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1
Introduction

Quantum dots are man-made nanoscale devices in which a small number of elec-
trons can be confined to tiny regions. Only substantial technical progress in the
last two decades enabled the development and fabrication of new structures on
the nanometer scale of which quantum dots are only one example. These devices
exhibit explicit quantum mechanical properties which make them very interest-
ing for current researchers. Especially the ability to gain external control over
such systems allows one to put the fundamental laws of quantum mechanics to
test. Going beyond this, the complete command of the design of new structures
makes it possible to tune their characteristics and thus opens the doors to study
completely new phenomena or in more practical terms opens also the way for new
applications like quantum information processing and quantum computing.

1.1 Quantum Computer Basics

The aim of quantum information processing is to understand how the principles
of quantum mechanics can actually be used for the manipulation, storage and
communication of information. In this field quantum dots could play an impor-
tant role [1].
In a classical computer information is encoded in a sequence of classical bits, i.e.
entities that can be in two distiguishable states, conventionally labeled with 0 and
1 [2]. In electronic devices these states are encoded by voltages. Analogously a
quantum computer is based on quantum bits, so-called qubits, which also consist
of two distinguishable states. A qubit is a quantum mechanical two-level system.
The main difference between quantum mechanical and classical information is
that unlike a classical two-level system which is always either in state 0 or 1,
qubits can as well be in an arbitrary superposition of the two basis states |0〉
and |1〉. Furthermore interactions between two quantum two-level systems are
possible, the systems can become entangled. One can imagine that computers
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1 Introduction

based on quantum mechanical devices will not only process information faster
than today’s classical computers, but also be able to run specially designed quan-
tum algorithms to perform tasks that go beyond the capability of any classical
approach.
The speedup that can be gained by doing a computation quantum mechanically
is a consequence of what is termed “quantum parallelism” and is directly related
to the possibility of creating superpositions of states and applying logical oper-
ations to them. This allows one to perform many operations in parallel. For
example, a classical gate g that processes a binary string of two digits N = 2
has to be evaluated four times to get all possible output values g(00), g(01),
g(10), and g(11). Due to the linearity of quantum mechanics a corresponding
quantum gate can be fed with the superposition of all possible input states, i.e.
g(|00〉+ |01〉+ |10〉+ |11〉) and returns a superposition of all possible outputs at
the same time, g(|00〉) + g(|01〉) + g(|10〉) + g(|11〉). A system consisting of N
qubits has 2N basis states and the single computational step of the quantum gate
then replaces 2N steps of the classical counterpart in parallel.
Yet, according to quantum mechanics a superposition of possible measurement
outcomes can only exist before it is measured. A measurement reduces the super-
positions to one actual outcome so that it seems that the computational power,
though present, is not accessible. However, the advantage of quantum parallelism
manifests itself when one is not interested in all answers to all possible inputs
but rather to find global characteristics. Then a large enough quantum computer
can outperform any classical computer. Two examples for efficient and useful
quantum algorithms are (i) the search in an unsorted database with quadratic
speed-up compared to a classical variety [3], and (ii) the factorization of integers
for which exponential speed-up can be achieved [4]. In particular the latter has
gained much interest since most forms of encryption technology today are based
on the fact that it is easy to quickly perform multiplications of prime numbers,
but - by classical means - hard to do the opposite, i.e. to factorize a large integer
into its prime factors [5].

1.2 Qubit Realizations - Quantum Dot Spin
Qubits

A great variety of systems have been considered for the experimental realization
of quantum bits [6]. One major approach is using an ensemble of molecules in liq-
uid solution with the nuclear spins in each molecule acting as qubits [7]. Nuclear
magnetic resonance was then used to control and read-out the nuclear spin states
which enabled the factorization of the number 15 into its prime factors 3 and 5
with a quantum algorithm [8]. Although based on an ensemble rather than on
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1.2 Qubit Realizations - Quantum Dot Spin Qubits

single qubits and practical limitations to about 10 qubits, with this technique an
important proof-of-principle of quantum computation was achieved. Great steps
forward have also been demonstrated using a chain of trapped ions where the
quantum information is encoded in the internal states of the ions as well as in
the vibrational modes of the chain. Manipulation of the qubit register is then
performed via external lasers [9]. Another possibility is optical implementation of
qubits encoding the information in photons [10], which have been among the first
physical systems to enable the demonstration of multipartite entanglement. They
are successfully applied for experimentally realizing quantum cryptography [11].
Microscopic systems such as atoms or ions typically have very good coherence
properties. The interaction of the quantum system with its uncontrolled environ-
ment inevitably disturbs the desired quantum evolution. This process, known as
decoherence results in errors in the computation. Thus long decoherence times
compared to gate operation times are in general required for the successful im-
plementation of a quantum computer. Also, overall qubit accessibility and the
possibility to scale up the architecture from a few-qubit system to a many-qubit
system is an elementary demand which on the other hand is a general problem of
the aforementioned approaches. Di Vincenzo summed up five basic requirements
that need to be fulfilled for the implementation of a quantum computer [12]:
• A scalable physical system with well-defined qubits
• The ability to initialize the qubits in a known pure state
• The ability to realize a universal set of quantum gates
• Decoherence times much longer than the gate operation times
• A qubit-specific possibility to perform a measurement with high fidelity

It is hard to find a system that satisfies all of these criteria. Solid-state based real-
izations of qubits might reach the criterion of scalability more easily and are good
to access but they usually lack long decoherence times. Solid state devices with
long coherence times would be optimum candidates, some of which are supercon-
ducting Josephson junctions [13], hole spins [14–16], nitrogen vacancy centers in
diamond [17–19], and electron spins in quantum dots. In the following we will
focus on the latter.

The spin of an electron trapped in a quantum dot provides a natural quantum
two-level system when it is brought into an external magnetic field. The electron
spin can point “up” or “down” with respect to the direction of the magnetic field
and the so-called Zeeman splitting leads to an energy difference between a spin-
up | ↑〉 and spin-down | ↓〉 electron. The different types of quantum dots include
self-assembled dots, vertical quantum dots, and gate-defined dots on semiconduc-
tor heterostructures, carbon nanotubes, and semiconducting nanowires [20–26].
In this thesis we are working with a laterally gated quantum dot fabricated on
a GaAs/AlGaAs heterostructure. The semiconductor heterostructure contains
one layer of free electrons, a two dimensional electron gas (2GEG). By applying
negative voltages to metal surface electrodes fabricated on top of the heterostruc-
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1 Introduction

ture the 2DEG underneath can be depleted and a small area free of electrons
can be formed and one by one filled again with electrons from a reservoir. This
laterally gated quantum dot is a very controllable and stable system that can
be manipulated and probed electrically. Increasing the number of qubits can
be straightforward by adding more electrodes on top of the semiconductor het-
erostructure. Like this several quantum dots in series can be induced and the
coupling between them is tunable via the voltages on the electrodes. However,
we note that the scalability seems simple but is in fact highly unsolved and it
remains to be seen how far one can go.
For the aim of building a quantum computer Loss and Di Vincenzo have shown
that all necessary gate operations on a quantum dot qubit can be built out of two
basic operations [1]: The manipulation of a single spin in a quantum dot and the
controlled coupling of the spins in two dots.
Single qubit operations have recently been demonstrated using electron spin res-
onance (ESR) [27]. A microwave magnetic field is applied on resonance with the
Zeeman splitting where the oscillating magnetic component which is perpendic-
ular to the static magnetic field results in a spin rotation on timescale of about
100 ns. In applying the oscillating field for a fixed duration a superposition of |↑〉
and |↓〉 can be created. Spin resonance can by now also be electrically generated,
mediated by spin-orbit coupling [28], as well as nuclear hyperfine coupling [29], or
by a directly integrated micrometre-size ferromagnet [30] (see also next section).
Two qubit operations can be performed by controlling the coupling of the spins
in two quantum dots [31]. Varying the voltages on the gates that define lateral
quantum dots enables the control over potential barriers between them and thus
the inter-dot coupling. A

√
SWAP operation can thereby be performed within

180 ps.
Also techniques for reading out the state of the electron spin have already been
presented [32, 33]. Since the electron spin magnetic moment is extremely small
an indirect spin measurement is necessary. Spin-to-charge conversion is a method
where the spin orientation of the electron is correlated to its position [34]. In-
stead of directly measuring the spin orientation, it is much easier to measure the
position of the charge using a sensitive electrometer, thus providing a reliable
read-out for the qubit.
A last important remaining challenge is to understand and control the interaction
of the electron spin with its environment. We will discuss this in the following
paragraphs.

1.2.1 Interaction with the Environment

In electron spin qubits the information is stored in the value of the spin which
can be “up” or “down”, and its quantum phase. Controlling the system includes
the ability to prepare the spin in a precisely defined state and after preparation
this spin state has to persist long enough to be able to manipulate it. But due
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1.2 Qubit Realizations - Quantum Dot Spin Qubits

to interaction with the environment both the value of the spin and its phase tend
to decay. For example, an energetically higher spin-up electron will eventually
relax into a spin-down state on a timescale T1, the spin relaxation time. On the
other hand the spin dephasing process takes place on a characteristic timescale
T2, the spin decoherence time. However, since relaxation necessarily destroys any
coherent spin state, it sets an upper limit on the dephasing time T2 < 2T1 [35].
The two most important interaction mechanisms between the electron spin and
the environment are the hyperfine interaction that causes a coupling between the
electron spin and the nuclear spins, and the spin-orbit interaction that causes a
mixing of orbital and spin states.
Hyperfine coupling is for the electron spin the dominant source for dephasing due
to the fluctuating nuclear spin bath. One can distinguish between the decoher-
ence time T2 of a single electron spin and an ensemble averaged decoherence time
T ∗2 . Very recently long coherence times T2 of about 200 µs have been reported
applying spin-echo techniques [27,31,36,37].
In this thesis we are interested in the electron spin relaxation and possibilities to
extend the relaxation time T1 using the attribute that this process is anisotropic
and dependent on the direction of an externally applied magnetic field. We will
also see later that the longest T1 time that has been reported is 1 s [38].
Electron spin relaxation in semiconductor quantum dots has two major origins:
the hyperfine and spin-orbit interactions with the environment. The hyperfine
interaction couples the electron spin with the nuclear spins of the host material
that lead to an effective magnetic field Bnuc acting on the electron [31, 39–41].
This causes decoherence and also relaxation of the electron spin. However, for
external magnetic fields B � Bnuc ≈ 3 mT the relaxation processes due to the
hyperfine interaction are suppressed by the mismatch between the nuclear and
Zeeman energies [42,43].
The second mechanism causing electron spin relaxation is the spin-orbit coupling
as a result of an electric field acting on the electron which is the dominant process
to drive transitions between spin states for larger magnetic fields [44,45]. We will
explain this in more detail in the next section.

1.2.2 Electron Spin Relaxation due to Spin-Orbit Coupling

The main source for electron spin relaxation is the spin-orbit interaction that
weakly couples the spin and charge degrees of freedom of the electron. In the fol-
lowing we want to discuss how the spin-orbit interaction can give rise to electron
spin relaxation via the phonon bath and we will see that this relaxation process
is anisotropic in a sense that it is dependent on the orientation of a magnetic field
with respect to the crystal axis of the bulk semiconductor that the quantum dot
was fabricated on.
An electron moving in an electric field also experiences an internal magnetic field
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1 Introduction

which can be derived from the Dirac equation, ~B = 1
m∗c2

~p × ~E, where ~p is the
momentum of the electron and m∗ is its effective mass. This internal magnetic
field acts on the electron spin and is dependent on the momentum, and therefore
the orbital state that the electron occupies. In this way the spin and orbital state
are coupled. An electron moving through a solid can experience electric fields due
to charged atoms in the lattice [44]. If the crystal has a sufficiently high symmetry
these electric fields will in total average to zero. However, we are working with
semiconductor quantum dots fabricated on GaAs whose zincblende structure ex-
hibits bulk inversion asymmetry. Here the resulting electric field is non-zero along
certain crystal directions and thus results in a spin-orbit interaction. This con-
tribution to the spin-orbit interaction due to bulk inversion asymmetry (BIA) is
known as the Dresselhaus term [46].
The second contribution to the spin-orbit interaction results from the electric
fields associated with asymmetric confining potentials (structural inversion asym-
metry, SIA) [44] and is called the Rashba term [47]. For example the Rashba
contribution arises for a 2DEG formed at the GaAs/AlGaAs heterointerface.
We are interested in these two contributions to spin-orbit coupling especially for
a 2D system, a 2DEG grown along the (001) crystal direction. Starting with the
bulk Hamiltonian and integrating over the growth direction where 〈pz〉 = 0 we
get the Dresselhaus term

H
2D,(001)
D ∝ [−px〈p2

z〉σx + py〈p2
z〉σy + pxp

2
yσx − pyp2

xσy] , (1.1)

where the first two terms are the linear Dresselhaus terms and the the last
two are the cubic terms which are usually much smaller than the first ones, since
〈p2
z〉 � p2

x, p
2
y due to the strong confinement along z. The Hamiltonian then

reduces to

H
2D,(001)
D = β[−pxσx + pyσy] , (1.2)

where x, y and z point along the main crystallographic directions, (100), (010),
and (001). β depends on the material properties and on 〈p2

z〉, which is also
heterostructure dependent but otherwise fixed. For this case the internal magnetic
field is aligned with the momentum of motion along (010), but is opposite to the
momentum of motion along (100), see Figure 1.1 (a).
Similarly the spin-orbit Hamiltonian for the Rashba contribution can be written
as

HR = α[−pyσx + pxσy] , (1.3)

where α is material specific as well and also depends on the confining potential.
Here the internal magnetic field is always orthogonal to the momentum of motion,
see Figure 1.1 (b).
Looking at small quantum dots electric fields cannot give rise to transitions be-

6



1.2 Qubit Realizations - Quantum Dot Spin Qubits

yp

xp

yp

xp

(a) (b)

Figure 1.1: Illustration of the orientation of the apparent magnetic field that acts on the electron
spin due to spin-orbit interaction when it travels through a GaAs crystal with momentum ~p.
(a) The arrows indicate the field orientation due to the linear Dresselhaus contribution. (b)
Field orientation due to the Rashba contribution.

tween pure spin states. The stationary states in a quantum dot are bound states
for which 〈px〉 = 〈py〉 = 0. Thus 〈g ↓ |HSO|g ↑〉 = 0 where g is an orbital state of
the quantum dot and HSO is the spin-orbit Hamiltonian containing both Dressel-
haus and Rashba contributions. This means that the spin-orbit interaction does
not directly couple the spin-up and spin-down states of the Zeeman split sublevels
of a quantum dot in an external magnetic field. But if the states contain both
different orbital and different spin parts HSO can couple the states which leads
to an admixture between the spin and orbital states [48–50]. So looking from
a quantum mechanics point of view the spin-orbit interaction perturbs the spin
states which leads to an admixture of the eigenstates between spin and orbital
states.
The mechanism for electron spin relaxation is given by the emission of a phonon
mediated by the spin-orbit interaction [35,49,51]. In all semiconductors deforma-
tion potential phonons can inhomogeneously deform the crystal lattice, leading to
a varying bandgap in space and ultimately giving rise to electric field fluctuations.
Additionally in polar crystals like GaAs homogeneous strain can lead to electric
field fluctuations due to the piezo-electric effect. The phonon-induced electron
spin relaxation rate between the perturbed states |g ↓〉(1) and |g ↑〉(1) is given by
Fermi’s golden rule [52, 53]:

Γ =
2π

~
∑
|(1)〈g↑ |He,ph|g↓〉(1)|2D(∆E

(1)
Z ) , (1.4)

where D(E) is the phonon density of states at energy E, and ∆E
(1)
Z is the energy

splitting between the perturbed spin-up and spin-down states E(1)
↓ −E

(1)
↑ . We can

see that the relaxation rate depends on the phonon density of states at the energy
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∆EZ , the energy given by the spin-flip which subsequently has to be carried away
by a phonon. It also depends on the strength with which the phonons couple the
spin-orbit perturbed spin states, represented by He,ph. This coupling includes the
degree of admixing between spin and orbital states, the electric field strength of
one photon, the phonon wavelength and the external magnetic field.
Here, the perturbation HSO of the eigenstates due to spin-orbit coupling and
the transitions between them through He,ph were considered separately. A com-
bined calculation using HSO and He,ph together and starting with unperturbed
eigenstates via 〈g↓ |(HSO +He,ph)|g↑〉 is also possible.

1.2.3 Anisotropy of Spin Relaxation

As we can now easily see, electron spin transitions due to the spin-orbit interaction
is anisotropic [54,55]. The spin-orbit Hamiltonian HSO is the sum of the Dressel-
haus and Rashba contributions which is with respect to the main crystallographic
axis as already mentioned above

HSO = α(pxσy − pyσx) + β(pyσy − pxσx) . (1.5)

The Rashba contribution can be smaller or larger than the Dresselhaus contri-
bution, depending on the structure. And the two parts can add up or cancel
out depending on the direction of motion. Considering this Hamiltonian for a
coordinate system that is rotated by an angle of 45◦, where x̃ is along (110) and
ỹ is along (11̄0), the natural crystal cleaving directions of GaAs, it then takes the
form

HSO = (β − α)pỹσx̃ + (β + α)px̃σỹ . (1.6)

If the magnetic field is parallel to the ỹ-direction, only the σx̃ term is not diag-
onal and can induce spin relaxation, whereas the second term leads to no effect.
Analogously for a magnetic field parallel to the x̃-direction only the second term
is capable of producing spin relaxation [43]. Spin relaxation caused by the spin-
orbit interaction is anisotropic.

The ability to rotate the sample in the magnetic field would enable the study
of this anisotropy. Or alternatively, applying magnetic fields in both x- and
y-direction using a vector magnet. In particular, it allows the independent mea-
surement of (β − α) and (β + α), the direct measurement of the Rashba and
Dresselhaus coefficients. Tunable coefficients would then make it possible to min-
imize the contribution of spin-orbit coupling to spin relaxation processes. For
example, when the Rashba term is tuned in a way that β − α ≈ 0.
The Rashba coefficient can be tuned by tilting the quantum well with additional
top and back gates [56], and the Dresselhaus coefficient can be tuned in applying
strain to the sample with piezoelectric actuators [57].
It has been recently demonstrated that the electron spin relaxation time T1 can

8
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be tuned by manipulating the orbital states of the quantum dot [43]. Since the
relaxation rate depends on the confinement of the electron wave function in the
direction along the applied magnetic field it can be influenced by a change of the
shape of the quantum dot with respect to the magnetic field. Thus tuning the
gate voltages that define the quantum dot enables one to manipulate the relax-
ation rate. In their measurements T1 exceeds 1 s for a magnetic field of 1 T and
can be changed by an order of magnitude.

1.2.4 T1 Measurements

For being able to control qubits and electron spin relaxation it is of course first
important to know on which time scale this relaxation process happens, being
able to measure the T1 time. Spin-to-charge conversion is a way to distinguish
between a spin-up and spin-down electron where the spin state is linked to a
occupation of charge on the quantum dot [32–34]. For example the system is
tuned in way that only one electron occupies the quantum dot and this electron
can only tunnel off when it has the high energy of a spin-up electron. Thus when
a tunneling event is detected one knows that the electron on the quantum dot
was a spin-up electron. Regarding T1 measurements the important information
is then that the electron has not yet relaxed to the ground state. This technique
still requires some important ingredients. Fast detection of the occupation of
the quantum dot, i.e. detection of electron tunneling in real-time, is necessary
to make the connection to a relaxation time of the electron spin [58, 59]. The
time scales that we expect are in the range of ms to seconds. Also, the tunneling
rates of the electrons to the reservoirs have to be smaller than this. Also, being
able to distinguish between the energy state of a spin-up and spin-down electron
requires the resolution of their energy difference given by the Zeeman splitting
due to an externally applied magnetic field ∆EZ = gµBB. Thus resolving such
small energies requires an even smaller energy broadening of the system due to
temperature. The lower the temperature of the electrons, the more possibilities
one has for measuring at small magnetic fields with resultingly small Zeeman
splittings.

1.3 Motivation and Preview of Chapters

The intention of the work reported in this thesis was to implement the first steps
towards investigating the anisotropy of electron spin relaxation in a vector mag-
netic field, starting from an empty laboratory. We built up the necessary mea-
surement equipment, fabricated appropriate quantum dot samples, and put into
practice first experiments using transport and charge sensing measurements. Also,
we report the fabrication of new cryogenic microwave filters that enable to achieve
ultra low electron temperatures. A preview of the chapters is given in the follow-
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1 Introduction

ing.

We first discuss the design and fabrication procedure of our AlGaAs/GaAs later-
ally gated quantum dots beginning with a heterostructure wafer. Several process-
ing steps are needed to structure a device fulfilling all our needs for measuring
real-time electron tunneling. The design principle and the different fabrication
steps are described in Chapter 2 in the same order as they are processed in the
clean room.
For our measurements we set up a new laboratory with a high power 3He/4He
dilution refrigerator reaching a base temperature of about 4 mK including a vec-
tor magnet supplying a 8 T field in one direction and a 4 T field perpendicular to
it. We designed a special cold-finger to flexibly orientate the sample in the center
of the magnetic field and ensure good heat sinking of the sample with the mixing
chamber plate of the refrigerator. Filtered wires were connected to the low-noise
measurement electronics. We separate between transport measurements of the
current through the quantum dot in the high tunneling rate regime and charge
sensing measurements of the occupation of the quantum dot especially used for
low tunneling rates. The setup and the measurement electronics for electron
transport and charge sensing measurements are described in Chapter 3.
As a first step we performed electron transport measurements to characterize
our samples and investigate their suitability for real-time measurements, which
are presented in Chapter 4 along with detailed descriptions. We can tune our
quantum dots to the 1-electron regime and extract the electron temperature from
the width of Coulomb blockade peaks. Coulomb diamond measurements enable
level spectroscopy out of which we obtain important device parameters like the
quantum dot orbital level spacing and excited state energies. Furthermore we can
use our devises as single quantum dots as well as double quantum dots. Addi-
tional transport lines within the second Coulomb diamond indicate second order
tunneling processes, in particular inelastic cotunneling and cotunneling assisted
sequential tunneling as theoretically predicted by Golovach and Loss [60].
Since the current through the quantum dot decreases with decreasing tunneling
rate of the electrons there is a lower bound for which electron tunneling can still
be detected with transport measurements. Our aim is resolving electron tunnel-
ing in real-time at low tunneling rates for which we perform charge sensing. An
adjacent quantum point contact (QPC) to our quantum dot is a very sensitive
charge sensor with a signal sensitivity of 6%. In using a fast read-out card and
decreasing the tunneling rates to the reservoirs strongly enough we can detect
electron tunneling in real-time. We show how we can tune the tunneling rates
between the quantum dot and the reservoirs by changing the voltages on the rele-
vant gates. Energy dependent tunneling and experiments in magnetic field enable
us to measure the Zeeman splitting between a spin-up and spin-down electron out
of which we extract the electronic g-factor of GaAs. All these measurements per-
formed using charge sensing are presented in Chapter 5.
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In Chapter 6 we concentrate on ultra low electron temperatures. Although our
high power dilution refrigerator can be cooled down to a mixing chamber tem-
perature of about 4 mK the temperature of the electrons in our samples is much
higher. This is mainly due to high frequency noise coming from the room tem-
perature measurement setup, ground loops, and low frequency interference. Also,
good thermal coupling between the sample and the mixing chamber plate is chal-
lenging. While the electron temperature during the first experiments was about
80 mK, we then developed new cryogenic microwave filters that in combination
with excellent heat sinking enabled us to get to electron temperatures of less than
20 mK. We describe the design of the filters and how they are attached to the
mixing chamber plate to ensure good thermal contact, along with optimized tem-
perature measurements.
Finally, Chapter 7 summarizes the work of this thesis, indicates the next required
steps towards spin relaxation measurements, and suggests directions for future
research.
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2
GaAs/AlGaAs Quantum Dots

Quantum dots appear in many different varieties, materials and sizes. GaAs/-
AlGaAs quantum dots lithographically patterned on a semiconductor heterostruc-
ture have shown good versatility and tunability of all of the relevant parameters
which can be controlled in-situ during the measurement. This chapter reviews the
basic features of lateral GaAs/AlGaAs gated quantum dots as they were fabri-
cated for the measurements in this thesis. The first section shows how they are in
principle designed to be able to separate single electrons from the two-dimensional
electron gas. This is followed by a closer description of the heterostructure mate-
rial in the second section. Starting from the heterostructure, several fabrication
steps are necessary until a measurable sample is finished. These processing steps
to structure the device are separately described in the last section of the chap-
ter. Hereby we follow the order how they are processed in the clean room (see
also [61, 62]).

2.1 Design

Quantum dots can also be thought of as artificial atoms [64]. Like atoms they
confine electrons to small regions and especially when the size of the dot is com-
parable with the wavelength of the electrons that occupy it, the system exhibits a
discrete energy spectrum. Equivalent to that of an atom. However, the properties
of atoms are given by nature, whereas the characteristics of quantum dots can
be designed during fabrication or controlled electrically. A schematic picture of a
lateral quantum dot system is shown in Figure 2.1. Here the dot is pictured by
a disc in the center which is connected to electron reservoirs via tunnel barriers.
Electrons can be exchanged to both sides. When applying a voltage VSD across
the reservoirs, electrons can tunnel from the source onto the dot and out to the
drain again which leads to a measurable current flow I. Additionally the dot is ca-
pacitively coupled to gate electrodes. In applying voltages Vg to those electrodes,
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2 GaAs/AlGaAs Quantum Dots

Figure 2.1: Lateral gated quantum dot, taken from Ref. [63]. The quantum dot, represented
by the center disc, is connected to a source and drain reservoir via tunnel barriers. In applying
a bias voltage VSD to the reservoirs, electrons can tunnel from the source onto the dot and out
to the drain again. The energy level of the quantum dot with respect to the reservoirs can be
tuned with the voltage on the gate Vg.

they can be used to tune the energy level of the quantum dot with respect to the
energy of the electrons in the reservoirs. Thus the measured current I through
the system is dependent on both VSD and Vg.
The left side of Figure 2.2 gives an idea of how lateral quantum dots can be im-
plemented using a GaAs/AlGaAs semiconductor heterostructure that includes as
one layer a two-dimensional electron gas (2DEG). On top of the AlGaAs wafer,
metal gate electrodes are structured which are illustrated as dark gray lines. In
applying negative voltages to those electrodes, the generated electric fields locally
deplete the 2DEG at the heterointerface underneath. This is indicated with white
areas. In this way small islands of electrons can be isolated from the rest of the
2DEG. Tuning the voltages Vg on the gates allows to precisely control the number
of free electrons on the islands from several hundreds down to zero [23,24]. Ohmic
contacts provide a connection to the 2DEG and enable to apply the source-drain
bias VSD across the system which shifts the energy levels of the reservoirs. If the
energy level of the quantum dot lies in between the energy levels of the reservoirs,
electrons can tunnel from one reservoir through the quantum dot out to the other
reservoir and a current Idot flows. This is also illustrated on the right side of Fig-
ure 2.2 which shows a scanning electron micrograph of the very center of a device
similar to the ones fabricated for this thesis. The white lines show the metal gate
electrodes.
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2.2 Heterostructure

Figure 2.2: Left: Schematic view of the heterostructure with metal gates (dark gray), taken from
Ref. [63]. Applying negative voltages to the gates leads to depleted regions (white) in the two-
dimensional electron gas (2DEG). Ohmic contacts allow to connect the 2DEG. Right: Scanning
electron micrograph of a device fabricated for the experiments described in this theses. Gold
electrodes (light gray) are structured on the surface of the heterostructure (dark gray). White
squares indicate ohmic contacts to the 2DEG. Electrons can tunnel on and off the quantum dot
which leads to a current flow Idot through the quantum dot.

2.2 Heterostructure

Gated lateral quantum dots are fabricated on heterostructures that consist of sev-
eral layers of semiconducting material including a 2DEG. For example GaAs and
AlGaAs are grown on top of each other by using molecular beam epitaxy (MBE).
The lattice constants of GaAs (aGaAs = 5.6533) and AlGaAs (aAsGaAs = 5.6611)
are very similar which results in very small strain while growing a heterostructure
consisting of those two materials and one gets very clean crystals with excellent
electronic properties [61].
The 2DEG is generated by introducing free electrons into the material in δ-doping
the AlGaAs layer with Si. At the interface between the two materials, electrons
move from the energetically unfavorable boundary area of the AlGaAs into the
GaAs, leaving behind positively charged donor ions that lead to a bending of the
conduction band to larger energies. An electric field is created perpendicular to
the interface that pulls back the electrons toward the AlGaAs layer. But due to
the offset between the conduction bands, the electrons cannot be pulled back into
the AlGaAs but rather are trapped at the interface and the 2DEG is formed. The
electrons are confined in the direction perpendicular to the interface in a nearly
triangular potential well and can move freely in the plane of the interface [65].
Figure 2.3 schematically shows the different layers of the heterostructure that we
used for our devices along with a sketch of the conduction band edge in depen-
dence of the depth of the material. The AlGaAs is grown on the GaAs substrate
with the 2DEG 110 nm below the surface and the Si-δ-doping layer 70 nm below
the surface. A GaAs cap layer prevents the wafer from oxidation. Our samples
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2 GaAs/AlGaAs Quantum Dots

have a δ-doping of 6× 1012[cm−2] and a mobility of 3.98× 105[cm2/Vs].
We were kindly supplied with 2DEG material by the group of A. C. Gossard from
the University of Santa Barbara, California, USA.
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Figure 2.3: Growth profile of the GaAs/AlGaAs heterostructure material that was used for the
devices we measured in this theses, the 2DEG is in a depth of 110 nm. A schematic of the
conduction band edge versus depth is also shown.

2.3 Sample Fabrication

Fabricating lateral gated quantum dots is a process consisting of several steps.
Starting with the GaAs/AlGaAs heterostructure as a substrate, first a mesa is
defined by the use of optical lithography and subsequent wet-etching. The mesa
is the basis of the sample, a “table” that marks the area where the later quantum
dot is fabricated. This is followed by the metalization of ohmic contacts, gate
electrodes, and bond pads for electrically accessing the finished device. Larger
parts are defined by optical lithography while the nanometer-size parts of the
gates are structured with ebeam lithography. Finally the sample is glued on a
chip carrier and contacted with bond wires. Like this it can be mounted to the
sample holder in the dilution refrigerator for measurement.
The following sections describe our fabrication procedure in the order how it is
processed in the clean room.
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2.3 Sample Fabrication

2.3.1 Defining a Mesa

At the beginning of the sample fabrication process a mesa is isolated on a piece
of GaAs/AlGaAs wafer. The mesa is a precisely defined area where the original
growth profile of the heterostructure with the 2DEG is conserved whereas every-
where else the upper layers including the 2DEG are etched away. Left over is a
“table” on which the quantum dot is structured. Several mesas can be defined
on one piece of wafer which enables to fabricate several quantum dots in parallel.
This process step is performed using optical lithography.
After cleaning the wafer piece in the ultrasonic bath one after the other with
trichloroethylene, acetone and methanol, the sample is dehydrated at 120◦C on
a hotplate. Now the negative photoresist (ma-N 405) is spun on at 4000 rpm for
40 s leading to a resist height of 1.6 mm. The resist is baked on the hotplate for
90 s at 95◦C. The sample is then loaded to the photolithography mask aligner,
model SUSS MJB 3, and positioned underneath the mask which consists of a
glass slide structured with chromium in the mesa design. When the sample is
oriented in the right way, it is lifted up until it well touches the mask. Now it can
be exposed with UV light for 60 s. During developing with ma-D 332s for 40 s
the resist only stays where it has not been exposed, in this case where the mesa
is supposed stay, to protect the substrate from the etchant in the next step. The
surrounding of the mesa including the 2DEG is etched away by about 150 nm in
dipping the sample for 42 s in a mixture of H2O, H2SO4 and H2O2 at the ratio
480 : 2 : 16 while the etch rate has been previously determined with a test sample.
Afterwards the remaining photoresist is removed with acetone. Figure 2.4 shows
a schematic of the photolithography and etching process. Several mesas can be
defined on one piece of GaAs/AlGaAs wafer and then be used as basis for the
quantum dots. Since the 2DEG is etched away in between the mesas electrical
contact is broken and several quantum dots can be fabricated in parallel on one
piece of wafer. They can later be separated by cleaving.

2.3.2 Contacting the 2DEG

The remaining 2DEG after etching defines the platform on which the quantum
dot will be fabricated. The measurements described in this thesis require electri-
cal contact to the 2DEG underneath the mesa for example to apply a source-drain
bias VSD between the source and drain reservoir which shifts their Fermi energies
with respect to each other. This is realized with so-called ohmic contacts, a metal
that joins the surface of the mesa with the 2DEG. To fabricate them two barriers
must be overcome: The structural barrier of the 110 nm thick insulating AlGaAs
layer on top of the 2DEG and the Schottky barrier at the metal-semiconductor
interface [65]. A common method is to deposit gold-germanium on the surface
followed by an annealing process where the sample is heated up so the metal dif-
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Figure 2.4: Schematic of the optical lithography and wet-etching step to define a mesa on the
GaAs/AlGaAs wafer. The 2DEG is etched away at the places where there is no resist on the
sample after optical lithography. The mesa defines the area where one quantum dot can be
fabricated. Also, parallel fabrication of several quantum dots on one wafer piece is possible, due
to the etching the 2DEGs are not connected.

fuses into the heterostructure. We use a rapid thermal annealer for this purpose.
Low ohmic contacts are essential for all our experiments. Many studies aimed
at understanding the contact mechanism but there does not exist an universal
recipe. One approach to understand their behavior is that spikes of gold are de-
veloped during annealing that penetrate the AlGaAs, inserting the germanium
into the GaAs [66]. The germanium serves as an n-type dopant and thus reduces
the thickness of the Schottky barrier. The annealing time and temperature are
critical parameters for producing good ohmic contacts since in this picture they
control the number and length of the spikes contacting the 2DEG. Nevertheless
trial and error turned out to be the best way to determine the right parameters
for a certain wafer. Thus the following values provide an informative basis but
are reliably true only for the samples used in this thesis.
Also the ohmic contacts are defined by a photolithography process which is identi-
cal to the one used for structuring the mesa. In this case at the end of the process
resist-free regions refer to the areas where the contacts will be developed. For
this step it is especially important that a sufficient undercut is generated during
developing the negative photoresist to ensure a reliable lift-off process. Further-
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Figure 2.5: Schematic of fabricating ohmic contacts. (a) After optical lithography resist-free
areas on the sample indicate the locality of the contacts while the negative photoresist generates
an undercut during developing. (b) During evaporation the whole sample is metalized but after
lift-off the metal will only remain at the resist-free areas. (c) Annealing leads to diffundation
of the metal to the 2DEG. The drawing underneath illustrates the mesa, the "table". Pads
that are on the mesa, where the 2DEG is conserved, are ohmic contacts to the electrons in the
2DEG. Pads that are off-mesa indicate the positions where gates will start to run into the center
of the sample to form the quantum dot, they later serve as bond pads. Since here the 2DEG is
destroyed, there is no electrical contact between these pads.
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2 GaAs/AlGaAs Quantum Dots

more it is essential that there are no resist residues where the metal will later be
applied since the following annealing process might then insert this dirt into the
heterostructure. To remove any resist residues the sample is thus exposed to the
oxygen plasma of an reactive ion etcher before metal evaporation. With 30 W and
400 mTorr background pressure, 40 s of exposure strip off about 50 nm of resist
from the whole sample which should also clean the resist-free regions. Afterwards
a HCl-dip for 5 s cleans the sample from oxidation. Now it is directly loaded
into the evaporator and 107 nm gold, 53 nm germanium, and 40 nm platinum are
deposited in this order. The addition of platinum improves the surface morphol-
ogy [67]. Often Nickel is used for this purpose but for ensuring an undisturbed
measurement environment it is important to keep the close surrounding of the
quantum dot free of magnetic materials.
During the lift-off process in warm acetone the metal will stay at the regions that
were free of resist and will be removed wherever resist is underneath. The an-
nealing takes place in two steps. First the sample is heated to the melting point
of the alloy at 370◦C, after 120 s the temperature is increased to 440◦C and kept
there for 50 s whilst the metal diffuses in.
Figure 2.5 shows a schematic of the photolithography, evaporation and lift-off
process and the sample at this stage of the fabrication process.
Together with the ohmic contacts we also structure the bond pads for the deple-
tion gates since the annealing roughens their surface which makes bonding later
easier. Note that these pads are off-mesa as illustrated in Figure 2.5. Since the
2DEG is here etched away there is no electrical contact between them.

2.3.3 Depletion Gates

Now we get to the heart of the sample. The gate electrodes that define the
quantum dot are fabricated at the center of the mesa. They consist of fine gold
structures. In applying negative voltages to those gates, the generated electric
field can lead to a local depletion of the 2DEG underneath them and with an
appropriate design of the structure and sufficient negative voltages only a very
small region with electrons will remain.
These structures are only about 30 nm wide and thus cannot be resolved with
photolithography anymore. Another fabrication technique called electron beam
lithography is used. Instead of exposing a resist with the use of a mask and UV
light, now the exposure is performed with a focused electron beam which leads
to a much better resolution.
After another cleaning step similar to the one above, the sample is coated with a
120 nm thick layer of PMMA (poly-methyl-methacrylate) and baked for 7 min-
utes at 180◦ C. After focusing the 30 keV electron beam with the help of gold-
nanoparticles which were placed to the corners of the sample, the structures are
‘written’ into the resist. The sample is developed in a mixture of isopropanol
(IPA), methylisobutylketon (MIBK), and methylethylketone (MEK) at a ratio
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2.3 Sample Fabrication

(MIBK+IPA):MEK = 100 : 1.3. It is first cooled in a jar with ice cubes which
reduces the developing speed and increases the contrast [68]. Now 5 nm of tita-
nium as an adhesive layer followed by 15 nm of gold are evaporated. Lift-off is
performed similar to this process step in photolithography with warm acetone.

2.3.4 Connection Gates

Only the very fine lines defining the quantum dot are structured with electron
beam lithography. But so far they cannot be electrically contacted with wires. To
be able to do so another photolithography process is necessary to produce wider
gates that connect the electron beam structures to about 150× 200 µm big bond
pads. The photolithography process of these gates is similar to the one used for
the ohmic contacts and the metal composition is 5 nm of titanium and 100 nm
of gold.

2.3.5 Bonding - Electrically Accessing the Sample

To be able to electronically access the sample it is glued into a chip carrier using
PMMA. Now the bond pads can be connected to the contacts of the chip carrier
with 32 µm thick gold-wire. This is done in a wedge bonder in a combined process
that applies an ultrasound pulse to the wire while pressing it to the bond pad and
later the other side of the the wire to chip carrier. Normally it is more common
and also more comfortable to use aluminum as bonding wire since it seems that
it sticks easier to the sample. But aluminum becomes superconducting at 1.14 K
and thus is a bad thermal conductor at low temperatures. But the bond wire
is the only thermal connection to our sample that is sitting on a ceramic chip
carrier. However, even if the critical field of aluminum is 10 mT which can be
easily applied during a measurement and only slightly complicates the experiment,
we still want to avoid this effect.
During bonding it is important to assure that the sample is well grounded to
prevent it from electrostatic charging which could damage the nanostructures.
Now the sample is ready to be loaded into the dilution refrigerator.
Figure 2.6 shows a multiscale view of a typical sample.
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2 GaAs/AlGaAs Quantum Dots

Figure 2.6: Multiscale view of a typical sample. The upper picture shows the whole sample
bonded to the chipcarrier. The first three images were taken with an optical microscope, the
last one, showing the very center, was taken with a scanning electron microscope.
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3
Measurement Setup

When setting up a measurement system for quantum dots one always has the goal
to minimize temperature and noise for being able to resolve very small signals.
For example, distinguishing between a spin-up and spin-down electron which are
separated by the Zeeman splitting requires a temperature broadening of the sys-
tem well below the difference in Zeeman energy kBT � ∆EZ . Furthermore, for
the detection of electron tunneling in real-time, and spin relaxation time measure-
ments, a high bandwidth of the system is desirable. For this, we set up a new lab
with a new 3He/4He high cooling power dilution refrigerator connected to low
noise measurement electronics. We can separate our measurements into two main
types. On one hand, we study the direct transport through the quantum dot,
measuring the current flow through the system due to electron tunneling from
the source reservoir onto the quantum dot and further on to the lead reservoir.
On the other hand, we can study the quantum dot system in looking at the charge
on the quantum dot, the number of electrons occupying it. Especially when the
tunneling rates of the electrons are low, the current gets very small until it is
too low to be still detectable and charge measurements are the only possibility to
study the system.
The next section first describes in general the cold part of the setup, the dilution
refrigerator in which the sample is cooled including the vector magnet, cold finger
and wiring. After that the specific electronics for direct transport measurements
and charge measurements are presented separately.

3.1 Dilution Refrigerator

We set up a high cooling power Minikelvin MNK126-700 TOF 3He/4He dilution
refrigerator from Leiden Cryogenics, that can be cooled down to a base tem-
perature of about 4 mK at the mixing chamber. For the planned electron spin
relaxation anisotropy measurements the system contains a two-axis vector mag-
net. The NbTi-solenoid reaches magnetic fields up to 8 T and a perpendicular
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Figure 3.1: Possible field combinations of the vector magnet solenoid and split pair. The system
first needs training for combined fields when warmed up to room temperature but keeping it at
liquid nitrogen temperature is enough to reach the maximum values immediately again when
going back to 4 K.

split-pair consisting of two Nb3Sn-Helmholtz coils reaches fields up to 4 T.
Figure 3.1 shows the possible field combinations of solenoid and split pair as they
were guaranteed at sale (brown full circles), the values that were reached in the
factory test of the supplier (blue open squares), and what we tested and achieved
in our setup (other symbols). Any magnet vector underneath the blue curve is
accessible. After a complete warm-up of the magnet to room temperature, it
needs some training to reach maximal field combinations of the solenoid and split
coil. When kept at liquid nitrogen temperature, full use is directly possible again
when cooling down to the superconducting state at 4 K.
The sample is mounted to a specially designed cold finger attached to the bottom
of the mixing chamber plate of the dilution refrigerator to precisely position it
in the center of the magnetic fields (see Figure 3.2). The sample holder can be
rotated about two axis for all possible field directions and combinations. Aiming
to have the fields in the plane of the 2DEG, we position the sample using the
GaAs wafer as a mirror while shining with a laser beam on it and adjusting the
lateral or vertical deflection of the laser spot on a plane parallel to the incident
laser beam at some distance. We can check the accuracy of this method during
the experiment using the mesa of the quantum dot for a Hall-bar measurement.
Although the geometry of the mesa is not perfect for this purpose, leading to an
unknown error, we estimate the out of plane angles smaller than 0.5 degrees for
both the solenoid and the split pair field.
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3.1 Dilution Refrigerator

Figure 3.2: For good heat sinking, the sample is mounted to a specially designed cold finger that
is screwed into the mixing chamber plate of the refrigerator. Like this it can also be accurately
positioned in the center of the fields of the vector magnet. The magnetic field orientation can
be controlled by rotating the sample holder about two axes.

Apart from positioning the sample in the magnetic field, the cold finger is also op-
timized for providing a good thermal contact between the sample and the mixing
chamber plate, the coldest place of the refrigerator. Minimizing the temperature
of the electrons in the sample already commences with contacting the 2DEG, i.e.
with the electrical connections leading to the ohmic contacts. In fact the bond
wires are the only direct thermal connection to our sample at low temperatures
below 1K since it is sitting in a ceramic chip carrier. As already mentioned in
Chapter 2.3, we are thus using gold bond wire instead of the standard super-
conducting aluminum. Via the bond wires the sample is connected to the chip
carrier, that is mounted in a plastic socket, sitting in a sample holder made of pure
silver, which is attached to an OFHC copper tube as extension. Ensuring best
possible heat sinking with the mixing chamber plate of the refrigerator, the tube
is directly attached to it with a copper screw. Thin copper wires (∅ 125 µm) are
connected to the sample holder and are well pressed to the inside of the copper
tube using copper tape, to provide good thermal contact. The wires are then
leading into silver epoxy filters that are embedded into gold plated posts that are
directly screwed into the mixing chamber plate. Finally thermocoax cables are
connecting to the room temperature measurement electronics. While designing
the cold finger great care has been taken not to have any magnetic materials in
the vicinity of the sample. For this purpose we only worked with ultra pure non-
magnetic materials and used a non-magnetic socket and chip carrier.
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Since some of the measurements are also sensitive to vibrations, the whole refrig-
erator is mounted on a vibration isolation table floated by air pressure.
Low electron temperatures widen the experimental possibilities enormously, not
only for the planned spin relaxation studies. Thus we later put much effort in
improving the electron cooling by optimizing the filtering of high frequency noise
from the room temperature measurement electronics and improved heat sinking
to the mixing chamber plate of the refrigerator. This is described at the end of
this thesis in Chapter 6.

3.2 Measurement Electronics

As already mentioned above, our experiments can be divided into two main mea-
surement techniques. For large tunneling rates of the electrons transport through
the quantum dot leads to a large enough current to be directly detectable (see
also Chapter 4), whereas when getting to small tunneling rates, the current de-
creases to unresolvable values and charge sensing is a more sensitive method to
study the quantum dot (see also Chapter 5). For the latter, no current needs
to be sent through the quantum dot, but an additional component, an adjacent
quantum point contact needs to be activated and read out as a sensitive charge
sensor. All our samples can be probed with either method, also simultaneously.
The corresponding room temperature measurement setups for the two techniques
are described in the following starting with the setup for direct transport mea-
surements.

3.2.1 Transport Measurements

Measuring the current as a consequence of electron transport through the dot is a
common method for probing quantum dots. Transport measurements are in any
case our first approach to characterize a sample, getting an impression about its
stability and tunability, and performing level spectroscopy.
The corresponding diagram of the electrical circuit that we are using is sketched
in Figure 3.3. The quantum dot is formed by applying negative DC voltages Vg
in the range of about 1 − 2 volts to the labeled gates. These are supplied by a
digital-to-analog converter (DAC). A small source-drain bias voltage VSD is then
applied between the source (‘s’) and the drain (‘d’) lead via ohmic contacts. This
bias has an AC as well as a DC component, V = VSD+∆VSD, inductively coupled
via a transformer. The oscillating part is supplied by a lock-in amplifier (PAR
124A) whereas the DC part can be provided by the DAC. All applied voltages
to the sample, for the source-drain bias as well as for the gates, are divided to
smaller values and filtered before being sent to the quantum dot. The filter boxes
contain the divider, a RC low pass filter with a cutoff frequency of 13.7 Hz, and
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Figure 3.3: Circuit diagram for measuring electron transport through the quantum dot. The
voltages to the labeled gates wl, p1-p3, wr, and n as well as the DC part of the source-drain
bias VSD are supplied by DACs and an oscillating voltage ∆VSD is inductively coupled to VSD.
Detecting the resulting current through the quantum dot allows to measure dI/dVSD with a
lock-in amplifier. CA denotes the current pre-amplifier (parts of the sketch adapted from [38]).

a Zener diode as protection from applying positive voltages to the gates and also
to protect the quantum dot from voltage spikes.
The resulting current Idot through the quantum dot then consists of a DC com-
ponent as well as an oscillating component ∆I with the same frequency as the
AC part ∆VSD of the applied bias voltage. This current is pre-amplified with a
current-to-voltage converter (Ithaco 1211, typically operated at 10−8AV −1) whose
output is sent back to the lock-in amplifier that separates the oscillating com-
ponent ∆I that further is measured with a digital multimeter (Agilent DMM
34410A/34411A). This allows to determine the differential conductance dI/dVSD
through the quantum dot. In parallel, the DC component of the current is mea-
sured directly at the pre-amplifier output, typically with an additional low-pass
filter added before the DMM.
Much effort is put in electrically isolating the sample from the measurement elec-
tronics. For all instruments connected to the measurement computer via GPIB,
an extender via fiber-optic cables is used which provides galvanic isolation from
the PC ground (NI GPIB-140A). Also the DACs are optically isolated. Further-
more all instruments and the refrigerator are connected to one single clean ground
which enables to avoid ground loops that are a source of 50 Hz noise, and to reduce
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interference on the measurement signal. This defined grounding can be achieved
by powering the instruments via isolation transformators and also carefully iso-
lating all possible connections to the refrigerator like for example pumping lines.
Measurements are controlled by a computer running IGOR Pro.

3.2.2 Charge Sensing

Quantum dots can be tuned to a variety of different and interesting measurement
regimes which not all can be studied with transport experiments while measuring
the current through the system. The smallest currents that can be resolved are
in the range of a few femtoamperes, we assume 10 fA for the following considera-
tion. Since the current through the quantum dot is approximately Idot ≈ eΓ, with
Γ being the tunneling rate of the electrons to the reservoirs, and e the electron
charge, this sets a lower bound of about 10 fA/e ≈ 100 kHz on the tunneling rate
for which transport experiments are still possible [38, 44]. Our goal is to arrange
a setup suitable for electron spin relaxation time measurements. In this regard
it is essential to be able to observe electron tunneling in real-time as a first step.
However, the bandwidth of our measurement is mainly limited by the ohmic re-
sistances of the sample which are at this stage some tens of kilo ohms. Assuming
a total resistance of about 100 kΩ when the QPC channel is narrowed during
the measurement, and taking into account a total capacitance of 1.8 nF from
the silver epoxy filters at the mixing chamber, thermocoax cables, and π-filters,
this results in an estimated cutoff frequency of approximately 900 Hz. Detecting
electron tunneling in real-time thus requires to tune the tunneling rates below the
bandwidth given by this low pass filter included in the setup. This is no longer
in the regime where the current due to electron transport is still detectable and
transport measurements are not possible anymore.
We note that the bandwidth of our measurement setup itself, without the sample,
is a lot higher, with a resistance of the electrical lines of only 300 Ω, resulting in
a cutoff frequency of 300 kHz. However, we note that measuring T1-times in the
range of seconds in any case requires even smaller tunneling rates than the ones
estimated above, and charge sensing is anyhow indispensable.
Charge sensing is a technique to resolve electron tunneling in the limit of small
tunneling rates. Furthermore, an additional advantage is that it is also suitable
for probing a quantum dot that is coupled to only one reservoir. The charge sen-
sor is a quantum point contact (QPC) adjacent to the quantum dot that forms
a narrow 1-dimensional conduction channel [59, 69–71]. In Figure 3.4, the QPC
is formed between gate ql and wl. Making the voltages on those gates slightly
more negative changes the electrochemical potential of the channel and thus also
the resistance of the QPC. When adding an electron to the quantum dot the re-
sistance is changed in the same way. The negative charge of the electron has the
same influence on the electrochemical potential of the QPC as making the gate
voltages slightly more negative. Measuring the changes in QPC resistance allows
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Figure 3.4: Circuit diagram for the charge sensing measurement with a QPC adjacent to the
quantum dot. Negative voltages are applied to the labeled gates to form the quantum dot
(wl,p1-p3,wr, and n) and the QPC charge sensor (ql and wl). VA denotes the voltage pre-
amplifier.

us to use it as a very sensitive electrometer for detecting changes in charge on the
quantum dot [38,69].
The electrical circuit diagram in Figure 3.4 depicts the setup we use for charge
sensing. The basic idea is to source a current IDC +∆I through the QPC consist-
ing of a DC and AC component, and then detect the voltage across the QPC. The
AC voltage ∆V which oscillates at the excitation frequency is read out with the
lock-in amplifier and allows us to calculate the differential conductance through
the QPC. A tunneling event, a change of the charge on the quantum dot, will
lead to a change in ∆V and thus to a change in the differential conductance. The
current IDC that we source through the QPC is of the order of 1 nA supplied by
applying a DC voltage across a large resistor R = 10 MΩ.
For fast read out during real-time tunneling, the DC voltage across the QPC is
picked up by a NI-DAQ 6259 digitizer card mounted in the data acquisition com-
puter. Connection to the PC is made via an USB interface and optically isolated.
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We first characterize all our samples in the regime where electron transport can
directly be measured via a current flow through the quantum dot to get insight
about the device stability and tunability. In the following, we present some of
the experiments along with theoretical descriptions. We can generally tune our
system to the few-electron regime until completely emptying the quantum dot.
We start in the low-bias regime when only a small source-drain bias is applied
and electron tunneling is possible only via the ground state. Coulomb blockade
peaks represent the discrete energy spectrum of the quantum dot [72,73] and are
explained and studied in the first section. In the temperature broadened regime,
at small tunneling rates, the width of these conductance peaks is also a measure
of the electron temperature in the reservoirs.
We continue with measurements in the high-bias regime when the energy differ-
ence between the source and the drain reservoirs is large enough to make tunneling
via excited states of the quantum dot possible. A conductance measurement in
dependence of source-drain bias and gate voltage shows Coulomb diamonds and
enables level spectroscopy. It also ensures that we can tune our quantum dot to
the 1-electron regime.
Depending on the gate voltages, our devices can be tuned to a single quantum
dot as well as to the double-dot regime which can be seen in the characteristic
honeycomb in conductance when the interdot tunneling leads to triple points.
In several measurements we have seen strong evidence of cotunneling and cotun-
neling assisted sequential tunneling which is indicated by additional transport
lines inside the Coulomb diamond. Their position can be used to extract the
singlet-triplet splitting J .
For all measurements the quantum dot structure was equivalent to the one shown
in Figure 3.3.
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4.1 Coulomb Blockade

The energy spectrum of an isolated quantum dot system is determined by the
interplay of two energy scales [44, 73]. On one hand, the capacitive charging en-
ergy EC that has to be overcome to add an extra electron on the quantum dot.
This energy cost is due to the Coulomb repulsion between the electrons. And on
the other hand, the quantum mechanical confinement energy ∆ due to spacial
localization of the electrons within the system boundaries.

V
S

V
Dot

V
D

C
SD

C
DD

Vg

Cg

Figure 4.1: Equivalent circuit of the quantum dot system. The quantum dot island is ca-
pacitively coupled to its environment including the source reservoir (CSD), the drain reservoir
(CDD) and the gates (Cg). The crosses indicate that electron tunneling through the capacitor
is possible (taken from [74]).

Figure 4.1 shows an equivalent circuit of the quantum dot as a small island that
is capacitively coupled to the gates via Cg and to the source and the drain reser-
voir via CSD and CDD, respectively, with Cg +CSD +CDD = CΣ [75]. Classically,
the charge on a capacitor is a continuous function of the voltage across the capac-
itor Q = CV (Figure 4.2(a)). This is also a good approximation for a very large
number of electrons on the quantum dot where Coulomb blockade is not visible.
However, due to the Coulomb repulsion tunneling onto and off the quantum dot
can be suppressed at low temperatures. The number of electrons is then either N
or N + 1 and the charge can only be expressed in integer multiples of the electron
charge e, i.e. Q = Ne as illustrated in Figure 4.2(b). The number of electrons
is thereby defined by the voltage Vdot on the quantum dot which is proportional
to the gate voltage Vg: Vdot = αgVg. The parameter αg = Cg

CΣ
is the so-called

lever arm, a conversion factor between the applied gate voltage and the actual
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Figure 4.2: (a) The linear Q = CV relation for a macroscopic capacitor or a quantum dot
with a large number of electrons. (b) When we regard a discrete number N of electrons on the
quantum dot, the charge can only be expressed in integer multiples of the electron charge which
results in a staircase relation. (c) Only at electron number degeneracy points a current can flow
through the quantum dot system which results in periodic peaks.
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change in quantum dot energy. The electron number is precisely determined for
all voltages except at the vertical steps in Figure 4.2(b), where it can fluctuate
between N and N + 1. For larger dots holding many electrons, these steps, the
charge degeneracy points, are equally spaced with a periodicity of Vg = e

Cg
which

corresponds to a difference in dot energy of EC = e2

CΣ
= eαgVg. This is the so

called ‘charging energy’ that is necessary to increase the number of electrons on
the quantum dot by one, the finite Coulomb energy to charge the quantum dot
capacitor. The corresponding mechanism that leads to charge fluctuations on the
isolated quantum dot island is electron tunneling onto and off the island from the
source and drain reservoirs. These tunneling events can only take place at the
charge degeneracy points and thus result in equally spaced current peaks as shown
in Figure 4.2(c). Each peak can be attributed to an additional electron tunneling
onto the quantum dot. Valleys correspond to a fixed number of electrons on the
quantum dot and are known as Coulomb blockade valleys [76]. To be able to
experimentally observe these oscillations requires the thermal energy to be less
than the charging energy kBT � EC and the system is sufficiently isolated from
its environment when the tunneling resistance to the source and drain reservoirs
is larger than h/e2 = 25.812 kΩ.

One of our measurements of deep Coulomb blockade is shown in Figure 4.3 (a).
Here the quantum dot is in the few electron regime, being completely empty at
most negative gate voltages, while every peak indicates an additional electron
tunneling on. Note that regarding only this single measurement we don’t have
evidence yet that the quantum dot is completely empty. But additional mea-
surements like Coulomb diamonds and charge sensing enabled us to identify the
last electron on the quantum dot. We will indicate this in the following when we
discuss the corresponding measurement techniques.
We usually report the differential conductance g = dI/dVSD through the quantum
dot in terms of e2/h. The conductance is mapped in dependence of the voltage VP
applied simultaneously to the so-called plunger gates that include the gates p1,
p2, and p3 as marked in Figure 3.3. The illustrations in Figure 4.3 (b)-(f) show
the energy states of the quantum dot with respect to the source and drain Fermi
energies for the different significant gate voltage ranges. We will discuss this in
more detail in the next section for a few electron quantum dot. In the discus-
sions so far no quantum mechanical effect has been taken into account. However,
a particle confined in a finite system exists only at discrete eigenenergies and in
unique spatial eigenfunctions according to the Schrödinger equation. The average
energy spacing is given by

∆ =
2π~2

m∗A
, (4.1)

with A being the area of the quantum dot and m∗ the effective mass of the
electron. For GaAs m∗ = 0.067 me where me is the mass of a free electron.
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Figure 4.3: (a) Example of a measurement of our quantum dot in deep Coulomb blockade. The
differential conductance in units of e2/h is plotted vs gate voltage with VSD = 0. (b)-(f) The
diagrams show the energy states of the quantum dot with respect to the Fermi energy of the
source and drain lead for the different relevant gate voltages marked in (a).

4.2 The Few Electron Regime

The discussions so far apply for larger quantum dots with many electrons. Com-
bining the influence of the capacitive charging energy EC and the quantum con-
finement energy ∆ makes us understand the current flow through a few electron
quantum dot following a simple state filling picture according to the energy dia-
grams illustrated in Figure 4.3 [38,44]. With very negative values of the gate volt-
ages, we can lift the 1-electron state of the quantum dot above the Fermi energy
of the reservoirs, such that the quantum dot is completely empty. This situation
is shown in Figure 4.3 (b) and refers to the very left region in Figure 4.3 (a). We
begin with an empty dot and one after one fill the system with electrons. Making
the voltages on the gates more positive lowers the energies of the states of the
quantum dot. When the 1-electron state is aligned with the Fermi energy of the
leads an electron can tunnel on and off the quantum dot at a tunneling rate Γ
which is observed in a current flow as illustrated in Figure 4.3 (c). Making the
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gate voltages even more positive lowers the 1-electron state underneath the Fermi
energy of the reservoirs. An electron can tunnel onto the dot, but it cannot tun-
nel off because there are no available hole states in the lead at this energy. One
electron stays on the quantum dot but no second electron can tunnel on since
due to Coulomb repulsion, the charging energy U2 has to be overcome to reach
the 2-electron state. Making the gate voltages less negative makes this situation
available with a spin up and a spin down electron in the ground orbital state as
illustrated in Figure 4.3 (e). For the dot that we measured here U2 ≈ 3 meV. The
third electron cannot go into the ground orbital state, rather it goes into the next
available orbital state with an energy ∆ above the ground orbital state. Thus the
energy difference between the 2- and 3-electron state is U3 + ∆, where U3 is the
energy caused by Coulomb repulsion for adding the third electron. Following this
simple state filling picture, the fourth electron goes into the same orbital state
as the third, with opposite spin, and an additional energy U4. This picture is
valid for understanding many features of the quantum dot but it is important to
note that more complicated electron configurations can occur which might make
it for example more favorable for the fourth electron to occupy a higher energy
orbital state to form a triplet state rather than the singlet state [38,77]. We note
further that the charging energy approaches a constant value EC as we add more
electrons to the quantum dot.

4.3 Electron Temperature

Depending on whether the quantum dot is tuned to the life-time broadened regime
or rather the temperature broadened regime, the width of the Coulomb blockade
peak can be used to extract the temperature of the electrons in the reservoirs.
The lineshape of the conductance peak depends on two parameters: First, the
total tunneling rate Γt = Γs + Γd that determines the intrinsic width of the
state with Γs being the tunneling between the quantum dot and the source and
Γd being the tunneling to the drain reservoir. And the second parameter is the
electron temperature Te that determines the width of the Fermi distribution of the
reservoirs. When ~Γt � kBT , the intrinsic width is dominant and the lineshape
of the Coulomb blockade peak is a Lorentzian which is characteristic of lifetime
broadening [78]:

G =
2e2

h

ΓsΓd
Γs + Γd

(
Γt

(Γt

2
)2 + ( eαg

~ Vg)2

)
(4.2)
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For small tunneling rates, in the limit ~Γt � kBT , the relevant width is that of
the Fermi function and the lineshape is [38,75,79]:

G =
2e2

h

ΓsΓd
Γs + Γd

h

4kBT
cosh−2

(
eαgVg
2kBT

)
(4.3)

We note that this is only true for the simple level regime where ∆� kBT .
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Figure 4.4: (a) Differential conductance as a function of plunger gate voltage VP showing a
temperature broadened Coulomb blockade peak. The blue line shows a fit to the Lorentzian
lineshape of Eqn. 4.2, the red line shows a fit to the temperature limited lineshape of Eqn. 4.3.
The inset shows the data with temperature broadened fit on the log-scale. (b) Differential
conductance as a function of plunger gate voltage while a small source-drain bias VSD = 100µV
is applied which determines the lever arm αg. This measurement gives an electron temperature
of 91 mK.

Figure 4.4 (a) shows one Coulomb blockade peak where we reduced the tunnel-
ing rates to the reservoirs sufficiently to be in the temperature broadened regime.
This is mainly achieved by making the voltages on gates w1 and w2 more negative
which increases the barrier between the quantum dot and the leads. We fit the
data with both a Lorentzian and a Fermi function. It is clearly visible that the
Lorentzian lineshape does not give a good agreement with the data. Much better
agreement is achieved with the temperature limited lineshape of Equation 4.3.
Also, further reducing the tunneling rates does not decrease the width of the
peak. Thus, knowing that we are in the temperature broadened regime we can
now extract the electron temperature Te from this fit. Its full width at half of
the maximum (FWHM) is according to Equation 4.3 equal to 3.5 kBT . To be
able to convert the peak width from a change in gate voltage into energy it is
first necessary to determine the lever arm αg. This is done by applying a small
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source-drain bias VSD to the reservoirs which leads to a splitting of the Coulomb
blockade peak as shown in Figure 4.4 (b). VSD/∆Vg is now equal to αg (see also
Chapter 4.5). From this particular measurement we extract a FWHM of 0.32 mV
and a lever arm αg = 86 µeV/mV. Together this gives an electron temperature
Te = 91 mK.
We note that the temperature of the mixing chamber of the dilution refriger-
ator was approximately 7 mK during this measurement. Heat leaks and high
frequency noise coming from the room temperature measurement electronics pre-
vent us from getting to lower electron temperatures. Later in this work we find
an improvement to this challenge and with new cryogenic microwave filters with
excellent heat sinking to the mixing chamber plate we achieve far lower electron
temperatures. We present this work in Chapter 6.

4.4 Excited State Tunneling

By applying a finite source-drain bias VSD we can change the Fermi energy of
the source lead with respect to the drain lead. If the resulting bias window is
large enough, multiple quantum dot levels can participate in electron tunneling.
Typically the electrochemical potential of only one of the reservoirs is changed in
experiments and the other one is kept fixed. We do this by connecting the drain
lead to the input of the current pre-amplifier which provides a virtual ground.
Applying a negative voltage between source and drain thus increases the Fermi
energy of the source reservoir by eVSD relative to the drain. Note that the reser-
voirs and the quantum dot are capacitively coupled as we have discussed at the
beginning of this chapter. Thus, an increase of the Fermi energy of the lead also
lifts the energy states of the quantum dot. Similar to the low-bias situation, a
current flow occurs when an energy level of the quantum dot according to a tran-
sition via the ground orbital state falls within the bias window, as illustrated in
Figure 4.5 (a). Since there is a change in current when the quantum dot state is
just aligned with the Fermi energy of the source or drain reservoir, this alignment
leads to a peak in the differential conductance.
When VSD is increased even further, also a transition involving an excited state
may fall within the bias window. In this case there are two or more alternative
paths available for the electrons tunneling onto the dot (see Figure 4.5 (b) and (c))
which in general will lead to a change in current and a resulting peak in differen-
tial conductance. Due to Coulomb blockade, simultaneous tunneling via different
states is not allowed though.

Figure 4.6 shows a measurement of differential conductance through the quantum
dot at fixed gate voltage but with changing source-drain bias VSD while the quan-
tum dot holds one electron. Some significant features in conductance are marked
and explained now in the following. The gate voltages are tuned such that the
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Figure 4.5: (a) Schematic diagram of the quantum dot states and the Fermi energies of the
source and drain reservoirs for the low bias regime when a small source-drain voltage VSD is
applied and only transitions involving the ground orbital state are possible. (b)-(c) Excited
state tunneling processes are possible in the high bias regime when VSD is large.

0.10

0.08

0.06

0.04

0.02

0.00

g 
(e

2 /h
)

420-2-4
VSD (mV)

ab cd e

Figure 4.6: Differential conductance through the quantum dot for a fixed gate voltage and
changing source-drain bias VSD while one electron is occupying the quantum dot. At position
(a) one electron is fixed on the quantum dot. The peaks marked b and c refer to electron
tunneling via the ground orbital state, for higher source-drain bias also excited state tunneling
is possible which leads to peaks d and e.
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1-electron state is just below the Fermi energy of the leads when VSD = 0 (marker
(a)). Thus no tunneling is possible, one electron is fixed on the quantum dot, the
current is low. Applying a negative source-drain bias (marker (b)) leads to a level
positioning as illustrated in Figure 4.5 (a). The Fermi energy of the source lead
is increased and due to the capacitive coupling between the quantum dot and
the source also the dot level is shifted by eαSDVSD with αSD = CSD/CΣ. The
electron can tunnel from the source to the drain which results in a conductance
peak. Similarly, when applying a positive source-drain bias, the Fermi energy of
the source lead is lowered and the electron can tunnel from the drain to the source
reservoir which as well results in a change of current and resulting conductance
peak (marker (c)). For sufficiently negative or positive voltages VSD, the Fermi
energy of the source or the drain lead is aligned with the energy of the excited
orbital state which provides an additional state for the electrons to tunnel into
(Figure 4.5 (b)). This additional channel also results in a conductance peak in
Figure 4.6 at position (d) and (e).

4.5 Coulomb Diamonds - Level Spectroscopy

The trace that we have just discussed is actually a cut through a so-called Coulomb
diamond where the differential conductance is measured while both, source-drain
bias VSD and plunger gate voltage VP are swept. Especially when the plunger gate
voltage is made enough positive so that more electrons can enter the quantum
dot, the Coulomb blockaded areas and parts where electron tunneling can take
place form a diamond shape pattern which makes up the name. Figure 4.7 shows
such a measurement where the white line marks the position of the trace shown
in Figure 4.6. Also, for VSD = 0 we can see the Coulomb blockade conductance
peaks of the low-bias regime equivalent to the ones in Figure 4.3. Within the
dark blue diamond shaped windows the conductance is low, the quantum dot is
in Coulomb blockade, electron transport is suppressed and the number of elec-
trons on the dot is fixed. Within the diamonds there are from left to right 0, 1
and 2 electrons on the quantum dot.
Starting from VSD = 0, when the source-drain bias is increased, the Coulomb
blockade peaks split up into V-shaped conductance lines. On these lines the
change in energy of the ground orbital state due to a change in gate voltage is
compensated by the source-drain bias. The bias window within which transport
is possible widens while current changes occur when the quantum dot state is
aligned with either the source or the drain Fermi energy.
Increasing the source-drain bias further leads to the possibility of excited state
tunneling which can be seen in additional conductance lines parallel to the V-
shaped ground state lines in the Coulomb diamond measurement. In Figure 4.7,
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Figure 4.7: Coulomb diamond: Measurement of differential conductance versus source-drain
bias VSD and plunger gate voltage VP . The top graph shows the measurement on the log-scale.
The white line marks the position of the trace of Figure 4.6. From left to right there are 0, 1, and
2 electrons on the quantum dot. The lines marked (b) and (c) refer to the equivalently marked
peaks in Figure 4.6 and are further explained in the text. Tunneling via the first two excited
states ES1 ans ES2 is also visible as well as cotunneling which is indicated by the horizontal
lines running through the second diamond.
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we observe excited state tunneling via the first and second excited state which is
indicated by dashed white lines.
A general ‘rule of thumb‘ for the position of the conductance lines is [44]: if
a line terminates at the N-electron Coulomb blockade region, the transmission
necessarily involves a N-electron excited state. Consequently, no line terminates
at the Coulomb blockade region where N=0 since there exist no excited states
for N=0. Since we do not see any line intersections for VP < −1050 mV even
for large values of VSD we have strong evidence that there are no electrons on
the quantum dot for these gate voltages. The design of our structure enables us
to completely empty the system which is an important premise for electron spin
relaxation measurements. Another proof of this hypothesis can be achieved with
sensitive charge sensing measurements as we will see later in Chapter 5.
The slopes of the Coulomb diamonds can be associated with the corresponding
dot-lead capacitance. They are calculated as follows [38, 80]: Along line (b) in
Figure 4.7 tunneling occurs via the ground state aligned with the Fermi energy
of the source lead. Regarding the energy of the ground state relative to the drain
lead and then equal it with the energy of the source lead, the slope mb is given
by −eαSDVSD + −eαgVg = −eVSD. This gives VSD = mbVg which results in the
slope mb = αg/(1− αSD).
Along line (c), the ground state energy is aligned with the drain lead, the en-
ergy of which is 0. Thus −eαSDVSD + −eαgVg = 0 which results in a slope
mc = −αg/αSD. Measuring the slopes of the Coulomb diamonds thus gives us
the capacitance ratios which we have already used previously when determining
the lever arm out of Figure 4.4 which is a measurement similar to a horizontal
cut in Figure 4.7.
So far we have discussed pure first order sequential tunneling processes. The hor-
izontal conductance lines running through the second diamond are an indication
for second order cotunneling processes. We will discuss them in detail in Sec-
tion 4.7.

We have just seen how we can use Coulomb diamond measurements for per-
forming quantum dot level spectroscopy to gain information about the orbital
level spacing and excited state energies. These further give information about
the effective quantum dot size. We will now extract these parameters. The hight
of the N = 1 Coulomb diamond can be related to the charging energy U2 of the
second electron via U2 = e|VSD|. Here we get U2 = 3.3± 0.2 meV.
Clearly visible are excited state lines intersecting with the N = 1 diamond.
From the crossing of the ground state and first excited state sequential tunnel-
ing lines the energy of the first excited state can be extracted. We get ∆ES1 ≈
1.6± 0.2 meV. Equivalently the crossing point between the ground state and the
second excited state sequential tunneling line gives ∆ES2 ≈ 2.4 ± 0.2 meV. For
a round quantum dot with equidistant level spacing according to the quantum
harmonic oscillator potential, we would have expected the energy of the second
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4.6 Double Quantum Dot Regime

Figure 4.8: With appropriate tuning of the gate voltages, our device can form a single as well
as a double quantum dot. The latter consists of two islands that can separately be filled with
electrons. The tunnel coupling between the two islands can be tuned mainly by the voltages on
gates n and p2. Making the voltages on these gates more negative increases the barrier between
the dots and thus decreases the interdot tunnel coupling.

excited state to be ∆ES2 = 2∆ES1 ≈ 3.2 meV. The differing smaller value indi-
cates that our quantum dot is not perfectly round but rather oval shaped where
∆ES1 represents the larger axis and ∆ES2 represents the smaller axis.
The level spacing between the ground state and the excited states enables us to
calculate the quantum dot size by means of the expectation value of position in
the quantum harmonic oscillator potential 〈x2〉 = ~2

m(~ω)
. Using the effective mass

of the electron in GaAs m∗ = 0.067 me, and ∆ES = ~ω we get a width of approx-
imately 26 nm in one direction and 21 nm in the other direction.

4.6 Double Quantum Dot Regime

The design of our device enables us to work with it as a single quantum dot
as well as a double quantum dot where two dots are coupled to each other. In
terms of talking about the quantum dot as an ‘artificial atom’ they now form an
‘artificial molecule’ [64, 82]. This is for example possible in making the voltages
especially on the so-called nose gate n and the middle plunger gate p2 more
negative which splits up the quantum dot island into a left and a right part
as illustrated in Figure 4.8. Both parts can separately hold electrons. Interdot
tunneling is possible and tunable via the gate voltages on p2 and n that set the
tunnel barrier between the two dots.
Figure 4.9 illustrates the stability diagrams for a double quantum dot showing
the electron numbers on the two dots for different tunneling barriers in between
them and varying voltages on the gates that define the energy levels of the left
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Figure 4.9: Schematic stability diagram of the double dot system for different tunnel coupling
between the two dot islands. The equilibrium charge on each dot in each domain is denoted by
(x,y). (a) At small tunnel coupling the electron occupations of the two dots do not influence
each other. (b) Intermediate interdot tunneling leads to the formation of triple points. (c) For
very large tunnel coupling the system behaves like a single dot [81].
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Figure 4.10: Differential conductance through the quantum dot dependent on the voltages on
gates wl and wr for different voltages Vn on the nose gate n. Left: Vn = −1.2 V, the device
shows single quantum dot behavior. Right: Vn = −1.8 V, the device shows double quantum
dot behavior.

(VL) and right (VR) dot [81,83,84]. In Figure 4.9 (a) the interdot tunnel coupling
between the two dots is very small. Changing the electron number and thus the
charge on the left (right) dot does not effect the charge on the right (left) dot. If
the coupling is increased, for example by increasing the voltage on gates n and p2,
hexagonal domains develop (Figure 4.9 (b)) with so-called ‘triple points’ at the
corners. When the coupling is increased even further the triple point separation
reaches its maximum and the double dot behaves like a single dot as illustrated
in Figure 4.9 (c). Each one of the now parallel lines indicates the addition of
one more electron to the quantum dot with 0 electrons on the dot when the gate
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voltages are most negative.
The two measurements in Figure 4.10 show an example of one and the same
device: once tuned to a single quantum dot (left side) and once tuned to a double
quantum dot (right side). Plotted is the differential conductance in dependence
of the voltages on gates wl and wr, while the voltage on the three plunger gates
is constant and equal for both measurements, and VSD = 0. The main difference
between the two measurements is the voltage on the nose gate n, being −1.2 V
for the left, and −1.8 V for the right graph. Clearly visible are the parallel lines
for the single dot configuration and the hexagonal ‘honeycomb’ structure for the
double dot configuration.
We note that such a wall-wall measurement, mapping the conductance through
the quantum dot while sweeping the voltages on the wall-gates wl and wr, are
usually our first step to get to the desired measurement regime. For example, we
choose the single quantum dot regime and then fix the voltages on the wall-gates
where most probably only one electron is on the quantum dot. This is the case
for the first conductance line coming from negative gate voltages. With fixed
voltages on wl-, wr- and n-gates a Coulomb diamond measurement then gives
closer insight if the quantum dot indeed only holds just one electron.

4.7 Cotunneling Transport

Up to now we only considered first order sequential tunneling processes. Within
the Coulomb blockade regime when the number of electrons on the quantum dot is
constant and the current is strongly suppressed, higher-order tunneling processes
can become dominant which are known as cotunneling. Cotunneling processes are
due to simultaneous tunneling of two or more electrons and can be divided into
two types: An elastic cotunneling process leaves the quantum dot with the same
energy. An inelastic cotunneling process leaves the system with a different energy.
For example, it can drive the quantum dot into an excited state. These two
transport processes will be described in more detail in the following section 4.7.1.
Under certain conditions it may also happen that an inelastic cotunneling process
activates a first-order sequential tunneling process. This scenario is referred to as
cotunneling assisted sequential tunneling which we will discuss in section 4.7.2.

4.7.1 Elastic and Ineslastic Cotunneling

So far our discussions concentrated on pure sequential electron tunneling, involv-
ing only one single electron at a time. Inside the Coulomb diamonds, higher-
order tunneling processes dominate and give rise to current, so-called cotun-
neling processes which involve the simultaneous tunneling of two or more elec-
trons [60,85–89].
In principle, two different cotunneling processes are distinguished. Such a tunnel-
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ing event is called elastic if the quantum dot energy remains unchanged. Consid-
ering only second order cotunneling processes, it consists of a two-electron process
where one electron is transfered from the left to the right lead while the quantum
dot is for example left in the ground state. This is illustrated in Figure 4.11(a).
Elastic cotunneling is the main transport mechanism at very low bias.
Another similar cotunneling process which is called inelastic is shown in Fig-
ure 4.11(b) where the quantum dot is in an excited state after the transport
sequence by two electrons. For example, an electron can leave the quantum dot
from the ground state to the lead and another electron from the energetically
higher reservoir tunnels into the excited state. To initiate this procedure, the
energy supplied by the source-drain bias must be larger than, or equal to the
energy spacing between the ground state and the excited state. Thus, inelastic
processes set in at a certain bias eVco = ∆ while Vco does not depend on the gate
voltage [89]. We note that although this transport sequence is called inelastic,
the total electron energy is conserved. The excitation is created at the expense
of the energy drop eVco [76, 85].
Figure 4.12 illustrates how cotunneling processes can be identified in the differ-
ential conductance of a Coulomb diamond measurement where gate voltage and
source-drain bias are swept. Black angled lines correspond to first order sequen-
tial ground state tunneling and green lines refer to first oder sequential excited
state tunneling. In the gray area inside the Coulomb diamond, conduction is
due to elastic cotunneling as explained in Figure 4.11(a). Blue horizontal lines
indicate the inelastic cotunneling threshold, independent of gate voltage, as also
illustrated in Figure 4.11(b). At the edge of the Coulomb diamond, the condition
for the onset of second order inelastic cotunneling connects to that of first order
excited state tunneling.

(a) (b)

∆

Figure 4.11: Illustration of elastic (a) and inelastic (b) cotunneling involving two electrons.
After an elastic cotunneling process the quantum dot is back in the ground state. An inelastic
cotunneling process leaves the system in an excited state.
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∆

Figure 4.12: Schematic of the 2-electron Coulomb diamond showing elastic cotunneling (gray
area), inelastic cotunneling (blue lines), and cotunneling assisted sequential tunneling (red lines).
Black lines indicate first order ground state tunneling, green lines stand for first order excited
state tunneling.

With this knowledge we are now able to explain the horizontal lines in the
N=2 Coulomb diamond of Figure 4.7, a clear indication for the onset of inelastic
cotunneling. This onset follows nearly parallel lines to the VP -axis, and at the
diamond edges they connect to lines where first order excited state tunneling sets
in. This can be observed for the second diamond, when the quantum dot holds
two electrons. Within the first Coulomb diamond the conductance is uniformly
low, there is no evidence for inelastic cotunneling.
In fact we see a slight gate dependence of the inelastic cotunneling lines that are
not perfectly horizontal which indicates a gate dependence of the level spacing
between the ground state and the first excited state ∆ = ∆(Vg). But also when
there is no direct gate dependence of the level spacing, non-horizontal lines can
occur. This has recently also been observed and discussed for single-walled car-
bon nanotubes [90] where an explanation in terms of second-order perturbation
theory in the tunnel coupling was given. The individual many body states of the
dot electrons are renormalized by virtual charge fluctuations and these tunneling
induced level shifts can give rise to a gate-dependent cotunneling threshold. The
level shifts can be determined within second-order many-body perturbation the-
ory in the tunneling coupling by considering all possible fluctuations experienced
by a given charge configuration.

4.7.2 Cotunneling Assisted Sequential Tunneling

Golovach and Loss examined the sequential and cotunneling regimes for double
quantum dots [60] and present a transport mechanism where an inelastic co-
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tunneling process activates sequential tunneling, so-called cotunneling assisted
sequential tunneling (CAST). Since our Coulomb blockade measurements show
additional transport lines that can likely be associated with CAST, we now want
to discuss this process in more detail, following the descriptions of [60].
We directly consider the 2-electron spectrum of the double quantum dot. The
lowest energy states are then given by one singlet state and three triplet states:

|S〉 = (↑↓ − ↓↑)/
√

2

|T+〉 = (↑↑)

|T−〉 = (↓↓)

|T0〉 = (↑↓ + ↓↑)/
√

2 (4.4)

The energy splitting between the singlet and the triplet J = E|T 〉 − E|S〉 then
plays the role of the Heisenberg exchange interaction for the two electron spins
in the double quantum dot:

Hspin = JS1 · S2 , (4.5)

where S1,2 are spin-1/2 operators. Golovach and Loss calculate the cotunneling
rates using Fermi’s golden rule and find that for highly asymmetric couplings
to the leads where (η + 1/η) � 1, with η = |tR|2/|tL|2 being the asymmetry
parameter for the tunneling rates (tunneling amplitudes tL and tR to the leads
for the left and the right dot, respectively), there is a competition between two
types of processes of inelastic cotunneling. One is the thermal equilibration of
the double dot, due to inelastic cotunneling into one and the same lead. And the
second process is a heating effect of the double dot due to inelastic cotunneling
from the left lead to the right lead which requests a higher Fermi energy of the
left compared to the right lead. At low temperatures, T � T0 this heating
effect due to cotunneling provides population to the excited states from which a
subsequent sequential tunneling process can occur. The energy scale T0 is given
by T0 = J/ln(J/|tL|2) for the 2-electron Coulomb blockade side. This sequence
of tunneling processes is called cotunneling assisted sequential tunneling (CAST)
which leads to an additional peak in conductance. The position of this peak is
proportional to temperature. For T = 0, the position of the peak in conductance
is at eVSD = (δE−J)αg, where δE denotes the difference in energy to the second
Coulomb blockade peak. For increasing temperature, the peak moves to lower
VSD towards the center of the Coulomb blockade diamond by an amount

δε ∝ kBT ln

[
J

|tL|2(1 + η/2)

]
(4.6)

and has a width of the same order of magnitude.
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In Figure 4.12, the position of this peak due to cotunneling assisted sequen-
tial tunneling is denoted by the red lines inside the 2-electron Coulomb diamond
parallel to the black sequential tunneling lines. When the singlet state is occu-
pied, an inelastic cotunneling event can excite the double quantum dot into a
triplet excited state when the source-drain bias VSD exceeds the exchange split-
ting J . Once the triplet state is occupied, sequential tunneling through the triplet
state becomes possible which leads to conductance lines parallel to the ground
state sequential tunneling lines. In the absence of an external magnetic field the
three triplet states are degenerate which makes tunneling into one of them more
probable than tunneling into the singlet. Also, because the triplet wave function
contains the orbital excited state, the overlap of the triplet wave function with
the reservoirs is larger than that of the singlet state. See also the illustration
of the energy levels in Figure 4.13, with negative source-drain bias VSD applied
according to the positions of the red lines in Figure 4.12.

(a)

−eV    >J
SD

S

T

(b)

T

S

Figure 4.13: Illustration of the energy levels for cotunneling assisted sequential tunneling
(CAST). When VSD is larger than the singlet-triplet exchange splitting J , an inelastic co-
tunneling event can lift the quantum dot into an excited state. Then the cotunneling process
can be followed by one or more sequential tunneling processes through the excited state.

Figure 4.14 shows a measurement of Coulomb diamonds similar to the one pre-
viously discussed. This measurement was performed with a different sample in a
different cool down, but the design of the quantum dot was identical to the one
before and shown in Figure 3.3.
Again, we observe horizontal conductance lines running through the second Cou-
lomb diamond that we can associate with an inelastic cotunneling process. But
additionally in this measurement also visible are conductance lines within this
second diamond that run parallel to the lines corresponding to sequential tun-
neling via the ground state. We interpret these conductance lines as cotunneling
assisted sequential tunneling. To further support this explanation, measurements
with different temperatures would be helpful to examine the position of these lines
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Figure 4.14: Coulomb diamond measurement. The top graph shows the measurement on the
log-scale. The horizontal lines running through the second diamond correspond to inelastic
cotunneling. The V-shaped conductance lines within the second diamond can be associated
with cotunneling assisted sequential tunneling.
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according to Eqn. 4.6. Also, magnetic field measurements could lift the triplet
spin degeneracy which leaves potential for future investigations of this special
transport mechanism.

As explained above the horizontal lines running through the N=2 diamond corre-
spond to inelastic cotunneling through the triplet excited state. Since this process
becomes activated for e|VSD| ≥ J , the position of the line can be used to deter-
mine the singlet-triplet exchange splitting J . We get J = 0.3 ± 0.1 meV for the
measurement just discussed. The orbital level spacing from the N=1 diamond
is 2.6 ± 0.2 meV, much bigger than J , reflecting quite strong electron-electron
interaction in this device [85,87].
We also observed the inelastic cotunneling lines in Figure 4.7. Here, a different
but very similar device was used. The principal design of the gate structure was
identical but the second device was slightly bigger. The main difference lies in the
distance d(wl, wr) between the two wall gates wl and wr and the distance d(n, p2)
between the nose gate n and the plunger gate p2. For the structure corresponding
to Figure 4.7, the distances were d1(wl, wr) = 425 nm and d1(n, p2) = 300 nm.
While for Figure 4.14 the quantum dot structure measured d2(wl, wr) = 480 nm
and d2(n, p2) = 350 nm.
The resulting difference in quantum dot size can be observed in different level
spacings which are getting bigger when the dot is smaller. We can, for exam-
ple, see this in the charging energy U2 for the second electron extracted from the
N=1 Coulomb diamond. For the smaller quantum dot U2 = 3.3 ± 0.2 meV, for
the bigger dot this value is slightly smaller with U2 = 2.6 ± 0.2 meV as already
mentioned above.
Equivalently, the quantum dot size influences the singlet-triplet exchange split-
ting. We get J = 0.4 ± 0.1 meV for the small quantum dot design compared to
J = 0.3±0.1 meV for the bigger structure. In both cases, J is much smaller than
the orbital level spacing as discussed before.
We note that a reduction of quantum dot size can to some extent also be achieved
by decreasing the gate voltages forming the dot. For the discussed level spec-
troscopy measurements, the voltages were by far more negative for the bigger
fabricated dot structure (Vn = −1200 mV, Vwl = −2062 mV, Vwr = −1973 mV)
than the smaller fabricated structure (Vn = −850 mV, Vwl = −1257 mV, Vwr =
−1054 mV). Thus, it appears that the resulting difference in quantum dot size is
indeed due to the difference in structural size.

4.8 Summary and Outlook

Transport experiments enable us to ensure that the design of our quantum dot is
suitable to tune it to the relevant regimes. Wall-wall as well as Coulomb diamond
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measurements show strong evidence that we can push the device to the 1-electron
regime and use it as a single dot as well as a double quantum dot. Also, we can
decrease the tunneling rates to the reservoirs enough to get to the temperature
broadened regime of Coulomb blockade conductance peaks which makes electron
temperature measurements possible. Level spectroscopy measurements show clear
excited state tunneling and give insight in some important device parameters like
the orbital level spacing of the quantum dot and excited state energies for two
samples with different gate distances. The resulting dot sizes can be clearly ob-
served in a difference in level spacings.
Our samples show great stability over large time scales and measurement ranges
as can be seen for example in the Coulomb diamonds.
But there is also potential for studying other phenomena. For example, we can
observe second order inelastic cotunneling processes and we measure conductance
peaks that we associate with cotunneling assisted sequential tunneling. Especially
the latter transport mechanism has so far not much been experimentally inves-
tigated. Temperature- and magnetic field dependent measurements would be an
interesting next step for future studies of this mechanism.
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Since there is a measurement limit to the tunneling rate using direct transport
measurements as we have described them in the last chapter we now turn on to
charge sensing [69]. For the detection of electron tunneling in real time, small
tunneling rates of the order of 100 Hz are necessary to stay within the bandwidth
of the overall system, mainly limited by high resistance ohmic contacts in the
sample. And for our relaxation time measurements even smaller tunneling rates
to the reservoirs are required since the electron needs to stay on the quantum
dot long enough to exceed the relaxation time in the order of seconds. But with
decreasing tunneling rates also the resulting current through the quantum dot
decreases and is eventually not anymore resolvable. Since the electron occupation
of the quantum dot, its charge occupation, has a strong influence on the resistance
of an adjacent quantum point contact channel (QPC), charge detection measure-
ments are a very sensitive alternative. Electron tunneling leads to a change of
conductance through the QPC which enables to use it as a sensitive charge sensor
as already described in more detail in Chapter 3.
We start in the regime of high tunneling rates where we can compare the QPC
charge sensing signal to a transport measurement which enables us to reliably
identify the significant features in the QPC signal that refer to electron tunneling.
When going to lower tunneling rates with the goal to detect electron tunneling in
real time [58, 59, 91], we use a fast NI-DAQ digitizing card to read out the QPC
signal. We can show the transition to just small enough tunneling rates to be re-
solvable before we discuss the real-time signal and how we can measure Coulomb
diamonds consisting of real-time data. In adjusting the gate voltages of the quan-
tum dot we are able to decrease the tunneling rates Γ from very large values down
to about 1 Hz while precise tuning is possible between 1 Hz and about 100 Hz,
the bandwidth of our real-time charge sensor. We can also differentiate between
the tunneling rate Γon onto the quantum dot and Γoff off the quantum dot. Au-
tomatic extraction of the tunneling rates from large data sets helps us to perform
and analyze measurements of energy dependent tunneling that we also used to
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determine the electronic g-factor of GaAs from measurements in magnetic field.
Here a change in tunneling rate into the different energy levels of the spin-up and
spin-down electron is observed and enables to extract the Zeeman splitting [38,92].

5.1 Charge Sensing

For charge sensing, we form a QPC channel by using gate q as illustrated in
Figure 3.4. We then measure the conductance through the QPC channel in de-
pendence of the voltage on the plunger gates VP . For details see Chapter 3.2.2.
The latter shifts the energy states of the quantum dot and when the ground
state is aligned with the Fermi energy of the reservoirs, an electron can tunnel on
which changes the charge occupancy of the quantum dot. The conductance gQPC
through the QPC channel is quantized and at the transition between quantized
conduction plateaus it is very sensitive to electric fields. Since adding an electron
on a nearby quantum dot changes the electric field acting on the QPC, its change
in conductance can be used as sensitive charge sensor.
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Figure 5.1: Differential conductance gDot across the quantum dot (red line) which is a direct
measure of current due to electron tunneling and differential conductance through gQPC the
QPC channel (blue line) which shows the influence on the resistance of the channel due to a
change of charge on the quantum dot. The two measurement traces have been taken simulta-
neously and in dependence of the voltage VP on the plunger gates.

However, it is not a priori clear if a specific feature in the QPC signal refers
to a change of charge on the quantum dot or is an intrinsic feature of the QPC
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itself. Thus, we begin with a combined transport- and charge sensing measure-
ment in the regime where the tunneling rates are still large enough to detect a
current. Figure 5.1 shows the differential conductance gDot through the quantum
dot in dependence of plunger gate voltage VP at the position of a Coulomb block-
ade peak and a simultaneous measurement of the conductance through the QPC
channel. The Coulomb blockade peak in conductance indicates an increase in
electron number on the quantum dot by one. At the same position with respect
to the plunger gate voltage, the conductance through the QPC shows an S-like
behavior. Starting at the most negative gate voltage, the conductance through
the QPC decreases with increasing VP . At about −1.8 V an electron tunnels onto
the quantum dot with negative charge which has a similar effect on the QPC as a
more negative voltage on the gates. Thus, the conductance through the QPC rises
like it would have been the case for a sudden decrease in gate voltage. Later the
conductance decreases again with the same slope as before the electron tunneling
event.
We note that for this example the behavior of the QPC as a function of gate volt-
age can be seen as not ideal since for the specific range in gate voltage the con-
ductance actually increases with decreasing gate voltages. Resonances in QPCs
have been observed before [38, 93] but still, also with a non-ideal behavior, the
QPC can be very well used as a charge sensor. All that is necessary for success-
ful charge sensing is the sensitivity of differential conductance to changes in gate
voltage. Thus we fix the voltage on the QPC-gate at a value where the slope in
differential conductance in dependence of VP is largest, not taking into account
its sign.
The overall signal sensitivity can be defined as the offset between the two parts
of the curve before and after the tunneling event which gives a change in conduc-
tance δg = g2 − g1. In our case we get δg ≈ 0.1 e2/h with δg

g1
≈ 6%.

We use charge sensing also to identify the last electron on the quantum dot. De-
creasing the gate voltage further also decreases the tunnel coupling to the leads
which eventually makes the current measurement impossible but the sensitivity
of the charge sensor stays high. Thus following the QPC trace to more negative
gate voltages still makes electron tunneling detectable and helps identifying the
last electron. In the end the combination of wall-wall measurements as shown in
Figure 4.10, the measurement of Coulomb diamonds like shown in Figure 4.7, and
highly sensitive charge sensing enables us to reliably identify the regime where
only one electron is left on the quantum dot.

5.2 Charge Sensing in Real Time

The width of the S-type step in the charge sensing signal that we have just dis-
cussed indicates a region where an electron tunnels on and off between the quan-
tum dot and the reservoir for some time before in the end it completely stays
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Figure 5.2: Voltage VQPC through the QPC channel, measured with the fast read-out card,
while sweeping the voltage on the plunger gates VP . The data was taken with a fast read-out
card. (a) The step in VQPC corresponds to the first electron tunneling on the quantum dot while
its width refers to the electron tunneling on and off for some time before it finally constantly
stays on the dot. (b) Decreasing Vn decreases the tunneling rates. Now the charge fluctuations
between the quantum dot and the reservoirs can be resolved.

on or leaves the quantum dot. One single tunneling event was not resolved, the
signal represents a set of tunneling events with an average charge on the quantum
dot since we were averaging over time. But for electron spin relaxation time mea-
surements exactly this is required, being able to resolve single electron tunneling
events which then can be identified with a certain energy state or spin state. As
already estimated in section 3.2.2, our system has a bandwidth of a few hundred
Hz if we take into account a QPC resistance of about 100 kΩ and a capacitance
of the electrical lines and filters of about 1.8 nF. If the tunneling rates are made
small enough that they fall within this bandwidth, the charge sensor should be
able to respond to individual electron tunneling in real time. We reduce the tun-
neling rates by decreasing the voltages on the wall gates wl and wr or the nose
gate n which increases the barriers between the quantum dot and the reservoirs.
Since IDot ≈ eΓ (Section 3.2.2), current measurements through the dot for dif-
ferent voltages on the wall gates when still in the direct transport regime help
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to first estimate which voltage ranges should be sufficiently negative to lower the
tunneling rates Γ enough.
When the last electron was identified as described above we now source a small
DC current IDC = 1 nA through the QPC and measure the resulting DC voltage
VQPC through the channel as a function of time using the fast read-out Ni-DAQ
card. We begin with measurements similar to the one shown above where the
plunger gates VP are swept over a range where we had observed the first electron
tunneling onto the dot before. Figure 5.2 (a) shows such a measurement using the
Ni-DAQ card to measure the voltage VQPC through the QPC channel while VP
is swept. The step to higher voltage VQPC corresponds to an electron tunneling
onto the quantum dot, similar to the QPC-trace presented in Figure 5.1. Here
the tunneling events are still too fast to be resolved in real time.
When making the voltage Vn on the nose gate n more negative, the tunnel bar-
rier to the leads is increased which decreases the tunneling rates. Figure 5.2 (b)
shows a measurement of VQPC while sweeping VP over the same range while Vn
was decreased by 70 mV compared to Figure 5.2 (a). The change in VQPC is now
not any more only one step, rather electron tunneling back and forth for some
time is resolved before it finally stays constantly on the quantum dot.
Note that decreasing the voltage on the nose gate also shifts the quantum dot
levels to higher energies. Thus the voltage step in Figure 5.2 (b) is observed at
more positive VP which is needed to compensate this effect for alignment of the
quantum dot state with the Fermi energy of the reservoirs.

We now keep VP constant at the value where the electron tunneling was ob-
served in Figure 5.2 (b), where the quantum dot ground state is aligned with
the Fermi energy of the reservoirs and electrons tunnel on and off the quantum
dot. We measure VQPC as a function of time. The small change in the QPC
resistance caused by an electron tunneling onto or off the quantum dot results in
a small change in voltage δVQPC . Figure 5.3 shows corresponding data where we
observe electron tunneling in real-time of the 0 to 1 electron transition. We can
distinguish between two certain voltage values. As we can learn from Figure 5.2
the step to higher VQPC occurs when going to more positive VP . Increasing VP
pulls down the quantum dot energy level until it is low enough for the electron
to tunnel on. Thus this higher voltage value refers to the electron staying on the
quantum dot, the lower value refers to the electron being off the quantum dot.
We note that all the real-time data presented in this chapter was taken using the
slightly smaller quantum dot as mentioned in Chapter 4.7.2. With the larger de-
vice we could perform sensitive charge sensing up to measurements similar to the
one shown in Figure 5.1. But we could not resolve electron tunneling in real-time
even though we decreased the voltages on the wall-gates strongly. We think that
we could not decrease the tunneling rates enough with the larger quantum dot
design.
For fast read-out during these real-time measurements we now do not use the
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lock-in anymore but the NI-DAQ card to measure the voltage. The time between
two measurement points is set to 10 ms, where each point is an average over
12500 so that the full bandwidth of the card of 1.25 MHz is used while efficiently
reducing noise. The DC current is supplied by a battery.
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Figure 5.3: Voltage VQPC through the QPC as a function of time when the gate voltage Vg is
tuned such that the ground state of the first electron is aligned with the Fermi energy of the
reservoirs and the first electron can tunnel onto and off the quantum dot. Two distinct voltage
values are observed. The higher value refers to the electron being on the quantum dot, the
lower value refers to the quantum dot being empty.

5.2.1 Real-Time Coulomb Diamond

The amount of time the electron spends on or off the quantum dot is random
while the average time is set by the tunneling rates. Thus the concrete times
at which the voltage changes in Figure 5.3 occur are random and the data can
also be interpreted as telegraph noise. We determine the amount of noise via
the standard deviation Vsdev of the voltage trace and plot it in dependence of
an applied source drain bias VSD and a change in plunger gate voltage VP as
shown in the measurement of Figure 5.4. For each point in this graph, a real-time
measurement trace like in Figure 5.3 has been taken and Vsdev was extracted
[38, 93, 94]. The outcome are noise-Coulomb diamonds. Inside the Coulomb
blockade diamonds (blue areas in Figure 5.4) charge transport is prohibited and
electron tunneling is suppressed. Thus, no significant voltage change occurs in
the real-time data traces and Vsdev should be small. Outside the diamonds the
quantum dot state lies within the bias window and electron tunneling is possible,
which is detectable in real-time traces with a higher Vsdev.
The observation of Coulomb diamonds with this method, with a dependence of
tunneling rates on the source-drain bias and plunger gate voltages as also observed
with direct transport measurements, is a confirmation that electron tunneling on
and off the quantum dot is indeed the source for the voltage transitions in our
real-time data.
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Figure 5.4: Coulomb diamond extracted from real-time data. Each point of the graph refers to
the standard deviation Vsdev from a real-time trace as shown in Figure 5.3. When the quantum
dot is in Coulomb blockade, electron tunneling is suppressed and the voltage detected by the
QPC VQPC is fixed at one certain voltage. Vsdev is low within the Coulomb diamond. When
electron tunneling is possible, VQPC fluctuates between two values and Vsdev is high. On the
left side the quantum dot is empty, on the right side one electron is on the dot.

5.2.2 Tuning and Extraction of Tunneling Rates

The real-time data that we show in Figure 5.3 and discussed above indicates ap-
proximately three tunneling events per second from the 0-electron to 1-electron
state and back while the time that the electron spends on or off the dot is roughly
equal. This corresponds to a tunneling rate Γ of roughly 3 Hz. We can tune
this tunneling rate by changing the barriers to the leads via the voltage on the
wall gates wl and wr. Increasing these voltages decreases the barriers to the
leads and thus results in a higher tunneling rate. In this way we can tune the
overall tunneling rate between about 1 Hz and 100 Hz while the latter is then
close to the limit of the response time of our QPC due to the bandwidth of the
measurement components. We show real-time data taken at different tunneling
rates in Figure 5.5. Note that the time scale is decreased by a factor of 10 in
each panel. When taking the three traces, the voltages on all gates defining the
quantum dot were identical except the voltage on the wall-gate wl. This was set
to Vwl = −1210 mV for the top graph with the small tunneling rate of 1 Hz and
increased by 40 mV to get the high tunneling rate of 100 Hz.

We can further regard the time the electron spends actually on the quantum
dot ton before is tunnels off and then the time it spends off the dot toff before
it tunnels on again. Summing up all the measurements of ton then gives us a

59



5 Charge Sensing Measurements

-10

-5

0

5

10

δV
Q

P
C
 (

µV
)

40s3020100

(a)

-20

-10

0

10

20

δV
Q

P
C
 (

µV
)

4s3210

(b)

15

10

5

0

-5

-10

-15

δV
Q

P
C
 (

µV
)

0.4s0.30.20.10.0
time (s) 

(c)

Figure 5.5: Real-time data taken at different tunneling rates tuned by the voltages on the wall-
gates. The time scale decreases by a factor of 10 for each measurement panel. The upper panel
refers to a tunneling rate of about 1 Hz, the lower panel refers to a tunneling rate in the order
of 100 Hz which is close to the QPC response time due the bandwidth of the measurement
components.
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Figure 5.6: Illustration showing a single-electron quantum dot coupled to one reservoir where
the tunneling rate to the left lead is tuned a lot smaller than the tunneling rate to the right
lead. E is the energy of the quantum dot ground state relative to the Fermi energy EF of the
lead. The electron tunnels between the quantum dot and the lead at different tunneling rates
that depend on E. (a) When E < 0 the quantum dot is occupied the majority of the time.
(b) For E ≈ 0 the quantum dot is occupied or empty in average the same amount of time. (c)
When E > 0 the quantum dot is mainly empty.
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Figure 5.7: Time resolved measurements of electron tunneling, the quantum dot is occupied by
an electron for δVQPC ≈ 10µV and it is empty when δVQPC ≈ −10µV. In the different panels
(a)-(c) the energy of the quantum dot ground state is below, close to, and above the Fermi
energy EF of the reservoir, respectively, which results in different occupation times τon/off and
accordingly different tunneling rates Γon/off as described in the text.
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total time Ton that the quantum dot is occupied and equivalently Toff gives us
the total time the quantum dot is unoccupied. τon and τoff similarly are the
average times the dot is occupied or unoccupied, respectively. For simplicity we
consider a quantum dot that is only coupled to one lead with a Fermi energy EF
as illustrated in Figure 5.6.
We can use the plunger gates to tune the quantum dot level with respect to EF .
When the energy of the ground state of the quantum dot is below the Fermi
energy of the lead E < 0, see Figure 5.6 (a), we expect the quantum dot to be
mainly occupied. With the gate voltages set in this way τon should be large. We
can tune our quantum dot like this and show corresponding real-time data in
Figure 5.7 (a). If δVQPC is positive, the quantum dot is occupied by one electron,
if δVQPC is negative, the quantum dot is empty. As indicated, here ton is large
and toff is small which refers to E < 0.
Decreasing the voltage VP on the plunger gates lifts the energy of the quantum
dot ground state and when it is aligned with the Fermi energy of the reservoir
E ≈ 0 (see Figure 5.6 (b)), the electron spends as much time on the quantum
dot as off. τon and τoff are equal as also in the real-time measurement shown
in Figure 5.7 (b). Making VP even more negative leads to E > 0, as illustrated
in Figure 5.6 (c) where the quantum dot is unoccupied most of the time, τoff is
large. We show this situation in the time resolved measurement of Figure 5.7 (c)
where clearly the change in QPC voltage is negative most of the time.
This demonstrates how we can tune the average occupation of the quantum dot
with VP . To extract the corresponding rates Γon and Γoff for the electron to
tunnel on or off the quantum dot we measure the occupation times ton and toff .
Hereby the average time τon that the electron stays on the quantum dot before
tunneling off is eventually a measure for the rate Γoff to tunnel off: τon = Γ−1

off .
Similarly the time τoff the quantum dot remains empty before an electron tunnels
on is a measure for Γon: τoff = Γ−1

on . We extract the average occupation times by
histogramming the single occupation times ton and toff . An exponential fit gives
the relevant parameters:

P on(ton) = Ae−Γoff ton

P off (toff ) = Ae−Γontoff (5.1)

Where P on/off are the probability distributions that the dot will remain occu-
pied/empty until the time t = ton/off .
Figure 5.8 (a) and (b) show the histograms of the ton and toff times that refer to
the same set of gate voltages as used when taking the data in Figure 5.7 (a). For
getting better statistics we repeated this measurement several times and fed the
resulting times into the same histogram. From an exponential fit we extract the
tunneling rates Γoff = 5± 0.3 Hz and Γon = 16± 0.6 Hz when VP = −945.6 mV.
The insets show the data and fit on the log scale which emphasizes the very good
agreement between them and shows the reliability of this method.
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The corresponding histograms for the real-time data of Figure 5.7 (c) are shown
in Figure 5.8 (c) and (d). We extract the tunneling rates Γoff = 48 ± 2 Hz and
Γon = 4± 0.1 Hz for VP = −950.0 mV while the voltages on the other gates were
not changed compared to above. The tunneling rate onto the quantum dot gets
smaller with decreasing gate voltage, which increases the quantum dot energy
level, as expected.
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Figure 5.8: Histograms of the on-times ton and off-times toff that the electron stays on or off
the quantum dot, respectively, before it then tunnels off or on. From an exponential fit (red
line) the tunneling rates Γoff and Γon can be extracted. The insets show the data and fits on
the log-scale. (a)-(b) refer to the same real-time data and thus same set of gate voltages as
shown in Figure 5.7 (a). (c)-(d) are the histograms corresponding the real-time measurement
of Figure 5.7 (c).
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Electron spin relaxation time measurements are based on tunneling into and
out of different energy levels of the quantum dot. The tunneling rates will then
give information about the energy state and in presence of a magnetic field and
Zeeman splitting, about the spin state of the electron. In order to obtain reliable
statistics, a huge amount of data needs to be taken and evaluated automatically.
Follow-up measurements took up to 24 hours, thus also slight changes for example
of the optimum gate voltage due to charge fluctuations in the 2DEG need to be
able to be automatically compensated during the measurement itself as well as
during the following data evaluation process. For example, for generating the
histograms shown in Figure 5.8 we first filter the raw data for noise-reduction.
Afterwards, δVQPC = 0 is determined. The total QPC voltage and voltage change
might vary between measurement traces. We handle this by histogramming the
filtered data which results in two gauss peaks. The splitting can be extracted
by an automatic fit. This voltage value is then further used to digitize the data
which afterwards enables us to extract the ton and toff times that are fed into the
histograms.

5.2.3 Energy Dependent Tunneling - Zeeman Splitting

We can use the real-time charge sensing technique to characterize how the tun-
neling rates change as a function of source-drain bias VSD or gate voltage Vg [95].
Single traces have already been discussed above where a dependence of the tun-
neling rate on the plunger gate voltage VP became visible. Figure 5.9 (a) shows
Γon as a function of plunger gate voltage VP when VSD = 0. For each point in
this graph 12 real-time traces have been measured, each 20 s long. The average
occupation times have been accumulated in one histogram for reliable statistics
to extract the tunneling rate also at low values. The overall measurement thus
lasted about 20 hours. The peak in tunneling rate occurs when the quantum dot
ground state is aligned with the Fermi energy of the leads which can be interpreted
equivalently to a Coulomb blockade peak in direct transport measurements.
When applying a finite source-drain bias to the reservoirs we expect a finite tun-
neling rate only when the quantum dot level lies within the bias window. In
dependence of gate voltage VP , the tunnel rate onto and off the quantum dot
should when the quantum dot level gets aligned with the Fermi energy of either
of the reservoirs, should stay at some constant value as long as the dot level is
within the bias window, and it should then decrease to zero when the dot level
has passed the other reservoir. Figure 5.9 (b) and (c) show the tunneling rates
Γon and Γoff , respectively, when VSD = 500 µV. Γoff shows the expected behav-
ior as just discussed. For Γon we observe peaks in the tunneling rate when the
quantum dot level is close to either of the reservoirs. We currently do not have
an explanation for the peaks.

For VSD = 0 we have observed a clear increase in tunneling rate Γon in the form
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Figure 5.9: (a) Tunnel rate Γon onto the quantum dot in dependence of plunger gate voltage VP

when no source-drain bias is applied, VSD = 0. (b) and (c) Γon/off when VSD is set to 500 µV.
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Figure 5.10: Left: Illustration of the first orbital ground state of the quantum dot in presence
of a magnetic field that leads to the Zeeman splitting ∆EZ between a spin-up and spin-down
electron. Right: Tunnel rate Γon onto the quantum dot in dependence of plunger gate voltage
VP and in presence of a magnetic field of 4 T. The magnetic field is applied in plane to the
2DEG. The blue line shows the sum of two Fermi-Dirac-fits. The Zeeman splitting ∆EZ can
be extracted from the difference in VP for the two turning points which refer to tunneling into
the spin-up state in the first case and tunneling into both the spin-up and spin-down level in
the second case. The blue line shows a Fermi-Dirac-fit.
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of a Coulomb blockade peak when the quantum dot ground state is aligned with
the Fermi energy of the reservoirs, just as expected.We can now use a similar
measurement to determine the difference of the energy states of a spin-up and
a spin-down electron in magnetic field. Applying a magnetic field lifts the spin
degeneracy between the spin-up and spin-down states. The energy difference be-
tween the two spin states is given by the Zeeman energy ∆EZ = |g|µBB, where g
is the electronic g-factor of GaAs, µB is Bohr’s magneton and B is the magnitude
of the applied magnetic field. We start with a completely empty quantum dot
in a magnetic field parallel to the 2DEG (to minimize orbital effects [24, 96, 97]),
and record the tunneling rates while increasing the voltage VP on the plunger
gates which lowers the quantum dot energy level. Such a measurement is shown
in Figure 5.10, the source-drain bias VSD is thereby set to 500 µV. Coming from
negative gate voltages we observe an increase of the tunneling rate Γon that leads
to a first plateau when the energetically lower spin-up state is aligned with the
Fermi energy of the reservoirs. Increasing VP further eventually leads to an align-
ment of the energetically higher spin-down state with the reservoirs which can
been seen in a second increase in the tunneling rate. Now tunneling into both,
the spin-up and and the energetically higher spin-down state is possible. When
VP is made even more positive the quantum dot level decreases below the Fermi
energy of the reservoir wich leads to an increasing tunnel barrier onto the dot and
thus a decreasing of the tunneling rate for very positive VP in Figure 5.10. In
order to extract the Zeeman splitting, we fit the data with the sum of two Fermi-
Dirac functions. The difference in plunger gate voltage VP for the two turning
points then gives the Zeeman splitting ∆EZ .

The repetition of this experiment for different magnetic fields between 3 T and
6 T is shown in Figure 5.11. Plotting ∆EZ versus field strength enables us to ex-
tract the electronic g-factor of GaAs. Figure 5.12 shows the according data points
points along with a linear fit out of which we get |g| = 0.31±0.02. The bulk value
for GaAs is gGaAs = −0.44 [44,98]. In GaAs quantum dots the measured |g|-factor
in absolute values is usually in the range of 0.2−0.4 and sometimes magnetic field
dependent [44, 99, 100]. It can be affected by the extension of the electron wave
function into the AlGaAs region (here g = +0.4), a decrease of the effective mag-
netic field due to thermal nuclear polarization, an enhancement of the effective
magnetic field due to dynamic nuclear polarization, the nonparabolicity of the
GaAs conduction band, spin-orbit coupling, and the confinement potential [44].
From the Fermi-Dirac fits we can also extract the electron temperature. For the
different measurements we get Te ≈ 70 mK− 100 mK.
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Figure 5.11: Tunnel rate Γon onto the quantum dot in dependence of plunger gate voltage VP
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Figure 5.12: Zeeman splitting ∆EZ as a function of magnetic field B. The black points were
extracted from measurements like the one shown in Figure 5.10. The blue line is a linear
fit forced through 0 that gives a g-factor |g| = 0.31 ± 0.02. If an offset is allowed, we find
|g| = 0.25± 0.05 with an offset of 13.6.

5.3 Characterization of the Real-Time
Measurement Setup

Since our planned experiments are based on a frequent usage of the real-time
charge sensing technique it is important to characterize the measurement setup
and its limitations for possible further improvement. Also, it is necessary to iden-
tify and understand noise sources.

To determine the rise time of our system, we can directly look at the voltage steps
in the real-time data. When a transition between the N = 0 and N = 1 charge
state takes place at time t0, the shape of the resulting voltage signal VQPC(t) is:

VQPC =

{
Vi t < t0

Vi + Vs(1− e−(t−t0)/τ ) t ≥ t0
(5.2)

where Vi corresponds to the voltage for the quantum dot state at time t < t0.
This means Vi = V0 if the quantum dot holds 0 electrons at time t < t0 and
Vi = V1 if there is one electron on the quantum dot at time t < t0. |Vs| = V1− V0

corresponds to the height of the voltage step in the real time data trace, while
its sign depends on whether the transition takes place from the N = 0 to N = 1
state or vice versa.
Figure 5.13 shows a section of a real-time data trace showing back and forth
tunneling between the 0- to 1-electron regime. The voltage transitions are fit-
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ted to the function of Equation 5.2 and show good agreement. Again we used
an automated process to evaluate large data sets for reasonable statistics. We
get an average rise time τ ≈ 2 ± 0.4 ms for a QPC resistance of about 350 kΩ
which refers to a bandwidth of about 80 Hz. Previously we estimated a band-
width of 900 Hz for a QPC resistance of 100 kΩ which is in reasonable agreement.
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Figure 5.13: Extraction of the rise time of the system. The voltage steps in the real-time data
are fitted by Equation 5.2 and result in a rise time of about 2 ms. As an example the inset
shows a close up of the first fit in time where the exponential fit nicely follows the data.

We measured the noise of the system when the quantum dot is tuned such that
its ground state is above the Fermi energy of the reservoirs, no electrons are on the
dot and electron tunneling is suppressed. Like this we ensure that the voltage fluc-
tuations across the QPC are purely caused by noise sources rather than tunneling
events. Figure 5.14 shows the noise spectrum of our real-time charge detection
system measured after the voltage pre-amplifier which is set to a gain of 10000
and a bandwidth of 3 kHz. We find that the total noise is 1.3 µVrms. Normal-
ization with respect to the bandwidth yields Vnoise = 23nV/

√
Hz. A main noise

source is the voltage pre-amplifier that contributes with two types of noise, the
voltage noise Vnoise and the noise current Inoise, Vtot =

√
V 2
noise + (InoiseR)2 [101].

For a bandwidth of 3 kHz our Ithaco pre-amplifier is specified with a noise current
Inoise ≈ 10 fA/

√
Hz which for a 100 kΩ impedance given by the QPC leads to

a contribution of about 1 nV/
√
Hz. This value is rather small compared to the

voltage noise which consequently dominates for our measurements.
Steps in Figure 5.14 occur at frequencies where there are peaks in the noise spec-
trum. We observe the first two steps at 50 Hz coming from the power lines
and 71 Hz which we could not clearly identify. They are followed by steps at
100 Hz, 150 Hz, 200 Hz, 250 Hz, 300 Hz, and 450 Hz which are harmonics of the
50 Hz peak. Previous additional peaks in the spectrum coming from surrounding
measurement components or parts of the dilution refrigerator had already been
isolated at this time of the measurement.
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Figure 5.14: Integrated noise spectrum (upper panel) and noise spectrum (lower panel) for
our real-time charge sensing system. The spectrum was taken while the quantum dot ground
state level was just above the Fermi energy of the leads so that the dot was empty and voltage
fluctuations were only due to noise and not due to electron tunneling.

5.4 Summary and Outlook

We have shown in this chapter that we are able to perform highly sensitive charge
sensing with a signal sensitivity of about 6% and with our new setup and quan-
tum dot devices we could measure electron tunneling in real-time. We can reduce
the overall tunneling rate down to about 1 Hz and the maximum rate currently
detectable is about 100 Hz. Also, we can individually tune the differences in on-
and off tunneling rates and automatically extract Γon/off out of large data sets.
We have made first steps in the direction of spin-selective readout when measuring
the Zeeman splitting between a spin-up and spin-down electron in a magnetic field
applied parallel to the 2DEG of our GaAs quantum dot. The Zeeman splitting
could be clearly resolved and the g-factor of GaAs that we extracted out of our
data of |g| ≈ 0.31. These were important steps towards our goal to investigate
the magnetic field anisotropy of the electron spin relaxation time T1.
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However there is room for optimization regarding the bandwidth of our system
which is the limiting factor for the response time of our QPC charge detector. High
resistance ohmic contacts are the major problem in this case (see Chapter 3). This
is one of our next goals working towards spin-relaxation time measurements: fab-
ricating new devices while investigating the improvement of low-resistance ohmic
contacts. Further, Barthel et al. have recently proposed and tested to use a
second sensor quantum dot as charge sensor instead of a quantum point con-
tact [102]. They report a significant improvement in measurement sensitivity of
the charge sensor due to reduced screening and lifetime broadening. Transferring
this structural change to our devices might increase our possibilities.

Another improvement of the measurement setup has already been realized and will
be discussed in the next chapter. In developing new cryogenic filters and replacing
the already installed microwave filters we could reduce the electron temperature
in our samples significantly which for example allows for a better resolution of
the Zeeman splitting.
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6
Ultra Low Electron Temperatures

Very low electron temperatures can open up the possibility to discover new physics
and are essential for the experimental realization of quantum mechanical effects.
Often in experiments, the smearing due to temperature has to be a lot smaller
than the relevant energy scales of the studied effect. For the special experiment
related to measuring the electron spin relaxation time in dependence of the field
direction of an externally applied magnetic field, the limiting energy scale is the
Zeeman splitting ∆EZ between a spin-up and spin-down electron. The ability to
perform measurements over a large range of field magnitudes also down to small
values are favorable and only possible if also very small differences in Zeeman
energy can be resolved.
In this chapter we describe how we optimized our measurement setup with home
made miniature cryogenic microwave filters that are mounted directly at the mix-
ing chamber plate of the dilution refrigerator. Combined with good thermaliza-
tion, this improvement enabled us to lower the temperature of the electrons in
the reservoirs of the quantum dot down to state of the art temperatures of about
18 mK.

6.1 Temperature Measurement

In the following, we use the quantum dot as an electron thermometer. We pre-
sented in section 4.1 a method how to extract the electron temperature from the
width of a conductance peak in Coulomb blockade. This measurement has been
performed in the low-bias regime, when no source-drain voltage VSD is applied.
The Coulomb blockade conductance peak was then fitted with a cosh−2-function
(Eqn 4.3) and the electron temperature was calculated from the peak width.
One can also extract the electron temperature from a high-bias measurement
when a finite source-drain voltage is applied. We then map the current in depen-
dence of plunger gate voltage VP . The current will start to flow when the ground
state of the quantum dot is aligned with the Fermi energy of the source reservoir
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Figure 6.1: Current through the quantum dot in dependence of plunger gate voltage VP when a
finite source-drain bias VSD = 400 µV is applied. The broadening of the current steps when the
quantum dot is aligned with the Fermi-Dirac distributed reservoirs is a measure of the electron
temperature Te. The red line is a Fermi-Dirac fit that reveals an electron temperature of 79 mK
for the left lead and 72 mK for the right lead. The inset shows a close-up on log-scale for the
right step. The measurement has been performed at a mixing chamber temperature of 7 mK.

and will stay at some finite value until the quantum dot state is aligned with the
Fermi energy of the drain reservoir and the current will decrease down to zero
again. In other words, the current flows when the quantum dot state is within
the bias window. Such a measurement of current versus plunger gate voltage VP
is shown in Figure 6.1 where VSD = 400 µV. An overall decrease in current with
increasing VP is thereby due to the inceasing tunnel barrier between the lead and
quantum dot when the quantum dot level is lowered below the Fermi energy of
the source lead.
Since the temperature of the electrons in the reservoirs is Fermi-Dirac distributed,
the current steps due to alignment with either of the reservoir energies are broad-
ened. For small tunneling rates, when Γ � kBT , this broadening is a measure
for the temperature of the electrons in the reservoirs (see also differentiation be-
tween tunneling broadened and temperature broadened regime in section 4.1).
The Fermi-Dirac-Distribution of the electrons in the reservoirs is

f(E) = [e(E−EF )/kBT + 1]−1 , (6.1)

where EF is the Fermi energy. Fitting the current step with this function directly
gives us the electron temperature Te independently for the left and the right reser-
voir. The lever-arm αg, the conversion factor from gate voltage to energy, can
be determined from the difference in gate voltage for the two turning points in
the current steps. Out of the measurement shown in Figure 6.1, we extracted
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Figure 6.2: Electron temperature Tcurrent obtained from a current measurement through the
quantum dot and mixing chamber temperature TMC while cooling down the system to base
temperature and warming up again to about 180 mK. Each point corresponds to an individual
current measurement like shown in Figure 6.1 out of which the electron temperature for the left
and the right reservoir is extracted individually. The mixing chamber temperature was measured
using a RuO2 thermometer mounted to the mixing chamber plate. For higher temperatures the
values agree very well which demonstrates the reliability of the quantum dot thermometer.

an electron temperature Tleft = 79 mK for the left reservoir and Tright = 72 mK
for the right reservoir. The inset is a close-up on a log-scale that shows that the
Fermi-Dirac-fit nicely fits to the data which indicates that we are in the temper-
ature broadened rather than the tunneling broadened regime.
For this particular measurement we completely disconnected the measurement
components used for the AC lock-in measurement in section 4.1. The aim was to
reduce and take away all possible noise sources for allowing the detection of the
lowest electron temperature and avoid peak broadening due to noise. Later we
want to compare this electron temperature with measurements performed using
the new microwave filters.
To ensure the reliability of the quantum dot thermometer we compared the ex-
tracted electron temperature with the temperature of the mixing chamber of the
dilution refrigerator over a wider temperature range. Figure 6.2 shows the elec-
tron temperature extracted independently for the left and the right reservoir and
the mixing chamber temperature measured with a RuO2 thermometer directly
mounted on the mixing chamber plate. The temperatures measured with the
quantum dot and those measured with the RuO2 thermometer approach each
other nicely at higher temperature which verifies the functionality of the quan-
tum dot as a thermometer and our automatic data evaluation software. Each
point in Figure 6.2 corresponds to an individual measurement trace like the one
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in Figure 6.1. The lever arm αg is individually determined out of each separate
trace and used to calculate the electron temperature independently for the left
and the right reservoir, though the lever arm is found to be roughly temperature
independent. The lowest temperature we achieve in average is about 75 mK al-
though the minimum temperature of the dilution refrigerator reads only about
7 mK.
Furthermore, we re-checked the reliability of the RuO2 thermometer by addition-
ally measuring the refrigerator temperature with a CMN thermometer directly
bolted into the mixing chamber plate. Their behavior is shown in Figure 6.3.
Here the mutual inductance of the CMN thermometer is plotted versus inverse
mixing chamber temperature measured with the RuO2 thermometer.The linear
behavior represents the Curie-Weiss law.The two thermometers agree very well
which over and above approves our methods to extract the electron temperature
from the current measurement through the quantum dot.
The CMN thermometer is a magnetic thermometer based on measuring the mag-
netic susceptibility χ of the paramagnetic salt cerium-magnesium-nitride (CMN)
which is described by the Curie-Weiss law χ = C/(T − TC), with T being the
temperature, TC the Curie-temperature, and C the Curie constant [103]. The
susceptibility is measured via the inductance of a coil holding a core of the para-
magnetic salt (primary coil), which is then compared with the conductance of
a reference coil (secondary coil). Since for cerium-magnesium-nitride the Curie
temperature TC ≈ 2 mK is very small and at the same time C is relatively large,
the change in magnetic susceptibility at low temperatures is comparably large
according to the Curie-Weiss law and the CMN thermometer is a sensitive instru-
ment for measuring temperatures in the millikelvin range.

6.2 Improved Filtering

The electron temperature measurement that we have just discussed in the section
above was performed at a base temperature in our dilution refrigerator of about
7 mK at the mixing chamber. Still, the electron temperature was significantly
higher with about 75 mK although the sample was mounted in a cold finger with
carefully designed heat sinking at the mixing chamber plate (see Chapter 3).
However, since the sample is glued onto a ceramic chip carrier sitting in a plastic
socket, it is in fact mainly cooled through the electrical leads connected to it.
These need to be electrically isolated from each other and they also connect the
sample to the room temperature measurement setup. Thus high frequency noise
couples to the sample via the electrical leads and together with poor thermal
coupling this makes it challenging to efficiently cool the electrons in the sample.
Installing appropriate high frequency filters to the electrical leads coming from
room temperature to the sample that at the same time provide best possible
thermalization is thus inevitable to overcome these problems. Different types of
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Figure 6.3: Mutual inductance of the CMN thermometer versus inverse mixing chamber tem-
perature obtained from a RuO2 thermometer. The linear behavior represents the Curie-Weiss
law. The independent temperature measurements of the two thermometers agree very well.

these cryogenic filters have been proposed and are currently used. Examples are
metal powder filters [104,105], miniature thin film filters [106] or thermocoax ca-
bles [107]. As far as we know, the lowest electron temperature reported is 4 mK,
with sintered silver powder heat exchangers directly soldered to the electrical con-
tacts of the sample [108, 109], and 12 mK have recently reported determined by
Coulomb blockade thermometry on a quantum dot [110].
We replaced the microwave filters already being installed in our dilution refrig-

erator by optimized home made miniature cryogenic microwave filters based on
powder filters but using silver epoxy instead for better conductivity. In this way
we could reduce the electron temperature down to about 18 mK. The main aims
for the filter design were primarily to suppress high frequency noise coming from
the room temperature part of the measurement setup but also much effort was
put into good thermalization of the electrical leads with the base temperature of
the refrigerator. Apart from that, low resistance and low capacitance is desirable
for not reducing the bandwidth of the measurement setup which would be in
particular limiting for the real-time charge sensing measurements. Also, one may
not forget that the filters need to be mounted directly in the dilution refrigerator,
close to the mixing chamber plate, thus small dimensions and easy handling are
crucial as well.
The new filters that were developed and built with regard to minimizing the elec-
tron temperature in our setup fulfill all these requirements. A picture is shown
in Figure 6.4. One can see the small dimension of the cylindric filter which is
attached with silver epoxy to a braid of OHFC copper which then provides the
thermal connection to a stem of gold-plated OFHC copper that is directly screwed
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Figure 6.4: Fotographs: Left: Miniature cryogenic microwave filter that can be mounted to the
mixing chamber plate of the dilution refrigerator to filter high frequency noise and provide good
thermal contact to the sample. Right: Mixing chamber plate with mounted filters, one for each
electrical lead going through the cold finger to the sample.

Figure 6.5: Scetch illustrating the special winding technique to reduce parasitic capacitive
coupling. The circles represent the cross sections of the wound wires. Left: Normal winding
of one coil. The spacial distance between the first half and the second half of the wire is at
some places very small. Right: In winding several coils in series, the spacial distance between
the first part and the last part of the wire is maximized which decreases parasitic capacitive
coupling between windings.
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into the mixing chamber plate at 5 mK. This combination allows efficient heat
sinking. In the right picture of Figure 6.4 we show the mixing chamber plate of
our dilution refrigerator with the filters built in. The copper electrical leads that
go to the sample are attached via MCX connectors and lead through an OFHC
copper tube, the cold finger (see also Figure 3.2), whose beginning can just be
seen at the bottom of the picture.
The filters consist of a core made from conductive silver epoxy (∅ 2.5 mm) around
which about 2.5 m of copper wire (∅ 0.1 mm) is wound to form a 5-layer coil.
Winding is done with a magnet winding machine and in a special way to mini-
mize parasitic capacitive coupling between the windings (see Figure 6.5). This is
achieved in not simply winding a 5-layer coil over the whole length of the filter,
but rather a sequence of 5-layer coils side by side in series is wound. With this
technique capacitive coupling that has a strong impact on the transmission char-
acteristics, reduces to a coupling between neighboring coils instead of the coupling
between the first and the last wound layer when using the conventional winding
technique. In the latter case, the spatial distance between the beginning and the
end of the current path, i.e. the first and the last layer, is much smaller.
MCX connectors are soldered to both sides of the filters and the wire is covered
with silver epoxy which is also used to attach the OFHC copper braid. The re-
sulting filters have a resistance of 5 Ω and a capacitance of 4 nF.
Figure 6.6 shows the attenuation profile for some different filters and a thermo-
coax cable (trace no. 2) at room temperature. Trace no. 1 shows the attenuation
profile of the microwave filter that has been installed in our refrigerator by the
supplier, traces no. 3 − 6 show the attenuation profile of some of our different
new filters. All the latter house a 5 layer coil while no. 5 and no. 6 were fabri-
cated using the special winding technique and no. 3 and no. 4 were wound in the
conventional way. Adding discoidal capacitors to both filter ends lowers the cut-
off frequency. They were included for the filters represented by traces no. 4 and
no. 6. Combining the parasitic capacitive coupling reduced winding technique
with additional 4.7 nF capacitors at the filter ends results in more than 100 dB
attenuation for frequencies larger than 30 MHz.
However, still keeping in mind the real-time charge sensing measurements, we
want to keep the bandwidth of our system as large as possible and filters without
additional capacitors were installed in the refrigerator for the following measure-
ments. These show an attenuation of more than 100 dB for frequencies larger
than 150 MHz.
Figure 6.7 shows the transmission characteristics for the mounted filters at room
temperature (300 K), when dipping in liquid nitrogen (77 K) and when dipping
in liquid helium (4.2 K). The behavior of the filters does not change significantly
when going to lower temperatures.
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6.3 Ultra Low Electron Temperatures

With the new filters installed in our system we repeated the electron tempera-
ture measurement as discussed above. The current through the quantum dot in
dependence of gate voltage is shown in Figure 6.8 with a source-drain bias VSD
of 400µV applied. The base temperature of the refrigerator was 7 mK at the
mixing chamber. Out of this measurement we extract an electron temperature
Tleft = 18.9 mK for the left side and Tright = 16.7 mK for the right side. Apart
from adding the new filters to the refrigerator exactly the same setup was used
as for the measurement presented in Figure 6.1. Installing the filters reduced the
electron temperature significantly.
Hereby the difference in temperature between the two reservoirs is most likely
due to the connection of the source and drain measurement setup to the ohmic
contacts that leads to a small heating effect on the side where the voltage source is
connected. As already mentioned above, the width of a Coulomb blockade peak in
conductance in the low-bias regime as well as the broadening of a step in current
through the quantum dot when a finite source-drain bias applied is a measure for
the temperature Te of the electrons in the reservoirs. We can use the quantum dot
thermometer with both techniques. The measurement setups are slightly differ-
ent though. The conductance measurement requires an AC lock-in measurement
whereas the current measurement is a pure DC measurement. Figure 6.9 shows a
conductance measurement which is clearly in the temperature broadened regime
(see also Chapter 4.1). The FWHM of the peak is 0.1 mV and combined with
the lever arm of 87 µeV/mV this gives us an electron temperature of 29 mK. This
is about the lowest electron temperature we could measure with this technique.
The AC bias VAC = 2 µV that we applied during the measurement sets the lower
limit to the temperature compared to the current measurements.
To further check the reliability of the results, we now also want to directly com-
pare electron temperatures extracted from current as well as conductance mea-
surements. Also at the same time we map the base temperature of the dilution
refrigerator obtained by both the RuO2 thermometer and the CMN thermometer
mounted to the mixing chamber plate.
The graph in Figure 6.10 shows the measurements for electron temperature TCurrent
and TConductance obtained from both, current and conductance measurements, re-
spectively, and the corresponding mixing chamber temperature TMC . The three
traces have been taken simultaneously while warming up the refrigerator slowly.
This was done in first decreasing the cooling power by switching off the still heater
and then also switching off the turbo pumps and starting to pull back 3He from
the mixture. The current and conductance measurements have been taken al-
ternately. Each point of the graph refers to an individual conductance peak or
current measurement that was separately fitted to extract Te. The lever-arm αg
was determined from the position of the turning points from the current measure-
ments and is displayed in the inset of the figure. For the current measurement the
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temperature determined by the left fit (at smaller VP ) is plotted. Both measure-
ment techniques result in approximately the same electron temperature over the
whole range. And also over a very large range between about 30 mK and 1.3 K
the electron temperature is in very good agreement with the RuO2 and the CMN
thermometer.
As can be seen in the inset of Figure 6.10, the main uncertainty in extracting the
electron temperature from current or conductance measurements lies in fluctu-
ations of the lever arm. We did not assume a constant value for αg but rather
extracated it individually for each measurement point. Especially for very large
temperatures, when we already startet to pull back 3He from the mixture, the
lever arm gets too noisy to extrat reliable electron temperatures.
We note that this measurement was optimized for resolving a large temperature
range. With regard to this, the gate voltages were chosen in a way that the
conductance through the quantum dot was as large as possible while still being
in the temperature broadened regime. The high conductance was favorable for
being able to resolve large peak widths at high temperature. Thus, in this case
we did not aim in measuring the lowest possible electron temperature.
The small offset between the temperatures obtained from the conductance and
current measurement most likely results from heating effects due to the AC bias
applied during the conductance measurement. We continuously increased the am-
plitude of the AC voltage from 2 µV when measuring temperatures below 80 mK
up to 30 µV for being able to resolve large conductance peak widths even above
500 mK. This results in an overall slightly higher temperature when measuring
with AC bias. During the time that a current trace was taken the AC bias was
reduced to 0.7 µV. We also note that to get to the very high temperatures, we
already started to pull back 3He from the mixture of the dilution refrigerator and
started to heat the mixing chamber which lead to a noisy lever arm in this region.

Figure 6.11 shows the electron temperature determined from both, current and
conductance measurements, and the mixing chamber temperature while cooling
down the dilution refrigerator. Again, current and conductance measurements
were fitted individually but in contrast to the previous measurement a constant
lever arm was assumed for the whole measurement range. The system needs some
time before it is in thermal equilibrium but the low electron base temperature is
reliably reached.
We note that we also measured the electron temperature with the new filters in-
stalled but with the copper braids were removed that were designed for addition-
ally providing good heat sinking with the mixing chamber plate (see Section 6.2).
For this purpose, the copper braid was attached to the filters, leading to an OFHC
copper stem that is directly bolted to the mixing chamber plate. Removing these
braids did not influence the electron temperature. We were still able to measure
low electron temperatures in the range of 20 mK. This seems to indicate that
the thermal contact of the MXC connectors that are soldered to the filter ends
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already provide sufficient heat sinking. Since space close to the mixing chamber
is rare it is convenient to not need any additional heat sinking mechanism.

6.4 Summary and Outlook

New, well heat sinked cryogenic microwave filters enable us to cool the electrons
in our devices down to very low temperatures which we measure using the quan-
tum dot as a thermometer. The filters show an attenuation larger than 100 dB
for frequencies above 150 MHz. They are small enough to be directly mounted
at the mixing chamber plate of the dilution refrigerator providing excellent heat
sinking. We can cool the electrons in the 2DEG to less than 20 mK which is also
verified by the agreement over a very large range between electron temperature
measured with the quantum dot and additional RuO2 and CMN thermometers
mounted to the mixing chamber plate. These very small electron temperatures
open the doors for many interesting experiments involving small energy scales.
And in particular this widens the possibilities and measurement range for the
planned electron spin relaxation time measurements also at small magnetic fields
and Zeeman splitting.
Further improvement of the electron temperature towards the base temperature
of the dilution refrigerator might be possible with filters showing a lower cut-off
frequency. For example the filters holding discoidal capacitors at both filter ends,
that show an attenuation larger than 100 dB for frequencies larger than 30 MHz.
We did not install those filters since for our particular project, aiming in the mea-
surement of spin relaxation times, a largest possible bandwidth is desirable, but
for other low temperature experiments they might be highly relevant. Also, im-
provement could be achieved in better heat-sinking the wires the are fed through
the cold finger to the sample holder which are currently pressed to the copper
tube of the cold finger with copper tape.
A remaining challenge is the appropriate control and tuning of the electron tem-
perature. The presented warm-up measurements have been performed in slowly
warming up the system by switching of the turbo pumps of the dilution refrig-
erator. Directly heating the mixing chamber so far leads to a constant offset
between electron temperature and mixing chamber temperature also for large
temperatures.
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7
Conclusion

Setting up a new low temperature, low noise, and high sensitivity measurement
laboratory suitable for electron spin relaxation time measurements, fabricating
appropriate quantum dot samples and implementing the first experimental steps
towards this goal was the primary task of this thesis.
For this purpose we installed a new high power dilution refrigerator on a vibra-
tion table including appropriate commercially available as well as adequate home
made measurement electronics fulfilling our demands. The system contains a two
axis vector magnet reaching fields up to 8 T and we designed a sample holder
enabling us to orientate samples in all possible x- and y- field directions.
New self made miniature cryogenic microwave filters combine the advantage of
powder filters with higher conductive silver epoxy and a special coil winding tech-
nique that reduces parasitic capacitive coupling between windings. Together with
excellent heat sinking while mounted directly to the mixing chamber plate of the
refrigerator, they enable us to decrease the electron temperature in samples down
to ultra low values of 18± 3 mK, providing very good conditions for investigating
new physics in a variety of fields with the ability to resolve very small energy
scales.
In terms of electron spin relaxation time measurements, we commenced the fabri-
cation of laterally gated semiconductor quantum dot devices. Transport measure-
ments show that our samples are very stable over large time scales and measure-
ment ranges and show high tunability to all relevant regimes. We can completely
empty the quantum dots of electrons and our design enables us to use them as
single as well as double quantum dots, suitable for investigations regarding one
or two qubit operations when talking in terms of quantum computing.
With charge sensing techniques we could measure electron tunneling in real-time,
being able to tune the tunneling rates down to about 1 Hz, thus being adequate for
measuring long T1-times in the rage of seconds. In magnetic field measurements
we could resolve the Zeeman splitting between spin-up and spin-down electrons,
another important ingredient for spin relaxation time studies.
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These are the essential and important mile stones towards investigating the an-
isotropy of electron spin relaxation that could be achieved during this thesis.
Direct next steps require fast pulsing of the quantum dot gates, for example for
being able to quickly shift the quantum dot energy levels to a situation that only
an excited electron, not yet relaxed to the ground state, can tunnel off the dot and
lead to a measurement signal. Connecting and supplying the relevant quantum
dot gates with the fast NI-DAQ card is one part of the implementation. But more
challenging for this task is the essential increase of bandwidth and QPC response
time, currently limited by high resistance ohmic contacts. Our group is already
in the progress of solving this problem by investigating and optimizing the fabri-
cation recipe. Also, further improvement of the samples is aimed in fabricating
an adjacent sensor quantum dot instead of a quantum point contact tending in
a higher sensitivity during charge sensing [102]. This is as well already in progress.

Furthermore we observed second order transport mechanisms as inelastic cotun-
neling processes and we associate some of our measurements with cotunneling
assisted sequential tunneling (CAST) as theoretically described by Golovach and
Loss [60]. These measurements provide a basis for following interesting studies of
transport mechanisms. Analyzing the temperature dependence of the position of
the CAST transport peak and measurements in magnetic field might give more
insight in these processes.
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