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ABSTRACT

De novo protein structure prediction and understanding the protein fold-
ing mechanism is an outstanding challenge of Biological Physics. Relying
on the thermodynamic hypothesis of protein folding it is expected that
the native state of a protein can be found out if the global minimum of
the free energy surface is found. To understand the energy landscape or
the free energy surface is challenging. The structure and dynamics of pro-
teins are the manifestations of the underlying potential energy surface.
Here the potential energy function stands on a framework of all-atom rep-
resentation and uses purely physics-based interactions. For the solvated
proteins the effective free energy is defined as an implicit solvation model
which includes the solvation free energy, along with a standard all-atom
biomolecular forcefield. A major challenge is to search for the global mini-
mum on this effective free energy surface. In this work the Minima Hopping
Algorithm (MHOP) to find global minima on potential energy surfaces has
been used for protein structure prediction or in general finding the lowest
energy conformations of proteins. Here proteins have been studied both
in vacuo and in the aqueous medium. For short peptides starting from a
completely extended conformation we could find conformational minima
which are very close to the experimentally observed structures.
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Chapter 1

Introduction

One of the most important class of biomolecules present in every living organisms is
protein. It evolved through the selective pressure to execute specific biological functions.
In cells they are synthesized on ribosomes - and they are involved in functions ranging
from catalysis of diverse chemical reactions to maintain the chemical potential across the
cell membranes. The functional properties of proteins are dependent on the structures.
The three-dimensional structure of these linear chain molecules are compact and “folded”.
To understand its biological function, its structure has to be determined accurately. This
chapter starts with a note on the very basics of protein structure. The next sections
review the theoretical scientific approach towards understanding the protein structures.
Finally, the scope of the thesis is presented.

1.1 Protein Structure : Amino acids sequence

The basic monomeric unit of a protein is an amino acid. There are twenty naturally occur-
ring amino acids. All of the twenty amino acids have a central carbon atom (C,,), to which
are attached a hydrogen atom, an amino group(NH2), and a carboxyl group(COOH). A
side chain which is attached as to the C, atoms is unique for each amino acid. There are
twenty different naturally occurring amino acids shown in fig. 1.1. There are very rare
occurrences of some other amino acids in proteins too, e.g selenocysteine or pyrrolysine.

Amino acids are linked together by the formation of peptide bonds to form a polymeric
chain. When A peptide the carboxyl group of the an amino acid reacts with the amino
group of the other, with the release of a water molecule a peptide bond is formed, as
shown in fig. 1.2. The N-terminus is one end of the chain where the amino group is kept
intact and a C-terminus is the other end of the chain where carboxy group stays. The
protein backbone is the repetitive sequence of [-N — C, — C'—].
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Ala (A) Asp (D) Asn (N) Arg (R)
Alanine Aspartate Asparagine Arginine

Cys (C) Gln (Q) Gly (G) Glu (E)

Cystine Glutamate Glycine Glutamine

&
His (H) e (T) Leu (L) Lys (K)
Histidine Isoleucine Leucine Lysine

O
Met (M) Phe (F) Pro (P) Ser (S)

Methionine Phenylalanine Proline Serine
. - ) "

Q
Thr (T} Trp (W) Tyr (Y) WVal (V)
Threonine Tryptophan Tyrosine Valine

Figure 1.1:  Twenty naturally occurring amino acids: Their structure, name, three-letter code and
one-letter code. The structures are color coded with carbon(green), nitrogen(blue), oxygen(red) , hydro-
gen(white) and sulphur(orange)[37, 38|
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Figure 1.2: Formation of a peptide bond. NH§,|r and COO™ are connected to the C, atom.

Depending upon the chemical structure of the side chain, the amino acids are divided
into three different classes(Branden and Tooze, 1999). The first class comprises those
with strictly hydrophobic side chains Ala(A), Val(V), Leu(L), Ile(I), Phe(F), Pro(P),
and Met(M). The second class includes four charged residues Asp(D), Glu(E), Lys(K)
and Arg(R) and the third class comprises those with polar side chains Ser(S), Thr(T),
Cys(C), Asn(N), GIn(Q), His(H), Tyr(Y) and Trp(W). The amino acid glycine(G) has
only a hydrogen atom as the side chain and thus is the simplest of all the twenty amino
acids. The amino acid proline(P) is also different from the rest as it is the only amino
acid where both ends of the sidechain are covalently bound to the main chain.

Figure 1.3: L-chiral and D-chiral forms of an amino acid.

All amino acids (except glycine) are chiral molecules which can exist either in the L
or the D-form (see fig.1.3). Biological systems depend on specific detailed recognition
of molecules involving differentiation between chiral forms. Amino acids are found in
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only one of the chiral forms, the L-Form, during protein synthesis. There is, how-
ever, no obvious reason why the L-form was chosen during the evolution and not the
D-form(Weatherford and Salemme, 1979; Mason, 1984).

(8] H
i1
O 7 G

/ cis

[ trans

Figure 1.4: cis and trans forms of a peptide bond.

X-ray diffraction studies of crystals of small peptides by Linus Pauling and R. B. Corey
indicated that the peptide bond is rigid, and planer. Pauling explained that this is largely
a consequence of the resonance interaction of the amide, or in other words the ability of
the amide nitrogen to delocalize its lone pair of electrons onto the carbonyl oxygen. The
partial double bond turns the amide group into planar, posing in either the cis or trans
isomers( shown in fig. 1.4). In the unfolded state of proteins, the peptide groups are free
to isomerize and adopt both isomers; however, in the folded state, only a single isomer is
adopted at each position (with rare exceptions). There is a clear preference for the trans
form in most peptide bonds (roughly 1000:1 ratio in trans vs cis populations). However,
X-Pro peptide groups tend to have a roughly 3:1 ratio. For all the amino acids except
proline, the energy difference between cis and trans states is very large(Ramachandran
and Mitra, 1976). But for proline, the energy difference between cis and trans states is
small (Lesk, 2001) presumably because the symmetry between the C,, and Cj atoms.

¢, ¥, w angles  Around the backbone of protein the three dihedral angles ¢, ¢ and w
are defined. The dihedral angle around the bond N — C,, is known as ¢ and the dihedral
angle around the bond C,, — C'is known as 1. The dihedral angle w is around the peptide
bond C'— N and because of the planar peptide bond plane it is restricted to values 0° or
180°. As most residues in proteins have trans peptide bonds, the main chain conformation
of each residue is determined by ¢ and .
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Figure 1.5: A schematic Ramachandran plot is shown - the major secondary structures are pointed out.

Only a fraction of the combinations of ¢ and ¥ produce sterically allowed conformations.
Such a ¢-1 plots showing the allowed regions is known as the Ramachandran plot ( see

fig. 1.5).

Protein structure

Primary Structure A protein is a sequence of different amino acids. The protein struc-
tures are classified into four categories depending upon the amount of information known.
Primary structure describes the sequence of amino acids starting from amino(N) terminus
to carbonyl( C) terminus. The primary sequence is written in either the one-letter code
or three-letter code, e.g., NLYIQWLKDGGPSSGRPPPS (one letter code) or Asn-Leu-
Tyr-Ile-GIn-Trp-Leu-Lys-Asp-Gly-Gly-Pro-Ser-Ser-Gly-Arg-Pro-Pro-Pro-Ser (three letter
code) for the tryptophan-cage protein (PDB code:1L2Y).

Secondary Structure A secondary structure is about describing a protein in terms of
frequently-observed regular structural elements. The most important secondary structures
are as follows :

e Helix This is a spiral structure where tightly coiled backbone forms the inner part of
the helix and the side chains project outwards. According to the hydrogen bonding
pattern the helices are classified e.g. a-helix(i +4 — ¢ hydrogen bonding, i.e. there
is a hydrogen bond between every i‘*-residue and i + 4" residue, angles ¢ ~ —57°,
W ~ —47°), 31p-helix (i + 3 — ¢ hydrogen bonding, angles ¢ ~ —49° 1) ~ —26°),
m-helix (i + 5 — 7 hydrogen bonding, angles ¢ ~ —57°, 1) ~ —70°) etc.
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e Beta Sheet [-sheet is almost fully extended with multiple strands coming close to
each other and the adjacent strand bound by inter-strand hydrogen bonds. Ac-
cording to the parallel or anti-parallel alignment of the adjacent strands there are
Parallel g-strand (¢ ~ —119° ¢ ~ +113° and Antiparallel §-strand (¢ ~ —139°,
P ~ +135°.

There are eight types of secondary structure that Dictionary of Secondary Structure of
Proteins (DSSP)[26] defines:

e G = 3-turn helix (3;9-helix). Min length 3 residues.

H = 4-turn helix (a-helix). Min length 4 residues.
e [ = 5-turn helix (7- helix). Min length 5 residues.
e T = hydrogen bonded turn (3, 4 or 5 turn)

e E = extended strand in parallel and/or anti-parallel $-sheet conformation. Min
length 2 residues.

e B = residue in isolated S-bridge (single pair 8-sheet hydrogen bond formation)

e S = bend (the only non-hydrogen-bond based assignment)

If the structure element falls within none of the above categories then that loop or irregular
structure element is often called “random coil” or “coil”.

Tertiary Structure The tertiary structure is formed by the assembly of secondary
structural elements along with loops into a three dimensional arrangement. The tertiary
structure mainly has a hydrophobic core with charged residues on the surface of protein.
The charged residues on the surface gives the protein its biological activity and is thus
responsible for its biological function. Tertiary structures of proteins (independent folding
chains) can still assemble themselves under physiological conditions in order to perform
specific functions.

Quaternary Structure For a multi-domain protein the quaternary structure defines
the overall arrangement of the tertiary structures of each of the domains.
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Driving forces

Formation of the native state is a global property of a protein[37, 38]. In most cases, the
entire protein (or at least a large part) is necessary for stability. This is because of the
long-range nature of the stabilizing interactions which eventually bring the distant parts
of an unfolded protein into spatial proximity by the folding process. Proteins are only
marginally stable, and achieve stability only within narrow ranges of conditions of solvent
and temperature. Outside of these regions proteins lose their definite compact structure,
and even their helices and sheets, and take up states with disorder in the backbone con-
formation and specific interactions among residues. The chemical interactions responsible
for the formation and stability of the native state and the biochemical properties and
functions of a protein are as follows.

e Hydrogen bonding: Certain groups in proteins can form hydrogen bonds with water
or other protein groups. The main chain has one H-bond donor (N-H) and H-bond
acceptor (C=0) for each amino acid. In addition, some polar side-chains can form
hydrogen bonds. The main chain, containing peptide groups, must pass through
the interior, and some polar side chains are also buried. They thereby lose their
interactions with water. To recover the energy, buried polar atoms form protein-
protein hydrogen bonds. The standard secondary structures, helices and sheets, are
achieved by the formation of hydrogen bonds by the main chain atoms.

e Hydrophobic effect: For proteins to take their native states in the aqueous environ-
ments, hydrophobic residues bury themselves in the interior and charged residues
come on the surface. The accessible surface area of the protein, calculated from
a set of atomic coordinates, measures the thermodynamic interaction between the
protein and water.

e van der Waals forces and packing of protein: The packing of atoms in protein
interiors contributes in two ways to the stability of structure. One is the exclusion
of hydrophobic atoms from contact with water. The other is the dispersive attraction
between the protein atoms.The cohesion of ordinary substances shows the existence
of attractive forces between atoms and molecules. As the matter does not collapse,
there must be limits to how far it can be compressed. This observation leads to the
presence of repulsive forces at short range. The most general type of interatomic
force, the van der Waals force, reflects this principle: The nearer the atoms, the
stronger the attractive force, until the atoms are in contact, at which the forces
become repulsive and strong. To maximize the total cohesive force, the atoms have
to be brought close to each other. It is the requirement for a dense packing that
imposes a requirement for structure in the interior of a protein. It produces a fit of
the elements of secondary structure packed together in protein interiors.

e Covalent and coordinate chemical bonds: Some proteins contain covalent chemical
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bonds between side chains. These covalent bonds such as disulphide bridges between
cystine residues are quite common.

1.2 Protein folding and Structure prediction

The functional property of a protein depends upon its three dimensional structure. Under
physiological conditions, a particular sequence of amino acids in a polypeptide chain folds
into a compact three-dimensional structure. This three dimensional structure, due to the
specific properties, makes a protein perform a specific biological function. These single
chains, which are folded into a respective three dimensional structure, can still assemble
together to form more complex functional units. To understand the biological function of
a protein, one needs to measure or predict its three dimensional structure from its amino-
acid sequence. This prediction problem is still unsolved and remains one of the most basic
challenges in biophysical chemistry. The fundamental reason why the prediction problem
remains unsolved lies in the large size of the conformational space that is accessible to a
single protein (Branden and Tooze, 1999; Berg et al., 2001).

Anfinsen’s Dogma In his pioneering work, C. B. Anfinsen, showed that the necessary
information for the polypeptide chain to fold into its native structure is contained in
its sequence of amino acids. Protein refolding especially demonstrated that the native
conformation of many proteins is reproducibly formed even when the proteins are in
isolation. This observation can be explained, if the native state is lower in free energy
than all other conformations. This observation led to the thermodynamic hypothesis
(Anfinsen, 1973) that at the environmental conditions (temperature, solvent concentration
and composition, etc.) at which folding occurs, the native structure is a unique, stable
and kinetically accessible minimum of the free energy. The native state is a sufficiently low
free energy minimum which is stable over a long timescale if not the true global minimum
in the free energy - and thus folding process corresponds to an overall reduction of the
free energy. The stability of each possible conformation of a polypeptide chain depends
on the free energy change between native and unfolded states given by equation: AG =
AH—TAS where AG, AH and AS are the differences between free energy, enthalpy, and
entropy respectively, of the native and unfolded conformation. The enthalpic difference
is the difference associated with atomic interactions (electrostatic interactions, van der
Waals potentials, hydrogen bonding) whereas the entropy term describes hydrophobic
interactions, thereby including the dominant interactions in protein folding, namely, the
hydrophobic effect, hydrogen bonding and configurational entropy. The free energy of
stabilization of proteins under ordinary conditions is typically only a few Kcal moll and
slight changes in the surrounding conditions can force a protein to adopt a completely
different conformation. In an unfolded protein, the polypeptide chain can adopt different
rotameric positions around ¢ and 1) torsional angels, and side chain can adopt different
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rotamers around their dihedral angles. When folded, the ¢ and v dihedral angles of the
polypeptide chain are nearly restricted to a narrow range of values, as are majority of x
angles. This loss of freedom translates into a loss of configurational entropy. This loss
of configurational entropy must be overcome by favorable interactions, such as hydrogen
bonding, increase in solvent entropy, etc, in order to fold a polypeptide chain into a stable
conformation.

Levinthal’s paradox While the experiments by C.B. Anfinsen and co-workers demon-
strated that many proteins can adopt their native conformation spontaneously, it im-
mediately raised a fundamental problem known as Levinthals paradox(Levinthal, 1968).
Anfinsens experiments suggested that the native state of a protein is thermodynamically
the most stable state under biological conditions. But a polypeptide chain has enormous
number of possible conformations ( at least 2'% for an 100 amino acid protein considering
are only two possible conformations per amino acid). If one estimates that each state is
reached in 1ps from a related conformation, such a chain would take ~ 2% ps (considering
one ps per conformation) or ~ 10'% years (even more than the estimated age of universe)
to sample all possible conformations and to find the lowest energy state. Levinthal thus
concluded that a specific folding pathway must exist and that protein folding is under
kinetic control rather than thermodynamic control.

Landscape Theory This above mentioned issue can be resolved by considering a bal-
ance between kinetics and thermodynamics in an energy landscape perspective. According
to the energy landscape paradigm, the free-energy landscape has a small gradient in all
conformations towards the native state. Even in the absence of a unique folding pathway
the protein dynamics is guided towards the native state. Projected to low dimension,
the free energy surface thus has a funnel like slope. The landscape perspective explains
the process of reaching a kinetically accessible minimum in free energy (satisfying Anfin-
sens experiments) and doing so on a realistic timescale (satisfying Levinthals concerns).
Funneling landscape notion allows the existence of kinetically convergent multiple folding
routes on funnel-like energy landscapes and thus supports the new view of folding which
finds the unique folding pathway to be not the correct solution to the kinetic problem
Levinthal posed. The funnel theory includes ruggedness on the funnel surface(see fig.1.6).
The main idea is that while the folding landscape resembles a funnel globally but is to
some extent rugged locally, i.e. with traps in which the protein can be trapped along the
folding route. The funnel guides the protein through many different sequences of traps
toward the low free energy folded (native) structure. Here there is no pathway but a
multiplicity of folding routes. For small proteins, discrete pathways emerge only late in
the folding process when much of the protein has almost reached the native ensemble.
The simple parts of the folding process, where most of the real molecular organization is
going on, occur in the early events of folding and can be described using a few parameters
statistically characterizing the protein folding funnel[175].
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Here the notion of a “unique pathway” folding model(Levinthal model) and extreme oppo-
site to that, the “jigshaw puzzle” model of folding are apparently having very conflicting
perspectives. The folding ’intermediates’ have been reported to have very specific re-
gions of native-like structure. That is an indication that although the number of possible
starting points for folding scale exponentially with the system size, the diversity in the
transition region may not be large. At this point, with the inclusion of the concept of
an ensemble of paths and the fact that for large systems a ’structure’ is meant by an en-
semble of substates or superposition of stationary point in the landscape one can recover
the two-state picture and the context of a reaction pathway. To describe whether the
conformational changes happen through a “distinct pathway” or not, the term “distinct”
perhaps becomes ambiguous. An appropriate grouping[3] or clustering of the conforma-
tions might contain a solution.

Spontaneity in folding There are folding accessory proteins that assist in folding in
viwo so protein folding is not always a self assembly. Some of the them are: protein disul-
fide isomerases, peptidyl prolyl cis-trans isomerases and molecular chaperones. Molecular
chaperones assist in protein folding by preventing or reversing aggregation (proteins hy-
drophobic parts sticking together in a misfolded way). Molecular chaperones specialize in
multidomain and multisubunit proteins (and RNA/DNA but were not going there). They
function by binding hydrophobic patches, releasing and rebinding as needed. They have
inherent ATPase function; the energy released from ATP is used to perform their job. The
two main classes of molecular chaperones are heat shock proteins and chaperonins. Some
proteins are able to assemble on their own in vivo. This is evident since chaperones are
not plentiful enough to fold every protein in the cell. Other proteins are always dependent
on a chaperone for their efficient folding. Under cell stress conditions (particularly heat)
proteins get misfolded or stuck together. In these conditions, molecular chaperones are
crucial to protein folding for many proteins. Peptidyl prolyl cis-trans isomerase (PPlase)
assists in isomerizing peptide bonds to the cis conformation before proline residues. This
is crucial in making sharp turns in proteins. X-Pro peptide bonds are 90% trans and
PPlases job is to catalyze the cis-trans flip. This flipping helps the protein folding to gain
speed up. Protein disulfide isomerases (PDI) catalyze disulfide interchange reactions, al-
lowing proteins to get to their native pairing of disulfide links faster. PDI has one S atom
on a surface flanked by a groove of hydrophobic residues.

1.3 Simulational Approach

Any computational approach to study a chemical system requires a mathematical model
to calculate the energy of the system as a function of its conformation. Central to the
success of the study is the quality of the mathematical model used. For smaller chemical
systems studied in the gas phase, quantum mechanical(QM) approaches are appropriate



12 1. Introduction

and feasible. Walter Kohn and John A. Pople jointly won the Nobel prize in chem-
istry in 1998 for the development of the density-functional theory and computational
methods in quantum chemistry. However, these methods are typically limited to sys-
tem of approximately hundred atoms or less, although approaches to treat large systems
are under development. Systems of biophysical or biochemical interest typically involve
macromolecules that contain thousands of atoms plus their surrounding environment. In
addition to the large size of the system, the inherent dynamical nature of biomolecules re-
quire long simulation times, i.e. many energy calculations. Many processes of biophysical
relevance occur on microsecond to millisecond time scales, while the individual time step
of the methods commonly used today are of the order of femtosecond. Thus the energy
function might be subjected to over 10® energy evaluations in a single simulation.

1.3.1 Conformational Sampling

There are two main approaches in performing molecular simulations: the stochastic
(Monte Carlo) and the deterministic (Molecular Dynamics). Recent comparisons reveal
that for polypeptide folding Monte Carlo takes 2-2.5 times smaller computational effort
[18] than a comparable molecular dynamics study.

Stochastic This is based on exploring the energy landscape by random changes in
the geometry of the molecule. In this way, a large area of the configurational space is
searched. In Monte Carlo simulations, the system has no memory between two steps, i.e.,
the probability that the system might revert to its previous state is as probable as choosing
any other state. As a result of stochastic simulation, the large number of configurations
are accumulated and the energy function is calculated for each of them. This data can
then be used to calculate thermodynamic properties of the system. Monte Carlo is not a
deterministic method and does not offer time evolution of the system in a form suitable
for viewing, but is well suited for investigating systems in certain ensembles. Monte Carlo
simulations often gives rapid convergence of the calculated thermodynamic properties
for small molecules[5]. The stochastic and hybrid methods include Monte Carlo with
minimization (MCM) whereby combinatorial optimization with Monte Carlo is combined
with energy minimization to find local minima,; related approaches are basin hopping [3],
and BB, a branch-and-bound method [13], electrostatically driven Monte Carlo (EDMC),
self-consistent basin-to-deformed basin mapping (SCBDBM) that locates large regions
of conformational space containing low-energy minima by coupling them to some of the
greatly reduced number of minima on a highly deformed surface.

Deterministic The deterministic approach,e.g. molecular dynamics, actually simu-
lates the time evolution of the molecular system and provides us with a trajectory of
the system. Newtons or Lagranges equations are solved to obtain the coordinates and
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momenta along the simulation trajectory. Alternative approaches are based on solving
Langevins equations when the solvent is treated implicitly with added friction and noise
terms corresponding to the solvent effect. The information generated from simulations
can in principle be used to fully characterize the thermodynamic state of the system.
In practice, most simulations are interrupted long before there is enough information to
derive absolute values of thermodynamic functions, however the differences between ther-
modynamic functions corresponding to different states of the system are usually computed
quite reliably. In molecular dynamics, the evolution of the molecular system is studied
as a series of snapshots taken at very close time intervals (usually of the order of fem-
toseconds). For large molecular systems the computational complexity is enormous and
supercomputers or special attached processors have to be used to perform simulations
spanning long enough periods of time to be meaningful. Typical simulations of small pro-
teins including surrounding solvent cover the range of tens to hundreds of nanoseconds,
i.e., they incorporate millions of elementary time steps.

Evolutionary Conformational space annealing (CSA) [14] is a frequently used genetic
type algorithm; it combines essential aspects of the build-up procedure and a genetic
algorithm and searches the whole conformational space in early stages, and then narrows
the search to smaller regions with low energy. CSA has been applied to find the lowest
energy structures of proteins and to protein sequence alignment [9, 14].

Hierarchical A hierarchical approach is based on carrying out an extensive coarse-
grained search followed by a more detailed search on a potential energy surface of higher
accuracy. An example is the scheme of CSA method using a united-residue (UNRES)
force field first, following which the set of families of low-energy UNRES conformations
obtained with CSA to be converted to an all-atom representation, and the search is
continued with the EDMC method [3, 15]. In the context of global optimization of
clusters the method dual-minima hopping(DMHM)[47] has been applied by a combined
usage of density functional method and a forcefield.

Some of the successful algorithms of both categories are based on molecular dynamics
(MD) and Monte Carlo (MC) techniques and include replica exchange [176], parallel tem-
pering [177], simulated tempering [178], stochastic tunneling [179], REMUCA [180], MU-
CAREM [180], metadynamics [181] and hyperdynamics [182]. Applications to biomolecules
of global optimization a pproaches by other groups include a study of a tryptophan-zipper
(1LE1) using basin-sampling techniques with the PFF02 forcefield [127], investi gation of
the folding pathway of [-hairpins using the activation-relaxation algorithm [183], and
several examples of basin-hopping simulatio ns [184, 185, 186, 187].



14 1. Introduction

1.3.2 Forcefields

Atomistic energy functions fulfill the demands required by computational studies of bio-
chemical and biophysical systems. Empirical force fields use atomistic models, in which
atoms are the smallest particles in the system rather than the electrons and nuclei used in
quantum mechanical descriptions. The mathematical equations in these empirical energy
functions include relatively simple terms to describe the physical interactions that dictate
the structure and dynamical properties of biological molecules. These simplifications al-
low for the computational speed required to perform a large number of energy evaluations
on biomolecules in their environment. Empirical energy functions were first used for small
organic molecules, where it was referred as molecular mechanics, but are now regularly
applied to biological systems. Some of the standard force fields available for biomolecular
simulations are :

AMBER : Assisted Model Building with Energy Refinement [28]

CHARMM : CHemistry at Harvard Macromolecular Mechanics [29]

GROMOS : GROningen MOlecular Simulation [30]

OPLS : Optimized Potentials for Liquid Simulations [102]
e PFF : Protein Force Field [201]
For handling big biomolecular system for long timescale simulations required for the fold-

ing studies there have been many coarse-grained forcefield proposed in the recent past. A
few of them are :

ECEPP (Scheraga group)

UNRES (Scheraga group)

Martini forcefield (S.J. Marrink et al.)

OPEP ( Derreumaux)

Simfold (Fujitsuka et al.)

These have been used for protein folding studies or in general biomolecular simulations.
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Correlation among different Forcefields Although peptide folding has its own be-
havior in the nature, its actual presentation on the computer simulation is strongly de-
pendent of the strategies we apply, especially the force field or energy model we use. In
the past, many famous all-atom force field models have been proposed, like CHARMM
29], AMBER [28], GROMOSI[30] and OPLS [102]. The force fields have been reported
to be successful in various application. But actually these fields have their own preferred
models. Okamoto and co-workers test these four typical force fields on the folding of short
a-helix and [-hairpin with generalized ensemble method [31]. After comparing the sec-
ondary structure content in different replicas, they conclude that AMBER94 have excellent
performance in a-helix simulation and GROMOS96 behaves well in 3-hairpin simulation.
AMBER96, CHARMM22 and OPLS-AA/L present proper tendencies to both of them.
So, it is clear that for different types of peptides, choose a special force field is quite crit-
ical. Sometime it determines the final success of the simulation. Recently, AMBER has
made a great improvement in the potential energy form and related parameters to fit the
experimental data and high-level QM computations, like AMBER99 [32] and AMBERO03
[33]. To compare the performance of these AMBER force fields and their revised ver-
sions: AMBER99m1, AMBER99m2, AMBER990ff, Lwin and Luo[34] carried out many
simulations for C-terminal -hairpin from protein G [35, 36]. They discuss the structure
distribution, folding thermodynamics and folding pathway in different conditions. The
final results show that AMBER99ci and AMBERO3 produce a good agreement with ex-
periment data, like nuclear Overhauser effect (NOE) and native contacts. Furthermore,
the free energy landscapes for these two force fields are a little different. AMBER99ci has
a partial folded state in the landscape and AMBERO3 does not. But this difference does
not change their general agreement in various thermodynamics properties.

1.3.3 Solvation Models

The solvents are treated in the simulations either through the explicit solvent models,
which treat the solvent in atomic detail, or through implicit solvent models, which gener-
ally replace the explicit solvent with a dielectric continuum. Explicit solvent models offer
some of the highest levels of detail, they carry a burden of an additional thousands of de-
grees of freedom, this slows the computation. They generally require extensive sampling
to converge properties of interest. SPC model, TIP3P and TIP4P etc are the examples
of explicit models of water molecules.

Implicit solvent models trade detail and some accuracy for the “pre-equilibration” of sol-
vent degrees of freedom and elimination of sampling for these degrees of freedom. Because
of such pre-equilibration, implicit solvent methods generally require less computational ef-
fort and have become popular for a variety of biomedical research problems. Such implicit
approaches include Poisson-Boltzmann and Generalized Born treatments of biomolecular
solvation. The Poisson-Boltzmann equation (PB) describes the electrostatic environment
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of a solute in a solvent containing ions. The Generalized Born (GB) model is an approx-
imation to the Poisson-Boltzmann equation. It is based on modeling the protein as a
sphere whose internal dielectric constant differs from the external solvent. GBSA is sim-
ply a Generalized Born model augmented with the hydrophobic solvent accessible surface
area SA term. The use of this model in the context of molecular mechanics is known as
MM /GBSA. Although this formulation has been shown to successfully identify the native
states of short peptides with well-defined tertiary structure[25], the conformational ensem-
bles produced by GBSA models in other studies differ significantly from those produced
by explicit solvent and do not identify the protein’s native state[24]. It seems to produce
artifacts like, overstabilized salt bridges possibly due to insufficient electrostatic screening
or higher-than-native alpha helix population. Many Variants of the GB model have also
been developed [27]. As ad-hoc quick strategies to estimate solvation free energy there
are methods like ASA-based model involving the calculation of a per-atom solvent acces-
sible surface area [23]. Another strategy is implemented for the CHARMMI19 force-field
and is called EEF1 [21]. EEF1 is based on a Gaussian-shaped solvent exclusion. EEF1
additionally utilizes a distance-dependent dielectric and the ionic side-chains of proteins
are simply neutralized. The hydrophobic effect was added in EEF1 model and it is called
Charmm19/SASA[22].

The implicit solvation schemes do not take into account the viscosity that water molecules
impart by random collision with the solutes through the van der Waals repulsion. Al-
though this makes the sampling of configurations and phase space much faster, it can
lead to misleading results when kinetics are of interest. Viscosity can be added by using
Langevin dynamics instead of Hamiltonian dynamics and choosing an appropriate damp-
ing constant for the particular solvent. Regarding the hydrogen-bonds with water, the
average energetic contribution of protein-water hydrogen bonds may be reproduced with
an implicit solvent. However, the directionality of these hydrogen bonds will be missing.

1.4 Scope of the thesis

In this thesis we explore an alternate approach for protein structure prediction and folding
that is based on the Anfinsens hypothesis that most proteins are in thermodynamic equi-
librium with their environment in their native state. For proteins of this class the native
conformation corresponds to the global optimum of the free energy of the protein. We
know from many problems in physics and chemistry that the global optimum of a complex
energy landscape can be obtained with high efficiency using stochastic optimization meth-
ods. These methods map the folding process found in nature onto a fictitious dynamical
process that explores the free-energy surface of the protein. By construction these ficti-
tious dynamical processes not only find the conformation of lowest energy, but typically
characterize the entire low-energy ensemble of competing metastable states. Since the
total free energy change for protein folding under physiological conditions is small, often
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only a few kcal/mol, a characterization of the low-energy ensemble of thermodynamically
accessible protein conformations may be sufficient not only to predict the structure of the
protein, but also to characterize the folding process. The technique that has been used
here is global optimization of the effective free energy function. The global optimization
technique is Minima Hopping Algorithm. The effective free energy function has been de-
scribed in detail in section 5.1.1. The aim of the work that the thesis addresses can be
summarized as follows :

1 Efficient implementation of global optimization scheme for finding the global mini-
mum and many of the low energy conformations proteins

2 To Use an all-atom forcefield based Effective Free Energy model for predicting pro-
tein structure and later on for structural refinement

3 To develop new algorithms (i.e.geometry optimization) to make the scheme more
efficient

Chapter 2 deals with a couple of investigations done on the potential energy landscape
which would in turn help in enhancing the performance of the minima hopping algorithm.
The effect of Bell-Evans-Polanyi principle on molecular dynamics and global optimization
has been tested using different potential functions which actually were modelled on dif-
ferent physical systems, e.g. Argon cluster, silicon cluster etc. The second part of this
chapter would focus on the conformational energy landscape of protein described by a
biomolecular forcefield and density functional methods.

Chapter 3 contains a detailed account of the methodological aspects. Different optimiza-
tion techniques are described here.

Chapter 4 describes the application of minima hopping global optimization method for
biomolecules in gas phase.

Chapter 5 describes the application of minima hopping algorithm for protein structure
prediction and folding. The studies were conducted using an implicit solvation model
of water. We predicted the putative global minima of two (-hairpins and discussed the
minima hopping search profiles.






Chapter 2

Energy Landscape

To understand the energy landscape one way is to analyze different stationary points,
their stability, the study of the barrier heights etc. In the first part of this chapter, the
Bell-Evans-Polanyi principle that is valid for a chemical reaction that proceeds along the
reaction coordinate over the transition state is extended to molecular dynamics trajec-
tories that in general do not cross the dividing surface between the initial and the final
local minima at the exact transition state. Our molecular dynamics Bell-Evans-Polanyi
principle states that low energy molecular dynamics trajectories are more likely to cross
into the basin of attraction of a low energy local minimum than high energy trajectories.
In the context of global optimization schemes based on molecular dynamics our molecular
dynamics Bell-Evans-Polanyi principle implies that using trajectories that have an energy
that is only somewhat higher than the energy necessary to overcome the barriers lead
fastest to the global minimum of funnel like energy landscapes. In the second part of
this chapter, a comparative study of two kinds of energy landscapes, one of the OPLS
forcefield and the the other one of density functional interactions would be presented.

2.1 Global Optimization and BEP

The Bell-Evans-Polanyi (BEP) principle is a conceptual tool in chemistry that is intro-
duced in standard textbooks on physical chemistry [39],[40]. It gives a relation between
the free energy AG released in a chemical reaction and the activation free energy ¢, for
the reaction. It is generally assumed to be well obeyed for chemically similar reactions. It
was qualitatively first put forward by Brgnsted [41] who observed that strongly exother-
mic reactions have a low activation energy. A more quantitative relation was then derived
by Polanyi et al[42],[39] who approximated the potential energy surface by straight lines.
This approximation leads to a linear relation between the activation energy ¢, and the

19
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free energy of the reaction AG:
€a = k1 + ko AG | (2.1)

where k; and ko > 0 are constants that depend on the slopes of the lines. A more accurate
approach by Marcus[43],[40] approximates the potential energy surface by two parabolas
centered at the two local minima of the energy, which leads to an additional quadratic
term in Eq. 2.1.

In a chemical reaction, the reaction coordinate connects the educt A with the product B.
In this article we will study the BEP principle not for this hypothetical path along the
reaction coordinate but for molecular dynamics (MD) trajectories that cross the dividing
hypersurface between the two basins of attraction of two local minima on the potential
energy surface. The notions of educt and product are replaced by the notions of initial
and final local minima in this context. We will show that the BEP principle is also valid
in the context of MD. Since our study requires the calculation and statistical evaluation
of a very large number of local minima and saddle points, we will initially base our study
on a Lennard Jones cluster containing 55 atoms [44] for which stationary points can be
calculated rapidly.

We will first investigate how well the traditional BEP principle is satisfied for these
Lennard Jones clusters. To do so we have searched for more than 130000 first order
saddle points G on the potential energy surface connecting energetically low local min-
ima. Subsequently we have moved the system by a small amount away from the saddle
point along the two directions where the curvature is negative, i.e we moved the system
in the direction of the eigenvector associated with the negative eigenvalue of the Hessian
matrix and in the negative direction of this eigenvector. These two points served as the
starting points for a local geometry optimization that led us in the two closest local min-
ima with energies £ and E°. In this way we have generated a set of pairs of local minima
together with the saddle points that connect them. Fig.2.1 and Fig.2.2 show a scatter
plot of AG = G? — G¢ versus the activation energy ¢, = G5 — G¢ and the red line in the
same figure shows a histogram with averages of the GG — G¢. Each pair of local minima
contributed two data points to these plots since one can surmount the barrier by going
from the minimum A to minimum B as well as by going from minimum B to minimum

A.

The scatter plots in Fig.2.1 and Fig.2.2 show that there is no strict linear correlation
between the barrier height ¢, and the energy difference AG between the two minima. For
small barrier heights one can find both high energy and low energy minima behind the
barrier. However, the BEP principle holds as a negation. If one goes over high barriers it is
extremely unlikely that one will end up in a low energy minimum. The better correlation
for large activation energies is simply due to the fact that AG can not become larger than
€,. On the other hand, the red line in Fig.2.1 and Fig.2.2 shows that there is a good
linear relation if one averages over AG. Good linear Bell-Evans-Polanyi relations have
been found in calculations of dissociative chemisorption of various molecules[45].
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Figure 2.1: The relation between the activation energy G° — G and the reaction energy G% — G¢ for
more than 130000 saddle points in a Lennard Jones cluster of 55 atoms. All the energies plotted here are
free energies at T = 0, i.e. just energies. The red line is the same data but averaged within 25 bins along
the x axis.
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Figure 2.2:  Same as Fig. 2.1 however at a temperature ( T = 30K ) which is below the melting
point (50 K) of this weakly bound system[3]. The entropy contribution was calculated in the harmonic
approximation from the vibrational frequencies [40]. The figure shows that the free energy has essentially
the same behaviour as the energy. The fact that some points are above the diagonal shows that some
shallow minima of the potential energy surface are not any more minima of the free energy surface. In
principle these points should be eliminated, but we left them in the Figure since they indicate the size of
the entropic corrections.
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Kinetic rate theory gives the rate constant for a reaction as

kgT
k= JZ exp(—e,/(kpT)) = T@—exp(—(Es — EY/(kgT)) | (2.2)
where F, and E, are the energies of the initial minimum and of the saddle point and
Qs and @), are the partition functions corresponding to the saddle point and the initial
minimum respectively. Combining this formula with the linear BEP relationship of Eq. 2.1
gives a formula where the speed of the reaction depends only on the energy of the final
minimum E° relative to the initial minimum E°.
o kBT Qs

k= T—%p(—(k‘l + ko(E® — E%))/(kgT)) (2.3)

On the macroscopic level a chemical reaction proceeds along a molecular dynamics trajec-
tory. Its energy is determined by the temperature T'. The above formula reflects therefore
our MDBEP principle. At low temperature one will rarely find MD trajectories that cross
into high energy local minima E°. This statement may sound similar to the well known
fact that an ergodic system obeys the Boltzmann distribution and will be therefore pref-
erentially found in low energy regions. Our statement is however not on thermodynamic
equilibrium distributions but on the dynamics of the system. The derivation of the above
formula (Eq. 2.3) has several weak points. As we have seen before the BEP principle
for the energies (Fig. 2.1) holds only on average for similar processes. The rate equation
(Eq. 2.2) is itself derived using several approximations. In particular it only holds for
trajectories which cross the dividing surface close to the transition state and it is thus
not valid for very high energy MD trajectories. Up to now we have also neglected the
dependence of the partition function (), at the saddle point on the temperature. @), is
a measure of the size of the dividing surface that is accessible at a certain temperature.
The area of this surface increases as the energy of the MD trajectory relative to the
saddle point increases. Hence the crossing area is larger for energetically lower saddle
points and this effect increases thus the preference of MD trajectories for crossings into
the basins of attraction of low energy minima. In addition to this dependence of ()5 on
the kinetic energy of the MD trajectory, i.e. on the temperature we have also empirically
found a dependence of ), on the height of the saddle point. The positive curvatures of
the potential energy surface near low energy saddle points is typically larger and so their
entropy associated to Qs becomes smaller (Fig. 2.3). This decreases the preference of MD
trajectories for crossings into low energy basins.

Because of all the uncertainties listed above, we will now present numerical experiments
to verify the MDBEP principle. In all these experiments the kinetic energy of the MD
trajectories was considerably larger than the minimum energy required to be able to
overcome the transition states. Fig.2.4 shows the results of the first numerical experiment.
For a large number of MD trajectories that start with random directions but fixed kinetic
energy FEy;, from a certain minimum with energy E, we have recorded how many times
this trajectory reaches the basin of attraction of neighboring minima with energy Ej. To
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Figure 2.3:  Entropy vs height of the saddle point (in energy unit, €). As in Fig 2.2 the entropy was
calculated in the harmonic approximation

check whether the MD trajectory has crossed into another basin of attraction steepest
descent geometry optimizations were started after every 20 MD steps. Once the crossing
occurred the MD run was stopped.
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Figure 2.4: The number of visits as a function of E;, — E, for a MD trajectory with a kinetic energy of
4.0e per atom.

In Fig.2.4 we then plot the number of visits as a function of F, — E,. We see that
it is orders of magnitude more likely that the MD trajectory crosses into low energy
basins than into high energy basins. By varying the kinetic energy of the trajectory we
can tune the strength of the preference for low energy minima. Low energy trajectories
have a much stronger preference for low energy minima than high energy trajectories
as shown in Fig 2.5. We will denote this correlation as the MDBEP principle: low
energy MD trajectories are more likely to lead into the basin of attraction of a low energy
local minimum than high energy trajectories. The activation energy of the original BEP
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principle has thus been replaced by the energy of the trajectory. As can be seen from
Fig.2.1 and Fig.2.4, both the traditional BEP principle and our MDBEP principle are
only valid in an average sense. As we will see this validity in the average sense is sufficient
in the context of global optimization.

Methods for global geometry optimization are an active area of research, as can be decided
from the large number of publications in this field. A basic problem in this context is to
construct moves that on the one hand rapidly lead downward in energy and on the other
hand avoid trapping [50, 51, 52] in a local minimum that is not the global minimum. We
will exemplify this issue in the context of the minima hopping method (MHM)[46, 47]. In
the MHM the system moves from one local minimum to another by a combination of MD
and local geometry optimizations. With the MD part one jumps from one minimum into
the basin of attraction of another minimum. The subsequent local geometry optimization
part brings us then into the local minimum of this basin of attraction. From the MDBEP
principle we expect that low energy MD trajectories are the most efficient for global
optimization. Fig.2.6 and Fig.2.7 show that there is indeed a very strong correlation
between the energy of the MD trajectory and the number of minima that are visited
before the global minimum is found. The data for Fig.2.6, Fig.2.7, Fig.2.8, Fig.2.9 and
the figure Fig. 2.10 were obtained by performing MHM runs that are stopped once the
global minimum is found for different but fixed kinetic energies Fy;, (i.e. [/ = f = 3 =1
using the notation of ref.[46]) in a reasonably chosen energy interval. Subsequently we
plot the values of Ej;, versus the number of local minima that were visited before the
global minimum was found. The potential energy of the local minimum from which the
MD trajectory starts is set to zero. In this way the kinetic energy is the total energy of the
MD trajectory and by energetic reasons it can not cross barriers higher than Ej;, relative
the starting minimum. Only new and accepted local minima are counted. In order to
achieve better statistics we perform for each fixed Ey;, 100 MHM runs (for Fig.2.6 the
average is taken over 1000 runs), and we take for the plots the averaged number of visited
local minima.

The Lennard Jones 55 cluster whose behaviour is shown in Fig.2.6 is a system for which it
is very easy to find the global minimum since it has a one funnel structure. Other Lennard
Jones clusters such as the 38 atom cluster whose behaviour is shown in Fig.2.7 have two
or more funnels[3]. In this case low kinetic energy MD trajectories will rapidly lead into
a funnel which is not necessarily the funnel containing the global minimum. Once the
system is trapped in a wrong funnel a sufficiently large kinetic energy is evidently required
to escape from it. Fig.2.7 however shows that also in this case the efficiency of the global
optimization is mainly determined by how rapidly the bottom of a funnel is reached and
high energy trajectories are thus less efficient than low energy trajectories even though
they can more easily escape from any wrong funnel.

Even for one funnel structures there is of course a lower limit to the kinetic energy. Once
it is too low no barriers can any more be overcome and the system gets trapped. One has
thus to reconcile two opposite requirements on the kinetic energy of the MD trajectories.
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Figure 2.5: The number of visits as a function of E, — E, summed over energy bins of length 2 for 4 MD
trajectories with different kinetic energies. The curve for an energy of 4.0 € represents the same data as
the scatter plot in Fig 2.4.
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Figure 2.6: The MDBEP principle for the Lennard-Jones cluster of 55 atoms.
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Figure 2.7: The MDBEP principle for the Lennard-Jones cluster of 38 atoms.
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Figure 2.8: The MDBEP principle for the Morse cluster cluster of 38 atoms with p = 6.0
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Figure 2.9: The MDBEP principle for the Morse cluster of 38 atoms with p = 10.0
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This is done in a very efficient way in the minima hopping method. If the system goes down
in one funnel it explores new local minima and the kinetic energy of the trajectories used
to hop from one minimum to another one is reduced. Once the system gets trapped the
kinetic energy is increased through a feed back mechanism and the system can escape from
any funnel. Minima hopping keeps a history list of all the minima that were previously
visited and the feed back is activated if old minima are revisited. Since escapes from a
funnel occur seldom one can achieve in the minima hopping method very low average
energies for the MD trajectories without being trapped.

Fig. 2.8 and Fig. 2.9 present our results for Morse clusters of 38 atoms with p = 6.0 and
p = 10.0. Large values of p lead to a interaction that varies over shorter length scales. As a
consequence the potential energy surface becomes more rugged and has significantly more
local minima. As a consequence considerably more minima are visited before the global
minimum is found. The global optimization is however also in this case more efficient for
low energy trajectories which implies that the MDBEP principle is well observed for very
rugged potential energy surfaces.
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Figure 2.10: The MDBEP principle for the Lenosky tight binding cluster of 20 atoms.

Fig.2.10 presents our results for the Sigy cluster [48] within the Lenosky tight binding
scheme [49]. In contrast to the Lennard Jones and Morse potentials the silicon tight
binding scheme has much more complicated interactions that depend not only on the
distance between atoms but also on the quantities like the bond angles. Tight binding
schemes are the simplest way to treat solid state systems at a quantum mechanical level.
The Lenosky tight binding scheme gave a very good agreement with the DFT energies|[47]
and can be considered as a reliable approximation to a precise density functional treatment
of silicon clusters. The fact that low energy trajectories lead again faster into the global
minimum indicates that the MDBEP principle is also valid for realistic interactions and
in particular for quantum mechanical interactions.

The fact that for small values of Fy;, the global minimum is found after having visited
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only a small number of local minima does not imply that the computational time in the
MHM is continuously decreasing with smaller values of Fy;,. If Fy;, is getting too small
the system has to make a huge number of attempts before succeeding to escape from the
basin of attraction of the current minimum and this will actually lead to an increase in
the computer time (Fig.2.11). For this reason it is also in practice virtually impossible to
explore the behaviour of trajectories with lower energy than those shown in Figs.2.6, 2.7,
2.8, 2.9 and 2.10. Fig. 2.6 shows however that the minimum of the CPU time is reached
when the number of minima visited becomes small. The BEP principle is thus not only
of conceptual interest but can in practice also help to save CPU time.
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Figure 2.11: The average CPU time (left Y-axis) along with the average number of distinct local minima
visited (right Y-axis) before reaching the global minimum for the Lennard-Jones cluster of 55 atoms are
plotted against the Kinetic energy of the MD trajectory per atom (Fgiy).

In practice, the short computation time can be obtained by giving the MD trajectories
initial velocities that have large components in the subspace of low curvature of the
Hessian matrix. Due to the fact that low energy saddle points often lie at the end of
low-curvature modes[53, 54, 55] one can in this way even with low energy trajectories
very rapidly escape from the present minimum. A similar gain in efficiency was found
in the context of global optimization using random moves if those moves were biased in
the direction of the low curvature modes [56]. In summary, we have shown that the BEP
principle can be extended to MD trajectories with high energies which cross from one
basin of attraction into another one far from the transition state. We call this extended
principle MDBEP principle. It says that MD trajectories with lower energy are more
likely to lead into basins of attraction of low energy configurations than very high energy
trajectories. In the context of global optimization this principle can be used to improve
the efficiency of existing MD based methods by tuning the energy of the MD trajectories.
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2.2 Conformational correspondence : Forcefield vs
Density Functional methods

The aim here is to study the energetic and structural correspondence on a few sets of con-
formations between a biomolecular forcefield and Density Functional theory. Biomolecular
landscapes are often described as “rugged”. That would mean the presence of many fun-
nels, traps etc. To describe it even more microscopically, one would expect many sets
of local minima separated from each other with considerably high barriers - to overcome
which the system has to cross the lifetime of each of those metastable conformations. A
solvated protein is obviously expected to have a larger amount of those conformations
than while in vacuo. In gas phase one can get rid of the large number of degrees of
freedom of the solvating system and thus the landscape is simpler - the description of the
landscape by a forcefield should thus be more accurate. So in an ideal case one should
expect a one-to-one correspondence between each of the local minimum in a present in
the landscape corresponding to a biomolecular all-atom forcefield and an energy land-
scape corresponding to the first-principle description of a protein. As in the forcefields
the description of the bonded interactions are in the form of a harmonic potentials and
the parameters are mostly derived from spectroscopic experiments their accuracy is much
more than the non-bonded interactions. The non-bonded interactions are prone to be
erroneous. The short range part of the non-bonded interactions are very important in
deciding the exact packing and compactness of a protein.

The first-principle method used here is Density functional theory(DFT). It has become
the standard computational chemistry method. While using DFT one encounters the
problem of choosing a an appropriate exchange-correlation functional. Based on the
performance in many energetic assessments related to small molecules, B3LYP[60, 61]
is the most widely used exchange correlation functional. Although it reproduces the
geometries of smaller and larger molecules very well but it can fail in describing the
energies of van der Waals molecules, hydrogen-bonded systems, reaction barrier heights
and larger molecules [62, 63, 64, 65, 66]. PBE [59] Although the LDA[58] approximation
generally strongly overestimates weak interaction energies[67, 68, 69] it has been reported
to be working better than many other relatively more sophisticated functional [66]. Apart
from LDA and B3LYP functional we have also used a pure GGA functional - PBE [59]
and a dispersion-corrected LDA.

This study has involved two protein systems. We are defining “system A” to be a pep-
tide of AcAlay4LysGlysAlasLys + 2H" and “system B” to be a peptide of sequence
AcPheAla,gLys + H™.
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Methodology

Here, we used the OPLS all-atom force field (OPLS-AA) [102] for the potential energy of
the biomolecular system as implemented in the DYNAMO modeling library [103, 104].
We conducted short molecular dynamics based moves followed by local optimizations
to search the neighbourhood of a preselected minimum. This starting point minimum
could have arbitrary. From several thousand neighbouring local minima we calculated the
root-mean-squared-deviation (RMSD) of all the structures with respect to the starting
point minimum. Then we chose the closest few of the local minima for the ab-initio
geometry optimization. For once we took the 10 lowest energy minimum from a global
optimization run using minima hopping algorithm (described in chapter 4) on the system
B (AcPheAlajgLys+ H™ ) For the ab-initio geometry optimization we gave used - (i) LDA
functional implemented in BigDFT[57] package using daubechies basis sets and (ii) the
level B3LYP/6-31G* implemented in Gaussian package[96]. The geometry optimizations
were done upto a few hundred steps for all the conformations studied.

Results

We have conducted three sets of calculations.

(RUN 1) Ab-inito geometry optimization of structurally very close 25 conformations of system
A and reoptimizing them using the forcefield.

(RUN 2) Ab-inito geometry optimization of structurally very close 24 conformations of system
B and reoptimizing them using the forcefield.

(RUN 3) Ab-inito geometry optimization of energetically lowest 10 conformations of system
B.

The “RUN 17 and “RUN 27 are for selecting the minima lysing in the neighbourhood of
each other. For “RUN 3” we tried to chose the conformation from the energetic point of
view.

RUN 1

The top 25 conformational minima of system A have been picked up and they were
optimized in DFT-LDA scheme up to ~ 200 steps of geometry optimization. The DFT-
optimized conformation have been re-optimized in the OPLS forcefield. The table 2.1
shows the energy of the starting OPLS minimum, the initial DF'T-LDA energy, final DFT-
LDA energy and the OPLS energy of the re-optimized conformation. The re-optimization
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was done for identifying the distinct conformations after the DFT based geometry opti-
mizations. From the 25 conformations we could finally have 19 conformations to be stable
in DFT-LDA scheme. We pick up a pair of such minima which fall back in one of them.
The conformation 22 and 25 are shown in fig. 2.12. They were having rms deviation
0.0674 and OPLS energy difference 254.24K Jmol~' and the conformation no. 22 was
found to be unstable in DFT. All the steps of DFT geometry optimization have been
saved and their corresponding OPLS energy and different components were calculated.
To check which OPLS local minimum the DFT optimization geometry lead to, we opti-
mized all the steps of DFT geometry optimization. All the energies are shown in fig.2.13.
Its clear that for the conformation 22, along the DFT geometry optimization path from
the start upto a few steps, leads back to the staring OPLS minimum then afterwards it
starts leading to a new minimum. So for such an unstable conformation two local minima

can coalesce while conducting a point-to-point landscape transformation from OPLS to
DFT.

For the conformation 22 we conducted another two sets of geomtry optimization in dft
using a PBE functional scheme and a dispersion-corrected DFT scheme. The conformation
was not stable in any of them. The OPLS energy and different components for each step
of DFT geometry optimization is shown in fig 2.14.

RUN 2

The top 24 conformational minima of system B have been picked up and they were opti-
mized in B3LYP/6-31G* DFT scheme up to ~ 100 steps of geometry optimization. The
DFT-optimized conformation have been re-optimized in the OPLS forcefield. The table
2.2 shows the energy of the starting OPLS minimum, the initial DF'T-B3LYP energy,
final DFT-B3LYP energy and the OPLS energy of the re-optimized conformation. The
re-optimization was done for identifying the distinct conformations after the DF'T based
geometry optimizations. From the 24 conformations we could finally have 17 conforma-
tions to be stable in DFT-B3LYP scheme. We pick up a pair of such minima which fall
back in one of them. The conformation 10 and 14 are shown in fig. 2.16. They were having
rms deviation 0.1993A4 and OPLS energy difference 254.33K Jmol~" and the conformation
no. 10 was found to be unstable in DFT. All the steps of DFT geometry optimization
have been saved and their corresponding OPLS energy and different components were
calculated. To check which OPLS local minimum the DFT optimization geometry lead
to, we optimized all the steps of DFT geometry optimization. All the energies are shown
in fig.2.17. Its clear that for the conformation 10, along the DFT geometry optimization
path from the start upto a few steps, leads back to the staring OPLS minimum then
afterwards it starts leading to a new minimum. So for such an unstable conformation two
local minima can coalesce while conducting a point-to-point landscape transformation
from OPLS to DFT.
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Figure 2.12: Two closely lying minima of OPLS forcefield( conformation number 22 (blue) and 25(red)
from the table2.1) having rms deviation 0.067A and energy difference 254.24K Jmol~', which will even-
tually coalesce in the ab-initio geometry optimization(DFT-LDA).
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Conformation | OPLS Energy | DFT(LDA) Energy | DEFT(LDA) Energy | OPLS Energy
number Starting before after after
Minimum optimization optimization reoptimization
of the

DFT minimum
1 -6.413 -17.171 -1105.811 -284.512
2 -263.378 -557.444 -1075.632 -263.378
3 -18.701 -6.023 -1076.116 -256.579
4 -209.558 -494.684 -1009.179 -209.558
) -188.403 -467.125 -976.799 -188.403
6 0.000 0.000 -1081.420 -284.512
7 -6.813 -15.898 -1081.259 -251.413
8 -22.162 -29.983 -1101.629 -284.512
9 -255.699 -560.022 -1082.073 -255.699
10 -77.980 -163.817 -1074.519 -249.110
11 -267.541 -565.333 -1088.707 -267.541
12 -249.110 -555.110 -1079.144 -249.110
13 -258.878 -555.261 -1074.907 -258.878
14 -246.417 -539.674 -1052.935 -246.417
15 -234.265 -544.534 -1067.457 -234.265
16 -257.412 -570.584 -1091.109 -257.412
17 -283.230 -587.106 -1111.180 -283.230
18 -282.796 -582.074 -1103.299 -282.796
19 -0.170 -5.944 -1104.365 -284.512
20 -223.615 -521.935 -1055.992 -223.615
21 -251.413 -556.737 -1086.905 -251.413
22 -18.248 -40.730 -1104.374 -272.482
23 -229.648 -534.582 -1062.300 -229.648
24 -182.725 -480.408 -995.600 -182.726
25 -272.482 -574.967 -1103.380 -272.482

Table 2.1: Summary of the optimization-reoptimization test on the 25 conformational minima of OPLS
forcefield ( ref. fig.2.15)
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Figure 2.16: Two closely lying minima ( conformation 10 (red) and 14 (blue) from the table2.2) of OPLS
forcefield ( rms deviation 0.1993A , energy difference 254.33K Jmol~1), which will eventually coalesce in
the high accuracy ab-initio geometry optimization (DFT-B3LYP).
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Figure 2.17: Conformation 10 and Conformation 14 shown in fig. 2.16 : the different components of the
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Conformation | OPLS Energy | DFT(B3LYP) Energy | DFT(B3LYP) Energy | OPLS Energy
number Starting before after after

Minimum optimization optimization reoptimization
of the

DFT minimum
1 -278.382 -645.347 -776.179 -278.382
2 -254.041 -621.469 -741.758 -254.041
3 -105.170 -235.567 -775.768 -278.382
4 -253.784 -621.371 -760.178 -258.636
5 -258.636 -616.379 -750.006 -258.636
6 -230.144 -586.687 -714.390 -230.144
7 -18.802 -45.156 -783.943 -287.331
8 -75.459 -207.778 -751.369 -253.784
9 -2568.793 -611.955 -769.161 -266.901
10 -254.339 -607.203 -778.792 -267.835
11 -254.331 -605.538 -771.112 -254.331
12 -25.982 -9.274 -708.224 -278.416
13 -250.115 -611.834 -734.758 -252.564
14 0.000 0.000 -778.780 -267.835
15 -231.911 -590.410 -771.113 -254.331
16 -254.926 -612.015 -761.035 -254.926
17 -72.671 -180.076 -771.155 -254.331
18 -230.893 -607.202 -732.339 -230.893
19 -279.365 -651.830 -768.721 -279.365
20 -264.973 -644.543 -774.010 -264.973
21 -95.780 -449.410 -601.234 -95.780
22 -256.897 -625.240 -762.895 -256.897
23 -287.331 -653.404 -784.042 -287.331
24 -91.007 -213.942 -778.679 -267.835

Table 2.2: Summary of the optimization-reoptimization test on the 24 conformational minima of OPLS
forcefield on system B. ( ref. fig.2.15)
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In the fig. 2.15 we showed that the OPLS energy of the starting minima, energy in a
single-point calculation and energy after geometry optimization in DF'T of both RUN 1
on system A and RUN 2 on system B shown all together. The agreement on the structural
ranking between a forcefield and DFT is apparently very poor. The lines of the relative
energy of the conformations (in the fig. 2.15 became smoother upon DFT geometry
optimization.

RUN 3

Here from the lowest 10 conformations found by a conformational search, 8 were found to
be stable in DFT-B3LYP scheme. We are showing one set the conformations which were
found to fall back in the same minimum in DFT-B3LYP scheme. The conformation 2-nd
lowest and 6-th lowest are shown in fig.2.18.

All the steps of DFT geometry optimization have been saved and their corresponding
OPLS energy and different components were calculated. To check which OPLS local
minimum the DFT optimization geometry lead to, we optimized all the steps of DFT
geometry optimization. All the energies are shown in fig.2.19. Its clear that for the
conformation 6, along the DFT geometry optimization path from the start upto a few
steps, leads back to the staring OPLS minimum then afterwards it starts leading to a new
minimum.

Non-bonded interaction

If we look at the fig. 2.13, fig. 2.17 and fig. 2.19 we can see that the forcefield minimum
has always been pulled away in the DFT minimization by providing some amount of
non-bonded energy. The repulsive lennard-jonnes of the forcefield is showing a very high
energy for all the DFT minima. The overall change in the total OPLS energy upon a
DFT geometry optimization is thus positive. The attractive coulombic interaction tries
to compensate but only up to a certain extent. There is a clear disagreement in the non-
bonded interactions between a forcefield scheme and an ab-initio scheme. The bonded
interactions dont change very much in the structural change.

Packing and compactness The effect of a hard van der Waal repulsion and the
compensating electrostatic interactions with a crude approximation on the point charges
parametrized on small molecules should be seen in the overall packing of a folded con-
formation. In the fig. 2.20 we see that upon a DFT-LDA geometry optimization all the
conformations attain a smaller radius of gyration and so, get an overall compactness and
the atoms goes closer to each other within the repulsive/forbidden zone of the classical
form of Lennard-jones repulsive part. But a different picture comes when we wee the
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Figure 2.18: Two energetically closely lying minima of OPLS forcefield (conformation 2 (blue) and con-
formation 6 (red) ; rms deviation 1.084 , energy difference 6.85K Jmol ~1), which will eventually coalesce
in the high accuracy ab-initio geometry optimization (DFT-B3LYP).
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forcefield energy along the path of geometry optimization in DFT.
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optimized structures of DFT-B3LYP. The DFT-B3LYP optimized structures have larger
radii of gyration. It has been pointed out at beginning that B3LYP has always failed to
portray a realistic van der Waal interaction [62, 63, 64, 65, 66] so although it is a higher
level density functional and so reliable in producing the conformational density of states
its energetic ranking may not be correct in such a case.
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Figure 2.21: Radius of gyration of each of the 24 conformations listed in table 2.2 and their corresponding
minima in DFT-B3LYP.

CONCLUSIONS

We compared energy landscapes of proteins in several levels of accuracy, e.g that of
forcefields, LDA, B3LYP and PBE density functionals. We found that the forcefield
can give rise to many fake minima which can be both structurally close or energetically
close to the real minima. The non-bonded forces of a biomolecular forcefield should be
corrected to produce better agreement with the higher level theory. The Lennard-Jones
part of the forcefield is found to be harder than a density functional description. With a
unrealistically hard Lennard-jones there is a low chance to find the real compactness and

packing of the real proteins.






Chapter 3

Methodological developments

This chapter deals with some of the algorithms which were implemented or developed in
course of the global optimization studies.

3.1 Implementation of Minima Hopping Algorithm

We use the Minima Hopping Algorithm(MHOP) [124] for structure prediction. Minima
hopping [124] is an efficient algorithm for finding the global minimum on the potential
energy surface of a polyatomic system. The complete description of the algorithm may
be found in reference [124]. This has been used previously by for global optimization
studies of Lennard-Jones [124] and silicon [125] clusters. It possesses an efficient feedback
mechanism that makes use of the search history.

e It uses MD instead of random moves (as in basin-hopping [196]) to jump over reason-
ably low barriers using the Bell-Evans-Polanyi principle [129]. The MHOP process
generates a collection of small MD trajectories from which the search pathway is
t raceable even though each trajectory can have different initial temperatures and
velocity distributions. Although the MHOP search pathway and the folding path-
way obtained from a continuous MD simulation may be different, the major funnel
transitions should be common to both

e the MHOP process incorporates a learning mechanism from the search history and
keeps on changing the temperature of the MD and the acceptance/rejection criterion
systematically to avoid revisiting configurations. The length of the MD part of the
algorithm ¢ an be adjusted to adapt better to the nature of the landscape, e.g.
for funnel-like landscapes longer MD may be more useful than for more rugged
landscapes

45
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e the algorithm is easily parallelized to accelerate sampling and it is straightforward
to ensure that each processor has access to the search history of all processors.

Algorithm - flowchart

Here a flowchart ( see fig. 3.1) has been drawn to illustrate the algorithm briefly. The
stopping criteria for the loop is not generic, so was not shown.

Initialize a current minimum
‘Meurrent

Initialize history

onaun3

MD with Kinetic energy EKinetic
upto mdmin-th minimum

A tight geometry optmizationto
reach a minimum ¥

Check if ( "M== "Mcurrent’)

. Check if "M is a revisit :
YES : Ekinetic = Ekinetic*beta2, (beta2 > 1)
NO : Ekinetic = Ekinetic*beta3, (betal < 1)

Check if ( Energy(M)-Energy{Mcurrent))< Ediff

(1 < tepaq) ‘ Lerag.onaunts

Ediff = Ediff *alphaft , (alphai <1)
‘Mcurrent =="W
Add "Mcurrent to history list

Ediff= Ediff *alpha2, (alpha2>1)

Figure 3.1: Flowchart of minima hopping algorithm.

3.1.1 DIMERSOFT

MD escape trials in the MH algorithm need an initial velocity distribution which is then
rescaled to fit the desired kinetic energy. The velocities are randomly directed for each
atom with Gaussian distributed magnitudes. Regardless of the actual distribution chosen
it has proved very useful to use softening, to choose velocities along low-curvature direc-
tions. In this way one can typically find MD trajectories with a relatively small energy
that cross rapidly into another basin of attraction. In the original MH method low kinetic
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energy trajectories could only be obtained by using large values for mdmin which results
in long trajectories. A direction of low curvature is found using a modified iterative dimer
method which only uses gradients, no second derivatives need to be calculated [128].
Starting at a local minimum x with an escape direction N the method calculates a second
point y = x + dN at a distance d along the escape direction. The forces are evaluated at
y and the point is moved along a force component F+ perpendicular to N:

A~

F'=F— (F-N)N

y =y +aF*
/

oYX
' — x|

After a few steps the iteration is stopped before a locally optimal lowest curvature mode is

fgund. Initial velocities for the MD escape are then chosen along the final escape direction
N.

If the softening procedure is executed until it converges the performance drops again. It
is important not to overdo softening. Always escaping into the same soft mode direction
of a given minimum reduces the possibilities of different escape directions and therefore
weakens the method. A good indicator was the mean kinetic energy during a run. For a
few softening iterations the value decreases whereas it starts to increase again at a certain
number of softening iterations. We set the iteration count to the value where the mean
kinetic energy was minimal. The overall impact of this scheme has been tested in detail
in section 4.

3.1.2 Mode Decomposition

This is a scheme for searching along slow vibrational modes. To concentrate searching
in slow vibrational modes we did not use simple random initial velocities in the MD
simulations and instead took out the component of the initial random velocity which is
in the space of all bond stretching and bond bending vibrations. Let Vi be the initial
3N-dimensional random velocity vector, where N is the number of atoms. If there are
Nponds bonds and Nypgles angles in the protein then Ny, = Nponds + Nangles- Let the vectors
corresponding to each of the bonds or angles be denoted fl, where [ = 1,2, ..., N,,. Now
we define the lI-th bond vector T} corresponding to the bond between the connected atoms,
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1 and j or the angle vector T corresponding to the angles (i, k, j) as follows :

0
: upto 3(i-1)
0
+(.Z'Z l’J)
+(yi — v;)
+(Zz - Z])
0
L =—F—— : from (3i+1) to 3(j-1)
\/2(rij)? :
0
)
—(yi — vy
—(2z; — 2;
0
: from (3j+1) onwards
0

where 7 = /((zi — 1) + (yi — y;)2 + (21 — 2;)?). We write 3" C/Ty, - Ty = Vi - Th.

By solving this hnear system of equatlons we get the coefficients ('}, and then the new
velocity vector Vmodlﬁed = VO — Zl i C’lTl which is rescaled to match the temperature.
This new velocity is a random vector in the subspace free from any vibrational mode
related to bond stretching or angle bending.

3.1.3 Enhanced Feedback

In original version of minima hopping algorithm ekin is increased by a factor [, if the
current minimum has already been visited before — regardless of the number of previous
visits. An enhanced feedback method uses a value of 5 depending on the previous visits
according to

By = 33 x (1 + clog N) (3.1)
where (3 is the original value of 1.05 and N the number of previous visits to this minimum.
The parameter ¢ has been set to 0.1 after tests on bigger Lennard-Jones clusters and gold
systems. This feedback mechanism reacts slightly stronger if the minimum is visited
many times. If the system has only one energy funnel this enhanced feedback can even be
slightly disadvantageous since it increases the kinetic energy too much and thus weakens
the BEP effect of MD. The increased feedback mechanism improves the efficiency however
considerably for large systems where the system can be trapped in huge structural funnels.
If a cluster has for instance both low energy icosahedral and decahedral structures it takes
a very long time for the MH algorithm without enhanced feedback to switch from one
structure to the other.
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3.2 Preconditioned Steepest Descent

As a geometry optimizer steepest descent converges slower than the other advanced ge-
ometry optimizers like conjugate gradient - provided the starting point is near to the
quadratic region. In a highly nonquadratic part of the energy landscape it works more
efficiently than the others. In most of the efficient implementation of advanced geometry
optimizers, SD is used for the first few iterations to bring the force down from the very
high force of the starting conformation.

Here we have tested a preconditioner for steepest descent for applying on the protein
systems in an all-atom forcefield representation. The all-atom forcefields contain the
terms related to the bond stretching, angle bending etc. In the section 3.1.2, a mode
decomposer was described which gets a vector free from its component on the subspace
composed by all the vectors corresponding to the bond stretching and angle bending
motions. We use that mode decomposer to precondition the force in the following way.

10 : , :
SD ——
preconditioned-SD -

0.1 o

0.01 +

Force Norm
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Figure 3.2: SD vs preconditioned SD - the force norm is plotted against the no. of gradient calls.

If F is the total force, then by a decomposition described in the section 3.1.2 we get a
component of the force which is ﬁmodiﬁed = F— ZZN:bf Clﬁ. Then the preconditioned force
(ﬁprecon) would be ﬁprecon = a* Foodified + (ﬁ — ﬁmodiﬁed) , where « is the gain in the step
size for the soft mode components. Here we can seperately decompose the components
and the angles components. Then we can have the the preconditioned force (ﬁpremn) to
be ﬁprecon = ﬁbond + aq * ﬁangle + g * (ﬁ - ﬁbond = ﬁangle). The values of a; and an were
determined using a trial and error method. The implementation of this preconditioned
steepest descent was done by working on the combination frequency of the preconditioning
step and the values of oy and ay. In the fig.3.2 the performance of the preconditioned-SD
is shown applying it on a peptide of sequence AcAlagLys + H™'(using OPLS forcefield)
where we have called the preconditioner once in every 10 steps and the value of oy was
~ 5.0 and ay was =~ 40.
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3.3 DIISIP : A new preconditioned-DIIS Geometry
optimization scheme

A new geometry optimization scheme is presented. We constructed an iterative pre-
conditioner coupled within the DIIS scheme calling it a Direct Inversion in the iterative
subspace with iterative preconditioning algorithm (DIISIP). The preconditioner works on
a model Hamiltonian consisting of a simple bond and angle representation for the fast
vibrations in the system. The model can be built using a priori knowledge of the system
curvatures or can be parametrized on-the-fly by an approximate gradient-matching. An
efficient hybrid implementation of this algorithm with other geometry optimizers is tested.
A number of clusters, biomolecules have been optimized using this scheme.

INTRODUCTION

Local optimization of geometry is a very important methodological aspect of computa-
tional chemistry. Essentially it is a search for a stationary point on a potential energy
surface (PES). In practice the term geometry optimization is most often used in the con-
text of searching for a local minimum than the stationary points with one or more than
one negative eigenvalues. Many of the theoretical studies, specially those involve calcula-
tions of transition state, barrier height, heats of reaction, or vibrational spectra require an
efficient method for geometry optimization. In the context of global optimization of PES,
the local optimization is required most often. Specially for the algorithms like basin hop-
ping, minima hopping etc, an accurate geometry optimization is almost indispensable.But
geometry optimization becomes difficult and slow if it involves a huge number of variables
due the presence of many thousands of atoms specially for Biomolecules, polymers and
nanostructures etc. To circumvent the scaling issue in geometry optimization there are ef-
forts in the community for designing geometry optimizers having a better scaling [70, 71].
Also if the calculation of gradient becomes very time consuming, e.g. for a higher level
ab-initio calculation, even the regularly converging geometry optimization can face the
time issue, so there any decrease in the computational cost is welcome.

A variety of algorithms for geometry optimization are widely used in computational chem-
istry [72, 73]. Geometry optimization methods can be categorized into three major groups.
Zeroth order methods use only the functions value for optimizing the function - this is
used specially if the gradient calculation is numerically prohibitive. First-order meth-
ods use just the analytic first derivatives to search for stationary points. Some of the
commonly used first-order methods are steepest descent method(SD), conjugate gradient
method(CG), direct inversion of the iterative subspace (DIIS) method etc. Second-order
methods use both analytic first and second derivatives, assuming a locally quadratic model
for the potential energy surface and a NewtonRaphson step (VZ= H~'g, where 7 is the
coordinate vector, ¢ is the gradient, H is the hessian matrix) for the minima search. While
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second-order optimization schemes need fewer steps to reach convergence than first-order
methods[88]. This kind of an approach can quickly become very expensive with increasing
system size because the explicit computation of the Hessian scales as O(N?) to O(N?),
where N is the system size. Quasi-Newton methods are intermediate between the first
and second-order approaches. A initial evaluation of the Hessian is done using some inex-
pensive method. Subsequently, the Hessian is regularly updated using the first derivatives
(74, 75, 76, 77, 78, 79, 80, 81]. The quasi-Newton approach is comparable in computa-
tional cost to first-order methods. The Quasi-Newton approach L-BFGS algorithm has
been observed to be significantly efficient than methods like conjugate gradient[3]. So
this kind of a Quasi-Newton approach in terms of speed better than first-order meth-
ods, although an efficient implementation of DIIS scheme has been expected to be very
effective[95, 3.

In DIIS method, to reduce the number of iterations required to reach convergence, a
least-squares minimization scheme is used[89, 90]. At a given iteration, the optimizer
constructs a linear combination of approximate error vectors from previous iterations.
The coefficients of the linear combination are then determined so as to best approximate,
in a least squares sense, the null vector. The coefficients are then used to generate the
function variable for the next iteration. It is efficient in both converging the wave function
and optimizing the geometry[91, 92, 93, 94, 95, 96, 97].

The idea of preconditioning is brought to improve the condition number of the second-
derivative matrix. All the first-order geometry optimizers improve upon incorporating
a good preconditioner and using preconditioned gradients in place of the gradients. In
the ideal case a preconditioning matrix A = H~!, where H is the hessian matrix. Its
known that the use of a NewtonRaphson step when the current position is far away
from a quadratic region can lead to big step sizes in the wrong direction. It makes
optimizer unstable. The stability of a NewtonRaphson geometry optimization is enhanced
by controlling the step size using techniques such as rational function optimization (RFO)
(82, 83] or the trust radius model [84, 85, 86, 87]. The same way the preconditioned force
can at times lead to instability. In the spirit of a trust radius model an adaptive step-size
or frequent restarts can help out.

Here we shall describe a preconditioner which would be used in the DIIS method. This
preconditioner works as an iterative optimization of the gradient of a second Hamiltonian
which is constructed out of a model describing the fast vibrations present in the system.
Because here the preconditioning is a multi-step optimization itself, we call it Direct
Inversion in the iterative subspace with iterative preconditioning algorithm (DIISIP). It
is then applied on a few small clusters interacting via Lennard-Jonnes potential, lenses
potential and a small alanine-based peptide. Finally, an efficient hybrid implementation
of DIISIP, which is its combination with the SD algorithm has been tested on bigger
peptides.
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Methodology

It is a preconditioned DIIS method with a variable preconditioning, i.e. the precondition-
ing operater(P,,) is specific to the iteration number m. Applying this operator we get a
preconditioned gradient g, as follows :

9m = Pungm = PuVo(cn), (3.2)
where, for a given position vector ¢,, we have the gradient g, = V(ECZ,L. The precondi-
tioned gradient vector g,, is found by successive smoothing steps to reduce the components

of the high frequency vibrations. These vibrations present in a molecular system are com-
ing out of the bond stretching or the angle bending motion.

Preconditioner We construct a bonded network by searching all atom pairs (i, 7)
within a cut-off distance (~ (r¢,) , 7eq ~ equilibrium distance or typically the physi-
cal bond length between it and j* atoms). At first we write 7" = ¢,,. The corresponding
Hamiltonian is as follows :

Hy = Y Kij(r—re)’, (3.3)

g = V(H) (3.4)
(3.5)
This preconditioning is done through a set of iterative smoothing operations on g,,. Typ-

ically ~ 15 steps are needed for conjugate gradient optimization based smoothing (i.e.
the preconditioning) of the force g,, of eq. 3.2.

DIISIP The preconditioned diis method is explained below. At the m-th step we have
is an exact solution of a quadratic minimization problem and ¢;, (i = 1,...,m) a set of
m approximate solution vectors, ¢;, (i = 1,...,m) are the gradient vectors and the error
vectors are €;, (i = 1,...,m). The error vector €; is defined as

é = Pngi,(i=1,...,m)

We have the Lagrangian
L=<élé; > - _di—1) (3.6)

where for ¢ = 1, ..., md; are the coefficients to be used to form a new solution vector ¢, 1
from the old vectors. and A is the Lagrange multiplier which couples the constraint that

> di=1

i
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Figure 3.3: The application of the preconditioner (The figures were prepared using the program
V_SIM [106])

Taking the derivative of the Lagrangian L in eq. 3.6 with respect to d;, (i = 1,..., m)and
A we get a system of linear equations of the order (m + 1) ( eq. 3.7) .

i €1€e1 €1y ... €1€y -1 i [ d1 ] [ 0 i
€2€1 €2€y ... €2€n —1 d2 0
—1 = (3.7)
emfl Em€a ... Eemem —1 Ay, 0
1 1 1 0 A 1

Solving the eq. 3.7, we get
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Under the assumption that we are in a quadratic region, we have

—

Gm = V(i)

Cm41 = Cm — ngm

S0, ¢ is the solution vector at the end of the iteration m and it goes for the next
iteration.

RESULTS

Here in this section, the performance of the DIISIP optimizer is shown. We have used
16 silicon cluster ( Lenosky forcefield[105]) for showing the preconditioned forces visually.
The time-scaling of the preconditioner is tested on alanine peptide chain of length ranging
from 10 to 900 residues. For the application of DIISIP we have chosen Lennard-Jonnes
clusters of size 20, 50 and 150 , alanine peptide chain of length 4, 20, 40, 200 residues.
Here, for the biomolecules the optimizations were carried out using the OPLS all-atom
force field (OPLS-AA) [102] for the potential energy of the biomolecular system as im-
plemented in the DYNAMO modeling library [103, 104]. For all methods, the geometry
optimization is considered converged when the root-mean-square (RMS) force is less than
< 107K Jmole™!.

In fig. 3.3 we have shown a cluster system made of 16 silicon atoms. First we search
atomic pairs within a certain distance ( a little more than crystalline silicon-silicon bond
length). The bonded network is built. A quadratic potential based model Hamiltonian
is constructed - for this system the force constant is found by trial and error. (But for
biomolecules which have the bond stretching component explicitly present in the potential
function, we use them taking directly from the parameter file ). A typical force vector
and the preconditioned force is shown. The preconditioner can be seen to have actually
smoothed the force considerably. In fig. 3.4 the time scaling of the preconditioner is
plotted. It shows a square scaling. We don’t need to have any calculation of gradient
of the potential energy function during the preconditioning which is actually much more
time consuming than this cheap preconditioning step.



3.3.  DIISIP : A new preconditioned-DIIS Geometry optimization scheme 59

3| Calcul‘atezd + i
O(N?) =~
25 &ff i
Q 7
E 2+ - a
8 #
- 151 e 4
AW o
@] 1| A 4
it
05 MM 4
0 | | | | L1
0 200 400 600 800 1000
Length(n) of Ala, chain

Figure 3.4: Scaling of the preconditioner with the system size. We plotted here the CPU time (in sec)
needed for a single preconditioning step against the chain length(n) of polyalanine molecules( Ala,, )

In fig. 3.5 we compared the performance of conjugate gradient, DIIS and the DIISIP
algorithms. DIISIP clearly outperforms others by converging ~ 5 times faster. The
same thing can be seen when we have applied DIISIP for a medium sized (150 atoms)
Lennard-Jonnes cluster.
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Figure 3.5: Force norm vs step number for geometry optimizations on a 16-atom Silicon cluster.

In fig. 3.6 we compared the regular DIIS and the DIISIP algorithms for a 20-residue
alanine chain peptide. DIISIP converges fast here for this short peptide.
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Figure 3.6: DIIS and DIISIP : Force norm vs step number for geometry optimizations on (Ala)s chain.
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Figure 3.7: Force norm vs step number for geometry optimizations on Lennard-Jonnes 150 atom cluster.

The history length of DIIS is typically kept to be < 15 because of the stability issue. Here
in fig.3.8 we tested the parameter history length for 4-residue alanine chain. It shows that
a longer history length is allowable to get the best performance. But one has to take care
of a probable instability which can occur by restarting or using a hybrid scheme. In the
next subsection we discussed a couple of probable schemes which may help to extract the
best out of this geometry optimizer.
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Figure 3.8: Effect of the DIIS history length on the Force norm ( the system is (Ala)4 chain.
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Efficient implementation : Hybrid optimizer
We thus combine methods to gain a fast hybrid geometry optimization scheme:

Scheme 1 — (1) We do 10 — 100 steps of steepest descent and go to step (2)

— (2) the optimization algorithm switches to DIISIP. Once there is a untrusted
move (fnrm/ fnrmeq > 10.0, fnrm is the force form) we switch back to step
(1) and the cycle continues.

Scheme 2 — (1) The geometry optimization begins with the steepest descent method for
20 — 100 steps for the highly non-quadratic nature of starting position which
is typically away from the quadratic region

— (2) Conjugate gradient up to the norm of the force coming around 102

— (3) the optimization algorithm switches to DIISIP when the root-mean-square
force of the latest point is smaller than 1072

— (4) whenever there is a untrusted move (fnrm/fnrmeys > 10.0, fnrm is the
force form) we switch back to steepest descent and continue that for 10 — 100
steps and then go back to (3) and continue with DIISIP and the cycle continues.

The scheme 2 can give a very good stability. But for letting DIISIP face a real test of
starting from a considerably high force norm with the help of just SD method, we started
testing the scheme 1 ( calling it SD-DIISIP) extensively before applying the scheme 2 (
calling it CG-DIISIP).
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Figure 3.9: Force norm vs step number for geometry optimizations on (Ala)sg chain.
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Figure 3.10: Force norm vs step number for geometry optimizations on (Ala)so chain.
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Figure 3.11: Force norm vs step number for geometry optimizations on (Ala)sg chain.

The figures 3.9,3.10 and 3.11 are the comparison of our best performing conjugate gradient
implementation ( coupled with SD) and the DIIS ( coupled with SD). The SD-DIISIP
work 3-5 time faster in all the cases. The fig.3.9 shows that CG-DIISIP implementation
is even faster than the SD-DIISIP implementation.

Non-uniqueness of geometry optimization

As it is known that starting from any arbitrary point of the energy landscape for different
geometry optimizers (e.g. conjugate gradient, diis, bfgs etc) the optimization path can
lead the process into a final geometry optimized state which may not be identical as
compared to each other. We present an example here. Starting with a 50 atom Lennard-
Jones cluster we found that the energy of the optimized states for SD, CG and DIISIP
method are all different from one another (see fig.3.12. The starting energy is -51.69,
SD minimum -72.79, CG with -73.47 and DIISIP with -52.88 (in the units of € of the
LJ potential function). It shows that SD being exact in its definition is true to the
connectivity present in the landscape. CG is exploratory and for that it may lead to a
far-off minimum which may be the lowest in the neighborhood of connectivity. DIISIP
is somewhat biased to the physical proximity while choosing out a mode reaching the
"nearest” minimum. For a molecule where the covalent bonds are stiffer as compared
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CG minimum DIISIP minimum

Figure 3.12: Images of the minima using different geometry optimizers starting from the same initial
structure (The figures were prepared using the program V_SIM [106])

to an inert gas cluster ( LJ potential) the physical proximity is more correlated to the
landscape connectivity - there, even if the geometry optimizers land up in different minima
in some cases, the difference among those minima in terms of energy or the structural
criteria is not expected to be very large.

CONCLUSION

Here minima hopping algorithm was described minima hopping algorithm. The dimersoft
and mode decomposition schemes were described and in the following chapters it would
be seen that those increased the efficiency minima hopping algorithm. We presented a
preconditioner for the steepest descent algorithm. A geometry optimization method using
DIISIP was developed. The DIISIP method uses a preconditioner determined iteratively
using a Hamiltonian made of the short ranges interactions present in the system. We
tested the stability of the algorithm with respect to the DIIS history. The hybrid imple-
mentations of the DIISIP algorithm coupled with steepest descent algorithm (SD-DIISIP)
and with conjugate gradient (CG-DIISIP) implementation have been shown to outperform
the performance of our best implementation of conjugate gradient algorithm.






Chapter 4

Biomolecules in gas phase:
Conformational global optimization

Here we conducted a series of global optimization studies using Minima Hopping method(MHM)
for a number of small peptides and a non-biological pyridine-pyrimidine oligomer in their
gas phase with an all-atom OPLS forcefield. A softening scheme employed in the molecu-
lar dynamics based move part of the algorithm is tested here and usage of it in an effective
way is worked out. The aim of the following study was to extend the usage of minima
hopping algorithm towards a better understanding of some of those biomolecules which
have been a sharp focus of the biochemists working on different aspects of the biomolec-
ular interactions. The putative ground state of them have been analyzed. For a 5-residue
peptide named Met-enkephaline we compared the dihedral angles of the energetically
lowest structure with previous studies. The polyalalnes which form helices in vacuum
when the c-terminal is appended with a positive charge has been used to understand the
helix-coil transition on the conformational space. Going towards a bigger peptide sys-
tem we studied the global optimization of a 34-residue peptide which were designed to
form a helix-turn-helix motif. The minima-hopping search pathway suggests a parallel
helix-turn-helix intermediate and an antiparallel helix-turn-helix global minimum. The
self organization of alternating pyridine-pyrimidine oligomer which form into a helical
superstructure has shown to be having an energy landscape where the minima hopping
search pathway records distinctive gaps in conformational energy, but with a different
charge set parametrized on a helical conformation instead of an extended conformation
the landscape becomes smoother.

Introduction

The complexity within the spectrum of all interactions in a biomolecular system is vastly
reduced if the environment is vacuum. The simpler electrostatics and comparatively

61
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small number of competing forces bring computational affordability and more accuracy
in the study. Some pioneering experimental works [107, 108, 109, 114, 115, 110, 111, 112]
on peptides in their gas phase have already been done. Those studies pointed towards
understanding the helix-coil transition, hydrogen bond formation, the role of terminal
charges, conformational heterogeneity at various temperatures etc.

Studies of protein folding using computational means based on first principles methods is a
nontrivial problem. Here the study has to be aimed at the accurate portrayal of the subtle
balance among the conformational energy, solvation free energy and the conformational
entropy. A very accurately parametrized forcefield, clear and close-to-real model of the
protein-solvent interaction including protein and water hydrogen bonding, fast sampling
of the conformational space are among the shortcomings of this whole computational
approach. Also, for the studies of biomolecules in solvent there can be issues specific for
each of the standard experimental structure calculation techniques - e.g. crystallization
for some proteins in x-ray crystallography or overlapping signals in NMR which make
the whole problem diversely complicated. One can get rid of a major portion of the
inaccuracies related to the modeling of protein-solvent interactions in the computational
studies if proteins can be studied in gas phase. Now the introduction of high-resolution ion
mobility measurements, which allow experiments to be performed on biological molecules
in gas phase [114, 115] is a motivation behind working with this simplified problem - that
is, to build a framework to more carefully study a subset of the interactions present rather
than falling apart with the whole intractable problem of solving biomolecular structure
and dynamics in aqueous or solvent environment. Also, from the perspective of biology,
one can find a non-aqueous environment to be important in many case - e.g. membrane
proteins which are involved in transport, recognition, and ligand-receptor binding have
a low dielectric constant environment because a large portion of the surface is shielded
from water, or water excluded hydrophobic cores of globular proteins with hydrophilic
surfaces.

Also, for the numerical algorithms to be developed and tested very fast one needs some
simple systems having simple interactions within, less-complicated but physically relevant
and having some experimental studies already done and so working as a reference. So, the
gas phase simulations of biomolecules, being computationally less expensive with many
experimental gas phase studies going on around like mass-spectrometry or spectroscopy,
serves as a good framework.

Here we have applied the minima hopping algorithm to find and study the lowest energy
conformations of the following biomolecules.

(A) N-acetyl-alanine-N-methylamide or alanine-dipeptide

(B) Met-enkaphalin

(C) AcAlagLys + H*



63

(D) AcPheAlasLys + H*

(E) AcPheAlaygLys + H*

(F) AcAlay4LysGlysAlayyLys +2H™
)

(G) Alternating pyridine-pyrimidine oligomeric strand

We applied this algorithm recently in a biomolecular structure prediction study [246].
Systems like alanine-dipeptide, met-enkaphalin which have been frequently used as model
systems for many computational studies, here have been used as the benchmark systems.
The lowest energy minima of those two systems have been shown and their internal coordi-
nates have been tabulated. For these systems the lack of experimental studies hinders the
possibility of validate the theoretical prediction, so we compared our predictions with the
ones already reported before. For an unusual system like a pyridine-pyrimidine oligomer,
we conducted the charge parametrization following an ab-initio geometry optimization
(B3LYP/6-31G*) and then used those for the global optimization study. In the current
study, we tried to match some of the structural properties with the experimental observ-
ables, if those are available in literature. For AcAla,4LysGlysAlasLys + 2H™ peptide
we calculated the collision cross section of the conformations - this quantity is related
to the drift time distribution in an ion-mobility experiment. For AcAlagLys + H™T the
dipole moment has been calculated using the point charges. For AcPheAlasLys + H*
and AcPheAlaygLys + HT the vibrational spectra (stick-spectra) have been calculated
within a harmonic approximation using an ab-initio method and have been referenced to
the infrared-ultraviolet double resonance spectra in the ref. [111].

Model and Method

Here, we used the OPLS all-atom force field (OPLS-AA) [102] for the potential energy of
the biomolecular system as implemented in the DYNAMO modeling library [103, 104].
The energy expression has been discussed in the section 5.1.1.

The simulation method has been described in detail in the section 3.1 and in chapter 5.
We had to incorporate the following changes :

o Checking for the chirality changes. A very high temperature MD simulation can
change the chirality of certain protein groups whereas folding preserves chirality.
To prevent this, we devised a filter which checks the chirality of all the residues
and rejects chirality-changing moves immediately. In this way the global minimum
search is restricted to the biologically-relevant free energy surface of the atomistic
system.
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e Searching along slow wvibrational modes. To concentrate searching in slow vibra-
tional modes we did not use simple random initial velocities in the MD simulations
and instead took used a Dimer-Softening to generate an initial velocity towards a
direction of low curvature. It has been described in section 3.1.1.

The Dimer-Softening scheme

In the minima hopping algorithm the initial velocity in the molecular dynamics based
escape moves is usually generated with random number with a gaussian distribution,
which is then rescaled to fit the desired kinetic energy (ekinetic). In the original MH
method low kinetic energy trajectories could only be obtained by using large values for
mdmin which results in long trajectories. Also, we have seen that we can get rid of the
fast vibrations coming from the bonds and the angles and have an initial velocity directed
towards a random direction on a subspace free from bond stretching vectors and angles
bending vectors (section 3.1.1, and ref. [246])- this softening scheme actually enhances the
performance of the search algorithm. In this way one can typically find MD trajectories
with a relatively small energy that cross rapidly into another basin of attraction. Here we
tested another softening[126] scheme to choose velocities along low-curvature directions.

A direction of low curvature is calculated using a modified iterative dimer method [128].
This method doesnt need the calculation of the second derivatives - the energy gradients
suffice for it. Starting from a local minimum a second point is taken along the initial
escape direction. These two point work as a dimer of the system. The first point always
kept fixed. Now, along the perpendicular direction of the dimer the second point is moved
by an amount proportional to the component of the force on this point perpendicular to
the dimer. By this way, changing the orientation of the dimer gives a direction with a
different curvature. This is repeated for a few steps before ending up into a direction
having a low curvature (curvature tolerance). Initial velocities for the MD escape are

~

then chosen along the final escape direction IN.

Test of DIMERSOFT scheme on AcAlagLys + HT system

For a peptide AcAlagLys+ H™ 4.3 we tested this dimer method derived softening method
(dimersoft) - firstly, to see the impact of the initial dimersoft direction in the MD trajec-
tory and secondly, to find an optmimum value of the curvature upto which the direction
has to be "softened”.

Starting an MD trajectory with initial velocity along a ”softened” direction gives a re-
markably different dynamics as compared to a trajectory with a starting velocity along a
random direction. The fluctuation in the conformational energy is very different in the
two cases (see fig. 4.1). The backbone of the protein moves quite a lot in the first case.
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Figure 4.1: Energy profile of MD trajectory along a random direction and along a vector generated by
Dimer-Softening scheme

We then have done 30 independent global optimization runs for this peptide for each of
the different curvature values corresponding to the initial velocity directions of the MD
escape. The fig. 4.2 shows that there is an optimum value or a range of values of curvature
exists for such a search for a low-curvature direction.
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Figure 4.2: Average number of minima visited in minima hopping runs versus the curvature of the mode
generated by Dimer-Softening scheme along which the molecular dynamics moves are conducted.

With a high value of curvature-tolerance the performance in global optimization is found
to be bad - also, if the softening procedure is executed until it reaches a very low value
of curvature the performance drops again. One can see in the figure 4.2 near the smaller
values of the curvature that using an ”ultra-soft” mode brings down the algorithmic
performance as much as the modes with large values of the curvature. Always moving
along the same soft mode direction of a given minimum make the possible escape routes
fewer, which actually weakens the search algorithm. In minima hopping runs the mean
kinetic energy is like an optimum filter for the high barriers and here the curvature is
a sensitive filter. Here we observe that the curvature tolerance which gives the best
performance of the algorithm is roughly the value where the mean kinetic energy starts
increasing by leaving the flat region in the fig. 4.3.

Typically < 50 iterations are done with a step size o = 0.000144 ( this is ~ the step size
used in the steepest descent) and a dimer length of d = 0.01A.
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Figure 4.3: Average number of minima visited in minima hopping runs versus the curvature of the mode
generated by Dimer-Softening scheme along which the molecular dynamics moves are conducted.

4.1 Alanine dipeptide

The alanine dipeptide molecule (N-acetyl-alanine-N-methylamide)[153] has been used as a
model system for many computational studies of biopolymer structure and dynamics[154,
155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165]. For an initial benchmark simulation
of minima hopping algorithm for peptides in gas phase we chose this molecule for its
being able to adopt all conformational angles observed for a helix and § strand motifs
in proteins[154, 155]. The structure and thermodynamics of alanine dipeptide have been
characterized by using both theoretical and experimental methods[166, 167]. In a previous
study [151] the conformational kinetics and the solvation effects of the molecule have been
elucidated. The potential energy surface of alanine dipeptide exhibits approximately five
minima, and the exact number depends on the details of the potential model. For this
system the only pair of the ¢(C-N-Ca-C) andi)(N-Ca-C-N) backbone dihedral angles
present in it can serve as the coordinates onto which the potential energy surface can be
projected.

Here, our goal was to conduct a thorough search to find the conformational minima and
to compare the dihedral angles ¢ and ¢ with the previous studies[151, 152] which using
ab-initio methods found the stable conformations Creq, Craz, Cs, 5, agr, ar etc. Table
4.1 shows the internal coordinates and the OPLS energies of the lowest 10 conformations
in the minima hopping search. The last 3 columns are the information of the structures
and energies reported in the references [151] and [152]. In our global optimization run
we could not find any low energy stable 3; or 3, conformation. Here in fig.4.4 the global
minimum of OPLS forcefield is shown.

4.2 Met-enkaphalin

Met-enkephalin is a model peptide which is used for computational studies quite often. It
was identified from the enkephalin mixture from brains [137]. The sequence is Tyr-Gly-
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Figure 4.4. (C7.q, the global minimum structure of OPLS forcefield for alanine dipeptide. Internal
coordinates are as follows: ¢ = —80.291, ¢ = 67.8, w; = 179.33 and wy = —179.04. (The figure is
prepared using the program VMD [130])

Gly-Phe-Met. This pentapeptide is found in peripheral tissues and in brains (pituitary).
It helps in many physiological processes. Previous experimental studies suggest that it
can adopt many different structures in aqueous solutions[138]. The lowest energies of
Met-enkephalin without explicit solvation effects were previously determined based on
many potentials including the ECEPP/2 and ECEPP/3 potentials [139, 140, 141, 142,
143, 144, 145, 146, 147, 148, 149, 150]. From the minima hopping run we collected 30000

Table 4.1: Table of conformational energies and their internal coordinates. All the energies are in
KCal/mole.

Confor- 0] Y OPLS ) Y HF/6-31
mation Energy +G**
1 CTeq -80.2 | 67.8 0 -85.8 | 79.0 0.00
2 Ch -143.6 | 161.4 1.29 -157.2 | 159.8 0.40
3 CTos 68.4 | -55.0 2.55 76.0 | -55.4 2.82
4 C5 -139.8 | 154.4 4.76 - - -
5 - -100.7 | 113.3 5.9 - - -
6 QR -77.0 | -22.3 6.0 -60.7 | -40.7 4.35
7 (@) -144.4 | 161.5 6.2 - -
8 - -157.2 | -62.4 6.46 - -
9 - -143.3 | -56.6 8.3 - - -
10 ar, 46.4 51.3 8.95 67.0 30.2 4.76
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OPLS Global Minimum of OPLS Global minimum of
Met-enkaphalin with Met-enkaphalin with
COO~ C-terminus COOH C-terminus

Lowest ECEPP/3 energy minimum Lowest ECEPP /3 energy minimum
of met-enkaphalin of met-enkaphalin with
with COO™ C-terminus COOH C-terminus

Table 4.2: OPLS Global minimum of met-enkaphalin along with the lowest ECEPP /3 energy conformation
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local minima and did geometry optimization using ECEPP/3 potential implemented in
SMMP package[168, 169, 170]. We are aware that for a careful global optimization run
with ECEPP/3 forcefield one may find conformations having lower ECEPP /3 energies -
but optimizing all OPLS minima in ECEPP/3 forcefield would surely give us many of
the lowest energy conformations in the ECEPP/3 energy landscape of the peptide. In
this way we hope to cross-map a large portion of the energy landscape between the two
forcefields, considering that it is a very small peptide. The lowest energy conformations
corresponding to the OPLS and ECEPP/3 forcefields are shown in fig.4.2. The 10000
lowest OPLS energy conformation and the ECEPP/3 energies corresponding minima in
ECEPP/3 forcefield is shown in fig.4.5. The lowest energy conformations in these two
forcefields are distinctly different. The energetic correlation between these forcefields
is very poor. In the table 4.3 we compared the internal coordinates of the the OPLS
global minimum and the global minimum in ECEPP/3 forcefield reported in a previous
study[150]. The internal coordinates of the lowest ECEPP/3 energy conformation from
our study are also tabulated.

Table 4.3: Internal coordinates corresponding to the lowest energy minimum, both for OPLS forcefield
and ECEPP/3

OPLS ECEPP/3 ECEPP/3
Previous study[150)]

¢ Y ¢ Y ¢ Y
TYR1 - -35.0 - -53.0 - 155.8
GLY2 | -92.6 -49.7 162.6 155.8 -154.2 85.8
GLY3 | -113.3 -124.8 7T -80.1 83.0 -75.0
PHE4 | -68.0 -45.5 -145.2 224 -136.8 19.1
METS5 | -65.9 - -166.9 - -163.4 -

ECEPP/3 Energy(KJ/mol)
N B ® B N B

o

0 5

10 15 20 25 30 35 40

OPLS Energy(KJ/mol)

Figure 4.5: Energies of the OPLS minima and the corresponding ECEPP/3 minima. ”0O” is the OPLS
global minimum and ”X” is the conformation having lowest ECEPP/3 energy.



70 4. Biomolecules in gas phase: Conformational global optimization

Gt
TN

Figure 4.6: The global minima of all possible chiral combinations for the peptide sequence TYR-GLY-
GLY-PHE-MET( metenkephalin). The color of the ribbon in each of these conformations represent a
chiral combination which is listed in the table 4.4.

Mixed Chirality

For metenkephalin, out of the 5 residues 3 (TYR, PHE and MET) residues can have
both the L-chiral and the R-chiral conformation, because GLY residue is achiral. So
the landscape of the sequence TYR-GLY-GLY-PHE-MET can produce 2° = 8 mixed
chiral combinations. We took all of this combinations and conducted independent minima
hopping runs and in the table 4.4 we have shown the energy of each of the lowest minimum
corresponding to a particular chiral combination. In the fig. 4.6 all those lowest energy
minima are shown. For this peptide it is observed that the global minimum of the potential
energy surface is a mixed-chiral conformation. It is lower in energy by ~ 6.58 K Jmole™*
than the lowest among the pure chiral conformations.
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4.3  AcAlagLys + H™

Alanine has one of the highest helix propensities - and without the solvent environment
it forms a helix beyond a certain chain length. The protonated polyalanines which are
< 15 residues do not form helices in gas phase. Here we did a minima hopping run
starting from a helical configuration of (Ala)sH™ sequence. The helical conformations
are energetically higher than the globular conformations which actually was pointed out
in the reference [107]. In this globular or collapsed conformation the N and C termini
come close to each other. We show here in fig.4.3the minimum energy conformation from
our run for this sequence. But adding a lysine at the C-terminus of even as small as 7 or
8 residue long polyalanine, a helical structure can be found in gas phase [107]. Lysine
at the C terminus can help optimizing the hydrogen bond with the C-terminal backbone
carbonyl groups and the interaction of its charge with helix dipole , thus to form a helical
structure. The charge at N-terminal of a polyalanine without C-terminal lysine destabilize
the helical conformation. For polyalanines, there have been a number of computational
and experimental studies done - e.g. the helix-coil transition[116, 120, 118, 119]. There the
question of the accuracy of the forcefield for such a study was raised - specially regarding
the subtlety in the accuracy of the partial charge for a charged peptide.

Here we tried to find the global minimum of a Ac(Ala)sLysH* chain as a part of the
early-stage application of our algorithm(MHA). We started from a fully stretched config-
uration having an energy -951.24 KJ/mole after the initial geometry optimization. The
global minimum which was found is helical with an energy -1335.88 KJ/mole. For a sys-
tem like Ac(Ala)sLysH™ [-sheet structures are not stable in vacuum - here the [-sheet
intermediates are of energy ~100 KJ/mole higher than the global minimum.

Table 4.4: Energy of the putative global minima of all possible chiral combinations for the peptide
sequence TYR-GLY-GLY-PHE-MET( metenkephalin)

Chirality | chirality | Chirality | Corresponding | OPLS energy
of of of color in the of the
TYR PHE MET fig.4.6 global minimum

L L L blue -618.458
R L L black -623.600
L R L orange -621.643
R R L tan -625.041
L L R silver -625.041
R L R green -621.643
L R R magenta -623.600
R R R red -618.458
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Structure

Global Minimum of Global minimum of
Ac(Ala)gLysH™ (Ala)sH™

A beta-sheet shaped intermediate
of Ac(Ala)sLysH™ folding

Search pathway

This run was conducted on 16-processors and the run was continued up to searching
100000 energetically distinct minima. The putative global minimum was found within
the first 10% of the simulation length. All the processors found the same energetic lowest
conformation multiple times during the simulation. We pick up the search of one of the
processors and followed the sequence of the local minima found by that processor - this
way we traced out a pathway connecting the stretched peptide and the global minimum
of that. In fig.4.7 and fig.4.8 the potential energy versus the index of the local minimum
found during two of the Minima Hopping runs are shown. A few intermediate structures
are also shown alongside the fig.4.7. The global minimum is shown in fig. 4.3 along with
the hydrogen-bonds which stabilizes the helical structure of the peptide.

The lowest 5000 minima from the run were taken for comparing the energetic ranking with
ECEPP/3 forcefield. The cross-correlation is shown in 4.9. The landscapes corresponding
to the forcefields seems not be in agreement for this helical peptide, just like the case of
met-enkaphalin. Moreover, the lowest energy conformations, shown in fig.4.10 suggests
that in OPLS forcefield the global minimum is 7-helical as compared to an a — helical
conformation in ECEPP /3 forcefield. Of course, the protonation states were assigned on
the N Hj group in the LYS residue but the different partial charges may be responsible
for this. In contradiction to this, the similarity in the fig. 4.9 ( charged peptide) and
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Figure 4.7: Minima hopping search profile - MD was started along a random direction. Energies of only
the accepted conformations are shown.

-1350

fig.4.2(neutral peptide) suggests a bigger discrepancy in those forcefields with respect to
each other. In ref. [136] the dominance of whelical conformations have been described to
be an artifact of the forcefields because the experimental observation of those helices are
rare.

4.4  AcPheAlasLys + HY and AcPheAlagLys + H*

This section is a work done following the reports in ref. [110, 111] where an applica-
tion of infrared-ultraviolet (IR-UV) double-resonance spectroscopy was shown for the
AcPheAlasLys + HT and AcPheAlagLys + H' peptides. The structural information
was extracted from the pattern of spectral shifts of vibrational bands, mainly due to the
internal hydrogen bonding. Because these experiments are done in a very low temper-
ature, so the entropy effect is quite negligible here - and basically the potential energy
surface should be very much similar to the free energy surface. At this low temperature
the system can have many stable states with a certain distribution of the stability. So, not
only the global minimum but many of the lowest energy conformations from the global op-
timization run can also have their places in the UV-photofragmentation spectrum. Along
with the ab-initio analysis of the vibrational spectra of different low energy conforma-
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Figure 4.8: Minima hopping search profile - MD was started along a low-curvature mode, calculated
using the dimer-softening scheme. This was the quickest of the all independent MHOP runs. In the
search trajectory all hops, escapes and distinct new minima are shown.

tions one can hope to resolve the whole spectra of experimental data and can understand
the modes of vibration, the relevant hydrogen-bonding ring, the overall hydrogen-bond
pattern and related other structural elements.

The lowest 5000 minima from the minima hopping run were taken for comparing the
energetic ranking with ECEPP /3 forcefield. The cross-correlation is shown infig. 4.13 for
AcPheAlasLys + HT and in fig. 4.14 for AcPheAla,oLys + H™.

We conducted a few independent minima hopping runs to find the global minimum of each
of the peptides. The minimum energy structure of AcPheAlasLys+ H* peptide is shown
in fig.4.11 and for AcPheAla,gLys+H™ in fig.4.12. For AcPheAlasLys+H™ peptide, after
picking up 100 lowest energy conformations we carried out single point energy calculation
in the ab-initio scheme B3LYP/6-31G** using the Gaussian package[172]. In fig.4.15 we
compared the OPLS energies with single point B3LYP/6-31G** energies for the lowest
100 conformations. Using the same ab-initio method, we optimized the geometries of
the lowest 10 OPLS energy conformations. In the fig.4.16 we compared OPLS energies,
B3LYP/6-31G** energies after the 1-st SCF cycle, density functional geometry optimized
energies and the zero-point-corrected DF'T energies. The energy rankings for the forcefield
and DFT does not correspond well with each other for these structures. One of the
minima with higher OPLS energy ( 12.2 KJ/mole) went relatively 7 mH lower in the
B3LYP/6-31G™* energy scale than the OPLS global minimum structure. For all these
DFT optimized structures we followed up with a harmonic frequency analysis where the
frequencies were scaled by a factor of 0.939 for comparison to the infrared spectra in
[110, 111]. The stick-spectra is shown in fig.4.17. The N-H stretch region of the IR
spectrum corresponding to the OPLS global minimum could not be matched with the
IR-UV double resonance depletion spectrum corresponding any of the peaks in the UV-
photofragmentation spectra. But the nearest match was the 8th lowest OPLS energy
minimum ( 12.2 KJ/mole) which went to be the lowest in B3LYP/6-31G** energy after
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Figure 4.9: Energy correlation between OPLS and ECEPP

geometry optimization.

4.5 Helix-Turn-Helix motifs

Introduction

Moving towards bigger peptides which has more than one segment of secondary struc-
ture we chose a sequence designed to have a helix-turn-helix structure[117]. Motifs of
this kind are known to cause DNA binding, calcium bonding etc. Here the sequence is
AcA14KG3A14K+2H+. The alanine regions are supposed to be helices whereas the three
glycine residues should break the helical structure at the connecting loop region - hence
the two main conformations are expected the coiled coil helix and the extended helix.

The putative global minimum for this system is shown in fig. 4.18 - it has a coiled coil
structure. The energy along the minima hopping trajectory of search is shown in fig.
4.20. In ref. [117] the cross-section of the lowest energy conformations are shown to be
460A2, whereas the lowest energy conformation in our simulation has a cross section of
472A% and for the extended conformations the cross-section is > 50042. In fig. 4.19 the
cross section of all the local minima from a successful run is shown. The cross-section
was calculated using the hard-sphere-scattering-approximation. In the fig.4.21 we have
drawn the energy map by projecting the conformational energies on a two dimensional
surface comprising the collective variables RMS deviation with respect to a coiled-coil
geometry ( lowest energy structure) and the radius of gyration. We could observe parallel
helices, having a cross-section of 480A% as intermediates at an early stage of the search.
This indicates that one possible mechanism of its folding can be in the following sequence
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Figure 4.10: Minimum energy structure OPLS vs ECEPP

: (a) building of the secondary structure element(helix) at one end while no helix in the
other half ;| (b) the loop going antiparallel to the helix, (¢) a second helix forming along
the a antiparallel direction to the loop and parallel to the first helix, (d) the second helix
giving a 180° rotation around the line connecting the centers of the helices ( parallel to
antiparallel transition ) and (e) the optimization of the length of the loop and increasing
the length of the second helix.

4.6 Pyridine-Pyrimidine oligomer

For this class of an oligomer or polymer chain the number of torsionally accessible confor-
mations, which is dependent on the rigidity of the chain backbone is believed to be very
small[122], i.e. the sterically non-prohibited minima are less abundant on their potential
energy surface.

For the pyridine-pyrimidine system we conducted two sets of charge parametrization -
first, for a stretched conformation(EXTENDED) and second, for a helical conforma-
tion(HELICAL). We optimized the geometries using an ab-initio method (B3LYP/6-
31G*) using the Gaussian package[172]. The charges were fitted by matching the elec-
trostatic potentials calculated by the same ab-initio method on 22255 points ( on VDW
surfaces in 4 layers with point density 6 ) by using Antechamber program of the AMBER
package [171]. With these charges along with the other forcefield parameters [102] the
topology was built. This way we had two sets of topology (EXTENDED and HELICAL)
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Figure 4.11: Putative global minimum of FA5K - Minimum energy structure OPLS vs ECEPP (The figure
is prepared using the program VMD [130])

which were used for independent runs.

For both the parameter sets the global minimum energy corresponds to helical conforma-
tions. These two conformations ( see in fig.4.23) are very similar and they are at 1.534
all-atom RMS-deviation from each other. Though the minima hopping runs for these two
parameter sets of the forcefield gives very different search profiles fig.4.24. There are big
jumps in the energy profile along the search trajectory for the "EXTENDED” set of pa-
rameters and also for this case, it needs a longer search for finding the global minimum as
compared to the "HELICAL” set. It points out the possibility that the energy landscape
depend significantly on the partial charges for this kind of a system where the electron
delocalization is prevalent. The figure 4.22 shows the difference in the two charge sets.

Conclusions

We studied here biomolecular structures in gas phase for a variety of systems. The algo-
rithm remains successful in finding the putative global minimum and many low energy
conformations efficiently which actually helped in understanding some of the experiments
on peptides in gas phase like ion-mobility experiments or different spectroscopic experi-
ments. With the help of ab-initio calculation we could identify conformations responsible
for the infrared-ultraviolet double resonance spectra. From the comparative study of the
predicted structures in different forcefields, it is apparent that its not easy to choose a
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Figure 4.12: Putative global minimum of FA10K - Minimum energy structure OPLS vs ECEPP (The
figure is prepared using the program VMD [130])

"correct” forcefield - this is indeed a bottleneck in the approach of computational struc-
ture prediction and dynamics. It is also seen in this study that the charge parametrization
based on for specific conformations can be quite different from each other and this can
make a considerable impact on the energy landscapes. Provided the forcefield parame-
ters are correct, these simulations based on all-atom forcefield can help enormously by
bridging between the theory and the experiments in structural studies of biomolecules or
other organic molecules. On small to medium peptides this algorithm has been shown to
work successfully and efficiently both from the computational and the physico-chemical
perspective. To understand the biomolecular interactions better, it can be utilized as
an insightful tool accompanying the future experimental studies to be done within the
research community:.
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Figure 4.15: Comparison between OPLS and DFT energies of MHOP 100 lowest energy configurations.
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Figure 4.17: The calculated stick spectra of the lowest energy conformers found from MHOP search.
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Figure 4.18: Lowest OPLS energy conformation for the peptide having sequence AcA14KG3A14K+2H+
. (The figure is prepared using the program VMD [130])
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Figure 4.19: OPLS energy vs Cross-section for all the conformations in a minima hopping run.
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Figure 4.20: OPLS energy along the search trajectory. ”A” is where it finds many antiparallel-helices
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Figure 4.22: The radius of any sphere is proportional to the difference in charge in the corresponding
atom from the two sets of parametrization. Carbon is green, nitrogen in red, sulphur is yellow and
hydrogen is brown. The maximum variation is 0.11 and minimum is 0.0007 times an electrons charge.

Figure 4.23: The global minima corresponding to two different sets of charge parameters.
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Figure 4.24: The minima hopping search profile starting from the same conformation using two different
sets of charge parameters - one is "EXTENDED” which is parametrized on a extended conformation and
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Chapter 5

Protein Structure Prediction (PSP)
within All Atom Framework

Protein folding has attracted researchers from many fields because it is a fundamental
and challenging problem. It is of major pharmaceutical importance as many diseases, in-
cluding Alzheimer’s, Bovine Spongiform Encephalopathy, Huntington’s and Parkinson’s,
are believed to be caused by mis-folded proteins. Protein folding is complementary to the
problem of ab-initio protein structure prediction whose aim is the determination of pro-
teins’ three-dimensional structures from their amino acid sequences. Accurate methods
of prediction would be of great help in coping with the large number of sequences being
produced with modern large-scale DNA sequencing efforts.

The experimental and theoretical study of the folding process by many groups has helped
to illuminate many aspects of the kinetics and thermodynamics of protein folding. How-
ever, despite the advances made by structure prediction groups and the regular monitoring
of the CASP [173] community, de novo structure prediction of ‘new folds’ remains an un-
solved problem. Computer simulation studies are an important supplement to experiment
and can help fill the gaps in our knowledge about protein folding.

B-hairpin The simplest protein motif which involves hydrogen bonded pair of beta
strands with a loop in the middle is called a S-hairpin. It is one of the most important
structural elements in proteins. A (-hairpin is stabilized through a balance among the
hydrophobic interaction, interstrand hydrogen bonding force and the force related to loss
of chain entropy. Different folding mechanisms of §-hairpin have been proposed[204, 205].
A lot of scientific studies have been devoted in understanding the hairpin formation[206,
207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224,
225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242,
243, 244, 127].

87
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The existing notions are that the most probable way of a hairpin formation is through the
zipper mechanism or the hydrophobic collapse mechanism. Apart from these, there have
been mentions of several other mechanisms, like simultaneous zipping and collapse [215,
230] or an initially formed a-helix mediated mechanism[239] or reptation[183]. Munoz
et al.[204, 205] suggested a ‘zip-out’ model from the experiments of the C-terminal (-
hairpin of the B1 domain of protein G - where it was assumed that the folding initiates
at the turn and propagates toward the tails by forming the interstrand hydrogen bonds
sequentially and the hydrophobic cluster being formed later. This mechanism was later
supported by both experiment and simulation evidences (Du et al., 2004; Kolinski et al.,
1999; Mousseau et al., 2004; Zhang et al., 2006). However, Munoz et al. (Munoz et al.,
1997) indicated that this is just the most probable way to form hairpin structure and
other mechanisms could play a role too. They mentioned a ‘zip-in’” mechanism with two
ends approaching each other to form a loop. The zip-out mechanism has been reported to
be more probable than a zip-in mechanism. Dinner et al. (Dinner et al., 1999) proposed
a ‘middle-out” model. This model suggests that the folding proceeds by forming a partial
hydrophobic cluster and then the hairpin hydrogen bonds propagate outwards in both
directions from the partial cluster.

We can see that there are multiple opinions about the folding mechanism of 3-hairpins.
Experiments strongly support the zip-out model, while most simulations prefer the hy-
drophobic or zip-in model. One of the reasons may be that all-atom level simulations
usually did not observe enough folding events. Another reason is that the experiments
mainly observed the most probable pathway. Due to the requirement of cooperation of
side chains of residues, it is difficult to simulate the complete folding of -hairpin at all-
atom level with standard molecular dynamics (MD) simulation method [227] alternate
approaches have to adopted.

In the section 5.2 the Minima Hopping Algorithm (MHOP) to find global minima on
potential energy surfaces is used for protein structure prediction. The energy surface of
the protein is represented with an all-atom OPLS forcefield and an implicit free-energy
solvation term. The system we studied here is the small 10-residue -hairpin mini-protein,
chignolin. Starting from a completely extended structure we found minima with < 0.5 A
RMS coordinate deviation from the geometry-optimized native experimental conforma-
tion. A few lowest energy conformations were used for the calculation of NMR-restraint
violations and chemical shifts and the local minima found during each run leading to the
global minimum were connected to trace out a search pathway of the folding process.

Next, in the section 5.3 one of the tryptophan zippers has been studied under the regular
schemes of minima hopping method. We could find conformational minima which are very
close to the experimental structure. The next attempt was to compare the minima hopping
search process with a regular molecular dynamics simulation of folding. We investigated
how pertinent is such a global optimization search trajectory in understanding a realistic
folding pathway and a folding mechanism. The results show that one of the mechanisms
suggested by minima hopping search for folding this -hairpin is very similar to the one



5.1. Model and Method 89

observed in our molecular dynamics simulation. An early intermediate state with a helical
part between THR:3 to TRP:9 is prevalent in both the studies.

5.1 Model and Method

5.1.1 Forcefield

All-atom forcefield models with accurate representations of hydrogen-bonding and hy-
drophobic interactions are indispensable for high-resolution 3D-structure prediction [190]
and for the refinement of structural models obtained from comparative modelling and
fragment assembly-based structure prediction. Here, we used the OPLS all-atom force
field (OPLS-AA) [102] for the potential energy of the biomolecular system in conjunction
with the Generalized Born/Surface Area free-energy implicit solvation model of Still and
co-workers (GB/SA) [192] as implemented in the DYNAMO modeling library [103, 104].

The free energy of the solvated system (without the protein backbone entropy contribu-
tion) is defined as follows:

Econﬁg - Ebond + Eangle + Etorsion + Eimpropers
+Enonbond + Esolvationa

where:

Evona = Z Kol — log)?,

bonds ¢

Eangle = Z K@(e - 0eq>27
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Etorsion - Z Z 1 + COS n(b ’Yn)]
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Eimpropers = Z Z 1 + COS nw — Pyn>]

Impropers w n

Aij By | 4iqy
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Here, Fyond, Fangle: Erorsion and Eimpropers Tepresent the bond-stretching term, the bond-
bending term, the torsion-energy term and the improper dihedral term, respectively. The
non-bonded energy in Eq. (5.1.1) is represented by Lennard-Jones and Coulomb terms
between pairs of atoms, ¢ and j, separated by the distance r;;. The parameters A;; and
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B;; in Eq. (5.1.1) are the coefficients for the Lennard-Jones term, ¢; is the partial charge
of the i-th atom in the electrostatic term, and € is the dielectric constant.

Esolvation = EvdW + Eczwity + Epol'
Egolvation 18 the solvation free-energy term, in which £, is the solute-solvent electrostatic

polarization term, Eequiry is the solvent-solvent cavity term and E, g is the solute-solvent
van der Waals term. FE,y is calculated using the generalized Born equation :

1 e qiq;
Epo = —166.0(1 — g> Z Z (r2 + 042~](2D“)0'5
1) ()

i=1 j=1

r2, . . .
where a;; = ()%, Dyj = W and the double sum runs over pairs of atoms, 7 and j.
«; is the Born radius of atom ¢ which is calculated analytically using the approximation in
reference [192]. Non-bonding interactions between all pairs of eligible atoms are calculated

without cutoffs.

Because saturated hydrocarbons are non-polar molecules (for which E,, ~ 0) and their
Eolvation I water is approximately linearly related [193] to their solvent accessible surface
areas (SA), the GB/SA method approximates the remaining two terms as:

N
E’L)dW + Ecam'ty = Z UkSAk
k=1

Here S Ay, is the solvent-accessible surface area for atom k and oy is an empirically deter-
mined atomic solvation parameter. The latter were taken to have the value 30.5 J mol ™!
A2 for all atom types and the probe radius for calculating the solvent-accessible surface
was 1.4 A.

Removal of the dihedral isomers The value of the energy function should not depend
on the labeling or numbering of atoms which are of the same element and are equivalently
placed in the molecule, e.g. the O and OXT atoms in the GLY10 residue in 1UAO.
However, due to the usual way of defining improper dihedral terms, an interchange of the
index of the atoms can give rise to two isomers with a small energy difference (of ~ 1073
kJ mol™!) upon a tight geometry optimization [194, 195]. To avoid this problem, we
replaced each improper term, I-J-K-L, between a planar atom (K) and its three bound
atoms (I, J, L), with three terms which are a cyclic permutation of I, J and L (i.e [-J-K-L,
L-I-K-J and J-L-K-I). Each improper permutation term is the same as the other two
and has a force constant one third that of the case in which a single improper term is
used per planar atom.
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5.1.2 Simulation Method

We used Minima hopping [124] algorithm with the run parameters described in the section
3.1. As the potential energy surface of biomolecular systems is complex and very rugged,
we adopted a few additional modifications to our original algorithm. These are as follows:

e Checking for the chirality changes. A very high temperature MD simulation can
change the chirality of certain protein groups whereas folding preserves chirality.
To prevent this, we devised a filter which checks the chirality of all the residues
and rejects chirality-changing moves immediately. In this way the global minimum
search is restricted to the biologically-relevant free energy surface of the atomistic
system.

e Searching along slow vibrational modes. We used here a scheme described in section
3.1.2 for searching in slow vibrational modes taking out the component of the initial
random velocity which is in the space of all bond stretching and bond bending
vibrations.

5.2  Chignolin (1UAO)

As a target for our optimizations, we employ chignolin (PDB code 1UAQO) [188, 189]
which forms a stable -hairpin in aqueous condition and is composed of 10 amino-acid
residues (GYDPETGTWG). Chignolin is a de novo protein that has been designed to have
a unique, stable structure and to fold quickly so that it can be studied efficiently both
experimentally and theoretically. Our simulations employed the all-atom OPLS forcefield
with an implicit free-energy solvation model and a parallelized version of the minima
hopping program. A long parallel run was used for our analysis. From the minima search,
we found the lowest free energy structure, which has a RMS coordinate deviation (RMSD)
less than 0.5 A from the geometry-optimized experimental conformation, and determined
a pathway for the folding process. The hydrogen-bonding network and NOE-violations
of the lowest energy conformations were compared to those of the native conformation
and the conformations were also clustered using a fixed radius method based on mutual
RMSD and a fixed cluster radius of 3 A. Finally we re-calculated the energies of the whole
conformational ensemble using all-atom, distance-dependent, pairwise statistical energy
functions based on a Distance-scaled, Finite-Ideal gas REference(DFIRE) and compared
them with the OPLS energies.

5.2.1 Results of MHOP Simulation

We performed a number of MHOP simulations. In a preparatory stage, five independent
simulations starting from the stretched conformation of chignolin and a single simulation
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starting from the native conformation were performed. Each of these were a parallel run
on several processors. After this, we performed a single large simulation, starting from
the stretched conformation for further analysis. The results from all simulations were
broadly consistent and each found the same lowest-energy structure which is shown in
fig. 5.19. It consists of a F-hairpin having a C'_alpha-RMSD with respect to the native
conformation of only 0.37A. The minimum RMSD structure found during the simulation
had a C_alpha-RMSD of 0.11 A, whereas the geometry-optimized native conformation
had an energy 47 kJ mol~! higher than the lowest-energy conformation.

Due to the similarity of the results of the different simulations, we concentrate our analysis
on the results of the final long run in what follows.

Native Native Optimized

Lowest Energy

Figure 5.1: Tmages of the native, native optimized and MHOP lowest energy configurations. (The figures
were prepared using the program VMD [130])

MHOP simulations consist of a series of short MD simulations — in this case ~ 500 steps
or 0.5 ps — followed by a geometry-optimization step. We considered the optimizations
converged when the RMS gradient tolerance fell below 10~ kJ mol~' A~! and it is a step
that took most of the CPU time during the simulation. On average ~ 50% of the geometry
optimizations gave rise to new local minima of which ~ 50% were accepted by the MHOP
algorithm — i.e. ~ 25% of the total number of geometry optimizations. In each run there
were ~ 5000 geometry optimizations per processor meaning each processor generated
~ 1000 distinct local minima. In each MHOP simulation, the lowest-energy structure
was found by only a small number of processors (usually one). This is because the
algorithm employs the shared search history of all processors to penalize the exploration
of already visited parts of the PES and also perhaps because we need more efficient ways of
generating new protein conformations so as to be able to escape trapping in specific regions
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of conformational space. These results emphasize the importance of several independent
MHOP simulations so that the nature of the lowest-energy structure can be verified. For
completeness, the remaining parameters for our MHOP simulations were (definitions may
be found in reference [124]): §; = o = - = 1.05 ; ay = = = 1.02 and mdmin = 2.

During the MHOP simulation, the initial temperature of each MD simulation is tuned
according to the search history and whether previously unvisited minima are found or
not. Fig. 5.2 is a plot of the initial temperature of the MD simulations and the energies
of the local minima that the simulations lead to.
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Figure 5.2:  The initial MD simulation temperatures and the energies of the resulting local minimum
during the search process.

A total of ~ 33000 distinct local minima was found by all the processors. The C_alpha-
RMSD of the whole ensemble of structures was calculated and plotted against the energy
of the structures in fig. 5.3. From the conformational minima the energy-based structural
ranking and the RMSD-based ranking are not identical, i.e. being lower in RMSD does
not ensure being lower in free energy. However, the minimum free energy conformation
among all the native-like conformations is lower in free energy than all other conformations
so the funnel containing the native-like conformations contains the free energy minimum.

Energy profile

From the conformational ensemble the free energy landscape was drawn as a 2-D contour
map using two different pairs of collective variables as abscissa and ordinate. The first
set of variables are the C_alpha-RMSD(A) and the radius of gyration (R, in A) of all
residues (see fig. 5.5) whereas the second set consists of the CM-to-CM (center of mass)
distances between the residue pairs TYR2-TRP9 and PRO4-GLY10 (see fig. 5.4). To
determine each map, a 2-D grid was constructed and the minimum free energy of all
structures falling within each grid point was assigned to be the grid point’s free energy.
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Figure 5.3: Energy versus C_alpha-RMSD with respect to the native conformation.

The native ensemble (dark blue color) is clearly visible in all the contour plots. Other
prominent free energy wells also exist (e.g. in fig. 5.5 at R, ~5.3A and RMSD ~1.74),
some of which might serve as stable intermediates during the folding process.

The protein’s free energy landscape very much depends on the forcefield and solvation
model used. To test this variation, we employed two other energy functions to char-
acterize the energy landscape further. These were: (i) DFIRE, an all-atom distance
dependent, pairwise energy function based on a Distance-scaled, Finite-Ideal gas REfer-
ence(DFIRE) [197]; and (ii) dDFIRE [198] (dipolar DFIRE). Surfaces recalculated with
these functions are shown in fig. 5.6. Although there are differences, the overall features
of the two surfaces are broadly similar to that determined with the OPLS-AA potential.
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Figure 5.4: Energy landscape as a function of the distances between the residue pairs TYR2-TRP9 and
PRO4-GLY10
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Figure 5.5: Energy landscape as a function of R, and C_alpha-RMSD. Certain specific conformations are
shown on the landscape.
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Figure 5.7: Energetic cross-ranking : OPLS vs PFF02

OPLS, AMBER, DFIRE, PFF02 and ECEPP/3 The lowest 1000 of the conforma-
tions have been optimized in PFF02 forcefield implemented in POEM software package.
The fig.5.7 shows the energetical correlation between these two forcefields. We com-
pared in fig.5.10the structural ranking for the lowest 5000 conformations of our search
with ECEPP/3 forcefield energies after we optimized the geometries in that forcefield
implemented in SMMP software package. Also in fig. 5.9 we showed the energetic cor-
relation between OPLS forcefield and the DFIRE forcefield. We reoptimized those 5000
lowest OPLS energy local minima using AMBER94 forcefield implemented in NAB pack-
age [191]. The SASA parameter was 0.0073 K Cal/A? which is same as was used in the
minima hopping runs with OPLS forcefield( section 5.1.1). In fig.5.8 we showed the ener-
getic correlation between OPLS forcefield and the AMBER94 forcefield. The OPLS and
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Figure 5.8: Energetic cross-ranking : OPLS vs AMBER94

ECEPP/3 forcefields seems not to be agreeing with each other. The PFF02 forcefield also
indicates some disagreement with OPLS forcefield in terms of the accurate conformational
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ranking. But on a larger scale DFIRE and PFF02 agrees in defining a energetically low
region around the native conformation.

Pathway connecting the local minima

Using all the minima found during a simulation, it is possible to build the shortest path
which starts from the initial stretched conformation and ends up at the lowest energy
structure. Starting from the final minimum we trace backwards and cut off any part of
the search process that forms a closed loop (i.e. due to the occurrence of already visited
minima). This path serve as a description of the MHOP search pathway. Energy profiles
with the different force fields are plotted in figs. 5.11 and 5.12, and plots of the pathway
structures on the free-energy contour maps are shown in figs. 5.13 and 5.14.
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Figure 5.11: OPLS energy profile along the MHOP-search-pathway

Clustering of the conformations

The clustering method employed here is a fixed-radius clustering in which the RMSDs
of the conformations within a cluster to its centroid are less than the given radius. The
method is such that the number of clusters found cannot be limited beforehand. The
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Figure 5.12: Energy profile along the MHOP-search-pathway using different force fields.
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Figure 5.13: The MHOP-search pathway superimposed on the energy landscape obtained as a function

of the distances between the residue pairs TYR2-TRP9 and PRO4-GLY 10.
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Figure 5.14: The MHOP-search pathway superimposed on the energy landscape obtained as a function
of Ry and C_alpha-RMSD.

MMTSB [131] toolset was used for the calculation. We took the top 13 clusters according
to the cluster size and another 7 clusters from the ranking based on C'_alpha-RMSD to
the native conformation (without geometry optimization). The results in table 5.1 were
prepared by sorting the 20 clusters according to the C'_alpha-RMSD of the cluster centroid
with respect to the geometry optimized native conformation. The secondary structure
content for the cluster-centroids was calculated using the DSSP program. Cluster.154
contains the lowest energy structure and the centroid of that cluster is at ~ 0.24 A
C'_alpha-RMSD to the geometry-optimized native conformation. Cluster.169 has the
lowest C_alpha-RMSD (~ 0.82 A) to the un-optimized native conformation (C_alpha-
RMSD between the native conformation and the optimized native conformation is 0.98;1).
Fig. 5.15 shows the minimum energy of the conformations within each cluster plotted
against the cluster size.

Comparison with experiment

NOE violation Protein structures determined by NMR spectroscopy and submitted
to the Protein Data Bank[132] are actually calculated using a forcefield and a simulation
protocol which utilizes experimental data as restraints. An elegant way of checking the
quality of a structural model is to calculate how these restraints are violated. The RMS
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Cluster name | Cluster size | Energy (kJ mol™) | C-a RMSD (A) | Secondary structure (DSSP)
Cluster.154 459 -2778.2 0.24 UEETTTTEEU
Cluster.169 120 -2770.8 0.68 UEETTTTEEU
Cluster.189 52 -2754.0 1.27 UEETTTTEEU
Cluster.72 88 -2718.6 1.36 UUUSSSTTUU
Cluster.199 62 -2727.3 1.58 UBUSSSSSBU
Cluster.149 61 -2718.9 1.61 UUBTTTBSUU
Cluster.212 130 -2753.6 1.64 UEETTTEEUU
Cluster.241 23 -2663.0 2.09 UUUTTTUUUU
Cluster.95 484 -2717.6 2.48 UUUUSSSSUU
Cluster.145 580 -2728.1 2.83 UUuUUSSSuUUU
Cluster.65 657 -2728.6 2.84 UUUUSSSSUU
Cluster.55 682 -2710.3 3.04 UuUvUuUUSSUUU
Cluster.129 592 -2725.0 3.17 UUUUSSSSUU
Cluster.120 686 -2739.0 3.32 UUSUTTTTUU
Cluster.9 1092 -2707.8 3.36 UuUUuUUSSuUUU
Cluster.32 509 -2724.7 4.20 UUUUUTTTUU
Cluster.67 863 -2737.6 4.54 UUUUUBTTBU
Cluster.38 1044 -2734.9 5.13 UUUUUBTTBU
Cluster.63 531 -2721.9 5.16 UUUUUBTTBU
Cluster.66 593 -2716.4 6.34 UUUUUUSSUU

Table 5.1:  Clusters obtained from cluster analysis. Included are their size, RMSD of their centroids

to that of the geometry-optimized native structure, the minimum energy among the conformations and

secondary structure details.

The notations are as follows :

U = not defined , E = extended strand

participated in f—ladder, T = H-bonded turn, S = bend, B = residue in isolated f—bridge.

Energy (umits of Kl/mole)

Figure 5.15: Lowest energy of the member conformations against the size among the clusters.
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NOE deviation is defined as:

1 Ny Nm
RMSvor = 4| 77— 2 D (0w)?
M =1 1=1

Here N,, is the number of structural models, N, is the number of distance restraints and
dy; 1s the distance of the kth restraint in the [th conformation which is defined as:

dkl — szper dk'l > TpreT

5kl — Téower _ dkl dkl < Téower
0 otherwise
where 777" and ri®°" are the upper and lower bounds on the kth restraint, respectively.

Fig. 5.16 shows the RMS-NOE versus energy profile. The lowest energy conformation has
an RMS NOE of ~ 0.9 A, whereas the conformation having a minimum NOE-violation is
~ 2.1 kJ mol™! higher in energy than the lowest energy conformation.
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Figure 5.16: Energy of the conformations vs their RMS NOE-violation.

Chemical shift Chemical shift deviations from random-coil values were calculated us-
ing the SHIFTS 4.1 web-server [199] for five structures comprising the experimental struc-
ture, the lowest-energy conformation, two structures from clusters very close to the native
conformation and another from a cluster representing a misfolded state. The results are
shown in (in fig. 5.17). The chemical shift deviation for TYR2, TRP9, GLY 10 residues for
the lowest energy conformation look to be quite different from the experimental values.
The ring current effect between TYR2 and TRP9 is not reflected in the conformations
resulting from the simulation as prominently as in experiment. This discrepancy is most
probably due to the accuracy of the force-field parameters. In contrast, the difference in
the value of the chemical shift deviation GLY10 is most likely caused by the flexibility
that this C-terminal residue exhibits.
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Figure 5.17: Deviation of chemical shift values from those of a random coil.

Hydrogen-bonding analysis The OPLS-AA forcefield represents hydrogen bond in-
teractions as an appropriate balance of electrostatic and Lennard-Jones non-bonding
terms and not with an explicit energy term. Therefore, to identify hydrogen bonds,
we looked at all possible pairs of hydrogen bond donors and acceptors and selected those
which had a length less than 3 A and a donor-hydrogen-acceptor angle of more than
130°.
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Figure 5.18: Number of Native and Non-native hydrogen bonds along the MHOP-search-pathway.

Fig. 5.18 shows the making and breaking of native and non-native hydrogen bonds along
the search pathway. Clearly the ASP3:H-THRS&:O hydrogen-bond is the signature of
the funnel on the free-energy surface containing the native state. From the same figure,
it can be seen that strong non-native hydrogen bonds can form during the early stages
of the search pathway. TYR2:H-GLY7:0, GLU5:H-THRS&:O and ASP3:H-GLY7:O are
some of the non-native interactions that have to be broken before creation of the native
hydrogen-bond network.
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5.3 Tryptophan Zipper (1LE1)

In this study, in the first part, we use the Minima Hopping Algorithm(MHOP) [124] for
structure prediction. As a target for our optimizations, we employ trpzip2 (PDB code
1LE1) [188, 189] which forms a stable §-hairpin in aqueous condition and is composed
of 12 amino-acid residues (SWTWENGKWTWK). Trpzip2 is a de novo protein that has
been designed to have a unique, stable structure and to fold quickly so that it can be
studied efficiently both experimentally and theoretically. Its native -hairpin structure has
an obvious hydrophobic core composed of two aromatic side-chain pairs and so is similar
to the experimentally investigated C-terminal -hairpin of the B1 domain of protein G.
The strong hydrophobic interactions of two aromatic side-chain pairs make the trpzip2
more stable and easier to simulate its folding dynamics by simulation. Therefore, trpzip2
is a very ideal model for investigating the general folding mechanisms of -hairpins. Our
simulations employed the all-atom OPLS forcefield with an implicit free-energy solvation
model and a parallelized version of the minima hopping program. A long parallel run was
used for our analysis. From the minima search, we found the lowest free energy structure,
which has a RMS coordinate deviation (RMSD) less than 0.79 A from the experimental
conformation and determined a pathway for the folding process. The hydrogen-bonding
network of the lowest energy conformations was compared to those of the native confor-
mation and the conformations were also clustered using a fixed radius method based on
mutual RMSD and a fixed cluster radius of 3 A. Next, we re-calculated the energies of the
whole conformational ensemble using an all-atom free energy forcefield PFF02[201, 202]
and compared them with the OPLS energies. From the MD simulation part of the study,
inspite of the short length of MD simulation (40 ns) we observed a few folding events. We
reported here one such event where the folding happened after 4 ns through a hydrophobic
collapse mechanism. We compared this pathway with minima hopping search trajectories.
It was interesting to observe on a comparative note the sequence of microcanonical MD
moves of minima hopping against a continuous trajectory of canonical MD both starting
from a stretched conformation and leading to the folded state of the peptide.

5.3.1 Results of MHOP Simulation

We performed a number of MHOP simulations. In a preparatory stage, five independent
simulations starting from the stretched conformation of trpzip2 and a single simulation
starting from the native conformation were performed. Each of these were a parallel run
on several processors. After this, we performed two large simulations(R1 and R2), starting
from the stretched conformation for further analysis. The results from all simulations were
broadly consistent and each found the same lowest-energy structure.

Due to the similarity of the results of the different simulations, we concentrate our analysis
on the results of the final long run in what follows.



5.3. Tryptophan Zipper (1LE1) 105

Minimum Energy Conformations

Native Native Optimized

Lowest Energy

Figure 5.19: Tmages of the native, native optimized and MHOP lowest energy configurations. (The
figures were prepared using the program VMD [130])

The lowest energy conformation is shown in fig. 5.19. It consists of a (-hairpin having
a C_alpha-RMSD with respect to the native conformation of only 0.79A. The minimum
RMSD structure found during the simulation had a C_alpha-RMSD of 0.48 A, whereas
the geometry-optimized native conformation had an energy 120 kJ mol~! higher than the
lowest-energy conformation.

RMSD vs Energy

In the fig.5.20 we have shown the C,-RMSD from the native conformation vs effective free
energy for all the minima during one of the minima hopping runs. The lowest C,-RMSD
conformations have the lowest energies which are actually the native conformational en-
semble. The black line in fig.5.20 is connecting each point corresponding to a local mini-
mum found by a successful process of a parallel minima hopping run “R1”.Bothe the runs
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Figure 5.20: C,-RMSD vs Energy plot. the black line connects all the minima those one of the successful
minima hopping processes visited.
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“R1” and “R2” found the same lowest minimum - but the intermediate minima and the
search trajectories are different from each other.

Intermediate states

sNG OD1
LYS12

Figure 5.21: A probable intermediate state

In the run “R2” we found a partly-helical intermediate( fig. 5.21) having an energy 59 k.J
mol~! higher than the lowest-energy conformation. The helical part is between THR:3
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to TRP:9 residues. This intermediate is found at a very early stage of the search. This
partly-helical looks very similar to the intermediate found by Wenzel[127] using Basin
Hopping Method with PFF02 forcefield.

Conformation energy map

N
15}
T

1 -1000

©
T

1 -1500

©
T

B -2000

~

1 -2500

Radius of Gyration (A)

1 -3000

5 L L L L L ~3500

RMSD (A)

Figure 5.22:  The effective free energy(OPLS) map generated from all the conformations during the
minima hopping run.

Here in fig.5.22 the Conformational effective free energy map has been shown. The col-
lective variables are C', RMSD from the native conformation and geometric radius of
gyration. The lowest energy conformation is at C,, RMSD = 0.784 and Radius of Gyra-
tion = 6.56A and the partly-helical intermediate is at C, RMSD = 5.054 and Radius of
Gyration = 6.65A.

5.3.2 MHOP and MD
MD simulation Trp-Zipper

With the same forcefield as in section 5.1.1 we conducted Langevin Molecular dynamics
at different temperatures ranging between 260 K to 410 K, with a step size of 2fs, having
the collision frequency with the bath to be 25/ps. Each of the simulations was 40 ns long.
We collected coordinates every 2 ps. We chose the simulation trajectory corresponding
to the temperature 280 K to analyze.
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Figure 5.23:  MD simulation : Energy and all-atom RMS-deviation from the native conformation are
plotted against time.

Fig.5.23 shows the fluctuation in energy and all-atom RMS-deviation from the native
conformation along the MD trajectory of temperature 280 K. Between 6 ns to 7 ns both
the quantities show a jump which corresponds to a considerable amount of conformational
transition - this is the hydrophobic collapse of the peptide chain. From this point it starts
to form a stable hydrophobic core and subsequently the native hydrogen bond network
to reach the folded state (at around 32 ns). In the fig.5.24 the energy and the all-atom
RMS-deviation have been plotted against each other. The native-like conformations (
which have a low RMSD) have low energies - it shows that the peptide had almost adirect
folding - i.e it entered the native funnel quite fast and explored the low energy part of it
quite well within the short period of <40 ns. This run managed to follow a fast folding
pathway. The fast folding events are probabilistically rarer than the regular folding events.
That explains why most of the other MD runs could not register any folding event - for
which one has to sample for long.
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Figure 5.24: MD simulation : Energy vs all-atom RMS-deviation from the native conformation.

OPLS Energy (units of KJ/mole)



5.3. Tryptophan Zipper (1LE1) 109

Local Minima along MD The energy of a snapshot from the MD trajectory cannot
accurately quantify the energetic depth of the basin or the local minimum. To compare the
progress along a MD trajectory and a minima hopping search pathway, next, we optimized
the coordinates of each of the snapshots taken from the MD trajectory of fig.5.23 upto the
force norm 107°. These energies are then the depth of the basins traversed during the MD
simulation. In fig. 5.25 we compared molecular dynamics and minima hopping sampling
algorithm in terms of the energies of all the cthe local minima those the trajectory passes
through. The C,-RMSD from the native conformation has also been plotted for all the
snapshots from the MD trajectory - the same for the minima hopping search pathway(run
of fig.5.20). We estimated that the maximum number of force calls for 1 MD move and 1
geometry optimization for this system in minima hopping would be ~ 10000. From there
we roughly calculated the length of a minima hopping trajectory in terms of time.
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Figure 5.25: MD simulation and Minima hopping simulation compared.

MHOP search trajectory

From the minima hopping runs we could construct two different pathways - each of which
suggests a particular mechanism of folding. The successful process of the simulation
“R2” points out to the Zipper mechanism, whereas one successful process from the “R1”
simulation suggests a “hydrophobic collapse” mechanism.
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Figure 5.26: Minima hopping search trajectory : Zip-in pathway. This passes through a partly-helical
intermediate (The figures were prepared using the program VMD [130])

Helix mediated Zipper mechanism The folding proceeds as follows: the peptide
falls into a partly-helical structure first. It breaks subsequently. Next, two aromatic
pairs Trp2-Trpll and Trp4-Trp9 are formed but located between two -strands. This
prohibits the formation of inter-strand hydrogen bonds. Next, the trpzip2 tries to adjust
the aromatic pairs toward outsides. Next, starting from the most outside hydrogen bond
(1-12) other hydrogen bonds form in the order: (1-12),(3-10, 10-3), (5-8, 8- 5). It follows

13

a “zip-in” pathway.

S g
0 0 9 9L

24 26 27 28 615

Figure 5.27: Minima hopping search trajectory : A non-zipper pathway - the folding is direct. (The
figures were prepared using the program VMD [130])

“Hydrophobic collapse” mechanism In this case, the peptide quickly collapses into
a hairpin-like structure similar to the native one. The hydrophobic contact between TRP:2
and TRP:9 is made. There at the center the hydrogen bonds LYS:1:HZ1-GLU:5:0E1 and
TRP:9:HE1-THR:3:0 are made. The TRP:2 and TRP:9 try to stabilize by changing the
orientations of the aromatic rings and the hydrogen bond between LYS:12:O-SER:1:HT2
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is made. The peptide adjusts its conformation and folds into the native state. The
hydrophobic pairs and the native hydrogen bonds are formed almost simultaneously. This
is not a zipper pathway.

MD pathway : Hydrophobic collapse

R WY SRR Ay 2

1.6 ns 6.2 ns 6.4 ns 7.4 ns 8.0 ns

O A

11.6 ns 12.8 ns 13.0 ns 18.6 ns 32.4 ns

Figure 5.28: Molecular Dynamics trajectory at T=280K : “Hydrophobic Collapse” pathway. (The figures
were prepared using the program VMD [130])

The quick folding in molecular dynamics simulation(fig.5.28) is a non-zipper pathway. It
is accomplished through a hydrophobic collapse.

From the above observations its clear that the folding through hydrophobic collapse is
common in fast folding MD simulations and minima hopping search. The zipper mech-
anism has been observed in MD simulations before. The partly-helical conformation
intermediated folding (of fig. 5.27) has been observed in replica exchange MD simulations
of C-terminal peptide from the B1 domain of protein G (a [ — hairpin)[239].

5.4 Conclusions

In this chapter, in section 5.2 we have applied the MHOP algorithm to find the native
state, at atomic resolution, of a small peptide which folds into a stable §-hairpin. The
structural model predicted was accurate to less than 0.5 A RMSD and the NOE-violation
statistics were satisfactory. The native funnel was deeper than non-native ones, which is a
primary condition for the applicability of global optimization methods. A search pathway
was extracted from the minima search process and the conformations that were found
were used to characterize the free energy surface.
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There have been a number of other studies on this peptide using canonical MD, multi-
canonical MD [189], REMD [200] and hybrid hamiltonian replica exchange [133] methods,
and our results are consistent with those obtained previously. From a purely methodolog-
ical point of view, MHOP should be a useful approach for protein structure prediction
that is complementary to other methods, given that it combines a biased sampling process
with a non-thermodynamic search algorithm. Like other methods, though, the utility of
the algorithm and its success in ab-initio structure prediction and for studying protein
folding are highly dependent on the quality of the forcefield model that is used.

In section 5.3, we could successfully find the lowest energy conformation of a tryptophan-
zipper peptide and thus could find the native state of the peptide using minima hopping
algorithm. The necessary criteria for a successful structure prediction is that the native
funnel of the effective free energy surface has to be deeper than the others - for which the
forcefield to be used has to be “correct”. This criteria was fulfiled here. Next, We observed
multiple folding pathways for the trpzip2, depending on how the two hydrophobic pairs
approach to their native conformations. Our MD simulations support the folding mech-
anism put forward by the minima hopping search. The probability of folding through a
particular pathway cannot be predicted because the search process does not generate any
thermodynamical ensemble or truthful kinetics. Moreover, this kind of a biased search
has the predilection for any possible fast folding routes. But there could have been a
scope on a qualitative level for the minima hopping search trajectories to describe the
folding mechanism. This study suggests that a connected sequence of minima searched
by the minima hopping stochastic simulator can point towards a realistic physical process
and thus describe a mechanism for a conformational reaction. This is due to the micro-
canonical MD based moved instead of random and violent moves that was incorporated
in minima hopping algorithm and thus always overcoming realistic transition region and
avoiding unphysically high barriers.



Chapter 6

Summary

The previous chapters described a number of applications of Minima hopping algorithm on
the structural studies of different biomolecules. The major aim of them was to approach
towards the protein structure prediction problem. This problem is about finding the
global minimum of the free energy surface as per the thermodynamic hypothesis, so given
an effective free energy forcefield and an efficient global optimization algorithm one can
expect to predict the native state of a protein. So the tasks were : (a) to define an effective
free energy forcefield, (b) to select a global optimization algorithm for sampling, (c) to
test the whole scheme for systems with simplified interactions, (d) finally to apply this on
proteins. We started with minima hopping algorithm which has been described in chapter
3. The work described in ref [126] shows that minima hopping algorithm has shown better
overall success as a global optimization algorithm over evolutionary algorithms and basin
hopping algorithm. The effective free energy forcefield is defined as the OPLS all-atom
forcefield and a GB/SA solvation scheme which incorporates the solvation free energy.
For studying proteins in gas phase, no free energy term has been added to the expression
of the OPLS energy function. In course of the structure prediction studies, a few allied
problems have been work on. Among them are - (a) understanding the energy landscape
and (b) making the conformational search algorithm more efficient.

In the chapter 2 we have shown that the BEP principle can be extended to molecular
dynamics trajectories which cross from one basin of attraction into another one far from
the transition state. This extended principle (MDBEP) says that MD trajectories with
lower energy are more likely to lead into basins of attraction of low energy configurations
than very high energy trajectories. We have found that in the context of global optimiza-
tion this principle can be used to improve the efficiency of existing MD based methods by
properly tuning the energy of the MD trajectories. In the next section in the chapter, we
have conducted a comparative study of two kinds of energy landscapes, one of the OPLS
forcefield and the the other one of density functional interactions through the energetic
and structural correspondence. Our observations clearly showed that there are a signifi-
cant amount of unstable and fake local minima present in the landscape corresponding to
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the forcefield. The nonbonded interactions of the forcefields needs to be corrected. The
present set Lennard-Jonnes paramemters have been observed to represent a van der Waal
force which has a considerably hard repulsive region - so the forcefield with the current
form or the parameters are expected not to reproduce the packing and the compactness
of real proteins.

In the chapter 3 several algorithmic developments and implementations have been dis-
cussed. Following the intuition the chapter 2 brought, we devised a couple of schemes
to direct the the MD moves in the minima hopping algorithm to cross low barriers.
The dimersoft scheme and the force decomposition scheme were described. Here, an
enhanced feedback scheme for minima hopping algorithm have been described. The ap-
plication of the force decomposition scheme as a preconditioner is briefly shown. A new
preconditioned-DIIS geometry optimizer has been tested and shown to be 3—5 times faster
than our best implementation of conjugate gradient. Coupling this preconditioned-DIIS
with steepest descent and conjugate gradient a hybrid geometry optimizer is introduced.
All of these developments have in some way or the other been utilized in the minima
hopping runs and different tests.

To reduce the complexity of protein folding in aqueous medium we studied biomolecular
structures in gas phase for a number of systems. In the chapter 4 it has been shown that
minima hopping algorithm remains successful in finding the putative global minimum and
many low energy conformations efficiently which in turn helped in understanding some
aspects of the experiments done on peptides in gas phase like ion-mobility experiments
or different spectroscopic experiments. From the comparative study of the predicted
structures in different forcefields, it is apparent that its not easy to choose a ”correct”
forcefield. It is also seen in this study that the conformation-specific charge parametriza-
tion can make a considerable impact on the energy landscapes.

It is believed that (-hairpins are more complex structures as compared to a-helices which
have got some translational symmetry along the axis of the helix whereas the local en-
vironments along the [-hairpins are different from the others.The inter-strand hydrogen
bonds in a [(-hairpin have different sequence separations and not being as simple and
regular as those in a helix. So, it is more difficult to find those structures in a (Monte
Carlo) search process as compared to helices. In Chapter 5 we successfully folded two
[B-hairpins and have seen that the native funnel is deeper than the non-native ones. The
search pathway being a sequence of short Molecular dynamic segments prepended with a
soft-mode search of initial directions which ensures the crossing of low-barriers is shown
to be almost as realistic as a molecular dynamics trajectory, still being quicker than MD.

The success of applying minima hopping algorithm for biomolecular structure prediction

up to now was limited because of a number of reasons.

e The problem of initially not having a fast geometry optimizer. Spending 90% of
the CPU time for geometry optimization is something which could not be coped up
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with - and for exploring a significant amount of the landscape for bigger proteins
this step of the algorithm is a real bottleneck.

e We used the all-atom framework of simulation which although being a great scientific
challenge to build a solution strategy against, is not quite a practical approach for
protein structure prediction. For a significant amount of sampling for a system as
small as a 20 residue TRP-Cage protein, e.g. searching 10° local minima using the
combination of the hardware and the libraries used for the present work, taking one
geometry optimization to be the average time which it takes ~ 20min, we would
have to spend 105 x 20(60 * 24 * 365) ~ 4yrs , that is ~ the whole time frame of the
PhD work being reported here !!

e A reliable forcefield in which the native state would always be both within the
deepest funnel in the energy landscape and at the bottom of the native funnel. If
it is shifted to a high energy region within the native funnel it is possible for the
global optimizer to miss them as it is designed to reach the bottom of the funnel very
fast. Related to this, is the issue of correct implicit solvation model. This affects
the simulation in two ways - first, by influencing the hydrophobic forces and thus
influencing the energetic, second, by influencing the ruggedness of the landscape
which make the geometry optimization step affected.

Outlook

While there is always a scope for improvements for the sampling algorithms, it seems that
the foremost thing to be done is the framework for the structure prediction to be dealt
with realism. The strength of minima hopping can be exercised at the points where fast
conformational search is needed. The following approaches would be interesting.

e For having a thorough and faster sampling of the landscape an efficient search algo-
rithm should be accompanied with some coarse grained forcefield and for each set of
distinct conformations ( assuming them to be representative of different funnels) to
run all atom “within-the-funnel” refinement simulation. Or perhaps, using compar-
ative modeling based tools to generate many of the crude models, and then using
the global optimization strategy for neighbourhood search.

e After the advent of NVIDIA GPUs and the GPU computing it is being possible to
get a speedup of 100-1000 times for a single force evaluation. The implementation
of minima hopping algorithm and the forcefield library on such a platform can thus
overcome the CPU-time bottleneck and be a viable option to work on biomolecular
structure prediction in future.



116 6. Summary

e Comparative modeling in blind structure prediction has been quite successful. But
in homology modeling one encounters many unaligned regions in sequence align-
ment. These loop regions tend to be located at the solvent-exposed surface of
globular proteins and thus are very flexible. To predict the loops or in so-called
Protein loop modeling one can perhaps use a global optimization based approach
like minima hopping, to find many low energy conformations of a loop. Even if a
loop might not adopt the global minimum of its conformational surface, it should
in principle be located by a thorough sampling.



Appendix A

Programs and Analysis tools used

DYNAMO

Dynamo modular library has been extensively used for the work present here. It is an open
source program library that has been designed for the simulation of molecular systems.
The most recent version of this can be found from http://www.pdynamo.org/mainpages/.

VMD

VMD has been used for the visualizaion of proteins. Many of the figures present in the
previous chapters were prepared using this program. It can be found from
http://www.ks.uiuc.edu/Research/vmd/ .

TINKER

This is a open-source library for biomolecular simulation. It is a versatile and easy-to-use
library. It served a number of purposes starting from constructing a conformation with
a given set of backbone dihedral angles upto a full global optimization simulation after
coupling it with the minima hopping program. It can be found from
http://dasher.wustl.edu/tinker/ .
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POEM

POEM is a package where PFF02 forcefield is implemented. It can be found from
http:/ /iwrwww].fzk.de/biostruct/ .

DFIRE

http://sparks.informatics.iupui.edu/hzhou/dfire.html is a web server which can be used
for calculating the DFIRE free energy of a protein conformation.

NAB

This is a open-source library for biomolecular simulation. It was used for calculating
conformational energies in Amber forcefield. It can be found from
http://casegroup.rutgers.edu/casegr-sh-2.2.html .

MMTSB Toolset

This toolsent has been used for the analysis of the protein conformations and the trajec-
tories. It can be found from http://www.pdynamo.org/mainpages/ .

GNUPLOT

This is an excellent plotting program. It was used in numerous occasions. It can be found
from http://www.gnuplot.info/ .

V_SIM

This is a very useful visualization software. It can be found from
http://www-drfme.cea.fr/sp2m/L_Sim/V_Sim/index.en.html .
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DSSP

Dictionary of Secondary Structure of Proteins (DSSP)was used to identify the secondary
elements of proteins. This is a practical tool for expressing the protein in terms of its
secondary structure. It can be found from http://swift.cmbi.ru.nl/gv/dssp/ .

SMMP

This package was used for calculating conformations energies in ECEPP forcefield. It can
be found from http://www.smmp05.net/ .
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