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1 SUMMARY 

Proper centrosome numbers are imperative for faithful cell division, as aberrant 

centrosome numbers can lead to chromosomal instability, a hallmark of cancer 

development (Nigg 2002; Ganem et al., 2009). Hence, initiation of centriole duplication 

has to be tightly regulated. Recently, we and others demonstrated that Polo-like kinase 4 

(Plk4) fulfills a pivotal role in regulating this process (Bettencourt-Dias et al., 2005; 

Habedanck et al., 2005). Plk4 protein levels and its activity directly correlate with 

centriole numbers: depletion of Plk4 leads to sequential loss of centrioles in successive 

cell divisions (Bettencourt-Dias et al., 2005; Habedanck et al., 2005) and its 

overexpression promotes bona fide overduplication of centrioles (Habedanck et al., 2005; 

Kleylein-Sohn et al., 2007), while both lead to progressive increase in abnormal spindle 

formation (reviewed in Nigg 2007). Even though Plk4 is a key regulator of centriole 

biogenesis and is crucial for maintaining constant centriole number, the mechanisms 

regulating its activity and expression are only beginning to emerge.    

Here, we show that human Plk4 is subject to βTrCP-dependent proteasomal 

degradation, indicating that this pathway is conserved from Drosophila to human (Cunha-

Ferreira et al., 2009; Rogers et al., 2009). Unexpectedly, we found that stable 

overexpression of kinase-dead Plk4 leads to centriole overduplication. Our data indicate 

that this phenotype depends on the presence of endogenous wild-type Plk4 and that 

centriole overduplication results from disruption of Plk4 trans-autophosphorylation by 

kinase-dead Plk4, which then shields endogenous Plk4 from recognition by βTrCP. We 

conclude that active Plk4 promotes its own degradation by catalyzing βTrCP binding 

through trans-autophosphorylation within homodimers which has been independently 

confirmed by others (Holland et al., 2010). Additionally, we propose that Plk4 

autophosphorylation is not sufficient for its degradation and that instead an additional 

kinase is required for this process. 
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2 INTRODUCTION 

The centrosome, Latin for “central body”, was first discovered in the late 19
th

 century by 

Édouard van Beneden in various parasites (van Beneden 1875-6; van Beneden 1883). 

While van Beneden discovered centrosomes and described them at a morphological level, 

it was Theodor Boveri who coined the term centrosome and postulated that the 

centrosome is self-replicating (Boveri 1887; Boveri 1888). Moreover, he later formulated 

the hypothesis that centrosome and chromosome aberrations are linked and contribute to 

tumorigenesis (Boveri 1914). Even though centrosomes are present in almost all 

eukaryotes, their composition, organization, mode of replication and specific functions 

have remained elusive until the rediscovery of centrosome biology in the late 20
th

 century. 

Today, pivotal functions of the centrosome have been uncovered and described, albeit the 

details of how these functions are fulfilled and regulated are still under intense 

investigation. Centrosome function is twofold, as microtubule-organizing center (MTOC) 

in dividing cells and as scaffold for basal bodies of flagella or cilia in differentiated or 

quiescent cells. In recent years, centrosome biology has become widely recognized due to 

the causal link between centrosome aberrations and the development of various human 

diseases. 

2.1 Structure and Function of the Centrosome 

2.1.1 Structure of the Centrosome 

The centrosome is a non-membranous organelle of approximately 1 µm in diameter which 

is usually located in close proximity to the nucleus (reviewed in Doxsey 2001). It is 

composed of two interconnected centrioles which are highly stable, barrel-shaped arrays 

of microtubule triplets arranged in a nine-fold symmetry (Figure 1). The individual 

microtubules (MTs) of each triplet are referred to as the A-, B- and C-tubule and reach a 

length of 400 nm during centriole elongation (reviewed in Bornens 2002; Bettencourt-

Dias and Glover 2007). In contrast to the A- and B-tubules, which span the complete 

proximal-distal axis of a fully grown centriole, the C-tubule does not stretch to the distal 

end of the centriole. 
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The centrioles are embedded in the electron-dense, amorphous pericentriolar 

material (PCM), which harbors coiled-coil proteins that mediate protein-protein 

interactions (Doxsey 2001; Andersen et al., 2003; Azimzadeh and Bornens 2007). 

Additionally, within the PCM proteins reside which are required for microtubule 

nucleation and anchoring as well as various cell cycle regulators (Moritz et al., 1995; 

Zheng et al., 1995; Moritz and Agard 2001). Centrioles and the PCM are intimately 

connected as loss of centrioles leads to dispersal of the PCM (Bobinnec et al., 1998) and 

the PCM is vice versa required for the formation and stabilization of procentrioles 

(Dammermann et al., 2004; Loncarek et al., 2008). 

 Both centrioles present in a mammalian G1 phase cell are loosely tethered at their 

proximal ends by the proteins C-Nap1, rootletin and Cep68 (Fry et al., 1998; Bahe et al., 

2005; Graser et al., 2007b). Even though the two centrioles of a single centrosome are 

similar in their overall architecture, they are structurally and functionally distinct in that 

only one has fully matured (Piel et al., 2000; Azimzadeh and Bornens 2007). Mature 

centrioles are characterized by the presence of two sets of appendages (distal and 

subdistal; Paintrand et al., 1992) at their distal ends where they are attached to each of the 

nine centriolar MT doublets. Appendages have been shown to be involved in anchoring 

MTs and the centriole at the plasma membrane during ciliogenesis (Piel et al., 2000; 

Azimzadeh and Bornens 2007) through characterization of several appendage proteins, 

 

Figure 1. Centrosome and centriole structure. Schematic view of a centrosome containing mother and 

daughter centrioles. Both centrioles are composed of nine-fold microtubule (MT) triplets. In each triplet, the 

internal tubule is termed the A-tubule, followed by the B-tubule and C-tubule. The latter does not extend to 

the distal end of the centriole. The two centrioles are surrounded by the pericentriolar material (PCM), 

depicted in blue, and interconnected by an unknown linker (centriole engagement fibers) until 

disengagement at the exit from mitosis. The mature centriole carries subdistal and distal appendages, which 

dock cytoplasmic MTs and anchor the centriole at the plasma membrane to serve as basal body. The 

cartwheel structure depicted on the right has been suggested to serve as a template for procentriole formation 

(adapted from Bettencourt-Dias and Glover 2009). 
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e.g. as -tubulin, Cep164, Cep170, ninein, and the ODF-2 splice variant hCenexin1 

(Mogensen et al., 2000; Chang et al., 2003; Guarguaglini et al., 2005; Ishikawa et al., 

2005; Graser et al., 2007a; Soung et al., 2009).  

2.1.2 The Centrosome as the Microtubule-organizing Center (MTOC) 

The most evident function of the centrosome lies in the orchestration of the microtubule 

network in eukaryotic cells as the microtubule organizing center (MTOC). Herein, the 

centrosome mediates the nucleation and anchoring of microtubules by the centrosome-

associated γ-tubulin containing multiprotein ring complexes (γTuRCs). At the hub of the 

microtubule network, the centrosome is involved in the orchestration of cell motility, cell 

shape, cell adhesion, cell polarity and intracellular transport (reviewed in Doxsey 2001; 

Bornens 2002; Nigg 2004; Doxsey et al., 2005; Azimzadeh and Bornens 2007; Bornens 

2008). During cell division, the centrosome shapes the bipolar mitotic spindle to ensure 

faithful chromosome segregation (reviewed in Marshall 2009). The centrosome has also 

been attributed an essential function in asymmetric cell divisions, e.g. in stem cell 

divisions (Wang et al., 2009). In contrast to the requirement for centrosomes as the MTOC 

in most eukaryotic cells, eukaryotes naturally lacking centrosomes have devised 

alternative mechanisms for spindle formation, as has been observed in higher plants and 

certain fungi (reviewed in Marshall 2009).  

2.1.3 The Centriole as Template for Cilia and Flagella 

Almost all eukaryotic cells form cilia at some point during their life cycle. Ciliogenesis 

begins when cells exit the cell cycle into a quiescent (G0 phase) and/or differentiated state 

and the centrosome is translocated from the periphery of the nucleus to the plasma 

membrane (Figure 2). There, the centriole from which the cilium emanates is termed basal 

body. The mature basal body is anchored to the plasma membrane and serves as template 

for the outgrowth of the ciliary axoneme. Vice versa, cilia are resorbed and basal bodies 

are converted back to centrosomes when cells exit G0 to re-enter the cell cycle. 

Importantly, while centrioles are not strictly required for mitosis, they are indispensable 

for ciliogenesis (reviewed in Pedersen and Rosenbaum 2008). 
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Cilia are involved in a variety of cellular functions, ranging from cell motility, the 

reception of mechanical and chemical cues, brain development, signal transduction to 

transport duties in specialized tissues (reviewed in Gerdes et al., 2009; Han and Alvarez-

Buylla 2010). These very different functions can be fulfilled by a single organelle because 

cilia appear both as immotile, singular primary cilia and as motile cilia and flagella 

(reviewed in Dawe et al., 2007). Ciliary morphology provides information about its 

function, as motile cilia are usually comprised of nine MT doublets, the A- and B-tubules 

of the basal body, which surround a central pair of single MTs (9+2), whereas immotile 

cilia lack the central MT pair and motor proteins (9+0; Satir and Christensen 2008). The 

beating of motile cilia is conferred by axonemal dynein which interconnects the outer MTs 

in cooperation with nexin (reviewed in Ibanez-Tallon et al., 2003). Motile cilia enable the 

movement of whole organisms, in the case of Paramecium, or single cells within a 

multicellular organism, in the case of oocytes by multiciliated cells in the oviduct. 

Similarly, flagella enable the propulsion of the green algae Clamydomonas or 

spermatocytes. Immotile, single primary cilia on the other hand serve as transducers of 

 

Figure 2. Centrioles form cilia and centrosomes. Schematic illustration of centrosome formation and 

ciliogenesis. (A) A G1 phase centrosome which consists of two centrioles that are loosely tethered by a 

fibrous network indicated by arrows in the EM micrograph. Note that the mature centriole carries distal and 

subdistal appendages (marked by arrowheads). The inset shows a cross-section of a centriole. (B) In 

proliferating cells, the parental centrioles (dark green) duplicate to give rise to two new centrioles (light 

green). (C) In quiescent cells the centrosome migrates to the cell surface where it is anchored at the plasma 

membrane and a cilium (brown) is assembled on the older parental centriole. Certain epithelial cells form a 

multiciliated surface from many centrioles (adapted from Nigg and Raff 2009). 
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extracellular stimuli into intracellular signals (Satir and Christensen 2007; Gerdes et al., 

2009). This is accomplished by the accumulation of trans-membrane receptors in the 

ciliary membrane and the localization of downstream components of, for example, the 

Wnt and Shh signal transduction pathways to the cilium (reviewed in Michaud and Yoder 

2006; Singla and Reiter 2006; Christensen and Ott 2007; Christensen et al., 2007; Berbari 

et al., 2009; Veland et al., 2009).  

Mutations in basal body- or cilium-associated genes result in malformed cilia or 

lack thereof and lead to a variety of pleiotropic diseases termed ciliopathies. These 

manifest themselves in a variety of disorders, for example Bardet-Biedl (Ansley et al., 

2003), Meckel-Gruber (Frank et al., 2007), Joubert (Valente et al., 2006) and Senior-

Løken (Omran et al., 2002) syndrome. 

2.2 The Centrosome Cycle 

Similar to chromosomes, the centrosome is duplicated during the cell cycle and the 

duplicated centrosomes are then divided among the daughter cells together with the 

segregated chromosomes. Cells do not have a checkpoint to stop the cell cycle in the 

presence of multiple centrosomes (Sluder et al., 1997) and abnormal centrosome numbers 

severely interfere with bipolarity during mitosis. Therefore, cells duplicate their centrioles 

through a tightly regulated sequence of events termed the centrosome cycle, which is 

divided into four distinct phases: centriole duplication, maturation and elongation, 

centrosome separation and centriole disengagement (Figure 3).  

At the onset of S phase the procentriole begins to form orthogonally to the proximal 

base of the parental centriole (Robbins et al., 1968; Kuriyama and Borisy 1981; Vorobjev 

and Chentsov Yu 1982; Alvey 1985; Kochanski and Borisy 1990; Paintrand et al., 1992). 

After elongation of the procentrioles during the following G2 phase, centrosome 

separation takes place by the severing of a physical linker connecting the two parental 

centrioles in response to phosphorylation of C-Nap1 and rootletin by Nek2 (Bahe et al., 

2005). Concomitantly, additional γ-tubulin ring complexes are recruited, leading to an 

increase in centrosome size and microtubule nucleation (Palazzo et al., 2000). The 

separated centrosomes then travel to opposite poles of the cell, where they organize the 

bipolar mitotic spindle. During late M or early G1 phase the parental and daughter 
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centrioles disengage to lose their intimate connection and orthogonal orientation (Freed et 

al., 1999; Piel et al., 2000). Separase is thought to be involved in triggering the 

disengagement of the two centrioles (Tsou and Stearns 2006b), although the exact role of 

Separase in this process remains to be determined. The centrosome cycle is completed by 

a maturation step during G2 phase of the following cell cycle, in which the centriole 

formed during the previous cell cycle acquires its appendages.  

2.2.1 Centriole Biogenesis in Caenorhabditis elegans 

Crucial insight into centriole biogenesis and specifically centriole duplication was gained 

through pioneering studies in Caenorhabditis elegans. This revealed that just five essential 

proteins are essential for procentriole assembly: the coiled-coil proteins SPD-2, SAS-4, 

 

Figure 3. The centrosome cycle. Schematic illustration of the centrosome cycle in relation to the cell cycle. 

Mature centrioles are depicted in gray, procentrioles in dark blue, chromosomes in red. The two centrioles of 

a G1 phase cell duplicate upon entry into S phase and elongate to reach their final length during the 

following G2 phase. At the onset of mitosis, the centrosome is separated into two to organize the spindle 

poles of the mitotic spindle. Centriole disengagement at the exit from mitosis of the previously tightly 

connected centrioles prepares for the next round of duplication. 

 



INTRODUCTION 

8 

 

SAS-5 and SAS-6 and the protein kinase ZYG-1 (Figure 4; O'Connell et al., 2001; 

Kirkham et al., 2003; Leidel and Gonczy 2003; Delattre et al., 2004; Leidel et al., 2005; 

Delattre et al., 2006; Pelletier et al., 2006; Dammermann et al., 2008). First, SPD-2 is 

recruited to the paternal centriole shortly after fertilization of the egg. This allows 

recruitment of ZYG-1, which in turn localizes a complex of SAS-5 and SAS-6 and 

initiates the formation of the “central tube” in close proximity to the pre-existing centriole. 

In this context, it has been proposed that ZYG-1-mediated phosphorylation of SAS-6 at 

Ser123 is necessary for central tube formation and maintenance of Sas-6 at the central tube 

(Kitagawa et al., 2009). The SAS-5/SAS-6 complex then recruits SAS-4 to facilitate the 

assembly of MTs onto the central tube (Pelletier et al., 2006). 

 Importantly, the overall pathway of centriole biogenesis is highly conserved from 

C. elegans to humans at both a morphological and molecular level. SPD-2, SAS-4 and 

SAS-6 have orthologues in human cells termed Cep192 (Andersen et al., 2003), 

CPAP/CENPJ/hSas-4 (Hung et al., 2000) and hSas-6 (Leidel et al., 2005), respectively. 

Even though ZYG-1 does not have obvious structural orthologues in organisms outside 

nematodes, a functional analogue has been identified in Plk4 in Drosophila and human 

cells (Bettencourt-Dias et al., 2005; Habedanck et al., 2005). Interestingly, Plk4 does not 

seem to require Cep192 for recruitment to the centriole in human cells (Kleylein-Sohn et 

al., 2007). Similar to ZYG-1, the search for a functional orthologue of SAS-5 has long 

remained unsuccessful. Yet recently, the Drosophila protein Ana2 and the human protein 

STIL have been suggested to be functional orthologues (Stevens et al., 2010). 

 

 

Figure 4. Centriole duplication in Caenorhabditis elegans. SPD-2 recruits the protein kinase ZYG-1, 

which then recruits a complex of SAS-5 and SAS-6. This promotes the formation of a central tube (red) onto 

which centriolar microtubules (green) are assembled by SAS-4. Proteins highlighted in red have functional 

orthologues in vertebrates (adapted from Nigg and Raff 2009).  
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2.2.2 Centriole Biogenesis in Human Cells 

As described above, the core components of centriole biogenesis are well conserved from 

worm to man. Indeed, detailed studies have revealed that human procentriole assembly 

follows a very similar route as in C. elegans (Figure 5). Polo-like kinase 4 (Plk4) has been 

identified as the pivotal protein in centriole biogenesis in Drosophila and human cells 

(Bettencourt-Dias et al., 2005; Habedanck et al., 2005). Depletion of Plk4 inhibits 

centriole duplication and its overexpression induces centriole overduplication, identifying 

Plk4 as the key protein regulating “copy-number control” (reviewed in Nigg 2007; see 

also 2.2.3). This suggests that Plk4 protein levels must be tightly regulated in order to 

ensure correct centrosome number. A study performed in osteosarcoma (U2OS) cells 

which could be induced to overexpress active Plk4 was used to delineate the human 

centriole biogenesis pathway (Kleylein-Sohn et al., 2007). Herein, excess Plk4 leads to the 

formation of multiple procentrioles in a rosette-like arrangement around the pre-existing 

centrioles. Accordingly, at the G1/S phase transition Plk4 sequentially recruits hSas-6, 

γ-tubulin, CPAP and Cep135 to the site of procentriolar outgrowth. HSas-6 is exclusively 

found at the nascent procentriole where it is required for the formation of the cartwheel 

which most likely confers the nine-fold symmetry (Nakazawa et al., 2007). Even though 

the cartwheel is a constitutive component of Drosophila centrioles, it is restricted to the 

procentriole stage in vertebrates (Alvey 1986), the time when hSas-6 levels peak (Strnad 

et al., 2007). In contrast, the cartwheel component Cep135 (Hiraki et al., 2007) also 

remains associated with the centriole after completion of centriole duplication and the 

disappearance of the cartwheel (Kleylein-Sohn et al., 2007). Centriole elongation is 

initiated after the recruitment of γ-tubulin which enables nucleation of centriolar 

microtubules. The growing procentriole is then decorated with CP110 which marks the 

distal tip of both nascent and mature centrioles. CPAP most likely serves to insert tubulin 

underneath the CP110 cap and thereby contributes to the control of centriole elongation 

(Kohlmaier et al., 2009; Schmidt et al., 2009b; Tang et al., 2009). Interestingly, CPAP 

and CP110 have opposing functions in centriole elongation as overexpression of CPAP 

yields overly long centrioles and overexpression of CP110 suppresses this effect. 

Moreover, POC5, POC1 and OFD1 have also been shown to be involved in centriole 

length control (Azimzadeh et al., 2009; Keller et al., 2009; Singla et al., 2010). 
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2.2.3 Regulation of Centriole Duplication 

Aberrant centrosome numbers perturb bipolar spindle formation which is strictly required 

to ensure faithful chromosome segregation during mitosis. As cells do not have a 

checkpoint to sense abnormal centrosome numbers as for the completion of DNA-

replication and MT-kinetochore attachment, other mechanisms have to guarantee proper 

centrosome numbers. This is achieved through precise control of centriole duplication by 

means of “cell-cycle control” and “copy-number control” (Figure 6). 

2.2.3.1 Cell-Cycle Control 

Temporal control of centriole duplication is achieved by synchronization of the 

centrosome cycle with the chromosome duplication cycle. Centriole duplication is only 

initiated during S phase and progression through the cell cycle is required to initiate a new 

round of centriole duplication (Balczon et al., 1995; Meraldi et al., 1999). The exception 

to this rule is only seen in certain cancer cell lines, e.g. U2OS and CHO cells (Kuriyama et 

al., 1986; Balczon et al., 1995). This mode of control is reminiscent of DNA replication, 

both in respect to the timing during the cell cycle and in the sense that a licensing step 

during the cell cycle prevents premature re-replication (Tsou and Stearns 2006a; Hook et 

al., 2007). Here, the licensing step corresponds to the loading of the minichromosome 

maintenance (Mcm) 2-7 proteins to form the pre-replicative complex (preRC) during late 

mitosis and G1 when CDK activity is low. DNA replication is then initiated by high 

 

Figure 5. Centriole duplication in humans. Even though Cep192 is the human homologue of C. elegans 

SPD-2, it does not appear to be essential for centriole duplication. The functional orthologue of C. elegans 

ZYG-1, Plk4, recruits hSas-6 which seems to be required for the formation of a central cartwheel structure 

(red). CPAP and γ-tubulin are then required to convert this structure into a procentriole onto which CP110 

and Cep135 are assembled. Proteins that have functional orthologues in C. elegans are depicted in red 

(adapted from Nigg and Raff 2009). 
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CDK2 activity in the following S phase. Simultaneously, CDK activity prevents premature 

re-licensing until the completion of mitosis (reviewed in Diffley 2001; Blow and Dutta 

2005).

 

Analogous to DNA replication, centriole duplication is also triggered by CDK2 

activity at the beginning of S phase. Here, Cdk2/Cyclin-E is required for procentriole 

biogenesis (Hinchcliffe et al., 1999; Lacey et al., 1999; Matsumoto et al., 1999) and 

Cdk2/Cyclin-A for re-duplication during prolonged S phase arrest in certain cancer cell 

lines (Meraldi et al., 1999). In contrast, Cdk2 and Cyclin-E knockout mice show no 

obvious defects in centriole duplication (Berthet et al., 2003; Geng et al., 2003; Ortega et 

al., 2003; Duensing et al., 2006). It is conceivable that in these mice, other Cdks or 

 

Figure 6. Control of centriole duplication. Cell cycle and copy number control govern the centrosome cycle. 

Violation of either rule leads to aberrations in centrosome numbers. (a) Centriole duplication in a normal cell 

cycle gives rise to two procentrioles (B and B´) from two parental centrioles (A and A´). (b) Cell cycle control 

ensures that a new round of duplication can only occur after passage through M phase. (c) Copy number 

control is exerted by Plk4 and ensures that only one procentriole is formed per pre-existing centriole (adapted 

from Nigg 2007).  
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Cyclins compensate for the loss of Cdk2 or Cyclin-E because in mice lacking all 

interphase Cdks (Cdk2, Cdk3, Cdk4, Cdk6), Cdk1 associates with D-type and E-type 

cyclins to drive mitosis (Santamaria et al., 2007). 

 The existence of a licensing mechanism inhibiting centriole re-duplication was first 

uncovered through cell fusion experiments in which disengaged, unduplicated G1 

centrosomes were shown to duplicate in an S phase cytoplasm whereas engaged, 

duplicated G2 centrosomes did not (Wong and Stearns 2003). This suggested that the 

presence of an engaged procentriole inhibits centriole re-duplication. Laser ablation 

experiments supported this notion, as ablation of an engaged procentriole promoted re-

duplication in S phase-arrested HeLa cells which ordinarily do not reduplicate in 

prolonged S phase (Loncarek et al., 2008). Mechanistically, this intrinsic block to re-

duplication has been proposed to be mediated by the control of centriole disengagement 

by the cysteine protease Separase in cooperation with Polo-like kinase 1 (Plk1) during late 

mitosis or early G1 to license centrioles for duplication in S phase (Tsou and Stearns 

2006b; Tsou et al., 2009). In this context the cysteine protease Separase might cleave a 

yet-to-be identified protein that tethers the two engaged centrioles, although this awaits 

direct demonstration. Separase is inhibited during S phase, G2 phase and the first part of 

mitosis before it is activated by the anaphase-promoting complex/cyclosome (APC/C) 

during the metaphase-anaphase transition. Hence, the aforementioned model fails to 

explain why certain cell types undergo centriole disengagement and centriole 

(re-)duplication in the absence of Separase activity. This is the case in Drosophila wing 

discs depleted of Cdk1 (Vidwans et al., 2003), which is required for Separase activation, 

in S phase-arrested U2OS or CHO cells in which Separase should be inactivated by 

Securin (Kuriyama et al., 1986; Balczon et al., 1995; Dodson et al., 2004) and even in S 

phase-arrested cells deficient of Separase (Tsou et al., 2009). Moreover, multiple 

centrioles formed during ciliogenesis disengage during interphase before moving to the 

plasma membrane (Dirksen 1991). 

2.2.3.2 Copy-Number Control 

In addition to the cell-cycle control of centriole duplication which ensures that centrioles 

duplicate once and only once during each cell cycle, the cell also limits the number of 

procentrioles that are generated during each round of duplication. Canonical centriole 

duplication in dividing cells leads to the formation of one procentriole adjacent to one pre-
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existing centriole. In contrast, hundreds of basal bodies form near-simultaneously in multi-

ciliated epithelial cells. 

 The breakthrough in understanding the mechanism of copy-number control was 

made with the identification of Polo-like kinase 4 (Plk4) as the key regulator of this 

process in both humans (Habedanck et al., 2005) and Drosophila (Bettencourt-Dias et al., 

2005), where Plk4 is known as Sak. This conclusion is justified by the fact that Plk4 

protein levels directly correlate with centriole number. Lack of Plk4 inhibits centriole 

duplication and causes sequential loss of centrioles in successive cell divisions. Excess 

Plk4, on the other hand, triggers the simultaneous formation of supernumerary bona fide 

procentrioles which are arranged in a rosette-like manner around the parental centriole 

(Habedanck et al., 2005; Kleylein-Sohn et al., 2007). Excess Plk4 is furthermore capable 

of triggering de novo centriole formation in unfertilized Drosophila eggs (see also 2.2.3.3; 

Peel et al., 2007; Rodrigues-Martins et al., 2007a). Importantly, the triggering of 

procentriole formation absolutely requires Plk4 kinase activity (Habedanck et al., 2005). 

 The formation of multiple procentrioles around the proximal end of the parental 

centriole argues that the maximum number of procentrioles might be dictated by spatial 

constraints instead of the availability of a pre-defined assembly site, as had been suggested 

previously (Jones and Winey 2006; Tsou and Stearns 2006a). In concordance with this 

model and the idea that parental centrioles constitute assembly platforms (Rodrigues-

Martins et al., 2007b), it would be plausible that Plk4 marks the assembly sites on the 

parental centriole cylinder by phosphorylation of yet-to-be identified substrates, which 

subsequently recruit the first procentriolar proteins, i.e. hSas-6, Cep135. This would thus 

form a “seed” for the nascent procentriole, which would subsequently be very rapidly 

expanded into nascent procentriolar structures. In line with this, excess hSas-6 also leads 

to the formation of supernumerary procentrioles (Leidel et al., 2005; Peel et al., 2007; 

Rodrigues-Martins et al., 2007a; Strnad et al., 2007). Thus, the number of centrioles 

formed during each S phase may be dictated by limiting of amounts of Plk4 that in turn 

recruit limiting amounts of hSas-6 to the parental centriole. 

2.2.3.3 Canonical versus de novo Centriole Duplication 

Most centrioles arise in the canonical, semi-conservative fashion at the proximal end of a 

parental centriole. However, centrioles can also form de novo in the absence of any pre-
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existing centrioles. While the centrioles in most mammalian zygotes stem from the sperm, 

the first embryonic divisions in mouse zygotes are acentrosomal before each cell 

assembles the correct number of centrioles de novo during the blastomere stage. 

Afterwards, the centrioles are propagated via the canonical pathway (Szollosi et al., 1972). 

Moreover, multiciliated cells can arise from overduplication of centrioles via de novo 

formation. In the latter case, hundreds of centrioles form around amorphous EM-dense 

granules composed of various centrosomal proteins which eventually fuse to form 

deuterosomes (Sorokin 1968). Interestingly, Plk4 seems to be highly expressed in these 

cells, at least in mice (Fode et al., 1994), insinuating that increased Plk4 levels may be 

involved in the generation of multiciliated cells. 

 The canonical and de novo pathways rely on the same core mechanisms. Both 

require entry into S phase (Uetake et al., 2007) and the same set of centriole duplication 

proteins, Plk4, hSas-6 and CPAP (Peel et al., 2007; Rodrigues-Martins et al., 2007a). 

Intriguingly, even though the presence of pre-existing centrioles inhibits de novo centriole 

formation, the de novo pathway can be induced in cycling, somatic vertebrate cells by 

removal of all resident centrioles (Khodjakov et al., 2002; La Terra et al., 2005; Uetake et 

al., 2007). Importantly, the latter happens at the expense of numerical control of centriole 

number, even though levels of Plk4 and hSas-6 remain low. 

2.3 Polo-like Kinase 4 (Plk4) 

The Polo-like kinase family consists of four members: Plk1, Plk2 (Snk), Plk3 (Fnk) and 

Plk4 (Sak), of which Plk4 is the most divergent member. All four kinases share a 

structurally similar N-terminal kinase domain, which spans amino acids 12-265 in Plk4 

(Figure 7). While Plks1-3 have two polo box motifs in common that, together, form a 

phosphopeptide binding domain which determines subcellular targeting and kinase 

regulation (Elia et al., 2003a), Plk4 harbors only a single polo box motif at its C-terminus 

(Leung et al., 2002). This indicates that Plk4 may not dock to substrates in the manner that 

is described for Plks1-3 (Lowery et al., 2005). 

 Just N-terminal to Plk4’s polo box lies the loosely defined, so-called cryptic polo 

box which acts as a dimerization domain (Leung et al., 2002; Habedanck et al., 2005) and 

is additionally required for centriolar localization (Habedanck et al., 2005). Hence, in 
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contrast to Plk1 in which the two polo boxes form the phosphopeptide binding polo box 

domain (PBD; Cheng et al., 2003; Elia et al., 2003b); crystals of the single Plk4 polo box 

reveal intermolecular dimers (Leung et al., 2002). Between the C-terminal single polo box 

of Plk4 and the N-terminal kinase domain lies an approximately 500 amino acid region, 

termed the linker region, which shares no similarity to other Plks and is not well 

conserved in Drosophila Plk4. Moreover, human Plk4 localizes to centrosomes in 

Drosophila cells but does not trigger centriole overduplication (Carvalho-Santos et al., 

2010). The same holds true for Drosophila Plk4 in human cells. This indicates that taxon-

specific changes in regard to protein regulation and/or function have evolved. 

 

 Plk4 was first identified in mouse during a search for proteins regulating 

sialylation (Fode et al., 1994) before the human homologue was separately identified in a 

PCR-based search for novel kinases involved in cancer development (Karn et al., 1997). 

In humans, the plk4 gene is located on chromosome 4 at locus 4q28 which has been 

implicated in frequent rearrangements and loss in tumor cells (Hammond et al., 1999). 

Indeed, heterozygous Plk4
+/-

 mice are prone to tumor development (Ko et al., 2005). This 

may be due to the fact that Plk4
+/-

 MEFs (mouse embryonic fibroblasts) display increased 

numbers of centrosomes and abnormal spindles. Yet, how Plk4 haploinsufficiency 

contributes to this phenotype remains unclear. Plk4
-/-

 knockout mice, however, show a 

much more dramatic phenotype as they arrest in development shortly after gastrulation 

(Hudson et al., 2001). 

 

Figure 7. Domain structure of Plk4. Illustration of Plk4’s functional domains. Schematic is drawn to scale. 
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2.4 The Centrosome and Cancer 

A direct link between centrosomal aberrations and cancer had already been proposed by 

Theodor Boveri in 1914 (Boveri 1914). He put forward the idea that deviations in 

centrosome numbers might contribute to the development of cancer through generation of 

multipolar spindles and erroneous mitosis. In recent years, Boveri’s notion has been 

reawakened as centrosome aberrations are observed in many different cancers (Lingle et 

al., 2002; Pihan et al., 2003) and often accompanied with extensive chromosome 

aberrations (D'Assoro et al., 2002; Pihan et al., 2003), an indication of poor clinical 

outcome (Gisselsson 2003).  

 The accumulation of supernumerary centrosomes may occur via four different 

mechanisms (reviewed in Nigg and Raff 2009). First, genuine deregulation of the 

centrosome cycle may lead to excessive centriole duplication as has been described for 

human cells with excess Plk4 (Habedanck et al., 2005), hSas-6 (Leidel et al., 2005) or 

human papillomavirus E7 (Duensing et al., 2000). Additionally, successive rounds of 

centriole duplication within the same S phase may also lead to supernumerary centrioles 

(Balczon et al., 1995; Meraldi et al., 1999). Second, cytokinesis failure or cell fusion can 

lead to tetraploid cells with four centrosomes. Third, fragmentation of the pericentriolar 

material may form extra spindle poles even though this does not represent true centrosome 

amplification. Finally, upregulation of PCM components may lead to the formation of 

additional procentrioles (Loncarek et al., 2008; reviewed in Salisbury 2008). 

 In dividing cells each centrosome normally gives rise to one spindle pole and 

supernumerary centrosomes should result in multiple spindle poles and consequently in 

multipolar spindles. This is however not inescapably the case as cells have devised several 

mechanisms to form a bipolar spindle despite the presence of excess centrosomes 

(reviewed in Acilan and Saunders 2008; Godinho et al., 2009). Centrosome inactivation, 

for instance, allows only two centrosomes to function as MTOCs during mitosis. 

Centrosome removal on the other hand, reduces the de facto number of centrosomes 

during gametogenesis. Alternatively, asymmetric segregation during cell division can also 

reduce the number of centrosomes so that one daughter cell inherits only one centrosome 

which it can then propagate during subsequent cell divisions. However, the predominant 

way for cancer cells to achieve bipolar mitoses is through clustering centrosomes into two 

spindle poles (Quintyne et al., 2005; Saunders 2005; Basto et al., 2008; Kwon et al., 2008; 
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Yang et al., 2008). Yet, cells undergoing centrosome clustering may nevertheless form 

merotelic kinetochore-MT attachements (one kinetochore attached to two spindle poles) 

which may aid the generation of chromosomal instability (Ganem et al., 2009). 

Considering that many tumors harbor centrosome abnormalities, clinical approaches 

to specifically target cells with extra centrosomes have been discussed as therapeutic 

approaches. This would exploit that cancer cells with extra centrosomes depend on certain 

proteins or pathways for their survival that are less critical in normal cells. Inhibition of 

these pathways would thus selectively kill cancer cells with extra centrosomes while 

leaving cells with normal centrosome numbers unharmed. In Drosophila, for example, the 

spindle assembly checkpoint (SAC) suddenly becomes essential in cells with excess 

centrosomes even though the SAC is not essential in normal Drosophila cells (Buffin et 

al., 2007). Alternatively, human cancer cells with clustered supernumerary centrosomes 

but not cells with normal centrosome numbers are effectively killed by inhibition of 

centrosome clustering through perturbation of HSET function, a kinesin-related motor 

(Kwon et al., 2008). 

 Despite evidence linking centrosome abnormalities and cancer, the lack of direct 

genetic proof hinders the establishment of a causal relationship (reviewed in Nigg and 

Raff 2009). This may be due to the fact that a large number of proteins is involved in 

centrosome assembly and that many of these genes may be mutated in cancer but the 

mutation frequency in any one particular gene is low. 

2.5 The Ubiquitin-Proteasome System 

The maintenance of genomic integrity relies on the faithful progression through the cell 

cycle which in turn is ensured by a network of phosphorylation and protein degradation 

events. Pivotal to protein degradation is the ubiquitin-proteasome system which catalyzes 

the proteolysis of proteins which are destined for degradation. 

2.5.1 Ubiquitin-dependent Protein Degradation  

A central component of the ubiquitin-proteasome system is the 76 amino acid small 

protein ubiquitin which is covalently attached via the glycine residue at its C-terminus to 

the ε-amino group of a lysine in the degradation target (reviewed in Hochstrasser 1996; 
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Hershko and Ciechanover 1998). This is carried out by the sequential action of one 

ubiquitin-activating enzyme (E1), one of several ubiquitin-conjugating enzymes (E2) and 

one of many ubiquitin ligases (E3) (Figure 8). First, the E1 enzyme adenylates ubiquitin to 

catalyze its covalent attachment to a cysteine in the active site of the E1 enzyme through a 

thioester bond. The activated ubiquitin moiety is then transferred onto a ubiquitin-

conjugating enzyme in a trans-thiolation reaction which again entails the formation of a 

thioester bond with a cysteine in the active site of the E2 enzyme. Subsequently, the 

E2-ubiquitin complex is incorporated into the ubiquitin ligase. This multi-subunit protein 

complex then coordinates the E2-ubiquitin complex and the ubiquitination substrate to 

enable ubiquitin transfer or, alternatively, it actively catalyzes the ubiquitin transfer itself. 

After the isopeptide bond linkage of ubiquitin to the substrate protein, a polyubiqutin 

chain is usually formed, in which the C-terminus of each ubiquitin unit is linked to a 

specific lysine residue, commonly Lys
48

, of the previous ubiquitin. Polyubiquitinated 

proteins are then specifically recognized and degraded by the 26S proteasome in an ATP-

dependent process (reviewed in Pickart and Cohen 2004; Finley 2009). 

 

 

Figure 8. Overview of the ubiquitin-proteasome pathway. Ubiquitin (Ub) is activated in an ATP-

dependent manner by the ubiquitin-activating enzyme (E1). The activated ubiquitin is then transferred to the 

ubiquitin-conjugating enzyme (E2) which covalently attaches it to the target protein together with a multi-

protein ubiquitin ligase (E3). The ubiquitinated protein is subsequently degraded by the 26S proteasome in 

an ATP-dependent manner. The four major classes of E3 ligases are depicted in blue and its largest 

subfamily, the RING-finger type Cullin-based E3s are depicted in red (adapted from Nakayama and 

Nakayama 2006) 
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2.5.2  The SCF
βTrCP

 Complex 

To achieve high substrate specificity, cells express many different E2 enzymes (about 30) 

and even more E3 ligases (more than 300). The latter are categorized into four major 

classes according to the presence of particular structural motifs: HECT-, RING-finger, 

U-box and PHD-finger-type E3 ligases (reviewed in Nakayama and Nakayama 2006). 

RING-finger-type E3 ligases comprise the largest group and are further subdivided into 

subfamilies. Among these, cullin-based E3 ligases are the largest single class of E3s. 

2.5.2.1 Structure of SCF complexes 

Cullin-based E3s are generally composed of a RING-finger protein, a scaffold protein, an 

adaptor protein and a receptor protein which confers the substrate specificity. In the case 

of the Skp1-Cul1-F-box protein (SCF) complex, the scaffolding function is provided by 

Cul1 which forms a core complex with the RING-finger protein Rbx1 and the adaptor 

protein Skp1 (Figure 9). Rbx1 binds the E2-ubiquitin complex, while Skp1 binds the F-

box protein via its so-called N-terminal F-box named after its discovery in Cyclin F (Bai 

et al., 1996). The F-box moiety of the SCF complex dictates its substrate specificity by 

recruiting substrate proteins through protein-protein interaction domains in its C-terminus. 

The substrate binding regions are also the basis for the classification of F-box proteins into 

three categories, namely, with WD40 repeats (FBXW), leucine-rich repeats (FBXL) or 

other domains (FBXO). Of the F-box proteins, three are thought to be involved in cell 

cycle control: SKP2 (FBXL1), FBW7 (FBXW7) and β-transducin repeat-containing 

protein (βTrCP). The latter exists in two biochemically indistinguishable paralogues: 

βTrCP1 (FBXW1) and βTrCP2 (FBXW11) (reviewed in Nakayama and Nakayama 2006). 

The term βTrCP will therefore be used to refer to both. 
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2.5.2.2 Regulation of βTrCP-mediated Degradation 

The irreversibility of protein degradation demands accurate control over which protein is 

to be degraded at what point during the cell cycle, as premature or tardy protein 

degradation has detrimental effects for the cell (reviewed in Nakayama and Nakayama 

2006). In regard to substrate recognition there is a clear conceptual difference between 

SCF-type and other ubiquitin ligases, namely activation of the ligase (anaphase promoting 

complex/cyclosome, APC/C) versus activation of the substrate (SCF; Reed 2003). In the 

case of APC/C, the ubiquitin ligase is activated through phosphorylation and the 

availability of co-factors. Once activated, APC/C readily recognizes its substrates through 

constitutive degrons, i.e. KEN-box or D-box. In contrast, SCF-type ligases require prior 

“activation” of their substrates. In most cases this activation occurs via phosphorylation of 

a degron motif in the substrate and the SCF complex then binds this phosphodegron via its 

F-box protein (Skowyra et al., 1997). This allows versatile regulation of substrate 

recognition as degron phosphorylation itself is subject to both temporal and spatial 

regulation.  

 

Figure 9. Structure of the SCF
βTrCP

 complex. The SCF subunit Cul1 functions as a molecular scaffold and 

connects the adaptor subunit Skp1 and Rbx1. Skp1 binds the F-box protein βTrCP which recognizes the 

ubiquitination substrate while Rbx1 recruits the ubiquitin conjugating enzyme E2 (Ubc) (adapted from 

Frescas and Pagano 2008). 
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βTrCP recognizes a DSGxx[S/T] motif or derivates thereof ([D/E] instead of [S/T]) 

in its substrates (reviewed in Frescas and Pagano 2008). This oftentimes involves the 

recruitment of phosphodegron-directed kinases through phosphorylation-dependent 

docking sites. For instance, the Cdk1-inhibitory kinase Wee1 is first phosphorylated by 

Cdk1 which allows docking and phosphorylation of the DSG motif by Plk1 (Watanabe et 

al., 2004). Other examples which follow a similar two-step mechanism, albeit not 

necessarily carried out by the same kinases, are the regulation of the cell cycle regulators 

β-catenin (Liu et al., 2002) and Erp1 (Liu and Maller 2005; Rauh et al., 2005; Hansen et 

al., 2006).  

2.5.2.3 The SCF
βTrCP 

Complex at the Centrosome 

A role for the SCF
βTrCP

 complex in centrosome function has been implied by a multitude 

of evidence. The two structural components of the SCF complex, Skp1 and Cul1, have 

both been shown to localize to the PCM as well as to the centrioles (Freed et al., 1999). 

Clues for a functional role of the SCF
βTrCP

 complex at the centrosome came from the 

identification of the Drosophila homologues of βTrCP and Skp1 (Slimb and SkpA, 

respectively) as negative regulators of centriole duplication (Wojcik et al., 2000; Murphy 

2003). Mutation of either protein promoted centrosome amplification. Similarly, the 

analysis of βTrCP
-/-

 null mice revealed a function of βTrCP in centrosome duplication as 

these mice exhibited supernumerary centrosomes (Guardavaccaro et al., 2003). Further 

support for a role of proteasomal degradation in centriole duplication came from studies in 

U2OS cells which had been treated with the proteasome inhibitor Z-L3VS (Duensing et 

al., 2007). Proteasomal inhibition by this inhibitor lead to Plk4-dependent centriole 

overduplication in rosette-like arrangement, reminiscent of Plk4 (Habedanck et al., 2005; 

Kleylein-Sohn et al., 2007) and hSas-6 (Strnad et al., 2007) overexpression. 

2.5.2.4 Regulation of Plk4 Expression 

 The above-described phenotypes insinuate that Plk4 expression has to be tightly 

regulated for faithful centriole duplication. At transcript level, plk4 expression is cell cycle 

regulated and mRNA levels are low in Go and G1 phase and then increase from late G1 

until they plateau in M phase (Fode et al., 1996). Interestingly, plk4 transcripts are 

elevated in colorectal cancer (Macmillan et al., 2001). Active regulation of Plk4 protein 

levels had been suggested to depend on the presence of PEST motifs within Plk4 
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(Yamashita et al., 2001) and lead to a short half-life of approximately 2-3 hours (Fode et 

al., 1994). Insight into the regulation of Plk4 stability was recently gained by two studies 

in Drosophila which revealed that Plk4 harbors a conserved DSGxxT motif which 

regulates its SCF
Slimb

-dependent degradation (Cunha-Ferreira et al., 2009; Rogers et al., 

2009). Inactivation of Slimb led to increased Plk4 protein levels and concomitant centriole 

overduplication in the typical rosette-like arrangement of procentrioles around the parental 

centriole. Furthermore, a direct biochemical interaction between Slimb and Plk4 was 

demonstrated to depend on the double phosphorylation of the conserved DSG motif in 

Plk4. These works therefore described how adequate Plk4 protein levels are guaranteed in 

order to maintain correct centrosome numbers in Drosophila. 

 The revelation that Plk4 protein levels are regulated by βTrCP-mediated 

degradation not only gave insight into how fidelity of centriole duplication is ensured but 

also opened the door to new questions. It will be important to clarify whether this control 

of Plk4 protein levels is conserved from Drosophila to man and which kinases control the 

Plk4-βTrCP interaction through phosphorylation.  
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3 AIM OF THIS PROJECT 

Plk4 had previously been demonstrated to be pivotal to centriole duplication as its kinase 

activity seems to be required to initiate centriole duplication and its protein levels directly 

correlate with centriole numbers. Yet, how Plk4 protein levels are regulated had not been 

resolved. This study aimed at uncovering how Plk4 protein levels are regulated to ensure 

faithful centriole duplication. First, we addressed whether Plk4 kinase activity is essential 

for centriole overduplication. Second, after the realization that βTrCP is responsible for 

targeting Plk4 for ubiquitination and degradation, we examined how Plk4 kinase activity 

contributes to controlling its βTrCP-mediated degradation. Finally, we addressed whether 

Plk4 kinase activity is sufficient for Plk4 degradation.  
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4 RESULTS 

At the beginning of this work Plk4 had been recognized as a key protein in regulating 

centriole duplication (Bettencourt-Dias et al., 2005; Habedanck et al., 2005). It was 

known that Plk4 kinase activity is required to trigger the ordered integration of the 

centriole duplication proteins, hSas-6, CPAP, Cep135 and CP110 into the procentriole. 

Furthermore, Plk4 protein levels had been shown to directly correlate with centriole 

numbers. Plk4 had accordingly been termed to be the fundamental regulator of centriole 

copy number control (Nigg 2007). In spite of this, the mechanisms responsible for fine-

tuning Plk4 protein levels to ensure precise centriole regulation were unidentified. 

 During the course of this study, antibodies were first generated to address the 

regulation of Plk4 protein levels. Then, we investigated how excess kinase-dead Plk4 

triggers centriole overduplication. Encouraged by the possibility that kinase-dead Plk4 

protects endogenous Plk4 from degradation, we explored if Plk4 protein levels are directly 

regulated by the SCF
βTrCP 

complex before examining how Plk4 protein levels are regulated 

by the SCF
βTrCP

 complex. Finally, we investigated whether Plk4 autophosphorylation is 

sufficient for βTrCP binding and undertook measures to identify a possible second kinase 

involved in regulating βTrCP-mediated degradation of Plk4. 

4.1 Generation and Characterization of anti-Plk4 Antibodies 

In order to complement the existing polyclonal rabbit anti-Plk4 antibodies, monoclonal 

anti-Plk4 antibodies were raised (kindly performed by A. Baskaya, C. Szalma and A. 

Uldschmid). To this end, mice were injected with purified, recombinant MPB-tagged Plk4 

spanning amino acids 715-970. After an immune response had been monitored, mouse 

spleen cells were fused to myeloma cells and hybridoma cell clones were selected. Of 

these, two positive clones (93-80-4 and 93-302-11) were analyzed in more detail. 

Specificity of the monoclonal anti-Plk4 antibodies from both clones was confirmed by 

immunofluorescence of U2OS cells which had been depleted of Plk4 for 48 hours by 

siRNA oligonucleotides transfection (Figure 10A). Note that siRNA-mediated depletion 

of Plk4 leads to centriole loss over successive cell divisions, as visualized by anti-CP110 

staining (see also Habedanck et al., 2005). Both monoclonal anti-Plk4 antibodies also  
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Figure 10. Characterization of two monoclonal anti-Plk4 antibodies. (A) U2OS cells were transfected for 48 

hours with siRNA oligonucleotides targeting GL2 or Plk4. Cells were fixed and stained with monoclonal anti-Plk4 

antibodies (green): 93-80-4 (left panel) or 93-302-11 (right panel), anti-CP110 antibodies (red) and DAPI (blue). 

Magnifications of boxed areas are shown below the respective panels. Scalebar: 1 µm. (B) HEK 293T cells were 

transfected for 24 hours with myc-Plk4, lysed and the cell extracts were immunoblotted with anti-Plk4 antibodies: 

93-80-4 (left panel) or 93-302-11 (right panel), anti-myc antibodies and anti-αtubulin antibodies. (C) myc-Plk4 was 

expressed in HEK 293T cells for 24 hours and the cell extracts were subjected to anti-Plk4 immunoprecipitations: 

93-80-4 (left panel) or 93-302-11 (right panel). The precipitated proteins were analyzed by immunoblotting for the 

myc-epitope and αtubulin. 
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detected overexpressed myc-Plk4 by immunoblotting (Figure 10B) and in cell extracts by 

immunoprecipitations (Figure 10C). Yet, neither antibody detected endogenous Plk4 by 

immunoblotting which goes in line with the low abundance of endogenous Plk4 (data not 

shown; see also Bettencourt-Dias et al., 2005; Habedanck et al., 2005). To alleviate this, 

all experiments in this study requiring the detection of Plk4 via immunoblotting were 

carried out using overexpressed Plk4. 

4.2 Kinase-dead Plk4 Causes Centriole Overduplication 

The bottleneck of investigating Plk4’s function in the regulation of centriole duplication 

has thus far been its low abundance. As a consequence, detection of endogenous human 

Plk4 or its Drosophila homolog, Sak, has remained impossible by means of 

immunoblotting (data not shown; see also Bettencourt-Dias et al., 2005; Habedanck et al., 

2005). In order to be able to study Plk4 despite this drawback, transgenic U2OS T-REx 

cell lines that stably harbor the cDNA of human myc-tagged wild-type (U2OS:myc-Plk4-

WT) or kinase-dead Plk4 (U2OS:myc-Plk4-KD) under control of a tetracycline-inducible 

CMV promoter were generated in our laboratory by Jens Westendorf. 

4.2.1 Plk4-WT and Plk4-KD Trigger Centriole Overduplication 

In concordance with previous results (Kleylein-Sohn et al., 2007), 16 hours after induction 

of wild-type Plk4 expression in S phase-arrested U2OS:myc-Plk4-WT cells, 

approximately 80% of cells exhibited centrosomal myc-Plk4 localization and a rosette-like 

pattern of procentrioles around the pre-existing centrioles as revealed by CP110 staining 

(Figure 11A), which have previously been reported to be bona fide procentrioles 

(Habedanck et al., 2005; Kleylein-Sohn et al., 2007). Note, that staining for the proximal 

centriolar protein Cep135 does not allow visualization of engaged procentrioles (Figure 

11A). The distal centriolar protein CP110 (Kleylein-Sohn et al., 2007) has hence been 

used to identify procentrioles at early stages of centriole duplication during the remainder 

of this study.  

 Centriole overduplication has been demonstrated to depend on Plk4 kinase activity 

in transient overexpression experiments in different cell lines (Habedanck et al., 2005; 

Sillibourne et al., 2009). Yet, when we compared the ability of wild-type Plk4 (Figure 



RESULTS 

27 

 

11A) and kinase-dead Plk4 (Figure 11B) to induce centriole overduplication in the 

U2OS:myc-Plk4 cell lines, we surprisingly observed robust centriole overduplication in 

both cell lines. Intriguingly, myc-Plk4-WT and myc-Plk4-KD induced a similar extent of 

centriole overduplication, which was indistinguishable by CP110 staining. 

 Transient overexpression of kinase-dead Plk4 had also been observed previously to 

trigger centriole overduplication, albeit at very low levels (Habedanck et al., 2005). At the 

time this had been attributed to cell division failure as centriole overduplication induced 

by kinase-dead Plk4 could be inhibited by blocking cell cycle progression (Habedanck et 

al., 2005). Yet, as shown above, robust centriole overduplication occurred in S phase-

arrested U2OS:myc-Plk4-KD cells (Figure 11B). This prompted us to investigate centriole 

overduplication in response to transient kinase-dead Plk4 overexpression more 

scrutinously, utilizing the distal centriolar protein CP110 as marker. This revealed that 

transient kinase-dead Plk4 overexpression was sufficient to induce centriole 

overduplication in the distinct rosette-like configuration of procentrioles around the older 

 

Figure 11. Excess Plk4 causes centriole overduplication. U2OS:myc-Plk4-WT or U2OS:myc-Plk4-KD 

cells were arrested with aphidicolin for 24 hours before expression of myc-Plk4-WT or myc-Plk4-KD was 

induced for 16 hours. No tetracycline was added to controls. Cells were fixed and stained with antibodies 

against the myc-epitope (green), CP110 (red) and Cep135 (blue). Scale bar: 1 µm. 
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centriole (Figure 12), which represents the hallmark of bona fide centriole overduplication 

and not the consequence of cytokinesis failure as suggested by Habedanck et al.  

4.2.2 Endogenous Plk4 is Required for Plk4-KD-induced Centriole Overduplication 

The surprising results that both transient and stable overexpression of kinase-dead Plk4 

triggers centriole overduplication prompted us to investigate centriole overduplication 

more closely in the U2OS:myc-Plk4-KD cell line. RT-PCR experiments were performed 

to reveal that the cell line indeed harbored the D154A mutation (data not shown), which 

 

Figure 12. Transient kinase-dead Plk4 overexpression triggers bona fide centriole overduplication. 
U2OS cells were transfected for 48 hours with empty vector, myc-Plk4-WT or myc-Plk4-KD. Cells were 

fixed and stained with antibodies for the myc-eptitope (green), CP110 (red) and Cep135 (blue). Scalebar: 1 

µm. 

 

 

Figure 13. The D154A mutation renders Plk4 kinase dead. HEK 293T cells were transfected with 

myc-Plk4-WT or myc-Plk4-KD. The overexpressed proteins were immunoprecipitated with anti-myc 

antibodies and subjected to a kinase assay in the presence of γ-[
32

P]-ATP. The kinase assay was analyzed by 

immunoblotting (upper panel) and autoradiography (lower panel). Myc-Plk4-KD carries an aspartate-

to-alanine substitution at position 154.  
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abrogates Plk4 kinase activity (Figure 13). 

Next, we carried out siRNA rescue experiments to determine whether the centriole 

overduplication phenotype upon kinase-dead Plk4 overexpression depends on endogenous 

wild-type Plk4. U2OS:myc-Plk4-WT and U2OS:myc-Plk4-KD cells were transfected for 

24 hours with siRNA oligonucleotides targeting the 3´-untranslated region of Plk4 (siPlk4 

3’-UTR) or control oligonucleotides (siGL2) and then arrested in aphidicolin before 

myc-Plk4 (WT or KD) expression was induced. As expected, the transfection of control 

siRNA duplexes did not inhibit Plk4-induced centriole overduplication in either cell line 

(Figure 14A). Likewise, 80% of cells overexpressing myc-Plk4-WT still exhibited 

centriole overduplication even after depletion of endogenous Plk4. In stark contrast, 

centriole overduplication was reduced to 14% of cells upon expression of myc-Plk4-KD 

concomitant with transfection of siPlk4 3´-UTR (Figure 14B). A similar reduction of 

centriole overduplication was observed when either myc-Plk4-WT or myc-Plk4-KD were 

overexpressed in cells lacking hSas-6, as expected (Kleylein-Sohn et al., 2007). These 

results demonstrate that myc-Plk4-KD is only able to induce centriole overduplication in 

the presence of endogenous wild-type Plk4.  
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Figure 14. Centriole overduplication depends on endogenous Plk4. (A) U2OS:myc-Plk4-WT (upper panel) 

or U2OS:myc-Plk4-KD (lower panel) cells were transfected for 24 hours with siRNA oligonucleotides 

targeting GL2, the 3´-UTR of Plk4 or hSas-6 prior to induction of Plk4 expression (myc-Plk4-WT or myc-Plk4-

KD) for 16 hours. Cells were stained against the myc-epitope (green), CP110 (red) and Cep135 (blue). Scale 

bar: 1 µm. (B) Percentage of cells treated as described in (A), which exhibit centriole overduplication. Data 

from three independent experiments (n = 100) are shown. Error bars denote s.e.m. 
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4.3 βTrCP-dependent Degradation of Plk4 

Recent studies have shown that the levels of Drosophila Plk4/Sak are regulated by the 

ubiquitin-proteasome-pathway through the E3 ubiquitin ligase SCF
Slimb/βTrCP

 (SKP1-

CUL1-F-box-protein) (Cunha-Ferreira et al., 2009; Rogers et al., 2009). This elegantly 

demonstrated how cells regulate Plk4 kinase activity in order to prevent centriole 

overduplication. Even though the basic mechanism of this regulatory pathway had been 

uncovered, several questions regarding the control of Plk4 protein levels remained to be 

answered. First, is this pathway conserved from Drosophila to man? Second, how is this 

pathway regulated to allow controlled degradation of Plk4?  

4.3.1 Centrosomal Plk4 Protein Levels are Regulated by the Proteasome 

Previous work has revealed that proteasome inhibition leads to centriole overduplication 

in U2OS cells (Duensing et al., 2007) and that protein levels of the Drosophila homolog 

of Plk4, Sak, are regulated in a Slimb/βTrCP-dependent manner. Together, this indicates 

that human Plk4 protein levels may also be regulated in a proteasome-dependent manner. 

Treatment of U2OS cells with low doses of MG132 for 16 hours led to centriole 

overduplication as described by Duensing et al., concomitant with increased Plk4 protein 

levels at the centrosome (Figure 15). This indicates that centrosomal Plk4 protein levels 

are regulated by the proteasome and deregulation of this pathway leads to centriole 

overduplication. 

 

 

Figure 15. MG132 treatment increases centrosomal Plk4 levels and triggers centriole overduplication. 
U2OS cells were treated with DMSO or 1 µM MG132 for 16 hours, fixed and stained with anti-Plk4 (green), 

anti-CP110 (red) and anti-Cep135 (blue) antibodies. Scalebar: 1µm. 
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4.3.2 βTrCP is Required for Control of Plk4 Protein Levels and Centriole Number 

After having shown that human Plk4 protein levels are regulated by the proteasome, we 

next investigated whether human Plk4 protein levels are also controlled by βTrCP as in 

Drosophila. To this end, asynchronously growing U2OS cells were depleted of βTrCP by 

siRNA transfection and centriole numbers monitored by immunofluorescence microscopy. 

Upon depletion of βTrCP, Plk4 protein levels at the centrosome increased about seven-

fold compared to control cells (Figure 16A,B). Moreover, βTrCP depleted cells exhibited 

centriole overduplication, partially in a rosette-like arrangement of procentrioles, 

reminiscent of Plk4 overexpression in human cells (Kleylein-Sohn et al., 2007) and earlier 

work in Drosophila (Cunha-Ferreira et al., 2009; Rogers et al., 2009). To directly 

demonstrate a role of Plk4 in the observed phenotype, we analyzed the effects of βTrCP 

depletion in the absence of Plk4. While 48% of βTrCP-depleted control cells exhibited 

overduplicated centrioles, virtually no centriole overduplication was observed after 

co-depletion of βTrCP and Plk4, similar to results observed after depletion of Plk4 alone 

(Figure 16A,C). Instead, these latter treatments increased the proportion of cells with 

fewer than 2 centrioles to 67% and 73%, respectively (Figure 16C). Hence, βTrCP is 

clearly required for the maintenance of correct centriole numbers and this in turn requires 

Plk4. 

 To demonstrate that βTrCP modulates overall Plk4 protein levels, we depleted 

βTrCP for 72 hours before inducing expression of myc-Plk4-WT for the last 24 hours of 

siRNA treatment followed by immunoblot analysis. Compared to cells treated with control 

siRNA duplexes (GL2), depletion of βTrCP led to a 1.5-fold increase in Plk4-WT protein 

(Figure 17A). Plk4 siRNA treatment carried out as control abolished Plk4 expression, as 

expected (Figure 17A). Conversely, co-expression of βTrCP and Plk4-WT in HEK 293T 

cells led to a decrease in Plk4 protein (Figure 17B). Together, the above data demonstrate 

that βTrCP is involved in modulating Plk4 protein levels in human cells and thus 

contributes to the maintenance of correct centriole number. This confirms and extends 

earlier work in Drosophila (Cunha-Ferreira et al., 2009; Rogers et al., 2009) and shows 

that the βTrCP-Plk4 pathway is conserved in Drosophila and mammals (see also 

Guardavaccaro et al., 2003; Holland et al., 2010; Sillibourne et al., 2010). Yet another 

recent study also demonstrates centriole overduplication in U2OS cells upon depletion of 
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the SCF component Cul1, although a role for βTrCP was not emphasized (Korzeniewski 

et al., 2009). 

 

Figure 16. Plk4 protein levels and centriole number are controlled by βTrCP. (A) U2OS cells were 

transfected for 72 hours with siRNA oligonucleotides targeting GL2, βTrCP, Plk4 or βTrCP and Plk4 before 

cells were stained against Plk4 (green), CP110 (red) and Cep135 (blue). Scale bar: 1 µm. (B) Plk4 signal 

intensity was measured in cells treated as described in (A). Data of three independent experiments (n=30) are 

shown. Error bars denote s.e.m. (C) Percentage of cells treated as described in (A) and grouped by the number 

of centrioles counted via CP110 staining. Data of three independent experiments (n = 100) are shown. Error 

bars denote s.e.m. 
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4.3.3 Plk4 Autophosphorylation Controls Its Degradation 

βTrCP functions as the F-box adaptor protein within the SCF (Skp1-Cul1-F-box) E3 

ubiquitin ligase to recognize and recruit ubiquitination substrates through direct 

interaction. In line with this and to extend the above observation that βTrCP regulates Plk4 

protein levels, we next investigated whether βTrCP interacts with Plk4 to catalyze its 

degradation, and if so how this interaction is controlled. 

4.3.3.1 Plk4 and βTrCP Interact Directly 

To reveal whether βTrCP interacts directly with Plk4, co-immunoprecipitation 

experiments of overexpressed Plk4 and βTrCP from HEK 293T cells were performed. 

This revealed that wild-type Plk4 readily interacted with βTrCP, regardless of which 

protein was used as bait (Figure 18). Identical results were obtained in in vitro binding 

assays utilizing wild-type Plk4 isolated from cells and in vitro translated βTrCP (data not 

shown).  

 

Figure 17. βTrCP controls overall Plk4 protein levels. (A) U2OS:myc-Plk4-WT cells were transfected for 

72 hours with siRNA oligonucleotides targeting GL2, βTrCP or Plk4. The myc-signal was normalized 

against the αtubulin signal and quantified with ImageJ. Myc-Plk4-WT expression was induced during the 

last 24 hours of siRNA treatment. Then, cells were harvested and analyzed for myc-Plk4-WT expression by 

immunoblotting against the indicated proteins. (B) Myc-Plk4-WT was expressed in HEK 293T cells 

together with FLAG vector or FLAG-βTrCP. Cells were harvested and protein levels analyzed by 

immunoblotting. Data kindly provided by J. Westendorf. 
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4.3.3.2 The Interaction of Plk4 and βTrCP Requires an Intact DSG Motif 

βTrCP canonically recognizes a conserved DSGxx[S/T] motif (DSG motif) in its 

substrates to recruit them to the SCF complex for ubiquitination. This usually requires 

double phosphorylation of the DSG motif at the two phosphoacceptor residues (S/T), 

hence coining the term phosphodegron for the DSG motif. We therefore next explored 

whether the Plk4-βTrCP interaction is mediated through the, possibly phosphorylated, 

conserved DSGHAT motif in Plk4 (AA284-289). To this end, the phosphoacceptor 

residues within this motif, Ser285 and Thr289, were mutated to alanine or aspartatic acid 

to render an unphosphorylatable (Plk4-WT-DSG
AA

) or a phosphomimetic DSG motif 

(Plk4-WT-DSG
DD

), respectively. Interestingly, neither Plk4-WT-DSG
AA

 nor Plk4-WT-

DSG
DD

 interacted with βTrCP in co-immunoprecipitation experiments (Figure 19). While 

this was expected for Plk4-WT-DSG
AA

, the fact that Plk4-WT-DSG
DD

 also failed to bind 

βTrCP suggests that both mutations alter the biophysical properties of the DSG motif to 

disrupt the Plk4-βTrCP interaction, i.e. the lack of phosphorylation, and that the negative 

charge of aspartic acid as substitution of the phosphoacceptor residues does not suffice to 

mimic phosphorylation of the motif. Interestingly, both Plk4 mutants retained retarded 

electrophoretic mobility, arguing that Plk4 is phosphorylated at sites other than the DSG 

motif. In summary, we conclude that βTrCP binds Plk4 via the conserved DSG motif in 

Plk4.  

 

Figure 18. Plk4 and βTrCP interact biochemically. HEK 293T cells were co-transfected for 24 hours with 

Plk4 and βTrCP as indicated and anti-FLAG immunoprecipitations were performed. The co-

immunoprecipitated proteins were detected by immunoblotting. 
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4.3.3.3 Plk4 Autophosphorylation is Required for its Interaction with βTrCP 

After having established that βTrCP and Plk4 interact via the DSG motif and that the 

phosphoacceptor residues within this motif are crucial for binding, we next set out to 

assess whether the interaction of Plk4 and βTrCP indeed depends on phosphorylation, as 

is known for the other SCF
βTrCP

 substrates (reviewed in Frescas and Pagano 2008). To this 

end, the Plk4-βTrCP complex was co-immunoprecipated from HEK 293T cells and 

treated with either buffer or λ-phosphatase (λPPase). Dephosphorylation of the complex 

relieved the retarded electrophoretic mobility of myc-Plk4-WT (Figure 20A), confirming 

that Plk4 is a phosphoprotein in vivo as suggested previously (Yamashita et al., 2001). 

Most importantly, λPPase treatment disrupted the interaction of Plk4 and βTrCP (Figure 

20A), indicating that phosphorylation is indeed required for the association of Plk4 and 

βTrCP. 

The previous experiment had revealed that phosphorylation of the DSG motif 

seems to be a prerequisite for βTrCP binding and that dephosphorylation of Plk4 disrupts 

 

Figure 19. The interaction between Plk4 and βTrCP requires an intact DSG motif. Myc-βTrCP was co-

expressed with FLAG-Plk4-WT, FLAG-Plk4-WT-DSG
AA

 or FLAG-Plk4-WT-DSG
DD

 in HEK 293T cells. 

Cell extracts were subjected to anti-FLAG immunoprecipitations and immunoprecipitates were probed for 

the indicated proteins by immunoblotting. 
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its interaction with βTrCP. We therefore asked whether kinase-dead Plk4 which lacks 

phosphorylation sites intrinsic to Plk4 kinase activity but retains Plk4-independent 

phosphorylation sites binds to βTrCP. Indeed, loss of Plk4 kinase activity extensively 

reduces βTrCP binding, but still retains faint binding capacity when compared to the 

DSG-mutant (Figure 20B). This clearly demonstrates that Plk4 autophosphorylation 

activity is required for βTrCP binding. 

4.3.3.4 Plk4 Autophosphorylation is Required for its Ubiquitination and Degradation 

As the adaptor molecule of the SCF complex, βTrCP recruits proteasome substrates for 

ubiquitination. It is therefore plausible that βTrCP mediates degradation of Plk4 by 

facilitating its ubiquitination and subsequent degradation by the 26S proteasome. 

Accordingly, perturbed interaction of Plk4 and βTrCP should result in reduced 

ubiquitination and degradation of Plk4. Supporting this idea, the Plk4 mutants which have 

 

Figure 20. The interaction of Plk4 and βTrCP requires Plk4 autophosphorylation. (A) FLAG-βTrCP 

and myc-Plk4-WT were co-expressed in HEK 293T cells. Anti-myc immunoprecipitations were performed 

and immunoprecipitates treated with λ-phosphatase (λPPase) where indicated. The co-immunoprecipitated 

proteins were detected by immunoblotting. (B) Myc-βTrCP and FLAG-Plk4-WT, FLAG-Plk4-KD or 

FLAG-Plk4-WT-DSG
AA

 were co-expressed in HEK 293T cells. Anti-FLAG immunoprecipitations were 

performed and immunoprecipitates were probed for the indicated proteins by immunoblotting. 
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been described to be unable to bind to βTrCP, kinase-dead Plk4 (due to its lack of 

autophosphorylation activity) and Plk4-WT-DSG
AA

 (due to disruption of the DSG motif), 

were ubiquitinated to a lesser extent than wild-type Plk4 in vivo (Figure 21A). Identical 

results were obtained in an in vitro ubiquitination assay arguing against the co-

precipitation of other ubiquitinated proteins (Figure 21B). 

 

One would expect that lack of ubiquitination should stabilize Plk4 by protecting it 

from degradation via the 26S proteasome. Indeed, while Plk4-WT was degraded in cells 

treated with cycloheximide to inhibit protein synthesis for up to 8 hours, Plk4-KD was 

stabilized to a similar extent as Plk4-WT-DSG
AA

 (Figure 22). Intriguingly, no further 

decrease in Plk4-WT protein levels occurred between 4 and 8 hours of cycloheximide 

treatment, suggesting that a certain Plk4 fraction is resistant to degradation.  

Together, these data suggest that Plk4 kinase activity is necessary for its 

interaction with βTrCP and, consequently, its polyubiquitination and subsequent 

degradation by the 26S proteasome. 

 

Figure 21. Plk4 autophosphorylation is required for efficient ubiquitination in vivo and in vitro. (A) 

Myc-Plk4-WT, myc-Plk4-KD or myc-Plk4-DSG
AA

 was co-expressed for 24 hours with HA vector or 

HA-ubiquitin. Cell extracts were subjected to anti-myc immunoprecipitations and probed by 

immunoblotting for the indicated proteins. (B) [
35

S]-methionine labeled, in vitro translated FLAG-Plk4-WT, 

FLAG-Plk4-KD or FLAG-Plk4-WT-DSG
AA

 was subjected to in vitro ubiquitination assays. The presence of 

ubiquitinated Plk4 was assessed by autoradiography. 
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4.3.4 Plk4 trans-Autophosphorylation Controls its Degradation and Centriole 

Number 

The above finding that excess kinase-dead Plk4 triggers centriole overduplication in the 

presence of endogenous Plk4 fostered the idea that kinase-dead Plk4 may cause centriole 

overduplication through sequestration of βTrCP. Yet, the finding that Plk4-KD cannot 

interact with βTrCP argues against this possibility. This led us to explore an alternative 

model involving dimerization and trans-autophosphorylation of Plk4 to explain centriole 

overduplication in the presence of excess kinase-dead Plk4. 

4.3.4.1 Plk4 Autophosphorylates Itself in trans 

Plk4 has previously been shown to dimerize via its C-terminal coiled-coil region (Leung et 

al., 2002; Habedanck et al., 2005), yet whether this depends on Plk4 kinase activity was 

unknown. We therefore assessed whether Plk4 dimerization capacity is retained in the 

absence of Plk4 autophosphorylation (Figure 23). To this end, differentially tagged 

wild-type and kinase-dead Plk4 were co-overexpressed in HEK 293T cells and assayed for 

their ability to co-immunoprecipitate. Plk4 dimerization was observed regardless of its 

kinase activity, as kinase-dead Plk4 interacted with wild-type Plk4 as well as kinase-dead 

Plk4. Furthermore, both Plk4-KD and Plk4-KD-DSG
AA

 were phosphorylated by wild-type 

Plk4, manifested by the retarded electrophoretic mobility of kinase-dead Plk4 upon co-

immunoprecipitation with wild-type Plk4 (Figure 23). This clearly demonstrates that Plk4 

trans-autophosphorylates itself, also at sites distinct from the DSG motif (see also 

Sillibourne et al., 2010). 

 

 

Figure 22. Kinase-dead Plk4 is stabilized comparable to a DSG-mutant of Plk4. FLAG-Plk4-WT, 

FLAG-Plk4-KD or FLAG-WT-DSG
AA

 was expressed in HEK 293T cells before protein synthesis was 

blocked by cycloheximide. Cells were harvested at the indicated time points and protein levels analyzed by 

immunoblotting. Data kindly provided by J. Westendorf. 
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4.3.4.2 An N-terminal Truncation of Plk4 Causes Centriole Overduplication 

The data above show that wild-type Plk4 is capable of trans-autophosphorylating kinase-

dead Plk4. We therefore next asked whether trans-autophosphorylation plays a role in 

modulating the degradation of Plk4. To this end we searched for Plk4 fragments differing 

in their ability to autophosphorylate (Figure 25A), interact with βTrCP (Figure 25B) and 

dimerize (Figure 25C). Plk4
1-608

 is active as a kinase and interacts with βTrCP but does 

not dimerize due to truncation of its C-terminus. Plk4
609-970

, on the other hand, is kinase 

inactive and does interact with βTrCP due to truncation of its kinase domain. Yet, 

Plk4
609-970

, which comprises the cryptic polo box, dimerizes with wild-type Plk4 via its 

coiled-coil domain (see also Leung et al., 2002; Habedanck et al., 2005). 

 The above-mentioned Plk4 fragments were then overexpressed in U2OS cells and 

assayed for their ability to trigger centriole overduplication. Remarkably, Plk4
609-970 

caused strong centriole overduplication, occasionally resulting in the rosette-like 

arrangement of procentrioles, whereas Plk4
1-608

 failed to do so (Figure 25). This was 

reminiscent of centriole overduplication triggered by overexpression of wild-type or 

kinase-dead Plk4 and accordingly fostered the hypothesis that excess kinase-dead Plk4 is 

able to cause centriole overduplication, provided that its ability to dimerize with 

endogenous Plk4 is preserved. 

 

 

Figure 23. Plk4 autophosphorylates itself in trans and dimerizes regardless of kinase activity. Myc-

Plk4-KD or myc-Plk4-KD-DSG
AA

 was co-expressed for 24 hours with GFP-Plk4-WT or GFP-Plk4-KD and 

immunoprecipitated with anti-myc antibodies. The immunoprecipitates were subjected to an in vitro kinase 

assay which was analyzed by immunoblotting. 
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Figure 24. Myc-Plk4
1-608

 and myc-Plk4
609-970

 display differential properties regarding kinase activity, 

βTrCP binding and dimerization with Plk4-WT. (A) Myc-Plk4
1-608

 or myc-Plk4
609-970

 was overexpressed 

for 24 hours in HEK 293T cells. The overexpressed proteins were immunoprecipitated with anti-myc 

antibodies and subjected to in vitro kinase assays assay in the presence of γ-[
32

P]-ATP. The kinase assay was 

analyzed by immunoblotting (upper panel) and autoradiography (lower panel). (B) Myc vector, 

myc-Plk4
1-608

 or myc-Plk4
609-970

 was co-overexpressed with FLAG-βTrCP for 24 hours in HEK 293T cells 

and anti-myc immunoprecipitations were performed. The assay was analyzed by immunoblotting against the 

indicated proteins. (C) Myc-Plk4-WT, myc-Plk4
1-889

, myc-Plk4
1-608

, myc-Plk4
609-970

 or empty vector was co-

overexpressed with FLAG-βTrCP for 24 hours in HEK 293T cells before anti-FLAG immunoprecipitations 

were performed. The immunoprecipitated proteins were analyzed by immunoblotting against the indicated 

proteins. Asterisks mark unspecific bands. Data presented in (C) was kindly provided by J. Westendorf. 
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4.3.4.3 Plk4 Autophosphorylation in trans Restores βTrCP Binding to Plk4-KD 

The above data lead us to conclude that excess Plk4-KD triggers centriole overduplication 

by virtue of its ability to (hetero-)dimerize with endogenous, active Plk4. If so, the 

Plk4-KD polypeptide could potentially be phosphorylated in trans by the Plk4-WT 

polypeptide (but not vice versa), and phosphorylated Plk4-KD could then sequester 

SCF
βTrCP

 by acting as a decoy. A corollary of this model is that autophosphorylation in 

trans should convert Plk4-KD to a βTrCP-binding species. To test this prediction we 

expressed various combinations of myc- or FLAG-tagged Plk4 proteins differing in their 

activity status (WT or KD) and/or ability to be recognized by βTrCP (DSG-WT or 

DSG
AA

). In these experiments, the myc-tagged constructs served as bait for 

βTrCP-binding, whereas the FLAG-tagged constructs, competent to dimerize but 

incompetent to bind βTrCP, provided kinase activity. The ability of the 

immunoprecipitated complexes to bind to βTrCP was then analyzed via an in vitro binding 

assay. Co-expression of FLAG-Plk4-KD-DSG
AA

 with myc-Plk4-KD failed to restore 

βTrCP binding, as expected, considering the absence of trans-autophosphorylation. In 

stark contrast, co-expression of FLAG-Plk4-WT-DSG
AA

 with myc-Plk4-KD fully restored 

the binding of myc-Plk4-KD to βTrCP (Figure 26). This demonstrates that 

autophosphorylation in trans is required to confer βTrCP-binding properties to Plk4.  

 

Figure 25. Myc-Plk4
609-970

 causes centriole overduplication. U2OS cells were transfected with 

myc-Plk4
1-608 

or myc-Plk4
609-970

 for 48 hours. Cells were stained for the myc-epitope (green), CP110 (red) 

and Cep135 (blue). Scale bar: 1 µm. 
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4.3.4.4 Plk4 Autophosphorylation is Not Sufficient for βTrCP Binding 

In agreement with the result that βTrCP binding requires Plk4 trans-autophosphorylation, 

two modes of regulation of Plk4-βTrCP interaction are conceivable (see also 5.4): either 

Plk4 trans-autophosphorylation is sufficient for βTrCP binding as it directly 

phosphorylates the DSG motif or Plk4 trans-autophosphorylation is required but not 

sufficient to promote βTrCP binding. In order to verify one of these two models, we next 

investigated whether Plk4 trans-autophosphorylation is also sufficient to trigger its 

βTrCP-mediated degradation. We thus devised an in vitro binding assay to investigate 

whether the autophosphorylation events conferred by Plk4 are sufficient to mediate βTrCP 

binding. Herein, bacterially expressed, purified MBP-tagged Plk4, which possessed 

autophosphorylation activity in vitro (Figure 27A), served as bait to precipitate in vitro 

translated, [
35

S]-methionine labeled βTrCP. Yet, MBP-Plk4 did not bind βTrCP when 

incubated in binding buffer in vitro (Figure 27B), arguing that Plk4 autophosphorylation is 

not sufficient for βTrCP binding. This is enforced by the fact that the same binding assay 

performed after pre-incubation of MBP-Plk4 with cell extract allowed for βTrCP binding 

of kinase active Plk4 (Figure 27B). This indicated that additional factors and/or 

 

Figure 26. Plk4 autophosphorylation in trans restores βTrCP-binding capability to kinase-dead Plk4. 

HEK 293T cells were transfected with the indicated plasmids. Anti-myc immunoprecipitates were incubated 

with in vitro translated, [
35

S]-methionine labeled βTrCP in an in vitro binding assay. The co-

immunoprecipitated proteins were analyzed by immunoblotting and autoradiography. 
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phosphorylation events catalyzed by other protein kinases are responsible for catalyzing 

βTrCP binding. 

 

To confirm and extend the above observation that phosphorylation events other 

than Plk4 autophosphorylation are necessary for the Plk4-βTrCP interaction, we 

performed the binding assay as described above, but with Plk4 immunoprecipitated from 

HEK 293T cells as bait for βTrCP. As expected, wild-type Plk4 efficiently bound βTrCP 

while kinase-dead Plk4 and Plk4 dephosphorylated by λ-phosphatase (λPPase) treatment 

failed to do so (Figure 28). However, Plk4 that was rephosphorylated in an in vitro kinase 

assay after it had been dephosphorylated by λPPase treatment did not regain βTrCP 

binding. Together, this enforces the idea that Plk4 autophosphorylation is required, but not 

sufficient for βTrCP binding. 

 

Figure 27. Recombinant wild-type Plk4 binds βTrCP after incubation with cell extract. (A) Purified, 

recombinant full-length wild-type and kinase-dead Plk4 were incubated in an in vitro kinase assay in the 

presence of γ-[
32

P]-ATP. The kinase assay was analyzed by Coomassie staining (upper panel) and 

autoradiography (lower panel). (B) MBP-Plk4-WT or MBP-Plk4-KD were incubated with in vitro 

translated, [
35

S]-methionine labeled βTrCP in an in vitro binding assay after incubation with or without 

extract from asynchronous HEK 293T cells. The precipitated proteins were analyzed by immunoblotting and 

autoradiography. 
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4.3.5 Does p38 Control the Interaction of Plk4 and βTrCP in vitro? 

The above data revealed that Plk4 autophosphorylation is required, but not sufficient for 

βTrCP binding. This sparked the idea that Plk4 trans-autophosphorylation serves to create 

a docking site for a different, second kinase which in turn phosphorylates Plk4 on the 

phosphodegron in order to permit βTrCP binding. As a matter of fact, the degradation of 

several βTrCP targets, e.g. β-catenin (Liu et al., 2002), Wee1 (Watanabe et al., 2004) and 

Erp1 (Liu and Maller 2005; Rauh et al., 2005; Hansen et al., 2006) involves the 

recruitment of phosphodegron-directed kinases through phosphorylation-dependent 

docking sites. 

4.3.5.1 Inhibition of p38 Disrupts the Interaction of Plk4 and βTrCP 

To search for kinases that regulate βTrCP binding we screened a panel of protein kinase 

inhibitors for their ability to disrupt the Plk4-βTrCP interaction. To this end, 

overexpressed Plk4 was immunoprecipitated from HEK 293T cells which had previously 

been treated with different protein kinase inhibitors or DMSO as control for 2 hours 

before it was incubated with [
35

S]-methionine labeled βTrCP in an in vitro binding assay. 

 

Figure 28. Rephosphorylated Plk4 does not bind βTrCP. Myc vector, myc-Plk4-WT or myc-Plk4-KD 

was overexpressed for 24 hours in HEK 293T cells and immunoprecipitated with anti-myc antibodies. The 

indicated immunoprecipitates were dephosphorylated with λ-phosphatase (λPPase) and rephosphorylated in 

an in vitro kinase assay before they were incubated with [
35

S]-methionine labeled, in vitro translated FLAG-

βTrCP in an in vitro binding assay. λPPase was inactivated by extensive washing of beads and phosphatase 

inhibitors. The assay was analyzed by immunoblotting (upper panel) and autoradiography (lower panel). 
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Interestingly, of the nine kinase inhibitors used only SB202190, an inhibitor of MAP 

kinase p38, significantly reduced βTrCP binding to Plk4 (Figure 29) 

 

 

Utilizing different concentrations of the p38 inhibitor, SB202190, as described 

above, we observed maximum inhibition at 20 µM (Figure 30, left panel). A second, 

independent p38 inhibitor, SB203580, showed a similar disruption of the Plk4-βTrCP 

interaction at 10 µM (Figure 30, right panel). Consequently, the disruption of the Plk4-

βTrCP interaction by two independent p38 kinase inhibitors indicates that p38 kinase 

activity seems to be required for interaction of Plk4 and βTrCP. 

 

 

Figure 29. SB202190 inhibits binding of Plk4 and βTrCP. HEK 293T cells were transfected for 24 hours 

with myc-Plk4-WT or myc-Plk4-KD and treated for 2 hours with the indicated protein kinase inhibitors or 

DMSO as control before immunoprecipitations with myc-antibodies were performed. The 

immunoprecipitates were incubated with [
35

S]-methionine labeled, in vitro translated HA-βTrCP in an in 

vitro binding assay. The bound proteins were analyzed by immunoblotting (upper panel) and 

autoradiography (lower panel). 
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4.3.5.2 p38 Inhibitors Do Not Perturb Plk4 Autophosphorylation 

It was conceivable that the p38 inhibitors abrogated Plk4 kinase activity and thereby 

affected βTrCP binding. To exclude this possibility we performed an in vitro kinase assay 

in the presence of SB202190 and SB203580 to analyze its effect on Plk4 

autophosphorylation. This revealed that neither SB202190 nor SB203580 inhibited 

autophosphorylation activity of overexpressed Plk4 immunoprecipitated from HEK 293T 

cells (Figure 31A) or recombinant Plk4 purified from E. coli (Figure 31B). The disruption 

of βTrCP binding to Plk4 by either inhibitor is thus not an effect of reduced Plk4 kinase 

activity. 

 

Figure 30. Small molecule inhibition of p38 disrupts interaction of Plk4 and βTrCP. HEK 293T cells 

were transfected with wild-type or kinase-dead Plk4 for 24 h before being treated with increasing 

concentrations of two different p38 inhibitors (SB202190, right panel; SB203580, left panel) or DMSO for 2 

hours. Anti-myc immunoprecipitations were performed and the immunoprecipitated Plk4 was incubated 

with in vitro translated, [
35

S]-methionine labeled βTrCP in an in vitro binding assay. Analysis of bound 

proteins was carried out by immunoblotting (upper panel) and autoradiography (lower panel). 
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4.3.5.3 Absence of p38 Activity Does Not Lead to Centriole Overduplication in vivo 

The above experiments revealed that two independent p38 inhibitors disrupted the Plk4-

βTrCP interaction without influencing Plk4 autophosphorylation activity. This prompted 

the question whether p38 kinase activity is also required for the interaction of Plk4 and 

βTrCP in vivo. In line with the observation that loss of βTrCP leads to increased Plk4 

protein levels and centriole overduplication, reduced p38 activity should have the same 

phenotypic manifestation if it regulates Plk4-βTrCP binding. We therefore analyzed 

centriole numbers after inhibition of p38 for 48 hours with the described small molecule 

inhibitors SB202190 and SB203580 in asynchronous U2OS cells. Cells treated with 20 

µM SB202190 or 10 µM SB203580 showed no difference to DMSO-treated control cells; 

neither in Plk4 localization to the centrioles nor centriole numbers. At the same time 

nuclear morphology and cell cycle progression, as measured by DAPI staining, was also 

 

Figure 31. SB202190 and SB203580 do not inhibit Plk4 autophosphorylation. (A) HEK 293T cells were 

transfected for 24 hours with myc-Plk4-WT and treated with SB202190 (1 µM, 5 µM, 20 µM), SB203580 (1 µM, 5 

µM, 20 µM) or DMSO as control. The overexpressed proteins were immunoprecipitated with anti-myc antibodies 

and subjected to in vitro kinase assays in the presence of γ-[
32

P] ATP and the respective p38 inhibitor. (B) 

Recombinant MBP-Plk4-WT purified from E. coli was subjected to an in vitro kinase assay in the presence of 

DMSO, 20 µM SB202190 or 10 µM SB203580 and γ-[
32

P] ATP. 
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normal (data not shown). This clearly argues against a role of p38 in regulating Plk4 

protein levels in vivo.  

p38 exists in four isoforms (α, β, γ, δ) of which p38α and p38β have been 

described to be present in HEK 293T and HeLa cells (Jiang and Struhl 1998). Both of 

these are inhibited by the p38 inhibitors SB202190 and SB203580 (Karaman et al., 2008) 

 

Figure 32. Small molecule inhibition of p38 does not perturb centriole duplication. (A) U2OS cells were 

treated for 48h with DMSO, 20 µM SB202190 or 10 µM SB203580. Cells were stained for Plk4 (green), CP110 

(red) and Cep135 (blue). Scale bar: 1 µm. (B) Percentage of cells treated as described in (A) and grouped by the 

number of centrioles counted via CP110 staining. Data of three independent experiments (n = 100) are shown. 

Error bars denote s.e.m. 

 



RESULTS 

50 

 

and p38α has been described to be at the centrosome in its active phosphorylated form 

(Cha et al., 2007; Lee et al., 2010). We hence chose to deplete p38α in asynchronously 

growing U2OS cells for 72 hours by transfection of siRNA oligonucleotides in order to 

corroborate the above finding that small molecule inhibition of p38 does not influence 

centriole numbers. As positive control for disturbed Plk4 degradation and subsequent 

centriole overduplication we utilized βTrCP depletion. As reported above, βTrCP 

depletion leads to a significant increase in Plk4 protein levels at the centrioles and the 

number of cells with more than 4 centrioles compared to control-depleted cells (siGL2; 

Figure 33A,C). p38α depletion which was monitored by immunoblotting (Figure 33B), on 

the other hand, did not alter centriolar Plk4 protein levels or centriole numbers (Figure 

33A,C). 

 In summary, neither small molecule inhibition of p38α and p38β nor siRNA-

mediated depletion of p38α yielded any visible effect on Plk4 protein levels or centriole 

number in asynchronously growing U2OS cells. Consequently, the effect of small 

molecule p38 inhibition on the Plk4-βTrCP interaction observed in vitro could not be 

reproduced in vivo. We hence conclude that p38 most likely does not regulate Plk4 protein 

levels in dividing cells. 
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Figure 33. siRNA-mediated depletion of p38α does not perturb centriole duplication. (A) U2OS cells were 

transfected for 72 hours with siRNA oligonucleotides targeting GL2, βTrCP or two independent oligonucleotides 

targeting p38α before cells were stained against Plk4 (green), CP110 (red) and Cep135 (blue). Scale bar: 1 µm. 

(B) U2OS cells were transfected with siRNA oligonucleotides as described in (A) but processed for 

immunoblotting. (C) Percentage of cells treated as described in (A) and grouped by the number of centrioles 

counted via CP110 staining. Data of three independent experiments (n = 100) are shown. Error bars denote s.e.m. 
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5 DISCUSSION 

The regulation of the centrosome duplication cycle has gained increasing scientific 

attention in recent years due to accumulating evidence that aberrations in centrosome 

numbers are causally linked to cancer development (reviewed in Nigg 2002; Godinho et 

al., 2009). The concerted efforts to unravel the molecular architecture of the regulatory 

mechanisms controlling centriole duplication have led to the discovery of many key 

proteins involved in this process. The breakthrough came with the discovery that the 

kinase activity of Plk4 is pivotal to copy number control (Habedanck et al., 2005). Since 

then tremendous efforts have been undertaken to understand how Plk4 fulfills this 

function. Nevertheless, the fundamental mechanisms of how precise regulation of Plk4 

kinase activity is achieved to ensure faithful centriole duplication has not been unraveled. 

 Here, we have gained insight into Plk4’s role in controlling centriole duplication. 

We demonstrate that Plk4 is subject to βTrCP-dependent proteasomal degradation. Active 

Plk4 promotes its own degradation by catalyzing βTrCP binding through trans-

autophosphorylation within homodimers. While trans-autophosphorylation is required, it 

is not sufficient for this process. Unexpectedly, we found that excess kinase-dead Plk4 

leads to centriole overduplication, provided that endogenous wild-type Plk4 is present. 

Our data indicate that this phenotype results from disruption of Plk4 trans-

autophosporylation by kinase-dead Plk4, which then shields endogenous Plk4 from 

recognition by βTrCP. 

5.1 Plk4 Kinase Activity is Essential for Centriole Duplication 

The initial description of Plk4 as the key regulator of copy number control revealed that 

Plk4 kinase activity is essential for centriole duplication (Habedanck et al., 2005). 

Puzzlingly, the introduction of excess kinase-dead Plk4 also lead to significant centriole 

overduplication, similar to excess active Plk4, and these findings have subsequently been 

confirmed by others (Holland et al., 2010). In line with the idea that supernumerary 

centriole numbers might arise via cell division failures and due to the fact that kinase-dead 

induced centriole overduplication was suppressed in S phase-arrested cells, it was 

suggested that kinase-dead Plk4 might cause occasional cell division failures which result 

in the doubling of centriole numbers. This was further corroborated by the finding that 
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reduced Plk4 protein levels in heterozygous Plk4
+/-

 mice also exhibited centrosome 

amplification (Ko et al., 2005). However, centriole duplication is also efficiently triggered 

by stable overexpression of kinase-dead Plk4 even in S phase-arrested cells. Furthermore, 

centriole duplication induced by excess kinase-dead Plk4 is indistinguishable from wild-

type Plk4-induced centriole overduplication. In both cases procentrioles appear in a 

rosette-like arrangement around the pre-existing centriole which has been demonstrated to 

be the result of a violation of centriole copy number control due to increased Plk4 kinase 

activity (Kleylein-Sohn et al., 2007). This clearly refutes the notion that kinase-dead Plk4-

induced centriole overduplication stems from cell division failures. Moreover, the analysis 

of centriole numbers with the novel centriolar marker CP110 revealed that transient 

overexpression of kinase-dead Plk4 also leads to centriole overduplication which is 

identical to canonical Plk4-induced centriole overduplication. CP110 decorates the distal 

end of centrioles, thereby allowing the detection of growing procentrioles at very early 

stages of centriole duplication. In absence of such a marker, previous studies were most 

likely unable to detect centriole duplication at such an early stage of centriole duplication. 

 Interestingly, kinase-dead Plk4 is not sufficient to drive centriole duplication as it 

relies on the presence of endogenous Plk4. This reaffirms that centriole duplication, as 

well as centriole overduplication, strictly requires kinase active Plk4 to catalyze the 

recruitment of the centriole duplication proteins for procentriole formation. Yet, it does 

not rationalize how kinase-dead Plk4 triggers centriole duplication in the presence of 

endogenous Plk4. One possible explanation is that excess kinase-dead Plk4 recruits a 

surplus of centriole duplication proteins independently of its kinase activity which would 

subsequently be phosphorylated by active Plk4 to trigger formation of supernumerary 

procentrioles. The enlargement of the PCM similarly triggers centriole overduplication 

even though this occurs via the de novo pathway (Loncarek et al., 2008). Alternatively, 

conforming to the Slimb-dependent degradation of Plk4 in Drosophila, kinase-dead Plk4 

could protect endogenous Plk4 from degradation and lead to an increase in the protein 

levels of endogenous Plk4. Mechanistically speaking, kinase-dead Plk4 could scavenge 

protein(s) required for the degradation of Plk4, for instance βTrCP, and endogenous Plk4 

would then be stabilized beyond the threshold of centriole overduplication. Yet, this is 

refuted by the fact that kinase-dead Plk4 is unable to bind βTrCP (please refer to 4.3.3.3 

and see also 5.3). The evidence gathered here points to a third possibility involving trans-

autophosphorylation within heterodimers of endogenous and kinase-dead Plk4, also in the 
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context of βTrCP-mediated degradation of Plk4 which will be discussed later (please refer 

to section 5.3). 

5.2 βTrCP Controls Centriole Numbers through Degradation of Plk4 

The correlation of Plk4 protein levels with centriole numbers has fostered the concept that 

Plk4 activity is tightly regulated at the centrosome to ensure centriole copy number 

control. The small window of Plk4 activity within which faithful centriole duplication 

occurs may be achieved via a variety of mechanisms. A general scheme in the regulation 

of protein kinases is the interplay of phosphorylation and dephosphorylation by upstream 

kinases and phosphatases to control kinase activity (reviewed in Hunter 2007). In addition, 

the protein levels of the kinase may be directly regulated by its proteolysis via the 

ubiquitin-proteasome system. 

  Several lines of evidence implicate ubiquitination-mediated proteolysis in 

centriole copy number control. First and foremost, proteasome function is obligatory for 

faithful centriole duplication (Duensing et al., 2007). Second, components of the E3 

ubiquitin ligase complex SCF (Skp1-Cul1-F-box) have been shown to localize to the 

centrosome (Freed et al., 1999) and to be required for constant centrosome numbers 

(Nakayama et al., 2000; Wojcik et al., 2000; Guardavaccaro et al., 2003; Murphy 2003). 

In this line, the founding member of the F-box family, cyclin F, has recently been 

implicated in regulating centriole biogenesis as it was shown to catalyze degradation of 

CP110 (D'Angiolella et al., 2010). Third, while this work was in progress, the protein 

levels of Drosophila Plk4 were shown to be directly regulated by the F-box protein Slimb 

(Cunha-Ferreira et al., 2009; Rogers et al., 2009). Yet, whether this mechanism is 

conserved from Drosophila to man was unclear, especially because fundamental 

differences in the regulation of Drosophila and human Plk4 have been demonstrated but 

not explained (Carvalho-Santos et al., 2010). 

 In this study we could show that Plk4 protein levels are indeed regulated by 

βTrCP, the human homologue of Slimb. Correspondingly, inhibition of the proteasomal 

degradation of Plk4 either by general proteasome inhibition or βTrCP depletion leads to 

increased centrosomal Plk4 protein levels and supernumerary centrioles in the rosette-like 

arrangement of procentrioles around the pre-existing centriole, the phenotypic 
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manifestation of excess Plk4 (Habedanck et al., 2005; Kleylein-Sohn et al., 2007). A 

direct link between βTrCP and Plk4 protein levels could be affirmed by the fact that 

centriole overduplication upon βTrCP depletion depends on the presence of Plk4. 

Moreover, βTrCP and Plk4 interact directly via the conserved DSG motif of Plk4. 

Altogether this shows that the control of Plk4 protein levels by βTrCP is conserved from 

Drosophila to man. Additionally, the fact that ZYG-1, the functional analogue of Plk4 in 

C. elegans, also contains a DSG motif suggests that lin-23, the C. elegans homologue of 

βTrCP (Kipreos et al., 2000), may regulate ZYG-1 protein levels and puts forth the 

intriguing idea that the mode of control over the protein levels of ZYG-1 and Plk4 is 

identical even though ZYG-1 and Plk4 most likely arose through convergent evolution 

(Carvalho-Santos et al., 2010).  

 The importance of efficient βTrCP-mediated degradation is emphasized by the fact 

that βTrCP is deregulated in many cancers and βTrCP has hence been attributed oncogenic 

as well as tumor suppressor properties (reviewed in Frescas and Pagano 2008). A possible 

role for βTrCP in tumorigenesis is furthermore suggested by the fact that it is required for 

the timely degradation of many cell cycle regulators, e.g. Cdc25 (Busino et al., 2003; 

Kanemori et al., 2005) or Emi1 (Margottin-Goguet et al., 2003; Peters 2003). Now, we 

and others (Cunha-Ferreira et al., 2009; Rogers et al., 2009; Holland et al., 2010) 

contribute to this concept by demonstrating that deregulated βTrCP levels result in 

supernumerary centrosomes which may result in chromosomal instability (Ganem et al., 

2009), a hallmark of many tumors (Lengauer et al., 1997; D'Assoro et al., 2002; Nigg 

2002; Sluder and Nordberg 2004). 

5.3 Plk4 trans-Autophosphorylation Regulates its βTrCP-mediated 

Degradation 

The revelation that human Plk4 is degraded by βTrCP uncovered how Plk4 protein levels 

are controlled to ensure faithful centriole duplication. Insight into how this process is 

controlled then came from the realization that Plk4 autophosphorylation is required for 

interaction with βTrCP and its subsequent ubiquitination and degradation. Similar results 

were also reported by others (Holland et al., 2010) and are in good agreement with the 

idea that the activated conformation of a protein kinase is a prerequisite for initiating its 
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degradation (Kang et al., 2000). However, Holland et al. reported that Plk4 with a non-

phosphorylatable DSG motif (Plk4-WT-DSG
AA (S285A/T289A)

) is stabilized to a lesser extent 

than kinase-dead Plk4. The authors rationalize this finding with their observations that a 

24 amino acid region around the DSG motif is involved in βTrCP binding and that 

mutation of all 13 phosphoacceptor residues to alanine within this region stabilized Plk4 to 

a greater degree than the Plk4-WT-DSG
AA

 mutation (Holland et al., 2010). Yet, the 

authors do not present a plausible rationalization for this effect. In this context, it is 

noteworthy that a Plk4 mutant carrying aspartic acids instead of the phosphorylatable 

residues in the DSG motif (Plk4-WT-DSG
DD

 
(S285D/T289D)

) does not interact with βTrCP. 

Possibly other phosphorylation events necessary for βTrCP recognition are prevented by 

this mutation. Alternatively, simple addition of negative charges to the DSG motif may 

not suffice to mimic the presence of phosphate-groups to allow βTrCP binding. 

 The requirement for Plk4 autophosphorylation in βTrCP binding refuted the 

previous working model that centriole overduplication upon overexpression of kinase-

dead Plk4 may arise from direct sequestration of βTrCP by kinase-dead Plk4 and 

subsequent increase in Plk4 protein levels. More extensive investigation of the interplay 

between Plk4 autophosphorylation and its βTrCP-mediated degradation revealed that Plk4 

kinase activity alone is not sufficient to cause centriole overduplication; it also has to 

retain centrosome localization and dimerization, confirming earlier results (Habedanck et 

al., 2005). Apart from that, Plk4 fragments which localize to the centrosome and only 

contain the so-called cryptic polo box and are therefore kinase inactive, induce centriole 

overduplication with the rosette-like arrangement of procentrioles around the pre-existing 

centriole. Accordingly, the cryptic polo box of Plk4 should be involved in triggering 

centriole overduplication upon overexpression of kinase-dead Plk4. The cryptic polo box 

contains a coiled-coil domain which is required for both Plk4 dimerization and its 

centriolar localization (Leung et al., 2002; Habedanck et al., 2005). This fostered the idea 

that excess kinase-dead Plk4 is able to cause centriole overduplication, provided that its 

ability to dimerize with endogenous Plk4 is preserved. Further support for this came from 

the observation that the ability of kinase-dead Plk4 to bind βTrCP could be restored by 

trans-autophosphorylation, while lack of trans-autophosphorylation prevented this. A 

mechanism for activation-dependent protein degradation of a Ser/Thr protein kinase was 

first demonstrated for PKCη in which kinase activity acts as part of a regulatory feedback 

mechanism (Lu et al., 1998). Comparable to Plk4, constitutively active PKCη can trigger 
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the degradation of a degradation-resistant, kinase-inactive PKCη polypeptide via trans-

autophosphorylation. 

The above demonstrated that autophosphorylation in trans is required to confer 

βTrCP-binding properties to Plk4 and led to a model explaining how excess kinase-dead 

Plk4 stabilizes endogenous Plk4 and thereby leads to centriole overduplication (Figure 

34): Excess kinase-dead Plk4 (hetero-)dimerizes with endogenous Plk4 and thereby 

outcompetes endogenous Plk4. Kinase-dead Plk4 is consequently phosphorylated in trans 

by endogenous Plk4, but not vice versa: this catalyzes βTrCP-mediated ubiquitination and 

degradation of kinase-dead Plk4. At the same time the endogenous Plk4 polypeptide is left 

unscathed and ready to undergo another cycle of dimerization, trans-autophosphorylation 

and degradation of kinase-dead Plk4. This eventually increases endogenous Plk4 protein 

levels above the threshold of centriole overduplication and overrides centriole copy 

number control. In excellent agreement with this conclusion, wild-type Plk4 was shown to 

promote destruction of kinase-dead Plk4 through intermolecular phosphorylation (Holland 

et al., 2010). 

 

  

 

Figure 34. Model of how kinase-dead Plk4 stabilizes endogenous Plk4. Within heterodimers of active and kinase-

dead Plk4, active Plk4 trans-autophosphorylates kinase-dead Plk4 and leads to its βTrCP-mediated degradation either 

through direct phosphorylation of the DSG motif or through recruitment of an additional kinase which then 

phosphorylates the DSG motif (for the sake of simplicity the latter possibility has been left out in this schematic). This 

leaves the active Plk4 molecule unscathed and free to dimerize; most likely with one of the excess kinase-dead Plk4 

polypeptide. Hence, active Plk4 is protected from degradation and its levels will increase beyond the threshold of 

centriole overduplication. 
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5.4 Plk4 Kinase Activity is Not Sufficient for its βTrCP-mediated 

Degradation 

According to the results discussed above, Plk4 seems to follow the general principles that 

apply to the recognition of activated protein kinases for ubiquitination and degradation by 

βTrCP (reviewed in Hunter 2007; Lu and Hunter 2009). Trans-autophosphorylation of a 

protein kinase may directly activate the DSG motif to create binding sites for E3 ligases. 

In some instances, both phosphates are added to the DSG motif by the same kinase, as has 

been shown for IκBα phosphorylation by IKK (Winston et al., 1999). Alternatively, the 

generation of the phosphodegron requires the cooperative action of two kinases. One 

possibility is that the two phosphates within the DSG motif are added by two different 

kinases; one kinase acts as a priming kinase to recruit a second kinase, as is the case for β-

catenin (Liu et al., 2002). Alternatively, a priming phosphorylation creates a docking site 

which is distinct from the DSG motif to recruit a second kinase that phosphorylates the 

DSG motif. For instance CDK1 phosphorylation of Wee1 recruits Plk1 via its polo box 

which then creates the SCF phosphodegron (Watanabe et al., 2004).  

 

Figure 35. Two schematic models of how Plk4 trans-autophosphorylation may regulate βTrCP binding. 

According to model I, Plk4 autophosphorylation directly phosphorylates the DSG motif in trans and this is sufficient 

for βTrCP binding. Alternatively (model II), Plk4 autophosphorylation in trans creates a docking site for an unknown 

kinase X. In both cases, phosphorylation of the DSG motif is proposed to initiate the degradation of Plk4. 
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The requirement for Plk4 trans-autophosphorylation in βTrCP binding did not 

reveal whether trans-autophosphorylation is not just required, but also sufficient for Plk4-

βTrCP binding. This raises the question which mode of action Plk4 follows. Is Plk4 trans-

autophosphorylation sufficient to create the βTrCP phosphodegron or is a second kinase 

required for this process? A priori, it is possible that Plk4 trans-autophosphorylation 

directly activates the phosphodegron for βTrCP binding (Figure 35, model I). 

Alternatively, Plk4 might trans-autophosphorylate on sites distinct from the 

phosphodegron that then serve to recruit a different kinase X, which in turn 

phosphorylates Plk4 on the phosphodegron or in close proximity to this motif (Figure 35, 

model II). In support of the latter possibility, the degradation of several βTrCP targets, e.g. 

β-catenin (Liu et al., 2002), Wee1 (Watanabe et al., 2004) and Erp1 (Liu and Maller 2005; 

Rauh et al., 2005; Hansen et al., 2006), involves the recruitment of phosphodegron-

directed kinases through phosphorylation-dependent docking sites. 

Further support for the involvement of an additional kinase in the regulation of the 

Plk4-βTrCP interaction stems from the fact that Plk4 trans-autophosphorylation did not 

confer βTrCP-binding capability to Plk4 in vitro; for wild-type Plk4 purified from 

eukaryotic or prokaryotic cells. In contrast, recombinant, wild-type Plk4 acquired βTrCP-

binding capacity through incubation with cell extracts. Even though the latter result does 

not prove the involvement of an additional kinase, together with the other points of 

evidence, it strongly suggests that an additional kinase is required for βTrCP binding as 

proposed in the two-step model (Figure 35, model II). The mode of recruitment of the 

second kinase, however, remains unclear. A priori, concordant with the observations for 

other phosphodegrons, Plk4 autophosphorylation could directly create a docking site for 

another kinase. Alternatively, Plk4 autophosphorylation could also cause a conformational 

change which allows phosphorylation of the DSG motif by another kinase without the 

necessity of a docking site for the second kinase.  

 Initial insight into which kinase may cooperate with Plk4 trans-

autophosphorylation to promote βTrCP binding resulted from a screen with various kinase 

inhibitors for their potency to inhibit the Plk4-βTrCP interaction. Surprisingly, out of all 

kinase inhibitors tested, only inhibition of the MAP kinase p38 reliably perturbed βTrCP 

binding. The two small molecules used (SB202190, SB203580) have been demonstrated 

to be potent and specific p38 inhibitors (Davies et al., 2000; Bain et al., 2007; Karaman et 
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al., 2008). Even though p38α has been described at the centrosome in its phosphorylated 

active state (Cha et al., 2007; Lee et al., 2010), small molecule inhibition of p38 or 

siRNA-mediated depletion of p38α did not have obvious effects on centriole numbers in 

dividing cells. This suggests that p38 may not be involved in regulating Plk4-βTrCP 

binding in vivo. Moreover, p38 is activated in response to stress conditions and 

proinflammatory cytokines (reviewed in Schaeffer and Weber 1999) and would therefore 

not be expected to be involved in the regulation of canonical cellular events. Additionally, 

it is expected that the kinase regulating Plk4 degradation should be cell cycle regulated in 

order to coordinate Plk4 protein levels with the centriole duplication cycle. We therefore 

emphasize that even though other kinase inhibitors targeting e.g. Plk1, GSK3-β or CDKs 

did not yield any effect, this does not preclude a role of these kinases in regulating Plk4 

degradation, as experiments in vivo may yield different results. Especially Plk1 is a 

promising candidate for regulating Plk4 protein levels as many βTrCP substrates require 

Plk1 phosphorylation for efficient βTrCP binding and subsequent degradation, e.g. Wee1 

(Watanabe et al., 2004) and Erp1 (Liu and Maller 2005; Rauh et al., 2005; Hansen et al., 

2006). Hence, future investigation will have to show whether in vivo experiments validate 

the results obtained after chemical inhibition of Plk1. In this context, it is important to note 

that inhibition of the above-mentioned kinases leads to cell cycle defects which would 

hinder the analysis of centriole overduplication. To circumvent this in the future, steps 

preceding the phenotypic manifestation of reduced Plk4 degradation, i.e. centriole 

overduplication, should be assessed. 

 In principle, mechanisms could also exist to counteract Plk4 degradation in order 

to locally and/or temporally increase Plk4 activity to trigger centriole duplication. A 

priori, Plk4, as any other βTrCP substrate, may be protected from degradation by spatially 

segregating it from βTrCP, e.g. sequestering of βTrCP or obstruction of the βTrCP binding 

site. Second, Plk4 may be actively protected from degradation by a phosphatase which 

removes phosphates critical for βTrCP recognition, e.g. at the DSG motif, or for docking 

of the second kinase X, implicated in regulating βTrCP binding. And third, the activity of 

the second kinase X towards Plk4 may be regulated in a spatio-temporal manner. The 

presence of a mechanism protecting a pool of Plk4 from degradation is justified by the fact 

that overexpressed Plk4 is only partly degraded in cycloheximide assays. Hence, it is 

important to devise methods to study endogenous Plk4 protein levels in order to 

understand whether endogenous Plk4 follows the same degradation kinetics as 



DISCUSSION 

61 

 

overexpressed Plk4. This would also give further insight into the mechanisms regulating 

Plk4 degradation. 

In conclusion, our data provides important mechanistic insight into the regulation 

of Plk4 protein levels. We provide a rational for the induction of centriole overduplication 

by excess kinase-dead Plk4 through trans-autophosphorylation by endogenous active 

Plk4. Furthermore, we suggest that Plk4 trans-autophosphorylation, albeit required, is not 

sufficient for its βTrCP-mediated degradation. This also raises interesting new questions. 

Future research should aim at exploring the timing of Plk4 degradation during the cell 

cycle and the identity of the kinase that is proposed here to contribute to control Plk4 

stability. 
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6 MATERIALS AND METHODS 

Plasmids and Cloning 

Cloning of Plk4 and βTrCP1 cDNA has been described previously (Habedanck et al., 

2005; Chan et al., 2008).  

All cloning procedures were performed according to standard techniques as described in 

“Molecular Cloning: A Laboratory Manual” (Sambrook, 1989; 2
nd

 edition) and “Current 

Protocols in Molecular Biology” (Wiley, 1999). Restriction enzymes were purchased from 

Fermentas (Burlington, Ontario, Canada) and ligation reactions were performed using T4 

DNA ligase (NEB, Ipswich, MA). Plasmid purifications and DNA extractions from 

agarose gels were done as specified by the supplier (QIAGEN). Sequence mutations in 

Plk4 were inserted by using the QuickChange site-directed mutagenesis kit (Stratagene) 

according to the manufacturer’s instructions using specific primers. For a complete list of 

primers used in this study see Table 4. HA-Ubiquitin was generously provided by Dr. S. 

Müller (Max Planck Institute of Biochemistry, Martinsried). All initial plasmids were 

checked by DNA sequencing at Medigenomix (Martinsried, Germany). For a list of 

plasmids used in this study see Table 1. 

Chemicals and Materials 

All chemicals were purchased from Merck, Sigma-Aldrich Chemical Company (Sigma, 

St. Louis, MO), Fluka-Biochemika (Buchs, Switzerland) or Roth (Karlsruhe, Germany) 

unless otherwise stated. Components for growth media for E. coli were from Difco 

Laboratories (Lawrence, KS) or Merck (Darmstadt, Germany). The Minigel system was 

purchased from Bio-Rad., tabletop centrifuges were from Eppendorf. 

Antibodies 

A Plk4 monoclonal antibody (IgG1) was generated against recombinant MBP-Plk4 

(AA715-970) purified from E. coli. Anti-c-myc (9E10) (Evan et al., 1985), anti-CP110 

(Schmidt et al., 2009a), anti-CAP350 (Yan et al., 2006), anti-C-Nap1 (Fry et al., 1998) 

and anti-Cep135 (Kleylein-Sohn et al., 2007) antibodies have been described previously. 

Anti-α-tubulin (Sigma-Aldrich), anti-FLAG (Sigma-Aldrich) and anti-HA (Covance) 

antibodies were commercially obtained. To simultaneously visualize different polyclonal 

rabbit antibodies, these were directly labeled by AlexaRed-555 and AlexaCy5-647 

fluorophores, using the corresponding Antibody Labeling Kits (Invitrogen). 
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A Plk4 polyclonal antibody was generated against recombinant GST-Plk4 (AA888-970) 

purified from E. coli by Charles River Laboratories (Romans, France). Antibodies were 

affinity purified using GST-tagged antigen bound to Affigel (Biorad) according to 

standard protocols after pre-clearing of the serum with Affigel-bound GST.  

For a complete list of antibodies used in this study please refer to Table 2. 

Cell Culture and Transfections 

All cells were grown at 37°C in a 5% CO2 atmosphere. HeLa, U2OS or HEK 293T cells 

were cultured in Dulbecco’s modified Eagle’s medium (DMEM), supplemented with 10% 

heat-inactivated fetal calf serum and penicillin-streptomycin (100 μg/ml, Gibco-BRL, 

Karlsruhe, Germany). Cells adherent on acid treated glass coverslips were transiently 

transfected using TransIT (Mirus Bio, Madison, WI) according to the manufacturer’s 

protocol. Transient transfections of HEK 293T cells were performed using TransIT-LT1 

transfection reagent (Mirus Bio, Madison, WI) according to the manufacturer’s protocol. 

The tetracycline-inducible U2OS myc-Plk4-WT cell line (U2OS:myc-Plk4-WT) has been 

described previously (Kleylein-Sohn et al., 2007). A tetracyclin-inducible cell-line 

expressing myc-tagged kinase-dead Plk4 (U2OS:myc-Plk4-KD) was generated by 

transfection of U2OS T-REx cells (Invitrogen). Stable transformants were established by 

selection for 2 weeks with 1 mg ml
-1

 G418 (Invitrogen) and 50 μg ml
-1

 hygromycin 

(Merck). U2OS cells were cultured as described previously (Habedanck et al., 2005) and 

myc-Plk4 expression was induced by the addition of 1 μg ml
-1

 of tetracyclin.  

siRNA-mediated Protein Depletion 

Plk4 was depleted using the previously described siRNA duplex oligonucleotides 

targeting the coding sequence (Habedanck et al., 2005) or the 3´-UTR of Plk4 (5’-

CTCCTTTCAGACATATAAG-3’). hSas-6 was depleted using the siRNA duplex 

oligonucleotides previously described (Kleylein-Sohn et al., 2007). βTrCP1 and βTrCP2 

were depleted using siRNA duplex oligonucleotides targeting both paralogues 

(Guardavaccaro et al., 2003). p38α was depleted using two siRNA duplex 

oligonucleotides (5´-AACTGCGGTTACTTAAACATA-3´; 5´-

CTCAGTGATACGTACAGCCAA-3´). Luciferase duplex GL2 was used for control 

(Elbashir et al., 2001). Transfections were performed using Oligofectamin (Invitrogen) 

according to manufacturer’s protocol. All siRNA duplex oligonucleotides were ordered 
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from Qiagen, Hilden, Germany. For a complete list of siRNA duplex oligonucleotides 

used in this study see Table 3. 

Cell Extract Preparation and Biochemical Assays 

24 hours post transfection, HEK 293T cells were collected and washed in PBS and lysed 

on ice for 30 minutes in lysis buffer (50 mM Tris-HCl pH 7.4, 0.5% IgePal, 150 mM 

NaCl, 1 mM DTT, 50 mM NaF, 1 mM PMSF, 25 mM β-glycerophosphate, 1 mM 

vanadate, Complete Mini Protease Inhibitor Cocktail (Roche Diagnostics)). Lysates were 

cleared by centrifugation for 15 minutes at 13,000 g, 4°C. 

To assay protein degradation kinetics, translation was inhibited by the addition of 25 

μg/ml cycloheximide for the indicated time. 

For immunoprecipitations, the extracts were incubated with proteinG beads (GE 

Healthcare) and 10 µg of the appropriate antibodies for 1.5 hours at 4°C. 

Immunocomplexes bound to beads were washed three times with wash buffer (lysis buffer 

with 300 mM NaCl). Bound proteins were eluted by boiling in 2x SDS sample buffer, 

resolved by SDS-PAGE and analyzed by immunoblotting. 

For in vitro binding assays, the washed immunocomplexes were suspended in lysis buffer 

and incubated for 1.5 hours at 4°C with HA-βTrCP, which had been in vitro translated 

using the TNT-T7 quick coupled transcription/translation system (Promega) with 

[
35

S]-methionine according to the manufacturer’s protocol. After washing three times with 

wash buffer, the bound proteins were eluted by boiling in 2x SDS sample buffer, resolved 

by SDS-PAGE and analyzed by immunoblotting and autoradiography. 

In vitro ubiquitination of in vitro translated, [
35

S]-methionine labeled Plk4 was carried out 

using a HeLa lysate based ubiquitin conjugation kit (Enzo Life Sciences) according to the 

manufacturer’s protocol. Conjugation was visualized by immunoblotting and 

autoradiography. 

In vitro kinase assays using immunoprecipitated Plk4 were carried out at 30°C in kinase 

buffer (50 mM HEPES pH 7.0, 100 mM NaCl, 10 mM MgCl2, 5% glycerol, 1 mM DTT). 

Reactions were stopped after 30 minutes by addition of sample buffer. Samples were then 

analyzed by immunoblotting and autoradiography. 
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Microscopic Techniques 

Cells were fixed in methanol for 5 minutes at -20°C. Antibody incubations and washings 

were performed as described previously (Meraldi et al., 1999). Stainings were analyzed 

using a Deltavision microscope on a Nikon TE200 base (Applied Precision), equipped 

with an APOPLAN x100/1.4 n.a. oil-immersion objective. Serial optical sections obtained 

0.2 μm apart along the Z axis were processed using a deconvolution algorithm and 

projected into one picture using Softworx. 

 

Name Tag Insert Vector 

pGU173 N-FLAG β-TrCP1 COM235 pcDNA3.1-N-FLAG 

pGU174 3xmyc β-TrCP1 COM210 pcDNA3.1-3xmyc 

pGU177 3xmyc 
Plk4-KD-DSG

AA
 

COM210 pcDNA3.1-3xmyc 
(D154A/S285A/289A)

 

pGU181 HA β-TrCP1 COM230 pcDNA3.1-HA 

pJW1 N-GFP Plk4-WT COM209 pEGFP-C2 

pJW2 N-GFP Plk4-KD D154A COM209 pEGFP-C2 

pJW3 3xmyc Plk4-KD D154A COM253 pcDNA3.1-3xmyc-TO 

pJW4 3xmyc Plk4-WT COM253 pcDNA3.1-3xmyc-TO 

pJW14 3xmyc Plk4-WT AA1-608 COM253 pcDNA3.1-3xmyc-TO 

pJW70 3xmyc Plk4-WT AA609-970 COM253 pcDNA3.1-3xmyc-TO 

pJW187 N-FLAG 
Plk4-WT-DSG

AA
 

COM263 pcDNA3.1-N-FLAG TO 
 (S285A/T289A)

 

pJW188 N-FLAG 
Plk4-WT-DSG

AA 
 

COM263 pcDNA3.1-N-FLAG TO 
(S285D/T289D)

 

pRH97 MBP Plk4-KD COM226 pMAL-pFN 

pRH98 MBP Plk4-WT COM226 pMAL-pFN 

pRH154 N-FLAG Plk4-WT COM263 pcDNA3.1-N-FLAG TO 

pRH155 N-FLAG Plk4-KD COM263 pcDNA3.1-N-FLAG TO 

UK207 HA Ubiquitin n/a Gift from Stefan Müller 

Table 1. Plasmids used in this study. 
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Antigen 
Made 

in 
Dilution Comment Distributor/Reference 

Cep135 rabbit 1:1000 a.p. Schmidt et al., 2007 

CP110 rabbit 1:1000 a.p. Kleylein-Sohn et al., 2007 

FLAG mouse 1:500 a.p. Sigma 

FLAG rabbit 1:1000 a.p. Santa Cruz 

HA mouse 1:1000 a.p. Abnova 

myc goat 1:200 a.p. Santa Cruz 

myc mouse 1:5 a.p. Evan et al., 1985 

myc rabbit 1:200 a.p. Santa Cruz 

p38α rabbit 1:1000 a.p. Cell Signaling 

Plk4 mouse undiluted hybridoma supernatant this work 

Plk4 rabbit 1:25 - 1:500 a.p. Kleylein-Sohn et al., 2007 

αtubulin mouse 1:1000 a.p. Sigma 

Table 2. Antibodies used in this study. 

 

Gene Target Sequence (5´3´) Reference oligo # 

hSas-6 CTAGATGATGCTACTAAGCAA Kleylein-Sohn et al., 2007 295 

Plk4 CTGGTAGTACTAGTTCACCTA Habedanck et al. 2005 302 

Plk4 3´-UTR CTCCTTTCAGACATATAAG this work 141/142 

βTrCP1/2 AAGTGGAATTTGTGGAACATC Guardavaccaro et al. 2003 488 

p38α AACTGCGGTTACTTAAACATA this work 896 

p38α CTCAGTGATACGTACAGCCAA this work 897 

Table 3. siRNA oligonucleotides duplexes used in this study 

 

Name Number Purpose sequence (5´3´) 

oGU205 M6127 cloning βTrCP CAAGGATCCAAATGGACCCGGCCGAGG 

oGU206 M6128 cloning βTrCP CAACTCGAGTTATCTGGAGATGTAGGTG 

oJW64 M6025 
Plk4 mutagenesis 

S285A / T289A 
GAAGACTCAATTGATGCTGGGCATGCCGCAATTTCTACTGC 

oJW65 M6026 
Plk4 mutagenesis 

S285A / T289A 
GCAGTAGAAATTGCGGCATGCCCAGCATCAATTGAGTCTTC 

oJW66 M6027 
Plk4 mutagenesis 

S285D / T289D 
GAAGACTCAATTGATGACGGGCATGCCGACATTTCTACTGC 

oJW67 M6028 
Plk4 mutagenesis 

S285D / T289D 
GCAGTAGAAATGTCGGCATGCCCGTCATCAATTGAGTCTTC 

Table 4. Primers used for PCR in this study. 
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7 ABBREVIATIONS 

All units are abbreviated according to the International Unit System. 

 

AA: amino acid(s) 

ATP: adenosine 5´-triphosphate 

βTrCP: β-transducin repeat containing protein 

BSA: bovine serum albumin 

Cep: centrosomal protein 

CHX: cycloheximide 

DAPI: 4´,6-diamidino-2-phenylindole 

DTT: dithiothreitol 

ECL: enhanced chemiluminescence 

EDTA: ethylenedinitrilotetraacetic acid 

EGFP: enhanced green fluorescent protein 

FCS: fetal calf serum 

GFP: green fluorescent protein 

HCl: hydrochloric acid 

HEPES: N-2-hydroxyethylpiperazine-N`-2-ethane sulfonic acid 

IgG: immunoglobulin G 

IF: immunofluorescence 

IP: immunoprecipitation 

IPTG: isopropyl-beta-D-thiogalactopyranoside 

mAb: monoclonal antibody 

MT: microtubule 

MTOC: microtubule-organizing centre 

pAb: polyclonal antibody 

PCM: pericentriolar material 

PBS: phosphate-buffered saline 

PCR: polymerase chain reaction 

Plk4: Polo-like kinase 4 

PMSF: phenylmethylsulfonyl fluoride 

RNA: ribonucleic acid 

RT: room temperature; reverse transcription 

Sak: Snk/Fnk akin kinase 

SDS-PAGE: sodium dodecylsulfate polyacrylamid gelelectrophoresis 

siRNA: small interference ribonucleic acid 

SPB: spindle pole body 

ubi: ubiquitin 

UTR: untranslated region (of mRNA) 

WB: western blot 

WT: wild-type 
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