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Summary 

During the development of multi-cellular organisms, one genome gives rise to multiple 

differentiated cell types. This is achieved by sequence specific transcription factors and 

different epigenetic mechanisms, which collaborate in reading the genetic information. 

These epigenetic mechanisms coordinate the establishment and maintenance of 

transcriptional programs in a lineage specific manner during development. However, 

very little is known whether such epigenetic information can be also passed to the next 

generation.  

Mammalian gametes may differ in their potential to transmit chromatin encoded 

epigenetic information. The oocyte genome is organized in a nucleosomal configuration 

with DNA wrapped around histones that carry various post translational modifications. 

By contrast, the paternal genome undergoes a major reorganization during the last 

stages of spermatogenesis. Most of histones are replaced by protamines, which after 

fertilization, are exchanged by maternally provided histones. Nevertheless, 

approximately 10% of histones are retained in human spermatozoa, raising a possibility 

for a paternal, epigenetic contribution to the next generation.  

In this thesis, I aimed to determine the genomic localisation of histones retained 

in sperm and to analyze their potential to influence transcription after fertilization. We 

show that histones isolated from mouse and human spermatozoa are carrying multiple 

post translational modifications, many of which have functions in gene regulation. In our 

genome wide analysis of human promoters, we demonstrate that two of these marks, 

Trithorax/Set1 mediated dimethylation of lysine 4 of histone H3 (H3K4me2) and 

Polycomb mediated trimethylation of lysine 27 of histone H3 (H3K27me3), occupy 

functionally defined groups of genes. H3K4me2-marked promoters control genes with 

functions in spermatogenesis and cellular homeostasis, suggesting that this mark 

reflects germline transcription. By contrast, multiple developmental regulators, which are 

Polycomb targets in pluripotent somatic cells, are marked by H3K27me3 in human 

sperm. Similarly to somatic cells, the presence of this mark correlates with gene 

repression during spermatogenesis and in the early embryo. We propose a model in 

which H3K27me3, transmitted by sperm, assures repression of developmental 

regulators at the totipotent stage of the preimplantation development. Finally, we 

demonstrate that a number of these developmental regulators are also marked by 

H3K27me3 in mouse spermatozoa, implicating an evolutionary conserved role for 

histone methylation in the paternal transmission of epigenetic information.  
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1. Introduction 

 

1.1 From Linnaeus to epigenetics 

 

The classical model of Mendelian genetic inheritance has been challenged in recent 

years. There is growing evidence that phenotypic traits can be inherited across 

generations without involvement of the DNA encoded genetic information. Schemes of 

the inheritance of such traits do not follow the rules of genetics and are therefore called 

non-Mendelian.   

One of the first examples of such phenomena dates back to the studies of 

Linnaeus, who described a naturally occurring mutant of a plant Linaria Vulgaris 

(Linneaus, 1749). Wild type plants have flowers with bilateral symmetry, whereas mutant 

flowers are radial (Fig. 1a,b). 250 years later Cubas and colleagues showed that the 

phenotype is caused by the silencing of the Lcyc gene (Cubas et al., 1999).The silencing 

occurs not through mutation of DNA sequence but through methylation of DNA at the 

promoter of Lcyc. The phenotype is stably inherited over many generations. However, 

spontaneous reversion to the wild-type phenotype, caused by removal of methyl groups 

from the DNA is also observed (Cubas et al., 1999).  

In analogy to the term “mutation”, used in genetics, a stable change in gene 

expression that does not involve changes in DNA sequence is called “epimutation”. In 

contrast to mutations, epimutations have different levels of reversibility which affect the 

schemes of inheritance. Factors that encode epimutated state, such as DNA methylation 

are called epigenetic.  

 

Paramutations  

In some cases an epimutated allele can influence the wild type allele in trans, 

increasing the complexity of non-Mendelian segregation of a phenotype. This 

phenomenon is called paramutation and was first described in maize (Brink, 1956). 

When the Rr allele encoding dark purple colour of the maize seeds was crossed with Rst 

allele encoding purple stippled pattern, heterozygotic plants were transmitting a changed 

Rr allele. The allele was now encoding a much lighter pigmentation of the seeds and was 

stably inherited. It reverted toward the standard type when made homozygous, but only 

partially. Currently, multiple examples of paramuation are known, mostly in plants 
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(reviewed in (Chandler, 2007)). The mechanisms by which the two alleles communicate 

are not well understood. One well studied example is b1 locus in maize. The key 

sequences required for the paramutation at that locus are tandem repeats located 

upstream of the b1 transcription start site (Stam et al., 2002). The repeats are 

transcribed and produce non-coding RNA. This RNA is thought to mediate 

communication between the two alleles and to modulate the transcription of the b1 

genes by establishing distinct chromatin states (Alleman et al., 2006). 

An RNA based mechanism was also described for an epimutation-like 

phenomenon at the Kit locus in mice (Rassoulzadegan et al., 2006). In that study, a 

dysfunctional Kit allele, with an insertion in coding region, was engineered. Both 

heterozygous animals and their wild type homozygous offspring (coming from 

heterozygous crosses) had decreased Kit expression and showed white feet and white 

tail tip phenotype. These genetically wild type paramutated animals were transmitting the 

phenotype to the next generations by both male and female germ line. The proposed 

mechanism of this phenomenon is linked to the aberrant expression of Kit during 

spermatogenesis and accumulation of Kit RNA in sperm of heterozygous and 

paramutated males (Rassoulzadegan et al., 2006). Their offspring inherits high levels of 

Kit RNA, which most probably triggers a silencing response in the early embryo. A 

recent paper by the same group describes a similar effect, triggered by injection of 

fragments of Cdk9 RNA into the early embryo (Wagner et al., 2008). Resulting animals 

showed elevated Cdk9 expression and an associated cardiac disorder. The phenotype 

was transmitted to at least three generations. Despite the different effect on gene 

expression triggered in Kit and Cdk9 paramutations (down and up regulation 

respectively), in both studies aberrant levels of RNA were detected in sperm 

(Rassoulzadegan et al., 2006; Wagner et al., 2008). These observations point to RNA, 

as one of epigenetic factors that mediates paternal transgenerational. The means of the 

maternal inheritance were not analysed in these studies but a similar RNA based 

mechanism may operate in female germline. 

 

Metastable epialleles 

Other examples of non-Mendelian inheritance in mice are coming from analysis 

of genomic loci which show stochastically variable expression and are called metastable 

epialleles (Morgan et al., 1999; Rakyan et al., 2003). Metastable epialleles are best 

analyzed in inbred mice strains, which provide an opportunity to study phenotypic 
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differences between individuals with identical genotypes. The Agouti (A) locus is 

responsible for the production of yellow hair pigment. In wild type animals, the pigment is 

produced only during a short period of the hair growth resulting in a light brown (agouti) 

coat color. Avy is a metastable epiallele of A, which is carrying an intracisternal A particle 

(IAP) retrotransposon, inserted upstream of A promoter (Morgan et al., 1999). The 

retrotransposon is driving the ectopic expression of the Agouti locus, causing fully yellow 

coat color, obesity, diabetes and increased susceptibility to tumors. The Avy animals 

show mosaic expression of the retrotransposon, resulting in a spectrum of phenotypes 

with the coat color varying from yellow through variegated yellow/agouti to agouti 

(Fig.1c). The distribution of the phenotypes among offspring depends on the phenotype 

of the mother (Morgan et al., 1999). Even though no paternal effect is observed, a 

phenotype driven by an IAP retrotransposon, inserted into another metastable epiallele 

Auxinfu, is transmitted by both parents (Rakyan et al., 2003). Therefore, there exist 

means for transmission of the epimutated states by both germ lines. For both Avy and 

Auxinfu loci different levels of expression correlate with DNA methylation of the inserted 

retrotransposon sequence (Morgan et al., 1999; Rakyan et al., 2003).  However, this 

modification was shown to be entirely erased from the Avy locus immediately post 

fertilization (Blewitt et al., 2006). Recently, a number of epigenetic factors have been 

identified that influence the expression of Avy and show transgenerational effects, 

supporting other than DNA methylation mechanisms of transmission (Blewitt et al., 2006; 

Chong et al., 2007a). 

 

 

Figure 1. Epimutations in plants and animals (a) wild type Linaria Vulgaris (b) Linaria Vulgaris 

carrying epimutation of Lcyc gene (c) Spectrum of coat colours of mice carrying A
vy  

metastable epiallele 

(adapted from (Morgan et al., 1999)) 
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Imprinted genes 

One of the best understood examples of transgenerational inheritance of states 

of gene expression, so called epigenetic states, is genomic imprinting. Genomic 

imprinting is a phenomenon in mammals where a gene is expressed only from one 

allele, either coming from the mother of from the father (reviewed in (Feil, 2009)). This 

differential expression is dependent on DNA methylation at imprinting control regions 

(ICRs), which are located within or outside the differentially expressed loci. Depending 

on their methylation status, ICRs either enhance or repress the expression. Reciprocal 

DNA methylation patterns are established on ICRs during the male and female germ cell 

development and are brought to the embryo by spermatozoon and oocyte. There are so 

far around 80 genes identified that undergo genomic imprinting. Most ICRs are 

methylated at the maternal allele and only three on the paternal one (reviewed in (Feil, 

2009)). Proper DNA methylation of ICRs in sperm and oocyte are necessary for the 

successful development of the embryo. Oocytes lacking maternal imprints give raise to 

embryos that die in utero (Bourc'his et al., 2001; Kaneda et al., 2004). Males with the 

impaired DNA methylation on paternal ICRs are infertile, thus its effect on the embryo 

can not be determined (Bourc'his et al., 2001; Kaneda et al., 2004). Nonetheless, 

embryos carrying two maternal genomes die in utero, showing that the paternal genome 

is necessary for the development (Surani and Barton, 1983). Further, this phenotype can 

be rescued by the deletion of two out of three paternal ICRs in one of the genomes, 

demonstrating that proper regulation of paternally imprinted genes is crucial for the 

development (Kawahara et al., 2007). Many of imprinted genes are homologues 

between mouse and human and show the imprinted expression in both species. 

Reminiscent of the situation in mice, aberrant methylation patterns at paternal ICRs have 

been found in sperm of infertile men (Marques et al., 2004). 

 

Environmentally induced changes in epigenetic programs  

It is a vital question if epigenetic states can be shaped by the environment during 

the life span of an organism and then be stably transmitted to the next generations.  

It has been reported that the methyl donor supply in the maternal diet can 

influence the coat colour of Avy mice (Cooney et al., 2002; Dolinoy et al., 2006). The 

establishment of the mosaic DNA methylation pattern at Avy locus is occurring at the 

post-implantation stages of development. Therefore, high level of methyl donor in the 

maternal diet could directly increase the number of DNA methylated loci. Consistently, 
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the range of coat colors of the offspring was shifted towards agouti (Dolinoy et al., 2006). 

However, the methyl group can be added not only to the DNA, but also to a variety of 

proteins involved in gene regulation. Therefore, methyl donor supplementation might 

have primarily affected other than DNA methylation regulatory mechanisms.   

The somatic epigenetic changes in response to methyl donor raise the question 

of whether methyl donor supplementation also affects the germ line, and whether any 

changes could be maintained to the next generations. Indeed, offspring of the Avy fetus, 

exposed to methyl donor supplementation showed a shift towards the agouti phenotype 

as well (Cropley et al., 2006). Yet, it is important to mention that the methyl donor was 

supplied at the time of primordial germ cell (PGC) formation in the fetus. Hence, all the 

three generations: the mother, the fetus and its germ cells were directly subjected to the 

treatment. An analysis that spans over subsequent generations is needed to truly argue 

for a transgenerational effect. Nevertheless, a transmission of the phenotype by the 

germ line argues that the epigenetic mark established at Avy locus was maintained 

through the germ cells development and was not erased after fertilization. Additional 

criticism of the presented study points out that the first generation of animals was not 

entirely yellow, but mosaic with a high proportion of agouti. Thus, the supplementation 

only supported the maintenance of the silenced state, but did not cause de-novo 

establishment of epigenetic information (Waterland et al., 2007).  

 

Several studies have also addressed potential transgenerational effects of 

endocrine disruptors. A group of widely used pesticides, herbicides and fungicides has 

characteristics of endocrine disruptors, meaning they can mimic mammalian estrogens 

and potentially effect development of males and females. Exposure to vinclozolin 

(fungicide) at the time of gonadal determination has been reported to cause a variety of 

abnormalities in offspring (Anway et al., 2005). The effects were transmitted down the 

male germ line for at least three generations (in the absence of vinclozolin) and 

correlated with an increased DNA methylation in sperm. However, it is not clear whether 

the phenotype is a direct effect of the DNA methylation levels or if other epigenetic 

factors are involved. A recent report by another group questions if there is at all a 

transgenerational effect of endocrine disruptors, suggesting that the results of Anway 

and colleagues suffered from an inherent artefact of the experimental design (Inawaka et 

al., 2009). 
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Evolutionary impact of epigenetic changes 

The environmental effects on gene expression described so far can be classified 

as non-adaptive.  Phenotypes inherited by the offspring are either the result of a natural 

variation of epialleles or the result of the aberrant establishment of epigenetic 

information. There are no advantages for the offspring in inheriting such phenotypes. 

The hypothesis that experience of a parent can be transmitted to the offspring and 

induce some advantageous trait or behaviour has been known as the Lamarckian 

Hypothesis and was rejected by the Darwinian Theory of Evolution and further by the 

Modern Synthesis (reviewed in (Rando and Verstrepen, 2007)). It is unreasonable to 

expect such effects in animals, as germ line and soma are separated very early during 

development. In contrast, such effects are observed in plants where germ line arises in 

the adult organism and therefore can be directly affected by the environment (Bastow et 

al., 2004). Still, a study from Drosophila melanogaster implies the existence of an 

evolutionary mechanism that makes use of  random epigenetic variation. The authors 

propose that in stable environmental conditions specific factors counteract the 

manifestation  of  naturally occurring epigenetic variation. In conditions of stress, this 

suppression is released and an advantageous trait can be selected from a pool of 

revealed random phenotypes (Ruden et al., 2008; Sollars et al., 2003).  

The theory is based on a screen for enhancers of spontaneously occurring 

morphological phenotypes, which has been performed using flies with a mutation 

predisposing it for eye malformations (Sollars et al., 2003). Among the identified proteins 

were Hsp90, a protein chaperon, and several proteins involved in epigenetic gene 

regulation (from the Trithorax group). Observed phenotypes were heritable through the 

female germ line and the malformation persisted into the subsequent generations, also 

in the animals that were not carrying any more mutations for Hsp90 or Trithorax. Several 

different phenotypes were observed in the same isogenic fly strain used, arguing for the 

epigenetic and not genetic basis of the malformations. The presence of epigenetic 

factors like Trithorax among enhancers of the malformations additionally supports this 

notion.  The authors propose that in conditions of stress Hsp90 diverts from its 

chaperone function, revealing hidden phenotypes and that advantageous ones can be 

selected and fixed (Ruden et al., 2008; Sollars et al., 2003).  

To allow for a selection on epigenetically encoded phenotypes, epigenetic states 

must be transmitted across multiple generations. Interestingly, in flies there is limited or 

no DNA methylation reported (Phalke et al., 2009; Tweedie et al., 1997). Inheritance of 
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expression states must be therefore mediated by other epigenetic factors. Indeed, there 

are data indicating that the activating and the repressive protein complexes of Trithorax 

and Polycomb group proteins are involved in transgenerational transmission of 

epigenetic states in Drosophila (Cavalli and Paro, 1998). Fab-7 is a genetic regulatory 

element, which can induce silencing of a downstream reporter construct. This silencing 

is mediated by the association of the Polycomb group proteins  with Fab-7. Upon 

activation of the reporter, Polycomb group proteins are displaced from the construct, 

which remains occupied by Trithorax group proteins. It was observed that even a short 

pulse of gene activation, at a specific time during embryogenesis, can stably release 

silencing, and the active sate persists throughout the adult development. Furthermore, 

the active state is transmitted to the subsequent generations by the female germline. 

This effect is only observed when Fab-7 is present, arguing that a specific epigenetic 

state established on this locus is transmitted (Cavalli and Paro, 1998).   

 

Non-Mendelian inheritance in humans – epigenetic basis of heritable diseases?  

The above examples show clearly that  information influencing  gene expression, 

so called epigenetic information, can be transmitted across generations in plants and 

animals. Studies of genomic imprinting provide a proof of principle that epigenetic 

inheritance exists in humans as well. It is highly probable that some hereditary diseases 

have an epigenetic basis. Increased knowledge in this field would provide a new 

spectrum of targets for the drug research. Yet, studies in human are largely limited by 

the lack of isogenic populations and limited data sets that would span for more than two 

generations.  Several studies indicate that germline transmitted epimutations of DNA 

mismatch repair genes MLH1 and MSH2 are linked to an increased risk of colorectal 

cancer (Chan et al., 2006; Hitchins et al., 2007; Suter et al., 2004).  Two colorectal 

cancer patients were reported with soma wide abnormal DNA methylation and silencing 

of the promoter of MLH1. No DNA mutations in the region of MLH1 locus were detected. 

The same epimutation was also detected in a small fraction of sperm cells of one of the 

individuals, arguing for germ line transmission (Suter et al., 2004). However, in a 

subsequent study the authors failed to find any epimutated alleles in sperm of another 

individual with a somatic epimutation. In contrast, they showed maternal inheritance of 

an epimutated allele, but without proof for the presence of the epimutation in the female 

germline (Hitchins et al., 2007). Heritable DNA hypermethylation has also been 

described for the promoter of MSH2 (Chan et al., 2006). Three siblings carrying this 
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epimutation developed colorectal tumors. Further analysis revealed aberrant DNA 

methylation of MSH2 in individuals from three generations of the studied family. 

Interestingly, the epimutation segregated in a Mendelian manner, even though no DNA 

mutation in the region of the MSH2 locus was detected. It can not be ruled out that a 

mutation in other place of the genome was the original cause of aberrant DNA 

methylation patterns. As was pointed out in a debate, triggered by the publication of 

(Chan et al., 2006), both MLH1 and MSH2 studies are lacking compelling evidence for a 

germ line epigenetic inheritance (Chong et al., 2007b; Suter and Martin, 2007).  

 An approach to investigate the epigenetic inheritance in humans is to use 

statistical data accumulated over generations. Pembery and colleagues analyzed a 

modern data set on the life style and medical condition of two generations in the Bristol 

region (Avon Longitudinal Study of Parents and Children).  In addition, they analyzed 

19th and 20th century parish records from isolated community in Overkalix in Sweden, 

providing detailed data on births, deaths and diseases of multiple generations (Pembrey 

et al., 2006). Based on the first data set they found that pre-adolescent paternal smoking 

was associated with greater body mass index (BMI) in sons, but not daughters. Based 

on the second data set they found that the paternal grandfather‟s food supply in pre-

adolescence was linked to the mortality risk of grandsons, while the paternal 

grandmother‟s food supply was linked to the mortality risk of the granddaughters. 

Although these studies appear to demonstrate transgenerational effects induced by 

environmental factors, there is no evidence that transfer of epigenetic information via the 

germ line is involved. It is very difficult to rule out the involvement of social factors, which 

can drive such a transgenerational effect. The use of statistical data can become very 

useful for the research in the future, but only when screening projects involving modern 

molecular biology methods will be launched on.  

 

Passing the epigenetic information through the germ line 

The presented evidence, though some is controversial,  suggest a transmission 

of epigenetic states across generations. Some of the data describe only maternal, some 

only paternal effects, pointing to differences between the two germ lines, but also 

showing that both male and female have potential for an epigenetic transmission.  

Epigenetic mechanisms are shaping the expression of genes throughout the 

development of multicellular organisms. To allow for a transition from somatic tissues to 

specialised germ cells and further to a totipotent embryo, epigenetic patterns of gene 
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expression have to be erased and re-established. In mammals, this is known to happen 

in two waves of epigenetic reprogramming – one occurring during the germ cells 

development and a second one just after fertilization (reviewed in (Reik, 2007)). 

Nevertheless, there exist sequences naturally resistant to reprogramming, providing a 

proof of principle for an epigenetic transmission via gametes. Classical examples of such 

sequences are imprinted genes. The original, parental patterns of DNA methylation at 

the ICRs are erased during the 1st wave of reprogramming and new sex specific patterns 

are established during germ cells development. Imprinted sequences escape the global 

erasure of DNA methylation after fertilization, which is part of the second wave of 

epigenetic reprogramming (reviewed in (Feil, 2009)). During this process,  satellite DNA 

sequences surrounding centromeres, as well as many transposones, retain their DNA 

methylation (Lane et al., 2003; Rougier et al., 1998). Nonetheless, a comprehensive list 

of sequences that escape the reprogramming is not known. 

It remains a big question, how complete the reprogramming of epigenetic states 

encoded by other factors is. Eukaryotic DNA is not naked. It exists in a complex with 

multiple proteins and RNA molecules, which regulate gene expression, replication and 

DNA repair. In the coming sections I will review our current knowledge on different 

components of this complex and their potential to carry epigenetic information across 

generations.   

 

1.2 Chromatin mediated gene regulation  

 

In eukaryotic cells, DNA is tightly packed in the nucleus. This packing is mediated by 

proteins that interact with DNA, and constitute together a nucleoprotein complex called 

chromatin. The basic unit of the chromatin is the nucleosome (Kornberg, 1974) 

consisting of 146 nucleotides of DNA wrapped around an octamer of four different highly 

basic proteins called histones.  

 

1.2.1 Posttranslational histone modifications 

Nucleosomes, previously considered to function just as structural components of 

chromatin, are now being recognized as important regulators of chromatin templated 

processes like transcription, replication and DNA repair. Histones are subjects to a 

variety of posttranslational modifications such as acetylation of lysines, methylation of 

lysines and arginines, phosphorylation of serines and threonines, and ubiquitination of 
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lysines. The majority of these covalently modified residues reside at the flexible N-

terminal “tails” of histone H3 and H4 that are localized outside the core of the 

nucleosome structure.   

Histone modifications can affect the strength of histone-DNA interactions and 

thus directly regulate the accessibility to DNA. On the other hand, such modifications 

can - either alone or in specific combinations - generate modules that are specifically 

recognized by certain chromatin associated proteins and that thereby define a specific 

chromatin state (reviewed in (Kouzarides, 2007)).  

 The most well understood process regulated by histone modifications is 

transcription. Generally, active chromatin is characterized by methylation of histone H3 

on lysine 4 (H3K4), H3K36 and H3K79 and by acetylation on H3K9, H3K14 and on 

lysines 5,8, 12 and 16 of histone H4. In contrast, inactive chromatin is enriched in H3K9, 

H3K27 and H4K20 methylation and in DNA methylation (reviewed in (Kouzarides, 

2007)).  

 Several models have been proposed to explain the function of histone 

modifications in gene regulation. It is known that histone acetylation or phosphorylation 

can change the overall charge of the chromatin. The acetylation of histones neutralizes 

positive charges of histones. Phosphorylation adds a negative charge to chromatin. The 

charge neutralization model suggests that histone acetylation leads to a decondensation 

of the chromatin fibre by destabilizing the interaction among nucleosomes and between 

nucleosomes and DNA. Indeed, there is evidence that histone acetylation can relax 

chromatin structure in vivo and in vitro (Shogren-Knaak et al., 2006; Wolffe and Hayes, 

1999). 

 Histone acetylation is generally very dynamic. Acetylation levels are increased by 

enzymes called histone acetyl transferases (HATs) and removed by histone 

deacetylases (HDACs). There are many different HATs and HDACs, which target 

different lysine residues on histones and also other proteins. Most of these enzymes 

modify more than one lysine residue while some are specific for individual lysines. HATs 

and HDACs show broad activity, but usually they are part of larger complexes, which 

show specificity to defined regions of chromatin (reviewed in (Kouzarides, 2007)).  

 

 In contrast to histone acetylation, methylation marks are set by histone 

methyltransferases (HMTs) that recognize their target residues in a sequence specific 

context. Moreover, each lysine residue has the ability to be modified by mono-, di- or tri-
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methylation. The HTMs display specificity towards the level of methylation as well, often 

modulated by their interaction partners. Except for Dot1, the HMT responsible of 

methylation at the H3K79 residue localized in the nucleosomal core, all known HMTs 

belong to a large family of proteins sharing the highly conserved catalytic SET 

(Suppressor of variegation, Enhancer of Zeste, Trithorax) domain (reviewed in 

(Kouzarides, 2007)). For many years histone methylation was considered as a 

permanent mark but this view has been changed drastically with the recent identification 

of histone demethylases (HDMs) (reviewed in (Swigut and Wysocka, 2007)).  

Histone methylation, unlike acetylation, does not change the overall charge of 

histones. Instead, it functions in recruiting effector proteins to chromatin, which then 

conduct enzymatic activities such as chromatin remodelling. These proteins can bind to 

methylated residues via different conserved domains, such as chromodomains (Fischle 

et al., 2003; Lachner et al., 2001), PHD (Wysocka et al., 2006) and Tudor (Huang et al., 

2006) domains .  

Depending on the modified residue, histone methylation can have an activating 

or repressing effect on transcription. In the following section I will concentrate on the 

role, distribution and possible mechanism of transcriptional regulation of two antagonistic 

methylation marks: H3K27 methylation established by Polycomb group proteins and 

H3K4 methylation, mediated by Set1/Trithorax group proteins.  

 

1.2.2 Polycomb and Trithorax group complexes   

 Polycomb group (PcG) genes were first discovered in Drosophila melanogaster 

as repressors of Hox genes, a set of transcription factors that specify cell identity along 

the anteroposterior axis of segmented animals. PcG proteins form multimeric complexes 

that are not required to initiate the regulation of Hox genes, but rather to maintain their 

expression state after the initial transcriptional regulators have disappeared from the 

embryo (Jurgens, 1985; Lewis, 1978). Therefore they provide a mean of a cellular 

memory that is propagated over the cellular divisions and that maintains specific 

expression programs. Further experiments have shown that an antagonistic system, 

involving Trithorax group (TrxG) proteins exists. TrxG proteins are not default activators 

but function as anti-repressors of PcG target genes. In the absence of TrxG, a homeotic 

gene can become repressed by the PcG-mediated mechanism even in cells in which it 

had been active in the early embryo. Therefore, Trx is required continuously throughout 

development to prevent inappropriate PcG silencing (Klymenko and Muller, 2004; Poux 
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et al., 2002). These antagonistic mechanisms of gene repression by PcG and gene 

activation by TrxG are conserved in vertebrates. Members of both groups have been 

shown to have essential roles in mammalian development (Faust et al., 1995; Glaser et 

al., 2006; Lee et al., 2006a; O'Carroll et al., 2001; Pasini et al., 2004; Voncken et al., 

2003; Yu et al., 1995). 

 

Repressive H3K27 methylation and Polycomb group proteins 

 Polycomb group proteins act in at least two distinct multi-protein complexes - 

Polycomb repressive complex 1 and 2 (PRC1 and PRC2). Both PRC1 and PRC2 

complexes were primarily described in Drosophila melanogaster. In mammals, 

orthologous complexes have been identified. They were shown to comprise of proteins 

with highly similar properties and activities as the ones in flies (Cao et al., 2002; 

Kuzmichev et al., 2002; Levine et al., 2002). In mammals, the PRC2 complex is 

composed of Enhancer of zeste 2 (Ezh2), Suppressor of zeste 12 (Suz12), Embryonic 

ectoderm development (Eed) and the histone binding proteins RbAp46/RbAp48. PRC2 

mediates histone H3 methylation of lysine 27 through the HMT activity of Ezh2 (Cao et 

al., 2002; Kuzmichev et al., 2002). This activity is dependent on the presence of the 

other members of the complex. Suz12 enhances the activity of Ezh2 (Pasini et al., 

2004), while Eed, depending on its isoform, can modulate substrate specificity of Ezh2 

towards H1K26, H3K27me2/3 or SirT1 (Kuzmichev et al., 2004; Kuzmichev et al., 2005) 

and is necessary for its activity (Montgomery et al., 2005). Recently, a PRC2-like 

complex has been described, in which Ezh2 is replaced by its homolog Ezh1. Like PRC2 

this complex can mediate H3K27me2/3, though to a lesser extent. By contrast, it is can 

fully compensate Ezh2 in mono methylation of H3K27 (Margueron et al., 2008; Shen et 

al., 2008).  Interestingly the PRC2/Ezh1 complex can repress transcription in a mode 

independent from its HMT catalytic activity (Margueron et al., 2008).        

One study has revealed an ability of PRC2 complex to interact with DNA 

methyltransferases (DNMTs). Knock-down of Ezh2 impairs binding and activity of all 

known DNMTs on PcG target promoters. This observation indicates interdependence 

between Polycomb and DNA methylation mediated repressive pathways (Vire et al., 

2006).  

 The H3K27me3 mark which is set by PRC2 is recognised by another Polycomb 

complex PRC1 (Fischle et al., 2003; Min et al., 2003). In mammals, this binding is 

mediated by the chromodomain of Cbx proteins (Bernstein et al., 2006b). Additionally, 
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PRC1 comprises of Polyhomeotic 1/2/3 (Phc1/2/3), Ring1a/Rnf2 and Bmi/Mel18. Ring1a 

and Rnf2 are two homologues proteins that contain a RING domain with an E3 ubiquitin 

ligase activity. They mediate mono-ubiquitination of Lysine 119 of histone H2A 

(H2AK119ub) (de Napoles et al., 2004; Wang et al., 2004). Specificity of this reaction 

toward H2AK119 is directed by Bmi1 and Mel18, two other homologues components of 

the PRC1 complex (Buchwald et al., 2006; Elderkin et al., 2007).    

 

Targeting of PcG complexes 

 Binding of PRC1 to the H3K27me3 mark set by PCR2 supports a model where 

targeting of PRC1 and establishment of H2AK119ub occurs downstream of PRC2. This 

order of events was demonstrated on the Hox gene cluster in mouse embryonic 

fibroblasts (Cao et al., 2005) and also on several PcG targets in mouse embryonic stem 

(ES) cells (Boyer et al., 2006). Consistently, in one-cell embryos lacking PRC2 

component Ezh2, PRC1 members are depleted from euchromatic (gene rich) regions 

(Puschendorf et al., 2008).  

 However, in the same study PRC1 binding to pericentric heterochromatin was 

not effected. The authors showed that expression of non-coding transcripts from that 

region is controlled by Rnf2 (Puschendorf et al., 2008). Similarly, in the later stages of 

pre-implantation development, loss of Ezh2 is not effecting association of PRC1 to 

chromatin (Terranova et al., 2008). Also, during the initiation of the X inactivation 

process in female ES cells, PRC1 is recruited independent of H3K27me3 (Schoeftner et 

al., 2006).  

In agreement with the PRC2-independent targeting of PRC1, genome wide 

analysis of promoter occupancy in mouse ES cells, identified a group of genes 

associated with Rnf2 and Phc1 (PRC1), but neither Suz12 and Eed (PRC2) nor H3K27 

methylation (Boyer et al., 2006). Taken together, these data indicate that PRC1 acts 

alone at specific developmental stages and may also have other functions that classical 

Polycomb mediated gene repression. 

 

 

 

Sequence components of PcG targeting mechanisms 

In Drosophila melanogaster specific sequences called Polycomb/Trithorax 

respond elements (PRE/TRE) have been identified. They are recognized by DNA 
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binding subunits of Polycomb and Trithorax complexes (reviewed in (Ringrose and Paro, 

2007)). However in mammals such sequences have not been identified yet. Genome 

wide data also indicates much grater spread of Polycomb group proteins on the 

repressed domains in mammals, comparing to more localized and PRE restricted 

binding in flies (Boyer et al., 2006; Lee et al., 2006b; Negre et al., 2006).  

There is also a positive correlation between high CpG sequence content and 

Polycomb/H3K27me3 occupancy (Bernstein et al., 2006a; Mikkelsen et al., 2007; Mohn 

et al., 2008). In a recent genome wide study aimed in identifying mammalian PREs, Ku 

and colleagues suggested that it is rather the absence of binding motifs for activating 

transcription factors that define Polycomb repressive domains (Ku et al., 2008).    

 

Mechanisms of repression by PcG and associated histone marks 

The mechanism of gene repression by Polycomb group complexes and H3K27 

methylation are not well understood. Several in vitro studies showed increased 

compaction and inhibition of chromatin remodelling and transcription upon association of 

chromatin fiber with PRC1 complex (Francis et al., 2001; King et al., 2002; Shao et al., 

1999). However in Drosophila, components of the transcription initiation complex (TBP, 

TFIIB and TFIIF) were found to co-localise with Polycomb group proteins at repressed 

PcG target promoters (Breiling et al., 2001). Further, recruitment of Polycomb proteins to 

a PRE inserted at the promoter of a heat shock gene did not interfere with the RNA 

Polymerase II (RNAPII) binding, but prevented transcription initiation (Dellino et al., 

2004). These reports suggest that in vivo chromatin structure on promoters of repressed 

genes may not differ greatly from active ones.  Consistently, genome wide ChIP-chip 

studies in mouse and human ES cells revealed that the majority of Polycomb repressed 

genes associated with H3K27me3, harbour H3K4 methylation simultaneously, a 

configuration that was called bivalent (Azuara et al., 2006; Bernstein et al., 2006a).  In 

another genome wide study, H3K4me3 and RNAPII were detected on promoters of the 

majority of coding human genes, including PcG targets and corresponding short 5' 

transcripts were detected (Guenther et al., 2007).  

 These data suggest that Polycomb mediated repression is not inhibiting the 

transcription initiation but rather the transcription elongation. Indeed, studies of a PcG 

target gene Nkx2.2 in ES cells revealed that repression of this gene is dependent on the 

presence of the PRC1 subunit Ring1a/Rnf2 (Stock et al., 2007). Upon deletion of both 

homologues, RNAPII changes its conformation from paused to active and produces high 
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levels of transcripts.  Since the levels of H2A119ub are drastically reduced, this mark is 

proposed to inhibit activation of RNAPII, presumably through blocking the recruitment of 

other components of the transcriptional machinery.  

 

Activating H3K4 methylation and SET1/Trithorax complexes 

In contrast to the two described enzymes mediating H3K27 methylation, there 

are at least ten known or predicted H3K4 methyltransferases in mammals. The catalytic 

SET domains of these proteins are either related to yeast Set1 and Drosophila Trx 

(SET1 family: Mll1, Mll2, Mll3, Mll4, Set1a and Set1b) or unrelated (Ash1L, Set7/9, 

Smyd1, Smyd3, Meisetz) (reviewed in (Ruthenburg et al., 2007)). Similarly to Ezh1/2, 

which is active only in the context of the PRC2 complex, SET1 family enzymes exist in 

multiprotein complexes. SET1-family complexes share, but are not limited, to three 

common subunits WDR5, RbPB5 and Ash2L. All these three components are required 

for full HMT activity both in vitro and in vivo (Dou et al., 2006).  RNAi knock down studies 

showed that WDR5 and RbPB5 are required for di- and tri- methylation whereas Ash2L 

is required for tri-methylation of H3K4 (Dou et al., 2006; Steward et al., 2006). 

Interestingly, the WDR5 subunit shows high binding affinity to di-methylated K4 and has 

been proposed to present this mark for further methylation by the HMT subunit 

(Wysocka et al., 2005).  

 

Targeting of SET1/Trithorax complexes 

Global reduction of H3K4 methylation via RNAi indicates that SET1 family 

members account for the bulk of H3K4 methylation in the mammalian cells (Dou et al., 

2006; Steward et al., 2006). Within the family the six members seem to have non-

overlapping functions. Mutant mice lacking either Mll1, Mll2 or Mll3 show all severe but 

distinguishable phenotypes (Glaser et al., 2006; Lee et al., 2006a; Yu et al., 1995). 

Genome wide analysis of Mll1 distribution showed that this enzyme is present on the 

majority of active promoters (Guenther et al., 2005). However another study indicates 

selective targeting of Mll1 to only a subset of genes (Milne et al., 2005). Two other 

members of SET1 family Set1A and Set1B were shown to occupy largely non-

overlapping nuclear domains, suggesting that Set1A and Set1B each bind to a unique 

set of target genes (Lee et al., 2007a). 
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Selective targets of different H3K4 methyltransferases suggest the existence of 

specific recruitment mechanisms. Set1A and Set1B complexes contain an additional 

subunit Wdr82, which interacts with the initiating, but not the elongating form of RNA 

Polymerase II (RNAPII) (Lee and Skalnik, 2008). Importantly, depletion of Wdr38 results 

in decrease of H3K4me3 near the transcription start sites, but does not affect RNAPII 

levels. This data suggest that K4 methylation is a downstream consequence of 

transcription, possibly establishing a memory of an active state. Additionally, Mll1 has 

been shown to associate with RNAPII at transcription start sites (Milne et al., 2005). In 

that study, Mll1 was also detected along gene bodies and depletion of Mll1 resulted in a 

defect in transcription elongation.   

Mll proteins contain also multiple chromatin binding domains that can provide 

additional targeting mechanisms. One of them is the CxxC methyltransferase homology 

domain, found in Mll1 and Mll2, which specifically recognises DNA with unmethylated 

CpG sequences (Ayton et al., 2004; Birke et al., 2002). This association suggests 

recruitment of Mll proteins to CpG rich promoters which are not DNA methylated. 

Consistently, in Mll1 knock-down cells, promoter of the Hoxa9 gene gains DNA 

methylation (Erfurth et al., 2008). Therefore, Mll1 and Mll2 are likely to have a function in 

protecting CpG rich promoters from DNA methylation. This may be a more general 

property of the K4 methylating machinery as a subunit of the Set1A/Set1B complexes, 

CFP1, also contains a CxxC domain (Lee et al., 2007a).  

This activity may be independent of the transcriptional machinery as genome 

wide study of H3K4 methylation and RNAPII occupancy revealed a number of promoters 

harboring the mark, but not the polymerase (Guenther et al., 2007). Though, it can not 

be ruled out that different efficiencies of the antibodies influenced this result.   

Nevertheless, in another genome wide study H3K4 methylation was found to mark 

majority of the promoters with high CpG content and to be mutually exclusive with DNA 

methylation (Weber et al., 2007). In mammalian genomes approximately half of 

promoters harbour starches of sequences with high CpG content, higher than the 

majority of the surrounding genome. It is thought that these so-called CpG islands arose 

during evolution by selective protection of certain sequences from cytosine to thymidine 

conversion. High rate of such mutations can be explained by methylation of cytosines 

that occurs in the CpG context and makes them prone for a conversion to thymidine in a 

reaction of de-amination (Shen et al., 1994). Consistently, CpG islands are devoid of 

DNA methylation, whereas the majority of CpGs in the genome are methylated. 
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Therefore, reciprocal localisation of DNA methylation and H3K4 methylation supports a 

model where H3K4 methylation has a function in protecting DNA from cytosine 

methylation and therefore contributes to conservation of CpG islands (Weber et al., 

2007).     

Additional level of sequence specificity of SET1 complexes is thought to be 

achieved by interaction with sequence specific DNA binding factors ((reviewed in 

(Ruthenburg et al., 2007)).  

 

Reversibility of Trithorax and Polycomb mediated marks 

The complexity of gene regulation by activating and repressing histone 

modifications has largely increased with the discovery of histone de-methylases. The 

first identified de-methylase was LSD1 which removes methyl groups from di- and mono 

methylated H3K4 in the reaction of amine oxidation (Shi et al., 2004). Interestingly, 

specificity of LSD1 can be altered by specific cofactors. When associated with the 

androgen receptor LSD1 de-methylates di- and monomethylated H3K9 (Metzger et al., 

2005). Following discovery and characterisation of the Jumonji family revealed multiple 

de-methylases encoded in the mammalian genomes (reviewed in (Agger et al., 2008)). 

In contrast to LSD1, these enzymes catalyse oxidative demethylation and can also 

remove tri-methylated states of lysines. De-methylation of H3K4me3 is catalysed by 

enzymes of the JARID1 family. Jarid1d was found in a complex with Polycomb-like 

protein Ring6a providing a link between de-methylation of H3K4 and gene repression 

(Lee et al., 2007b). Depletion of Jarid1d led to increased occupancy of the transcriptional 

machinery and increased transcription of the promoter of the Engrailed2 gene. 

Consistently, another member of the family, Jarid1a, was shown to co-localise with 

PRC2 at Polycomb target genes in ES cells. This localisation was shown to be 

dependent on PRC2 (Pasini et al., 2008). In another study, Jarid1a was displaced from 

Hox genes promoters in an ES cells differentiation assay correlating with their activation 

and H3K4 methylation (Christensen et al., 2007). In a similar way as H3K4 de-

methylases have roles in gene silencing, the H3K27 de-methylating enzymes UTX and 

JMJD3 associate with activating Mll/Set1 complexes (De Santa et al., 2007; Lee et al., 

2007c). In an ES cells differentiation assay, UTX was shown to directly bind to the 

Hoxb1 locus and to be required for its activation (Agger et al., 2007). Moreover, ES cells 

with RNAi knockdown of JMJD3 failed to differentiate into neurons (Burgold et al., 2008). 

These cells failed to upregulate neuronal markers Nestin, Pax6 and Sox1, although a 



 20 

direct effect of JMJD3 on the H3K27me3 levels was demonstrated only for Nestin. In the 

light of these studies histone lysine methylation marks are not any more irreversible and 

can provide means for dynamic gene regulation.  

 

1.2.3 H3K4 and H3K27 methylation in pluripotent embryonic stem cells and during 

differentiation 

In the recent years, development of micro-arrays (alternatively called chips) and further 

deep-sequencing technologies allowed researchers not only to study selected genes of 

interest but to analyse entire genomes. These techniques, in combination with chromatin 

immuno precipitation (ChIP-chip and ChIP-seq), revealed genome wide localisation 

maps of many chromatin components, including Polycomb and Trithorax proteins and 

associated histone modifications (Barski et al., 2007; Boyer et al., 2006; Bracken et al., 

2006; Ku et al., 2008; Lee et al., 2006b; Mikkelsen et al., 2007; Mohn et al., 2008; Orford 

et al., 2008; Pan et al., 2007; Weber et al., 2007; Zhao et al., 2007).  

These experiments were mainly preformed in in vitro cultured cell lines due to the 

high number of cells required for ChIP and other biochemical assays. Embryonic stem 

(ES) cells can be derived form the pre-implantation embryos until the blastocyst stage.  

In vitro cultured ES cells can be transplanted into a blastocyst and contribute to all 

tissues. Therefore ES cells are used for a model of the pluripotent state. Also, several 

protocols for in vitro differentiation of ES cells have been established providing models of 

early cell fate commitment during development (reviewed in (Niwa, 2007)).  

 

Bivalency 

Using ChIP–chip method, mouse and human ES cells were profiled for 

components of PRC1, PRC2 and H3K27me3 (Boyer et al., 2006; Ku et al., 2008; Lee et 

al., 2006b; Mikkelsen et al., 2007; Mohn et al., 2008; Pan et al., 2007; Zhao et al., 2007). 

These studies revealed that apart from classical Hox  gene targets PcG proteins repress 

multiple other genes with functions in development, transcriptional regulation and 

morphogenesis. Upon deletion of PRC1 components Eed or Suz12 majority of Polycomb 

targets showed increased levels of expression. These targets were preferentially 

activated when ES cells were induced for differentiation (Boyer et al., 2006; Lee et al., 

2006b). The majority of H3K27me3 modified promoters detected in these studies were 

further shown to harbour also H3K4 methylation, regardless of their repressed state 

(Azuara et al., 2006; Bernstein et al., 2006a; Mikkelsen et al., 2007; Mohn et al., 2008; 
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Pan et al., 2007; Zhao et al., 2007 ). This can be in part explained by default marking of 

promoters with high CpG content by H3K4 methylation, discussed above (Weber et al., 

2007). Indeed, the presence of so called bivalent marking also highly correlates with the 

CpG density of the underlying DNA sequence (Fig. 2) (Bernstein et al., 2006a; Mikkelsen 

et al., 2007; Mohn et al., 2008)  

In the primary report (Bernstein et al., 2006a), the bivalent state was reported to 

be a unique feature of ES cells that is resolved upon differentiation either to “H3K4 

methylated only” and therefore active or “H3K27 methylated only” and therefore 

repressed depending on a lineage. However, following studies identified bivalent 

promoters also in differentiated cells (Barski et al., 2007; Mikkelsen et al., 2007; Mohn et 

al., 2008). Mohn and colleagues showed that during neuronal differentiation from ES 

cells to terminal neurons, bivalent domains were formed not only in ES cells but also at 

the progenitor stage (Mohn et al., 2008). Several neuronal specific genes acquired such 

a configuration, which was further resolved to “H3K4me2 only” state as they became 

activated in the terminal neurons. These data suggest that the poising of promoters for 

activation by the establishment of bivalent domains is a mechanism operating at multiple 

differentiation stages.  

Bivalent promoters are present in both mouse and human ES cells. This argues 

that they provide a conserved mechanism of gene regulation (Pan et al., 2007; Zhao et 

al., 2007). Direct comparison of bivalent genes in mouse and human ES cells revealed 

that 50% of the targets are shared between these two species (Ku et al., 2008). This 

shared fraction of genes was over-represented for functions in development and 

transcriptional regulation, which stresses the functional importance for the Polycomb 

mediated repression at this class of targets. Importantly, occupancy of the PRC1 

component Rnf2 was also measured in this study and showed 60% conservation of the 

targets in the two species.  
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Figure 2. Polycomb mediated repression at bivalent promoters. In mammalian cells, promoters of 

developmental regulators are marked by both H3K4me2/3 and H3K27me3, and are therefore termed 

“bivalent”. Bivalency correlates strongly with high GC density. Despite the presence of H3K4me2/3, which 

is likely mediated by the Mll and/or Set1a/b enzymes, bivalent genes are largely repressed by Polycomb 

mediated mechanisms. The pluripotency transcription factors Sox2, Oct4 and Nanog co-occupy a large 

fraction of Polycomb-bound genes. PRC2-mediated H3K27me3 provides a binding site for PRC1, which in 

turn mediates monoubiquitination of H2AK119. Jarid1a targeted by PRC2 downregulates H3K4me2/3 

levels. The initiating form of RNA polymerase II (RNAP-S5P) is present at bivalent genes but is arrested 

before elongation, presumably by H2AK119ub1 inhibiting recruitment of the remodeling complexes. 

(adapted from (Hublitz et al., 2009) ) 

  
 

Polycomb group proteins and pluripotency  

There is no strong data supporting an essential role of PRC2 and 

H3K27methylation for pluripotency of embryonic stem cells, even though there are 

curtail developmental regulators of somatic differentiation among their targets. Deletion 

studies in mouse ES cells showed that upon deletion of Eed, Polycomb target genes are 

upregulated but nevertheless ES cells can be maintained (Chamberlain et al., 2008; 

Montgomery et al., 2005). Also Suz12 deficient ES cells could be derived and kept in 

culture but showed defects in differentiation (Pasini et al., 2007).   

In ES cells, Oct4, Nanog and Sox2 form a core regulatory network, required for 

maintaining pluripotency (reviewed in (Niwa, 2007)) and occupy a large group of 

important developmental regulators (Boyer et al., 2006). Most of these genes are also 

targets of PRC2 and harbour H3K27me3 mark, indicating cross talk between PcG and 
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the pluripotency factors (Lee et al., 2006b). Importantly, in both mentioned above PRC2 

mutant cell lines, transcription factors Oct4 and Nanog were still expressed and present 

at chromatin as detected by stainings (Chamberlain et al., 2008; Pasini et al., 2007). 

These data indicate that repression of PcG target genes is not crucial for the self 

renewing capacity of the ES cells and that pluripotency factors can maintain them alone.  

Nevertheless, the importance of PRC2 and H3K27 methylation mediated 

repression is evident based on early lethality of PRC2 mutant embryos (Faust et al., 

1995; O'Carroll et al., 2001; Pasini et al., 2004). Interestingly, Eed mutant ES cells can 

contribute to chimeric embryos, but were not detected in all organs (Morin-Kensicki et 

al., 2001). Therefore, the key developmental function of PRC2 may be the regulation of 

the differentiation. Correct establishment of bivalent domains at the pluripotent pre-

implantation stage may be crucial for this process.  However, subsequent maintenance 

of repression and establishment of new bivalency is equally important (Ezhkova et al., 

2009; Mikkelsen et al., 2007; Mohn et al., 2008). Finally, the removal of H3K27me3, by 

JMJD3, from the repressed target genes and the resolution of bivalent domains are 

required for the neuronal differentiation, emphasising the significance of the H3K27me3 

mediated repression (Burgold et al., 2008). 

 

By contrast, deletion studies of homologues PRC1 components Ring1A and Rnf2 

showed that they are required for maintenance of ES cells (Endoh et al., 2008; van der 

Stoop et al., 2008). The severity of the phenotype varies between the studies. One 

mutant cell line shows defect in maintaining pluripotency and differentiates 

spontaneously, whereas the other one does not survive the deletion (Endoh et al., 2008; 

van der Stoop et al., 2008, respectively). A link between PRC1 and the ES cells 

pluripotency circuit was also analysed using cells deficient for Oct4. Oct4 was found to 

be necessary for Ring1a and Rnf2 recruitment to target genes, confirming that 

pluripotency factors act upstream of Polycomb complexes (Endoh et al., 2008).  

 

Patterns of H3K4 methylation in pluripotent and differentiated cells   

Multiple genome wide studies showed that H3K4 methylation marks the majority 

of genes both in pluripotent and differentiated cells (Barski et al., 2007; Guenther et al., 

2007; Mikkelsen et al., 2007; Mohn et al., 2008; Orford et al., 2008; Pan et al., 2007; 

Weber et al., 2007; Zhao et al., 2007). However, the role of this mark seems to depend 

on the promoter sequence. As described above, promoters with high CpG content are all 
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marked by H3K4 methylation. Many of these genes have house keeping function, and 

for these genes, the level of H3K4 methylation correlates with expression (Weber et al., 

2007). A class of developmental regulators that is also marked by H3K27 methylation 

shows relatively lower levels of H3K4 marking (Zhao et al., 2007).  On promoters with 

low CpG content, the presence of H3K4 methylation correlates with expression and the 

majority of these genes have tissue specific functions (Weber et al., 2007).  

H3K4 methylation localises around transcription start site (TSS), with slight 

differences between di- (H3K4me2) and tri- (H3K4me3) methylation states. H3K4me2 

shows broader distribution, whereas H3K4me3 shows a clear peak downstream of the 

TSS. Both marks are depleted from the TSS itself, likely to reflect nucleosomal depletion 

on active genes. On the majority of genes both H3K4me2 and H3K4me3 are present 

(Barski et al., 2007; Orford et al., 2008). However, the study of Orford and colleagues 

indicates a specific role for H3K4me2 on promoters with low CpG content. H3K4me2 

and H3K4me3 occupancy was analysed in isolated populations of cells at subsequent 

stages of erythroid differentiation. At a progenitor stage H3K4me2 alone is detected at a 

subset of inactive promoters with low CpG content. Some of these genes get activated 

and gain H3K4me3 in differentiated cells, whereas other remain silent and loose the 

mark, in accordance with the lineage specific expression. Therefore, the presence of 

H3K4me2 in the absence of H3K4me3 is proposed to represent a poised state (Orford et 

al., 2008).  

Similar to H3K4 methylation H3K27 di and tri methylation states co-localise 

largely in the mammalian genome and are both associated with repressed genes (Barski 

et al., 2007). Generally, H3K27 methylation is distributed over a broader region around 

the TSS than H3K4 methylation. Interestingly, mono methylation of H3K27 has been 

found on active promoters (Barski et al., 2007).     

        

1.3 Histone methylation marks as a part of the cellular memory 

 

Based on the described H3K4 and H3K27 methylation patterns in ES cells and during 

differentiation there is a potential role for these marks in the maintenance of specific 

expression states. Close association with DNA and relative stability of lysine methylation 

makes it a candidate for a carrier of heritable epigenetic information. To fulfil this 

function, patterns of histone modifications should be propagated during the cell division.  
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1.3.1 Propagation of epigenetic marks during replication  

 During the S phase of the cell cycle, DNA is replicated in a semi-conservative 

manner (Watson and Crick, 1953).  DNA Polymerases synthesize DNA on both strands, 

in a continuous mode on the leading strand and discontinuous on the lagging strand. 

They are assisted by the DNA processivity factors PCNA (proliferating cell nuclear 

antigen) that encircle DNA and greatly increase efficiency of the polymerases. PCNA 

interacts directly with a number of proteins involved in many different cellular processes, 

including chromatin remodeling and modifying enzymes (reviewed in (Moldovan et al., 

2007)).  

 

Replication of DNA methylation patterns 

Similarly to the DNA, DNA methylation marks are replicated in a semi-

conservative manner. This is possible due to the symmetrical distribution of methyl 

groups on two cytosines, in the CpG di-nucleotides. Each strand inherits therefore a 

template of DNA methylation pattern, which is immediately re-established on both newly 

replicated strands. This process is mediated by Dnmt1 (DNA methyltransferase1) which 

interacts with the hemi-methylated DNA (CpG with one of two symmetrical methyl 

groups) and with PCNA (Chuang et al., 1997). However, the mechanism of inheritance 

of histones and their marks, during replication, is not well understood.  

 

Supply of histones during the replication 

In contrast to multiple histone variants, which are incorporated during specific 

chromatin processes and are localised on discrete sites in the genome, canonical 

histones are those which contribute to the vast majority of the nucleosomes and are 

deposited on the newly replicated DNA. Histone H3 has four major variants: two 

canonical H3.1 and H3.2, H3.3 deposited on the sites of active transcription (Ahmad and 

Henikoff, 2002) and CENP-A associated with centromeric sequences (Sullivan et al., 

1994).  

Just before the entry into the S phase the level of canonical histone transcripts 

rapidly increases (DeLisle et al., 1983). The onset of expression of histone genes is 

tightly linked to the cell cycle and depends on the phosphorylation of the nuclear factor 

NPAT (nuclear protein, ataxia-telangiectasia locus) by Cycline E-CDK2 (cycline-

dependent kinase 2) (Ma et al., 2000; Zhao et al., 2000). The levels of histone proteins 

are further finely regulated during mRNA processing, translation and mRNA degradation. 
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All these modes of regulation have been shown to depend on a unique stem loop 

structure at the 3‟ end of the histone transcripts (Gallie et al., 1996; Pandey and Marzluff, 

1987). This 26 nt long motif provides a binding site for SLBP (stem-loop binding protein) 

that participates directly in translation and degradation of histone transcripts (Cakmakci 

et al., 2008; Mullen and Marzluff, 2008). The mRNAs of replication-dependent canonical 

histones are the only nuclear transcripts that lack the poly-A tail. The stem loop 

structure, which is present instead at the 3‟ end, might have evolved to allow a 

coordinated regulation of histone levels, crucial for the successful completion of the S 

phase (reviewed in (Marzluff et al., 2008)).  

 New nucleosomes are assembled by association of DNA with a tetramer of 

histones H3.1 and H4 (two of each), which also exist in an intermediate H3.1–H4 dimeric 

form, followed by the incorporation of two H2A and H2B dimers. As H2A-H2B dimers are 

dynamically exchanged also outside of the S phase, the H3 and H4 status is probably 

more directly dependent on the replication (Kimura and Cook, 2001). 

Histones are recruited to the replicating chromatin in a complex with specific 

binding factors – histone chaperons. Histones H3.1 and H4 are deposited by a 

coordinated action of two chaperons CAF1 (chromatin assembly factor 1) and ASF1 

(antisilencing function 1), which both interact with the replication machinery (Groth et al., 

2007; Shibahara and Stillman, 1999). It is not clear if primarily H3.1 and H4 are supplied 

as dimers or as tetramers. H3 and H4 exist as a stable tetramer in solution, also in the 

absence of DNA (Baxevanis et al., 1991). However in vivo, in a complex with histone 

chaperons, H3 and H4 are detected as dimers (Tagami et al., 2004). H2A and H2B 

dimers are deposited by another histone chaperone NAP1 (reviewed in (Zlatanova et al., 

2007)). 

 

Replication of histone methylation patterns 

There are several models proposed for the distribution of old versus newly 

assembled nucleosomes during the replication. They can be either randomly distributed 

on the two daughter strands, or if H3-H4 dimers are released after passing of the 

replication fork, mixed “new-old” nucleosomes may be assembled. The third possibility 

would be, that one of the daughter strands inherits all of the old nucleosomes whereas 

the other one only the new ones (reviewed in (Probst et al., 2009)).  
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 In any of these models, post translational modifications on old nucleosomes can 

serve as a template for modification of new histones, either in cis (inter- or intra- 

nucleosomal) or in trans (between the strands).  

Newly synthesized histone H3 is predominantly supplied in a not modified state 

(Loyola et al., 2006). In contrast, histone H4 carries a conserved set of acetylated 

lysines 5 and 12. These marks are removed upon incorporation of the H4 into 

nucleosomes (Loyola et al., 2006; Sobel et al., 1995). The only modification found on 

H3.1/2, in a non-nucleosomal fraction of histones, was H3K9me1, whereas H3.3 was 

acetylated at that residue. Importantly, H3K9me3 was not detected on any of H3 

variants, suggesting that higher methylation states are acquired in the context of 

chromatin. Consistently, authors showed preference of Suv39H1 (H3K9 HMT) for a 

mono methylated substrate. In this model acetylation of K9 at histone H3.3 would 

prevent it from the acquisition of the repressive mark (Loyola et al., 2006).  

 At pericentric heterochromatin, Suv39h1/2 mediated H3K9me3 recruits binding 

factor HP1. HP1 interacts with Suv39h1/2 leading to new methylation events and a self-

reinforcing spreading of heterochromatin (Bannister et al., 2001; Lachner et al., 2001). 

The same mechanism could operate to re-establish H3K9me3 pattern after/during the 

replication. Both inherited H3K9me3, on old histones, and H3K9me1, on newly 

incorporated histones, could be used as temples (Loyola et al., 2006). Indeed, HP1 was 

found to interact with H3.1/2 chaperone CAF1 and to be required for the S phase 

progression (Murzina et al., 1999; Quivy et al., 2008). Other H3K9 HMTs, SETDB1 (also 

known as ESET) and G9a are also interacting with the replication machinery (Esteve et 

al., 2006; Sarraf and Stancheva, 2004). These enzymes are responsible for setting the 

repressive H3K9 methylation at promoters (Rice et al., 2003; Wang et al., 2003). Their 

activity along with the replication fork can act both, to propagate H3K9me2/3 mark on 

repressed genes and also to create an intermediate H3K9me1 substrate for Suv39H1 

(Esteve et al., 2006; Loyola et al., 2009; Sarraf and Stancheva, 2004). Importantly, G9a 

was shown to interact with Dnmt1 in the course of replication, indicating that the 

deposition of new marks on histones and on DNA is a coordinated process (Esteve et 

al., 2006). 

A similar mechanism of the modification spreading, along with the replication, 

was recently proposed for H3K27me3. Hansen and colleagues showed that PRC2 

complex binds its own product H3K27me3 and co localises with the sites of on-going 

transcription. Moreover, they showed that PRC2 components are required to transmit 
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H3K27me3 and the associated repressed state, of a reporter gene, to the next cell 

generation. This observation leads to a hypothesis, that newly deposited histones are 

targeted by Ezh2, present at a neighbouring nucleosome (Hansen et al., 2008). The 

model offers an attractive mechanism for the maintenance of Polycomb mediated 

repression, which is observed during development and differentiation.    

 

1.3.2 Incorporation of new histones outside of the S phase 

There are multiple variants of histones H3, H2A and H2B that are incorporated 

into the chromatin outside of the S-phase. They are associated either with a specific 

chromatin processes like transcription and DNA repair, or appear at specific phases of 

development. Several of these variants are playing roles in the germ line differentiation, 

which is described in the next chapter. Importantly, as these histones can not be 

incorporated during the replication, their transmission to the next generation of cells is 

challenged.  

At the sites of ongoing transcription, H3 variant, H3.1/2, is exchange for H3.3 

(Ahmad and Henikoff, 2002, Janicki et al., 2004, Wirbelauer et al., 2005). Two canonical 

H3 variants H3.1 and H3.2 differ only in one amino acid. In contrast, H3.3 differs at 4 

and 5 amino acid positions, compared with H3.2 and H3.1 respectively. Three of these 

substitutions, lying in the core domain of the histone, determine different deposition 

pathways (Ahmad and Henikoff, 2002). H3.1/2 is deposited by the replication dependent 

pathway involving CAF1 histone chaperone, whereas H3.3 by the replication 

independent pathway, involving HIRA chaperone (Tagami et al., 2004).  

H3.3 is retained on active genes during the mitotic shutdown of transcription, 

suggesting that genes marked by H3.3 will be reactivated in the next cell generation 

(Chow et al., 2005). However, since H3.3 can not be propagated during the replication, 

inheritance of active state must involve H3.1/2. Studies of isolated oligonucleosomes 

revealed that H3.3 co-exists with H3.1/2 on the neighbouring nucleosomes and they 

both carry histone marks associated with gene activation (Loyola et al., 2006). This data 

suggests that even after “dilution” of H3.3 with H3.1/2, the active state of a gene is 

preserved. It remains a question whether and when H3.1/2 is exchange back to H3.3 

after the replication and if this process is coupled with the transcription. It is also not 

clear when and how is the spreading of active marks achieved.  

In a recent study Ng and colleagues addressed these questions by analysing the 

mechanism of an uncompleted reprogramming of the genome after the nuclear transfer 



 29 

(NT) in Xenopus (Ng and Gurdon, 2008). They analysed the chromatin status of the 

MyoD locus, which show aberrantly high expression in cloned embryos. The gene is 

normally highly expressed in endodermal cells, from which the nucleus was taken for the 

NT. By injecting a tagged histone H3.3, following the NT, they could show that the 

aberrant expression of MyoD correlates with the incorporation of the histone H3.3 at the 

promoter of MyoD at the blastula stage. Furthermore, injection of the increased amounts 

of H3.3 led to a higher proportion of embryos (53% vs. 73%) with aberrant MyoD 

expression, arguing that H3.3 has a role in the maintenance of the memory of an active 

state.   

To prove a role of H3.3 not only in the maintenance but also in the transmission 

of this memory, the authors overexpressed a mutated version of H3.3 in the embryos 

from which the donor nuclei were taken. Substitution of the lysine 4 with the glutamic 

acid did not affect the transfer efficiency, but led to a reduced number of embryos with 

the aberrant expression of MyoD. These data indicate that lysine 4 of H3.3 may act as 

an epigenetic mark for the inheritance of an active transcriptional state. Furthermore, the 

authors propose a model in which the methylation of lysine 4 serves as a mark for the 

recruitment of new H3.3 and therefore contribute to the spreading of an active state (Ng 

and Gurdon, 2008). However, as pointed out in the preview to the (Ng and Gurdon, 

2008) publication, the observations derived from the experiments with the exogenous 

tagged histone H3.3 may not illustrate the physiological situation (Lacoste and Almouzni, 

2008).  

 

1.4 Epigenetic events in the male germ line  

 

1.4.1 Primordial germ cells – a balance between pluripotency and germ cell 

commitment  

 

Specification of primordial germ cells (PGCs) 

Primordial germ cells (PGC) are the founder cells of the germ cell lineage. 

Through oogenesis and spermatogenesis they give rise to mature gametes.  In 

D.melanogaster and C.elegans, PGCs are specified already in the zygote by 

asymmetrical distribution of maternal factors in the cytoplasm (so-called germ plasm) 

(reviewed in (Seydoux and Braun, 2006)). In mice PGCs emerge as a group of around 

40 cells in the extra-embryonic mesoderm at embryonic day E7.25 (Ginsburg et al., 
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1990). Murine PGCs develop from undifferentiated embryonic cells, induced to become 

germ cells by extra-cellular signals. A coordinated pattern of the signalling molecules 

BMP4, BMP8b and WNT3, provides a defined zone in the embryo where precursors of 

PGCs arise at the embryonic day E5.5 (Ohinata et al., 2009). This specific pattern of 

morphogens is necessary for germ cell specification. Knock-out animals lacking either 

one of these factors do not develop the germ line (Lawson et al., 1999; Liu et al., 1999; 

Ying et al., 2000). In response to BMP signalling, precursors of PGCs start to express 

Blimp1 (Prdm1) and Prdm14, two master regulators of PGC specification (Ohinata et al., 

2005; Yamaji et al., 2008).  

 

The major event in the establishment of the germ cell fate is the repression of the 

mesodermal expression program. Deletion studies showed that Blimp1 plays a major 

role in repressing the transcription of Hox1a, Hoxb1, Evx1 and multiple other somatic 

determinants (Kurimoto et al., 2008; Ohinata et al., 2005). The repression of the somatic 

program is a gradual process and mesodermal markers like T (brachyury) and Fgf8 are 

initially expressed in PGCs, but subsequently also get down regulated (E8.25) (Saitou et 

al., 2002; Yabuta et al., 2006). The mechanism by which Blimp1 represses transcription 

is only partially understood. Although Blimp1 has a histone methyltransferase motif, a 

SET domain, it does not exhibit any methyltransferase activity. It is proposed that Blimp1 

acts on chromatin through its interaction partners. In a recent study, a previously 

unknown Blimp1-Prmt5 complex has been identified in primordial germ cells (Ancelin et 

al., 2006). Prmt5 is a histone-arginine methyltransferase that mediates symmetrical di-

methylation of arginine 3 of histones H2A and H4. This modification was detected in 

PGCs between days E8.5 and E11.5. Using a ChIP assay, the complex was detected on 

one of the repressed genes Dhx38 at the day E10.5 (Ancelin et al., 2006). This complex 

was translocated to the cytoplasm at E11.5, concomitant with the activation of Dhx38. 

Even though this study partially reveals the mechanisms of Blimp1 mediated repression, 

it remains a question what the mode of action of Blimp1 at the time of germ cells 

specification at day E7.5 is.  

Coupled with the repression of mesodermal-specific genes, there is up-regulation 

of other genes, including Stella (Dppa3), Fragilis, Tnap, Kit. Importantly, the main 

pluripotency factors Nanog and Sox2 get up-regulated (Yabuta et al., 2006). Expression 

of Oct4, which is progressively repressed in the embryo, by embryonic day E7.5, is 

exclusively maintained in PGCs (Yeom et al., 1996). Continued Oct4 expression is 
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required for the survival of PGCs as Oct4 null germ cells undergo apoptosis (Kehler et 

al., 2004). Thus, unlike the surrounding somatic cells, which gradually restrict their 

developmental potential, PGCs partially re-establish pluripotency. Consistently, 

pluripotent embryonic germ cells (EG) can be derived in vitro from PGC isolated 

between days E8.5 and E11.5 (Durcova-Hills et al., 2006; Matsui et al., 1992). EG cells, 

like ES cells can contribute to chimeras when injected into a blastocyst (Matsui et al., 

1992). Yet, during their derivation EG cells are reprogrammed by signalling factors like 

LIF and FGF-2. PGCs themselves are not equally pluripotent and can not contribute to 

chimeras (Durcova-Hills et al., 2006).   

 

Epigenetic reprogramming of migrating PGCs 

Following their specifications around embryonic day 7.25, PGCs proliferate and 

migrate to the developing gonads between days E7.5 and E10.5. During this migratory 

phase PGCs undergo extensive epigenetic reprogramming (Hajkova et al., 2008; Seki et 

al., 2005; Seki et al., 2007).   

There is a global loss of the repressive mark H3K9me2 from day E7.5 onwards 

(Hajkova et al., 2008; Seki et al., 2005). Several JmjC domain histone de-methylates 

were screened for their expression during this process, but none of them showed PGC 

exclusive expression. The loss of K9 methylation can be attributed to the PGC specific 

down-regulation of Glp, a histone methyltransferase which in a complex with G9a 

mediates H3K9 dimethylation (Seki et al., 2007). Also, an increase of H3K9 acetylation 

was observed during that time. Therefore, a competition between the acetylation and 

methylation may enhance the erasure of H3K9me2. Although, it can not be ruled out that 

the acetylation follows the removal of methylation from H3K9 (Hajkova et al., 2008; Seki 

et al., 2005). Global DNA methylation is another repressive mark that is disappearing 

progressively in migrating primordial germ cells. At the same time, the maintenance DNA 

methyltransferase Dnmt11, is transiently down regulated and the de-novo DNA 

methyltransferases Dnmt3b and Dnmt3a are suppressed and absent, respectively (Seki 

et al., 2005). By contrast, H3K27me3 is up-regulated from day E8.25 onwards. It 

possibly compensates the erasure of H3K9me2 and DNA methylation (Hajkova et al., 

2008; Seki et al., 2005). H3K27me3 in PGCs is probably mediated by Ezh2, as this 

enzyme is highly expressed at that time (Yabuta et al., 2006). High levels of H3K27 

methylation resemble the situation in ES cells and may contribute to the acquisition of 

pluripotency. However, a comparison of the modification status at a single gene level is 



 32 

needed to confirm this hypothesis. The development of sensitive ChIP-seq protocols 

may soon provide methods to address this question.  

At the time of epigenetic reprogramming, a transient repression of RNAPII 

dependent transcription is observed (Seki et al., 2007). The period of transcriptional 

quiescence corresponds to the gap between the erasure of H3K9me2 and the 

establishment of H3K27me3 and may provide a mechanism to prevent miss-regulation 

of gene expression. Interestingly, the level of H3K4 methylation is continuously high in 

migrating PGCs. Therefore the down regulation of transcription is neither H3K4 

dependent nor causes a decrease of this active chromatin mark (Seki et al., 2007).   

The epigenetic reprogramming is not entirely synchronised between the PGCs. 

The proliferation rates vary between the cells as well. It was observed that at a certain 

time point during the migration, individual cells enter a prolonged period of the G2 

phase. This period may provide a window of opportunity for the reprogramming events to 

take place (Seki et al., 2007).  

 

X chromosome reactivation 

The reprogramming events described so far are taking place in both male and 

female embryos. However, in the female germ line an additional event of X chromosome 

re-activation is observed (de Napoles et al., 2007; Monk and McLaren, 1981; Sugimoto 

and Abe, 2007). In female mammals one of two X chromosomes is inactivated during 

early embryonic development in order to compensate the gene dosage difference 

between XY males and XX females. This process is mediated by epigenetic 

mechanisms and is initiated by the expression of the non-coding RNA Xist, followed by 

the establishment of silent chromatin characterised by high levels of H3K27me3, 

H2AK119ub, H4K20me1. The silencing is maintained by subsequent changes in 

chromatin, including the incorporation of the H2A variant macroH2A, hypoacetylation of 

H4 and DNA methylation of CpG islands (reviewed in (Wutz and Gribnau, 2007)).  

At the time of female PGCs specification, inactivation of the X has already been 

initiated in the embryo. Starting from embryonic day E7 the process of re-activation is 

observed in PGCs (de Napoles et al., 2007; Sugimoto and Abe, 2007). Gradual re-

establishment of equal expression levels at both X chromosomes is observed, starting 

from embryonic day E7.75 (Sigimoto and Abe, 2007). On other hand, expression of Xist  

RNA, is gradually ceasing from embryonic day E7 onwards (Sugimoto and Abe, 2007). 

Further, PRC2 complex components and H3K27me3 are selectively disappearing from 
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the inactive X chromosome, while they remain at high levels on other chromosomes (de 

Napoles et al., 2007).   

 

Epigenetic events in gonadal PGCs 

After their migration through the embryo, PGCs reach the genital ridges 

(developing gonads) around embryonic day E10.5. Shortly after that, another step of 

epigenetic reprogramming takes place. It has been proposed that the described steps of 

PGC re-programming are linked to the partial re-establishment of the pluripotency, while 

a second step prepares the PGCs to enter the sex specific differentiation programs 

(Hajkova et al., 2008).  

The crucial event occurring at that time is the erasure of the DNA methylation at 

imprinted loci, between E11.5 and E12.5 (Hajkova et al., 2002). Based on stainings with 

an antibody against methylated cytosine, the process of global DNA de-methylation 

initiated during the germ cells migration is continued in post migratory cells (Seki et al., 

2005). However, several retrotransposon sequences from the IAP family have been 

shown to retain high DNA methylation (Hajkova et al., 2002; Lane et al., 2003).  Since 

the imprint erasure at each locus is a rapid process that is completed within one day of 

development, it is proposed to be realized by an active demethylation (Hajkova et al., 

2002). The enzymes that mediate this reaction are currently unknown. The process 

might be enhanced by the absence of de-novo methyltransferases Dnmt3a and Dnmt3b, 

which are not detectable in the nuclei of PGCs at the time of imprint erasure (Hajkova et 

al., 2002).   

 

At the time of imprint erasures, several changes in global chromatin organisation 

and histone modification status have been observed (Hajkova et al., 2008). At embryonic 

day E11.5, there is a rapid loss of histone H1, followed by the loss of H3K9me3 and 

downregulation of H3K27me3. Moreover, global re-arrangement of the heterochromatin 

is observed. Chromocenters, normally visualised by intensively stained DAPI foci, are 

not easily detectable any more and localise at the nuclear periphery. HP1 and Cbx2, 

which are normally associated with constitutive and facultative heterochromatin, 

respectively, are de-localised from the heterochromatin. The restructuring of chromatin is 

transient, with most PGCs regaining the typical modification status and the 

heterochromatin arrangement by the embryonic day E12.5 (Hajkova et al., 2008).  
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The observed loss/downregulation of histone modification is proposed to occur 

through a histone replacement mechanism, rather then by an active removal of the 

marks. This model is supported by a concomitant disappearance of the H2A variant 

H2A.Z at the time of chromatin restructuring. Additionally, high levels of histone 

chaperons HIRA and NAP-1 are detected, whereas the CAF-1 subunit p150 is depleted 

from the cell nucleus. Based on its roles in other cell types and its in-vitro interactions, 

NAP-1 may be responsible for the displacement of H2A.Z-H2B dimers and for the 

removal of H1 (Kepert et al., 2005; Levchenko and Jackson, 2004; Park et al., 2005). 

Taken together these data imply that pathways of replication independent histone 

replacement are highly active at the time of chromatin restructuring (Hajkova et al., 

2008).    

   

Germ line sex determination 

At E12.5, the number of germ cells reaches around 2000. At this time point the 

gonads of male and female become physically distinguishable. The choice to commit to 

either germ line is made in PGCs between embryonic day 11.5 and E12.5 in male and 

12.5 and 13.5 in female (Adams and McLaren, 2002). Organ culture experiments 

showed that the commitment of PGCs is dependent on the sex of the gonadal somatic 

cells, rather than the sex of PGCs: XY PGCs can develop as oocytes when aggregated 

with a developing ovary and XX PGCs can develop as prospermatogonia when 

aggregated with a developing testis (Adams and McLaren, 2002).  

In most mammals, somatic sex is determined by the presence or absence of Sry, 

a dominant male-determining gene located on the Y chromosome. In mice, Sry is 

expressed between embryonic day E10.5 and E12.0 in the supporting cells of the gonad, 

before the sexual differentiation of the gonad has occurred. Somatic cells in the gonad 

are also bi-potential and in response to Sry follow rather a male than a female 

developmental pathway. The supporting cell lineage differentiates into Sertoli rather than 

granulose cells, and the steroidogenic precursor cells differentiate into Leydig rather 

than theca cells (reviewed in (Brennan and Capel, 2004)).   

 

Following sex specification, retinoic acid (RA) signaling stimulates female germ 

cells to enter meiosis. RA activates Stra8, which is required for meiosis initiation in both 

males and females (Anderson et al., 2008; Baltus et al., 2006). In males, however, the 

entry into meiosis is suppressed until few days after birth. The repression of RA in the 
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developing testis is achieved through the enzyme CYBP26B1, which degrades RA 

(Bowles et al., 2006). In the absence of RA and no concomitant Stra8 activation, male 

germ cells, which are still highly proliferating at the day E12.5, enter mitotic arrest in G1 

cell cycle phase (McLaren, 1984). In human PGCs, a switch from the proliferative phase 

to the mitotic arrest is observed in an unsynchronized manner between weeks 9 and 18 

of the fetal development (Gaskell et al., 2004).  

 

1.4.2 Spermatogenesis  

 

G1-arrested male germ cells are called pro-spermatogonia or gonocytes. Upon 

birth gonocytes migrate from their original central position in the semniferous tubules 

towards the periphery and populate an area at the basement membrane around post 

natal day 3 to 6 (Bellve et al., 1977). These cells form a pool of undifferentiated, self-

renewing spermatogonia. Besides self-renewing as a population, undifferentiated 

spermatogonia generate differentiating spermatogonia, which then differentiate into 

meiotic spermatocytes, haploid spermatids and spermatozoa. In the semniferous 

tubules, all types of spermatogonia are localized on the peripheral basement membrane, 

and the subsequent cell types are arranged in a sequential order towards the lumen 

(reviewed in (de Rooij, 1998)) (Fig. 3).  

 

Figure 3. Spermatogenesis. (a) A schematic representation of human testis and a cross section of a 

semniferous tubule. Cells from the various stages of the spermatogenic pathway are depicted, from the 

spermatogonial stem cell to the elongating spermatid. In the maturing spermatid, most of the cytoplasm is 

extruded as a cytoplasmic droplet. The sperm are matured through a caput-to-cauda gradient of RNases, 

glycosidases and proteases, where approximately 80% of the sperm achieve competence for motility. In 

humans this is a continual 10-week process. (adapted from (Krawetz, 2005)) (b) Mature human ejaculate 

spermatozoa. (c) Mature mouse epididymal spermatozoa. 
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Spermatogonial stem cells 

Undifferentiated, self-renewing spermatogonia, so called spermatogonial stem 

cells, retain expression of stem cell markers like Oct4, Plzf, Gdnf. They all play an 

essential role in the maintenance of spermatogonial stem cells. Their expression persists 

with various dynamics until the entry into meiosis (Buaas et al., 2004; Costoya et al., 

2004; Meng et al., 2000; Pesce et al., 1998). Transition of undifferentiated 

spermatogonia into differentiating spermatogonia is marked by the expression of Kit, 

also known as c-Kit, a receptor tyrosine kinase. As described, Kit is a marker of PGCs at 

the time of their specification and migration to the gonads. Interestingly, from embryonic 

day E15 to day 3 after birth, Kit expression is reduced, coinciding with the period of germ 

cell quiescence. Expression of Kit is re-established in differentiating spermatogonia and 

continues to be expressed until the onset of meiosis (Prabhu et al., 2006). Multiple 

studies have shown that Kit receptor expression and interaction with Kit ligand (Kitl) are 

essential for both the survival of PGCs and for the progression of spermatogenesis 

(reviewed in (Mithraprabhu and Loveland, 2009)). 

 Interestingly, in the first wave of spermatogenesis, gonocytes proceed directly 

into the differentiating, Kit positive spermatogonia. It has been proposed that two 

specialized niches are established in the neonatal testis – one supporting stem cell 

renewal and another directing differentiation (Yoshida et al., 2006).  

The stem niche established at time of birth is sustaining proliferation and 

maintenance of spermatogonial stem cells throughout adulthood. Pluripotent germ line 

stem cells (GS) can be derived from proliferating spermatogonia in mouse and human. 

These GS cells can be kept in culture and similarly to ES cells contribute to various cell 

lineages of chimeras after injecting into a blastocyst (Conrad et al., 2008; Guan et al., 

2006; Kanatsu-Shinohara et al., 2004). 

 

In the light of the studies on chromatin dynamics in ES cells and during their 

differentiation, it is a vital question, how similar the epigenetic processes involved in the 

spermatogonial stem cell maintenance and their differentiation are. Induced deletion of 

the Mll2 H3K4 methyltransferase in adult mice leads to male and female infertility 

(Glaser et al., 2009).  In males, a developmental block in the differentiation of 

spermatogonial stem cells was observed, with no effect on the self renewing stem cell 

pool. A comparable differentiation defect was observed in the ES cells lacking Mll2 
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(Lubitz et al., 2007). This data suggests that similar epigenetic mechanisms control the 

differentiation capacity of ES cells and spermatogonia.   

During spermatogenesis in Drosophila, a progression from spermatogonia to 

spermatocytes is associated with the binding of testis specific TAFs (TBP associated 

factors) to genes, involved in spermatid differentiation. It has been proposed that TAFs 

activate target gene expression in part by counteracting Polycomb repression (Chen et 

al., 2005). Chromatin immunoprecipitation and deletion studies revealed that testis 

specific TAFs bind to target promoters, reduce binding of PRC1 components, and 

promote local accumulation of H3K4me3, a mark of Trithorax action. Testis TAFs also 

promote relocalization of PRC1 to the nucleoli in spermatocytes (Chen et al., 2005).  

 Both described reports indicate that Polycomb and Trithorax mediated gene 

regulation plays a role in the progression from spermatogonial stem cells to the 

differentiation phases of spermatogenesis. 

 

Re-establishment of paternal imprints 

  DNA methylation on paternally imprinted loci is progressively established in 

quiescence germ cells between embryonic day E14.5 and the newborn stage. At that 

time the de-novo methyltransferases Dnmt3a and Dnmt3b are expressed together with 

an associated protein Dnmt3l (Dnmt3-like). Dnmt3l is related in sequence to Dnmt3a and 

Dnmt3b but lacks enzymatic activity. It is expressed in germ cells specifically at the time 

when the de novo methylation occurs (Bourc'his and Bestor, 2004). In a complex with 

either Dnmt3a or Dnmt3b, it stimulates their activity (Suetake et al., 2004). Germline 

specific knockout studies indicate that Dnmt3a plays a central role in the de-novo 

methylation of all paternally imprinted loci – Rasgrf1, Dlk1-Gtl2, Igf2-H19. Moreover, 

Dnmt3b is required for the methylation of Rasgrf1 (Kaneda et al., 2004; Kato et al., 

2007). Dnmt3L contributes to the methylation of all three loci (Bourc'his and Bestor, 

2004; Kato et al., 2007; Webster et al., 2005). Interestingly, de novo DNA methylation of 

the maternal and paternal alleles of the paternally imprinted Igf2-H19 locus occurs at 

different time points during spermatogenesis. Despite that the inherited DNA methylation 

marks at the ICRs had been erased in primordial germ cells. These data indicate that the 

two parental alleles are not equal at the time point of DNA methylation acquisition. They 

suggest that they possess differential epigenetic marks other than DNA methylation 

(Davis et al., 2000). However, complete DNA methylation on all paternally imprinted 

ICRs was observed at birth and no allelic differences have been reported (Kato et al., 
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2007). This discrepancy may be caused by a different mouse strains used for the 

experiments.   

 

It is currently not known how de-novo methylation enzymes are targeted to the 

imprinted loci. Further, the mechanisms promoting the methylation of paternal ICRs and 

protecting the maternal ones are unknown.  

CTCF is a zinc finger protein that binds with high affinity to DNA. It is ubiquitously 

expressed in somatic cells. Through its insulator function, CTCF mediates intra- and 

inter-chromosomal contacts. It has been implicated in many cellular processes and is 

anticipated to have a major role in global organization of chromatin architecture 

(Reviewed in (Phillips and Corces, 2009)). Among many target sequences, CTCF is 

binding to the unmethylated ICR of the Igf2-H19 locus on the female allele. It has been 

shown to play a major role in protecting this ICR from DNA methylation during 

oogenesis. Both, introduction of point mutations which prevent CTCF binding, and the 

RNAi downregulation of CTCF led to aberrant DNA methylation of the Igf2-H19 ICR in 

the female germline (Fedoriw et al., 2004; Pant et al., 2003).  

A testis specific paralog of CTCF, CTCFL (named also BORIS) is expressed in 

developing male germ cells (Loukinov et al., 2002). The expression of CTCFL starts in 

mitotically arrested gonocytes at embryonic day E14.5 and persists until the 

spermatogonia stage in new born and adult animals. The expression pattern is mutually 

exclusive with CTCF, which is expressed only in Sertoli cells and in post meiotic round 

spermatids (Jelinic et al., 2006). ChIP experiments on embryonic and adult testis 

revealed that CTCFL occupies both Igf2-H19 and Dlk1-Gtl2 ICRs. Since the expression 

timing of CTCFL correlates with the de-novo establishment of paternal imprints, it has 

been proposed that CTCFL plays a role in recruiting the DNA methylation machinery. 

Prmt7, an arginine methyltransferase with mediates dimethylation of arginine 3 of 

histone H4 is proposed to take part in this process. CTCFL interacts with Prmt7 and 

stimulates its activity in vitro. Prmt7 is co-expressed with CTCFL in embryonic and adult 

testis. H4R3me2 was detected in gonocytes and spermatogonia and association of 

H4R3me2 with Igf2-H19 and Dlk1-Gtl2 ICRs in the adult testis was demonstrated by 

ChIP. A direct link between CTCFL, Prmt7 and de-novo DNA methylation was 

demonstrated by nuclear co-injection of expression vectors encoding CTCFL, Prmt7, 

and Dnmt3a, -b and -l, in Xenopus oocytes, resulting in the de-novo methylation of Igf2-

H19 ICR provided on a plasmid (Jelinic et al., 2006). 
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CTCFL belongs to a group of cancer- testis genes. These genes are normally 

present only in the male germ line, but are also expressed in cancer cell lines and in 

primary tumors. Using such a cancer cell line, an interaction between CTCFL and 

H3K4me2 histone methyltransferase Set1a was demonstrated (Nguyen et al., 2008). 

Both CTCFL and Set1a were shown to occupy Igf2-H19 ICR. It was proposed that 

CTCFL recruits Set1a to methylate H3K4 on this locus (Nguyen et al., 2008).  The 

observation is not consistent with a hypothesis that CTCFL recruits the DNA methylation 

machinery to the ICRs in male germ cells. Several evidences, described in detail in the 

previous chapter, indicate mutually exclusive targeting of DNA methylation and H3K4 

methylation. The observed discrepancy may either be caused by a cancer specific 

interaction of CTCLF or may indicate that the establishment of DNA methylation on the 

Igf2-H19 ICR in the male germ line involves a phase of H3K4 methylation. It is currently 

not known what the other targets of CTCFL are and what effect it has on the chromatin 

of these loci. Subsequent actions of CTCFL and CTCF may play an important role in the 

organization of chromatin architecture throughout spermatogenesis.  

A detailed ChIP study of the histone modification status of the paternally 

methylated ICRs during spermatogenesis has been performed (Delaval et al., 2007). As 

a control two maternally methylated ICRs were included in the analysis. Three 

developmental stages, meiotic spermatocytes, post meiotic round spermatids and 

elongating spermatids, were analysed. H3K4me2 was found enriched on maternal but 

not paternal ICRs in all stages, consistent with the mutually exclusive targeting of DNA 

methylation and H3K4 methylation. The same pattern was observed for H3K9 

acetylation. It has been proposed that the methylation of H3K4 at maternal ICRs protects 

them from de novo DNA methylation. Interestingly, H3K4me2 status in spermatogonia 

was also analysed. Maternal ICRs showed again higher enrichment of H3K4me2, but 

also the Igf2-H19 ICR was relatively more enriched than the other two paternal ICRs 

(Delaval et al., 2007). This observation together with the CTCFL interaction data 

(Nguyen et al., 2008) and the described delay in acquisition of DNA methylation on the 

maternally inherited Igf2-H19 ICR (Davis et al., 2000), may point to a distinct mechanism 

of the establishment of the Igf2-H19 imprint, which involves transient H3K4 methylation.   

 

De-novo DNA methylation of other than imprinted loci 

Concomitant with the establishment of paternal imprints, all retrotransposon 

sequences undergo de-novo DNA methylation.  Dnmt3a and Dnmt3b have both a role in 



 40 

this process and show specificity towards different types of retrotransposons (Kato et al., 

2007).  Dnmt3l is required for the methylation of all retrotransposon sequences 

(Bourc'his and Bestor, 2004; Kato et al., 2007).  Even though Dnmt3l is not expressed 

beyond the pre-meiotic stage (spermatogonia) of spermatogenesis, knockout studies 

showed that the inefficient silencing of retrotransposons has severe effect on the meiosis 

(spermatocytes). In knockout animals, LINE and IAP retrotransposons were highly 

transcribed in spermatogonia and spermatocytes. The lack of Dnmt3l also caused a 

meiotic failure with wide spread, non-homologues chromosome synapsis and 

progressive loss of germ cells by the mid pachytene stage. It resulted in a complete 

absence of mature sperm in testis of older animals (Bourc'his and Bestor, 2004; Webster 

et al., 2005). Interestingly pericentric tandem repeats (major and minor satellites) were 

not affected and displayed a with wild type-like methylation status (Bourc'his and Bestor, 

2004). However, in another study on the Dnmt3l knockout mouse, aberrant transcription 

of major and minor satellites was observed (Kato et al., 2007). The discrepancy may be 

caused by a different time point of DNA methylation measurement. 

Recently, a link between retrotransposon silencing and the small RNA pathway 

has been discovered. A family of proteins, called Piwi, involved in small RNA biogenesis 

has been identified in the male germ line, together with a corresponding group of small 

RNAs - piRNAs. Based on knockout studies, Piwi proteins are implicated in the silencing 

of retrotransposons, both via a targeted degradation of retrotransposon transcripts by 

piRNAs and via induced DNA methylation of retrotransposon sequences (Aravin et al., 

2006; Aravin et al., 2007; Kuramochi-Miyagawa et al., 2001).   

 

At the prenatal gonocyte stage, not only imprinted loci and retrotransposons are 

methylated. Based on stainings with an antibody against methylated cytosine, a genome 

wide acquisition of DNA methylation was reported (Coffigny et al., 1999). Further, 

analysis using methylation sensitive restriction enzymes revealed that both de novo 

methylation and demethylation occur in spermatogonia and spermatocytes in the early 

meiotic prophase (Oakes et al., 2007). Alterations include predominantly non-CpG island 

sequences from both unique loci and repetitive elements. These modifications are 

progressive and are almost exclusively completed by the end of the pachytene 

spermatocyte stage (Oakes et al., 2007). Importantly, expression of the Dnmt1, which 

was silenced in G1 arrested gonocytes, is reestablished after birth. Dnmt1 activity 
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assures maintenance of the DNA methylation patterns of proliferating spermatogonia (La 

Salle et al., 2004).  

  

Dynamic changes in histone PTMs and histone variants during meiosis  

In the male germ line, the entrance into the meiotic prophase initiates the meiotic 

cell division which lasts for around 8 days. During the meiotic prophase, homologues 

chromosomes align in a process called synapsis and fragments of chromosomes are 

exchanged through homologues recombination. Subsequently, germ cells undergo two 

successive rounds of cell division, in which homologues chromosomes and their 

respective sister chromatids separate. Meiosis results in the production of four haploid 

spermatids.  

 Several histone methyltransferases have crucial functions in the progression of 

the meiotic prophase. In mice deficient for both H3K9 tri-methyltransferases genes 

Suv39h1 and Suv39h2, spermatogenesis is arrested at the meiotic pachytene stage 

(Peters et al., 2001).  Spermatocytes lack pericentric H3K9me3, and chromosomes 

undergo non-homologous interactions, predominantly at centromeres. These results 

suggest that Suv39h1/h2 mediated H3K9me3 at pericentric chromatin is necessary for 

the proper progression of meiosis (Peters et al., 2001).  

Abnormalities in meiotic prophase progression have been also demonstrated in 

mice lacking the H3K9 mono- and dimethylase G9a (Tachibana et al., 2007).  

Spermatocytes were arrested at the early pachytene stage. The synapsis between 

homologous chromosomes was not properly formed. Upregulation of several genes has 

been also observed, suggesting that silencing of these genes via G9a mediated H3K9 

mono- and dimethylation may be required for proper synapsis (Tachibana et al., 2007). 

Prdm9 (also known as Meisetz), a germ line specific H3K4 tri-methylase, is also 

crucial for synapsis and recombination of homologous chromosomes during meiotic 

prophase (Hayashi et al., 2005). In Prdm9-deficient spermatocytes, a number of genes, 

including those that are specifically expressed in meiotic germ cells, were repressed. 

These results suggest that Prdm9 mediated H3K4 methylation is involved in the 

activation of genes important for synapsis and recombination (Hayashi et al., 2005). 

 

 In contrast to a complete synapsis between homologues chromosomes, X and 

Y chromosomes pair only at a short homologues fragment called the pseudo-autosomal 

region (PAR). The unpaired domains of the sex chromosomes undergo a specific 



 42 

silencing process, called meiotic silencing of unsynapsed chromosomes (MSUC), which 

in case of X and Y is called meiotic sex chromosome inactivation (MSCI) (Monesi, 1965; 

Turner et al., 2000; Turner et al., 2005). At the beginning of the meiotic prophase, both 

autosomes and sex chromosomes are transcriptionally active. When the synapsis of 

autosomes is completed, X and Y chromosomes are rapidly silenced and 

compartmentalized into a peripheral nuclear subdomain called the XY-body (Solari, 

1974). MSCI is associated with extensive remodeling of chromatin including changes in 

histone modifications and the incorporation of several histone variants. One of them is 

the H2A variant, H2AX (Fernandez-Capetillo et al., 2003; Turner et al., 2004). At the 

onset of meiotic prophase H2AX localize to sites of DNA double-strand breaks, where it 

gets phosphorylated at Ser139 (γH2AX) and recruits the DNA repair machinery 

(Mahadevaiah et al., 2001). γH2AX disappears from autosomes when synapsis is 

completed, but reappears or remains present on sex chromosomes when the XY body is 

formed. Analysis of mice lacking H2AX demonstrated that it is essential for XY body 

formation and MSCI (Fernandez-Capetillo et al., 2003).  

 At or shortly after the initiation of MSCI, several changes in the histone 

modifications status are detected.  These include ubiquitination of H2A, di-methylation of 

H3K9, deacetylation of histones H3 and H4 and the disappearance of H3K27 

trimethylation (Baarends et al., 1999; Khalil et al., 2004; Takada et al., 2007). Changes 

also include the incorporation of histone H2A variant macroH2A (Hoyer-Fender et al., 

2004). This extensive chromatin remodelling is concomitant with chromosome wide 

nucleosomal eviction at the XY body (van der Heijden et al., 2007). This was 

demonstrated by the loss of H3.1/2 from the sex chromatin and the appearance of H3.3, 

together with transient presence of H3.3 chaperone HirA. Also a temporary absence of 

several histone modifications was observed, concomitant with the disappearance of 

H3.1/2. Therefore, part of the rapid changes in the histone modification status at the XY 

body takes place due to a histone replacement mechanism (van der Heijden et al., 

2007).  

After completion of meiosis, a partial re-activation of X-chromosome is observed. 

Based on microarray expression profiling, approximately 13% of the X-linked genes are 

re-expressed in post-meiotic period (Namekawa et al., 2006). In a recent study, Mueller 

and colleagues identified a number of X-linked multi-copy gene families, which show 

post meiotic re-activation. In round spermatids, these genes showed much higher 

expression level than the single copy genes. The authors suggest that the amplification 
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of genes on the X chromosome compensates for the post-meiotic repression (Mueller et 

al., 2008).  Despite the continued repressed status of the majority of X-liked genes, there 

are multiple changes in the chromatin of the XY body occurring after meiosis. γH2AX, 

macroH2A and H2A ubiquitination are lost, whereas H3.3 and H3K9 methylation persist 

(Khalil et al., 2004; Namekawa et al., 2006; van der Heijden et al., 2007).  Furthermore, 

another H2A variant H2A.Z is incorporated. H2A.Z is first expressed during the meiotic 

prophase, but at that time it is excluded from the XY-body. In round spermatids the 

expression of H2A.Z rapidly increases. At that stage H2A.Z accumulates at the sex 

chromosomes (Greaves et al., 2006). Therefore, nucleosomes of the post-meiotic X and 

Y are carrying simultaneously H3.3 and H2A.Z histone variants. This combination has 

been shown to increase nucleosomal instability (Jin and Felsenfeld, 2007). Such 

unstable nucleosomes may facilitate the global chromatin remodeling taking place in the 

following stages of spermatid elongation.  

 

Global chromatin remodelling at last stages of spermatogenesis 

After completion of meiosis round spermatids enter a process of spermiogenesis, 

which involves major structural changes in the nucleus and in the cytoplasm. In the 

successive stages of spermiogenesis spermatids elongate and shed off their cytoplasm. 

The nucleus is compacted into a volume of about 5% of that of a somatic cell nucleus. 

This remarkable condensation is achieved by replacing histones with protamines 

(Marushige and Marushige, 1975). Protamines are arginine- and cysteine-rich proteins 

that organize the haploid male genome into a highly specialized, “doughnut-shaped” 

chromatin structure (Allen et al., 1993; Haaf and Ward, 1995). Protamines are present in 

the sperm of multiple species from echinoderms to primates and their sequence is highly 

conserved (reviewed in (Ausio, 1999)). 

Unlike many other mammals, which express only protamine 1 (Prm1), mouse 

and human genomes encode for two different protamine molecules, Prm1 and Prm2. 

Both are encoded by relatively short genes comprising of two exons. Prm2 encodes a 

precursor protein that binds to DNA and during the last stages of spermatid elongation 

undergoes proteolytic processing. The mature forms of Prm1 and Prm2 bind to 10 and 

15 bp of DNA, respectively. This binding neutralizes the negative charge of the DNA 

backbone and enables the DNA molecules to pack closely together. In a final step of 

protamine mediated compaction, which is happening after the spermatozoa leave the 
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testis and proceed through epididymis, a network of bisulfate bonds is formed between 

the adjacent protamine molecules (Reviewed in (Balhorn, 2007)).  

Besides providing a high genome compaction, very little is known about the 

functions of protamines in the reproductive process. It is not known whether the 

establishment of protamine domains serves a function in the epigenetic gene regulation, 

especially in the dramatic transition from the spermatogenic differentiation program to 

embryonic totipotency. Both protamines are essential for normal sperm development. 

Haploinsufficiency of either Prm1 or Prm2 causes abnormal sperm morphology, reduced 

sperm number and infertility (Cho et al., 2001). Furthermore, the proportion between the 

two protamines has been shown to be critical for fertility. Spermatozoa with reduced 

levels of Prm2 have increased DNA damage and incomplete chromatin condensation. 

Embryos fertilized by these spermatozoa through an intra-cytoplasmic sperm injection 

(ICSI) do not develop beyond the blastocyst stage (Cho et al., 2003). Protamines are 

also modified posttranslationally. Prm2 undergoes phosphorylation by CamK4 

(Ca+/calmodulin –dependent protein kinase 4). Disruption of the CamK4 gene in mouse 

results in the failure of the Prm2 incorporation and causes male infertility (Wu et al., 

2000). Therefore, phosphorylation of Prm2 plays a major role in the proper chromatin 

remodeling during spermatogenesis. 

In mammals, histones are not replaced directly by protamines. Transition 

proteins (TP1 and TP2) are intermediates in this process. Targeted mutation of TP1 and 

TP2 indicate that they have largely redundant functions (Yu et al., 2000; Zhao et al., 

2001). Both mutant mice are fertile and display only minor spermiogenesis 

abnormalities. In mice lacking both TPs, protamine deposition proceeds normally, but 

many late spermatids showed DNA breaks, and Prm2 was not posttranslationally 

processed (Zhao et al., 2004). A fraction of spermatozoa could be used for efficient 

fertilization by ICSI, resulting in birth of healthy offspring. However, the number of 

spermatozoa was drastically reduced and the majority of them showed highly abnormal 

morphology, arguing that TPs are required for a normal sperm development and fertility 

(Zhao et al., 2004).  

Expression of both TPs and protamines is tightly regulated during 

spermatogenesis. Global transcription ceases along with the chromatin condensation. 

Therefore, transcription and translation of protamines are uncoupled. Protamine 

transcription starts in fully transcriptionally active round spermatids and the transcripts 

are stored in the cytoplasm as messenger ribonucleoprotein particles (mRNPs). They 
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are activated for translation in elongated spermatids only 1 week later (reviewed in 

(Braun, 2000)). Recently, an H3K9me1/2 de-methylase JHDM2A was shown to be 

involved in the activation of TP1 and Prm1 genes (Okada et al., 2007). Jhdm2a-deficient 

male mice displayed defects in spermatid elongation, including abnormal nuclear 

morphology and were infertile. JHDM2A was shown to bind directly to TP1 and Prm1 

genes, and to be responsible for the reduction of H3K9 methylation at their promoters 

(Okada et al., 2007).  

 

To achieve a global change in chromatin architecture, a sophisticated machinery 

that removes nucleosomes from DNA and incorporates TPs and later protamines must 

exist. As mentioned above, the incorporation of histone variants and changes in histone 

modification status are thought to contribute to this process. In elongating spermatids, a 

wave of global histone acetylation on H2A, H2B, H3 and H4 is observed (Hazzouri et al., 

2000). This acetylation disappears along with the condensation and the histone to 

protamine exchange. Additionally, hyperacetylation of histones has been detected in 

elongating spermatids during spermatogenesis in humans (Faure et al., 2003).  Histone 

acetyltransferases responsible for this process are not known. Cdyl, a histone 

methyltransferase abundantly expressed in mouse testis, may be a candidate. It is 

expressed concomitant with histone H4 hyperacetylation and localises to the nuclei of 

elongating spermatids (Lahn et al., 2002).  

One can speculate that histone acetylation, via destabilizing the interaction 

among nucleosomes and between nucleosomes and DNA, facilitates the removal of 

histones from chromatin. Furthermore, specific chromatin remodelers that interact with 

acetylated histones may play a role in this process. Brdt, a testis specific protein that 

contains two bromodomains, specifically binds the acetylated H4 tail. Interestingly, 

recombinant Brdt was capable of inducing the reorganisation of chromatin in somatic 

cells both in vivo and in isolated nuclei in vitro. This activity was dependent on TSA 

treatment which induces hyperacetylation (Pivot-Pajot et al., 2003). Targeted deletion of 

the first bromodomain of Brdt in mice resulted in male infertility. Additionally several 

abnormalities during spermatid elongation were observed (Shang et al., 2007). These 

data strongly support a model where Brdt has an important function in the acetylation 

dependent chromatin remodelling in elongating spermatids.   
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 Several testis specific variants are expressed during mammalian 

spermatogenesis. For the majority of them the function is not well understood (reviewed 

in (Kimmins and Sassone-Corsi, 2005)). I will shortly describe a few of these variants, 

which may be implicated in the chromatin remodelling. 

H2B variant TSH2B (also known as TH2B) has been detected in human testis 

throughout spermatogenesis and persists in around 20% of the mature spermatozoa 

(van Roijen et al., 1998; Zalensky et al., 2002). Negative correlation between sperm 

chromatin compaction and the TSH2B content has been demonstrated (Singleton et al., 

2007). Therefore, it is not clear to what extend TSH2B is a regular component of the 

mature spermatozoa and to what extend it demonstrates inefficient remodelling of the 

sperm chromatin. Alternatively, the lower compaction of the TSH2B positive 

spermatozoa may serve as an advantage in the chromatin decondensation process after 

fertilisation.   

Testis specific histone H1 variants: H1t, H1T2 and HILS were characterised. H1t 

is expressed exclusively in spermatocytes and spermatids. Targeted disruption of this 

variant in mice did not result in any effect on spermatogenesis or male fertility. The 

overall levels of histone H1 were significantly decreased in spermatocytes and 

spermatids of H1t-null animals, arguing that there was no compensation with other H1 

variants (Fantz et al., 2001). Interestingly, H1t was reported to display the lowest 

condensing effect on chromatin fibres in vitro comparing to other variants, suggesting 

that it may facilitate the histone removal (De Lucia et al., 1994). 

H1T2 is expressed exclusively in round and elongating spermatids and localises 

to chromatin domain at the apical pole. Mice with a disrupted H1t2 gene have reduced 

fertility and show delayed nuclear condensation and aberrant elongation (Martianov et 

al., 2005).  

HILS1 is detected in nuclei of elongating and elongated mouse spermatids. A 

homologus HILS1 gene was also identified in human. Since HILS1 is colocalising with 

TPs and Prm1, it is proposed to have a function in the nuclear condensation during the 

elongation stages (Yan et al., 2003).  

 

In a recent study Govin and colleagues performed a detailed analysis of the 

pericentric heterochromatin (PCH) remodelling at the last stages of murine 

spermatogenesis (Govin et al., 2007).  In round spermatids, PCH is localised into one 

round chromocenter. During spermatid elongation, chromocenter forms a broader 
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domain but can be still observed as a distinct compartment in the middle of the cell. 

During that time PCH becomes enriched with the acetylated histone H4, concomitant 

with the loss of HP1. Yet, H3K9me3 persists. Along with the histone to protamine 

exchange acetylated H4 and H3K9me3 progressively disappear, although data from 

another group and unpublished data from our laboratory suggest that H4 acetylated on 

lysines 8 and 12 persist in the mature sperm ((van der Heijden et al., 2006), U.B and A.P 

unpublished – see Discussion).   

Using a biochemical fractionation followed by fluorescent in situ hybridisation, 

Govin and colleagues demonstrated that during the time of histone to protamine 

transition PCH retains nucleosomal organisation. Consistently, van der Heijden and 

colleagues used a specific antibody to show that chromocenter of elongating spermatids 

is associated with nucleosomes (van der Heijden et al., 2006). Further investigation of 

PCH led to the identification of new histone variants: H2AL1, H2AL2, and H2BL1 (Govin 

et al., 2007). In elongated spermatids, H2AL1 and H2AL2, together with TH2B (mouse 

homolog of TSH2B), are present in a nucleosome-like structure, which does not contain 

histones H3 and H4. This specific structure is observed mainly at the PCH, but is also 

dispersed in other places in the genome. Histone variants H2AL1 and H2AL2 are 

retained in mature sperm and are proposed to guide epigenetic reprogramming of the 

paternal PCH after fertilization (Govin et al., 2007).     

 

Nucleosomal component of the sperm chromatin 

As mentioned above, some histones escape the global remodelling and are 

retained in the mature spermatozoa. Very little is known about their function. They may 

be a remaining of the imperfect chromatin remodelling. However, sequence specific 

localisation of the retained histones argues against such scenario.  

Histones present in mature human spermatozoa were isolated and for the first 

time characterised based on their electrophoreyic mobility and amino acid composition 

(Puwaravutipanich and Panyim, 1975; Tanphaichitr et al., 1978). Further, liquid 

chromatography was applied to purify sperm histones. Subsequent characterisation 

revealed presence of all core histones including H2A.X, H2A.Z and H3.3 variants, but 

excluding histone H1 (Gatewood et al., 1990). Based on these observations histone 

content of the human sperm was estimated as 15%. It has been also demonstrated that 

the retained histones are associated with DNA and form the nucleosomes. Following 

sperm decondensation with reducing agents, beads on a string configuration was 
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observed by electron microscopy (Gusse and Chevaillier, 1980). Furthermore, sperm 

treatment with micrococcal nuclease followed by DNA isolation and electrophoresis 

revealed typical nucleosomal ladder pattern (Zalenskaya et al., 2000). Consistently, the 

chromatin fraction released by the micrococcal nuclease treatment was exclusively 

containing histones and not protamines, as revealed by protein analysis using Acetic 

acid- Urea electrophoresis. 

Several further studies tried to address an essential question - where are the 

retained histones localised?  Atomic force microscopy and in situ hybridisation were 

applied to reveal the human sperm chromatin architecture. These studies led to a model 

where centromeres are organised in a compact chromocenter buried inside the nucleus, 

whereas telomeres are localised at the periphery (Zalensky et al., 1995; Zalensky et al., 

1993). Further, both centromeres and telomeres were shown to be associated with 

histones.  CENP-A a centromeric variant of histone H3 was shown to colocalise with the 

centromeric DNA in decondensed human sperm nuclei (Zalensky et al., 1993). 

Biochemical purification and characterisation of a telomere-binding protein complex from 

the human sperm revealed presence of the histone variant - TSH2B (Gineitis et al., 

2000).  

Very little is known about the histone component of murine spermatozoa. There 

is a common knowledge in the field that the amount of the retained histones is 

approximately 1%, although no solid quantification data has been published so far. In 

situ hybridisation studies revealed similar to human sperm nuclear architecture of the 

murine sperm, with centromeres located in a chromocenter in the middle and telomeres 

associated with the periphery (Haaf and Ward, 1995). Furthermore, presence of histones 

in the chromocenter was demonstrated by immunofluorescence with antibody against 

acetylated histone H4 (van der Heijden et al., 2006). 

This defined architecture of mouse and human sperm may be designed for the 

coordinated unpacking and activation of the male genome after fertilisation. 

Furthermore, nucleosomal configuration of centromeres and telomeres, which are two 

key structural elements of the chromosomes, may assure their proper functionality in the 

embryo.  

 Until very recently only sparse data existed about the potential nucleosomal 

configuration of the gene sequences in mouse and human spermatozoa.  Two groups 

working on human sperm used a low salt extraction to selectively uncover histone 

associated sequences, which were further released by restriction enzyme digestion 
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(Gardiner-Garden et al., 1998; Wykes and Krawetz, 2003). Based on these studies  and 

 globin, Prm1, Prm2 and TP1 loci were reported to be associated with histones. Further 

another group analysed DNA released by the micrococcal nuclease digestion and 

reported that the Igf2 locus is in a nucleosomal configuration (Banerjee and Smallwood, 

1998). In a single study on murine sperm, authors analysed DNA released by an 

endogenous nuclease activity and reported that retrotransposon sequences LINE/L1 are 

associated with histones (Pittoggi et al., 1999).  

    

Two studies addressing the question of histone localisation in mature human and 

mouse spermatozoa have been published in the recent two months (Arpanahi et al., 

2009; Hammoud et al., 2009). As they were not taken into account in the experimental 

design of my thesis I will discuss them in the results and discussion sections.  

  

1.4.3 Dynamics of the paternal chromatin after fertilization  

 After fertilization, paternal protamines are re-exchanged for the maternally 

provided histones. Protamines are shed from the sperm DNA within 30 min. after the 

gamete fusion and completely disappear 50 min. later (van der Heijden et al., 2005). It is 

not known if present in sperm histones are also dissociated from the DNA at that time, 

but several evidences argue that they are retained (see below). Histone chaperon Hira is 

detectable at that time at the paternal chromatin. Consistently, histone H3 variant H3.3 

and not H3.1/2 is incorporated to the paternal chromatin following sperm 

decondensation (Torres-Padilla et al., 2006; van der Heijden et al., 2005). At a global 

level H3.1/2 is detectable on the paternal chromatin only following DNA replication in the 

later zygote. In contrast, the maternal chromatin is enriched in this variant throughout the 

zygotic stage (van der Heijden et al., 2005). The same asymmetry of histone H3 variants 

was observed in human (van der Heijden et al., 2005).  

This configuration allowed to demonstrate the transmission of human sperm 

derived histones to the embryo. After heterologous fertilisation of a mouse oocyte with a 

human spermatozoon, foci of H3.1/2 were detected on the paternal chromatin, arguing 

that these histones are of the paternal origin. The signal persisted during and after the 

incorporation of the maternal histones, suggesting that paternally derived histones are 

not removed during this process (van der Heijden et al., 2008). Unfortunately, due to the 

low levels of histones and the limited antibody sensitivity, the same experiment can not 

be performed using murine spermatozoa.     
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Decondensing sperm forms the paternal pronucleus, which remains separated 

from the maternal genome until the first cell division. Upon sperm entry, the oocyte 

completes the second meiotic division. Half of the genetic material is extruded in a form 

of a second polar body. The second half, remaining in the oocyte, forms the maternal 

pronucleus. Maternal and paternal pronuclei largely differ in their histone modification 

status. Maternal genome is passed on to the embryo in a nucleosomal configuration and 

carries multiple histone modifications. In contrast, on the paternal genome, majority of 

histones are acquired de-novo and gradually become enriched with different 

modifications (Adenot et al., 1997; Cowell et al., 2002).  

 Immediately after incorporation, histones H3 and H4 of the paternal pronucleus 

acquire acetylation at various residues (Adenot et al., 1997; van der Heijden et al., 

2006).  Acetylation of lysine 5 and 12 of histone H4 (H4K5ac and H4K12ac) is already 

present on the maternally provided histones prior to their incorporation (Sobel et al., 

1995). Van der Heijden and colleagues observed that at the onset of the maternal 

histones incorporation, not all the nucleosomes are carrying these marks, representing 

most probably paternally derived histones (van der Heijden et al., 2006). Further, they 

showed that H4K8ac is detectable at the decondensing sperm immediately after the 

fertilization. As already mentioned, H4K8ac and H4K12ac are associated with the PCH 

in the mature sperm. Together with the fact that H4K8ac is not present on the maternally 

provided histones, these data are strongly arguing that the observed mark is of the 

sperm origin (van der Heijden et al., 2006).  By contrast, the histones variants H2AL1 

and H2AL2, which are also contributing to the PCH of the mature sperm, are rapidly lost 

from the paternal genome after fertilization (Wu et al., 2008). 

 

 The acquisition of histone lysine methylation marks occurs gradually on the 

paternal pronucleus. The first detectable mark is H4K20me1, followed by mono-

methylation of H3K4, H3K9 and H3K27. Before the completion of the first cell division 

also di- and trimethylation of H3K4 and H3K27 are established, resulting in equal levels 

of these modifications at both parental genomes. By contrast, di- and trimethylation 

states of H3K9 are only established around the 4-8 cell stage (Lepikhov and Walter, 

2004; Puschendorf et al., 2008; Santos et al., 2005; van der Heijden et al., 2005).  

 Asymmetrical distribution of histone lysine methylation marks have been also 

observed in humans (van der Heijden et al., 2009). The analysis was performed on tri-

pronuclear zygotes derived by in vitro fertilisation. After fertilisation, H3K9me3 and 
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H3K27me3 were absent from two paternal pronuclei and clearly detectable at the 

maternal one. Interestingly, the asymmetry was not observed for H3K4me3 which 

showed high levels at both parental genomes.  

 

 

 

 

Figure 4. Epigenetic germ line inheritance.  Primordial germ cells are specified in the gastrulating 

embryo and after migration into the gonads, differentiate into either spermatozoa or oocytes.  These two 

gametes differ in their potential to transmit epigenetic information. Like in somatic cells, the oocyte 

genome is organized in nucleosomal configuration with DNA bound to histones that carry many histone 

modifications. By contrast, at the last stages of spermatogenesis, most of histones are replaced by 

protamines, leading to highly compact sperm chromatin structure. After fertilization, protamines are 

exchanged by maternally provided histones. Nevertheless, about 10% of histones are retained in human 

spermatozoa and have a potential to influence transcription during development. Concomitant with the 

histone to protamine exchange, the transcription is ceased in elongating spermatids. Nevertheless, multiple 

transcripts are retained in mature spermatozoa and may influence the embryonic transcription as well.  
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1.5 Scope of the thesis 

 

When I started my thesis, it was not known whether the histones, present in mouse and 

human spermatozoa, are carrying posttranslational modifications. As highlighted in many 

examples in the first chapter of this introduction, there must exist means for the 

transmission of epigenetic information across generations, other than DNA methylation. 

Histone modifications provided a very good candidate to play such a role.  

As described in the second chapter, Polycomb and Trithorax complexes play 

important roles in the gene regulation. Expression states sustained by these complexes 

are stably maintained in somatic lineages. Therefore, I considered that Polycomb and 

Trithorax mediated histone modifications could carry epigenetic information not only 

through somatic cell division, but also through gametes to the next generation.   

Germ cells, unlike somatic cells, must maintain the potential to generate a 

totipotent embryo. Nevertheless, germ cells differentiate into specialised gametes. It was 

an intriguing question for me, how epigenetic programs of differentiation and totipotency 

can co-exist in these cells. This seemed particularly challenging for the paternal 

genome, which undergoes a major re-organisation at the last stages of 

spermatogenesis.  

In the zygote the paternal genome becomes enriched in histone methylation at 

different lysine residues in a temporal and spatial regulated manner.  This led me to 

hypothesize that the presence of paternally inherited modifications may influence the 

acquisition of new modifications on the deposited histones in-cis. The transmitted 

histones could influence the de novo organization of chromatin and have an effect on the 

gene expression in the early embryo. 

 

 In this PhD project, I initially aimed to analyse the histone modification status in 

murine spermatozoa. The mouse model would provide me a direct possibility to 

investigate the functionality of the retained histones. However, very low histone content 

and high compaction made it difficult to analyse murine spermatozoa. Contrary, human 

spermatozoa contain 10 times more histones and their chromatin structure is less 

compact. Thus, I decided to study transmission of modified histones to the next 

generation, first in human and then in mouse spermatozoa. Five years later, these two 

data sets allowed me to investigate the conservation of the transmitted histone marks 

between humans and mice.  
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2. Results 
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In higher eukaryotes, histone methylation is involved in the maintenance of 

cellular identity during somatic development. During spermatogenesis, most 

nucleosomes are replaced by protamines. Therefore, it is unclear if histone 

modifications function in paternal transmission of epigenetic information. Here we 

show that active H3K4 di-methylation (H3K4me2) and repressive H3K27 tri-

methylation (H3K27me3), two modifications important for Trithorax and 

Polycomb-mediated gene regulation, are present in chromatin of human 

spermatozoa and show methylation-specific distributions at regulatory regions. 

H3K4me2-marked promoters control gene functions in spermatogenesis and 

cellular homeostasis suggesting that this mark reflects germline transcription. In 

contrast, H3K27me3 marks promoters of key developmental regulators in sperm 

as in soma.  Many H3K27me3-marked genes are never expressed in the male and 

female germline, and in early “totipotent” embryos, suggesting a function for 

Polycomb in repressing somatic determinants across generations. Targets of 

H3K4me2 and H3K27me3 are also modified in mouse spermatozoa, implicating an 

evolutionary conserved role for histone methylation in chromatin inheritance via 

the male germline.  

 

By classical Mendelian inheritance, genetic information is transmitted through the 

generations, underlying phenotypic diversity in sexually reproducing organisms. 

Nonetheless, non-Mendelian inheritance of traits across generations has been reported 

in various higher eukaryotes (Chong and Whitelaw, 2004). Furthermore, the low 

reproductive efficacy of nuclear transfer versus natural reproduction (Hochedlinger and 

Jaenisch, 2003) suggests that resetting and maturation of chromatin states during 

gametogenesis is critically important for early embryogenesis, arguing for a 

transgenerational epigenetic contribution at conception. 

In mammals, the dimorphic gametes differ greatly in their potential to transmit 

epigenetic information encoded in histones and associated posttranslational 

modifications (Albert and Peters, 2009; Puschendorf et al., 2008; Reik, 2007). Whereas 

in oocytes chromatin retains a nucleosomal conformation, marked by histone 

methylations (Puschendorf et al., 2008), the majority of histones are replaced by 

protamines at the end of spermatogenesis (Balhorn et al., 1977; Gatewood et al., 1987) 

(Fig. 1a). Following gamete fusion, maternally provided histones replace protamines that 

subsequently become post-translationally modified by oocyte-derived factors (Albert and 
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Peters, 2009; Puschendorf et al., 2008)  Despite such major remodeling, histones have 

been reported to reside at specific sequences in human and mouse spermatozoa 

(Gardiner-Garden et al., 1998; Gatewood et al., 1987; Pittoggi et al., 1999; Wykes and 

Krawetz, 2003) and to remain associated with the paternal genome during de novo 

nucleosome formation upon fertilization (van der Heijden et al., 2008).  

During somatic development, Polycomb (PcG) and Trithorax (TrxG) group 

proteins serve conserved chromatin-based repressive and anti-repressive roles in 

epigenetic memory of cell identity, e.g. by controlling expression of developmental 

regulators that drive differentiation (Hublitz et al., 2009; Sparmann and van Lohuizen, 

2006). In mammals, PcG proteins function at least in two distinct Polycomb Repressive 

Complexes (PRC). PRC2, consisting of Eed, Suz12, and Ezh2 or Ezh1, catalyzes tri-

methylation on histone H3 lysine 27 (H3K27me3) (Cao et al., 2002; Kuzmichev et al., 

2002; Shen et al., 2008), a modification associated with gene repression in development 

(Ezhkova et al., 2009; Mohn et al., 2008). Recently, it was shown that PRC2 binds to 

H3K27me3 and that its catalytic activity is required for long term repression (Hansen et 

al., 2008). These data suggest that H3K27me3 functions in transcriptional memory of the 

repressed state. Mammalian TrxG proteins of the Mixed Lineage Leukemia protein 

family mediate H3K4 methylation, a mark associated with transcriptional activity. Up to 

date, the roles of H3K27 and H3K4 methylation in transgenerational inheritance have 

been unknown. Here, we study whether H3K27me3 and H3K4me2 are selectively 

retained at regulatory sequences in mature human and mouse spermatozoa. Our 

analyses show that in general promoters of orthologous genes are similarly marked. This 

finding is compatible with an evolutionary conserved role for histone methylation in 

chromatin inheritance across generations.  

 

RESULTS 

H3K4me2 and H3K27me3 mark functionally distinct gene sets 

To evaluate the presence of histones and associated modifications in mature human and 

mouse spermatozoa, we performed Western blot analyses on highly purified human and 

mouse spermatozoa (Fig. 1b). Comparable to described previously, we observed 

approximately 10% of histone H3 in human sperm (Gatewood et al., 1987). In mouse 

sperm, we only detected about 1% of histone H3 (Fig. 1b). We further detected 

H3K27me3 and H3K4me2 in spermatozoa of both species (Fig. 1b). Absence of signal 

for Lamina Associated Polypeptide 2 beta (LAP2), a marker for somatic and immature 
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germ cells (Alsheimer et al., 1998), demonstrated purity of sperm samples used. To 

define the chromosomal localization of modified histones, we developed a chromatin 

immuno-precipitation (ChIP) approach for H3K4me2 and H3K27me3 that is compatible 

with the highly condensed chromatin state present in human spermatozoa. Following 

ChIP on cross-linked chromatin isolated from a pool of human spermatozoa obtained 

from 9 fertile donors, we amplified and hybridized precipitated genomic DNA to an 

oligonucleotide array representing over 18‟000 human promoters each spanning 2.7 kb 

around the transcriptional start site. After scanning, we applied a Hidden Markov Model-

based peak-finding algorithm (Supplementary Fig. 1, 2 and Methods) and identified over 

1‟600 and 4„500 promoters that are marked by H3K27me3 and H3K4me2 respectively in 

three independent ChIP-chip experiments (Fig. 1c, Supplementary Table 1). Thus over 

30% of all tested human promoters are positive for these histone modifications. 

Unfortunately, low immuno-precipitation efficiencies of different anti-H3 antibodies on 

cross-linked chromatin precluded us from determining the genome-wide nucleosomal 

occupancy in human spermatozoa. In independent sperm samples, single-gene 

analyses of 41 selected promoters confirmed that promoters are uniquely modified by 

either one or both modifications (Fig. 1d, Supplementary Fig. 3). As a separate 

validation, we performed ChIP experiments under native conditions and obtained similar 

results arguing for an overall conservation of promoter distributions of H3K27me3 and 

H3K4me2 in human mature spermatozoa (Fig. 1e, Supplementary Fig. 3).  

Finally, we compared our ChIP-chip results to recent ChIP-sequencing data that 

were obtained for H3K4me3 and H3K27me3 on native chromatin prepared from pools of 

human spermatozoa of different donors (Hammoud et al., 2009). We observed strong 

correlations between the average IP enrichment obtained for each promoter region in 

the current ChIP-chip experiments and the normalized number of ChIP-seq reads 

aligned to the corresponding promoter region (Hammoud et al., 2009) (Pearson‟s 

correlation coefficients of 0.68 for H3K4 methylation and 0.57 for H3K27 methylation) 

(Supplementary Fig. 4a,b). At the gene level, 79% of promoters enriched in H3K4 

methylation in the current study were also enriched in the ChIP-seq experiments, 

whereas this was 69% for H3K27 methylation (Supplementary Fig. 4e,f). The high 

reproducibility between the two data sets, despite differences in ChIP and detection 

methodologies used, argues for a widespread marking of promoters by histone 

methylation in human spermatozoa. Hammoud and colleagues (Hammoud et al., 2009) 

also  localized  micrococcal  nuclease  resistant  nucleosomes  in  chromatin  of  human          
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Figure 1. Methylated histones are present in human sperm and localize to distinct promoter sets. 
 (a) Illustration of mammalian germ cell and embryonic development. Primordial germ cell cells, specified 

in the proximal epiblast, undergo epigenetic reprogramming including global DNA demethylation. During 

spermatogenesis, male germ cells first proliferate (spermatogonia), then undergo meiosis (spermatocytes) 

and convert into spermatozoa after transcriptional arrest and global exchange of histones by protamines 

(elongating spermatids). Fertilization of the oocyte results in the totipotent early embryo. (b) Presence of 

histone H3, H3K27me3 and H3K4me2 in human and mouse spermatozoa as measured by protein blot 

analysis. Absence of signal for Lamina associated polypeptide 2 beta (LAP2), a marker for somatic and 

immature germ cells (Alsheimer et al., 1998), shows purity of sperm samples used. Cell numbers are given 

in thousands. (c) Venn diagram illustrating the number of promoters that are marked by H3K4me2 and/or 

H3K27me3 in human sperm in three replicate experiments, as detected by microarray. (d, e) Validation of 

promoter array results by real time PCR analyses of immunoprecipitated chromatin after paraformaldehyde 

fixation (d) (X-ChIP) or native conditions (e) (N-ChIP) (see also Supplementary Fig. 3 for multiple 

replicates). Genes were selected on basis of gene function and their modification status at promoters as 

determined by microarray analyses.  
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spermatozoa. We observed that 33% and 56% of promoters associated with H3K4me2 

and H3K27me3 respectively in the current ChIP-chip experiments carried detectable 

levels of nucleosomes (Supplementary Fig. 4e,f). Likewise, in the original ChIP-seq 

study (Hammoud et al., 2009), only 44% and 62% of promoters associated with 

H3K4me3 and H3K27me3 respectively were associated with nucleosomes 

(Supplementary Fig. 4e,f). These relatively low but reproducible levels of co-occupancy 

underscore the difficulty in determining the genome-wide occupancy of nucleosomes in 

human sperm.  

Next we addressed whether promoters bound by H3K27me3 and/or H3K4me2 

share sequence features or characteristic functions of the associated genes. We 

grouped promoters according to their CpG density, and observed that H3K27me3 in 

sperm was restricted to CpG-island containing promoters (Supplementary Fig. 5), as 

observed in somatic cells (Mikkelsen et al., 2007; Mohn et al., 2008), Gene ontology 

analysis showed that many developmental regulatory genes (e.g. SOX2, CDX2, GATA6, 

BMP4, T) and HOX genes are strongly over-represented among H3K27me3 genes, 

some of which were also marked by H3K4me2 (Fig. 1d, Fig. 2, Supplementary Fig. 3, 

Supplementary Table 2). H3K4me2 was strongly over-represented among promoters 

regulating various spermatogenic processes (e.g. PRM1, PGK2, BRDT, and TSH2B) 

(Fig. 1d, 2, Supplementary Fig. 3, Supplementary Table 2). Promoters of genes 

functioning in cellular homeostasis and gene expression (e.g. RPS3, SFRS6, DICER1, 

PRMT5) were significantly over-represented among H3K4me2- and under-represented 

among H3K27me3-marked genes (Fig. 2). These data show that functionally distinct 

gene sets are marked by the two modifications in sperm.  

During meiotic prophase, a remarkable chromosome-wide exchange of 

nucleosomes takes place at both sex chromosomes in the course of meiotic sex 

chromosome inactivation (van der Heijden et al., 2007).  Interestingly, X-linked genes 

were largely devoid of both H3K4me2 and H3K27me3 in sperm (Supplementary Fig.6), 

despite partial transcriptional reactivation of X-linked genes in round spermatids 

(Chalmel et al., 2007; Namekawa et al., 2006). This observation suggests that 

remodeling events specific for the X chromosome reduce the local retention of modified 

histones in sperm.  
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Histone and DNA methylation are largely mutually exclusive at promoters in 

sperm 

In mammals, paternal transmission of DNA methylation is required for imprinted gene 

regulation in the subsequent generation. To determine a possible interplay between 

histone and DNA methylation pathways during gametogenesis, we evaluated in human 

spermatozoa the DNA methylation status at CpG-island promoters, since DNA 

hypermethylation confers transcriptional repression at such promoters (Weber et al., 

2007). When comparing promoters that were previously classified as either DNA 

methylated or unmethylated (Weber et al., 2007), we observed that both histone 

modifications were largely mutually exclusive with DNA methylation (Fig. 3a). 

Figure 2. Gene ontology analysis of genes associated with methylated histones in human 

sperm. Selection of gene ontology (GO) based gene functions significantly over- and under-

represented among modified promoters (in comparison to all annotated promoters on the 

array within a given CpG-density class). H3K4me2 and H3K27me3 occupy sets of genes 

with mutually exclusive functions, with spermatogenic and house keeping functions for 

H3K4me2-marked genes and developmental functions for H3K27me3-marked genes. All 

significantly over- and under-represented GO terms are listed in Supplementary Table 2. 
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Furthermore, since developmental genes were not overrepresented among sperm 

targets of DNA methylation (data not shown), Polycomb and DNA methylation mark 

distinct gene targets in the germ line, as in soma. When analyzing DNA methylation 

levels without applying a defined cut off for the methylated state, we observed that DNA 

methylation levels were significantly lower at promoters marked by H3K4me2 than those 

harboring neither mark (Fig. 3b). This suggests that H3K4 and DNA methylation are 

largely antagonistic during spermatogenesis, a notion consistent with data observed in 

somatic cells  (Imamura et al., 2006; Mohn et al., 2008; Weber et al., 2007).  

 

 

Histone methylation status in sperm versus somatic cells  

To relate genomic localization to chromatin regulation during development, we 

compared ChIP patterns in sperm to those generated in human embryonic stem cells 

(hESCs) and primary fibroblasts (Bracken et al., 2006; Pan et al., 2007; Weber et al., 

2007; Zhao et al., 2007). The majority of H3K4me2 targets in sperm were equally 

Figure 3. DNA methylation of 

CpG islands is mutually exclusive 

with H3K4 methylation in sperm. 

(a) Venn diagram illustrating low 

frequency of co-occupancy of 

histone modifications and DNA 

hypermethylation (Weber et al., 

2007) on CpG-island promoters (see 

also Supplementary Fig. 5). DNA 

methylated promoters are 

significantly under-represented 

among promoters marked by 

H3K4me2 or H3K27me3 (One-

sided hypergeometric test; P-value = 

1.85e-58; P-value = 1.24e-3 

respectively). (b) Boxplot showing 

relative enrichment for DNA 

methylation in sperm (Weber et al., 

2007) at genes positive or negative 

for the tested chromatin marks (with 

the central bar marking the median, 

lower and upper limits of the box 

marking 25th and 75th percentiles, 

and the whiskers extending the 1.5 

interquartile range from the box). 

H3K4me2-marked genes show 

significantly lower levels of DNA 

methylation than genes with neither 

histone mark (*: Wilcoxon test P-

value < 2.2e-16).  
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marked in somatic cells (Fig. 4a, Supplementary Fig. 7). These targets are associated 

with gene ontology functions in cellular homeostasis and gene regulation (data not 

shown). A significant number of H3K4me2 targets in sperm however lack this 

modification in hESCs and fibroblasts (blue arrow in Fig. 4a and in Supplementary Fig. 

7), suggesting testis specific regulation. Consistently, these later genes are highly 

expressed in human spermatocytes and round spermatids (Chalmel et al., 2007) (Fig. 

4b, 4c, Supplementary Fig. 8), two cell populations that represent the meiotic and 

haploid stages of spermatogenesis preceding the final stage of global transcriptional 

repression in elongating spermatids (Fig. 1a). Along similar lines, gene ontology analysis 

revealed a significant over-representation of spermatogenetic functions among this 

group of H3K4me2-marked genes (data not shown). 

Figure 4a further shows that only subsets of genes containing either H3K4me2 or 

H3K27me3 in hESCs are marked also in sperm. Genes retaining H3K4me2 in sperm 

were more likely to be expressed and at significantly higher levels during 

spermatogenesis than genes without H3K4me2 or with H3K27me3 (Fig. 4b, 4c, 

Supplementary Fig. 8). These data argue that H3K4me2 in sperm largely reflects robust 

transcription during the final stages of spermatogenesis (Geremia et al., 1977) whereas 

H3K27me3 likely represents PcG-mediated transcriptional repression at preceding 

developmental stages.  

In sperm, only 28% of H3K27me3 promoters contained also H3K4me2 (Fig. 4a). 

Compared to hESCs, this represents a 3-fold underrepresentation of doubly marked or 

“bivalent” promoters, particularly among CpG-island promoters in human sperm 

(Supplementary Fig. 7). These data point towards a specific regulation of H3K4 

methylation at CpG-island promoters during human spermatogenesis, distinct from 

soma. 

To obtain a closer insight into genes marked by H3K27me3 in sperm and/or in ESCs, 

we performed in-depth gene ontology analyses. Among the targets uniquely marked in 

sperm, only histone genes were over-represented (Fig. 4d). Closer analyses revealed 

that over 70% of the 66 canonical histone genes localized in the large histone gene 

clusters on chromosome 1 and 6 were marked by H3K27me3 (as well as H3K4me2) in 

sperm whereas in hESCs, these genes were marked by H3K4me2 only (data not shown) 

(Pan et al., 2007). In contrast, histone variant genes operating beyond DNA replication 

were not uniformly marked by H3K27me3 in human sperm while harboring H3K4me2 in 

hESC  (data  not  shown). These  data  argue  for  a  cluster-wide  marking  of  canonical  
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Figure 4. Spermatogenic and highly expressed genes are marked by H3K4me2 in sperm.   

(a) Statemap showing clustering of 15’999 genes according to the chromatin status of their promoters in 

human sperm and hESCs (Pan et al., 2007). Arrow indicates genes marked by H3K4me2 in sperm only (see 

also Supplementary Fig. 7). (b) Statemap showing comparison of modification status at 15’702 promoters 

in sperm with gene expression status in human spermatocytes and spermatids (Chalmel et al., 2007). 90% 

of H3K4me2 promoters control genes actively transcribed in spermatogenesis. Percentages represent 

fractions of genes expressed. (c) Box plot displaying expression levels in human spermatids (Chalmel et al., 

2007) for genes differentially modified in sperm. Genes under the control of promoters that are only 

H3K4me2 targets in sperm but not in soma (light blue, also indicated by blue arrow in panel a are most 

highly expressed. Other H3K4me2 genes (dark blue) show significantly higher levels of expression 

compared to genes with neither mark (*: Wilcoxon test P-value < 2.2e-16). (d, e) Venn diagram and GO 

term graphs showing over-representation of developmental gene functions among H3K27me3-marked 

genes shared between sperm and ESCs (Pan et al., 2007) of human (d) and ESCs (Mohn et al., 2008) of 

mouse (e) (* indicates GO terms with P < 1.0e-10). Supplementary Table 3 lists enrichments at all relevant 

GO terms.  
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histone genes by repressive H3K27me3 that may result from entry into meiosis and/or 

cell cycle exit associated with terminal differentiation of male germ cells during 

spermiogenesis.  

Interestingly, developmental GO terms were more strongly over-represented 

among targets shared by sperm and hESCs compared to targets unique to hESCs (Fig. 

4d; Supplementary Table 3). Furthermore, we compared targets in human and mouse 

ESCs and in human sperm. We observed that genes shared by all three cell types were 

more significantly over-represented for developmental gene functions than those genes 

shared by two or one cell types (Fig. 4e; Supplementary Table 3). We conclude that 

many PRC2 targets are evolutionary conserved between germline and embryonic stem 

cells of human and mouse. 

 

Transcriptional history and potential of marked genes 

To understand the origin and possible future function of modifications present in sperm, 

we investigated how the observed chromatin patterns relate to expression at multiple 

developmental time points during gametogenesis and post fertilization. Due to the 

absence of comprehensive expression datasets for the human germline and embryo we 

inferred expression states from data in mice (Namekawa et al., 2006; Zeng and Schultz, 

2005). The validity of such cross-species approach was supported by direct comparative 

expression analyses revealing high expression levels for those orthologues expressed in 

human and mouse spermatocytes and/or spermatids and low expression levels for those 

expressed only in germ cells of one species (Supplementary Fig. 10). Only genes with 

one ortholog were considered and classified as inactive or active at each developmental 

time point. Figure 5 shows the percentage of genes that are active or never expressed at 

various developmental stages. Similar to the results in human (Figure 4b) the majority of 

H3K4me2-marked genes were expressed in mouse spermatocytes and/or spermatids 

(Fig. 5a). Moreover, many H3K4me2 targets were also expressed in oocytes or became 

activated in 2- or 8-cell embryos (Fig. 5b). Direct comparison of all developmental stages 

confirmed that over 65% of H3K4me2-marked genes expressed in oocytes and/or 

embryos were indeed expressed during spermatogenesis (Fig. 5c). These data suggest 

that H3K4me2 in sperm preferentially marks genes with house keeping functions, 

commonly expressed in the germ line and during embryogenesis. 
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Targets of H3K27me3 in sperm show opposing behavior as two out of three 

targets were never expressed during spermatogenesis (Fig. 5a). Almost 20 percent of 

H3K27me3 targets marked in sperm were expressed in spermatogonia. Expression of 

several of these genes, like c-Kit, Stra8, and Dnmt3a, has been shown to be required for 

that developmental stage (Anderson et al., 2008; Kaneda et al., 2004; Ohta et al., 2003). 

Thus, although not directly investigated in this study, Polycomb-mediated repression 

may dynamically regulate target genes at specific stages of germ cell development, as 

observed in other differentiation systems (Ezhkova et al., 2009; Mohn et al., 2008). In 

oocytes, the majority of H3K27me3 targets were not expressed nor did they become 

Figure 5. H3K27me3 and H3K4me2 in sperm reflect differential history and potential for 

expression during development.  Classification of mouse genes (n=9859) according to their 

expression status during (a) spermatogenesis (Namekawa et al., 2006), (b) oogenesis and 

embryogenesis (Zeng and Schultz, 2005) (indicated by percentages and colors) in relation to the 

histone modification status at orthologous genes in human sperm. Genes were classified inactive 

or active according to (a) the last stage of spermatogenesis or (b) to the first stage of 

embryogenesis in which they were expressed. We used the first stage of embryonic expression 

as criterion for those genes expressed in oocytes and embryos. In (c), genes were classified 

according to their expression state during spermatogenesis versus oogenesis and early 

embryogenesis. Both H3K27me3 and H3K4me2-marked genes show significantly different 

distribution from genes with neither mark (Chi-square test P-value < 2.6e-14 for all 

comparisons). Expression classification of genes marked by both modifications is not shown. 

Intensity of coloring indicates percentage of genes expressed.  S-gonium: spermatogonium. 
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activated in early embryos, reminiscent of the situation in spermatogenesis (Fig. 5b). 

Exceptions to this were several key regulatory genes of embryonic and extra-embryonic 

differentiation that were repressed during spermatogenesis and oogenesis but became 

activated in the early embryo such as Cdx2, Elf5 and Bmp4 (Ng et al., 2008; Strumpf et 

al., 2005). Over 50% of H3K27me3 targets, however, were never expressed during 

spermatogenesis (Namekawa et al., 2006), oogenesis (Pan et al., 2005) and early 

embryogenesis (Zeng and Schultz, 2005) (Fig. 5c, Supplementary Fig. 11). Even at 

earlier stages of gametogenesis such as developing primordial germ cells (PGC), over 

90% of this group were not transcribed (Supplementary Fig. 12). Since the H3K27me3 

target genes in sperm are highly enriched for key regulators of lineage specification and 

differentiation in soma (Fig. 2), their repressed state throughout germ cell development 

and in totipotent early embryos suggests that this modification may serve 

transgenerational gene regulatory functions.  

 

Evolutionary conservation between human and mouse spermatozoa 

If H3K4 and H3K27 methylation would indeed perform transcriptional regulatory 

functions across generations, we expect them to have evolutionary conserved targets in 

sperm of human and mouse species. A high level of conservation would imply selection 

for maintenance of histone modifications at promoters of specific target genes during the 

extensive chromatin remodeling taking place in elongating spermatids. Since global 

transcription is shut down in elongating spermatids and mature spermatozoa, the 

presence of histone methylation at selected loci could only exert its gene regulatory 

function after fertilization, in line with a role in transgenerational epigenetic inheritance.  

To address conservation we profiled H3K4me2 and H3K27me3 at promoters of 39 

mouse genes, which are orthologous to the human genes analyzed before (Fig. 1, 

Supplementary Fig. 3). We developed a ChIP procedure with an increased 

immunoprecipitation efficiency to accommodate the lower abundance of histones and 

the higher level of chromatin compaction in mouse spermatozoa compared to human 

sperm. We performed ChIP under native conditions followed by qPCR detection. For 

testis specific and house keeping genes, we observed, as in human, strong enrichments 

for H3K4me2 (Fig. 6a), consistent with their expression in spermatids. Interestingly, all 

testis specific genes, but none of the house keeping genes, were also marked by 

H3K27me3 (Fig. 6b). The observed double marking is specific to mouse sperm (Fig. 6c) 

and  suggests  that  these   testis-specific   genes   acquire   H3K27me3   following  their  
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expression in spermatocytes and round spermatids, possibly to safeguard their 

repression after fertilization. For developmental regulatory genes, most promoters tested 

were marked by H3K27me3, as observed in humans. However, several genes also 

harbored H3K4me2, suggesting that the CpG-island promoters of many developmental 

genes, marked by PcG-mediated H3K27me3, retain H3K4me2 during spermatogenesis 

in mouse but not in human. Finally, the promoters of the pluripotency factors Oct3/4 and 

Nanog harbored both modifications in mouse but not in human sperm. Nanog in mouse 

is also DNA methylated (Farthing et al., 2008; Imamura et al., 2006) whereas both 

promoters are DNA methylated in human sperm (Weber et al., 2007). In summary, the 

H3K27me3 status at developmental genes is highly conserved between mouse and 

human spermatozoa (Fig. 6c). Nonetheless, these promoters in mouse are in general 

also marked by H3K4me2, suggesting species-specific mechanisms regulating the 

homeostasis of H3K4 methylation at CpG-island genes during spermatogenesis. 

Interestingly, H3K27me3 appears more widespread at testis specific and pluripotency 

genes in mouse compared to human sperm. 

 

DISCUSSION 

During sperm development in animals, histones become replaced by sperm-specific 

histones, protamine-like proteins or protamines. In mammals and other organisms, 

however, a certain fraction of histones remain present in mature spermatozoa, providing 

means for epigenetic inheritance (Chu et al., 2006; Dorus et al., 2006; Gardiner-Garden 

et al., 1998; Gatewood et al., 1987; Ooi and Henikoff, 2007; Pittoggi et al., 1999; Wykes 

and Krawetz, 2003). Here we demonstrate that promoters with distinct gene functions 

Figure 6. Evolutionary conservation of H3K27me3 and H3K4me2-marked promoters in mouse 

spermatozoa. (a) H3K4me2 and (b) H3K27me3 status at promoters of 39 mouse genes, orthologous to 

the human genes analyzed in Fig. 1d, 1e and in Supplementary Fig. 3. Results represent percentage of 

material immuno-precipitated from input chromatin under native conditions as determined by real time 

PCR analyses. One representative out of four experiments is presented (see Supplementary Fig. 13  for 

all replicates). (c) Schematic diagram showing evolutionary conservation between human and mouse 

spermatozoa of H3K4me2 at promoters of spermatogenic and house keeping genes and of H3K27me3 

at promoters of developmental genes. In contrast to human, promoters of mouse genes are more 

frequently marked by both modifications (in particular spermatogenic and some developmental genes). 

(d) Conceptual model for role of H3K27me3 in paternal transmission of epigenetic information. During 

spermatogenesis, several H3K27me3-modified nucleosomes (yellow) remain associated with promoters 

of developmental regulators. Upon gamete fusion, protamine-bound sequences undergo chromatin 

remodelling and incorporate maternally provided H3.3-containing nucleosomes (dark grey). H3K27me3 

is subsequently established by maternal PRC2 at neighbouring nucleosomes. During following rounds 

of replication, H3K27me3 is maintained while H3.1/H3.2-containing nucleosomes (light grey) become 

incorporated, thereby enabling long-term transcriptional repression of Polycomb target genes.  
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are selectively marked by active and/or repressive histone methylation in human and 

mouse spermatozoa. The high level of evolutionary conservation of modified targets is 

compatible with a model in which retention of modified nucleosomes is subjected to 

selection. This model predicts that in embryos sperm-inherited modified nucleosomes 

remain positioned in the paternal chromatin during its remodeling by maternally provided 

histones in the course of pronuclear formation. Studies on the pronuclear localization of 

replication-dependent versus replication-independent H3 variants in early zygotes 

suggest that sperm-inherited histones are indeed retained within the paternal genome 

during pronucleus formation (Torres-Padilla et al., 2006; van der Heijden et al., 2005; 

van der Heijden et al., 2008).  

To support transgenerational inheritance of histone methylation, marks need to 

be maintained during development from fertilization onwards. For H3K27 tri-methylation, 

the modification becomes microscopically detectable at the paternal genome concurrent 

with replication in the one-cell embryo (Albert and Peters, 2009; Puschendorf et al., 

2008). Furthermore, the persistent presence of H3K27me3 at the originally inactive X 

chromosome in cloned pre-implantation embryos (Bao et al., 2005) or at the maternal 

genome in one-cell embryos maternally and zygotically deficient for Ezh2 (Puschendorf 

et al., 2008) strongly argues for the lack of substantial zygotic and/or maternal 

H3K27me3 demethylase activity in early embryos. Together, these studies support a 

model in which paternally inherited H3K27me3 can be transmitted through subsequent 

pre-implantation development (Fig. 6d).  

 Recently, the catalytic activity of Ezh2 was shown to be required for repression 

over multiple cellular generations, suggesting a role for H3K27me3 in epigenetic 

memory (Hansen et al., 2008). Presence of H3K27me3 in sperm also correlated 

positively with gene repression in the male and female germ line as well as during early 

embryogenesis. Therefore, our study not only suggests transmission of modification-

specific patterns of histone methylation via spermatozoa but also opens the possibility 

that Polycomb represses somatic determinants in the male germ line and in early 

embryos thereby contributing to the propagation of totipotency across generations (Fig. 

6d).  

 We speculate that Polycomb serves a similar regulatory function at orthologous 

maternal alleles during oogenesis and early embryogenesis. If maternal alleles of the 

H3K27me3 targets identified in sperm would be differentially regulated, the situation 

would resemble classical imprinting. However, the undisturbed embryonic patterning 



 69 

observed in gynogenones and parthenogenones argues against such a scenario. 

Furthermore, live-born offspring with two maternal genomes are obtained at a 

respectable frequency by genetic manipulation of only two imprinted loci (Kawahara et 

al., 2007). Therefore, there is no strong argument for a restriction of the 

transgenerational contribution by Polycomb to the regulation of developmental genes on 

the paternal genome only.  

For H3K4 dimethylation, it is unknown whether the mark functions only in the 

process of transcription or whether it also serves a role in epigenetic memory of the 

active state in proliferating cells. Nuclear transfer experiments performed in Xenopus 

oocytes provided evidence for a role of lysine 4 if histone H3 in transcriptional memory 

(Ng and Gurdon, 2008). In C. elegans, deficiency for the H3K4me2 demethylase 

Lsd1/KDM1 caused a progressive sterility over many generations that correlated with 

transgenerational accumulation of H3K4me2 in the germ line and increased expression 

of spermatogenic genes in the soma (Katz et al., 2009). These data argue that 

programmed H3K4 demethylation, possibly of testis-expressed genes, is required for 

germ line immortality in C. elegans. In mouse and human embryos, H3K4 methylation is 

established along the paternal genome within the first cell cycle (van der Heijden et al., 

2005; van der Heijden et al., 2009) providing means for somatic transmission. 

Nevertheless, the fate of germ-line inherited H3K4me2 at e.g. housekeeping versus 

testis-specific genes remains to be tested.  

 Molecular genetic experiments will be required to elucidate the extent and 

functional significance of methylation at distinct histone residues for transgenerational 

inheritance. There may exist variability in establishment and retention of modified 

histones between spermatozoa and/or individuals, possibly in response to environmental 

influences and/or innate cues, such as incomplete chromatin remodeling during 

spermatid elongation. Hence, transmission of histone encoded epigenetic information 

may constitute a novel transgenerational mechanism for phenotypic variation (Chong et 

al., 2007a).   
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METHODS 

Samples collection and purification 

Human sperm samples were obtained from normospermic men visiting the University 

Medical Center St Radboud, the Netherlands, for routine semen diagnosis. Sperm 

morphology was assessed using established criteria (Menkveld et al., 2001) and the 

diagnosis of normospermia was based on criteria of the World Health Organization 

(WHO Laboratory Manual 1999). All donors signed a written informed consent for 

participation in the study. Sperm samples were collected in sterile containers and 

purified by three rounds of washing with human tubal fluid medium (HTF; Cambrex, 

Verviers, Belgium) and density gradient centrifugation (20 min, 500g) using Pure Sperm 

solution (Nidacom). Purified sperm was then diluted 1:1 with TEST yolk buffer medium 

(TYB, Irvine Scientific, CA, USA), cooled in vapor phase of liquid nitrogen for 15 min. 

and subsequently stored in liquid nitrogen. 

 Motile mature spermatozoa were obtained from CD1 and C57BL/6J (for Western 

Blot and ChIP respectively) mice by allowing spermatozoa to swim out of caudal 

epididymal tissue for 1hr at 37°C into sperm motility medium (135 mM NaCl, 5 mM KCl, 

1 mM MgSO4, 2 mM CaCl2, 30mM Hepes pH7.4; freshly supplemented with 10 mM 

lactate acid, 1 mM sodium pyruvate, 20 mg/ml BSA, 25 mM NaHCO3). To avoid 

contamination of somatic cells, only top fractions containing about 3x106 motile sperm 

per mouse were used for further assays.  

Sample purity was verified by microscopy and by western blot analyses assaying for 

the absence of presence of Lamina-associated polypeptide 2 (LAP2) (Fig. 1b), a 

marker for somatic and immature germ cells (Alsheimer et al., 1998). 

 

Western Blot  

Proteins from murine and human sperm were isolated as described (Lee et al., 1995) 

with minor modifications. Additional steps of  sonication (2  times 30 s 40%, Branson 

sonicator), and extraction with 1.6 M Urea, 1 M NaCl and 0.28 M -mercaptoethanol for 

30 min. at 37°C were included. After precipitation with 20% trichloroacetic acid protein 

pellets were boiled for 20 min. in SDS sample buffer and separated by SDS-PAGE. 

Western blot analyses were performed using following antibodies and dilutions: 

polyclonal H3K4me2 (Upstate  #07030) (1:1000), polyclonal H3K27me3 (Upstate 

#07449) (1:1000), polyclonal H3 (Abcam #17921) (1:10 000), monoclonal LAP2 
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(Dechat et al., 1998) (1:5). Protein extracts from WI38 human primary lung fibroblasts 

and CCE ES cells were used as controls and were prepared as described above.  

 

Crosslinked chromatin immuno precipitation (X-ChIP) 

ChIP-chip experiments were performed on a pool of 9 donor samples to average 

possible variability between individuals. H3K4me2 and H3K27me3 ChIPs were carried 

out in parallel on identical sets of samples.    

 Per ChIP, 2x107 spermatozoa were used. After thawing, pooled samples were 

washed with PBS to remove cryo-preservation medium (5 min., 800g). ChIP 

experiments were performed as described before (Weber et al., 2007) with several 

modifications. Fixation was performed with 0.5% paraformaldehyde for 10 min at room 

temperature (RT). Lysis was performed in the presence of 0.5% SDS and 10 mM DTT, 

for 1 h at RT. N-Ethylmaleimide (30 mM ) was added to quench DTT and the samples 

were diluted 2.5 times prior to sonication. Sonication was performed six times for 20 s 

(Branson sonicator, amplitude 70%) to obtain chromatin with fragment sizes of 300-700 

bp. 

 Sperm chromatin was then used for immuno-precipitation at 4°C overnight with 5 

g of antibody - H3K4me2 (Upstate #07030) or H3K27me3 (Upstate #07449). Following 

steps included incubation with protein A-Sepharose beads and washing as described in 

(Weber et al., 2007). Cross-link reversal, DNA isolation and amplification with WGA2 

amplification kit (Sigma) was than performed according to (O'Geen et al., 2006). For 

amplification, 50 ng of input DNA and entire ChIP DNA were used. For each H3K27me3 

array experiment 3 simultaneously prepared ChIP samples were pooled, and used for 

the amplification. For each H3K4me2 array experiment, 1 ChIP sample was used for 

amplification. A set of four genes was tested for each sample by quantitative PCR and 

showed similar bound-to-input ratios before and after amplification.  

Validation of micro-array results was performed by ChIP-real time PCR analyses 

using SYBR Green PCR Master Mix (Applied Biosystem) and ABI Prism 7500 Real-time 

PCR machine and is presented in Supplementary Fig. 3 (for list of primers see 

Supplementary Table 4). ChIP was performed on pools of sperm obtained from donors 

different from those used for ChIP-chip analyses.  
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Native chromatin immuno precipitation (N-ChIP) 

Native ChIP on human and mouse sperm was performed according to the protocol by 

Umlauf and colleagues (http://www.epigenome-

noe.net/researchtools/protocol.php?protid=22) with modifications (Umlauf et al., 2004). 

For one ChIP on human sperm, 3 donor samples were pooled. For both mouse and 

human 1x107 spermatozoa were used per one ChIP. Prior to ChIP, mouse spermatozoa 

were treated with 50mM DTT in PBS at room temperature for 2 hours, followed by N-

Ethylmaleimide treatment and washing with PBS. Subsequently, human and mouse 

spermatozoa were lysed in Buffer I (0.3M Sucrose, 15mM Tris (pH 7.5), 60mM KCl, 

15mM NaCl, 5mM MgCl2, 0.1mM EGTA, 0.5mM DTT) containing 0.5% deoxycholate 

and 0.25% NP-40 for 10 min on ice. Chromatin digestion was performed by micrococcal 

nuclease as described (Umlauf et al., 2004). Immuno-precipitation was than carried out 

with H3K4me2 (Upstate #07030) or H3K27me3 (Upstate #07449) antibodies following 

the published protocol (Umlauf et al., 2004). Real-time PCR was performed using SYBR 

Green PCR Master Mix (Applied Biosystem) and ABI Prism 7500 Real-time PCR 

machine (for list of primers see Supplementary Table 4). 

 

Microarray design and analysis 

ChIP samples were hybridized to human promoter tiling microarray  (2006-07-

18_HG18_RefSeq_promoter, NimbleGen Systems Inc.), representing 18029 promoter 

regions spanning on average 2200bp upstream and 500bp downstream of transcription 

start sites of all RefSeq annotated genes. Probes on the array were isothermal oligos, 

50-75 nt long located with 100bp spacing. Sample labeling, hybridization and array 

scanning were performed by NimbleGen Systems Inc. according to standard 

procedures. Three independent ChIP-chip experiments were performed for each 

modification. One array hybridization was performed in a dye swap configuration.   

 All subsequent analyses were performed using R software (www.r-project.org). 

Raw fluorescence values were used to calculate log2 of precipitated/input ratios for each 

probe. Loess normalization (Limma package, R, (Smyth, 2005)) was used to correct for 

labeling dye artifacts. To remove noise coming from low signal range, probes with 

average intensity (A= 1/2(log2(IP)+log2(IN))) lower than 10 for H3K27me3 and 9.5 for 

H3K4me2 were removed from the analysis. After these corrections Pearson correlation 

coefficients R between the replicates were 0.56, 0.57 and 0.67 for H3K27me3 replicates 

and 0.72, 0.82 and 0.82 for H3K4me2 replicates. 
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 To identify regions associated with analyzed modifications the genomic intervals 

represented on the microarray were classified into enriched and not-enriched segments 

using Hidden Markov Models (HMMs), as described (Birney et al., 2007). The basic 

premise of HMMs is that observed data are generated stochastically from a pre-

determined number of hidden background probability distributions, or states. Here, we 

used a three-state gaussian emission HMM that was trained on each array using Baum-

Welch algorithm to estimate model parameters (the states corresponding to not-

enriched, weekly enriched and strongly enriched segments), and all oligos with posterior 

probabilities larger than 0.8 for the strongly enriched state were classified to be 

associated to the analyzed modification. Because of the average chromatin fragment 

size (400-600 bp) and the resulting limited resolution of the ChIP assay, peaks shorter 

than 300bp were removed from further analysis. The segmentation algorithm was 

implemented in Python using the GHMM library (Schliep et al., 2004). As expected, the 

strongly enriched regions identified by this HMM approach typically contained probes 

with high enrichment values (see Supplementary Fig. 2).   

 Peak finding algorithm was performed independently for each of 3 replicates. 

Peaks were associated to the closest Ensembl (release 48, genome build hg18, 

www.ensembl.org) annotated transcription start site (2.2 kb upstream, 0.5 kb 

downstream). Any gene associated to at least one peak was called positive and set of 

targets being positive in all 3 out of 3 replicates was generated for each modification. We 

performed subsequent bioinformatic analyses only on those genes that were enriched in 

H3K4me2 and/or H3K27me3 in all three replicates. Lists of genes are provided in 

Supplementary Table1. Schematic representation of the analysis work flow is provided in 

Supplementary Fig. 1.  

 

Comparison to the ChIP–Seq data and the nucleosomal sequencing data in human 

sperm reported by (Hammoud et al., 2009). 

We downloaded the sequencing data from (Hammoud et al., 2009), (GEO identifier: 

GSE15690) and extracted all read sequences from the ELAND alignments. Reads were 

realigned to the hg18 human genome assembly using Bowtie (Langmead et al., 2009) 

allowing for up to two mismatches. Similarly, probe sequences of the NimbleGen hg18 

RefSeq Promotor array were aligned to the genome. In order to calculate ChIP-seq and 

ChIP-chip promotor enrichments, we used the genomic intervals corresponding to 

putative promoter regions that are tiled on the NimbleGen array, and either counted the 
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number of aligned reads, or determined the average enrichment ratio of oligos mapping 

to each of these regions. Read counts were normalized for the total number of aligned 

reads in each sample, and divided by the number of reads found in a control sample as 

described in (Hammoud et al., 2009). The resulting enrichments were plotted against 

each other on a log2 scale. Promoter regions that were identified being enriched (with 

identified peaks) in all three ChIP-chip replicates (this study) are indicated in blue 

(H3K4me2) or red (H3K27me3) (Supplementary Fig. 4a-d). Venn diagrams 

(Supplementary Fig. 4e, 4f) are based on published lists of enriched promoters 

(Hammoud et al., 2009)  which were compared to lists of enriched promoters identified in 

the current study   

 

CpG class annotation  

Promoter regions on the array were assigned to three CpG classes (LCP, ICP and HCP: 

low intermediate and high CpG-content promoters) based on published criteria (Weber 

et al., 2007). In the text LCP promoters are referred to as non CpG island promoters and 

ICP and HCP promoters together as CpG island promoters.  

 

GO term analysis 

Gene ontology (GO) analyses were performed using GO Stat (Beissbarth and Speed, 

2004), (http://gostat.wehi.edu.au). Complete lists of significantly over- and under-

represented GO terms for Fig. 2 are provided in Supplementary Table 2 and for Fig. 4d 

and 4e in Supplementary Table 3.   

 

Matching to published data sets 

Schematic representations of all matching steps are provided in Supplementary Fig. 1 

for ChIP,  MedDIP data and expression in human and in Supplementary Fig. 9 for 

expression in mouse. For each comparison a master data set of genes common to all 

array platforms used in different studies was determined and only these genes were 

used in subsequent analyses. 

 

Comparison to maps of DNA methylation in human sperm and H3K4me2 in human 

fibroblasts 

To match MeDIP measurements of DNA methylation in human sperm and H3K4me2 

ChIP measurements in human fibroblasts (Weber et al., 2007) to current data set, we re-
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annotated the promoter coordinates of Weber and colleagues (Weber et al., 2007) to the 

new genome build coordinates (hg 17 to hg18 conversion) and Ensembl transcription 

start sites within these regions. 5meC and H3K4me2 enrichment measurements were 

mapped to current study via Ensembl gene ids. Promoters were assigned to CpG-

density classes as determined in (Weber et al., 2007). DNA hypermethylation status on 

ICP and HCP promoters was determined by applying a threshold for 5meC log2 ratio 

>0.4 as described (Weber et al., 2007). H3K4me2 status was determined by applying a 

threshold log2 ratio > -1.5, based on the bimodal distribution of the enrichment values 

allowing to distinguish between positive and negative fractions of promoters.    

 

Comparison to maps of H3K4me3 and H3K27me3 in human ES cells and of 

H3K27me3 in human fibroblasts and mouse ES cells 

Published lists of genes associated with modified histones accompanying (Bracken et 

al., 2006; Mohn et al., 2008; Pan et al., 2007; Zhao et al., 2007) studies were annotated 

with Ensembl gene ids and matched to current data set. H3K27me3 mouse ES data set 

(Mohn et al., 2008) was matched based on mouse orthologs of the genes on the array 

(see below).   

 

Matching human to mouse genes  

For comparison to mouse expression data sets, human genes on the array were 

annotated with corresponding mouse orthologs, based on Ensembl criteria 

(www.ensembl.org/info/docs/compara/homology_method.html). Only genes with one-to-

one orthology were used in the analysis (13167 of 18152 human Ensembl annotated 

genes). The approach to compare chromatin modifications at genes in human sperm to 

expression of orthologous genes in spermatogenic, oogenic and embryonic cells of 

mouse origin is supported by recent comparative expression studies showing high 

conservation of expression patterns between mouse and human orthologous genes in 

many tissues, including testis (Jordan et al., 2005; Xing et al., 2007).  

 

Defining expression states  

To analyze expression status of genes during different stages of gametogenesis 

(primordial germ cell development, oogenesis and spermatogenesis) and 

embryogenesis, we processed data from publicly available Affymetrix CEL files (Chalmel 

et al., 2007; Kurimoto et al., 2008; Namekawa et al., 2006; Pan et al., 2005; Zeng and 
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Schultz, 2005) using Genedata‟s Expressionist pro 5.0 (Genedata AG). Expression 

values were estimated using the RMA-Bioconductor function (Irizarry et al., 2003) and 

their distributions were standardized by quantile normalization and scaled by 

transforming the median expression value to 20.  

Probesets with a detection P-value < 0.04 (Affymetrix default) in both replicates 

(Chalmel et al., 2007) or in at least three out of four replicates (Kurimoto et al., 2008; 

Namekawa et al., 2006; Pan et al., 2005; Zeng and Schultz, 2005) were considered to 

be expressed and annotated with Ensembl gene ids. Lists of genes expressed at a given 

stage were compared to current data set using the Ensembl gene id for mapping. For 

analysis of absolute expression levels the mean of replicates was calculated for each 

probeset and the highest value was taken in case of multiple probesets per gene.  

 

Defining expression profiles  

To identify classes of genes with similar expression profiles during spermatogenesis and 

embryogenesis, we first selected probesets with an expression value >20 

(embryogenesis) or >40 (spermatogenesis) in at least one developmental stage. Probes 

with significantly changing expression levels between developmental states (P-value < 

0.05 in N-way ANOVA analysis) were assigned to different expression profiles using the 

self organizing map (SOM) clustering algorithm. False discovery rate was estimated 

using a Benjamini-Hochberg test to correct P-values. To distinguish between maternally 

provided transcripts and de novo transcription in 2-cell stage embryos, we compared 

expression levels in embryos treated and untreated with the transcription inhibitor -

amanitin (Zeng and Schultz, 2005). We combined profiles with similar changes in 

expression states during development. Probesets in groups of combined profiles were 

annotated with Ensembl gene ids. Groups were compared to current data set based on 

mouse Ensembl gene ids. 

 

Statistical analyses 

Statistical tests were performed in R, using two-sided Wilcoxon rank sum test (Fig. 3b 

and 4c) as a non-parametric test of location for non-normal data. In Fig. 3a, the one-

sided hypergeometric test (R “Phyper” function) was used to measure the probability of 

observing an overlap equal or smaller to the one obtained from the real data. 

Associations in Fig. 5 were tested using Pearson's Chi-squared test on the raw count 
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data. The P values reported for enriched GO terms (Fig. 2, 4d, 4e) were obtained using 

GO Stat (http://gostat.wehi.edu.au). 
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2.2 Supplementary data 
 
Supplementary information to the manuscript entitled: 

 

Repressive and active histone methylation mark distinct promoters  

in human and mouse spermatozoa 

Urszula Brykczynska, Mizue Hisano, Liliana Ramos, Edward J. Oakeley, Tim C. Roloff, Dirk 

Schübeler, Michael B. Stadler and Antoine H.F.M. Peters 

 

Supplementary Figures 

  1: Data analysis scheme. 

2:  Validation of HMM peak prediction. 

3: ChIP real-time PCR validation of genomic array data. 

4: Comparison to histone methylation states and nucleosomal association reported by 

Hammoud et al., 2009. 

  5:  Classification of H3K4me2 and H3K27me3 targets according to CpG density of 

underlying promoter sequence.  

6:  Number of modified gene promoters per chromosome. 

7:  Comparison of histone methylation states in human sperm, hESCs and human  

fibroblasts. 

  8: Levels of expression in human spermatocytes. 

  9:  Data analysis scheme of comparison to mouse expression data. 

 10:  Validation of comparison between human and mouse expression programs.  

11:  Majority of genes not expressed during spermatogenesis, in fully grown oocytes and 

during early embryogenesis are also not expressed during oogenesis   

12: Majority of genes not expressed during spermatogenesis, in fully grown oocytes and 

during early embryogenesis are also not expressed in primordial germ cells 

13: ChIP real-time PCR analysis of modified genes in mouse spermatozoa    

 

Supplementary Tables (due to large file sizes these data are not provided in the thesis) 

  1 List of genes with modification states in human spermatozoa 

  2: List of significantly over- and under-represented GO terms for Fig. 2  

  3: List of significantly over- and under-represented GO terms for Fig. 4d, e  

  4: Real-time PCR primer sequences 
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Supplementary Fig. 1: Data analysis scheme. Flow chart showing procedures used to identify 

modified promoters in human sperm and to compare modified promoter sets to published global 

histone modification and expression data (see Methods for detailed description). 
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Supplementary Fig. 2: Validation of HMM peak prediction. Scatter plot presenting raw 

H3K4me2 and H3K27me3 log2 enrichment ratios per oligo (mean average of 3 replicates). 

Colored circles represent oligos assigned to peaks by HMM peak finding algorithm (see Methods 

for details).  
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Supplementary Fig. 3: ChIP real time PCR validation of genomic array data.
(a, b) Promoters of 41 genes and an intergenic negative control (IG) were analyzed for relative
enrichments of (a) H3K4me2 and (b) H2K27me3. For targets, scored positive on the array, real
time PCR amplicons overlap with identified peaks. We analyzed each gene in two independent
cross-linked ChIP (X-ChIP) experiments and in two independent native ChIP (N-ChIP) experiments.
Data are presented as % of immuno-precipitated input chromatin. Linear scaling was applied for
the replicas as presented in the same graphs with following multiplication factors: (a) X-ChIP#1
times 1, X-ChIP#2 times 3, X-ChIP#3 times 1, X-ChIP#4 times 1, N-ChIP#1 times 1, N-ChIP#2
times 2, (b) X-ChIP#1 times 1, X-ChIP#2 times 2, X-ChIP#3 times 1, X-ChIP#4 times 1, N-ChIP#1
times 1, N-ChIP#2 times 2. A selection of results from X-ChIP#1 and #3 and N-ChIP #1 and #2 is
shown in Figures 1d and 1e.(c) Schematic diagram showing consistency of array results with the
real-time PCR validation by two ChIP methods.

81



a b

c d

H3K4me3 ChIP-Seq
(8810 genes)
(Hammoud et al., 2009)

79%
Nucleosomes-Seq

(6262 genes)
(Hammoud et al., 2009)

1313 2308

173

2323

2453

H3K4me2 ChIP-chip
(4555 genes)

2866

761

n=18152

33%

41%

Nucleosomes-Seq
(6262 genes)

(Hammoud et al., 2009)
715 390

180

1239

4128

H3K27me3 ChIP-chip
(1609 genes)

H3K27me3 ChIP-Seq
(3150 genes)
(Hammoud et al., 2009)

806

324

n=18152

69%

56%

62%

e f

82



Supplementary Fig. 4: Comparison to histone methylation states and nucleosomal 
association reported by (Hammoud et al., 2009). 
 (a, b) Scatter plots showing correlation of normalized log2 number of aligned reads obtained by 
ChIP-Seq (Hammoud et al., 2009) and average log2 enrichment ratios of oligos obtained by 
ChIP-chip (current study), mapping to tiled promoter regions on the NimbleGen array (each point 
represents one promoter region), for H3K4me2/3 (a) and H3K27me3 (b). Correlation measures R 
(Pearson’s correlation coefficient), and rho (Spearman’s rank correlation coefficient), indicate 
high correlation between the two studies performed using different ChIP and detection 
techniques. Promoter regions that were identified being enriched in all three ChIP-chip replicates 
(this study) are indicated in blue (H3K4me2) or red (H3K27me3). (c, d)  Scatter plots showing 
correlation of normalized log2 number of aligned reads obtained by sequencing of isolated 
nucleosomes (Hammoud et al., 2009) and average log2 enrichment ratios of oligos obtained by 
ChIP-chip for H3K4me2 (c) and H3K27me3 (d) (current study), mapping to tiled promoter 
regions on the NimbleGen array (each point represents one promoter region). Plots show that 
majority of promoters detected to be associated with H3K4me2 (c) and H3K27me3 (d) by ChIP-
chip also carry detectable levels of nucleosomes. Promoters with low modification enrichments 
have variable levels of nucleosomes. Promoter regions that were identified being enriched in all 
three ChIP-chip replicates (this study) are indicated in blue (H3K4me2) or red (H3K27me3). 
(e, f) Venn diagrams showing overlap between identified groups of modified promoters (this 
study) and published lists of genes associated with modified histones and nucleosomes 
(Hammoud et al., 2009) that are present on the NimbleGen promoter array, for H3K4me2 (e), for 
H3K27me3 (f). Percentages indicate overlap between pairs of analyzed groups.  
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Supplementary Fig. 5: Classification of H3K4me2 and H3K27me3 promoters according to
CpG density of underlying promoter sequence. Bar diagrams showing preferential marking of
CpG island promoters, also called intermediate (ICP) and high CpG-content (HCP) promoters, by
H3K4me2 and H3K27me3. Promoters with low CpG-content are labeled as non CpG island or low
CpG-content promoters (LCP). Classification on CpG density is based on published criteria (Weber
et al., 2007).
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Supplementary Fig. 6: Number of modified gene promoters per chromosome.
Scatter plots revealing linear relationships between the number of gene promoters modified by
H3K4me2 and/or H3K2me3 and the total number of genes per chromosome (present on the array).
The X-chromosome is largely devoid of genes marked by either modification.



pr
om

ot
er

s 
(n

=1
29

45
)

a

sperm hES cells human fibroblasts

Pan et al.    Zhao et al. Weber et al. Bracken et al.

(H3K4me2) (H3K27me3)(H3K4me3)
(H3K27me3)

(H3K4me3)
(H3K27me3)

(H3K4me2)
(H3K27me3)

2007            2007 2007            2006

H3K4me2/3

both

H3K27me3

neither

pr
om

ot
er

s 
(n

=1
81

7)

LCP promoters

sperm hES cells human fibroblasts

pr
om

ot
er

s 
(n

=3
09

5)

ICP promoters

sperm hES cells human fibroblasts

pr
om

ot
er

s 
(n

=8
03

3)

HCP promoters

sperm hES cells human fibroblasts

b CpG island promotersnon CpG island promoters

Supplementary Fig. 7: Comparison of histone methylation states in human sperm, hESCs and
human fibroblasts. (a) Clustering of all promoters according to their methylation status in human
sperm, ESCs (Pan et al., 2007; Zhao et al., 2007) and fibroblasts (Bracken et al., 2006; Weber et
al., 2007) (see Supplementary Fig. 1 and Methods for details of comparison). Arrow indicates genes
marked by H3K4me2 in sperm only (see also Fig. 4a). (b) Clustering of promoters according to
their CpG-density and histone methylation status in human sperm, ESCs and fibroblasts.
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Supplementary Fig. 8: Levels of expression in human spermatocytes. Box plot displaying
expression levels in human spermatocytes for genes differentially modified in sperm (Chalmel et
al., 2007). Genes under control of promoters that are H3K4me2 targets only in sperm but not in
soma (light blue, also indicated by blue arrow in Fig. 4a and Supplementary Fig 7) are most highly
expressed. Other H3K4me2 genes (dark blue) show significantly higher levels of expression compared
to genes with neither mark (*: Wilcoxon test P-value < 2.2e-16). In the plot, the central bar marks
the median, lower and upper limits of the box indicate the 25th and 75th percentiles, and the whiskers
extend 1.5 interquartile range from the box.



 
 
Supplementary Fig. 9: Data analysis scheme of comparison to mouse expression data. Flow 
chart showing procedures used to compare modification status of genes in human sperm to 
expression status during murine spermatogenesis, embryogenesis, oogenesis and primordial germ 
cell (PGCs) development (see Methods for detailed description). 
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Supplementary Fig. 10: Validation of comparison between human and mouse expression
programs. (a) Representation of 10835 one-to-one orthologous genes expressed in mouse (purple)
and human (green) spermatocytes and spermatids (Chalmel et al., 2007; Namekawa et al., 2006).
Genes commonly expressed in both species are marked in dark color and genes expressed in one
species only in light color. (b) Box plot representing expression levels in human spermatocytes and
spermatids for groups identified in panel (a). (c) Box plot representing expression levels in mouse
spermatocytes and spermatids for groups identified in panel (a). Genes expressed in one species
only show significantly lower expression levels than genes expressed in both cells from both species.
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Supplementary Fig. 11: Majority of genes not expressed during spermatogenesis, in fully
grown oocytes and during early embryogenesis are also not expressed during oogenesis
(a) Bar graphs showing expression status in primordial oocytes and growing oocytes (Pan et al.,
2005). Analysis was done for genes not expressed during spermatogenesis, in fully grown oocytes
and during early embryogenesis (as identified in Fig. 5c). (b) List of H3K27me3-targets that are
expressed in primordial and/or growing oocytes (representing expressed fraction from panel (a)
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Supplementary Fig. 12: Majority of genes not expressed during spermatogenesis, in fully
grown oocytes and during early embryogenesis are also not expressed in primordial germ cells
(a) Bar graphs showing expression status in mouse primordial germ cells at E6.5-6.75 and E8.25
of their development (Kurimoto et al., 2008). Analysis was done for genes not expressed during
spermatogenesis, in fully grown oocytes and during early embryogenesis (as identified in Fig. 5c).
(b) List of H3K27me3-targets that are expressed in PGCs at one or both developmental stages
(representing expressed fraction from panel (a). Consistent with the origin of PGCs, some of these
H3K27me3-marked genes have been implicated in mesoderm differentiation (e.g. T (Saitou et al.,
2002)).
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Supplementary Fig. 13: Real time PCR analysis of modified genes in mouse spermatozoa
39 mouse genes were analyzed by native ChIP (N-ChIP) with (a) H3K4me2, (b) H2K27me3
antibodies, followed by real time PCR. Genes were selected based on orthology with human genes
analyzed in Supplementary Fig. 3. Data are presented as % of immuno-precipitated input chromatin.
Linear scaling was applied for the replicas presented in the same graphs with following multiplication
factors: For H3K4me2: N-ChIP#1 times 1, N-ChIP#2 times 1/2, N-ChIP#3 times 3.5, N-ChIP#4
times 1.6; For H3K27me3: N-ChIP#1 times 1, N-ChIP#2 times 1/4, N-ChIP#3 times 1, N-ChIP#4
times 1/7. For both modifications, N-ChIP #4 is shown in Fig. 6 a,b.

92



 93 

3. Discussion 

 

Functionality of the sperm derived methylated histones 

In this thesis we show that methylated histones are retained in mature human and 

mouse spermatozoa.  These histones are residing on functionally defined groups of 

promoters. Therefore, it is improbable that such retained histones represent a random 

leftover of inefficient chromatin remodeling during spermatogenesis. Defined, common 

functional features of genes associated with histones in sperm strongly argue that the 

retention is purposeful. Furthermore, a high conservation between the modification 

status in mice and humans supports the model of transgenerational transmission of 

epigenetic information through the male germ line.  

Among mammals, the presence of histones in sperm is not unique to mouse and 

human. A histone component was also reported for rat, bull and boar sperm (Banerjee 

and Smallwood, 1998; Codrington et al., 2007; Gatewood et al., 1990; Palmer et al., 

1990; van der Heijden et al., 2006). Interestingly, histones only represent a minor 

fraction of DNA bound proteins in sperm of species other than human. Thus, in human 

histone levels are exceptionally high. Our demonstration that H3K27me3 is associated 

with developmental genes in both mouse and human, indicates that there may exist a 

group of regulatory sequences with conserved nucleosomal configuration. As protein 

coding sequences occupy only around 1% in mammalian genomes, 1% of retained 

histone may be enough to well serve the regulatory function.  

Nevertheless, we have not provided direct evidences for a function of sperm 

derived histones for the subsequent embryonic development. Conservation of the 

methylation marks from mouse to human, will allow us to use the powerful mouse model 

to answer these questions. Conditional transgenic mice, overexpressing either a H3K4 

or H3K27 histone de-methylase at the last stages of spermatogenesis, will be generated 

for that purpose. We hope that using this strategy, histone modifications in spermatozoa 

will be specifically removed, without affecting the spermatogenic process. 

Developmental potential of the embryos generated with sperm lacking a given mark will 

reveal whether sperm derived modified histones play an essential role in the embryo. 

 

Paternal versus maternal epigenetic contributions 

For many years, sperm has been regarded as an “inert” container for delivering of the 

paternal DNA. The fundamentally different chromatin configuration of sperm comparing 
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to that of somatic cells, made it very difficult to investigate its nature with established 

biochemical methods. In contrast, oocytes retain the nucleosomal configuration of the 

genome. This, along with a high volume of cytoplasm, makes oocytes potential carriers 

of proteins and RNAs necessary for pre-implantation development. Furthermore, 

analysis of the developmental potential of gynogenic embryos demonstrates that the 

sole manipulation of two out of the three paternally imprinted loci solves the need for a 

paternally derived genome. Therefore, genomic imprinting is the only barrier for the 

parthenogenic development in mammals. (Kawahara et al., 2007). One could argue that 

this is a proof for a very marginal paternal contribution to the embryo. However, in a 

natural situation, the two parental genomes are joined to assure phenotypic variation 

and survival of the species. Besides the differences coming from the physiological roles 

of male and female gametes during reproduction and differences in genomic imprinting, 

one can propose that the two gametes should not fundamentally differ in their epigenetic 

contributions. Consistently, when we analyzed the presence of histone modifications in 

mouse and human spermatozoa, we detected multiple marks, many of which have 

recognized functions in gene regulation (Figure, page 95). We decided to concentrate on 

two of them, H3K4me2 and H3K27me3, which in somatic cells are associated with 

active and repressed genes, respectively. In the presented genome wide study, we show 

that these marks are associated with a substantial number of promoters in mature 

spermatozoa. Furthermore, multiple developmental regulators, which are Polycomb 

targets in pluripotent somatic cells, are marked by the Polycomb deposited H3K27me3 

in sperm. Similarly, to somatic cells, the presence of this mark correlates with gene 

repression at the preceding and following stages of development. We propose that 

H3K27me3 transmitted by sperm assures repression of developmental regulators at the 

totipotent stage of the preimplantation development. We further hypothesize that the 

same sequences carry H3K27me3 in the oocyte genome, so that both inherited alleles 

are protected from the aberrant expression in the early embryo.  

 

Injection of round spermatids into oocytes results in the development of healthy 

and fertile offspring (Kimura and Yanagimachi, 1995; Tamashiro et al., 1999). Even 

though the success rates of such experiments are higher when mature spermatozoa are 

injected, these data argue that the epigenetic state of the paternal genome, at the round 

spermatid stage, is compatible with embryonic development. As we show in the 

presented results, the majority of genes carrying  repressive  H3K27me3  in  sperm  was  
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Histone post translational modifications present in mouse and 

human spermatozoa. Western blot analysis was performed 

according to the Methods in the Results section. 
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already repressed either in PGCs or at early spermatogenic stages.  Data from the 

round spermatid injection experiments thus support a model in which epigenetic marks 

with major importance for embryonic development, are established early or continuously 

exist in the germ cell lineage. 

 

In C.elegans worms lacking the H3K4 de-methylase SPR-5 (a worm homolog of 

LSD1), H3K4me2 accumulates over generations in the male germline and causes 

aberrant upregulation of spermatogenic genes. The authors suggest that epigenetic 

determinants of the spermatogenic program are selectively erased from the genome 

after fertilization, in order to maintain totipotency (Katz et al., 2009). In our study, 

H3K4me2 is retained on spermatogenic genes as well. We hypothesize that similarly to 

the situation in C.elegans these marks are selectively removed after fertilization, 

whereas marks on other loci may be retained.  

 

Defined genomic localization of histones in mouse and human spermatozoa  

In the last two months, two papers describing genomic localization of nucleosomes and 

modified histones in mouse and human spermatozoa have been published (Arpanahi et 

al., 2009; Hammoud et al., 2009). We performed a detailed comparison of our data with 

the (Hammoud et al., 2009) study. We compared the data sets both based on the lists of 

genes associated with methylated H3K4 and H3K27 and based on the raw ChIP-seq 

((Hammoud et al., 2009)) and ChIP-chip (our study) enrichment scores. In both 

comparisons we found a high positive correlation. The very different format of the data 

by Arpanahi and colleagues precluded us from making a direct comparison to their data 

set. The arrays used in their study allow to localize nucleosomal bound sequences with 

a 35 kb resolution and therefore do not provide information about the status of single 

promoters. Nevertheless, the gene ontology analysis of sequences associated with 

histones in both published studies and in our study, revealed over-representation of 

developmental processes. Furthermore, consistently with our results on selected loci, 

Arpanahi and colleagues found an over-representation of developmental processes 

among histone bound sequences in mouse spermatozoa.   

Similar to our study, Hammoud and colleagues reported that genes with 

developmental functions are associated with H3K27me3 or are in the bivalent state. 

Contrary to our data, they also observed a group of developmental genes associated 

with H3K4me3 only. This discrepancy may be caused by the fact that in our study, H3K4 
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dimethylation and in their study trimethylation was analyzed. Nevertheless, high 

correlation of our H3K4me2 data with their H3K4me3 data suggests that in spermatozoa 

the two modifications occupy largely overlapping sets of promoters, consistent with 

multiple studies in different cell types in human and mouse (Barski et al., 2007; Guenther 

et al., 2007; Mikkelsen et al., 2007; Mohn et al., 2008; Orford et al., 2008; Weber et al., 

2007). Furthermore, consistent with our results, Hammoud and colleagues find genes 

expressed during spermatogenesis and in the early embryo, among H3K4 methylated 

targets.   

In contrast to our study, which was limited to promoters, the two described 

publications provide genome-wide data. Interestingly, Arpanahi and colleagues report 

that in both human and mouse spermatozoa, promoter sequences are significantly 

higher enriched among nucleosomal bound regions than intergenic sequences. 

Furthermore, they find a high positive correlation between nucleosomal bound regions 

and CTCF binding sites in human spermatozoa. Hammound and colleagues report that 

several miRNA clusters and imprinted loci are associated with histones in human 

spermatozoa. Taken together these observations support a hypothesis, in which 

histones are selectively retained on regulatory sequences and may serve evolutionary 

conserved functions.  

 

Fate of the sperm derived epigenetic information in the early embryo 

Besides modified histones, other epigenetic factors may be involved in the paternal 

transmission of epigenetic information. In both mouse and human spermatozoa, DNA 

methylation is not only present at imprinted genes, but also marks multiple promoters 

(Farthing et al., 2008; Weber et al., 2007). Furthermore, various protein coding RNAs 

and micro RNAs have been identified in human spermatozoa (Ostermeier et al., 2002; 

Ostermeier et al., 2005).  

Taking global changes in the paternal genome just after the fertilization into 

account, one must keep in mind that the epigenetic information encoded by histone 

modifications, DNA methylation and RNAs could be immediately erased in the embryo. 

However, during the pronuclear stages preceding the 1st genome replication, paternal 

histones can be distinguished from the maternally provided ones based on the 

differences in H3 variants and on the acetylation patterns on histone H4. Sperm derived 

histones are observed to retain on the paternal genome, arguing that they are not 
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removed along with the protamines (Adenot et al., 1997; van der Heijden et al., 2006; 

van der Heijden et al., 2008).  

The erasure of DNA methylation from the paternal genome that takes place after 

fertilization, is not complete. Both imprinted genes and certain retrotransposons are 

resistant to this process (Olek and Walter, 1997; Rougier et al., 1998).  A comprehensive 

list of sequences that escape de-methylation, however is not known. Furthermore, the 

heritable phenotype of the Kit epimutation correlates with the aberrant levels of RNA in 

sperm, arguing that this RNA is not degraded after fertilization (Rassoulzadegan et al., 

2006; Wagner et al., 2008).  

 

Heterogeneity of epigenetic traits  

The described work was performed on pools of spermatozoa coming from multiple 

individuals. It can not be ruled out that the patterns of histone modifications observed in 

human sperm are a sum of variable individual patterns. However, the conservation of 

histone marks between sperm coming from humans and from an inbred mouse strain 

argues that the patterns maybe similar between individuals. Furthermore, in the recent 

study of Hammoud and colleagues, the analysis of nucleosomal positioning in sperm 

coming from a single donor and from an independent pool of donors, resulted in  a high 

positive correlation between these two samples (r=0.7) (Hammoud et al., 2009). On the 

other hand, these data suggest that there is a certain level of variability between the 

individuals. Similarly, a DNA methylation profiling of spermatozoa from 21 healthy 

individuals revealed overall similarity, but also significant differences at specific loci 

(Flanagan et al., 2006). It is an attractive hypothesis that epigenetic features can also be 

subjected to environmental selection (Ruden et al., 2008; Sollars et al., 2003). 

Differences between individuals may therefore lead to a phenotypic variation and 

selection that is advantageous for the species. Furthermore, recent data on the effect of 

maternal diet or the exposure to chemicals like endocrine disruptors, suggest that 

environmental factors can alter epigenetic information that is transmitted by the germ 

line (Anway et al., 2005; Cropley et al., 2006). Thus, transgenerational effects are 

emerging as important issues for medicine and environmental protection. The essential 

contribution of the histone methylation to the sperm epigenome provides a new insight 

into the potential role of the father in transmitting epigenetic information to the next 

generation.   
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