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Preceding page: Rotating core-collapse ‘jet’ supernova simulation (model R4E1CF)
at equally spaced instances during the first 20ms after core bounce. The visualiza-
tion was done by J. Biddiscombe, Swiss Supercomputer Centre (CSCS).
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Abstract

Core-collapse supernovae (CCSNe) are among the most energetic explosions in the
universe, liberating the prodigious amount of ∼ 1053 erg, the binding energy of their
compact remnants, neutron stars or stellar mass black holes. While 99% of this
energy is emitted in neutrinos, 1% goes into the internal and asymptotic kinetic
energy of the ejecta, and it is reasonable to assume that a tiny fraction is radiated
in gravitational waves (GWs).
Ever since the first experimental efforts to detect GWs, CCSNe have been con-
sidered prime sources of gravitational waves for interferometric detectors. Besides
neutrinos, which have already been observed in the context of stellar core collapse of
SN1987A, GWs could provide us access to the electromagnetically hidden compact
inner core of some such cataclysmic events, supplying us for example with valuable
information about the angular momentum distribution and the baryonic equation of
state, both of which are uncertain. Furthermore, they might even help to constrain
theoretically predicted SN mechanisms. However, GW astronomy strongly depends
on the extensive data processing of the detector output on the basis of reliable GW
estimates, which only recently have become feasible with the emerging power of
supercomputers.
The work presented in this thesis is concerned with numerical CCSN models and
their imprints in GWs.
I performed an extensive series of more than 30 three-dimensional magnetohydro-
dynamical (MHD) core-collapse simulations. My models are based on a 15M� pro-
genitor stemming from stellar evolution calculations, an effective general relativistic
potential and either the Lattimer-Swesty (with three possible compressibilities) or
the Shen equation of state (EoS) for hot, dense matter. Furthermore, the neutrino
transport is tracked by computationally efficient algorithms for the radiative transfer
of massless fermions.
I systematically investigated the effects of the microphysical finite-temperature nu-
clear EoS, the initial rotation rate, both the toroidal and the poloidal magnetic
fields, and multidimensional gravitational potentials on the GW signature. Based
on the results of these calculations, I obtained the largest – and also one of the
most realistic – catalogue of GW signatures from 3D MHD stellar core collapse
simulations at present.
I stress the importance of including postbounce neutrino physics, since it quantita-
tively alters the GW signature. Non- and slowly-rotating models show GW emission
caused by prompt and protoneutron star (PNS) convection. Moreover, the signal
stemming from prompt convection allows for the distinction between the two dif-
ferent nuclear EoS indirectly by different properties of the fluid instabilities. For
simulations with moderate or even fast rotation rates, I only find the axisymmetric
type I wave signature at core bounce. In line with recent results, I could confirm
that the maximum GW amplitude scales roughly linearly with the ratio of rotational
to gravitational energy (T/|W |) at core bounce below a threshold value of about
10%. Furthermore, I point out that PNS can become dynamically unstable to ro-



tational instabilities at T/|W | values as low as ∼ 2% at core bounce. Apart from
these two points, I show that it is generally very difficult to discern the effects of the
individual features of the input physics in a GW signal from a rotating CCSN that
can be attributed unambiguously to a specific model. Weak magnetic fields do not
notably influence the dynamical evolution of the core and thus the GW emission.
However, for strong initial poloidal magnetic fields (& 1012G), the combined action
of flux-freezing and field winding leads to conditions where the ratio of magnetic
field pressure to matter pressure reaches about unity which leads to the onset of a
jet-like supernova explosion. The collimated bipolar out-stream of matter is then
reflected in the emission of a type IV GW signal. In contradiction to axisymmetric
simulations, I find evidence that nonaxisymmetric fluid modes can counteract or
even suppress jet formation for models with strong initial toroidal magnetic fields. I
emphasize the importance of including multidimensional gravitational potentials in
rapidly rotating 3D CCSN simulations: taking them into account can alter the re-
sulting GW amplitudes up to a factor of 2 compared to simulations which encounter
gravity only by a monopolar approximation. Moreover, I show that the postbounce
dynamics occuring in the outer layers (at radii R & 200km) of models run with
3D gravity deviates vastly from the ones run with a 1D or 2D gravitational poten-
tial. The latter finding implies that both spherically symmetric and axisymmetric
treatments of gravity are too restrictive for a quantitative description of the overall
postbounce evolution of rapidly rotating CCSN models. The results of models with
continued neutrino emission show that including deleptonization during the post-
bounce phase is an indispensable issue for the quantitative prediction of GWs from
core-collapse supernovae, because it can alter the GW amplitude up to a factor of
10 compared to a pure hydrodynamical treatment. My collapse simulations indicate
that corresponding events in our Galaxy would be detectable either by LIGO, if the
source is rotating, or at least by the advanced LIGO detector, if it is not or only
slowly rotating.
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Overview

There’s a lady who’s sure all that glitters is gold
and she’s buying a stairway to heaven.
When she gets there, she knows if the stores are all closed
with a word she can get what she came for.
Ooh, ooh, and she’s buying a stairway to heaven.

Robert Plant, Led Zeppelin, Stairway to heaven

0.1 Preface

The major task of my PhD thesis was to study the gravitational wave signature of
three-dimensional magnetohydrodynamical core-collapse supenova simulations.

The foundations of this work were laid in the spring term 2005, when as an under-
graduate student I attended a proseminar held by Prof. Dr. B. Binggeli and Prof.
Dr. E. K. Grebel on current issues of modern astronomy. I picked gravitational
waves as my presentation topic. Ever since, I have happily remained chained to this
very fascinating and exciting subject, as I feel that our generation might be at the
dawn of gravitational wave astronomy.

In the subsequent master course, lasting from autumn 2005 to spring 2007, a joint
lecture by Prof. Dr. M. Liebendörfer and Prof. Dr. F.-K. Thielemann on numerical
astrophysics awaked my interest in computational and supernova physics. At this
time, I began to collaborate with Prof. Dr. M. Liebendörfer on gravitational waves
from stellar core collapse. He gave me the opportunity to take my first steps in sci-
ence, supervising first my master thesis, and later also the course of my dissertation
in the Astroparticle group of the University of Basel.

During my PhD studies from June 2007 - August 2010, I had the unique chance
to delve into the very interesting but also challenging world of stellar core collapse
physics. Beside carrying out my own research in Basel, I was able to visit a large
number of places all over the world in order to promote scientific results and for
talks (Todtmoos, Germany; Trento, Italy; Ladek Zdroj, Poland; Ringberg Castle,
Germany; Paris, France; Hirschegg, Austria; Heidelberg, Germany; Potsdam, Ger-
many; Copenhagen, Denmark; Pasadena, USA; Caen, France; Garching, Germany).
I would hardly have visited all these places so early in life if it hadn’t been for sci-
ence! At these conferences and invited talks I profited extensively from discussions
with many interesting and inspiring persons.

The process of writing this thesis was an intense and exhausting experience. How-
ever, I would do it again: the positive impressions I gained in exchange for hard
work will remain.
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0.3 New results obtained in this dissertation

0.3 New results obtained in this dissertation

This dissertation is primarily devoted to the study of the gravitational wave emission
from core-collapse supernovae.

The new results presented in this thesis and in part reported in [206, 208, 210] are
my contributions to this very active field of research. Below, I list and summarize
the most important findings.

An alternative formula for gravitational wave extraction

The gravitational wave signature of stellar core collapse is usually extracted via nu-
merically convenient formulations of the ‘quadrupole approximation’ [71, 32]. How-
ever, these formulas usually do not account for the contributions of magnetic fields.
Since I perform magnetohydrodynamical simulations, I extended the existing for-
mulas to the latter case in order to calculate the contribution to the GW signal due
to magnetic stresses. Following the 2D axisymmetric derivations of [170,122], I have
generalized the standard quadrupole formula to the case of a magnetized fluid in 3D
Cartesian coordinates (see sec. 1.4.1).

The importance of spectral neutrino transport for the prediction
of the 3D gravitational wave signal from ‘prompt’ and early
protoneutron star convection

Non- and slowly rotating progenitor stars all undergo quasi-spherically symmetric
core collapse. As the emission of gravitational waves intrinsically depends on dy-
namical processes that deviate from spherical symmetry, the collapse phase does not
provide any kind of signal. However, subsequent pressure-dominated core bounce,
where the collapse is halted due to the stiffening of the equation of state at nuclear
density, launches a shock wave that plows through the infalling layers, leaving be-
hind a negative entropy gradient. Moreover, as soon as the shock breaks through
the neutrino sphere ∼ 5ms after bounce, the immediate burst of electron neutrinos
causes a negative lepton gradient at the edge of the protoneutron star. The com-
bination of these two gradients forms a convectively unstable region according to
the Schwarzschild-Ledoux criterion [127,251], which in turn induces a gravitational
wave burst due to this so-called ‘prompt’ convection.

In order to study the influence and necessity of neutrino transport on the stochastic
3D matter dynamics and the gravitational wave emission in the early supernova
stages (t . 100ms after bounce), without having other different physical parameters
interfering, I investigated comparative simulations with various degrees of neutrino
transport: a) purely hydrodynamical postbounce evolution, b) a leakage scheme,
and c) full spectral electron neutrino transport.

My results suggest that the primary ingredient for supernova simulations which
attempt a quantitative prediction of GWs from ‘prompt’ and early protoneutron
star convection (t . 100ms after bounce) is the accurate radial location and size of
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convectively unstable layers. It defines the dynamical behaviour and timescale of
overturning matter in this early supernova stage (see sec. 3.4.3).

Equation of state dependence of the gravitational wave signature

The temperatures and densities inside a supernova core exceed the range that is
easily accessible by terrestrial experiments. Thus, it will be impossible for the fore-
seeable future to construct a unique finite temperature equation of state for hot and
dense matter based on experimentally verified data. In order to circumvent this
problem, the information content gravitational waves carry to us from the heart of
stellar core collapse might provide us with an alternative way of studying nuclear
matter properties far beyond saturation. However, to tap this information, models
with different nuclear input must be run and their computed wave form output can
subsequently be compared with actual (future) detector data.

In order to address this task, I carried out a large parameter study in 3D, employing
the Lattimer-Swesty [130] and the Shen equation of state [215].

Note that I compared for the first time ever the gravitational wave signatures re-
sulting from the three different choices of nuclear matter compressibility provided
by the Lattimer-Swesty equation of state.

My studies show that the gravitational wave signal stemming from prompt convec-
tion in slowly rotating supernova cores allows for the distinction between the two
different nuclear equations of state (Lattimer-Swesty and Shen) indirectly by differ-
ent properties of the fluid instabilities. I also found minor deviations in the GW
characteristics for simulations which were carried out with different compressibility
versions of the Lattimer-Swesty equation of state. However, the differences in the
frequency domain of the GW signal are negligibly small and thus not likely to be
constrained by observation (see sec. 3.4).

Furthermore, my results indicate that the particular choice of the nuclear equation
of state has little influence on the gravitational wave signal from rapidly rotating
core collapse. It is, among other things, degenerate with the rotation rate of the
supernova core (see secs. 3.4.2 and 3.5.2).

Nonaxisymmetric rotational instabilities in the protoneutron star

Recently it has been argued, based on numerical simulations of equilibrium neutron
star models or full core-collapse simulations, that differentially rotating protoneu-
tron stars can be subject to non-axisymmetric rotational instabilities at β values
(=̂T/|W |, the ratio of rotational to gravitational energy) far below the ones known
from the classical dynamical bar mode instability with a threshold of βdyn = 27%,
or the secular instability, which is triggered at βsec ∼ 14% [228], leading to strong,
narrow-band gravitational wave emission [51, 179, 206]. At present little is known
about the true nature of the so-called low T/|W | instability. Previous work has
so far failed to establish (for example) an analytical instability criterion, as was
pointed out by [174]. I address two relevant questions regarding the so-called ‘low
T/|W |’ instability in the context of stellar core collapse: i) What is the minimum
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β value required in self-consistent core-collapse simulation to trigger the onset of
the instability? This is important to know, since most stars which undergo a core
collapse rotate only slowly [92]; furthermore, it was pointed out by [62] that even
fast rotating protoneutron stars can never accrete enough angular momentum to
reach the βdyn value required for the onset of the classical bar mode instability. ii)
How does the inclusion of deleptonization in the postbounce phase quantitatively
alter the GW signal?
My studies indicate that protoneutron stars can become dynamically unstable to
rotational instabilities at T/|W | values as low as ∼ 2% at core bounce. Moreover,
they also show that the inclusion of deleptonization during the postbounce phase
is very important for the quantitative GW prediction, as it enhances the absolute
values of the gravitational wave trains up to a factor of ten with respect to a lepton-
conserving treatment (see sec. 3.5.3).

Effects of strong magnetic fields on the gravitational wave
signature in 3D

Weak magnetic fields do not notably influence the dynamical evolution of the core
and thus the GW emission. However, for strong initial poloidal magnetic fields
(& 1012G), the combined action of flux-freezing and field winding leads to conditions
where the ratio of magnetic field pressure to matter pressure reaches about unity
which leads to the onset of a jet-like supernova explosion. The collimated bipolar
out-stream of matter is then reflected in the emission of a type IV GW signal [170].
In contradiction to axisymmetric simulations, I find evidence that nonaxisymmetric
fluid modes can counteract or even suppress jet formation for models with strong
initial toroidal magnetic fields. The resulting GW signals consequently show pure
hydrodynamical features (see sec. 3.5.7).

Effects of multidimensional gravitational potentials on the
gravitational wave signature

Since a CCSN does not proceed in an entirely spherically symmetric way, direction-
dependent gradients of the gravitational potential are likely to emerge in 3D sim-
ulations. This in turn is reflected in non-uniform matter acceleration, leading to a
slightly modified temporal outcome of numerical simulations in which the dimen-
sionality of the gravitational potential is varied while keeping the other parameters
fixed.
I investigate the sensitivity of the GW signal upon the dimensionality of the grav-
itational potential. For this I compare rapidly rotating models which implement
gravity either by a spherically symmetric (1D), axisymmetric (2D) or 3D approach.
My results show that in the case of a 2D gravitational potential, the axisymmetric
acceleration of the fluid due to gravity leads to a somewhat more oblate configuration
of the protoneutron star around bounce and the early postbounce phase compared
to models which were run with a spherically symmetric approach for gravity. This
causes, as a direct consequence, considerably stronger GW emission at core bounce,
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with an enhancement of the maximum amplitude of ∼ 20%− 30% compared to the
reference models with 1D gravity. Moreover, significant differences also occur for
the GW signal from the low T/|W | instability. Because the axisymmetric treatment
of gravity can account better for spiral structures, this in turn leads to a faster
growth of unstable modes to more prominent values, causing an earlier onset of
GW emission and maximum amplitudes up to a factor of 2 larger compared to the
reference models with 1D gravity (see sec. 4.2).
In case of models which implement gravity in 3D, I confirm the trends found with
respect to GW emission in simulations which treat the gravitational potential in
axisymmetry. This is due to the fact that in my models, the dominant contributions
to the GW amplitudes are emitted at radii R < 30km, where the predominant
deformation of the PNS is of axisymmetric nature. Moreover, I also show that
the postbounce dynamics occuring in the outer layers (R & 200km) of models run
with 3D gravity deviates vastly from the ones run with a 1D or 2D potential. The
latter finding implies that both spherically symmetric and axisymmetric treatments
of gravity are too restrictive for a quantitative description of the overall postbounce
evolution of rapidly rotating CCSN models.
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0.4 Organisation of this Dissertation

0.4 Organisation of this Dissertation

In chaper 1, I present a general introduction to core-collapse supernova physics,
gravitational wave theroy and observation. In addition, I give a short overview on
previous work concerning gravitational wave signatures of core-collapse supernovae.
Finally, I outline a minimal set of requirements which should be included in 3D
simulations if one wants to raise a claim on the reasonable and indicative outcome
of the simulations and the predicted observables.

Chapter 2 is devoted to a comprehensive and detailed description of the various
components of the 3D magnetohydrodynamic codes FISH and ELEPHANT.

Chapter 3 contains an extensive discussion of the results obtained via some of today’s
most realistic calculations of non-rotating and rotating stellar core collapse in 3D.
These calculations employ a finite-temperature equation of state, magnetic fields,
an approximate treatment for deleptonization during the collapse, state-of-the-art
presupernova stellar models from stellar evolutionary calculations, and computa-
tionally efficient methods for the neutrino transport. I discuss estimates for the
gravitational wave signature.

In chapter 4, the influence of axisymmetric (2D) and 3D gravitational potentials on
the resulting GW signatures is investigated.

In chapter 5, I conclude and summarize the work presented in this dissertation.
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1 Introduction

Was einmal gedacht wurde, kann nicht mehr
zurückgenommen werden.

Friedrich Dürrenmatt, Die Physiker

1.1 General and historical notes on supernovae

Supernovae (SNe) owe their name to the astronomers Baade and Zwicky who in the
1930’s realized that these objects were much more luminous and by far rarer than
common novae [21, 22, 262]. Their high luminosities, comparable to the integrated
light of their host galaxies, broad spectral lines, and sudden occurrence in the sky
led them to conclude that SNe were very energetic explosions. The two physicists
even went a step further and hypothesized that ‘...the super-nova process represents
the transition of an ordinary star into a neutron star’ [22].
This is a very remarkable idea for its time – only a few years after James Chadwick
had actually discovered the neutron (1932) [52] – and still lies at the heart of modern
theoretical models for SNe that result from the gravitational collapse of the cores of
massive stars.

Theorists distinguish two fundamentally different SN types, regardless of their spec-
troscopic appearance: core-collapse and thermonuclear SNe.
Core-collapse supernovae (CCSNe hereafter) occur near star forming regions and
have never been observed in elliptical galaxies [90], which leads to the idea that their
progenitors are massive stars born with more than ∼ 8M�, and are relatively short-
lived (a massive star of e.g. 9M� persists for . 2.6×107 years in the overall dominant
hydrogen burning phase, while our sun’s lifespan is & 9.8×109 years [202,146]). Such
massive stars go through all the nuclear burning stages up to iron, beyond which
nuclear fusion would be endothermic (see, e.g., [47], with references therein). Hence,
at the end of a massive star’s thermonuclear life, it has an ‘onion-skin’ structure in
which an oxygen-neon-magnesium core or – for stars more massive than ∼ 10M� –
even an iron core is nested within shells comprised of elements of progressively lower
atomic weight at progressively lower densities and temperatures (see, e.g., [146],
with references therein). A typical nesting is Fe → Si → O → He → H (see figs.
1.3 and 1.4). When nuclear burning ceases in these massive stars the core becomes
unstable and gravitational collapse follows, leading to the formation of a neutron
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Figure 1.1: Astronomer’s supernova classification [70, 90]. The two main spectro-
scopic types are the type II class, which comprises SNe with prominent
hydrogen lines, whereas the type I class is defined by the absence of
hydrogen in their spectra. Note that theorists attach less importance
to the external aspects of SNe (spectra) than to their interiors (the ori-
gin of their explosion), and distinguish two fundamentally different SN
types regardless of their spectroscopic appearance: core-collapse and
thermonuclear SNe. In this sense, SNe Ib, Ic are thought to be phys-
ically much closer to SNe II than to SN Ia, even though SNe Ia, Ib,
and Ic all share the same prefix, owing to the lack of hydrogen in their
atmospheres.

star or black hole [214]. The standard paradigm is that most of the gravitational
binding energy released during the collapse is liberated in neutrinos (O(1053)erg)
and in the kinetic energy of the explosion of the envelope (O(1051)erg; 1051erg ≡ 1
Bethe [B]).
Thermonuclear supernovae (not a subject of this PhD thesis), on the other hand,
are about ten times less prevalent than CCSNe [47] and thought to arise from small
carbon-oxygen white dwarfs, the end products of low-mass stellar evolution. They
explode as they approach the Chandrasekhar mass (∼ 1.4M�) after a period of mass
accretion from a binary companion, leaving no compact remnant behind them [214].

Astronomers use observational, not theoretical criteria to type supernovae, accord-
ing to the presence or absence of certain elements in their atmospheres based on
spectroscopic observations (see, e.g., [70, 90] for detailed reviews, and fig. 1.1):

• Type Ia: They are characterized by a strong absorption attributed to Si.
Because all type Ia light curves (luminosity vs. time) are quite similar, they can
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1.1 General and historical notes on supernovae

be used as standard candles for measuring distances and probing the curvature
of the universe [186].

• Type Ib: These objects are distinguished by spectra with no evident Balmer
lines, weak or absent Si, and strong He.

• Type Ic: The members of this class are characterized by weak or absent hy-
drogen and helium lines, and no evident Si.

• Type II: These objects have prominent Balmer lines.

Note that the distinguishing feature of types Ib and Ic is the lack of conspicuous
hydrogen spectral lines. Their progenitors are believed to be massive stars that lose
most of their H-rich (and perhaps He-rich) envelopes via strong winds or transfer
to a binary companion via Roche overflow [90]. Moreover, neutron stars have been
associated with remnants of CCSNe via pulsar radio emission such as in the Crab
Nebula (see [142], with references therein). Finally, it is also of great importance
to point out that about a decade ago, signatures of very energetic type Ic SNe, so-
called ‘Hypernovae’ 1, were found for the first time in the afterglows of the ‘long-soft’
gamma-ray bursts for the first time, thus linking nature’s two grandest explosions
(see [254], with references therein).

In our galaxy, i.e. at distances . 10kpc, SNe are considered to be rare events.
Within the last millennium, mankind has witnessed only 6 supernovae in our galaxy
and one in the Large Magellanic cloud (see fig. 1.2). Among them are the recent SN
1987A (type II, located not in the Milky Way, but in the Large Magellanic cloud),
the SN in the Crab Nebula (type II), and the SNe recorded by Tycho Brahe (proba-
bly type Ia) and Johannes Keppler (type Ia). Even though observers estimate that
this number represents only ∼ 20% of the galactic SNe that have exploded within
the last 1000 years [47] (because the majority were shrouded from view by the dust
that pervades the Milky Way), our generation of (gravitational wave) astronomers
and astrophysicists would have to consider themselves very lucky if they could wit-
ness a SN explosion close by. Modern estimates of galactic SNe rates predict the
frequency of core collapse to be 1.9(±1.1) events per century [58]. This event rate
increases drastically only when we reach out to the Virgo galaxy cluster at a dis-
tance of ∼ 10− 20Mpc. Then, the event rate for CCSNe is estimated to be ∼ 5 per
year [49]. Hence, if one wants, for instance, to use gravitational wave astronomy
for regular observations of stellar core collapse with reasonable statistics, detector
facilities must one day be able to provide the sensitivities required to see as far as
the Virgo cluster (see sec. 1.3).

SNe were and are crucial for the dynamical and morphological development of the
Universe and thus indispensable for the existence of life on earth. The ‘oxygen’
ejected during a CCSN for example is the dominant source of the element in the

1Detailed studies of spectra and light curves suggest that hypernovae release about 1052 ergs in
kinetic energy, or ten times that of a typical supernova [254].
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Figure 1.2: Compilation of ‘historical’ supernovae that have exploded in our Galaxy
and the Large Magellanic cloud within the past millennium. Note that
these supernovae are only a fraction of the total, because the majority
were probably hidden from view by the dust that pervades the Milky
Way. Note also that SN 1987A exploded not in the Milky Way but in
the Large Magellanic cloud (one of its nearby satellite galaxies). As-
tronomical magnitudes are logarithmic and are given by the formula
MV = −2.5 log10(brightness) + constant. For comparison, the Moon is
near −12 magnitudes, Venus at peak is −4.4 magnitudes, and good eyes
can see down to about +6 magnitudes. Note that the compilation above
also contains RX J0852-4642, a supernova remnant whose very nearby
birth went unrecorded (perhaps because it resides in the southern hemi-
sphere), and Cas A, a supernova remnant that may have been recorded
only in ambiguous notes. Table taken from [47].

Universe [47]. So naturally, any attempt to address human origins must begin with
the understanding of CCSNe.

Finally, SNe were also of central historical and sociological importance. It is well-
known that Tycho’s and Kepler’s SNe 1572 and 1604 (see fig. 1.2) had tremendous
effects on the development of astronomy in Europe because they were used to argue
against the Aristotelian idea that the universe beyond the Moon and planets was
immutable [54].

1.2 The ‘standard’ paradigm of core-collapse
supernovae

1.2.1 Stellar evolution

A star’s life begins in dense parts of molecular clouds. There, in so-called star-
forming regions (see, e.g. [123], with references therein), the gas collapses gravita-
tionally via complicated interactions of turbulence, magnetic fields and radiation
into balls of plasma (see, e.g., [26], with references therein).
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1.2 The ‘standard’ paradigm of core-collapse supernovae

If the initial mass of such a collapsing object is greater than about & 0.072M�
2 [214],

the plasma the hydrogen ignition temperatures of ∼ 1.5 × 107K exceeds during
contraction, which is the first stage of a sequence of thermonuclear burning processes.
The onset of nuclear fusion leads relatively quickly to a hydrostatic equilibrium in
which energy released by the core exerts a radiation pressure balancing the weight
of the star’s overlying matter, preventing further gravitational collapse [146]. With
the exhaustion of core hydrogen, most stars proceed to shell hydrogen burning, and
then on to core helium burning. The ashes of the latter are predominantly carbon
and oxygen.
With the passing of each stage, the centre of the star grows hotter and more dense
(see, e.g., [255]). However, low mass (. 6− 8M�) stars do not proceed beyond this
stage. They are not massive enough to contract to sufficiently high densities and
temperatures for carbon burning. They end their lives as white dwarfs [91,214].
More massive stars ignite carbon burning which leaves oxygen, magnesium and
neon as ashes. In the case of stars with birth masses of ∼ 8 − 10M�, the core
temperatures are too low to ignite further nuclear burning. Subsequently, they either
lose their envelopes and become O/Ne/Mg white dwarfs (possible progenitors of
accretion-induced collapse [57,15]), or undergo a collapse of their low-mass O/Ne/Mg
cores [115,74].
For stars with masses from ∼ 10M� to 60-100M� [256] (the upper limit depends on
the heavy-element/metallicity fraction at birth), the ashes of carbon burning reach
temperatures sufficient to ignite, and they burn predominantly to silicon, sulphur,
calcium and argon. Finally, these products ignite to produce iron-group elements.
Eventually, this core of iron-group nuclei is embedded in an onion skin structure, as
already mentioned in the previous sec. 1.1 and shown in figs. 1.3 and 1.4.
Note that after helium burning, the evolution is greatly accelerated by neutrino
losses (see fig. 1.3). For the temperatures approaching a billion degrees or more,
a large thermal population of electrons and positrons is maintained. When the
electrons meet and annihilate with positrons, a neutrino-antineutrino pair is occa-
sionally produced. These neutrinos escape the star with ease under the prevailing
densities and force the burning to go faster to replenish the loss. Although the fu-
sion of hydrogen and helium takes millions of years, the last burning stage – silicon
burning – lasts only about two weeks [256].
Because the nuclear binding energy per nucleon has its maximum value for the iron
group (see, e.g., [35]), no further energy can be released by nuclear fusion.

1.2.2 Core collapse and core bounce

When the iron core is formed in the centre of the massive star, it grows steadily by
the ashes of the silicon shell burning. Even though the central part of the massive
star is hot, the high densities and the ordered arrangement of its constituent nucleons
into nuclei results in a low specific entropy. Therefore, at this low entropy the core’s
pressure support against gravity is derived mostly (& 90%; see [29]) from relativistic,

2Objects with a mass . 0.072M� cannot fuse H to He and are called ‘Brown dwarfs’. For a
thorough review on Brown dwarfs, see [44], with references therein.
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Figure 1.3: Schematic structure of a 15M� precollapse star, taken from [257]. The
upper panel displays the temperature and the density profile. More-
over, Ltot, εν and εnuc stand for total energy loss/luminosity and the
corresponding contributions from the neutrino emission and the energy
generation in nuclear reactions. The lower panel shows the composition
profile, where the iron core is surrounded by shells of lighter elements.
The size of the iron core is of the order 109 cm, while the stellar radius
is larger than 1013 cm.

degenerate electrons [214],

Pe ∝ Y 4/3
e ρΓ , (1.1)
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1.2 The ‘standard’ paradigm of core-collapse supernovae

where Ye is the number of electrons per baryon (electron fraction), ρ is the density,
and Γ is the adiabatic index which assumes a value of 4/3 for the relativistic de-
generacy limit [214]. For precollapse iron cores, typical values for Ye are ∼ 0.42 at
the centre and ∼ 0.48 at the outer edge [258]. Once the iron core is pushed over
the Chandrasekhar mass limit, which is the maximum mass of a non-rotating fluid
body that can be held in hydrostatic equilibrium by electron-degeneracy pressure in
Newtonian gravity (see [29], with references therein),

MCh ≈ 5.8 Y 2
e

[
1 +

(
se
πYe

)2
]
M� , (1.2)

electron degeneracy pressure can no longer stabilize the core and it collapses. Note
that Ye and se in eq. 1.2 are average values of electron fraction and electronic entropy
per baryon over the mass of the Fe core. Putting typical values (Ye = 0.45, se = 0.52)
in a 15M� into eq. 1.2, one gets a Chandrasekhar mass of ∼ 1.34M�. The onset
of infall is accelerated by two additional processes that rob the core’s energy and
pressure support: a) electron capture and b) photodissociation (see, e.g., [214]).
Under the prevailing densities and temperatures, electron capture occurs on heavy
Fe group nuclei and free protons via

56Fe + e− → 56Mn + νe ,

p+ e− → n+ νe , (1.3)

because the Fermi energy of electrons [214,119],

µe = 11.1MeV

(
ρYe

1010gcm−3

)1/3

(1.4)

exceeds the mass difference between the nuclei, namely mMn − mFe = 3.7MeV.
Electron captures reduce Ye and consequently the pressure support. Note that the
electron-type neutrinos escape freely from the core before the densities reach ∼ 1012

gcm−3, as will be outlined later below. Furthermore, the endothermic photodissoci-
ation of iron nuclei [214],

γ +56
26 Fe→ 13α+ 4n− 124.4MeV , (1.5)

occurs for temperatures T & 5 × 109K, which leads to the reduction of the addi-
tional thermal pressure support. Moreover, the internal energy produced by the core
contraction is exhausted by this reaction.
Note that after the onset of the gravitational collapse, the core proceeds to contract
under the pull of the self-gravitating force, unnoticed by the rest of the outer part
of the star, on a free-fall time-scale which is of the order τdyn ∼ 1/ (Gρ)1/2 (with G
and ρ being the gravitational constant and the average density). This is because
the density decreases steeply from the core to the surrounding shells. Hence the
dynamical timescale of the core is much shorter than the one of the envelope (cf.
the upper panel of fig. 1.3). As a result, the dynamics of the iron core is hardly
or not, affected by the envelope. Hence, the outer shells are not moved. They are
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oblivious to their impending fate until the supernova shock wave generated in the
core hits and ejects them.
An important change in the physics of the collapse occurs as the densities reach
∼ 1012gcm−3. At this point, the scattering opacities become so large that the
mean free path of the neutrinos is reduced to values much smaller than the core’s
size. Thus, the diffusion timescale of the neutrinos becomes large compared to the
dynamical timescale of the collapse [29]. Note that during collapse, only electron
neutrinos are produced copiously by electron captures. Therefore, the dominant
opacity source for the neutrinos during the infall phase is coherent scattering,

νe + A→ νe + A , (1.6)

by which the cross section becomes roughly A2 times the cross section of each scatter-
ing of nucleons (νe+n/p→ νe+n/p) [37]. The trapping of neutrinos also means that
β-equilibrium prevails, keeping the lepton fraction (Yl = Ye+Yνe) fixed [29,214,150].
After β-equilibrium is achieved, the collapse proceeds adiabatically. When neutrinos
are trapped and become degenerate, the average neutrino energy increases and the
core becomes optically thicker because the cross section of the coherent scattering
increases as σcoh ∝ E2

ν with the electron neutrino energy. Note as a side remark that
since low-energy neutrinos can escape easily from the core, most neutrinos emitted
during the collapse phase, before the trapping is active, have relatively low energy
(. 30 MeV; see [119], with references therein).
During the collapse, the core forms two parts: the (homologously collapsing) inner
core and the (subsonically infalling) outer core. Matter inside the sonic point – the
point in the star where the sound speed equals the magnitude of the infall velocity
– stays in communication and collapses homologously (v ∝ r; see [85]). On the
other hand, the material outside the sonic point falls in quasi-free fall. Analytical
studies by Goldreich & Weber [85] have shown that typical inner core masses scale
roughly as Mic ∝ Y 2

e . The entire collapse continues on a time scale of a few 100 ms
until nuclear densities, several ×1014gcm−3 [29], are reached. Now, strong repulsive
nuclear forces lead to an immediate stiffening of the nuclear equation of state (EoS),
which halts the collapse of the inner core on a timescale of a millisecond. The abrupt
halt of the collapse of the inner core and its rebound, the so-called ‘core bounce’,
generates a hydrodynamical shock wave as the core’s outer half continues to crash
down.
During the collapse of the iron core, a huge amount of gravitational binding energy,
the ultimate energy source of CCSNe, is released when contracting from a radius
of ∼ 1500km and central densities below 1010gcm−3 to a radius of ∼ 10km and
densities above that in atomic nuclei (see fig. 1.4). To first order, the gravitational
binding energy of the remnant neutron star is given by

|W | ∼ 3

5

GM2
NS

R
∼ 2− 3× 1053erg , Ekin � Egrav (1.7)

where MNS is the neutron star mass and RNS is its radius. Typical values are
∼ 1.4M�, ∼ 10km and |W | ∼ 2 − 3 × 1053erg, respectively. 99% of this energy is
liberated in form of neutrinos throughout the SN evolution and the late-time cooling
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1.2 The ‘standard’ paradigm of core-collapse supernovae

of the PNS [29], as I will outline below. It is a huge amount of energy in contrast
to the kinetic energy of observed SNe (Ekin ∼ 1051erg [29]).

1.2.3 Supernova dynamics & mechanism(s)

The core bounce with the formation of the shock wave is the starting point of a
sequence of events that ultimately trigger a supernova explosion.

The shock wave which propagates into the outer core quickly loses its initial strength
to the dissociation of nuclei into free nucleons at a cost of ∼ 8.8MeV per nucleon [29].
At the same time, this process enables copious electron captures on the emerging
free protons (e−+p→ n+ve) just behind the shock. Before the shock arrives at the
neutrino sphere, electron neutrinos cannot escape on a hydrodynamical timescale,
because the diffusion timescale is much longer than that for the shock propagation.
However, as the shock wave moves through the neutrino sphere, the previously
trapped electron neutrinos decouple from matter and begin to stream freely [232].
This sudden liberation of electron neutrinos is called the neutronization burst, where
the peak luminosities can easily exceed 1053ergs−1 for the duration of several ms.
Hence, the combined action of dissociation and neutrino emission causes the shock
to stall within ∼ 10− 20ms after core bounce as ‘standing accretion shock’ at radii
around 100 − 200km [138, 252] due to the large energy loss caused by dissociation
and neutrino emission. Thus, all today’s state-of-the art models agree that this
so-called ‘prompt’ shock is unable 3 to trigger supernova explosions (see [252], with
references therein).

Meanwhile, after the core bounce, a compact remnant begins to form at the centre
of the collapsing star, quickly growing through the infalling stellar material. The
nascent remnant – the protoneutron-star (PNS) – will evolve to a neutron star [167]
or may eventually collapse to a black hole, depending for example on whether the
progenitor star had a mass below or above ∼ 25M� [91].

By the time the shock stalls, a hot and dense PNS has formed with an average
lepton number of Yl . 0.3. It contracts slowly while deleptonizing and cooling
as neutrinos of all flavours – µ and τ neutrinos and antineutrinos are created by
thermal processes [37] – diffuse through the optically thick regime to less dense,
more transparent regions. These neutrinos are emitted on a timescale of the order
of ∼ O(1) − O(10) s, which is the timescale of neutrino diffusion (see fig. 1.4,
and [106], with references therein). Note that convective processes may enhance
this neutrino cooling and boost the PNS luminosity (see, e.g. [56,41]). After several
tens of seconds, the compact remnant becomes transparent to neutrinos and the
neutrino luminosity drops significantly [42].

Furthermore, there is accretion-driven neutrino emission from the outer layers of the
PNS onto which material is accreted through the stalled shock, which is active on

3Note that it is only for very special combinations of physical parameters such as the stellar
model of the progenitor or the compressibility of nuclear matter, resulting in extraordinarily
small cores, that the so-called prompt explosion might work (see, e.g., [19, 95]), in which the
shock wave at core bounce propagates through the outer core to produce explosions without
the shock-stall.
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Figure 1.4: The sequence of events in the collapse of a stellar core to a nascent neu-
tron star. It begins with a massive star with an ‘onion-skin’ structure,
and goes through core implosion, to core bounce and shock wave forma-
tion, to the protoneutron-star stage before explosion, and finally to the
cooling and isolated-neutron-star stage after explosion [47]. The black,
straight arrows depict mass motion and the curved red arrows depict es-
caping neutrinos. ‘B.E.’ denotes ‘binding energy’, and ‘?’ stands for the
(proto) neutron star structure and composition, which is uncertain [167].

the timescale of the order of O(100) ms until an explosion sets in, i.e. certain mass
shells move outwards [138].

All this neutrino emission radiates, as stated previously, about ∼ 99% of the released
binding energy and is actually the dominant output of the event which is presum-
ably a gravity-powered neutrino explosion. Note that a small number of neutrinos
were already detected from SN 1987A and thus confirm the very basic picture of
stellar core collapse [96,97].
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1.2 The ‘standard’ paradigm of core-collapse supernovae

The question now arises how this huge reservoir of energy emitted by neutrinos can
be tapped in order to ‘revive’ the stalled shock and turn the collapse of the rest of the
star into an explosion? This part of the supernova problem has kept astrophysicists
busy for more than 40 years (see, e.g., [252] and [106] for relatively recent reviews).
Four SNe mechanisms are at present being discussed in literature: a) the so-called
delayed, neutrino-driven explosion mechanism, b) the magneto-rotational mecha-
nism, c) the acoustic mechanism, and d) the QCD phase transition mechanism.

a) The delayed, neutrino-driven explosion mechanism has the longest pedigree. It
was already considered theoretically in the 1960’s by Colgate & White [55], and
then numerically ‘discovered’ by Bethe & Wilson [30,250] in the 1980’s. It is based
on the idea that neutrinos streaming off the neutrinosphere of the PNS can revive
the stalled shock wave by depositing some of their energy in the layers between
the nascent neutron star and the stalled shock front by charge-current νe and νe
captures on free nucleons [30,250]:

νe + n → e− + p (1.8)

νe + p → e+ + n . (1.9)

The neutrino heating increases the pressure behind the shock and the heated layers
begin to expand, creating between the shock front and the neutron star surface
a region of low density but rather high temperatures, the so-called ‘hot bubble’.
The persistent energy input by neutrinos keeps the pressure high in this region and
drives the shock outwards again, eventually leading to an SN explosion. This may
take a few 100 ms and requires that during this time a small percentage of the
energy radiated in electron flavour neutrinos be converted into the thermal energy
of nucleons, leptons, and photons. There is also a threshold of energy that must
be deposited in a short time to overcome the ‘ram’ pressure of the infalling matter,
which is rapidly accreting [29]. The success of the delayed neutrino mechanism
turned out to be sensitive to a delicate competition of neutrino cooling between the
neutrinosphere and the so-called ‘gain radius’ on the one hand, and the neutrino
heating between the gain radius and the shock on the other hand (see [106], with
references therein). The gain radius is defined as the radial position where the
neutrino heating rate per nucleon and the neutrino cooling rate per nucleon become
equal.
However, spherically symmetric state-of-the-art simulations agree that no delayed
explosions can be obtained with this mechanism in the general case [138,134]. Only
for stars with a birth mass of ∼ 8 − 10M� – which instead of an iron core develop
a O/Ne/Mg core with a thin carbon shell, surrounded by an extremely dilute and
only loosely-bound He-shell – was neutrino heating found to power explosions in
one-dimensional simulations (e.g., [115,74]).
Recent multidimensional simulations suggest that the neutrino heating mechanism
might work in combination with hydrodynamical instabilities, namely convection
(see, e.g., [94, 107]) and the standing-accretion-shock instability (SASI; see e.g.,
[40, 104, 148, 164] and [203], with references therein). Both hydrodynamic instabili-

11



1 Introduction

ties combined stretch the advection time of matter accreted through the neutrino-
heating layer and thus enhance the neutrino energy deposition in support of the
neutrino-driven explosion mechanism [203]. Recent, computationally demanding,
axisymmetric (2D) simulations by the Garching group for example produced weak
explosions for 11.2M� and 15M� progenitor models [41,148] in this fashion.

SASI/convection-aided neutrino driven explosions are in a sense appealing because
they bear the potential to explain a variety of physical properties related to the rem-
nants of stellar core collapse. Since they produce highly anisotropic explosions, the
SASI can lead to a large recoil of the newly-born neutron star in the direction oppo-
site to the stronger mass ejection, producing a neutron star kick up to ∼ 1000kms−1

(see, e.g., [204]), which is in agreement with the measured proper motions of young
pulsars. Three-dimensional simulations have revealed the possibility of an unstable
l = 1,m = 1 spiral SASI mode that can create a strong rotational flow in the vicinity
of the accreting neutron star, thus providing a possible mechanism for the generation
of neutron star spin [33]. Moreover, the globally asymmetric onset of the explosion
with sizeable initial shock deformation triggers strong hydrodynamical instabilities
at the composition interfaces of the progenitor when the shock propagates outwards
to the stellar surface. This leads to large-scale element mixing in the exploding star,
as observed in context with SN 1987A (see, e.g., [89], with references therein).

However, even though different research groups agree on the presence, necessity
and functionality of the hydrodynamical instabilities mentioned, the 2D results ob-
tained by different groups, which apply similar input physics, but different numer-
ical methods, do not converge for the time being (cf. [148] with [45]) 4. In addi-
tion, note that both convection as well as the SASI are genuine three-dimensional
phenomena. Hence, fully self-consistent 3D calculations with sophisticated energy-
dependent neutrino transport are indispensable for judging about the viability of
the neutrino heating mechanism [106], but are still pending.

b) The magneto-rotational mechanism probably only works in the case of rapid rota-
tion. Combined action of flux-freezing, field winding [151] and also of the magneto-
rotational instability MRI [24] during collapse and the postbounce phase generally
may lead to the growth of magnetic fields by many orders of magnitude to values
where the magnetic pressure becomes comparable to matter pressure. This, in turn,
triggers a collimated, bipolar jet-explosion (see, e.g., [43], and references therein)
by converting magnetic energy into kinetic energy [131, 120, 43, 156, 227, 208]. Al-
ternatively, the magnetic fields could also convert the free energy of the differential
rotation of the forming compact remnant to kinetic energy of the SN ejecta by
viscous heating behind the shock in addition to the energy input there by neutri-
nos [231]. The magneto-rotational mechanism may also be relevant in the context
of long-soft gamma ray bursts (see, e.g., [254]).

c) The acoustic mechanism of Burrows at al. [45,46] requires the excitation of strong

4Note that contrary to the multi-D case, spherically symmetric state-of-the-art codes yield con-
verging results, as was shown, for example, in a comparative study with the Vertex and
Agile-Boltztran codes [134].
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l = 1 g-mode oscillations by turbulence and SASI-modulated accretion downstreams.
The large-amplitude core motions then create powerful sonic activity in the neutron
star surroundings by which energy is transported to the shock, driving the explosion
at relatively late times (t & 1s after bounce). The source of this energy is the gravi-
tational binding energy of the accreted gas, converted to sound by the rapidly ringing
neutron star, which thus acts like a transducer. Even though this mechanism ap-
pears to be sufficiently robust to blow up even the most massive progenitor stars, it
remains the most controversial mechanism. It has so far not been confirmed by other
groups, and there exist even strong ‘analytical’ arguments against its existence [245].

d) The transition from baryonic to quark matter, a so-called QCD phase transition,
may power a secondary shock wave which triggers a successful hydrodynamical ex-
plosion, as reported by [225,81], and recently also [166] and [198]. The beauty of this
mechanism is that it is able to explode stars more massive than ∼ 8 − 10M� even
in a spherically symmetric setup. The main drawback is that the way the explosion
is triggered relies on a rather phenomenological-, and not self-consistent description
of quark matter (see [198], with references therein).

Up to now, there is a consensus among theorists that there is no agreement on the
CCSN explosion mechanism. The CCSN mechanism – if there is a unique one –
may eventually involve a combination of all the outlined mechanisms, as stated e.g.
in [182]. Hence, a more decisive answer with respect to the theoretically operating
explosion mechanism may only be given once future 3D numerical models can incor-
porate all the relevant input physics known at present, i.e. full Boltzmann neutrino
radiation transport, magnetic fields, general relativity, a physically well-motivated
way of describing nuclear matter at ‘high’ densities, and multi-dimensional progen-
itor star models that consistently include rotation and magnetic fields.

1.3 Gravitational waves

Einstein’s theory of General Relativity (GR) [64,63] teaches us that space and time
are not separate entities, but join as ‘spacetime’. The field equations of GR connect
matter dynamics to the curvature of spacetime and describe gravity as the curvature
of a four-dimensional spacetime (one temporal and three spatial dimensions) [126].
In the framework of relativity, gravity must be causal: any change to a gravitating
source must be communicated to distant observers at a speed no faster than the
speed of light c. This leads immediately to the idea that there must exist some notion
of ‘gravitational radiation’ [76]. The first calculation of gravitational waves (GWs)
is due to Einstein himself [65]. His final result stands today as the leading-order
quadrupole formula for gravitational wave emission. This formula plays a role in
the theory of gravity analogous to the dipole formula for electromagnetic radiation,
showing that GWs arise from accelerated masses [157], exactly as electromagnetic
waves arise from accelerated charges [105]. The quadrupole formula implies that
GWs are very difficult to produce in the fabric of space-time [235] – very large
masses and relativistic speeds are needed. This follows from the weakness of the
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gravitational interaction and coupling to matter compared to the other forces of the
standard model of physics [246]. The only objects which are possibly massive and
relativistic enough to emit detectable GWs are of astrophysical origin, as outlined
in the review of Sathyaprakash and Schutz [39].

Due to the weakness of GWs at astronomical distances so far no one has found direct
evidence of their existence. Nevertheless, Russell Hulse and Joseph Taylor found
indirectly indications of their reality by observing the inspiral of the binary system
PSR 1913+16, which was discovered in 1974 [101]. Several decades of observation
have shown that the orbit is decaying and that the decay rate matches with very high
precision GR’s prediction for such decay due to loss of orbital energy and angular
momentum due to GWs. For this achievement, Russell Hulse and Joseph Taylor
were awarded the Nobel Prize in Physics in 1993.

However, even though their studies proved beyond a reasonable doubt that GWs
exist, it still remains an open task to detect GWs directly and – even more important
– exploit them as a tool for astronomy. Today, the understanding of the cosmos
depends more or less entirely on the observations of electromagnetic waves, cosmic
rays and marginally on neutrinos [235]. The information that GWs could carry
to us would be almost orthogonal to that carried by electromagnetic waves [39].
While gravitational radiation arises from bulk matter of dense concentrations of
mass and energy, ratio waves find their origin in the acceleration of individual electric
charges, showing the thermodynamic state of optically thin concentrations of matter.
While electromagnetic waves show us the surface of their astrophysical source (e.g.
atmospheres of stars, accretion disks, clouds of interstellar gas), GWs could provide
access to high density regimes such as the innermost, central part of a CCSN [174,
119], which is hidden behind a dense layer of stellar gas and whose temperatures and
densities exceed the range that is easily accessible by terrestrial experiments [137].

Today, technology has brought us to the point where detectors are beginning to set
interesting upper limits on the GWs of some sources (see, e.g., [14,23]), and there is
reasonable hope that the first direct detection will be made in the not too far future.
In this section, I will outline and review the linearized GR. Moreover, I will summa-
rize some basic physical properties of gravitational radiation, GW generation in the
weak-field, slow-motion limit by essentially-Newtonian matter sources. Moreover,
I will touch on the methods for detecting GWs (see, e.g., [14, 23]). The discussion
below is based on my Project- and Master Thesis ( [205], with references therein),
where I summarized the subject in great detail. In addition, I have used the book
by Misner, Thorne & Wheeler [157], Thorne’s review, published in [233], the review
by Flanagan and Hughes [76] and Ott’s PhD Thesis [182].
Throughout this section, I use cgs units, carrying along all factors c and G. The
signature of the metric gµν is, as in [157], chosen to be (−1, 1, 1, 1). Greek indices
run from 0 to 3, Latin ones from 1 to 3, and the Einstein summation convention is
followed. Partial derivatives of any tensor Tα1...αn with respect to any coordinate xα

are denoted by Tα1...αn ,α
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1.3 Gravitational waves

1.3.1 The linearized Einstein field equations

The Einstein equations express the non-linear relation between spacetime curvature
and the energy-matter fields and are given by

Gµν = Rµν ≡
1

2
gµνR︸ ︷︷ ︸

‘Geometry′

=
8πG

c4
Tµν︸ ︷︷ ︸

‘Energy′

, (1.10)

where all tensors are symmetric. Gµν is the Einstein tensor, Tµν is the stress-
energy tensor describing the matter and electromagnetic components of spacetime.
R = Rρ

ρ is the Ricci scalar, and Rµν is the Ricci tensor, obtained via the contraction
Rµν = Rρ

µρν of the Riemann curvature tensor which is given by

Rσ
µρν = Γρµν,ρ − Γρµρ,ν + ΓστρΓ

τ
µν − ΓστνΓ

τ
µρ . (1.11)

The Christoffel symbols themselves are defined in terms of the metric:

Γσµρ =
1

2
gστ (gρτ,µ + gµτ,ρ − gµρ,τ ) . (1.12)

Note that eqs. 1.10-1.12 are covariant, which means that they are independent of the
choice of coordinates. In GR, all coordinate systems and reference frames are treated
as equivalent. Thus, there is no such thing as global inertial frames known in New-
tonian theory. Despite the superficial simplicity of eq 1.10, the Einstein equations
form a complicated set of 10 coupled non-linear partial differential equations which
have closed analytical solutions only for the most idealized physical settings such as
the static spherically, or the stationary axisymmetric situation: the Schwarzschild
or the Kerr solutions. In most astrophysical scenarios it is thus necessary to solve
the Einstein equations numerically in ways outlined for example in the review by
Baumgarte and Shapiro [28].
However, in regions of spacetime where the curvature is only small, it is possible
to simplify the Einstein equations by a so-called linearization. In linearized gravity,
the metric gµν may be treated as deviating only slightly from the flat Minkowski
metric ηµν = diag(−1, 1, 1, 1):

gµν = ηµν + hµν , (1.13)

demanding that
‖hµν‖ � 1 . (1.14)

Here hµν is the metric perturbation. Note that the condition ‖hµν‖ � 1 requires
both the gravitational field to be weak and the coordinate system to be approxi-
mately Cartesian. In the linearized theory of gravity, we only keep terms linear in
hµν . Higher order terms are discarded. As a consequence, indices are raised and
lowered by the flat metric ηµν . Note that since we use ηµν to raise and lower indices,
spatial indices can be written either in the ‘up’ position or the ‘down’ position with-
out changing the value of a quantity: fa = fa. However, raising or lowering a time
index switches sign: f t = −ft. The metric perturbation hµν thus transforms under
Lorentz transformations, but not under general coordinate transformations.
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In order to find the Einstein equations in the linear limit, we have to compute all the
quantities which are needed to describe linearized gravity by dropping all non-linear
terms in hµν . The Christoffel coefficients are now given by

Γνµρ =
1

2

(
hνµ,ρ + hνρ,µ − h ,ν

µρ

)
. (1.15)

Having this, the Riemann curvature tensor,

Rµναβ =
1

2
(hµβ,να + hµα,νβ − hµα,νβ − hνβ,µα) , (1.16)

and subsequently, also the Ricci tensor,

Rµν =
1

2

(
hαµ,να + h ,α

να,µ −�hµν − h,µν
)
, (1.17)

can be constructed in linearized theory, where h = hαα is the trace of the perturba-
tion, and � = ∇2 − ∂2

t is the d’Alembert wave operator. Contracting once more,
the Ricci scalar is given by

R =
(
hρ ,µ
µ ,ρ −�h

)
. (1.18)

Building now the Einstein tensor from above’s linearized expressions results in a
unwieldy expression:

Gµν =
1

2

(
hαµ,να + h ,α

να,µ −�hµν − h,µν − ηµνh
ρ ,σ
σ ,ρ + ηµν�h

)
(1.19)

One can clean-up the latter eq. 1.19 by two measures. First, the trace-reversed
tensor h is introduced:

hµν = hµν −
1

2
ηµνh , (1.20)

for which h
α

α = −h holds. Moreover, if one assumes secondly the Lorentz gauge
conditions

h
µν

,ν = 0 , (1.21)

and applies it in combination with eq. 1.20 to the Einstein tensor, we find that all
terms but one in eq. 1.19 vanish. The linearized Einstein equations then reduce to

Gµν = �hµν = −16πG

c4
Tµν . (1.22)

1.3.2 Physical properties of gravitational radiation

Wave solutions in vacuum spacetimes, GW polarizations and the
transverse-traceless (TT) gauge

In vacuum (Tµν = 0 everywhere), eq. 1.22 reduces to the simple wave equation

�h
µν

= 0 , (1.23)
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1.3 Gravitational waves

and admits plane wave solutions:

h
µν

= Aµν exp(ikλk
λ) , (1.24)

with the wave vector kλ = (ω/c,~k). Inserting eq. 1.24 into 1.23 results in kλk
λ = 0,

implying that GWs travel along the null geodesics, i.e. at the speed of light c.
Due to symmetry properties of h

µν
, the polarization tensor Aµν has initially ten

independent components. Enforcing the Lorentz gauge reduces this to six. A useful
specialization of the Lorentz gauge is the so-called transverse-traceless (TT) gauge,
which is obtained by choosing a special generator for the gauge transformation (ξµ;
see [76]) with �ξµ = 0. This reduces the wave field to two independent physical
degrees of freedom which can be identified as polarizations:

Aµνkλ = 0 , Aλλ = 0 , AµλU
λ = 0 , (1.25)

with an arbitrary, light-like (UνU
ν = 0) unit 4-vector U ν . From the TT gauge

conditions it follows that the metric perturbation is purely spatial

hTTµ0 = hTT00 = 0 , hTTij,j = 0 , (1.26)

and traceless
h = hii = 0 . (1.27)

Note that since h
TT

µν is traceless, there is no distinction between h
TT

µν and hTTµν , i.e.

h
TT

µν = hTTµν . In the transverse plane, the dimensionless GW amplitude can now sim-
ply be represented by a two-dimensional matrix with only two independent elements
h+ and h×:

hTTab =

(
h+ h×
h× −h+

)
. (1.28)

If the coordinate unit basis vectors in this particular plane are êx and êy, then we
can define the basis tensors as

e+ = êx ⊗ êx − êy ⊗ êy (1.29)

e× = êx ⊗ êx + êy ⊗ êy , (1.30)

where ⊗ is the outer product.
The dimensionless gravitational field tensor hTTij of a GW propagating in the positive
z-axis can then be written as a linear combination of the two independent, transverse-
traceless unit tensors that correspond to the two possible polarization modes of
GWs:

hTTij = h+e+ + h×e× . (1.31)

If the coordinates in the transverse plane are rotated by an angle of Ψ, one obtains
new amplitudes h′+ and h′× given by

h′+ = cos 2Ψh+ + sin 2Ψh× (1.32)

h′× = − sin 2Ψh+ + cos 2Ψh× . (1.33)

This shows that a rotation by π/4 changes one polarization into the other (see fig.
1.5), implying that gravitational radiation possesses helicity 2 [157].
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Figure 1.5: The lines of force for a purely + GW (left), and for a purely × GW
(right). Note that the names are derived from the shape of the equivalent
force fields that they produce. Figure taken from [16].

1.3.3 The weak-field, slow-motion limit

Gravitational waves are generated by the matter source term on the right hand side
of the linearized Einstein equations (see eq. 1.22). The solution to this inhomo-
geneous wave equation is found in analogy to electromagnetic theory [105] via the
convolution of the inhomogeneity in eq. 1.22 with a time-retarded Green’s function
G(t, ~x, t′, ~x′). The Green’s function associated with the wave operator � is [105]

G(t, ~x, t′, ~x′) = −δ(t
′ − |~x− ~x′|/c)
4π|~x− ~x′|

, (1.34)

where t − |~x − ~x′|/c is the retarded time, emphasizing the causal nature of GWs.
It takes into account the lag associated with the propagation of information from
events at ~x to position ~x′. Applying eq. 1.34 to eq. 1.22, the solution is given by

hTTij (t, ~x) =

[
4G

c4

∫
d3x′

Tij(t− |~x− ~x′|/c, ~x′)
|~x− ~x′|

]TT
. (1.35)

Note that, as already mentioned, the radiative (physical) degrees of freedom are
contained entirely in the spatial part of the metric, projected transverse and trace-
less.

The latter quantity (eq. 1.35) can now be evaluated at large distances from the
source. Under this assumption, we may expand |~x − ~x′|−1 ≈ r−1, where r is the
distance from the observer to the source. Moreover, the source will conform to the
weak-field limit (GM

c2R
� 1, withM,R being the mass and extent of the source) and to

the slow-motion approximation (|~v| � c, where ~v is the velocity of internal motions
of the source). In these limits and after some mathematical manipulations, this
expansion (in powers of ~x

~x′
) yields in lowest order the so-called quadrupole formula

hTTij (t, ~x) =
2G

c4r

[
Ïij

(
t− |~x|

c

)]TT
, (1.36)
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where Ïij is the second time derivative of the mass quadrupole moment, defined as

Iij :=

∫
d3x′ρ(t, ~x′)x′ix

′
j . (1.37)

In order to match the right hand side of eq. 1.37 with the transverse-traceless gauge
conditions, we first have to subtract the trace from Iij:

tij = Iij −
1

3
δijI , I := Iii , (1.38)

which is the so-called reduced mass quadrupole tensor. Moreover, to complete the
derivation, we must project out the non-TT pieces of the right-hand side of eq. 1.36.
Having the projection tensor

Pijkl = PikPjl −
1

2
PijPkl , where Pij = δij −

xixj
|~x|2

, (1.39)

we can write out the standard quadrupole formula (SQF):

hTTij (t, ~x) =
2G

c4r
Pijklẗ

TT
kl (t− |~x|

c
) . (1.40)

Note that higher-order terms are strongly suppressed by powers of 1/c and thus not
considered anywhere in this thesis (see, e.g., [234,32,158]).
It should be clear from the TT projection operation that the emitted radiation is
not isotropic: it will be stronger in some directions than others. It should also be
clear from this that spherically-symmetric motions do not emit gravitational radia-
tion; when the trace is removed, nothing remains. This fact is independent of the
quadrupole approximation and known as Birkhoff’s theorem, which states that any
spherically symmetric solution of the vacuum field equations must be stationary
and asymptotically flat. This means that the exterior solution must be given by
the Schwarzschild metric [157]; as direct consequence, no monopolar gravitational
radiation can exist. At this point, it is wort mentioning that similarly to electrody-
namics, there are in principle two sets of moments in the GW expansion: moments
of mass distribution ρ and moments of mass current distribution ρv [234], where v is
the velocity (cf. electrodynamics, where electric and magnetic moments exist [105]).
The mass-dipole moment as well as the mass-current dipole moment (the subse-
quent expansion terms next to the monopole term) will not produce any kind of
gravitational radiation due to conservation of momentum and angular momentum
in an isolated system. Thus, gravitational radiation of a leading order must be of a
quadrupolar nature [157].
Note moreover that the prefactor G/c4 in eq. 1.40 turns out to be O(10−50) – a
very small number. Hence, in order to generate interesting amounts of GWs, the
quadrupole moment’s variation must be enormous. The only interesting sources
of GWs will be those which have very large masses undergoing extremely rapid
variation; even in this case, the typical GW strains we expect from such sources
are tiny [39]. This reflects the fact that gravity is the weakest of the fundamental
interactions [246].
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Finally, there are several issues related to the SQF (eq. 1.40) and its use, which
need to be mentioned:
a) The quadrupole formalism to extract the gravitational radiation is not gauge
invariant and only valid in the Newtonian slow-motion limit. However, it was shown
by [219] that the method above seems to be sufficiently accurate compared to more
elaborate techniques, as it preserves phase while being off in amplitude by ∼ 10%
in neutron star pulsations.
b) GWs extracted by the SQF live only in the distant wave zone [157], that is, they
are fully formed and linear. From electrodynamics [105] it is known that waves that
are very close to their source do not yet have their asymptotic shape. The same is
true for GWs. Moreover, since GR is a non-linear theory, GWs also interact strongly
with curvature near their source. Note that there exist elaborate techniques such as
post-Newtonian expansions which in principle allow for an extension of the SQF to
regions of space-time where the pure weak-field slow-motion approximation breaks
down [157,76]. However, this is beyond the scope of my thesis.
c) The SQF contains second time derivatives of the mass quadrupole tensor which
are numerically cumbersome, related to numerical high-frequency noise and the r2

momentum-arm, which make the performance of a direct numerical evaluation of
eq. 1.40 poor, as discussed in [71]. Therefore, in my simulations I use alternative
expressions of [32] and [71] where one or both time derivatives of the quadrupole
moment are transformed into hydrodynamical variables that are known from the
core collapse simulation. I will outline this issue in more detail in subsection 1.4.

1.3.4 Gravitational wave detectors

Physics is after all an empirical science. The simulations I carried out during the
course of my PhD studies were aimed at producing GW forms which might help
to measure and/or interpret future detector output which is generated by a CCSN.
Hence, in this subsection I will give an overview of the ongoing experimental efforts
to observe GWs with earth-based facilities.

Interaction of gravitational waves with matter

Before I start with describing ground-based detector facilities, it is necessary to
explain how GWs act on matter, since this in consequence influences the design of
the experimental set-up.
In GR, the Newtonian expression of the gravitational force is replaced by the idea
that freely falling bodies follow geodesics in spacetime. Given a spacetime metric gµν
and a set of spacetime coordinates xµ, the classical equation of motion is replaced
by

d2xµ

dτ 2
+ Γµνσ

dxν

dτ

dxσ

dτ
= 0 , (1.41)

where τ is the proper time measured by an observer travelling along the geodesic.
If we specialize again to linearized theory, with the non-flat part of the metric
dominated by a GW in TT gauge, and assume moreover non-relativistic motions for
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the test body (v � c), eq. 1.41 simplifies to

d2xi

dt2
+ Γi00 = 0 . (1.42)

In linearized GR and the TT gauge,

Γi00 = Γi00 =
1

2

(
2∂th

TT
j0 − ∂jh

TT
00

)
= 0 , (1.43)

since hTTµ0 = 0. Hence, we find that d2xi/dt2 = 0. This does not mean that GWs
have no effect; it simply tells that in the TT gauge the coordinate location of a slowly
moving, free falling body is unaffected by the GW. In essence, the coordinates move
with the waves. The proper separation between two freely falling particles on the
other hand oscillates, even if the coordinate separation is constant. This can be
best seen if we consider two spatial freely falling particles, located at z = 0, and
separated on the x axis by a coordinate distance Lc [76]. For simplicity, we assume
a GW in the TT gauge that propagates down the z axis, hTTµν (t, z). The proper
distance L between the two particles in presence of the GW is given by

L =

∫ Lc

0

ds =

∫ Lc

0

dx
√

(1 + hTTxx (t, z = 0)) , (1.44)

where the infinitesimal line element ds is

ds2 = gµνdx
µdxν = (ηµν + hµν) dx

µdxν . (1.45)

Eq. 1.44 can be approximated by

L ≈
∫ Lc

0

dx

[
1 +

1

2
hTTxx (t, z = 0)

]
= Lc

[
1 +

1

2
hTTxx (t, z = 0)

]
. (1.46)

Expression 1.46 tells that the proper separation between the two test particles os-
cillates with a fractional length change ∆L/Lc which is proportional to the gravita-
tional wave strain:

∆L

Lc
=

1

2
hTTxx (t, z = 0) . (1.47)

Notice that although I applied the TT gauge in order to perform this calculation,
the result is gauge independent [76].
Any attempt to measure GWs thus must be based on the fact that the physical
distance ∆L between two point masses will undergo changes when a wave passes
them, since they act tidally, stretching and squeezing space and thus any object
they pass through. Figure 1.5 shows this behaviour in a more general case: the two
polarizations of a GW and the lines of force associated with them.
In contrast to electromagnetic radiation, the wavelength of GWs is typically compa-
rable or larger than the size of the radiating source. GWs are generated by the bulk
dynamics of the source itself such as the motion of neutron stars in a binary system.
In consequence, GWs cannot deliver an image, since the radiation simply does not
resolve the generating system. However, since GWs are coherent, they probe, in

21



1 Introduction

analogy to sound, the two polarizations which carry a stereophonic description of
the source’s dynamics. Another extremely important consequence of the coherency
mentioned is that the direct observable of gravitational radiation is the GW strain
hTT , being an amplitude, falls off by ∝ 1/r. This contrasts with electromagnetic
radiation whose observables are in most cases energy fluxes and hence fall off with
∝ 1/r2. This means that relatively small improvements in the sensitivity of GW
detectors can have a large impact on science: doubling the sensitivity of a detector
doubles the distance to which sources can be detected, increasing the volume of the
Universe to which sources are measurable by a factor of 8. In contradiction to elec-
tromagnetic astronomy, which is based on deep imaging of small fields of view, GW
astronomy is an all-sky affair: GW detectors have nearly a 4π steradians sensitivity
to events in the sky [14]. This means on one hand that any source in the sky will
be detectable, but on the other hand also that the ability of a single detector to
localize a source is not good at all. However, having a network of GW observatories
operating widely scattered over the globe improves the situation drastically. Sky lo-
cation and the simultaneous measurement of the distance to the source follows from
triangulation of time-of-flight differences between separate detectors [242,39,23,13].

From these general considerations, we now turn to more specific details. The
‘known’ sources of GWs cover 22 decades of frequencies, ranging from ∼ 10−18Hz
(inflationary universe) up to ∼ 104Hz (e.g. neutron star mergers; for a review of
GW sources, see e.g., [39], with references therein). The high-frequency band, 1Hz
. f . 104Hz [76, 39, 233], can be targeted by ground-based detectors, while lower
frequencies can only be accessed via spaceborne facilities for reasons which will be
given later in this subsection. Note that I will restrict myself from now on to the
discussion of earth-based facilities and their performance, because the GW signature
of stellar core collapse falls into this particular frequency range, as can be seen by
the following simplistic, but nevertheless very useful estimates: for compact sources
such as a core-collapse supernova, typical GW properties such as the GW ampli-
tude at a given distance r, or the typical frequency of emission can be related to the
source’s size R and mass M by dimensional analysis and the quadrupole formula
(eq. 1.40). Here, R means the length scale over which the source’s dynamics vary.
The ‘natural’ GW frequency fGW of such a source, and its inverse, the dynamical
timescale τdyn, can be estimated by [76,157]

τdyn :=
characteristic size R

mean velocity
∼ R√

GM/R
=

√
R3

GM
. (1.48)

Using the estimate of eq. 1.48 and applying the quadrupole formula (eq. 1.40), a first
order-of-magnitude estimate for the dimensionless GW strain can be made [157]:

|hTT | ∼ 2G

rc4
MR2

τ 2
dyn

. (1.49)

If we assume in eq. 1.49 values which are representative for a Galactic stellar core
collapse, namely M ∼ 1M�, R ∼ 1500km, and r = 10kpc, then we obtain as a
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Figure 1.6: Strain sensitivity of the AURIGA detector (Istituto Nazionale di Fisica
Nucleare [5]). The cryogenic ‘bar’ detector AURIGA is possibly the
most sensitive and stable detector of this kind continuously on the air.
The figure is courtesy of Massimo Cerdonio, private communication
(April 2010).

rough estimate |hTT | ∼ O(10−21). Results which I will present later in this thesis,
namely in chapters 3 and 4, verify such value as the right order of magnitude.
With the aid of the simplistic arguments above, the extreme requirements upon
GW detector sensitivity and the related experimental challenges become obvious:
measuring a fractional change in length of orderO(10−21) translates into determining
the distance from earth to moon with the incredibly high precision of several atomic
nuclei.

Earth-based gravitational wave detectors are divided into two classes, namely res-
onant mass detectors and interferometric detectors. In the following, I will outline
the basic functionality and strategies of the present detector systems/classes in op-
eration.

Resonant-mass detectors

The first attempts to detect GWs in a laboratory were made by Joseph Weber in
1960 by building two cylindrical aluminium resonant-mass detectors, operating at
room temperature, a resonance frequency of ∼ 1660Hz, and a strain sensitivity of
∼ 10−15 [244]. Nowadays, resonant bar detectors are still constructed Weber-like;
however, going to cryogenic- or even ultracryogenic temperatures has improved their
sensitivities by many orders of magnitude.
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A typical resonant bar detector consists of a cylinder of very high-Q 5 material
such as aluminium or niobium, a length l ∼ 3m, and a mass of M ∼ 2000kg,
and possesses a resonance frequency of ∼ 1kHz (for a summary of properties of
resonant-mass detectors in operation in 2005, see [48]).
As a basic principle of operation, one exploits the fact that the fundamental lon-
gitudinal frequency of such a bar is very sharply defined, allowing for the resonant
driving of mechanical oscillations by incident GWs at the bar’s resonant frequency
and in a narrow bandwidth of ∼ 100Hz around it (see fig. 1.6). A GW burst with
h ∼ 10−21 will make the bar vibrate with an amplitude

∆LGW ∼ hL ∼ 10−21m . (1.50)

The elastic vibrations of the mass are measured by means of a transducer that
converts the displacement into an electric signal, which is then amplified [20, 233,
157].
To be able to measure this, the experimentalists have to fight against three main
sources of noise [39]

1. Thermal noise: This is due to the Brownian motion of the detector atoms.
The root mean square amplitude of this motion is

〈∆L〉1/2Th =

(
kT

4π2Mf2

)1/2

. (1.51)

At room temperature, the rms amplitude of the Brownian vibration is of the
order of 10−16m [20]. The most advanced bar detectors such as AURIGA
(Legnaro, Padova, Italy) and NAUTILUS (Frascati, Rome, Italy) operate to-
day at ultracryogenic temperatures of T = 100mK and very high Q-values of
Q ∼ 106 − 107 [5, 11]. Under these circumstances, the rms amplitude of vi-
bration is lowered to ∼ 10−18m. Moreover, the fundamental mode changes its
thermal amplitude of vibration in a random walk with very small steps, taking
a time Q/f ∼ 1000s to change by a full amount. For a 1ms GW burst at res-
onance frequency, the thermal noise will have random-walked to an expected
amplitude change (1000s/1ms)1/2 = Q1/2 times smaller [20,39]:

〈∆L〉1/2Th,1ms =

(
kT

4π2Mf2Q

)1/2

. (1.52)

Thus ultracryogenic resonant-mass detectors can have a thermal-noise limited
strain sensitivity of ∼ 6× 10−21m [39].

2. Sensor noise: A transducer converts the bar’s mechanical energy into elec-
trical energy and an amplifier increases the electrical signal level to record it.
Both components introduce noise, limiting the sensitivity to narrow regions

5Note that a high-Q (quality) factor is important, since it causes a lower rate of dissipation relative
to the stored energy of the oscillator; the oscillations hence die out more slowly. Oscillators
with high quality factors have low damping so that they ring longer [86].
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1.3 Gravitational waves

near the resonance frequency f . However, state-of-the art transducer-amplifier
units allow for resonant-mass detector bandwidths of not only 10 [48], but more
than 100Hz, as displayed in fig. 1.6.

3. Quantum noise: The zero-point vibrations of a bar with a resonance fre-
quency of 1kHz are given by Heisenberg’s uncertainty principle [20,39]:

〈∆L〉1/2Quant =

(
~

2πMf

)1/2

∼ 4× 10−21m . (1.53)

This number is comparable to the thermal limits over 1ms. So, as detectors
improve their thermal limits, they run into the quantum limit, which must be
breached before a signal at 10−21 can be seen with such a detector.

From the discussion above, it becomes clear that bar detectors have great difficulty
in achieving the sensitivity goal of 10−21. Nevertheless, the excellent sensitivity of
resonant detectors within their rather narrow bandwidth makes them suitable for
specialized searches such as for GWs from so-called low T/|W| instabilities [243],
as shown in fig. 3.22 in sec. 3.5. However, funding for bar detectors at present
(2010) is very restricted, because there is a more promising detector design: laser
interferometry. Currently, there are only two remaining bar detectors, NAUTILUS
and AURIGA. They might eventually be shut down in the near future, when the in-
terferometers begin operating at sensitivities clearly better than 10−21. It is however
important to keep them on air at least until 2014, when all the large interferomet-
ric detector systems, currently shut down due to major sensitivity upgrades [242],
are back in operation. In the words of Massimo Cerdonio (April 2010): rather be
shortsighted than blind.

Interferometric detectors

The first seeds of the idea for laser interferometer GW detectors were already planted
in the 1960’s and 1970’s, since already at that time the limitations of bar detectors
were apparent (see e.g., [82, 159,247,31]).
As a basic principle of operation, interferometric GW detectors use laser light to
measure changes in the difference between the length of two perpendicular arms.
This design is, in contrast to the bar detectors, intrinsically wide-band [16]. The
experimental set up is very much like that of a two-armed Michelson Interferometer,
as shown in fig. 1.7. An injected laser beam is split into two components which
then travel at right angles to each other down separate arms. The beams bounce
off polished test masses/mirrors at the end of each arm and return to their starting
point, where they interfere with one another. The interferometer is set up so that in
its default mode the laser beams interfere destructively and there is no net output.
A passing GW would make one arm slightly longer and the other shorter, which
induces a relative phase shift in the arm light, seen as a change in intensity at the
output of the detector. In general, both the + and × polarization of incident GWs
influence the test masses. A general detector output h(t) can then be written as a
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Figure 1.7: Schematic view of a laser light interferometric GW detector. Figure
taken from [16].

time series:
∆L

L
= F+h+(t) + F×h×(t) + n(t) = h(t) , (1.54)

where L is the detector arm length. The instrument response is a convolution of the
antenna patterns F+,× with the two GW polarizations. The antenna patterns depend
on the frequency and sky location of the source, and n(t) marks the instrument
noise [233]. From astrophysical models (see eq. 1.49), we know that h ∼ 10−21 strain
sensitivity is required. With the current displacement sensitivities of ∆L ∼ 10−18m,
a detector should thus have an arm length of ∼ 1 − 10km in order to achieve
the desired sensitivity. This is the actual scale of the interferometers which are in
operation.
The sensitivity of the interferometer thus depends on the arm length, but also on
the amount of light energy stored in the arms (see [20], with references therein).
Furthermore, note that all the main interferometric optical components and beam
path are enclosed in an ultra-high vacuum system (10−8 − 10−9Torr) for acoustical
isolation and to reduce phase fluctuations from light scattering off residual gas [14].
More detailed reviews of the interferometric detector design can be found in [233,
201,108,39].
Like the resonant mass detectors, interferometers are also plagued by different kinds
of noise which put limits upon the sensitivity of the instrument (see fig. 1.8). The
main sources of noise competing with physical signals are [20,39]:

1. Seismic noise. External mechanical vibrations lead to displacements of the
mirrors that are many orders of magnitude larger than the expected signal.
Seismic noise is the limiting noise below ∼ 10 Hz (see Fig. 1.8). Above this
value, a combination of active filters (piezo-electric actuators), passive filters
(alternate layers of steel and rubber) and a multi-stage pendulum suspension
of the optical components allow effective filtering.

2. Thermal noise. As with bar detectors, Brownian motion of the mirrors and
the excitation of the violin modes of the suspension can mask GWs. Thermal
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1.3 Gravitational waves

Figure 1.8: Strain sensitivity of LIGO, its limiting noise sources, and the strain
sensitivity of Advanced LIGO. These curves are for unity signal to noise
in strain amplitude in a one-hertz bandwidth, for a single instrument.
The sensitivity curves are for an optimally incident wave in position
and polarization; no averaging over position is given. Note that for
Advanced LIGO, there is an adjustable frequency response, labelled as
’NSNS’, which is a narrow-band tuning, and ’Burst’, which corresponds
to broad-band tuning. The LIGO data are courtesy of D. Shoemaker
(2007).

noise is the limiting noise between 50 and 250Hz.

3. Shot noise. The photons that are used to do interferometry are quantized
and so arrive at random and make random fluctuations in the light intensity
that can look like a GW signal. The more photons one uses, the smoother
the interference signal will be. As a random process, the measurement error
improves with

√
N , where N is the number of photons. The shot noise related

error displacement is given by [20]

δlshot =

(
~c
2π

λ

ηP

)1/2

, (1.55)

where η is the efficiency of the photodiode, λ the laser wavelength and P the
circulating light power. In order to obtain h < 10−22, ηP ∼ 1kW is required.
Photon shot noise is the principal limitation to sensitivity for frequencies above
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250Hz, as shown in fig. 1.8. Today, the interferometric detectors operate
with lasers of 10W output, and the necessary high light power is obtained via
resonant cavities and beam recycling [14].

4. Quantum effects. Shot noise is a quantum noise, and like all quantum noises
there is a corresponding conjugate noise. As the laser power is increased
to reduce the shot noise, the position sensing accuracy improves, and one
eventually comes up against the Heisenberg uncertainty principle ∆x∆p > ~.
For present-day detectors, this corresponds to hqu ≈ 10−25 [20].

5. Gravity gradient noise. Changes in the local gravitational field act like
tidal forces on a GW detector. This environmental noise comes from human
activities, but also from atmospheric activity such as clouds or the surf of the
sea [39]. These effects become dominant at low frequencies and are the primary
reason why the detection of GWs in the frequency band below 1Hz cannot be
done with earth-based detectors, but must be done in space [14]. In order to
be able to probe GW sources at frequencies below . 1Hz, two major projects,
namely the Laser Interferometer Space Antenna (LISA), a joint project of the
ESA and NASA [2,102], and the Japanese DECIGO (DECi-hertz Interferome-
ter Gravitational wave Observatory, [113]) are scheduled for launching in 2018
(LISA), or probably later, depending on the funding situation [39].

Today, the major projects for large interferometers are [39,248] (see fig. 1.9):

• LIGO. The Laser Interferometer Gravitational wave Observatory [14,10] con-
sists of three operating systems: A single 4km interferometer in Livingston
(Louisiana, USA), as well as a pair of interferometers (4km, 2km) in Hanford
(Washington, USA).

• VIRGO. VIRGO is a 3km French-Italian detector near Pisa, Italy [17,7].

• GEO600. GEO600 is a 600m interferometer, constructed in a German-
English joint project near Hannover, Germany [144,1].

• TAMA300. TAMA300 is a 300m interferometer operating near Tokyo [4,226].

Note that all these sites are well separated, which supports coincidence analysis. I
further point out that there is also a small detector operating in Western Australia,
the so-called AIGO (Australian Interferometric Gravitational Observatory [8]). At
the moment, it is not clear if a large detector might also be funded. From the
point of view of extracting information from observations, however, it would be very
desirable to have a large-scale detector in Australia too, because of its very long
baselines to the USA and Europe [39].
Within the past few years, the first generation of these interferometers have got
very close to or even reached design sensitivity and collected partially coincident
data, as discussed in [14]. Lately, the two 4km LIGO detectors were upgraded to
sensitivities increased by a factor of 2-3 (enhanced LIGO, see [191]) and resumed
observations in 2009 for the S6 science run [10]. S6 is expected to continue until
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Figure 1.9: The interferometric GW projects spread around the globe. Figure taken
from [242].

the end of 2010, when the interferometers will be shut down and disassembled in
preparation for the installation of Advanced LIGO. Moreover, VIRGO, also, will
undergo major upgrades at the same time [242]. The installation of the advanced
detectors is expected to be completed by 2014 [10]. This will increase the observable
volume by a factor of ∼ 1000. Operating at such a high level of precision, 1 year of
initial LIGO data taking will correspond to . 1 day of Advanced LIGO [242].

1.4 Gravitational wave extraction in HD- and MHD
simulations

In sec. 1.3.3 I introduced and discussed the basics of the linearized GW theory. As
pointed out there, I extract the GWs from my magnetohydrodynamical simulations
via the quadrupole approximation (eq. 1.40). For relatively weak fields (G

c2
M
R
∼ 0.1),

and motions (v ∼ 0.1− 0.2c) encountered in CCSNe, this method works reasonably
well, as pointed out in [219] (see sec. 1.3.3). However, since the SQF (eq. 1.40)
is numerically cumbersome [71], I will now present expressions for GW extraction
which I implemented because they are directly applicable to astrophysical problems.
Note that for purposes of convenience, I have slightly changed the notation in the
following subsection as compared to subsections 1.3.3-1.3.1.
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1.4.1 Alternative formulations of the Standard Quadrupole
Formula

As a reminder, I start again with the two independent polarisations of the dimen-
sionless gravitational wave field hµν = gµν − ηµν , which in the transverse-traceless
gauge are given by

hTTij (X, t) =
1

r
(A+e+ + A×e×) . (1.56)

The spatial indices i, j run from 1 to 3 [157]; r is the distance from the source to the
observer. Since stellar core collapse proceeds in good approximation spherically, I
choose a source-local spherical coordinate frame (r, θ, φ) to describe the two possible
GW polarizations. Hence, this time I give the unit polarisation tensors e+ and e×
in Spherical and not Cartesian coordinates:

e+ = eθ ⊗ eθ − eφ ⊗ eφ (1.57)

e× = eθ ⊗ eφ + eφ ⊗ eθ . (1.58)

In the slow-motion limit [157,71], the amplitudes A+ and A× are linear combinations
of the second time derivative of the transverse-traceless mass quadrupole tensor tTTij ,
as shown in sec. 1.3.3. In Cartesian coordinates, the quadrupole tensor is expressed
as

tTTij =
G

c4

∫
dV ρ

[
xixj −

1

3
δij(x

2
1 + x2

2 + x2
3)

]TT
. (1.59)

The polarisation modes can be obtained explicitly from a coordinate transformation,
for example for the θθ-component:

tθθ = tTTij
∂xi

∂θ

∂xj

∂θ
. (1.60)

This leads to the following non-vanishing components [173]:

tθθ = (tTTxx cos2 φ+ tTTyy sin2 φ+ 2tTTxy sinφ cosφ) cos2 θ

+ tTTzz sin2 θ − 2(tTTxz cosφ+ tTTyz sinφ) sin θ cos θ

tφφ = tTTxx sin2 φ+ tTTyy cos2 φ− 2tTTxy sinφ cosφ

tθφ = (tTTyy − tTTxx ) cos θ sinφ cosφ+ tTTxy cos θ(cos2 φ

− sin2 φ) + tTTxz sin θ sinφ− tTTyz sin θ cosφ.

For convenience I evaluate below the GW amplitudes along the polar axis (θ = φ = 0,
denoted as subscript I)

A+I = ẗ TTxx − ẗ TTyy , (1.61)

A×I = 2ẗ TTxy , (1.62)

and in the equatorial plane (θ = π
2
, φ = 0, denoted as II)

A+II = ẗ TTzz − ẗ TTyy , (1.63)

A×II = −2ẗ TTyz . (1.64)
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1.4 Gravitational wave extraction in HD- and MHD simulations

Note that in axisymmetry, A+I, A×I, and A×II all vanish, leaving only A+II [234].
Since a direct evaluation of eq. 1.59 is numerically problematic, as discussed e.g.
in [71] and [32], we apply alternative reformulations of the standard quadrupole for-
mula, in which one or both time derivatives are replaced by hydrodynamic variables
using the continuity and momentum equations.
In the first moment of momentum density formula [71], one can get rid of one time
derivative by making use of the continuity equation [127]:

∂ρ

∂t
+
∂ (ρvi)

∂xi
= 0 . (1.65)

Inserting eq. 1.65 into eq. 1.40 and integrating by parts, the first time derivative of
the quadrupole moment is then

ṫ TTij =
G

c4

∫
dV ρ

[
vixj + vjxi −

2

3
δij (v1x1 + v2x2 + v3x3)

]TT
. (1.66)

This first moment of momentum density (eq. 1.66) already greatly reduces the
numerical noise in the extracted GW signal [71]. In order to obtain my GW forms
numerically, I compute the single remaining time derivative via finite differences in
a postprocessing step.
One can even go a step further and additionally apply the Newtonian equation of
momentum conservation [127],

∂ (ρvi)

∂t
+
∂ (ρvivj + pδij)

∂xi
= −ρ ∂Φ

∂xi
, (1.67)

in order to get rid of the second time derivative [32]. In eq. 1.67, p stands for the
fluid pressure. By virtue of eqs. 1.67 and 1.66, the so-called stress formulation [32],
ẗ TTij is given by

ẗ TTij =
G

c4

∫
dV ρ (2vivj − xi∂jΦ− xj∂iΦ)TT , (1.68)

where Φ is the Newtonian gravitational potential. Note that in the simulations I
carried out, an effective, GR corrected gravitational potential Φeff is used, which
then replaces Φ in eq. 1.68 (see [147] and sec. 2.2.2).
I applied both ways of computing the GW signal and compared them by computing
the overlap [83] of the resulting waveforms via

O(h1, h2) =
〈h1|h2〉√

〈h1|h1〉〈h2|h2〉
, (1.69)

〈h1|h2〉 = 4<
∫ ∞

0

df
ĥ1(f)ĥ2(f)

Sh(f)
. (1.70)

where ĥ is the Fourier transform of h, Sh(ν) [Hz−1] is the power spectral density of
the strain noise from a given detector, e.g. LIGO, which was kindly provided by D.
Shoemaker (2007, private communication). The results show good agreement with
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Model Ωc,i [rads−1] Overlap

R1E1ACL 0.3 96%
R3E1ACL 2π 92%
R4E1ACL 3π 97%

Table 1.1: Overlap of GW trains from representative models R1E1CAL, R3E1CAL

and R4E1FCL (see chap. 3, and [206]).

numerical deviations of a few percent, as displayed in tab. 1.1. There, I computed
the overlap of GW trains from the representative models R1E1CAL, R3E1CAL and
R4E1FCL (see chap. 3, and [208]), extracted by using eqs. 1.66 and 1.68. I assume
optimal orientation of detector and source as well as the GW to be emitted along
the polar axis.
In [122], it was pointed out that magnetic fields as strong as O(1017)G can affect
the GW amplitude considerably. Thus, in order to calculate the contribution to
the GW signal due to ‘strong’ magnetic stresses (see e.g. [170, 208, 122], and sec.
3.5), I generalized eq. 1.68, taking into account contributions from the magnetic
field. Following the 2D axisymmetric derivations of [120] and [170], I accounted for
the magnetic field in the SQF by applying the equation of motion of a magnetized
fluid [105,124],

∂ (ρvi)

∂t
+
∂ (ρvivj + P?δij − bibj)

∂xi
= −ρ ∂Φ

∂xi
, (1.71)

to eq. 1.68. In eq. 1.71, the total pressure is composed of the fluid and magnetic
pressure, P? = p+ b2

2
, where bi = Bi/

√
4π are the normalized Cartesian components

of the magnetic field. The Cartesian quadrupole gravitational wave amplitude in
the MHD case, published in [208], then becomes:

ẗ TTij =
G

c4

∫
dV [2fij − ρ (xi∂jΦ + xj∂iΦ)]TT , (1.72)

where fij = ρvivj − bibj.
Below, I apply eq. 1.66 if not stated otherwise. Given our spherically-symmetric
effective GR approach to the solution of the Poisson equation in most models I com-
puted (cf. chap. 3 and [206, 210, 208]), this expression is best motivated physically,
since it does not depend on spatial derivatives of the gravitational potential.
Note that the radiative quadrupole moment is a measure of asphericity of the core’s
density distribution. It was pointed out by [170] in the purely ‘axisymmetric’ case
that the quadrupole moment is positive for a very prolate core, and negative in the
limit of a very oblate core. Its first time derivative measures the asphericity of the
mass-flux and momentum distribution of the core, and its second time derivative,
A+II, is a measure of the asphericity of the forces acting on the fluid. As a rule of
thumb, a prolate mass-flux or a prolate momentum distribution (e.g. bipolar jet-
like outflow along the rotational axis) gives rise to a positive value of the first time
derivative of the quadrupole moment. Forces that act on the core in a way to make
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it more oblate, such as centrifugal forces, will give rise to a negative contribution to
the total amplitude.

1.4.2 Total energy emission and spectral energy density

The energy carried away by gravitational radiation can be calculated by the following
expression [157]:

EGW =
c3

5G

∫ [
d

dt

(
Iij −

1

3
δijIll

)]2

dt (1.73)

=
2c3

15G

∫
dt
[
İ2
xx + İ2

yy + İ2
zz

−İxxİyy − İxxİzz − İyy İzz

+ 3(İ2
xy + İ2

xz + İ2
yz)
]
,

where Iij = ẗ TTij . The equivalent frequency integral yields [161]

EGW =
4c3

15G

∫ ∞

0

ν2dν
[
Î2
xx + Î2

yy + Î2
zz

−ÎxxÎyy − ÎxxÎzz − Îyy Îzz

+3
(
Î2
xy + Î2

xz + Î2
yz

)]
, (1.74)

where Îij(ν) is the Fourier transform of the quadrupole amplitude Iij(t).

1.4.3 Characteristical GW strain

In order to assess the question of detectability of a certain model, I estimate the
signal-to-noise ratios (SNR) for optimal filtering searches according to [75]:(

S

N

)2

= 4

∫
|ĥ(ν)|2

Sh(ν)
dν = 4

∫
|ĥ+(ν)|2 + |ĥ×(ν)|2

Sh(ν)
dν , (1.75)

where ĥ(ν) is the Fourier transform of the gravitational wave amplitude and Sh(ν)
is the power spectral density of strain noise in the detector. For numerical results,
I always assume the source to be located at the Galactic centre at R = 10kpc.
Moreover, I assume optimal orientation of detector and source. Note also that the
Fourier spectra were normalized according to Parseval’s theorem.

1.5 Additional analysis tools

Gravitational waves are a result of bulk matter motion [157]. Below, I therefore de-
fine a number of quantities and analysis tools which I extracted from my simulation
data in order to help me to specify a particular model and allow me to monitor the
development of the collective matter dynamics.
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1.5.1 The β-parameter

A variable commonly used to quantify the dynamics of rotating, Newtonian fluid
bodies (see, e.g., [228]) is the dimensionless parameter β,

β :=
T

|W |
, (1.76)

which is the ratio of rotational kinetic (T ) to gravitational binding energy (|W |).
The rotational kinetic energy is given by [86]

T =
1

2

∫
Ωz(xjy − yjx)d

3x , (1.77)

where ji = ρvi is the specific angular momentum.
Moreover, based on ~Ω = ~r×~v

r2
, the z-component of the angular velocity can be com-

puted via

Ωz =
xvy − yvx
x2 + y2

. (1.78)

1.5.2 The βmag-parameter

In order to track the growth, strength and influence of the magnetic fields on the
fluid, I monitor the quantity βmag

βmag :=
Emag
|W |

, (1.79)

which is the ratio of magnetic

Emag =
| ~B|2

8π
=
B2
x +B2

y +B2
z

8π
(1.80)

to gravitational binding energy (|W |).

1.5.3 Nonaxisymmetric structures

A commonly used way to monitor the growth of nonaxisymmetric structures is to
examine the azimuthal Fourier components in the density distribution (see [182],
and references therein):

ρ(R, z, φ) =
∞∑

m=−∞

Cm(R, z)eimφ , (1.81)

where R is the radius orthogonal to the rotational z-axis. The Fourier components
Cm correspond to the azimuthal modes m and are defined by

Cm =
1

2π

∫ 2π

0

ρ(R, z, φ)e−imφdφ . (1.82)

34



1.6 Gravitational waves as messengers of stellar core collapse

Furthermore, it is useful to define the normalized amplitudes

Am = |Cm|/C0 =
1

C0

√
<(Cm)2 + =(Cm)2, (1.83)

where C0(R, z) = ρ(R, z) is the mean density in a ring with radius R, and

|Cm| =
√
<C2

m + =C2
m . (1.84)

In practice, I implemented eq. 1.82 by interpolating the density on discrete rings
in the equatorial plane and then performed a Fourier analysis of m ∈ {1, 2, 3, 4}.
Following [182], I used 180 angular zones for 2π radians and performed the analysis
for radii between 5km and 100km from the rotational axis, taking steps of 5km.
Note that the confinement of the analysis to the equatorial z = 0 plane is motivated
by the assumption that globally unstable modes are only weakly dependent on the
z coordinate inside the PNS [200].
Additional insight into the azimuthal structure of each mode m can be gained by
the mode phase angle

Φm(R, z) = tan−1 (=Cm/<Cm) . (1.85)

If a given mode m is globally dominant, this is reflected in a radial variation of the
phase angle that corresponds to the global structure of the mode [182]. For a spiral-
type mode, Φm should exhibit a spiral structure, while a pure bar should result in a
bar-like structure [183, 181]. In the situation where a mode m becomes global, one
can write the phase angle as

Φm = σmt , (1.86)

where σm is the eigenfrequency of the m−th mode. The mode pattern speed σp is
then given by

σp =
1

m

dΦ

dt
=
σm
m

. (1.87)

Unfortunately, the direct determination of Φm via eq. 1.85 and its time derivative
proves to be rather difficult numerically, not least because of the coarse temporal
resolution of the post-processing based analysis, as also stated by [182]. An alterna-
tive way of obtaining σm introduces itself from the physical interpretation that the
oscillation period of mode m, Pm = 2π/σm, is equivalent to the time it takes the
real or imaginary parts of Cm to complete a full cycle from a positive to a negative
value, then back to a positive value [183]. In this way, σm can be read off directly
from the mode amplitudes in time intervals during which they show clear temporal
behaviour.

1.6 Gravitational waves as messengers of stellar core
collapse

Constraining the core-collapse supernova mechanism via astronomical observations
is difficult. The intricate pre-explosion dynamics of the SN core deep inside the
supergiant presupernova star is inaccessible by the traditional means of astronomy.
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Figure 1.10: Compilation of the prominent GW emission processes in core-collapse
SNe and their possible emission strength in context of the magneto-
rotational (see [43], with references therein), the neutrino (see, e.g.
[148], with references therein) and the acoustic SN mechanism [45].
For a galactic SN, ‘strong’ corresponds to ‘probably detectable by initial
and advanced LIGO’, ‘weak’ means ‘probably marginally detectable by
advanced LIGO’, and ‘none’ means ‘absent or probably not detectable
by advanced LIGO’. The three considered explosion mechanisms are
likely to have mutually exclusive GW signatures and could be distin-
guished by the mere detection or non-detection of a GW signal without
the solution of the full inverse problem. Figure taken from [174].

Theoretical models of the SN mechanism can currently be tested via secondary
observables only, including asymptotic explosion energy, ejecta morphology, nucle-
osynthesis products [78], compact remnant mass and proper motion, and pulsar
spin/magnetic fields (see sec. 1.2.3, and references therein).

Gravitational waves and neutrinos are the only messengers with the potential of de-
livering first-hand information on the physical processes leading to explosion: both
are emitted deep inside the supernova core and travel to observers on Earth practi-
cally without interaction with intervening material.

Besides neutrinos, which have already been observed in the context of stellar core
collapse of SN1987A [97], GWs could provide access to the electromagnetically hid-
den compact inner core of some such cataclysmic events. As strong indications both
from theory and observations exist that CCSNe show aspherical, multidimensional
features (see [94, 132], and sec. 1.2), there is reasonable hope that a tiny amount
of the released binding energy will be emitted as GWs which could then provide us
with valuable information about the angular momentum distribution [62] and the
baryonic equation of state (EoS) [149], both of which are uncertain. Furthermore,
they might help to constrain theoretically predicted SN mechanisms, as suggested
by Ott [174] (see sec. 1.2, and fig. 1.10). However, GWs from astrophysical sources
are weak and notoriously difficult to detect, as outlined in sec. 1.3.4. Hence, in
order to disentangle an astrophysical GW signal from the mostly overwhelming de-
tector noise, GW astronomy not only requires sensitive detectors, but also extensive
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processing and analysis of the detector output on the basis of reliable theoretical
estimates for the GW signals presently expected from astrophysical sources. The
latter must in most cases, such as for CCSNe, be obtained via detailed numerical
modelling of the dynamics responsible for the GW emission in a given source.

The broad majority of GW sources can be subdivided into two classes: (i) mathemat-
ically well-posed events such as BH-BH coalescence and (ii) scenarios that involve
matter. The first category of sources can be modelled accurately, the waveform can
be calculated with high precision, and thus a matched-filter analysis can be applied.
On the other hand, the latter kind of GW sources can only be modelled imperfectly,
as matter effects carry large physics uncertainties and open up a huge parameter
space for initial conditions. Moreover, even if there were ‘perfect’ models, there is
still a turbulent, stochastic element in some GW emission mechanisms that makes
it strictly impossible to compute templates. As a result, more general, un-modelled
burst analysis techniques are used, as summarized in [14] and references therein.
One of the scenarios where burst data analysis must be applied is the stellar core
collapse, where in addition to the matter effects even the fundamental explosion
mechanism is not fully settled, as outlined in sec. 1.2.

Until today, GW emission from CCSNe was suggested to arise from i) axisymmetric
rotational core collapse and bounce (e.g., [261,122,61,62,208]) ii) prompt, neutrino-
driven postbounce convection and anisotropic neutrino emission (e.g., [161,145,118,
149, 165, 116, 117]), iii) protoneutron star (PNS) g-mode oscillations [175] and iv)
nonaxisymmetric rotational instabilities (e.g., [199, 243, 181, 183, 180, 179, 206, 207,
210, 208]). A more detailed discussion will follow in sec. 1.7; recent reviews with a
more complete list of references are [119,174,53]. However, only i) can be considered
as being well understood as far as the physics of the collapse is concerned, since only
theses models incorporate all relevant input physics known at present [62] (there are,
though, still large uncertainties with respect to the progenitor star, e.g. rotation
profiles, magnetic fields, and inhomogenities from convection). The predictions of all
other suggested emission scenarios (ii-iv) still neglect, to a certain extent, dominant
physics features due to the diversity and complexity of the CCSN problem on the
one side and restrictions of available computer power on the other side. Hence, the
computational resources have so far either been spent on highly accurate neutrino
transport (e.g. [133, 176, 149]) while neglecting other physical degrees of freedom
such as magnetic fields, or focus on a general relativistic treatment and/or 3D fluid
effects such as accretion funnels, rotation rate and convection, but approximate or
even neglect the important micro physics. Only recently have detailed 3D computer
models of CCSNe become feasible with the emerging power of tens of thousands of
CPUs unified in a single supercomputer. Such detailed simulations are absolutely
indispensable for the reasons already implied above: a) GW astronomy requires not
only very sensitive detectors, but also depends on extensive data processing of the
detector output on the basis of reliable GW estimates [14]. b) The temperatures
and densities inside a supernova core exceed the range that is easily accessible by
terrestrial experiments (see fig. 1.11).

Thus, it will be impossible for the foreseeable future to construct a unique finite
temperature equation of state (EoS) for hot and dense matter based on experimen-

37



1 Introduction

Figure 1.11: Illustration of the matter conditions which are or will be explored in
the near future by the LHC [3], RHIC [6], and FAIR [9]. Although
all of them will explore a different section of the nuclear matter phase
diagram, they hardly reach the typical matter conditions which are
present in supernova cores, namely ‘low’ temperatures and very high
densities (see, e.g., [137]). Figure taken from [9].

tally verified data. Therefore, models with different parameter settings must be run
and their computed wave form output can then be compared with actual detector
data. Hence, modelling will bridge the gap between theory and measurement and
allow the use of CCSNe as a laboratory for exotic nuclear and particle physics [137].

1.7 A brief survey on possible GW emission
mechanisms from core-collapse supernovae

In this section, I want to provide a short overview of the different GW emission pro-
cesses at present expected to occur in the context of stellar core collapse. However,
this section is not meant as a review, but rather to prepare the stage for chapters
3 and 4, where I will discuss the resulting GW emission of my models in detail.
Nevertheless, I hope to provide sufficient preparatory insight regarding the subject
with the material provided here. Note also that I will cover neither the GW charac-
teristics from the very massive population III stars [223] nor the accretion-induced
collapse of white dwarfs [15]. For thorough review articles with complete lists of
references on the GW emission processes of CCSNe, I refer to [174,119,53].
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1.7.1 Gravitational waves from rotating core collapse and core
bounce

During the past three decades probably most attention has been paid to rotational
core collapse and bounce dynamics. In this particular phase, the core spins up due to
angular momentum conservation, resulting in an oblate (l = 2) and time-dependent
quadrupole deformation that leads to strong GW emission [160, 158, 107, 261, 195,
121, 122, 170, 177, 179, 180, 59, 61, 62, 206]. The steady improvement of the mod-
els (e.g. the inclusion of GR, a microphysical EoS, treatment of neutrino physics)
recently led to a theoretically well understood single and generic, purely axisym-
metric [179, 206, 208], so-called type I waveform which is characterized by a large
negative peak at core bounce, followed by ring-down oscillations that damp quickly
(see, e.g., [179, 180, 61, 62, 208], with detailed references therein). Despite the re-
duction to a single waveform, the combined information of the GW amplitude and
the location of the narrow peak of the GW spectral energy density in frequency
space contains information that makes it still possible to constrain progenitor and
postbounce rotation, but can barely distinguish between different finite-temperature
EoS (see, e.g., [62], who used the EoS of [130] and [216]).

1.7.2 Gravitational waves from postbounce convection, SASI
and anisotropic neutrino emission

Current state-of-the-art stellar evolution calculations [93] tell us that iron cores of
stars generally lose most of their angular momentum during their evolution due to
magnetic torques. Therefore, they cannot become subject to strong rotationally-
induced aspherities. However, anisotropic neutrino emission, convection and SASI-
driven deviations from spherical symmetry which can lead to the emission of GWs
of sizable amplitudes are likely to occur inside the PNS and the post-shock gain
region and last for probably hundreds of ms [161,145,118,149,165,116,117,208,210].
Although there is qualitative consensus among the different core-collapse supernova
groups about the aforementioned features being emitters of stochastic broad-band
signals, their detailed quantitative character still remains quite uncertain, since self-
consistent 3D simulations with proper long-term neutrino transport were not carried
out so far, but would in principle be required. The most recent, very elaborate 2D
simulations in that context were performed by [149]. Their numerical setup includes
long-term multi-flavour neutrino transport, an effective relativistic potential and
two different EoS. The first 100ms of after bounce they observed GWs from early
prompt postbounce convection, peaking somewhat around or below 100Hz, depend-
ing on the employed EoS. After this early episode, the GW emission in their models
is dominated by a growing negative amplitude related to anisotropic neutrino emis-
sion at frequencies . 200Hz, while the GW signal associated with non-radial mass
motions stems from density regimes 1011 − 1013gcm−3 and peaks in the frequency
range of 300− 800Hz, highly sensitive to the nuclear EoS.
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1.7.3 Gravitational waves from magnetorotational core collapse

GWs from magneto-rotational collapse were considered in 2D in detail by [122,218]
and [170], and recently also by myself [208] in 3D. As main differences compared to
simulations which do not include magnetic fields it was found by these groups that
only in the very special case of precollapse fields as strong as & 1012G the overall
dynamics can be influenced. As [93] have argued, such strong fields are unlikely to
occur in standard core-collapse supernova progenitors. The GW amplitude is then
affected by i) time-dependent magnetic fields, which contribute considerably to the
overall energy density, and ii) by bipolar magnetohydrodynamic jet outflows which
give rise to a so-called type IV signal with memory [170]. Physically, such a memory
effect in the GW signal arises from the temporal history of asymmetric matter
outflow, leaving behind a constant offset in the amplitude [233]. The systematics
of such GW memory can be best understood by considering an outflow of mass m
in the z-direction with slowly changing velocity. In this case, the contribution to
the GW signal by the outflow is |hout| ∝ 2mv2

z [218]. Once the outflow has reached
quasi-steady state, the mass ejection rate can be assumed to stay roughly constant,
hence the mass in the outflow increases linearly [218,43].

1.7.4 Gravitational waves from nonaxisymmetric Instabilities at
low T/|W |

Recently it has been argued through numerical simulations of equilibrium neutron
star models or full core-collapse simulations that PNSs with a high degree of dif-
ferential rotation can be subject to nonaxiymmetric rotational instabilities at low
values of β, leading to strong narrow-band GW emission [199,243,181,200,183,180,
51, 179, 206, 208, 210]. In most cases the bar-like m = 2 mode is dominant and one
then frequently speaks of a ‘barmode instability’. In analogy to the textbook exam-
ple of GWs being emitted by a spinning bar [15], the self-consistent computations
deliver a GW signature where the + and × polarisations are shifted by a quarter
cycle, and the dominant GW emission occurs at a frequency of 2f , with f being the
rotation rate of the deformed, innermost part of the protoneutron star.

However little is known about the true nature of the instability at present. Previous
work has failed to establish an analytical instability criterion, and the dependence
of the instability on PNS rotation rate and degree of differential rotation is still
unclear, as was pointed out by [174].

1.7.5 Gravitational waves from protoneutron star pulsations

In the core-collapse scenario, PNS pulsations can provide another mechanism for
GW emission. Ott et al. [175] pointed out that in the context of the acoustic
mechanism [45, 46] excited core g-mode oscillations might emit very strong GWs.
The GW signal is due to the nonlinear quadrupole components of the pulsations
that, at least initially, are of l = 1 g-mode character [175].
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1.8 Minimal requirements on 3D core-collapse
supernova simulations

The lack of computational power at present does not allow theoreticians to include
all the physics known to be relevant to CCSNe in a ‘complete’ form in 3D com-
puter models (see chap. 2, and references therein). Nevertheless, three-dimensional
models are indispensable because state-of-the-art simulations of stellar collapse and
postbounce supernova evolution strongly suggest that multi-D dynamics is crucial
for the CCSN mechanism to succeed in massive stars (see sec. 1.2.3, and references
therein). Until ‘complete’ 3D modelling of CCSNe is feasible on high-performance
clusters, the only way to deal with the problem is to apply pragmatic approaches,
which mimic the dominant physics in a computationally efficient way.

For the time being, the list below represents a minimal set of requirements which
should be included in 3D simulations if one wants to claim a reasonable and in-
dicative outcome of the simulations (Matthias Liebendörfer, private communication
(April 2010)):

• Spectral transport of νe, νe: The reactions of the νe and νe neutrinos with
matter are the dominant ones in the context of CCSN dynamics, because they
interact with their surrounding material via both charged and neutral current
reactions, while the other neutrino species can only interact neutrally (see sec.
1.2.3, and references therein).

Spectral treatment of νe and νe is essential because several crucial quantities
to which the SN dynamics is very sensitive, such as optical depth, neutrino
cross-sections and so forth, are energy-dependent [37,29,106].

• Finite-temperature nuclear EoS: Any set of magnetohydrodynamical equa-
tions must be closed by an EoS. Moreover, in the context of stellar core col-
lapse, a finite-temperature nuclear EoS is also a prerequisite for any kind of
neutrino transport treatment, since the crucial compositional information as
well as chemical potentials must be derived from a microphysical EoS (see sec.
2.3, and references therein).

• Estimate for the flux factor: The flux factor can be understood as a ra-
tio of the neutrino energy flux, Lν/(4πr

2), to neutrino energy density times
c. Typically, it is close to 0.25 near the neutrino sphere for νe and νe and
approaches unity when the neutrino distributions get more and more forward-
peaked in the limit of free-streaming with increasing distance from the neu-
trinosphere [106]. Usually, angle-dependent transport, i.e., solving the Boltz-
mann transport equation, is necessary to accurately determine the spectral and
angular distribution of the neutrinos. However, as we want to apply, for ex-
ample, different, computationally efficient neutrino transport approximations
for different physical regimes (see sec. 2.4), it is essential to have a physically
well-founded estimate for the flux factor at hand. This can help to reduce the
computational time considerably.
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• νµ, ντ cooling: Any quantitative 3D calculation of stellar core collapse should
incorporate cooling processes via the emission of νµ and ντ . Spherically sym-
metric state-of-the-art simulations have shown that their inclusion changes
the ‘long-term’ core-collapse dynamics (hundreds of ms after bounce) consid-
erably, as their emission alters the hydrodynamical quantities such as entropy
and electron fraction (e.g. [230, 194, 138]. The position of the stalled shock
after several hundreds of ms for example, is located at considerably smaller
radii compared to simulations which ignore the emission of νµ and ντ .

The inclusion of νµ and ντ cooling in a multidimensional code is somewhat
easier compared to the electron-flavour neutrinos, because i) of the limited
number of relevant reactions, ii) of the sub-dominant role of µ and τ neutrinos
(compared to the electron flavour neutrinos) in CCSN simulations, and iii)
because of the negligible effect of their heating. Hence, a µ/τ leakage scheme,
which depends on the local thermodynamical conditions only, can be imple-
mented ‘relatively’ easy (Albino Perego, private communication (July 2010)).
Even a simple and ‘grey’ [155] leakage scheme can fit the results of detailed
neutrino transport calculations quite well such as position and energy of the
shock.

• Radial GR effects: The inclusion of radial GR effects is essential in CCSN
simulations, as they can influence the SN dynamics considerably. Compared
to simulations in Newtonian gravity, general relativistic simulations result for
example in smaller shock radii, higher neutrino luminosities and rms energies,
and deeper potential wells which lead to higher central densities (see, e.g.,
[138,38]).

• Magnetic fields: During core collapse and the early postbounce evolution of
the PNS, even initially weak magnetic fields eventually grow to values where
they can influence the dynamics of the SN plasma notably and thus can no
longer be neglected (see sec. 2.2, and references therein).

Moreover, as there is observational evidence that magnetorotational effects
may play a dominant role in stellar core collapse such as e.g. in the GRB
scenario [254], magnetic fields should be taken into account in simulations for
a consistent picture of the core-collapse theory.

• HRSC – High-resolution shock-capturing schemes:

In any hydrodynamical calculation, the fluid flow can be split into regions
of smooth flows and regions of shock waves, where flows show sharp, discon-
tinuous changes in flow variables such as pressure, temperature, density, and
velocity across the shock. Modern hydrodynamical CCSN simulations must be
able to handle both within the same framework, as the initially smooth den-
sity, velocity and internal energy distributions of the progenitor star lead to
the formation of the SN shock wave at core bounce (see sec. 1.2, and references
therein).
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1.8 Minimal requirements on 3D core-collapse supernova simulations

Thus, the applied, multidimensional hydrodynamical framework must rely on
a reconstruction procedure for the cell-interface data that retains conservation.
Moreover, it must not introduce spurious oscillations [84].

These requirements are usually met in a modern hydrodynamical schemes,
which are constructed to have the following properties: i) stable and sharp
discrete shock profiles; ii) high accuracy in smooth regions of the flow.

Schemes with these characteristics are usually known as high-resolution shock-
capturing (HRSC) schemes. They avoid the use of artificial viscosity terms
when treating discontinuities (see, e.g., sec. 2.2, and [238], with references
therein).

In the following chapter, I will outline how the Basel 3D CCSN code tries to satisfy
several of these prerequisites.
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2 3D MHD Core-Collapse
Simulations: Implementation

Ich behaupte aber,
dass in jeder besonderen Naturlehre nur so viel eigentliche
Wissenschaft angetroffen werden könne,
als darin Mathematik anzutreffen ist.

Immanuel Kant, Metaphysische Anfangsgründe der
Naturwissenschaft, A VIII

In this chapter I give an overview of the numerical methods and tools that I have
used to perform the simulations on which my research on gravitational waves is
based. This includes the discussion of FISH and ELEPHANT, the 3D magnetohy-
drodynamics (MHD) codes of the Basel supernova group of M. Liebendörfer (see,
e.g., [111, 136, 141, 140]), which are primarily designed for performing astrophysical
simulations such as CCSNe. Moreover, I will detail the underlying microphysical
input of the core-collapse simulations such as the microphysical equation of state,
neutrino transport schemes as well as the initial model configuration.

Note that during the course of my dissertation, I was involved in the technical code
developement of FISH, including implementing a ‘hybrid’ parallelization scheme to
the MHD part of the codes (see sec. 2.2.1) and multidimensional solvers for the
gravitational potential (see sec. 2.2.2).

2.1 Ideal magnetohydrodynamics

Astrophysical problems such as CCSNe involve collisional problems where the mean
free path is much smaller than all length scales of interest. Hence, one can adopt a
fluid description of matter. Furthermore, since there is observational evidence that
magnetorotational effects may play a dominant role in stellar core collapse such as
in the collapsar-GRB (see [254], with references therein), magnetic fields must be
taken into account 1.

The theoretical framework to describe a magnetized fluid is delivered by magne-
tohydrodynamics (see, e.g., [124, 105], with references therein). The simplest form
of MHD, ideal MHD, assumes that the fluid has so little resistivity that it can be
treated as a perfect conductor. For conditions prevailing in CCSNe, this way de-

1In the collapsar-GRB scenario, a black hole with stellar-mass accretion in combination with
magnetorotational effects and/or neutrino-antineutrino pair creation and annihilation drive a
baryon-poor ultra-relativistic GRB jet [253].
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2 3D MHD Core-Collapse Simulations: Implementation

scribing the fluid is a good approximation of reality [124].

The equations of ideal MHD describe the movement of a compressible, conducting
fluid subject to magnetic fields. In ideal MHD, all dissipative processes are neglected.
This means that the fluid possesses no viscosity and its conductivity is assumed to
be infinite. The ideal MHD equations read [105,127]:

∂ρ

∂t
+∇ · (ρv) = 0 (2.1)

∂ρv

∂t
∇ · (vρv− bb) +∇P = −ρ∇Φ (2.2)

∂E

∂t
+∇ · [(E + P )v− b · (v · b)] = −ρv · ∇Φ (2.3)

∂b

∂t
−∇× (v× b) = 0 , (2.4)

expressing the conservation of mass, momentum, energy and magnetic flux, respec-
tively. ρ stands for mass density, v is the velocity vector and E = ρe+ ρ

2
v2 + b2

2
the

total energy (the sum of internal, kinetic and magnetic energy). The magnetic field
is given by B =

√
4πb and the total pressure by P = p + b2

2
(the sum of gas and

magnetic pressure). The MHD equations are evolved from an (initial) condition

∇ · b = 0 , (2.5)

which remains true, consistent with the physical observation that magnetic monopoles
have never been observed. The right hand side of eqs. 2.2 and 2.3 take into account
the effect of gravitational forces on the magnetohydrodynamical variables. The
gravitational potential Φ obeys the Poisson equation

∆Φ = 4πGρ . (2.6)

2.2 Numerical solution of the MHD equations: The
FISH & ELEPHANT codes

The set of nonlinear partial differential equations (eqs. 2.1-2.4) generally have no
analytic solution and must therefore be solved numerically. In this section, I will
briefly present the 3D MHD Basel code FISH (Fast and Simple Ideal magneto-
Hydrodynamics), which numerically evolves these hyperbolic [190] equations at sec-
ond order accuracy in time and space. The entire code documentation can be
found in Käppeli et al. [111]. FISH is based on the publicly available serial ver-
sion of a cosmological hydrodynamics code of Pen et al. (see [185], with references
therein), which was further improved, parallelized with MPI (Message Passing In-
terface, e.g. [249]) and adapted to the requirements of core-collapse supernova sim-
ulations by M. Liebendörfer [139]. Moreover, FISH provides the foundation for the
implementation of multidimensional neutrino transport schemes (see sec. 2.4) in the
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ELEPHANT code (ELegant and Efficient Parallel Hydrodynamics with Approximate
Neutrino Transport).

Equations 2.1-2.4 are the differential form of the MHD equations. Their hydrody-
namical part2 can be expressed in a very compact notation by defining a column
vector u of conserved variables and flux vectors F ,G,H in the x, y and z directions,
respectively, and a vector S of source terms:

∂u

∂t
+
∂F

∂x
+
∂G

∂y
+
∂H

∂z
= S , (2.7)

where the vector u = (ρ, ρvx, ρvy, ρvz, E)T denotes the conserved fluid variables, F
is given by

F =


ρvx

ρv2
x + P − b2x

ρvxvy − bxby
ρvxvz − bxbz

(E + P )vx − bxb · v

 , (2.8)

G by

G =


ρvy

ρvyvx − bybx
ρv2

y + P − b2y
ρvyvz − bybz

(E + P )vy − byb · v

 , (2.9)

and H by

H =


ρvz

ρvzvx − bzbx
ρvzvy − bzby
ρv2

z + P − b2z
(E + P )vz − bzb · v

 . (2.10)

In the context of core-collapse simulations, the source term S takes into account
only gravity 3 and reads

S =


0

−ρ∂Φ/∂x
−ρ∂Φ/∂y
−ρ∂Φ/∂z
−ρv · ∇Φ

. (2.11)

The FISH code solves eqs. 2.7 numerically by applying so-called finite volume meth-
ods [190, 189] and operator splitting (see [111], and references therein), which I will
now outline briefly.

2Note that the procedure to update of the magnetic fields will be discussed later in this section.
3Note that the general form is S = (0, ρfx, ρfy, ρfz, ρvf)T, where f can by any external force.
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In the framework of FISH, eqs. 2.7 are decomposed into two sub-problems, a homo-
geneous and an inhomogeneous one:

Problem A:
∂u

∂t
+
∂F

∂x
+
∂G

∂y
+
∂H

∂z
= 0 (2.12)

Problem B:
du

dt
= S (2.13)

Let us consider the homogeneous system A first (eq. 2.12), where the source term
vanishes. Since eqs. 2.7 need to be solved numerically, we have to discretize the
problem. Time is discretized into steps ∆tn and space into finite volumes or cells Vi,j,k
where n labels the different time levels and the triple (i, j, k) denotes a particular
finite volume or cell. This is a so-called finite-volume method. In practice, one stores
the cell averaged values for the solution vector u (for each component separately)
at cell centres:

ui,j,k =
1

Vi,j,k

∫
Vi,j,k

u (x, t) dxdydz, (2.14)

where the cell volume Vi,j,k = ∆x∆y∆z is given by the cell dimensions ∆x = xi+1/2−
xi−1/2 = xi′−xi′−1, ∆y = yj+1/2−yj−1/2 = yi′−yi′−1, ∆z = zk+1/2−zk−1/2 = zi′−zi′−1

which are assumed to be constant. Half-integer indices are indicated by a prime
i′ = i+1/2, j′ = j+1/2, k′ = k+1/2 and denote the inter-cell boundary. Note that
in this introductory paragraph, the cell centred notation is kept for clarity. Further
down, I switch to the more elegant ‘prime’ notation.
Let us furthermore denote F n

i+1/2,j,k as flux per area of u through the cell boundary
xi+1/2,j,k at a time tn which we assume constant over the respective cell surface.
Analogously for Gn

i,j+1/2,k and Hn
i,j,k+1/2. Then, the net flux of u in x-direction is∫

S(i+1/2)

Fdydz −
∫
S(i−1/2)

Fdydz = ∆y∆z
(
F n
i+1/2,j,k − F n

i−1/2,j,k

)
. (2.15)

If we now integrate A (eq. 2.12) numerically, a discrete time step can be written as

un+1
i,j,k − uni,j,k

∆t
∆x∆y∆z + ∆y∆z

(
F n
i+1/2,j,k − F n

i−1/2,j,k

)
(2.16)

+ ∆x∆z
(
Gn
i,j+1/2,k −Gn

i,j−1/2,k

)
(2.17)

+ ∆x∆y
(
Hn
i,j,k+1/2 −Hn

i,j,k−1/2

)
= 0 . (2.18)

The discrete temporal update for u is then

un+1
i,j,k = uni,j,k − ∆t

∆x

(
F n
i+1/2,j,k − F n

i−1/2,j,k

)
− ∆t

∆y

(
Gn
i,j+1/2,k −Gn

i,j−1/2,k

)
− ∆t

∆z

(
Hn
i,j,k+1/2 −Hn

i,j,k−1/2

)
. (2.19)

Note that eq. 2.19 is the so-called conservative form of the fluid part of ideal MHD
equations, exhibiting the conservation of u over the whole (numerical) domain. It
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expresses the fact that the flux coming out of one cell is added to the neighbouring
cells which share the same boundary. For an isolated system, summing up the fluxes
for the whole domain gives zero. Thus, conservation is ensured [189].
In a full operator-splitting scheme as used in FISH, one now applies one-dimensional
solving operators in each coordinate direction. Note that the major advantage of the
operator splitting technique is that permits the use of efficiently designed methods
for each type of sub-problem.
If we consider, for simplicity, the pure hydrodynamical case first and forget for a
moment about magnetic fields (and gravity), a splitted scheme then solves the 1D
equation

∂u

∂t
+
∂F

∂x
= 0 (2.20)

for the x-direction, followed by analogous expressions for G and H . So u is updated
according to eq. 2.19 by splitting it for each direction as follows:

Lx : u
n+1/3
i,j,k = uni,j,k −

∆t

∆x

(
F n
i+1/2,j,k − F n

i−1/2,j,k

)
,

Ly : u
n+2/3
i,j,k = u

n+1/3
i,j,k − ∆t

∆y

(
G
n+1/3
i,j+1/2,k −G

n+1/3
i,j−1/2,k

)
,

Lz : un+1
i,j,k = u

n+2/3
i,j,k − ∆t

∆z

(
H
n+2/3
i,j,k+1/2 −G

n+2/3
i,j,k−1/2

)
, (2.21)

where the Li are the solution operators for the coordinate considered. However,
operator splitting is not exact. Applying the solution operators as in eqs. 2.21 is
only first-order accurate in time. Nevertheless, it can be shown that applying the
directional solution operators Li twice, once in the forward and once in the backward
order, makes the splitting second-order accurate every second time step [220]:

LxLyLzLzLyLxu
n
i,j,k = LxLyLzu

n+1
i,j,k = un+2

i,j,k +O(∆t2) . (2.22)

Note that in the literature, applying a solution operator Li is often called the
x−, y−, z− sweep in the respective directions. The combination LzLyLx is called
the forward sweep, and LxLyLz the backward sweep.
If we turn our view now back to the more general case A (eq. 2.12), the solution
algorithm of FISH to the ideal, homogeneous MHD equations can be summarized as

un+2 = LforwardLbackwardu
n +O(∆t2) , (2.23)

where

Lforward = Lx (∆t)Byz
x (∆t)Ly (∆t)Bxz

y (∆t)Lz (∆t)Bxy
z (∆t)

Lbackward = Lz (∆t)Bxy
z (∆t)Ly (∆t)Bxz

y (∆t)Lx (∆t)Byz
x (∆t)

(2.24)

are the forward and backward operators for one time step. The operators Lx,y,z
evolve the fluid and account for the source terms, while the B operators evolve
the magnetic field 4. Note that during the fluid update, the magnetic field is held

4Lx,y,z account for a further sub-splitting with gravity in the following way: Lx,y,z =
Gx,y,z

2 LHD
x,y,z

Gx,y,z

2 ; a detailed explanation will be given in subsection 2.2.
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constant, while during the magnetic field advection, all quantities other than the
magnetic field are held constant. Note also that the numerical solution algorithm to
the MHD equations is explicit. Hence we are restricted by the Courant, Friedrich
and Lewy (CFL) condition [192]. Therefore we impose the following time step

∆tn = k ·min
i,j,k

(
∆x

Cn,x
i,j,k

,
∆y

Cn,y
i,j,k

,
∆z

Cn,z
i,j,k

)
(2.25)

where
Cn,d
i,j,k = max

(
vnd,i,j,k + cnF i,j,k

)
(2.26)

is the maximum speed at which information can travel in the entire computational
domain in direction d = x, y, z. It is the sum of the velocity component in d-direction
and the speed of the fast magnetosonic waves cF , i.e. the fastest wave propagation
speed supported by the equations of ideal MHD. cF =

√
c2s + v2

A, where cs is the
speed of sound and vA is the Alfvén velocity [124].
In our simulations, we typically set the CFL number k to 0.75.

Updating the fluid MHD equations: The LHDx (∆t) update

In this subsection, I will outline how FISH performs the purely hydrodynamical
LHDx (∆t)-update of the fluid variables u in x-direction. The y- and z-coordinates
are treated analogously.
Integrating eq. 2.20 over a cell Vi,j,k gives

∂ui,j,k

∂t
+

1

∆x
(F i′,j,k − F i′−1,j,k) = 0 (2.27)

where the definition of the cell averaged values has been substituted and Gauss’
theorem has been used. The numerical flux F i′,j,k represents an average flux of the
conserved quantities through the surface Si′,j,k

F i′,j,k =
1

Si′,j,k

∫
Si′,j,k

F (x, t) dydz (2.28)

at given time t. Today, the evaluation of systems like eq. 2.27 are generally per-
formed by Godunov-type [84] methods which now split into two parts:

• Reconstruction of the data at the cell interfaces. Based on the known cell
averages ui,j,k (see eq. 2.14), the data at the cell boundaries in smooth parts
of the flow can be reconstructed to any required accuracy in space. In the
vicinity of shocks the accuracy is dropped to first order to avoid spurious
oscillations [84].

• Solution of the local Riemann problem at the cell interfaces.

The algorithm of Pen et al. [185] which is applied in FISH addresses these issues by
a relaxation scheme of Jin and Xin [109]. For detailed information on this type of
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method, I refer to [109], with references therein.

The basic solution steps which the FISH code takes are the following:
a) A first-order upwind scheme [189] according to [109] is applied to reconstruct the
total flux at the intercell boundaries:

F i′ =
1

2
(F i + F i+1)−

1

2
D (ui+1 − ui) . (2.29)

For D we choose D = d · I to be a diagonal matrix, where

d = max (di, di+1) (2.30)

and d is the so-called freezing speed [109]. Inside a cell, it is chosen to be

di = |vx|+ cF . (2.31)

b) For smooth regions of flow, the first-order accurate reconstruction (see eq. 2.29),
which corresponds to a piece-wise constant approximation of the flux, is ‘upgraded’
to second order accuracy by a slope-limited total variation diminishing (TVD)
scheme (see, e.g., [238]). The total variation (TV) of u is defined by

TV (u) :=
∞∑

i=−∞

|ui − ui−1| . (2.32)

Second order accuracy of the flux is obtained by adding a piece-wise linear approx-
imation (=̂ slope) to a constant one:

F (x, t) ≈ F i + φ
∂F

∂x

∣∣∣∣
i

(x− xi) . (2.33)

At discontinuities, a so-called slope limiter is set to zero (φ = 0) which assures that
piecewise constant reconstruction is recovered, while away from discontinuities, the
second-order form is obtained. Thus, a slope limiter φ is then built so that the total
variation of the solution does not increase in time:

TV (un+1) ≤ TV (un) . (2.34)

In FISH, the total second-order accurate numerical flux is constructed according
to [109] as follows:

F i′ =
1

2
(F i + F i+1)−

1

2
D (ui+1 − ui)︸ ︷︷ ︸

1st−order

+
∆x

2

(
∆F +

i −∆F−
i+1

)︸ ︷︷ ︸
2nd−order

, (2.35)

where

∆F +
i = φ

(
∆F +,L

i ,∆F +,R
i

)
(2.36)

∆F−
i+1 = φ

(
∆F−,L

i+1 ,∆F−,R
i+1

)
. (2.37)
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F + = (w + Du)/2 denotes the right-travelling waves and F− = (w − Du)/2 the
left-travelling waves, and w = F (u). Moreover, the ‘left’ and ‘right’ handed first
order flux differences of the waves are given by

∂F +

∂x

∣∣∣∣
i

=


∆F +,L

i =
(
F +
i − F +

i−1

)
/∆x

∆F +,R
i =

(
F +
i+1 − F +

i

)
/∆x

(2.38)

and

∂F−

∂x

∣∣∣∣
i+1

=


∆F−,L

i+1 =
(
F−
i+1 − F−

i

)
/∆x

∆F−,R
i+1 =

(
F−
i+2 − F−

i+1

)
/∆x

. (2.39)

In core-collapse simulations performed with FISH, we use the Van Leer limiter [240,
241] in the subsonic flow regions and the minmod limiter in supersonic regions
(see [111], and references therein). The very diffusive minmod limiter is defined as

φ(a, b) = minmod(a, b) =
1

2
(sign(a) + sign(b)) min(|a|, |b|) . (2.40)

It compares the magnitude of the upwind slope with that of the downwind slope
and picks the one that is smaller in magnitude, or, in the case of a local extremum
where the two slopes have different signs, returns 0. The Van Leer limiter is defined
by

φ(a, b) =
1

2
(sign(a) + sign(b))

2ab

a+ b
. (2.41)

It provides considerably sharper resolution of discontinuities while still preserving
the TVD property.
For the time integration of eq. 2.27, a two-step predictor-corrector method [189]
is applied. As predictor, half a time step with the first order fluxes (see eq. 2.29)
is computed. We regard the freezing speed in the predictor step as a parameter
varying between d = 0 and d = max (di, di+1) to regulate the numerical dissipation.
Note that in all the core-collapse simulations I performed, the choice was d = 0.
Hence we vary the predictor between a first-order scheme and a second-order centred
difference scheme depending on the application. In the corrector step we then use
the calculated values from the predictor step un′ to compute the second order TVD
fluxes (see eq. 2.35):

un+1
i = un

i −
∆t

∆x

(
F n′

i′ − F n′

i′−1

)
. (2.42)

Hence a second order update in time and space of the fluid variables is obtained. For
more technical details and derivations, I refer to [111,112], with references therein.

Advection of the magnetic field: The Byz
x (∆t) update

In this subsection, I will quickly outline the procedure of updating the magnetic field
in x-direction Byz

x (∆t). The operators for the update in the other spacial directions
follow the same strategy.
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During the Byz
x (∆t) update, the quantities other than the magnetic field are held

constant. Thus, the update is governed by the induction equation [105]

∂b

∂t
−∇× (v × b) = 0 . (2.43)

The main numerical difficulty here is to fulfill and maintain the physical constraint
∇b = 0 within machine precision. Ordinary discretization of eq. 2.43 can only
guarantee that the divergence of the magnetic field is of the order of the trunca-
tion error [189]. Thus, at flow discontinuities, the discrete divergence may become
large, leading to errors which may accumulate during the simulation. The problem
with this fact is that a non-vanishing divergence of the magnetic field can produce
an ‘unphysical’ acceleration of the magnetized fluid parallel to the field lines [110].
There are several clever algorithms which circumvent this particular problem by
construction, as summarized in [239] and references therein.

FISH employs one particular method, the so-called constrained transport of Evans &
Hawley [69], to guarantee the divergence-preserving time evolution of the magnetic
field. The basic trick of this scheme is that it maintains the initial value ∇b = 0
by construction during every instant of the simulation. The starting point of the
constrained transport is to write the induction equation in integral form. Integrating
eq. 2.43, for example, over the surface Si′,j,k of cell Vi,j,k and using Stoke’s theorem
yields

∂

∂t
(bx)i′,j,k =

∫
∂Si′,j,k

v × b · dx , (2.44)

where ∂Si′,j,k denotes the contour of Si′,j,k, i. e. the edges of the cell-face at i′. The
cell face-averaged magnetic field components at time t are given by

(bx)i′,j,k =
1

Si′,j,k

∫
Si′,j,k

bx (x, t) dydz , (2.45)

where Si′,j,k = ∆y∆z denotes the cell face of cell Vi,j,k located at xi′ and spanned by
the zone increments ∆y and ∆z. (by)

n
i,j′,k and (bz)

n
i,j,k′ are defined analogously. The

integral form then naturally suggests one to choose the normal projections of the
magnetic field at faces of the cell Vi,j,k and the normal projections of the electric field
E = v × b at the cell edges as primary variables. This positioning leads directly
to the jump conditions of electric and magnetic fields [105] and therefore mimics
Maxwell’s equations at the discrete level (see fig. 2.1). The actual update of the
magnetic field in FISH is split into two advection steps and one constraint step [185].
In x-direction, this means that the y and z components of the magnetic field need
to be updated as

∂

∂t
(by)i,j′,k = − 1

∆x

[
(vxby)i′,j′,k − (vxby)i′−1,j′,k

]
∂

∂t
(bz)i,j,k′ = +

1

∆x

[
(vxbz)i′,j,k′ − (vxbz)i′−1,j,k′

]
,

(2.46)
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Figure 2.1: Schematic view of a 3D computational cell. The magnetic fields are
placed on cell faces. The physical constraint ∇b = 0 can also be ex-
pressed by

∑
faces ΦS = 0, where ΦS is the magnetic flux through a cell

face. This formulation is equivalent to the fact that each electromotoric
force E appears twice, but with opposite sign, as shown by the arrows
inside the black squares. Hence, they cancel out by construction, guar-
anteeing a divergence-preserving time evolution of the magnetic field.
The figure is courtesy of R. Käppeli.

and the x component of the magnetic field has to be updated as

∂

∂t
(bx)i′,j,k = +

1

∆y

[
(vxby)i′,j′,k − (vxby)i′,j′−1,k

]
− 1

∆z

[
(vxbz)i′,j,k′ − (vxbz)i′,j,k′−1

]
.

(2.47)

The fluxes in eq. 2.46 need to be upwinded for stability, since they represent the
two advection modes [111]. To maintain ∇ · b = 0 within machine precision, the
same fluxes used to update by and bz in eq. 2.46 need to be used in eq. 2.47 for the
bx update. To update (by)i,j′,k, the following steps are taken: The velocity vx needs
to be interpolated to the same location as (by)i,j′,k, i. e. to the cell face Si,j′,k. In
FISH, a stable manner of doing so is averaging in x-direction [111]

(vx)i,j′,k =
1

4

[
(vx)i+1,j′,k + 2 (vx)i,j′,k + (vx)i−1,j′,k

]
(2.48)
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A first-order accurate upwinded flux is given by

(vxby)i′,j′,k =


(vxby)i,j′,k , (vx)i′,j′,k > 0

(vxby)i+1,j′,k , (vx)i′,j′,k ≤ 0
(2.49)

where the velocity average is

(vx)i′,j′,k =
1

2

[
(vx)i,j′,k + (vx)i+1,j′,k

]
. (2.50)

Note that again second order accuracy in space and time is achieved in the same
fashion as for the fluid updates: a first-order predictor combined with a second order
corrector with a piece-wise linear TVD approximation to the fluxes. For further
details about implementation of the magnetic field evolution, I refer to Käppeli et
al. [111], sec. 2.4, and [185].

Incorporation of gravity: The Gx operator

In this subsection, I will sketch how the integration of the gravity source term (see
eq. 2.13) of the MHD equations (eqs. 2.7 and 2.11) is performed in FISH (see eq.
2.24). Again, I will outline the update in x-direction. The other dimensions are
treated in similar manner.
In our operator-split framework, the gravity update is merged with the hydrody-
namical update as Lx = Gx

(
∆t
2

)
LHDx Gx

(
∆t
2

)
, where Gx

(
∆t
2

)
denotes the gravity

update for half a time step, taken before and after the hydrodynamical update in
the corresponding dimension [111]. As a reminder:

Gx (∆t) :
du

dt
= Sx (2.51)

LHDx :
∂u

∂t
+
∂F

∂x
= 0 , (2.52)

where

Sx =


0

−ρ∂Φ/∂x
0
0

−ρvx∂Φ/∂x

. (2.53)

Note that, in principle, one could avoid source terms by adding gravity to the
total energy E = ρe + ρ

2
v2 + Φ. However, this is usually not done in core-collapse

simulations because of the overwhelming dominance of the gravitational energy over
the sum of the other energies contained in the simulated system, and the finite
precision of computers.
In the simulations I carried out, the differential equation 2.51 was discretized and
integrated via a first order explicit scheme:

un+1
i = un

i + ∆tSn
i . (2.54)
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Figure 2.2: Schematic description of the code set-up: the 3D computational domain
is embedded in a larger spherically symmetric domain. Figure adopted
from M. Liebendörfer.

Meanwhile, centred differences for the gravitational potential are used:(
∂Φ

∂x

)n
i

=
Φn
i+1 − Φn

i−1

2∆x
. (2.55)

I point out that the operator Gx only updates the fluid momentum and the total
energy while keeping the density fixed. The total energy is computed by summing
up internal, magnetic and kinetic energy and given as input to the LHDx operator.
Therefore, the total energy change due to the source term is implied from the up-
dated momentum field. Note also that there are more sophisticated higher-order
methods to incorporate gravity in FISH. These are outlined in [111,193].

2.2.1 Code set-up and performance

In the simulations I carried out (see chap. 3 and 4), the 3D computational do-
main consists of a central cube of either 6003 or 10003 cells, treated in equidistant
Cartesian coordinates with a grid spacing of 1km or 0.6km, respectively. It is, as
explained in [206] and shown in fig. 2.2, embedded in a larger spherically symmet-
ric computational domain that is treated by the time-implicit hydrodynamics code
‘Agile’ [135].

A computational problem of the size O(109) grid points and another O(10) vari-
ables per grid point can nowadays not be handled by the resources of a single
computer/CPU and thus needs to be parallelized. In a more casual formulation,
one would say that to pull a bigger wagon, it is easier to add more oxen than to
grow a gigantic ox [249].

56



2.2 Numerical solution of the MHD equations: The FISH & ELEPHANT codes

Figure 2.3: The figure shows ‘strong scaling’ of FISH. The test was performed on the
ROSA system (Cray XT-5, nodes with 2 quad-core AMD Opteron 2.4
GHz Shanghai processors, SeaStar 2.2 communications processor with
2 GBytes/s of injection bandwidth per node) at the Swiss National Su-
percomputer Center (CSCS), and consisted of 50 time steps at the onset
of the collapse. The problem size was kept constant at 6003 cells. The
speedup, normalized to 216 processes, is shown on the left hand side.
The efficiency is displayed on the right hand side. The dashed lines with
data points taken at the circles refer to a parallelization that uses only
MPI. The solid lines with data points taken at the crosses refer to a
hybrid parallelization with MPI between nodes and Open MP within
nodes.

Hence, the 3D computational domain is split into several smaller sub-problems by
a so-called ‘cubic domain decomposition’ [190]. FISH then solves the decomposed
problem by means of a hybrid parallelization scheme, i.e. with MPI (distributed
memory parallelization; see [249]) between nodes and Open MP (shared memory
parallelization; see [25]) within nodes. With this setup, the code scales nicely to at
least 8000 parallel processes, as displayed in fig 2.3. Note that as the number of
processors is increased, the ratio of buffer zones to volume zones increases as well.
In this case it is the evaluation of the physics equations on the buffer zones that
limits the efficiency. However, fig. 2.3 also shows that FISH scales very nicely to
of O(10000) processors in the hybrid MPI/Open MP. This scaling can be achieved
because the parallelization with Open MP does not increase the number of buffer
zones.

For further information about details on the parallelization, I refer the reader to
[111], sec. 3.
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2.2.2 Treatment of gravity

This subsection is devoted to methods for numerically solving the elliptic, linear
and non-homogeneous second-order Poisson Equation (see eq. 2.6) with Dirichlet
boundary conditions in one, two and three dimensions [190].

Solving the Poisson equation efficiently within a 3D MHD code carries severe diffi-
culties. The hyperbolic MHD part of the code is, as pointed out previously, solved
locally for a bunch of fluid zones with a minimum of communication between the
computational nodes when exchanging the data contained in the buffer zones, be-
cause the propagation of physical information is limited by the fastest speed in the
system (see eq. 2.26). The Poisson equation on the other hand is acausal, i.e. not
restricted by any signal speed. Thus, whenever one tries to integrate eq. 2.6, the
information of the density distribution of the entire computational domain must
be accessible at once, which consequently involves data exchange via ‘expensive’
collective MPI routines [249]. For a problem size of O(109) computational zones,
attempts to solve the Poisson equation thus must avoid massive data transfer as
‘well’ as possible in order to prevent the simulation from getting inefficient due to
huge amounts of idle time.

Below, I will outline several ways how the Poisson equation for gravity can be
solved reasonably efficiently in a 3D MHD core-collapse simulation. Note that these
methods – like the neutrino transport approximations (see sec. 2.4) – are aimed at
capturing only the dominant physical features and are not meant as final answers
to the problem.

Gravity in (1D) spherical coordinates and general relativistic corrections

In most of the simulations I carried out, namely the ones published in [206,207,209],
gravity was treated in spherical symmetry.

As a first approximation, this is reasonably good for non- and slowly rotating stars,
as long as they do not undergo strong deformation by centrifugal forces [228].

The corresponding, spherically symmetric Poisson equation in principle yields

1

r2

∂

∂r

(
r2∂Φ

∂r

)
= 4πGρ(r) , (2.56)

which is integrable within a negligible amount of CPU time (< 1%) compared to
the overall time consumption of a purely hydrodynamical simulation. However, as
pointed out in sec. 1.8, the pure Newtonian approach to gravity is too simplistic, as
it underestimates the net gravitational potential (see fig. 2.4) compared to the GR
case, leading to physically ‘wrong’ infall velocities, neutrino luminosities, too ‘flat’
derivatives of the gravitational potential and so forth (see [38,138]).

Therefore, it is important to include an appropriate approximation to radial general
relativistic effects in our Newtonian MHD codes FISH and ELEPHANT. We meet this
requirement by implementing the gravitational potential via a spherically symmetric
mass integration that includes general relativistic corrections [147]. In this approach,
the Newtonian gravitational potential Φ is replaced by an effective potential Φeff
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Figure 2.4: Comparison of the gravitational potential of the rotating models AGR

(detailed initial conditions described in sec. 3.5, where the model is
denoted as A) and ANEWT in the y = z = 0 plane, 64 ms after bounce.
Model AGR was carried out applying the GR corrected potential of Marek
et al. [147], while ANEWT was computed in pure Newtonian gravity.

(‘case A’ potential; see [147]),

Φeff (r) =

∫ ∞

r

dr′

r′2

[meff

4π
+ r′3 · (p+ pν)

]
· 1

Γ2

(
ρ+ e+ p

ρ

)
, (2.57)

with p being the gas pressure, pν the neutrino pressure and e the internal energy
density. The effective mass is given by

meff (r) = 4π

∫ r

0

dr′r′2 (ρ+ e+ E) , (2.58)

where E is the neutrino energy density. The metric function Γ is given by

Γ =

√
1 + v2

r −
2meff

r
. (2.59)

where vr is the radial fluid velocity. Note that [162] also proposed an effective
relativistic gravitational potential for rapidly rotating configurations. However, since
it would have added another degree of freedom to my model parameters, I did not
consider it in my PhD studies.
Note that in order to calculate the effective relativistic potential for multi-dimensional
flows it is sensible to substitute the ‘spherical contribution’ Φ(r) to the multi-
dimensional Newtonian gravitational potential with the GR corrected potential Φeff .
In the case of 3D Cartesian coordinates x, y, z for example, this results in

Φeff (x, y, z) = Φ(x, y, z)− Φ(r) + Φeff (r) . (2.60)
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Here, Φeff is calculated according eq. 2.57. However, the hydrodynamic quantities
ρ, e, p, vr and the neutrino quantities E, pν must be replaced by their corresponding
angular averaged values. Moreover, note that vr in eqs. 2.58 and 2.59 in the multi-D
case refers to the radial component of the velocity, only.

Gravity in (2D) axisymmetry and cylinder coordinates

Massive stars which rotate at the onset of core collapse undergo a considerable spin-
up due to angular momentum conservation during the infall phase [119]. During this
process, the initial rotation rate easily grows by a factor of order O(103) [62]. The
configuration of the gravitational potential therefore is more naturally described by
a two-dimensional axisymmetric approach compared to a spherical one [228].
The Poisson equation for the gravitational potential Φ(r, z) in (axisymmetric) cylin-
drical coordinates reads [105]

1

r

∂

∂r

(
r
∂Φ

∂r

)
+
∂2Φ

∂z2
= 4πGρ(r, z) . (2.61)

The second-order O(h2
r + h2

z) finite differencing analog of eq. 2.61 yields [27]:

Φk,j+1

[
1 +

1

2(j − 1)

]
− 2Φk,j

[
1 +

h2
r

h2
z

]
+ Φk,j−1

[
1− 1

2(j − 1)

]
+ Φk+1,j

[
h2
r

h2
z

]
+ Φk−1,j

[
h2
r

h2
z

]
= 4πGρk,jh

2
r , (2.62)

where hr and hz is the grid spacing along the corresponding coordinate axis (see
fig. 2.5). For the purpose of 3D MHD core-collapse simulations, a data set where
the density distribution is averaged over cylinders rotating about the z−axis is
constructed on the fly at every time step of the simulation (the interpolation routine
to jump back and forth between the 2D and 3D grid was kindly provided by R.
Käppeli). Note that in production mode, the cylindrical grid usually consists of 300
data points in r-direction and 600 in z-direction. The grid resolution was chosen to
be hr = hz = 1 km. Moreover, I impose Dirichlet boundary conditions [190],

Φ = g on ∂Ω . (2.63)

Assuming r ∈ [0, Rmax] and z ∈ [zmin, zmax], the outer three of the four the boundary
section of our axisymmetric problem at Φ(r, zmin), Φ(r, zmax), and Φ(Rmax, z) are
prescribed by Φ(r′), where Φ(r′) is the spherically symmetric solution of the Poisson
equation at the particular adjacent spherical radius r′. At Φ (0, z), a difficulty occurs
since one has to circumvent a singularity at r = 0 (see eq. 2.61). This is done
by choosing the grid cell-centered, i. e. r never becomes zero. The remaining
boundary condition is fixed with mirror boundary conditions [105], Φ

(
rj=1/2, z

)
=

Φ
(
rj=−1/2, z

)
. Technically, this is achieved by copying Φ

(
rj=1/2, z

)
over the value

of Φ
(
rj=−1/2, z

)
after each iteration within the Poisson solver (the module which

handles these boundary conditions was kindly provided by R. Käppeli).
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Figure 2.5: Discretization of the Poisson equation in cylindrical coordinates. Ax-
isymmetry is assumed. Figure taken from [27].

A problem size of 300×600 points (instead of 6003 for the entire, unreduced problem)
brings the major advantage that it can easily be solved on one single compute node
locally due to relatively low memory requirements. Any algorithm to solve the
Poisson problem thus will not require multiple calls to collective MPI ‘send’ and
receive’ routines [249], but only one before and one after the actual solution of
eq. 2.62. Reasonable speed-up of a factor of ∼8-10 (see tab. 2.2) can then be
gained by parallelizing it locally via Open MP [25], since the architecture of modern
high-performance cluster such as the CRAY-XT5 at CSCS, Manno, Switzerland
incorporates 12 or more CPU cores per node (status: spring 2010).

The discretized version of the Poisson equation (eq. 2.62) obviously leads to a system
of linear equations [189,18]. The main difficulty in solving linear problems arises from
the large size of the algebraic system. Even though the matrix is sparse, the nonzero
elements are usually not confined to positions next to the diagonal (see fig. 2.7).
Hence, it is not easy to use the sparseness of the matrix to improve the efficiency of
the direct methods for solving a system of linear equations. The most popular way
of solving such systems efficiently are so-called iterative methods like the ‘multigrid’,
or the ‘successive over-relaxation’ (SOR) algorithm [189, 18]. Such iterative solvers

start with an initial guess for the solution ~x and compute the residuals ~r = A~x−~b.
Changes are then made in the solution via a certain prescription in order to reduce
some component of the residual to zero. This process is repeated until all residuals
have been reduced to an acceptable level. If the initial guess is ‘good’, i.e. close
to the solution, these methods converge quickly. Moreover, such solvers bear the
following advantages over the direct methods: a) The iterative methods require little

61



2 3D MHD Core-Collapse Simulations: Implementation

memory compared to direct methods, which need to store a significant fraction of
the matrix elements in the computer memory. b) The methods are relatively easy
to implement, as the main iteration loop usually contains only few lines of code.

For our axisymmetric target application (eq. 2.62), I have chosen to implement
the SOR algorithm [189,18] over a direct matrix solver or the multigrid method for
the following reasons: i) A sparse matrix solver is hardly applicable together with
the imposed mirror boundary conditions; therefore, I have to choose some sort of
iterative solver. ii) The applicability of the SOR is more flexible than a standard
multigrid iterative method. The latter solver usually requires 2n + 1 grid points in
each spatial direction in order to be able to perform its coarsening and prolongation
operations [189]. If the finite-difference grid is not square, but has different size
sides (i.e. 600× 300), interpolation to fill up the missing points becomes necessary.
Thus, although the multigrid method in principle provides better scaling behaviour
with number of stencils compared to the SOR [189, 18] the interpolation process in
practice slows the multigrid down, making the running times presumably compara-
ble. Note, however, that a test of this handwaving statement remains to be carried
out.

I now specify the basic idea of SOR [189]. Suppose we wish to solve the elliptic
equation

Lu = ρ , (2.64)

where L represents some elliptic operator such as the Laplacian, and ρ is the source
term. Now, the trick of an iterative method is to rewrite eq. 2.64 as a diffusion
equation,

∂u

∂t
= Lu− ρ . (2.65)

An initial distribution u relaxes to an equilibrium solution as t→∞. This equilib-
rium has all time derivatives vanishing. Therefore it is the solution of the original
elliptic problem. If I rewrite eq. 2.65 in finite differences, the algorithm to update
un+1
j,l reads [189]

un+1
j,l = unj,l + ∆t (LFDun − ρn ) . (2.66)

This procedure, the building block of any relaxation method, is then iterated until
convergence, i.e. the equilibrium solution is reached.

Let us now turn our attention on a general, second-order elliptic equation in 2D,
finite differenced as for our Poisson equation 2.62. It can generally be expressed
by [189,18]

aj,luj+1,l + bj,luj−1,l + cj,luj,l+1 + dj,luj,l−1 + ej,luj,l = fj,l . (2.67)

For our target application (see eq. 2.62), we had for example a = b =
[
h2

r

h2
z

]
, c =[

1 + 1
2(j−1)

]
, d =

[
1− 1

2(j−1)

]
, e = 2

[
1 + h2

r

h2
z

]
, and the quantity f = 4πGρ(r, z) is

proportional to the source term.
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The iterative procedure of the SOR to solve for a certain unewj,l is, in analogy to eq.
2.66, defined by the following steps: First, we solve eq. 2.67 for uj,l:

u?j,l =
1

ej,l
(fjl − aj,luj+1,l − bj,luj−1,l − cj,luj,l+1 − dj,luj,l−1) . (2.68)

Then the updated unewj,l is a weighted average

unewj,l = ωu?j,l + (1− ω)uoldj,l . (2.69)

This second step makes an overcorrection to the values of unewj,l , anticipating future
corrections with the overrelaxation parameter ω [189,18].
Numerically, we compute unewj,l as follows: The residual at any stage is

ξj,l = aj,luj+1,l + bj,luj−1,l + cj,luj,l+1 + dj,luj,l−1 + ej,luj,l − fj,l , (2.70)

and the SOR algorithm (eq. 2.69) is

unewj,l = uoldj,l − ω
ξj,l
ej,l

, (2.71)

where the residual vector ξj,l can be used for terminating the iteration.
Note the following points [18, 189]: i) If ω = 1, the SOR translates into the Gauss-
Seidel method. ii) The SOR method is convergent only for 0 < ω < 2. If 0 < ω < 1,
we speak of underrelaxation. Under certain mathematical restrictions, generally sat-
isfied by matrices arising from finite differencing, only 1 < ω < 2 can give faster
convergence than the Gauss-Seidel iteration. iii) There are several ways of choosing
ω ‘optimally’: either empirically or by automated schemes [189]. In my numerical
tests, I found fastest convergence by fixing it manually to ω = 1.7.

I tested the SOR solver with a broad range of analytical problems and boundary
conditions in order to measure its capabilities. One exemplary analytical test which
I performed is the following:

∆Φ(x, y) = x2 + y2 . (2.72)

In the interval x, y ∈ [0, 1], mapped onto 1002 grid points, I imposed as boundary
conditions:

Φ(x, 0) = 0 (2.73)

Φ(x, 1) =
1

2
x2 (2.74)

Φ(0, y) = sin (πy) (2.75)

Φ(1, y) = exp (πx) sin(πy) +
1

2
y2 (2.76)

The analytical solution of this problem is

Φ(x, y) = exp (πx) sin(πy) +
1

2
(xy)2 . (2.77)
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Figure 2.6: Left panel: Numerical solution eq. 2.72. Right panel: Relative error
Φnum(x, 0.5)/Φanalyt(x, 0.5)− 1 along the x-axis.

The result of this test is shown in fig. 2.6. Note that in this computation I have
chosen the residual to be < 10−6 as abord criterion for the SOR iteration.
In the production mode of purely hydrodynamical simulations of size of 6003 zones,
∼ 5% of the overall CPU time is spent on the axisymmetric SOR solver (see sec.
4.2).

Gravity in 3D: sparse matrix solver

It is almost certain that core-collapse dynamics relies on features which are genuine
3D, as I outlined in sec. 1.2. Hence, in order to be consistent, gravity should be
treated in a non-restrictive way, i.e. in 3D. This must, for the same reasons as stated
in the previous subsection, be done in an efficient way.
In order to meet this requirement, I plan to solve the 3D Poisson equation only for
the innermost ∼ 1003 to 1203 zones in dynamical simulations. From the phyiscal
point of view, this approach is reasonable, as more than & 99% of the mass treated
in such computations are contained in this central volume, thus making the dom-
inant contribution to gravity. Moreover, in this way I can solve the 3D Poisson
problem on one single node and therefore suppress again several time-consuming
calls to collective MPI routines [249].

In 3D Cartesian coordinates, the Poisson equation for the gravitational potential
reads

∆Φ(x, y, z) =

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
Φ = 4πGρ(x, y, z) . (2.78)

The discretized version of eq. 2.78 (assuming a uniform spatial discretization) on
an m× n× k grid yields the following formula:

Φi−1,j,k + Φi,j−1,k + Φi,j,k−1 − 6Φi,j,k+

Φi+1,j,k + Φi,j+1,k + Φi,j,k+1 = 4πGh2ρ(x, y, z) , (2.79)
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where h is the grid spacing. Equation 2.79 can be casted into a matrix notation,
representing an mnk ×mnk linear system of the general form

A~Φ = ~ρ . (2.80)

For a 3 × 3 × 3 (m = 3, n = 3, k=3) grid with all the boundary nodes fixed (set
to be zero), the matrix A of the system would look as displayed in fig. 2.7. In our

notation, the entries of the vectors ~Φ and ~ρ are defined as follows:

~Φ =



Φ111

.

.

.
Φ11k

Φ121

.

.

.
Φ1nk

Φ211

.

.

.
Φmnk



; ~ρ = 4πGh2



ρ111

.

.

.
ρ11k

ρ121

.

.

.
ρ1nk

ρ211

.

.

.
ρmnk



, (2.81)

where ρi,j,k is the original density field. In the framework of the linear system (eq.
2.80), Dirichlet boundary conditions can easily be included by shifting them to the
vector ~ρ via subtraction. In order to clarify the procedure, I give an example in
1D (cf. eq. 2.79). Let us assume a discrete Poisson equation in 1D Cartesian
coordinates, having m stencils (i ∈ [1,m]), and boundary values at i = 0 and
i = m+ 1. At i = 1, the Poisson equation then reads.

Φ0 − 2Φ1 + Φ2 = 4πGh2ρ1 (2.82)

The lower boundary condition Φ0 is now shifted to the other side of the equation:

− 2Φ1 + Φ2 = 4πGh2ρ1 − Φ0 . (2.83)

The upper boundary at i = m is treated in analogy:

Φm−1 − 2Φm = 4πGh2ρm − Φm+1 . (2.84)

Subsequently, the same recipe is followed in 3D whenever one of the three running
indices i, j, k reaches its minimum or maximum value.
The sparse matrix A (see fig. 2.7) can be solved via direct matrix inversion by means
of a ‘sparse matrix solver’ (see, e.g., [18]). However, the main difficulty in solving
linear problems arises because of the large size of the algebraic system. Even though
the matrix is sparse, as already stated above, the nonzero elements are usually not
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Figure 2.7: The figure displays the matrix A (see eq. 2.80) of the discrete 3D Poisson
equation in Cartesian coordinates for a 3× 3× 3 problem.

confined to positions close to the diagonal. Hence, it is not easy to use the sparseness
of the matrix to improve the efficiency of the direct methods for solving a system
of linear equations. However, with significant developments in direct solutions of
sparse matrices [189], the scene is changing in favour of direct methods.
One of the most powerful, memory-efficient, and publicly available sparse matrix
solver is PARDISO 5 [211,212,168,169], which I apply to solve the 3D Poisson equa-
tion for gravity. It is shared-memory parallelized and solves sparse n × n matrices
with a complexity of O(nα(τ + n log n)), with n being the number of equations, τ
the number of matrix entries, and α < 1 for matrices arising from finite-difference or
finite-element discretizations [169]. However, I point out that I use the PARDISO
solver as a black box. The mathematically sophisticated algorithms which are ap-
plied are beyond the scope of this dissertation. Below, I will therefore only report
on the results obtained with PARDISO.
I tested the PARDISO solver with a broad range of analytical problems and bound-
ary conditions in order to measure its capabilities and its speed. One exemplary
analytical test which I performed is the problem case

∆Φ(x, y, z) = f(x, y, z) = −48π2 sin(4πx) sin(4πy) sin(4πz) . (2.85)

In the interval x, y, z ∈ [0, 1], mapped onto 1003 grid points, I imposed Dirichlet
boundary conditions ∂Ω = 1. The analytical solution of eq. 2.85 reads

Φ(x, y, z) = sin(4πx) sin(4πy) sin(4πz) . (2.86)

The result and the relative error are displayed in fig. 2.8. Excellent agreement

5PARDISO can be freely downloaded at http : //www.pardiso− project.org/
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Figure 2.8: Left panel: Numerical solution of eq. 2.85 in the z = 0.5 plane. Right
panel: Relative error Φnum(x, 0.5, 0.5)/Φanalyt(x, 0.5, 0.5) − 1 along the
x-axis.

# CPU elapsed time [sec]
1 11.72
2 5.92
4 3.29
8 2.01
12 1.38

Table 2.1: Scaling test of the PARDISO sparse matrix solver on one of CSCS’s Cray
XE6 (‘Palu’; 2.1GHz, 12-core AMD Opteron (aka Magny-Cours)) nodes.
The problem size considered here is 1003 zones.

between the numerical and the exact solution was found, having a residual of .
10−12.

Solving the Poisson equation for gravity in 3D should, as previously stated in this
subsection, not consume more CPU time than one hydro time step, as the 3D MHD
code else would become very inefficiently. Thus, I carried out a scaling test for 1003

zones, the results of which are summarized in tab. 2.1.

Gravity in 3D: spectral methods

An alternative efficient approach to solve the 3D Poisson equation is presumably
provided by spectral methods (see [190, 188], with references therein). In close col-
laboration with Jérôme Novak (he provided all the necessary routines), we adjusted
a spectral Poisson solver from the open-source code library LORENE 6 (Langage
Objet pour la RElativité NumériquE) to the context of FISH and ELEPHANT.

For the sake of consistency, I outline the basic functionality of spectral methods
and the spectral Poisson solver, but omit technical and mathematical details. For a
fine-grained introduction to the method, I point the reader to [190,188].

6The URL to download LORENE is http://www.lorene.obspm.fr/
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In contrast to finite-difference methods, spectral methods represent a function f not
by its values on a finite number of grid points, but by using coefficients {ci}i=0..N in
a finite basis of known, smooth functions {Φi}i=0..N , so-called trial functions. Let
us take, for example, a function f : [−1, 1] → R. It can be approximated as

f(x) ≈
N∑
i=0

ciΦi(x) . (2.87)

Spectral methods are, as in our target application, often based on orthogonal poly-
nomials. In order to define orthogonality, one must define the scalar product of two
functions on an interval, in our example [−1, 1]. Let us consider a positive function
w on [−1, 1] called the measure [77]. The scalar product of f and g with respect to
this measure is defined as

(f, g)w :=

∫
x∈[−1,1]

f(x)g(x)w(x)dx . (2.88)

A basis PN is then set of N + 1 polynomials {pn}n=0...N . pn is of the degree n and
the polynomials are orthogonal: (pi, pj)w = 0 for i 6= j. The projection PNf of a
function f on this basis is then

PNf =
N∑
n=0

f̂n pn , (2.89)

where the coefficients of the projection are given by

f̂n =
(f, pn)

(pn, pn)
. (2.90)

The difference between f and its projection goes to zero when N increases:

‖f − PNf‖∞ → 0 for N →∞ . (2.91)

At first sight, the projection seems to be an interesting mean of numerically repre-
senting a function. However, in practice, this is not the case, because for determining
the projection of a function, one needs to compute the integrals in eq. 2.90, which
require the evaluation of f at a large number of points, making the whole scheme
impractical [188].
To circumvent this difficulty, the idea of the spectral methods is to approximate
the coefficients of the projection by making use of the Gaussian quadrature, which
states that, given a measure w, there exist N+1 positive real numbers wn and N+1
real numbers xn ∈ [−1, 1] such that:

∀f ∈ P2N+1 :

∫
x∈[−1,1]

f(x)w(x)dx =
N∑
n=0

f(xn)wn . (2.92)

The xn are so-called collocation points. Thus, one can define the interpolant of a
function f by

INf =
N∑
n=0

f̃npn(x) , (2.93)
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where

f̃n =
1

γn

N∑
i=0

f(xi)pn(xi)wi and γn =
N∑
i=0

p2
n(xi)wi . (2.94)

The f̃n exactly coincide with the coefficients f̂n (see eq. 2.90) if the Gaussian quadra-
ture is applicable for computing eq. 2.90, that is, for all f ∈ P2N+1. So, in general,
INf 6= PNf . The advantage of using f̃n is that they are computed by estimating f
at N +1 collocation points only. However, one can show that INf and f coincide at
the collocation points: INf(xi) = f(xi) so that IN interpolates f on the grid, whose
nodes are the collocation points.

Having laid out these first principles of the spectral methods, I now turn my at-
tention back to the Poisson equation. In the current set-up, I solve it inside a 3D
spherical volume of radius R (typically ∼ 60km) with Dirichlet boundary condi-
tions at radius R, which are prescribed either by a spherically symmetric or an
axisymmetric solution (cf. chap. 4).
The steps taken to obtain the solution are the following:

• interpolate the 3D density distribution from the finite difference grid (FD) to
the spectral mesh (SM),

• solve the Poisson equation to obtain the 3D gravitational potential, and

• make a spectral summation of the field from the spectral to the FD grid.

Schematically:
ρFD −→ ρSM −→︸︷︷︸

∆−1

ΦSM −→ ΦFD (2.95)

Inside the spherical volume, our gravitational field Φ is expressed in spherical coor-
dinates (r, θ, φ). Then, it is decomposed in a basis of spherical harmonics [105]:

Φ(r, θ, φ) =
∑
`,m

f`m(r)Y m
` (θ, φ) (2.96)

where l ∈ [0, `max], and m ∈ [−`, `]. The same is also done with the source term
s(r, θ, φ) of the Poisson equation (note that here I omit the prefactor 4πG for sim-
plicity):

s =
∑
`,m

s`m(r)Y m
` (θ, φ) . (2.97)

Because spherical harmonics are eigenfunctions of the angular part of the Laplace
operator, the Poisson equation ∆Φ = s can be equivalently solved as a set of ordinary
differential equations (ODEs) for each tuplet (`,m), in terms of the coordinate r:

∀(`,m) :
d2f`m
dr2

+
2

r

df`m
dr

− [`(`+ 1)]

r2
f`m = s`m . (2.98)

This collection of ODEs is solved using a multi-domain spectral technique (see [188],
chapters 1.3 and 2.6 for the technical details), where one maps a certain part of the
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physical domain [Rmin, Rmax] 7→ [−1, 1], and the radial coordinate r 7→ ξ. Note that
in our application, we use 5 domains.
We then decompose each field in a (finite) basis of Chebyshev polynomials {Ti=0...N}:

s`m(ξ) =
N∑
i=0

ci`mTi(ξ) , (2.99)

f`m(ξ) =
N∑
i=0

ai`mTi(ξ) . (2.100)

The Chebyshev polynomials Ti are eigenfunctions of a singular Sturm-Liouville prob-
lem [86, 188]. Given that T0 = 1 and T1 = x, the higher-order polynomials can be
obtained by making use of the recurrence relation

Tn+1 = 2xTn − Tn−1 . (2.101)

They are orthogonal on [−1, 1] with respect to the measure w = 1/
√

1− x2, and the
scalar product of two polynomials is

(Tn, Tm) =

∫ 1

−1

TnTm√
1− x2

dx =
π

2
(1 + δ0n)δmn . (2.102)

The derivatives are given by

∀n > 1 :
dTn+1(x)

dx
= 2(n+ 1)Tn(x) +

n+ 1

n− 1

dTn−1(x)

dx
. (2.103)

The adapted grid for the computation of the spectral coefficients is equidistant
in angular directions (9 points for θ, 16 for φ in our code version); moreover, we
compute Chebyshev-Gauss-Lobatto collocation points (33 in our case) for the radial
direction. The positions of the latter and the weights are given by analytic formulae

xi = cos

(
πi

N

)
w0 = wN =

π

2N
and wi =

π

N
. (2.104)

The coefficients can now be obtained by performing a Fast Fourier Transform (FFT,
[189]). Having these, each function f`m (see eq. 2.100) can thus be regarded as
column-vector A`m of its N + 1 coefficients ai`m in its basis; the linear differential
operator on the left-hand side of eq. 2.98 is then a matrix L`m acting on the vector
(cf. the previous subsection on the sparse matrix solver method)

L`mA`m = S`m , (2.105)

with S`m being the vector of the N + 1 coefficients ci`m of si`m.
The matrix L`m can be computed from the recurrence relations fulfilled by the
Chebyshev polynomials and their derivatives. Once the boundary conditions are
incorporated in eqs. 2.105 (see [188], sec. 2.5.2), these linear systems can be inverted
for each tuplet of values (`,m) with coefficients of the source term on the right-hand
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side. The idea therefore is to invert something like O(302) ODEs, and for each one to
invert a ∼ 30×30 matrix per domain. In view of the fact that for spectral methods,
the error decays as e−`max · e−N [88], machine round-off accuracy can already be
reached with `max ∼ N ∼ 30, which makes the matrix inversions very cheap in
terms of CPUh and the whole method affordable in terms of memory usage. These
are the two main advantages of using spectral methods [188]. Note that for the time

# CPU elapsed time [sec]
1 10.44
2 5.43
4 3.73
8 2.05
12 1.52

Table 2.2: Scaling test of the Poisson solver on one of CSCS’s Cray XT-5 (‘Rosa’)
nodes. The problem size was a 3D sphere of radius R = 60km and
with a grid spacing of 1km in the Cartesian domain. Note that the test
volume treated here is ∼ 10% smaller than the one considered in tab. 2.1
with the sparse matrix solver. The elapsed time includes the interpolation
process from the FD grid onto the spectral grid, the solution of the Poisson
equation itself, and the spectral summation from the spectral back to the
FD grid (see eq. 2.95).

being, the first and last step (see eq. 2.95), on which most of the CPU time is spent
during the solution procedure (∼ 99%), are currently OpenMP parallel [25]. In the
more distant future, a hybrid parallelization scheme might also be applied, where,
in addition, each of the 5 domains will be distributed to separate MPI processes.

One central issue when computing the gravitational potential via spectral methods is
that no mass should get lost when interpolating back and forth between the spectral
and Cartesian grid. In our case, the interpolation conserves mass very well, with a
relative error smaller than . O(10−8), as displayed in fig. 2.9.

Comparison of methods: spherical mass integration vs. spectral solver vs.
sparse matrix solver

Figure 2.10 displays comparisons of both 3D poisson solvers with the spherically
symmetric mass integration and each other. As test data, I have chosen a density
distribution of model ANEWT (see tab. 3.5), 64 ms after bounce. The comparison of
both 3D Poisson solvers shows that they deliver a comparable solution for the grav-
itational potential, with an agreement of ∼ O(10−3). Moreover, the comparison of
both 3D solvers with the spherically symmetric solution shows a certain discrepancy
at the origin. This is because the 1D poisson equation owns a singularity at r = 0
(cf. eq. 2.56), which is circumvented by assuming a constant value for Φspherical, int

according to the mass contained inside the central zone. This procedure leads to a
somewhat deeper gravitational well compared to the 3D solutions.
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Figure 2.9: The figure displays two density distributions of a test data set. The first
one (black) is taken from the original data, while the second one (red) is
an interpolated distribution which resulted after having been sent to the
spectral grid and back to the Cartesian grid. It becomes clear that the
interpolation hardly introduces numerical errors, as the two lines cannot
be distinguished. The test data were taken from density distribution of
model ANEWT (see tab. 3.5) 64 ms after bounce. The figure is courtesy
of Jérôme Novak.

2.3 Equations of state

The system of the MHD equations (eqs. 2.1-2.4) must be closed by an equation of
state (EoS) which provides the pressure as well as other thermodynamic quantities
as a function of density, temperature (or specific internal energy), and composi-
tion/electron fraction. In core-collapse simulations, the inclusion of a ‘realistic’
EoS, which is built from a microphysical finite-temperature model is crucial, as an
EoS must be able to capture the stiffening of nuclear matter around nuclear matter
density. Moreover, such a sophisticated EoS is also a prerequisite for any kind of
neutrino transport treatment, since the crucial compositional information as well as
chemical potentials must be derived from a microphysical model (see sec. 2.4).
In core-collapse supernova simulations, an EoS has to handle several different regimes.
For temperatures below ∼0.5MeV, the presence of nuclei and time-dependent nu-
clear processes dominate the internal energy evolution. For simplicity, an ideal gas
of Si-nuclei is assumed, which, for our GW studies (see chap. 3 and 4), is sufficiently
accurate to describe the low baryonic pressure contribution at low densities in the
outer core (T. Fischer (2009), private communication). At higher temperatures,
where matter is in nuclear statistical equilibrium (NSE), we employ two alternative
EoS: The Lattimer & Swesty EoS ( [130], LS EoS) and the one by Shen et al. [215].
Note that such microphysical EoS are too complicated to be computed on the fly in
a simulation and are used in tabulated form with interpolation.
The Basel 3D MHD codes run with tables based on the thermodynamically inde-
pendent variables (ρ, s, Ye), which in their final form consist of 100 × 100 × 100
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Figure 2.10: Upper left panel: Comparison of the gravitational potential
Φ along the x-axis, obtained either via a spherically symmetric
mass integration, or a solution of the 3D Poisson equation via
the PARDISO solver. Upper right panel: Relative difference
ΦPARDISO(x, 0, 0)/Φspherical,int(x, 0, 0) − 1 along the x-axis. Middle
left panel: Comparison the the spherically symmetric mass integra-
tion with the 3D spectral solver. Middle right panel: Relative differ-
ence ΦLORENE(x, 0, 0)/Φspherical,int(x, 0, 0)− 1 along the x-axis. Lower
left panel: Comparison of the two 3D Poisson solvers. Lower right
panel: Relative difference ΦPARDISO(x, 0, 0)/ΦLORENE,int(x, 0, 0) − 1
along the x-axis.
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equidistant points in log10 ρ, log10 s, and Ye, respectively (T. Fischer, private com-
munication (2010)).

2.3.1 Lattimer-Swesty EoS

The Lattimer-Swesty EoS [130] is based on a phenomenological, finite-temperature
compressible liquid drop model; it also includes surface effects as well as electron-
positron and photon contributions. The LS EoS assumes a nuclear symmetry energy
of 29.3MeV and I will perform simulations (see chap. 3) with three choices of the
nuclear compressibility modulus K (180, 220, 375MeV) as provided by [130]. Since
variations in K affect the stiffness of the nuclear component of the EoS, this enables
us to probe the effects of variations in stiffness while keeping the general EoS model
fixed.
The variants of the LS EoS used in this work are provided by M. Liebendörfer and
T. Fischer. The table ranges are

1.66× 107gcm−3 < ρ < 1015gcm−3 ,

0.5kB < s < 50kB ,

0.05 < Ye < 0.56 .

In between the data points of the table, bisection is applied. Note that wherever
this method fails to generate a numerical value, a relativistic electron-positron gas
is assumed.

2.3.2 Shen EoS

The pure baryon EoS of Shen et al. [215] has a compressibility of K=281MeV and a
symmetry energy of 36.9MeV. It is based on relativistic mean field theory and the
Thomas-Fermi approximation. For matter in non-NSE (T < 0.44 MeV), the Shen
EoS is coupled to the ideal Si-gas and electron-positron EoS given in [236] and [237].
It employs an ideal gas for the nuclei and additionally includes contributions from
ion-ion correlations and photons. The variant of the Shen EoS used in this work is
provided by T. Fischer. The table ranges are

105.1gcm−3 < ρ < 1015.46gcm−3 ,

0.1MeV < T < 50kB ,

0.01 < Ye < 0.56 .

2.4 Neutrino transport & transport approximations

The inclusion of neutrino physics is an essential ingredient of core-collapse supernova
simulations, as ∼99% of the released binding energy is converted into neutrinos of all
flavours. Their complex interactions with matter are believed to drive the supernova
explosion dynamics in the outer layers as well as deleponizing the PNS to its compact
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Figure 2.11: Comparison of the Lattimer-Swesty EoS (it comes with three dif-
ferent compressibilities K=180, 220, 375MeV) with the Shen EoS
(K=281MeV) for a typical PNS configuration: specific entropy s =
1kB/baryon and the electron fraction Ye = 0.3. Shown is the pure
baryonic pressure component with respect to the baryon number den-
sity. Note that a) in the regions of negative baryonic pressure, electron
and positron pressure prevails, and b) the essential difference in the
compressibilities comes across only in the region of high densities, i. e.
homogeneous nuclear matter. The figure is courtesy of T. Fischer.

final stage as a neutron star (see sec. 1.2, and references therein). The neutrinos
travelling through the postshock region in a postbounce supernova core are not in
thermal equilibrium with the baryonic matter [29, 106]. Thus, they should ideally
be treated with full kinetic theory, describing the neutrino distributions and their
temporal distribution with the Boltzmann transport equation [155].
The Boltzmann equation describes the time t evolution of the distribution function
f(x,v,t) in a one-particle phase space, where x and v are position and velocity,
respectively. In Cartesian coordinates, the classical Boltzmann equation for particles
reads [155] (

∂f

∂t

)
+ vi

(
∂f

∂xi

)
+ ai

(
∂f

∂vi

)
=

(
Df

Dxi

)
coll

. (2.106)

From eq. 2.106 it can be seen that Boltzmann transport is in its most general
form a 7-dimensional problem: the 6D neutrino phase space (usually split into
3D spatial coordinates, neutrino energy, and 2 angular degrees of freedom) and
time. Additionally, there are up to 6 neutrino types (3 particle flavours, and their
antiparticles [187]) to deal with.
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Due to the complexity of the problem (see, e.g., [138, 133], and references therein),
the Boltzmann neutrino transport equation can still only be solved numerically in a
complete form in spherical symmetry on today’s supercomputers [152]. In order to
solve the Boltzmann equation in 3D in a closed manner, a single fluid element would
contain at least 4 neutrino types (νe, νe, νµ,τ , νµ,τ ) × 20 energy bins × 100 angles =
8000 variables. For an entire 3D domain with a typical size of ∼ 10003 zones, this
translates to a requirement of 64 TB memory per time step, which is still beyond
the range of resources available on HPC systems.

Multidimensional core-collapse supernova simulations must therefore rely on more
or less severe approximations of the neutrino physics. In state-of-the-art 2D simu-
lations, one way to approach the Boltzmann transport is the so-called ‘ray-by-ray
plus scheme’ [40]. It solves the full transport problem in separate 1D angular seg-
ments, where the neighbouring rays are coupled. Other groups rely on multi-group
flux-limited diffusion (MGFLD, [176, 224]). MGFLD treats all neutrinos in sepa-
rate energy groups, drops the momentum space angular dependence of the radiation
field and evolves the zeroth moment of the specific intensity instead of the specific
intensity itself. In three dimensions, simulations have been performed using ‘grey’
flux-limited diffusion [79], which oversimplifies the important neutrino spectrum. It
is, however, essential to resolve at least the electron-flavour neutrino spectrum, since
the charge-current interaction rates go with the square of the neutrino energy (see
secs. 1.2 and 1.8).

In the following subsections, I will outline the basic principles of two neutrino trans-
port schemes which the Basel supernova group applies in 3D simulations during
the collapse and the postbounce phase. More details about these schemes can be
found in Liebendöfer et al. [136,140], on which the discussion below is based. Prior
to this, however, I will review the ‘standard’ neutrino interactions which are com-
monly considered in stellar core-collapse simulations; this discussion is primarily
based on Bruenn [36].

2.4.1 Neutrino interactions

A ‘standard’ set of neutrino interactions which is included in at present-days state-of-
the-art 1D numerical core-collapse simulations is listed below (see, e.g., [260,37,72]):
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νe + n � e− + p (2.107)

νe + p � e+ + n (2.108)

νe + A � e− + A′ (2.109)

ν +N � ν +N (2.110)

ν + A � ν + A (2.111)

ν + e− � ν + e− (2.112)

e− + e+ � ν + ν (2.113)

ν + e+ � ν + e+ (2.114)

N +N � N +N + ν + ν (2.115)

νe + νe � νµ/τ + νµ/τ , (2.116)

where the particles are denoted as follows: n = free neutrons, p = free protons,
N = free neutrons or protons, A = nuclei, νe = electron-type neutrinos, ν = any
type of neutrinos, ν = antiparticle of particle ν, e− = electrons, and e+ = positrons.
Moreover, A′ in eq. 2.109 denotes a nucleus (A,Z+1) with an atomic mass number
A and charge Z + 1, which decays via electron capture into a nucleus A = (A,Z).
Note that an important correction that must/should be incorporated in eq. 2.111
results from ion-ion correlations [103]. These tend to increase the neutrino mean
free paths, particularly at low energies. Including them in core-collapse simulations
is important, particularly during the infall phase when the core is cold and made up
mainly of heavy nuclei. Their inclusion results in a substantial increase of the core
deleptonization.
Currently, the Basel code version of Agile-Boltztran [133] (1D GR) incorporates
the reactions 2.107-2.113 according to Bruenn [37]. Process 2.115 is implemented
according to Thompson and Burrows [229]. Interaction 2.114 was implemented by
T. Fischer [72], following [260]. Finally, the emission of µ/τ -pairs via the annihila-
tion of trapped electron neutrino pairs (process 2.116) as well as contributions from
nucleon recoil and weak magnetism [100] are taken into account in a fashion outlined
in Fischer et al. [74]. Note that the 3D MHD code ELEPHANT applies only a reduced
set of neutrino reactions, as will be explained in the subsequent two sections 2.4.2
and 2.4.3. However, before that I will now briefly summarize the reaction rates of
processes 2.107-2.113 [37], since they play a dominant role in the core-collapse sim-
ulations I carried out. Note that I will not go into the details of their derivations,
but rather give the expressions which are applied in the different core-collapse codes
of the Basel supernova group.

Following Bruenn ( [37], with references therein), I denote the occupation probability
of a neutrino species by f defined as such that dn = f(t, r, µ, ω)dV dΩ[ω2dω/(2π~c)3]
is the mean number of neutrinos at time t within a volume dV at r, having a
propagation direction within a solid angle dΩ at µ, and within an energy dω at
ω. Here, r is a Lagrangian coordinate (distance from the centre of the star of a
given spherically symmetric fluid element), µ = cos(θ) is the cosine of the angle
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between the propagation direction of the neutrino and the outward radial direction,
and ω is the neutrino energy. For notational convenience, I suppress from now
on for the rest of this subsection the dependence of these terms on r and t [e.g.
f(µ, ω) ≡ f(t, r, µ, ω)]. The distribution function of particles of type i, denoted by
Fi(Ei). is assumed to be Fermi-Dirac, i.e.,

Fi(Ei) = 1/ {1 + exp [β(Ei − µi)]} , (2.117)

where µi is the chemical potential including rest mass of type i particles (µ0
i without

the rest mass included) and β = 1/kBT , where T is the fluid temperature. Hereafter,
the index i = e−, e+, p, n,N,A refers to electrons, positrons, protons, neutrons,
nucleons, and nuclei, respectively.

• Interaction I (2.107): νe + n � e− + p (electron-type neutrino absorption on
neutrons)

The νe absorptivity χ = 1/λ(ω) (where λ(ω) is the neutrino absorption mean
free path) is given by

χ(ω) =
G2

π
ηnp
(
g2
V + 3g2

A

)
[1− Fe−(ω +Q)] (ω +Q)2

[
1− M2

e

(ω +Q)2

]1/2

,

(2.118)
where Q = Mn−Mp = 1.2935MeV is the mass difference between the neutron
and proton rest energies. gV and gA are form factors resulting from virtual
strong interaction processes. In the zero momentum transfer limit, i.e. under
the assumption, that no momentum is transferred between the neutrinos and
the nucleons (and the nucleons are non-relativistic), gV = 1 and gA = 1.23.
ηnp in eq. 2.118 takes into account nucleon final-state blocking and reads

ηnp = (np − nn) /
(
exp

[
β(µ0

p − µ0
n

]
− 1
)
. (2.119)

The neutrino emissivity in process 2.107 can be described by

j(ω) =
G2

π
ηpn
(
g2
V + 3g2

A

)
Fe−(ω +Q) (ω +Q)2

[
1− M2

e

(ω +Q)2

]1/2

. (2.120)

The factor G2 in the expressions 2.118 and 2.120 is the Fermi constant with
the value

G2 = 5.18× 10−44MeV−2cm2 . (2.121)

Note that nucleon recoil and thermal motions were neglected in the derivation
of the expressions of interaction I.
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• Interaction II (2.108): νe+p � e++n (electron-type anti-neutrino absorption
on protons)

The absorption in this process is given by

χ(ω) =
G2

π
ηpn
(
g2
V + 3g2

A

)
[1− Fe+(ω −Q)] (ω −Q)2

[
1− M2

e

(ω −Q)2

]
Θ(E−Q−Me) ,

(2.122)

and the emissivity is

j(ω) =
G2

π
ηnp
(
g2
V + 3g2

A

)
Fe+(ω−Q) (ω −Q)2

[
1− M2

e

(ω −Q)2

]
Θ(ω−Q−Me) ,

(2.123)

where the threshold of ω = Q + Me for the anti-neutrino absorption and
emission by free nucleons is incorporated in the Θ-function:

Θ(x) =

{
0 for x < 0

1 for x > 0
. (2.124)

As in interaction I, nucleon recoil and thermal motions were neglected.

• Interaction III (2.109): νe + A′ � e− + A (neutrino absorption on nuclei)

In the approach we apply, electron capture on heavy nuclei is dominated by
the Gamow-Teller transition from the single-particle 1f7/2 level to the single-
particle level 1ff5/2

unless the reaction is blocked by the absence of neutron
holes, which, in the standard picture, occurs for N ≥ 40 [80]. Thus, the rates
of [37] for electron capture I apply do not include electron capture on nuclei
with N ≥ 40.

However, I point out that recent results from Langanke et al. [129] and Hix
et al. [99], obtained via nuclear shell model calculations, show that thermal
unblocking and other effects lead to significant electron capture rates even on
nuclei with N ≥ 40. As a consequence, this leads to the insight that electron
capture on nuclei dominates the one on free protons throughout the entire
collapse of the stellar core. This in turn lowers Ye by roughly ∼ 5−10% at core
bounce, which then is reflected in smaller inner core masses (see, e.g., [150]).

If we denote Np as the number of protons in the single 1ff7/2
level and Nh

the number of neutron holes in the single-particle 1ff5/2
level, the applied

zero-order shell model predicts

Np(Z) =


0, Z < 20

Z − 20, 20 < Z < 28

8, Z > 28 ,

(2.125)
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Nh(N) =


6, N < 34

40−N, 34 < N < 40

0, N > 40 .

(2.126)

In the case of neutrino absorption on neutrons in nuclei, the emissivity is given
by

j(ω) =
G2

π
nAg

2
A

2

7
Np(Z)NZ(Z)Fe−(ω +Q′) (ω +Q′)

2

[
1− M2

e

(ω +Q′)2

]1/2

,

(2.127)

where

Q′ = M∗
A′ −MA = MA′ −MA + ∆ ≈ µn − µp + ∆ , (2.128)

and A is the mean nucleus. The quantity ∆ = M∗
A′ −MA′ is the energy of the

neutron 1f5/2 state above the ground state. In [37] its value is estimated to be
about ∼ 3MeV for all nuclei.

The resulting absorptivity yields

χ(ω) =
G2

π
nA exp(β[µn − µp −Q′])g2

A

2

7
Np(Z)Nn(N)·

[1− Fe−(ω +Q′)] (ω +Q′)
2

[
1− M2

e

(ω +Q′)2

]1/2

. (2.129)

The derivations of expressions 2.127 and 2.129 neglect nuclear recoil and ther-
mal motions.

• Interaction IV (2.110): ν + N � ν + N (isoenergetic neutrino-nucleon scat-
tering, where N is a neutron or proton).

Neutrino-nucleon scattering proceeds via the exchange of a neutral Z boson
only. In this process, the different neutrino or anti-neutrino flavours will not
be distinguished, since the reaction rate is the same for all types. Note that
in the derivation of this process, the nucleon recoil and thermal motions were
neglected. Expanding the isoenergetic (ω = ω′) scattering kernel in terms of a
Legendre series, it yields (approximated by the first two Legendre coefficients):

RIS(ω, ω, cos(Θ)){
in
out} =

1

2
Φ0,IS(ω) +

3

2
Φ1,IS(ω) cos(Θ) , (2.130)
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where cosΘ is the cosine of the relative angle between the incoming neutrino
and the outgoing neutrino directions. The zeroth and first moments of the
scattering functions are given by

ΦN
0,IS(ω) = 4πG2ηNN

[
(hNV )2 + 3(hNA )2

]
, (2.131)

ΦN
1,IS(ω) =

4π

3
G2ηNN

[
(hNV )2 − (hNA )2

]
, (2.132)

where ηNN accounts for the nucleon final-state blocking,

ηNN =

∫
2d3pN
(2π)3

FN(EN) [1− FN(EN)]

=
1

β

∂nN
∂µN

. (2.133)

The quantities hNV and hNA are the neutral nucleon current form factors in the
limit of zero-momentum transfer:

hpV =
1

2
− 2 sin2 θW , (2.134)

hpA =
1

2
gA , (2.135)

hnA = −1

2
, (2.136)

hnA = −1

2
gA , (2.137)

(2.138)

where sin2 θW ≈ 0.23 and ΘW the Weinberg angle. The constant G2 here takes
the value

G2 = 1.2× 10−65MeVcm3s−1 . (2.139)

• Interaction V (2.111): ν + A � ν + A (Coherent scattering of neutrinos on
nuclei)

In the derivation of this process, nuclear recoil and thermal motions were
neglected. The isoenergetic scattering kernel (see eq. 2.130) is again expressed
by the zeroth and first moments of the scattering functions which are given
by:

ΦA
0,IS(ω) = 2πG2nAA

2

(
CV0 +

1

2

N − Z

A
CV1

)2

· 2y − 1 + e−2y

y2
, (2.140)
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and

ΦA
1,IS(ω) = 2πG2nAA

2

(
CV0 +

1

2

N − Z

A
CV1

)2

·

2− 3y + 2y2 − (2 + y)e−2y

y3
, (2.141)

where y = bω2 and b ≈ 4.8 × 10−6A2/3MeV−2. Moreover, Cx0 = 1
2
(hpx + hnx)

and Cx1 = (hpx − hnx), where x = V (‘Vector’ ) or A (‘Axial’ ). The constant G
is given by eq. 2.139.

• Interaction VI (2.112): ν + e− � ν + e− (neutrino electron scattering NES)

I first consider the electron-type neutrinos. The first two Legendre coefficients
of the scattering kernel,

R
{ in

out}
NES (ω, ω′, cos(Θ)) ≈ 1

2
Φ
{ in

out}
0,NES(ω, ω

′) +
3

2
Φ
{ in

out}
1,NES(ω, ω

′) cos(Θ) (2.142)

are then given by

Φ
{ in

out}
l,NES(ω, ω

′) =
G2

πω2ω2′

∫
dEeFe(Ee) [1− Fe(Ee + ω − ω′)] ·

{
exp[−β(ω − ω′)]

1

}
×

[
(CV + CA)2H I

l (ω, ω
′, Ee) + (CV − CA)2H II

l (ω, ω′, Ee)
]
, (2.143)

where CV = 1
2

+ 2 sin2(ΘW) and CA = 1
2
. The constant G2 in eq. 2.143 has

the value
G2 = 1.55× 10−33cm3MeV−2s−1. (2.144)

The functions HI
l and HII

l for l = 0 and l = 1 are given by relatively large
expressions. For details, we refer the reader to [260], appendix A.

The NES for νe can be obtained from eq. 2.143 by replacing CA by −CA. The
NES for νµ and ντ can be obtained by replacing CV and CA in eq. 2.143 by
CV − 1 and CA − 1, respectively. Finally, the NES for νµ and ντ neutrinos
is obtained by replacing CV and CA in eq. 2.143 by CV − 1 and CA − 1,
respectively, and then changing the sign of CA − 1.

• Interaction VII (2.113): e− + e+ � ν + ν (pair creation and annihilation)

The thermal production (TP) and absorption kernels of absorption/annihilation
(a) and production/creation (p) processes are given by

R
{p

a}
TP (ω, ω′, cos(Θ)) ≈ 1

2
Φ
{p

a}
0,TP (ω, ω′) +

3

2
Φ
{p

a}
1,TP (ω, ω′) cos(Θ) (2.145)

The l-th moment Φ
{p

a}
l,TP is given by an expressions of the form

Φ
{p

a}
l,TP = α2

1j
I{p

a}
l,TP (ω, ω′) + α2

2 j
II{p

a}
l,TP (ω, ω′) . (2.146)
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Figure 2.12: Electron fraction (Ye) profiles at varying central densities during col-
lapse in model G15 of Liebendörfer et al. [134]. As shown, Ye(ρ, t) is
only a weak function of time. Figure taken from [136].

The very large expressions for the zeroth and first moments of the absorption
and production functions for the different neutrino species can be found in [37],
eqs. (C66) - (C74).

2.4.2 Neutrino parametrization scheme

Stellar core collapse proceeds, as outlined previously in sec. 1.2, by an imbalance
between the self-graviting forces of the inner core and its fluid pressure. At the
onset of the collapse, a degenerate electron gas provides the dominant contribution
to the pressure. The electron fraction Ye is therefore the fundamental quantity for
stability of the inner core, as the electron pressure scales as Pe ∝ Y

4/3
e (see sec.

1.2, with references therein). The electron fraction evolves during the collapse of
the iron core by electron capture on protons (eq. 2.107) and on protons bound
in nuclei (eq. 2.109). These reactions lead to a reduction of the electron fraction
Ye. The electron neutrinos νe produced in these charged-current weak interactions
either (1) directly escape at low densities, (2) thermalize and eventually escape, or
(3) are trapped for longer than the dynamical timescale (see, e.g., [29, 106]). As in
cases (1) and (2) the core loses leptons, one commonly refers to electron capture
during collapse as deleptonization. Case (3) is encountered above neutrino trapping
densities ∼ 1012gcm−3, when the opacities for neutrino scattering become large
enough such that the neutrinos can leave the core only on a diffusion timescale,
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which is much larger than the dynamical timescale. In this regime, the total lepton
fraction Yl = Ye + Yν is conserved and the neutrinos are in β-equilibrium. νµ and
ντ neutrinos and their antiparticles are not yet present in this supernova stage, as
the material does not provide the high temperatures needed for the pair-production
processes.
Thus, during the collapse phase until core bounce, a consistent numerical treatment
of deleptonization is important, as a reduction of Ye leads to a reduction of pressure
support below nuclear densities. This in turn reduces the size of the homologous
inner core [259] which rebounds coherently and that defines the size of the inner
core and the initial energy that is imparted to the shock. The latter scales roughly
as ∝ Y

10/3
e (see [37], with references therein). This is also one of the reasons why

core-collapse simulations that do not include a treatment of deleptonization almost
always produce ‘prompt’ explosions, while computations that do take into account
deleptonization hardly explode [138].
Taking deleptonization properly into account is also very important in the context
of the GW emission from CCSNe: In quickly spinning core collapse, one of the
strongest GW signals is expected to come from the matter dynamics at core bounce
(see sec. 3.5, and for a review [174]). The size of the inner core is the dynamically
relevant quantity for the emission of GWs at core bounce (see [62], with references
therein). Hence, for reliable estimates of the GW signature of rotating iron core
collapse, it is essential to fully capture the bounce dynamics and include delep-
tonization which – in combination with the EoS and centrifugal effects – controls
the mass of the inner core.

As full 3D Boltzmann neutrino transport is, as outlined above, computationally not
yet feasible on today’s HPC machines [152], the Basel code ELEPHANT encounters
the deleptonization during the collapse phase with a simple and computationally
efficient Ye vs. ρ parametrization scheme of Liebendörfer [136]. It is based on data
from detailed 1D radiation-hydrodynamics calculations [136].
The deleptonization scheme is based on the observation that the Ye(ρ, t) is only very
weakly dependent on time during the collapse phase of the iron core, as shown in
fig. 2.12. A microphysically consistent Ye can be obtained during collapse in a hy-
drodynamical simulation with high precision from a tabulated 7, time-independent
Y e(ρ) = Ye(ρ, t = tb) that is based on computationally expensive radiation hydrody-
namics calculations in spherical symmetry. Moreover, Liebendörfer [136] has shown
that in spherical symmetry such a parametrization yields microphysical and ther-
modynamical conditions at core bounce to within ∼ 5% of those obtained with a
detailed radiation-hydrodynamics simulation. Note that the parametrization of the
deleptonization during the collapse relies much more on the local density evolution
than on the global geometry. Hence, applying the Ye parametrization for rotat-
ing models as well is likely to be almost as accurate as for spherically symmetric
models. However, note that the applicability of the scheme in highly asymmetric
situations has not been numerically investigated up to now, because their assessment
would require corresponding reference simulations with multidimensional neutrino

7Alternatively, a fitting formula which may replace a Ye-table is provided in [136].
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transport [136].
Following [136], the implementation of an electron fraction evolution along Y e is
achieved by

δYe
δt

=
min

(
0, Ȳe (ρ (t+ δt))− Ye (t)

)
δt

, (2.147)

where δ/δt denotes a Lagrangian change in a fixed mass element, and where Y e (ρ(t+ δt))
is the parametrized Ye interpolated in log10 ρ to update the density at t+δt. The min-
imum function guarantees that the electron fraction decreases monotonously even
if transient instances occur in which the parametrized Y e is larger than the actual
Ye(t). This happens, as can be seen in fig. 2.12, at the beginning of Liebendörfer’s
computation. The deleptonization sets in slowly after a short time of adiabatic com-
pression during which the original electron fraction profile moves to the right in the
ρ − Ye plane to join the bounce profile, Y e. Note that eq. 2.147 is implemented in

Figure 2.13: Electron fraction Ye as a function of density, obtained from detailed
general relativistic, spherically symmetric three-flavour Boltzmann neu-
trino transport. The calculations were carried out using a 15M� pro-
genitor from [258] a finite temperature EoS of either [130] or [215], and
the Agile-Boltztran-code [133]. In the figure, we denote the LS EoS
version with a compressibility of 180MeV as LS180, the one carried out
with 375MeV as LS375. The Shen EoS is named as such.

an operator-splitted manner from the 3D MHD update.
For the computations I carried out and which are presented in chap. 3 and 4, I
use Ye-tables obtained with the Agile-Boltztran code [134], including either the
Lattimer-Swesty [130] or the Shen EoS [215] and the electron capture rates from [36]
(processes 2.107-2.113) plus the reactions 2.114 and 2.115 (T. Fischer (2010), private
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communication). Exemplary Ye(ρ) profiles from the Lattimer-Swesty [130] and the
Shen EoS [215] are shown in fig. 2.13. The offset between the Ye profiles from the
LS- and the Shen EoS is consistent with the different asymmetry energies of the two
EoS. This in turn is reflected in different neutrino reaction rates and thus a different
Ye at a given density. These effects have been discussed in [222] and [74] for massive
progenitor stars in the range of 40-50M�.

Entropy changes during the collapse phase

Electron capture during collapse not only reduces Ye, but also affects matter entropy.
The baryons are in NSE and the electrons in thermal equilibrium. Changes in the
entropy per baryon (δs) are then determined by the chemical potentials µn, µp and
µe of neutrons, protons and electrons, respectively. The resulting energy transfer
between matter and neutrinos, δq, has to be taken into account (see, e.g., [29, 37]):

Tδs = −δYe (µe − µn + µp) + δq , (2.148)

where T is the fluid temperature. Depending on matter density and the energy,
produced neutrinos can, as pointed out earlier, either (1) escape freely without
further interactions, (2) thermalize and escape, or (3) be trapped for longer than
the dynamical timescale. In regime (1), which prevails at densities . 1011 gcm−3 [29],
the energy transfer is δq = δYe 〈Eescape

ν 〉, where 〈Eescape
ν 〉 is the average energy of the

freely escaping neutrino [29]. Thus,

Tδs = −δYe (µe − µn + µp − 〈Eescape
ν 〉) . (2.149)

Since 〈Eescape
ν 〉 > µe − µn + µp, the entropy of the fluid decreases in regime (1).

However, since the energy of the escaping neutrinos is only marginally larger than
µe−µn +µp due to the average Q-value of the nuclei at ∼ 3MeV (see, e.g., [37] and
eq. 2.128), the resulting entropy change is small and thus neglected here in case (1).
In regime (2), between ∼ 2× 1011gcm3 and the density threshold for neutrino trap-
ping around ∼ 2 × 1012gcm3, the neutrino mean free path is reduced by coherent
scattering off heavy nuclei. The increasing matter density causes the electron chem-
ical potential to rise, resulting in the production of neutrinos at higher energies
compared to regime (1). Since the neutrino mean free path scales as E−2

ν , ther-
malization to low energies provides the fastest way of escape. This thermalization
process leads to a mean final escape energy of the order of ∼ 10MeV [150]. For the
parametrization of the entropy changes, Liebendörfer suggests using Eescape

ν = 10
MeV as a constant parameter that defines where regime (2) begins, namely when
the inequality µe − µn + µp − Eescape

ν > 0 holds true. Hence, the entropy increases
according to

δs

δt
= −δYe

δt

µe − µn + µp − Eescape
ν

T
, (2.150)

where δYe/δt is given by eq. 2.147. At even higher densities in regime (3), the
neutrinos are no longer able to escape before the postbounce neutronization burst.
Hence, β-equilibrium prevails (the neutrinos are in equilibrium with the fluid) and δq
in eq. 2.148 can be determined by the neutrino chemical potential δq = δYeµν [136].
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Since µe+µp = µn+µν in β-equilibrium, δs follows. Thus, in regime (3), no further
entropy changes are taken into account. Note again that the entropy changes are
updated in an operator-splitted manner.

Neutrino stress and neutrino pressure

In the optically thick regime (3), the neutrinos are trapped inside the PNS and their
diffusion timescale is longer than the hydrodynamical timescale [134, 150]. The
neutrinos now form a normal (Fermi-) gas component without transport abilities
within the fluid, giving the pressure

pν =
4π

3 (hc)3 (kT )4 F3

( µν
kT

)
, (2.151)

where the neutrino chemical potential is given by µν = µe − µn + µp. Fn (η) =∫∞
0
xn (ex−η + 1)

−1
dx is the Fermi-Dirac function of order n. F3 then is given by

the expression of [196]:

F3 (η) ' 1

4

(
η4 + 2π2η2 +

7π4

15

)
− 7π4

120
e−η , (2.152)

where η = µ/kT . Note that eq. 2.151 considers only the pressure originating from
electron neutrinos. In principle, both electron and anti-electron neutrinos should be
considered in this stage of the collapse. This would require a term [F3 (η) + F3 (−η)]
instead of F3 (η) 8. However, as the anti-electron neutrino fraction is several orders of
magnitudes smaller than the electron neutrino fraction during collapse and bounce,
we may neglect their contribution. The neutrino stress then is approximately given
by the gradient of the neutrino pressure,

dv

dt
= −∇pν

ρ
= −4πr2∂pν

∂m
, (2.153)

where dv/dt is the Lagrangian time derivative of the velocity, the term in the middle
the general expression, and the term on the right the spherically symmetric limit
based on enclosed mass m(r) at radius r.
In the optically semi-transparent and transparent regimes (ρ < ρtrap), the procedure
to calculate the neutrino stress is computationally more intensive and less straight-
forward than in regime (3). Thus, I outline only how the neutrino stress is computed.
For details of the derivation, I refer to Liebendörfer [136].
At ρ < ρtrap, a first-order estimate for the neutrino stress relies on arguments based
on the neutrino number luminosity, spherical symmetry, the assumption that neutri-
nos leave isotropically and without time delay from the locations of deleptonization,
and the requirement of lepton conservation. With all these assumptions, the neu-
trino stress (in spherical symmetry) can be expressed by

dv

dt
=

CL

4πr2
max

[
(kT )3 F5

(
µν

kT

)
F2

(
µν

kT

) , (Eescape
ν )3 F

2
2 (0)F5 (0)

F 3
3 (0)

]
, (2.154)

8In β-equilibrium, electron and anti-electron neutrinos have equal chemical potentials with the
opposite sign.
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where r, T , µν ≡ µe − µn + µp and the neutrino number luminosity L represent the
local values at the point where dv/dt is evaluated. An estimate of L (in spherical
symmetry) is given by

L(r) = −
∫ m(r)

0

δYe
δt
NAdm , (2.155)

where Avogadro’s number is denoted by NA and δYe/δt is given by eq. 2.147. The
constant C is defined such that it attaches regime (3) to regime (2):

C = −4πr2∂pν
∂m

[
(kT )3 F5 (µν/kT )

F2 (µν/kT )

L

4πr2

]−1

. (2.156)

In eq. 2.156, r, ∂pν/∂m, T , µν , and L are evaluated at the transition density ρtrap.
Finally, the Fermi integrals F3 and F5 can be evaluated by [196]:

F3 (η) ' 1

4

(
η4 + 2π2η2 +

7π4

15

)
− 7π4

120
e−η ,

F5 (η) ' 1

6

(
η6 + 5π2η4 + 7π4η2 +

31π6

21

)
− 31π6

252
e−η . (2.157)

As the expressions for the neutrino stress in the optically thin regime is only valid in
spherical symmetry, Liebendörfer [136] recommends for multi-D simulations to use
spherically averaged conditions of the multidimensional configurations to evaluate
the neutrino stress. This approach is justified by the fact that neutrino pressure
contributions are already small at the transition density (. 5 − 10% of the fluid
pressure).

Limitations of the parametrization scheme

There is a minor i) and a major ii) limitation of the parametrization scheme: i)
The present deleptonization scheme cannot capture the slight increase of Ye around
core bounce (see fig. 2.12), which is due to increasing neutron degeneracy at very
high densities. In the density regime where neutrinos are trapped and β-equilibrium
prevails, Yl is conserved/constant; hence, Ye should be obtained by a weak equilib-
rium calculation. A parametrization of the lepton fraction Yl instead of the electron
Ye fraction would improve this, as it allows for a more consistent Ye at nuclear
densities. However, such a treatment would also lead to a significant increase in
the computational complexity of the scheme [136]. The major limitation ii) of the
parametrization is its inability to capture any postbounce neutrino effects such as
the neutronization burst (see fig. 2.14), which occurs when the shock reaches the
electron-neutrinosphere.

2.4.3 The isotropic diffusion source approximation IDSA

Around core bounce, the neutrino parametrization scheme, described above, breaks
down as it cannot model the neutronization burst (see fig. 2.14). After core bounce,
the neutrino transport is tracked via a partial (i.e., a leakage scheme) or a full
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Figure 2.14: The figure shows the comparison of the almost non-rotating 3D model
R1E1CA (see sec. 3.2) with the spherically symmetric model G15 (see
Liebendörfer et al. [134]), which is based on general relativistic three-
flavour Boltzmann neutrino transport. From the upper left to the lower
right we compare as a function of enclosed mass: the density, the veloc-
ity, the Ye, and the entropy profiles. The solid lines show the results of
model R1E1CA (cf. chap. 3) and the dotted lines the results of model
G15. The thin lines represent a time instance at 5ms before bounce and
the thick lines represent a time instance at 5ms after bounce. Excel-
lent agreement is found in all four quantities – with one exception. The
parametrised neutrino leakage scheme cannot model the neutronization
burst, which causes a prominent Ye-dip and additional cooling in the
G15 data.

implementation of the so-called Isotropic Diffusion Source Approximation (IDSA)
[140]. Note that the IDSA, contrary to the parametrization scheme outlined above,
is a general concept of radiative transfer, applicable to all sorts of problems where
matter interacts with radiation or transported particles. However, as our target
application is the neutrino transport in stellar core collapse, we will only discuss the
IDSA in this particular context.

As a basic concept, the IDSA decomposes the distribution function f of a given
neutrino species into two components, an isotropic, trapped component f t and a
streaming component f s, representing neutrinos of a given species and energy which
find the local zone opaque or transparent, respectively. The total distribution func-
tion is the sum of the two components, f = f t + f s. One particle species (in the
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current implementation either the νe or νe neutrino) is allowed to have a component
that evolves in the hydrodynamical limit, while another component of the same
particle species is treated by radiative transfer techniques. Moreover, the two com-
ponents are coupled by a diffusion source term Σ. The source term Σ converts
trapped particles into streaming particles and vice versa. It can be determined from
the requirement that the temporal change of f t has to reproduce the diffusion limit
within the limit of a small mean free path.

The Boltzmann transport equation can then be written in terms of a linear operator
D () describing particle propagation, D (f = f t + f s) = C, where C = Ct + Cs is
a suitable decomposition of the collision integral according to the coupling to the
trapped (Ct) or streaming (Cs) particle components. Consequently, we have to solve
the following set equations for the individual components in a operator-split manner:

D
(
f t
)

= Ct − Σ (2.158)

D (f s) = Cs + Σ. (2.159)

Application of the IDSA to the O(v/c) Boltzmann transport equation in
spherical symmetry

For the time being, in our current implementation of the IDSA the linear operator
D () in eqs. 2.158 and 2.159 represents the O(v/c) Boltzmann transport equation
(cf. eq. 2.106) of massless fermions in spherical symmetry (see [50,153]). It reads

df

cdt
+ µ

∂f

∂r
+

[
µ

(
d ln ρ

cdt
+

3v

cr

)
+

1

r

] (
1− µ2

) ∂f
∂µ

+

[
µ2

(
d ln ρ

cdt
+

3v

cr

)
− v

cr

]
E
∂f

∂E

= j (1− f)︸ ︷︷ ︸
emission

− χf︸︷︷︸
absorption

+
E2

c (hc)3

×

 (1− f)

∫
Rf ′dµ′︸ ︷︷ ︸

isoenergetic ‘inscattering′

− f

∫
R (1− f ′) dµ′︸ ︷︷ ︸

isoenergetic ‘outscattering′

 (2.160)

and describes the propagation of massless fermions at the speed of light c, with
respect to a compressible background with a rest mass density ρ. Note that in this
subsection, for sake of simplicity, I follow the conventions used by Liebendörfer et
al. [140], who uses for energy the variable E instead of ω (cf. sec. 2.4.1).
The particle distribution function f (t, r, µ, E) depends on the time, t, radius, r,
and the momentum phase space spanned by the angle cosine, µ, of the particle
propagation direction with respect to the radius and the particle energy, E. The
momentum phase space variables are measured in the frame co-moving with the
background matter, which moves with velocity v with respect to the laboratory
frame. The Lagrangian time derivative (see, e.g. [127]) in the co-moving frame is
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denoted by df/dt. The derivatives ∂f/∂µ and ∂f/∂E in eq. 2.160 are also taken
co-moving with a fluid element. On the right hand side of eq. 2.160, a particle
emissivity, j, and a particle absorptivity, χ, as well as an isoenergetic scattering
kernel, R, are included. All blocking factors (1− f) in eq. 2.160 are explicitly
written out to ease the identification of in-scattering and out-scattering terms. The
abbreviation f ′ refers to f (t, r, µ′, E), where µ′ is the angle cosine over which the
integration is performed. Note that currently the inelastic scattering process is
neglected. Furthermore, note that the current implementation only considers νe
and νe neutrinos. The particle density is given by an integration of the distribution
function over the momentum phase space,

n (t, r) = 4π/ (hc)3

∫
f (t, r, µ, E)E2dEdµ, (2.161)

where h denotes Plancks constant.

Figure 2.15: Comparison of the spherically averaged Ye profiles of models R0E1CAL

(circled line, ‘LEAK ′, see sec. 3.2), R0E1CAIDSA (solid line, ‘IDSA′,
see sec. 3.2) with the spherically symmetric model G15 (dashed line,
‘Boltzmann′) as a function of the enclosed mass at 5ms after bounce.
Model G15 is based on general relativistic three-flavour neutrino trans-
port [134]. Note that our leakage scheme significantly overestimates the
deleptonization in and around the neutrinosphere region, as it neglects
any absorption of transported neutrinos by discarding the streaming
component (f s = 0).

Time-evolution of the trapped and the streaming particle distributions

We assume that the ‘trapped’ and the ‘streaming’ particle components of the neu-
trino distribution function f = f t + f s evolve separately according to eq. 2.160,
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coupled by a source term Σ. Hence, the evolution of the trapped particle compo-
nent f t can be written as

df t

cdt
+ µ

∂f t

∂r
+

[
µ

(
d ln ρ

cdt
+

3v

cr

)
+

1

r

] (
1− µ2

) ∂f t

∂µ

+

[
µ2

(
d ln ρ

cdt
+

3v

cr

)
− v

cr

]
E
∂f t

∂E

= j − (j + χ) f t − Σ

+
E2

c (hc)3

[∫
Rf t′dµ′ − f t

∫
Rdµ′

]
. (2.162)

Since we assume that f t = f t (t, r, E), and the source function, Σ = Σ (t, r, E), are
isotropic, an angular integration of eq. 2.162 over µ simplifies this equation to

df t

cdt
+

1

3

d ln ρ

cdt
E
∂f t

∂E
= j − (j + χ) f t − Σ . (2.163)

In the hydrodynamical limit, i.e. fast-moving particles with a very short transport
mean free path, the trapped particle distribution function f t has to reproduce the
diffusion limit [140]. In the framework of the IDSA, the diffusive drain (or replen-
ishment) of trapped particles is accounted by means of a source term Σ. Comparing
2.163 with the diffusion limit of the Boltzmann equation [154,140] yields the follow-
ing source term:

Σ =
1

r2

∂

∂r

(
−r2λ

3

∂f t

∂r

)
+ (j + χ)

1

2

∫
f sdµ , (2.164)

where λ = 1/ (j + χ+ φ) is the mean free path and φ the opacity. Note that
isoenenergetic scattering enters eq. 2.164 only implicitly via φ. The additional term
(j + χ) /2

∫
f sdµ in eq. 2.164 accounts for the absorption of streaming particles in

matter; its necessity is visualized in fig. 2.16.
Note that the IDSA does not allow for the possibility of a direct emission of matter
into the streaming particle component. This can be tracked more easily by a large
conversion rate Σ of trapped particles. Moreover, Liebendörfer et al. [140] suggest
accounting the streaming particles that are absorbed by matter in the manner repre-
sented by the arrow labelled by (j + χ) f s in fig. 2.16. In the diffusion limit, the net
particle exchange of the fluid element with its environment, Σ − (j + χ) /2

∫
f sdµ,

must then correspond to the diffusion term (cf. [140], their eq. A10). This is the
case for the choice of Σ in eq. (2.164).
In order to guarantee that eq. 2.164 delivers consistent, ‘physical’ particle fluxes in
the entire computational domain, limiters must be applied. As a limit in the trans-
parent region, the diffusion source is thus set to Σ ≤ j. If the diffusion source and
emissivity reach equality, the matter absorptivity − (j + χ) f t removes remaining
trapped particles while all newly emitted ones are directly converted to streaming
particles that escape the fluid element. With this limit imposed, the net inter-
action of particles with matter in fig. 2.16 has the correct limit for large mean
free paths, j − (j + χ) f s. The lower boundary is chosen to fulfill the requirement
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Figure 2.16: The shaded box schematically represents a fluid element in the diffusion
source approximation. It contains matter (lower part) and trapped ra-
diation particles (upper part). The interaction with other fluid elements
can only occur through the exchange of streaming particles or the com-
bined hydrodynamics of matter and trapped particles. Thus, streaming
particles can be absorbed in matter at the rate (j + χ) f s and trapped
particles are converted to streaming particles at the rate Σ. Within the
fluid element, matter emits trapped particles at the rate j and absorbs
trapped particles at the rate (j + χ) f t. The emissivity in the absorp-
tion term originates from the identity j (1− f) − χf = j − (j + χ) f ,
which hides the Pauli blocking factor in the absorption term. Figure
taken from [140].

f t ≤ j/ (j + χ), where j/ (j + χ) represents the equilibrium distribution function.
This in consequence leads to the requirement Σ ≥ 0. Therefore, the net absorption
of particles in a fluid element cannot exceed (j + χ) f s (cf. fig. 2.16).
In a compact notation, the diffusion source is limited as follows:

Σ = min

{
max

[
α+ (j + χ)

1

2

∫
f sdµ, 0

]
, j

}
α =

1

r2

∂

∂r

(
−r2

3 (j + χ+ φ)

∂f t

∂r

)
. (2.165)

Having discussed the time evolution of the trapped particle distribution component,
we now turn our attention to the evolution of the streaming component f s. The
starting point for its temporal evolution is again eq. 2.160:

df s

cdt
+ µ

∂f s

∂r
+

[
µ

(
d ln ρ

cdt
+

3v

cr

)
+

1

r

] (
1− µ2

) ∂f s

∂µ

+

[
µ2

(
d ln ρ

cdt
+

3v

cr

)
− v

cr

]
E
∂f s

∂E

= − (j + χ) f s + Σ +
E2

c (hc)3

[∫
Rf s′dµ′ − f s

∫
Rdµ′

]
. (2.166)
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By design of the IDSA, the particle density of the streaming component is small
compared to the trapped one in regions where scattering dominates the interactions.
Hence, the scattering integrals on the right hand side of eq. 2.166 can be neglected.
For reason of convenience, eq. 2.166 is transformed into the laboratory frame. Then,
the temporal evolution of f s reads

∂f̂ s

c∂t̂
+ µ̂

∂f̂ s

∂r
+

1

r

(
1− µ̂2

) ∂f̂ s

∂µ̂
= −

(
ĵ + χ̂

)
f̂ s + Σ̂ , (2.167)

where the quantities carrying a hat are measured in the laboratory frame. Further-
more, it is assumed that the fluxes of free streaming particles reach stationary values
much faster than the dynamical time scale of interest. Thus, the time-derivative can
be dropped in the first term in eq. 2.167. If the source on the right hand side is
assumed to be known from a consistent solution of eqs. 2.163 and 2.165, the inte-
gration of eq. 2.167 over angles leads to a Poisson equation for a potential ψ, whose
gradient represents the particle flux:

∂ψ

∂r
=

1

2

∫
f̂ sµ̂dµ̂

1

r2

∂

∂r

(
r2∂ψ

∂r

)
=

1

2

∫ [
−
(
ĵ + χ̂

)
f̂ s + Σ̂

]
dµ̂ . (2.168)

Finally, the streaming particle flux and particle density are, as suggested in [133],
related by an expression which assumes that all particles of a given energy group
are emitted isotropically at their corresponding scattering sphere:

1

2

∫
f̂ s (E) dµ̂ =

2∂ψ
∂r

(E)

1 +

√
1−

(
Rν(E)

max(r,Rν(E))

)2
, (2.169)

where Rν (E) is the radius of the monochromatic scattering sphere, i. e. the neu-
trinosphere, that depends on the particle energy E. The radial position of the
neutrinosphere is usually defined as the surface where the neutrino’s optical depth
reaches

τ(r, Eν) =

∫ ∞

Rν(E)

dr

λν,Eν

=
2

3
. (2.170)

The neutrinosphere is the effective radiating surface for neutrinos, in analogy to the
‘photosphere’ of normal light emitting surfaces. Note that its position differs from
neutrino species to species and is dependent on the neutrino energy. Moreover, note
also that τ is used to discriminate between f t and f s at the neutrinosphere.
In order to solve for both the trapped and the streaming particle component, the
quantities must be Lorentz-boosted from the laboratory frame to the co-moving
frame and vice versa . However, in the current implementation of the IDSA, where
we run our simulations in the Newtonian limit, the required transformations are
neglected. Hence, we refer the reader to [140] and [155], where the details of the
necessary Lorentz transformation can be found in their full glory.
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The coupling of the IDSA with hydrodynamics

The neutrino distribution function must be somehow coupled to the dynamics of
the background matter. The latter can be described by the conservation laws of
hydrodynamics (see sec. 2.2, and [155]). In spherical symmetry for example, this
set of equation results in

∂

∂t
U +

∂

r2∂r

(
r2F

)
= 0 , (2.171)

where U is a vector of primitive variables and F a vector of fluxes.
In the IDSA, the following approach is taken: since the characteristic timescale
of the local reactions between the transported particles is faster than the diffusion
timescale, which is of order [155]

tdiff ∼
l2

2cλ
, (2.172)

(where λ is the mean free path, l characteristical length, i. e. the size of a computa-
tional domain, and c the speed of light), the neutrino spectrum can be approximated
by a thermal spectrum:

Y t =
mb

ρ

4π

(hc)3

∫
f tE2dEdµ

Zt =
mb

ρ

4π

(hc)3

∫
f tE3dEdµ , (2.173)

where mb in our application is the baryon rest mass of the background matter, Y t

and Zt a particle number fraction and a particle mean specific energy, respectively.
Note that this assumption is only made for the trapped particle component within a
fluid element. The streaming particles, which communicate between fluid elements,
keep their detailed spectral information. The measure taken in eq. 2.173 reduces the
number of variables to describe the distribution functions of the trapped particles
drastically.
We can now rewrite the evolution equation 2.162 for the trapped particle component
with an Eulerian time derivative and use the continuity equation to substitute the
d ln ρ/dt term by the velocity divergence,

∂f t

c∂t
+

∂

r2∂r

(
r2v

c
f t
)
− ∂

r2∂r

(
r2v

c

) ∂ (E3f t)

3E2∂E
= j − (j + χ) f t − Σ . (2.174)

If we now perform the energy integrals which appear in eq. 2.173 on 2.174, we obtain
the following evolution equations for Y t and Zt:

∂

∂t

(
ρY t

)
+

∂

r2∂r

(
r2vρY t

)
= mb

4πc

(hc)3

∫ [
j − (j + χ) f t − 1

2

∫
Σdµ

]
E2dE , (2.175)
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and

∂
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ρZt
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r2∂r

(
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) ρZt

3
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4πc

(hc)3

∫ [
j − (j + χ) f t − Σ

]
E3dE . (2.176)

The equation for Zt corresponds to an energy equation with a pdV term for the
radiation pressure ρZt/3 on the left hand side. Moreover, and in analogy to an
entropy equation, it can be transformed into a conservative form for the evolution
of (ρZt)

3/4
. Therefore, one can solve the advective part, i.e. the left hand side of

eq. 2.176 together with the hydrodynamical conservation law (eq. 2.171) expressed
by the following primitive variables:
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l )
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
, (2.177)

where p is the fluid pressure, e the fluid specific internal energy, and Ye the electron
fraction. The index l stands for the different species of trapped particles, i.e. the νe
and νe neutrinos in the current implementation.
The distribution function of trapped particles in thermal equilibrium, f t

l (E) =
{exp [βl (E − µl)] + 1}−1, has two free parameters βl and µl. Hence, it can be re-
constructed in such a way that eq. 2.173 is fulfilled for the new/updated values of
Y t
l and Zt

l . Subsequently, the remaining update of the trapped particle distribution
in eq. 2.174 is given by

∂f t
l

c∂t
= jl − (jl + χl) f

t
l − Σl . (2.178)

Equation 2.178 also determines the net reaction rates,

sl = jl − (jl + χl)
(
f t
l + f s

l

)
, (2.179)

between matter and the radiation particles, which leads to the following changes of
the electron fraction and internal specific energy:

sl =
∂f t

l

c∂t
+ Σl − (jl + χl)

1

2

∫
f s
l dµ (2.180)

∂Ye

c∂t
= −mb

ρ

4πc

(hc)3

∫
(sνe − sν̄e)E

2dE (2.181)

∂e

c∂t
= −mb

ρ

4πc

(hc)3

∫
(sνe + sν̄e)E

3dE . (2.182)
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The changes in electron fraction Ye and specific energy e feed back into the emissivity
j and absorptivity χ used in eq. 2.178. Once a consistent solution has been found,
eq. 2.178 allows updates of the trapped particle fraction

∂Y t
l

∂t
=
mb

ρ

4πc

(hc)3

∫
∂f t

l

∂t
E2dE , (2.183)

of the trapped particle specific energy

∂Zt
l

∂t
=
mb

ρ

4πc

(hc)3

∫
∂f t

l

∂t
E3dE , (2.184)

and of the matter velocity, which is subject to radiation pressure.

∂v

∂t
= −1

ρ

∂

∂r

(
ρZt

l

3mb

)
. (2.185)

After updating Y t
l , Zt

l and v, the cycle of updates is completed by the solution of
eqs. 2.168 and 2.169 for the distribution function f s for streaming particles based
on the sources determined in eqs. 2.178 and 2.165.

IDSA in 3D

So far I have only discussed the IDSA in spherical symmetry. However, the IDSA
was in principle designed as a computationally efficient approximation to radiative
transfer in multidimensional HD/MHD simulations. Thus, I will now sketch the
basic measures required to extend the transport scheme from 1D to 3D. Note that
a detailed discussion of the generalization of the IDSA to multi-D applications goes
beyond the scope of my PhD thesis. For a partial discussion, I refer the reader
to [140], sec. 4. The details about the implementation will follow in Whitehouse et
al. (2010, in preparation).

To summarize, one could say that the difference between the 3D and 1D IDSA is
only technical – scientifically the schemes are identical. The major difference is given
by the fact that the streaming component is treated in spherical symmetry and the
trapped component is done in full 3D.

When changing from 1D to 3D, the extension of the state vector U in the equations of
hydrodynamics comes quite naturally, and differs from the 1D spherically symmetric
one (see eq. 2.177) only by the velocity v, which becomes a vector ~v = (vx, vy, vz).
Using i = 1 . . . 3 for the three spatial directions in the momentum equation, the
corresponding 3D state vector U and flux vector F read

U =



ρ
ρvi

ρ
(
e+ 1

2
v2
)

ρYe

ρY t
l

(ρZt
l )

3
4

 , F =



~vρ
~vρvi + p

~vρ
(
e+ 1

2
v2 + p

ρ

)
~vρYe

~vρY t
l

~v (ρZt
l )

3
4


. (2.186)
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This state vector can be evolved by any standard hydrodynamics scheme that solves
the multi-dimensional conservation law

∂

∂t
U + ~∇ · ~F = 0 , (2.187)

as outlined for example in sec. 2.2.
A more difficult part in the multi-dimensional IDSA is the consistent solution of
eqs. 2.165 and 2.178-2.182. The difficulty arises from the non-local scalar

α = ~∇ ·
(

−1

3 (j + χ+ φ)
~∇f t

)
(2.188)

in eq. 2.165. All the other equations are local and do not depend on the dimensional-
ity of the problem, except that the integration over the angle cosine, 1/2

∫
dµ, must

be replaced by an integration over the entire solid angle of a sphere, 1/ (4π)
∫
dΩ.

In the preliminary 3D IDSA implementation I got provided by S.C. Whitehouse,
eq. 2.188 is calculated via f t of the previous time step and update f t locally with
eqs. 2.178-2.182. Hence, only the local reactions are implemented implicitly while
the diffusion part remains explicit. This approach is only conditionally stable and
the time step must be restricted to ∆x2/ (2λc). The relevance of trapped particles
diminishes in the transparent regime around λ ∼ ∆x. Thus, the time step restriction
is of a similar order of magnitude as the CFL condition for the particle propagation
speed c.
The result of this step determines a partial update of the compositional quantities
in U and a spectral diffusion source Σl (E) for each particle species l at each grid
point. This information is stored for the following updates. The stationary-state
solution for the streaming particle component is then in principle based on

∆ψ =
1

4π

∫ [
−
(
ĵ + χ̂

)
f̂ s + Σ̂

]
dΩ̂ , (2.189)

which is the extension of eq. (2.168) to the multi-dimensional case. The integration
over dΩ̂ is again performed over the solid angle of a sphere. Note that eq. 2.189
must be solved for each energy group and particle species separately. However, all
directional information of the streaming particle flux ~∇ψ can then be retrieved from
the corresponding scalar potential ψl(Ê).
After the hydrodynamic update according to eq. 2.187, we have to convert the par-
ticle flux, ~∇ψl(Ê), into a streaming particle density. For nearly spherical problems
such as ours, the simple spherically symmetric ansatz described above currently is
applied to obtain an estimate of the flux factor. Once the spectral streaming parti-
cle density 1/ (4π)

∫
f s
l (E) dΩ has been determined by the quotient of ~∇ψl(Ê) and

the flux factor, one cycle of updates in a multidimensional application is concluded,
as shown in fig. 2.17, where a schematic view of the IDSA code and flow inside
ELEPHANT is displayed.
Note that even though the procedure to extend the IDSA from 1D to multi-D was
outlined in the pure hydrodynamical case, it is done in the same fashion also for
MHD.
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2.4 Neutrino transport & transport approximations

Figure 2.17: Schematic view of the IDSA code and flow inside ELEPHANT according
to S.C. Whitehouse.

Current reactions implemented in the IDSA

The current implementation of the IDSA includes only electron flavour neutrinos.
Their dominant emission and absorption reactions in the postbounce phase are given
by electron and positron capture, as outlined in eqs. 2.107 and 2.108. The opacities
in our implementation of the IDSA are given by isoenergetic scattering on nucleons
and nuclei (eqs. 2.110 and 2.111). Note that all weak interactions are implemented
as described in sec. 2.4.1. The thermodynamical state of matter as a function
of density, ρ, temperature, T , and electron fraction, Ye, is calculated by the LS
EoS [130] or the Shen EoS [215].
In order to resolve the neutrino energy spectrum, we use, as suggested by S. W.
Bruenn, 20 geometrically spaced energy zones to span the neutrino energy range
between 3 and 300 MeV.

Planned IDSA upgrades

The IDSA includes at present only the dominant reactions relevant to the neutrino
transport problem (see [140] for details). Future upgrades will also include contribu-
tions from electron-neutrino electron scattering (eq. 2.112). which are indispensable
during the collapse phase. This reaction thermalizes the neutrinos very effectively
(see, e.g., [37]), which in turn is important because the neutrino mean free paths
vary inversely with the square of the neutrino energy (λ ∼ 1

E2
ν
). Thus, it influences

directly the size/mass of the inner core at bounce, which scales roughly propor-
tional to the square of the electron fraction Ye (and the entropy per baryon) [85].
The size/mass of the inner core in turn is the dynamically relevant quantity for the
emission of GWs at core bounce [62]. Moreover, the inclusion of this reaction will
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2 3D MHD Core-Collapse Simulations: Implementation

Figure 2.18: Comparison of different precollapse initial rotational configurations, set
up according to eq. 2.190. Note that the displayed values of Ωc,i were
applied for models discussed in chap. 3. For the entire model set, I
choose A = 500 km.

also make the cumbersome switch from the parametrization to the IDSA at bounce
obsolete. Finally, there are ongoing efforts (A. Perego) to include µ and τ neutrinos.
They are very important for the radial position of the shock wave and to the moment
when it stops, before the ‘revival’ of the stalled shock wave sets in again, and the
cooling of the PNS to its final stage as neutron star or black hole (see, e.g., [138,73],
and reference therein).

2.5 Presupernova stellar models & initial model
configurations

All presupernova stellar models available today stem from Newtonian 1D stellar evo-
lution calculations and hence may not cover all possible states prior to the collapse
of a multidimensional star. Therefore, we construct the initial conditions of our sim-
ulations by a parametric approach. We employ a solar-metallicity 15M� progenitor
star of [258]. Angular momentum is added to the presupernova model according to
a shell-type constant j (j denotes specific angular momentum) rotation law of [67]:

Ω(r) = Ωi,c ·
A2

A2 + r2
=


Ωc,i for A→∞

Ωc,i
A2

r2
for A→ 0

, (2.190)

where we define r =
√
x2 + y2 + z2 as spherical radius, and (x, y, z) as Cartesian

coordinates.
The constant A is the degree of differential rotation that controls the steepness of
the angular velocity profile, Ωi,c the initial central rotation rate, and r is the distance
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2.5 Presupernova stellar models & initial model configurations

from the origin (see fig. 2.18). Note that for A→∞, the rotation becomes uniform.
Throughout our entire model set we choose A = 500 km as degree of differential
rotation.
In order to guarantee a divergence-free initial state, the initial magnetic field con-
figuration was set up employing its definition via the vector potential ~A. The com-
ponents of ~A chosen are

~A =

(
−Bpol

2
y,
Bpol

2
x,
√
x2 + y2Btor

)
. (2.191)

In order to mimic a dipole-like field, we scale the vector potential with density
according to the suggestion of M. Liebendörfer as

~̃A =

√
ρ

ρref
~A . (2.192)

Finally, the magnetic field is derived from this vector potential via [105]

~B = ∇× ~̃A . (2.193)

The initial toroidal and poloidal components of the magnetic field are specified at a
reference density of ρref = 5× 107gcm−3 according to [93].
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3 3D MHD Core-Collapse
Simulations: Results I

So this, then, was the kernel of the brute!

Johann Wolfgang von Goethe, Faust I

In this chapter, I will present results from fully self-consistent 3D MHD core-collapse
simulations, carried out with ELEPHANT.
In the subsequent sections, I will discuss the GW signature of 28 three dimensional
models. While presenting the resulting GW patterns, I will pay special attention to
possible imprints of different finite temperature EoS, rotation rates, nonaxisymmet-
ric instabilities, magnetic fields and postbounce neutrino transport schemes on the
predicted 3D GW signals.
The following papers present the result of this work in condensed form: Scheidegger
et al. (2008) [206] and Scheidegger et al. (2010a,b) [208,210].

3.1 Description of the magnetohydrodynamical
models

For the 3D Newtonian ideal MHD core-collapse simulations and their GW signatures
presented in this chapter 3, I use the ELEPHANT code. However, as a reminder, I will
detail here quickly the underlying input physics of the models discussed below.
In this entire section, the gravitational potential is calculated via a spherically sym-
metric mass integration that includes radial GR corrections (see sec. 2.2.2 and [147]).
As for the treatment of the deleptonization during the collapse phase, I apply the
simple and computationally efficient Ye vs. ρ parametrization scheme (see sec. 2.4.2
and [136]. For this I use the results obtained with the Agile-Boltztran code [134],
including the above-mentioned EoS of Shen et al. [215] and Lattimer-Swesty in
all three variations [130], and the electron capture rates from [36]. After core
bounce, the neutrino transport is tracked for several models via a partial (i.e. a
leakage scheme) or full implementation of the isotropic diffusion source approxi-
mation scheme (see sec. 2.4.3 and [140]). The IDSA, decomposes the distribution
function f of neutrinos into two components, a trapped component f t and a stream-
ing component f s, representing neutrinos of a given species and energy which find
the local zone opaque or transparent, respectively. The total distribution function is
the sum of the two components, f = f t+f s. The two components are evolved using
separate numerical techniques, coupled by a diffusion source term Σ. The latter
converts trapped particles into streaming particles and vice versa. We determine it
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3 3D MHD Core-Collapse Simulations: Results I

from the requirement that the temporal change of f t has to reproduce the diffusion
limit within the limit of a small mean free path. Note that our leakage scheme signif-
icantly overestimates the deleptonization in and around the neutrinosphere region,
as it neglects any absorption of transported neutrinos by discarding the streaming
component (f s = 0). The 3D computational domain consists, for all models, of a
central cube of either 6003 or 10003 cells. The grid spacing is chosen to be 1km or
0.6km. The presupernova stellar models stem from Newtonian 1D stellar evolution
calculations and hence may not cover all possible states prior to the collapse of a mul-
tidimensional star. Therefore I construct the initial conditions of our simulations by
a parametric approach, as described in sec. 2.5 above. I employ a solar-metallicity
15M� progenitor of [258], and set it into rotation according to a shell-type rotation
law of [67] with a shellular quadratic cutoff at 500km radius (see sec. 2.5).

3.2 Model parameters and nomenclature

All my models are named after the combinations of initial central rotation rate, the
EoS, and toroidal and poloidal magnetic fields. The first two letters of the model
name represent the initial central rotation rate Ωc,i [rads−1] according to

0 0.3 π 2π 3π 4π

R0 R1 R2 R3 R4 R5
,

the second two letters stand for the applied EoS

LS LS LS Shen
(K = 180MeV) (K = 220MeV) (K =325 MeV)

E1 E2 E3 ST
,

while the last two letters assign the order of magnitude of the toroidal and poloidal
field strength [G] according to

106 107 109 1010 1011 1012

A B C D E F
.

The subscript L and IDSA denotes simulations which were carried out with the
leakage scheme or the ‘complete’ IDSA; and whenever the grid spacing is chosen
to be not 1km, but 0.6km, this is denoted with a subscript HR, standing for high
resolution. Some of the values I adopt as rotation rate and magnetic fields correspond
to those suggested in [93]. However, I point out that some of the initial rotation
rates (Ωc,i & π·rads−1) and magnetic fields (B & 1010G) are larger and stronger than
current predictions from stellar evolution calculations. I computed these models
in order to cover a wide parameter space for our three-dimensional models with
neutrino transport approximations.

3.3 Compute requirements

Pure MHD simulations (including the approximate treatment of deleptonization
during the collapse phase) require about 15′000− 20′000 CPUh per run on CSCS’s
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3.4 Non- or slowly rotating core collapse

Table 3.1: Summary of initial conditions of non- and slowly rotating models
a

Model Ωc,i [rads−1] βi βb EoS ρb[
g

cm3 ] Btor,i[G] Bpol,i[G] Em/|W |b Em/|W |f

R0E1CA 0 0 0 E1 4.39× 1014 5× 109 1× 106 1.8× 10−9 3.8× 10−8

R0E1CAIDSA 0 0 0 E1 4.34× 1014 5× 109 1× 106 - -

R0E3CA 0 0 0 E3 4.17× 1014 5× 109 1× 106 1.8× 10−9 3.1× 10−8

R0STCA 0 0 0 ST 3.38× 1014 5× 109 1× 106 1.7× 10−9 3.3× 10−8

R1E1CA 0.3 0.59× 10−5 1.7× 10−4 E1 4.53× 1014 5× 109 1× 106 1.7× 10−9 3.4× 10−8

R1E1CAHR 0.3 0.59× 10−5 1.7× 10−4 E1 4.36× 1014 5× 109 1× 106 - -

R1E3CA 0.3 0.59× 10−5 1.7× 10−4 E3 4.17× 1014 5× 109 1× 106 1.7× 10−9 3.6× 10−8

R1E1DB 0.3 0.59× 10−5 1.7× 10−4 E1 4.53× 1014 5× 1010 1× 107 1.7× 10−7 3.0× 10−6

R1STCA 0.3 0.59× 10−5 1.7× 10−4 ST 3.38× 1014 5× 109 1× 106 1.7× 10−9 3.2× 10−8

R1E1CAL 0.3 0.59× 10−5 1.8× 10−4 E1 4.38× 1014 5× 109 1× 106 6.1× 10−9 1.2× 10−7

a The subscript i stands for initial, b for bounce, while f stands for final. ρb is the maximum central density at
the time of core bounce. Bpol,i and Btor,i abbreviate the initially imposed toroidal and poloidal magnetic fields,
whereas Em/|W | stands for the ratio of magnetic to gravitational energy.

Rosa cluster 1 when pushed to ∼ 100ms after bounce. As soon as the full IDSA or
the leakage scheme is switched on, this number multiplies by a factor of ∼ 10.
Each of these runs require about 300 GB of storage space. However, this number
grows at a pace of ∼ 150GB per ∼ 100ms of physical simulation time after core
bounce, depending of course also on the rate at which data is written out.

3.4 Non- or slowly rotating core collapse

The non- and slowly rotating models’ initial conditions and similar relevant quanti-
ties are summarized in tab. 3.1, whilst the GW data is listed in tab. 3.2.

3.4.1 General remarks

Non- and slowly rotating progenitors (Ωc,i = 0 . . . 0.3rads−1 in our model set) all
undergo quasi-spherically symmetric core collapse. As the emission of GWs in-
trinsically depends on dynamical processes that deviate from spherical symme-
try, the collapse phase in my models (that neglect inhomogenities in the progen-
itor star) therefore does not provide any kind of signal, as shown in fig. 3.1 for
t−tb < 0. However, subsequent pressure-dominated core bounce, where the collapse
is halted due to the stiffening of the EoS at nuclear density ρnuc ≈ 2 × 1014gcm−3,
launches a shock wave that ploughs through the infalling material, leaving behind

1Swiss Supercomputing Centre CSCS; URL: www.cscs.ch
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Table 3.2: Summary of GW related quantities of non- and slowly rotating models

a

Model tf [ms] EGW [M�c2] dir. |A+,b,max| |A×,b,max| |A+,pb,max| |A×,pb,max|

R0E1CA 130.8 2.15× 10−11 I 3 < 1 3 < 1
II 2 < 1 5 1

R0E1CAIDSA 81.7 1.22× 10−11 I 3 < 1 4 2
II 2 < 1 3 1

R0E3CA 103.9 5.72× 10−11 I 2 < 1 10 < 1
II 2 < 1 8 < 1

R0STCA 70.3 1.35× 10−11 I 3 < 1 4 < 1
II 1 < 1 3 < 1

R1E1CA 112.8 1.36× 10−10 I 3 < 1 16 7
II 3 <1 15 1

R1E1CAHR 25.6 2.42× 10−10 I 1 < 1 12 6
II <1 <1 25 2

R1E3CA 130.4 1.43× 10−10 I 2 < 1 10 5
II 3 < 1 17 < 1

R1E1DB 112.8 1.24× 10−10 I 3 < 1 12 6
II 3 < 1 15 2

R1STCA 45.8 2.01× 10−11 I 2 <1 3 1
II 2 <1 6 <1

R1E1CAL 92.9 1.04× 10−10 I 3 < 1 4 2
II 2 <1 10 1

a tf is the time after core bounce when the simulation was stopped. EGW is the total energy released in gravitational
radiation. I present the maximum amplitudes at different stages of their time-evolution in polar (I) and equatorial
(II) direction. The subscripts b and pb stand for bounce and postbounce.

Figure 3.1: Time evolution of the GW amplitude A+I from the slowly rotating mod-
els R1STCA (solid line) and R1E1CA (dashed line). Since convection
is a stochastic process, the GW amplitudes are rather insensitive to the
location of the observer. Hence, I display only one representative polar-
isation.
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3.4 Non- or slowly rotating core collapse

Figure 3.2: Spherically averaged entropy profiles from the slowly rotating models
R1E1CA (red solid line), R1E3CA (black dotted line) and R1STCA
(black dashed line) at bounce. The second entropy time slice is chosen to
be approximately at the onset of the GW signal from prompt convection.

a negative entropy gradient that induces so-called ‘prompt’ convective activity (see,
e.g. [145, 41, 62, 149, 174, 210, 208]). The GW burst which is accompanied by such
aspherities starts several ms after bounce when convective overturn starts to be ef-
fective. The criterion for convective instability (the ‘Ledoux condition’) is generally
expressed as [127,251](

∂ρ

∂Ye

)
P,s

(
∂Ye
∂r

)
+

(
∂ρ

∂s

)
P,Ye

(
∂s

∂r

)
> 0 , (3.1)

where Ye, ρ, r and s are electron fraction, density, stellar radius and entropy per
baryon respectively. Thermodynamic consistency requires (∂ρ/∂s)Ye,P < 0, which
implies that a negative entropy gradient always acts in a destabilizing manner.
Additionally, the neutronization burst, occurring some ∼ 5ms after bounce, causes
a negative lepton gradient at the edge of the PNS which further drives convection (cf.
fig. 13 of [221], or [41, 56]). Note that convection is be weakened in the rotational
plane by positive specific angular momentum gradients in rotating cores [66].

3.4.2 Models without deleptonization in the postbounce phase:
Effects of the EoS and magnetic fields on the GW
signature

During the early postbounce stage (t−tb . 20−30ms), prompt convective motion is
predominantly driven by a negative entropy gradient, as pointed out by e.g. [210,208]
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Figure 3.3: Time evolution of the GW amplitude A+II from the non-rotating models
R0E1CA (dashed) and R0E3CA (solid line).

(see also [62, 149, 174]). The GW burst to be associated with prompt convection
sets in ∼ 6ms after bounce in models based on the LS EoS, generally ∼ 2 − 3ms
before the same feature occurs in the corresponding simulations using the Shen
EoS, as indicated in fig. 3.1. The reason for this behaviour is that the shock
wave in the ‘Shen’-models carries more energy compared to those in models using
a LS EoS, since the initial energy that is imparted to the shock scales roughly as
∝ Y

10/3
e (see [37], with references therein). Therefore, the shock wave stalls at

slightly later times at larger radii (see fig. 3.2), and the conditions for convective
activity are delayed compared to the LS runs. Note that the convective overturn
causes a smoothing of the negative entropy gradient. As a result, the GW amplitude
quickly decays (t & 30ms after bounce) and is not revived during the later evolution
of the models without deleptonization in the postbounce phase, as displayed in figs.
3.1 and 3.3. Simulations that incorporate the Shen EoS return up to a factor of 2
smaller maximum amplitudes compared to their counterparts, as can be deduced
from fig. 3.1 and Table 3.2.
I also find that the GWs from simulations which were carried out with the stiff E3
show no significant deviations from those computed with E1 (see tab. 3.2 and fig.
3.3). The minor deviations of the GWs are entirely due to the stochastic nature of
convection. The waveform spectra from the LS models cover a broad frequency band
ranging from ∼ 150− 500Hz, as displayed in fig. 3.4. The spectral peak of the Shen
models is shifted somewhat to lower frequencies, covering a range from∼ 150−350Hz
(see fig. 3.4). When comparing the energy EGW which is emitted during the first
30ms after bounce from the LS models to that of the corresponding Shen models,
I find the latter models emit less energy (see tab. 3.2). This discrepancy is due to
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Figure 3.4: Spectral energy distribution from the models R0E1CA (dashed line) and
R0STCA (solid line) for a spectator in the equatorial plane at a dis-
tance of 10kpc compared with the LIGO strain sensitivity (Shoemaker
2007, private communication) and the planned performance of Advanced
LIGO. Optimal orientation between source and detector is assumed.

the lower emission at higher frequency ν & 350Hz in the Shen models and the fact
that the emitted energy dEGW/dν is proportional to ν2. Moreover I find that slow
rotation (rotation rate R1) in enough to lead a deformation of the PNS. This can be
quantified by considering e. g. a density cut at ρ = 1011gcm−3, which is just inside
the convectively unstable region. For the slowly rotating model R1E1CA, this point
is located at a radial distance of 80km along the polar axis at 20ms after bounce.
However, in the equatorial plane, the same position is reached one radial grid zone
further out relative to the origin due to the action of centrifugal forces. The short
time variation in the quadrupole due to rotation combines with that of prompt
convection and together they lead to somewhat stronger GW emission in the slowly
rotating case compared to the non-rotating model set. This effect is strongest for the
GW amplitude A+II, which is the ‘axisymmetric’ (l = 2,m = 0) component of the
wave field. Despite this feature, the frequency content of models which only differ
in rotation rate, stays practically unaltered. I found the key controlling factors that
govern the GW emission from prompt convection to be the i) radial location of the
convectively unstable zones and ii) the related characteristic dynamical timescales
involved, for which we use as a rough estimate

tdyn ∼ ∆r/cs , (3.2)
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Figure 3.5: Spherically averaged density profiles from models R1E1CA (dotted line),
R1E3CA (full line) and R1STCA (dashed line) at core bounce (t− tb =
0).

where

cs = 1/∆r

∫
r

cs(r)dr (3.3)

is the radially averaged sound speed of a convectively unstable layer with a radial
extension of ∆r (Christian D. Ott 2009, private communication). Note that both i)
and ii) are implicitly determined by the applied EoS, being responsible e.g. for the
local speed of sound and the radial PNS density profile. Our core-collapse simula-
tions that use a version of the LS EoS (E1 or E3) show at core bounce maximum
central densities up to ∼ 25% higher than the corresponding models that apply
the Shen EoS (see tab.3.1). Moreover, the LS-models possess a PNS which is more
strongly condensed in central regions and has a steeper density gradient further
out. The densities of e.g. R1E1CA and R1STCA intersect at ∼ 0.5M� (∼ 8km),
as displayed in fig. 3.5. In addition, models using the E1 show somewhat higher
central densities compared to the ones applying the stiffer E3 variant, and densities
of e.g. R0E1CA and R0E3CA cross at ∼ 7km. Nevertheless these two variants of
the LS EoS differ only in their compressibility. The radial structures resemble each
other strongly, unlike to the models carried out using the Shen EoS, as shown in fig.
3.5. Hence, the particular similarity in the GW characteristics of LS runs (see fig.
3.3) is not unexpected since the region which is convectively unstable is restricted
to roughly the same radial and density regimes (R ≈ 30-70km, ρ ≈ 1011− 1.1× 1012

gcm−3) and therefore bound to the same dynamical timescale tdyn and its corre-
sponding frequency band. For the Shen models on the other hand the region of
negative entropy gradient, whose boundaries are radially constrained by R ≈ 60-
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90km, contains considerably less matter than its LS analogues. This explains the
smaller GW amplitudes. A narrower density spread (ρ ≈ 7 ·1010−1.2×1011 gcm−3)
in the unstable region leads to a more restricted peak frequency band at lower values
(see fig. 3.2).

However, as was pointed out by [174], ‘prompt’ convection depends not on the
negative entropy gradient alone, but also on numerical seed perturbations which
are introduced by the choice of the computational grid. Hence, in order to test
the dependence of my findings on the spatial resolution, we carried out model
R1E1CAHR. This better resolved simulation shows considerably smaller seed per-
turbations around t − tb ∼ 0, as grid alignment effects are better suppressed at
core bounce; hence prompt convection is much weaker and a smaller GW amplitude
(∼ 50%) is emitted, as shown in fig. 3.9. However, better numerical resolution
also leads to less numerical dissipation in the system, which eases the dynamical
effects that follow. Thus, we find considerably stronger GW emission for ∼ 10ms
. t . 20ms in R1E1CAHR compared to the 1km resolved models, as indicated in
fig.3.9.

Computing the SNRs I find that all the simulations discussed above lie just below
the detector limits of LIGO if I assume them to be located at a Galactic distance
of 10kpc. Their single-detector optimal-orientation SNR is just a little above unity.
However, for a successful detection, a SNR of at least 7 to 8 is necessary. Note that
the SNRs of models with different EoS do not differ much at this stage since all
share a similar spectral energy distribution within the window of LIGO’s maximum
sensitivity. The current detector sensitivity does not allow for the detection of the
high frequency tail of the LS models. Fortunately, for planned future detectors such
as the Advanced LIGO facility, things change dramatically. As a direct consequence,
these new detectors would permit the distinction between the prompt convection
GW signal from the LS and Shen EoS, since the full spectral information would
be available. However, I find it impossible to discriminate between the different LS
EoS variants. Hence, my simulations indicate that the GW signature depends more
strongly on the asymmetry energy than the compressibility parameter of the EoS.

These results are partly different from those previously published. Recently, [149]
as well as [174] reported to observe GWs from prompt convection in state-of-the-
art 2D simulations which were launched from similar initial conditions as mine,
namely the same progenitor star and the soft variant of the LS EoS (K=180MeV).
Whilst the extracted GW amplitudes from early prompt convection of [149] (cf. their
model M15LS-2D) are in rough agreement with my results, the spectrum of their
wave train peaks at considerably lower frequencies, namely around about ∼ 100Hz.
I suppose that this discrepancy is due mainly to different radial locations of the
unstable regions and consequently the encompassed amount of overturning matter.
[174] computed two models with different resolution. While one of their models
(s15WW95) in particular fits our results well in all characteristic GW features,
namely the size of amplitudes, band of emission and the amount of emitted energy,
the better resolved model (s15WW95HR) shows that convection is much weaker due
to less seed perturbation and hence the GW signal and the total amount of emitted
energy are considerably lower.
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Figure 3.6: Model R1E1CAL’s time evolution of the quadrupole amplitudes A+I,
AxI, A+II, and AxII.

Finally, I find that imposing initial magnetic fields ten times as strong as the values
suggested in [93] does not influence the model dynamics and therefore the GW signal
at all, as can be deduced from tab. 3.2 by a comparison of models R1E1CA and
R1E1DB.

3.4.3 Model with deleptonization in the postbounce phase

Due to the absence of accurate postbounce neutrino transport, it is unclear how
reliably the models discussed in the previous subsection predict the GW signals
from the early postbounce period. As a first step to address this question, we carried
out one computationally expensive simulation, model R1E1CAL

2, that includes the
emission of neutrinos after bounce but neglects neutrino heating, which becomes
relevant at t − tb & 50ms. The absence of the latter makes it impossible for this
model to track the long-term postbounce neutrino-driven convection. However, in
comparison with purely MHD models, the inclusion of neutrino leakage makes it
possible to distinguish effects on the GW signal due to entropy and lepton gradient
driven convection.

A detailed comparison of model R1E1CAL with its purely MHD counterpart R1E1CA
shows that both follow a similar dynamical behaviour until about 20ms after bounce.
Asphericities leading to GW emission are predominantly driven by entropy- and not
lepton-induced convection at this supernova stage. Consequently, the wave trains
emitted within this early period fit each other qualitatively (cf. figs. 3.1 and 3.6).

2Note that R1E1CAL was kindly provided by S.C. Whitehouse.
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3.4 Non- or slowly rotating core collapse

Figure 3.7: Model R1E1CAL’s spherically averaged specific entropy (full line) and
10 × electron fraction Ye (dashed line) profiles are plotted versus the
enclosed mass ∼ 5ms after bounce. The radial position of simultaneous
negativ entropy- and lepton gradients are marked by the vertical lines.

However, I find some quantitative deviations: The GWs of R1E1CAL reach lower
maximum values (see tab. 3.2), as the ‘Ledoux’ unstable region encompasses less
mass (see fig. 3.7), and the presence of neutrino cooling leads to a more rapid
smoothing of the entropy gradient compared to the models discussed in the previ-
ous subsection. Since overturning matter in the top layers of the PNS has the same
radial position, densities and dynamical timescales as in model R1E1CA, these mod-
els have similar GW spectra, peaking between ∼ 150−500Hz (cf. figs. 3.4 and 3.8).
Therefore the physically simpler models still provide reasonably accurate GW pre-
dictions in frequency space until about 20ms after bounce, although the amplitudes
are overestimated a few ×10% (cf. figs. 3.1 and 3.6). Model R1E1CAL’s later
postbounce evolution (t & 20ms) differs strongly compared to its purely hydro-
dynamical counterpart R1E1CA. A negative radial lepton gradient, caused by the
neutronization burst and subsequent deleptonization, drives convection inside the
lower layers of the PNS [56] at a radial position of ∼ 10-30km and a density range
of ∼ 1012− 1014gcm−3 and therefore now causes the entire GW emission. The cool-
ing PNS contracts with time, which causes the convective zones to migrate towards
smaller radii and shrink. However, I point out that our leakage scheme overesti-
mates the neutrino cooling processes, as shown in fig. 2.15. Hence, this mechanism
proceeds too quickly for model R1E1CAL (Christian D. Ott 2009, private com-
munication). The PNS convection exhibits GW emission of roughly ∼ 0.5 − 1cm
amplitude, as can be seen in fig. 3.6 (t & 20ms). The corresponding spectral dis-
tribution is shown in fig. 3.8. A broad peak arises between ∼ 700 − 1200Hz and
reflects the dynamical timescale tdyn of the violent overturn activity of a millisecond
scale inside the PNS. The model’s SNR for LIGO at 10kpc is around unity again.
The high-frequency tail of the spectrum (& 700Hz), which is present due to PNS
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Figure 3.8: Model R1E1CAL’s spectral energy distribution of the GW signals at a
distance of 10kpc. Note that the spectrum interval from ∼ 150− 500Hz
is caused by prompt convective activity, while the higher modes result
from lepton gradient driven postbounce PNS convection.

convection, cannot contribute to the SNR as it lies below the current detector sen-
sitivity. My computed GW strains for PNS convection agree roughly in amplitude
with the ones found by Ott in [174] for axisymmetric MGFLD models. However,
the amount of released energy emitted is found to be about one order of magnitude
higher compared to his simulations. This discrepancy is most likely due to the lower
average frequency content of the GWs in Ott’s model (∼ 350Hz; see his fig. 7), as
dEGW/df ∝ ν2. I suppose the reason for this mismatch to be the different radial
location of the convectively unstable region and thus the different related dynamical
timescale tdyn. I will prove this statement in section 3.4.4 below.

3.4.4 Model with IDSA in the postbounce phase

As a second step studying the influence of spectral neutrino transport on the stochas-
tic matter dynamics in the early supernova stages (t . 100ms after bounce), without
having other different physical parameters interfering, we carried out R0E1CAIDSA

3

(incorporates both neutrino cooling and heating), which permits comparisons with
its ‘model counterparts’ R0E1CA (purely hydrodynamical postbounce evolution),
R1E1CAL (includes a leakage scheme).

A detailed comparison of these three models shows that all of them follow a similar
dynamical behaviour until about 20ms after bounce. At this stage, aspherities lead-

3Note that R0E1CAIDSA was kindly provided by S.C. Whitehouse.
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3.4 Non- or slowly rotating core collapse

Figure 3.9: Time evolution of the GW + polarization for a spectator located at the
polar axis (Models R1E1CAHR, R0E1CAIDSA and R1E1CAL).

ing to GW emission are predominantly driven by the negative entropy gradient and
not by the lepton gradient, as already found in subsection 3.4.3 when comparing the
purely ‘hydrodynamical’ model with the ‘leakage’ model. Hence, the wave trains of
all three reference models, which are based on stochastic processes, fit each other
relatively well both in amplitude (several cm) and spectra (∼ 150− 500Hz).

The three representative simulation results of R0E1CAIDSA, R0E1CA and R1E1CAL

diverge strongly in the later postbounce evolution (t & 20ms). As pointed out previ-
ously, convective overturn causes, a smoothing of the entropy gradient. As a result,
the GW amplitude in the hydrodynamical model R0E1CA quickly decays (t . 30ms
after bounce) and is not revived during the later evolution. On the other hand, the
negative radial lepton gradient (see figs. 3.11 and 2.15 which is caused by the neu-
tronization burst and the subsequent deleptonization, modelled only in R1E1CAL

and R0E1CAIDSA, now starts to drive convection inside the PNS.

For the latter models, the PNS convection [56] exhibits similar maximum amplitudes
of∼1-2cm (see fig. 3.9), while differing strongly from each other in the corresponding
spectra, as displayed in fig. 3.10. R1E1CAL’s spectrum peaks between ∼600 -
1000Hz, while R0E1CAIDSA’s frequency band peaks at values as low as ∼100Hz.
This affects the total energy EGW emitted (O(10−10)M�c

2 vs. O(10−11)M�c
2; see

tab. 3.2), being one order of magnitude higher for R1E1ACL due to dEGW/df ∝
f 2. I found the key controlling factor of this behaviour again to be the radial
location of the convectively unstable zones and the related dynamical timescales
tdyn involved (cf. eq. 3.2). If I apply typical numbers from the models R0E1CAIDSA
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Figure 3.10: Spectral energy distribution of models R0E1CAIDSA and R1E1CAL for
a spectator located at the polar axis and at a distance of 10kpc, com-
pared with the LIGO strain sensitivity and the planned performance
of Advanced LIGO. Optimal orientation between source and detector
is assumed.

and R1E1CAL, I confirm the values obtained. Furthermore, our leakage scheme
significantly overestimates neutrino cooling processes, as shown in fig. 2.15. There,
the convectively unstable layer is extended to radii above nuclear densities, where
matter is still opaque for neutrinos and where the local speed of sound assumes
values far larger than in the case of model R0E1CAIDSA. Hence, the dynamical
timescale of R1E1CAL is considerably shorter and the spectral distribution is peaked
at higher values. When comparing the results found for model R0E1CAIDSA with
a recent 2D study of [149], where they carried out one simulation (cf. their model
M15LS-2D) with comparable input physics (same 15M� progenitor; same underlying
finite-temperature EoS) and a very sophisticated neutrino transport scheme, I find
very good agreement both in the amplitudes and frequencies. Hence I conclude
that the primary ingredient for supernova simulations which attempt a quantitative
prediction of GWs from ‘prompt’ and early PNS convection (t . 100ms after bounce)
is the accurate radial location and size of convectively unstable layers. It defines the
dynamical behaviour and timescale of overturning matter in this early supernova
stage.
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3.5 Rapidly rotating core collapse

Figure 3.11: Model R0E1CAIDSA’s specific entropy distribution [kB/baryon] (left
side) and electron fraction Ye (right side) 50ms after core bounce. The
innermost 6002km2 in the x-y plane are displayed. The entropy colour
bar scales from 0 (blue) to 12 (red). The Ye colour bar accounts for
values from 0 (red) to 0.5 (blue).

3.5 Rapidly rotating core collapse

The rapidly rotating models’ initial conditions, similar relevant quantities and GW
data are summarized in tabs. 3.3, 3.4 and 3.5.

3.5.1 Core bounce: Effects of the rotation rate on the GW
signature

Rapidly rotating progenitors (Ωc,i = π . . . 4πrads−1 in my model set) undergo dif-
ferent core-collapse dynamics compared to the previously discussed non- and slowly
rotating models. Conservation of angular momentum in combination with contrac-
tion leads to a massive spin-up and hence oblate deformation of the core. The
collapse is halted either by pure stiffening of the EoS above nuclear saturation den-
sity, or, if rotation is sufficiently strong, by a combination of the centrifugal and
nuclear forces. The abrupt slowdown of axisymmetrically-arranged and quickly ro-
tating bulk matter gives rise to rapid temporal variations in the quadrupole tensor,
resulting in the emission of GWs (see fig. 3.12). Note that the core remains essen-
tially axisymmetric during collapse and early postbounce times (t− tb . 10ms), as
already pointed out in [179, 180]. Within the chosen parameter space of the rota-
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Table 3.3: Summary of initial conditions of rapidly rotating core collapse
a

Model Ωc,i [rads−1] βi βb EoS ρb[
g

cm3 ] Btor,i[G] Bpol,i[G] Em/|W |b Em/|W |f

R2E1AC π 0.64× 10−3 1.6× 10−2 E1 4.27× 1014 1× 106 1× 109 6.5× 10−9 1.27× 10−5

R2E3AC π 0.64× 10−3 1.6× 10−2 E3 4.00× 1014 1× 106 5× 109 6.4× 10−9 5.1× 10−6

R2STAC π 0.64× 10−3 1.6× 10−2 ST 3.30× 1014 1× 106 5× 109 6.4× 10−9 3.6× 10−6

R3E1AC 2π 0.26× 10−2 5.2× 10−2 E1 3.80× 1014 1× 106 5× 109 8.0× 10−9 6.7× 10−6

R3E2AC 2π 0.26× 10−2 5.1× 10−2 E2 3.65× 1014 1× 106 5× 109 8.9× 10−9 7.2× 10−6

R3E3AC 2π 0.26× 10−2 5.1× 10−2 E3 3.64× 1014 1× 106 5× 109 9.0× 10−9 5.8× 10−6

R3STAC 2π 0.26× 10−2 5.1× 10−2 ST 3.01× 1014 1× 106 5× 109 8.9× 10−9 4.7× 10−6

R3E1CA 2π 0.26× 10−2 5.2× 10−2 E1 3.82× 1014 5× 109 1× 106 3.1× 10−9 1.4× 10−8

R3E1DB 2π 0.26× 10−2 5.2× 10−2 E1 3.81× 1014 5× 1010 1× 107 3.1× 10−7 1.6× 10−6

R3E1ACL 2π 0.26× 10−2 5.1× 10−2 E1 3.65× 1014 1× 106 5× 109 8.7× 10−9 8.6× 10−5

R4E1AC 3π 0.57× 10−2 8.6× 10−2 E1 3.22× 1014 1× 106 5× 109 1.2× 10−8 1.3× 10−5

R4STAC 3π 0.57× 10−2 9.0× 10−2 ST 2.69× 1014 1× 106 5× 109 1.5× 10−8 1.4× 10−5

R4E1EC 3π 0.57× 10−2 8.6× 10−2 E1 3.22× 1014 1× 1011 5× 109 2.4× 10−8 1.3× 10−5

R4E1FC 3π 0.57× 10−2 8.6× 10−2 E1 3.19× 1014 1× 1012 5× 109 1.3× 10−4 1.3× 10−4

R4E1FCL 3π 0.57× 10−2 8.7× 10−2 E1 3.14× 1014 1× 1012 5× 109 1.3× 10−4 2.0× 10−4

R4E1CF 3π 0.57× 10−2 8.2× 10−2 E1 3.22× 1014 5× 109 1× 1012 5.8× 10−4 5.9× 10−3

R5E1AC 4π 1.02× 10−2 10.2× 10−2 E1 2.47× 1014 1× 106 5× 109 1.3× 10−8 1.2× 10−5

a The subscript i stands for initial, b for bounce, while f stands for final. ρb is the maximum central density at
the time of core bounce. Bpol,i and Btor,i abbreviate the initially imposed toroidal and poloidal magnetic fields,
whereas Em/|W | stands for the ratio of magnetic to gravitational energy. The subscript L denotes models which
were carried out with the leakage scheme.

tion rate, all my models exhibit a so-called type I GW burst ( [261]; see fig. 3.13)
around core bounce, no matter what the initial choice of the EoS or the magnetic
field configuration is. This was previously also found by [62] in 2D GR simulations
without magnetic fields.

The question now arises as to what kind of information could possibly be delivered
from a quasi-axisymmetric type I GW burst, since it is a priori unclear how degen-
erate it is with respect to the model parameters such as the EoS, rotation rate and
so forth. This was already investigated in great detail by [62] who performed an
extensive set of 2D GR core-collapse simulations. Our 3D results show the same
systematics: the negative peak amplitude |h|max,b ≡ A+II/R scales about linearly
with βb for models up to a moderately rapid rotation (βb . 10%, see fig. 3.14).

The Fourier transforms of the bounce wave trains (± 5ms relative to core bounce)
show for most models in the indicated parameter range a spectrum with a narrow
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Table 3.4: Summary of GW related quantities of rapidly rotating core collapse

a

Model tf [ms] EGW [M�c2] dir. |A+,b,max| |A×,b,max| |A+,pb,max| |A×,pb,max| fb[Hz] fTW [Hz]

R2E1AC 127.3 5.52× 10−9 I 2 2 6 5 - -
II 105 <1 1 3 841 -

R2E3AC 106.4 5.31× 10−9 I 2 2 4 4 - -
II 104 <1 1 < 1 803 -

R2STAC 64.0 7.62× 10−9 I 3 3 6 6 - -
II 133 <1 2 1 680 -

R3E1AC 62.5 5.58× 10−8 I 2 1 15 16 - 725
II 393 < 1 10 2 880 -

R3E2AC 45.5 6.53× 10−8 I 2 1 11 13 - -
II 409 < 1 5 3 882 -

R3E3AC 57.5 6.44× 10−8 I 2 2 6 9 - -
II 409 < 1 6 3 891 -

R3STAC 50.2 1.05× 10−7 I 5 4 9 11 - 935
II 526 < 1 5 3 854 -

R3E1CA 69.4 8.05× 10−8 I 3 3 9 9 - -
II 426 < 1 5 3 897 -

R3E1DB 62.7 7.76× 10−8 I 8 8 13 11 - -
II 425 < 1 8 3 886 -

R3E1ACL 196.7 2.14× 10−7 I 1 1 136 136 - 909
II 437 < 1 70 9 909 -

R4E1AC 98.7 7.74× 10−8 I 1 < 1 37 37 - 662
II 512 < 1 20 6 385 -

R4STAC 67.2 1.91× 10−7 I 2 1 102 109 - 902
II 536 < 1 53 3 396 -

R4E1EC 100.8 7.51× 10−8 I 1 1 25 20 - 611
II 492 < 1 15 7 866 -

R4E1FC 80.1 7.29× 10−8 I < 1 < 1 16 19 - 828
II 516 < 1 9 3 859 -

R4E1FCL 97.6 3.42× 10−7 I 2 1 316 298 - 673
II 536 < 1 157 6 485 -

R4E1CF 19.1 6.50× 10−8 I 1 1 4 4 - -
II 518 < 1 ring-down 2 370 -

R5E1AC 93.2 1.20× 10−8 I 1 1 18 18 - 727
II 238 < 1 10 11 317 -

a tf is the time after core bounce when the simulation was stopped. EGW is the total energy released in gravitational
radiation. We present the maximum amplitudes at different stages of their time-evolution in polar (I) and equatorial
(II) direction. The subscripts b and pb stand for bounce and postbounce. fb denotes the peak frequency of the GW
burst at bounce, while fTW stands for the spectral peak from the narrow band emission caused by a low T/|W |
instability.

bandwidth, peaking around ∼ 800 − 900Hz (see tab. 3.4 and fig. 3.15). Moreover,
with growing rotation rate, prompt convective overturn in the rotational plane is
suppressed by the influence of positive angular momentum gradients. This effect was
first pointed out by [66] and is known as the Solberg-Høiland instability criterion.

The outcome of my 3D models confirms the statement of [62] that two parameters
are essential for the behaviour of the GW amplitude around t− tb = 0, namely the
mass of the inner core at bounce, which I denote as Mic,b, and the initial central
rotation rate Ωc,i. Over the parameter range covered by my models, βb is a strictly
monotonic function of the initial central angular velocity Ωc,i, as displayed in fig.
3.16. The mass of the inner core Mic,b is linked to βb via its dependence on Ωc,i (see
fig. 3.16). The positive mass offset of the inner core (which is approximately con-
stant for all rotational configurations) that occurs when switching from E1 to ST is
interpreted as follows: in a static initial configuration, the mass of the inner core is
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Figure 3.12: Time evolution of the quadrupole amplitudes A+I, AxI, A+II, and AxII

for model R4E1AC. Note that The amplitudes for the three directions
and polarizations, A+I, AxI, A+II, are not very sensitive to rotation and
show a similar size of several centimetres. Apparently, they initially
couple only weakly to rotationally induced large-scale asymmetries in
the mass-energy distribution. The only GW amplitude that is strongly
correlated to axisymmetric rotation at the time of core bounce turns
out to be A+II in the θ = π/2, φ = 0-direction, as previously stated
by [179,206].

proportional to the square of the electron fraction Ye and the entropy per baryon [85].
As the minimum of Ye(ρ) for E1 appears at ∼ 0.276 compared to ∼ 0.293 for the
Shen EoS (see fig. 2.13), I attribute the mass difference primarily to this relative
difference, and secondarily to changes in the specific entropy which occurs as the LS
EoS permits more efficient electron capture. However, note that I may overestimate
the spread of the inner core mass Mic,b in dependence with rotation compared to
simulations which are carried out with full neutrino transport (Thomas Janka 2009,
private communication). The stronger the rotation becomes (at Ωc,i & 3π), the more
centrifugal forces start to play a dominant role, slowing down the entire dynamics
of the collapse and causing the core to rebound at sub- or just above supra-nuclear
matter densities. The imprint of such behaviour is found in the GW signature by a
smaller maximum amplitude and lower peak frequency compared to slower rotating
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Figure 3.13: Left panel: Time evolution of the GW amplitude A+II of the models
R3E1AC (solid line), R3E2AC (dashed line), R3E3AC (dotted line),
and R3STAC (dashed-dotted line). Right panel: Model R5E1AC’s
GW amplitude A+II.

Figure 3.14: Summary of all model’s dimensionless peak gravitational wave ampli-
tude |h|max,b at a distance of 10kpc and at core bounce versus the
rotation rate βb. While |h|max,b scales roughly linearly with βb for rota-
tion rates βb . 10%, the growing centrifugal force reduces |h|max,b for
βb & 10%.
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Figure 3.15: Spectral energy distribution of the rotational model R3E1AC’s GW sig-
nal at a distance of 10 kpc in comparison with the present LIGO strain
sensitivity and the possible performance of Advanced LIGO (broad-
band tuning). The dashed lines show the GW signal for an observer on
the rotational axis of the source, the solid lines show the GW signal for
an observer in the equatorial plane. Note that the the frequency peak
of the latter at ∼ 900 Hz is due to the GW signal from core bounce.

models, as shown in fig. 3.13 and tab. 3.4. Similar to [62], I also find that hmax
depends sensitively on the competition of both the amount of imposed quadrupolar
deformation due to rotation, and on the other hand on the average density level in
the for GW emission dynamically relevant region of the inner core. The density in
the central region of the PNS is lowered considerably by centrifugal forces, however,
no longer compensated by a prominent quadrupolar deformation which results from
rapid rotation. The ‘optimal’ configuration for strong GW emission is now overshot,
causing a smaller maximum amplitude and a lower peak frequency. Our findings
stand in very good qualitative agreement with [62], who recently performed a large
set of 2D core-collapse simulations in GR, with nearly identical microphysical input,
but without magnetic fields. However, there are some quantitative differences. For
our models that undergo a pressure-dominated bounce, we find spectra which peak
on average some 100-150Hz higher than the models in [62]. It has been shown by
Dimmelmeier (2007, private communication) that the difference stems from the fact
that fully relativistic calculations shift the GW bounce spectrum to lower frequencies
in comparison to the ones using an effective, spherically symmetric gravitational po-
tential, as displayed in fig. 3.17. Furthermore, for comparable precollapse rotational
configurations, our models return higher peak GW values. We suspect the size of
the inner core to be the major cause of this difference. The mass of the inner core
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Figure 3.16: Precollapse central angular velocity Ωc,i versus the rotation rate βb or
the mass of the inner core Mic,b at core bounce for models run with
the E1 or ST EoS. We define the mass of the inner core as the mass
enclosed by the entropy maximum at core-bounce, i.e. the unshocked
region.

for all our simulations is roughly ∼ 0.1M� bigger than the ones of [62]. If we take
into account that we are using different electron capture rates ( [36] versus [128,98]),
I consider the mismatch to be understood, as updated rates cause the mass of the
inner core in my models to shrink.

Core bounce: Effects of magnetic fields on the GW signature

The presence of magnetic fields in our models slows down the accretion of angular
momentum onto the PNS via field winding. For example, the poloidal field’s stress
acts on fluid particles moving in the x-y plane in a direction opposing the motion,
leading to a deceleration. Thus, while the GW signal from the initially ‘weakly’ mag-
netized model R4E1AC is already strongly affected by centrifugal forces at bounce
(the frequency peak at bounce is at ∼ 385Hz, while the central angular velocity is
Ωc,b ∼ 6200rads−1), the initially more strongly magnetized but otherwise comparable
model R4E1FC still undergoes a pressure dominated bounce with a frequency peak
at ∼860Hz and a central angular velocity of Ωc,b ∼ 5600rads−1. Note that this effect
only gets prominent for initial magnetic fields that are by two orders of magnitude
stronger than suggested by [93]. I will discuss the issue of strong magnetic fields in
more detail in sec. 3.5.7.
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Figure 3.17: Comparison of spectral energy distribution of axisymmetic models with
a similar set-up as model R3E1AC. The black line represents a general
relativistic calculation, while the green and the red profiles were ex-
tracted from simulations with variations of the effective, GR-corrected
potential [147] I apply in my simulations. The figure is courtesy of H.
Dimmelmeier.

3.5.2 Core bounce: Effects of the EoS on the GW signature

In order to understand the dependence of the GW burst at bounce on the EoS,
I repeated several simulations, changing only the EoS while keeping the other pa-
rameters fixed. The most prominent change occurs when switching from E1 to ST.
Applying the latter EoS in our models leads to systematically larger absolute GW
amplitudes at lower frequencies compared to their counterparts, as shown in tab. 3.4
and the left panel of fig. 3.13. This was also observed e.g. by [122], where the two
EoS were compared. The shift to lower frequencies can be explained by the fact that
the typical timescale of the GW burst at bounce is given by the free-fall timescale
τdyn ∼ 1/

√
Gρic, where ρic is the mean density of the inner core. Since E1 leads to

substantially higher central densities at core bounce compared to ST in simulations
that are not dominated by centrifugal forces, the spectral peak of the GW signal
is shifted to higher frequencies. The maximum GW burst amplitude depends on
the dynamical timescale, the mass of the inner core as well as on the global density
distribution inside the core, as pointed out e.g. by [122,62]. The dimensionless GW
amplitude is roughly proportional to Mic, divided by the square of the dynamical
timescale (h ∝Mic/τ

2
dyn). Hence, it scales approximately linearly with density. This

implies that one could expect higher GW peak amplitudes from the more compact
cores in the case of E1. However, since models using E1 are slightly more compact
in central regions, they exhibit lower densities in the outer layers. This is displayed
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3.5 Rapidly rotating core collapse

Figure 3.18: Radial profiles of the weighted density ρr2 of the spherically averaged
data at time t = 0 relative to core bounce for model R3E1AC and its
opposing model R3STAC.

in fig. 3.5. Following the reasoning of [62], I display the quantity ρr2 in fig. 3.18,
which is the essential quantity in the integrand of the quadrupole GW formula (see
eq. 1.59). From this plot it is apparent that models run with E1 have higher ρr2

at small radii, ST yields higher values at intermediate and large radii. Due to their
larger volume, these regions contribute more to the total quadrupole integral. For
fast rotators (Ωc,i & 3π), centrifugal forces start to play a dominant role, as already
previously observed by [62]. Here, the relative difference between the GW signatures
of models run with two EoS decreases, since in the regime of lower densities, the EoS
do not differ significantly. When comparing, e.g., model R3E1AC with R3STAC,
the absolute size of the burst amplitudes vary roughly 25%, whereas for R4E1AC
and R4STAC they only differ by ∼ 4% (see tab. 3.4). In summary I state that it
seems very difficult to reveal information about the two different EoS by considering
the GW signature from core bounce alone. For models run with either the LS or the
Shen EoS and all other parameters being indentical, the differences brought about
by the EoS are clearly distinguishable. However, since a small variation in one of
the other parameters can easily have a similar effect as the EoS change, it will be
nearly impossible to constrain the nuclear EoS in the general case.
When changing the LS compressibility from K=180MeV to K=220MeV or K=375MeV,
the features of the collapse dynamics and the corresponding GW emission remain
practically unaltered, as displayed in the left panel of fig. 3.13. The only notable
difference occurs in the vicinity of core bounce at the center of the PNS: models
run with the softest version of the LS EoS (E1) allow the core to bounce at slightly
higher central density compared to E2 and E3 (see tab. 3.1). At the same time,
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models run with E1 exhibit lower densities at larger radii compared to cases where
E2 or E3 was applied (see fig. 3.5). However, since the differences in the radial
density profiles are relatively low, these effects cancel each other out if we consider
again the quantity ρr2. This leads to GW amplitudes of similar size and frequencies.

3.5.3 Gravitational waves from the nonaxisymmetric rotational
instability: General remarks

Rotating proto-neutron stars can be subject to non-axisymmetric rotational insta-
bilities in situations when T/|W |dyn = β exceeds a certain critical value. Since the
growing instabilities carry the object’s spheroidal- into a triaxial configuration with
a time-dependent quadrupole moment, strong GW emission is to be expected. The
best understood type of instability is the classical dynamical bar mode rotational
instability with a threshold value of βdyn ∼ 27%. However, strong evidence was
found by [62] that it is unlikely that the PNS reaches rotation rates required for it
to become unstable during the core-collapse and the early postbounce phase of the
iron core. Another possibility is the secular instability, triggered at moderately high
βsec ∼ 14% if a dissipative mechanism is present. It grows on the relatively slow
dissipative timescale of the order of a second [228]. Since none of my models reach
such high β-values, both instabilities cannot play any role in my simulations.

However, recent work, some of which has been carried out in idealized setups and
assumptions [217, 199, 200, 243, 183, 51] and later also in more self-consistent core-
collapse simulations [180, 179, 206], suggests that a differentially rotating PNS can
become dynamically unstable at T/|W |-values as low as ∼ 1%. Today this so-
called low ‘T/|W |’ instability is interpreted as being a resonance phenomenon [243].
The underlying mechanism is suspected to be the amplification of azimuthal (non-
axisymmetric) modes at co-rotation points, where the pattern speed σp = σ/m of
the unstable mode matches the local angular velocity, (∝ exp[i(σt − mΦ)]) where
σ is the mode’s eigenfrequency. The PNS is differentially rotating outside a radius
of ∼ 10km, as displayed in fig. 3.19. This differential rotation provides a reservoir
of shear energy which may be tapped by the instability. The latter leads to spiral
waves, as displayed in fig. 3.20, which transfer angular momentum outwards (see,
e.g., [143]).

Note that this entire phenomenon appears to be closely related to the Papaloizou-
Pringle instability which occurs in accretion discs around a central gravitating body
[184].

The gravitational wave morphology resulting from the nonaxisymmetric process
generally shows narrow-band and highly periodic signals which persist until the end
of my simulations. This is shown in fig. 3.21 and the upper panels of fig. 3.25.

Bearing in mind that the effectively measured GW amplitude scales with the number
of GW cycles N as heff ∝ h

√
N [233] and that it could last for several hundreds of ms

as our simulations suggest, the chances of being able to detect such a kind of signal
are enhanced compared e.g. to the short duration burst signal at bounce, as one
can see in fig. 3.22. In the lower panels of fig. 3.25 the normalized mode amplitudes
of the models R3E1ACL and R4E1FCL are plotted in order to follow the behaviour
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Figure 3.19: Angular velocity profile along the positive x-axis for different models at
10ms after bounce. Note that the hump in the angular velocity profile
at about ∼ 11km seems to be a generic feature, caused by accreting
material with rather high specific angular momentum which accumu-
lates on the nuclear density region of the PNS, as discussed in [178]. It
is most pronounced in models with an initial rotation rate . R3 and
gets flatter for high initial rotation rates.

of unstable modes. We generally find modes with density wave numbers m = 1, 2, 3
being triggered, with the m = 1 or m = 2 as the overall dominant ones, depending
on the individual model. Furthermore, note that all modes have the same pattern
speed, as previously observed by [180, 179, 206]. In fig. 3.20, the upper panels of
vorticity plots show nicely a two-armed m = 2 spiral pattern, while the middle
plot of the lower panel mainly shows the same for a m = 1 mode, as we expect
from a mode analysis of the corresponding model R4E1FCL presented in fig. 3.25.
After the early linear growth phase, the modes saturate due to Kelvin-Helmholtz
shear instabilities, which break the spirals apart in the outer layers, as displayed in
fig. 3.20 and previously observed and discussed in e.g. [51]. Note the close relation
between the m = 2 bar mode and the emission of GWs. The growth and saturation
of this mode is imprinted on the GWs emitted. As soon as it exceeds the Cartesian
m = 4 noise background, strong GW emission at a frequency corresponding to twice
the m = 2 pattern speed along the pole emerges, with the + and × polarizations
shifted by a quarter cycle, as one could expect from GWs emitted by a spinning bar.
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Figure 3.20: Snapshots of the vorticity’s z-component ~wz = (∇×~v)z in the equatorial
plane for models R4STAC (upper panels, t − tb = 10, 29, 63ms) and
R4E1FCL (lower panels, t − tb = 10, 29, 54ms) at three representative
instants of their evolution. The innermost 3002km2 are displayed, and
the colour is encoded in units of [s−1], ranging from -5000 (white) to
5000 (black). The upper panels of vorticity plots show nicely a two-
armed m = 2 spiral pattern, while the middle plot of the lower panel
mainly shows the same for a m = 1 mode.

3.5.4 Models without deleptonization in the postbounce phase:
Effects of the EoS and magnetic fields on the GW
signature from the low T/|W| instability

We now turn to a more detailed discussion of individual simulations. When compar-
ing models that were carried out with the Shen and the LS (E1) EoS, we find that the
‘Shen’ models emit GWs at significantly higher frequencies than their LS counter-
parts. This result is a consequence of the fact that the specific angular momentum,
which scales as jz ∝ ρωz, is roughly preserved on a mass shell [114]: The innermost
part of the PNS in ‘Shen’ simulations, which rotates in nearly perfect solid body rota-
tion at the pattern speed (see fig. 3.23), has lower density in this radial region. Hence
the central rotation rate must in turn be higher to fulfill the conservation law. As an
example, we compare the models R3E1AC and R3STAC in detail. While R3E1AC
rotates at t − tb = 10ms with a central rotation rate of ωR3E1AC ∼ 2300rads−1 and
has a central density ρR3STAC ∼ 3.38×1014gcm−3, R3STAC revolves with the val-
ues of ωR3STAC ∼ 2800 rads−1 and ρR3E1AC ∼ 2.63 × 1014gcm−3, as displayed in
fig. 3.23. Doing the maths, the ratios of ωR3E1AC/ωR3STAC to ρR3STAC/ρR3STAC are
about the same. I also state that the dynamical instability in the ‘Shen’ cases grows
generically faster than in the LS simulations, as shown in fig. 3.21.

I generally observe a slower growth of the T/|W| unstable modes in situations where
we applied stronger initial poloidal than toroidal magnetic fields. Although such
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Figure 3.21: The upper left panel shows the time evolution of the GW amplitudes A+

and A× of model R3E1AC emitted along the polar axis. The upper right
displays the same for model R3STAC. The lower two panels contain the
same information for R4E1AC and R4STAC from left to right. Note
that A+ and A× oscillate at the same frequency, phase shifted by π/2.

magnetic fields (Bpol,i > Btor,i) may not be motivated by stellar evolution calcula-
tions [93], it is still important to study their effects. Model R3E1AC for example
starts to emit strong GWs due to the low T/|W | instability around ∼ 50ms after
bounce, while model R3E1DB does not within the duration of the simulation, which
we followed until ∼ 65ms after bounce (note, however, that the latter model shows
strong growth of the m=1,2,3 modes although GW emission due to the low T/|W |
had not set in yet). The poloidal fields are able to suppress the dynamical instability
for some time as they slow down the spin-up of the PNS. The detailed discussion of
this issue is postponed to sec. 3.5.7.
Centrifugal forces set a limit to the maximum frequency of the GW signal in similar
fashion to the situation at core bounce. As discussed in the previous subsection,
the limit is somewhere around ∼ 935Hz (which is twice the pattern speed!). The
faster the initial rotation rate, the stronger the influence of centrifugal forces, which
slow down the advection of angular momentum onto the PNS in the postbounce
phase. The result is a slower central rotation rate, a lower pattern speed and thus
GW emission at lower frequencies. Beside these semi-quantitative statements which
allow for the distinction of the simulations’ input physics by its GW signature on a

129



3 3D MHD Core-Collapse Simulations: Results I

Figure 3.22: Model R4STCA’s spectral energy distribution of the GW signal from
a low T/|W| instability, emitted along the polar axis at a distance of
10kpc, evaluated for LIGO, Advanced LIGO (left panel) and the AU-
RIGA detector [5] (right panel). Note that the excellent sensitivity of
resonant detectors within their ‘narrow’ bandwith makes them suitable
for specialized searches such as a for GWs from so-called low T/|W|
instabilities [243].

model-to-model basis, where only one parameter is varied while keeping the others
fixed, it is in general very difficult to discern effects of individual features of the
input physics in a GW signal that cannot unambiguously be attributed to a specific
model. The degeneracy in the simulation results is large with respect to the rotation
rate, the magnetic fields and the underlying EoS.

3.5.5 Lower limit

One important question in the context of the low T/|W| instabilities is the following:
which is the minimal β value required in self-consistent core-collapse simulation to
trigger the onset of the instability? This is important to know, since most stars
which undergo a core collapse rotate only slowly [92]; therefore, the higher this
value is, the more unlikely it becomes for this to occur in nature. Furthermore,
it was pointed out by [62] that even fast rotating PNS can never accrete enough
angular momentum to reach the βdyn value required for the onset of the classical
bar mode instability.
From tab. 3.4 it becomes obvious that all models with an initial rotation rate of
at least R3 (βb ∼ 5.2%) sooner or later become low-β dynamically unstable in this
particular parameter set, while models run with R2 (βb ∼ 1.6%) do not. Hence, the
upper limit for the onset of the instability must lie somewhere in between. However,
this parameter band is still not very indicative due to its width. Therefore, I carried
out two additional simulations A and B, where I systematically changed the rotation
rate while keeping the other model parameters fixed as in model R3E1AC. Some
initial parameters and the GW relevant quantities are summarized in tab. 3.5.
The minimal T/|W | value we found with the aid of the two extra models to trigger
the instability was βb ∼ 2.3% at core bounce (model R3), which is considerably lower
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Figure 3.23: Left panel: angular velocity profile at t− tb ≈ 10ms along the positive
x-axis for the models R3E1AC and R3STAC. The pattern speeds of
the corresponding simulations are indicated by horizontal lines. Right
panel: spherically averaged radial density profiles at the same partic-
ular time.

Table 3.5: Summary of initial conditions and GW relevant quantities in context with the low β
instability.

a Model Ωc,i[rads−1] βi βb ρc,b[1014gcm−3] fTW EGW [10−9M�c
2] tf [ms]

A 3.93 1.0·10−3 2.3 · 10−2 4.16 670 14 106
B 4.71 1.4·10−3 3.2 · 10−2 4.04 615 35 64

aSummary of the models’ initial conditions and GW related quantities. Ωc,i is the precollapse central angular velocity,
while β = T/|W | is the ratio of rotational to gravitational energy. ρc,b is the maximum central density at the time
of core bounce. EGW is the energy emitted as GWs. fTW [Hz] stands for the spectral peak from the narrow band
emission caused by a low T/|W | instability. tf is the time after core bounce when the simulation was stopped.

than seen in previous studies ( [179] found βb ∼ 9%, while [206] found βb ∼ 5%).

3.5.6 Models with deleptonization during the postbounce phase

The improved input physics of the two leakage models R3E1ACL and R4E1FCL

allows us to address the question how the inclusion of deleptonization in the post-
bounce phase quantitatively alters the GW signal of our 3D MHD models. While
the results show qualitative agreement with our earlier findings, they clearly deviate
in quantitative terms. As the most striking feature, these models show 5− 10× big-
ger maximum GW amplitudes due to the nonaxisymmetric dynamics compared to
their counterparts that neglect neutrino cooling, as one can see in tab. 3.2 or when
comparing fig. 3.21 with fig. 3.25. This suggests that the treatment of postbounce
neutrino cooling plays an important role when it comes to the quantitative forecast
of GW signals from a low β instability. The neutrino cooling during the postbounce
phase leads to a more condensed PNS with a shorter dynamical timescale compared
to the purely hydrodynamical treatment, as shown in fig. 3.24. This in turn is
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Figure 3.24: Enclosed mass [M�] as a function of radius for models R4E1FC and
R4E1FCL at t− tb ≈ 25 ms, which explains the strong GW emission of
the latter model.

directly reflected in the dynamical evolution: The shock wave stalls at considerably
smaller radii and becomes more quickly unstable to azimuthal fluid modes (see fig.
3.20). Since there is much more matter in the unstable region of these models, the
unstable modes grow faster and the triggered spiral density waves cause the emission
of much more powerful GWs.

We close this subsection by pointing out that previous core-collapse computations
by [180,179,206] show both qualitative and quantitative agreement with the ones pre-
sented in the previous subsection as they incorporate nearly identical microphysics.
However, they mismatch on a quantitative scale with R3E1ACL and R4E1FCL due
to the absence of the postbounce neutrino treatment. We point out that our leak-
age scheme overestimates the compactification of the PNS due to neutrino cooling.
The ‘reality’ for the strength of GW emission therefore should lie between the results
from the pure MHD and the leakage treatment. I also want to point out that another
limitation which might affect the absolute values of the GW signature from a T/|W |
dynamical instability is the grid resolution. Our choice of a uniform grid leads to
more than sufficient resolution at the stalled shock, but may underresolve the surface
of the PNS. For example, [51] showed that resolution can have a significant effect
on the instability’s developement and its GW signal.
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Figure 3.25: The upper left panel displays the emission of the A+ and the A×-
amplitude along the polar axis for model R3E1ACL. The upper right
panel displays the same for model R4E1FCL. The lower two panels
show for the same models as above the normalized mode amplitudes
Am for m = 1, 2, 3, 4 extracted at a radius of 25km.

3.5.7 The influence of strong magnetic fields on the
gravitational wave signature

In the previous three subsections we have shown that the core-collapse dynamics
and thus the GW signal of initially weakly or moderately strong magnetized stellar
cores (. 1011 G) is hardly affected by magnetic fields. However, in the case of strong
initial fields (∼ 1012 G) things change dramatically. The combined action of flux-
freezing, field winding [151] and also of the magneto-rotational instability MRI [24]
generally may lead to growth of magnetic fields by many orders of magnitude to
values where the magnetic pressure becomes comparable to matter pressure. This,
in turn, triggers a collimated, bipolar jet-explosion (see, e.g., [43], and references
therein) by converting magnetic energy into kinetic energy. However, with our
current grid setup we are unable to resolve exponential growth triggered by the
MRI [68]; the initial magnetic fields are amplified solely by compression during the
infall phase and by magnetic winding.

Magnetically-driven explosions are of interest for the prediction of GWs for two
reasons. Firstly, the bipolar outflow of matter results in a ‘memory effect’ [233]
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Figure 3.26: The upper left panel shows the first 20ms of the time evolution of the
rotational energy parameter β = T/|W | of models R4E1CF, R4E1FC
and R4E1FCL. The upper right panel displays the time evolution of
the magnetic energy parameter βmag for the same models. The small
hump in the βmag profiles at t − tb = 0, best visible for R4E1FC and
R4E1FCL, stems from the fact that field compression scales asB ∝ ρ2/3.
When the core overshoots its equilibrium position at bounce and re-
expands, the density decreases temporarily, which in turn is reflected in
the energy density of the magnetic field. The lower left panel shows the
evolution of the magnetic parameter βtor,mag, βpol,mag and the total βmag
for R4E1CF, the lower right displays the same quantities for R4E1FC.

in the GW signature, as observed e.g. by [170, 218]. As the out-stream of matter
usually happens along the rotational axis, the amplitude A+II will grow over time,
scaling as A+II ∝ 2mv2

z , where the ejected mass m increases constantly in the
early stage of a magneto-rotational supernova. Secondly, the GW amplitude of
these (not necessarily) realistic models is also affected passively by strong magnetic
fields, as they rise during collapse and early postbounce phase to values as high as
∼ 1016−17G. The magnetic energy density may provide sizeable contributions to the
overall amplitude, as estimated approximately by the following formula (cf. [122],
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Figure 3.27: Snapshot of model R4E1CF’s entropy distribution in the first octant
at representative instants of its evolution. The innermost 3003km3 are
displayed (t − tb = 0.4, 5, 9.2, 19.2ms, going from the upper left to the
lower right).

eq. 22):

ηmag =
B2

c

8π

ρcc2
∼ 10%

(
Bc

several× 1017G

)2(
ρc

1013gcm−3

)−1

, (3.4)

where Bc and ρc stand for the central values of the magnetic field and density. If
magnetic contributions become significant it is necessary to include them in eq. 1.68,
which then turns into eq. 1.72.

For the purpose of studying the effect of very strong magnetic fields on the GW signal
in 3D, we carried out three runs: R4E1CF, R4E1FC and a leakage model R4E1FCL.
In order to overcome the technically challenging simulation of magnetic field growth
through small-scale [171] or long-term processes, we applied initial configurations
which may not be realized in nature, but can deliver the formation of jets in a
similar way as natural field growth would.

Model R4E1CF, which was set up with very strong initial poloidal fields (see tab.
3.1), shows a typical behaviour for a magneto-rotational core collapse followed by
a jet-like explosion. Field compression during the collapse phase strongly amplifies
both the toroidal- and poloidal magnetic fields, since flux-freezing in stellar collapse
guarantees the B-field to scale as B ∼ ρ2/3. Note that we evaluate toroidal and
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Figure 3.28: Model R4E1CF’s time evolution of the total quadrupole amplitude
A+II,tot (left panel) and its contributions from the magnetic field
A+II,mag (right panel).

poloidal magnetic field components as:

Btor =
√
B2
x +B2

y (3.5)

Bpol = Bz . (3.6)

Furthermore, the toroidal field is built up by tapping the magnetic energy contained
in the poloidal component of the field trough winding, whilst the poloidal field
component grows only little during the postbounce phase by the action of meridional
motions in the core as shown in the lower left panel of fig. 3.26. In turn, the
generated hoop stresses grow fast to reach high values near the polar region, and
the ratio of magnetic to matter to fluid pressure reaches ∼ 1 (see fig. 3.29).
A bipolar, collimated jet explosion is launched, quickly leaving the computational
domain (see fig. 3.27).
Another remarkable feature is that, in contrast to weakly magnetized models, mag-
netic breaking efficiently decelerates the inner core by redistributing angular mo-
mentum [151]. This is shown in the upper left panel of fig. 3.26. Note that model
R4E1FC slows down at a higher rate than R4E1FCL as its fluid can re-expand to
larger radii due to the absence of neutrino cooling. The GW signal is displayed
in fig. 3.28. In order to distinguish the different contributions to the total GW
amplitude hTTij,tot, we split the magnetic and fluid part in the following way:

hTTij,tot = hTTij,matter + hTTij,mag . (3.7)

Around core bounce, the structure of the GW signal is very similar to that of less
magnetized cores, exhibiting a clear type I signature. However, shortly after bounce
we observe a growing, slowly time-varying offset of A+II relative to the horizontal axis
compared to ring-down oscillations of the weakly-magnetized simulations. There are
two reasons for this behaviour. Firstly, the magnetic contribution A+II,mag to the
total GW amplitude grows strongly as magnetic forces act on the core.
Secondly, as we have explained earlier in this subsection, matter-outflow along the
z-axis also contributes to the signal. This behaviour was already observed by [170] in
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Figure 3.29: Ratio of magnetic- to matter pressure of model R4E1CF in the x-y
plane, 18ms after core bounce. The innermost 1002km2 are displayed.

axisymmetric simulations and its characteristical GW amplitude was named ‘type IV
signal’ [170]. The contribution of the magnetic amplitudes shrinks with the onset of
the jet. The emerging matter gains its kinetic energy by tapping the energy stored in
the magnetic field, which causes a drop in βmag and hence also in A+II,mag, as can be
seen in figs. 3.26 and 3.28 at about t−tb ≈ 10ms. The non-axisymmetric amplitudes
are negligible compared to the axisymmetric part of the wave train (see tab. 3.2) and
the result of some prompt convective motions and complicated time-variations in
the postbounce magnetic field configuration. However, even if a Galactic supernova
was optimally orientated for the detection of a type IV signal, it is still questionable
whether we could distinguish it in early stages from an ordinary type I signal. The
characteristic offset of this particular signal type was suggested e.g. by [170] to be a
valid measure of aspherity of the ongoing supernova explosion. However, since the
memory effect in the amplitude appears on the long timescale of several times 10ms,
it would be out of the LIGO band. The planned space-based DECIGO instrument
[113] could make it possible to track the low frequency contribution of such a GW
signal in the future.

We point out that at the onset of jet formation around t− tb ≈ 10ms, the absolute
value of the magnetic field in the polar region at the edge of the PNS is ∼ 1016G,
which translates into a mildly relativistic fast Alfvén speed. Additionally, the veloc-
ity of the ejected matter accelerates up to radial velocities of ∼ 0.1c when leaving
the boundary of our computational domain. These two points challenge the Newto-
nian treatment of the dynamics in our scheme and suggest the use of a special- or
general- relativistic code for the further evolution of the jet dynamics.

Models R4E1FC and R4E1FCL show a very different dynamical outcome. For these
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Figure 3.30: Snapshots of model R4E1FCL’s entropy distribution in the first
octant at four representative instants of its evolution (t − tb =
12.6, 18.7, 25, 50.4ms, going from the upper left to the lower right). The
innermost 3003km3 are displayed.

two simulations, we assumed the initial toroidal field to be 103 times the values of
the poloidal field, as suggested from stellar evolution calculations by [93]. During
collapse the magnetic field components primarily grow due to compression as one
can see in the lower right panel of fig. 3.26. Right after bounce, the strong toroidal
fields in both models cause the onset of a jet, as one can see in the left panel of
fig. 3.30. However, surprisingly and in contrast to the previously discussed models,
or simulations from [122] where they applied similar initial conditions and obtained
jet explosions in 2D, the wind-up of the poloidal- into the toroidal field does not
occur efficiently enough. The spiral wave of the standing accretion shock instability
(SASI; see, e.g. [34]), which forms at the same time, hinders and delays the growth
of a jet, as displayed in the right panel of fig. 3.30. We interpret this phenomenon
as follows: matter can easily slip along, but not move perpendicular to the magnetic
field. In the x-y plane, the poloidal field’s stress acts on matter in the opposite
direction of the fluid motion. This is also reflected in the upper left panel of fig.
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3.26. It displays clearly that the magnetic forces are not capable of slowing down the
inner core in case of strong initial toroidal fields as effectively as the poloidal ones
that are anchored in the outer stellar layers. Since models R4E1FC and R4E1FCL

have relatively weak initial poloidal magnetic fields, the fluid, which rotates around
the z-axis, can develop nearly unhindered instabilities. The developing spiral waves
then successfully counteract the formation of a jet-like explosion by turning matter
aside the pole (see fig. 3.30), where the magnetic hoop stresses are strongest (and
in axisymmetry most probably would be able to launch a jet at this stage of the
simulation). This finding has very recently been confirmed by [125] in 3D GRMHD,
but without taking a nuclear EoS or neutrino transport into account.
This corresponds also to my observation from the last subsection where we stated
that the low T/|W | instability grows slower in the presence of dominant poloidal
fields, because they cause stresses that act against the spiral instabilities. However,
further discussion of this phenomenon is beyond the scope of my Thesis and will be
investigated in a subsequent study.
The resulting GW signals consequently show a type I signal at core bounce, subse-
quently followed by a low β instability (see the right panels of fig. 3.25). Although
the GW contributions due to magnetic stresses in model R4E1FCL show qualita-
tively the same features as the ones from model R4E1CF, they are smaller and
dominated by the hydrodynamics part of the amplitude (e. g., A+II,mag ∼ 10cm vs.
A+II,matter ∼150cm at 30ms after bounce).
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4 3D MHD Core-Collapse
Simulations: Results II

‘It’s a dangerous business, Frodo, going out of your door,’
he used to say. ’You step into the road, and if you don’t
keep your feet, there is no telling where you might be swept
off to.’

John Ronald Reuel Tolkien, The Lord of the Rings

Since a CCSN does not proceed in an entirely spherically symmetric way due to
reasons outlined in chap. 3, direction-dependent gradients of the gravitational po-
tential are likely to emerge in 3D simulations. This in turn is reflected in non-uniform
matter accelerations (cf. sec. 2.2 and eqs. 2.51 ff.), leading to a slightly modified
temporal outcome of numerical simulations where the dimensionality of the gravi-
tational potential is varied while keeping the other parameters fixed.

In this chapter, I investigate the influence of axisymmetric (2D) and 3D potentials
(cf. sec. 2.2.2) on the the resulting GW signature of rotating stellar core collapse.
This will allow us to probe the robustness of GW predictions obtained by simulations
which employ the computationally considerably ‘cheaper’ 1D approach (see chap.
3).

4.1 Description of the magnetohydrodynamical
models

For the CCSNe simulations and their GW signatures presented in this chap. 4, I
employ the ELEPHANT code (see chap. 2). In this entire section, the multidimen-
sional gravitational potentials are calculated via methods described in sec. 2.2.2.
The monopole term of the resulting gravitational potential is always GR-corrected
according to eq. 2.60 and [147]. As for the treatment of the deleptonization during
the collapse phase, I apply the Ye vs. ρ parametrization scheme [136]. For this I use
the results obtained with the Agile-Boltztran code [134], including the Lattimer-
Swesty EoS (K=180 MeV) [130] and the electron capture rates from [36] (see sec.
2.4 for more details). The 3D computational domain consists of 6003 zones with
an equidistant grid spacing of 1km. The models are named after the conventions
described in chap. 3. The subscripts 2d and 3d2d denote simulations which were
carried out either with an axisymmetric (2D) or a 3D Poisson solver for gravity. For
the latter, axisymmetric boundary conditions were assumed (cf. fig. 4.3).

The models’ initial conditions and similar relevant quantities are summarized in tab.
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Table 4.1: Summary of initial conditions of rapidly rotating models
a

Model Ωc,i [rads−1] βi βb EoS ρb[
g

cm3 ] Btor,i[G] Bpol,i[G] Em/|W |b Em/|W |f

R2E1AC2d π 0.64× 10−3 1.6× 10−2 E1 4.27× 1014 1× 106 5× 109 6.9× 10−9 5.7× 10−6

R2E1AC3d2d π 0.64× 10−3 1.6× 10−2 E1 4.15× 1014 1× 106 5× 109 7.8× 10−9 5.8× 10−6

R3E1AC2d 2π 0.26× 10−2 4.9× 10−2 E1 3.82× 1014 1× 106 5× 109 9.8× 10−9 9.6× 10−6

R3E1AC3d2d 2π 0.26× 10−2 4.8× 10−2 E1 3.66× 1014 1× 106 5× 109 9.9× 10−9 1.4× 10−5

a The subscript i stands for initial, b for bounce, while f stands for final. ρb is the maximum central density at
the time of core bounce. Bpol,i and Btor,i abbreviate the initially imposed toroidal and poloidal magnetic fields,
whereas Em/|W | stands for the ratio of magnetic to gravitational energy.

Table 4.2: Summary of GW related quantities of rapidly rotating models

a

Model tf [ms] EGW [M�c2] dir. |A+,b,max| |A×,b,max| |A+,pb,max| |A×,pb,max| fb[Hz] fTW [Hz]

R2E1AC2d 72.4 9.71× 10−9 I 2 2 9 10 - -
II 159 < 1 2 2 867 -

R2E1AC3d2d 60.5 8.18× 10−9 I 2 1 8 9 - -
II 145 < 1 2 2 896 -

R3E1AC2d 60.2 9.49× 10−8 I 1 1 24 25 - 745
II 512 < 1 13 3 958 -

R3E1AC3d2d 67.0 7.31× 10−8 I 2 < 1 26 25 - 721
II 489 < 1 15 4 930 -

a tf is the time after core bounce when the simulation was stopped. EGW is the total energy released in gravitational
radiation. I present the maximum amplitudes at different stages of their time-evolution in polar (I) and equatorial
(II) direction. The subscripts b and pb stand for bounce and postbounce. fb denotes the peak frequency of the GW
burst at bounce, while fTW stands for the spectral peak from the narrow band emission caused by a low T/|W |
instability.

4.1, whilst the GW data is listed in tab. 4.2.

4.2 Axisymmetric (2D) gravity

In order to investigate the influence of an axisymmetric gravitational potential (see
sec. 2.2.2) on the resulting GW signal, I carried out two rapidly rotating models,
denoted R2E1AC2d and R3E1AC2d. The ‘pure’ hydrodynamical treatment of the
postbounce phase and the comparison with models which were carried out with 1D
gravity allows for a clear distinction of features which are caused by 2D gravity
without having other physical parameters interfering.
The aforementioned models undergo typical SN dynamics affiliated with rapidly
rotating core collapse (see sec. 3.5 for a detailed discussion). In consequence, they
qualitatively show the same GW signatures both in signal shape and frequency band
compared to their reference models with spherically symmetric gravity, i.e. a type
I signal at core bounce, followed by GW emission due to a low T/|W | instability in
the early postbounce phase (only R3E1AC2d).
However, the 2D treatment of gravity alters the CCSN dynamics considerably quan-
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Figure 4.1: Left panel: Comparison of the gravitational potential Φ of the rotating
model R3E1AC2d along the x- and z-axis (y = z = 0 or x = y = 0) at
core bounce (t − tb = 0). Note that the gravitational potential along
the x- and y-axis is equal due to axisymmetry. Right panel: Relative
difference |Φ(x, 0, 0)/Φ(0, 0, z)| − 1.

Figure 4.2: Time evolution of the quadrupole amplitudes A+I, AxI, A+II, and AxII for
the rapidly rotating models R3E1AC and R3E1AC2d. Note that the GW
amplitudes of R3E1AC2d at core bounce (A+II) and due to the low T/|W |
instability (A+I, AxI) are considerably larger compared to R3E1AC.

titatively and thus also the resulting GW signature. I will now outline the most
prominent features.

The axisymmetric acceleration of the fluid due to gravity – a steeper gradient of Φ
along the polar z−axis compared to the x-y plane for radii . 20km (see the left
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panel of fig. 4.1) – leads to stronger centrifugal forces (βb of R3E1AC2d is 4.9%
compared to model R1E1AC’s βb of 5.2%). This causes a somewhat more oblate
configuration of the PNS around bounce and the early postbounce phase compared
to models which were run with a monopolar approach for gravity. This in direct
consequence results in considerably stronger GW emission at core bounce, with an
enhancement of the maximum amplitude of ∼ 20%−30% (see fig. 4.2 and tab. 4.2)
compared to the reference models with 1D gravity (see tab. 3.4).
Because the type I GW signal from core bounce is purely axisymmetric (see sec.
3.5, and references therein) and as the underlying input physics of the model is
‘complete’, I consider the trend found here as robust. This finding therefore indicates
that an axisymmetric treatment of gravity, which comes along with an increase of
∼ 5% of CPU time spent, is a necessity for future, quantitative GW predictions of
type I signals at core bounce.
Significant differences also occur for the GW signal from the low T/|W | instability
when comparing R3E1AC2d with R3E1AC. The axisymmetric treatment of gravity
can account better for spiral structures. This in turn leads to a faster growth of
unstable modes (see eq. 1.82 and sec. 3.5.3) to more prominent values, causing i)
an earlier onset of the GW emission and ii) maximum amplitudes up to a factor of 2
larger in model R3E1AC2d compared to its reference R3E1AC (see the upper panels
of fig. 4.2).
However, a more decisive assessment of the reliability of the above findings can only
be reached via reference calculations which consider gravity in full 3D. As a next
step, I therefore carried out comparative models with full 3D treatment of gravity
(see sec. 2.2.2) within the innermost zones.

4.3 3D gravity

Motivated by the findings of sec. 4.2 and in order to investigate the trends found
there, I carried out two more simulations (R2E1AC3d2d, R3E1AC3d2d) which incor-
porate a full 3D treatment of gravity (see sec. 2.2.2) within the innermost 803 km3.
The boundary conditions are provided by the adjacent axisymmetric solution of the
Poisson equation (see fig. 4.3). Inside this domain, the 3D Poisson equation is
solved via the the direct sparse matrix method described in sec. 2.2.2 (cf. fig. 4.3).
With this setup, the total treatment of gravity consumes about ∼ 10% of the CPU
time spent. As the innermost central cube contains ∼ 99% of the total mass treated
in my simulations, it makes the dominant contributions to the overall gravitational
potential.
During the collapse and the early postbounce phase (t− tb . 20−30ms), the hydro-
dynamical evolution of models R2E1AC3d2d and R3E1AC3d2d is purely axisymmetric
and therefore fits nearly perfectly – apart from stochastic deviations due to the fi-
nite accuracy of numerical simulations (cf. sec. 2.2) – the behaviour of the reference
models R2E1AC2d and R3E1AC2d (see sec. 4.2), as displayed in the upper panels
of fig. 4.5. In consequence, the GW signal from models run with 3D gravity also
show a ∼ 20 − 30% enhanced peak amplitude at core bounce compared to models
which incorporate only 1D gravity due to the same reasons already outlined in sec.
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Figure 4.3: Schematic description of the code set-up when 3D gravity is taken
into account: the 3D computational domain is embedded in a larger
spherically symmetric domain. The axisymmetric gravitational poten-
tial Φ(r, z) provides the boundary conditions for the central cube of 803

zones size, where gravity is treated in full 3D.

Figure 4.4: Comparison of the gravitational potential Φ of the rotating model
R3E1AC3d2d along the x-, y- and z-axis at 67ms after core bounce. Left
panel: Relative difference |Φ(x, 0, 0)/Φ(0, y, 0)|−1. Right panel: Rel-
ative difference |Φ(x, 0, 0)/Φ(0, 0, z)| − 1.

4.2 (see the lower left panel of fig. 4.6 and tab. 4.2).

The later postbounce phase (t − tb & 30ms) of each of the models R2E1AC3d2d

and R3E1AC3d2d shows a significantly different dynamical evolution compared to
their counterparts R2E1AC2d and R3E1AC2d. Emerging local inhomogenities in the
density distribution combined with a 3D treatment of gravity allow for nonaxisym-
metric accelerations of the fluid (see fig. 4.5) which in turn lead to the breaking
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Figure 4.5: Comparison of model R3E1AC2d’s (left panels) and R3E1AC3d2d’s (right
panels) specific entropy [kB/baryon] profiles at different instances of
time. The upper panels display snapshots at 10ms, the lower panels
at 56ms after bounce. The innermost 5002km2 in the x-z plane are dis-
played. The entropy color bar scales from 0 (blue) to 10 (red).

of the axisymmetric configuration (see the lower panels of fig. 4.2). These central,
nonaxisymmetric perturbations then propagate outwards and become dynamically
relevant in the regime of the stalled shock (R & 200km, ρ . 1010[g/cm3]), as shown
in the lower right panel of fig. 4.2.

The latter finding implies that both a spherically symmetric and an axisymmetric
treatment of gravity are too restrictive for a quantitative description of the post-
bounce dynamics of rapidly rotating CCSN models.

In agreement with sec. 4.2, again only one model (R3E1AC3d2d) emits GWs due to
the low T/|W | instability. It can be deduced from the upper panels of fig. 4.6 and
tab. 4.2 that the GW characteristics of this model fit those of model R3E1AC2d

surprisingly well, even though their dynamical evolutions diverge vastly.

This phenomenon can be explained by the fact that the dominant contributions
to the GW amplitudes are usually emitted at radii R . 30km in my models. In
this central region, the rotation rate is highest (cf. fig. 3.19) and the centrifugal
forces, which carry the PNS into an oblate, axisymmetric deformation, are at their
strongest. Therefore, the dynamics of the PNS region which is relevant to the
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Figure 4.6: Time evolution of the quadrupole amplitudes A+I, AxI, A+II, and AxII for
the rapidly rotating models R3E1AC, R3E1AC2d and R3E1AC3d2d. Note
that the GW amplitudes of R3E1AC2d and R3E1AC3d2d at core bounce
(A+II) and due to the low T/|W | instability (A+I, AxI) are considerably
larger compared to R3E1AC.

GW emission process is sufficiently well captured by an axisymmetric gravitational
potential, even though the evolution of model R3E1AC3d2d clearly deviates in the
outer layers from axisymmetry.
I therefore conclude that the inclusion of 3D gravity in my rapidly rotating models
is not an option, but a necessity for the quantitative outcome of the simulations.
However, the computationally cheaper treatment of gravity in axisymmetry still
might be an option if one is only interested in the GW signature and not in the
overall dynamics.
As next steps, I plan i) to enlarge the size of the central domain where gravity is
treated in 3D, and ii) to implement gravity in a way which is dependent on the
centre of mass and not on the computational origin.
Point i) is important in order to investigate in further detail the dynamical relevance
of gravity with respect to the overall supernova evolution and the SASI (see, e.g.
[34]). Point ii) will enable us to examine in a fully self-consistent way if core g-
modes really play a crucial role in the CCSN explosion mechanism, as has been
found so far only by Burrows [45, 46]. However, these steps go beyond the scope of
this dissertation and will be addressed in subsequent work.
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5 Summary and Conclusions

Nunc agam modice nec longius progrediar quam me mea
fides et causa ipsa coget.

Cicero, Pro Caelio

Gravitational wave astronomy may soon become a reality and will allow humankind
to address questions about many different astrophysical objects that are hidden
from electromagnetic detection. Within the past few years, the first generation of
the ground-based GW detectors LIGO (USA), VIRGO (Italy), GEO600 (Germany),
and TAMA (Japan) have got very close to or even reached design sensitivity and
have collected partially coincident data, as discussed by [14]. Lately, the two 4km
LIGO detectors were upgraded to sensitivities increased by a factor of 2-3 (enhanced
LIGO, see [191]) and resumed observations in 2009. Upgrades of the three LIGO
interferometers and VIRGO are expected to be completed by 2014 and will increase
the observable volume by a factor of ∼ 1000.

Operating at such a high level of precision, GW detectors should be sensitive to many
different sources such as compact binary coalescence from black holes and neutron
stars up to distances of several 100 megaparsecs, but might also very likely produce
the first detections of, e.g., black-hole and neutron star mergers, and neutron star
normal mode oscillations [39].

Ever since the first attempts to detect gravitational waves, core-collapse supernovae
have been deemed prime candidates of GWs for earth-based detectors. Their GWs
could provide us access to the electromagnetically hidden compact inner core of
some such cataclysmic events, supplying us with valuable information about e.g., the
angular momentum distribution and the baryonic equation of state, both of which
are uncertain. Furthermore, they might even help constrain theoretically predicted
SN mechanisms [174]. However, GW astronomy strongly depends on the extensive
data processing of detector output on the basis of reliable GW estimates, which
have only recently become feasible due to the emerging power of supercomputers.
Moreover, the parameter space of possible initial conditions of stellar core collapse
is huge since many progenitor configurations are possible at the onset of collapse.

In this dissertation, I reported on the dependences of the 3D GW form of the
early postbounce phase (t . 200 ms) upon a variety of these conditions. For un-
modelled burst analysis techiques [14], which must be applied for GWs from CCSN,
partial information on wave forms is already useful, e.g. typical waveform features,
approximate spectra and the type of polarization and burst duration.

With my model series containing more than 30 three-dimensional MHD core-collapse
supernova simulations, I have tried to probe the GW signature with respect to differ-
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ent nuclear equations of state, rotation rates, poloidal and toroidal magnetic fields,
multidimensional Poisson solvers for the gravitational potential, and postbounce
neutrino transport approximations.

Similar to the findings of e.g. [145, 62, 149, 174, 209], my results show that in the
case of non- and slowly rotating models the GWs emitted during the first 20ms
after bounce are predominantly due to entropy-driven ‘prompt’ convection that is
caused by the presence of a negative radial entropy gradient. It turns out that the
crucial parameter to study this stochastic phenomenon is the choice of the spatial
resolution and not the inclusion of a neutrino transport scheme. This parameter
has a twofold effect: Firstly, it governs the influence of numerical noise, since a
better resolution leads to lower numerical seed perturbations and thus smaller grid
alignment effects. Therefore, the GW amplitude at core bounce is smaller for higher
spatial resolution. Secondly, it enhances the ability to follow dynamical features, as
better numerical resolution causes less numerical dissipation in the system, which
eases the dynamical effects which follow, leading to larger GW amplitudes after the
core bounce compared to less resolved models.

Furthermore, I could show in simulations without deleptonization in the postbounce
phase that the waveforms obtained from this early stage of a supernova explosion
contain indirect information about the underlying EoS. Due to different radial lo-
cations of the convectively unstable region and the amount of matter it contains, I
was able to distinguish the LS EoS from that of Shen. While the LS EoS leads to
GW emission in a frequency band peaking between ∼ 150 − 500Hz, the spectrum
of the models using the Shen EoS is restricted to roughly ∼ 150− 350Hz. However,
LIGO’s current sensitivity makes it impossible to see the high-frequency component
of the LS models. Thus, a distinction between the two EoS is currently not possi-
ble. Nevertheless, planned upgrades of the interferometers in the near future should
enable the discrimination between the prompt convection GW signal of the LS and
the Shen EoS. We also found minor deviations in the GW characteristics for simu-
lations which were carried out with different compressibility versions of the LS EoS.
However, the differences in the frequency domain of the GW signal are negligibly
small and thus not likely to be constrained by observation.

The lepton-driven convection is the central engine for the later dynamical post-
bounce evolution of the PNS (t & 20ms) and hence the GW emission. My findings
and comparisons with state-of-the-art 2D simulations of [149] suggest that the radial
location and size of the convectively unstable layers are the key controlling factors
for the outcome of the GW prediction, as they define the timescale and the dy-
namical behaviour of the overturning matter. Here I find a large sensitivity to the
numerical approach of the neutrino transport scheme.

In my set of models, simulations with a precollapse core angular velocity within
the parameter range of Ωc,i = π . . . 4π·rads−1 undergo a rotational core collapse.
The models all exhibit a so-called type I GW burst at core bounce. As the most
important outcome, our 3D MHD models could confirm the recent findings of [62]
that the purely axisymmetric (l = 2,m = 0) peak amplitude scales approximatively
linearly with the rotation rate βb at core bounce (|hmax| ∝ βb) for βb . 10%, while
the Fourier-transform of the bounce wave trains for most models in the indicated
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parameter range align around a spectral peak of ∼ 800 − 900Hz. However, for
very fast initial rotation rates of Ωc,i & 3π·rads−1, centrifugal forces significantly
decelerate collapse and core bounce. The longer timescale and the weakened spin-up
of the core due to the action of centrifugal forces leads generically to a decrease of the
peak amplitude and a broadened spectral peak at lower frequencies. Furthermore,
our results indicate that the particular choice of the nuclear EoS has little influence
on the GW signal from rotational core bounce. These findings are in good qualitative
agreement with the ones [62] derived from axisymmetric models.

In my rotational core-collapse simulations, nonaxisymmetric dynamics develops for
models with a rotation rate of βb & 2.3% at core bounce. Beyond this value, which is
considerably lower than found in previous studies (e.g. [179,206]), all models become
subject to the ’low T/|W |’ instability of dominant m=1 or m=2 character within
several ms after bounce, depending on the individual model. This nonaxisymmetric
dynamical shear instability leads to prolonged narrow-band GW emission at a fre-
quency of twice the rotation rate of the innermost part of the PNS which rotates as
a solid body. The fact that the effectively measured GW amplitude scales with the
number of GW cycles N as heff ∝ h

√
N suggests that the detection of such a signal

is tremendously enhanced compared to, e.g., the short-lived GW bursts from core
bounce, and would allow us to probe the rotational state of the PNS over a long
period. However, I point out that such a mechanism only operates if the progenitor
is rotating much faster than predicted for most stars by stellar evolution calcula-
tions [93]. I also find that centrifugal forces set a limit to the maximum frequency
of this periodic GW signal somewhere around ∼ 935Hz as they suppress the inward
advection of angular momentum. Besides that, I point out that GWs from a low
T/|W | instability are highly degenerate with respect to initial rotation rate, EoS,
and magnetic fields. Thus, it is very difficult to extract individual features of the
input physics from the GW signal that can clearly be attributed to the initial condi-
tions of a progenitor. Rapidly rotating models that include the postbounce neutrino
physics at a qualitative level reproduce the previous findings. However, the GW sig-
natures from these more advanced models show huge quantitative deviations from
the ones that treat the postbounce phase purely hydrodynamically. As the neutrino
cooling during the postbounce phase leads to a more condensed PNS, the unstable
regions contain considerably more mass, which then results in 5 to 10 times larger
GW amplitudes.

My simulations show that the impact of magnetic fields on the overall supernova
dynamics is generally small in cores with relatively weak precollapse fields (B <
1011G). Nevertheless, if I impose very strong and probably unrealistic initial poloidal
magnetic fields (∼ 1012G), the combined action of flux-freezing and field winding
allows the toroidal field component to grow over many orders of magnitude to values
where the magnetic pressure can trigger a jet-like explosion along the poles. The
bipolar outflow of matter then causes a type IV GW signal. However, if I assume
a strong initial toroidal magnetic field, the onset of a jet is effectively suppressed
by the fast growing spiral waves of the SASI. This finding stands in contradiction
to 2D simulations, where similar configurations led to ‘jet’-like explosions, as e.g.
in [122]. Thus, in simulations where the toroidal component of the magnetic field
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dominates over the poloidal one, the magnetic contributions to the GW signal are
dominated by the hydrodynamical part of the amplitude. This effect is even stronger
in simulations with a deleptonization scheme in the postbounce phase.

The major limitation in most of the simulations I have presented in this thesis lies
in the monopole treatment of gravity, since it cannot account for spiral structures,
which could be reflected in GWs. In order to investigate the sensitivity of the
GW signatures with respect to multidimensional approaches for gravity, I imple-
mented axisymmetric (2D) and 3D Poisson solvers for the gravitational potential.
My first studies indicate that in the case of rapidly rotating models with a 2D gravi-
tational potential, the axisymmetric acceleration of the fluid due to gravity leads to
a somewhat more oblate configuration of the PNS around core bounce and the early
postbounce phase compared to models which were run with a spherically symmet-
ric approach for gravity. This in direct consequence causes considerably stronger
GW emission at core bounce with an enhancement of the maximum amplitude of
∼ 20%− 30% compared to the reference models with 1D gravity. Moreover, signifi-
cant differences also occur for the GW signal from the low T/|W | instability. Since
the axisymmetric treatment of gravity can account better for spiral structures, this
in turn leads to a faster growth of unstable modes to more prominent values, caus-
ing an earlier onset of the GW emission, and maximum amplitudes up to a factor
of 2 larger compared to the reference models with 1D gravity. In case of rapidly
rotating models which implement gravity in 3D, I could confirm the trends found
with respect to GW emission in simulations which treat the gravitational potential
in axisymmetry. This is due to the fact that in my models, the dominant contribu-
tions to the GW amplitudes are emitted at radii R < 30km, where the predominant
deformation of the PNS is of axisymmetric nature. Moreover, I also could show that
the postbounce dynamics occuring in the outer layers (R & 200km) of models run
with 3D gravity deviates vastly from the ones run with a 1D or 2D potential. The
latter finding implies that both spherically symmetric and axisymmetric treatments
of gravity are too restrictive for a quantitative description of the overall postbounce
evolution of rapidly rotating CCSN models.

At present, the IDSA includes only the dominant reactions relevant to the neutrino
transport problem (see [140] and sec. 2.4.3 for details). Future upgrades will also
include contributions from electron-neutrino scattering, which are indispensable dur-
ing the collapse phase. The inclusion of this reaction will also make the cumbersome
switch of the neutrino parametrization scheme to the IDSA at bounce obsolete. Fi-
nally, the Basel supernova group is working on the inclusion of µ and τ neutrinos,
which are very important for the cooling of the PNS to its final stage as neutron star.

In future work, I plan to focus on aspects of the late postbounce (t & 200 ms) GW
signature from 3D MHD CCSN simulations. From today’s point of view, hardly
anything is known about the 3D GW signal from this SN stage. Moreover, I will
carry on working on the implementation of the IDSA into the general relativistic
hydrodynamics codes of Ott et al. [172, 12, 182] (see Appendix A) in order to con-
tribute on a long-term perspective to the first {3 + 1} GR and GRMHD simulations
of stellar core collapse with postbounce neutrino radiation transport. At densities
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and velocities encountered in stellar collapse, the inclusion of general relativistic
effects is not an optional model sophistication but a necessity for quantitatively re-
liable GW estimates. Moreover, such simulations are also indispensable to unravel
questions of modern astrophysics other than the supernova problem, for example
the SN-GRB connection.
Being allowed to contribute to the very active field of GW research in the course of
my PhD studies has been a priviledge. I hope that my humble work will help en-
courage and further research and discoveries in this fascinating field of astrophysics.
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Und es ist eine grosse Lust aufgekommen, die Ursache aller
Dinge zu erforschen: warum der Stein fällt, wenn man ihn
loslässt, und wie er steigt, wenn man ihn hochwirft. Jeden
Tag wird etwas gefunden. Selbst die Hundertjährigen lassen
sich noch von den Jungen ins Ohr schreien, was Neues
entdeckt wurde.
Da ist schon viel gefunden, aber da ist mehr, was noch
gefunden werden kann. Und so gibt es wieder zu tun für
neue Geschlechter.

Bertold Brecht, Leben des Galilei

At densities and velocities encountered in stellar collapse, the inclusion of general
relativistic effects is not an optional model sophistication, but a necessity for quan-
titatively reliable results, as outlined earlier in this thesis (see sec. 1.8). How-
ever, multi-dimensional simulations in conformally-flat (CFC; see [59], and refer-
ences therein) or full GR (see, e.g., [213, 60]) traditionally relied on simple analytic
EoS and polytropic initial models and thus neglect crucial neutrino effects due to
restrictions of computational power.
Only recently have the first 2D [61,62,163] and 3D [179,180] GR core-collapse simu-
lations become available that employ a microphysical EoS and neutrino transport to
a certain extent. However, while Dimmelmeier et al. [61,62] and Ott et al. [179,180]
had to restrict themselves to a state-of-the-art nuclear EoS and approximate treat-
ment of deleptonization in the collapse phase (see sec. 2.4, and [136]), only Müller
et al. [163] have succeded so far in implementing a sophisticated radiative transport
scheme, the ‘ray-by-ray plus’ of [41], in the 2D CFC framework of [61,62].
The IDSA on the other hand allows for an efficient way of including spectral neu-
trino transport in multidimensional GR frameworks. In order to address this task,
I have recently started to collaborate with C. D. Ott and E. O’Connor from CAL-
TECH to work on the implementation of the IDSA into their general relativistic
hydrodynamics codes [172,12,182].
As a first step, I am currently working on the implementation of the IDSA into
their spherically symmetric open-source code 1DGR. Afterwards, the goal is to get
the IDSA running in the framework of the {3 + 1} GR code. Note that the original
routines of the 1D IDSA were kindly provided by Matthias Liebendörfer. They serve
me as starting point for the required adjustment to the 1DGR.
Below, I will give a short overview of the principles of the spherically symmetric GR
hydrodynamics code 1DGR and the way how the IDSA is included. Note, however,
that I will go neither into the details of derivations nor the implementation of the
code. This goes beyond the scope of this thesis and can be found in [172]. Following
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O’Connor & Ott [172], I will assume spacelike signature (−,+,+,+) and, unless
mentioned otherwise, use units of G = c = M� = 1. Greek (Latin) indices run
through all (spatial) coordinates.

A.1 Merging 1DGR & IDSA: hydrodynamics and
curvature equations

The unification of space and time into spacetime is central to general relativity (see
sec. 1.3, and references therein). However, for a numerical treatment, it is more
desirable to reverse this unification and recast GR into a so-called ‘3+1’ formula-
tion, in which a time coordinate is explicitly split from three spatial coordinates,
i.e., the four-dimensional spacetime is ‘carved-up’ into a family of three-dimensional
spatial ‘slices’. For a complete introduction to the subject, I refer to the review of
Baumgarte & Shapiro [28], and references therein.

According to the 3+1 decomposition of Einstein’s equations, the invariant line el-
ement is written with the objects α (lapse), βi (shift), and γij, keeping the line
element [28]

ds2 = gµνdx
µdxν = −(α− βiβ

i)dt2 + 2βidx
idt+ γijdx

idxj . (A.1)

The Eulerian 1DGR code of O’Connor & Ott [172] follows [87, 197] who formulate
the 3+1 GR curvature and hydrodynamics equations in radial-gauge, polar-slicing
(RGPS) coordinates. In these coordinates, βi = 0 ∀i, gµν = diag(−α2, X2, r2, r2 sin2 θ),
the three-metric γij = diag(X2, r2, r2 sin2 θ), and hence

ds2 = −α(r, t)2dt2 +X(r, t)2dr2 + r2dΩ2 , (A.2)

where α and X can be written more conveniently as functions of a metric potential,
Φ(r, t), and the enclosed gravitational mass Mgrav(r, t) = m(r, t),

α(r, t) = exp [Φ(r, t)] and X(r, t) =

(
1− 2m(r, t)

r

)−1/2

. (A.3)

Note that the RGPS is nothing more than a generalization of the well-known
Schwarzschild metric to the non-vacuum and non-static case [87].
The equations describing the evolution of matter are the expression of the local
conservation of baryon number

∇µJ
µ = 0 , (A.4)

and the local conservation of energy momentum

∇µT
µν = 0 . (A.5)

For the current Jµ and the stress-energy tensor T µν , perfect fluid is assumed, where
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T µν = ρhuµuν + Pgµν and Jµ = ρuµ . (A.6)

Here, ∇µ is the covariant derivative, ρ is the rest-mass density, p is the pressure,
and h is the specific enthalpy defined by h = 1 + ε + p/ρ, where ε is the specific
internal energy. uµ is the four-velocity of the fluid and is equal to [W/α,Wvr, 0, 0].

W = αu0 = αut = (1− v2)
−1/2

is the Lorentz factor. The ‘physical’ velocity
v = Xvr represents the fluid velocity relative to an observer at rest in the coordinate
frame.

With the above coordinate conditions and the following set of conserved, unknown
variables,

D = αXJ t = XρW ,

DYe = αXYeJ
t = XρWYe ,

Sr = αXT tr = ρhW 2v ,

τ = α2T tt −D = ρhW 2 − P −D , (A.7)

the general relativistic evolution equations can be written as a system of conservation
laws (with sources):

∂t~U +
1

r2
∂r

[
αr2

X
~F

]
= ~S , (A.8)

where ~U is the set of conserved variables, ~F is their flux vector, and ~S is the vector
containing gravitational, geometric, and neutrino-matter interaction sources and
sinks. Note that the conserved variables are functions of the primitive variables
ρ, Ye, ε, v, and P .

In spherically symmetric coordinates, the flux ~F is given by ~F = [Dv,DYev, S
rv +

P, Sr −Dv] and the sources and sinks are given by

~S =

[
0, Rν

Ye
, (Srv − τ −D)αX

(
8πrP + m

r2

)
+ αPX m

r2

+2αP
Xr

+Qν,E
Sr +Qν,M

Sr , Qν,E
τ +Qν,M

τ

]
. (A.9)

The source and sink terms Rν
Ye
, Qν,E

Sr , Q
ν,M
Sr , Qν,E

τ , and Qν,M
τ are associated with a neu-

trino leakage scheme (see [172], sec. 4). Note, however, that the terms from the
leakage scheme are mentioned here only for the sake of consistency with [172]; they
are not of direct relevance for our case and thus may be set to zero. The IDSA
handles their physics internally (see sec. 2.4.3).

In order to lump together the hydrodynamics of 1DGR with the IDSA, I follow the
description given in sec. 2.4. The advective part of the IDSA is, in analogy to eq.
2.177, added to eq. A.8. However, since we are in a GR framework, the conserved

157



A 1DGR & IDSA

variables of the advective part of the IDSA (cf. eq. 2.177) must be casted into a
general-relativistic form. They read

DY t
l and (DZt

l )
3
4 , (A.10)

with the corresponding fluxes

DY t
l v and (DZt

l )
3
4v . (A.11)

The rest – the inhomogeneous parts of the IDSA such as changes in Ye and internal
specific energy – is handled according to sec. 2.4.3 in an operator-splitted manner.

The above system of equations A.8 is closed by an EoS (see sec. 2.3) and the Einstein
equation, which furnish conditions on the quantities m(r, t) and Φ(r, t) [87]. The
equation for the gravitational mass needed for determining the metric coefficient
X(r, t) of A.3 is derived from the Hamiltonian constraint equation [28] and reads

m(r, t) = 4π

∫ r

0

(ρhW 2 − P + τ νm)r′
2
dr′ . (A.12)

τ νm is the contribution to the gravitational mass from the energy and pressure of
trapped neutrinos (see sec. 2.4), and given by [172]

τ νm = (4W 2 − 1)Pν . (A.13)

The expression for the metric potential Φ(r, t) is determined by the momentum
constraints, which take into account the polar slicing condition that imposes tr [K] =
K r
r , where Kij is the extrinsic curvature tensor (see, e.g., [87]):

Φ(r, t) =

∫ r

0

X2

[
m(r′, t)

r′2
+ 4πr′(ρhW 2v2 + P + τ νΦ)

]
dr′ + Φ0 . (A.14)

In analogy to eq. A.12, τ νΦ takes into account the effect trapped neutrinos and
reads [172]

τ νΦ = (4W 2v2 + 1)Pν . (A.15)

Φ0 is a constant of integration and is chosen such that Φ(r, t) matches at the star’s
surface (r = R?) to the Schwarzschild metric,

Φ(R?, t) = ln [α(R?, t)] =
1

2
ln

[
1− 2m(R?, t)

R?

]
. (A.16)

For numerical details about the temporal update of eqs. A.8, I refer to [172].

Note, however, that after the update of the variablesD,DYe, S
r, DY t

l , (DZ
t
l )

3
4 and τ ,

the primitive variables ρ,DYe, v, P (ρ, ε, Ye) must be extracted since they are needed
for the next timestep. In the general case, the primitive variables (with the excep-
tion of Ye, Y

t
l and Zt

l ) cannot be expressed algebraically in terms of the conserved
variables. Hence, an iterative approach is employed in 1DGR, which makes an initial
guess using Pold from the previous timestep,
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v =
Sr

τ +D + Pold
, ρ =

D

XW
, ε =

τ +D + Pold(1−W 2)

ρW 2
− 1 , (A.17)

where X can be calculated from the conserved variables ρhW 2 − P = τ + D. W
is calculated from the estimate of v. Then, a call to the EoS gives a new pressure.
This process is iterated using a Newton-Raphson method until convergence [172].
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while the stellar radius is larger than 1013 cm. . . . . . . . . . . . . . 6
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2.9 The figure displays two density distributions of a test data set. The
first one (black) is taken from the original data, while the second one
(red) is an interpolated distribution which resulted after having been
sent to the spectral grid and back to the Cartesian grid. It becomes
clear that the interpolation hardly introduces numerical errors, as
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from density distribution of model ANEWT (see tab. 3.5) 64 ms after
bounce. The figure is courtesy of Jérôme Novak. . . . . . . . . . . . . 72
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2.13 Electron fraction Ye as a function of density, obtained from detailed
general relativistic, spherically symmetric three-flavour Boltzmann
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[76] É. É. Flanagan and S. A. Hughes. The basics of gravitational wave theory.
New Journal of Physics, 7:204–+, September 2005.

[77] Otto Forster. Analysis 1. Vieweg, 1999.
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[208] S. Scheidegger, R. Käppeli, S. C. Whitehouse, T. Fischer, and M. Liebendörfer.
The influence of model parameters on the prediction of gravitational wave
signals from stellar core collapse. Astronomy & Astrophysics , 514:A51+, May
2010.

[209] S. Scheidegger, S. C. Whitehouse, R. Kaeppeli, and M. Liebendoerfer. Gravi-
tational waves from supernova matter. ArXiv e-prints, December 2009.

[210] S. Scheidegger, S. C. Whitehouse, R. Käppeli, and M. Liebendörfer. Grav-
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