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SUMMARY

End organ damage resulting from hypertension is a leading cause of morbidity and

mortality worldwide. In hypertension, left ventricular mass increases resulting in left

ventricular hypertrophy (LVH). LVH increases the risk of heart failure and sudden

cardiac death. This is due to the decreased supply of oxygen and nutrients (ischemia)

to the myocardium because of vascular rarefaction. Research has focused on

inducers of angiogenesis such as basic fibroblast growth factor and vascular

endothelial growth factor to improve myocardial oxygenation and function. However,

recently components of the Renin-Angiotensin-Aldosteron System (RAAS), which

contributes to blood pressure control, have been shown to affect angiogenesis.

Angiotensin-converting-enzyme (ACE) inhibitors are used to treat high blood

pressure and congestive heart failure. These block the conversion of physiologically

inactive angiotensin I to active vasoconstrictive angiotensin II and inhibit the

breakdown of Bradykinin (BK), a potent vasodilator and mediator of inflammation.

ACE inhibitors increased capillary density in ischemic tissue by the induction of new

microvessels in ischemic rat limbs in vivo. Several lines of evidence suggest

Bradykinin to possess significant angiogenic activity. Hence, Bradykinin may mediate

the effect of ACE inhibitors. Still, it is unclear through whether Bradykinin promotes

vascularization of the ischemic heart via the Bradykinin receptor subtype 1 or 2. On

the other hand, blocking angiogenesis could be a strategy to arrest tumor growth,

since tumor growth and metastasis depend on angiogenesis. However, it is yet to

be fully elucidated whether and through which mechanisms Bradykinin induces

angiogenesis in tumors.

Therefore, the aim of this thesis was in the first line to clarify the angiogenic potential

of Bradykinin in the ischemic heart in vitro, especially the roles of the two Bradykinin

receptor subtypes in the regulation of Bradykinin-induced angiogenesis. In second

line, the thesis aims to comparatively assess the role of Bradykinin and requirement

of Bradykinin receptors in cancer, i.e. melanomas.

To do so, we used an in vitro model of angiogenesis of the murine heart under

moderate hypoxic conditions (3% O2). Pilot experiments showed decreased

angiogenic potential of hypertrophied rodent hearts compared to normal healthy

controls. When using ACE inhibitors, angiogenesis in vitro of hypoxic normal and

hypertrophied hearts increased, and, interestingly, Bradykinin showed a potent

induction of capillary like sprout formation.
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This angiogenic effect was induced at low (10nM) but not at high concentrations of

Bradykinin (1mM). RT-PCR showed expression of both Bradykinin receptor subtypes

in hypoxic mouse hearts. The angiogenic response to Bradykinin was inhibited by a

specific Bradykinin receptor 2 (BKR2) inhibitor, but not by an inhibitor of Bradykinin

receptor 1 (BKR1). A specific BKR1 agonist reduced angiogenesis. Bradykinin-

induced angiogenesis was not impaired in BKR1 (-/-) mouse hearts. Different nitric

oxide synthase inhibitors (L-NAME, L-NIL, NIO) almost completely abrogated the in

vitro mouse heart angiogenesis response to Bradykinin. Bradykinin did not induce

angiogenesis in hearts of iNOS (-/-) mice. Thus, in mouse hearts in vitro Bradykinin at

low nanomolar concentrations is angiogenic under conditions of prolonged hypoxia.

This angiogenic effect is mediated by BKR2 activation and depends on iNOS.

To assess the involvement of Bradykinin in cancer angiogenesis, melanomas were

injected and grown in the ear of wildtype and BKR1 (-/-) mice, which acquired a

BKR1 (-/-) phenotype vasculature. In contrast to the findings in hearts, we found that

in melanomas from BKR1 (-/-) mice angiogenesis in vitro was significantly lower as

compared to wildtype control. This suggests that melanomas in contrast to hearts

require vasculature with functional BKR1 to develop new microvessels.

In summary the key findings of this thesis are the following: Bradykinin potently

induces angiogenesis in vitro of the hypoxic heart at nanomolar concentrations via

BKR2. At high Bradykinin concentrations or using specific BKR1 agonists the

angiogenic effect appears to be blocked. Furthermore, functional iNOS is required for

Bradykinin to induce angiogenesis in vitro of the heart. In contrast to the heart

endothelial sprouting and angiogenesis, hypoxic melanomas in vitro require BKR1.

Thus, specific stimulation of the BKR2 of the heart vasculature may be a target to

reduce tissue ischemia by angiogenesis in the ischemic and/or hypertrophied heart.
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ABBREVIATIONS

ACE angiotensin converting enzyme

Ang II angiotensin II

bFGF basic fibroblast growth factor

BK Bradykinin

BKR1 Bradykinin receptor 1 subtype

BKR2 Bradykinin receptor 1 subtype

CLS capillary-like sprout formation

EC endothelial cells

eNOS endothelial nitric oxide synthase

HIF-1 hypoxia-inducible factor 1

iNOS inducible nitric oxide synthase

KKS kallikrein kinin system

L-NAME nitro-L-arginine methyl ester

L-NIL L–N 6 –(1–Iminoethyl)lysine, 2Hcl

LVH left ventricular hypertrophy

MAPK mitogen activated protein kinase

mTOR mammalian target of rapamycin

NFk-B nuclear factor k-B

NIO N-iminoethyl-L-ornithine

nNOS neuronal nitric oxide synthase

NO nitric oxide

PDGF-BB platelet-derived growth factor B-chain homodimer

RAAS renin angiotensin aldosteron system

RT-PCR reverse transcription polymerase chain reaction

SHR spontaneously hypertensive rats

SMC smooth muscle cells

VEGF vascular endothelial growth factor
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1. INTRODUCTION

1.1. Formation of new blood vessels

1.1.1. Vasculogenesis, angiogenesis and arteriogenesis

Formation of new blood vessels involves three fundamentally different processes:

vasculogenesis, angiogenesis, and arteriogenesis (Figure 1). In vasculogenesis, blood

vessels form de novo during embryogenesis. Vasculogenesis consists of the

differentiation of angioblasts (the precursors of endothelial cells) into blood islands,

which then fuse to form primitive capillary plexuses 1,2..

Figure 1. Schematic overview of vasculogenesis and angiogenesis, showing how
endothelial-cell precursors (angioblasts and haemangioblasts) coalesce and differentiate
into endothelial cells (a), and form primitive vasculogenic networks (vasculogenesis) (b).
Remodeling of these networks occurs through angiogenesis (c), which involves
sprouting, intussusceptions and/or bridging, resulting in the formation of microvessels.
Figure by Bergers et al. 137.

Angiogenesis refers to the formation of new blood vessels from existing

micorvessles. These new vessles subsequently grow by sprouting and tube

formation to invade later target tissues. It serves the supply of oxygen, nutrients, and

the removal of waste 3,4. During subsequent arteriogenesis, which is defined by rapid

proliferation of pre-existing collateral arteries, vessels re-assemble and develop a

multilayered muscular coat, which provides blood vessels with viscoelastic and
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vasomotor properties. Arteriogenesis is a process that is both phenomenologically

and mechanistically totally different from angiogenesis 1,5-8 (Figure 1).

1.1.2. Angiogenesis

Angiogenesis is the formation of new capillary blood vessels from existent

microvessels by sprouting, i.e., cellular elongation and outgrowth. Angiogenesis

occurs during development, wound healing, ischemic heart disease, ischemic

peripheral vascular disease, tumor growth and tumor metastazation 9,10.

Angiogenesis is thought to involve a series of events including (see also Figure 2): 1)

activation of endothelial cells within a pre-existing vessel and vasodilation of the

parent vessel mediated by NO; 2) degradation of the basement membrane and

extracellular matrix; 3) migration of activated endothelial cells from the parent vessel

towards the site where angiogenesis is required and where angiogenic inducers are

expressed and secreted; 4) proliferation of endothelial cells in the newly forming

vessels; 5) re-differentiation of these endothelial cells and recruitment of pericytes

along the newly formed vascular structures; 6) formation of a new basement

membrane; and finally 7) remodeling of the neovascular network, with maturation

and stabilization of the blood vessels 11,12. Each of these steps is highly regulated by

an extensive number of different interacting intracellular and extracellular molecules

and cellular receptors 6,7,9.
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Figure 2. New blood-vessel formation. (a) Blood vessels arise from pre-existing capillaries or
post-capillary venules. (b) First, pericytes (green) detach and blood vessels dilate before the
basement membrane and extracellular matrix is degraded. (c) This allows endothelial cells
(red) to migrate into the perivascular space towards angiogenic stimuli. (d) Endothelial cells
proliferate, loosely following each other, and are presumably guided by pericytes. (e) Behind
the migration columns, endothelial cells adhere to each other and create a lumen, which is
accompanied by basement-membrane formation and pericyte attachment. Finally, blood-
vessel sprouts will fuse with other sprouts to build new circulatory systems. Little is known
about this fusion mechanism. Figure by Bergers et al. 137

1.1.3. Angiogenesis in the heart

Some pathophysiological changes in diseased hearts predispose for a deficient

oxygen supply, such as an altered architecture of capillaries and arterioles

(microvascular rarefaction) 13, decreased angiogenesis 9,14, ventricular dilation and a

longer diffusion distance between blood vessel and myocardial cells because of

fibrosis and matrix apposition 14. All of these changes can lead to a decreased blood

flow. Increased myocardial demands must be met by an equivalent increase in blood

flow or vascular supply 9. This is especially the case where oxygen demand and

supply are unbalanced due to either an enlargement of myocardial mass, i.e., heart

hypertrophy of any kind, or occlusive coronary artery disease. The resulting

myocardial ischemia necessitates an improvement of the vascular supply by
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emerging collaterals, which protect the myocardium from ischemic damage 9.

Experiments with artificially induced myocardial infarction and exogenous induction

of neovascularization with FGF in healthy canine hearts 15 and chronic ischemic

porcine hearts 16 suggest that angiogenesis contributes to the preservation of

ischemic tissue and myocardial pump function in evolving myocardial necrosis.

Therefore, therapeutic angiogenesis has emerged as a promising new method of

treatment for patients with coronary artery disease or ischemic heart disease 11.

1.1.4. Angiogenesis in cancer tissue

Tumor growth is often a multi-step process that starts with the loss of control of cell

proliferation in cancerous cells. The cancerous cells begin to divide rapidly and as the

tumor mass grows, the cells will find themselves further and further away from the

nearest capillary 17. Finally, the tumor stops growing. The restriction in size is caused

by a lack of nutrients and oxygen. In other words in a tumor the angiogenic

phenotype can be triggered by the increasing distance of the growing tumor cells to

the capillaries or from the inefficiency of the newly formed vessels to sustain such

growth 17,18. Thus tumors can switch to an angiogenic phenotype, meaning increased

secretion of angiogenic factors by solid tumors and reduction of negative regulators

of angiogenesis 19 (Figure 3). Excessive angiogenesis developing mostly in response

to hypoxia will contribute to the pathology 20. In both normal and pathological

angiogenesis, hypoxia is the main force initiating the angiogenic process. Inhibition of

angiogenesis can prevent diseases with excessive vessel growth such as cancer. In

tumor growth, cancer-causing genetic changes, possibly in conjunction with

environmental influences, are able to promote angiogenesis. The pivotal role of

angiogenesis in tumor progression and metastasis has encouraged the researchers

to test newly developed inhibitors of angiogenesis in a broad variety of animal tumor

growth models.
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Figure 3. The classical angiogenic switch. The angiogenic switch is a discrete step in
tumour development that can occur at different stages in tumour-progression, depending
on the nature of the tumour and its microenvironment. Most tumours start growing as
avascular nodules (dormant) (a) until they reach a steady-state level of proliferating and
apoptosing cells. The initiation of angiogenesis, or the 'angiogenic switch', ensures
exponential tumour growth. The switch begins with perivascular detachment and vessel
dilation (b), followed by angiogenic sprouting (c), new vessel formation and maturation,
and the recruitment of perivascular cells (d). Blood-vessel formation will continue as long
as the tumour grows, and the blood vessels specifically feed hypoxic and necrotic areas
of the tumour to provide it with essential nutrients and oxygen (e). Figure by Bergers et
al. 137.
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1.2. Hypertension and angiogenesis

1.2.1. The heart during hypertension

Cardiovascular disease usually starts with the classic risk factors such as obesity,

diabetes, smoking, dyslipidemia and hypertension (Figure 4) 21. Arterial hypertension

is a very prevalent, important risk factor not only for cardiovascular, but also renal,

and cerebral diseases and dementia. Arterial hypertension is also strongly associated

with left ventricle hypertrophy (LVH), which is an independent risk factor for

cardiovascular morbidity and mortality. In the early stages of hypertension, left

ventricle (LV) structure and function will typically be more normal 22-25.

Over time, the pathologic effects of one or more cardiovascular risk factors may

cause LV hypertrophy (LVH) to develop or a myocardial infarction to occur. LVH is

characterized by rarefaction of microvessels and in consequence with ischemia of

the left ventricular myocardium. LV remodeling leads to systolic or diastolic

dysfunction, which can further develop symptomatic heart failure.

Figure 4. Progression from hypertension to heart failure. CHF = congestive heart
failure; CV = cardiovascular; HF = heart failure; LV = left ventricular; LVH = left
ventricular hypertrophy; MI = myocardial infarction.
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1.2.2. Hypertension and microvascular rarefaction

Arterial Hypertension is associated with altered function and structure of large and

small vessels. Abnormal regulation of vasomotor tone, enhanced vasoconstriction,

reduced vasodilation, structural alterations of arteries, microvessels and

microvascular networks. These changes contribute substantially to hypertension and

hypertension-associated target organ 26,27. For example microvascular rarefaction

contributes to increased peripheral vascular resistance and in consequence to the

development of chronic arterial hypertension 12. Prewitt and others 12,28-31 suggested

that rarefaction develops after the blood pressure begins to rise. The arterioles first

go through a period of functional rarefaction where they are closed to flow but can

be opened with vasodilators. Later, the closed vessels are lost completely. This

occurs in spontaneous hypertensive rats (SHR) as well as in renal hypertensive

models where there is no genetic predisposition for rarefaction. Struijker-Boudier and

others 12,31-33 refined these findings. They found that rarefaction can indeed be

resulted from a persistently elevated blood pressure and substantiated this in many

models of secondary hypertension. However, in primary (genetic) forms of

hypertension rarefaction can occur at very early stages before significant elevation of

pressure. This was shown in the SHR, but also in human essential hypertension 12,26

(Figure 4).

1.2.3. Hypertension and impaired angiogenesis

In consideration of the studies by Struijker-Boudier and Prewitt 12,29,31,33-35, the term

"rarefaction" should be specified as "primary" when it occurs at early stages of

hypertension and is related to decreased angiogenic capacity and "secondary", due to

pressure increase. Hypothetically, impaired angiogenesis, i.e., inadequate formation

of new blood vessels in patients prone to hypertension may evolve because of

genetic disposition, deficient placental and embryonic vascular development, and

thus impaired postembryonic vascular growth in general and in target organs (for

example in hypertrophying myocardial tissue) 27. This deficiency in the growth of

arterioles or capillaries contributes to an increased peripheral vascular resistance and

persistence of hypertension 36. Furthermore, it may be intrinsically associated with

development of hypertension-dependent target organ damage 9,10,12,31 (Figure 4).
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1.2.4. Reversing impaired-angiogenesis in hypertension

Up to now the main focus in antihypertensive therapy was to induce vasodilation 31.

However, attention has recently also been directed at reducing or even reversing

microvascular rarefaction 31. Several antihypertensive drugs, which were initially

designed to promote vasodilation, are now known to improve altered structure of

arteries and microvascular networks. Latter effects require time whereas changes of

vascular tone occur quickly. To reverse microvascular rarefaction by antihypertensive

therapy, microvascular networks, which have been destroyed in response to high

blood pressure or which have not formed because of hypertension-associated

impaired angiogenesis need to be established or re-established.

1.2.5. Keypoints hypertension and angiogenesis

Theoretically hypertension due to microvascular rarefaction and impaired

angiogenesis can be reversed: 1) microvascular rarefaction precedes manifest

elevation of blood pressure and hypertension in persons with a family history of

hypertension and in animal models of hypertension 26; 2) nitric oxide (NO)

biosynthesis and the Renin-angiotensin-aldosteron-system (RAAS) play pivotal roles

in the development of hypertension, and both regulatory pathways affect

angiogenesis substantially 37; 3) induction of arterial hypertension by NO-biosynthesis

inhibitors leads to impaired generation of a vascularized connective tissue in vivo,

i.e., impaired angiogenesis 38; and 4) antihypertensive treatment can reverse

microvascular rarefaction in animal models of hypertension in vivo.
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1.3. The Renin-angiotensin-aldosteron system (RAAS) and angiogenesis

1.3.1. Activation of the Renin-angiotensin-aldosteron system (RAAS)

The Renin-Angiotensin-Aldosteron System (RAAS) is involved in the pathophysiology

of hypertension 39,141. The RAAS plays an important role in the hormonal mechanisms

that regulate blood pressure 39. Factors that reduce blood volume, renal perfusion

pressure or plasma sodium concentration activate this system, whereas increases in

these variables suppress the pathway 40. The activation of this cascade is initiated by

renin, which is released from the kidney. Renin cleaves angiotensinogen, produced

in the liver, to angiotensin I (Ang I). This latter molecule is further processed to

angiotensin II (Ang II) 39,41,42. Ang II is the main effector molecule of the RAAS. It is an

octapeptide with potent vasoconstrictor properties 41. Ang II promotes salt and water

retention and cell growth in vascular and myocardial tissue 43-45 and appears to act as

an angiogenic factor 46. However, the exact mechanisms by which Ang II induces

angiogenesis are not fully elucidated yet. Ang II is conversed from its inactive

precursor, the decapeptide Ang I, to its active form Ang II by Angiotensin-Converting-

Enzyme (ACE). ACE, a carboxypeptidase enzyme released from the lungs, plays a

major role in the regulation of the vascular tone by converting the Ang I into the

vasoconstrictor Ang II. ACE, also known as kininase, is at the same time the enzyme

responsible for degradation of Bradykinin (BK), a potent vasodilator 47. The effect of

the RAAS on blood pressure is also modulated by interaction with other vasoactive

systems including the Kininogen-kallikrein- Bradykinin -system.

1.3.2. Angiotensin-converting-enzyme inhibitors

Angiotensin-conversion-enzyme (ACE) inhibitors, which block the conversion of

Angiotensin I to Angiotensin II, are used primarily to treat high blood pressure and

congestive heart failure 41. ACE inhibitors have been demonstrated to reduce

myocardial injury in cell culture, in isolated hearts 48, and in animal models 49, all of

which were subjected to ischemic conditions. A study with the ACE inhibitor

quinaprilat in ischemic rat limbs in vivo demonstrated that ACE inhibition increases

capillary density in ischemic tissue by the induction of new microvessels 50. Fabre et

al. suggested that quinaprilat promotes angiogenesis in a rabbit model of hindlimb

ischemia in vivo 50. More clinically-oriented in vivo models show that the ACE

inhibitor perindopril increases vessel density and capillary number in ischemic

hindlimbs of mice 51. Spirapril, another ACE inhibitor, substantially increases
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myocardial capillary microvascular density in spontaneously hypertensive rats 52.

Spirapril also improves left ventricular function by reducing its thickness and its

hypertrophied weight 52, which might be due to enhanced angiogenesis. These

beneficial actions were indistinguishable from exogenous Bradykinin suggesting that

they may not only be due to ACE inhibitors action to decrease Angiotensin II levels,

but also to the inhibition of degradation of Bradykinin 47,48,53-55. Indeed with the

availability and use of potent Bradykinin antagonists it was shown that the effect of

the ACE inhibitors was abolished, suggesting that inhibition of the degradation of

kinins is the overriding protective mechanism 47,56,57.

1.3.3. Kallikrein-kinin-system (KKS)

Kinins belong to a group of 9-11 amino acid peptides, including Bradykinin (BK),

kallidin and des-Arg-kinins. These molecules participate in inflammatory processes by

virtue of their ability to activate endothelial cells. They also lead to vasodilation,

increased vascular permeability, and production of nitric oxide. Kinins also stimulate

sensory nerve endings 58,59. Thus the classical parameters of inflammation (i.e.,

redness, heat, swelling, and pain) can all result from kinin formation 58. Kinins are

released from plasma precursors, the kininogens, by the action of kallikreins 47,60.

Plasma kallikrein releases Bradykinin from high molecular weight kininogen (HMWK)

and tissue kallikrein releases Lys-Bradykinin from low molecular weight kininogen

(LMWK). The KKS is activated by most diverse stimuli including ischemia, tissue

damage or inflammation 47. Kinins undergo rapid metabolic degradation by several

enzymes including angiotensin-converting-enzyme 59 (Figure 5).

Kinin peptide levels are increased in the heart of rats with myocardial infarction and

in tissues of spontaneously hypertensive rats, suggesting a role for kinin peptides in

the pathogenesis of these conditions 61. Kinins induce various signal transduction

mechanisms including the activation of phospholipase A2, C and D and the

subsequent release of nitric oxide, inositol phosphates and diacylglycerol, leading to

the mobilization of several protein kinase C isoforms 59. Despite the early detection

of kinins, many aspects of their physiology and their role in diseases are yet to be

defined 61.
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Figure 5. The kinin pathway. Generation of kinin peptides by tissue and plasma kallikrein. In
tissue kallikrein generates kallidin whereas plasma kallikrein generates Bradykinin (BK) from
LMWK and HMW, low and high molecular weight kininogens. Whereas Bradykinin [BK-(1-9)]
and kallidin [Lys-BK-(1-9)] are more potent agonists for the BKR2, BK-1-8 and kallidin-(1-8) are
more potent agonists of the BKR1. Signaling via Bradykinin receptors involves:
Phospholipase Cg (PLCg), nitric oxide (NO), endothelial and neuronal NO synthase (eNOS,
nNOS), src homology domain 2 (SHP2), phospholipase A2 (PLA2), prostaglandin (PG), protein
kinase C (PKC), cyclic guanidin and adenosin monophosphate (cGMP, cAMP) and others.
Figure created based on Kaplan et al.138, 139, 140
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1.3.4. Bradykinin (BK) and BK receptors

Bradykinin is a potent short-lived vasodilator. Bradykinin is formed by tissue Kallikrein

from its endogenous protein substrate kininogen 62. Bradykinin participates in

inflammatory and vascular regulation, including the regulation of blood pressure,

angioedema, tissue permeability, and smooth muscle contraction 63,64. The actions of

Bradykinin are mediated through two receptor subtypes; BKR1 and BKR2. Recently,

a third Bradykinin-activated receptor has been described, GPR100 65. These

receptors belong to the family of G-protein-coupled-receptors (GPCRs) 63. Bradykinin

often exerts its biological effects through the activation of the BKR2, which is

generally constitutively expressed and predominates 63. In contrast BK1 receptors

are induced by tissue injury 61, myocardial ischemia 66 and inflammation 63. However,

there is some evidence suggesting that the BKR1 exerts effects also when

expressed minimally (constitutively) 63,67. Besides the classical pathways, mentioned

above, the BKR2 is also linked to the activation of protein tyrosine kinase as well as

MAP kinase. Conversely, the BK1R is primarily linked to the activation of

phospholipase C 59.

1.3.5. Bradykinin in reparative angiogenesis

ACE inhibition leads to accumulation of Bradykinin. The beneficial effect of ACE

inhibition on the microvasculature is probably due to angiogenesis via Bradykinin and

other molecules such as FGF, VEGF, eNOS and PKC 68-71. Moreover, the angiogenic

effect of ACE inhibition appears to be mainly mediated via Bradykinin and the BK2

receptor. Thus, in an ischemia-reperfusion rat heart model, ACE inhibition partially

reduced myocardial infarction and apoptosis via the BKR2 receptor 72. In a model of

surgically induced hindlimb ischemia in mice, ACE-inhibition leads to angiogenesis

via BKR2 signaling and upregulation of endothelial nitric oxide synthase (eNOS) 51.

BKR2 knockout mice display reduced capillary density 73. Moreover, Bradykinin

promoted angiogenesis via BKR2 by increasing vascular and endothelial permeability

and by up-regulation of VEGF via BKR2 74. Confusingly, other reports suggest that

the BK1 receptor is required for the angiogenic response to Bradykinin. For example,

the BK1 receptor is upregulated in ischemic skeletal muscle of mice 75 or ischemic

myocardium of rats 76. In line with this, abrogation of BK1 receptor signaling inhibits

an angiogenic response in a murine model of hindlimb ischemia 55. Conversely,

delivery of BK1 receptor agonist enhances collateral vascular growth in ischemic

skeletal muscle of mice 55. In vitro BK1 receptor activation stimulates endothelial cell
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proliferation and survival 55. Bradykinin acting via the BK1 receptor up-regulates the

angiogenic factor FGF-2 via the iNOS pathway 68,77. Taken together, Bradykinin

seems to be a powerful angiogenic stimulus in vivo and in vitro. Reports describing

mechanisms of how Bradykinin induces angiogenesis are diverse. In particular it is

not clear which Bradykinin receptor subtypes elicit a pro- or antiangiogenic

response77. Furthermore, different effector molecules or mechanisms responsible

for Bradykinin-induced angiogenesis have been described such as upregulation of

VEGF, bFGF or transactivation of VEGFR2 68,77,78 .

1.3.6. Bradykinin in tumor angiogenesis

The nanopeptide Bradykinin is an important growth factor for many cancers as

certain Bradykinin antagonists show remarkable anti-cancer activities 79. Most solid

tumors are known to exhibit highly enhanced vascular permeability, which may

supply nutrients as well as oxygen. This permeability may be due to the presence of

Bradykinin 18. In in vitro studies tumor cells can generate Bradykinin, which is also

present in blood plasma and pleural fluids of cancer patients 18,80,81. In vivo Bradykinin

promotes angiogenesis in mice bearing sarcoma 180 cells by increasing vascular

permeability and by promoting up-regulation of VEGF 74. In these mice daily

administration of BK2R antagonist suppresses the increase in angiogenesis and

tumor weight.
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1.4. The hypoxic heart

1.4.1. Hypoxia and angiogenesis of the heart

Hypoxia is a potent regulator of a variety of biological processes, including

angiogenesis and vascular contractility. The heart is hypoxic, i.e., the myocardium is

ischemic when a major coronary artery occludes or when a deficient growth of the

microvasculature can not keep pace with the rate of hypertrophying myocardium 82.

At this stage the vascular supply is overwhelmed by increasing metabolic demands
83, and any accelerated heart rhythm will enhance oxygen consumption. This leads

necessarily to a state of hypoxia in the microenvironment 83.

Angiogenesis serves to increase blood supply to insufficiently oxygenated organs
11,14. Responses to hypoxia can be acute, occurring over a period of seconds to

minutes, or chronic, with a time course of hours to days 84. Hypoxia is an important

stimulus of SMC and EC proliferation and is found in atherosclerotic lesions and

rapidly growing tumors 84. Thus hypoxia can upregulate numerous genes that trigger

neovascularization, proliferation and remodeling within the vascular wall 84,85. Hypoxia

activates hypoxia-inducible factor 1 (HIF-1) which is a transcriptional factor and is

expressed in response to a decrease in the partial pressure of cellular oxygen. HIF-1

activates genes involved in angiogenesis. Under conditions of hypoxia, HIF-1 is

stabilized by inhibition of prolyl hydroxylase, thus preventing HIF’s proteolytic

degradation. Recently, signaling via mTOR was also shown to stabilize HIF-1 144.

Hypoxia activates vascular endothelial growth factor (VEGF) 145, 146 or nitric oxide

synthases 144 via HIF-1. Furthermore, an experimental study on benefits of ACE-

inhibitors have shown that hypoxia significantly increases Bradykinin levels in rat

cardiac myocytes 86. In line with this, altered production and release of potent

vasoactive substances by the endothelium under hypoxic conditions, such as

Bradykinin, is suggested to be involved in the development of pulmonary vascular

remodeling 141.
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1.5. Nitric oxide (NO)

1.5.1. NO and NO synthases

NO acts as a mediator in the vascular, nervous, and immune systems by regulating

vascular permeability, vasodilation, tumor blood flow, platelet adhesion and

aggregation, and other functions 87,88. Many of the biological effects of NO are

mediated via the activation of guanylyl cyclase which increases cGMP formation

from GTP 89,90. The synthesis of NO is catalyzed by a group of enzymes called Nitric

Oxide Synthases (NOS) 91,92. Three NOS isoforms have been identified which are

named according to the cell type or conditions in which they were first detected:

neuronal NOS (nNOS or NOS1), inducible or inflammatory NOS (iNOS or NOS2), and

endothelial NOS (eNOS or NOS3) 91,92.

nNOS is highly expressed in the central and peripheral nervous system and in

skeletal muscles 92-95. In the central nervous system, nNOS-derived NO may be an

important mediator of behavioral inhibition. In peripheral nerves NO derived from

nNOS is important in the relaxation of vascular and non-vascular endothelial cells 92,95.

eNOS was reported to be expressed in various cells like cardiac myocytes, glial cells,

and brain cells (hippocampus) 92,94. eNOS expression is usually reported to be

constitutive though modest degrees of regulation occur in response to factors such

as shear stress, exercise training, chronic hypoxia and heart failure 92,94. NO derived

from eNOS in cardiovascular system maintains the vasculature in a relaxed state,

inhibits adhesion of platelets and white cells, and suppresses replication of smooth

muscle cells 92. eNOS knock out mice are hypertensive and more prone to

atherogenesis. eNOS also promotes angiogenesis and regulates VEGF expression
92,96.

iNOS is expressed in a  large number of cells. However, it is expressed only after

induction by immunologic or inflammatory stimuli, 92,94,97,98. Once expressed, iNOS

generates large amounts of NO often to a detrimental level 91,92,97. Induction of iNOS

is found in models of septic shock, inflammatory and non-inflammatory pain, arthritis,

asthma, in the brain after ischemia or trauma, and in various models of

neurodegeneration or cerebral inflammation 92,97. iNOS is important in skin wound

healing and healing of intestinal mucosa, is involved in angiogenesis (see later) , and

is a key mediator in ischemic preconditioning 92,97.
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1.5.2. NO and angiogenesis

Reduced NO bioavailability plays a central role in the development of arterial

hypertension, and NO is required for angiogenesis in vivo and growth-factor-

mediated endothelial tube formation in vitro. Vasodilation precedes sprout-formation

at initiation of angiogenesis 7,99. This vasodilation may be NO-mediated, and NO-

mediated vasodilation may be a prerequisite of elongation, migration, and

proliferation of endothelial cells. All of these cellular actions are required for

angiogenesis 99. Both inducible NOS (iNOS) and endothelial NOS (eNOS) have

directly been implicated in wound healing, where angiogenesis is an integral part of

the process 100-102. Furthermore, NOS inhibitors delay wound healing 147.
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1.6. RATIONALE & AIMS

Myocardial ischemia results from left ventricular hypertrophy (LVH) in hypertension

or coronary heart disease. It is one of the most important reasons for morbidity and

mortality in the Western world. Besides other features, LVH is characterised by

rarefaction of microvessel density. Great interest has been focused on improving

ischemia of the left ventricular myocardium by use of angiogenic growth factors

such as vascular endothelial growth factor and fibroblast growth factor.

Inhibition of angiotensin converting enzyme (ACE) is an efficient treatment of

persistent high blood pressure, vasoconstriction and LVH. A number of studies have

recently uncovered an unexpected effect of ACE inhibitors; they increase

microvessel density in peripheral tissues and thus help to reoxygenate the affected

ischemic tissue.

Figure 6. Left ventricular hypertrophy (LVH) in arterial hypertension is associated with
microvascular rarefaction. Furthermore, left ventricular hypertrophy is also associated with
tissue hypoxia and activation of Renin-angiotensin-aldosteron-system (RAAS). As a result of
activation of the RAAS we find increased Bradykinin degradation. Increasing Bradykinin
concentrations with angiotensin-converting-enzyme-inhibitors may contribute to regenerative
angiogenesis.

Recent reports suggest that the cardioprotective effect ascribed to ACE inhibitors at

a cardiovascular and tissue level might be due to the proangiogenic effect of the

vasodilator Bradykinin (BK), which is found at increased concentrations following

inhibition of its degradation by ACE inhibitors (Figure 6). However, reports describing
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mechanisms of how Bradykinin induces angiogenesis are divergent. In particular it is

not clear, which Bradykinin receptor subtype elicits a pro- or antiangiogenic

response. Furthermore, different effector molecules or mechanisms responsible for

Bradykinin-induced angiogenesis have been described. It is also unclear, which

signalling mechanisms mediate angiogenesis in the heart during ischemia and

hypoxia.

The aim of this study was to assess the potential of ACE inhibition, in particular the

potential of Bradykinin as a proangiogenic factor in therapeutic angiogenesis of the

heart (see also Figure 6). We also aimed better understand how Bradykinin induces

angiogenesis at the molecular and cellular level.

Specifically we wanted to determine:

(1) The role and presence of Bradykinin receptor subtypes (BKR1, BKR2) in heart

angiogenesis in vitro

(2) The down stream, key signaling relay enzymes

(3) The effector molecules of Bradykinin-induced angiogenesis

(4) The role of Bradykinin in tumor angiogenesis in vitro in comparison to heart

angiogenesis in vitro.

To answer these questions we used an in vitro assay of angiogenesis that we

developed to study microvessel formation in rodent hearts. The assay allows

investigating tissues from wildtype and genetically modified mice, the use of specific

pharmacological antagonists and agonists, as well as the assessment of the role of

diminished oxygen saturation.
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2. MATERIALS & METHODS

2.1. In vitro assay of angiogenesis

2.1.1. Assay description

This assay was developed in our laboratory with the aim of developing a new in vitro

angiogenesis assay of the heart based on a classical three-dimensional assay of

angiogenesis in vitro using rat aortic explants 103. In this assay, pieces of rat aorta are

cultivated in fibrin or collagen gels. After a week, endothelial cells start to grow out

from the piece of aorta and form sprouts. This outgrowth can be analyzed

morphometrically and corresponds to angiogenesis in vitro 84,103. For this in vitro

angiogenesis model we used small pieces of rat or mouse heart instead of aorta

(Figure 7). The standard conditions were established in our laboratory for in vitro

heart angiogenesis in mouse and rat hearts (Kiefer et al. 2004, Exp Cell Res, in

press).

Figure 7: Model of angiogenesis in vitro: This assay can be used to assess
angiogenesis in a variety of tissues, including aortae, hearts and tumor tissue.
Endothelial sprouts can be further analyzed by immunohistological staining.
Outgrowing rat but not mouse endothelial cells can be subcultured for in vitro
assays.

Briefly, a fibrin gel solution was prepared by mixing 3 mg of fibrinogen (Sigma-

Aldrich, Buchs, Switzerland) per ml serum-free DMEM (Oxoid, Basel, Switzerland)

 fibrin gel

 medium + growth factors
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with 0.1 U/ml of thrombin (Sigma-Aldrich, Buchs, Switzerland) on ice. 100 µl aliquots

of this fibrin gel solution were immediately pipeted into each well of 48-well plates

and allowed to polymerize for one hour at 37°C. Gels were then overlaid with 500 µl

serum-free DMEM for at least 30 minutes. Medium overlaying the gel was removed

and 1mm3 cubes from the myocardium of the left ventricle were placed onto the

gels in each well and overlaid with 100 µl of fibrin gel solution. After one hour of

polymerization, gels were overlaid with 500 µl standard DMEM containing 5% fetal

calf serum (FCS, Oxoid, Basel, Switzerland). Heart explants were then exposed to

agonists and/or antagonists incubated under normoxic (21% O2) and hypoxic (3% O2)

conditions for 10 days, with replenishment of agonists and/or antagonists every

second day. Fibrin gels were protected from degradation by adding 300 µg/ml e-

amino-caproic acid (Sigma-Aldrich, Buchs, Switzerland) every second day. After 10

days endothelial sprouts were photographed digitally (ColorView II, Soft Imaging

System, Gloor Instruments, Uster, Switzerland) on an inverted light microscope

(Olympus IX50, Olympus, Schwerzenbach, Switzerland).

Evaluation of the culture medium:

To find optimal culture conditions we investigated standard cell culture medium

(Dulbecco’s minimal essential medium, DMEM) supplemented with different

concentrations of fetal calf serum (FCS; 0, 1, 2,5, 5 and 10% FCS) after 10 days of

incubation. DMEM supplemented with 5% FCS proved to be the optimal

combination for our in vitro heart angiogenesis assay. Unstimulated control cultures,

i.e., containing 5% FCS, displayed weak sprouting that was additionally amplifiable

by addition of growth factors (Kiefer et al. 2004, Exp Cell Res, in press).

Time course of angiogenesis of the heart:

The initial incubation time of 10 days for the in vitro angiogenesis assay of the heart

was set arbitrarily. Under conditions of hypoxia first sprouts were observed after 3

days of incubation. After 10 days sprouting was maximal. Under normoxia sprouting

was weak and first sprouts started to emerge after 5 days and did not develop

further.

2.1.2. Quantification of sprout formation

In order to evaluate sprout formation we used two different methods: The

angiogenic index and the AnalySIS software.  However, we primarily used the
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angiogenic index since the resulted data with this index were reproducible and the

method showed a greater simplicity than the AnalySIS software. Nevertheless, we

consistently used the image analysis to corroborate the angiogenic index. Both

methods showed very similar results.

2.1.2.1. The angiogenic index

For the angiogenic index, pieces of heart were digitally photographed at 4fold

magnification. We evaluated sprout formation with the use of an empiric scale

ranging from 0 to 8. 0 represents no growth and 8 represents a fully overgrown

visual field. For scale used see figure 8 on page 30.

2.1.2.2. The AnalySIS software

We quantified the outgrowing sprouts with the AnalySIS software by measuring the

surface of area covered by outgrowing cells in relation to the surface of the piece of

heart (Figure 9). We did not include any form factor. Thus, we did not differentiate

whether cells were organised or not. Our primary goal was to evaluate a variable

correlating with the number of cells growing from the piece of heart into the fibrin

gel. The AnalySIS software yielded very similar results to those obtained with the

angiogenic index. A value of 5 in the angiogenic index corresponds to a value of

around 50% in the AnalySIS software. As mentioned above we used the AnalySIS

software to control our empirically obtained values with the angiogenic index at

regular interval (Figure 9, page 31).
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Figure 8. Sprout formation with angiogenic index ranking from 1 to 8. This scale has
been used as the standard to estimate angiogenic indices.
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Figure 9. Use of the AnalySIS software. After 10 days of incubation, pieces of heart
were photographed digitally at 4x magnification. The total surface of sprouts and the
piece of heart was measured. The fractions of heart and sprouts were set in relation
to the total surface. Example (A/B), stimulation with 5 ng/ml VEGF: surface of
sprouts is: 814’00 µm2 and surface of the heart is 152’600 µm2; total surface is
234’000 µm2; thus sprouts are 35% of the total surface corresponding to an
angiogenic index of 4. For PDGF-BB (D) we would have given a value of 8 in the
angiogenic index whereas the AnalySIS software resulted in a surface of 83%. The
table shows the relation between angiogenic index and the values obtained with the
AnalySIS software.

Angiogenic Index vs. Analysis

Angiogenic

Index
0 1 2 3 4 5 6 7 8

AnalySIS (%) 0-5 5-15
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2.1.3. In vitro assay of angiogenesis: Applicability and relevance

This in vitro model may serve as a reproducible and reliable tool for analyzing

induction as well as repression of angiogenesis in the heart in vitro. Our group

first tried to reproduce known in vitro and in vivo phenomena of angiogenesis

using this assay.

Growth factors such as PDGF-BB, bFGF or VEGF, that have been proved to

induce angiogenesis in vitro and in vivo 9,108,109 were examined in the in vitro

system for their ability to form capillary-like sprouts from the embedded heart

tissue. Indeed these growth factors induced angiogenesis in vitro from pieces of

the heart.

A further phenomenon influencing angiogenesis is aging. Age dependency of

angiogenesis has been shown in different models of angiogenesis in vivo 110,111

and in vitro 112,113. In line with these studies we could show another known

phenomenon with our assay: In experiments with 20 week old mice,

angiogenesis was even more restricted than in the 12 week old adult mice

(Kiefer et al, 2004, Exp Cell Res, in press). Given the above mentioned

experiments, in which we reproduced known in vivo phenomena, we propose

that our model is suitable to investigate regulation of angiogenesis of the heart

with an easy in vitro method.

Most of these experiments were performed in mice and some in rat hearts.

Experiments performed in rodents may not always be representative for

humans. To clarify this we performed preliminary experiments with small pieces

of explanted human left ventricle obtained from a heart transplant recipient and

observed a similar angiogenic response in vitro. However, these results need to

be interpreted cautiously since we had only enough human heart to perform two

single experiments. Rodent tissue is much more readily available than human

tissue. Apart from the availability, the other great advantage of using mice is that

transgenic animals can be used to answer more specific questions. We are

aware of the fact that our assay for angiogenic response may not completely

reflect myocardial angiogenesis in vivo but on the other hand organ culture

models may better simulate in vivo situations than other assay. They include

surrounding non-endothelial cells in their microvascular environment, which pure

endothelial angiogenesis in vitro assays don’t. In addition, endothelial cells have

not been pre-selected by passaging and are not in a proliferative state at the
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time of experiment and may thus better represent a real-life situation 114. Hence,

sprout formation in our assay could be mediated by direct stimulation of

myocardial endothelial cells and possibly also by stimulation of surrounding

myocardial tissue which then acts on endothelial cells to promote angiogenesis.

Endothelial sprouting in response to angiogenic molecules therefore reflects the

integrated interactions of different cell types and the entire myocardial tissue

and not the primary response of endothelial cells alone. All our results have been

very similar to in vivo situations (age, growth factors), and we conclude that

results obtained with our assay are likely to represent other situations in vivo.

The other advantage of this assay is that it can be used for screening of a broad

range of different inducers and inhibitors of angiogenesis. Currently most

experiments are performed in vivo since no appropriate in vitro model is

available. In vivo experiments require large numbers of animals, are difficult to

perform and are often associated with animal pain. Many animals die due to

myocardial infarction and cardiac rhythm disturbances during sometimes

cumbersome surgical procedures. An appropriate in vitro model of angiogenesis

of the heart would resolve some of the problems encountered in vivo and

potentially reduce the number of in vivo animal experiments.

Sources of variability. Each single experiment for each single condition

needs to be performed in octuplicates in this assay. This relatively high

number of identical samples per experimental condition is due to the

variability of the assay. We found that 1 to 2 out of 8 pieces of heart do not

show any sprout formation independent of the stimulus applied. Sporadically

some assays did not work at all. This assay needs a lot of practice and

accuracy. The gel layer on top of the heart piece may be too thick or the

consistency of the gel too close-meshed – due to a high fibrin concentration.

Stimuli and survival factors (FCS) may not diffuse unhamperedly through the

gel layer to reach the piece of heart. As a result the heart piece may not

survive. Indeed one to two out of ten pieces of heart become necrotic (data

not shown, Kiefer et al., 2004, Exp Cell Res, in press). On the other hand

weak gel layers will induce the pieces of heart to float. A lack of capillary-like

sprout formation may also be due to inadequate preparing and cutting of

tissue with irreparable damage to the tissue. Also, the time period between

embedding of the tissue on the first layer of fibrin-gel and applying the

second layer on top of it is crucial. Tissue must be completely encapsulated
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in gel within 20-30 minutes. Otherwise samples do not respond, most

probably due to necrosis.

Genetic variability may also play a significant role in an individual animals

capacity to respond to exogenous angiogenic agents. Therefore, we used

hearts from only one specific mice strain (C57BL/6). When examining the

effects of transgenes on angiogenesis in vitro we used corresponding wild-

type mice strains as control.

However about 7 or 6 of the octuplicates show an angiogenic response and only

1-2 experiments does not work out of 30. These variations result in the relatively

high standard deviations. This assay is therefore not suited to investigate small

differences in the degree of sprout formation between different conditions. In

summary, our assay has the potential to be used as a screening tool.

2.2. Agonists and antagonists

Stimulators used were 1 pM-1µM BK acetate (Bradykinin Sigma-Aldrich Chemie

GmbH, Germany), 5 ng/ml rat recombinant Vascular Endothelial Growth Factor

164 (VEGF) (hrVEGF164, R&D systems, Minneapolis, MN). List of inhibitors:

Inhibitors were added 20 minutes before addition of agonists (BK, VEGF) and

were present throughout the 10 days of incubation period. The following

pharmacological Bradykinin receptor inhibitors were used: 100 nM BK2 receptor

antagonist HOE140 (D-Arg-[Hyp3, Thi5, D-tic, Oic8]-BK); 10nM BK1 receptor

antagonist LYS-{des-ARG9,LEU8}-BK; 10nM BK1 receptor agonist LYS-{DES-

ARG9}-BK. Pharmacological NOS (nitric oxide synthase) inhibitors used were:

100µM L-NAME (Nω-nitro-L-arginine methyl ester), 10µM L-NIL (N 6 –{1-

iminoethyl}-lysine) and 1µM L-NIO (L-N 5 –{1-iminoethyl} ornithine). All inhibitors

were from Fluka Chemie GmbH, Buchs, Switzerland.

2.3. Immunostaining

For characterization of outgrowing cells and sprouts, specific markers were

directly applied to heart cultures. Heart cultures were fixed overnight with 4 %

paraformaldehyde (Merck AG, Dietikon, Switzerland), washed with PBS,

permeabilized with 0.2% Triton (Fluka Chemie AG, Buchs, Switzerland), washed

with PBS once more and incubated for 3 hours with cell specific markers: Alexa
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Fluor 448 conjugated GSL I – IB4 (20 µg/ml; Molecular Probes, USA) for

endothelial cells, Cy3-conjugated antibody anti- α smooth muscle actin (1:100;

SMA; Fluka Chemie GmbH, Buchs, Switzerland) for smooth muscle cells and

pericytes. After incubation with cell markers the probes were extensively

washed with PBS. Endothelial sprouts were photographed digitally (ColorView II,

Soft Imaging System, Gloor Instruments, Uster, Switzerland) on an inverted light

microscope (Olympus IX50, Olympus, Schwerzenbach, Switzerland) (Figure 10).

Figure 10: A piece (ca. 1 mm3) of the left ventricular myocardium of a mouse heart is
embedded in a fibrin-gel, overlaid with growth medium and angiogenic stimulant (basic
Fibroblast Growth Factor, 10ng/ml). After 10 days of incubation, double in-gel-staining
with FITC-coupled lectin G. simplicifolia (green fluorescent) and Cy3-coupled antibody
against a-smooth muscle actin (red fluorescence) reveal endothelial sprouts with single
attached smooth muscle- or pericyte-like cells. Pericyte attachment forming endothelial
tubes have been observed in vivo and contributes to vessel remodeling, maturation and
stabilization (Kiefer et al., Exp Cell Res, 2004, in press) 104.
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2.4. Animals

Experiments were performed with hearts of C57BL6 male mice. BK1R(-/-) - BL6

mice were from Dr. Jaenette Wood, Novartis Corp., Basel, Switzerland. iNOS(-/-)

mouse hearts were from Dr. Christoph von Garnier, Department of Research,

and University Hospital Basel, Switzerland 142. All hearts were obtained post

mortem within half an hour after death. Age of iNOS knockout- and OF1-mice

ranged from 8 to 12 weeks. All experiments conformed to the rules of the Swiss

Federal Act on Animal Protection (1998), and were approved by the Veterinary

Department of Basel (Switzerland).

2.5. Tumor model in BK1 (-/-) mice (Procedures described in this chapter were

performed by Dr. Amanda Littlewood-Evans & Dr. Jeanette Wood, Angiogenesis

Platform Novartis Basel)

Melanomas were injected into the ear of the mice. The B16/BL6 melanoma cell

line was obtained from Dr. Isiah J. Fidler, Texas Medical Center, Houston, USA.

The cells were cultured at 37ºc and 5% CO2 in MEM (MEM EBS, AMIMED,

Allschwill) with stable glutamine supplemented with 5% fetal calf serum, 1%

sodium pyruvate, 1% non-essential amino acids and 2% vitamins until

confluency. Subsequently, they were detached with 0.25% EDTA (2 min at

20ºc), and then processed. Viability was assessed by trypan blue exclusion, and

only suspensions with >90% viability were used. The tumor cells were re-

suspended in Hanks buffer containing 10% FCS, counted and a suspension of 5

x 104 cells/µl prepared for intradermal (i.d.) injection in a volume of 1 µl into the

dorsal pinna of both ears of BK1 (-/-) mice.

To inject the tumor cells, the mice were anesthetized (3% Isoflurane, Forene ®,

Abbott AG, Cham, Switzerland) and then placed onto an operating field

maintained at a temperature of 39ºc. Their ears were extended over a steel cone

fitted with a double-sided sticker to expose the dorsal surface. With the aid of

microscope, a 30G hypodermic needle was then inserted in the skin between

the first and second neurovascular bundle of the ear and tunneled for 4-5mm. 1

µl of tumor cell suspension (5 x 104) cells was injected using a microliter syringe

(250 µl, Hamilton, Bonaduz, Switzerland) forming a 2 x 2 mm sub-dermal blister.

Primary tumor size was measured in each animal over 3 weeks (days 7, 14 and

21 post tumor cell inoculation) after anaesthetizing the mice (3% Isoflurane) and
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viewing the tumor under a light microscope. Treatment was started at day 7,

when the tumor was already established. After 2 weeks of treatment (day 21

after cell injection), the animals were killed and the cervical lymph nodes

weighed.

2.6. Reverse transcription polymerize chain reaction (RT-PCR)

Heart tissues from mice were placed in standard DMEM containing 5% fetal calf

serum. Bradykinin was added at a final concentration of 10nM. After 2, 4, 12 and

24 hours heart tissues were collected and total RNA was isolated with TRIzol

Reagent (1ml/1g tissue)(Invitrogen AG, Basel, Switzerland) by homogenizing

with tissue homogenizer. Extracted RNA was quantified spectrophotometrically.

1 µg of total RNA from mouse heart tissue was reverse transcribed with M-MLV

reverse transcriptase system (Catalys-Promega, Wallisellen, Switzerland).

The cDNA (2µl) was amplified in polymerase chain reactions (PCR). The primer

sequences were for mouse BK1 receptor sense: 5′-TGA ACA TCT CTG CCT

GCA TC-3′, antisense: 5′-CGG CCT GCA AAG ACA TAA AT-3′; mouse BK2

receptor sense: 5′-CAA CGT CAC CAC ACA AGT CC-3′, antisense 5′-CAC

CTCTCC AAA CAC CCA GT-3′; mouse 18S ribosomal RNA sense: 5′-CCT GGA

TAC CGC AGC TAG GA-3′, antisense 5′-GCG GCG CAA TAC GAA TGC CCC-3′.

Amplification was carried out after an initial denaturation at 94°C for 5 min,

followed by 35 cycles of PCR (denaturation 94°C / 1 min, annealing 49°C BKR1,

52°C BKR2 or 57°C 18S/ 1 min, extension 72°C /1 min) and a final extension of

72°C/ 10 min). PCR products were visualized by agarose gel electrophoresis.

2.7. Statistical analysis

All results depicted represent experiments repeated on at least three separate

experiments and using at least three different hearts. Each single condition was

performed in octuplicate wells. Data points represent the mean of at least three

single experiments ± SEM or the mean of a representative experiment ± SD as

indicated. Statistical analysis was performed with SPSS for Mac OS X (SPSS,

Inc., Chicago, USA) where necessary. Statistical significance (p < 0.05) was

established by using non-parametric analysis, i.e., Kruskal-Wallis followed by

Mann-Whitney tests.
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3. RESULTS

3.1. ACE inhibition and angiogenesis of the heart

3.1.1. ACE inhibition induces angiogenesis of the heart

Initial experiments had shown increased angiogenesis of the rat hearts in vitro in

ACE-inhibitor perfused hearts (enalapril 10 µM) (experiments in collaboration

with PD Dr. Christian Zaugg, Cardiobiology, Department of Research, University

Hospital Basel). To investigate whether administration of ACE-inhibitors quinapril

and enalapril could enhance angiogenesis in vitro, we used an assay of

angiogenesis in vitro of the heart 27,38. Pieces of mouse hearts were embedded

in fibrin gel and were stimulated every second day with quinapril (1 µg/ml),

enalapril (10 µM) and also Bradykinin and angiotensin II to assess if the

proangiogenic effect is due to Bradykinin (BK)(10nM accumulation and compare

this also with the angiogenic effect of angiotensin II (1 µM).

Figure 11. Considerable CLS-formation was observed only under hypoxia (dark
columns) but not under normoxia (open columns). Induction of angiogenesis in vitro was
strongest using 10 nM BK (angiogenic index: 4.4±0.6). 10 µM enalaprilat and 1 µg/ml
quinaprilat induced moderate sprout formation (2.3±0.7 and 2.1±0.6 respectively).
Angiogenic response of 1 µM angiotensin II was lowest at 1.8±0.7. 10 ng/ml PDGF-BB
was used as a positive control (7.3±0.4).

After 10 days of normoxic (21% O2) and hypoxic (3% O2) culturing the outgrowth

of capillary-like sprouts was evaluated. All of the tested compounds were able to
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induce weak angiogenesis under hypoxic condition. Bradykinin however was the

strongest in inducing angiogenesis of the rat hearts (Figure 11). This suggested

that the proangiogenic effect of ACE-inhibitors under hypoxia might be due to

inhibition of Bradykinin-degradation and thus Bradykinin’s activity.

3.1.2. Angiogenesis is impaired in left ventricle hypertrophied hearts

In further pilot experiments with hypertrophied versus healthy rat hearts we

investigated angiogenesis in vitro of rat hearts with left ventricle hypertrophy

provoked in response to arterial banding in vivo (in collaboration with PD Dr.

Christian Zaugg, Cardiobiology, Department of Research, University Hospital

Basel). We aimed at assessing whether ACE-inhibitors may favorably affect

angiogenesis in the hypertrophied hearts. Both hypertrophied and healthy hearts

were embedded in fibrin gels and cultured for 10 days under hypoxia (3%O2).

The pieces of heart were stimulated with 1 µg/ml Quinapril, 10 µM Enalapril, 1

µM Angiotensin II and 10 nM Bradykinin every 2 days. After 10 days outgrowth

of capillary-like sprouts, induced by these compounds was evaluated.

ACE inhibitors also induced angiogenesis in these hypoxic hypertrophied and

normal hearts. Angiogenesis in the hypertrophied hearts was weaker than in

healthy hearts (Figure 12). Thus hypertrophied rodent hearts compared to normal

healthy controls display a decreased angiogenic potential. Also Bradykinin was

the most potent inducer of angiogenesis.
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Figure 12. Comparison of angiogenic potential of normal (dark columns) versus left
ventricle hypertrophied (striped columns) mice hearts under conditions of hypoxia (3%
O2). Sprout formation in hypertrophied hearts was significantly lower compared to
normal mouse hearts when 10 nM BK, 1 µg/ml quinaprilat and 10 ng/ml PDGF-BB were
used as angiogenic stimuli (* p<0.005, n=3).

3.2. Bradykinin: a potent inducer of angiogenesis

3.2.1. Bradykinin induces angiogenesis under hypoxia

We compared the angiogenic activity of Bradykinin with angiotensin II under

hypoxia. Bradykinin induced significant capillary-like sprout (CLS) formation under

hypoxia (3% O2) (angiogenic index of 4.3±0.04, * p<0.01, n=3), whereas

Bradykinin elicited no significant CLS formation under normoxia (19%-21% O2)

(angiogenic index of 1.8±0.3, n.s. p>0.01, n=3) compared to normoxic control

(angiogenic index of 0.4±0.5NRMX and 0.7±0.1HYPX) (Figure 13). CLS formation in

response to Bradykinin was similar to that induced by VEGF (7.2±0.02) (Figure

9). Bradykinin was angiogenic only under hypoxia. Hypoxia alone did not induce

angiogenesis nor did Bradykinin under normoxia suggesting hypoxia might

activate specific hypoxic-sensitive factors in Bradykinin-induced signaling. All

further experiments were therefore performed under hypoxia.

*

*

*
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Figure 13. Bradykinin (BK) induces angiogenesis of the mouse heart in vitro under
hypoxia. Piece of mouse heart were embedded in fibrin gel and exposed to BK (10nM)
every 48h for 10 days. Outgrowth of sprouts was observed under hypoxia (3% O2) and
normoxia (21% O2). VEGF (5 ng/ml) was used as a comparator and positive control.
(*=p<0.05).

3.2.2. Bradykinin induces angiogenesis in a bimodal way

To determine the effective concentration of Bradykinin required to induce CLS

formation, dose-response experiments were performed under hypoxia. Pieces

of mouse heart were embedded in fibrin gels and stimulated every 48 hours

with increasing doses of Bradykinin. A broad concentration range of Bradykinin

from 1 pM to 1 µM was assessed. CLS began to form at 10 pM Bradykinin

(angiogenic index of 2.5±0.12), peaking at 10 nM (angiogenic index of

4.7±0.1)(Figure 14). CLS formation was lower at higher concentrations (100 nM

Bradykinin) there was a negligible angiogenic response at the highest dose of

Bradykinin (1 µM)(angiogenic index of 1.9±0.3).
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Figure 14. BK induces angiogenesis in vitro at low but not at high doses. Pieces of
mouse heart were embedded in a fibrin gel and stimulated every 48h with BK (1pM,
10pM, 100pM, 1nM, 10nM, 100nM, 1000nM) under hypoxia (3% O2). Sprout formation
was observed after 10 days and then evaluated. The angiogenic potency of BK is
maximal at a concentration of 10nM (angiogenic index of 4.7±0.5). At higher
concentrations, sprout formation does not occur (angiogenic index of 1.9±0.3) similar to
non-stimulated control level (angiogenic index of 1.2±0.5).

3.3. Bradykinin receptors and angiogenesis of the heart in vitro

3.3.1. Bradykinin receptor expression

To elucidate through which BKR subtype the angiogenic effect of Bradykinin

might be mediated, we first examined expression of BKR1 and BKR2 receptors

in the heart tissues under hypoxia. BKR1 and BKR2 mRNA levels in mouse

hearts were determined by RT-PCR. The heart pieces were incubated under

hypoxia or normoxia in the absence or presence of Bradykinin (10nM). RNA was

extracted after 2, 4, 12, 24 hours.

Under hypoxia, BKR2 mRNA levels were constitutively expressed and not

modulated significantly during the 24-hour period, whereas BKR1 mRNA levels

dropped after 2 hours and remained at low levels (Figure 15). We could not

detect any significant modulation of BKR1 mRNA levels when comparing either

unstimulated with Bradykinin-stimulated heart pieces, or normoxic with hypoxic
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heart pieces (Figure 16). BKR2 mRNA levels, however, appeared to be “more

stable” during hypoxia (at time points 12 and 24 hours) when compared to the

same time points under normoxic culture. These experiments suggest that first,

both receptor subtypes are present and could potentially play a role in the

Bradykinin-induced angiogenic response and second, they are not upregulated in

response to hypoxia. This also means that regulation of Bradykinin receptors

does not explain increased angiogenesis in response to Bradykinin during

hypoxia.

Figure 15. BKR1 and BKR2 mRNA are not upregulated by hypoxia in mouse heart in
vitro. Pieces of heart were either stimulated with BK (10 nM) or left untreated and
incubated under normoxia (21%O2) and hypoxia (3%O2). RNA was extracted at the
indicated time points and transcribed to cDNA. Transcription of BK1 receptor, BK2
receptor and 18S ribosomal RNA as a control was detected with gene specific primers
by PCR.

3.3.2. Bradykinin induces angiogenesis in the heart via BKR2

 Bradykinin can act via either of its two receptors, BK1 and BK2 receptors.

Several studies suggest different receptor subtypes to be responsible for the

angiogenic effect of Bradykinin. In this study we aimed at assessing whether

Bradykinin induces angiogenesis of the heart in vitro via the BKR1 or BKR2.

Therefore pharmacological BKR inhibitors were used. The pieces of heart were
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stimulated with Bradykinin (10 nM) under hypoxia. To block the BK2 receptor

subtype 100nM of the specific peptide antagonist HOE 140 (D-Arg-[Hyp3, Thi5,

D-tic, Oic8]-BK) 105 was used. 10 nM des-(Arg10, Leu9)-Kallidin was used to

block the BKR1 106,107. Blockade of BKR2 resulted in a potent reduction of

Bradykinin-induced CLS formation from heart explants. In contrast, blockade of

BKR1 slightly increased CLS formation (Figure 16).

Figure 16. BK induces angiogenesis in vitro via the BKR2 under hypoxia. Heart pieces
embedded in fibrin gel were stimulated with 10nM BK (angiogenic index of 5.4±0.9).
The angiogenic response to low doses of BK was inhibited by HOE 140 (100nM), a
specific inhibitor of BKR2 (angiogenic index of 1.55±0.6), but not with an inhibitor of
BKR1 (10nM) (lys-des-arg9, leu8)-BK (angiogenic index of 6.8±0.5). Sprout formation
was also significantly reduced (angiogenic index of 1.9±0.2) in response to stimulation
with a selective BKR1 agonist (LYS- DES- ARG9)- BK (10nM).(*p<0.05, n=3).

To further define a potential antiangiogenic role of BKR1, pieces of heart were

treated with a selective BKR1 agonist (Lys-Des-Arg9)-BK, (10nM) 108 in the

presence and absence of Bradykinin. The BKR1 receptor agonist per se did not

mediate angiogenesis, but it significantly reduced Bradykinin-induced
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angiogenesis (Figure 16). These data support the hypothesis that the BK1

receptor subtype might have an antiangiogenic role.

3.3.3. Bradykinin-induced angiogenesis is not impaired in BKR1 (-/-) hearts

To further delineate the role of BKR2 we induced CLS formation in BKR1 (-/-)

mouse hearts. Neither Bradykinin- nor VEGF-induced CLS formation was

significantly inhibited in BKR1 (-/-) mouse hearts (Figure 17). These results

provide further evidence that the angiogenic effect of Bradykinin under hypoxia

is independent of BKR1 and is mediated via BKR2.

Figure 17. Angiogenesis in response to BK is not significantly affected in BKR1 (-/-)
mouse hearts. BKR1 (-/-) mouse hearts and wild-type mouse hearts were stimulated
with BK (10nM) every 48 h under hypoxia (3% O2) and sprout formation was evaluated
after 10 days. Angiogenesis was not significantly impaired in hearts of BKR1 (-/-) mice
(angiogenic index of 3.7±0.6) in comparison to wild-type heart tissues (angiogenic index
of 5.0±0.6). VEGF-induced (5ng/ml) angiogenesis was not significantly impaired in BKR1
(-/-) mice hearts (angiogenic index of 6±0.1) in comparison to CLS formation from the
wild-type heart tissues (angiogenic index of 7.9±0.58). += not significant, p>0.05, n=3
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3.4. Signaling in Bradykinin-induced angiogenesis

3.4.1. Bradykinin-induced angiogenesis depends on nitric oxide

biosynthesis

In order to investigate whether Bradykinin-induced angiogenesis via the BKR2

requires NO we used different pharmacological NO-Synthase (NOS) inhibitors

during CLS formation. NOS inhibitors were added prior to stimulation of heart

pieces with Bradykinin (10nM) or VEGF (5ng/ml). First, unspecific NOS inhibitors

L-NAME (Nω-nitro-L-arginine methyl ester, 100µM) and L-NIO (L-N 5-(1-

iminoethyl) ornithine, 1µM) were used: Bradykinin-induced sprout formation was

significantly reduced by unspecific inhibition of NO biosynthesis (Figure 18). In

vitro angiogenesis was also impaired in VEGF-treated pieces of heart; however,

the abrogation was not as complete as in Bradykinin-induced angiogenesis

(Figure 18).

Figure 18. BK-induced angiogenesis depends on NO biosynthesis. Pieces of mouse
heart, which had been embedded in fibrin gel, were stimulated with BK (10nM). The
angiogenic effect of BK in the mouse hearts under hypoxia (3% O2) in vitro was inhibited
by different nitric oxide synthase (NOS) inhibitors; L-NAME 100µM, L-NIL (L-N6- (1-
Iminoethyl)-lysine hydrochloride, 10µM, L-NIO (L-N5- (1-Iminoethyl) -ornithine hydro-
chloride), 1µM. This effect was also observed in VEGF-induced angiogenesis in mouse
hearts under hypoxia.
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To elucidate whether inducible NOS (iNOS) is required for Bradykinin-induced

angiogenesis of the heart under hypoxia, we used L-NIL (N 6 -(1-iminoethyl)-

lysine, 10µM), a selective inhibitor of iNOS. Bradykinin-induced angiogenesis

was significantly reduced by L-NIL. This effect was also observed in VEGF-

induced angiogenesis. Similar to unspecific NO-inhibitors, iNOS inhibition

reduced Bradykinin-mediated angiogenesis more potently than VEGF-induced

angiogenesis (Figure 18).
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3.4.2. Functional iNOS is required for Bradykinin-induced angiogenesis

To further assess the involvement of iNOS under hypoxia, hearts of iNOS-/- mice

were used for in vitro angiogenesis. In these hearts angiogenesis was

stimulated by Bradykinin (10nM) and VEGF (5ng/ml). In vitro angiogenesis was

completely abrogated in hearts of iNOS-/- mice compared to wild-type mice

under hypoxic conditions (Figure 19).

These experiments show that nitric oxide is required for in vitro angiogenesis in

the heart under hypoxia and that Bradykinin-induced angiogenesis is also

dependent on NO biosynthesis. Furthermore, functional iNOS is required for

Bradykinin- and VEGF- induced angiogenesis in vitro of the heart.

Figure 19. BK-induced angiogenesis requires functional iNOS. iNOS (-/-) and wild-
type mouse hearts were stimulated with BK (10nM) every 48 h under hypoxia (3%
O2), and sprout formation was evaluated after 10 days. BK-induced angiogenesis of
the heart in vitro was almost abrogated in iNOS (-/-) mice (angiogenic index of 1.7±1)
in comparison to wt heart tissues (angiogenic index of 4.6±0.4). VEGF-induced
(5ng/ml) angiogenesis was also significantly impaired in iNOS (-/-) mice hearts
(angiogenic index of 1.3±0.7) in comparison to sprout formation from the wild-type
heart tissues (angiogenic index of 6.6±0.9). *; p<0.05, n=3.
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3.4.3. mTOR-signaling is involved in Bradykinin-induced angiogenesis

These experiments aimed at assessing the further putative molecular

mechanisms for Bradykinin-induced angiogenesis under hypoxia. Bradykinin did

not show strong angiogenic effects under normoxia, nor did hypoxia induce

angiogenesis alone without Bradykinin addition. Thus the role of hypoxia-driven

signaling in controlling the angiogenic response to Bradykinin was to be

assessed. Pieces of heart were treated with rapamycin in the in vitro model of

angiogenesis and stimulated with Bradykinin (10nM). The angiogenic effect of

Bradykinin was completely abrogated by administering rapamycin (50 nM), an

inhibitor of mTOR (mammalian Target Of Rapamycin)(Fig. 20). This experiment

shows that Bradykinin induces angiogenesis in vitro of the heart via a hypoxia-

activated signaling pathway involing mTOR.

Figure 20. BK (10 nM)-induced angiogenesis in vitro under hypoxia (filled column) is
strongly reduced (-75%) by administration of rapamycin (50 nM). Normoxic (residual)
angiogenesis (open column) in presence of BK was not affected by rapamycin.
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3.5. Bradykinin-induced angiogenesis in cancer tissue

We assessed whether it is possible to cultivate cancer tissues in fibrin gels as

described for heart explants. Small pieces of melanomas, which were grown in

cervical lymph nodes, were taken and embedded in fibrin gels.

As described for the heart explants, cancerous tissue was cultured 10 days and

stimulated every 48 hours. After 10 days of incubation under hypoxia sprout

formation was evaluated (Figure 21). Quantification of the sprouts was identical

to heart.

Figure 21. Micrographs taken from pieces of heart (left side) and melanomas
(right side) stimulated with 5ng/ml VEGF for 10 days under hypoxia. Note, that
capillary sprouts from cancer tissue have a different morphology.

3.5.1. Bradykinin-induced angiogenesis in cancer tissue of wild-type and

BKR1 (-/-) mice

We compared Bradykinin-induced angiogenesis in cancer tissues of wild type

control mice and in the hearts of the same animals. We observed that both

Bradykinin (10nM) and VEGF (5ng/ml) induced angiogenesis in cancer tissues

and in the hearts. The angiogenic effect of these two stimuli on the heart (see
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page 46, Figure 17) was similar to the results obtained by applying them to

cancer tissues (Angiogenic indices of embedded melanomas: Bradykinin (10

nM)=3.9±0.1, VEGF (5 ng/ml)=5.0±0.1, PDGF-BB (10 ng/ml)=6.0±0.3) (Figure

22). In cancer tissues Bradykinin induced more angiogenesis than unstimulated

control (Angiogenic Index of diluent=1.3±0.2). However, angiogenesis in vitro to

VEGF in cancer tissue did not read the same degree as VEGF-induced

angiogenesis in the heart (see page 46, Figure 17).

The angiogenic effect of Bradykinin was significantly reduced in cancer tissues

of BKR1 (-/-) mice. There was a significant difference between the levels of

angiogenesis induced by Bradykinin in cancer tissues of wild type mice and

BKR1 (-/-) mice (Angiogenic indices of embedded melanomas: Bradykinin (10

nM)= 1.3±0.1, VEGF (5 ng/ml)= 1.9±0.1, PDGF-BB (10 ng/ml)= 3.4±0.3,

diluent= 0.9±0.2). These results suggest that BKR1 is required in capillary-like

sprout formation in cancer tissues whereas Bradykinin-induced angiogenesis in

heart requires BKR2.

Figure 22. BK- as well as VEGF and PDGF-BB-induced capillary-like sprout formation
from melanomas derived from BKR1 (-/-) mice (striped columns) is significantly lower
than sprout formation from melanomas derived from wild-type mice (open columns). n.s
= p>0.05, * = p<0.05.
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4. DISCUSSION

4.2. Bradykinin-induced angiogenesis in the heart

4.2.1. Angiotensin converting enzyme inhibitors and angiogenesis

ACE-inhibitors are recognized as first-line medications in the hypertension

because they are effective in reducing arterial blood pressure and cardiac mass

in different animal models and in humans 109,110. The rationale for using ACE-

inhibitors in hypertension is based on the ability to reduce afterload and to a

lesser extent, preload, but the effects of these compounds on myocardial

structure are not yet fully known. ACE-mediated cardioprotection of ischemic or

hypertrophied myocardium might be due to Bradykinin accumulation and its

direct cardioprotective action on the myocardium. The actions of myocardium

also result in neovascularization of the myocardium, which may contribute to

cardioprotection from ischemia.

Several studies had shown previously that administration of ACE-inhibitors

increase microvascular density in peripheral tissues and help to reoxygenate

affected ischemic tissues. The ACE-inhibitor quinapril enhanced angiogenesis in

vivo in a rabbit model of hindlimb ischemia 50. Other ACE-inhibitors have been

reported to increase capillary density in rat limb muscle 52,111. In vivo studies in

spontaneous hypertensive rats (SHR) showed that vascular growth in the

hypertrophied left ventricular myocardium did not keep pace with myocyte

hypertrophy, resulting in a decreased capillary density and an increased diffusion

distance for oxygen 52,112. Treatment of these mice with Spirapril, an ACE-

inhibitor, increased capillary microvasculature, supporting the concept of a direct

action of the drug on myocardium 52.

In our model of angiogenesis of the heart in vitro the two ACE-inhibitors enalapril

and quinapril both induced the formation of capillary-like sprouts. These and

other results also confirmed, that data from in vivo studies can be reproduced

with our in vitro angiogenesis model.

We also evaluated the effects of enalapril and quinapril as well as Bradykinin and

Ang II on neovascularization of hypertrophied hearts. LVH is characterized by

rarefaction of microvascular density. As a consequence, microvascular

rarefaction also contributes to myocardial ischemia. Improvement of the heart

performance by increasing capillary density in therapeutic angiogenesis has
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emerged as a promising new method of treatment for patients with left

ventricular hypertrophy. Our experiments suggest that angiogenesis may be

impaired in hypertrophied rat heart tissues in comparison to healthy tissues.

Thus, the capacity to form new sprouts was decreased in rats with LVH as

compared with rats without LVH. However, Bradykinin not only induced sprout

formation in healthy heart tissue, but also in hypertrophied tissue. It was the

most potent angiogenic stimulus as compared to enalapril or quinapril,

(Bradykinin > enalapril = quinapril > AngII).

Microvascular rarefaction in LVH may explain our observation of decreased

angiogenesis of hypertrophied hearts in vitro: Since angiogenesis is defined by

the growth of new microvessels from pre-existing ones, the decreased capillary

density provides less capillary ‘resources’ for this process to set on.

Alternatively, endothelial dysfunction associated with and all major

cardiovascular factors may contribute to impaired angiogenesis. Dysfunctional

endothelial cells have a decreased capacity to produce nitric oxide, to proliferate

and migrate and a decreased expression of matrix-metalloproteinases (MMPs).

Endothelial migration, proliferation and matrix degradation are crucial steps in

angiogenesis (see introduction). Thus, endothelial dysfunction, especially

decreased NO-biosynthesis (see below) may contribute to impaired

angiogenesis.

4.2.2. Mechanism of Bradykinin-induced angiogenesis

In our studies Bradykinin showed its potent angiogenic effect only under

conditions of hypoxia. Furthermore, Bradykinin-induced angiogenesis occurred at

a low concentration range; at low nanomolar doses, Bradykinin was a potent

inducer of new sprouts- comparable to VEGF- in our model of angiogenesis in

vitro. At high concentrations, Bradykinin did not induce angiogenesis.

Furthermore, the BKR2 antagonist and, surprisingly, a BKR1 agonist blocked

Bradykinin-induced angiogenesis. Thus, the Bradykinin-induced response in

angiogenesis is bimodal. Similarly bimodal Bradykinin responses have been

shown on afferent arterioles of rabbits in vivo, where Bradykinin induced

vasodilation at low concentrations and vasoconstriction at higher

concentrations113.
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Our results show that Bradykinin induces capillary-like sprout formation of

mouse heart explants under hypoxia via BKR2 activation. BKR2 blockade by

HOE 140 strongly reduced Bradykinin-induced capillary-like sprout formation.

Additionally, inhibition of BKR1 by Lys-(des-Arg9, Leu8)-BK does not affect

Bradykinin-induced capillary sprout formation. Inhibition of BKR1 tended even to

increase angiogenesis in vitro. Thus, no pro-angiogenic role could be identified

for the BKR1. In contrast, when BKR1 was stimulated by the BKR1 specific

agonist (des-Arg9)-BK, angiogenesis was strongly reduced in the presence of 10

nM Bradykinin, suggesting an anti-angiogenic role for the BKR1. Such an anti-

angiogenic role for the BKR1 has not been described previously. Myocardial

ischemia is reported to upregulate BKR2 in male Sprague Dawley rat hearts 114.

In BKR2 knock out mice, the capability of ACE inhibition to induce angiogenesis

is abrogated 38. Confusingly, other reports suggest that the BKR1 is required for

the angiogenic response to Bradykinin 77,115. Still, in our study, Bradykinin-induced

angiogenesis was not impaired in BKR1 -/- mice. Thus, no pro-angiogenic role

could be identified for the BKR1. Our results in hearts derived from BKR1 -/-

mice, support our results obtained with the pharmacological agonists and

antagonists for BKR1 and BKR2.

These opposing roles of the two Bradykinin receptor subtypes may potentially

explain the bimodal angiogenic response to Bradykinin, i.e., induction of

angiogenesis only at low nanomolar but not at high concentrations. There are no

common mechanisms explaining bimodal dose responses. Mostly interacting

receptor pathways are involved 116. Hypothetically, the presently described

bimodal effect may be due to the interplay of pro-angiogenic effects via the

BKR2 at low concentrations and anti-angiogenic effects via BKR1 at high

concentrations. This assumption is in accordance with the differing affinities of

the two receptors for Bradykinin 117. BKR2 has a high affinity (KD = 0.19 nM) and

BKR1 has a low affinity (KD = 29000 nM) 118 for Bradykinin. An additional or

alternative mechanism for the bimodal response might be a rapid de-

sensitization and internalization of BKR2 in response to high BK concentrations
98,119,120.

Bradykinin elicits many of the intracellular signaling responses that are typically

associated with the activation of growth factors, hence also angiogenic growth

factors 27,63.
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At the level of mRNA, we have detected both receptor subtypes. We also

observed a rapid and sustained decrease of BKR1 mRNA both under normoxia

and hypoxia with or without Bradykinin. Our result suggests an artefactual

downregulation of BKR1 expression when taking the myocardium from its

normal environment. However, when we used BKR1 agonist, the angiogenic

effect of Bradykinin was reduced significantly, suggesting BKR1 playing an

active role in Bradykinin-induced angiogenesis in vitro of the heart. However,

none of the receptors were consistently upregulated under hypoxia as detected

by semiquantitative RT-PCR. In vivo expression of BKR1 may be differently

regulated than in vitro. In ischemic skeletal muscle BKR1 was reported to be

upregulated 38.

Other groups were also confronted with artifacts regarding the role of BKR1

while examining BKR2 (-/-) mice. The normally nonexpressed BKR1 gene

becomes expressed in BKR2 (-/-) mice and may assume the function of BKR2
121. Discrepancies may thus be due to different experimental settings or the type

of Bradykinin receptor knockout animals used.

Further studies in hearts from BKR1 -/- and BKR2 -/- will be necessary to assess

the different requirement of BKR subtypes during Bradykinin-induced

angiogenesis.

4.2.3. Signaling in Bradykinin-induced angiogenesis in vitro

Role of NO. Different experimental and clinical observations support a molecular

and biochemical link between vasodilation, NO production and angiogenesis.

Angiogenesis in vivo is accompanied by vasodilation of preexisting capillaries.

The potent vasodilator properties of Bradykinin are due to its ability to increase

NO synthesis 50,122. NO is a key regulator of hypoxia-/ischemia-induced

angiogenesis 27,38,123. Bradykinin was shown to increase eNOS expression

specifically via BKR2 in a model of surgically induced hindlimb ischemia in mice
51 and in cardiac capillary endothelial cells 78. Inhibition of the NOS-pathway by

pharmacological NOS inhibitors abrogates BKR1-mediated endothelial cell

proliferation 77,123. Thus, different NO synthases activated via distinct Bradykinin

receptor subtypes may increase NO and promote angiogenesis.

In the present study we provide further evidence for a link between NO

production and angiogenesis, since NOS inhibitors markedly reduced Bradykinin-
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induced angiogenesis of the heart under hypoxia. This reduction was almost

total with iNOS inhibitors. Moreover, Bradykinin-induced sprout formation was

almost completely abrogated in hearts from iNOS-deficient mice. As a result

Bradykinin-induced angiogenesis depends on the production of NO and requires

functional iNOS.

Interestingly, brief episodes of myocardial ischemia and reperfusion (ischemic

preconditioning) elicit a biphasic response in NOS activity in vivo, whereby there

is an immediate activation of eNOS followed by delayed upregulation of iNOS
124. Furthermore, with prolonged hypoxia, increased expression and activity of

iNOS and thus elevated NO biosynthesis leads to downregulation of eNOS

expression 124,125. These findings in vivo are consistent with our observations of

an iNOS-dependence for Bradykinin-stimulated angiogenesis in the heart.

Antidromic activations of different NOS isoforms may explain some of the

discrepant findings attributing angiogenic functions to either BKR2 51,73,74,126 or

BKR1 77,115. BKR1 may be proangiogenic in an eNOS-dependent and acute

manner 77,124. However, as shown in this study Bradykinin-induced angiogenesis

over a prolonged period of hypoxia occurs via BKR2 and in an iNOS-dependent

manner.

Role of mTOR. A potent angiogenic effect of Bradykinin was only observed

under conditions of moderate hypoxia (3% O2). Rapamycin, the inhibitor of

mammalian target of rapamycin (mTOR) effectively inhibited Bradykinin-induced

angiogenesis under conditions of hypoxia. mTOR is a central modulator of cell

growth and a prime target for anti-cancer drugs in therapeutic development.

mTOR plays a critical role in transducing proliferative signals mediated through

the phosphoinositol 3 kinase (PI3K)/ protein kinase B signaling pathway. Recent

studies and our own previous data suggest that mTOR, which is the rapamycin

target protein, functions as a positive regulator of hypoxia and hypoxia-inducible

factor-1 (HIF-1) 143, 144-. mTOR-dependent angiogenesis under hypoxia is mediated

at least in part by binding of HIF-1 to the hypoxia response elements in the

promoter region of VEGF, bFGF and iNOS genes, thus enhancing their

expression 127,128.



57

Figure 23. mTOR mediated signaling under conditions of hypoxia. Bradykinin
signaling may be amplified through hypoxic activation via mTOR.

By targeting mTOR, the antiproliferative agent rapamycin also inhibits signals

required for cell cycle progression, cell growth and proliferation. Rapamycin has

recently shown promising anti-tumor activities, which are attributed to the

inhibition of mTOR. Our findings demonstrate mTOR to be involved in hypoxia-

facilitated angiogenesis of the heart in vitro in response to Bradykinin (Figure 23).

This suggest that anticancer activities of Rapamycin may also base on its

antiangiogenic effects during hypoxia.

Thus, hypoxia significantly modulates intracellular signaling and expression of

transcription factors that enhance the angiogenic response induced by various

effector molecules generated upon ACE-inhibition such as Bradykinin.
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4.3. Bradykinin-induced angiogenesis in cancer

In situ carcinomas remain dormant and undetected for many years, and

metastases are rarely associated with these small (2-3 mm3) vascular tumors.

Yet, several months or years later, an in situ tumor may switch to the angiogenic

phenotype, induce the formation of new capillaries, and start to invade the

surrounding tissue. The "angiogenic switch" depends on a net balance of positive

and negative angiogenic factors in the tumor. Thus, the angiogenic phenotype

may result from the production of growth factors, such as FGF-2 and VEGF, by

tumor cells and/or the down-regulation of negative modulators in tissues with a

quiescent vasculature17.

Bradykinin is an important growth factor in cancer since certain Bradykinin

antagonists could show remarkable anti-cancer activities79. It is suggested that

Bradykinin increases vascular permeability in ascitic tumors and promotes tumor

growth by increasing angiogenesis. Enhanced vascular permeability is the

universal and hallmark event meditated by Bradykinin that is shared in cancerous

tissues as well as inflammatory tissues 18,129.

Thus, a role for Bradykinin in tumor biology has been suggested in several

reports, but its precise roles and the molecular basis for its actions have not yet

been elucidated. Its action remains speculative despite many studies in animal

and humans. Angiogenesis is reported to be regulated in an organ-specific way

suggesting a need for organ-specific models 130.

4.3.1. Bradykinin-induced angiogenesis in melanomas: a BKR1-mediated

response ?

We assessed angiogenesis of melanoma tissue grown in the lymph nodes of

wild-type and BKR1 (-/-) mice and compared it to angiogenesis of wild-type and

BKR1 (-/-) mice hearts. Bradykinin induced capillary sprout formation in

melanoma tissue under conditions of hypoxia in wild-type animals. However,

Bradykinin induced much less capillary sprout formation in melanomas gained

from BKR1 (-/-) mice. This is surprising, since capillary sprouts readily formed in

hearts from BKR1 (-/-) mice, i.e., angiogenesis was not impaired in BKR1 (-/-)

mice hearts. This suggests, that vascularization of melanomas is regulated

differently than in the heart and requires BKR1.
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Furthermore, our results have confirmed, that organ-specific assays may yield

very interesting and varying results that cannot be reproduced by conventional

assays 130.

4.3.2. Vascularization of melanomas: a BKR1 mediated inflammatory

response?

Several reports describe the induction of the BKR1 by inflammatory and

infectious stimuli in rats131,59. In a study with BKR1 (-/-) mice a low response to

inflammatory stimuli was observed131,132. All these facts suggest the importance

of modulated molecules including the inducible BKR1 in body defense

mechanisms. However, there are no reports yet on the significance of BKR1

induction in relation to gastrointestinal disorders or carcinoma, 133

During inflammatory processes BKR1 expression increases via a NF-κB-

transcrition factor 134. Melanoma progression requires increased

vascularization135. In a very recent report, NF-kB is has been associated with the

vascular progression of melanoma 135. Thus, we hypothesize that melanoma

progression may depend on an inflammatory response initiated via a NF-kB-

dependent induction of BKR1.

Angiogenesis of melanomas should also be assessed using BKR2 (-/-) mice as

well as BKR agonist and antagonists. In nude mouse xenotransplants of lung

and prostate cancers the Bradykinin antagonists inhibit angiogenesis and

activation of membrane metalloproteases (MMP 2 and 9)79. In the

xenotransplants certain Bradykinin antagonists showed higher potency than

standard anti-cancer drugs, without evident toxicity to the hosts 79. Results with

these peptides suggest that a new generation of anti-inflammatory and anti-

cancer drugs may be at hand 79.
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5. CONCLUSIONS AND OUTLOOK

Components of the Renin-angiotensin-aldosteron-system and pharmacological

agents to suppress it have also been found to control angiogenesis in vitro and

in vivo. A key enzyme of the Renin-Angiotensin-Aldosteron-System is the

Angiotensin-Converting-Enzyme (ACE). ACE inhibitors, which are broadly used in

clinical medicine for the treatment of hypertension and congested heart failure,

block the conversion of Angiotensin I to Angiotensin II and inhibit the breakdown

of Bradykinin, a potent vasodilator and mediator of inflammation. Vasodilation

precedes angiogenesis and is also mechanistically linked to it. In line with this,

Bradykinin can induce angiogenesis. Therefore the angiogenic response of ACE

inhibitors in rat hind limbs may be mediated via accumulation of Bradykinin.

Using an in vitro assay validated by reproducing known in vivo phenomena, we

have investigated the role of Bradykinin in inducing angiogenesis of the heart in

vitro. Furthermore, we have better delineated the subtype of Bradykinin

receptors and Bradykinin-induced signaling that are required for angiogenesis.

Under condition of moderate hypoxia (3% O2) Bradykinin induced capillary-like

endothelial sprout formation at low concentrations but not under normoxia (21%

O2). Using a variety of techniques (RT-PCR, functional assays using agonists and

antagonists, knock out animals, protein detection assays) we have

demonstrated that Bradykinin acts via the Bradykinin receptor 2 to induce

angiogenesis in vitro in the heart. Furthermore, Bradykinin-induced angiogenesis

of the heart requires nitric oxide biosynthesis (using pharmacological inhibitors)

and inducible nitric oxides synthase (using iNOS knockout mice). Furthermore,

we found that angiogenesis of the heart might be different from that seen in

tumors (melanomas). In a mouse melanoma cancer model in BKR1 (-/-) mice

angiogenesis in vitro was significantly reduced as compared to wild-type control

animals. This suggests that melanomas, in contrast to hearts, require functional

BKR1 to develop new microvessels.

Taken together, this thesis delineates mechanisms by which Bradykinin induces

angiogenesis in the hypoxic heart. These results were further compared with

angiogenesis in a mouse cancer model. The results suggest that Bradykinin

plays an important role in angiogenesis of the heart and that angiogenesis in the

heart may be mediated via different Bradykinin receptors from that in

melanomas in response to Bradykinin (Figure 24, page 62).
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Future investigations may further delineate the potentially anti-angiogenic role of

the BKR1 in heart angiogenesis, as well as the role of BKR2 in melanoma

vascularization.  Additionally, the pro-angiogenic role of BKR1 will have to be

assessed in other tumor types (Figure 24).

Figure 24. Visualization of keypoints presented in this thesis. Question marks
indicate potential issues to be resolved in the future.
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