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THE AIM OF THIS THESIS

The aim of this thesis is to study alpine plant life with a focus on genetic variation,

population differentiation and adaptation due to two major environmental gradients: altitude

and succession (Chapter 2, 3 and 4). Additionally, genetic diversity, plant growth and

competition ability was measured in plant populations of different sizes in recently fragmented

habitats (Chapter 5). The main objectives and research questions of this thesis were:

• How is genetic variation and population differentiation shaped by the naturally fragmented

alpine environment? May gene flow counteract genetic drift or does the alpine conditions

interrupt gene exchange? (Chapter 2)

• Does the amount of clonal vs. sexual reproduction in alpine plants differ among

contrasting habitats? How is growth and reproduction affected by environmental

conditions? (Chapter 3)

• Does selection favour larger seeds at high altitude, as more reserves provided for seedlings

are beneficial in harsh alpine environments? (Chapter 4)

• Is molecular variability and fitness of a common grassland plant species reduced in

recently fragmented habitats? Do small populations suffer from genetic erosion? (Chapter

5)

PLANTS IN FRAGMENTED HABITATS

Anthropogenic destruction and fragmentation of the formerly continuous natural

landscape is increasing and has become now a significant threat to the maintenance of

biodiversity in many terrestrial ecosystems (Young, Boyle & Brown 1996). The threat lies not

only in the local extinction of species, but also in the potential loss of genetic diversity and

fitness of remnant populations. Habitat fragmentation is especially pronounced in tropical

rainforests and temperate grasslands (Soulé & Orians 2001). Management changes reduce

habitats in the cultural landscape in Central Europe, e.g. nutrient-poor grasslands, which were

formed by long-lasting human activities. Populations of formerly common plant species are

now small in numbers and isolated from each other by large distances (see this thesis, Chapter

5). Smaller populations are more vulnerable to demographic as well as environmental
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stochasticity and to genetic erosion (Lande 1988; Menges 2000; Schemske et al. 1994; Young

et al. 1996).

Natural habitats may also be fragmented to a smaller or larger extend resulting in

suitable habitat ‘islands’ for a species surrounded by non-suitable habitats (Begon, Harper &

Townsend 1995; Bossuyt, Honnay & Hermy 2003; Pither, Shore & Kellman 2003; Vucetich et

al. 2001). This thesis focuses on species from the naturally fragmented alpine landscape with a

clonally repdroducing herb as the main study species (Chapter 2, 3, and 4). In alpine habitats,

spatially isolated populations are probably more the rule than the exception (Klimes et al.

1997). Additionally to the consequences of fragmented habitats, alpine plants have to cope

with harsh environmental conditions, e.g. short and cold vegetation periods, unstable and low

fertility soils, desiccating winds, and high solar radiation. Climatic conditions change with

altitude, exposition, and degree of slope resulting in steep environmental gradients. Thus, the

island nature of alpine landscape provides unbeaten opportunities for comparative ecological

research, for study plant adaptation along gradients, and for study the effect of natural habitat

fragmentation and isolation on genetic variation and population differentiation.

POPULATION DIFFERENTIATION

Genetic differentiation – Fragmented landscapes particularly affect the partitioning of

genetic diversity among populations; variation within population may decrease and

differentiation among populations may increase (see this thesis, Chapter 2 and 5). In small,

isolated populations, species persistence is seriously affected by enhanced random genetic

drift, increased inbreeding, limited gene flow, and reduced mate availability (Young et al.

1996 and references therein). As genetic drift is selectively neutral, both deleterious and

advantageous alleles can get lost, while the level of heterozygosity decreases (Lacy 1987). In

the short term, a loss of genetic diversity can reduce plant performance and lower population

viability (Barrett & Kohn 1991; Ellstrand & Elam 1993). In the longer term, reduced genetic

diversity may limit the potential for further adaptive evolution (Falconer & Mackay 1996).

Selection may reduce the frequency of deleterious alleles responsible for inbreeding

depression and thereby increase mean individual fitness. Hence, plants of naturally fragmented

populations (see this thesis, Chapter 2) are hypothesised to be less affected by small

population size and isolation than plants of recently fragmented populations (see this thesis,
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Chapter 5). Moreover, natural fragmentation is in general a long-lasting process with species-

coevolution.

Beside population size and fragmentation, genetic variation and differentiation depends

on breeding system or reproductive mode. In clonal plants with rare repeated seedling

recruitment, differences in the success of particular genets beside random processes are

expected to decrease population genetic diversity over time, while genetic differences among

populations increase (Soane & Watkinson 1979; Watkinson & Powell 1993; see this thesis,

Chapter 2). Due to replicated genotypes within populations, effective size of local populations

may be reduced and enhance genetic drift (Chung & Kang 1996; Jones & Gliddon 1999;

Young et al. 2002). But given the possible long life of individual genets, very few new genets

need to be added annually to maintain genetic diversity (Widen, Cronberg & Widen 1994).

Indeed, similar levels of genetic diversity in clonal as in non-clonal plants is presented in

many studies (Ellstrand & Roose 1987; Hamrick & Godt 1989). On the other hand, studies of

genetic diversity in naturally fragmented alpine areas are small in numbers, and there are few

indications for a decreased genetic diversity at high altitude (Holderegger, Stehlik & Abbott

2002; Till-Bottraud & Gaudeul 2002). If effects on molecular diversity of naturally isolated

habitat are increased by clonal reproductive behaviour is one of the questions in this thesis

(Chapter 2).

Fitness differentiation – The opposing abiotic and biotic conditions along steep

environmental gradients in the Alps can lead to major modifications in selective forces on

plant life history traits (Cody & Overton 1996; Stearns 1992), resulting in genetic adaptation

to local conditions, even between populations of the same species (Mitchell-Olds & Shaw

1987; see this thesis, Chapter 3 and 4). Low gene flow due to spatial isolation of populations

may even increase the degree of local differentiation. However, phenotypic plasticity rather

than genetic differentiation may be an alternative way of matching genotypes to environment,

with increasing environmental variability favouring greater levels of plasticity (Schlichting

1986; Sultan 1987).

In general, plant growth and reproduction is determined by the genotype and a variety

of interactions with the abiotic and biotic environment. In this thesis plant performance is

studied in greenhouse experiments, where plants grew in common environments (i.e.

quantitative genetic experiments, Chapter 3 and 5). Differentiation in phenotypic variation
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should then be largely genetic.

A FOCUS ON REPRODUCTION

Clonal growth evolved many times in different taxa and is one of the most noticeable

adaptation to severe environmental conditions in cold environments, even in pioneer

communities and particularly in late successional alpine grasslands (Callaghan 1988;

Hartmann 1957; Klimes et al. 1997; Stöcklin 1992). Available resources are usually limited

(Cody 1966) but environmental shortage may be overcome by clonal reproduction due to low

cost for the mother plant, as clonal offspring are partly self-sustenance. Even though clonal

reproduction is less costly than sexual reproduction (Harper 1977), a pronounced allocation to

vegetative reproduction will lower the investment for seed production (see this thesis, Chapter

3) because meristems may be more limited than carbon or other resources (Watson 1984). The

consequence is a trade-off between reproductive modes (Geber 1990; Harper 1977; Prati &

Schmid 2000; Watson 1984).

Clonal propagation may result in rapid, but spatially limited spread of genotypes and

may improve population persistence during phases lacking sexual reproduction. Long-distance

dispersed seeds, however, connect fragmented populations in the patchy alpine landscape

(migration) or found new populations in unoccupied habitats (colonisation). Metapopulation

models predict opposing selection for traits favouring dispersal during colonisation and

selection against genes promoting migration once a population has been established (Olivieri,

Michalakis & Gouyon 1995). In early successional sites, sexual reproduction is expected to be

favoured whereas in late successional sites clonal reproduction may be more frequent. Along

an altitudinal gradient, the trade-off between reproductive behaviour may result in increased

vegetative growth at higher elevations, because reproduction by seeds may be hampered by

the harsh alpine conditions (e.g. Young et al. 2002). The effects of successional and altitudinal

contrasting habitats (early vs. late and low vs. high, respectively) on plant growth and

reproduction is studied in two greenhouse experiments in Chapter 3.

Seed size is a crucial character of a plant’s life history. Especially, in the severe alpine

environment selection for larger seeds is expected (see this thesis, Chapter 4), as larger seeds

may have a higher establishment success, but smaller seeds are commonly better dispersed.
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Due to limited resources a trade-off among seed size and number is expected (Harper 1977;

Smith & Fretwell 1974). Numbers are directly related to fitness and a selection pressure for

more but smaller seeds should always operate. Seed size is expected to vary mainly in

response to differences in selection pressure towards larger seeds (Westoby, Jurado &

Leishman 1992). Along an elevational gradient, Baker (1972) conducted the most detailed

across-species study and reported decreasing seed weight with altitude. But Baker (1972) did

not consider phylogeny, whereas phylogenetic constraints or niche conservatism explain the

lack of major differences in seed size between taxonomically related species in a study of

Lord, Westoby & Leishman (1995). In the Swiss Alps, Landolt (1967) compared pairs of

related lowland and alpine species but made no quantitative measurements of seed weights.

The question if seed weight increases with altitude among populations of the same species or

among closely related species pairs, to account for phylogenetic consequences, is still not

answered and is the topic of Chapter 4.

THIS DOCTORAL THESIS

The study species, Geum reptans

The clonal pioneer Geum reptans L. (Rosaceae) is very well suited to study plant

population diversity, differentiation, and adaptation in the naturally fragmented alpine

landscape. Geum reptans occur in contrasting habitats between 2000 and 3000 m a.sl., and in

early and late successional sites. If changing selection pressure along successional and

altitudinal trajectory influence the proportion of clonal vs. sexual reproduction can be well

studied in G. reptans; both reproductive modes relay on meristems in leaf axils. These

meristems are preformed to a flower head or stolon in the season prior to emerging. On

aboveground stolons one terminal daughter rosette is built. Clonal integration lasts only for the

establishment of new clonal rosettes.

The study species, Scabiosa columbaria

The perennial Scabiosa columbaria is L. (Dipsacaceae) very well suited to study

genetic variability, population differentiation, plant growth, and competition ability in recently
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fragmented habitats. This species is still common but restricted to nutrient poor grassland

remnants in the Swiss Jura.

Experimental approach

Three different approaches were used in my thesis. Firstly, in a molecular study,

genetic diversity, and differentiation was measured with neutral genetic markers, and the

importance of gene flow and drift was assessed in Geum reptans. Secondly, in two

quantitative genetic greenhouse experiments, genetic diversity and differentiation in respect to

growth and reproductive behaviour was measured in G. reptans. Thirdly, in a reciprocal

transplant experiment, adaptation of G. reptans to low and high altitude was intended to be

measured. Unfortunately, the last experiment failed, because too many transplanted

individuals did not survive the first winter. To compensate for this experiment, variation of

seed weights along altitudinal gradients was studied in the field and using samples from the

seed collection of the Botanical Institute of the University of Basel, Switzerland.

Additionally, genetic diversity and differentiation of neutral genetic markers as well as

plant growth and competition ability in a quantitative genetic greenhouse experiment was

measured in Scabiosa columbaria.

Outline

Chapter 2, 3, 4, and 5 are written for publication in peer-reviewed scientific journals.

For co-authorship and status of each publication see below.

Chapter 2 A. R. Pluess & J. Stöcklin. Population genetic diversity of the clonal

plant Geum reptans in the Swiss Alps. American Journal of Botany,

accepted.

In this manuscript I ask how important gene flow and genetic drift are in an alpine clonal

pioneer plant, to what extend populations are differentiated, and if genetic variation differs

among successional age of the population or altitude. To answer this question, 20 populations

of Geum reptans were sampled in a spatially hierarchical design with distances among

populations ranging from 0.2 to 208 km. These populations origin from different altitudes,

early, medium, and late successional habitats and were studied with randomly amplified

polymorphic DNA (RAPD) profiles. Seed and pollen dispersability was estimated by direct
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measurements.

Chapter 3 A. R. Pluess & J. Stöcklin. The importance of population origin and

environment on clonal and sexual reproduction in the alpine plant

Geum reptans. Functional Ecology, accepted.

In this manuscript I ask to what extend plant growth and reproduction in the clonal Geum

reptans can be explained by differences in population origin and environment. To answer this

question clonal offsprings collected at natural sites grew in two separate greenhouse

experiments: a competition-experiment comparing plants from early vs. late successional

habitats (N = 172) and a temperature-experiment comparing plants from low vs. high altitude

(N = 206). The treatments within the specific experiment were chosen according to one of the

most important environmental conditions at population origins. This approach allows to test if

plants from late successional sites are favored in the competition treatment, and if plants from

higher altitude are favored at low temperature, indicating adaptation. Furthermore, if clonal

and sexual reproduction is affected differently by plant size and if there is a trade-off between

the two reproductive modes is tested.

Chapter 4 A. R. Pluess, W. Schütz & J. Stöcklin. Seed weight increases with

altitude in the Swiss Alps between related species but not among

populations of individual species. Submitted.

In this manuscript I ask if seed weight increases with altitude. To answer this question seed

weight differences were measured (i) between 29 closely-related species-pairs from the Alps,

with one species occurring at low altitude and a corresponding species from high elevations

and (ii) among populations within four alpine species (Carex flacca, Epilobium fleischeri,

Saxifraga oppositifolia, and Scabiosa lucida) occurring over large altitudinal gradients. Seed

samples from natural sites were collected in the Swiss Alps or came from the seed collection

of the Botanical Institute of the University of Basel, Switzerland.

Chapter 5 A. R. Pluess & J. Stöcklin (2004). Genetic diversity and fitness in

Scabiosa columbaria in the Swiss Jura in relation to population size.

Conservation Genetics, 5: 145-156.

In this manuscript I ask if genetic variability and fitness is reduced in recently fragmented
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populations of the common species Scabiosa columbaria. To answer this question seeds of

eleven populations containing c. 90 up to c. 2000 flowering individuals were collected in

Mesobromion remnants of the Swiss Jura. Plants were raised from seeds in the greenhouse to

test for plant fitness and competition ability with Bromus erectus. The same material was used

to measure genetic variation within and among populations with RAPD profiles.

For this manuscript I used data from my diploma thesis. During my PhD I have redone

part of the molecular data analysis and calculations of fitness measurements. While writing

this publication and going through the revising process requested by the Conservation

Genetics journal, I learned how to analyse and present molecular data. This positively

influenced and shortened the publication process of the molecular study with Geum reptans.

Finally, the concluding general summary present the most important findings of this

thesis.

REFERENCES

Baker, G. (1972) Seed weight in relation to environmental conditions in California. Ecology 53, 997-1010.

Barrett, S.C.H. & Kohn, J.R. (1991) Genetic and evolutionary consequences of small population size in plants:

Implication for conservation. Genetics and conservation of rare plants (eds D.A. Falk & K.E.

Holsinger), pp. 3-30. Oxford University Press, New York, Oxford.

Begon, M., Harper, J.L. & Townsend C.R. (1995) Ecology - Individuals, Populations and Communities.

Blackwell Science, Oxford.

Bossuyt, B., Honnay, O. & Hermy, M. (2003) An island biogeographical view of the successional pathway in wet

dune slacks. Journal of Vegetation Science 14, 781-788.

Callaghan, T.V. (1988) Physiological and demographic implications of modular construction in cold

environments. Population Biology of Plants (eds A.J. Davy & e. al.), pp. 161-178. Blackwell, Oxford.

Chung, M.G. & Kang, S.S. (1996) Allozyme genetic and clonal diversity within populations of Chimaphila

japonica and Pyrola japonica (Pyrolaceae). Israel Journal of Plant Sciences 44, 259-271.

Cody, M.L. (1966) A general theory of clutch size. Evolution 20, 174-184.

Cody, M.L. & Overton, J.M. (1996) Short-term evolution of reduced dispersal in island plant populations.

Journal of Ecology 84, 53-61.

Ellstrand, N. & Elam, D. (1993) Population genetic consequences of small population size: Implications for plant

conservation. Annual Review of Ecology and Systematics 24, 217-242.

Ellstrand, N.C. & Roose, M.L. (1987) Patterns of genotypic diversity in clonal plant-species. American Journal

of Botany 74, 123-131.



General introduction

13

Falconer, D.S. & Mackay, T.F.C. (1996) Introduction to quantitative genetics. Longman, Harlow, Essex.

Geber, M.A. (1990) The cost of meristem limitation in Polygonum arenastrum - Negative genetic correlations

between fecundity and growth. Evolution 44, 799-819.

Hamrick, J.L. & Godt, M.J.W. (1989) Allozyme diversity in plant species. Plant population genetics, breeding

and genetic resources (eds H.D. Brown, M.T. Clegg, A.L. Kahler & B.S. Weir), pp. 43-63. Sinauer

Associates Sunderland, Massachusetts.

Harper, J.L. (1977) The population biology of plants. Academic Press, London.

Hartmann, H. (1957) Studien über die vegetative Fortpflanzung in den Hochalpen. Jahresbericht der

Naturforschenden Gesellschaft Graubündens (Schweiz) 86, 3-168.

Holderegger, R., Stehlik, I. & Abbott, R.J. (2002) Molecular analysis of the Pleistocene history of Saxifraga

oppositifolia in the Alps. Molecular Ecology 11, 1409-1418.

Jones, B. & Gliddon, C. (1999) Reproductive biology and genetic structure in Lloydia serotina. Plant Ecology

141, 151-161.

Klimes, L., Klimesova, J., Hendriks, R. & Van Groenendael, J.M. (1997) Clonal plant architecture: a comparative

analysis of form and function. The ecology and evolution of clonal plants (eds H. de Kroon & J.M. Van

Groenendael), pp. 1-29. Backhuys Publishers, Leiden.

Lacy, R.C. (1987) Loss of genetic diversity from managed populations: Interacting effects of drift, mutation,

immigration, selection and population subdivision. Conservation Biology 1, 143-158.

Lande, R. (1988) Genetics and demography in biological conservation. Science 241, 215-244.

Landolt, E. (1967) Gebirgs- und Tieflandsippen von Blütenpflanzen im Bereich der Schweizer Alpen. Botanische

Jahrbücher 86, 463-480.

Lord, J., Westoby, M. & Leishman, M. (1995) Seed size and phylogeny in 6 temperate floras - Constraints, niche

conservatism, and adaptation. American Naturalist 146, 349-364.

Menges, E.S. (2000) Population viability analyses in plants: challenges and opportunities. Trends in Ecology &

Evolution 15, 51-56.

Mitchell-Olds, T. & Shaw, R.G. (1987) Regression-analysis of natural-selection - Statistical- inference and

biological interpretation. Evolution 41, 1149-1161.

Olivieri, I., Michalakis, Y. & Gouyon, P.H. (1995) Metapopulation genetics and the evolution of dispersal.

American Naturalist 146, 202-228.

Pither, R., Shore, J.S. & Kellman, M. (2003) Genetic diversity of the tropical tree Terminalia amazonia

(Combretaceae) in naturally fragmented populations. Heredity 91, 307-313.

Prati, D. & Schmid, B. (2000) Genetic differentiation of life-history traits within populations of the clonal plant

Ranunculus reptans. Oikos 90, 442-456.

Schemske, D.W., Husband, B.C., Ruckelshaus, M.H., Goodwillie, C., Parker, I.M. & Bishop, J.G. (1994)

Evaluating approaches to the conservation of rare and endangered plants. Ecology 75, 584-606.

Schlichting, C. (1986) The evolution of phenotypic plasticity in plants. Annual Review of Ecology and

Systematics 17, 667-693.

Smith, C.C. & Fretwell, S.D. (1974) The optimal balance between the size and number of offspring. American



Chapter 1

14

Naturalist 108, 499-506.

Soane, I.E. & Watkinson, A.R. (1979) Clonal variation in populations of Ranunculus repens. New Phytologist 82,

557-573.

Soulé, M.E. & Orians, G.H. (2001) Conservation biology - Reserach priorities fot the next decade. Island Press,

Washington.

Stearns, S.C. (1992) The evolution of life histories. Oxford University Press, Oxford.

Stöcklin, J. (1992) Differences in the location of subcotyledonary buds among Epilobium angustifolium L, E .

dodonaei Vill and E. fleischeri Hochst (Onagraceae) and effects on architecture and population

structure. Botanical Journal of the Linnean Society 108, 35-47.

Sultan, S.E. (1987) Evolutionary implications of phenotypic plasticity in plants. Evolutionary Biology 21, 127-

178.

Till-Bottraud, I. & Gaudeul, M. (2002) Intraspecific genetic diversity in alpine plants. Mountain Biodiversity: a

global assessment (eds C. Körner & E.M. Spehn), pp. 23-34. The Parthenon Publishing Group, New

York, London.

Vucetich, L.M., Vucetich, J.A., Joshi, C.P., Waite, T.A. & Peterson, R.O. (2001) Genetic (RAPD) diversity in

Peromyscus maniculatus populations in a naturally fragmented landscape. Molecular Ecology 10, 35-40.

Watkinson, A.R. & Powell, J.C. (1993) Seedling recruitment and the maintenance of clonal diversity in plant-

populations - A computer-simulation of Ranunculus repens. Journal of Ecology 81, 707-717.

Watson, M.A. (1984) Developmental constraints - Effect on population growth and patterns of resource

allocation in a clonal plant. American Naturalist 123, 411-426.

Westoby, M., Jurado, E. & Leishman, M. (1992) Comparative evolutionary ecology of seed size. Trends in

Ecology & Evolution 7, 368-372.

Widen, B., Cronberg, N. & Widen, M. (1994) Genotypic diversity, molecular markers and spatial distribution of

genets in clonal plants, a literature survey. Folia Geobotanica et Phytotaxonomica 29, 245-263.

Young, A., Boyle, T. & Brown, T. (1996) The population genetic consequences of habitat fragmentation for

plants. Trends in Ecology and Evolution 11, 413-418.

Young, A.G., Hill, J.H., Murray, B.G. & Peakall, R. (2002) Breeding system, genetic diversity and clonal

structure in the sub-alpine forb Rutidosis leiolepis F. Muell. (Asteraceae). Biological Conservation 106,

71-78.



Genetic diversity of an alpine clonal plant

15

Chapter 2

Population genetic diversity of the clonal

plant Geum reptans in the Swiss Alps

Andrea R. Pluess & Jürg Stöcklin

American Journal of Botany, accepted



Chapter 2

16



Genetic diversity of an alpine clonal plant

17

ABSTRACT

In the alpine landscape most plant populations are spatially isolated due to extreme

patchiness and strong natural fragmentation. We used RAPD-PCR (randomly amplified

polymorphic DNA polymerase chain reaction) for a study of the genetic diversity within and

among 20 populations of Geum reptans, an outcrossing clonal plant species in the Swiss Alps.

Populations were sampled at different altitudes, in early-, medium- and late-successional

habitats (population origin) using a spatially hierarchical design, with distances among

populations ranging from 0.2 to 208 km. Seed and pollen dispersibility was estimated by direct

measurements. Seed dispersibility by wind was low with only 0.015 % of the seeds flying over

100 m. Observed pollen flow was even more restricted. Molecular diversity within populations

was irrespective of population origin (He = 0.22 ± 0.004) and similar to the average of other

RAPD studies. Contrary to our expectation, populations were only moderately differentiated

(Gst = 0.14). However, there was a clear spatial genetic structure and a positive relationship

between pairwise genetic and geographic distances. Our results indicate considerable gene

flow among populations within the same regional area, and we found no indication for genetic

depletion during succession or in peripheral habitats. We conclude that, despite the high

natural fragmentation and the importance of vegetative reproduction in this alpine plant, gene

flow and repeated seedling recruitment during succession might be more frequent than

commonly suggested.

Key words. Geum reptans; molecular diversity; pioneer plant species; RAPD; Rosaceae;

successional habitats.
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INTRODUCTION

Alpine plant life is characterized by habitats with steep environmental gradients, sharp

boundaries, strong natural fragmentation, and high disturbance frequency. As growth

conditions are impaired by hostile climatic conditions, establishment from seeds is restricted

to safe sites (Urbanska and Schütz, 1986). A high proportion of alpine plants are characterized

by clonal growth even in pioneer communities on glacier foreland, alpine screes, or moraines

(Hartmann, 1957; Gray, 1993; Stöcklin and Bäumler, 1996; Klimes et al., 1997). Clonality and

spatial isolation of populations may lower genetic diversity within and increase genetic

separation among populations (Barrett and Kohn, 1991; McLellan et al., 1997; Gaudeul et al.,

2000; Landergott et al., 2001; Cheon et al., 2002; Despres et al., 2002). So far, however,

molecular studies in alpine plants mostly considered phylogeny or the migration of species

from refuge sites after the ice ages, concentrating on the molecular patterns created by

historical gene flow (e.g., Bauert et al., 1998; Holderegger et al., 2002; Stehlik, 2002; Tribsch

et al., 2002). The consequence of the island nature of alpine vegetation for actual gene flow is

fairly unknown. Direct measurements of pollen movement and seed dispersal tend to

underestimate the importance of long-distance dispersal for the movement of genes (Ouborg et

al., 1999; Cain et al., 2000). Thus, indirect measurements using molecular markers are needed

for a better understanding of genetic diversity patterns in fragmented alpine environments. The

genetic consequences of clonality in long-lived plants are also poorly known (McLellan et al.,

1997).

Plant molecular studies have shown that fragmentation of habitats and small population

size may negatively affect population genetic diversity (Ellstrand and Elam, 1993; Fenster and

Dudash, 1994; Fischer and Matthies, 1998; Luijten et al., 2000; Paschke et al., 2002). The

genetically less diverse populations have a reduced ability to buffer the effects of poor

environmental conditions or competition (e.g., Fischer et al., 2000; Pluess and Stöcklin, 2004).

The fragmented alpine landscape might particularly affect the partitioning of genetic diversity

among populations and strong selection forces under the harsh environmental conditions

might strengthen population differentiation. In general, populations of clonal plants exhibit

considerable levels of genetic diversity (Ellstrand and Roose, 1987; Parker and Hamrick,

1992; Widen et al., 1994; Hamrick and Godt, 1997). It has been suggested that this is also true

for long-lived clonal plants from alpine habitats (Steinger et al., 1996; Diggle et al., 1998;

Holderegger et al., 2002). However, in a recent review by Till-Bottraud and Gaudeul (2002),
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only two studies of alpine plants (Gugerli et al., 1999; Jones and Gliddon, 1999) were

available with a suitable sampling design to study the pattern of genetic diversity within and

among populations accurately, i.e., comprising at least 10 populations and 20 individuals per

population.

We selected a clonal plant for our study because vegetative reproduction is one of the

most noticeable adaptations to severe environments and nutrient poorness in cold

environments (Callaghan, 1988; Klimes et al., 1997). Clonal growth has benefits, like the

ability to forage for resources, to support the establishment of offspring, or to minimize the

mortality risk of a genet. On the other hand, there are costs, like the easy transmission of

diseases or a reduced availability of resources for sexual reproduction (Jackson et al., 1985;

Callaghan et al., 1992; Klimes et al., 1997). It is generally assumed that reproduction from

seeds is infrequent in clonal plants, and this might be particularly true for plants from cold

environments (see review in Eriksson, 1989). If no repeated seedling recruitment takes place

after colonization, differences in the success of particular genets and random processes are

expected to decrease genetic diversity over time (Soane and Watkinson, 1979; Watkinson and

Powell, 1993). Moreover, clonal growth may act as an enhancer of genetic drift by reducing

the effective size of local populations (Chung and Kang, 1996; Jones and Gliddon, 1999).

However, simulation models have shown that even rare establishment from seeds is sufficient

to maintain genetic diversity in long-lived clonal plants (Watkinson and Powell, 1993).

The assumption that clonal reproduction is necessarily correlated with a reduced level

of reproduction by seeds must not always be true (Eriksson, 1989; Stöcklin and Bäumler,

1996). Well-established populations of clonal species may be an important source of seeds for

the colonization of nearby patches or unoccupied habitats. Eriksson (1992) even suggested

that clonal growth may have been selected more frequently in lineages with seeds adapted for

long-distance dispersal. However, extremely localized dispersal is common in many plants

(Freckleton and Watkinson, 2002) and short-range dispersal might be expected to dominate

the colonization processes. Less isolated habitats are more likely to be colonized than are more

isolated ones (Harrison et al., 2000), which may result in a spatial genetic structure with

nearby populations being more related than more distant ones. Even in alpine species with

good dispersal mechanisms, populations may tend to be genetically aggregated because

potential habitats are isolated from each other and colonizations from nearby sites are more

likely than random dispersal events.
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Here, we focus on the genetic diversity within and among populations of the clonal

pioneer Geum reptans L.. This species occurs mainly on glacier forelands and is able to persist

until later successional stages. Population increase of this species is rapid by vegetative

offspring produced at the end of stolons. At the same time the plant produces plenty of seeds

which are wind-dispersed by conspicuously elongated, feathery styles on the nutlets

(Rusterholz et al., 1993). We studied the genetic structure of 20 populations in the Swiss Alps

within a core area on two nearby glacier forelands, in a regional area surrounding this core

area, and from three sites distant to the core area (Fig. 1). Furthermore, we measured gene

flow via seeds and pollen directly in the field for a comparison with the molecular data.

Populations occur on a gradient from early- to late-successional communities and at different

altitudes. We hypothesize, that (1) the genetic diversity in populations of this clonal pioneer

plant is high, but, because of the fragmentation of the alpine landscape, we expect populations

to be genetically structured in space. (2) Genetic variation is higher in populations from early-

successional communities than in populations of later successional stages due to high seedling

recruitment in early succession and loss of genotypes due to competition pressure in later

succession. (3) Populations from lowest and highest altitudes are genetically less diverse than

populations from medium altitudes, because environmental constraints at the elevational

distribution boundaries of a species are expected to reduce the number of successful genotypes

(Lesica and Allendorf, 1995, and references therein). (4) Based on direct estimates in the field,

the potential of gene flow via seeds is larger than via pollen.

Genetic variation and differentiation were measured using RAPD-PCR. This method

potentially provides a much higher number of markers than do allozyme analysis and it is now

well established as a sensitive method for detecting genetic diversity (Nybom and Bartish,

2000).

MATERIALS AND METHODS

The plant species – The alpine pioneer Geum reptans L. (Rosaceae) is a

hemicryptophytic outcrossing perennial plant. The distribution of the species extends from the

Alps to the Carpathians, the Illyric mountains, and Macedonia at altitudes between 1950 and

3800 m above sea level (a.s.l.) (Hegi, 1995). Geum reptans preferentially occurs on virgin

soils of early-successional habitats on glacier forelands, moraines, mountain ridges, and river
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beds with a low chalk content and persists in such sites until later successional herbaceous

communities (Hegi, 1995), but is absent from closed grasslands (Rusterholz et al., 1993).

Individuals consist of 1-7 rosettes (rarely more). Age at first reproduction, measured by

counting growth rings in the main root of small reproducing individuals, was ~ 5 yr in late-

and ~ 10 yr in early-successional communities and maximum age, observed in very large

individuals, was ~ 30 yr (A. Pluess and J. Stöcklin, personal observation). Adults reproduce

vegetatively by forming new rosettes at the end of aboveground stolons or sexually by seeds

borne on a single-flowered stem. Buds are preformed in autumn and emerge in the following

spring. Flowers are proterogynous, pollinated by inseccts and produce approximately 100

seeds (T. Weppler and J. Stöcklin, unpublished data). Viable seeds are only produced by

outcrossing, indicating self-incompatibility (Rusterholz et al., 1993). After pollination, the

style develops into an elongated feathery structure of up to 3 cm length, which facilitates

dispersal by wind. Stolons grow to a length of up to 100 cm with a terminal rosette with

adventive roots. At the end of the growing season, stolons wither and unrooted rosettes die.

Fig. 1: Geographic distribution of the studied populations of the alpine plant Geum reptans in

Switzerland. Populations are grouped into a core area (dashed line quadrate in the enlarged map section,

including SCL, SCE, GR4, GR2 and GR1), in a regional area (enlarged map section, including 17 populations)

and three populations at great distance to the core area.

Sampling design – We sampled all available populations (N = 5) in a core area of 0.55

× 2.8 km, which included the foreland of two glaciers (Scaletta glacier and Grialetsch glacier

near Davos in the eastern part of the Swiss Alps), and all available populations in a regional

FLS

BLA
MUT
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area of 25 × 54 km (+ 12 populations; Fig. 1; Tables 1, 3). To include populations more distant

to the core area, we sampled three additional populations: two populations from the Central

Alps (Muttgletscher and Blauberg; 120 km distant from the core area) and one population in

the Bernese Alps (Fluhseeli; 200 km distant from the core area). In all but one population, we

collected tissue of young leaves from 20 randomly chosen individuals along a transect of

100 m in autumn 2001. To keep the risk of resampling the same clone low, spacing between

individuals was at least 4 m. In the population at Flüela Schwarzhorn, only 16 individuals with

a minimum spacing of 4 m were available. Leaf material was dried with silica gel and stored at

room temperature until analysis.

Estimates of population sizes were obtained by measurements of the area of each

population multiplied with an average density estimate (Table 1).

RAPD-PCR – Of each individual, 20 mg dry leaf material was grounded (Retsch

MM2, Retsch GmbH & Co KG, Haan, Germany) for the extraction of total DNA with a

DNeasy plant mini kit (Qiagen GmbH, Hilden, Germany). DNA concentrations were

determined by fluometry (Turner Design, Sunnyvale, California, USA) with PicoGreen

dsDNA quantitation reagent (Molecular Probes Inc., Eugene, Oregon, USA). From 21

decamer primers (Kit P Operon Technologies Inc., Alameda, California, USA and M-6

Microsynth, Balgach, Switzerland), five were selected for the complete survey (OPP-8 [ACA

TCG CCC A]; OPP-9 [GTG GTC CGC A]; OPP-17 [TGA CCC GCC T]; OPP-19 [GGG

AAG GAC A]; M-6 [GTG GGC TGA C]) after a detailed preliminary screening with three

individuals each from four populations. MgCl2 concentration was optimized for each primer.

Reproducibility of RAPD banding pattern was tested with timely repeated amplifications of

the 12 individuals and confirmed with consistent amplifications. Furthermore one individual

was used as a standard marker, beside the 1 kb ladder, for scoring bands and to confirm

consistent amplifications during the whole study. Amplifications were carried out in 25-µL

reaction mixture containing 3 ng of template DNA, 100 µM dNTPs, 0.2 µmol/L primer, 1×

Taq Polymerase Buffer (Amersham Pharmacia Biotech, Piscataway, New Jersey, USA),

additional 0.5 mmol/L MgCl for the primers OPP-17, OPP-19, and M-6, and 1 U Taq DNA

Polymerase (Amersham Pharmacia Biotech, Piscataway, New Jersey, USA). To endorse

consistency in the PCRs, we kept aliquots of a single master mix per two primers for all

samples  only  adding primer,  Taq Polymerase, and  DNA before  PCR. All  PCRs were per-
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Tab. 1: Location, population abbreviation, co-ordinates elevation, number of sampled plants per

population (N), habitat type and estimated population size of 20 study populations of Geum reptans in the Swiss

Alps.

Location Popu-
lation

Co-ordinates* Elevation
m a.s.l.

N Habitat
type°

Population
size

1 Fluhseeli, BE FLS 604‘700 / 139‘700 2070 17 low 1500

2 Muttgletscher, VS MUT 674‘500 / 156‘600 2520 18 early sc 5000

3 Blauberg, UR BLA 675‘030 / 157‘920 2580 17 late sc 7000

4 Val Fex, GR FEX 781‘325 / 137‘730 2140 20 low 3500

5 Diavolezza, GR DIA 794‘025 / 143‘500 2980 19 high 1000

6 Val da Cambrena, GR CAM 797‘100 / 142‘300 2340 20 late sc 8000

7 Piz Languard, GR LAN 793‘075 / 151‘450 3080 20 high 1500

8 Vadret da Porchabella GR KEE 787‘100 / 168‘020 2680 20 early sc 5000

9 Vadret da Porchabella GR KEL 785‘165 / 168‘460 2340 20 late sc 5000

10 Sertig, Gletschtälli, GR SER 787‘450 / 173‘800 2460 20 late sc 5000

11 Scalettapass, GR SPA 789‘935 / 174‘380 2600 20 medium sc 1500

12 Scaletta, GR SCE 791‘600 / 175‘430 2500 20 early sc 2000

13 Scaletta, GR SCL 791‘750 / 175‘500 2330 20 late sc 8000

14 Vadret da Grialetsch, GR GR4 792‘785 / 175‘850 2630 20 medium sc 3000

15 Vadret da Grialetsch, GR GR2 793‘220 / 175‘380 2660 20 medium sc 9000

16 Vadret da Grialetsch, GR GR1 793‘800 / 175‘300 2600 20 early sc 2000

17 Vadret da Radönt, GR RAD 792‘585 / 178‘485 2640 20 early sc 4000

18 Flüela Schwarzhorn, GR SWH 791‘400 / 178‘750 2900 16 high 500

19 Flüelapass, GR FLU 791‘700 / 180‘300 2420 19 late sc 4000

20 Vadret Tuoi, GR TUO 806‘275 / 191‘300 2610 20 early sc 5000

*Co-ordinates according to the Swiss topographical maps (Bundesamt für Landestopographie, Wabern,
Switzerland).
°Habitat type includes low and high sites, early-, medium- and late-successional (sc) sites.

formed in the same thermal cycler (PTC-100, MJ Research, Inc., Watertown, Massachusetts,

USA) programmed for 60 s at 93°C to denature the DNA followed by 34 cycles of 30 s at

92°C, 30 s at 37°C and 90 s at 72°C. Final extension lasted for 5 min at 72°C. Samples were

kept at 4°C until further analysis. PCR products were separated on 1.6 % agarose gels (Sea

Kem LE agarose, BMA, Rockland, Maryland, USA) in 1× TAE (Tris/Acetat/EDTA) buffer in

an electrical field (170 mV, ~ 2.5 h). The banding patterns were made visible with ethidium

bromide under UV light. The presence or absence of bands was scored for clear and

reproducible bands with estimated fragment lengths of between 500 and 2000 base pairs. The

final data set contained 386 individuals instead of 396 individuals due to the failure of the

amplification in 10 individuals (Table 1).
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RAPD analysis – Statistical analyses of RAPD banding patterns was based on the

following assumptions: (1) RAPD fragments behave as diploid, dominant markers with alleles

being either present (amplified) or absent (nonamplified); (2) comigrating fragments represent

homologous loci; (3) polymorphic loci are inherited in a nuclear (Mendelian) fashion (Arafeh

et al., 2002); and (4) populations are in Hardy-Weinberg equilibrium (HWE; Fis = 0). Even

though the information on the heterozygosity of populations was lacking, HWE should not be

violated, because a pollination experiment in G. reptans resulted in a very low seed set after

self-pollination with no germinating seeds (Rusterholz et al., 1993). Assuming that the

populations are in HWE, allele frequencies were estimated based on the square root of the

frequency of the null (recessive) allele. Only polymorphic bands were taken into account. To

avoid biased results, data analyses were restricted to bands whose observed frequencies were

less than 1-(3/N), where N is the mean number of sampled individuals per population (Lynch

and Milligan, 1994).

The molecular diversity within populations was quantified as (1) Nei’s expected

heterozygosity (He), (2) the Shannon index (SI; Lewontin, 1972) and (3) the percentage of

polymorphic bands (Pp). To quantify the variation of molecular diversity among populations,

we calculated the coefficient of variation (CV) for He, SI, and Pp. He and SI were calculated

with POPGENE (version 1.21; Yeh et al., 1997). The relations of the three molecular indices

and the population sizes assessed were calculated as a nonparametric Spearman’s Rho (rs)

correlation. The relation of altitude and the molecular indices was calculated as two-

polynomial regression. We used JMP (version 3.1; 1995, SAS Institute, Cary, North Carolina,

USA) for calculations of correlations.

The molecular differentiation between population pairs was quantified with the

pairwise Fst, calculated with Arlequin (Schneider et al., 2000). The F-statistic was calculated

across all bands. To test for isolation by distance (Slatkin, 1993), the genetic distance matrix

(pairwise Fst values) and the geographic distance matrix was correlated (Mantel test,

implemented in Arlequin). Significance levels were obtained after performing 10 100 and 10

000 random permutations for the pairwise genetic distances (F st) and the Mantel test,

respectively. Moreover, a UPGMA cluster analysis of pairwise Nei’s unbiased genetic

distances (Nei, 1978; TFPGA [tools for population genetic analysis]: Miller, 1997), and

bootstrapping of 10 000 replicates, was calculated and displayed as a dendrogram to test for

spatial separation.
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Among-population differentiation was calculated using Nei’s (1973) fixation index Gst

with POPGENE and the fixation index Fst by calculating the molecular analysis of variance

(AMOVA, implemented in Arlequin). Gst values are identical to Fst values if a locus consists

of two alleles as applicable in RAPD marker analysis (Nybom and Bartish, 2000). Besides

calculating Gst for the whole data set, it was calculated for the regional and the core areas

separately. Furthermore, as genetic diversity correlates with the spatial scale of the distribution

of populations (Nybom and Bartish, 2000), we calculated the fixation index for only those

populations with 20, 10, or 2 km distance to each other. All fixation indices were calculated

with polymorphic bands less frequent than 1-(3/N) (Lynch and Milligan, 1994). To test for

differences in the level of genetic diversity between populations from early-, medium-, and

late-successional stages as well as low (2070 – 2140 m a.s.l.), medium (2330 – 2680 m a.s.l.),

and high (2900 – 3080 m a.s.l.) elevation, we used AMOVA, which enables the extraction of

variance components, beside the calculation of the fixation index. Euclidean squared distances

among individuals were computed prior to the AMOVA and significance level for AMOVA

was evaluated after 16 000 random permutations.

Directly observed gene flow – Gene flow occurs via pollen and seeds. (1) We directly

measured pollen dispersal distances on the foreland of the Muttgletscher on two midsummer

days with good weather conditions (24 July 2001 and 19 July 2002). The frequency of

pollinator groups (flies, syrphids, and bumble bees) was estimated by counting flower

visitations by insects during 6 h of observation. Dispersal distances of pollen were measured

using fluorescent dye (Stockhouse, 1976; fluorescent dye from Radiant colour, Brussels,

Belgium). Early in the morning, the anthers of four flowers were marked in an area of 10 ×

25 m with different colored fluorescent dyes. Insects visited the flowers and dispersed the

colorpowder during the day. With a UV torch, we searched the fluorescent powder after sunset

and measured the distance to the initially marked flower. (2) Seed dispersal distances by wind

were estimated with simulations using “PAPPUS” (Tackenberg, 2003). With this model, seed

dispersal distances are calculated based on the terminal velocity of seeds, spatially explicit

landscape data (from the core area), and the assessment of thermally induced turbulence and

convection currents. Wind measurements took place on the Scaletta glacier foreland during the

period of seed release in 2001. The wind measurements during the week with the best

dispersal conditions were taken for a calculation of the dispersal spectra and estimates of the
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maximal dispersal distances. To consider the numbers of seeds dispersed, the absolute number

of seeds produced by the population of G. reptans within the investigated area was estimated

by measuring the density of flowering ramets in the area (for more details see O. Tackenberg

and J. Stöcklin, unpublished data).

RESULTS

Using five primers, we detected 51 polymorphic RAPD bands, of which two were

rejected due to their high frequency. Out of the 386 investigated individuals 384 RAPD

phenotypes were found. Two of the populations from the highest altitude contained the same

RAPD phenotype twice. None of the 49 scored bands was fixed at the level of populations.

Molecular diversity within populations – The molecular diversities of individual

populations calculated from polymorphic RAPD bands are listed in Table 2: Nei’s expected

heterozygosity, He, ranged from 0.16 to 0.25 (CV = 8.7 %) with a mean of 0.22 (SE = 0.004);

Shannon indices (SI) of RAPD phenotypic diversity ranged from 0.24 to 0.37 (CV = 8.7 %),

with a mean of 0.33 (SE = 0.01) and percentage of polymorphic bands (Pp) within populations

ranged from 49.0 to 81.6 % (CV = 10.7 %), with a mean of 71.3 % (SE = 1.7).

Population size had no influence on molecular variation (He: rs = 0.04, P = 0.88; SI: rs = -0.05,

P = 0.84; Pp: r s = -0.08, P = 0.72). Molecular variation within populations was also not

correlated with the altitude of the populations (two-polynomial correlation: He: r2 = 0.17,

P = 0.21; SI: r2 = 0.18, P = 0.18; Pp: r
2 = 0.11, P = 0.38).

Pairwise differentiation and spatial structure of the populations – Genetic

differentiation (Fst) between population pairs ranged from 0.02 to 0.45 (mean = 0.15,

SE = 0.01, CV = 62.3 %). All but one of the 190 pairwise Fst values were significant (tested

against 10 100 random permutations). The two early-successional populations of recently

deglaciated sites from neighboring glacier forelands in the core area were genetically not

differentiated (SCE and GR1, P = 0.06), even though the distance among them was 2.2 km.

The genetic differentiation between the most distant population (FLS) and populations from

the regional area ranged from 0.23 to 0.45 (mean = 0.37, SE = 0.01, CV = 10.5 %).
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Tab. 2: Molecular variation measured as ‘expected heterozygosity’ (He), the Shannon Index (SI), and

the percentage of polymorphic bands (Pp) per population as well as their means (±SE) and the coefficient of

variation for all populations (CV).

Population FLS MUT BLA FEX DIA CAM LAN KEE KEL SER SPA SCE

He 0.16 0.22 0.22 0.24 0.24 0.22 0.22 0.22 0.22 0.21 0.19 0.22
SI 0.24 0.33 0.33 0.36 0.36 0.33 0.33 0.33 0.34 0.32 0.29 0.34
Pp (%) 48.98 63.27 65.31 81.63 71.43 65.31 73.47 69.39 79.59 69.39 67.35 73.47

Summary

Population SCL GR4 GR2 GR1 RAD SWH FLU TUO mean (SE) CV

He 0.22 0.23 0.25 0.22 0.23 0.22 0.19 0.21     0.22 (0.004) 0.09
SI 0.33 0.35 0.37 0.34 0.36 0.34 0.29 0.31     0.33 (0.01) 0.09
Pp (%) 73.47 81.63 73.47 79.59 79.59 69.39 71.43 69.39   71.33 (1.7) 0.11

The pairwise values of genetic differentiation (Fst) among the 20 populations correlated

significantly with the spatial distances (Mantel test: R = 0.81, P < 0.001; Fig. 2).

Geographic regions were separated in a UPGMA dendrogram based on Nei’s (1978)

unbiased measure of genetic distances (Fig. 3): the most western (FLS) and the two

populations from central Switzerland (MUT, BLA; Fig. 1) were well separated from the

populations of the regional area in the east. As above, the two early-successional populations

from two  neighboring  glacier  forelands were grouped together. Within  the regional area and

Fig. 2: Matrix correlation of genetic (pairwise F st-values) and geographic distances among 20

populations of Geum reptans.
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within the core area no clear genetic structure of the populations was found, populations from

the same glacier foreland were not grouped tightly (the branches of the UPGMA analysis

collapsed under the 50 % majority rule consensus).

Fig. 3: Dendrogram of the UPGMA cluster analysis based on Nei’s (1978) unbiased measure of genetic

distance. Populations of the core and the regional area (A), the two central populations (B), and the most western

population (C) were separated (* indicate bootstrap values larger than 50 %, based on 10 000 permutations).

Spatial differentiation – RAPD band variation among populations explained 14 % of

the total molecular variation: Gst = 0.14 (SD = 0.08); Ht = 0.25 (SD = 0.03); and Hs = 0.22

(SD = 0.02). The AMOVA revealed a significant difference among populations (Fst = 15 %,

P < 0.001). The proportion of molecular variation (Gst) among the populations of the regional

and the core area was 11 % (48 polymorphic bands; one band was excluded, see Materials and

Methods) and 6 % (43 polymorphic bands), respectively (Table 3). If only populations that

were at least 20, 10, or 2 km distant from each other were analyzed, molecular differentiation

was: Gst = 0.18 (SD = 0.13; five populations, 44 polymorphic bands), Gst = 0.16 (SD = 0.10;

eight populations, 47 polymorphic bands), and Gst = 0.14 (SD = 0.08; 15 populations, 49

polymorphic bands), respectively.

*
*

*

*
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Tab. 3: Proportion of molecular variation explained among populations (Gst) in the core area, the

regional area and the whole study area. The table includes population number, the number of populations, the

spatial area, and the distances among the groups of populations considered.

Spatial scale Population No. of
populations

Spatial area
(km2)

Distances among populations
(km)

Gst

(%)
range mean (SD)

Core area 12 – 16 5 1.2 0.2 – 2.2 1.2 (0.6) 6

Regional area 4 – 19 17 1‘300 0.2 – 59.1 17.9 (14.3) 11

Whole area 1 – 20 20 10‘800 0.2 – 208.1 51.7 (59.3) 14

Differentiation due to successional stage and altitude – Genetic variation was not

significantly different among early-, medium- and late-successional populations. Moreover,

successional stage in the AMOVA model did not explain any variation among populations

(AMOVA, 15 populations; F among groups = 0, P  = 0.66). If populations are grouped into

elevational classes (low, medium, and high), the percentage of variation explained by this

grouping factor was low (AMOVA: 2.4 %; P  = 0.06). This corresponds to the lack of

relationship of molecular variation and altitude reported above.

Direct estimates of pollen and seed dispersal distances – In total, we observed 435

flower visitations of pollinators on G. reptans within 6 h, i.e., 3.5 visitors per flower and per

hour. Geum reptans is pollinated mainly by flies of different sizes (94 %), followed by

syrphids (4.6 %), and bumble bees (1.4 %). The traces of fluorescing dyes were found 50

times. The frequency of the observed dispersal distances decreased dramatically from 4 cm to

11.5 m with a single rare dispersal event over 30 m (Fig. 4). The seed dispersal spectra

obtained from simulations with the model PAPPUS showed that most seeds (99.9 %) are

dispersed < 10 m (Fig. 5). Long-distance seed dispersal with seeds dispersed over > 100 m and

1000 m occurred in only 0.015 % and 0.005 % of all cases, respectively. Based on estimates of

the yearly seed production on the Scaletta glacier foreland of > 10 Mio seeds, on this

particular glacier foreland ~ 1580 and ~ 520 seeds are dispersed over > 100 m and 1000 m,

respectively.
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Fig. 4: Frequency of pollinator flight distances grouped in intervals of 2 m (N = 50).

Fig. 5: Frequency of seeds dispersed by wind, grouped in intervals of 10 m. Assessment of seed

dispersal distances were calculated with the model ‘Pappus’ (Tackenberg, 2003).

DISCUSSION

In spite of highly fragmented habitats, the observed genetic differentiation among

populations of Geum reptans in the Swiss Alps was not particularly high compared with other

RAPD studies. Nevertheless, we observed a clear spatial genetic structure with a relatively

low differentiation among regional populations and a stronger differentiation between regions,

indicating that the exchange of genes decreases with distance. Molecular variation within

population was similar across all populations and did not depend on successional stage,
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elevation, or population size. Direct observations of pollen and seed dispersal indicate that the

potential of gene flow from seeds is larger than from pollen.

Genetic diversity within populations of a clonal alpine species – The amplification of

randomly selected gene loci (RAPD-PCR) is usually a more sensitive method to detect genetic

variation in plant species compared to gene product level methods (e.g., isozymes) (Nybom

and Bartish, 2000). RAPDs are sometimes questioned with respect to reproducibility and the

biallelic nature of DNA bands. Heterozygotes cannot be separated from homozygotes and

Hardy-Weinberg equilibrium has to be assumed for analysis. Our analysis is based on well

reproducible RAPD banding patterns and because selfed seeds in G. reptans are nonviable

(Rusterholz et al., 1993), selfing can be neglected.

Isozyme studies suggest that within and among populations genetic variation does not

depend on either sexual and/or clonal reproduction (Hamrick and Godt, 1989). Furthermore,

from the now available studies of alpine plants, there is little indication that plant species from

high altitude have lower levels of genetic diversity compared to lowland plants (Holderegger

et al., 2002; Till-Bottraud and Gaudeul, 2002). We can confirm both statements with our

RAPD data of G. reptans: mean molecular variation within populations (He = 0.22 ± 0.004)

was neither particularly high nor low and similar to the mean of 41 RAPD studies reviewed by

Nybom and Bartish (2000) (He = 0.21 ± 0.12). The mean molecular variation reported in this

review is probably somehow underestimated because sexually as well as clonally reproducing

species were included. To avoid a biased estimate of genetic diversity in studies of clonal

plants, each genotype should be collected only once (McLellan et al., 1997). In Cladium

jamaicense, for example, overall genetic variation was underestimated if only genotypic

diversity was considered (Ivey and Richards, 2001). But in Viola riviniana genotypic diversity

and overall genetic diversity were almost identical (Auge et al., 2001). We tried to avoid

sampling the same genetic individual twice and indeed 99.5 % of all our samples were

genetically different. This high resolution of RAPD phenotypes also indicates that single

genets of G. reptans only exceptionally grow > 4 m in diameter, as supposed when we chose

the sampling design. Our results with G. reptans support the statement of Hamrick and Godt

(1989) that, in general, clonal plants are genetically as diverse as nonclonal plants (Ellstrand

and Roose, 1987; Widen et al., 1994). Genotypic diversity in the studied populations was high,

as only exceptionally the same genotype was found twice.
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Effects of successional and elevational gradients on genetic variation within

populations – We assumed high initial recruitment from seeds when a population is founded

after the retreat of a glacier, as several other authors did (e.g., MacDonald and Lieffers, 1991;

Jelinski and Cheliak, 1992). Later, sexual recruitment might be low in clonal plants (Eriksson,

1989). It was also suggested that diversity should decline due to increased selection pressure

during succession (Till-Bottraud and Gaudeul, 2002). In G. reptans a low genetic diversity

might be expected particularly in late-successional habitats or in peripheral altitudinal habitats,

because selection might be particularly strong at the distributional limits of a species. We

found no evidence that population genetic variability in G. reptans is affected by

environmental gradients. Changes in population genetic variability due to ecological

conditions are rarely observed (Shimizu et al., 2002; Young et al., 2002; but see Gugerli et al.,

1999; Auge et al., 2001; Li and Ge, 2001; Stenström et al., 2001; Bonnin et al., 2002). For

example, in Parnassia palustris habitat type affected neither within-population genetic

diversity nor genetic and phenotypic differentiation among populations (Bonnin et al., 2002)

and in the alpine Saxifraga oppositifolia no effect of altitude on genetic population variability

was detected (Gugerli et al., 1999). Along environmental gradients, several parameters such as

individual age, overlap of generations, or recruitment frequency in climatically favorable years

may change and influence intrapopulation genetic variation (Molau, 1997). But these

parameters appear to have either no major or opposing effects on genetic variation in most

cases studied so far, and this also holds for G. reptans. Long ramet life-span and potentially

immortal genets may enhance the maintenance of genetic diversity in G. reptans, as observed

in other studies of clonal plants (Lee and Chung, 1999; Brzosko et al., 2002). A high

disturbance frequency in alpine habitats may allow repeated seedling establishment at least in

favorable years in spite of the general harsh environmental conditions. Nevertheless, sexual

reproduction alone does not guarantee the preservation of genetic variation. Various factors,

such as drift, inbreeding, and strong selection, may result in genetic depletion (McLellan et al.,

1997) if there is no gene flow from immigrating seeds or pollen. Our results suggest that the

loss of genotypes during succession might be negligible and repeated seedling recruitment

takes place irrespective of environmental conditions.

Population size may be critical for the maintenance of genetic variation (review by

Frankham, 1996). In large populations, genetic drift is insignificant, but it becomes important

in small populations and may be particularly pronounced after dramatic reduction in range size



Genetic diversity of an alpine clonal plant

33

and fragmentation of habitats of a species (Srikwan and Woodruff, 2000). Alpine habitats are

naturally fragmented, population sizes are expected to be stable, and, indeed, even though

population sizes were very variable (CV = 61.7 %), we found no effect of population size on

genetic diversity in G. reptans.

Genetic differentiation and gene flow in the fragmented alpine environment – Due

to high natural fragmentation and limited gene flow, we expected a comparably high genetic

differentiation among populations in the alpine G. reptans. However, the observed estimate of

genetic variation among all populations (Gst = 0.14) is not particularly high if compared with

the mean reported in the review of 41 RAPD studies by Nybom and Bartish (2000) (Gst = 0.29

± 0.21). In addition to the amount of gene flow and drift, Gst values are dependent on life

history traits, colonization events, and the extent of the area under study, with a positive

correlation of genetic differentiation and maximum spatial distance between population pairs

(Nybom and Bartish, 2000). In our study, genetic differentiation increased from the core area,

to the regional, to the whole area. However, the average spatial distances in our study are

much lower than the mean distances among populations in most of the studies reviewed by

Nybom and Bartish (2000), which in part might explain the comparably low value of

population differentiation in G. reptans. In Trollius europaeus, a similar estimate of genetic

differentiation among populations in the Alps was observed, but in this case genetic and

geographic distances were not correlated (Despres et al., 2002).

In our study, we observed considerable variation among pairwise population Fst values

(ranging from 0.02 to 0.45), indicating random genetic drift. Even population pairs on the

same glacier foreland were significantly differentiated, but to a lower degree than the more

distant populations. This suggests that gene flow among populations of G. reptans is

dependent on distance. The nonsignificant genetic difference between the two youngest

populations in adjacent valleys may however indicate that younger populations are not

necessarily founded by the nearest and elder populations from the same glacier forland, but by

immigrants from more than one population in the same region. In G. reptans, we do not expect

genetic bottlenecks in populations because our results indicate that gene flow is not restricted

to single habitats (i.e., single glacier foreland) and because even early-successional

populations were not genetically depleted. The observed gene flow via pollinators was very

low, but the calculated seed dispersal distances may explain the results of the molecular study.
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Even if the simulation model predicts that only a small proportion of G. reptans seeds is

dispersed over long distances, this may be sufficient for colonization and gene flow over

considerable distances because of the large numbers of seeds produced every year. To infer

the relative contribution of seed and pollen to gene flow, genetic population structure due to

maternally inherited and nuclear genes should be compared (McCauley, 1995). However, we

have not yet been successful in finding variation in maternally inherited genes in G. reptans

with RFLP (random fragment length polymorphism).

Conclusion – Our results indicate that an alpine plant species may exhibit a similar

level of genetic variation as lowland species. We observed no severe consequences of the

highly fragmented habitats of Geum reptans for molecular genetic diversity and genetic

differentiation among populations was not particularly high. In addition, clonal reproduction

in this species has no severe consequences for population genetic variability and neither did

successional age or elevation of the populations. Clearly, our results indicate that, at least

within the same region, considerable gene flow is occurring among populations of G. reptans

over larger distances, probably mainly by seed. Nevertheless, we observed a clear genetic

structure according to the geographic distribution of the studied populations. Even populations

within the same glacier foreland were significantly differentiated, but to a small degree, while

genetic differentiation increased among more distant populations. We conclude that, in spite of

the highly fragmented alpine landscape, random genetic drift is not the main factor

determining population genetic structure of a species like G. reptans and that gene flow might

be more important than commonly suggested.
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ABSTRACT

1. Reproductive behaviour of plants may change in contrasting habitats. In two separate

greenhouse experiments, we studied effects of population origin (early vs. late successional

and low vs. high altitudinal habitats) and environmental effects (competition and

temperature) on plant size and sexual vs. clonal reproduction in Geum reptans.

2. Plant size and reproduction differed significantly among populations, but only plant size

differed between contrasting habitats.

3. If plants grew with competition or at warm temperature, plant size and reproduction was

reduced and more plants reproduced only with stolons. Individuals with flowers were

larger than plants which reproduced only with stolons, indicating a lower minimum plant

size for clonal than for sexual reproduction.

4. Populations of different origin changed only little in their response to environmental

treatments. Plants from early successional habitats tended to produce more flowers in the

competition-free treatment, whereas in plants from late successional habitats it was the

opposite.

5. Results indicate limited adaptation in reproductive behaviour to contrasting habitats.

Nevertheless, great size-dependent plasticity in the proportion of sexual vs. clonal

reproduction ensures population persistence and reproduction in a large range of habitat

conditions.

Keywords: competition, plasticity, reproductive allocation, temperature, trade-off
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INTRODUCTION

Steep environmental gradients are ubiquitous in alpine ecosystems. Climatic conditions

change with altitude, exposition, and slope resulting in a patchy distribution of microhabitats.

Changes in abiotic and biotic conditions can lead to major modifications in selection pressure

on plant life history traits (Stearns 1992; Cody & Overton 1996). Clonal growth is among the

most noticeable adaptations to severe climatic conditions and nutrient poorness in cold

environments (Callaghan 1988; Klimes et al. 1997). Recruitment by seeds is commonly

assumed to be restricted in the cold and by short seasons (Jelinski & Cheliak 1992; Eriksson

1997). Indeed, many alpine plants reproduce clonally even in pioneer communities and

particularly in late successional grasslands (Gray 1993; Stöcklin & Bäumler 1996; Klimes et

al. 1997).

Clonal plants tend to allocate more biomass to vegetative propagation than to sexual

reproduction (Abrahamson 1980; Cook 1985; Eriksson 1997). As resources are usually limited

(Cody 1966), a pronounced allocation to vegetative reproduction will lower the investment for

seeds resulting in a trade-off between the two reproductive modes (Harper 1977; Watson

1984; Piquot et al. 1998; Prati & Schmid 2000; Ronsheim & Bever 2000 but see Cain &

Damman 1997). In plants, meristem allocation may be even more important than resource

partitioning, because meristems available for reproduction may be more limited than carbon or

other resources (Watson 1984; Geber 1990; Bonser & Aarssen 1996). The future availability

of reproductive meristems is increased by clonal reproduction (Eriksson 1989). Extensive

vegetative propagation may result in rapid, but spatially limited spread of genotypes and may

improve population persistence during phases of lacking sexual reproduction. Long-distance

dispersed seeds, however, connect fragmented populations in the patchy alpine landscape or

found new populations in unoccupied habitats. But seed production is more nutrient

demanding than vegetative reproduction (Harper 1977; Watson 1984). The onset of clonal and

sexual reproduction in general may be determined by different minimum plant size

requirements (Schmid, Bazzaz & Weiner 1995). In most cases sexual reproduction increases

with increasing plant size (Weiner 1988), whereas the relative allocation to clonal propagation

appears to be constant over a large range of plant sizes (Schmid et al. 1995).

Selection pressure affecting trade-offs differ in response to environmental

heterogeneity (Bazzaz et al. 1987; Sultan 1987; Hutchings 1988) and may lead to local

adaptation (Bradshaw 1984; Galen, Shore & Deyoe 1991). We expect variation in the
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partitioning of resources and meristems to reproductive strategies in contrasting habitats. The

spatial isolation of alpine habitats may even increase the degree of local differentiation.

However, phenotypic plasticity rather than genetic differentiation may be an alternative way

of matching genotypes to environment, with increasing environmental heterogeneity favouring

greater levels of plasticity (Schlichting 1986; Sultan 1987). How the highly structured alpine

landscape affects trait differentiation among sites and to what an extend such effects are

genetically based is fairly unknown.

Here, we ask if genetic population differentiation in growth and reproductive behaviour

is affected by two prominent alpine environmental gradients: succession and elevation. The

most important factor changing along successional gradients after the retreat of glaciers is the

increasing competition pressure while soil development proceeds and vegetation cover

increases. With increasing altitude temperature and vegetation period are decreasing resulting

in more stressful abiotic conditions for plant life and particularly seedling establishment.

Metapopulation models predict that individuals with high dispersal ability will be favoured in

early successional habitats, because new populations are more likely founded by high-

dispersal genotypes (Olivieri, Michalakis & Gouyon 1995; Olivieri & Gouyon 1997). During

succession, genotypes with an affinity to maintenance functions, e.g. clonal propagation might

be more successful. Opposing selection for sexual and clonal reproduction in early and late

successional habitats was reported by Piquot et al. (1998), whereas Van Kleunen, Fischer &

Schmid (2001) found an increase in sexual reproduction at higher density. What the altitudinal

gradient is concerned, vegetative reproduction may increase at higher altitudes within species

(e.g. Young et al. 2002), or among species (Klimes et al. 1997). Other studies report higher

allocation to clonal than to sexual reproduction in harsh environments (Bostock 1980), a

maximum relative investment in clonal reproduction at medium altitude (Douglas 1981), or no

altitudinal effect of reproductive allocation at all (Williams, Mack & Black 1995). Large

differences in reproductive behaviour among populations of Geum reptans L. have been

observed (T. Weppler and J. Stöcklin; unpublished), but to which extend these differences

have a genetic background is unknown.

In two separate experiments, we studied effects of population origin (genetic effects)

and environment on growth and the relative importance of sexual and clonal reproduction in

Geum reptans. In a competition-experiment plants from early and late successional

populations grew with or without competition with Poa alpina L.. In the second experiment,
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plants from low and high altitudinal populations were exposed to different temperatures (cold

and warm). G. reptans is especially suited to study the trade-off between reproductive modes,

because meristems in leaf axils are used for either sexual or clonal reproduction. We addressed

the following hypothesis: (i) reproductive behaviour of plants from early and late successional

habitats differs. (ii) The relative importance of clonal growth is increased in populations from

high altitude compared to populations from lower elevations. (iii) Plants from late

successional populations will be favoured in the competition treatment and plants from higher

populations will be favoured at low temperature, indicating adaptation. Additionally, these two

experiments allow to test, if sexual and clonal reproduction are affected by plant size and if

there is a trade-off between the two reproductive modes.

MATERIALS AND METHODS

Study species – The clonal Geum reptans (Rosaceae) is a perennial outcrossing rosette

plant, and occurs preferentially on glacier forelands and moraines on siliceous rocks between

1950 and 3800 m a.sl. (Hegi 1995). The plant is one of the first pioneers on virgin soils and

persists long during succession. In the competition-experiment, early successional habitats

refer to recently (several years to a few decades) deglaciated areas and late successional

habitats are at least 100 years free of ice.

G. reptans is reproducing clonally by forming new rosettes (ramets) with adventitious

roots at the end of aboveground stolons, and sexually by producing flowering stems with a

single terminal flower head. Reproductive meristems are located in the axils of leaves and are

preformed in the season prior to emerging. At the end of summer, stolons, not established

daughter rosettes, and leaves of adult plants die back.

Experimental design – In the competition-experiment a total of 192 plants from four

early and four late successional populations were grown either with or without Poa alpina, i.e.

12 individuals each per population and treatment (Table 1). Plants grew in two air-conditioned

greenhouse compartments with an ecological relevant air-temperature regime of 10 °C at night

and 20 °C during daytime. In the temperature-experiment a total of 208 plants from five low

and four high altitudinal populations were exposed to two temperature treatments. Per
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population 12 individuals grew at cold temperature (7.5 °C at night and 17.5 °C during

daytime) and 12 individuals at warmer temperature (12 °C at night and 22 °C during daytime)

in two air-conditioned greenhouse compartments per treatment (in one population only 8

individuals per treatment were available, Table 1). The temperature difference of 4.5 K equals

a difference in altitude of 750 m under the estimate of a lapse rate of 0.60 K per 100 m

(Körner 1999). Plants within greenhouse compartments were randomised every second month.

Within each compartment a temperature sensor measured air-temperature continuously and

regulated the connected air-conditioner (Airwell Type R-407C, ACE Klimatechnik GmbH,

Frankfurt, Germany) to cool the compartment to the required temperature. During daytime,

temperature rose due to incident solar radiation and the ambient air-temperature around the

chamber. All plants were kept inside the greenhouse from April to October, but overwintered

outside in the Garden of the Institute of Botany, University of Basel, Basel (270 m a.sl.),

Switzerland, where plants experienced frost.

Tab.1: Location, population abbreviation, elevation, habitat type, and number of individuals per

population and treatment of 17 populations of Geum reptans in the Swiss Alps used in two greenhouse

experiments with a competition- and a temperature-treatment, respectively.

Location Population
Longitude (m)/
Latitude (m)1

Elevation
m a.sl.

Habitat type2
No. of plants in the treatment:

Competition-experiment without comp. with comp.

Scaletta early, GR SCE 791600/175430 2500 early ss 12 11

Muttgletscher, VS MUT 674500/156600 2520 early ss 10 8

Vadret da Radönt, GR RAD 792585/178485 2640 early ss 12 12

Vadret da Grialetsch, GR GRI 793500/175250 2660 early ss 12 12

Scaletta late, GR SCL 791750/175500 2330 late ss 10 10

Val da Cambrena; GR CAM 797100/142300 2340 late ss 12 12

Flüelapass, GR FLU 791700/180300 2420 late ss 12 12

Blauberg, UR BLA 675030/157920 2580 late ss 9 9

Temperature-experiment cold temp. warm temp.

Fluhseeli, BE FLS 604700/139700 2070 low 13 14

Steinlimigletscher, BE STE 675025/173850 2080 low 11 13

Val Roseg, GR ROS 786125/142900 2120 low 6 5

Val Fex, GR FEX 781325/137730 2140 low 13 14

Muttbach, VS MUB 674250/157550 2150 low 12 10

Eggishorn, VS EGH 650400/142290 2860 high 12 12

Flüela Schwarzhorn, GR SWH 791400/178750 2900 high 12 12

Diavolezza, GR DIA 794025/143500 2980 high 13 12

Piz Languard, GR LAN 793075/151450 3080 high 10 12

1 Longitude and latitude according to the Swiss topographical maps (Bundesamt für Landestopographie, Wabern, Switzerland)
2 Early and late successional (ss) habitats; low and high habitats.
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Plant material was collected in early autumn 2000 and 2001 for the competition-, and

the temperature-experiment, respectively. Per population, we collected c. 30 daughter rosettes

with their stolons each from a different mother plant. The randomly chosen mother plants

were located along a transect and were at least 4 m distant from each other, except in the

population at ‘Eggishorn’ and ‘Flüela Schwarzhorn’ where plants were aggregated along

cracks. Because of few reproducing adults in the populations of ‘Val Roseg’, ‘Muttbach’, and

‘Flüela Schwarzhorn’ more than one clonal offspring from 3, 4, and 7 mother plants

(respectively) were collected and allocated equally to treatments. Collected plants were kept in

moist bags in the dark at 4 °C until planting. By the end of October, 24 plants per population

with equal size were planted into single rectangular pots of 9 x 9 cm and 10 cm in height. Pots

were filled with 2 cm of pumice-gravel as drainage, followed by a 1:1 mixture of sand and

pot-soil. Plants were randomly allocated to the two treatments in each experiment. After three

weeks, in one half of the pots of the competition-experiment four randomly chosen bulbills of

Poa alpina were planted as competitors, one in each edge of the pot. P. alpina bulbills were

collected at four sites at different altitudes and kept in a moist bag in the dark at 4 °C until

planting. After the first winter the number of P. alpina individuals per pot were reduced to one

and every second month individuals of P. alpina were reduced to two tillers. In each

experiment, plants within populations were randomly and equally partitioned to greenhouse

compartments. Statistically, greenhouse compartments were treated as blocks. In the

temperature-experiment blocks and temperature treatments fall together.

The remaining ramets were potted the same way. During the first winter 14 and 21

individuals died in the competition- and the temperature-experiment, respectively. Whenever

possible, dead plants were replaced by individuals of the same population or in the

temperature-experiment of the same elevation. Plants which died later, were not replaced

anymore. On July 15th 2002, the 161 remaining plants were brought to 2000 m a.sl. near

Davos, Graubünden, Switzerland, for a comparison of their reproductive behaviour at a natural

site with the plants in the greenhouse.

In the greenhouse, plants got additional light from 1 kW lamps 3 to 5 hours during

daytime according to day-length. All plants were watered twice a week and received the same

amount of full fertiliser (in 2002: 9 kg N ha-1, and in 2003: 9 kg N ha-1 plus 23 kg N ha-1 with

a higher K content; applied in equal portions during the vegetation period). Potassium

facilitates growth of reproductive meristems.
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Measurements – Number of leaves per plant were recorded at the beginning of the

experiment and analysed to test for equal plant size between treatments and blocks. This

measure was also used as a covariate in statistical analyses (see below).

Final harvest of both experiments was in July and August 2003, 3 and 2 years after the

beginning of the competition- and the temperature-experiment, respectively. Numbers of

rosettes, and green and dead leaves, produced in 2003, were counted. Above- and below-

ground plant biomass was measured after drying at 80 °C for 48 h. Leaf axils of the leaves

formed in the year of the final harvest were checked for reproductive meristems and if present,

they were cut and stored in 50 % alcohol until determination whether they are future flowers

or stolons. In the greenhouse, we observed only few individuals actually reproducing in 2003

(8.7 %), whereas 73.3 % of the remaining plants kept at 2000 m a.sl. were reproducing,

despite a similar number of preformed reproductive meristems in both groups. Therefore, we

judged preformed meristems as a more precise measurement of the reproductive potential of

populations in the greenhouse than the actual number of flowers and stolons. In the common

garden vernalisation was probably too short to initiate sufficiently preformed meristems to

grow out because of the milder climate during winter compared with the conditions at 2000 m

a.sl.. In the previous years, reproduction was constantly low and should not have influenced

reproductive allocation in the year of the final harvest.

Statistics – Vegetative and reproductive measurements were used to test for effects of

origin (habitat type and population) and environment (treatment) by hierarchical analysis of

covariance (ANCOVAs). In the competition-experiment, habitat type (early and late

succession) was tested against population, treatment was tested against the interaction of

treatment and population, and population as well as the interaction of habitat type and

treatment were tested against the remaining residual. In the temperature-experiment, treatment

was tested against block, habitat type (low and high altitude) was tested against the population,

and population, the interaction of treatment and habitat type as well as the interaction of

treatment and population were tested against the remaining residual. Plant measurements were

ln-transformed to test for relative differences and the proportion of stolons on all reproductive

organs was arcsin-transformed. Because several individuals neither produced stolons nor

flowers the requirement for the ANCOVA could not be fulfilled with individual data points.

Instead, we used means of reproductive meristems per population within treatment and block
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for the ANCOVA. Correlations were also calculated with population-means with a non-

parametric Spearman’s Rho (rs) procedure instead of parametric Pearson’s product-moment

(R) tests.

Phenotypic measurements of experimental plants include a genetic and a maternal

environmental component. The maternal environment may become manifest in stolons

influencing the nutrition and growth of clonal offsprings. Therefore, we used the number of

leaves at the beginning of the experiment as a measure of maternal effects. In both

experiments this measure did not affect the number of reproductive meristems (P > 0.1), and

did not influence plant size at the final harvest in the competition-experiment, but influenced

plant size at the final harvest in the temperature-experiment (R = 0.22, P < 0.01 for leaves and

above-ground biomass). Because of the possibility of maternal effects, we consequently used

in all the analyses the number of leaves at the beginning of the experiments as a covariable.

With this approach we feel confident that we were able to reduce maternal effects in the final

data set to a large extent.

Plants were classified according to their reproductive meristems in individuals with

stolons, with flowers, with stolons and flowers, or non-reproducing individuals. If preferences

of reproductive behaviour differed between habitat types or treatments was tested with a

Poisson log-linear Model.

All statistical analyses were done with R (Ihaka & Gentleman 1996), a shareware

package with high similarity to S-PLUS.

RESULTS

Effects of population origin on plant size and reproduction – All measured traits of

plant size and reproduction in the temperature-experiment and four of eight traits in the

competition-experiment differed significantly among populations indicating population

differentiation (Table 3). But there were only few effects on plant size and reproduction due to

population origin from early and late successional habitats in the competition-experiment, and

from low and high altitudes in the temperature-experiment: plants from early successional

habitats produced 14 % more aboveground biomass and 15 % more below-ground biomass (P

< 0.05 for both terms, Tables 2A and 3A), and plants from high altitude produced 18 % more
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leaves (P = 0.06, Tables 2B and 3B). Furthermore, in two cases we found marginal significant

interaction terms for origin x treatment, indicating that the response to environmental

treatments was different among habitats or populations. In the competition-experiment plants

from early successional populations produced more flowers in the treatment without

competition, whereas plants from late successional populations produced more flowers in the

treatment with competition (P = 0.07 for the interaction of habitat x treatment, Table 3A,

Fig. 1). In the temperature-experiment, the difference in the number of reproductive meristems

in the warm and cold temperature treatment was depending from populations (P = 0.07 for the

interaction of population x treatment, Table 3B).

Fig. 1: Mean numbers of flowers (± SE) of Geum reptans populations from early and late successional

habitats in a competition-experiment with or without Poa alpina as a competitor (P = 0.07 for competition x

habitat origin in ANCOVA).

Effects of environment on plant size and reproduction – In the competition-

experiment plant size of G. reptans was significantly reduced by competition with Poa alpina:

above-ground biomass was reduced by 61%, below-ground biomass by 72 %, number of

rosettes by 33 %, and number of leaves by 40 % (P = 0.00001 for all terms, Tables 2A and

3A). The frequency of plants reproducing either by flowers, stolons, or with both reproductive

modes shifted between the competition treatments. More individuals were reproducing

clonally or not at all in the treatment with competition at the expense of individuals with

flowers or both reproductive modes (P < 0.001, Fig. 2A). Plants grown with competition
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produced 50 % less reproductive meristems in total, 37.5 % less stolons, and 62.5 % less

flowers (P < 0.01 for all terms, Tables 2A and 3A). In general, plants produced relatively more

stolons than flowers (60 ± 2.4 %, Table 2A). The proportion of stolons, however, did not

change significantly between treatments (P = 0.293, Tables 2A and 3A).

Tab. 2: Plant size and reproduction (mean ± SE) of Geum reptans from different origins in two

experiments: (A) Competition-experiment with plants from early and late successional habitats with and without

competition from Poa alpina and (B) temperature-experiment with plants from low and high altitude grown

under cold or warm temperature-treatment. For differences among traits see Tab. 3.

A

Competition-treatment without competition with competition

Successional habitat early late early late

Plant size

Above-ground biomass (g) 1.93 ± 0.07 1.67 ± 0.07 0.83 ± 0.05 0.67 ± 0.05

Below-ground biomass (g) 3.00 ± 0.13 2.76 ± 0.13 0.97 ± 0.07 0.69 ± 0.06

No. of rosettes 1.80 ± 0.15 1.79 ± 0.14 1.15 ± 0.07 1.16 ± 0.07

No. of leafs 24.5 ± 1.31 21.3 ± 1.07 14.0 ± 0.72 13.3 ± 0.69

Reproduction

No. of reproductive meristems 2.78 ± 0.18 2.93 ± 0.25 1.24 ± 0.16 1.60 ± 0.21

No. of flowers 1.28 ± 0.16 1.12 ± 0.20 0.27 ± 0.08 0.63 ± 0.15

No. of stolons 1.50 ± 0.15 1.81 ± 0.20 0.98 ± 0.12 0.98 ± 0.15

% Stolons 56.0 ± 4.95 59.7 ± 5.58 65.7 ± 6.79 55.4 ± 6.81

B

Temperature-treatment warm cold

Altitude of habitat low high low high

Plant size

Above-ground biomass (g) 1.55 ± 0.06 1.59 ± 0.06 1.61 ± 0.06 1.73 ± 0.07

Below-ground biomass (g) 1.61 ± 0.07 1.63 ± 0.09 1.61 ± 0.07 1.56 ± 0.08

No. of rosettes 2.21 ± 0.15 2.40 ± 0.16 2.25 ± 0.14 2.66 ± 0.17

No. of leafs 23.6 ± 1.07 28.0 ± 1.09 24.8± 1.11 31.3 ± 1.37

Reproduction

No. of reproductive meristems 2.86 ± 0.31 2.96 ± 0.35 4.16 ± 0.25 4.94 ± 0.38

No. of flowers 1.39 ± 0.26 1.19 ± 0.33 1.69 ± 0.19 1.89 ± 0.35

No. of stolons 1.46 ± 0.13 1.77 ± 0.19 2.49 ± 0.20 3.04 ± 0.27

% Stolons 55.1 ± 5.15 64.3 ± 5.70 59.8 ± 3.45 63.6 ± 4.61

The temperature treatment had only weak influence on above-ground biomass and leaf

number per plant, and no influence on below-ground biomass and the number of rosettes

(Tables 2B and 3B). But temperature influenced the reproductive behaviour of plants. In warm

temperature, more individuals produced only stolons, only flowers, or were non-reproducing

at  the expense of  individuals  with  both reproductive modes (P < 0.001, Fig. 2B).  In total, in
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Tab. 3: ANCOVA summary of the effect of habitat type, population, treatment, and interaction of

treatment with habitat type or population on plant size (above- and below-ground biomass, No. of rosettes, or No.

of leaves) and reproductive meristems (total, flower, or stolon, and percentage of stolons on total reproductive

meristems) in two experiments: (A) Competition-experiment, (B) temperature-experiment.

A
Competition-experiment DF MS P MS P MS P MS P

Plant size Above-ground biomass Below-ground biomass No. of rosettes No. of leaves

Covariable° 1 0.021 0.090 0.024 0.028

Block 1 0.192 0.007 0.047 0.597

Habitat (early vs. late succession) 1 0.771 * 1.195 * 0.00001 n.s. 0.582 n.s.

Population 6 0.069 * 0.109 n.s. 0.093 n.s. 0.165 n.s.

Competition-treatment 1 10.226 *** 27.328 *** 5.691 *** 11.484 ***

Habitat x Treatment 1 0.0001 n.s. 0.084 n.s. 0.011 n.s. 0.106 n.s.

Population x Treatment 6 0.032 n.s. 0.049 n.s. 0.039 n.s. 0.086 n.s.

Residual 154 0.031 0.062 0.168 0.103

Reproduction Reproductive meristems Flowers Stolons % Stolon

Covariable° 1 0.077 0.068 0.001 23.8

Block 1 0.080 n.s. 0.001 n.s. 0.222 n.s. 539.6 n.s.

Habitat (early vs. late succession) 1 0.029 n.s. 0.006 n.s. 0.055 n.s. 13.8 n.s.

Population 6 0.391 ** 0.181 0.06 0.443 ** 1003.4 *

Competition-treatment 1 4.344 *** 1.456 *** 1.912 * 156.1 n.s.

Habitat x Treatment 1 0.055 n.s. 0.265 0.07 0.256 n.s. 1029.8 0.09

Population x Treatment 6 0.106 n.s. 0.030 n.s. 0.191 n.s. 117.7 n.s.

Residual 14 0.077 0.066 0.095 327.3

B
Temperature-experiment DF MS P MS P MS P MS P

Plant size Above-ground biomass Below-ground biomass No. of rosettes No. of leaves

Covariable° 1 0.642 0.398 0.554 1.080

Temperature-treatment 1 0.163 0.07 0.022 n.s. 0.233 n.s. 0.298 0.08

Block 2 0.012 0.036 0.200 0.027

Habitat (low vs. high altitude) 1 0.009 n.s. 0.167 n.s. 0.831 n.s. 1.700 0.06

Population 7 0.300 *** 0.342 * 0.836 ** 0.338 ***

Habitat x Treatment 1 0.023 n.s. 0.010 n.s. 0.098 n.s. 0.046 n.s.

Population x Treatment 7 0.095 n.s. 0.044 n.s. 0.167 n.s. 0.076 n.s.

Residual 185 0.074 0.136 0.235 0.086

Reproduction Reproductive meristems Flowers Stolons % Stolon

Covaribale° 1 0.266 0.088 0.067 54.1

Temperature-treatment 1 2.691 ** 0.554 n.s. 1.243 * 25.7 n.s.

Block 2 0.022 0.118 0.016 189.9

Habitat (low vs. high altitude) 1 0.632 n.s. 0.058 n.s. 0.339 n.s. 542.3 n.s.

Population 7 0.605 *** 0.577 *** 0.187 ** 933.5 *

Habitat x Treatment 1 0.0002 n.s. 0.003 n.s. 0.0003 n.s. 23.6 n.s.

Population x Treatment 7 0.132 0.07 0.061 n.s. 0.042 n.s. 409.6 n.s.

Residual 15 0.054 0.061 0.041 229.7

°No. of leaves at the beginning of the experiment; *** P < 0.001, ** P < 0.01, * P < 0.05, and n.s. P > 0.1
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the cold-temperature treatment plants produced 55 % more reproductive meristems, and 68.8

% more stolons, whereas the amount of flowers was unaffected by temperature (Tables 2B and

3B). Again, plants produced relatively more stolons than flowers (59 ± 3 %) and the

proportion of stolons did not differ between treatments (P = 0.791, Tables 2B and 3B).

Fig. 2: Frequency of Geum reptans individuals reproducing either by flowers, stolons, or both

reproductive modes in two experiments: (A) Competition-experiment (N = 172) and (B) temperature-experiment

(N = 206). Frequencies change significantly among the treatments in both experiments (Poisson log-linear model:

P < 0.001). Non-reproducing individuals are marked with ‘Non’.

Size-dependence of reproduction – In general, larger plants reproduced more than

smaller plants. In both experiments, mean above-ground biomass was largest in plants
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reproducing simultaneously with flowers and stolons. Biomass of plants reproducing only

clonally or not at all was significantly lower compared to biomass of sexual plants (paired t-

Tests: P < 0.001 in both experiments, Table 4). Biomass did not differ between plants

reproducing only sexually or with both reproductive modes (P > 0.1 for both experiments).

In the competition-experiment, the total number of reproductive meristems increased

with increasing above-ground plant weight (rs = 0.66, P = 0.007; rs = 0.51, P = 0.04 and rs =

0.81, P = 0.02 for total reproductive meristems, stolons, and flowers, respectively; N = 32) or

increasing number of leaves. The percentage of stolons decreased with increasing above-

ground biomass and increasing leaf numbers (rs = -0.49, P = 0.05 and rs = -0.55, P = 0.03,

respectively; N = 32).

In the temperature-experiment, plants with more leaves produced more reproductive

meristems and more stolons, whereas the number of flowers was not affected (rs = 0.60, P =

0.01; rs = 0.54, P  = 0.02 and rs = 0.23, P = 0.35, respectively; N = 36). The number of

reproductive meristems did not correlate with above-ground biomass (P > 0.05 for all terms; N

= 36) and the percentage of stolons did not change in relation to plant size (rs = -0.31, P = 0.20

and rs = 0.07, P = 0.75 for above-ground biomass and numbers of leaves, respectively; N =

36).

Tab. 4: Mean above-ground biomass (g; ± SE) of Geum reptans individuals with only stolons, only

flowers, both reproductive modes, or no reproduction at all in a competition- and a temperature-experiment

(different superscript indicate significant differences among means).

Mean above-ground biomass (g) of individuals with:
Stolons Flowers Stolons and flowers No reproduction

Competition-experiment 1.13 ± 0.07b 1.53 ± 0.13a 1.57 ± 0.07a 0.63 ±0.14c

Temperature-experiment 1.47 ± 0.05b 1.63 ± 0.14a 1.72 ± 0.04a 1.34 ±0.13b

Trade-off among stolons and flowers – In both experiments, the number of stolons

decreased with increasing number of flowers, indicating the expected trade-off between

reproductive modes (R = -0.18, P = 0.02 and R = -0.16, P  = 0.02 with all reproductive

individuals in the competition- (N = 153) and the temperature- (N = 194) experiment,

respectively).
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DISCUSSION

In both greenhouse experiments, we found significant differences in growth and

reproduction among populations of Geum reptans and some evidence for adaptive population

differentiation in contrasting habitats. If plants grew under environmental stress (competition,

warmer temperature), plant size and reproduction was reduced and fewer plants reproduced

sexually or simultaneously with both reproductive modes. In general, larger plants reproduced

more, but the minimum plant size for clonal reproduction was definitively smaller than for

sexual reproduction. This shift in reproduction with plant size was mostly responsible for the

different reproductive behaviour of plants in different experimental environments. The

observed genetic differences among populations was only in few cases explained by

contrasting habitats and is probably mainly a result of drift, as populations of G. reptans are

spatially isolated and gene flow is limited (Pluess & Stöcklin, in press).

Plant size and reproductive investment – Reproductive behaviour of G. reptans was

highly dependent on plant size, with more offsprings in larger plants, similar to many other

studies, e.g. Viola sororia (Solbrig 1981), Scabiosa columbaria (Van Treuren et al. 1993),

Epilobium dodonaei and E. fleischeri (Stöcklin & Favre 1994), Pennisetum setaceum

(Williams et al. 1995), and Asarum canadense (Cain & Damman 1997), however not in

Ranunculus acris (Hemborg & Karlsson 1998). The threshold size in G. reptans for clonal

reproduction was significantly lower than for sexual reproduction (Table 4), as predicted by

life history theory and observed in several species (e.g. Schmid et al. 1995). The preference of

smaller plants to reproduce clonally may have a physiological and an evolutionary reason.

Clonal propagation in plants is to a high degree self-sustainable because of the photosynthesis

of the stolon itself, the leaflets at stolon nodes, and the leaves of the new rosette at the end of a

stolon. Seed production is usually more costly (Harper 1977; Watson 1984). Secondly, from

an evolutionary point of view, it may be favourable to invest first in clonal persistence and to

postpone the more uncertain production of seeds. Such a strategy is particularly suited in harsh

alpine habitats where the establishment of seeds is more risky (Stöcklin & Bäumler 1996). As

a consequence of a smaller threshold size for clonal reproduction, the relative allocation to

sexual reproduction increases in larger plants (Weiner 1988; Schmid & Weiner 1993). In the

competition-experiment, the percentage of flowers was positively related to plant size. In the

temperature-experiment, size variation was lower and the percentage of flowers was
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independent of plant size. Differences in size may largely explain treatment effects on

reproduction in the competition-experiment but not in the temperature-experiment. As all

plants within each experiment were of the same age, size variation was smaller than

commonly observed in field populations. Nevertheless, large differences in reproductive

behaviour, similar size effects, and an increase of flower production in larger plants were

found in 20 field populations of G. reptans (T. Weppler & J. Stöcklin, unpublished data).

Thus, effects of age and environmental conditions on plant size may explain in part the

different reproductive behaviour of field populations.

Effects of environment – Competition reduced plant size and reproduction drastically,

indicating low competition ability of G. reptans. In the competition treatment, more plants

reproduced by stolons only, probably as a consequence of the general lower plant size rather

than as a direct consequence of competition (see above), whereas in the treatment without

competition more plants reproduced with both reproductive modes. Interestingly, this shift in

reproductive behaviour of individuals did not change the population mean of percent stolon

production, because in the treatment without competition many larger plants increased not

only flower but also stolon production. We conclude, that large individual size variability in

stolon and flower production may largely buffer the effects of contrasting habitats. Similarly,

in a greenhouse experiment with Uvularia perfoliata the effect of ramet size on reproduction

was stronger than the light-treatment (Wijesinghe & Whigham 1997).

The temperature treatment had marginally significant effects on plant size, but

particularly the number of reproductive meristems, notably of stolons was reduced with

warmer temperature. Alpine plants may not be well adapted to warmer temperature. Plants

from high altitudes grown at lowland-temperature frequently have a higher respiration than

lowland plants due to insufficient acclimation and may therefore have a reduced growth and

reproduction, or they even die (Körner 1999). Metabolic limitations may explain the reduced

plant performance at warmer temperature in our experiment. Stolon production was more

negatively affected than flower production (Tables 2B and 3B), indicating that the fate of

reproductive meristems may be influenced directly by environmental conditions. A shift

towards a higher stolon production with lower temperature is an advantage for a plant like G.

reptans, because at higher altitude and lower temperature population persistence from clonal

reproduction is more important (Abrahamson 1980; Bostock 1980). Our results also suggest,
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that unfavourable temperature regimes at low altitude may be in part responsible for the lower

distributional limits of G. reptans.

Effects of origin – Significant differences in size and reproduction among populations

in both experiments indicate genetic differentiation among populations, as experimental

conditions were common for all plants. There were some effects from contrasting habitats, but

they were not very strong (see below). Population differentiation is therefore mainly random

in nature and based on drift. That the differences result from adaptations to unknown habitat

conditions cannot be fully excluded, but is unlikely, since unknown differences among

habitats are supposed to be much smaller than the tested differences between contrasting

successional and altitudinal habitats.

In addition to unspecific population differentiation, we found indications for a

differentiation at least in the competition-experiment (Table 3) giving some support to the

hypothesis of adaptations in G. reptans to contrasting environments. Particularly, early

successional plants produced more flowers in the absence of competition compared to plants

from late succession (Fig. 1) and at the same time, plants (irrespective of their smaller size)

from late successional populations had twice as much flowers than plants from early

succession when they competed with Poa (P  = 0.07, Tables 2A and 3A), suggesting a

specialisation to contrasting successional habitats. With respect to stolons, plants from late

succession invested more in stolons without, and plants from early succession more in stolons

with competition (P < 0.1, Table 2A and 3A). These interactions were only marginally

significant, but since we had to use, for statistical reasons, population means instead of

individual data points, statistical power was low and we consider these results as an indication

for the described effects. Results suggest, that plants of G. reptans from late successional

populations are better adapted to produce flowers in a competitive environment than plants

from early successional populations, probably because they better compete for scarce

nutrients. In the temperature-experiment, the tendential increase in the number of leaves in

populations from high altitude (P = 0.06, Table 3B) and similar above-ground biomass in low

and high altitudinal habitats may indicate smaller leaf size at high altitude. Smaller leaves may

be an adaptation to the colder and harsher climatic conditions at high altitude.

As we found in both experiments a trade-off between clonal and sexual reproduction,

opposing selection in contrasting habitats on reproductive behaviour in G. reptans is at least
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possible, as predicted from general metapopulation models that included evolutionary

constraints via a trade-off between life-history traits (Olivieri et al. 1995). A trade-off between

the two reproductive modes in contrasting habitats was found in Rumex acetosella (Houssard

& Escarre 1995) and in Sparganium erectum (Piquot et al. 1998). These species allocated

more resources to sexual reproduction in young populations, while in Ranunculus repens

sexual reproduction increased with density (Van Kleunen et al. 2001). In G. reptans, however,

the percentage of stolons only changed among populations but not between contrasting

habitats, indicating no particular selection pressure on reproductive modes constraint by a

trade-off.

Conclusion – Despite large differences among alpine habitats, our results indicate that

the selective forces shaping growth and reproduction of Geum reptans in contrasting habitats

are probably not strong enough for pronounced adaptive population differentiation. There are

indications that plants from late successional populations are better adapted to competition,

but they were weak. Results suggest that population genetic differences in G. reptans are

mostly an effect of drift as already suggested from results of a molecular study (Pluess and

Stöcklin, in press). Size dependent plasticity in reproductive behaviour may explain why

differences in the relative contribution of sexual vs. clonal reproduction in contrasting habitats

were not stronger. Environmental effects on reproductive behaviour were pronounced, related

to plant size, and may shift reproduction of plants towards stolon production under stressful

conditions (competition, warmer temperature).
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ABSTRACT

Seed weight is a crucial plant life history trait, determining establishment success and

dispersal ability. Especially in stressful environments larger seeds may be selected at the

expense of seed number, because larger seeds have a better chance of giving rise to an

established offspring. We tested the hypotheses that between related species-pairs and among

populations of a single species, a similar trend for increasing seed weight with altitude should

be present. Firstly, we measured seed weights from 29 closely-related species-pairs, with one

species occurring in lowland areas and a corresponding species from high altitudes. Seeds of

the alpine species were 28 ± 8 % larger than seeds from lowland species (P < 0.01). Compared

to the related lowland species 55 % of the alpine species had heavier seeds, 3 % (one species)

had lighter, and 41 % had seeds of approximately equal weight. Secondly, we compared seed

weights among populations of four species from different habitats and with different life

histories. Seeds from between 11 and 34 populations per species were sampled along

altitudinal gradients of 800 – 1500 m (c 800 m in Scabiosa lucida, c 1000 m in Saxifraga

oppositifolia, c 1000 m in Epilobium fleischeri, and c 1500 m in Carex flacca). We found no

indication for heavier seeds at higher altitude within the four species, but considerable

variation in seed weight within and among populations. From the significant heavier seeds in

alpine species compared to lowland species we conclude that selection tends to favour larger

seeds at high altitudes, but it is not unanimously operating. Results suggest that seed weight

only rarely changes as a single trait, but rather evolves as an element of a correlated set of

characters involving taxonomic differentiation at the species or at least infra-specific level.

Keywords: Seed size, Carex flacca, Epilobium fleischeri, Saxifraga oppositifolia,

Scabiosa lucida
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INTRODUCTION

Seed weight is a critical character of a plant’s life history. Particularly in adverse

conditions or high competition pressure, larger seeds may have a higher establishment success,

as they provide more reserves for seedlings. But smaller seeds are commonly better dispersed

over large distances. Resources are limited and a plant may allocate them into fewer, larger

seeds or into many, smaller ones (Harper et al. 1970; Smith and Fretwell 1974). Under

stressful environmental conditions, selection for larger seeds is expected. Seed numbers are

related directly to fitness and a selection pressure for more but smaller seeds should operate

similarly for all species. Thus, seed size is expected to vary mainly in response to differences

in selection pressure towards larger seeds (Westoby et al. 1992).

Here we ask if seed weight is changing along altitudinal gradients in the Alps, as

favourable conditions for seed recruitment decrease continuously from low altitude to the top

of mountains (Jolls and Bock 1983) where short and cold summers, long snow cover, and soil

instability constrain seedling establishment (Bliss 1971; Urbanska and Schütz 1986;

Rusterholz et al. 1993; Chambers 1995a, 1995b; Stöcklin and Bäumler 1996). The

compromise between seed size and number may be resolved differently at different elevation.

Indeed, variation in seed size among populations living in different environmental conditions

appear to be common (Winn 1988).

However, seed weight within species was considered for a long time to be relatively

constant (Harper 1977), and selection was predicted to produce one single optimal seed weight

within mother plants (Smith and Fretwell 1974). More recently, many studies have

emphasised that seed size does vary within species and heritability of seed size in populations

of wild plants was shown to be low (e.g. Schaal 1980; Wolfe 1995). Nevertheless, differences

in seed sizes within genera or even families are frequently small (e.g. Hodgson and Mackey

1986; Mazer 1989, 1990; Lord et al. 1995). This is explained by phylogenetic constraints or

niche conservatism (Lord et al. 1995). Adaptive changes may be restricted by a species’

evolutionary history, i.e., complex pattern of covariation among functionally related traits

(Pigliucci 2003).

In the most detailed across-species study of variation in seed weight with

environmental conditions, seed weight of herbaceous species of the Californian flora

decreased with altitude as well as with decreasing soil moisture (Baker 1972). As differences

in altitude and moisture availability are confounded in the Mediterranean climate of California
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the conclusions were questioned (Körner 2003). Phylogenetic relationships among species are

important but were not considered by Baker (1972), whereas Landolt (1967) compared seed

weight in pairs of congeneric lowland and alpine species. Quantitatively measured seed size

tended to increase rather than decrease with altitude (Landolt 1967). A number of studies,

dealing with single species and a focus on several aspects of plant life history, reported on

variation in seed weight with altitude, but a consistent picture is not apparent. Most of these

studies observed an increase (Mariko et al. 1993; Oyama 1993; Holm 1994; Lord 1994; Piano

et al. 1996; Ayana and Bekele 2000; Boulli et al. 2001; Blionis and Vokou 2002), some others

a decrease (Totland and Birks 1996) or no alteration (Holm 1994; Kaya and Temerit 1994;

Gera et al. 2000) in seed weight with altitude.

We combined two approaches to assess if there are differences in seed weight with

altitude. We hypothesized that between related species and among populations within species

a similar trend for increasing seed weight with altitude should be observed. Firstly, we

selected 29 closely-related species-pairs from the Alps, with one species occurring at low

altitude and a corresponding species from high elevations. We quantified mean individual seed

weight using seed samples from the seed collection of the Botanical Institute at the University

of Basel, Switzerland. We considered each species-pair in this across-species comparison as a

phylogenetically independent replicate of seed weight and altitude. Secondly, we selected four

species occurring over a large altitudinal gradient, with large differences in seed weight and

seed dispersal capacities (Carex flacca Schreber, Epilobium  fleischeri Hochstetter,

Saxifraga oppositifolia L., Scabiosa lucida Vill.). Seeds were collected in populations along

an altitudinal gradient. The relationship between altitude and seed weight was tested for each

of the four species separately using regression analysis.

MATERIALS AND METHODS

Comparison of seed weight between related species from low and high altitude – We

selected randomly 29 species-pairs (Table 1) from a list of 53 lowland and 38 closely-related

alpine plants published by Landolt (1967). The list was initially compiled for a comparison of

morphological characteristics between lowland and alpine species-pairs of open habitats in

Switzerland. Species of each pair grow on similar soils with similar moisture conditions

according to the moisture indicator values (Lauber and Wagner 2001). Therefore, differences
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of elevation are primarily due to climatic changes, e.g. decreasing temperature and vegetation

period with increasing altitude. The lowland species occur mainly in the colline region, and

the related alpine species occur mainly in the subalpine/alpine region. The two species within

a pair are not only from the same genus, but are sister species and may frequently hybridise

(Landolt 1967). The list of pairs in our study includes species from 14 families and 27 genera:

25 genera were represented by one species-pair, and only two genera are represented by two

species-pairs (Helianthemum and Plantago). The nomenclature for plant species follows Hess

et al. (1976).

For all 58 species we measured mean individual seed weight using seed samples from

the seed collection of the Botanical Institute, University of Basel, Switzerland. A seed sample

in this collection includes seeds from plants of a single local population. For lowland species

between 2 and 10 seed samples from different locations were available. For most alpine

species seeds from between one and six populations were available, and for two species more

population samples were available (Epilobium fleischeri and Scabiosa lucida). From each seed

sample batches of at least 20 or, if available, 50 air-dried seeds were weighed, and mean

weight per seed of a species was calculated using all available seed samples of this species.

Values from the literature (Salisbury 1942; Lhotska and Chrtkova 1978; Grime et al. 1981;

Müller-Schneider 1983; Bakker et al. 1997; Cerletti 1997; Akinola et al.1998; Milberg et al.

2000; VanAssche et al. 2002) complemented our measurements of 14 species (see Table 1).

The age of the seed samples from the collection of the Botanical Institute (Basel, Switzerland)

had no significant influence on seed weight (regression analysis with 47 seed samples from 11

randomly chosen species).

To answer the main question about difference in seed weights between lowland and

alpine species, differences of the logarithmic seed weights were calculated of each species-

pairs. With a t-test among all species-pairs it was tested, if these relative differences were

significantly different from zero and thereby if alpine seeds were significantly heavier or

lighter than lowland seeds. Tests for seed weight differences within each species-pairs were

not possible, because in 21 of the 58 species seeds of only 1 or 2 populations were available.

We used following approach to describe how many alpine species have heavier, equal, or

lighter seed weights compared to the congeneric lowland species. We designated the seed

weight of the lowland species as 100 %. The seed weight of the alpine species was calculated

as a percentage of the seed weight of the corresponding lowland species. Seed weights of the
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alpine species were considered to be different from the corresponding lowland species, when

they exceeded a threshold value. A threshold value was used because of the large among-

population variation in seed weight within many species. Based on the mean coefficient of

variation (CV) of 19.9 ± 2.0 %, which was calculated from 24 randomly chosen species with

seed samples from at least three populations and which was corrected for different sample

numbers using the procedure described in Sokal and Rohlf (1995), we set the threshold value

to ± 25 %.

Table 1: Mean weight per seed of 29 lowland and 29 closely-related alpine species, as well as the %-

increase or decrease of seed weight of the alpine compared to the lowland species. Main data sources are seed

samples from the seed collection of the Botanical Institute, University of Basel, Switzerland.

Lowland species Alpine species
mean weight
per seed (mg)a

mean weight per
seed (mg)

% difference of alpine vs
lowland speciesb

Achillea collina Becker 0.16 A. stricta Schleicher 0.22 + 38 ‡
Anthoxanthum odoratum L. 0.60 3 A. alpinum Löve et Löve 0.51 - 15
Anthyllis macrocephala Wenderoth 2.71 A. alpestris (Kit.) Rchb./Hegetschw. 5.33 + 97 ‡
Arenaria leptoclados(Rchb.) Guss. 0.04 A. marschlinsii Koch 0.08 + 90 ‡
Artemisia campestris L. 0.12 A. borealis Pall. 0.22 + 76 ‡
Campanula rotundifolia L. 0.06 3,4,5 C. scheuchzeri Vill. 0.09 + 43 ‡
Centaurea scabiosa L. 7.49 3,4 C. alpestris Hegetschw. 8.82 + 18
Cerastium caespitosum Gilib. 0.09 C. fontanum Baumg. 0.13 + 48 ‡
Chrysanthemum leucanthemum L. 0.42 C. montanum All. 0.62 + 49 ‡
Epilobium dodonaei Vill. 0.30 3 E. fleischeri Hochst. 0.17 - 42 ‡
Erigeron acer L. 0.13 3 E. angulosus Gaud. 0.11 - 12
Galium pumilum Murray 0.50 G. anisophyllum Vill. 0.48 - 4
Helianthemum canum (L.) Baumg. 0.39 3 H. alpestre (Jacq.) DC. 0.60 + 54 ‡
Helianthemum nummularium (L.) Miller 0.94 5 H. grandiflorum (Scop.) Lam. 1.59 + 70 ‡
Herniaria incana Lam. 0.14 H. alpina Vill. 0.21 + 47 ‡
Juniperus communis L. 12.29 J. nana Willd. 10.54 - 14
Lotus corniculatus L. 1.42 1,2,3,4,5,7 L. alpinus (DC.) Schleicher 1.98 + 39 ‡
Onobrychis arenaria (Kit.) DC. 7.53 O. montana DC. 11.72 + 56 ‡
Phleum boehmeri Wib. 0.12 P. hirsutum Honck. 0.30 + 150 ‡
Plantago lanceolata L. 1.96 3,4,5,6,7 P. atrata Hoppe 1.52 - 22
Plantago serpentina All. 1.00 P. alpina L. 0.84 - 16
Rumex acetosa L. 0.97 7,8,9 R. arifolius All. 1.42 + 46 ‡
Sagina subulata (Schwarz) Presl 0.02 S. linnaei Presl 0.02 + 40 ‡
Satureja acinos L. Scheele 0.28 S. alpina (L.) Scheele 0.26 - 7
Scabiosa columbaria L. 1.73 5 S. lucida Vill. 1.53 - 12
Scrophularia canina L. 0.34 S. juratensis Schleicher 0.43 + 28 ‡
Silene vulagris (Moench) Garcke 0.85 3,4 S. willdenowii Sweet 0.98 + 16
Trifoium pratense L. 1.54 6 T. nivale Sieber 1.33 - 13
Veronica serpyllifolia L. 0.08 4 V. tenella All. 0.06 - 23

aNumbers refer to included data from the literature: 1Salisbury 1942; 2Lhotska and Chrtkova 1978; 3Grime et al. 1981; 4Müller-Schneider 1983; 5Bakker et al.
1997; 6Cerletti 1997; 7Akinola et al. 1998; 8Milberg et al. 2000; 9VanAssche 2002
bMean weight per seed among species-pair is considered different (indicated by ‡) based on a threshold value of ± 25 % (see Materials and methods for
explanation).

Altitudinal variation in seed weight among populations of four species – To assess

the variation in seed weight among populations, we selected four species with different seed

sizes, different dispersal capacities, and occurrence in different alpine habitats, but with a

similar distribution over a large altitudinal gradient. Carex flacca and Saxifraga oppositifolia
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have seeds without particular structures to assist seed dispersal, while seeds of Epilobium

fleischeri and Scabiosa lucida are adapted for wind dispersal. E. fleischeri and S. oppositifolia

are species from alpine screes and moraines, while C. flacca and S. lucida occur preferentially

in grasslands. The altitudinal gradient covered c. 800 m in S. lucida, 1000 m in

S. oppositifolia, 1000 m in E. fleischeri, and 1500 m in C. flacca (Table 2). In late summer

2000 and 2001, as well as in 1996 for S. oppositifolia, we collected seeds in 34 populations of

E. fleischeri, in 14 populations of S. oppositifolia, and in 11 populations of S. lucida. In each

population we sampled seeds of 15 to 25 plants separately and weighed at least 10 or, if

available, 20 air-dried seeds per plant. Mean seed sizes of single plants were averaged per

population. In C. flacca we used bulk samples with seeds from different individuals or ramets

from 32 populations collected either in late summer 2000 in the Alps or taken from samples in

the seed collection of the Botanical Institute at the University of Basel, Switzerland. Samples

from the seed collection included mostly populations from low altitudes. In C. flacca,

population means were calculated from 50 air-dried seeds per population. For all four species

we calculated a coefficient of variation (CV) for individual seed weights based on population

means, and for each population (except in the case of C. flacca, where we have no means for

individual plants due to the marked clonal growth of this species) a coefficient of variation

was calculated based on means for individual plants. All CVs were corrected for different

sample numbers using the procedure described in Sokal and Rohlf (1995).

By regression analyses the relationship between altitude and population means of seed

weight were tested for each of the four species. All analyses were calculated with JMP

(Version 3.1; SAS Institute, Cary, N.C., USA, 1995).

RESULTS

Comparison of seed weight between related species from low and high altitude –

Seeds of alpine species were 28 ± 8 % larger than seeds of the related lowland species

(df = 28, t = 2.76, P < 0.01). The 29 species-pairs included 16 pairs (55 %) with heavier seeds,

1 pair (3 %) with lighter, and 12 pairs (41 %) with equal seed weights for alpine species

(Table 1). The significant difference among lowland and alpine species remained (df = 27, t =

2.48, P < 0.05), when the Phleum species-pairs, where the seeds of the alpine species were 2.5

x heavier than the seeds of the lowland species, was excluded. If only those species-pairs with
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the same moisture indicator values (Lauber and Wagner 2001) were tested, the relationship of

seed weight remained the same (df = 19, t = 2.31, P < 0.05).

Altitudinal variation in seed weight among populations of four species – There was

no general pattern of seed weight variation with altitude among the populations of the four

species. In Carex flacca and Epilobium fleischeri we found no correlation of seed weight with

altitude (r = 0.13, P = 0.6, Fig. 1; r = 0.004, P = 0.98; Fig. 2; respectively), whereas seed

weight decreased significantly with altitude in Saxifraga oppositifolia and Scabiosa lucida

(r = -0.77, P < 0.001, Fig. 3; r = -0.61, P < 0.05, Fig. 4; respectively).

Table 2: Number and altitudinal range of sampled populations, mean individual seed weight (x ± SD)

and coefficient of variation (CV) among and within populations in four species from the Swiss Alps.

Seed weight variation among population means was relatively high with coefficients of

variation of 17 % in C. flacca, 12 % in E. fleischeri, 29 % in S. oppositifolia, and 19 % in

S. lucida (Table 2). Variation among seed families within populations was between moderate

and high with coefficients of seed weight variation between 11 and 51 % (Table 2). The

coefficients of seed weight variation within populations did not correlate with the altitude of

the populations in E. fleischeri, S. oppositifolia and S. lucida (data not shown).

Species No. of altitudinal range weight per seed CV among CV within
 populations (m a.s.l.) (mg) (x ± SD) populations populations

Carex flacca Schreber 32   430 – 2100 0.77 ± 0.13 17%       –
Epilobium fleischeri Hochstetter 34 1500 – 2500 0.17 ± 0.02 12% 11 – 31 %
Saxifraga oppositifolia L. 14 2040 – 3020 0.07 ± 0.02 29% 20 – 36 %
Scabiosa lucida Vill. 11 1650 – 2400 1.53 ± 0.28 19% 24 – 51 %
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DISCUSSION

Seed weights of related species – In the overall comparison of seed weight differences

of lowland vs. alpine species, we observed significantly heavier seeds in alpine species. This

result suggests that selection tends to favour the formation of larger seeds in species from

higher altitudes, because environmental conditions for seedling establishment are more severe

and larger seedlings are at an advantage. At any given stage during development, seedlings of

larger-seeded species should have more reserves available to compensate for various

environmental stresses (Leishman et al. 2000).

However, the formation of larger seeds in alpine plants is not general. A considerable

number of species-pairs (41%) did not differ much in seed weight, and in one species-pair

seed weight was lower at high altitude. The reason for this may be explained by functional,

developmental, or genetic co-variation among traits imposing constraints that keep changes in

size and shape of seeds within narrow limits inside a taxonomic lineage (Hodgson and Mackey

1986; Pigliucci 2003). Furthermore, the ancestors of a particular species-pair may have

acquired a combination of traits enabling them to succeed in a particular habitat type (Lord et

al. 1995). The descendants within the same lineage could have migrated to higher altitudes,

following climatic warming, where they still occupy similar habitats and, thereby, may have

preserved the characteristic trait combination.

From the 29 species-pairs, only the alpine Epilobium fleischeri produced markedly

smaller seeds than the related lowland species (E. dodonaei). Stöcklin and Favre (1994)
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studied the variation in reproductive components of these two species in detail and reported a

similar number of seeds per stem. However, they found a lower fruit number per stem of the

alpine plant, due to an increase in number of seeds per fruit and a reduction in seed weight.

The combination of a lower seed weight with a higher seed number per fruit in E. fleischeri

probably results from strong selection for better dispersal ability in this early successional

plant from glacier foreland (Stöcklin and Favre 1994). In the island nature of the alpine

landscape, the small and efficiently dispersed seeds of E. fleischeri have a better chance of

colonising new sites, while a reduced probability of seed establishment is compensated for by

clonal growth, an ability absent from the lowland E. dodonaei. The case of Epilobium, though

an exception among the 29 species-pairs, illustrates that selection for high dispersal ability of

seeds may counteract the suggested selection pressure for larger seeds in adverse conditions.

Intraspecific differences in seed weights – In the comparison of seed weights among

populations of the four species studied, we found no indication of larger seed size at higher

altitude, even though we selected species with different life history traits and from different

habitats. There are several possible reasons for this result. Firstly, a change of the trait seed

weight can affect several other traits and may thereby lead to speciation. Indeed, seed weight

has been characterised as one element of a coevolving complex of characters (Venable and

Brown 1988; Rees 1997) including dispersal, seed dormancy, plant mass, niche specialisation,

and competition ability. Therefore, an increase in seed size at higher altitude is probably

frequently related to changes of the taxonomic status of the plants involved. For instance

Mariko et al. (1993) reported larger seeds at higher altitude in Reynoutria japonica on Mt.

Fuji. They classified the involved populations into two distinct ecotypes, with the larger

seeded ecotype growing at higher altitude. A similar observation was reported by Blionis and

Vokou (2002) for Campanula spatulata. Elevation played a primary role in subspecies

formation in this species; in the subspecies from higher altitude a marked divergence in

morphological and phenological characters was observed in addition to larger seeds. Here, for

the assessment of intraspecific differences in seed weight, we carefully avoided choosing

species with a taxonomic differentiation at the subspecies level. This may not only explain

partially the absence of an intraspecific increase in seed weight but also why the altitudinal

gradient covered by the four species selected for intraspecific differences in seed weight does

not exceed 1000 m, or in the case of Carex flacca 1500 m.
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Secondly, plants stand still but populations are connected by gene flow via pollen and

seeds. Gene flow by pollen is restricted by pollinator movement. Gene flow by seeds is also

considered to be low, particularly in alpine habitats, where natural “barriers” like mountain

ridges and valleys separate populations. However, because of high turbulence and convective

updrafts, seeds at high altitudes are far better dispersed by wind than in lowland habitats. As

an example, in E. fleischeri, 3.6 % and 1.2 % of all seeds are dispersed over more than 100

and 1000 m respectively (O. Tackenberg and J. Stöcklin, unpublished). When gene flow

between populations reaches a substantial degree, potential differences due to differences in

selection pressure will be homogenised, and no pattern of seed size variation with altitude will

evolve.

Thirdly, the lack of evidence for an increase of seed weight with altitude within species

may be due to large phenotypic variation in seed weight. Randomness in the abiotic

environment within a population (Wolfe 1995), in the course of a vegetation period (Winn

1991), and developmental constraints within individuals (Silvertown 1989) may create large

variation in seed weights among and within populations. Winn (1991) discussed the possible

reasons why individual plants frequently fail to produce a uniform seed size in detail for the

case of Prunella vulgaris. Similar observations were reported for a number of other plants

(Stöcklin and Favre 1994; Wolfe 1995; Eriksson 1999). In our study, phenotypic variation in

seed weight of the four study-species is mostly much higher within populations than between

populations (Table 2). The high within-individual variation in seed weight in particular is a

weak basis for the operation of selection towards larger seeds at higher altitude.

Instead of an increase we found a decrease of seed weight with altitude in

S. oppositifolia and S. lucida, which can most likely be explained by the climatic conditions at

higher sites. Weather conditions, like temperature and season length as well as resource

availability are suggested to be important in determining the reproductive output of single

plants (Totland and Birks 1996). It is expected that plants at high altitudes may face limiting

conditions for producing and filling up seeds. Therefore, in the absence of a selection towards

higher seeds, a negative elevational trend in the weight of seeds collected at field sites is not

surprising. Seeds produced under controlled conditions in the greenhouse would be necessary

to test if environmental conditions had such an overriding impact that a positive elevational

trend in seed size was masked.
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Conclusion – Our result of the comparison of seed weight between closely-related

species-pairs supports the hypotheses that selection tends to favour larger seeds in stressful

environments at high altitudes. The trend for larger seeds with elevation is however not

unanimously operating and was not observed in all species-pairs studied. We were not able to

detect a similar trend among populations of the four species assessed for intra-specific

variation in seed weight along altitudinal gradients. Our results suggest that seed weight

probably only rarely changes as a single trait, but instead usually evolves as an element of a

more complex and correlated set of characters involving differentiation at the species or at

least at the infra-specific level and depending on the specific life history of a plant.
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ABSTRACT

Due to changes in land use, remnants of unfertilised, nutrient-poor calcareous

grassland in the Swiss Jura are small in area and are highly fragmented. We selected 89 seed

families from eleven populations of various sizes of Scabiosa columbaria for a study of

molecular diversity, and used the same material in a greenhouse experiment to measure

variation in fitness-related traits and the ability of populations to cope with competition. Using

RAPD-PCR we detected 71 RAPD-phenotypes among 87 genotypes. Molecular diversity

within populations was variable and relatively high, with an expected heterozygosity He

ranging from 0.09 to 0.24. He, the Shannon index (SI) and the percentage of polymorphic

bands were not correlated with population size, but the smallest populations had the lowest

molecular diversity (He, SI). Population differentiation was moderate with 12 % of the

molecular diversity among populations. Measures of fitness in the greenhouse differed among

seed families (p < 0.001), but not among populations. Mean above-ground biomass was

largely reduced when plants had to compete with Bromus. Mean fitness of populations

decreased when molecular diversity (He) was low, but only when plants had to compete with

Bromus (p = 0.02). Accordingly, the relative competition ability of Scabiosa plants decreased

when molecular diversity (He) was low (p = 0.01). Our results suggest an increased risk of

local extinction of Scabiosa columbaria in the Swiss Jura caused by a decreased viability and

reduced phenotypic plasticity due to genetic erosion in small populations.

Key words: Competition ability, molecular variation, population differentiation, genetic

erosion, conservation
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INTRODUCTION

Over the last decades nutrient-poor calcareous grassland has declined drastically in the

Swiss Jura due to changes in agricultural land use (see Zoller et al. 1986). Only 20 % of the

area of nutrient-poor grassland (Mesobromion) mapped around 1950 by Zoller et al. (1986)

was still intact 35 years later (Stöcklin et al. 2000). Today, many populations of species

characteristic of nutrient-poor grasslands are small in numbers and are isolated from each

other by large distances. Conservation efforts stopped the ongoing destruction of

Mesobromion remnants, but small populations may still suffer from a decrease in genetic

diversity due to inbreeding and reduced gene flow between populations (Lacy 1987; Frankham

1996). Their fitness and competition ability may be reduced (Fenster and Dudash 1994; Young

et al. 1996), and their risk of local extinction may be increased. Fischer and Stöcklin (1997)

and Stöcklin and Fischer (1999) found that local extinctions of small plant populations

occurred frequently even in intact grassland remnants in the Swiss Jura.

While many studies of endangered plants have examined variation in molecular

markers, a few have also considered the evidence for a decrease in fitness with population

size. Fischer and Matthies (1998) observed a decreased fitness with smaller population size in

the short-lived Gentianella germanica, and Kery et al. (2000) observed the same in

Primula veris and Gentiana lutea. Several other studies have confirmed that small populations

are frequently not only genetically less diverse but also less viable (Oostermeijer et al. 1994;

Lammi et al. 1999; Buza et al. 2000; Luijten et al. 2000; Schmidt and Jensen 2000;

Mavraganis and Eckert 2001). However, levels of genetic diversity and fitness are not always

related (Podolsky 2001; Reed and Frankham 2001), and molecular data by itself is not

sufficient to judge if populations are endangered through genetic erosion. Data on both genetic

diversity and population viability in fitness-related traits are necessary to determine whether

populations are threatened. Furthermore, it is important to know whether populations of an

endangered species are still capable of responding to changing environmental conditions.

Plastic adaptations allow individual organisms to maintain function and fitness across a range

of diverse environments (Schlichting 1986; Sultan 2000). Small or genetically less diverse

populations in particular may have a reduced ability to buffer the effects of poor

environmental conditions or competition. For instance Kery et al. (2000) observed that plants

from small populations of Primula veris were less able to respond plastically to an increase in

nutrient availability than plants from larger populations. A similar reduction in the phenotypic
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response ability to an increase of competition was observed in populations with low molecular

diversity in Ranunculus reptans (Fischer et al. 2000). The ability to cope with competition

may be particularly important for endangered species. In this study, we combined the

evaluation of molecular diversity in populations of different sizes from grassland remnants

with a greenhouse experiment using the same populations to measure fitness and the

phenotypic response to competition as a measure of plasticity.

We selected Scabiosa columbaria for this study for two reasons. Firstly, this

geographically widespread species is restricted, in the Swiss Jura, to nutrient-poor

Mesobromion remnants, and populations vary in size from less than a hundred to several

thousand individuals. Secondly, variation in molecular diversity and fitness-related traits in

populations at the margins of the geographical range of this species have been studied in the

Netherlands and in Sweden. In the Netherlands, genotypic and phenotypic variation correlated

with population size, indicating that genetic erosion occurs in small populations (Bijlsma et al.

1991; Ouborg et al. 1991; Van Treuren et al. 1991; Van Treuren et al. 1993; Bijlsma et al.

1994; Van Treuren et al. 1994). In Sweden, a high phenotypic differentiation among

populations was observed, but there was no correlation between genetic diversity and

population size (Waldmann and Andersson 1998). Peripheral populations might be more prone

to fitness losses due to genetic erosion than populations from central regions, because

peripheral populations are more likely to occur in ecologically marginal habitats (Lesica and

Allendorf 1995). In the Swiss Jura, Scabiosa columbaria is near the centre of its distribution

and the results of the present study can be compared to the effects observed in the more

marginal populations in the Netherlands.

We selected plants from eleven populations from grassland remnants, containing c. 90

up to c. 2000 flowering individuals, for a molecular study using RAPD-PCR. We used the

same material for a greenhouse experiment, investigating differences in fitness-related traits

and plasticity among these populations in response to competition.

We used the molecular approach to address two questions: (1) How large is the

molecular diversity in Scabiosa columbaria from grassland remnants in the Swiss Jura, and

how is this diversity partitioned within and among populations? (2) Is there a difference in

molecular diversity due to population size? The greenhouse study was designed to address two

additional questions: (3) Do populations differ in fitness-related traits, and if so can these

differences be related to population size and to molecular diversity measured with RAPD-
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PCR? (4) Are such effects dependent on environmental conditions, such as the presence or

absence of Bromus erectus as a competitor?

MATERIALS AND METHODS

Study species, sites and seed material – Scabiosa columbaria L. (Dipsacaceae) is a

perennial species with a maximum life span of ten years (Grime et al. 1988). Flowering

rosettes have stems 20 to 80 cm in height, with one to a few flower heads (Hegi 1918). Each

flower head produces up to 100 achaena (Grime et al. 1988). The flowers are mainly

pollinated by Aphidae (Hymenoptera), Syrphidae (Diptera) and Rhopalocerae (Lepidoptera)

(Knuth 1898). S. columbaria is predominantly an outcrossing species (Van Treuren et al.

1994).

The distribution of S. columbaria extends throughout Eurasia and NW Africa (Hegi

1918) on nutrient-poor soils (Lauber and Wagner 1996). In the Swiss Jura S. columbaria

occurs in nutrient-poor grassland (Mesobromion) remnants. In Central Europe such

extensively used grassland probably reached its greatest extension in the 19th century when

arable fields of low productivity were replaced by meadows (Zoller 1954; Behre and Jacomet

1991; Pott 1995). After the Second World War the area of such grassland declined drastically

due to changes in land use (e.g. abandonment, fertilisation), restricting species which had

previously been widely distributed for several centuries to small and isolated habitats.

For this study seed material of a total of 89 individuals of S. columbaria from eleven

populations of different sizes were collected in autumn 1997. In general, seeds of nine mother

plants (seed families; Tab. 1) per population were randomly chosen with a spacing of several

meters along a transect through the population. The mean number of flowering individuals

during the years 1996 to 2000 was used as a measure of population size, with the exception of

two populations for which data from only one year were available (Tab. 1). The selected

populations were distributed over an area of 37 x 11 km.

RAPD-PCR – individual from each of the 89 seed families was chosen for the

molecular analysis. Leaf material was sampled from plants raised in the greenhouse (see

below)  and was  shock frozen i liquid nitrogen  (- 98 °C).  After  freeze drying  (Unicryo  MC
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Tab. 1: Population size, location, habitat area, land use, the number of studied seed families and the

molecular diversity (He) in eleven populations of Scabiosa columbaria from the Swiss Jura from an area of 400

km2. Population size was measured as the mean number of flowering individuals during the years 1996-2000.

Site Population

size

Longitude

[m]1

Latitude

[m]1

Altitude

[m]

Habitat

area [ha]

Land use in

1996

No. of studied

seed families

Molecular

diversity (He)

SLB 93 591375 251520 805 3.39 pasture 4 0.089

OLT 102 598800 251250 590 0.94 fallow 7 0.137

HEL 131 623240 244785 860 3.46 pasture 9 0.175

HAS 158* 596500 249100 405 0.8 pasture 9 0.158

LIW 248 599500 251200 670 2.99 pasture 9 0.237

CDM 500 586500 250550 755 2.93 pasture 9 0.239

NEW 544 608975 255825 520 7.9 pasture 8 0.195

RIT 603 604750 254075 440 8.4 pasture 9 0.183

LCO 901* 599180 246175 640 8.09 pasture 7 0.202

RDS 920 595800 250850 520 0.08 hay meadow 9 0.197

BEU 2003 605150 246125 625 5.18 pasture 9 0.165
1 Longitude and latitude according to the Swiss topographical maps (Bundesamt für Landestopographie, Wabern, Switzerland).

* Number of flowering plants was only available for the year 1996.

4L, Uniequip GmbH, Martinsried, Germany) and grinding of the leaf material (Retsch MM2,

Retsch GmbH  and Co KG, Haan, Germany), DNA was extracted with a DNeasy Plant Mini

Kit (QIAGEN GmbH, Hilden, Germany). From sixty primers ten base pairs long, the ones

with the highest C/G nucleotide contents (i.e. those with higher binding stability due to three

hydrogen bonds compared to two in A/T nucleotides) were screened and the band patterns

were checked for repeatability. The first six primers with reproducible, polymorphic banding

patterns were selected for the screening of all 89 sampled plants (see Appendix 1 for primer

sequences).

Amplifications were carried out in 25 µL volumes, containing 5 µl of template DNA

(5 ng DNA/µl); 11.3 µl ddH2O; 0.5 µl MgCl (25 mM); 0.5 µ l dNTP’s (5 mM); 2.5 µl

TaqPolymerase Buffer (10x; amersham pharmacia biotech); 5 µl Primer (5 µM); and 0.2 µl

Taq DNA Polymerase (5000 units/ml; amersham pharmacia biotech). Polymerase chain

reactions (PCR) were performed in a thermal cycler (PTC-100, MJ Research, Inc., Watertown,

Mass., USA) with denaturing of the DNA at 93 °C for 1 min followed by 34 cycles of: 30 s at

92 °C; 30 s at 37 °C; and 1.5 min at 72 °C. Following the 34 cycles, a final step of 5 min at
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72 °C was carried out. Samples were kept at 4 °C until analysis. PCR products were separated

on 1.6 % agarose gels (Sea Kem LE agarose) in 1x TAE (Tris/Acetat/EDTA) buffer in an

electrical field (170 mV, c. 1.5 h). The banding pattern was made visible with ethidium

bromide in an UV-light source. The presence or absence of bands was scored for 16 good

visible bands with a length of between 500 and 2000 base pairs. Two samples were not

analysed with all six primers due to low quantity of the DNA extraction. Therefore the final

presence-absence matrix contained 87 individuals scored for 16 bands.

Statistical analysis of RAPD banding patterns were based on four assumptions: (i)

RAPD fragments behave as diploid, dominant markers with alleles being either present

(amplified) or absent (nonamplified); (ii) comigrating fragments represent homologous loci;

(iii) polymorphic loci are inherited in a nuclear (Mendelian) fashion (Arafeh et al 2002); and

(iv) populations are in Hardy-Weinberg equilibrium (HWE; Fis = 0). This last assumption is

supported by results from Van Treuren et al. (1993, 1994). S. columbaria is highly susceptible

to inbreeding and in their study with allozymes the inbreeding coefficient (Fis) in natural

populations did not differ from zero. Assuming that the populations were in HWE, allele

frequencies were estimated based on the square root of the frequency of the null (recessive)

allele.

The molecular diversity within populations was quantified in three different ways: (i)

Nei’s expected heterozygosity (He), (ii) the percentage of polymorphic bands out of all

polymorphic bands (%P) and (iii) the Shannon index (SI). The percentages of poylmorphic

bands were corrected for unequal sample sizes by rarefaction (Heck et al. 1975). By

rarefaction the mean percentage of polymporphic bands in a population was calculated using

the percentage of polymorphic bands of all possible combinations of four individuals (the

lowest n) out of all sampled individuals per population. For all calculations only the

polymorphic markers were used. Moreover, we checked the whole data set for private

polymorphism (unique to a given population). To quantify the variation of molecular diversity

among populations we calculated the coefficient of variation (CV) for He, SI and %P. He and

SI were calculated with POPGENE (Version 1.21; Yeh et al. 1997).

The molecular differentiation among populations was calculated by Nei's (1973)

estimator Gst, the fixation index. Gst values are based on Wright’s F- statistics and are identical

to Fst values if a locus consists of two alleles as applicable in RAPD marker analysis (Nybom

and Bartish 2000). The F-statistics was calculated across all bands by using POPGENE.
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Genetic distances between each population pair were quantified with Nei’s original

pair-wise genetic distance (TFPGA Program, Version 1.3; Miller 1997) and the pair-wise

genetic distance Fst (Arlequin, Version 1.1; Schneider et al. 1997). A Mantel test was used to

test whether the matrix of Nei’s original pair-wise genetic distance correlates with the matrix

of pair-wise geographic distances (10.000 permuations; TFPGA Program).

Experimental design of the greenhouse study – In the greenhouse a total of 720 plants

from 89 seed families (8 replicates per seed family) taken from eleven populations were

exposed to two competition treatments (with and without competition with Bromus erectus).

To eliminate the possible effects on the experiment of small pot size, we planted eight

S. columbaria plants of different populations into rectangular pots of 16.7 x 26.6 x 21.5 cm (in

the statistical analysis these pots were considered as subplots). In the treatment which included

interspecific competition seeds of Bromus erectus were added. Thereby we were able to

measure the response to interspecific competition while holding intraspecific competition

constant in both treatments (Reynolds 1999).

Around 30 seeds per S. columbaria seed family were germinated separately in pot soil.

After four weeks, eight seedlings per seed family (four in each competition treatment) were

chosen randomly and planted into pots. The pots had a hole at the bottom of each wall and a

drainage mat at the base, and were filled with 14.5 cm of marl, followed by a 5.5 cm layer of a

1:1 mixture of marl and natural soil from calcareous grassland and finally covered with 1.5 cm

of the same natural soil. In the pots including interspecific competition c. 200 seeds of

Bromus erectus were added. After germination the Bromus seedlings were reduced to 20

individuals per pot. The resulting 90 pots (45 per treatment) were randomly placed on 5

mobile greenhouse tables. Pots on the tables as well as the tables within the greenhouse were

randomly repositioned every 4 weeks.

The experiment started on the 1st of June 1999, and the final harvest was seven months

later, at the beginning of January 2000. Greenhouse conditions were similar during the whole

experiment (14 hr day length, 1 kw-lamps were activated if outdoor light was lower than

180 µmol m-2s-1; day temperature was maintained at 25 °C, night temperature at 10 °C (using

additional heating from November to January)). All plants were watered every two days and

received the same amount of fertiliser (a full fertiliser, equivalent to 4.7 kg N ha-1 was applied

in the first six weeks of the experiment in six equal portions).
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Fitness measurements, competition ability and statistical analysis – After 210 days (Jan.

2001) the plants were harvested, subdivided into above- and below-ground material, and dried

at 80 °C for 48 hours. Above-ground biomass was used as a fitness measure. In S. columbaria,

as in other species, above-ground biomass correlates well with reproductive output (Van

Treuren et al. 1993). To test for treatment effects and biomass differences among populations,

and seed families within populations, a nested multi-factorial mixed model ANOVA type III

was used.

We used the phenotypic response to competition as a measure of plasticity. The

relative ability of a population to cope with competition was calculated as the proportional

reduction in plant size in the treatment with Bromus compared with the plant size in the pure

stand (Snaydon 1991). Following Snaydon (1991), the relative severity of competition was

calculated using the population mean of within seed family reduction of biomass due to

competition as the logarithm of the above-ground biomass per plant grown in a pure stand

minus the logarithm of the above-ground biomass per plant grown in competition with

Bromus. The measure for the relative severity of competition was subtracted from 1 to provide

a measure of the ability to cope with competition: the lower the relative competition ability,

the more reduced the plasticity of a population.

As a measure of fitness variation, means per population of within seed family

coefficients of variation (CV) for above-ground biomass were calculated. The CV was

corrected for different sampling size after Sokal and Rohlf (1995): CV*= [1+(1/4n)] x

[SDx100/mean].

Because of the low sample size we calculated non parametric Spearman’s Rho (rs)

correlations. JMP (Version 3.1; 1995, SAS Institute, Cary, N.C., USA) was used for all

analyses. Data sets were transformed if necessary to meet the requirements of ANOVA.

RESULTS

RAPD-phenotypes and polymorphism  – The eleven populations of

Scabiosa columbaria differed greatly in the composition of their RAPD-phenotypes. The 87

plants comprised 71 different RAPD-phenotypes. Seven RAPD-phenotypes were found in

more than one population; only one phenotype was found twice in the same population. In

each individual population, between 5 and 12 of the 16 reproducible RAPD-bands were
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polymorphic, with a mean of 8.9 (SE = 0.61). No private bands (unique to one population)

were found.

Molecular diversity within populations and population size – The molecular diversity

of individual populations calculated from polymorphic RAPD-bands was relatively high:

Nei’s expected heterozygosity He ranged from 0.089 to 0.239 (CV = 23.4 %) with a mean of

0.18 (SE = 0.01). The Shannon index ranged from 0.14 to 0.36 (CV = 23.6 %) with a mean of

0.27 (SE = 0.02) and the percentage of polymorphic bands within populations after rarefaction

ranged from 31.3 % to 59.0 % (CV = 17.6 %) with a mean of 44.0 % (SE = 2.3).

There was no significant relationship between the molecular diversity within

population (He) and logarithmic population size (rs = 0.49, p = 0.13), neither when the

Shannon index (rs = 0.46, p = 0.15) nor when the percentage of polymorphic bands (rs = 0.41,

p = 0.21) was used as a measure of molecular diversity. However, the two smallest

populations showed the lowest molecular diversity (He = 0.14 and 0.09 in OLT and SLB,

respectively; SI = 0.21 and 0.14 in OLT and SLB, respectively). Furthermore, OLT was the

only population in which a RAPD-phenotype was repeated, and SLB had the lowest

percentage of polymorphic bands.

Molecular differentiation among populations – The Gst value indicated a moderate

genetic differentiation among populations. 12 % of the RAPD-band variation was among and

88 % within populations (Gst = 0.12 (SD = 0.07); Ht = 0.21 (SD = 0.03); Hs = 0.18

(SD = 0.02)).

Genetic and geographic distances – The 55 pair-wise genetic distances among the

eleven populations were generally small. Nei’s original pair-wise genetic distances calculated

from RAPD-band frequencies varied between 0.01 and 0.09. Genetic distances from pair-wise

combinations of populations were significant in nine cases (Fst statistics calculated with the

program Arlequin, see methods). The pair-wise genetic distances among populations did not

correlate with the corresponding geographic distances (r = -0.1, p = 0.65; Mantel-test).
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Fig. 1: Mean above-ground biomass of eleven populations of Scabiosa columbaria from a common

garden experiment in two treatments (including Bromus erectus as a competitor or not). See Tab. 1 for the

acronyms of populations.

Fitness measurements in the greenhouse – The competition treatment had a

significant effect on the growth of S. columbaria. Mean above-ground biomass of individuals

was reduced by 57 % (0.59 g ± 0.03 instead of 1.03 g ± 0.03 without Bromus, p < 0.001;

Fig. 1). Root biomass was even more reduced (by 77 %, p < 0.001) when plants had to

compete with Bromus erectus. Populations and seed families within populations did not differ

in their response to competition (p = 0.17, p = 0.18 for the interaction of treatment with

populations or seed families, respectively; Tab. 2). But mean above-ground biomass differed

significantly among seed families within populations (p < 0.001, Tab. 2). Differences among

seed families within populations explained 12.2 %, and random variation among individuals

explained 85.3 % of the total variation in biomass.
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Tab. 2: Nested, mixed-model ANOVA type III for above-ground biomass of seed families from eleven

Scabiosa columbaria populations grown in the greenhouse for 210 days. Plants were grown with or without

competition from Bromus.

df SS MS Variance component p

absolute in %

Competition 1 17.04 17.04 ***

Competition * Population 10 1.11 0.11 0.17

Competition * Seed family 78 7.05 0.09 0.18

Plot 4 0.93 0.23 0.00148 1.62 *

Subplots within plot 80 5.72 0.07 0 0 0.67

among Populations 10 2.09 0.21 0.00080 0.86 0.25

Seed families within Populations 78 12.11 0.16 0.01114 12.21 ***

Residuals 457 35.58 0.08 0.07787 85.31

Total 718 100.00

*** p < 0.001, ** p < 0.01, * p < 0.05

Fitness, relative competition ability and population size – Between fitness within

populations (i.e. above-ground biomass means for seed families within populations) and

logarithmic population size we found no significant relationship (rs = -0.25, p = 0.47); neither

for the treatment without competition (rs = -0.56, p = 0.07), nor when Bromus was added as a

competitor (rs = 0.10, p = 0.77).

The relative competition ability was also not correlated with logarithmic population

size (rs = 0.38, p = 0.25; Fig. 2). However, the three smallest populations showed the highest

reduction in biomass indicating a larger loss of fitness due to competition with Bromus.

Fitness, relative competition ability and molecular diversity – Fitness within

populations (i.e. above-ground biomass means for seed families within populations) increased

with molecular diversity when S. columbaria had to compete with Bromus (He: rs = 0.69,

p = 0.02, Fig. 3 A; SI: rs = 0.67, p = 0.02; %P: rs = 0.71, p = 0.01). However, when plants were

grown without competition with Bromus, fitness was not correlated with molecular diversity

(He: rs = -0.05, p = 0.89, Fig. 3 B; SI: rs = -0.08, p = 0.81; %P: rs = -0.03, p = 0.94).

The relative competition ability also increased with molecular diversity within

populations (He: rs = 0.65, p = 0.03, Fig. 4; SI: rs = 0.68, p = 0.02; %P: rs = 0.61, p = 0.047).

Thus, competition had a larger negative effect on populations with a low molecular diversity,

i.e. populations with a low molecular diversity were less able to resist to competition.
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Fig. 2: Spearman’s rank correlation of the relative competition ability (a measure of phenotypic

plasticity) with log population size for eleven Scabiosa columbaria populations in a common environment (the

relative competition ability is calculated as the proportional reduction in plant size of S. columbaria in a mixture

with Bromus compared with the plant size in the pure stand, see methods for details).

Biomass variation and molecular diversity – Populations with low molecular diversity

had higher mean coefficient of biomass variation (CV*) among seed families within

populations (He: rs
 = -0.86, p = 0.0006; SI: rs = -0.84, p = 0.001; %P: rs = -0.60, p = 0.05). The

effect was also present, when the treatment including competition with Bromus was

considered  separately  (He:  rs 
 =  -0.68,  p  = 0.02;  SI: r s =  -0.67,  p =  0.02;   %P:  rs =  -0.65,

Fig. 3: Spearman’s rank correlation of mean above-ground biomass of seed families in eleven

populations of Scabiosa columbaria with the corresponding molecular diversity (He) from RAPD-PCR. Plants

were grown in a common environment: (A) plants had to compete or (B) had not to compete with Bromus.
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p = 0.03), but was not apparent in the treatment without competition with Bromus (He: rs
 = -

0.31, p = 0.34; SI: rs = -0.23, p = 0.48; %P: rs = -0.02, p = 0.96). This result indicates higher

fitness variation in populations with lower molecular diversity, particularly in the treatment

including interspecific competition.

DISCUSSION

With RAPD-PCR we found a relatively high molecular diversity in the eleven

populations of Scabiosa columbaria from grassland remnants in the Swiss Jura, weak

indications of a lower molecular diversity in small populations, and evidence for reduced

competition ability in populations with decreased molecular diversity in the greenhouse

experiment. In particular, we observed lower population viability with decreasing molecular

diversity when plants had to compete with Bromus. The large differences in levels of

molecular diversity observed among populations may explain why we found this correlation in

spite of the small sample size per population in our study. Our results suggest that populations

of Scabiosa with a low molecular diversity in the Swiss Jura are at risk of local extinction.

However, there was only weak indirect evidence for a poorer plant performance in small

populations, indicating that population size is not always the best indicator for population

viability.

Fig. 4: Spearman’s rank correlation of the relative competition ability (a measure of phenotypic

plasticity) in a common environment of eleven Scabiosa columbaria populations with the corresponding

molecular diversity (He) from RAPD-PCR (the relative competition ability is calculated as the proportional
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reduction in plant size of S. columbaria in a mixture with Bromus compared with the plant size in the pure stand,

see methods for details).

Genetic diversity and population differentiation – The amplification of randomly

selected gene loci (RAPD-PCR-technique) is usually a more sensitive method to detect genetic

variation in plant species compared to gene product level methods (e.g. isozymes), and is now

well established as a sensitive method for detecting genetic structure among populations

(Nybom and Bartish 2000). We found 71 different RAPD-phenotypes among the 87 Scabiosa

plants. None of the sampled populations was monomorphic, and measures of molecular

diversity (Nei’s expected heterozygosity) revealed a variable and relatively high level of

genetic diversity across the eleven populations. The within-population gene diversity ranged

from 0.089 to 0.239 (0.18 (SD = 0.04)), comparable to the mean of 0.214 (SD = 0.117)

reported recently for 41 RAPD-marker studies reviewed by Nybom and Bartish (2000).

However, the proportion of among-population genetic diversity (Gst) was relatively low in our

study (only 12 %). Similar values based on RAPD-markers have been reported by Vazquez et

al. (1999) for Sideritis pusilla (11.3 %) and Papa et al. (1998) for Hordeum vulgare (11 %). In

the endangered Gentianella germanica from the Swiss Jura, Fischer and Matthies (1998)

observed a much higher coefficient for RAPD (37 %), and the mean value reported for 31

RAPD studies by Nybom and Bartish (2000) was 29 %. In their review, these authors

demonstrated that with RAPD-data among-population diversity increases with the geographic

distribution of sampled populations. The comparably low among-population diversity in

Scabiosa may in part reflect our restricted study area. Our results indicate some genetic

differentiation among the populations of Scabiosa, but this is probably not very pronounced.

A lack of a relationship between genetic and geographic distances was found in other

studies as well, such as in Grünbauer et al. (1999). Gene flow among populations of

characteristic species from grassland remnants is probably low because changes in agricultural

land use strongly enhanced their isolation (Stöcklin et al. 2000). Seed dispersal over several

kilometres is unlikely in Scabiosa because of the generally short dispersal distances of seeds

(Cain et al. 2000). Gene flow due to pollen transfer might be more important.

Scabiosa columbaria is visited by honeybees (Müller 1873) which forage in a diameter of up

to 6 km around their beehive. Migrating butterfly species might occasionally visit

inflorescences of Scabiosa (Müller 1873), but since butterflies are not effective pollinators (A.
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Erhardt, personal communication) this probably does not matter for gene flow. The lack of any

significant relationship between genetic and geographic distances, and the lack of a spatial

pattern in our molecular data in general, suggests that the observed population differentiation

might result from random genetic processes, and that migration between remnants is possibly

too low to compensate for this.

Population size, molecular diversity and population viability – Genetic erosion is a
likely outcome of small population size especially in species which were formerly more

common. Genetic drift is insignificant in large populations but becomes important when

population size crashes to a small number following dramatic range size reduction and

fragmentation (Srikwan and Woodruff 2000). In small populations drift as well as inbreeding

can lead to a loss of less frequent alleles and thereby the level of homozygosity may increase.

As a consequence, genetic diversity tends to be reduced and the chance that harmful alleles are

expressed increases (Ellstrand and Elam 1993; Young et al. 1996). We expected to find

genetic effects of small population size in Scabiosa columbaria, because strong inbreeding

depression in experimental progenies from small and large populations of S. columbaria in the

Netherlands suggests that this species is highly susceptible to inbreeding (Van Treuren et al.

1993). Nevertheless, no clear relationship between population size and the level of inbreeding

was observed in the Netherlands indicating that the plants studied had not yet suffered

severely from inbreeding because otherwise genetic load, causing fitness reductions, would

have substantially reduced inbreeding depression in smaller populations.

In our molecular study we found only weak indications for a lower genetic diversity in

small populations of Scabiosa. The smallest populations showed the lowest molecular

diversity (He and SI). The greenhouse experiment provided additional evidence for a genetic

deterioration in the studied populations. Offspring from populations with low molecular

diversity were phenotypically less plastic, making them less able to cope with interspecific

competition with Bromus erectus (Fig. 3); this is because they had a lower viability in the

treatment including Bromus (Fig. 4). We cannot completely exclude the possibility that the

negative effects on offspring fitness could be caused by maternal carry-over effects

(Oostermeijer et al. 1994). However, a reduced performance of offspring is cautiously

considered as an indication of genetic effects (Fischer and Matthies 1998; Kery et al. 2000). In

our study, plant performance correlated with genetic diversity and thus genetic erosion is at
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least in part responsible for the effect. Reduced performance is often linked with smaller

population size (Fischer and Matthies 1998; Fischer et al. 2000; Kery et al. 2000), but in our

study there was only weak indirect evidence that decreasing plant performance was due to

decreasing population size. This may either be due to the difficulty of accurately measuring

population size in perennial species, or because population size is only one of several possible

reasons for a low genetic diversity (Vergeer et al. 2003). When evidence of reduced genetic

diversity in small populations had been demonstrated, differences in the phenotypic

performance of plants were not always correlated with population size. For instance, in the

Netherlands variations in fitness traits were not related to population size in populations of

Salvia pratensis or of Scabiosa columbaria (Ouborg et al. 1991; Van Treuren et al. 1993;

Ouborg and Van Treuren 1995). Interestingly, in our study, plants from populations with a low

molecular diversity were not only more affected by competition but they were as well

phenotypically more variable, i.e. biomass variation of individuals around the seed family-

mean was larger. This indicates that seed families in populations with low molecular diversity

were also developmentally less stable, what might be an explanation for their reduced

competition ability.

It is noteworthy that in our study fitness of S. columbaria only correlated with

molecular diversity when plants suffered from additional competition with Bromus. Firstly,

this indicates that the effect of harmful alleles is more severe under stressful conditions, and

illustrates how important it is to include environmental variation in any study of plant fitness.

Experiments have so far only been done to test the effect of stress on the magnitude of

inbreeding depression (Wright 1977; Charlesworth and Charlesworth 1987; Reed et al. 2002);

nevertheless Cheptou et al. (2000) concluded from results of a recent study that the effect of

inbreeding depression in natural populations is more severe when competition occurs.

Secondly, the reduced ability to resist competition suggests that a lower genetic diversity is

likely to reduce the tolerance to changes in environmental conditions (Huenneke 1991).

Similarly, Kery et al. (2000) observed that plants from smaller populations of the grassland

species Primula veris were less able to respond to an increase in nutrient availability. Since

phenotypic plasticity itself has a genetic basis, such a decrease in plasticity can result from

inbreeding (Schlichting 1986). In isolated grassland remnants a reduced plasticity will strongly

affect fitness in the long term, since such remnants are frequently subjected to changes in land

use or gradual changes in nutrient availability from eutrophication.
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Conclusions for conservation – Scabiosa columbaria is still relatively common in the

Swiss Jura, and populations of this species were found in 36 out of 58 investigated remnants

of calcareous grasslands (Ryf 1997). Nevertheless, our study shows that populations of this

species may be endangered due to decreased plant viability caused by a reduced genetic

diversity. Most notably, the decrease in phenotypic plasticity observed in the greenhouse study

is likely to have negative consequences in the field at least in the long term, because this effect

is an indication that populations with lower molecular diversity have a reduced potential for

adaptation to future changes in habitat conditions. It has been argued that demographic factors

are more important than genetics for the short term fate of local populations (Lande 1988), but

it is now accepted that in small populations genetic effects may interact with demographic

variability to produce an “extinction vortex”, if population size is substantially reduced by

stochastic events (Gilpin and Soulé 1986). Such effects are not unlikely in

Scabiosa columbaria, because this plant is a short-lived perennial with a maximum life span

of only a few years. In grassland remnants, considerable fluctuations in the number of

flowering individuals have been observed from year to year, with several populations

constantly below a hundred individuals (J. Stöcklin, unpublished). If a population in an

isolated habitat becomes locally extinct, re-colonisation is uncertain because Scabiosa is

considered to be a bad coloniser (Grime et al. 1988).

The results of the present study are in line with what has been found in the Netherlands

and do not indicate that populations from the centre of a species distribution area are less

prone to genetic erosion than peripheral populations. In their study with allozymes Van

Treuren et al. (1991) observed a significant correlation between the size of populations and the

level of polymorphism in S. columbaria, and concluded that small populations were

genetically less variable and more differentiated. Together with the observation that

S. columbaria is highly susceptible to inbreeding (Van Treuren et al. 1993), the decreased

level of genetic and phenotypic variation in smaller populations from the Netherlands was

considered as a clear indication of a significant increase in the extinction probability of small

populations (Bijlsma et al. 1994). Since different types of molecular markers have been used,

direct comparisons of the observed levels of diversity between the study in the Netherlands

and our results are difficult. Population differentiation is probably stronger in the Netherlands

compared to what we found in the Swiss Jura, but this may be an effect of our small study

area. However, both the study from the Netherlands and our own results suggest that in this
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species populations may genetically suffer from small size and isolation and that this may

have consequences for their long-term survival. Restoration efforts should therefore not only

tend towards increasing local population sizes, but should also consider genetic diversity

taking into account the possible interactions between genetic and non-genetic effects on

population viability.
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APPENDIX

Appendix 1: Primer sequences used for RAPD-PCR and the number of well reproducible polymorphic

bands per primer.

Primer

sequence

No. of

polymorphic bands

FMI, Basel, Switzerland CACCTTTCCC 1

FMI, Basel, Switzerland CACAGGCGGA 4

FMI, Basel, Switzerland GGGCCACTCA 2

FMI, Basel, Switzerland CCCTACCGAC 3

Microsynth, Balgach, Switzerland GTGACGTAGG 4

Microsynth, Balgach, Switzerland ACCCATGCGG 2

Total 16
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In this thesis the main focus is on genetic variation, population differentiation and

adaptation of a clonal plant species (Geum reptans) in the naturally fragmented alpine

landscape (Chapter 2 and 3). In addition, I studied the hypotheses that mean seed weight

among and within species is increasing with altitude (Chapter 4). Finally, this theses includes a

molecular and greenhouse study with Scabiosa columbaria, a plant from recently fragmented

remnants of calcareous grassland (Chapter 5). The data for the last study is from my Diploma

thesis, but data analysis and writing was mainly done during my PhD.

Alpine plant life is characterised by habitats with steep environmental gradients, sharp

boundaries, strong natural fragmentation and high disturbance frequencies. Therefore, most

plant populations are spatially isolated. Alpine areas are naturally fragmented in contrast to

recently fragmented habitats, where habitat destruction increased as a consequence of human-

impacts over the last decades. It is now well established, that populations in recently

fragmented habitats may suffer from erosion of genetic variation and show increased

interpopulation divergence as a consequence of isolation and reduced gene flow (Young,

Boyle & Brown 1996). If similar effects are present in naturally fragmented landscapes is not

well known. Partitioning of genetic variation among populations depends strongly on the

breeding systems and on reproductive mode. Pronounced clonal propagation may decrease

genetic variation within and increase genetic differentiation among populations. In general, the

proportion of plants reproducing clonally increases with altitude (Klimes et al. 1997).

Selection pressure on life history traits may differ dramatically among contrasting alpine

habitats. Local adaptation of plants to abiotic and biotic environmental conditions may thereby

further increase genetic separation among populations. I studied the effect of the naturally

fragmented landscape on genetic population differentiation in the clonal plant Geum reptans

using RAPD-PCR and greenhouse experiments (Chapter 2 and 3). The effects of recent

fragmentation on molecular diversity, plant growth, and competition ability of populations of

Scabiosa columbaria from remnants of calcareous grasslands in the Swiss Jura was also

studied with RAPD-PCR in parallel to an experiment in the greenhouse (Chapter 5).

A main question of this thesis was, if populations from contrasting habitats (low vs.

high elevation and early vs. late succession) differ in growth and reproductive traits and show

adaptations to these conditions. A trade-off among seed size and number and among clonal

and sexual reproduction may be expected, as available resources are always limited (Harper
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1977). Opposing selection pressure on reproductive mode in contrasting habitats is predicted

by metapopulation models: individuals with traits favouring sexual reproduction and seed

dispersal should colonise open space preferentially, whereas selection acts against genes

promoting migration once a population has been established (Olivieri, Michalakis & Gouyon

1995). In this thesis population differentiation in growth and reproductive behaviour, and

adaptation to contrasting habitats was tested in two greenhouse experiments with the clonal

alpine plant Geum reptans (Chapter 3). In Chapter 4, seed size variation was measured to test

the hypothesis that mean seed weight is increasing with altitude, indicating adaptation to the

more severe germination conditions at high altitudes, because more reserves provided for a

seedling have many benefits (Grime & Jeffrey 1965; Leishman & Westoby 1994).

Geum reptans was chosen as a main study species. This alpine plant is particularly

suited to study variation, differentiation, and adaptation in naturally fragmented habitats

because it occurs in contrasting alpine habitats (low vs. high altitude, early vs. late succession)

and is reproducing sexually as well as clonally with flower heads and stolons both relaying on

the same apical meristems in rosette-leaf axils.

In recently fragmented remnants of calcareous grassland, Scabiosa columbaria was

chosen as a study species. This species is common but restricted to grassland remnants in the

Swiss Jura. Up to now, most studies on genetic consequences of habitat fragmentation

concentrated on rare species, while more common species were neglected in this context.

MOLECULAR DIVERSITY AND DIFFERENTIATION IN FRAGMENTED

LANDSCAPES

Mean molecular variation within 20 populations of the outcrossing Geum reptans (He =

0.22 ± 0.004) was neither particularly high nor low and similar to the mean of other RAPD-

studies (Nybom & Bartish 2000; Chapter 2). The observed molecular variation suggests that

clonal reproductive behaviour and the fragmented nature of alpine habitats both have no

severe consequences on genetic diversity. Mean molecular variation within eleven populations

of Scabiosa columbaria in recently fragmented habitats was lower than in G. reptans and

lower than the mean of other RAPD-studies (He = 0.18 ± 0.04; Chapter 5), indicating genetic

erosion. In both studies, molecular variation did not correlate with population size. But
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measurements of molecular variation within populations were more variable in S. columbaria

compared to G. reptans, with low levels of diversity in some populations. Again, this indicates

genetic erosion in plants of recently fragmented grassland remnants, what may negatively

influence fitness traits. Indeed, population viability in S. columbaria decreased with

decreasing molecular diversity when plants had to compete with Bromus and competition

ability decreased as well. On the other hand, competition ability of G. reptans was

independent of molecular variation (R  = 0.53, P  = 0.18 for expected heterozygosity).

Moreover competition ability did not change among early and late successional habitats (t-

Test: P = 0.41), indicating no selection for competition during succession. Additionally,

neutral molecular diversity was similar between contrasting habitats and thus, loss of

genotypes during succession or with increasing or decreasing altitude may be neglected.

Plant populations in isolated habitats are expected to be highly differentiated. But in G.

reptans populations were only moderately differentiated (Gst = 0.14), indicating considerable

gene flow. Scabiosa columbaria populations were slightly less differentiated (Gst = 0.12). In

general, genetic differentiation increases with increasing geographic scale (Nybom & Bartish

2000). The study area of S. columbaria is smaller than the study area of G. reptans and within

the latter, genetic differentiation increases from the core to the regional, to the whole study

area. In both cases, differences among population-pairs were considerable variable which

indicates random genetic drift. Even G. reptans populations of the same glacier forefield were

significantly differentiated, but to a small degree, while genetic differentiation increased

among more distant populations. This suggests that gene flow among populations is dependent

on distance. Moreover, a clear spatial genetic structure was observed in G. reptans according

to the geographic distribution of the studied populations. The non-significant genetic

difference between the two youngest populations in adjacent valleys suggest that they are not

necessarily founded from propagules of the nearest or elder populations from the same glacier

forefield, but by immigrants from several populations in the same region. Clearly, this reduces

the possibility of a genetic bottleneck during colonisation of new sites. On the other hand,

genetic differentiation among S. columbaria populations from grassland remnants in the Swiss

Jura did not increase with distance and there was no spatial pattern in the molecular data.

These findings suggest that migration of seeds or pollen between populations from recently

fragmented grassland remnants is too low to compensate for random genetic processes.
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PLANT DIFFERENTIATION IN CONTRASTING ALPINE HABITATS

In two greenhouse experiments I studied the effects of population origin and

environment on population differentiation in Geum reptans (Chapter 3). In the competition- (8

populations, 172 individuals) and in the temperature-experiment (9 populations, 206

individuals), between early vs. late successional and low vs. high altitudinal G. reptans

populations, respectively, I found differentiation in plant size and some indications for

differences in reproductive behaviour between contrasting habitats. Plant performance differed

significantly among all populations, indicating genetic drift. Accordingly, the molecular study

of G. reptans with neutral genetic markers (Chapter 2) gave similar evidence for genetic drift.

Growth under greenhouse conditions was superior in plants from early compared to late

successional populations and in plants from high altitude populations compared to plants from

low elevation. Numbers of reproductive organs depended on plant size, but reproducing

individuals in plants of late succession were smaller than in plants from early succession.

Plants of late successional populations may better exploit nutrients because of adaptation to

competition in late successional habitats. I found some evidence for an influence of

successional origin on flower production in the competition treatment: plants from early

succession tended to produce more flowers in the absent of competition, whereas the opposite

was the case in plants from late succession. Moreover, in early succession, plants tended to

invest proportionally less in stolons if grown without competition than with competition and

again, the opposite was found in plants from late succession. Therefore, results suggest

opposing selection pressure in contrasting habitats of G. reptans, supporting the prediction of

the metapopulation model of Olivieri et al. (1995) which included evolutionary constraints via

a trade-off between life-history traits.

Selection pressure on the allocation of reproductive meristems among flowers and

stolons is only possible, if there is a trade-off among numbers of flowers and stolons. In both

experiments such a trade-off could be confirmed. However, the percentage of stolons only

changed among populations but not between contrasting habitats, indicating no particular

selection perssure on reproductive modes constraint by a trade-off.

Seed weight differed among alpine species and their lowland relatives (Chapter 4) with

an increase in weight of 28 ± 8 % at high altitude, indicating that selection favours the

formation of larger seeds in stressful environments at high altitude. Only in one of 29 closely-
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related species-pairs the alpine species had markedly smaller seeds whereas in other species-

pairs seed weights were similar. The reason for the not general trend to larger seeds in species

at higher altitude may be explained by functional, developmental, or genetic co-variation

among traits imposing constraints that keep changes in size and shape of seeds within a

taxonomic lineage within narrow limits (Hodgson & Mackey 1986; Pigliucci 2003). Seed

weight was characterised as one element of a co-evolving complex of characters (Rees 1997;

Venable & Brown 1988) and an increase in seed size at higher altitude is probably frequently

related to changes of the taxonomic status of the plants involved. This may explain why I

found no indication of larger seed size at higher altitude among populations of four species

(Carex flacca, Epilobium fleischeri, Saxifraga oppositifolia, and Scabiosa lucida), even

though the species represents different life history traits and different habitats. Moreover, if

gene flow between populations reaches a substantial degree, potential differences due to

differences in selection pressure will be homogenised, and no pattern of seed size variation

with altitude will evolve. Genetic drift may explain the large phenotypic variation in seed

weight with mostly higher variation within populations than between populations.

Correspondingly, the molecular study with G. reptans (Chapter 2) gives evidence, that in the

naturally fragmented alpine environments gene flow and drift among and within plant

populations may be similar in strength and may explain the spatial genetic variation.

THE IMPORTANCE OF ENVIRONMENT ON PLANT GROWTH AND

REPRODUCTION

In both greenhouse experiments with Geum reptans, environmental conditions

influenced plant size and reproduction (Chapter 3). If plants grow under higher environmental

stress (e.g. competition, warmer temperature), fewer plants reproduced simultaneously

sexually as well as clonally. Competition with Poa alpina reduced all measured plant traits

drastically, indicating a low competitive ability of G. reptans. Due to the strong correlation of

size and reproduction, I conclude that the allocation to sexual and clonal reproduction is

mainly a response to plant size rather than a direct consequence of competition. In the

temperature-experiment, plant size was slightly decreased and the amount of reproductive

organs was smaller at warmer temperature. Alpine plants may not be well adapted to warmer
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temperature. In addition to competitive exclusion in closed vegetation, unfavourable

temperature conditions may be responsible for the lower distributional limit of G. reptans.

In the experiment with Scabiosa columbaria (Chapter 5), biomass was largely reduced

when plants had to compete with Bromus erectus. Competition ability and plant biomass did

not depend on population size but was positively related with molecular diversity. Populations

with low molecular diversity were also developmentally less stable. This indicates reduced

phenotypic plasticity when populations are genetically impoverished, making these

populations less able to cope with competition. The study with S. columbaria of remnant

populations gave only weak indirect evidence that decreasing plant performance was caused

by decreasing population size.

REPRODUCTION AT HIGH ALTITUDE

Reproduction increased with increasing plant size in both greenhouse experiments with

Geum reptans (Chapter 3). Smaller plants preferentially reproduced clonally whereas plant

size was larger, but similar in plants with flowers or both reproductive modes. These results

suggest that minimum plant size for the onset of clonal reproduction is smaller than for sexual

reproduction.

Flowers of G. reptans are mainly pollinated by flies (Chapter 2): 94 % of all observed

pollinators (N = 435) were flies of different sizes, 4.6 % were syrphids, and 1.4 % were

bumble bees. Pollinators are suggested not to be limited at high altitude: I observed 3.5

visitors per flower and per hour on a sunny day. The frequency of the observed pollen

dispersal distances (N = 50) decreased dramatically from 4 cm to 11.5 m with a single rare

dispersal event over 30 m. The wind dispersed seeds (Chapter 2) are mostly not dispersed

more than 10 m. However, 0.15 ‰ and 0.05 ‰ of all seeds are dispersed more than 100 and

1000 m, respectively. Given the large seed production per year, e.g. 10 Mio. seeds by G.

reptans on the Scaletta glacier foreland, on this particular glacier foreland c. 1580 and c. 520

seeds are dispersed over more than 100 m and 1000 m, respectively. Due to the large amount

of seeds produced, the low proportion of long distance dispersed seeds may be sufficient for

colonization and gene flow. Recruitment in the field from seeds is suggested to be frequent, as

I found mainly single G. reptans- genotypes in the molecular study (Chapter 2).
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Seed size (Chapter 4) was increased in alpine plants compared to related lowland plant

species, whereas seed size remained similar with increasing altitudes in Carex flacca and

Epilobium fleischeri and even decreased with altitude in Saxifraga oppositifolia and Scabiosa

lucida. Shorter season length, lower temperature, and reduced resource availability at higher

altitudes most likely explain the decrease of seed weight with altitude. In the absence of

selection towards higher seed weights, a negative elevational trend in the weight of seeds

collected in the field is not surprising. Seeds produced under controlled conditions in the

greenhouse would be necessary to test if environmental conditions had such an overriding

impact that a positive elevational trend in seed size was masked in the field study.

CONCLUSION

Even though the alpine landscape is naturally fragmented and vegetative reproduction

is important in Geum reptans, I conclude that gene flow and repeated seedling recruitment

during succession might be more frequent than commonly suggested and is similar at different

altitudes. Random genetic drift plays an important role in population differentiation and is

suggested to account for the high variation in growth and reproduction among populations.

Gene flow may additionally counteract selective forces in alpine plants from contrasting

habitats: plants performed similar in most traits within the same environmental treatment

irrespective of origin. This indicates limited adaptation to different habitats and a high

phenotypic plasticity in G. reptans. Despite of the overall low competition strength and

susceptibility to warm temperature, great size-dependent plasticity in the proportion of sexual

vs. clonal reproduction ensures population peristence and reproduction in a lrage range of

habitat conditions.

Selection for larger seeds along the altitudinal trajectory can be confirmed in a majority

of alpine species, but is not generally operating. My results suggest that seed weight only

rarely changes as a single trait, but rather evolves as an element of a correlated set of

characters involving taxonomic differentiation at the species or at least infra-specific level.

In contrary to the findings with G. reptans in the naturally fragmented alpine

landscape, Scabiosa columbaria from recently created habitat remnants is affected by habitat

fragmentation more severely. Local extinction risk of S. columbaria is suggested to be

increased as a consequence of a decreased viability and of reduced phenotypic plasticity due to
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genetic erosion. However, there is only weak indirect evidence for a poorer plant performance

of small populations, indicating that population size is not always the best indicator for

population viability and genetic diversity. Restoration efforts should therefore not only tend

towards increasing local population sizes, but should also consider genetic diversity by itself

accounting for possible interactions between genetic and non-genetic effects on population

viability.

My results suggest, that plants from naturally fragmented habitats are clearly less

affected by isolation than plants in recently fragmented habitats. From the results with Geum

reptans it can be concluded that phenotypic plasticity may be a successful strategy to cope

with contrasting habitat conditions in the alpine landscape and probably also buffers against

possible effects of natural fragmentation.
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