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1 Introduction

”La filosofia è scritta in questo grandissimo libro che continuamente ci sta aperto
innanzi a gli occhi (l’Universo), ma non si può intendere se prima non s’impara

a intender la lingua e conoscer i caratteri, ne’ quali è scritto. Egli è scritto in
lingua matematica, e i caratteri son triangoli, cerchi ed altre figure geometriche,
senza i quali mezzi è impossibile a intenderne umanamente parola; senza questi
è un aggirarsi vanamente in un oscuro labirinto”. 1 Galileo Galilei(1564-1642)

1.1 Historical overview

Galileo was the first important scientist who applied mathematics to physics; he was
followed by René Descartes (1596-1650), who introduced the Cartesian axes and the
summit was reached with Newton (1642-1727), who created, at the same time as Leibniz
(1632-1677), the infinitesimal calculation. The genius of these scientists was that they
understood how the complexity of physical phenomena could be brought to a set of
mathematical relationships. However, the revolution that they made did not concern
the life sciences like biology. Three centuries passed before a pioneer of mathematics,
Vito Volterra (1860-1940), put the first stone of the new discipline, the biomathematics.
His son-in-law Umberto D’Ancona was a biologist and has gathered detailed fishery
statistics between 1905 and 1923 at Venice, Trieste and Fiume. Studying them he had
noticed an increase in population of predators in the Adriatic Sea during World War I
as compared with the preceding and following periods, as well as the decrease in their
prey. The study related to the ongoing debate about the need for fishery regulation.

The main point was that after fishing resumed at the end of the War, no global increase
occurred in the fish market, but only a relative increase of some species and decrease of
others. According to D’Ancona, the suspension of fishery during the war displaced the
biological equilibrium in the Adriatic Sea in favor of the voracious species. He discussed
the problem with his father-in-law Vito Volterra who gave a theoretical explanation of
these variations in the relative numbers of a biological association introducing a system
of two ordinary differential equations. Volterra published his first results in 1926 [49].

Vito Volterra played a decisive and widely acknowledged role in the modern devel-
opments of mathematical biology. In the period prior to the Second World War quite

1The philosophy is written in this great book that is continually open in front of our eyes (the Universe),
but we can not understand it until we do not learn to understand the language and the characters
in which it is written. It is written in the mathematical language and the characters are triangles,
circles and other geometric figures, without these means is humanly impossible to understand a word;
without them it is a vain wandering in a dark labyrinth.
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a lot of seminal work towards a systematic and organic development of mathematical
research in biology was produced. One of the most important contribute had been given
by the statistician Ronald A. Fisher (1890-1962) who introduced a whole set of mathe-
matical tools to deal with problems in population genetics. What distinguishes Fisher
from Volterra is that the first one used extensively probabilistic techniques whereas the
second one held a deterministic point of view expressed in differential equations, as we
also did in this work.

Some preliminary remarks are necessary. The merely instrumental applications of
mathematics to biology, that is, the use of elementary computations, must be distin-
guished from efforts towards a conceptual application of mathematics to biology, that
is, the building of a genuine methodology of biomathematical research. As part of his
general scientific reductionist program Volterra aimed his biomathematical research to
transfer the conceptual apparatus of mechanics to biology. In his early studies he applied
differential equations and integro-differential equations to build a rational mechanics of
biological associations. Many biologists questioned the legitimacy of applying mathe-
matical concepts and methods in biology. They felt that biology, as a natural science
concerned with living beings, could not follow the blind mathematical laws of physics
or submit to the simplification requirements of a mathematical formulation. An impor-
tant point in all these discussions was the fit of biomathematical equations and laws to
experience. Practical problems in agriculture as well as fishery motivated an indistinct
interest in quantitative methods in biology. However, many biologists did not trust the
possible effective results of mathematical research. On the other hand, also the classi-
cal science was undergoing an important transformation, trying to give a description of
natural phenomena through mathematical laws that were subjected to comparison with
experimental data. Volterra wanted to extend this schema to biology [27].

However, mathematics can not be applied to biology in the same way as to classical
physics; the role of a mathematical model in biology is different. A good model should
help to understand the behavior of biological systems with the aim of intervening in a
more effective way, should be able to find the links among the information we gather
from the real world, in order to anticipate the evolution of the behavior for example
of a cell or a group of cells. The mathematics is an instrument of the human mind
to intervene on the nature, it is a human creation to understand the world in order to
operate on it. Mathematics is not only the exact language of the science and the nature,
but also an instrument to better understand and intervene on them, to build things for
the satisfy of the humanity’s necessities. After Volterra, and in particular in the last
twenty years, the growth of mathematical biology and the diversity of applications has
been astonishing. Mathematical modeling is being applied in every major discipline in
the biomedical science.

1.2 Pattern formation in cell culture

Here, we developed a mathematical model to better understand the behavior of some
particular cells. As Volterra did, we opted for a deterministic approach. Another pow-
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erful instrument to understand the living phenomena is the stochastic approach, but
it would have required a detailed study of the single cell behavior, whereas the experi-
mental data we could gather gave us only a macroscopic description of the cell culture.
Deterministic models and in particular reaction-diffusion systems have been widely used
in the study of biological phenomena, as wound healing, patterns formation or tumors
growth. The study of the pattern generation is for example very important in embry-
ology where the mathematical models provide with possible scenarios as how pattern is
laid down and how the embryonic form might be created. In [37] different models are
proposed, such as that for the embryonic fingerprint formation which can be compared
to the pattern formation created by cells cultured on a two-dimensional plate.

Regarding the generation of patterns in cell culture we refer to the important work of
Elsdale [17] where fibroblast cultures were analyzed to investigate how densely packed
cells organize. In particular normal human lung fibroblasts were cultured and cell move-
ment and patterning were studied with time-lapse cinemicrography. The cells spread
randomly and eventually stabilized forming a dense patchwork of arrays of fibroblasts
as confluences were approached. As a result, the confluent culture formed a patchwork
of numerous parallel arrays where the cells were no longer free but constrained in their
movement along some lines. The arrays merged at confluence where the cells in two
adjacent arrays shared the same orientation to within a small angle. Experiments in [19]
complement those of Elsdale and indicate that when cells come into contact with each
other at a small angle, only a small portion of the filopodial protrusions are inhibited
and neighboring cells glide along and adhere at each other. At large angles of contact
cells may crawl over each other or move away from each other. The angle of contact
that produces this feature was suggested for different tissues.

A mathematical model was introduced in [16] to prove that the pattern formation
can be caused by the mere interactions of individual cells, although it is a population
phenomena. Until then the formation of structures was only attributed to other mecha-
nisms as chemical gradients (chemotaxis) or mechanical stresses. In this regard we refer
in particular to [38] where a mathematical analysis was proposed to understand how
these mechanisms conspire to generate organized spatial aggregations. In [16] indeed
the authors showed that the self-organization of cells can actually be explained from
contact-responses of the cells alone. Their integro-differential equations considered the
distribution of the cells as a variable of the time and the angle of orientation. They
presented two equations, one for cells that are bounded and one for free cells, but in [34]
a more physical approach was considered leading to a single equation. Furthermore in
[35] the model was extended to also take into account the spatial distribution of the cells.
We could not find in the literature any similar works applied to the cells considered in
this dissertation. Because of the similarities between these cells and the fibroblasts we
decided to start from this last model.
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1.3 Study of chondrocyte culture

We worked in tight collaboration with the Tissue Engineering Group (TEG) at Uni-
versity Hospital in Basel. Cartilage tissue engineering is a novel and promising ap-
proach to repair articular cartilage defects. This procedure requires that cartilage cells
(chondrocytes) are isolated from a small biopsy and expanded in vitro, generally on
two-dimensional culture plates (monolayer), to augment their original number. Post
expanded cells are then cultured on specific biosynthetic materials and grafted in the
cartilage defects. One of the challenges that arise in this procedure is that the chondro-
cytes undergo only a limited number of divisions in vitro. A possible way to overcome this
limit consists in the supplantation of specific bioactive molecules (growth factors) during
the culture of chondrocytes. In this regard, the TEG developed an innovative growth
factors combination (TGFβ1, FGF-2, and PDGF BB) that accelerates the growth of
the chondrocytes on a monolayer [5], as it can be seen in Fig. (1.1). To investigate how
these growth factors influence the cell expansion we were asked to seek an appropriate
mathematical model.

In a first step, we developed a model combining time-lag (delay) and logistic equations
to capture the kinetic parameters and to enable the description of the complete growth
process of the cell culture. The results have been published in [6] and are presented
here in chapter 2. However, this model only describes how the number of cells changes
in time, without considering the spatial evolution of the cells on a two-dimensional
substrate. In previous experiments we observed that chondrocytes cultured with growth
factors change not only their shapes, but also their main characteristics, being then very
similar to fibroblasts [7]. This suggested that we start from the model developed in
[35] which, however, does not consider the cell duplication. We extended this model in
an innovative way, adding a logistic terms to follow the cell dynamics during the entire
culture time. In particular, we used this model to analyze the formation of patterns at
confluence. Indeed it was observed in experiments that when the density of the cells
reaches a critical level there is a spontaneous tendency to align along some common
axis of orientation. The selection of a preferred axis of orientation can be explained by
the fact that the uniform steady state (one in which cells are uniformly distributed in
orientation and space) could be unstable under particular conditions. We used linear
stability theory to test for the presence of such instability. Indeed, bifurcations can lead
to loss of stability of a uniform steady state in favor of patterned states, where cells are
aligned in parallel arrays or aggregated in clusters. We remark that we always tried not
to loose the link with the biological context by discussing constantly our results with the
TEG. In particular, for the comparison them with biological experiments it was essential
to use sophisticated image analysis tools which also permit to analyze the orientation of
the cells.

In summary, in chapter 2 we present a model to approximate some important kinetic
parameters which we then used in the spatial model introduced in chapter 3. Here, we
investigate the spatial characteristics of the cells and we develop mathematical tools to
calculate the number of patterns arising at confluence as well as their size. In chapter
4 we study in details the spatial model from different points of view. We prove the
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existence under specific conditions of a weak solution through Galerkin approximations
and a-priori estimates. Then we perform a linear stability analysis to have information
about parameter regimes that give arise to a formation of patterns. Integrating the model
with a combination of Chebyshev methods, finite differences and trapezoidal quadrature
we analyze the behavior of the model for different parameter regimes. In the appendix
we report calculations, proofs and experiments as supplements to the previous chapters.

= 100microm

C T R

1 day 4 days 8 days 13 days

T F P

Figure 1.1: Representative pictures at different times of culture of human articular chon-
drocytes expanded without (CTR) or with growth factors (TFP).

One of the main problems the TEG is confronting consists in the variability of the
behavior of chondrocytes isolated from different donors. In a study performed to inves-
tigate age related changes in proliferation and post-expansion tissue-forming capacity
[5] an extreme variability in these properties was unexpectedly observed among chon-
drocytes derived from donors within the same age range. In this regard, the model
we present could help biologists either in defining conditions that improve chondrocyte
properties or in identifying donor cells that have adequate characteristics for clinical
application.
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2 Experimental and mathematical study

of the influence of growth factors on

the growth kinetics of chondrocytes

The content of this chapter has been published in [6].

This study aimed at determining how kinetic parameters of adult human articular
chondrocytes (AHAC) growth are modulated by the growth factor combination TGFβ1,
FGF-2, and PDGF BB (TFP), recently shown to stimulate AHAC proliferation. AHAC,
isolated from cartilage biopsies of three individuals, were cultured in medium without
(CTR) or with TFP. For growth curves, AHAC were seeded at 1000 cells/cm2 and cul-
tured for 12 days, with cell numbers measured fluorimetrically in the same wells every
12 hours. For microcolony tests, AHAC were seeded at 2.5 cells/cm2 and cultured for 6
days, with cell numbers determined for each microcolony by phase contrast microscopy
every 8 hours. A mathematical model combining delay and logistic equations was de-
veloped to capture the growth kinetic parameters and to enable the description of the
complete growth process of the cell culture. As compared to CTR medium, the presence
of TFP increased the number of cells/well starting from the fifth day of culture, and
a 4-fold larger cell number was reached at confluence. For single microcolonies, TFP
reduced the time for the first cell division by 26.6%, the time for subsequent cell divisions
(generation time) by 16.8%, and the percentage of quiescent cells by 42.5%. The math-
ematical model fitted well the experimental data of the growth kinetic. Finally, using
both microcolony tests and the mathematical model, we determined that prolonged cell
expansion induces an enrichment of AHAC with shorter first division time, but not of
those with shorter generation time.

2.1 Introduction

In several cell therapy applications, the use of cytokines during cell expansion has been
proposed as a promising method to increase the number of cells that can be obtained
starting from a small biopsy, particularly for cell types with limited proliferative capacity
[8, 9, 39, 43, 45]. Depending on the cell system under investigation, the cytokine-induced
increase in cell number may underlay a variety of causes, such as a shorter time to start
the first cell division, a shorter cell division time, a lower percentage of quiescent cells,
and/or a larger density of cells reached at confluence. For example, in [15] is showed
that IL-2 influences T-cell proliferation by increasing the proportion of cells that enter
the first division and by reducing the average division time, but not by altering the
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time at which the cells enter the first division. In another study, [14] it was observed
that specific growth factors (i.e., FGF-2, EGF, SCF or IGF-1) induced proliferation of
muscle-derived stem cell by recruitment into the cell cycle in case of freshly isolated cells,
or by reducing the length of the cell cycle in case of an expanded cell clone. Taking to-
gether these studies demonstrate the importance of monitoring several parameters of cell
growth following stimulation with growth factors. Quantifying the appropriate kinetic
parameters may also be relevant to investigate whether the effect of cytokines is related
to a possible selection of certain subpopulations, and to develop realistic mathematical
models characterizing and predicting cell growth. The most simple and frequently used
mathematical models apply equations of exponential growth to estimate the population
doubling time. The key assumption of these models is that all the cells in culture divide
at the same time; therefore, the estimated doubling time reflects a macroscopic feature of
the cell culture, which does not take into account the properties of individual cells. Non-
exponential time-lag models have been shown to overcome these limitations and provide
more realistic estimation of several parameters of cell growth kinetics [4, 42] . However,
to our knowledge these models have not yet been combined with logistic equations to
model contact inhibition upon cell confluence. Recently we reported that the number
of adult human articular chondrocytes (AHAC) obtained following monolayer culture is
markedly increased by the use of TGFβ1, FGF-2, or PDGF-BB [28], especially when
used in combination (TFP) [5]. Here we aimed at determining how kinetic parameters
of AHAC growth are modulated by TFP. In particular, we first used microcolony assay
[41] to estimate the following kinetic parameters

- time of first cell division tcd,

- cell division time of single cells, generation time GT ,

- percentage of quiescent cells Qc,

- fraction of cells that divide per generation time Fc(T ).

We then developed a mathematical model combining time-lag (delay) and logistic equa-
tions to capture the kinetic parameters and to enable the description of the complete
growth process of the cell culture. Finally, using the experimental and mathematical
methods, we assessed the growth kinetic parameters of AHAC from the same donor at
different passages in culture, to determine whether prolonged expansion in the presence
or absence of TFP induces an enrichment in the fraction of the fastest proliferating cells.

2.2 Material and methods

2.2.1 Cell culture

Cell isolation and expansion

Full-thickness human articular cartilage samples were collected from the femoral lateral
condyle of three individuals (patient A: 52 years, patient B: 50 years, patient C: 52 years),
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with no history and no radiographic signs of joint disease, after informed consent and
in accordance with the local Ethical Commission. Human adult articular chondrocytes
(AHAC) were isolated using 0.15% type II collagenase for 22 hours and resuspended
in Dulbecco’s modified Eagle’s medium (DMEM) containing 10% foetal bovine serum,
4.5 mg/ml D-Glucose, 0.1 mM nonessential amino acids, 1 mM sodium pyruvate, 100
mM HEPES buffer, 100 U/ml penicillin, 100 5g/ml streptomycin, and 0.29 mg/ml L-
glutamine (complete medium). The isolated AHAC were counted using trypan blue,
plated in tissue culture flasks at a density of 104 cells/cm2 and cultured in complete
medium, either without growth factors (control medium, CTR) or with the addition of
1 ng/ml of Transforming Growth Factor-b1 (TGF-β1), 5 ng/ml of Fibroblast Growth
Factor-2 (FGF-2) and 10 ng/ml of Platelet-Derived Growth Factor-BB (PDGF-BB)
(growth factor medium, TFP) in a humidified 370C/5% CO2 incubator. When cells
were approximately 80% confluent, first passage (P1) cells were rinsed with phosphate
buffered saline, detached using 0.05% trypsin/0.53mM EDTA and frozen in complete
medium containing 10AHAC were then used for the kinetic studies described below
(i.e., growth curves and microcolony tests) either immediately after thawing (passage 1
cells, P1) or following an additional expansion for 2 weeks (passage 2 cells, P2).

Growth curves

AHAC were seeded in 6 well-plates in CTR or TFP medium at a density of 1000 cells/cm2

and placed in a humidified 370C/5% CO2 incubator. Cell proliferation was assessed dur-
ing 12 days’ culture by repeated measures of cell numbers in the same wells (N=6 for
each experiment) using alamarBlueTM (a component transformed by living cells from the
oxidized non-fluorescent state to the reduced fluorescent state). Briefly, at 12 hours in-
tervals, culture medium was replaced with fresh medium containing 10% alamarBlueTM

solution (Serotec Ltd, Düsseldorf, Germany). After four hours, fluorescence intensity
was measured (excitation: 560 nm; emission: 590 nm) and converted to cell numbers
using a standard curve, generated in preliminary experiments by haemocytometer-based
counting of trypsinized cells immediately after alamarBlueTM assay. Morphological fea-
tures of AHAC cultures in CTR and TFP media were monitored by phase contrast
microscopy.

Microcolony tests

Cell culture flasks (150 cm2) were prepared by drawing a grid below the culture surface
(3mm-spaced horizontal and vertical lines). AHAC were seeded in the flasks in CTR or
TFP medium at a density of 2.5 cells/cm2. The use of such a low cell density allowed
observation of microcolonies derived from single cells, whereas the use of the grid al-
lowed to track the same microcolonies at different times. The number of cells in each
microcolony was manually counted using phase contrast microscopy at 8 hour intervals
for 6 days. The collected data were used to calculate

- the time of first cell division tcd, as the time (approximated as a multiple of 8
hours) required by each seeded cell to reach the stage of a 2-cell microcolony;
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Figure 2.1: Growth curves of AHAC expanded in CTR and TFP medium; cell number
was measured fluorimetrically every 12 hours and normalized to the dish
surface area; values are the mean ± SD of cells from three donors. (∗)P <
0.05 from AHAC expanded in CTR.

- the generation time gT , as the time (approximated as a multiple of 8 hours) required
by each 2-cell microcolony to reach the stage of a 4-cell microcolony (in preliminary
experiments, we found that gT was virtually identical to the time required by each
4-cell microcolony to reach the stage of a 8-cell microcolony; therefore, gT can be
considered as the cell division time following the first cell division);

- the percentage of quiescent cells Qc, defined as those which did not reach the stage
of 2-cell microcolonies during the entire observation time;

- the fraction of cells that divide per generation period fc(T ), defined as

fc(T ) =

∑N−1
i=1 DFi

T
gT

(2.1)

where DFi (dividing fraction in the i-th interval) is the ratio between the new cells
that appear in the i-th interval and the cells at the previous interval, N is the
number of observations, and T is the total observation time (144 hours) [41].

2.2.2 Mathematical model

Description of the model

An exponential model (dN/dt = ρN(t)) assumes that all cells divide instantaneously,
so that the growth rate at time t is proportional to N(t), the number of cells at time
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Figure 2.2: Microcolony progression analysis of AHAC from one characteristic donor
(donor A) expanded in CTR (first picture) or TFP (second picture) medium.
Cells were plated at a low density in culture flasks as described in Material
and Methods. Every 8 hours, number of cells per microcolony were counted
under phase contrast microscopy. The number of a given microcolony type
observed is expressed as a percent of the total observed. Microcolonies with
three cells were omitted for simplicity.
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t. Based on preliminary experiments we found that this assumption is not correct for
AHAC, since the first cell division is not instantaneous. This prompted for the use
of delay differential equations (DDEs) where the growth rate at time t ≥ GT is set
proportional to the cell number at some previous time (t−GT ) [4], where GT indicates
the average generation time of the cell population. In appendix A the different logistic
equations are analyzed in details. Here, we began with investigating the following simple
delay model

dN

dt
= ρN(t−GT ), t > 0, N(0) = N0 (2.2)

N(t) = ψ(t), −GT ≤ t < 0.

where ρ is the cell proliferation rate and, assuming that there is no relevant cell death,
corresponds to the number of offspring per parent cell in the population per time unit.
The experiment is assumed to start at time t = 0. Over the first interval [0, GT ), the
rate of growth depends on some previous fictitious cell number. Hence, it is necessary
to specify a function ψ(t) over [−GT , 0) that defines the rate at which new cells appear
over [0, GT ). However, one should not interpret ψ(t) as the number of cells N(t) for
negative t in [−GT , 0), but rather ρ ψ(t − GT ) as the rate of the cell growth for t in
[0, GT ). If the growth is synchronous and the cells divide around some specific time,
ψ(t) should be a Gaussian centered about that time, but if the growth is asynchronous,
ψ(t) should be a constant. In either case, the function is normalized by assuming that
the number of cells duplicates over the first interval [0, GT ). Integrating (2.2) over
[0, GT ), where N(t − GT ) = ψ(t − GT ) and imposing this normalization on ψ(t), we
find the condition which the integral of ψ(t) must satisfy. Since our data presented an
asynchronous behavior, we chose ψ(t) constant, with ψ(t) = N0/(GT ρ). Beyond the
seventh day the cell population encounters the physical limitation of the well size. To
model the growth kinetics of the cells throughout the entire experiment, that is until
confluence, we introduced a logistic delay equation

dN

dt
= ρN(t−GT )

(

1 − N(t)

K

)

, t > 0, N(0) = N0 (2.3)

N(t) = ψ(t), −GT ≤ t < 0.

Here the growth rate is no longer the single parameter ρ but is given by ρ (1−N(t)/K),
which decreases to zero as the number of cells N(t) tends to the constant K. The
parameter K defines the carrying capacity of the environment. In our experiments, K
is determined by the space available to the cells, i.e. the well area, since the medium
supply is assumed abundant and constant. Hence, the value of K corresponds to the
maximal number of cells in the monolayer which can be reached at confluence; note that
N(t) tends to K as t goes to infinity for any initial value N0 > 0. As the growth can
be considered exponential during the first time interval [0, GT ), when N(t) is still very
small, the normalization constraint on ψ(t) did not require a further adjustment. Note
that equation (2.3) has two steady states, N = 0 and N = 1. Perturbing it about the
state N = 1 one finds that this steady state is linearly stable. On the other hand, when
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we perturb the state N = 0, we find the linearized equation dN/dt = N(t−GT ). Upon
making the ansatzN(t) = C exp(−ρλGT ), we find that the solution to the transcendental
equation λ = exp(−ρλGT ) may have complex solutions in addition to one real positive
solution. However, for values of GT which are about 1, they all turn out to have negative
real parts, and therefore the corresponding oscillatory solutions to equation (2.3) are
decaying. Hence, we expect the solution to have a non-oscillatory monotone increasing
shape from N = 0 to the stable state N = 1 [37].

Numerical methods

The task of parameter estimation is one of minimizing, in a least-squares sense, an objec-
tive function based on a vector of unknown parameters p and sample data ti,Ni = N(ti),
for ti = 1, ...,M . Given an initial value N(t0) = N0 and an initial function ψ(t) for t
in [−GT , 0), each set of parameter values defines a solution N(t) = N(t; p) for t ≥ 0,
where p = [ρ,GT ,K]. We took as N0 our first experimental data at time t = 0. To
find the global best-fit parameter values p∗ to the data, the initial guess must be suf-
ficiently close to p∗. The microcolony tests provided us with a good initial estimate
for GT . To compute N(ti, p), the DDE is solved with an adaptive fourth-order Runge-
Kutta method [24]. The nonlinear optimization problem is solved by the Gauss-Newton
method, combined with the Armijo rule for an optimal step length [29].

2.2.3 Statistical analysis

Statistical evaluation was performed using SPSS software version 7.5 software (SPSS,
Sigma Stat). Values are presented as mean ± standard deviation (SD). Differences be-
tween cultures in CTR and TFP medium of cells from the same donor were assessed
by Student’s t-tests for independent samples, after confirming the normality of the pop-
ulations by skewness and kurtosis. Differences among donors were assessed by Mann
Whitney tests for independent samples. P values less then 0.05 were considered to
indicate statistically significant differences.

2.3 Results

2.3.1 Growth curves

Morphologically, CTR-expanded AHAC were flattened and spread, while TFP-expanded
cells were generally smaller with a more elongated, spindle-like shape (Fig 1.1). The
growth curves of AHAC from all donors were typically sigmoidal (Fig. 2.2.1): after a
lag period of about 3-4 days, cells multiplied exponentially until day 9-10, when they
reached the plateau phase. The density of cells counted in the presence of TFP medium
was significantly higher than in CTR medium starting from day 5 and was 4.2-fold higher
at day 12.
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2.3.2 Microcolony tests

For each experiment, 20-60 microcolonies per flask were identified and the number of
cells per colony was counted every 8 hours for a total time of 144 hours. The percentages
of microcolonies containing 1, 2, or 4 cells were derived at each observation and used to
generate microcolony profiles, as shown in Fig. 2.2.1. In CTR medium, the percentage
of 1-cell microcolonies declined slowly, reaching a plateau of around 20slow increase in
the percentage of 2-cell and 4-cell microcolonies. In the presence of TFP, the percentage
of 1-cell microcolonies declined to 1060 hours of culture, due to the rapid appearance of
microcolonies with progressively increasing cell numbers (Fig. 2.2.1). Remarkably, the
percentage of microcolonies containing more than 4 cells was higher than 50% only at
115 ± 17 hours in CTR medium, but already at 80 ± 8 hours in TFP medium. The
collected data were then used to calculate the following kinetic parameters related to
AHAC growth (Table 2.1):

• Time of first cell division tcd was highly variable (16-96 hours) even among cells
from the same donor and cultured in the same medium, indicating large hetero-
geneity of different AHAC subpopulations. Despite these variations, the mean tcd
(Tcd) was significantly shorter (1.4-fold, corresponding to 14.8 hours) if cells were
cultured in TFP, as compared to CTR medium. In order to further quantify dif-
ferences between CTR- and TFP-expanded AHAC, microcolonies were arbitrarily
divided into the following three groups: group I for tcd ≤ 16 hours, group II for
tcd between 17 and 32 hours, and group III for tcd ≥ 33 hours. As compared to
CTR-expanded AHAC, those expanded in TFP contained a statistically significant
higher fraction of microcolonies in group I (0.7% vs 9.1%) (Fig. 2.3.2, A).

• Percentage of quiescent cells Qc was 1.7-fold lower in AHAC cultivated in the pres-
ence of TFP as compared to CTR medium, indicating that the growth factor mix
induced a significant increase in the proportion of mitotically active cells.

• Generation time gT was highly variable (12-72 hours) even among microcolonies
from the same donor and cultured in the same medium, again underlining a large
heterogeneity of different AHAC subpopulations. Despite these variations, the
mean gT (GT ) was significantly shorter (1.2-fold, corresponding to 4.8 hours) in
AHAC cultivated in the presence of TFP as compared to CTR medium. Micro-
colonies were again classified into the following three groups: group I for gT ≤ 16
hours, group II for gT between 17 and 32 hours, and group III for gT ≥ 33 hours.
As compared to CTR-expanded AHAC, those expanded in TFP contained a sta-
tistically significant higher fraction of microcolonies in group I (11.9% vs 25.4%)
and a lower fraction of microcolonies in group III (23.4% vs 11.7%) (Fig. 2.3.2,
B).

• Fraction of cells that divide per gT fc(T ) is an index of the exponentiality of the
cell growth, calculated for each microcolony (fc(T ) equals 1 for an ideal expo-
nential growth, and 0.5 for a linear population growth). The mean fc(T ), Fc(T ),

13



was similar in CTR- and TFP-expanded populations and close to 1, indicating a
common exponential pattern of cell growth.

Table 2.1: Microcolony growth parameters

Exp Donor A Donor B Donor C Average
cond mean ± SDa mean ± SDa mean ± SDa mean ± SDb

tcd CTR 48.6 ± 19.7 64.3 ± 22.6 53.6 ± 21.9 55.5 ± 8.0
(hours) TFP 32.6 ±15.5∗ 36.3 ±11.3∗ 53.3 ± 16.9 40.7 ±11.0∗

Qc CTR 19.0 21.2 0.30 0.26
TFP 7.7 11.8 0.34 0.30

gt CTR 29.2 ± 6.4 25.5 ± 10.4 31.1 ± 13.0 28.6 ± 2.9
(hours) TFP 25.1 ± 11.1 20.6 ± 4.9* 25.6 ± 12.2* 23.8 ±2.7∗

Fc CTR 0.86 ± 0.08 0.87 ± 0.14 0.85 ± 0.14 0.86 ± 0.01
TFP 0.85 ± 0.11 0.90 ± 0.15 0.87 ± 0.15 0.87 ± 0.02

(a)Summary of growth parameters estimated by microcolony tests.
Parameters are reported as mean ± SD of microcolonies within the same donor.
(b)Parameters are reported as mean values calculated for each donor ± SD.
(∗)P < 0.05 from CTR medium.
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Figure 2.3: Time of first cell division (A) and generation time (B) of cells expanded in
CTR or TFP medium, following subdivision in arbitrary groups.

15



2.3.3 Numerical simulations

To determine GT and ρ, the exponential delay model 2.2 was first fitted to the mea-
surements from the three experiments during the exponential phase only. The resulting
values for GT were similar to those obtained from the microcolony test (Table 2.1 and
2.2). Between the two expansion conditions (in CTR or TFP medium), only a slight
difference in GT was observed (average variation = 9.4%) , while in general there was a
large difference in ρ (average variation = 34.3%) (Table 2.2). This can be explained by
the fact that ρ represents the overall proliferation rate taking into account the number
of quiescent cells and the time of first cell division, parameters that have been shown to
have higher values in CTR medium.

Table 2.2: Growth parameters calculated by (2.3)

Donor A Donor B Donor C
GT ρ DT GT ρ DT GT ρ DT

(hours) (hours) (hours) (hours) (hours) (hours)

CTR 27.0 0.86 33.7 19.5 0.75 33.3 29.8 1.10 30.1
TFP 24.0 1.60 22.1 17.0 1.10 24.5 28.0 1.40 25.4

Average GT (hours) ρ DT (hours)
mean ±SD mean ± SD mean ± SD

CTR 25.4 ± 5.3 0.90 ± 0.18 32.5 ± 2.0
TFP 23.0 ± 5.6 1.37 ± 0.25 24.0 ± 1.7

In the study of cell growth dynamics, another typical parameter is the doubling time
DT . For a simple exponential model (without delay), DT is constant and equal to
ln(2)/ρ. However, in our exponential model with delay, the doubling time varies with
time. Nevertheless, it reaches an asymptotic limit (DT ) at later times, as transients
during the initial stage are dissipated. Clearly the asymptotic value DT depends on GT

and ρ. As the behavior of the delay model tends to that of an exponential model at later

Table 2.3: Carrying capacity K calculated by (2.3)
Donor A Donor B Donor C Average

mean ± SD

CTR 10.1 12.6 8.7 10.5 ± 2.0
TFP 40.4 37.0 38.0 38.5 ± 1.8

Values of K are fitted by the delay model (2.3) to the experimental data. In the last
columns, mean values calculated from each donor ± SD are reported.
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Figure 2.4: Relationship between generation time GT and doubling time DT . Values of
these parameters plotted in this diagram were obtained from cells derived from
donor B and expanded in TFP (ρ = 1.1).

times, we can seek for a solution of 2.2 of the form

N(t) = C exp(ρλt), (2.4)

where C and λ are some positive constants. We introduce 2.4 into 2.2 which leads to
the transcendental equation

λ = exp(−ρλGT ). (2.5)

By solving this equation for λ with Newton’s method for different values of GT and ρ,
we can calculate DT = ln(2)/(ρλ). In Fig. 2.3.4 the relationship between DT and GT

for a typical value of ρ is shown. We observed that DT increased with increasing GT in a
nonlinear way. In Table 2.2 the values of DT , extrapolated for each donor and expansion
condition, are reported. Interestingly, while GT varied substantially between different
donors, DT remained almost similar in all experiments (% variation: about 20% for GT

and 7% for DT ). Since the fit to the exponential delay model yielded a good estimate
of GT , as confirmed by the microcolony tests, these values were then used in the logistic
delay model to obtain the carrying capacity, K. Consistently with the experimental
data, K was four times larger in the presence of TFP than in CTR medium, probably
due to the efficiency of space occupation (Table 2.3). A reduction of the error between
a standard logistic model and our delay logistic model 2.3 was observed (the mean error
in the former was 1.17 and 1.06 respectively for CTR and TFP medium, but only 0.69
and 0.96, respectively, in the second); hence, the new model approximates better the
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Table 2.4: Microcolony growth parameters: differences between P1 and P2

CTR TFP

P1 P2 P1 P2

tcd (hours) 53.6 ± 21.9 41.9 ± 18.3∗ 53.3 ± 16.9 25.5 ±14.7∗

Qc 30.3 4.4 21.2 2.6
gT (hours) 31.1 ± 13.0 27.5 ± 9.7 25.6 ± 12.2 26.1 ± 7.9

fc 0.85 ±0.14 0.88 ± 0.13 0.87 ± 0.1 0.85 ± 0.12

Summary of growth kinetic parameters derived for cells from patient C cultured for one
passage (P1) or two passages (P2) in CTR or TFP medium.
(∗)P < 0.05 from P1 cells.

observations. In Fig. 2.3.4 we show the solutions obtained by fitting the delay logistic
model 2.3 to the experimental data for each donor in the two expansion conditions.

2.3.4 Difference in the growth kinetic between AHAC at different passages

in culture

An intriguing question is whether prolonged expansion in the presence or absence of TFP
could induce an enrichment of AHAC populations with the fastest growth capacity. To
address this question, AHAC from one donor (donor C) were expanded in CTR or TFP
medium either for one (P1 cells) or two (P2 cells) passages, corresponding respectively
to 1.4 or 13.3 doublings for CTR and 2.5 or 17.2 doublings for TFP, and then assessed
using the microcolony test in combination with the developed mathematical model.
Unexpectedly, no difference was observed in the GT measured using P1 or P2 cells
expanded in CTR or TFP medium (Table 2.4), and the percentage of fast subpopulations
(group I) in P2 cells was lower than in P1 cells (2.2 and 4.4-fold respectively for CTR and
TFP) (Fig. 2.3.5). The accuracy of the experimentally determined GT was confirmed
by the fact that the mathematical model was able to predict the effective temporal
growth in cell number only if the measured GT , but not a shorter GT , was given as
input (Fig. 2.3.5). Interestingly, as compared to P1 cells, P2 cells had a shorter Tcd

(1.3-fold, corresponding to 11.7 hours, in CTR medium and 2.1-fold, corresponding to
27.8 hours, in TFP medium) and a lower Qc (6.9-fold and 8.2-fold respectively for CTR
and TFP medium) (Table 2.4). Moreover, prolonged expansion induced an enrichment
of cells with short Tcd (groups I and II) especially using TFP medium (Fig. 2.3.5).
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Figure 2.5: Experimental and predicted growth curves of cells from donors A,B and C.
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2.3.5 Discussion

In the present study, we used a combination of microcolony tests and a newly developed
mathematical model, combining logistic growth with time delay, to (i) measure the
kinetic parameters of AHAC, (ii) capture the entire growth process, and (iii) investigate
the specific effects of the growth factor combination TFP on cell proliferation. We
found that TFP medium increases the number of chondrocytes in monolayer culture
by reducing (i) the percentage of quiescent cells (Qc), (ii) the mean time required for
single cells to enter the first division (Tcd), and (iii) the mean cell division time of cells
(generation time, GT ). Our mathematical model confirmed the value of GT and provided
estimates for the carrying capacity of the system (K) and the proliferation rate (ρ), which
were respectively 3.7- and 1.5-fold higher in chondrocytes cultured in TFP. Moreover, our
results for chondrocytes from the same donor at different passages in culture indicate that
prolonged expansion does not increase the fraction of the fastest proliferating AHAC, but
rather the fraction of AHAC with a higher propensity to initiate duplication, particularly
in the presence of TFP. In ([41]) was first used the microcolony test as a tool to investigate
changes in growth properties of mouse mammary epithelial cell lines under condition
inducing elevated p53 expression. We also adopted the microcolony test to study the
growth kinetic of AHAC and its modulation due to the presence of TFP medium. As
compared to CTR-expanded AHAC, those expanded in TFP contained a higher fraction
of cells with short generation time (less than 16 hours) and a lower fraction of AHAC with
high generation time (more than 32 hours). However, based on our experimental data, we
could not determine whether all the cells in culture or only specific cell subpopulations
responded to TFP by reducing their gT . Interestingly, the overall growth pattern of
chondrocytes was not altered by TFP, as indicated by the fact that identical values of
the index of the exponential nature (Fc(T )) were obtained in chondrocytes cultured with
and without growth factors. The finding that Fc(T ) was close to 1 in both conditions
allowed us to use an exponential model for the initial phase of cell growth. One striking
observation was that the time of first division and the generation time greatly differed
among microcolonies derived from different cells of the same patient, in agreement with a
previously described large heterogeneity of different AHAC clonal subpopulations ([7]).
To capture the non-instantaneous and asynchronous first cell division, a delay model
had to be adopted. Using a delay model it is in fact possible to distinguish between
GT , a characteristic of a single cell, and the doubling time (DT ), a global feature of the
whole cell population. GT is clearly shorter than the doubling time, since it does not
take into account the quiescent cells and the delay in the first cell division. We observed
that DT always tends to an asymptotic value, different for different values of GT , and
more interestingly, that there is a relationships between GT and the asymptotic value
of DT ; this relationship depends on the proliferation rate (ρ), but not on the initial cell
number. Once having estimated GT and ρ by fitting our model to the data, we can thus
extrapolate the correspondent value of DT from the graph. Our model characterized
cell growth during the entire experiment, until confluence. This allowed us to estimate
the number of cells at confluence (K), which was remarkably different between the
two expansion conditions (CTR or TFP medium). This difference can be explained by
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Figure 2.6: Growth curves of P2 cells from donor C obtained applying GT of 16 or 26
h in the logistic model. The circles indicate the experimentally determined
number of cells. Applying a GT of 16 h in the model clearly resulted in an
inaccurate fit.

the smaller and more elongated cell shape induced by TFP. Further studies have to
be performed to assess whether cells cultured in TFP medium have also an increased
tendency to migrate, which would lead to a more efficient occupation of the available
space. In this study we also aimed at determining whether prolonged expansion in the
presence or absence of TFP induces an enrichment of the populations with the highest
growth capacity. Unexpectedly, we observed that P1 and P2 chondrocytes divided with
unchanged mean GT , and, more interestingly, that the fraction of fast cells (GT lower
than 16 h) decreased dramatically from P1 to P2 chondrocytes. These differences were
more pronounced if cells were expanded in TFP medium. Since replicative aging occurs
during in vitro cell expansion and the senescence-mediated phenomena become more
evident in cells undergoing elevated population doublings ([26]), it is possible to speculate
that cell senescence following prolonged expansion masked a possible selection of the fast
chondrocytes. On the other hand, P2 chondrocytes had shorter Tcd, larger fraction of
cells with short tcd, and lower Qc than P1 chondrocytes especially if cells were expanded
in TFP medium. This result indicates that prolonged expansion, particularly in medium
containing TFP, might induce a selection of chondrocytes with a higher propensity to
initiate duplication. In the present work, we have studied the influence of the growth
factor combination TGFβ1, FGF-2, and PDGF-BB on the growth kinetic of adult human
articular chondrocytes using both microcolony tests and a mathematical model. The
described approach could be adopted to quantitatively assess the growth of other cell
types, cultured under different experimental conditions.
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Figure 2.7: Generation time GT in P1 and P2 cells expanded in CTR (A) or TFP (B)
medium, following subdivision in arbitrary groups. ∗P < 0.05 from P2 cells.
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Figure 2.8: Time of first cell division Tcd in P1 and P2 cells expanded in CTR (C) or
TFP (D) medium, following subdivision in arbitrary groups. ∗P < 0.05 from
P2 cells.
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3 Dynamic Formation of Oriented Patches

in Chondrocyte Cell Cultures

The content of this chapter has been accepted for publication on the Journal of Mathe-
matical Biology. In chapter 4 the model presented here is analyzed more in details.

Growth factors have a significant impact not only on the growth dynamics but also
on the phenotype of chondrocytes (Barbero et al. , J. Cell. Phys. 204, pp. 830-838,
2005). In particular, as chondrocytes approach confluence, the cells tend to align and
form coherent patches. Starting from a mathematical model for fibroblast populations
at equilibrium (Mogilner et al., Physica D 89, pp. 346-367, 1996), a dynamic continuum
model with logistic growth is developed. Both linear stability analysis and numerical
solutions of the time-dependent nonlinear integro-partial differential equation are used
to identify the key parameters that lead to pattern formation in the model. The numer-
ical results are compared quantitatively to experimental data by extracting statistical
information on orientation, density and patch size through Gabor filters.

3.1 Introduction

In recent years, therapies for damaged tissue have experienced great progress through
the possibilities offered by new methods of tissue engineering [31]. In particular, this
emerging field holds great promise for the regeneration of tissues with limited intrinsic
repair capacity like adult articular cartilage. Most procedures pursued in tissue engi-
neering start with a biopsy containing few cells, which are expanded ex vivo making use
of cytokines. Those are then injected into a patient to grow tissue in vivo. Alternatively,
scaffolds are used to provide mechanical support and structure for the tissue to be grown
in vitro before its implantation on the defect. Those procedures may involve tissue re-
placement using donor tissue or autologous cells for in vitro cell-culture expansion, in
order to regenerate tissue that matches the patient’s native tissue.

Much research has already gone into the impact of combinations of growth factors on
the proliferative capacity for a range of cell types, such as pancreatic endorcine cells,
neural progenitor cells, muscle-derived stem cells [8, 9, 14, 45] and chondrocytes [5–7, 28].
For muscle-derived stem cells and chondrocyte cell cultures, mathematical models that
establish characteristic kinetic parameters, such as the fraction of dividing cells and mean
cell division-time have been developed [6, 14]. In addition, a logistic delay-differential
model for proliferating chondrocyte cells was used to further include the effect of contact
inhibition of proliferating cells upon confluence [6].
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Apart from the impact of growth factors on kinetic parameters, an important focus
of research concerns the effect of cytokines on the phenotype of individual cells and the
resulting organizational structure of the cell culture. Both will influence the mechanical
properties of the engineered tissue, which in the case of cartilage, is intended to sustain
tensile stresses and compressive loads, just as native tissue does [40]. Therefore, it is
important to understand the underlying processes leading to the formation of large-scale
patterns of an evolving cell culture. Identifying the relevant parameters that control these
structures is the focus of the present study, combining experimental and mathematical
methods [10].

In [6], adult human articular chondrocytes (AHAC) were isolated from cartilage biop-
sies and then cultured in the presence of a combination of growth factors. The individual
cells assume a phenotype that closely resembles fibroblasts and eventually self-organize
into regions of aligned cells, making up the monolayer of the cell culture at confluence
[7]. This phenomenon has been observed before for various cell types. In principle there
are a number of mechanisms that may control the formation of such patterns, ranging
from chemical, adhesive or other mechanical gradients, see e.g. Trinkaus [48] for an early
but instructive discussion in the context of morphogenesis.

Even in the absence of exterior influences, however, Elsdale [18] discovered that prolif-
erating fetal lung fibroblasts form parallel arrays during in vitro cell expansion. Similar
results were found for BHK fibroblasts in the experimental study by Erickson [19]. In
[18] Elsdale argued that the intrinsic property of fibroblasts is to move, unless prevented
to do so by the environment, and hence that patterns form solely due to direct cell-cell
interactions to enable maximal motility. Under the assumption of contact inhibition,
Erickson[19] concluded from a series of cell-cell contact experiments that if the lamel-
lipodium of a cell in ruffling mode contacts another cell at a certain angle, the direction
of motion changes depending on that part of the leading edge of the lamellipodium which
made contact and where ruffling is stopped. This mechanism is employed by Erickson
to explain the existence of a critical angle above which cells cease to align. This critical
angle seems to differ for different cell types, e.g. about 20o for fetal lung fibroblasts and
approximately 50o for BHK cells. For fibroblasts the leading edge of the lamellipodium
is much narrower than for the BHK fibroblasts. Hence, except for rather narrow contact
events, motion will halt (else cells may even criss-cross other cells). Moreover, similar
behaviour is observed for contact events of already established arrays of aligned cells.
This behaviour is eventually reflected in the resulting patterns at confluence.

Mathematical modeling of the dynamical process of array formation of aligned cells
started with the work by Edelstein-Keshet and Ermentrout [16]. The continuum models
derived for pattern forming cell cultures assume random spatial and orientational distri-
butions of the cells that are attracted (repulsed) and change their direction of motion in
response to cell-cell interactions. Here the cell density depends on time, two-dimensional
physical space and the angle of orientation. The range of interaction is kept small in or-
der to model the local character of cellular interactions. Apart from terms modeling the
random motion in physical and angular space, the model includes a term that describes
the probability of alignment of cells as a response to cell-cell contact, which vanishes out-
side the range of angles known to lead to alignment. In subsequent articles the resulting
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system of integro-differential equations for free cells and cells already bound to an array
are discussed in various limiting cases and analysed with respect to their stability about
the homogeneous state [34]. Similar models were also used for other pattern forming
processes such as swarming or the dynamics of actin binding fibers [11, 34, 36].

Here we extend these models by including time-dependent logistic growth to account
for the later stages of in vitro chondrocyte cell expansions. In fact, one important aspect
of our study is to enable a direct comparison with our experimental results in section
3.2.1. The analysis of the experimental results and, in particular, the classification of
the cells within angular space is realized by using two-dimensional Gabor filters [13] for
the experimental images and is described in section 3.2.3. In section 3.3, we present
our mathematical model, which consists of a time-dependent nonlinear integro-partial
differential equation. We use standard finite differences for the numerical discretization
in space, for the time discretization we use explicit Chebyshev methods that circumvent
the crippling stability restrictions of standard explicit Runge-Kutta methods – see the
Appendix. In section 3.4, we investigate the stability of the solution via a linear stabil-
ity analysis about the homogeneous state and compare those findings to the results of
the full nonlinear model. Finally, quantitative comparisons with experimental data are
performed in section 3.5.

3.2 Biological background

In appendix C the method used and the experiments are explained in details.

3.2.1 The impact of growth factors

Depending on the cell type and the specific growth factors used, cytokine-induced pro-
liferation of cells can generally be characterized by one or more parameters, such as a
shorter cell division time, a shorter time until first cell division, or lower percentage of
remaining quiescent cells [6, 14, 15]. Those key parameters can be obtained, for in-
stance, by combining a logistic delay-differential model with the results from specific
micro-colony experiments [6]. From that model, Barbero et al. established in the case of
adult human articular chondrocytes (AHAC) expansion in a medium supplemented with
the growth factor combination TGFβ-1, FGF-2 and PDGF-BB (TFP) that the time of
first cell division is about 1.4 times shorter and the percentage of quiescent cells about
1.7 times smaller than in the absence of TFP.

Further characteristics observed in experiments [6] concern the elongated shape the
cells assume when cultured in a medium with TFP. During the sigmoidal growth of
the cell culture, individual cells are initially oriented at random. As the population
approaches confluence, cells tend to locally align and form coherent structures. Those
spatial patterns appear highly irregular while individual patches greatly vary both in
shape and size, without clear boundaries between them – see Fig. 3.1.
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Figure 3.1: AHAC cultured with TFP at confluence, day 9 (left). Sigmoidal evolution of

the number of cells vs. time (right)

3.2.2 Cell culture: isolation and expansion

To monitor patch formation and obtain quantitative experimental data on diffusion con-
stants, we track the motion of an ensemble of individual AHAC cells up to confluence.
Here full-thickness human articular cartilage samples were collected from the femoral lat-
eral condoyle of two individuals (patient A: male, 18 years old, patient B: male, 66 years
old), with no history and no radiographic signs of joint disease, after informed consent
and in accordance with the local Ethical Commission. Adult human articular chondro-
cytes (AHAC) were isolated using 0.15% type II collagenase for 22 hours and cultured
for one passage in Dulbeccos modified Eagles medium (DMEM) containing 10% foetal
bovine serum, 4.5 mg/ml D-Glucose, 0.1 mM nonessential amino acids, 1 mM sodium
pyruvate, 100 mM HEPES buffer, 100 U/ml penicillin, 100 g/ml streptomycin, and
0.29 mg/ml L-glutamine and supplemented with the 1 ng/ml of Transforming Growth
Factor-b1 (TGF-b1), 5 ng/ml of Fibroblast Growth Factor-2 (FGF-2) and 10 ng/ml
of Platelet-Derived Growth Factor-BB (PDGF-BB) (growth factor medium, TFP) in a
humidified 37oC/5% CO2 incubator as previously described [6]. When cells were ap-
proximately 80% confluent, first passage (P1) cells were rinsed with phosphate buffered
saline, detached using 0.05% trypsin/0.53mM EDTA and frozen in complete medium
containing 10% dimethylsulfoxid. AHAC after thawing were then used for the studies
described below.

Monitoring of cell expansion until confluence
AHAC were re-plated in two wells of a 6 well plate at a density of 10000 cells/cm2 and
cultured in growth factor medium up to 10 days in a humidified 37oC/5% CO2 incubator
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with daily culture medium change. AHAC cultures were monitored by phase contrast
microscopy and pictures were taken from random areas of the wells each day.

Study of cell movement
AHAC were re-plated in a 6 well plate at different densities, which were 200, 3000,
10000, 15000 and 20000 cells/cm2, and cultured in growth factor medium for 1 day in a
humidified 37oC/5% CO2 incubator. Next, the plate was transferred to the incubator of
the Olympus system. From a time-lapse microscope we obtained a sequence of frames
which we used to monitor cell motion. Snapshots were taken at 15 minute intervals,
which corresponds to an average travel distance of 9µm, to provide sufficient space-time
resolution compared to the typical length of a cell (50µm). With the software analySISD

we performed a manual tracking in all five wells (Fig. 3.2) to follow about 100 cells for
each density, for 12 hours, a duration that allowed us to neglect cell doubling.

Figure 3.2: Tracking of individual cells at density 20000/cm2.

Spatial diffusion
To estimate the spatial diffusion, we performed experiments at various densities (i.e.
200, 3000, 10000, 15000, 20000 cells/scm) and for each density we manually tracked
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individual cells in three different areas of the well. Assuming Brownian motion, the
diffusion coefficient D is related to the mean square displacement, < X2 >, through
the relation < X2 >= 2Dt. A linear least-squares fit of the time evolution of the mean
square distance then yields D. From those estimates at varying density, shown in table
C.1, we obtained the constant average diffusion coefficient D = 0.29µm2/s.

cells/scm 200 3000 10000 15000 20000

coeff D1 0.31 0.30 0.37 0.31 0.31
coeff D2 0.18 0.23 0.32 0.30 0.26
coeff D3 0.23 0.40 0.34 0.30
mean ± SD 0.24 ± 0.07 0.26 ± 0.04 0.36 ± 0.04 0.31 ± 0.02 0.30 ± 0.03

Table 3.1: Estimates of the diffusion constant D at three different locations inside the
well and at varying density, together with the mean values ± SD.

3.2.3 Image analysis of alignment

Standard image segmentation algorithms proved unable to distinguish between individ-
ual cells and the background. Thus to identify patches of alignment and estimate their
size quantitatively, both in the numerical simulations and in the experiment, we proceed
in two steps. First, we apply a special class of filters to images such as Fig. 3.1 that
reveal the dominant local axis of orientation. Second, we estimate the average size of
cell clusters with a common orientation through a discrete statistical measure, which is
then used to compare numerical simulations with experiments.

To classify cells according to their orientation, we opt for Gabor filters [21, 23] which
consist of a local Gaussian kernel of width σ, multiplied by a plane wave with distinct
orientation θ and frequency ω:

G(x′, y′) = exp

{

−1

2

(

(

x′

σ

)2

+

(

y′

σ

)2
)}

cos(2πωx′)

x′ = x cos(θ) + y sin(θ), y′ = y cos(θ) − x sin(θ),

where unit length in x (or y) corresponds to a single pixel. The typical width σ = 12 and
frequency ω = 0.08 for an array of aligned cells were determined a priori and remained
fixed in all further analysis – see Fig. 3.3. Hence Gabor filters locally respond to patterns
with spatial frequency ω and orientation θ, within a subregion of size σ. Their two-
dimensional extension is commonly used in image analysis and computer vision; they
were also proposed as a model for the spatial summation properties of simple cells in
the visual cortex [13].

To any image we apply a suite of Gabor filters for varying orientation at 45◦ intervals
and assign to each pixel location (i, j) a distinct color cij that corresponds to the highest
filter response. Hence cij reflects the dominant orientation at location (i, j), and cells
aligned with that particular orientation are thus revealed, as shown in Fig. 3.4.
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Figure 3.3: Two-dimensional Gabor filters with frequency ω = 0.08, scale σ = 12, and
orientations θ = 0, π/4, π/2.

Next, we estimate the typical cluster in a filtered image, such as in Fig. 3.4, either
from experiment or numerical simulation. To do so, we assign to each pixel (i, j) the
value pij(s) = 1 if it belongs to a cluster of size s, that is if at least 50% of the points
within distance s are of the same color; else, we set pij(s) to zero. Summation over all
pixels yields an estimate r(s) of the number of pixels belonging to a cluster of size s as

r(s) =
∑

ij

pij(s), pij(s) =

{

1
0
. (3.1)

The intersection of r(s) with the s-axis yields a reliable estimate for the typical patch
size, i.e. the largest cluster size, as illustrated with synthetic black and white data in
Fig. 3.5. Moreover, comparison of the left and right frames in Fig. 3.5 demonstrates that
the intersection of r(s) with the s-axis is rather insensitive to added random noise.

3.3 Mathematical Model

In appendix B.1 there is a detailed explanation of how this equation can be derived.

3.3.1 Formulation

Starting from the pioneering works of Edelstein-Keshet et al. [16, 34, 35], we now
build a continuum model to describe the time evolution of a cell population of density
C(θ, ~x, t) in angle θ and two-dimensional space ~x = (x, y) at time t. During initial times
the cells are essentially free to move in space and also turn their axis of orientation at
random, similarly to fibroblasts. As the population density increases, however, cells come
into contact. In [16, 18, 19] the underlying mechanism responsible for the directional
motion and the resulting pattern formation is explained solely on the basis of single
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Figure 3.4: The effect of Gabor filtering when applied to Fig. 3.1. The color indicates
the dominant local direction of alignment.

cell contact events for the case of related fibroblast cell cultures. This mechanism is a
form of contact inhibition that cells experience when their lamellipodium touch. Indeed
whenever mutual contact occurs within a small angle and hence only a portion of the
lamellipodium touches, the cells alter their orientation accordingly and align, as observed
by Elsdale [18].

Following [35] we now let W (~x − ~x′, θ − θ′) denote the rate at which a cell at ~x′ and
θ′ moves to ~x and rotates to θ due to the impact of any surrounding cells. The angular
velocity associated with this motion is then given by the gradient of W at angle θ and
position ~x, due to the cumulative interaction with all other cells:

∂

∂θ
(W ⋆ C)(~x, θ, t) :=

∂

∂θ

∫

W (~x− ~x′, θ − θ′)C(θ′, ~x′, t) dθ′d~x′. (3.2)

The gradient of the associated flux C ∂θ(W ⋆C) then induces convective motion towards
locations of higher concentration which corresponds to aggregation in space and align-
ment in angle; both compete with the inherent tendency of cells for random motion
modelled by diffusive terms.

Next, the probabilities to align or to aggregate are assumed independent of each other,
that is

W (~x− ~x′, θ − θ′) = W1(θ − θ′)W2(~x− ~x′). (3.3)

Moreover, experiments suggest that the probability of alignment W1 decreases as the
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Figure 3.5: Estimate of cluster size from two-dimensional synthetic texture images (top
left), with corresponding cluster size function r(s) below, as defined in (3.1)
(bottom left). The intersection of r(s) with the s-axis yields a robust estimate
of the cluster size, even in the presence of added random noise (right).

relative angle between neighboring cells increases [18], whereas beyond a critical angle α
cells no longer align; hence, W1 must be positive and non-increasing for 0 ≤ θ ≤ α but
become negligible for α < θ ≤ π. Since clockwise and anticlockwise turns are equally
probable, W1 must also be even. For simplicity, we assume that W1 is Gaussian with
mean zero and standard deviation α/2; other choices are possible and discussed in [16].
After normalization, we thus obtain

W1(θ) =
1

α
√

2π
e−

2θ2

α2 . (3.4)

Since the strength of cell-to-cell interactions decreases with growing distance [16], we
again choose a Gaussian kernel for W2,

W2(~x) =
1

2σ2π
e−

|~x|2

2σ2 , ~x ∈ [−Lx, Lx] × [−Ly, Ly], (3.5)

where Lx and Ly denotes the size of the domain.
Our previous experiments indicate that the growth rate slows down, as the cell density

increases locally in space, and that it eventually vanishes when the carrying capacity is
reached because of limited space [6]. Therefore we model cell growth by a logistic term
with growth rate ρ, where the growth rate reduction is determined by the population
density at x and t, that is by the marginal probability density

∫ π

−π
C(t, x, y, θ)dθ. The full

logistic model, including the divergence of the drift of the cell population and random
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motion, previously derived in [35], can then be written as

∂C

∂t
= ǫ1

∂2C

∂θ2
+ ǫ2

(

∂2C

∂x2
+
∂2C

∂y2

)

−γ ∂
∂θ

(

C

[

∂W

∂θ
∗ C
])

− γ

{

∂

∂x

(

C

[

∂W

∂x
∗ C
])

+
∂

∂y

(

C

[

∂W

∂y
∗ C
])}

+ρC

(

1 − Lx Ly

K

∫ π

−π

C(t, x, θ)dθ

)

. (3.6)

where ǫ1, ǫ2 and γ denote the diffusion and drift coefficient, respectively. In addition we
note that upon using the definition (3.2) and functional forms (3.3)–(3.5), integration
by parts yields the above drift terms.

3.3.2 Numerical Methods

Here we describe the numerical discretization in space and time for solution of (3.6).
We restrict the computations to a small subregion Ω inside the experimental well.
Thus, boundary effects due to the finite size of the well are negligible and we may
impose periodic boundary conditions at the boundary of the computational domain
Ω = [0, Lx] × [0, Ly ]. For the numerical approximation of (3.6) all spatial derivatives
are approximated by second-order centered finite differences on a regular grid. The
convolution integrals are computed by trapezoidal quadrature, which yields exponential
convergence for periodic analytic functions [30]. Hence the numerical discretization error
is second-order accurate in space and angle.

For parabolic problems standard explicit Runge-Kutta schemes impose rather strin-
gent restrictions on the time-step for numerical stability, typically ∆t ≤ C∆x2, and
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hence are notoriously inefficient [25]. In contrast, implicit methods waive those time-
step restrictions but would require here the solution of a nonlinear integro-differential
boundary value problem at every time step, a rather high price to pay.

To avoid the above mentioned difficulties, we opt for Runge-Kutta-Chebyshev methods
instead, which are fully explicit while allowing larger time-steps. Instead of maximizing
the accuracy, RK-Chebyshev methods maximize the interval [−ℓ, 0] of the negative real
axis contained in the stability region [25, 33]. Because ℓ is proportional to s2, for a
fixed number of stages, s, any reduction of the mesh size ∆x can be counterbalanced
by an equivalent increase of the number of stages while keeping the time-step ∆t fixed.
Therefore RK-Chebyshev methods circumvent the crippling quadratic increase in the
number of time-steps of traditional RK methods that results from any linear reduction
of the mesh size [3, 22, 51].

For instance, the first-order s-stage RK-Chebyshev method for the initial-value prob-
lem

y′(t) = f(y), y(0) = y0, (3.7)

is given by

g0 = y0, (3.8)

g1 = y0 + (1/s2)∆tf(g0), (3.9)

gi = (2/s2)∆tf(gi−1) + 2gi−1 − gi−2, (3.10)

y1 = gs. (3.11)

In Figure 3.7 we observe that the stability regions of the 3-stage RK-Chebyshev
method is about nine times larger than that of the standard fourth-order RK4. Fol-
lowing [24], we eliminate the two intersections where the stability region shrinks to zero
by adding small damping of size ǫ > 0. Let ǫ > 0 and Ts(x) denote the Chebyshev
polynomial of degree s [1]. Then the damped RK-Chebyshev method for (3.7) is given
by

g0 = y0, (3.12)

g1 = y0 + ∆t(w1/w0)f(g0), (3.13)

gi =
1

Ti(w0)
[2w1∆tTi−1(w0)f(gi−1) + 2w0Ti−1(w0)gi−1 − Ti−2(w0)gi−2] ,(3.14)

y1 = gs. (3.15)

where

Rs(z) =
1

Ts(w0)
Ts(w0 + w1z), w0 = 1 +

ǫ

s2
, w1 =

Ts(w0)

T ′
s(w0)

. (3.16)

As illustrated in Fig. 3.7 for ǫ = 0.05, the stability domain is now slightly shorter (by a
factor 4ǫs2/3), but its boundary remains at a safe distance form the real axis [24].

When the right-hand side in (3.7) explicitly depends on time, the terms involving f(gi)
in (3.12)–(3.15) are replaced by f(gi, ti). The precise times ti ∈ [0,∆t] where f needs to
be evaluated are determined by augmenting (3.7) with the trivial differential equation,

z′(t) = 1, z(0) = t0 (3.17)

34



−20 −15 −10 −5 0 5

−2

0

2

−20 −15 −10 −5 0 5

−2

0

2

−20 −15 −10 −5 0 5
−4

−2

0

2

4

Figure 3.7: Stability regions: fourth-order RK4 (top) and first-order 3-stage Chebyshev
methods without damping (middle) and with damping (bottom). The stability
regions of the RK-Chebyshev method is about nine times larger then that of
the standard RK4.

and applying (3.12)–(3.15) to it. Thus for t ∈ [0,∆t] we have

t0 = 0, (3.18)

t1 = ∆t(w1/w0), (3.19)

ti =
1

Ti(w0)
[2w1∆tTi−1(w0)) + 2w0Ti−1(w0)ti−1 − Ti−2(w0)ti−2] , (3.20)

and so forth during subsequent time steps.

3.4 Stability

Linear stability analysis
Before investigating numerically the emergence of coherent patterns in the full nonlinear
model (3.6), it is instructive to investigate the stability properties of the homogeneous
state, i.e. the state, where the density of cells in angular and spatial space is equally dis-
tributed. Linear stability analysis characterizes the effect of small perturbations on the
early time evolution in angular and spatial space. We therefore expect good agreement
with the early stages of the numerical solution of the fully nonlinear model (3.6).
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If ρ = 0, the homogeneous state C ≡ C̄ is an exact solution of (3.6), since we then
have W ⋆ C = C. In this case, linearization of (3.6) about C ≡ C̄ using the ansatz

C(~x, θ, t) = C + δ C ′
n,q(~x, θ, t), (3.21)

where the amplitude of the perturbation δ ≪ 1 is small, results in an eigenvalue prob-
lem for the integro-differential operator previously analyzed in [16, 35]. In particular,
Mogilner et al. [35] showed for an unbounded spatial domain that the functions

uq1(x) = eiq1x, uq2(y) = eiq2y, zn(θ) = einθ, q1, q2 ∈ R (3.22)

form a complete set of orthogonal eigenfunctions for the spatial and angular Laplace op-
erator with eigenvalues q1, q2 for the spatial and n = 0, 1, 2, ... for the angular diffusion
operator, respectively. In addition, they proved that (3.22) are not only the eigenfunc-
tions of the Laplace operators, but also of the convolution operators W1∗ and W2∗,
where the eigenvalues are the Fourier coefficients denoted by Ŵn and Ŵq = Ŵq1Ŵq2,
where q =

√

q21 + q22) and

Ŵn =
1

π

∫ π

−π

W1(θ)e
−inθdθ, Ŵqj

=

∫ Lxj

0
W2(xj)e

−iqjxjdxj , (3.23)

where j = 1, 2 and x1 = x, x2 = y. From the normal modes ansatz

C ′
n,q(~x, θ, t) = eλt uq1(x)uq2(y) zn(θ) (3.24)

the stability of the homogeneous state is then found from the solution of the equation

λ = −r + C s , (3.25)

where
r = (ǫ1n

2 + ǫ2q
2) and s = ŴqŴnγ(n

2 + q2) (3.26)

for all q1, q2 and n. Hence the condition for instability of the homogeneous solution is
given by λ > 0. Thus, any increase in the diffusion coefficients ǫ1, ǫ2 tends to stabilize the
system, while the cell-to-cell interaction terms Ŵn and Ŵq tend to destabilize the system,
for increasing values of n, q, unless Wn is zero. Moreover, for any particular values of
ǫ1, ǫ2, n, q, the constant state C̄ becomes unstable at sufficiently high cell density, unless
Ŵn or Ŵq vanishes.

For our extended model with logistic growth, where ρ 6= 0, the homogeneous state
about which we linearize is now time-dependent, due to the slow mass increase. Thus
we make the ansatz

C(θ, ~x, t) = C(t) + δ C ′
n,q(θ, ~x, t) (3.27)

with C ′
n,q = Ĉn,q(t)e

i(qx+nθ), since now the standard normal modes ansatz may lead to
non-normal linear systems with non-orthogonal eigenfunctions – see [47], for instance,
for a more detailed discussion of such problems in the context of hydrodynamics. Our
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slightly more general ansatz for C(θ, ~x, t) then leads to the following differential equation
for Ĉn,q

dĈn,q

dt
=

[

−(ǫ1n
2 + ǫ2q

2) + C(t) ŴqŴnγ(n
2 + q2) + ρ

(

1 − C(t)

κ

)]

Ĉn,q(t) , (3.28)

where
C(t) =

κ

1 + C1κe−ρt
(3.29)

is the solution of the leading order problem and represents the slowly growing mass until
the carring capacity is reached. The constant C1 = 1/C(0) − 1/κ, where C(0) is chosen
to be the same as C̄ in the original problem and we denote κ = K/(2πLxLy). Hence,
the growth rate is given here by

ln(Ĉn,q(t)) = (−r + sκ)t+
s κ− ρ

ρ
ln
(

1 + C1κ e
−ρt
)

+ const. (3.30)

We note that now the additional parameter K, the carrying capacity, will have a decisive
impact on the stability properties of the solutions.

Comparison of the full model with linear stability
To compare the results from linear stability analysis to those from the numerical simu-
lation of the full problem, we choose as an example the simple case for which ρ = 0 and
γ = 1. We set the (constant) base state C̄ = 25, let ǫ1 = 0.0025 and ǫ2 = 0.5 so that for
n > 0 and q = 0 the base state is unstable according to linear stability analysis. Now,
we determine nmax such that the growth rate is maximal, i.e. σmax = σ(nmax, qmax)
(here q = qmax = 0). Thus, we can find nmax which is at most O(1) with a σmax not
too small, together with the the corresponding eigenfunction C ′

n,q and a corresponding
asymptotic growth rate λ .

Next, we initialize our nonlinear simulation with the initial data

C̄ + δC ′
n,q , such that δ ≤ min

(

0.1, 0.1
σmax

n2
max

)

to ensure that the correction term does not invalidate the original assumptions of linear
stability analysis.

In figure 3.8, log ||C|| with

||C|| =
maxθ,x,y|C(θ, x, y, t) − C̄|

δ

is shown versus t, both for the solution of the fully nonlinear model and for that from
linear stability. Note that the growth rate of the linearized problem for the extended
model, i.e. where ρ 6= 0, now also depends on time. Once initial transients have died
out, both models agree, as expected. As time progresses, however, the dynamics of the
full model deviate from those of the linearized problem. Thus, the evolving patterns
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may deviate from those predicted by linear stability theory, in particular at later times,
as the cell culture reaches confluence, depending on parameter values.

In figure 3.8 we show a comparison of the growth rates for the fully nonlinear and
the linearized models, with the above set of parameters. This example illustrates the
following generic behaviour. For ρ = 0, we observe agreement right from the beginning,
since the perturbation corresponds to an exact eigenfunctions, as in the linear stability
problem. For the extended model with ρ = 0.2 and K = 1220, for instance, we observe
that the long-time behaviour of the solution of (3.30) compares well with the solution to
the full problem (3.6). Eventually though, the nonlinear terms come into play and the
solution of the full model deviates from the prediction of the linear model.

3.5 Comparison of simulations with experiments

3.5.1 Parameter values

To compare computational results from any mathematical model with those from exper-
iment, it is crucial to have accurate estimates of the parameter values. While the values
of most parameters were determined quite accurately from experiment, uncertainties
about some of them remained.

In particular, the estimation of the spatial diffusion coefficient ǫ2 was performed by

hand following the positions of the moving cells. From the experiment (table C.1), the
average spatial diffusion coefficient ǫ2 = 0.29µm2/s = 0.025 mm2/days. Because cells
do not change their orientation in a continuous way, ǫ1 could not be determined from
those measurements, mainly because cells also contract, become almost spherical, and
elongate randomly, excluding the determination of a well-defined axis of orientation. In
our numerical simulations, we chose values for the angular diffusion coefficient ǫ1, which
is the mean square displacement in angular space per day, to range from 0.025 (Figs.
3.9, 3.10, 3.12) to 0.0025 (Fig. 3.11). The values for ρ and K are always given by 1.2
and 4000 cells/mm2 and have been determined previously in [6]. They were used as
initial guess for a nonlinear least-squares parameter fit to the time evolution of the total
mass. The size of the domain Lx = 3.75mm and Ly = 2, 75mm was chosen to match
the area observable under the microscope. In [18], the critical angle α was obtained for
fibroblast cultures by inspection of relative angles between cells at confluence. Because
of the strong similarity between cytokine cultured chondrocytes and fibroblasts, we used
the same value here, i.e. α = 200 for our simulations, except in Fig. 3.12, where we
also include results for critical angles α = 400 and 600. Since chondrocytes only attach
when they are very close to each other, we chose the standard deviation σ = 0.01mm
for the spatial interaction kernel to be about the length of a single cell. The value of
γ = 0.0005 essentially sets the convective time scale and was obtained by fitting the
cluster size from the simulation to that obtained from experiment – see Section 2.3.
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3.5.2 Numerical simulations

Starting from a random initial distribution at t = 0, we solve (3.6) using the numerical
method described in section 3.3.2 and the parameter values listed above. In Fig. 3.9,
snapshots of the cell density at different times are shown. Here at each point (x, y) ∈ Ω
the marginal spatial cell density of C, that is the integral of C(x, y, θ, t) over θ, is
displayed. The color used at any point (x, y) corresponds to the angle, where C(x, y, θ, t)
is maximal; hence, it represents the local dominant orientation of the cells. We observe
that the number of cells increases uniformly throughout the computational domain Ω,
yet past day 6 several patches of cells with a common orientation emerge and settle in
a stationary configuration by day 9; note that the total number of cells hardly changes
beyond day 6 anymore.

In Fig. 3.10 we compare the simulation with the experimental data using Gabor
filters for post-processing both – see section 3.2.3. In doing so the spatial resolution of
the microscope image was coarsened to match that of the simulation, while the angular
dependence over [0, π) was divided into four classes, that is sub-intervals of identical
lengths, each one assigned with a different color. The cluster size (intersection of r(s)
with the x-axis, see Section 3.2.3) was calculated for three samples from the same donor.
By fitting the average cluster size from the simulation to that from experiment, between
15 and 20 pixels or about 0.5mm, we determined the standard value of γ, as shown in
Fig. 3.10.

Once the model has been validated through comparison to experiment, it is instructive
to change the value of individual parameters to study their effect on the size and shape
of the patterns at confluence. Thus we can also evaluate the parameter sensitivity of the
model and address the uncertainties associated with some of the values obtained from
experiment. For instance, the reduction of the angular diffusion coefficient ǫ1 has little
effect on the size of the patterns, but the interfaces appear more well-defined in contrast
to the standard case: compare Fig. 3.10 and Fig. 3.11. An increase in the critical angle
α instead, results in larger and increasingly irregular patterns, while the uniform spatial
population density is maintained, as shown in Fig. 3.12

3.6 Concluding remarks

Starting from the classical models by Mogilner et al. [35], we have developed a mathe-
matical model for proliferating chondrocytes, cultured with specific growth factors, by
including logistic growth and studied the patterns emerging at confluence through ex-
periments and simulation. Most parameters in the model were obtained directly through
independent experiments or from our previous micro-colony tests [6]. Guided by these
parameter studies we arrived at reasonable parameter values for comparison to the ex-
perimentally observed cell patterns at confluence. Linear stability analysis was used as
guidance through the range of unstable parameter values, as their interplay leads to
pattern formation; their improved understanding and control will be useful in the future
design of engineered tissue.

For the time integration of the nonlinear integro-partial differential equation, we opted
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for Runge-Kutta-Chebyshev methods which permit much larger time steps than stan-
dard Runge-Kutta methods while nonetheless remaining fully explicit. Quantitative
comparison of experimental data with the numerical simulations was achieved in two
steps. First, we vizualized the orientation and alignment of the cells with Gabor fil-
ters. Then, we determined the average cluster size of the cell population both in the
simulation and the experiment.

From the stability analysis and the simulations, we were able to determine key param-
eters for pattern formation. In particular, we find that the total number of dominant
directions of alignment in a cell culture is mainly regulated by the critical angle, below
which the probability that cells align is high. Indeed, smaller values in the critical an-
gle α for cell-cell interactions lead to arrays of aligned cells, as observed in experiments,
whereas larger values lead to a single dominant direction of alignment. Regarding the dif-
fusion and drift coefficients, both tend to destabilize the homogeneous state and thereby
lead to pattern formation. For fixed diffusion coefficients, the average pattern size typi-
cally scales with the drift coefficient, γ, although the number of dominant directions of
alignment remains identical, as it is regulated by the critical angle.

While we think that continuum models in combination with some local experimental
analysis yields convincing evidence to capture the large scale long-time structures of
proliferating cell cultures, our work also leaves a number of open tasks and questions.
Apart from the study of aggregation patterns, which has been left open, the experi-
mental determination of the remaining parameters, in particular drift parameters but
also angular diffusion coefficients will be an important future task. We believe that in
principle more sophisticated image analysis and segmentation software would allow the
automatic tracking of larger number of cells and yield both more refined and improved
statistics. Through a new set of experiments, more experimental studies such as those
by Elsdale [17] are needed in order to establish more accurately the critical angle for cell
alignment for the particular cells under consideration without relying on similar cases
from the literature.
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Figure 3.8: Comparison of the growth rates for the fully nonlinear and the linearized
models: Left, ρ = 0: The dashed line is λ t, where λ is given by the solution of
the linear stability problem (3.25). The solid curve denotes ln(||C||). Right,
ρ = 0.2: The dashed line shows the long-time behaviour of the solution of
(3.30). The solid curve results from the solution to the full problem (3.6).
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Figure 3.9: Snapshots of the cell density at different times. At each point (x, y) in the
computational domain, the marginal angular density of C is shown, that is
the number of cells at position (x, y) and time t; the color represents the
angle for which C(x, y, θ, t) is maximal.
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Figure 3.10: Comparison of simulation (bottom) with experiment (top). Here color indi-
cates the local dominant orientation of the cells. The cluster size for three
samples from the same donor (top) and for the simulation (bottom) are
shown on the right.
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Figure 3.11: The cell density is shown at confluence for the smaller angular diffusion
coefficient: ǫ1 = 0.0025. Left: the dominant cell orientation; right: the
cluster size function r(s).

0 1 2 3
0

0.5

1

1.5

2

2.5

0 1 2 3
0

0.5

1

1.5

2

2.5

0 10 20 30 40
0

2000

4000

6000

8000

10000

12000

14000

0 10 20 30 40
0

2000

4000

6000

8000

10000

12000

14000

Figure 3.12: The cell density is shown at confluence for larger critical angles: α = 400

(left) and α = 600 (right). The corresponding cluster size functions r(s) are
shown below.
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4 Analysis of the spatio-angular model

In this chapter we would like to analyze in details our model from a theoretical point of
view. In particular we want to show the existence of a weak solution under reasonable
assumptions in the first section and explain the linear stability analysis in the second.

4.1 Existence of a weak solution

Our domain U = (−π, π) × D, where D = [0, Lx] × [0, Ly], is an open and bounded
subset of R

3. We set UT = U × (0, T ] for some fixed time T > 0. The equation for
the variation of the cell density C(θ, x, y, t) (θ ∈ (−π, π), (x, y) ∈ D, t ∈ (0, T ]) takes
in account the random movement, the doubling of the cells and their interactions. The
equation is deeply described in chapter 3 and has the following form

∂C

∂t
= ǫ1

∂2C

∂θ2
+ ǫ2

(

∂2C

∂x2
+
∂2C

∂y2

)

+ ρC

(

1 − K

LxLy

∫ π

−π

C

)

− γ1
∂

∂θ

(

C

[

∂W

∂θ
∗ C
])

− γ2

{

∂

∂x

(

C

[

∂W

∂x
∗ C
])

+
∂

∂y

(

C

[

∂W

∂y
∗ C
])}

. (4.1)

First we nondimensionalize the governing equations (4.1) as follows, with:

C∗ =
C

K
LxLy, t∗ = ρt, θ∗ = θ

√

ρ

ǫ1
, x∗ = x

√

ρ

ǫ2
, y∗ = y

√

ρ

ǫ2
.

and

α∗ = α

√

ρ

ǫ1
, σ∗ = σ

√

ρ

ǫ2
.

Then

C =
K

LxLy
C∗, L∗

θ = Lθ

√

ρ

ǫ1
, L∗

x = Lx

√

ρ

ǫ2
, L∗

y = Ly

√

ρ

ǫ2
.

Calculating the derivative we have

∂C

∂t
=

∂(C∗ K
LxLy

)

dt∗
dt∗

dt
=

Kρ

LxLy

∂C∗

∂t∗
,

∂2C

∂θ2
=

∂2(C∗ K
LxLy

)

∂θ∗2

(

dθ∗

dθ

)2

=
Kρ

LxLyǫ1

∂2C∗

∂θ∗2 ,
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and similarly for x and y.
Dividing by Kρ/(LxLy) and dropping the ‘∗’ for simplicity of notation, we thus obtain
the nondimensional form

{

∂tC = div(∇C) −Adiv(C∇W ∗ C) + f(C) inUT

C = g onU × {t = 0}, (4.2)

with initial condition g : U → R, f(C) = C
(

1 −
∫ π

−π
Cdθ

)

, and A = Kγ/(LxLyǫ);

without loss of generality we assume ǫ1 = ǫ2 = ǫ here.
Let’s introduce the variable z = (x, y, θ) ∈ U . We temporarily suppose that C =

C(z, t) is in fact a smooth solution of our problem and switch our viewpoint, by associ-
ating with C a mapping which for simplicity we call with the same name

C : [0, T ] → H1
per(U)

defined by
[C(t)](z) := C(z, t) (z ∈ U, 0 ≤ t ≤ T ),

where we remember that H1
per(U) is the Sobolev space

H1
per(U) = {u : U → R|u ∈ L2(U),∇u ∈ L2(U)},
Lp(U) = {u : U → R|u is Lebesgue measurable, ‖u‖Lp(U) <∞},

with the norms
‖u‖H1

per(U) = ‖u‖L2(U) + ‖∇u‖L2(U),

‖u‖Lp(U) =

{

(∫

U
|u|pdx

) 1
p if 1 ≤ p <∞

ess supU |u| if p = ∞.

In other words, we are going to consider C not as a function of z and t together, but
rather as a mapping C of t into the space H1

per(U) of functions of z. Then if we fix a
function v ∈ H1

per(U), we can multiply equation (4.2) by v and integrate by parts, to
find

(C ′, v) + (∇C,∇v) = A (C∇W ∗ C,∇v) + (f(C), v) (4.3)

for each 0 ≤ t ≤ T , where (, ) denotes the inner product in L2(U)

(u, v) =

∫

U

u v dx.

In fact, the integration by parts formula for each u, v ∈ H1
per(U) can be written as

∫

U

∇u v dx = −
∫

U

u∇v +

∫

∂U

u v νdS,

where ν is the outer normal vector. We observe that the last term vanishes for periodic
conditions on the boundary.
We consider the dual space of H1(U), H−1(U) with norm

‖u‖H−1(U) = sup{< u, v > |v ∈ H1
per(U), ‖v‖H1

per(U) ≤ 1 },
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denoting with <,> the pairing between H−1(U) and H1
per(U) and introduce for any

Banach space X the space

L2(0, T ;X) = {u : [0, T ] → X, measurable, with ‖u‖L2(0,T );X) <∞}

where

‖u‖L2(0,T );X) =

(∫ T

0
‖u(t)‖2

Xdt

)

1
2

.

Our goal is to find a weak solution of (4.2), that means a function

C ∈ H1(0, T ;H1
per(U)), with C ′ ∈ L2(0, T ;H−1(U)),

which solves the problem

< C ′, v > +(∇C,∇v) = A (C∇W ∗ C,∇v) + (f(C), v) (4.4)

for each v ∈ H1
per(U), 0 ≤ t ≤ T and C(0) = g. For the regularity of the solution all

the terms of this equation are well-defined. For the time and space dependency, we need
C ∈ H1 ⊂ L4(U) to be sure that all products are in L2(U). Indeed if ∇W ∈ L∞(U)
then ∇W ∗ C ∈ L2(U) which implies, for C ∈ L2(U), C∇W ∗ C ∈ L2(U). For the
function f(C) it suffices to observe that integrating the function C only in one variable,
we obtain again a function in L4(U) for the Fubini’s theorem.

4.1.1 Maximum principle and mass control

Theorem 4.1.1. Let C be a smooth and bounded solution of equation (4.2). If C(x, 0) ≥
0 ∀x ∈ U , then C(x, t) ≥ 0 ∀(x, t) ∈ UT and the mass is bounded, i.e.

‖C‖L1(U) ≤ K1 := eT ‖C(0)‖L1(U). (4.5)

Proof. Let define the negative part of C, C− = min(C, 0) and test equation (4.2) with
it. Because the term at the boundary vanish, we have

(C ′, C−) + (∇C,∇C−) = A(C∇W ∗ C,∇C−) + (f(C), C−). (4.6)

From a theorem of the function analysis we have that if C ∈ H1
per(U) then C− ∈ H1

per(U);
moreover C ′ = C ′

− and ∇C− = ∇C if C is negative. Using this fact, we observe
that (C ′, C−) = (C−

′, C−), (∇C,∇C−) = (∇C−,∇C−) and (f(C), C−) = (f(C−), C−);
indeed for C positive it is trivial because its negative part is zero and for C negative,
C = C− and the derivatives remain the same.

(C−
′, C−) + (∇C−,∇C−) = A(C−∇W ∗ C,∇C−) + (f(C−), C−) (4.7)

Now, using (see [20])

(C−
′, C−) =

1

2

d

dt

∫

U

|C−|2, (4.8)
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our equation can be reduced to

1

2

d

dt

∫

U

|C−|2(t) +

∫

U

|∇C−|2 = A

∫

U

C−∇W ∗ C∇C− +

∫

U

f(C−)C−. (4.9)

Writing down the expression of f , we obtain

1

2

d

dt

∫

U

|C−|2(t) +

∫

U

|∇C−|2 = A

∫

U

C−∇W ∗ C∇C− +

∫

U

|C−|2 −
∫

U

∫ π

−π

C−dθ|C−|2.
(4.10)

Moreover the θ-average of C− is bounded by a constant hypothesis, then exist a constant
B such that

1

2

d

dt

∫

U

|C−|2(t) +

∫

U

|∇C−|2 ≤ A

∫

U

C−∇W ∗ C∇C− +

∫

U

|C−|2 +B

∫

U

∫ π

−π

‖C−‖2.

(4.11)
Sinnce ∇W ∈ L∞(U) and C is bounded we have ∇W ∗ C ∈ L∞(U), then ‖∇W ∗
C‖L∞(U) ≤ K for a constant K > 0. Then applying the Cauchy inequality

∫

U

C−∇W ∗ C∇C− ≤ ‖C−‖L2(U)‖∇W ∗ C‖L∞(U)‖∇C−‖L2(U) ≤

K‖C−‖L2(U)‖∇C−‖L2(U) ≤ K

(

1

4δ
‖C−‖2

L2(U) + δ‖∇C−‖2
L2(U)

)

. (4.12)

For δ = 1/(AK) the norm of the gradient vanish and we finally have

d

dt
‖C−‖2

L2(U) ≤
A2K2 + 4 + 4B

2
‖C−‖2

L2(U). (4.13)

With the Gronwall inequality and calling η(t) = ‖C−(t)‖2
L2(U) we obtain

η(t) ≤ eDη(0), (4.14)

for D = A2K2+4+4B
2 . But η(0) = 0 for the choice of the initial conditions. Then is

η(t) = 0, implying that C− = 0 a.e. in U and for all 0 < t < t1. Now, if we take as
initial condition C(x, t1), we can find a time t1 < t2 < T in which C is positive, and so
on until T , which proves the first part of th theorem. If we integrate equation (4.2) over
the entire domain and applying the Gauss theorem, we obtain

∂

∂t

∫

U

C =

∫

∂U

∇C · ~n−A

∫

∂U

C∇W ∗ C · ~n+

∫

U

f(C), (4.15)

where ~n the unit outward normal defined at points of ∂U , normal. For the periodicity of
the solution the integrals on the boundary vanish. Since for theorem (4.1.1) the function
C is positive under our assumptions, we have

∂

∂t

∫

U

C(t) =

∫

U

f(C(t)) =

∫

U

C(t) −
∫

U

C(t)

∫ π

−π

C(t) ≤
∫

U

C(t). (4.16)

We can now apply the Gronwall theorem to the function γ(t) =
∫

U
C, to obtain

∫

U

C(t) ≤ etγ(0) ≤ eT γ(0) = eT ‖C(0)‖L1(U). (4.17)
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4.1.2 Galerkin approximations

To prove the existence of a weak solution we use the Galerkin’s method which consists
in constructing solutions of certain finite-dimensional approximations and then passing
to limits. Assume the functions wk = wk(x), k = 1, . . . are smooth, {wk}∞k=1 is an
orthogonal basis of H1

per(U) and an orthonormal basis of L2(U).

Theorem 4.1.2. For each integer m = 1, 2, . . . there exists a unique function Cm :
[0, T ] → H1

per(U) of the form

Cm(t) :=
m
∑

l=1

dl
m(t)wl, (4.18)

with
dl

m(0) = (g,wl), l = 1, . . . ,m, (4.19)

which solves the problem

(C ′
m, wk) + (∇Cm,∇wk) = A (Cm∇W ∗ Cm,∇wk) +

∫

U

f(Cm)wk (4.20)

for 0 ≤ t ≤ T , k = 1, . . . ,m.

Proof. Indeed, substituting (4.18) in (4.20) we obtain

(C ′
m, wk) =

((

m
∑

l=1

dl
m(t)wl

)′

, wk

)

=

m
∑

l=1

dl
m

′
(t)(wl, wk) = dk

m

′
(t),

for the first term. The other three terms are

(∇Cm,∇wk) =

(

∇
m
∑

l=1

dl
m(t)wl,∇wk

)

=

m
∑

l=1

(∇wl,∇wk)d
l
m(t),

(Cm∇W ∗ Cm,∇wk) =

(

m
∑

l=1

dl
m(t)wl∇W ∗

m
∑

l=1

dl
m(t)wl,∇wk

)

=

(

m
∑

l=1

dl
m(t)wl

m
∑

l=1

dl
m(t)∇W ∗ wl,∇wk

)

,

∫

U

f(Cm)wk =

∫

U

f

(

m
∑

l=1

dl
m(t)wl

)

wk. (4.21)

For fixed k these terms are real numbers that depend locally Lipschitz continuously
on (d1

m(t), . . . , dm
m(t)). Then (4.20) is an ordinary differential equation for this vector,

subject to the initial conditions (4.19). According to the standard existence theory
for ordinary differential equations, there exists a unique absolutely continuous function
(d1

m(t), . . . , dm
m(t)) satisfying (4.19) and (4.20) for a.e. 0 ≤ t ≤ T , at least for small T .

And then Cm defined by (4.18) solves (4.20) for a.e. 0 ≤ t ≤ T .
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Observation 4.1.3. Because of theorem 4.1.1 it is reasonable to make the assumption
that the functions Cm are nonnegative and with bounded mass. To proof this statement
could be long and complicate and it is not our goal here.

4.1.3 A-priori estimates

Theorem 4.1.4. Under assumptions (4.1.3), there exists a constant K, depending only
on U, T , such that

max
0≤t≤T

‖Cm(t)‖L2(U) + ‖Cm‖L2(0,T ;H1
per(U)) + ‖C ′

m‖L2(0,T ;H−1(U)) ≤ K‖g‖L2(U). (4.22)

Proof. We shall estimate every term on the left side.

1. We multiply equation (4.20) by dm
k (t), sum for k = 1, . . . ,m to find

(Cm
′, Cm) + (∇Cm,∇Cm) = A (Cm∇W ∗ Cm,∇Cm) +

∫

U

f(Cm)Cm,

for a.e. 0 ≤ t ≤ T . Then with the Hölder inequality

d

dt

(

1

2
‖Cm‖2

L2(U)

)

+ ‖∇Cm‖2
L2(U) ≤ A ‖∇Cm‖L2(U)‖Cm‖L2(U) + ‖Cm‖2

L2(U).

In fact

(Cm∇W ∗ Cm,∇Cm) ≤ ‖∇W ∗ Cm‖L∞(U)

∫

U

Cm∇Cm

‖∇W ∗ Cm‖L∞(U) = ess sup
U

|∇W ∗ C| = ess sup
U

∣

∣

∣

∣

∫

U

∇W (x− x′)C(x′)dx′
∣

∣

∣

∣

≤ ess sup
U

∫

U

|∇W (x− x′)||C(x′)| ≤ ‖∇W‖L∞(U)‖Cm‖L1(U) ≤ K1,

for the choice of the kernel W and theorem (4.1.1). For the boundness of C we
have that

∫ π

pi
C is bounded, then using the Cauchy inequality, we obtain

d

dt
‖Cm‖2

L2(U)+2‖∇Cm‖2
L2(U) ≤ 2AK1

(

δ‖∇Cm‖2
L2(U) +

1

4δ
‖Cm‖2

L2(U)

)

+2‖Cm‖2.

Choosing δ = 1/(AK1), K2 = (A2K2 + 4)/2, we have

d

dt
‖Cm‖2

L2(U) ≤ K2‖Cm‖2
L2(U).

If we call η(t) = ‖Cm(t)‖2
L2(U), with the Gronwall inequality we obtain

η(t) ≤ eK2tη(0).

Being
η(0) = ‖Cm(0)‖2

L2(U) ≤ ‖g‖2
L2(u),

for K = eK2T , we have the first estimate

max
0≤t≤T

‖Cm(t)‖2
L2(U) ≤ K‖g‖2

L2(U).
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2. Integrating the last equation from 0 to T , we get automatically the second estimate

‖Cm(t)‖2
L2(0,T ;H1

per(U)) =

∫ T

0
‖Cm‖2

H1
per(U)dt ≤ KT‖g‖2

L2(U).

3. Fix any v ∈ H1
per(U), with ‖v‖H1

per(U) ≤ 1, and write v = v1 + v2, where v1 ∈
span{wk}m

k=1 and (v2, wk) = 0, (k = 1, . . . ,m). Since the functions {wk}∞k=0 are
orthogonal in H1

per(U), ‖v1‖H1
per(U) ≤ ‖v‖H1

per(U) ≤ 1. Utilizing 4.20, we deduce
for a.e. 0 ≤ t ≤ T that

(C ′
m, v

1) + (∇Cm,∇v1) = A (Cm∇W ∗ Cm,∇v1) +

∫

U

f(Cm) v1.

As (C ′
m, v

1) = (C ′
m, v) we have

(C ′
m, v) = −(∇Cm,∇v1) +A (Cm∇W ∗ Cm,∇v1) +

∫

U

f(Cm) v1.

Since ‖v1‖H1
per(U) ≤ 1 we obtain

| < C ′
m, v > | ≤ ‖∇Cm‖L2(U)‖∇v1‖L2(U) +A ‖∇v1‖L2(U)‖Cm‖L2(U)

+ ‖Cm‖L2(U) ≤ K‖Cm‖H1
per(U).

Therefore
‖C ′

m‖H−1(U) = sup
‖v‖=1

< C ′
m, v > |2 ≤ K‖Cm‖2

H1
per(U).

Integrating again between 0 and T

∫ T

0
‖C ′

m‖2
H−1(U)dt ≤ K

∫ T

0
‖Cm‖2

H1
per(U)dt ≤ KT‖g‖2

L2(U).

4.1.4 Existence

Next we pass to limits as m→ ∞, to build a weak solution of our initial/boundary-value
problem (4.2).

Theorem 4.1.5. Under assumptions (4.1.3), there exists a weak solution of (4.2).

Proof. According to the energy estimates (4.22), we see that the sequence {Cm}∞m=1 is
bounded in L2(0, T ;H1

per(U)) and {C ′
m}∞m=1 is bounded in

L2(0, T ;H−1(U)). Consequently there exists a subsequence {Cml
}∞ml=1 ⊂ {Cm}∞m=1 and

a function C ∈ H1(0, T ;H1
per(U)), with C ′ ∈ L2(0, T ;H−1(U)), such that

Cml
⇀ C in ∈ L2(0, T ;H1

per(U))

C ′
ml

⇀ C ′ in ∈ L2(0, T ;H1
per(U)). (4.23)
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Next we fix an integer N and choose a function v ∈ C1([0, T ];H1
per(U)) having the form

v(t) =

N
∑

k=1

dk(t)wk. (4.24)

where {dk}N
k=1 are given smooth functions. We choose m ≥ N , multiply (4.20) by dk(t),

sum for k = 1, . . . , N and integrate with respect to t to find

∫ T

0

[

< C ′
m, v > +(∇Cm,∇v)

]

dt = A

∫ T

0
(∇v,Cm∇W ∗ Cm) dt +

∫

UT

f(Cm) v. (4.25)

We set m = ml and recall (4.23), to find upon passing to weak limits that

∫ T

0

[

< C ′, v > +(∇C,∇v)
]

dt = A

∫ T

0
(∇v,C∇W ∗ C) dt +

∫

UT

f(C) v. (4.26)

This equality then holds for all functions v ∈ L2(0, T ;H1
per(U)), as functions of the form

(4.24) are dense in this space. Hence in particular

< C ′, v > +(∇C,∇v) = A (∇v,C∇W ∗ C) +

∫

U

f(C) v (4.27)

for each v ∈ H1
per(U) a.e. 0 ≤ t ≤ T . Furthermore u ∈ C([0, T ];L2(U)) (see [20]). In

order to prove u(0) = g, we first note from (4.26) that

∫ T

0

[

− < v′, C > +(∇C,∇v)
]

dt = (4.28)

A

∫ T

0
(C∇W ∗ C,∇v) dt +

∫

UT

f(C) v + (C(0), v(0))

for each v ∈ C1([0, T ] : H1
per(U) with v(T ) = 0. Similarly, from (4.25) we deduce

∫ T

0

[

− < v′, Cm > +(∇Cm,∇v)
]

dt = (4.29)

A

∫ T

0
(Cm∇W ∗ Cm,∇v) dt +

∫

UT

f(Cm) v + (Cm(0), v(0)).

Setting m = ml and employing again (4.23) we find

∫ T

0

[

− < v′, C > +(∇C,∇v)
]

dt = A

∫ T

0
(C∇W ∗ C,∇v) dt +

∫

UT

f(C) v + (g, v(0)),

since Cml
(0) → g in L2(U). As v(0) is arbitrary, comparing (4.28) and (4.29), we

conclude C(0) = g.
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4.2 Linear stability analysis

The formation of patterns stems from the fact that the uniform steady state can be
unstable under particular conditions. A study of the parameters regime which leads to
instability, can be useful to predict the behavior of the model, to have an estimate of
some parameters and to understand their roles in details. In section ?? we already used
the following modes ansatz which we prove in details here.

Theorem 4.2.1. The functions

uq1(x) = eiq1x, uq2(y) = eiq2y, zn(θ) = einθ (4.30)

where q1, q2 ∈ R, if we are on a unbounded domain or q1, q2 ∈ Z otherwise and n =
0, 1, 2, ..., are the eigenfunctions of the operators present in the model 4.1.

Proof. The first two are eigenfunctions of ∂2

∂x2 + ∂2

∂y2 with eigenvalues βq = −q2 (q2 =

q21 + q22), where as the third one of ∂2

∂θ2 with eigenvalues αn = −n2. Indeed

∂2eiqx

∂x2
= i2q2eiqx = −q2eiqx.

More difficult is to show that they are also eigenfunctions of the operator W∗ with
eigenvalues Ŵ (n, q1, q2) = ŴnŴq1Ŵq2, where

Ŵn =

∫ π

−π

W1(θ)e
−inθdθ, Ŵqj

=

∫ L

0
W2(x)e

−iqjxdx, j = 1, 2 (4.31)

are respectively the Fourier coefficients of W1(θ), W2(x) and W2(y). The separability of
the function Ŵ (n, q1, q2) is a consequence of the separable nature of the kernel W (θ, ~x).
Indeed

W ∗ (einθ eiq1x eiq2y) = (W1(θ) ∗ einθ) (W2(x) ∗ eiq1x) (W2(y) ∗ eiq2y). (4.32)

Starting with the first term, we want to show that einθ are the eigenfunctions and Ŵn

the eigenvalues of the convolution operator, that means:

W1 ∗ ψn = Ŵnψn, for ψn(θ) = einθ. (4.33)

By the definition of convolution and with a change of variable we obtain

W1 ∗ ψn =

∫ π

−π

W1(θ − θ′)einθ′dθ′ = −
∫ θ−π

θ+π

W1(θ
′)ein(θ−θ′)dθ′ =

=

∫ θ+π

θ−π

W1(θ
′)ein(θ−θ′)dθ′ =

∫ π

−π

W1(θ
′)ein(θ−θ′)dθ′

(4.34)

Thus:

W1 ∗ ψn = einθ

∫ π

−π

W1(θ
′)e−inθ′dθ′ = Ŵnψn (4.35)

In the same way one can show that the eigenvalues of W2∗ are the Fourier transform
Ŵq1, Ŵq2 of W2(x), W2(y).
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Figure 4.1: Eigenvalues of the convolution operators both in angle and in space. They
both tend to zero when the number of modes increases.

The eigenvalues of the exponential kernels can be easily calculated. The Fourier

transform of the function γ(x) = e−
x2

2 , ∀x ∈ R is e−
q2

2 , q ∈ R, whereas for γ(ax) =

e−
(ax)2

2 is 1
a
e−

q2

2a2 ([50]). As in our case a = 1/σ, we obtain

Ŵq1 =
2√
2π
e−

(q1σ)2

2 , Ŵq2 =
2√
2π
e−

(q2σ)2

2 , Ŵn =
1√
2π
e−

(nα)2

2 . (4.36)
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4.2.1 Linearization of the original model

Linearizing the model around the uniform steady state we get the following equation for
the perturbation:

∂C ′
n,q

∂t
= ǫ1

∂2C ′
n,q

∂θ2
+ ǫ2

(

∂2C ′
n,q

∂x2
+
∂2C ′

n,q

∂y2

)

+ (4.37)

− ∂

∂θ

[

C
∂

∂θ

(

W ∗ C ′
n,q

)

+ C ′
n,q

∂

∂θ

(

W ∗ C
)

]

+

− ∂

∂x

[

C
∂

∂x

(

W ∗ C ′
n,q

)

+ C ′
n,q

∂

∂x

(

W ∗ C
)

]

+

− ∂

∂y

[

C
∂

∂y

(

W ∗ C ′
n,q

)

+ C ′
n,q

∂

∂y

(

W ∗ C
)

]

As W ∗ C = C for the normalization, it remains only

∂C ′
n,q

∂t
= ǫ1

∂2C ′
n,q

∂θ2
+ ǫ2∆xyC

′
n,q −

∂

∂θ

[

C
∂

∂θ

(

W ∗ C ′
n,q

)

]

(4.38)

− ∂

∂x

[

C
∂

∂x

(

W ∗ C ′
n,q

)

]

− ∂

∂y

[

C
∂

∂y

(

W ∗ C ′
n,q

)

]

That gives:

∂C ′
n,q

∂t
= ǫ1

∂2C ′
n,q

∂θ2
+ ǫ2∆xyC

′
n,q − C

∂2

∂θ2

(

W ∗ C ′
n,q

)

− C∆xy

(

W ∗ C ′
n,q

)

(4.39)

Then for each n and q we have:

∂C ′
n,q

∂t
=
(

−ǫ1n2 − ǫ2q
2 + CŴqŴn(n2 + q2)

)

C ′
n,q. (4.40)

4.2.2 Analysis of the instability condition

Recalling that C = M is the total mass of the system, from the last equation we can get
the instability condition:

ǫ2q
2 < −ǫ1n2 +MŴqŴn(n2 + q2). (4.41)

Let the right hand side be gn(q) = −ǫ1n2 +MŴqŴn(n2 + q2). If we call A = 1
2π
M and

write the expression (4.36) of Ŵq, we obtain

gn(q) = −ǫ1n2 +AŴn(n2 + q2)e−
(qσ)2

2 .

We study this function separately in a bounded and unbounded spatial domain.
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Unbounded spatial domain

Considering an infinite spatial domain, the wavenumber q is a continuous variable. As

the Taylor expansion of e−
(qσ)2

2 around zero is 1 − (qσ)2

2 , neglecting the terms of order
larger than two, we obtain the following asymptotes of the function gn:

gn(q) ≈







−ǫ1n2 +AŴnq
2 +AŴnn

2
(

1 − (qσ)2

2

)

q << 1

−ǫ1n2 +AŴnq
2e−

(qσ)2

2 q >> 1
(4.42)

Or better

gn(q) ≈







(−ǫ1 +AŴn)n2 +AŴn

(

1 − (nσ)2

2

)

q2 q << 1

−ǫ1n2 +AŴnq
2e−

(qσ)2

2 q >> 1
(4.43)

This suggest us that the behavior of gn depends on the sign of (1 − (nσ)2

σ2 ). In fact,
calculating the derivative of gn, we obtain:

g′n(q) = AŴne
− (qσ)2

2
[

qσ2(n2 + q2) + 2q
]

(4.44)

= AŴne
− (qσ)2

2

[

−q3σ2 + 2q

(

1 − (nσ)2

2

)]

,

so that the function has a maximum in q = 0 if (1 − (nσ)2

2 ) < 0 and Ŵn > 0 (as in this
case the second derivative is also negative), otherwise in

q = qc =

√

2

σ2
− n2 6= 0. (4.45)

We can see in Fig. (4.1) that Wn is positive for some initial n and then it is null, giving
stability to the model. If we use a double humped kernel, the odd modes are always
stable. We can then distinguish three cases: n = 0 and for n 6= 0, n2 < 2

σ2 , n2 > 2
σ2 .

• n = 0:

For large q we have stability, as AŴ0e
−

(σq)2

2 tends to zero. For small q there is
instability if ǫ2 < ǫc2 = AŴ0.

• n2 < 2
σ2 :

The maximum of gn occurs for q = qc 6= 0. For large q we have stability. For small
q there is stability if ǫi > ǫci . The critical value of ǫ can be calculated from the first
asymptote:

ǫc1 = AŴn ǫc2 = AŴn

(

1 − (nσ)2

2

)

. (4.46)

In fact the instability condition is given by;

[

ǫc2 −AŴn

(

1 − (nσ)2

2

)]

q2 <
(

−ǫ1 +AŴn

)

n2. (4.47)
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For ǫ2 large and ǫ1 small we can have instability for small q. On the other hand, if
ǫ2 < ǫc2 and ǫ1 > ǫc1, instability can occur for q = qc. There is still stability if ǫ2 is
large enough and ǫ1 not too big, but instability if ǫ2 is small enough. Summarizing
we get

– ǫi > ǫci : stability,

– ǫ1 < ǫc1, ǫ2 > ǫc2: instability at small q,

– ǫc1 < ǫ1 < ǫ′1, ǫ2 < ǫc2: instability at q = qc if ǫ2 < ǫ′2(ǫ1). To calculate ǫ′1, ǫ
′
2 a

transcendental equation has to be solved.

• n2 > 2
σ2 :

In this case, the maximum of gn is at q = 0, then the function decreases. We
observe that ǫc2 is negative. For ǫ1 small enough (ǫ1 < ǫc1), gn remains below ǫ2q

2

for all q. Independently from ǫ2 we have

– stability for large ǫ1 (> ǫc1)

– instability for small ǫ1 (< ǫc1) and small q.

Scenarios

Then these three scenarios may occur:

• We first cross the line A: the mode n > 0, q = 0 breaks the stability. Angu-
lar patterns evolve whereas homogeneity in space remains. The cells then orient
themselves, but without aggregating.

• We first cross the line B: the mode n = 0, q = 0 breaks the stability. The angular
disordered pattern with the spatial inhomogeneities evolves. This means that the
objects aggregate but they do not align.

• Scenario C: The mode n > 0, q = qc breaks the stability. In this case the spatial
density is not altered, but the angle of preferred orientation changes periodically
in space creating squares or hexagons.

Bounded domain

In this case our variable q is a natural number, q = 0, 1, .... We can distinguish these
cases:

• q = 0: The instability condition does not depend on ǫ2 and is given by:

ǫ1 < AŴn (4.48)

• n = 0: The instability condition does not depend on ǫ1 and is given by:

ǫ2 < AŴn (4.49)

• n, q > 0: This case is very similar to the continuum one.

We do not observe large differences in the two cases of bounded and unbounded domain.
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Figure 4.2: Bifurcation diagram: A and B are the line of primary bifurcations corre-
sponding respectively to the mode n > 0, q = 0 and n = 0, q = 0.

4.2.3 Linearization of the extended model

In this case the equation for the perturbation is

∂C ′
n,q

∂t
= ǫ1

∂2C ′
n,q

∂θ2
+ ǫ2

(

∂2C ′
n,q

∂x2
+
∂2C ′

n,q

∂y2

)

+ ρ

(

1 − 2
C

K

)

C ′
n,q

− γ2 C

{

∂

∂x

[

∂

∂x

(

W ∗ C ′
n,q

)

]

+
∂

∂y

[

∂

∂y

(

W ∗ C ′
n,q

)

]}

− γ1 C
∂

∂θ

[

∂

∂θ

(

W ∗ C ′
n,q

)

]

. (4.50)

This time we also need the equation for the uniform steady state, which depends on
time:

∂C

∂t
= ρC

(

1 − C

K

)

. (4.51)

With some calculations (see chapter 3) for large times we get the instability condition

ǫ2q
2 < −ǫ1n2 +KŴnŴq(γ1 n

2 + γ2 q
2) − ρ (4.52)
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Figure 4.3: Stability plots for unbounded one-dimensional domain and σ2 = 1. The
dashed lines and the solid lines show the left-hand side and the right-hand
side of the instability condition, respectively. We have instability when the
dashed lines are below the solid ones.
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If we take γ1 = γ2 = 1 and compare (4.52) to the condition analyzed in the previous
chapter, we see that a factor ρ is now present and that C̄ is replaced by K. Recalling
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that Ŵq = 1
2π
e−

(qσ)2

2 , if we let A = 1
2π
K, we can distinguish the two asymptotes

gn(q) ≈







(−ǫ1 +AŴn)n2 +AŴn

(

1 − (nσ)2

2

)

q2 − ρ q << 1

−ǫ1n2 +AŴnq
2e−

(qσ)2

2 − ρ q >> 1.
(4.53)

As the derivative of gn is independent of ρ, we can distinguish for ρ > 0 the same three
cases as before:

• n = 0:
For small q, we have instability for all ǫ1, if

ǫ2 < ǫc2 = AŴ0e
− (qσ)2

2 − ρ

q2
. (4.54)

For large q there is stability for ǫ2 > AŴ0. For q small enough, ρ/q2 > AŴ0, so
that ǫ2 will always be larger then AŴ0 − ρ/q2.

• n2 < 2
σ2 : see previous section.

• n2 > 2
σ2 :

We have only a maximum in q = 0. For ǫ1 > ǫc1 we have stability, otherwise we
can have instability if (ǫc1 − ǫ1)n

2 > ρ.

Integral in the logistic term

If we consider the model with the integral in the logistic term

ρC

(

1 −
∫ 2π

0 C(t, x, θ)dθ

K
(Lx Ly)

)

, (4.55)

the stability condition changes slightly. The term O(1) remain the same (4.51), but the
logistic term O(ǫ) is now:

ρ

(

1 − CLxLy 2π

K

)

C ′
n,q − ρ

C
∫ 2π

0 C ′
n,qdθ

K
Lx Ly. (4.56)

But for the choice of C ′
n,q, its integral is null, so that remains the term

ρ

(

1 − C

K
Lx Ly 2π

)

C ′
n,q (4.57)

which has a difference of factor 2πLxLy from the previous, leading to the instability
condition:

ǫ2q
2 < −ǫ1n2 +

K

2π LxLy
ŴnŴq(γ1 n

2 + γ2 q
2) − ρ (4.58)
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Analysis of the parameters

Because in our experiments we observed the formation of arrays without the presence
of aggregation we are interested in patterns with n > 0 and q small or null. Let for
simplicity K = K

2 π Lx Ly
. As we saw, for n > 0 there are two cases: n2 < 2/σ2 and

n2 > 2/σ2. Let’s here for simplicity consider a kernel so that Wn = 0 for n > 4. Then
the only unstable modes can be n = 1, 2, 3, 4. For all n there is a critical value σc so
that

• if σ2 < σc the unstable mode in space is q = qc =
√

2
σ2 − n2 for ǫ1 < ǫc1 = AŴn

and ǫ2 > ǫc2 = AŴn

(

1 − (nσ)2

2

)

;

• if σ2 > σc the unstable mode in space is q = 0 for ǫ1 < ǫc1 = AŴn and all ǫ2.

The critical value σc depends on n:

n 1 2 3 4

σc +∞ 0.5 0.2 0.1

We note that with a two humped kernel the only angular modes that can be unstable
are n = 2 and n = 4.
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Figure 4.6: Critical values. In the first frame we plot the function 2
σ2 , in the second one

the value of the critical mode in space (4.45). In the second row we plot the
critical diffusion coefficients for different values of K (4.46).
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4.3 Numerical methods

4.3.1 Integration in space and angle

The domain we consider is very small compared with the whole well, so that the boundary
of the well should not influence our domain. It is then reasonable to consider periodic
boundary conditions both in space and in angle. The problem in consideration is not
solvable analytically, but numerically. Our goal is to reduce it to a discrete problem
that we are able to solve. We begin by discretizing the spatial and angular domains.
For convenience, we will use a uniform grid. Let set hx = Lx/(N − 1), xj = j hx,
j = 0, ..., N − 1; hy = Ly/(M − 1), yj = j hy j = 0, ...,M − 1 and hθ = 2π/(Q − 1),
θj = j hθ − π, j = 0, ..., Q − 1, N,M,Q ∈ Z. At each time t fixed, our problem is to
solve a differential equation in space. For the nonlinearity of the system, the simplest
method to use is the centered finite difference. As all the terms can be treated at the
same way, let’s consider only the variable x and call h the step and L the length of the
domain. Applying the centered difference method [46] to our equation, we obtain that
the second derivative of C can be approximated by

∂2C

∂x2
(xj) ≈

Cj+1 − 2Cj + Cj−1

h2
+O(h2). (4.59)

where Cj = C(xj, y, θ, t), for fix y, θ and t. Pretending that there are two additional
points x−1 = −h and xN = L + h and imposing the periodic conditions CN = C0,
C−1 = CN−1 for each θ, y and t, the second derivative can be calculated as a product of
a vector and a matrix. The derivatives of the kernels W1 and W2 can be easily calculated
analytically. Moreover, if we write F (C) = C(K ∗ C), where K is the kernel, the first
derivative of F can be computed with centered finite difference too:

∂F

∂x
(xj) =

Fj+1 − Fj−1

2h
+O(h2), (4.60)

again with periodic boundary conditions.
The convolution is computed with the trapezoidal rule which for a function f defined
on the grid is given by

Q(f) :=

∫ L

0
f(x) ≈ QN (f) = h





1

2
(f(x0) + f(xN−1)) +

N−2
∑

j=1

f(xj)



 . (4.61)

In the next sections we show that with the composite trapezoidal rule the integration
error decays at least exponentially if we integrate periodic analytic functions [30].

Theorem 4.3.1. Let f ∈ C2[0, L]. Then the remainder

RT (f) :=

∫ L

0
f(x)dx− h





1

2
(f(x0) + f(xN−1)) +

N−2
∑

j=1

f(xj)



 (4.62)
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for the composite trapezoidal rule can be estimated by

|RT (f)| ≤ 1

12
h2L‖f ′′‖∞. (4.63)

Proof. Define the Peano kernel

KT (x) :=
1

2
(x− xj−1)(xj − x), xj−1 ≤ x ≤ xj , (4.64)

for j = 0, . . . , N − 1. Then, straightforward partial integrations yield

∫ L

0
KT (x)f ′′(x)dx = −RT (f). (4.65)

Now the estimate follows from
∫ L

0
KT (x)dx =

h2

12
L (4.66)

and the observation that KT is nonnegative on [0, L].

If the function is smooth and periodic, we can obtain better results. To proof this we
have to introduce the trigonometric interpolation. Let call C(G) the space of continuous
real- or complex-valued functions on compact subsets G ⊂ R

m.

Theorem 4.3.2. Let UN ⊂ C(G) be an N-dimensional subspace and let x0, . . . , xN−1 be
n points in G such that UN for each function from UN that vanishes in these points, van-
ishes identically. Then, given n values f0, . . . , fN−1, there exists a uniquely determined
function u ∈ UN with the interpolation property u(xj) = fj, for j = 0, . . . ,N − 1. We
call PN : C(G) → UN the interpolation operator for the interpolation data fj = f(xj),
for j = 0, . . . , N that is defined by the mapping f 7→ u.

Proof. Let Un = span{u0, . . . , uN−1}. Then the solution to the interpolation prob-
lem is given by u =

∑N−1
k=0 γkuk, where the coefficients γ0, . . . , γN−1 are determined by

the uniquely solvable linear system
∑N−1

k=0 γkuk(xj) = fj, for j = 0, . . . ,N − 1. Let
L0, . . . , LN−1 denote the Lagrange basis for UN , i.e., we have the interpolation property
Lk(xj) = δjk, for j, k = 0, . . . , N − 1, where δjk = 1 for k = j, and δjk = 0 for k 6= j.
Then

PNg =

N−1
∑

k=0

f(xk)Lk. (4.67)

In particular, let tj = jπ
N

, j = 0, . . . , 2N−1 be an equidistant subdivision of the interval
[0, 2π] with an even number of grid points. Then, given the values f0, . . . , f2N−1, there
exists a unique trigonometric polynomial of the form

u(t) =
α0

2
+

N−1
∑

k=1

[αk cos kt+ βk sin kt] +
αN

2
cosNt (4.68)
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with the interpolation property u(tj) = fj, j = 0, . . . , 2N − 1. Its coefficients are given
by

αk =
1

N

2N−1
∑

j=0

fj cos ktj , k = 0, . . . ,N,

βk =
1

N

2N−1
∑

j=0

fj sin ktj , k = 1, . . . ,N − 1.

From this we deduce that the Lagrange basis of the trigonometric interpolation has the
form

Lj(t) =
1

2N

{

1 + 2

N−1
∑

k=1

cos k(t− tj) + cosN(t− tj)

}

, (4.69)

for t ∈ [0, 2π] and j = 0, . . . , 2N − 1. Using the real part of the geometric sum

1 + 2

m−1
∑

k=1

eikt + eimt = i(1 − eimt) cot
t

2
, 0 < t < 2π (4.70)

we can transform (4.69) into

Lj(t) =
1

2N
sinN(t− tj) cot

t− tj
2

, t 6= tj . (4.71)

Theorem 4.3.3. Let f : R → R be analytic and 2π−periodic. Then there exists a strip
D = R × (−s, s) ⊂ C with s > 0 such that f can be extended to a holomorphic and
2π−periodic bounded function f : D → C. The error

RT (f) :=
1

2π

∫ 2π

0
f(t) dt− 1

2N

2N−1
∑

j=0

f

(

jπ

N

)

(4.72)

for the composite trapezoidal rule can be estimated by

|RT (f)| ≤M(coth(Ns) − 1), (4.73)

where M denotes a bound for the holomorphic function f on D.

Proof. Because f : R → R is analytic, at each point t ∈ R the Taylor expansion provides
a holomorphic extension of f into some open disk in the complex plane with radius
r(t) > 0 and center t. The extended function again has period 2π, since the coefficients
of the Taylor series at t and t + 2π coincide for the 2π−periodic function f : R → R.
The disks corresponding to all points of the interval [0, 2π] provide an open covering of
[0, 2π]. Being this interval compact, a finite number of these disks suffices to cover it.
Then we have an extension into a strip D with finite width 2s contained in the union of
the finite number of disks. Without loss of generality we may assume that f is bounded
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on D.
Let 0 < σ < s be arbitrary and Γ = [− π

2N
, 2π − π

2N
] × [−σ, σ]. We want to show that

1

2πi

∫

Γ

cot t−τ
2

sinNτ
f(τ)dτ =

2f(t)

sinNt
− 1

N

2N−1
∑

j=0

(−1)jf(tj) cot
t− tj

2
(4.74)

for −π/2N ≤ t ≤ 2π − π/2N , t 6= tk, k = 0, . . . , 2N − 1.

We recall that the integral of g(τ) =
cot t−τ

2
sinNτ

f(τ) along this curve, can be calculated with
the residue theorem

∫

Γ
g(τ)dτ = 2πi

n
∑

j=1

I(Γ, j)Res(g, τj), (4.75)

being τj the singular points of g and I(Γ, j) the winding number of the curve. If we
consider it counterclockwise oriented, I(Γ, j) = −1 for all j. For functions of the form
g(τ) = q(τ)/p(τ), where q(τ) is regular and p(τ) has a simple zero in τ0, the residue can
be calculated as:

Res(g(τ0)) =
q(τ0)

p′(τ0)
. (4.76)

We observe that inside Γ, sin(Nτ) has the simple zeros tj = jπ/N , for j = 0, . . . , 2N−1,
and sin( t−τ

2 ) the simple zero τ = t. Applying formula (4.76) we can calculate our residues

Res

(

cot
t− τ

2
, t

)

= Res

(

cos t−τ
2

sin( t−τ
2

, t

)

=
cos 0

−1
2cos0

= −2,

Res

(

1

sin(Nτ)
, tj

)

=
1

N cos jπ
= − 1

N
(−1)j , j = 0, . . . , 2N − 1

and then calculate the integral (4.74) substituting these values in (4.75). Hence, in view
of (4.71) and observing that sinN(t− tj) = sinNt−πj, and then sinN(t− tj)/ sinNt =
(−1)j , we obtain that the remainder term of the trigonometric interpolation is

f(t) − (PNf)(t) =
sinNt

4πi

∫

Γ

cot t−τ
2

sinNτ
f(τ)dτ (4.77)

where we can obviously drop the restriction that t does not coincide with an interpola-
tion point. From the periodicity of the integrand and since, by the Schwarz reflection
principle, f enjoys the symmetry property f(τ) = f(τ) and cot(−x) = − cot(x), we find
the representation

f(t) − (PNf)(t) =
1

2π
sinNtRe

{∫ iσ+2π

iσ

i cot τ−t
2

sinNτ
f(τ)dτ

}

. (4.78)

Now, integrating the geometric series (4.70) we obtain

∫ 2π

0
eimt cot

t

2
dt = 2πi.
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Since RT (f) =
∫ 2π

0 (f(t)− (PNf)(t))dt, integrating (4.78) and using this last expression,
we have

RT (f) =
1

2π
Re

{
∫ iσ+2π

iσ

(1 − i cot(Nτ))f(τ) dτ

}

(4.79)

for all 0 < σ < s. Finally, the estimate follows from |1 − i cot(Nτ)| ≤ cot(Nσ) − 1 for
Imτ = σ and passing to the limit σ → s.

We can summarize this theorem by the estimate

|RT (f)| ≤ Ce−2Ns (4.80)

for the composite trapezoidal rule for periodic analytic functions, where C and s are some
positive constants depending on f , i.e., the integration error decays at least exponentially.
Applying the quadrature rule to the convolution term, we see that it can again be written
as a product of a matrix and a vector

hx











1
2V (x0 − x0)

1
2V (x1 − x0) . . . 1

2V (xN−1 − x0)
V (x0 − x1) V (x1 − x1) . . . V (xN−1 − x1)

...
...

...
...

1
2V (x0 − xN−1)

1
2V (x1 − xN−1) . . . V (xN−1 − xN−1)

























C0

C1
...

CN−2

CN−1















.

4.3.2 Integration in time

Let write our system for each (x, y, θ) fixed, as

∂C

∂t
= f(C), C(x, y, θ, 0) = C0(x, y, θ), (4.81)

in order to use methods which solve the equation

∂y

∂t
= f(y), y(0) = y0. (4.82)

Applying explicit methods one should be aware that restrictions on the time step are
needed. The region that contain the value for which there is stability is called stability
region and is defined as S = {z ∈ C : |R(z)| ≤ 1}, where R(z) is the stability function,
that can be interpreted as the numerical solution after one step of the Dahlquist test
equation

y′ = λy, y0 = 1, z = ∆tλ. (4.83)

For a nonlinear system, λ is the largest eigenvalue of the matrix obtained linearizing the
system. To have stability z = ∆tλ should stay in S. If λ is real (otherwise we take its
real part), this means that ∆tλ < l, where l is the largest intersection of S with the real
axis, and of course depends on the method.
Considering the diffusion terms approximated by a finite difference method, the stability
of a numerical method depends on the eigenvalues of the correspondent matrix. From
the theorem of Gershgorin [12],

68



Theorem 4.3.4 (Gershgorin). Let A = {aij} be a square matrix of order n. For any
k = 1, 2, . . . , n, consider Dk ⊂ C defined by

|z − akk| ≤ Λk =
n
∑

j=1
j 6=k

|akj|. (4.84)

The eigenvalues of A are in the union of the n disk Dk.

Proof. Let λ be an eigenvalue and u an associated eigenvector of A, so that

max
1≤n

|ui| = |uk| = 1.

The kth equation of the system Au = λu is

(λ− akk)uk =
n
∑

j=1
j 6=k

akjuj .

Since |uj | ≤ |uk| = 1, if we take the modules we obtain

|λ− akk| = |
n
∑

j=1
j 6=k

akjuj| ≤
n
∑

j=1
j 6=k

|akj||uj | ≤
n
∑

j=1
j 6=k

|akj |.

Then λ ∈ Dk.

From this theorem we know that the largest eigenvalue of a square matrix cannot
exceed the largest sum of the elements (taken with their modules) along any row or
any columns ([44]). In our matrix then the largest eigenvalue is smaller then 4/h2

x.
Considering also the diffusion coefficients and all three diffusion terms, the time step has
to satisfy

4∆t

(

ǫ1
h2

θ

+
ǫ2
h2

x

+
ǫ3
h2

y

)

< l. (4.85)

In conclusion we should take a time step

∆t <
lh2

θh
2
xh

2
y

4(ǫ1h2
xh

2
y + ǫ2h2

θh
2
y + ǫ3h2

xh
2
θ)

(4.86)

Theorem 4.3.5. The diffusion terms are the only terms that play a role in the stability
of a numerical method applied on equation (4.1).

Proof. Let consider the linearized equation in one dimension

∂C

∂t
= ǫ

∂2C

∂x2
− C

∂2

∂x2
(K ∗ C) . (4.87)
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Applying a finite difference method and calculating the convolution with the trapezoidal
rule, the second term can be approximated by the sum of three terms, each be the
product of a matrix and the vector (C0, C1, . . . , CN−1)

T .

∂2

∂x2
(V ∗ u)(xi) =

C

h2
x

((V ∗ u)(xi−1) − 2(V ∗ u)(xi) + (V ∗ u)(xi+1)) . (4.88)

One matrix is given by the matrix 4.3.1 multiplied by −2C/hx, and the other two are
given by the matrix 4.3.1 with a shift in the rows multiplied by C/hx. The fact that the
matrixes are multiplied by a factor 1/hx, whereas for the diffusion we have a factor of
1/h2

x, suggests us already that this terms don’t play a decisive role. The matrixes have
all real eigenvalues and for the normalization of the kernels and the first Gerschgorin’s
theorem the largest eigenvalue of the linearized equation is given by

λ ≤ 4ǫh2
x +

4C

hx
(4.89)

From this we can calculate the restriction on ∆t

∆t ≤ l

4
h2

x

(

1

ǫ+ Chx

)

. (4.90)

The constant C is given by the total mass of the system, so that for hx sufficient small
ǫ+ Chx ≈ ǫ.

Runge-Kutta method

Let ∆t be our time step, bi, aij real numbers and ci =
∑s

j=1. An explicit Runge-Kutta
method of stage s is given by

g0 := y0, gi = y0 + ∆t
i−1
∑

j=1

aijkj i = 1, ..., s

ki = f(t0 + ci∆t, gi) i = 1, ..., s

y1 := y0 + ∆t

s
∑

i=1

biki

(4.91)

An example is the fourth order method

k1 = f(y0);
k2 = f(y0 + (∆t/2)k1);
k3 = f(y0 + (∆t/2)k2);
k4 = f(y0 + ∆tk3);
y1 = y0 + (∆t/6)(k1 + 2k2 + 2k3 + k4);

(4.92)

For this method, we need the time step ∆t to be sufficient small in order to gain stability.
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Theorem 4.3.6. For a Runge-Kutta method of order p the stability function is given by

R(z) = 1 + z +
z2

2!
+ ...+

zp

p!
, (4.93)

Proof. The exact solution of (4.83) is ez and therefore the numerical solution y1 = R(z)
must satisfy

ez −R(z) = O(∆tp+1) = O(zp+1). (4.94)

If we want take a time step larger, we have to seek for methods with a larger stability
region. Within the explicit RK family the design methods are rather specials. Instead
of constructing methods with a maximal order of consistency for a minimal number of
stage, for stabilized methods the greatest interest consist in having a maximal stability
interval and a low order.

Chebyshev methods

In particular we would like a method with a larger l (−∆tλ > −l).

Theorem 4.3.7. The optimal stability function for a first order method, with stage s,
is given by

Rs(z) = Ts

(

1 +
z

s2

)

, (4.95)

where Ts(x) are the Chebyshev polynomials defined as

T0(x) = 1, T1(x) = x, Ts(x) = 2xTs−1(x) − Ts−2(x) s > 1. (4.96)

Moreover, with this stability function the maximal l is l = 2s2.

Proof. Rs(x) is an optimal stability function if |Rs(x)| ≤ 1. Now, we first observe that
the Chebyshev polynomial can also be written as Ts(x) = cos(s arccos x) for x ∈ [−1, 1].
Indeed, for x = cos θ we have Ts(cos θ) = cos sθ. Then

T0(x) = T0(cos θ) = cos 0θ = 1

T1(x) = T1(cos θ) = cos θ

T2(x) = T2(cos θ) = cos 2θ = 2cos θ cos θ − 1 = 2xT1(x) − T0(x)

T3(x) = T3(cos θ) = 2 cos θ cos 2θ − cos θ = 2xT2(x) − T1(x),

and so on we obtain exactly (4.96). Then
∣

∣

∣Ts

(

1 +
z

s2

)∣

∣

∣ ≤ 1 ⇐⇒
∣

∣

∣1 +
z

s2

∣

∣

∣ ≤ 1 ⇐⇒ z ∈ [−2s2, 0].

It remains to show that l = 2s2 is optimal. The grad of Rs(z) is s and Rs(0) = Ts(1) = 1,
R′

s(0) = T ′
s(1)

1
s2 = 1. Then

Rs(x) = 1 + x+ α2x+ . . . αsx
s
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for some coefficients αi. Now, there exist s+1 points yk = cos(kπ
s

) where Ts(yk) = (−1)k,

for k = 0, . . . s. Then if it exists a l̃ ≥ l and a corresponding R̃s(z) = 1 + z + α̃2z
2 +

· · · + α̃sz
s with |R̃s(z)| ≤ 1, R̃s(z) − Rs(z) should have at least s − 1 zeros in (−l̃, 0).

But R̃s(z) − Rs(z) = z2(α̃2 − α2 + (α̃3 − α3)z + · · · + ( ˜αs−2 − αs−2)z
s−2 = z2ps−2(z).

But the polynomial ps−2(z) cannot have s− 1 zeros.

Theorem 4.3.8. A Runge-Kutta method with such a stability function is given by

g0 := y0, g1 := y0 + (1/s2)∆tf(g0),
gi := (2/s2)∆tf(gi−1) + 2gi−1 − gi−2,
y1 := gs.

(4.97)

Proof. In fact, applying this method to the Dahlquist test equation, we obtain

g0 := y0, g1 := y0 + zg0,

gi := (2/s2)zgi−1 + 2gi−1 − gi−2 = 2
(

1 + z/s2
)

gi−1 − gi−2,
(4.98)

which is exactly the same recursion formula for the Chebyshev polynomials in the point
x = 1 + z/s2.

Actually in the points Ts(1 + z/s2) = ±1 there is no damping at all of the higher
frequencies and the stability domain has zero width. We therefore choose a small ǫ > 0,
for example ǫ = 0.05 and put

Rs(z) =
1

Ts(w0)
Ts(w0 + w1z), w0 = 1 +

ǫ

s2
, w1 =

Ts(w0)

T ′
s(w0)

(4.99)

These polynomials oscillate between 1 − ǫ and −1 + ǫ. The stability domains become a
bit shorter (by 4ǫs2/3), but the boundary is in a safe distance form the real axis [24].
Let’s calculate the Runge-Kutta method we need in this case.

Ts(w0 +W1) = 2w0Ts−1(w0 + w1z) + 2w1zTs−1(w0 + w1z) − Ts−2(w0 + w1z) (4.100)

For the definition of Rs

Rs(z) =
1

Ts(w0)
(2w0Rs−1(z)Ts−1(w0) + 2w1zRs−1(z)Ts−1(w0) − Ts−2(w0)) , (4.101)

which leads to the method

g0 := y0, g1 := y0 + ∆t(w1/w0)f(g0),
gi := (1/Ti(w0)) (2w1∆tTi−1(w0)f(gi−1) + 2w0Ti−1(w0)gi−1 − Ti−2(w0)gi−2) .

(4.102)
Here we presented only the first order RK-Chebyshev methods because higher order

methods are much more complicated to implement. Anyway we are not aiming for
very high accuracy because we are mainly interested in the final state and not in the
transients and we are only comparing things statistically; so high accuracy is not really
needed here.
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4.3.3 Numerical simulations

In chapter 3 we reported a set of standard parameters which fitted with our experiments.
We recall them here:

ǫ1 ǫ2 γ1 γ2 α σ2 ρ K Lx [nm] Ly [nm]

0.025 0.025 0.0005 0.0005 200 0.01 1.2 40000 3.75 2.75

Table 4.1: Summary of the parameters used in the simulations.

At confluence we did not observe any aggregations, but a pattern formation in angle,
as can be seen in Fig. 4.7. In this section we would like to analyze the effect of the
different parameters on the pattern formation systematically, varying one parameter at a
time. We perform the same simulations as before, starting with random initial conditions
and show the results at the last day of culture. Since the colorbar always remains the
same, we omit it for ease of readibility in subsequent pictures.
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Figure 4.7: Simulation at day 9 with the standard parameters reported in Table 4.1.

Diffusion coefficients

Both diffusion coefficients are responsible for the formation of angular patterns at con-
fluence. An increase in the angular coefficient leads to alwasy narrower patterns until
a uniform distribution in angle occurs. If the spatial coefficient increases, the number
of winning directions decreases until only one direction wins, that is all the cells are
oriented in the same direction (Fig. 4.8, 4.9, 4.10).
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Figure 4.8: On the left we doubled the angular coefficient (ǫ1 = 0.05) and on the right
the spatial coefficient (ǫ2 = 0.05).
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Figure 4.9: In the left frame the angular coefficient is ten times larger than the standard
one (ǫ1 = 0.25), whereas in the right one is the spatial coefficient is ten times
larger (ǫ2 = 0.25).
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Figure 4.10: Doubling the angular coefficient (ǫ1 = 0.05) we observe a slight decrease of
the pattern size.

Drift parameters

The drift parameters have an influence on the size of the patterns as well as on the
spatial stability of the model. A larger angular drift results in larger patterns (Fig.
4.11), whereas a larger spatial coefficient leads to narrower pattern and aggregation
(Fig. 4.13).
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Figure 4.11: Doubling the angular drift coefficient from γ1 = 0.0005 to γ1 = 0.001 we
observe an enlargement of the pattern size.
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Figure 4.12: Comparing γ2 = 0.0005 with γ2 = 0.0006 we can observe the difference in
pattern size.
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Figure 4.13: Further increase in γ2 = 0.0006 to γ2 = 0.0007 leads to instabilities in
space.
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5 Conclusions

We started from a relativly simple model consisting of an ordinary differential equation
to simulate the number of cells in time. This model was then extended to capture the
non-instantaneous growth of chondrocytes and the tendency of the growth to slow down
with time. These adaptations gave us interesting results and gave also explanations on
the behavior of the cells in two different conditions. In particular, we were interested on
the two-dimensional growth of cells in presence of growth factors, condition in which the
chondrocytes are very similar to fibroblasts. This allowed us to start with an already
developed model.

We extended the nonlinear spatio-angular model, by including cell duplication, and
performed simulations in three dimensions (two for the space and one for the angle).
However, we needed a comparison between the numerical results and the experimental
data. For this reason, we performed specific experiments to get some of the parameters
and fitted others with the model. An important tool were Gabor filters, through which
we tranformed the cell pictures in colored pictures of the same type as that obtained
with the simulations. The estimated parameters may be used to measure behaviors of
cells from different donors during ex vivo culture to optimize the expansion conditions
for clinical application.

With this study we showed that there is a potentiality to use mathematics in the life
science, in particular it is possible to apply mathematics to biology. There are still a lot
of open problems, but the science is never a process with an end.

78



APPENDIX



A Logistic equation

A.1 Classical logistic equation

Verhulst (1838) proposed the inclusion of a self-limiting process to adjust a simple ex-
ponential model dy/dt = ρy(t), suggesting the equation

ẏ(t) = ρy(t)

(

1 − y(t)

K

)

, (A.1)

whereK is the carrying capacity of the environment and ρ the growth rate. This equation
has two steady states, y = 0 and y = K. For ρ > 0 the first one is unstable whereas the
second one is stable. We can calculate the exact solution of this equation by separation
of variables:

− ln

(

1 − y
K

y

)

= ρ t+ C1, (A.2)

for some constant C1 determined by the initial conditions. This leads to the solution

y(t) =
K

1 +KC1e−ρt
, (A.3)

where C1 =
1

y0
− 1

K
for y(0) = y0 [37]. If y0 < K, y(t) simply increases monotonically

to K, while if y0 > K it decreases monotonically to K. In the former case there is a
qualitative difference depending on whether y0 > K/2 or y0 < K/2 (see Fig. A.1).

A.2 Delay logistic equation

One of the deficiencies of single population models is that the birth rate is considered
to act instantaneously whereas there may be a time delay to take account of the time
to reach maturity, the finite gestation period and so on. When we add such a discrete
delay T in the logistic equation (A.1), it is necessary to define a fictitious function ψ(t)
that determines the rate at which new cells appear over [0, T ). However, one should not
interpret ψ(t) as the number of cells y(t) for negative t in [−T, 0), but rather y(t−T ) as
the rate of the cell growth for t in [0, T ). If the growth is synchronous and the cells divide
around some specific time, ψ(t) could be a Gaussian centered about that time, but if
the growth is asynchronous, ψ(t) should be a constant. In either case, the function is
normalized by assuming that the number of cells duplicates over the first interval [0, T ).
In an asynchronous growth, this condition lead to the choice of

ψ(t) =
y0

ρT
, t ∈ [−T, 0). (A.4)
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Figure A.1: Logistic equation with ρ = 0.5, K = 10. For different initial values we have
a different behavior of the solution which tends to the stable steady state
y(t) = K.

We can incorporate the delay in two ways. We will analyze both in details, but it is
the first one that fitted our experiments. In both cases we have the same steady states
as in the former equation (A.1). We will in particular analyze the stability of the state
y(t) = K, linearizing around it. We consider a perturbation z(t) of the steady state

y(t) = K + ǫz(t). (A.5)

A.2.1 Delay in the linear term

ẏ(t) = ρy(t− T )

(

1 − y(t)

K

)

. (A.6)

Substituting (A.5) in (A.6) we get

ǫż(t) = ρ(ǫz(t− T ) +K)

(

−ǫz(t)
K

)

. (A.7)

If we neglect the second order terms in ǫ, we have the equation for the perturbation z(t)

ż(t) = −ρz(t). (A.8)

Such perturbation always decreases for positive ρ. The steady state is then stable inde-
pendently from T .

A.2.2 Delay in the quadratic term

ẏ(t) = ρy(t)

(

1 − y(t− T )

K

)

. (A.9)
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Figure A.2: Logistic delay equation with ρ = 0.5, K = 10 and different delays. The
steady state y(t) = K is stable for any delays, but the qualitative behavior is
different from the simple logistic equation.

With the same method as before we obtain for the perturbation

ż(t) = −ρz(t− T ), (A.10)

which needs a more careful analysis. Assuming that the solutions are exponential, eλt,
we obtain the characteristic equation

λ+ ρe−λT = 0. (A.11)

We wish to determine the stability boundaries, namely those values of the parameter
T , for which the real part of a root of this equation is zero. Let us then consider the
pure imaginary λ = if . Changes in stability occur at the intersections between the unit
circle e−ifT and the delay curve −if/ρ. We have exactly two intersections, which can
be calculated (see also Fig. (A.3)).

if = −ρe−ifT1 = −ρ[cos(fT1) − i sin(fT1)] (A.12)

If we set equal the real and imaginary parts, we obtain the equations

cos(fT1) = 0 (A.13)

f = ρ sin(fT1), (A.14)

(A.15)

so that
fT1 = k

π

2
, k ∈ Z (A.16)
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As we assume the delay to be positive, the critical delay is given by

T1 =
π

2ρ
. (A.17)

For any T > π/(2ρ) the steady state will not be stable anymore. In the next pictures we
observe that for small delays though oscillations occur we finally reach the steady state.
On the contrary, if the delay is large enough we have periodic oscillations.
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Figure A.4: Logistic delay equation, ρ = 0.5. The steady state y(t) = K is stable for
small value of T . As the delay increases, reaching the critical delay T1 = π,
the steady state starts to destabilize. The steady state is unstable for large
value of T . The more the delay increases, the more the model is.
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B Spatio-angular model, calculations and

inequalities

B.1 Governing Equation

Let start with the problem in space. Because we study a well with several cells growing,
the cell population can be considered as a continuum substance, with a mass density
C(~x, t), immersed in a fictitious fluid which fills the region D. Let ~x be a point in D and
~u(~x, t) the velocity of the particle of this substance that is moving through ~x at time t.
Then, the mass of substance in each subregion U ⊂ D at time t is given by

m(U, t) =

∫

U

C(~x, t)dx. (B.1)

If mass is neither created nor destroyed the rate of change of mass in U is

d

dt
m(U, t) =

d

dt

∫

U

C(~x, t)dx (B.2)

Now, if ∂U is the boundary of U , ~n the unit outward normal defined at points of ∂U ,
the mass flow rate per unit area is ~F (C) · ~n, where ~F is the flux. Then

d

dt

∫

U

C(~x, t)dV = −
∫

∂U

~F (C) · ~n dA. (B.3)

By the divergence theorem and considering that U does not change in time we obtain
the integral form of the law of conservation of mass

∫

U

[

∂C

∂t
+ div(~F (C))

]

dV = 0. (B.4)

Because this is to hold for all U , it is equivalent to the continuity equation

∂C

∂t
+ div(~F (C)) = 0. (B.5)

Without considering the diffusion, the mass flow rate across ∂U per unit area would
be C~u · ~n. If we add the diffusion term we obtain ~F (C) = C~u − ǫ∇C where ǫ is the
diffusivity [2]. Now, we substitute the form of ~F (C) in (B.5) to have

∂C

∂t
+ div(C~u) = ǫ∆C. (B.6)
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What remains to be defined is the particular form that ~u assumes in our case. Very
small cells here move in highly viscous media, so that we can assume that the velocity is
proportional to a corresponding conservative force. Moreover, the force is the derivative
of some potential function P : a given cell is subject to the effect of a potential that
represents its cumulative interaction with the other cells. Then it can be written in the
form P = W ∗ C, where

(W ∗ C)(~x, θ, t) =

∫ π

−π

∫

D

W (~x− ~x′, θ, θ′) · C(~x′, θ′, t)dx′dθ′ (B.7)

represents the influence of the distribution of cell C(~x′, θ′, t) on the angle θ at position
~x. Thus, a term of the form W ∗ C represents the influence of the cell distribution at
angle θ and position ~x; the term C(~x, θ)(W ∗C) is the rate at which cells contact, align
and aggregate to other cells at angle θ and position ~x. If we call γ the constant of
proportionality, we obtain then the equation

∂C

∂t
+ div(Cγ∇(W ∗ C)) = ǫ∆C. (B.8)

In particular, considering that C depends also on the angle of orientation θ, our model
can be written as

∂C

∂t
= ǫ1

∂2C

∂θ2
+ ǫ2∆xyC − γ1

∂

∂θ

(

C
∂

∂θ
[W ∗ C]

)

− γ2∇xy (C∇xy [W ∗ C]) , (B.9)

where ǫ1, ǫ2 are respectively the angular and spatial diffusion coefficients and γ1, γ2

the angular and spatial drift coefficients. This equation describes the convectional drift
of the cells in physical and angular space towards the points of highest concentration,
causing alignment and aggregation.

B.2 Normalization of the kernels

We want to normalize the function

W (x) = e−
x2

2σ2 x ∈ [0, L]. (B.10)

We can calculate the integral of W (x) on [0, L] considering that

(
∫ ∞

0
e−x2

dx

)2

=

∫ ∞

0

∫ ∞

−∞
e−

(x2+y2)
2 dx dy. (B.11)

If we apply a transformation in polar coordinates, we find:
∫ 0

−∞
e−x2

dx =

√
π

2
,

∫ ∞

0
e−

x2

2σ2 dx = σ

√

π

2
. (B.12)

That means, to have a normalized and periodic kernel, we can choose

W (x) =
1

σ
√

2π
e−

x2

2σ2 . (B.13)
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B.3 Inequalities

To obtain our estimates we need the following inequalities that we present for the spaces
which we use.

Inequality B.3.1 (Cauchy). Let a, b > 0, then

ab ≤ 1

2
(a2 + b2) (B.14)

Proof.
0 ≤ (a− b)2 = a2 − 2ab+ b2.

Inequality B.3.2 (Hölder). Assume u ∈ Lp(U) and v ∈ Lq(U), with 1 ≤ p, q ≤ ∞,
1
p

+ 1
q

= 1 then
∫

U

|uv| dx ≤ ‖u‖Lp(U)‖v‖Lq(U). (B.15)

Proof. By homogeneity, we may assume ‖u‖Lp(U) = ‖v‖Lq(U) = 1. Then Cauchy’s
inequality implies that

∫

U

|uv| dx ≤ 1

p

∫

U

|u|pdx+
1

q

∫

U

|v|qdx = 1 = ‖u‖Lp(U)‖v‖Lq(U).

Inequality B.3.3 (Cauchy, with δ).

ab ≤ δa2 +
b2

4δ
(a, b > 0, δ > 0). (B.16)

Proof. Apply Cauchy’s inequality to

ab = ((2 δ)
1
2 a)(b (2 δ)−

1
2 ).

Inequality B.3.4 (Gronwall). Let η(.) be a nonnegative, absolutely continuous function
on [0, T ], which satisfies for a.e. t the differential inequality

η′(t) ≤ φ(t)η(t) + ψ(t), (B.17)

where φ(t) and ψ(t) are nonnegative, summable functions on [0, T ]. Then

η(t) ≤ e
R t
0 φ(s)ds

[

η(0) +

∫ t

0
ψ(s)ds

]

, (B.18)

for all 0 ≤ t ≤ T .
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Proof. From (B.17) we see

d

ds

(

η(s)e−
R s

0
φ(r) dr

)

= e−
R s

0
φ(r) dr(η′(s) − φ(s)η(s)) ≤ e−

R s

0
φ(r) drψ(s)

for a.e. 0 ≤ s ≤ T . Consequently for each 0 ≤ t ≤ T , we have

η(t)e−
R t

0
φ(r) dr ≤ η(0) +

∫ t

0
e−

R s

0
φ(r) drψ(s)ds ≤ η(0) +

∫ t

0
ψ(s)ds.
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C Spatial diffusion

C.1 Random walks

If we study the movement of the cells in space we can consider each cell as a “walker”which
perform a random walk. Random walks have been widely studied and in the next section
we would like to summarize this theory before using it.
A random walk considers a “walker ”which starts somewhere, and takes steps in a ran-
dom direction. In some cases the step can be of random length as well. In the limit
as the step length and the time between steps go to zero, the random walker typically
exhibits a form of Brownian motion. Let’s first model Brownian motion as a sum of in-
dependent random displacements in one direction. Imagine the Brownian particle starts
at the origin x = 0 and is free to move in either direction along the x-axis. The net effect
of many individual molecular impacts is to displace the particle a random amount Xi in
each interval of duration ∆t. Assume each displacement Xi realizes one of two possibil-
ities, Xi = x1 = +∆x or Xi = x2 = −∆x, with equal probabilities P (xj) = 1/2, j = 1, 2
and that the variables Xi are statistically independent (the outcome of each Xi does not
depend on the outcome of the other Xi). After n such intervals the net displacement X
is X = X1 +X2 + ...+Xn. This is the random step or random walk model of Brownian
motion. The mean of a random variable X is defined as < X >=

∑

j xjP (xj) where the
sum is over all possible realizations xj of X. Because the Xi are statistically independent
through the variance sum theorem (the variance of the sum is equal to the sum of the
variances), since the total duration of the walk is t = n∆t we get

< X2 >=

(

∆x2

∆t

)

t. (C.1)

This equation expresses the signature property of Brownian motion: the variance <
X2 > of the net displacement X is proportional to the time t during which that dis-
placement is made [32]. Actually the ratio ∆x2/∆t is a physically meaningful constant,
equal twice the diffusion constant D. To see this, let’s consider the diffusion equation

∂C(x, t)

∂t
= D

∂2C(x, t)

∂x2
, (C.2)

where C(x, t) is the particle number density (particle number per unit area) at position
x and time t. Integrating, we find the solution

C(x, t) =
1√

4πDt
e−

x2

4Dt . (C.3)
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If we want to calculate again the < X2 >, given in this case by

< X2 >=

∫ +∞
−∞ x2C(x, t)dx
∫ +∞
−∞ C(x, t)dx

, (C.4)

using the following two expressions

∫ ∞

0
x2 e−ax2

dx =
1

4

√

π

a3

∫ ∞

0
e−ax2

dx =
1

2

√

π

a
, (C.5)

we obtain
< X2 >= 2Dt. (C.6)

It is easy to generalize it to the two dimensional case, substituting the displacement ∆x
with

√

∆x2 + ∆y2.

C.2 Experiments

We perform experiments to approximate the spatial diffusion constant. With a time-
laps microscope (OLYMPUS IX81) we obtain a sequence of pictures in time which we
analyze with a manual tracking (Software:analySISD). The cells are cultured in presence
of growth factors in the same way as described in [6]. In some previous experiments (Fig.
C.1) we observed that a cell moves with a mean velocity of 0.6µm pro minute, making
then 9µm in 15 minutes. As the cell has a length of about 50µm with a sequence
of frames taken every 15 minutes we can capture the meaningful movement of a cell.
With a manual tracking (Fig. 3.2, section 3.2.1) we can follow each cell for 12 hours, a
duration that allowed us to neglect the doubling of the cells. At each time t we calculate
the mean of the square of the displacement and fit the resulting points with a straight
line (< X2 >= 2Dt, Fig. C.2). The slope of this line divided by 2 give us exactly
the diffusion coefficient. We make experiments at different densities (200, 3000, 10000,
15000, 20000 cells/scm) and for each density one hundred cells in two or three zones of
the well are followed. In table (C.1) the diffusion coefficients are reported. It seems that

cells/scm 200 3000 10000 15000 20000

coeff D1 0.31 0.30 0.37 0.31 0.31
coeff D2 0.18 0.23 0.32 0.30 0.26
coeff D3 0.23 0.40 0.34 0.30
mean ± SD 0.24 ± 0.07 0.26 ± 0.04 0.36 ± 0.04 0.31 ± 0.02 0.30 ± 0.03

Table C.1: Summary of the results of experiments at different densities and mean values
± SD.

the coefficient initially tends to increase with the density to decrease again for higher
densities. Actually, for densities higher then 200 we can think to fit the variance with
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Figure C.1: Mean speed of the cells.

αtβ . Beta equal one is normal diffusion; beta larger than one is called super-diffusion.
This is the case where all random walkers are moving away from each other at constant
time. Beta equal two corresponds to the ballistic motion, such as the particles of a bomb
which explodes. Again for the density 10000 this exponent is the highest. It could be

cells/scm 3000 10000 15000 20000

β1 1.11 1.44 1.18 1.18
β2 1.09 1.24 1.19 1.07
β3 1.26 1.15 1.00
mean 1.1 1.31 1.17 1.08

Table C.2: Summary of the results of experiments at different densities and mean values.

considered the most suitable condition for the cells to move: they repel themselves and
still have enough space to move. Indeed in our experiments the mean exponent is 1.16,
so that we can maybe conclude that the repulsion is negligible for these densities and
consider β = 1. Then we find that the spatial coefficient can be approximated by the
value D = 0.29µm2/s. As we perform all the experiments in days and mm2, we need
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to find how large is the coefficient in the new unit of measure. Let’s consider the heat
equation

ut = Duxx, (C.7)

where u is the cell density, ut the first derivative in time and uxx the second derivative in
space. Let u∗(x∗, t∗) = u(x, t), with the non dimensional variables x∗ = x

L
and t∗ = t

T
,

where L = 1000µm2 and T = 1 day = 86400s. Calculating the derivatives we obtain

ut = u∗t∗
dt∗
dt

= u∗t∗
1

T
(C.8)

uxx = u∗x∗x∗

(

dx∗

dx

)2

= u∗x∗x∗

1

L2
. (C.9)

Substituting it in the heat equation (C.7) we obtain the dimensionless equation

u∗t∗ = D∗u∗x∗x∗ , (C.10)

where

D∗ =
D∗T

L2
= 0.025. (C.11)
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Figure C.2: Fitting of the diffusion constant with a straight line for a density of 15000
cells/scm.
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Figure C.3: Fitting of the diffusion constant with αtβ for a density of 15000 cells/scm.
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