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Summary 
 

In eukaryotic cells, hydrophobic signal sequences of newly synthesized secretory and 

membrane proteins target them to the Sec61 translocon in the endoplasmic reticulum (ER) 

membrane. The translocon forms a hydrophilic pore, in its idle state closed by a lumenal plug 

domain and a hydrophobic constriction ring. Within the Sec61 channel, transmembrane segments 

of proteins achieve their proper orientation (topology) and are laterally released into the lipid 

bilayer. Orientation of signal sequences in the ER membrane is determined by charged residues 

flanking the hydrophobic core of the signal, hydrophobicity of the signal, the size and folding 

properties of the N-terminal domain preceding the signal and, in some cases, the length of the         

C-terminus.  

In Part I of this thesis we compared the insertion process of N-terminal versus internal 

signal-anchors of single-spanning membrane proteins and determined the effect of the N-terminal 

hydrophilic domain on protein topogenesis. We showed that insertion of these two types of signals 

occurs via different mechanisms. Transition from N-terminal to internal signals, achieved by 

extension of the N-domain with hydrophilic residues, was accompanied by loss of C-terminal 

length dependence and insensitivity to increased hydrophobicity of the signal. It indicated that, in 

contrast to N-terminal signals, signal-anchors localized internally cannot undergo reorientation 

within the pore. Furthermore, hydrophilic N-terminal domains sterically hinder N-translocation.  

In Part II we analyzed the insertion process of proteins with conflicting signal sequences: 

type I cleavable hemagglutinin (HA) signal and a type II signal-anchor of H1. We showed that 

proteins with wild-type HA and H1 signals, connected by a 40-amino acid linker compete for the 

preferred orientation in the translocon, manifested by a rapid inversion of a fraction of the 

polypeptides, triggered by the signal-anchor. The process could be slowed down by increasing the 

hydrophobicity of the H1 signal or manipulating its flanking charges. Under such conditions, 

topogenesis was interrupted upon termination of translation, like previously observed for                

N-terminal signal-anchors. In contrast to single-spanning membrane proteins, the topogenesis 

window is not a constant of the translocation machinery, but rather appears to be substrate-

specific. 

In Part III we tested the function of the apolar core of the Sec61 translocon. We mutated 

the ring residues of yeast Sec61p to more hydrophilic, bulky, or even charged amino acids 

(alanines, glycines, serines, tryptophans, lysines, or aspartates). The translocon turned out to be 

surprisingly tolerant even to the charge mutations in the constriction ring, since growth and 
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translocation efficiency were not drastically affected. Ring mutants altered the integration of 

hydrophobic sequences into the lipid bilayer, which indicated that the translocon does not simply 

catalyze the partitioning of potential transmembrane segments between an aqueous environment 

and the lipid bilayer, but that it plays an active role in setting the hydrophobicity threshold for 

membrane integration. 
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I General introduction 
 

1. Protein sorting pathways 
 

Eukaryotic cells are subdivided into structurally and functionally distinct, membrane-

enclosed compartments, called organelles. As membranes act as hydrophobic physical barriers, in 

order to maintain a unique protein composition of each organelle, the cell developed                       

a sophisticated machinery that enables transport of solutes and macromolecules across these 

barriers. In eukaryotic cells, the synthesis of most proteins begins in the cytosol, followed by their 

delivery to the appropriate cellular compartment (Figure 1). Protein transfer is guided by sorting 

signals in the transported protein, which are recognized by complementary sorting receptors in the 

target organelles. Examples of sorting signals are presented in Table I. 

 

 
 

Figure 1. Protein sorting in eukaryotic cells. Proteins encoded by the nuclear mRNA are synthesized on 
cytosolic ribosomes. Polypeptides entering the secretory pathway (1) contain an ER signal sequence that 
targets the ribosome-nascent chain complex to the ER membrane (2). Proteins exit the ER in transport 
vesicles and are delivered to the Golgi apparatus (3). From there, they can be transported out of the cell 
(4a), delivered to lysosomes (4b) or incorporated into the plasma membrane (4c). Proteins that lack an ER 
targeting signal are synthesized on free ribosomes in the cytoplasm (1). They can be released into the 
cytosol (2) or delivered to the mitochondrion (3a), chloroplast (3b), peroxisome (3c) or the nucleus (3d), 
mediated by an organelle-specific sorting signal. (Lodish, 2000) 
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Table I. Some typical signal sequences. 
 

Function of signal sequence Example of signal sequence 
Import into nucleus -Pro-Pro-Lys-Lys-Lys-Arg-Lys-Val- 
Export from nucleus -Leu-Ala-Leu-Lys-Leu-Ala-Gly-Leu-Asp-Ile 
Import into mitochodria +H3N-Met-Leu-Ser-Leu-Arg-Gln-Ser-Ile-Arg-Phe-Phe-Lys-Pro-Ala-

Thr-Arg-Thr-Leu-Cys-Ser-Ser-Arg-Tyr-Leu-Leu- 
Import into plastid +H3N-Met-Val-Ala-Met-Ala-Met-Ala-Ser-Leu-Gln-Ser-Ser-Met-Ser-

Ser-Leu-Ser-Leu-Ser-Ser-Asn-Ser-Phe-Leu-Gly-Gln-Pro-Leu-Ser-Pro-
Ile-Thr-Leu-Ser-Pro-Phe-Leu-Gln-Gly- 

Import into peroxisomes -Ser-Lys-Leu-COO- 
Import into ER +H3N-Met-Met-Ser-Phe-Val-Ser-Leu-Leu-Leu-Val-Gly-Ile-Leu-Phe-

Trp-Ala-Thr-Glu-Ala-Glu-Gln-Leu-Thr-Lys-Cys-Glu-Val-Phe-Gln- 
Return to ER  -Lys-Asp-Glu-Leu-COO- 

 
Amino acids characteristic for different classes of signal sequences are highlighted in color. When 
important for the function of the signal, positively charged residues are shown in red, negatively charged- 
in green, hydrophobic- in white and hydroxylated amino acids- in blue. +H3N and COO- indicate the N- and 
C-terminus of the polypeptide, respectively. Redrawn from: (Alberts, 2008) 
 

 

In eukaryotic cells, targeting to the endoplasmic reticulum (ER) is the first step in the 

biosynthesis of secretory and membrane proteins, such as resident proteins of the ER, ER-Golgi 

intermediate compartment (ERGIC), Golgi apparatus, endosomes, lysosomes and the plasma 

membrane (PM) (Palade, 1975). While secretory proteins are completely translocated into the ER 

lumen, transport of membrane proteins requires their incorporation into the ER membrane. In 

prokaryotes, newly synthesized proteins are transported across- or are built into the plasma 

membrane.  

Protein targeting to the ER is mediated by signal sequences located within the nascent 

chain. They are composed of a positively charged n-region, a h-region containing 8-20 

hydrophobic amino acids and a polar c-region (Table I) (Gierasch, 1989). Signal sequences carry 

topogenic information that allows proteins to achieve their proper orientation in the membrane. 

Based on the composition and mechanism of insertion, proteins can be divided into secretory 

proteins (fully translocated into the ER lumen), single-spanning membrane proteins (type I, type 

II, type III and tail-anchored) and multispanning membrane proteins (Figure 2). Proteins of type I 

are targeted to the ER by an N-terminal, cleavable signal sequence, and then anchored in the 

membrane by a subsequent hydrophobic `stop-transfer` sequence. Their final topology is Nexo/Ccyt 

(exoplasmic or lumenal N-terminus and cytoplasmic C-terminus). Proteins of type II possess             

a signal-anchor sequence, which mediates both targeting and membrane anchoring. They assume 

an Ncyt/Cexo orientation. Reverse signal-anchors of type III membrane proteins initiate 

translocation of the N-terminus across the ER membrane, yielding the opposite topology. In 
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addition, there is a class of tail-anchored proteins, where the signal sequence is located at the very 

C-terminus (Goder and Spiess, 2001).  

 

	
  
 
Figure 2. Three types of signals initiate co-translational protein topogenesis. Cleavable signals (red with 
arrowhead indicating the signal peptidase cleavage site) and uncleaved signal-anchors (red without 
arrowhead) induce translocation of the C-terminus and assume an Ncyt/Cexo orientation. Reverse signal 
anchors (blue) insert with the opposite Nexo/Ccyt orientation and translocate their N-terminus. Multispanning 
proteins contain additional transmembrane segments inserting in alternating orientations (light red for 
Ncyt/Cexo and light blue for Nexo/Ccyt). Examples of secretory and single-spanning membrane proteins: a- 
secretory protein (preprolactin), b- type I membrane protein (cation-dependent mannose-6-phosphate 
receptor), c- type II membrane protein (asialoglycoprotein receptor), d- type III membrane protein 
(synaptotagmin I). Examples of multispanning membrane proteins: e- gap junction protein R6, f- 
vasopressin receptor V2, g- glucagon receptor). (Higy et al., 2004) 

 

 

The targeting process can occur co-translationally (coupled to protein synthesis on the 

ribosome) or post-translationally. Both mechanisms merge at the ER membrane, where the 

heterotrimeric translocon complex (Sec61 complex in eukaryotes, SecYEβ in bacteria, or SecYEG 

in E. coli) forms a pore that enables transfer of polypeptides across the membrane. The translocon 

is evolutionary conserved and consists of three subunits: the α-subunit, which is composed of            

a 10-helix bundle and forms the actual channel, and single-spanning β- and γ-subunits. The 

translocon, along with additional components, such as ER lumenal chaperones (e.g., BiP), 

nucleotide exchange factors (NEFs), TRAM (translocating chain-associated membrane) protein 
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(Gorlich and Rapoport, 1993; Snapp et al., 2004) and/or the heterotrimeric TRAP (translocon-

associated protein) complex (Fons et al., 2003) participate in membrane integration or 

translocation of polypeptides into the ER lumen. As they cross the ER membrane, precursor 

polypeptides are processed on the lumenal side by the signal peptidase complex (SPC) and 

oligosaccharyl transferase (OST). These components contribute to proper folding of the protein 

and its eventual ER exit and vesicular transport along the secretory pathway. In the case of 

misfolding or assembly problems, the polypeptides are retrotranslocated to the cytosol, where they 

undergo proteolytic degradation by the proteasome. There is evidence that the Sec61 complex 

along with BiP might also be involved in this process (Schafer and Wolf, 2009; Willer et al., 

2008). 

 

2. Co-translational translocation 
 

The co-translational translocation pathway is used for both secretory and membrane 

proteins and is found in all cells (Halic and Beckmann, 2005). It appears to be the predominant 

pathway in mammalian cells. During ER insertion, the Sec61 complex associates with the 

translating ribosome. The signal sequence that emerges from the ribosomal tunnel is recognized 

by the signal recognition particle (SRP). This interaction slows down the elongation process and 

allows targeting of the SRP-ribosome-nascent chain complex (RNC) to the ER membrane, where 

SRP binds its receptor (SR). Upon docking, the RNC is transferred to the translocon, SRP and SR 

dissociate from each other and the elongating polypeptide chain is inserted into the translocating 

channel (Figure 3A).    

 
 
2.1 SRP structure and interaction with a signal peptide  
 

In eukaryotic cells, SRP has two functions: transient translation arrest necessary for 

efficent ER delivery, and targeting of the RNCs to the SRP receptor in the ER membrane 

(Lakkaraju et al., 2008). Main substrates for the SRP-dependent route are integral membrane 

proteins that are prone to aggregation in the cytosol. They often contain a noncleavable 

transmembrane signal sequence, called signal-anchor (SA), which enables SRP binding and 

anchoring the protein in the membrane. 
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Figure 3. Co-translational targeting in eukaryotes and the SRP systems in mammalian and E. coli cells.     
(A) SRP interacts with the signal peptide as it emerges from the ribosomal tunnel. In eukaryotic cells, the 
formation of the SRP-RNC complex leads to elongation retardation. ER targeting is facilitated by 
interaction of SRP with SR and both molecules require GTP binding for their activity. The RNC complex is 
transferred to the translocon and upon GTP hydrolysis in SRP and its receptor, the complex disassembles. 
(B) Schematic overview of the mammalian and E. coli SRP and SR. SRP is divided into two main domains: 
the Alu and S domain. X and A in the SRP receptor refer to the corresponding domains in eukaryotic SRα 
and bacterial SR. G indicates GTPase domains. In eukaryotes, SR contains an additional subunit, SRß, 
whose transmembrane helix anchors it in the ER membrane. (Halic and Beckmann, 2005) 

 
 
 
Mammalian SRP is composed of 7SL RNA and six proteins (SRP54, SRP19, SRP68/72, 

SRP14 and SRP9). The SRP of bacteria consists only of a 4.5S RNA and Ffh (fifty-four 

homologue), a homologue of SRP54. SRP54 and Ffh comprise three domains: the N-terminal 

domain that forms a 4-helix bundle and a Ras-like GTPase domain (G domain), which together 

form the NG domain, and the C-terminal M domain, rich in methionines, which associates with 

SRP RNA and the signal sequence. Signal peptide binding to the groove in the M domain can 

involve an induced fit mechanism to maximize the hydrophobic interactions. Additional 

hydrophobic amino acids lining the groove are available for interaction with different or longer 

signal peptides. The minimal length of the h-region is eight residues. It has been suggested that the 

B 
	
  

A 
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SRP RNA might play a role in signal recognition via electrostatic interactions with the positively 

charged residues in the n-region (Batey et al., 2000). However, the cryo-electron microscopy 

(cryoEM) models of the SRP-RNC complexes from E. coli and mammalian cells indicate no such 

interaction (Halic et al., 2006). SRP54 and Ffh bind the ribosome through the N domain and can 

be crosslinked to the ribosomal protein L23 near the nascent chain exit channel (Janda et al., 

2010). The heterodimer SRP9/14 and the 5` and 3` ends of the SRP RNA form the Alu domain 

which functions in elongation arrest by preventing the binding of elongation factor 2 (EF2) 

(Figure 3B) (Ogg and Walter, 1995). 

It has been shown that during translation eukaryotic SRP can discriminate between 

cytosolic and membrane proteins (Berndt et al., 2009). The binding process can be divided into 

three stages. In stage 1 SRP binds weakly to translating ribosomes. This interaction is independent 

of the length and type of nascent chain, however, SRP affinity to nontranslating ribosomes is 

higher. In stage 2, upon synthesis of a signal-anchor, SRP binds the ribosome more tightly in an 

electrostatic manner and localizes close to the exposed portion of the nascent chain. In the last 

stage, when the SA emerges from the ribosomal tunnel, SRP binds to it with high affinity via 

hydrophobic interactions. This leads to translation arrest and targeting to the SR in the ER 

membrane. As yeast cells contain only 1-2 SRP molecules per 100 ribosomes, it is crucial to 

recognize transmembrane proteins early. It was speculated that in vivo this is assured by SRP 

recruitment to ribosomes translating hydrophobic SAs even before they emerge from the tunnel. 

The eukayotic ribosome may have evolved to directly recognize a hydrophobic SA and trigger the 

co-translational translocation route. In contrast, in prokaryotic cells a SA inside the ribosome does 

not enhance the SRP affinity for ribosomes (Bornemann et al., 2008). In addition, the function of 

bacterial SRP, which lacks the elongation-arrest domain, may not have to sense a signal sequence 

as early as in the eukaryotic system.  

  

2.2 Mechanism of SRP binding to SR 
 

In bacteria, co-translational protein targeting must be completed before the nascent 

polypeptide exceeds approximately 140 amino acids in length (Flanagan et al., 2003). As                  

a consequence, the time window for SRP binding is about 3–5 s and efficient ER targeting 

requires a rapid SRP–SR interaction. Both molecules contain NG-domains acting as GTPases that 

directly interact with each other to mediate SRP–SR (FtsY) complex assembly. Formation of            

a stable complex requires extensive structural rearrangements, such as removal of the steric 
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hindrance posed by the N-domains of both SRP and SR and alignment of GTP molecules to form 

a cyclic pair of hydrogen bonds across the dimer interface. The SRP RNA, which is universally 

conserved, accelerates this otherwise very slow process 200-fold. The effect is purely catalytic as 

it also accelerates complex disassembly without changing its equilibrium stability. It is the first 

example of an RNA molecule catalyzing a protein-protein interaction. FtsY–Lys399 residue on 

the lateral surface of the FtsY G-domain provides a key site that mediates the SRP RNA-induced 

stimulation of complex assembly (Figure 4).  

 

Figure 4. FtsY-Lys399 plays a crucial role in SRP–FtsY  
complex assembly. The basic residues on the FtsY  
Gα2-helix are highlighted in spacefill in the crystal 
structure of the Thermus aquaticus Ffh-FtsY             
NG-domain complex. (Shen and Shan, 2010) 
 

 

 

 

 

 

 

 

It seems that the positive charges on and surrounding Lys399 are involved in electrostatic 

interactions with the RNA backbone. FtsY–K399A mutation reduces the kinetics of SRP–FtsY 

complex formation 82-fold. Lys399 also provides a key link that couples cargo binding by the M 

domain of SRP to efficient SRP–receptor interactions. It has been estimated that signal peptide 

binding accelerates this process 100-400 fold. Together, the combined effect of the cargo and the 

SRP RNA brings the SRP–FtsY interaction kinetics to a range of >106 M−1 s−1, appropriate for 

cotranslational protein targeting in the cell (Shen and Shan, 2010). 	
   

 

3. Post-translational translocation 

3.1 Post-translational translocation in eukaryotic cells 
 

In yeast, there is a considerable number of proteins delivered to the ER via a post-

translational route. These are often secreted proteins containing N-terminal, cleavable signal 

sequences. In mammalian cells, only a few proteins are known to be targeted via this pathway. 
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Such proteins are usually shorter than 75 amino acids, which is below the minimal size of                 

a nascent polypeptide chain to cotranslationally interact with SRP via its signal sequence. Fully 

synthesized precursor polypeptides are transported with the help of cytosolic molecular 

chaperones of the Hsp70 and Hsp40 chaperone families (Ngosuwan et al., 2003). By cycling on 

and off, they assure that the substrate polypeptide is soluble and competent for interaction with the 

transport machinery in the ER membrane (Figure 5). In yeast, targeting via the post-translational 

pathway involves a heterotetrameric complex of membrane proteins: Sec62p, Sec63p, Sec71p 

(also called Sec66p) and Sec72p (also termed Sec67p) that might serve as a signal peptide 

receptor. In both co- and post-translational insertion, polypeptide translocation across the target 

membrane is facilitated by the heterotrimeric Sec61 complex: Sec61αβγ in mammalian cells; 

Sec61p, Sbh1p, Sss1p in yeast, SecYEG in bacteria. In eukaryotes it involves additional 

components, such as the ER-lumenal chaperone BiP (Kar2p in yeast), its membrane receptor and 

co-chaperone, Sec63, and its NEFs: Sil1p and Lhs1p (Lyman and Schekman, 1995). In yeast there 

is an additional heterotrimeric Sec61 complex, comprising Ssh1p, Sbh2p and Sss1p. The genes 

coding for Sec61p, Sss1p, Sec62p, Sec63p and Kar2p are essential. 

 

 
 

Figure 5. Post-translational translocation in eukaryotic cells. (Osborne et al., 2005) 

 

  

Molecular chaperones of the Hsp70 family reversibly bind to substrate polypeptides via 

their substrate binding domains (SBD). Hsp70 binds to hydrophobic stretches of essentially 

unfolded polypeptides emerging from the ribosomal tunnel. The process of binding and release is 

modulated by communication between the SBD and the nucleotide binding domain (NBD). The 

latter is controlled by the ATPase cycle and different Hsp70 interaction partners. BiP in its ATP-
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bound state has a low affinity for substrate polypeptides; ATP hydrolysis promotes polypeptide 

binding. Nucleotide exchange factors (NEFs) stimulate the ADP to ATP exchange, therefore 

inducing substrate release. Hsp40 proteins, such as Sec63, contain the J-domain that allows 

interaction with Hsp70. Immediately after the insertion of a precursor polypeptide into the Sec61 

complex, BiP binds its N-terminal end, preventing its back-sliding into the cytosol. Subsequently, 

the polypeptide chain is stepwise transported across the channel by the molecular ratchet 

mechanism which is described as trapping of portions of the polypeptide in the ER lumen by BiP 

molecules. Additionally, BiP may be involved in opening of the Sec61 translocon by causing plug 

displacement (Zimmermann et al., 2010). Mammalian ER membranes contain the additional 

Hsp40, ERj1, which is related to Sec63 in providing a lumenal J-domain (Figure 6, right panel).  

In yeast, the negatively charged C-terminus of Sec63p interacts with the overall positively 

charged N-terminal domain of Sec62p. Recently, it has been demonstrated that this mode of 

interaction is conserved from yeast to humans (Figure 6) and in the course of evolution vertebrate 

Sec62 has gained a function, i.e., the ability to intract with the ribosomal tunnel exit. The human 

Sec62/Sec63 complex and human ERj1 are similar in providing a binding site for ribosomes in the 

cytoplasm and binding BiP on the lumenal side of the ER membrane, meaning they can both be 

involved in co-translational transport. This is supported by experiments in which Sec62 is 

protected against externally added antibodies by ribosomes in permeabilized human cells (Muller 

et al., 2010).  

 

 
Figure 6. Structural and functional characteristics of yeast and human Sec62/Sec63 complex. Sec63 and 
ERj1 are membrane resident Hsp40s with ER lumenal J-domains and cochaperones for ER-lumenal 
Hsp70s (BiP and Kar2p). Sil1, Grp170 and Lhs1p act as NEFs for these Hsp70s. (Muller et al., 2010) 



General introduction 

 

21 

Müller at al. suggested that both Sec62/Sec63 and ERj1 could recruit BiP to Sec61 complexes 

and/or incoming polypeptides. They observed that BiP binding to the J-domain of ERj1 still 

allows binding of the ERj1/BiP complex to the ribosome and this heterotrimeric complex does not 

inhibit translation. A similar mechanism may be in operation for the Sec62/Sec63 complex. There 

could exist a functional specialization: one system could recruit BiP to ribosomes and the Sec61 

complex in order to seal off the channel, while the second system could recruit BiP to act as             

a molecular ratcher for incoming polypeptides. Alternatively, these two systems may have 

different substrate specificities.  

   

3.2 Insertion of tail-anchored proteins 
  

Tail-anchored (TA) proteins are a large and diverse class of integral membrane proteins 

found in all organisms. They comprise nearly 5% of membrane proteins, examples include 

Sec61ß, Sec61γ, RAMP4 (ribosome-associated membrane protein 4), VAMPs (also called 

synaptobrevins), cytochrom b5 and the Bcl2 family of apoptotic proteins. TA proteins lack an     

N-terminal signal sequence. They are anchored to the membrane by a single C-terminal 

transmembrane domain (TMD), exposing their larger N-terminal (and usually functional) part to 

the cytosol (Favaloro et al., 2008). The targeting information for TA proteins resides solely within 

the TMD. Because this region is still within the ribosomal tunnel when the termination codon is 

reached, SRP binding and co-translational targeting is precluded. Thus, TA proteins must find 

their correct membrane for insertion post-translationally. 

 A central component of the TA protein pathway to the ER is a highly conserved cytosolic 

ATPase termed Asna1 or TRC40. Both mammalian TRC40 and its yeast homologue Get3 (for 

Guided Entry of Tail-anchored proteins) recognize and bind the TMD of TA proteins in the 

cytosol in a selective manner. This complex targets to the ER by membrane-bound receptors (Get1 

and Get2 in yeast), where the transported protein is released for insertion. The process is regulated 

by ATP binding and hydrolysis. Mateja et al. in 2009 determined the crystal structure of Get3 

from Schizosaccharomyces pombe and Saccharomyces cerevisiae in the open and closed 

(ADP•AlF4
- -bound) state, respectively (Figure 7A and B). Both structures show a symmetric 

homodimer and each monomer comprises a core ATPase subdomain and an α-helical subdomain. 

In the Get3 open dimer, the α-helical counterparts are separated, creating a large, charged cleft 

between the two subunits that is unsuitable for TMD binding. In contrast, the closed dimer state is 

characterized by a continous, solvent-exposed, hydrophobic groove that spans both monomers and 
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is proposed to be suitable for binding to an α-helical TMD of ∼20 residues. Similar to the           

M-domain of SRP, the hydrophobic groove of Get3 is rich in methionines that could 

accommodate diverse TA protein targeting signals.  

 Recently, Chartron et al. (2010) obtained crystal structures of additional components of TA 

proteins targeting machinery, Get4 and Get5, which operate upstream of Get3, and proposed         

a functional model (Figure 7C). Get4 and Get5 are highly conserved proteins which form             

a complex that dimerizes, mediated by the C-domain of Get5. The Get4 N-terminal face forms 

part of the recognition interface with Get3. Targeting is initiated in the cytosol when ATP binding 

drives Get3 towards the closed dimer state, facilitating recognition of newly synthesized TA 

proteins in a TMD-dependent manner. Get4/5 are able to recognize the nucleotide state of Get3 

and localize its closed form to the ribosome. Binding of the TA protein to Get3 leads to                 

a conformational change that releases the Get3/TA complex from Get4/5 and the ribosome. Sgt2 

and cellular chaperones could either facilitate this transfer or act as parts of an alternate pathway. 

 

 
 
Figure 7. Crystal structures of Get3 in open (A) and closed (B) dimer states. Each monomer comprises          
a core ATPase subdomain (blue, green) and an α-helical subdomain (magenta, yellow). A tightly bound 
zinc atom (brown sphere) lies at the dimer interface (Mateja et al., 2009). (C) A model for the role of 
Get4/5 (Chartron et al., 2010). 

 

3.3 Post-translational translocation in bacteria 
  

In 2007 Osborne and Rapoport proposed the dimer model of post-translational 

translocation in E. coli, where one copy of SecYEG provides a docking site for the cytosolic 
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ATPase SecA, whereas another copy is used as a translocation channel. A year later Tsukazaki et 

al. (2008) obtained a crystal structure of SecYEG from Thermus thermophilus and via molecular 

dynamics and disulphide mapping analysis identified the binding sites on SecY and SecA that 

trigger conformational changes in both molecules on formation of the functional complex    

(Figure 8).  

 
 

Figure 8. Interactions during post-translation translocation in eubacteria. (A) Contact residues between 
Thermus thermophilus SecA and SecYE. The SecA structure (Protein Data Bank 2IPC) is colour-coded for 
its domains. (B) According to the dimer model of protein translocation, one copy of SecY serves as               
a SecA-docking site, while another functions as a translocation pore. Both components undergo 
conformational changes upon their interaction, as shown by bidirectional arrows. (Tsukazaki et al., 2008) 
 

 

 SecA contains two nucleotide-binding folds (NBFs, also called NBDs), a pre-protein 

crosslinking domain (PPXD) and a C-terminal translocation domain (HWD and IRA1), which are  

all connected by a long α-helical scaffold domain (HSD). NBF1 has been shown to be in the 

physical proximity of SecY (Osborne and Rapoport, 2007). Disulphide crosslinking experiments 

revealed that residues 775 (Figure 8A, purple) and 202 (green) of SecA are adjacent to the C5 and 

C4 residues of SecY, respectively. An evolutionary conserved region corresponding to the          

C-terminal half of motif IV interacts with SecY and undergoes a conformational change that is 

coordinated with the formation of a motor-translocon complex.  

 The ATPase of SecA is tightly downregulated in the resting state through its interaction 

with the IRA1 domains. Binding to the channel physically separates NBF1 and IRA1, explaining 

the translocon-mediated triggering of the membrane ATPase. Motif IV of SecA communicates 
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with an anti-parallel ß-sheet that is involved in propagation of a pre-protein binding signal to the 

ATPase domain.  

 SecA interacts with SecY in at least two different modes: the one involving the SecY C4-

C5 domains is probably required for ATPase activation, while the other, involving C6, participates 

in the actual SecA-driven translocation (Tsukazaki et al., 2008).   

 

4. Structure of the translocon 

4.1 Crystallography and X-ray analysis 
 

In 2004 the first crystal structure of a Sec61 complex family member was obtained for the 

heterotrimeric SecYEß complex (corresponding to eukaryotic α, γ, and β subunits) from the 

archae Methanococcus jannaschii at 3.2 Å resolution (Van den Berg et al., 2004). The translocon 

has an hourglass shape when viewed from the membrane and a square shape in a view from the 

cytosol. The α-subunit is divided into two halves: transmembrane segments (TM) 1-5 and TM 6-

10. The loop between TM5 and 6 at the back of the α-subunit serves as a hinge, allowing opening 

at the front - the so called lateral gate. The γ-subunit links the two halves of the α-subunit at the 

back by extending one transmembrane segment diagonally across their interface. The ß-subunit is 

in contact only with the periphery of the α-subunit and this probably explains why it is 

dispensable for the function of the complex (Figure 9).  

The α-subunit forms the pore of the channel, as was initially shown in experiments that 

involved incorporation of photoreactive probes into a stalled translocating polypeptide and cross-

linking to the α-subunit (Mothes et al., 1994). The channel has an aqueous interior revealed by 

electrophysiology experiments (Simon and Blobel, 1991) and measurements of the fluorescence 

lifetime of probes incorporated into a translocating polypeptide (Bol et al., 2007). The ten helices 

of the α-subunit form an hourglass-shaped pore that consists of cytoplasmic and exoplasmic 

funnels, whose tips meet about half way across the membrane. In the closed state, the cytoplasmic 

funnel is empty, while the exoplasmic half of the channel is obstructed by a short helix, called the 

plug. The constriction of the pore is formed by a ring of six hydrophobic residues that project their 

side chains radially inward. These are amino acids with bulky, hydrophobic side chains (Rapoport, 

2007). 

The diameter of the pore ring calculated from the crystal structure is too small to allow the 

passage of most polypeptide chains. Therefore pore widening was postulated, which could 
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proceed via movement of the helices to which the pore ring residues are attached. Results from 

fluorescence-quenching experiments with ER membranes estimated the pore size to be 9-15 Å in 

the resting state and it widens to 40-60 Å during translocation (Hamman et al., 1997; Liao et al., 

1997), which is difficult to reconcile with the crystal structure. 

 

 
Figure 9. Architecture of the SecY complex from Methanococcus jannaschii: view from the top with the 
transmembrane domain 2a (TM2a, plug) coloured in green (A). View from the side with the front half of 
the model cut away. The modelled plug movement towards the γ-subunit (magenta) is indicated. The 
hydrophobic pore ring is shown by the side chains coloured in gold (A`). Signal-sequence-binding site and 
lateral gate: views from the top (B) and the front (B`), with faces of the helices that form the signal-
sequence-binding site and the lateral gate through which TMs of nascent membrane proteins exit the 
channel into lipid highlighted in colours. The plug is coloured in green. The hydrophobic core of the signal 
sequence probably forms a helix, modelled as a magenta cylinder, which intercalates between TM2b and 
TM7 above the plug. Intercalation requires opening the front surface, as indicated by the broken arrows, 
with the hinge for the motion being the loop between TM5 and TM6 at the back of the molecule (5/6 
hinge). A solid arrow pointing to the magenta circle in the top view indicates schematically how a TM of    
a nascent membrane protein would exit the channel into lipid. (Van den Berg et al., 2004) 
Homology model for the human heterotrimeric Sec61 complex: views from the plane of the membrane (C) 
and from the cytosol (C`). The model was generated using the SecY X-ray structure (PDB 1rhz) by the 
program MODELLER 9.5, it was optimised with the variable target function and refined using molecular 
dynamics and simulated annealing. (Zimmermann et al., 2010) 

 

 

Opening of the channel during protein translocation across the membrane probably occurs 

in two steps. The first step is binding of the channel to its partner (the ribosome, Sec62/Sec63 
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complex or SecA), which likely destabilizes the interactions with the plug domain, resulting in 

transient displacement of the plug and continous opening and closing of the lateral gate. In the 

second step, the hydrophobic core of the signal sequence intercalates into the walls of the channel 

between TM2b and TM7 (Figure 9B and B`). The signal can also be crosslinked to phospholipids, 

indicating it is located at the channel/lipid interface. The binding of the signal sequence separates 

TM2b and TM7 and causes the plug to move away from the exoplasmic cavity. Crosslinking 

studies showed it is located to the proximity of SecE (Tam et al., 2005). During translocation of 

the polypeptide, the signal sequence stays put, while the rest of the polypeptide chain moves 

through the pore.  

 

 

4.2 3D-reconstruction after cryo-EM 
  

There has been a lot of debate concerning the oligomeric state of the translocon. 

Experiments with solubilized ribosome-Sec61 complex revealed that a ribosome may bind firmly 

with only one Sec61 channel (Menetret et al., 2008). On the other hand, oligomeric states of the 

Sec61 and SecY complexes were observed by electron microscopy (Hanein et al., 1996; Mitra et 

al., 2005) and biochemical analysis (Mori et al., 2003; Schaletzky and Rapoport, 2006). Recent 

data analyzed with blue-native PAGE shows that oligomeric states of the SecY channel may 

change depending on the substrate (Boy and Koch, 2009).  

Cryo-EM is a powerful technique for structural analysis of complexes between ribosomes 

and the translocon components that could help solve this issue. Using this technique, Becker et al. 

in 2009 managed to obtain the structure of the translating ribosome interacting with monomeric 

yeast and mammalian Sec61 complex (Figure 10). For the first time, the nascent polypeptide 

chain was visualized inside the ribosomal tunnel. Structure determination was based on digitonin-

solubilized purified Ssh1 complex from S. cerevisae. This complex is active in the co-translational 

translocation mode only. The complex was reconstituted with 80S ribosomes carrying a nascent 

polypeptide chain composed of the first 120 amino acids of dipeptidyl amino peptidase B (DP120) 

together with its signal-anchor sequence. For the analysis of the mammalian translocon, purified 

Sec61 complex from Canis familiaris bound to an active DP120 signal-anchor containing 80S 

ribosome was used. 3D reconstruction together with biochemical data revealed that only a single 

copy of the Sec61 complex is recruited to both translating and nontranslating ribosomes. In the 

yeast Ssh1, as well as in the mammalian translocon, the DPAPB chain accomodated within            

a single copy of the protein conducting channel (PCC). The lateral gate of the PCC can be in         
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a closed or nearly closed conformation after polypeptide insertion. The mode of PCC binding to 

ribosomes appears to be conserved between species and is maintained in the presence or absence 

of a signal sequence. The main binding site for the channel is the universal adaptor site at the 

ribosomal tunnel exit and includes mainly the cytoplasmic loop L8 of the α-subunit, whereas loop 

L6 is also in contact with the emerging nascent chain and may function in sensing or guiding the 

peptide to the pore of the PCC. This observed mode of Sec61 binding fits with the authors` 

previous findings that the universal adaptor site also serves to bind SRP and is cleared upon SRP 

receptor interaction to enable PCC binding (Halic et al., 2004).  

 

 
Figure 10. Cryo-EM reconstruction of 80S ribosome-translocon complexes. Visualization of the PCC pore 
of the Ssh1 complex associating with the idle (A) and active ribosome (A`). The nascent chain (NC) is 
visible inside the ribosomal tunnel exit. Side view of the mammalian Sec61 model with the nascent chain 
(green) entering the PCC (B). Schematic representation of an actively translocating eukaryotic ribosome-
Sec61 complex with a single copy forming the PCC (B`). (Becker et al., 2009) 
 

 

5. Co-translational processing of the polypeptide  

5.1 Signal peptide cleavage 
 

In eukaryotic cells, many proteins that enter the endoplasmic reticulum for either retention 

in the ER or for export to the Golgi apparatus, secretory vesicles, plasma membrane, or 
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vacuole/lysosome are processed by the ER signal peptidase complex (SPC) (Paetzel et al., 2002). 

In bacteria, there are at least three distinct signal peptidases (SPases) involved in cleaving signal 

peptides. Among them, the essential SPase I can process protein substrates that are exported by 

the SecYEG complex. The substrate specificity of the E. coli SPase and the eukaryotic SPC is 

similar and conserved in evolution. In bacteria and eukaryotic cells, preproteins have a common 

pattern in the c-region of the signal peptide at the -1 and -3 positions (Figure 11A). Gunnar von 

Heijne proposed that the region preceding the cleavage site constitutes the substrate recognition 

site for the SPase enzyme (von Heijne, 1983). Residues at the -1 position that are tolerated are 

alanine, glycine, serine, cysteine, and, in some cases, threonine. Residues tolerated at the -3 

position are alanine, glycine, serine, cysteine, isoleucine, valine, and leucine. Proper processing of 

signal peptides requires the cleavage sites to be located in close proximity to the h/c-region border.  

Signal peptides released by the SPase usually disappear in a short time period. This may be 

due to the fact that signal peptides are harmful to cells since they can inhibit protein translocation 

and may be lytic if they accumulate in the membrane. In both bacteria and the ER, signal peptides 

are degraded by the signal peptide peptidase, which cleaves within the hydrophobic core region of 

the signal peptide (Figure 11B). In eukaryotic cells, some of the cleaved and released signal 

peptides are bioactive, affecting pathways such as immune surveillance, virus maturation or 

cellular signaling (Martoglio, 2003). 

 

	
  
 

Figure 11. Targeting signal sequences and signal peptidase cleavage sites in bacteria and eukaryotes (A). 
The cleaved signal peptide resides within the lipid bilayer until it is processed within its transmembrane 
segment by a signal peptide hydrolase. The smaller cleaved peptides from this reaction most likely recede 
back into the cytosol where they are degraded by proteases or become involved in signaling events (B). 
(Paetzel et al., 2002) 
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5.2 N-linked glycosylation 
	
   	
  
	
   N-glycosylation occurs in all eukaryotic cells and in a few prokaryotes. In the bacterium 

Campylobacter jejuni, a single protein, PglB mediates N-glycosylation in the periplasm, 

independently of protein translocation. In eukaryotes, the process is catalyzed by a large 

transmembrane complex called oligosaccharyl transferase (OST). N-glycosylation is coupled to 

protein translocation across the ER membrane and OST is in a direct contact with the translocon 

and the translocating ribosome. Coupling of these events is necessary to prevent partial folding of 

the polypeptide chain, which would render the N-glycosylation sites inaccessible to OST. 

 The yeast OST contains consists of nine integral proteins: Ost1p-Ost6p, Stt3p, Swp1p, and 

Wbp1p. Among these, five subunits (Ost1p, Ost2p, Stt3p, Swp1p, and Wbp1p) are essential for 

cell viability. The enzyme catalytic site is contained within Stt3p. In mammalian cells, the 

following homologues of OST proteins are present: ribophorin I, DAD1, N33/IAP, OST4, 

STT3A/STT3B, Ost48, and ribophorin II.  

 To facilitate N-glycosylation, OST must bind to the donor and acceptor substrate, cleave 

and transfer the N-glycan precursor from the dolicholpyrophosphate to the polypeptide and 

catalyze the formation of a covalent bond between the oligosaccharide and the asparagine of the    

-N-X-S/T- (where X cannot be proline) acceptor sequence. In 2008 Li et al. presented a cryo-EM 

structure of the yeast OST at 12 Å resolution. It shows a groove between the lumenal domains of 

Stt3p, Wbp1p, and Ost1p that is approximately parallel to the ER membrane. The authors 

proposed it functions as a tunnel through which the nascent polypeptide chain threads during 

cotranslational glycosylation. Ost1p scans for the -N-X-S/T- sequence as the polypeptide moves 

through the groove. Once this sequence is detected, the oligosaccharide bound to Wbp1p is 

transferred onto the acceptor Asn (Figure 12A). Peptide threading can enhance the detection 

efficiency, explaining the fact that most sequences are actually glycosylated (Li et al., 2008).  

OST utilizes the activated glucose3-mannose9-N-acetylglucosamine2 (Glc3Man9GlcNAc2) 

oligosaccharide donor as a substrate for covalent modification of the acceptor Asn side chains 

(Figure 12B). The hydrophilic structure of the carbohydrate affects the solubility and folding of 

proteins. More importantly, it can be modified by ER glycosyl hydrolases and one glucosyl 

transferase in a cascade of reactions which gives rise to structures that serve as ligands for 

carbohydrate binding proteins, lectins. Lectin binding is the prerequisite for protein folding and 

quality control, which result either in protein export from the ER or degradation. The folding 

program involves a concerted action of glucosidase I and glucosidase II, which allows immediate 

association of polypeptides emerging in the ER lumen with ER chaperones, calnexin and 
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calreticulin, followed by the oxidoreductase ERp57, resulting in co-translational formation of 

native disulfide bonds. Upon attainment of the native structure, most of cargo proteins are 

exported from the ER in vesicles coated with cytosolic coatamer protein II (COPII) which bud at 

ER exit sites. In mammals, transport vesicles undergo homotypic fusion to generate a stationary 

ER-Golgi intermediate compartment (ERGIC) from which cargo proteins reach the cis-Golgi in 

COPI-coated vesicles. In yeast, COPII-coated cargo vesicles are delivered directly to the Golgi 

apparatus. ER export of certain glycoproteins is facilitated by leguminous L-type lectins located in 

the ER (VIPL), cycling between the ER and the ERGIC (ERGIC-53) or between ERGIC and cis-

Golgi (VIP36). Yeast orthologs of ERGIC-53, Emp47p and Emp46p, have been proposed to act as 

cargo receptors between the ER and the Golgi (Aebi et al., 2010). 

 

 
Figure 12. Peptide-threading mechanism for oligosaccharyl transferase. OST is illustrated in its lumenal 
view (A) (Li et al., 2008). The N-linked core oligosaccharide structure is composed of two                          
N-acetylglucosamine (blue squares), nine mannose (green circles) and three glucose residues (blue circles). 
A, B and C define the oligosaccharide branch (B) (Aebi et al., 2010). 
   

 

6. Topogenesis of single-spanning membrane proteins 
	
  

Signal sequences have a dual function: they enable targeting of the protein to the 

appropriate organelle and play an important role in protein topogenesis by orienting themselves in 

the translocation channel prior to their release into the lipid environment of the membrane (Spiess, 

1995). A signal sequence can initiate translocation of the C-terminal part of the polypeptide across 
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the ER (proteins of type I, type II and tail-anchored) or induce transfer of the N-domain (type III 

membrane proteins) (Figure 2). Several factors determine the orientation of the signal in the 

membrane (Figure 13): 

 

	
  
	
  

Figure 13. Determinants of signal sequence orientation in the membrane. 
 

 

a) distribution of charged residues flanking the hydrophobic core of the signal-anchor sequence – 

the more positive end is retained on the cytosolic side. This phenomenon is known as the 

`positive-inside rule` and was first described for bacterial proteins, where charged amino acids 

were found to be more abundant in cytoplasmic than in periplasmic protein loops (Heijne, 

1986). For eukaryotic proteins, the charge difference between the N- and C-flank of the signal 

core, rather than the presence of positive charges influences protein topology: the more 

positive end is cytosolic (Hartmann et al., 1989). Type III membrane proteins can be converted 

to type II by engineering their charges and vice versa. Examples include conversion of 

cytochrome P-450 (type III) to a type II protein by insertion of positively charged amino acids 

into its short N-terminal domain (Monier et al., 1988; Szczesna-Skorupa et al., 1988; 

Szczesna-Skorupa and Kemper, 1989) or mutagenesis of flanking charges of the 

asialoglycoprotein (ASGP) receptor H1 subunit (type II), which causes a fraction of the 

polypeptides to insert in an inverted topology (Beltzer et al., 1991). Positive charges have           

a stronger influence on topogenesis than negative ones, the effect depends on their distance 

from the hydrophobic segment of the signal. However, Kida et al. showed that orientation of 
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the synaptotagmin signal (type III) can be affected by a cluster of lysines positioned up to 25 

residues downstream the hydrophobic segment (Kida et al., 2006). Proper distribution of the 

flanking charges is not the only requirement a signal sequence must fulfill in order to attain the 

right topology. 

b) folding of the N-terminal domain – during translocation, this portion of the polypeptide is 

exposed to the cytosol before the targeting signal emerges from the ribosomal tunnel exit. 

Folding of this domain acts as a steric hindrance that prevents its translocation into the ER 

lumen and favors its retention in the cytosol instead, irrespective of the flanking charges. This 

was demonstrated by truncation of the N-terminal domain of H1, which shifted the topology 

towards N-insertion, whereas fusing additional sequences to the N-terminus abolished                

N-translocation. The observed effect was caused by protein folding and not simply due to the 

size of the N-extension (Denzer et al., 1995).   

c) hydrophobicity of the core of the signal sequence – an influence of the hydrophobicity of the 

signal on membrane protein topogenesis was first suggested by Sato et al. and Sakaguchi et al. 

Truncations of the hydrophobic segment of the cytochrome P-450 signal sequence (type III) 

resulted partially in C-terminal translocation (Sato et al., 1990). Similarly, an artificial 

sequence with the core consisting of less than 12 leucines and a negative N-terminal net charge 

allowed translocation of the C-terminus, whereas with longer hydrophobic segments of 13 or 

15 leucines, a fraction of the polypeptides was inserted in type III orientation (Sakaguchi et al., 

1992).  

 

 The process of insertion of single-spanning membrane proteins into the ER was studied 

extensively by Goder and Spiess in 2003 (Figure 14) and led to a model of signal sequence 

orientation in the translocon (Figure 15). They employed a series of diagnostic constructs derived 

from the H1 subunit of human ASGP receptor (type II membrane protein), where the topogenic 

determinants were altered to generate mixed topologies. Namely, the N-terminal hydrophilic 

domain preceding the signal-anchor was truncated to only four residues (MGPR), which were 

subsequently mutated to MGPQ, MGPH or MGRR to yield constructs with different flanking 

charges. The apolar core of the signal was replaced by a stretch of 13-23 leucines. Additionally, 

the C-terminal portion of the protein was shortened from 230 to 170 and 110 amino acids (aa), or 

extended to 290, 350, 400, 460, 520 and 580 aa. Glycosylation analysis revealed that topology of 

constructs with the same signal sequence depends on the length of the polypeptide, with                 

C-terminal translocation increasing with the size of the C-terminus, reaching a maximum for 

polypeptides of ~300 amino acids or more.  
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Figure 14. Effect of flanking charges and 
hydrophobicity on signal inversion. Series of 
proteins with increasing or decreasing 
hydrophobicity of the signal and different        
N-terminal flanking sequences are analyzed. 
Protein orientation is plotted versus 
translation time (5 aa/s). Experiments were 
performed in the absence (filled squares) or 
presence of 1 µg/ml cycloheximide (open 
squares). The arrows mark the termination of 
topogenesis. (Goder and Spiess, 2003) 

 

 

 

 

 

 

 

 

 

 

 

 

  

 
Figure 15. Model of insertion of N-terminal signal anchors (red) and reverse signal-anchors (blue). Both 
signals initially engage with the translocon in an Nexo/Ccyt orientation (`head-on` insertion). Signals can 
invert their orientation over time, driven by flanking charges according to the `positive-inside rule`. The 
process is slowed down by increased hydrophobicity of the signal core and stopped upon termination of 
translation or by a signal-independent mechanism after ~50 s. This results in a fraction of the polypeptides 
inserted in the false, Nexo/Ccyt topology (grayed-out portion). The reorientation process can be monitored by 
the glycosylation status of proteins (purple diamons indicate N-linked glycans attached in the ER lumen to 
the C-terminus of proteins). The SRP receptor was ommited for simplicity. (Goder and Spiess, 2003; Higy 
et al., 2004) 
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When the translation rate was reduced with low concentrations of the reversible elongation 

inhibitor, cycloheximide, the topology ratio shifted in favor of C-terminal translocation. Under 

both conditions, the maximal amount of C-insertion was reached at the same time, after ~50 s, 

based on the translation rate in mammalian cells of ~5 aa/s (Hershey, 1991) and the estimation that 

~40 residues are hidden within the ribosomal tunnel. Both flanking charges and hydrophobicity 

influenced the topology, but did not affect the time when topogenesis stopped (Figure 14). This 

suggested that signal sequences initially insert into the channel `head-on`, with Nexo/Ccyt topology, 

and undergo reorientation within the translocon that is interrupted by termination of translation 

(`translation-stop phenomenon`). It explains why short polypeptides showed predominantly           

N-terminal translocation. If translation is slowed down with cycloheximide, short constructs gain 

time for signal inversion and produce more Ncyt/Cexo topology. The rate of inversion depends on 

flanking charges, which position the signal according to the `positive-inside rule`. Importantly, 

also the hydrophobicity of the core of the signal-anchor affects the rate of reorientation. As the 

signal needs to dissociate from the apolar binding site in the translocation pore to reorient itself, 

long and hydrophobic signals will impair this process (Figure 15). 

 
 
 The observation that the hydrophobic core of a signal sequence affects topology by 

influencing the kinetics of signal reorientation opened the possibility of exploring the environment 

of signal-anchors during topogenesis. Higy et al. tested the effect of positioning large hydrophobic 

amino acids, such as tryptophan, phenylalanine and tyrosine, as well as small hydrophobic 

residues, valine and alanine, throughout an oligoleucine sequence on the topogenesis process 

(Higy et al., 2005). Tryptophans showed a dramatic position dependence in a symmetric pattern. 

When positioned at either end of the hydrophobic segment, the signals inserted predominantly 

with an Nexo/Ccyt orientation. In contrast, tryptophans placed further inside the hydrophobic core of 

the signal favored C-insertion with the exception of positions 7 and 8 within the stretch of 16 

leucines, where the N-insertion was again increased to ~50%. The symmetry of the position 

dependence for bulky aromatic amino acids reflects the symmetry of the lipid bilayer and the ease 

of their accomodation, thus suggesting contact of the signal with the lipid membrane during 

topogenesis. Tryptophans at the ends of the h-domain would interact with the interphase between 

the apolar core and the phospholipid headgroups region of the membrane. Positions WW5/6 and 

WW9/10, which yielded the highest C-insertion, appear to have the lowest affinity for the 

translocon-bound state. They reflect the situation, when tryptophans are located in the center of 

the acyl chains of phospholipids – such a highly ordered environment would not favor the 



General introduction 

 

35 

accomodation of large and stiff side chains. In contrast, tryptophans at the center of the bilayer 

(WW7/8) are more easily accepted. These results support the concept that the signal sequence is in 

contact with the lipid bilayer during topogenesis, previously formulated by photo-cross-linking of 

the signal to Sec61α and lipids (Martoglio et al., 1995; McCormick et al., 2003; Mothes et al., 

1998). 

In an experimental setting, signal sequences can be generated from homooligomers of 

apolar amino acids that are able to form a helix. They all share the feature of slowing down signal 

reorientation with its increasing length (Goder and Spiess, 2001). Based on the ability of different 

homooligomers to promote N-translocation, a hydrophobicity scale could be formed, where 

I>L>V~W>Y>F>M. Except for oligoalanine, which was not functional as a signal sequence, all 

homooligomers tested could efficiently target proteins in the co-translational pathway (Rosch et 

al., 2000). In addition, each amino acid can be ranked with respect to promoting N-terminal 

translocation when inserted in pairs into an oligoleucine helix: 

I>V>L~W>F>Y>C>M>A>T>S>G>N>Q>H>P. This ranking resembles the hydrophobicity scale, 

but in addition is similar to the scale of helix propensities in an apolar environment (Liu and 

Deber, 1998). 

 A couple of years ago, Hessa et al. presented the `biological` hydrophobicity scale of 

amino acids based on the apparent free energy of their membrane insertion (Hessa et al., 2005).     

A striking feature of this scale is that it predicts the very low cost of membrane solvation for 

charged residues. Based on molecular simulation results, Johansson et al. suggested that this 

phenomenom could be explained by the protein content of membranes which influences the 

solvation properties. Charged amino acids, such as arginine, are surrounded by hydration water in 

the translocation channel. Protein helices in the membrane significantly reduce the energetic cost 

of introducing solvation water into the bilayer environment. In contrast, leucine remains 

dehydrated inside the membrane. The high fluidity of the ER membrane due to its low cholesterol 

content could be an important factor to allow inserted helices to interact either with lipids or 

proteins depending on their sequence composition (Johansson and Lindahl, 2009). 

 

 

7. Topogenesis of multi-spanning membrane proteins 
	
  
	
  
	
   Biogenesis of polytopic membrane proteins requires the coordination of several events: 

recognition and targeting of the nascent chain to the membrane localized translocation machinery, 
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integration and orientation of TMs coupled with folding of extramembrane domains, helical 

packing within the lipid bilayer, and formation of the tertiary structure (Dowhan and Bogdanov, 

2009). Topology is determined by an interplay between the topogenic signals residing within the 

protein sequence, the interaction of the protein with the translocon, internal protein interactions, 

and protein-lipid interactions during final folding. During topogenesis, these factors act 

simultaneously or sequentially.  

 According to the simplest, the so called `linear insertion` model, the most N-terminal TM 

defines its own orientation as well as the orientations of all subsequent TMs, which insert into the 

bilayer in alternating orientations (Blobel, 1980). However, there is also evidence against this 

model, examples include E. coli lactose permease (LacY) and maltose transporter carrying 

deletions of individual TMs (Bibi et al., 1992; Ehrmann and Beckwith, 1991) or the 

tetracycline/H+ antiporter with a perturbation of the orientation of its N-terminal segment (Guo et 

al., 1996) – in all cases the topology of downstream TMs was unaffected.  

The hydrophobic properties of TMs allow them to passively partition into the lipid bilayer 

with flanking charged residues positioned near the aqueous-membrane interface. In many cases, 

the hydrophobicity of a TM is sufficient to drive the translocation of flanking charges, but it is not 

the sole determinant of membrane insertion. Asn- or Asp-mediated hydrogen bonding between 

neighbouring helices of polytopic proteins can enhance the membrane insertion efficiency of        

a marginally hydrophobic TM and could possibly form during Sec61 translocon-mediated 

insertion (Meindl-Beinker et al., 2006). Another topologically important feature is the folding 

state of the extramembrane hydrophilic domains, whose translocation occurs in the unfolded state. 

Their rapid folding in the cytoplasm may prevent export, whereas tight folding on the lumenal side 

of the membrane may ensure the location of those domains (Granseth et al., 2005). Glycosylation 

within the hydrophilic domain can also prevent its transport across the ER membrane and thus 

affect the topology (Goder et al., 1999). 

Polytopic membrane proteins follow the `positive-inside rule`. Positively charged residues 

not only exert local control over the orientation of TMs, but can also affect the global topology of 

a protein. A recent study shows that the topology of an E. coli inner membrane protein EmrE with 

four or five transmembrane helices can be controlled by a single positive charge placed in 

different locations throughout the protein, including the very C-terminus. The C-terminal Lys can 

reverse the orientation of as many as five upstream TMs. Apparently, the topology of this protein 

remains undetermined until the last residue has been synthesized (Seppala et al., 2010). This raises 

important questions regarding the mechanism of insertion and assembly of polytopic proteins, in 

particular how much protein can the translocation pore accommodate. Negatively charged amino 
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acids appear to be topologically active only if they are present in high numbers, flank a marginally 

hydrophobic TM or lie within a window of six residues from a highly hydrophobic TM. Several 

negative residues are required to translocate a cytoplasmic domain containing even a single 

positive charge (Nilsson and von Heijne, 1990). 

Another determinant of polytopic protein topology is the lipid composition of the 

membrane. The influence of lipids on membrane protein topogenesis was studied in E. coli strains 

in which the steady-state phosphatidylethanolamine (PE) content can be regulated. Analysis of 

LacY insertion in PE-lacking cells revealed a dramatic misassembly of the protein, with the        

N-terminal six-TM helical bundle (TM I-VI) and adjacent membrane domain completely inverted 

with respect to the plane of the bilayer and the C-terminal five-TM helical bundle (TM VIII-XII). 

Even more dramatic is that the aberrant topological organization of LacY in PE-deficient cells is 

nearly completely reversible post-assembly by induction of PE synthesis (Bogdanov et al., 2002; 

Bogdanov et al., 2008). The simplest interpretation is that introduction of PE into the membrane 

destabilizes the folded state of the protein, which results in reorientation of most of the N-terminal 

helical domains in order for the protein to assume its new minimum energy state. The fact that the 

topological organization of a membrane protein, once established, is dynamic in response to 

changes in the lipid environment suggests that lipids and proteins have co-evolved to follow a set 

of interdependent rules governing topogenesis. 

 

 

8. Thesis goal 
 

The aim of this thesis was to investigate the mechanism of insertion of membrane proteins. 

We wanted to compare the insertion process of internal versus N-terminal signal-anchors and to 

characterize the role of the N-terminal domain as a co-determinant of protein topology. We tested 

several parameters that influence topogenesis, such as the size of the N-domain, flanking charges, 

signal hydrophobicity and the C-terminal length. We studied the kinetics of signal inversion and 

looked for evidence for the `translation-stop phenomenon`, previously proposed for N-terminal 

signal-anchors (Goder and Spiess, 2003). 

Furthermore, we wanted to investigate the insertion process of polypeptides with 

conflicting signal sequences. By altering the signals and their environment, we aimed at observing 

and characterizing the insertion process driven by the topogenic information of the second signal. 
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Finally, we studied the function of the plug and the constriction ring of the yeast Sec61p 

translocon in protein translocation. We mutated the ring residues to more hydrophilic, bulky or 

charged amino acids, alone or in combination with a point mutation in the plug or a full plug 

deletion, and analyzed the resulting phenotypes with respect to viability, translocation defects, 

translocon assembly and stability, as well as its ability to recognize and integrate transmembrane 

helices. We then transferred the analysis to the mammalian system and tested the effect of 

prolonged translation time on TM integration. 
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II Results 
 
Part I: Insertion of polypeptides with internal signal-anchors 
 

 

SUMMARY 

 

In eukaryotic cells, hydrophobic signal sequences of newly synthesized secretory and 

membrane proteins target them to the Sec61 translocon in the endoplasmic reticulum membrane. 

Within the Sec61 channel, transmembrane segments of proteins achieve their proper orientation 

(topology) and are laterally released into the ER membrane. Cleaved signals of secretory and type 

I membrane proteins, as well as type II signal-anchors facilitate translocation of the C-terminus, 

yielding an Ncyt/Cexo orientation. The so-called `reverse signal-anchors` of type III proteins 

generate the opposite topology. Orientation of signal sequences in the ER membrane is determined 

by charged residues flanking the hydrophobic core of the signal, hydrophobicity of the signal, the 

size and folding properties of the N-terminal domain preceding the signal and, in come cases, the 

length of the C-terminus. Here, we compared the insertion process of N-terminal versus internal 

signal-anchors and determined the effect of the N-terminal hydrophilic domain on protein 

topogenesis. We show that insertion of these two types of signals occurs via different mechanisms. 

Transition from N-terminal to internal signals, achieved by extension of the N-domain with 

hydrophilic residues, is accompanied by loss of C-terminal length dependence and insensitivity to 

increased hydrophobicity of the signal. This indicates that, in contrast to N-terminal signals, 

signal-anchors localized internally cannot undergo reorientation within the pore and the initial 

orientation that promotes either N- or C-terminal translocation is favoured. Hydrophilic              

N-terminal domains contribute to this decision, sterically hindering N-translocation.  

 

 

INTRODUCTION 

 

In eukaryotic cells, hydrophobic signal sequences of newly synthesized secretory and 

membrane proteins mediate targeting to the Sec61 translocon in the endoplasmic reticulum 

membrane. Signal sequences may initiate translocation of the C-terminal sequence, as in the case 

of the cleaved signals of secretory and type I membrane proteins, and of the uncleaved signal-

anchors of type II membrane proteins. Alternatively, type III signal-anchors (`reverse signal-
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anchors`) translocate the N-teminal domain into the ER lumen, generating Nexo/Ccyt topology 

(exoplasmic or lumenal N-terminus and cytoplasmic C-terminus). 

Several factors determine the orientation of cleaved signals and signal-anchor sequences in 

the ER membrane. Most prominent is the effect of charged amino acids flanking the apolar core of 

the signal sequence which cause retention of the more positive end on the cytosolic side – the so 

called `positive-inside rule` (Hartmann et al., 1989; Heijne, 1986). The second factor is the 

hydrophobicity of the core of the signal-sequence (Sakaguchi et al., 1992; Wahlberg and Spiess, 

1997). Goder and Spiess (2003) described the contribution of these two determinants during the 

insertion process of N-terminal type II signal-anchors. Such signals initially engage with the 

translocon `head-on`, in Nexo/Ccyt topology, followed by their reorientation within the channel and 

translocation of the C-terminus. This process is driven by flanking charges, which position the 

signal according to the `positive-inside rule`, and it is slowed down by increased hydrophobicity 

of the signal core. Reorientation of N-terminal signals requires ongoing protein synthesis by the 

ribosome and it is stopped upon termination of translation (the so called `translation-stop 

phenomenon`) or by a signal-independent mechanism after ~50 s. 

Another topogenic determinant is the size and the folding state of the N-terminal domain. 

In type III membrane proteins, it is translocated across the membrane after it has been synthesized 

in the cytoplasm. N-terminal domains that rapidly fold to stable structures are detrimental for type 

III topology (Denzer et al., 1995). In natural proteins of this type, the N-domain is often short, as 

in the cytochrome P450 family, but it may also be of considerable length, like in synaptotagmin I 

(53 residues) or neuregulin (>200 amino acids). Type II membrane proteins can be converted to 

type III and vice versa not only by mutagenesis of the flanking charges (Beltzer et al., 1991; 

Monier et al., 1988; Szczesna-Skorupa et al., 1988; Szczesna-Skorupa and Kemper, 1989), but 

also by alterations of the size of the N-terminal domain. Examples of such experiments include 

mutagenesis of the ASGP receptor H1, a type II membrane protein. The wild-type form consists of 

an N-terminal cytoplasmic domain of 40 amino acids, a membrane-spanning segment of 19 

residues and a C-terminal exoplasmic domain of 231 amino acids with two sites for N-linked 

glycosylation (Spiess and Lodish, 1986). Mutation of the two N-terminal positive and the two        

C-terminal negative flanking charges to amino acids of the opposite charge (construct named       

A1-4) decreased C-terminal translocation from 100 to 50%. An additional truncation of the            

N-domain from 40 to 11 residues increased the fraction of type III polypeptides from 50 to >90%. 

Thus, the natural N-terminal domain of H1 sterically hinders N-translocation. Insertion of                

a glycosylation site into the N-domain of the mutant with inverted flanking charges (A1-4g) 

prevented N-terminal translocation and increased the type II population to 70% (Beltzer et al., 
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1991). Folded structures in the N-domain strongly inhibited their translocation and thus type III 

insertion. The 234-amino acid sequence of dihydrofolate reductase (DHFR) fused to the                 

N-terminus of A1g and A1-4g constructs completely blocked translocation of the N-terminal 

segment, and even a small folded peptide, a zinc finger domain of only 29 amino acids, effectively 

inhibited type III insertion (Denzer et al., 1995). 

In this chapter, we further characterized the role of the N-terminal domain as a co-

determinant of protein topology. Our model protein for topology studies, the H1 subunit of the 

ASGP receptor, contains a 40-aa N-terminal extension whose folding properties are unknown. 

Therefore, we tested the effect of N-terminal domains of different lengths that can be safely 

assumed not to fold in any defined structure. As a starting point for mutagenesis we used                

N-terminal signal-anchors whose insertion process had been previously described (Goder and 

Spiess, 2003). The transition from N-terminal to internal signals was achieved by a stepwise 

extension of the N-domain with a cluster of hydrophilic glycines and serines that provide good 

water solubility and conformational flexibility. Experiments were conducted in vivo in COS-1 

cells transiently transfected with protein constructs.  

We observed that flexible, hydrophilic N-terminal domains promote C-translocation. Our 

data indicate that in contrast to N-terminal signal-anchors, insertion of polypeptides with                 

N-domains longer than 20 amino acids required opening of the translocon. Such internal signal-

anchors were insensitive to increased signal hydrophobicity and showed no C-terminal length 

dependence, suggesting they orient themselves before contacting the hydrophobic core of the 

membrane. 

 

 

MATERIALS AND METHODS 

 

Cloning strategy 

9GSMGPQL16 – 24GSMGPQL16 

The starting construct MGPQL16 encoding the H1 subunit of the asialoglycoprotein receptor with 

a truncation of the N-terminal domain has been previously described (Wahlberg and Spiess, 

1997). Glycine/serine hydrophilic N-terminal extensions were generated by annealing two pairs of 

complementary phosphorylated oligonucleotides, termed: BglII-1s with SalI-1a and XhoI-2s with 

BamHI-2a (all primers are listed in Table I). The annealed pairs were mixed, ligated and digested 

with BamHI, BglII, SalI and XhoI. The digestion products were resolved on an agarose gel, 

yielding bands of the following size: 45, 90, 135, 180, 225, 270, 315, 360, 405, 450, 495 bp. Odd-
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numbered oligomers (45, 135, 225, 315, 405, 495 bp), comprising products of BglII-SalI or XhoI-

BamHI cleavage, were selected and ligated into a pECE-vector (Ellis et al., 1986) cut with XhoI 

and BamHI. The starting codon along with a Hind III site was added with the HindMGSx-s 

primer.  

34GSMGPQL16 

Extension of the N-terminal domain from 24GS to 34 GS was generated by PCR in two 

consecutive steps, adding 5GS at a time (primers GS15+5.s and GS20+5.s, and ECEright). The 

amplified HindIII→EcoRI fragment was digested with HindIII and BamHI and the N-domain 

together with the signal-anchor were replaced. 

27GS-4L13 – 87GS-4L13 

Constructs with inverted flanking charges were essentially prepared the same way as GS with 

normal charge distribution, followed by the fusion of the C-terminal domain from the A1-4 

polypeptide series (Beltzer et al., 1991).  

57GS-4L22 

Cloning proceeded in two steps. First, the BglII→HindIII fragment from pSA1-4gL22 plasmid 

containing the L22 signal-anchor  (Beltzer et al., 1991) was fused to the HindIII→BglII segment 

from 57GS-4L13. In the next step, C-terminal tails were replaced by transfering the 

HindIII→BamHI sequence containing 57GS-4L22 to GS series with inverted charges.  

14GSAGPQL16 – 34GSAGPQL16 

Mutagenesis of the second methionine was performed by PCR of the HindIII→BamHI fragment, 

comprising the N-terminal domain together with the signal-anchor, using ECEleft sense primer 

and 24GSL16MtoA antisense primer. 

All constructs were verified by sequencing with ECEleft, ECEleft2 or ECEright (whenever PCR 

was involved), or by a restriction digestion test. 

 

Table I. PCR primers. 

Primer name Primer sequence 
Primer 

type 

24GS16MtoA-a 
GCGGGATCCCAAGAGCAACAGCAGGAGCAACAAGAGGAGCAGCAGC

AAAAGCAACAGCTGCGGTCCCGCAGATCCTCC 
antisense 

BamHI-2a GATCCTCCTGACCCCGAACCAGAGCCCGATCCACTACCGCTCCCAC antisense 

BglII-1s GATCTGGATCAGGGTCGGGTTCTGGCTCCGGAAGTGGTAGCGGG sense 

ECEleft GAAGTAGTGAGGAGGC sense 

ECEleft2 CGGCCTCTGAGCTATTCCAG sense 
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ECEright CTACAAATGTGGTATGGC antisense 

GS15+5.S CGCAAGCTTGCGATGAGCGGAAGCGGGTCGGGAACCTCGAGTGGG sense 

GS20+5.s CGCAAGCTTACCATGGGTAGCGGATCAGGGAGCGGAAGCGGGTCGGG sense 

HindMGSx-s GCGAAGCTTACCATGGGAACCTCGAGTGGGA sense 

SalI-1a TCGACCCGCTACCACTTCCGGAGCCAGAACCCGACCCTGATCCA antisense 

XhoI-2s TCGAGTGGGAGCGGTAGTGGATCGGGCTCTGGTTCGGGGTCAGGAG sense 

 

Cell culture 

COS-1 cells were cultivated in Dulbecco’s modified Eagle’s medium (DMEM; Sigma) 

supplemented with 10% fetal calf serum (FCS), 100 units/ml penicillin, 100 µg/ml streptomycin,       

2 mM L-glutamine, in a humidified incubator containing 7.5% CO2 at 37°C.  

 

Transient transfections 

For transient transfections, cells from a confluent culture were split 1:10 into 6-well plates or         

60-mm dishes and transfected the next day with one of the following reagents: Lipofectine (Life 

Technologies), FuGENE HD (Roche) or polyethylenimine (PEI; Sigma-Aldrich). FuGENE HD, 

althought highly efficient, proved to be toxic to COS-1 cells and was replaced with PEI. Cells 

were processed 2 days after transfection. 

 

Metabolic labeling with 35S-methionine 

Transfected cells were incubated for 30 min in starvation medium (DMEM without methionine 

and cysteine, containing 2 mM L-glutamine; Sigma). Cells were labeled for 40 min with 100 

µCi/ml [35S]protein labeling mix consisting of 77% methionine and 23% cysteine (PerkinElmer), 

then transfered to 4°C and washed twice with cold phosphate-buffered saline (PBS). 

 

Immunoprecipitation 

Non-integrated proteins were removed by extraction with 0.1% saponin (in PBS, with 2 mM 

phenylmethylsulfonylfluoride [PMSF], 1x protease inhibitor coctail [PIC]: 5 mg/ml benzamidine, 

1 mg/ml pepstatin A, 1 mg/ml leupeptin, 1 mg/ml antipain, 1 mg/ml chymostatin, in 40% 

DMSO/60% ethanol) for 30 min,  followed by a PBS wash. Cells were lysed in 500 µl of lysis 

buffer (PBS, 1% TritonX-100, 0.5% deoxycholate, 2 mM PMSF, 1x PIC) for 1 h, then scraped, 

vortexed and incubated for 30 min on ice. Lysates were cleared by centrifugation and proteins 

were immunoprecipitated overnight by addition of 500 µl immuno-mix (lysis buffer, 1 mg/ml 

bovine serum albumin [BSA], 1mM PMSF, 1x PIC) containing 1 µl rabbit anti-serum raised 
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against a peptide corresponding to residues 277-287 at the C-terminus of H1 (anti-H1C). The 

immune complexes were pulled down by incubation with 10 µl/sample protein A-Sepharose 

(Zymed) for 1 h. Samples were washed 4 times with immuno-wash (lysis buffer, 1 mg/ml BSA,       

1 mM PMSF) and 2 times with PBS (with 1 mM PMSF). 

 

EndoH treatment 

At the last PBS wash samples were split in half for deglycosylation by endoglycosidase H. All 

samples were boiled in endoH buffer (50 mM sodium citrate, 1% SDS; in PBS), 1 µl of the 

enzyme (Roche) was added and samples were incubated for 3 h at 37°C.  

 

SDS-PAGE and autoradiography 

Reduced samples were resolved on 12.5% - 17.5% acrylamide gels and quantified using                 

a phosphorimager (Molecular Dynamics Inc.). Protein orientation in the ER membrane was 

determined by calculating the ratio of glycosylated proteins divided by total protein within a lane. 

This value did not depend on the signal intensity caused by different transfection or protein pull-

down efficiency.  

 

 

RESULTS  

 

Transition from N-terminal to internal signal-anchors is accompanied by loss of C-terminal 

length dependence 

In order to study the insertion process of internal signal-anchors, we tested the effect of 

non-folding, hydrophilic N-terminal domains on topogenesis. For this purpose, we selected the 

derivative of the asialoglycoprotein receptor subunit H1 with truncated N-terminus, H1∆Leu16, 

and extended its N-terminal part. This protein contains an N-terminal signal-anchor consisting of 

Leu16 preceded only by a MGPQ sequence and is therefore called MGPQL16 (Figure 1A). The 

C-terminal tails consist of 75 to 460 residues and contain two potential sites for N-linked 

glycosylation. The constructs were expressed in COS-1 cells and proteins were metabolically 

labeled with [35S]-methionine. Any soluble proteins were removed by saponin extraction and the 

remaining, membrane-integrated proteins were immunoprecipitated with an antibody directed 

against the C-terminus (Figure 1B). The MGPQL16 series showed C-terminal length dependence 

(Goder and Spiess (2003); Figure 1C, blue line). The transition from N-terminal to internal 

signal-anchors was achieved by a stepwise addition of 5 residues made of glycines and serines to 
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the starting construct MGPQL16. The resulting constructs were named 9GSMGPQL16[#], 

14GSMGPQL16[#], 24GSMGPQL16[#] and 34GSMGPQL16[#], where the leading number 

indicates the total number of residues in the N-domain and [#] indicates various lengths of the        

C-terminal tail (Figure 1A).  

Upon expression, we received several different protein forms, representing different 

glycosylation states of the proteins, as confirmed by deglycosylation with endoH (shown for 

34GSMGPQL16[#] in Figure 1B). Addition of an N-linked glycan results in an increase in the 

apparent molecular weight of approximately 3 kDa on the SDS gel. Thus, the low-molecular 

weight band (0) represents the non-glycosylated product, generated when the C-terminus of the 

protein is located on the cytosolic side of the ER membrane. The two upper bands (1 and 2) 

correspond to the once and twice glycosylated polypeptides whose C-terminus was translocated 

into the ER lumen. One of the glycosylation sites, presumably the one located close to the 

membrane, is not always modified. Upon digestion with endoH, the bands representing the singly 

and doubly glycosylated products collapsed into a single band. It migrated slightly more slowly 

than the non-glycosylated form, which is explained by one N-acetylglucosamine residue 

remaining after endoH cleavage. Topology of proteins in the ER membrane was assessed by 

calculating the fraction of C-terminal translocation, e.g., the sum of singly and doubly 

glycosylated products divided by total protein in each lane of the gel. C-translocation was plotted 

versus the size of the C-terminal domain, which is the fragment from the end of the signal-anchor 

to the stop codon (Figure 1C). 

The topologies of N-terminal signal-anchors of MGPQL16[#] show a C-terminal length 

dependence – this relationship has been previously interpreted as reorientation of the signal within 

the translocon, terminated upon chain completion or independently of the substrate after 50 s 

(Goder and Spiess, 2003). Upon extension of the N-domain to a total of 9 or 14 residues 

(9GSMGPQL16[#], 14GSMGPQL16[#]), C-translocation was slightly increased, but the 

prominent dependence on the C-terminal length was largely retained (Figure 1C, red and green 

lines, respectively). For constructs with a longer N-terminus (24GSMGPQ[#]), the dependence on        

C-terminal length was almost completely lost, while retaining mixed topologies (Figure 1C, 

purple line). Finally, the topologies of proteins with the longest N-terminal domain tested, 

34GSMGPQ[#], were quite independent of the size of the C-terminal tail (Figure 1C, orange 

line). Taken together, the results indicate that the transition between N-terminal and internal signal 

anchors occurs for proteins with N-domain of ~20 residues and is manifested by loss of C-terminal 

length dependence. 
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Figure 1. Topology analysis of N-terminal and internal signal-anchors. The transition was achieved by          
a stepwise extension of the N-domain by clusters of hydrophilic glycines and serines (A). The proteins 
were expressed in COS-1 cells, pulse-labeled with [35S]methionine for 40 min, immunoprecipitated, 
separated by gel electrophoresis, and visualized by autoradiography. Prior to immunoprecipitation, soluble 
proteins were removed by saponin extraction. Expression of the constructs yielded several different protein 
forms: 0-unglycosylated, 1-singly glycosylated, 2-doubly glycosylated, *-truncated form resulting from 
internal translation initiation, x-background bands. Glycosylation status was confirmed by endoH digestion 
(B). Protein orientation in the ER membrane was determined by calculating the ratio of C-terminal 
translocation, i.e., the ratio of glycosylated products divided by total protein within a gel lane.                      
C-translocation is plotted against the size of the C-terminal domain (sequence from the end of the signal-
anchor until the stop codon). Topology analysis revealed that transition from N-terminal to internal signals 
occurs for N-domains of ~20 amino acids and is accompanied by loss of C-terminal length dependence. 
Long, hydrophilic N-domains sterically hinder N-insertion (C). The average and standard deviations of two 
independent experiments are shown. The position of molecular weight markers (in kDa) is indicated.  

 

 

Non-folding N-domains increase C-translocation with increasing length  

Increasing the size of the N-domain by addition of hydrophilic amino acids resulted in an 

increased fraction of proteins with a translocated C-terminus (Figure 1C). Thus, even highly 

flexible, folding-incompetent sequences can prevent N-translocation. In addition to the steric 

hindrance effect of the N-domain, the insertion process of our model proteins might be potentially 

influenced by an opposing effect of moving the positive charge of the α-amino group of the 

protein further away from the signal (thus weakening the `positive-inside rule`). This charge effect 

decreased with increasing distance from the signal core.  

 

Certain N-domains cause internal initiation of protein synthesis 

Extension of the N-terminal domain had another, unexpected consequence: expression of 

the constructs with 24 and 34 residues in the N-terminus yielded an additional, low-molecular 

weight form, insensitive to endoH deglycosylation (marked by asterisks in Figure 1B). In some 

experiments the band was prominent and could potentially interfere with quantitation. Those 

proteins were not the result of degradation of the N-terminal extension, since they did not 

disappear upon shortening of the time of radiolabeling or the time of lysis and using increased 

amounts of protease inhibitors (data not shown). Cleavage within the C-domain could be 

excluded, as proteins were immunoprecipitated with an antibody directed against the very end of 

the polypeptide. Another possibility was initiation of protein synthesis at the second methionine, 

positioned next to the signal-anchor, which would produce proteins with a truncated N-terminus. 

To test it, we mutated the internal methione to alanine, a residue of a similar hydrophobicity to 

methionine, according to the hydrophobicity scale of Rösch et al. (2000), in order to minimize         

a potential effect on topogenesis (Figure 2A). Upon expression of these constructs, named 
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24GSAGPQL16[#] and 34GSAGPQL16[#], the short, non-glycosylated form was eliminated, 

confirming our hypothesis (Figure 2B). However, the Met→Ala exchange caused a general shift 

in topology towards C-terminal translocation (Figure 2C, purple and orange lines), suggesting 

that the alanine introduced into the N-terminal flank of signal-anchor had a topogenic 

contribution. In order to test whether we can still observe the transition between N-terminal and 

internal signals and the associated loss of C-terminal length dependence, we modified the next 

series of polypeptides, containing 14 residues in the N-domain. Glycosylation analysis revealed 

that these proteins had a similar ratio of C- vs. N-insertion as 24GSMGPQL16[#] (Figure 2C, 

green line) and when compared with MGPQL16[#] and 9GSMGPQL16[#] (Figure 1C, blue and 

red lines, respectively), they showed intermediate topologies.  

 

 
Figure 2. Internal initiation of synthesis of polypeptides with internal signal-anchors. The second 
methionine located in the N-terminal flank of the signal was replaced by alanine (A) and the resulting 
constructs were expressed in COS-1 cells and processed as described in Figure 1. Upon mutagenesis, the 
truncated forms were no longer detected on the gels (B), but the ratio of protein insertion shifted towards       
C-translocation (C). The average and standard deviations of two to three independent experiments are 
shown. The position of molecular weight markers (in kDa) is indicated. 
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Based on these results, we decided not to further modify the remaining constructs and to 

use the series of polypeptides containing the second methionine. Our quantitation of protein 

insertion ratio was only minimally affected by the truncated form. Namely, its glycosylated 

version contaminated the non-glycosylated band of our test constructs with a hydropilic                 

N-domain. However, since the internal translation initiation was not prominent and did not occur 

in every experiment, and the exchange of methionine to alanine did not change the overall 

insertion pattern, we considered it negligible. 

 

Internal signal-anchors are insensitive to increased hydrophobicity of the signal 

Transition from N-terminal to internal signal-anchors was accompanied by the loss of               

C-terminal length dependence, which is considered a hallmark of protein reorientation within the 

translocon. Lack of C-terminal length dependence of signal-anchors with N-domains of >20 

residues could indicate that they did not undergo reorientation or that reorientation occurred very 

rapidly and was completed by the time the shortest constructs were finished. In order to invert 

itself, the signal needs to dissociate from the hydrophobic environment of the channel or the 

membrane. The process is slowed down by increased hydrophobicity of the signal core 

(MGPQL22[#] in Figure 3C, blue line) (Goder and Spiess, 2003). In case of signal-anchors with 

N-domains >20 aa, increased hydrophobicity of the signal should not influence the insertion 

process. To test this, we exchanged the apolar core of the signal consisting of 16 leucines by             

a stretch of 22 leucines (Figure 3A) and expressed in COS-1 cells (Figure 3B). Glycosylation 

analysis revealed that proteins with 4, 9 and 14 residues in the N-domain were sensitive to 

increased signal hydrophobicity, manifested by a dramatic decrease of C-terminal translocation 

(Figure 3C, blue, red and green lines, respectively). In contrast, long hydrophobic signals had no 

influence on the insertion process of the constructs with 24- or 34-residue N-domains – the ratio of 

C vs. N-terminal translocation remained unchanged (Figure 3C, purple and orange lines). This 

confirms the notion that our model proteins with N-domains longer than 20 amino acids,  such as 

24GSMGPQL16[#] and 34GSMGPQL16[#], can be considered internal signal-anchors and they 

do not undergo inversion upon insertion into the pore. 
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Figure 3. Effect of increased hydrophobicity of the signal on topogenesis of N-terminal and internal signal-
anchors. The apolar core of the signal consisting of 16 leucines was replaced by a Leu22 sequence (A). The 
resulting constructs were expressed in COS-1 cells and processed as described in Figure 1 (B). Topology 
analysis revealed that in contrast to N-terminal signal-anchors, internal signals are insensitive to increased 
signal hydrophobicity. For comparison, panel C of Figure 1 was reproduced on the right (C). The average 
and standard deviations of two to three independent experiments are shown. The position of molecular 
weight markers (in kDa) is indicated. 
 
 
 
Insertion of N-terminal and internal signal-anchors is controlled by flanking charges 

Inversion of N-terminal signal-anchors is driven by electrostatic interactions acting on 

flanking charges. We next tested the sensitivity of internal signals to changes of the charged 

residues in the N-terminal flank. For this purpose, the glutamine immediately preceding the apolar 

core in the MGPQL16 series was replaced by arginine, followed by extension of the N-domain. 

The resulting constructs were named MGPRL16[#], 9GSMGPRL16[#], 14GSMGPRL16[#] and 

24GSMGPRL16[#] (Figure 4A). Proteins were expressed in COS-1 cells and subjected to 

glycosylation analysis (Figure 4B).  
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Figure 4. Comparison of the effects of flanking charges and signal hydrophobicity on the insertion process 
of N-terminal and internal signal-anchors. The neutral glutamine in the N-terminal flank of the signal-
anchor was mutated to positively charged arginine, alone (A) or in combination with increased 
hydrophobicity of the signal (Leu16 to Leu22; D). The constructs were expressed in COS-1 cells and 
subjected to glycosylation analysis (B and E, respectively). Quantitation of C-terminal translocation 
showed that both types of signals are sensitive to flanking charges (C; for comparison, panel C of Figure 1 
was reproduced on the right), but only N-terminal signals are affected by increased hydrophobicity of the 
signal-anchor (F). The average and standard deviations of two to three independent experiments are shown.  
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The introduced N-terminal charge promoted orienting of the signal according to the 

`positive-inside rule` and increased C-translocation. The most sensitive constructs, MGPRL16[#], 

showed almost complete C-translocation (Goder and Spiess 2003; Figure 4C, blue line). 

Polypeptides with N-domains of 9, 14 and even 24 residues also reached a very high level of          

C-translocation, between ~85 and 100% (Figure 4C, red, green and purple lines, respectively). 

The constructs with the longest N-terminus, consisting of 34 amino acids, were excluded in this 

experiment, since they had already had a high ratio of C-terminal translocation prior to 

mutagenesis. 

The next step was to study the combined effect of mutagenesis of flanking charges and 

signal hydrophobicity. Signal-anchors of proteins with a positive N-terminal flank were replaced 

by a Leu22 sequence (Figure 4D) and metabolically labeled in COS-1 cells (Figure 4E). Again, 

constructs with short N-domains (4/9/14 aa) were affected inversely proportional to the size of the 

N-domain (Figure 4F, blue, red and green lines, respectively), whereas constructs with 24 

residues in the N-domain were insensitive (Figure 4F, purple line). The rate of inversion of 

polypeptides with short N-domains of 4-14 residues decreased to a level that allowed us to 

observe C-terminal length dependence. 

Taken together, the data suggest that constructs with short N-domains (<20 amino acids) 

behave differently than those with longer N-termini. 
 
 
Internal signal-anchors with inverted flanking charges show discontinuous C-terminal length 

dependence 

Increase of the size of the N-domain was correlated with increased rate of C-insertion, 

which reached ~85% for constructs with 34 residues in the N-terminus and, thus, limited further 

extensions (Figure 1C, orange line). Therefore, in order to study proteins with longer non-folding 

N-terminal domains, we moved to proteins with inverted flanking charges which disfavor type II 

insertion. We prepared constructs with total N-terminal domain lengths of 27, 57, or 87 

hydrophilic residues, signal-anchors composed of 13 leucines, and C-terminal tails containing 75-

460 amino acids. The signals were flanked by two negative charges in the N-terminal part and two 

positive ones in the C-terminus. The constructs were called 27GS-4L13, 57GS-4L13 and 87GS-

4L13 (Figure 5A). Proteins were labeled in vivo with [35S]-methionine in COS-1 cells (Figure 

5B).  
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Figure 5. Insertion process of internal signal-anchors with inverted flanking charges. Constructs with long 
N-terminal domains and signal-anchors composed of 13 leucines, flanked by two negative charges in the 
N-terminal part and two positive ones in the C-terminus were studied (A). In addition, the hydrophobicity 
of the signal was increased to 22 leucines (E). Glycosylation analysis in COS-1 cells (B and F, 
respectively) revealed C-terminal length dependence that was lost for the constructs with the longest           
N-domain, 87GS. Hydrophilic amino acids in the N-domain increase C-insertion by ~0.6-1% per residue 
(C). Length dependence is not coupled to sensitivity to changes in signal hydrophobicity (G). The average 
and standard deviations of three independent experiments are shown. The position of molecular weight 
markers (in kDa) is indicated. 
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Glycosylation analysis revealed that, unexpectedly, the first two series of polypeptides 

showed discontinuous C-terminal length dependence (Figure 5C, blue and red lines) that was 

largely lost for the constructs with the longest N-domain, 87GS (Figure 5C, green line). The 

increasing length of the N-domain resulted in a quite uniform increase of C-translocation for all 

lengths of C-domains. Plotting C-terminal translocation vs. the length of the N-terminus revealed 

the contribution of each additional residue in the N-domain to C-translocation. The increase was 

~1% for polypeptides with C-terminal tail of 75-110 amino acids, ~0.8% for [170], ~0.6% for 

[230], and ~0.7% for [460], (Figure 5D). 

 

C-terminal length dependence of internal signal-anchors with type III charge distribution is not 

associated with signal reorientation 

The discovery that topogenesis of internal signal-anchors with inverted flanking charges 

depends on the size of the C-terminus was surprising. In addition, its discontinuous nature was not 

compatible with a (continuous) reorientation process. To investigate it further, we selected the 

57GS-4L13 series and increased the hydrophobicity of the signal-anchor to Leu22 (Figure 5E). 

This should have slowed down or even blocked protein reorientation. The resulting series of 

constructs, 57GS-4L22[#], was expressed in COS-1 cells (Figure 5F). Quantitation of the ratio of 

C-terminal translocation revealed that increased signal hydrophobicity had no influence on the 

insertion process. (Figure 5G). Therefore, the pattern of C-terminal length dependence does not 

reflect a continuous reorientation process, but the properties of the individual constructs. The 

underlying cause is unclear. 

 

 

 

DISCUSSION 

 

The process of integration of single-spanning membrane proteins begins when                                

a hydrophobic signal-anchor emerges from the translating ribosome and targets the ribosome-

nascent chain complex to the Sec61 translocon in the ER membrane. Within the translocation 

channel, proteins achieve their topology and are released laterally into the bilayer. Topogenic 

information encoded in the protein sequence influences the decision whether the C-terminus is 

retained in the cytosol or translocated across the membrane (Rapoport et al., 2004). Here, we have 

explored the topogenesis of single-spanning membrane proteins. In particular, we compared the 

insertion process of N-terminal versus internal signal-anchors and tested effects of several 
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topogenic parameters, such as the size of the N-terminal domain, hydrophobicity of the signal-

anchor, length of the C-terminal tail and flanking charges. The results allowed us to formulate 

models for orientation of these two types of signal-anchors in the Sec61 channel (Figure 6). 

The transition from N-terminal to internal signal-anchors was achieved by extending the 

N-domain from 4 residues to 9, 14, 24 and 34 with hydrophilic, folding-incompetent clusters of 

glycines and serines. Experiments revealed that proteins with 4, 9 and 14 amino acids in the            

N-terminus have a different insertion behaviour in response to changes in topogenic determinants 

compared with proteins with 24 and 34 residues that belonged to internal signals. The 

characteristic features of N-terminal signal-anchors included continuous C-terminal length 

dependence and sensitivity to signal hydrophobicity. In contrast, insertion of internal signal-

anchors did not depend on the size of the C-terminus, they were insensitive to increased signal 

hydrophobicity, but similar to N-terminal signals, they reacted to changes of the flanking charges. 

In the context of the structure of the SecY/Sec61 translocon, it has been proposed that         

N-terminal signal-anchors can enter the channel head first (Figure 6A, arrow a), reversibly 

intercalate in the exit site of the translocon and contact lipid (equilibrium arrows b) without fully 

displacing the plug and opening the pore and while being tethered to the ribosome. The more 

hydrophobic the TM, the higher its affinity to the membrane and the lower the rate of return into 

the translocon, where the flanking charges induce reorientation (inversion arrow d). As the 

polypeptide chain is elongated, the C-terminal sequence accumulating inside the channel will 

trigger pore opening and C-translocation (arrow e). Termination of translation will block the 

equilibration of proteins oriented in the translocon in Nexo/Ccyt topology and trigger their lateral 

release in this orientation (arrow c), while proteins that have inverted will be released into the 

membrane in a final Ncyt/Cexo topology (arrow f). The time-dependence of signal inversion and 

translocon gating, together with interruption of this process upon chain completion (`translation-

stop phenomenon`) explain the observed C-terminal length dependence of topology of N-terminal 

signals (Goder and Spiess, 2003).  

Orientations of internal signal-anchors, with N-domain longer than 20 amino acids, and         

a positive charge difference between the N- and the C-terminal flank of the signal proceeded 

independently of the size of the C-terminus. Lack of C-terminal length dependence suggests that 

the signal does not undergo reorientation inside the pore. Another argument against the inversion 

process is insensitivity to increased signal hydrophobicity, which inhibits the signal’s ability to 

dissociate from the apolar binding site or the membrane prior to inversion. The simplest 

interpretation of this behaviour is that internal signal-anchors engage with the translocon 

depending on the steric effect of the N-domain (Figure 6B, arrows a and e) and in addition, they 
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arrange their orientation according to the flanking charges (`positive-inside rule`, arrow e and/or 

d). Insertion of either end requires full translocon opening (b and f), a process that is irreversible. 

Termination of translation thus does not affect the final outcome of topogenesis for internal signal-

anchors (c or g).  

 

 
Figure 6. Models for topogenesis of N-terminal and internal signal-anchors with a positive charge 
difference. (A) N-terminal signal anchors can reversibly intercalate in the exit site of the translocon (area in 
brackets in panel A) and enter the lipid bilayer (c) in an Nexo/Ccyt orientation without inducing full pore 
opening (a-c). Type II signal-anchors initially insert `head-on` (a) and can invert their orientation over time 
(d). The process requires an ongoing protein synthesis, it is driven by electrostatic forces acting on flanking 
charges and is inhibited by increased hydrophobicity of the signal. The C-terminal sequence induces pore 
opening and C-translocation (e). (B) Polypeptides with internal signal-anchors and hydrophilic, folding 
incompetent N-domains engage with the translocon in an orientation that promotes either N- (a) or C-
insertion (e). Flanking charges contribute to orienting the signal according to the `positive-inside rule` (e 
or/and d), while the long N-terminal domain acts as a steric hindrance, preventing N-insertion (e-g). 
 

 

 

Lack of C-terminal length dependence was observed for internal signal-anchors with type 

II charge distribution (positive N-terminal flank). In the case of proteins with inverted flanking 

charges, the situation is more complicated. Topogenesis of polypeptides with N-domains 

consisting of 27 and 57GS depended on the size of the C-terminus in a discontinuous manner.        
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process is electrostatic in nature and requires a positive charge difference between the N- and         

C-terminal flank of the signal-anchor. If internal signal-anchors were able to invert their 

orientation despite infavourable charge distribution, the process should have been slowed down by 

increased signal hydrophobicity. Upon mutagenesis of the signal-anchor, we observed no 

sensitivity to increased hydrophobicity. However, it was the only criterion of signal inversion that 

we tested and it needs to be further investigated.  

Perhaps the observed C-terminal length dependence of internal signal-anchors with 

inverted flanking charges is the result of competition between conflicting topogenic factors 

localized within the protein sequence. One is the steric hindrance effect posed by the N-domain, 

where each additional residue contributed to ~1% increase in C-translocation. In contrast, 

negatively charged amino acids in the N-terminal flank and positive charges in the C-terminal 

flank of the signal core promote Nexo/Ccyt orientation. During membrane insertion, these topogenic 

factors act simultaneously. In case of polypeptides with long C-domains, the increased time of 

translation shifted the ratio in favor of C-translocation. However, it does not explain the 

discontinuous pattern of C-terminal length dependence. 
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Part II: Insertion of polypeptides with conflicting signals  
 

 

SUMMARY 

 Multispanning membrane proteins are cotranslationally targeted to the ER membrane by 

the first hydrophobic signal sequence. All subsequent transmembrane segments (TMs) are inserted 

into the bilayer in alternating orientations, according to the `linear-inserion model`, or they can 

assume a unique topology defined by topogenic determinants localized within the protein 

sequence. These include flanking charges surrounding a TM, its overall hydrophobicity, as well as 

the folding state of hydrophilic spacer sequences. Here, we have analyzed the insertion process of 

a series of chimeric proteins composed of the cleavable hemagglutinin (HA) signal, followed by        

a signal-anchor of the H1 subunit of the asialoglycoprotein receptor. These signal sequences are 

carrying conflicting topogenic information (type I insertion induced by the HA signal vs. type II 

topology of the H1 signal-anchor). Previous experiments revealed that only when the two signals 

were sufficiently separated from each other, by a linker of ≥80 residues, the insertion proceeded 

according to the `linear insertion model`. Here we show that proteins with wild-type HA and H1 

signals, connected by a 40-amino acid linker compete for the preferred orientation in the 

translocon, manifested by a rapid inversion of a fraction of the polypeptides, triggered by the 

signal-anchor. The process could be slowed down by increasing the hydrophobicity of the H1 

signal or manipulating its flanking charges in a way that inhibits positioning of the signal 

according to the `positive-inside rule`. Under such conditions, topogenesis is interrupted upon 

termination of translation, like previously observed for N-terminal signal anchors. However, in 

contrast to single-spanning membrane proteins, the topogenesis window was not a constant of the 

translocation machinery, but rather appeared to be substrate-specific. 

 

 

INTRODUCTION 

 

 Biogenesis of multispanning membrane proteins in both prokaryotes and eukaryotes 

requires their co-translational, SRP-dependent targeting and orientation within the membrane. 

Targeting is generally mediated by the first hydrophobic signal, which is either a cleaved signal 

sequence or a signal-anchor comprising the first TM of the protein. The topology of polytopic 

membrane proteins is determined by topogenic sequences in the protein, protein-translocon 
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interactions, interactions between individual protein domains during folding and between the 

protein and the lipid environment of the membrane (Dowhan and Bogdanov, 2009). According to 

the simplest model, the `linear-insertion model`, the first signal defines its own orientation and 

directs the insertion of all subsequent TMs, which will be incorporated into the membrane in 

alternating orientations (Blobel, 1980). This could, indeed, be shown in an experimental setting 

with chimeric proteins composed of two to four TMs separated by linker sequences of ~50-200 

residues. The results demonstrated that signal-anchors acted as stop-transfer sequences depending 

on their position relative to the preceding hydrophobic segments (Lipp et al., 1989; Wessels and 

Spiess, 1988). 

 In natural proteins, topogenic information is contained also in internal transmembrane 

domains, which follow the `positive-inside rule` (Heijne, 1986). The orientation of membrane 

proteins can be reversed by addition or removal of even a single positive charge or by introduction 

of negatively charged residues situated close to the ends of TMs (Gafvelin and von Heijne, 1994; 

Nilsson and von Heijne, 1990; Seppala et al., 2010).  

Transmembrane segments are separated by hydrophilic domains, which are either retained 

in the cytoplasm or translocated into the ER lumen in an unfolded state during protein insertion. 

Their proper location on the cytoplasmic or exoplasmic side may be assured by rapid folding in 

the cytosol or glycosylation in the ER lumen, respectively. The extramembrane hydrophilic 

domains in natural polytopic proteins are often much shorter than those used in the studies 

supporting the `linear insertion model`. Goder et al. (1999) tested how the topology of two-signal 

proteins is influenced by the length of the spacer separating the two signal sequences. They 

constructed a series of chimeric polypeptides containing an N-terminal cleaved signal sequence of 

influenza virus hemagglutinin (HA, in the constructs called shortly H) and an internal type II 

signal-anchor of the H1 subunit of the ASGPR (called A), separated by a linker sequence. The 

spacer was successively truncated to ~20, 40, 60, 80 and 100 residues, and the corresponding 

constructs were named H20A, H40A, etc. In the wild-type context, both signals initiate 

translocation of the downstream C-terminal part of the protein. However, in the experimental 

setup, they carry conflicting topogenic information. According to the `linear insertion model`, the 

N-terminal HA signal would target the polypeptide to the ER membrane and induce translocation 

of the spacer. The following signal-anchor would act as a `stop-transfer` sequence, leaving the         

C-terminus in the cytoplasm. In the opposite situation, when the H1 topogenic determinant is 

dominant, the carboxyterminal portion would be translocated, whereas the HA signal would be 

forced to insert in the Nexo/Ccyt orientation or would fail to insert at all. The insertion process was 
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monitored by lumenal glycosylation of two aparagines located in the C-terminal portion of the 

polypeptide. 

 The experiments showed that only when the two signals were sufficiently separated from 

each other (≥80 residues), the insertion proceeded according to the `linear insertion model`. 

Polypeptides with shorter linkers inserted in mixed orientations. The first signal induced opening 

of the channel and translocation of the spacer by the time the second signal entered the pore and 

initiated inversion of the protein (Figure 1A). For this, the linker had to flip back to the cytosolic 

side. This was prevented by glycosylation of the spacer, acting as a steric hindrance, trapping the 

linker in the ER lumen and, thus, blocking the reorientation process.  

The ratio of topologies depended also on the characteristics of the first signal. Different 

cleaved secretory signals, such as those of preprolactin (P) or vasopressin (V) had different 

`strength`, i.e., the ability to dominate the insertion process, which could be ranked P>H>V      

(Figure 1B). 

 

 
 
Figure 1. Insertion of proteins with conflicting signals. Two-signal proteins compete for the preferred 
orientation in the translocon. The first, cleaveable signal induces pore opening and translocation of the 
spacer. When the signal-anchor enters the channel, it triggers inversion of the protein, relocation of the 
spacer to the cytosolic side and translocation of the C-terminal domain for a fraction of the polypeptides 
The reorientation process can be monitored by the glycosylation status of proteins (`Y`s indicate N-linked 
glycans attached in the ER lumen to the C-terminus of proteins (A). Topogenesis of proteins with 
conflicting signals dependens on the length of the spacer and the potency of the cleaved signal to initiate 
type I insertion. V-prepro-vasopressin-neurophysin II, H-hemagglutinin, P-preprolactin. Red circle marks 
the reference construct, H40A, used in experiments described in this chapter (B) (Goder et al. 1999, 
modified). 
 

 

A B 
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In this chapter, we describe experiments designed to explore the insertion process of 

polypeptides with conflicting signal sequences. We investigated whether the `translation-stop 

phenomenon`, previously described for N-terminal signal-anchors, whose reorientation was 

interrupted upon chain termination (or by an unknown mechanism after ~50 s) (Goder and Spiess, 

2003), also applies to two-signal proteins. For this reason, we generated series of model proteins 

with different lengths of C-terminal domains, which would offer different time windows for the 

reorientation process. We selected the H40A construct as a starting point for mutagenesis    

(Figure 1B, red circle). It consists of the cleaved hemagglutinin signal, followed by a spacer of 40 

amino acids, the H1 signal-anchor and the wild-type C-terminal domain of H1 composed of 230 

residues. This protein was found to be inserted into the ER membrane with mixed topologies (60%                

C-terminal translocation) and could therefore act as a sensor to monitor changes in the insertion 

process triggered by altering the environment of the signals. This includes topological 

determinants such as the hydrophobicity of the core of the signal-anchor and the flanking charges. 

We found that proteins with competing signals undergo a reorientation within the 

translocon upon insertion of the signal-anchor. The process is rapid for wild-type H1 signal and 

can only be monitored when it is slowed down by greatly increasing the hydrophobicity of the 

second signal or mutagenesis of its flanking charges. Replacement of the HA signal sequence with 

preprolactin, a stronger signal for type I insertion, altered the final topology of the proteins, 

according to the `linear-insertion model`.  

 

 

MATERIALS AND METHODS 

 

Cloning strategy 

H40A[50]-[350] 

The construction of the H40A[#] series of proteins has been described previously (Goder et al., 

1999). Each construct was composed of the cleavable signal sequence of hemagglutinin fused to   

a linker comprising 40 amino acids of the N-terminal domain of wild-type H1, followed by the 

signal-anchor of H1 and a tail of 50-350 aa. Because extensive truncations of the C-terminus 

eliminated some of the methionines located there, four aditional Met were added to the shortest 

constructs (50-110 aa) to enhance the radioactivity signal (Higy 2005). 

H40L25 

Exchange of the wild-type H1 signal-anchor into a stretch of 25 leucines required several steps. In 

the first step, the 40-aa linker was synthesized on the matrix of pEA1Leu25 construct (Wahlberg 
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and Spiess, 1997) using the short40 sense primer introducing a BglII site, and ECEright antisense 

primer (all primers are listed in Table I). Next, the PCR product, containing also the signal-anchor 

and the C-terminal domain of 230 amino acids, was cut with BglII and EcoRI and transfered to the 

pEHC+ plasmid cleaved with BamHI and EcoRI. This vector carried the HA signal sequence 

flanked by HindIII and BamHI sites and a downstream EcoRI site. Upon ligation with the insert, 

the BamHI site in the vector was transformed into an XhoII site. Finally, the 230-aa C-terminal 

BamHI→EcoRI stretch was replaced with different tails from the H40A series. 

H40L25-4 

The constructs with inverted flanking charges were prepared similarly to H40L25, except that 

PCR was performed with pSA1-4Leu25 plasmid (Beltzer et al., 1991) as a matrix, using the 

short40 sense primer and GEMright antisense primer. 

H40A-4  

The N-terminal part including the signal-anchor sequence of H1 was synthesized on pEA1-4 

matrix (Wahlberg and Spiess, 1997) with short40 and ECEright primers, then fused to the HA 

signal as described above. However, the C-terminal part turned out to be incorrect, i.e., it did not 

contain the two additional positive charges. To correct this, we amplified the C-terminal domains 

on the H40A matrix, with a mutagenic sense primer (LysLys-s) and ECEright, then replaced the 

BamHI→EcoRI carboxyterminal fragments. 

H40A-3 

The series where the N-terminal positive flank of the signal-anchor was mutated into negatively 

charged amino acids was prepared similarly to the H40A-4 series, except that C-terminal 

BamHI→EcoRI tails with normal charge distribution were fused. 

H40A Minus VI, Plus VI 

Mutations in the apolar core of H1 signal were introduced by PCR of the HindIII→BamHI 

fragment from H40A series with ECEleft sense primer and MinusVI-a or PlusVI-a mutagenic 

primers. Then, the wild-type H1 230-aa C-terminus was fused. 

H40A Nto D 

Point mutation in the C-terminal flank of the signal-anchor was introduced by PCR of the               

C-terminal tails with the sense NtoD primer and ECEright. 

P40A 

The HA signal sequence was replaced with bovine preprolactin signal from P40A[230] construct 

(Goder et al., 1999) (this plasmid was originally called L40A).  
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All constructs were verified by sequencing with ECEleft, ECEleft2 or ECEright (whenever PCR 

was involved), or by a restriction digestion test. 

 

Table I. PCR primers. 

Primer 

name 
Primer sequence 

Primer 

type 

ECEleft GAAGTAGTGAGGAGGC sense 

ECEleft2 CGGCCTCTGAGCTATTCCAG sense 

ECEright CTACAAATGTGGTATGGC antisense 

GEMright GCGAGGAAGCGGAAG antisense 

LysLys-s CGCGGATCCCAAAACTCCCAGCTGCAGAAGAAGCTGCGGGGCC sense 

MinusVI-a CGCGGATCCACAGACAACCACAAGC antisense 

NtoD-s GATCGGATCCCAAGACTCCCA sense 

PlusVI-a CGCGGATCCTATTACGATCACACAGACAACC antisense 

short40 CCCAGATCTGAGTATCAAGACCTTCAG sense 

 

Cell culture 

COS-1 cells were cultivated in DMEM (Sigma) supplemented with 10% FCS, 100 units/ml 

penicillin, 100 µg/ml streptomycin, 2 mM L-glutamine, in a humidified incubator containing 7.5% 

CO2 at 37°C.  

 

Transient transfections 

For transient transfections, cells from a confluent dish were split 1:10 into 6-well plates or 60-mm 

dishes and transfected the next day with one of the following reagents: Lipofectine (Life 

Technologies), FuGENE HD (Roche) or polyethylenimine (PEI; Sigma-Aldrich). FuGENE HD, 

althought highly efficient, proved to be toxic to COS-1 cells and was replaced with PEI. Cells 

were processed 2 days after transfection. 

 

Metabolic labeling with 35S-methionine 

Transfected cells were incubated for 30 min in starvation medium (DMEM without methionine 

and cysteine, containing 2 mM L-glutamine; Sigma). Cells were labeled for 40 min with 100 

µCi/ml [35S]protein labeling mix consisting of 77% methionine and 23% cysteine (PerkinElmer), 

then transfered to 4°C and washed twice with cold PBS. 
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Immunoprecipitation 

Non-integrated proteins were removed by extraction with 0.1% saponin (in PBS, with 2 mM 

PMSF, 1x PIC) for 30 min, followed by a PBS wash. Cells were lysed in 500 µl of lysis buffer 

(PBS, 1% TritonX-100, 0.5% deoxycholate, 2 mM PMSF, 1x PIC) for 1 h, then scraped, vortexed 

and incubated for 30 min on ice. Lysates were cleared by centrifugation and proteins were 

immunoprecipitated overnight by addition of 500 µl immuno-mix (lysis buffer, 1 mg/ml BSA, 

1mM PMSF, 1x PIC) containing 1 µl rabbit anti-serum raised against a peptide corresponding to 

residues 277-287 at the C-terminus of H1 (anti-H1C). The immune complexes were pulled down 

by incubation with 10 µl/sample protein A-Sepharose (Zymed) for 1 h. Samples were washed           

4 times with immuno-wash (lysis buffer, 1 mg/ml BSA, 1 mM PMSF) and 2 times with PBS (with 

1 mM PMSF). 

 

EndoH treatment 

At the last PBS wash samples were split in half for deglycosylation by endoglycosidase H. All 

samples were boiled in endoH buffer (50 mM sodium citrate, 1% SDS; in PBS), 1 µl of the 

enzyme (Roche) was added and samples were incubated for 3 h at 37°C.  

 

SDS-PAGE and autoradiography 

Reduced samples were resolved on 12.5% - 17.5% acrylamide gels and quantified using                 

a phosphorimager (Molecular Dynamics Inc.). Protein orientation in the ER membrane was 

determined by calculating the ratio of glycosylated proteins divided by total protein within a lane. 

This value did not depend on the signal intensity caused by different transfection or protein pull-

down efficiency.  

 

 

 

RESULTS 

 

Topology of the H40A series of proteins shows no C-terminal length dependence 

	
   In order to study the insertion process of proteins with conflicting signals, we expressed 

the H40A[#] series of constructs (Figure 2A) (# indicates various lengths of the C-terminal tail; 

Figure 2B) in COS-1 cells and analyzed the ratio of C-terminal translocation. Upon expression, 

we obtained different protein forms (Figure 2C). Constructs with the longest C-terminal tails, 290 

and 350 aa, were resolved as two major bands: the upper band corresponds to twice glycosylated 
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polypeptides (2) representing the state when the C-terminus is translocated into the ER lumen. The 

lower band represents non-glycosylated products (0). Glycosylation status was confirmed by 

endoH digestion, which caused the high-molecular weight band to collapse. Because the cells had 

been subjected to saponin extraction before immunoprecipitation, all products are membrane 

integrated. The unglycosylated forms therefore correspond to loop-translocated polypeptides 

(Goder et al., 1999). For all shorter constructs, there is an additional form, sensitive to endoH (1). 

This represents the once glycosylated product, when the glycosylation site located close to the 

membrane cannot be efficiently modified. 

The shortest constructs produced another, low-molecular weight species, insensitive to 

deglycosylation (marked by an asterisk in Figure 2C). They were previously identified to be the 

loop-translocated polypeptides with cleaved hemagglutinin signal (Higy 2005). When the signal 

peptidase cleavage site had been inactivated (mutation of Gly→Leu at position -1 and of 

Val→Leu at position -3), the short forms were not observed. Signal cleavage is not specific only 

for the short constructs, but due to limitations of electrophoresis resolution, it cannot de detected 

for larger proteins under the conditions we tested. For quantitation of the topology ratio, both 

unglycosylated forms were considered as loop-translocated, while polypeptides with one and two 

glycans reflect C-terminal translocation. 

Glycosylation analysis of the H40A series of constructs revealed no change of the 

topology with the length of the C-terminus (Figure 2D). The same fraction of ~60%                       

C-translocation was obtained over the range of 50 to 350 amino acids downstream of the second 

signal and it is similar to previous results with a C-domain of 230 amino acids (Goder et al., 

1999). This might suggest that the `translation-stop phenomenon`, observed for N-terminal signal-

anchors (Goder and Spiess, 2003), does not apply to a situation when the signal-anchor is 

localized internally. In such a case, the reorientation process would not require ongoing protein 

synthesis, thus, it would not be blocked upon translation termination and dissociation of the 

ribosome.  
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Figure 2. Topology analysis of H40A series of proteins, composed of a cleaved hemagglutin sequence, 
followed by a linker of 40 amino acids and a type II signal-anchor of H1. H1 signal was flanked by two 
positive charges at the N-terminus and a net negative charge at the C-terminus (A). The C-terminal 
domains were composed of 50-350 aa and contained two potential glycosylation sites (B). The proteins 
were expressed in COS-1 cells, pulse-labeled with [35S]methionine for 40 min, immunoprecipitated, 
separated by gel electrophoresis, and visualized by autoradiography. Prior to immunoprecipitation, soluble 
proteins were removed by saponin extraction. 0-unglycosylated products, 1-singly glycosylated, 2-doubly 
glycosylated, *-products with cleaved HA signal. Glycosylation status was confirmed by endoH digestion 
(C), Glycosylation analysis revealed that topogenesis of these chimeric proteins did not depend on the 
length of the C-terminus (D). The average and standard deviations of four independent experiments are 
shown. The marker sizes are in kDa. 
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Proteins with conflicting signals are only moderately sensitive to changes in hydrophobicity of 

the signal-anchor 

One possibility is that the inversion process occurs much more rapidly than for N-terminal 

signals and inversion is completed by the time the shortest constructs are completed. 

Alternatively, there might be no arrest of topogenesis upon termination of translation. We set out 

to test this by manipulating the topogenic determinants in a way that should slow down 

polypeptide reorientation within the translocon. One of the most potent factors is the 

hydrophobicity of the core of the signal-anchor. We decreased the hydrophobicity of the H1 signal 

by removing the last valine and isoleucine from the signal core (construct named H40A Minus 

VI), or increased it by extending it with two additional valines and isoleucines (H40A Plus VI). In 

addition, we dramatically increased the hydrophobicity of the signal-anchor by replacing the wild-

type H1 signal sequence with a stretch of 25 leucines (Figure 3A). The latter signal had been 

previously shown to completely block the reorientation of proteins with N-terminal signal-anchors 

(Wahlberg and Spiess, 1997). Upon expression of the H40A Minus VI/Plus VI constructs with         

a C-terminus of 230 residues (Figure 3B), no significant change of the ratio of glycosylated to 

unglycosylated polypeptides was observed (Figure 3C). Even the signal-anchor composed of 25 

leucines (H40L25) produced a reduction of C-terminal translocation of only ~13%. Thus, internal 

signal-anchors appear to be less sensitive to hydrophobicity changes than N-terminal ones. 

 

Flanking charges affect orientation of two-signal proteins according to the `positive-inside rule` 

The rate of inversion of N-terminal signal-anchors strongly depends on the flanking 

charges, which position the signal in the translocon according to the `positive-inside rule` (Goder 

and Spiess, 2003). We therefore tested whether signal-anchors contained within two-signal 

proteins exhibit a similar sensitivity. We reduced the charge difference ∆(N-C) by inversion of the 

flanking charges: the two positive charges in the N-terminal flank of the H1 signal were replaced 

by two negative ones (mutation of arginines to aspartates) and the negatively charged glutamates 

in the C-terminal flank were mutated to positively charged lysines. Inversion of the flanking 

charges was introduced alone or in combination with an increased hydrophobicity of the signal-

anchor (exchange of the H1 signal into a Leu25 sequence). The corresponding constructs were 

named H40A-4 and H40L25-4, respectively. To test the opposite effect, the charge difference of 

the second signal was increased by replacing the neutral asparagine in the C-terminal flank with             

a negatively charged aspartate (construct called H40A NtoD) (Figure 3A). Expression in COS-1 

cells and glycosylation analysis of these proteins (Figure 3B) revealed that, as expected, topology 

of two-signal proteins depended on the charge difference of the signal-anchor.  
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Figure 3. The effect of hydrophobicity of the signal-anchor and the flanking charges on the insertion 
process of two-signal proteins. Protein constructs carrying mutations in the signal-anchor (H40A Minus VI, 
H40A Plus VI, H40L25), mutations in the flanking charges (H40A-4, H40A NtoD) or combination of those 
(H40L25-4) and the control (H40A) (A) were expressed in COS-1 cells (B) and subjected to glycosylation 
analysis (C). The experiments were conducted for wild-type H1 C-terminus consisting of 230 amino acids. 
Topology was only midly affected by changes in signal hydrophobicity. Inversion of the flanking charges 
(H40A-4) strongly reduced C-translocation. Combined mutations of the flanking charges and the signal 
hydrophobicity resulted in almost exclusive Nexo/Ccyt topology. An increase of the charge difference 
between the N- and the C-terminal flank of the signal-anchor (H40A NtoD) produced more C-translocation 
The plot shows the results of 1-4 independent experiments with standard deviations, where applicable. The 
marker sizes are in kDa. 
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Flanking charges proved to be a more powerful topogenic determinant than hydrophobicity 

of the signal-anchor: inversion of charged residues in the vicinity of the H1 signal reduced the 

inversion rate by ~45% (compared to ~13% decrease upon replacement of the signal with Leu25). 

Combined mutations of the flanking charges and the signal hydrophobicity resulted in almost 

exclusive Nexo/Ccyt topology. In contrast, an increase of the charge difference by introduction of an 

additional negative charge at the C-terminal flank (H40A NtoD) produced more C-translocation 

(Figure 3C). These results support the model that the flanking charges (and thus the `positive-

inside rule`) are the driving force for signal inversion. Increased hydrophobicity of the signal-

anchor reduced C-terminal translocation suggesting that, as for N-terminal signals, a hydrophobic 

interaction at the translocon slows down the reorientation process.  

 

Two-signal proteins reorient within the Sec61 translocon 

In order to investigate the reorientation process of two-signal proteins, we tested the effect 

of signal hydrophobicity on the insertion of polypeptides with various lengths of the C-terminus, 

which offer different time windows for signal inversion. We compared the topogenesis of the 

H40A series of constructs with H40L25[#] (Figure 4A). Upon expression in COS-1 cells (Figure 

4B), we discovered that increased hydrophobicity of the signal-anchor slowed down the 

reorientation process to a point that allows observation of the kinetics of signal inversion. 

Topogenesis of the H40L25 series of proteins showed C-terminal length dependence (Figure 4C, 

red line). The fraction of C-terminally translocated polypeptides increased with the increasing 

length of the C-domain and approached a plateau of ~50%. This indicates that topogenesis of such 

two-signal proteins is arrested upon termination of translation. It also confirms that the 

polypeptides reorient upon emergence of the second signal. The data suggest a rapid inversion 

phase up to ~100 residues (~20 s after emergence of the second signal and ~30 s after the first 

signal has left the ribosomal tunnel, using a translation rate of 5 aa/s; Hershey 1991), potentially 

followed by a slow phase of inversion. 
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Figure 4. Kinetics of inversion of two-signal proteins. Proteins with H1 signal (H40A) as well as mutants 
carrying a strongly hydrophobic signal-anchor (H40L25) and C-terminal tails of 50-350 residues (A) were 
expressed in COS-1 cells (C-cell lysate after saponin extraction, S-saponin extract containing nonintegrated 
proteins) (B) and subjected to glycosylation analysis (C). Increased hydrophobicity of the signal-anchor 
slowed down the reorientation process and revealed the C-terminal length dependence of topology. The 
plot shows the results of two (H40L25) or four (H40A) independent experiments with standard deviations. 
The marker sizes are in kDa.  
 

 

As shown in Figure 3, topology of proteins with conflicting signals depends on the 

charged residues in the vicinity of the signal-anchor. We therefore tested whether mutagenesis of 

the flanking charges has a similar potential of slowing down the reorientation process as increased 

signal hydrophobicity. We replaced the two positive charges in the N-terminal flank of the H1 

signal (mutation of arginines to aspartates). The C-terminal flank remained unaltered, with one net 

negative charge. The series of constructs was named H40A-3[#] (Figure 5A) and was expressed 

in COS-1 cells along with the H40A[#] control (Figure 5B). Proteins with mutations in the 

flanking charges showed a significantly reduced ratio of C-terminal translocation: ~10%                 
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C-translocation was obtained for the shortest constructs ([50]-[110]) and it increased up to ~35% 

for H40A-3[350] (Figure 5C). This biphasic insertion pattern could be potentially explained by 

rapid inversion of ~10% of polypeptides with short C-termini, followed by the C-terminal length 

dependence of proteins with tails >100 amino acids. Another possibility is targeting to the ER by 

the second signal, which gives a ″background″ of ~10% C-terminally translocated proteins. 

 

 
 
Figure 5. The effect of the flanking charges on the insertion process of two-signal proteins. Proteins 
containing the H1 signal-anchor with wild-type charge distribution (H40A[#]) as well as mutants where the 
positively charged residues in the N-terminal flank were replaced by negative charges, H40A-3[#] (A) were 
expressed in COS-1 cells (C-cell lysate after saponin extraction, S-saponin extract containing nonintegrated 
proteins; d-oxydative dimer) (B) and subjected to glycosylation analysis (C). Reduction of ∆(N-C) charge 
difference decreased the rate of signal inversion determined by the `positive-inside rule`. Topogenesis 
depends on the C-terminal length. The plot shows the results of two independent experiments with standard 
deviations. The marker sizes are in kDa. 
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Topology of proteins with conflicting signals is influenced by the translation time 

Since the process of protein inversion depends on the size of the growing polypeptide, it 

can be manipulated by extending the time of translation. This is achieved by addition of the 

reversible elongation inhibitor, cycloheximide (CHX), during radiolabeling of the newly 

synthesized proteins. Cycloheximide concentration of 1 µg/ml has been shown to reduce the 

translation rate in COS cells by a factor of 1.8 (Goder et al., 2000). When applied to proteins with 

N-terminal signal-anchors, it resulted in a shift of the topologies in favor of C-terminal 

translocation (Goder and Spiess, 2003). Interestingly, it did not affect the fixed, 50-s time window, 

after which topogenesis was terminated by the translocation machinery. The higher inversion rate 

at slow translation could be explained by the fact that a smaller portion of the polypeptide has 

been synthesized during this 50-s time period and thus, such shorter chains can move more easily 

through the translocation channel as the signal reorients itself. When we applied cycloheximide to 

our system (Figure 6B), we observed a general increase in C-terminal translocation of the H40A 

series of proteins (Figure 6C). The shift reached ~10-15% for short polypeptides and ~20-25% in 

case of longer proteins. Since the inversion was already rapid at normal translation rate, we did not 

expect much change when the polypeptides were offered more time to achieve their proper 

topology. Only proteins with a long C-terminal domain could benefit in the situation when the 

Sec61 channel was filled with a smaller portion of the nascent chain. 

 
Figure 6. The effect of translation time on the topology of two-signal proteins. H40A series of constructs 
(A) was radiolabeled in the presence of the elongation inhibitor, cycloheximide (CHX), at 1µg/ml 
concentration (B). Prolonged time of protein synthesis resulted in an increased fraction of polypeptides 
inserted in Ncyt/Cexo topology (C). The plot shows the results of two (H40A+CHX) or four (H40A) 
independent experiments with standard deviations. The marker sizes are in kDa. 
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The ratio of topologies of two-signal proteins depends on the characteristics of the first signal 

In the last experiment, we determined the influence of the N-terminal, cleaved signal on 

topogenesis of two-signal proteins. For this purpose, the hemagglutinin signal in the H40A series 

was replaced by the cleavable preprolactin signal, and the resulting series of constructs was named 

P40A (Figure 7A). Proteins with both types of cleaveable signal sequences were expressed in 

COS-1 cells (Figure 7B) and subjected to glycosylation analysis (Figure 7C).  

 

 
Figure 7. The influence of the cleaved signal on the insertion process of two-signal proteins. The HA 
signal in the H40A series was replaced with preprolactin signal sequence (A) and both series of constructs 
were expressed in COS-1 cells (B). Glycosylation analysis revealed that the preprolactin signal is a stronger 
inducer of type I topology than hemagglutinin signal and it is able to dominate the insertion process of the 
P40A protein series (C). The plot shows the results of two (P40A) or four (H40A) independent experiments 
with standard deviations. The marker sizes are in kDa. 
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As shown in Figure 1B, preprolactin is a strong inducer of type I topology (Goder et al., 

1999). In our experimental setup, its topological information was dominant and only 10-20% of 

polypeptides were able to translocate their C-terminus (Figure 7C). This ratio seemed to be 

independent of the size of the protein, however, the values were not contained within a range that 

would allow us to observe the inversion kinetics. This could be feasible by introducing mutations 

that favour type II topology, such as insertion of additional positive charges preceding the signal-

anchor. 

 

 

 

DISCUSSION 

 
 Topogenesis of multispanning membrane proteins is a complex process mediated by 

topogenic determinants contained within the protein sequence, interactions of the protein with the 

translocation machinery, interactions between individual transmembrane segments and protein-

membrane phospholipids interactions (Dowhan and Bogdanov, 2009). Here, we have analyzed the 

process of in vivo insertion of two-signal proteins into the mammalian ER membrane. We 

generated series of chimeric proteins composed of a cleaved hemagglutin signal for type I 

insertion, followed by a spacer of 40 aa and a type II signal-anchor sequence of H1. These signals 

contain conflicting topogenic information and thus, they compete for the preferred orientation in 

the translocon (Figure 1A). The topogenic factors encoded in the wild-type H1 sequence are 

dominant during the insertion of ~60% of the polypeptides belonging to the H40A[#] series. The 

remaining fraction of ~40% products inserted in an Nexo/Ccyt topology might be the result of BiP 

binding to the initially translocated spacer, which blocks its return to the cytosolic side and, thus, 

renders the protein unable to reorient. Long linkers would increase the chance of capturing by BiP 

– this is supported by the experiments of Goder et al. (1999), where extension of the loop 

sequence resulted in a decreased fraction of C-terminally translocated products (Figure 1B).  

Previous studies of the insertion process of conflicting signals raised a concern that what 

we are actually observing is not the signal competition for the preferred topology, but competition 

for SRP recruitment in the cytosol (Goder et al., 1999). In such a situation, SRP binding by the 

HA signal will initiate loop translocation and will result in Nexo/Ccyt topology. In contrast, if the 

signal-anchor first binds SRP, it will induce translocation of the C-terminus, whereas the HA 

signal will remain in the cytosol or will subsequently insert into the membrane. To investigate 
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this, Goder et al. tested translocation of polypeptides consisting of the cleaved signal of 

vasopressin or hemagglutin and a short downstream segment, corresponding to the moment in the 

translation of V40A or H40A constructs when the second signal starts emerging from the 

ribosome. The results suggested that the second signal in those constructs is able to compete for 

SRP binding. Despite this, a larger fraction of the V40A than of the H40A constructs inserted with 

a translocated C-terminus, even though targeting by the vasopressin signal was faster (Figure 1B) 

(Goder et al., 1999). In our experiments, background of ~10% targeting by the second signal could 

potentially explain the biphasic insertion pattern of H40A-3[#] (Figure 5C) and P40A[#] (Figure 

7C) series, where short polypeptides (up to ~100 residues in the C-terminus) showed a similar, 

low level of C-translocation, followed by a phase of inversion associated with C-terminal length 

dependence. However, in general we can assume that the percentage of polypeptides targeted by 

the second signal in the series of our diagnostic constructs is insignificant and different topologies 

presented in the model in Figure 1A are indeed the result of signal competition. 

Competition between signals is manifested by reorientation of the proteins induced by the 

signal-anchor. For the wild-type H1 signal it occurs very rapidly and has already completed by the 

time the shortest of our constructs was synthesized. The kinetics of reorientation can be only 

observed when the process of signal-anchor inversion is slowed down significantly by increasing 

signal hydrophobicity or by reducing the charge difference of the signal-anchor. Our experiments 

revealed that signal-anchors localized internally are far less sensitive to increased hydrophobicity 

than N-terminal signal-anchors in single spanning membrane proteins (Goder and Spiess, 2003). A 

possible explanation for the observed behaviour may lie in different functions of the two signals 

during the insertion process. In single-spanning membrane proteins, insertion of the signal into the 

translocation channel triggers a series of rearrangements of the structure of the Sec61 complex that 

facilitate protein translocation. These include widening of the constriction ring and removal of the 

plug domain sealing the channel, that enable translocation of the C-terminal chain. In addition, the 

channel has to open laterally to release the transmembrane segment into the lipid environment. In 

contrast, during insertion of our model two-signal proteins, the translocon is already open and the 

loop is translocated by the time the second signal enters the pore. Thus, some of the functions of 

N-terminal signal-anchors do not apply to the internal ones.  

It has been shown that N-terminal signal-anchors initially insert into the translocon        

`head-on`, in an Nexo/Ccyt orientation, followed by signal inversion (Goder and Spiess, 2003). In 

order to reorient itself, the signal needs to dissociate from the apolar binding site in the 

translocation pore (Van den Berg et al., 2004) or the membrane (Higy et al., 2005). Perhaps the 

observed low sensitivity to hydrophobicity of internal vs. N-terminal signal-anchors is caused by 
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their different binding strength to TM helices of the channel and/or the time the signal spends 

inside the pore before the lateral release into the membrane. Internally localized signal-anchors 

contained within two-signal proteins are potentially not yet in contact with the lipid phase when 

reorientation occurs. These features would be the consequence of different roles of these two types 

of signals during protein insertion, as mentioned above. 

Topogenesis of single-spanning membrane proteins with an N-terminal signal-anchor is 

coupled to protein synthesis and is interrupted upon chain completion (`translation-stop 

phenomenon`). Protein reorientation seemed to stop ~50 s after insertion into the channel, even at 

reduced translation rate caused by cycloheximide treatment. It was proposed that cells might have 

developed this mechanism in order to purge the translocon of polypeptides that failed to attain 

their proper topology within the programmed time frame (Goder and Spiess, 2003). We have 

looked for evidence of a similar checkpoint during topogenesis of two-signal proteins, however, 

the results were unclear. For only two series of constructs, H40L25[#] and H40A-3[#], we 

observed a C-terminal length dependence of topology. In the first series, the relationship between 

protein inversion and C-terminal length was biphasic, with an initial rapid inversion phase, 

potentially followed by a slow inversion phase, since no plateau was reached within the diagnostic 

range of 50 to 350 amino acids in the C-terminal domain. In the case of H40A-3[#] protein series, 

topogenesis appeared to have come to a halt for polypeptides ≥230 residues. If we assume this is 

indeed the moment of topogenesis termination by the translocation machinery, we obtain                   

a topogenesis window of 40 s. This is based on the calculation that topogenesis starts when the 

signal-anchor has just emerged from the ribosome and 30 amino acids of the nascent chain are still 

hidden within the ribosome tunnel exit (Matlack and Walter, 1995; Morgan et al., 2000). The 

translation rate in mammalian cells is ~5 aa/s (Hershey, 1991). If one argues that topogenesis 

starts when the first signal has been exposed to the cytosol, this will increase the time window 

value by 12 seconds, which is close to the one measured for single-spanning proteins. However, 

this is calculated for only one series of proteins, H40A-3, and we do not know if other double-

spanning membrane proteins show a similar pattern. 

Different time windows obtained for two-signal proteins would suggest that the 

topogenesis window depends on the substrate, rather than being a constant programmed in the 

translocation machinery. Another possibility is that the 50-s time window is the period during 

which the translocon or perhaps the ribosome scans the polypeptide in search of hydrophobic 

transmembrane segments. If a potential TM is detected, the timer will be restarted and the segment 

will be allowed to orient itself in the pore, mediated by its topogenic determinants. That is why 

topogenesis of single-spanning proteins was terminated, even though the C-terminal portion was 
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still being synthesized. The exact mechanism of insertion of multispanning membrane proteins is 

still unknown, including how many TMs the translocation channel can accomodate and how long 

it takes to assemble a polytopic protein.  
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ABSTRACT 

 

The Sec61 translocon mediates the translocation of proteins across the endoplasmic 

reticulum membrane and the lateral integration of transmembrane segments into the lipid bilayer. 

The structure of the idle translocon is closed by a lumenal plug domain and a hydrophobic 

constriction ring. To test the function of the apolar constriction, we have mutated all six ring 

residues of yeast Sec61p to more hydrophilic, bulky, or even charged amino acids (alanines, 

glycines, serines, tryptophans, lysines, or aspartates). The translocon was found to be surprisingly 

tolerant even to the charge mutations in the constriction ring, since growth and translocation 

efficiency were not drastically affected. Most interestingly, ring mutants were found to affect the 

integration of hydrophobic sequences into the lipid bilayer, indicating that the translocon does not 

simply catalyze the partitioning of potential transmembrane segments between an aqueous 

environment and the lipid bilayer, but that it plays an active role in setting the hydrophobicity 

threshold for membrane integration. 

 
 
Abbreviations used: CPY, carboxypeptidase Y; DPAPB, dipeptidyl aminopeptidase B; ER, 

endoplasmic reticulum; GPD, glyceraldehyde-3-phosphate dehydrogenase; HA, hemaglutinin; 

PCR, polymerase chain reaction; TM, transmembrane. 

 

 

INTRODUCTION 

 

Protein translocation across the endoplasmic reticulum (ER) membrane is initiated by        

a hydrophobic signal sequence which, mediated by signal recognition particle (SRP) and SRP 

receptor, is targeted to the Sec61 translocon (Osborne et al., 2005). Here the signal is oriented to 

transfer one end across the membrane and to integrate itself into the membrane. The translocon 

provides a pore for hydrophilic polypeptide segments to pass through, while simultaneously 

facilitating the integration of apolar segments into the lipid bilayer. 

 Mutagenesis of substrate proteins showed that charged residues flanking the hydrophobic 

core of a signal or signal-anchor sequence are important to define its final orientation according to 

the 'positive-inside rule' - generally positioning the more positive end on the cytoplasmic side 

(Beltzer et al., 1991; Hartmann et al., 1989; Heijne, 1986). The hydrophobicity of the signal 

influences the orientation process (Goder and Spiess, 2003) and drives integration into the 
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membrane and insertion of the adjacent hydrophilic segment into the pore (Kida et al., 2009). 

Furthermore, subsequent apolar segments integrate into the membrane depending on their 

hydrophobicity. Crosslinking studies led to the proposal that membrane integration is a multistep 

process involving intermediate binding sites (Do et al., 1996; Ismail et al., 2006). Systematic 

analysis of potential transmembrane segments (TM) in mammalian in vitro and in vivo systems, in 

bacteria, and in yeast (Hessa et al., 2005; Hessa et al., 2007; Hessa et al., 2009; Lundin et al., 

2008; Xie et al., 2007) yielded 'biological hydrophobicity scales' and suggested that membrane 

insertion is fundamentally a thermodynamic partitioning process. Based on this interpretation, it 

was proposed that the function of the Sec61p channel is to provide a site in the membrane through 

which TMs can equilibrate between the lipid and aqueous phases (Heinrich et al., 2000; von 

Heijne, 2006). 

 Crystal structures of the archaeal SecYEß translocon (Van den Berg et al., 2004) provided  

a first basis to understand these processes mechanistically. SecY/Sec61α is a compact 10-helix 

bundle of two halves that may open a lateral gate towards the lipid membrane between TM helices 

2/3 and 7/8, as illustrated in Figure 1 for the model of the yeast Sec61 complex (Junne et al., 

2006). In the idle translocon, the central pore is obstructed by a lumenal plug domain (highlighted 

in Figure 1A), but in addition also by a central constriction (Figure 1, B and C). The latter is 

generated by six, almost invariably hydrophobic side chains provided by TMs 2, 5, 7, and 10. This 

constriction ring might be responsible for the good viability of yeast cells and the short-term 

survival of bacteria with full deletion of the plug domain in Sec61p and SecY, respectively (Junne 

et al., 2006; Maillard et al., 2007). 

Mutations in the plug, in the constriction ring, as well as in the helices forming the lateral 

gate were found to destabilize the closed state of the translocon, resulting in a prl (protein 

localization) phenotype that suppresses inactivating mutations in signal sequences, both in bacteria 

(Emr et al., 1981; Li et al., 2007; Veenendaal et al., 2004) and in yeast (Junne et al., 2007). Such 

mutations in bacterial SecY produced transient channel openings in planar membrane permeability 

measurements (Saparov et al., 2007). In addition, prl mutants were shown to affect signal-anchor 

topology by premature opening of the translocation pore, before the orientation of the signal is 

completed (Junne et al., 2007). 
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Figure 1. Plug domain and constriction ring of Sec61p. The model of yeast Sec61 complex is shown as the 
polypeptide backbone (Sec61p in blue to yellow, Sbh1p in red, and Sss1p in orange) with the plug domain 
(residues 52–74; A) or the residues of the constriction ring (V82, I86, I181, T185, M294, and M450; B and 
C) in space-filling representation in gray. Views from within the membrane (A and B) or from the cytosol 
(C) are shown with the lateral exit gate to the front or bottom, respectively. 
 

 

 To specifically analyze the importance and function of the hydrophobic constriction ring, 

we have mutated all of its contributing residues to more hydrophilic or even charged amino acids, 

alone or in combination with a point mutation in the plug or a full plug deletion, and analyzed the 

resulting phenotypes with respect to viability, translocon assembly and stability, translocation 

defects, and TM integration. The translocon was found to be surprisingly tolerant to even drastic 

mutations in the constriction ring. Most interestingly, ring mutants were found to affect the 

integration of hydrophobic sequences into the lipid bilayer, indicating that the translocon does not 

simply catalyze the partitioning of potential TM segments between an aqueous environment and 

the lipid bilayer, but that it plays an active part in setting the threshold for lipid integration. 

 

 

MATERIALS AND METHODS 

 

Yeast strains 

Yeast strain VGY61 (Goder et al., 2004) corresponds to RSY1293 (matα, ura3-1, leu2-3,-112, 

his3-11,15, trp1-1, ade2-1, can1-100, sec61::HIS3, [pDQ1]) (Pilon et al., 1997) in which pDQ1 

(i.e. YCplac111 (LEU2 CEN) containing SEC61 with codons 2–6 replaced by codons for H6RS 

and with its own promoter) was exchanged for YCPlac33 (URA3 CEN) with the same SEC61 
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gene. This made it possible to introduce mutant sec61 in YCplac111 (LEU2 CEN) by plasmid 

shuffling using 5-fluoro-orotic acid. The absence of wild-type SEC61 was confirmed by 

polymerase chain reaction (PCR) and restriction enzyme digestion of the products. VGY61 with        

a disruption of SSH1 was described previously (Goder et al., 2004). 

 

Mutagenesis of Sec61p 

Sec61p mutant strains with the mutations L63N and ∆plug (residues 52–74 replaced by a glycine) 

have been previously described (Junne et al., 2006). Ring mutations were introduced sequentially 

in each of four quarters of ~350 bp of the coding sequence delimited by unique restriction sites 

XbaI, SacI (created by a silent mutation), StuI, AccI, and EcoRI (464 bp after the stop codon) at 

nucleotide positions 27, 343, 710, 1099, and 1916 from the initiation codon, respectively. V82/I86 

and I181/T185 were mutagenized simultaneously, whereas mutations of M294 and M450 were 

generated separately. In proximity of these four loci new silent restriction sites, Asp718, BamHI, 

PstI and again BamHI, were created at positions 232, 541, 892, and 1336, respectively. 

Mutagenesis was performed by PCR using appropriate mutagenic primers and Vent polymerase 

(New England Biolabs). Ring and plug mutations were combined via Asp718. All constructs were 

verified by sequencing. 

 

Growth analysis and Sec61p levels 

For serial dilution experiments, yeast strains were grown in YPDA medium at 30°C to mid-log 

phase and diluted to 0.1 OD600. Aliquots of 6.6-fold serial dilutions were transferred onto YPDA 

plates and incubated at 15, 30, or 37°C. 

To determine steady-state levels of Sec61p by immunoblot analysis, 10 OD600 equivalents of yeast 

cells were lysed in SDS-sample buffer with glass beads and boiled for 10 min. Aliquots of equal 

total protein were separated by SDS-gel electrophoresis, blotted onto nitrocellulose, and decorated 

with a rabbit antiserum against the C terminus of Sec61p. Antibody was detected using 

horseradish peroxidase-conjugated anti-mouse secondary antibody and the enhanced 

chemoluminescence kit (GE Healthcare). Equal protein loading was approximated based on 

Coomassie blue staining of a separate gel. 

To analyze the stability of Sec61p mutants in the presence of wild-type Sec61p, the sec61 coding 

sequences were extended by a sequence encoding a triple-HA epitope tag, cloned with the original 

promoter into YCplac111 (LEU2 CEN), transformed into VGY61, and grown on SD–Leu–Ura to 

maintain both wild-type and hemagglutinin (HA)-tagged mutant copy of Sec61p. Translocons 
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were analyzed by immunoblotting as above using antibodies directed against the C terminus of 

Sec61p and against the HA epitope, respectively. 

 

Model proteins 

The substrate proteins dipeptidyl aminopeptidase B (DPAPB), carboxypeptidase Y (CPY), and 

CPY∆3 were described previously (Junne et al., 2007). In CPY∆C, the C-terminal 209 amino 

acids of CPY were deleted by PCR mutagenesis and fused to a triple-HA tag. To determine the 

effect of Sec61p mutations on membrane integration, the potential TM segments developed by 

Hessa et al. (2005) and shown in Table I were inserted into the translocated domain of DPAPB 

replacing  codons 170–378, by PCR mutagenesis. The resulting model proteins thus consisted of 

an N-terminal cytoplasmic domain, a signal-anchor, a spacer sequence, the potential TM segment, 

and a C-terminal sequence of 29, 16, 124, 27, and 470 residues, respectively. Spacer and              

C-terminal sequence contain 4 and 3 potential glycosylation sites, respectively. They were 

expressed in pRS426 (URA3 2µ) with a glyceraldehyde-3-phosphate dehydrogenase (GPD) 

promotor and a C-terminal triple-HA tag. 

 

Labeling and immunoprecipitation 

Yeast cells were in vivo pulse labeled for 5 min with 150 µCi/ml [35S]methionine/cysteine 

(PerkinElmer) and, if indicated, chased with 30 µg/ml each of unlabeled methionine and cysteine 

and 3 mM ammonium sulfate. Cells were lysed with glass beads, heated at 95°C for 5 min with 

1% SDS, cleared by centrifugation, subjected to immunoprecipitation, and analyzed by SDS-gel 

electrophoresis and autoradiography as described previously (Junne et al., 2006). Signals were 

quantified by phosphorimager. 

 

 

RESULTS 

 

Sec61p mutants with hydrophilic or even charged constriction residues retain functionality 

In order to test the importance of the hydrophobic constriction ring in Sec61p, the six 

amino acids constituting it, V82, I86, I181, T185, M294, and M450, were first mutated to either 

alanines (6A) or serines (6S). Since these mutants produced no striking growth defects, we also 

generated mutants in which the ring residues were replaced by glycines (6G), lacking any side 

chain. In addition, an opposite mutant with six tryptophans, the most bulky amino acid, was 

produced (6W). Finally, all six ring residues were also mutated to the charged amino acids 
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aspartate (6D) or lysine (6K). We expected these latter mutants to be nonfunctional, because they 

were likely to interfere with the proper insertion of the Sec61p TM segments or because charge 

repulsion might prevent the formation of the helix bundle. To our surprise, however, all mutants 

supported growth at 30°C, even in the absence of the second, nonessential Sec61p homolog Ssh1p 

(Figure 2). 

 

 
 
Figure 2. Growth of yeast cells with wild-type or mutant Sec61p in the presence or absence of Ssh1p. 
SSH1 or ∆ssh1 cells expressing the indicated Sec61p mutants were plated at serial dilutions onto YPDA 
plates and incubated for 3 d at 30°C, 5 d at 37°C, or 11 d at 15°C. 
 

 

 We further constructed Sec61p mutants in which the ring mutations were combined with 

the L63N point mutation in the plug domain (Junne et al., 2006) named 6XN (X standing for A, S, 

G, W, D, or K), or with the full plug deletion (replacement of residues 52–74 by a glycine; Junne 

et al., 2006) named 6X∆. As is shown in Figure 2, yeast cells with any of these mutants in place 
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of wild-type Sec61p and in the absence of the nonessential SEC61 homolog SSH1 were viable 

except for cells containing 6D∆, which could not lose the wild-type copy of SEC61. In addition, 

cells with 6K∆ grew so poorly that they were not yet visible after 3 d. SSH1 rescued growth of 

cells with 6K∆, but not with 6D∆. Not unexpectedly, it was the charge mutants that showed the 

severest growth defects: 6K, 6D, 6KN, and 6K∆ had the lowest growth rates, and 6K, 6D, 6KN, 

6DN, and 6K∆ showed heat and/or cold sensitivity, in some cases rescued by expression of SSH1. 

Ssh1p is functional only in co-translational translocation, since it does not assemble with the 

Sec62–Sec63 complex essential for post-translational translocation (Finke et al., 1996), but is 

found associated with translating ribosomes (Prinz et al., 2000) and co-translational substrate 

proteins (Wittke et al., 2002). Rescue of growth in the presence of Ssh1p thus suggests that 

cotranslational translocation was limiting. The growth behavior of the other mutants showed little, 

if any, deviation from wild-type. 

 

Ring mutations affect translocation efficiency 

To test the functionality of mutant translocons with respect to co- and post-translational 

translocation, the translocation efficiency was tested for DPAPB and CPY (Figure 3, A–C), 

established co- and post-translational substrates, respectively (Ng et al., 1996). Rather modest 

defects were detected for co-translational translocation of DPAPB with less than 30% 

nonintegration even for the charge mutants. However, ~50% of CPY precursor failed to be 

translocated by 6K, 6D, and 6KN translocons during the 5-min labeling period, and even more by 

6K∆, whereas the other mutants showed only mild defects in comparison to the respective control 

(wt, wtN, or wt∆; Figure 3, A and C). 

While unglycosylated full-length products of an obligatory co-translational substrate 

directly reflect the defect in translocation, unglycosylated products of a post-translational substrate 

primarily indicate a reduced rate of translocation resulting in an increased pool of cytosolic 

precursor. To test whether the CPY precurors not translocated after the labeling period can still be 

translocated later on, we performed pulse-chase experiments. With CPY this is complicated by the 

fact that mature CPY, or after deglycosylation the ER and Golgi forms, comigrate with the 

unglycosylated precursor. For this reason, we analyzed CPY∆C, a C-terminally truncated version 

of CPY that cannot fold and is retained in the ER.  
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Figure 3. Translocation efficiency of wild-type and mutant Sec61p. Integration of DPAPB as a co-
translational and of CPY as a post-translational substrate of the Sec61 translocon was analyzed in a ∆ssh1 
background by pulse labeling for 5 min with [35S]methionine, immunoprecipitation, gel electrophoresis, 
and autoradiography (A). The products correspond to glycosylated (g) and unglycosylated (u) forms of 
DPAPB, and to the glycosylated first proform (p1) and the unglycosylated preproform (pp) of CPY. 
Results were quantified by phosphorimaging and the fraction of untranslocated DPAPB (B) and CPY (C) 
was plotted (mean and standard deviation of three determinations; single measurements for 6G∆ and 6W∆ 
in C). In panel D, C-terminally truncated CPY∆C was expressed in cells with the indicated wild-type and 
mutant translocons, pulse labeled for 5 min and chased with unlabeled methionine for up to 30 min before 
immunopreciptation, gel electrophoresis and autoradiography to separate the translocated, two- and 
threefold glycosylated ER forms (ER) from cytosolic precursor (cyt). 
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Expressed with wild-type Sec61p, CPY∆C was almost completely glycosylated and thus 

translocated within the pulse period (Figure 3D, lane 1). During the chase, the signal was 

gradually reduced to ~25% within 30 min by degradation (lanes 2–4). In cells with mutant 

translocons 6A∆, 6K, or 6D (lanes 5–16), the signal of the glycosylated ER forms initially 

increased during the chase and then decreased more slowly, indicating that cytosolic precursors 

continued to be translocated in this period. The post-translational defects observed by pulse-

labeling in Figure 3 (A and C) reflect reduced translocation rates and not the final loss of 

translocated protein, which is defined by competition between the rates of translocation and 

cytosolic degradation. 

 

The hydrophobic constriction ring stabilizes the closed state of the translocon 

Single point mutations in the constriction ring have previously been shown to produce       

a prl phenotype, i.e. the suppression of inactivating mutations in signal sequences, both in the 

bacterial system (Smith et al., 2005) and in yeast (Junne et al., 2007). In general, prl mutations are 

interpreted to destabilize specifically the closed state of the translocon by disturbing the structure 

of the plug, its binding site in the lumenal cavity, or lateral gate closure, and thus facilitate pore 

opening. As a result, even marginally hydrophobic signal sequences obtain access to the 

membrane that are rejected by the wild-type translocon. To test for a prl phenotype, translocation 

of CPY∆3 was tested, a mutant CPY in which the signal was inactivated by deletion of three 

apolar residues to yield less than 15% translocation with wild-type Sec61p. Replacement of all six 

hydrophobic constriction residues by alanines, serines, or glycines showed a clear prl effect, since 

more than 50% of CPY∆3 was translocated (Figure 4). 6W showed a smaller effect, whereas 6D 

and 6K did not suppress the signal mutation, even when taking into account their general 

translocation defect. The effect of the charge mutations and in part of 6W thus appears not to 

specifically destabilize the closed state in favor of the open one, but to disturb the structure in       

a more general manner. Ring mutations and the L63N plug mutation or the full plug deletion, 

which both generate a prl phenotype on their own, were not additive in suppression of the signal 

defect (Figure 4). The prl phenotype was always reduced, only mildly by alanines and most 

significantly by the charge mutations. This suggests that the effects of the combined mutations are 

not limited to facilitate pore opening. 
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Figure 4. prl phenotype of mutant Sec61p.  (A) CPY∆3 (CPY with a signal sequence lacking three apolar 
residues) was expressed in ∆ssh1cells with wild-type (wt) or the indicated mutant Sec61p, labeled and 
analyzed as in Figure 3A.  (B) Translocation efficiency was quantified by phosphorimager. The average of 
1–3 determinations is shown. The horizontal line indicates the wild-type levels. 

 

  

 To test the stability of Sec61p mutants, their steady-state levels in cells lacking wild-type 

SEC61 were analyzed by immunoblot analysis. Surprisingly, charged residues replacing the 

hydrophobic constriction residues did not significantly reduce protein levels in comparison to the 

respective wild-type translocons (wt, wtN, and wt∆; Figure 5A). In contrast, in a heterozygous 

situation, when coexpressed with a wild-type copy of SEC61, several of the mutant translocons 

(tagged with an HA-epitope for independent detection) were observed at strongly reduced levels 

(Figure 5B). This phenomenon was previously observed for ∆TM2 (deletion of codons 77–107; 

(Wilkinson et al., 2000) and ∆plug ((Junne et al., 2006) and Figure 5B, lane15). It indicates 

competition of wild-type and mutant Sec61p for limiting interaction partners that are required for 

stability. In support of this notion, overexpression of the β and γ subunits Sbh1p and Sss1p at least 

partially rescued ∆plug and ∆TM2 (Junne et al., 2007). Reduced levels in a heterozygous situation 

therefore suggest an altered protein surface with reduced binding affinity to partner molecules. 

Most affected were the mutations to lysines, aspartates, and glycines, whereas mutations to serines 

and tryptophans caused minor effects. Only the mutations to alanines showed no reduction of 

protein levels compared to the corresponding wild-type version of the translocon. 
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Figure 5. Levels of wild-type or mutant translocons in the absence (A) or presence (B) of a second wild-
type copy of Sec61p. A: Steady-state amounts of wild-type and mutant Sec61p were determined in an 
SSH1 background by immunoblot analysis of total cell lysate. Equal loading was approximated based on 
protein determination and Coomassie staining of SDS-gels. B: Yeast cells expressing equal amounts of 
wild-type Sec61p and the indicated HA-tagged mutants were analyzed by immunoblot analysis using an 
antiserum against the C terminus of Sec61p (α61C) and an anti-HA antibody (αHA) recognizing wild-type 
and mutant Sec61p, respectively. Mutation of constriction residues to aspartates consistently resulted in 
slightly reduced electrophoretic mobility. The asterisk indicates a background band recognized by the anti-
HA antibody that also serves as a loading control. Data for SSH1 cells are shown; the same result was 
obtained with ∆ssh1 cells (unpublished data). 
 

 

The properties of the constriction ring regulate membrane insertion 

In addition to offering a passage for polypeptides through the membrane, the translocon 

also provides a lateral gate for the insertion of TM segments into the lipid bilayer. To analyze the 

effect of ring mutations on integration of TM sequences into the lipid bilayer, we tested the 

integration efficiency of moderately hydrophobic H-segments previously used by von Heijne and 

colleagues to characterize this process in mammalian in vitro and in vivo systems and in yeast 

(Hessa et al., 2005; Hessa et al., 2009). They consisted of a 19-alanine host segment in which an 

increasing number of residues were replaced by leucines (Table I), thus creating a series of 

increasing hydrophobicity. These sequences were inserted into the exoplasmic domain of DPAPB, 

generating a protein (DPAPB-H) with an uncleaved signal-anchor sequence for co-translational 

ER targeting and translocation of its C-terminus, and a potential stop-transfer sequence (as 

illustrated in Figure 6A). Depending upon whether this sequence is integrated into the membrane 

or is translocated, the protein is glycosylated only at sites between the signal-anchor and the       

H-sequence or also at downstream sites, respectively. The fraction of translocated to integrated    

H-segments can thus be determined after pulse-labeling, immunoprecipitation, gel electrophoresis, 

and autoradiography from the intensities of the fully and partially glycosylated forms 

corresponding to the translocated (T) and integrated H-segments (I), respectively. Unglycosylated 
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products (U) generated by some of the partially defective mutant translocons were clearly 

separated and ignored as irrelevant to the process of membrane integration of the H-segments. 

  

Table I. Potential TM segments to test membrane integration behavior of Sec61p mutants. 

DPAPB-H   nX/(19-n)A Potential TM sequence* 
0L/19A GGPG AAAAAAAAAAAAAAAAAAA GPGG 
1L/18A GGPG AAAAAAAAALAAAAAAAAA GPGG 
2L/17A GGPG AAAALAAAALAAAAAAAAA GPGG 
3L/16A GGPG AAAALAAAALAAAALAAAA GPGG 
4L/15A GGPG AAAALALAALAAAALAAAA GPGG 
5L/14A GGPG AAAALALAALAALALAAAA GPGG 
6L/13A GGPG AAAALALALALALALAAAA GPGG 
1S/18A GGPG AAAAAAAAASAAAAAAAAA GPGG 
2S/17A GGPG AAAASAAAASAAAAAAAAA GPGG 
3S/16A GGPG AAAASAAAASAAAASAAAA GPGG 

 
* Essentially the same model sequences were used as had previously been described by 
Hessa et al. (2005; 2007; 2009), including flanking glycine/proline tetrapeptides to 'insulate' 
the central 19-residue stretch from the surrounding sequence. For simplicity of construction, 
2S, 2L, and 4L guest residues were left asymmetric, since position dependence had been 
shown to be negligible (Hessa et al., 2007). 

 

 

Oligo-alanine H-segments with no or one leucine were fully translocated by the wild-type 

translocon, whereas increasing membrane integration was observed with additional leucines 

(Figure 6B, and quantified as the integrated fraction in Figure 7A). 50% integration was obtained 

with ~4 leucines. Cells expressing the ∆plug translocon dealt with the DPAPB-H constructs 

identically, indicating that the plug domain does not affect the outcome of the integration process. 

Similarly, the Q96R translocon, a Sec61p mutant altered at the cytoplasmic end of TM2 and 

affecting signal-anchor orientation (Junne et al., 2007), did not affect membrane integration. Also 

the replacement of the constriction ring by 6 tryptophans, which are quite hydrophobic, had no 

effect (Figures 6B and 7B). 

 In contrast, exchange of the ring residues to hydrophilic amino acids, 6G, 6S, 6K, and 6D, 

clearly affected the insertion of H-segments (Figures 6B, and 7B and C). The required number of 

leucines to allow 50% membrane insertion was reduced to ~2 with 6S, 6G, and 6K, and the 6D 

translocon already mediated more than 60% integration for a pure 19-alanine sequence. Insertion 

of 1–3 serines into the oligo-alanine H-segment (Table I) was necessary to prevent integration 

completely (Figure 6B, and 7B and C). In addition, the transition from predominantly 
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translocated to mostly integrated H-segments occurred over a wide range of hydrophobicity for 

6K and 6D, rather than within 3 leucines as for the other translocons. Surprisingly, mutation of the 

constriction residues to 6A had the opposite effects on H-domain insertion: it required 5 leucines 

for 50% insertion and the transition was completed in a range of only 2 additional leucines. 

 

Figure 6. Membrane insertion of H-segments of 
various hydrophobicities mediated by wild-type and 
mutant Sec61p. (A) Schematic representation of the 
DPAPB-H model proteins (left) and products of the 
DPAPB-H substrate with 4 leucines expressed in 
cells with wild-type Sec61p after [35S]methionine 
labeling, immunoprecipitation, incubation with (+) 
or without (–) endoglycosidase H (endoH), and gel 
electrophoresis (right). Integration of the H-segment 
results in a partially glycosylated double-spanning 
membrane protein (I), whereas its translocation 
yields a fully glycosylated type II protein (T). U, 
unglycosylated form, cyt, cytoplasmic; exo, 
exoplasmic. The position of molecular weight 
markers (in kD) is indicated.  (B) SSH1 cells 
expressing wild-type or mutant translocons (as 
indicated on the left) as well as a DPAPB-H 
substrate (with the number of leucine or serine 
residues indicated above and below) were pulse-
labeled with [35S]methionine, and the substrate 
products were immunoprecipitated, separated by gel 
electrophoresis, and visualized by autoradiography. 
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If the results are interpreted as an equilibration between a membrane inserted and a free 

state (according to Hessa et al., 2005), the ratio of integrated to translocated fractions, Kapp = fi/ft, 

i.e. the apparent equilibrium constant, can be used to calculate apparent free energies of membrane 

insertion as ∆Gapp = -RTlnKapp (where R is the gas constant and T the absolute temperature of 303 

K). The resulting plots (shown in Figure 7, A'–C') reveal a good linearity, consistent with the 

equilibrium assumption.  

 

 
 
Figure 7. Efficiency of H-segment integration by wild-type and mutant Sec61p. (A–C) The membrane-
inserted fraction of 2–5 experiments like those shown in Figure 6 was quantified and plotted (with standard 
deviations) vs. the number of leucines or serines in the H-segment. (A'–C') The data for the H-segments 
containing 0–6 leucines were also plotted as apparent free energies of membrane insertion, ∆Gapp with 
straight lines determined by linear regression. 

 

 

The number of leucines in the oligo-alanine host sequence necessary for 50% membrane 

insertion with each mutant translocon was interpolated from these plots and listed in Table II. 

These values and the apparent free energies of insertion ∆Gapp are generally reduced with mutant 

translocons containing hydrophilic or charged ring residues. The amino acids lining the core of the 
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translocation pore thus clearly influence the hydrophobicity threshold for membrane insertion, 

most likely by defining the polarity of the environment of the substrate sequence within the pore, 

i.e. of one of the two compartments between which the H-segment is partitioning. Increased 

polarity in the more polar compartment is expected to favor membrane integration of a moderately 

hydrophobic sequence. This is what we observe for the 6G, 6S, 6K and 6D mutant translocons. 

The behavior of the 6A mutant, however, does not simply correlate with the increase in polarity in 

the ring residues and requires a different explanation. 

 
 

Table II: Summary of membrane integration parameters of wild-type and mutant translocons. 
 

Sec61 
n for 50% membrane integration 

of  nL/ (19–n)A* 
wt 3.6 
∆plug 3.8 
Q96R 4.0 

6W 4.1 
6G 2.6 
6S 2.5 
6K 2.3 
6D -2.0 
6A 5.1 

 
*The number of leucines in the oligo-alanine host sequences (shown in Table I) for ∆Gapp= 0 
was interpolated from the linear regressions shown in Figure 7 (A'–C'). 

 

 

 

DISCUSSION 

 

Constriction ring mutants retain translocon functionality 

The crystal structure of the idle translocon shows a pore that is closed by the lumenal plug 

domain and a central constriction formed by six hydrophobic residues. A likely function of this 

apolar constriction is thus to prevent or reduce ion permeability when the plug is out and during 

protein translocation. This is supported by the viability of yeast cells expressing plugless mutant 

translocons (Junne et al., 2006) and the fact that in E. coli expression of translocons with their 

plug locked open, although lethal, did not lead to an immediate membrane depolarization (Harris 

and Silhavy, 1999). Indeed, it has recently been shown that prl mutants of SecY with single 

hydrophobic-to-asparagine mutations in the constriction ring or with a deletion in the plug domain 
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caused ion conductance across inner membrane vesicles, but with strong selectivity for anions, 

particularly chloride (Dalal and Duong, 2009). This selectivity, which preserves the seal for 

protons, is also functional during protein translocation through the wild-type translocon. 

 Here, we have tested the effects of replacing all six constriction residues to various less 

hydrophobic, polar, and even charged amino acids. Only minor defects were detected for 

mutations to alanines, serines, tryptophans, or glycines, and significant functionality was retained 

even with charged residues (aspartates or lysines). Mutation to the uncharged amino acids, 6A, 6S, 

6G, and 6W, produced a prl phenotype, indicating specific destabilization of the closed state and 

facilitated translocon opening. Prl mutations specifically disturb interactions that must be 

overcome for preprotein insertion. Therefore, not every ring mutation causes a prl phenotype (in 

Sec61p I86T does, but not T185K or M450K; Junne et al., 2007) and multiple ring mutations do 

not necessarily have a stronger phenotype than single ones (6S showed less suppression than 

I86T). The charge mutations in 6D and 6K, but also the single mutations T185K or M450K (Junne 

et al., 2007), caused less specific perturbations and thus no prl effect. Similarly, by cumulation of 

prl mutations upon combining mutations in the ring residues and in the plug domain may 

generally destabilize the structure and thus not enhance or even reduce suppression of signal 

defects. 

 Since the constriction ring forms part of the plug binding site, ring mutations are expected 

to simultaneously disturb plug insertion. This could explain that an additional point mutation or 

even deletion of the plug did not strongly aggravate the phenotypes. Translocon stability was not 

significantly compromised by the ring mutations, not even by charged residues. Only in 

competition with a wild-type copy of Sec61p were the levels of mutant translocons clearly 

reduced in the order A<S≈W<G<D≈K, suggesting altered or less stable surface binding sites for 

limiting interaction partners. Again, this is a surprisingly mild effect for considerable alterations in 

the center of the protein. The ring mutations 6A, 6S, 6G, and 6W also did not significantly affect 

the orientiation of sensitive diagnostic constructs (as used previously in Junne et al., 2007), and 

6D and 6K did not have strong and opposite effects that could be correlated with their charges 

(unpublished results). It suggests that the 'positive-inside rule' is not dominated by charged 

residues in the core of the translocon. 

 

The translocon core regulates membrane integration 

It is long known that hydrophobicity is the essential property of a sequence for membrane 

integration (Davis and Model, 1985). Crosslinking experiments with reconstituted 

proteoliposomes demonstrated that the translocon allows a TM domain to bypass the barrier posed 
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by the polar head groups of the lipid bilayer and to come into contact with the hydrophobic 

interior of the membrane (Heinrich et al., 2000). It was proposed that Sec61 provides a site 

through which a TM domain can dynamically equilibrate between the lipid and aqueous phases, 

depending on its hydrophobicity. The systematic analyses by von Heijne and colleagues (Hessa et 

al., 2005; Hessa et al., 2009) yielded a 'biological hydrophobicity scale' for membrane integration 

consistent with a thermodynamic partitioning process. The observed position dependence of 

residues like tryptophan or tyrosine in the H-segment reflects the symmetry of the lipid bilayer 

(Hessa et al., 2007) and is also consistent with equilibration. Based on this interpretation, an 

apparent free energy contribution (∆Gaa
app) for membrane integration could be calculated for each 

amino acid. Interestingly, the values, although generally similar, were different for different 

systems (mammalian ER in vitro and in vivo, yeast, bacteria, and biophysical measurements). 

From our measurements in yeast, we obtained ∆GLeu
app = -0.51 kcal/mol, ∆GAla

app = 0.12 kcal/mol, 

and an interpolated 3.6 leucines in a 19-residues oligo-alanine sequence for 50% integration 

(compared to previous measurements in yeast of -0.21 kcal/mol, 0.06 kcal/mol, and 4.4 leucines, 

respectively (Hessa et al., 2009). 

 An alternative model to partitioning is a kinetically controlled mechanism in which          

H-segments trigger the opening of the lateral gate for (irreversible) exit into the lipid phase. 

Membrane integration would reflect the probability of gate opening, as supported by the molecular 

modelling study by Zhang (Zhang and Miller, 2010). If gate opening depends on the 

hydrophobicity of the H-segment, the result might be difficult to distinguish from that of a free 

equilibration mechanism. Here we found that mutations in the translocon affect TM integration, 

seemingly in support of a kinetic model, since a pure catalyst of partitioning should not affect the 

equilibrium. However, the translocon not only mediates the transition between two environments, 

but also defines the properties of one of them. The hydrophobic constriction ring provides an 

apolar core that has also been observed experimentally at the center of the SecYEG translocon of 

E. coli (Bol et al., 2007). In addition, the narrowness of the pore (particularly in the presence of     

a substrate) partially excludes water to create conditions less polar than in bulk solution. The 

choice for an H-segment is therefore not the lipid environment vs. the aqueous solution, but vs.      

a less polar pore environment. Constriction ring mutations change the conditions inside the pore 

and thus also the outcome of a partitioning process with the membrane. An increase in polarity 

inside the pore by replacing the hydrophobic constriction residues with polar amino acids reduces 

the hydrophobicity required for 50% membrane integration (Table II). Replacement with serines 

or glycines reduced it by at least one leucine, replacement with lysines by even more. The effect 

was most dramatic for aspartates that resulted in predominant membrane integration even of the 
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Ala19 H-segment. The reason is most likely that the charges on the short side chains of aspartates 

are more concentrated whereas those on the long lysine side chains are more delocalized. 

Tryptophans, as relatively hydrophobic amino acids and excluding water by their size, did not 

alter membrane integration significantly. 

 Interestingly, mutation of the ring residues to alanines had a clear effect of raising the 

hydrophobicity threshold for membrane integration to ~5 leucines. This is contrary to the 

expectation for introducing less hydrophobic ring residues. Of course, the effect of the mutations 

on the conformation of the translocon is not known. It is conceivable that the small side chains 

allow the pore to contract and thus to further exclude water, resulting in conditions corresponding 

to increased hydrophobicity. Glycines may not have this effect, because they introduce increased 

conformational flexibility. 

 It has been shown by cysteine crosslinking that the plug can move out of its binding cavity 

to reach SecE and that plug movement is triggered by polypeptide translocation (Tam et al., 2005). 

Molecular dynamics simulations, however, suggested that the plug is not necessarily fully 

displaced by a translocation polypeptide, but remains positioned either towards the lateral gate for 

a hydrophilic substrate or towards the inner side of the pore for a hydrophobic substrate (Zhang 

and Miller, 2010). In our experiments, full deletion of the plug did not affect H-segment 

integration, suggesting that the plug does not play an active role in regulating membrane 

integration. 

 Yet, our results clearly show that the properties of the residues forming the central 

constriction in the Sec61 translocon adjust the hydrophobicity threshold at which translocating 

sequences prefer the apolar environment of the lipid bilayer and thus stop further transfer to be 

anchored as TM domains. 
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ADDITIONAL DATA 

 
 
Translation rate affects integration consistent with the equilibration model 

An alternative model to that of H-domains equilibrating between the pore and membrane 

environments is a kinetically controlled mechanism in which H-segments trigger the opening of 

the lateral gate. Membrane integration would reflect the probability of gate opening. If gate 

opening depended on the hydrophobicity of the H-segment, the result might be difficult to 

distinguish from that of a free equilibration mechanism. The effect of slowing down translation 

and thus increasing the time an H-segment spends in the translocon could distinguish between 

kinetic and equilibration mechanisms. Increased time at the translocon should increase the 

probability of membrane integration of an intermediately hydrophobic substrate, if kinetically 

controlled. The opposite should happen, if the substrate can equilibrate: the H-segment can only 

move forward while situated in the pore, but is arrested when in the membrane (Figure 8A). 

Increased translation time thus increases the probability of the equilibrating substrate to move 

forward and to be translocated. 

To test this, a substrate integrating approximately 50% under normal conditions (a 4L         

H-segment for the wild-type translocon) was analyzed in the presence of the reversible elongation 

inhibitor cycloheximide at low concentrations (0.5 and 1 µg/ml) that reduce translation rate (five- 

and tenfold; as estimated by the incorporation of [35S]methionine). As shown in Figure 8B, the 

fraction of integrated products was reduced with increasing translation time, consistent with the 

equilibration model. The same phenomenon was observed for the 5L substrate with the 6A 

translocon. The mechanism of membrane integration is thus not altered in this respect by mutation 

of the constriction ring residues to alanines, despite their different effects on the integration 

threshold. 
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Figure 8. Dependence of membrane 
integration on translation time. A: 
Schematic representation of the 
equilibration model. While translation is in 
progress, the H-segment is equilibrating 
between the membrane environment and the 
pore. Forward movement of the polypeptide 
and trapping by BiP (gray circles) binding 
can only occur while the substrate is in the 
pore (open arrow). Extending the time of 
translation by cycloheximide increases the 
probablility of translocation. B: Cells 
expressing wild-type or a mutant translocon 
as well as a DPAPB-H substrate with the 
indicated number of leucines were pulse-
labeled with [35S]methionine in the presence 
of 0, 0.5, or 1 µg/ml cycloheximide (chx), 
and the substrate products were 
immunoprecipitated. To compensate for the 
reduction in [35S]methionine incorporation, 
the samples were upscaled two- or fourfold 
for gel electrophoresis and autoradiography 
of cycloheximide samples as indicated. 
Integration of the H-segment results in            
a partially glycosylated double-spanning 
membrane protein (I), whereas its 
translocation yields a fully glycosylated 
type II protein (T). The membrane inserted 
fraction of duplicate determinations was 
quantified. 
 

 

 

 

 

The threshold for membrane integration of H-segments is similar in different eukaryotic 

organisms 

An important question is whether translocons in different organisms have similar 

characterisitics for the recognition and integration of transmembrane segments localized within the 

polypeptide chain. In order to provide quantitative data of Sec61-mediated insertion of                    

H-segments in other species, we transfered the analysis to the mammalian in vivo system and 

compared it with our results obtained in vivo in yeast and with the results of the group of von 

Heijne performed in E. coli, yeast, dog rough microsomes (RMs) and BHK cells (Hessa et al., 

2005; Hessa et al., 2009; Xie et al., 2007).  
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Unfortunately, the model proteins based on DPAPB sequence and an H-segment of 

varying hydrophobicity used in yeast (Figure 9E, construct d; see also Table I) could not be 

expressed in mammalian cells, most likely due to unfavorable codon usage. Therefore, we inserted 

the sequences encoding the transmembrane segments containing 1-7 leucines together with 

flanking regions of ~20 amino acids into the exoplasmic domain of wild-type H1, a type II 

membrane protein. The resulting proteins, named H1-L1, H1-L2, etc., contained two glycosylation 

sites preceding the TM and one site following the hydrophobic segment (Figure 9A). COS-1 cells 

were transiently transfected with these constructs, the proteins were labeled with [35S]methionine 

at 37°C, immunoprecipitated with an antibody directed against the C-terminus of H1 (αH1C), 

subjected to SDS-PAGE and autoradiography. The fraction of translocated to integrated TMs was 

determined from the intensities of thrice and twice glycosylated forms corresponding to the 

translocated (T) and integrated (I) H-segments, respectively. Glycosylation status was confirmed 

by endoH digestion (Figure 9B). 

Glycosylation analysis revealed a gradual increase of membrane integration of H-segments 

with their increasing hydrophobicity (~17% integration for H1-L1 up to ~77% for H1-L7) (Figure 

9C). The apparent free energies of membrane insertion ∆Gapp = -RTlnKapp (where R is the gas 

constant and T the absolute temperature of 310 K) were calculated for each construct. The 

resulting plot (shown in Figure 9D) revealed a good linearity, consistent with the equilibrium 

assumption. 50% membrane integration was obtained with ~4.8 leucines in the H-segment. This 

result is different from our yeast system, where the number of leucines required for ∆Gapp= 0 

kcal/mol was ~3.6 for wild-type translocon (Figure 9F, blue line). The data obtained by the group 

of von Heijne for the same H-segments in E. coli, yeast, mammalian RMs and in BHK cells are 

shown in comparison in Figure 9F (purple, light blue and green lines, respectively) and their 

characteristics are listed in Table III (Hessa et al., 2005; Hessa et al., 2009; Xie et al., 2007). The 

slope of the ∆Gapp as a function of the number of leucines in the H-segment, corresponds to the 

∆∆Gapp value for an Ala→Leu replacement in the H-segment. Assuming a simple additive model 

for the contributions of Leu and Ala residues to the apparent free energy of insertion, ∆Gapp
Leu  and 

∆Gapp
Ala were calculated and presented in Table III.  
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Figure 9. Membrane-insertion efficiency of Leu/Ala H-segments composed of nL/(19-n)A in various 
organisms. (A) Construction of H1-L1 – L7 proteins used in COS-1 cells. The blue rectangle corresponds 
to the natural TM segment, the orange rectangle represents the H-segment, red points mark the 
glycosylation sites. (B) COS-1 cells were transiently transfected with H1-L1 – L7 constructs, labeled with 
[35S]methionine, immunoprecipitated, subjected to deglycosylation with endoglycosidase H (endoH), 
electrophoresis and autoradiography. T-thrice glycosylated products corresponding to polypeptides with 
translocated H-segment, I-twice glycosylated forms representing proteins with integrated H-segment,           
U-unglycosylated form corresponding to proteins not targeted to the ER or deglycosylated with endoH. The 
marker sizes are in kDa. (C) The membrane-inserted fraction of a single experiment was quantified and 
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plotted vs. the number of leucines in the H-segment. (D) The same data plotted as apparent free energies of 
membrane insertion, ΔGapp, with a straight line determined by linear regression. (E) Model proteins used in 
the insertion studies in various organisms: a-PCLep (E. coli), b-Suc2p-Lep (yeast; von Heijne), c-SP-Lep 
(dog RMs, BHK cells), d-DPAPH-H (our yeast system), e-H1-L1 – L7 (COS-1 cells). Construct elements 
are marked as in A, with arrows indicating signal peptide cleavage sites. (D) Efficiency of membrane 
insertion of Leu/Ala-based H-segments. The data obtained from the indicated organism using the construct 
given in parentheses were plotted as apparent free energies of membrane insertion, ΔGapp, as straight lines 
determined by linear regression. 

 

 

Experiments performed by the group of von Heijne in E. coli, yeast, dog RMs and BHK 

cells required different substrate proteins in order to achieve good expression levels and proper 

topology in the membrane. Xie et al. (2007) studied the insertion of H-segments based on the M13 

procoat (PC) protein, which is composed of an N-terminal cleavable signal peptide and                  

a C-terminal transmembrane helix. The TM was replaced by the P2 globular domain of leader 

peptidase (Lep) and H-segments containing 0-3 leucines were inserted. The resulting constructs 

were called PCLep (Figure 9E; a) and were unique amongst other model proteins as they were 

inserted by the YidC translocon instead of SecYEG. YidC functions in the insertion and assembly 

of a subset of proteins into the bacterial inner membrane. It can function on its own, or together 

with the SecYEG complex. YidC is a 60 kDa protein with six transmembrane segments, five of 

them are conserved among the YidC family of proteins and may provide a platform for binding 

the hydrophobic regions of the substrates (Luirink et al., 2001). The best-studied substrates that 

are inserted exclusively by YidC are the M13 procoat and the Pf3 coat proteins (Kiefer and Kuhn, 

2007). Integration of H-segments contained within a protein carrying the M13 procoat protein 

signal is presented in Figure 9F (purple line). The studies were based on a protease protection 

assay instead of a glycosylation assay (Xie et al., 2007). 

For analysis of H-segment integration in mammalian systems (in vitro in dog RMs and in 

vivo in BHK cells) constructs based on the sequence of leader peptidase were used (SPLep; 

Figure 9E, construct c) (Hessa et al., 2005). In S. cerevisae this protein did not attain a unique 

topology, therefore the two N-terminal TMs in Lep were replaced by the cleavable signal peptide 

of the yeast secretory protein Suc2p (Suc2p-Lep; Figure 9E, construct b) (Hessa et al., 2009). 

 

Taken together, the data obtained by our group and by the group of von Heijne indicated 

that the overall relation between the Leu/Ala ratio in H-segments composed of nL(19-n)A and the 

apparent free energy of membrane insertion (∆Gapp) is similar in different eukaryotic organisms, 

with 50% membrane integration (∆Gapp=0 kcal/mol) observed for n=3-5 (Table III). The E. coli 
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system with a much lower threshold for membrane integration of H-sements is an exception, 

which can be easily explained by the involvement of a different translocon (YidC). The main 

difference between the eukaryotic systems tested was the energetic cost of Ala→Leu replacement 

in the H-segment, ∆∆Gapp
Ala→Leu, which corresponds to the slope of the ∆Gapp as a function of the 

number of leucines. In our experiments, the value obtained for yeast was ~2-fold smaller 

compared with COS-1 cells. In contrast, ∆∆Gapp
Ala→Leu measured by Hessa et al. was lowest for 

BHK cells, followed by dog RMs and yeast, with ~2-fold difference between each system. Thus, 

the membrane integration in BHK cells appeared to be the most sensitive to changes in 

hydrophobicity of the H-segment and each additional leucine resulted in the highest increase of 

membrane insertion of the transmembrane segment. 

 

Table III. Integration efficiency of H-segments in various systems. 

System 

Model 

protein 

(Figure 9E) 

no. of Leu 

for ∆Gapp=0 

∆∆Gapp 
Ala→Leu 

(kcal/mol) 

∆Gapp
Leu 

(kcal/mol) 

∆Gapp
Ala 

(kcal/mol) 
Reference 

E. coli a 1.2 -0.65 -0.61 0.04 (Xie et al., 2007) 

yeast b 4.4 -0.27 -0.21 0.06 (Hessa et al., 2009) 

dog RMs c 3.2 -0.66 -0.54 0.11 (Hessa et al., 2005) 

BHK cells c 3.7 -1.16 -0.93 0.22 (Hessa et al., 2005) 

yeast d 3.6 -0.63 -0.51 0.12 this study 

COS-1 cells e 4.8 -0.28 -0.21 0.07 this study 

 

 

 

There are several possible explanations for the discrepancies between different eukaryotic 

organisms and different experiments with the same model organism: 

a) lipid and protein composition of the ER membrane: cholesterol content affects the fluidity 

of the membrane. Protein content of membranes influences the solvation state of 

transmembrane helices. Differences in these two parameters may play a role during the 

lateral release of TMs by the translocon. 

b) pore sequence: differences in the structure of the Sec61 complex between different 

organisms may affect the integration of potential transmembrane segments. In particular, 

the composition of Sec61 ring residues has an influence on the threshold of membrane 

integration (Figure 7). The ring domain of S. cerevisae, composed of V82, I86, I181, 
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T185, M294, and M450, is slightly less hydrophobic than in other organisms, which could 

result in a higher ratio of membrane insertion. 

c) labeling temperature: the polypeptide moves through the channel via Brownian motion, 

therefore the temperature may affect the equilibration between the lipid phase and the pore. 

In our experiments, the labeling was performed at 30°C for yeast and 37°C in case of 

COS-1 cells. The labeling temperatures used by the group of von Heijne were: RT for 

yeast, 30°C for dog RMs and 37°C for BHK cells. Experiments with yeast were performed 

at ambient temperature and thus, might not be very well controled and in addition such 

conditions were suboptimal for yeast. For ∆Gapp calculations a fixed value of 25°C was 

used. 

d) translation rate: it affects the time the polypeptide spends inside the translocation channel 

and is available for equilibration or for binding by lumenal chaperones that facilitate 

transfer. The translation rate is ~5 aa/s in cultured mammalian cells (Hershey, 1991) and 

~10 aa/s in yeast. As shown in Figure 8B, extension of the translation time with 

cycloheximide in yeast led to a decreased ratio of insertion of the H-segments. 

e) variations caused by different conditions of the same type of experiment: different 

preparations of dog RMs resulted in changes in H-segment insertion efficiency (Hessa et 

al., 2005) 

f) host proteins carrying the H-segments: the model protein used in studies of insertion into 

the mammalian ER by Hessa et al. (2005; 2009) was the E. coli inner-membrane protein 

leader peptidase (Lep). In S. cerevisae the two natural TMs in Lep were replaced by the 

cleavable signal peptide of Suc2p. As a control, both model proteins were expressed in 

vitro in dog RMs and it proved that the difference between the mammalian and yeast 

system was not due to the use of Suc2p signal peptide in the latter. We also experienced        

a problem with transfering the analysis from yeast to mammals: the model proteins based 

on the yeast DPAPB sequence could not be expressed in COS-1 cells. Therefore, the          

H-segment was removed and transfered into the C-terminus of H1, along with flanking 

regions of ~20 amino acids, which should have prevented an influence of the neighbouring 

sequence on the insertion of the H-segments. 

g) possible use of the post-translation translocation pathway in Saccharomyces cerevisae 
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MATERIALS AND METHODS 

 

Cloning strategy 

H1-L1 – H1-L7 

The fragments of DPAPB-H containing the H-segments with one to seven leucines were cut out 

and replaced into the exoplasmic domain of wild-type H1. First, the sequence of H1 was modified 

in order to introduce a ClaI site. This was achieved by PCR of the fragment from the vector to the 

natural BstXI site within the C-terminus of H1 with ECEleft and H1DPAPBstopnew-a primers 

(the primers are listed in Table IV). At the same time, the H-segments from DPAPB were 

amplified by PCR along with the flanking regions and an N-terminal ClaI and a C-terminal BstXI 

site (primers called DPAPBstopins-s and DPAPBstopins-a). The ClaI site turned out to be Dam-

methylated. In order to enable further cloning, the plasmids were amplified in a bacterial strain 

deficient in Dam methylase, GM48. The ClaI-BstXI fragment was inserted into the modified H1. 

The last glycosylation sites in the H1 sequence, located after the BstXI site was destroyed by 

exchanging the serine of the consenseus N-X-S sequence into alanine. The mutagenesis was 

performed by PCR with H1BstxStoA-s primer and H1XbaEco-a primer. The latter introduced an 

XbaI site before the EcoRI site, which made possible recloning the whole sequence into pRSV 

vector. 

All constructs were verified by sequencing with ECEleft2. 

 

Table IV. PCR primers. 

Primer name Primer sequence 
Primer 

type 
DPAPBstopins-a GCGCCATTGCCCTGGCTATCAAATGTTTCATTTGC sense 

DPAPBstopins-s CGCATCGATCTGAAGCGGTTATTAATTAG sense 

ECEleft GAAGTAGTGAGGAGGC sense 

ECEleft2 CGGCCTCTGAGCTATTCCAG sense 

H1BstXStoA-s GCGCCAGGGCAATGGCGCAGAAAGGACCTGC sense 

H1DPAPBstopnew-a GAGCCATTGCCCTGGAGCGCATCGATCATTGTTATATTCATCTGACAGCTCAGGC antisense 

H1XbaEco-a CGCGAATTCTAGATTAAAGGAGAGGTGGCTC antisense 

 

Cell culture 

COS-1 cells were cultivated in DMEM (Sigma) supplemented with 10% FCS, 100 units/ml 

penicillin, 100 µg/ml streptomycin, 2 mM L-glutamine, in a humidified incubator containing 7.5% 

CO2 at 37°C. 
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Transient transfections 

For transient transfections, cells were split 1:10 into 60 mm dishes and transfected the next day 

with polyethylenimine (PEI). Cells were processed 2 days after transfection. 

 

Metabolic labeling with 35S-methionine 

Transfected cells were incubated for 30 min in starvation medium (DMEM without methionine 

and cysteine, containing 2 mM L-glutamine; Sigma). Cells were labeled for 40 min with 100 

µCi/ml [35S]protein labeling mix consisting of 77% methionine and 23% cysteine (PerkinElmer), 

then transfered to 4°C and washed twice with cold PBS. 

 

Immunoprecipitation 

Cells were lysed in 1 ml of lysis buffer (PBS, 1% TritonX-100, 0.5% deoxycholate, 2 mM PMSF, 

1x PIC) for 1 h, then scraped, vortexed and incubated for 30 min on ice. Lysates were cleared by 

centrifugation and proteins were immunoprecipitated overnight by addition of 2 µl rabbit anti-

serum raised against a peptide corresponding to residues at the C-terminal part of H1 (anti-H1C). 

The immune complexes were pulled down by incubation with 15 µl protein A-Sepharose (Zymed) 

for 1 h. Samples were washed 4 times with immuno-wash (lysis buffer, 1 mg/ml BSA, 1 mM 

PMSF) and 2 times with PBS (with 1 mM PMSF). 

 

EndoH treatment 

At the last PBS wash 20% of each sample was transfered into a new tube and subjected to 

deglycosylation with endoglycosidase H. All samples were boiled in endoH buffer (50 mM 

sodium citrate, 1% SDS; in PBS), 1 µl of the enzyme (Roche) was added and samples were 

incubated for 3 h at 37°C.  

 

SDS-PAGE and autoradiography 

Reduced samples were resolved on a tricine gel for low-molecular weight proteins (1-70 kDa) and 

quantified using a phosphorimager (Molecular Dynamics Inc.). The fraction of translocated to 

integrated TMs was determined from the intensities of thrice and twice glycosylated forms 

corresponding to the translocated and integrated H-segments, respectively. 
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III General discussion 
 
 
 Topogenesis of membrane proteins is coordinated at the endoplasmic reticulum by the 

conserved heterotrimeric Sec61 complex, which facilitates the lateral release of transmembrane 

segments (TMs) into the lipid bilayer during polypeptide translocation. In Part I of this thesis we 

analyzed the insertion process of single-spanning membrane proteins containing a signal-anchor 

sequence localized at the N-terminus or internally. We showed that insertion of these two types of 

signals proceeds via different mechanisms. N-terminal signals insert into the translocon head first 

and can invert their orientation over time in order to enable translocation of the C-terminal 

domain. The hallmarks of inversion are C-terminal length dependence, which determines the time 

the polypeptide spends inside the translocation channel and is available for reorientation, and 

sensitivity to increased signal hydrophobcity, which affects the signal’s ability to dissociate from 

the apolar binding site prior to inversion (Goder and Spiess, 2003). Upon transition from                 

N-terminal to internal signal-anchors, these two properties are lost, which indicates that proteins 

with an internal signal-anchor and a non-folding N-terminal domain, acting as a steric hindrance, 

are unable to reorient upon insertion into the Sec61 pore. Based on these results we proposed           

a model for signal-anchors` orientation in the channel, where N-terminal signals can enter the pore 

and be laterally released in an Nexo/Ccyt topology without full pore opening (Discussion section of 

Part I of this thesis). In contrast, internal signals insert in an orientation that favours either N- or 

C-translocation and do not invert within the channel. 

 The mechanism of insertion of N-terminal signal-anchors was first postulated by Rapoport 

et al., who suggested that proteins with a long hydrophobic TM and an N-terminus that is not 

retained in the cytosol would be rapidly released into the membrane. The more hydrophobic the 

TM, the greater would be its tendency to partition immediately into the lipid phase. The plug 

domain would be displaced only transiently (Rapoport et al., 2004). Evidence that such                     

a mechanism is possible has just emerged from the crystal structure of SecYEß from the 

hyperthermophile archaeon Pyrococcus furiosus (Egea and Stroud, 2010). In the crystals, two 

adjacent SecYE complexes face each other through the cytoplasmic loops of SecY. The                 

C-terminal helix (TM10-αC) of one molecule is inserted into the cytoplasmic vestibule of another 

SecY subunit, mimicking a nascent chain. Entry of this pseudo-protein substrate is accompanied 

by widening of the cytoplasmic half of the channel and a complete opening of the lateral gate 

defined by TMs 2/3 and 7/8. The hydrophobic seal provided by the ring region is compromised on 

lateral gate opening, but the plug domain still occludes the channel. Based on the X-ray structure 
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and mutagenesis, the authors suggested that the C-terminal helix of SecY acts as a sensor of and       

a guiding sequence for the incoming nascent chain and relays conformational changes to the 

lateral gate. Docking of the nascent chain mimic releases the clamping effect that SecE exerts on 

SecY, which leads to lateral gate opening. As the substrate progresses farther, the ring loosens to 

accommodate the incoming peptide, but the plug still maintains a central seal, preventing ion 

leakage. The crevice generated by lateral gate opening is about 11 Å wide and is likely to allow 

interaction of the signal sequence with host phospholipids. It could also enable reorientation of 

TM segments in a relatively protected environment and acquisition of tertiary structure. The 

closed state of the translocon is stabilized by hydrogen bonds between highly conserved amino 

acids. Perturbations caused by mutations at various locations are transferred to the plug (Bondar et 

al., 2010), leading to its displacement by increased hydration. The structure of the archaeal 

translocon obtained by Egea and Stroud (2010) suggests that the lateral gate is exquisitely 

sensitive to the presence of a nascent chain. It is possible that it is continuously opened during the 

polypeptide`s transfer through the channel, allowing contact with lipids, which could influence the 

process.  

  

The process of insertion of N-terminal and internal signal-anchors depends on the flanking 

charges which position the signal according to the `positive-inside rule`. Inversion of flanking 

charges had a dramatic effect on N-terminal signals, blocking their ability to reorient and to 

translocate their C-terminus. During topogenesis of internal signal-anchors with type III charge 

distribution we could observe a competing effect of the hydrophilic N-domain, acting as a steric 

hindrance, preventing N-translocation, and charged residues flanking the TM, promoting the 

opposite topology. Such proteins showed a discontinuous C-terminal length dependence (Figure 5 

in Part I). Surprisingly, for proteins with the the shortest C-terminal tail we obtained a higher ratio 

of C-translocation compared with the polypeptides with a longer tail within a series. A potential 

explanation for this behaviour could be the competing effect of the N-terminal and C-terminal 

domains during SRP targeting to the translocon. When the short C-terminus is completed by the 

time SRP has bound the signal-anchor and transferred it to the Sec61 complex, it could pose             

a weaker steric hindrance effect than the longer and flexible N-terminal domain and thus, be 

preferentially translocated into the ER lumen. An interesting task for the future will be to study the 

insertion of internal-signal anchors with no flanking charges, but with different sizes of the N- and 

C-terminal domains. Since such proteins cannot be positioned in the translocon according to the 

`positive-inside rule`, their topology should depend solely on the steric effects of the N- or             

C-terminal sequence.  
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 As the basic mechanism of insertion of membrane proteins into the endoplasmic reticulum 

is understood in outline, the attention focused on the quantitative relationships between the amino 

acid composition of transmembrane segments and their membrane-insertion efficiency. Up to 

now, over 130 hydropathy scales have been described (Palliser and Parry, 2001). Many of them 

are used for prediction of TM insertion by relying, in part, on the concept of threshold 

hydrophobicity, i.e., the level at which the intrinsic hydrophobicity of a TM will trigger its transfer 

from the hydrophilic environment into the membrane (Deber et al., 2001; Kyte and Doolittle, 

1982; von Heijne, 1992). Recent work by Hessa et al. has made a significant contribution to our 

understanding of the insertion process, in particular by establishing the `biological`, amino acid-

specific free energy scale for TM helix integration (Hessa et al., 2005; Hessa et al., 2007; Hessa et 

al., 2009). By employing in vitro transcription-translation of model proteins into dog rough 

microsomes (or in vivo expression in BHK cells), translocon-mediated helix insertion of potential 

TMs could be monitored as a function of amino acid sequence. In addition, the effects of overall 

hydrophobicity, length, flanking sequences and orientation of the H-segments on membrane 

insertion were studied. A subset of these H-segments was also analyzed in E. coli using a different 

model protein, inserted via YidC translocon, in order to study whether different kinds of 

translocons, and Sec61 translocons in different organisms have similar characteristics for the 

recognition and integration of TM segments.  

 The data on transmembrane segments insertion obtained by Hessa together with the 

experiments we performed in vivo in yeast and mammalian (COS-1 cells) systems were presented 

as additional material to Part III of this thesis. The data are consistent with the model of 

thermodynamic partitioning, where the Sec61 translocon provides a site through which a TM 

segment can dynamically equilibrate between the lipid phase and the hydrophilic interior of the 

pore, depending on its hydrophobicity. However, different results obtained in different organisms 

using transmembrane helices of the same composition indicate that, although the thermodynamic 

model provides a simple explanation of the insertion mechanism, TM integration as a whole is not 

a simple partitioning process. In all eukaryotic systems tested, the hydrophobicity threshold for 

50% membrane insertion was similar, with n=3-5 leucines in H-segments composed of nL(19-

n)A. However, various organisms appear to differ significanty in the energetic cost of alanine to 

leucine replacement in the TM helix. 

Upon insertion of a potential transmembrane segment into the translocation channel, it 

does not remain stationary, but instead, it is subjected to various factors that affect its partitioning 

between the aqueous and lipid phase and influence the final decision whether it is laterally 

released into the membrane or translocated into the ER lumen. The latter is facilitated by the 
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lumenal chaperone BiP or its yeast homolog, Kar2p, members of the Hsp70 family of heat shock 

proteins, which contain a conserved N-terminal nucleotide-binding domain (NBD), a substrate 

binding domain (SBD), and a variable C-terminal domain (Bukau and Horwich, 1998). When BiP 

is bound to ATP, it is in the open conformation, and ATP hydrolysis to ADP causes a tight 

binding of BiP to its substrate. BiP binds transiently to exposed hydrophobic regions 

approximately seven amino acids in length, where aromatic and hydrophobic residues occur in 

alternating positions. Blond-Elguindi et al. developed a computer algorithm to predict the 

inteaction between BiP and any 7-aa peptide (Blond-Elguindi et al., 1993). The stretches 

recognized and bound by BiP are predicted to exist quite frequently in protein sequences (about 

every 36 amino acids) (Rudiger et al., 1997).  

The action of BiP can affect the equilibration process in several ways. The substrate 

protein is available for forward movement only when it is in the translocation channel, but is 

arrested when in the membrane. Thus, BiP can facilitate polypeptide translocation into the ER 

upon its removal from the translocon pool only. This process is influenced by the time the 

polypeptide spends inside the pore. Long proteins which take a long time to synthesize offer             

a bigger time window for BiP binding. A similar effect has translation attenuation with the 

reversible elongation inhibitor cycloheximide (see Figure 8 in Part III). TM insertion analysis in 

different systems using the same model proteins can lead to incompatibility problems, which we 

also encountered. Due to codon usage, some proteins cannot be efficiently expressed in different 

organisms. Rare codons could stall polypeptide elongation and thus increase the time it is located 

inside the pore. In contrast to the effect caused by cycloheximide, the pauses in translation would 

be irregular and difficult to control. In addition, the chains of different model proteins could 

potentially have different affinities for BiP binding.  

The process of H-segment equilibration could be also affected by the flanking sequences. 

Although the TM helices were insulated from the surrounding environment by a hydrophilic 

GPGG sequence, we do not know the effect of charged residues in the vicinity of the TM and the 

folding properties of the loop regions on TM motion and BiP binding. All of these factors, 

together with those discussed in the appendix section of Part III might explain the observed 

system-dependent differences in the insertion pattern of different model proteins carrying identical 

H-segments. 

 

While for single-spanning membrane proteins the lateral transfer of TM segments from the 

translocon into the lipid phase can be correlated with the thermodynamic properties of the segment 

residues, in the case of polytopic membrane proteins this model is probably an oversimplification. 
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Several additional factors, such as interactions between individial TM segments and membrane 

protein assembly, have yet to be fully accounted for (Cross and High, 2009). Experimental data 

suggested that up to four TMs may be present in the translocation pore at the same time (Enquist 

et al., 2009; Tu et al., 2000). An interesting phenomenon occuring during polytopic proteins 

biosynthesis is selective TM-segment retention at the ER translocon site (Cross and High, 2009; 

Ismail et al., 2008; Pitonzo et al., 2009; Sadlish et al., 2005), which could serve several purposes. 

TM retention might facilitate the formation of inter-TM contacts necessary for the correct folding 

of the protein (Pitonzo et al., 2009). In case of membrane transporters, which often contain 

charged or polar residues in their transmembrane segments, the lateral release of TMs one-by-one 

would be energetically unfavorable. During assembly in the Sec61 complex, the helices of 

polytopic proteins can interact with each other via hydrogen bonding involving asparagine, 

glutamine, aspartic acid and glutamic acid (Meindl-Beinker et al., 2006) or salt bridges (Ciczora et 

al., 2005; Ciczora et al., 2007). 

In Part II we analyzed the insertion process of proteins with two signals, which could 

represent the simplest polytopic protein. The signal sequences carried a conflicting topogenic 

information (type I signal of HA vs. type II signal-anchor of H1), and thus, competed for the 

preferred orientation in the translocon. With wild-type forms of both signals, the signal-anchor 

exerted its topogenic information immediately after its insertion into the pore, which resulted in        

a rapid inversion of the protein. The signal-anchor was only moderately sensitive to increased 

signal hydrophobicity. This would suggest that internal signal-anchors, contained within two-

signal proteins, are potentially not yet in contact with the lipid phase when reorientation occurs 

and they do not equilibrate between the apolar and polar phases. To investigate it, one could 

perform experiments to assess if the TM contacts the lipid phase during its stay at the translocon, 

such as chemical cross-linking (McCormick et al., 2003) or by placing bulky residues at the N- or 

C-terminus of the signal (Higy et al., 2005). 

 

The mechanism of protein translocation into the ER is reasonably well understood in 

general terms, but several issues require further investigation. It is clear that the Sec61 complex 

provides a polar path for the entry of soluble polypeptides into the ER lumen, as well as a lateral 

gate for transmembrane helix integration (Zimmermann et al., 2010). The hydrophobic core of the 

translocon participates in recognition of transmembrane segments and defines the threshold for 

membrane integration. Different precursor polypeptides require a different protein transport 

machinery, manifested by the involvement of additional components, such as BiP and Sec63, 

TRAM, TRAP or cytosolic chaperones. The precise mechanism of action of these auxiliary 



General discussion 

 

111 

components remains to be elucidated. Another unsolved issue is the origin of the `positive-inside 

rule` and the involvement of lipids in membrane-protein topogenesis. 
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