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Abstract: 

A series of novel, fluorescent ligands designed to bind with high affinity and 

specificity to the asialoglycoprotein receptor (ASGP-R) has been synthesized 

and tested on human liver cells. The compounds bear three non-reducing, beta-

linked Gal or GalNAc moieties linked to flexible spacers for an optimal spatial 

interaction with the binding site of the ASGP-R. The final constructs were 

selectively endocytosed by HepG2 cells derived from parenchymal liver cells-

the major human liver cell type-in a process that was visualized with the aid of 

fluorescence microscopy. Furthermore, the internalization was analyzed with 

flow cytometry, which showed the process to be receptor-mediated and 

selective. The compounds described in this work could serve as valuable tools 

for studying hepatic endocytosis, and are suited as carriers for site-specific drug 

delivery to the liver. 

Design,  synthesis  and  evaluation  of  monovalent  ligands  for  the 
asialoglycoprotein receptor (ASGP‐R)  

Stokmaier D, Khorev O, Cutting B, Born R, Ricklin D, Ernst TO, Böni F, 
Schwingruber K, Gentner M, Wittwer M, Spreafico M, Vedani A, Rabbani S, 
Schwardt O, Ernst B. Bioorg Med Chem. 2009 Oct 15;17(20):7254-64. 

Abstract: 

A series of novel aryl-substituted triazolyl D-galactosamine derivatives was 

synthesized as ligands for the carbohydrate recognition domain of the major 

subunit H1 (H1-CRD) of the human asialoglycoprotein receptor (ASGP-R). The 

compounds were biologically evaluated with a newly developed competitive 

binding assay, surface plasmon resonance and by a competitive NMR binding 

experiment. With compound 1b, a new ligand with a twofold improved affinity to 

the best so far known D-GalNAc was identified. This small, drug-like ligand can 

be used as targeting device for drug delivery to hepatocytes. 
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Thesis abstract 

The asialoglycoprotein-receptor (ASGP-R) is a C-type lectin predominantly 

expressed on the sinusoidal surface of mammalian hepatocytes and is 

responsible for the blood-clearance of desialylated glycoproteins by receptor-

mediated endocytosis. The human receptor consists of two homologous 

subunits, H1 and H2, whose carbohydrate recognition domains (CRDs) 

specifically bind non-reducing galactose- and N-acetylgalactosamine-residues. 

The presence of this specific receptor in high numbers on human hepatocytes 

attracts scientists allover the world to evaluate its potential as a mediator for the 

targeting of therapeutic agents and foreign genes to the liver.  

Although the ASGP-receptor has been intensively investigated, numerous 

questions remain unanswered; e.g., what are the specific functions of the 

receptor subunits H1 and H2? What is the mechanism leading to an increased 

rate of endocytosis upon ligand binding? Is there a difference in specificity of 

ASGP-receptors on hepatocytes, peritoneal blood macrophages and Kupffer-

cells? Can monovalent high affinity ligands be designed which specifically bind 

to the hepatic receptor. Can antibodies or antibody fragments be developed as 

specific drug carriers to the liver?  

Thesis aims 

The aims aspired in the scope of this thesis, were the implementation of new 

tools for the further elucidation of some of the questions above and the 

development of new targeting moieties to deliver drugs specifically to the liver 

via the ASGP-R.  

• In order to generate glycomimetics with improved affinity towards the 

ASGPR, the availability of suitable assay systems is crucial. To date the 

only competitive in vitro binding assays for ASGP-R ligands described in 

literature use radioactive-labeled ligands. Within the scope of this thesis a 

new cell-free competitive binding assay was developed to confirm the basic 

approach of new rationally designed ligands and to compare their affinities 

to the receptor with known galactose-derived compounds. In this assay, the 

purified human H1-CRD of the ASGP-R expressed in E.coli was coated 
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onto 96-well plates and the competition in binding of galactose-derivates 

with a biotin-labeled polyacrylamide-carrier bearing N-acetyl-galactosamine-

residues to the H1-CRD was measured. The features of the assay were 

characterized and the IC50 values of galactose-derivates evaluated. In the 

same assay the binding activities of cysteine mutants of the H1-CRD were 

tested.  

• On cellular level, methods for visualization of binding and internalization of 

synthetic drug carriers and antibodies raised against the receptor and the 

study of their receptor specificity (hepatic ASGP receptor versus galactose-

specific receptors on the surfaces of other cells) were established. 

Although there is much interest in the use of the ASGP-R for hepatotropic drug 

delivery, no attempt has been made to address the receptor using an antibody 

instead of the usual sugar-based delivery systems. However, as carbohydrate-

protein interactions are exceptionally weak, higher affinity glycomimetics or 

antibodies would be of great advantage for targeted therapy. 

• For proof of principle drug targeting into hepatocytes or as a diagnostic tool 

for liver diseases in Immunohistochemistry (IHC), The adaptation of high 

affinity murine anti-human H1-CRD IgG antibodies, previously developed in 

our institute, to a single chain format (scFv) was attempted.  

• In order to develop a biopharmaceutical drug, phage display technology 

was used to select a human scFv antibody with high affinity to the H1-CRD 

of the ASGP-receptor that could be applied as carrier in the form of an 

immuno-conjugate for the hepatotropic targeting of drugs and genes (e.g. 

siRNA). 
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Abbreviations 

 
aa amino acids 

Ab antibody 

ABTS 2, 2’-azino-di-[3- ethylbenzthiazoline-6-sulfonic acid] 

AIH auto immune hepatitis 

Amp ampicillin 

ASF asialofetuin 

ASGP-R asialoglycoprotein receptor 

ASOR asialoorosomucoid 

AU absorbance units 

BCR B-cell receptor 

bp base pairs 

BSA bovine serum albumin 

Cam chloramphenicol 

cDNA complementary DNA 

CLSM confocal laser scanning microscopy 

CRD carbohydrate recognition domain 

CV column volume 

DEPC diethyl pyrocarbonate 

DMEM Dublecco’s modified Eagle medium 

DMSO dimethyl sulfoxide 

DPBS Dulbecco’s PBS, Ca2+/Mg2+-free 

DTT dithiothreitol 

FBS fetal bovine serum 

FC flow cytometry 
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FPLC fast protein liquid chromatography 

Gal D-Galactose 

GalNAc N-acetyl-galactosamine 

Glc D-Glucose 

H1 asialoglycoprotein receptor subunit 1 

H1-CRD 
carbohydrate recognition domain of the major subunit H1 of 
the human Asialoglycoprotein receptor 

H2 asialoglycoprotein receptor subunit 2 

HBS HEPES buffered saline 

HBV hepatitis B virus 

HCC hepatocellular carcinoma 

HCV hepatitis C virus 

HEPES 4-(2-Hydroxyethyl) piperazine-1-ethanesulfonic acid 

HPLC high performance liquid chromatography 
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1. Introduction  

1.1 General Overview ‐ The Liver 

The liver, weighing about 1.5 kg, is the largest gland in the body and the main 

metabolic organ responsible for clearing the blood from undesired endo- and 

exogenous compounds. Its main functions are: the storage of carbohydrates, 

proteins, fats, certain vitamins and iron, to control the production and removal 

of cholesterol, the production of bile and blood clotting factors, the removal 

and detoxification of waste products, drugs and other noxious substances, the 

production of immune factors, and removal of bacteria from the bloodstream 

to combat infections. 

The liver is divided into two main lobes that are further subdivided into 

approximately 100,000 lobules. Two-thirds of the liver is the parenchyma, 

which contains the hepatocytes (Figure 1), and the remainder is the biliary 

tract. It receives its blood supply via the hepatic artery and portal vein.  

A       B 

 

 

   

   

 

 

Figure 1. Liver cells 
(A) Liver cells 1 (B) Electron microscopy picture of a hepatocyte: the space of Disse (1) is 
lying between the sinusoidal endothelium (2) and the cell surface. Microvilli on the hepatocyte 
surface protrude into the space of Disse. Within the hepatocyte cytoplasm high numbers of 
mitochondria, rough ER, polyribosomes, glycogen particles and the nucleus (3) are visible 2. 
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The sinusoids 

The sinusoids are low-pressure vascular channels that receive blood from 

terminal branches of the hepatic artery and portal vein at the periphery of 

lobules and deliver it into central veins. They are composed of a layer of 

highly fenestrated endothelial cells that are separated from the underlying 

hepatocytes by a subendothelial space known as the space of Disse or 

perisinusoidal space. Plasma from the sinusoidal blood flows nearly 

unhindered through the endothelial wall fenestrae, which are about 100 nm in 

diameter and are grouped into clusters called sieve plates, into the space of 

Disse. There the plasma gets in close contact with the hepatocytes’ microvilli, 

which increases their perisinusoidal surface by about 6-fold to allow 

absorptive processes.  

Hepatocytes 

About 60-80% of the cytoplasmic mass of the liver is made up by 

hepatocytes. Hepatocytes are organized into plates one or two cells thick and 

have an average lifespan of 150 days. To achieve their role as the chief 

functional cells of the liver, they are highly differentiated and produce a 

plethora of enzymes and receptors and are specialized in metabolizing and 

excreting different classes of molecules. With up to 500,000 receptors/ 

hepatocyte, the asialoglycoprotein receptor is one of the most abundant 

receptors on hepatocytes 3.  

Kupffer cells  

Kupffer cells, the resident macrophages of the liver, are located along the 

sinusoids, account for 80 to 90% of resident macrophages in the body and 

they constitute about 15% of the liver cells. The principal role of Kupffer cells 

is phagocytosis of particulate and soluble components from the blood and 

mediation of the innate immune response in the liver.  

Stellate cells 

A third type of cells, hepatic stellate cells also known as Ito cells, is found in 

the perisinusoidal space. The stellate cell is the major cell type involved in 

liver fibrosis, which is the formation of scar tissue in response to liver damage. 
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In normal liver, stellate cells are in a quiescent state and represent 5-8% of 

the total number of liver cells 4. 

1.2 Chronic Liver Disease 

The liver as the center of metabolism can be affected by genetic disorders, 

intoxication, viral infection and tumor growth. Due to the great importance of a 

fully functioning liver, such diseases often dramatically reduce a patient’s 

quality or even expectance of life.  

Chronic liver disease damages hepatocytes, which are responsible for the 

hundreds of critical metabolic functions performed by the liver. Damage to 

these cells and the surrounding tissue establishes a state of inflammation in 

the liver called hepatitis. Inflammation further exacerbates damage to the liver 

and initiates a process of wound healing to cope with the ongoing damage. 

This process involves the production of a number of extracellular matrix 

proteins, which maintain the structural integrity of the liver. In the case of 

chronic liver disease, in which the inflammation is persistent, mechanisms that 

would normally terminate the wound healing process are overridden. Over 

time, the loss of hepatocytes and ongoing fibrogenesis results in cirrhosis. 

The liver diseases described in the following paragraphs are those 

responsible for chronic liver disease. The severity of these diseases puts an 

emphasis on the importance of research aiming at the development of new 

hepatotopic drug-delivery approaches. First of all, hepatic targeting will allow 

to achieve higher and more efficient concentrations of drugs in the liver. It will 

also enable administration of more powerful drugs whose use without being 

directed to the site of action might otherwise be prevented by extrahepatic 

side effects. 

Viral Hepatitis 
Viral hepatitis is an inflammation of the liver caused by several different 

viruses, namely the hepatitis A, B, C, D, and E viruses. All of these viruses 

cause acute viral hepatitis. The hepatitis B, C, and D viruses can also cause 

chronic hepatitis, in which the infection is prolonged, sometimes lifelong. 

Chronic hepatitis can lead to cirrhosis, liver failure, and liver cancer. 
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Hepatitis B (HVB) 

Hepatitis B is caused by the hepatitis B virus (HVB), which belongs to the 

family of Hepadnaviridae. The symptoms of the disease range in severity from 

a mild illness, lasting a few weeks with full remission in about 90% of the 

cases, to a serious chronic form that can lead to liver disease or liver cancer. 

Transmission of the virus occurs via contact with infectious blood, semen, and 

other body fluids, sharing contaminated needles, or from an infected mother 

to her newborn (infants born to infected mothers usually receive hepatitis B 

immune globulin and hepatitis B vaccine within 12 hours of birth to prevent 

infection) 5.  

Drugs approved for the treatment of chronic hepatitis B include peginterferon, 

which slows the replication of the virus in the body and also boost the immune 

system, and the antiviral drugs lamivudine, adefovir dipivoxil, entecavir, and 

telbivudine 6.  

Hepatitis C (HCV) 

Hepatitis C is caused by the hepatitis C virus (HCV). HCV is a small (40 to 60 

nm in diameter), enveloped, single-stranded RNA virus of the Flaviviridae 

family. Because the virus mutates rapidly, changes in the envelope proteins 

allow it to evade the immune system. There are at least six major genotypes 

and more than 50 subtypes of HCV. The different genotypes have different 

geographic distributions. HCV infection sometimes results in an acute illness, 

but more often becomes a chronic condition. Chronic hepatitis C varies 

greatly in its course and outcome. The hepatitis C virus (HCV) is one of the 

most important causes of chronic liver disease. It accounts for about 15 

percent of acute viral hepatitis, 60 to 70 percent of chronic hepatitis, and up to 

50 percent of cirrhosis, end-stage liver disease, and liver cancer 7 .The virus 

is transmitted via contact with the blood of an infected person, primarily 

through sharing contaminated needles. Maternal-infant transmission is not 

common, less than 5 percent of infants born to HCV-infected mothers become 

infected. Up to date, no vaccination is available.  

Standard therapy for HVC- patients are peginterferon as monotherapy or in 

combination with ribavirin 8. Ribavirin is an oral antiviral agent that has activity 
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against a broad range of viruses. By itself, ribavirin has little effect on HCV, 

but in combination with interferon it increases the sustained response rate by 

two- to three-fold. 

Autoimmune Hepatitis (AIH) 

Autoimmune hepatitis is a disease that mainly affects young women (70% of 

the patients are female) 9. In AIH the body’s immune system attacks liver cells 

and this immune response causes hepatitis. The usual presentation is with 

fatigue, pain in the right upper quadrant of the abdomen, and polymyalgia or 

arthralgia associated with abnormal results of liver function tests. AIH is 

classified as type 1 or type 2 10. Type 1 is the most common form. It can occur 

at any age but most often starts in adolescence or young adulthood. Other 

autoimmune diseases are present in 17% of patients with AIH type 1, 

predominantly thyroid disease, rheumatoid arthritis, and ulcerative colitis. AIH 

type 2 is less common; typically affecting girls aged 2 to 14. 

The diagnosis of AIH is important, as immunosuppressive drugs (e.g., 

prednisolone and azathioprine) produce lasting remission and an excellent 

prognosis. Although AIH can produce transient jaundice, the inflammation 

process can continue at a sub-clinical level, leading to cirrhosis and liver 

failure. The diagnosis is based on detection of autoantibodies (anti-nuclear 

antibodies (60% positive), anti-smooth muscle antibodies (70% positive), anti-

ASGP-R antibodies (88% positive)) and high titers of immunoglobulins 

(present in almost all patients, usually IgG). 

Hepatocellular carcinoma (HCC) 

Hepatocellular carcinoma (HCC) is currently the fifth most common solid 

tumor worldwide, and the fourth leading cause of cancer-related death, 

involving more than a half million new cases yearly 11. In some areas of Asia 

and the Middle East, HCC ranks as the leading cause of cancer-related death. 

The major risk factor for HCC development is the presence of liver cirrhosis, 

mostly related to chronic infection with the hepatitis B or C virus, alcohol 

intake, and iron deposition 12.The incidence of HCC is increasing in Europe 

and the United States 13 and it is currently the leading cause of death among 

cirrhotic patients 14. Not all cirrhotic patients develop HCC, and factors that 
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define those at high risk are male sex, age older than 50 years, increased 

alpha-fetoprotein (AFP) concentration, and intense inflammation and 

hepatocyte proliferation 15. 

In general, therapies for HCC can be divided into those that are potentially 

curative and those that are palliative only. Survival of untreated individuals is 

poor. Despite the implementation of screening programs in cirrhotic patients 

through biannual abdominal ultrasound examination, only 30% of HCC are 

diagnosed at an early stage when potentially curative therapies, including 

surgical resection, liver transplantation and percutaneous ablation, are 

possible. Several therapies have been proposed for patients who cannot 

benefit from this approaches, but up to now only transarterial 

chemoembolization has demonstrated survival benefits 16. However, it can 

only be performed in patients with preserved liver function, absence of 

extrahepatic spread/vascular invasion, and no significant cancer-related 

symptoms. Therefore, no more than 20% of the patients affected by HCC can 

benefit from this therapy. 

Ideally, treatment of the tumor should target the specific mechanisms that are 

dysregulated. In this way, therapeutic action would be selective and targeted 

at correcting the specific defect that facilitates cancer progression. 

Improvements in the understanding of the molecular pathogenesis underlying 

HCC 17 have led to the testing of cytostatic agents that affect some of these 

disrupted pathways. New non-surgical therapies are currently evaluated, for 

example chemoprevention with retinoids. Retinoids are important candidates 

for cancer chemoprevention because cancer is characterized by abnormal 

growth with a lack of differentiation, and the dysfunction of retinoid nuclear 

receptors is closely related to the carcinogenic process. Chemoprevention of 

de novo HCC with acyclic retinoids has been effectively tested in a single 

positive randomized controlled trial after surgical resection 18. And phase I/II 

studies are currently under way to investigate whether epidermal growth 

factor receptor inhibitors, platelet-derived growth factor receptor inhibitors, 

and antibodies against VEGF (vascular endothelial growth factor) may have a 

role in the treatment of HCC 19, 20. In chemotherapy, new agents have 

emerged during the last several years and are currently tested in large 
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cohorts of patients. But until now, none of these agents has resulted in a 

proven advantage in terms of survival. 

However, some strategies provide objective response rates greater than 20%, 

as is the case with internal radiation with 131I-labeled lipiodol (iodinated, radio-

opaque contrast poppyseed oil) or arterial lipiodolization (chemotherapeutic 

agents and lipiodol) 21-23. Systemic chemotherapy has been tested in 9 

randomized controlled trials. One of the most active drugs in this setting in 

vitro and in vivo is doxorubicin 21. Systemic doxorubicin administration 

provides partial responses in approximately 10% of cases, without evidence 

of survival advantage, and has well-known treatment-related adverse effects. 

Given that the currently available anticancer drugs have limited effectiveness 

in the treatment of HCC at conventional doses, and the fact that dose 

escalation is impeded by unacceptable high associated toxicity, the efficacy of 

these drugs might be enhanced by coupling them to a drug-carrier taken up 

by the Asialoglyco-protein receptor (ASGP-R). The ASGP-R is present in 20% 

of poorly differentiated HCCs and in up to 80% of well-differentiated tumors 24. 

The work of Fiume and colleagues 25-29 helped to establish the rationale for a 

liver selective delivery of high concentrations of doxorubicin coupled to 

lactosaminated human albumin (L-HAS; a galactosyl-terminating 

neoglycoprotein), selectively taken up by the ASGP-R. When administered to 

rats in an experimental model of diethylnitrosamine-induced HCC, L-HSA-

doxorubicin was associated with a significant decrease in the number of 

nodules compared with that found in sham-treated animals. Unexpectedly, 
they could also show that the L-HSA-doxorubicin conjugate targeting the 

ASGP-R enhanced the uptake of doxorubicin in all forms of HCCs, 
independently of their differentiation grade. These results further corroborate 

the eligibility of the ASGP-R as an interesting research topic for hepatotropic 
drug targeting in the treatment of HCC. 

1.3  The ASGP‐R 

The human Asialoglycoprotein Receptor (ASGP-R) is a membrane-bound 

Ca2+ dependent (C-type) lectin, a carbohydrate-binding protein, found 

abundantly on the surface of hepatocytes. Ashwell and Morell were the first to 
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describe the receptor, after they discovered that removal of the sialic acid 

residues of N-linked oligosaccharides on glycoproteins resulted in their rapid 

clearance from the blood and degradation in the liver 30-33.  

The ASGP-R mediates the endocytosis and degradation of a wide variety of 

desialylated glycoproteins (Asialoglycoproteins) that contain terminal 

galactose (Gal) or N-acetylgalactosamine (GalNAc) on their N-linked 

carbohydrate chain34. The endocytosis of receptor–bound asialo-

glycoproteins via coated pits and vesicles and the routing of these ligands to 

lysosomes where they are degraded have been intensely investigated 35. 

The ASGP-R is located on the basolateral membrane of parenchymal liver 

cells facing the sinusoids and is therefore in direct contact with the blood 

passing the liver (Figure 2). It is estimated that there are up to 500’000 

receptor subunits presented per cell. This high abundance, its localization and 

the efficient internalization of its ligands make the receptor an intriguing target 

for the development of high affinity ligands to be used as homing devices to 

specifically target drugs or genes to parenchymal liver cells 36.  

 

Figure 2. Localization of the ASGP-R in the liver 
Normal liver tissue (University Hospital Basel) stained with the anti-human H1-CRD antibody 
C14.6 developed at the Institute of Molecular Pharmacy. 
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1.3.1 Structure of the Asialoglycoprotein Receptor 

In humans, the functional receptor is a hetero-oligomer consisting of two 

homologous subunits sharing 58% sequence homology, designated H1 for 

the major and H2 for the minor subunit (Mr 45 kD and 50 kDa respectively) 37. 

They belong to the superfamily of C-type lectins and, in particular, to the long-

form subfamily that contains three conserved intramolecular disulfide bonds in 

their carbohydrate recognition domain (CRD) 38. Both subunits contain a 

single transmembrane domain with extracellular carboxyl terminus and with 

cytoplasmic amino terminus (type II transmembrane orientation) (Figure 3). 

The CRD is located at the extracellular carboxyl terminus and for H1 a 

consensus tyrosine amino acid motif (YQDL) is responsible for the association 

with clathrin-coated vesicles within its cytoplasmic domain 39. The subunits 

form a noncovalent oligomeric complex by a coiled-coil stalk segment 

interaction 40.  

Although it is agreed that the functional ASGP-R is a hetero-oligomeric 

complex composed of two types of subunits, the subunit stochiometry and 

size of the native ASGP-receptor in hepatocytes is still debated 41. Henis 42 

reported a H1/H2 ratio of 3:1, whereas Bider 40 suggested the formation of 

non-functional H1 homo-trimers and functional 2:2 H1/H2 hetero-tetramers. 

Literature data suggest a dominant biological role of the H1 subunit of the 

ASGP-receptor 43.  

Both H1 and H2 are required to reach full functionality of the receptor. Mice 

lacking the minor mouse subunit (MHL-2), due to disruption of the 

corresponding gene, showed significantly reduced expression of the major 

mouse subunit (MHL-1) in their livers and where unable to clear 

asialoorosmucoid (ASOR) from their circulation. In addition, mice deficient of 

MHL-1 showed no detectable expression of MHL-2 and an incapablility of 

clearing ASOR from the circulation 50. Interesingly, in both, MHL-1 and MHL-2 

deficient mice, even though the clearance of ASOR by the ASGP-R was 

severely impaired, neither accumulation of desialylated glycoproteins in the 

circulation nor any phenotype abnomalities could be observed. 
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Figure 3. Scheme of the H1 subunit of the ASGP-R 
The general structure of the two ASGP-R subunits is illustrated by H1, which consists of 291 
amino acids (aa). H1 is a type II integral membrane protein, which contains a 40-amino acid 
N-terminal cytoplasmic domain, a 20-amino acid single-pass transmembrane domain, an 80-
amino acid extracellular stalk region, and a 140-amino acid carbohydrate recognition domain 
(CRD) containing 3 calcium–ions. Picture by courtesy of Dr.D.Ricklin 73. 

1.3.2 Receptor Mediated Endocytosis  

Receptor mediated endocytosis (RME) is a common mechanism for the 

uptake of macromolecules by cells and the ASGP-R is one of the best-

explored model of an endocytic transport receptor 3. After ligand binding to 

ASGP-R, the receptor-ligand complex migrates along the plane of the plasma 

membrane to a site of active internalization, the clathrin-coated pit (Figure 4). 

Shortly after the coated-pits pinch off from the plasma membrane, the clathrin 

coat dissociates and the uncoated vesicles fuse to form larger early 

endosomes. Those endosomes are then delivered to and fuse with an 

organelle designated compartment for the uncoupling of receptors and ligands 

(CURL) 44. The endosomes are segregated into receptor-containing and 

ligand-containing vesicles that are then routed along different intracellular 

pathways 45. The ASGP-receptors are recycled to the cell membrane, 

whereas the ligands are shuttled to lysosomes where they are degraded 46. 

Bananis 47 showed that the ligand-containing vesicles associate with 

cytoplasmic kinesins; this motor molecules mediate the movement of the 
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vesicles along microtubules in direction of the centrosome near the nucleus of 

the cells 48. The ASGP-receptor is continuously internalized and recycled 

even in the absence of ligands. Thus, at steady-state, only 40–60% of the 

total cellular ASGP-receptors are on the cell surface and the rest is distributed 

intracellularly throughout the endocytic compartments traversed by the 

receptor during its cycle 49. The rate of endocytosis is, however, increased 

upon ligand binding to its extracellular domain. 

 

 
Figure 4. Receptor-mediated internalization of ligands by the ASGP-R 
Upon ligand binding, the receptor clusters into coated pits (1.), and is then internalized in 
clathrin-coated vesicles (2.) The receptor and ligands dissociate due to a drop in the vesicular 
pH (3.). The receptor is recycled to the basolateral membrane of the hepatocyte (4.), and the 
ligand is shuffled to lysosmes for degradation (5.). 
 
 

1.3.3 Physiological Function 

The full physiological role of the ASGP-R has still not been elucidated. 

Although it was initially presumed that its major function was restricted to the 

physiologic turnover of ‘aged’ plasma glycoproteins, repeated attempts over a 

period of years have failed to provide convincing evidence to support that 

view. For example, receptor-deficient mice did not show significantly elevated 

plasma level of asialoglycoproteins nor was their life span influenced in any 
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way 50 Dozens of plasma glycoproteins, when desialylated, are suitable 

ligands for the ASGP-R. Low-density lipoproteins, chylomicron remnants 51, 

fibronectin 52 and IgA 53 have all been proposed as candidate in vivo ligands 

for the ASGP-R. 

The potential role of ASGP-R in the phagocytosis of dying cells was 

evidenced by the ability of receptor-specific antibody and known ASGP-R 

ligands to block the uptake of the apoptotic bodies 54. The receptor seems to 

recognize Asialooligosaccharide-chains on the surface of apoptotic cells. 

Hardy 55 proposed that clusters of ASGP-receptors on the cell surface might 

present a lattice of sugar-binding sites that could recognize a wide variety of 

oligosaccharide structures containing different numbers of branches and 

different spatial organizations of their terminal sugars. Such a lattice-like 

arrangement would provide great flexibility to bind and internalize a variety of 

endogenous ligands.  

Asialoglycoprotein‐receptors of extra hepatic origin 

Other Gal/GalNAc binding proteins sharing extensive amino acid sequence 

homology to the hepatic ASGP-R were found in various tissues or cell types, 

such as macrophages 56, intestinal epithelial cells 57 , testis 58, thyroid glands 
59, renal tubular epithelial cells 60 and on some tumor cells of non-hepatic 

origin 61. 

These extra-hepatic ASGP-receptors likely have functions different from that 

of the hepatic ASGP-R, reflected, for example, in the different binding 

affinities of GalNAc and Gal to the macrophage-receptor compared with the 

hepatic receptor 62. 

The role of the ASGP‐R in liver disease 

The ASGP-R is not only an important target for site-specific drug targeting, 

but it may play also a role in the genesis and diagnosis of certain liver 

diseases as it has been shown to represent a common target for humoral and 

cellular autoimmune responses in chronic hepatitis, probably contributing to 

disease perpetuation. For example, anti-ASGP-R autoantibodies are detected 

in 88% of patients with AIH (both types 63,64. These autoantibodies are also 
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found in some patients with PBC (primary billiary cirrhosis), chronic viral 

hepatitis B and C and alcoholic liver disease although at lower frequency and 

lower titers 65,66. The ASGP-R is preferentially expressed on the surface of 

periportal liver cells where piecemeal necrosis is found as a marker of severe 

inflammatory activity in patients with AIH 67. This finding may suggest a 

possible immuno-pathogenetic involvement of anti-ASGP-R autoantibodies in 

AIH. The general presumption is that the target of potentially tissue-damaging 

autoreactions in AIH must be liver-specific and available to the immune 

system in vivo (e.g. expression on the surface of hepatocytes). So far, the 

ASGP-R is the only target-autoantigen that fulfils these criteria. Additional 

support to this findings emerged from the determinations of anti-ASGP-R 

autoantibodies in consecutive AIH patients. The levels of anti-ASGP-R 

autoantibodies vary according to the inflammatory activity of the disease. In 

addition, anti-ASGP-R antibody titers decreased significantly in response to 

immunosuppression, while they reappear when the disease has relapsed 63, 

68. The detection of ASGP-R autoantibodies is therefore diagnostically helpful 

when other autoantibodies are not detected and AIH is suspected 69.  

Some enveloped viruses are known to work as ‘opportunistic endocytic 

ligands’ and catch a ride on membrane proteins capable of endocytosis to 

enter the cell. Inside the endosome specific viral membrane proteins undergo 

conformational change in the low pH surrounding and promote their insertion 

into and fusion with the organelle membrane. This places the nucleocapsid 

into the cytoplasm where it has access to the cells synthetic machinery to 

replicate itself. In the case of the ASGP-R, the receptor is thought to be 

involved in the uptake of hepatitis B virus 70 and Marburg virus 71 during 

infection. The role of ASGP-R as putative receptor in hepatitis C virus 

infection is controversially discussed 72. 
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1.3.4 Structure of the H1‐CRD 

The X-ray crystal structure of the carbohydrate recognition domain of the 

human major subunit H1, the H1-CRD, has been published 73. The CRD of H1 

is the first reported structure that contains three Ca2+ ions as an integral part 

of the structure with the calcium ions coordinating several loops within the 

structure, including the sugar-binding site from residues Arg236 to Cys268. 

When a Gal or GalNAc monosaccharide is bound to the sugar-binding site, 

the 3-hydroxyl and 4-hydroxyl groups of the sugar interact directly with the 

Ca2+ in position 2 and the hydrophobic ring surface of the pyranose-ring is 

stacked against the planar indole-side chain of Trp243. The monosaccharide 

also forms four hydrogen bonds with residues Gln239, Asp241, Gln252, and 

Asn264. In addition to the primary binding site there is a shallow hydrophobic 

pocket on the surface of the CRD providing a binding subsite for the N-acetyl 

substituent of GalNAc. This interaction likely accounts for the higher affinity of 

the receptor for GalNAc compared to Gal 62,74. 

 
Figure 5. Ribbon diagram of the human H1-CRD 
The two β-helices are shown in red, the α-strands in blue, the calcium ions in pink and 
magenta, and the three disulphide bridges in yellow. Both the N and the C terminus are on 
the bottom of the image. The sugar binds to calcium ion 2 in front of the glycine-rich loop in 
the upper part of the picture. Adapted from Meier et al. 73 by Ricklin 75 
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Figure 6. A model of GalNAc docked into the sugar-binding site of the H1-CRD 
(A) Illustration of the hydrophobic interaction between Trp243 and α-face of GalNAc. (B) 
Illustration of the 3- and 4-OH groups coordinating to the calcium ion. Picture courtesy of 
M.Spreafico, manual-docking trial, MacYeti 7.05. 

1.3.5 Ligand Specificity and Affinity 

Binding to and internalization of ligands by the hepatic ASGP-R depend on 

the ligand type (GalNAc > Gal), the valency (binding hierarchy of polyvalent 

ligands tetra- > tri- >> di- >> mono-antennary) 76, the spacing of the 

carbohydrate ligands 77 and the size of glycosylated particles (limited by the 

perisinusolidal space to a diameter of ≤ 70 nm in vivo) 78. The affinity and 

specificity of the ASGP-R is a consequence of oligovalent interactions with its 

physiological ligands, a process termed ‘cluster glycoside effect’ by Lee et al. 
76. 

Many studies have been performed with both natural and synthetic 

carbohydrates to establish the structure-affinity relationship for the ASGP-R. 

Baenzinger et al. 79 have shown that the mammalian receptor exhibits 

specificity for terminal Gal and GalNAc (with an up to 50-fold higher affinity for 

the latter) on desialylated glycoproteins.  
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Figure 7. Carbohydrate ligands for the ASGP-R 
(A) Monosaccharide ligands galactose and N-acetylgalactosamine, (B) Natural triantennary 
ligand TRI-GP76 
 
The binding of a single galactose residue to one individual receptor subunit is 

of low affinity with dissociation constants in the order of 1 mM. In contrast, 

oligovalent galactose ligands, such as natural bi-, tri- and tetra-antennary 

desialylated N-linked oligosaccharides or glycoproteins, exhibit binding with 

dissociation constants of approximately 1 mM, 300 nM and 20 nM, 

respectively 76. In other words, although the number of Gal residues/mol of 

ligand increased only 4-fold, the inhibitory potency increased 106-fold. 

Because the fourth Gal moiety present in the tetraantennary ligand does not 

markedly enhance the affinity, it was assumed that the binding requirements 

of the cell-surface receptor are largely satisfied by the triantennary structure 
80. 

The optimal distance of the Gal moieties in these oligosaccharides was 

determined by binding assays with synthetic carbohydrates representing 

partial structures of N-linked glycans 81, high-resolution NMR and molecular 

modeling studies 82. Based on these results, Lee et al. 76,81 proposed a model 

for the optimal spatial arrangement of the terminal sugar residues ( Figure 8).  
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Figure 8. Binding model for ASGP-R ligands 
in an optimal conformation to the heterooligomeric receptor consisting of H1 and H2 subunits. 
Dashed line indicates the distance between the C-4 of each Gal moiety; filled line represents 
approximate distance between branching point and C-6 of Gal (14-20 Å). Adapted from Lee 
et al. 76 by O.Khorev158. 

Furthermore, the studies led to the conclusion that only the terminal residues 

are necessary for specific recognition, and that the binding process proceeds 

through a simultaneous interaction of 2 to 3 sugar residues with 2 to 3 binding 

sites of the heterooligomeric receptor. On the native receptor on the 

hepatocyte surface these binding sites are 25-30 Å apart. 

1.3.6 Drug Delivery via the ASGP‐R 

Drug and gene targeting to specific organs is a promising approach for the 

development of highly effective therapies while reducing side effects. 

Carbohydrate-lectin interactions between transport receptors in the liver and 

their physiological (or synthetic) ligands have been described as an efficient 

method showing high specificity. Due to its specificity, predominant 

expression on hepatocytes and high capacity for receptor-mediated 

endocytosis, the ASGP-R has been intensely validated as potential target for 

drug and gene delivery to the liver 36,83. As an alternative to ex vivo gene 
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transfer to the liver, which requires invasive surgery 84, there is much interest 

in in vivo protocols: (i) Wu et al. 85 demonstrated successful in vivo gene 

transfer to hepatocytes with poly-L-lysine linked asialoorosomucoid, (ii) Hara 

et al. 86 showed that asialofetuin-labeled liposomes that encapsulate plasmid 

DNA cause gene expression and (iii) successful gene transfer to hepatocytes 

using liposomal gene carriers that possess synthetic galactose residues as a 

targetable ligand for parenchymal liver cells has been reported by Kawakami 

et al. 87  

1.4 Antibodies 

Antibodies are part of the body’s natural defense system against virus and 

bacterial infections. They bind to the pathogenic antigens and flag them for 

destruction by complement and cells of the immune system.  

A variety of more than a billion different sequences encoding for antibodies 

can be achieved in the mammalian immune system by combining a set of 

variant gene cassettes with unique mutation mechanisms. The genetic 

material for this huge ‘library’ of different antibodies is stored in the B-cell pool 

of the lymphatic tissue, which is the source to generate versatility of 

antibodies in vivo.  

After immunization there is usually a progressive increase in the affinity of the 

antibodies produced against the immunizing antigen. The high-affinity 

antibodies to a specific antigen are naturally selected by the immune system 

in a process called affinity maturation. This phenomenon is unique to 

antibodies and is due to the accumulation of point mutations specifically in 

both heavy- and light-chain variable region coding sequences 88. These 

mutations occur long after the coding regions have been assembled, when B-

cells are stimulated by antigen and helper T-cells to generate memory cells in 

the germinal center of a lymphoid follicle in the secondary lymphoid organs. 

The point mutations occur at a rate of about one mutation per variable region 

coding sequence and per cell generation, which is about a million times 

greater than the spontaneous mutation rate in other genes 89  

Only a small minority of these point mutations result in antigen receptors that 

have an increased affinity for the antigen. The few B-cells expressing these 
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high-affinity receptors are able to survive and proliferate, while the other B-

cells will undergo apoptosis when the B-cells are stimulated by the presence 

of an antigen, as explained by the clonal selection theory proposed by the 

Nobel Prize winners Jerne and Burnet 90,91. B-cells within a selected clone 

begin their antibody-synthesizing lives by making IgM molecules and inserting 

them into the plasma membrane as B-cell antigen receptor (BCR). Upon 

stimulation by antigen, some of these cells are activated to secrete IgM 

antibodies, which dominate the primary antibody response referred to as 

primary class of antibody 92. Other antigen-stimulated cells switch to make 

IgG, IgE, or IgA antibodies 93; memory B-cells express one of these three 

classes of molecules on the surface, while activated B-cells, the so called 

plasma cells, secrete them. The IgG, IgE, and IgA molecules dominate the 

secondary antibody response. 

1.4.1.1 The Genetic Basis of Antibody Diversity 

The human genome is thought to contain less than 105 genes, but antibody 

molecules with different specificities are approximately 106-8 in a given 

individual. Therefore, antibody diversity raises a special genetic question: how 

can humans / animals make more antibodies than there are genes in their 

genome? Antibody gene rearrangements during lymphocyte differentiation, 

discovered by Tonegawa 94, provide the answer to the above question. 

Briefly, both somatic recombination and mutation contribute greatly to an 

increase in the diversity of antibodies 88,94. Antibody genes can move and 

rearrange themselves within the genome of a differentiating cell 95,96. A 

variable (V) gene located in one position in the DNA of an inherited 

chromosome (the germline), can move to another position on the 

chromosome during lymphocyte differentiation. This genetic recombination is 

promoted by transposases, enzymes that snip pieces of DNA out of one 

location in a chromosome and transpose these pieces elsewhere 97. This 

process of rearrangement during differentiation brings together an appropriate 

set of genes for the variable and constant regions. The variable domains are 

created by the combinatorial rearrangement of a relatively small number of 

gene segments, variable (VH), diversity (D) and joining (JH) segments for the 
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VH domain, and variable (VL) and joining (JL) segments for the VL domain 95,98. 

Together with deletion and insertion of nucleotides at the segment junction 

and association of different heavy chains and light chains, this generates a 

diverse primary repertoire of antibodies with huge number of antigen binding 

specificities 99.  

1.4.1.2 Antibody Structure  

All antibodies have a common structure (Figure 9) consisting of two identical 

heavy (H) chain polypeptides (about 55–70 kDa / 440 amino acids) and two 

identical light (L) chain polypeptides (about 24 kDa / 220 amino acids) held 

together by disulphide bridges and non-covalent bonds. 

The four chains contain defined variable (V), diversity (D) (heavy chain only), 

joining (J), and constant (C) domains. The constant domain amino acid 

sequences, which determine effector functions of antibodies, are relatively 

conserved among immunoglobulins of a given animal species, while the 

variable domains of an antibody are highly heterogeneous; they endow the 

antibody’s binding specificity and affinity 100.  

Pairing of the heavy and light chain V domains creates an antigen-binding site 

(paratope), which recognizes a single antigenic determinant (epitope). The V 

domains can be further subdivided into different regions, the framework 

regions (FR) and the complementarity determining regions (CDRs). CDRs are 

divided into CDR1, CDR2, and CDR3. The framework regions form a scaffold 

structure, referred to as a β-pleated sheet, from which the CDRs loop out. The 

amino acid sequences of the CDRs have been shown to be ‘hypervariable’ 

and are largely responsible for interacting with the targeted antigen 100. To 

engineer a small recombinant antibody with the unique specificity and affinity 

of the parent antibody it is important not to disrupt the tertiary structure and 

orientation of the CDRs residues.  
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Figure 9. Antibody structure (IgG) 
IgG, the main serum antibody is a Y-shaped multidomain protein with two antigen-binding 
sites located at the variable region. The stem Fc domain of the constant region mediates 
recruitment and cytotoxic effector functions through complement interaction and binding to 
γFc-receptors. 
 

1.4.2 Antibodies as Therapeutics 

Antibodies were discovered more than 100 years ago. In the 1890s horse 

anti-serum was used to treat tetanus and diphtheria, and is still used today to 

treat snakebites. However, the human immune system recognizes horse anti-

serum as foreign and reacts by producing antibodies against it, especially on 

repeat doses, which leads to serum sickness and, in the worst case, 

anaphylactic shock 101. 

An important first step towards the development of antibodies as useful 

therapeutics came from the invention of monoclonal antibodies by Köhler and 

Milstein in 1975 103. By immunizing rodents, and fusing the antibody-

producing B-cells from the spleen with a myeloma, Köhler and Milstein made 

hybrid cells (hybridomas) that were immortal and secreted murine monoclonal 

antibodies (mAbs). These cells could be grown in fermenters for large-scale 

antibody production. The technology also allowed an antibody response 

directed against a complex mixture of antigens (such as on the surface of a 

cancer cell) to be dissected into its components. Hence, it became possible to 
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distinguish between normal and cancer cells on the basis of reactivity with 

individual mAbs, and thereby many new molecular targets and markers of 

disease were discovered. 

Murine antibodies still have two major drawbacks. One is that murine 

antibodies are glycosylated differently than human antibodies, which often 

leaves them with a poor ability to trigger human effector functions. Secondly 

and most important, their suitability as therapeutics is limited because the 

human immunesystem recognizes them as foreign proteins and mounts an 

immune response against them by producing human anti-mouse antibodies 

(HAMA)104. These not only cause the therapeutic antibodies to be quickly 

eliminated from the body, but also form immune-complexes that cause 

damage to the kidneys. Therefore, murine monoclonal antibodies can usually 

only be administered once.  

These difficulties prompted the use of genetic engineering to convert murine 

mAbs into human-like mAbs. Recombinant DNA technologies, include 

chimerization, (meaning the transplantation of variable domains from a murine 

antibody in place of the corresponding domains of a human antibody, these 

antibodies, two-thirds human, have the binding activity of the parental murine 

antibody and the effector functions of human antibodies 105, 106, 107), and 

humanization (the transplantation of just the antigen contact surfaces, the 

complementarity determining regions or CDRs, from the murine mAb leads to 

antibody molecules that are about 95% human 108). Both techniques have 

lead to enhanced clinical efficiency of murine mAbs and their regulatory 

approvals as treatment of cancer and inflammatory disease. 

In theory it is possible to produce human monoclonal antibodies, for example 

by immortalization of human B-lymphocytes with the Eppstein-Barr virus 

(EBV) 109, or with the generation of transgenic mice having a human antibody 

repertoire 110, but to date there exist no effective methods of production to 

meet the needs for therapeutic antibodies in the long run. Also the generation 

of stable human hybridoma cell-lines, which is difficult due to the lack of a 

matching myeloma-cell fusion partner, did not lead to the desired 

breakthrough 111-113. 
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1.4.3 Antibody Fragments 

Antibody fragments were first produced in the late 1950’s when Porter 

isolated Fab (fragment antigen binding) and Fc (fragment crystallizable) 

fragments from proteolytically (with papain or pepsin) cleaved rabbit gamma 

globulins (IgG) 114. Recent advances in understanding of immunoglobulin 

structure through three-dimensional studies, using NMR and X-ray 

crystallography and increased computer-assisted molecular modeling 

capabilities in combination with novel selection methods have led to the 

evolution of a new class of antibody-like molecules, the recombinant antibody 

fragments. 

Recombinant antibodies are an indispensable part of the development of new 

proteogenic therapeutics. New methods of in vitro selection 115 and generation 

of specific binders outside a living organism allowed the production of 

clinically effective antibodies. The most important of these methods is Phage-

display 116. Fusion of the recombinant antibodies with other proteins or 

protein-domains generates recombinant antibodies with new properties that 

nature is not able to provide. Moreover, production in microorganisms allows 

easier scale-up and reduces costs of production.  

In some clinical applications small recombinant antibody fragments have an 

advantage over whole immunoglobulins, such as good penetration of solid 

tumors and rapid clearance 117 ,118.  

The smallest portion of an antibody containing an antigen-binding site is the 

variable fragment (Fv) assembled from VH and VL. Because there is no 

covalent link between the variable heavy and light chain (KD = ca. 10-6 M to 

10-9 M) 119 it is necessary to provide a linker between the two domains to 

prevent their dissociation. To stabilize the association of recombinant Fv 

fragments, they are joined with a short peptide linker and expressed as a 

single peptide, the scFv. A variety of linker peptides were tested and did not 

disturb the proper folding of the VH and VL domains 120. The most frequently 

used linker today for scFv antibodies is (Gly4Ser)3, a flexible 15 aa-peptide 

that bridges the 4.5 nm gap between the C terminus of one domain and the N 

terminus of the other. 
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Figure 10. Antibody fragments 
(1) Full IgG, (2) Fab (antigen binding fragment), (3) scFv (single chain variable fragment) 
 

1.4.4 Recombinant Antibodies 

Recombinant antibody is the general term for either heterologously produced 

Fab or scFv fragments of an antibody. Elucidation of the molecular structure 

of immunoglobulins and sequence data allowed to develop immunoglobulin-

specific oligonucleotide primers and to use them in conjunction with 

polymerase chain reaction (PCR) techniques to clone antibody fragments for 

the generation of recombinant antibodies. Recombinant antibodies have a 

variety of uses, ranging from simple research tools as diagnostic reagents to 

highly refined biopharmaceutical drugs. Their exquisite selectivity and the 

increasing ease of manipulation have facilitated their use as delivery vehicles 

for drugs and genes. Recently, recombinant antibodies have been dissected 

into minimal binding fragments (single domain antibodies) and rebuilt into 

multivalent high-avidity reagents (di- to tetra-bodies) and fused with a broad 

range of molecules including enzymes for prodrug therapy, toxins and 

radionuclides for cancer treatment, liposomes for enhanced drug delivery, 

viruses for gene therapy and cationic tails for DNA and siRNA delivery121, 122.  
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1.4.4.1 Expression of Recombinant Antibodies in E.coli 

Production of stable, high affinity antibody fragments in high yield for 

preclinical and clinical trials can be a serious bottleneck in the product 

pipeline. Recombinant antibody fragments have been produced in various 

expression systems such as bacteria 123, mammalian 124 , insect 125 ,yeast 126, 

plant 127, and in vitro -translation systems 128. The yields and biological activity 

of recombinant proteins differ greatly and depend on a large number of 

factors, such as solubility, stability, and size of the protein. 

Bacteria are the favored system for expression of small non-glylcosylated Fab 

and scFv fragments. Advantages are the systems ability to produce protein in 

large quantities, being faster and cheaper than other expression methods. 

Most production studies favor scFv over Fab fragments due to their superior 

expression levels in bacteria (to over 1g/l using fermentors). Nevertheless 

several strategies have been developed to improve recombinant expression. 

Terminal polypeptides as C-myc, His and the FLAG tag have been appended 

for affinity purification after expression. Whether these have to be removed 

due to immunogenicity and related concerns from drug regulatory agencies is 

still under investigation. 

The expression of recombinant antibody fragments in the reducing 

environment of the cytoplasm leads to the formation and accumulation of 

insoluble inclusion bodies, which contain unfolded protein. This necessitates 

the development of refolding protocols, as one of the major problems that 

need to be overcome during the refolding process is the formation of 

aggregates. Another approach is to use leader sequences such as pelB 123 to 

direct secretion of the antibody to the periplasmic space of the bacteria. The 

periplasmic space lies between the inner and outer membrane of gram-

negative bacteria and is an oxidizing environment. The leader sequence is 

cleaved by signal peptidases inside the periplasm 129. Depending on the 

antibody sequence sometimes leaking from the periplasm occurs. This can 

help to simplify screening and purification of the scFvs from the bacterial 

supernatant. 
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Figure 11. Production of soluble, folded scFv in E.coli 

1.4.5 Generation of Murine scFv from Hybridoma 

Although today human antibodies can be obtained by phage display from 

native repertoires 130, 131 or libraries of fully synthetic genes 132, still many 

mouse antibodies with interesting properties are generated by the hybridoma 

method of Köhler and Milstein 103. Cloning of antibody fragments from 

hybridoma retains the unique properties of the antibodies, which can be 

exploited for the rescue of interesting antibodies from unstable hybridoma 

clones. 

Cloning and sequencing of antibody variable domains is the basis of antibody 

modeling 133 antibody engineering134 ,experimental structure determination by 

NMR or x-ray crystallography at high resolution135. Moreover, once cloned 

from the parental hybridoma clone, the antibody domains can be further 

engineered in a multitude of ways to produce variants with lower 

immunogenicity, higher affinity 136, 137, enhanced stability 138, 139. They can also 

be genetically fused to effector proteins and toxins 129. 

In the mouse, there are five classes of constant heavy (CH) chain genes (α, δ, 

ε, γ and µ) and two classes of constant light (CL) chain genes (κ and λ). DNA 
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and amino acid sequences are relatively conserved within each class. 

Antibodies are grouped into five major classes according to their CH-region: 

IgA, IgD, IgE, IgG and IgM and further distinguished by the class of their light 

chains (κ or λ). The class of each chain can be isotyped with commercially 

available kits, which are animal-species-specific. 

The V region consists of alternating framework (FR) and hypervariable, or 

complementarity-determining regions (CDRs). The greatest sequence 

diversity occurs in the CDRs, while the FR region sequences are more 

conserved. The J region (heavy and light chains) and the D region (heavy 

chain only) lie immediately upstream from the C region. The CDRs, and to 

some extent the FR regions, interact with the antigen to form the core of an 

antigen-binding site. Because the DNA sequences within the first FR and the 

carboxy-terminal portion of the J region are relatively conserved for all classes 

of antibodies in a given animal, amplification schemes for antibody V genes 

can be devised using a collection of primers that hybridize to these conserved 

sequences140. 

The general strategy used in this work to adapt murine monoclonal antibodies 

to the scFv format is depicted in Figure 12.  

There are two orientations possible to link the VL and VH in the scFv, either 

VL-linker-VH or VH-linker-VL. The length of the chosen polypeptide linker 

depends on the orientation of the fragments. The distance between the C 

terminus of VL and the N terminus of VH is about 39 - 42 Å, whereas the 

distance in the other direction between the C terminus of VH and the N 

terminus of VL is slightly shorter (32 – 34 Å).  

As already mentioned, the most commonly used peptide linker consists of 15 

aa, (Gly4Ser)3, independent from the orientation of the two variable domain 

genes in the resulting scFv. The linker used in this work is 20 aa long 

(Gly4Ser)4  and accommodates the longer distance between the V gene 

fragments in the VH-linker-VL orientation. The use of the longer linker 

minimizes fragment dimerization and therefore formation of diabodies that 

often occurs when shorter linkers are used140. 



Introduction            Antibodies 

  1-28 

 

Figure 12. The general strategy used for the adaption of murine IgG to the scFv format 
(1) The mRNA from hybridoma cells and a random hexamer primer mixture pd(N)6 is used for 
the PCR amplification of VL and VH domains, (2) which are assembled into the scFv format by 
the outer primer pair scback and scfor. (3) For directional cloning of the scFv gene fragment 
into the expression vector, a single restriction enzyme is used (SfiI). Self-ligation of the insert 
or the plasmid is prevented by the asymmetry of the overhang. 
 

1.4.6 Antibody Phage Display 

Phage display can be used to generate antibodies to virtually any antigen. 

This requires a number of crucial steps that are common to all molecular 

diversity technologies: the creation of diversity, coupling of phenotype 

(antibody protein) to genotype (antibody gene), selection, amplification, and 

analysis of the binding properties. 

Since the generation of the first human antibodies by phage display 129, 141, 142, 

technology has evolved to allow the creation of large, fully human scFv 
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repertoires that yield antibody fragments with comparable affinities to those 

obtained using classical hybridoma technology 142. Using a variety of selection 

and screening strategies, the same library can be used to derive many high-

affinity antibody fragments with different specificities. Antibody fragments 

isolated from such fully human scFv repertoires have a multitude of 

applications, e.g. as immunological reagents for ELISA, 

immunocytochemistry, western blotting, or epitope mapping, and as they 

show low immunogenicitiy in humans they are especially interesting for 

therapeutic application. 

Furthermore, phage-display technology also provides a means by which a 

selected recombinant antibody can, if necessary, be affinity-matured for 

improved affinity and binding kinetics137. 

Recombinant antibody libraries have been constructed from a wide range of 

B-lymphocyte sources using a number of different approaches. Sizes of the 

libraries that have been produced vary considerably, from small libraries of 

106 different clones up to large libraries (>1010 clones). Often an antibody with 

the desired specificity exists at low frequencies in the recombinant antibody 

repertoire. It is therefore necessary to have an effective technique for the 

enrichment and identification of a desired antibody from a heterogeneous 

repertoire. The process for the selection of specific antibodies is referred to as 

‘panning’, and in principle involves the selection of antibodies on the basis of 

their affinity. The phage libraries can be selected using antigen immobilized to 

immunotubes, biotinylated antigen immobilized to streptavidin-beads (if 

available amounts of antigen are low), or by affinity chromatography on 

antigen-coupled Sepharose columns. 
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Figure 13. Antibody phage display cycle 
Libraries of antibodies are displayed o the surfaces of bacteriophage as fusions to the coat 
protein (usually gpIII). (1.) Each phage particle displays a unique antibody (Phenotype) and 
also encapsulates the vector that contains the encoding DNA (Genotype). (2.) Highly diverse 
libraries can be constructed and represented as phage pools, which can then be used in 
selections for binding to immobilized antigen (panning). (3.) The immobilized antigen retains 
antigen-binding phage, whereas the nonbinding ones are removed by washing. (4.) The 
retained phage pool can be amplified by infection of an E.coli host and submitted for further 
rounds of panning, and after several cycles (6.) be used in a an ELISA for selection of 
productive clones. 

The isolation of a desired antibody fragment generally involves repeated 

rounds of panning, with each successive round resulting in the enrichment of 

the desired antibody. Each round of antibody selection can be divided into 

panning, removal of nonspecific phage, and the elution and amplification of 

phage for the next round (Figure 13). In this way, antigen-specific antibody 

that occur at low frequencies in a library can be enriched by over a million-fold 
129. 

1.4.6.1 Types of Phage Display Libraries 

The libraries available can be divided into natural immune antibody libraries, 

containing fragments from immunized donors (biased towards certain 
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antigens), non-immune or naïve libraries (derived from non-immunized natural 

donors or semi-synthetic sources), and synthetic libraries. With the latter 

having the advantage to be a source of antibodies against a large number of 

antigens, including self, non-imunogenic and toxic antigens. 

Synthetic libraries are constructed entirely in vitro using oligonucleotides that 

introduce areas of complete or tailored degeneracy into the CDRs of one or 

more V genes. The first reports of synthetic antibody libraries were made in 

1992 143,144. Later on, libraries with improved quality and/or downstream 

characteristics were developed by choosing CDRs for randomization based 

on the relatively high mutation frequency of these positions in natural antibody 

repertoires and then randomizing them in a set of frequently used V germline 

segments145, 146. 

1.4.6.2 The ETH‐2‐Gold Library 

The ETH-2-Gold library employed in this work is a synthetic ‘single-pot’ library 

that was developed in the labs of Prof. D. Neri at the ETH in Zurich 145. 

The library was constructed based on the knowledge that human antibodies 

are assembled from approximately 50 different VH and 70 VL germline genes 

of which only a few dominate the functional repertoire. Three of this 

dominating antibody germline gene segments (DP-47 for the heavy chain, and 

DPK-22 for the light chain Vκ and DPL-16 for Vλ) were chosen as scaffold, 

which represent 12%, 25%, and 16%, respectively, of the antibody repertoire 

in humans 147. To produce a large repertoire, random loops of 4, 5 or 6 amino 

acids were appended at position 95 148 to the CDR3 of VH, the largest and 

most diverse loop of the antigen recognition site. Similarly, diversity was 

introduced in six amino acid positions in the CDR3 of VL assembled with DPL-

16 or DPK-22 germline genes (Figure 14). 



Introduction     Receptor-ligand Interaction Measurement Technologies 

  1-32 

 

Figure 14. ETH-2 Gold library: Positions of introduced diversity 
Picture from Silacci et al. 145 

The use of only the DP47 VH germline segment for library construction has 

the advantage of a high thermodynamic stability 149 and the possibility to 

purify the resulting scFv fragments by Protein A affinity chromatography. 

The scFvs from this library contain a 14 aa long (Gly4SerGly4Ser Gly4) peptide 

linker and are encoded in the pHEN1 phagemid vector 150 which also codes 

for a C-myc tag for the detection of expressed fragments e.g. in ELISA or 

western blots. This library, which has already been successfully used to 

generate scFv antibodies against more than 80 antigens 151, was employed to 

select human scFvs against the H1-CRD.  

1.5 Receptor‐ligand Interaction Measurement Technologies 

Receptor–ligand interactions play a crucial role in biological systems and their 

measurement forms an important part of modern pharmaceutical 

development. 

While receptor-ligand assays based on radioactive labeled ligand binding are 

usually fast, easy to use and reproducible, their major disadvantage is that 

they are hazardous to human health, produce radioactive waste, require 
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special laboratory conditions and are thus rather expensive on a large scale. 

This has led to the development of non-radioactive assays based on 

colorimetric or fluorescence detection, or label-free optical methods such as 

surface plasmon resonance.  

Receptor binding assays have their origin in the competition between an 

analyte [A] and a labeled ligand [L*] for binding to a certain receptor [R]. The 

relationship between the labeled ligand, the receptor and its complex is given 

by Eq. (1) and follows the law of mass action assuming reversible binding.  

 

Equation 1 

The ratio koff /kon refers to the dissociation constant KD, which is inversely 

proportional to the ligand affinity towards the receptor. At equilibrium, the KD 

can be determined as shown in Eq. 2, and represents the amount of ligand 

that saturates 50% of the binding sites.  

 

Equation 2 

Introducing a competing analyte leads to the formation of two receptor 

complexes (see Eq. 3). The analyte will displace a certain amount of labeled 

ligand, which depends on both the concentration and the affinity of the 

analyte.  

 

Equation 3 

If the analyte concentration is varied and both the receptor concentration and 

labeled ligand concentration are kept constant, inhibition curves can be 

constructed. From these curves, the IC50 -value, which represents the analyte 

concentration that displaces 50% of the bound labeled ligand, can be 

determined.  
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1.5.1 Solid‐phase Binding Assays 

Receptor–ligand binding assays are often used in the screening of new 

chemical entities. Despite the fact that receptor–ligand binding assays do not 

predict the intrinsic activity (agonistic or antagonistic, blocking) of the tested 

compounds, the discovery of new endogenous ligands is also facilitated 152 . 

Most of the assay technologies described to date require labeling of either the 

ligand or the receptor. For example radio-isotopic labels such as 3H, 125I and 
32P can be used to label ligands without having an effect on the affinity of the 

ligand towards the receptor. Albeit their sensitivity, the use of competitive 

radioassays has several drawbacks, disposal of radioactive waste, relatively 

long measuring times, costs, health hazards, the requirement for special 

licences, etc. Therefore the development of new assay technologies based on 

either colorimetric, fluorescence or (chemo-/bio-) luminescence detection has 

been intensively supported by the pharmaceutical industry. 

A crucial factor for evaluating binding affinities of new compounds is the 

availability of a suitable assay system. In regard to the ASGP-R, there is no 

competitive in vitro binding assay for ASGP-R ligands described to date, 

which does not make use of radioactive-labeled competitors (i.e. 125I-Gal-

BSA) 31, 153-156. The design of assays for lectins is especially hindered by their 

tendency to bind only weakly to monovalent carbohydrate ligands (with KD’s in 

the milimolar range). To overcome this problem, a multivalent competitive 

ligand combined with a colorimetric detection system was used to develop a 

competitive solid-phase assay for the H1-CRD (See chapter 2.2). 

1.5.2 Fluorescence Microscopy and Flow Cytometry 

Fluorophores can be introduced to examine ASGP-R localization and 

internalization in cells. 

Fluorescence is the result of a three-stage process that occurs in certain 

molecules (generally polyaromatic hydrocarbons or heterocycles) called 

fluorophores or fluorescent dyes. The single electronic-state diagram (Figure 

15) illustrates the process responsible for the fluorescence of fluorophores. 
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Figure 15. Jablonski diagram 
1. Excitation: A photon of energy hνEX is supplied by an external source such as an 
incandescent lamp or a laser and absorbed by the fluorophore, creating an excited electronic 
singlet state (S1'). 2. Excited-State Lifetime: The excited state exists for a finite time (typically 
1–10 nanoseconds). During this time, the fluorophore undergoes conformational changes. 3. 
Fluorescence Emission: A photon of energy hνEM is emitted, returning the fluorophore to its 
ground state S0. Due to energy dissipation during the excited-state lifetime, the energy of this 
photon is lower, and therefore of longer wavelength than the excitation photon hνEX. 157 
 
The entire fluorescence process is cyclical. Unless the fluorophore is 

irreversibly destroyed in the excited state (known as photo bleaching) the 

same fluorophore can be repeatedly excited and detected. The fact that a 

single fluorophore can generate many thousands of detectable photons is 

fundamental to the high sensitivity of fluorescence detection techniques. 

Fluorophores can often provide well-defined images at such low 

concentrations that living cells are unaffected by their presence. 

Fluorecence Microscopy 

Fluorescence microscopy allows visualization of only the fluorescent probe. 

Light from an excitation lamp such as a mercury lamp or laser is used to 

illuminate the fluorescent-labeled sample. An excitation filter eliminates all but 

the desired wavelengths of light for exciting the fluorophore, those are then 

reflected by a dichroic mirror onto the sample, where they excite the 

fluorescent molecules.  

Flow Cytometry 

A flow cytometer works basically as an automated fluorescent microscope, 

analyzing single cells of a population for their size, granularity, and fluorescent 

content. The principle of hydrodynamic focusing arranges the cells in a 

cuvette like pearls on a string before they arrive at the laser interception point 

for analysis. Hydrodynamic focusing cannot separate cell aggregates, 
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therefore flow cytometry is a technique that requires single cell suspensions. 

Cells in suspension flow in single-file through an illuminated volume where 

they scatter light and emit fluorescence that is collected, filtered and 

converted to digital values.  

Figure 16. Basic principles of flow cytometry measurements 

When the laser beam strikes the stream, the majority of the photons pass 

trough undisturbed. When the photons get in contact with the cell membrane, 

light diffraction occurs (Figure 16). The diverging photons detected by the 

forward scatter (FSC) detector give information about cell size (the bigger the 

cell, the more light is scattered). On the other hand, if the photons strike cell 

organelles, wide-angle light scattering occurs. The so-called side scatter 

(SSC) of light is proportional to the cell complexity. This allows sorting cells by 

their morphology. The application of specific antibodies or receptor-ligands 

coupled with a fluorescent label enables the measurement of the staining 

intensity of cells via fluorescence.  

In this work flow cytometry was applied to characterize the binding of mouse 

anti-human H1-CRD antibodies to the surface of different hepatocytes and to 

evaluate the extent of internalization of fluorescent trianntenary galactosyl-

compounds. For this purpose the fluorescence intensity of staining between 

untreated and treated cells, expressed as the shift in median fluorescence 

intensity (MFI), was compared, as illustrated in Figure 17. 
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Figure 17. Quantitative flow cytometry measurement principle 
Example evaluation of the shift in median fluorescence intensity (MFI) between a population 
of untreated cells (depicted in grey) and cells with an internalized fluorochrome-labeled 
triantennary galactosyl compound (in green) 158. 
 
 

1.5.3 Surface Plasmon Resonance (SPR) 

Surface plasmon resonance (SPR) is a label free technique that allows the 

direct analysis of interactions between analytes in solution and a ligand 

attached to a sensor chip surface, providing a continuous readout of complex 

formation and dissociation 159. In principle, the signal is directly proportional to 

the increase in molecular mass on the sensor surface. SPR technology can 

thus be generally applied to affinity and kinetic analysis of protein-protein, 

protein-peptide, protein-DNA, and protein-small molecule interactions. The 

information gathered from a few binding curves is sufficient for the 

determination of the association- and dissociation-rate constants, ka and kd. 

The KD (equilibrium dissociation constant) describing the affinity of binding is 

derived from the ratio between koff and kon. Affinity constants can be 

determined from the millimolar to picomolar range; association-rate constants 

from 103 to 108 M–1s–1; and dissociation-range constants, from 10–5 to 1 s–1 
160
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Figure 18. The basic outline of a SPR measurement  
Picture from Cooper 161. 

Figure 18 shows a typical binding cycle observed in an SPR measurement. A 

binding protein (e.g. a receptor or antibody) is immobilized on the sensor 

surface with appropriate chemistry. A solution of an analyte is passed over the 

protein. As the analyte binds to the surface, the refractive index in the medium 

adjacent to the sensor surface increases, leading to an increase in the 

resonance signal. At equilibrium, by definition, the amount of analyte 

associating or dissociating from the receptor is equal. The response level at 

equilibrium is related to the concentration of active analyte in the sample. 

During the Dissociation phase, the analyte solution is replaced by running 

buffer and the analyte-receptor complex is allowed to dissociate. The half-

lives of some biological complexes can be considerably long, thus a pulse of a 

suitable regeneration solution (e.g. high salt, EDTA, or low pH) is used to 

disrupt binding and regenerate the free receptor. The entire binding cycle is 

normally repeated several times with varying concentrations of analyte to 

generate a robust data set for global fitting to an appropriate binding 

algorithm. The affinity of the interaction can either be calculated from the ratio 

of the rate constants (KD= koff / kon) or by linear or nonlinear fitting of the 

response at equilibrium versus varying concentrations of analyte. 
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In the Biacore system, samples are delivered to the sensor surface using a 

micro-fluidic system. This ensures reproducible sample delivery and low 

sample consumption. The sensor surface is a glass slide coated with a thin 50 

nm gold film mounted in a plastic carrier. The gold surface is derivatized to 

allow covalent attachment of molecules using well-defined chemistry 162. 

Changes in the refractive index at the sensor surface are measured. The 

sensor surface is divided into several sensing areas or flow cells, and a signal 

can be obtained from each cell. In the same injection, a sample can therefore 

pass over both active and reference cell.  

SPR technology has many practical advantages: detection is instantaneous, 

allowing continuous real-time monitoring of molecular binding, no labels are 

required on any of the molecules involved, and the light used in detection is 

reflected from the back of the sensor surface and does not penetrate the 

sample. During sample injection, any change in the refractive index is 

detected. A change can either be caused by a binding event or by a difference 

in refractive index between sample solution and running buffer. The signal 

related to the ligand binding alone is obtained by subtracting the signal 

obtained on the reference cell from that obtained on the ligand cell. When the 

injection is terminated, running buffer flows again over the surface, and 

dissociation of the analyte-ligand complex can be observed. The output from 

the SPR detector is called a sensorgram, and is a plot of the SPR response 

versus time. The SPR response is expressed in resonance units (RU), where 

one RU corresponds to 10–6 refractive index units.  

Amine Coupling 

Amine coupling is routinely applied for immobilization of proteins. Nearly all 

proteins and peptides possess multiple primary amine groups, which are often 

surface-exposed due to their hydrophilicity. In the case of proteins, lysines are 

often randomly distributed over the surface and amine coupling will result in a 

random and non-predictable immobilization of the protein. This sometimes 

leads to a massive decrease of surface activity, e.g. more than 80% loss is 

reported for some antibodies, and this might also influence binding affinity and 

kinetics 163. Analysis of the amino acid sequence, crystal structure and 

especially the binding site are recommended to avoid interference 75. Another 
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drawback is the usage of acidic conditions for surface attraction. Acid labile 

proteins will result in inactive surfaces. Additionally, several popular buffer 

systems like Tris, bearing primary amines, are not suitable.  

 

Figure 19. H1-CRD immobilized on CM5 sensor chip via amine coupling 

 

Even though there are several drawbacks, amine coupling is still the most 

frequently used immobilization technique. A direct reaction of amine groups 

with active esters generated by N-hydroxysuccinimide (NHS)/ 1-ethyl-3-(3-

dimethylaminopropyl)carbodiimide (EDC) is the chemical basis. In order to 

increase efficiency of the reaction, proteins are concentrated in the dextrane 

matrix. By lowering the pH of the immobilization buffer just below the pI of the 

protein, surface attraction is optimized. Amine groups become positively 

charged and get attracted by the negatively charged carboxyl groups of the 

matrix (Figure 19). A careful evaluation of pH and protein concentration is 

needed to optimize the attraction (pH scouting) 164. 

In case of the H1-CRD, the immobilization conditions were extensively 

evaluated and optimized by D.Ricklin 75.
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2. Materials and Methods 

All buffers and solutions were prepared with double distilled water (ddH20). 

2.1  Expression and Purification of ASGP‐R H1‐CRD  

Material for H1‐CRD production 

The expression vector pET3b (Novagen) containing the cDNA of the human 

ASGP-R H1-CRD, designated pET3H1C 73 was kindly provided by Prof. M. 

Spiess (Biocenter, University of Basel, Switzerland). E.coli AD494 (DE3) was 

from Novagen. Bacto-Yeast extract, Bacto_Agar and Bacto-Tryptone were 

purchased from Becton Dickinson and were used for LB (Luria-Bertani) and TB 

(Terrific Broth) culture media 165. Sepharose 4B column material, ampicillin, 

kanamycin, chloramphenicol, carbenicillin and protein standard BSA solution 

were obtained from Sigma. Dialysis tubes were from Roth. 

Expression 

AD494(DE3) cells, carrying the construct pET3bH1C, were grown in 500 ml TB 

medium supplemented with 1% glucose, 50 µg/ml carbenicillin and 15 µg/ml 

kanamycin at 300 rpm and 37°C. The culture was inoculated with cells grown 

over night under the same conditions, aiming at an OD600 of 0.1 to start growth. 

Expression was induced at OD600 of 0.8 by addition of IPTG to a final 

concentration of 0.4 mM, and lasted five hours. Cells were harvested by 

centrifugation at 4°C and 5000 rpm for 10 minutes. The cell pellets were stored 

either at 4°C over night, or at –20°C in case the purification of H1-CRD from 

inclusion bodies was carried out later. 

Dialysis tubes preparation 

Dialysis tubes ZelluTrans 6.0 with a cutoff of 10 kDa were from Roth. The tubes, 

20 cm long, were gently stirred in 500 ml 10 mM NaHCO3 (pH 8.0), 1 mM 

EDTA, preheated to 80°C, during 30 minutes. The buffer was exchanged with 

water, decreasing the temperature stepwise to 60°C, 40°C and 25°C every 10 

minutes. The tubes were transferred into 1 mM EDTA and stored at 4°C with 

the addition of 0.01% NaN3. Before use, tubes were washed out extensively 
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with water and preincubated for 10 min in dialysis buffer.  

2.1.1 Solubilization and Renaturation of H1‐CRD  

Resuspension buffer: 20 mM Tris, pH 8 

Dilution buffer: 20 mM Tris, 0.5 M NaCl, 25 mM CaCl2, pH 8 

Dialysis buffer: 20 mM Tris, 0.5 M NaCl, 25 mM CaCl2, pH 7.5 

A cell pellet originating from 500 ml expression culture was resuspended in 25 

ml resuspension buffer with addition of 8 M urea and 0.1‰ β-mercaptoethanol. 

Complete cell lysis was achieved by ultrasonication on ice, in intervals of 20 

seconds sonication and 10 seconds stop, for a total of 30 minutes. The protein 

suspension was centrifuged at 4°C and 19000 rpm for 20 minutes to separate 

soluble proteins from cell debris. The supernatant containing solubilized 

proteins was collected and stored on ice. The cell debris pellet was 

resuspended once more in 5 ml resuspension buffer with addition of 8 M urea 

and 0.1‰ β-mercaptoethanol, followed by 4 minutes ultrasonication and 

centrifugation as described above. The two supernatants were combined and 

resuspension buffer added to reach a final volume of 50 ml with addition of 0.5 

M NaCl, 25 mM CaCl2 and 0.3‰ β-mercaptoethanol. The protein suspension 

was incubated 1 hour on ice under light shaking followed by dilution with 25 ml 

dilution buffer and centrifugation at 4°C and 22’000 rpm for 20 minutes. The 

supernatant was collected and partitioned into three dialysis tubes holding 25 ml 

protein suspension each. The dialysis tubes were immersed in 400 ml 

precooled (4°C) dialysis buffer and allowed to equilibrate for 8-12 hours under 

light stirring. Five to six buffer changes were made in total, each step lasting 8-

12 hours, to ensure complete refolding. The refolded protein solution was 

collected and centrifuged at 4°C and 22’000 rpm for 1 hour to remove any 

precipitates prior to purification by affinity chromatography.  

2.1.2 Purification by Affinity Chromatography  

A 20 ml Galactose-Sepharose column was prepared as described in 166.The 

column was stored in 20% methanol at 4°C. 

Wash buffer: 20 mM Tris, 0.5 M NaCl, 25 mM CaCl2, pH 7.8 
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Elution buffer: 20 mM Tris, 0.5 M NaCl, 2 mM EDTA, pH 7.8 

Affinity chromatography was used to purify H1-CRD on an FPLC-system at a 

flow rate of 1 ml/min. First, 100-200 ml of the refolded and dialyzed protein 

solution were loaded onto a 20 ml Galactose-Sepharose column, followed by 

washing with 2.5 CV of wash buffer to remove non-bound proteins. Elution of 

H1-CRD was carried out with 3 CV of elution buffer. The eluted fractions were 

stored at 4°C.  

2.1.3 Separation of H1‐CRD Monomers and Dimers by IEC  

All buffers used for HPLC were prepared with gradient-grade water G 

Chromasolv from Sigma and filtered before use (0.22 µm).  

Ion exchange chromatography (IEC) was used to separate monomers and 

dimers of H1-CRD on a HPLC system (Agilent). A DEAE column (Shodex), a 

weak positively charged anion exchanger, was employed for the separation.  

Buffer A: 25 mM Tris pH 8.0 

Buffer B: 25 mM Tris, 250 mM CaCl2, pH 8.0 

The column was preconditioned with running buffer A and B. The buffers were 

run at 0.5 ml/min in a ratio of 85:15 (The pressure was set to max. 55 bar 75.) 

Separation of monomers and dimers was achieved by slowly increasing the 

percentage of running buffer B. By changing the gradient, the concentration of 

CaCl2 increases which gradually displaced the proteins from the column. 

Monomers, which are less charged than the dimers, will elute at a lower CaCl2 

concentration. Therefore, an initially low salt content of the samples is crucial as 

the elution is ion concentration dependent. Since the H1-CRD samples 

contained a high salt concentration (0.5 M NaCl) as a result of the previous 

purification step, a buffer change was necessary prior to IEC separation. 

Desalting was accomplished either by loading 1.5 ml sample onto a HiTrap 

desalting column (Amersham) followed by elution with 2 ml running buffer A or 

by ultrafiltration and buffer exchange by centrifugation using Icon concentrators 

(Pierce) with cutoff 9 kDa and 3 washing steps with buffer A. 

The protein samples were injected, typically 1.4 ml at a time, on the DEAE 

column and separation was carried out according to Table 1. 
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Table 1. Buffer gradient for the separation of monomers and dimers by HPLC IEC  

Time (min) % Buffer B 
2 15 
25 40 
27 40 
29 15 
32 Stop 

The elution of monomers started after 15 min and that of dimers at around 23 

min. Fraction collection was peak based with the lower threshold set to ca. 100 

mAu. While the column was kept at 20°C, both samples and collected fractions 

were cooled (5°C) during the run. 

2.1.4 Concentration by HPLC Affinity Chromatography  

The Monomers purified by HPLC IEC were further run on a 2 ml GalNAc-

Sepharose column (Bio- scale MT2 column) on HPLC, both to reconfirm the 

binding activity of the protein and to concentrate the samples. The column was 

preconditioned with running buffer containing 10 mM HEPES (pH 7.4), 10 mM 

CaCl2 and kept at a constant flow-rate of 1 ml/min. The samples were loaded 

onto the column by repeated injections of 1.4 ml, and eluted with a gradient of 

buffer B (10 mM HEPES pH 7.4, 2 mM EDTA) as described in Table 2.  

Table 2. Buffer gradient for the concentration of H1-CRD monomers by HPLC affinity 
chromatography  

Time (min) % Buffer B 
2 0 
25 100 
27 100 
29 15 
32 Stop 

Monomer and dimer fraction collection was peak-based and the collected 

fractions were stored at 4°C for further analysis.  

2.1.5 Final Buffer Exchange and Concentration 

H1-CRD monomer fractions (and dimer fractions) were finally concentrated and 

the buffer was changed to storage buffer using Icon concentrators centrifugal 

filter devices with cutoff 9 kDa (Pierce). 

Storage buffer: 10 mM HEPES, 150 mM NaCl, 10 mM CaCl2, pH 7.4 
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2.1.6 SDS‐polyacrylamide Gelelectrophoresis (SDS‐PAGE) 

SDS-PAGE is used to separate proteins depending on their molecular weight. 

The anionic detergent SDS denatures secondary and non–disulfide–linked 

tertiary structures, and applies a negative charge to each protein, non-covalent 

bonds, while mercaptoethanol reduces disulfide bonds. The molecular mass 

can be estimated by using a molecular marker. 

The gels were casted and run according to the method of Lämmli 167 on a 

Miniprotean II apparatus (Bio-Rad). Acrylamid 4k solution (30%) was from 

Applichem. If not other wise stated, the gels contained 15% Acrylamid. Low 

molecular weight marker (LMW) was from Sigma, precision marker, SDS, and 

bromphenol blue were from Bio-Rad. All other chemicals were obtained from 

Fluka BioChemika. 

Stacking buffer: 1.25 M Tris, pH 6.8 

Separating buffer: 1.9 M Tris, pH 8.8  

Non-reducing SDS-PAGE sample buffer (5x) : 200 mM Tris, 37.5% (v/v) 

glycerol, 5% SDS, 1 dip bromphenol blue, pH 6.8  

Reducing SDS-PAGE sample buffer is Non-reducing sample buffer containing   

2 M β-mercaptoethanol 

Running buffer (10 x) : 0.25 M Tris, 2 M glycine, 1% SDS, pH 8.3  

2.1.6.1 Enhanced Coomassie‐blue staining 

Coomassie Brilliant Blue G-250 (CBB G-250) was from Bio-Rad, aluminum 

sulfate from Siegfried, phosphoric acid (85%) from Sigma, and ethanol 98% 

from Fluka. 

Fixation solution: Ethanol 10%, phosphoric acid 2.35% (w/v) 

Enhanced Coomassie staining solution: CBB G-250 0.02%, ethanol 10%, 

phosphoric acid 2.35% (w/v), aluminium sulfate 5%  

Comassie blue was dissolved in ethanol before adding the rest of the 

ingredients. 

The enhanced Coomassie solution 168 was prepared freshly. 
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The SDS-PAGE-gels were fixed for 30 min, kept in water for 5 min, and then 

incubated for 1-2 h in enhanced Coomassie solution. The gels were briefly 

washed with water or kept in water over night before documentation. 

2.1.7 Western Blotting (WB) 

The blotting 169 was performed using the Trans-blot SD semi-dry transfer cell 

(Bio-Rad). The nitrocellulose (NC) membrane and the whatman filter paper 

were also from Bio-Rad. Mouse anti-human H1-CRD and polyclonal chicken 

IgY 166 were produced at our institute, HisDetector Ni-AP kit was from KPL, 

mouse anti-c-myc antibody was a kind gift of Prof. Michael Halls group. The 

secondary antibody anti-mouse IgG (Fc specific)-alkaline phosphatase and 

Ponceau S red solution were obtained from Sigma. The alkaline phosphatase 

substrate- mixture 5-bromo-4-chloro-3-indolyl phosphate dipotassium (BCIP) / 

nitrotetrazolium blue chloride (NBT) was from Fluka. 

Transfer buffer: 25 mM Tris, 150 mM glycine, 20% (v/v) methanol) 

TBS: 10 mM Tris, 150 mM NaCl, pH 7.5 

TBST: TBS with 0.05% Tween®20  

Substrate buffer: 100 mM Tris (pH 8.8), 100 mM NaCl, 5 mM MgCl2 

Substrate solution: 0.4% NBT/BCIP in substrate buffer (always prepared 

freshly)  

For blotting, 10 pieces of whatman paper and one NC membrane were 

incubated in transfer buffer. First, 5 Whatman papers were placed on the anode 

followed by the NC-membrane, the SDS-PAGE gel, additional 5 papers and the 

cathode. Transfer was carried out for 1 h applying 15 V. After the transfer the 

membrane was stained with Ponceau S solution to visualize the marker and 

verify the transfer. Afterwards, the membrane was washed with TBS for 10 min. 

Then the membrane was blocked for 15 min. with blocking buffer (2% BSA in 

TBS). After 3 washing steps (2x TBST, 1x TBS for 10 min each), the membrane 

was incubated with the primary antibody (in TBS, 1% BSA, 0.02% sodium 

azide) for either 1-2 h at RT or over night at 4°C. Additional 3 washing steps as 

described above were carried out before incubation with the secondary alkaline 

phosphatase coupled antibody (1:5’000 in TBS, 1% BSA, 0.1% sodium azide) 
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for 1 h at RT. After additional 3 washing steps the complex was visualized with 

BCIP/NBT. 

If using the HisDetector Ni-AP kit fror murine scFv displaying a His-tag, the NC 

membranes after blotting were treated as described in chapter 2.9.6. 

2.1.8 Bradford Estimation of Protein Concentration  

The Bradford assay is a common procedure for determining microgram 

quantities of protein 170. The Coomassie Blue G-250 dye in phosphoric acid and 

ethanol has an absorbance maximum of 465 nm. When mixed with protein, the 

absorbance maximum of the dye shifts to 595 nm. The protein stabilizes the 

anionic form of the dye by hydrophobic and ionic interactions principally with 

arginine residues, and to a lesser extent histidine, lysine, tyrosine, tryptophan 

and phenlyalanine residues. 

Sigma BSA Protein standard 1 mg/ml was from Sigma. Untreated 96-well plates 

were from Nunc. 

Bradford dye solution: 0.01% Coomassie Blue G-250, 10% (v/v) phosphoric 

acid (85%), 5% (v/v) ethanol, filtered. 

BSA standard was diluted from 1mg to 0.8, 0.6, 0.4, 0.2, and 0.1 mg in PBS. 

The protein to quantify was diluted if necessary. 10 µl of the samples were 

pipetted into a 96-well plate and 200 µl of Bradford dye solution was added, all 

samples were measured in triplicates. The OD was measured after 15 min at λ= 

595 nm on the Spectramax 190 plate reader (Molecular Devices) and analyzed 

using the program for Bradford assay. 
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2.2 Competitive Solid Phase Binding Assay  

Material 

Biotinylated polyacrylamide-type glycoconjugate with 20%mol of β-N-acetyl-D-

galactosamine and 5%mol of biotin (biotinylated GalNAc-PAA) was obtained 

from Lectinity. HEPES (4-(2-Hydroxyethyl) piperazine-1-ethanesulfonic acid), 

oxalic acid, CaCl2 and Methyl-β-glucopyranoside were from Fluka, Methyl α- 

and β-galactopyranoside and bovine serum albumin (BSA) was from Sigma. 

Lactose, N-acetyl-D-galactosamine and Galactosamine were obtained from 

Pfanstiehl Laboratories. D(+)-Galactose was purchased from Senn Chemicals. 

NaCl was from Merck. Streptavidin-peroxidase (POD) conjugate was from 

Roche Applied Science. Fetal bovine serum (FBS) was from Invitrogen. The 

Peroxidase substrate kit ABTS (2, 2’-azino-di-[3- ethylbenzthiazoline-6-sulfonic 

acid]) was obtained from BioRad and MaxiSorp 96-well microtiter plates were 

from Nunc. H2-CRD was produced by Dr.S.Rabbani, Methyl-acetylglucosamine 

was from Dr. Parday. 

Precomplexation of biotinylated PAA‐polymer with Streptavidin‐POD 

20 µl biotinylated β-GalNAc-PAA-polymer (1 mg/ml) were mixed with 80 µl of 

Strepavidin-POD-conjugate (500 U/ml), 20 µl FBS, and 80 µl of HBS+1mM 

CaCl2 to give 200 µl complex containing 100 µg/ml biot. β-GalNAc–PAA-polymer 

and 200 U/ml Streptavidin-POD-conjugate. The complex was formed at 37°C 

for 2 h on a thermomixer. 

Precomplexed PAA-polymer was stable for several weeks when stored at 4ºC.  

2.2.1 Evaluation of Small Molecules 

Compounds that were not soluble in HBS + Ca2+ alone, were first dissolved at 

200 mM in DMSO before dilution with the buffer. The final DMSO-concentration 

in the assay did not exceed 5%. 

Flat-bottom Nunc MaxiSorb 96 well Immunoplates were coated over night at 

4°C with a volume of 100 µl per well of a 3 µg/ml solution of recombinant human 

H1-CRD in 20 mM HEPES, 150 mM NaCl, 1 mM CaCl2, pH 7.4 (Ca2+-

containing HEPES-buffered saline, HBS + Ca2+). The coating solution was 
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discarded and the wells were blocked with 150 µl/well of 1% BSA in HBS+Ca2+ 

for a minimum of 2 h at 4°C. Then the plates were washed 3 times with 150 

µl/well of HBS + Ca2+ and tapped dry on tissue paper to remove excess liquid. 

Immediately followed by the addition of 50 µl/well of the compound-dilutions and 

50 µl of a preformed complex of biotinylated GalNAc–PAA-polymer with 

streptavidin-POD, diluted to give a final concentration of 0.5 µg/ml of PAA-

polymer and 1U/ml of streptavidin-peroxidase. The plates were incubated for 2 

hours at room temperature in a humid chamber on a laboratory shaker at 100 

rpm. After the incubation, the plates were carefully washed twice with HBS + 

Ca2+ followed by the addition of ABTS–substrate (100 µl/well). Color was 

allowed to develop for 2 min and then the reaction was stopped with 100 µl/well 

of oxalic acid (2%) in H20. Bound GalNAc-PAA-complex was measured by 

determining the optical density (O.D.) of the occurring blue-green color at λ = 

415nm with a Spectramax 190 plate-reader (Molecular Devices).  
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2.3 General Methods for Mammalian Cells  

Material for mammalian cell‐culture 

All cell culture media, supplements, and phosphate-buffered saline (PBS) were 

purchased from Invitrogen, except Trypsin/EDTA (1x) in HBSS was from Sigma, 

and Collagen type S from rat’s tail was from Roche Applied Science. HepG2 

(human hepatocellular carcinoma) and SK-Hep1 (human liver adenocarcinoma) 

cell lines were obtained from DSMZ (Deutsche Sammlung für Mikroorganismen 

und Zellkulturen). Huh7 (human hepatocellular carcinoma) was a kind gift of the 

group of Prof. M.H. Heim from the research department at the University 

Hospital Basel. Cell culture flasks, plates, cryo-tubes and plastic pipettes were 

from TPP, Falcon, Nunc, and BD Bioscience. Asialofetuin from fetal calf serum 

Type I, NaN3, Triton X-100 (polyethylene glycol tert-octylphenyl ether), 

Paraformaldehyde, N-propyl gallate, and sodium borohydride (NaBH4) were 

obtained from Fluka. Bovine serum albumin (BSA), DMSO (Hybridoma grade), 

and Mowiol 4-88 were from Sigma. Cover glasses (20 mm x 20 mm) and round 

(d =18 mm) were from Menzel-Gläser. Monoclonal mouse anti-human ASGP-R 

(30201) was from Calbiochem, mouse anti-β-tubulin from Boehringer-

Mannheim, R-Phycoerythrin (R-PE)-conjugated and Fluorescein-5-

isothiocyanate (FITC)-coupled goat anti-mouse IgM/G/A from Southern 

Biotechnology, and Alexa Fluor® 488-conjugated goat anti-mouse IgG (H+L) 

from Molecular Probes.  

2.3.1 Standard Protocol for Freezing of Mammalian Cells 

Mammalian cells freeze most efficiently at concentrations of between 1 and 

10·106 cells/ml (= final suspension in freezing medium).  

Freezing medium: The cells' regular growth medium containing in minimum 

10% FBS was supplemented with 10% DMSO. The amount of serum in the 

medium was increased up to 20% if the cells were sensitive (e.g. Hybridoma). 

The freezing medium was prepared freshly and chilled on ice. 

Adherent cells were harvested using their standard protocol (e.g. washing with 

Ca2+/Mg2+-free buffer, harvesting with Trypsin/EDTA solution, and quenching 

with complete medium containing FBS). The resuspended cells were counted.  
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The cells were pelleted by centrifugation for 5-10 minutes at 1000 rpm and 4°C. 

The supernatant was discarded and the cells carefully resuspended in ice-cold 

freezing medium. Aliquots of 1ml of the cell suspension were dispensed into 

prepared cryovials on ice. The vials were immediately transferred to a 

Styrofoam-box in the -80°C-freezer. Within 24 h of freezing, the vials were 

transferred to the liquid nitrogen storage. 

2.3.2 Production of Mouse anti‐human H1‐CRD Antibodies 

Murine hybridoma cells producing anti human H1-CRD antibodies were 

established by Rita Born 166. 

2.3.2.1 Adaptation of Hybridoma Cells to low Serum Conditions  

Complete hybridoma medium with serum: 

RPMI 1640 or IMDM, 15% FBS, 2 mM L-glutamine, 1% MEM non-essential 

amino acids (NEAA), 100 U/ml Penicillin and 100 µg/ml Streptomycin.  

Once the growth performance of the cells grown in complete medium with 

serum was stable, the serum reduction process was started. Therefore, 

complete medium with serum was gradually replaced by 50% of complete 

medium already incubated with the cells for about 2 days (so called conditioned 

medium) and 50% of fresh, serum-free complete medium. The cells tend to 

detach and start growing in suspension while growing under serum-reduced 

conditions, which is ideal for the production of antibodies in roller bottles, as 

higher cell densities can be achieved during production. Cells used for antibody 

production were maintained in medium supplemented with 1.5 or 3% of low IgG 

FBS in order to avoid co-purification of bovine antibodies from the serum during 

affinity chromatography. 

2.3.3 Purification of Murine Monoclonal Antibodies 

Murine IgG usually show better binding to protein G than to protein A, but have 

to be eluted at lower pH, which sometimes causes loss of binding activity or 

aggregation of the eluted protein.  

Hybridoma were grown in roller bottles under serum-reduced conditions (with 
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low bovine IgG FBS), the collected medium was centrifuged 10 min at 6500 g to 

remove cells and debris. The pH of the cleared supernatant was corrected to 

7.4 with NaOH if necessary, filtered (0.2 µm) and immediately purified. 

HiTrap protein G HP 1ml columns were from GE Healthcare. 

Wash buffer: PBS, pH 7.4  

Elution buffer: 0.1 M glycine, pH 3.0 

Neutralization buffer: 1.0 M Tris, pH 8.8 (all solutions were filtered) 

The column was washed with 5 column volumes (CV) of water before 

equilibration with 10 CV of washing buffer. Filtrated hybridoma culture 

supernatant was loaded at a flow rate of 0.4-0.5 ml/min, and then the column 

was extensively washed with wash buffer until the OD280 reached baseline. The 

IgG was eluted with 10 CV of elution buffer and the eluates of 1ml collected into 

tubes already containing 50 µl of 1 M Tris buffer (pH 8.8) for rapid 

neutralization. 

The collected eluates were combined, then the buffer was exchanged to PBS 

and the samples concentrated by using Icon centrifugal filter devices with cutoff 

9 kDa (Pierce). 

Final concentrations of purified IgG in PBS were determined by absorbance 

A280 measurement (IgG factor: A280 of 1.35 = 1 mg/ml). 

2.3.4 Isotyping of anti‐H1‐CRD Antibodies 

Isotyping ELISA-Kit SBA Clonotyping sytem / HRP was from Southern Biotech. 

A Nunc MaxiSorb 96-well Immunoplate was coated over night at 4°C with 3 

µg/ml H1-CRD in HBS+Ca2+ (1 row buffer only, for blank). The coating-solution 

was discarded, and the plate was tapped dry on several layers of tissue paper. 

The plate was incubated with 150 µl/well of blocking buffer for 2 h at 4°C and 

then washed 3x with HBS+ Ca2+ (150 µl/well). The antibodies diluted to 5 µg/ml 

in HBS+ Ca2+ were added to the wells (100 µl/well) in duplicates, and the plate 

was incubated 2 h in a humid chamber on the shaker at 100 rpm. Then 100 

µl/well of the isotyping antibodies diluted 1:500 in HBS+Ca2+ were added to the 

cells and incubated for 1.5 h. The plate was washed 4 times with HBS + Ca2+ 
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(150 µl/well) and tapped dry before detection. ABTS substrate (100 µl/well) was 

added and color-development was stopped after 5 min by adding 100 µl/well of 

stop-solution (2% oxalic acid). O.D. was measured at λ = 415nm. 

2.3.5 Hepatoma Cell‐lines Culture Conditions  

Hepatoma cell lines were propagated in Dulbecco’s modified Eagle’s medium 

(DMEM) high-glucose, supplemented with 10% fetal bovine serum (FBS), 2 mM 

L-glutamine, 100 U/ml penicillin, and 100 µg/ml streptomycin (complete 

medium). During the incubation steps of the cells outside the incubator, medium 

with a CO2-independent buffer system was used to stabilize the pH during 

incubation (DMEM high-glucose, without phenol red and FBS, containing 

25 mM HEPES). 

2.3.6 Propagation of Hepatoma Cells 

Collagen coating of T75‐flasks 

To prepare collagen-coated flasks the bottoms of T75-flasks were covered with 

0.5-1 ml of a 0.25 mg/ml collagen-solution diluted from a 3 mg/ml stock of 

Collagen S (Roche) in sterile acetic acid (0.5 M, pH 2.8). The flasks were stored 

at 4°C and washed once with 5 ml of PBS before use. 

Twice weekly, cells grown in 75cm2 area cell culture flasks (T75) were washed 

first with DPBS detached with Trypsin/EDTA solution for 2-3 min at 37°C. Then 

the cells were suspended in an equal amount of DMEM and transferred to a 15 

ml falcon tube. To propagate the cultures the cells were centrifuged at 1000 rpm 

for 5-10 min, the old medium was removed and the cells were resuspended in a 

defined amount of fresh medium. HepG2 cells were spitted by 1/5 or 1/10 into 

collagen-coated flasks and SK-Hep1 1/10 or 1/20 into untreated flasks 

containing 20 ml of complete medium. 

2.3.7 Preparation of Cover Slips for Microscopy 

Collagen coating of cover slips 

The cover slips were cleaned from dust, degreased and disinfected before use. 

First, the cover slips were separated one from another and placed in a 500 ml 
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beaker filled with water. Then the water was exchanged and the beaker was 

sonicated in a water-bath for 30 min. This procedure was repeated twice, and 

then the water was substituted with 50% ethanol and sonicated again for 30 

min. This step was repeated with increasing concentrations of ethanol (70% and 

95%). Finally, the slips were stored in 95% ethanol until use. 

The cleaned cover slips were dripped off excess ethanol, kept shortly over the 

flame of a Bunsen burner, and placed one per well in a 6-well (square slips) or 

12-well plate (round slips) with the help of sterile tweezers. Then they were 

covered with 60 µl of a diluted collagen solution (0.5 mg/ml in sterile-filtered   

0.5 M acetic acid, pH 2.8) and incubated overnight at 4ºC. On the next day, the 

wells were washed once with PBS to remove the acetic acid, then filled with 1ml 

of PBS and kept at 4ºC until use. 

Preparation of cell‐covered slips 

The cells were detached and centrifuged as described above, then they were 

counted in a cell counting chamber (Neubauer improved hemocytometer). The 

viability of the cells was checked by trypan blue-exclusion. 2·105cells in 1-2 ml 

of medium/well were seeded to the prepared 6-well or 12-well plates containing 

collagen coated cover-slips and incubated over night in an incubator at 37ºC, 

5%CO2 (v/v in humified air).  

Fixation of the cells 

Fixation buffer (3% paraformaldehyde in PBS): 

Freshly before use, a mixture of 0.3 g Paraformaldehyde (PFA) and 8.8 ml H20 

containing 10 µl NaOH (1M) was heated in a water-bath to 60ºC in a closed 

15ml-Falcon tube until the solution cleared up. After cooling down to room 

temperature, 1 ml of 10x PBS and 20 µl of HCl 1M were added to adjust the pH 

between 7 and 7.5. The pH was checked using indicator paper, (pH-electrodes 

could be destroyed by the fixative). 

After carefully washing the cells twice with PBS, they were fixed in fixation 

buffer for 30 min at room temperature or over night at 4ºC. 
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Mounting of the slides  

Mowiol mounting buffer: 

20g of Mowiol were dissolved in 80 ml PBS, then 40 ml of glycerol and 0.75% of 

the antioxidant N-propyl-gallate (Fluka) as anti-fading agent were added and the 

solution was stirred for 8h. Undissolved particles were removed by 

centrifugation (15 minutes at 12’000 rpm) and the buffer was stored airtight at 

4ºC in the dark. 

The fixed, cell-covered cover slips were mounted onto glass-slides with a drop 

of Mowiol-mounting buffer. The mounted slides had to dry for at least 30 

minutes before microscopy. After 12 hours, the mounting buffer got solid and 

the slides could be stored in the dark at 4ºC for up to six months.

2.4 Immunohistochemistry (IHC) 

Performed at the University Hospital Basel in the Group of Prof. L. Terrachiano. 

Different procedures for the tissue staining were tested: Sections of 

paraformaldehyde-fixed, paraffin-embedded human liver tissue were dewaxed 

and the antigen retrieved either by microwaving in citrate buffer (pH 6.0) at 98°C 

for 30 or 60 min, or by steaming in citrate buffer (pH 6.0, pH 1-2, pH 10-11) at 

120°C for 5 min, by treatment with 3 drops / 5min proteinase K, by digest with 1 

mg/ml pronase XIV at 37°C for 15 min, or at 4°C for 30 min, or by incubation 

with 1 mg/ml trypsine at RT for 30 min. Optionally endogenous avidin/biotin 

activity was blocked. Sections were dehydrated in methanol-peroxide for 30 min 

and blocked with murine serum for 30 min, followed by incubation with 0.5–6 

µg/ml anti-H1-CRD IgG for 30 min. After capturing with avidin-labeled goat anti-

mouse IgG for 30min and with biotin-labeled HRP for 30 min, sections were 

stained with DAB substrate and optionally counterstained with Harris’ 

hematoxylin prior to mounting onto glass slides. 
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2.5 Immunocytochemistry  

2.5.1 Immunofluorescence Staining 

2.5.1.1 Indirect Staining of Cells 

Fixed cells were washed with PBS 3-4 times during 10-20 min to get rid of the 

paraformaldehyde and then permeabilized for 15 minutes at room temperature 

with 1 ml of 0.1% Triton X-100 in PBS.  

Aldehyde quenching 

To reduce autofluorescence of the fixed cells, the slides were treated twice for 

15 min with 1 ml of freshly prepared ice-cold sodium borohydride (10 mg/ml in 

PBS) on ice, then washed abundantly with PBS until all bubbles disappeared 

and kept in PBS at room temperature for about an hour. After this, the PBS was 

removed and the cover slips were covered with 80 µl of the first antibody, 

diluted 1:50 in PBS and incubated for 2 hours at room temperature. After 

washing the cover slips twice with PBS for 5 min, they were incubated with 80 µl 

of the secondary antibody diluted in PBS (Cy3®-antibody 1:3000, Alexa Fluor® 

488-antibody 1:800) for one hour at room temperature in the dark (Figure 20). 

Then the cover slips were washed again and mounted with Mowiol-mounting 

buffer onto glass-slides as described in chapter 2.3.7.  
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Figure 20. Indirect detection of antibody binding to the receptor  

2.5.1.2 Direct Staining of Cells 

Texas Red labeling of the antibodies and asialofetuin 

The FluoReporter Texas Red X protein-labeling kit from Molecular Probes was 

used to label the antibodies and asialofetuin. The Texas-red X-dye provided in 

this kit has a succinimidyl-ester moiety, which reacts efficiently with primary 

amine groups of proteins (but also of glycine and Tris) to form stable dye-

protein conjugates. The labeling was performed following the instructions of the 

manufacturer. 

The buffer (100 mM glycine, Tris-buffered) of the purified monoclonal antibodies 

was changed to PBS by concentrating the antibody-solutions three times in 

Micronon YM 10 centrifugal devices (Millipore) and then the samples were 

diluted with PBS to a final volume of 250 µl. Asialofetuin was dissolved in PBS 

The antibody- or asialofetuin-solutions (200 µl) were mixed for one hour with the 

calculated amount of fluorescent dye. The final concentration of the labeled 

material was estimated by calculating the employed amount of antibody or 

asialofetuin with the obtained volume after the purification step of the labeling 

procedure. The resulting conjugates were stored at 4ºC and were stable for 

several months. 



  

 Materials and Methods         Immunocytochemistry 

  2-58 

2.5.2 Receptor Specific Uptake of Ligands into HepG2 Cells 

Receptor‐mediated endocytosis experiments 

Continuous receptor-mediated endocytosis (RME) was studied on living cells 

grown on collagen-coated cover-slips. Maintaining the physiological pH is 

essential to keep the cells healthy. Most media and buffers in cell culture use a 

carbonate buffer system and require a 5% carbon dioxide atmosphere to 

maintain the proper pH. To prevent pH changes whenever the plates were 

removed from the incubator, a HEPES buffered medium was used. The cells 

were carefully washed twice with 1-2 ml of serum-free HEPES-buffered DMEM 

medium to remove residual serum and antibiotics. Then they were serum-

starved for 1h at 37ºC. The medium was removed again and replaced by the 

unlabeled antibodies, Texas Red®-labeled asialofetuin (TR-ASF), or Texas 

Red® (TR)-labeled antibodies diluted in serum free medium. Then the plates 

were incubated for 20 minutes at 37ºC in an incubator to allow internalization. 

Afterwards the cells were carefully washed twice with PBS and then fixed for 30 

min at room temperature in the dark (flow chart depicted in Figure 22).  If 

unlabeled antibody was used for the experiments, the cells were permeabilized 

after the fixation step as described in chapter 2.5.1.1 and incubated with a 

fluorochrome labeled 2. Antibody (flow chart depicted in Figure 21). After 3 

additional washings with 1ml of PBS the slides were mounted onto glass slides 

with Mowiol mounting buffer and stored at 4ºC in the dark until examination.  
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Figure 21. Indirect detection of internalized antibody 

 

Figure 22. Direct detection of internalized antibody or ligand 
 

Time dependency of Asialofetuin‐uptake 

Serum free medium (200 µl) containing 5 or 10 µg/ml Texas Red-labeled 

Asialofetuin (TR-ASF) were added to the previously serum-starved cells and 

incubated for 15, 30, 60 and 120 minutes at 37°C in the incubator. After the 

incubation, the cells were washed once with PBS and fixed at 37°C for 30 

minutes. The cell-covered slips were then washed and mounted as described 

above. 

The fluorescence-labeled cells were examined on a Zeiss Apofluorescence 

microscope with 100-times magnification using immersion oil. A selection of 
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slides was photographed with the camera featured by the microscope. The film 

used was a Kodak Elite 400 film for diapositives, up-speeded to 1600 ASA, 

which leads to shorter exposure times of the film and prevents excess 

photobleaching of the fluorochrome. The diapositives where then scanned with 

a Canon PI CS-U 4.1X flat bed scanner.  Or the selective cellular uptake of the 

labeled compounds was visualized using a Zeiss Axiovert 135 microscope with 

a 63 x planapo objective (numerical aperture = 1.4, oil) with the appropriate filter 

set (450/490, FT 510, LP 520) equipped with a Zeiss AxioCam MRm CCD 

camera run by AxioVision 3.1 imaging software. 

2.5.3 Extracellular Staining of Hepatic Cells by Flow Cytometry 

FACS buffer: Ice-cold PBS, 0.5% BSA, 0.02% NaN3 (sterile filtered)  

Preparation of cells 

HepG2 were grown in collagen-coated, SK-Hep1, Huh7, and clonal murine 

periportal Kupffer cells (a kind gift from the lab of Dr. R. Landmann, Division of 

Infectious Diseases, Department of Research, University Hospital, Basel, 

Switzerland) were grown in untreated 75 cm2 tissue culture flasks.  

The subconfluent cells were detached for 15 min on ice with 2 mM EDTA in cold 

PBS.  All cells were collected and HepG2 cell-clumps were repeatedly pipetted 

up and down to obtain single cells. The cells were harvested by centrifugation at 

1000 rpm (4°C) for 10 min, resuspended in complete medium to 1⋅106 cells/ml 

and kept on ice until use. 

Cells, 100 µl (1⋅105 cells/well) and 100 µl of FACS buffer were distributed per 

well in a 96 U-well plate. The cells were pelleted by centrifugation of the plate at 

1500 rpm for 2 min at 4°C and the supernatants were flicked off. Then the cell 

pellets were washed once by resuspension in 200 µl FACS-buffer and a 

repeated centrifugation step. 

Surface staining 

First, one well per cell-type was stained with 20 µl of the first antibodies, mouse 

anti-human H1-CRD C14.6 IgG2a, B01.4 IgG1, C09.1 IgG1, C11.1 IgG1 and 

C18.1 IgG1 at 10-20 µg/ml, the isotype controls for IgG2a (anti-human TCR-
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BV11 C21, purified from hybridoma) at 20 µg/ml and IgG1 anti-human CD3 

antibody TR66 (undiluted supernatant, both from the lab of Prof. G. De Libero) 

for 30 min on ice to prevent internalization of bound antibody. Then 200 µl of 

FACS-buffer per well were added, the cells were washed twice as described 

above and then they were resuspended in 20 µl of the 2nd antibody (goat-anti-

mouse-IgG H+L chain) labeled with R-Phycoerythrin (RPE) (diluted 1:50 in 

FACS buffer) and incubated on ice in the dark for 20 min.  After the addition of 

200 µl FACS-buffer per well, the cells were washed twice by centrifugation. 

Viability of the cells was tested by probidium Iodide (PI) exclusion (a 200 x-

stock solution, 1 µg/ml was obtained from the lab of Prof. G. de Libero). Cells 

were resuspended in 200 µl ice-cold FACS buffer containing PI (5 µg/ml) before 

measurement. Surface staining of living cells was evaluated by comparing the 

shift of median fluorescence intensity (MFI) emitted at 580 nm between 

untreated cells (background fluorescence) and treated cells on a CyAN ADP 

flow cytometer  (DakoCytomation) with Summit 4.1 software. The forward and 

side scatter gate 1 (R1) was set to count 50’000 living cells of each sample. In 

gate 2 (R2), the cells counted in gate 1 were gated for single cells. The median 

fluorescence intensity (MFI) shift of the staining was analyzed using GraphPad 

Prism 4 software. 

2.6 Trianntenary Gal/GalNAc Ligand Binding and Internalization 

2.6.1 Fluorescence Microscopy 

One day before the experiments, the cells were seeded at a density of 2·105 

cells/well into 12-well plates containing-collagen coated glass cover slips. The 

cells were washed once with PBS, and then serum-starved for 30 min on ice in 

1 ml of DMEM containing 25 mM HEPES. They were then incubated with 500 

µl/well of the Alexa Fluor® 488-labeled compounds 6-8 (100 µM) in the same 

medium on ice for 1.5 h in the dark. After the binding step, the cells were 

washed carefully 4 times with cold PBS. Then fresh, prewarmed, complete 

DMEM medium (1 ml/well) was added and the cells were incubated for 40 min 

in an incubator at 37°C in a humidified CO2 atmosphere (5%, v/v), leading to the 

internalization of the receptor-bound compounds into the cells. After the 

internalization step, the cells were washed twice with PBS and then fixed with 
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3% paraformaldehyde (PFA) in PBS for 30 min at 4°C. After fixation, the cover-

slips were washed abundantly with PBS and mounted upside down, in a Mowiol 

4-88 mounting buffer containing N-propyl gallate, onto glass slides. 

Selective cellular uptake of the Alexa Fluor® 488-labeled compounds was 

visualized using a Zeiss Axiovert 135 microscope with a 63 x planapo objective 

(numerical aperture = 1.4, oil) with the appropriate filter set (450/490, FT 510, 

LP 520) equipped with a Zeiss AxioCam MRm CCD camera run by AxioVision 

3.1 imaging software. 

2.6.2 Flow Cytometry 

Cells were grown for 24 h in collagen coated (80 µg/ml) 24-well plates at a 

density of 3 x 105 cells/well or in 96-well plates at 1.5·105 cells/well. 

The titration experiments were preformed in 24-well plates, the cell-layers were 

first washed twice with cold PBS before incubation with compound 7 at 

concentrations ranging from 0.4 to 12.5 µM (1:2 serial dilutions) in 200 µl of 

DMEM without FBS for 40 min at 37°C. Then the cells were washed twice with 

cold PBS, detached and stripped from surface-bound compound by incubating 

them in a mixture containing 0.025% trypsin and 5 mM EDTA in PBS for 10 min 

on ice. Addition of complete medium quenched this process. The detached cells 

were collected and centrifuged at a speed of 1500 rpm for 3 min. Finally, the 

cells were fixed in 2% PFA in PBS for 15 min on ice followed by an aldehyde-

quenching step with 100 mM lysine in PBS for 10 min. The fixed cells were then 

washed once with FACS buffer (PBS containing 0.5% BSA and 0.1% NaN3) and 

resuspended in 200 µl of the same buffer for measuring. The competitive 

uptake experiments were performed with cells grown in 96-well plates. 20 µl of 

asialofetuin dilutions at concentrations ranging from 0.6 to 200 µM or GalNAc at 

0.6 to 200 mM were added directly to the cells, immediately followed by the 

addition of 20 µl of compound 7 or 8 diluted to 20 µM in DMEM without FBS and 

then incubated for 60 min at 37°C in the incubator. The cells were washed, 

detached and fixed as described above.  

Analyses were performed on a CyAn ADP flow cytometer with Summit 4.1 

software (Dako Cytomation). The forward and side scatter gate 1 (R1) was set 
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to count 30’000 intact cells of each sample. In gate 2 (R2), the cells counted in 

gate 1 were gated for single cells. Uptake of compound into cells was evaluated 

by comparing the shift of median intensity of fluorescence (MFI) at 488 nm 

between untreated cells (background fluorescence) and treated cells. 

Further analysis and IC50 calculations were done with GraphPad Prism 4 

software. 
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2.7 Molecular Cloning of Single Chain Antibodies  

2.7.1 Vector Plasmids 

2.7.1.1 The pAK Vector System 

 

Figure 23. pAK100 phagemid vector map 
pAK100 allows for phage-display of scFv antibody fragments.  

pAK100 (Figure 23) is a phagemid vector used for phage display of murine scFv 

antibodies. The PCR-amplimer coding fort the scFv fragment is cloned into the 

phagemid vector to be expressed as a fusion protein with a shortened form of 

the viral protein gpIII (gpIII205-406) on the surface of he phage. The vector 

contains Sfi I restriction sites and codes for the c-myc tag140.The sequence 

contains an amber stop-codon between the c-myc tag and the gpIII protein, 

which allows to express either soluble scFv or scFv-gpIII fusion proteins, 

depending on the E.coli expression host (suppressor, non-supressor strain). An 

artificial Shine-Dalgarno sequence located near the LacZ-promotor allows only 

moderate translation of scFv-gpIII-fusion proteins that could be toxic to the 

expression host. 
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Figure 24. pAK300 expression vector map 

The vector pAK300 (Figure 24) contains a SfiI restricted tet-cassette for 

antibody cloning and an artificial Shine-Dalgarno sequenz (SDart), allowing only 

moderate protein expression after promotor activation. The plasmid is used for 

the soluble expression of scFv. An N-terminal His6-tag allows the detection and 

purification of the scFvs 140. 
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2.7.1.2 The pHEN1Phagemid Vector 

The pHEN1 phagemid vector 150 (Figure 25) is a derivative of pUC119 171 

allowing antibody genes to be cloned as Sfi I-Not I fragments for display on 

filamentous phage. It codes for a c-myc tag for detection 172. The amber codon 

allows choosing between expression of scFvpIII fusion protein or soluble scFv, 

depending on the E.coli host.  

 
Figure 25. pHEN1 phagemid vector map 
pHEN1 allows phage-display  of scFv antibody fragments. 

2.7.1.3 VCSM13 Helper Phage 

VCSM13 interference-resistant helper phage was from Stratagene. VCSM13 

interference-resistant helper phage (6 kb, single stranded) is derived from a 

M13 K07 mutant and carries the kanamycin-resistance gene in the IG region. It 

gives high phage rescue efficiencies with kanamycin selection. 
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2.7.2 Synthetic Oligonucleotides 

2.7.2.1 Degenerate Primers for the Amplification of scFv 

Mixtures of degenerate primers (Tables 3 to 6), which contain variable 

nucleotides at several positions in the sequence, were used to amplify the 

heavy and light chain of the antibodies variable domains 173. The variable 

nucleotides are named according to the IUPAC/IUB rules: 

R = A or G 
K = G or T 
H = A, C or T 
D = A, G or T 
Y = C or T 

S = C or G 
B = C, G or T 
M = A or C 
W = A or T 
V = A, C or G 

 
 

Preparation of primer mixes 

Primers were reconstituted to 100 µM in DEPC-treated water. Then the primers 

LB 1-17, LF 1-5, HB 1-19 and HF1-4 were mixed according to their degeneracy 

and stored at –20°C. 

Table 3. VLBACK-Primer mix 

 Sequence (5’→ 3’)  Degeneracy µl 

LB1  gccatggcggactacaaaGAYATCCAGCTGACTCAGCC  2 1 

LB2  gccatggcggactacaaaGAYATTGTTCTCWCCCAGTC  4 2 

LB3  gccatggcggactacaaaGAYATTGTGMTMACTCAGTC  12 5 

LB4  gccatggcggactacaaaGAYATTGTGYTRACACAGTC  8 3.5 

LB5   gccatggcggactacaaaGAYATTGTRATGACMCAGTC  8 4 

LB6  gccatggcggactacaaaGAYATTMAGATRAMCCAGTC  16 7 

LB7  gccatggcggactacaaaGAYATTCAGATGAYDCAGTC  12 6 

LB8  gccatggcggactacaaaGAYATYCAGATGACACAGAC  4 1.5 

LB9 gccatggcggactacaaaGAYATTGTTCTCAWCCAGTC  4 2 

LB10  gccatggcggactacaaaGAYATTGWGCTSACCCAATC  8 3.5 
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LB11  gccatggcggactacaaaGAYATTSTRATGACCCARTC  16 8 

LB12  gccatggcggactacaaaGAYRTTKTGATGACCCARAC  24 8 

LB13  gccatggcggactacaaaGAYATTGTGATGACBCAGKC  12 6 

LB14  gccatggcggactacaaaGAYATTGTGATAACYCAGGA  4 2 

LB15  gccatggcggactacaaaGAYATTGTGATGACCCAGWT  4 2 

LB16  gccatggcggactacaaaGAYATTGTGATGACACAACC  2 1 

LB17  gccatggcggactacaaaGAYATTTTGCTGACTCAGTC  2 1 

The capital letters in the sequence indicate the part that hybridizes with the FR1 

region of the light chain variable domain. The underlined section codes for the 

shortened FLAG-tag. 

Table 4. VLFOR-Primer mix 

         Sequence (5’→ 3’) µl 

LF1 ggagccgccgccgcc(agaaccaccaccacc)2ACGTTTGATTTCCAGCTTGG  1 

LF2 ggagccgccgccgcc(agaaccaccaccacc)2ACGTTTTATTTCCAGCTTGG  1 

LF4 ggagccgccgccgcc(agaaccaccaccacc)2ACGTTTTATTTCCAACTTTG  1 

LF5 ggagccgccgccgcc(agaaccaccaccacc)2ACGTTTCAGCTCCAGCTTGG  1 

These primers contain a part of the Gly4Ser linker. The third repetition, with a 

different codon usage to prevent mismatches in the SOE-PCR reaction, 

overlaps with the one in the VHBACK-primers. The capital letters indicate the 

part that hybridizes at the transition region of the J- and C-Gen segment of the 

light chain. 
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Table 5. VHBACK-Primer mix 

 Sequence (5’→ 3’) De-
generacy µl 

HB1 ggcggcggcggctccggtggtggtggatccGAKGTRMAGCTTCAGGAGTC  8 4 

HB2 ggcggcggcggctccggtggtggtggatccGAGGTBCAGCTBCAGCAGTC  9 4 

HB3 ggcggcggcggctccggtggtggtggatccCAGGTGCAGCTGAAGSASTC  4 3 

HB4 ggcggcggcggctccggtggtggtggatccGAGGTCCARCTGCAACARTC  8 4 

HB5 ggcggcggcggctccggtggtggtggatccCAGGTYCAGCTBCAGCARTC  12 7 

HB6 ggcggcggcggctccggtggtggtggatccCAGGTYCARCTGCAGCAGTC  4 2 

HB7 ggcggcggcggctccggtggtggtggatccCAGGTCCACGTGAAGCAGTC  1 1 

HB8 ggcggcggcggctccggtggtggtggatccGAGGTGAASSTGGTGGAATC  4 2 

HB9 ggcggcggcggctccggtggtggtggatccGAVGTGAWGYTGGTGGAGTC  12 5 

HB10 ggcggcggcggctccggtggtggtggatccGAGGTGCAGSKGGTGGAGTC  4 2 

HB11 ggcggcggcggctccggtggtggtggatccGAKGTGCAMCTGGTGGAGTC  4 2 

HB12 ggcggcggcggctccggtggtggtggatccGAGGTGAAGCTGATGGARTC  2 2 

HB13 ggcggcggcggctccggtggtggtggatccGAGGTGCARCTTGTTGAGTC  2 1 

HB14 ggcggcggcggctccggtggtggtggatccGARGTRAAGCTTCTCGAGTC  4 2 

HB15 ggcggcggcggctccggtggtggtggatccGAAGTGAARSTTGAGGAGTC  4 2 

HB16 ggcggcggcggctccggtggtggtggatccCAGGTTACTCTRAAAGWGTSTG  8 5 

HB17 ggcggcggcggctccggtggtggtggatccCAGGTCCAACTVCAGCARCC  6 3.5 

HB18 ggcggcggcggctccggtggtggtggatccGATGTGAACTTGGAAGTGTC  1 0.7 

HB19 ggcggcggcggctccggtggtggtggatccGAGGTGAAGGTCATCGAGTC 1 0.7 

These primers contain the rest of the linker sequence (in small letters). The 

capital letters indicate the part that hybridizes with the FR1 region of the heavy 

chain variable domain VH. 
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Table 6. VHFOR-Primer mix 

 Sequence (5’→ 3’) µl 

HF1 ggaattcggcccccgaggcCGAGGAAACGGTGACCGTGGT  1 

HF2 ggaattcggcccccgaggcCGAGGAGACTGTGAGAGTGGT  1 

HF3 ggaattcggcccccgaggcCGCAGAGACAGTGACCAGAGT  1 

HF4 ggaattcggcccccgaggcCGAGGAGACGGTGACTGAGGT  1 

The capital letters indicate the part of the primers that hybridizes at the 

transition region of the J- and C-gene segment of the heavy chain.  The primers 

contain the palindromic sequence recognized by Sfi I (underlined). 

Table 7. SOE-PCR Primers 

  Sequence (5’→ 3’) 

scback  ttactcgcggcccagccggccatggcggactacaaaG  

scfor  ggaattcggcccccgag  

SOE-PCR primers were used to combine the VH and the VL to the scFv 

fragment. The 3’ end of scback hybridizes with the 5’ end of the VLBACK 

primers. The Sfi I restriction site is underlined. scfor hybridizes with the VHFOR 

primers. 
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2.7.2.2 Primers for Sequencing 

Table 8. Primers for sequencing pAK300scFv 

  Sequence (5’→ 3’) Properties 

Rsp AACAGCTATGACCATG The Rsp-primer hybridizes with the sequence 
of the LacZ-promotor 

scfor GGAATTCGGCCCCCGAG  

Lsp CACAATGTGCGCCATTTTTC Starts 60 nt after the beginning of the His-tag 
sequence 

Rsp: right sequencing primer, Lsp: left sequencing primer, designed with 

OligoPerfect™ Designer from Invitrogen.  

Table 9. Primers for sequencing pHEN1scFv 

 Sequence (5’→ 3’) Properties 

fdseq1 GAATTTTCTGTATGAGG Priming at the beginning of gIII (Tm = 
45.5°C) 

DP47CDR2back TACTACGCAGACTCCGTGAAG Priming in the VH germline gene, before the 
VH CDR3 

  (Tm = 59.8°C) 

For sequencing the antibodies, these two primers are sufficient, since diversity 

is concentrated only in the CDR3 regions133. 

2.7.3 Construction of Murine scFv Expression Plasmids 

2.7.3.1 mRNA Isolation from Hybridoma Cells 

Illustra Quickprep mRNA purification kit was obtained from GE Healthcare. 

Hybridoma cells in culture (RPMI 1640 + 15% FBS) or freshly thawed cells were 

centrifuged for 10 min at 1000 rpm. The pellets were washed once with serum- 

free medium to remove all DMSO and FCS. The cell pellet was processed as 

proposed by the manufacturer. The eluted mRNA was not quantified. The 

mRNA was precipitated by splitting the final elution in 2 aliquots of 0.32 ml, 

adding 10 µl of the glycogen, 32 µl of the potassium acetate solution (both 

provided in the kit) and a volume of 0.8 ml chilled absolute ethanol. The mixture 

was incubated for 30 min at –20°C. The mRNA extracted from hybridoma 
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clones B01.4, C14.6 and C11.1 and C23.8  (two vials each) was centrifuged for 

30 min at 13’200 rpm and 4°C. The supernatant was discarded and the mRNA 

washed once in 1ml ice-cold ethanol, then stored in ethanol at –20°C. 

2.7.4 PCR Reactions 

All PCR reactions were carried out in 0.2 ml PCR tubes from BilaTec (Aldrich), 

in an icycler® thermo cycler from Bio-Rad. 

2.7.4.1 First Strand cDNA Synthesis by RT‐PCR 

‘Ready-To-Go You-Prime’ First-Strand beads were from GE Healthcare, 

pd(N)6–primers from Microsynth. 

One vial of mRNA per clone was used for the cDNA synthesis. First strand 

cDNA synthesis was carried out according to the manual. One tube with rabbit 

globulin mRNA, also provided in the kit, was run with it as a control. 

Ethanol was removed from the mRNA precipitate by tapping the tube upside 

down on clean tissue paper. The mRNA was then dissolved in 25 µl DEPC-

treated water and inactivated by heating at 65°C for 10 min and cooling for 2 

min on ice. cDNA synthesis was started by adding the mRNA to the ‘Ready-To 

Go You-prime’- tubes. After 1 min, 1 µl pd(N)6–primer (= 0,2 µg diluted in 

DEPC-water) was added and the synthesis was completed by incubating the 

tubes for 1h at 37°C and mixing at 400 rpm in a Thermomixer. The reaction was 

stopped by heating to 90°C for 2 min and the product was kept at -20°C until 

use.  
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2.7.4.2 Amplification of the Variable Antibody Domains VH and VL 

Iproof® DNA-polymerase was from Bio-Rad, dNTPs were from Sigma. 

Table 10. Reaction batch for variable antibody domain amplification 

 Volume (µl) 

cDNA template 5 

iproof HF buffer (5x) 10 

dNTP’s (10 mM each) 1 (200 µM) 

LB or HB primer mix 1 (100 µM) 

LF or HF primer mix 1 (100 µM) 

DEPC-H20 32 

iproof DNA polymerase 1 (2 units) 

Two tubes per antibody clone were used, one for VL and one for VH 
amplification. 

Table 11. Cycling protocol for variable antibody domain amplification  

Step Temp. (°C) Time Number of cycles 

Initial denaturation 98 3 min 1 

   Addition of iproof 
DNA polymerase 

Denaturation  98 10 s 

Annealing 63 30 s 

 58 50 s 

Extension 72 30 s 

7 

Denaturation  92 30 s 

Annealing 63 1 min 

Extension 72 30 s 

23 

 4 Hold  
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2.7.4.3 Assembly of the Variable Antibody Domains VH and VL 

The so-called ‘Splicing by overlap extension-PCR’ (SOE-PCR) assembles the 

variable antibody domain genes with the linker sequence to scFv fragments. In 

the first two cycles of the PCR method, the two fragments are assembled via 

the complementary linker-sequence, then the primers scfor and scback were 

added to introduce the two Sfi I restriction sites. 

Table 12. Reaction batch for SOE-PCR 

 Amount 

VL DNA template  20 ng 

VH DNA template  20 ng 

iproof HF buffer (5x) 10 µl 

dNTP’s 10 mM 1 µl (200 µM) 

scfor 1:10 1 µl (100 pM) 

scback 1:10 1 µl (100 pM) 

DEPC-H20 ad 50 µl 

iproof DNA Polymerase 1µl (2 units) 
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Table 13. Cycling protocol for SOE-PCR 

Step Temp (°C) Time Number of cycles 

Initial denaturation 98 3 min 1 

   Addition of iproof DNA polymerase 

Denaturation  98 30 s 

63 30 s Annealing 

58 50 s 

Extension 72 30 s 

2 

Denaturation  98 30 s  

   Addition of scfor / scback-primers 

63 30 s Annealing 

58 50 s 

Extension 72 30 s 

7 

Denaturation 98 30 s 

Annealing 63 30 s 

Extension 72 30 s 

23 

Final extension 72 5 min  

The product was gel-purified using the Sigma GenElute gel-extraction kit, 

(Sigma). 

2.7.5 Digestion and Cloning of murine scFv Genes 

2.7.5.1 Sfi I Digest of the Vector and the scFv‐DNA  

Sfi I restriction enzyme was purchased from New England Biolabs (NEB). 

To clone the scFv fragments into the pAK300-vector, fragments (Table 14) and 

vector (Table 15) were digested for 3-4 h at 50°C in with the restriction enzyme 

Sfi I. 
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 Table 14. Reaction batch used for scFv digest  

 Volume 

NEB-Puffer 2 10x  2.0 µl  

BSA 100x 0.2 µl 

Sfi I (20 U/µl) 0.5 µl 

ddH20 2.3 µl 

scFv DNA   15.0 µl 

 
Table 15. Reaction batch used for vector digest 

 Volume 

NEB-Puffer 2 10x  10µl 

BSA 100x  1µl 

ddH20  33.4µl  

Sfi I (20 U/µl) 5.6µl * 

pAK300  50µl (= 11.3µg) * 

     *10 unit per 1 µg vector in 100 µl of volume were used 

2.7.5.2 Ligation of scFv‐DNA into pAK300‐Vector 

T4 ligase was from NEB. 

Both, digested vector and scFv-fragments, were gel-purified and quantified 

before the ligation. The molar ratio vector to insert was 1.5:1, the ligation 

mixture was incubated overnight at 16°C (Table 16). 

Table 16. Ligation mixture 

 Amount 

Vector DNA  200 ng  

scFv gene fragment 20 ng 

T4 ligase 1 unit 

Ligase buffer with 10mM ATP (10x) 2 µl 

ddH20  20 µl 
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2.7.5.3 Analytical Digest of Ligation Product 

 The ligation product was digested for 4 h at 50°C. 

Table 17. Reaction batch for analytical digest 

 Volume 

NEB-Puffer 2 10x  2.0 µl  

BSA 100x 0.2 µl 

Sfi I (20 U/µl) 0.5 µl 

ddH20 12.3 µl 

pAK300scFv DNA   5.0 µl 

  

2.7.6 DNA Sequencing  

Sequencing was performed in house on an ABI 3100 Avant with 4 capillaries, 

using Big Dye 1.1 terminator sequencing kit from Applied Biosystems. Sodium 

acetate was from Fluka. 

If the DNA purified by Miniprep was eluted with TE buffer, the EDTA had to be 

removed before sequencing. This was done using the gel purifying kit and 

elution of the plasmid with water. 

Table 18. Reaction batch for sequencing PCR 

 Volume 

Minipep sample as DNA template 5 µl 

ddH20  1 µl 

Primer (5µM) 1 µl 

Terminator ready reaction mix 3 µl 

Final volume 10 µl 
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Table 19. Cycling protocol for sequencing 

 Cycles  °C Time 

Initial 
denaturation 1  96 1 min 

Denaturiation 96 10 s 

Annealing 50   5 s Amplification 25 

Extension 60 4 min 

Storage 1  4 ∞ 

     The product could be stored at 4°C overnight.  

2.7.6.1 Purification of the Extension Products 

Table 20. Ethanol precipitation of PCR-products 

 Volume 

PCR product 10 µl 

ddH20  90 µl 

Sodium acetate (3 M, pH 4.6) 10 µl 

Ethanol abs. 250 µl 

The samples were mixed by inversion and then incubated on ice in the dark for 

15 min. Samples were then centrifuged for 10 min at 13’000 rpm at RT, and the 

supernatant was carefully removed with a fine Pasteur pipette. Then 350 µl of 

ethanol 70% were added to the pellets and the samples centrifuged again. After 

removing the supernatant, the pellets were air-dried for 30 min in the dark at 

RT. The dry pellets were submitted for sequencing. 

2.7.7 Sequence Analysis 

Sequences of the scFvs were compared using Codon Code Aligner version 2.1.   

2.7.8 Agarose Gel Electrophoresis 

Molecular biology-grade Agarose and Ethidium bromide solution 1% were 

purchased from Applichem. Boric acid and EDTA were from Fluka. DNA gel 
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loading buffer (10x) was from Eppendorf. DNA molecular weight markers were 

obtained from Invitrogen and NEB (Figure 26).  

Agarose (0.8-2%, depending on the DNA fragment size) was suspended in 1x 

TBE (44.6 mM Tris, 44.6 mM Boric acid, 1 mM EDTA, pH 8) and heated for 1-2 

min in the microwave until it fully dissolved. Per gel, 80 ml of the agarose-gel 

solution were poured in a beaker and left to cool down for 2-3 min to ~ 50 °C, 

then 2 µl ethidium bromide 1% was added. The gel-solution was poured into a 

gel tray containing an appropriate comb. After formation of the gel the comb 

was removed and the gel was covered with TBE buffer. DNA samples were 

diluted with ddH2O if necessary and an appropriate amount of loading buffer 

was added to the samples. DNA marker (2-5 µl) were included for size 

determination. The samples were loaded on the gel and an electric field was 

applied (80 V). The ethidium-stained DNA fragments were visualized under UV 

light and documented using Gel Doc XR and the software Quantity One 4.6.5. 

For preparative use, the DNA fragments were purified from excised agarose 

gel-bands according to the manual (GenElute gel-extraction kit, Sigma).  

Figure 26. DNA Markers 
(1) NEB 100 bp DNA ladder, (2) NEB 1 kb DNA ladder, (3) TrackIt 1kb DNA ladder 

2.7.9 UV‐Quantitation of DNA 

OD values were measured in a BioRad spectrophotometer 3000 with a 100 µl-

quartz cuvette. The dilution factor was usually 1:20.  
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The most common method for quantifying DNA samples is by conventional 

absorbance measurements; nucleic acids have an absorption maximum at λ 

=260 nm. Most samples contain contaminates such as proteins and single 

stranded DNA/RNA that absorb maximally at λ = 280 nm. The equation for 

calculating DNA in the presence of contaminates is:  

OD260 /OD280 = pure dsDNA    

The higher the ratio, the purer the DNA sample. A ratio between 1.8 and 2.0 for 

a cuvette spectrophotometer is acceptable. With a conventional absorbance 

reading an OD260 of 1 corresponds to 50 µg/ml dsDNA.  

2.8 General Methods for Bacteria 

2.8.1 Material 

Bacto Tryptone, Bacto Yeast extract and Bacto agar were obtained from BD 

Becton Dickinson, IPTG and ampicillin sodium salt and glycerol 98% were from 

Applichem, chloramphenicol from Hänseler, tetracycline HCl from Sigma and 

kanamycine sulphate from Fluka. Petri-dishes 94 x 16 mm were from Greiner 

Bio-one, Petri-dishes for phage display 150 x 15 mm were from Falcon. 

2.8.2 E.coli Strains 

DH5α was used for plasmid amplification. DH5α increases insert stability and 

improves the quality of plasmid DNA prepared with mini-preps. The 

transformation efficacy in DH5α is high and their background expression is 

minimal due to the lack of T7-RNA polymerase. 

Genotype: F- 80dlacZM15 (lacZYA-argF) U169 recA1 endA1 hsdR17(rk
-, mk

+) 

phoA supE44 - thi-1 gyrA96 relA1 

BL21(DE3) was used for scFv expression. It carries the lambda DE3 lysogen. 

Due to the protease deficiency (Ion and ompT) the target protein should be 

more stable compared to other expression hosts. 

Genotype: F- ompT hsdSB(rB
-mB

-) gal dcm (DE3) 

AD494(DE3) was used for H1-CRD expression. It carries the lambda DE3 

lysogen. AD494(DE3) favors the formation of cytoplasmic disulphide bonds. 
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Genotype: ∆ara–leu7697 ∆lacX74 ∆phoAPvuII phoR∆malF3 F'[lac+(lacIq)pro] 
trxB::kan(DE3) 
XL1-Blue was used for phage display and scFv expression. The F’ episome 

contains the tetracycline resistance gene. The production of the bacterial pili is 

essential for M13 phage infection.  

Genotype: recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac [F'proAB 
lacIqZΔM15 Tn10 (Tetr)] 

TG1 was used for phage display and scFv expression. 

Genotype: supE thi-1 Δ(lac-proAB)Δ(mcrB-hsdSM)5 (rK– mK–) [F’ traD36 
proAB lacIqZΔM15] 

 

2.8.3 Bacterial Culture Media and Buffers 

Tryptone and Yeast extract serve as a source of nitrogen, sulfur, and carbon, 

while Yeast extract also contains Vitamin B complex. Sodium chloride provides 

sodium ions for the membrane transport and maintains osmotic equilibrium of 

the medium. 

All media ingredients were dissolved in dd H2O. pH was adjusted before 

autoclaving at 120 °C. 

LB broth (Lysogenic broth, or Luria‐Bertani broth) 

Bacto yeast extract 0.5%, Bacto Tryptone 1%, NaCl 1%, pH 7.5 

2.8.3.1 Media and Buffer for Electro‐competent Cells 

SOB Broth  

Bacto yeast extract 0.5%, Bacto Tryptone 2%, NaCl 0.05%, KCl 2.5 mM, MgCl2 
5 mM, pH 7.5. 

Glycerol solution  

Glycerol 10% (v/v) in ddH20, sterile-filtered. 

2.8.3.2 Media and Buffer for Chemo‐competent Cells 

SOC Broth 

SOB Broth with addition of 20 mM glucose after autoclaving. 
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Psi Broth  

Bacto yeast extract 0.5%, Bacto Tryptone 2%, MgS04 5% (m/v). Adjusted to pH 

7.6 with KOH. 

Tfb 1 buffer 

Potassium acetate 30 mM, RbCl 100 mM, CaCl210 mM, MnCl2 50 mM, glycerol 

15% (v/v). Adjusted to pH 5.8 with dilute acetic acid. 

Tfb 2 buffer 

MOPS 10 mM, RbCl 10 mM, CaCl2 75 mM, glycerol 15% (v/v). Adjusted to pH 

6.5 with dilute NaOH. 

2.8.3.3 Expression Media 

Terrific Broth (TB)  

Terrific Broth is a highly enriched medium developed by Tartoff and Hobbs to 

improve yield in plasmid-bearing E. coli 174. Recombinant strains have an 

extended growth phase in the medium. Glycerol is used as the ‘carbohydrate’ 

source. Unlike glucose, glycerol is not fermented to acetic acid.  

TB medium base: Bacto tryptone 1.2%, Bacto yeast extract 2.4%, glycerol 0.4% 

(v/v). Ad 900 ml with ddH20, sterilized by autoclaving, cooled to 60°C.  

TB phosphate buffer: KH2PO4 2.31 %, K2HPO4 12.54 %, ad 100 ml, sterilized by 

autoclaving. 

Prior to use, 900 ml TB medium base were combined with 100 ml TB phosphate 

buffer. 

2xTY Broth 175  

Bacto yeast extract 1%, Bacto tryptone 1.6%, NaCl 86 mM. Adjusted to pH 7.0 

with NaOH. 

Plasmids containing a lacZ promotor often show low expression of the proteins 

controlled by the promotor in the uninduced state. An addition of glucose to the 

growth medium is able suppress this basal expression 176. 
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2xTY‐Repression medium   

2xTY-medium with 1% glucose and appropriate antibiotics 

2xTY‐Expression medium  

2xTY-medium with 0.1% glucose and appropriate antibiotics 

IPTG (isopropyl‐β‐D‐thiogalactopyranoside) 

IPTG is a galactose derivate that triggers transcription of the lac operon. IPTG 

induces the transcription of the gene coding for beta-galactosidase, an enzyme 

that promotes lactose utilization, by binding and inhibiting the LacI repressor. In 

cloning experiments, the lacZ gene is replaced with the gene of interest and 

IPTG is then used to induce gene expression. Bacteria cannot hydrolyse it, 

preventing the cell from degrading the inductant. 

Stock solution was 1 M in distilled water, sterile filtered. Aliquots (1 ml) were 

stored at -20ºC. The final working concentration of IPTG is 1 mM for scFv 

expression and 0.4 mM for H1-CRD expression. 

2.8.3.4 Agar Plates 

For agar plates, Bacto agar was added to media to a final concentration of 1.5% 

(m/v) before autoclaving. After sterilization, the medium was cooled down to 50 

°C and the appropriate antibiotics were added. The medium was poured into 

plates under laminar flow and allowed to solidify at room temperature. The 

plates were stored inverted at 4 °C in a sealed plastic bag. 

2.8.3.5 Antibiotics for Selection 

Chloramphenicol (Cam) 

Chloramphenicol inhibits bacterial protein synthesis by blocking ribosomal 

peptidyl-transferase activity. It was used for selection of recombinant bacteria 

containing the pAK vectors. 

1000x stock solution: 34 mg/ml in 100% ethanol; aliquots were stored at –20ºC.  

Kanamycin (Kan) 

Kanamycin is a member of the aminoglycoside family of antibiotics and inhibits 

protein synthesis. It was used for selection of recombinant bacteria infected with 
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VCSM13 helper phage.  

1000x stock solution: 25 mg/ml in distilled water, filter-sterilized (0.22 µm). 

Aliquots were stored at –20ºC.  

Tetracycline sulfate (Tet) 

Tertracycline inhibits protein synthesis (elongation) by preventing binding of 

aminoacyl-tRNA to the 30S subunit. It was used for selective growth of XL1-

Blue cells. 

1000x stock solution: 12.5 mg/ml in distilled water, filter-sterilized. Aliquots were 

stored at –20ºC in the dark.  

Ampicillin, sodium salt (Amp) 

Ampicillin inhibits the bacterial transpeptidase involved in peptidoglycan 

biosynthesis and thus inhibits cell wall synthesis. As such, ampicillin inhibits 

only log- phase bacteria. It was used for selection of recombinant bacteria 

containing the pHEN1 vector.  

1000x stock solution was 100 mg/ml in distilled water, filter-sterilized. Aliquots 

were stored at –20ºC.  

2.8.4 Preparation of Competent Cells 

Cells were cultivated in an Incubator shaker (Innova 4000, New Brunswick 

Scientific). 

2.8.4.1 Rubidium Chloride Method for Chemo‐competent E.coli 

First, 1 ml of an overnight culture of DH5α or XL1-Blue cells was inoculated in 

100 ml Psi broth and grown at 37 °C with aeration to an OD600= 0.5 and then 

put on ice for 15 min. The cells were pelleted in appropriate centrifuge tubes at 

3-5000 x g for 5 min. The supernatant was discarded and the cells resuspended 

in 40 ml (0.4 x the original volume) Tfb 1 and incubated on ice for 15 min. Then 

the cells were pelleted again at 3-5000 g for 5 min. The supernatant was 

discarded and the cells resuspended in 4 ml (0.04 x volume) Tfb 2, kept on ice 

for 15 min and used directly for transformation or stored in aliquots of 200 µl 

and shock frozen in liquid nitrogen prior to storage at –80°C. The cells were 

thawed on ice shortly before transformation 177. 
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2.8.4.2 Cells for Electroporation 

The E.coli strain was streaked out on LB-agar plates and incubated overnight at 

37°C. Single colonies were picked and incubated overnight at 37°C in the 

incubator shaker in 5 ml SOB-medium without MgCl2. Such overnight cultures 

were inoculated in 250 ml SOB-medium containing MgCl2. During incubation, 

the optical density was measured at 600 nm (OD600) every one to two hours. 

After reaching an OD600 between 0.5 and 0.8, the cells were centrifuged at 5000 

rpm and 4°C for 10 min. Cells were washed in cold 250 ml glycerol solution by 

re-suspension. Afterwards they were centrifuged again at 5000 rpm and 4°C for 

10 min and resuspended in 50 ml cold glycerol solution. After an additional 

centrifugation step the cells were resuspended in 1 ml glycerol solution. Aliquots 

were immediately frozen in liquid nitrogen and stored at –80°C. 

2.8.5 Transformation of E.coli 

2.8.5.1 Heat‐shock Transformation  

Heat Shock Transformation for pAK Plasmid Amplification 

Lyophilized pAK300 or pAK100 plasmid from 2 µl of a Midi-prep was obtained 

from the Plückthun lab. The plasmid was reconstituted in 10 µl of sterile TE 

buffer. Then 3 µl of the reconstituted pAK plasmids were mixed with 80 µl 

rubidium-competent DH5α cells and chilled on ice for 30 min. After a heat-shock 

at 42°C for 90s, the cells were put on ice for 2 min, then 400 µl of SOC medium 

was added and the cells incubated for 90 min at 37°C in the Thermomixer at 

500 rpm. The cell suspension was split in two and spread on LB-Agar plates 

with Cam. The plates were then incubated over night at 37°C (Incubator 

Memmert). Single colonies were picked and inoculated in 2 ml LB-medium 

containing chloramphenicol. The cells were grown at 37°C under agitation at 

250 rpm to reach an OD600 of 2.5-3. Then 1.5 ml of the bacterial culture was 

harvested by centrifugation for 30s at 13’000 rpm. The supernatant was 

discarded and the pellet centrifuged again to remove residual supernatant and 

used for miniprep purification of the plasmids. Residual bacterial culture was 

used to prepare glycerol stocks.  
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Heat‐shock Transformation of Competent BL21(DE3) Cells  

Frozen rubidium chloride-chemocompetent BL21(DE3) cells were thawed on ice 

for some minutes. An aliquot of 80 µl cells were mixed with 5 µl of the Miniprep 

elutions of the plasmids pak300scFv and incubated on ice for 30min. After a 

heat-shock at 42°C for 90s the cells were put on ice for 2 min, then 400µl of 

SOC medium were added and the cells incubated for 90 min at 37°C in the 

Thermomixer at 500 rpm. This mixture was split in two and spread on LB-Agar 

plates with 34µg/ml chloramphenicol, and left in the laminar flow to dry. The 

plates were then incubated overnight at 37 °C (Incubator Memmert). 

2.8.5.2 Electroporation  

Desalting of Ligation Mixture 

Prior to electroporation the ligase in the ligation reaction was first inactivated by 

heating to 65°C for 10 min, then the volume was supplemented to 50 µl with 

ddH2O and 500 µl of 1-Butanol were added and the mixture vortexed for 10-20 

s. The DNA was pelleted by centrifugation at 12’000 rpm for 15 min. The 

supernatant was discarded and the dried pellet was then resuspended in 10 µl 

of ddH2O 178. 

Electroporation was performed using the Micro Pulser electroporation apparatus 

and Gene Pulser cuvettes 0.1 cm (Bio-Rad).  

In 0.1 cm cuvettes, 50 µl of electrocompetent cells were mixed with 5 µl 

desalted ligation mixture. An electrical pulse with 1.80 kV was applied and 

immediately after the pulse 1 ml SOC medium was added to the cells. 

Afterwards, they were incubated at 37°C and 550 rpm on the thermomixer for 

1.5 h. Subsequently, cell suspensions were streaked out on agar plates 

containing Cam.  

2.8.6 Preparing Glycerol Stocks of Bacteria 

For storage of transformed clones, 30 µl of an overnight culture was inoculated 

in 3 ml LB–medium and incubated on a shaker for 4-5 hours, until the cells 

reached the exponential phase of growing. Then, 850 µl culture were mixed with 

150 µl of sterile glycerol and directly shock-frozen in liquid nitrogen. Finally, the 
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aliquots were stored at –80°C. 

2.8.7 Clone Picking and Plasmid Isolation (Mini‐prep) 

Isolation of plasmid DNA was performed using the GenElute plasmid Mini-prep 

kit from Sigma. Using a sterile pipette-tip, a single colony was picked and 

inoculated in 3 ml of LB-medium containing an appropriate antibiotic. The 

culture was grown on a shaking incubator (250 rpm, 37°C) until cells reached 

the stationary phase. Plasmid isolation was performed according to the supplier. 

The plasmid DNA out of 1.5 ml culture was finally eluted in 70 µl elution buffer.
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2.9 Antibody Phage Display 

All protocols were adapted from the manual of the 3rd Experimental Course in 

Antibody Phage Display Technologies 151 . 

2.9.1.1 Exponential Growing Bacterial Cultures for Infection with Phage 

Some microliters scratched of a frozen XL1 Blue bacterial stock were 

transferred into 3 ml of LB or 2xTY medium with Tet and grown over night at 

37°C with shaking at 200 rpm. The next day the culture was diluted 1:100 (to 

OD 0.1) into fresh 2xTY medium and grown to OD 0.4-0.5 before infection with 

phage. The efficiency of infection is greatly reduced in cultures with an OD 

above 0.5. 

2.9.1.2 Preparation of Helper Phage 

First, 200 µl of E. coli XL1 Blue at OD 0.2 were infected with 10 µl of 1:100 

serial dilutions of helper phage and mixed with 3 ml of H-top agar at 42˚C, 

poured onto warm LB plates, and then incubated overnight at 30°C. A small, 

well separated plaque was picked and inoculated into 3-4 ml of an exponentially 

growing culture of XL1 Blue and grown for about 2 h and then inoculated into 

500 ml of 2xTY, grown for 1 h and then supplemented with Kan to a final 

concentration of 70 µg/ml. The culture was grown another 16-20 h, then the 

supernatant was harvested by spinning down the bacteria at 7000 g for 30 min. 

Helper phage was immediately precipitated from the supernatant (see chapter 

2.9.4). Aliquots in PBS with 10% glycerol were stored at -80˚C. 

2.9.2 Biopanning using Immunotubes 

Nunc Maxisorp immunotubes were coated over night with 4 ml of a 20 µg/ml 

solution of human H1-CRD in HBS + 10 mM Ca2+, washed once with PBS and 

blocked with 3% BSA in PBS for 2 h at room temperature. The tube was rinsed 

3 times with PBS, then 1 ml of library phage, 1 ml of PBS, and 2 ml of blocking 

solution were added and the tube sealed with parafilm. The phage were mixed 

and incubated with the H1-CRD by repeated inversion at RT for 30 min on a 

shaker, and then the phage was allowed to bind while the immunotube was 

standing upright at RT for 1.5 h. Unbound phage was discarded and the tube 
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washed 10 times with PBST (PBS with 0.1% Tween®20), and 10 times with 

PBS. Excess PBS was removed from the tube and the bound phage eluted by 

incubating 1 ml of a freshly prepared 100 mM triethylamine (Fluka) solution by 

repeated inversion for 5-10 min. The eluate was transferred to an Eppendorf-

tube containing 0.5 ml Tris (1 M, pH 7.4) to neutralize the triethylamine.  

2.9.3  Phage Amplification 

For phage amplification, 10 ml of log-phase XL1 Blue cells (OD600 0.4-0.5) were 

infected with the collected phage for 30-40 min at 37 °C and 70 rpm. To 

determine the titer of the phage, 10 µl of the infected 10 ml XL1 Blue and a 

series of two 100-fold serial dilutions (titer = colonies x 103, x 105, and 107) in 

2xTY using new pipette tips each time, were plated onto selective LB + glucose-

agar. The titer plate was grown over night at 37°C. The remaining bacteria were 

spun down at 3300 g for 10 min, the pelleted bacteria resuspended in 0.5 ml 

2xTY and spread on 2 big round agar plates of the appropriate selective 

2xTY+1% glucose-agar and grown at 30°C. The plates were incubated until 

colonies were visible. Counting the colonies on the titer plate monitored the titer 

of the selection. The bacteria on the big agar plates were collected by gently 

loosen the bacteria with 5 ml 2xTY+15% glycerol with a glass spreader. Then, 

50 ml of selective 2xTY+1% glucose were inoculated with enough bacterial 

suspension to yield an OD600 of 0.05-0.1. The remaining bacteria were stored at     

-80˚C. The phage was rescued by growing the culture at 37°C to OD600 0.4-0.5, 

infecting the cells with helper phage in a ratio of around 20:1 (phage : bacteria) 

for 30 min at 37°C. The infected bacteria were centrifuged at 3.300 g for 10 min 

and the pellet gently resuspended in 100 ml of selective 2xTY with Kan and 

grown overnight at 30 °C. Amplified phage was purified by PEG precipitation 

and stored in two separate 1 ml aliquots for further rounds of selection. 

2.9.4 PEG precipitation of Phage 

The phage was purified and concentrated by precipitation with PEG 8000 

(Sigma). 

PEG/NaCl solution 5x:  20% polyethylene glycol (PEG) 8000, 2.5 M NaCl in 

ddH2O, sterile filtered.  
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Per 100 ml phage-containing supernatant 25 ml PEG/NaCl were added, mixed 

well and left for a minimum of 1 h at 4°C. This mixture was centrifuged at 3300 

g for 30 min and the resulting pellet resuspended in 40 ml water, then 10 ml 

PEG/NaCl were added, mixed and left for a minimum of 20 min at 4°C. The 

mixture was centrifuged again and he supernatant discarded. An additional brief 

centrifugation step was included to remove remaining PEG/NaCl solution. The 

pellet was resuspended in 2 ml of PBS, and centrifuged for 2 min at 13’000 rpm 

to remove any residual bacterial cell debris. Long-term storage of the phage 

supernatant was in PBS with 10% glycerol at -80°C. 

2.9.5 scFv Expression Screening ELISA 

Goat anti-mouse IgG–HRP antibody and Sigma-fast OPD substrate were from 

Sigma, mouse anti c-myc antibody clone 9E10 was a kind gift of the Group of 

Prof. M.Hall, Biocenter Basel. 

Individual colonies from the selection plates of phage-infected XL1 Blue after 

the second and fifth round of selection were picked using a toothpick, inoculated 

into 160 µl selective 2xTY with 0.1% glucose in 96-well U-bottom plates and 

grown for 3 h at 37°C in a shaking incubator. A replica plate was prepared by 

transferring 50 µl of bacterial supernatant into 50 µl 40% glycerol prior to 

induction. The replica glycerol plates were stored at -80°C. Then scFv 

expression was induced by the addition of 40 µl of a 5 mM IPTG solution to 

each well (final concentration 1 mM) and incubation of the plate in a shaking 

incubator at 30°C for 16 - 24 hours. The plate was centrifuged at 1800 g for 10 

min to pellet bacteria, and then the supernatant containing the soluble scFv 

fragments was transferred to the prepared ELISA plate. 

2.9.5.1 Preparation of ELISA Plate for scFv Expression Screening 

H1-CRD, 5 µg/ml in HBS+10 mM Ca2+, was immobilized over night on a Nunc 

MaxiSorb 96 well Immunoplate. The coating solution was discarded and the 

plate was blocked with 200 µl PBS + 3% BSA for 2 h at room temperature. The 

plate was washed 3 times with PBS. Then, 90 µl of bacterial supernatant were 

transferred to the ELISA plate-wells and 20 µl of 5x mouse anti-c-myc antibody 

antibody (1:1000) in PBS + 3% BSA were added. The plate was incubated for   
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2 h at room temperature in an orbital plate shaker at 200 rpm. The plate was 

washed again 3 times with PBS before adding 100 µl goat anti-mouse IgG–HRP 

antibody (1:1000) in PBS + 1% BSA with incubation for 1 h at room 

temperature. The plate was washed 3 times with PB + 0.1% Tween followed by 

3 times with PBS. Excess humidity was removed by tapping the plates upside 

down on tissue paper, and then 100 µl of OPD substrate solution were added 

and incubated for about 5 min. The OD was determined at λ = 450nm on a 

Spectramax 190 plate-reader.  

2.9.6 Screening for murine scFv Clones by Colony Blotting 

The HisDetector Nickel-AP kit was from KPL. 

10% SDS in H20, adjusted to pH 7.2  

Denaturing solution: 0.5 M NaOH, 1.5 M NaCl  

Neutralization solution: 1.5 M NaCl, 0.5 M Tris, pH 7.4 

20x SSC: 3 M NaCl, 0.3 M Sodium citrate, pH 7.0 

Freshly transformed BL21(DE3)-cells were plated on LB agar plates with Cam 

and 0.5% glucose, and incubated over night at 37°C. First the plate-lids were 

slightly opened to let the condensation dry, then dry numbered nitrocellulose 

membranes were placed on the agar surface to get in contact with the colonies. 

The filters and agar were pierced asymmetrically with a syringe needle for later 

alignment. Then the membranes were removed and placed with the colony side 

up onto LB agar plates containing Cam, 0.5% glucose, and 250 µM IPTG and 

incubated for 4 h at 37°C. (the colonies of the master plates were later re-grown 

for 4 h at 30°C). 

A set of Petri dishes containing filter papers soaked with the following buffers 

were prepared and the nitrocellulose membranes placed with the colony side up 

on top of the filters incubated as indicated: 

1.  10%SDS 10 min 
2.  Denaturing solution   5 min 
3.  Neutralization solution   5 min 
4.  Neutralization solution   5 min 
5.  2x SSC 15 min 

The membranes were then further processed like western blots and all 
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incubation steps were performed on a shaker at RT. The membranes were 

washed twice for 10 min with TBS buffer, and then incubated for 1h in blocking 

buffer (1x Detector Block solution from the kit) at RT. Then they were washed 

twice for 10 min in TBST buffer, and once for 10 min in TBS buffer. The 

membranes were incubated for 1 h in 10ml HisDetector Nickel-AP conjugate 

solution (1:1000 diluted in Detector Block solution) at room temperature, and 

washed again twice for 10 min in TBST and once in TBS buffer. The 

membranes were soaked in 20 ml substrate buffer with 100 µl of NBT/BCIP-

substrate and incubated until a clearly visible signal appeared. Rinsing the 

membrane twice with water stopped the reaction. 

2.9.7 Expression of soluble scFv in E.coli 

2.9.8 Purification of murine scFv via His‐tag 

2.9.8.1 Periplasmic extraction 

S-Buffer: 100 mM Tris, 0.5 M saccharose (Sigma), 1 mM EDTA, pH 8.0, sterile 
filtered. 

When using pAK300 as expression vector in BL21(DE3) cells, scFv fragments 

should be enriched in the periplasmic space of the bacteria. To harvest the 

periplasmic fraction, the cell wall of the bacteria was destroyed by osmotic 

shock treatment. 

The bacterial pellet of 500 ml culture was washed once in PBS, centrifuged at 

7500 g for 20 min and 4°C. The washed pellet was resuspended in 20 ml of ice-

cold S-Buffer and incubated for 30 min on ice with slow spinning and then 

centrifuged again. The supernatant (periplasmic fraction) was removed and kept 

on ice, while the pelleted spheroblasts were resuspended in 20 ml of a 5 mM 

MgSO4 solution and incubated on ice for another 20 min. After a further 

centrifugation step, the supernatant (osmotic shock fraction) was removed and 

combined with the periplasmic fraction and dialyzed over night against loading 

buffer (PBS, 0.5 M NaCl, 20 mM imidazole, pH 7.4) 
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2.9.8.2 Downstream Protein Purification  

Affinity chromatography of murine scFv 

HisTrap FF crude columns (1ml) were from GE Healthcare, imidazole and NaCl 

from Fluka. PBS buffer (pH 7.4) was selfmade or from Invitrogen. Purification 

was carried out on a BioLogic FPLC system (Bio-Rad). 

Loading: PBS, 0.5 M NaCl, 20 mM imidazole (pH 7.4) 

Wash buffer: PBS, 0.5 M NaCl, 20 mM imidazole (pH 7.4), 0.05% Tween® 20 

Elution buffer: PBS, 0.5 M NaCl, 100 mM imidazole (pH 7.4) 

All purification steps were carried out at a flow-rate of 1 ml/min and at 4°C. 

The column was equilibrated with 5 column volumes (CV) loading buffer. The 

combined, dialyzed periplasmic and osmotic shock fraction were loaded at 

1ml/min, the column was washed with 30-40 CV of wash buffer and the bound 

protein eluted with 10 CV of elution buffer. The eluate was collected in 1-2 ml 

fractions and analyzed by SDS-PAGE and WB.  

2.9.9 Purification of human scFv  

Affinity chromatography using Protein A-Sepharose can be applied to purify 

antibody fragments encoded by VH segments from the VH3 family 140. 

Protein A Sepharose column 5 ml was from Biovision 

Wash buffer 1: PBS, 0.5 M NaCl, pH 7.4, 0.05% Tween 20 

Wash buffer 2: PBS, 0.5 M NaCl, pH 7.4 

Elution buffer: 0.2 M Glycine pH 3.0 

Neutralization buffer: 1 M Tris, pH 8.0 

All purification steps were carried out at a flow-rate of 1 ml/min at 4°C. The 

column was equilibrated with 3 CV of PBS, then it was loaded with filtered (0.45 

µm) supernatant, firstly washed with 6 CV of wash buffer 1, then 5 CV of wash 

buffer 2. The protein was eluted with 2 CV of elution buffer and the 2-3 ml 

eluates were collected into tubes containing neutralization buffer for immediate 

pH correction to pH 7.4. 
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2.9.9.1 Buffer Exchange and Sample Concentration 

Due to the known stability of antibodies in PBS, the buffer of the scFv samples 

was exchanged to PBS after purification. Additionally, the concentration was 

increased.  

Buffer exchange and sample concentration of the combined fractions was 

carried out with centrifugal filter devices Vivaspin 4, cutoff 5 kDa (Sartorius). All 

centrifugation steps were performed at 4°C and 7’000 g. First, the filter device 

was washed twice with 4 ml of PBS to remove glycerol from the membrane. 

Then a maximum of 4 ml of sample was applied. The final concentrated sample 

was washed twice using 4 ml of PBS. 

2.9.10 Analysis of Binding Properties of murine scFv in ELISA 

The plate was prepared and the assay performed as described in chapter 2.2.1, 

with the exception that instead of a glycomimetic compound the purified 

C11.1scFv in a 1:2 dilution series from 100 to 6.5 µg/ml  (50 µl/well) was 

distributed to the wells (n=8 per concentration). To half of the plate 50 µl of a 

preformed conjugate of biot. GalNAc–PAA with streptavidin-peroxidase, diluted 

to give a final concentration of 0.5 µg/ml of PAA-polymer and 1U/ml of 

Streptavidin-peroxidase were added, whereas the second half was incubated 

with scFv only. The plate was incubated for 2 hours at room temperature in a 

humid chamber on a laboratory shaker at 100 rpm. After the incubation, the 

plate was carefully washed twice with HBS + Ca2+ followed by the addition of 

ABTS–substrate to the half plate with the polymer (and stopping the colour 

development after 2 min) while adding HRP-Ni conjugate (KPL) diluted 1:500 in 

assay buffer to the second half of the plate and incubating another hour. After 

the incubation, the second half of the plate treated with HRP-Ni was carefully 

washed twice with HBS + Ca2+ followed by the addition of ABTS–substrate. 

Color was allowed to develop and then the reaction was stopped with 2% oxalic 

acid in H20. Bound GalNAc-PAA-complex and bound scFv detected with HRP-

Ni was measured by determining the optical density (OD) of the occurring blue-

green color at λ = 415 nm with a Spectramax 190 plate-reader (Molecular 

Devices).  
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2.9.11 Affinity Measurements 

Affinity measurements were performed on a Biacore 3000 surface plasmon 

resonance based optical biosensor (Biacore AB, Sweden). CM5 Sensor chips, 

the amine coupling kit (including all reagents needed for the immobilization 

procedure (N-hydroxysuccinimide (NHS), 3-(N,N-dimethylamino) propyl-N-

ethylcarbo-di-imide (EDC), ethanolamine HCl), maintenance supply and ready-

to-use (degassed and filtered) standard buffers HBS-P (10 mM HEPES, 150 

mM NaCl, pH 7.4 + 0.005% (v/v) Tween 20) and HBS-EP (HBS-P + 3 mM 

EDTA) were purchased from Biacore AB. Data processing and equilibrium 

binding constant determinations were accomplished with Scrubber (Version 

2.0). Double referencing was applied to correct for bulk effects and other 

systematic artifacts 179.  

Amine coupling 

The immobilization of H1-CRD to a CM5–chip was optimized by D. Ricklin 75 

Before use, the sensor chips were preconditioned by injecting a series of 

conditioning solutions. Twice a cycle of 20 µl of 50 mM NaOH followed by 10 

mM HCl, 0.1% SDS and 100 mM H3PO4 was injected at a flow rate of 50 µl/min. 

After preconditioning the chip was used for immobilization within the next 2 

hours. 

The carboxy-groups on the chip were activated for 7 minutes with a 1:2 mixture 

of 0.1 M N-hydroxysuccinimide (NHS) and 0.1 M 3-(N,N-dimethylamino) propyl-

N-ethylcarbo-di-imide (EDC) at a flow rate of 5 µl/min. The H1-CRD solution 

(730 µg/ml, batch 071115) was diluted to 300 µg/ml in HBS-EP. Of this solution, 

20 µl were mixed with 80 µl of acetate buffer to pH 5.0. This mixture was then 

injected to flow over the activated surface at a flow rate of 5 µl/min for 30-35 s 
75. Obtained densities were between 3600 to 4400 RU depending on the contact 

time. Afterwards the flow cell was blocked with a 7 min injection of 1 M 

ethanolamine, pH 8.0. A reference cell was treated the same way (activation-

deactivation) without immobilization of protein. 

2.9.12 Activity Testing of H1‐CRD in SPR 

A 100 mM stock solution of GalNAc was prepared in running buffer (HBS-P with 
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50mM Ca2+). Activity testing of H1-CRD was performed by injecting randomized 

twofold serial dilutions between 5 mM and 5 µM. Each sample was injected for 

30 s with an undisturbed dissociation phase of 20 s using the instruments 

kinject command at a flow rate of 50 µl/min. No regeneration or washing steps 

was applied. Five buffer blanks were injected at the beginning of the series and 

one at the end. Signals of the reference flow cell and averaged blank injections 

were subtracted from the sample sensorgrams. Since referenced sensorgrams 

showed negative SPR signals, they were mirrored by multiplication of each data 

point with -1. Mirrored steady state data were evaluated between 10 and 20 s of 

the injection period and were fitted to a single site-binding model using Scrubber 
software version 2.1. 

2.9.13 Affinity Testing of scFv 

The concentration of the purified scFv samples was estimated from SDS-PAGE 

(15% non-reducing) after changing the buffer to HBS-P+ 50 mM CaCl2 using 

Vivaspin 6 (cutoff 10 kDa) centrifugal filtering devices  (Sartorius). 

In a first screening assay, each scFv was injected at a concentration of 9 nM for 

10 min with a dissociation phase of 10 min at a flow rate of 25 µl/min. Finally, 

the surface was regenerated by HBS-EP injection during 10 min and a 

regeneration phase of 10 min with the running buffer HBS-P+50mM Ca2+.  

Affinity testing of scFv antibody 5B8 and 2E8 was conducted by injecting a 

twofold dilution series of 1.6 µM to 0.19 pM for 5B8 and 0.8 µM to 0.19 pM for 

2E8. Samples were injected in a randomized order for 9 min at a flow rate of 25 

µl/min. After a 10 min dissociation phase, the surface was regenerated by HBS-

EP injection during 10 min at 25 µl/min and a regeneration phase of 10 min with 

the running buffer HBS-P+50mM Ca2+ at 25 µl/min. Five buffer blanks were 

injected at the beginning of the series and one at the end. Signals of the 

reference flow cell and averaged blank injections were subtracted from the 

sample sensorgrams. Steady state data were evaluated between 10 and 20 s of 

the injection period and were fitted to a single site-binding model using Scrubber 
software version 2.1. 
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3. Results and Discussion 

3.1 H1‐CRD Production 

The ability to test physiological and synthetic ligands on an isolated form of a 

receptor is a prerequisite for a deep understanding of molecular binding events. 

Since only the extracellular carbohydrate recognition domain of the human 

hepatic asialoglycoprotein receptor is involved in ligand binding and its activity 

is not influenced by posttranslational glycosylation, the lectin domain can be 

expressed in E.coli.  

A truncated form of the H1 subunit of the ASGP receptor including the whole 

CRD domain (amino acid residues 147-291), the human hepatic 

asialoglycoprotein receptor H1-CRD, was produced in E. coli based on a 

published method 73, 180. Even though a protocol for the expression and 

purification already existed, the yields were rather low and the protein fraction 

contained several populations. The method was therefore further optimized by 

Rita Born, in order to increase both yield and purity166. The H1-CRD production 

cycle is summarized in Figure 27. 

Briefly, the protein was expressed as inclusion bodies in E. coli strain 

AD494(DE3) transformed with the plasmid pET3H1C 73. After IPTG (0.4 mM) 

induced expression in TB medium for 5 h at 37°C, the cells were harvested by 

centrifugation at 4°C and 5000 g for 10 minutes, resuspended in 20 mM Tris 

(pH 8.0) and lysed by sonication. The protein was denatured under reducing 

conditions and refolded by extent dialysis against Tris buffer. First, the correctly 

folded H1-CRD was purified by affinity chromatography using a Gal-Sepharose 

column connected to an FPLC-system (Bio-Rad) 181. 

 



  

 Results and Discussion         H1-CRD Production 

   3-98 

 

 

Figure 27. Simplified overview of the production cycle of H1-CRD 
(A) H1-CRD expression, (B) primary purification, and (C) monomer/dimer separation. Picture by 
courtesy of D.Ricklin 

After a desalting step with a HiTrap Desalting column, the protein was 

separated into a monomer and dimer fraction by Ion exchange HPLC  on a 

DEAE column. 
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Figure 28. Affinity chromatography H1-CRD 
After the loading (flow through) and washing step, a distinct peak can be seen during the 
elution, representing the H1-CRD.  

Eluted fractions were analyzed by reducing SDS-PAGE (Figure 29). H1-CRD 

was predominately enriched in the eluates 3-4 (lane 8 and 9), corresponding to 

the elution peak in the chromatogram. H1-CRD could also be spotted in the flow 

through (lane 4), indicating either overloading of the column or alternatively 

misfolded protein. 

 
Lane  
1 Marker 
2 Reference H1-CRD  
3 Loaded sample 
4 Flow through 
5 Wash  
6 Eluate 1 
7 Eluate 2 
8 Eluate 3 
9 Eluate 4 
10 Eluate 5 

 
Figure 29. Analysis of collected affinity chromatography fractions of H1-CRD  
(Reducing 15% SDS-PAGE) 
 
Analysis with non-reducing SDS-PAGE shows the occurrence of both 
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monomeric and dimeric H1-CRD (Figure 31, lane 2). No consistent ratio of the 

two species could be determined, as the fractions appeared to vary among 

different batches.  

To separate the monomers and dimers, HPLC IEC was employed. Protein 

samples were loaded onto a DEAE column and eluted with a CaCl2 gradient.  

 

Figure 30. Separation of H1-CRD monomers and dimers by HPLC 
IP1 and IP2 are minor impurities that are present in every batch of H1-CRD. 

Monomeric H1-CRD, less charged than the dimeric form, was found to elute at 

a lower CaCl2 concentration, while the dimers emerged at higher CaCl2 

concentration. Repeated injections of H1- CRD showed highly similar 

chromatograms, confirming the reproducibility of the method (data not shown). 

The monomers could be seen in the HPLC chromatogram as the first peak with 

a tailing shoulder (IP1). A small, unidentified impurity peak (IP2) was seen 

following the monomers and preceding the dimers. The final peak corresponds 

to dimers of H1-CRD (Figure 30). 

 

Lane  
1 Marker 
2 H1-CRD, FPLC elution 
3 Monomer fraction 
4 Shoulder fraction 
5 Impurity fraction 
6 Dimer fraction 

 
 
 
 

Figure 31. Analysis of fractions collected during HPLC IEC. 
Fractions (lane 3, 4 and 7) are clearly enriched in monomers, but also contain traces of dimers 
(15% Non-reducing SDS-PAGE).  

The monomeric H1-CRD was concentrated by rebinding to a GalNAc-
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Sepharose column (Figure 32) and the final protein concentration estimated by 

Bradford assay170. 

 
Figure 32. Final preparation of monomeric H1-CRD  
Monomer fractions were pooled and purified by HPLC affinity chromatography using a GalNAc-
Sepharose column. 

From 4L of processed expression culture a total of 4.73 mg of monomeric H1-

CRD and 1.30 mg of dimeric H1-CRD were purified. 

3.1.1 Production of a Big Batch of H1‐CRD  

To be able to do all assay developments, SPR measurements, and NMR 

studies on the same batch of protein, a big batch of H1-CRD was produced 

starting from 41.7 g of wet pellet from E.coli AD494 (DE3) clone 4 cells 

containing pET3H1C produced in a 14 L fermentor at Roche and was 

processed in 3 batches according to the methods described in Chapter 0.  

The eluted H1-CRD fractions were collected and each starting batch was 

concentrated separately using Icon concentrators (20ml, 9 kDa, Pierce). The 

samples were concentrated up to ca. 1/4 of the starting volume and Tris-buffer 

(25mM, pH 8) was supplemented to a final volume of ca. 12-13 ml. This step 

was repeated 4 times to reduce the salt load from the elution and change the 

buffer. After the HPLC separation of monomers and dimers on a DEAE-column, 

the samples were concentrated again with Icon concentrators and the protein 

concentration estimated by Bradford. This batch yielded in 14.51 mg of H1-CRD 

monomers. Aliquots of 500 µl a 730 µg/ml were shock frozen in liquid nitrogen. 
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and stored at –20°C. After thawing, the samples were kept at 4°C and were 

stable for several weeks. 

3.1.1.1 Stability of the Protein  

The protein of the first, smaller batch was stable for one year when stored at -

20°C as shock-frozen aliquots of 500 µl in HBS + 1mM CaCl2, then the binding 

activity of the protein decreased, also observed in the competitive solid phase 

assay. The activity of the protein could be stabilized by the addition of more 

calcium to the HBS buffer (data not shown). Although the absolute IC50 obtained 

with the long-storage protein where about a third lower than the IC50 obtained 

with fresh H1-CRD, this did not hamper the evaluation of new compounds, as 

the IC50 of all measured compounds decreased to the same extent, the relative 

IC50’s, in comparison with GalNAc remained the same. The second, big batch of 

H1-CRD in a storage buffer with increased content of calcium, HBS with 10 mM 

CaCl2 instead of the previous 1 mM CaCl2, was still active after two years.  

The protein dimerizes upon storage and was a ∼1:2 mixture of monomers      

(17 kDa) and dimers (34 kDa) after 1 year of storage at -20°C (Figure 33). 

       1     M        H1-CRD    2     M     H1-CRD 
kDa  
 
 
66 
 
45 

36 
 
 
29 
24  
 
 
20 
   

14.2 
 
6.5 
 

Figure 33. Purified H1-CRD monomers after 1 year of storage 
(1) SDS-PAGE (15%) under reducing conditions (2) SDS-PAGE (15%) under non-reducing 
conditions  
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Conclusion 

Although the purification procedure of H1-CRD was constantly optimized and 

simplified and lead to highly pure and active protein, the purification stayed 

tedious and time consuming, especially when larger amounts were produced to 

obtain a consistent batch of protein (e.g. due to the limited loading capacity of 

the column in the separation of monomers and dimers by HPLC). Using size 

exclusion chromatography (SEC) at this step seemed to be the obvious choice. 

D.Ricklin attempted using SEC for separation, but the protein could not be 

isolated in its monomeric form even when using a relatively long (60 cm) 

column for better resolution. In addition, the lectin domain was found to interact 

with the column material and the size exclusion method was therefore regarded 

as non-suitable for the separation of H1-CRD monomers and dimers. 

 A problem that occurred during production and could be omitted with the 

optimized procedure was the precipitation of protein during the refolding by 

dialysis step. It was also observed that in the desalting step with the Amersham 

desalting columns some protein was found in the wash solution, indicating an 

overload of the column. When the big batch of H1-CRD was produced, the 

protein was therefore desalted and concentrated by centrifugation using Icon 

concentrators. There the observation was made that when the protein is too 

concentrated (> 2 mg/ml) precipitates occur, which can also lead to a loss in the 

overall yield of protein. 

The dimer content was not fully consistent from batch to batch and even after 

the HPLC separation of monomers and dimers, the occurrence of dimer 

formation could not be avoided. The reason for this was thought to be an odd 

cysteine in the H1-CRD structure, which contains 7 cysteines (further discussed 

in 202). 
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3.2 Heterogeneous Competitive Solid‐phase Binding Assay 

3.2.1 Selection of the Competitive Ligand and Buffer System 

Some general criteria which influence the selection of a possible ligand-probe in 

a competitive binding assay are that it should bind to the same receptor site as 

the unlabelled ligands, it should be chemically stable and resistant to enzymatic 

and hydrolytic degradation and non-specific binding to plastic materials used 

must be minimal. Heterogeneity of natural glycoconjugates, in particular 

glycoproteins, complicates their use as tools for the study of carbohydrate-

binding molecules, so the synthetic analogues of glycoconjugates play an 

important role in glycobiology research. Polyacrylamide, used as a high 

molecular weight carrier (Mr approx. 30 kDa), has a low non-specific        

sorption and is stable to chemical and proteolytic action. 

 

Figure 34. Constitution of a biotin labeled glyco-PAA-polymer 

GalNAc-PAA–polymer was selected as competitive ligand due to the fact that of 

the natural sugar ligands Gal and GalNAc, the H1-CRD has a higher affinity for 

the latter (as shown in Table 22). In Rat, the affinity of RHL1 (rat hepatic lectin 

1), which has a high homology to the human H1 subunit (80%), is reported to be 

even 50 times higher for GalNAc than for Gal 62. 

The PAA-polymer contains 20% mol of β-N-acetylgalactosamine-moieties and 

biotin (as 6-aminohexylamide) at 5% mol, which enables the detection of the 

polymer binding when conjugated with Streptavidin–Peroxidase. The 

polyacrylamide carrier forms a random coil of about 30 kDa with flexible 

distance between the attached β-N-acetylgalactosamine-moieties 182. This 

flexibility allows the residues to adjust themselves to bind their target molecule 

H1-CRD. For more information on polyacrylamide type glycoconjugates see the 
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review by Bovin 183. 

Setup of the competitive solid‐phase assay 

Figure 35. Setup of the competitive solid-phase binding assay 
Setup of the competitive solid-phase binding assay for the screening of GalNAc-derivates. H1- 
CRD is adsorbed on the plastic surface of 96-well-plates and specifically interacts with the 
probe biot. GalNAc-PAA-polymer (pre-complexed with Streptavidin-Peroxidase). If the studied 
compound binds to the H1-CRD, a decrease in the color development of ABTS-substrate is 
registered. 

Since it provides stable buffering in the physiological pH-range and allows the 

addition of calcium, which is not the case for PBS, in which calcium precipitates 

as calcium phosphate, the HEPES buffer system was selected for the assay 

buffer. A Tris buffer system could also be used, but it has the disadvantage of a 

temperature dependent pH. As the pH is important for the conformation of the 

protein and therfore the ligand binding to H1-CRD, Tris buffer was avoided. 

3.2.2 Receptor / Ligand Probe Concentrations  

Different concentrations of both the ligand probe and the protein were titrated 

against each other. To find the conditions to attain an optimal signal-to-noise 

ratio of binding to the immobilized H1-CRD of around 10, H1-CRD in the 

concentration of 0-5 µg/ml was immobilized on the plate and incubated with 

different concentrations of the polymer (0.1, 0.5, 1 µg/ml) (see Figure 36).  
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Figure 36. Optimization of H1-CRD and polymer concentrations 
            Mean of O.D. ± S.D. (n=4) 

The combination of 3 µg/ml of H1-CRD on the plate and 0.5 µg/ml biot. β-

GalNAc-PAA–polymer for binding resulted in a good signal-to-noise ratio and 

stable assay conditions with a reasonable consumption of protein and polymer 

and was therefore introduced as standard for the assay. 

3.2.3 Specificity of the Assay System 

Because the H1-CRD is a C-type lectin domain, its binding of D-Galactose or D-

GalNAc moieties is dependent on the presence of calcium. Therefore the effect 

of EDTA as a calcium-chelator was tested in concentrations from 0.01 to 3 mM. 

As shown in Figure 37, 1 mM EDTA completely abolished the binding of 

biot.GalNAc–PAA-polymer to the immobilized H1-CRD. 

0 1 2 3 4 5 6
0

1

2

3

H1-CRD
(µg/ml)

0.1 µg/ml
0,5 µg/ml
1.0 µg/ml

β-GalNAc-PAA-Polymer

050824 versch. Konz. H1, Polymer graph
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Figure 37. Calcium dependency of polymer binding 
             Mean ± S.D. (n=4) 

To further confirm the specificity of the binding, two other carbohydrate-PAA-

polymers expected not to bind to the H1-CRD of the ASGP-R were tested as 

ligand-probes. Instead of 20%mol β-GalNAc, these glyco-PAA-polymers contain 

either 20%mol of β-D-Glucose or sLea residues.  

Figure 38. Binding of different glycopolymers to the H1-CRD 
             Mean ± S.D. (n=4) 

In the concentrations tested (0.5 µg/ml), no specific binding of these polymers 

could be detected. This confirms the specificity of the binding of GalNAc-

residues on the β-GalNAc-PAA-polymer to the H1-CRD (Figure 38). In the 

competitive solid-phase assay, binding of Gal-PAA-polymer to H1-CRD is about 
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4 times lower than of β-GalNAc-PAA-polymer, which corresponds to the results 

obtained in SPR experiments, where the KD’s of monovalent β-GalNAc and D-

Gal show a 10 times difference in affinity 75 (see Table 22). 

3.2.4 Variability of the Assay 

The variability of the assay system was evaluated in 5 independent experiments 

(N=5). The OD-values for GalNAc-PAA-polymer binding to wells in absence of 

H1-CRD (unspecific or 0% binding) or in presence of H1-CRD-coating of the 

wells (specific or 100% binding) was acquired under standard assay conditions. 

Every experiment includes the measured OD values of 6 wells (n=6). 

Table 21. Variability measurements 

Experiments Unspecific binding (0%) 
1 2 3 4 5 

Mean (N) 

OD value means (of n=6) 0.212 0.127 0.138 0.075 0.116 0.134 

SD 0.009 0.026 0.016 0.016 0.026 0.019 

CV (%) 4.03 20.47 11.59 21.33 22.41 13.86 

       

Experiments Specific binding (100%) 
1 2 3 4 5 

Mean (N) 

OD value means (of n=6) 1.668 1.720 1.611 1.507 1.964 1.694 

SD 0.112 0.046 0.097 0.062 0.095 0.082 

CV (%) 6.69 2.67 6.02 4.11 4.84 4.86 

The assay evinces a low day-to-day variability below 15%, and the use of 

different preparations of GalNAc -PAA-polymer complexed with steptavidin-

POD had no influence on the results.  
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Figure 39. Washing steps after polymer incubation 

The results depicted in Figure 39 reveal that polymer binding to H1-CRD is very 

stable. Even an increase of the last washing steps of the plate after polymer 

incubation from 2 to 6 did not influence the OD significantly. 

3.2.4.1 Probing pH Dependence of Ligand Binding to H1‐CRD  

Ligand binding to the ASGP-R is pH dependent, as the receptor has to release 

its ligand upon fusion with endosomes. This mechanism is caused by a 

decrease of the endosomal pH to 5.4, which leads to a conformational change 

of the receptor followed by a release of the calcium ions and the ligand. In rat 

ASGP-R, charged amino acids in and next to the binding site were identified as 

a molecular ‘switch’, which initiates the ligand release. The key step in this 

mechanism is the protonation of His202 which corresponds to His256 in human 

H1-CRD 184. Therefore, ligand binding to the H1-CRD is expected to show a 

significant pH-dependency in a critical pH range below 6.5. In order to 

investigate the effect of pH on ligand binding to the H1-CRD, GalNAc-PAA-

polymer diluted in buffer at various pH values was incubated with the protein on 

the plate, applying standard assay conditions In addition, after polymer binding 

and washing of the plate, the pH in the wells was re-equilibrated to pH 7.4 with 

an incubation step of 10 min using the standard buffer. The buffer used during 

the incubation step of GalNAc-PAA-polymer on immobilized H1-CRD was 

HBS+1 mM Ca2+ adjusted to pH 4, 5, 6, 7, 7.4, and 8. Since some pH values 
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(pH 4, 5, 6) were below the buffer capacity range of HEPES (pKa = 7.55), the 

pH of the buffers was carefully controlled before and after the experiment. 
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Figure 40. pH dependency of ligand binding to the H1-CRD 

OD values for each pH were measured in quadruplicates. While a decrease of 

pH from 7.4 to 7 showed only a slight influence on binding, a significant activity 

drop was visible at pH 6.0. Finally, essentially no binding could be detected 
when lowering the buffer below pH 5 (Figure 40). The obtained results 

confirmed the pH-dependency of binding for β-GalNAc and D-Gal to H1-CRD 

observed by D.Ricklin in SPR75 ,  the  results of the NMR experiments 

performed with the H1-CRD at our institute by Dr. B. Cutting, and are also in 

good agreement with the findings reported in literature. For rat ASGP-R, a rapid 

decrease of ligand binding was reported when lowering the pH from 8.8 to 4.8. 

The midpoint of ligand release was reported to be at pH 7.1 and almost all 

ligand was released at the endosomal pH of 5.4 184. 

3.2.4.2 Amount of Calcium in Buffer 

Initially the assay was set up with a buffer system containing a physiological 

amount of 1mM calcium, but experience showed that long term storage of the 

recombinantly produced H1-CRD in a buffer containing more calcium (10 mM 

instead 1mM) improved the stability and acivity of the protein. Moreover the 

calcium content in the buffer for SPR experiments had to be increased to 50 

mM to acheive stable binding. Hence, the influence of higher amounts of 

calcium in the buffer system on β-GalNAc-PAA-polymer binding to H1-CRD was 
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evaluated. For this purpose, H1-CRD was either coated to the plate over night 

in buffer containing 20 mM Ca2+, or the 2 h- binding step of the polymer to the 

H1-CRD in the presence of of the competitor D-galactose (10, 3, 1 and 0.3 mM) 

was performed with buffer containing 20 mM Ca2+, or this buffer was used in 

both steps (coating and binding). The IC50s of galactose under these different 

conditions were compared to the results obtained with the buffer containing 1 

mM Ca2+ during all incubation steps. 
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Figure 41. Influence of calcium concentration in the buffer on the IC50 of galactose 

The increase of calcium in the HEPES-buffered saline (HBS) (20 mM instead of 

1mM) during any of the incubation steps lead indeed to a stonger binding of the 

β-GalNAc-PAA-polymer to the protein, and the increasing IC50  (Figure 41) 

indicate that this binding could hadly be inhibited by the tested competitor 

anymore. The assay with HBS containing 1 mM CaCl2 gave IC50 values that 

were in the range of the KD’s measured in SPR (see Table 22), this lead to the 

decision to maintain 1 mM Ca2+ as the standard calcium concentration in the 

assay buffer . 

3.2.4.3 Incubation Temperature 

The influence of the temperature during the two hours step of competitive 

binding of polymer and analyte on the obtained IC50 values was tested at 37°C, 

at room temperature (RT) and at 4°C while shaking on an orbital plate shaker. 
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Figure 42. Influence of incubation temperature during the polymer-binding step 

Incubating the plates at 37°C and at RT effectuated higher OD values than 

incubation at 4°C. Additionally, at RT the the obtained IC50s were more stable 

and the standard deviations between the values of replicate wells were lower 

compared to those achieved when incubating at 37°C (Figure 42), probably 

mainly due to the homogenous mixing during incubation on the orbital shaker. 

Thus, room temperature with shaking was selected as standard condition for 

the competitive binding step. 

3.2.4.4 DMSO Tolerance 

The development and synthesis of novel carbohydrate mimics is often 

accompanied by a significant increase in their hydrophobicity. Therefore, 

organic modifiers have to be added to the solvent. DMSO is suited for most 

applications due to its miscibility with water, its nonvolatile character, and its 

biocompatibility. However, addition of DMSO nevertheless might influence 

protein activity or binding properties. Most of the tested compounds were readily 

soluble in assay buffer. DMSO was only used to prepare stock-solutions of 

higher substituted Gal/GalNAc mimics that were not soluble in buffer alone.  
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 Figure 43. DMSO Tolerance of the competitive solid-phase binding assay 

The influence of DMSO was tested up to a final concentration of 20% DMSO 

per well (data not shown). No influence on polymer binding and on IC50 values 

tested under standard conditions could be observed at DMSO concentrations 

up to 5% ( Figure 43), confirming the suitability of the assay also for the 

screening of hydrophobic, drug-like substances. 
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3.2.5 Sensitivity of the Assay System, Testing of H1‐CRD Ligands 

The carbohydrate analytes were dissolved in assay buffer to 100 or 20 mM and 

then diluted in log-scale dilutions to 20, 6, 2, 0.6, 0.2, 0.06, 0.02 mM. After the 

blocking step the plates were washed and tapped dry. Directly after the addition 

of a volume of 50 µl/well of the 2-fold-concentrated analyte-dilutions, 50 µl of a 

2-fold-concentrated polymer solution (1 µg/ml) were added to the wells and then 

incubated at RT for 2 hours on a plate shaker. Washing of the plates and 

detection of the polymer binding were performed as described in Chapter 2.2.1.  

Table 22. Comparison of results of a panel of carbohydrate analytes  
in the competitive solid-phase assay with surface plasmon resonance affinity measurements  

Competitive solid-phase 
assay a 

Surface plasmon 
resonance b 

Literature 
values c 

Carbohydrate 
Analyte 

 IC50 [µM]  rIC50 KD [µM]  rKD IC50 
[µM]  

rIC50 

N-acetyl-D-
galactosamine 
(GalNAc) 

113±13 1 150±0.9 1 90 1 

Galactose 1049±101 9.3 1460±10 9.7 1700 18.9 

Lactose 1077±87 9.5 2090±50 13.9   

Methyl-β-D-
galactopyranoside 

1828±169 16 2200±40 14.7 1000 11.1 

Methyl-α-D-
galactopyranoside 

2831±140 25 2760±60 18 1600 17.8 

Glucose >30000 n.d. >10000 n.d. 60000 667 

Asialofetuin 0.285±0.012 2.5x10-3 0.119 1.2x10-3 n.d. - 

Methyl-α-
glucopyranoside >30000 - n.d. - n.d - 

Methyl-acetyl-
glucosamine >30000 - n.d - n.d. - 

a The IC50s represented in the table were calculated using the datasets of a minimum of 3 
independent experiments (measured on different plates, at different days using individually 
weighted compounds for each experiment). The curves represent the mean values ± the 
standard deviation (SD). b The KD values were obtained in Surface Plasmon Resonance (SPR) 
experiments with H1-CRD coated on the chip (performed by D. Ricklin 73). c Literature values 
are IC50 from isolated rabbit ASGP-R lectin, the assays were performed with radioactively 
labeled ligands 182, 183. (n.d.= not determined) 
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Figure 44. Structures of carbohydrate analytes  
used for the validation of the competitive solid-phase assay 

3.2.6 Analysis of the Data 

The IC50 values of the tested compounds were calculated with Prism 

GraphPad–program version 4. Two models for the calculation of the non-linear 

fit are feasible in this case, the ‘one-site competitive binding’ and the ‘sigmoidal 

dose-response with variable slope’. Statistical comparison of the two models 

showed the ‘sigmoidal dose-response (variable slope)’ model to give superior 

fits (data not shown). The datasets were normalized to percentage of binding by 

setting background binding (non-specific GalNAc-PAA binding to wells without 

H1-CRD) as 0% and maximal specific binding (GalNAc-PAA binding to H1-CRD 

with addition of buffer instead of analyte dilution) as 100%. The nonlinear-fit of 

the normalized data was calculated with a four-parameter logistic equation: 

y=bottom + (top-bottom) / (1+10((logEC50-x)*Hillslope)), with x as the logarithm of 
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concentration, y the response, with the bottom of the curve constraint to zero 

and the top to 100. The IC50 defines the molar concentration of the test 

compound that reduces 50% of the maximal specific binding of GalNAc-PAA to 

H1-CRD. The relative IC50 (rIC50) is the ratio of the test compound IC50 to the 

IC50 of GalNAc. 

3.2.7 Adaptation of the Assay to the H2‐CRD 

The rationale of developing a competitive solid phase binding assay for H2-

CRD in parallel to the one with H1-CRD is obvious. As the receptor in its native 

form is an oligomer consisting of H1 and H2 subunits, it would make sense to 

develop a drug-carrier that also addresses the H2 subunit of the receptor for 

tight and specific binding to the hepatic ASGP-R. 

The H2-CRD used for the assay development was basically prepared in the 

same way as H1-CRD. Monomeric H2-CRD expressed as inclusion bodies in 

E.coli, purified by affinity chromatography on a Gal-Sepharose column, and 

separated from dimers by HPLC, was prepared at our institute by Dr. S. 

Rabbani. The binding of GalNAc- or Gal-PAA-polymer to the H2-CRD was 

tested under the same conditions applied with the H1-CRD (see page 2-48). 
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Figure 45. Adaptation of the assay to H2-CRD 
GalNAc-PAA polymer binding to 1 H2-CRD in the concentration range from 10-30 µg/ml; 2 H1-
CRD at the standard concentration of 3 µg/ml 

Using the standard assay conditions with 0.5 µg/ml of GalNAc-PAA polymer for 

binding, H2-CRD immobilized on the plate at 10 to 30 µg/ml and even a 
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prolonged incubation time with ABTS-substrate of 10 min resulted in low OD 

values and only moderate specific binding of the GalNAc-PAA polymer to H2-

CRD in comparison to the reference (H1-CRD) incubated on the same plate 

(Figure 45). 
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Figure 46. Comparison of the binding activity of H2-CRD (0-50 µg/ml)  
to GalNAc-PAA polymer (0.5 µg/ml) in buffer with 1 and 20 mM calcium, respectively. 

Increasing the calcium content of the buffer from 1 mM to 20 mM improved the 

obtained OD values for specific binding of the GalNAc-PAA polymer (Figure 

46).  

The fact that H2-CRD can be purified over a Gal-Sepharose column but not a 

GalNAc-column (observation by Dr. S. Rabbani) lead to the assumption, that 

unlike H1-CRD, the H2-CRD might have a higher affinity for galactose than for 

GalNAc. Therefore a polyacrylamid-polymer bearing galactose instead of 

GalNAc was used as ligand probe (Figure 47).  
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Figure 47. Comparison of Gal- and GalNAc-PAA-polymer (0.5 µg/ml) binding to H2-CRD  
immobilized at concentrations from 5 to 20 µg/ml of protein, to the standard H1-CRD 
concentration for the competitive solid phase binding assay in HBS with 20 mM Calcium 
(Individual backgrounds are removed) 

The assay performed with monomeric H2-CRD showed a better signal-to-noise 

ratio with the Gal- than the GalNAc-PAA-polymer, albeit the ratio was not nearly 

as high as the one of GalNAc-PAA-polymer binding to H1-CRD. High amounts 

of protein were needed for immobilization to get a good signal-to-background 

ratio in the assay with H2-CRD. The amount of protein needed is the limiting 

factor in this case and to use the assay in this format for ligand testing is not 

applicable. 

To date, the ligand specificity of the H2-CRD is still unclear. During her master 

thesis at our institute, D. Abgottspon screened a panel of more than 30 different 

sugars for binding to the H2-CRD in SPR, but none of them could be identified 

as high affinity ligand of the H2-CRD 187. 

3.3 Evaluation of new Glycomimetic Ligands for the ASGP‐R 

In the approach to develop new glycomimetic ligands to be employed as binding 

moieties for a drug-carrier targeting the ASGP-R, several small, directed 

libraries were synthesized. The first ones, synthesized by Dr. C. Riva in the 

scope of her thesis, comprised about 50 compounds with modifications in the 2 

and 6 position of galactose 188. Dr. O. Khorev synthesized a smaller library with 

modification in the 2 position of the Galatose scaffold189. All components of the 
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libraries were evaluated in the competitive solid-phase binding assay by the 

author of this thesis and the affinity values (rIC50) were compared to the lead 

compound GalNAc. 
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Figure 48. Lead compound N-acetylgalactosamine (GalNAc) 
showing important interactions with the binding site of the ASGP-R H1-CRD  

Molecular modeling studies performed at our institute confirmed that, as also 

indicated by the crystal structure of H1-CRD, the 3-OH of the sugar moiety must 

be equatorial and the 4-OH must be axial for binding to occur. Further nalysis of 

the crystal structure revealed also that the 2- and probably the 6-positions of the 

sugar ring might be modified. The substituent at the 2-position of Gal is directed 

towards the core of the protein, and in this region either H-bonds or hydrophobic 

interactions can be established between the ligand and the CRD (Tyr 272, His 

256, Asn 264, Asp 266). The 6-position of Gal is pointing towards the 

surrounding water, but maybe extended to reach Trp 243, suggesting a 

hydrophobic interaction. 

First generation 

The aim of the work of Dr. Claudia Riva was to improve the understanding of 

the structural requirements for simple mono-galacto-derivatives for improved 

binding to the H1-CRD188 . All compounds were analyzed and ranked in the 

competitive solid-phase binding assay and some selected ones were further 

evaluated by SPR experiments, providing kinetic binding values for the 

synthetic small ligands to the H1-CRD. 

Based on the crystal structure of the H1-CRD and SAR studies for similar 

receptors, four families of D-Galactose and D-Galactosamine derivatives and 

mimics thereof, modified at the 2- (iii and iv) or 6-position (i and ii), were 
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synthesized by Dr.Claudia Riva either in solution or on solid phase. Similar or 

improved affinities relative to GalNAc were obtained in the competitive solid-

phase binding assay. Substituents in the 2-position (iii and iv) tightly interact 

with the receptor, while substituents in the 6-position (i and ii) could only 

modestly improve the affinity. However, with di-substituted monosaccharide 

mimics v the additive effects of substituents in the 2- and 6-position could not 

be confirmed.  

 

Figure 49. Summary on the 4 directed libraries produced by C.Riva 
R1: hydrophobic groups, R2: hydrophobic or hydrophilic groups R3: H, CH3, or CH(CH3)2 

All compounds were tested in the competitive solid-phase assay by the author 

of this thesis, the obtained IC50 values are represented in the thesis of 

Dr.C.Riva188 and served together with the results of  molecular modeling studies 

as the starting point for the design of the next generation of new glycomimetics. 

Second Generation  

To date, the highest affinity small molecular weight, monovalent ligand known 

for the ASGP-R is N-acetylgalactosamine (GalNAc). Its structure and 

physicochemical properties make it a poor candidate for therapeutic use. A high 

polarity, due to many hydrogen bond donors and acceptors, cause it to violate 

Lipinski’s rules for good absorbance, and make it prone to fast elimination. In 

addition, GalNAc is susceptible to oxidation/reduction leading to a short plasma 

half-life due to its metabolically labile anomeric center. 
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In the scope of his thesis Oleg Khorev attempted to overcome these obstacles 

by the design and synthesis of a small, directed library of new glycomimetics 

based on the structure of GalNAc, by modifying in the 2-position of the sugar 

scaffold and by removing its anomeric center. 
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Figure 50. Starting point for the design of new glycomimetic ligands for the H1-CRD 
(A) Lead compound GalNAc, showing important interactions with the binding site of the ASGP-
R H1-CRD; (B) General structure of the compounds designed by Oleg Khorev. 

The focus of this project was to design a GalNAc mimic, which would be more 

lipophilic, metabolically stable, and synthetically easily accessible and have a 

higher or similar affinity towards the ASGP-R when compared to GalNAc. 

Oleg decided to remove the anomeric centre, which is not absolutely necessary 

for binding and acts as a metabolic hotspot, in order to increase the metabolic 

stability of the compounds. The 6-OH group pointing into the solvent showed to 

have enough space around it to accommodate a wide range of substituents (in-

house modeling studies performed by Dr. M. Lill). Therefore, it could be 

removed altogether or replaced by a more lipophilic substituent in order to 

improve the Lipinski parameters. Alternatively, the 6-OH could also serve as an 

attachment point for conjugation to oligovalent carriers (Figure 55). 

Binding studies published by other groups using galactose derivatives affirm the 

suggested theoretical binding mode of Gal/GalNAc to the ASGP-R 63, 190. Both, 

the acylation of the amino group of galactosamine with carboxylic acids 

featuring alkyl chains longer than 2 carbons, and the replacement of the N-

acetyl group in GalNAc with a bulkier N-benzoyl group significantly decreased 

the affinity of the compounds to the rat hepatic lectin subunit 1 (RHL-1) 60, 183, 

188. 
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Molecular modeling studies performed by Dr. M. Lill and the affinity data for 

ligands synthesized by Oleg Khorev (general structure depicted in Figure 52), 

reveal that the binding pocket surrounding the 2-position of GalNAc has 

presumably a dumbbell-shaped cavity (Figure 51).  A direct steric clash with the 

protein surface due to this dumbbell-shaped binding pocket might explain the 

drop in affinity for compounds with bulky and /or long substituents in the 2-

position 192. But for all that the binding pocket offers still enough space for 

substituents seeking interactions at its sides by orienting themselves 

approximately 90° to the scaffold-triazole axis. 

 

Figure 51. Docking study of hypothetical Ligand into H1-CRD 
(A) A model of a hypothetical substituted triazole compound 4, similar in structure to the 
compounds generated by O.Khorev, docked with the ASGP-R H1-CRD. Colors: red = positively 
charged amino acids; blue = negatively charged amino acids; purple = Ca2+; green = polar 
amino acids; brown = hydrophobic amino acids; grey = aromatic amino acids. (B) Schematic 
representation of the orientation of the 4-substituent of the triazole in the dumbbell-binding 
pocket. Picture courtesy of  M.Lill and O.Khorev189. 
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Figure 52. Compound 56 represents a general structure of the compounds  
synthesized in the directed library 

The final compounds from the directed library were tested for their affinity 

towards the ASGP-R H1-CRD using the competitive solid-phase binding assay 

(Figure 53), and the results are summarised in Table 23. 
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Table 23. Summary of the competitive binding assay results for the directed library compounds  

Compound rIC50 ± SD 

GalNAc 1.0  
 

Deprotected 
scaffold 13.7 ± 4.3 

 
1.1 ± 0.2 

 
n.d. 

 
n.d. 

 
n.d. 

 
0.8 ± 0.2  

 
0.5 ± 0.1 

 

n.d. 

 

2.6 ± 0.7 

 Sodium salt 
8.7 

 
n.d. 

 
n.d. 



  

 Results and Discussion   Evaluation of new Glycomimetic Ligands for the ASGP-R 

   3-125 

 

 
0.90 ± 0.16 

(n.d.: Stock-solution in DMSO, the compounds precipitated upon further dilution in HBS+Ca2+)  

The major drawback of the final compounds was their poor aqueous solubility, 

which could perhaps be overcome by the addition of solubilizing groups. 

 

Figure 53. Relative IC50 values measured in the competitive solid-phase H1-CRD assay 
in comparison with the lead compound GalNAc (N = number of experiments) 
 
The assay results showed that two compounds (49 and 55, Table 23 with quite 

different structures bound to the H1-CRD with an affinity comparable to that of 

D-GalNAc - the best small molecular weight ligand for the ASGP-R so far – and 

that compound 42 bound twice as good as GalNAc. The latter suggests that the 

p-cyano group could make an important interaction with the surface of the 

binding site. 

Comparing the structures of 49 and 55 (Figure 54), and assuming that both 

compounds have the same binding mode, suggest that there is ample room in 

the binding pocket for accommodating substituents in the para-position of the 

phenyl group. This further reinforces the “dumbbell-shaped binding pocket” 

hypothesis that was central to this strategy. Hence, after further molecular 

modelling studies, it would be worthwhile to generate compounds with other 

substituents in the para-position, to further optimize the interaction with the 

protein and improve the affinity even more. 
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Figure 54. A comparison of the structures of the best binding drug-like ligands 
generated in the directed library by O. Khorev. 

The binding affinity of compound 42 suggests that the p-cyano group could 

make an important interaction with the surface of the binding site,.  

In addition, by replacing the Gal/GalNAc residues on multivalent ligands (1, 

Figure 55) with a higher affinity glycomimetic, a compound with even higher 

affinity would be generated, therfore improving the existing multivalent ligands 

intended for liver-specific drug delivery described in Chapter 3.8. 

 

Figure 55. A hypothetical trivalent ligand (1) for the ASGP-R featuring a GalNAc mimic  
attached via the 6-position for use in liver-specific drug delivery. Picture by O.Khorev 
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3.4 Murine anti‐H1‐CRD Antibodies 

For the investigation of the physiological function of the ASGP-R and for 

analytical and diagnostic applications, monoclonal antibodies directed against 

the H1-CRD are valuable tools. Dr. Rita Born produced in the scope of her 

thesis165 monoclonal mouse anti-H1-CRD antibodies following the traditional 

procedure of Köhler and Milstein 103. 

A selection of the obtained hybridoma clones was further characterized.   

Their binding characteristics in vitro, their binding and internalization properties 

to different cell-lines and their binding to liver tissue sections as well as their 

epitope were investigated within our group.  

3.4.1 Antibody Production 

From these hybridoma clones five clones were selected for the production of 

new batches of purified antibodies. 

To reduce costs of production, the hybridoma cells were adapted to grow in 

suspension in medium with a low concentration of serum. 

During the adaptation of the cells to low serum medium as described in chapter 

2.3.2.1, the hybridoma supernatants were monitored by ELISA and western blot 

against H1-CRD for their antibody production. 

In general, the growth of hybridoma clones C11.1, C18.1, and C14.6 cells was 

very slow and their growth conditions had to be optimized. The cells of clone 

C23.8 died shortly after the thawing, even in medium supplemented with 20% 

FBS, and could no longer be propagated.  
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Figure 56. Western Blot analysis with hybridoma cell supernatants   
H1-CRD and H2-CRD (0.5µg/lane) on SDS-PAGE gel 12% under non-reducing conditions was 
transferred to nitrocellulose and immunostained with hybridoma supernatant from clone B01.4, 
C11.1, C18.1 and C14.6 followed by detection with AP-labelled goat anti-mouse IgG. 

All mAb recognized H1-CRD in ELISA (data not shown) and western blot, but 

not H2-CRD (Figure 56). Variations in the intensity of bands,, e.g. the faint band 

visible for H1-CRD detected with C11.1- supernatant, is likely caused by low 

concentration of Abs in the supernatant due to unsatisfactory growth of these 

cells during the adaptation to low serum conditions. 

Purification of Monoclonal Antibody  

After establishing their stable growth in low-serum medium, the remaining 4 

hybridoma clones were cultivated in roller bottles at 37°C. Only clone B01.4 

could be adapted to grow with 3% low IgG FBS, all other clones were adapted 

to medium containing 6% low IgG FBS.  

The hybridoma cells were kept in roller bottles under serum-reduced conditions 

for 3-6 weeks. The collected medium was centrifuged 10 min at 6500 g to 

remove cells and debris and the pH of the cleared supernatant was corrected to 

7.4 with NaOH if necessary, then filtered (0.2 µm) and immediately purified at 

4°C. 

Murine IgG usually show better binding to protein G than to protein A, but have 

to be eluted at lower pH, which sometimes causes loss of binding activity or 

aggregation of the eluted protein. 
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All supernatants were affinity purified using 1ml G-protein Sepharose columns 

(FPLC) as described in chapter 2.3.3. 

Table 24. Productivity of hybridoma clones 

Clone Yield in mg/L 

B01.4 17.8 

C14.6 7.5 

C11.1 16.1 

C18.1 17.4 

 

The purity of the purified antibodies was analyzed by 12% SDS-PAGE under 

reducing and non-reducing conditions. Subsequently, all eluates obtained of an 

individual antibody clone were combined and the final buffer exchange to PBS 

and concentration step was carried out using Vivaspin 6 centrifugal filter 

devices with cutoff 50 kDa (Sartorius). 

Therafter, the final concentrations of the purified antibodies were determined by 

absorbance A280 measurements and their activity was tested in ELISA against 

H1-CRD with an HRP-labeled secondary antibody. Finally, the antibody 

samples were shock-frozen in aliquots of 0.5 ml in liquid nitrogen and stored at -

20°C. Once thawed up, the antibody samples were stored at 4°C with the 

addition of 0.02% NaN3 to avoid bacterial growth. 
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3.4.2 Immunohistochemistry (IHC) 

The potential application of the anti human H1-CRD antibodies for diagnostic 

purposes in liver disease was evaluated in collaboration with Prof. L. 

Terracciano and L. Tornillo at the University Hospital in Basel. 

Initially, the antibodies B01.4, C09.1, C11.1, C14.6 and C18.1 were tested for 

their use in IHC in normal liver tissue with different methods of antigen retrieval 

and staining. Only C14.6 was able to stain the receptor in fixed and paraffin-

embedded healthy liver sections, confirming the findings by Rita Born, that this 

antibody preferentially binds to denatured H1-CRD protein165.  

 

Figure 57. Immunohistochemisty staining of H1-CRD in human liver tissue.  
Normal paraffin-embedded human liver tissue section was (A) indirectly DAB-stained with 6 
µg/ml C14.6 IgG2a or (B), incubated with PBS before adding the secondary antibody and after 
antigen retrieval by microwaving for 30 min at 98°C (control)  
(1) the arrow indicates the stained ASGP-R located on the sinusoidal surface of the 
hepatocytes. (2) No staining is visible along the blood vessels. 
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Because antibody C14.6 showed its use in staining normal liver tissue, it was 

also tested on tissue sections from liver biopsies obtained from patients 

suffering from various liver diseases. 

Table 58. Visual interpretation of tissue staining (by Prof. Terracciano) 

  Intensity of staining with C14.6 

Disease Number of 
patients 

Strong 
(3+) 

Strong / 
mediate 
(2+/3+) 

Mediate 
(2+) 

Mediate / 
low (1+/2+) 

Low 
(1+) 

No 
(0) 

Not 
evaluated 

ALD 14 4 2 5 - - - 3 

HCV 15 15 - - - - - - 

HBV 15 8 2 5 - - - - 

PBC 15 12 1 - - - - 1 

PSC 15 9 5 - - - - 1 

AIH ad. 3 - - - 1 2 - - 

AIH juv. 10 - - - - - 10 - 

ALD is alcoholic liver disease, HCV and HBV are hepatitis C and B, PBC is primary biliary 
cirrhosis, PSC is primary sclerosing cholangitis, AIH is autoimmune hepatitis 

In a preliminary experiment, the staining of paraffin-embedded liver tissue 

sections from patients with liver diseases with antibody C14.6 was evaluated. 

Two experts examined the slides under the microscope and rated the intensity 

of staining with the C14.6 antibody, hence this evaluation was qualitative only.  

Interestingly, in liver tissue from children with AIH no staining and in adults only 

low intensity of staining with C14.6 was observed. For the pathologists these 

are promising findings, since there is no diagnostic tissue marker available for 

the disease so far.  

Conclusion 

The results show that antibody C14.6 is a promising candidate for a potential 

new diagnostic antibody in AIH. 

There are still some questions to be answered: 

Is the ASGP receptor masked by autoantibodies, or internalized and degraded? 

Is it not or less expressed than in normal liver?  

The juvenile AIH tissue slides were prepared in Napels and not in Basel. Is 
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there a difference in the fixation and paraffin-embedding procedure leading to a 

loss of the receptor? Most likely this not the case, as the tissue sections from 

adult AIH patients prepared in Basel also show a low staining intensity. The 

children on the other hand were treated with massive doses of 

immunosupressiva (the biopsies were from transplantation patients), which 

could lead to lower expression of the receptor. To corroborate their findings, 

Prof. L. Terracciano and L. Tornillo are currently trying to get tissue samples 

from other institutes. It is also under discussion, if it would be worthwhile to test 

the other antibodies for their binding to H1-CRD on Cryostat tissue sections, 

therefore avoiding fixation and paraffin embedding. 

3.5 Ligand Uptake in Hepatoma Cells 

Choice of cell lines 

The HepG2-cells originate from a human hepatocellular carcinoma. HepG2 is a 

highly differentiated cell line known to express the ASGP-R and is frequently 

used for in vitro assessment of drug- and gene delivery to the liver 36, 193. It 

displays approximately 2.25·105 ASGP-receptors per cell, which is about half 

the number found in primary hepatocytes 194. Although it is a reduced amount of 

receptors, it is still a large number for a hepatic tumor cell, which typically shows 

a low state of differentiation.  

The human hepatocellular carcinoma cell line Huh7 is also well differentiated 

and expresses the ASGP-R although the receptor is expressed in lower 

numbers70 when compared to HepG2. 

The epithelial-like SK-Hep1 cells from human liver adenocarcinoma do not 

express the ASGP-receptor and represent therefore the ideal control cells to 

rule out unspecific binding or uptake of ligands and antibodies. 

Fixation and background fluorescence 

Fluorescence detection sensitivity is severely compromised by background 

signals, which may originate from the cell itself (referred to as autofluorescence) 

or from unbound or non-specifically bound probes (reagent background). 

Although glutaraldehyde fixation is more suitable to keep the cytoskeleton 

structure of the cells intact, a fixation buffer of 3% paraformaldehyde in PBS 
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was used in order to avoid the increased autofluorescence of the cells when 

treated with glutaraldehyde. 

3.6 Internalization Experiments  

The methods for the internalization experiments were initially established using 

Texas red® labeled Asialofetuin (TR-ASF) and were adapted from Novikoff and 

Seow 48 60. 

Preliminary tests with different concentration of TR-ASF (0.1 to 20 µg/ml) 

showed that from 1 µg/ml up to 10 µg/ml of TR-ASF the internalization of the 

ligand after 40 minutes could be observed under the microscope as bright red 

vesicles in HepG2-cells but not in SK- Hep1 (Figure 59). Using 20 µg/ml of TR-

ASF during incubation lead to non-specific uptake into SK-Hep1-cells and 

fluorescent precipitates in the medium. Hence concentrations of 5 and 10 µg/ml 

of TR-ASF were used in experiments on time-dependent uptake of the ligand. 

The internalization-process of TR-ASF into HepG2-cells was stopped after 15, 

30, 60 and 120 minutes. After 15 minutes, many small spots in the cells were 

observed. These spots or vesicles decreased in number over time, but grew 

bigger and brighter and were finally localized in close proximity to the nuclei of 

the cells.  

 

Figure 59. Internalization of Texas Red labeled Asialofetuin  
(10 µg/ml) into HepG2 cells (A) or SK-Hep1 (B). After 40 minutes of incubation with 10 µg/ml 
TR-ASF, bright red vesicles of internalized TR-ASF could be observed in HepG2 and none in 
SK-Hep1-cells. 
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3.6.1 Immunofluorescence (IF) 

Antibodies C11.1, B01.4, C09.1, C18.1 and C23.8 were tested for their potential 

to be actively internalized via the ASGP-receptor into living HepG2 cells. SK-

Hep1 cells, which do not express the receptor, where treated likewise to rule out 

internalization via an unspecific endocytotic pathway. 

Anti-H1-CRD antibodies were coupled to Texas red as described in chapter 

2.5.1.2. The cell slides were prepared as described in chapter 2.3.7, and the 

cells were incubated to actively internalize the labeled antibodies as described 

in Methods chapter 2.5.2. The employed antibody concentration was 20 µg/ml. 
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Figure 60. Internalization of ant human H1-CRD antibodies via the ASGP-R 
Direct Immunofluorescence staining of cells. HepG2 and SK-Hep1 cells were incubated wi.th 
Texas Red®-labeled C14.6, C09.1, C18.1, B01.4, C11.1 (20 µg/ml) at 37°C to allow 
internalization of the labeled antibodies prior to cell fixation with paraformaldehyde. Mounted 
slides were examined with 630 times magnification (binocular 10x/20, objective 63x/1.25oil, 
Ph3plan-neofluor 440481) using red fluorescence filter (BP546, FT580, LP590) 
 

All tested antibodies show good internalization properties in to HepG2 cells and 

no binding or uptake was visible in SK-Hep1 cells. Although the staining pattern 

is similar, some differences were observed. For example antibody C14.6 leads 

to an irregular staining pattern, probably due to its preference to bind to 

denatured H1-CRD. Antibody C11.1 lead to less but bigger and very bright 

accumulations in the cells. Western blots 165 and a very slow dissociation phase 

on dimeric H1-CRD in SPR 75 suggest, that C11.1 has a higher affinity towards 

C11.1                      C11.1 

B01.4 
C18.1 
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dimeric H1-CRD. This could explain the difference in the staining pattern, as 

only preorganized receptor in coated pits would be bound efficiently.

 

Figure 61. Storage of ASGP-R in fixed and permeabilized HepG2, stained with antibody C18.1 
Arrows indicate a stained endosome (1) and the nucleus (2) of the cell. 
 
HepG2 cells grown on collagen coated cover-slips were fixed for 20 min with 

3% PFA at room temperature, then permeabilized using 0.5% Triton X in PBS 

for 20 min. after washing twice with PBS and a blocking step with 1.5% BSA in 

PBS for 2 h, the slips were washed again 4 times with PBS and incubated with 

20 µg/ml of TR-labeled C18.1 antibody. Round and oblong vesicles were 

stained in the HepG2–cells cytoplasm (Figure 61) but not in Sk-Hep1, 

suggesting the location of the ASGP-R in its storage vesicles.  

3.7 Flow Cytometry with murine Antibodies 

HepG2 cells were treated as described in chapter 2.5.3. The cells were 

detached with 2 mM EDTA in order to prevent the loss of surface-receptor by 

trypsination, . The cells were analyzed for cell-surface binding of the ASGP-R 

H1-CRD with the unlabeled antibodies C14.6, B01.4, C09.1, C11.1, and C18.1 

at concentrations 12.5, 25 and 50 µg/ml and matching isotype controls for 20 

min on ice to prevent internalization. Antibody binding was detected with a 

secondary anti-mouse IgG antibody labeled with R-Phycoerythrin (RPE). Cells 

were analyzed by flowcytometry using PI exclusion to gate for living cells. 

Surface staining of living cells was evaluated by comparison of the shift of 

1 

2 
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median fluorescence intensity (MFI) emitted at 580 nm between untreated cells 

(background fluorescence) and treated cells on a CyAN ADP flow cytometer  

(DakoCytomation) with Summit 4.1 software 
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Figure 62. Titration of mouse anti-human H1-CRD antibodies 
Surface staining of ASGP-R on detached HepG2 with anti-human H1-CRD antibodies, detection 
via 2nd Ab goat anti-mouse IgG (H+L) RPE, gated for living cells via PI-exclusion. 

Additionally the antibodies were used to evaluate their binding to HepG2, Huh7 

and SK-Hep1 (control) cells at 20 µg/ml for C14.6 and C11.1 and at 10 µg/ml for 

the remaining antibodies. 
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Figure 63. Mouse anti-human H1-CRD mAb binding to different hepatoma cell lines 1        
Surface staining of ASGP-R on detached cells with anti H1-CRD antibodies B01.4, C09.1, 
C18.1 at 10 µg/ml, and C14.6, C11.1 at 20 µg/ml, detected via 2nd Ab goat anti-mouse IgG 
(H+L) RPE, gated for living cells via PI-exclusion. 
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Interestingly, antibodies C14.6, used in Immunohistochemistry (chapter 3.4.2), 

and C11.1, which showed calcium dependent binding and might preferentially 

bind dimeric H1-CRD (chapter 3.6.1), showed the lowest affinity to ASGP-R on 

the surface of detached cells. Huh7-hepatoma cells could also be used for 

ASGP-R-related experiments, they grow faster than HepG2-cells and are easier 

to handle, as they do not depended upon collagen-coated surfaces to grow in 

monolayers. The results of this experiment suggest that they present less 

ASGP-receptor on their surface than HeG2 cells.  

In the last experiment the antibodies at 20 µg/ml were incubated with the above-

mentioned cells and, in addition, with mouse periportal Kupffer cells (KC) to 

exclude cross-reactivity with the Kupffer cell-receptor, which is homologous to 

the ASGP-R on parenchymal liver cells. The socalled Kupffer cell ASGP-R is 

not yet well characterized but it is suggested that this receptor primarily binds 

and internalizes particulate Gal- or Fucose-bearing ligands and might have a 

preference for O-glycosylated asialoglycoproteins 195, whereas the liver-cell 

ASGP-R preferentially binds N-glycosylated asialoglycoproteins.  
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Figure 64. Mouse anti-human H1-CRD mAb binding to different hepatoma cell lines 2 
Surface staining of ASGP-R on detached cells with anti-human H1-CRD antibodies B01.4, 
C14.6 and C11.1 (20 µg/ml), detected via 2nd Ab goat anti-mouse IgG (H+L) RPE, gated for 
living cells via PI-exclusion. KC are primary mouse Kupffer cells. 
 
Kupffer cells are resident macrophages of the liver and play an important role in 

its normal physiology and homeostasis, and as a part of the reticuloendothelial 
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system (RES) of the immune system, they participate in the acute and chronic 

responses of the liver to toxic compounds.  

The clonal primary murine periportal Kupffer cells (KC) 196 were obtained from 

the lab of Dr. R. Landmann (Division of Infectious Diseases, Department of 

Research, University Hospital, Basel, Switzerland).  The murine KC display no 

binding of the tested anti-human H1-CRD antibodies, but one should be aware 

that the antibodies were raised in mice. Hence they probably do not react with a 

self-antigen from the same species. There is also no proof that the used cells 

actually still express the Kupffer cell-receptor, as there is no antibody available 

to verify its presence.   
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3.8 Endocytosis of Triantennary Galactose Compounds  

In order to further exploit the ASGP-R for therapeutic purposes, trivalent ligands 

with pendant Gal or GalNAc residues connected by flexible spacers with 

appropriate lengths to a common branching point were synthesized. All these 

ligands incorporate 2-amino-2-hydroxymethyl-1,3-propanediol (Tris) as the 

branching point (Figure 65). Kempen et al. 197 synthesized the trivalent, Gal-

terminated ligand 1, where the carbohydrate moieties were directly linked to 

Tris. When 1 was labeled with cholesterol and incorporated into liposomes, they 

were mainly taken up by the Kupffer cells, via the Gal/Fuc-recognizing receptor, 

and not by the parenchymal liver cells via the ASGP-R. 

Therefore, a new generation of ligands with optimal spacers was created. 

Biessen et al. 77, 198 extended the distance between the Tris branching point and 

the Gal residues by using tetraethylene glycol spacers approximately 20 Å in 

length. This indeed led to ligands with improved affinities (see 2, Ki = 0.2 µM, 

Figure 65) determined in a competition assay with 125I-labeled 

asialoorosomucoid. In 1999, Sliedredt et al. 199 designed a second generation of 

cluster glycosides containing an essential modification (see 3, Ki = 93 nM, 

Figure 65). To enhance the chemical stability, the methylene acetal groups in 2, 

which connect the spacers to Tris, were replaced by acid stable ether bonds. 

Furthermore, the spacers were no longer based on tetraethylene glycol to 

achieve the appropriate spacing between the Gal residues, but rather on a 

twelve atom fragment containing two amide bonds. Finally, Rensen et al. 200 

combined the various features from 2 and 3 to generate compound 4 (Ki = 2 

nM, Figure 65), which exploited the expected 50-fold higher affinity of GalNAc 

over Gal. To further improve the therapeutic profile of the previously reported 

ligands of the ASGP-R, we set out to synthesize an optimal trivalent linker with 

reduced synthetic complexity, high in vivo stability and improved spacer 

flexibility. The resultant intermediates 5a and 5b (Figure 65), which possess 

terminal Gal or GalNAc moieties, respectively, were then fluorescently labeled 

and tested for selective uptake by hepatocytes using fluorescence microscopy 

and flow cytometry. Moreover, since most of the previous research was done on 

rat 76, 197-200 and mouse 201 liver cells, and the final aim of this research is liver-

selective drug delivery in humans, all our biological assays were performed 
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using cell lines of human origin.  

 

 

Figure 65. Triantennary compounds for the ASGP-R 
1, 2, 3 and 4 were specifically designed for, and tested on, the ASGP-R 77, 197-200. Compounds 
5a and 5b are the trivalent, Cbz-protected intermediates introduced by Oleg Khorev158. 

The main structural features of the trivalent ASGP-R ligands 5a and 5b are as 

follows: (i) Tris is the central branching point, (ii) the spacers are based on 

polypropylene oxide, which combines flexibility with amphiphilicity, (iii) the 

linkage between Tris and the spacers is a hydrolytically stable ether bond and 

(iv) the length of the spacers can be easily varied (Figure 66). 
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Figure 66. Summarized features of the trivalent drug carrier 

The glycine acylating the amino group of Tris in 4 (Figure 65) has been 

replaced with Cbz-protected γ-aminobutyric acid, which upon deprotection 

furnishes a versatile primary amino group for the attachment of fluorescent 

labels and at a later stage therapeutic agent. For our studies, the amino group 

was coupled to Alexa Fluor® 488 fluorescent label (→ 6 and 7, Figure 67), but in 

theory it could also be coupled to a therapeutic agent. As a negative control for 

the fluorescence microscopy studies, and especially to demonstrate the 

significance of the polypropylene oxide spacers featured in our final compounds 

6 and 7, we also synthesized compound 8 (Figure 67) The latter, in contrast to 6 

and 7, has only short spacers, and therefore does not fulfill the spatial 

requirements for trivalent binding to the ASGP-R. 
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Figure 67. Fluorescent, trivalent compounds 6, 7, and control 8; 
M+ are variable counter ions. 

Biological Evaluation 

The trivalent ligands 6-8 were examined for their selective binding to, and 

internalization by the ASGP-R applying fluorescence microscopy and flow 

cytometry. Two different cell lines of hepatic origin were used: HepG2 cells 

derived from a human hepatocellular carcinoma expressing the ASGP-R, and 

the human more endothelial-like SK-Hep1 cells which lack the receptor. 

Fluorescence Microscopy 

The cells were incubated with the Alexa Fluor® 488-labeled compounds 6, 7, or 

8 for 1.5 h on ice to allow binding of the compounds to the receptor while 

preventing unspecific uptake. In a washing step, unbound ligand was removed, 

and the cells were incubated for an additional 40 min at 37 °C to allow receptor-

mediated endocytosis of bound compounds to take place. The specific uptake 

led to punctuate staining of the cells representing endosomes containing the 
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ligands, which were visualized by fluorescence microscopy. HepG2 cells 

showed specific uptake of 6 and 7, and only negligible uptake of 8. The 

fluorescent content of the endosomes can be distinctly seen (Figure 68, panels 

A and C) for compounds 6 and 7, respectively. Because the cells were grown 

and incubated on glass cover slips, which were then mounted upside down for 

visualization, enriched fluorescence can only be observed in cytosolic areas 

that are not blocked by the nuclei. Panel E shows little or no such fluorescent 

vesicles, since control compound 8 was not internalized via the ASGP-R owing 

to insufficient spacer length. As expected, no internalization into SK-Hep1 cells 

(which do not express the ASGP-R) could be observed for compounds 6 and 7 

(Figure 68, panels B and D). However, compound 8 showed a minor tendency 

to be internalized by this cell line in an ASGP-R-independent manner (Figure 

68, panel F). Panels G and H show the autofluorescence of non-treated HepG2 

and SK-Hep1 cells as controls.  
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HepG2 (with ASGP-R)     SK-Hep1 (without ASGP-R) 

 
Figure 68, Fluorescent microscopy images depicting the ASGP-R-specific uptake of Alexa 
Fluor® 488-labeled compounds. 
A) Compound 6 in HepG2 cells; B) Compound 6 with SK-Hep1 cells; C) Compound 7 in HepG2 
cells; D) Compound 7 with SK-Hep1 cells; E) Compound 8 with HepG2 cells; F) Compound 8 
with SK-Hep1 cells; G) Control HepG2 cells; H) Control SK-Hep1 cells. 
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Flow Cytometry 

The ASGP-R-mediated uptake of compounds 7 and 8 (negative control) was 

quantitatively evaluated by flow cytometry. Instead of performing the previously 

described steps (prebinding on ice, removal of the excess and internalization of 

bound compound), the cells were continuously incubated with the test 

compounds at 37°C and analyzed as presented in Figure 69. 

 

Figure 69. Example of flow cytometry analysis showing uptake of compound 7 into HepG2 cells. 
Dot plot (A) represents the HepG2 cell population gated for analysis (R1=30’000), plotted as a 
function of forward scatter (FS) and side scatter (SS). Dot blot (B) represents the population of 
R1 gated for single cells (R2) as a function of pulse-width and FS-area and histogram (C) 
depicts the log fluorescence intensity at 488 nm of the cells gated in R2. SK-Hep1 cells were 
analyzed in the same way, with a more compact population of cells and less debris in gate R1 
and therefore smaller peaks due to less clumping of the cells (data not shown). 

The median fluorescence intensity of cells incubated with compound 7 at 

concentrations ranging from 0.4 to 12.5 µM revealed low uptake of the 

compound into SK-Hep1 cells compared to HepG2 cells, in which the uptake 
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leads to a saturation hyperbola as it is typical for a receptor-mediated process 

(Figure 70). 
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Figure 70. Titration of compound 7 
Adherent HepG2 and SK-Hep1 cells were incubated with compound 7 at concentrations ranging 
from 0.4 to 12.5 µM for 40 min at 37°C. MFI is the shift in median fluorescence intensity from 
untreated to treated cells. 

 

Figure 71. Time dependency of uptake of compound 7 
Adherent HepG2 and SK-Hep1 cells were incubated with compound 7 at a concentration of 
12.5 µM. after a prebinding step on ice (1h), continuous uptake of compound 7 during 0-120 min 
at 37°C was measured.  
 
The internalization process of compound 7 at 12.5µM was also clearly time 
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dependent and reached a plateau after 60 min (Figure 71). 
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Figure 72. Competitive uptake of compound 7 at a concentration of 10 µM  
in the presence of either GalNAc (0.3-100 mM) (A) or asialofetuin (0.3-100 µM) (B). The graphs 
represent the mean of median fluorescence intensity (MFI) ± SD of 3 independent experiments. 
(C) Uptake of control compound 8 at a concentration of 10 µM in the presence of asialofetuin 
(0.3 –100 µM) into HepG2 and ASGP-R-negative SK-Hep1 cells. 
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Uptake of compound 7 into HepG2 cells via the ASGP-R at a concentration of 

10 µM was competitively inhibited by the presence of monosaccharide ligands: 

GalNAc (IC50 = 4.55 ± 0.32 mM) (Figure 72 A) and asialofetuin (IC50 = 45.60 ± 

2.70 µM) (Figure 72 B), whereas the uptake into SK-Hep1 was low and not 

affected by the presence of asialofetuin. 

In ASGP-R bearing HepG2 cells the uptake of control compound 8 was low and 

proved to be unspecific as it could not be inhibited by asialofetuin, a natural high 

affinity ligand of the receptor (Figure 72 C). ASGP-R-negative SK-Hep1 cells, 

on the other hand, evinced high uptake of compound 8, unaffected by the 

presence of asialofetuin (Figure 72 C) which could be explained by their high 

endocytic activity that is usually associated with endothelial cells.  

Conclusion 
In this study, a set of novel, fluorescent, trivalent ligands for the ASGP-R (6 and 

7, Figure 67) was evaluated. These compounds not only comply with the afore-

mentioned optimal ASGP-R ligand criteria, but also are synthetically easily 

accessible and hydrolytically stable. Both criteria are a prerequisite for a 

therapeutic application at a later stage. Moreover, although similar compounds 

exist, these are the first trivalent synthetic ligands to be directly labeled with a 

fluorophore and tested on human liver cell lines. 

Using fluorescence microscopy and flow cytometry, we have shown that 

compounds 6 and 7 exhibit selective uptake by the ASGP-R on HepG2 cells 

derived from human parenchymal liver cells – the major liver cell type. The 

formation of distinct endocytic vesicles could be clearly visualized. Furthermore, 

competition with asialofetuin, a naturally occurring serum glycoprotein and 

known ligand of the ASGP-R, and GalNAc confirmed the involvement of the 

ASGP-R in the uptake of 7. Experiments using compound 8 have further re-

enforced the generally accepted assumption that the sugar residues have to be 

in an optimal spatial arrangement in order to interact selectively and with high 

affinity with the native ASGP-R. In final analysis, we have demonstrated that 

compound 7 has a high potential for use in site-specific delivery of therapeutic 

agents (chemotherapeutics, DNA, etc.) to the liver.  
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3.8.1 Method Development ‐ Lessons learned 

Choice of the fluorescent label 

Due to the high price of the Alexa® fluorochromes, a cheaper commonly used 

fluorochrome [5-(and 6)-carboxyfluorescein, succimidyl ester] was used in a first 

approach to label the triantennary compounds;  

Initially, the fluorescein-labeled compound 5a and 5b were tested on HepG2- 

(ASGPR positive) and SK-Hep1- (ASGPR negative) cells. Different incubation 

and cell treatment conditions were evaluated, e.g. duration of starving of the 

cells, incubation time and temperature. Preliminary results showed that the 

compound-uptake in to cells was visible as green vesicles, but it was difficult to 

discern the fluorescence of the compounds from to the auto-fluorescence of the 

cells (a problem especially in HepG2 cells, which sometimes show intense 

green and red vesicles when observed under the fluorescence microscope). 

Fluorescein is relatively cheap and can therefore be handled in higher amounts, 

which makes the labeling and purification of the compounds easier for the 

chemist. But fluorescein has some severe drawbacks, it is susceptible to photo-

bleaching, has a relatively broad fluorescence spectrum and its fluorescence is 

pH-dependent (pKa ~6.4) and significantly reduced below pH 7, which does not 

make it the ideal label for a substance that is delivered to the acidic 

environment of endosomes.  

As the use of the fluorescein-labeled triantennary compounds 5a and 5b 

produced no convincing pictures of uptake into the hepatoma cells, Oleg Khorev 

switched to the brighter and more stable Alexa-Fluor®488 to label the 

compounds (resulting in compounds 6, 7 and 8). These 3 compounds were then 

used for the further development of internalization experiments. 

Flow cytometry with the triantennary compounds 

First experiments were preformed with compound 7 at a concentration of 100 

µM on EDTA-detached HepG2, Huh7 and SK-Hep1 cells in suspension. This 

had the advantage that the cells could be incubated in a very small volume of 

liquid, which reduced the amount of consumed compounds. In addtiton, the 

cells could be further processed in 96-well U-bottom plates, which made their 
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handling easier. The cells were fixed in 3% PFA after the treatment, in order to 

keep them in the state they were after the internalization step.  

Using these conditions, unlike expected, the SK-Hep1 showed higher uptake of 

compound 7 than the two ASGP-R positive cells. 

When on the other hand cells adherent to the surface of tissue culture plates 

were incubated with compound 7 and the cells were detached after the 

internalization step, measured uptake into SK-Hep1 cells was negligible when 

compared to the ASGP-R positive cells. One of the factors clearly influencing 

the uptake of ASGP-R specific uptake of ligands into HepG2 and not SK-Hep1 

cells is the physiological polarity of the hepatocytes. The ASGP-receptor is only 

present on the apical side of hepatocytes. Likewise SK-Hep1 cells that show 

more epithelial-cell-like features, benefit in suspension from an excess of 

surface available for uptake of compounds via ASGP-R-independent 

endocytosis when compared to their adherent state.  

Consequently, to keep the cells in their physiological polarized condition, all 

further tests were performed while incubating the tested compounds on 

adherent cells. 

3.8.2 Uptake of Ligands in Living Cells 

These experiments were performed with cells in MaTek glass-bottom dishes 

coated with collagen. Initially Tyrode’s solution, also used for live imaging of 

nerve cells,  was used instead of normal medium during imaging in an attempt 

to lower the high autofluorescence of HepG2 cells, but the hepatoma cells 

started to detach from the bottom of the dishes. When phenol red-free medium 

was used during cell propagation and also during incubation with compounds 

and imaging, autofluorescence could detectably be reduced and the cells 

remained adherent.  
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   A           B 

 
Figure 73. Uptake of compound 6 in HepG2 cells (live image) 
(A) Fluorescence and (B) bright-field view 

   A           B 

 
 Figure 74.  Uptake of compound 6 in SK-Hep1 cells (live image)  
(A) Fluorescence and (B) bright-field view 

Compound 6 at 100 µM was incubated with HepG2 and Sk-Hep1 cells in Ma-

Tek glass-bottom dishes (Figure 73 and Figure 74). Binding was performed on 

ice for 1 hour and after the binding step the cells were washed with PBS, to 

allow only membrane bound compound to be internalized via receptor-mediated 

endocytosis. Excessive washes were necessary to prevent unspecific 

endocytosis of unbound compound 6 remaining in the medium by receptor-

negative SK-Hep1 cells. Live imaging of uptake took place at 37°C in phenol 

red- and serum free medium and pictures were taken with a Leica inverted 

microscope featuring a digital camera. Uptake of compound 6 was clearly 
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restricted to the ASGP-R positive HepG2 cells, but the high auto-fluorescence 

of these cells made it difficult to distinguish between the signal of endosomes 

containing the compound and autofluorescent vesicles in the cells (Figure 75). 

SK-Hep1 cells displayed no uptake of compound 6 (Figure 74). 

     A             B 

 

Figure 75. Autofluorescence of untreated HepG2 cells (Live image) 
(A) Fluorescence and (B) bright-field view 

For this kind of experiments the use of the fluorochrome Alexa fluor®488 was 

the appropriate choice, as it is stable and not susceptible to fast bleaching due 

to free radicals produced in living cells during illumination. The fast bleaching of 

the fluorescent label after less than 2 min of imaging impeded for example live 

imaging of Texas red®-labeled antibody uptake into HepG2 . 

Filming the live uptake of the compound 6 into HepG2 cells and it’s shuffling in 

endosomes was also attempted. But it was not possible to discern between the 

cells movement in the dish and the actual movement of the vesicles within the 

cells. 

Preliminary experiments with fixed cells 

Compounds 7 and 8 at 100 µM were incubated on HepG2 and SK-Hep1 cells 

for one hour on ice to allow binding of the compounds and afterwards washed 

extensively with serum free medium. Then, the cells were placed for 10 min at 

37°C to boost receptor mediated endocytosis. After a further wash with PBS, 

the cells were fixed with 3% PFA and mounted onto glass slides as described in 

chapter 2.3.7. A Zeiss Axiovert inversed microscope was employed for imaging. 
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Figure 76. Uptake of compound 7 in single HepG2 cells after 10 min of internalization  
 

       A            B 

 
Figure 77. Uptake of compound 8 in (A) HepG2 and (B) in SK-Hep1 after 10 min of 
internalization 

 

Triantennary GalNAc compound 7 was exclusively internalized into HepG2 cells 

(Figure 76), whereas compound 8, with the shorter spacers, was internalized 

into HepG2 as well as SK-Hep1 cells (Figure 76).
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3.9 Adaptation of mouse Antibodies to scFv  

3.9.1 Source of mRNA 

Both hybridoma and spleens are suitable sources of mRNA. Therefore, properly 

spliced antibody genes can be isolated from either mouse antibody producing 

hybridoma or spleen-derived B-lymphocytes. Since hybridoma cells express the 

heavy and light chain of one single antibody, they represent the most abundant 

and straightforward source from which antibody genes can be cloned.  

Several well-characterized murine hybridoma clones producing antibodies 

against the truncated CRD of the human H1 subunit of the ASGP-R were 

available at our institute; four of them were selected as antibody gene source.  

3.9.1.1 Selection of Antibodies for Adaption 

The four clones were selected for their different binding characteristics 

(summarized in Table 25. ). 

Table 25. Characteristics of selected H1-CRD antibodies  

 B01.4 C11.1 C14.6 C23.8 

Isotype IgG1κ IgG1κ IgG2aκ IgG1κ 

KD Biacore 308 pM 78 pM n.d. n.d. 
Ca dependency of binding - + - ++ 
IHC after fixation - - + - 
Growth and Ab-production of the original 
clone 

+++ ++ + - 

B01.4 was selected for its good growth properties and high antibody yield in 

production. This antibody also showed good internalization properties into 

ASGP-R bearing cells and was already commonly used at our institute to detect 

H1-CRD in western blots. B01.4 showed no cross- reactivity in FC with other 

cells bearing galactose-receptors165. C11.1 another interesting clone produces 

an antibody, with high affinity in SPR experiments, shows calcium dependent 

binding which indicates that the epitope it recognizes on the H1-CRD is in 

proximity to the sugar binding site, and it probably also preferentially binds to 

the dimeric form of H1-CRD. Clone C14.6 produces an antibody that 
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preferentially recognizes denatured H1-CRD, and is a potential candidate for 

diagnostic use in AIH (see chapter 3.4.2). C23.8 on the other hand produced an 

antibody with interesting properties by also displaying strong calcium depent 

binding to the H1-CRD, but this instable clone could no longer be propagated 

(see chapter 3.4.1). Hence C23.8 was selected for the adaptation to the scFv 

format in order to save this antibody whose properties would otherwise be lost. 

3.9.1.2 Isotyping 

The isotyping ELISA revealed that 3 of the selected hybridoma clones, B01.4, 

C11.1 and C23.8, produce antibodies from the isotype IgG1kappa and one, 

C14.6, from subtype IgG2a (Figure 78). Isotyping ELISA 070313

IgG1 IgG2a IgG2b IgG3 kappa lambda

0

1
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3

B01.4
C11.1
C14.6
C23.8

Antibody Isotype
 

Figure 78. Antibody isotyping ELISA 
 

3.9.1.3 mRNA Purification and First Strand cDNA Synthesis 

One of the first steps in an antibody-engineering project is the isolation of the 

immunoglobulin heavy (VH)- and light (VL)-chain variable-region genes that 

encode the binding domains of the antibody.  

The success of antibody cloning depends not only depend on the amount, but 

mainly on the purity of the mRNA. The use of total RNA is not recommended, 

since background product may also be amplified during PCR and would 

decrease the yield and purity of the desired PCR product.  

The mRNA from hybridoma cells B01.4, C14.6, C11.1 and C23.8 was isolated 
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with the Illustra Quickprep mRNA purification kit obtained from GE Healthcare 

according to the protocol of the manufacturer. This method uses oligodT-

cellulose spin columns, which take advantage of the polyA-tail that is common 

to eukaryotic mRNAs. The eluted sample was not quantified to prevent mRNA 

loss. The mRNA was then precipitated by splitting the final elution in 2 aliquots 

of 0.32 ml each, adding 10 µl of glycogen, 32 µl of the potassium acetate 

solution (both provided in the kit) and a volume of 0.8 ml ice-cold ethanol. The 

mixture was incubated for 30 min at –20°C. The precipitated mRNA from one 

aliquot was collected by centrifugation for 30 min at 16000 g at 4°C, followed by 

a wash in 1 ml 99% ethanol and then stored in Ethanol at –20°C. One vial of 

mRNA per clone was used for cDNA synthesis. 

At first, the sample was centrifuged again for 30 min at 13’200 rpm and 4°C, the 

supernatant was discarded and the mRNA pellet washed once more in 1 ml ice-

cold ethanol. Reverse transcriptase synthesizes first strand cDNA from mRNA 

primed with random hexamers. The use of random hexamers eliminates the 

need for immunoglobulin–specific primers or oligo(dT) primers which would 

require the synthesis of a long cDNA, encoding the heavy and light chain 

genes.  

The cDNA synthesis didn’t work the first time and was repeated. A possible 

reason was that the lyophilized reverse transcriptase in the ‘Ready-to-use you 

prime’-kit was less efficient than the one in solution that is usually used. To 

ensure that there would be enough templates for the amplification of VH and VL, 

the remaining mRNA aliquot of each clone was resuspended in 50 µl of DEPC-

H20 and split in two RT-PCR tubes for cDNA synthesis, which was then done 

according to the manufactures protocol. The two cDNA products were later 

combined for further processing. 

3.9.1.4 Amplification of VL and VH ‐ First Step in Assembly 

Since the VL and VH genes represent only a very small fraction of the total 

cDNA, they must first be amplified to generate sufficient DNA for cloning. 

For this purpose, a mixture of degenerate primers, which contain variable 

nucleotides at several positions in the sequence, designed to hybridize to 

opposite ends of the variable regions of each domain, was used to amplify the 
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heavy and light chain of the antibodies variable domains173. During this step, the 

genes are not only amplified but part of the Sfi I restriction site, a FLAG-tag and 

also the linker sequence are introduced. The VLBACK-primer mix introduces a 

shortened FLAG-tag (DYKD) the VLFOR- primer mix contains a part of the 

Gly4Ser-linker sequence of which the third repetition, with a different codon 

usage to prevent mismatches in the SOE-PCR reaction, overlaps with the one 

introduced by the VHBACK-primers. The VHFOR primer mix introduces a 

palindromic sequence as SfiI restriction site to the VH domain. 

As the four selected hybridoma clones produce antibodies from the kappa 

subtype, no primers for lambda light chains were included in the mixture. These 

could otherwise amplify unwanted ‘junk’ lambda light chains sourcing from the 

myeloma fusion partner of the hybridoma cell. The VL and VH antibody genes 

were amplified in separate reactions using a proofreading DNA polymerase and 

premixed sets of forward and backward primers.  

According to Plückthun et al.173 the fragment size for the VL domain is between 

375 and 402 bp, and that of the VH domain between 386 and 440 bp, depending 

on the CDR lengths of the corresponding antibodies. The amplified heavy and 

light chain fragments were purified separately by agarose gel electrophoresis to 

remove primers and extraneous amplification products. The bands were 

excised and the DNA fragments purified with the GenElute kit from Sigma. 

 

 

Figure 79. VL and VH amplification 
           (2% TBE Agarose gel) 

   

The VH fragment of C14.6 could not be amplified (Figure 79). Several attempts 

 M            C14.6           C11.1               M        C23.8          B01.4 
               VL VH          VL VH                           VL VH          VL VH 

400 bp 
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with different DNA polymerases (Taq and Phusion from NEB instead of iproof) 

and varying annealing temperatures (45°C, 51.2°C, and 55°C) did not lead to 

success. C14.6 is the only one of the selected antibodies with IgG2a subtype, 

therefore it could be concluded that the used degenerated heavy chain primer 

set did not include a matching primer for this subtype or for this specific 

antibody gene. Another cause that cannot be excluded is that there was not 

enough of the template heavy chain cDNA of C14.6 or that the quality was not 

sufficient. 

3.9.1.5 Assembly of the Heavy and Light Chains 

The so-called ‘Splicing by overlap extension-PCR’ (SOE-PCR) assembles the 

variable antibody domain genes with the linker sequence to scFv fragments. In 

the first two cycles of the PCR method, the two fragments were assembled via 

the complementary linker-sequence, then the primers scfor and scback were 

added to introduce the second Sfi I restriction site to VL (via scback) and to 

amplify the scFv genes. 

The gel-purified heavy and light variable domain DNA products of the antibody 

clones B01.4, C11.1, and C23.8 were quantified by UV, so that the optimal 

amount of each could be used for the assembly reaction. 

Equal amounts of the VH and VL fragment of the three remaining antibodies 

were used for the assembly reaction and the products were purified from the 

Agarose gel (Figure 80). 

 
Figure 80. Assembly of scFv (VL-linker (Gly4Ser)4-VH)    
         (2% TBE Agarose gel)
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3.10 Cloning of the scFv Genes into pAK300  

3.10.1 Digestion of pAK300 and the scFv Constructs 

The plasmid for scFv expression, lyophilized pAK300 from 2 µl of a Midi-prep, 

was kindly provided by the lab of Prof. Plückthun, ETH Zurich. The plasmid was 

reconstituted in 10 µl of sterile TE buffer. Then, 2 µl of the reconstituted plasmid 

were heat-shock transformed into rubidium competent DH5α cells and purified 

by Miniprep from 3ml over night cultures of single colonies in TB medium with 

Cam. The purified plasmid was quantified by UV. To remove the tet-stuffer 

cassette and open the pAK300-plasmid for cloning of the scFv gene fragments, 

the plasmid and the fragments were digested with SfiI for 3-4 h at 50°C. 

The restriction enzyme SfiI recognizes a rare palindromic sequence of 8 bases, 

interrupted by 5 non-recognized bases:  

 

The base sequence of the SfiI restriction site can be designed in many ways, 

because the five nucleotides inside the restriction site can be varied. As Sfi I 

preferentialy cuts two sites simultaneously when two restriction sites are 

present either on the plasmid or on the gene constructs, nearly no single cut 

plasmid-intermediates occur. 

The two distinct SfiI restriction sites on the plasmid as well as on the scFv gene 

constructs omitt a double digest and prevent the plasmid from self-ligation  

Sfi I restriction site 

5’ GGCCNNNN’NGGCC 3’ 

3’ CCGGN’NNNNCCGG 5’ 
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Figure 81. pAK300 digestion 
(A) undigested, (B) Sfi I digested (1% TBE Agarose gel) 

 
 

 
Figure 82. Digested scFv fragments  
               (1% TBE Agarose gel) 

3.10.1.1 Ligation of the scFv Constructs into pAK300 

Both, digested vector and scFv-fragments, were gel-purified (Figure 81 and 82) 

and quantified before ligation. The molar ratio vector to insert was 1.5:1 and the 

ligation mixture was incubated over night at 16°C with T4 ligase. The pAK300 

introduces a C-terminal His6-tag to simplify the purification of the scFv.  

3.10.2 pAK300‐scFv Plasmid Amplification 

To amplify the pAK 300 plasmid with the scFv inserts, 5 µl of the gel-purified 

ligation reaction of pAK300scFvC11.1, C23.8 and B01.4 were transformed into 

RbCl-competent DH5α cells by heat-shock transformation. Clones were picked 

A B 
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and grown in 3 ml of TB medium with Cam over night and the plasmids were 

extracted by miniprep. 

Agarose-gel electrophoresis and analytical digest with SfiI of selected clones 

showed that a some did not contain the scFv insert, but the religated tet–

cassette (Figure 83).  

Table 26. Size of plasmid and insert (in bp) 

 
 
 
 
 

 
 
 
 
 
 
 

Figure 83. Agarose gel of selected pAKscFvs  
before (A) and after (B) analytical digest 

The problem was partially solved by repeating the plasmid digestion and by 

running the preparative gel for a longer time to achieve a better separation of 

the digested plasmid and the tet-stuffer cassette. 

To ensure that the selected clones contain the full scFv insert, some of them 

were selected and sequenced. The sequencing of the clones revealed the 

occurrence of many inserts without or with a shortened linker sequence, which 
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would be needed for correct folding of the antibody fragments. A reason for this 

problem could be that the used degenerate primers were of low quality, which is 

crucial for the correct amplification of the variable domains.  

3.10.3 Production and Purification of murine scFv 

3.10.3.1 Transformation of pAK300scFv into Bl21(DE3) for Expression 

One clone containing the fulls scFv per parental antibody was selected and was 

transformed into E.coli BL21(DE3) by electroporation. Transformed cells grew 

on Agar plates containing chlorampenicol (Cam). 

Because the pAK300 vector contains a pelB signal squence, bacterial 

expression of the scFv in E.coli BL21(DE3) should lead to soluble scFv 

secreted and enriched in the periplasma of the cells. 

The obtained transformed cells were tested for scFv production by colony 

blotting using Ni-AP conjugate to detect the his-tag on the secreted scFvs 

(Figure 84). 
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Figure 84. Colony blotting of transformed BL21(D3) pAk300scfv 
(Pl1) B01.4 (Pl2) C11.1 (Pl3) C23.8 

Small positive colonies from the regrown master plates were picked and 

inoculated in 2 ml LB + Cam for minipreps and glycerol stocks. 

3.10.4 Expression and Purification of murine scFv 

Expression of C11.1scFv in 500ml scale to establish a purification protocol 

An over night culture of BL21(DE3)pAK300scfvC11.1 cl 2.1,T4.1 with some µl 

scratched from the glycerol stock in 20 ml SB with 1% glucose and 34 µg/ml 

Cam (complete medium) was grown at 37°C with 200 rpm.  

The cells from 10 ml of this culture were harvested by centrifugation at 1500 

rpm and 5 min. The cells were resuspended in 10 ml complete SB medium and 

added to 500 ml SB expression medium with Cam and 0.1% glucose 

(expression medium) in a 1l Erlenmeyer flask. Cells were grown at 30°C and 

200 rpm to an OD600 of 1.0 before induction with 1mM IPTG. Every hour a 
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sample was taken for OD600 measurements to monitor cell growth. 

After reaching the stationary phase of growth (5 h after induction, Figure 85), 

the cells and supernatant were harvested by spinning 20 min at 3300 g, 4°C. 

The supernatant was collected and filtered (0.22 µm) and stored at 4°C. 

To harvest the scFv from the wet cell pellet, CeLytic B reagent from Sigma was 

used according to the producer’s manual. 

 
Figure 85. Growth of C11.1scFv, 500ml culture  
used to establish the purification strategy 

Different purification strategies of the scFv via the his-tag using IMAC 

purification with HiTrap ff crude columns (1ml) were tested. The parameters that 

were varied were different concentrations of imidazole (0-20 mM) in the binding 

buffer and elution in one step and/or with increasing concentrations of imidazole 

(5-10 mM) in the last washing step before the elution with 100 mM imidazole in 

PBS. 
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        A        B 

       kDa  
            66 

                  45 

         36 
       
          29 

Lane                              24 
1 Marker 
2 Flow through        20 
3 Wash 2 
4 Elution 1 
5 Elution 2 
6 Elution 3              14  
  

Figure 86. SDS-PAGE analysis of C11.1scFv purification via IMAC 
(A) non-reducing SDS-PAGE, (B) Western blot of the same samples detected with Ni-AP- 
conjugate  

With all tested strategies the occurrence of substantial amounts of bacterial 

proteins together with the scFv in the elutate, could not be avoided. There were 

also still high amounts of scFv detected in the flow through (Figure 86). This 

could be due to an overload of the column or because the his-tag is partially 

buried in the structure of the scFv. 

In order to solve the problem of contaminating bacterial protein, a ‘one step 2-

columns’ purification procedure proposed by Plückthun et al. 173 was tried. This 

method uses a MHA buffer system (Mes (2-morpholinoethanesulfonic acid, 

HEPES, Sodium acetate), an elution step with a salt-free imidazole buffer and 

direct loading of the eluted protein from the Ni-NTA column to a S12 anion 

exchange chromatography column (Bio-Rad). This attempt was not successful 

and only very small amounts of protein could be eluted. Hence this method was 

not further employed. 

Production of B01.4, C11.1 and C23.8scFv 
 
Cultures (500 ml) for C11.1scFv, B01.4scFv and C23.8scFv were started, and 

scFv expression was induced as described above. To reduce the load of 

bacterial protein contaminants only the periplasmic and osmotic shock fraction 

of the collected cell pellets were harvested this time. For that purpose the cell 

wall of the bacteria was destroyed by osmotic shock treatment as described in 
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chapter 2.9.8.1. IMAC purification via his6- tag was preformed as described in 

chapter 2.9.8. 

The purity could be increased but still only small amounts of protein could be 

purified from the dialyzed periplasmic and osmotic shock fraction (represented 

in the small peak in Figure 87 for B01.4 scFv).  

Figure 87. Example chromatogram of IMAC purification for B01.4scFv from periplasmic extraxt 

The collected scFv elutions were concentrated and the buffer was changed to 

either PBS or HBS-P+ 50mM CaCl2 for SPR screening. 

H1-CRD was immobilized and its activity was evaluated as described in chapter 

2.9.12. SPR screening was performed as described in chapter 2.9.13.  
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Figure 88. Sensorgram obtained from the screening of C11.1scFv in SPR 

Of the tested scFvs only purified C11.1scFv was able to bind to immobilized H1-

CRD (See Figure 88). 

C11.1scFv was also tested for its binding to H1-CRD in ELISA, using HRP-Ni 

conjugate for detection, and in addtion in the competitive solid-phase binding 

assay for its inhibition of GalNAc-PAA-polymer binding (See chapter 2.9.10.) 

 
Figure 89. purified C11.1scFv tested for binding to H1-CRD 
in the competitive solid-phase binding assay (light grey), and in ELISA  using a HRP-Ni 
conjugate for detection (dark grey) 

The results depicted in Figure 89, show that C11.1scFv binds to the H1-CRD in 

a concentration dependent manner, but that it does not inhibit the binding of 

GalNAc-PAA-polymer to the H1-CRD and therefore does not block its sugar- 

binding site. 
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3.11 Phage Display of murine scFvs 

Usually the application of phage display is the first step in the selection of a 

binding scFv constructed from hybridoma cells, but it’s not essential. When 

phage display technology became available in our lab, the technique was also 

deployed to find a binding scFv-clone from the adapted murine antibodies.  

3.11.1 Cloning of murine scFvs into Phagemid Vector pAK100 

The SOE-PCRs of VH and VL gene fragments from the hybridoma clones C11.1, 

B01.4, C23.8 were repeated and the obtained scFv constructs were cloned into 

the digested pAK100 phagemid vector as described for pAK300. 

The analytical digest of the ligation products confirmed the presence of the 

insert in all three pAK100scFv constructs (Figure 90).  

 

Figure 90. Analytical digest of pAK100scfv constructs  

3.11.2 Preparation of mouse scFv Phage Libraries 

The pAK100scFv constructs were transformed into e.coli XL1 Blue by 

electroporation. Three different phage display libraries in XL1 Blue (C11.1, 

B01.4, C23.8) were obtained. All clones were washed from the selection plates 

and transferred to 200 ml of 2xTY medium with 1% glucose and Cam and 

grown to an OD600 of 0.5.  From these cultures 20 ml each were infected with 

200 µl VCSM helper phage for 30 min at 50 rpm, then 30 min at 200 rpm. 

Phage was amplified as described in chapter 2.9.3. Bacteria were pelleted at 

3300 g for 10 min and 4 ml of phage solution were purified from the supernatant 
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of each of these libraries by PEG precipitation as described in chapter 2.9.4. 

3.11.2.1 First Round of Phage Panning on Immunotubes 

Immunotubes were coated over night at 4°C with 20 µg/ml of H1-CRD in HBS + 

10 mM Ca2+, blocked for 2 h with 3% BSA in PBS, and incubated with 1ml of 

the purified phage library of each clone. Bound phage was eluted and log-phase 

XL1 Blue cells were infected with the eluted phage and then plated onto big 

selection plates.  The plates were incubated over night at 30°C. No colonies 

appeared on the plates harboring XL1 Blue infected with pAK100scFvC23.8, 3 

colonies on the pAK100scFvB01.4 plates, and 5 colonies were visible on the 

pAK100scFvC11.1 plates. The bacterial colonies were picked, grown over night 

in LB + Cam and 1% glucose and the phagemid vectors were purified from 1.5 

ml by Miniprep and stored at -20°C. 

3.11.2.2 Soluble scFv ELISA 

The picked clones were grown in 5 ml cultures with Cam and 0.1% glucose, 

induced with 1mM IPTG at OD600 1.0 and scFv was expressed over night at 

30°C and 200 rpm. A soluble scFv ELISA was carried out with 150 µl of the 

supernatants/well, as described in chapter 2.9.5.1. 
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Figure 91. Soluble scFv ELISA of murine antibodies after the first panning round 
B1-3 clones from pAK100 B01.4sFv, C1-5 from pAK100C11.1.4sFv, XL1-Blue control is 
medium from uninfected XL-1 Blue cells 
 
The ELISA results are displayed in Figure 91. The obtained OD values were 

relatively low. In the scope o this thesis, the work on the murine phage display 

using pAK100 phagemid vector was stopped at this point.  
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3.12  Phage Display human scFv 

The first 2 rounds of phage panning on human H1-CRD were conducted during 

the practical part of the course on Phage display technology organized by Prof. 

D.Neri at the ETH Zurich. A frozen 5 ml glycerol-stock of bacteria from a big 

selection agar plate after the first panning round obtained after the course was 

used for further rounds of panning. 

3.12.1.1 ETH‐2‐Gold Phage Sub‐library Rescue after First Panning 

TG1 bacterial library glycerol stock (ca. 5ml) from the big agar plate was 

inoculated into 200 ml of 2xTY+Amp + 1% glucose to reach an OD600 = 0.1-0.2 

and grown to OD600 0.4-0.5. at 37°C. Then 10 ml of this culture were infected 

with helper phage in a ratio of around 20:1 (phage: bacteria) for 30 min at 37 

°C. The infected bacteria were pelleted at 3300 g for 10 min, gently 

resuspended in 100 ml of 2xTY-Amp-Kan and incubated at 30°C overnight, 

shaking. Then, the culture was spun again at 3300 g for 10 min and the phage 

was immediately PEG precipitated from the supernatant. The obtained phage 

sub-library was stored in 2 aliquots at -20°C. 

3.12.1.2 Biopanning using Immunotubes 

The panning on immunotubes was conducted as described in chapter 2.9.2. 

After each round of panning the bacteria were harvested from the big selection 

plates and the phage rescued as described in chapter 2.9.3. The rescued 

phage was split in two aliquots of which one was stored for backup at -80°C and 

the other one used for the next round of panning.  

H1-CRD was coated to the immunotubes using its normal storage buffer HBS + 

10 mM CaCl2 to provide the protein with the necessary calcium for its active 

conformation. All further steps were carried out in PBS, as there was no 

previous experience with using HBS buffer during panning. 

Reducing the density of the antigen H1-CRD immobilized to the immunotubes 

and increasing the washing steps after the pannings increased the stringency of 

selection. The first two rounds of panning were carried out during the Antibody 

phage display course with 100 µg/ml of H1-CRD as antigen. The blocking agent 
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for the tubes during these first two rounds was 2% milk powder. Because milk 

powder contains galactose that could serve as a ligand of the H1-CRD and 

hence block its binding site, all further rounds of panning were carried out using 

3% BSA for blocking of the tubes. 

 
Figure 92. Titer after panning rounds on immunotubes 
(A) 1* and 2* panning round during the course with 2% milk powder, panning rounds 2-5 with 
3% BSA as blocking agent (B) Titer Agar plate ETH2 gold after panning round 5 

The titer after the first round of panning on 100 µg/ml H1-CRD was 4.1x106 cfu 

(colony forming units)/ml. After the second round in the course the titer was low 

(8.8x103 cfu/ml) (1* and 2*, Figure 92) and only 44 clones could be picked from 

the big selection plate to control the selection with a soluble scFv ELISA. One of 

these clones was detected positive for binding to 100 µg/ml of H1-CRD in 

ELISA. In panning round 2 and 3, carried out in our lab on 20 µg/ml of 

immobilized H1-CRD, the titer was 6·105 and 1.7x106 cfu/ml, respectively. 

Panning rounds 4 and 5 were carried out using 10 µg/ml of H1-CRD and 

resulted in titers of 2·105 and finally 4x107 cfu/ml. 

3.12.1.3 Screening scFv Expression by ELISA 

After some rounds of panning, it is usually good practice to monitor the progress 

of the selection by ELISA, either with soluble scFv, or by using the scFv 

displayed on phage. This means that either colonies of bacteria infected with 
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phage from the desired round of panning are picked individually and induced to 

express soluble antibodies into the supernatant or that the clones are infected 

with helper phage to produce and secret scFv-gpIII-phage particles in bacterial 

supernatants, both can be tested in ELISA to screen for antigen binding scFvs. 

E.coli suppressor strains such as XL1 Blue or TG1 allow regulated expression 

of scFv-gpIII fusion protein as well as soluble recombinant scFv because E.coli 

supE44 strains only partially suppress the amber stop codon TAG in the reading 

frame between scFv and gpIII. To screen the infected bacteria in ELISA for their 

expression of soluble scFv has the advantage to detect clones that not only 

produce scFv that bind the antigen but are also able to express sufficient 

amounts of scFv to be detected in one step.  

XL1-Blue clones picked from round 2 and of round 5 plus the positive TG1 

clone identified in the first ELISA during the Phage display course were tested 

for soluble scFv expression in ELISA.  

Cells were grown and induced in U-well plates as described in chapter 2.9.5. 

After 16 h of induction, the plate was spun down to pellet the bacteria and the 

supernatants containing the soluble scFvs were transferred to the prepared 

ELISA plate coated with 5 µg/ml of H1-CRD and blocked with 3% BSA. The 

plates were incubated over night at 4°C in a humid chamber and processed as 

described in chapter 2.9.5.1. After color development with OPD-substrate the 

OD was measured at λ=450 nm. The results are depicted in Figure 93. 

 



  

 Results and Discussion        Phage Display human scFv 

   3-175 

 

 
Figure 93. Soluble scFv ELISA from ETH-2-Gold clones 
(A) after panning round 2, (B) after panning round 5. Arrows indicate clones selected for small-
scale expression of scFv 

Plate 2 contained several positive clones and plate 5 only one, the positive one 

previousely selected during the course.  

Remarks:  

More positive clones were expected from panning round 5, as the titer in this 

round was the highest (4x107 cfu/ml). Here scFv production was probably 

impaired because the lid of the U-well plate 2 harboring the selected clones 

from round 5 was not fully closed and some medium evaporated during the 

induction step. Hence, it would be worthwile to repeat the ELISA with the cells 

from round 5. 

Small-scale production of scFv was carried out with 3 of the positive clones 

from plate 2 and the positive clone from plate 5. 
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3.12.1.4 Small Scale Production of human scFv 

Some µl of cells from clones 5B8, 2D3, 2D8, and 2E8 were scratched from the 

backup plate and inoculated into 3 ml 2xTY medium with Kan and 1% glucose 

and grown over night at 37°C with shaking at 200 rpm. The next day the 

cultures were diluted into 100 ml of fresh 2xTY medium with Kan and 0.1% 

glucose and grown at 37°C to OD600 1.0 before induction with 1mM IPTG. 

Induction was carried out for 16 h at 25°C and 200 rpm. Then the cells were 

harvested and the supernatant filtered (0.45µm). 

The filtered supernatants were purified by affinity chromatography over a 

protein A column as described in chapter 2.9.9.  

 

Figure 94. Chromatograms of the affinity purification of selected scFvs 2D3, 2D8, 2E8 and 5B8 
from 100ml of supernatant of each clone using a Protein A column  

The chromatograms in Figure 94 show that only clone 5B8 secrets high 

amounts of scFv to the supernatant. This clone was also used to express scFv 

in a 500 ml production batch induced for 18 h at 25 °C and 220 rpm from which 

the scFvs were purified in the same way. 
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Figure 95. Growth curve of clone 5B8, 500ml culture 
the supernatant was harvested after 18h  induction at 25°C. 

 
Figure 96. Chromatogram of the affinity purification of scFv 5B8 from 500 ml supernatant 
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Lane  
M Marker 
1 Elution 1 
2 Elution 2 
3 Elution 3  
4 Elution 1  WB 
5 Elution 2  WB 
6 Elution 3  WB 

 
 
 
 
 
 
Figure 97. Analysis of scFv 5B8 purified from supernatant over Protein A  
(A) SDS-Page 15% non-reducing (B) Western blot (detection with c-myc Ab) 

SDS page analysis reveals the occurrence of bacterial contaminates in the 

eluted samples. Size exclusion chromatography was applied to remove these 

impurities, but technical problems with the column Bio Prep SE 100/17 (Bio-

Rad) impeded further polishing. The samples were therefore used in the state 

they were except for 5B8 where at least high molecular weight contaminates 

could be removed by filtrating the sample trough a centrifugal filter device with a 

cutoff of 50 kDa and from which then the flow through was used for SPR. ScFv 

concentration was determined from SDS-PAGE using BSA as standard. 

 

Figure 98. 5B8 scFv sample for SPR analysis 
(1) After filtration through a centrifugal filtering device with cutoff 50kDa 
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3.13 Affinity Evaluation of scFvs 

Protein immobilization is a crucial step in a SPR experiment. Loss of partial or 

entire target activity changes in ligand affinity, and many other artifacts are 

directly related to unfavorable immobilization. The standard CM5 sensor chip 

from Biacore contains a glass slide with a thin gold layer (50 nm) that is covered 

with a carboxymethylated dextran with a dimension of 100 nm under 

physiological conditions. Introduced carboxy groups on the dextran chains allow 

covalent immobilization of proteins, oligosaccharides, nucleotides, or small 

molecules. 

H1-CRD was immobilized by amine coupling as described in chapter 2.9.11 

Figure 99. Immobilization of H1-CRD on a CM5 sensor chip. 
(1) Surface activation with NHS/ EDC, (2) amine coupling of H1-CRD, (3) deactivation with 
ethanolamine. 
 

3.13.1 Activity Testing of H1‐CRD 

To demonstrate that the immobilized H1-CRD was in its active conformation 

and able to bind GalNAc (see also chapter 3.1.1.1) activity testing on the H1-

CRD was preformed as described in chapter 2.9.12. 
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Figure 100. Sensorgram of H1-CRD activity testing with GalNAc 

The obtained KD
 for GalNAc was 129 µM and in the range obtained in previous 

tests (see Table 22), confirming that the protein was still active after 2 years of 

storage at -20°C. 

3.13.2 Screening of human scFv in SPR 

The buffer of the purified scFv antibodies 2E8 and 5B8 from the ETH-2-Gold 

library was changed to the SPR-buffer HBS-P + 50 mM CaCl2 using Vivaspin 6 

concentrators (cutoff 10kDa). The amounts purified from supernatants of clones 

2D3 and 2D8 were not sufficient for testing. Screening was conducted as 

described in chapter 2.9.13. 

Figure 101. Screening of human ETH-2-Gold derived scFvs 

The screening of the two scFv preparations reveal specific binding of the scFv 

to the H1-CRD immobilized on the chip (Figure 101). 
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3.13.3 Affinity Determinations of human scFv 

For affinity determinations the scFv antibodies were injected in a random series 

of concentrations ranging from 1.6 µM to 0.19 pM for 5B8 and 0.8 µM to 0.19 

pM for 2E8 as described in chapter 2.9.13. 

Figure 102. Preliminary affinity measurements of human scFv 5B8 and 2E8 
 

The apparent KD measured for the purified sample of scFv 5D8 was around 16 

nM and that of 2E8 42 nM. Kinetic values could not be determined from these 

curves, as it would be necessary to conduct the measurements on a low 

immobilization H1-CRD surface as described on the Biacore homepage202. 

Kinetic analysis would determine the rate of complex formation and 

dissociation. Reliable determination of kinetic constants would require the 

adaptation of the immobilization protocol, as the amount of immobilized H1-

CRD should give an R-value in the range of 100-400 RU.
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4. General Discussion and Outlook 

4.1 ASGP‐R Carbohydrate Recognition Domains H1‐ and H2‐CRD 

At our institute we are now able to prepare both H1-CRD and H2-CRD in 

amounts needed for ongoing research on the ASGP-R. With the H1-CRD we 

were able to establish a reliable competitive solid-phase binding assay, a SPR 

assay and substantial work on the binding mode of H1-CRD has been done by 

or NMR team. 

In case of the H2-CRD we still don’t know its binding specificities and it would 

be interesting to start a collaboration with a laboratory working with glyco-

microarray, as described by Coombs et al.203 in order reveal its ligand 

preferences. 

4.2 Competitive Solid‐phase Binding Assay  

The new competitive solid-phase binding assay for the H1-CRD developed in 

this thesis is a simple, yet effective assay for the purpose of ranking newly 

developed small glycomimetic ligands to the H1 subunit of the ASGP-R. Its use 

allows the iterative improvement of the developed compounds and the reagents 

required to for the assay are readily accessible. 

With this assay we were able to monitor the activity of H1-CRD protein during 

the development of the purification and refolding procedure and to compare the 

activity of the resulting protein batches. Likewise, the influence of mutations in 

the cysteines in the H1-CRD on the correct folding and binding activity of the 

protein were evaluated with this assay, the results are to be found in the thesis 

of Dr. K. Johansson 204. Unlike in an ELISA, where an antibody not necessarily 

needs to bind the active conformation of the protein, GalNAc-PAA polymer 

interaction with the protein is solely dependent on the occurrence of correctly 

folded protein representing an active binding site. 

The assay could not be adapted to the H2-CRD in a competitive format needed 

for ligand testing. Nonetheless, the results confirmed that the affinity of the 

protein in regard to Gal and GalNAc is very low. We could also show that the 

H2-CRD has, in contrast to H1-CRD, a higher affinity towards Gal than GalNAc. 
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Finally, these results reflect the lack of information on the sugar-binding 

specificity of the H2 subunit of the ASGP-R in literature. Although both subunits 

contain a CRD, it is believed that high affinity binding of ligands by Gal/GalNAc 

recognition occurs only via the H1 subunit and that H2 serves to generate the 

functional native receptor, since both subunits are necessary for efficient ligand 

binding and internalization by hepatocytes 44.  

This assay format can readily be adapted to be used for other medically 

interesting lectin CRDs to acheive assays to e.g. evaluate the binding activitiy of 

protein after recombinant production and purification, assess binding 

specificities of endogenous ligands and to rank new glycomimetic compounds 

produced by our chemists. This is currently done at our Institute for the lectins 

FimH, DC-Sign, E- P-and L-selectin. 

4.3 New Glycomimetic Ligands for the human H1‐CRD 

More than 50 new potential glycomimetic ligands for the H1-CRD were tested in 

the competitive solid-phase binding assay for the H1-CRD. From those we were 

able to identify several new ligands for the ASGP-R evincing more drug-like 

properties than the natural ligand GalNAc while having a similar or even better 

affinity to the H1 subunit of the receptor.  

To achieve the aim of our group, which is to develop a high affinity drug-carrier 

for hepatotropic drug delivery via the Asialoglycoprotein-receptor, it will now be 

necessary to couple these ligands to the triantennary drug carrier that was 

presented in this work, and to evaluate in a first step their binding specificities to 

human hepatocytes with the methods developed in the scope of this thesis. The 

evaluation of the specificity of binding and internalization into other cells will 

show if the newly developed drug carriers obey the rules of a good site-specific 

targeting vehicle, which is its high specificity for the targeted site, the ASGP-R 

on human parenchymal liver cells. 

4.4 Antibodies against the ASGP‐R for Drug Targeting 

Although there is much interest in the use of the ASGP-R for hepatotropic drug 

delivery, no attempt has been made to address the receptor using antibodies 

instead of the usual sugar-based delivery systems 205. There are reports about 
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polyclonal and partially characterized monoclonal antibody directed against the 

ASGP-R 37, 61, 206-209, but to date no drug targeting attempts have been made.  

The initial idea to use a H1-CRD specific antibody fragment for targeting of 

siRNA came from the publication of Song et al.210 The authors could show that 

it’s possible to use antibody fragments expressed as truncated protamine fusion 

proteins, to bind, protect and target siRNA into cells via receptor-mediated 

endocytosis. The process of uptake and endosomal escape of the siRNA 

molecules is still discussed 211, 212. This approach could be interesting to silence 

cancer related genes in HCC or viral genes in viral Hepatitis with specific siRNA 

molecules targeted to the ASGP-R via scFvs fused to protamine (or another 

cationic tail). 

4.4.1 Mouse anti‐human H1‐CRD Antibodies 

The mouse anti-human H1-CRD antibodies that were produced at our Institute 

by Dr R. Born 165 and  that were characterized by her in collaboration with 

Dr.D.Ricklin 75 and the author of this thesis, show interesting binding 

characteristics.  

They are valuable research tools, and especially the antibodies C11.1, B01.4, 

C09.1 and C18.1 could be from interest in a proof of concept model to target 

drugs or siRNA to hepatocytes, as they not only bind, but also are efficiently 

internalized into hepatocellular carcinoma cells via the ASGP-R. Antibody C14.6 

can be applied in Immunohistochemistry and is a promising candidate for a 

histological diagnostic tool in AIH. 

Because of their mouse origin, the use of these antibodies for drug targeting in 

humans is limited. If they could be used in a mouse model is questionable, they 

were generated in mice and can therefore not be expected to react with the 

mouse hepatic lectin 1 (MHL-1), even if it has a high sequence homology to the 

human H1- subunit (79%). 

4.4.2 Murine scFv Adaptation 

In the scope of this thesis it was attempted to adapt four of the mouse 

antibodies to the scFv format. Those were the clones C11.1, B01.4, C14.6 and 

C23.8, an instable hybridoma clone that could no longer be propagated. The 
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effort only worked for clone C11.1, whose scFv fragment still binds to the H1-

CRD. The attempt to speed up the selection of a efficient binder clone from the 

produced scFv constructs by applying phage display in parallel was not 

successful within the scope of this thesis and likely impeded by the use of an 

unsuitable E.coli host for soluble scFv production (as will be discussed in 

chapter 4.4.3).  

The production and especially the purification procedure will have to be 

optimized to get highly pure scFv in sufficient amounts for further tests. The 

purification strategy for the murine scFvs using IMAC by taking advantage of 

the encoded his-tag showed to be unsuitable. The eluates contained substantial 

amounts of co-purified bacterial proteins and there was also still scFv 

detectable in the flow trough. The best strategy in this case would be to apply 

affinity chromatography using a H1-CRD column, which would only bind 

correctly folded and active scFvs.  

4.4.3 Selection of human scFv against the H1‐CRD  

From the ETH-2-gold library one human scFv that binds specifically to the H1-

CRD could already be selected within the scope of this thesis.   

The detection of additional binders was probably impeded by the use of an 

inappropriate E.coli host for soluble scFv expression. The scFvgIII fusion 

protein expression in E.coli XL1 Blue is most likely not as leaky as in TG1; 

hence this strain is not suitable to combine phage display with antibody 

production as it is feasible when using E.coli TG1. The further strategy to select 

more H1-CRD specific binders could be either to infect TG1 with the purified 

phage from round 5 and to repeat the soluble scFv ELISA (this has the 

advantage that the selected clones can be directly employed for scFv 

production), or to carry out a phage ELISA instead of the soluble scFv ELISA, 

and to infect another suitable E.coli strain with the ELISA-positive phage 

particles for soluble scFv production. 

The selected human scFv 5B8 was perceived to be an antibody fragment with 

high affinity to the H1-CRD but further evaluation of its binding properties will be 

needed. Kinetic SPR affinity measurements could not be performed in the 

scope of this thesis, because the method for immobilization of the H1-CRD 
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would have to be adapted to give a ‘low immobilization’ surface and presumably 

the regeneration strategy would need to be modified also (i.e. using HCl instead 

of EDTA).  

The scFv purification procedure will have to be optimized to get highly pure 

scFv in sufficient amounts for further tests. Purification via affinity 

chromatography on Protein A alone is not sufficient as some bacterial 

contaminants remain. In this case, Size exclusion chromatography (SEC) with a 

new column should be sufficient for polishing. 

If the selected scFv antibodies' kinetic affinity or stability is not high enough, 

affinity maturation could be used to achieve an improvement in these 

properties. There are several methods described in literature e.g. the affinity 

maturation concept described by Pini et al. 137 that was successfully applied on 

an scFv clone derived from the ETH-2-Gold library. 

In a further step, the selected scFv should be tested for its ability to be 

internalized efficiently into hepatocytes, which is essential if the scFv is intended 

to be used for delivering drugs or genes to hepatocytes.  

Even if the selected scFv shows high affinity to the H1-CRD, it cannot 

automatically be assumed that it is internalized as efficiently by the ASGP-R on 

cells as the murine anti-H1-CRD antibodies. The full IgGs possess an important 

feature that scFvs lack, they have two binding sites and are therefore able to 

crosslink two H1 subunits, which very likely helps to trigger their internalization. 

The methods for the evaluation of these properties and to exclude cross -

reactivity with similar receptors on other cells were established in the scope of 

this thesis. The scFv could either be labeled directly with a fluorochrome for 

detection, e.g. with one of the Alexa Fluor® series (labeling kits for antibodies 

are commercially available) or indirectly detected after internalization with a 

labeled secondary antibody directed against the heavy or light variable domains 

or the C-myc tag on the scFvs in permeabilized cells and analyzed in 

fluorescence microscopy and/or flow cytometry. 

Alternatively, methods for panning of phage on cellular surface antigen on living 

cells and for selection of internalizing phage have also been described but are 

difficult to implement 213 214.   
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He next step could then be to apply the ETH-2-Gold library by phage display for 

the selection of an scFv fragment specific to the H2-CRD of the human ASGP-

R. If antibodies against both subunits could be generated, it would be 

interesting to couple them to form a drug carrier addressing both the H1 and the 

H2-subunit of the ASGP-R at once. Combining the two binding specificities in 

one molecule could lead to a highly specific drug-carrier. Dual specificity is 

probably also beneficial in regard to uptake efficiency, as both ASGP-R 

subunits are necessary for efficient internalization. 

A strategy to increase the avidity to efficiently address the ASGP-R for drug 

targeting is the engineering of a multivalent structure by fusion of scFv 

fragments to coiled-coil structures as described by Charles et al.215 , Kipriyanov 

et al.216 and Plückthun et al.217
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5. Appendices 

5.1 Sequences of scFv 

Human scFv from ETH‐2‐Gold Clone 5B8 Protein Sequence  

EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSAI

SGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDQIPFD

YWGQGTLVTVSSGGGGSGGGGSGGGGSSELTQDPAVSVALGQTVRITCQSL

RSYYASWYQQKPGQAPVLVIYGKNNRPSGIPDRFSGSSSGNTASLTITGAQE

DEADYYC NSSPTHHVPVVFGGGTKLTVLGAAAEQKLISEE DLNGAA* 

VH DP47 
 

Linker G4SG4SG4 
 

c-myc tag 
 

Vλ DPL16 
 

Appended random loops 
 

 

5B8 Nucleotide Sequence 

GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGT

CCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTTAGCAGCTATGCCA

TGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTCTCAGC

TATTAGTGGTAGTGGTGGTAGCACATACTACGCAGACTCCGTGAAGGGCC

GGTTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGA

ACAGCCTGAGAGCCGAGGACACGGCCGTATATTACTGTGCGAAAGATCAG

ATTCCGTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCGAGTGG

TGGAGGCGGTTCAGGCGGAGGTGGCTCTGGCGGTGGCGGATCTTCTGAG

CTGACTCAGGACCCTGCTGTGTCTGTGGCCTTGGGACAGACAGTCAGGAT

CACATGCCAAGGAGACAGCCTCAGAAGCTATTATGCAAGCTGGTACCAGC

AGAAGCCAGGACAGGCCCCTGTACTTGTCATCTATGGTAAAAACAACCGG

CCCTCAGGGATCCCAGACCGATTCTCTGGCTCCAGCTCAGGAAACACAGC

TTCCTTGACCATCACTGGGGCTCAGGCGGAAGATGAGGCTGACTATTACT

GTAACTCCTCTCCTACGCATCATGTTCCCGTGGTATTCGGCGGAGGGACC

AAGCTGACCGTCCTAGGCGCGGCCGCAGAACAAAAACTCATCTCAGAAGA

GGATCTGAATGGGGCCGCAT 
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Deduced Protein Sequence of the scFv Fragment from mouse anti‐human 
H1‐CRD Antibody C11.1, Clone 2.1  

DYKDIVMTQSPASLAVSLGQRATISYRASKSVSTSGYSYMHWNQQKPGQPPR

LLIYLVSNLESGVPARFSGSGSGTDFTLNIHPVEEEDAATYYCQQXXGGAYTF

GGGTKLEIKRGGGGSGGGGSGGGGSGGGGSQVQLQQSGAELVKPGASVKL

SCKTSGYTFTSYWIQWVKQRPGQGLGWIGEIFPGTGTSYYNENFKGKATLTID

TSSSTAYMQPSSLTSEDSAVYFCARTNNYRSYALDYWGQGTNYRS 

Vκ  
 
 

Linker (G4S) 4 
 

 

VH Shortened FLAG- tag 
 

 

 

C11.1 scFv Clone 2.1 Nucleotide Sequence 

AGACTACAAAGATATTGTGATGACCCAGTCTCCTGCTTCCTTAGCTGTATCT

CTGGGGCAGAGGGCCACCATCTCATACAGGGCCAGCAAAAGTGTCAGTAC

ATCTGGCTATAGTTATATGCACTGGAACCAACAGAAACCAGGACAGCCACC

CAGACTCCTCATCTATCTTGTATCCAACCTAGAATCTGGGGTCCCTGCCAG

GTTCAGTGGCAGTGGGTCTGGGACAGACTTCACCCTCAACATCCATCCTG

TGGAGGAGGAGGATGCTGCAACCTATTACTGTCAGCAGNAGNTAGGGGGA

GCTTACACGTTCGGAGGGGGGACCAAGCTGGAAATAAAACGTGGTGGTG

GTGGTTCTGGTGGTGGTGGTTCTGGCGGCGGCGGCTCCGGTGGTGGTGG

ATCCCAGGTGCAGCTGCAGCAGTCTGGAGCTGAGCTGGTGAAGCCTGGG

GCTTCAGTGAAGCTGTCCTGCAAGACTTCTGGCTACACCTTCACCAGCTAC

TGGATTCAGTGGGTAAAACAGAGGCCTGGACAGGGCCTTGGGTGGATTGG

AGAGATATTTCCTGGAACTGGCACTTCTTACTACAATGAGAACTTCAAGGG

CAAGGCCACACTGACTATAGACACATCCTCCAGCACAGCCTACATGCAGC

CCAGCAGCCTGACCTCTGAGGACTCTGCTGTCTATTTCTGTGCAAGAACTA

ATAACTATAGGTCCTATGCTTTGGACTACTGGGGTCAAGGAACTAATTACC

GTTCC 



  

 Appendices           Curriculum Vitae 

   5-191 

 

5.2 Curriculum Vitae 
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