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A. List of abbreviations  

Less frequently used abbreviations are defined upon their first use in the text.  

C. elegans  Caenorhabditis elegans 
cDNA Complementary deoxyribonucleic acid 
CFP Cyan fluorescent protein 
cGMP Cyclic guanosine monophosphate 
daf-16 daf-16(mu86)I 
daf-2 daf-2(e1368)III 
daf-28(sd) daf-28(sa191)V 
daf-28; daf-28(lf) daf-28(tm2308)V 
DNA Deoxyribonucleic acid 
Drosophila  Drosophila melanogaster 
FOXO Forkhead box O subclass 
gf Gain-of-function 
GFP Green fluorescent protein 
GPCR G-protein coupled receptor 
ICE Interleukin-1 converting enzyme 
IGF Insulin-like growth factor 
ILP Insulin-like peptide 
ins-1 ins-1(nr2091)IV 
ins-18 ins-18(tm339)I 
ins-6 ins-6(tm2416)II 
ins-7 ins-7(tm1907)IV 
L1-4 Larval stages 1-4 
L2d Predauer stage 
lf Loss-of-function 
ORF Open reading frame 
PCR Polymerase chain reaction 
PI3 Phosphoinositide 3 
RNA Ribonucleic acid 
RNAi RNA interference 
sd Semidominant 
TGF Transforming growth factor  
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B. Summary 

 

The sensory system senses and conveys information about an animal’s complex 

environment to induce the optimal physiological and behavioral responses that are 

necessary for survival. Sensory information is transduced within neurons and 

downstream target tissues through a variety of molecular signaling pathways. One such 

pathway is the insulin-like signaling pathway, which is not only a key regulator of growth 

and metabolism in many species but also of other biological processes that are influenced 

by sensory inputs.  

In the nematode worm C. elegans, the insulin-like pathway is part of the signaling 

network that mediates the sensory influence on development and lifespan. C. elegans is 

predicted to have 40 genes that encode insulin-like peptides (ILPs), many of which are 

expressed in sensory neurons and interneurons, as well as in other tissues. Thus, insulin-

like peptides are likely candidates to regulate C. elegans physiology in response to 

environmental cues by modulating the activities of the affected sensory circuits and/or 

their target tissues.  

During the first larval stage, an important developmental decision is made 

between reproductive growth and a larval arrest program, also known as the dauer 

program. In response to harsh environmental cues, worms enter the stress-resistant dauer 

(endurance) stage, from which they exit when environmental cues again favor 

reproductive development. This developmental decision is known to be mediated not 

only by specific sensory neurons but also by insulin-like signaling. Considering the 

complexity of the sensory cues that regulate this developmental switch and the number of 
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ILPs that are expressed in different sensory neurons, I hypothesize that ILPs encode 

sensory information to regulate C. elegans development.  

  For my thesis, I have tested this hypothesis by focusing on three ILPs, daf-28, 

ins-6 and ins-1, which have been implicated in the regulation of dauer arrest through 

gain-of-function and RNA-interference analyses. Since these previous studies have only 

indirectly examined ILP function, which prevents the direct comparison of the relative 

contributions of each ILP in regulating this process, I have used deletion mutants, in 

which ILP function is specifically and completely eliminated. Such an approach has 

allowed me to examine directly and define the precise functions of these ILPs in 

regulating the different steps of the developmental switch in response to specific sensory 

cues.  

In contrast to the earlier studies, I show that these ILPs have distinct, non-

redundant functions in controlling this switch in development. While ins-1 is necessary 

for dauer arrest, daf-28 and ins-6 are required for reproductive growth. I find that daf-28 

has a major function in inhibiting dauer entry, while ins-6 has only a minor role in this 

process. However, the relative importance of these two ILPs is reversed in the regulation 

of dauer exit: ins-6 now has a major function in promoting dauer exit, whereas daf-28 has 

only a minor role. 

To regulate the developmental switch, these ILPs generate precise responses to 

dauer-inducing sensory cues, like low food availability or high levels of a pheromone 

mixture that signals overcrowding. While daf-28 expression has been shown to be 

downregulated by either high pheromone or low food levels in sensory neurons that 

regulate the switch, I do not observe any such regulation for ins-1 expression in the same 
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neurons. At the same time, I also find that during reproductive growth ins-6 is expressed 

in sensory neurons (ASI) that inhibit dauer entry, whereas ins-6 transcription shifts 

during dauer arrest to another pair of sensory neurons (ASJ) that promote dauer exit, a 

change that persists in post-dauer adults. I further show that ins-6 expression in ASI is 

specifically downregulated by the dauer pheromone mixture and not by food levels, 

whereas the switch in expression to ASJ requires both the dauer pheromones and the full 

induction of the dauer program. Thus, the specificity in the stimulus regulation of ilp 

expression in sensory neurons suggests a mechanism through which these ILPs encode 

sensory information and regulate development in a combinatorial fashion. 
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1. Introduction 

 

1.1 C. elegans as a model for the environmental influence on development 

 

During the course of evolution, animals were bound to develop strategies to endure harsh 

environmental conditions. The nematode worm C. elegans can adjust its physiology in 

response to the surroundings, in order to survive periods of starvation and harsh conditions, 

and to delay reproduction until conditions improve. Under favorable conditions, newly-

hatched C. elegans develop through four larval stages (L1-L4) to become reproductive adults 

(Figure 1.1). However, when resources become scarce, C. elegans can enter an alternative 

developmental program, the so-called dauer program [Figure 1.1; (Cassada and Russell, 

1975)]. Dauers are developmentally arrested, but highly stress-resistant alternative third-stage 

larvae [L3; (Cassada and Russell, 1975; Riddle et al, 1981)], which can endure harsh 

conditions and survive starvation for longer periods of time. L1-stage worms enter the dauer 

program in response to cues that signal overcrowding and decreasing food levels (Golden and 

Riddle, 1982; Golden and Riddle, 1984). In contrast, a complete lack of food causes larval 

arrest at all stages, and is followed by starvation and death within days.  

Prior to entering the dauer stage, worms enter the pre-dauer L2 (L2d) stage [Figure 

1.1; (Riddle and Albert, 1997)]. During L2d, the final decision is made either to enter the 

dauer stage or to resume reproductive growth and develop into an L3 larva, which is 

dependent on whether or not the conditions remain adverse (Riddle and Albert, 1997). In 

contrast, L2 worms, which are distinct from L2d worms, are unable to enter the dauer 

program when conditions become unfavorable, since the dauer decision has to be initiated by 

the L1 stage (Riddle, 1988). The decision between the alternative developmental programs is 

determined by environmental conditions that are detected by the C. elegans sensory system 
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Figure 1.1: The C. elegans life cycle. In response to the environmental conditions, worms can switch between 
the different developmental programs, reproductive growth and dauer arrest. Under good environmental 
conditions, worms develop through four larval stages into reproductive adults. Under harsh environmental 
conditions, worms can enter an alternative developmental program and become dauers. Dauers are 
developmentally arrested and highly stress resistant, and thus survive periods of harsh conditions. Once the 
conditions are again favorable for reproductive development, worms exit from the dauer stage to the L4 stage 
to become reproductive adults. Dauer arrest is regulated by the ratio of dauer pheromone to food, and is also 
induced by high temperature. In addition, downregulation of insulin-like signaling induces dauer arrest (Image 
taken from Altun and Hall, 2009). 

(Bargmann and Horvitz, 1991a; Schackwitz et al., 1996). Similarly, the decision to exit from 

or remain within the dauer program is determined by environmental conditions that 

are also perceived by specific sensory neurons (Bargmann and Horvitz, 1991a).  
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1.2 Dauer arrest 

 

1.2.1 Dauer morphology and metabolism 

 

The dauer differs in several ways from the L3 larva (Cassada and Russell, 1975; Riddle et al., 

1981; Riddle, 1988; Sulston, 1988; Vowels and Thomas, 1992; Wadsworth and Riddle, 

1989). Its mouth is plugged by a cuticular block. Thus, the dauer cannot feed, but survives by 

metabolizing internal resources stored in numerous fat storage vesicles, which are visible as 

dark spots under the microscope and results in an overall dark appearance. The dauer pharynx 

is remodeled, in that the lumen of both the anterior and posterior bulbs is largely reduced, and 

the pharyngeal ability to pump, which is important for digestion, is also completely or largely 

inhibited. Likewise, the dauer’s intestinal lumen is reduced, while its gonad is arrested in an 

L2-like state. Moreover, dauers are protected by a thick dauer cuticle, which has alae 

structures distinct from those of the L1 and adult, the only other developmental stages that 

have cuticular alae.  The dauer’s plugged mouth, reduced pumping and dauer-specific cuticle 

hinder dessication and confer resistance against toxic substances, e.g., detergents that 

solubilize membrane structures. Furthermore, the dauer locomotion is strongly reduced: 

periods of lethargus are interrupted by periods of fast locomotion, which are triggered, for 

instance, by mechanical stimulation, possibly as a defensive response against predation.  

Reproductively growing worms shift their metabolism between the L1 and L2 stages: 

L1 worms use fats from lipid stores to generate carbohydrates via the glyoxylate cycle, while 

L2 and older animals generate energy through increased tricarboxylic acid (TCA) cycle 

activity during aerobic respiration. During the dauer program, worms metabolize their lipid 

reserves like L1 worms and do not shift towards aerobic respiration (Wadsworth and Riddle, 

1989; Burnell et al., 2005). Dauers are relatively transcriptionally inactive, but upregulate 
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certain stress response genes, e.g., hsp-90 (Dalley and Golomb, 1992; Snutch and Baillie, 

1983). Moreover, upregulation of enzymes, such as superoxide dismutases and catalase 

(Larsen, 1993; Vanfleteren and De Vreese, 1995), renders dauers more resistant to metabolic 

stress.  

At present, the actual lifespan of individual dauers before they die from starvation 

remains unclear. However, if conditions become favorable again for reproductive 

development, dauers do exit into the last larval stage (L4) to develop further into reproductive 

adults [Figure 1.1; (Riddle and Albert, 1997)]. This exit from the dauer stage is triggered 

within an hour of accessing food. Then, feeding is resumed after 2-3 hours, which is followed 

by a molt into the L4 stage after about 10 hours. Since post-dauer adults live a normal 

lifespan, or even have a slightly prolonged lifespan, the dauer stage is considered to be “non-

aging”.  

 

1.2.2 Environmental cues regulating dauer arrest 

 

Dauer arrest is regulated by a mixture of dauer pheromones, food quantity and quality, and 

ambient temperature (Golden and Riddle, 1984a). The dauer pheromone mixture is 

continuously secreted by worms; thus, its concentration indicates population density (Golden 

and Riddle, 1982). It consists of at least three different ascarosides, which are glycolipids 

containing the sugar ascarylose (Butcher et al, 2007; Jeong et al, 2005). The molecular 

identity of the first dauer pheromone, the ascaroside (-)-6-(3,5-dihydroxy-6-

methyltetrahydropyran-2-yloxy) heptanoic acid, was discovered in 2005 (Jeong et al., 2005). 

Several structurally related ascaroside-derivatives, also with dauer pheromone activity, which 

differ in the side-chain residues on the ascarylose, were identified later (Butcher et al, 2007). 

These distinct dauer pheromones have different potencies in inducing dauer arrest or dauer 
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recovery (Butcher et al. 2007, Butcher et al., 2008). At least some of these dauer pheromones 

have also recently been shown to bind and activate two pheromone receptors, the G protein-

coupled receptors (GPCRs) SRBC-64 and SRBC-66, which are expressed in one set of dauer-

promoting sensory neurons (Kim et al., 2009). However, the loss of both srbc-64 and srbc-66 

does not completely prevent worms from entering the dauer program (Kim et al., 2009). 

Since there are at least four ascarosides that are known to play a role in dauer formation 

(Butcher et al, 2007; Butcher et al, 2008; Jeong et al., 2005) and there are other sensory 

neurons that are believed to sense this mixture (Bargmann and Horvitz, 1991a; Schackwitz et 

al., 1996), it is possible that other dauer pheromone-sensing GPCRs expressed in other 

sensory neurons remain to be discovered. 

The absolute levels of the dauer pheromone mixture and food do not determine the 

induction of the dauer program, but rather it is the ratio of pheromones to food that does so 

(Golden and Riddle, 1982; Golden and Riddle, 1984a; Golden and Riddle, 1984b). Indeed, a 

high concentration of dauer pheromones, together with low food, promotes dauer entry 

(Golden and Riddle, 1982). Besides these two cues, dauer formation can also be induced by 

high temperature (Ailion and Thomas, 2000; Golden and Riddle, 1984a). However, of the 

different dauer-regulating cues, the pheromone cue is the most potent, since it can overcome 

both food and temperature cues: high concentrations of the pheromone mixture can induce 

dauer arrest at low temperatures or even in the presence of enough food. 
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1.3 Sensory influence on dauer arrest 

 

1.3.1 The C. elegans chemosensory system 

 

Through its chemosensory system, which is a large component of its nervous system, C. 

elegans can detect environmental cues (Figure 1.2). These cues are either volatile or water-

soluble chemicals, and signal the environmental conditions, such as food quantity and quality 

or population density. For example, volatile organic compounds, which are breakdown 

products of bacterial metabolism, can signify the type and concentration of bacteria, the main 

C. elegans food source. The perception of these chemosensory cues regulates not only C. 

elegans behavior, like chemotaxis towards food cues, but also physiology and development, 

like the developmental decision between reproductive growth and dauer arrest. 

Chemosensory signals are detected by the following C. elegans sensory neurons: the amphid 

neurons in the head, the phasmid neurons in the tail, the IL2 neurons within the inner labial 

organs, and the oxygen sensing neurons [(Figure 1.2A); (Ward et al., 1975; Ware et al., 

1975)]. In response to different cues, these chemosensory neurons produce and secrete 

neuropeptides and other signals, which might act on neighboring neurons as part of different 

circuits, or on distant neurons and other tissues as hormones. 

The subset of sensory neurons that specifically regulate dauer arrest is located in the 

amphid sensory organ (Figure 1.2B). There are eleven bilateral pairs of chemosensory 

neurons (ADF, ADL, ASE, ASG, ASH, ASI, ASJ, ASK, AWA, AWB and AWC) plus one 

bilateral pair of thermosensory neurons (AFD) found within the amphid organ. Within this 

organ, the cilia of the amphid sensory neurons are either directly exposed to the environment 

through the amphid pore formed by a glial socket cell or end within the glial sheath cell. The 
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Figure 1.2: The C. elegans chemosensory system. A) C. elegans chemosensory neurons. There are eleven 
pairs of amphid chemosensory neurons and six chemosensory neurons in the inner labial organ (IL2 neurons) 
in the worm’s head and two pairs of phasmid chemosensory neurons in the tail, which are all directly or 
indirectly exposed to the environment. The oxygen sensing neurons AQR, PQR and URX are not exposed to 
the environment, but sense internal oxygen levels. The axons of many of these neurons project into the nerve 
ring, where they make synaptic connections with other neurons. B) Left: Schematic drawing of the sensory 
cilia of the amphid neurons. The cilia of the amphid neurons either end within the amphid pore, which is 
formed by a glial socket cell, and are directly exposed to the environment, or end within a glial sheath cell and 
sense cues that enter by diffusion (see middle panels). Right: Cross-section of an electromicroscopy image of 
sensory cilia within the amphid sheath (Image taken from Bargmann, 2006; Altun and Hall, 2009).   

neurons with ciliated endings that are directly exposed to the environment are known to sense 

water-soluble cues, like amino acids or salts (Bargmann and Horvitz, 1991b). In contrast, the 

neurons with ciliated endings within the sheath cell have been shown to detect volatile cues, 

which enter by diffusion (Bargmann et al, 1993). Moreover, the cilia of neurons that sense 

water-soluble cues have a single (ASE, ASG, ASH, ASI, ASJ and ASK) or a dual (ADF and 
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ADL) tubular structure [(Figure 1.2B); White et al., 1986]. On the other hand, the cilia of 

neurons that sense volatile cues differ in morphology, in that they are more of a wing-like 

structure (AWA, AWB and AWC; Figure 1.2B).  

A subset of the soluble cue-sensing cilia (ADL, ADF, ASH, ASI, ASJ and ASK) are 

also known to take up fluorescent dyes directly from the environment (Herman, 1984; 

Perkins et al., 1986). Thus, mutations in these cilia can be identified by their dye-filling (Dyf) 

phenotype, which means that these cilia have defects in their structure or in the connection 

between the cilia and the amphid sensory pore (Culotti and Russell, 1978; Lewis and 

Hodgkin, 1977). These defects impair chemosensation, since chemoreceptors located in the 

cilia are unable to transmit the correct sensory information (Culotti and Russell, 1978; Lewis 

and Hodgkin, 1977). 

 C. elegans chemoreceptors are mainly localized to the cilia and not found in the 

axons or dendrites. The amphid sensory neurons express specific chemoreceptors that 

recognize specific cues (Sengupta et al., 1996; Troemel et al., 1995). Many candidate C. 

elegans chemosensory receptors are GPCRs, which are distinct from the classical GPCRs that 

recognize other ligands, e.g., neuropeptides, within the sensory system (Bargmann, 1998). 

One prominent class of GPCR chemoreceptors are distantly related to the rhodopsin receptor 

(Troemel et al., 1995). These chemoreceptors are also preferentially expressed in single 

neurons or subsets of neurons (Chen et al., 2005; Colosimo et al., 2004; McCarroll et al., 

2005; Troemel et al., 1995). Moreover, unlike mammalian olfactory neurons that express one 

receptor per neuron (Malnic et al., 1999; Serizawa et al., 2000), one C. elegans chemosensory 

neuron can express several different chemosensory receptors (Troemel et al., 1995), which is 

more similar to mammalian gustatory cells (Adler et al., 2000; Hoon et al, 1999). 

C. elegans has twenty different Gα subunits and two Gβ and Gγ subunits that are 

possible components of the heterotrimeric G-protein signaling downstream of GPCRs (Jansen 
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Figure 1.3. The circuitry associated with the amphid sensory neurons. Triangles represent sensory neurons, 
whereas hexagons represent interneurons. Chemical synapses from one neuron to another are shown as arrows, 
while gap junctions are shown as “T’s”. The prominence of the synaptic connection is shown as a cross-hatch 
on the arrow. Thus, a higher number of cross-hatches denote a higher degree of prominence for the synapse. 
The presence of a gap junction between individual pairs of neurons is also shown, e.g., the gap junction 
between the left ASI and the right ASI neurons (Image taken from White et al, 1986). 
  

et al., 1999). Fourteen of the Gα subunits are nematode-specific Gαi-like subunits expressed 

in subsets of sensory neurons. Two of these, gpa-2 and gpa-3, seem to be involved in the 

induction of dauer arrest in response to the dauer pheromones (Zwaal et al., 1997). G protein 

signaling activates downstream signaling mechanisms, such as the production of the cGMP 

second messenger, which can function to open cGMP-gated ion channels that eventually lead 

to secretion of signals, like neurotransmitters, that can act on other cells (Bargmann, 2006).  

 The amphid sensory neurons also differ from each other by their connectivities 

[Figure 1.3; (White et al., 1986)]. Some sensory neurons synapse to other sensory neurons, 

and neurons of certain pairs also form gap junctions with each other [(Figure 1.3); (White et 

al., 1986)]. The postsynaptic partners of different amphid sensory neurons overlap 
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considerably; but the sensory neurons that sense soluble cues synapse more extensively to 

certain interneurons, whereas sensory neurons that sense volatile cues synapse more to other 

interneurons [Figure 1.3; (White el al., 1986)]. 

 

1.3.2 Sensory influence on dauer entry and dauer exit 

 

Interestingly, neuronal ablation studies revealed that a subset of amphid sensory neurons 

controls dauer entry and exit (Figure 1.4): ASI and ADF, and to a minor extent ASG, inhibit 

dauer entry, while ASJ, and to a minor extent ASK, promote it (Bargmann and Horvitz, 

1991a; Schackwitz et al., 1996). In addition, ASJ has a second function, which is to promote 

dauer exit (Bargmann and Horvitz, 1991a). Thus, these neurons might directly sense the 

dauer-regulating pheromone and food cues or they might be activated by other sensory 

neurons that sense these cues.  

Some of the dauer-regulating neurons also have additional functions. Some of them 

have been implicated in the regulation of adult physiology. ASI and other amphid sensory 

neurons take part in regulating intestinal fat storage (Ashrafi et al., 2003: Ogg et al. 1997; Sze 

et al., 2000; Thomas et al. 1993). ASI, ASG, ASJ and ASK also influence adult lifespan: 

ablation of ASI or ASG increases lifespan, which is suppressed by ASJ or ASK ablation 

(Alcedo and Kenyon, 2004). Moreover, adult lifespan is shortened by AWA and AWC, 

which act in parallel to the other neurons in their effects on lifespan (Alcedo and Kenyon, 

2004).  
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Figure 1.4: Specific functions of amphid sensory neurons in dauer entry and dauer exit. The amphid 
sensory neurons ASI and ADF, and to a minor extent ASG, inhibit dauer entry, whereas ASJ, and to a minor 
extent ASK, promote dauer entry. The ASJ neurons have a second function in promoting dauer exit (Bargmann 
and Horvitz, 1991a; Schackwitz et al., 1996). 

 
1.4 Molecular signaling pathways regulating dauer arrest 

 

There are at least four distinct pathways that regulate dauer arrest: an insulin-like pathway, a 

TGF-β-like pathway, a guanylate cylase pathway and a steroid hormone signaling pathway 

[Figure 1.5; (Gerisch et al., 2001; Gottlieb and Ruvkun, 1994; Jia et al., 2002; Riddle et al., 

1981; Thomas et al., 1993; Vowels and Thomas, 1992)]. The genes that regulate the dauer 

program have been identified in forward and reverse genetic screens. The dauer phenotypes 

caused by mutations in any of these genes are classified as Daf-c for dauer-formation 

constitutive and Daf-d for dauer-formation defective (Riddle et al., 1981).  
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Figure 1.5: The dauer-regulating pathways. The insulin-like/DAF-2, TGF-β-like/DAF-7 and guanylate 
cyclase/DAF-11 signaling pathways are thought to act in parallel in the regulation of dauer arrest. However, both 
DAF-11 and DAF-7 can regulate the expression of daf-28, and DAF-11 can regulate the expression of daf-7. 
Thus, both the DAF-11 and DAF-7 pathways can also act upstream of the insulin pathway. The steroid 
hormone/DAF-12 signaling pathway is thought to act more proximal in dauer regulation (Li et al., 2003; Image 
taken from Stetina et al., 2007). 

1.4.1 The insulin-like pathway 

 

The downregulation of insulin-like signaling in C. elegans (Figure 1.6) induces dauer arrest 

(Gottlieb and Ruvkun, 1994; Riddle and Albert, 1997; Thomas et al., 1993), as well as 

promotes adult longevity (Kenyon et al., 1993; Larsen et al., 1995). While strong impairment 

of the pathway induces constitutive dauer arrest, a weaker downregulation of insulin-like 

signaling only leads to transient dauer arrest (Patel et al., 2008). In addition, of all Daf-c 

alleles that have been isolated so far, only strong mutant alleles that affect the insulin-like 

signaling pathway arrest non-conditionally as dauers and are unable to exit from the dauer 
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stage (Gems et al., 1998). Together these observations suggest that insulin-like signaling not 

only controls the dauer entry, but also the dauer exit decision.  

The insulin-like pathway is also named the DAF-2 pathway after the worm 

insulin/IGF receptor ortholog DAF-2 (Kimura et al., 1997), a receptor tyrosine kinase.  In 

addition to dauer and longevity regulation, DAF-2 signaling is also required for several other 

processes, such as embryonic and larval development, reproduction, fat storage, salt 

chemotaxis learning, and stress responses (Ashrafi et al., 2003; Gems et al., 1998; Lee et al., 

2003; Murphy et al., 2003; Tomioka et al., 2006). DAF-2 activity is thought to be controlled 

by insulin-like ligands. Upon activation, the DAF-2 receptor negatively regulates the FOXO 

transcription factor DAF-16 through a conserved signaling cascade (Figure 1.6):  DAF-2 

activates the AGE-1 phosphoinositide 3 (PI3)-kinase, which activates the PI3-dependent 

kinase PDK-1 and the protein kinase B orthologs AKT-1 and AKT-2 (Kimura et al., 1997; 

Morris et al., 1996; Paradis and Ruvkun, 1998; Paradis et al., 1999). DAF-16 is 

phosphorylated by the C. elegans AKT-1/AKT-2 kinases, and subsequently sequestered to 

the cytoplasm (Hertweck et al., 2004; Lee et al., 2001; Lin et al., 1997; Lin et al., 2001; Ogg 

et al., 1997), which requires the 14-3-3-like proteins PAR-5 and FTT-2 (Berdichevsky et al., 

2006; Li et al., 2007). Furthermore, the E3 ubiquitin ligase RLE-1 marks cytoplasmic DAF-

16 for proteasomal degradation (Li et al., 2007). The serum glucocorticoid kinase, SGK-1, 

which forms a complex with the AKT kinases also phosphorylates DAF-16 in a PDK-1-

dependent manner (Brunet et al. 2001; Hertweck et al., 2004). On the other hand, the PI3-

phosphatase DAF-18 antagonizes AGE-1, and thereby counteracts DAF-16 inhibition (Gil et 

al., 1999; Mihaylova et al., 1999; Ogg and Ruvkun, 1998; Rouault et al., 1999). 

There is genetic evidence for other outputs from DAF-2 in parallel to AGE-1 and the 

canonical downstream pathway (Inoue and Thomas, 2000a; Paradis and Ruvkun, 1998; 

Paradis et al., 1999).  In addition to a DAF-16-independent output, there is also another signal 

 13



 

Figure 1.6: The DAF-2 signaling pathway. Insulin-like peptides are thought to modulate the activity of 
DAF-2, the C. elegans insulin/IGF-1 receptor homologue. DAF-2 activation leads to activation of AGE-
1/PI3-kinase and PDK-1/3-phosphoinositide-dependent kinase, which in turn activate the PKB homologues 
AKT-1 and AKT-2. AKT-1/AKT-2 phosphorylate and thereby inhibit the FOXO transcription factor DAF-
16, which regulates dauer arrest and longevity genes. Inhibition of DAF-16 by DAF-2 signaling prevents 
dauer arrest and shortens lifespan (Image taken from Guarente and Kenyon, 2000). 

coming from DAF-2 that renders DAF-16 partially inactive, even if its AKT-1/AKT-2-

dependent phosphorylation or its cytoplasmic sequestration is inhibited (Berdichevsky et al., 

2006; Hertweck et al., 2004; Lin et al., 2001). 

Accordingly, the inhibition of DAF-16 transcriptional activity promotes reproductive 

growth and shortens adult lifespan (Kenyon et al., 1993; Riddle et al., 1981). In turn, active 

nuclear DAF-16 promotes dauer arrest during the L1 stage and increased adult lifespan 

(Henderson and Johnson, 2001; Kenyon et al., 1993; Lee et al., 2001; Lin et al, 2001; Riddle 

and Albert, 1997) by regulating target genes that include stress-response and metabolic genes 

(Lee et al, 2003; Murphy et al, 2003). Moreover, loss of daf-16 largely, if not completely, 
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suppresses the growth arrest or lifespan extension seen in daf-2 mutants (Kenyon et al., 1993; 

Larsen et al., 1993; Riddle et al., 1981; Vowels and Thomas, 1992). 

 DAF-2 and AGE-1 act non-autonomously to inhibit dauer arrest or longevity, as 

demonstrated by mosaic analysis (Apfeld and Kenyon, 1998) and tissue-specific rescue 

(Wolkow et al., 2000) of either gene function. Furthermore, DAF-2 seems to function largely 

in neurons to control both dauer arrest and adult lifespan (Apfeld and Kenyon, 1998; Wolkow 

et al., 2000). On the other hand, neuronal DAF-16 seems to control dauer arrest more than 

longevity, while intestinal DAF-16 seems to have a stronger role in lifespan (Libina et al., 

2003). The temporal role for insulin-like signaling in dauer arrest and longevity also differs: 

DAF-2 acts in larvae to regulate dauer arrest, with little effect on lifespan; yet DAF-2 

function in adults is more than sufficient to affect lifespan (Dillin at el., 2002).  

 

The insulin-like ligands 

 

To date, forty C. elegans genes have been predicted to encode insulin-like ligands for the 

DAF-2 receptor [Figure 1.7; (Li et al., 2003; Pierce et al., 2001); see www.wormbase.org].  

The predicted insulin-like peptides (ILPs) have helical segments that correspond to the A and 

B chains of the human insulin. At least some of these ILPs likely modulate DAF-2 activity, 

and thereby regulate the developmental decision between reproductive growth and dauer 

arrest, as well as adult lifespan. So far, there is no direct evidence that any of the ILPs act on 

the DAF-2 receptor. However, one ILP, INS-6, has been shown to bind and activate the 

human insulin receptor in vitro and to have an IGF-like fold by NMR analyses (Hua et al., 

2003). Notably, many of the ilp genes are expressed in neurons, including sensory neurons 

and interneurons, in addition to non-neuronal tissues (Li et al., 2003; Pierce et al., 2001).   
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Figure 1.7: The insulin-like genes. A) Predicted proteolytic cleavage sites (arrows) and peptide chains of C. 
elegans insulin-like peptides. B) Three classes of predicted insulin-like peptides: The γ-type insulin-like 
peptides have three disulfide bonds in the canonical positions, like human insulin-like proteins. The β-type 
insulin-like peptides have a fourth disulfide bond in addition to the three canonical ones. This group includes 
the insulin-like peptides ins-1, ins-6 and daf-28. The α-type insulin-like peptides are lacking one disulfide bond 
in a canonical position, but have another in a non-canonical position (Image taken from Pierce et al., 2001).  

The forty ilp genes have been sorted into four classes according to the predicted 

tertiary structures of the corresponding peptides [Figure 1.7; (Pierce et al., 2001)]. The γ-type 

ILPs contain three disulfide bonds in conserved positions as in human insulin or IGFs. In 

comparison, both α- and β-type ILPs have an additional disulfide bond in a non-canonical 

position. However, the α-type ILPs lack the canonical disulfide bond within the A chain of 

the peptide. Moreover, the fourth ILP class is predicted to encode a protein with three 

alternating sets of B-A chains, which is unlike the first three classes of ILPs, and is 

represented by only one member, ins-31 (Pierce et al., 2001).  

Two ILPs, the β-type ins-1 and the γ-type ins-18, are the only C. elegans ILPs 

predicted to have a cleavable C peptide between the A and B chains, and would thus be most 

similar in structure to human insulin (Pierce et al, 2001). Furthermore, the β-type ILPs 
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contain a group of proteins with a so-called F peptide between the signal peptide and the B 

chain, which could be removed during processing (Figure 1.7). This F peptide subclass of the 

β-type ILPs includes daf-28, ins-4, ins-6 and ins-7. Some of these ILPs have been implicated 

in the regulation of dauer arrest and/or lifespan by gain-of-function and RNA interference 

studies: the γ-type ins-18 and the β-type ins-1, ins-4, ins-6, ins-7 and daf-28 (Li et al., 2003; 

Malone and Thomas, 1996; Murphy et al, 2003; Pierce et al., 2001). A semi-dominant gain-

of-function allele (sa191) of daf-28, the first ILP to be described in C. elegans, causes 100% 

transient dauer arrest at 25°C and a lifespan extension of ~10% (Malone and Thomas, 1994; 

Malone and Thomas, 1996). Since overexpression of ins-4, ins-6 or daf-28 reduces dauer 

arrest in the daf-28(sa191) background, these ILPs might act at least partly redundantly with 

each other in inhibiting dauer arrest (Li et al., 2003). On the other hand, ins-7 appears to act 

independently of this group in inhibiting dauer arrest and/or longevity (Li et al., 2003; 

Murphy et al., 2003).  In contrast, overexpression of ins-1 or ins-18 has the opposite effect on 

dauer arrest and/or lifespan: their overexpression enhanced dauer arrest and, in the case of 

ins-1, slightly extended lifespan (Pierce et al., 2001).  Thus, INS-1 and INS-18 might 

antagonize DAF-2 directly, or competitively inhibit the function of other agonists for the 

DAF-2 receptor.  

 

1.4.2 The TGF-β-like pathway 

 

Another signaling pathway that regulates dauer arrest is the DAF-7 TGF-β-like pathway, 

which acts to suppress dauer arrest at least partly in parallel to the insulin-like signaling 

pathway [Figure 1.5; (Malone et al., 1996; Vowels and Thomas, 1992)].  DAF-7 is a TGF-β-

like ligand (Ren et al., 1996; Schackwitz et al., 1996), which binds and activates the 

serine/threonine kinase receptors DAF-1 (TGF-β type I-like receptor; Georgi et al., 1990) and 
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DAF-4 (TGF-β type II-like receptor; Estevez et al., 1993). Upon activation of the receptors, 

the SMAD transcription factors DAF-8 and DAF-14 are activated by phosphorylation and 

translocate to the nucleus, where they inhibit dauer arrest (Inoue and Thomas, 2000b). 

However, the other SMAD transcription factor, DAF-3, which is inactivated by TGF-ß 

signaling activity, promotes dauer arrest by acting with the SNO/SKI protein DAF-5 (Da 

Graca et al., 2004; Patterson et al., 1997).  

daf-7 is primarily expressed in ASI (Ren et al., 1996; Schackwitz et al., 1996), one of 

the amphid sensory neurons that inhibit dauer arrest (Bargmann and Horvitz, 1991a). daf-7 is 

also repressed under harsh environmental conditions, like low food availability or high 

population density (Ren et al, 1996). In contrast, the other members of the pathway are 

widely expressed (Da Graca et al., 2004; Gunther et al., 2000; Inoue and Thomas, 2000b; 

Patterson et al., 1997; Tewari et al., 2004). 

 Loss of function in daf-7 causes a temperature-sensitive dauer arrest, which is 

suppressed by mutations in daf-3 or daf-5, but not by mutations in daf-16 (Malone et al., 

1996; Vowels and Thomas, 1992).  Conversely, mutations in daf-2 that promote dauer arrest 

are not suppressed by loss of daf-3 or daf-5 activity, but suppressed by lack of daf-16 

function (Malone et al., 1996; Vowels and Thomas, 1992). Together these data suggest that 

the DAF-7 and DAF-2 pathways act in parallel (Figure 1.5).  However, later studies show 

that the expression of a DAF-2 ligand, the ILP daf-28, also requires the activity of daf-7 (Li 

et al., 2003). Thus, this suggests that these two pathways have complex interactions in their 

regulation of the dauer program: they act not only in parallel but also as part of a linear 

pathway to control this process. 
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1.4.3 The guanylate cyclase pathway 

 

DAF-11, a transmembrane guanylate cyclase, acts in the C. elegans sensory system (Birnby 

et al., 2000) to suppress dauer arrest and modulate chemosensation (Vowels and Thomas, 

1994). The dauer-regulating G protein GPA-2 has been proposed to act upstream of DAF-11 

(L’Etoile and Bargmann, 2000), while the other dauer-regulating G protein GPA-3 has been 

shown to act in parallel (Birnby et al., 2000). DAF-11 suppresses dauer arrest most likely by 

providing cGMP to activate a cGMP-gated cation channel, which consists of the essential α-

subunit TAX-4 and a β-subunit TAX-2 (Coburn and Bargmann, 1996; Coburn et al., 1998; 

Komatsu et al., 1996). TAX-4 and TAX-2 are localized to the cilia of several sensory neurons 

and also functions in chemosensation (Coburn and Bargmann, 1996; Komatsu et al., 1996). 

Activation of the TAX-4/TAX-2 channel allows the influx of sodium and calcium ions 

(Komatsu et al., 1999), which leads to cellular depolarization and secretion of different 

signals (Salio et al, 2006; Strand, 1999). The TAX-4/TAX-2 channel is also regulated by 

additional enzymes that control cGMP levels, such as other transmembrane guanylate 

cyclases or an unknown cGMP-degrading phosphodiesterase (Bargmann, 2006; L’Etoile and 

Bargmann, 2000).  

DAF-11 might mediate the dauer-arrest promoting signal from the neuron ASJ, since 

ablation of ASJ suppresses the daf-11 Daf-c phenotype (Coburn et al., 1998). The dauer-

arrest promoting signal from the ASJ neuron might, therefore, be constitutively active in daf-

11 mutants. 

Genetic evidence suggests that DAF-11 functions in parallel to the DAF-2 and DAF-7 

pathways (Thomas et al., 1993). However, DAF-11 is also likely to be upstream of both 

pathways (Figure 1.5): (i) DAF-11 promotes daf-7 expression in the ASI neurons, and 
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thereby suppresses dauer arrest (Murakami et al., 2001); and (ii) DAF-11 promotes the 

expression of the ILP daf-28 in sensory neurons (Li et al., 2003). Thus, all three pathways 

provide a complex molecular network that regulates the switch between reproductive growth 

and dauer arrest.  

 

1.4.4 The steroid hormone-like pathway 

 

A steroid hormone-like pathway functions downstream of the other dauer-regulating 

pathways [Figure 1.5; (Albert and Riddle, 1988; Gerisch et al., 2001; Jia et al., 2002; Riddle 

et al., 1981; Thomas et al., 1993]: DAF-9, a cytochrome P450-like steroid hydroxylase 

(Gerisch et al., 2001; Jia et al., 2001), generates inhibitory ligands for the nuclear hormone 

receptor DAF-12 (Antebi et al. 2000), which promotes dauer arrest in its ligand-free form 

(Ludewig et al., 2004). Consequently, the binding of the inhibitory ligands to DAF-12 

suppresses dauer arrest and promotes reproductive growth. These inhibitory ligands are the 

cholesterol derivatives Δ4- and Δ7- dafachronic acid (Motola et al., 2006).  

The substrates for DAF-9 are provided by the Rieske oxygenase DAF-36 (Rottiers et 

al., 2006): the DAF-36 metabolites that are made in the intestine are likely transported by 

cholesterol transporting proteins to the DAF-9 expressing tissues, such as the XXX 

neuroendocrine cells, which synthesize the dafachronic acids (Gerisch et al., 2001; Gerisch et 

al., 2007; Jia et al., 2002).  

Besides regulating dauer arrest, DAF-12 affects lifespan (Gerisch et al., 2001; Larsen 

et al., 1995). The ligand-bound form of DAF-12 shortens lifespan, while its ligand-free form 

lengthens lifespan (Ludewig et al., 2004). The DAF-12 pathway also acts together with the 

DAF-2 pathway (Gerisch et al., 2001; Larsen et al., 1995). Indeed, loss of daf-12 suppresses 

the lifespan extension seen in daf-2 mutants (Gerisch et al., 2001; Larsen et al., 1995).  
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Table 1.1: Expression patterns of some ilp genes 
 

Gene Stages* Tissues 
 

 Embryo  
 

Larvae  
 

Adult 
 

Nerve 
ring# 

 

Sensory 
neurons$ 

 

Other 
neurons$ 

 

Non-neuronal 
tissues**  

 
ins-1 4 L1–L4 + ●●● a v, la, t, p vm, in 
ins-2 b, 2, 4 L1–L3 − ●●● a, l v, t ph, vul 
ins-3 4 L1–L4 + ●● a, l v, la, d  
ins-4 2, 4 L1–L4 + ●● a, l v, d, t h 
ins-5 2, 4 L1–L4 + ●● a, l v, la, t vul 
ins-6 2, 4 L1–L4 + ● a, l v, t  
ins-7 4 L1–L4 + ●● a, l v, t  
ins-8 4 L1–L4 + ●● a, l v, t vul 
ins-9  L1–L4 + ● a   
ins-11 4 L1–L4 + ● l v, t  
ins-18 4 L1–L4 + ●● a v, t, p in 
ins-21 4 L1–L4 + ● a v, t  
ins-22 4 L1–L4 + ●●● a, l v, la, t  
ins-23 4 L1–L4 + ● a, l v  
*Stages: b, bean-stage embryo; 2, twofold elongated embryo; 4, fourfold elongated embryo; L1, first 
larval stage; L2, second larval stage; L3, third larval stage; L4, fourth larval stage.  
#Indicates expression in more than eight (●●●), in 4–8 (●●), or in two (●) bilaterally symmetric pairs of 
neurons.  
$Neurons: a, amphid sensory neurons; l, labial neurons; v, ventral nerve cord neurons; la, neurons with 
lateral processes and/or cell bodies; d, dorsal nerve cord neurons, observed by dorsal and/or 
circumferential processes; t, tail neurons; p, pharyngeal neurons.  
**Non-neuronal tissues: vm, vulval muscle; in, intestine; ph, pharynx; vul, vulva; h, hypodermis.  
 
Table 1.1: ilp gene expression patterns. Transcriptional GFP reporter constructs of the ilp genes were 
analyzed for their expression patterns. Many ilp genes are expressed in sensory head neurons, among 
other neurons and tissues. The expression patterns are partly overlapping and partly unique to specific 
ilp genes or subsets of ilp genes (modified from Pierce et al., 2001).  
 

 

1.5 Insulin-like signaling mediates the sensory influence on development 

 

Insulin-like signaling is one of the pathways that transform sensory information into 

physiological responses. There is a number of genetic evidence that suggest that insulin-like 

signaling acts in the sensory system to control dauer arrest, as well as adult longevity (Apfeld 

and Kenyon, 1998; Libina et al., 2003; Wolkow et al., 2000). Consistent with this idea, the 
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DAF-2 receptor has been shown to act in several head neurons, as well as in the intestine 

(Apfeld and Kenyon, 1998; Wolkow et al., 2000). At the same time, many of the ilp genes are 

expressed in overlapping subsets of sensory neurons and/or interneurons, as well as other 

tissues [Table 1.1; (Kodama et al., 2006; Li et al., 2003; Pierce et al., 2001)]. Moreover, some 

ilp genes are expressed in subsets of the dauer- and longevity-regulating sensory neurons in 

the amphid organs: ins-1 is expressed in several amphid sensory neurons, among them the 

dauer-regulating neurons ASI, ADF, ASG and ASJ, as well as several other neurons and 

other tissues (Kodama et al., 2006; Tomioka et al., 2006). daf-28 is also expressed mainly in 

the ASI and ASJ neurons and is downregulated in these neurons upon starvation, 

overcrowding or pheromone treatment of the animals (Li et al., 2003). Since ASI neurons 

might inhibit dauer entry by secreting dauer inhibitory signals, the above observation 

suggests that ILPs function in sensory neurons to control dauer arrest, and possibly other 

physiological processes in response to environmental conditions. Likewise, Drosophila ILPs 

have been shown to regulate physiology and behavior in response to environmental cues 

(Ikeya et al., 2002; Yang et al., 2008). 
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2. Scope of the thesis 

 

Considering the pleiotropic activities of the insulin signaling pathway in response to a diverse 

range of sensory cues and the diversity in the C. elegans ilp expression patterns, which 

include the sensory system (Gems et al., 1998; Kodama et al., 2006; Lee et al., 2003; Li et al., 

2003; Murphy et al., 2003; Pierce et al., 2001; Tomioka et al., 2006), I hypothesized that ILPs 

encode sensory information to regulate physiology. Accordingly, I focused on investigating 

how C. elegans ILPs mediate the sensory influence on development. Specifically, I asked 

how ILPs regulate the important developmental decision between reproductive growth and 

dauer arrest in response to different sets of environmental cues.  

Some of the ilp genes have previously been implicated in the regulation of dauer 

arrest (Malone et al., 1996; Murphy et al., 2003; Li et al., 2003; Pierce et al., 2001). However, 

these earlier studies involved indirect manipulations of ILP function through gain-of-function 

and RNA interference (RNAi) methods, which might have interfered with the endogenous 

activities of other dauer-regulating ligands. For example, the gain-of-function mutation, 

daf-28(sa191), impairs a proteolytic cleavage site, which has been proposed to sequester and 

reduce the activity of an ILP-processing peptidase (Li et al., 2003). Thus, the protein encoded 

by daf-28(sa191) might interfere with the processing and subsequent function of a whole 

group of peptide precursors, which would include β-type ILPs, since overexpression of wild-

type daf-28 or other β-type ILPs can rescue the mutation (Li et al., 2003). At the same time, 

overexpression of ILPs or RNAi assays against specific ILPs could also hinder the functions 

of other ILP ligands. In addition, many of the ilp genes are expressed in neurons (Li et al., 

2003; Pierce et al., 2001) and RNAi is known to work less efficiently in these cells 

(Tavernarakis et al., 2000). Thus, these previous approaches do not allow the direct analysis 
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of each ILP function or the relative contribution of each ILP to each step of the 

developmental switch.  

In order to define the exact functions of different ILPs, I analyzed the deletion 

mutations available for the ilps already implicated in dauer regulation: daf-28, ins-6 and ins-1 

(Li et al., 2003; Pierce et al., 2001). Unlike the previous studies, I find that these three ILPs 

have distinct and non-redundant functions in the regulation of dauer entry and dauer exit. 

Like daf-28 and ins-1, ins-6 is expressed in the amphid sensory neurons that regulate the 

dauer program. Again, like daf-28, but unlike ins-1, ins-6 transcription is regulated in 

response to distinct, dauer-regulating cues. However, unlike daf-28, induction of the dauer 

program leads to a switch in ins-6 expression from one pair of amphid sensory neurons to 

another. Thus, the specificity in the spatiotemporal regulation of ilp expression in specific 

sensory neurons by different sensory cues suggests how these ILPs might encode specific 

environmental conditions, and subsequently elicit the appropriate physiological and 

developmental responses.  
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3. Results 

3.1 Insulin-like peptides act as part of a sensory code to regulate C. elegans 

development 
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3.1.1 Abstract 

C. elegans has 40 putative insulin-like genes, many of which are expressed in sensory 

neurons and interneurons. This raises an intriguing possibility that insulin-like peptides 

(ILPs) encode environmental complexity to regulate worm physiology. Here we show that 

specific ILPs act combinatorially in response to distinct sensory cues to regulate the switch 

between two developmental programs, reproductive growth versus dauer arrest. One ILP, 

ins-1, ensures dauer arrest under harsh environments. Two other ILPs ensure reproductive 

growth under good conditions. While daf-28 plays a more primary role in inhibiting dauer 

entry, ins-6 has a more significant role in promoting dauer exit. Interestingly, the switch into 

the dauer program also shifts ins-6 transcriptional expression from a set of dauer-inhibiting 

sensory neurons to another set known to stimulate dauer exit. Together our data suggest that 

specific ILPs generate precise responses to dauer-inducing cues, like pheromones, and food 

levels to control development through stimulus-regulated expression in different neurons.  
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3.1.2 Introduction  

The environment has long been known to influence animal physiology. For example, the 

olfactory composition of the environment can affect the release of hormones necessary for 

the development and function of the mammalian reproductive system (Yoon et al., 2005). In 

C. elegans, the nature of its environment also determines its developmental program (Golden 

and Riddle, 1984). Under conditions of abundant food supply, low population density and 

optimal temperatures, C. elegans develops through four larval stages (L1-L4) to become a 

reproductive adult (Golden and Riddle, 1982; Golden and Riddle, 1984). However, high 

population density, food scarcity and/or high temperatures can induce first-stage larvae (L1) 

to enter a different program, known as dauer arrest (Golden and Riddle, 1984). Dauers, which 

are alternative third-stage larvae (L3) and anatomically distinct from L3s grown under 

optimal conditions, are highly stress-resistant and equipped for long-term survival (Cassada 

and Russell, 1975; Riddle et al., 1981; Golden and Riddle, 1982; Golden and Riddle, 1984). 

The entry into the dauer program is regulated by specific neurons that sense not only 

the decrease in food cues but also the increase in levels of a pheromone mixture (Bargmann 

and Horvitz, 1991; Schackwitz et al., 1996; Kim et al., 2009) of glycosides (Jeong et al., 

2005; Butcher et al., 2007), which is secreted by each animal throughout its life (Golden and 

Riddle, 1982; Golden and Riddle, 1984). A large increase in the dauer pheromone mixture in 

the environment, which signifies overcrowding and thus low food availability, is sufficient to 

induce animals to switch from reproductive growth to dauer arrest (Golden and Riddle, 

1984). On the other hand, the exit from the dauer program into the last larval stage (L4), prior 

to becoming fertile adults, is promoted by a subsequent improvement in the environment 

(Golden and Riddle, 1984), e.g., an increase in food levels, which is also sensed by neurons 

(Bargmann and Horvitz, 1991). 
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One of the pathways known to mediate the sensory influence on C. elegans 

development is the insulin/IGF DAF-2 pathway (Riddle et al., 1981; Vowels and Thomas, 

1992; Kimura et al., 1997). Mutations that downregulate the insulin/IGF receptor ortholog 

DAF-2 (Kimura et al., 1997) lead to dauer arrest, which requires the activity of the FOXO 

transcription factor daf-16 (Riddle et al., 1981; Vowels and Thomas, 1992; Gottlieb and 

Ruvkun, 1994; Lin et al., 1997; Ogg et al., 1997). Moreover, while a strong downregulation 

in DAF-2 signaling induces dauers that arrest constitutively, a weaker reduction of DAF-2 

activity leads to transient dauer formation (Gems et al., 1998). This suggests that the DAF-2 

pathway determines not only when the animals should enter the dauer program but also when 

they should exit from the program.     

 While there is only one known C. elegans insulin receptor ortholog, DAF-2 (Kimura 

et al., 1997), there are 40 insulin-like genes that have been predicted to encode ILPs [(Pierce 

et al., 2001; Li et al., 2003); see www.wormbase.org, release WS207]. Some of the ILPs, like 

INS-1, INS-6 and DAF-28, have already been implicated in regulating the switch between 

reproductive development and dauer arrest through gain-of-function or RNA-mediated 

interference studies (Malone et al., 1996; Pierce et al., 2001; Li et al., 2003; Murphy et al., 

2003). Many of the ILPs are also expressed in overlapping subsets of sensory neurons and/or 

interneurons, including the sensory neurons that regulate dauer formation (Pierce et al., 2001; 

Li et al., 2003; Kodama et al., 2006). Thus, the complexity of the sensory cues that induce 

this developmental switch and the different ilp expression patterns raise an intriguing 

possibility that ILPs encode sensory information to regulate development, and perhaps other 

physiological responses. Indeed, some of the Drosophila ILPs have recently been shown to 

mediate different processes (Ikeya et al., 2002; Yang et al., 2008; Zhang et al., 2009), which 

could also be regulated by a variety of sensory inputs. Consistent with the above hypothesis, 

the mammalian ILPs of the insulin/relaxin superfamily are also expressed in non-overlapping 
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cells, some of which are neurons with known sensory-associated functions (Ayer-le Lievre et 

al., 1991; Bathgate et al., 2002; Sherwood, 2004; Liu and Lovenberg, 2008; Meyts et al., 

2009).  

Here we have tested the hypothesis that C. elegans ILPs encode environmental 

information to control development. We have analyzed the functions of specific ILPs in 

regulating entry into and exit from the dauer state and find that the ILPs daf-28, ins-6 and 

ins-1 act combinatorially to determine the switch between developmental programs. We also 

show that environmental information is encoded by ILPs through cue-driven expression in 

distinct sensory neurons, which in turn could elicit precise physiological responses by 

modulating the activities of the affected sensory circuits and/or their target tissues.   

 

3.1.3 Results 

daf-28 Has a More Prominent Role Than ins-6 in Inhibiting Dauer Entry 

The loss-of-function mutations of many specific ILPs have never been tested for phenotypes 

in dauer formation, although previous RNA-mediated interference or gain-of-function 

experiments suggested that at least some of the ILPs, e.g., daf-28, ins-6 and ins-1, play a role 

in this process (Malone et al., 1996; Pierce et al., 2001; Li et al., 2003; Murphy et al., 2003). 

However, these earlier studies involved indirect manipulations of ILP function that do not 

allow the direct comparison of the relative contributions of specific ILPs in dauer formation. 

Thus, to test directly the role of each ILP in this process, we studied deletion mutants, in 

which gene function is completely and specifically eliminated. We focused on examining the 

dauer program phenotypes of worms carrying the following single or combined deletions – 

daf-28(tm2308), ins-6(tm2416) and ins-1(nr2091). Like wild type, the ins-6 and ins-1 

deletion mutants formed no dauers at 25°C and very few dauers at 27°C, a temperature 

known to stimulate dauer entry (Figures 1A and 1B; Table S1). In contrast, the daf-28  

 29



 
 
 

Figure 1. daf-28 acts with ins-6 to inhibit dauer entry, whereas ins-1 promotes it. (A-B) The mean fractions 

of wild-type and insulin-deletion mutant worms that form dauers are shown at the indicated temperature. Each 

mean ± SEM includes at least three independent trials of approximately 100 worms. The detailed statistical 

comparisons between the dauer entry phenotypes of different genotypes under different conditions in these and 

subsequent analyses can be found in Table S1. In this and later panels, * indicates P ≤ 0.05; **, P ≤ 0.01; and 

***, P ≤ 0.001. (C-D) The effect of different insulin deletions on dauer entry in a daf-2(e1368) mutant 

background at 22.5°C (C) and 20°C (D). (E) The dauer entry phenotype of ins-6; daf-28 deletion mutants is 

suppressed by the daf-16(mu86) mutation at 25°C. 

deletion mutants formed few dauers at 25°C and a much larger fraction of dauers at 27°C 

(Figures 1A and 1B; Table S1). In addition, loss of ins-6 enhanced the dauer entry phenotype 

of daf-28 deletion mutants at both temperatures, while removing ins-1 did not (Figures 1A 

and 1B; Table S1). Together these data indicate that daf-28 acts with ins-6 to inhibit dauer 
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entry, which is consistent with the reported rescue of the dauer formation phenotype of the 

gain-of-function daf-28(sa191) mutant with overexpression of wild-type genomic daf-28 or 

ins-6 (Li et al., 2003). Furthermore, by directly comparing null mutants, we identified a 

stronger role for daf-28 than ins-6 in inhibiting this process. 

 Because daf-28 and ins-6 might encode ligands for the daf-2 receptor, we tested the 

effect of these two ILPs on the temperature-sensitive dauer entry phenotype of the reduction-

of-function daf-2(e1368) mutants. At temperatures that induce few or no daf-2(e1368) 

dauers, loss of daf-28 strongly enhanced dauer entry in these daf-2 mutants, while the ins-6 

deletion had little or no effect (Figures 1C and 1D; Table S1).  Since daf-2 requires the 

activity of daf-16 to regulate dauer formation (Riddle et al., 1981), we next tested whether the 

same is true for ins-6; daf-28 double mutants. We found that the dauer entry phenotype of 

ins-6; daf-28 double mutants is suppressed by loss of daf-16 (Figure 1E; Table S1). Thus, this 

suggests that DAF-28 and INS-6 activate the DAF-2 receptor to inhibit dauer entry via 

inhibition of DAF-16. 

 

ins-1 Promotes Dauer Entry 

A previous study suggested a role for ins-1 in dauer formation (Pierce et al., 2001). By using 

ilp deletion mutants in our study, we analyzed how ins-1 interacts with daf-28 and ins-6 in 

the presence of wild-type or downregulated daf-2 activity. Unlike daf-28 and ins-6, deletion 

of ins-1 suppressed dauer entry in daf-2(e1368) at 22.5°C (Figure 1C; Table S1). Likewise, 

loss of ins-1 decreased the number of dauers formed by ins-6; daf-2(e1368) mutants (Figure 

1C; Table S1). On the other hand, an ins-1 deletion can only suppress the dauer entry 

phenotype of the daf-2; daf-28 double mutants at a lower temperature, 20°C (Figure 1D; 

Table S1), which is a weaker dauer-inducing condition, and not at 22.5°C (Figure 1C; Table 

S1), a stronger dauer-inducing condition. Consistent with these observations, loss of ins-1  
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Figure 2. ins-6 acts with daf-28 to promote dauer exit, whereas ins-1 inhibits it. (A-D) The rates of dauer 

exit at 25oC of animals carrying different combinations of insulin deletions in a daf-2(e1368) mutant 

background. Each curve represents cumulative data from six independent trials. All curves are significantly 

different from the daf-2(e1368) control by P ≤ 0.001, according to the logrank test. The complete statistical 

comparisons between the dauer exit phenotypes of the different groups of animals are shown in Table S2. 

also had no effect on dauer entry in ins-6; daf-2(e1368); daf-28 triple mutants, which all form 

dauers at both temperatures (Figures 1C and 1D; Table S1). Thus, these findings suggest that, 

in contrast to daf-28 and ins-6, ins-1 functions to promote dauer entry, which is in agreement 

with the increased dauer formation previously observed in weak reduction-of-function daf-2 

mutants that overexpress wild-type ins-1 (Pierce et al., 2001). At the same time, these present 

studies also suggest that ins-1 only weakly antagonizes the activity of the DAF-2 pathway in 

regulating this switch between the developmental programs.  
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ins-6 Has a More Prominent Role than daf-28 in Promoting Dauer Exit 

DAF-2 signaling also regulates exit from dauer arrest (Gems et al., 1998; Kao et al., 2007). 

For example, daf-2(e1370) mutants, which have a strong reduction in daf-2 function, arrest 

constitutively as dauers at 25°C, while daf-2(e1368) mutants, which have a weaker reduction 

in receptor activity, arrest as transient dauers that exit after a few days (Gems et al., 1998). To 

determine whether the same insulin-like genes that control dauer entry also regulate dauer 

exit, we analyzed the effects of loss of ins-1, ins-6 and/or daf-28 on dauer exit of 

daf-2(e1368) mutants, which all form dauers at 25°C. We found that deletion of ins-6 in daf-2 

mutants strongly inhibits dauer exit, but removal of daf-28 only slightly delayed it (Figure 

2A; Table S2). In addition, removal of both ins-6 and daf-28 in daf-2 mutants caused the 

greatest delay in dauer exit (Figure 2A; Table S2). Thus, these data indicate (i) that both ILPs 

act together to promote dauer exit; and (ii) that while daf-28 plays a more primary role in 

inhibiting dauer entry, ins-6 has a more significant role in promoting dauer exit.  

The differences in the relative importance of ins-6 in dauer entry versus dauer exit 

could be reflected by the levels of ins-6 required to rescue the dauer entry phenotype 

compared to the levels needed to rescue the dauer exit phenotype. We found that a low level 

of wild-type ins-6 activity is sufficient to rescue the dauer entry phenotype of the ins-6; 

daf-28 double mutants back to that of the daf-28 single mutants (Figures 3A and 3B; Table 

S1). On the other hand, we found that the dauer exit phenotype of ins-6; daf-2 double mutants 

can only be fully rescued to the dauer exit phenotype of daf-2 single mutants with a high 

level of wild-type ins-6 activity (Figures 4A and 4B; Table S2). It should also be noted that 

high levels of ins-6 activity do not completely rescue the phenotype of ins-6; daf-28 double 

mutants back to wild type (Figure 3B; Table S1), which again suggests that these ILPs do not 

act completely redundantly with each other. 
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Figure 3. Inhibition of dauer entry requires low levels of ins-6 activity. (A-B) The ins-6; daf-28 mutants that 

were rescued with low (2 ng/μl; jxEx27, jxEx28 or jxEx29) or high levels of ins-6 activity (25 ng/μl; yxEx163, 

yxEx174 or yxEx175) are compared to wild type or insulin-deletion mutants that carry the ofm-1p::gfp 

coinjection marker alone (jxEx18, jxEx21 or jxEx22). The mean fractions of dauers are shown at 25oC (A) or 

27oC (B; see Table S1 for the statistical analyses of these experiments).   

ins-1 Inhibits Dauer Exit 

Overexpression of ins-1 was previously shown to increase dauer formation (Pierce et al., 

2001). However, it is unclear from this former study whether ins-1 only regulates dauer entry 

or dauer exit or both. Since we already showed that ins-1 does promote dauer entry (Figures 

1C and 1D; Table S1), we next analyzed ins-1 for a role in dauer exit. We observed that loss 

of ins-1, which had little effect on dauer exit in daf-2 single mutants (Figure 2A; Table S2), 
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enhanced dauer exit in all other daf-2 mutants that are lacking ins-6 and/or daf-28 (Figures 

2B-2D; Table S2). Thus, this suggests that ins-1 not only plays a role in dauer entry but also 

in dauer exit and that the wild-type function of ins-1 is to ensure dauer arrest under harsh 

environmental conditions. 

 

ins-6 Expression Switches Between Two Sensory Neurons to Control Dauer Entry 

versus Dauer Exit 

The switch between reproductive growth and dauer arrest is regulated by specific sensory 

neurons (Bargmann and Horvitz, 1991; Schackwitz et al., 1996) that have been shown to 

express some ilp genes (Pierce et al., 2001; Li et al., 2003). The sensory neurons ADF, ASI 

and ASG inhibit dauer entry (Bargmann and Horvitz, 1991), while the sensory neurons ASJ 

and ASK promote it (Schackwitz et al., 1996; Kim et al., 2009).  Furthermore, ASJ has a 

second function in that it senses other cues to stimulate dauer exit (Bargmann and Horvitz, 

1991).  

Although daf-28 is expressed in ASI and ASJ neurons of well-fed animals and is 

downregulated in both neurons by low food availability, a dauer pheromone mixture or entry 

into the dauer program (Li et al., 2003), the cells from which ins-1 or ins-6 might act to 

regulate this developmental switch remain unknown. ins-1 is expressed in many neurons, 

including those that regulate entry into and exit from the dauer program (Kodama et al., 

2006; Tomioka et al., 2006). Unlike daf-28, we observed that the switch in developmental 

programs had little or no effect on the expression of ins-1 in ASI and ASJ (Table 1), which is 

based on a cfp transcriptional reporter fused to the ins-1 5’ and 3’ cis regulatory sequences.  

On the other hand, we found that ins-6 expression, which is based on an mCherry 

transcriptional reporter fused to the upstream and downstream regulatory regions of ins-6 

(ins-6p::mCherry), is restricted to the ASI neurons of well-fed larvae and adults (Figure 5).  
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Figure 4. Unlike the case for dauer entry, higher levels of ins-6 activity are required to promote dauer 

exit. (A-B) The rates of dauer exit of ins-6; daf-2(e1368) mutants that were rescued with low (jxEx27, jxEx28 

or jxEx29; A) or high (yxEx163, yxEx174 or yxEx175; B) ins-6 activity are compared to those of daf-2(e1368) 

or ins-6; daf-2(e1368) mutants that carry the ofm-1p::gfp coinjection marker alone (jxEx18). Each curve 

represents the cumulative data from at least seven independent trials. The low-expressing ins-6 rescue lines 

are significantly different from the daf-2 control (P < 0.0001), whereas the high-expressing ins-6 rescue lines 

behave the same as the daf-2 control. See Table S2 for the complete statistical analyses of these experiments, 

and a comparison of the rescue lines with two additional control lines. 

This is different from the previously described expression of ins-6 in many neurons (Pierce et 

al., 2001), including ASI (A.C. and J.A., data not shown), which is determined with a gfp or 

an mCherry transcriptional reporter fused only to the ins-6 upstream regulatory region. This 

suggests that sequences downstream of ins-6 contain element(s) that repress its expression in 

other neurons.  

Interestingly, the switch into the dauer program shifts ins-6p::mCherry transcription 

from ASI to ASJ (Figures 5B and 5C; Table 1). In addition, as the animals start to exit from 

dauer, ASJ expression of ins-6p::mCherry appears to become even stronger (data not shown) 

in response to improved environmental conditions. This activation of ins-6 in ASJ is also 

observed in worms carrying a transcriptional reporter fused only to the ins-6 upstream 

regulatory region (A.C. and J.A., data not shown). Together our data suggest that ins-6 
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functions in ASI to inhibit dauer entry, and that it also functions in ASJ to promote dauer 

exit. However, overexpression of ins-6 from either ASI or ASJ is sufficient to rescue both the 

dauer entry phenotype of ins-6; daf-28 mutants and the dauer exit phenotype of ins-6; daf-2 

mutants (Figures S1 and S2). 

Moreover, ins-6p::mCherry surprisingly continues to be expressed in the ASJ neurons 

and is absent in the ASI neurons of post-dauer L4s, young adults and five-day-old adults 

(Figure 5E; Table 1), which is dissimilar from continuously well-fed L4 larvae and adults that 

express ins-6p::mCherry in ASI and never in ASJ (Figure 5D; Table 1). Thus, post-dauer 

animals appear physiologically distinct from animals that never underwent the dauer 

program.   

 

The Dauer Pheromone and the Dauer Program Have Distinct Effects on ins-6 

Expression 

ins-6p::mCherry expression changes between developmental programs that are triggered by 

distinct sets of sensory cues. We next asked which cues would downregulate 

ins-6p::mCherry in ASI and which cues would induce it in ASJ. We observed that high 

concentrations of the dauer-inducing pheromone, which is a mixture of glycosides (Jeong et 

al., 2005; Butcher et al., 2007), downregulated ins-6p::mCherry in ASI of pre-dauer (L2d) or 

L4 larvae or adults (Table 1). However, the dauer pheromone mixture by itself induced little 

or no ins-6p::mCherry expression in ASJ of the different well-fed larvae and adults that were 

analyzed (Table 1). Surprisingly, induction of the dauer program by shifting daf-2(e1368) 

mutants to 25oC, but under low pheromone levels, was also insufficient in fully activating 

ins-6p::mCherry in ASJ (Table 1). We found that the switch in ins-6p::mCherry from ASI to 

ASJ is only completely executed in dauers that were induced by high levels of dauer 

pheromone, either by the direct addition of the pheromone mixture or by high population  
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Figure 5. ins-6 transcription switches between ASI and ASJ sensory neurons in response to the dauer 

pheromone and the dauer program. (A) A schematic diagram of the twelve sensory neurons in the C. 

elegans amphid sensory organ (White et al., 1986). The ASI and ASJ neurons are indicated in dark grey. The 

dauer pheromone mixture inhibits ins-6 transcription in ASI, whereas both the pheromone and the dauer 

program activate ins-6 in ASJ. (B, D, F) ins-6p::mCherry is expressed in the ASI neuron of well-fed L3 (B), 

L4 (D) and L1 (F) larvae. (C, E) ins-6p::mCherry becomes expressed in the ASJ neuron of a dauer larva (C) 

and remains on in ASJ of a post-dauer L4 larva (E). (G) In contrast, ins-6p::mCherry is unaffected in ASI and 

is not activated in ASJ of a starved L1 larva. All animals are oriented with their anterior to the lower left and 

their dorsal side up. The scale bar represents 10 μm in length. 
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Table 1. ilp expression 

Condition / Stage  ASIL/R ASJL/R 
  expression expression 
ins-6p::mCherry Total N none weak medium strong none weak medium strong 
Well-Fed          

L1 23 1 0 22 0 23 0 0 0 
L2 17 1 0 16 0 17 0 0 0 
L3 49 6 0 43 0 49 0 0 0 
L4 80 4 0 76 0 80 0 0 0 
Adult 56 3 0 53 0 56 0 0 0 
          

Dauer 121 92 29 0 0 1 0 0 120 
Post-dauer L4 38 37 1 0 0 0 0 0 38 
Post-dauer adult 53 50 3 0 0 2 0 0 51 
          
Pheromone          

L1 9 a 1 0 8 0 8 1 0 0 

L2d 46 b 8 38 0 0 41 5 0 0 

L4 28 10 18 0 0 28 0 0 0 

Adult 3 a 3 0 0 0 3 0 0 0 

          
Starvation          

L1 51 7 0 44 0 51 0 0 0 
L2 21 2 0 19 0 21 0 0 0 
L3 10 b 2 0 8 0 10 0 0 0 

L4 25 4 0 21 0 25 0 0 0 
Adult 2 a 0 0 2 0 2 0 0 0 

          
27°C          

L1 28 2 0 26 0 26 2 0 0 
L2 16 b 2 0 14 0 16 0 0 0 
L3 5 a 0 0 5 0 5 0 0 0 
L4 26 1 0 25 0 26 0 0 0 
          

daf-2(e1368)          

L1 33 b 3 0 30 0 33 0 0 0 

L2 26 b 4 0 22 0 26 0 0 0 
L3 11 b 0 0 11 0 11 0 0 0 
L4 77 b 6 0 71 0 77 0 0 0 
Adult 6 a 1 0 5 0 6 0 0 0 
Dauer          

High pheromone 42 b 36 6 0 0 1 0 0 41 

Low pheromone 31 b 5 1 25 0 24 0 7 0 
          

daf-16(mu86)          
L1 23 b 1 0 22 0 23 0 0 0 
L2 18 b 0 0 18 0 18 0 0 0 
L3 13 b 0 0 13 0 13 0 0 0 
L4 68 b 3 0 65 0 68 0 0 0 
Adult 33 b 3 0 30 0 33 0 0 0 
Partial dauer 14 b 0 14 0 0 14 0 0 0 
          

ins-1p::cfp          
Well-Fed L3 20 b* 0 0 20 0 0 0 0 20 
Dauer 20 b* 0 0 20 0 0 0 7 13 
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Table 1. Specific cues have distinct effects on ilp expression. ins-6p::mCherry or ins-1p::cfp expression in 

different stages of wild-type and mutant worms that developed under different treatments (see Experimental 

Procedures). The wild-type dauers listed were induced either by the addition of high concentrations of dauer 

pheromone or high population density. The post-dauers were induced either by shifting dauers to new plates 

with high food levels and/or lower temperatures. daf-2 mutants were assayed under well-fed conditions at 

20oC, with the exception of dauer larvae, which were induced by overcrowding at 20oC (high pheromone) or 

by temperature (25oC; low pheromone). daf-16 mutants that were assayed were either well-fed or starved at 

20oC (partial dauers). The total number of animals assayed for expression in both left and right neurons of 

ASI (ASIL/R) and ASJ (ASJL/R) comes from three independent transgenic lines, unless indicated otherwise. 

The symbols indicate the following: a, analyzed only one line; b, analyzed only two lines; and *, expression is 

present in additional head and tail neurons. 

density (Table 1). Since we also never observed ins-6p::mCherry expression in ASJ of partial 

dauers, our data suggest that the combined activities of the dauer program with the dauer 

pheromone, which presumably induces a stronger arrest, are required for this shift in 

expression (Table 1).   

In addition, we found that starvation alone or high temperature (27°C) has little or no 

effect on ins-6p::mCherry expression, in comparison to well-fed worms maintained at 20°C 

(Table 1). Moreover, we detected no significant effect on ins-6p::mCherry expression in 

continuously well-fed animals lacking daf-16 or having reduced daf-2 activity (Table 1). 

Together our findings suggest that the downregulation of ins-6p::mCherry in ASI is a more 

specific response to the dauer pheromone cue, whereas the switch in neuronal expression is 

another response distinct to the coordinated action of the pheromone and the dauer program.  
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Figure 6. ins-6 and daf-28 have little effect on lifespan, whereas dauer-induced changes have a more 

significant effect. (A) The effects of ins-6, daf-28 or ins-1 on lifespan. (B) The lifespan of continuously well-

fed or post-dauer ins-6; daf-28 mutant adults is compared to that of well-fed wild-type adults. (C) The effect 

on lifespan of daf-2(e1368) mutants. Since daf-2 mutants undergo dauer formation at 25oC, wild type and 

mutant animals were grown at 20oC until the first day of adulthood, when the worms were shifted to 25oC to 

initiate lifespan analyses. (D) The statistics for the cumulative lifespan data. The 75th percentile is the age 

when the fraction of worms alive in each group falls below 0.25. The first number in the fourth column is the 

number of observed deaths, whereas the second number is the total number of worms in each experiment, 

including worms that were censored during the assay. Worms that crawled off the plate, exploded or bagged 

were censored at the time of the event, but were incorporated into the data set until the censor date to avoid 

loss of information. The numbers in parentheses in the fourth column indicate the number of trials performed. 

The % difference between wild type and mutants is indicated in the fifth column and P values were 

determined using the logrank test. The % difference between continuously fed and post-dauer ins-6; daf-28 

mutants is also shown.  
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ins-6 and daf-28 Play Only a Minor Role in Regulating Lifespan 

 

Since our observations suggest that these three ilps have distinct, non-redundant functions in 

regulating two developmental programs, we then asked whether they also affect lifespan, 

which is known to be regulated by the DAF-2 pathway (Kenyon et al., 1993; Kimura et al., 

1997). Unlike daf-2 reduction-of-function mutants, we found that ins-6, daf-28 or ins-1 alone 

has little or no effect on adult lifespan (Figure 6). Similarly, loss of both ins-6 and daf-28 has 

little effect on the lifespan of animals that did not undergo dauer formation (Figures 6B and 

6D). However, we observed that ins-6; daf-28 double mutants that formed transient dauers do 

live longer than double mutants that never became dauers (Figures 6B and 6D). This is 

consistent with the idea that post-dauer adults are physiologically distinct from continuously 

well-fed adults, as demonstrated by the switch in ins-6 expression that persists in post-dauer 

animals. Together these findings suggest that other ilps are required to modulate the DAF-2 

signaling cascade to affect lifespan and that these ilps may also have a more primary role than 

ins-6, daf-28 and ins-1 in this process. 
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3.1.4 Discussion 

The large number of ilp genes in C. elegans and the spatiotemporal diversity of their 

expression patterns, which include different subsets of sensory neurons [(Pierce et al., 2001; 

Li et al., 2003); see www.wormbase.org, release WS207], raise the likelihood that these 

genes may regulate different processes in response to different stimuli. Since some of these 

genes share overlapping expression patterns, the resulting ligands may act not only 

individually but also combinatorially on their receptor, DAF-2, in different subsets of cells. In 

this study, we show that some of these ILPs function as a combinatorial code to regulate C. 

elegans developmental programs in response to a complex set of sensory cues.  

 

ILPs Encode Environmental Information to Regulate C. elegans Physiology 

The development of many animals is subject to their environment. In C. elegans, food 

availability can determine whether L1 larvae will undergo the developmental dauer arrest 

program (Golden and Riddle, 1982; Golden and Riddle, 1984). The ratio between levels of 

food cues and that of the dauer pheromone mixture reflects the food supply for a given worm 

population density (Golden and Riddle, 1982; Golden and Riddle, 1984). The perception of 

these cues by a specific subset of sensory neurons that either inhibit dauer entry (ASI, ADF 

and ASG), promote dauer entry (ASJ and ASK) or promote dauer exit (ASJ) (Bargmann and 

Horvitz, 1991; Schackwitz et al., 1996; Kim et al., 2009; Macosko et al., 2009) in turn 

regulates the secretion of growth-modulatory signals. For example, low food levels and high 

concentrations of dauer pheromone repressed the expression in ASI of the TGF-β daf-7, 

which is required for reproductive development under growth-inducing conditions (Ren et al., 

1996; Schackwitz et al., 1996). At the same time, re-introduction of food to a dauer 

population induces dauer exit and resumption of daf-7 expression and reproductive 

development (Ren et al., 1996).  
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Like daf-7, food cues are required for the transcription of the ILP daf-28 in ASI and 

ASJ, whereas the dauer pheromone mixture suppresses it in both neurons (Li et al., 2003). On 

the other hand, we show that food cues and dauer pheromone have different effects on other 

ILPs (Figure 5; Table 1). We find that food levels and dauer pheromone have little or no 

effect on the transcription of the ILP ins-1 in ASI and ASJ (Table 1). In contrast, we observe 

that high levels of dauer pheromone specifically repress the transcription of the ILP ins-6 in 

ASI, while food cues have little or no effect on its expression in this neuron (Figure 5; Table 

1). 

The specificity in the effects of different cues on the spatiotemporal expression of 

daf-28, ins-6 and ins-1 suggests a mechanism through which these ILPs encode 

environmental information, and consequently function combinatorially to regulate 

development. Consistent with their role in ensuring reproductive growth (Figures 1-4; Tables 

S1 and S2), daf-28 (Li et al., 2003) and ins-6 (Figure 5) are expressed in the dauer entry-

inhibiting neuron ASI (Bargmann and Horvitz, 1991) in response to high food and/or low 

population density signals. Interestingly, other cues derived from dauer program-induced 

physiological changes, together with high pheromone levels, trigger ins-6 transcription in 

ASJ (Figure 5; Table 1), a change in expression that alone is insufficient to promote dauer 

exit. This suggests that (i) the animal initiates ins-6 expression in this dauer exit-promoting 

neuron to facilitate its activation as soon as environmental conditions improve and (ii) ins-6 

activity is also regulated post-transcriptionally by other cues, like, perhaps, by increases in 

food levels. Thus, it is possible that different sensory cues regulate ILP function not only at 

the level of transcription but also at the level of translation and/or secretion. Indeed, this 

might be the case for ins-1, for which we observe no transcriptional changes in response to 

food or pheromone signals (Table 1). 
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Our study also shows that ins-6 expression shifts from ASI to ASJ only under strong 

dauer-arrest conditions. We find that this shift is less evident in temperature-induced, low 

pheromone-exposed daf-2(e1368) dauers (Table 1), which exit after a few days (Figure 2) 

and thus may represent a weaker dauer-arrest condition. It is likely that a strong, but not a 

weak, dauer arrest induces the full dauer transcriptional program, such as the altered ins-6 

expression. It is also possible that the sensory receptors required to induce ins-6 activity after 

a strong arrest are present only in ASJ but not in ASI, although ASI does contain receptors 

that sense improved environmental conditions as daf-7 expression recovers in this neuron 

with the addition of food (Ren et al., 1996). Alternatively, ins-6 might act locally as part of 

different developmental circuits that are remodeled in response to cues, like the combination 

of dauer pheromone with the dauer program. 

Our findings suggest that ins-6 and daf-28 encode ligands that act combinatorially 

through the DAF-2 receptor, while ins-1 antagonizes the activity of this pathway (Figures 1 

and 2; Tables S1 and S2). These ILPs may act as long-range signals, like hormones, or they 

may act as short-range signals within neuronal circuits. Furthermore, these ligands may 

modulate DAF-2 signaling in a context-dependent manner. For example, besides having been 

shown to act as an antagonist of the pathway in regulating dauer formation [(Pierce et al., 

2001) and this paper] and the worm’s food-associated thermotactic behavior (Kodama et al., 

2006), ins-1 can also act like an agonist of DAF-2 in the worm’s salt-chemotactic learning 

behavior (Tomioka et al., 2006). Thus, to control a particular process, ins-1 and other ILPs 

may act from specific neurons to regulate DAF-2 signaling in a specific subset of cells. 

Indeed, previous mosaic analyses of daf-2 function already raised the possibility that different 

cells have different DAF-2 activities, such as in the case of regulating dauer entry versus 

dauer exit (Apfeld and Kenyon, 1998; Wolkow et al., 2000). On the other hand, none of our 

experiments have ruled out the possibility that some of these ILPs, which are predicted to 
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have diverse structures, e.g., daf-28 or ins-6 in contrast to ins-1 (Pierce et al., 2001), will bind 

receptors other than DAF-2. 

Finally, it should be noted that, unlike daf-2 reduction-of-function mutants (Kenyon et 

al., 1993; Larsen et al., 1995), ins-6, daf-28 and ins-1, which function coordinately to regulate 

developmental programs, appear to have little or no effect on lifespan (Figure 6). Considering 

that lifespan is influenced by many types of cues and sensory neurons (Apfeld and Kenyon, 

1999; Alcedo and Kenyon, 2004; Libert et al., 2007; Lee and Kenyon, 2009), it is therefore 

not surprising that many cue-responsive ILPs would also be involved in regulating DAF-2 

activity to affect longevity. 

 

Post-Dauer Adults Are Distinct from Continuously Well-Fed Adults 

Our observation that, in contrast to continuously fed adults, ins-6 is expressed from a 

different sensory neuron in post-dauer adults suggests that the two types of animals could 

exhibit different physiology. Consistent with this hypothesis, a previous finding has shown 

that the duration of the dauer state correlates positively with the number of reproductive 

defects in post-dauer adults and correlates negatively with their brood size (Kim and Paik, 

2008). Moreover, we find that ins-6; daf-28 post-dauer adults lived 11% longer than the 

continuously fed double mutant animals (Figure 6). This is similar to a recent observation 

that wild-type post-dauer adults are longer-lived than their continuously fed counterparts 

(Hall et al., 2010). This suggests that (i) the dauer state causes a physiological change that is 

sufficient to induce a small but significant extension in adult lifespan and (ii) this lifespan 

extension is not necessarily dependent on ins-6 and daf-28. At the moment, the exact 

physiological change required for this increase in lifespan remains unknown. 

 

 

 46



 
 
 
The Relevance of Multiple ILPs in Other Animals 

The concept that ILPs combinatorially encode environmental information to regulate 

physiology might be true not only for C. elegans but also for other animals, like Drosophila 

or mammals.  Drosophila has seven known ILPs, dilp1 through dilp7, which are expressed in 

neuronal and/or non-neuronal cells (Brogiolo et al., 2001; Ikeya et al., 2002; Rulifson et al., 

2002; Yang et al., 2008; Slaidina et al., 2009). Interestingly, the neurons that express some of 

these ILPs send or receive projections from subesophageal ganglion interneurons, which in 

turn can receive information (Rulifson et al., 2002; Melcher and Pankratz, 2005; Yang et al., 

2008) from gustatory neurons that innervate chemosensory structures within the fly 

mouthparts (Scott et al., 2001). In addition, some of these neuronal-expressed ILPs, dilp2, 

dilp3 and dilp5, have been proposed to regulate growth and metabolism in a nutrient level-

dependent manner, whereas others do not (Ikeya et al., 2002; Broughton et al., 2008; Zhang 

et al., 2009). In contrast, some are required in other processes, like selecting an optimal 

environment for egg laying, which is dilp7-dependent (Yang et al., 2008). Together these 

data raise the likelihood that Drosophila ILPs also act coordinately to encode environmental 

information to regulate different aspects of physiology.   

 Mammals have seven to ten known members of the insulin/relaxin superfamily that 

are also expressed in neuronal and/or non-neuronal tissues (Ayer-le Lievre et al., 1991; Liu 

and Lovenberg, 2008; Meyts et al., 2009). The roles of insulin, IGF-I and IGF-II in 

mammalian metabolism, growth, differentiation and lifespan have been studied in great detail 

(Nakae et al., 2001; Sherwood, 2004; Kenyon, 2005). A subgroup of mammalian relaxins has 

also been found to regulate reproductive, as well as non-reproductive, processes (Sherwood, 

2004). However, the functions of other members of this family are less clear. Since the 

effects of ILP signaling on physiology, e.g., growth and lifespan, are conserved from worms 

to mammals (Kenyon et al., 1993; Bluher et al., 2003; Holzenberger et al., 2003; Taguchi et 
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al., 2007), our study raises the intriguing possibility that specific subsets of mammalian ILPs 

also act together to regulate specific processes in response to different sets of environmental 

cues. 

 

3.1.5 Experimental Procedures 

Worm Strains and Culture 

All worm mutants used in this study were backcrossed six times to our lab wild-type (N2) 

strain before any phenotypic analysis was performed. Worms were continuously fed E. coli 

OP50 for at least two generations before each assay. 

 

Transgenic Worms 

ins-6 rescue lines. We generated several independent rescue lines using standard methods 

and the ofm-1p::gfp (Miyabayashi et al., 1999) coinjection marker (injected at 25 ng/μl). For 

controls, we generated wild-type and mutant worms that carry the ofm-1p::gfp coinjection 

marker alone. 

To generate the full rescue construct for ins-6 (pQZ11), we used a 4.2–kb fragment of 

the ins-6 genomic locus that includes the 1.7–kb sequence upstream of its start codon and the 

2.1–kb sequence downstream of its stop codon, which was inserted into the pCR-BluntII-

TOPO vector backbone (Invitrogen, UK). We injected this construct at two different doses (2 

ng/μl and 25 ng/μl) into wild type or ins-6(tm2416) mutants. We then crossed the resulting 

extrachromosomal arrays into (i) the ins-6(tm2416); daf-28(tm2308) mutant background to 

assay for rescue of the ins-6-dependent dauer entry phenotype; or (ii) the ins-6(tm2416); daf-

2(e1368) mutant background to test for rescue of the ins-6-dependent dauer exit phenotype. 

 To rescue the ins-6 mutant phenotypes through ASI-specific expression of ins-6, we 

drove ins-6 transcription from the promoter of the ASI chemosensory receptor str-3 (Peckol 
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et al., 2001). We generated a plasmid construct (pQZ33) in the pPD95.77 vector backbone 

(gift of A. Fire), in which the ins-6 cDNA is flanked by the 3.1–kb str-3 promoter (gift of C. 

Bargmann) and by the 0.7–kb 3’ UTR of unc-54. To rescue the ins-6 mutant phenotypes 

through ASJ-specific expression of ins-6, we constructed a similar plasmid (pQZ35), which 

in this case drove ins-6 transcription from the 1–kb promoter of trx-1 (gift of P. Swoboda).  

The thioredoxin trx-1 is specifically expressed from the ASJ neurons (Miranda-Vizuete et al., 

2006). We then introduced either construct at two different doses (2 ng/μl and 25 ng/μl) into 

ins-6(tm2416); daf-2(e1368) or ins-6(tm2416); daf-28(tm2308) mutants.  

 ilp expression lines. To determine the expression pattern of ins-1, we generated a 

transcriptional ins-1p::cfp reporter construct (pQZ6) using the Gateway Technology vectors 

(Invitrogen). In pQZ6, cfp is flanked by the 4.3–kb sequence upstream of the ins-1 start 

codon and by the 1.1–kb sequence downstream the ins-1 stop codon. In addition, the 0.8–kb 

sequence of the largest intron, which may contain regulatory elements required for 

expression, is fused downstream of the 3’ cis sequences. pQZ6 is injected into wild-type 

worms at a concentration of 100 ng/μl with the ofm-1p::gfp coinjection marker (injected at 25 

ng/μl). Three independent lines were recovered, which show identical patterns of cfp 

expression.  

 To determine the expression pattern of ins-6, we constructed a transcriptional ins-

6p::mCherry reporter (pQZ10) by using the Gateway system. The mCherry in pQZ10 is 

flanked by the 1.7–kb sequence upstream of the ins-6 start codon and by the 2.0–kb sequence 

downstream the ins-6 stop codon. pQZ10 is also injected into wild-type worms at 100 ng/μl 

with the ofm-1p::gfp coinjection marker. Three lines were recovered, which have the same 

mCherry expression pattern. 
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Dauer Entry Assays 

The worms were grown at 25oC and allowed to lay eggs at this temperature for 3-7 h. The 

eggs were then allowed to develop either at 25oC or 27oC and scored ~24 h after egg-laying 

for L1 arrest phenotypes. Like wild type, we observed no L1 arrest phenotypes for any 

worms carrying deletions in ins-1, ins-6 and/or daf-28 at these temperatures. Forty-eight 

hours after the egg-laying midpoint, the fraction of dauers and L4s/adults were counted. 

Animals carrying transgenes or the daf-2 or daf-16 mutation were grown at 20oC and allowed 

to lay eggs at the same temperature for 3-7 h. The eggs were then allowed to develop either at 

the same temperature or shifted to 22.5oC, 25oC or 27oC, where the fraction of dauers and 

L4s/adults were counted at 48 h after the egg-laying midpoint. To compare the different 

genotypes, we used the Wilcoxon Mann-Whitney rank sum test as implemented in the coin 

package (Hothorn et al., 2008) of the R statistical software (Team, 2009).

 

Dauer Exit Assays 

The eggs that were laid for 3-7 h by worms grown at 20oC were shifted to 25oC. All dauers 

that were formed 48 h after the egg-laying midpoint were then collected and scored daily for 

dauer exit. We used the JMP 5.1 (SAS) software to determine Kaplan-Meier probability 

estimates of dauer exit events, and for all statistical comparisons. P values were determined 

by the logrank test. 

 

Lifespan Analyses 

Lifespan was measured at 25oC, using worms that were grown at the same temperature, 

unless stated otherwise. All assays were initiated on the first day of adulthood. To avoid 

progeny contamination within the assay, we transferred the worms daily to new plates during 

their reproductive period. We also used the JMP 5.1 software to determine mean lifespan and 
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to perform statistical comparisons across the different genotypes. P values were determined 

by the logrank test. 

 

Analyses of ilp Expression in Response to Environmental Cues 

Dauer pheromone. To assess the effect of dauer pheromone on ilp expression, we placed 

about 100 embryos on 3.5-cm nematode-growth (NG) agar plates (Brenner, 1974), to which 

100-200 μl of crude dauer pheromone mixture [prepared according to (Thomas et al., 1993)] 

and 50 μl of the E. coli OP50 food source were added. The concentration of the crude dauer 

pheromone mixture used in these assays caused about 45%-55% of wild-type L1 larvae to 

form dauers at 25oC. We monitored the ilp expression of the different larvae and adults that 

subsequently developed on these plates. 

 Starvation. The effect of low food availability on ilp expression was tested through 

several methods. First, we compared the ilp expression of well-fed larvae and young adults to 

those of age-matched larvae (L1 and L4) and young adults from starved plates. Second, we 

bleached gravid adults to collect a number of eggs that either (i) were placed directly on NG 

agar plates in the absence of food, which caused the animals to undergo L1 arrest; or (ii) were 

permitted to develop to L1 or L2 on plates with food, before being harvested and washed at 

least twice with M9 buffer (Lewis and Fleming, 1995) to remove the bacteria. These 

harvested L1 and L2 animals were then placed on plates without food, which caused the 

animals to arrest as L2 or L3, respectively. The starved animals were all scored for ilp 

expression within a day and sometimes for several days afterwards.  

 Temperature. To determine the influence of temperature, the ilp expression of 

animals that developed at 20oC were compared to those of age-matched animals that 

developed at 27oC from eggs that were laid at 20oC. 
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Figure S1. Overexpression of ins-6 from ASI or ASJ neurons is sufficient to rescue the dauer entry 

phenotype of the ins-6 mutation.  The ins-6; daf-28 mutants that carry low (2 ng/μl) or high levels (25 

ng/μl) of the ins-6 cDNA expressed under (i) the ASI-specific str-3 promoter or (ii) the ASJ-specific trx-1 

promoter are compared to wild type or insulin-deletion mutants that carry the ofm-1p::gfp coinjection marker 

alone (jxEx18, jxEx21 or jxEx22). The mean fractions of dauers are indicated at 25oC (A) or 27oC (B). See 

Table S1 for the statistical analyses of these experiments. The lack of rescue in animals carrying 2ng/μl of the 

str-3p::ins-6 construct might be explained by the absence of ins-6 expression. We found that str-3 is a much 

weaker promoter than trx-1. The gfp expression in ASI of animals carrying 25 ng/μl of str-3p::gfp is 

comparable to the gfp expression in ASJ of animals carrying 2 ng/μl of trx-1p::gfp (data not shown). 

Consistent with this, animals carrying 25 ng/μl of trx-1p::gfp have the strongest gfp expression, and animals 

carrying 2 ng/μl of str-3p::gfp have very weak or no gfp expression (data not shown).    
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Figure S2. Overexpression of ins-6 from ASI or ASJ neurons can rescue the dauer exit phenotype of the 

ins-6 mutation. The ins-6; daf-2(e1368) mutants that carry low (A, C) or high levels (B, D) of the ASI-

specific (A, B) or ASJ-specific (C, D) ins-6 expression construct are compared to daf-2(e1368) or ins-6; daf-

2(e1368) mutants that carry the ofm-1p::gfp coinjection marker alone (jxEx18).  They are also compared to 

ins-6; daf-2(e1368) mutants that are rescued with low or high levels of ins-6 expressed under its own 

promoter. See Table S2 for the statistical comparisons between the rates of dauer exit at 25oC of these 

different groups of animals. 
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Supplementary Table 1. Dauer entry phenotypes of wild type and insulin-deficient worms 

Strain/Treatment 
Mean Fraction of 

Dauers ± SEM (%) 

Total No. of 
Animals 
Observed 

(No. of Trials) 

P Value  
Against 
Control* 

P Value  
Against Specified 

Groups 
25°C     

Wild type* 0.00 ± 0.00 1005 (10)   
ins-1(nr2091) 0.00 ± 0.00 368 (4) n.s.  
ins-6(tm2416) 0.00 ± 0.00 566 (6) n.s.  
daf-28(tm2308) 0.02 ± 0.01 705 (7) 0.004  
ins-6; ins-1 0.00 ± 0.00 277 (3) n.s.  
ins-1; daf-28 0.04 ± 0.01 494 (5) 0.004 n.s. a

ins-6; daf-28 0.36 ± 0.04 1061 (10) < 0.0001 0.0006 a

ins-6; ins-1; daf-28 0.30 ± 0.06 392 (3) 0.002 n.s. b

     
20°C     

Wild type 0.00 ± 0.00 608 (6) n.s.  

daf-2(e1368)* 0.00 ± 0.00 595 (6)   
daf-2; daf-28 0.76 ± 0.08 444 (4) 0.002  

daf-2; ins-1; daf-28 0.44 ± 0.09 621 (6) 0.004 0.06 c

ins-6; daf-2; daf-28 0.92 ± 0.05 437 (4) 0.004 n.s. c

ins-6; daf-2; ins-1; daf-28 0.93 ± 0.04 419 (4) 0.004 n.s. d

     

27°C     
Wild type* 0.01± 0.01 1262 (13)   
ins-1 0.02 ± 0.01 730 (8) n.s.  
ins-6 0.06 ± 0.02 849 (9) 0.007  
daf-28 0.74 ± 0.04 873 (9) < 0.0001  
ins-6; ins-1 0.11 ± 0.05 353 (4) 0.04  
ins-1; daf-28 0.79 ± 0.07 605 (6) 0.0003 n.s. a

ins-6; daf-28 1.00 ± 0.00 903 (9) < 0.0001 0.0001 a

ins-6; ins-1; daf-28 1.00 ± 0.00 328 (3) 0.004 n.s. b

     
22.5°C     

Wild type 0.00 ± 0.00 488 (5) 0.009  

daf-2* 0.29 ± 0.07 487 (5)   

daf-2; ins-1 0.10 ± 0.03 476 (5) 0.03  

ins-6; daf-2 0.36 ± 0.08 487 (5) n.s.  

ins-6; daf-2; ins-1 0.14 ± 0.03 487 (5) 0.08 0.03 e

daf-2; daf-28 0.99 ± 0.00 509 (5) 0.009  

daf-2; ins-1; daf-28 0.97 ± 0.01 510 (5) 0.009 0.05 c

ins-6; daf-2; daf-28 1.00 ± 0.00 503 (5) 0.005  

ins-6; daf-2; ins-1; daf-28 1.00 ± 0.00 299 (3) 0.02 n.s. d

     
25°C     

Wild type 0.00 ± 0.00 486 (5)   

daf-16* 0.00 ± 0.00 501 (5) n.s.  

ins-6; daf-28 0.21 ± 0.05 504 (5) 0.005 0.005 f

daf-16; ins-6; daf-28 0.01 ± 0.01 491 (5) n.s. 0.008 b

ins-6; ins-1; daf-28 0.25 ± 0.06 426 (5) 0.005 n.s. b

daf-16; ins-6; ins-1; daf-28 0.00 ± 0.00 458 (5) n.s. 0.005 g
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Strain/Treatment 
Mean Fraction of 

Dauers ± SEM (%) 

Total No. of 
Animals 
Observed 

(No. of Trials) 

P Value  
Against 
Control* 

P Value  
Against Specified 

Groups 
25°C     

ofm-1p::gfp (25ng)     

Wild type; jxEx18* 0.00 ± 0.00 594 (5)   

Wild type; jxEx21* 0.00 ± 0.00 477 (5)   

Wild type; jxEx22* 0.00 ± 0.00 477 (5)   

daf-28; jxEx18 0.03 ± 0.02 337 (5) n.s. h 0.008 j

daf-28; jxEx21 0.02 ± 0.01 516 (5) 0.05 h 0.009 j

daf-28; jxEx22 0.01 ± 0.01 414 (4) n.s. h 0.01 j

ins-6; daf-28; jxEx18 0.47 ± 0.05 554 (5) 0.005 h  
ins-6; daf-28; jxEx21 0.31 ± 0.06 559 (5) 0.005 h  
ins-6; daf-28; jxEx22 0.34 ± 0.06 532 (5) 0.007 h  

full rescue (low)     
ins-6p::ins-6 (2ng); 
 ofm-1p::gfp (25ng) 

    

ins-6; daf-28; jxEx27 0.01 ± 0.00 638 (5) < 0.01 i  
ins-6; daf-28; jxEx28 0.01 ± 0.01 682 (5) < 0.01 i  
ins-6; daf-28; jxEx29 0.01 ± 0.00 571 (5) < 0.01 i  

full rescue (high)     
ins-6p::ins-6 (25ng); 
 ofm-1p::gfp (25ng) 

    

ins-6; daf-28; yxEx163 0.00 ± 0.00 175 (2)   
ins-6; daf-28; yxEx174 0.02 ± 0.02 264 (2)   
ins-6; daf-28; yxEx175 0.01 ± 0.01 215 (2)   

ASI-specific rescue (low)     
str-3p::ins-6 (2ng);  
ofm-1p::gfp (25ng) 

    

ins-6; daf-28; jxEx53 0.23 47 (1)   
ins-6; daf-28; jxEx54 0.01 96 (1)   
ins-6; daf-28; jxEx64 0.10 114 (1)   
ins-6; daf-28; jxEx65 0.23 105 (1)   
ins-6; daf-28; jxEx66 0.26 100 (1)   

ASI-specific rescue (high)     
str-3p::ins-6 (25ng);  
ofm-1p::gfp (25ng) 

    

ins-6; daf-28; jxEx50 0.00 ± 0.00 479 (2)   
ins-6; daf-28; jxEx51 0.00 ± 0.00 300 (2)   
ins-6; daf-28; jxEx52 0.01 ± 0.01 264 (2)   

ASJ-specific rescue (low)     
trx-1p::ins-6 (2ng);  
ofm-1p::gfp (25ng) 

    

ins-6; daf-28; jxEx61 0.01 ± 0.01 378 (2)   
ins-6; daf-28; jxEx62 0.01 ± 0.01 284 (2)   
ins-6; daf-28; jxEx63 0.00 ± 0.00 219 (2)   

ASJ-specific rescue (high)     
trx-1p::ins-6 (25ng); 
 ofm-1p::gfp (25ng) 

    

ins-6; daf-28; jxEx58 0.00 134 (1)   
ins-6; daf-28; jxEx59 0.00 ± 0.00 412 (2)   
ins-6; daf-28; jxEx60 0.00 ± 0.00 241 (2)   
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Strain/Treatment 
Mean Fraction of 

Dauers ± SEM (%) 

Total No. of 
Animals 
Observed 

(No. of Trials) 

P Value  
Against 
Control* 

P Value  
Against Specified 

Groups 
27°C     

ofm-1p::gfp (25ng)     
Wild type; jxEx18* 0.01 ± 0.01 320 (3)   
Wild type; jxEx21* 0.01 ± 0.01 312 (3)   
Wild type; jxEx22* 0.01 ± 0.01 345 (3)   
daf-28; jxEx18 0.21 ± 0.00 232 (2) 0.08 h 0.08 j

daf-28; jxEx21 0.44 ± 0.04 328 (3) 0.05 h 0.05 j

daf-28; jxEx22 0.40 ± 0.05 333 (3) 0.05 h 0.05 j

ins-6; daf-28; jxEx18 0.99 ± 0.00 286 (3) 0.05 h  
ins-6; daf-28; jxEx21 0.98 ± 0.00 292 (3) 0.05 h  
ins-6; daf-28; jxEx22 0.99 ± 0.01 326 (3) 0.05 h  

full rescue (low)     
ins-6p::ins-6 (2ng); 
 ofm-1p::gfp (25ng) 

    

ins-6; daf-28; jxEx27 0.29 ± 0.03 360 (3) < 0.05 i  
ins-6; daf-28; jxEx28 0.13 ± 0.08 308 (3) < 0.05 i  
ins-6; daf-28; jxEx29 0.28 ± 0.05 312 (3) < 0.05 i  

full rescue (high)     
ins-6p::ins-6 (25ng); 
 ofm-1p::gfp (25ng) 

    

ins-6; daf-28; yxEx163 0.13 ± 0.02 373 (3) < 0.05 i  
ins-6; daf-28; yxEx174 0.10 ± 0.02 357 (3) < 0.05 i  
ins-6; daf-28; yxEx175 0.13 ± 0.02 344 (3) < 0.05 i  

ASI-specific rescue (low)     
str-3p::ins-6 (2ng);  
ofm-1p::gfp (25ng) 

    

ins-6; daf-28; jxEx53 0.82 ± 0.18 70 (2) n.s. i  
ins-6; daf-28; jxEx54 0.12 ± 0.09 303 (3) < 0.05 i  
ins-6; daf-28; jxEx64 0.73 ± 0.09 310 (3) < 0.05 i  
ins-6; daf-28; jxEx65 0.93 ± 0.02 152 (2) 0.08 i  
ins-6; daf-28; jxEx66 0.86 ± 0.09 179 (2) 0.08 i  

ASI-specific rescue (high)     
str-3p::ins-6 (25ng);  
ofm-1p::gfp (25ng) 

    

ins-6; daf-28; jxEx50 0.14 ± 0.10 339 (3) < 0.05 i  
ins-6; daf-28; jxEx51 0.16 ± 0.14 350 (3) < 0.05 i  
ins-6; daf-28; jxEx52 0.15 ± 0.08 372 (3) < 0.05 i  

ASJ-specific rescue (low)     
trx-1p::ins-6 (2ng);  
ofm-1p::gfp (25ng) 

    

ins-6; daf-28; jxEx61 0.12 ± 0.10 325 (3) < 0.05 i  
ins-6; daf-28; jxEx62 0.15 ± 0.11 301 (3) < 0.05 i  
ins-6; daf-28; jxEx63 0.22 ± 0.14 342 (3) < 0.05 i  

ASJ-specific rescue (high)     
trx-1p::ins-6 (25ng);  
ofm-1p::gfp (25ng) 

    

ins-6; daf-28; jxEx58 0.11 ± 0.07 301 (3) < 0.05 i  
ins-6; daf-28; jxEx59 0.14 ± 0.08 310 (3) < 0.05 i  
ins-6; daf-28; jxEx60 0.15 ± 0.09 351 (3) < 0.05 i  
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Supplementary Table S2. The different roles of different ilps in regulating dauer exit  

Strain/Treatment 

No. of 
Animals 

Observed/ 
Total 

Animals 
No. of 
Trials 

P Value 
Against 
Control 

(Logrank) 

P Value 
Against 

Specified 
Groups 

(Logrank) Rescue Effect 
25°C      

daf-2(e1368) 438/599 6    
ins-6(tm2416); daf-2(e1368) 324/578 6 < 0.0001a < 0.0001 b  
daf-2(e1368); ins-1(nr2091) 480/588 6 0.0001a   
daf-2(e1368); daf-28(tm2308) 407/587 6 0.0001a < 0.0001 c  
ins-6; daf-2; ins-1 375/583 6 < 0.0001a   
daf-2; ins-1; daf-28 495/579 6 0.001a   
ins-6; daf-2; daf-28 194/596 6 < 0.0001a < 0.0001 d  
ins-6; daf-2; ins-1; daf-28 293/605 6 < 0.0001a < 0.0001 e  

      
25°C      

ofm-1p::gfp (25ng)      
daf-2; jxEx18 632/739 8    
daf-2; jxEx21 409/516 6    
daf-2; jxEx22 448/591 6    
ins-6; daf-2; jxEx18 484/815 8 < 0.0001f   
ins-6; daf-2; jxEx21 353/592 6 < 0.0001g   
ins-6; daf-2; jxEx22 342/605 6 < 0.0001h   

full rescue (low)      
ins-6p::ins-6 (2ng); ofm-1p::gfp 
(25ng) 

  
   

ins-6; daf-2; jxEx27 541/835 8 < 0.0001f, g, h < 0.0001i, j, k + f, g, h

ins-6; daf-2; jxEx28 632/804 8 < 0.0001f, g

< 0.05 h
< 0.0001i, j, k + f, g

++ h
ins-6; daf-2; jxEx29 472/698 7 < 0.0001f, g, h < 0.0001i, j, k + f, g, h

full rescue (high)      
ins-6p::ins-6 (25ng); ofm-1p::gfp 
(25ng) 

  
   

ins-6; daf-2; yxEx163 677/809 8 n.s. f
< 0.02 g

< 0.0001 h

< 0.0001i, j, k ++ f  
+++ g, h  

 
ins-6; daf-2; yxEx174 698/817 8 n.s. f

< 0.02 g

< 0.0001h

< 0.0001i, j, k ++ f  
+++ g, h  

 
 

ins-6; daf-2; yxEx175 578/684 7 n.s. f
< 0.005 g
< 0.0001h

< 0.0001i, j, k ++ f  
+++ g, h  

 
ASI-specific rescue (low)      

str-3p::ins-6 (2ng); ofm-1p::gfp 
(25ng)      

ins-6; daf-2; jxEx53 121/215 3 < 0.0001f, g, h n.s. i, j, k – f, g, h

ins-6; daf-2; jxEx54 168/257 3 < 0.0001f, g, h n.s. i, j, k – f, g, h

ins-6; daf-2; jxEx64 168/213 2 < 0.0001f, g

n.s.h
< 0.0001i, j, k + f, g 

++ h
ins-6; daf-2; jxEx65 164/228 2 < 0.0001f, g

0.0005 h
< 0.05 i
n.s. j, k

+ f 

– g, h

ins-6; daf-2; jxEx66 133/214 2 < 0.0001f, g, h n.s. i, j, k – f, g, h
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Strain/Treatment 

No. of 
Animals 

Observed/ 
Total 

Animals 
No. of 
Trials 

P Value 
Against 
Control 

(Logrank) 

P Value 
Against 

Specified 
Groups 

(Logrank) Rescue Effect 
ASI-specific rescue (high)      

str-3p::ins-6 (25ng); ofm-1p::gfp 
(25ng)      

ins-6; daf-2; jxEx50 345/352 3 < 0.0001f, g, h < 0.0001ijk +++ f, g, h

ins-6; daf-2; jxEx51 354/361 3 < 0.0001f, g, h < 0.0001ijk +++ f, g, h

ins-6; daf-2; jxEx52 327/333 3 < 0.0001f, g, h < 0.0001ijk +++ f, g, h

ASJ-specific rescue (low)      
trx-1p::ins-6 (2ng); ofm-1p::gfp 
(25ng)      

ins-6; daf-2; jxEx61 182/208 2 n.s.f, g
0.0002 h

< 0.0001ijk ++ f, g
+++ h

ins-6; daf-2; jxEx62 185/205 2 n.s.f
< 0.05 g 

< 0.05 h

< 0.0001ijk ++ f
+ g

+++ h
ins-6; daf-2; jxEx63 167/197 2 < 0.0001 f 

n.s. h
< 0.0001ijk + f, g

++ h
ASJ-specific rescue (high)      

trx-1p::ins-6 (25ng); ofm-1p::gfp 
(25ng)      

ins-6; daf-2; jxEx58 278/288 3 n.s. f, g
< 0.0001 h

< 0.0001ijk ++ f, g
+++ h

ins-6; daf-2; jxEx59 298/319 3 < 0.05 f 
n.s. g 

< 0.0001 h

< 0.0001ijk +++ f 
++ g

+++ h
ins-6; daf-2; jxEx60 302/316 3 < 0.0001 f, h 

< 0.05 g
< 0.0001ijk +++ f, g, h 
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Supplementary Table Legends 

Table S1. The dauer entry phenotypes of wild type and insulin-deficient worms. We assayed 

wild-type, mutant and rescued worms in parallel in independent trials at different 

temperatures and we show statistics from the cumulative experiments. We used the Wilcoxon 

Mann-Whitney rank sum test to determine the statistical significance of the differences 

among the groups. The following indicate: *, the control to which the different worms were 

compared in each trial; a, compared to daf-28(tm2308) mutants; b, compared to ins-

6(tm2416); daf-28(tm2308) mutants; c, compared to daf-2(e1368); daf-28(tm2308) mutants; d, 

compared to ins-6(tm2416); daf-2(e1368); daf-28(tm2308) mutants; e, compared to ins-

6(tm2416); daf-2(e1368) mutants; f, compared to wild type; g, compared to ins-6(tm2416); 

daf-28(tm2308); ins-1(nr2091) mutants; h, compared to wild type carrying the corresponding 

transgene; i, compared to ins-6; daf-28; jxEx18, ins-6; daf-28; jxEx21 or ins-6; daf-28; 

jxEx22; j, compared to ins-6; daf-28 mutants carrying the corresponding transgene; and n.s., 

not significant since P > 0.1. See the Figure S1 legend about the lack of rescue in some 

animals carrying low levels of the ASI-specific ins-6 expression construct. 

 

Table S2. The different roles of different insulin-like genes in regulating dauer exit. We 

analyzed the rates of dauer exit of daf-2(e1368) mutants in the presence or absence of 

specific insulins at 25oC and show the statistics from the cumulative experiments. We used 

the logrank test to determine the statistical significance of the differences among the groups. 

The following indicate: a, compared to daf-2(e1368) mutants; b, compared to ins-6(tm2416); 

daf-2(e1368); ins-1(nr2091) mutants; c, compared to daf-2(e1368) ; ins-1(nr2091); daf-

28(tm2308) mutants; d, compared to ins-6(tm2416); daf-2(e1368) ; ins-1(nr2091); daf-

28(tm2308) mutants; e, compared to ins-6(tm2416); daf-2(e1368); daf-28(tm2308) mutants; f, 
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compared to daf-2; jxEx18 animals; g, compared to daf-2; jxEx21 animals; h, compared to daf-

2; jxEx22 animals; i, compared to ins-6; daf-2; jxEx18 animals; j, compared to ins-6; daf-2; 

jxEx21 animals; k, compared to ins-6; daf-2; jxEx22 animals; –, no rescue; +, partial rescue; 

++, full rescue; +++, over rescue; and n.s., not significant since P > 0.05.  
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3.2 Further characterization of ins-1, ins-6 and daf-28 activities with 

other ilps in dauer arrest and lifespan  

 

3.2.1 Abstract  

In this section, I show that ins-6, daf-28 and ins-1 act combinatorially with other ILPs to 

regulate dauer arrest. I also identify a second function for ASI in the regulation of the 

dauer program: ins-6 can act from ASI not only to inhibit dauer entry but also to promote 

dauer exit. Finally, I show that ilps have distinct and non-redundant functions in 

regulating both the dauer program and lifespan. 

 

3.2.2 Introduction 

In the preceding manuscript, I have shown that daf-28, ins-1 and ins-6 encode sensory 

information to regulate C. elegans developmental programs. However, my studies also 

suggest that other ILPs are required to regulate this process, as well as lifespan. Loss of 

both daf-28 and ins-6 are not sufficient to induce dauer arrest to the same degree as daf-2 

mutants, while loss of ins-1 is also insufficient to rescue the dauer phenotype of daf-2 

mutant worms (see section 3.1). At the same time, daf-28, ins-1 and ins-6 have little or no 

effect on C. elegans lifespan (see section 3.1), unlike daf-2 reduction-of-function mutants 

(Kenyon et al, 1993).   

 Here, I investigated ins-6 and daf-28 interactions, as well as those of ins-1, with 

other ilps in regulating the dauer program or lifespan. I analyzed the dauer or lifespan 

effect of the deletion of ins-6 or ins-1 in the background of a gain-of-function mutation in 
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daf-28, sa191 (Malone et al., 1996), which has been proposed to affect the function of 

several ILPs (Li et al., 2003). I also analyzed the direct role of two other ILPs, ins-7 and 

ins-18, which have been implicated in either dauer arrest or lifespan regulation through 

RNA interference (RNAi) or overexpression studies, or through deletion mutant analyses 

in the presence of a drug that can inhibit DNA synthesis both in the worm and its 

bacterial food source (Pierce et al., 2001; Murphy et al., 2003; Murphy et al., 2007). 

 

3.2.3 Results and Discussion 

The gain-of-function daf-28(sa191) mutation enhances the effect of loss of ins-6, 

ins-1 or ins-18 on dauer entry 

The daf-28(sa191) point mutation has been reported to induce dauer entry at 20°C and 

higher temperatures (Malone et al., 1996). The transient dauer arrest phenotype of 

daf-28(sa191) at 25°C is completely rescued by the overexpression of wild-type daf-28 

or ins-4, but only partly rescued by the overexpression of wild-type ins-6 (Li et al., 2003). 

This implicates daf-28, ins-4 and ins-6 in the inhibition of dauer entry. It has been 

proposed that the semi-dominant gain-of-function effect of the daf-28(sa191) mutation is 

caused by an interference with the processing of other β-type ILPs (Li et al., 2003). The 

daf-28(sa191) mutation causes an R to C substitution at a predicted proteolytic cleavage 

site, which is likely necessary for the processing of DAF-28 (Li et al., 2003). Thus, the 

mutation might inhibit the proteolytic cleavage and correct processing of DAF-28, which 

might be less or completely inactive in its propeptide form. Moreover, the protease might 

be sequestered by the mutation and inhibited from processing other peptides (Li et al., 

2003). Since the predicted cleavage site in daf-28 is also present in other members of the 
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β-type ILPs, like ins-4 and ins-6, the dauer entry phenotype of daf-28(sa191) might be 

due to the impaired function not only of daf-28 but also of other dauer-entry inhibiting 

ILPs.  

I found that loss of ins-6 increases dauer entry, while loss of ins-1 decreases dauer 

entry in the daf-28(sa191) background at 20°C and 22.5°C (Figures IA and IB; Table I), 

which confirm my previous observations that dauer entry is inhibited by wild-type ins-6 

and promoted by wild-type ins-1. I also found that the ins-18(tm339) deletion mutation 

partly suppresses dauer entry of daf-28(sa191), but less so than the deletion of 

ins-1(nr2091) (Figures IA and IB; Table I). Conversely, overexpression of ins-18 has 

been reported to increase dauer arrest in a daf-2 mutant background, but again less so 

than overexpression of ins-1 (Pierce et al., 2001). Together these data suggest that, like 

ins-1, the wild-type function of ins-18 is to promote dauer entry, although perhaps ins-18 

has a weaker role than ins-1 in this process.  

Interestingly, I also found that loss of ins-7 alone, by using the same allele, 

tm1907, that has been proposed to enhance dauer formation of daf-2-RNAi-treated 

worms (Murphy et al., 2007), has no effect on dauer entry at 25°C (Table I). This is also 

in contrast to the previously observed increase in dauer formation of ins-7(tm1907) single 

mutants at 27°C (Murphy et al., 2007). It is possible that ins-7 acts like ins-6, in that its 

effect on dauer entry is only observable at higher temperatures or in combination with 

other ilp deletions. 

I observed that daf-28(sa191) causes more dauer arrest than daf-28(tm2308) at all 

temperatures, e.g., at 25°C (Figure IC; Table I), which supports the hypothesis that the 

daf-28(sa191) phenotype is caused not only by the elimination of daf-28 function. 
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Interestingly, the dauer arrest phenotype of the daf-28(sa191) mutant is stronger than that 

of the daf-2(e1368) mutant (Figure IB; Table I), but weaker than that of the stronger daf-

2 allele, e1370 (Figures IA and IB; Table I). However, in regulating lifespan, the effect of 

the daf-28(sa191) mutation is weaker than that of the daf-2(e1368) mutation (Figures 

IIIC and IIIH and Table IV).  Thus, daf-28(sa191) seems to affect the ILPs involved in 

the regulation of dauer entry more than the ILPs involved in lifespan regulation. 

 

daf-16 largely suppresses the dauer entry phenotypes caused by ilp mutations 

The C. elegans ILPs have been predicted to act as ligands of the DAF-2 insulin/IGF 

receptor, because of their sequence and structural similarities to ILPs in other animals 

(Pierce et al., 2001; Li et al., 2003). However, there is no direct biochemical evidence 

that they actually bind DAF-2 and modulate its activity. Moreover, a group of 

mammalian ILPs, called relaxins, has been shown to bind to GPCRs, rather than insulin-

like receptors (Liu and Lovenberg, 2008; Svendsen et al., 2008; Meyts et al., 2009).  

To determine whether the different ILPs that are analyzed in this study act with 

the DAF-2 receptor, I tested how loss of daf-16, a downstream effector of daf-2 

(reviewed by Kenyon, 2005), affects the dauer entry phenotypes of the different ilp 

mutations. The canonical pathway downstream of the DAF-2 receptor targets the FOXO 

transcription factor DAF-16, which is negatively regulated by DAF-2 activity (reviewed 

by Kenyon, 2005). Hence, activation of DAF-16 promotes the expression of genes 

required for the induction of dauer arrest (Kenyon, 2005). At 25°C, the daf-16(mu86) 

deletion mutation completely suppresses the dauer entry phenotype of the ins-6; daf-

28(tm2308) double mutants (Figure 1E), and almost completely suppresses that of the 
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daf-28(sa191) and other insulin deletion mutant combinations (Figure IC; Table I). At 

27°C, removal of daf-16 still causes a fraction of partial dauers to form in the 

daf-28(sa191) or daf-28(tm2308) mutant background, but more so in the daf-28(sa191) 

mutants (Figures ID and IE; Table II). Indeed, lack of daf-16 activity in daf-28(sa191) at 

25°C already leads to the formation of a small fraction of partial dauers (Figures IC). The 

small fraction of partial dauers that form in the daf-16; daf-28(sa191) double mutant, or 

other ilp mutant combinations with the daf-16 deletion, do not have all the dauer 

characteristics. Although these partial dauers have a dauer-like shape and show nictation 

behavior [wherein dauers stand on their tails and sway their bodies in the air (Riddle and 

Albert, 1997)], their pharynges can still pump and are only slightly remodeled (data not 

shown). These partial dauers also do not accumulate fat in storage vesicles; and their 

cuticles and gonads are again only somewhat remodeled (data not shown). In addition, 

they sometimes show growth and reproductive defects, if and when they do develop to 

the adult stage. Thus, these findings suggest that the dauer arrest phenotypes of the ilp 

mutants are largely daf-16-dependent, which is consistent with these ILPs acting as DAF-

2 ligands to regulate dauer arrest. Moreover, since the DAF-2 pathway has a DAF-16-

independent component (Inoue and Thomas, 2000a; Paradis et al., 1999; Paradis and 

Ruvkun, 1998; Nanji et al., 2005), this component might contribute to the partial dauer 

formation in the daf-16 deletion background. However, the formal possibility remains 

that at least some of these ILPs act in a DAF-2-independent manner, for example, by 

binding another receptor, which might directly or indirectly also target DAF-16.  
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Table I. Dauer entry phenotypes of wild type and insulin-deficient worms 
 

Figure I. daf-28 acts with ins-6 to inhibit dauer entry, whereas ins-1 and ins-18 promote it. (A-E) The mean 

fractions of wild-type and insulin mutant worms that form dauers are shown at the indicated temperature (dark 

grey bars). Each mean ±  SEM includes at least three independent trials of approximately 100 worms, except for 

panel B, which includes at least two independent trials of approximately 100 worms. The detailed statistical 

comparisons between the dauer entry phenotypes of different genotypes under different conditions in these and 

subsequent analyses can be found in Tables I and II. * indicates P ≤ 0.05; **, P ≤ 0.01; and ***, P ≤ 0.001. (A-

B) The effect of different insulin deletions and the daf-2(e1368) mutation on dauer entry in the daf-28(sa191) 

mutant background at 20°C (A) and 22.5°C (B). (C-E) Light grey bars: Partial dauers. (C-D) The dauer entry 

phenotype of daf-28(sa191) and of different insulin deletions in the daf-28(sa191) mutant background is 

suppressed by the daf-16(mu86) mutation at 25°C (C) and 27°C (D). (E) The dauer entry phenotype of insulin 

deletion mutants is suppressed by the daf-16(mu86) mutation at 27°C. The daf-28(tm2308) deletion mutant is 

noted as daf-28(lf), while the daf-28(sa191) gain-of-function mutant is noted as daf-28(sd). 
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Strain/Treatment 

Mean Fraction 
of Dauers 
±SEM (%) 

Total No. of 
Animals 
Observed 

(No. of Trials) 

P Value  
Against 
Control* 

P Value  
Against 

Specified 
Groups 

20°C     
Wild type 0.00 ± 0.00 608 (6) n.s.  
daf-2(e1368)* 0.00 ± 0.00 595 (6)   
daf-2(e1368); ins-1 0.00 ± 0.00 430 (4) 0.07  
ins-6; daf-2(e1368) 0.05 ± 0.03 615 (6) 0.06  
ins-6; daf-2(e1368); ins-1 0.01 ± 0.01 431 (4) 0.2  
daf-2(e1368); 
 daf-28(tm2308) 

0.76 ± 0.08 621 (6) 0.002 0.1 a

daf-2(e1368); ins-1;  
daf-28(tm2308) 

0.44 ± 0.09 438 (4) 0.004 0.06 b

ins-6; daf-2(e1368); 
 daf-28(tm2308) 

0.92 ± 0.05 437 (4) 0.004  

ins-6; daf-2(e1368); ins-1; 
daf-28(tm2308) 0.93 ± 0.04 419 (4) 0.004 1 a
     
20°C     
Wild type* 0.00 ± 0.00 608 (6)   
daf-28(sa191) 0.54 ± 0.05 207 (2) 0.009  
ins-1; daf-28(sa191) 0.09 ± 0.01 191 (2) 0.009 0.1 c

ins-18; daf-28(sa191) 0.33 ± 0.04 206 (2) 0.009 0.1 c

ins-6; daf-28(sa191) 0.82 ± 0.04 204 (2) 0.009 0.1 c

daf-2(e1368) 0.00 ± 0.00 595 (6) n.s. 0.009 c

daf-2(e1368); daf-28(sa191) 1.00 ± 0.00 199 (2) 0.009 0.009 d

daf-2(e1370) 1.00 ± 0.00 205 (2) 0.009 0.009 d

     
22.5°C     
Wild type* 0.00 ± 0.00 488 (5)   
daf-28(sa191) 0.82 ± 0.07 394 (4) 0.008  
ins-1; daf-28(sa191) 0.57 ± 0.10 394 (4) 0.008 0.08 c

ins-18; daf-28(sa191) 0.59 ± 0.07 376 (4) 0.008 0.1 c

ins-6; daf-28(sa191) 0.97 ± 0.01 399 (4) 0.008 0.02 c

daf-2(e1368) 0.29 ± 0.07 487 (5) 0.005 0.01 c

daf-2(e1368); daf-28(sa191) 1.00 ± 0.00 502 (5) 0.003 0.005 d

daf-2(e1370) 1.00 ± 0.00 403 (4) 0.005 0.01 d

     
22.5°C     
Wild type* 0.00 ± 0.00 488 (5)   
ins-1(nr2091) 0.00 92 (1)   
ins-18(tm339) 0.00 98 (1)   
ins-6(tm2416) 0.00 98 (1)   
ins-6; ins-1 0.00 98 (1)   
daf-28(tm2308) 0.00 ± 0.00 292 (3) n.s. 0.03 e

ins-1; daf-28(tm2308) 0.00 ± 0.00 391 (4) n.s.  
ins-6; daf-28(tm2308) 0.31 ± 0.04 398 (4) 0.008  
ins-6; ins-1; daf-28(tm2308) 0.20 ± 0.03 393 (4) 0.008 0.04 e
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Strain/Treatment 

Mean Fraction 
of Dauers 
±SEM (%) 

Total No. of 
Animals 
Observed 

(No. of Trials) 

P Value  
Against 
Control* 

P Value  
Against 

Specified 
Groups 

25°C     
Wild type* 0.00 ± 0.00 1005 (10)   
ins-7(tm1907) 0.00 ± 0.00 96 (1) n.s.  
ins-18 0.02 ± 0.01 271 (3) n.s.  
ins-18; ins-6 0.01 ± 0.01 192 (2) n.s.  
ins-18; daf-28(tm2308) 0.00 ± 0.00 92 (1) n.s.  
     
25°C     
Wild type* 0.00 ± 0.00 1005 (10)   
daf-28(tm2308) 0.02 ± 0.01 705 (7) 0.004 0.001 c

daf-28(sa191) 0.99 ± 0.00 673 (7) 0.0002  
daf-16; daf-28(sa191) 0.31 ± 0.06 488 (5) 0.001 0.006 c

ins-1; daf-28(sa191) 0.99 ± 0.00 402 (4) 0.001 0.5 c

daf-16; ins-1; daf-28(sa191) 0.35 ± 0.05 363 (4) 0.001 0.02 f

ins-6; daf-28(sa191) 1.00 ± 0.00 400 (4) 0.0004 0.1 c

daf-16; ins-6; daf-28(sa191) 0.33 ± 0.06 394 (4) 0.001 0.007 g

 

 

Table I. The dauer entry phenotypes of wild type and insulin-deficient worms. We assayed wild-type 

and mutant worms in parallel in independent trials at different temperatures and we show statistics from the 

cumulative experiments. We used the Wilcoxon Mann-Whitney rank sum test to determine the statistical 

significance of the differences among the groups. The following indicate: *, the control to which the 

different worms were compared in each trial; a, compared to ins-6(tm2416); daf-2(e1368); daf-28(tm2308) 

mutants; b, compared to daf-2(e1368); daf-28(tm2308) mutants; c, compared to daf-28(sa191) mutants; d, 

compared to daf-2(e1368) mutants; e, compared to ins-6(tm2416); daf-28(tm2308) mutants; f, compared to 

ins-1(nr2091); daf-28(sa191) mutants; g, compared to ins-6(tm2416); daf-28(sa191) mutants; and n.s., not 

significant since P > 0.1. Some of the dauer entry data from the preceding section 3.1 are included here for 

comparison.  
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Table II. Partial dauers in wild-type, daf-16 and/or insulin-deficient worms at 27°C 

Strain/Treatment 

Mean Fraction of  
Partial Dauers / Dauers  

± SEM (%) 

Total No. 
of 

Animals 
Observed 
(No. of 
Trials) 

P Value  
Against 
Control* 

P Value  
Against 

Specified 
Groups 

27°C     
Wild type* 0.20 ± 0.08 / 0.00 ± 0.00 552 (6)   
daf-16(mu86) 0.00 ± 0.00 / 0.00 ± 0.00 538 (6) 0.01  
daf-28(tm2308) 0.00 ± 0.00 / 0.90 ± 0.04 585 (6) 0.004  
ins-16; daf-28(tm2308) 0.25 ± 0.11 / 0.00 ± 0.00 478 (5) 0.6 0.006 a

ins-1; daf-28(tm2308) 0.00 ± 0.00 / 0.96 ± 0.02 483 (5) 0.006 0.4 a

daf-16; ins-1; daf-28(tm2308) 0.22 ± 0.06 / 0.00 ± 0.00 483 (5) 0.9 0.009 b

ins-6; daf-28(tm2308) 0.00 ± 0.00 / 1.00 ± 0.00 490 (5) 0.004 0.01 a

daf-16; ins-6; daf-28(tm2308) 0.41 ± 0.13 / 0.00 ± 0.00 460 (5) 0.1 0.005 c

ins-6; ins-1; daf-28(tm2308) 0.00 ± 0.00 / 1.00 ± 0.00 477 (5) 0.004 n.s. c

daf-16; ins-6; ins-1; daf-28(tm2308) 0.26 ± 0.13 / 0.00 ± 0.00 490 (5) 1.0 0.005 d
     
27°C     
Wild type* 0.20 ± 0.08 / 0.00 ± 0.00 552 (6)   
daf-16(mu86) 0.00 ± 0.00 / 0.00 ± 0.00 538 (6) 0.01  
daf-28(sa191) 0.00 ± 0.00 / 1.00 ± 0.00 941 (10) 0.0003  
daf-16; daf-28(sa191) 0.77 ± 0.08 / 0.00 ± 0.00 467 (5) 0.006 0.0006 e

ins-1; daf-28(sa191) 0.00 ± 0.00 / 1.00 ± 0.00 295 (3) 0.02 0.6 e

daf-16; ins-1; daf-28(sa191) 0.82 ± 0.06 / 0.00 ± 0.00 284 (3) 0.02 0.04 f

ins-6; daf-28(sa191) 0.00 ± 0.00 / 1.00 ± 0.00 572 (6) 0.002 0.4 e

daf-16; ins-6; daf-28(sa191) 0.76 ± 0.10 / 0.00 ± 0.00 282 (3) 0.04 0.006 g

 

Table II. See also the Table I legend. The following indicate: *, the control to which the different worms were 

compared in each trial; a, compared to daf-28(tm2308) mutants; b, compared to ins-1(nr2091); daf-28(tm2308) 

mutants; c, compared to ins-6(tm2416); daf-28(tm2308) mutants; d, compared to ins-6(tm2416); ins-1(nr2091); 

daf-28(tm2308) mutants; e, compared to daf-28(sa191) mutants; f, compared to ins-1(nr2091); daf-28(sa191) 

mutants; g, compared to ins-6(tm2416); daf-28(sa191) mutants; and n.s., not significant since P > 0.1.  
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ins-6 can function in ASI or ASJ to promote dauer exit 

By laser ablation studies, the ASJ neurons have been shown to be crucial for the 

induction of dauer exit (Bargmann and Horvitz, 1991a), which is also regulated by 

DAF-2 signaling (Gems et al., 1998). I have shown that the ILP ins-6 functions to 

promote dauer exit (Figures 2 and 4; Table S2). In addition, I find that ins-6 is expressed 

in the ASI neurons of reproductively growing worms (Figure 5; Table 1). However, it is 

downregulated in ASI in response to dauer-inducing pheromones and is upregulated in 

ASJ in dauers that are exposed to high levels of pheromones (Figure 5; Table 1). This 

suggests that ins-6 can act from ASJ to promote dauer exit.  

On the other hand, the dauer exit phenotype of ins-6; daf-2(e1368) double 

mutants can be rescued by high levels of ins-6 expression from either the ASI or the ASJ 

neurons (Figure S2; Table S2). To clarify whether ins-6 acts in ASJ to promote dauer 

exit, I analyzed worms in which the ASJ neurons are genetically ablated through the ASJ-

specific expression of human caspase-1 (Zheng et al., 1999). As expected, the genetic 

ablation of ASJ causes a delay in dauer exit of daf-2(e1368) single mutants (Figure IIA; 

Table III). In addition, the deletion of ins-6 has a similar effect as ablation of ASJ on the 

exit of daf-2(e1368) mutant dauers (Figure IIA; Table III). Surprisingly, however, 

ablation of ASJ can still enhance the dauer exit defect of ins-6; daf-2(e1368) double 

mutants (compare Figures IIA and IIB). This suggests that (i) ins-6 also acts from a cell 

other than ASJ to promote dauer exit; and (ii) there are additional dauer-exit promoting 

signals from ASJ besides ins-6, e.g., the ILP daf-28, which is also expressed in this 

neuron (Li et al., 2003).  
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At the same time, it should be noted that these ASJ ablation experiments were 

carried out in daf-2(e1368) mutant dauers that were exposed to low pheromone levels. 

Moreover, as shown in section 3.1, I found that this particular treatment, induction of 

daf-2(e1368) mutant dauers at 25°C under low pheromone exposure, is insufficient to 

downregulate ins-6 in ASI or induce the switch in expression to ASJ (Table 1). Thus, 

these data suggest that ins-6 can act in ASI to promote dauer exit under certain 

conditions, like a weak dauer arrest, since daf-2(e1368) dauers still exit in this 

environment. Indeed, this idea is consistent with the observation that the dauer exit 

phenotype of ins-6; daf-2(e1368) double mutants is rescued by ins-6 expression from ASI 

either in the presence or absence of ASJ neurons (Figures S2 and IID; Tables S2 and III). 

Not surprisingly, higher levels of ins-6 expressed in ASI also increases the rate of dauer 

exit of daf-2(e1368) mutants in which ASJ has been ablated (Figure IIC; Table III).  

However, I have also found that the combined activities of high pheromone levels 

and the dauer program do shift ins-6 expression from ASI to ASJ (Figure 5; Table 1). To 

determine whether ins-6 acts in ASJ to promote dauer exit under a different context, 

future studies would be needed to test the effect of ASJ ablation on exit of daf-2(e1368) 

single mutant versus ins-6; daf-2(e1368) double mutant dauers that were induced by high 

levels of pheromone. Under these conditions, which represent strong dauer arrest because 

these dauers are less likely to exit, it is possible that loss of ins-6 will not further enhance 

the dauer exit phenotype of daf-2(e1368) mutants in which the ASJ neurons have been 

genetically ablated.  
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Figure II. ASJ and ins-6 function together to promote dauer exit. (A-B) The rates of dauer exit at 25oC 

of daf-2(e1368) single (A) and ins-6; daf-2(e1368) double (B) mutant animals, in which ASJ is genetically 

ablated (jxEx91, jxEx92 and jxEx93). (C-D) The rates of dauer exit of daf-2(e1368) single (C) and ins-6; 

daf-2(e1368) double (D) mutants, in which ASJ is genetically ablated and in which ins-6 expression is 

induced from an ASI-specific promoter at a high level (jxEx94, jxEx95 and jxEx96). (A-D) Control lines are 

daf-2(e1368) and ins-6; daf-2(e1368) mutants that carry the trx-1p::gfp ASJ marker and the myo-3p::rfp 

coinjection marker alone (jxEx76). Statistical analyses were performed according to the logrank test. See 

Table III for the statistical analyses of these experiments, and a comparison with two additional control 

lines. 
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Table III. Effect of genetic ablation of ASJ on dauer exit 
 

Strain/Treatment 

No. of 
Animals 

Observed/ 
Total 

Animals 
No. of 
Trials 

P Value 
Against 
Control 

(Logrank) 
Rescue 
Effect 

P Value 
Against 

Specified 
Groups 

(Logrank) 

P Value 
Against 

Specified 
Groups 

(Logrank) 
25°C       
trx-1p::gfp (25ng); 
myo-3p::rfp (30ng) 

      

  daf-2; jxEx76 161/162 2     
  daf-2; jxEx77 169/174 2     
  daf-2; jxEx78 182/189 2     
  ins-6; daf-2; jxEx76 135/153 2 < 0.0001a    
  ins-6; daf-2; jxEx77 134/149 2 < 0.0001b    
  ins-6; daf-2; jxEx78 158/218 2 < 0.0001c    

genetic ASJ ablation       
trx-1p::ICE (50ng); 
trx-1p::gfp (25ng); 
myo-3p::rfp (30ng) 

      

  daf-2; jxEx91 142/149 2 < 0.0001a    
  daf-2; jxEx92 209/218 2 < 0.0001b    
  daf-2; jxEx93 221/228 2 < 0.0001c    
  ins-6; daf-2; jxEx91 167/197 2 < 0.0001a   < 0.0001ghi

  ins-6; daf-2; jxEx92 157/177 2 < 0.0001b   < 0.0001ghi

  ins-6; daf-2; jxEx93 184/219 2 < 0.0001c   < 0.0001ghi

genetic ASJ ablation +  
ASI-specific rescue (high)  

      

trx-1p::ICE (50ng); 
trx-1p::gfp (25ng); 
myo-3p::rfp (30ng); 
str-3p::ins-6 (25ng) 

      

  daf-2; jxEx94 133/133 1 n.s.a ++a

+++bc
 < 0.0001def

  daf-2; jxEx95 142/143 1 n.s.a ++a

+++bc
 < 0.0001def

  daf-2; jxEx96 124/124 1 n.s.a ++a

+++bc
 < 0.0001def

  ins-6; daf-2; jxEx94 185/204 2 < 0.0001a +df 

–e
< 0.0001jl

n.s.k
< 0.0001def

  ins-6; daf-2; jxEx95 169/180 2 < 0.0001b ++de

+++f
< 0.0001jkl n.s.d

0.06e

0.0005f

  ins-6; daf-2; jxEx96 228/238 2 < 0.0001c ++def < 0.0001jkl 0.04d

n.s.ef

ASI-specific rescue (high)       
trx-1p::gfp (25ng); 
myo-3p::rfp (30ng); 
str-3p::ins-6(25ng) 

      

  daf-2; jxEx84 128/129 1  +++abc   
  daf-2; jxEx85 110/110 1  +++abc   

  daf-2; jxEx86 119/119 1  +++abc   

  ins-6; daf-2; jxEx84 114/114 1  +++ghi   
  ins-6; daf-2; jxEx85 117/120 1  +++ghi   
  ins-6; daf-2; jxEx86 119/122 1  +++ghi   
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Table III. The combinatorial effect of genetic ablation of the ASJ neurons and ins-6 deletion on dauer 

exit. The rates of dauer exit of daf-2(e1368) and ins-6(tm2416); daf-2(e1368) mutants with and without ASJ 

ablation at 25oC are shown together with the statistics from the cumulative experiments. We used the logrank 

test to determine the statistical significance of the differences among the groups. The following indicate: a, 

compared to daf-2; jxEx76 animals; b, compared to daf-2; jxEx77 animals; c, compared to daf-2; jxEx78 

animals; d, compared to daf-2; jxEx91 animals; e, compared to daf-2; jxEx92 animals; f, compared to daf-2; 

jxEx93 animals; g, compared to ins-6; daf-2; jxEx76 animals; h, compared to ins-6; daf-2; jxEx77 animals; i, 

compared to ins-6; daf-2; jxEx78 animals; j, compared to ins-6; daf-2; jxEx91 animals; k, compared to ins-6; 

daf-2; jxEx92 animals; l, compared to ins-6; daf-2; jxEx93 animals; –, no rescue; +, partial rescue; ++, full 

rescue; +++, over rescue; and n.s., not significant since P > 0.05.  

ASJ is the only the sensory neuron that has been previously identified to regulate 

dauer exit (Bargmann and Horvitz, 1991a). In this study, I identified a second sensory 

neuron that can regulate this step of the switch, ASI. This second role for ASI in the 

regulation of dauer arrest suggests that ASI not only inhibits dauer entry, but it also 

promotes dauer exit. However, considering that ASI might only promote exit after a weak 

dauer arrest, whereas ASJ might promote exit after a stronger dauer arrest, this also 

suggests that ASI, in contrast to ASJ, plays only a minor role in dauer exit.  
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Different ILPs have distinct and non-redundant effects on lifespan 

The DAF-2/insulin-like pathway is a major signaling pathway that regulates C. elegans 

adult longevity (reviewed by Kenyon, 2005). Active DAF-2 signaling inhibits longevity, 

while downregulation of the pathway can increase lifespan by more than 100% (Kenyon 

et al., 1993). While mutations in the daf-2 receptor gene and downstream components of 

the pathway have been studied in detail regarding this process, little is known about 

which ILPs might activate DAF-2 to inhibit longevity.  

daf-28 has been implicated in lifespan regulation by the gain-of-function mutation 

sa191, which causes not only transient dauer arrest but also a slight increase in lifespan 

(Malone et al., 1996). In addition, RNAi of ins-7 slightly increases lifespan in an RNAi-

sensitive background (Murphy et al., 2003). In contrast, overexpression of ins-1 slightly 

extends lifespan, which suggests that INS-1 might act to promote longevity, rather than 

inhibit it, although the ins-1(nr2091) deletion does not lead to a shorter lifespan (Pierce et 

al., 2001). Yet, all of these observations are based on methods that could interfere with 

endogenous ILPs that regulate lifespan.   

Thus, I tested loss-of-function mutants of several ilp genes for a possible role in 

regulating longevity. At 25°C, I found that deletion of the ilp gene ins-7, ins-18 or daf-28 

has no effect on lifespan, unlike those of ins-6 and ins-1, which have significant but 

opposing effects (Figure III; Table IV). ins-6 deletion mutants have a slightly, but 

significantly longer lifespan than wild type (11%; Figure IIIA; Table IV). In addition, 

deletion of ins-6 further extends lifespan in both the daf-28(tm2308) and daf-28(sa191) 

mutant backgrounds (Figures IIIC and IIID; Table IV), and even more so in the daf-

2(e1368) background (Figure IIIH; Table IV).  
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Figure III. Insulin-like genes have distinct effects on lifespan. (A-G) All lifespan analyses were 

performed at 25°C. (A) The lifespan of daf-28(tm2308), ins-1(nr2091), ins-6(tm2416), ins-7(tm1907) and 

ins-18(tm339) deletion mutants. The daf-28(tm2308) mutants consist of continuously well-fed (post-L3) 

adults. (B) The lifespan of the two different daf-28 mutant alleles: the semi-dominant allele sa(191), which 

causes transient dauer arrest in all worms: and the loss-of-function allele tm2308, which leads to two 

different populations, post-L3 and post-dauer. The daf-28(tm2308) post-dauer population was induced by 

high population density at 25oC. These postdauers are transient dauers that exit within 24 hours. (C) The 

combined effect on lifespan of the ins-6 loss-of-function and daf-28(sa191) mutations. (D) The lifespan-

extending effect of ins-6 in the daf-28(tm2308) background. (E-G) ins-1 loss-of-function shortens the 

lifespan of ins-6 single mutants (G), ins-6; daf-28(tm2308) double mutant post-L3 adults (E), and daf-

28(tm2308) single mutant post-dauer adults (F). However, ins-1 loss-of-function does not suppress the 

lifespan extension seen in ins-6; daf-28(tm2308) double mutant post-dauer adults (E-F). (H) The lifespan 

of daf-2(e1368) in the absence of specific ilps and of daf-2(e1370). Since daf-2 mutants undergo dauer 

arrest at 25°C, these worms were grown at 20°C and then shifted to 25°C at the L4 stage to initiate lifespan 

analyses. 
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Similar to what has been previously reported (Malone et al., 1996), I also 

observed that the daf-28(sa191) mutation, which induces 100% transient dauer arrest at 

25°C, extends lifespan by about 11% (Figures IIIB and IIIC; Table IV). At the same time, 

I found that the two different adult populations of daf-28(tm2308) exhibit different 

lifespan: the daf-28(tm2308) post-dauer adults show a lifespan increase similar to daf-

28(sa191) mutants, whereas daf-28(tm2308) post-L3 adults, which did not go through the 

dauer stage, have a lifespan that is more similar to wild type (Figure IIIB; Table IV). 

Morover, because the daf-28(tm2308) mutation increases lifespan only of ins-6 or ins-6; 

ins-1 post-dauer, but not post-L3, adults (Figures IIID and IIIE; Table IV), it seems likely 

that it is the induction of dauer arrest, and not the loss of daf-28, that affects longevity. In 

support of this hypothesis, the induction of dauer arrest by high pheromone and low food 

levels in wild-type worms also slightly extends their adult lifespan (Hall et al., 2010).  

Interestingly, the lifespan of the ins-6; daf-28(tm2308) post-dauer adults is further 

increased after exposure to an even higher pheromone to food ratio, as is the case in high 

population densities (Figure IIIC; Table IV), which suggests that dauer pheromones may 

also influence lifespan. Since exposure to pheromone levels alone has been reported to 

have no effect on lifespan (Alcedo and Kenyon, 2004), these observations together also 

suggest that dauer pheromones only affect lifespan in combination with the dauer 

program and low food availability.   

On the other hand, unlike ins-6 deletion or the dauer program or high pheromone 

to food ratios, the lack of ins-1 activity shortens lifespan, but only in some of the ilp 

mutant backgrounds. I found that deletion of ins-1 does not have an effect on lifespan in 

backgrounds that do not show increased longevity, i.e., wild type and daf-28(tm2308) 
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post-L3 adults (Figure IIIA; Table IV). In contrast, loss of ins-1 shortens lifespan in ins-6 

single mutants and ins-6; daf-28 post-L3 adults, as well as daf-28(tm2308) post-dauer 

adults (Figures IIIE to IIIG; Table IV). Interestingly, ins-1 does not shorten the longer 

lifespan of ins-6; daf-28(tm2308) post-dauer adults or daf-2(e1368) adults (Figures IIIE, 

IIIF and IIIH; Table IV). Since lack of ins-1 function can only suppress small, but not 

larger, increases in lifespan, this suggests that ins-1 only weakly antagonizes daf-2 

activity in regulating lifespan. This is again similar to the weak activity of ins-1 in 

antagonizing daf-2 signaling in the regulation of dauer entry (see Section 3.1).  

Thus, in this study, I show that the wild-type function of ins-6 is to shorten 

lifespan, while the wild-type function of ins-1 is to lengthen lifespan. This suggests that 

ILPs have distinct and non-redundant functions in regulating longevity, like they do in 

the regulation of dauer arrest (see Section 3.1). The lifespan effect of ins-1 is consistent 

with the previous observation that its overexpression promotes longevity (Pierce et al., 

2001). However, my study shows that ins-1 only plays a minor role in regulating this 

process. 

I also show that the effects of these ilps are small compared to the effects of other 

insulin-like signaling mutants, such as daf-2(e1368) and daf-2(e1370) mutants (Figure 

IIIH; Table IV). Thus, there are likely other longevity-influencing ILPs that remain to be 

identified, although it is unclear if ins-7 is one of these peptides. ins-7 has previously 

been shown to affect lifespan (Murphy et al., 2007), but I find that loss of this gene has 

no effect under the conditions of my study. Nevertheless, future work could show that 

ins-6 and ins-1 function combinatorially with a group of ILPs to regulate longevity. 
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Table IV. Cumulative adult lifespan of ilp mutants at 25°C 

Strain 

Mean 
Lifespan 
± SEM 
(Days) 

75th 
%ile 

(Days) 

No. Animals 
Observed / 

Total Initial 
Animals 

% 
Wild 
Type 

P  Against 
Wild 
Type 

(Logrank) 

P Against 
Specified 
Groups 

(Logrank) 
25°C       
Wild Type 13.0 ± 0.1 17 1721/2049 (17)    
ins-1(nr2091) 12.6 ± 0.3 16 279/397(4) -3 n.s.  
ins-18(tm339) 13.3 ± 0.4 16 84/100 (1) +2 n.s.  
ins-7(tm1907) 13.3 ± 0.4 17 146/170 (2) +2 n.s.  
ins-6(tm2416) 14.4 ± 0.2 19 552/697 (7) +11 < 0.0001 < 0.0001 a

0.07 b
n.s. c

daf-28(sa191) 14.4 ± 0.2 18 373/500 (5) +11 < 0.0001 0.005 a
n.s. b

daf-28(tm2308)       
post-L3 adults 13.6 ± 0.2 17 863/1100 (11) +4 0.004 0.2 b

post-dauer adults 14.4 ± 0.3 18 182/300 (3) +11 0.003  
ins-6(tm2416); 
daf-28(sa191) 

17.0 ± 0.5 23 173/288 (3) +31 < 0.0001 < 0.0001 cd

ins-6(tm2416); 
ins-1(nr2091)  

12.5 ± 0.4 16 176/201 (2) -4 n.s. 0.0001 d
n.s. e

ins-18(tm339); 
ins-6(tm2416) 

14.4 ± 0.7 21 70/100 (1) +11 < 0.0001 n.s. d

ins-18(tm339); 
daf-28(tm2308)  

      

post-dauer adults 13.5 ± 0.6 16 58/100 (1) +4 n.s. n.s. b

ins-1(nr2091); 
daf-28(tm2308)  

      

post-L3 adults 12.7 ± 0.2 16 370/500 (5) -2 n.s. 0.005 a

post-dauer adults 12.7 ± 0.3 17 199/300 (3) -2 n.s. 0.0003 b
n.s. f

ins-6(tm2416); 
daf-28(tm2308) 

      

post-L3 adults 13.9 ± 0.4 18 208/299 (3) +7 < 0.0001 0.04 g
n.s. d 

0.004 a
mixed adult 
populations 

14.7 ± 0.3 20 365/500 (5) +13 < 0.0001 0.1 d
< 0.0001 a

post-dauer adults  15.4 ± 0.4 21 207/300 (3) +19 < 0.0001 0.01 h

n.s. g
< 0.0001 b

post-dauer adults – hi 
population density 

18.3 ± 0.5 24 195/300 (3) +41 < 0.0001 < 0.0001 i

ins-6(tm2416); 
ins-1(nr2091); 
daf-28(tm2308) 

      

post-L3 adults 11.6 ± 0.4 16 211/300 (3) -10 n.s. < 0.0001 l
n.s. fj 

0.0005 h
mixed adult 
populations 

13.2 ± 0.6 18 63/100 (1) +2 n.s. < 0.0001 l

n.s. k
post-dauer adults  14.9 ± 0.5 20 184/301 (3) +14 < 0.0001 < 0.0001 m

n.s. i
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Strain 

Mean 
Lifespan 
± SEM 
(Days) 

75th 
%ile 

(Days) 

No. Animals 
Observed / 

Total Initial 
Animals 

% 
Wild 
Type 

P Against 
Wild 
Type 

(Logrank) 

P  Against 
Specified 
Groups 

(Logrank) 
shifted from 20°C to 
25°C at L4 stage 

      

Wild Type 13.26 ± 
0.38 

17 170/200 (2)    

ins-1(nr2091) 12.17 ± 
0.52 

16 71/100 (1) -8 0.03  

ins-6(tm2416) 13.62 ± 
0.41 

19 150/200 (2) +3 n.s.  

daf-28(tm2308)  12.75 ± 
0.49 

17 82/100 (1) -4 n.s.  

daf-2(e1368) 22.06 ± 
0.65 

29 152/200 (2) +66 < 0.0001  

daf-2(e1368); ins-1 21.51 ± 
1.12 

29 58/100 (1) +62 < 0.0001  

ins-6; daf-2(e1368) 27.08 ± 
0.73 

33 152/200 (2) +104 < 0.0001 < 0.0001n

daf-2(e1368); 
daf-28(tm2308)  

19.87 ± 
1.07 

28 82/100 (1) +50 < 0.0001 n.s.n

daf-2(e1370) 33.72 ± 
1.19 

44 100/200 (2) +154 < 0.0001 < 0.0001n

 
 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table IV. The lifespan phenotypes of wild type and insulin-deficient worms. Lifespan was measured at 25oC, 

using worms that were grown at the same temperature, unless stated otherwise. All assays were initiated on the first 

day of adulthood and the worms were transferred daily to new plates during their reproductive period. The JMP 5.1 

software was used to determine mean lifespan of cumulative trials and to perform statistical comparisons across the 

different genotypes. P values were determined by the logrank test and shown in the sixth and seventh columns. The 

following indicate: , compared to daf-28(tm2308) post-L3 adult mutants; , compared to daf-28(tm2308) post-dauer 

adults; , compared to daf-28(sa191) mutants; , compared to ins-6(tm2416) mutants; , compared to ins-1(nr2091) 

mutants; , compared to ins-1(nr2091); daf-28(tm2308) double mutants; , compared to ins-6(tm2416); daf-

28(tm2308) mixed adult populations; , compared to ins-6(tm2416); daf-28(tm2308) double mutant post-L3 adults; , 

compared to ins-6(tm2416); daf-28(tm2308) double mutant post-dauer adults; , compared to ins-6(tm2416); ins-

1(nr2091); daf-28(tm2308) triple mutant mixed adult populations; , compared to ins-6(tm2416); ins-1(nr2091); daf-

28(tm2308) post-L3 adults; , compared to ins-6(tm2416); ins-1(nr2091); daf-28(tm2308) triple mutant post-dauer 

adults; , compared to ins-1(nr2091); daf-28(tm2308) post-dauer adults; , compared to daf-2(e1368) single mutants; 

and n.s., not significant since P > 0.1. The post-L3 adults are continuously well-fed adults, while post-dauer adults 

have undergone a transient dauer stage. The mixed population of adults contain both post-L3 and post-dauer adults. 

Some of the lifespan data from the previous chapter are included here for comparison.  

T

a b

c d e
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3.2.4 Materials and Methods 

All worm mutants used in this study were backcrossed six times to our lab wild-type (N2) 

strain before any phenotypic analysis was performed. However, a further outcross of 

ins-7(tm1907) failed to yield viable, homozygous ins-7 mutant adults.  

The worms were also continuously fed E. coli OP50 for at least two generations 

before each assay. The dauer entry and exit assays, lifespan assays and statistical analyses 

were as described in Section 3.1. For a complete list of all strains, transgenes and 

constructs analyzed in sections 3.1 and 3.2, see Tables V-VII. 

 

Generation of ASJ-Genetically Ablated Worms 

We generated independent transgenic lines using standard methods and a myo-3p::rfp 

coinjection marker (injected at 30 ng/μl) together with a trx-1p::gfp marker for the ASJ 

neurons. For controls, we generated daf-2(e1368) and ins-6(tm2416); daf-2(e1368) 

mutant worms that carry the myo-3::rfp coinjection marker together with the trx-1p::gfp 

marker. 

To genetically ablate the ASJ neurons, we drove human caspase-1 (ICE; Zheng et 

al., 1999) transcription from the trx-1 promoter (gift of P. Swoboda), trx-1p::ICE, which 

is specifically expressed from the ASJ neurons (Miranda-Vizuete et al., 2006). We 

generated a plasmid construct (pQZ37) in the pPD95.77 vector backbone (gift of A. Fire), 

in which the ICE cDNA is flanked by the 1-kb trx-1 promoter and by the 0.7–kb 3’ UTR 

of unc-54. We introduced the trx-1p::ICE construct at 50 ng/μl into ins-6(tm2416); daf-

2(e1368) mutants, which were subsequently crossed to daf-2(e1368) males to obtain the 

ablation arrays in the daf-2(e1368) background alone. In addition, the str-3p::ins-6 
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construct described in the Methods of section 3.1 was injected alone or together with trx-

1p::ICE construct, to drive expression of ins-6 from the ASI neurons.  

The coinjected trx-1p::gfp marker (25 ng/ul) was still visible in about half of the 

trx-1p::ICE-expressing worms that were analyzed for GFP expression (data not shown). 

Thus, it is possible that the expression of trx-1p::ICE used in these experiments is 

insufficient for the complete ablation of the ASJ neurons, which suggests that some 

dauer-exit inducing signals could still be secreted from ASJ. This might explain the 

stronger dauer-exit defect of worms, in which the ASJ neurons were ablated with a laser 

(Bargmann and Horvitz, 1991a).  

 

Table V Plasmid list 
 
plasmid 

name parent plasmid construct details 

    
pQZ2 pPD117.01 

(A. Fire) 
ins-6p::mCherry 
(ins-6 5'cis only) 

mCherry ORF flanked by 1.7-kb sequence upstream of the 
ins-6 coding sequence 

pQZ6 pDEST-R4-R3 
(Gateway) 

ins-1p::CFP CFP ORF flanked by 4.3-kb sequence upstream and  
1.1-kb sequence downstream of the ins-1 coding sequence 
plus 0.8-kb intron region 

pQZ10 pDEST-R4-R3 
(Gateway) 

ins-6p::mCherry mCherry ORF flanked by  1.7-kb  sequence upstream and 
2.0-kb sequence downstream of the ins-6 coding sequence 

pQZ11 pCR-BluntII-
Topo 

(Invitrogen) 

ins-6p::ins-6 genomic ins-6 locus with 1.7-kb upstream and 2.1-kb 
downstream sequence 

pQZ33 pPD95.77   
(A. Fire) 

str-3p::ins-6 ins-6 cDNA flanked by 3.1-kb str-3 promotera and 0.7-kb 
3’ UTR of unc-54 (vector sequence) 

pQZ34 pPD95.77   
(A. Fire) 

trx-1p::gfp GFP ORF flanked by 1-kb trx-1 promoterb and 0.7-kb  
3’ UTR of unc-54 (vector sequence) 

pQZ35 pPD95.77   
(A. Fire) 

trx-1p::ins-6 ins-6 cDNA flanked by 1-kb trx-1 promoter and 0.7-kb  
3’ UTR of unc-54 (vector sequence) 

pQZ36 pPD95.77   
(A. Fire) 

str-3p::gfp GFP ORF flanked by 3.1-kb str-3 promoter and 0.7-kb  
3’ UTR of unc-54 (vector sequence) 

pQZ37 pPD95.77   
(A. Fire) 

trx-1p::ICE ICE coding sequencec flanked by 1-kb trx-1 promoter and 
0.7-kb 3’ UTR of unc-54 (vector sequence) 

 

astr-3 promoter gift of C. Bargmann 
btrx-1 promoter gift of P. Swoboda 
cICE DNA gift of V. Maricq 
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Table VI Extrachromosomal arrays by microinjection 
 
array injected constructs concentrations 
jxEx18a [ofm-1::gfp] 25 ng/µl ofm-1p::gfp 
jxEx20a [pQZ2(ins-6::mCherry) ofm-1::gfp] 100 ng/µl ins-6p::mCherry, 25 ng/µl ofm-1p::gfp 
jxEx21a [ofm-1::gfp] 25 ng/µl ofm-1p::gfp 
jxEx22a [ofm-1::gfp] 25 ng/µl ofm-1p::gfp 
jxEx24a [pQZ6(ins-1::cfp) ofm-1::gfp] 100 ng/µl ins-1p::cfp, 25 ng/µl ofm-1p::gfp 
jxEx25a [pQZ6(ins-1::cfp) ofm-1::gfp] 100 ng/µl ins-1p::cfp, 25 ng/µl ofm-1p::gfp 
jxEx26a [pQZ6(ins-1::cfp) ofm-1::gfp] 100 ng/µl ins-1p::cfp, 25 ng/µl ofm-1p::gfp 
jxEx27a [pQZ11(ins-6::ins-6) ofm-1::gfp] 2 ng/µl ins-6p::ins-6, 25 ng/µl ofm-1p::gfp 
jxEx28a [pQZ11(ins-6::ins-6) ofm-1::gfp] 2 ng/µl ins-6p::ins-6, 25 ng/µl ofm-1p::gfp 
jxEx29a [pQZ11(ins-6::ins-6) ofm-1::gfp] 2 ng/µl ins-6p::ins-6, 25 ng/µl ofm-1p::gfp 
jxEx30a [pQZ10(ins-6::mCherry) ofm-1::gfp] 100 ng/µl ins-6p::mCherry, 25 ng/µl ofm-1p::gfp 
jxEx31a [pQZ10(ins-6::mCherry) ofm-1::gfp] 100 ng/µl ins-6p::mCherry, 25 ng/µl ofm-1p::gfp 
jxEx32a [pQZ10(ins-6::mCherry) ofm-1::gfp] 100 ng/µl ins-6p::mCherry, 25 ng/µl ofm-1p::gfp 
jxEx50 [pQZ33(str-3::ins-6) ofm-1::gfp] 25 ng/µl str-3p::ins-6, 25 ng/µl ofm-1p::gfp 
jxEx51 [pQZ33(str-3::ins-6) ofm-1::gfp] 25 ng/µl str-3p::ins-6, 25 ng/µl ofm-1p::gfp 
jxEx52 [pQZ33(str-3::ins-6) ofm-1::gfp] 25 ng/µl str-3p::ins-6, 25 ng/µl ofm-1p::gfp 
jxEx53 [pQZ33(str-3::ins-6) ofm-1::gfp] 2 ng/µl str-3p::ins-6, 25 ng/µl ofm-1p::gfp 
jxEx54 [pQZ33(str-3::ins-6) ofm-1::gfp] 2 ng/µl str-3p::ins-6, 25 ng/µl ofm-1p::gfp 
jxEx55 [pQZ34(trx-1::gfp) myo-3::rfp] 100 ng/µl trx-1p::gfp, 30 ng/µl myo-3p::rfp 
jxEx56 [pQZ34(trx-1::gfp) myo-3::rfp] 100 ng/µl trx-1p::gfp, 30 ng/µl myo-3p::rfp 
jxEx57 [pQZ34(trx-1::gfp) myo-3::rfp] 100 ng/µl trx-1p::gfp, 30 ng/µl myo-3p::rfp 
jxEx58 [pQZ35(trx-1::ins-6) ofm-1::gfp] 25 ng/µl trx-1p::ins-6, 25 ng/µl ofm-1p::gfp 
jxEx59 [pQZ35(trx-1::ins-6) ofm-1::gfp] 25 ng/µl trx-1p::ins-6, 25 ng/µl ofm-1p::gfp 
jxEx60 [pQZ35(trx-1::ins-6) ofm-1::gfp] 25 ng/µl trx-1p::ins-6, 25 ng/µl ofm-1p::gfp 
jxEx61 [pQZ35(trx-1::ins-6) ofm-1::gfp] 2 ng/µl trx-1p::ins-6, 25 ng/µl ofm-1p::gfp 
jxEx62 [pQZ35(trx-1::ins-6) ofm-1::gfp] 2 ng/µl trx-1p::ins-6, 25 ng/µl ofm-1p::gfp 
jxEx63 [pQZ35(trx-1::ins-6) ofm-1::gfp] 2 ng/µl trx-1p::ins-6, 25 ng/µl ofm-1p::gfp 
jxEx64 [pQZ33(str-3::ins-6) ofm-1::gfp] 2 ng/µl str-3p::ins-6, 25 ng/µl ofm-1p::gfp 
jxEx65 [pQZ33(str-3::ins-6) ofm-1::gfp] 2 ng/µl str-3p::ins-6, 25 ng/µlofm-1p::gfp 
jxEx66 [pQZ33(str-3::ins-6) ofm-1::gfp] 2 ng/µl str-3p::ins-6, 25 ng/µl ofm-1p::gfp 
jxEx67 [pQZ36(str-3::gfp); myo-3::rfp] 2 ng/µl str-3p::gfp, 30 ng/µl myo-3p::rfp 
jxEx68 [pQZ36(str-3::gfp); myo-3::rfp] 2 ng/µl str-3p::gfp, 30 ng/µl myo-3p::rfp 
jxEx69 [pQZ36(str-3::gfp); myo-3::rfp] 2 ng/µl str-3p::gfp, 30 ng/µl myo-3p::rfp 
jxEx70 [pQZ34(trx-1::gfp) myo-3::rfp] 2 ng/µl trx-1p::gfp, 30 ng/µl myo-3p::rfp 
jxEx71 [pQZ34(trx-1::gfp) myo-3::rfp] 2 ng/µl trx-1p::gfp, 30 ng/µl myo-3p::rfp 
jxEx72 [pQZ34(trx-1::gfp) myo-3::rfp] 2 ng/µl trx-1p::gfp, 30 ng/µl myo-3p::rfp 
jxEx73 [pQZ36(str-3::gfp); myo-3::rfp] 25 ng/µl str-3p::gfp, 30 ng/µl myo-3p::rfp 
jxEx74 [pQZ36(str-3::gfp); myo-3::rfp] 25 ng/µl str-3p::gfp, 30 ng/µl myo-3p::rfp 
jxEx75 [pQZ36(str-3::gfp); myo-3::rfp] 25 ng/µl str-3p::gfp, 30 ng/µl myo-3p::rfp 
jxEx76 [pQZ34(trx-1::gfp) myo-3::rfp] 25 ng/µl trx-1p::gfp, 30 ng/µl myo-3p::rfp 
jxEx77 [pQZ34(trx-1::gfp) myo-3::rfp] 25 ng/µl trx-1p::gfp, 30 ng/µlmyo-3p::rfp 
jxEx78 [pQZ34(trx-1::gfp) myo-3::rfp] 25 ng/µl trx-1p::gfp, 30 ng/µl myo-3p::rfp 

jxEx84 
[pQZ33(str-3::ins-6) pQZ34(trx-1::gfp) 
myo-3::rfp] 

25 ng/µl str-3p::ins-6, 25 ng/µl trx-1p::gfp,  
30 ng/µl myo-3p::rfp 

jxEx85  
[pQZ33(str-3::ins-6) pQZ34(trx-1::gfp) 
myo-3::rfp] 

25 ng/µl str-3p::ins-6, 25 ng/µl trx-1p::gfp,  
30 ng/µl myo-3p::rfp 

jxEx86  
[pQZ33(str-3::ins-6) pQZ34(trx-1::gfp) 
myo-3::rfp] 

25 ng/µl str-3p::ins-6, 25 ng/µl trx-1p::gfp,  
30 ng/µl myo-3p::rfp 

jxEx91 
[pQZ37(trx-1::ICE) pQZ34(trx-1::gfp) 
myo-3::rfp] 

50 ng/µl trx-1p::ICE, 25 ng/µl trx-1p::gfp,  
30 ng/µl myo-3p::rfp 

jxEx92 
[pQZ37(trx-1::ICE) pQZ34(trx-1::gfp) 
myo-3::rfp] 

50 ng/µl trx-1p::ICE, 25 ng/µl trx-1p::gfp,  
30 ng/µl myo-3p::rfp 
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array injected constructs concentrations 

jxEx93 
[pQZ37(trx-1::ICE) pQZ34(trx-1::gfp) 
myo-3::rfp] 

50 ng/µl trx-1p::ICE, 25 ng/µl trx-1p::gfp,  
30 ng/µl myo-3p::rfp 

jxEx94 
[pQZ37(trx-1::ICE) pQZ33(str-3::ins-6) 
pQZ34(trx-1::gfp) myo-3::rfp] 

50 ng/µl trx-1p::ICE, 25 ng/µl str-3p::ins-6,  
25 ng/µl trx-1p::gfp, 30 ng/µl myo-3p::rfp 

jxEx95 
[pQZ37(trx-1::ICE) pQZ33(str-3::ins-6) 
pQZ34(trx-1::gfp) myo-3::rfp] 

50 ng/µl trx-1p::ICE, 25 ng/µl str-3p::ins-6,  
25 ng/µl trx-1p::gfp, 30 ng/µl myo-3p::rfp 

jxEx96 
[pQZ37(trx-1::ICE) pQZ33(str-3::ins-6) 
pQZ34(trx-1::gfp) myo-3::rfp] 

50 ng/µl trx-1p::ICE, 25 ng/µl str-3p::ins-6,  
25 ng/µl trx-1p::gfp, 30 ng/µl myo-3p::rfp 

yxEx163b [pQZ11(ins-6::ins-6) ofm-1::gfp] 25 ng/µl ins-6p::ins-6, 25 ng/µl ofm-1p::gfp 
yxEx174b [pQZ11(ins-6::ins-6) ofm-1::gfp] 25 ng/µl ins-6p::ins-6, 25 ng/µl ofm-1p::gfp 
yxEx175b [pQZ11(ins-6::ins-6) ofm-1::gfp] 25 ng/µl ins-6p::ins-6, 25 ng/µl ofm-1p::gfp 
 

ainjected by M. Gloeck 
binjected by Yun Zhang lab 
 
Table VII Strain list 
 
straina genotype 
QZ60b daf-16(mu86)I 
QZ61 ins-7(tm1907)IV 
QZ78 daf-28(sa191)V 
QZ80 ins-1(nr2091)IV 
QZ81 ins-6(tm2416)II 
QZ83 daf-28(tm2308)V 
QZ91b daf-2(e1370)III 
QZ102 ins-6(tm2416)II; daf-28(sa191)V 
QZ103 ins-6(tm2416)II; daf-28(tm2308)V 
QZ104 ins-18(tm339)I 
QZ106 ins-6(tm2416)II; ins-1(nr2091)IV 
QZ107 ins-1(nr2091)IV; daf-28(tm2308)V 
QZ118 ins-1(nr2091)IV; daf-28(sa191)V 
QZ120 daf-2(e1368)III 
QZ127 ins-18(tm339)I; ins-6(tm2416)II 
QZ128 ins-6(tm2416)II; daf-2(e1368)III 
QZ129 daf-2(e1368)III; daf-28(tm2308)V 
QZ134 ins-18(tm339)I; daf-28(tm2308)V 
QZ135 daf-2(e1368)III; ins-1(nr2091)IV 
QZ136 daf-16(mu86)I; ins-6(tm2416)II 
QZ143 daf-16(mu86)I; daf-28(tm2308)V 
QZ151 ins-6(tm2416)II; daf-2(e1368) III; daf-28(tm2308)V 
QZ152 ins-6(tm2416)II; daf-2(e1368)III; ins-1(nr2091)IV 
QZ153 daf-16(mu86)I; ins-6(tm2416)II; daf-28(tm2308)V 
QZ156 daf-16(mu86)I; ins-1(nr2091)IV 
QZ158 ins-6(tm2416)II; ins-1(nr2091)IV; daf-28(tm2308)V 
QZ159 ins-18(tm339)I; daf-28(sa191)V 
QZ162 daf-2(e1368)III; daf-28(sa191)V 
QZ174 daf-2(e1368)III; ins-1(nr2091)IV; daf-28(tm2308)V 
QZ175 daf-16(mu86)I; daf-28(sa191)V 
QZ176 daf-16(mu86)I; ins-1(nr2091)IV; daf-28(tm2308)V 
QZ177 daf-16(mu86)I; ins-6(tm2416)II; ins-1(nr2091)IV 
QZ183 ins-18(tm339)I; ins-1(nr2091)IV 
QZ186e mgIs40[daf-28::gfp] 
QZ188 ins-6(tm2416)II; daf-2(e1368)III; ins-1(nr2091)IV; daf-28(tm2308)V 
QZ191 daf-16(mu86)I; ins-6(tm2416)II; daf-28(sa191)V 
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straina genotype 
QZ192 daf-16(mu86)I; ins-1(nr2091)IV; daf-28(sa191)V 
QZ195 daf-16(mu86)I; ins-6(tm2416)II; ins-1(nr2091)IV; daf-28(tm2308)V 
QZ206c jxEx18[ofm-1::gfp] 
QZ208c jxEx20[pQZ2(ins-6p::mCherry) ofm-1::gfp] 
QZ212c jxEx21[ofm-1::gfp] 
QZ213c jxEx22[ofm-1::gfp] 
QZ217 daf-16(mu86)I; daf-2(e1368)III 
QZ226c jxEx24[pQZ6(ins-1p::cfp) ofm-1::gfp] 
QZ227c jxEx25[pQZ6(ins-1p::cfp) ofm-1::gfp] 
QZ228c jxEx26[pQZ6(ins-1p::cfp) ofm-1::gfp] 
QZ232c jxEx27[pQZ11(ins-6p::ins-6) ofm-1::gfp] 
QZ233c jxEx28[pQZ11(ins-6p::ins-6) ofm-1::gfp] 
QZ234c jxEx29[pQZ11(ins-6p::ins-6) ofm-1::gfp] 
QZ235c jxEx30[pQZ10(ins-6p::mCherry) ofm-1::gfp] 
QZ236c jxEx31[pQZ10(ins-6p::mCherry) ofm-1::gfp] 
QZ237c jxEx32[pQZ10(ins-6p::mCherry) ofm-1::gfp] 
QZ250 ins-6(tm2416)II; daf-28(tm2308)V; jxEx18[ofm-1::gfp] 
QZ252 ins-6(tm2416)II; daf-28(tm2308)V; jxEx21[ofm-1::gfp] 
QZ254 ins-6(tm2416)II; daf-28(tm2308)V; jxEx22[ofm-1::gfp] 
QZ257 ins-6(tm2416)II; jxEx18[ofm-1::gfp] 
QZ258 ins-6(tm2416)II; jxEx21[ofm-1::gfp] 
QZ259 ins-6(tm2416)II; jxEx22[ofm-1::gfp] 
QZ260 ins-6(tm2416)II; jxEx27[pQZ11(ins-6p::ins-6) ofm-1::gfp] 
QZ261 ins-6(tm2416)II; jxEx28[pQZ11(ins-6p::ins-6) ofm-1::gfp] 
QZ262 ins-6(tm2416)II; jxEx29[pQZ11(ins-6p::ins-6) ofm-1::gfp] 
QZ263 ins-6(tm2416)II; daf-2(e1368)III; jxEx18[ofm-1::gfp] 
QZ264 ins-6(tm2416)II; daf-2(e1368)III; jxEx21[ofm-1::gfp] 
QZ265 ins-6(tm2416)II; daf-2(e1368)III; jxEx22[ofm-1::gfp] 
QZ266 ins-6(tm2416)II; daf-2(e1368)III; jxEx27[pQZ11(ins-6p::ins-6) ofm-1::gfp] 
QZ267 ins-6(tm2416)II; daf-2(e1368)III; jxEx28[pQZ11(ins-6p::ins-6) ofm-1::gfp] 
QZ268 ins-6(tm2416)II; daf-2(e1368)III; jxEx29[pQZ11(ins-6p::ins-6) ofm-1::gfp] 
QZ274 ins-6(tm2416)II; daf-28(tm2308)V; jxEx27[pQZ11(ins-6p::ins-6) ofm-1::gfp] 
QZ275 ins-6(tm2416)II; daf-28(tm2308)V; jxEx28[pQZ11(ins-6p::ins-6) ofm-1::gfp] 
QZ276 ins-6(tm2416)II; daf-28(tm2308)V; jxEx29[pQZ11(ins-6p::ins-6) ofm-1::gfp] 
QZ287 ins-6(tm2416)II; daf-28(tm2308)V; yxEx163[ins-6p::ins6(pQZ11) ofm-1::gfp] 
QZ288 ins-6(tm2416)II; daf-28(tm2308)V; yxEx174[ins-6p::ins6(pQZ11) ofm-1::gfp] 
QZ289 ins-6(tm2416)II; daf-28(tm2308)V; yxEx175[ins-6p::ins6(pQZ11) ofm-1::gfp] 
QZ290 ins-6(tm2416)II; daf-2(e1368)III; yxEx163[ins-6p::ins6(pQZ11) ofm-1::gfp] 
QZ291 ins-6(tm2416)II; daf-2(e1368)III; yxEx174[ins-6p::ins6(pQZ11) ofm-1::gfp] 
QZ292 ins-6(tm2416)II; daf-2(e1368)III; yxEx175[ins-6p::ins6(pQZ11) ofm-1::gfp] 
QZ293 daf-2(e1368)III; jxEx18[ofm-1::gfp] 
QZ294 daf-2(e1368)III; jxEx21[ofm-1::gfp] 
QZ295 daf-2(e1368)III; jxEx22[ofm-1::gfp] 
QZ304d daf-2(e1368)III; jxEx30[pQZ10(ins-6p::mCherry) ofm-1::gfp] 
QZ305d daf-2(e1368)III; jxEx31[pQZ10(ins-6p::mCherry) ofm-1::gfp] 
QZ309 ins-6(tm2416)II; daf-2(e1368)III; jxEx50[pQZ33(str-3::ins-6) ofm-1::gfp] 
QZ310 ins-6(tm2416)II; daf-2(e1368)III; jxEx51[pQZ33(str-3::ins-6) ofm-1::gfp] 
QZ311 ins-6(tm2416)II; daf-2(e1368)III; jxEx52[pQZ33(str-3::ins-6) ofm-1::gfp] 
QZ312 ins-6(tm2416)II; daf-2(e1368)III; jxEx53[pQZ33(str-3::ins-6) ofm-1::gfp] 
QZ313 ins-6(tm2416)II; daf-2(e1368)III; jxEx54[pQZ33(str-3::ins-6) ofm-1::gfp] 
QZ314 jxEx55[pQZ34(trx-1::gfp) myo-3::rfp] 
QZ315 jxEx56[pQZ34(trx-1::gfp) myo-3::rfp] 
QZ316 jxEx57[pQZ34(trx-1::gfp) myo-3::rfp] 
QZ317 ins-6(tm2416)II; daf-2(e1368)III; jxEx58[pQZ35(trx-1::ins-6) ofm-1::gfp] 
QZ318 ins-6(tm2416)II; daf-2(e1368)III; jxEx59[pQZ35(trx-1::ins-6) ofm-1::gfp] 
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straina genotype 
QZ319 ins-6(tm2416)II; daf-2(e1368)III; jxEx60[pQZ35(trx-1::ins-6) ofm-1::gfp] 
QZ320 ins-6(tm2416)II; daf-28(tm2308)V; jxEx61[pQZ35(trx-1::ins-6) ofm-1::gfp] 
QZ321 ins-6(tm2416)II; daf-28(tm2308)V; jxEx62[pQZ35(trx-1::ins-6) ofm-1::gfp] 
QZ322 ins-6(tm2416)II; daf-28(tm2308)V; jxEx63[pQZ35(trx-1::ins-6) ofm-1::gfp] 
QZ323 daf-16(mu86)I; jxEx30[pQZ10(ins-6p::mCherry) ofm-1::gfp] 
QZ324 daf-16(mu86)I; jxEx31[pQZ10(ins-6p::mCherry) ofm-1::gfp] 
QZ327 ins-6(tm2416)II; daf-2(e1368)III; jxEx64[pQZ33(str-3::ins-6) ofm-1::gfp] 
QZ328 ins-6(tm2416)II; daf-2(e1368)III; jxEx65[pQZ33(str-3::ins-6) ofm-1::gfp] 
QZ329 ins-6(tm2416)II; daf-2(e1368)III; jxEx66[pQZ33(str-3::ins-6) ofm-1::gfp] 
QZ330 ins-6(tm2416)II; daf-28(tm2308)V; jxEx50[pQZ33(str-3::ins-6) ofm-1::gfp] 
QZ331 ins-6(tm2416)II; daf-28(tm2308)V; jxEx51[pQZ33(str-3::ins-6) ofm-1::gfp] 
QZ332 ins-6(tm2416)II; daf-28(tm2308)V; jxEx52[pQZ33(str-3::ins-6) ofm-1::gfp] 
QZ333 ins-6(tm2416)II; daf-28(tm2308)V; jxEx53[pQZ33(str-3::ins-6) ofm-1::gfp] 
QZ334 ins-6(tm2416)II; daf-28(tm2308)V; jxEx54[pQZ33(str-3::ins-6) ofm-1::gfp] 
QZ335 ins-6(tm2416)II; daf-28(tm2308)V; jxEx58[pQZ35(trx-1::ins-6) ofm-1::gfp] 
QZ336 ins-6(tm2416)II; daf-28(tm2308)V; jxEx59[pQZ35(trx-1::ins-6) ofm-1::gfp] 
QZ337 ins-6(tm2416)II; daf-28(tm2308)V; jxEx60[pQZ35(trx-1::ins-6) ofm-1::gfp] 
QZ338 ins-6(tm2416)II; daf-2(e1368)III; jxEx61[pQZ35(trx-1::ins-6) ofm-1::gfp] 
QZ339 ins-6(tm2416)II; daf-2(e1368)III; jxEx62[pQZ35(trx-1::ins-6) ofm-1::gfp] 
QZ340 ins-6(tm2416)II; daf-2(e1368)III; jxEx63[pQZ35(trx-1::ins-6) ofm-1::gfp] 
QZ342 ins-6(tm2416)II; daf-28(tm2308)V; jxEx64[pQZ33(str-3::ins-6) ofm-1::gfp] 
QZ343 ins-6(tm2416)II; daf-28(tm2308)V; jxEx65[pQZ33(str-3::ins-6) ofm-1::gfp] 
QZ344 ins-6(tm2416)II; daf-28(tm2308)V; jxEx66[pQZ33(str-3::ins-6) ofm-1::gfp] 
QZ345 daf-28(tm2308)V; jxEx27 [pQZ11(ins-6p::ins-6) ofm-1::gfp] 
QZ346 daf-28(tm2308)V; jxEx28 [pQZ11(ins-6p::ins-6) ofm-1::gfp] 
QZ347 daf-28(tm2308)V; jxEx29 [pQZ11(ins-6p::ins-6) ofm-1::gfp] 
QZ348 daf-28(tm2308)V;  yxEx163[ins-6p::ins6(pQZ11) ofm-1::gfp] 
QZ349 daf-28(tm2308)V;  yxEx174[ins-6p::ins6(pQZ11) ofm-1::gfp] 
QZ350 daf-28(tm2308)V;  yxEx175[ins-6p::ins6(pQZ11) ofm-1::gfp] 
QZ355 jxEx67[pQZ36 (str-3::gfp) myo-3::rfp] 
QZ356 jxEx68[pQZ36 (str-3::gfp) myo-3::rfp] 
QZ357 jxEx69[pQZ36 (str-3::gfp) myo-3::rfp] 
QZ358 jxEx70[pQZ34 (trx-1::gfp) myo-3::rfp] 
QZ359 jxEx71[pQZ34 (trx-1::gfp) myo-3::rfp] 
QZ360 jxEx72[pQZ34 (trx-1::gfp) myo-3::rfp] 
QZ361 jxEx73[pQZ36 (str-3::gfp) myo-3::rfp] 
QZ362 jxEx74[pQZ36 (str-3::gfp) myo-3::rfp] 
QZ363 jxEx75[pQZ36 (str-3::gfp) myo-3::rfp] 
QZ364 jxEx76[pQZ34 (trx-1::gfp) myo-3::rfp] 
QZ365 jxEx77[pQZ34 (trx-1::gfp) myo-3::rfp] 
QZ366 jxEx78[pQZ34 (trx-1::gfp) myo-3::rfp] 
QZ378 ins-6(tm2416)II; daf-2(e1368)III; jxEx84[pQZ33(str-3::ins-6) pQZ34(trx-1::gfp)  

myo-3::rfp] 
QZ379 ins-6(tm2416)II; daf-2(e1368)III; jxEx85[pQZ33(str-3::ins-6) pQZ34(trx-1::gfp)  

myo-3::rfp] 
QZ380 ins-6(tm2416)II; daf-2(e1368)III; jxEx86[pQZ33(str-3::ins-6) pQZ34(trx-1::gfp)  

myo-3::rfp] 
QZ381 daf-2(e1368)III; jxEx76 [pQZ34 (trx-1::gfp) myo-3::rfp] 
QZ382 daf-2(e1368)III; jxEx77 [pQZ34 (trx-1::gfp) myo-3::rfp] 
QZ383 daf-2(e1368)III; jxEx78 [pQZ34 (trx-1::gfp) myo-3::rfp] 
QZ384 ins-6(tm2416)II; daf-2(e1368)III; jxEx76 [pQZ34 (trx-1::gfp) myo-3::rfp] 
QZ385 ins-6(tm2416)II; daf-2(e1368)III; jxEx77 [pQZ34 (trx-1::gfp) myo-3::rfp] 
QZ386 ins-6(tm2416)II; daf-2(e1368)III; jxEx78 [pQZ34 (trx-1::gfp) myo-3::rfp] 
QZ396 ins-6(tm2416)II; daf-2(e1368)III; jxEx91[pQZ37(trx-1::ICE) pQZ34 (trx-1::gfp)  

myo-3::rfp] 
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straina genotype 
QZ397 ins-6(tm2416)II; daf-2(e1368)III; jxEx92[pQZ37(trx-1::ICE) pQZ34 (trx-1::gfp)  

myo-3::rfp] 
QZ398 ins-6(tm2416)II; daf-2(e1368)III; jxEx93[pQZ37(trx-1::ICE) pQZ34 (trx-1::gfp)  

myo-3::rfp] 
QZ399 ins-6(tm2416)II; daf-2(e1368)III; jxEx94[pQZ37(trx-1::ICE) pQZ33(str-3::ins-6) pQZ34 

(trx-1::gfp) myo-3::rfp] 
QZ400 ins-6(tm2416)II; daf-2(e1368)III; jxEx95[pQZ37(trx-1::ICE) pQZ33(str-3::ins-6) pQZ34 

(trx-1::gfp) myo-3::rfp] 
QZ401 ins-6(tm2416)II; daf-2(e1368)III; jxEx96[pQZ37(trx-1::ICE) pQZ33(str-3::ins-6) pQZ34 

(trx-1::gfp) myo-3::rfp] 
QZ402 daf-2(e1368)III; jxEx84[pQZ33(str-3::ins-6) pQZ34(trx-1::gfp) myo-3::rfp] 
QZ403 daf-2(e1368)III; jxEx85[pQZ33(str-3::ins-6) pQZ34(trx-1::gfp) myo-3::rfp] 
QZ404 daf-2(e1368)III; jxEx86[pQZ33(str-3::ins-6) pQZ34(trx-1::gfp) myo-3::rfp] 
QZ405 daf-2(e1368)III; jxEx91[pQZ37(trx-1::ICE) pQZ34 (trx-1::gfp) myo-3::rfp] 
QZ406 daf-2(e1368)III; jxEx92[pQZ37(trx-1::ICE) pQZ34 (trx-1::gfp) myo-3::rfp] 
QZ407 daf-2(e1368)III; jxEx93[pQZ37(trx-1::ICE) pQZ34 (trx-1::gfp) myo-3::rfp] 
QZ408 daf-2(e1368)III; jxEx94[pQZ37(trx-1::ICE) pQZ33(str-3::ins-6) pQZ34 (trx-1::gfp)  

myo-3::rfp] 
QZ409 daf-2(e1368)III; jxEx95[pQZ37(trx-1::ICE) pQZ33(str-3::ins-6) pQZ34 (trx-1::gfp)  

myo-3::rfp] 
QZ410 daf-2(e1368)III; jxEx96[pQZ37(trx-1::ICE) pQZ33(str-3::ins-6) pQZ34 (trx-1::gfp)  

myo-3::rfp] 
ZC208 yxEx163[pQZ11(ins-6p::ins-6) ofm-1::gfp] 
ZC238 yxEx174[pQZ11(ins-6p::ins-6) ofm-1::gfp] 
ZC239 yxEx175[pQZ11(ins-6p::ins-6) ofm-1::gfp] 
 

aby injection and by crossing 
boutcrossed by Bakhthiyor Adilov 
cgenerated by Mario Gloeck;  
dgenerated by Joy Alcedo 
egift of G. Ruvkun 
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4. Discussion 

4. 1 Insulin-like peptides function coordinately to regulate dauer arrest 

and lifespan  

 

4.1.1 Insulin-like peptides in dauer regulation 

 

The C. elegans ILPs, which are predicted ligands of the DAF-2 insulin-like receptor, are 

thought to control dauer arrest and longevity by modulating DAF-2 signaling (Li et al., 

2003; Pierce et al., 2001). Some of the numerous insulin-like genes have been implicated 

in dauer and lifespan regulation through gain-of-function and RNA interference studies 

(Li et al., 2003; Malone et al., 1996; Murphy et al., 2003; Pierce et al., 2001). For 

example, daf-28 has previously been implicated in the inhibition of dauer formation (Li et 

al., 2003; Malone et al., 1996), whereas ins-1 and ins-18 have been proposed to 

antagonize daf-2 signaling to promote dauer arrest (Pierce et al., 2001).  

In this study, I find that ILPs that promote reproductive development and inhibit 

dauer arrest include not only daf-28 but also ins-6 (Figures 1, 2 and 4.1; Tables.S1 and 

S2). However, I also show that daf-28 mainly functions to inhibit entry into the dauer 

program, while ins-6 primarily functions to promote exit from the program (Figure 4.1). 

At the same time, I find that ins-1 and, to a minor extent, ins-18 antagonize DAF-2 

signaling to promote dauer entry (Figures 1, I and 4.1; Tables S1 and II). In addition, I 

identified a second role for ins-1, which is to inhibit dauer exit (Figures 2 and 4.1; Table 

S2). Thus, the different ILPs have distinct and non-redundant functions to regulate dauer 

arrest. 
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Figure 4.1. The functions of daf-28, ins-6 and ins-1 in dauer regulation.  daf-28 and ins-6 inhibit dauer 

entry and promote dauer exit, whereas ins-1 promotes dauer entry and inhibits dauer exit. While daf-28 

plays a more prominent role in inhibiting dauer entry (depicted with daf-28 in larger font than ins-6), ins-6 

has a more primary role in promoting dauer exit (depicted with ins-6 in larger font than daf-28). 

4.1.2 Insulin-like peptides in lifespan regulation 

 

ILPs also have distinct and non-redundant functions in regulating lifespan (Figures 6 and 

III; Table IV): While one group of ILPs, ins-7, ins-18 and daf-28, does not have any 

effect on longevity under the conditions of my study, I find that ins-6 does have a minor 

role in inhibiting longevity. Consistent with a previous observation (Pierce et al., 2001), I 

also show that ins-1 lengthens lifespan, but that this role of ins-1, like that of ins-6, is 
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again minor compared to the effects of reduced DAF-2 signaling (Figure III; Table IV). 

Thus, these observations suggest that additional ilp genes modulate DAF-2 activity to 

regulate longevity.  

The fact that these ILPs act non-redundantly but combinatorially to regulate 

lifespan, as well as dauer arrest (Table 4.1), raises the possibility that different 

combinations of ILPs are involved in different processes that are regulated by DAF-2 

signaling. Indeed, daf-28 has a major function in dauer entry, while it has only a minor 

function in dauer exit and no effect on longevity. On the other hand, ins-6 has a minor 

function in dauer entry and lifespan regulation, but a major function in dauer exit. In 

comparison, ins-1, ins-7 and ins-18 plays either only a minor role or no role in all three 

processes. Yet, ins-1 has been shown to have a major role in C. elegans salt-associated 

chemotaxis learning behavior (Tomioka et al., 2006) and food-associated thermotaxis 

(Kodama et al., 2006). Thus, these data are consistent with specific subsets of ILPs acting 

coordinately to modulate DAF-2 activity in diverse processes. Moreover, since ins-1 can 

act not only as an antagonist of the pathway (in dauer arrest and thermotactic behavior) 

but also as an agonist (salt-dependent chemotactic learning), it is possible that other ILPs 

may do the same, depending on the process involved.  
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Table 4.1. Functions of DAF-2 and ILPs in the regulation of diverse biological 
processes 
 
insulin-
like 
receptor 

dauer entry 
inhibition 

dauer exit 
induction 

longevity 
inhibition 

other processes 

daf-2 promote promote promote embryonic and larval development, 
morphology, reproduction, fat storage, 

metabolic rate, stress response, 
locomotion, salt chemotaxis learning, 

food-associated thermotaxis 
insulin-
like 
peptide 

    

daf-28 major, agonist  
(refs. 1-4) 

minor, agonist 
(ref. 5) 

none 
(ref. 6); 

NA 

ins-6 minor, agonist  
(refs. 1, 3, 4) 

major, agonist  
(ref. 5) 

minor, agonist 
(ref. 6) 

NA 

ins-1 minor, 
antagonist  

(refs. 3, 4, 7) 

minor, 
antagonist  

(ref. 5) 

minor, 
antagonist  
(refs. 6, 7) 

antagonist in food-associated 
thermotaxis (ref. 8); 

major agonist in salt chemotaxis 
learning (ref. 9) 

ins-7 none  
( refs. 1, 4); 

minor (ref. 10) 

NA none (ref. 6); 
slight effect 

(ref. 10)  
 

NA 

ins-18 minor, 
antagonist 
(refs. 4, 7) 

minor, 
antagonist  
(ref. 11) 

none (ref. 6); 
slight effect 

(ref. 12) 

NA 

ins-4  minor, agonist 
(ref. 1; P. 

Fardel, data not 
shown) 

NA NA NA 

ins-9, 
ins-17, 
ins-19, 
ins-21, 
ins-22, 
ins-23, 
ins-31 

none  
(refs. 1, 7) 

NA NA NA 

1. Li et al., 2003; 2. Malone et al. 1996; 3. Figure 1 and Table S1; 4. Figure I and Tables I and II; 5. Figure 
2 and Table S2; 6. Figure III and Table IV; 7. Pierce et al., 2001; 8. Kodama et al., 2006;  9. Tomioka et al., 
2006;  10. Murphy et al., 2003;  11. Ouellet et al., 2008; 12. Kawano et al., 2000. 
..  
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4.1.3 Possible mechanisms of DAF-2 activation 

 

By what mechanism might the ILPs coordinately modulate DAF-2 activity to control 

different physiological outputs of the same pathway? The data on INS-1, which seems to 

act agonistically or antagonistically on the DAF-2 receptor, depending on the process, 

suggest the possible mechanism of competitive inhibition. In this scenario, different ILPs 

would have different binding affinities for DAF-2, and the presence or absence of 

specific ILPs, with different activating potential, within the local environment of the 

target cell would determine that cell’s level of DAF-2 signaling. The resulting level of 

insulin-like signaling within the cell might then lead to different levels of active DAF-16 

in the nucleus and at the regulatory sites of target genes. In turn, this could promote 

different transcriptional outputs, which would result in different physiological responses. 

INS-1 might thus be a weak agonist of DAF-2, and high concentrations of ins-1 within 

the local environment might prevent the binding of stronger ILP agonists of the pathway. 

Consequently, loss of INS-1 would allow the strong agonists in the environment to 

activate the pathway at very high levels. 

It is also possible that the ILPs might bind and activate the receptor as hetero- or 

homooligomers, which could again have varying affinities for DAF-2. In humans, ILP 

molecules are known to form dimers and multimers, which have also been shown to bind 

one receptor with different affinities (De Meyts, 1995). Another possibility is that some 

of the ILPs also act to stabilize or even sequester other ILPs away from the receptor. C. 

elegans has few predicted ILP-binding proteins (e.g., T23G11.6; and a DAF-2 isoform  
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Table 4.2. Expression patterns and transcriptional regulation of ilp genes  
 
ilp gene identified neurons 

and tissues 
unidentified 

neurons 
other tissues specific regulation 

daf-28* ASI and ASJ amphid 
sensory neurons (at 
all well-fed larval 
stages and adult 
worms, strong 
expression), 
PQR tail neuron, 
hindgut (ref. 1; 
confirmed by my 
analyses) 
 

several head neurons 
(late embryogenesis 
and again with age; 
ref. 1) 

pharyngeal muscle, 
hypodermis (late 
embryogenesis), 
somatic gonad (with 
age; ref. 1) 

downregulated in 
ASI and ASJ 
by dauer program (in 
daf-1, daf-7, daf-11, 
or daf-22 mutant 
dauers) and 
pheromones; 
upregulated in daf-6, 
osm-1, or tax-4 
sensory mutants (ref. 
1) 
 
 

ins-1*  ASI, ASJ, ASE 
amphid sensory 
neurons and AIA 
interneurons (ref. 2, 
ASI and ASJ 
confirmed by our 
analyses); 
ADF, AIA, AIM, 
ASE, ASG, ASH, 
ASI, ASJ, AWA, 
BAG, and NSM (ref. 
3) 

amphid and several 
different types of 
head neurons and tail 
neurons in embryos 
to adult worms (refs. 
2 and 4; confirmed 
by my analyses) 

vulval muscle, 
intestine in embryos 
to adult worms (ref. 
4) 

none identified (ref. 
5) 

ins-18*  in amphid and 
several other neurons 
in embryos to adult 
worms (ref. 4) 

intestine in embryos 
to adult worms (ref. 
4) 

 

ins-6* ASI (during 
reproductive 
development and in 
post-L3 adults); ASJ 
(during dauer arrest 
and in post-dauer 
adults) (ref. 5) 

in amphid and 
several other neurons 
in embryos to adult 
worms (ref. 4); 
none (ref. 5) 

none (refs. 4 and 5) specifically 
downregulated in 
ASI by dauer 
pheromones; 
upregulated in ASJ 
by the combined 
effect of pheromones 
and dauer program 
(ref. 5) 

* Expression during embryogenesis (refs. 1, 4 and 6).  
1. Li et al., 2003; 2. Tomioka et al., 2006; 3. Kodama et al., 2006; 4. Pierce et al., 2001; 5. Figure 5 and 
Table 1; 6. Gregoire et al., 1998.  

 102



 
that only has the extracellular ligand binding domain, Y55D5A.5b; see 

www.wormbase.org) that could stabilize or sequester the different ILPs. 

Although it has never been shown directly that a C. elegans ILP actually binds the 

DAF-2 receptor, INS-6, which has an insulin-like fold according to NMR analyses, was 

shown to have a weak binding affinity for the human insulin receptor (Hua et al., 2003). 

Other ILPs have also been predicted to adopt an IGF-I-like fold (Duret et al., 1998). 

However, the possibility remains that at least some of the ILPs bind receptors other than 

DAF-2, for example, GPCRs. Indeed, members of the mammalian relaxin family, which 

are related to ILPs, have been shown to bind such GPCRs (Liu and Lovenberg, 2008; 

Meyts et al., 2009; Svendsen et al., 2008). 

 

4.1.4 Tissue-specific functions of ILP signaling  

 

Since the numerous ilp genes have partially overlapping expression patterns [Table 4.2; 

(Li et al., 2003; Pierce et al., 2001)], different combinations of ILPs might be present at 

the local environments of different target tissues. At the same time, the expression levels 

of ilp genes could be modulated differently in different cells. Although ILPs are believed 

to act like hormones and spread through the worm’s interstitial fluid after secretion (Li et 

al., 2003; Pierce et al., 2001), it is possible that they also act in a locally restricted 

manner. Thus, different DAF-2 regulated processes might be controlled independently, 

depending on which cells secrete the ILPs and in which target cells DAF-2 signaling is 

activated.  
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Genetic evidence suggests that dauer arrest and lifespan regulation by DAF-2 

signaling are decoupled in space and time. Mosaic analyses indicate that daf-2 functions 

cell nonautonomously in both processes (Apfeld and Kenyon, 1998). These and other 

data also suggest that DAF-2 functions primarily in the nervous system to control these 

processes, while it functions in muscle tissue to control metabolism (Apfeld and Kenyon, 

1998; Wolkow et al., 2000). In addition, the downstream FOXO transcription factor 

DAF-16 has been found to regulate dauer arrest and lifespan in distinct tissues. DAF-16 

activity in the nervous system is sufficient to induce dauer arrest and intestinal DAF-16 

activity seems to control longevity more than dauer arrest (Libina et al., 2003). Besides 

the tissue specificity of its functions, different DAF-2 regulated processes also depend on 

different temporal activities of DAF-2 signaling. For example, DAF-2 signaling is 

required during larval development to regulate dauer arrest, while larval DAF-2 activity 

has little effect on longevity (Dillin et al., 2002). On the other hand, DAF-2 activity in 

adult worms is sufficient to inhibit longevity (Dillin et al., 2002).  

Since many ILPs are largely expressed in neurons (Li et al., 2003; Pierce et al., 

2001), it is possible that DAF-2 signaling in specific neurons starts a signaling cascade 

that again activates DAF-2, as well as other signaling pathways, in specific downstream 

cells or tissues. The transcriptional outputs in the downstream tissues could specify the 

tissue-specific responses. These responses would include dauer morphology or 

physiological changes that contribute to longevity, e.g., the induction of stress-response 

mechanisms, a change in metabolic rate and/or reduced reproductive activity. Moreover, 

the transcriptional outputs from the downstream cells or tissues could feed back onto 

upstream cells to amplify the original signal. 
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4.2 Insulin-like peptides regulate physiology in response to 

environmental cues  

 

As noted, the C. elegans ilp genes are primarily expressed in partly overlapping subsets 

of neurons, and some of them in amphid sensory neurons [Table 4.2; (Li et al., 2003; 

Pierce et al., 2001)]. The dauer-regulating ILPs daf-28, ins-1 and ins-6 are expressed in 

amphid sensory neurons (Kodama et al., 2006; Li et al., 2003; Tomioka et al., 2006; 

Figure 5; Tables 1 and 4.2), which have been shown to control dauer arrest by ablation 

studies (Bargmann and Horvitz 1991a; Schackwitz et al., 1996). Moreover, ins-1 has also 

been shown to act in interneurons, which receive direct inputs from sensory neurons, to 

control behavioral and learning responses (Kodama et al., 2006; Tomioka et al., 2006). 

These findings raise an intriguing possibility that ILPs encode sensory inputs to induce 

specific physiological outputs, and thus coordinate the physiological and behavioral 

responses to the worm’s environment. For example, low food levels not only induce 

dauer arrest at the dauer decision stage L1, which is accompanied by changes in 

metabolism and stress responses, but also induce adult worms to have altered behaviors 

and metabolism, reduced and delayed reproduction and increased longevity (Houthoofd 

et al., 2005).  
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4.2.1 The dauer-regulating neurons ASI and ASJ secrete insulin-like peptides to 

control dauer arrest 

 

How are specific environmental inputs, such as starvation or crowding, transmitted into 

physiological outputs? First, specific cues, like the dauer pheromone mixture, are sensed 

by sensory amphid neurons (Bargmann and Horvitz 1991a; Schackwitz et al., 1996) that 

contain the cognate receptors within their cilia (Kim et al., 2009). In response to these 

cues, the sensory neurons regulate ilps, as well as other signals, at the transcriptional 

level (Li et al., 2003; Murakami et al., 2001; Ren et al., 1996; Schackwitz et al., 1996) 

and also likely at the post-transcriptional level. These signaling molecules, in turn, 

regulate the different physiological outputs.   

The entry into and exit from the dauer program are known to be regulated by the 

amphid neurons, ASI, ADF, ASG, ASJ and ASK (Bargmann and Horvitz 1991a; Kim et 

al., 2009; Schackwitz et al., 1996). These neurons likely sense the food and pheromone 

cues that control dauer arrest. The neurons ASI, ADF and, to a minor extent, ASG inhibit 

dauer entry, whereas ASJ and, to a minor extent, ASK are required for the pheromone-

induced dauer entry (Bargmann and Horvitz, 1991a; Schackwitz et al., 1996). At the 

same time, ASJ is required for dauer exit in response to lowered pheromone levels 

(Bargmann and Horvitz, 1991a). Recently, two receptors, the GPCRs SRBC-64 and 

SRBC-66, for a subset of the dauer pheromone mixture have been identified in the ASK 

neurons (Kim et al., 2009). However, no pheromone receptor has been found so far in 

ASJ. Although it is possible that additional pheromone receptors are expressed in the ASJ 
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neurons, the function of ASJ in this process might also be indirectly activated by the ASK 

neurons.  

In the ASI neurons, different dauer-inhibiting signals are coordinately regulated in 

response to environmental cues (Ren et al., 1996; Schackwitz et al., 1996; Murakami et 

al., 2001; Li et al., 2003). The TGF-β-like ligand daf-7, which is exclusively expressed in 

ASI, is downregulated in response to high pheromone and low food levels, which induces 

dauer arrest (Ren et al., 1996; Schackwitz et al., 1996). In contrast, daf-7 becomes 

upregulated in response to a low pheromone to food ratio, which induces dauer exit (Ren 

et al., 1996; Schackwitz et al., 1996). The ilp gene daf-28 is also downregulated in ASI, 

as well as in ASJ, upon treatment with the pheromone mixture and in response to 

starvation (Figure 4.2) and the induction of the dauer program through genetic 

manipulations (Li et al., 2003). In addition, daf-28 expression is upregulated by daf-7, 

which also stimulates its own expression, in an autocrine feedback loop (Li et al., 2003). 

On the other hand, transcription of ins-1, which promotes dauer entry and inhibits dauer 

exit and is expressed in both ASI and ASJ (Kodama et al., 2006; Tomioka et al., 2006), 

does not change in response to starvation, high temperature or pheromones (Table 1). 

However, ins-1 might be regulated by these same sensory cues at a posttranscriptional 

level.  

Interestingly, the ilp gene ins-6, whose expression is restricted to ASI in 

reproductively growing worms, shifts its expression to ASJ after a strong dauer arrest 

(Figures 5 and 4.2; Table 1). The dauer pheromone mixture downregulates ins-6 in ASI, 

so that ins-6 is largely depleted in the ASI neurons of dauers and post-dauer adults 

(Figure 5; Table 1). Yet, the pheromone cue alone does not induce the switch to the ASJ  
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Figure 4.2. ins-6 and daf-28 act from ASI and ASJ to regulate dauer arrest. The pheromone cue 

downregulates daf-28 and ins-6 in ASI to allow for dauer entry, and, together with the dauer program, 

upregulates ins-6 in ASJ, to prepare for dauer exit.    

neurons in non-dauers (Table 1). Surprisingly, dauer arrest that is triggered by genetically 

reduced levels of daf-2 activity under conditions of low pheromone to food ratio is also 

insufficient to induce ins-6 expression fully in ASJ (Table 1). Indeed, ins-6 expression is 

only upregulated in the ASJ neurons by the coordinated activities of the pheromone cues 

and the dauer program (Table 1). Thus, these observations show that specific cues 

determine the ilp genes that are transcribed, their level of expression, and presumably, the 

peptides secreted from specific neurons.  
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4.2.2 Insulin-like peptides might function hormonally or locally within neural 

circuits 

 

Following secretion, the ILPs might either act as hormones on their distant target tissues 

or signal locally within neuronal circuits to specific target neurons, which might in turn 

secrete other ILPs or other signals to act on downstream tissues. An example of an ILP 

that can act as part of a neural circuit is ins-1 (Tomioka et al., 2006). ins-1 regulates salt 

chemotaxis learning from an interneuron, which receives direct synaptic inputs from 

sensory neurons and sends synaptic outputs to other neurons that are part of a circuit 

(Tomioka et al., 2006). On the other hand, other processes might require ILPs to act like 

hormones. Thus, depending on the stability and range of the specific ILP, it might induce 

local or wide-spread activation of the DAF-2 pathway.  

The switch in ins-6 expression to ASJ (Figures 5 and 4.2; Table 1), together with 

the function of ins-6 and the ASJ neurons in dauer exit [Figure 2; Table S2; (Bargmann 

and Horvitz 1991a)], suggest that ins-6 is secreted from ASJ to induce dauer exit. This 

might also suggest that ins-6 acts locally as part of one circuit that induces dauer exit 

versus another that inhibits dauer entry. However, ins-6 expression in either ASI or ASJ 

can induce dauer exit (Figure S2; Table S2), although this might be due to the fact that 

under the conditions of these particular experiments ins-6 is expressed at higher than 

endogenous levels. Nonetheless, dauers that are induced through reduced DAF-2 activity 

at low pheromone levels, which reflect a weaker form of arrest, are still capable of 

exiting from the dauer stage (Figures 2 and II), when ins-6 remains primarily expressed 

in ASI and does not completely switch to ASJ (Table 1). Not surprisingly, ins-6 can still 
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induce exit after ablation of the ASJ neurons in these dauers (Figure II, Table III), which 

would suggest that ins-6 can act from ASI to promote exit after a weak dauer arrest.  

In contrast, dauers that are induced at high pheromone levels, which reflect a 

stronger form of arrest as these dauers do not easily exit, have almost no ins-6 expression 

in ASI and a very strong ins-6 expression in ASJ (Table 1). Thus, under these conditions 

ins-6 might act from ASJ to promote exit, a hypothesis that remains to be tested. Such a 

hypothesis also raises the possibility that the circuit that induces exit after a weak arrest is 

different from the circuit that induces exit after a stronger arrest and that ins-6 acts as part 

of these distinct circuits.  

It is possible that ins-6 becomes specifically upregulated in ASJ, because ASJ has 

the receptors that receive not only the inputs that indicate a strong dauer arrest but also 

the inputs that induce exit after such an arrest. Moreover, because the upregulation of 

ins-6 expression in the ASJ neurons of arrested dauers does not immediately induce exit, 

this suggests that ins-6 is likely further regulated posttranscriptionally in response to the 

actual dauer-exit inducing signals. This posttranscriptional regulation of ins-6 might be at 

the level of translation and/or secretion.  

Thus, the neurons that regulate dauer entry and exit might act combinatorially, 

whether by integrating outputs into a common downstream circuit, or by producing local 

or more organism-wide gradients of specific dauer-regulating signals, which would 

include ILPs like ins-6.  
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4.3 The impact of dauer arrest on adult physiology 

 

Dauer arrest can be induced by different means (Cassada and Russell, 1975; Golden and 

Riddle, 1982): through overcrowding, which leads to high levels of pheromones in the 

presence of low food availability; by the direct addition of high concentrations of 

pheromone, while there is plenty of food; or by genetic manipulations, such as using 

temperature-sensitive daf-2 mutations, in which dauer arrest can be induced even on high 

food and low pheromone levels. Hence, this suggests that the pheromone cues can 

overcome the food signals. On the other hand this also shows that lowered DAF-2 

signaling mimics the perception of dauer-inducing cues, because decreased DAF-2 

activity is likely a consequence of sensing increased pheromone and decreased food in 

the environment. 

The pheromone cues induce specific expression changes in particular neurons: 

daf-7 and ins-6 are specifically downregulated in ASI; and daf-28, in ASI and ASJ; (Li et 

al., 2003; Ren et al., 1996; Figure 5 and Table 1). Interestingly, the pheromones and the 

dauer program together upregulate ins-6 in ASJ, a change in expression that persists in 

adults (Figure 5; Tables 1 and 4.2). This suggests that post-dauer adults are different from 

post-L3 adults that never went through the dauer stage. Since the switch in ins-6 

expression perdures up to five-day-old adults, ins-6 might also have a different function 

in adults from ASJ compared to its function from ASI. Thus, ins-6 in ASJ might lead not 

only to dauer exit but also to changes in adult behavior and physiology. 

The dauer arrest that is induced by a high pheromone to food ratio differs from 

the dauer arrest that is induced in the daf-2(e1368) mutant at a low pheromone to food 
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ratio. ins-6 expression in the latter dauers is not downregulated in ASI and is only 

incompletely upregulated in ASJ (Table 1). This observation suggests that the 

transcriptional programs of dauers induced by different means might also differ, and that 

these differences might also perdure into adulthood.  

 Transient dauer arrest causes a slight increase in adult lifespan, as demonstrated 

by the lifespan of daf-28 or ins-6; daf-28 mutant post-dauers (Figures 6 and III; Table IV) 

and of adults that exited from dauer arrest induced by a high pheromone to food ratio 

[(Hall et al., 2010); P. Fardel, data not shown]. Because there are different classes of 

dauers, e.g., a weak versus a strong form of arrest, the dauer program might also have 

different effects on lifespan or even other aspects of adult phsyiology. A weak arrest that 

does not induce the full dauer program might have little or no effect on lifespan, whereas 

a stronger arrest that induces the full program might have a more significant effect. 

Another factor one might consider is the duration of the dauer arrest. For instance, a 

longer time period spent in the dauer stage leads to elevated levels of reproductive defects 

and decreased brood sizes in post-dauer adults (Kim and Paik, 2008). However, it 

remains to be investigated whether the duration of dauer arrest positively correlates with 

longevity. These differences between post-dauer adults and adults that developed under a 

replete environment might be part of a system that remembers developmental conditions, 

which consequently leads to adaptive changes in adult behaviors and physiology.  
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4.4 Insulin-like signaling in the nervous system of other species 

 

The insulin-like signaling module downstream of the DAF-2 receptor is conserved 

between species, and the processes controlled by insulin-like signaling in different 

species are also largely overlapping. In Drosophila and higher organisms, insulin-like 

signaling controls metabolism, growth and development, reproduction, stress resistance 

and longevity (reviewed by Kenyon, 2005). ILPs have also been shown to act from the 

nervous system of Drosophila and mammals (Ayer-le Lievre et al., 1991; Brogiolo et al., 

2001; Bathgate et al., 2002; Ikeya et al., 2002; Rulifson et al.,2002; Sherwood, 2004; Liu 

and Lovenberg, 2008; Yang et al., 2008; Meyts et al., 2009). 

 

In Drosophila, there are seven known ILPs, dilp1 to dilp7, which function in the 

regulation of body size, growth, stress response, metabolism and longevity (Tatar et al. 

2001; Garofalo 2002; Rulifson et al., 2002; Rhodes and White, 2002; Oldham and Hafen 

2003; Broughton et al., 2005). The Drosophila ilp genes are expressed in different 

neuronal and non-neuronal cells (Ikeya et al., 2002; Rulifson et al., 2002; Yang et al., 

2008; Slaidina et al., 2009). Four of the ilp genes, dilp1 to dilp3 and dilp5, are expressed 

in the head in a group of neurosecretory cells, which are termed insulin-producing cells 

(Brogiolo et al., 2001; Bathgate et al., 2002; Ikeya et al., 2002; Rulifson et al.,2002). The 

activities of these neurons might be regulated indirectly by gustatory inputs (Scott et al., 

2001; Rulifson et al., 2002; Melcher and Pankratz, 2005; Yang et al., 2008). dilp2, dilp3 

and dilp5 are thought to regulate insulin-like signaling in response to nutrient availability 

(Ikeya et al., 2002; Broughton et al., 2008; Zhang et al., 2009), whereas dilp7 regulates 
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the fly’s egg-laying decision in response to food cues (Yang et al., 2008). Thus, 

Drosophila ILPs may also have distinct functions in the sensory regulation of specific 

processes.  

The mammalian ILP superfamily is comprised of at least seven members (Nef and 

Parada, 2000). Besides insulin and the insulin-like growth factors IGF-I and IGF-II, 

mammals have several so-called relaxins, which belong to the insulin-like family based 

on their tertiary structures (reviewed by Sherwood, 2004). However, the sequence 

identities of relaxins to the human insulin are low. All mammalian ILPs are derived of 

prohormones with a signal peptide, B- and A-chains, and an interjacent C-chain, which is 

sometimes removed. The seven human relaxins are relaxin 1-3, the Leydig cell insulin-

like peptide (INSL3), the early placenta insulin-like peptide (INSL4), and the insulin-like 

factors INSL5 and INSL6 (Sherwood 2004). Four of these have been shown to bind 

specific GPCRs rather than insulin-like receptors (De Meyts et al., 2009). The 

mammalian ilp genes are expressed in neuronal and non-neuronal tissues (Ayer-le Lievre 

et al., 1991; Liu and Lovenberg, 2008; De Meyts et al., 2009). While the functions of 

insulin, IGF-I and IGF-II have been studied in detail (Nakae et al., 2001; Sherwood, 

2004; Kenyon, 2005), less is known about the mammalian relaxins. So far, they have 

been mainly implicated in reproductive processes, but they may also function in the 

nervous system based on their expression patterns (Sherwood, 2004).  

Since insulin-like signaling has been discovered to inhibit C. elegans longevity, 

several studies showed similar effects of insulin-like signaling on mammalian lifespan 

(Kenyon et al., 1993; Gems and Partridge, 2001; Wolkow, 2002; Bluher et al., 2003; 

Taguchi et al., 2007). For example, female mice that are heterozygous for the IGF-I 
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deletion live significantly longer than wild-type females, and have little or no change in 

their metabolism and fertility (Holzenberger et al., 2003). In addition, the growth-

hormone receptor knockout mice (Laron dwarf mice) live longer than wild type, likely 

also because of their reduced IGF-1 levels (Coschigano et al., 2000). However, although 

insulin-like signaling is important for the growth and survival of neurons (reviewed by 

Aleman and Torres-Aleman, 2009; Broughton and Partridge, 2009; Mattson and Wan, 

2008) the possibility of a sensory component to the ILP regulation of lifespan and/or 

other processes in mammals remains to be investigated. Thus, further investigations 

might reveal additional functions for ILPs, which might also play a role in encoding 

sensory information to regulate physiology in higher organisms.  
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ABSTRACT 

 

Thioredoxins comprise a conserved family of redox regulators involved in many 

biological processes, such as stress-resistance and aging. We report that the C. elegans 

thioredoxin TRX-1 acts in a pair of head sensory neurons called ASJ, as a novel negative 

regulator of the insulin signaling pathway in a redox-independent manner. We show that 

increased formation of the stress-resistant, long-lived dauer larva in mutants for the gene 

encoding the insulin-like peptide DAF-28 requires TRX-1 acting upstream of the insulin 

receptor DAF-2, in the ASJ neurons. During dauer development, transcriptional green 

fluorescent reporters of trx-1 and daf-28 showed an opposing expression pattern, not 

reproduced in normally growing L2/L3 larvae. These findings, together with the 

requirement of trx-1(+) for daf-28 down-regulation during dauer development, 

demonstrate that TRX-1 antagonizes DAF-28 activity and contributes to the regulation of 

daf-28 production during the dauer stage. We propose that TRX-1 acts as a neuronal 

signaling mediator that fluctuates within the ASJ neurons to monitor the adjustment of 

DAF-28 production during adverse conditions at early stages of development and thus 

promote stress-resistance and long-life. 
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