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Summary 
Lectins are of emerging importance for quality control and intracellular transport of 

glycoproteins in mammalian cells. One of the most prominent lectins involved in intracellular 

transport is ERGIC-53, which belongs to the family of L-type lectins. ERGIC-53 mediates the 

ER export of several glycoproteins like cathepsin Z, α1-antitrypsin (α1-AT) or blood 

coagulation factors. VIP36 belongs to the same family as ERGIC-53, but its cellular function 

remains poorly understood. VIP36 is a type I membrane protein. It cycles within the early 

secretory pathway and binds high mannose glycans. In order to gain insight into the function 

of VIP36 we decided to search for a luminal interaction partner for VIP36.  

We used a YFP-protein fragmentation complementation (YFP-PCA) based FACS screen of a 

human adult liver library to unravel an interaction partner for VIP36. Complementation of 

YFP is irreversible. Therefore, the YFP-PCA is well suited to detect weak interactions, like 

those between mammalian lectins and glycoproteins. YFP2-VIP36 was used as the bait in our 

screen. The human liver library was tagged with YFP1. Our screen identified α1-AT as an 

interaction partner for VIP36. VIP36 recognized high mannose containing α1-AT, which is 

consistent with the previously obtained results about the glycan affinity of VIP36. This 

interaction was increased upon inhibition of complex glycosylation by kifunensine. The 

complex formed by α1-AT and VIP36 was localized to the Golgi and the ER. α1-AT was 

previously identified as a cargo for ERGIC-53. Knockdown of ERGIC-53 slowed down α1-

AT transport, consistent with a role for ERGIC-53 in ER export of α1-AT. In contrast, 

knockdown of VIP36 accelerated transport of endogenous α1-AT in HepG2 cells. This effect 

was specific for α1-AT, as the non-glycosylated protein albumin showed no acceleration in 

transport. In addition, VIP36 knockdown did not affect general protein secretion. This finding 

makes it unlikely that VIP36 acts as an anterograde cargo receptor for α1-AT. Further studies 

on the dynamics of the complex formed by VIP36 and α1-AT revealed that VIP36 recycles 

α1-AT back to the ER, which argues for a role of VIP36 in post-ER quality control. This 

notion is further supported by the finding that the chaperone BiP co-immunoprecipitated with 

the complex of VIP36 and α1-AT. This chaperone was previously described as an interaction 

partner for VIP36. This argues for a complex consisting of VIP36 and BiP acting together in 

post-ER quality control to detect misfolded α1-antitrypsin in the Golgi and retrieve it back to 

the ER.  

Apart from searching for an interaction partner, I also determined the effect of depletion of 

VIP36 on the morphology of the secretory pathway. The rationale behind this is the 
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observation that cargo receptors contribute to the structural integrity of organelles of the 

secretory pathway. Knockdown of VIP36 had no effect on ER exit sites or on the ERGIC. 

However, VIP36 knockdown resulted in fragmentation of the Golgi apparatus. The 

fragmented Golgi was not the consequence of disturbed bidirectional protein transport and not 

due to effects on microtubules. Knockdown of VIP36 reduced COPI staining on the Golgi. 

VIP36 is likely to provide COPI binding sites on the Golgi via its cytosolic tail and thereby 

contribute to Golgi structural integrity. Our results underscore the importance of cargo 

receptors, not only for intracellular transport within the secretory pathway, but also to 

maintain the integrity of the secretory pathway itself. 

In conclusion, my thesis provides a deeper insight into the function of VIP36 in the early 

secretory pathway. 
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Introduction 
1.1 The secretory pathway 
The journey of a secretory protein starts in the ER, where it is synthesized. It exits the ER in 

vesicles, reaches the ER-Golgi intermediate compartment (ERGIC) and continues to travel to 

the Golgi (Fig. 1). There it is further sorted to reach the plasma membrane or to enter the 

endosomal compartments. 

 

 
Figure 1: Early secretory pathway: Proteins are synthesized in the ER. They are packed into COPII 
vesicles at ER exit sites (ERES). In the ER-Golgi intermediate compartment (ERGIC) anterograde 
secretory cargo is segregated from retrograde cargo. Subsequently anterograde cargo is transported 
to the Golgi. Secretory proteins traverse the Golgi and acquire enzymatic modifications. At the trans-
Golgi network the protein is sorted into carriers that target them to their final destinations. COPI 
vesicles transport recycling cargo receptors and ER resident proteins back to the ER. 
 

1.1.1 Export from the endoplasmic reticulum 
Correct protein synthesis in the rough endoplasmic reticulum (ER) is warranted by the quality 

control machinery. By this, proper protein folding and (in the case of oligomeric proteins) 

assembly into higher-order complexes is assured. Once this is achieved, secretory proteins are 

prepared for export from the ER. Initially it has been thought that this export process is non-

selective. In this scenario, proteins carrying an ER retention motif would stay in the ER, all 

other proteins would be transported out of the ER by default. This turned out to be not true. 

There is meanwhile a plethora of evidence for an active concentrative ER export process 

(Balch et al., 1994; Ma et al., 2001; Malkus et al., 2002). In mammalian cells, ER export takes 
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place at ribosome-free regions of the rough ER, originally referred to as transitional ER 

elements (TEs) or ER exit sites (ERES) (Orci et al.,1991; Zeuschner et al.,2006). ERES are 

COPII coated and exhibit up to 350nm long membrane evaginations with omega shaped 

budding profiles (Bannykh et al.,1996). In mammalian cells, ERES are the major sites for 

COPII vesicle formation. COPII vesicles are 50nm-80nm large carriers and are responsible 

for export of most known cargo molecules out of the ER. COPII vesicle formation is initiated 

by the recruitment of the small 21kDa GTPase Sar1 to the ER membrane. This is mediated by 

the membrane bound GDP exchange factor (GEF) Sec12 (Barlowe and Schekman, 1993). 

Active Sar1 on the ER membrane inserts its NH2-terminus into the lipid bilayer, which is 

important for deformation of the ER membrane and for vesicle fission (Bielli et al., 2005). 

Active Sar1 recruits the heterodimeric complex consisting of Sec24 and Sec23. This complex 

consisting of Sar1, Sec23 and Sec24 is termed the pre-budding complex. Sec24 interacts with 

the cytosolic portions of transmembrane cargo proteins. Sec23 serves as a GTPase activating 

protein (GAP) for Sar1. Two mammalian isoforms exist (Sec23A and Sec23B) (Paccaud et 

al., 1996). Three distinct cargo binding sites have been indentified in yeast Sec24p. The A-site 

and B-site recognize two different motifs in Sed5p. The B-site also binds to the v-Snare Bet1p 

and the Golgi protein Sys1p. The C-site recognizes a motif in Sec22 (Mossesova et al., 2003). 

Sec24p has two homologs in yeast: Lst1p (Roberg et al., 1999) and Iss1 (Kurihara et al., 

2000). These homologs are mostly redundant in their function. In humans four Sec24 

isoforms were described (Sec24A-D) (Pagano et al., 1999). The first cargo binding site in a 

mammalian Sec24 isoform was found in Sec24D (Farhan et al., 2007). There, the 733DD734 

motif binds to an arginine residue in the C-terminus of the GABA transporter 1. Later, 

Mancias and Goldberg (2008) combined X-ray crystallographic and biochemical analysis and 

thereby identified further binding motifs in all Sec24 isoforms. The presence of four Sec24 

isoforms was always thought to provide a broader range for differential cargo recognition. 

Wendeler et al (2007) studied the dependence of ERGIC-53 ER export on Sec24 isoforms. 

They found that ERGIC-53 export is dependent on Sec24A and Sec24B. This interaction is 

mediated by the FF-motif on its extreme C-terminus. Interestingly, substituting the FF-motif 

by two valines changed ERGIC-53 export dependence to Sec24C and D.  

 The next step in the COPII assembly cascade is recruitment of the heterotetramer 

Sec13-Sec31. This forms the outer layer of the COPII coat. Recruitment of Sec13-Sec31 has 

been shown to stimulate the GAP-activity of Sec23p towards Sar1p by about 10fold (Antonny 

et al., 2001). Recently, it was proposed that the presence of the Sec13-Sec31 complex is 

essential for COPII vesicle fission. This was based on a finding from patients with Cranio-
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lenticulo-sutural dysplasia (CLSD). This developmental disease is caused by a point-mutation 

in Sec23A (Boyadjief et al., 2006). This mutant Sec23A fails to recruit Sec31 and thus there is 

no increase in the GAP activity of Sec23 anymore (Bi et al., 2007; Fromme et al., 2007). 

 COPII is a cytosolic complex. Thus, it can only interact with ER export motifs in the 

cytosolic portion of transmembrane proteins. Several types of ER export motifs were reported 

in the literature. Hydrophobic motifs (Fiedler et al., 1996; Kappeler et al., 1997; Dominguez 

et al., 1998), di-acidic motifs, and also di-basic motifs have been described. In addition the 

first di-acidic ER export motif was found in the cytoplasmic tail of the vesicular stomatitis 

virus G (VSVG) protein tail (Nishimura and Balch, 1997). Substitution of the two acidic 

amino acids of this DXE motif by alanines reduced ER export of VSVG in a pulse chase 

experiment. Other proteins with di-acidic export motifs are: the potassium channel protein 

Kir2.1 (Ma et al., 2001) and the Golgi proteins Sys1p (Votsmeier and Gallwitz, 2001) and 

Gap1p (Malkus et al., 2002). A di-hydrophobic/ di-aromatic export motif consisting of two 

phenylalanines was found in the extreme C-terminus of ERGIC-53 (Kappeler et al., 1997). 

This motif can be substituted by a single phenylalanine or tyrosine in position -2, two leucines 

or isoleucines at position -1 and -2 or a single valine in position -1 (Nufer et al., 2002). Other 

di-hydrophobic motifs (FF, FY) were discovered in p24 family members (Fiedler et al., 1996) 

and the Erv41-Erv46 complex (Otte and Barlowe, 2002). A dibasic motif has been described 

for a Golgi resident glycosyltransferase. This motif is quite distinct from the previous 

described ER export motifs. It is located proximal to the transmembrane domain and it 

interacts with Sar1 and not with Sec24 (Giraudo and Maccioni, 2003). 

In contrast to transmembrane proteins, soluble secretory proteins within the lumen of the ER 

have no direct access to the ER export machinery. Two models have been proposed to explain 

ER export of soluble proteins: the bulk flow model and the receptor mediated export model. 

Initially it seemed that all soluble proteins exited the ER simply by bulk flow. This was based 

on experiments were glycosylated tripeptides lacking an ER retention motif were rapidly 

secreted (Wieland et al., 1987). This model seems to hold true for the export of amylase and 

chymotrypsinogen, as no concentration into COPII coated buds could be observed. The 

concentration of these proteins seems to occur at a later step. Nevertheless it appears that at 

least for a part of secretory proteins an active sorting process is required for efficient ER 

export. Members of the p24 family enhanced transport of invertase and the GPI-anchored 

protein Gasp1 in yeast (Schimmoler et al., 1995; Muniz et al., 2000) Glycopro-α-factor, 

carboxypetidase Y and proteinase A need ERv29p for their efficient sorting into COPII 

vesicles (Belden and Barlowe, 2001; Caldwell et al., 2001). The lectin ERGIC-53 serves as a 



 8

cargo receptor for several glycoproteins including cathepsin Z, cathepsin C, blood coagulation 

factors and alpha1-antitrypsin (Appenzeller et al., 1999; Nyfeler et al., 2008). 

Beside proteins that are destined for secretion, there are also proteins that recycle between ER 

and Golgi. At some point all these proteins have to be transported back to the ER. This step is 

mediated by COPI vesicles. COPI vesicles are also implicated in the retrieval of escaped ER 

resident proteins back to the ER and are involved in intra-Golgi trafficking. 

COPI vesicle formation is initiated by the activation of the small GTPase Arf1 and the 

subsequent binding of coatomer/COPI. This is a heteromeric complex consisting of seven 

subunits (α, β, β’,γ, δ, ε, ζ) . Dilysine motifs in the cytoplasmic carboxylic tail of cargo 

proteins directly interact with coatomer (Cosson and Letourneur, 1994). These motifs are only 

functional if they are either located in position -3 and -4 (KKXX-COOH) or in position -5 and 

-3 (KXKXX-COOH) (Jackson et al., 1990). These dilysine motifs ensure the ER localization 

of type I membrane proteins by two different mechanisms: ER retention or ER retrieval 

(Andersson et al., 1999). ER retention does not depend on a functional COPI coat. Another 

type of dibasic motif, a di-arginine motif located close to the N-terminus mediates ER 

retention of type II membrane proteins (Teasdale and Jackson, 1996). This signal is found in 

multimeric membrane proteins usually forming channels or receptors. There is evidence that 

the arginine motif also mediates interaction with COPI (Michelsen et al., 2007). Diarginine 

and dilysine motifs bind to different sites in coatomere subunits. In contrast soluble recycling 

proteins cannot directly interact with COPI components. They interact via their KDEL amino 

acid sequence with the KDEL-receptor (Munro and Pelham, 1987; Lewis and Pelham, 1992) 

1.1.2 Traffic through the ER-Golgi-intermediate compartment (ERGIC) 

The ERGIC is a complex and highly dynamic compartment found only in higher eukaryotic 

cells. As its name already describes, this compartment is located at the interface of the ER-

Golgi boundary. This compartment corresponds to the place where viral membrane proteins 

were shown to accumulate upon a temperature block of 15°C (Saraste and Kuismanen, 1984; 

Balch et al., 1986; Saraste and Svensson, 1991; Schweizer et al., 1990). This compartment is 

also known as intermediate compartment or VTCs (vesicular-tubular clusters) (Balch et al., 

1994).  

The main marker of the ERGIC is a type-I transmembrane protein of 53 kDa named ERGIC-

53 (Schweizer et al., 1988). The discovery of ERGIC-53 as a marker protein for the 

intermediate compartment allowed characterization of this compartment more precisely. 

Experiments with VSVG showed that it continues its trafficking route from the ERGIC to the 
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Golgi upon temperature increase from 15°C to 32°C. In contrast ERGIC-53 localized still to 

the ERGIC (Schweizer et al., 1990). The nature of the ERGIC was for very long a matter of 

hot and controversial debate. Very early, the ERGIC was considered a distal subcompartment 

of the ER. It was described as a salvage subcompartment, where the KDEL receptor binds 

escaped ER resident proteins to retrieve them to the ER (Sitia and Meldolesi, 1992). This 

view was supported by electron microscopy that showed connections of the VTCs with the 

ER (Griffiths et al., 1994; Krijnse-Locker et al., 1994; Stinchcombe et al., 1995). Another 

group suggested that the KDEL receptor binds to its targets at the level of the Golgi. 

Therefore they proposed that the intermediate compartment corresponds to an early 

compartment of the Golgi (Mellman and Simons, 1992). 

Subcellular fractionation experiments (Schweizer et al., 1991) and further morphological 

studies at an ultrastructural level finally showed that ERGIC membranes are non-continuous 

with either the ER or the cis-Golgi and also differ in their protein composition from these two 

compartments (Klumperman et al., 1998).  

Today, the ERGIC is accepted to be distinct from the ER and the Golgi. This agreement is, 

however, only on structural aspects of the ERGIC, but not on the functional ones. There are 

two hypotheses that explain the function of the ERGIC, the transient compartment model and 

the stable compartment model. According to the transient-compartment/maturation 

hypothesis, the ERGIC represents transport intermediates on their way to the Golgi. These 

transport intermediates are formed by the homotypic fusion of COPII vesicles. This is 

supported by in vitro experiments that showed that COPII vesicles can homotypically fuse to 

generate larger carriers (Xu and Hay, 2004) and that this process is dependent on the tethering 

complex TRAPP-I (Cai et al., 2007). ERGIC clusters move along microtubules to the Golgi 

(Bannykh and Balch, 1997; Presley et al., 1997). Subsequently the ERGIC clusters either fuse 

with each other to generate the new cis-Golgi cisterna or they fuse with a pre-existing cis-

Golgi cisterna. This is supported by the observation that VSVG containing transport 

containers (TC) where shown to move towards the Golgi and fused with it (Presley et al., 

1997). A closer examination of VSVG–containing TCs revealed that they exhibit a polarized 

distribution of COPI and cargo. VSVG was preferentially localized to the side of the TC that 

faced the Golgi and COPI localized to the opposite direction (Shima et al., 1999). For 

procollagen-I, ER to Golgi transport was shown to occur inside the tubular portion of the 

VTCs (Bonfanti et al., 1998). A subsequent study suggested that procollagen-I as well as 

VSVG travel in these tubular carriers emerging from the ER to the Golgi (Mironov et al., 

2003). The main problem of the maturation model is that it is mainly based on the 
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examination of the overexpressed viral protein VSVG. VSVG is exported in a cargo wave 

from the ER, therefore the secretory pathway might accommodate to these needs and the 

physiological transport conditions may not be correctly reflected (Appenzeller-Herzog and 

Hauri, 2006). 

The maturation hypothesis is opposed by the stable compartment hypothesis. According to 

this hypothesis, the ERGIC forms an independent stable compartment. Cargo is exported from 

the ER in COPII vesicles that subsequently fuse with pre-existing ERGIC clusters. Further 

transport from the ERGIC to the Golgi is mediated via carriers that still need to be 

characterized. This is supported by live cell imaging experiments of cells expressing GFP-

ERGIC-53 and a luminal version of dsRed (ss-dsRed) (Ben-Tekaya et al., 2005). In this study 

cells were incubated at 15°C to block secretory traffic in the ERGIC. After re-warming, ss-

dsRed segregated from GFP-ERGIC-53. While ss-ds-Red moved to the Golgi, GFP-ERGIC-

53 remained in peripheral ERGIC structures. There is evidence that anterograde transport 

from the ERGIC is COPI-dependent. VSVG transport was blocked at the level of the ERGIC, 

after microinjection of an antibody against a COPI subunit (Pepperkok et al., 1993). As 

depicted already in the maturation model the VSVG containing carriers were coated with 

COPI (Scales et al., 1997; Stephens et al., 2000; Presley et al., 2002). In case of the stable 

compartment model these VSVG containing carriers would correspond to the anterograde 

carriers segregating from the ERGIC. COPI would be therefore involved in trafficking of the 

transport carriers in the anterograde direction and in the recycling of proteins back to the ER. 

How are these opposite directed processes regulated? Goldberg (2000) showed with in vitro 

experiments that different cargo proteins differentially affected the GTPase activity of the 

small GTPAse Arf1, depending on the type of COPI interaction motif. Cargo containing a di-

arginine interaction motif inhibited GTPase activity, while cargo with a dilysine interaction 

motif showed no effect. He concluded that the dilysine containing proteins excluded 

themselves from the anterograde vesicles. It is still possible that COPI only plays a role in 

retrograde transport and that the observed effects are indirect and further studies are required 

to resolve this mystery. Finally the question comes up if the ERGIC only serves as a sorting 

station or if also enzymatic processes occur. So far only UDP-glucose:glycoprotein 

glucosyltransferase and glucosidase-II, two enzymes also resident in the ER, were found to be 

enriched in the ERGIC by immunoelectron-microscopy: (Zuber et al., 2001). If ERGIC 

specific enzymes exist has to be further investigated. 
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1.1.3 Golgi apparatus 
The next compartment along the secretory pathway is the Golgi apparatus. The Golgi 

apparatus consists of stacks of cisternae. These cisternae are composed of flattened disk 

shaped membranes, which form a ribbon-like organelle in mammalian cells. The stacks form 

the so-called compact zones (Thorne-Tjomsland et al., 1998; Jackson et al., 2009). 

Tubulovesicular regions, also known as non-compact zones connect these Golgi stacks 

laterally with each other (Fig.2 ). The cisternae are organized in a polarized fashion. Each 

cisterna is defined by structural and biochemical criteria. The cis-Golgi cisterna is followed 

by the medial-Golgi and then by the trans-Golgi. The cis-Golgi is preceded by the cis-Golgi 

network and the trans-Golgi is followed by the trans-Golgi network. Both networks show 

tubulovesicular morphology.  

 
Figure 2: Golgi morphology The Golgi apparatus is formed by compact zones and non-compact 
zones. The compact zones correspond to the Golgi stacks and consist of flattened cisternae. The Golgi 
stacks are connected via non compact zones composed of tubulovesicular regions. The cisternae are 
ordered in a polarized fashion with the cis-Golgi first, followed by the medial and the trans-Golgi. The 
cis-Golgi is preceded by the cis-Golgi network and the trans- Golgi is followed by the trans-Golgi 
network.( reproduced from Rambourg and Clermont, 1990) 
 

To maintain the Golgi structure the Golgi cisternae are linked via filamentous material 

(Franke et al., 1972), which is sensitive to protease treatment (Cluett and Brown, 1992). 

Extraction of the Golgi with a detergent revealed a proteinaceous skeleton (Slusarewicz et al., 

1994) which functions as Golgi matrix. The Golgi matrix is formed by golgins and GRASPs 

(Short and Barr, 2003; Barinaga-Rementeria Ramirez and Lowe 2009). Golgins are Golgi 

localized proteins that harbour large coiled-coil domains. Golgins are either transmembrane 

proteins integrated into the Golgi membrane (giantin, golgin-84, CLASP) or they associate 

via adaptors with the Golgi (GM130, golgin 45). Golgins also interact with the small GTPases 

Rabs, ARLs or ARFs to mediate Golgi recruitment (Short et al., 2005). Knockdown or 
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overexpression of golgins often results in a loss of integrity of the Golgi. Microinjection of an 

antibody against p115 leads to fragmentation of the Golgi apparatus (Puthenveedu and 

Linstedt, 2001). Also the lack of GM130 in a temperature sensitive mutant cell line LdLG 

resulted in a fragmentation of the Golgi, but only if cells were incubated at higher temperature 

(Vasile et al., 2003). Moreover an siRNA induced knockdown of GM130 resulted in a 

fragmentation of the Golgi (Puthenveedu et al., 2006). Contradictory results were obtained 

from microinjection of an antibody against GM130 which showed no effect on Golgi integrity 

(Puthenveedu and Linstedt, 2001). Beside membrane tethering, golgins are also involved in 

tethering of arriving vesicles at the Golgi. The mechanism of vesicle docking to the Golgi was 

recently elucidated in detail for GMAP-210 (Drin et al., 2008). GMAP-210 is a golgin whose 

depletion causes fragmentation of the Golgi (Pernet-Gallay et al., 2002; Rios et al., 2004). The 

N-terminus of GMAP-210 contains an ALPS (amphipathic lipid-packing sensor) motif which 

senses highly curved membranes. Thereby, the N-terminus binds small vesicles. The C-

terminal region of GMAP-210 binds to more flat membranes where Arf1 is present. This 

would correspond to the Golgi membrane. A model was suggested where GMAP-210 would 

be recruited to the Golgi by Arf1. Its N-terminus reaches into the cytoplasm like a tentacle 

waiting for a vesicle. Binding of a vesicle to the N-terminus of GMAP-210 induces a 

conformational change thereby bringing the vesicle closer to the Golgi. The Drosophila 

homologues of GMAP-210 and GM130 were shown to have several binding sites for different 

rabs. Based on these findings, a model of a tentacular Golgi was suggested where coiled-coil 

proteins that surround the Golgi capture Rab-containing membranes (like vesicles) but 

exclude other structures (Sinka et al., 2008). 

Another type of Golgi matrix proteins are the GRASPs (Golgi reassembly and stacking 

proteins). So far two GRASPs have been discovered in mammalian cells GRASP55 and 

GRASP65 (Barr et al., 1997; Shorter et al., 1999). Both are peripheral membrane proteins and 

are anchored to the membrane via an N-terminal myristoyl group. Knockdown of GRASP65 

(Puthenveedu et al., 2006) as well as the knockdown of GRASP55 (Feinstein and Linstedt, 

2008) result in an unlinking of the Golgi ribbon. There are different hypothesis about the role 

of GRASPs in linking membranes. It was suggested that they anchor golgins to the Golgi 

membranes and enable them to function in tethering reactions (Barr et al., 1998). Another 

hypothesis suggests that GRASPs form oligomers and thereby link membranes together. 

GRASP65 was shown to form high-order oligomers. In addition GRASP65 which was 

coupled to magnetic beads, formed trans-oligomers and caused aggregation of the beads 

(Wang et al., 2003).  
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Beside GRASPs and golgins, other proteins are also involved in maintaining Golgi structure. 

Disruption of the microtubule network results in Golgi disassembly into several mini-stacks 

(Rogalski et al., 1984). The fungal product brefeldin A (BFA) causes disassembly of the 

Golgi and rapid redistribution of Golgi membranes to the ER (Fujiwara et al., 1988; 

Lippincott-Schwartz et al., 1989). Degradation of a COPI subunit in a mutant cell line led to a 

fragmented Golgi (Guo et al., 1994). A combined knockdown of two cargo receptors 

(ERGIC-53 and Surf4) also led to Golgi fragmentation (Mitrovic et al., 2008). Many other 

proteins from different classes are also important for integrity of the Golgi. These include 

cargo receptors from the p24 protein family, retromer components or the conserved 

oligomeric Golgi complex (Rojo et al., 2000; Seaman, 2004; Shestakova et al., 2006; Koegler 

et al., 2009), enzymes like protein kinase D (Anel and Malhotra, 2005) and proteins of the 

fusion machinery like the SNARE GS15 (Xu et al., 2002).  

Proteins that pass the Golgi are transported from the cis-side to the trans-side of the Golgi and 

undergo enzymatic modifications. These include N-glycosylation steps, O-glycosylation 

(Helenius and Aebi, 2001; Wopereis et al., 2006) and sulfation of sugar- and tyrosine residues 

(Honke and Tanigichi, 2002). In addition the pro-protein convertases/endoproteases furin acts 

in the trans-Golgi, where it process protein precursors into their mature form (Nakayama, 

1997; Shapiro et al., 1997). Glycosylation steps occur in a sequential order. In the cis-

cisternae mannose trimming occurs. N-acetylglucosamine is added in the medial Golgi. 

Addition of fucose residues also occurs in the medial Golgi. Finally, addition of galactose and 

sialic acid takes place in the trans-Golgi and the TGN (Kornfeld and Kornfeld, 1985). This 

model of sequential action was supported by microscopic studies that showed 

compartmentalization of the enzymes to the different cisternae. Galactosyltranferase was 

located to the trans Golgi cisternae (Roth and Berger, 1982) and N-acetylglucosamine 

transferase I to the medial Golgi cisterna (Dunphy et al., 1985) by electron microscopy. 

However, this strict compartmentalization model does not seem to be entirely true. More 

recent results favor a model of a concentration gradient along the cisternae. Myc-tagged N-

acetylglucosaminyltransferase I (GnT I) localized to the medial as well as to the trans-Golgi. 

In the trans Golgi it overlapped with endogenous beta 1,4 galactosyltransferase (GalT) 

(Nilsson et al., 1993). Also mannosidase II localized to the medial Golgi cisterna as well as to 

the trans-Golgi cisterna. In the trans Golgi cisterna overlapping staining of mannosidase II 

with the trans Golgi enzyme sialyltransferase was observed (Rabouille et al., 1995). 

Localization of the Golgi enzymes was also shown to vary with the cell type. Depending on 

the cell line mannosidase II was found in the medial, medial and trans or only in the trans-
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Golgi (Velasco et al., 1993). Nilsson et al (2009) hypothesized that the different Golgi 

enzymes present in the same compartment form complexes. These complexes would then 

provide specific and efficient processing of the oligosaccharide structures. So far this is only a 

hypothesis and further studies are necessary to confirm it. 

Intra-Golgi protein transport is still a matter of debate. Two different models for the 

organization and transport of cargo through the Golgi have been proposed (Fig. 3). These 

models are known as the cisternal maturation model and the vesicular transport model 

(Rothman and Wieland, 1996; Glick et al., 1997). The cisternal maturation model proposes 

that cargo enters the first cisterna (cis-cisterna) and this cisterna matures to become the medial 

cisterna and finally the trans-cisterna. The trans-cisterna finally disintegrates into post-Golgi 

vesicles that mediate further transport. Support for the cisternal maturation model came from 

a study on procollagen transport. Procollagen-I, is a very large protein, which was found to 

stay in the same cisterna during intra-Golgi transport (Bonfanti et al., 1998). The 

transmembrane protein VSVG was shown to move through the Golgi at the same rate as 

procollagen-I (Mironov et al., 2001). This study indicates that large as well as small cargo 

molecules are transported via cisternal maturation. The cisternal maturation model raises the 

question of how the cis-to-trans Golgi enzyme gradient is maintained. A possibility is that the 

gradient is generated by COPI vesicles that transport Golgi resident proteins to their home 

cisternae. This is supported by the observation that COPI vesicles contain several Golgi 

resident proteins but no or very little secretory cargo (Love et al., 1998). In contrast to this 

observation Orci et al. (1997) found COPI vesicles involved in anterograde transport of 

VSVG and Volchuk et al. (2000) discovered megavesicles involved in anterograde intra-

Golgi transport of large protein aggregates. Another explanation is that inter-cisternal tubular 

connections are formed. Cargo matures in these tubules but enzymes stay in their cisterna. 

Alternatively, cargo matures within cisternae and enzymes slide back in tubules. The 

existence of tubules was observed by Trucco et al (2004) when a wave of VSVG arrived at 

the Golgi. In this model COPI vesicles would only serve in recycling of the fusion machinery, 

but do contain neither secretory cargo nor resident Golgi enzymes.  

The vesicular transport model (Fig. 3) is based on the assumption of stable Golgi cisternae. 

Anterograde and retrograde transport between the cisternae is mediated by COPI vesicles. 

Anterograde COPI vesicles transport the secretory proteins from cisterna to cisterna where the 

posttranslational modifications occur. These anterograde COPI vesicles exclude resident 

Golgi enzymes from further transport. This model is supported by a number of biochemical 

and microscopical evidences. COPI vesicles containing anterograde cargo could be produced 
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in an in vitro budding reaction, using Golgi membranes (Malsam et al., 1999). COPI vesicles 

containing anterograde (VSVG) and retrograde (KDEL-receptor) cargo were also visualized 

by electron microscopy (Orci et al., 1997). These KDEL receptor-containing vesicles 

excluded the Golgi enzyme mannosidase-II from transport (Cosson et al., 2002). Another 

electron microscopy study suggested that anterograde COPI vesicles differ from retrograde 

ones in their SNARE composition. The Golgi restricted v-SNARE GOS28 could be localized 

to anterograde VSVG containing COPI vesicles, but not to retrograde KDEL receptor 

containing vesicles (Orci et al., 2000). The remaining question is how large cargo that does 

not fit into COPI vesicles is transported. As a kind of a salomonic solution Pelham and 

Rothman (2000) suggested, that both models have their justification. According to their 

suggestion vesicular transport mediates most of the transport of proteins through the Golgi in 

mammalian cells. Cisternal maturation serves to explain rapid protein secretion in yeast and 

transport of large macromolecular aggregates in mammalian cells. 

Recently a third model called rapid-partitioning model was proposed (Fig. 3). In this model 

the Golgi stacks are interconnected and secretory cargo as well as resident Golgi enzymes 

move in both directions through the Golgi. Although the Golgi forms a continuous system, it 

is segregated into differential membrane domains. A two-phase membrane system allows 

differential partitioning of transmembrane cargo proteins and resident Golgi enzymes in 

subdomains. Export domains are enriched in sphingolipids/cholesterol and represent the place 

of cargo sorting. Processing domains are glycerolipid rich microdomains and form the 

processing platforms in the Golgi where the glycosylation enzymes act (Patterson et al., 

2008). Recently a group of prominent Golgi researchers made the attempt to find a consensus 

on a model for intra-Golgi transport (Emr et al., 2009). They agreed on the cisternal 

maturation model as the most likely one and on the existence of tubules connecting the Golgi 

cisternae in a stack. Still there is no consensus about the contents and the transport 

directionality of COPI vesicles, but future work will help to clarify this issue. 
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.  

Figure 3: Intra-Golgi transport models: 
1.In the cisternal maturation model anterograde cargo travels within the same cisterna through the 

Golgi. The cisterna receives the Golgi enzymes specific for the following cisterna via COPI 
vesicles (green). 

2.In the vesicular transport model cargo transport is mediated by anterograde COPI vesicles (pink) 
that move between the cisternae. Retrograde COPI vesicles (green) recycle transport 
components of the fusion machinery back to their home cisterna. 

3 In the rapid partitioning model segregation between anterograde cargo and resident Golgi proteins 
is mediated via lipid microdomains (light-green oval and yellow oval) 

 
 

1.2 N-glycosylation and oligosaccharide processing 
 
N-glycosylation is one of the most common protein modifications (Apweiler et al., 1999). It 

plays an important role in glycoprotein folding, ER quality control (Spiro, 2004), protein 

secretion (Helenius and Aebi, 2004; Vagin et al., 2009), cell-cell communication (Zhao et al., 

2008), development (Haltiwanger and Lowe, 2004), wound repair (Lackie and Adam, 2006) 

and innate immunity (Marth and Grewal, 2008). In addition N-glycosylation was shown to be 

important for enzyme activity and substrate specificity (Skropeta, 2009). N-glycosylation is 

crucial for the stability of a glycoprotein (Shental-Bechor and Levy, 2009) and also protects it 

from the action of proteases by steric hindrance and from non-specific interactions with other 

proteins (Rudd et al., 2001). Three main types of N-glycans can be distinguished: high 
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mannose, complex and hybrid-N-glycans. All types share a common pentasaccharide core 

structure of three mannose residues (Man) and two N-acetylglucosamine residues (GlcNAc): 

Manα1-3(Manα1-6)Manβ1-4GlcNAcβ1-4GlcNAc (α and β indicate type of glycosidic 

linkage between the sugar residues). This Man3GlcNAc2 core is linked to an asparagine 

residue in the glycoprotein chain. The high mannose structure consists of the pentasaccharide 

core structure with two to six additional mannose residues attached. The complex-type 

structure is formed by the pentasaccharide core, to which oligosaccharide antennae are 

attached by the action of N-acetylglucosaminyltransferases (GnTs). The hybrid structure 

contains features of both the high mannose and the complex glycosylated structure. The 

hybrid structure is formed by mannose residues attached to the Manα1–6 arm and one or two 

antennae, which are attached to the Manα1–3 arm of the Man3GlcNAc2 core (Stanley et al., 

2008) 

1.2.1 N-glycosylation in the ER 
The initial step in N-glycosylation takes place in the endoplasmic reticulum and is mediated 

by the oligosaccharide transferase (Roth, 2002). This integral membrane protein complex 

consists of eight subunits. It transfers a Glc3Man9GlcNAc2 residue (where Glc is glucose) 

from the lipid carrier dolichol-P-P to an asparagine residue in the newly synthesized protein 

(Fig. 4) (Elbein, 1979). The asparagine is part of the consensus sequence N-X-S/T., where X 

is any amino acid except proline.  

 
Figure 4 Basic N-glycan structure attached to the N-glycosylation site of a glycoprotein. 
The basic structure consists of two N-acetylglucosamine residues, nine mannose residues and 
three glucose residues. The nomenclature of the different branches and the type of glycosidic 
linkage is indicated. The structure was created with the glycan builder (Ceroni et al., 2007)  
 

The attached oligosaccharide is then further processed by two ER localized α-glucosidases 

(Fig. 5). The integral type-II membrane protein α-glucosidase-I removes the terminal α1,2 
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linked glucose (Shailubhai et al., 1991). Subsequently the soluble glucosidase-II removes the 

two α1,3 linked glucose residues. Glucosidase-II is composed of an α-subunit and β-subunit. 

The α-subunit contributes the active site and the β-site mediates ER retention (Trombetta et 

al., 1996; Helenius et al., 1997). Additionally the β-subunit shows sequence homology to the 

mannose-6-phosphate receptor (MRH domain). The residues involved in mannose binding are 

conserved in the β-subunit. The two glucose residues are cleaved with different kinetics. The 

first residue is cleaved very rapidly, but the second residue is cleaved more slowly. This 

allows the monoglucosylated glycoprotein to enter the calnexin/calreticulin cycle, before the 

second glucose residue is cleaved. Release from this cycle is catalyzed by a concerted action 

of ER mannosidase-I and glucosidase-II. ER mannosidase-I (Gonzalez et al., 1999) removes 

one mannose residue from the B-branch and the glucosidase-II removes the remaining 

glucose residue from the A-branch. Correctly folded proteins which exit the ER carry a 

Man8(GlcNAc)2 glycan chain. Further processing of the glycan chain occurs in the Golgi  

1.2.2 N-glycosylation in the Golgi 
A combination of trimming (by glycosidases) and elongation (by glycosyltransferases) 

reactions converts the high mannose to a complex type oligosaccharide (Fig. 5). So far three 

Golgi α1,2-mannosidase-I isoforms have been discovered: Golgi α1,2-mannosidase-I A, B 

and C (Herscovics et al., 1994; Lal et al., 1994; Tremblay and Herscovics, 2000). They 

process the Man8GlcNAc2 glycan to the Man5GlcNAc2 which constitutes the basis for 

complex glycosylation. GlcNAc transferase-I (GnT-I) adds a single GlcNAc residue to the 

Man5GlcNAc2 thereby generating GlcNAc1Man5GlcNAc2 (Schachter et al., 1984). This is the 

prerequisite for further formation of N-acetyllactosamine branches. After modification by 

GnT-I, Golgi mannosidase-II removes two further mannose residues (Tulsiani et al., 1982; 

Moremen, 2002). The resulting GlcNAc1Man3GlcNAc2 chain is further modified by the 

addition of another N-acetylglucosamine residue to the free mannose residue by GlcNAc 

transferase-II (GnT-II) (Oppenheimer et al., 1981; Brockhausen et al., 1988). The 

GlcNAc2Man3GlcNAc2 chain is the precursor for complex oligosaccharides with three or four 

outer branches. At this stage several subsequent reactions are possible. Fucosyltransferase can 

transfer a fucose residue to the innermost GlcNAc residue of the glycan chain (Uozumi et al., 

1996). GnT-IV adds a GlcNAc residue to the α1,3 mannose. GnT-V adds a GlcNAc residue 

to the α1,6 mannose (Kornfeld and Kornfeld, 1985). GnT-VI adds an additional GlcNAc 

residue to the α1,6 mannose and GnT-IX adds an additional GlcNAc residue to the α1,3 

mannose (Takahashi et al., 2009). GnT-III introduces a GlcNAc residue at the base of the 
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trimannosyl core. This step prevents further branching, as the other GlcNAc transferases 

cannot process this oligosaccharide chain anymore (Narasimhan, 1982). 

The final modifications of the glycan chains involve addition of galactose (Gal) residues by 

galactosyltransferases and sialylation by sialyltransferases. Two main families of 

galactosyltransferases can be distinguished. The β4-galactosyltransferases catalyze the 

transfer of a galactose residue via β1-4 linkage to a GlcNAc residue. The β3-

galactosyltransferases catalyze the transfer of a galactose residue via β1-3 linkage to a 

GlcNAc based acceptor (Hennet, 2002). Chain elongation occurs by the alternate action of the 

GnTs adding a GlcNAc residue to a Gal at the end of the chain and the GalTs adding a Gal to 

the terminal GlcNAc of the chain (Ujita et al., 1999). Sialylation follows upon galactosylation 

and is usually the terminal modification of a glycan chain (Berger and Rohrer, 2008). 

Sialyltransferases mediate transfer of sialic acid/neuraminic acid (Neu) to galactose residues.  
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Figure 5 Processing and maturation of N-glycans Oligosacharyltransferase transfers the 
Glc3Man9GlcNAc2 residue to the glycoprotein (not indicated). The processing steps in the ER include 
removal of the three glucose residues by glucosidase-I and glucosidase-II and removal of one 
mannose residue by ER mannosidase-I. Further processing in the Golgi includes further removal of 
two mannose residues by mannosidase-I. After addition of GlcNAc by GnT-II, Golgi mannosidase-II 
removes two mannose residues. Fucosyltransferase may add a fucose residue to the innermost 
GlcNAc. Addition of GlcNAc to the terminal mannose residues by GnTs allows branching. 
Galactosyltransferases and sialyltransferases perform the final modification by adding galactose and 
sialic acid residues. Poly-N-acetyllactosamine (= Gal-GlcNAc-Gal-GlcNAc) structures are created by 
the sequential action of β1,3 Gn-T and galactosyltransferases. All structure were created using glycan 
builder (Ceroni et al., 2007)  
 

1.3 Leguminous type lectins (L-type lectins)  
Lectins are sugar binding proteins, lacking any enzymatic activity. They exert different intra-

and extracellular roles. Lectins are involved in quality control, protein sorting and cellular 

adhesion. The domain responsible for sugar binding is referred to as the carbohydrate 

recognition domain (CRD). This domain can be formed by different secondary structure 

elements. In P-type lectins it is a unique β-sheet-rich structure, in C-type lectins it is formed 

by a unique mix of α−helices and β-sheets, in galectins and in L-type lectins it is a β-

sandwich. The immunoglobulin family is the basis for the structure in I-type lectins and a β-

trefoil in R-type lectins (Dodd and Drickamer, 2001). The first L-type lectin discovered in 

vertebrates was ERGIC-53. Like in the other L-type lectins, its luminal portion containing the 

CRD corresponds to the single folded domain in leguminous plant lectins (Sharon and Lis, 

1990). Because of this homology they were termed leguminous (L-type) lectins. The L-type 

lectin group in mammals comprises the four members ERGIC-53, VIP36, VIPL and ERGL 

(Fig. 6).  
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1.3.1 ERGIC-53 (ER-Golgi-intermediate compartment protein of 53kDa) 
ERGIC-53 is a 53kDa, type I transmembrane protein. It was originally discovered in a 

monoclonal antibody screen for organelle marker proteins (Schweizer et al., 1988). The rat 

homolog p58 was identified as a marker for the cis-Golgi (Saraste et al., 1987). MR60 was 

discovered by Pimpaneau et al (1991) as a new mammalian monocytic D-mannose receptor. 

Later it turned out that the protein MR60 is nearly identical to ERGIC-53 (Arar et al., 1995). 

ERGIC-53 serves as a marker of the ER-Golgi intermediate compartment (ERGIC) where it is 

present at high concentrations. ERGIC-53 is also found at lower levels in the ER and in the 

first fenestrated cisterna in the cis-Golgi (Schweizer et al., 1988; Chavrier et al., 1990). 

ERGIC-53 is an unglycosylated protein and forms homodimers and homohexamers directly 

after synthesis. Oligomerization is mediated by two luminal cysteine residues Cys466 and 

Cys475 that form disulfide bridges (Appenzeller et al., 1999; Lahtinen et al., 1999). Mutation 

of one of the cysteines abolished hexamere formation. If both cysteines are mutated, ERGIC-

53 is only present in its monomeric form (Nufer et al., 2003). Moreover, efficient transport of 

ERGIC-53 was impaired, when Cys 475 was mutated. Surprisingly, when the two 

corresponding cysteines (Cys473, Cys482) were mutated in the rat homologue of ERGIC-53, 

p58, the subcellular distribution visualized by immunofluorescence was the same as observed 

for the wildtype, suggesting that its trafficking was unimpaired (Lahtinen et al., 1999). Later 

the same group published that an ERGIC-53 mutant where both cysteines had been 

substituted by alanines, still cofractionated with endogenous ERGIC-53 in a sucrose gradient 

(Neve et al., 2005). They proposed that ERGIC-53 exists only in hexamers and not in dimers. 

These hexamers are either formed by covalent disulfide-linked or non-covalently linked 

disulfide dimers (Neve et al., 2005). The different observations might be explained by the 

different experimental settings. The immunofluorescence data and the subcellular 

fractionation experiments provide information about the steady state. The pulse chase-

experiment focuses more on the kinetic behaviour of the ERGIC-53 mutants. 

Efficient transport of ERGIC-53 also depends on an ER export motif localized in the 

cytoplasmic carboxyl-terminus, although additional determinants are required (Nufer et al., 

2003). The diphenylalanine (FF) COPII interaction motif in position -1 and -2 mediates the 

anterograde transport (Kappeler et al., 1997). In addition disulfide bond-stabilized 

oligomerization, residues in the transmembrane domain and a glutamine residue in the 

cytoplasmic domain all support efficient ER export (Nufer et al., 2003). As ERGIC-53 cycles 

between the ER and the ERGIC, a motif mediating retrograde transport has also to be present. 

The dilysine COPI interaction motif in position -3 and -4 fulfils this requirements. A peptide 
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corresponding to the cytoplasmic tail of ERGIC-53 was shown to bind to COPI components 

(Kappeler et al., 1997). Similar results were obtained with the carboxy-terminus of ERGIC-53 

coupled to GST. It was shown to bind to COPI and binding could be specifically inhibited by 

an antibody directed against the C-terminus (Tisdale et al., 1997). 

ERGIC-53 binds to high mannose glycans in a Ca2+ dependent manner (Itin et al., 1996). The 

conserved Asp121 and Asn156 residues are involved in sugar ligand binding. Mutation of 

either of these residues abolished binding of ERGIC-53 to a mannose column (Itin et al., 

1996). Binding of ERGIC-53 to mannose is pH sensitive. The binding affinity of ERGIC-53 

for glycoproteins decreases below a pH of 7 (Appenzeller-Herzog et al., 2004). ERGIC-53 

was shown to be involved in the transport of several glycoproteins. A Cathepsin Z related 

protein (CatZr) was the first glycoprotein shown to interact directly with ERGIC-53 

(Appenzeller et al., 1999). As ERGIC-53 is a lectin it is likely that the interaction with its 

ligands is carbohydrate dependent. Accordingly, a carbohydrate binding-deficient ERGIC-53 

mutant cannot interact with CatZr anymore (Appenzeller et al., 1999). Further investigation 

revealed that CatZr is identical to procathepsin Z. In addition to the N-glycan, a β-hairpin 

structure in procathepsin Z was also important for this interaction. This indicates that the 

interaction is not solely dependent on glycans (Appenzeller-Herzog et al., 2005). ERGIC-53 is 

also involved in the transport of cathepsin C (Vollenweider et al., 1998). Furthermore 

ERGIC-53 interacts with the chaperone ERp44 and together they are involved in the quality 

control of IgM polymerization and therefore their ER export (Anelli et al., 2007). Nyfeler et al 

(2008) added recently another important protein to the list of cargos. In a YFP-based protein 

fragment complementation based screen of a human liver library, alpha1-antitrypsin was 

identified as a cargo for ERGIC-53. ER to Golgi transport of α1-AT was shown to be 

impaired upon ERGIC-53 knockdown. Mutations in the ERGIC-53 gene locus are the cause 

of combined deficiency of blood coagulation factors V and VIII, leading to a rare bleeding 

disorder. Affected individuals exhibit a reduction of plasma level of factor V and factor VIII 

by about 70-95% (Nichols et al., 1998). Further work on this subject revealed that transport of 

blood coagulation factors is not mediated by ERGIC-53 alone. ERGIC-53 associates with the 

soluble glycoprotein MCFD2 (multiple coagulation factor deficiency 2) in a Ca2+-dependent 

manner (Zhang et al., 2003). The sequence of events in ERGIC-53/MCFD2/FactorVIII 

complex formation is not entirely solved. The current model suggests that factor VIII binds to 

MCFD2 in a carbohydrate-independent manner and that this complex is further stabilized by 

ERGIC-53 which interacts with MCFD2 as well as with carbohydrate side chains of factor 

VIII (Zhang et al., 2005). MCFD2 is not involved in binding to the other glycoproteins like 
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cathepsin C or cathepsin Z to ERGIC-53 (Nyfeler et al., 2006). All these examples show that 

ERGIC-53 serves as a transport receptor for soluble glycoproteins. Therefore it is surprising 

that ERGIC-53 was also found to interact with the membrane protein FGF receptor 3 (Lievens 

et al., 2008). Again this interaction was shown to be carbohydrate dependent.  

Overall the role of ERGIC-53 is to facilitate export of different glycoproteins from the ER. 

Upon change in the concentration of Ca2+ and the pH in the ERGIC, the affinity for 

glycoproteins drop and cargo is released. After ERGIC-53 has released its cargo it can recycle 

back to the ER for another round of transport. 

1.3.2 VIP36 (vesicular integral membrane protein of 36kDa) 
VIP36 was originally discovered in an attempt to identify proteins involved in apical and 

basolateral sorting at the trans-Golgi (Fiedler et al., 1994). VIP36 seems to have appeared 

quite late in evolution as orthologs are only present in higher organisms. VIP36 is expressed 

in many organs like liver, kidney, intestine or spleen. Only low expression levels of VIP36 

have been detected in the brain and in the heart on mRNA levels (Fiedler and Simons, 1996). 

VIP36 has a 44 aa signal sequence, a lectin like domain, a transmembrane domain and a 

cytoplasmic tail. In contrast to ERGIC-53, VIP36 seems only to exist as a monomer. The 

luminal domain of VIP36 is not able to form disulphide linked oligomeres or stable-non-

covalent oligomeres (Fiedler and Simons, 1996). VIP36 has an N-glycosylation site and 

becomes complex glycosylated in the Golgi apparatus (Fiedler and Simons, 1996; Fullekrug 

et al., 1999). Two hours after synthesis most of endogenous VIP36 is found to be complex 

glycosylated (Fullekrug et al., 1999). VIP36 is a relatively short-lived protein with a half-life 

of only 5 hours (Neve et al., 2003).  

While there is general agreement that VIP36 is a sugar binding L-type lectin, there is no final 

consensus on its intracellular localization. Overexpressed myc-tagged VIP36 was found to 

localize to the Golgi apparatus, vesicular structures, endosomes and the plasma membrane 

(Fiedler et al., 1994). A follow-up study by the same group revealed that endogenous VIP36 

localizes mainly to the cis/medial Golgi and pre-Golgi structures (Fullekrug et al., 1999). 

Depending on the cell type, VIP36 was found in pre-or post Golgi compartments. In Vero 

cells, VIP36 was detected in the intermediate compartment (Fullekrug et al., 1999). In GH3 

cells (a rat pituitary cell line), VIP36 was localized by electron microscopy also to 70-100nm 

pre-Golgi transport vesicles (Shimada et al., 2003a). In rat parotid acinar cells, VIP36 was 

detected in post-Golgi secretory vesicles (Shimada et al., 2003b). In MDCK cells VIP36 was 

even found at the plasma membrane (Hara-Kuge et al., 2002). 
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Which motifs/signals regulate the trafficking of VIP36 was never investigated. Therefore, we 

can only speculate on possible functional motifs. The carboxyl-terminus of VIP36 contains a 

potential retrieval motif. It is formed by a lysine in position -4 and an arginine in position -3 

(KRXX). This motif resembles a dilysine (KKXX), COPI-binding, retrieval motif. Therefore, 

it is likely that VIP36 cycles within the secretory pathway. This is supported by the 

observation that endogenous VIP36 localized to the ERGIC after BFA treatment (Füllekrug et 

al., 1999). Dahm et al (2001) used fluorescence recovery after photobleaching (FRAP) 

experiments to study VIP36 trafficking. They used a C-terminally YFP-tagged version of 

VIP36. According to their data, VIP36 is transported from the ER to the Golgi with a halftime 

of 105±39 minutes. The retrograde transport of VIP36 is much faster. The half-time for 

Golgi-to-ER transport was only 1.67 ± 0.45minutes. This extremely fast retrograde transport 

suggests that the KRXX-motif of VIP36 is very potent. However, it has to be mentioned here 

that the authors used a C-terminally tagged VIP36. This should actually have inactivated this 

position-dependent motif. Why this was not the case, remains elusive. Thus, these results 

should be taken cautiously.  

As a lectin, VIP36 is supposed to bind glycoproteins. Several attempts were made to gain 

further insight in its affinity for glycans and specificity for different sugar groups. Originally 

the luminal domain of VIP36 bound to glycopeptides isolated from [3H]galactose-labeled 

cells. These glycopeptides could be eluted with GalNac. Glycopeptides isolated from [3H] 

mannose-labeled cells did not bind to the column. The authors concluded that VIP36 binds to 

N-acetyl-D-galactosamine found in O-linked glycans (Fiedler and Simons, 1996). These 

results were challenged by later studies. Yamashita’s group performed binding experiments of 

post-nuclear supernatant proteins to the purified VIP36-CRD (Hara-Kuge et al., 1999). This 

binding could be competed by the addition of Man7-9GlcNAc2 high mannose type 

glycopeptides. The discrepancy in the results was explained by the fact that in the study of 

Fiedler and Simons (1996) [3H]mannose-labeled glycopeptides were created by the digestion 

with pronase. Pronase can hydrolyze high mannose type glycans and could have led to 

reduced binding to VIP36 (Hara-Kuge et al., 1999). Frontal affinity chromatography (FAC) 

experiments confirmed the findings of Yamashita’s group (Kamiya et al., 2005). FAC data 

showed a preference of VIP36 for high mannose type oligosaccharides containing eight, nine 

and seven mannose residues. VIP36 preferred isomers containing the Manα1-2- Manα1-

2Man branch (D1) (Kamiya et al., 2005). According to these data, VIP36 would have the 

highest affinity for glycoproteins before the D1 arm is trimmed by the Golgi mannosidase-I in 

the cis-Golgi. Thus, VIP36 is assumed to bind glycoproteins before they are processed in the 
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Golgi. VIP36 binds these glycoproteins in a pH-dependent manner. As revealed by FAC data 

VIP36-CRD shows an optimal sugar binding at a pH value of 6.5. This mildly acidic pH is 

usually found in the early Golgi (Kim et al., 1996; Wu et al., 2001). The pH of the ER is 

typically around 7.4 (Wu et al., 2001) and the pH of the ERGIC (although never formally 

shown) is expected to be between that of the ER and the Golgi. Based on these data, VIP36 

should bind glycoproteins in the ERGIC or the cis-Golgi. 

The residues Asp-131, Asn-166, His-190 in the CRD of VIP36 seem to play a major role in 

sugar binding. Mutation of Asp-131 diminished binding of VIP36-CRD to proteins of a 

postnuclear supernatant (Hara-Kuge et al., 1999). The involvement of Asn-166 in sugar 

binding is concluded from the fact that this residue is conserved in ERGIC-53. His-190 is also 

a conserved residue, mutation of which abolished sugar binding of the purified VIP36 CRD to 

its sugar ligands (Kamiya et al., 2005). All these experimental findings were confirmed by co-

crystallization of the luminal part of VIP36 together with its carbohydrate ligand. All three 

residues (Asp131, Asn-166 and His190) were found to form the binding site and interact 

directly with carbohydrate ligands (Satoh et al., 2007). In addition also Gly260, Asp261 and 

Leu262 bind via hydrogen bonds to the mannose of the carbohydrate ligand (Satoh et al., 

2007). The binding of leguminous lectins to their carbohydrate ligands is in general Ca2+ and 

Mn2+dependent. Mn2+ allows binding of Ca2+ (Sharon and Lis, 1990). There are two 

conserved residues in plant L-type lectins, an aspartate and a glutamate residue that are 

required for Mn2+ binding. These two residues are not conserved in mammalian L-type 

lectins. This suggests that mammalian L-type lectins do not need Mn2+ for sugar binding. In 

fact sugar binding of VIP36 seems to be only Ca2+dependent (Fiedler and Simons, 1996) 

although there are also controversial data on this fact. Hara-Kuge et al (1999) found that the 

purified CRD of VIP36 bound glycoproteins independently of Ca2+ and Mg2+. In contrast 

crystallization data supported the Ca2+ dependency. Crystals of VIP36 could only be 

obtained in a Ca2+ bound form. Additionally, calcium binding showed to fix the position of 

three residues involved in sugar binding, indicating that calcium is required for sugar binding 

(Satoh et al., 2007). 

Several attempts have been made to identify cargos for VIP36. Potential interaction partners 

are α-amylase, clusterin and BiP. Hara Kuge et al (2002) chose to investigate VIP36’s 

interaction with clusterin, as clusterin is a main secretory glycoprotein in MDCK cells. VIP36 

co-immunoprecipitated with clusterin and seems to be involved in its transport. Although it 

remains to be elucidated at which stage of transport VIP36 is actually involved. α-amylase 

was detected together with VIP36 in secretory vesicles of the rat parotid gland. VIP36 bound 
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to high mannose containing amylase in these secretory vesicles (Hara-Kuge et al., 2004). The 

antibody used in this study to detect VIP36 might also detect VIPL, therefore it is not entirely 

clear that it is really VIP36, that α-amylase interacts with. Another important point is that 

VIP36 is for sure not involved in the late steps of secretion of human amylase. Human 

amylase is secreted in a complex glycosylated and a non-glycosylated variant. Both are not 

able to interact with VIP36. Another protein that was found to interact with VIP36 was BiP 

(Nawa et al., 2007). Complex glycosylated VIP36 interacts with BiP in a carbohydrate 

independent manner. The authors proposed that VIP36 binds to misfolded glycoproteins at the 

level of the Golgi and cycles them back to the ER. There it delivers the misfolded 

glycoproteins to the ER chaperone BiP. All these results show that the function of VIP36 is 

still not clarified.  

1.3.3 VIP36-like protein (VIPL) 
VIPL was identified by a profile based data base scanning for L-type lectins (Nufer et al., 

2003). In the same year the group of Petterson found VIPL during a database search using the 

conserved carbohydrate recognition domain as a search string (Neve et al., 2003). VIPL 

exhibits 68% similarity to VIP36 (Fig. 6). There are orthologs of VIPL in mouse, fly, worm 

and S. pombe, but not in S.cervisiae. VIPL is expressed in several organs. The highest level 

was found in skeletal muscles and in the kidney. Like VIP36, VIPL is a type I transmembrane 

protein and has also an N-glycosylation site. But in contrast to VIP36, VIPL does not become 

complex glycosylated (Neve et al., 2003; Nufer et al., 2003) 

Until now it was not possible to define the subcellular localization of endogenous VIPL due to 

its low expression level. Overexpressed VIPL was found to localize to the ER by 

immunofluorescence and subcellular fractionation (Nufer et al., 2003). Neve et al (2003) 

detected overexpressed VIPL partly at the level of the Golgi. VIPL carries the same potential 

export motif (FY at position -1 and -2) as VIP36 in its cytoplasmic carboxyl-terminus. In 

contrast to VIP36 (KR at position -4 and -3), VIPL has an efficient ER retention motif in its 

C-terminus (RKR at position -5 to –3). This explains why upon BFA treatment, VIPL showed 

no alterations in its subcellular distribution and continued to show a pure ER pattern. This 

might indicate that VIPL does not cycle between the ER and the Golgi. Interestingly, 

substitution of the whole RKR retention motif by serines localized VIPL to the plasma-

membrane (Nufer et al., 2003). Like its homologue VIP36, VIPL binds to high mannose 

residues (Yamaguchi et al., 2007). It shows a binding profile comparable to VIP36, with a 

preference for deglucosylated trimannose in the D1 branch (Kamiya et al., 2008). In contrast 

to VIP36, which binds to sugars at rather low pH, VIPL shows most efficient binding at pH 
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7.5, which is a value found in the ER. The physiologic function of VIPL is poorly understood. 

VIPL may be involved in glycoprotein secretion. Upon VIPL knockdown the secretion of two 

non-further characterized glycoproteins decreased (Neve et al., 2003). The VIPL orthologue 

in zebrafish embryos is involved in early development. Zebrafish embryos lacking VIPL are 

touch insensitive (Golling et al., 2002). The mechanism leading to this observation still needs 

to be clarified. Also its principal role in the secretory pathway is not clear. VIPL 

overexpression was shown to change the localization of ERGIC-53 to the ER, indicating that 

some sort of interplay exists between the two proteins (Nufer et al., 2003). It has been 

suggested that VIPL might bind to proteins released from the calnexin-calreticulin cycle and 

hand them over to ERGIC-53 (Yamaguchi et al., 2007). 

1.3.4 ERGL (ERGIC-53 like) 
ERGL was identified in a prostate specific EST-cluster. 

ERGL was only detected in prostate, spleen, salivary gland and in parts of the brain on 

mRNA level. Until now no data on protein expression are available. ERGL shows high 

homology to ERGIC-53 (Fig. 6), but its carboxyl-terminus lacks an ER-export or retrieval 

motif (Yerushalmi et al., 2001). Like ERGIC-53, ERGL has a transmembrane domain. 

Interestingly there seems to be a splice variant lacking the transmembrane domain, indicating 

that there is a soluble form of this protein. Further work on its subcellular localization and its 

function needs to be conducted. 
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Figure 6: Sequence alignment of L-type lectins in mammals: Alignment of the four human version of 
ERGIC-53 (LMAN1) ERGL (LMAN1L), VIP36 (LMAN2) and VIPL (LMAN2L). The sequence 
alignment was performed using Clustal W software (http://www.ebi.ac.uk/Tools/clustalw2/index.html). 
Blue: acidic amino acids (D,E), red: small hydrophobic amino acids (A, V, F, P, M, I, L, W), magenta: 
basic residues(R, K) and green: amino acids containing hydroxyl and amine residues ( S, T, Y, H, C, 
N, G, Q). 
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1.3.5 Calnexin and Calreticulin 
Calnexin and calreticulin are both involved in ER quality control. Calreticulin was originally 

identified as a calcium binding protein in the sarcoplasmic reticulum of the skeletal muscle 

(Ostwald and MacLennan, 1974). The authors termed it high-affinity calcium binding protein. 

Several years later, Calreticulin was rediscovered, but the authors named it CAB-

63/calregulin (Waisman et al., 1985). There, it was described as a new calcium binding 

protein from bovine liver. In the same year, a protein called ERp60 was discovered, that later 

turned out to be also the same as calreticulin (Lewis et al., 1985). Later on, calreticulin was 

rediscovered a fourth time as CRP55, a major calcium binding protein in the lumen of the ER 

(Macer et al., 1988). The name calreticulin was proposed by Koch’s group, describing that 

this protein binds calcium and that it localizes to the endoplasmic reticulum (Smith and Koch, 

1989). Also calnexin was discovered under different names (pp90, p88, IP90) by several 

groups. Wada et al (1991) identified the phosphoprotein pp90 during their search for proteins 

that were phosphorylated by the kinase activity associated with ER membranes. They noticed 

a high sequence similarity with calreticulin and therefore they proposed the name calnexin 

(Wada et al., 1991). Degen and Williams (1991) found p88 in search of interaction partners 

for class I histocompatibility molecules. There it was already suggested that the dissociation 

of the class I molecules from p88 might be a rate limiting step in ER to Golgi transport. 

Hochstenbach et al (1992) identified IP90 as a 90kDa protein that immunoprecipitated with 

the T-cell receptor, during its assembly.  

Calreticulin is a luminal protein and calnexin is a type I membrane protein. They share several 

features and have an overall sequence similarity of 39% (Williams, 2006). Both proteins are 

composed of a P-domain and a globular domain. The globular domain is responsible for sugar 

binding. This lectin-like domain interacts with the terminal glucose residue that is found in the 

core oligosaccharide (Glu1Man9GlcNac2). This oligosaccharide is formed after cleavage of 

Glu3Man9GlcNac2 by the ER glucosidases. Both, Calnexin and calreticulin bind ATP but do 

not possess ATPase activity (Ou et al., 1995; Corbett et al., 2000). Whether ATP binding is 

absolutely required for sugar binding in vivo remains unanswered.  

The ER localization of calnexin is mediated by the RKPRRE sequence (Rajagopalan et al., 

1994). As a soluble protein, Calreticulin has a KDEL retrieval sequence to ensure its ER 

localization (Sonnichsen et al. 1994). Additionally, its calcium binding domain seems also to 

contribute to the ER localization of calreticulin but the mechanism behind this is not clear. 

Calreticulin and Calnexin bind transiently to membrane and soluble glycoproteins and the 

interaction is prolonged if these glycoproteins are misfolded or misassembled. Both proteins 
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have specificity for monoglucosylated polymannose proteins (Hammond and Helenius, 1994). 

This was initially shown for calnexin by the Helenius group who found that calnexin bound to 

an ER retained temperatures sensitive mutant of VSVG, in its monoglucosylated form 

(Hammond et al., 1994). Additionally, treatment with glucosidase inhibitors like 

castanospermine or deoxyonjirimicin inhibits association of calnexin with its substrate 

(Hammond et al., 1994; Helenius et al., 1997). Calnexin and calreticulin show a high degree 

of similarity and therefore it is not surprising that they can partially associate also with the 

same glycoproteins. The influenza hemagglutinin (HA), a transmembrane glycoprotein, 

interacted with calnexin and also calreticulin simultaneously (Hebert et al., 1997). They can 

also bind both to class I MHC molecules, but in this case consecutive binding was observed. 

First calnexin associates with the heavy chain of MHC-I, but as soon as the heavy chain has 

oligomerized with the β2-microglobulin subunit it is replaced by calreticulin (Sadasivan et al., 

1996). Some other glycoproteins bind exclusively only to one of the two chaperones. Keller et 

al (1998) found that the nicotinic acetylcholine receptor α-chain only associated with 

calnexin, but not with calreticulin. By contrast, coagulation factor V was shown to interact 

only with calreticulin, but not with calnexin (Pipe et al., 1998). 

As with all lectins, it remains a matter of debate whether calnexin/calreticulin only bind to the 

glycans on proteins or whether they also interact with the protein directly. A study of Ihara et 

al. (1999) suggested that calnexin detects unfolded regions in a protein and binds to them. 

Additional evidence for a lectin-independent activity came from studies with mutants lacking 

lectin function. Lectin-deficient mutants of calnexin and calreticulin were still able to work as 

a functional chaperone in MHC-I processing (Leach and Williams, 2004; Ireland et al., 2008).  

1.3.6 ER degradation enhancing α-mannosidase-like proteins (EDEMs) 
EDEMs are proteins that are involved in ER associated degradation (ERAD) (Olivari and 

Molinari, 2007). So far three isoforms have been discovered: EDEM1, EDEM2 and EDEM3 

(Mast et al., 2005; Olivari et al., 2005; Hirao et al., 2006). Originally it seemed that EDEM1 

is a type II integral membrane protein. This was suggested using HA-tagged EDEM1 

overexpressed in COS cells (Hosokawa et al., 2001). Later it turned out that all EDEMs are 

soluble ER localized proteins (Olivari et al., 2005; Hirao et al., 2006; Olivari and Molinari, 

2007). An inefficient cleavage of the signal sequence in different cell lines might explain the 

different results. All EDEMs are N-glycosylated proteins, containing high mannose residues 

indicating that they are not transported to the Golgi apparatus. They all show sequence 

similarity to α-1,2 mannosidases. Until recently, EDEM1 and EDEM2 were considered to 

lack enzymatic activity. Meanwhile, a recent paper demonstrated increased de-mannosylation 
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activity upon overexpression of EDEM1, although a direct proof for enzymatic activity is still 

missing (Olivari et al., 2006). EDEM3 was also shown to have α-1,2 mannosidase activity. 

Overexpressed EDEM3 stimulated mannose trimming of a misfolded α1-antitrypsin mutant 

and accelerated its degradation. A catalytic inactive mutant of EDEM3, had no effect on 

mannose processing and showed only slight acceleration of ERAD (Hirao et al., 2006). This 

again suggests that EDEM3 is catalytically active.  

 Htm1p the yeast homolog of EDEM, that is implicated in ERAD of glycoproteins, is 

catalytically inactive (Jakob et al., 2001). EDEM1 binds preferentially to glycoproteins 

containing a Man8GlcNac2 glycan, a modification which has been shown to serve as a tag for 

degradation in yeast (Jakob et al., 1998). EDEM1 and EDEM2 overexpression accelerates the 

degradation of misfolded α1-antitrypsin (Hosokawa et al., 2001; Olivari et al., 2005). EDEM1 

was shown to interact directly with calnexin (Molinari et al., 2003). This indicates that EDEM 

accepts misfolded glycoproteins directly from calnexin. Overexpression of EDEM1 enhances 

this process leading to an accelerated degradation of the terminally misfolded substrate 

(Hosokawa et al., 2006). EDEM1 prevents aggregation of ERAD substrates, which would 

disturb retrotranslocation. EDEM was further shown to inhibit aggregation of a folding 

defective α1-antitrypsin mutant or BACE457 (Hosokawa et al., 2006; Olivari et al., 2006). 

All these data show that EDEMs are somehow involved in ERAD, but the precise 

mechanisms need to be further elucidated. 

1.3.7 OS-9 and XTP-3/Erlectin 
OS-9 and XTP-3 are two lectin-like proteins with a role in ER associated degradation. OS-9 

was originally discovered using a chromosome microdissection-based hybrid-selection 

strategy to identify genes upregulated in osteosarcoma (Su et al., 1996). XTP-3/erlectin was 

discovered in a proteomic approach in search for interaction partners of the Dickkopf co-

receptor Kremen 2 (Cruciat et al., 2006). The yeast homologue Yos9p exhibits 15% identity 

with OS-9 and XTP-3 (Bhamidipati et al., 2005). Yos9p is part of a complex involved in 

ERAD of glycoproteins (Buschhorn et al., 2004; Bhamidipati et al., 2005; Kim et al., 2005; 

Szathmari et al., 2005). A similar role has been demonstrated for OS-9 and XTP-3 

(Christianson et al., 2008). OS-9 and XTP-3 are both ER resident glycoproteins, containing 

high mannose glycans. Both were shown to interact via the SEL1 adaptor with Hrd1 

(Hosokawa et al., 2008). Hrd1 is an ubiquitin ligase involved in ERAD. Knockdown of OS-9, 

but not of XTP-3 slowed down the degradation of a misfolded α1-antitrypsin mutant 

(Christianson et al., 2008). A study by Hosokawa et al (2009) showed that OS-9 binds to N-

glycans lacking the terminal mannose from the C-branch in vitro. This interaction is mediated 
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by the mannose 6-phosphate receptor homology (MRH) domain of OS-9. OS-9 interacts with 

the chaperone Grp94, which might improve substrate recognition (Christianson et al., 2008). 

XTP-3 has two MRH domains, which implicates that it is also involved in N-glycan 

recognition. XTP-3 bound to a misfolded antitrypsin mutant and this interaction was 

dependent on the MRH domain (Yamaguchi et al., 2009). Interestingly XTP-3 was also 

shown to interact with a misfolded non-glycosylated variant of transthyretin, that OS-9 could 

not bind (Christianson et al., 2008). Further work has to be conducted on the exact mode of 

actions of these two proteins, 

1.3.8 Mannose-6 phosphate receptors 
Mannose-6-phosphate receptors (MPRs) belong to the family of P-lectins (Dahms and 

Hancock, 2002). The P-lectins are characterized by the ability to recognize phosphorylated 

mannose residues. The P-lectins comprise only two members in mammals the cation 

dependent MPR (CD-MPR/MPR46) (Hoflack and Kornfeld, 1985) and the cation independent 

MPR/insulin-like growth factor II receptor (CI-MPR/MPR300) (Sahagian et al., 1981; Ghosh 

et al., 2003). They are both type-I transmembrane proteins that localize to the TGN, early 

sorting endosomes, late endosomes and also at the plasma-membrane (Geuze et al., 1985; 

Griffiths et al., 1988) The MPRs mediate the transport of lysosomal hydrolases to the 

lysosomes (Kyle et al., 1988; Jin et al., 1989). The interaction of the MPRs with the 

lysosomal enzymes occurs via binding to their mannose-6-phosphate (M6P) residues (Braulke 

and Bonifacino, 2009). Lysosomal hydrolases acquire this modification by phosphorylation of 

mannose residues in their high mannose glycan chains in the Golgi (Lazzarino and Gabel, 

1989). Binding of MPRs to lysosomal enzymes occurs in the TGN (Geuze et al., 1985). CD-

MPR has one M6P binding site and CI-MPR has two high affinity and one low affinity M6P 

binding site (Hancock et al., 2002; Reddy et al., 2004). The receptor-ligand complex is sorted 

into clathrin coated transport intermediates. The sorting signal for this process resides in the 

cytosolic tail of the MPRs. The minimal motif consists of DXXLL and is often surrounded by 

other acidic amino acids. These signals are known as acidic-cluster-dileucine signals 

(DDSDEDLL” in CI-MPR and EESEERDDHLL” in CD-MPR) (Johnson and Kornfeld, 

1992a; Johnson and Kornfeld 1992b; Chen et al., 1997). This motif mediates interaction with 

clathrin adaptor proteins called GGAs (Puertollano et al., 2001; Zhu et al., 2001; Misra et al., 

2002). In addition, the MPRs were shown to interact with AP-1, an adaptor protein found in 

clathrin-coated vesicles (Mauxion et al., 1996). After the receptor/ligand complex has reached 

the endosomes, dissociation of the MPR from the acidic hydrolases occurs and the MPR 

cycles back to the Golgi for another round of transport (Duncan and Kornfeld, 1988). As is 
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the problem with many lectins, the actual site where receptor and ligand dissociate is not 

clear. It is still a matter of debate if the MPR/ligand complexes enter early (Ludwig et al., 

1991; Press et al., 1998; Waguri et al., 2003) or late endosomes (Bucci et al., 2000) and where 

the complex finally dissociates. Recycling of the MPR to the Golgi is achieved by TIP47 and 

the retromer complex. The retromer is a conserved complex of the five proteins Vps35p, 29p, 

26p, 17p, and 5p, originally discovered in yeast. The complex is involved in transport from 

endosomes to the TGN (Seaman et al., 1997; Seaman et al., 1998; Haft et al., 2000). In cells 

derived from Vps26 knockout mice, the CI-MPR lost its Golgi localization and was found at 

the plasma membrane (Seaman, 2004). Several other proteins have been implicated in 

retrograde transport of MPRs like clathrin, AP-1 (Meyer et al., 2000; Meyer et al., 2001) and 

PACS-1 (Wan et al., 1998; Crump et al., 2001). 

In addition to its role in lysosomal enzyme transport the CI-MPR has an important role in the 

regulation of IGF-II levels. About 10% of the CI-MPR escape the retrieval mechanism back 

to the TGN and reach the plasma-membrane where it is involved in the endocytosis of IGF-II. 

After internalization, IGF-II is targeted to lysosomes for degradation. The recognition of IGF-

II occurs independently of mannose-phosphate residues (Ghosh et al., 2003). Although the 

MPRs comprise only two members, several proteins comprise a domain homologous to the 

MPRs (mannose 6-phosphate receptor homology :MRH) like glucosidase-II, OS-9 and XTP-

3. 

1.4 Quality control 
Quality control of proteins ensures that only correctly folded and correctly assembly newly 

synthesized proteins can exit the ER. This requires correct co-and posttranslational 

processing. Problems in this process, either caused by changes in the protein structure due to 

genetic mutations or by environmental influences like temperature or pH changes, lead to 

misfolded proteins (Herczenik and Gebbink, 2008).  

It is important for cell survival to avoid the formation or at least the longer persistence of 

misfolded proteins within a cell. Otherwise misfolded proteins form intra-or extracellular 

deposits and induce cellular toxicity (Broadly and Hartl, 2009). This mechanism is observed 

in the pathophysiology of many diseases like Alzheimer’s disease, Parkinson’s disease or 

Huntington’s disease (Herczenik and Gebbink, 2008). Misfolded proteins induce ER stress 

and this leads to a process called the unfolded protein response (UPR). UPR is an intracellular 

signalling pathway activated in response to accumulation of unfolded proteins in the ER. This 

includes transcriptional upregulation of proteins involved in quality control and protein 

transport (Ng et al., 2000; Nyfeler et al., 2003; Acosta-Alvear et al., 2007), attenuation of 
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global protein translation to reduce protein load and degradation of unfolded proteins. In case 

these mechanisms fail to restore the balance in the cell, apoptosis is induced by mitochondria-

dependent and independent mechanisms (Malhotra and Kaufman, 2007). As a cell wants to 

avoid all these negative effects, there are a couple of mechanisms involved in quality control 

of proteins (Ellgaard et al., 1999). Primary quality control affects all newly synthesized 

proteins in the ER and is therefore usually referred to as ER quality control (Ellgaard and 

Helenius, 2003). Secondary quality control is only necessary for selected proteins and protein 

families. 

1.4.1 ER quality control 
ER quality control was first discovered studying the intracellular transport of viral proteins. 

Different misfolded viral membrane proteins were shown to be retained at the site of synthesis 

(Gething et al., 1986; Kreis and Lodish, 1986). ER quality control is controlled by chaperone 

and co-chaperone proteins. 

1.4.1.1 Chaperones 
A main role in ER quality control is accomplished by chaperones. Chaperones are necessary 

to avoid aggregation, promote correct folding and correct assembly of the newly synthesized 

proteins and lead to their correct membrane translocation. Chaperones were originally defined 

as a family of unrelated classes of proteins that mediate the correct assembly of other 

polypeptides, but are not themselves components of the final functional structures (Ellis and 

Hemmingsen, 1989). In general they bind to protein folding intermediates, but not to correctly 

folded and assembled proteins. They recognize these folding intermediates via exposed 

hydrophobic patches or via exposed reactive cysteines. The lectin chaperones like calnexin 

and calreticulin also recognize sugar groups.  

The major part of ER chaperones is made up by three families of heat shock proteins (Hsp) 

Hsp70, Hsp40 and Hsp90. The Hsp70 family includes BiP (immunoglobulin binding protein) 

which is also called glucose-regulated protein of 78 kDa (GRP78) and GRP170 (Ellgaard et 

al., 1999). BiP/Grp78 is one of the most widely studied and most abundant chaperones. It is 

involved in protein translocation by sealing the Sec61 translocation channel and by binding to 

freshly synthesized proteins as they leave the translocation channel to prevent them from 

slipping back (Vogel et al., 1990). BiP also helps in protein folding (Knittler and Haas 1992). 

Whereas interaction with newly synthesized proteins during the translocation process is only 

transient, BiP stays covalently bound to unfolded or aggregated proteins (Gething et al., 1986; 

Marquardt and Helenius, 1992). Two domains are important for BiP’s chaperone function: the 
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N-terminal ATPase domain and the C-terminal substrate binding domain. These domains are 

conserved among the Hsp70s family members (Saibil, 2008). BiP binds predominantly 

aliphatic amino acids (Flynn et al., 1991; Blond-Eguindi et al., 1993). Binding as well as the 

release of the proteins is dependent on binding to and hydrolysis of ATP (Flynn et al., 1989) 

BiP also regulates the UPR as it binds to the three main proteins involved in ER stress 

response ATF6 (Shen et al., 2005), IRE1 (Okamura et al., 2000) and PERK (Bertolotti et al., 

2000) and keeps them inactive. An increase in amount of folding intermediates will release 

BiP from ATF6, IRE1 or PERK, thereby increasing their activity and inducing the UPR.  

Much less is known about GRP170 the other ER localized member of the Hsp70’s family. Its 

yeast homolog Lhs1 was shown to bind Kar2p/BiP where it might serve as a nucleotide 

exchange factor for Kar2p. Kar2p stimulates ATP hydrolysis of Lhs1p in return (Steel et al., 

2004). Whether GRP170 works the same way in mammalian cells has to be investigated. 

GRP94/gp96 belongs to the Hsp90 family. It was found in a complex with BiP and newly 

synthesized immunoglobulin chains (Melnick et al., 1992). Later it was shown that the two 

chaperones work in a consecutive manner. BiP binds to a disulfide intermediate of the newly 

synthesized immunoglobulin chain. After BiP has released the protein, Grp94 binds to the 

fully oxidized form of the immunoglobulin chain (Melnick et al.; 1994). Substrates of Grp94 

include mutant alpha-1-antitrypsin (Schmidt and Perlmutter, 2005) thyroglobulin (Kuznetsov 

et al., 1994) and apolipoprotein B (Linnik and Herscoitz, 1998). The ability to bind and 

hydrolyze ATP is essential for the function of GRP94 (Ostrovsky et al., 2009). 

1.4.1.2 Co-chaperones 
Chaperones are assisted by Co-chaperones like ERdjs or Sil1/BAP, but also by proline 

isomerases (PPIases, cyclophilins) or thiol-disuphide oxidoreductases (PDI, Ero1α and β).  

ERdjs are members of the Hsp40s/DNAJ family (Qiu et al., 2006). So far seven isoforms have 

been discovered (Dudek et al., 2009) which all contain a J-domain. They interact with BiP via 

their J-domain and are able to stimulate ATP hydrolysis in vitro. ERdj3 binds to misfolded 

and unfolded proteins and recruits BiP (Shen et al., 2005). ERdj5/JPDI has in addition to its J-

domain, a PDI-like domain and a thioredoxin domain (Cunnea et al., 2003; Hosoda et al., 

2003). Erdj5 cleaves disulfide bonds of misfolded proteins and is involved in ER associated 

degradation (Ushioda et al., 2008). 

Another BiP cofactor is Sil1/BAP. This protein works as a nucleotide exchange factor for BiP 

(Chung et al., 2002). 

Thiol-disulfide-oxidoreductases and peptidyl-prolyl-isomerases are factors that assist 

chaperones. Thiol-disulfide oxidoreductases catalyse oxidation, isomerisation and reduction 
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of disulfide bonds. Inter- and intramolecular disulfide bond formation is a rate-limiting step in 

the process of protein folding (Hatahet and Ruddok, 2007; Creighton, 1979). The protein 

disulfide isomerase (PDI) family plays an important role in the correct disulfide bond 

formation. The PDI family comprises 19 members (Appenzeller-Herzog and Ellgaard, 2008). 

They all share a domain that is homologous to the cytosolic reductase thioredoxin and is 

therefore called thioredoxin-like domain which is characterized by a CXXC motif (Ellgaard 

and Ruddock, 2005). During disulfide bond formation the two cysteines in the CXXC motif 

become reduced and are re-oxidized by the flavoenzyme Ero1. There are two isoforms in 

humans, Ero 1-Lα and Ero 1-Lβ (Cabibo et al., 2000; Pagani et al., 2000). In addition, PDI is 

involved in disposal of misfolded proteins via ERAD (Molinari et al., 2002). Another 

important member of the PDI family is Erp57, an oxidoreductase specialized on glycoproteins 

(Molinari and Helenius, 1999; Oliver et al., 1999). Erp57 interacts with calnexin and 

calreticulin (Ellgaard et al., 2001; Frickel et al., 2002; Leach et al., 2002). It is involved in 

correct folding of several glycoproteins like clusterin and several integrins (Jessop et al., 

2007). The activity of Erp57 seems to depend on the lectin activity of calnexin/calreticulin. 

Treatment with glucosidase inhibitors that inhibit association of glycoproteins with calnexin 

and calreticulin was found to inhibit also their association with Erp57 (Di Jeso et al., 2005). 

Thiol-oxidoreductases, especially Erp44 are involved in a process called thiol-mediated 

retention (Isidoro et al., 1996; Reddy and Corley, 1998; Anelli et al., 2003; Anelli et al., 

2007). The thiol-oxidoreductase interacts with free cysteines of the substrate and keeps it 

thereby in the ER. One example for thiol-mediated retention was shown for IgMs. B-cells 

usually do not secrete IgM, because thiol-mediated retention inhibits IgM secretion. Mutation 

of Cys575 in IgM inhibits its thiol-medited retention by Erp44 and therefore IgM becomes 

secreted (Alberini et al., 1990; Anelli et al., 2003). Erp44 cooperates with ERGIC-53 to allow 

only export of correctly assembled IgM polymers (Anelli et al., 2007).  

Finally, peptidyl-prolyl isomerases catalyze the cis-trans isomerisation of peptidyl-prolyl 

bonds (Gothel and Marahiel, 1999; Chantal et al., 2008). Three main families exist. The 

cyclophilins, the FK506-binding proteins (FKBP) and the parvulins. Cyclophilins and FKBP 

interact with chaperones in the ER. Mouse FKBP32 was shown to interact with BiP in a 

calcium dependent manner and to modulate its ATPase activity (Zhang et al., 2004; Wang et 

al., 2007). Cyclophilin has been found to be part of a whole ER chaperoning network 

(Meunier et al., 2002). This network consists of BiP, GRP94, CaBP1, PDI, ERdj3, cyclophilin 

B, ERp72, GRP170, UDP-glucosyltransferase and SDF2-L1.  
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1.4.1.3 N-glycan dependent quality control-the calnexin/calreticulin cycle 
Glycoproteins undergo a different kind of quality control than non-glycoproteins. This N-

glycan dependent quality control was initially postulated by Hammond and Helenius (1994). 

The initial step in N-glycan dependent quality control is the addition of the 14 saccharide core 

unit (Glc3Man9GlcNAc2) from a dolichol P-P derivative to an Asn residues in an N-X-S/T 

motif in a nascent polypeptide chain (Helenius and Aebi, 2004). This glycan chain is then 

further modified through the action of two glucosidases (glucosidase I and glucosidase II). 

The resulting Glc1Man9GlcNAc2 chain serves as a substrate for the ER resident lectin 

chaperones calnexin and calreticulin. 

Two different modes have been proposed for CNX and CRT: the lectin-only-model (i.e. only 

sugar-dependent) and the dual binding model (i.e. sugar- and peptide-dependent). In the 

lectin-only-model the interaction is mediated primarily by monoglucosylated glycans. CNX 

and CRT showed the same affinity for monoglucosylated RNAseB irrespective of whether the 

protein was native or not (Rodan et al., 1996). In this model the lectin substrate is bound 

while other enzymes/proteins like Erp57 may act on it and influence its dissociation from 

CNX/CRT (Kornfeld and Kornfeld, 1985; Oliver et al., 1999). The lectin-only model is 

supported by experiments with the glucosidase inhibitor castanospermine. Castanospermine 

blocks glucose trimming of the core oligosaccharide preventing binding to CNX or CRT. 

Treatment with castanospermine inhibited association of tyrosinase with calnexin which 

resulted in a more rapid folding, but also in an inactive enzyme (Branza-Nichita et al., 1999).  

The dual binding model proposes that a combined interaction with the oligosaccharide and the 

protein backbone occurs (Ihara et al., 1999). In this model CNX/CRT would bind for example 

hydrophobic patches in non-native glycoproteins and thereby suppress their aggregation 

(Williams, 2006). A combination of glycans and polypeptide determinants would increase the 

affinity for a substrate. Zhang et al (1995) proposed a model where the glycans are only 

important for initial substrate binding. As soon as the complex between calnexin and its 

substrate is formed the sugar would be less or not important anymore. In this model 

dissociation would occur after glucose trimming by glucosidase-II combined with a 

conformational change of the substrate.  

If the protein is not correctly folded it is reglucosylated by the UDP-Glc: glycoprotein 

glucosyltransferase (GT) (Parodi et al., 1984). GT is primarily a soluble ER resident protein, 

but it also localizes to pre-Golgi intermediates (Zuber et al., 2001). So far two isoforms of GT 

have been discovered in mammalian cells (Arnold, 2000). They share about 55% sequence 

identity. But only the isoform GT1 seems to be functional, at least in an in vitro assay. GT 

utilizes UDP-glucose as a glucosyl donor. GT adds a single glucose to the terminal mannose 
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of the α (1-3)-α(1-2) branch/A-branch and forms again the Glc1Man9GlcNAc2 chain 

(Helenius et al., 1997; Van Leeuwen and Kearse, 1997). The activity of GT depends on 

calcium (Trombetta and Parodi, 1992) and the amount of mannose molecules present in the 

oligosaccharide side chain of the substrate (usually between seven and nine). GT does not 

recognize high mannose oligosaccharides alone. The oligosaccharide needs to be attached to 

incompletely folded proteins where GT interacts with hydrophobic patches (Trombetta and 

Parodi, 1992; Caramelo et al., 2003). This suggests that GT is involved in a later step in 

glycoprotein folding. As soon as the glycoprotein is back in its monoglucosylated form, the 

glycoprotein re-enters the Calnexin/Calreticulin cycle to obtain correct folding (Fig.7). This 

process is repeated until the correct conformation is achieved (Van Leeuwe and Kearse, 1997; 

Wada et al., 1997). Some proteins need several turns of this cycle. This is for example true for 

the human β-secretase BACE 501. In contrast, the VSVG protein needs only one turn for 

complete folding (Soldá et al., 2007).  

 
Figure 7 Calnexin/Calreticulin cycle: Proteins are translocated into the lumen of the endoplasmic 
reticulum and the core oligosaccharide is added. Upon removal of two glucose residues by 
glucosidase I and glucosidase II, the glycoprotein enters the calnexin/calreticulin cycle in its 
monoglucosylated form [1 .Calreticulin assists in the folding of the glycoprotein. The glycoprotein is 
released from CNX/CRT upon the cleavage of the glucose residue by glucosidase II (GluII) [2]. In 
case the protein is folded correctly it will be targeted for ER export [3b]. Otherwise it becomes 
reglucosylated by the UDP-glucose-glycoprotein transferase (GT) [3a] and the cycle starts from new 
[4]. In case the protein is terminally misfolded it will be targeted to ER associated degradation. This 
process is initiated by ER mannosidase I [3c] that cleaves one mannose residue from the B-branch of 
the glycoprotein. The protein is then bound by an unknown lectin (perhaps EDEM) and then subjected 
to degradation. 
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1.4.2 Secondary quality control  
Secondary quality control includes different mechanisms that only apply for a specific set of 

proteins (Elgaard et al., 1999). Proteins involved in secondary quality control help in the 

assembly of the proteins or work as escort proteins. Typically these proteins are dedicated to 

assist only a particular protein. In yeast Vma12p-Vma22p assist the vacuolar H+-ATPase in 

the correct assembly of its subunits (Graham et al., 1998). Escort proteins assist their binding 

partner in trafficking through the secretory pathway. The receptor associated protein (RAP) 

binds to the lipoprotein receptor-related protein (LRP). This leads to aggregation of LRP and 

reduced ligand binding. As soon as the complex reaches the Golgi it dissociates upon pH 

change. The KDEL receptor binds to the HNEL sequence in the C-terminus of RAP and 

transports it back to the ER for another round of escort (Bu et al., 1995). 

Some proteins need specialized chaperones for their folding. The large protein procollagen 

needs Hsp47 and prolyl-4-hydroxylase for its correct folding. Prolyl-4-hydroxylase 

recognizes and retains unfolded procollagen in the ER (Walmsley et al., 1999). Hsp47 seems 

to bind unfolded as well as correctly folded procollagen. Hsp47 binds to procollagen in the 

ER and releases it in the Golgi (Satoh et al., 1996). 

If all quality control mechanisms fail to provide a correctly folded and correctly assembled 

protein, this terminally misfolded protein will be targeted to degradation. 

1.4.3 ER-associated degradation (ERAD) 
Terminally misfolded proteins undergo a degradation process known as ER associated 

degradation (ERAD). Around 30% of all newly synthesized proteins were shown to undergo 

this degradation process. Initial evidence for an ER associated degradation pathway came 

from work on the T-cell receptor complex where the degradation of some subunits could not 

be inhibited by lysosomal inhibitors. Therefore the idea came up that degradation either 

occurs in the ER itself or in an unidentified compartment (Chen et al., 1988; Lippincott-

Schwartz et al., 1988). It was speculated that an unidentified protease might be involved in 

this process (Finger et al., 1993). Subsequent work in yeast showed that degradation did not 

occur in the ER itself. A loss of function mutant of an ubiquitin conjugating enzyme (UBC6) 

rescued the protein translocation defect induced by a Sec61 mutant (Sommer and Jentsch, 

1993). The same results were obtained for the loss of function mutant of another ubiquitin 

conjugating enzyme (Biederer et al., 1996). These findings implied a role of the proteasome in 

the ER associated degradation. The first evidence that mammalian cells use a similar 

mechanism for protein disposal came from work on CFTR. CFTR is a transmembrane protein 

that works as a chloride channel. The folding of the wild type protein is already very 
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inefficient. Around 40% of the newly synthesized proteins are degraded (Lukacs et al., 1994). 

Jensen et al. (1995) found that ER associated degradation could be inhibited with proteasomal 

inhibitors. Upon proteasomal treatment a polyubiquitinated form of CFTR accumulated, 

indicating that degradation was dependent on ubiquitination (Ward et al., 1995). Further work 

showed that this process also applied to soluble proteins. Misfolded carboxypeptidase Y 

(CPY*) was shown to be degraded in a proteasome-dependent manner by retrotranslocation 

from the ER (Hiller et al., 1996).  

There is a tight connection between chaperones and ERAD. Chaperones maintain solubility of 

the ERAD substrates. If ERAD substrates aggregate, they are not degraded and accumulate. 

Lumenal soluble proteins are targeted to the ERAD with the help of BiP (Nishikawa et al., 

2001). In mammals BiP substrates subsequently interact with the cytoplasmic protein Herp. 

Knockdown of Herp affected specifically non-glycosylated BiP substrates, but had no effect 

on the degradation of glycosylated CNX/CRT-substrates (Okuda-Shimizu and Hendershot, 

2007). Herp was found in a complex with derlin1 and the 26S proteasome and could therefore 

directly link the substrate to the proteasome. Membrane proteins with a large cytosolically 

localized portion need the help of cytosolic chaperones. Misfolded CFTR associates with 

cytoplasmic Hsc70. Drug induced dissociation of Hsc70 from the CFTR either by 

downregulation of Hsc70 or binding competition lead to an increased export of the protein. 

(Jiang et al., 1998; Rubenstein and Zeitlin, 2000). Certain co-factors help the chaperones to 

target the substrates to degradation. In the case of CFTR degradation the E3-ubiquitin-protein 

ligase CHIP acts as a co-factor for Hsc70.  

ERAD processes for glycoproteins depend on a different subset of proteins. One of the 

proteins that play a major role in degradation is ER mannosidase I (Herscovics, 2001). ER 

mannosidase I is a slow-acting α1,2-mannosidase. Inhibition of the ER mannosidase I by 

kifunensine and deoxymannojirimycin inhibits degradation of misfolded glycoproteins (Su et 

al., 1993). This has been shown for several glycoproteins like misfolded alpha1-antitrypsin 

(Liu et al., 1999) or ribophorin 1 (Kitzmüller et al., 2003). ER mannosidase I cleaves one 

mannose residue resulting in Man8GlcNac2 isomer B. This serves two purposes. First the 

affinity of GT for mannose trimmed substrates is much lower and reglucosylation is less 

likely to occur (Sousa et al., 1992). Second this glycan is the ideal target for the lectin-like 

proteins EDEMs (ER degradation enhancing α-mannosidase-like proteins) (Hosokawa et al., 

2001). It has been proposed that EDEMs accept substrates directly from calnexin and target 

them to degradation (Molinari et al., 2003; Oda et al., 2003). The cleavage of the mannose 

residue is therefore a rate limiting step in the degradation process. These observations led to 
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the mannose timer hypothesis (Su et al., 1993). The slow action of the mannosidase provides 

a window in which correct folding should occur. If the proteins are terminally misfolded, the 

ER mannosidase I finally cleaves the mannose residue and the protein is targeted to ERAD. It 

seems to be important that the mannose residue on the A branch, which serves as an acceptor 

for the glucose transferred by GT is removed (Foulquier et al., 2002; Frenkel et al., 2003; 

Kitzmüller et al., 2003; Foulquier et al., 2004). ER mannosidase also cleaves additional 

mannose residues from the B-branch but very high concentrations are required for this 

(Herscovics et al., 2002). To achieve such high levels in the cell, it would be necessary to 

concentrate the enzyme at certain sites. It has been suggested that this occurs in a special 

compartment termed ER quality control compartment (Kamhi-Nesher et al., 2001; Avezov et 

al., 2008). This compartment is probably a subcompartment of the ER and referred to as the 

ER quality control (ERQC) compartment. The ERAD substrate asialoglycoprotein receptor 

(H2a) accumulated in this compartment together with calnexin and calreticulin after 

proteasomal inhibition (Kamhi-Nesher et al., 2001). Beside the ER mannosidase also other 

proteins have been implicated in the process of mannose removal. The lectin-like proteins 

EDEM1, and EDEM3 were both shown to accelerate mannose removal upon overexpression 

(Hirao et al., 2006). Whether this is due to a direct or indirect effect remains to be clarified. 

Based on this we may have to modify the initial timer hypothesis. In this revised model 

mannose trimming and reglucosylation take turns, until the GT is not able to reglucosylate the 

protein anymore. Then the protein is targeted to ERAD (Lederkremer and Glickman, 2005). 

The group of Lederkremer provided a model where part of this process takes place in the 

ERQC. The ERAD substrate would move into the ERQC for mannose removal and then it 

recycles back to the peripheral ER for reglucosylation (Kamhi-Nesher et al., 2001).  

Beside the oligosaccharide composition, the context of the N-glycan in the protein also 

contributes to the selection for ERAD (Spear and Ng, 2005; Mbonye et al., 2006; Mbonye et 

al., 2008). The misfolded protein CPYΔ1 is recognized by the ER quality control machinery, 

but not targeted to ERAD. The deletion removed the N-glycosylation site nearest to the C-

terminus. Experiments in htm1p deletion strains suggested that this glycan interacts 

specifically with htm1p and is thereby targeted to ERAD (Spear and Ng, 2005).  

Protein retrotranslocation is assumed to occur via a channel. There is growing evidence that 

the translocation channel Sec61 could fulfill this role in yeast as well as in mammals (Wiertz 

et al., 1996; Plemper et al., 1997). Mutant Sec61, delayed for example, ERAD of CPY* in 

yeast (Plemper et al., 1997). However, there is growing evidence that retrotranslocation of 

misfolded proteins is not only achieved by Sec61, because retrotranslocation still occurs in 
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Sec61 mutants (Huyer et al., 2004). In addition not all soluble proteins seem to depend on 

Sec61 for retrotranslocation. In vitro experiments showed that retrotranslocation of 

nonglycosylated pro-alpha factor was dependent on Der1p (Degradation in the ER) rather 

than on Sec61 (Wahlman et al., 2007). Other studies support the view that Der1p may 

constitute part of the retrotranslocation channel in yeast (Knop et al., 1996; Carvalho et al., 

2006). Der1p has three homologs in mammals: Derlin-1, Derlin-2 and Derlin-3 (Ye et al., 

2004; Oda et al., 2006). There is increasing evidence suggesting that Derlin-1 might also 

constitute part of a retrotranslocation channel in mammals (Lilley and Ploegh, 2004; Ye et al., 

2004; Younger et al., 2006). Beside derlins, the E3 ubiquitin ligases Doa10p and Hrd1 were 

also proposed to form a translocation channel. Both proteins are multispanning membrane 

proteins, which would allow intramembrane substrate recognition. They could play a role in 

degradation of misfolded integral membrane proteins (Nakatsukasa and Brodsky, 2008). 

Further work is needed to validate this hypothesis. 

Retrotranslocated proteins destined for degradation are covalently modified by the attachment 

of ubiquitin molecules. This polyubiquitin chain may then function in a ratcheting 

mechanism, preventing the substrate of slipping back into the ER (Riezman, 1997; Tsai et al, 

2002). Upon inhibition of ubiquitination proteins do not accumulate in the cytosol, but 

associate with the lumen of the ER (de Virgilio et al., 1998). This could mean that 

polyubiquitination is needed for the process of retrotranslocation itself. The polyubiquitin 

chain could also serve as a targeting signal recognized by ubiquitin binding proteins (Flierman 

et al., 2003).  

Depending on the location of the defect, different ERAD pathways were suggested. ERAD-C 

is for proteins with a defect in their cytosolic domain, ERAD-M is for proteins with defects in 

their transmembrane region and ERAD-L is for proteins with defects in their luminal domain 

(Swanson et al., 2001; Vashist and Ng, 2004; Carvalho et al., 2006; Gauss et al., 2006). 

ERAD-C requires the ubiquitin ligase Doa10p (Swanson et al., 2001). ERAD-L needs a 

complex consisting of the transmembrane ubiquitin ligases Hrd1p/Hrd3p, Der1p and Usa1p. 

This complex associates with the lectin-like protein Yos9p. Hrd1p/Hrd3p is also necessary for 

ERAD-M, which differens from ERAD-L by being independent of Usa1p and Der1p. In 

addition to ubiquitination, glycoproteins are deglycosylated by peptide: N-glycanase 

(PNGase) before degradation (Hirsch et al., 2003; Blom et al., 2004). PNGase is able to 

distinguish between folded and unfolded proteins. However, PNGase is not essential for 

glycoprotein degradation but its function may rather be to increase the efficiency of 

glycoprotein degradation.  
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Proteins belonging to the AAA+ family (ATPases associated with various cellular activities) 

play and important role in the degradation of misfolded proteins (Dai et al., 1998; Ye et al., 

2001; Jarosch et al., 2002). In yeast the cytosolic ATPase complex named Cdc48p fulfils this 

role. Its mammalian homolog is called valosin containing protein (VCP)/p97. 

Cdc48/VCP/p97 forms a hexameric ring, which associates with the ER membrane and is 

thought to pull the ERAD substrate through its central pore out of the ER. Several studies 

showed that Cdc48p/VCP/p97 recognizes the ubiquitin tag of proteins directly (Dai and Li, 

2001; Rape et al., 2001; Rabinovich et al., 2002). A chain of at least four ubiquitins is needed 

to send the protein to the proteasome (Jarosch et al., 2002). This polyubiquitin-tag is 

presumably recognized by polyubiqitin binding proteins that escort the substrates to the 

proteasome (Kim et al., 2004; Medicherla et al., 2004; Richly et al., 2005; Kim et al., 2006; 

Raasi and Wolf, 2007).  

1.4.4 Post ER quality control 
There is evidence that quality control continues beyond the ER (Arvan et al., 2002). In case 

quality control acts at a later step, the misfolded protein is either targeted back to the ER or is 

sent to the vacuole/lysosome for degradation. Most of this evidence originates from data 

obtained in yeast. The CPY cargo receptor Erv29p (Belden and Barlowe, 2001) was shown to 

be involved in degradation of a misfolded mutant of CPY (CPY*). Strains lacking Erv29p 

showed a stabilization of the misfolded protein, indicating that ER to Golgi transport is 

somehow involved in the degradation process (Caldwell et al., 2001). This could be possibly 

due to the need for a modification of the protein in the Golgi prior to degradation. A 

subsequent study by a different group showed that ER to Golgi transport in general is a 

prerequisite for ER associated degradation of CPY* (Taxis et al., 2002). Vashist et al (2001) 

compared degradation of a membrane and a soluble protein. They found that the membrane 

protein was directly retained in the ER while the soluble protein was transported to the Golgi 

in a COPII-dependent manner. From the Golgi, the protein is retrieved in COPI vesicles and 

subjected to ERAD. Post ER quality control was also shown to be present in mammalian 

cells. A misfolded VSVG mutant was not retained in the ER completely, reached the ERGIC 

and the cis-Golgi, but was then cycled back to the ER (Hammond an Helenius, 1994). During 

this transport round BiP remained bound to VSVG the whole time. Misfolding of VSVG 

which was trapped in ERES (by incubation at 10°C) did not allow exit from the ER. Instead 

VSVG was re-routed to the reticular ER. In contrast, misfolding of VSVG which was trapped 

in the ERGIC (by incubation at 15°C), did not result in its retrieval. Instead the protein was 

transported onward to the Golgi (Mezzacasa and Helenius, 2002). Another example for post 
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ER quality control was shown for the overexpressed T-cell receptor alpha chain (TCRα). 

When overexpressed, unassembled TCRα becomes degraded. However, unassembled TCRα 

cycles between ER and the Golgi. TCRα that escapes the ER remains bound to BiP. BiP is 

recognized by the KDEL receptor which mediates retrieval of the TCRα-BiP complex back to 

the ER (Yamamoto et al., 2001). Additional evidence for a post-ER quality came from 

electron microscopy studies of Zuber et al (2001). They found some of the proteins involved 

in quality control enriched in the ERGIC namely calreticulin, GT and glucosidaseII. 

Beside degradation in the ER, proteins may also be targeted to the vacuole/lysosome for 

degradation. Again far more is known in yeast than in mammalian cells about this 

mechanism. Bacterial β-lactamase is targeted from the Golgi apparatus to the vacuole for 

degradation (Holkeri and Makarow, 1998). A fusion protein between yeast invertase and a 

mutated form of bacterial lambda repressor was also shown to be targeted to the vacuole for 

degradation. This pathway is saturable, as overexpression of the fusion protein leads to its 

secretion (Hong et al., 1996; Holkeri and Makarow, 1998). A mutant of the plasma membrane 

ATPase Pma1p is not subjected to ERAD, but instead transported to the Golgi and finally 

delivered to the endosomal/vacuolar system for degradation (Chang and Fink, 1995). A 

mutant arginine permease, Can1ts, and a mutant alpha mating factor receptor Ste2-3 (both 

membrane proteins) are also subjected to vacuolar degradation. Mutants that block Golgi to 

vacuole trafficking inhibited degradation of mutant Ste2-3 (Li et al., 1999). A similar disposal 

pathway has been described for the coronavirus membrane protein E1 in mammalian cells. 

Wild type E1 localizes to the Golgi, but deletions of membrane spanning sequences or a 

deletion of a large part of the carboxyl-terminus results in lysosomal degradation (Armstrong 

et al., 1990). The lysosomal degradation pathway is also used for a lipoprotein lipase mutant. 

This mutant carries a point mutation that sends the protein to lysosomal degradation. The 

authors speculated that a different oligosaccharide processing in this mutant caused increased 

affinity for the mannose-6-phosphate receptor (Buscá et al., 1996). So far supporting 

experimental evidence for this hypothesis is lacking.  

1.5 Alpha-1-antitrypsin 
Alpha-1-antitrypsin (α1-AT) is a member of the serine protease inhibitor superfamily. It is a 

52kDa plasma protein with a half life of 4-5 days. The main function of α1-AT is the 

inactivation of serine proteases (Travis and Salvesen, 1983), especially of the human 

neutrophil elastase (Baugh and Travis, 2002). Because several serin proteases are important 

mediators of inflammation, α1-AT is critical for inflammation control. In fact, α1-AT is an 
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acute phase protein and undergoes a manifold increase after temperature elevation and 

inflammation.  

α1-AT is N-glycosylated at the three residues N70, N107 and N271. This numbering includes 

the signal sequence. In some papers α1-AT is numbered excluding the signal sequence. The 

first and the third N-glycosylation sites are occupied in 100% of the cases, while the second 

was occupied at an average of 99±1,4% under physiological conditions (Hulsmeier et al., 

2007). This second glycosylation site seems also to be most affected in several individuals 

with a congenital disorder of glycosylation type-I (Hulsmeier et al, 2007). Mutation of the 

second N-glycosylation decreased the secretion of α1-AT more than a single mutation of the 

other two N-glycosylation sites (Samandari and Brown, 1993). In accordance with this, 

Nyfeler et al. (2008) found that mutation of the second glycosylation site of α1-AT has the 

strongest impact on the affinity to its transport receptor ERGIC-53. Hepatocytes secrete the 

highest amount of α1-AT, but also other cells like bronchial epithelial cells (Cichy et 

al.,1997), type II pneumocytes (Venembre et al., 1994), neutrophile granulocytes (Paakko et 

al., 1996), and mononuclear phagocytes (Paakko et al., 1996) are able to produce it, although 

at lower amounts. Different mutations in the α1-AT gene have been identified that result in a 

partial or total α1-AT-deficiency due to secretion problems. This can cause emphysema in the 

third and fourth life decade. In addition, asthma is significantly more common in people 

suffering from α1-AT deficiency (Eden et al., 1997). α1-AT deficiency can also cause liver 

diseases like neonatal hepatitis or hepatic cirrhosis which ultimately leads to the development 

of hepatocellular carcinoma (Sveger, 1976; Eriksson et al., 1986). Especially the misfolded 

α1-AT Z variant (PIZ; Q347K) can lead to liver diseases, already early in childhood (Sveger, 

1976). One out of 27 of North European populations is heterozygote for this mutation 

(Gooptu et al., 2009). In homozygotes only 15% of the α1-AT is secreted, whereas 85% is 

retained in the ER forming aggregates (Lomas et al., 1992). Several other mutants have been 

described. The truncation of carboxy terminal amino acids results, for example, in the null 

Hong-Kong mutant. There is also one mutant which is less efficiently secreted due to a 

mutation in its first N-glycosylation site (Bristol) (Lovegrove et al., 1997). Antitrypsin was 

also shown to be closely related to the HIV infectivity outcome. The amount of total and 

active antitrypsin in the plasma of HIV patients changes during disease progression. 

Asymptomatic HIV patients show normal α1-AT levels, but the amount of active α1-AT is 

decreased. Symptomatic pre-AIDS HIV patients have normal values of active α1-AT, but the 

total amount of antitrypsin is increased (Bristow et al., 2001). α1-AT was shown to have 
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antiviral effects against the HIV virus. α1-AT inhibits entry of HIV and its intracellular 

production (Congote, 2007). Due to the important role of α1-AT in human pathologies, it is a 

key to understand its sub-cellular trafficking. A first important contribution has been made by 

Nyfeler et al (2008) who used yellow fluorescence protein (YFP) protein complementation 

assay to identify ERGIC-53 as the cargo-receptor for α1-AT.  

1.6 Protein complementation assays 
Several methods have been developed to study protein-protein interactions (Tord et al., 2007) 

including the yeast two hybrid system (Fields and Song, 1989), co-immunoprecipitation,  

covalent crosslinking (Phizicky and Fields, 1995; Ren et al., 2003) or fluorescence resonance 

transfer (FRET) (Jares-Erijman and Jovin, 2003) and protein complementation assays (PCA) 

(Morell et al., 2009). 

The pre-requisite for a protein complementation based assay is a protein reporter that can be 

cleaved into two non-active fragments, which reassemble upon close contact. Each of these 

fragments is then fused to one of two hypothetical interacting proteins (bait and prey). If the 

two proteins interact with each other, the attached reporter fragments are brought into close 

contact and assemble non-covalently to the full reporter. Usually a linker sequence of serines 

and glycines is introduced between reporter and bait/prey protein to provide flexibility. All 

protein complementation based methods were developed to trap transient protein-protein 

interactions. Several proteins were shown to be suited as reporter proteins like ubiqiquitin, 

dihydrofolate reductase (DHFR), β-lactamase, TEV protease, green fluorescent proteins and 

variants or luciferase.  

Split ubiquitin was the first protein used for protein complementation assays (PCA) (Johnsson 

and Varshavsky, 1994) (Fig.8). Ubiquitin is usually cleaved very rapidly by intracellular 

proteases. The split ubiquitin fragments are not targeted by proteases. The N-terminal 

ubiquitin fragment (UbN) is fused to protein A (A- UbN). The C-terminal ubiquitin fragment 

(UbC) is fused to protein B (B- UbC). In case protein A and protein B interact, the ubiquitin 

fragments are brought in close contact and form a native-like ubiquitin. Subsequently the 

native-like ubiquitin is cleaved by ubiquitin proteases. The UbC is fused to a small monomeric 

non-host reporter protein like HA-tagged dihydrofolate reductase. This reporter protein will 

be released upon cleavage of the ubiquitin. Transcription factors are also suitable as reporter 

proteins. Upon ubiquitin cleavage the transcription factor is released, moves into the nucleus 

and activates transcription of reporter genes (Stagljar et al., 1998).  
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Figure 8 Split-ubiquitin system: Protein A is tagged with the N-terminal part of the ubiquitin (UBN ) 
and protein B carries the C-terminal part of the ubiquitin (UBC ). A reporter molecule is attached to 
the UBC.  If the two proteins interact the fragments of the ubiquitin are brought in close contact and 
reform the full ubiquitin. Ubiquitin protease cleaves the ubiquitin and releases the reporter molecule 
from the ubiquitin. The kind of reporter determines the readout. 
 
Murine dihydrofolate reductase (DHFR)-based protein complementation was used to measure 

protein-protein interaction in bacteria in vivo (Pelletier et al., 1998). The reconstituted 

mammalian DHFR confers resistance towards the drug trimethoprim that targets bacterial 

DHFR with high affinity. Upon successful interaction of the two tested proteins, murine 

DHFR is reconstituted and the bacteria will survive on a trimethoprim containing agar plate. 

β-lactamase-based protein complementation is suitable to detect protein interactions in vitro, 

but also in vivo in mammalian cells. Upon complementation of the two β-lactamase 

fragments its enzymatic activity is reconstituted. A chromogenic substrate added to the in 

vitro reaction changes its color upon hydrolysis by β-lactamase (Galarneau et al., 2002).  

Split tobacco etch virus protease (TEV) is another system that can be used to validate protein-

protein interactions in mammalian cells (Wehr et al., 2006; Wehr et al., 2008). The TEV 

fragments are coupled to either a transcription factor or to luciferase. Upon reconstitution of 

the protease activity the transcription factor is released enters into the nucleus and activates a 

reporter gene. In case of using luciferase as reporter gene lucferin has to be added to visualize 

it. 

The bimolecular fluorescent complementation assay is based on the reconstitution of green 

fluorescent protein (GFP) or one of its variants. So far ten fluorescent proteins are suitable to 

support fluorescence complementation (Shyu and Hu, 2008). Reconstitution of the two non-

fluorescent fragments results in a fluorescent signal that can be measured by a plate reader or 

can be visualized by fluorescence microscopy. In case of using yellow fluorescent protein 

(YFP) as a reporter the N-terminal part N-YFP/YFP1 harbors amino acid 1-158 and the C-

terminal part C-YFP/YFP2 harbors amino acid 159-239 (Fig.9).  
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Figure 9: Basic principle of fluorescence complementation. Protein A is fused to the N-
terminal fragment of YFP (YFP1/N-YFP) and protein B is fused to the C-terminal fragment of 
the YFP protein (YFP2/C-YFP). In case protein A and protein B interact with each other the 
two fragments complement and YFP is reconstituted. Adapted from Morell et al., 2007 
In the lower panel the protein sequences of YFP1 (orange) and YFP2 (green) are indicated. 
 
The intensity of the fluorescent signal is highly dependent on the interaction of the bait and 

prey protein to which the fragments are fused (Morell et al., 2007). In most studies the 

reconstituted YFP complex was irreversible (Kerppola, 2008), although there are a few 

studies that claimed the interaction to be at least partially reversible (Guo et al., 2005; Cole et 

al., 2007). Bimolecular fluorescent complementation has been used successfully in bacteria, 

yeast, C. elegans and in mammalian cells (Hu et al., 2002; Cole et al., 2007; Min et al., 2007). 

The first study that showed the proof of principle for fluorescent complementation was 

performed in E.coli. GFP was split into two fragments and fused to two artificial interacting 

proteins, showing a high affinity (Ghosh et al., 2000). Shortly after YFP fragments were used 

in mammalian cells to visualize the Ca2+dependent interactions between calmodulin and its 

target peptide M13 (Nagai et al., 2001). Several other applications to study protein 

interactions in mammalian cells followed, like oligomerization of receptors (Vidi et al., 2008), 

interaction between components of the splicosom (Ali et al., 2008), interaction between 

components of the nucleosome (Cherukuri et al., 2008) and interaction between the cargo 

receptor ERGIC-53 and its secretory cargo (Nyfeler et al., 2005; Nyfeler et al., 2008). YFP-

PCA based approaches were further used to visualize post-translational modifications, protein 

folding and protein aggregation (Shyu and Hu, 2008). 
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The multicolor BiFC assay allows the visualization of multiple protein interactions (Fig. 10). 

The N-terminal fragments of two different fluorescent proteins are fused to two proteins (e.g. 

protein A fused to N-YFP, protein B fused to N-CFP). The C-terminal fragment (e.g. C-CFP) 

that is able to complement with both N-termini and reconstitute a fluorescent protein is fused 

to a third protein (X fused to C-CFP). Interaction of protein A with protein X results in 

complemented YFP and a yellow fluorescent signal is measured. Interaction of protein B with 

protein X results in complemented CFP and in a blue fluorescent signal. This approach allows 

to study efficiencies of complex formation between different interaction partners (Hu and 

Kerppola, 2003). The multicolor BiFc assay was used to study the competing interaction of 

seven different γ-subunits of G-proteins with the same β1-subunit (Mervine et al., 2006). 

 
Figure 10 Multicolor BiFc: Protein X is tagged with the C-terminal fragment of CFP (C-
CFP). C-CFP interacts with the N-terminal YFP fragment (N-YFP) to reconstitute the YFP 
protein. Interaction with the N-terminal fragment of CFP (N-CFP) results in a reconstituted 
CFP. Therefore interaction of protein X with protein A results in a YFP signal and interaction 
of protein X with protein B results in a CFP signal. 
 
A BiFc assay combined with a FRET assay allows even to monitor formation of ternary 

complexes (Shyu et al., 2008) (Fig.11). Two interacting proteins (A and B) are fused to the 

two fragments of YFP and a third protein (X) is fused to CFP. The interaction of protein A 

and protein B reconstitutes YFP. This complemented YFP is a good FRET partner for CFP. If 

proteins A, B and X trimerize, YFP will be complemented and a FRET signal will be 

measurable. The association of a ternary transcription factor complex was monitored by this 

technique (Shyu et al., 2008).  
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Figure 11 BiFc-FRET: Protein A fused to N-YFP interacts with protein B fused to C-YFP. 
Upon interaction the YFP is reconstituted. Subsequently protein A bound to protein B 
interacts with protein X fused to full length CFP. Excitation of CFP leads to the emission of 
blue light (blue arrow) which excites the reconstituted YFP. Upon excitation YFP emits 
yellow light (yellow arrow) which indicates interaction of all three proteins. 
 
Overall bimolecular fluorescent complementation assays have several advantages. The 

readout is direct (no enzymatic assay is needed for it). The intracellular compartment where 

the interaction takes place can be visualized by fluorescent microscopy. The assay detects 

even weak and transient interactions (Morell et al., 2007). One disadvantage of the fluorescent 

complementation is that the irreversibility of the interaction precludes studies of dynamic 

interactions between proteins. A luciferase based complementation assay provides a solution 

for this problem, as this interaction is reversible (Luker et al., 2004; Remy and Michnick, 

2006).  
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2 Aim of the thesis 
Screening for a VIP36 interaction partner and elucidating the 
function of VIP36 in the secretory pathway 

Several studies demonstrated the importance of the L-type lectin ERGIC-53 in 

intracellular transport of glycoproteins. Much less is known about the function of the 

homologous L-type lectin, VIP36. We have information about the localization, 3D-structure 

and sugar binding affinity of VIP36. However, we have no information about the 

biological/cellular role of VIP36. Some studies suggested a role as a cargo receptor in 

intracellular transport, but it is not clear at which level of the secretory pathway VIP36 

operates. VIP36 has also been proposed to act in quality control, but no experimental 

evidence supports this hypothesis so far. The aim of my project was to identify an interaction 

partner for VIP36, which should then enable me to draw further conclusion about its cellular 

function. Therefore, I used a YFP-fragmentation-complementation assay (YFP-PCA) based 

approach to screen a human liver library for luminal VIP36 interaction partners. The YFP-

PCA shows a lot of advantages compared to other methods. One important aspect is that it 

allows trapping very weak interactions because of the irreversibility of the YFP 

complementation. This is important, as the carbohydrate based interaction between 

mammalian lectins and their glycoprotein interaction partners is usually of weak affinity. 

After completing the screen, I validated the interaction biochemically. YFP-PCA further 

allows visualizing the subcellular localization of complex formation. Again, knowing the 

localization of VIP36 and its potential client protein could give a hint about its function. I 

determined the effect of depletion of VIP36 (by siRNA mediated knockdown) on the 

identified interaction partner for VIP36. In addition, the effect of VIP36 knockdown on the 

morphology and function of the secretory pathway was determined. Taken together the results 

of this study should provide a deeper insight into the function of VIP36. 
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3  Results  
3.1 Role of the lectin VIP36 in post-ER quality control of human 

α1-antitrypsin 
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ABSTRACT 
 

The L-type lectin VIP36 localizes to the Golgi apparatus and cycles early in the secretory 

pathway. In vitro, VIP36 binds high mannose glycans with a pH optimum of 6.5, a value 

similar to the luminal pH of the Golgi apparatus. Although the sugar binding properties of 

VIP36 in vitro have been characterized in detail, the function of VIP36 in the intact cell 

remains unclear since no convincing glycoprotein cargo has been identified. Here we used 

yellow fluorescent protein (YFP) fragment complementation to identify luminal interaction 

partners of VIP36. By screening a human liver cDNA library, we identified the glycoprotein 

alpha-1-antitrypsin (α1-AT) as a cargo of VIP36. The VIP36/ α1-AT complex localized to 

Golgi and ER. In the living cell, VIP36 bound exclusively to the high-mannose form of α1-

AT. The binding was increased when complex glycosylation was prevented by kifunensine 

and abolished when the glycosylation sites of α1-AT were inactivated by mutagenesis. 

Silencing VIP36 accelerated α1-AT transport, arguing against a role of VIP36 in anterograde 

traffic. The complex formed by VIP36 and α1-AT in the Golgi recycled back to the ER. The 

combined data are most consistent with a function of VIP36 in post-ER quality control of α1-

AT. 
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INTRODUCTION 
 

N-glycosylation is one of the most common protein modifications in the cell (1). Two third of 

all proteins present in the SWISS-PROT protein sequence data bank have at least one 

potential N-glycosylation consensus site. N-glycosylation plays an important role in numerous 

cellular functions including development (2), wound repair (3), and innate immunity (4). In 

addition, N-glycosylation is important for quality control and transport of glycoproteins in the 

secretory pathway (5-8). These processes require interaction of the glycans with different 

lectins. The major lectins involved in ER quality control are the chaperone proteins calnexin 

and calreticulin. Other lectins, such as ERGIC-53, act as cargo receptors involved in 

intracellular protein transport. ERGIC-53 is the best characterized anterograde cargo receptor 

in higher eukaryotic cells (9, 10). ERGIC-53 is a member of the leguminous type (L-type) 

lectin family which also comprises ERGL, VIP36 and VIPL (11-13). L-type lectins are type 1 

membrane proteins with a large luminal domain possessing the carbohydrate recognition 

domain (CRD) and a short cytosolic domain that mediates sorting within the early secretory 

pathway. ERGIG-53 localizes mainly to the ER-Golgi intermediate compartment (ERGIC) 

and to the ER (14, 15) and cycles between these two compartments. This lectin is involved in 

ER export of several glycoproteins, including cathepsin C, cathepsin Z, blood coagulation 

factors V and VIII, alpha 1-antitrypsin (α1-AT) and immunoglobulin M (16-20) by binding to 

high mannose glycans in a Ca2+- and pH-dependent manner (21, 22).  

VIP36 was discovered in a screen for proteins involved in apical sorting from the trans-Golgi 

network (23). VIP36 cycles between Golgi and ER (24). Its CRD exhibits 46% similarity to 

the CRD of ERGIC-53. Although sharing some similarities with ERGIC-53, VIP36 has 

several features that differ. In contrast to the unglycosylated ERGIC-53, VIP36 has one N-

glycosylation site and acquires complex glycosylation (25). While ERGIC-53 forms 

homodimers and homohexameres (16), VIP36 does not oligomerize (25, 26). Moreover, 

VIP36 localizes mainly to the Golgi and only to some extent to the ERGIC (27). Other studies 

found VIP36 to also localize to post-Golgi secretory vesicles and to the plasma-membrane 

(28, 29). VIP36 interacts with high mannose glycans most efficiently at pH of 6.5 (30). Such a 

pH is characteristic for the Golgi apparatus, and it has been postulated that VIP36 may bind 

glycoproteins in the Golgi rather than the ER (31). Although the sugar binding properties of 

VIP36 have been elucidated in quite some detail, the biological function of VIP36 has 

remained an enigma. VIP36 was suggested to interact with rat α-amylase (32) and clusterin 

(28), and hence a role in post-Golgi anterograde transport was postulated. By contrast, a role 
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for VIP36 in quality control was proposed based on the finding that BiP can bind to complex-

glycosylated VIP36 in the ER, but no corresponding glycoprotein cargo was identified (33).  

We reasoned that the identification of a convincing cargo glycoprotein may provide insight 

into the function of VIP36 in the secretory pathway. A major problem in identifying cargo 

glycoproteins of animal lectins is their low affinity and transient binding, but yellow 

fluorescent (YFP) protein fragment complementation (PCA) is a promising emerging 

technique to overcome these limitations (34, 35). Here we used a previously established YFP 

PCA-based screening approach (19) to identify new VIP36 interaction partners. By screening 

a human liver DNA library we identified α1-AT as a cargo glycoprotein of VIP36 and provide 

evidence for a role of VIP36 in post-ER quality control of α1-AT.  

 

RESULTS  
 

YFP PCA-based screening approach 

In our search for VIP36 interaction partners we adopted a previously developed screening 

strategy that is based on a YFP protein complementation assay (YFP-PCA; (19)). YFP-PCA 

is well suited to detect weak interactions in the secretory pathway, as the complementation of 

YFP is irreversible (35, 36). This feature is important, because carbohydrate-based 

interactions of mammalian L-type lectins are of low affinity. To be suitable for YFP-PCA-

based screening, the VIP36 construct should meet two principal requirements: correct 

localization in the secretory pathway and lectin activity. We cloned VIP36 without its signal 

sequence into a vector containing the signal sequence of calreticulin and the C-terminal 

fragment of YFP (YFP2)-fragment (YFP2-VIP36). The signal sequence of calreticulin 

ensures efficient translocation of the construct into the ER. The YFP2-VIP36 construct was 

expressed in HeLa cells to determine its localization (Figure 1 A-C). In cells with low to 

medium expression, YFP2-VIP36 mainly localized to the Golgi apparatus, identified by 

staining for the cis-Golgi marker GM130 and the medial Golgi marker giantin, and to a lesser 

extent to peripheral punctate structures identified as ERGIC (Figure 1A-C). This localization 

is identical to that described for endogenous VIP36 (27). To test if the construct has mannose 

lectin activity like wild-type VIP36 (37, 38), YFP2-VIP36 was expressed in HeLa cells and 

the cells were labeled with FITC-tagged mannose-BSA (22). As shown in Figure 1D, 

mannose-BSA bound to the Golgi region of YFP2-VIP36-expressing cells. Non-transfected 

cells gave no specific signal, most likely due to the only low amount of endogenous VIP36 
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and other endogenous mannose-binding lectins. The combined data indicate that our YFP-

VIP36 probe fulfills the criteria required for use as functional bait in a DNA library screen. 

Identification of α1-antitrypsin as interaction partner of VIP36 

For the YFP PCA-based screening we co-expressed YFP2-VIP36 and a C-terminally-tagged 

human liver cDNA library in COS cells. COS cells were chosen because they express the 

large T antigen and can thus replicate transfected plasmids carrying the SV40 eukaryotic 

origin of replication. This ensures that the transfected plasmids are amplified and enough prey 

is provided for an interaction with the bait and allows for recovery of prey plasmids. Upon 

YFP complementation, YFP positive cells were isolated by fluorescence activated cell sorting 

(FACS). Cells co-transfected with YFP2-VIP36 and the YFP1-tagged human liver cDNA 

library exhibited more YFP-positive cells than cells transfected with YFP2-VIP36 alone 

(Figure 2A). 166 positive cells were sorted (Figure 2A, right panel), and library plasmids were 

isolated and transformed into bacteria. We recovered more colonies than sorted cells, as each 

cell contained several library plasmids. The colonies were then screened for the presence of 

an insert by PCR (Figure 2B). By this we wanted to make sure that we evaluated colonies that 

contained an insert and not only empty vectors. Nearly all tested colonies contained inserts, 

their size ranging from 750bp to 4000bp. Although COS cells are preferable for the initial 

screening due to high expression levels, false positive clones can arise under these conditions. 

We therefore retested the primary hits in HeLa cells. cDNAs encoding the potential 

interaction partners were co-transfected with YFP2-VIP36 and the signal obtained by 

fluorescence complementation was measured (Figure 2C) and compared to the negative 

control (YFP2-VIP36 alone). Interestingly, the plasmids leading to the highest fluorescence 

complementation with VIP36 encoded α1-antitrypsin (α1-AT). The YFP signal resulting 

from the interaction of YFP2-VIP36 and α1-AT-YFP1 was 30%-40% higher than the 

negative control. α1-AT-YFP1 appeared three times among 200 plasmids tested.  

 α1-AT is a 52 kDa soluble secretory glycoprotein. Its main role is inactivation of 

serine proteases in blood plasma (39). α1-AT deficiency, one of the most common genetic 

human diseases, results from the lack or misfolding of this protein. Misfolded α1-AT leads to 

liver cirrhosis and lung emphysema (40). We focused our further analysis on a 

characterization of the VIP36/α1-AT interaction.  

 

Characterization of the interaction between VIP36 and α1-AT in the cell 

We first visualized the VIP36/α1-AT interaction in HeLa cells by YFP PCA. YFP1-VIP36 

and YFP2-α1-AT were co-expressed in HeLa cells, and the YFP signal resulting from the 
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complementation was visualized by fluorescence microscopy (Figure 3A). The YFP signal 

exhibited a Golgi- and ER-pattern. We confirmed the Golgi localization of the YFP complex 

by co-staining with the cis-Golgi marker GM130. Although this analysis does not indicate 

where the initial interaction takes place, it clearly shows that the YFP1-VIP36/YFP2-α1-AT 

complex is restricted to the early secretory pathway where the initial interaction of VIP36 and 

α1-AT can be expected to occur. As a negative control we used albumin-YFP2, a secretory 

protein that is not glycosylated. VIP36 showed no fluorescence complementation with 

albumin (Figure 3B). Of note, the expression levels of albumin-YFP2 and YFP2-α1-AT were 

similar. The reason for the low albumin signal in the cells is that it does not interact with 

VIP36 and is therefore rapidly secreted into the culture medium (Figure 3B).  

To test if the interaction with α1-AT is sugar dependent, we used an N-glycosylation deficient 

α1-AT mutant in which all three N-glycosylation sites were mutated to alanine termed triple 

mutant” (19). YFP PCA experiments showed a markedly reduced interaction of VIP36 with 

the triple mutant compared to wild type α1-AT (Figure 3B). We also tested a potential 

interaction of VIP36 with the two misfolded and ER-retained α1-AT variants Z-mutant and 

Null Hong-Kong mutant (NHK). The Z-mutant has a glutamic acid to leucine point mutation 

at position 342. The NHK mutant is a truncated variant. A dinucleotide deletion in the leucine 

at position 318 leads to a premature stop-codon. VIP36 interacted poorly with both the Z-

mutant and the NHK mutant in the intact cell. These results are very similar to those 

previously reported for ERGIC-53 (19) but require different interpretations (see Discussion).  

 

 

VIP36 interacts with the high mannose form of α1-AT in vivo 

To test if in the intact cell the VIP36/α1-AT interaction occurs before or after the medial-

Golgi, we co-expressed YFP1-α1-AT and YFP2-VIP36 in HeLa or COS cells for 

complementation and immunoprecipitated the complex from cell lysates with anti-YFP2 

(Figure 4A,B). Digestion of the immunoprecipitated complex with endo-H showed that co-

immunoprecipitated α1-AT was endoH-sensitive in both cell lines. This result indicates that 

VIP36 binds high-mannose and not complex-glycosylated α1-AT in the cell, hence the 

interaction occurs before the medial-Golgi. As a consequence, increasing the amount of high 

mannose α1-AT should result in an increase in fluorescence complementation of VIP36 with 

α1-AT. We tested this prediction by pre-treating the cells with kifunensine. Kifunensine 

inhibits Golgi mannosidase-I by 100% and ER mannosidase by 57% and thereby prevents 
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complex glycosylation (41). Treatment with kifunensine overnight increased the interaction 

with α1-AT by 41% (Figure 4C). α1-AT was still secreted from kifunensine-treated cells 

(Figure S1), and the intracellular localization of the VIP36/α1-AT complex was unchanged 

(Figure 4D). Since VIP36 is complex-glycosylated, we had to exclude the possibility that the 

increased α1-AT binding in response to kifunensine was due to a change in VIP36 

glycosylation. To this end, we mutated the asparagine of the N-glycosylation consensus site to 

alanine (N183A). The resulting non-glycosylated VIP36-N183A still localized to Golgi and 

ERGIC (Figure 4E) and exhibited unchanged binding properties in the YFP PCA (Figure 4F). 

Clearly, the change in the glycosylation status of VIP36 is not responsible for the kifunensine 

effect. The preference for the high-mannose form excludes initial VIP36/α1-AT binding in 

medial- and trans-Golgi. 

 

VIP36 silencing accelerates α1-AT transport 

The interaction between VIP36 and α1-AT suggests an involvement of VIP36 in the 

intracellular transport of α1-AT. Provided VIP36 operates in anterograde transport one would 

expect that its knockdown inhibits the intracellular transport of α1-AT in a similar way as has 

been reported for ERGIC-53 (19). We tested this possibility in HepG2 cells that express α1-

AT and VIP36 endogenously. In HepG2 cells VIP36 localizes to Golgi and ERGIC like in 

other cells (Figure 5A). Knockdown of VIP36 by siRNA was very efficient and reduced 

endogenous VIP36 levels to less then 10% (Figure 5B). We focused on early events of α1-AT 

secretion, because the complex of α1-AT and VIP36 localized to the ER-Golgi system. The 

cells were pulse-labeled with 35S-methionine for 10 min and chased for 0, 15, and 30 min in 

the presence of unlabeled methionine in excess. After a 30 min chase, more than 50% of the 

labeled α1-AT was complex glycosylated, thus had passed the medial Golgi (Figure 5C). We 

calculated the percentage of complex glycosylated to total α1-AT as an indicator for transport 

efficiency. Remarkably, VIP36 knockdown accelerated α1-AT transport compared to control 

cells. After a 30 min chase, the amount of complex glycosylated α1-AT was increased by 

12% and this increase was statistically significant. To rule out that a general acceleration of 

intracellular transport occurred, we followed the secretion of endogenously-expressed 

albumin over the same time period (Figure 5D). VIP36 silencing did not affect albumin 

secretion. The data indicate that VIP36 retards the intracellular transport of α1-AT. 
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Evidence for recycling of the VIP36/α1-AT complex from Golgi to ER 

One possibility consistent with the result in this study would be a function of VIP36 in 

retrograde traffic, whereby a fraction of high-mannose α1-AT would be recycled from Golgi-

to-ER. We addressed this notion by YFP-PCA. Visualizing the α1-AT-VIP36 complex should 

allow us to follow the route of transport when de novo protein synthesis is blocked. To study 

the fate of the α1-AT/VIP36 complex we expressed YFP2-α1-AT and YFP1-VIP36 in HeLa 

cells and treated them with cycloheximide to block protein synthesis. If VIP36 binds α1-AT 

in the Golgi and recycles it to the ER, the Golgi signal due to complex formation should 

decrease in favor of an increasing ER signal. This was indeed observed. 5 h after the addition 

of cycloheximide, the YFP fluorescence exhibited an ER rather than a Golgi pattern in most 

cells (Figure 6A). The percentage of cells with Golgi localization of the YFP signal decreased 

from 52% to 17% in response to cycloheximide (Figure 6B). The structure of the Golgi was 

unchanged, however, as indicated by the unchanged pattern of GM130 (Figure 6A). Similar 

results were obtained by a shorter 3 h cycloheximide treatment (not shown). It is noteworthy 

that cycloheximide has no effect on the bidirectional ER to Golgi traffic itself (42). This result 

indicates that VIP36 is involved in retrograde transport. 

Why would VIP36 recycle a protein destined for secretion from the Golgi back to the ER? 

The most likely explanation is that VIP36 recognizes a fraction of α1-AT that escaped the ER 

quality control. It has been reported that VIP36 interacts with BiP (33). We wondered if the 

α1-AT/VIP36 complex formed in the Golgi interacts with BiP. To this end we expressed 

YFP2-VIP36, YFP2-α1-AT or YFP2.-VIP36 together with YFP1-α1-AT in Hela cells and 

immunoprecipitated YFP2. Figure 6C shows co-immunoprecipitation of BiP with the VIP36 

construct. The amount of co-immunoprecipitated BiP was identical for singly expressed 

VIP36 and VIP36 co-expressed with the α1-AT. Less BiP co-immunoprecipitated with singly 

expressed α1-AT than with the α1-AT/VIP36 complex. Collectively, our results indicate that 

the α1-AT/VIP36 complex formed in the Golgi contains BiP and recycles to the ER where it 

is obviously trapped. 

 

DISCUSSION 
 

In the current work we have identified by YFP PCA α1-AT as cargo glycoprotein for the 

mammalian L-type lectin VIP36. The YFP signals after complementation were lower than 

those previously obtained for ERGIC-53 when identical expression levels were compared. 
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Together with the fact that all follow-up experiments confirmed that the VIP36/α1-AT 

interaction was specific, this difference indicates that a smaller fraction of α1-AT interacts 

with VIP36 than with ERGIC-53. 

 Our YFP PCA analysis of the VIP36/α1-AT interaction gave results seemingly similar 

to those previously obtained for the ERGIC-53/α1-AT interaction (19). In both cases no 

complementation occurred when the lectin was co-expressed with misfolded mutants or a 

glycosylation deficient mutant of α1-AT. However, an interpretation of these results has to 

take into account the pH optimum for glycan binding and the compartmentalization of the 

secretory pathway. VIP36 has a pH optimum of 6.5 (37) corresponding to the luminal pH of 

the cis/medial Golgi cisternae (43-45). By contrast, ERGIC-53 has a pH optimum of 7.4, the 

pH of the ER (21). Predictably, VIP36 cannot bind its cargo in the ER. Since the misfolded Z-

mutant and NHK mutant of α1-AT are trapped in the ER and fail to be transported to the 

Golgi (46, 47) they do not meet VIP36 in an acidic compartment that allows glycan binding. 

Therefore, the lack of YFP complementation does not necessarily indicate that VIP36 cannot 

bind misfolded α1-AT. The case is different for the triple glycan mutant of α1-AT. A sizable 

fraction of this variant is secreted (48) and therefore meets VIP36 in the Golgi. The 

considerably reduced YFP PCA signal for the triple mutant therefore indicates that VIP36 is 

unable to recognize the non-glycosylated α1-AT.  

 Another key finding of our study is that silencing of VIP36 accelerates intracellular 

transport of α1-AT as opposed to silencing of ERGIC-53 which slows α1-AT transport. 

Importantly, albumin transport was unaffected, indicating that a VIP36 knockdown does not 

lead to a general acceleration of protein transport. These results argue against a cargo receptor 

function of VIP36 in the anterograde direction. Clearly, the presence of VIP36 slows 

intracellular transport of α1-AT1. We believe that VIP36 transiently retains only a small 

fraction of α1-AT1 because the YFP signal produced in the YFP PCA assay is considerably 

lower for the VIP36/α1-AT1 interaction than for the ERGIC-53/α1-AT1 interaction. By 

contrast, as expected for a cargo receptor mediating ER export, ERGIC-53 interacts with a 

large fraction (if not all) newly synthesized α1-AT1 (19). 

 What then is the function of VIP36 in α1-AT1 traffic? Since VIP36 shows highest 

binding to largely untrimmed high-mannose glycans in vitro (30, 37), and since the trimming 

inhibitor kifunensine increases the VIP36/α1-AT1 interaction, VIP36 may bind α1-AT1 

molecules that fail to be trimmed in the Golgi and may recycle them to the ER. Although 

high-mannose glycoproteins are efficiently secreted, they have a considerably reduced half 
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life in the blood stream because they are rapidly endocytosed by the mannose receptor (49, 

50). Thus, complex glycosylation is definitively required for protein stability in the organism. 

One of our results, however, is inconsistent with a role of VIP36 in mannose trimming. If 

VIP36 was involved in quality control at the level of mannose trimming in the Golgi, its 

knockdown should increase the fraction of high-mannose α1-AT1, but such an effect was not 

observed.  

We propose that VIP36 acts in post-ER quality control in the Golgi by binding incompletely 

folded α1-AT1 that inadvertently escaped ER quality control and by recycling it back to the 

ER for an additional round of quality control. Consistent with a retrieval action, we observed 

a redistribution of the VIP36/α1-AT1 complex from Golgi to ER when de novo synthesis of 

VIP36 was blocked by cycloheximide. But why would the complex remain trapped in ER 

after recycling? A likely possibility is that due to the irreversible YFP complementation the 

VIP36/α1-AT1 complex forms larger assemblies with chaperones in the ER that cannot exit 

the ER anymore. Kifunensine not only prevents high mannose trimming, but also inhibits ER 

associated degradation (ERAD). Inhibition of ERAD allows misfolded α1-AT to escape the 

ER quality control and to be secreted (51). Therefore, we believe that the increased YFP PCA 

signal in response to kifunensine reflects complex formation of VIP36 with an increased 

amount of incompletely folded α1-AT that escaped ER quality control. How would VIP36 

discriminate between folded and incompletely-folded α1-AT? One possibility is that the 

VIP36/α1-AT interaction requires both glycan and protein-protein interaction whereby the 

protein-protein interaction would only occur with incompletely-folded α1-AT. Glycan 

interaction alone would be insufficient to retain α1-AT in the Golgi. There is evidence that L-

type lectins may not recognize solely glycans. Efficient binding of ERGIC-53 to its cargo 

cathepsin Z requires a combined carbohydrate/peptide motif (52). With ERGIC-53, however, 

the protein-protein interaction occurs only with the folded cargo. As an alternative possibility, 

the post-ER quality control of α1-AT by VIP36 may involve the chaperone BiP. BiP has 

indeed been shown to interact with complex-glycosylated VIP36 (33). We now show that BiP 

associates with the VIP36/α1-AT complex. In this scenario one could imagine the following 

events in quality control and transport of α1-AT. Newly synthesized α1-AT undergoes ER 

quality control in the ER involving the calnexin/calreticulin cycle (53, 54). Folded α1-AT can 

bind to ERGIC-53 and is exported actively from the ER (19). Some incompletely-folded α1-

AT escapes ER quality control and reaches ERGIC and Golgi by default where it is bound to 

both VIP-36 and BiP under slightly acid conditions. BiP is known to have in part access to 
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post-ER compartments (55). The α1-AT/VIP36/BiP complex then recycles to the ER where 

α1-AT dissociates due to the increased pH and undergoes another round of folding. 

In conclusion, the successful identification of α1-AT as a cargo glycoprotein of VIP36 has 

provided new insight into the function of VIP36. Our data, in combination with known 

features of VIP36, are most consistent with a glycan dependent quality control function in the 

Golgi. Molecular details of this mechanism, and whether this mechanism applies primarily to 

α1-AT or to additional glycoproteins, remain to be determined.   

 

 

 

METHODS 
Antibodies and inhibitors 

The following antibodies were used: monoclonal mouse antibody (mAb) against BiP (BD 

Bioscience), monoclonal rabbit GFP antibody against the N-terminal YFP fragment (YFP1) 

for immunoblotting (Abcam), mAb against the C-terminal YFP fragment (YFP2) for 

immunoblotting, immunofluorescence and immunoprecipitation (Roche), and a rabbit 

polyclonal antibody (pAb) against GFP for immunofluorescence (Clonetech). A custom-made 

rabbit pAb was used to detect VIP36 by immunoblotting (Eurogentech). The pAb was raised 

against a synthetic peptide encompassing residues 298-312 (FLKSPKDNVDDPTGNC), 

using keyhole limpet hemocyanine as a carrier. Mouse mAb 1A2 against tubulin was kindly 

provided by Karl Matter (University College London, UK). Goat pAb against human α1-AT 

(MP Biomedicals) and sheep pAb against human albumin (The Binding Site) were used for 

immunoprecipitation. Antibodies used for immunofluorescence: Rabbit pAb against ERGIC-

53 (56), mAb G1/133 against giantin (57), mouse mAb anti-GM130 (BD Transduction), anti-

TGN46 (kind gift from Sreenivasan Ponnambalam, University of Leeds, UK) and rabbit pAb 

anti-VIP36 (27) (kind gift of Kai Simons, Max Planck Institute for Molecular Cell Biology 

and Genetics, Dresden, Germany). Alexa 488-, Alexa 568- (Molecular Probes Europe, 

Leiden, The Netherlands) and horseradish peroxidase-coupled antibodies (The Jackson 

ImmunoResearch Laboratories, West Grove, PA) were used as secondary antibodies. FITC-

mannosidase BSA was a kind gift of Annie-Claude Roche (CNRS Orleans, France). The 

following inhibitors were used: Kifunensine (Calbiochem) and cycloheximide (Sigma). 
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siRNAs 

SiRNA oligonucleotides against VIP36 were obtained from Qiagen (5’-

AGAUAACUUCCACGGCUUA)dTdT-3’was used as sense and  

5’-UAAGCCGUGGAAGUUAUCUdTdT-3’ as antisense oligonucleotide) and from Ambion 

(5’-UGACUGCGGAUAUAACUGAtt-3’ as sense and UCAGUUAUAUCCGCAGUCAca as 

an antisense oligonucleotide). Nonsilencing negative control siRNAs were obtained from 

Qiagen and Ambion. 

Plasmids 

VIP36 was amplified by PCR from the cDNA-NubG human liver library (DualSystem) 

without its signal sequence, using 5’-GGCCCTCGAGTTGATAT 

AACTGACGGCAACAG-3’  

as forward and 5’- GGCCCTCGAGTCAGTAGAAGCGCTTGTTCCG-3’ as reverse primer. 

The PCR product was subcloned into the SScal-YFP2-pCMV vector (58) via XhoI restriction 

sites. The SScal-YFP1/YFP2-VIP36-pcDNA3 constructs (YFP1-VIP36, Y2-VIP36) were 

obtained by amplifying VIP36 with the following primers  

5’-GGCCCTCGAGTTGATATAACTGACGGCAACAG-3’and 5’-GGCCTCTAGATCAGT 

AGAAGCGCTTGTTCCG-3’. The PCR product was digested with XhoI and XbaI and 

ligated into the SScal-YFP1-pcDNA3 or SScal-YFP2-pcDNA3 via XhoI and XbaI restriction 

sites (35). The construction of the SS-YFP2-alpha-1 antitrypsin mutants (YFP2-α1-AT) and 

albumin-YFP2 has already been described ((35, 58). The SS-YFP1-antitrypsin construct was 

obtained by subcloning α1-AT from the SS-YFP2-α1-AT plasmid into the SS-YFP1-vector. 

All constructs were verified by sequencing. 

Generation of cDNA-YFP1 library 

For the screening, a human adult liver cDNA-NubG library (DualSystems) was subcloned 

into vectors containing linker-YFP1 fragments covering all three reading frames. The 

previously described pcDNA3-YFP1 constructs (58) were digested with Xho and EcoR1 and 

the linker-YFP1 fragments were ligated into the pcDNATM4/TO vector (Invitrogen). The 

human adult liver cDNA-NubG library (Dualsystems) was digested with SfiI (NEB) at 50°C 

overnight. The inserts were separated by agarose gel electrophoresis. Inserts ranging from 

0.75 kb to 4kb were excised. The inserts were ligated via two SfiI sites into the vector mix 

containing all three reading frames of pcDNATM4/TO-[YFP1]. Ligation products were 

transformed into XL-gold bacteria (Stratagene). The transformed bacteria were plated on agar 

plates containing 25ug/ml Zeocin for selection allowing only growth of colonies transformed 

with library plasmids. The plates were incubated overnight at 37°C. The bacterial colonies 
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were collected in liquid broth medium. Plasmid isolation was perfomed using HiSpeed Plamid 

Maxi Kit (Qiagen).  

Cell culture and transfection 

HeLa and COS-1 cells were cultured in DMEM, supplemented with 10% FCS, antibiotics and 

fungizone. HepG2 cells were grown in MEM supplemented with 10% FCS and antibiotics. 

Transfection of plasmids was performed using Fugene6TM according to the manufacturer’s 

instruction. SiRNA transfection was carried out using HiPerfect (Qiagen) according to the 

manufacturer’s instruction. 

Immunofluorescence microscopy 

Cells were washed with PBS and fixed in 4% paraformaldehyde. Cells were permeabilized 

using 0,2% Triton X-100 in PBG buffer (20mM glycine and 3%BSA in PBS pH7,4). Cells 

were incubated with the appropriate primary antibody in PBG followed by incubation with 

Alexa Fluor secondary antibodies, and the coverslips were mounted in Mowiol. For co-

staining with mannose-FITC-BSA, samples were co-incubated with the indicated antibody 

and 100ug/ml FITC-mannose-BSA together in the presence of 1mM CaCl2 and 1mM MgCl2. 

For the visualization of the YFP complementation signal, cells were washed twice in PBS, 

fixed in 4% PFA, washed several times with PBS, and mounted in Mowiol. Images were 

acquired on a Leica SPE 5 confocal microscope. 

YFP-PCA- based FACS screening and plasmid isolation 

The screen was performed as described in Nyfeler et al (19) with the following  

modifications. The YFP2-VIP36 construct and the cDNA-YFP1 library were co-transfected at 

a ratio of 1:1. The DNA isolated from the sorted cells was transformed into electro-competent 

bacteria (MC1061). Transformed bacteria were plated on 15cm agar plates containing Zeocin 

(25μg/ml). The first 100 tested colonies were analyzed for the presence of inserts by PCR. As 

nearly all colonies contained an insert, this step was omitted later on. 

PCR screen of colonies 

Individual colonies were picked and transferred into 5ul H2O. Then the PCR mix including 

Taq polymerase (Roche) was added. The forward primer:  

5'-TCCACGCTGTTTTGACCTCC-3' and the reverse primer  

5'-CGACCAGGATGGGCACCACC-3' were used to screen for the presence of an insert. The 

PCR products were subjected to agarose gel electrophoresis and visualized by ethidium 

bromide staining. 
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Fluorometric analysis of the YFP signal 

HeLa cells were grown in 6 well plates. 0.5μg DNA of each plasmid was transfected. 24 h 

after transfection cells were washed with PBS, collected in PBS and spun down at 500xg. The 

cell pellet was resuspended in 200μl PBS and transferred into black 96 microwell plates 

(Nunc). Fluorescence was measured with a Victor2 fluorometer. 485nm was used as 

excitation and 535nm as emission wavelength. To assess the expression levels of the different 

constructs, cells were subjected to SDS-PAGE followed by Western blotting using 

nitrocellulose membranes and enhanced chemiluminescence (GE Healthcare). 

Metabolic labeling and pulse- chase experiments  

HepG2 cells were used for studying α1-AT transport. 500,000 HepG2 cells were seeded into 

3,5cm plates and reverse transfected with either 10nM siRNA (Qiagen, Ambion) or 10nM 

control siRNA using Hiperfect (Qiagen). 72 h after siRNA transfection the pulse chase 

experiment was performed. Cells were starved in methionine-free MEM medium 

supplemented with 10% dialyzed FCS and 10mM glutamine (starving medium) for 20 min. 

The cells were pulsed in starving medium containing 100μCi S35 (Easy tag) per sample. 

Following the pulse period the cells were washed once with MEM medium supplemented 

with 10% FCS and 10mM methionine, and then chased for different time periods. Finally the 

cells were lysed, α1-AT1 was immunopreciptated and subjected to SDS-PAGE followed by 

autoradiography. Radiolabeled bands were imaged and quantified using a phosphorimager 

(Molecular Dynamics).  

Immunoprecipitation 

Cells were washed with PBS and lysed in IP-buffer (50mM Tris-HCl pH 7.5, 150mM NaCl, 

2mM CaCl2, 1% TritonX-100 and protease inhibitors). The lysate was incubated for 30 min 

on ice and centrifuged at 20,000xg for 30 min. The supernatant was incubated with Protein G- 

Sepharose preloaded with the indicated antibody. The reaction was incubated overnight. The 

Sepharose beads were washed three times and eluted proteins were analyzed by SDS-PAGE. 

Endoglycosidase H digestion 

Immunoprecipitates were released from protein G-Sepharose beads by boiling in endoH 

buffer (0.25M sodium-citrate, 50mM Tris pH 6.0, 0.6% SDS). Samples were incubated with 

5mU endoglycosidase H (Roche) for 3 h at 37°C.  
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FIGURE LEGENDS 
 

Figure 1:  

YFP2-VIP36 localizes to the early secretory pathway and binds mannose-BSA. HeLa 

cells expressing YFP2-VIP36 were stained with anti-ERGIC-53 for the ERGIC (A), GM130 

for the cis-Golgi (B), and giantin for the medial-Golgi (C). (D) Hela cells expressing YFP2-

VIP36 were fixed, permeabilized and stained with a YFP2-specific antibody and with FITC-

mannose-BSA. Note co-staining of FITC-mannose-BSA in the Golgi region with YFP2-

VIP36 (arrows). FITC-mannose-BSA does not localize to the Golgi region in untransfected 

cells (arrowheads). 

 

Figure 2: 

YFP-PCA-based FACS screening for VIP36 interacting proteins. (A) COS cells were 

transfected with YFP2-VIP36 alone or together with the YFP1-tagged library plasmids. After 

48 h, FACS sorting was performed. YFP was restored upon complementation and YFP-

positive cells were sorted (encircled white dots, right panel). Cells expressing YFP2-VIP36 
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only were used as a negative control and showed nearly no false positive cells (white circle, 

left panel). DNA was extracted from YFP-positive cells and transformed in bacteria. (B, C): 

Examples for the validation procedure. (B) Colonies were tested for the presence of an insert 

by PCR. PCR products were electrophoresed on a 1% agarose gel containing 

ethidiumbromide. Note that all colonies contained an insert. (C) Plasmids isolated from 

transformed bacteria were co-expressed with YFP2-VIP36 in HeLa cells and the signal 

resulting from YFP complementation was measured. Cells transfected with YFP2-VIP36 

alone were used as a negative control. The fluorescence signal of the single tested library 

plasmids was expressed as percentage increase compared to the negative control. Library-

plasmids that resulted in an increase of the fluorescence by more than 30% were sequenced. 

Red bars are the plasmids that turned out to encode α1-AT. 

 

Figure 3 

Localization of the VIP36/α1-AT complex and interaction of VIP36 with α1-AT 

mutants. (A) HeLa cells co-transfected with YFP1-VIP36 and YFP2-α1-AT were fixed, 

permeabilized and stained with anti-GM130 anti. (B) HeLa cells were transfected with YFP1-

VIP36 and different YFP2-tagged alpha1-anitrypsin mutants or YFP2-tagged albumin. After 

24 h fluorometric analysis was performed. Upper panel: Background-corrected values 

obtained by fluorometric measurement. For background corrections the values from cells 

expressing YFP1-VIP36 only were subtracted. Bars represent means ± SD from 3 

independent experiments (paired t-test, * P <0.05). Lower left panel: Immunoblot showing 

expression levels. Lower right panel: HeLa cells were tranfected with plasmids encoding 

YFP2-albumin and YFP1-VIP36. Immunoblot shows the expression level of intracellular (IC) 

and secreted (M) albumin-Y2.  

 

Figure 4 

VIP36 interacts with the high mannose form of α1-AT and this interaction increases 

upon inhibition of complex glycosylation 

HeLa (A) or COS (B) cells were co-transfected with YFP1-α1-AT and YFP2-VIP36. After 24 

h, the cells were lysed and YFP2-VIP36 was immunoprecipitated with anti-YFP2. The 

immunoprecipitate was subjected to endoH digestion followed by SDS-PAGE. Left panels: 

Co-immunoprecipitated YFP1-antitrypsin detected with anti-YFP1. Right panels: 

Immunoprecipitated YFP2-VIP36 detected with anti-VIP36. (C) HeLa cells expressing YFP2-

α1-AT and YFP1-VIP36 were treated with kifunensine (25uM) overnight (kif) or with solvent 
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(Co). After 24 h, fluorometric analysis was performed. Results are expressed as percent of 

control. Bars: means ± SD (3 independent experiments; paired t-test, * =P <0.05). Expression 

levels were determined by Western blotting: Upper panel shows YFP2-α1-AT expression; 

lower panel shows YFP1-VIP36 expression. (D) The VIP36-α1-AT complex shows 

comparable localization under control conditions (upper panel) and after kifunensine 

treatment (lower panel). (E) Localization of the glycosylation-deficient VIP36 mutant (YFP2-

VIP36-N183A) in HeLa cells. (F) HeLa cells were transfected with YFP2-α1-AT and YFP1-

VIP36-WT or the glycosylation deficient mutant (YFP1-VIP36-N183A). The fluorescent 

signal was not significantly different between cells expressing wild type and mutant VIP36.  

 

Figure 5 

Expression of VIP36 in HepG2 cells and effect of VIP36 silencing on the transport of α1-

AT and albumin. (A) HepG2 cells were fixed, permeabilized, and co-stained with anti-

VIP36 and anti-GM130. (B) Knockdown efficiency of two siRNAs targeting VIP36 in HepG2 

cells. The knockdown was validated by immunoblotting with anti-VIP36. Tubulin was used 

as a loading control. (C) Pulse-chase experiments. HepG2 cells were transfected with VIP36 

siRNA (VIP) or control siRNA (Co). After 72 h, the cells were pulsed with 35S-methionine 

for 10 min and chased for the indicated time. α1-AT was immunoprecipitated from cell 

lysates and from the medium. Complex glycosylated form (arrow) and high mannose form 

(arrow head) are indicated. Bars: means ± SD (mean of 4 experiments; two experiments per 

siRNA). Radiolabeled bands were quantified by phosphorimaging. The percentage of 

complex glycosylated α1-AT (intracellular and medium) compared to total α1-AT 

(intracellular and medium, both high mannose and complex glycosylated) was calculated for 

the different time points. The results were analyzed using paired t-test (* =P <0.05). (D) 

HepG2 cells were transfected with VIP36 siRNA or control siRNA. After 72 h, cells were 

pulsed with 35S methionine for 10 min and chased for the indicated times. Albumin was 

immunoprecipitated from cell lysates and media. Means ± SD (3 independent experiments). 

 

Figure 6 

Recycling of the VIP36/α1-AT complex to the ER. (A) HeLa cells expressing YFP1-VIP36 

and YFP2-α1-AT were treated with 100 ug/ml cycloheximide (+Cx) for 5 h or with solvent 

(Co). Cells were fixed, and the complex localization was determined by fluorescence 

microscopy. Note that the Golgi is not affected by cycloheximide treatment, as indicated by 

co-staining with the Golgi marker GM130. (B) Percentage of cells exhibiting Golgi 
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localization of the VIP36-α1-AT complex. Means + SD (3 independent experiments; paired t-

test, * =P <0.05). (C) HeLa cells expressing YFP2-VIP36, YFP2-α1-AT, or YFP2-VIP36 

together with YFP1-VIP36 were lysed and the YFP2-tagged proteins were 

immunoprecipitated. The immunoblot shows the amount of BiP that co-immunoprecipitated 

in the different samples. 

 

Figure S1 

Secretion of α1-AT from HepG2 cells after kifunensine treatment. HepG2 cells were 

pretreated with kifunensine, pulsed for 10 min with 35S-methionine, and chased for 60 min. 

Kifunensine was present during the entire experiment. α1-AT was immunoprecipitated from 

the medium. Half of each fraction was digested with endoH and the other half was left 

untreated. Samples were subjected to SDS-PAGE and radioactive bands were visualized by 

phosphorimaging. 
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3.2 Additional data: The role of VIP36 in Golgi integrity 
 

The primary goal of my work was to investigate the function of VIP36 in the early secretory 

pathway focusing on the identification of a potential ligand. In addition, I was also interested 

whether VIP36 affected the organization of the secretory pathway itself. The results of this 

part of the study are presented and discussed in the following section. 

 

Effect of VIP36 knockdown on the morphology of the early secretory pathway 

VIP36 cycles between the ER and the Golgi (Dahm et al. 2001). Therefore an effect of VIP36 

knockdown is most likely to manifest itself in the early secretory pathway. VIP36 knock-

down was performed in HeLa cells and the cells were stained with markers for different 

compartments of the early secretory pathway. Knockdown of VIP36 had no appreciable effect 

on ER exit sites (ERES) as determined by staining for the COPII component Sec31 (Fig. 1A). 

There was also no effect on the peripheral ERGIC structures (Figure 1B). However, ERGIC-

53 showed less accumulation in the Golgi region in knockdown compared to control cells. 

This observation points to a possible alteration of Golgi morphology caused by the VIP36 

knockdown. Staining for the cis-Golgi marker GM130 and the medial-Golgi marker giantin 

revealed that the Golgi ribbon was fragmented (Fig. 1C). The effect on Golgi morphology 

was confirmed by two different siRNAs against VIP36. To further ensure that the effect on 

Golgi morphology was specific for cells in which VIP36 is depleted, we co-labeled VIP36 

and GM130. Only those cells without a residual VIP36 staining exhibited a fragmented Golgi 

(Fig. 1D). Overexpression of VIP36 had no effect on Golgi morphology (Fig. 1E), further 

supporting the conclusion that the observed fragmentation of the Golgi is due to depletion of 

VIP36.  

 

The Golgi fragments observed under VIP36 knockdown conditions are not connected 

anymore 

Next we wanted to determine whether the Golgi fragments in VIP36 knockdown cells are still 

connected. We therefore performed a FRAP experiment (fluorescence recovery after 

photobleaching). HeLa cells were either transfected with control siRNA or VIP36 siRNA. 

After 48 h, a plasmid encoding GFP-tagged-galactosyltransferase was transfected to label the 

Golgi. FRAP experiments were performed 24 h afterwards. A small region of the Golgi was 

bleached and subsequently the recovery of the fluorescent signal was measured. As the Golgi 

is a connected ribbon in control cells, bleaching of a circular area was followed by rapid 
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recovery (Fig. 2). In VIP36 knockdown cells, the bleached Golgi region did not recover 

within the time-frame of the experiment (~55 sec) (Fig. 2). This indicates that the bleached 

region is not connected to the other Golgi fragments and thus cannot be filled by diffusion.  

 

VIP36 knockdown does not affect the microtubule network but decreases the amount of 

COPI on the Golgi 

Several conditions can account for a fragmentation of the Golgi. One of these conditions is 

depolymerization of the microtubules. However, knockdown of VIP36 did not change the 

gross organization of the microtubule network as judged by staining for α-tubulin (Fig. 3A). 

Disruption of the coatomer complex either by knockdown of β-COP (Styers et al. 2008) or by 

conditional depletion of ε-COP (Guo et al. 1994) also results in fragmentation of the Golgi. 

Importantly, co-knockdown of ERGIC-53 and Surf 4 fragmented the Golgi, partly by 

redistribution of COPI from the Golgi to the cytosol (Mitrovic et al. 2008). VIP36 is related to 

ERGIC-53, and it contains a putative (dibasic) COPI binding motif. Therefore it seemed 

worthwhile to analyze the effect of VIP36 knockdown on COPI distribution. HeLa cells were 

transfected with control or VIP36 siRNA and a co-staining for β-COP and giantin was 

performed 72 h after transfection. Knockdown of VIP36 fragmented the Golgi and the 

fluorescence of β-COP on these Golgi fragments was significantly reduced when normalized 

to the giantin signal (Fig. 3B). We therefore concluded that Golgi fragmentation could be due 

to changes in COPI distribution analogous to the observation made by co-knockdown of 

ERGIC-53 and SURF4. 

 

VIP36 knockdown does not affect general glycoprotein secretion 

A major function of the Golgi is the posttranslational modification of proteins and their 

secretion. As shown above (see manuscript) knockdown of VIP36 did not affect secretion of 

albumin which is a non-glycosylated protein. However, secretion of the glycoprotein α1-AT 

was accelerated. We therefore asked whether the fragmentation of the Golgi induced by 

VIP36 knockdown has any impact on general secretion of glycoproteins. To test this, HepG2 

cells were transfected with siRNA against VIP36 or control siRNA. After 72 h, cells were 

metabolically labeled with [35S]-methionine for 10 min. Media and cells were harvested after 

a chase period of 20 and 60 min. Intracellular and secreted glycoproteins were precipitated 

using Concanavalin A-Sepharose. Concanavalin A is a lectin that binds preferentially to high-

mannose and hybrid type N-glycans. We compared the amount of intracellular glycoproteins 

to the amount of secreted glycoproteins. To ensure that the glycoproteins bound to 
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Concanavalin A were really of high-mannose type, we performed endoglycosidase H (endoH) 

digestion of intracellular glycoproteins. The most prominent bands appeared to be sensitive to 

endoH, indicating that they indeed contained high-mannose glycans. We could not observe an 

obvious difference in glycoprotein secretion between knockdown and control cells (Fig. 4A). 

In addition, there were also no differences in proteins not bound by Concanavalin A (Flow 

through) between knockdown and control conditions (Fig. 4B). This assay provides only a 

rough estimate of the functionality of the anterograde transport, but it is sufficient to show 

that the fragmented Golgi is still able to support anterograde transport. 

 

Retrograde Golgi to ER transport is not affected by VIP36 knockdown. 

Knockdown of the non-motor subunit of kinesin also leads to Golgi fragmentation (Stauber et 

al. 2006). No effect was observed on anterograde transport but retrograde (Golgi-to ER) 

transport was affected. Therefore, we wanted to test if the retrograde transport was affected by 

Golgi fragmentation in VIP36 knockdown cells. We used the ts045-VSVG-KDEL-receptor 

(VSVG-KDELr) based assay to test the functionality of the COPI dependent retrograde 

transport route. This reporter is composed of the KDELr which is retrieved in a COPI-

dependent manner. The luminal part of the temperature sensitive VSVG is attached to the N-

terminus of the KDELr (Cole et al. 1998). At the permissive temperature (32°C), this reporter 

cycles in the early secretory pathway and is at steady state in the Golgi. Upon shifting to the 

non-permissive temperature (40°C) the reporter is transported back to the ER, where it is 

trapped due to misfolding of the VSVG part. Conversion of the Golgi localization to an ER 

localization is indicative of an intact retrograde transport. If there is a disruption of retrograde 

trafficking, the VSVG-KDELr reporter will not be transported to the ER, and will remain in 

the Golgi. VSVG-KDELr distributed evenly to the ER and the Golgi in control as well as in 

VIP36 knockdown cells at the 32°C (Fig. 5 A,B). After incubation at 40°C for 2h, VSVG-

KDELr localized to the ER in both control and VIP36 knockdown cells (Fig. 5 A,B). This 

indicates that the COPI-dependent retrograde transport is still supported by the fragmented 

Golgi. 

 

Discussion 
Beside a role of VIP36 in post-Golgi quality control our study revealed that VIP36 also plays 

a role in maintaining/establishing Golgi integrity. There are several possibilities how VIP36 

could maintain Golgi integrity. Our study showed that neither the microtubule network, nor 

general anterograde or retrograde protein trafficking was affected by VIP36 knockdown. 
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Therefore we can exclude that a disruption of the microtubule network or a consequence of 

impaired protein trafficking are the reasons for the fragmented Golgi. According to our data 

VIP36 is involved in post-Golgi quality control of at least one glycoprotein: α1-AT. VIP36 is 

supposed to bind misfolded α1-AT and to transport it back to the ER. It is therefore tempting 

to speculate that VIP36 knockdown leads to an accumulation of misfolded glycoproteins in 

the Golgi, as they are not retrieved anymore. This accumulation of misfolded proteins could 

have a toxic effect on the Golgi leading to Golgi fragmentation. So far there are a few 

examples in the literature that showed a relation between misfolded proteins and the 

fragmentation of the Golgi (Gonatas et al. 2006). The most interesting one is a misfolded 

mutant of the growth hormone (Graves et al. 2001). Overexpression of this mutant causes 

massive Golgi fragmentation. The mutant itself was retained in the ER, but in addition located 

partially to Golgi fragments, indicating that part of the protein reached the Golgi. 

Overexpression of mutant growth hormone induced an anterograde trafficking defect. Golgi 

fragmentation could be either due to the disturbed ER export of proteins, but also due to 

accumulation of protein aggregates in the Golgi. This latter possibility was not tested. 

Organelle fractionation is needed here to determine whether protein aggregates are also found 

in Golgi fractions. However for α1-AT we did not find evidence for accumulation of 

misfolded proteins in HepG2 cells. On the contrary, knockdown of VIP36 led to an 

accelerated secretion of α1-AT. Also general secretion of glycoproteins did not differ between 

VIP36 knockdown and control cells. Therefore, our results do not support the accumulation of 

misfolded protein in the Golgi as a cause for Golgi fragmentation. Our results favor a 

different observation to underlie Golgi fragmentation. We found that VIP36 knockdown 

reduced COPI binding to the Golgi membrane. The importance of COPI for Golgi integrity is 

well supported. Treatment with BFA inhibits assembly of COPI coats on membranes due to 

the lack of activation of Arf1 by its exchange factor GBF1. This leads to dissociation of COPI 

from Golgi membranes and redistribution of the Golgi to the ER (Lippincott-Schwartz et al. 

1989; Lippincott-Schwartz et al. 1998). Knockdown of β-COP (Styers et al. 2008) or 

conditional depletion of ε-COP (Guo et al. 1994) both resulted in fragmentation of the Golgi. 

We found that knockdown of VIP36 reduced the amount of Golgi-associated COPI. A recent 

study from our laboratory showed that recruitment of COPI to the Golgi depends on the 

presence of cargo receptors (Mitrovic et al. 2008). Double knockdown of ERGIC-53 and the 

putative cargo receptor SURF4 disrupt the Golgi and COPI dissociates partly from the Golgi. 

The same result was found for single knockdown of p25, a cargo receptor of the p24 family 

(Mitrovic et al. 2008). All of these proteins provide di-lysine COPI-binding motifs that are 
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critical for COPI recruitment. VIP36 has a dibasic signal in its C-terminus (KR on position –3 

and –4), which are likely to serve as COPI binding sites. This is a possible explanation for the 

reduction of COPI association to the Golgi. The question arises now, why a single knockdown 

of VIP36 is sufficient to induce Golgi fragmentation, while a single knockdown of the related 

protein ERGIC-53 does not? ERGIC-53 is mainly localized to the ERGIC and the ER and a 

very small amount of it is found in the Golgi. VIP36 mainly localizes to the Golgi and may 

therefore contribute more COPI binding sites than ERGIC-53. Taken together our data 

demonstrate that VIP36 supports Golgi integrity mainly by providing binding sites for COPI.  

 

Materials and methods: 
Antibodies: The following antibodies were used for immunofluorescence: G1/133 against 

giantin (Linstedt et al. 1993), GM130 (BD, Bioscience), tubulin , mAb G1/93 against human 

ERGIC-53 (Schweizer et al. 1991), mouse mAb 1A2 against α-tubulin (kindly provided by 

Karl Matter, University College London, UK), rabbit pAb VIP36 (kindly provided by Kai 

Simons, Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany ), 

mouse mAb 9E10 against the myc epitope, mouse mAb maD anti-βCOP (Pepperkok et al. 

1993), pAb against giantin (kind gift of Adam Linstedt, Department of Biological Sciences, 

Carnegie Mellon University, Pittsburgh). Alexa 488-, Alexa 568 (Molecular Probes, BV, 

Leiden, NL) were used as secondary antibodies.  

Cell culture: 

HeLa cells were grown in DMEM, supplemented with 10% fetal bovine serum and 

antibiotics. HepG2 cell were grown in MEM supplemented with 10% fetal bovine serum and 

antibiotics. 

siRNA and DNA transfection 

Si RNA oligonucleotides against VIP36 were obtained from Qiagen (5’-

AGAUAACUUCCACGGCUUA)dTdT-3’was used as sense and 5’-

UAAGCCGUGGAAGUUAUCUdTdT-3’ as antisense oligonucleotide) and from Ambion 

(5’-UGACUGCGGAUAUAACUGAtt-3’ as sense and UCAGUUAUAUCCGCAGUCAca as 

an antisense oligonucleotide). Nonsilencing negative control siRNAs were obtained from 

Qiagen and Ambion. The siRNAs were transfected using Hiperfect (Qiagen, Switzerland) 

according to the manufacturer’s instructions at a final concentration of 10nM. Plasmid 

transfection was performed using Fugene6 (Roche Diagnostics) according to the 

manufacturer’s instruction. 
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Plasmids 

Full length VIP36 was cloned from cDNA obtained by reverse transcription from HepG2 

mRNA using oligodT. VIP36 was amplified using 5’- 

AATTCTCGAGATGGCGGCGGAAGGCTGGATT-3’ as forward primer and 5’-

GGCCTCTAGATCAGTAGAAGCGCTTGTTCCG-3’as a reverse primer. The PCR product 

was subcloned into a pcDNA3 vector via XhoI and XbaI restriction sites. The construct was 

verified by sequencing 

Immunofluorecence microscopy: 

Cells were fixed in 3% para-formaldehyde, permeablizied in 0,2% Triton in PBS containing 

3% BSA and 20mM glycine (PBG) or 0,1% saponin (for anti-myc staining). Primary and 

secondary antibodies were incubated sequentially in PBS containing 3% BSA at room 

temperature. In case of saponin permeabilisation procedure saponin was present during all 

steps. For COPI staining cell were fixed in ice cold methanol/acetone (1:1) for 2 min. 

Following a one hour blocking step with PBG, cells were subsequently incubated with the 

primary antibodies in PBG and the secondary antibody in PBS containing 3% BSA. Cells 

were embedded in Mowiol and analyzed by laser scanning confocal microscopy (SPE5, 

Leica). For quantification of the β-COP staining, the fluorescence intensity of the giantin and 

the β-COP staining was determined within the same region of the Golgi. All regions 

quantitated had the same size. The intensity of β-COP staining was normalized to the intensity 

of the giantin staining. Images in knockdown and control conditions were acquired using the 

same settings (magnification and laser power).  

Total glycoprotein secretion 

HepG2 cells were seeded in 10cm plates and reverse transfected with either VIP36 or control 

siRNA. 72 h after knockdown cells were starved in methionine-cysteine free medium and 

pulsed afterwards with 35S-labeled methionine/cysteine for 15 min. The medium was 

collected after a 60 min chase period and the samples were incubated with Concanavalin A- 

Sepharose for 1 h. The samples were washed four times with ConA buffer (20mM Tris-HCl, 

500mM NaCl, 1mM CaCl2, 1mM MgCl2, pH 7.5) and glycoproteins were eluted in endoH 

buffer (0.25M sodium-citrate, 50mM Tris pH 6.0, 0.6% SDS). 50% of each sample was left 

untreated, 50% of it was incubated with 5mU endoglycosidase H (Roche) for 3 h at 37°C. 

Loading buffer was added and the samples were loaded on an SDS-gradient gel (4%-15%). 

The gel was fixed by incubation in 50%methanol and 10% acetic acid for 30 min. The 

radiolabeled bands were analyzed by phosphorimaging. 
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Fluorescence recovery after photobleaching: 

HeLa cells were transfected with 10 nM siRNAs, 48 h later they were transfected with GalT-

EGFP plasmid DNA. 72 h after siRNA transfection the cells were used for FRAP experiments 

on a LeicaSP5 microscopy at 37°C (× 40 objective, 1.4 NA). Before bleaching, a scan was 

obtained; the area of interest was then bleached with maximum laser power for one frame. 

Subsequently fluorescence recovery was monitored for 40 frames (each frame was 1.4 

seconds). The recorded fluorescence intensities were digitized and averaged over the bleach 

region using ImageJ. 

VSV-G-KDEL-receptor-based retrograde transport assay 

HeLa cells were transfected with control or VIP36 siRNA. Two days later, they were 

transfected with myc-tagged ts045 VSV-G-KDEL receptor construct (kind gift from Victor 

Hsu, Harvard University). Subsequently cells were incubated at 32°C to allow VSVG to fold. 

Three days after siRNA transfection, the cells were either shifted for 2 h to 40°C or left at 

32°C before fixation with 3%PFA. Immunofluorescence staining was performed using anti-

myc antibody. A secondary anti-mouse-antibody coupled with Alexa568 was used. The 

amount of cells showing the VSVG-KDELR in the ER, respectively the Golgi were counted 

and expressed as percentage of total cells counted. 

 

Figure legends: 

Figure 1: VIP36 knockdown shows no effect on ER exit sites or the ERGIC, but 

fragments the Golgi. (A-C) Hela cells were transfected with VIP36 siRNA or control siRNA. 

After 72 h, cells were fixed and stained for Sec31 (A), ERGIC-53 (B), GM130 (C, upper row) 

or the medial Golgi marker giantin (C, lower row). Note that two different siRNAs 

fragmented the Golgi. (D) Hela cells were transfected with siRNA against VIP36. After 72 h, 

cells were fixed and co-stained for GM130 and VIP36. Cells without residual VIP36 staining 

showed fragmentation of the Golgi (arrow heads). (E) HeLa cells were transfected with 

cDNA encoding VIP36. After 24 h, cells were fixed and stained for VIP36 and GM130. 

Transfected cells were identified as those exhibiting a twofold higher fluorescence value over 

the Golgi region.  

 

Figure 2: The fragments of the Golgi are not interconnected. 

HeLa cells were transfected with siRNA against VIP36 or with control siRNA. Two days later 

cells were transfected with a plasmid encoding GalT-EGFP and the FRAP experiment was 

performed 24 h later as described in material and methods. Upper panel shows an example for 
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FRAP in VIP36 knockdown vs. control cells after the same period of recovery. Lower panel 

shows the evaluation of 5 cells for each condition (expressed as mean ± SD) 

 

Figure 3: Effect of VIP36 knockdown on microtubule and COPI distribution.  

(A,B) HeLa cells were treated with siRNA against VIP36 or with control siRNA. After 72 h, 

cells were stained with anti-tubulin antibody (A) or co-stained with β-COP and giantin (B). 

Fluorescence intensity of the β-COP staining was normalized to the intensity of the giantin 

staining.  

 

Figure 4: VIP36 knockdown has no effect on general glycoprotein secretion. 

(A,B) HepG2 cells were transfected with VIP36 siRNA (VIP) or control siRNA (co). 72 h 

after transfection the cells were labeled with [35S]methionine for 10 min and chased for 0, 20 

and 60 min. Cell lysate (c) and medium (M) was incubated with Concanavalin A. Panel A 

shows the fraction of (glyco-) proteins that bound to Concanavlin A. Samples were eluted and 

one half subjected to endo-H treatment (+) and the other half left untreated (-). Samples were 

subjected to SDS-PAGE and bands were visualized using phosphorimaging. Panel B shows a 

fraction of the flow through (2%) was also subjected to SDS-PAGE and visualized by 

phosphorimaging. 

 

Figure 5: VIP36 knockdown does not affect COPI dependent retrograde transport. (A) 

HeLa cells were transfected with siRNA against VIP36 or control siRNA. After 48 h, cells 

were transfected with the myc-VSVG-KDEL-receptor construct. Cell were either left at 32°C 

(left panel) or incubated at 40°C for 2 h (right panel). Subsequently cells were fixed and 

stained for anti-myc. (B) Scoring of the percentage of cells showing a Golgi or ER pattern of 

the VSVG-KDELR under the different conditions. Bars show mean of two experiments. For 

each condition 44 to 58 cells were evaluated. 
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4 Discussion  
Among the four L-type lectins in mammalian cells, only the role of ERGIC-53 in the early 

secretory pathway has been investigated in detail. The main function of ERGIC-53 is the ER 

export of a series of glycoproteins (Hauri et al. 2000). In addition, it acts together with Erp44 

to ensure efficient polymerization and secretion of IgM polymers (Cortini et al. 2010). The 

function of the other three members of mammalian L-type lectins remains elusive. So far no 

study was conducted on the role of ERGL in the early secretory pathway. VIPL was 

implicated as a regulator for ERGIC-53, as overexpression of VIPL redistributed ERGIC-53 

back to the ER (Nufer et al. 2003). In addition, knockdown of VIPL affected the secretion of 

two non-identified glycoproteins (Neve et al. 2003) but it remains unknown if VIPL directly 

affects the transport of these glycoproteins.  

Several studies were conducted on VIP36, but no convincing data supporting a 

specific function of VIP36 was provided. Our approach to uncover the cellular function of 

VIP36 was to identify a cargo and study the function of VIP36 based on this cargo. We 

identified α1-AT by our YFP-PCA-based FACS screening as an interaction partner for 

VIP36. At first sight we were surprised to retrieve α1-AT as a possible interaction partner for 

VIP36 because we have previously uncovered α1-AT as a cargo for ERGIC-53. We first 

speculated that VIP36 might work as a backup receptor, a notion supported by the fact that 

VIP36 has a preference for high-mannose (ER-type) sugars and cycles in the early secretory 

pathway (Dahm et al. 2001; Kamiya et al. 2005). Both features are reminiscent of ERGIC-53. 

In addition, we found that the complex formed by α1-AT and VIP36 localized to ER and 

Golgi. This would be consistent with binding of α1-AT to VIP36 in the ER and subsequent 

transport to the Golgi. A backup receptor function would be analogous to COPII where four 

different versions of the cargo adaptor Sec24 (Sec24A,B,C,D) exist, which function 

redundantly (Wendeler et al. 2007). However, our data do not support a backup function of 

VIP36. The main point arguing against a backup-receptor hypothesis is the fact that a 

knockdown of VIP36 accelerates α1-AT transport. In addition, findings by K. Kato and 

colleagues argue against a role for VIP36 at the level of the ER. They found that VIP36 has its 

highest affinity for sugars at pH of 6.5 (Kamiya et al. 2005). This is a value typically 

attributed to the Golgi (Paroutis et al. 2004). Similarly, it is also unlikely that VIP36 acts in 

intra-Golgi transport. Depletion of an anterograde intra-Golgi transport receptor would result 

in slowed complex-glycosylation of its cargo glycoprotein. In contrast we observed 

accelerated complex-glycosylation of α1-AT in VIP36. Apart from that, this is not likely for 

another reason. The Golgi mannosidase-I cleaves GlcNAc2Man8 to GlcNAc2Man5 already in 
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the cis-Golgi. VIP36 has a very low affinity for Man5 glycans (Kamiya et al. 2005). 

Therefore, VIP36 would not be able to support transport of glycoproteins after the cis-Golgi, 

making it an unlikely candidate for an intra-Golgi transport receptor.  

One of the potential functions postulated for VIP36 is post-Golgi transport of 

glycoproteins (Hara-Kuge et al. 2002). Therefore, we considered the possibility that VIP36 

may mediate post-Golgi transport of α1-AT. The idea that VIP36 acts in post Golgi transport 

is mainly supported by two studies (Hara-Kuge et al. 2002; Hara-Kuge et al. 2004). These 

authors described that VIP36 interacts with α-amylase in post-Golgi vesicles of rat parotid 

cells (Hara-Kuge et al. 2004). However, this is not relevant for human α-amylase. Rat α-

amylase is secreted in a high-mannose form which can potentially be recognized by VIP36. 

By contrast, human α-amylase is secreted in its complex glycosylated form, which is unlikely 

to interact with VIP36 (Hara-Kuge et al. 2004). The second study focused on the secretory 

protein clusterin in MDCK cells. Clusterin has seven N-glycosylation sites, one of which 

remains in its high-mannose form even when it is secreted (Hara-Kuge et al., 2002). This 

high-mannose glycan could therefore serve as a binding site for VIP36 to mediate post-Golgi 

trafficking (Hara-Kuge et al. 2002). Yet only indirect evidence for a role of VIP36 in post-

Golgi trafficking of clusterin was provided. Hara Kuge et al. (2002) localized VIP36 to the 

plasma-membrane in MDCK cells. The observation of VIP36 in the late secretory pathway is 

incompatible with our findings as well as with the findings of the Simons group (Fullekrug et 

al. 1999). The discrepancy may be due to the usage of different antibodies. The antibody used 

by Füllekrug et al. (1999) is directed against the C-terminus of VIP36. We used the same 

antibody in our studies and also localized VIP36 in the early secretory pathway. The 

polyclonal antibody used in the study of Hara Kuge et al (2002) is directed against the luminal 

domain of VIP36, which would be accessible to the extracellular milieu in case VIP36 would 

reach the plasma membrane. Hara Kuge et al (2002) detected VIP36 at the plasma-membrane 

in non-permeabilized cells, but the same antibody showed mainly an ER pattern for VIP36 in 

permeabilized cells. In addition, this antibody was raised against the complete CRD of VIP36 

and is therefore likely to detect also VIPL, as the luminal domains are homologous. Thus the 

results obtained with this antibody have to be taken cautiously. Further studies are needed to 

clarify the role of VIP36 in clusterin transport in more detail. Nevertheless, the possibility 

remains that VIP36 is able to fulfill different functions dependent on the cell type. Regarding 

α1-AT, we are convinced that VIP36 is not involved in its post-Golgi transport for several 

reasons. The role assigned to VIP36 in post-Golgi trafficking was to regulate apical secretion. 

HepG2 cells (where we have studied α1-AT transport) are polarized cells and exhibit an 
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apical and a basolateral side. The canalicular membrane domain of HepG2 cells correspond to 

the apical domain and their sinusoidal and lateral domains correspond to the basolateral 

membrane (Zegers et al. 1998). α1-AT is a plasma-protein and as such it would be secreted 

via the sinusoidal and lateral membrane into the bloodstream. However, it is unlikely that 

VIP36 mediates basolateral-directed post-Golgi transport of α1-AT. Secretion of α1-AT into 

the medium was not slowed down under VIP36 knockdown conditions. Finally, there is no 

evidence that any of the three glycosylation sites of secreted α1-AT remains in its high-

mannose state, which would be necessary to serve as a binding site for VIP36 (Gross et al. 

1982; Mills et al. 2001). Overall, our data do not support a role for VIP36 as an anterograde 

cargo receptor at any stage for α1-AT.  

So far all listed hypotheses fail to provide an explanation for the accelerated transport 

we have observed under VIP36 knockdown conditions. Which intracellular function of VIP36 

can explain such an observation? Interestingly, acceleration of α1-AT transport was already 

described in the literature (Yeo et al 1985). Treatment with the mannosidase-II inhibitor 

swainsonine accelerates the transport of α1-AT and other glycoproteins (Yeo et al. 1985). 

Inhibition of mannosidase-II interferes with the conversion of Man5 to Man3, resulting in an 

accumulation of Man5. The inhibition of trimming prevents the formation of complex-type 

glycans, and hybrid-type glycans are synthesized instead. The authors speculated that a Man3- 

and Man5-binding lectin may exist. Transport by the Man3-binding lectin would be slower 

than transport by the Man5-binding lectin. Therefore, accumulation of Man5 will lead to a 

faster transport. It is very unlikely that VIP36 represents this elusive Man3-binding lectin 

because VIP36 has a very low affinity for Man3 glycans (Kamiya et al 2005).   

Based on our data the most likely explanation for the accelerated transport under 

VIP36 knockdown would be a role in quality control at the level of the Golgi. According to 

this notion, VIP36 binds high-mannose α1-AT in the Golgi and transports it back to the ER 

and thereby retards its complex glycosylation. In case VIP36 is depleted, α1-AT is not 

retrieved, but subjected to complex glycosylation and finally secreted. This hypothesis 

explains all our observations. If VIP36 acts in post-ER quality control it is likely to interact 

only with a small fraction of proteins, which is reflected by the low YFP-PCA signal. 

Likewise, the small increase in transport velocity could be explained. We also demonstrated 

the recycling of the VIP36/α1-AT complex from the Golgi back to the ER, which further 

strengthens our hypothesis.  

The principle of post-ER quality control per se is not without precedence. A well 

known example is the retrieval activity of the KDEL receptor. The KDEL receptor cycles 
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between ER and Golgi and ensures that escaped ER resident proteins are transported back to 

the ER. The KDEL receptor binds to the KDEL peptide sequence (lysine-aspartate-glutamic 

acid-leucine) present in a variety of soluble proteins, like BiP or calreticulin (Pelham 1989). 

Calreticulin retrieves sub-optimally loaded MHC-I molecules from the Golgi back to the ER 

(Howe et al. 2009). This shows that ER chaperones may also act at the level of the Golgi. The 

retained MHCI would be brought back to the ER and may only be released from calreticulin 

there. However, there is evidence that retention by and release from calreticulin may also take 

place directly in the Golgi. Endomannosidase was shown by electron-microscopy to localize 

to the Golgi (Zuber et al. 2000) and it was also shown to co-purify with calreticulin from 

Golgi extracts (Spiro et al. 1996). This suggests that endomannosidase removes glucose 

residues from calreticulin-glycoprotein complexes. The removal of glucose would release the 

glycoprotein from calreticulin at the level of the Golgi. Finally, misfolded mutants of the 

vasopressin receptor were shown to reach the ERGIC and were subsequently rerouted to the 

ER for degradation (Hermosilla et al. 2004). The mechanism behind retention and retrieval 

remains to be resolved. 

Two different defects would theoretically render a glycoprotein prone to recognition 

by post-Golgi quality control: a problem in glycosylation or a folding defect. Glycosylation is 

important for protein stability and different cellular functions. Therefore, it would make sense 

to have a mechanism that assures correct glycosylation beyond the level of the ER. High-

mannose-containing proteins in the plasma are recognized by the mannose receptor, 

endocytosed and degraded (Schlesinger et al. 1978). It was shown that high-mannose glycans 

shortens the half life of IgG1 in blood plasma (Wright et al. 1994). Therefore, cells have to 

prevent high-mannose glycoproteins from being secreted. This function may be exerted by 

VIP36. VIP36 could interact with α1-AT molecules that were not trimmed by Golgi 

mannosidase-I within a certain time frame and transport them back to the ER. This would 

prevent secretion of high-mannose containing α1-AT. Although this idea is appealing, our 

data do not support it. If VIP36 prevents the secretion of high-mannose α1-AT, then we 

would expect to detect these high-mannose forms of α1-AT in the medium of VIP36 

knockdown cells. This was, however, not the case. We cannot completely rule out that single 

N-glycan chains of α1-AT may show subtle glycosylation differences upon VIP36 

knockdown. Whether this is true cannot be clarified by SDS-PAGE. Analysis of secreted α1-

AT from VIP36 knockdown cells by HPLC is needed to tackle this question. 

Another possibility for VIP36 to act in post-ER quality control would be the removal 

of misfolded α1-AT from the Golgi. According to this hypothesis, VIP36 would recognize 
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misfolded α1-AT that escaped the ER quality control. In this case, our observation that 

kifunensine treatment increases the interaction between VIP36 and α1-AT may be interpreted 

differently. Kifunensine does not only inhibit mannosidases, it also inhibits ERAD. Therefore, 

the increase in fluorescent complementation between VIP36 and α1-AT, upon kifunensine 

treatment, might reflect the interaction with α1-AT variants that escaped the ERAD. Results 

obtained by Nawa et al (2007) also support a role for VIP36 in post-ER quality control of 

misfolded proteins. They found that complex glycosylated VIP36 immunoprecipitated with 

BiP. The complex glycosylation of VIP36 indicates that VIP36 either binds BiP directly in the 

Golgi or recycles from the Golgi back to the ER and interacts subsequently with BiP. In both 

cases the interaction between BiP and VIP36 argues strongly for a role in post-ER quality 

control of misfolded proteins. We confirmed the interaction between BiP and VIP36 and in 

addition found that BiP associates with the complex formed by VIP36 and α1-AT. As it is 

currently not clear where the complex between VIP36 and BiP forms, we can only speculate 

about the mode how VIP36 and BiP cooperate in quality control. In case the interaction of 

VIP36 and BiP takes place in the ER, VIP36 would have to recognize the defective 

glycoprotein in the Golgi, recycle it back to the to the ER and hand it over to BiP. In this 

scenario, VIP36 would need to recognize its client protein by binding to non-native regions of 

the protein. There is already some evidence that lectins do not only interact with the glycan 

structure of a protein alone. ERGIC-53 does not only interact with high-mannose glycans of a 

glycoprotein, but also with peptide determinants (Appenzeller-Herzog et al. 2005). There is 

also evidence that calnexin and calreticulin bind to unfolded parts of the protein (Ihara et al. 

1999; Saito et al. 1999; Jørgensen et al. 2000). Thus, it is possible that also VIP36 recognizes 

peptide determinant. VIP36 has an unpaired cysteine in its structure. It is tempting to 

speculate that this residue is involved in recognition of peptide determinants. According to the 

crystal structure this cysteine residue is localized on the opposite side of the glycan-

recognition site. The glycan chains might suffice to span the distance. Co-crystallization of 

α1-AT and VIP36 will be required to test this notion. 

In the alternative scenario VIP36 and BiP interact already in the Golgi. VIP36 

recognizes the sugar determinants and BiP recognizes the misfolded (non-native) part of the 

protein. The complex made of BiP, VIP36 and misfolded α1-AT would then recycle back to 

the ER. Because of the pH change, VIP36 would release the high-mannose chains in the ER 

and BiP would stay bound to the misfolded protein and retain it in the ER. Our observation 

that BiP binds not only to VIP36 but also to the complex formed by α1-AT and VIP36 argues 

in favor of this interpretation. Such a mechanism would explain why the complex of VIP36 
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and α1-AT was retained in the ER after cycloheximide treatment. α1-AT bound to VIP36 is 

recycled back to the ER in a complex with BiP. As the YFP-PCA is irreversible VIP36 was 

not able to dissociate from α1-AT anymore and was retained together with α1-AT and BiP in 

the ER. The question arises now, why should BiP alone not be sufficient to bind the misfolded 

protein in the Golgi? One explanation is the difference in the environments of the Golgi and 

the ER. BiP may have decreased affinity towards its binding partners in the Golgi, 

presumably because of different pH. Another possibility is that BiP has a lower affinity for 

misfolded glycoprotein, than for non-glycoproteins. It has been shown that a glycoprotein that 

is N-glycosylated within the first 50 aa of its sequence does not interact with BiP (Molinari et 

al. 2000). Instead it interacts with calnexin or calreticulin. This criterion applies to α1-AT, as 

its first glycosylation is within the first 50 aa. It is possible that BiP needs the help of VIP36 

to recognize α1-AT in the Golgi. VIP36 would interact with every high-mannose containing 

α1-AT arriving at the Golgi. In case the protein is correctly folded the affinity between VIP36 

and α1-AT is not high enough to promote retention. In case non-native α1-AT arrives at the 

Golgi, VIP36 would be aided by BiP and the complex would be re-routed to the ER. As 

retrieval of BiP is mediated by the KDEL receptor, this could enhance the efficiency of the 

retrieval of the whole complex. BiP was already implicated in post-ER quality control of the 

T-cell receptor alpha (TCRα). Together with the KDEL receptor, BiP was shown to be 

involved in retrieval of incorrectly assembled, overexpressed TCRα (Yamamoto et al. 2001). 

Partially assembled TCRα is recognized by BiP in the Golgi followed by binding of BiP to 

the KDEL receptor. The KDEL receptor retrieves the whole complex back to the ER where 

TCRα is subjected to degradation. As the TCRα is a glycosylated protein, it would be 

interesting to test, whether VIP36 is also part of this complex or acts in addition to it to 

enhance the efficiency of the retrieval system.  

If VIP36 binds misfolded proteins, why did the misfolded mutants of α1-AT not 

interact with VIP36? The two mutants used in our study are retained in ER. The Hong Kong 

mutant is not exported from the ER at all and the misfolded Z mutant is secreted at 10-fold 

lower rates than wild type α1-AT. Therefore, both mutants do not reach the Golgi at sufficient 

amount to be detectable by YFP-PCA. As the Z-mutant has a strong tendency to aggregate, it 

might be that the accessibility of the glycan chains is impaired, again lowering the probability 

to interact with VIP36. 

In summary, our study suggests a cellular role for VIP36 as part of the post-ER quality 

control system in the Golgi. Our proposed working model is schematically illustrated below. 
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5 Future perspectives 
There are still many open questions related to VIP36. I suggest the following questions to be 

tested experimentally in the future:  

- Formally, the trafficking motifs in VIP36 have not been investigated. Is the retrieval motif 

functional? The classical retrieval motif is KKXX. The putative retrieval motif of VIP36 is 

KRXX. It would be interesting to test the ability of the VIP36 C-terminus to recruit COPI. 

This is important in light of the fact that we propose that depletion of VIP36 leads to less 

COPI at the Golgi. Equally important is the question of whether the putative ER export motif 

of VIP36 is functional and which Sec24 isoform it binds.  

- What form of α1-AT is secreted by VIP36 knockdown cells compared to control conditions? 

This requires analysis of VIP36 secreted into the medium by HPLC or by isoelectric focusing.  

- How does VIP36 bind to BiP? Mapping the domain in VIP36 binding to BiP will allow the 

construction of VIP36 mutants that fail to bind BiP. These mutants can be then tested in terms 

of interaction with α1-AT.  

- If the VIP36-BiP complex retrieves α1-AT to the ER, how does the complex dissociate? 

This will involve studying the interaction of VIP36 and BiP at different pH levels (6.5 for a 

Golgi-relevant pH and 7.4 for an ER-relevant pH value). Also interesting would be to study 

the sequence of events in the assembly of the complex. Does the VIP36-BiP complex pre-

exist in the absence of α1-AT? Is it induced upon engagement with α1-AT? Does VIP36 bind 

α1-AT first followed by recruitment of BiP? Does non-native α1-AT arrive at the Golgi 

already with BiP bound to it?  

- What are the molecular details of the VIP36 α1-AT interaction? Co-crystallization of VIP36 

and α1-AT will be required to tackle this question.  

- What is the biological function of VIP36? The complete knockout of genes has often 

retrieved limited information about the function of the protein being studied. Tissue-specific 

(conditional) knockout models are more useful. A VIP36 knockout in the liver would be a 

potentially useful model to uncover the biological function of this lectin. VIP36 is highly 

expressed in the liver and α1-AT which we have identified as a binding partner for it, is 

synthesized and secreted in the liver.  
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