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Abstract This thesis presents an approach to the modeling of
facial aging using and extending the Morphable Model tech-
nique. For modeling the face variation across individuals, fa-
cial expressions, and physical attributes, we collected 3D face
scans of 298 persons. The 3D face scans where acquired with a
structured light 3D scanner, which we improved in collabora-
tion with the manufacturer to achieve superior geometry and
texture quality. Moreover, we developed an efficient way to
measure fine skin structure and reflection properties with the
scanner. The collected face scans have been used to build the
Basel Face Model, a new publicly available Morphable Model.

Using the 3D scans we learn the correlation between physical
attributes such as weight, height, and especially age and faces.
With the learned correlation, we present a novel way to si-
multaneously manipulate different attributes and demonstrate
the capability to model changes caused by aging. Using the
attributes of the face model in conjunction with a skull model
developed in the same research group, we present a method
to reconstruct faces from skull shapes which considers physical
attributes, as the body weight, age etc.

The most important aspect of facial aging that can not be sim-
ulated with the Morphable Model is the appearance of facial
wrinkles. In this work we present a novel approach to syn-
thesize age wrinkles based on statistics. Our wrinkle synthesis
consists of two main parts: The learning of a generative model
of wrinkle constellations, and the modeling of their visual ap-
pearance. For learning the constellations we use kernel density
estimation of manually labeled wrinkles to estimate the wrin-
kle occurrence probability. To learn the visual appearance of
wrinkles we use the fine scale skin structure captured with our
improved scanning method. Our results show that the com-
bination of the attribute fitting based aging and the wrinkle
synthesis, facilitate a simulation of visually convincing progres-
sive aging. The method is without restrictions applicable to
any face that can be represented by the Morphable Model.
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Chapter 1

Introduction
uﬂ

Picasso: The Face of Peace

The face is the portrayal of the human’s personality. Naturally its
appearance strongly affects us. Therefore it is not astonishing that
painters, photographers, physicians, philosophers and, also computer
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scientists study the appearance of human faces. Unlike artists trying
to emphasize characteristics of real faces by creative interpretation,
in computer graphics the ultimate goal is to create a photo realistic
visualization of a synthetic face. The main challenge is that humans
are extensively trained in perceiving subtitle differences or errors in
faces. Different faces show often very small variations which are rec-
ognizable for humans but hard to synthesize by a computer. Further
it is desirable to model characteristics of persons such as physical
attributes or expressions. How would I look like if I was female or
20 kilogram heavier? Of special interest is the aging of faces. Apart
from practical applications it is of natural interest to see how the old
wrinkly face of myself could look like. George Orwell once said: At
fifty everyone has the face he deserves.

The realistic visualization of faces requires profound knowledge about
the appearance of faces. The best way to achieve this, is to learn from
the real face. In the first place, it is essential to develop technology
to capture the faces as natural and detailed as possible to process
them digitally. Further, it is necessary to collect a set of different
face scans that represents the variation in their appearance. Such a
database of digital face scans with superior quality has been collected
during this work. To capture the data we use a structured light 3D
face scanner manufactured by the company ABW-3D and placed in
the lab of our Graphics and Vision Research Group (GRAVIS) at
University of Basel. In the field of computer vision the Morphable
Model [18] is a well known technique to learn the appearance based on
digital face scans. The Morphable Model represents the 3D geometry
and color variation of faces. The face scans we collected are used in
several projects to compute different models for specific needs. One
of these models is the Basel Face Model [40] computed from a subset
of one hundred male and one hundred female faces of our collection.
The Basel Face Model'! was published to support other researchers
and promote the Morphable Model technique. To demonstrate its

1The Basel Face Model is publicly available on the web: faces.cs.unibas.ch.



capabilities we applied the model for the analysis of 2D photos to
identify faces. Nevertheless, the broad field of applications in the
field of image analysis and face recognition is not in the scope of this
work.

The Morphable Model represents statistics about the example faces.
This statistic consists of the mean face and the main modes of vari-
ation. By adding these modes to the mean face, new faces can be
generated. The resulting parameters to describe faces have no in-
tuitive meaning and are purely statistically motivated. In contrast
what a user would expect is being able to change the gender, weight,
or the length of the nose of a person. Consequently, we developed
the approach for the intuitive control of personal physical attributes
further [8] to allow for more interaction with the model. Moreover,
we show how to use this attributes for example in the anthropological
field to manipulate physical attributes of a face reconstruction from
a skull shape [57]. Here a novel technique to connect the Morphable
Model with a Statistical Shape model of skulls was presented to cal-
culate a face prediction matching the constraints of the underlying
skull.

When it comes to the manipulation of a persons age, the Morphable
Model combined with the physical attribute manipulation can be
used to modify the shape. Using this technique the geometric changes
such as sagging at the cheeks or the chin and the overall color changes
of faces can be modeled. Apart of these large scale changes the skin
undergoes structural changes which lead to wrinkles and fine scale
changes. The Morphable Model is not suitable to represent these ef-
fects of aging because it expresses a novel face as a linear combination
of the example faces, which cancels out fine details such as wrinkles.
For this reason we propose a novel method to extend the Morphable
Model with a generative model to synthesis facial age wrinkles. The
model is based on a non-parametric density estimation of the wrin-
kle appearance on the face. The shape and shading of the wrinkles
is modeled separately along the wrinkle curve. Along these curves
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the wrinkles vary for example in their depth and darkness which can
be again expressed through the combination of examples, as for the
standard Morphable Model. Finally to synthesize the changes of even
smaller skin details such as pores and wrinkling we apply a texture
quilting approach. With our approach we focus on data driven syn-
thesis of facial skin details. To obtain the skin detail data we use
our proposed capturing method [83] that extends our 3D face scan-
ner. The synthesis of wrinkles and details together with the attribute
manipulation of the Morphable Model enables us to generate visual
plausible aged versions of faces.

1.1 Related Work

To learn the natural appearance of faces it is necessary to capture and
collect a representative set of high quality 3D face scans. Although
capturing 3D scans of faces is rather difficult, expensive, and time
consuming, a few 3D face databases [18, 54, 79, 80, 21, 60, 23, 61]
already exist. We collected a new dataset of overall 300 persons with
around 3900 face scans which is outstanding in terms of data quality.
Among other databases especially the texture quality in terms of
resolution and color fidelity is remarkable. To capture the scans we
used a structured light scanning system equipped with three digital
SLR cameras built by the company ABW-3D [1]. In the last decade
it turned out that the Morphable Model [18] is an effective solution to
learn the shape and color appearance of faces from such a database
of 3D scans. In contrast to the very similar, in the medical field
commonly used, Active Shape Models [25, 24], the Morphable Model
additionally models the surface color.

Although, the Morphable Model technique is known for over a decade
up to our knowledge there currently exist only three comparable mod-
els: The “Max-Planck-Institut T{ibingen” (MPI) model [18], the Uni-
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versity of South Florida (USF) model [60], and a model developed
at Beijing University of Technology [39]. We blame this mainly on
the difficulty of solving the correspondence problem to build such
a model. To supply researchers and promote the Morphable Model
technique we published a new model the Basel Face Model (BFM) [40]
built from our data. Recently our 3D face scan database was also used
to develop a new technique to represent faces in the Global-to-Local
model [44].

1.1.1 Measurement and Visualization of Facial Details

The measurement and visualization of fine details and complex scat-
tering effects is another topic in research that is necessary for the data
driven synthesis of facial details in this work. Weyrich et al. [76] mea-
sured 3D face geometry, skin reflectance, and subsurface scattering
for subjects varying in age, gender, and skin color. Lensch et al. [46]
created an image-based measuring method. Barsky and Petrou [10]
presented a normal estimation technique using multiple light sources.
Nehab et al. [56] present a method to combine the low frequency
bands of a small range scanned model with higher frequencies ob-
tained through photometric stereo. The two methods were combined
by Weyrich et al. [76] and applied to capture high resolution meshes
of faces. Haro et al. [36] used silicone molds to acquire normal maps
of patches of the facial surface, and then grew the resulting pattern to
cover the entire face using a texture synthesis technique. Debevec et
al. [52] developed a scanning technique that produces four indepen-
dent normal maps, one for the diffuse reflection in each of the three
color channels and one for specular reflections. The lighting setup
they use is fairly complex though, as the technique relies on polar-
ized full sphere illumination. We presented a efficient and affordable
method to capture facial normal maps [83]. The method considers
also subsurface scattering effects and extends our 3D scanning device.
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1.1.2 Physical Attributes and Aging

The manipulation of physical attributes using the Morphable Model
was already proposed in the seminal paper [18]. The presented method
models the direction of maximum variance of an attribute. Later the
same group presented an improved method [16] that is capable to
jointly modify correlated attributes like the weight and height. Other
authors propose to learn a function from attributes to shapes [3, 4, 68,
5, 82, 75]. These approaches compute a single average modification
for all faces. Although, these methods produce already reasonable
results, it can be assumed that a face can not be uniquely assigned
to an attribute. Obviously, there are many different for example 30
year old persons with different faces.

We further expect, that the change in face parameters to modify
the attributes depends on the starting face and can be nonlinear.
Predicting such an identity dependent nonlinear modification was
presented in [63]. But, the proposed method can handle only a single
attribute and does not model the covariance of multiple attributes.
We proposed a method to model attributes simultaneously [8]. The
attribute fitting called method enables the user to explicitly choose
the attributes which convey and which stay fixed. In the same manner
we assume that for a given skull shape many different faces exist.
An attribute dependent reconstruction of a face from a skull was
presented in [57].

The technique to model attributes was also successfully applied to
model facial growth and aging. In the field of generative face models
we manly distinguish between linear or piecewise linear methods in
the model attribute space [18, 16, 64, 37, 62] and nonlinear modeling
of attributes [63, 8, 57]. Suo et al. [70] describe a dynamic model
to simulate the aging process. Their model represents all faces by a
geometric model and a multi-layer graph that integrates appearance
changes of facial components. In contrast to the Morphable Model



1.1. RELATED WORK 9

approach the synthesis results are obtained by combining example
components in a discreet way which affects the recognizability of the
face strongly.

In the literature about facial wrinkle modeling, different research di-
rections can be identified. The topics are aging wrinkles, fine scale
wrinkles, or expression wrinkles, where geometric and anatomical
models can be distinguished. Fine scale wrinkles also referred to
as wrinkling describe the fine oriented lines in the scale of pores.
Large scale wrinkles are expression or age wrinkles appearing in cer-
tain areas of the face, where the orientation is predetermined by the
underlying expression wrinkles. Remarkable is that most proposals
either treat fine scale or large scale wrinkles only.

Modeling fine scale wrinkling in geometry has been presented by Gol-
govinsky et al. [34]. The authors compute local statistics about fine
scale skin features and use it for the recreation of the structure on
novel faces. Mohammed et al. [53] developed an image based ap-
proach to synthesize facial details.

Also for the modeling of large scale wrinkles, there exist several meth-
ods that can be classified into geometrical and anatomical models. A
well known method for the geometric modeling of wrinkles was de-
scribed by Bando et al. [9]. In their paper the authors describe how
to modulate wrinkles on a surface concerning shrinkage due to ob-
ject deformations. Improvements to this approach were published
in [48]. Yin et al. [47] divides, the face into subregions and generates
expression wrinkles. Batliner developed a PCA based method for
the statistical modeling of large scale wrinkles [11]. Bickel et al. [12]
proposed an approach to transfer expression wrinkles with a multi
scale mesh deformation method. The 3D expression sequences are
captured with a extended motion-capture system. The animation of
faces with wrinkles is addressed in [13].

Anatomical or physical models simulate the occurrence of wrinkles
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due to contraction of an elastic sheet. Wu et al. [78] present a method-
ology to simulate skin aging, taking into account skin texture and
wrinkle dynamics. They split the facial simulation process into fa-
cial surface deformation, based on a three-layered facial structure
and the wrinkle generation using a synthetic texture. Zhang, Sim
and Tan [81] present a muscle-driven wrinkle model for simulating
dynamic wrinkles that appear during facial expressions. Wrinkles
are generated in the local regions influenced by muscle contraction,
simulating resistance to compression. Cutler et al. [26] proposed a
kinematic system for creating art-directed clothing and skin wrinkles.

A survey about age synthesis and estimation was recently published
by Fu et al. [33].

1The by Wu et al. simulated three-layered facial structure consists of mus-
cles, connective tissue, and skin layers.



Chapter 2

Data Acquisition

One of the main objectives of this work was to collect a database for
building new statistical face models. In this chapter we present the
collected data and discuss the steps that where necessary to collected
and use it to build such models. Prerequisites for the collection of
biometric measurements from a broad variety of different persons are
the approval of the ethics committee and the setup of the infras-
tructure to perform the scanning. The approval to scan faces and
collect additional information about physical attributes and habits
were granted by the committee. For the acquisition of participants
and the scanning, the hardware was setup at the Department of Com-
puter Science in Basel, which is located above the University Mensa.
That enabled us to ask students for their participation and scan them
at lunchtime.

11
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Postfix | Count | Description
neutral 987 | Neutral
sadness 344 | Sadness
surprise 322 | Surprise (Happy)
fear 320 | Fear
joy 355 | Joy
anger 325 | Anger
disgust 322 | Disgust
other 227 | Other arbitrary expressions
eyes 297 | Periorbital wrinkles! (PO)
forehead 319 | Horizontal forehead wrinkles (HF)
flash 77 | Captured with flashlights for normal map fit-
ting
3895 | Total number of 3D face scans

Table 2.1: Number of collected 3D scans of faces performing different
basic expressions. Additionally, scans with other expressions, wrinkles, or
the additional flash lights where taken.

During the data acquisition period and up to now approximately 300
persons were scanned. For each person, eleven scans were taken:
Three with a neutral face, six expressions and two scans with wrin-
kles on the forehead and at the eyes. The expressions are sadness,
anger, joy, fear, disgust and surprise. These expressions belong to
the basic emotions and are independent of the cultural background
[30]. An overview of the around 3900 collected scans can be found in
(Table 2.1).

LPeriorbital wrinkles also referred as crows feet are wrinkles at the eyes
caused by the orbitalis oculi muscle.
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To gather additional information about physical attributes, each per-
son was asked to fill out a questionnaire. The information consists of
physical data like the date of birth, weight and height as well as habits
like smoking and drinking. All questions were chosen with respect to
their influence on the facial appearance and discussed with Hanspeter
Kiefer and Dr. Katja Schwenzer from “Kantonsspital Basel”. An
overview of the collected data can be seen in (Figure 2.1) and (Fig-
ure 2.2).

Following acquisition and preparation steps of the face scans where
taken to build the statistical face models and are described in this
chapter:

e The structured light 3D face scanner used to acquire the data.

e Used registration algorithm to establish correspondence between
the face scans.

e Correction of the eye shapes of the registered face scans.

e Representation of the facial surface color in a texture of a reg-
istered face. Extraction of this texture from photos taken by
the scanner.

e Vector shaped representation of the registered data to compute
statistical models.

e Improvement of the data acquisition to extract fine scale skin
structure such as wrinkles and pores.

All steps are described in the order of the execution process that was
chosen to achieve optimal data quality.



2.1. 3D FACE SCANNING 15

2.1 3D Face Scanning

For several reasons the scanning of human faces is a challenging task.
First of all, duration of the acquisition time is critical, especially for
facial expressions or face scans of children. Moreover the properties
of the skin allow the incident light travelling below the skin which
disturbs the quality of optical systems (especially if they use red
light). Medical imaging techniques such as Computed Tomography
(CT) also suffer from long acquisition times and even more critically,
uses high energetic rays which are potentially harmful to the person
scanned. Nevertheless, if no expression and no facial color is needed
Magnet Resonance Images (MRI) can be used.

For the acquisition of our databases we used an active stereo vision
system with white light sources and structured light, engineered by
the company ABW-3D [1]. Compared to older laser scanners, with an
acquisition time of up to 15 seconds, our system has a much shorter
capture time of approximately 1 second. Active light systems cap-
ture digital images of the face while projecting light patterns, in our
case stripes, on the face. In this way areas with only few features for
example the cheeks can be measured accurately. The common struc-
tured light systems with one projector capture the face only partially
since areas oriented in a to shallow angle can not be measured. To
overcome this problem we use a multi-view approach with four sub-
systems. The scanner provides an ear to ear capture of the facial
surface without big holes. Among other systems the quality of the
shape and texture of the ABW-3D scanner (Figure 2.3) is superior.

The system has been further extended in collaboration with ABW-
3D to improve the quality of the data. The improvements cover
the texture quality (Section 2.5), the following geometry blending
(Section 2.2.2), and the reflectance/fine structure (Section 2.7) mea-
surement. Eyes and hair cannot be captured with our system, due
to their special reflection properties.
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Figure 2.3: 3D face scan-
ning device developed by
ABW-8D[1], with electri-
cal adjustable chair and
workstation.

The scanner provides 3D surfaces and the color of the faces that
are used to build Morphable Models. For the standard scanning
procedure, the two projectors (Figure 2.4) project multiple stripe
patterns of different width onto the face, captured by the gray value
cameras to measure the geometry. The pattern set enables the system
to identify light sections of the projector in the images that are used
to calculate the depth using triangulation. The triangulation is done
for each neighboring pair of projector and camera. The result of the
triangulation are four 3D shells (Figure 2.5) that form the geometry
input of the registration (Section 2.2). Technically each 3D shell
geometry is stored in a 2D image with a 3D point for each pixel later
on referred as geometry map.

In addition to the geometry of the face we use texture mapping to
store the color of the facial skin. To capture realistic facial textures
with high color fidelity, three digital SLR cameras are mounted to
the system (Figure 2.4). The resolution of the camera images is
3504 x 2336 pixel. The photos are taken in the sRGB color pro-
file and activated automatic white balance. As it is crucial that the
textures are homogeneously illuminated, the scanner is additionally
equipped with three studio flashes with diffuser umbrellas. For the
three texture photos, taken during a standard 3D scanning procedure,
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Figure 2.4: Structured light 3D scanning system. Consisting of two struc-
tured light projectors, three gray level cameras for the shape, three 8 mega
pixel SLR cameras and three studio flash lights for the texture photos.

all cameras are triggered simultaneously together with the three flash
lights. The camera parameters, obtained by the scanner calibration,
are stored with each photo for future processing of the texture. These
camera parameters describe the projection of the 3D object to the
camera plane with the Tsai camera model [72]. A description of the
camera model and its parameters can be found in (Appendix A). The
photos with their calibration information are part of the input data
used by the registration (Section 2.2) and texture extraction (Sec-
tion 2.5).

In addition, we collected 23 Magnetic Resonance Images (MRI) to
extend our database. The MR images are needed to provide informa-
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Figure 2.5: Four geometry shells captured by the 3D scanner.

tion about regions that are not visible in the 3D scans, which allows
for a data driven reconstruction of the ears in the 3D scans. This
reconstruction of the ears is done during the registration, described
later in this chapter (Section 4.2.2).

2.2 Correspondence

Intuitively point-to-point correspondence seems to be easy to under-
stand. Taking two face surfaces it is obvious that the tip of the nose
marks a corresponding point (Figure 2.6 a). But already specifying
that point precisely is not trivial. Finding true correspondence is
therefore only possible for a limited set of points which can be identi-
fied as the same points in all another faces. For points on the surface
without silent features the problem can only be solved by assuming
smoothness of the correspondence field. In such areas of the face,
the correspondence is therefore mainly defined by the smoothness
constraint (Figure 2.6 c¢). Moreover there exist features with no cor-
respondent points at all, like birth marks or wrinkles (Figure 2.6 b).
For this reason the correspondence search focuses on finding com-
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Figure 2.6: a) Illus-
tration of corresponding
points mapped to each
other. b) For fea-
tures like wrinkles or
pores no corresponding
features exist in the tem-
plate. ¢) The closest
point is not necessarily
the right correspondence
therefore the minimal de-
formation constraint is
needed in some regions.

patible points for which a correspondence exists and moves points
in-between by trying to introduce only minimal deformation.

Having the correspondence it becomes possible to build generative
models which represent the object class of faces. The Morphable
Model is such a generative model able to represent the appearance
of faces and generate novel ones. To build the models (Section 3)
used in this work a Iterative Closest Point (ICP) based approach[6]
is applied.

2.2.1 Geometry Smoothing

The geometry captured during the scanning process consists of four
3D surface shells (Figure 2.5) with very high resolution. To register
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(a) No smoothing  (b) Mean Curvature
Flow

Figure 2.7: Mean curvature flow applied on the depth values seen from the
geometry camera. (a) original geometry of one subsystem. (b) smoothed
with 100 iterations and 0.02 step width.

the shells it is necessary to filter the geometry (Figure 2.7a). This
pre-processing avoids local minima in the registration by reducing
the measurement noise and smoothing the data.

Each of the in the smoothing used shells is stored in a geometry
map M, : © C IN?* — R?® parameterized over the camera plane
of the virtual geometry camera (Section 2.1), for which a depth map
U :Q C R?> - R can be computed easily. Gaussian smoothing
is only appropriate for flat surfaces. Instead, Mean Curvature Flow
smoothing [27] is applied (Figure 2.7b), as it takes the local geome-
try of the surface into account. The mean curvature flow of graphs
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requests the surface
L@t) ={(z, U(z,t))lx € Q, t € [0,T]} (21)

to satisfy the differential equation at time ¢:

oU vU
— — V14 ||VU|IPV | —— | =0in Q x (0,7). (2.2
o~ VIF VO] < 1+|VU||2> in Q% (0,7). (22)

This minimizes the area of the surface while keeping the overall shape
fixed.

The solution is found using an iterative algorithm. After the smooth-
ing, the depth maps are converted back to the original three dimen-
sional representation.

2.2.2 Geometry Blending

The geometry blending is used to compute a single geometry mesh
of the four geometry maps provided by the scanner. The algorithm
computes blend weights from the geometry maps that are used after
the registration to merge the geometries. This method reduces blend-
ing artifacts since it allows to sample the registration result directly
from the raw scanner data.

Each geometry map denoted by M, : Q@ C IN> — R represents one
3D shell (Figure 2.5). Note that the geometry maps can contain miss-
ing data areas where no 3D information is available. The domain {2
of the map denotes the subset of the image grid where valid geometry
points are stored. Since the shells overlap, we need to find an appro-
priate way to blend them together. First, we compute the weights
in the geometry map domain €2, for the later blending. The first
weight is based on the distance from the border of the valid geome-
try map M, that is equivalent to the distance to the closest missing
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Figure 2.8: Function to compute a slope (a) dependent on the distance
to the borders of the mesh. Blending of the vertexes (b) of two shells
(green and blue) to obtain the combined shell (red) based on the computed
weights.

data point. The distance is computed using the distance transform
[31]. Since we want a smooth but rapid transition between the shells
we compute a slope (Figure 2.8) from zero to one dependent on the
border distance and use this as first weight for the blending.

The weights au,, € R for each geometry map entry u,v € Q are
computed using the logistic function:

1
" 14+ exp(—(du,n — 0)s)’

parameterized with o € R and s € R to control the shape of the
slope. Different slope shapes can be seen in (Figure 2.8a).

(2.3)

Ay,

For the further computation the normal at every geometry point is
needed. We compute the normal map M, : @ ¢ N? — R® from
the geometry map M 4 using the finite difference based gradient. To
obtain the normal map we evaluate

_ VuMy(u,v) x VoM g(u,v)
[VuM g(u,v) X VoM g(u, v

M, (u,v) (2.4)
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for each valid point u,v € €2, where X is the cross product.

The second weight
bu,v = <Mn(u7’l}),c> cR (25)

depends on the angle between the normal M, (u,v) € R?® at every
point u,v € Q and the normalized viewing direction of the scanner
camera ¢ € R®. Since measurements of distances to a surface almost
orthogonal to the viewing direction are error-prone. This weight takes
into account how much we trust the measurement.

Both weights are combined:

Wu,w = a0, (2.6)
In this way both weights must be high to trust the measurement
of the point. The exponents (A1,A2) € R allow us to control the
influence of the weights.

For further processing we triangulate the geometry map and store the
weights for each i-th vertex, obtaining a mesh with one shell. The
final vertex position v; € R® can then be computed as the weighted
sum of overlapping shells at the point (Figure 2.8b):

1 n
vi = Zwijvij7 (2.7)
J

where n is the number of overlapping shells and v;; is the i-th vertex
of shell j.

The actual blending is postponed until after the registration where
the vertices share the same topology. After registering the shells
jointly to one template mesh, we use the pre-computed weights at the
every vertex of the template to blend overlapping vertices smoothly
together.
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2.2.3 Non-Rigid Registration

For the registration we use a non-rigid Iterative Closest Point (ICP)
method similar to [6]. Non-rigid ICP methods deform a template
shape iteratively towards a target shape. This is done by finding pre-
liminary correspondences between points on the template and points
on the target surface, and deforming the template such that it simul-
taneously minimizes the distance between the correspondent points
and an additional regularization of the deformation. The method
starts with a strongly regularized deformation, allowing only global
deformations of the template towards the target, and lowers the reg-
ularization whenever a stable state for the current regularization has
been found. In this way the method first recovers the global deforma-
tions, and then more local deformations, which helps to avoid local
minima. As a regularizer we use a discrete approximation of the sec-
ond derivative of the deformation field. The steps of the algorithm
are as in Algorithm (1).

Algorithm 1: Non-rigid ICP Registration

for 0 — 60, >--- >0y do

repeat
Find candidate correspondences by searching for the closest
compatible point for each model vertex.
Weight the correspondences by their distance using a robust
estimator.
Find a deformation regularized by 6, which minimizes the
distance to the correspondence points.

until Median change in vertex positions < threshold

This method is purely shape based, but we have included additional
clues. As most of the prominent appearance variation like birth marks
are not consistent between subjects we chose to manually label certain
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edges, which should be mapped onto each other. The scanning system
produces scans with holes in regions which fail to reflect the incoming
light towards the cameras, these are the eyes and hair regions as
well as regions with oblique angles relative to the light source or
camera. Accordingly, we marked the outline of the eyes and the ears,
because these are not scanned accurately. We also decided, that to
get a consistent texture map we wanted the lip and eyebrow borders
aligned across subjects. These features do not influence the shape, so
including them in the shape models destroys the quality (in the sense
of simplicity) of the shape model, while improving the simplicity of
the texture model.

Technically, the outlines were marked in the camera views and pro-
jected as extrusion surfaces into 3D space. We then included an ad-
ditional term measuring the distance between the template vertices
belonging to a line landmark and the closest conforming point on the
extrusion surface. Consequently, wherever a surface was measured
the resulting surface lies inside it, while for regions with missing data
(especially the eyes and ears) the shape of the template is used to fill
in the holes while still fulfilling the line constraints.

Additionally, some landmarks were used to initialize the fitting pro-
cedure, but the weighting of the landmark term was reduced to zero
during the optimization, as these points can not be marked as accu-
rately as the line landmarks.

2.3 Eyeball Fitting

The reflection properties of the human eye make it impossible to scan
its geometry with a structured light system. This is the case because
the stripe pattern is either absorbed in the iris or reflected strongly
in one direction. For this reason it can only be captured partially
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(a) registration result  (b) corrected eye ball

(c) texture (d) texture with correc-
tion

Figure 2.9: Results of the eyeball fitting. The eye shape of the registered
face has still unnatural deformations (a). After fitting, all vertices are
forced to be placed on a sphere (b). The eye shape correction also avoids
texture artifacts (c) caused by the wrong geometry.

or faulty by the 3D scanner. The resulting holes and errors in the
geometry lead to a non-spherical eye geometry after the registration
(Figure 2.9).

To correct the eye geometry we first fit a sphere to n points labeled to
be on the retina {x1,...,&, € ]R3}. These points x; are on a sphere
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with center ¢ € R® and radius r € R if they fulfill the equation
|z —c|* = r°. (2.8)

With this equation we can formulate the error function

1S 2 212 2
LS (i — e - A (r — 1), 2.9
ar%gnn - (Ha: |l r ) +Aa(r—ra) (2.9)

i=1

with the regularization term Ay (7 — 74)%. In contrast to the geomet-
ric sphere fitting [22, 77] we introduce a regularization penalizing,
weighted by A4, if the radius r differs too much from the desired
radius 4. To minimize this nonlinear problem we use the Levenberg-
Marquard algorithm with the analytically computed gradient of the
error function (Equation 2.9).

Finally, all points are forced to be placed on the sphere by moving
them to the obtained radius r. The moved points &; are:

~ r; —C

& Li=1,...,n. (2.10)

=r—
i =€

In practice the fitting without regularization showed visually plau-
sible results and has been applied for all scans used in this work
(Section 3.3.1) and (Section 3.3.3). The mean diameter of all fitted
eyeballs in our dataset is 32 mm.

2.4 Texture Parameterization

There exist many methods to represent the surface properties of a
3D object in computer graphics. In case of the original Morphable
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Model [18] per vertex color was used. Using per vertex color the res-
olution of the texture follows the number of vertices and is therefore
rather limited. On the other hand texture maps are commonly used
in computer graphics and are an appropriate way to represent the
skin surface color of a face. The advantage is that the resolution is
independent of the geometry. The G2L model [44] uses a cubic pa-
rameterization with six texture maps, one for each side, to represent
the full head. Using such texture maps has the advantage that the
resolution can be chosen similar to the number of vertexes (as vertex
color) but also higher if needed. Nevertheless the cubic parameteri-
zation introduces discontinuities in the parameter space at the edges
of the cube. Later in this work we define wrinkles as 2D curves on the
face (Section 5.2.1). For this reason, we defined a single texture map
for the facial region of the head. Using such a 2D parameterization
for a geometric object always means to sacrifice quality due to distor-
tion artifacts caused by irregular sampling. To keep the introduced
distortion as low as possible we apply the algorithm presented in [43]
that uses circular patterns to achieve a quasi conformal mapping.
The result can be seen in (Figure 2.10).
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(a) Texture Map

(b) Mean Face with Texture

(c) Visualization of Introduced Distortion

Figure 2.10: Texture map to represent the skin color of the facial region
of the head. The texture map is used later in this work as 2D domain in
which wrinkles occur.
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2.5 Texture Extraction

The 3D scanner used in this work is equipped with three digital SLR
cameras to capture the facial surface color for each scan. To display
the face in a computer graphic system it is necessary to compute a
texture map suitable for the rendering from the three photos. This
texture extraction process is critical to obtain natural looking data
and therefore the rather simple cylindrical parameterization of the
texture was replaced for the new database. To extract the texture,
a target domain, e.g. the texture map or the vertices, that holds
the information of all three images is needed. This target needs to
fulfill certain criteria to obtain high quality textures. The sample
points have to be equally distributed over the object surface to avoid
aliasing artifacts. It is favorable to know the neighborhood for each
pixel to use image processing filters. Finally the target domain has
to be completely defined for the whole surface of the object, to avoid
missing data. That makes it impossible to use the geometry measured
by the scanner since it often contains holes at important areas such
as the eyes. For this reasons we rather apply the extraction after the
registration where the surface has no holes and the topology is fixed
such that a single optimized parameterization (Section 2.4) can be
used as texture map. To avoid aliasing effects we developed a two
stage extraction of the textures from the photos. In the first step we
project each photo onto the geometry resulting in scattered colored
pixels in one texture map per camera. In the second step we project
the visible but missing texture points to the camera image where
they lay in between the pixels and can be interpolated them from the
neighboring pixels using linear or cubic interpolation.

The steps to extract the texture are:

1 Forward projection of each photo pixel onto the geometry using
ray casting.
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Figure 2.11: Number of pixels of all three camera images falling into one
texel of the texture (a). Histogram (b) shows the amount of all colored
texels containing a certain number of camera pixels. It can be observed
that most texels contain only one pixel.

2 Determine the visibility of all texels within the cameras placed
around the head (Figure 2.12).

3 Backward projection of each empty but visible pixel to obtain
the color from the photos.

4 Calculate weights for the blending based on geometric measure-
ments.

5 Blending the camera images together based on the weights.

1. In the forward projection step each camera image is projected
into one texture map, resulting in three texture maps for our system.
Each texture map contains only regions seen from the corresponding
camera. To project the color information we apply ray casting [67]
for every pixel of the camera images. In this way the texture can
be obtained if the ray hits the object. The texel at the rounded
coordinate can then be colored according to the source pixel. If more
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Figure 2.12: Facial geometry seen
from three texture cameras to calcu-
late the visibility. The vectors ¢; €
R3,i=1,...,3 are the camera direc-
tions. p; € RR? are points in the cam-
era plains which show a point of the
face v € R3. The areas on the face
are colored in red, green, and blue
according to their visibility from the
different cameras.

rays hit the same pixel we compute the average color out of the source
pixels. This approach maps the image to the texture in an optimal
way avoiding sampling artifacts, but leaves the pixel that need to
be interpolated uncolored. Counting how many pixels fall into how
many texels enables us to judge how good the texture represents the
resolution of the cameras (Figure 2.11b).

2. The visibility of a texel through a certain camera is determined
using ray casting. To do so, the geometry is rendered into the tex-
ture map (Figure 2.13b) such that for each texel a geometry point is
stored. Then for each geometry point the visibility (Figure 2.13c) is
checked using ray casting.

3. In this step we fill the pixels in the three textures corresponding
to each of the three cameras. If the texels with its geometric location
is visible from the according camera but not assigned with a color in
step 1, we project it to the camera image plane. The texel color can
then be interpolated from the neighbor pixels.

4. Different geometrical measurements are used to compute the blend
weights for the remaining overlap of visible areas in the three texture
maps. By assuming that reflection and distortion properties are opti-
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Figure 2.13: The geometry (a) is rendered to the texture space of the
object (b)!. We use this rendering to determine the visibility for each
texel in the different cameras (c). The viability is color coded as green for
visible from the right, red for visible from the left, and blue from the middle
camera. Finally we calculate a binary mask (d) by deciding for each pixel
from which camera it has to be taken.

mal on regions which are perpendicular to the camera direction, the
angle between the surface normal and the camera direction is used
as the main criterion. Further on, we use the distance from the bor-
der of the shell determined with a distance transform algorithm [31]
described further in the following geometry blending (Section 2.2.2).

3. One binary mask for each camera defines from which of the cam-
era correspondent textures the color value for a texel is taken. The
masks are computed from the weighted geometrical measurements.
To compose the final texture, we implemented a Gaussian blending
which smoothes the binary maps in regions where the visibility over-
laps and uses these maps for blending.

Although, the texture extraction is presented exemplary using the
in this work introduced facial texture map (Section 2.4) we want to
emphasis that the extraction is capable of handling different texture
maps. The for the G2L [44] used cubic texture maps are obtained
with the same algorithm. To obtain comparable results to the former

LFor better visibility we show normals instead of the corresponding geometry
points.
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used face model developed at “Max-Planck-Institut Tiibingen” we
also extracted per vertex color by sampling the color from a texture
with the resolution of the geometry.

2.5.1 Texture Impainting

The texture extraction is applied on the full facial region of the reg-
istration result. This means for example that hairs occluding the
ears are visible in the texture. This hair is removed manually from
the textures. Afterwards, we use a push pull algorithm [35] to fill in
the missing data. The algorithm builds a pyramid by filtering and
sub-sampling the image. Afterwards, we use cubic interpolation to
scale the lowest level up again and fill the missing pixels of the next
level with it. This is repeated on the next level until we obtain a
completed image with the original size.

2.6 Data for Building Face Models

After the registration the faces are parameterized as triangular mesh
of the facial mask and share the same topology. The geometry is
stored in points (z;,y;,2;)" € R3. The color of the faces as real
valued RGB entries (r;, g;,b;)" € [0,1)3.

The shape and color of a face is then represented by two m dimen-
sional vectors

s = (xlvthlyH‘7xm/37ym/37zm/3)T (211)

c= (leghbl»--->rm/37gm/37bm/3)T' (212)
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Technically the color of the face can be stored either as one entry per
geometry point or as texture. Both can be represented similarly by a
vector c. For the per vertex color we simply stack the colors similar
as the geometry points into the vector. When using a texture map
the vector is obtained by writing the texture line wise in c.

2.7 Capturing Fine Detail

To model the influence of aging on the skin, capturing fine facial skin
structure is important. Changes such as the appearance of wrinkles
or pores are visually prominent. Nevertheless, capturing the com-
plex reflection properties of the skin goes beyond simply measuring
points on the surface. The already outstanding geometry resolution
of structured light systems is limited due to the subsurface scatter-
ing of the skin. The light travel beneath the surface disturbs the
reflection of the light pattern and therefore the accuracy of the mea-
surement. For this reason we extended the system to capture the
high-frequency reflection properties of skin surface structure as wrin-
kles and roughness [83]. To address the wave length dependent travel
of light beneath the skin surface, a normal map for each of the three
color channels and the albedo is estimated. The albedo of the skin is
a measurement how strong it reflects incident light.

The procedure is based on taking additional photos by the mounted
SLR cameras under different illumination setups, using point light
sources. As light sources, four photographic flash lights were attached
to the scanner. Screens mounted to the flashes are used to achieve an
illumination close to theoretical point lights. To achieve good results
with this approach it is crucial to maximize the areas of the face lit
by at least three lights. The position of the lights relative to the
scanner coordinate system is determined in a calibration step.
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() (b) (d)

Figure 2.14: Outline of the capture process. The initial normals (a)
are calculated from the geometry of the mesh. The positions of multiple
vertices are taken into account when the normal of each vertex is computed,
thus the smooth appearance. Photographs of the face are used to estimate
the raw normal maps (b). Low frequencies from (a) and high frequencies
from (b) are combined to compute the corrected normal map (c), which
is then used to reconstruct a high resolution surface, yielding the final
reconstructed normal map (d).

After scanning the face using the structured light capture process
(Section 2.1), which takes around half a second, the four flash lights
are triggered in quick succession, and four images are captured by
each of the three cameras. The overall scanning process takes ap-
proximately three seconds.

The twelve photographs are then mapped into the head’s texture
space, resulting in twelve texture maps. Ray tracing is applied to
calculate the self-occlusion of the face in regard to the cameras and
the light sources.

Before the normal estimation process is initiated (Figure 2.14a), the
four sets of three images are used to reduce the effects of specularity.
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This is done by forming minima over the triples of textures captured
by the three cameras under each of the four lights.

We are then left with only four textures of the face, one for each light
source. As most areas of the face contain shadows in at least one of
the textures, we estimate most of the normals based on three color
values (Figure 2.14b).

These normals carry a systematic bias due to the varying intensity of
incoming light across the face, as our light sources are photographic
flash-lights that spread light inside a cone, rather than perfect point
lights. That bias is removed by ensuring that the average normal
direction in a certain area is perpendicular to the surface of the 3D
model in that area (Figure 2.14c).

Finally, photographic noise is removed from the normal maps by re-
constructing the 3D surface at the resolution of the normal maps, and
using the normals implied by that surface. The surface itself can also
be used as a high-resolution model of the face (Figure 2.14d). Fur-
thermore, these 3D surfaces are used to calculate the displacements
of each point between the standard low- and the three high-resolution
model along the computed normals. The displacements for each color
channel are stored to three displacement maps. Displacement maps
are in certain applications preferable to the normal maps. It is pos-
sible to extract the displacement caused by a wrinkle or pore on one
side of the face and transfer it to the other side in a straight-forward
manner. Normals are more difficult to handle since the transfor-
mation relative to the former position changes the orientation of the
normals. Further, it is feasible to compute linear combinations of dis-
placements (Section 5.5.4). For the rendering the normals are again
obtained by using the gradients of the displacements.
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2.7.1 Specularity Reduction

Specularity is considered a necessary evil for the normal estimation.
Although it carries the most precise normal information (as specu-
larly reflected light does not succumb to subsurface scattering), the
coverage of the face by intense specularity in our setup is simply in-
sufficient to allow for a stable estimation of specular normals and the
spatially varying specular reflectance function.

Let pijc be pixel ¢ of the radiance texture of the head taken by camera
c under light j. Essentially, what we are interested in, is the value
pij = ming(pijc). As diffusely reflected light is assumed to spread
out evenly in all directions, while specularly reflected light is focused
in one particular direction, looking at a point on the surface from
the direction from which it is seen the darkest, also yields the color
closest to the diffuse color of the surface at that point.

Forming the minimum in this naive way would however create dis-
continuities in image color at visibility borders and introduce edges
into the resulting normal map. In order to avoid this, the borders
are interpolated smoothly, using an offset negative Gaussian of the
distance of each texel' to the border as its weight.

The suppression of specularity could also be performed using cross
polarization, that is placing polarizing filters in front of the camera
and the light source, though great attention would have to be paid
to the orientation of the filters, as the cameras and the light sources
are not located in a plane in space.

Now that specular reflections have been removed from the input tex-
tures, those textures can be used to estimate normal maps.

1Pixel of the texture are referred to as texel.
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2.7.2 Normal Estimation

After our specularity reduction step, we are left with four images of
the diffuse radiance of the head, as seen under the four light sources.

Assuming lambertian reflection, we can express the luminance of color
channel A\ € {R,G, B} of texel ¢ under light j as a dot product of
n;x, the normal we are looking for, and l;;, the normalized vector
pointing towards the light, scaled by the surface albedo a;x:

Yiia = @ix{lij, mix) (2.13)
If the texel is lit by three of four lights in, which is mostly the case,

we can simply solve the following linear system of equations, once for
each color channel:

L :

i0 Yiox

aix | U | -nia= (2.14)
1% Yi2a

Note that we are only interested in the direction of ;5 at this point,
so the value of a;) that scales the normal can be ignored.

What remains is a linear system of equations with three unknowns
and three equations. If the texel is visible under all four lights, we
even have an over determined linear system of the same form, that
we solve in the least squares sense. Due to our setup, the over-
determined texels usually form a thin vertical band in the middle of
the face.

Either way, solving the system yields the scaled normal a;xn:x. We
could hypothetically keep the length of a;amix as the value of a;»,
but doing so would introduce irregularities in facial color, as the
normal m; still suffers from a low frequency error. Instead, we only
normalize the resulting normal.
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2.7.3 Low Pass Correction

The resulting normal maps still suffer from a systematic low fre-
quency error caused by the inhomogeneous distribution of incoming
light and deviations from lambertian reflection. That error can be
reduced by discarding the low frequency part of the normal map and
replacing it with the low frequency data from the 3D model. We call
that process low pass correction.

The low pass correction is performed separately for the five facial
areas — the four areas illuminated by all but one of the four lights, and
the area illuminated by all four lights. The reason for this is that the
five areas exhibit different low frequency errors, as the error caused
by each light nudges the estimated normal in a different direction.

Let Ngharp be the normal map we have just obtained, Ny, a low-
pass filtered version of that normal map and N yertex a low-pass fil-
tered normal map generated from the 3D geometry, which is created
by rendering the vertex normals into texture space.

We define a new normal map N combined as follows:
N combined ‘= Nsharp + Nyertex — Nblur (215)

N combined has the useful property that when it is itself low-pass fil-
tered, the result is very close to Nyertex - the low frequencies of
N combined consist of information from N yertex, while only the high
frequency information is taken from Ngharp. This is highly useful, as
variations in incoming light intensity are always of a low frequency
nature.

Since the correction is performed on each vector component indepen-
dently, the resulting normals have to be renormalized.

Our method is similar to the one presented in [56], except that we
perform the low-pass filtering by convolving the normal map linearly
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with a Gaussian kernel, instead of estimating a rotation matrix for
each normal — we assume that the difference in the lower frequency
bands is negligible.

Once the five patches of N .omp have been computed for all five areas,
they can be safely put together — because they all share the same
low frequency information, there is no longer any danger of edges
(discontinuities in the normal map) appearing at the seams.

At points illuminated by only two or less lights, the original vertex
normal map, N yertez, is used.

After the low pass correction, the normal map looks like Figure (2.14c).
In order to render images with it, a texture containing the surface
albedo is needed. The albedo a) for color channel )\ is defined as
the ratio of light of color A that is reflected off a surface, when the
incoming light direction is perpendicular to it.

2.7.4 Albedo Estimation

Only after the low pass correction has been completed, is it safe to
estimate the surface albedo.

We define the albedo a;y for texel 7 and color channel A\ as follows:

Z (g, min)Yija

valid j

Y (ligymin)”

valid j

aix =

n;x is the estimated surface normal at texel i for color channel A,
l;; is the normalized vector towards light j and ~y;;» is the A channel
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of the diffuse luminance of texel i under light j. The expression
can be seen as a weighted average over the individual contributions
vija/{lij, mix)?, weighted by the squared lambert factors (l;;, 7).
The weights are squared in order to suppress the influence of dark
pixels, where the relative error is the largest.

At the end, the albedo is grown into areas where it is undefined. This
is done so tiny cracks can be removed that can form mostly around
the lips, where occlusion is critical and the texture resolution is in
our case low. This is done by setting the value of each undefined pixel
to the average value of all defined neighboring pixels, and repeating
the procedure a number of times.

Although the data computed so far is sufficient to render images, the
quality of the normal maps can still be improved. This is done by
computing a 3D surface at the resolution of the normal map with
surface normals that match those of the normal map as closely as
possible. The normals of that surface are then used as a more realistic
normal map.

2.7.5 Surface Reconstruction

We are looking for a normal map that actually corresponds to a
continuous surface, which is not the case for every vector field. By
enforcing that fact, we can remove part of the photographic noise
that has found its way into the normals without sacrificing higher
frequency bands of the normal map. We do that by reconstructing
the surface at the resolution of the normal map. The reconstructed
surface can then be either rendered directly or its surface normals can
be written into a normal map, and the original, coarse mesh rendered
using that normal map.

If the normal map is to be used with the coarse mesh, the normal



2.7. CAPTURING FINE DETAIL 43

Normal
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Figure 2.15: The setup for our surface refinement process. Note that the
positions are placed between the normals of the normal map.

maps for all three color channels have to be used to reconstruct three
different meshes. If the high resolution mesh is to be used for render-
ing, only one of the meshes has to be reconstructed, preferably the
one corresponding to the green channel. The effects of subsurface
scattering on the color of skin are thereby lost. The green channel
is chosen because it offers the best trade-off between signal intensity
and contrast, because the normals corresponding to the red channel
are much softer, while the ones corresponding to the blue channel are
noisy as only very little blue light is reflected off human skin.

The surface reconstruction is again similar to [56], although we use
an iterative nonlinear method instead of attempting to deal with a
10°% x 10° (albeit sparse) matrix. The size of the problem stems from
the fact that the displacement of each texel is given by the normal
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map only as relative to its neighboring texels.

Our procedure looks as follows: Let Ncomsy be the original normal
map, and Py a texture holding the 3D positions of each texel. Py
is defined in such a way that an entry Po(x,y) holds the 3D posi-
tion of the surface between the four normal map entries N coms(, y),
Ncomp(z+1,9), Neomp(z,y+1) and N comp(x+1, y+1), as illustrated
in Figure (2.15).

Furthermore, for each texel Po(z,y), a corresponding axis A(z,y) is
defined, parallel to the interpolated vertex normal at that point. It
is along that axis, that the position Po(z,y) is allowed to move. The
position P;1(x,y) for each successive iteration is obtained as using
Algorithm (2).

Algorithm 2: Geometry Refinement

for i € {0...iterations} do
for (z¢,y:) € tezels do

error(z¢,y:) = 0;

for (zs,ys) € neighborhood(z,y:) do

n = normal_between((zs, ys), (zt,y¢));
(Pi(zt,yt)—P;i(®s,ys),n) .
(A(w¢,yt),m) ’

error(z¢, y¢) += weight(zs, ys)e;

€ =

avg_error = gauss_convolution(error);
NOTrM_error = error - avg_error;
P;y1 = P; - norm_error A;

The process is illustrated in 2D in Figure (2.16). The function
normal _between((zs,ys),(x¢, y¢)) returns the normal from the nor-
mal map Ncomb between (zs,ys) and (x¢,y¢) if they are diagonal
neighbors, and the normalized average of the two normals in between,
if they are not (Figure 2.15).
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Figure 2.16: An illustration of our
surface reconstruction algorithm as
applied to a 2D normal map. The
black circular dots represent the cur-
rent positions, while the blue square
dots are where the neighboring texels
at their current positions require the
positions to be. Please note that all
2D normal maps in fact correspond to
valid 2D-surfaces (ie. piecewise linear
functions), which is not the case with
all 3D normal maps.

The variable denoted € in the code tells by how much point P;(z¢, y¢)
has to be shifted along A(x¢,y:) in order for the straight line between
P;(x¢,y:) and its neighbor P;(zs,ys) to be perpendicular to n. The
sum of the weight terms of all neighbors has to be one or less. The
weight of diagonal neighbors has been chosen as half as much as the
weight of direct neighbors in our case.

The error is normalized prior to the computation of P; 1, as we are
only interested in its high frequency component — on a coarser scale,

the mesh is assumed to be correct.

Depending on texture resolution, between 20 and 50 such iterations
are required to approach a state of equilibrium (Figure 2.17).
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Figure 2.17: The surface reconstruction process using a 512 X 512 normal
map and a 128 X 128 mesh, resulting in a 512 X 512 mesh. The initial
surface (a), the surface after one iteration (b) and after 41 iterations (c).



Chapter 3

Morphable Face Models

The goal of a face model is to represent the appearance of faces in
a mathematical way. A practical approach to realize such a model
is to learn a statistics about example faces. Such statistical model
should be able to describe any kind of face by restricting itself to the
object class of faces at the same time. In an optimal case any set
of valid parameters generates a valid face. Practically such models
are built by learning the appearance from examples such as those
collected in Section (2). The experience has shown that a few hun-
dred faces yield models with enough flexibility to represent almost
any face. To be able to learn the appearance of example faces, it
is necessary to register the examples (Section 2.2). The registration
computes dense correspondence for all points of the faces. Knowing
the correspondence of features as for example the tip of the nose is
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a prerequisite to enable for computations like the average nose or
the variance of the nose length. More formally, faces are a class of
objects that are in statistical learning represented by a generative
model. The Morphable Model or other statistical models are such
generative models. Compared to the statistical models that are com-
monly used in medicine, the Morphable Model treats the shape and
texture separately. The separation of shape and texture is possible
because it can be assumed that the skin color, also referred as albedo,
is mostly independent of the geometry.*

Generative models have been successfully applied to many different
object classes like faces, cars, skulls and bones [18, 15, 50, 2]. The core
technique of the Morphable Model to analyze the statistical proper-
ties of the shape and texture is the Principle Component Analysis
(PCA). PCA computes the mean and the modes of variation of the
example data. Unlike the general use to reduce the dimensionality
while maximizing the variance?, we apply PCA mainly since it pro-
vides a parametric approach with a set of uncorrelated coefficients to
describe a face. In the Morphable Model framework the PCA addi-
tionally provides the ability to define a priori knowledge about the
probability of an object being a face (Section 3.1).

PCA can be interpreted as fitting a multivariate Gaussian distribu-
tion to example data. In case of the Morphable Model the example
data is either the geometry or color of a face represented in a vector
(Section 2.6).

We denote the m example vectors as

v,eR", i=1,...,m. (3.1)

1Practically some shading effects remain in the texture model. In general
this effects are unwanted in the model and should be calculated by the rendering.
2PCA for dimensionality reduction [14].
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From the examples we compute the mean
1 m
7= Zl v;. (3.2)
i=

The modes of the multivariate Gaussian distribution are called princi-
ple components. These principle components u; € R", i =1,...,m
are computed such that they represent, in descending order, the max-
imum variance of the example data. The principle components are
orthogonal and form the basis of the face space. To compute the
principle components, the mean-free vectors

T,=v;,—v,i=1,...,m (3.3)

are stacked into the data matrix X := (z1,...,Zm) and decomposed
with Singular Value Decomposition (SVD). The SVD decomposes the
data matrix X into a column-orthonormal matrix U = [ul, .. ,um]
a diagonal matrix W and an orthonormal matrix V. Their product
describes the data:

X=Uwv"”, (3.4)

The covariance matrix can then be expressed as follows:

s = %XXT (3.5)
= %UWVTVWTUT (3.6)
= %UWQUT (3.7)
= UAUT (3.8)

m

The u; are the eigenvectors and A := diag(X\;) = diag( Lw?) are

the eigenvalues of 3. The eigenvectors are ordered by their magni-
tude: A1 > X2 > ... 2> A\
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The matrix U together with the standard deviation (STD)

ai:m:\/%:f/‘% (3.9)

form the new basis of the face space.

A face v can be described regarding this basis trough its parameters
a by computing the linear combination

v=> uioi; + (3.10)
i=1

=Udiag (0;) a + v (3.11)
of the basis vectors u;o;.
To determine the coefficients a € R™ of an novel example vector v,

for example the shape of a new face, can be projected into the model
space. The projection can be computed by

o = diag (l ) U (v — 7)) (3.12)

Oq

since U is column-orthogonal.

3.1 Distribution of Faces

The real distribution of the human face shape and texture is unknown
and rather complex. In practice if it can be assumed that the data
clusters around a mean it is common to use a normal distribution as
a simple model for complex phenomena. Consequently, we model the
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faces v as they are distributed according to a multivariate normal
distribution with the mean face ©. The probability of v being a face
is then:

1 —Lw—o)T="1(v-5)

v) = —————e 2 3.13
o) = o (3.13
pv) ~ e FTDTUIATIU@-T) 3.14)

= e 30 2 m3lel (3.15)

The coefficients «; ~ N(0,1) are independent and distributed ac-
cording to a normal distribution. Making the assumption of nor-
mally distributed example data provides a priori knowledge about
the likelihood of a vector being a face. This knowledge is used as
regularization in many applications, such as the fitting of the model
to photos or the later described attribute fitting (Section 4.2) and
face reconstruction from skull shapes (Section 4.2.3).

3.2 Model Segmentation

One important issue of the PCA is its global support. The global
support is on one hand an advantage, since it allows the estimation of
unseen data. Consider the situation that the model is fitted to a side
view of a face. It provides the, in the sense of the model most likely
estimation of the other side. On the other hand, the global support
restricts the flexibility of the model. That means if one changes
the length of the nose this will never happen without influence on
the ears. One could now argue that people with long noses have
also big ears but in practice it often happens that an unlikely nose
forces the rest to be unlikely. A way to overcome this problem is to
define manually segments (eyes, mouth, nose and rest)(Figure 3.1) as
proposed by Blanz and Vetter [18].
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Figure 3.1: Four seg-
ments (eyes, mouth, nose
and rest) used for the
BFM. The segments are
chosen identically as pro-
posed by Blanz and Vet-
ter [18]

The segmented model provides additional flexibility since every seg-
ment can be treated separately. Nevertheless, the extended flexibility
comes with the drawback of this method, that it ignores per design
any global statistics.

The following techniques to model facial attributes (Section 4) and
synthesize fine details (Section 5.6) are independent of the used gen-
erative face model. For this reason and because it is build with the
data acquired in the scope of this work (Section 2) we want to men-
tion here the Global-to-Local (G2L) model technique presented by
Knothe [44]. The G2L model is a more sophisticated way to localize
the support of the model taking into account the correlation of each
point to the remaining face. It introduces a spatial segmentation on
different frequency bands based on the correlation of the points. To
build the G2L model the data acquired in the scope of this work
(Section 2) has been used.
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Name FDB BFM AFM FPM BXM
Vertex Count 53490 13318 13318 53490
Scans 3896 200 773 408 1288
Individuals 298 200 279 264 290
Right to publish 251 172 222 212 232
Males 167 100 137 127 152
Females 131 100 142 137 138
min 1.99 7.79 1.99 7.79 7.79
Age max 77.72 61.90 7772 75.30 77.72
mean 26.61 25.06 26.16 26.09 26.60
min 13.00 40.20 13.00 40.00 40.00
Weight max 130.00 123.00 123.00 123.00 130.00
mean 67.50 66.48 66.83 66.65 67.66
min 90.00 123.00 90.00 123.00 123.00
Height  max 202.00 202.00 199.00 199.00 202.00
mean 173.71  173.52 173.38 173.70 173.97

Table 3.1: Statistics about the data used in different face models. Shown
are: All face scans (FDB), Basel Face Model (BFM), the attribute fitting
model (AFM), the face prediction model (FPM), and the Basel Expression
Model (BXM).

3.3 Face Models

During this work we built different face models suitable for the ac-
cording tasks. The models where built from the 3D face scans ac-
quired in the scope of this work (Section 2). All models described in
this work cover only the facial mask. For the models we respectively
selected the scans by the criteria natural looking, quality of the reg-
istration, and quality of the extracted texture. In the following we
describe the different models and discuss their purpose. The models
are the Basel Face Model (BFM), two models with lower resolution
for the attribute fitting (AFM) and the face prediction (FPM), and
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Postfix | FDB BFM AFM FPM BXM
neutral 987 200 408 408 432
sadness 344 - 39 - 109
surprise 322 - 41 - 97
fear 320 - 37 - 101

joy 355 - 42 - 97
anger 325 - 47 - 111
disgust 322 - 40 - 87
other 227 - 16 - 71
eyes 297 - 44 - 89
forehead 319 - 30 - 43
flash 7 - 29 - 51

Table 3.2: Scans of different expressions used in the presented face models:
All face scans (FDB), Basel Face Model (BFM), the attribute fitting model
(AFM), the face prediction model (FPM), and the Basel Expression Model
(BXM).

an expression model the Basel Expression Model (BXM), used in this
work for the modeling of facial wrinkles and conserved for future use
in the GRAVIS group at University of Basel. An overview over the
attributes of the respective individuals can be found in Table (3.1)
and a list what scans of performed expressions where used, can be
found in Table (3.2). As reference we included in both tables the
overall statistics of 3D scans in our face database (FDB).

3.3.1 The Basel Face Model

For the Basel Face Model (BFM) we manually selected 200 neutral
scans out of all registered scans. The selected training data set con-
sists of face scans of 100 female and 100 male persons, most of them
Europeans. This dataset was chosen to be comparable to the former
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Figure 3.2: To train the BFM we used a set of 200 individuals (100 female
/ 100 male) of varying age, weight and, height. The histograms show the
distribution of the age and weight with average values of 25.06 years for
the age, 173.52 cm for the height and 66.48 kilogram for the weight.

face model developed at “Max-Planck-Institut Tiibingen” and used
in our group. To compare the models, we applied our state of the art
face recognition algorithm and published the results [40]. To support
the research community and promote the Morphable Model technolo-
gies we made the BFM publicly available (faces.cs.unibas.ch). An
overview of the important attributes of the selected scans can be seen
in Figure (3.2) and Table (3.1).

The model represents a facial mask with 53480 vertices. The recogni-
tion results where obtained using the in (Section 3.2) described model
segmentation. For building the texture model the regions of the tex-
tures showing hair were removed manually. To fill the missing regions
we use the impainting algorithm described in Section (2.5.1). From
this data a hairless model is computed. The first three principle com-
ponents of the shape and texture model can be seen in Figure (3.3).
For the fitting experiments a second texture model was created where
the hair was removed everywhere apart from the cheeks.
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Figure 3.3: BFM mean together with the first three principle components
of the shape (left) and texture (right) PCA model. Shown is the mean
shape respective texture plus/minus five standard deviations o; for the
i-th component.

3.3.2 Models for Facial Attribute Manipulation

For the in this work presented attribute fitting and face prediction
we use models with lower resolution. This models represent the facial
mask by 13318 vertices. With the lower resolution the computational
cost for the reconstruction slightly decreases, what is necessary for
an interactive application as presented for the attribute fitting. The
attribute fitting model (AFM) consists of 773 scans. Since we also
demonstrated the capabilities of modeling facial expressions with the
approach, the model contains also expression scans. For the face
reconstruction model (FRM) a subset of 408 scans with neutral ex-
pression is used.
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Figure 3.4: The attribute fitting model (AFM) is a training set with 773
scans of 279 individuals (137 female / 142 male) of varying age, weight and,
height. The histograms show the distribution of the age and weight with
average values of 26.16 years for the age, 173.38 cm for the height and 66.83
kilogram for the weight. For the face prediction model (FPM) the subset
of 408 neutral scans is used.

An overview of the used data can be found in Figure (3.4), Table (3.1),
and Table (3.2).

3.3.3 The Basel Expression Model

The Basel Expression Model (BXM) data is used to train the statisti-
cal wrinkle model presented in this work. Further the data is planed
to form the basis for future projects in the GRAVIS research group
at the University of Basel. For the BXM 1288 scans of 290 individ-
ual faces performing different expressions (Table 3.2) where selected.
Additionally to the expressions belonging to the basic emotions (Sec-
tion 2) we collected scans showing wrinkles, or other arbitrary ex-
pressions. Also included are scans taken with the four additional
flashlights to extract normal maps. In this dataset we included 152
male and 138 female faces. The age of the persons is between 8 and 78
years with an average of 26.6 years, the height between 123 and 202
centimeters with an average of 173.97 centimeters, and the weight is
between 40 and 130 kilogram with an average of 67.66 kilogram (Fig-
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Figure 3.5: The BXM is a training set with 1288 scans of 290 individuals
(138 female / 152 male) of varying age, weight and, height. The histograms
show the distribution of the age and weight with average values of 26.60
years for the age, 173.97 cm for the height and 67.66 kilogram for the
weight.

ure 3.5). An overview over the used data can be found in Table (3.1)
and Table (3.2).

3.4 Skull Model

Additional, to the face models we use a statistical skull model to
study the dependency of faces and skulls. Approach and results are
explained in Section (4.2.3) and Section (6.2). The model is built from
40 CT scans mainly of the Bosma collection [19]. The data has been
registered using a optical flow based method [51] and was developed
in context of the PhD thesis of Marcel Liithi [50]. The mean and the
two first principle components are shown in Figure (3.6).
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Figure 3.6: The first two principal modes of variation of the skull model.
Shown is a deformation of two times the standard deviation o; for the i-th
principal components.






Chapter 4

Physical Attributes

Generative 3D face models have proven their capabilities to represent
faces in applications such as face recognition from 2D images and 3D
scans [17, 40, 7]. In these applications the faces are represented in
a compact way by the model coefficients. These coefficients allow
for a fairly simple comparison of faces and therefore the identifica-
tion of individuals. However it is also desirable to control physical
attributes with parameters such as the age to simulate the facial ge-
ometry changes caused by its progression. Apart from the age it is
desired to control other attributes such as gender, weight, skin type,
but also geometric measurements as the inter-eye distance. The co-
efficients of the morphable model do not supply an intuitive control
since they encode the variability of the 3D shape, and color in a pure
statistically driven way. This means that they are only statistically
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meaningful and do not correspond to intuitive attributes. For this
reason Blanz and Vetter already proposed in the first publication of
the Morphable Model [18] a method to manipulate the attributes in-
tuitively. The proposed approach (Section 4.1) uses linear models to
learn physical attributes of persons and their faces.

This method represents the attributes as vectors in the face space that
do not allow for a joint modification of physical attributes. Allen et
al. [3] proposed to use multivariate linear regression to compute model
parameters according to certain sets of attributes. Blanz presented
in [16] a method to use facial attributes to restrict the face space to
a subspace fulfilling certain constraints given by selected attributes.
This approach has the advantage that correlated attributes, such as
the weight and height can be jointly modified without cancelling each
other out (lighter person is smaller).

Extending the concept of predicting faces according to defined con-
straints, we presented the fitting of faces to physical attributes [8, 57].
The attribute fitting optimizes the face such that it fits the con-
straints given by the fixed attributes, in the manner of an inverse
problem. An advantage of this approach is that it allows for a flexi-
ble and more complex definition of the constraints.

In Section (4.2.2) we discuss how we can define the skull shape so to
speak as vector valued attribute of the face. Doing so, we are able
to connect our face model with the skull shape model [57] to predict
the corresponding face for a given skull. Furthermore, virtually skull
independent physical attributes can be used to compute for example
thin or thick predictions of the face.

For physical attributes, such as age, it is likely that the changes are
nonlinear. During growth, the human head changes its size until the
growth stops as the person becomes an adult. Therefor, nonlinear
techniques to model such facial attributes are proposed in [63, 8].
In (Section 4.2.1) we describe how these nonlinear changes can be
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learned and included in the attribute prediction and face reconstruc-
tion (Section 4.2.3).

Attribute models are trained from examples where for each model
the corresponding attribute is known. These attributes can be either
declared by the scanned people, measured or, judged by third persons.
The attribute values are given by a real valued scalar a € R and there
exists a unique mapping for each face v € R" to its attribute v — a.
During the collection of our 3D face scans (Section 2) each person
was asked to declare his attributes such that we know them for each
example face. From p example pairs

(as,vi), i=1,...,p (4.1)
of the attribute a; and the face v; we want to learn the mapping
a; :<I>(vi), 1= 1,...,p. (42)

The mapping is a general function that predicts for each face its
physical attribute.

Each example face v can be expressed as a set of m model coefficients
a € R™ regarding the principle components of the Morphable Model
(Equation 3.12). The coefficients a are weighted by their variance
learned from the example faces (Section 3).

It turned out that it is preferable to manipulate a face indirectly by
changing its coefficients in model space. Applying only slight changes
of the model coefficients can be expressed more formally as keeping
the Mahalanobis distance between the original and the changed face
low. Since the Mahalanobis distance is known as a measurement for
the similarity of faces such manipulations preserve the identity. So
instead of learning the mapping of faces (Equation 4.2) we rather
estimate the attributes from the face model coefficients. To compute
the coefficients we project (Equation 3.12) the face v into model space
using the Eigenvectors U, the standard deviation o and, the mean
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face © of the model. The mapping in the model space ®s is then
defined by:

a: = ar(ding (1 ) U (v; — B)) (4.3)

]

= @M(al) (4.4)

4.1 Attribute Vectors

Attribute vectors [18] model the attribute dependent facial appear-
ance linearly in the parameter space of the Morphable Model. The
vectors are learned using linear regression. The linear regression ap-
proximates Equation (4.2) by minimizing the squared training error

1 2

min 5 Z((I)('UZ) —a;)”. (4.5)

By using the linear function
d(v) = (v,w)+c, weR",ceR (4.6)

we obtain

(vi,w)y+c=a;, t=1,...,p. (4.7)
Using mean free data

x;, =v;, — U, by =a;, —a (4.8)

the linear function (Equation 4.7) can be rewritten to

O(x;) = (xs,w) =b;, i =1,...,p. (4.9)
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As Blanz and Vetter proposed it is desired to change the face such
that the distance in the Mahalanobis space is small. For this reason
they used the scalar product

(w,v)pr = (u, T "0v) (4.10)

that takes the covariance 3 = Udiag (af) U7 of the face data into

3
account (Section 3). It can be shown that this is equivalent to the
estimation of the attributes from the coefficients (Equation 4.4). We
rewrite (Equation 4.10) using (Equation 3.12)

bi = <£Bi, E_1w> (4.11)
= (:ci7Udi;Lg (%) U w) (4.12)
= (di]ag (U%) UTasi,dijag (0—1]) U w) (4.13)
= (o, W) (4.14)
= <I>M(ai) (4.15)

such that it can be seen that the mapping @ () can be trained
directly on the model coefficients. The obtained @w € R™ is defined
in the model space and can be used to efficiently manipulate faces.
Because it is of lower dimension m and it is defined in the space of
the maximum variance.

To modify faces using @ we only need to add multiples of it to the
coefficients of the current face. A modification of an attribute by A
can be calculated as follows:

<I>M(a)+/\:<I>M(a+Lu~)). (4.16)

]2
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This can be shown using the definition of ® () (Equation 4.9):

(a, W) + A =(a + ||'LT)\|21E’1I]> (4.17)
=({a,w) + )\<|'L‘B1I’}T‘I;> (4.18)

4.2 Face Fitting to Physical Attributes

The previously proposed linear modification has the drawback that it
models only a single attribute in form of a vector independent of the
identity. Instead, it can be assumed that attributes cause identity
dependent changes in faces [63]. Moreover it can be assumed that
the changes are nonlinear within the parameter space of the model.
At this point it is important to consider that only the assignment of
faces to attributes is unique while there exist many faces with the
same attribute. Consequently, it is necessary to learn the mapping
®(a) = a using more complex functions. On the other hand, using
a non-injective function means that the mapping is not invertible
and we are forced to use an inverse approach to modify a face such
that it matches the given attributes. Therefore, we propose a fitting
algorithm [57, 8] that optimizes the face coefficients according to the
specified attributes. The fitting minimizes the squared error between
the attributes a and the current estimation

argmin ||a — ®a ()] (4.19)

The attribute fitting has the further advantage that multiple at-
tributes can be matched simultaneously and additional error terms
can be used. In [8] we additionally propose to use the Mahalanobis
distance ||atorg — ||* between the original face ctorg and the current
one to preserve the identity of the persons face.
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A simple way to regularizing the fitting result can be introduced
by penalizing the distance from the mean face. The regularization
lce]|? uses the prior knowledge about faces to measure how likely the
coefficients « represent a face. The equivalent approach is state of
the art in other Morphable Model fitting algorithms [17, 59] to avoid
overfitting.

Moreover, this approach allows to include direct measurements as for
example the inter-eye distance as discussed in [8]. These measure-
ments can be constrained to a desired value by appending the error
between the measurement and the target value to the error term.

The error function can be minimized using a standard optimization
algorithm such as the Levenberg Marquard or Conjugate Gradient
algorithm.

In the following we discuss different possible mappings ®(a) appli-
cable for the fitting of faces to different given constraints.

4.2.1 Nonlinear Models

As mentioned before, there exist attributes that relate nonlinearly to
the coefficient space of the face model. Especially for aging it can be
assumed that it cannot be modeled linearly [63]. For this reason it is
necessary to learn the age as a nonlinear function of the face model
coefficients. Prerequisite to learning such a nonlinear mapping is to
have enough training examples. Since we know for each of the used
773 example faces' a; the corresponding attribute a; the data is
sufficient for the training. Once again, we want to train a mapping

a; =Pm(ag), i=1,...,p (4.20)

n case of the attribute fitting [8] we used p = 773 faces. For the face
prediction [57] a subset of 408 faces was used.
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Sex Weight Height Age

L L i o T Y P |
Figure 4.1: Support Vector Regression results obtained by 10 fold cross
validation on the face model coefficients. Shown is the predicted (y-axis)
sex (1,-1 for male and female), weight, height and age plotted against the
true value (x-axis).

of the model coefficients a; € R™ to a single attribute a;. The
mapping can be learned with potentially any standard nonlinear re-
gression technique.

Support Vector Machines (SVM) [74] are a set of well established
techniques for supervised learning used for classification and regres-
sion. Training a Support Vector Regression (SVR) to learn the map-
ping ® s () has proven to be a suitable method to estimate attributes
as age, weight, and height [57, 8, 63].

Notably, training a Support Vector Regression with radial basis func-
tion (RBF) kernels shows good performance (Figure 4.1). For [57, 8]
as well as for the results of age simulation (Section 6.1), we use the
LIBSVM implementation for v-Support Vector Regression [20].

In the learning phase the parameters a;, oj,b € R of the RBF Sup-
port Vector Regression function

p
Our(e) = > (~ay +ap)e el g (4.21)

j=1
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are optimized. This regression function represents the attributes by
a sum of gaussians, weighted by (—a; + o). Here, p is the number
of face examples c;.

The kernel width v and the upper bound for a;; and ] for all results
shown in this work are determined by grid search and ten-fold cross
validation.

Unlike for the linear methods it is not possible to compute a simple
displacement in the face space to apply the nonlinear modification
of the face. The modification can be realized by fitting the model
coefficients ¢ such that the face meets the given attributes similar to
Equation (4.19). The attribute fitting uses the gradient of the error
function ||®as () — al|?> which can be found in Appendix (B.1).

4.2.2 Multivariate Linear Models

In the following we discuss how the prediction of faces from skulls re-
late to the attribute fitting. The core idea is to learn the relationship
between faces and skulls. To achieve this, we connect two previ-
ously independent shape models to predict a face for a given skull
shape [57]. The two models used to represent the respective shapes
are the FPM (Section 3.3.2) and the skull model (Section 3.4). To
learn the relation ship we apply multivariate regression to estimate
for a set of skull coefficients the belonging face coefficients or vice
versa. To realize the face reconstruction combined with the previ-
ously discussed attribute models we define it as the inverse problem
of finding a face fitting a given skull. Intuitively that can be under-
stood as learning skull coefficients as a vector valued attribute of a
face. This allows us to constrain the face to a certain skull and ad-
ditionally manipulate skull independent attributes such as the body
weight or the age.
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As for the attributes we want to learn a mapping
,@i:q)]\/[(ai), iZl,...,p (4.22)

that is in this case vector valued and predicts skull model coefficients
B from face model coefficients «c. To establish this connection be-
tween the face and the skull model, we have additionally acquired a
data set of p = 23 Magnet Resonance Images (Section 2.1), where
both the skull and the face are visible. They can be used as anchor
points between the models'. We fit both models to these “anchor
examples”, yielding pairs (a, 3;) of face model parameters a; and
skull model parameters 3,.

For each individual i, a¢; € R™f are the my coefficients of the face
model, and 8; € R™* those m, of the corresponding skull in the skull
model. Using these pairs as training data, we wish to learn a mapping
M from the face parameters to the skull parameters (Equation 4.22).

While in principle this can be achieved with any machine learning
approach, there are certain advantages to learn a linear mapping.
Preferring linear over more complicated mappings has two reasons.
First, assuming that an observed face surface can be well represented
as a linear combination of training examples, we would expect the
underlying skull to be the same combination of the skulls of the
training examples, which leads to a linear mapping. Secondly, due
to the mostly limited number of training examples, it makes sense to
use a relatively simple model.

We now expand the above argument that if a face is well repre-
sented as a combination of example faces then its skull should be
well represented by the same combination of the corresponding ex-
ample skulls. For the anchor examples, for which we have both face

11t is not possible to use the MR images directly to build the skull model,
as skull segmentation from MR images requires a strong shape prior which is,
in our case, the (CT) skull model (Section 3.4).
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and skull data, we write the face model coefficients a; as a Matrix
A = [a1,...,0p] € R™ P and the skull model coefficients 3, as
B :=1[8,,...,8,] € R™=*P. To predict skull coefficients 3 from face
parameters a of a newly observed face we first find a linear combi-
nation & = Ac of example face parameters best approximating c.
This is done by projecting « into the space of the example faces:

c=(ATA) 'A"a = argmin || Ac — a*. (4.23)

the coefficient ¢ are then used to generate the corresponding skull
parameters

B=Bc=B(ATA) 'A"a = Ma. (4.24)

As we have relatively few examples, it is necessary to introduce some
regularisation in the projection. Therefore we change the above to:

B=Bc=B(ATA+\I)'ATa = Ma. (4.25)

The mapping matrix M = B (ATA 4+ M\I)"' AT can equivalently be
determined by ridge regression from face parameters to skull param-
eters:
M = argmin |MA — B|7 + \|M|%, (4.26)
M

where ||-||r is the Frobenius norm. For more details on ridge regres-
sion, see e.g. [66]. The mapping M is calculated only once from the
training data and can then be used for all subsequent reconstructions.
By exchanging A and B, we can exchange the role of faces and skulls
and make a prediction in the both directions (Figure 4.2).

In the context of this work we are mainly interested in the usage of
the age model in combination with the skull prediction that allows
for a more precise reconstruction of faces from skulls. This inverse
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Prediction
Error

Input Original Prediction

(b) Face prediction

Figure 4.2: Results of skulls predicted from faces and vice versa. In both
cases, the best result in terms of the Mahalanobis norm error is selected.
The color-coded prediction error is the per-vertex L2-error orthogonal to
the surface. For the face prediction large errors occur at the cheeks where
the soft tissue thickness depends strongly on the body weight and age.
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approach to reconstruct a face is explained in Section (4.2.3). Results
of the reconstruction of faces from skulls and vice versa can be found
in Section (6.2).

4.2.3 Face Prediction using Physical Attributes

The Face Fitting (Equation 4.19) has also proven its performance
to predict a face for a given skull using physical attributes [57]. As
for the attributes there exists no one-to-one relationship between the
skull and the face. This is because there are attributes such as the
weight that can change virtually independently of the skull shape but
influence the facial shape. Our method allows to constrain the possi-
ble reconstructions by specifying such attributes as described before.
Moreover, different reconstruction results for the same individual can
be computed, which has been hypothesized to make recognition eas-
ier (Figure 4.3). To constrain the reconstruction to fit the given skull
we use Multivariate Regression (Section 4.2.2) to learn the relation-
ship between the skull and the face model. As already discussed we
know that many different faces exist for a single skull shape. For
this reason we learn the estimation of skull coefficients @ from face
coefficients a, because that allows the mapping from many faces to
one skull. Therefore we need to evaluate how well the estimated
face coefficients e fit the given skull coefficients 3 in skull space and
therefore calculate the mapping M from face to skull coefficients.
The error that can be used in the fitting described in Section (4.2) is
then defined as:

18 = @m(@)|* = |18 — Mal*. (4.27)

It measures how well the face coefficients «, or rather their mapping
B = M «, fit the input skull coefficients 8. This is the Mahalanobis
distance in skull space, which is as mentioned before commonly used
as a measurement for the similarity of two shapes. To minimize the
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Figure 4.3: Results of the face prediction with attribute manipulation of
the original faces (first column). The second column shows the reconstruc-
tion with the optimally estimated attributes. The renderings in the right
column are obtained by varying the attributes weight and age.

distance we compute the gradient of the error function that can be
found in Appendix (B.2).

4.2.4 Facial Shape Changes due to Aging

The nonlinear age prediction and fitting of the model to physical at-
tributes is especially suitable for the synthesis of facial aging. Results
of the facial age manipulation can be seen in Section (6.1). Our ap-
proach changes the facial appearance in a nonlinear way. This allows
for individual changes as in [63] while allowing to introduce additional
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constraints such as keeping the identity as similar as possible or a pre-
diction fitting a given skull. With this approach we obtain a precise
prediction specialized on certain needs. This flexibility makes the ap-
proach suitable for medicine, forensic and, anthropology. A practical
example from the anthropological field is the reconstruction of Theo
the pipe smoker described in Section (6.2).






Chapter 5

Facial Skin and Wrinkles

The presented modeling of aging as physical attribute addresses the
changes of faces on a coarse level of the shape. However, the Mor-
phable Model is not capable to represent fine facial details as wrinkles
or pores that are not in correspondence. For this reason we designed
and implemented a statistical model to synthesize wrinkles that we
present in this chapter.

The appearance of facial wrinkles is clearly a prominent effect of
facial aging. The causes are structural changes of the skin elasticity,
allowing the mimic wrinkles to become permanent. The skin consists
of three layers: the epidermis, dermis, and subcutaneous tissue. The
top layer is the epidermis. Aging causes the epidermal cells to become
thinner, that is visually noticeable. The effects of aging on the dermal

7
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Figure 5.1: Example images of the perorbital lines taken with the scanner
camera (a). All lines are perpendicular to the direction of the orbitalis oculi
(b). The number of wrinkles can be different for each person.

structure are that it becomes thinner too, less collagene is produced
and elastin fibers that provide elasticity wear out. This elastosis
cause the skin to wrinkle and sag. In the subcutaneous layer the fat
cells get smaller with age. This leads to more noticeable wrinkles and
sagging, as the fat cells cannot “fill in” the damage of the other layers.
These changes of the skin affect the visual appearance. Therefore,
we address these changes by our statistical model for the large scale
wrinkles and a simple synthesis of detail structure.

A terminology to classify wrinkling, wrinkles, furrows and folds is
proposed in [45]. Wrinkling are fine lines which group together over
time and for multi directional oriented structures. The stronger wrin-
kles following certain rules are the mimic wrinkles commonly referred
to as lines (partial thickness) or furrows (full thickness). These by
our system addressed wrinkles are the effect of deep dermal creasing
caused by facial movement and expression combined with the dermal
elastosis. Consequently they are perpendicular to the muscles (Fig-
ure 5.1). Folds are caused by overlapping skin due to laxity, gravity,
and the consequent sagging. In terms of terminology we follow the
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Figure 5.2: Anatomic wrin-
kle names: HF, horizontal
forehead lines; GF, glabel-
lar frown lines; NT, nose
traversal lines; PO, perior-
bital lines; PA, preauricular
lines; CL, cheek lines; NL, na-
solabial folds; UL, upper ra-
dial lip lines; LL, lower radial
lip lines; CM, corner of the
mouth lines; ML, marionette
lines; LM, labiomental crease.
All names except the NT lines
were taken from [45].

anatomic wrinkle naming proposed by Lemperle et al. [45] that is
shown in Figure (5.2).

Big furrows and the sagging are represented by the Morphable Model,
as described in Section (4.2.4), and can be synthesized with the at-
tribute manipulation. The focus of the statistical modeling of wrin-
kles (Section 5.2.1) are the wrinkles caused by the mimic and become
permanent over time. These wrinkles follow certain rules that can be
learned from example data. In Section (5.6) we sketch the modeling
of fine scale wrinkling using a texture synthesis approach.

5.1 Wrinkle Synthesis System Overview

Our approach to synthesize facial wrinkles, on the basis of models
learned from examples, consists of following steps:
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e Random generation of wrinkle constellation (geometric position
of the wrinkles).

e Computation of age and location dependent shape and shading
of each wrinkle.

e Rendering of the face with synthesized wrinkles.

A schematic overview of the whole synthesis system is shown in Fig-
ure (5.3).

In our approach we aim to learn all relevant parameters and models
to synthesize wrinkles from example data in order to achieve realistic
results. The examples used to learn the models are 3D scans captured
with additional fine structure and manually marked wrinkle curves.
The first step is to learn the possible constellations of the wrinkle
curves occurring on faces. This is realized by computing a non para-
metric density estimation of wrinkles with certain orientations over
the facial surface. This density is stored in a probability map. For the
sampling of wrinkle constellations an additional distance and length
map is necessary. These maps hold the usual length and distance
between the wrinkles for the facial region. Having this maps enables
us to generate random wrinkle constellations, where the number of
wrinkles is chosen according to a learned wrinkle count model.

To represent the shape and shading of the wrinkles we assemble PCA
models of the wrinkle structure in a band along the curve. Compa-
rable to the face model the shape and shading models are segmented
(Section 5.5.4). This is done for two reasons: Firstly, it increases
the variation of the model and secondly we can choose the number
of segments according to the individual wrinkle length. Further, we
compute age and position dependent model coefficients to synthesize
the varying appearance of the wrinkles. For this purpose a shape and
a shading map is learned from the example data, holding coefficients
for each point.
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Figure 5.3: Schematic overview of the wrinkle synthesis system. All
learned model parts to generate the wrinkles are shown in green. Yellow
indicates algorithms. The face is given by the Morphable Model and can
be considered as input for the system.
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For the rendering, the generated wrinkle shadings are rastered into
the texture of the target face. With the geometry of the given face
we compute first the displacement maps according to wrinkle shapes
and thereof the normal maps. The geometry, texture, and normal
maps forms the input data for the rendering of the face.

In the following we explain all steps necessary for the learning and
synthesis in detail.

5.2 Geometric Wrinkle Occurrence Model

A major problem of the Morphable Model is that fine details for
which no correspondence exists can not be represented. Because if
we compute the mean of two hundred faces the details vanish and
the variation caused by it are to small to be represented in the typi-
cally reduced number of used principle components. This is also the
case for facial wrinkles since their occurrence differs in count and
position (Figure 5.1) and therefore they can not be set into corre-
spondence. Furthermore wrinkles can be absent in a neutral face
while they appear due to muscle contractions. For this reason there
exists no correspondence for the wrinkles and the face model must
be extended to represent the occurrence of wrinkles. To describe the
spatial occurrence on the surface of the face we use the texture map
(Section 2.4) as domain such that each wrinkle position can be de-
scribed as a line in R?. To train the model we manually marked such
wrinkle lines in our training data (Section 5.2.2). Since there is no
correspondence for the wrinkles we learn instead the probability of
the occurrence (Section 5.2.3) in certain regions. On contrary this
regions can be considered to be in correspondence. Qur objective is
then to use this occurrence probability to generate synthetic wrinkles
according to it. The wrinkle curves are represented by splines or line
strips. In this manner the wrinkle correspondence is given by a band
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shaped parameterization along the wrinkle curve. The band along
the curve is defined in the following Section (5.2.1).

5.2.1 Wrinkle Curve

Each wrinkle shall be represented by a band along its curve that
defines its correspondence. The curve of wrinkles is described by a
Bézier spline. Each polynomial of such a spline is of cubic Bézier
form. In other words the spline is a series of Bézier segments. Each
segment defined by the control points p,,...,p, € R? that make it
easy to manipulate the curve manually. The parametric form of the
Bézier curve is

s(t) =(1—t)°p, +3(1 — t)°tp, + 3(1 — t)t°p, + t°p,, (5.1)
t €0,1],

where p; and p, constitute the start and end point of the segment.
For this reason these curves are easy to define continuously, by setting
the end point as starting point for the next segment. The interme-
diate points steer the direction of the curve and can be used to force
the curve to be smooth.

An additional requirement for the computation of the band and the
wrinkle direction in each point is the possibility to calculate the nor-
mal vector n(t) € R? perpendicular to the tangent of curve in every
point s(t). To calculate the normal the derivative

s'(t) ::%s(t)

=—3(1—1)’p, +3((1 — 1)” = 2t(1 — 1)),
+32t(1 —t) — t*)py + 3t°py, (5.2)
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Figure 5.4: The wrinkle geometry is defined by a spline with the control
points (p1,-..,pn) € RZ. The surrounding band is defined by the normal
n(t) € R? at any position ¢ € R of the spline and can be warped into an
image parameterized by the axes u and v.

is calculated and used to compute the normal

s’,(t)y
n(t) = | l500). (5.3)

lls” ()1l

Having the definition of Equation (5.1) and Equation (5.3) a coor-
dinate system u,v forming a band along the spline (Figure 5.4) can
be simply defined. The point in the texture p,,, of a point in the
wrinkle coordinate system u,v is then simply

Diox (U, 0) = s(u) + (2v — D)n(u), {(uw,v) e R|0<wu,v<1}. (5.4)

With this coordinate transformation each point in the band along
the curve can be transformed to the texture coordinate system. This
is needed later on to warp wrinkles to a uniform representation (Sec-
tion 5.5.3) and raster generated wrinkles into the texture.
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5.2.2 Manual Labeled Wrinkle Training Data

To obtain the training data for the wrinkle model we manually labeled
about 2700 wrinkle curves on the textures of around 520 scans. For
the labeling a graphical user interface was developed [11] to place
and edit spline control points and ensure smooth transitions between
the spline segments. For building the model we excluded wrinkles at
the neck because they are partially strong folds and therefore do not
yield visually plausible results.

5.2.3 Non-Parametric Wrinkle Occurrence

The occurrence rates of a facial wrinkle at a position p € R? on the
face! with the tangent direction of angle ® € R is stored in a three di-
mensional image M, : @ C R’ — R indexed by « = (p,.,p,, <I>)T €
2. Where the first two axes p,,p, correspond to the texture coordi-
nates and the third axis to the angle ®. For the position we assume
that the probability for a wrinkle to occur on the left or right side
of the face is equal therefore we designed the map to be symmet-
ric. Furthermore the wrinkle direction (curve tanged direction) is
ignored such that the angle becomes {® € R | 0 < & < 7}. The
map is calculated from all manually labeled wrinkles (Section 5.2.2)
using a Parzen Window approach. The Parzen Window approach (or
Kernel Density Estimation) is used in statistics as a non parametric
approach to estimate the density function of a random variable that
is @ in our case. For each of the M = 2691 labeled wrinkle curves,
n equally distant points p,, ¢ = (1...n) are sampled and its tangent
angle ®; is computed analytically from the spline function. Using
(Equation 5.3) the angle at position ¢ of the spline is

1The 2D parameterization of the face surface is given by the texture map.
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Figure 5.5: Wrinkle occurrence displayed on the mean shape of the Mor-
phable Model. HSV coding of the direction (in degrees) as hue and oc-
currence probability as value. The occurrence map is obtained using the
Parzen Window approach (Section 5.2.3) with os = 10 pixel and g = 2
pixel.

®(t) = arctan(n(t), /n(t)z). (5.5)

As kernel to obtain a smooth density model we choose the Gaussian
Radial Basis Function (RBF)

N Ts—1
1 1 —(wowy)” BT (m—wy)
CREPV TS T

with ¥ = diag (0s,0s,00) for the spatial and angular smoothing.

The result is normalized by the sum N = Zf\il n; of all n; points
sampled from M example splines to obtain a density.

For performance reasons we pre-compute the probability map M, :
Q c R® — R (Figure 5.5) by evaluating the probability function p(z)



5.2. GEOMETRIC WRINKLE OCCURRENCE MODEL 87

at a discrete number of points € ). Special care is taken to consider
the periodicity of the angle ® and the mirroring at the middle of the
face. Apart from the occurrence probability measurements about
the distance and length of wrinkles in certain regions are needed to
synthesis wrinkles. The models for wrinkle length and distribution
are discussed in the following.

5.2.4 Spatial Distribution and Length of Wrinkles

Looking at the occurrence of facial wrinkles, two additional properties
can be observed. The first is that wrinkles in certain regions of the
face occur in different distances dependent on the thickness of the
underlying skin. For example the distance between the wrinkles on
the forehead is bigger than the distance of those around the eyes.
Second the length of the wrinkles is also varying over the face. Here
wrinkles on the forehead are in general longer than others. That
spatial distance and length variation of the wrinkles should be learned
from the data to achieve in a statistical sense natural results. The
spatially varying distance and length of the wrinkles is represented in
two maps containing for each point in texture space the corresponding
values.

The first map is the distance map My : © C R? — R holding
for each point on the face the expected distance between wrinkles.
For the computation of the distance map, we determine for each
wrinkle of one example person the distance to the closest wrinkle
of the same face scan. This is done by sampling equidistant points
p; € R2,i=1,...,n of the splines. For each point p, the distance d;
to the closest point of all other splines in the same face is computed.

The computed distances for all points on the wrinkles of all persons
are taken together as scattered point cloud. For each point we obtain
the pair (p;|d;) consisting then of the spatial coordinate and the
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min max

Figure 5.6: Distance map rendered on the mean face. The colors represent
the normalized distanze between the wrinkles.

corresponding distance. To restrict the influence of points which are
too far away, a threshold on the distance is used to filter them out.
The map M4 (Figure 5.6) is then pre-computed from the pairs using
B-Spline Scattered Data Approximation [73]. This approximation
fits a B-Spline function in the least squares sense to the arbitrary
on the face distributed points. The calculated B-Spline function can
be evaluated all-over the face and is used to pre-compute the whole
distance map.

The second map (Figure 5.7) holds the expected length for each point
is computed in the same manner. First the length

n—1
l= Z”I%’-&-l -l (5.7)
=1

of each spline is computed numerically and stored for each point in
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min max

Figure 5.7: Rendering of the length distribution of the wrinkles over the
face. The colors display the normalized wrinkle length on the face.

the pair (p;|!). Using these pairs we apply as well the Scattered Data
Approximation to obtain the length map M;: Q C R? — R.

Another important aspect that has to be handled by the length model
is that the length of the wrinkles increases over time. To examine
this progress we measure the wrinkle length for all examples of differ-
ent ages. The by the texture size normalized length for each wrinkle
regarding the age is plotted in Figure (5.8). Wrinkles become longer
over time. Linear regression provides here a simple method to approx-
imate this length change over time. The regression result showing the
trend of the wrinkles to become longer can be seen in Figure (5.8).
For this reason we included a linear modeling before the length map
computation. The linear modeled part of the wrinkle length is then
subtracted before the spline approximation of the length map M;.
For the synthesis of wrinkles with age dependent length we simple
add the linear modeled line length again to the values of the map.
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Figure 5.8:
Normalized length
dependent on the age.
The linear regression
shows the increasing
length of the wrinkles
with progressing age.

5.3 Age Dependent Wrinkle Count

The number of wrinkles to synthesize in a face is dependent on the
persons age but can change between different persons. For this reason
we developed a method to generate an age dependent random number
(Figure 5.9) that is used as desired wrinkle count. The number of
wrinkles at age a shall be normal distributed according to the age a

f(a) ~ N(m(a), 0*(a)), (5.8)

where m(a) € R denotes the age dependent mean and ¢%(a) € R
the age dependent squared standard deviation. We define the age
dependent mean

m(a) == 20’ + Mia (5.9)
to be a polynomial function. The parameters A are found by fitting
the function to the example data using regression. The parameters
for the variation

o?(a) == Xaa® + Mia (5.10)

are fitted to the squared residuals from the first fitting of the mean
function.
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Age can be drawn.

5.4 Model Based Wrinkle Synthesis

To synthesize the geometric occurrence of wrinkle curves in faces the
probability map is used to sample random wrinkle constellations. To
sample wrinkle candidates from the measured probability distribution
a rejection sampling based algorithm is used. Starting with a ran-
dom point in the face, drawn according to the distribution, the most
likely wrinkle curve is traced through the probability map. Wrinkle
curves are only kept if the probability of the wrinkle is over a certain
threshold. The steps of the algorithm are described in more detail in
Algorithm (3).

To avoid collisions and to ensure a plausible spatial distribution of
the wrinkles the distance map M4 (Section 5.2.4) is used. We achieve
a distribution of the wrinkles according to the distance map, by sub-
tracting for each found wrinkle its probability from the probability
distribution. The intuitive idea is to delete the occurrence probability
in a region around the wrinkle such that no new wrinkles are gener-
ated in this region. The size of the region is taken from the distance
map to delete for example around the eyes smaller areas as on the
forehead where bigger distances between the wrinkles are common.
To do so the wrinkle curve is sampled at equidistant points p € R3.
For each point a radial basis function with o; = M 4(p) set correspon-
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Algorithm 3: Wrinkle Rejection Sampling

function traceWrinkle( x,t,direction )

r € R = maximal direction change per step
o = o
repeat
/* find direction with maximal probability for
current position x/
® = argmax M,(x)
Pe[®—r,D+7r]
/* one step along the current direction x/
x = x + A(D, direction)
l={xz,}
until M, (z) <t
return [
repeat
t € R = draw random probability
x=(z,y,®) cQCR?=
draw random position and direction on the face
if M,(x) >t then
/* trace wrinkle in both directions */
| = {traceWrinkle(a,t, left) , x,traceWrinkle (x, ¢, right) }
if length(l) ~ M (x) then
acceptWrinkle (/)
/* Delete probability from M, in the region of
the wrinkle [ to avoid collisions. M, defines
the width of the wrinkle region around the
wrinkle line. */
deleteProbability (M q(Ve € 1))

until desired wrinkle count reached
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(a) 40 Years (b) 60 Years

Figure 5.10: Two exemplary results of the rejection sampling algorithm.
The accepted wrinkle curves are shown in green. The wrinkle count is
appropriate for 40 years (a) and 60 years (b). The green area around the
curves shows the distance according to the distance map occupied by the
wrinkle curve.

dent to the value of the distance map is computed and subtracted
from the wrinkle occurrence probability map M, (Figure 5.5). Com-
parable to the Parzen Window approach (Section 5.2.3) we subtract
the kernel function from the wrinkle density estimation. That ensures
that the sampling algorithm draws no new example at the same po-
sition with the same direction. A result of the sampling using the
distance map can be seen in Figure (5.10).
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5.4.1 Simulating Successive Wrinkle Occurrence

Apart from the prediction of a single aged version we want to simulate
the progression of an aging face. That rises the problem that our
proposed algorithm samples a preselected discreet number of wrinkles
where we would need a with time increasing number. To overcome
this problem we sample the by the wrinkle count model (Section 5.3)
given number of wrinkles for the maximum age. For each wrinkle

curve with the points p;,, ¢ = 1...n we compute the occurrence
probability
=13 My, (5.11)
gt '

and order the wrinkles by that probability. Using the wrinkle order,
for each age step that shall be synthesized we show only, the to the
wrinkle count model correspondent amount, of most probable wrin-
kles. In this way for each step of the age progression new wrinkles
appear in an age dependent meaningful order.

5.5 Wrinkle Appearance

With the geometric wrinkle occurrence model we address the model-
ing of the arrangement of wrinkles on the face. The sampling from
this model provides the wrinkle line constellation where the wrin-
kles occur but not how they look like. In the following we discuss
how we represent and model the visual observable appearance caused
by shape and shading of a single wrinkle. Our approach consists of
following steps:

e Extraction of the shading caused by the wrinkles.
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e Computation of displacements from the face scans with skin
details to extract the wrinkle shapes.

e Warping of the wrinkle shape and shading to a uniform repre-
sentation.

e Modeling of shape and shading using PCA.

e Age and position dependent modeling of shape and shading
model coefficients computed from all example wrinkles.

Physically a wrinkle is a line, furrow, or fold in the skin. To simulate
the appearance of a wrinkle, different physical effects have to be con-
sidered. Due to its valley structure the radius of the incidence light
is limited such that the wrinkle receives and therefore also emits less
light than the surrounding area. This ambient occlusion is simulated
by modeling the shading of the texture along the wrinkle. The shape
of the wrinkle causes reflection changes which are probably the most
prominent property that can be observed. To render the fine scale
shading it is necessary to represent the geometry in a very high res-
olution. Among a high resolution mesh, normal maps (Figure 5.11a)
provide a much more efficient way to represent the fine structure of
wrinkles for the rendering of faces. Another important aspect that
we address is the diffuse reflection due to subsurface scattering. The
scattering of the incident light affects the diffuse reflection dependent
on the wavelength of the light. This effect causes that red light trav-
els longer through the dermis than blue light. For that reason we
are using three normals for the rendering of the red, green and blue
color channel (Section 5.7). The wrinkles are because of the scatter-
ing stronger represented in the blue normal map which leads to slide
reddish shading.

To synthesize the wrinkles on a face we model the shape and shading
in two separate PCA based models. Since it is rather difficult to
model the shape directly by the normal maps we use instead the
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(b) Displacement Map

Figure 5.11: Normal maps (a) contain normals in object coordinates.
Because of the difficulties when transfer or model normals we use displace-
ment maps (b). The displacement maps contain comparable to the normal
maps small scale structures and wrinkles.

displacements at each point of the normal map. The first reason for
doing so is that the displacements along the normals are invariant
to transformations on the surface of the model. Object or tangent-
space normal maps® are not valid for another point on the surface
without rotating them according to the transformation (Figure 5.12).
The second problem is that it is not possible to generate new normal
maps by simply linear combining examples, because in general neither
the sum nor the scalar multiplication is a valid normal map. Using
displacement maps instead it becomes possible to generate a simple
linear model to generate novel displacements from the examples.

To render the face the algorithm uses one albedo map for the facial
color and additionally three normal maps to calculate the shading.
The shading of the synthesized wrinkles is rasterized to the albedo

In computer graphics normals can be defined with respect to the object-
space or a smoothly varying coordinate system along the object surface (tangent-
space).
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map in order to realize a simulation of a quasi ambient occlusion.
To apply the wrinkle geometry to the skin the displacements are
drawn to three displacement maps (one for each color channel). The
normal maps for the actual rendering are then calculated from the
synthesized displacement maps (Section 5.7).

5.5.1 Wrinkle Shading

The shading in wrinkles caused by ambient occlusion is best visible in
the texture obtained by the scanner with ambient illumination. The
shading caused by wrinkles is represented as local information and
consequently with high frequencies in these textures. When extract-
ing local information from a texture map, it appears sensible to look
at the ratio of the signal and a low-pass filtered copy of the signal for
color data. Such a color texture can be modeled as a product of a sur-
face color value (albedo) that varies only little across the surface and
a geometric shading value that contains the actual high-frequency
information. In that model, the high frequency component of the
total color value is proportional to the average brightness of the skin.
In order to keep the apparent roughness of the skin constant when
transferring the high-frequency component of a texture from one face
to another. Therefore we store the ratio of the source texture and a
blurred copy of it, and multiply that ratio to a blurred copy of the
target face. That way, the high frequency component of the final tex-
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ture will scale up or down based on the brightness of the target face,
ultimately suggesting the original surface shading and thus the same
roughness. Further the multiplication has the advantage that in the
rendering step (Section 5.7.1) crossing or overlapping wrinkles can be
applied with less averaging or cancellation effects. This approach is
comparable to image based detail transfer [65, 49] where the transfer
of photographic image details is demonstrated.

To obtain the ratio, the original image I : Q C IN? — R? is element-
wise divided by a smoothed version of the same image T filtered with
a Gaussian low pass filter. The transfer of the details of one image
I, to another I, is simply the multiplication with the filtered target
image:

~

1(x)
(@) Iy(x), Vx € Q.

Iijo(x) =

~

To model the shading of the wrinkles we compute for each texture
the ratio I(z)/I(x) that represents the by the fine structure caused
shading. The shading along the wrinkles is extracted as example data
to calculate the in the following described shading model.

5.5.2 Wrinkle Shape

The wrinkle shapes are extracted from displacement maps of the ex-
ample 3D face scans with captured details. To calculate the displace-
ment maps we use the refined geometry of the normal map extraction
(Section 2.7) and a smoothed version of the facial geometry. Both,
the smoothed and the refined geometry are available at the resolu-
tion defined by the texture map and are denoted by p,.aueq € R®
and P, omea € R®. The displacement d € R is computed by pro-
jecting the displacement vector P aned — Psmoothed O0t0 the normal
n of the smoothed geometry (Figure 5.13). Since the normal n € R?
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v

Figure 5.13: The difference between the vertex positions of the smoothed
Psmoothed ad the refined geometry p,.gneq i projected onto the normals
n, to calculate the per point displacement d. The displacement can be
positive or negative to describe hollows and elevations

its normalized we get

(p -p n)
d:= refined ||n|S‘I;OOthed’ = <prcfincd ~ Psmoothed: n>

Applying the displacement on a novel geometry can be realized by
simply adding d times is normal P, 4ifed = Pnovel T @ Mnovel-

The normal map fitting based geometry refinement (Section 2.7.5)
yields one geometry per color channel. We compute for all channels
the displacement that is later on used to reconstruct three geometries
and from these three normal maps to render the face. For the further
modeling of the displacement we define a displacement map D : Q) C
R? — R? containing the displacements for all three color channels
d = (dr,dc,dB)” € R

5.5.3 Wrinkle Warping

For modeling wrinkles we need to warp a band shaped region along
the wrinkle into a straight form. In this way we transform the wrin-
kles into a representation given by the parameterization of the wrinkle
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()

(b)

(©)

Figure 5.14: Warping of a wrinkle to the normalized representation. In
original texture (a) we use the mesh (b) to warp the wrinkle (b) to its
normalized form.

band where they are in correspondence. This registered wrinkles are
later used to compute the shape and shading models. To extract and
warp the wrinkles of the examples we define a 2D triangular mesh
along the wrinkle curve.

To construct the mesh we use the definition of the band shaped co-
ordinate system (Equation 5.4) along the wrinkle curve (Figure 5.4).
This coordinate transformation computes for each point u,v on the
wrinkle band the belonging point on the facial surface p,., (u,v). We
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Figure 5.15: Segmentation of the un-warped wrinkle in a length depen-
dent number of segments (green boxes). For the synthesis with a smooth
transitions between the segments each segment overlaps by a configured
number of pixels.

Segment

Overlap

set the 2D vertex coordinates of the mesh to u,v and the texture
coordinates to p,., (u,v).

Warping the wrinkle can be easily done by rasterizing the mesh. In
this way we proceed with the shape and shading of the wrinkle to
obtain the normalized representation (Figure 5.14) where we have
correspondence between the examples. Exchanging the vertex and
texture coordinates enables us to un-warp and display wrinkles in
the texture space of a novel face.

5.5.4 Modeling of Wrinkle Shading and Shape

In the Morphable Model framework the PCA is used to model the
variation of registered textures. The presented approach applies PCA
to model the variation of the shape and shading of wrinkles. To han-
dle wrinkles of different length and to improve the flexibility of these
models we segment them into equally sized parts (Figure 5.15). Each
example wrinkle curve extracted and un-warped from the texture and
the displacement map of the 3D scans is divided into an on the length
dependent, number of parts. All parts are extracted with a defined
overlap such that they can be again concatenated in the synthesis.

For the shape and shading two separate PCA models are computed.
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Shape Mean Shading Mean
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Figure 5.16: PCA models for the shape and shading caused by wrinkles.
Shown are the means and the first two modes of variation at a standard
deviation of +10 and —1o

The means and the first two modes of variation can be seen in Fig-
ure (5.16). The first five modes of variation of both, the shape and
shading model, can be found in Appendix (C).

To further extend the flexibility of the models along both axes mir-
rored versions of the example wrinkle patches are added to the train-
ing data. The amount of training data is listed in Table (5.1).

The models represent the shape and shading of wrinkles and to syn-
thesize novel wrinkles. In this way each wrinkle can be described as
set of real valued coefficients representing a natural wrinkle. Further,
by manipulating the coeflicients we can change the appearance of the
wrinkles.
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‘ Shading Shape

Scans 522 55

Marked Wrinkles 2691 567

Extracted Segments 4x3951 4x866
Segment size 64x64 pixel 64x64 pixel
Overlap 16 pixel 16 pixel

Data matrix size | 18432x15804 18432x3464

Table 5.1: Number of scans, marked example wrinkles, and extracted
segments. Each segment is mirrored and inserted four times into the data
matrix. The PCA models are computed from the according data matrices.

5.5.5 Coefficient Maps

Similar as the length of wrinkles and the distance between them varies
over the face, the shape and shading varies. This variation is caused
by the different appearance of wrinkles in certain areas of the face.
For example the horizontal forehead wrinkles are deeper and there-
fore also darker than the thin periorbital wrinkles at the eyes. To
synthesize the different wrinkles using the shape and shading models
it is necessary to calculate spatially varying model coefficients. The
approximation of the coefficients explained in the following is exactly
the same for shape and shading model coefficients. The variation of
this coefficient vectors a € R™ shall also be learned from the ex-
ample faces and represented by one map M. : Q@ ¢ R?Z — R" for
either the shape or the shading PCA model. The first step to learn
the coefficient map is to project the example data to the model.
The projection of each wrinkle segment results in a coefficient vector
a € R™. Additionally for each wrinkle the midpoints

1 n
D, ::Ez;piﬁi:l...m (5.12)
iz
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Figure 5.17: Schematic illustration of the wrinkle PCA model in gray
with two example wrinkles oy and ag on the first principle component.
Definition of wrinkles a1 and g relative to a flat segment represented by
B as &1 + B and &g + B.

of all n points p;; belonging to the i-th wrinkle curve segment are
computed. Having the corresponding pairs (p,, a;), 4 = 1...m of the
geometric location on the face and the model coefficients, enables us
to compute the coefficient maps M .. That are later used to interpo-
late for each generated wrinkle segment age and position dependent
shape and shading model coefficients a := M (p;). Again the B-
Spline approximation is applied to obtain a smooth transition of the
coefficients over the face.

Now, we want to extend this method to insert a parameter for the
intuitive control of the wrinkle intensity and later on the age depen-
dent development of the wrinkles. The wrinkle intensity is here the
difference (Mahalanobis distance) between flat skin and a wrinkle.
As simplification we assume that the mean of flat skin converges to-
wards a constant function. Therefore we assign the flat segment with
a constant and project it to the model to determine its coefficients
B. Further, instead of directly using the vector a we rather compute
& = a— 0 (Figure 5.17). This enables us to insert a parameter A € R
in the inverse computation of coefficients a = A &+ 3 that intensifies
the wrinkle. The maps are then computed from (p;,&;), i =1...m.
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Figure 5.18: Plot of the age dependent wrinkle intensities \; obtained
by projecting the coefficient vectors on the map values M .(p). Shown are
the linear regression results that demonstrate that the intensity of wrinkles
increases with the age.

For the age dependent intensification we compute for each segment
its intensity by the projection of its coefficients &; on the values of
the map

(@ M)
[ Mc(p;)I?
Having the intensity A; and the corresponding age a; of the person
linear regression is used to approximate it by the linear function

f(a;) = \; (Figure 5.18). In this way the age a dependent coefficients
at any point p € Q on the face are

a= f(a)M.(p) + 8. (5.14)

(5.13)

To visualize the variation of the wrinkle appearance we rendered a
regular grid of wrinkles onto the mean face (Figure 5.19). The wrinkle
coefficients were calculated for a target age of 45 years. It can be
observed that the appearance varies over the face.



106 CHAPTER 5. FACIAL SKIN AND WRINKLES

Figure 5.19: Rendering of the mean face with a regular grid of wrinkles
to visualize the by the computed coefficient maps represented variation of
the wrinkle appearance over the face. The age was set to 45 years to obtain
the wrinkles.

For the synthesis of novel wrinkles we assume that the coefficient
can differ according to a normal distribution for each synthesized
segment. For that reason we draw random coefficients for the segment
mid point p and a preset o from

Anew(P) ~ N(a,0). (5.15)

Using anew we compute the shape or shading of the segment that
is concatenated with other segments to form the wrinkle. To obtain
smooth endings of the wrinkles we fade them out using a blend func-
tion. All wrinkles are then used in the later described texture and
normal map generation (Section 5.7.1) to render the face.
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5.6 Skin Detail Synthesis

Displaying the wrinkles on an entirely smooth facial surface makes
the result look rather unnatural. A more natural looking result can
be obtained by adding fine scale facial skin structure with a compa-
rable method as proposed by Mohammed et al. [53] that synthesizes
coherent 2D face images from examples. This is planned as future
improvement (Section 7.2). For this work we used a rather simple
approach to synthesize such structure by Image Quilting [29]. The
method synthesizes a big texture by copying texture patches from
a smaller basis texture together such that they match to each other
and no visible transition between the patches remains. As basis we
used a part of a displacement map of mid age persons skin without
wrinkles. From this patch we created a version in the size of our in
general used texture map size. Renderings with different weighted
synthetic details can be seen in Figure (5.20). When rendering faces
with wrinkles these are rastered over the fine skin structure.

5.7 Rendering of Faces with Wrinkles

Rendering facial images is a difficult task since humans have a es-
pecially trained perception of faces. Slight errors in the display of
the eyes or the skin are recognized easily. Closing this gap between
computer graphics and photorealism is especially for faces difficult
and can only be achieved using measurement of real data [42, 41, 28].

In particular the rendering of fine pores and reflection properties of
the skin is challenging. As described in Section (2.7) our 3D scan-
ner captures such fine structures of the skin. Moreover, the usage of
three separate normal maps allows for rendering subsurface scatter-
ing effects causing reddish color bleeding on the skin (Figure 5.21).
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(a) Smooth Surface (b) Synthesized Detail (c) Enhanced Detail

Figure 5.20: Synthesized skin structure using texture quilting. Render-
ings with no details (a), synthesized details (b), and for visualization three
times enhanced details (c).

The effect of color bleeding is especially important for the realistic
rendering of the synthesized facial wrinkles. The presented approach
computes three displacement maps and thereof normals for the ren-
dering (Section 5.7.1).

For rendering the faces a software renderer was developed. The faces
are rendered with soft shadows computed using shadow mapping. For
the pixel shading we use the normals for each color channel stored
in three normal maps with the size of the texture. The shading can
be computed using different local illumination models as Phong or
Torrence-Sparrow [71] (Figure 5.22). The Torrence-Sparrow model
allows for more realistic rendering of rough and slightly oily surfaces
as skin [28]. For more realistic illumination conditions the rendering
with environ maps is feasible.
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Smoothed Geometry

| -

Figure 5.21: Rendering of facial details. The left column shows the
smoothed basis geometry to which the displacement is applied. In the
middle only one displacement (from green channel) is applied. On the
right all three displacement maps are used. The rendering shows the slight
color bleeding effects inside wrinkles and pores.
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Phong Shading Torrence-Sparrow Shading

Figure 5.22: Comparison of Phong and Torrence-Sparrow shading for the
specular reflection. The top row shows renderings with one displacement
map. For the bottom row all three displacement maps are used.
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5.7.1 Texture and Normal Map Generation

To achieve a realistic display of the wrinkles and fine structure on
a face we render the face using a texture map and one normal map
per color channel. The face can be given by the Morphable Model
or a registered scan and consists of the geometry given as mesh and
a texture. To apply the synthesized wrinkles we modify the texture
and additionally apply the displacement to the geometry and further
compute the normal maps from that refined geometry.

As described in Section (5.5) we model the appearance of wrinkles
with two separate linear models for the shape and shading. After
the generation of the wrinkle curves we use the warping to draw
the wrinkles into single maps for shape and shading. The shading
map simulates the ambient occlusion of the wrinkles. To display the
shading the map is applied to darken the texture map where we want
to synthesize the wrinkles. This approach assumes complete ambient
illumination and does not take the light direction into account.

The reflection dependent shading is simulated by the normal maps.
To compute the normal maps the displacement of the wrinkle shape
model (Section 5.5.2) combined with the synthesized details (Sec-
tion 5.6), is applied for each channel to the geometry obtained from
the face model. To apply the displacements we store the geometry
given as mesh in a geometry map M, : R? — R3. After applying
the displacements the three normal maps are computed using finite
differences of the refined geometries. Given the geometry in a the
map M, the normal map M, : R* — R® can be computed by

VuM g(u,v) x VoM 4(u,v)
VM 4 (u, v) X Voo M g (u, v)|

M, (u,v) = (5.16)

where X is the cross product. The rendering using the modified tex-
ture and the normal maps allows to simulate different illuminations
as shown in Figure (5.23).
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Figure 5.23: Renderings of
wrinkles with varying illumi-
nation. The light direction
is 80, 40, 0, and -40 degrees
from top to bottom.

5.8 Wrinkle Detection in Faces

Another intuitive assumption is that expression wrinkles become static
over time and transform into age wrinkles. This additional infor-
mation can be used in our approach by first detecting expression
wrinkles transferring them onto a neutral face and render them as
age wrinkles. One of the key issues in this approach is the auto-
matic detection of the wrinkles that is rather difficult. Reasons are
that the algorithm must be sensitive to small wrinkles and at the
same time handle rather big shading variations along the wrinkles.
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Figure 5.24: Filter bank with three oriantations of the second derivative
of a Gaussian. Linear combinations of filter responses obtained with these
filers are sufficient synthesize all rotations of the filter.

Moreover, a simple edge detector can not be used because the al-
gorithm has to distinguish between wrinkles and other edges caused
by the eyes or hair. The former described wrinkle probability map
M, : Q C IN* — R can solve this problem by using it as prior knowl-
edge for the detection. The wrinkle occurrence map M, provides for
each oriented point © = (z,y, ¢) € Q the probability for a wrinkle.

For the detection we first apply steerable filters [32] using the 2nd.
derivative of a Gaussian (Figure 5.24) on the texture of the example
face. This yields a oriented filter response G : Q C IN®> — R of the
edges in the texture. The response still includes edges of the color
gradient at the eyes or the hair. By multiplying each of the discrete
number of oriented filter responses by the probability of a wrinkle at
the same orientation ¢ the

M¢(x) = G(x)My(z), Ve € Q (5.17)
wrinkles are intensified.

The result (Figure 5.25) is again a map M ; containing for each point
the emphasized value. Using a slightly modified version of the in
Section (5.4) proposed algorithm to sample wrinkles enables us to
obtain existing wrinkle curves automatically from M ;. In contrast
to the original algorithm we start the tracing of wrinkles at positions
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Figure 5.25: Result of the Gaussian steerable filter response G combined
with prior knowledge of the wrinkle probability map. Shown is the original
texture with an overlay of pixels from M ; above a certain threshold.

with maximum filter response instead of random positions. These
curves can be included in the age dependent synthesis of random
wrinkles. With this approach we are able to use an expression scan
to generate an aged version of a face with wrinkles where we assume
them to appear (Figure 5.26).
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(c) (d)

Figure 5.26: Detection and transfer of performed expression wrinkles (a).
The wrinkles are detected in the texture (b). The texture image shows the
filter response shaded in blue and the detected wrinkle lines in green. The
detected lines can be rendered on a neutral face (c¢). Moreover, we are able
to further age the face by adding synthetic wrinkles to the detected ones

(d).
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Practically the proposed approach to transfer wrinkles from an ex-
pression scan to a neutral one assumes that the expression wrinkles
are in correspondence with the positions where the age wrinkles ap-
pear, that is not the case with the currently used registration method.
Therefore we do not show further results in this work but provide the
technology usable with a improved registration method.



Chapter 6

Results

There exist many interesting and popular applications for simulation
of facial aging. These applications can be found in a lot of differ-
ent disciplines like medicine, forensic, anthropology, biometrics, art,
entertainment, and computer graphics. At the same time most com-
mon methods to ”simulate aging” are done by hand, like manually
draw aging effects into images, model faces with clay, or use cosmet-
ics and masks in the film industry. In contrast computer aided aging
techniques either also rely on manual interaction or have a lack in
accuracy or photo realism. Our in the following shown results are
generated automatically and are applicable to many of these appli-
cations. These results are obtained with the attribute manipulation
that we later on combine with synthesized age wrinkles. Addition-
ally we show results of the reconstruction of faces from skulls and its

117
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application in the anthropological field.

6.1 Manipulating Facial Age

In Section (4.2) we presented a method to fit faces to a set of given
physical attributes. In this work we use this method to simulate the
large scale geometry changes caused by aging. All results shown in
this section are calculated using the attribute fitting method that has
been published in [8]. In Figure (6.1) we show a comparison between
linear regression and SV regression based age progression, obtained
by manipulating the age by -10 to +40 years starting from the orig-
inal female face. Slight differences can be observed that are in this
case a unnaturally looking mouth and chin for the linear approach.
These artifacts can be also seen in Figure (6.2a) showing a closeup
comparison of the linear and SVR approach.

The experiments also show that the used Morphable Model (Sec-
tion 3.3.2) contains enough flexibility to represent the nasolabial
wrinkles, dropping lids, and the sagging jowls (Figure 6.2). Although
there exists no ground truth for the generated aged versions it can
be seen that the results are naturally looking and that the results
obtained with the nonlinear method are visually more plausible. Fig-
ure (6.2) demonstrates that the age progression yields different results
dependent on the identity and gender of the input face. Neverthe-
less it showed up that correspondence of age related features as the
nasolabial wrinkle is not sufficiently good. An improvement of the
registration by for example landmarks or texture information would
surely yield better results.
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Linear Regression

-10 Years Original +30 Years +40 Years

Support Vector Regression

(a) Aging Color

Linear Regression

A A

-10 Years Original +30 Years +40 Years

AL

Support Vector Regression
(b) Aging Shape

Figure 6.1: Attribute fitting based aging of a female face. Images in the
corresponding first rows were obtained with the linear age regression for
the second rows the Support Vector Regression method was used. Shown
are the same results with (a) and without texture (b).
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(a) Female Linear (b) Female SVR

(c) Male Linear (d) Male SVR

Figure 6.2: Closeup rendering of faces aged by +40 years. Sagging ef-
fects and the nasolabial wrinkle can be seen clearly. The results obtained
with the nonlinear method (b) and (d) look more realistic. Face (a) shows
intersecting lips and a slight underbite what is not the case for (b).
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The mixture of different attributes with the attribute fitting approach
produces natural looking faces (Figure 6.3). It can be observed that
mixtures like small and heavy or tall and heavy result in different
influence of the weight on the face. The combined modeling of cor-
relating attributes as weight and height is a clear advantage of this
method moreover Figure (6.4) shows the capability of the method
to preserve a persons identity and produce a recognizable result. In
contrast to the attribute vectors, the attribute manipulation can be
different dependent on the location of a face in the coefficient space
of the face model and consequently for different identities or gender.
Unfortunately it is rather difficult and therefore skipped to demon-
strate this theoretical finding due to the high dimensionality of the
face space. Additionally, the proposed approach has the theoretical
ability to model attributes as the aging of the face nonlinear with
time. This is necessary because it can be assumed that the changes
behave nonlinear in different periods as growth and aging.
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Figure 6.3:
Manipulation of the at-
tributes weight, height,
and age. The table shows
the mixture and correla-
tions of the attributes.
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Female

Figure 6.4: Attribute fitting based aging applied for start faces with
different age, identity, and gender. All faces where manipulated to match
the target age of 60 years.
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6.2 Attribute Models for Face Reconstruction

Objective of face reconstruction is to predict the belonging face for a
given skull. Although, a considerable amount of research has been in-
vested to face reconstruction, it is still arguable whether either of the
traditional techniques produces reliable results. A study performed
in 2001, Stephan et al. [69] conclude that among four standard tech-
niques for facial reconstruction, only one method gave identification
rates slightly above chance rate. We presented in [57] a method to
reconstruct faces by learning the relationship between our skull and
shape model using multivariate linear regression.

Further experiments showed that it is necessary to consider phys-
ical attributes for the prediction (Section 4) of a face shape from
a skull because there exist virtually many faces (e.g. with different
body weight) fitting a single skull (Figure 6.5). The face prediction
is therefore designed as a fitting algorithm where we optimize the
face, calculate the skull of it and compare if it fits to the given skull.
The calculation of the skull for the current face is done by the linear
transformation of the face model coefficients learned using the regres-
sion (Section 4.2.2). Results of the skull prediction from a face are
shown in Figure (6.6). The accuracy of the prediction was evaluated
with leave-one-out experiments. For the per vertex prediction error
of the skulls we obtained the mean absolute error (MAE) 1.24 mm
and its standard deviation (STD) of 1.18 mm. The fitting algorithm
provides the possibility to calculate faces with respect to different
physical attributes. That allows for reconstructions using additional
knowledge, that was used in a concrete case to reconstruct Theo the
pipe smoker [38]. The work was done in collaboration with Dr. Ger-
hard Hotz from the Anthropological department of the “Naturhis-
torische Museum” in Basel. For Theo it is known that he was rather
thin and his age was between 30 and 40 years. The results of the
reconstruction are shown in Figure (6.7). Since it was demonstrated
that constraining the result to satisfy certain attributes provides a
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Input Original Prediction Error

0 mm 5 mm > 10 mm

Figure 6.5: The upper row shows the worst result obtained with direct
linear prediction of a face from skull model coefficients without using phys-
ical attributes. For the prediction we obviously need to take the body
weight into account. The lower row shows a fitting result increasing the
body weight by +20 kg, leading to a reduced error on the cheeks.

result that is perceptually closer to the original face, we can assume
that the face reconstruction of Theo provides better results the more
we know about his physiognomy.
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Input Original Prediction Error

Figure 6.6: Prediction of skull shapes from a given face. At the top and
bottom rows the best and worst reconstruction results are presented.
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CT Scan Clay Our

(a) Face Reconstruction

ALY

160 cm and 30 years -20 kg 40 years

(b) Attribute Manipulation

Figure 6.7: Face reconstruction of Theo the pipe smoker from the skeletal
remainders. On top (a) the reconstruction from the CT scan, with clay and
our method can be seen. Below (b) we manipulated the physical attributes
to obtain reconstructions according to the anthropological findings.

While the experimental results show the feasibility of our method,
we see the biggest advantage in the formulation of the problem in
terms of finding a relationship among separate shape model param-
eters. This formulation allows us to use prior knowledge about faces
and skulls that can be acquired independently, using the suitable ac-
quisition method for each model. The current main problem is the
rather limited training data for learning the regression between the
model coefficients.
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6.3 Sampling Wrinkle Constellations

Using the wrinkle occurrence probability enables us to sample arbi-
trary wrinkle constellations. The distance between wrinkles is given
by the distance map learned from the example data. We model the
number of wrinkles as well as the length according to the age. The
sampled wrinkle constellations look mostly natural and differ depen-
dent on the age (Figure 6.8). Shown are independently random gen-
erated wrinkles for the age of 40, 60, and, 80 years.

Obviously the nasolabial wrinkle is not sampled at the position where
it appears on the shape, since the registration ensures no sufficient
correspondence. This can be overcome by manually labeling the wrin-
kle (Figure 6.9).

The method produces fully automatic arbitrary wrinkle constellations
that are used in further steps of the wrinkle synthesis. We provide
the additional possibility to append manually labeled wrinkles. Nev-
ertheless the sampling produces sometimes unwanted results with for
example strong asymmetry or wrong looking wrinkles (Figure 6.10).
Since this happens rather rarely we simply propose to rerun the al-
gorithm and choose a good result. But it would be also feasible to
allow for manual acceptance of every single wrinkle in a interactive
application. A feasible improvement of the method would be to build
distinct models for male and female faces to consider gender related
differences that are not addressed in this work. Additionally a big-
ger training set would yield a better density estimation and would
probably also yield better results.
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Figure 6.8: Sampling results for different age groups. For each result dif-
ferent wrinkle constellations are drawn from the wrinkle occurrence prob-
ability map. The number of wrinkles is chosen according to the wrinkle
count model.



130 CHAPTER 6. RESULTS

(b)

Figure 6.9: The method to sample wrinkle constellations allows to include
manually labeled wrinkles (a). The rendering (b) shows a sampling of lines
with their occupied space (green area) and the labeled wrinkles (green

lines).
(a) (b)

Figure 6.10: In rare cases the wrinkle sampling results look disturbing
asymmetric (a) or single wrinkles look wrong (b).
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6.4 Age Progression with Wrinkle Synthesis

To achieve visual plausible results we combine the attribute fitting
with the wrinkle synthesis. The attribute fitting handles the shape
changes caused by large scale aging effects as sagging at the eyes and
chin. To realize the progression of the wrinkles we successive add
wrinkles according to the wrinkle count model. Technically all wrin-
kles are sampled and only the most probable age dependent subset is
shown. The length of the wrinkles is given by the length model and
also adjusted according to the age. The wrinkles can be rendered into
the model texture (Figure 6.11) or into the texture extracted from
the 3D face scan (Figure 6.14). The renderings Figure (6.12) and
Figure (6.15) show the same results without texture to demonstrate
the influence of the normal maps. To further improve the realism of
the renderings we added synthetic fine structure to the displacement
holding the wrinkles. To overcome the problem that the nasolabial
wrinkle can not be detected automatically we labeled it manually and
added it to the wrinkle constellation.
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vow

vow

Figure 6.11: Age progression from 35 to 75 years with wrinkles. The ren-
derings are obtained using the model texture and synthesized fine structure.
The number of wrinkles is increased dependent on the age, while the ex-
isting are kept. The wrinkle depth increases with progression of the age.
For this example we add normal distributed randomness with a deviation
of o = 0.01 to the wrinkle model coefficients.
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Figure 6.12: Age progression from 35 to 75 years with wrinkles. Shown
are renderings of the age progression (Figure 6.11) using only the synthe-
sized normal maps.
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Figure 6.13: Full page display of the age progression result from Fig-
ure (6.11) for 75 years.
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Figure 6.14: Renderings of the age progression from 35 to 75 years using
the original texture extracted from the 3D scan. For this example we add
normal distributed randomness with a deviation of o = 0.1 to the wrinkle
model coefficients.
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Figure 6.15: Renderings of the age progression from 35 to 75 years (Fig-
ure 6.14) showing shading without texture.
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Figure 6.16: Full page display of the age progression result from Fig-
ure (6.14) for 55 years.
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The renderings show that our method produces natural looking re-
sults of faces with progressing age. The over time appearing wrin-
kles foster the age perception of the attribute manipulation based
shape changes. Our algorithm successive adds new wrinkles and ad-
justs the length of the existing ones in an intuitive plausible manner.
The increasing intensity of the wrinkles can be clearly recognized.
The wrinkles itself are perceived three dimensional although they are
only represented by normals and not really by the geometry. Effects
as color bleeding, small random variations, and the variation of the
shape over the face further support the impression. Finally the added
synthetic fine structure completes the natural look of the faces. Nev-
ertheless the method is mainly capable to represent fine age wrinkles
and fails to represent large folds. This could be overcome by an im-
proved extraction of the wrinkle displacement that considers also the
breadth of the wrinkles and a real deformation of the geometry by
tessellation. The representation of larger folds together with a bigger
training set would probably also lead to more variation the wrinkle
appearance over the face. Another possible improvement is the syn-
thesis of fine skin structure considering the certain age of the target
face. A brief sketch how this could look like can be found in the
future work (Section 7.2).



Chapter 7

Conclusion and Future Work

7.1 Conclusion

Within the scope of this work we collected a database of about 3900
3D face scans of 300 persons that will be the basis for many future
research projects. The scanning system has been extended with addi-
tional hard and software to obtain the highest possible geometry and
texture quality. This quality improvement of the 3D scans became
mainly possible by using raw data provided by the scanner directly
in the registration and postpone the texture extraction after the reg-
istration. Moreover the system has been extended with point light
comparable flash lights used to capture the face under various illu-
mination conditions. This enabled us to capture fine structure and

139
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reflection properties of the facial skin. With the collected data the
Basel Face Model — a new Morphable Model was built and published
for the use in the scientific community. To build the model additional
improvements in terms of the data quality have been achieved. We
improved the template topology in terms of regularity and geometry
sampling, manually and by applying quasi conformal mapping. Quasi
conformal mapping has been also applied to define the facial texture
map that provides a good sampling of the texture and displacements
as well as serving as 2D domain to represent wrinkle curves. The
quality of the from the scanner photos extracted texture was greatly
improved by using ray casting for visibility detection and an improved
blending. To postpone the extraction after the registration allows us
to extract a complete texture without missing data. The post correc-
tion of the eye shapes caused a better spherical shape of the eyeballs
in the Morphable Model as well as it reduced distortion artifacts in
the texture.

Apart of the Basel Face Model the data was used for several projects
addressing the manipulation of facial attributes. We presented an in-
verse approach to fit a face such that it matches jointly a set of given
attributes and therefore considers correlations of different attributes.
Additional a novel way for the prediction of faces from skull surfaces
with respect to physical attributes was presented. The attribute ma-
nipulation on the basis of the Morphable Model is especially used to
simulate large scale aging effects of faces. It is demonstrated that sag-
ging at eyes and chin and the appearance of the nasolabial fold can
be sufficiently modeled with the Morphable Model based attribute
fitting. Nevertheless, the Morphable Model can not represent fine
scale structures of the skin as wrinkles are. These structures can
not be brought into correspondence and are canceled out due to av-
eraging. For this reason we proposed a method to model medium
and large scale wrinkles as extension to the Morphable Model. In
the fashion of the Morphable Model the wrinkles are modeled on a
purely statistical basis. That means that possible occurrence of the
wrinkles, the shape and shading, and all age progression parameters
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are learned from example data. In contrast to other models this ap-
proach does not rely on accurate physical models of the underlying
skull and muscles or the skin properties.

To model the occurrence probability of the wrinkles we use a Parzen
Window approach and propose an algorithm to sample novel wrinkle
constellations from the estimated density. The wrinkles itself are
represented by segmented PCA models that contain the shape and
shading along the wrinkle curve. The models are trained using the
fine structure captured with our 3D scanner. Modeling the special
and temporal variation of the wrinkles over the face is realized by a
B-Spline based approximation method combined with a linear model
for the progressing age.

The method yields visual plausible results shown in this work. Care
has been taken to design the method such that a continuous progres-
sion with successive appearing wrinkles can be realized. The synthet-
ically generated constellations of wrinkles are virtually infinite and
look natural. Moreover we provide the possibility to include man-
ual labeled or detected expression or age wrinkles to achieve results
matching the individual. Due to the learned shape and shading the
wrinkles look natural. The rendered wrinkles convey also subsurface
scattering effects leading to reddish shading. The additional model-
ing of the wrinkle shape allows for re-lighting and therefore facilitates
a realistic rendering of the aged faces.

The combination of the attribute fitting based face shape manipula-
tion and the wrinkle synthesis constitutes the result for the simulation
of facial aging presented in this work.
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7.2 Future Work

Although care has been taken to capture the data under ambient illu-
mination conditions it is not possible to eliminate all shading effects
in the captured textures. For this reason we developed a method to
grab an environment map with the scanner that captures the illumi-
nation conditions while scanning (Figure 7.1). This environment map
enables for the compensation of shading effects caused by ambient oc-
clusion. Using this compensation would allow to build a completely
shading free texture model. Such a model would allow for more real-
istic renderings and could improve the approximation of illumination
conditions when fitting the face model to photos.

Interesting results applicable in the forensic field could be obtain ap-
plying the face reconstruction (Section 4.2.3) from skulls in a recog-
nition setup. To answer the question how good a for example found
skull can identify the face of a missing person. Other improvements
of the face reconstruction would be to include certain soft tissue mea-
surements to improve the face prediction quality or to forecast the
influence of bone surgeries on the face shape.

We see potential improvements in the combination of the proposed
attribute fitting (Section 4.2) and wrinkle synthesis (Section 5.1).
Here the stress on the surface caused by expressions can be consid-
ered for the synthesis of wrinkles. This stress can be used similarly as
the wrinkle occurrence probability map to sample or intensify wrin-
kles where stress occurs. This approach demands a registration that
contains the surface deformation what can be only achieved by us-
ing texture features. Up to the current stage our registration does
not use texture features and enforces smoothly distributed vertices
making further experiments infeasible.
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(b)

Figure 7.1: For the environment map capturing we place a polished steal
sphere in the scanner. Performing the scan yields three photos (a) of the
sphere seen from each of the texture cameras. The photos together with the
estimated position of the sphere are used to compute an cubic environment
map (b) of the scanner while performing a usual face scan.
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The model based wrinkle detection (Section 5.8) enables for finding
wrinkle constellations that is in our opinion not possible without prior
knowledge. Having the additional knowledge can be used to improve
face detection comparable to [58] or age estimation [55].

Furthermore we suggest to apply the method for modeling wrinkle
occurrence probabilities (Section 5.2) also to other facial features as
birth marks or facial hair.

The current synthesis of facial fine structure uses only a rather small
patch to generate skin structure for the whole face. In the future
it is planned to use an age and area dependent synthesis as an ex-
pansion of the texture quilting technique by Efros and Freeman [29].
The intention is to generate the hi-frequency component of aged skin
surface structure and color. Input for the synthesis are a number of
example faces! in a certain range around the target age and the skin
color of the original face. The synthesis algorithm combines the novel
structure from all inputs comparable to the method proposed by Mo-
hammed et al. [53] for 2D face images. The synthesized hi-frequency
information in the face is arbitrary, but has the appearance of skin of
the specific age and location. The approach is currently under devel-
opment in our research group first results can be seen in Figure (7.2).

1The displacement maps for all example faces are required for the synthesis.
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Figure 7.2: First
results of the facial
fine structure synthe-
sis. Shown is a face
with out details (left)
and with synthesized
fine structure (right)
for a target age of 30
years.
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Appendix A

Camera Model

In the following we briefly describe the projection of a 3D point of a
scanned geometry (World Point) to the images of the texture cameras
(Image Pixel). All used parameters can be found in the calibration
files (.cal) written by the scanner software. Each calibration file
belongs to one of the cameras.

Starting with the definition of the points

z:=(z y z)T World Point (A1)
u:=(u v)T Image Pixel (A.2)

in the scanner and image coordinate system we can write the full
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transformation ¥ : R® — R? as:

u = ¥(x)
= Ri(Sd™' (p(Ru (R, (& — ta)) + tw)) + ¢) + e
= Ri(Sd ' (p(RwR; ' — RyRy 'to +tw)) + ) + L.

Where the functions and variables are defined as follows.

Additional World Transformation:
Additional Rotation Matrix, R3*3 from
AdditionalTransformation: rx ry rz
R, :=rot;(ry) roty(—ry) rot.(r:)

R, :=rot.(—r.) roty (ry) rot (—74)

cos(a) —sin(a) 0O
rot.(a) := [ sin(a) cos(a) 0O
0 0 1
cos(a) 0 —sin(a)

roty(a) := 0 1 0
sin(a) 0 cos(a)

1 0 0
rotg(a) :== [0 cos(a) —sin(a)

Additional Translation Vector R® coming from
AdditionalTransformation: tx ty tz

(A.10)

(A.11)

(A.12)



World Transformation:
Rotation Matrix R3*? from
calibratedParam: Rx Ry Rz

0
1 0 ] rot;(Rz)roty(—Ry) rots(Rx)
0

Translation Vector R® from
calibratedParam: Tx Ty Tz

:(T:U Ty —Tz)

Projection Function:
Perspective division with f € R from
calibratedParam: £

o0 =0
0 2n t+b 0
P = t—b
f+n 2fn
0 0 —1 0
l==1r:=1b:==-1t:=1n:=f

p((z 2)") = (=fz/z —fy/z)"

Radial Distortion Function:

161

(A.13)

(A.14)

Radial Distortion Function with parameter k1 € R from

kappal.

d(z,y,k1) = (1 + m(:r2 + y2)) (I y)T
d!':R? - R?

(A.18)
(A.19)
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Pixel Transformation:
Transformation from sensor to pixel space from
cameraParameters: sx dx dy Cx Cy

S .- (sxédm 1/0dy> (A.20)

c:=(Cx Cy)" (A.21)

Additional Pixel Transformation:
An additional similarity transform from
textureRecal: scale angle tx ty

- cos(angle) —sin(angle)
Ry := scale <sin(angle) cos(angle) (A.22)

to= (tz ty)" (A.23)



Appendix B

Derivatives

B.1 Attribute Prediction Derivative

In Section (4.2.1) we describe the use of support vector regression
for attribute fitting. For the fitting a model coefficient vector ¢ is
optimized such that it minimizes

arginin Z(@l(c) —a;)’ (B.1)

where a; are the different i-th attributes (e.g. weight, age, ...) and
®, are the according learned SV regression functions. To optimize
the function it is desirable to compute the gradient regarding the
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coefficients c:

% Z(fbi(c) —a;)’ =2 Z(@i(c) —a;)®}(c). (B.2)

The support vector regression function is given by

P .
d(c) = Z(_aj + a;’_‘)e*’YHCJ‘*CHz b (B.3)
j=1
and its derivative by
P 2
' (z) = =27y (—ay +aj)e "N c; — ). (B.4)
j=1

For the computation of the SVR function derivative we extended the
libSVM library[20] with the implementation.

B.2 Face Prediction Derivative

In Section (4.2.3) multivariate linear regression is used to predict
a skull from a face and vice versa. This connects two previously
separate shape models by learning the prediction of coefficients from
one model to the other one. Formally, that can be expressed as the
prediction of coefficients 3 € R™ from the given coefficients a €
R™ by applying the linear transformation M € R™*™. To use the
prediction in the attribute fitting we define the minimization

argmin [|8 — @ (a)|* (B.5)
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that punishes the error in the Mahalanobis space. For the mapping
®(ar) we use the linear transformation

B=%a)=Ma. (B.6)

To find the optimum we calculate the gradient
21— a(e)|* = 2|8~ Mal?* = 2M"3 - M"Ma) (B.7)
oo oo

of the error function and use it in a standard optimization algorithm.






Appendix C

Wrinkle PCA Models

First five modes of variation of the wrinkle PCA models (Table C.1).
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Shape Mean Shading Mean
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Table C.1: Wrinkle shape and shading PCA model. Displayed are the
first five modes of variation. Each is the mean plus/minus once the i-th
standard deviation o;.
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