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OPTIMAL BUNCHING WITHOUT OPTIMAL CONTROL

by Georg Nöldeke and Larry Samuelson

1 Introduction

This paper considers adverse selection principal-agent models with quasi-linear utility functions

and a one-dimensional decision variable (in addition to monetary transfers). The type of the

agent is one dimensional and continuously distributed. The agent’s preferences satisfy a single-

crossing property.

When the monotonicity constraint on incentive-compatible decision functions implied by the

single crossing property binds, the optimal decision function features a bunch, i.e., there is an

interval of types choosing the same decision. In such cases, the standard analysis relies on control

theory to characterize optimal decision functions. See Jullien [10] for a general exposition.

This paper develops an alternative approach to optimal bunching. We build on an insight

due to Goldman, Leland and Sibley [8], namely that it is possible to view the principal’s problem

as choosing an optimal type assignment (mapping decisions into types) rather than as choosing

an optimal decision function (mapping types into decisions).2 Incentive compatibility imposes a

monotonicity constraint on type assignments, but the conditions under which this constraint is

binding are different from those under which the monotonicity constraint on decision functions

is binding. In particular, we show that the monotonicity constraint on type assignments can

be ignored whenever two simple conditions are satisfied. The first requires the agent’s utility

function (net of any, possibly type dependent, reservation utility) to be quasi-convex in the

agent’s type. The second requires the virtual surplus function (i.e., surplus adjusted to account

for the agent’s informational rent (Myerson [18])) to be strictly concave. As we discuss in Section

4, these conditions are satisfied in many applications of the principal-agent model, including

models of market making (cf. Biais, Martimort and Rochet [2]) and countervailing incentives
2See Wilson [24] for an extensive discussion of the assignment approach to optimal non-linear pricing and its

relation to the standard approach.
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(cf. Lewis and Sappington [12, 13]).

Because our assumptions ensure that the monotonicity constraint on type assignments is not

binding, we can obtain optimal type assignments by point-wise maximization of the appropriate

objective function. Optimal bunches correspond to the discontinuities of this point-wise solution

and may arise for two reasons. First, the point-wise solution will be discontinuous if multiple

types solve the maximization problem for a given decision. This possibility corresponds to the

cases of optimal bunching discussed in Goldman, Leland and Sibley [8] and is the only possibility

in models in which the agent’s utility is monotonic in type (cf. Baron and Myerson [1], Mussa

and Rosen [19]). Second, the point-wise solution is discontinuous if the agent’s participation

constraint is binding at an interior type (as in the models of market making and countervailing

incentives mentioned above). In either case, our approach provides a simple characterization of

the optimal bunch and also yields an alternative interpretation and derivation of the optimality

conditions customarily obtained from the application of control theory.

The following section introduces the model. Section 3 presents a reformulation of the

principal’s problem (along the lines suggested by Goldman, Leland and Sibley [8]) that provides

the starting point for our analysis. Section 4 shows how this problem can be solved by point-wise

maximization. Section 5 concludes. Some of the more technical or lengthy (steps of) proofs are

in the Appendix.

2 The Model

The principal and the agent contract on a one-dimensional decision x ∈ [x, x] ≡ X ⊂ IR and a

monetary transfer m ∈ IR. The agent’s utility from trade depends on her type θ ∈ [θ, θ] ≡ Θ ⊂ IR

and is given by u(x, θ)−m. The principal’s utility from trade may also depend on the agent’s

type (i.e., we allow for common values) and is given by v(x, θ) + m. The agent knows her type.

From the principal’s perspective the agent’s type is drawn from the interval Θ according to the

distribution function F , with differentiable density f > 0. The functions u and v are assumed

to be thrice continuously differentiable on X ×Θ. In addition, we assume throughout that the
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agent’s utility function satisfies the strict single-crossing property (denoting partial derivatives

by subscripts):

uxθ > 0. (1)

We formulate the principal’s problem as the non-linear pricing problem of choosing a price

function t : X → IR and an associated decision function q : Θ → X, to solve:3

max
t,q

∫ θ

θ
[v(q(θ), θ) + t(q(θ))] f(θ)dθ (2)

subject to the incentive constraints

q(θ) ∈ arg max
x

[u(x, θ)− t(x)] , ∀θ ∈ Θ (3)

and the participation constraints4

max
x

[u(x, θ)− t(x)] ≥ 0,∀θ ∈ Θ. (4)

A solution (t, q) to this non-linear pricing problem has an optimal bunch [θ1, θ2] at x if θ1 <

θ2 and q(θ) = x holds for all types in (θ1, θ2). We are interested in obtaining a characterization

of such optimal bunches from the solution to unconstrained maximization problems. To provide

a more convenient starting point for this enterprize we reformulate the principal’s problem.
3From the taxation principle (e.g., Rochet [20]), the nonlinear pricing problem we consider is equivalent to

the familiar formulation in which the principal chooses a deterministic direct mechanism. Our assumptions (cf.

Section 4) do not preclude the possibility that the principal might fare better with a stochastic mechanism (see

Jullien [10] and Strausz [23]), replacing the set of decisions X in the deterministic mechanism with the set of

lotteries over X. It is not obvious how our reformulation of the principal’s problem in the following section could

be extended to deal with stochastic direct mechanisms, as there is no natural counterpart of the condition that

type assignments be increasing. We restrict attention to the deterministic case throughout.
4We normalize the reservation utility of every type of agent to zero. This sacrifices no generality, as we can

always interpret utilities as surpluses over a (possibly type dependent) reservation utility.
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3 A Reformulation

As noted by Goldman, Leland and Sibley [8] for a special case of the non-linear pricing problem

introduced above, there is no loss of generality in restricting attention to price functions t

satisfying5

t(x) = t(x) +
∫ x

x
ux(x̃, ψ(x̃))dx̃, ψ : X → Θ increasing, (5)

when studying the principal’s problem:

Lemma 1 Let (t, q) solve (2) - (4). Then there exists a price function t′ satisfying (5) such

that (t′, q) solves (2) - (4).

Proof: Because (t, q) satisfies (3) the associated rent function r : Θ → IR given by

r(θ) = max
x

[u(x, θ)− t(x)] (6)

is well-defined. Define t′ : X → IR by

t′(x) = max
θ

[u(x, θ)− r(θ)], (7)

so that t′ is the lower envelope of the price functions for which (6) holds. We will first show that

(t′, q) solves (2) - (4) and then argue that it satisfies (5).

The following relationships (corresponding to the Fenchel inequalities from convex analysis,

cf. Rockafellar [22, Section 12]) are immediate from (6) and (7):

t(x) + r(θ) ≥ u(x, θ), ∀(x, θ) (8)

r(θ) + t′(x) ≥ u(x, θ), ∀(x, θ). (9)

From (8) we have t(x) ≥ maxθ[u(x, θ)− r(θ)] and thus t(x) ≥ t′(x), implying

u(q(θ), q)− t′(q(θ)) ≥ u(q(θ), θ)− t(q(θ)) = r(θ), (10)
5We say that a function ψ : X → Θ is increasing if x1 > x2 implies ψ(x1) ≥ ψ(x2).
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and thus r(θ) ≤ maxx[u(x, θ)− t′(x)]. From (9) we have r(θ) ≥ maxx[u(x, θ)− t′(x)], and hence,

combining inequalities,

r(θ) = max
x

[u(x, θ)− t′(x)].

This implies that (t′, q) satisfies (4) and, using (10), satisfies (3). Because v(q(θ), θ) + t(q(θ)) =

v(q(θ), θ) + u(q(θ), θ)− r(θ), the principal’s profit depends on the price function only through q

and r, and it then follows that (t′, q) is optimal.

Applying Theorem 2 (in conjunction with their footnote 10) from Milgrom and Segal [17]

to t′ as defined by (7) yields the integral representation in (5), with the single crossing property

(1) implying that ψ is increasing (cf. Proposition 1 in Rochet [21]).

Throughout the following we will refer to an increasing ψ as a type assignment and say

that the pair (t, ψ) is consistent if (5) holds. The advantage of restricting the non-linear pricing

problem to price functions satisfying (5) lies in the fact that for such price functions there is

a simple characterization of the associated decision functions q satisfying (3). For every type

assignment ψ let

Ψ(x) = [lim
y↑x

ψ(y), lim
y↓x

ψ(y)], (11)

where we adopt the conventions

lim
y↑x

ψ(y) = θ, lim
y↓x

ψ(y) = θ. (12)

For any consistent (t, ψ), the corresponding decision functions q satisfying the incentive con-

straints (3) can be obtained by taking a selection from the inverse of the increasing correspon-

dence Ψ. In particular, it is optimal for type θ = ψ(x) to choose decision x when faced with the

price schedule t.

Lemma 2 Let (t, ψ) be consistent. Then

x ∈ arg max
x̆
{u(x̆, θ)− t(x̆)} ⇔ θ ∈ Ψ(x). (13)
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Proof: We have x ∈ arg maxx̆[u(x̆, θ)− t(x̆)] if and only if u(x, θ)−u(x̆, θ) ≥ t(x)− t(x̆) for all

x̆, which from (5) is equivalent to

∫ x

x̆
ux(x̃, θ)dx̃ ≥

∫ x

x̆
ux(x̃, ψ(x̃))dx̃.

From (1) and the fact that ψ is increasing, this condition holds for all x̆ if and only if θ ∈ Ψ(x).

The inverse relationship established in Lemma 2 can be exploited to eliminate the decision

function from the principal’s objective (2). For consistent (t, ψ) let

G(t, ψ) =
∫ x

x
s(x, ψ(x))dx + V (x) + t(x), (14)

where

V (x) =
∫ θ

θ
v(x, θ)f(θ)dθ, (15)

and

s(x, θ) =
∫ θ

θ
[ux(x, θ) + vx(x, θ̃)]f(θ̃)dθ̃. (16)

Lemma 3 Let (t, ψ) be consistent and let q satisfy (3). Then

∫ θ

θ
[v(q(θ), θ) + t(q(θ))] f(θ)dθ = G(t, ψ).

Proof: Using (5) we can rewrite the principal’s payoff as
∫ θ

θ

[v(q(θ), θ) + t(q(θ))] f(θ)dθ =
∫ θ

θ

∫ q(θ)

x

[vx(x, θ) + ux(x, ψ(x))] f(θ)dxdθ + V (x) + t(x).

Because of the inverse relationship between q and ψ (Lemma 2), we can apply Fubini’s theorem

to the double integral to obtain
∫ θ

θ

∫ q(θ)

x

[vx(x, θ) + ux(x, ψ(x))] f(θ)dxdθ =
∫ x

x

∫ θ

ψ(x)

[vx(x, θ) + ux(x, ψ(x))] f(θ)dθdx.

To see the economic intuition behind (14)–(16), note that the term V (x) + t(x) corresponds to

the principal’s payoff from the contract in which every type of the agent takes the decision x
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in return for the transfer t(x). The integral appearing in (14) takes into account the additional

profits that result from providing further marginal units of x to the appropriate types of agents.

In particular, we can think of ux(x, ψ(x)) as the price charged for the x-th marginal unit, with

this marginal unit being provided (due to (1) and (13)) to all types θ̃ higher than ψ(x), resulting

in a revenue of ux(x, ψ(x))(1 − F (ψ(x))) for the principal. The principal’s cost of providing

the x-th marginal unit to type θ̃ is given by −vx(x, θ̃), yielding s(x, ψ(x)) as the profit from

providing the x-th marginal unit.

The importance of Lemma 3 is that we may reformulate the principal’s problem, as given

by (2) - (4), by first adding (5) to the constraints and then eliminating the decision function q.

The resulting program is

max
ψ,t

∫ x

x
s(x, ψ(x))dx + V (x) + t(x) (17)

subject to

t(x) = t(x) +
∫ x

x
ux(x̃, ψ(x̃))dx̃, ψ increasing (18)

and

max
x

[u(x, θ)− t(x)] ≥ 0,∀θ ∈ Θ. (19)

In the remainder of the paper we study the problem (17) - (19). In doing so we will refer

to a price function as feasible if it satisfies (18) - (19). A consistent (t, ψ) is optimal if it solves

(17) - (19).

Throughout the following we will identify type assignments that agree almost everywhere,

thus writing ψ = ψ′ whenever ψ(x) = ψ′(x) holds for almost all x ∈ X.6 Finally, note that if

(t, ψ) is optimal, it follows from Lemma 2 that a decision function q satisfying (3) has an optimal

bunch at x if and only if Ψ(x) is non-singleton, with the optimal bunch given by Ψ(x).
6As a result, if (t, ψ) is consistent then (t, ψ′) is consistent if and only if ψ = ψ′. Our identification eliminates

spurious non-uniqueness issues which arise solely from the fact that the same price function t (which determines

the principal’s payoff) may be consistent with type assignments that are equal in the sense just defined but do

not agree for all x.
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4 Point-wise Maximization

In this section, culminating in Propositions 1 - 3, we show that two conditions suffice to determine

optimal type assignments, and thus (by Lemma 2) optimal decision functions, by solving a

collection of unconstrained maximization problems.

4.1 Assumptions

The first condition we require is

Assumption 1 The agent’s utility function u is quasi-convex in θ for all x.

Assumption 1 is (trivially) satisfied in standard applications of the principal-agent model in

which the agent’s utility is increasing in θ for all x (cf. Goldman, Leland, and Sibley [8], Maskin

and Laffont [15], and Mussa and Rosen [19]) or decreasing in θ for all x (cf. Baron and Myerson

[1]; see also Laffont and Tirole [11]). It also holds in models of (monopoly) market making, as

in Biais, Martimort and Rochet [2] (see also Glosten [6, 7]), in which 0 ∈ (x, x) corresponds to

the no-trade outcome satisfying u(0, θ) = 0 for all θ.7 Assumption 1 also holds in models with

countervailing incentives in which the agent’s reservation utility profile is concave (cf. Maggi and

Rodriguez-Clare [14], who extend Lewis and Sappington [12, 13], and Feenstra and Lewis [4]).

With their analysis of the case in which the agent’s reservation profile is strictly convex, Maggi

and Rodriguez-Clare [14] also provide an example of a model violating Assumption 1. Further

examples of models violating Assumption 1 are presented and analyzed in Jullien [10].8 Note

that Assumption 1 does not preclude optimal bunching. Indeed, the models of monopoly market

making and countervailing incentives cited above are among the prime examples of models in

which bunches are an essential feature of the solution to the principal’s problem.
7The single crossing property (1) then ensures that u(x, θ) is decreasing in θ for all x < 0 and increasing in θ

for all x > 0, implying Assumption 1.
8In particular, any model satisfying Jullien’s assumption of homogeneity for a non-constant quantity profile

violates Assumption 1.
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To formulate our second condition let

σ(x, θ) = v(x, θ) + u(x, θ)− 1− F (θ)
f(θ)

uθ(x, θ) (20)

β(x, θ) = v(x, θ) + u(x, θ) +
F (θ)
f(θ)

uθ(x, θ). (21)

The functions σ : X × Θ → IR and β : X × Θ → IR are the virtual surplus functions (Myerson

[18]), familiar from the standard approach to the principal-agent problem.9

Assumption 2 The virtual surplus functions σ and β satisfy σxx < 0 and βxx < 0, and hence

are strictly concave in x for all θ.

Assumption 2 is commonly encountered in the analysis of principal-agent models, where its

role is to ensure uniqueness (and thus also continuity) of the decision functions qσ and qβ

that are obtained from the point-wise maximization of σ(x, θ) and β(x, θ) with respect to x.

Assumption 2 also implies that u(x, θ)+v(x, θ) is strictly concave in x for all θ, ensuring that the

decision function qFB which results from the point-wise maximization of the first-best surplus,

qFB(θ) = arg maxx u(x, θ) + v(x, θ), is uniquely defined and continuous.10 Note, however, that

qFB need not be increasing, as our assumptions impose no restriction on vxθ(x, θ). Consequently,

the model may fail to be responsive (see Guesnerie and Laffont [9]). Even in the simplest cases

in which u is either increasing in θ for all x or decreasing in θ for all x, Assumption 2 does not

preclude the occurrence of optimal bunches.11

Theorems 3 and 4 in Jullien [10] provide a complete characterization of the solution to

the principal’s problem under Assumption 2. Our analysis provides an alternative derivation
9The value σ(x, θ) is the surplus achieved by allocating quantity x to type θ, taking into account the rents that

must then be left to types higher than θ if this is to be incentive compatible. Similarly, β(x, θ) can be viewed as

the surplus from allocating quantity x to type θ, taking into account the effect on the rents of types below θ.
10Conversely, if u(x, θ)+v(x, θ) is strictly concave in x and uxxθ = 0, as is commonly the case, then Assumption

2 holds.
11To preclude bunching, qσ (resp. qβ) must be increasing, as would be guaranteed by the assumption σxθ > 0

(resp. βxθ > 0), which we do not impose.
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and characterization which, under Assumptions 1 and 2, dispenses with the optimal control

techniques that are at the heart of Jullien’s derivation.

4.2 Adapted Price Functions

As a first step in our analysis we demonstrate that Assumption 1 yields a simple characterization

of feasible price functions. In particular, feasible price functions have the property that there is

some decision x̂ such that all types of the agent obtain at least their reservation utility if they

choose x̂ and pay t(x̂). We refer to such price schedules as being adapted.

Definition 1 Let x̂ ∈ X. A price function t is x̂-adapted if

t(x̂) ≤ umin(x̂) ≡ min
θ

u(x̂, θ). (22)

It is adapted if it is x̂-adapted for some x̂.

Note that every adapted price function satisfies (19). Hence, every t that satisfies (18) and is

adapted is feasible. The following lemma establishes the converse. Let

Θmin(x) = arg min
θ

u(x, θ). (23)

Lemma 4 Let Assumption 1 hold. Then every feasible price function is adapted.

Proof: Let t be feasible and let ψ be a type assignment such that (t, ψ) is consistent. Standard

fixed-point arguments (see the Appendix) imply that there exists x̂ ∈ X such that Ψ(x̂) ∩

Θmin(x̂) 6= ∅. Let θ̂ ∈ Ψ(x̂) ∩ Θmin(x̂). Because θ̂ ∈ Ψ(x̂) and t is feasible, we have x̂ ∈

arg maxx[u(x, θ̂)− t(x)] ≥ 0, which implies

u(x̂, θ̂) ≥ t(x̂).

Because θ̂ ∈ Θmin(x̂), this inequality implies umin(x̂) ≥ t(x̂). Hence, t is x̂-adapted.

Assumption 1 thus implies that we may replace the participation constraint (19) with the con-

straint that (22) holds for some x̂ ∈ X. This suggests a simple two-stage procedure for solving
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(17) - (19): in the first stage, maximize (17) subject to (18) and the additional constraint that

the price function be x̂-adapted. In the second stage, maximize with respect to x̂ to obtain the

solution to the principal’s problem. To pursue this procedure we find it convenient to offer:

Definition 2 A pair (t, ψ) is x̂-optimal if it maximizes (17) subject to (18) and (22).

Remark 1. The second stage of the maximization procedure described above is not needed if

there exists x̂ such that all feasible price functions are x̂-adapted, implying that an x̂-optimal

(t, ψ) solves the program (17) – (19). For instance, if the agent’s utility function is increasing

in θ for all x, then every feasible price function is x-adapted (because every type assignment

ψ satisfies θ ∈ Ψ(x) (cf. (12)) and θ ∈ Θmin(x) (cf. (23))). An analogous argument shows

that every feasible price schedule is x-adapted if the agent’s utility function is decreasing in θ

for all x. If u(0, θ) = 0 for all θ, as in a model of market making (see the discussion following

Assumption 1), then every feasible price function is adapted at 0. See Remark 2 (below) for

further discussion.

4.3 The First Step: x̂-optimality

To characterize x̂-optimal (t, ψ), define b : X ×Θ → IR by

b(x, θ) = s(x, θ)− Vx(x)− ux(x, θ). (24)

Using the definitions of s and V given by (15)–(16) and rearranging yields

b(x, θ) = −
∫ θ

θ

[
ux(x, θ) + vx(x, θ̃)

]
f(θ̃)dθ̃. (25)

Equation (25) provides an interpretation of b analogous to the interpretation of s offered in

Section 3: b(x, θ) represents the principal’s payoff from obtaining the x-th marginal unit from

all types lower than θ at the price ux(x, θ). Condition (5) and definition (24) allow us to rewrite

the principal’s payoff (defined in (14)), for any x̂ ∈ X and any consistent (t, ψ), as

G(t, ψ) =
∫ x̂

x
b(x, ψ(x))dx +

∫ x

x̂
s(x, ψ(x))dx + V (x̂) + t(x̂). (26)
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It is then immediate that every x̂-optimal (t, ψ) must satisfy (22) with equality. We may thus

eliminate the price function from the maximization problem to obtain:

Lemma 5 A consistent (t∗, ψ∗) is x̂-optimal if and only if t∗(x̂) = umin(x̂) and ψ∗ solves

max
ψ increasing

∫ x̂

x
b(x, ψ(x))dx +

∫ x

x̂
s(x, ψ(x))dx. (27)

To identify x̂-optimal (t, ψ) it remains to solve (27). Assumption 2 dispenses with the mono-

tonicity constraint by ensuring that the correspondences defined by

Υb(x) = arg max
θ

b(x, θ), Υs(x) = arg max
θ

s(x, θ), (28)

are increasing, i.e., every selection from these correspondences is increasing and is thus a type

assignment. Let

φb(x) = minΥb(x), φs(x) = maxΥs(x). (29)

Lemma 6 Let Assumption 2 hold. Then φb and φs are increasing. Furthermore, if ψ is a

selection from Υb (resp. from Υs) then ψ = φb (resp. ψ = φs).12

Proof: Berge’s maximum theorem ([3, Theorem 12.1]) implies that Υb and Υs are compact,

ensuring that φb and φs are well-defined. If the correspondences Υb and Υs are increasing, they

must be single-valued for almost all x ∈ X, implying that every other selection from Υb (resp.

from Υs) is an increasing type assignment equal to φb (resp. φs). It remains to show both Υb

and Υs are increasing. From Theorem 4 in Milgrom and Shannon [16], a sufficient condition for

this is that for all (x, θ),

bxθ(x, θ) = −[uxx(x, θ) + vxx(x, θ)]f(θ)− F (θ)uxxθ(x, θ) > 0, (30)

sxθ(x, θ) = −[uxx(x, θ) + vxx(x, θ)]f(θ) + [1− F (θ)]uxxθ(x, θ) > 0. (31)

A straightforward calculation, using (21), gives bxθ(x, θ) = −βxx(x, θ)f(θ), so that condition

(30) is equivalent to βxx < 0. Similarly, from (20), sxθ(x, θ) = −σxx(x, θ)f(θ), so that condition

(31) is equivalent to σxx < 0. The result then follows from Assumption 2.
12Recall that we write ψ = ψ′ if ψ and ψ′ agree almost everywhere.
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For the cases x̂ = x and x̂ = x it is immediate from Lemma 6 that a type assignment ψ is

x̂-optimal if and only ψ = φs, respectively ψ = φb, and can thus be obtained from the point-wise

maximization of the objective function in (27).13 For the case x̂ ∈ (x, x), an additional argument

is needed to ensure that point-wise maximization does not violate the monotonicity constraint

by inducing a downward discontinuity at x̂. Using (1) and (24), we have

sθ(x, θ) > bθ(x, θ), ∀(x, θ), (32)

and thus

φb(x) ≤ φs(x), ∀x ∈ X,

ensuring that such a downward discontinuity cannot arise. Consequently, as we record in the

following lemma, an x̂-optimal type assignment is uniquely determined by pasting φb and φs at

x̂.

Lemma 7 Let Assumption 2 hold. Then a type assignment ψ is x̂-optimal if and only if ψ = φx̂,

where

φx̂(x) =





φb(x), if x ≤ x̂

φs(x), if x > x̂.

(33)

Remark 2 For those cases in which there exists x̂ such that all feasible price schedules are

x̂-adapted (see Remark 1), Lemma 7 finishes our task of obtaining the solution to the principal’s

problem from a point-wise maximization. To illustrate with a simple but non-trivial example,

consider a special case of the monopoly screening problem from Biais, Martimort and Rochet

[2], in which x < 0 < x, the agent’s type is distributed uniformly on [θ, θ], satisfying θ < 0 < θ,

and utility functions are given by u(x, θ) = xθ − γx2/2 and v(x, θ) = −αxθ with α ∈ (0, 1)

and γ > 0. We have noted that Assumption 1 holds and that every feasible price function is

0-adapted. Assumption 2 also holds. Thus, φ0 is the optimal type assignment. Solving the
13In addition, it is clear that assuming only σxx < 0 (only βxx < 0) suffices to obtain Lemma 6 for the case

x̂ = x (x̂ = x).
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maximization problems defining φb and φs yields the optimal type assignment

φ0(x) =





max{ θ+γx
2−α , θ}, if x ≤ 0

min{ θ+γx
2−α , θ}, if x > 0

Note that there is an optimal bunch at zero given by [θ/(2− α), θ/(2− α)].

4.4 The Second Step: Where to Adapt

Turning to the second step of the maximization procedure outlined above, let W : X → IR

denote the value function of the maximization problem defining x̂-optimality. From Lemma 5

and equation (26), this is given by

W (x̂) = max
ψ increasing

{∫ x̂

x

b(x, ψ(x))dx +
∫ x

x̂

s(x, ψ(x))dx

}
+ V (x̂) + umin(x̂). (34)

As we have already argued, Assumption 1 implies that (t, ψ) is optimal if and only if it is

x∗-optimal for x∗ ∈ arg maxx̂ W (x̂). Combining this observation with Lemmas 5 and 7 yields

the following:

Proposition 1 Let Assumptions 1 and 2 hold. Then a consistent (t, ψ) is optimal if and only

if there exists x∗ ∈ arg maxx̂ W (x̂) such that ψ = ψx∗ and t(x∗) = umin(x∗).

Proposition 1 ensures that the principal’s problem can be solved by point-wise maximiza-

tion. However, it would be desirable to have a more explicit characterization of the condition

x∗ ∈ arg maxx̂ W (x̂). The following result (proven in the Appendix) provides the appropriate

first order condition. Recall, from (23), Θmin(x) = arg minθ u(x, θ).

Proposition 2 Let Assumptions 1 and 2 hold and let H : X ×Θ → IR be defined by

H(x̂, θ̂) =
∫ x̂

x
b(x, φb(x))dx +

∫ x

x̂
s(x, φs(x))dx + V (x̂) + u(x̂, θ̂). (35)
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Then x∗ ∈ arg maxx̂ W (x̂) holds if and only if there exists θ∗ ∈ Θmin(x∗) such that

Hx̂(x∗, θ∗)





≤ 0, if x∗ = x

= 0, if x∗ ∈ (x, x)

≥ 0, if x∗ = x.

(36)

The existence of an x∗ ∈ arg maxx̂ W (x̂) and hence an optimal (t∗, ψ∗) is immediate from the

(absolute) continuity of the value function W (cf. the proof of Proposition 2). Theorem 4 in

Jullien [10] shows that the optimal (t∗, ψ∗) is unique.14

4.5 Optimal Bunches

Proposition 1 and Lemma 2 imply that the solution to the principal’s problem will have an

optimal bunch at x if and only if the the optimal type assignment φx∗ given by (33) satisfies (cf.

(11) and (12))

lim
y↑x

φx∗(y) < lim
y↓x

φx∗(y). (37)

Because φb and φs are selections from the upper-hemi-continuous argmax-correspondences Υb

and Υs (cf. (28)) and (29), we immediately obtain an explicit characterization of optimal bunches

in terms of the solutions of the point-wise maximization of b and s:15

Proposition 3 Let Assumptions 1 and 2 hold and let x∗ ∈ arg maxx̂ W (x̂). Then there is an

optimal bunch at x ∈ X if and only if (37) holds. If there is an optimal bunch [θ1(x), θ2(x)] at
14Alternatively, a straightforward (but tedious) extension of the proof of Proposition 2 establishes unique-

ness by showing that, if arg maxx̂ W (x̂) has multiple maximizers, then either the corresponding x∗-optimal type

assignment is φb for all x∗ ∈ arg maxx̂ W (x̂) or is φs for all x∗ ∈ arg maxx̂ W (x̂).
15For the sake of clarity we state this characterization in (38) only for optimal bunches occurring at interior

decisions. The characterization of optimal bunches at the boundaries is equally straightforward from our previous

results, but requires a number of case distinctions and thus is somewhat cumbersome to state. A simple sufficient

condition to rule out bunches at x and x is given by φs(x) = θ and φb(x) = θ.
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x ∈ (x, x) it is given by

θ1(x) = min Υb(x), θ2(x) = max Υb(x), if x < x∗

θ1(x) = min Υb(x), θ2(x) = max Υs(x), if x = x∗

θ1(x) = min Υs(x), θ2(x) = max Υs(x), if x > x∗.

(38)

To relate this result to existing characterizations of optimal bunches resulting from the applica-

tion of optimal control techniques, consider (first) bunches at x 6= x∗. It is immediate from (38)

that such bunches are excluded if b and s are strictly quasi-concave in θ for all x,16 as in this

case Υb and Υs are single-valued. Supposing that there is an optimal bunch at such an x, we

easily recover the result that the average of the marginal virtual surpluses over a bunch must

be equal to zero (see, for instance, Fudenberg and Tirole [5, Appendix to Chapter 7]):

Corollary 1 Let Assumptions 1 and 2 hold. If [θ1, θ2] is an optimal bunch at x ∈ (x, x∗) then

∫ θ2

θ1

βx(x, θ)f(θ)dθ = 0.

If [θ1, θ2] is an optimal bunch at x ∈ (x∗, x) then

∫ θ2

θ1

σx(x, θ)f(θ)dθ = 0.

Proof: Consider the case x ∈ (x, x∗) (the other case is analogous). From the first line in (38),

we have b(x, θ1) = b(x, θ2) and thus
∫ θ2
θ1

bθ(x, θ)dθ = 0. The result is then immediate from the

identity bθ(x, θ) = −βx(x, θ)f(θ).

Consider next the characterization of optimal bunches at x∗. If we exclude the trivial special

cases in which either φb or φs is an optimal type assignment,17 then there must be an optimal
16This provides a simple alternative to the standard assumptions guaranteeing the monotonicity of qβ and qσ.

See Section 2.1 in Jullien [10].
17These cases can only occur if an optimal decision function q has the property that either q(θ) ≥ x∗ holds for

all θ or q(θ) ≤ x∗ holds for all θ. A simple sufficient condition ensuring that neither φb nor φs is optimal is that

the first-best decision function (cf. Section 4.1) qFB satisfies qFB(θ) ≤ x∗ ≤ qFB(θ).
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bunch at x∗. Furthermore, such a bunch again satisfies (the appropriate generalization of) the

condition that the average marginal virtual surplus over the bunch must be equal to zero (cf.

Maggi and Rodriguez-Clare [14, Lemma 5]):

Corollary 2 Let Assumptions 1 and 2 hold and suppose φx∗ 6= φs and φx∗ 6= φb. Then x∗ ∈

(x, x) and there is an optimal bunch [θ1, θ2] at x∗. This optimal bunch satisfies
∫ θ∗

θ1

βx(x∗, θ)f(θ)dθ +
∫ θ2

θ∗
σx(x∗, θ)f(θ)dθ = 0,

for some θ∗ ∈ arg minθ u(x∗, θ).

Proof: x∗ ∈ (x, x) is immediate from the assumption φx∗ 6= φs and φx∗ 6= φb. To show that

there must be an optimal bunch at x∗ it suffices to show that φb(x∗) < φs(x∗). From (32),

this must be the case unless φb(x∗) = φs(x∗) = θ or φb(x∗) = φs(x∗) = θ. Because φb and

φs are increasing, in the first of these cases we have φx∗ = φs, while in the second we have

φx∗ = φb. In either case we have a contradiction to the assumption φx∗ 6= φs and φx∗ 6= φb.

Hence, there is an optimal bunch at x∗, satisfying θ1 = φb(x∗) and θ2 = φs(x∗) (from the second

line of (36) and (29)). Because x∗ is interior, (36) implies that there exists θ∗ ∈ Θmin(x∗) such

that Hx(x∗, θ∗) = 0. From (42) (in the proof of Proposition 2), this is equivalent to [b(x∗, θ1)−

b(x∗, θ∗)]− [s(x∗, θ2)−s(x∗, θ∗)] = 0. Using the identities bθ(x, θ) = −βx(x, θ)f(θ) and sθ(x, θ) =

−σx(x, θ)f(θ)dθ and integrating by parts yields [b(x∗, θ1)− b(x∗, θ∗)] =
∫ θ∗
θ1

βx(x∗, θ)f(θ)dθ and

[s(x∗, θ2)− s(x∗, θ∗)] = − ∫ θ2
θ∗ σx(x∗, θ)f(θ)dθ and thus the result.

5 Conclusion

We have identified a class of principal-agent models in which a solution can be obtained from a

collection of unconstrained point-wise maximization problems. This characterization of optimal

type assignments has its limitations. It does not apply, for example, in cases where the agent’s

participation constraint binds at multiple, isolated types (see Maggi and Rodriguez-Claire [14]

and Jullien [10] for examples where this is the case). However, it covers a wide variety of common

cases.
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We see two promising possibilities for extending our analysis. First, as long as the agent’s

utility function is quasi-convex, Lemma 5 characterizes x̂-optimal pairs (t, ψ). Hence, even

without strictly concave virtual surplus functions, the methods presented here allow a significant

simplification of the participation constraint.

Second, our approach provides an alternative perspective on the comparative statics of the

principal’s problem. If Assumptions 1 and 2 hold, then the solution to the principal’s problem

is determined by the point-wise solutions φb and φs and the value x∗ at which they are pasted.

The effects of changes in the underlying parameters can thus be inferred from their effect on

φb, φs, and x∗. For example, consider replacing the utility function u(x, θ) with the function

u(x, θ)− ũ(θ), for some decreasing function ũ. This corresponds to a type-dependent increase in

the agent’s reservation values. The implications are clear from Propositions 1 and 2. Since s and

b do not depend on the agent’s reservation value, this change can affect the optimal assignment

only through x∗. Since ũ is decreasing, the set arg minθ u(x, θ) in Proposition 2 must increase,

which in turn increases Hx̂(x, θ). This ensures that x∗ must increase. As a result the optimal

decision function decreases, as the jump from φb to φs now optimally occurs at a larger decision.

We anticipate developing more such implications in future work.

Appendix

Proof of Lemma 4, Details: Define the correspondence L : X → IR by

L(x) = {θ − θ′ : θ ∈ Ψ(x), θ′ ∈ Θmin(x)}.

We have to show that there exists x ∈ X such that 0 ∈ L(x).

The correspondence L is convex-valued (because Ψ(x) is convex and the quasiconvexity of

u(x, θ) ensures that Θmin(x) is convex), upper hemicontinuous and compact (because Ψ is upper

hemicontinuous and compact-valued and, by Berge’s maximum theorem ([3, Theorem 12.1]), so

is Θmin). In addition, minL(x) ≤ 0 (because θ ∈ Ψ(x), from (12)) and maxL(x) ≥ 0 (because

θ ∈ Ψ(x), from (12)). Let maxL(x) < 0 and minL(x) > 0, since otherwise we immediately have
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0 ∈ L(x) or 0 ∈ L(x). Then the correspondence J defined on [x− 1, x + 1] by

J(x) =
{

x− z

θ − θ
: z ∈ L(x)

}

if x ∈ X and otherwise by

J(x) =





J(x) if x > x

J(x) if x < x

is a nonempty, compact and convex-valued upper hemicontinuous correspondence from [x −

1, x + 1] into itself,18 and hence by Kakutani’s fixed point theorem has a fixed point (cf. Border

[3, Corollary 15.3]). By construction, such a fixed point must occur at some x̂ ∈ (x, x) for which

0 ∈ L(x̂).

Proof of Proposition 2: The function H given by (35) is continuously differentiable with

Hx̂(x̂, θ̂) = b(x̂, φb(x̂))− s(x̂, φs(x̂)) + Vx(x̂) + ux(x̂, θ̂). (39)

From Lemma 7, Assumption 2 implies that the value function W defined in (34) satisfies

W (x̂) = H(x̂, ξ(x̂)),

where ξ : X → Θ is any selection from Θmin(x). Due to the single crossing property, ξ is

decreasing. Furthermore, W is absolutely continuous with derivative

Wx̂(x̂) = Hx̂(x̂, ξ(x̂)) (40)

for almost all x̂, implying that the condition (ignoring that inequality whose limit is undefined

when considering x∗ = x or x∗ = x)

lim
x̂↑x∗

Hx̂(x̂, ξ(x̂)) ≥ 0 ≥ lim
x̂↓x∗

Hx̂(x̂, ξ(x̂)) (41)

is necessary for x∗ to satisfy x∗ ∈ arg maxx̂ W (x̂). Assumption 1 implies that (41) holds if and

only if there exists θ∗ ∈ Θmin(x∗) satisfying (36).

18Note that z ∈ L(x) ensures z/(θ − θ) ∈ [−1, 1]. By assumption, max L(x) < 0 and hence J(x) > x, and

min L(x) < 0 and hence J(x) < x.
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Next, suppose that H is pseudo-concave in x̂ for all θ̂. Because Hx̂θ̂ > 0 and ξ is decreasing,

(40) would then imply the pseudo-concavity of W and thus the sufficiency of (41) for x∗ ∈

arg maxx̂ W (x̂), completing the proof.

It thus remains to show that H is pseudo-concave. Because φb ≤ φs and both of these type

assignments are increasing, for any given θ̂ there exist x1 ≤ x2 such that

θ̂ > φs(x̂) ≥ φb(x̂) if x̂ < x1

φb(x̂) ≤ θ̂ ≤ φs(x̂) if x̂ ∈ (x1, x2)

φs(x̂) ≥ φb(x̂) > θ̂ if x̂ > x2.

Using (24) with (x, θ) = (x̂, φs(x̂)), we can rewrite (39) as follows, with (1) implying the in-

equality:

Hx̂(x̂, θ̂) = [b(x̂, φb(x̂))− b(x̂, φs(x̂))] + [ux(x̂, θ̂)− ux(x̂, φs(x̂))] > 0, ∀x̂ < x1.

An analogous argument with (x, θ) = (x̂, φb(x̂)) establishes

Hx̂(x̂, θ̂) = [s(x̂, φb(x̂))− s(x̂, φs(x̂))] + [ux(x̂, θ̂)− ux(x̂, φb(x̂))] < 0, ∀x̂ > x2.

Using (24) with (x, θ) = (x̂, θ̂), we can rewrite (39) as:

Hx̂(x̂, θ̂) = [b(x̂, φb(x̂))− b(x̂, θ̂)]− [s(x̂, φs(x̂))− s(x̂, θ̂)]. (42)

From (42) and the definitions of φb and φs, the function Hx̂ is absolutely continuous in x̂ with

derivative

Hx̂x̂(x̂, θ̂) = [bx(x̂, φb(x̂))− bx(x̂, θ̂)]− [sx(x̂, φs(x̂))− sx(x̂, θ̂)] (43)

for almost all x̂. Because Assumption 2 implies bxθ > 0 and sxθ > 0 (cf. the proof of Lemma 6),

(43) implies Hx̂x̂(x̂, θ̂) ≤ 0 for x̂ ∈ (x1, x2), completing the argument establishing the pseudo-

concavity of H.
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