one or a 

combination of malaria control interventions in a given setting. This is not easy due 

to the complex dynamics of malaria and of health systems, particularly regarding the 

long term effects of malaria control interventions.  

This chapter, after a brief description of malaria and of the strategies to control it, 

provides an introduction to the rationale of health economics and economic 

evaluation of health programs. It then analyzes what is currently known about the 

macro and micro economic consequences of malaria. Lastly, it describes the rationale 

of the thesis and its overall and the specific objectives. 

 

1.1 Malaria 

Malaria is an infection due to a protozoa transmitted to humans through a mosquito 

bite. Human malaria is caused by four species of Plasmodium: P. Falciparum, P. 

Vivax, P. Ovale, P. Malaria, although almost all deaths are caused by P. Falciparum. 

Despite significant measurement problems1, it is estimated that 3.2 billion people live 

in areas of risk2 in 109 countries, and that in 2006 there were around 250 million 

malaria episodes (range 189-327) worldwide, causing around one million deaths, 

mostly of children under 5 years2 3. 

In Sub Saharan Africa (SSA), where malaria is one of the major causes of death, it 

accounts for 7.2% of total death and for 8.2% of the total burden of disease (DALYs - 

Table 1.1). Malaria is also a cause of increase in all cause mortality rates as it is a co-

cause of maternal anemia during pregnancy, of low birth weight, and early births, that 

cause 75,000-200,000 deaths of children per year only in SSA4 as well as severe child 

pneumonia.  

A few decades ago malaria was eliminated in many parts of the world with 

efficacious anti-malaria drugs and other preventive strategies such as the extensive 

use of spraying - DDT (Dichlorodiphenyltrichloroethane). Afterwards, the 
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development of resistance to malaria drugs and, probably, the restricted use of DDT 

caused, in the poorest countries, a rapid increase in malaria morbidity and mortality 

rates also in zones where malaria had disappeared5.  

 

Table 0.1 Deaths and DALYs (per 1000) – total and attributable to Malaria, year 
2004 

 

 Population 
Total  
Deaths (1) 

Deaths 
 Malaria (2) 

(2)/(1) 
Total  
DALYs (3) 

DALYs  
Malaria (4) 

(4)/(3) 

WHO Regions  N (000) % N (000) % N (000) % % N (000) % N (000) % % 

Africa 737536 11% 11248 19% 806 91% 7.2% 376525 24.7% 30928 91% 8.2% 

Sub-Saharan 
Africa 

750833 12% 11683 20% 842 95% 7.2% 391416 25.7% 32202 95% 8.2% 

The Americas 874380 14% 6158 10% 2 0% 0.0% 143233 9.4% 89 0% 0.1% 

Eastern  
Mediterranean 

519688 8% 4306 7% 39 4% 0.9% 141993 9.3% 1412 4% 1.0% 

Europe 883311 14% 9493 16% 0 0% 0.0% 151461 9.9% 4 0% 0.0% 

South-East 
Asia 

1671904 26% 15279 26% 36 4% 0.2% 442979 29.1% 1341 4% 0.3% 

Western 
Pacific  

1738457 27% 12191 21% 5 1% 0.0% 264772 17.4% 169 0% 0.1% 

World 6436826 100% 58772 100% 889 100% 1.5% 1523259 100.0% 33976 100% 2.2% 

Source: Global Burden of disease update 2008 - Disease and injury regional estimates for 2004. 
http://www.who.int/healthinfo/global_burden_disease/estimates_regional/en/index.html 

 

1.2. Strategies and policies to control Malaria 

Malaria can be fought through integrated strategies of prevention and treatment that 

are available (known) and often would represent cost-effective interventions for 

malaria endemic countries. Prevention strategies such as Insecticide Treated bed-Nets 

(ITNs) are efficacious in reducing mortality, as is  the prevention and management of 

malaria in pregnancy, the pharmacological treatment with Artemisinin-based 

combination therapies (ACTs), and the improvement of epidemic response in 

emergencies2.  

Nevertheless, the burden of malaria remained high due to a combination of factors 

including the growth of parasite and vector resistance to the current anti-malarial 

drugs and insecticides, the weakening of traditional malaria control programs and of 

primary health services in many areas where malaria is endemic. 
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1.2.1 Preventing malaria 

Using ITNs is one of the most efficacious strategies to prevent morbidity and 

mortality due to malaria6 7, and it is also highly cost-effective with cost-effectiveness 

ratios comparable to those of measles vaccine in terms of cost per death or per 

Disability Adjusted Life Year (DALY) averted8 9.  

ITNs have a protective effect on both individuals using them and the community. 

Despite the progress made in the last few years (ITNs sold in the last few years grew 

by five/six times and annual production of ITNs almost tripled from 30 million in 

2004 to 95 million in 2007, and is estimated to reach 110 million in 200810) in the 

surveyed African countries (18) the World Malaria Report 2008 found that only 23% 

of children sleep under an ITN2. Furthermore, although malaria is more prevalent in 

rural areas and among the poorest, the use of ITNs tends to be more on urban areas 

and in better off households. In the last few years, many countries implemented ITNs 

programs aimed at increasing the use of ITNs, through free distributions or at 

subsidized prices for target groups such as pregnant women and children under 5 

years old. For instance, the coverage of ITNs in children under 5 increased 

dramatically in countries such as Eritrea (63%) and Malawi (36%)11, while some 

social marketing and free distribution programs targeted to specific population 

groups, temporarily reduced inequalities in ITNs coverage between rural and urban 

areas in Ghana, Nigeria and Togo11.  

Indoor residual spraying (IRS) is the application of long-lasting insecticide on the 

walls of dwellings and it is effective mainly against indoor-biting mosquito vectors. It 

has been shown to be effective in reducing incidence of malaria in large scale 

programs in various parts of Africa, the Americas, and Europe12. IRS is used in 

various regions particularly in foci of high seasonal malaria transmission but only in a 

few countries a large proportion of households are covered.  

Larviciding is the application of chemical insecticides to (all or targeted) mosquito 

breeding sites. The insecticide is not effective for as long as with IRS or ITNs, it 

presents operational difficulties, and it must be applied during periods of peak target 

mosquito activity (usually at night). Larviciding is mainly indicated for urban areas, 

refugee camps, and industrial and development projects 13. 
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Intermittent preventive treatment in pregnancy (IPTp) consist of two curative doses of 

antimalaria treatment during pregnancy and it is recommended in areas with high and 

stable transmission of P.Falciparun malaria. It is used in 33 African countries as a 

national policy2. Intermittent preventive treatment in infants (IPTi) consists of giving 

infants treatment doses during vaccination or well-baby visits to health clinics, and 

there is growing evidence of efficacy in reducing malaria episodes and anemia. 

Currently, vaccines for malaria are under development although no completely 

effective vaccine is yet available. The vaccine that is most advanced in clinical 

development is RTS,S/AS02A. This is a pre-erythrocytic vaccine specific to P 

falciparum, which aims to kill the parasites before they enter the red blood cells. A 

recent study followed 2000 Mozambican children and demonstrated reduction in the 

infection risk of approximately 45%14. The vaccine has also shown to be safe and 

partially effective in infants15, the age group that will most likely be targeted by a 

vaccine campaign. Other vaccines currently under development target either the 

blood stages of the parasite or the stages that are transmitted to the next host by a 

mosquito16.  

1.2.2 Treating malaria 

Malaria differs from many other infectious diseases in many respects, including the 

fact that early treatment is much more important than for other diseases such as, for 

instance, tuberculosis. It is thus not only important the availability of efficacious 

drugs but also the health system capability to respond rapidly to the disease. For a 

long time efficacious anti-malaria drugs were available and inexpensive. Over time 

the growing resistance to chloroquine, the inexpensive and most used antimalarial 

drug, and to sulfadoxine-pyrimethamine, an alternative drug to chloroquine, became 

the major obstacle to the treatment of malaria. The alternative to these drugs are the 

new combination therapies, such as the various ACTs that proved to be efficacious.  

In most of the countries where information is available, at least 50% of fever episodes 

in children are treated with antimalarial drugs. For instance, between 1998 and 2004 

the median proportion of children under 5 years old treated with antimalarial drugs 

reported in the 35 available studies was 49.6% (range 3.0-68.8%) of which 95% with 

chloroquine, while most of treatments were not within 24 hours from the first fever 

and/or it was with inadequate dosages11. As a consequence, the actual access to 

efficacious treatments against malaria is likely to be much lower. The only realistic 

alternative is thus to increase the use of ACTs, and many countries are pursuing this 

direction. 
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In 2008 all except four countries and territories worldwide had adopted ACT as first 

line drug for P. falciparum, while a number (22) of countries had adopted home 

management as main strategy to control malaria in children under 5 years old2. This 

strategy includes a training program for mothers, the provision of pre-packaged drugs 

needed to guarantee early treatments to children in rural areas with low access to 

health facilities. Unfortunately, ACT use faces three main problems: the still 

relatively high production costs (between 10-20 times that of chloroquine); the 

limitations in production capacity due mainly to the lack of derivatives of Artemisia; 

the short shelf live and a complex dosage regimen. 

 
 

1.3 Health economics and the economic evaluation 
framework 

Economics is the study of how individuals and societies choose to allocate scarce 

resources (i.e. all basic inputs to production such as time, abilities, capital, and natural 

resources) among competing alternative uses, and how to distribute the products from 

these resources. The rationale of economics is based on the concepts of scarcity - 

meaning that there are not enough resources to satisfy all demands and needs -, 

efficiency, and on that of opportunity costs. 

In economics, efficiency is defined in two ways: allocative efficiency, when resources 

are allocated between objectives to produce the greatest gain to society (i.e. doing the 

right things); technical efficiency, when the goal is to maximise the achievements of a 

given objective within a given budget (i.e. doing things right). 

An opportunity cost is the cost of something in terms of an opportunity foregone (and 

the benefits that could be received from that opportunity), or the most valuable 

foregone alternative. It need not be assessed in monetary terms, but rather, in terms of 

anything that is of value to the person or persons doing the assessment.  

The key principle of economics is searching to maximize efficiency, considering also 

equity. Although economics can inform decisions on the unavoidable trade-offs 

between equity and efficiency, this is in the domain of politics, since it relates to the 

values of societies. 

Economics is thus aimed at answering three related “fundamental economic 

questions”:  

� The first is which goods (and services) a given society should produce? This 

question is related to the concepts of allocative efficiency. 
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� The second is how to produce the goods and services chosen? This question is 

related to the concept of technical efficiency. 

� The third is for whom to produce the goods (and services)? This question is 

related to the concept of equity – i.e. who benefits from the use of the goods 

and services produced. 

 

Health economics, being an application of economics to the health sector, is the study 

of how scarce resources are allocated among alternative uses for the care of illness 

and the promotion, maintenance, and improvement of health. Health economics 

investigates how health, health care and its related services, their costs and benefits 

and health itself are distributed among individuals and groups in society. In the last 

few decades, health economics has become increasingly relevant for a number or 

reasons.  

First, the size of the contribution of the health sector to the overall economy is 

increasing: 

� The health sector contributes a growing share of Gross Domestic Product 

(GDP) in all countries17 (e.g. in 1929 in USA it accounted for 3.5% of GDP, 

in 1965 for 5.9%, now around 16%) – health expenditure is increasing rapidly 

in both high income (HICs) and low income countries (LICs1) - global health 

spending in 2002 was $3.2 trillion , around 10% of global GDP18.  

� The health sector has a growing importance in personal spending in both high 

and low income countries. Financial barriers to health care access are a major 

problem in many countries, especially the poorest ones. Globally it is 

estimated that around 150 million people suffer financial catastrophe annually 

because they pay for health services19. 

Secondly, there is a positive correlation between health and economic 

development. Investing in health improves economic performance and vice versa. 

As shown by the Commission on Macroeconomics and Health (CMH) 20: 

”Poverty and ill-health are closely linked [..] Health is a cornerstone of economic 

growth and social development; [..] Economic growth is not a precondition for 

real improvements in health; […] Increased investment in health would translate 

into hundreds of billions of dollars per year of additional income”. The capability 

of developing countries to invest in health is limited. In 2002 only 12% of the 

                                                           
1 According to the classification of the World Bank, low income countries are those with 2007 GNI per 
capita less that US$935, middle income countries are those with GNI per capita between US$ 936 and 
11,455 (lower income US$ 936-3,705, upper middle income US$ 3,706-11,455), high income 
countries are those with GNI per capita of US$11,456 or more (http://web.worldbank.org) 
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global health expenditure was spent in LICs and Middle Income Countries 

(MICs). HICs spend 100 times more on health per capita (population-weighted) 

than LICs (30 times if one adjusts for cost of living differences). In 2007, in 64 

WHO member states the total health expenditure was lower than US$50 per 

person per year and in 30 states it was lower than US$2021. Additionally, in LICs 

and MICs there is limited capacity to mobilize public resources for health. The 

public share of total health expenditure is 29% in LICs, 42% in lower MICs, 56% 

in upper MICs, 65% in HICs18 22. 

 

1.3.1 The economic evaluation framework 

Economic evaluation is a systematic and transparent framework for assessing 

efficiency of programs. The basic task of economic evaluations is to identify, 

measure, value, and compare the costs and consequences of alternatives being 

considered.  

Traditionally economic evaluations of health care programs have taken the form of 

cost-effectiveness analysis (CEA), cost-utility analysis (CUA), and cost-benefit 

analysis (CBA). In CEA the cost per unit of health effects (i.e. life-years) gained by 

the adoption of the programme is estimated. In CUA health effects are measured in 

terms of utility, in order to combine in a single measure the different health benefits 

according to individuals’ judgement.  

CEA compares health intervention costs, measured in terms of the value of resources 

used to deliver them, and their benefits in terms of units of health outcomes 

estimating thus the cost-effectiveness ratio (CER) of an intervention as the costs and 

units of health benefit, the more efficient alternative being that with the lower CER. 

Depending on the comparison undertaken, the result may be an average cost-

effectiveness ratio or an incremental cost-effectiveness ratio. The former compares 

total costs and total benefits, starting from zero, whereas the latter compares 

additional costs and additional benefits, starting from the current or some other level 

of coverage of an intervention.  

CEA allows comparisons throughout the health sector and not only for the same 

health outcome. It does not allow comparison to non health outcomes unless these 

outcomes can be incorporated into costs. The main difference between CBA and the 

other techniques is that the former places monetary values on both the inputs (costs) 

and outcomes (benefits) of the activity/intervention being evaluated, while the latter 

provides monetary measures of only the costs. 
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Since the late 1960s, when economic evaluations began to be used in cost-benefit 

analysis of development projects by the World Bank, guidelines have been 

developed23-25 defining the basic economic evaluation framework26-31. Several 

economic evaluation guidelines have been produced for evaluating health 

interventions, and costing guidelines or contributions to methodology which further 

detail specific applications of costing32-34. A seminal work by Drummond et al in 

1987 defined a commonly agreed economic evaluation framework for health care 

programmes35. Also, the 1996 textbook “Cost-effectiveness analysis in health and 

medicine” by Gold et al was an important contribution to the application of economic 

evaluation to the field of health36. In the mid-1990s two important sets of journal 

publications were published based on these two textbooks, whose aim was to set 

norms and standards for economic submissions to academic journals37-40.  

More recently, the World Health Organization (WHO) has published its own 

guideline, which describes what is termed ‘generalized cost-effectiveness analysis’ – 

a common approach for the global application of CEA41 42. Generalized CEA is 

essentially the application of CEA to a wide range of interventions to provide general 

information on the relative costs and health benefits of different interventions in the 

absence of local decision constraints. Generalized CEAs require thus the evaluation 

of a set of interventions with respect to the counterfactual of the null set of the related 

interventions. Such relative cost-effectiveness, is meant to be a useful reference point 

for evaluating the directions for enhancing allocative efficiency in a variety of 

settings43. This approach has been applied by a WHO project, Choosing Interventions 

that are Cost Effective (WHO-CHOICE ) assembling regional and country specific 

databases on the costs, impact on population health and cost-effectiveness of key 

health interventions44.  

In addition to these sets of general economic evaluation guidelines, several disease-

specific or setting-specific CEA guidelines have been produced for conduct of CEA 

in resource-poor settings, covering diarrhea diseases45 immunization46, HIV/AIDS47 

48, tuberculosis49, safe blood services50, primary health care generally51, and more 

recently bed-nets for malaria52.  

While several excellent guidelines have been elaborated, for the purposes of 

describing the general economic evaluation framework, the Drummond et al 10-point 

checklist is still the most useful35 53. This checklist, summarized in Table 1.2, 

elaborates the ten essential questions that should be answerable when reading a health 

economic evaluation study. 
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Economic evaluations are increasingly adopted to inform decision making in the 

health sector. However, this is only one of the many criteria for setting priorities and 

even in HICs, where evidence of cost-effectiveness of health intervention is more 

available than in LICs and MICs, the impact of CEA on priority setting is still limited 

though growing54-58. In a number of countries CEA are required for interventions to 

be included in the reimbursed benefit package such as for instance in England, and in 

the Netherlands and Australia for new drugs, and for labeling claims in the US Food 

and Drug Administration. 

Regarding LICs and MICs related health problems, economic evaluations were used 

by the World Bank World Development Report “Investing in Health” back in 1993. 

More recently it was adopted by the Disease Control Priority Project, by the Global 

Forum for Health Research, and the WHO Commission on Macroeconomics and 

Health. 

At national level, some LIC or MIC used cost-effectiveness data to inform decisions 

on the packages of essential care (e.g. Bangladesh, Mexico) and an important 

experience at district level in Tanzania (the Tanzania Essential Health Interventions 

Project -TEHIP) showed that it is possible to improve health outcomes re-allocating 

funds to cost-effective interventions that address the greatest contributors to burden of 

disease59. 

 

Table 0.2 The economic evaluation framework as captured by the Drummond et 
al 10-point checklist 

 

# 
Drummond et al 10-point checklist 

1 Was a well-defined question posed in answerable form? 

2 Was a comprehensive description of the competing alternatives given? 

3 Was the effectiveness of the programmes or services established? 

4 Were all the important and relevant costs and consequences for each alternative identified? 

5 Were costs and consequences measured accurately in appropriate physical units? 

6 Were costs and consequences valued credibly? 

7 Were costs and consequences adjusted for differential timing? 

8 Was an incremental analysis of costs and consequences of alternative performed? 

9 Was allowance made for uncertainty in the estimates of costs and consequences? 

10    Did the presentation and discussion of study results include all issues of concern to users? 
Source: 53 
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1.4. The economic costs of Malaria 

The costs of malaria can be distinguished in direct and indirect costs. Direct costs are 

those incurred by health systems and sick individuals (and their families) to pay for 

interventions to prevent and cure malaria. A mild episode of malaria requires, 

usually, a drug treatment and an outpatient visit, while an episode of severe malaria 

requires an hospital admission and acute care treatment. Moreover, in LICs a malaria 

episode can lead to major costs for the families of patients due to the user fees paid 

to access health services, to the costs of transportation to health facilities, and, in 

case of hospitalization, to that incurred for staying overnight outside home for a few 

days. 

Indirect costs of malaria are due to the reduced productivity of individuals caused by 

the disease and can be distinguished in two categories: those due to the fact that sick 

adults, or parents of sick children, cannot carry out their usual work, losing income 

and therefore not contributing to wealth production of their country; those due to 

premature mortality that shorten the time these individuals contribute to the 

economic development of their society. 

The economic consequences of malaria on society have been analyzed by both 

microeconomic studies, aggregating estimates of costs per malaria case, and by 

macroeconomic studies estimating the impact of the disease on economic growth of 

the countries where it is more prevalent. 

1.4.1 The macroeconomic impact of Malaria  

The countries where malaria is endemic are amongst the poorest of the world, as 

shown by a study estimating that 58% of malaria cases are among the poorest 20% of 

world population60. The GDP per capita – adjusted for purchasing power parity– of 

the countries with more malaria is, on average, a fifth of that of the countries where 

malaria is not endemic61.  

Malaria affects the macroeconomic performances of endemic countries also 

contributing to the low attractiveness of foreign investments, hindering the 

development of human capital, and inducing large scale effects that can inhibit 

economic development. 

The quantitative measurement of the relationship between malaria and economic 

development of countries is, however, very complex. Nevertheless, recent 

econometric studies, using cross country data, showed that malaria is a determinant 

of economic growth and development in the long term61 62. According to these 

studies, the yearly growth rate of GDP per capita of malaria endemic countries is 
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lower by 0.25-1.3% compared to that of countries without malaria, controlling for 

the impact of other factors that affect economic growth such as saving rates, political 

and economic institutions, education levels etc. These studies show also that over a 

period of 25 years these differential growth rates can account for almost half of the 

GDP per capita of LICs. 

Nevertheless, macroeconomic studies do not provide any indication on the 

mechanisms through which economic growth is affected by malaria. Some of these 

mechanisms are however indirectly known (Figure 1.1). For instance, the deaths of 

millions of children in SSA cause, indirectly, an increase in fertility rates and large 

households, with negative consequences on available investments in education and 

health protection per child. 

Moreover, malaria affects mainly infants and young children and those that survive 

can incur in long term consequences in the physical, mental, and learning and 

earning potentials. It has been shown, for instance, that between 10% and 50% of the 

school days lost due to health reasons in SSA are due to malaria63, with negative 

consequences on school failure and drop out rates, and on school performances.  

In endemic countries, foreign investments are scarce and there are numerous 

examples of foreign investor hardships due to health emergencies. For instance, in an 

aluminum plant built in Mozambique by a British company, with an investment of 

US$1.4 billion, the first two years there have been 7000 cases of malaria among the 

personnel and 13 deaths of expatriate personnel due to malaria related causes63. 

 

Figure 0.1 Relationship between Health and GDP (adapted from64) 
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1.4.2 The microeconomic impact of Malaria 

Many microeconomic studies showed that malaria is cause of significant costs for 

patients, in particular for the poorest households. Direct costs to prevent and cure 

malaria, can account up to a relevant part of the yearly income of poor households. 

For instance, in Malawi, the total annual cost of malaria per household was US$ 40 

in 2003, around 7% of households income65, while in Kenya it was around 9-18% of 

annual income of a group of farmers, and in Nigeria it was around 7-13%66. Other 

studies conducted in Africa a few years ago – in Burkina Faso, Chad, Congo, 

Rwanda – estimated that, in 1987, the cost of a malaria case was US$ 9.87, of which 

US$ 1.83 for direct costs and US$ 8.06 for indirect costs (including those due to 

morbidity and mortality). In 1987 values the total economic costs was US$ 0.8 

billions and accounted for 0.6% of GDP of SSA countries, while another study 

updated these figures to around 1% of GDP67. 

The monthly per capita expenditure to prevent malaria was US$ 0.05 in rural area of 

Malawi65 and US$ 2.1 in some urban areas in Cameroon (equivalent to  US$ 0.24 - $ 

US$15 per households)68, while the expenditure to treat malaria was US$0.41 in 

Malawi65 and US$ 3.88 in Cameroon (equivalent to US$1.88-US$26 per 

household)68; in Malawi direct costs of treating malaria were around 28% of the 

income of the poorest households and around 2% of the other households. 

Indirect costs of malaria are harder to estimate, due both to methodological problems 

and to a lack of accurate information on the consequences of malaria on productivity 

of people living in malaria endemic areas. The studies that attempted to measure 

indirect costs of malaria, estimated a cost per episode between US$0.68 for children 

under 10 in Malawi65 and US$23 for adults in Ethiopia69. 

The aggregate estimates (at national level) of microeconomic studies are, however, 

lower than those obtained by macroeconomic studies. This is the reason why some 

economists argue that part of the costs of malaria are not accounted in 

microeconomic studies, as they do not capture the negative externalities that make 

the overall impact of malaria greater than the sum of the impact on each individual 

and household63. However, even if these studies report lower costs than those based 

on macroeconomic approaches, they still show that the costs of malaria is high in 

particular for poorest households, accounting for a significant proportion of their 

income. 
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1.4.3 The impact of Malaria on health systems  

The weaknesses of health systems contribute to the costs of malaria incurred by 

patients. This is shown by the fact that most malaria episodes are treated at home 

through the private purchase of anti-malaria drugs (e.g. a study estimated that in 

Ghana only one fifth of fever episodes were treated in health facilities70).  

Notwithstanding, malaria has an important impact on health systems of malaria 

endemic countries, even if there is a lack of solid detailed data on public expenditure 

for preventing and treating malaria. However, it is possible to evaluate the impact of 

malaria on health systems in relative terms. In malaria endemic countries, it is 

estimated that, on average, around 25-35% of outpatient visits are due to malaria 

(clinically diagnosed) both on children under five years old and in other age groups. 

In malaria endemic countries, between 20% and 40% of hospital admissions are 

caused by malaria4. Due to the high fatality rates, mainly caused by late access to 

health care, to inappropriate clinical management or to a lack of efficacious drugs, 

malaria is also one of the major causes of mortality in hospitals. 

1.4.4 Cost-effectiveness of malaria control strategies 

The reasons of the failures to control malaria are also related to the fact that over 90% 

of the burden of disease is in low income countries, with inefficient health systems 

and significant barriers (financial and otherwise) to access to preventive strategies 

and to efficacious treatments. ACTs costs around US$1-2 per course (but it can reach 

up to US$10 in the private sector) although it is anticipated that prices will decrease 

in the near future to less than US$1. An ITN costs on average US$2.5-4 while Long 

Lasting ITNs can be even more expensive. Although these are very low figures for 

HICs, for most people leaving in malaria endemic countries these are unaffordable, 

and most governments of these countries do not have enough financial resources to 

provide universal access to these interventions (Table 1.3). 

Although there is no cost-effectiveness threshold that can be considered definitive for 

priority setting in the health sector, there are rule of thumbs that can be used to take 

more informed decisions. For instance, WHO defined a health intervention in low 

income countries to be “Highly attractive” when the cost per DALY averted is lower 

than US$25-30 and “attractive” when it is lower than US$ 15041.  

In the last two decades, extensive evidence showed that most interventions to control 

malaria, in endemic countries, are cost-effective (Table 1.4 reports the results of a 

sample of cost-effectiveness studies).  
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For instance a comprehensive study evaluated the cost-effectiveness of a number of 

malaria preventive and treatment strategies in SSA, estimating that in countries with a 

GDP per capita lower than US$315, with a high and moderate malaria transmission 

(such as Malawi, Mozambique, and Tanzania) the cost per DALY averted of 

preventive strategies was between US$3 and US$93, that of improving case 

management between US$ 3 and US$82; in countries with GDP per capita between 

US$315 and US$1000 (such as, for instance, Benin, Ghana, and Zimbabwe) cost-

effectiveness ratios were only slightly higher and lower than US$ 150 per DALY 

averted, while preventive strategies in countries with GDP per capita higher than 

US$1000, and thus most likely to be able to afford the costs of these interventions, 

such as Botswana and South Africa, were in some cases higher than US$ 150 per 

DALY averted8 71. The Disease Control Priority Project second edition conducted a 

modeling study with secondary data and estimated cost-effectiveness ratios for ITNs 

IRS, and IPTp. For ITNs the costs per DALY averted was US$ 11 (90% range US$ 

5-21) for ITNs treated with Deltamethrin, and US12 (90% range US$ 6-31) for ITNs 

treated with Permethrin; for IRS the cost per DALY averted was US$ 9 and 24 

depending on the insecticide used and the number of rounds; for IPT the 

(incremental) cost per DALY averted was US$ 13 (90% range US$ 9-21)72. 

WHO conducted a study in 2005 to determine the generalized cost effectiveness of a 

number of malaria control strategies in SSA countries estimating average cost-

effectiveness ratios ranging from US$9 per DALY averted, achieving 90% coverage 

of case management with ACT, to US$ 41 per DALY averted with a combined 

strategy including Indoor residual spraying plus ITNs, plus case management with 

ACT (95% coverage)73. 

A study conducted a few years ago (in 1999) in Brazil74, estimated the cost-

effectiveness of an IRS program to be around US$ 132 per DALY averted, improving 

case management allowing early treatment of malaria had a cost per DALY averted 

of US$ 17, while a combination of the two programs had a cost per DALY averted of 

US$673. Another example is in a highly endemic South African district, where IRS 

and ACT were introduced, leading to a 89% reduction in both hospital admissions for 

malaria and mortality with an 80% reduction in health expenditure attributable to 

malaria75. 

 

                                                           
2 Value in US$ of 1995. 
3 In US$ of 1995. 
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Table 0.3 Health expenditure in lowest income countries  

 

Health expenditure in lowest income countries 
(average GDP per capita 450 US$) 

%/$ 

Total health expenditure (% GDP) 4,8% 

Per capita health expenditure ($) 23,2 

Public health expenditure (% GDP) 1,2% 

Public health expenditure (% of total health expenditure) 26,6% 

Source: World Bank 

 

Table 0.4 Cost-effectiveness ratios reported in a sample of studies on Malaria 
control strategies  

Prevention Country 
Cost per death 
averted (US$ 

Cost per 
DALY averted 
(US$) 

Source 

219 (167–243) 9 ( 9–14) 76 
494 (326–805) 21 77 

Gambia 
  
  829 (447–

2117) 
(14–35) 78 

Bed-nets 

SSA   4–10 8 
SSA  11-17 (5-31 72 

Ghana 
  2112 ( 992–
2289) 

  77 ( 37–84) 79 

Kenya 
2958 ( 2838–
3120) 

  80 

Africa    10–118 81 

Bed-nets and ITNs 
  
  
  

SSA 788-2926 13-89 9 

ITN and chemioprophilaxis The Gambia 
300 ( 246–
333) 

13 (13–20) 76 

Chemioprophilaxi in children  The Gambia 167   82 

Malawi 
950 ( 317–
951) 

  83  Antenatal chemioprophilaxi with chloroquine 
  

SSA    14–93 8 
SSA  13 (9-21 72 
Malawi 81 ( 79–352)   83 IPTp (SP) 
SSA    4–29 8 
SSA  12-24 (5-34) 72 
SSA    16–58 8 IRS  
SSA 3,933-4,357 119-132 9 

Larviciding i  
Zambia 
(1929-1950) 

858  22–591 84 

IPTi  
Tanzania and 
Mozambique 

 

Tanzania: 3.7-
7.9 (1.6-27) 
Mozambique: 
8.3-11.2 (3.3-
92) 

85 

Treatment and combination strategies     
Drug treatment Africa  0.20–6   86 
Improvement in compliance SSA    2–8 8 
Case detection, drug treatment and IRS Nepal 109–17,650 12–1803 87  

Early treatment Brasil 
677 ( 271–
1355) 

17 74 88  

IRS, source reduction, and improvement in early 
diagnosis and case management  

Brasil 
2596 
(1093–5193) 
 

67 74 

IRS and source reduction (larviciding)  Brasile 
5072 (785-
10427) 

132 74 

Improvement of case management   SSA    1–3 8 
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1.5 Rationale  of the thesis 

The impact of malaria control interventions has been generally inferred from 

intervention efficacy trial results, which assess only the short-term effects using well 

controlled delivery systems. However, the long term effectiveness of implemented 

malaria control interventions will be reduced because of less than perfect access, 

compliance, targeting accuracy, and patient adherence. There will also be longer term 

dynamic effects (feed backs) due to changes in the immune status of the population, 

and benefits due to herd immunity and community effects of vector control. Cost-

effectiveness studies are generally based on short-terms effectiveness estimates. 

Models for the cost-effectiveness of disease control strategies and also those of 

malaria control interventions, generally assume the incidence of illness and 

transmission dynamics to be independent of the prevailing case management system36 

53. Decision trees typically start with the observation of an illness episode and 

consider how the episode is managed subsequently, but do not consider whether case 

management itself affects the incidence of the disease. With infectious diseases such 

as malaria, this approach ignores the feedback that may arise from an effective case 

management system, which in turn reduces the frequency of infection, and thus 

impacts transmission dynamics. When the infection has a long time course, which 

may encompass several illness episodes, treatment may also reduce the subsequent 

burden of disease independently of its effect on transmission. In the case of malaria, 

untreated P.falciparum infections can persist for many months, during which clinical 

attacks recur at irregular intervals89. Conventional cost-effectiveness analyses of 

malaria control interventions do not consider these effects.  

Malaria control interventions, such as source reduction by means of environmental 

management, increasing the coverage of ITNs, IRS, and potentially the introduction 

of a malaria vaccine, modify the demands on the health system, and thus affect both 

immediate direct impact and longer-term indirect effects of case management. This 

applies even when the intervention, such as vaccination, does not directly modify 

case management. It follows that predictions of the impact of preventative and 

curative interventions against malaria should take into account these dynamic effects. 
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1.6 Objectives of the thesis 

This thesis is part of a larger research project aimed at: 

� developing models for the natural history and epidemiology of P. falciparum 

malaria; 

� developing models for malaria control interventions in the health system;  

� predicting the epidemiology and the cost-effectiveness of malaria control 

interventions. 

 

The thesis is focused on four specific objectives:  

� The first is developing an innovative approach to dynamically model the costs 

and effects of case management of P. falciparum malaria in SSA. This model 

is integrated into a model for the clinical epidemiology and natural history of  

P. falciparum malaria (Chapter 2). 

 

� The second is developing an approach to costing the delivery of a malaria 

vaccine through the Expanded Program on Immunization (EPI), presenting 

the predicted cost per dose delivered and the cost per fully immunized child 

(FIC), which are key inputs to the cost-effectiveness analysis (Chapter 3). 

 

� The third is predicting the epidemiological impact and modeling the cost-

effectiveness of introducing a pre-erythrocytic malaria vaccine into the EPI 

schedule in SSA under a range of health system scenarios, conditions, and 

assumptions (Chapter 4 and 5). The epidemiological impact and the cost-

effectiveness estimates are based on the approaches developed in the first two 

objectives (Chapter 2 and 3). 

  

� The fourth is simulating the likely cost-effectiveness of three different malaria 

vaccine types - pre-erythrocytic vaccines, blood stage vaccines, mosquito-

stage transmission-blocking vaccines, and combinations of these – under a 

range of health system delivery modalities - EPI, EPI with booster, and mass 

vaccination combined with EPI - (Chapter 6). 
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Abstract 

An important shortcoming of existing methods for estimating the cost-effectiveness 
of malaria control interventions is that the incidence of illness and transmission 
dynamics are assumed to be independent of the case management system. We have 
developed a model for case management and integrated it into a stochastic simulation 
of Plasmodium falciparum malaria dynamics. This allows us to predict the incidence 
of clinical episodes and of mortality while incorporating effects of case management 
on persistence of parasites and transmission. We make predictions for a range of 
different transmission intensities in sub-Saharan Africa and simulate a range of case 
management scenarios with different coverage rates.  The model predicts that high 
treatment rates have a proportionately greater epidemiologic impact at low 
transmission levels. Further development is needed for models for health seeking 
behavior and referral patterns. The current model is a first step towards useful 
predictions of the epidemiologic and economic consequences of introducing and/or 
scaling-up of malaria control interventions.  

 

2.1 Introduction 

Models for the cost-effectiveness of different disease control strategies generally, and 

malaria control interventions in particular, usually assume the incidence of illness and 

transmission dynamics to be independent of the prevailing case management 

system.1,2 Decision trees typically start with the observation of an illness episode and 

consider how the episode is managed subsequently, but do not consider whether 

management itself affects the incidence of the disease. With infectious diseases such 

as malaria, this approach ignores the feedback that may arise from an effective case 

management system, which in turn reduces the frequency of infection, and hence 

impacts transmission dynamics.  

Models for nosocomial infections and those recently developed to simulate the SARS 

epidemic3,4 provide examples of approaches in which the operation of the health 

system interacts in a dynamic fashion with the biology of the infecting organism. In 

these models, prompt treatment of infections reduces epidemic spread, and thus 

results in both reductions in the subsequent burden of disease and in the requirements 

for treatment of secondary cases. 

When the infection has a long time course, which may encompass several illness 

episodes, treatment may also reduce the subsequent burden of disease independently 

of its effect on transmission. In the case of malaria, untreated Plasmodium falciparum 

infections can persist for many months, during which clinical attacks recur at 

irregular intervals.5 One of the current mainstays of malaria control is access to early 
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diagnosis and effective treatment.6 Prompt and effective treatment not only reduces 

the reservoir hosts who are infective to mosquitoes, but also prevents recurrences. 

Longitudinal studies of malaria in endemic populations frequently record declines in 

incidence over time. A major reason for this is likely to be that study participants 

receive more frequent treatment and this reduces the incidence of subsequent malaria 

fever attacks, irrespective of any effect on transmission.  Conventional cost-

effectiveness analysis of treatment does not consider these effects. 

Malaria control interventions, such as source reduction by means of environmental 

management, increasing the coverage of insecticide-treated nets (ITNs), indoor 

residual spraying, and (potentially) the introduction of a malaria vaccine, modify the 

demands on the health system, and hence affect both immediate direct impact and 

longer-term indirect effects of case management. This applies even when the 

intervention, such as vaccination, does not directly modify case management. It 

follows that prediction of the impact of preventative and curative interventions 

against malaria must take into account these dynamic effects.  

This paper presents a first attempt to develop a dynamic model including case 

management of P. falciparum malaria in a typical setting of sub-Saharan Africa. It 

has been integrated into a model for the clinical epidemiology and natural history of 

P. falciparum malaria.7  We compare the outcomes of different case management 

regimens in settings of different transmission intensities.    

  

2.2 Materials and methods 

Epidemiologic model. The epidemiologic model is a stochastic individual-based 

simulation of P. falciparum malaria in endemic settings that uses a 5-day time step. 

The primary input is the pattern of the entomologic inoculation rate (EIR) in the 

absence of malaria control interventions, with separate values of the EIR specified for 

each of the 73 5-day periods during the year.7,8 For the present analyses we simulate 

populations of 100,000 individuals, with an approximately stationary age distribution 

matching that of the demographic surveillance site in Kilombero, Tanzania, 1997-

1999.19 

For every individual in the simulated population each discrete P. falciparum infection 

is characterized by a simulated duration and parasite density at each 5-day time 

point.9 The host acquires immunity as a function of exposure and this in turn modifies 

the parasite density, and infectivity to mosquitoes10,11  at subsequent time-points. At 
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each time point, a clinical event, either uncomplicated clinical malaria, severe 

malaria, or death from either malaria or other causes, may occur. Probabilities for 

occurrence of these events depend on the parasite density, recent exposure and age-

dependent co-morbidity. They have been determined by functions that have been 

fitted to field data across a wide range of transmission settings.12-14 In addition, the 

prevalence of anemia (hemoglobin levels below 8 g/dL) is assigned at the population 

rather than the individual level, as a function of simulated age and parasite 

prevalence.15  

Clinical events. There are five different entry points into the case management tree: 

(i) no event, (ii) uncomplicated malaria, (iii) severe malaria, (iv) indirect malaria 

death, and (v) non-malaria death or out-migration. They are defined as follows: 

1. No event, includes asymptomatic malaria infections. In this case the simulated 

individual continues to the next time point, with the natural history of P. falciparum 

infections unmodified by the case management model. 

2. Uncomplicated clinical malaria comprises P. falciparum infections that may be 

treated either at home or in peripheral health facilities. The model assumes that the 

risk of uncomplicated clinical malaria depends on whether the parasite density 

exceeds a critical threshold, which in turn is a function of past exposure.13 The case 

management implications of uncomplicated clinical malaria further depend on 

whether the host has recently been treated for malaria. Two possibilities were 

considered, as follows: 

(A.) An uncomplicated clinical malaria in the absence of recent treatment. This is 

defined by no treatment over the previous 30 days (6 time points). The decision tree 

pathways for this scenario are depicted in Figure 2.1a. They include (i) entry into the 

formal health care system and receiving the first-line drug, (ii) self-treatment at home 

with the recommended first-line drug or (iii) absence of malaria treatment-seeking.  

(B.) An uncomplicated clinical malaria episode that occurs despite recent treatment 

history. Figure 2.1b shows the decision tree pathways for this scenario.   An 

uncomplicated malaria case that was treated in the past 30 days is assumed to either 

seek care or not. If care is sought, it is assumed to take place in the formal health care 

system, with treatment being based on the second-line drug.  We do not consider the 

possibility that patients self-treat following drug failure, because this would very 

likely involve ineffective retreatment with the first-line drug, with no epidemiological 

consequences. 
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3. Severe malaria episodes are those clinical malaria episodes that are life-threatening 

if they are left untreated.  We consider severe malaria episodes as those events that 

would have led to an admission diagnosis of severe malaria, had the patient presented 

to a health facility.12 The current model assumes that a severe malaria case can either 

be treated as an in-patient or not be treated at all. In the former case it is assumed that 

compliance is 100%. There are three possible clinical outcomes for treatment of a 

severe malaria episode, namely (i) death, (ii) recovery with neurological sequelae, or 

(iii) full recovery (Figure 2.1c). 

4. Indirect malaria death considers those deaths that would not have occurred in the 

absence of prior malaria exposure but which do not meet the criteria for severe 

malaria.12 

5. Non-malaria death and out-migration correspond to events that occur independently of the 

parasitologic status of the host. These events are simulated in order to maintain the correct age-

structure of the simulated population. 

When more than one simulated clinical attack occurs within 30 days of each other, 

these are counted as the same episode. There can thus be several treatments for one 

episode. The severity assigned to the episode is assigned to that of the most severe 

malaria attack within the 30-day period. 

Each decision tree pathway predicts the outcome in terms of (i) whether or not the 

parasites are cleared, and (ii) the clinical outcome (i.e. death, recovery with long-term 

sequelae or full recovery). The epidemiologic effects of the case management depend 

stochastically on the values of the joint probabilities of the clinical and parasitologic 

outcomes, conditional on the clinical event. These conditional probabilities are 

computed by calculating the probabilities for each branch of the decision tree 

pathways (Figure 2.1). For the model of uncomplicated malaria the probabilities 

associated with each branch in the decision tree were obtained from the literature 

(Table 2.1).   

For the severe malaria model, we used in-patient case fatality rates, ( )hQ a , from a 

recent study in Tanzania,16 and estimated corresponding community case fatality 

rates, ( )cQ a . ( )hQ a  varies with age a, taking values from 3% to 13%.  ( )cQ a takes 

values estimated previously using our model for severe malaria and mortality 

assuming the two risks to be related via a constant odds ratio, 1ϕ , taking a value of 

2.09,12 i.e. 
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We assume negligible drug-resistance to quinine, so that parasites are cleared in all 

hospitalized cases who survive.  We assign a probability of sequelae, xR , with a value 

independent of treatment (Table 2.1).    

Disability adjusted life-years (DALYs). Years of life lived with disability (YLDs) 

are calculated using standard methods17 on the basis of the duration of disability, and 

respective disability weights (Table 2.2). These weights for different malaria-

attributable disease conditions have been obtained from the Global Burden of Disease 

(GBD) study.18  

Years of life lost (YLLs) and DALYs (age-weighted) are calculated assuming age-

specific life expectancies, based on the life-table from Butajira, Ethiopia, with an 

average life expectancy of 46.6 years at birth.19 This life-table represents that of an 

East African setting, but is characterized by low malaria transmission. For example, it 

is very similar to that for Hai district, a high altitude site in Tanzania.20 

In a first step, YLLs and DALYs are presented with no discounting. Subsequently we 

compare the results with those obtained using a 3% discount rate, which is the one 

most commonly employed in cost-effectiveness analyses.1,2 



 30 

 

Table 0.1 Model inputs used for efficacy and malaria treatment seeking behavior 

  Case management scenarios Source 

Symbol Description No 
treat-
ment 

Reference 
 

Moderate 
coverage 

Complete 
coverage 

Effective 
treatment 

 

 Uncomplicated malaria       

Pu Probability of seeking care in 
the formal health sector 

0.0 0.04 0.27 1.0 1.0 * 

Ps Probability of self-treatment 0.0 0.01 0.13 0.0 0.0 * 

Pr Probability of seeking out-
patient care in case of 
treatment failure 

0.0 0.04 0.27 1.0 1.0 * 

 
Compliance 

      

Cu  SP: formal health sector n.a. 0.90 0.90 0.90 1.00 33 
Cr  Amodiaquine n.a. 0.45 0.45 0.45 1.00 33 
Cs  SP: self-treatment n.a. 0.85 0.85 n.a. n.a. 33 

 Cure rate† 
      

Ru  SP: formal health sector n.a. 0.93 0.93 0.93 1.00 33 
Rr  Amodiaquine n.a. 0.85 0.85 0.85 1.00 33 
Rs  SP: self-treatment n.a. 0.63 0.63 n.a. n.a. 33 
 

% of non-compliers for whom 
treatment is effective 

      

Rns  SP n.a. 0 0 n.a. n.a. - 
Rnr  Amodiaquine n.a. 0.20 0.20 n.a. n.a. 33 
 

Severe malaria 
      

Ph Probability of in-patient care 0.0 0.48 0.48 1.0 1.0 27 
Rq Cure rate (Quinine) n.a. 0.998 0.998 0.998 0.998 32 

Probability of neurological 
sequelae for severe episodes for 
age-group <5 years‡ 

0.0132 0.0132 0.0132 0.0132 0.0132 33,48 Rx 
 

Probability of neurological 
sequelae for  severe episodes 
for age-group ≥5 years‡ 

0.005 0.005 0.005 0.005 0.005 33,48 

 

*The values for the reference scenario are adapted from those used in our simulation of a field trial of a malaria 
vaccine; those for the moderate coverage scenario are based on the data of the Tanzanian NMCP.29  †The cure rate 
refers to the “adequate clinical response rate”; SP: sulphadoxine-pyrimethamine; ‡The same probabilities are used 
for neurological sequelae for both in-patients and non-hospitalized severe episodes; n.a.: not applicable.  
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Table 0.2 Disability weights and duration of disability used to calculate YLDs 

 
Disease condition Disability weight Duration (years) 
Untreated neurological sequelae 0.473 35.4 
Neurological sequelae (treated) 0.436 35.4 
Uncomplicated malaria episode 0.211 0.01 
Anemia 0.012 n.d. 
Low birth weight n.d. n.d. 

Others n.d. n.d. 

n.d. = not defined 
 

 

Malaria transmission intensity. The introduction of changes in case management 

(or of other interventions) leads to transient behavior, which may in principle modify 

the level of P. falciparum transmission.  These effects on transmission are captured in 

the model by the effects on infectiousness of the human population resulting from 

clearing parasites. The simulation model predicts for time point t the proportion, 

( )m tκ of vectors that become infected at each feed on a human host.10,11  We adjust 

this to give ( ) 0.56 ( )u mt tκ κ=  to allow for the bias arising because ( )m tκ  is 

estimated from artificial feed data.10 We record the value (0) ( )u tκ  that ( )u tκ  takes in 

the simulation of the reference scenario to which a change in the case management 

model has been applied, and compare this value to (1) ( )u tκ , the prediction of ( )u tκ  for 

the same time-point in the simulation with a change in case management. The effect 

of the change in case management on transmission is then modeled by a change in the 

EIR in adults at vl  time units later ( max ( )vE t l+ ), such that: 

(0) (1)
(1) max
max (0)

( ) ( )
( )

( )
v u

v

u

E t l t
E t l

t

κ

κ

+
+ =  (2) 

where vl  corresponds to the duration of the sporogonic cycle in the vector, and where 

(0) (0)
max ( ) / ( )v uE t l tκ+  is the overall vectorial capacity.  The consequences for the 

infection rates follow from details of the epidemiologic model.8  

We considered four different intensities of transmission, each with the same seasonal 

pattern as that in Namawala, Tanzania21 (Table 2.3). For the reference scenario, we 

used an overall annual EIR of 21 infectious bites per annum which represents a 

typical level of transmission for a meso-endemic setting.22,23 
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Table 0.3 Scenarios modeled: health systems and transmission intensities 

 
Transmission intensities Annual EIR 
Very low transmission 1.3 
Low transmission 5.2 
Reference  21 
High transmission 83 
Very high transmission 329 
  

Health system  
No treatment  
Reference  
Moderate coverage  
60% Abuja target coverage   
Full coverage  

Effective treatment  

 
 

Health Systems.   Uncomplicated malaria patients seeking formal health care in 

Tanzania are usually diagnosed during an out-patient visit either in a health centre, a 

dispensary or a hospital. A diagnostic test (normally light microscopy of finger-prick 

blood smears) is performed on less than 10% of treated cases.24 Current Tanzanian 

national treatment guidelines recommend that an uncomplicated malaria episode be 

treated with sulphadoxine-pyrimethamine (SP) as the first-line drug. Amodiaquine 

serves as the second-line drug, and quinine is used for treatment of severe malaria.25  

Our models assume that formal-sector treatment adheres to these practices (Tables 

2.4 and 2.5). We also assume that SP is used as the drug of choice for self-treatment 

but the efficacy is assumed lower to account for lower quality of drugs purchased in 

the private sector.   The levels of compliance and of drug resistance that we assume 

are given in Table 2.1.  

We evaluate the effects of different case management in our model by varying either 

malaria treatment seeking-behavior or availability of treatment. Table 2.3 summarizes 

the set of scenarios considered, which include 5 different sets of assumptions for the 

level of treatment:  

(i)  No treatment: in this model we assume no access to antimalarial treatments at 

all. 

(ii)  Reference case management: in this model we took the same probability of 

seeking treatment for uncomplicated malaria as in our recent simulation of a malaria 

vaccine trial,26 but assume 20% of treatments to be self-treatment and 80% to use 

formal care.  We use a value of 48% for the probability of seeking treatment for 

severe malaria (Table 2.1).27,28  The treatment rates for uncomplicated episodes are 



 33 

low because the model for clinical episodes was fitted to very intensive surveillance 

data from Senegal, which included very minor fevers that would be very unlikely to 

lead to treatment seeking.13   The treatment rates were estimated by triangulating the 

predictions of this model for clinical episodes with health system attendance data 

from Manhiça, Mozambique.26  

(iii) Moderate coverage: For this model we use recent data from the Tanzanian 

National Malaria Control Program (NMCP) of the Ministry of Health (MOH).29  This 

report states that 27% of children <5 years of age were treated within 24 hours in 

health facilities, 13% at home and 2% at traditional healers. The remaining 58% 

received no treatment within 24 hours from the onset of disease.30   We use these 

percentages of 27% of children receiving formal care, and 13% self-treatment for 

uncomplicated malaria episodes (Table 2.1).  We use the same coverage of formal 

care for severe malaria as in the reference model. In the context of our 5 day time-

step we do not distinguish in our simulations whether treatment is within 24 hours or 

not. 

(iv) 60% Abuja target coverage: 60% of uncomplicated episodes are treated with 

appropriate drug.  The simulated coverage of hospital treatment for severe episodes 

remains at 48%. 

(v) Complete coverage: We assume that 100% of uncomplicated clinical episodes 

are treated via formal-sector care.   We also assume that 100% of severe malaria 

episodes are treated.  

(vi) Effective treatment: We assume that 100% of clinical episodes are treated via 

formal-sector care, and furthermore that there are no treatment failures.  Moreover we 

assume that all severe episodes receive in-patient treatment.  

 

To explore the dynamic impact of different case management options, we ran 

simulations over a 90-year period at different transmission intensities under the 

assumptions of the reference case management scenario. The rather low level of 

treatment in this scenario is intended to approximate conditions prevailing in many 

areas studied in Africa of limited drug availability, drug resistance, and non-treatment 

or under-treatment of minor febrile attacks.    

This defined the baseline status of the simulated populations. We then simulated the 

transient behavior over the next 5-, 10- and 20-year periods, for different case 

management scenarios, assuming the vectorial capacity for P. falciparum 

transmission to follow the same seasonal pattern as during the baseline period.  We 
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compared outcomes with those of scenarios in which the reference case management 

regime continued.  

 

Figure 0.1 Decision tree pathways 
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Costing.  Both marginal and average costs of health care were computed. The 

marginal cost of treatment is the additional financial or opportunity costs that is 

incurred when treating each additional case, but does not include the fixed cost of the 

infrastructure. The average costs include all those costs involved in delivering the 

intervention, including the use of spare capacity, and those health care resources 

diverted from other uses.31 
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Uncomplicated malaria: Direct costs of an uncomplicated malaria case seeking care 

at formal-sector facilities, doC , comprise the cost of an out-patient visit, the cost of 

drug treatment, and other costs incurred by the patients, i.e. 

do o o oC = D +  V + H    (3) 

where Ho is the patient (household) cost when visiting formal-sector outpatient 

facilities (excluding fees) and Do is the cost of out-patient drug treatment, and oV  is 

the non-drug costs of an out-patient visit.  Do is computed as:  

(1 )o od dD = D L +W    (4) 

where Dod is the cost of drug per day and Ld is the number of days of therapy.  The 

drug regimens and hence price depend on patient age and weight (Table 2.4), with the 

prices, which include distribution costs to districts, corresponding to those in the 

medical store department catalogue32 of the Tanzanian MOH.  W, the % additional 

cost of drug wastage, takes a value of 25% throughout.33  

The non-drug cost of an outpatient visit is computed from published data on 

proportions of out-patients reporting at different levels of the health system, on the 

proportion, pt, of cases undergoing diagnostic tests, and on unit costs after exclusion 

of drug costs (Table 2.6).  In the average analysis, the non-drug cost, aoV , is thus 

given by: 

ao hc hc h h d d tV = p V + p V + p V + p T . (5) 

In the case of marginal costs there is an adjustment for the proportion of recurrent 

non-fixed costs, i.e.: 

(1 )
mo ao ro rfo

V = V  p - p . (6) 

The patient (household) costs per outpatient visit, Ho, comprise travel expenses, 

expenses related to medical supplies Hm and non-medical supplies, Hn, such as the 

purchases of food and drinks or costs of spending the night away from home while 

seeking care34 (Table 2.6), so that: 

o t m nH = H + H + H  (7) 
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In case of self-treatment it is assumed that patients do not incur in any additional 

costs to purchase the drug because the drugs are likely to be purchased from a private 

shop close to the patient’s home. 

Severe malaria: the direct health care costs of a severe malaria case 
diC  are given by: 

di i i iC = D +V + H  (8) 

where Vi is the non-drug cost of in-patient care, Di  is the cost of drug treatment, and 

Hi is the patient (household) cost when visiting formal-sector in-patient facilities. iD  

is computed by multiplying the costs by the duration for which they are incurred. 

During the first day of treatment the drug dosage and consequently the costs are 

different, so overall iD  is given by: 

 ( ( ))(1 )i i1 i2 iD = D + D L - 1 +W  (9) 

where Di1 is the cost for the first day; Di2 is the cost per day thereafter and Lt  is the 

length of treatment (in days) (Table 2.6).  The non-drug cost of in-patient care in the 

average analysis is given by: 

( )i ai i iV = V = N L o  (10) 

where ( )iL o  is the average length of stay, which varies depending on the outcome o, 

and  
iN  is the in-patient cost (see Table 2.6).  Correspondingly, in the marginal 

analysis the non drug cost is: 

 ( ) ( )i mi i i ri fiV = V = N L o p 1 - p . (11) 

The costs incurred by patients are the same as for an outpatient visit for the first day.  

For the following days of stay we include only the costs of medical and non-medical 

supplies ( mH  and nH  respectively), so that:  

( )= + +i t m n iH H H H L (o) .  (12) 
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Table 0.4 Sulphadoxine-pyrimethamine (SP)  and amodiaquine doses and costs 

 

Regimen  Number of 
tablets 

Cost per course 
in Tshs.  

Cost per course 
in US$ 2004 

Sulphadoxine-Pyrimethamine 
   

< 1 year  (<11 kg) 0.5  12.4 0.012 
1 to 5 years  (11-19 kg) 1  24.8 0.024 
6 to 9 years  (19-30 kg) 1.5 37.2 0.035 
10- 14 years  (30-45 kg) 2  49.6 0.047 
15 and above (> 45 kg) 3  74.4 0.071 

Amodiaquine* 
   

<1 year  (<11 kg) 1.25 18.75 0.018 
1-3 years  (11-15 kg) 1.75 26.25 0.025 
4-5 years  (15-19 kg) 2.25 33.75 0.032 
6-8 years  (19-25 kg) 3 45 0.043 
9-11 years (25-36 kg) 4.25 63.75 0.061 
12-14 years (36-50 kg) 6.25 93.75 0.089 
15-16 years (50-60 kg) 7.5 112.5 0.107 

17 and aboves  (> 60 kg) 8 120 0.114 

* SP is administered as a single dose; ** Amodiaquine dosage is in number of 200 mg tablets in a 3 
day course. Source:32 
 
 

Table 0.5 IV Quinine doses and costs, by age and weight  

 

Age and weight categories Dose  Cost per 
day in 
Tshs. 

Cost per 
day in 
US$ 2004 

Cost per 
course in 
US$ 2004 

Initial dose (20 mg/kg over 4 hours) 
<1 year (< 11 kg) 180 54 0.051  
1-3 years (11-15 kg) 240 72 0.069  
4-5 years (15-19 kg) 360 108 0.103  
6-8 years (19-25 kg) 420 126 0.120  
9-11 years (25-36 kg) 600 180 0.171  
12-14 years (36-50 kg) 840 252 0.240  
15-16 years (50-60 kg) 1080 324 0.309  
17 and above (> 60 kg) 1200 360 0.343  

Dose per day thereafter (10 mg/kg every 8 hours for 6 days) 
<1 year (<11 kg) 270 81 0.077 0.514 
1-3 years (11-15 kg) 360 108 0.103 0.686 
4-5 years (15-19 kg) 540 162 0.154 1.029 
6-8 years (19-25 kg 630 189 0.180 1.200 
9-11 years (25-36 kg) 900 270 0.257 1.714 
12-14 years (36-50 kg) 1260 378 0.360 2.400 
15-16 years (50-60 kg) 1620 486 0.463 3.086 

17 and above (> 60 kg) 1800 540 0.514 3.429 
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Table 0.6 Health-seeking behavior and unit cost assumptions 

 

Item Description Value Source 
 

Household (patient costs)* 
  

Ht Travel cost (US$) 0.08 34 
Hm Medical supplies (US$) 0.03 34 
Hn Non medical supplies (US$) 0.19 34 
 

Uncomplicated malaria 
  

phc % of out-patient visits that take place at health centers 18% 42  
pd % of out-patient visits that take place at dispensaries 72% 42 
ph % of out-patient visits that take place at hospitals 10% 42 
Vhc Cost per out-patient visits at health centers (US$) 1.27 34 
Vd Cost per out-patient visits at dispensaries (US$) 1.02 34 
Vh Cost per out-patient visits at hospitals (US$) 2.10 49 
pt % diagnostic tests (proportion of patients) 10% 24 
T Unit cost of diagnostic test (US$) 0.30 24 
pro % of out-patient visit cost that are recurrent 69% 34 
prfo % of out-patient visit recurrent cost that are fixed 25% 33 
Ho Average patient cost (US$) 0.30 34 
 

Severe malaria 
  

Ni Non-drug cost per day of stay – (US$)     
                (capital)       : 2.30 50 
                (recurrent)    :     5.50 50 
                (total)   : 7.80 50 
Li(1) Average length of stay when patient fully recovers 4.50 33 
Li(2) Average length of stay when patient recovers with 

neurologic sequelae 
10 33 

Li(3) Average length of stay when patient dies 2 33 
pri % of in-patient costs that are recurrent 71% 48 

pfi % of in-patient recurrent cost that is fixed 50% 33 

*Daily average household (patient) out of pocket costs.    
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2.3 Results 

The reference scenario simulation. Simulated patterns of age-prevalence and age-

incidence for the reference scenario (Figure 2.2) are similar to those for typical meso-

endemic settings in Africa to which the models were fitted.9,12,13  The direct cost per 

capita is stable over time. The predicted infectiousness of the host population, ( )u tκ , 

fluctuates seasonally around a value of approximately 3% (Figure 2.3a). Since the 

reference scenario uses the same transmission pattern and health system to construct 

the baseline population as are applied during the follow-up, there is no trend over the 

20-year simulation period in these epidemiologic variables or in the treatment costs. 

Over the 20-year simulation period, the total number of undiscounted DALYs lost 

due to malaria, in our population of 100,000 people, is approximately 481,000, 

corresponding to a rate of 0.24 DALYs per capita per annum.  Most of these DALYs 

are due to mortality, so the total number of YLLs is very close to that of DALYs 

(Table 2.7). If YLLs and DALYs are discounted at a standard rate of 3%, the total 

number of DALYs is considerably lower.   

The total undiscounted direct average costs to treat malaria episodes with the 

reference case management model, amounts to US$ 485,793 over the 20-year 

simulation period. This corresponds to US$ 4.86 per capita and, on average, US$ 0.24 

per capita per annum (Table 2.7). Out-patient visits account for 32% of total direct 

costs, drug treatments of both uncomplicated and severe episodes for 7%, hospital 

admissions of severe episodes for 40% and patient costs for 22% (data not shown).  

The marginal cost, i.e. additional financial or opportunity costs that would be 

incurred when introducing a new control intervention, is around 58% of the average 

cost. 
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Figure 0.2 Predicted age-prevalence and age-incidence curves by transmission 
intensities 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
The reference scenario is the transmission intensity observed at Namawala divided by a 
factor 16; low transmission equals to Namawala transmission divided by a factor 64; high 
transmission is one-quarter of the Namawala transmission; very high transmission equals the 
transmission observed at Namawala. 
a) age-prevalence curve of patent parasitemia 
b) age-incidence curve of uncomplicated episodes 
c) age-incidence curve of severe episodes 
d) age-incidence curve of mortality 

 

Figure 0.3. Infectivity of the human population 

 
a) reference scenario 
b) scenario assuming full treatment coverage 
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Table 0.7 YLLs*,  DALYs*, and direct costs** 

 

 Undiscounted  Discounted (3%) 

 YLL DALYs Average 
costs 

Marginal 
costs 

YLL DALYs Average 
costs 

Marginal 
costs 

Reference 0.238 0.244 0.243 0.142 0.120 0.125 0.184 0.108 

Moderate coverage^ 0.217 0.224 1.066 0.736 0.112 0.118 0.809 0.558 

60% Abuja target 
coverage^ 

0.160 0.165 1.423 0.946 0.083 0.087 1.053 0.70 

Full coverage^ 0.100 0.105 1.807 1.212 0.052 0.056 1.463 0.993 

Effective treatment^ 0.081 0.086 1.424 0.918 0.042 0.046 1.054 0.679 

No treatment 0.276 0.276 - - 0.138 0.143 - - 

Very low transmission 0.219 0.226 0.285 0.172 0.119 0.125 0.216 0.131 

Low transmission 0.224 0.231 0.283 0.169 0.118 0.124 0.215 0.129 

High transmission 0.242 0.246 0.204 0.116 0.120 0.123 0.155 0.088 

Very high transmission 0.234 0.237 0.169 0.095 0.115 0.117 0.128 0.072 

Low transmission, Full 
coverage 

0.036 0.038 0.544 0.368 0.017 0.018 0.470 0.321 

High transmission, Full 
coverage 

0.160 0.165 2.027 1.349 0.068 0.072 1.643 1.109 

* lost per capita per annum due to malaria; **direct cost per capita in US$ per annum 
^ at same transmission level as in the reference scenario 
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Effect of changing levels of access to case management. Comparison of the 

reference scenario with the extreme scenario with no treatment of malaria episodes 

(either uncomplicated or severe) revealed noticeable epidemiologic effects of 

treatment despite the low attendance rates for uncomplicated episodes in the reference 

health system.  In children <10 years of age the “no treatment” scenario predicted 

higher prevalence of infection (Figure 2.4), a higher anemia prevalence (Figure 2.5) 

and a slight increase in the incidence of clinical episodes, with age patterns as shown 

in Figure 2.6a,b and c. There was only a small effect on the incidence of severe 

malaria (Figure 2.6d,e and f).  Since the reference health system includes a relatively 

high treatment rate of severe episodes the largest differences between the “no 

treatment” and reference scenarios were in the mortality rates with a substantially 

higher mortality rate predicted with “no treatment”, especially in the second half of 

the first year of life (Figure 2.6g,h and i).   

The reference scenario is in a state of equilibrium throughout the simulation, though 

there is stochastic variation over time in the outputs. The “no treatment” scenario 

reaches a new equilibrium very quickly. Therefore, only the average prevalence over 

20 years is shown for this scenario (Figure 2.4, black squares) and the effects on 

incidence of morbidity and mortality do not change much during the follow-up period 

(Figure 2.6). The total number of DALYs lost over the simulated 20-year period was 

13% higher with the “no treatment” regimen than with the reference. The effect on 

transmission, measured by ( )u tκ  is negligible. 

The “complete coverage” model for treatment leads to a rapid decrease in 

transmission, as measured by ( )u tκ  (Figure 2.3b).  This stabilizes quickly at a value 

about 60% of that in the reference scenario, implying that treatment of all the clinical 

episodes (including minor episodes) can reduce the inoculation rate by about 40%.  

“Complete coverage” predicted very substantial decreases in prevalence of 

parasitemia (Figure 2.4) of anemia (Figure 2.5) and also in incidence of 

uncomplicated episodes (Figure 2.6), but these outcomes, reflecting the dynamics of 

immunity, required an extended period to reach equilibrium.  Although treatment of 

severe episodes in the “complete coverage” health system is no different from the 

reference, the effects on transmission, and on persistence of parasites result in 

substantial reductions in incidence of severe morbidity and mortality (Figure 2.6), 

leading to a total number of DALYs lost over 20 years of only around 45% of those 

in the reference scenario (Table 2.7).  
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The epidemiologic effects of high treatment coverage were concentrated in the 

youngest age groups, resulting in a substantial shift in the age of peak incidence of 

uncomplicated episodes (to older ages) and of mortality (to younger ages, in which a 

greater proportion of the mortality is contributed by indirect deaths).  The changes in 

the age-prevalence and age-incidence curves caused by “complete coverage” were 

also time-dependent so that transient effects can be seen throughout the 20-year 

follow-up period. As a result of the shifts in age-incidence, 10 years into the 

simulation an increase in incidence of clinical episodes above baseline levels is 

evident in individuals >10 years old (Figure 2.6b).   The shifts in the peak of the 

incidence curves to older age-groups, accumulates over time, so that the benefit of the 

intensive treatment regimen decreases with time.  

The distribution of direct costs is also changed as a function of treating all malaria 

episodes with a first-line drug. In the scenarios that we simulated there would then be 

little need for second-line treatment; hence many severe episodes could be prevented, 

which in turn reduces in-patient costs. Our model predicts that if all uncomplicated 

episodes were treated with the first-line drug, out-patient visit costs would account 

for 61% of total direct costs, drug treatments for 7%, inpatients admissions for 3% 

and patient costs for 30%. The total direct costs to treat all malaria episodes would be 

approximately 7.4-times those of the reference scenario. 

The “moderate coverage” scenario predicts effects on prevalence and on the clinical 

outcomes (Figures 2.4, 2.5 and 2.6) more similar to those for “complete coverage” 

than to those for “no treatment”. This is despite the assumption in the “moderate 

coverage” health system of treatment rates for uncomplicated episodes much less than 

50% and hence much closer to those for “no treatment” than those for “complete 

coverage”. This implies that, within our models, there is a highly non-linear 

relationship between health outcomes and treatment coverage for uncomplicated 

malaria, with a very high marginal impact of increases in coverage when it starts from 

a low level.  This conclusion is supported by the simulation of “effective treatment” 

which gave very similar results to that of “complete coverage” for all the outcomes 

except mortality (results not shown). Mortality rates, and hence DALYs lost (Table 

2.7) were reduced by the “effective treatment” health system to substantially below 

those with the “complete coverage” health system because all severe cases were 

assumed to be treated as in-patients. 

Effect of transmission intensity.  In higher transmission settings simulated parasite 

prevalence was higher, and peaked at a younger age (Figure 2.2a). The incidence of 

uncomplicated malaria episodes also increased with transmission intensity in young 
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children, but the reverse pattern was observed in older individuals (Figure 2.2b), 

matching the pattern to which the model was fitted.13 The incidence of severe 

episodes showed a similar pattern, but with a steeper decline in incidence with age at 

high transmission, and consequently a crossing of the age-incidence curves at 

younger age (Figure 2.2c). The pattern for mortality was similar, with the mortality 

rate independent of transmission intensity at the age of about 3-4 years.  

The average level of transmission to the vector, ( )u tκ , was similar to that for the 

reference scenario for all values of EIR investigated, but the amplitude of the 

seasonal variation in ( )u tκ  increased with the transmission intensity (data not 

shown).  

The total number of YLLs and DALYs lost over the simulated 20-year period are 

only slightly higher in the high transmission settings when compared to areas of 

lower transmission intensity. The total direct costs are determined by the number of 

uncomplicated and severe episodes treated, which are higher than in the reference 

scenario in the low transmission setting and lower in the high transmission setting 

(Figure 2.7). These figures however depend strongly on the model predictions for 

rates of severe malaria in adults, of which we are highly uncertain.12   

Changing access to case management in different malaria transmission intensity 

settings.  The effects of an increased or decreased level of access to case management 

also vary according to the prevailing malaria transmission intensity (Figure 2.8). In a 

setting of moderate  malaria transmission, treating all uncomplicated episodes over 20 

years would lead to only a small difference in the total number of uncomplicated 

episodes, but reduces incidence of severe episodes by 49%, and the number of deaths 

and DALYs lost by 57% (Table 2.7).  

In the low transmission setting, treating all uncomplicated cases over 20 years 

reduces incidence of uncomplicated episodes by 71%, severe episodes by 88%, and 

the number of deaths and DALYs lost by 83%. In the high transmission setting 

complete treatment coverage would increase the total number of uncomplicated 

episodes over time, and would lead to a reduction of only 31% of severe episodes and 

DALYs lost, and 34% of the number of deaths.  

Treating everyone has a much greater effect on incidence at low transmission 

intensities. At high transmission, a high level of coverage always appears to be 

beneficial in terms of reducing incidence of severe episodes and of mortality, but may 

even lead to an increase in incidence of uncomplicated episodes.  Within the model, 
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this is because a very high treatment rate is associated with a reduction in exposure to 

asexual blood stage parasites and hence in acquired blood-stage immunity. 

The economic implications of changing levels of access to case management also 

differ according to the malaria transmission intensity. Simulation over a 20-year 

period under the assumption of complete treatment coverage of uncomplicated 

malaria episodes would increase direct costs by a factor of almost 10 in a highly 

endemic setting, but the increase would be only 92% in low transmission settings 

(Table 2.7). 

Figure 0.4. Age-prevalence curves of parasitemia under different case 
management scenarios during a simulated 20-year follow-up period 
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Figure 0.5 Age-prevalence curves of anemia (Hb<8 g/dL) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The reference scenario is the transmission intensity observed at Namawala divided by a factor 16; low 
transmission equals to Namawala transmission divided by a factor 64; high transmission is one-quarter 
of the Namawala transmission; very high transmission equals the transmission observed at Namawala.  

 

Figure 0.6 Age-incidence curves under different case management scenarios at 
different durations of simulation during a 20-year follow-up period 
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a-c) age-incidence of uncomplicated episodes; d-f) age-incidence of severe episodes; g-i) age-
incidence of mortality 

 

Figure 0.7 Direct costs in relation to transmission intensity 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
upper line: undiscounted; lower line: discounted. 
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Figure 0.8 The effect of changing case management in different transmission 
settings 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The status of the population at baseline was defined by simulating the reference health system for 90 
years for each transmission intensity. The follow-up period then ran for 20 years with the chosen 
health system, and the results here are the average for the 20 years. The incidence rates settled to a new 
level quickly. Because of the uncertainty in the rates of severe morbidity and mortality in adults we 
show predictions only for children <10 years of age.  
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2.4 Discussion 

We present a first attempt to use a dynamic model for case-management of malaria in 

sub-Saharan Africa. For prediction of the effects of the case management, we 

considered a range of different transmission intensities characteristic for large parts of 

malaria-endemic Africa, and our simulations are thus likely to be of broad 

applicability. Lower EIRs than considered here (i.e. <5 infectious bites per person per 

annum) are characteristic of highly urbanized settings, the African highlands and 

areas located at the current distribution edges of P. falciparum transmission.35,36 Our 

model needs further development and validation to make meaningful predictions for 

such settings. 

Our modeling approach expands the scope for predictions of the epidemiologic and 

economic consequences of malaria interventions as a direct function of the case 

management. In a first step, we have simulated different rates of treatment coverage, 

including the most extreme scenarios of either complete lack of treatment or full 

coverage. These two scenarios, together with a reference scenario largely constructed 

from real data obtained from Tanzania, were used for simulations up to 20 years. 

Costs were also built into our dynamic models, which will ultimately make it possible 

to predict the cost-effectiveness of the case management.  

Our immediate purpose is to integrate effects of case management into our dynamic 

models of the clinical epidemiology and natural history of P. falciparum malaria in a 

typical setting of SSA.   The approach could readily be adapted to assess the costs of 

scaling up malaria treatment but this would entail more detailed analysis of the 

activities involved in scaling up malaria treatment. 

Our model can be used to make predictions of the effect of introducing a new malaria 

control intervention (e.g. malaria vaccine) or scaling-up of existing control measures 

(e.g. ITNs). The former motivated the development of our modeling approach. The 

current model is probably better at fulfilling this objective than in capturing the 

impact of changes in case management, including different levels of treatment, and 

changes in national antimalarial drug policies. This is justified because the 

epidemiologic model was fitted mainly to cross-sectional data from various settings 

across sub-Saharan Africa. It is less able to capture longitudinal patterns within hosts, 

so it does not claim to incorporate realistic patterns of treatment-seeking behavior or 

of referral patterns. In African settings where patients have limited resources, care-
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seeking patterns in general, and malaria treatment-seeking behavior in particular, are 

complex.37-39  

There is a need to build on simple models of the referral system,33 so that we become 

more confident of the likely impacts of changes in national antimalarial drug policies. 

For example, parasite resistance to SP has reached critical levels in many parts of 

Central and East Africa, including Tanzania40,41 and this places a question mark 

against our longer-term predictions of cost-effectiveness which assume that SP 

treatment remains efficacious. In view of the public health, social and economic 

significance of SP resistance, efforts are underway in Tanzania, and elsewhere, to 

change national policies towards artemisinin-based combination therapy (ACT). In 

fact, the Global Fund to Fight AIDS, Tuberculosis and Malaria (Global Fund) has 

recently approved a project to switch from SP (and amodiaquine) to ACT.42 Such a 

shift in drug policy is of considerable public health significance and will directly 

affect the case management of P. falciparum malaria. There is a need to adapt our 

model to field data from a range of different settings, and that will make it possible to 

explore the epidemiologic and economic consequences of the case management 

system under different scenarios. These should include simulation of the shift from 

SP to ACT, conditional on various levels of SP resistance. 

Regarding the epidemiologic model, we chose to define the seasonal pattern of 

P. falciparum transmission by using data from the village of Namawala in Tanzania. 

The high level of transmission measured there, even in comparison to other sites in 

Tanzania,22,43 made it possible to measure the intensity of transmission during the dry 

season. Multiplication of the Namawala rate by a constant therefore provides us with 

a reasonable estimate of the seasonal pattern, even for lower transmission areas where 

dry season transmission can usually not be measured. 

Tanzania’s national malaria control program reports that 75% of people live in areas 

of stable malaria transmission, 17% in areas of unstable transmission (duration of 

transmission less than one month per year), and the remaining 8% in areas of unstable 

transmission (highly seasonal).30 However historic and contemporary maps of malaria 

endemicity for Tanzania44,45 do not provide estimates of the inoculation rate with 

which to determine the distribution of EIR levels among the people within areas of 

stable transmission. 

Our approach makes it possible to look at how such variations in transmission 

intensity might affect the impact of changes in the health system.   However our 
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confidence in the present results is limited by uncertainties in our epidemiologic 

models (especially that for severe malaria and mortality, for which we had no data for 

older age groups12).     

Increasing levels of treatment, in general shift the age-prevalence and age-incidence 

curves so that the peaks are in older age-groups.  We developed our parasitologic 

model mainly using archive data that predated the widespread use of anti-malarial 

chemotherapy. A delayed peak in the age-prevalence curve that we attribute to this 

effect was already apparent in the dataset from Navrongo, Ghana46 that we used in 

developing our parasitologic model.9 The effect of treatment on reducing acquired 

blood-stage immunity is very uncertain, because asexual blood stage immunity is 

modeled as a function of both the number of distinct infections, and of the cumulative 

parasite load and we do not know what should be the relative contributions of these 

two different components of acquired immunity.  The effects of cumulative parasite 

load are intended to simulate acquisition of immunity to antigenic variants that arise 

during the course of the infection.   

We agree with other models for cost-effectiveness of malaria interventions in 

attributing most of the burden of disease to mortality rather than to disability 

associated with acute illness, sequelae, or anemia. Important methodological issues 

requiring further investigation arise in the computation of the DALYs. In African 

populations with high infant mortality there is generally an increase in life-

expectancy during the first few years of life, and this leads to perverse outcomes in 

the computation of DALYs if the effect of an intervention is partly to shift mortality 

to older ages in childhood. For example, if life expectancy at one year is 64 years, and 

life expectancy at five years is 72 years, then the number of life years gained by 

shifting age at death would be negative: 64-72= -8. This effect is accentuated by 

discounting or age-weighting of the DALYs, but does not arise with the Japanese life-

tables used to compute DALYs in the GBD calculations used by the World Health 

Organisation.17 It is generally considered that local life-tables should be used to 

compute DALYs in cost-effectiveness analyses,47 but there is a strong case for using 

death rates that exclude the health effect under investigation. For the present analyses 

we used a life table from an East African site with low malaria incidence. In these 

life-tables, where malaria plays only a small role, there is an increase in life-

expectancy over the first few years of life.  

In conclusion, we have made a first attempt to develop a modeling framework to 

simulate the dynamic effects of the case management of P. falciparum malaria across 
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a wide range of transmission intensities in sub-Saharan Africa.  We discovered 

several deficiencies in our understanding of the relevant health systems.  Our 

simulations of a range of scenarios indicate which of these uncertainties are most 

likely to be important for the prediction of cost-effectiveness of malaria interventions.  

Further development of our modeling approach offers for more realistic evaluation of 

the epidemiologic and economic consequences of malaria interventions. This in turn 

creates a sound foundation for measuring the effects of introducing new antimalarial 

interventions (e.g. malaria vaccines), or scaling-up those that are already known to be 

efficacious and cost-effective. 
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Abstract 

This paper presents an approach to costing the delivery of a malaria vaccine 
through the expanded program on immunization (EPI), and presents the predicted 
cost per dose delivered and cost per fully immunized child (FIC) in Tanzania, 
which are key inputs to the cost-effectiveness analysis. The costs included in the 
analysis are those related to: the purchase of the vaccine taking into account the 
wastage rate; the costs of distributing and storing the vaccine at central, zonal, 
district, and facility level; those of managing the vaccination program; the costs of 
delivery at facility level (including personnel, syringes, safety boxes, and waste 
management); those of additional training of EPI personnel and of social 
mobilization activities. The average cost per FIC increases almost linearly from 
US$4.2 per FIC at a vaccine price of US$1 per dose to US$31.2 at vaccine price 
of US$10 per dose. The marginal cost is around 5% less than the average cost. 
Although the vaccine price still determines most of the total delivery costs, the 
analysis shows that other costs are relevant and should be taken into account 
before marketing the vaccine and planning its inclusion into the EPI.  
 

 

3.1 Introduction 

This paper presents the approach to costing the delivery of a malaria vaccine 

through the Expanded Program on Immunization (EPI), and presents the predicted 

cost per dose delivered and cost per fully immunized child in Tanzania, which are 

key inputs to the cost-effectiveness analysis (reported in an accompanying 

paper1).  

Cost measurement is one crucial step in presenting cost-effectiveness results, 

costs being the numerator in the cost-effectiveness ratio, which gives crucial 

information on allocative efficiency in terms of the cost per health gain of a given 

health intervention.2,3 The cost-effectiveness ratio is essentially calculated by 

dividing the net costs of a health intervention by the net health effects.  

In conducting a cost study, it is essential to follow appropriate methods in order to 

ensure scientific quality as well as comparability with studies of other health 

interventions. Economic evaluation guidelines have been available since the late 

1960s, in the days when cost-benefit analysis of development projects was 

routinely undertaken by OECD government donor agencies and the World 

Bank.4,5 In these early guidelines, detailed methods were presented for cost 

measurement that were consistent with theories of welfare economics.6,7 By the 

1980s, economic evaluation guidelines were available for specific application in 

the health domain.8-12 These early economic evaluation guidelines for health 

interventions, as well as later ones,2,3,13-16 have been widely used in the health 

field, and are commonly referred to as the standard by which economic evaluation 

studies are judged.  
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While in the past it has been recognized that the application of economic 

evaluation in the health field was not standardized and suffered from lack of 

guidance,17 the problem is of a different nature now that there exist an abundance 

of health economic evaluation guidelines, and which propose a variety of 

approaches. While standardization of methods has been attempted by several 

groups in the UK, US, and EU,14,15,18-20 complete standardization of economic 

evaluation methods remains elusive.  

The implication of the different approaches recommended by these guidelines is 

that there remains quite some discretion to the analyst in conducting and 

presenting a cost study. Therefore, this present study endeavors to follow closely 

the highest current standards for cost measurement, taking into account the 

weaknesses inherent in what is essentially a desk study. 

Previous studies on the costs of adding interventions to the EPI 

The delivery of a malaria vaccine through the EPI is a new intervention that has 

not been implemented or modeled anywhere in the world. Therefore, in 

conducting a study that measures the hypothetical cost of adding a malaria 

vaccine to the EPI, in a first step it is important to identify previous cost studies 

that have measured costs of adding other interventions to the EPI. The main aims 

of this literature review were to identify important costs items, to give an 

indication of what data are easily available for different costs of EPI, and to 

identify variables, factors and assumptions that need to be taken into account in 

developing a generalizable cost model and menu for a malaria vaccine provided 

within EPI, including both supply (health system) and demand (population) side 

variables. In particular, useful information on the main features of immunization 

programs, their costs, funding, and performance was obtained from the World 

Health Organization website on immunization financing.21 

The review found that the costs of introducing a new vaccine are essentially a 

function of the cost structure of the EPI and of the particular operational 

conditions of the program. Among the most important determinants of the 

incremental costs of adding a new vaccine into EPI are the characteristics of the 

vaccine itself, the delivery modalities, and the capacity utilization of EPI.22-29,29-31 

For instance, the studies on the introduction of Hepatitis B vaccine into EPI 

schedule showed that, at US$1 per dose, around 80% of the additional costs were 

due to the vaccine.32-34 The remaining costs were mainly those of supplies, 

distribution system (mainly cold chain) and social mobilization. However, vaccine 

delivery costs vary according to the level of capacity utilization and volume of 

immunizations given.  

Hence, the evidence shows that, although the vaccine accounts for a large part of 

the incremental cost of adding a new vaccine into EPI schedule, the immunization 

program can incur considerable additional costs and these depend heavily on the 
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operational conditions of the program itself. Based on these findings, it was 

justified to gather information on the current status of the EPI program in a 

malaria endemic country for the purposes of the cost-effectiveness modeling. 

Therefore, a method was developed to estimate the incremental cost of delivering 

a potential malaria vaccine through the EPI program and it was applied to collect 

the data needed to calculate vaccine delivery costs in one such country. 

Study setting: the Expanded Program on Immunization in Tanzania 

In presenting a cost-effectiveness study based on modeled data, ideally the results 

should reflect a specific setting. A variety of settings have been defined in 

previous cost-effectiveness modeling studies. For example, the comprehensive 

study of Goodman and others35 stratified sub-Saharan African countries by three 

income levels and presented cost-effectiveness simulations for each of these.  

Given the diverse characteristics of the EPI throughout Africa, such country 

stratification was not considered possible in this present study. Therefore, a single 

country, Tanzania, was chosen.  

The EPI in Tanzania was established in 1974 as a vertical program and then, as 

part of the health sector reforms started in mid 1990s, it was integrated into the 

Reproductive and Child Health Unit in the directorate of Preventive Services of 

the Ministry of Health. Immunization services are provided by 3,544 fixed health 

facilities in Tanzania, both public and private for profit and non profit. 10% of 

these provide outreach and mobile services.36 In Tanzania the private sector as a 

whole provides roughly 40% of health services. From 1996, as a consequence of 

the decentralization reforms, the management of day to day immunization 

activities at the service provisional point was left to the District and Municipal 

Councils.36,37  

The recent reforms created a quasi-autonomous drug procurement agency - the 

Medical Store Department (MSD) - responsible for procurement, storage, and 

distribution (until District level) of vaccines and related equipment. Other changes 

introduced in the last few years include government financing of procurement of 

oral polio vaccine, and use of kerosene in the cold chain, the integration of 

kerosene and vaccine distribution, supervision and monitoring in the district 

health system.37 

The vaccines provided by the Tanzanian EPI in the year 2004 include BCG (1 

dose), OPV (3 doses), DPT-HPV (3 doses), tetanus toxoid (5 doses), Measles (1 

dose), and Vitamin A (3 doses). In 2002 the immunization coverage at national 

level was 88% for BCG, 91% for OPV, 89% for DPT-HBV, 89% for measles, and 

86% for tetanus toxoid to pregnant women. The drop out rate for DPT1-DPT3 

was 6%. However, it should be noted that the vaccine coverage rate varies widely 

between EPI providers.38 



 61

A considerable effort was made in recent years to improve the effectiveness of the 

program. In 2001, EPI introduced auto-destructing syringes in place of sterilizable 

needles and syringes, and incinerators were constructed in all district hospitals. 

Incinerators are not available at health centre and dispensary level.36 The vaccine 

wastage rate has been decreasing in recent years, and in 2002 it was around 5% in 

most regions. However, there is a wide variability among districts in wastage 

rates, with some of them reporting wastage rates of up to 16%.38  

Table 3.1 presents the cost structure of EPI in Tanzania for two financial years 

(2000/01 and 2001/02). In 2000/01 the EPI budget in Tanzania was US$11.6 

million for routine immunization services and US$3.3 million for supplementary 

immunization services. The program-specific spending on routine immunization 

service equated to about US$10.6 per DPT3 vaccinated child or US$0.33 per 

capita.21 In 2001/02 the budget on routine immunization increased to US$13.6 

million (a rise of 17% on 2000/01), due to new vaccine introduction and an 

increase in other expenditures for the program. Total expenditures in 2001/02 

were close to US$18 million.  

Table 3.1 also shows the cost profile of EPI program in Tanzania for the last two 

years available. Recurrent costs account for 67% of total cost, and non-recurrent 

costs for 22% (mainly cold chain equipment). Vaccines and injection supplies 

account for most of recurrent costs. However, note that the EPI uses and shares 

certain resources of the national health system, and the costs of these resources are 

not included in these figures. Examples include general health service personnel 

and managers, health facility buildings, and utilities paid for by the health system 

(e.g. electricity). Therefore, the costs presented in Table 3.1 do not represent the 

full costs of providing the EPI. In terms of EPI financing, the Tanzanian 

government increased its allocation for the program from 2000/01 to 2001/02, 

when it funded around 44% of overall financing for immunization, shown in 

Figure 3.1. The government pays mainly for injection supplies, salaries, transport 

and other recurrent costs, vehicles and cold chain equipment and some vaccines. 

Donors pay for vaccines, injection supplies, training, monitoring and surveillance, 

and for vehicles, cold chain and other capital equipment. Donors also fund 

supplementary immunization activities. However, according to the Financial 

Sustainability Plan, the Government of Tanzania is programmed to take over the 

funding of all vaccines in the next few years. 

Tanzania’s EPI has faced several problems during the last few years, which are 

also relevant to consider when making policy recommendations based on the 

findings of cost-effectiveness analysis. The main constraints to a further 

development of the immunization program, as perceived by EPI managers, 

include: inadequate funds; problems in storage of certain vaccines; delays in 

disbursement of funds, from both government and development partners; delays 
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in the procurement process; inadequate refrigerators and spare cold chain capacity 

in some districts; shortage of cold chain equipment; and lack of adequate and 

qualified health staff, especially at facility level.  

 

Table 0.1 Cost structure of EPI in Tanzania, financial years 2000/01 and 
2001/02  

 

Costs/Year Costs year  
2000/01 

% Costs year 
2001/02 

% 

Recurrent costs (2) 6,854,056 59% 8,981,321 67% 
Vaccines  2,601,714 23% 3,310,240 25% 
Injection supplies 608,931 5% 2,082,453 16% 
Kerosene/gas 904,207 8% 904,207 7% 
Distribution of vaccines 
supplies 

202,247 2% 202,247 2% 

Personnel (per diems) 274,285 2% 274,285 2% 
Transportation 82,801 1% 85,036 1% 
Maintenance and overhead 14,299 0% 7,895 0% 
Short – term training 277,558 2% 301,107 2% 
IEC/ social mobilisation 107,817 1% 282,100 2% 
Monitoring and surveillance 1,780,197 15% 1,531,751 11% 
 
Non recurrent costs (2) 

4,704,635 41% 4,399,949 33% 

Transport (vehicles/bicycles) 59,359 1% 62,921 1% 
Cold chain equipment 4,645,276 40% 4,337,028 32% 
Total costs (1)+(2) 11,558,691 100% 13,381,270 100% 
 
SIA (polio and measles) (3) 

3,312,301 100% 3,199,396 100% 

Vaccines 1,609,752 49% 1,246,500 39% 
Inlection supplies 316,653 10% 567,000 18% 
Per diems 50,000 2% 50,000 2% 
Operational costs 1,335,896 40% 1,335,896 42% 
 
Optional information (4) 

        

Shared personnel costs 479,256   479,256   
Long term training 0    51,250   

 
Total costs (1)+(2)+(3)+(4) 

15,350,248   17,111,172   

Source: Ministry of Health, Tanzania
36
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Figure 0.1 EPI funding sources, financial years 2000/01 and 2001/02 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Study aims 

The aim of the present costing study is to measure the incremental costs of adding 

a hypothetical malaria vaccine to the EPI schedule, to enable estimation of cost-

effectiveness of such a vaccine. 

 

 

3.2 Methodology 

Study perspective and choice of costs presented 

After defining the study aims, the next step in a cost study is to choose which 

costs to include. The costs included in cost-effectiveness analysis depend first on 

the perspective of the analysis, whether it be the health care system, the patients, 

or society. In this study, the cost-effectiveness analysis is performed according to 

a societal perspective, which includes the health system, the patient, and other 

groups affected by the intervention (such as the larger community). Given this 

perspective, the costs included and measured must be relevant to the objectives of 
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potential new intervention, the cost of interest is the incremental cost associated 

EPI funding sources

0%

20%

40%

60%

80%

100%

2001 2002

%
 o

f 
to

ta
l 

fu
n

d
s GAVI

Multilaterals

Bilaterals

Government



 64

with the intervention to achieve the health effect. Given the range of information 

needs of decision makers in the health sector, two types of incremental cost have 

been selected for measurement: marginal cost and average cost.  

Marginal cost  

The marginal cost consists of the additional costs that would be incurred when 

introducing a malaria vaccine into the EPI schedule, based on new resources that 

would need to be employed in the delivery of the intervention. This information is 

most relevant for a decision maker who has to make resource allocation decisions, 

based on the immediate resource impact of an intervention. Therefore, for 

example, when spare capacity in the health system exists, the use of that spare 

capacity is not included in the marginal cost analysis. However, when full 

capacity has been reached and new resources are needed, these are included in the 

marginal cost analysis. 

Average cost 

The average cost includes all those costs involved in delivering a health 

intervention, whether they are employed specially for a new intervention, whether 

resources are shifted away from other activities, or whether spare capacity is used. 

Average costing involves sharing the costs of existing capacity amongst all the 

interventions benefiting from those resources. The usefulness of presenting full 

economic cost through this analysis is that it enables comparison of intervention 

efficiency in the long-term, where all resources can (hypothetically) be redeployed 

in alternative uses. Therefore, average costs are useful for cost-effectiveness 

analyses for long-term planning decisions. 

In both marginal and average analyses, all types of cost are included where 

necessary. In this analysis, for policy making reasons a distinction is made 

between non-recurrent (capital) cost items (defined as resources that are not 

wholly consumed within a one year period) and recurrent cost items (defined as 

items that are used up during a year).  

Algorithm for calculating vaccine delivery cost 

The specific characteristics of a malaria vaccine are still unknown. This analysis is 

based on a hypothetical vaccine that must be stored between +2°C and +8°C, it 

has a commercial package similar to that of DTP-HBV vaccine and it requires 

three doses to fully immunize a child delivered at the same time as the DTP-HBV. 

The vaccine delivery cost per dose ( dV ) is estimated according to the following 

formula: 

d d d d d d d dV P D S M E T Z= + + + + + +        (1) 

where, dP  is the purchase cost per dose; dD  is the distribution cost per dose; dS is 

the storage cost per dose; dM is the management cost per dose; dE is the delivery 
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cost per dose; dT  is the training cost per dose; and dZ  is the social mobilization 

cost per dose.  

The variables in equation (1) are covered in detail in this paper. All variables are 

calculated, where relevant, under both marginal cost (MC) and average cost (AC) 

scenarios. The cost per Fully Immunized Child (FIC) with the vaccine is 

computed by multiplying dV  by three. However, the average cost per FIC is 

marginally greater than three times the cost per dose, due to the drop out of infants 

after the first dose. 

To estimate the total number of doses required per year in Tanzania it is assumed 

that the coverage rate would be the same as that for 3 doses of DTP-HBV in the 

year 2003, which stood at 89%, with a drop out rate from the first to the third dose 

of 6%.  

Net vaccine purchase cost (f.o.b.) 

In the cost-effectiveness analysis different price hypotheses are used ranging from 

US$1.00 to US$10 per dose. No base case is presented, as it may become 

misleading in presenting results. Instead, cost results are presented under a 

number of vaccine price assumptions: US$1, US$2, US$4, US$6, US$8, and 

US$10. Import duties are not included, as these are not an economic cost but 

instead a transfer payment. 

The contribution of freight costs to the price at which the country receives the 

vaccines (i.e. including c.i.f. – carriage, insurance and freight) essentially depends 

on the original price of the vaccine, the packed volume of the vaccines, and the 

mode of transport. For DPT-HBV the contribution of freight to the c.i.f. price is 

reported in MSD documents and in the GAVI Financial Sustainability Plan. 

However, in this analysis the price assumptions include freight costs to the port of 

entry. 

To estimate the total vaccine cost per dose delivered it is assumed that 5% of 

vaccine is wasted. The purchase costs per dose of the vaccine ( dP ) is computed as 

follows: 

(1 )d p vP V Q= +           

 (2) 

where pV  is the vaccine price; vQ is the wastage rate. 

Storage and distribution costs 

The cold chain system of EPI in Tanzania includes five operational levels each 

equipped with cold chain equipment as follows:39 

- 1 central vaccine store at Medical Store Department (MSD) in Dar es Salaam;  

- 8 Zonal vaccine stores at MSD;  

- 15 regional vaccine stores;  
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- 116 district vaccine stores;  

- 3,544 health facilities (dispensaries, health centers, hospitals). 

All health facilities conduct immunization activities and are equipped either with 

a small absorption refrigerator and freezer operating on either kerosene or 

electricity, or with LP gas or a solar powered refrigerator. 

However, the storage and distribution system is continuously undergoing changes 

and the MSD is restructuring the storage and distribution policy and is negotiating 

a new financial agreement with the Ministry of Health. Currently a new malaria 

vaccine would be distributed from the central MSD in Dar es Salaam to the 8 

zonal stores and from these directly to Districts. The distribution from Districts to 

the health facilities providing immunization services is under the direct 

responsibility of EPI. 

The new agreement between MSD and EPI includes a tariff scheme for storage of 

products at central and zonal level and for distribution from central stores to zonal 

stores and then from zonal stores to districts. The tariffs are as follows: 

- For storage of cold items at the national store, Tshs 300,000/m3 (US$286) is 

charged per month. 

- For distribution of cold chain items to all MSD zones (other than Dar South), 

Tshs 625,000/ m3 (US$595) is charged. 

- For distribution from any MSD zonal store to all districts, Tshs 145,000/ m3 

(US$138) is charged.  

These new tariffs are the most reliable information currently available on the 

current and future cost of storage and distribution of vaccines. Therefore to 

estimate the incremental cost of storing and distributing the vaccine the new tariff 

scheme is used, assuming thus that MSD will distribute vaccine first to zonal 

stores and then to districts. 

To estimate the incremental cost of storage and distribution of the vaccine the 

package volume requirement for transportation and cold chain storage at national, 

zonal, and at service delivery level was estimated on the basis of the WHO 

Guidelines for estimating costs of introducing new vaccines into the national 

immunization system.40 These guidelines provide a method to estimate the total 

volume package required for storage and distribution of a vaccine, taking into 

account wastage rates, cold chain and transport grossing factors. The new tariffs 

defined by MSD for storage and distribution were then applied to the volume 

package estimated for the vaccine. 

The estimated package volume per year for storage was 901 m3, while at service 

delivery level it was 684 m3. The estimated package volume for transport per year 

was 3,543 m3.  

MSD distributes vaccines from the central store to the 8 zonal stores and from 

these to district stores every three months (4 times a year). Every three months 
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there is thus a need to store at national, zonal, and district level one fourth (i.e. 3 

months’ worth) of the estimated package volume. It is assumed that MSD is able 

to distribute the vaccines to zonal and district stores within one month from when 

it receives them, and thus every three months it has to store the estimated volume 

package for a maximum of one month at national and zonal level. 

Districts receive the vaccines every three months and distribute them to health 

facilities monthly. It is assumed that every three months districts have to store the 

estimated package volume of vaccine for a maximum of one month. 

The cost of storage per vaccine dose at national level is computed according to the 

following formulae: 

 

m m y

d

vy

S N F
S

N
=         (3) 

 

where dS  is the cost of storage per vaccine dose at national level; mS  is the 

storage cost/tariff per m3 per month; mN  is the number of months of storage (over 

one year); yF  is the volume package per year for storage at all levels (per m3); 

and vyN  is the number of doses of the vaccine per year.  

The storage cost at zonal and district level is assumed to be the same as that at 

central level. The cost of storage at facility level is computed with the same 

formula but the volume package required - estimated according to WHO 

Guidelines - is different. This is due to different grossing factors, which adjusts 

for the different presumed percentage use of cold chain capacity at different MSD 

levels. For national and provincial level the grossing factor is 2.9; whereas for 

district level the grossing factor is 2.2. 

The cost of distribution per dose of vaccine from central to zonal stores is 

computed according to the following formulae: 
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N N

N
α

−
=  

and zdD  is the distribution cost from central to zonal stores per dose of vaccine; 

zmD is the distribution cost/tariff from central to zonal stores per m3; tF  is the 

estimated volume package for transport of the vaccine; vTN  is the total number of 

vaccine doses delivered in Tanzania; and vDN  is the total number of vaccine doses 

delivered in Dar es Salaam.  
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The adjustment factor α is included to account for the fact that the distribution 

from central to zonal store for the Region of Dar es Salaam should not be 

included. This is because the MSD does not charge EPI for vaccine supplies sent 

to Dar South, due to its proximity to MSD.  

The cost of distribution from zonal to district stores per dose ( ddD ) is computed 

according to the following formulae: 

dm t
dd

vy

D F
D

N
=         (5)  

where dmD  is the distribution cost/tariff from zonal to district stores per m3. The 

cost of distribution of the vaccine from district to the health facilities - that is 

under the direct responsibility of EPI - is assumed to be the same as that from 

zonal to district stores. This might on the one hand overestimate distribution costs 

since the distance between district vaccine stores and health facilities is normally 

shorter than that from zonal stores to district vaccine stores, on the other hand it 

might not because of (dis)economies of scale of distributing less quantity of 

vaccine to different facilities. However, in the absence of more detailed data to 

confirm which cost determinant predominates, the same cost per cubic metre is 

assumed. 

 

The costs of cold chain storage are mainly capital costs since cold storage mainly 

consists of cold rooms and refrigerators that last longer than one year. Only 

personnel and electricity or fuel for refrigerators are recurrent costs and these 

account for a marginal part of storage costs. In the absence of detailed breakdown 

from MSD, it is assumed that capital costs account for 80% of cold chain costs 

and recurrent costs the remaining 20%.  

Distribution costs are both recurrent (e.g. fuel for vehicles, fares for air transport, 

personnel) and capital (e.g. cold boxes, costs of vehicles). Compared to the 

capital-recurrent breakdown of cold chain storage, fuel costs in distributing 

vaccines account for a more considerable proportion of total distribution costs. 

Therefore, it is assumed that 50% of distribution costs are capital and 50% are 

recurrent costs. 

Management costs 

A wide range of personnel are involved in delivering a new vaccine, including 

managers, surveillance staff, community health workers, nurses and doctors. The 

personnel involved in EPI are distributed throughout all the levels of the health 

care system – i.e. national, regional, district, and health facility. 

The introduction of a new vaccine in the EPI will require additional management 

costs at all levels of the EPI system. It is thus assumed that all personnel of EPI at 

national (excluding the EPI manager), and regional level, the District Medical 
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Officer, the District Reproductive and Child Health Coordinators, the Medical 

Officers, and the Medical Records Officers would have to allocate 10% of their 

working time devoted to EPI. These management costs are included only in the 

average analysis since it is uncertain whether new personnel will be employed by 

EPI to manage the malaria vaccine.  

Vaccine delivery costs 

The costs at the point of delivery include the recurrent costs of personnel involved 

in EPI at facility level, of syringes, and of safety boxes, and the capital cost of 

waste management (other than safety boxes). 

Personnel 

According to interviews held with EPI at national level, the employees believe 

that introducing a new vaccine into EPI would not require additional personnel at 

facility level. The main justification given for this opinion is that EPI personnel at 

facility level are now integrated into the Reproductive and Child Health Unit and 

normally they do not dedicate 100% of their time to EPI. 

Based on observations of selected health facilities in Tanzania, it became apparent 

that there exist several ways of organizing an EPI session. In Dar es Salaam 

infants can get vaccination on any working day (5) of the week, while in Mtwara 

Region in Southern Tanzania vaccination availability varies from selected days 

every three months for outreach to remote villages, to two days per week for 

health centres.  

In terms of the spare capacity of the staff to administer a new vaccine, vaccinators 

interviewed in general concurred that a new vaccine requiring five extra minutes 

per child could be accommodate without needing additional staff. However, 

during the health facility visits the issue of lack of skilled personnel was often 

raised, thus suggesting that staff are often under pressure from the volume of 

clients. Therefore, the impression is that EPI staff could probably accommodate a 

new vaccine using the current capacity but this may lower the quality of services 

as a whole. Hence, in order to maintain the minimum quality of services, 

vaccination staff will need to be strengthened in numbers, targeting those facilities 

that are already close to their limit in terms of proportion of working time already 

used.  

In the marginal analysis only the incremental cost of vaccinators is included, 

while in the average analysis both the costs of vaccinators and that of other 

personnel at district and other facility level staff are included.  

In the average analysis it is assumed that personnel of the districts other than 

vaccinators – i.e. Medical Assistants, Health Officers, and Nurses – would have to 

increase by 10% of their working time spent on vaccination to the malaria 

vaccine.  
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The incremental cost per dose for these personnel ( ldI ) is computed as follows: 

y it mv p
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=         

 (6) 

where yW  is the annual gross wage; itP  is the % of staff working time for 

immunization; mvP  is the percentage increase in EPI working time spent on 

malaria vaccine; and pN  is the number of personnel. 

Data for the annual gross wage, the percentage of working time for immunization, 

and the number of personnel, come from the Ministry of Health.36 In the marginal 

analysis it is assumed that these personnel have enough spare capacity to 

accommodate the increase in working time required by the new vaccine and thus 

the incremental cost is zero. 

For vaccinators a cost per dose of vaccine is estimated assuming an administration 

time of 7 minutes, and the cost per working minute of vaccinators is computed 

assuming 230 working days per year and 6 productive hours per day.  

The cost per dose is computed as follows: 
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where dL  is the cost of vaccinators per dose; yW is the annual gross wage; yM  is 

the total number of working minutes per year; and tA  is the vaccine 

administration time. 

The personnel vaccine delivery cost is thus computed as follows: 

 

Average analysis: d ldL I= +  

Marginal analysis: dL=   

Syringes 

For both marginal and average analyses, the syringe incremental cost per dose 

( dG ) is calculated as follows: 

( ) (1 )d gd i rd r sG N G N G Q= + +         (8) 

where gdN  is the number of injection syringes per dose; iG is the unit cost of 

injection syringes (freight included); rdN is the number of reconstitution syringes 
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per dose; and rG  is the unit cost of reconstitution syringes (distribution included); 

sQ  is the syringe wastage rate. 

The syringe wastage rate is 10% as suggested by the WHO Guidelines and 

confirmed by GAVI documents. The cost of syringes used is that of the MSD 

catalogue for year 2004 [41], while the distribution costs are assumed to be 3% 

per cent of the cost of syringes.  

 

Safety boxes 

Safety boxes are present at the place of vaccination, and after vaccination the used 

syringes are disposed immediately into these. The safety boxes incremental cost 

per dose ( dB ) is computed as follows: 
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=         (9) 

 

where sN  is the total number of syringes; bY  is the capacity of safety boxes; bQ is 

the wastage factor for safety boxes; and iB is the unit cost of safety boxes 

(distribution included). 

The capacity of safety boxes is 100 syringes, and the wastage rate for safety boxes 

used is assumed to be 11% (giving a factor of 1.11) as reported in the GAVI 

annual progress report.41 The unit cost of safety boxes comes from MSD 

catalogue 2004 http://www.msd.or.tz/ and include 3% of distribution cost. 

 

Waste management incremental cost per dose 

The capital resources required for effective waste management should include the 

capital cost of incinerators and any buildings required to house them. Recurrent 

costs include those associated with incinerator fuel and maintenance, training, and 

salaries of staff. However, in Tanzania only hospitals have incinerators while in 

health centres and dispensaries the waste management practice is to throw the 

safety boxes into a deep hole and fire them with kerosene. In fact, this was 

confirmed in all the facilities visited by the study team. 

The waste management of the malaria vaccine should be the same as that for other 

vaccines currently delivered through EPI, and it is unlikely that EPI would 

introduce different waste management practices due to a new vaccine. The cost of 

waste management was thus considered to be zero (except for the safety box cost, 

as considered above). 

Training 
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EPI personnel will have to be trained for the administration of the new vaccine. 

The training on the new vaccine can either be limited to the period just before or 

during its introduction or can continue in successive years. In this analysis it is 

assumed that the training is limited to the introduction period and has duration of 

effect of five years, which enables an annual value for training cost to be 

computed.  

In Tanzania training of health workers can be organized at zonal, district and 

facility level. When it is organized at zonal and at district level the health workers 

get a per diem to cover the cost of being outside the health facility. It is assumed 

that in the first year of vaccine introduction five days of training are provided at 

zonal and district level, and four days at health facilities. An ingredient approach 

is used to estimate the cost of training at each level.  

The training at zonal level is assumed to be organized as a five days workshop in 

each of the eight zonal training centres, with two trainers per workshop, attended 

by personnel at regional and district level (i.e. not staff from health facilities), 

comprising one Regional Cold Chain officer, one District Cold Chain officer, one 

Medical records officer, one District RCH coordinator, and one Regional RCH 

coordinator. 

The daily cost per trainers is assumed to be US$30, the overheads cost of each 

premises used for the training (one per zone) US$40, the per diem of personnel 

US$30, the transport cost per workshop per person US$4, stationary cost per 

person per day US$1, and tea and coffee per day US$ 2 per person.41 

The training at district level is assumed to be attended by one person per health 

facility providing immunization services, and led by one trainer per district. The 

daily cost per trainer is assumed to be US$30, the overheads cost each premise 

(one per district) used for the training US$10, the per diem of personnel US$5, the 

transport per meeting US$2 per person, and stationary and tea & coffee costs the 

same as at zonal level.36  

The training cost per dose of vaccine at zonal ( zT ) and at district level ( dT ) is 

computed according to the following formula, assuming the training has duration 

of effect of five years: 
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where trN  is the number of days of training; trLN  is the number of trainers; LC is 

the cost per trainer per day; aN is the number of person attending training; aC is 

the per diem of training attendants; stC is the cost of stationary per person per day; 
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teaC is the cost of tea and coffee per person per day; locN is the number of premises 

used for training; locC is the overheads cost of premises used for training per day; 

and traC  is the cost of transport per person per workshop. To estimate the annual 

equivalent cost, equation (14) can be divided by 5. 

The training at facility level is supposed to be attended by all personnel at facility 

level but except those that were already involved in training at district level. A 

trainer per health facility providing immunization services is assumed to be used, 

the daily cost per day of training is US$ 20 plus US$ 20 of transport cost per 

trainer (assuming that trainers travel only once to each facility during the 4 day 

training). 

The total training cost at facility level ( fT ) is computed according to the following 

formula: 
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where fN  is the number of facilities providing immunization services.  

The total cost of training is computed as the sum of training cost at zonal, at 

district and at facility level: 

 

z d fT T T T= + +       (12) 

 

Social mobilization 

Advocacy and social mobilization efforts are crucial for ensuring the successful 

introduction of a new vaccine. The introduction of the new vaccine should be 

followed by an increase in the social mobilization efforts. 

It is assumed that in the first years after the introduction of the vaccine into EPI a 

substantial number of social mobilization activities will be organized. In the 

marginal analysis it is assumed that the budget for these social mobilization 

activities would be approximately equal to the current expenditure on social 

mobilization (Table 3.1) and it is thus estimated around US$ 300,000 per year. 

This scale of social mobilization is warranted by the fact that messages will need 

to inform the population about the characteristics of the vaccine, and the 

importance of continuing other preventive and curative strategies. 

In the average analysis social mobilization costs are assumed to be US$ 450,000 

per year. Hence the addition of US$150,000 is assumed to account for the time 

dedicated to social mobilization efforts by the personnel already employed by the 

health care system. While this amount may seem relatively small, the relatively 
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low unit labour cost in Tanzania explains why there is not a sharp increase in 

costs. 

 

3.3 Results  

Target population 

In Tanzania, in 2003 the number of live births in 2003 was 1,438,000, and 

1,289,000 infants survived the first year.42 Assuming the same coverage rate 

reported for DTP-HBV vaccine, the total number of vaccine doses per year is 

estimated, assuming the same coverage rate reported for DTP-HBV vaccine, to be 

close to four million (Table 3.2).  

 

Table 0.2 Target population 

 

Population/Vaccine doses % N Source 

Target population  100% 1,438,000   42 
Target first dose  95% 1,366,100  36 
Target second dose  92% 1,322,960  36 
Target third dose  89% 1,279,820  36 

Total number of doses   3,968,880  

 

Cost per fully-immunised child (FIC) 

Figure 3.2 shows the average cost per fully-immunised child at each vaccine price 

per dose assessed. The average cost per FIC increase almost linearly from US$4.2 

per FIC at a vaccine price of US$1 per dose to US$31.2 at vaccine price of US$10 

per dose.  

Table 3.3 presents more detailed cost data, showing that marginal costs are not 

considerably less than average costs. The marginal cost per dose is 6-7 US cents 

less than the average cost, thus making less than US$0.2 per FIC. This difference 

represents well under 5% difference between average and marginal cost. 

Table 3.3 also presents the contribution of recurrent and non-recurrent costs to 

total cost. As the vaccine price increases, the non-recurrent contribution does not 

change, thus giving a considerably greater weight to recurrent costs at higher 

prices.  
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Table 0.3 Summary of costs at different vaccine prices per dose 

 
Vaccine price assumption per dose Option and 

cost inclusion 
Recurrent / non-recurrent 

US$ 
1 

US$2 US$4 US$6 US$8 US$10 

Average 
cost 

Recurrent cost per dose 1.41 2.41 4.41 6.41 8.41 10.41 

 Non-recurrent cost per 
dose 

0.07 0.07 0.07 0.07 0.07 0.07 

 Total cost per dose 1.48 2.48 4.48 6.48 8.48 10.48 

 Total cost per FIC 4.43 7.43 13.43 19.43 25.43 31.43 
Marginal 
cost 

Recurrent cost per dose 1.35 2.35 4.35 6.35 8.35 10.35 

 Non-recurrent cost per 
dose 

0.07 0.07 0.07 0.07 0.07 0.07 

 Total cost per dose 1.41 2.41 4.41 6.41 8.41 10.41 
 Total cost per FIC 4.24 7.24 13.24 19.24 25.24 31.24 

 

Figure 0.2 Average cost per fully-immunized child 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Total cost to EPI 

Figure 3.3 shows the marginal costs to EPI at each vaccine price per dose 

assessed. The marginal costs increase almost linearly from US$5.7 million at a 

vaccine price of US$1 per dose to US$45.3 million at a vaccine price of US$10 

per dose. In this case, the marginal cost is more relevant, as this is the additional 

cost that EPI is likely to have to finance, on top of the current resources available 

and annual budget. However, the average cost is not considerably greater, 

somewhere in the order of US$250,000 more for all vaccine price scenarios less 

than 5% more than the marginal cost.  

Data on the proportion of total costs made up of recurrent and capital costs are 

provided in the Annex tables, a distribution which is shown to vary between 
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vaccine price scenarios. At a vaccine price of US$1 per dose the capital costs are 

roughly 4% of the total cost, but this proportion declines as the vaccine price 

increases.  

In comparison to the current budget and expenditure patterns of the EPI, these 

total costs represent a considerable impact on the budget if the malaria vaccine 

were included in the vaccination schedule (see Table 3.7 and the Annex tables). 

The budget for the year 2001/02 of US$17 million is little more than 3 times the 

cost scenario modelled at a vaccine price of US$1 per dose. At higher vaccine 

prices the costs of the malaria vaccine become greater than the current EPI 

budget, rising to three times the current budget at a vaccine price of US$10 per 

dose.  

 

Figure 0.3 Marginal costs to EPI of the malaria vaccine 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Components of cost 

Figure 3.4 shows the percentage contribution of different cost components to total 

cost, at each vaccine price per dose – US$1, US$2, US$4, US$6, US$8, and 

US$10. It demonstrates the change in the contribution of different cost 

components (described in the methods section) at different vaccine prices. The 

conclusion is that most cost components become more and more insignificant as 

vaccine price increases. For example, all cost components except vaccine price 

and storage and distribution contribute less than 10% to total cost at vaccine 

prices above US$6 per dose.  
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Cold chain storage and distribution costs are shown in Table 3.4, and account for 

most of the incremental cost of the vaccine, apart from the vaccine price itself. 

Storage cost per dose is around US$0.03, while the cost of distributing the vaccine 

is US$0.08, 66% of which is accounted for by the distribution of the vaccine from 

central to zonal level. Storage and distribution costs are expected to be the same 

for both the average and marginal analysis. 

Management costs are included only in the average analysis and are the same for 

both options. The management costs are found to be insignificant at US$ 0.0023 

per dose. All of these are recurrent costs. 

Vaccine delivery costs are presented in Table 3.5 and contribute US$0.22 to the 

average cost, and US$0.20 to the marginal cost. All these costs are recurrent costs. 

Figure 3.5 shows the contribution of personnel, syringes and safety boxes 

diagrammatically.  

The training cost per dose is US$0.03 in both types of analysis, most of which are 

recurrent costs. Table 3.6 shows the breakdown by resource input, the main 

contributor (50%) being the cost of trainers. The social mobilization cost is 

US$0.11 per dose in the average cost analysis, and US$0.08 in the marginal cost 

analysis. The entire social mobilization cost is recurrent. 

 

Figure 0.4 Storage and distribution costs 

 

Cost item Cost per dose 
administered (US$) 

Cold Chain Storage 0.03 

  Recurrent  0.01 

  Non recurrent 0.02 

Distribution 0.08 

  Recurrent  0.04 

  Non recurrent 0.04 
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Table 0.4Vaccine delivery costs 

 
Cost per dose administered (US$) Cost item 

Average Marginal 

Vaccine Delivery 0.22  0.20 

Recurrent       
  Personnel at facility 0.08  0.06 
  Syringes 0.12  0.12 
  Safety boxes 0.03  0.03 

Non recurrent 0   0  

 
 

Table 0.5 Training costs 

 
Cost item Cost per dose administered 

(US$) 
Training (per year) 0.03 

Recurrent  
  Trainers 0.015 
  Per diem 0.007 
  Stationary 0.001 
  Tea and coffee 0.001 
Non recurrent  
  Premises 0.000 

  Transport 0.004 

 

Table 0.6 Contribution of cost components at different vaccine prices. 
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Figure 0.5 Vaccine delivery cost 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4 Discussion 

 

In this paper the delivery cost of a hypothetical malaria vaccine was estimated on 

the basis of the information currently available on the likely characteristics of the 

vaccine itself and on the EPI in Tanzania. 

The major strength of this analysis is that it is based on information on the current 

features of EPI in Tanzania, using the best available data on costs and functioning 

of EPI, also drawing on qualitative data collected from experts from within the 

Tanzanian health system, and observations of health facilities by the study team. 

The cost of delivery is estimated assuming different vaccine price hypothesis from 

US$1 per dose up to US$10.  

The costs included in the analysis are those related to: the purchase of the vaccine, 

taking into account the wastage rate; the costs of distributing and storing the 

vaccine at central, zonal, district, and facility level; those of managing the 

vaccination program; the costs of delivery at facility level (including personnel, 

syringes, safety boxes, and waste management); those of additional training of 

EPI personnel and of social mobilization activities. 

Although the vaccine price still determines most of the total delivery costs, the 

analysis shows that other costs are relevant and should be taken into account 

before marketing the vaccine and planning its inclusion into the EPI. This is 

particularly important since new vaccines are likely to have bigger volume 

packages than that used in this analysis. 
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In fact, the vaccine delivery cost, even when the vaccine price is excluded, is 

relatively high and would require additional resources to be allocated to the EPI. 

At a vaccine price of US$1 per dose the total annual cost to EPI would be over 

35% of the current budget.36 When the vaccine price rises to US$4 per dose the 

total annual cost would rise to over US$ 19 million – slightly more the annual EPI 

budget in 2002. 

It is thus important to bear in mind that for the vaccine to be delivered through 

EPI, some investments are required in strengthening the program. In particular, 

the storage capacity at central, zonal, district and facility level would need to be 

reinforced. 
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3.5 Annex 

 

Table 0.7  Total cost of introducing the vaccine in EPI at US$1 per dose 

in US$ Incremental cost per dose 
administered 

 Total cost for EPI per 
year 

 Average Marginal  Average Marginal 
Purchase Cost 1.10 1.10  4'365'768 4'365'768 
Distribution 0.08 0.08  322'981 322'981 
Cold Chain Storage 0.03 0.03  106'688 106'688 
Management Cost 0.002 0.000  9'268 - 
Vaccine Delivery 0.22 0.20  882'535 795'778 
Training (Over 1 Year) 0.03 0.03  117'165 117'165 
Social Mobilization 0.11 0.08  450'000 300'000 
Total Cost  1.58 1.51  6'254'405 6'008'379 
Recurrent Costs 1.51 1.45  5'990'191 5'744'165 
Non Recurrent Costs 0.07 0.07  264'214 264'214 
TOTAL COST PER FIC 4.73 4.54  - - 

 

Table 0.8 Total cost of introducing the vaccine in EPI at US$2 per dose 

 

in US$ Incremental cost per dose 
administered 

 Total cost for EPI per year 

 Average Marginal  Average Marginal 
Purchase Cost 2.20 2.20  8'731'536 8'731'536 
Distribution 0.08 0.08  322'981 322'981 
Cold Chain Storage 0.03 0.03  106'688 106'688 
Management Cost 0.002 0.000  9'268 - 
Vaccine Delivery 0.22 0.20  882'535 795'778 
Training (Over 1 Year) 0.03 0.03  117'165 117'165 
Social Mobilization 0.11 0.08  450'000 300'000 
Total Cost  2.68 2.61  10'620'173 10'374'147 
Recurrent Costs 2.61 2.55  10'355'959 10'109'933 
Non Recurrent Costs 0.07 0.07  264'214 264'214 
TOTAL COST PER FIC 8.03 7.84  - - 
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Table 0.9 Total cost of introducing the vaccine in EPI at US$4 per dose  

 

in US$ Incremental cost per dose 
administered 

 Total cost for EPI per 
year 

 Average Marginal  Average Marginal 
Purchase Cost 4.40 4.40  17'463'072 17'463'072 
Distribution 0.08 0.08  322'981 322'981 
Cold Chain Storage 0.03 0.03  106'688 106'688 
Management Cost 0.002 0.000  9'268 - 
Vaccine Delivery 0.22 0.20  882'535 795'778 
Training (Over 1 Year) 0.03 0.03  117'165 117'165 
Social Mobilization 0.11 0.08  450'000 300'000 
Total Cost  4.88 4.81  19'351'709 19'105'683 
Recurrent Costs 4.81 4.75  19'087'495 18'841'469 
Non Recurrent Costs 0.07 0.07  264'214 264'214 
Total Cost Per FIC 14.63 14.44  - - 

 

Table 0.10 Total cost of introducing the vaccine to the EPI at US$6 per dose 

 

in US$ Incremental cost per dose 
administered 

 Total cost for EPI per 
year 

 Average Marginal  Average Marginal 
Purchase Cost 6.60 6.60  26'194'608 26'194'608 
Distribution 0.08 0.08  322'981 322'981 
Cold Chain Storage 0.03 0.03  106'688 106'688 
Management Cost 0.002 0.000  9'268 - 
Vaccine Delivery 0.22 0.20  882'535 795'778 
Training (Over 1 Year) 0.03 0.03  117'165 117'165 
Social Mobilization 0.11 0.08  450'000 300'000 
Total Cost  7.08 7.01  28'083'245 27'837'219 
Recurrent Costs 7.01 6.95  27'819'031 27'573'005 
Non Recurrent Costs 0.07 0.07  264'214 264'214 
TOTAL COST PER FIC 21.23 21.04  - - 
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Table 0.11 Total cost of introducing the vaccine in EPI at US$8 per dose 

 

in US$ Incremental cost per dose 
administered 

 Total cost for EPI per 
year 

 Average Marginal  Average Marginal 
Purchase Cost 8.80 8.80  34'926'144 34'926'144 
Distribution 0.08 0.08  322'981 322'981 
Cold Chain Storage 0.03 0.03  106'688 106'688 
Management Cost 0.002 0.000  9'268 - 
Vaccine Delivery 0.22 0.20  882'535 795'778 
Training (Over 1 Year) 0.03 0.03  117'165 117'165 
Social Mobilization 0.11 0.08  450'000 300'000 
Total Cost  9.28 9.21  36'814'781 36'568'755 
Recurrent Costs 9.21 9.15  36'550'567 36'304'541 
Non Recurrent Costs 0.07 0.07  264'214 264'214 
TOTAL COST PER FIC 27.83 27.64  - - 

 

Table 0.12 Total cost of introducing the vaccine in EPI at US$10 per dose 

 

in US$ Incremental cost per dose 
administered 

 Total cost for EPI per 
year 

 Average Marginal  Average Marginal 
Purchase Cost 11.00 11.00  43'657'680 43'657'680 
Distribution 0.08 0.08  322'981 322'981 
Cold Chain Storage 0.03 0.03  106'688 106'688 
Management Cost 0.002 0.000  9'268 - 
Vaccine Delivery 0.22 0.20  882'535 795'778 
Training (Over 1 Year) 0.03 0.03  117'165 117'165 
Social Mobilization 0.11 0.08  450'000 300'000 
Total Cost  11.48 11.41  45'546'317 45'300'291 
Recurrent Costs 11.41 11.35  45'282'103 45'036'077 
Non Recurrent Costs 0.07 0.07  264'214 264'214 
TOTAL COST PER FIC 34.43 34.24  - - 
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Abstract 

We predict the effects of introduction of a pre-erythrocytic vaccine against 
Plasmodium falciparum into a malaria endemic population in Africa. We use a 
stochastic simulation model which includes components of transmission, 
parasitology, and clinical epidemiology of malaria and was validated using the 
results of field trials of the RTS,S/AS02A vaccine. The results suggest that 
vaccines with efficacy similar to that of RTS,S/AS02A have a substantial impact 
on malaria morbidity and mortality during the first decade following their 
introduction, but have negligible effects on malaria transmission at levels of 
endemicity typical for sub-Saharan Africa. The main benefits result from 
prevention of morbidity and mortality in the first years of life. Vaccines with very 
short half-life or low efficacy may have little overall effect on incidence of severe 
malaria. A similar approach can be used to make predictions for other strategies 
for deployment of the vaccine and to other types of malaria vaccines and 
interventions.  
 

4.1 Introduction 

 The development of a safe and effective vaccine against Plasmodium falciparum 

is recognized as one of the major unmet medical needs in non-industrialised 

countries.1,2 As a result of recent funding initiatives various candidate vaccines 

targeting different stages of the parasite are in pre-clinical and clinical 

development.2 The most advanced vaccine development program is currently that 

of the pre-erythrocytic vaccine, RTS,S/AS02A, which recently demonstrated an 

efficacy of 45% in preventing P. falciparum infection in children in 

Mozambique.3  

Partially protective vaccines have complex effects on the dynamic interactions 

between the host and an infectious agent.4 It is generally acknowledged that a 

malaria vaccine is unlikely to be 100% effective and the effects of imperfectly 

protective malaria vaccines may be particularly complex. In order to make 

predictions of the likely public health impact of a range of malaria vaccines we 

have developed a stochastic simulation model of the epidemiology of P. 

falciparum in endemic areas.5 We have now used this model to simulate the likely 

health impact of introducing the RTS,S/AS02A into malaria endemic populations 

via the expanded program on immunization (EPI). The model considers both the 

short- and long term effects of a vaccination program on the burden of disease, 

allowing for the temporal dynamics of effects on immunity and transmission.  
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4.2 Materials and methods 

Epidemiological model 

The epidemiological model is a stochastic individual-based simulation of P. 

falciparum malaria in endemic settings that uses a 5-day time step with the pattern 

of transmission as the input. For every individual in the simulated population each 

discrete P. falciparum infection is characterised by simulated duration, parasite 

densities,6 infectivity7 and anemia risk.8 At each time point, clinical episodes of 

malaria or malaria attributable mortality may occur with probabilities depending 

on the simulated parasite density and recent exposure.9-11 

For the present analyses we simulate populations of 100,000 individuals, with an 

approximately stationary age distribution matching that of the demographic 

surveillance site in Ifakara, south-eastern Tanzania, 1997-1999.12 

We run the model under a series of assumed transmission patterns (Table 4.1). 

Each simulation assumes a recurring annual pattern of the vectorial capacity. The 

simulated population has been subjected to this pattern for a lifetime at the start of 

the vaccination program to ensure that the level of acquired immunity is correct 

for all ages. We then consider the transient behavior of the model during a follow-

up period of 20 years. We simulate case-management and the effects on malaria 

transmission using a reference scenario as described in an accompanying paper.13 

This reflects a typical rural setting in Tanzania with mesoendemic malaria 

transmission.  
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Table 0.1 Variables that vary between scenarios 

Variable Description Levels 

Coverage Proportion of eligible individuals who 
receive all 3 vaccine doses. (coverage 
with 1st 2nd and 3rd dose). 

50% (70%, 85%,85%) 

89% (95%, 95%, 99%)  
100% (100%, 100%, 100%) 

Initial efficacy of 
the vaccine  

Efficacy in fully vaccinated individuals 
immediately after 3rd dose. Numbers in 
brackets show efficacy after 1st and 2nd 
dose. 

0.3 (0.2, 0.25) 

0.52 (0.4, 0.46) 
0.8 (0.6,0.7) 
1.0 (1.0, 1.0) 

Decay of the 
efficacy of the 
vaccine.  

Time after vaccination at which the 
vaccine efficacy is 50% of initial value, 
assuming exponential decay of 
protection. 

6 months 
1 year 
2 years 
5 years 

10 years 
no decay 

Variation in 
vaccine efficacy 
between hosts14 

b is the parameter of the beta 
distribution used to describe inter-host 
variation 

All or nothing (b=0.01), 

Intermediate(b=10), 
Homogeneity(b=100000) 

Intensity of 
transmission  

infectious bites per annum prior to the 
introduction of the vaccine 

High Transmission: 82 

Reference : 21 
Low Transmission: 5.1 

Seasonality Source of data for seasonal distribution 
of inoculations  

Namawala, Tanzania,24 
No seasonality 

Each level of each variable defines a scenario that was compared with the reference. In each 
scenario, the variables not being evaluated were fixed at the reference levels (indicated in bold).  

 

Reference Vaccine Scenario 

The simulated vaccine is a pre-erythrocytic vaccine that protects vaccinated 

individual by reducing the force of infection. Relevant characteristics of the 

simulated vaccine were chosen to match the data from a Phase 2b clinical trial in 

children aged 1-4 in Mozambique.3 We have simulated the action of the vaccine 

in this trial and fitted the efficacy to the trial data.14   These simulations suggested 

that pre-existing semi-immunity leads to a slight underestimation of the 

underlying efficacy of the vaccine in such a trial.   Following this, we therefore 

assume that the vaccine provides an initial reduction in the force of infection of 

52% corresponding to the 45% efficacy in extending time to first infection after 3 

doses. There are no data available on the efficacy after 1 or 2 doses of 

RTS,S/ASO2A. We assume a reduction in the force of infection of 40% and 46% 

after the first and the second dose. The Manhiça trial did not demonstrate any 

decay of the efficacy against infection. However, decay in protection is possible 

when longer time periods are considered and is likely to have important 

implications for vaccine effectiveness. We assume an exponential decay of the 

primary efficacy of the vaccine and set the half-life to 10 years for the reference 

vaccine.  

We expect that the protection provided by the vaccine is not homogenously 

distributed among the vaccinated individuals. We assign initial values for the 
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efficacy of the vaccine which are drawn from a beta-distribution with parameter 

b=10 (a justification is given in an accompanying paper14).  

Simulation approach 

We simulate the introduction of vaccination at the target ages of 1, 2 and 3 months 

age in a random sample of infants. 95% of infants receiving the first dose, 95% of 

those receiving the second dose and 99% of those receiving the first two doses 

complete the course of vaccination. We assume all vaccines to be delivered at the 

target age, and that no infant received dose 2 without receiving dose 1, or dose 3 

without receiving dose 2. This results in a cohort effect, because the proportion of 

the population who have received the full vaccination course gradually increases 

throughout the 20 year follow-up (Figure 4.1). Even by the end of this period 

vaccination coverage in older age groups is still zero, hence we do not consider 

the equilibrium that would eventually be reached if vaccination continued 

indefinitely.  

The introduction of vaccination leads to transient behaviour that may in principle 

modify the level of P. falciparum transmission. We consider the effects after 

periods of 5, 10 and 20 years following initiation of the vaccination program. We 

plot the cumulative numbers of events averted. Where the cumulative number of 

episodes averted increases approximately linearly over time, (indicating constant 

effectiveness) we compute the effectiveness of vaccination over the whole 20 year 

follow-up as: 

Cumulative number of events in vaccine scenario
Cumulative Effectiveness = 1 - 

Cumulative number of events in comparison scenario
  

where the comparison scenario is identical to the vaccination scenario in all 

respects other than the inclusion of vaccination. In addition, we present age-

prevalence of parasitemia and anemia as well as age-incidence of different clinical 

outcomes averaged over 1 year of simulated follow-up starting 4, 9 and 19 years 

into the follow-up period.  

 



 92

Figure 0.1 Proportion of the age-group which has received 3 doses of 
vaccination by age and time since start of program 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Effects of vaccine characteristics 

We expect the predictions about the effectiveness of the vaccine to depend on 

assumptions about the key properties of the vaccine. In addition, effectiveness 
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Effectiveness may be an accelerating function of coverage if vaccination has a 
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infections that are prevented after an individual has received 1, 2, or 3 doses of the 

vaccine, the rate of decay of protection against infection and the variation in 
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assumption at a time (Table 4.1). 
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seasonal patterns of EIR by simulating the case of a completely non-seasonal 

environment with the same yearly average EIR as in the reference scenario. 

 

4.3 Results 

Reference Vaccination Scenario  

In the reference vaccination scenario the introduction of vaccine leads to lower 

parasite prevalence for all age groups that had received the vaccine, resulting in a 

cohort effect with the effect gradually moving into older age-groups (Figure 4.2a). 

Corresponding to the reduction in parasite prevalence, anemia prevalence is also 

reduced but because the anemia is concentrated in the first few years of life,8 

anemia prevalence becomes stable within the first few years of vaccination 

(Figure 4.2b).  

The incidence of malaria episodes and mortality decrease for children less than 5 

years of age within the first few years of vaccination and remain reduced over the 

20 year timespan (Figure 4.3). These dynamic effects resulted almost entirely 

from the cohort effect of introducing vaccination gradually into the population 

and hardly at all from community effects due to reduction in transmission. The 

level of transmission was reduced only very slightly in the vaccine scenario 

compared with the reference (data not shown). Indeed, none of the scenarios we 

studied resulted in major effects on transmission to the vector within the 20 year 

time-span. After 10 years of vaccination the incidence of uncomplicated episodes 

in 5-9 year old children remains lower than in unvaccinated children, while severe 

episodes and mortality incidence have slightly increased in incidence in this age 

group (Figure 4.3). This is because the prevention of infections reduces the 

acquisition of asexual blood stage immunity. By the end of the 20 year follow-up 

period, all incidence measures are somewhat higher in the 10-19 year age group of 

the vaccinated population, though the cumulative number of events they have 

experienced over the whole 20 year period is reduced.  

The approximately  linear increase in cumulative numbers of deaths averted 

(Figure 4.4c) indicates that the vaccine reduces mortality by a more or less 

constant amount throughout the 20 year intervention period. Overall, vaccination 

also leads to substantial reductions in the incidence of uncomplicated episodes of 

malaria over the 20 year follow-up (Figure 4.4) but the benefit of the vaccination 

program in preventing uncomplicated episodes decreases over time, as indicated 

by a reduction in the gradient of the curve over time (Figure 4.4a).  

The decay in the benefit was even more marked when assessed in terms of 

numbers of severe episodes (Figure 4.4b). After 10 years of vaccination the 

overall incidence of severe episodes returns to a level similar to that in the 
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absence of vaccination. This is due to the shift in incidence to older ages (Figure 

4.3b).  

The average effectiveness of the vaccine over the 20 year follow-up period 

differed for the different clinical outcomes. The average effectiveness in 

preventing uncomplicated episodes and death were 0.067, and 0.12 respectively 

(Figure 4.5). The overall effectiveness in preventing severe episodes, of 0.052, is 

difficult to interpret because of the heterogeneity in the effect over time.  

 

Figure 0.2 Effect of the reference vaccine on prevalence of parasitemia and 
anemia over time 

 a. age-prevalence of parasitemia; b. age-prevalence of anemia.  The data are averaged over 

periods of 1 year starting at 4, 9, and 19 years after the onset of the intervention. 
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Figure 0.3 Effect of time since the start of the vaccination program on age-
incidence patterns 

 
The data are averaged over periods of 1 year starting at 4, 9, and 19 years after the onset of the 

intervention.  a. Uncomplicated episodes b. Severe episodes c. Mortality 
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Figure 0.4 Effect of the reference vaccine over time under different 
assumptions about the initial efficacy of the vaccine (30, 52, 80, 100 percent 
protection against infection after third dose) 

 
a. Uncomplicated episodes averted; b. Severe episodes averted; c. Deaths averted 
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Figure 0.5 Cumulative effectiveness over 20 years against uncomplicated and 
severe episodes and mortality 

a. Effect of different assumptions about the initial efficacy; b. Effect of different assumptions 

about the decay of the protective effect; c. Effect of different assumptions about the coverage of 

the vaccination program. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Effect of Vaccine Efficacy 

We considered 4 different values for the initial efficacy of the vaccine (Table 4.1).  
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events averted is highest for the most efficacious vaccine with effects on 

uncomplicated episodes and mortality approximately proportional to the initial 

efficacy, but only a vaccine with a very high efficacy remains effective in 

reducing the incidence of severe episodes in the latter part of the 20 year follow 

up period (Figure 4.4). The effects of changes in efficacy on age-prevalence of 

parasitemia or anemia or in the age-incidence of clinical events in the low and 

high-efficacy scenarios are similar to those in the reference scenario. 

  

Effects of waning of the protective effect of the vaccine 

Assuming a faster decay of the vaccine effect leads to a reduction in all 

effectiveness measures, and the converse is observed when the rate of decay is 

decreased. The effectiveness against uncomplicated episodes is roughly 

proportional to the half-life (Figure 4.5b; Figure 4.6a). However, effectiveness for 

the other clinical outcomes does not increase linearly with half-life (Figure 4.5). 

An increase of the half-life from 6 months to 1 year has little effect on the 

effectiveness against severe episodes or mortality, but there is a marked increase 

in effectiveness if the half-life increases to 2 years (Figure 4.6bc). There is only a 

small further improvement in increasing half-life from 2 to 5 or 10 years. 

 

Figure 0.6Effect of the reference vaccine over time under different 
assumptions about the decay of the protective effect of the Vaccine (half-life 6 
months, 1 yr, 2 yrs, 5 yrs, no decay) 

a. Uncomplicated episodes averted; b. Severe episodes averted; c. Deaths averted 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

500

1000

1500

2000

2500

3000

3500

4000

10

12

2

4

6

8

0 5 10 15 20
Time (years)

5

10

15

20

25

C
u

m
u

la
ti
v
e

 n
u

m
b

e
r 

o
f 
e

p
is

o
d

e
s
 a

ve
rt

e
d

 /
 1

0
0

0
 p

o
p

u
la

ti
o

n

d
e

a
th

s
u

n
c
o

m
p

lic
a

te
d

s
e

v
e

re

Half Life 6 months
Half Life 1 yr
Half Life 2 years
Half Life 5 years
Half Life 10 years
No decay

a

b

c

a

b

c



 99

Effect of Vaccination coverage 

The effect of varying the values of coverage is similar to the effect of varying the 

initial efficacy, with a low coverage resulting in similar epidemiological patterns 

to that of a reduced vaccine efficacy. While increasing coverage to high levels can 

be of crucial importance with fully protective vaccines when the objective is to 

eliminate transmission, the impact of 100% coverage is more or less proportional 

to that of the 89% coverage in our reference scenario (Figure 4.7).  

 

Figure 0.7 Effect of the reference vaccine over time under different 
assumptions about the proportion of the population covered (50, 89,100 
percent receive all 3 doses 

 
a. Uncomplicated episodes averted; b. Severe episodes averted; c. Deaths averted 
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population is equivalent to a mixture of individuals vaccinated with a 100% 

effective vaccine, together with unvaccinated individuals. As with the simulation 

of the 100% effective vaccine, however, the number of severe episodes averted 

decreases over time. This is due to the decay in the efficacy (simulated with a 

half-life of ten years). If there is no decay in efficacy we expect the effectiveness 

of such a vaccine to increase with the coverage throughout the follow-up period. 

When there is no heterogeneity in vaccine efficacy (b=100000), (Figure 4.8) the 

pattern is very similar to that of the reference vaccine (b=10), in which the degree 

of heterogeneity was chosen to match the data of the RTS,S/AS02A vaccine trial 

in Mozambique.14 
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Figure 0.8 Effect of the reference vaccine over time under different 
assumptions about the distribution of the protective effect of the vaccine 
among vaccinated individuals (b = 0.01, b=10, b =100000) 

a. Uncomplicated episodes averted; b. Severe episodes averted; c. Deaths averted 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Effect of transmission intensity and seasonality 

The absolute number of clinical episodes and deaths averted by a vaccine is 

affected by the transmission intensity in ways that changed over the course of the 

simulated vaccination program (Figure 4.9).  

For the first few years of follow-up the number of events averted was lowest at 

low transmission intensity due to the lower numbers of events in the vaccinated 

age group. Protection against uncomplicated episodes increased over time, the 

effect on mortality remained approximately constant, and that on severe morbidity 

decayed at a much slower rate than in the reference scenario. A net reduction in 

incidence of severe episodes was consequently still evident after 20 years of 

follow-up, while the total number of deaths averted over the 20 year period was 

lower than in the reference scenario. 

At high transmission the initial gains were similar to those seen for the reference 

scenario, but the overall incidence of uncomplicated episodes became higher than 
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that in the unvaccinated scenario after about 10 years of the vaccination program 

(Figure 4.9ab). There was no such adverse effect on mortality rates, but the initial 

gain seen during the first ten years of the program did not continue (Figure 4.9c).  

While the degree of seasonality hardly affects the cumulative number of deaths 

averted, the number of uncomplicated episodes averted is lower in the absence of 

seasonality than in the reference scenario. The cumulative efficacy against 

uncomplicated episodes is reduced from 0.067 to 0.050 in the absence of 

seasonality. 

 

Figure 0.9 Effect of the reference vaccine over time in different transmission 
intensities  

a. Uncomplicated episodes averted; b. Severe episodes averted;  c. Deaths averted 
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4.4 Discussion  

We use a stochastic simulation model of the transmission dynamics and 

epidemiology of P. falciparum malaria in endemic areas to assess the likely 

impact of a pre-erythrocytic vaccine introduced via the EPI. This is the first major 

attempt to combine dynamic modeling of malaria transmission with predictions of 

parasitological and clinical outcome, using models that have been fitted to field 

epidemiology data from a range of sites across Africa. 

We have based our simulations as much as possible on field data, but many 

uncertainties and approximations remain, both in our epidemiological models and 

our model of vaccination. The uncertainty in the field estimate of efficacy of 

RTS,S/AS02A is substantial; the efficacy of incomplete courses of vaccination is 

unknown; as is the rate of waning of vaccine efficacy.  

We agree with previous dynamic models of the impact of malaria vaccination15-18 

that a ‘leaky’ anti-infection vaccine will have little effect on transmission in 

endemic areas.  Our estimates of transmission effects are even smaller than those 

in most previous models because we predict that reduction in human infection will 

have little effect on infectiousness to vectors (except in the case of complete 

protection of a sub-set of the population).  We nevertheless identify substantial 

potential public health benefits of vaccination because severe disease is largely 

concentrated in the first years of life (in our model this arises largely because of 

age-dependent cofactors9) and can be averted by delaying exposure to blood-stage 

parasites.  

We would expect a pre-erythrocytic vaccine to have much more effect on 

transmission in areas of unstable malaria such as highland areas of East Africa,19 

KwaZulu-Natal20 or areas of low transmission outside Africa.   This raises the 

issue of whether the best delivery strategy in such areas might then be a mass-

vaccination campaign, contributing to local elimination. Mathematical models of 

the impact of such a vaccination program need not consider the complexities of 

acquired clinical immunity, and so might reasonably be based on conventional 

compartment models.17 Extension of these models to allow appropriately for 

heterogeneities in transmission21 would be of critical importance. 

In our model, the dynamics result mainly from a cohort effect on coverage and 

from the dynamics of immunity, rather than from effects on transmission.  The 

effectiveness of vaccination (the proportion averted of all the events in the 

population) cannot reach equilibrium until after the oldest people are vaccinated, 

so even 20 year simulations do not approach equilibrium.  Effectiveness in the 

initial years of a program is likely to be much lower than vaccine efficacy, 

because only a small proportion of the people will be vaccinated.  
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The 20 year time horizon allows us to see that the effect of a vaccine program on 

illness incidence will change over time, although we predict a roughly constant 

reduction in the crude mortality rate throughout the follow-up. After about ten 

years, there is net reduction in cumulative numbers of clinical episodes only in 

low transmission scenarios, with a predicted increase in high transmission. This is 

due to an increase in severe malaria incidence in children over five years old who 

have accrued less immunity to asexual blood stage parasites during their 

childhood. This partly results from the models used for predicting uncomplicated 

episodes10 and severe malaria,9 which are fitted to data that suggest the lifetime 

number of clinical episodes22 and the incidence of hospital admissions for severe 

malaria23 are highest at intermediate levels of transmission.  

With a vaccine with high efficacy in a proportion of the population (i.e. with a 

low value of b), effectiveness continues to increase as the vaccinated proportion 

increases, though in our simulations this effect is gradually lost due to decay in 

vaccine efficacy.   With vaccines with partial efficacy in all individuals, (the 

model we propose for RTS,S/AS02A14) the factors attenuating the efficacy, such 

as interactions with the epidemiological effects of acquired immunity become 

more important as the vaccination program proceeds. In very low transmission 

settings we predict initial increases in effectiveness, since the proportion 

vaccinated increases before the first vaccinees leave the age-range of high 

vulnerability.  At higher transmission there is little evident increase in 

effectiveness as the number of fully-vaccinated individuals increases.  

No vaccinated child reached more than 20 years of age in our simulations, so very 

long-term effects of vaccination are not captured. This is important when 

comparing different decays or initial efficacies, as the relationship between the 

duration during of protection and the life-expectancy of the vaccinated individual 

may be important in determining the effectiveness. However we are very 

uncertain about the risk of severe malaria that such adults would experience. 

There are few data available from which to estimate severe malaria risk in 

adolescents or adults with limited previous exposure.9 

Vaccination reduces the incidence of uncomplicated episodes because it leads to 

fewer successful infections. The reduced exposure to parasites leads to less 

acquired asexual-stage immunity, hence the longer-term level of clinical 

protection is lower than the initial efficacy. In our models, the pyrogenic 

threshold, which determines the parasite density that leads to acute illness, also 

depends on the recent exposure to parasites and is therefore lower in vaccinated 

individuals.14 Vaccination can also modify the proportion of acute episodes that 

are severe by leading to a shift in clinical episodes to an older age, when the host 

is protected from co-morbidity and from other age-dependent factors enhancing 

susceptibility.  With an efficacious vaccine, efficacy against severe malaria may 



 105

be greater than that against infection.  Conversely, if the vaccine does not offer a 

sufficiently high level of protection for a long enough time, the lower level of 

asexual-stage immunity means that an increased proportion of clinical attacks 

result in severe malaria. 

 The application of our models can be extended not only to include other means of 

deployment (including regimens with booster doses of vaccines); to other types of 

vaccines (asexual blood stage and transmission blocking); and to consider the 

inclusion of vaccination within integrated control programs. We have seen that a 

pre-erythrocytic vaccine will be most effective at low transmission intensities, but 

that on its own it is unlikely to reduce transmission very much except possibly 

when this is already low. It may be that such a vaccine will be most effective if 

deployed in conjunction with vector control measures that reduce the vectorial 

capacity at the same time.  

 

 

 

 

 

 

 



 106

4.5 References 
 
 1. World Health Organisation, 1996. Investing in Health Research and Development. 
TDR/Gen/96.1Geneva, World Health Organisation.  
 

2. Ballou WR, Arevalo-Herrera M, Carucci D, Richie TL, Corradin G, Diggs C, Druilhe P, 
Giersing BK, Saul A, Heppner DG, Kester KE, Lanar DE, Lyon J, Hill AV, Pan W, Cohen JD, 
2004. Update on the clinical development of candidate malaria vaccines. Am J Trop Med Hyg 71 
(2 Suppl): 239--247 

3. Alonso PL, Sacarlal J, Aponte J, Leach A, Macete E, Milman J, Mandomando I, Spiessens B, 
Guinovart C, Espasa M, Bassat Q, Aide P, Ofori-Anyinam O, Navia MM, Corachan S, Ceuppens 
M, Dubois MC, Demoitie MA, Dubovsky F, Menendez C, Tornieporth N, Ballou WR, Thompson 
R, Cohen J, 2004. Efficacy of the RTS,S/AS02A vaccine against Plasmodium falciparum infection 
and disease in young African children: randomised controlled trial. Lancet 364: 1411--1420 

4. Halloran ME, Watelet L, Struchiner CJ, 1994. Epidemiologic effects of vaccines with complex 
direct effects in an age-structured population. Math Biosci 121: 193--225 

5. Smith T, Killeen G, Maire N, Ross A, Molineaux L, Tediosi F, Hutton G, Utzinger J, Dietz K, 
Tanner M, 2006. Mathematical modeling of the impact of malaria vaccines on the clinical 
epidemiology and natural history of Plasmodium falciparum malaria: Overview. Am J Trop Med 
Hyg. In press.  

6. Maire N, Smith T, Ross A, Owusu-Agyei S, Dietz K, Molineaux L, 2006. A model for natural 
immunity to asexual blood stages of Plasmodium falciparum in endemic areas. Am J Trop Med 
Hyg. In press.  

7. Ross A, Killeen G, Smith T, 2006. Relationships of host infectivity to mosquitoes and asexual 
parasite density in Plasmodium falciparum. Am J Trop Med Hyg. In press 
 
8. Carneiro I, Smith T, Lusingu J, Malima R, Utzinger J, Drakeley C, 2006. Modeling the 
relationship between the population prevalence of Plasmodium falciparum malaria and anemia.  
Am J Trop Med Hyg. In press 

9. Ross A, Maire N, Molineaux L, Smith T, 2006. An epidemiological model of severe morbidity 
and mortality caused by Plasmodium falciparum. Am J Trop Med Hyg. In press   

10. Smith T, Ross A, Maire N, Rogier C, Molineaux L, 2006. An epidemiologic model of the 
incidence of acute illness in Plasmodium falciparum malaria.  Am J Trop Med Hyg. In press  

11. Ross A, Smith T, 2006. The effect of malaria transmission intensity on neonatal mortality in 
endemic areas. Am J Trop Med Hyg. In press 

12. INDEPTH Network, 2002. Population, Health and Survival at INDEPTH Sites. Ottawa: IDRC 

13. Tediosi F, Maire N, Smith T, Hutton G, Utzinger J, Ross A, Tanner M, 2005. An approach to 
model the costs and effects of case management of Plasmodium falciparum malaria in sub-Saharan 
Africa. submitted  

14. Maire N, Aponte J, Ross A, Thompson R, Utzinger J, Smith T, 2005. Modeling a field trial of 
the RTS,S/ASO2A malaria vaccine. Am J Trop Med Hyg. In press   

15. Anderson RM, May RM, Gupta S, 1989. Non-linear phenomena in host-parasite interactions. 
Parasitology 99 Suppl: S59--S79 

16. Halloran ME, Struchiner CJ, Spielman A, 1989. Modeling malaria vaccines. II: Population 
effects of stage-specific malaria vaccines dependent on natural boosting. Math Biosci 94: 115--149 



 107

17. Koella JC, 1991. On the use of mathematical models of malaria transmission. Acta Trop 49: 1-
-25 

18. Struchiner CJ, Halloran ME, Spielman A, 1989. Modeling malaria vaccines. I: New uses for 
old ideas. Math Biosci 94: 87--113 

19. Abeku TA, Hay SI, Ochola S, Langi P, Beard B, de Vlas SJ, Cox J, 2004. Malaria epidemic 
early warning and detection in African highlands. Trends Parasitol 20: 400--405 

20. Kleinschmidt I, Sharp B, Mueller I, Vounatsou P, 2002. Rise in malaria incidence rates in 
South Africa: a small-area spatial analysis of variation in time trends. Am J Epidemiol 155: 257--
264 

21. Dye C, Hasibeder G, 1986. Population dynamics of mosquito-borne disease: effects of flies 
which bite some people more frequently than others. Trans R Soc Trop Med Hyg 80: 69--77 

22. Trape JF, Rogier C, 1996. Combating malaria morbidity and mortality by reducing 
transmission. Parasitol Today 12: 236--240 

23. Marsh K, Snow R, 1999. Malaria transmission and morbidity. Parassitologia 41: 241--246 

24. Smith T, Charlwood JD, Kihonda J, Mwankusye S, Billingsley P, Meuwissen J, Lyimo E, 
Takken W, Teuscher T, Tanner M, 1993. Absence of seasonal variation in malaria parasitaemia in 
an area of intense seasonal transmission. Acta Trop 54: 55--72 
 

 



 108

Chapter 5: Predicting the cost-effectiveness of 
introducing a pre-erythrocytic malaria vaccine into 

the Expanded Program on Immunization in 
Tanzania 

 

 

 

Fabrizio Tediosi, Nicolas Maire, Thomas Smith, Amanda Ross, Guy Hutton and 
Marcel Tanner 

 

Swiss Tropical Institute, Basel, Switzerland 

 

 

 

 

 

 

 

 

 

This article has been published: 

Am. J. Trop. Med. Hyg., 75(Suppl 2), 2006, pp. 131–43 

 

 



 109

Abstract 

We model the cost-effectiveness of the introduction of a pre-erythrocytic malaria 
vaccine into the Expanded Program on Immunization. We use a dynamic 
stochastic simulation model of the epidemiology of Plasmodium falciparum in 
endemic areas and of case-management in Tanzania. We consider a range of 
vaccine characteristics and a range of transmission settings. At low vaccine prices 
the cost-effectiveness of such vaccines may be similar to that of other established 
preventative and curative interventions against malaria. The cost-effectiveness 
ratio increases rapidly and approximately linearly with vaccine cost-per-dose. The 
approach can be adopted for comparative analyses of the cost effectiveness of 
different vaccines and other intervention strategies. 

 

5.1 Introduction 

The goal of economic evaluation of health care interventions in general, and 

malaria control measures in particular, is to provide policy-makers with guidance 

about how scarce resources can be allocated so that the social and economic 

benefits are maximized.1,2 Economic evaluation not only shows how efficient it is 

to spend resources on existing interventions available, but also predicts how 

efficient new interventions could be if they were to be developed, or if existing 

interventions had different characteristics. Thus economic evaluation is an 

essential part of the appraisal of candidate malaria vaccines. For example, policy 

makers may wish to know how efficacious a vaccine would need to be in order to 

be cost-effective. 

Cost-effectiveness analysis (CEA) usually is the method of choice in evaluating 

alternative health interventions, because health decision makers are primarily 

interested to know what health improvements can be bought with a given budget, 

and not the overall economic impact per se.1,2  

The present paper models the cost-effectiveness of a pre-erythrocytic malaria 

vaccine, using a dynamic stochastic simulation model of the epidemiology of 

Plasmodium falciparum in endemic areas and of case-mangement in Tanzania.3,4 

Our objective is to assess the potential cost-effectiveness of introducing this 

malaria vaccine into the Expanded Program on Immunization (EPI) under a range 

of scenarios, conditions, and assumptions.  

We present the vaccine cost-effectiveness for a single country, Tanzania. This first 

stage enables us to specify model inputs without having to consider 

simultaneously many heterogeneous settings, as would be the case for sub-

Saharan Africa. Even a single country does not present a single uniform context 

for ecological, epidemiological, socio-economic and health system inputs, but 

there is less heterogeneity than at the multi-country level.  
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5.2 Materials and methods 

Perspective and boundary 

The study is a cost-effectiveness analysis adopting a societal perspective for both 

costs and effects, and thus considers all relevant resource inputs to the 

intervention, and resource consequences and health impacts resulting from the 

intervention.  

The costs of vaccine delivery4 include all resource inputs irrespective of whether 

these costs are borne by government, donors, the patient, the wider community, or 

a mixture of these. Case management costs3 likewise include all resource inputs 

irrespective of whether these are borne by government, the patient, or both. 

Vaccine delivery costs and case management costs include both the direct costs of 

service provision and costs directly associated with the service, which essentially 

means the costs for the patient(s) accessing the services, covering additional 

transport and sustenance costs.  

A societal perspective in cost-effectiveness analysis also requires that direct 

economic impacts of the intervention should be taken into account. In the case of 

a vaccine which reduces morbidity episodes as well as mortality, there is a clear 

impact on productive time either leading to higher income (in the case of market 

work) or higher unsold production (in the case of non-market work). This can 

either be through a gain in production of the averted malaria case, or where the 

patient is a child, the production gained of the carer who would have cared for the 

averted malaria case. Therefore, the results include these hypothesized economic 

impacts.  

Given the dynamic nature of the epidemiological model, and the lower 

transmission rates to other non-vaccinated individuals associated with an effective 

vaccine, the health effects of the intervention can also include changes in 

morbidity and mortality of the non-vaccinated population as a result of reduced 

transmission. However, our epidemiological analysis implies that these impacts 

will be minimal in the epidemiological settings that we have analyzed.5 

Model overview 

To predict the cost-effectiveness of the malaria vaccine we use a stochastic 

simulation model of the epidemiology of P. falciparum in endemic areas of 

Africa.6 This includes a sub-model for the case management of malaria in 

Tanzania.3 We link these elements with costing of vaccine delivery in the 

Tanzania setting.4  
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The epidemiological model is a stochastic individual-based simulation of malaria 

infection in endemic areas that uses a 5-day time step. It takes as its input the 

pattern of the entomological inoculation rate (EIR) in the absence of interventions, 

with separate values of the EIR specified for each of the 73 5-day periods during 

the year. We simulate the reference case management scenario in Tanzania3 to 

provide a baseline with which to compare simulations where a vaccine is 

introduced. 

The simulated population is maintained as a steady state, and includes individuals 

of all ages, with immune status depending on their simulated exposure.  The 

denominators for calculation of overall health impacts include individuals who 

were too old to be vaccinated, and 20 year simulation is thus influenced by cohort 

effects due to gradual increase in the proportion of the population vaccinated, and 

by dynamic effects of reduction in exposure on acquisition of natural immunity to 

asexual parasites. 

 

Alternatives being compared 

We compare health outcomes, direct costs and productivity gains of  a combined 

strategy of a new malaria vaccine delivered through EPI in combination with the 

reference case management scenario for Tanzania with only the reference case 

management scenario.3   

The EPI was chosen as the channel for vaccine delivery because in most African 

countries EPI is well established and achieves reasonably high levels of coverage 

amongst the target population group. Therefore, it is the only reliable mechanism 

to deliver a vaccine to a high proportion of infants aged below 1 year.7-9 

The vaccine modelled is a pre-erythrocytic stage vaccine requiring three doses to 

fully immunize a child. These doses are administered when infants are 1, 2, and 3 

months old, at the same time as the Hepatitis B vaccine. Many of the inputs for 

the CEA are based on data from the case management model3 and 

epidemiological scenarios.10 

The cost-effectiveness model simulates the health system typical for a rural area 

of Tanzania.3 A set of different scenarios were constructed to reflect different 

malaria transmission intensities representing the stable, annually recurring pattern 

of malaria transmission. In all simulations the seasonal pattern of transmission 

was assumed to be that recorded in the village of Namawala, Tanzania, during 

1989-1991 where exceptionally precise estimates of dry season transmission were 

made.11 The annual EIR for this site was 329 infectious bites per annum. For the 

reference scenario we use a seasonal pattern of transmission for a mesoendemic 

site, obtained by dividing the EIR from Namawala for each 5-day period by 16.  
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(direct measurement of dry-season transmission in meso-endemic areas is 

impracticable because of low mosquito densities).  To simulate a high 

transmission area we use an EIR of 4 times that of the reference scenario.  This is 

probably more typical of high transmission sites in Africa than the extremely high 

transmission in Namawala. This gives an overall annual EIR of 21 infectious bites 

per annum, which is typical for a mesoendemic area in sub-Saharan Africa.12 The 

simulations were first run for a warm-up period of 90 years of exposure to define 

the baseline immune status of the simulated populations, which is highly age-

dependent.  

For the present analyses the simulations are run in populations of 100,000 

individuals, with an approximately stationary age distribution matching that of the 

demographic surveillance site in Ifakara.13  

 

Measuring health gains 

To estimate the number of disability adjusted life years (DALYs), years of life 

lived with disability are calculated on the basis of the duration of disability, and 

respective disability weights.3 14 Weights for different malaria attributable disease 

conditions have been obtained from the Global Burden of Disease (GBD) study,15 

and age-weighting is applied as in the GBD method. However, in order to assess 

how sensitive results are to the life table used, DALYs are also computed 

assuming a zero age weighting. The disability associated with anemia is assigned 

to the same time period as the malaria infections causing it. 

Years of life lost (YLLs) and DALYs are calculated assuming age-specific life 

expectancies based on the life-table from Butajira, Ethiopia, with an average life 

expectancy of 46.6 years at birth.16 This life-table represents that of an East 

African setting with low malaria transmission and is very similar to that for Hai 

District, a high altitude and low malaria prevalence site in Tanzania.13    We thus 

compute YLLs for each simulated death under the assumption that this life table is 

the one that would apply in the absence of malaria. 

Assumptions on vaccine efficacy 

In the reference scenario the efficacy of this hypothetical pre-erythrocytic malaria 

vaccine is assumed to be 52% reduction in infections in naïve individuals,10 

decaying exponentially with a half-life of 10 years. Since it is likely that the 

degree of protection provided varies between individuals, in the reference 

scenario, a value for the initial efficacy is drawn from a beta-distribution with 

parameter b=10 and assigned to each vaccinated individual.5  
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Coverage 

In the reference scenario it is assumed that the coverage rate is the same as that 

reported in Tanzania for 3 doses of DTP-HBV in the year 2003, which stood at 

89%. Given that the coverage for the 1st dose of DTP-HBV was 95%, the drop-

out rate from the first to the third dose is 6%.4  

Case management 

The case management model, including both formal and informal treatment, is 

described elsewhere.3 It has implications for health outcomes, both in terms of the 

potential to reduce rates of severe disease, sequelae and death, but also in the 

impact on transmission intensity and therefore the potential for new infections in 

the entire population. The rate of treatment seeking among uncomplicated malaria 

episodes was assumed to be 5%, which although apparently low, is justified due 

to the very sensitive definition of clinical episodes used. The clinical episodes 

simulated thus include the very mild fevers that would be unlikely to elicit 

attendance at a health facility. The model assumes in the reference case a cure rate 

of 93% for the first-line drug sulfadoxine-pyramethamine (SP) for uncomplicated 

malaria.5  

 

Measuring economic costs and consequences 

Costs presented 

We considered both marginal and average costs. The marginal cost reflects most 

closely the additional financial costs that would be incurred when introducing a 

new intervention. The average cost includes all those costs involved in delivering 

a health intervention, including the use of spare capacity or slack in the system, 

those health care resources diverted from other uses, and existing health sector 

resources that are shared with other health programmes. All cost data are 

expressed in US$ 2004. 

Vaccine delivery costs 

The costs of introducing a malaria vaccine into the EPI in Tanzania include those 

related to an assumed range of vaccine purchase costs, and data collected from 

Tanzania on likely distribution and cold chain storage costs, management costs, 

vaccine delivery costs at health facility level, training costs, and social 

mobilization costs. A detailed description of the methodology used to estimate 

vaccine delivery costs can be found in an accompanying paper.4 

The CEA is run under various vaccine price hypotheses ranging from US$ 1.0 to 

US$ 20 per dose. The vaccine delivery cost estimates according to the different 

price hypotheses are shown in Table 5.1. 
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Table 0.1 Incremental delivery cost per fully immunized child (FIC) for the 
vaccine 

 

Vaccine delivery cost per FIC in US$ Vaccine price 
(US$ per dose) Average cost Marginal cost 

1 4.43 4.24 
2 7.43 7.24 
4 13.43 13.24 
6 19.43 19.24 
8 25.43 25.24 
10 31.43 31.24 

20 61.43 61.24 

 

Case management costs 

The costs of treating those seeking health care for malaria episodes are calculated 

under the two scenarios being modeled: case management alone and vaccine with 

case management, allowing us to calculate expected cost savings associated with 

the introduction of an efficacious malaria vaccine.  

The direct costs of care seeking for an uncomplicated malaria episode at official 

facilities include the cost of an outpatient visit (US$ 1.02 dispensary; US$ 1.27 

health centre), a diagnostic test in a proportion of outpatient cases (US$ 0.30), the 

cost of a course of SP treatment (varying from US$ 0.012 to US$ 0.071, 

depending on age and weight), the cost of a course of Amodiaquine treatment 

(varying from US$ 0.018 to US$ 0.114, depending on age and weight), and other 

costs incurred by patients when visiting an official health facility (US$ 0.30).  

The direct costs of a severe malaria patient include inpatient hotel costs per day 

(US$ 7.8), drug treatment cost during hospitalization (varying from US$ 0.56 to 

US$ 3.74, depending on age and weight), average length of stay (4.5 days with 

full recovery), and the costs that patients incur when visiting an official inpatient 

facility (US$ 1.29 for the average length of stay). The case management cost 

inputs are presented in detail elsewhere.3  

 

Measuring productivity gains 

The productivity costs of malaria relate to the productive time lost due to illness, 

whether it is the patient or the patient carer (especially if a child or elderly 

patient). In this analysis productivity costs included are those related to time spent 

by adults seeking official care for their children, time spent by adults caring for 

children at home, and the time forgone by sick adults due to malaria episodes. 

Given that inclusion of productivity gains in cost-effectiveness analysis remains 

controversial, the reference case results do not include these hypothetical 

productivity gains.  
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To measure the value of productive time lost, we use the wage rate method which 

involves multiplying the time lost per episode (for adults only) by the average 

daily wage in Tanzania. These estimates are adjusted downwards by an estimate 

of the unemployment rate in Tanzania, thus taking into account that not all those 

sick or those caring for the sick would have been working. 

The time lost per malaria episode is expected to be highly variable. For example, a 

recent review of the literature available found that for a sick adult the time off 

work ranges from 1 to 5 days, depending most importantly on severity of 

disease.17 For this study, uncomplicated adult malaria cases are assumed to lose 2 

working days, while a care taker of a sick child loses 1 working day. Adults with a 

severe malaria episode are assumed to lose 4.5 days if not hospitalized, or if 

hospitalized, 1 day more than their length of stay in hospital. A care taker of a 

child with severe malaria is assumed not to be able to work during the 

hospitalization period.  

For uncomplicated episodes productivity costs are computed under two scenarios. 

In the first scenario, a productivity cost is attached to only those uncomplicated 

episodes that get treated, presumed to correspond in general to the more severe 

episodes. In the second scenario, a productivity cost is attached to all malaria 

episodes. These two scenarios represent the likely upper and lower bounds on the 

true productivity costs avertable through the introduction of an efficacious 

vaccine.  

The formulae for calculating productivity costs are presented below, and the data 

inputs are provided in Table 5.2. 

(1 )cu cuI T w U= −      (1) 

 

(1 )cs csI T w U= −      (2) 

(1 )au auI T w U= −      (3) 

(1 )as asI T w U= −      (3) 

where cuI  and csI  are the productivity costs of the care taker for uncomplicated 

and severe malaria, respectively; acI and asI are the productivity costs of sick 

adults with uncomplicated and severe malaria, respectively; cuT and csT  are the 

time lost in days per episode by care taker of sick child for uncomplicated and 

severe malaria, respectively; auT and asT are the time lost in days for sick adults for 

uncomplicated and severe malaria, respectively; w  is the minimum gross daily 

wage in Tanzania (US$ 3); and U is the assumed unemployment rate in Tanzania 

(40%).  
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Table 0.2 Data inputs for calculation of productivity costs  

 

Item 
Value 

(US$ 2004) 

Care taker UM 1.8 

Care taker SM- if patient dies 3.6 

Care taker SM- if patient fully recovers 8.1 

Care taker SM-if patient recovers with sequelae 18.0 

Sick adult UM 3.6 

Sick adult SM- if patient dies 5.4 

Sick adult SM- if patient fully recovers 9.9 

Sick adult SM- if patient recovers with sequelae 18 

UM - uncomplicated malaria; SM - severe malaria. 

Net cost calculations  

The net costs associated with current case management and adding the vaccine to 

case management is computed over time as follows:  

( )1

( ) ( )

1

n
v t nv t

t
t

DC cm v DC cm
NC

r=

 + −
=  

+  
∑    (5) 

where NC are the net costs including only direct costs; DC (cmv+v) are the direct 

costs in the case of the vaccine plus case management; DC (cmnv) are the direct 

costs of current case management under a “no vaccine” scenario; n is the time 

period of intervention (20 years); and r is the annual discount rate for future costs 

and health effects. 

 

Scenario presentation 

Reference scenario 

In the reference case, results are presented to show cost-effectiveness at four 

different 5-year time periods during the 20-year follow-up period (1-5 years, 6-10 

years, 11-15 years, and 16-20 years) to reflect the possible fact that cost-

effectiveness changes depending on time after vaccine introduction. The cost-

effectiveness ratios are presented under seven vaccine price assumptions (in US$): 

1, 2, 4, 6, 8, 10, and 20. Incremental cost-effectiveness ratios are presented using 

two different definitions of cost: marginal cost to reflect the likely short-term 

financial impact of the intervention, and average cost to reflect the long-term and 

full opportunity cost associated with the intervention. In the reference case, only 

direct costs are included. 
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Incremental cost-effectiveness ratios are calculated under four health outcomes 

relevant for decision making: cost per episode averted, cost per DALY averted, 

cost per YLL, and cost per death averted. Future costs and benefits are presented 

both undiscounted and at a discount rate of 3% to reflect time preference.18  

Sensitivity analysis 

In addition to the reference case data assumptions and scenarios, the sensitivity 

analysis runs these same simulations under different assumptions. The rationales 

for these scenarios and the epidemiological patterns associated with them are 

described in the accompanying manuscript.5  

Different transmission intensity patterns: (a) low stable transmission 

(Namawala/64 equivalent to 5.2 infectious bites per annum); (b) high transmission 

(Namawala/4 equivalent to 83 infectious bites per annum). Reference case: EIR 

21 infectious bites per annum, corresponding to Namawala/16. 

Different levels of vaccine efficacy: (a) 30%; (b) 80%; (c) 100%. Reference case: 

52% entered in the model. 

Different decay rates for the efficacy: Half-life of 6 months, 1 year, 2 years, 5 

years, 10,000 years. Reference case: 10 years. 

Different distribution of vaccine effect in the population: where b equals 0.01 and 

100,000. Reference case: 10. 

Different vaccine coverage rates: (a) a low coverage rate, with 70% of infants 

receiving their first dose, and 50% their 3rd dose; (b) complete coverage, where 

100% of infants receiving three doses. Reference case: 89% 3rd dose; 95% 1st 

dose. 

Inclusion of productivity cost savings: (a) low productivity costs, where those 

with uncomplicated episodes who do not seek care are assumed not to lose 

productive time; (b) high productivity costs, where all those predicted by the 

model to have a malaria episode are assumed to lose productive time. 

 

5.3 Results 

 

Reference case presentation 

Health effects 

Over 20 years the total number of uncomplicated episodes averted due to the 

introduction of the vaccine, in the simulated reference population of 100,000 

people, is close to 192,485 corresponding to a rate of 0.1 per capita per year, 

while the total number of severe episodes averted is 1,697, or 0.0008 per capita 

per year.5 These health effects represent only a small fraction of the total burden 
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of disease, because the vaccinated children represent only a small proportion of 

the total population in the early years of the simulation.  The reference scenario 

also assumes waning of vaccine-induced immunity, so that the protected 

proportion of the population is never very high and increases only gradually.  

Furthermore, vaccination with a pre-erythrocytic vaccine effectively postpones 

many illness episodes, since it reduces acquisition of asexual stage immunity. 

The total number of deaths prevented over 20 years is 942. The total number of 

undiscounted DALYs averted over 20 years is 58,579, corresponding to a rate of 

0.029 per capita per year. When DALYs are discounted at 3%, the total number of 

DALY averted is 26,892, or 0.013 per capita per year. The total number of 

undiscounted DALYs with no age weighting applied is 48,299 DALYs averted, or 

0.024 per capita per year. As most of these DALYs are due to the mortality 

effects, the total number of YLL is very close to that of DALYs. Figure 5.1 

presents the distribution of DALYs averted over the 20 year model period, 

indicating that the health effects of introducing the vaccine vary over time.  

 

Figure 0.1 Total number of DALYs averted after introducing the vaccine – 
reference case scenario 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.3 shows that the number of uncomplicated episodes averted is higher in the second and 

third 5-year time periods and lower in the first and fourth 5-year time periods, since the start of 

vaccination. Most of the severe episodes averted occur in the first 10 years of the intervention, 

with a sharp decline in the third 5-year period, even registering a higher number of severe episodes 

under vaccination scenario in the fourth 5-year period. Also, a higher proportion of deaths 

prevented are concentrated in the first 10 years after vaccine introduction. When health outcomes 

are discounted, this effect is stronger. 
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Table 0.3 Comparison of discounted and undiscounted health outcomes over 
the four 5-year time period after the vaccine introduction 

 

Time Period (years) 1-5  6-10 11-15 16-20 

Health outcomes averted         
Uncomplicated episodes averted 31289 65810 59187 36199 
Severe episodes averted 979 867 96 -245 
Deaths averted 275 292 193 182 
Deaths averted (discounted) 256 236 134 110 
YLL averted 16,731 18,454 12,035 11,655 
DALYs averted (undiscounted) 17,083 18,426 11,699 11,370 
DALYs averted (discounted) 8507 8741 5036 4608 

DALYs averted (unweighted, undiscounted 13,657 14,953 9,933 9,755 

YLL =Years of life lost 
DALY = Disability Adjusted Life Years 

 

Net costs 

The net cost of vaccine introduction for the 20 year period and at a vaccine price 

of US$1 per dose, is US$447,391, or US$0.22 per capita per year (direct, 

undiscounted average costs). In the marginal cost analysis, these costs are 3% less 

at US$433,890. The reference case results are shown in Table 5.4, for discounted 

and undiscounted costs, and at different vaccine price assumptions. 

Figure 5.2 shows that the contribution of different cost components remains stable 

over the 20-year time period after introduction of the vaccine, comprising 

inpatient costs, outpatient costs, drug costs and patient costs. Before introduction 

of the vaccine around 30% of direct costs are due to outpatient visits, around 10% 

to drugs, 40% to hospital care, and 20% patient costs. After the introduction of the 

vaccine, over 50% of total direct costs – at a vaccine price of US$ 1 per dose – 

would be due to the vaccine delivery costs. This proportion increases significantly 

as the vaccine price increases.  

The total number of first, second, and third line drug treatments over time is lower 

after the introduction of the vaccine (Figure 5.3). The total number of first line 

drug treatments averted by the vaccine reaches a maximum in the second 5-year 

interval, then decreases. The number of second and third line treatments averted is 

high in the first 5-year period after which it decreases to close to zero after 15 

years. In the last 5-year period the number of first, second and third line drug 

treatment is higher when the vaccine is introduced. This is due to the fact that in 

the last 5-year period the vaccine does not prevent any severe episodes. There is 
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also a shift in uncomplicated episodes to older ages, where higher drug costs are 

incurred due to the requirement for a greater dose.  

 

Table 0.4 Net costs in thousand US$, reference case (year 2004)  

 

Discounting Time periods Vaccine price  
 per dose  Years 1-5 Years 6-10 Years 11-15 Years 16-20 

  AC MC AC MC AC MC AC MC 
          

1 Undiscounted 104 104 211 210 327 320 447 434 
 Discounted 97 48 183 182 263 259 336 327 

2 Undiscounted 186 182 Neg* 366 575 734 779 749 
 Discounted 173 121 Neg* 318 464 593 586 565 

4 Undiscounted 350 337 706 680 1072 1028 1441 1378 
 Discounted 326 265 612 590 866 832 1088 1041 

6 Undiscounted 513 492 1035 993 1568 1500 2104 2008 
 Discounted 478 410 899 862 1268 1214 1589 1518 

8 Undiscounted 677 648 1365 1307 2065 1971 2767 2637 
 Discounted 630 555 1185 1134 1670 1595 2091 1994 

10 Undiscounted 840 803 1695 1620 2561 2443 3429 3267 
 Discounted 783 700 1471 1406 2072 1977 2592 2471 

20 Undiscounted 1658 1580 3345 3187 5044 4802 6742 6414 

 Discounted 1545 1423 2903 2766 4083 3887 5100 4853 

AC – average cost; MC – marginal cost; * indicates a negative value; each figure is the predicted 

cost for a total population of 100,000 people over the 5 year period. 

 

Figure 0.2 Direct costs (at US$ 1.0 vaccine price per dose)  
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Figure 0.3 Total number of drug treatments under different interventions – 
reference case 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cost-effectiveness 

Cost-effectiveness ratios using undiscounted average cost are presented for the 

vaccine in Table 5.5, over the entire 20 year intervention period, and by vaccine 

price. The cost per death averted by introducing the vaccine is US$475, under a 

vaccine price assumption of US$1 per dose, rising to US$7,158 per death averted 

at a vaccine dose price of US$20. The cost-effectiveness ratios using the marginal 

cost are generally between 97% and 99% of the CERs at average cost. 

Furthermore, discounting costs and health effects makes only a marginal 

difference to the CER, as shown in Table 5.5.  

The undiscounted cost per DALY averted by introducing the vaccine is US$8, 

under a vaccine price assumption of US$1 per dose, rising to US$115 per death 
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averted at a vaccine dose price of US$20. The effect of discounting increases the 

cost per DALY averted by around 50% to US$12 per DALY averted at a vaccine 

price of US$1 per dose. The effect of taking out the age weighting in the DALY 

calculation reduces the cost per DALY averted back towards undiscounted levels. 

Figure 5.4 shows the relationship between cost-effectiveness ratios (for deaths 

averted and DALYs averted) and vaccine price. 

However, the presentation of cost-effectiveness ratios over the entire 20 year 

intervention period hides some important variations across 5-year time intervals. 

Furthermore, variations in cost-effectiveness between the four different periods do 

not show a similar pattern across health outcome measures. Table 5.6 presents 

cost-effectiveness ratios for selected health outcomes over the four time intervals, 

and at different vaccine price assumptions. 

The cost-effectiveness ratios for cost per death averted are similar in the first two 

5-year intervals, but considerably higher in the second two 5-year intervals. At a 

vaccine price of US$1 per dose, the cost per death averted ranges between 

US$364 and US$601 over the four time intervals (Figure 5.5). The cost per death 

increases almost linearly with the vaccine price and at US$20 per dose it ranges 

between US$6,028 and US$9,332 per death averted at different time periods.  

The undiscounted cost per DALY averted follows the same pattern over time as 

the cost per death averted, with a substantial difference between the first two 5-

year periods and the second two 5-year periods (Figure 5.5). At vaccine price of 

US$1 the cost per DALY averted varied between US$6 and US$11 over time, but 

it increases with the vaccine price up to a range of US$92 to US$149 at US$ 20 

per dose. 

The discounted cost per DALY averted is higher, ranging between US$11 and 

US$16 at US$1 per dose (Figure 5.5). When DALYs are computed undiscounted 

and assuming zero age weighting, the average direct cost per DALY averted over 

the four time intervals ranges between US$7 and US$12 at this vaccine price. The 

cost per DALY averted by the vaccination program is thus lower in the first two 

5-year time periods than in the latter. The cost-effectiveness ratio is much higher 

if both costs and DALYs are discounted at 3% while excluding the age weighting 

from the DALY calculation leads to a cost effectiveness ratio that is somewhere in 

between. 

Cost-effectiveness ratios for cost per episode averted demonstrate yet another 

pattern. As most uncomplicated episodes are prevented after a few years from 

vaccine introduction and before the end of the third 5-year interval, the cost per 

uncomplicated episode averted is higher in the first and last five years (US$3 at a 

vaccine price of US$1 per dose) and lower in the second and third 5-year periods 

(US$2 at a vaccine price of US$1 per dose). This finding is even stronger for the 
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severe episodes, since most of them are averted in the first ten years, and in the 

last five years the number of severe episodes is higher in the vaccination scenario 

than under no vaccination. The cost per severe episode averted is US$106 in the 

first 5-year period, US$123 in the second 5-year period, and US$1209 in the third. 

In the fourth 5-year period, the health effect is negative thus giving a negative 

cost-effectiveness ratio.  

 

Table 0.5 Cost-effectiveness (average cost) of the vaccine over 20 year 
intervention period, by vaccine price ¨ 

 
Vaccine price per dose, in US$ (year 2004) Outcome 

1 2 4 6 8 10 20 
Cost per death 
averted 

       

Undiscounted          
475  

         
827  

       
1'530  

       
2'234  

           
2'937  

          
3'640  

           
7'158  

Discounted          
456  

         
796  

       
1'477  

       
2'158  

           
2'840  

          
3'521  

           
6'926  

Cost per DALY 
averted 

       

Undiscounted              
8  

           
13  

           
25  

           
36  

               
47  

              
59  

             
115  

Discounted            
12  

           
22  

           
40  

           
59  

               
78  

              
96  

             
190  

Undiscounted, un-
weighted 

             
9  

           
16  

           
30  

           
44  

               
57  

              
71  

             
140  

 

 

Figure 0.4 Average (direct ) cost per death and DALY prevented introducing 
the vaccine – reference scenario – 20 years – by vaccine price 
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Table 0.6 Cost-effectiveness ratios for selected health outcomes, disaggregated by 5-year time intervals and by vaccine price 

 

Cost-effectiveness ratios (direct cost) for different health outcomes 

Uncomplicated. 
episodes averted 

Severe  
episodes  
averted 

Deaths  
prevented 

DALYs  
averted (undiscounted) 

DALYs  
averted 

(discounted) 

DALYs averted 
(undiscounted, 
unweighted) 

  
Vaccine  

price  
per  
dose  

(US$) 

  
Time  

interval 

AC MC AC MC AC MC AC MC AC MC AC MC 

1-5 3 3 106 106 379 378 6 6 11 11 8 8 
6-10 2 2 123 122 364 362 6 6 10 10 7 7 
11-15 2 2 1'209 1'152 601 573 10 9 16 15 12 11 

1 

16-20 3 3 Neg* Neg* 663 625 11 10 16 15 12 12 
1-5 6 6 190 186 676 661 11 11 20 20 14 13 
6-10 3 3 219 213 649 632 10 10 17 17 13 12 
11-15 3 3 2'077 1'977 1'033 983 17 16 27 26 20 19 

2 

16-20 6 5 Neg* -Neg* 1'119 1'058 18 17 26 25 21 20 
1-5 11 11 357 344 1'271 1'226 20 20 38 37 26 25 
6-10 5 5 411 395 1'219 1'174 19 19 33 32 24 23 
11-15 6 6 3'813 3'626 1'897 1'803 31 30 50 48 37 35 

4 

16-20 10 10 Neg* Neg* 2'032 1'925 33 31 48 46 38 36 
1-5 16 16 524 503 1'866 1'790 30 29 56 54 38 36 
6-10 8 8 603 578 1'789 1'715 28 27 48 46 35 33 
11-15 9 9 5'549 5'275 2'760 2'624 46 43 73 70 54 51 

6 

16-20 15 14 Neg* Neg* 2'944 2'792 47 45 70 66 55 52 
1-5 22 21 691 662 2'460 2'355 40 38 74 71 50 47 
6-10 10 10 794 760 2'359 2'256 37 36 63 61 46 44 
11-15 12 11 7'285 6'924 3'623 3'444 60 57 96 92 70 67 

8 

16-20 19 18 Neg* Neg* 3'857 3'659 62 59 91 87 72 68 
1-5 27 26 858 820 3'055 2'920 49 47 92 88 62 59 
6-10 13 12 986 942 2'928 2'798 46 44 79 75 57 55 
11-15 15 14 9'020 8'573 4'487 4'264 74 70 119 113 87 83 

10 

16-20 24 23 Neg* Neg* 4'769 4'526 76 72 113 107 89 84 
1-5 53 50 1'693 1'614 6'028 5'745 97 92 182 173 121 116 
6-10 26 24 1'946 1'854 5'777 5'504 92 87 155 148 113 107 
11-15 29 27 17'700 16'818 8'804 8'366 145 138 234 223 171 163 

20 

16-20 47 45 Neg* Neg* 9'332 8'860 149 142 221 210 174 165 

AC – average cost; MC – marginal cost; Neg* - indicates a negative cost-effectiveness ratio 
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Figure 0.5 Average (direct ) cost per death prevented and DALY averted  
introducing the vaccine – reference scenario – by time period and vaccine 
price 

 
 
 

 

 

 

 

 

 

 

Sensitivity analysis 

Effect of Transmission Intensity 

The total number of deaths and DALYs averted in the first ten years of the 

simulation is lower in a low transmission setting (5.2 infectious bites per annum) 

than in the reference scenario, while in a high transmission setting (83 infectious 

bites per annum) is close to the number reported in the reference scenario (Figure 

5.6). However, in a high transmission setting almost all of the deaths prevented 

(around 90%) and DALYs averted (around 93%) occur in the first ten years.  

The cost per death averted and per DALY averted in a high transmission setting is 

thus equal to that in the reference scenario in the first 5 year period, but it is 

almost twice the cost per death averted in the second 5-year period, and then the 

CER increases dramatically in the following years (Table 5.7). In a low 

transmission setting, the cost per death prevented and per DALY (both 

undiscounted and discounted) averted are twice as high as those in the reference 

scenario in the first five years, and lower in the following years (Table 5.7). 
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Table 0.7Cost-effectiveness ratios under different scenarios in the sensitivity 
analysis (US$, year 2004, using average costs, vaccine price US$1 per dose) 

 

  Price=1 Cost per DALY averted Cost per Death prevented 
  Scenario/time period 1_5 6_10 11_15 16_20 1_5 6_10 11_15 16_20 

undiscounted 6.1 5.8 9.9 10.6 378.9 364.5 601.4 663.1 
discounted 11.4 9.8 16.0 15.7 379.6 362.4 599.7 657.4 

Reference 
 case 
  
  

undiscounted* 7.6 7.1 11.7 12.4     

undiscounted 13.0 4.7 8.8 7.4 845.4 293.7 579.9 512.1 
discounted 25.3 7.4 13.3 9.8 421.8 122.7 104.4 74.7 

Low  
transmission 
  
  

undiscounted* 16.2 5.9 10.6 9.0     

undiscounted 5.5 9.5 309.7 68.1 339.4 559.4 4'965.7 3'281.7 
discounted 10.6 16.2 Neg* 725.7 234.7 171.3 146.9 97.7 

High 
 transmission 
  
  

undiscounted* 6.8 11.4 128.3 59.4     

undiscounted 12.6 13.5 Neg* 17.8 744.8 795.9 9'798.5 1'067.5 
discounted 23.5 23.0 Neg* 21.3 729.1 779.5 8'568.5 1'079.5 

Half- life 6 mths 
  
  undiscounted* 15.8 16.5 827.8 22.3     

undiscounted 9.9 22.4 37.9 13.9 618.6 1'332.0 2'080.8 909.2 
discounted 18.5 41.5 62.5 19.4 607.5 1'299.3 2'212.6 938.3 

Half life 1 year 
  
  undiscounted* 12.3 26.4 42.8 16.7     

undiscounted 6.4 9.2 19.3 9.3 401.4 552.9 1'201.0 554.8 
discounted 12.0 15.6 31.7 12.4 391.9 548.0 1'212.3 555.7 

Half life 2 years 
  
  undiscounted* 8.1 11.2 22.8 11.2     

undiscounted 5.5 8.2 13.1 11.8 336.7 517.3 804.0 761.3 
discounted 10.3 14.0 21.3 16.8 336.1 514.1 801.5 766.2 

Half life 5 years 
  
  undiscounted* 6.9 10.0 15.3 13.9     

undiscounted 5.2 4.5 11.2 6.2 323.0 287.3 673.8 406.0 
discounted 9.9 7.5 18.1 8.6 321.6 285.7 671.4 403.8 

Half- life 10000 years 
  
  undiscounted* 6.5 5.6 5.6 5.6     

undiscounted 9.7 14.1 26.8 15.7 625.9 917.9 1'706.5 1'080.6 
discounted 18.2 23.7 45.1 23.6 622.1 921.1 1'768.3 1'092.1 

Efficacy 30% 
  
  undiscounted* 12.1 17.5 30.9 18.7     

undiscounted 3.5 3.0 5.0 6.2 219.9 187.3 318.9 407.2 
discounted 6.7 5.0 7.9 9.5 222.4 184.8 315.2 408.5 

Efficacy 80% 
  
  undiscounted* 4.3 3.7 3.7 3.7     

undiscounted 1.9 1.4 2.8 3.2 120.2 89.8 175.4 205.4 
discounted 3.7 2.3 4.3 4.5 121.5 89.3 173.8 204.7 

Efficacy 100% 
  
  undiscounted* 2.4 1.8 3.3 3.7     

undiscounted 5.1 6.8 15.6 8.2 325.0 437.8 916.2 529.1 
discounted 9.7 11.7 27.3 11.8 326.6 441.3 934.5 535.8 

Coverage 50% 
  
  undiscounted* 6.4 8.3 17.3 9.8     

undiscounted 5.7 5.0 11.6 8.0 355.0 316.3 698.8 517.0 
discounted 10.7 8.3 18.4 11.2 354.6 310.7 689.7 512.8 

Coverage 100% 
  
  undiscounted* 7.1 6.2 13.7 9.6     

undiscounted 4.0 4.3 5.7 7.6 253.1 272.1 354.6 503.3 
discounted 7.5 7.2 8.6 10.9 254.4 269.6 350.2 506.1 

b 0.01 
  
  undiscounted* 4.6 4.8 6.6 8.6     

undiscounted 5.4 6.8 17.9 15.3 348.1 430.5 1056.4 980.9 
discounted 10.2 11.7 31.3 27.5 324.9 345.5 733.5 587.5 

b 100000 
  
  undiscounted* 6.7 8.4 8.4 8.4     

Neg* indicates a negative cost-effectiveness ratio 
b is the parameter of the beta distribution used to model variation between individuals in the 
efficacy of the vaccine 
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Figure 0.6 Number of DALYs averted due to vaccine introduction in 
different transmission settings 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Effects of different vaccine efficacy 

The cost-effectiveness simulations in the reference scenario assume that 

vaccination reduces the force of infection by 52%. Figure 5.7 shows the number 

of deaths averted over the 20 year period at different levels of vaccine efficacy. 

The impact on DALYs averted shows a similar pattern.  

Table 5.7 shows the cost-effectiveness results under different efficacy 

assumptions. If the efficacy of the vaccine is 30% instead of 52%, the direct costs 

per death prevented and per DALY averted would be considerably higher, with 

the highest difference being in the second and third 5-year periods where it is over 

200%. Increasing the efficacy to 80% would reduce the cost-effectiveness ratios 

by around 50% to between US$3 and US$6 per DALY averted, and US$200 to 

US$400 per death averted. The cost-effectiveness of a completely efficacious 

vaccine would result in a considerable further improvement in the cost-

effectiveness ratio, to US$1.4 to US$3.2 per DALY averted. 
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Figure 0.7 Total number of DALYs averted at different levels of vaccine 
efficacy 

 

 

 

 

 

 

 

 

 

 

 

 

Effects of decay of efficacy 

The reference scenario assumes a half-life of protection against infection of ten 

years. The cost-effectiveness simulations are run assuming different duration of 

vaccine protection from 6 months up to 10000 years, approximating a non-

decaying efficacy. The impact on DALYs averted is shown in Figure 5.8. 

As expected, the longer the duration of efficacy the lower are the cost-

effectiveness ratios (Table 5.7). However, the improvements in cost effectiveness 

ratios are not linear. Improving the half-life from six months to 5 years leads to 

substantial improvements in the cost-effectiveness ratio, but the differences in 

cost-effectiveness between five and ten years efficacy duration are slightly 

smaller.  

 

Figure 0.8 Total DALYs averted at different levels of vaccine efficacy decay 
(half-life) 
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Effects of variation in vaccine efficacy between individuals 

The distribution of vaccine efficacy among the vaccinated infants has a moderate 

impact on the number of deaths and DALYs that can be averted introducing the 

vaccine. The two alternative scenarios modelled, assuming either an all-or-

nothing response or complete heterogeneity, show that the more the efficacy is 

concentrated in a few vaccinated subjects, the more deaths and DALY can be 

prevented.   

This finding is also reflected in the cost-effectiveness ratios that are more 

favourable than the reference case if b=0.01 (i.e. efficacy concentrated among 

fewer individuals), and less favourable if the effect was completely dispersed 

(Figure 5.9). 

 

Figure 0.9 Total DALYs averted under different assumptions about 
heterogeneity in initial efficacy 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Effects of the coverage rate 

The reference scenario assumes a fairly high vaccine coverage rate (89%) as 

reported in Tanzania for DTP-HB vaccine in year 2003.4 We also simulate a 

coverage rate of 50% which is likely to be closer to that in many malaria endemic 

countries, and coverage of 100% which allows us to analyze which effects are due 

to incomplete coverage. The cost-effectiveness simulations are thus run assuming 

a low coverage rate (50%) and complete coverage (100%). A lower coverage rate 

leads to significant reduction in the total number of deaths and of DALYs averted 

over the 20 year simulation (Figure 5.10).  
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The cost per death prevented and per DALY averted assuming a coverage rate of 

50% is between 20% and 50% higher than in the reference scenario in the central 

ten years of simulation, while it is slightly lower in the first and last five years 

(Table 5.7). A complete coverage would increase slightly the number of deaths 

prevented and more significantly the number of DALY averted compared to the 

reference scenario, while the cost per deaths and DALY averted would be slightly 

lower.  

 

Figure 0.10 DALYs averted under different assumptions about vaccine 
coverage 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Inclusion of productivity costs 

The economic implications of reducing the burden of malaria go beyond the direct 

costs due to health care treatment. In the sensitivity analysis we model the cost-

effectiveness results including the productivity costs of productive time lost due to 

the disease. Results are presented for two assumptions of the proportion of 

malaria episodes where there is a productivity cost associated with the disease: the 

high productivity cost case where productivity costs are incurred by all episodes 

predicted by the epidemiological model, and the low productivity cost case where 

there are no productivity costs associated with uncomplicated episodes unless the 

patient seeks treatment.  

Over the entire 20 year follow-up period, introducing the vaccine would lead to 

savings in productivity costs of around US$263,634 in the high productivity cost 

scenario and $28,443 in the low productivity cost scenario. However, as do the 

effects of the vaccine vary over time, so do the savings in productivity costs vary 

over time (Table 5.8). Under the high productivity cost scenario, the savings in 
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productivity costs reduce the total net cost of introducing the vaccine by between 

49% and 90% in different time periods, at a vaccine price of US$1 per dose. The 

savings are significantly reduced to an impact on total net cost of 3% to 4% when 

the vaccine price increases to US$20 per dose.  

Under the low productivity cost scenario, the reductions in the net cost of 

introducing the vaccine are significantly lower than under the high productivity 

cost scenario. Total net cost reductions would occur only in the first 3 5-year 

periods, giving reductions of 5% to 7% and 5% at US$1 per dose and under 1% at 

US$20 per dose. In the fourth 5-year period productivity costs would be actually 

higher with the vaccine. This leads to an increase in the net cost of introducing the 

vaccine in the last ten year of follow-up. 

As a consequence, the cost per DALY averted (discounted) is lower when 

productivity costs are included, as presented in Table 5.9. Under the high 

productivity cost scenario, the total cost per DALY averted would be between 

US$1.7 and US$8.1 at a vaccine price of US$1 per dose. These figures represent a 

reduction in cost per DALY averted of between 63% and 89% when compared to 

the CER containing only direct costs. However, as the vaccine price increases the 

cost per DALY becomes closer to the reference case analysis CER. For example, 

at US$20 per dose the cost per DALY averted would be between US$148 and 

US$227 in different time periods, which is similar to that including only direct 

costs.  

 

Table 0.8 Hypothetical value of production time gained due to less time spent 
ill, after vaccine introduction (US$, year 2004) 

 

High productivity cost scenario Low productivity cost scenario Time period  
(years) Undis-counted Dis-counted Undis-counted Dis-counted 
1-5 63,478 57,173 15,260 14,074 
6-10 124,743 98,807 18,603 15,114 
11-15 105,779 72,440 6,238 4,407 

16-20 59,366 35,214 -8,771 -5,153 
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Table 0.9 Cost per DALY averted including direct and productivity costs 
(US$, year 2004) 

 

Cost per discounted DALY averted Vaccine price per 
dose 

Time 
period 
(years) 

High productivity cost scenario Low productivity cost scenario  

1-5 3.98 9.76 
6-10 Neg* 8.07 
11-15 1.66 15.12 

1 

16-20 8.12 16.80 
1-5 13.50 18.72 
6-10 6.15 15.73 
11-15 13.88 26.61 

2 

16-20 19.60 27.59 
1-5 32.55 36.63 
6-10 22.44 31.05 
11-15 38.31 49.59 

4 

16-20 42.56 49.18 
1-5 51.60 54.54 
6-10 38.73 46.37 
11-15 62.75 72.56 

6 

16-20 65.51 70.77 
1-5 70.65 72.46 
6-10 55.02 61.69 
11-15 87.18 95.54 

8 

16-20 88.47 92.36 
1-5 89.70 90.37 
6-10 71.32 77.01 
11-15 111.61 118.52 

10 

16-20 111.43 113.95 
1-5 180.41 179.93 
6-10 148.91 153.62 
11-15 227.97 233.40 

20 

16-20 220.77 221.91 

Neg* - indicates that there is a cost saving and a health benefit 
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5.4 Discussion 

We have used a stochastic simulation of P. falciparum epidemiology combined 

with a case management model for a Tanzanian setting3 to explore the potential 

cost-effectiveness of a pre-erythrocytic malaria vaccine. To our knowledge, this is 

the first time that dynamic models of malaria transmission and disease have been 

used to evaluate the cost-effectiveness of malaria vaccines. We have used 

vaccines with different characteristics introduced via the EPI in Tanzania to 

illustrate the approach. The models can readily be extended to other types of 

vaccine, and to different epidemiological and socio-economic settings.  

Over the vaccine price range of US$ 1.0 to US$ 20 per dose, the CER is almost 

proportional to the price per dose, ranging (in the reference analyses) between 

US$ 12 and US$ 190 per (discounted) DALY averted. In the sub-Saharan African 

context, CERs towards the lower end of this range would be very attractive for 

health ministries.18,19 Up to a vaccine price per dose of almost US$ 10, the cost 

per discounted DALY averted remains under US$ 100.  When productivity costs 

due to morbidity are included, our CERs are even lower than those estimated 

including only direct costs.   However, this difference diminishes with the 

increase of vaccine price.  There is little difference between marginal and average 

costs, which means that substantial savings cannot be achieved by taking up spare 

capacity in the health system: the cost of the vaccine is the major determinant of 

costs.   

These results should be interpreted in the context of CEA of other malaria control 

strategies. At vaccine price towards the lower end of the range used, our cost-

effectiveness estimates of vaccination compare favorably with those of several 

other malaria control interventions estimated for the Global Forum for Health 

Research (GFHR)20, but these comparisons are problematical because of 

differences in the methodology.     Although the GFHR study used DALY 

calculations based on an African life-table with similar life expectancies to those 

that we use, our models differ by including dynamic effects that result in age- and 

time- shifts in the burden of disease. 

The indirect economic impact of malaria is clearly important and we aimed to 

capture these effects by including productivity costs in some analyses.  However 

there are many pitfalls in measuring potential or actual economic impact in the 

context of rural Africa where most of the population are subsistence farmers, 

child-care is often performed by older siblings, work is seasonal and work inputs 

may be shifted over time and between household members. We had no empirical 

studies available for our estimates of time use or on the impact of malaria 

episodes on productive capacity.    Concerns about equity effects, inadequate data, 
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or methods for estimating economic benefits mean that indirect costs are often 

excluded from CEA.2,17 Indirect costs were not included in the GFHR study20, or 

in any other cost-effectiveness studies to date of malaria interventions, and nor 

were they included in the analyses underpinning WHO guidelines for CER 

thresholds for considering health interventions as attractive or very attractive (18).   

Our analyses that include productivity costs are thus even less comparable with 

those of other studies.   

A major impact of malaria on productivity is likely to be via the effects on 

premature mortality, but it is inappropriate to include in a CEA the “costs of 

mortality”, as available from estimates of life-time earnings forgone or 

willingness to pay studies, since this would result in double counting of the 

benefits of averting deaths.1,2,21  Among the microeconomic studies on the 

economic consequences of malaria published so far, only one22 has included 

productivity costs due to premature mortality. That study estimated the economic 

burden of malaria and not the cost-effectiveness of interventions.  

A malaria vaccine may also have positive impacts on social and economic 

development that are not captured by the productivity cost savings. Endemic 

malaria is associated with substantially lower indices of economic development at 

the national level,23,24 and reducing the burden of malaria might have 

macroeconomic benefits that are not captured in microeconomic analyses.   

However the epidemiological analyses5 clearly indicate that on their own, vaccine 

programs with profiles like those we investigated will avert a proportion of illness 

events that is much lower than the primary vaccine efficacy, and will have little or 

no effect on malaria endemicity.  In this context it would be surprising if they had 

substantial effects on economic development. 

Indeed, we obtain only modest estimates of the wider economic benefits of a 

vaccination program if we apply the recently suggested approach25 of estimating 

these benefits by multiplying the number of DALYs averted by the average GDP 

per capital.  Using our prediction that a pre-erythrocytic malaria vaccine would 

avert between 0.013 and 0.029 DALYs per capita per year and the GDP per capita 

of Tanzania (US$ 322 in 2005), the annual per capita economic benefits would be 

between US$ 4.2 and US$ 9.3 (according to whether DALYs are discounted or 

not and aged weighted or not).  

These conclusions reflect the reference case, but the CER is highly sensitive to 

assumptions about the epidemiological setting and vaccine characteristics 

including the transmission intensity, the efficacy and duration of protection (Table 

5.7).   The CER varied with the time since the start of the vaccination programme, 

because the epidemiological model does not reach equilibrium within the time-

scale of the simulation.5 In general the cost per DALY averted is lower in the first 
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phase of the vaccination program than later, with the highest cost per DALY in 

the third 5-year time period after the start of the program. Extending the duration 

of protection increases the cost-effectiveness ratios in the third and fourth 5-year 

time periods. A vaccine boost at some specified time point may have a similar 

effect, although this would involve additional costs which would be included in 

calculation of the CER. We have not addressed the emerging problem of drug 

resistance, which could be included in the case management model and would 

presumably increase the cost per DALY averted. 

Our simulations considered only a limited set of sources of heterogeneity.  In 

particular we assumed that each person in the simulation was exposed to the same 

entomological challenge, and that the chances of being vaccinated were 

independent of individual susceptibility to disease.  We also assumed 

homogeneous probabilities of accessing health care.   Over a period of 20 years 

the introduction of a new malaria vaccine would definitely have an impact on the 

health system and on the case management of malaria.  It would be possible to 

simulate more realistic patterns of heterogeneity but the field data on which to 

base such models are very limited. 

Some counter-intuitive behavior in cost-effectiveness ratios corresponds to health 

effects in the model. When episodes are delayed rather than averted, they occur in 

older individuals who may require larger drug dosages. Thus the health benefit of 

delaying illness may be partially offset by increased costs. The epidemiological 

model also corresponds with field data that suggests a maximum incidence of 

clinical episodes (though not mortality) at intermediate transmission intensities,26-

29 so it is quite possible for reductions in malaria transmission to lead to increased 

case-loads.  

The proportion of clinical episodes averted varies by transmission intensity5 and 

so do the numbers of DALYs averted. The numbers of clinical episodes continues 

to decline after ten years of the vaccine introduction only in low transmission 

scenarios. This is explained by the fact that in high transmission settings there is 

an increase in severe malaria incidence in children over five years old, due to 

reduced accrual of immunity to asexual blood stage parasites during early 

childhood. In addition, the pyrogenic threshold, which determines the parasite 

density that leads to acute illness, depends on the recent exposure to parasite and 

can be lower in vaccinated individuals.10 In the model, the lower level of acquired 

immunity in vaccinated individuals and the resulting inability to effectively 

control parasite densities also leads to higher proportion of the acute episodes 

being severe. 

An extension to the current work will be to carry out a full probabilistic sensitivity 

analysis; this will enable us to present acceptability curves in addition to the 
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presentation of cost-effectiveness ratios in this paper.  However the present 

analyses already indicate that a pre-erythrocytic malaria vaccine, even one with 

moderate efficacy and minimal effectiveness in reducing transmission to the 

vector, could be a cost-effective intervention in reducing the intolerable burden of 

malaria in sub-Saharan Africa. 
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Abstract 

Background 
A wide range of possible malaria vaccines is being considered and there is a need 
to identify which vaccines should be prioritized for clinical development. An 
important element of the information needed for this prioritization is a prediction 
of the cost-effectiveness of potential vaccines in the transmission settings in 
which they are likely to be deployed. This analysis needs to consider a range of 
delivery modalities to ensure that clinical development plans can be aligned with 
the most appropriate deployment strategies.  
 
Methods 
The simulations are based on a previously published individual-based stochastic 
model for the natural history and epidemiology of Plasmodium falciparum 
malaria.  Three different vaccine types: pre-erythrocytic vaccines (PEV), blood 
stage vaccines (BSV), mosquito-stage transmission-blocking vaccines (MSTBV), 
and combinations of these, are considered each delivered via a range of delivery 
modalities (Expanded Programme of Immunization - EPI-, EPI with booster, and 
mass vaccination combined with EPI). The cost-effectiveness ratios presented are 
calculated for four health outcomes, for assumed vaccine prices of US$ 2 or US$ 
10 per dose, projected over a 10-year period.  
 
Results 
The simulations suggest that PEV will be more cost-effective in low transmission 
settings, while BSV at higher transmission settings. Combinations of BSV and 
PEV are more efficient than PEV, especially in moderate to high transmission 
settings, while compared to BSV they are more cost-effective in moderate to low 
transmission settings. Combinations of MSTBV and PEV or PEV and BSV 
improve the effectiveness and the cost-effectiveness compared to PEV and BSV 
alone only when applied with EPI and mass vaccinations. Adding booster doses to 
the EPI is unlikely to be a cost-effective alternative to delivering vaccines via the 
EPI for any vaccine, while mass vaccination improves effectiveness, especially in 
low transmission settings, and is often a more efficient alternative to the EPI. 
However, the costs of increasing the coverage of mass vaccination over 50% often 
exceed the benefits.  
 
Conclusions 
The simulations indicate malaria vaccines might be efficient malaria control 
interventions, and that both transmission setting and vaccine delivery modality are 
important to their cost-effectiveness. Alternative vaccine delivery modalities to 
the EPI may be more efficient than the EPI. Mass vaccination is predicted to 
provide substantial health benefits at low additional costs, although achieving 
high coverage rates can lead to substantial incremental costs.  
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6.1 Background 

Plasmodium falciparum malaria represents one of the world’s major causes of 

morbidity and mortality1 2 and there is a pressing need for new effective 

interventions, which, combined with the existing strategies, could effectively 

reduce the burden of malaria in endemic areas3.   

Among these potential new interventions are vaccines and, although there is 

currently no licensed malaria vaccine, a number of candidates are under 

development.  The complexity of the malaria life cycle means that a number of 

different stages of the parasite can be targeted.  The candidate that is most 

advanced in clinical development4 5 targets pre-erythrocytic stages of the parasite.   

Appraisals of candidate malaria vaccines should not include only efficacy and 

effectiveness evaluations but also cost effectiveness analyses (CEA) aimed at 

guiding vaccine developers, funding agencies6, and policy makers to allocate 

resources so that social and economic benefits are maximized7 8.  CEA can help in 

evaluating alternative health interventions because health decision makers are 

primarily interested in knowing what health improvements can be bought with a 

given budget, and not the overall economic impact per se9 10. Previously, the 

likely epidemiological effects11 and cost-effectiveness12 of pre-erythrocytic 

vaccines when delivered in areas of stable endemic malaria via the Expanded 

Programme on Immunization (EPI) were estimated based on a dynamic model of 

malaria epidemiology13. These simulations showed that at moderate vaccine 

prices the cost-effectiveness of such vaccines may be similar to that of other 

preventive and curative interventions against malaria. However, more evidence is 

needed on the likely cost-effectiveness of different malaria vaccines under 

development, and on the implications for it of adopting alternative means of 

deployment.  The cost-effectiveness of a malaria vaccine will depend not only on 

the vaccine profile and the transmission setting, but also on the vaccination 

coverage that can be achieved, on the vaccine delivery costs, and of the 

operational feasibility of the delivery modalities adopted to deploy it.  

A companion article to the present one14, reports on the simulations of the likely 

epidemiological effects of three different malaria vaccine types: pre-erythrocytic 

vaccines (PEV), blood stage vaccines (BSV), mosquito-stage transmission-

blocking vaccines (MSTBV), and combinations of these.  A range of different 

delivery modalities (EPI, EPI with booster, and mass vaccination combined with 

EPI) were considered.  In this article, both the health system and vaccine delivery 

costs are attached to the events recorded in these simulations to calculate cost-

effectiveness ratios for each deployment strategy and each vaccine, and for each 

of four health outcomes over a 10-year time-horizon. 



 142 

 

6.2 Methods 
 

Perspective and boundary 

The simulations refer to CEA under the perspective of the society as a whole, 

although only direct costs are included. They thus consider all relevant direct 

resource inputs and costs to the interventions, and resource consequences, costs, 

and health impacts resulting from the interventions. The indirect economic impact 

of malaria such as potential earning forgone of patients and unpaid carers is not 

included, as its inclusion is controversial in CEA15 16. The CEA follows standard 

cost-effectiveness methodology8 17-21. 

 

Interventions being compared 

The simulations of vaccines are based on a previously described model for the 

natural history and epidemiology of P. falciparum malaria13.  This model uses an 

underlying model based on descriptions of the course of parasite densities in 

malaria therapy patients22. The parameterization of the model for the present 

simulations is described in the companion article14 and reviewed in more detail 

elsewhere23. Briefly, each simulated vaccine is characterized by an average initial 

efficacy (the efficacy reached after completion of a schedule of three doses), and 

by a half-life of this efficacy, which is assumed to decay exponentially with time.  

The vaccinated population is assumed to be heterogeneous in the response to 

vaccination, and to allow for this we assign initial values for efficacy drawn from 

a beta-distribution11 (simulated vaccines are delivered at specified ages, and a 

range of coverage values is considered for vaccination to allow for individuals 

who do not complete the full schedule).  

 

The effects of the three different vaccine types and four combinations were 

modeled as follows (see also 14):  

 (i) Pre-erythrocytic vaccines (PEV)  

Pre-erythrocytic vaccines are assumed to lead to a reduction in the proportion of 

inoculations from the bites of infected mosquitoes that lead to blood stage 

infection and the vaccine efficacy is assumed to be equal to the proportion by 

which this force of infection is reduced.      

(ii) Blood stage vaccines (BSV) 

A blood stage vaccine is assumed to reduce parasite densities at each time step by 

a proportion equal to the vaccine efficacy. 
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 (iii) Mosquito stage transmission blocking vaccines (TBV) 

Vaccine efficacy is equivalent to the proportional reduction of the probability that 

a mosquito becomes infected from any one feed on an infectious vaccinated 

human.  

(iv) Combination vaccines   

Combination vaccines of PEV with TBV, BSV with TBV, BSV with PEV and 

also a three-way combination of PEV with both BSV and MSTBV are considered.  

For each combination, PEV and BSV are assumed to be matched in both the 

initial efficacy and in their rate of decay.   Only combinations of PEV, BSV and 

of PEV-BSV with high efficacy MSTBV are considered since it is unlikely that a 

MSTBV with low efficacy would be developed.   

 

Vaccine delivery modalities 

The delivery of the three vaccine types and their combinations through the 

following three strategies are simulated:   

(i) EPI  

Delivery of the vaccines through the EPI according to the usual diphtheria tetanus 

pertussis (DTP3) vaccine schedule: age 1, 2 and 3 months. 

(ii) EPI with booster 

In addition to the above EPI schedule, this modality includes booster doses at 1, 2, 

3 and 4 years after the last EPI schedule. The effect of a booster dose is to restore 

the protective efficacy to the level achieved after the third dose in the same 

individual. 

(iii) Mass vaccination combined with EPI  

Delivery via EPI to infants is supplemented with a mass vaccination campaign at 

the beginning of the intervention period and additional campaigns after five years.  

Vaccine coverage 

For vaccines delivered via EPI, the assumed coverage of full vaccination (three 

doses) corresponds to that reported in Tanzania for three doses of diphtheria 

tetanus pertussis–hepatitis B virus vaccine in the year 2003, which stood at 89%. 

The assumed dropout rate from the first to the third dose is 6% since coverage for 

the first dose of DTP-HBV vaccine was 95%.  When booster doses are included, 

it is assumed that 99% of those that receive the third EPI dose will be given a 

booster dose 1, 2, 3 and 4 years after the last EPI dose.  For mass vaccination the 

coverage levels of 30, 50 and 70% are simulated. 

 

Case management model 

As detailed in the companion article14, the simulations of the effects of vaccine 

interventions use a case management model including both formal and informal 
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treatment, similar to a previous study of the authors24.  An artemisinin-based 

combination therapy (ACT), artemether-lumefantrine, is used as first line 

treatment for uncomplicated malaria, as per recent policy changes, and the drug 

action model was modified accordingly, both in terms of the potential to reduce 

rates of severe disease, sequelae and death, and the impact on transmission 

intensity. The model assumes that 90% of patients comply with the ACT 

treatment schedule and have a cure rate of 85%, while in non-compliers there is 

no effect.  

 

Measurement of health impact 

The effect of vaccines is evaluated by simulating the malaria dynamics in a 

population of 100,000 people over a 10-year time horizon.  For each of the seven 

vaccine options, and each delivery modality, the simulations start from a reference 

set of assumptions (Table 1 of the companion article14). Each of the 21 vaccine 

schemes is compared with the reference situation at six different transmission 

intensities to obtain cost effectiveness results for each of the 126 vaccine 

scenarios in preventing the following outcomes: uncomplicated episodes, severe 

episodes, deaths and DALYs.    

 

Each simulation is repeated three times using different seeds to initialize the 

random number generator, and each of these simulations is compared with an 

independent simulation of a reference scenario: a control population with no 

vaccine, but with the same human demography, baseline transmission, and health 

system.   

 

To estimate the number of disability adjusted life years (DALYs), years of life 

lived with disability are calculated on the basis of the duration of disability, and 

respective disability weights. Weights for different malaria attributable disease 

conditions have been obtained from the Global Burden of Disease (GBD) study25. 

DALYs are computed with no age weighting to follow standard cost-effectiveness 

practices26. The disability associated with anemia is assigned to the same time 

period as the malaria infections causing it. 

 

Years of life lost (YLLs) and DALYs are calculated assuming age-specific life 

expectancies based on the life-table from Butajira, Ethiopia, with an average life 

expectancy of 46.6 years at birth27. This life-table represents that of an East 

African setting with low malaria transmission and is very similar to that for Hai 

District, a high altitude and low malaria prevalence site in Tanzania28.  YLLs for 
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each simulated death are computed under the assumption that this life table would 

apply in the absence of malaria. 

 

Vaccine delivery costs 

The vaccine delivery costs are estimated using the methodology of a previous 

study by the authors29, which was based on an ingredient approach requiring 

information on the quantities of physical inputs needed and their unit costs. The 

costs of introducing a malaria vaccine into the EPI in Tanzania include those 

related to an assumed range of vaccine purchase costs, and data collected from 

Tanzania on costs of distribution, cold chain, management, vaccine delivery by 

health facilities, training, and social mobilization30 (Table 6.1).    For booster 

doses, the per-dose delivery cost is assumed to be the same as that of routine EPI. 

The costs of vaccine campaigns are estimated by adding to the purchase costs, 

those costs associated with distribution, cold chain, management, specific 

programme activities, personnel, and other capital costs, estimated by a study in 

Tanzania on a campaign for Vitamin A supplementation31 (Table 6.2). 

 

Table 0.1 Vaccine delivery costs – routine EPI – US$ 2006 

 

Item Source Costs (US$) 

Net vacc. purchase cost per dose Derived 1.23 2.45 12.25 
Vaccine price per dose  1 2 10 

Freight UNICEF estimates 0.0417 0.0417 0.0417 
Wastage WHO estimates 15% 15% 15% 

Distribution per dose 
29 0.09 0.09 0.09 

Storage per dose 
29 0.03 0.03 0.03 

Management per dose 29 0.003 0.003 0.003 
Delivery per dose Derived 0.13 0.13 0.13 

Syringes  0.06 0.06 0.06 
Unit cost per dose 30 0.05 0.05 0.05 

Freight UNICEF estimates 0.0417 0.0417 0.0417 
Wastage WHO estimates 10% 10% 10% 

Safety boxes  0.01 0.01 0.01 
Unit cost per dose 30 0.0122 0.0122 0.0122 

Freight UNICEF estimates 0.0417 0.0417 0.0417 
Wastage WHO estimates 10% 10% 10% 

Personnel facility level 29 0.06 0.06 0.06 
Waste management     
Training over 5 years) 29 0.03 0.03 0.03 
Social mobilization (av) 29 0.12 0.12 0.12 

TOTAL COST PER DOSE  Derived 1.63 2.86 12.66 

*adjusted for inflation 
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Table 0.2 Vaccine delivery costs – Campaign – US$ 2006 

 

Item Source Costs (US$) 

Net vacc. purchase cost per dose Derived 1.23 2.45    12.25  
Vaccine price per dose  1 2 10 

Freight UNICEF estimates 0.0417 0.0417 0.0417 
Wastage WHO estimates 15% 15% 15% 

Distribution per dose 29 0.09 0.09      0.09  
Storage per dose 29 0.03 0.03      0.03  
Management per dose 29 0.003 0.003    0.003  
Delivery per dose Derived 0.07 0.07      0.07  

Syringes  0.06 0.06      0.06  
Unit cost per dose 30 0.05 0.05 0.05 

Freight UNICEF estimates 0.0417 0.0417 0.0417 
Wastage WHO estimates 10% 10% 10% 

Safety boxes  0.01 0.01      0.01  
Unit cost per dose 30 0.0122 0.0122 0.0122 

Freight UNICEF estimates 0.0417 0.0417 0.0417 
Wastage WHO estimates 10% 10% 10% 

Programme-specific costs  0.07 0.07      0.07  
Allowances 0.1132 0.1132  0.1132  

Fuel & Maintenance 0.0337 0.0337  0.0337  
Fax & Telephone 0.0094 0.0094  0.0094  

Refreshments 0.0058 0.0058  0.0058  
Stationary & Postage 0.0056 0.0056  0.0056  

Photocoping 0.0051 0.0051  0.0051  
Transport 0.0050 0.0050  0.0050  

Social mobilization 0.0048 0.0048  0.0048  
Other 0.0005 0.0005  0.0005  

Personnel cost 0.42 0.42      0.42  
Government 0.3017 0.3017  0.3017  

Non Government 0.1141 0.1141  0.1141  
Capital cost 0.07 0.07      0.07  

Vehicles 0.0410 0.0410  0.0410  
Social mobilization 0.0156 0.0156  0.0156  

Long term training & studies 0.0153 0.0153  0.0153  
Other 

31 

0.0017 0.0017  0.0017  
TOTAL COST PER DOSE Derived 1.98 3.20    13.01  

*adjusted for inflation 
 

 

 

 

Potential cost savings of the interventions 

The costs of treating those seeking health care for malaria episodes are calculated 

under the reference and the vaccine scenarios modeled. This allows calculation of 

expected cost savings associated with the introduction of an efficacious malaria 

vaccine.  The case management cost inputs correspond to those published 

previously by the authors adjusted for inflation to 200724 32-36 (Table 6.3) and the 

first line treatment for uncomplicated malaria changed to an ACT 

(artemether/lumefantrine), for which the public sector price posted by WHO was 

used (Table 6.4). 



 147 

 

The numbers of uncomplicated and severe malaria episodes averted due to 

vaccination are multiplied by the case management unit costs, as described above, 

to estimate the potential cost savings for both the health system and households.  

The cost savings are subtracted from the vaccine costs to compute the net costs of 

the interventions. 

 

Table 0.3 Case management unit costs US$ 2006 

 

 Costs (US$) Source 

Household average out of pocket costs per outpatient visit   
Travel costs                0.09  32 
Medical supplies                0.03  32  
Non medical supplies                0.22  32 
Travel costs                0.09  32 
   
Unit cost of outpatient visit             0.7176  derived 

% of outpatient visits that take place at health centers 17% 33 
% of outpatient visits that take place at dispensaries 72% 33 

% of outpatient visits that take place at hospitals 10% 33 
cost per outpatient visits at health centers                1.47  derived 

cost per outpatient visits at dispensaries                1.18  derived 
cost per outpatient visits at hospitals                2.54  derived 

% of patients using Diagnostic Techniques 0.1 34 
unit cost of Diagnostic Technique 0.3 34 

% of outpatient visit cost that are recurrent 69% 32 
% of outpatient visit cost that are fixed 0.25 32 

   
Hospital costs of severe episodes   
Non drug cost per admission when patient fully recorvers 14.4 derived 
Non drug cost per admission when patient recorvers with NS 32 derived 
Non drug cost per admission when patient dies 6.4 derived 
Non drug cost per day of stay                9.00  36 

Capital                 2.60   
Recurrent                6.40   

average length of stay when patient fully recovers 4.5 37 
average length of stay when patient  recovers with NS 10 37 
average length of stay when patient dies 2 37 
% of hospital cost that are recurrent               71.1  35 
% of hospital recurrent costs that are fixed 50.0 37 
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Table 0.4 ACT costs  

 

Age Cost/dose in $  
(including 12% dist) 

Cost per course in $  
+ 25% wastage 

<3 years - 5 to 14 Kg 1.008 1.260 
3-9 years - 15 to 24 Kg 1.568 1.960 
10-14 years 25 to 34 Kg 2.128 2.660 
15+ years - Above 35 Kg 2.688 3.360 
Source: http://www.who.int/malaria/cmc_upload/0/000/015/789/CoA_website5.pdf   accessed 15 

July 2008. 

 

 

Calculating cost-effectiveness ratios and interpreting the results 

The cost-effectiveness ratios presented are calculated for four health outcomes: 

uncomplicated and severe malaria episodes averted, DALYs averted, and deaths 

averted. Future costs and benefits are discounted at 3%. The cost-effectiveness 

ratios are presented for assumed vaccine prices of US$ 2 or US$ 10 per dose for 

all the vaccines and vaccine combinations.  The results are presented as cost-

effectiveness on a 10-year period.  

 

The cost-effectiveness ratios are to be interpreted as incremental cost-

effectiveness ratios of implementing the interventions in the simulated scenarios 

relative to a do-nothing scenario, which corresponds to maintaining only the case 

management model described above.  

 

Accounting for uncertainty 

The cost-effectiveness results are based on an advanced modeling methodology 

aimed at representing reality as accurately as possible. The large number of 

scenarios simulated includes some sensitivity analyses of results for key variables, 

for instance for vaccine efficacy levels. The likely impact on results of other key 

features of potential malaria vaccines is explored in the companion article14. 

 

However, many sources of uncertainty cannot be captured by these sensitivity 

analyses. Probabilistic sensitivity analysis and expected value of information 

analysis could serve to further assess the impact of uncertainty on the simulation 

results38-41, but there are technical problems in implementing and presenting such 

analyses for a large set of interventions and scenarios. It has been, therefore, 

planned to run an expected value of information analysis on a sub-set of 

simulations that will be reported in another article. 
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6.3 Results  
 

Pre-erythrocytic vaccines 

At a reference transmission setting with annual entomological inoculation rate 

(EIR) of 21, the simulations predict that a PEV with 52% initial efficacy could be 

very cost-effective when delivered via EPI alone. At a vaccine price of US$2 per 

dose, the cost per uncomplicated malaria episode averted would be around US$ 5, 

the cost per severe malaria episode averted US$ 269, the cost per DALY averted 

around US$ 35 and the cost per death averted US$1057 (see table 6.5 and 6.6, 

Annex). The cost-effectiveness ratios are lower for higher effectiveness levels 

(Figure 6.1). They increase almost proportionally with vaccine price reaching 

US$ 160 per DALY averted and US$ 4869 per death averted for a vaccine price 

of US$ 10 per dose (see table 6.7 and 6.8, Annex).  

 

The proportion of events averted by PEV delivered via EPI with booster doses is 

slightly higher, but the cost per uncomplicated episode averted is 20% higher (see 

table 6.5, Annex), and cost per DALY and death averted is around 31% higher 

(see table 6.6, Annex).  

 

With EPI and mass vaccination the proportion of events averted is 5% higher for 

mass vaccination coverage of 50% and 8% higher for coverage of 70%14, and the 

cost per uncomplicated episode averted is slightly lower.  However, the costs per 

DALY and death averted are around 60%-66% higher (see table 6.5 and 6.6, 

Annex). For higher efficacy levels the pattern is similar, showing that the 

incremental benefits of these deployment modalities, in this transmission setting, 

are modest (Figure 6.1). 
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Figure 0.1 Effect of initial efficacy on cost-effectiveness of PEV by 
transmission setting and delivery modality* 

Results obtained assuming a vaccine half-life of 10 years, homogeneity value of 10, and vaccine 
price of US$2. 
EPI & Campaigns means EPI with 70% mass vaccination. 
*data for EIR in some cases are not shown in the figure due to a scale problem 
 

 
 

In low transmission settings, while the cost per uncomplicated episode averted 

under EPI alone is similar to that in the reference transmission setting (see table 

6.5 and 6.6, Annex), the cost per DALY and death averted are lower at US$ 31 

per DALY averted and US$ 925 per death averted at a vaccine price of US$ 2 per 

dose (see table 6.6 and 6.8, Annex).  Adding booster doses leads to higher cost-

effectiveness ratios for efficacy levels up to around 60%, but at near 100% 

efficacy the cost-effectiveness ratios become similar (Figure 6.1). In contrast, 

when mass vaccination is added to EPI, the cost-effectiveness ratios decrease 

substantially, by around 70% for the cost per uncomplicated case averted (see 
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table 6.5 and 6.7, Annex), and by 24% to 28% for the cost per DALY and death 

averted (see table 6.6 and 6.8, Annex). 

 

In high transmission settings, the effectiveness of PEV is low14 and the cost-

effectiveness ratios are therefore higher than in the other transmission settings 

irrespective of delivery modality. For some outcomes, vaccination even leads to 

an increase in the number of clinical events14, and, therefore, to negative cost-

effectiveness ratios and negative case management cost savings (see table 6.9, 

Annex). 

 

Across all transmission settings, the incremental benefits of booster doses are 

small and the cost-effectiveness ratios are higher. Adding mass campaigns has 

little impact on overall effect when the primary efficacy is low. However, for high 

vaccine efficacy and high coverage, this strategy is predicted to lead to local 

elimination of the parasite in low transmission settings and substantially reduce 

transmission in medium transmission settings14 at low additional costs.  Under 

these conditions, because of the effects of the vaccine on transmission, delivery 

via mass campaigns plus EPI becomes a cost-effective alternative to EPI alone. 

Blood-stage vaccines 

At the reference transmission intensity, BSV of moderate efficacy with a price 

of US$ 2 per dose applied through EPI achieves a cost per uncomplicated episode 

averted of about US$ 9 (see table 6.5, Annex), which is higher than for the 

corresponding PEV, but the costs per DALY averted (US$ 21) and per death 

averted (US$ 630) are lower than for PEV (see table 6.6, Annex). At higher 

efficacy levels, the cost-effectiveness ratios decrease, following the same patterns 

as for PEV (Figure 6.2).  Adding booster doses increases the cost-effectiveness 

ratios somewhat. Mass campaigns also increase the cost-effectiveness ratios 

except for uncomplicated episodes, where they decrease. 

 

At low transmission intensity BSV averts a lower proportion of uncomplicated 

and severe cases and deaths than PEV14 and the cost effectiveness ratios are 

higher for all outcomes. Adding booster doses leads to slightly higher costs per 

uncomplicated episode averted (see table 6.5 and 6.7, Annex), and much higher 

costs per DALY and death averted (see table 6.6 and 6.7, Annex, and Figure 6.2). 

Adding mass campaigns to EPI leads to a dramatic reduction in the cost per 

uncomplicated episode averted, but the costs per DALY and death averted are 

only slightly lower (see table 6.5, 6.6, 6.7, Annex, and Figure 6.3, 6.4).  
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Figure 0.2 Effect of initial efficacy on cost-effectiveness of BSV by 
transmission setting and delivery modality 

Results obtained assuming a vaccine half-life of 10 years, homogeneity value of 10, and vaccine 
price of US$2. 
EPI & Campaigns means EPI with 70% mass vaccination. 
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Figure 0.3 Effect of initial efficacy on cost-effectiveness of all vaccines 
delivered via EPI by transmission setting*  

Results obtained assuming a vaccine half-life of 10 years and homogeneity value of 10, and 
vaccine price of US$2. 
*data for EIR in some cases are not shown in the figure due to a scale problem 
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Figure 0.4  Effect of initial efficacy on cost-effectiveness of all vaccines 
delivered via EPI with 70-% mass vaccination by transmission setting* 

Results obtained assuming a vaccine half-life of 10 years and homogeneity value of 10, and 
vaccine price of US$2. 
*data for EIR in some cases are not shown in the figure due to a scale problem 
 

 
 

In high transmission settings BSV is more effective than PEV especially in 

averting severe and mortality events14 and it is also more efficient. Under EPI 

alone the cost per uncomplicated episode averted, in the highest transmission 

setting, is US$ 3.8, the cost per DALY averted is US$13.5 and the cost per death 

averted is US$401, at vaccine price US$ 2 per dose (see table 6.5 and 6.6, Annex, 

and Figure 6.3). Adding boosters or mass campaigns, leads to higher incremental 

costs than incremental benefits (see table 6.5, 6.6, 6.7, Annex, and Figure 6.2).  

 

Across all transmission settings, the incremental costs of adding booster doses 

to EPI are higher than the incremental benefits and this is particularly true for 

severe episodes, DALYs, and mortality (see table 6.5, 6.6, 6.7, Annex, and Figure 
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6.2). In low transmission settings, campaigns improve cost-effectiveness for 

uncomplicated episodes averted, but do not change cost-effectiveness estimates 

for DALYs and deaths averted. However, in moderate to high transmission 

settings, the incremental costs of campaigns are higher than the incremental 

benefits (see table 6.5, 6.6, 6.7, Annex, and Figure 6.2).  

 

Combination vaccines and MSTBV 

Combining BSV with PEV (with matched efficacies) in general, improves or 

matches the cases averted over PEV alone for all transmission settings and 

vaccine delivery modalities14.  The cost-effectiveness ratios for this combination 

are lower than those of PEV in all transmission settings particularly for the cost 

per DALY and per death averted and in moderate to high transmission settings 

(see table 6.5, 6.6, 6.7 in Annex, and Figure 6.3, 6.4). Compared to BSV alone, 

the cost-effectiveness ratios of combining BSV with PEV are lower, though the 

difference is smaller than for PEV and in this case it is higher in moderate to 

lower transmission settings than in high transmission settings. Adding booster 

doses to EPI leads to higher cost-effectiveness ratios across all transmission 

settings for this combination - the costs per uncomplicated episode averted 

increases by around 19%-23% while those per DALY and death averted show 

even larger increases (around 30%-40%). 

 

Adding mass campaigns in low to moderate settings lead to incremental 

uncomplicated episodes averted that are higher than the incremental costs. 

However, in terms of DALYs and deaths averted the benefits exceed the costs 

only in the lowest transmission setting, while they are significantly lower in the 

reference and in high transmission settings. In high transmission settings even the 

additional uncomplicated episodes averted are lower than the additional costs. 

 

Combinations of MSTBV with PEV or BSV and the triple combination do not 

improve the effectiveness of the vaccines alone when delivered via EPI or EPI 

with boosters14. However, adding mass campaigns leads to greater effectiveness 

in all transmission settings (Figure 6.4). The additional benefits of these 

combination vaccines are then much higher than the additional costs compared to 

delivering the vaccines under EPI alone and to all delivery modalities of PEV and 

BSV alone. In the reference transmission setting, for instance, the cost per 

uncomplicated episode averted of combining BSV with MSTBV, delivered via 

EPI and mass campaigns, is (at a vaccine price of US$2) US$1.8 and US$2.3 for 

70% and 50% coverage (see table 6.5, Annex), while the cost per DALY averted 

is US$20 and US$ 22 for 70% and 50% coverage (see table 6.6, Annex). The 
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costs per DALY averted vary between US$ 12 and US$40 across transmission 

settings with the lowest value in the lowest transmission setting where the greatest 

improvement to effectiveness is observed. The very favourable cost-effectiveness 

ratios in low transmission settings are related to the case-management cost 

savings, which may compensate up to more than 50% of the costs of the vaccine 

intervention (see table 6.8, Annex). 

 

Effect of delivery modalities 

Adding boosters to EPI does not improve effectiveness or cases averted over EPI 

alone by very much even at the very high coverage level modeled, but it does 

incur additional costs. This delivery modality does therefore not represent a cost-

effective alternative to EPI alone in any scenario (see table 6.5, 6.6, 6.7, Annex). 

 

Delivering all vaccines and combinations via population based campaigns 

improves the effectiveness at mass vaccination coverage of 50%, especially in 

low transmission settings14.  Depending on the transmission setting and the 

vaccine type considered, the incremental costs of delivering vaccines via 

population based campaigns can be lower than the incremental benefits, leading to 

a significant reduction in the cost-effectiveness ratios (see table 6.5, 6.7, 6.8, 

Annex, and Figure 6.4). Disseminating vaccines via population-based campaign 

in these cases is predicted to be a more cost-effective way of delivering malaria 

vaccines than EPI alone. Increasing the coverage of the mass vaccination 

campaigns increases the effectiveness and cases averted for all vaccine and 

vaccine combinations under most transmission settings14.  However, the 

incremental benefits of increasing coverage are often lower than the incremental 

costs of achieving it (Figure 6.5). In some cases, the predictions suggest an 

optimal cost-effectiveness ratio at intermediate values for the campaign coverage.  

This is not a consequence of non-proportionality of vaccine delivery costs as a 

function of coverage (which could be realistic, but not modeled in this study), but 

of the indirect effects of the vaccines.  

 

Effect of vaccine price 

Although the simulations focus on comparative cost-effectiveness of different 

candidate malaria vaccines and delivery modalities, and not on the sensitivity of 

cost-effectiveness ratios to vaccine prices, which are hypothetical, it is evident 

that the cost-effectiveness results are almost directly proportional to the vaccine 

prices. In fact, at an assumed vaccine price of US$ 10 per dose, most cost-

effectiveness ratios are between 4 and 7 times higher than those obtained at US$ 2 

per dose (see table 6.5, 6.6, 6.7, Annex). At a vaccine price of US$ 2 per dose, 
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most vaccines and delivery modalities simulated present cost-effectiveness ratios 

comparable to those of other malaria interventions9 10 37 42 43, while at a vaccine 

price of US$ 10 per dose in many of the simulated scenarios the cost-effectiveness 

ratios are higher. 

 

Figure 0.5 Cost-effectiveness of vaccines given different levels of mass 
vaccination coverage by transmission setting* 

Results obtained assuming a vaccine half-life of 10 years and homogeneity value of 10, and 
vaccine price of US$2. 
*data for EIR in some cases are not shown in the figure due to a scale problem 
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6.4 Discussion 

CEA is a method for evaluating the relative efficiency of alternative interventions 

and thus can provide important information for assessing the potential 

implications of the numerous malaria vaccine candidates. This study used 

stochastic simulations of P. falciparum malaria epidemiology, combined with a 

case management model, to simulate the cost-effectiveness of potential malaria 

vaccines under various transmission settings and delivered via different 

modalities. This is an extension of previous research on pre-erythrocytic vaccines 

delivered via the EPI12.  

The simulations presented suggest that the cost-effectiveness of candidate malaria 

vaccines is likely to differ substantially according to the transmission intensity 

and to the delivery modality adopted. They also suggest that alternative vaccine 

delivery modalities to the EPI may sometimes, but not always, be more cost-

effective than the EPI.  In general, at moderate vaccine prices, most vaccines and 

delivery modalities simulated are likely to present cost-effectiveness ratios, which 

compare favourably with those of other malaria interventions37 42 43, making them 

potential attractive malaria control strategies, from an economic perspective, in 

malaria endemic countries.  

These simulations have various limitations, as described in the companion article 

on the epidemiological effects14. For the economic analysis, one of the most 

important limitations is related to the relatively simple case management model 

used to assess the impact of malaria vaccines on the costs to the health system and 

to patients. As the case management model used is the same for all scenarios 

simulated, the relative cost-effectiveness of the vaccines modeled, and, therefore, 

the comparisons, should only be slightly affected by it. However, further research 

and modeling of health system characteristics in malaria endemic settings is 

required. Additionally, the vaccine delivery modalities modeled may not be 

feasible to implement in all settings as the coverage and the effectiveness of 

malaria vaccines is likely to depend strongly on the characteristics of the health 

systems where they will be implemented, including any other malaria intervention 

being delivered. For instance, the simulations assumed an EPI coverage rate of 

89%, which is probably higher than found in some malaria-endemic countries. 

Lower EPI coverage rates could have an impact on the comparisons between 

different delivery modalities.   

Other limitations of this study include that the comparisons of malaria vaccines – 

or of combinations of them- with different characteristics, are based on the same 

assumed vaccine price. In practice, the price might vary according to the 

characteristics of the vaccines, in particular for combinations of vaccines. This 
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might be important for the result that MSTBV combinations were more efficient 

than vaccines without MSTBV, especially when delivered via EPI with mass 

campaigns.   

While modeling the costs of different vaccine delivery modalities, the fact that 

vaccine delivery costs might vary as a function of coverage (as it is the case for 

other interventions44 45) was not taken into account. This aspect was not 

considered due to the lack of solid evidence on vaccine delivery costs by coverage 

levels, especially for mass campaigns. 

Despite these limitations, the simulations presented provide interesting 

information for vaccine developers on the potentials of different candidate malaria 

vaccines. Previous simulation of the cost-effectiveness of PEV12 suggested that at 

moderate to low vaccine prices, a vaccine providing partial protection, and 

delivered via the EPI, may be a cost-effective intervention in countries where 

malaria is endemic. The simulations presented in this article, also show that these 

types of vaccines are more effective and cost-effective in low transmission 

settings, and that the additional costs of delivering a PEV under other modalities 

than the EPI are likely to be higher than the additional health benefits. The only 

exception is for the scenario of mass vaccination (added to routine EPI) in low 

transmission and for high vaccine efficacies and high coverage. In contrast to 

PEV, BSV are predicted to be more effective and cost-effective at higher 

transmission settings than low transmission.   

Combinations of BSV and PEV are predicted to be more efficient than PEV, in 

particular in moderate to high transmission settings, but compared to BSV, 

combinations are more cost-effective in mostly moderate to low transmission 

settings. The cost-effectiveness ratios of the other delivery modalities simulated 

are higher than those for EPI alone in almost all scenarios, with the exception of 

adding mass campaigns to EPI in the lowest transmission setting. 

Combinations of MSTBV and PEV or PEV and BSV do not increase the 

effectiveness or the cost-effectiveness compared to PEV and BSV alone when 

delivered through the EPI (including with the addition of booster doses).  

However, when applied with EPI and mass vaccinations, combinations with 

MSTBV provide substantial incremental health benefits and low incremental costs 

in all transmission settings. These combination vaccines are therefore predicted to 

be interesting only for the settings where mass vaccination achieving relatively 

high coverage rates would be feasible. 

According to these simulations, adding booster doses to the EPI is unlikely to be a 

cost-effective alternative to delivering vaccines via the EPI for any vaccine and 

transmission setting – i.e. the incremental health benefits are rather low despite 

the additional costs. 
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Mass vaccination improves effectiveness, especially in low transmission settings, 

and in some scenario the cost-effectiveness ratios compare favourably with those 

of delivering the vaccine via the EPI only - the incremental costs are lower than 

the incremental health benefits. However, increasing the coverage of mass 

vaccination over 50%, often leads to incremental costs that exceed the 

incremental health benefits. In some scenarios, the lowest cost-effectiveness ratios 

are reached at intermediate coverage rates of campaigns. This result is particularly 

relevant as it is due to the indirect effect of the vaccines, and not to the increasing 

vaccine delivery costs of achieving high coverage rates.  

In some of the mass vaccination scenarios the simulations predict that local 

elimination of the parasite would be, in principle, possible. In some of these cases, 

at moderate vaccine prices, the simulations also predict that the cost-effectiveness 

ratios of achieving local elimination might be relatively low despite the fact that 

often the incremental costs of achieving high vaccine coverage are higher than the 

incremental benefits. However, the cost-effectiveness analyses of these 

simulations include only part of the economic implications of malaria elimination.  

If local elimination were feasible, it might be desirable to achieve high vaccine 

coverage rates even if the incremental costs are high (compared to the incremental 

health benefits) as elimination would bring future benefits, however to sustain 

elimination over time, once elimination is achieved there would be a need for 

strong surveillance and case detection, which would incur substantial additional 

costs that are not included in our simulations. An assessment of the economic 

implications of achieving and sustaining local elimination is planned in the next 

stage of the project. 

 

6.5 Conclusions  

The simulations presented supports that cost-effectiveness analyses of candidate 

malaria vaccines may help guide policy makers and vaccine developers, by 

providing additional evidence that malaria vaccines may be efficient malaria 

control interventions. The results also indicate that the transmission setting and 

the vaccine delivery modality adopted are important determinants of the cost-

effectiveness of malaria vaccines. While adding booster doses to the EPI is not a 

cost-effective alternative to the EPI, mass vaccination is predicted to provide 

substantial health benefits, in particular in low transmission settings, at low 

additional costs making such a delivery mode, in principle, attractive and feasible, 

and in some cases lead to local elimination. Nevertheless, achieving high 

coverage rates can lead to substantial incremental costs compared to the health 
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benefits, while intermediate coverage rates may be a more efficient use of the 

resources.  

While modeling studies such as this one are useful for exploring the potential 

impact of malaria vaccines at early stages of development, vaccine development 

and implementation decisions should be also informed by cost-effectiveness 

studies carefully tailored to the settings where the vaccines are likely to be 

adopted.  

Ultimately, the relative efficiency of malaria vaccines will depend not only on the 

characteristics of them but also on the other malaria control interventions 

implemented. As malaria vaccines will eventually be deployed as part of 

integrated control strategies, the costs and effects of the interactions of vaccine 

programmes with those of other malaria control interventions should also be 

evaluated. 
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6.6 Annex  

Table 0.5 Cost-effectiveness of different vaccination strategies in US$ per clinical event averted for a range of initial 
transmission intensities - a vaccine purchase price of 2 US$ per dose is assumed. 

 

  Uncomplicated episodes Severe episodes 

 EIR EPI EPI booster 
EPI 70% 
campaign 

EPI 50% 
campaign 

EPI 30% 
campaign EPI EPI booster 

EPI 70% 
campaign 

EPI 50% 
campaign 

EPI 30% 
campaign 

5.25                19.7              22.3                 3.3                3.1                 3.3             156.5             200.0             152.9             136.4             128.4  
21                 8.7              10.0                 4.1                3.8                 3.8               99.4             130.9             183.4             155.8             131.4  
84                 4.6                5.6                 4.7                4.2                 3.9               84.5             116.0             209.6             170.8             137.8  B

S
V

 

168                 3.8                4.7                 5.1                4.5                 4.0               85.8             117.3             226.4             187.3             147.8  
5.25                 8.9              10.2                 0.8                0.8                 1.3             143.4             176.1               60.3               56.7               75.0  
21                 6.6                7.8                 1.8                2.3                 2.7               97.9             126.2             111.3             124.2             120.7  
84                 4.6                5.6                 4.3                4.3                 4.1               84.1             116.5             217.7             186.1             146.8  

B
S

V
 T

B
V

 

168                 4.1                5.1                 6.2                5.6                 4.8               87.5             122.8             284.3             224.1             162.4  
5.25                 5.8                6.8                 1.8                1.8                 2.0             191.8             228.3             129.2             128.5             135.0  
21                 5.3                6.3                 5.1                4.9                 4.9             268.8             341.9             426.6             421.2             393.9  
84                 9.9              10.8               26.9              24.7               21.0          neg.          4'911.5          neg. neg.          8'964.9  P

E
V

 

168                29.2              26.7  neg. neg. neg.           neg. neg. neg.           neg. neg. 
5.25                 4.4                5.6                 0.8                0.7                 0.9             162.1             206.9               59.6               49.3               65.2  
21                 4.5                5.3                 1.4                2.0                 2.8             243.6             272.0               99.7             148.2             202.7  
84                 8.4                9.2                 5.0                7.6               10.4           4'436.7           2'339.1             514.0           1'209.2           5'559.8  

P
E

V
 T

B
V

 

168                25.0              22.5               12.7              29.7             116.0  neg. neg. neg. neg.           neg. 
5.25                 4.7                5.8                 1.1                1.0                 1.2             102.4             130.8               72.5               67.1               69.0  
21                 3.6                4.4                 2.3                2.2                 2.3               82.9             106.9             136.3             122.8             106.9  
84                 3.9                4.7                 4.6                4.2                 3.9               94.7             121.7             225.0             189.2             155.2  

B
S

V
 P

E
V

 

168                 4.7                5.6                 6.5                5.9                 5.4             112.1             147.3             292.3             244.5             196.4  
5.25                 3.9                4.9                 0.8                0.6                 0.7               97.1             122.3               57.2               44.4               44.4  
21                 3.3                4.1                 1.0                1.3                 1.7               81.0             102.7               72.1               83.6               90.2  
84 3.8 4.6 2.8 3.2 3.4 93.5 122.8 167.2 169.7 151.7 

B
S

V
 P

E
V

 
T

B
V

 

168                 4.7                5.5                 4.4                5.0                 5.2             112.2             144.9             257.9             239.4             201.5  
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Table 0.6 Cost-effectiveness of different vaccination strategies in US$ per DALYs and deaths averted for a range of initial 
transmission intensities - A vaccine purchase price of 2 US$ per dose is assumed. 

 
  DALYs Deaths 

 EIR EPI EPI booster 
EPI 70% 
campaign 

EPI 50% 
campaign 

EPI 30% 
campaign EPI EPI booster 

EPI 70% 
campaign 

EPI 50% 
campaign 

EPI 30% 
campaign 

5.25              33.6              47.4               33.7               29.6              29.0              976.4           1'380.7             923.7             817.9             804.9  
21              21.4              25.6               36.8               31.8              26.7              629.7              755.6           1'073.3             921.2             783.5  
84              14.8              20.3               36.7               31.2              24.0              436.0              601.3           1'084.1             922.4             708.3  B

S
V

 

168              13.5              19.3               37.4               29.9              23.8              400.9              572.6           1'106.4             886.0             707.8  
5.25              30.6              39.9               11.9               11.6              15.4              880.5           1'146.9             329.2             323.0             433.9  
21              20.3              26.2               20.1               22.6              22.7              591.8              770.9             593.4             666.0             669.9  
84              14.7              20.9               33.4               30.6              24.1              435.9              618.9             995.8             912.7             714.5  

B
S

V
 T

B
V

 

168              14.1              19.3               39.8               32.6              25.5              417.6              572.1           1'187.8             970.5             757.9  
5.25              31.1              41.7               24.6               24.3              25.7              925.6           1'219.3             695.5             697.2             752.5  
21              34.8              45.9               56.9               55.7              47.9           1'057.4           1'382.6           1'748.6           1'707.2          1'467.0  
84              63.7             109.7              182.3             134.7             122.8           1'936.7           3'328.2           5'675.0           4'173.4          3'910.5  P

E
V

 

168             302.6             140.8           8'658.1             325.2             438.0          15'601.5           4'279.4  neg.        11'050.7         15'568.2  
5.25              28.5              37.5               11.6                9.9              12.8              834.9           1'101.5             321.1             275.4             362.0  
21              29.7              36.3               17.1               22.9              27.8              904.2           1'084.0             508.1             691.1             840.3  
84              61.7              70.2               49.2               56.9              74.3           1'867.9           2'095.4           1'511.9           1'738.7          2'280.4  

P
E

V
 T

B
V

 

168             422.5             353.9               95.1             163.1             277.3          20'445.9          19'392.0           2'967.8           5'400.1          9'418.8  
5.25              19.7              27.6               14.5               13.4              14.2              581.3              825.4             402.1             373.4             400.1  
21              15.1              19.5               24.3               21.5              18.8              445.6              579.0             717.3             638.0             555.0  
84              15.3              19.9               33.7               28.7              23.9              455.9              591.2           1'004.5             860.3             712.0  

B
S

V
 P

E
V

 

168              15.2              20.7               40.1               33.4              27.1              453.1              615.5           1'196.4             998.7             804.9  
5.25              20.0              25.3               11.0                8.7                8.9              586.5              742.4             303.3             241.4             249.8  
21              13.8              18.1               12.9               14.7              16.2              409.2              535.6             379.1             433.0             482.5  
84              14.6              18.6               24.4               24.0              22.4              434.5              552.5             731.7             717.7             668.5  

B
S

V
 P

E
V

 
T

B
V

 

168              15.5              20.4               32.4               29.8              26.5              463.1              606.1             974.9             892.4             792.7  
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Table 0.7 Cost-effectiveness of different vaccination strategies in US$ per clinical event averted for a range of initial transmission intensities 
- a vaccine purchase price of 10 US$ per dose is assumed. 

 
  Uncomplicated Severe episodes 

 EIR EPI EPI booster 
EPI 70% 
campaign 

EPI 50% 
campaign 

EPI 30% 
campaign EPI EPI booster 

EPI 70% 
campaign 

EPI 50% 
campaign 

EPI 30% 
campaign 

5.25                91.6            102.8               15.2               14.7               15.7             729.5             923.2             702.6             635.6             605.7  
21                41.8              47.4               18.5               17.5               17.6             477.1             618.2             821.3             709.1             609.8  
84                22.6              27.0               20.9               19.1               17.9             414.7             555.0             926.3             767.7             633.6  B

S
V

 

168                18.8              22.7               22.3               19.9               18.1             421.0             562.1             995.5             836.3             675.9  
5.25                42.2              47.7                 4.6                 4.7                 6.8             677.5             823.4             330.1             313.2             386.1  
21                31.8              37.0                 8.4               10.8               12.8             471.7             599.0             522.5             576.0             564.2  
84                22.7              26.9               19.0               19.3               18.7             412.2             556.6             954.2             828.2             668.4  

B
S

V
 T

B
V

 

168                20.1              24.4               27.0               24.7               21.6             427.6             585.4           1'230.0             986.0             733.2  
5.25                27.2              31.7                 8.5                 8.5                 9.6             897.2           1'061.4             613.7             613.9             643.0  
21                24.4              28.9               21.7               21.2               21.4           1'238.0           1'564.3           1'835.1           1'824.9           1'725.9  
84                43.9              47.8             111.8             103.3               88.9          neg.        21'797.5  neg. neg.        37'938.5  P

E
V

 

168              126.8            117.0  neg. neg. neg. neg. neg. neg. neg. neg. 
5.25                21.0              26.4                 4.5                 4.0                 5.0             768.7             967.4             328.0             285.0             351.8  
21                20.9              24.6                 6.7                 9.2               12.5           1'129.4           1'253.8             479.0             680.6             914.0  
84                37.4              41.0               21.5               31.9               43.9         19'645.3         10'396.4           2'186.7           5'107.2         23'544.5  

P
E

V
 T

B
V

 

168              108.3              98.1               52.8             122.7             483.9  neg. neg. neg. neg. neg. 
5.25                22.7              27.4                 5.6                 5.5                 6.2             495.9             623.7             378.6             355.1             361.4  
21                17.8              21.3               10.8               10.4               10.7             406.5             513.2             624.3             569.9             504.3  
84                18.9              22.4               20.1               18.7               17.7             456.8             577.5             983.9             838.5             701.3  

B
S

V
 P

E
V

 

168                22.3              26.1               28.1               25.7               23.8             532.4             689.9           1'261.7           1'068.4             873.9  
5.25                19.1              23.7                 4.4                 3.7                 4.0             475.2             586.7             318.4             265.2             262.9  
21                16.2              19.6                 5.2                 6.6                 8.2             398.4             495.3             365.8             409.3             435.4  
84                18.2              21.7               12.3               14.2               15.6             450.7             581.8             745.0             756.6             685.9  

B
S

V
 P

E
V

 
T

B
V

 

168                22.2              25.9               19.2               21.9               23.0             532.1             678.8           1'117.7           1'044.5             892.5  
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Table 0.8 Cost-effectiveness of different vaccination strategies in US$ per DALYs and deaths averted for a range of initial 
transmission intensities - a vaccine purchase price of 10 US$ per dose is assumed. 

 
  DALYs Deaths 

 EIR EPI EPI booster 
EPI 70% 
campaign 

EPI 50% 
campaign 

EPI 30% 
campaign EPI EPI booster 

EPI 70% 
campaign 

EPI 50% 
campaign 

EPI 30% 
campaign 

5.25           156.7            218.8             154.9             138.1            136.6           4'550.1          6'371.6          4'244.1          3'811.6          3'797.5  
21           102.5            121.1             164.8             144.5            123.7           3'022.8          3'567.7          4'807.3          4'191.1          3'635.6  
84             72.5              97.2             162.1             140.1            110.2           2'140.5          2'877.6          4'792.2          4'146.7          3'257.2  B

S
V

 

168             66.4              92.4             164.3             133.4            108.7           1'968.1          2'745.1          4'864.2          3'956.9          3'236.2  
5.25           144.3            186.3              65.2              64.3              79.5           4'158.8          5'361.1          1'801.3          1'782.5          2'233.9  
21             97.6            124.6              94.4             104.6            106.3           2'851.7          3'660.0          2'786.3          3'087.3          3'131.1  
84             72.2              99.9             146.3             136.3            109.9           2'136.7          2'958.4          4'365.6          4'061.3          3'253.3  

B
S

V
 T

B
V

 

168             68.9              91.8             172.3             143.6            115.1           2'042.0          2'727.9          5'139.1          4'271.0          3'421.6  
5.25           145.7            193.7             116.8             116.0            122.6           4'328.7          5'669.8          3'304.2          3'329.5          3'583.2  
21           160.2            210.2             244.7             241.2            209.9           4'869.9          6'327.3          7'522.9          7'396.8          6'429.6  
84           281.9            486.8             757.8             563.1            518.3           8'564.8        14'776.1         23'590.3         17'448.8        16'506.1  P

E
V

 

168         1'314.1            616.9         35'637.1          1'344.9          1'827.5         67'815.3        18'744.6  neg.        45'698.5        64'956.9  
5.25           135.3            175.6              63.9              57.4              69.0           3'958.6          5'151.2          1'768.3          1'593.7          1'952.6  
21           137.8            167.3              82.2             105.3            125.3           4'193.4          4'996.4          2'441.7          3'174.4          3'788.9  
84           273.2            312.4             209.2             240.2            315.2           8'274.7          9'330.0          6'433.3          7'345.5          9'671.0  

P
E

V
 T

B
V

 

168         1'829.4          1'545.4             394.7             674.7          1'155.2         88'498.2        84'676.3         12'317.4         22'343.9        39'230.8  
5.25             95.5            131.4              75.8              71.0              74.3           2'813.1          3'934.7          2'098.9          1'974.8          2'095.1  
21             74.2              93.8             111.2             100.0              88.6           2'185.5          2'780.8          3'285.9          2'961.3          2'618.3  
84             74.0              94.5             147.2             127.3            108.0           2'200.0          2'806.4          4'393.0          3'812.9          3'216.3  

B
S

V
 P

E
V

 

168             72.1              97.1             173.1             146.2            120.4           2'151.6          2'883.4          5'164.4          4'364.3          3'581.7  
5.25             97.9            121.2              61.1              52.2              52.9           2'869.6          3'560.7          1'689.1          1'442.9          1'477.8  
21             68.0              87.4              65.6              71.7              78.2           2'013.4          2'583.7          1'922.0          2'119.2          2'329.1  
84             70.2              88.2             108.9             106.9            101.1           2'094.7          2'617.3          3'260.0          3'199.3          3'022.8  

B
S

V
 P

E
V

 
T

B
V

 

168             73.7              95.5             140.3             130.0            117.5           2'196.0          2'838.8          4'225.6          3'894.2          3'511.0  
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Table 0.9 Net cost and cost savings of different vaccination strategies - A vaccine purchase price of 2 US$ per dose is assumed –values discounted at 3% 

  Net cost Cost savings 

 EIR EPI EPI booster 
EPI 70% 
campaign 

EPI 50% 
campaign 

EPI 30% 
campaign EPI EPI booster 

EPI 70% 
campaign 

EPI 50% 
campaign 

EPI 30% 
campaign 

5.25 392.9 554.8 1'119.2 898.4 685.5 27.0 30.7 144.5 125.3 96.7 

21 378.3 539.6 1'156.0 925.0 699.7 41.3 46.5 107.3 97.2 82.0 

84 367.6 530.3 1'175.9 939.8 707.8 51.8 55.6 87.4 82.8 74.0 B
S

V
 

168 368.0 529.5 1'184.2 947.1 712.2 51.8 56.7 79.1 74.8 68.6 

5.25 386.5 545.6 899.6 726.4 613.8 33.6 39.6 363.8 295.4 167.8 

21 376.7 535.2 1'088.4 902.9 692.8 43.1 50.3 174.9 119.1 88.4 

84 368.7 531.2 1'188.6 951.0 716.4 51.1 54.8 74.8 70.3 64.8 

B
S

V
 T

B
V

 

168 369.6 532.5 1'209.0 964.9 724.5 50.0 53.1 54.3 56.6 57.0 

5.25 390.6 550.1 1'072.3 870.3 677.3 28.8 35.9 191.0 152.7 104.7 

21 398.4 561.3 1'217.4 984.7 752.9 21.0 24.6 45.3 37.0 28.8 

84 420.3 583.5 1'274.3 1'033.0 790.7 (0.5) 2.2 (11.0) (10.3) (8.5) P
E

V
 

168 431.3 594.1 1'289.8 1'046.6 803.0 (11.6) (8.4) (27.3) (25.5) (20.9) 

5.25 384.0 546.1 892.6 686.0 579.4 35.4 39.9 370.9 336.2 202.1 

21 395.3 556.0 1'056.4 914.5 724.9 24.5 29.7 206.3 108.5 55.7 

84 419.5 581.1 1'235.0 1'017.9 785.8 0.3 4.4 27.7 3.9 (4.1) 

P
E

V
 T

B
V

 

168 430.8 596.3 1'276.4 1'046.4 804.0 (11.1) (10.4) (13.4) (24.1) (21.6) 

5.25 374.8 532.6 952.3 765.7 601.2 45.5 53.1 310.1 256.6 180.6 

21 368.5 528.1 1'122.8 901.7 684.2 51.4 57.9 140.2 120.5 96.4 

84 376.1 535.8 1'192.4 956.4 723.2 43.9 50.1 71.0 65.4 57.5 

B
S

V
 P

E
V

 

168 383.4 545.2 1'212.5 974.1 738.7 36.0 41.0 50.6 47.8 43.3 

5.25 369.8 529.2 880.8 659.8 518.0 50.3 57.1 383.2 362.8 263.7 

21 366.8 525.4 987.6 842.2 664.6 52.9 61.0 275.1 178.8 115.9 

84 376.3 536.7 1'163.1 949.3 722.0 43.4 48.7 99.4 72.5 58.3 

B
S

V
 P

E
V

 
T

B
V

 

168 384.4 545.4 1'206.1 977.1 742.8 35.4 41.0 57.1 46.1 39.1 
The total cost is the net cost of the intervention, considering the cost savings due to the aversion of clinical episodes as shown in the right-hand side of the table. 
Negative numbers indicate higher costs (for case management) in the intervention scenario. The numbers are given per 1000 simulated person-years.
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Chapter 7: Discussion and conclusions 
 

Malaria control requires a mix of preventive and treatment strategies tailored to 

the specific conditions of each malaria endemic setting. Cost-effectiveness 

analyses showed that several efficacious strategies available to control malaria are 

also an efficient use of resources. Nevertheless, despite the growth in the literature 

on the cost-effectiveness of malaria control interventions, there is virtually no 

research on long term cost-effectiveness analyses employing dynamic modeling1. 

This type of research could, in principle, allow predicting the cost-effectiveness of 

malaria control interventions when transmission intensity changes, capturing also 

the effects of health systems dynamics and the potential synergies of integrated 

strategies. Dynamic modeling the epidemiological impact and the cost-

effectiveness of malaria control interventions, could also inform policy makers’ 

decisions regarding the implementation of the Global Malaria Action Plan issued 

recently by Roll Back Malaria calling for malaria elimination. 

 

This thesis is part of a wider research project, conducted by the Swiss Tropical 

Institute, aimed at developing integrated mathematical models for predicting the 

epidemiologic and economic effects of malaria control interventions. The thesis 

specifically combines innovative mathematical models of malaria epidemiology 

with innovative modeling of the health system and of the costs and effects of 

malaria control interventions. These approaches are applied to simulate the 

epidemiological impact and the cost-effectiveness of hypothetical malaria 

vaccines. 

 

Chapter 1 provides the rationale of the thesis, describing why malaria is a public 

health priority, the increasing relevance of conducting economic analyses in the 

health sector, the economic evaluation framework, and the economic 

consequences of malaria. 

 

Chapter 2 presents an approach to dynamically modeling the case management of 

malaria in SSA. This model allows the simulation of different rates of treatment 

coverage and parasitologic cure rates, predicting thus how variations in 

transmission intensity might have an impact on the health system and on the cost 

of it. As the actual epidemiologic impact and the cost-effectiveness of an 

intervention depend on the health system in place, the case management model is 
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an important part of simulations predicting the consequences of other 

interventions. The model allows computing the eventual cost savings due to the 

reduction in the case load. 

 

The first delivery modality that may be considered for a malaria vaccine, once it 

will be available, would be through the EPI. The delivery of a malaria vaccine 

through the EPI has not previously been modeled and costed. Chapter 3 describes 

an approach to costing the delivery of a hypothetical malaria vaccine through the 

EPI, on the basis of the information currently available on the likely 

characteristics of the vaccine most advanced in development, and on the EPI in 

Tanzania. The analysis presents the predicted cost per dose delivered and the cost 

per fully immunized child, which are key inputs to the cost-effectiveness analysis.  

In this chapter the cost of interest is the incremental cost associated with the 

intervention to achieve the health effect. Given the range of information needs of 

decision makers in the health sector, two types of incremental cost have been 

selected for measurement: marginal cost and average cost. The former consists of 

the additional costs that would be incurred when introducing a malaria vaccine 

into the EPI schedule, based on new resources that would be used in the delivery 

of the intervention; the latter includes all those costs involved in delivering a 

health intervention, whether they are used specifically for a new intervention, 

whether resources are shifted away from other activities, or whether spare 

capacity is used. Average costing involves sharing the costs of existing capacity 

among all the interventions benefiting from those resources. The usefulness of 

presenting full economic cost through this analysis is that it enables comparison 

of intervention efficiency in the long-term, where all resources can 

(hypothetically) be redeployed in alternative uses. Therefore, average costs are 

useful for cost-effectiveness analyses for long-term planning decisions. 

The costs included in the analysis are those related to purchase of the vaccine, 

taking into account the wastage rate; costs of distributing and storing the vaccine 

at the central, zonal, district, and facility levels; costs of managing the vaccination 

program; costs of delivery at the facility level (including personnel, syringes, 

safety boxes, and waste management); and costs of additional training of EPI 

personnel and of social mobilization activities. 

The results show that, although the vaccine price determines most of the total 

delivery costs, other costs are relevant and should be taken into account before 

planning its inclusion into the EPI. For instance, at a vaccine price of US$1 per 

dose, at the assumed coverage rates, the total annual cost to the EPI would be 

more than 35% of the annual (in year 2002) EPI budget in Tanzania. When the 

vaccine price increases to US$4 per dose, the total annual cost would increase to 
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more than US$ 19 million, which is slightly more than the annual EPI budget. 

These results highlight how important would be investing in strengthening the EPI 

program if a malaria vaccine would become available.  

 

Chapter 4 and 5 combine modeling of malaria transmission and control with 

predictions of parasitologic and clinical outcomes, to assess the epidemiological 

effects and the potential short and long term cost-effectiveness of a pre-

erythrocytic vaccine delivered via the EPI. The results suggest a significant 

impact on morbidity and mortality for a range of assumptions about the vaccine 

characteristics, but only small effects on transmission intensities.  

The cost-effectiveness analysis (Chapter 5) adopts a societal perspective for both 

costs and effects. Case management costs include all resource inputs irrespective 

of whether these are borne by government, the patient, or both. Vaccine delivery 

costs and case management costs include both the direct costs of service provision 

and costs directly associated with the service, which essentially means the costs 

for the patients accessing the services, covering additional transport and 

sustenance costs. 

The results suggest that at moderate to low vaccine prices, a pre-erythrocytic 

vaccine providing partial protection, and delivered via the EPI, may be a cost-

effective intervention in countries where malaria is endemic. Over the vaccine 

price range of US$1.0 to US $20 per dose, the cost-effectiveness ratio is almost 

proportional to the price per dose, ranging (in the reference analyses) between 

US$12 and US$190 per (discounted) DALY averted. In the SSA context, cost-

effectiveness ratios towards the lower end of this range would be very attractive 

for health ministries2 3.  

The cost-effectiveness results show sometimes counter-intuitive behavior in cost-

effectiveness ratios that corresponds to health effects in the model. When episodes 

are delayed rather than averted, they occur in older individuals who may require 

larger drug dosages. Thus, the health benefits of delaying illness may be partially 

offset by increased costs. Since the epidemiologic model also corresponds with 

field data that suggests a maximum incidence of clinical episodes (though not 

mortality) at intermediate transmission intensities4 5, it is possible for reductions in 

malaria transmission to lead to increased case loads. 

A societal perspective in cost-effectiveness analysis also requires that indirect 

economic impacts of the intervention should be taken into account. In the case of 

a vaccine that reduces morbidity episodes as well as mortality, there is a clear 

impact on productive time either leading to higher income (in the case of market 

work) or higher unsold production (in the case of non-market work). This can 

either be through a gain in production of the averted malaria case, or where the 
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patient is a child, the production gained of the care giver who would have cared 

for the averted malaria case. Therefore, Chapter 5 explores also the implications 

of including in the analysis productivity costs due to morbidity, showing a 

reduction in cost-effectiveness ratios. Nevertheless, despite the importance of 

indirect economic impact of malaria, there are many pitfalls in measuring it in the 

context of rural Africa where most of the population is subsistence farmers, child 

care is often performed by older siblings, work is seasonal, and work inputs may 

be shifted over time and between household members.  

A major impact of malaria on productivity is likely to be by the effects on 

premature mortality, but it is inappropriate to include in a CEA the costs of 

mortality, as available from estimates of life-time earnings forgone or willingness 

to pay studies, since this would result in double counting of the benefits of 

averting deaths6-8. 

These conclusions reflect the reference case, but the cost-effectiveness ratios are 

sensitive to assumptions about the epidemiologic setting, the vaccine 

characteristics, the transmission intensity, and the efficacy and duration of 

protection. The cost-effectiveness ratios varied with the time since the start of the 

vaccination program because the epidemiologic model does not reach equilibrium 

within the time scale of the simulation9. In general, the cost per DALY averted is 

lower in the first phase of the vaccination program than later, with the highest cost 

per DALY in the third five-year time period after the start of the program. 

Extending the duration of protection increases the cost-effectiveness ratios in the 

third and fourth five-year time periods. 

 

Chapter 6 is an extension of the research described in Chapter 5, simulating the 

cost-effectiveness of three different vaccine types: Pre-erythrocytic vaccines 

(PEV), Blood stage vaccines (BSV), mosquito-stage transmission-blocking 

vaccines (MSTBV), and combinations of these, each delivered via a range of 

delivery modalities (EPI, EPI with booster, and mass vaccination combined with 

EPI).  

The simulations presented in this Chapter show that PEV are more effective and 

cost-effective in low transmission settings. In contrast to PEV, BSV are predicted 

to be more effective and cost-effective at higher transmission settings than low 

transmission.  Combinations of BSV and PEV are predicted to be more efficient 

than PEV, in particular in moderate to high transmission settings, but compared to 

BSV, combinations are more cost-effective in mostly moderate to low 

transmission settings. 

Combinations of MSTBV and PEV or PEV and BSV do not increase the 

effectiveness or the cost-effectiveness compared to PEV and BSV alone when 



 174 

delivered through the EPI (including with the addition of booster doses).  

However, when applied with EPI and mass vaccinations, combinations with 

MSTBV provide substantial incremental health benefits and low incremental costs 

in all transmission settings. This highlights the importance of developing other 

vaccine candidates as they have potential to facilitate a PEV/BSV combination 

vaccine to be more beneficial. Nevertheless, these combination vaccines are 

predicted to be interesting only for the settings where mass vaccination achieving 

relatively high coverage rates would be feasible.  

Chapter 6 simulations indicate that the transmission setting and the vaccine 

delivery modality adopted are important determinants of the cost-effectiveness of 

malaria vaccines. Adding booster doses to the EPI is unlikely to be a cost-

effective alternative to delivering vaccines via the EPI for any vaccine and 

transmission setting. By contrast, mass vaccination improves effectiveness, 

especially in low transmission settings, and in some scenario the cost-

effectiveness ratios compare favorably with those of delivering the vaccine via the 

EPI only. Nevertheless, increasing the coverage of mass vaccination over 50%, 

often leads to incremental costs that exceed the incremental health benefits (due to 

the indirect effect of the vaccines and not to the increasing vaccine delivery costs 

of achieving high coverage rates).  

Thus alternative vaccine delivery modalities to the EPI may sometimes, but not 

always, be more cost-effective than the EPI.  In general, at moderate vaccine 

prices, most vaccines and delivery modalities simulated are likely to present cost-

effectiveness ratios, which compare favorably with those of other malaria 

interventions10 11. Further research would be required to evaluate the importance 

of alternative deployment strategies outside EPI. 

In some of the mass vaccination scenarios the simulations predict that local 

elimination of the parasite might be possible, sometimes at relatively low costs 

(assuming moderate vaccine prices), although often the incremental costs of 

achieving high vaccine coverage rates are higher than the incremental benefits. 

Eliminating malaria would, however, have wider economic implications than 

those simulated in our cost-effectiveness analyses. In fact, if local elimination 

were feasible, it might be desirable to achieve high vaccine coverage rates even if 

the incremental costs would be high (compared to the incremental health benefits) 

as elimination would bring future benefits. However to sustain elimination over 

time, once elimination is achieved, there would be a need for strong surveillance 

and case detection, which would incur substantial additional costs that are not 

included in our simulations. The models presented in this thesis can be further 

refined to assess the economic implications of achieving and sustaining local 

elimination in specific settings.  
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The approach used in this research represents, to our knowledge, the first attempt 

to develop dynamic models of malaria transmission and disease to evaluate the 

cost-effectiveness of malaria control interventions. The cost-effectiveness 

analyses are based on an approach to model the health system characteristics of 

the settings where a new intervention, such as a malaria vaccine, will be 

implemented, The rationale of this approach rests on: a) the need to capture the 

long term health and economic impact due to the interactions between malaria 

control interventions and the health system - e.g. the impact on the health system 

of variations in transmission intensity due to an intervention; b) the recognition 

that policy makers are more interested in cost-effectiveness predictions that are 

specifically tailored to their health system context rather than on a hypothetical 

one. 

Nevertheless the approach followed by this research presents limitations that are 

being addressed in subsequent research at the Swiss Tropical Institute. 

The case management model and the cost-effectiveness analysis presented are 

based on the characteristics of the health system of Tanzania with consequent 

limitations for the generalizability of results. The case management model 

developed is also still relatively simple. This is due to the difficulty of modeling 

the complexity of health systems in such a way that the models developed can be 

populated with data of good quality. Although this limitation is common to many 

modeling studies, being models simplified representation of reality by definition, 

more research should be carried out to refine this model in light also of the recent 

increase in availability of health system data from malaria endemic countries. 

Nevertheless, as the case management model used is the same for all scenarios 

simulated, the comparative cost-effectiveness of the vaccines modeled in Chapter 

5 and 6 should only be slightly affected by it. Another limitation related to the 

case management model, is that it does not address the emerging problem of drug 

resistance, which would presumably increase the cost-effectiveness ratios.  

The simulations considered only a limited set of sources of heterogeneity. In 

particular, it was assumed that each person in the simulation was exposed to the 

same entomologic challenge, and that the chances of being vaccinated were 

independent of individual susceptibility to disease. Over the time-horizon of the 

analysis, homogeneous probabilities of accessing health care were assumed. 

Nevertheless, over a long period, the introduction of a new malaria vaccine would 

have an impact on the health system and on the case management of malaria. 

These changes should ideally be taken into account when predicting the cost-

effectiveness of a malaria vaccine. The models developed would make possible to 
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simulate more realistic patterns of heterogeneity, but the field data on which to 

base such models are very limited. 

 

The cost-effectiveness analyses presented include a wide range of one and multi-

way sensitivity analyses. However, they do not include a full probabilistic 

sensitivity analysis that would make possible to present results also in terms of 

cost-effectiveness acceptability curves and/or cost-effectiveness ratio ranges. This 

type of sensitivity analysis is not easily applicable when multiple scenarios are 

modeled without making hardly impossible to make sense of the results. An 

extension of the research presented in this thesis, is developing a methodology, 

based on value of perfect (and partial) information analysis, to run a full 

probabilistic sensitivity analysis on cost-effectiveness results of the pre-

erythrocitic vaccine presented in Chapter 5. This analysis will explore the 

feasibility of using a full probabilistic sensitivity analysis to account for the 

uncertainty in cost-effectiveness results presented, assessing the incremental 

benefits compared to deterministic sensitivity analysis, and the potential benefits 

of conducting further research to reduce the uncertainty inherent in model 

parameters. 

  

The interpretation of Chapter 6 results should take into account additional 

limitations. The vaccine delivery modalities modeled in Chapter 6 may not be 

feasible to implement in all simulated settings. Also, while it is now known that 

unit costs of health interventions vary with capacity utilization, as it has been 

shown also by a recent article on primary health care visit costs12, in our analyses 

the costs of different vaccine delivery modalities are kept constant over the 

different coverage rates modeled. This was due to the lack of solid evidence 

specifically related to vaccine delivery costs by coverage levels, especially for 

mass vaccination campaigns. Including adjustments for variation in vaccine 

delivery costs would be particularly important when assessing the economic 

implications of scaling up coverage. 

In addition, the comparisons of malaria vaccines – or of combinations of them- 

with different characteristics, are based on the same assumed vaccine price. In 

practice, the price might vary according to the characteristics of the vaccines, in 

particular for combinations of vaccines.   

In this thesis, the epidemiological impact and the cost-effectiveness of 

hypothetical malaria vaccines are assessed versus an alternative of maintaining 

only the current case management practice in place. However, the relative 

efficiency of possible malaria vaccines will be affected by other malaria control 

interventions being concurrently implemented. Malaria vaccines will, eventually, 
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be deployed as part of integrated control strategies that should therefore be 

evaluated. 

 

7.1 Conclusions 

Malaria control strategies are complex interventions that should be carefully 

integrated, and adapted, to the health system and, more generally, to the socio 

economic context of the settings where they are implemented. Standard tools 

traditionally used to assess the public health and economic impact of malaria 

control interventions, such as efficacy trials and static cost-effectiveness analyses, 

capture only short term effects. They fail to take into account long term and 

dynamic effects due to the complex dynamic of malaria, and to the interactions 

between interventions effectiveness and health systems. 

Combining advanced stochastic simulation modeling of malaria epidemiology 

with health system dynamic modeling is a crucial innovation proposed by the 

approaches presented in this thesis. In fact, while it is well known that the 

interactions between malaria and health systems take place under temporal and 

spatial heterogeneity, integration of health system metrics in epidemiological 

modeling is rarely done. 

Simulating the effects of possible malaria vaccines showed that these approaches 

are a promising methodology to assess the short and long term effects of complex 

malaria control interventions.  They provide a platform that could be used to 

model the effects of integrated strategies for malaria control. The increase in 

computer power available makes possible simulating complex scenarios with 

several dimensions/variables in a relatively short time. This, coupled with the 

increasing availability of information on malaria endemic countries health 

systems, should be exploited to further modeling health system dynamics, which 

is fundamental to assess integrated malaria control strategies.  

An important aspect of the models developed is, in fact, that they can be adapted 

to the characteristics of local settings where malaria control interventions are 

implemented, including both the epidemiological and health system contexts. This 

allows thorough explorations of health system characteristics’ impact on efficacy, 

effectiveness, and cost-effectiveness of the selected interventions.   

The models and the approaches presented could be applied to inform decisions at 

several levels. Further applications might include simulating the epidemiology, 

the costs and consequences of packages of interventions, allowing estimating both 

effectiveness and (technical and allocative) efficiency. This would, thus, help 

policy makers to determine which intervention or, most likely, which package of 

interventions, might be most effective and efficient in a particular area. 
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Additionally, it would be possible to simulate the implications of coverage 

extension of malaria control interventions, and of different strategies and service 

delivery modalities that can reach the poorest.  

The approaches developed could also allow identification of areas where 

intensified malaria control is the only feasible option, areas where malaria 

elimination is more likely to be achieved, the incremental cost-effectiveness of 

proceeding to elimination once a high level of control has been achieved, the 

optimal transmission levels at which to change strategy, and, in principle, 

economies of scope and or synergies in effectiveness and cost-effectiveness of 

new strategies. These are all research areas that have been identified as 

fundamental in the research agenda to be set up following the recent call for 

malaria elimination1 13. 
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