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 Summary i
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Summary

The scope of brain research spans several orders of magnitude ranging from small groups of 

amino acid residues in ion channels to fMRI signals reflecting activity averaged over 

thousands of neurones. From a theoreticians point of view very interesting questions arise at 

an intermediate level of cellular but not sub-cellular resolution. How do neuronal units 

interact to process information? Is it possible to find general laws or a repertoire of 

computational motifs that would allow mastering the enormous challenge posed by the 

brain’s sheer complexity? 

Here I took advantage of the zebrafish olfactory bulb which combines a number of 

features that make it an ideal target for theoretical analysis. Firstly, the primary input to the 

olfactory bulb is known and can be administered by the experimenter, allowing for both, 

control over and an obvious interpretation of evoked activity. Secondly, due to the small size 

of the olfactory bulb (20.000—30.000 neurones) a substantial fraction of all neurones 

participating in an odour response can be recorded from in a single experiment. Finally, the 

synaptic architecture of the olfactory bulb is comparatively well-understood and simple. 

In this study I used computational models to identify the structural features of the 

olfactory bulb that are essential to its function. In order to mechanistically understand this 

relation I complemented computer simulations with mathematical analysis. 
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It is known from large-scale imaging experiments that peripheral odour 

representations consisting of overlapping spatial patterns of afferent activity are transformed 

into less overlapping representations carried by mitral and tufted cells, the output elements of 

the olfactory bulb. It is hypothesised that in refining odour representations for the benefit of 

downstream circuits this pattern decorrelation serves an important function (see chapter 1). 

Interestingly, a minimalistic circuit model (chapter 1) was sufficient to reproduce most 

aspects of experimentally observed mitral cell responses suggesting that decorrelation in the 

olfactory bulb is a network phenomenon rather than a consequence of sophisticated 

computational properties of individual neurones. In addition, the model was mathematically 

tractable which allowed me to describe to a high level of detail and stringency the mechanism 

by which this circuit achieves universal pattern decorrelation. In the course I could explain 

why sparse connectivity and a high mitral cell spontaneous activity lead to effective pattern 

decorrelation.

In simulations I also observed that symmetric connectivity further improves 

decorrelation performance. In chapter 2 I present partial results towards a theoretical analysis 

of this effect. 

I also performed computer simulations with more detailed models consisting of 

integrate-and-fire units. These were mostly exploratory in nature and are therefore not 

described in this thesis. I did, however, include technical documentation for the simulator I 

programmed (appendices 4 and 5) in the hope that it will be useful. 

The final chapter makes a simple observation regarding odour categorisation. 
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Decorrelation is a fundamental computation that optimizes the format of 

neuronal activity patterns. Channel decorrelation by adaptive mechanisms 

results in efficient coding, whereas pattern decorrelation facilitates the readout 

and storage of information. Mechanisms achieving pattern decorrelation, 

however, remain unclear. We present a theoretical framework that relates high-

dimensional pattern decorrelation to neuronal and circuit properties in a 

mathematically stringent fashion. We demonstrate for a generic class of random 

neuronal networks that pattern decorrelation emerges from neuronal 

nonlinearities and is amplified by recurrent connectivity. This mechanism does 

not require adaptation of the network, is enhanced by sparse connectivity, 

depends on the baseline membrane potential, and is robust. Connectivity 

measurements and computational modelling suggest that this mechanism is 

involved in pattern decorrelation in the zebrafish olfactory bulb. These results 

reveal a generic relationship between the structure and function of neuronal 

circuits that is likely relevant for pattern processing in various brain areas. 
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Sensory stimuli and neuronal activity often represent relevant information in a highly 

inefficient manner. Natural images, for example, may convey different messages even 

though their pixel distributions are nearly identical. A fundamental strategy to 

improve neuronal codes is decorrelation, which can reduce the redundancy between 

neuronal responses, distribute neuronal activity patterns more evenly over coding 

space, and enable the brain to extract information from small differences between 

overlapping sensory inputs. Decorrelation is therefore an important computation not 

only for neuronal processing1–3, but also in engineering and computer science. 

Two forms of decorrelation have to be distinguished that perform different 

tasks and are referred to as “channel” and “pattern” decorrelation. Channel 

decorrelation decreases the overlap, and thus the redundancy, between response 

profiles of individual channels (neurons) to a set of stimuli, resulting in a code that is 

“efficient” because information conveyed by different channels is largely 

complementary. Efficient coding has been implicated in various neuronal processing 

tasks4,5. For example, the receptive fields of neurons in primary visual cortex and the 

tuning of auditory nerve fibers can be described by filters that achieve channel 

decorrelation and result in efficient coding of natural images or sounds, respectively6–

9. In non-neuronal systems, channel decorrelation methods including independent 

component analysis (ICA) have been used for blind source separation and other 

operations10–13. Most channel decorrelation methods must be adapted to a particular 

task based on prior knowledge about inputs. As a consequence, adaptive methods can 

efficiently decorrelate channels with known properties but may perform poorly on 

unexpected inputs. 
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Pattern decorrelation, in contrast, reduces the overlap between combinatorial 

patterns of activity across populations of neurons. Pattern decorrelation can therefore 

make neuronal representations more distinct, which facilitates subsequent readout by 

a simple classifier. In addition, decorrelated representations are most likely important 

for robust memory storage by associative networks because correlated representations 

may be confused or erased by catastrophic interference1,2,14,15. Pattern decorrelation 

has been observed experimentally in various brain areas including the olfactory 

bulb16–18 and hippocampus19, and may be involved cerebellar motor learning20. The 

mechanisms underlying pattern decorrelation are, however, not well understood. 

Previous work showed that the correlation between patterns or channels can be 

decreased by thresholding, a fundamental nonlinearity in neuronal transfer functions 

imposed by the mechanism of action potential generation20–22. To examine pattern 

decorrelation, we therefore mathematically analyzed networks of randomly connected 

threshold-linear units. We first proved that, given normally distributed input patterns, 

thresholding invariably causes decorrelation. In feed-forward circuits, however, this 

decorrelation is accompanied by sparsening of output activity and therefore requires 

large numbers of output units. We then extended our analysis to recurrent networks 

and proved that random feedback connections amplify pattern decorrelation. 

Recurrent networks can therefore achieve pattern decorrelation with far fewer output 

units. Analysis of a simplified computational model indicated that this mechanism is 

likely to contribute strongly to pattern decorrelation in the olfactory bulb. These 

results reveal a generic, non-adaptive and biologically plausible pattern decorrelation 

mechanism, and provide stringent mathematical insight into the underlying principles. 
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Figure 1 | Pattern decorrelation by SNOREs. a, Schematic illustration of a SNORE (stochastic network 

of rectifying elements). Red line indicates thresholding (rectification). b, Example of pattern 

decorrelation. Two random patterns across 10,000 units with correlation r = 0.7 were processed by a 

SNOREs with sparse connectivity. Images show input and output of 49 units and their differences �

(blue: positive; red: negative). Pearson correlation coefficients r represent the similarity of the full 

input and output patterns. 

RESULTS 

Pattern decorrelation by SNOREs 

To examine how networks of neurons can achieve pattern decorrelation we 

mathematically analyzed a generic class of recurrent networks that we call stochastic 

networks of rectifying elements (SNOREs; see Online Methods: Theoretical 
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framework). SNOREs consist of threshold-linear units that are randomly connected by 

synapses of uniform weight (Fig. 1a). The output (“firing rate”) of each unit is zero if 

its state variable (“membrane potential”) is below a given threshold and linearly 

increases when the threshold is exceeded. We consider input patterns with joint 

normal intensity distribution so that pairs of input patterns are binormally distributed. 

The overlap between input patterns is thus parameterized by the Pearson correlation 

coefficient ar . If the number of channels (neurons) is large, the overlap xr  between 

the corresponding steady state response patterns depends only on ar  and on the 

structural parameters of the SNORE. Throughout most of this study, we analyze the 

relationship between properties of SNOREs and their pattern decorrelation 

performance. 

For simplicity, we will limit our presentation to purely inhibitory circuits; 

however, all results generalize to mixed excitatory-inhibitory SNOREs (see Online 

Methods: Theoretical framework and Theorems). A SNORE is then characterized by 

six parameters: the mean � �a�  and s.d. � �a�  of input patterns, the absolute firing 

threshold � , the time constant � , the synaptic strength 	  and the number p of 

connections per neuron. The baseline membrane potential is included in � �a� .  For a 

wide range of these parameters the system converges to a steady state (Appendix 

A1). The first three parameters can be condensed into a single normalized threshold 

� �
� �a

a
a �

��� 

�  because the readout of interest, the correlation xr  between steady state 

response patterns, depends only on a�  but not on � � � � ��� ,, aa  individually. For 

example, changing the input mean � �a�  and the threshold �  by a common offset will 

simply add the same offset to the response membrane potentials and will not affect the 
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response firing rates. Therefore xr  only depends on the difference �  – � �a� .

Furthermore, xr is independent of the time constant because �  has no influence on the 

steady state. The steady state response correlation xr  is therefore a function of the 

three parameters 	 , p and a� .

To explore how pattern decorrelation xa rr 
  depends on these parameters we 

first simulated SNOREs containing 10,000 units and found that some SNOREs 

produced substantial pattern decorrelation (Fig. 1b). We noticed that pattern 

decorrelation depended systematically on network parameters, as shown in detail 

below. Briefly, decorrelation increased with the inhibition strength 	 , which is 

expected because stronger coupling should generally enhance network effects. More 

surprisingly, pattern decorrelation increased with connection sparseness p1  when the 

total coupling strength p	
��  (number of synapses  synaptic weight) was kept 

constant. Hence, networks with sparse but strong connections decorrelated input 

patterns more effectively than networks with dense but weak connections, even 

though overall activity levels remained similar. Furthermore, for networks with 

sufficiently strong coupling (Appendix A1), pattern decorrelation increased with the 

baseline membrane potential of the units, which is included in � �a� . This is 

noteworthy because in feed-forward networks correlations increase, rather than 

decrease, with increasing baseline membrane potential21.
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Figure 2 | Threshold-induced decorrelation (TIDe). a, Standard binormal probability density with 

correlation r = 0.7 before and after applying threshold � = 1. Walls indicate peaks of Dirac 

distributions. b, Output Pearson correlation as a function of threshold for different input Pearson 

correlations. c, Output Pearson correlation as a function of input Pearson correlation for different 

thresholds.

Mathematical analysis of pattern decorrelation by SNOREs 

To understand the mechanism underlying pattern decorrelation by SNOREs 

and to explain its unexpected dependence on connection sparseness and baseline 

membrane potential we mathematically analyzed the equations describing SNOREs 
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(see Online Methods: Theoretical framework). Since nonlinearities are known to have 

well-defined effects on the Pearson correlation of a given distribution23, we first 

determined how pattern decorrelation depends on the threshold in the input-output 

function of SNORE units. For correlated jointly normally distributed input, we 

mathematically proved that this nonlinearity always results in decorrelation, and that 

decorrelation monotonically increases with the threshold level (Theorem 1 in Online 

Methods; Fig. 2). For a rigorous mathematical analysis of this threshold-induced 

decorrelation (TIDe) see Appendix A1 and Supplementary Fig. 1. Thresholding of 

inputs approximates the passage through an array of neurons that do not interact with 

each other. Hence, a simple feed-forward array of neurons acts as a pattern 

decorrelator, consistent with previous observations20,21.

Figure 3 | Sparsening of output activity by thresholding. The fraction of active neurons is plotted 

against the decorrelation achieved by TIDe (gray line) and reTIDe (dots). Different dots correspond to 

SNOREs with different parameter combinations (see Fig. 4e). As decorrelation increases, the fraction 

of active neurons decreases systematically for TIDe, but not for reTIDe. 
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Increasing the threshold level can, in theory, result in arbitrarily strong 

decorrelation by TIDe (Fig. 2b,c). However, high thresholds will silence the majority 

of neurons so that a large number of neurons are required to generate meaningful 

output (Fig. 3). TIDe alone may therefore not be sufficient to achieve substantial 

pattern decorrelation in circuits with limited numbers of neurons. 

We next analyzed how TIDe is affected by recurrent connectivity. Recurrent 

connections feed the thresholded, and therefore decorrelated, output patterns back into 

the network where they become part of the input (Fig. 1a). Consequently, the Pearson 

correlation of the total input, i.e. the sum of the external and the feedback inputs, is 

reduced. This in turn further decorrelates the output patterns until the steady-state is 

reached. We mathematically demonstrated that this effect increases the decorrelation 

produced by TIDe (Theorem 2 in Online Methods; for a rigorous mathematical 

analysis see Appendix A1). In recurrent networks, TIDe therefore seeds a 

regenerative loop that progressively amplifies pattern decorrelation (Supplementary 

Fig. 2). This recurrence-enhanced TIDe (reTIDe) is more powerful than TIDe alone 

and can achieve substantial decorrelation with dramatically fewer units (Fig. 3).

The formal proof of reTIDe is based on a mathematical theory (see Online 

Methods: Theoretical framework) that predicts pattern decorrelation by a SNORE 

from its parameters. We validated this SNORE theory against simulations and found 

that theoretical predictions were in excellent quantitative agreement with simulation 

results throughout a wide parameter range (Fig. 4; Supplementary Fig. 3). Small 

deviations were detected only for very sparse connectivity. This is expected because 



Chapter 1 Mechanisms of pattern decorrelation by recurrent neuronal circuits 11
   

the assumption of normally distributed feedback, which depends on the central limit 

theorem, starts to break down in this regime (Fig. 4e, right). 

SNORE theory can therefore be used to analytically derive relationships 

between network parameters and pattern decorrelation. Analysis of SNORE equations 

shows that reTIDe necessarily increases with connection sparseness p1  when the 

total coupling strength �  is kept constant (Fig. 4a,e), and that reTIDe increases with 

the baseline membrane potential when coupling is sufficiently strong (Fig. 4c,e;

Supplementary Fig. 3). Hence, SNORE theory not only accurately predicts pattern 

decorrelation, but also analytically explains the relationships between pattern 

decorrelation and network parameters (see Online Methods; Appendix A1). 

Our analytical results lead to an intuitive understanding of the dependence of 

pattern decorrelation on connection sparseness (Supplementary Fig. 2; Theorem 3.1 

in Online Methods). The effectiveness of the regenerative loop underlying reTIDe 

depends on the relative contributions of the external input pattern and the feedback 

pattern to the Pearson correlation of the total input pattern. Larger variance of the 

feedback pattern leads to a lower Pearson correlation of the total input and, thus, 

enhances pattern decorrelation. In networks with dense and weak connections, the 

variance in the feedback pattern is low because the recurrent input to each unit is an 

average over many presynaptic neurons. In sparsely connected networks, in contrast, 

the variance can become large because each neuron averages only over a small 

number of recurrent inputs, resulting in more pronounced pattern decorrelation 

(Supplementary Fig. 2). For a rigorous mathematical analysis see Appendix A1.
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Figure 4 | Recurrence-enhanced TIDe (reTIDe). a, Difference in pattern decorrelation between 

recurrent networks (SNOREs) and feed-forward networks (�decorrelation) as a function of connection 

density (fan-in: variable p in equations). Average over the 10 most similar stimulus pairs. Lines: 

predictions of SNORE theory. Dots: simulation results. Baseline membrane potential � �a�  = 34.5 Hz 

(potentials and firing rates have the same units in the model). b, Mean (black) and standard deviation 

(gray; across units) of network activation patterns as a function of connection density. Baseline 

membrane potential � �a�  = 34.5 Hz. c, �Decorrelation as a function of baseline membrane potential 

� �a�  (in Hz). Fan-in 12�p . d, Mean (black) and standard deviation (gray) of network activity 

patterns as a function of baseline membrane potential ( � �a� , in Hz). Fan-in 12�p . e,

�Decorrelation for a wide range of SNORE parameter combinations. First three columns show 

prediction from SNORE theory, simulation results (10,000 randomly connected threshold-linear units), 

and their difference. Right column shows deviation of the steady-state across-population distribution of 

activation in simulation results from a normal distribution, quantified by the Cramer-von Mises statistic 

(high values indicate large deviation from normality). Note that differences between predicted and 

observed �decorrelation are well explained by departure from normality. Gray areas depict parameter 
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combinations for which the theory is not applicable because coupling is too strong ( 1�	 ). Hatched 

areas depict parameter regimes where convergence to a steady-state does not occur in theoretical 

predictions or simulations. Note that the match between predicted and observed convergence is perfect. 

The dependence of pattern decorrelation on baseline membrane potential can 

be understood by considering the interplay between baseline membrane potential and 

thresholding (Theorem 3.3 in Online Methods). Changes in baseline membrane 

potential have two opposing effects on reTIDe. First, when baseline membrane 

potential is increased, thresholding eliminates less of the variance in the input signal. 

As a consequence, reTIDe is enhanced because the variance in the feedback pattern is 

increased. Second, increasing baseline membrane potential reduces TIDe (Theorem 

1.2 in Online Methods) and therefore results in less efficient seeding of reTIDe. The 

net effect of baseline membrane potential on reTIDe depends on the relative strengths 

of these opposing effects, which in turn depends on network parameters.  Since the 

first effect scales approximately linearly with connection strength while the second 

effect does not, reTIDe will grow with baseline membrane potential if the network is 

“sufficiently coupled” (Supplementary Fig. 3). This regime includes most networks 

with sparse and strong connections. For a rigorous mathematical treatment see 

Appendix A1.

Decorrelation could also be achieved by a chaotic system but such a 

mechanism would be of little biological use because even minimal input corruption 

would result in an unpredictable change in the output. TIDe and reTIDe, by contrast, 

are well-conditioned, i.e. the effect small input changes have on output is limited 

(Therorems 1.1b and 3.2 in Online Methods; Remark M4 in Appendix A1). The 
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amount of imprecision in the input that can be tolerated depends on network 

parameters, and there is an obvious trade-off between robustness and decorrelation. 

This kind of robustness facilitates pattern classification because sets of moderately 

similar patterns are decorrelated whereas correlations between near-identical patterns 

that may convey the same message are largely preserved (Supplementary Fig. 4).

 Outputs could also be compromised by fluctuations in the units and 

connections of a SNORE. However, the steady states of SNOREs are linearly 

attractive. Departure from the fixed-point will thus be corrected for, rather than 

amplified, by network dynamics. In principle, multiple fixed-points might exist and 

fluctuations during the transient phase of the response might affect which attractor the 

system converges to. However, Monte-Carlo simulations indicate that there is only 

one, globally attractive, fixed-point (see Online Methods), consistent with the 

theoretical prediction that identical inputs will result in an output correlation of one. 

TIDe and reTIDe are therefore numerically stable, implying that they can be 

implemented with noisy units and connections. 

Since SNORE theory applies not only to inhibitory networks but also to 

excitatory or mixed networks, we validated theoretical predictions of SNORE theory 

also in this regime. Again, we found that theoretical predictions are in excellent 

quantitative agreement with simulation results (Supplementary Fig. 5).

SNORE theory indicates that the nonlinearity in neuronal input-output 

functions is essential for TIDe and reTIDe. Indeed, we proved that any nonzero linear 

map will, on average, leave the angle between two vectors unchanged (Fact M12 and 

Remark M13 in Appendix A1). In particular, a linear adaptive method can be trained 

to effectively decorrelate a limited set of input patterns, but will, on average, perform 
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poorly on unexpected inputs. Hence, TIDe and reTIDe are superior to any linear 

mechanism when input patterns are unpredictable.  

Pattern decorrelation by a model of the olfactory bulb 

To explore whether reTIDe can also explain pattern decorrelation by a 

biologically plausible network that lacks some of the idealizations of SNOREs we 

examined a computational model of the olfactory bulb, the first olfactory processing 

center in the brain. Structurally similar odors evoke overlapping patterns of 

distributed activity across the input channels of the olfactory bulb, the glomeruli24–26,

that are transformed into decorrelated activity patterns across the output neurons, the 

mitral cells, as shown in zebrafish16–18. Local GABAergic interneurons mediate 

inhibition between mitral cells via multiple synaptic pathways, presumably in an 

action potential-dependent manner27. We therefore first characterized the functional 

connectivity between mitral cells and interneurons in the zebrafish olfactory bulb by 

“forward optical probing”. In this approach, vigorous action potential firing is evoked 

in an individual mitral cell (“trigger”) by whole-cell current injection while neuronal 

activity in the surrounding tissue is monitored by multiphoton calcium imaging to 

identify functionally connected “follower” neurons. 

Individual mitral cells were identified by a transgenic marker28,29 and 

stimulated to fire action potentials at a rate of 30–50 Hz for one second (Fig. 5a,b; 20 

repetitions). This stimulus evoked calcium signals in the soma and dendrite of the 

trigger neuron, as well as in sparse sets of follower neurons (Fig. 5a). Because mitral 

cells make synaptic connections predominantly onto inhibitory interneurons, neurons 

more than one synapse downstream of the trigger mitral cell are unlikely to be excited 
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by the stimulus. Indeed, the majority of follower neurons (260/262; n = 32 trigger 

neurons in 20 OBs) were interneurons. The remaining two followers expressed the 

mitral cell marker and projected dendrites to the same glomerulus as the trigger mitral 

cell. These follower mitral cells were therefore likely to be connected to the trigger 

neuron by gap junctions or intraglomerular glutamatergic connections30,31 and 

excluded from further analysis. To facilitate distance measurements in a metric that 

relates to inter-glomerular distances, the three-dimensional coordinates of followers 

were radially projected onto a sphere representing the surface of the olfactory bulb. 

The probability of finding a follower (connection probability) was then determined as 

a function of surface distance from the trigger (equivalent to their angular separation; 

Fig. 5c).

Connection probability decreased with distance in a fashion that was well fit 

by an exponential model (Fig. 5d) with a length constant (~100 �m) and maximal 

distance (~400 �m) that were substantially larger than the diameter of a glomerulus in 

the recorded region (~20 �m)24. The amplitude of the follower response, in contrast, 

decreased only slightly with distance (Supplementary Fig. 6), implying that the 

distance-dependent decay of connection probability does not reflect a decrease in 

coupling strength. To estimate absolute connection probability, we extrapolated the 

mean number of follower neurons per mitral cell (68 � 20, mean � s.d.; see Online 

Methods) and estimated the total number of interneurons in the olfactory bulb 

(~20,000; Supplementary Fig. 7). Each mitral cell is thus estimated to contact 

~0.34 % of interneurons. Since the olfactory bulb contains ~1,500 mitral cells32, each 

interneuron is estimated to receive approximately five mitral cell inputs detectable by  
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Figure 5 | Functional connectivity in the zebrafish olfactory bulb measured by forward optical probing. 

a, Left: mitral cell marker expression (HuC-YC) in an optical section through the lateral olfactory bulb. 

Shadow indicates patch pipette targeted onto a mitral cell (trigger neuron). Center: raw fluorescence of 

the calcium indicator (rhod-2) in the same view. Right: calcium signals evoked by current injection into 

the trigger neuron. Note strong signals in the soma and dendrites of the trigger neuron (black 

arrowhead) and discrete responses of three followers in the interneuron layer (medium gray 

arrowheads). Light gray arrowhead indicates a non-responsive region. Average over 20 repetitions. b,

Top: example of the trigger neuron response to current injection. Bottom: time course of calcium 

signals in the soma of the trigger neuron (black traces), in the three followers (medium gray), and in the 

non-responsive region (light gray). Average over 20 repetitions. c, Scheme illustrating projection of 

follower neurons onto a sphere and measurement of the distance on the sphere (dsphere). d, Probability of 

finding a follower as a function of dsphere. Dashed line shows exponential fit. Data represented by darker 

bars are based on more voxels and weighted higher in the fit. Inset: cumulative probability distributions 

for measured data (solid gray line) and exponential fit (dashed black line), both corrected for limited 

field of view. 
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forward optical probing. These results indicate that strong synaptic connections 

between mitral cells and interneurons are sparse.  

The computer model consisted of a single layer of threshold-linear analogue 

neurons (mitral cells) equivalent to the units in SNOREs. Mitral cells made 

bidirectional inhibitory synapses of uniform weight with other mitral cells, reflecting 

the reciprocal connectivity within the olfactory bulb (Supplementary Fig. 8a).

Connection probability decayed exponentially with distance (Supplementary Fig. 8b,

reference model) with a length constant of 100 �m. The model time constant was set 

to 20�� ms. The model was stimulated using previously recorded glomerular 

afferent responses to 16 different amino acids24 (Supplementary Fig. 8c; see Online 

Methods for details) with a stereotyped time course derived from odor responses of 

sensory neurons16. The spatial organization (“chemotopy”) of measured glomerular 

activation patterns in the olfactory bulb was therefore directly imposed onto the 

model. Mitral cells were arranged in a square grid and assigned to the nearest 

glomerulus, or pruned if there was no detected glomerulus within a given radius. The 

resulting model contained a geometric arrangement of 239 mitral cells that reflected 

the experimentally observed pattern of glomeruli. This model differed from generic 

SNOREs because connections were symmetrical, because input patterns were not 

normally distributed, and because inputs and connections were topographically 

organized. Moreover, the number of mitral cells after pruning (239) was low, yet 

biologically realistic16,32.

The model responded to the 16 input patterns with odor- and mitral cell-

specific spatio-temporal activity patterns (Fig. 6a,b; Supplementary Figs. 9 and 10).

We adjusted network parameters (coupling strength, connection sparseness, firing 
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threshold, baseline membrane potential and input strength) to match the model output 

to experimental data at the single-neuron and population level determined previously 

by electrophysiology16,17 and/or 2-photon calcium imaging32. The following readouts 

were compared quantitatively between model and experiment: mean baseline firing 

rate, mean odor-evoked firing rate, s.d. of odor-evoked firing rates across mitral cells, 

lifetime sparseness of response profiles, pattern sparseness across the mitral cell 

population, focality of response patterns32, chemotopy of response patterns32, and the 

mean pattern correlation evoked by the 10 most similar stimulus pairs. In addition, we 

qualitatively compared the response profiles of model mitral cells and their dynamics 

(Supplementary Fig. 9a) to electrophysiological data16.

Good agreement between the model output and experimental observations was 

obtained with relatively strong synaptic coupling, sparse connectivity and relatively 

high mitral cell baseline membrane potential, consistent with experimental data from 

zebrafish and other vertebrates17,33–36. Deviations of model data from experimentally 

determined values were less than 25 % for all variables, and in most cases less than 

10 % (Fig. 6c, green bars; Supplementary Table 1). This is not trivial considering 

the simplifications contained in the model and the small number of parameters. 

Moreover, the model reproduced many of the dynamical and topological features of 

odor response patterns in the zebrafish olfactory bulb16,17,32 (Supplementary Figs. 9–

12) and produced a gradual pattern decorrelation (Fig. 7a; Supplementary Fig. 11)

similar to that observed experimentally16–18.
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Figure 6 | Output of a computational model of the olfactory bulb. a, Mean output activity patterns 

evoked by Tyr and Trp (Supplementary Fig. 8c) within successive 200 ms time windows. Note that 

foci of active mitral cells (arrowheads) become less pronounced over time and Pearson correlation 

coefficients decrease. b, Response time courses of 20 mitral cells to stimulation with Tyr pattern. 

Mitral cell positions are indicated by the color code in the inset. Three mitral cells were chosen from 

the central cluster (arrowhead in a); the remaining 17 mitral cells were selected randomly. c,

Comparison of model output to experimental data determined by electrophysiology16,17 and/or calcium 

imaging32 for eight readouts that characterize single-neuron and population activity. Dashed line shows 

the experimentally observed value (mean value if the same readout was measured by both methods). 

Model output was quantified for the reference model (green) and for models with dense connectivity 

(blue), low baseline membrane potential (red), and non-topographic connectivity (light colors). All 

values except baseline firing rate were determined in the steady state. For additional information see 

Supplementary Table 1.

In vertebrates, glomeruli responding to some molecular features are 

preferentially located within loosely defined regions, although not necessarily 

clustered24–26. This weakly chemotopic organization raises the possibility that 
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decorrelation results from distance-dependent lateral inhibition between glomeruli37,

similar to edge enhancement in the retina38. To differentiate between such a 

topographic mechanism and reTIDe we tested how pattern decorrelation was affected 

when model parameters were modified. Pattern decorrelation, as well as other 

measurements, was only marginally affected when connections or glomerular 

positions were redistributed randomly (Fig. 7a, light green curve; Fig. 6c, light green 

bars; Supplementary Figs. 9–14). Moreover, decorrelation depended only weakly on 

the length constant of connection probability and was dramatically reduced by 

nearest-neighbor connectivity (Fig. 7b; Supplementary Fig. 15). Hence, a 

topographic mechanism is not required for pattern decorrelation. 

Pattern decorrelation did, in contrast, strongly depend on connection 

sparseness and baseline membrane potential of mitral cells (Fig. 7a; Supplementary 

Figs. 10 and 11). Dense connectivity essentially abolished pattern decorrelation (Fig.

7a, purple vs. green curves; Supplementary Figs. 10,11 and 13–15). Likewise, 

pattern decorrelation was substantially reduced when the baseline membrane potential 

of mitral cells was decreased (Fig. 7a, brown versus green curves; Supplementary 

Figs. 10,11 and 13–15). These results are fully consistent with the predictions from 

SNORE theory and provide strong evidence that reTIDe is the primary mechanism 

underlying pattern decorrelation in our olfactory bulb model. 



Chapter 1 Mechanisms of pattern decorrelation by recurrent neuronal circuits 22
   

Figure 7 | Dependence of pattern decorrelation by the olfactory bulb model on topography and network 

parameters. a, Mean correlation coefficients of output activity patterns evoked by the 10 most similar 

stimulus pairs as a function of time for different networks. Note that pattern decorrelation by the 

reference model (dark green) is not substantially affected by randomizing the spatial distribution of 

connections (light green). However, pattern decorrelation is severely reduced when connectivity is 

dense (purple) or baseline membrane potential is low (red). b, Varying the length constant of 

connection probability in the sparse model showed that pattern decorrelation increased as the spatial 

extent of connectivity is decreased from random (infinity; light green) to narrow-range connectivity 

(10 �m; dark green). However, the effect was small compared to changes in connection density or 

baseline membrane potential (a). Nearest-neighbor connectivity (dashed) did not result in effective 

pattern decorrelation. 
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DISCUSSION 

We describe a generic pattern decorrelation mechanism, reTIDe, that is a natural 

consequence of sparse and stochastic recurrent connectivity among non-linear 

neuronal units. Simulations indicate that reTIDe is a plausible mechanism involved in 

pattern decorrelation in the olfactory bulb. These results reveal basic relationships 

between the structure and function of neuronal circuits that are likely to be relevant 

for the processing of activity patterns in various brain areas. 

Pattern decorrelation by reTIDe 

Pattern decorrelation by reTIDe comprises two crucial steps. First, an initial 

decorrelation of input patterns is caused by thresholding (TIDe), which is a necessary 

consequence of nonlinear neuronal input-output functions. Unless the number of 

neurons is very high, this thresholding step alone cannot produce strong decorrelation 

but acts as a seed for subsequent amplification. Second, TIDe is amplified by feeding 

output patterns back into the network via recurrent connections (reTIDe). This 

amplification is particularly strong when connectivity is sparse because the variance 

in the feedback pattern, and therefore the contribution of the thresholded feedback 

pattern to the total input, is high (Supplementary Fig. 2). Moreover, the effectiveness 

of reTIDe depends on the baseline membrane potential, which is also a consequence 

of thresholding and subsequent amplification. ReTIDe is therefore a generic 

decorrelation mechanism that emerges from basic properties of recurrent circuits.  

ReTIDe differs from other decorrelation strategies in at least three respects. 

First, while most other decorrelation mechanisms perform channel decorrelation, 
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reTIDe performs pattern decorrelation. ReTIDe therefore reduces the overlap between 

neuronal population representations and facilitates the readout and storage of activity 

patterns. 

Second, most decorrelation mechanisms must be adapted to their inputs based 

on prior knowledge. For example, source separation by ICA requires training of a 

network on representative input data10–13, and the filter properties of auditory or visual 

neurons have likely been optimized for processing typical sensory input by evolution 

and experience6,7,9. Pattern decorrelation by reTIDe, in contrast, is universal and does 

not depend on prior adaptation of the network. As a consequence, reTIDe will 

decorrelate a wide range of patterns that do not need to have a specific structure. This 

cannot be achieved by any linear method, including adaptive strategies such as 

principal component-based approaches (Fact M12 and remark M13, Appendix A1). 

ReTIDe is therefore particularly useful when inputs are unpredictable, or when input 

patterns lack specific statistical properties. 

Third, for many decorrelation mechanisms it is unclear how they may be 

implemented in neuronal circuits. Adaptive decorrelation strategies, for example, 

often rely on a global cost function that does not reflect biologically plausible learning 

rules. ReTIDe, in contrast, occurs in generic neuronal networks (SNOREs) and relies 

only on thresholding and recurrent connectivity, which are among the most basic 

properties of neurons and circuits in the brain. The possible biological implementation 

of reTIDe is therefore obvious. 

Pattern decorrelation in the olfactory bulb 
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Forward optical probing revealed two basic features of neuronal connectivity in the 

zebrafish olfactory bulb. First, the weak decay of connection probability with distance 

implies that neuronal interactions are widespread, yet coarsely topographically 

organized. A field with a radius equivalent to the estimated length constant 

encompasses about 75 glomeruli in the lateral olfactory bulb of zebrafish, allowing for 

potential interactions among neurons associated with diverse sets of glomeruli. 

Second, connections between mitral cells and follower interneurons are sparse. This 

result may be biased towards strong connections because forward optical probing may 

fail to detect weak or silent synapses. Nevertheless, sparse connectivity in the 

olfactory bulb has also been inferred in rodents by transsynaptic viral tracing34 and 

from the low probability of finding connected mitral-granule cell pairs39. Moreover, 

sparse functional interactions between mitral cells and glomeruli have been 

demonstrated in vivo33, and sparse connectivity resulted in a good match between 

experimental data and our olfactory bulb model. 

 Our modeling results indicate that pattern decorrelation in the olfactory bulb 

does not depend on topographic mechanisms. Rather, efficient pattern decorrelation 

by our olfactory bulb model depended on sparse connectivity and high baseline 

membrane potential, two conserved and salient features of the olfactory bulb whose 

functions have been elusive. The behavior of the olfactory bulb model is therefore 

consistent with strong predictions of SNORE theory and the reTIDe mechanism. In 

principle, pattern decorrelation could also be achieved by other non-topographic 

mechanisms40,41 that result in a form of histogram modification42. One prediction of 

these mechanisms is that weak mitral cell activity should be systematically suppressed 

whereas strong activity should be systematically preserved. Neuronal responses in the 

olfactory bulb and in the insect antennal lobe, however, do not generally follow this 
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prediction17,43. Hence, experimental results are difficult to reconcile with these 

mechanisms but consistent with reTIDe. ReTIDe is therefore a plausible mechanism 

for pattern decorrelation in the olfactory bulb, although other mechanisms may also be 

involved. 

Implementations and implications of TIDe and reTIDe 

Classical work proposed that thresholding of convergent inputs produces a sparse and 

decorrelated code in the cerebellum20, and similar mechanisms create non-overlapping 

and sparse odor representations in the mushroom body of insects22,44. These processes 

may represent examples of decorrelation by TIDe in circuits with large numbers of 

neurons. In hippocampus, pattern decorrelation occurs in the dentate gyrus19 and its 

target area CA319,45. Both these areas contain intra- and inter-areal recurrent 

connections, and connections between some neuron types are sparse14,46. It may 

therefore be interesting to explore whether pattern decorrelation in hippocampal areas 

involves reTIDe. In general, sparse recurrent connectivity is abundant also in 

neocortex47. Pattern decorrelation by reTIDe may thus occur not only in the olfactory 

bulb but also in other brain areas. 

Given that reTIDe decorrelates a wide range of patterns without the need for 

adaptation, decorrelation by reTIDe could generally facilitate pattern discrimination 

and enhance the coding capacity of downstream circuits1,3. Moreover, reTIDe could 

reduce correlations among inputs to associative memory circuits in order to prevent 

misclassification and catastrophic interference1,2. These functions might, for example, 

be important in the olfactory bulb and dentate gyrus because their target areas – 
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piriform cortex and area CA3, respectively – are thought to function as associative 

networks for pattern storage1,14,15.
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METHODS 

Theoretical framework. Our theory applies to stochastic networks of rectifying 

elements (SNOREs) in the steady-state. Neurons are modeled as threshold-linear 

units, i.e. the state of cell j under stimulus �  at time t is fully described by its 

activation � �tx j �, . We will often use the suggestive term “membrane potential” even 

though this term is not fully accurate in the supra-threshold regime. The instantaneous 

firing rate of cell j equals � �� �
�


 0, �� tx j  where 0�  and subscript “+” denote the 

threshold and half-wave rectification, respectively. Given the vector �a  of afferent 

firing rates, the vector �x  of neuronal activation and the connectivity matrix L the 

equations of motion take the form  

(1) � � � � � � � �� ��
��
� 0�� ���� txLtatxtx�

where the dot indicates the time derivative. Given a stationary stimulus �  it is 

essential to know whether the system (1) will reach a stable steady-state 

(2) � ��
�� 0���� xLax

For symmetrical L a convergence criterion based on Lyapunov functions has been 

given48. We derived a heuristic criterion (gain- and variance-limitedness) that predicts 

convergence to a steady-state with high accuracy for random L and �a  (Appendix 

A1; Supplementary Fig. 3).

The idea of SNORE theory is to adopt a statistical view of equation (2) and 

replace population vectors there with across-population distributions. We will make 

the simplifying assumption that each cell receives p recurrent contacts of strength 

10 �� 	  ( 1�	  leads to group-winner-take-all behavior if L is symmetric and 
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inhibitory48) of which �p  are excitatory and 
p  inhibitory. We will also allow for 

global feedback of strength �  such that the total synaptic weight on each cell is 

� � �	 �
�� 
� pp . In purely inhibitory networks such as the olfactory bulb, �p  and 

�  vanish. If connectivity is sparse ( sizenetwork2 ��p ) and random, (2) leads to 

equations 

(3) � �� ��
��� 0)()( ���� ��� xax ,

(4) � �� ��
�� 0var)var()var( ���� xPax  and 

(5) � � � �� �
�� 

�� 00 ,cov),cov(),cov( �� ������ xxPaaxx

of means, variances and covariances, respectively, each taken across the population of 

cells or input channels. We have abbreviated 2	pP � . Equation (5) compares two 

stimuli �� , .

If the input � ��� aaa ,�  is bivariate normally distributed and 1��p , then by 

the central limit theorem also � ��� xxx ,�  is approximately binormally distributed 

and thus completely determined by (3–5). Key to solving (3–5) is then to understand 

the effect of thresholding on the binormal distribution and its mean, variance and 

covariance. Using the properties of these moments, solutions to (3–5) can be tightly 

characterized. In particular, the dependence of pattern separation on model parameters 

is determined by analytical results (Appendix A1). 

Theorems. All proofs are given in Appendix A1. Let ��� �,  be the distribution 

obtained from the standard binormal distribution with correlation �  by applying the 

threshold �  to both variates. 
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Theorem 1 (TIDe theorem): Assume 1��� . The Pearson correlation )(�� r  of 

��� �,  is infinitely differentiable in �  and � ,

1. a) strictly increasing in � ,

b) strictly convex in � ,

2. strictly increasing in �  if 0��  and strictly decreasing in �  if 0��  and 

3. tends to zero for ��� .

The most important part of this theorem is assertion 2 which states that thresholding 

reduces pattern overlap. 

Returning to equations (3–5), let a�  and x�  be the correlation coefficients of 

� ��� aaa ,�  and � ��� xxx ,� , respectively, and let the stimuli �� ,  be of the same 

mean � � � � � ��� ��� aaa ��  and variance )var()var()var( �� aaa �� . Then we have 

the following corollary of theorem 1: 

Theorem 2 (reTIDe theorem): Assuming binormality of input and feedback, 

10 �� a�  implies ax �� � .

The theorem states that without accounting for the final thresholding step 

)( xx r �� ��  Pearson correlation is reduced. It thus isolates the gain in pattern 

separation of reTIDe over TIDe. This also applies to 

Theorem 3: Assume 10 �� a� , binormality of input and feedback, and gain- and 

variance-limitedness (Appendix A1). Then 

1. x�  is strictly decreasing in P and 

2. strictly convex in a�

If, in addition, the system is sufficiently coupled (Appendix A1)

3. x�  is strictly decreasing in � �a� .
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Since parameters that are either not gain- or not variance-limited will typically not 

permit a steady-state (Appendix A1; Supplementary Fig. 16) the premises of 

theorem 3 are mild. 

Making connectivity sparser while keeping �,�  and the excitation-inhibition 

ratio constant leads to larger P. Assertion 1 of theorem 3 therefore states that 

connection sparseness promotes pattern separation. In the olfactory bulb, sufficient 

coupling is likely to be fulfilled because connectivity is sparse and strong. Assertion 3 

therefore states that higher mitral cell baseline activation promotes pattern separation 

in the olfactory bulb. 

Forward optical probing of neuronal connectivity. Zebrafish (crosses of wild type 

strains Ab/Ab, Ab/TÜ or TÜ/TÜ and transgenic strain HuC:YC) were bred and kept 

at  26–27 �C on a 14/10 h light/dark cycle. HuC:YC transgenic fish express the 

fluorescent protein, yellow cameleon 2.1, in mitral cells of the adult olfactory bulb29.

Experiments were performed in an explant preparation of the nose and brain from 

adult zebrafish as described16. All animal procedures were performed in accordance 

with official animal care guidelines and approved by the Federal Republic of 

Germany and the Veterinary Department of the Canton of Basel-Stadt (Switzerland).

Multiphoton images were acquired at 256 ms/frame (256  256 pixels) or 128 

ms/frame (128  256 pixels) using a custom-built 2-photon microscope as described28.

Whole-cell patch clamp recordings from identified mitral cells were performed using 

an Axoclamp 2B or Multiclamp 700B amplifier (Axon Instruments/Molecular 

Devices) and usually stable for 1–2 hours as assessed by changes in input resistance. 

All recorded trigger neurons were located in the lateral olfactory bulb, 200–300 �m

dorsal from the ventral pole of the olfactory bulb. Intracellular solution contained (in 
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mM): 130 K-gluconate, 10 Na-gluconate, 10 Na-phosphocreatine, 4 NaCl, 4 Mg-ATP, 

0.3 Na-GTP, 10 HEPES (pH 7.25). 

For forward optical probing, one-second current steps were injected into mitral 

cells at a rate of 0.1 Hz. Current amplitudes were adjusted for each mitral cell to 

evoke 30–50 action potentials (mean � s.d.: 38 � 13). At each focal plane, the 

stimulus was repeated 20 times. Peri-simtulus time series of 2-photon images were 

averaged over repetitions and images during a two second period following stimulus 

onset were averaged over time. The resulting image was then divided pixelwise by an 

image time-averaged over two seconds preceding stimulus onset to generate a 2D map 

of relative fluorescence changes (�F/F). 

Somata of followers were outlined manually in each focal plane. For all 

followers, the time course of fluorescence change was time-locked to the stimulus. A 

non-parametric Mann-Whitney U test was used to test that the �F/F values during a 

three second period after stimulus onset were significantly different (P < 0.05) from 

the average �F/F values during two seconds before stimulus onset. Potential followers 

that did not fulfill this criterion were excluded from the analysis. 

Analysis of follower distribution. XY positions of followers were determined by the 

center of mass of the outlined soma. The Z position was given by the focal plane. The 

XYZ positions of all follower neurons were then transformed into spherical 

coordinates assuming a spherical olfactory bulb of 250 �m radius with its origin in the 

focal plane of the trigger neuron. The polar axis was defined to run through the trigger 

neuron. The probability of finding a follower neuron at a given polar angle was then 

fitted to an exponential function by minimizing the Cramer-von Mises statistic. To 

reduce the impact of spatial jitter, follower neurons near the center of the sphere 
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(radius < 50 �m; <1% of all followers) were discarded. To correct for the limited field 

of view the following model distribution was used 

 (MM1) � �
� �

� ��
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(Fig. 5d; inset). Here l is the fit parameter, d is the polar angle and f is the relative 

frequency with which a voxel imaged and the trigger neuron subtended an angle of x

at the center of the olfactory bulb. As a consequence of measurement inaccuracies we 

expect this procedure to overestimate the length constant. Therefore networks with 

smaller length constants were also simulated (Fig. 7b; Supplementary Fig. 15).

In each olfactory bulb, positive calcium signals were detected in multiple focal 

planes (mean � s.d.: 5.4 � 3.3 planes; n = 20 OBs). Two of the 262 follower neurons 

expressed the mitral cell marker and projected dendrites to the same glomerulus as the 

trigger mitral cell. These follower mitral cells were therefore likely to be connected to 

the trigger neuron by gap junctions or intraglomerular glutamateric connections30,31

and excluded from further analysis. 

The expected number 4.68 MCN  of followers per mitral cell was calculated 

by the formula 
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where l is the length constant, N is the total number of observed followers and F is the 

number of experiments for which a given pixel (in normalised spherical coordinates 

#",,r ) was in the field of view. The standard deviation 4.20 MCSD  was estimated 

by the formula 
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where summation is over trigger neurons, iN  is the number of follower neurons 

observed for trigger neuron i and iF  is the indicator function of the field of view of 

the corresponding experiment. 

Numerical procedures and algorithms. All simulations and most analyses were run 

on a 3-way dual-core IBM x3755 with 16 GB RAM using custom software written in 

Python with time-critical subsystems implemented in C. Differential equations were 

solved using an adaptive step size embedded Runge-Kutta-Fehlberg (4, 5) scheme49.

Moments of the half-wave rectified binormal distribution were obtained by adaptive 

numerical quadrature using a 61 point Gauss-Kronrod rule49 on the expression
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(cf. M18). Amongst other advantages this method avoids loss of significance when 

calculating covariances. Equations (M31, M32) were solved using the secant method. 

Olfactory bulb model: connectivity matrices. Synaptic weights were uniform and 

contacts were drawn suppressing across-population variation of fan-in and fan-out, i.e. 

adjacency matrices were required to have constant row and column sums p. By the 
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Birkhoff-von Neumann theorem50 any such matrix is a positive linear combination of 

permutation matrices 
l

M - . Inspecting the proof of the theorem we find that all 

coefficients in this linear combination can be assumed to equal one. In the case of 

topographic connectivity the 
l

M -  were generated using a heuristic algorithm that 

strives to respect preset connection probabilities � �kjP ,  between pairs of mitral cells 

kj xx , . The algorithm first determined a set of boundaries l�  such that the 

expectation � �� � � �$$ � 
�. 
 
�


 lll kjP llkjP lkjP

���
���

, 1, 1
1

,  was just above a half-

integer multiple � �Nl 2
1
 of the number N of mitral cells. Starting with 1�l  for each 

“terrace” � � � �/ 0ll kjPkjT ��� ,,  an N-permutation was drawn and then shuffled into 

� �� lq qlT
�

-1
 , i.e. random transpositions were applied until the graph � �l-1  of the 

resulting permutation l-  was contained in � �� lq qlT
�

-1
 . Here “–“ indicates the 

relative complement which was taken to avoid collisions. To enforce convergence in 

acceptable time transpositions that would have increased the number of points of 

� �l-1  outside � �� lq qlT
�

-1
  were rejected. For the same reason boundaries were 

adjusted where necessary to ensure that terraces satisfied � �/ 0 2,min ��2 lTkjk lj

and � �/ 0 2,min ��2 lTkjj lk  with vertical bars denoting the size of a set. 

To generate bidirectional synapses only even boundaries l2�  were considered. 

Permutations l2-  were generated subject to the additional constraint that they have 

no one- or two-cycles. 12 
- l  was chosen to be the inverse of l2- .

Olfactory bulb model: stimulus time course. All simulations started with resting 

mitral cells. In most trials the stimulus was constant in time and only the mitral cell 
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fixed point was recorded. In time resolved experiments the stimulus was modeled to 

evolve according to the formula 

(MM3) � � � ��� 

� �





�� ttj
j

dj ee
a

ta �� ��
�

3 1
1

,

where 3  is a constant offset accounting for ORN/mitral cell spontaneous activity, 

�,ja  the afferent strength after adaptation, 8.0��  parameterizes the degree of 

adaptation, j�  and 
600
1

�d� ms denote a rise and a decay rate, respectively. The rise 

rate j�  was assumed to be proportional to �,ja , consistent with electrophysiological 

recordings of odor responses from olfactory sensory neurons in zebrafish (RWF, 

unpublished observations). The proportionality factor was adjusted such that the time-

to-peak ranged between 50 ms and 400 ms, as observed experimentally16.

 

Artificial stimulus patterns. Multinormally distributed stimuli with the mean, 

variance and pairwise correlation coefficients of the 16 measured afferent patterns 

were obtained as follows. In a first step, half-wave rectified normal distributions 

approximating histograms of the 16 measured afferent patterns were determined by 

minimizing the Cramer-von Mises statistic. The means and variances of these 

distributions prior to half-wave rectification were averaged to yield � �a�  and � �a2� .

A matrix � �aC  of correlation coefficients was then determined such that application 

of the threshold � �
� �a
a

�
�


  to the corresponding standard multinormal would recover the 

correlation coefficients between the 16 measured afferent patterns. As � �aC  was not 

positive definite, negative entries were replaced with zeroes before the Cholesky 

decomposition � �aCUUT �  was computed. Finally, the desired pattern size N was 
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chosen, an 16N -matrix 4  drawn from the standard normal distribution and the 

columns of � � � � Uaa 4���  were used as artificial stimuli. 

Monte Carlo simulations. Repeated simulations with different initial values were run 

with the 10,000 neuron network for six different parameter combinations 

( � � 5.4;1.33,7.10;60,36,12 
���� ap � ). For each network the steady states reached 

from 128 independently drawn normally distributed (8.5 � 100, mean � s.d.) start 

vectors were computed and found to be numerically identical. 
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Chapter 2 

Consequences of reciprocal 
connectivity in olfactory bulb-like 
circuits

In chapter 1 I have used SNORE theory to link salient features of the olfactory bulb 

such as nonlinearity, recurrence and sparse connectivity to its presumed function as a 

pattern decorrelator. One prominent feature is, however, as yet absent from this list: 

Symmetry. Reciprocal synapses such as those occurring between mitral and granule 

cells in the olfactory bulb represent a stringent ordering principle with strong 

implications for network topology and dynamics. It is well known that symmetry can 

help control network dynamics and facilitate the emergence of stable steady-states1. 

Here I give numerical evidence that symmetry can also enhance pattern decorrelation 

and I report on first steps towards a mathematical analysis. 

 

Let me first clarify the connection between synapse reciprocity and network 

symmetry. I assume that synaptic inputs sum linearly and that there are two cell types 

between which reciprocal synapses occur. For the sake of simplicity let us assume that 

reciprocity is perfect, i.e. all synapses are reciprocal with the same ratio r of weights. 

This means that the connectivity matrix L has the property LrL T� . Several aspects 
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of this kind of network have been analysed2. If polysynaptic connectivity can be 

reasonably approximated by multiplication of connectivity matrices, the disynaptic 

connectivity matrix 2L  which describes the same system after adiabatic elimination of 

one cell type is obviously symmetric. As in chapter 1 I focus on a single-layer 

network that is motivated by this reduced model. It should, however, be noted that the 

two models are not fully equivalent because I do not use Gramian connectivity 

matrices. As a consequence “recurrent” inhibition i.e. disynaptic self-inhibiton of 

mitral cells is probably underestimated. 

 

RESULTS 

Modelling 

While the olfactory bulb model in chapter 1 is in fact symmetric it does not warrant a 

differential appraisal of the effect of symmetry because the corresponding non-

symmetrical circuit does not reliably converge. Here I therefore use generic 10,000-

unit SNOREs. Compared to their non-symmetric counterparts, symmetric SNOREs 

markedly enhance pattern decorrelation in the most favourable parameter regime of 

strong sparse connectivity and high baseline activation (Fig. 1). 

 

Gross analysis 

Trying to understand why symmetric connectivity systematically enhances 

decorrelation two major differences to the non-symmetrical model are apparent: 

1. Channel correlations can no longer be neglected (Figs. 2, 3). 
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Figure 1. Gain in pattern decorrelation by symmetric connectivity in the 10,000 neurone 

SNORE model. 
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x

y z

a  

Figure 2. Presynaptic partners of a given MC x are not independent if connectivity is symmetric. E.g. y 

and z share the common input x and are therefore correlated. 

 

2. The normal distribution is not a good approximation to the distribution of 

membrane potentials anymore. Indeed, due to the thresholded and thus nonlinear 

feedback each cell exerts on its presynaptic partners the central limit theorem is no 

longer applicable. 

 

Normal theory—model I 

I first tested whether neglecting non-normality and only accounting for channel 

correlations would lead to an acceptable approximation of model behaviour. 

 

x �d(x)

d steps

y

z

a �d(a)

 

Figure 3. Channel correlation structure. MC � �xd�  has one presynaptic partner z on the connecting 

path with x,a and 1
p  presynaptic partners, e.g. y, outside the connecting path. This is true for 

positive path length d; the case 0�d  needs to be treated specially. 
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If connectivity is bidirectional network mediated correlations between (poly-) 

synaptically connected channels must be accounted for. I will assume that the network 

is sparse by which I mean that the effect of (graph-theoretical) cycles can be 

neglected. Denote by � � � �� ��� �� xxrC dad ,�  the correlation coefficient between 

response patterns to a� -correlated stimuli �  and �  of MCs shifted by d synapses. 

Here d�  is a permutation that takes each MC to an MC d synapses away. More 

precisely, let / 0 / 0pll ,,1 �2-  be the permutations described in section “Olfactory bulb 

model: connectivity matrices” in chapter 1, methods, such that $
�

-�
p

l
l

ML
1

	 . d�  can 

be any product without cancellations* of d factors from / 0 / 0pll ,,1 �2- . Similarly, let 

� � � �� ��� �� xarB dad ,�  be the correlation coefficient between input pattern and 

output pattern. Note that this concept of “channel correlation” differs from the 

standard one in that the average is not taken over response profiles, but over the 

population of channels in two copies one of which is shifted by d synapses. 

Expressing the second argument in � �� ��� � xa d,cov  and � �� ��� � xx d,cov  as a sum 

� � � � � �� �$
�

�-��
p

l
dldd xax

1

�	�� �  over its inputs leads to (Fig. 3) 

 � � � �� � � �aaaaa BMpBMpB
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* Recall that in the case of symmetric connectivity / 0 / 0pll ,,1 �2-  is closed under taking inverses. 
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Here I have explicitly used the assumption of binormality and the notation � ��� nmM ,  

for the premoments of the univariately thresholded binormal ��  (Appendix A3). 

This system is easily seen to be underdetermined. I therefore add the heuristic 

constraint 

 � �/ 0 � �/ 0 possible asfast  asdecay   and nannan CB ��  (5) 

which is plausible given that both are generated by increasingly distant relations and 

is further justified in Appendix A3. 

More significantly, however, if x�  and thus � —which being univariate variables do 

not depend on input correlation—are fixed, the system (1—4) is also linear in a� . 

Once the constraint 

   � � 110 �C  (6) 

is taken into account this model therefore predicts no decorrelation at all and will have 

to be modified to be of any use. 

Still, solutions to (1—5) will be required below. The general solution to (1,2) is 

 � � � �nn
aan BBB 

�� �� �����  (7) 

with 
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�
��

�
. (8) 

If �B  are real as was the case for all parameter combinations we encountered ��  

must vanish by (5) such that 

 




 

�

BMp
x 01

1

�	
�  (9) 

by (1). 

The general solution to (3,4) is 
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 � � � �/ 0nnnn
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Again, (5) implies that ��  must vanish such that by (3) 
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Before drawing conclusions from the failure of this model to predict any decorrelation 

let us refine it. 

  

Normal theory—model II 

The system (1—4) is linear because of the property 

 � � �� �� 01,1 MM �  (13) 

of the univariately thresholded binormal which follows from (A3.3,A3.7). Expanding 

not only the second argument of � �� ��� � xx d,cov  but both gives rise to a variant of 

model I where (3,4) are replaced by 

 � � � � � �� � � � � �� �aaaaa CMppCMpBC
xxxx
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��
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�
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��
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(3,4) in effect linearise (14,15), indeed, if using Mehler’s formula the 1,1, M��  are 

truncated at first order in a� , (14,15) are equivalent to (3,4). 
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To see whether this subtle difference can explain the failure of model I, I solved the 

modified system (1,2,14,15,5,6), see Appendix A3 for details. 
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Figure 4. Symmetric vs. non-symmetric theory. Model II correctly predicts systematically improved 

decorrelation relative to the non-symmetric network. 
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Figure 5. Prediction of decorrelation by non-normal model is poor. In the very sparse regime 

decorrelation is systematically overestimated. While this error is large it is also expected. More 

worryingly the model systematically underestimates decorrelation in the moderately sparse regime. 
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While model II improves on model I by correctly predicting a systematic gain in 

decorrelation over the non-symmetric network (Fig. 4) the quantitative match to 

simulation data is still poor (Fig. 5). 

 

Non-normality 

To assess how and how strongly the steady-state distribution of membrane potentials 

across mitral cells deviates from normality I resorted to computer simulations and 

prepared histograms. For some parameters the distribution is highly non-normal (Figs. 

6,7). A pronounced discontinuity at the threshold is apparent. Left and right of this 

discontinuity a normal approximation may be good enough. 

To estimate how strongly departure from normality affects correlation I compared the 

correlation of firing rates between different channels and stimuli to the correlation of 

hypothetical firing rates that results from replacing the observed bivariate membrane 

potential distribution by a binormal one with matching mean, variance and correlation 

(Figs. 8,9). The difference is considerable in the parameter range where accuracy of 

decorrelation predicted by model II is poor. 

 

DISCUSSION 

Before I discuss the results I outline how a better model might be obtained. 

 

Towards a non-normal model 

As a first step one should strive to well understand the observed non-normal 

distribution of membrane potentials. A direct ansatz would be to express it as the 

marginal of a high-dimensional distribution which is multinormal in each �-shifted 

orthant. Using the Kibble-Slepian formula3 it might be possible to confirm that this 
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marginal should indeed be well approximated by two Gaussians. That way one could 

hope to gain enough constrains governing the parameters of these Gaussians to be 

able to formulate and solve a self-consistent set of equations similar to (1,2,14,15). 
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Figure 6. Distribution of steady-state membrane potentials across mitral cells. Data from computer 

simulation of the 10,000-neurone symmetric network pooled over the 16 amino acid stimuli; 

parameters: � � 4,28,Hz 9.21 
���� pa� . Pronounced deviation from normality is apparent. 

Top panel: univariate distribution, red line indicates threshold. Bottom panel, left: bivariate 

distribution, same stimulus, neighbouring channels � �� �XX 1,� . Bottom panel, right: bivariate 

distribution, same stimulus, channels two synapses apart � �� �XX 2,� . 
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Figure 7. Distribution of steady-state membrane potentials across mitral cells. Data from computer 

simulation of the 10,000-neurone symmetric network; parameters as in Fig. 6. Left panel: bivariate 

distribution, different stimuli (Tyr, Trp), same channel. Centre panel: bivariate distribution, different 

stimuli, neighbouring channels � �� ��� � XX 1, . Right panel: bivariate distribution, different stimuli, 

channels two synapses apart � �� ��� � XX 2, .

 

Channel and pattern correlation 

The match between model II and simulation results is unsatisfactory. Still, model II 

may be considered useful because it suggests that part of the gain in pattern 

correlation afforded by symmetric connectivity is explained by channel correlations, 

while the rest is presumably an effect of non-normality. 

 

Bimodal distribution of membrane potentials 

It is well known that the statistics of activity in a circuit can be informative about 

network topology 4. In a simple sense this also holds for this model. Normally 

distributed membrane potentials indicate non-symmetric connections, whereas non-

normally distributed membrane potentials indicate symmetric connections. 
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Figure 8. Channel correlation coefficient of membrane potential distributions (grey), observed 

distribution of firing rates (blue) and distribution of firing rates if membrane potentials were normally 

distributed (red). x-axis indicates fan-in. Connection strength ranges from 1 (top) to 8 (bottom). 

Channels are either neighbours (left column) or two synapses apart (right column). 
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Figure 9. Correlation coefficient of membrane potential distributions (grey), observed distribution of 

firing rates (blue) and distribution of firing rates if membrane potentials were normally distributed 

(red). x-axis indicates fan-in. Connection strength ranges from 1 (top) to 8 (bottom). Left column: 

different stimuli (Tyr, Trp), same channel. Centre column: different stimuli, neighbouring channels. 

Right column: different stimuli, channels two synapses apart (right column). 

 

Also, the symmetric model constitutes a simple mechanism to transform a 

unimodal input distribution into a pronouncedly bimodal output distribution (Fig. 10). 

A bimodal distribution of membrane potentials has been observed in many brain 

areas5-7. While I have no reason to believe that the symmetric model is a realistic 

mechanism underlying the membrane potential distribution in these areas, it is 

potentially useful to know that such a bimodal distribution can arise independent of 

intrinsic neuronal properties such as bistability. 
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Figure 10. Bimodal output distribution. Same organisation as in Fig. 6; but parameters: 

� � 4,16,Hz 1.33 
���� pa� . 
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Chapter 3 

A note on olfactory bulb responses to 
mixtures with varying analyte ratio 

A set of recent experiments has observed step-like transitions in the mitral cell 

population response to series of binary mixtures with gradually varying analyte ratio1

(“morphing” series). These step-like transitions were inferred from an approximate 

block structure along the diagonal of the matrix of pairwise distances between 

response patterns to different ratios. Individual blocks correspond to ratio clusters or 

“categories” of odours. In this short note I demonstrate that sigmoidal ratio tuning of 

individual afferent channels2 is sufficient for such a block structure to arise at the 

level of afferent patterns. This provides a simple possible mechanism of odour 

categorisation. 

Introduction 

The tuning of olfactory receptor neurones to different concentrations of a given odour 

is sigmoidal, relatively narrow and well described by the Hill equation when recorded 

electrically2-4. When measured by afferent imaging from glomerular modules dynamic 

ranges are larger, but saturation still occurs5,6. As data from high resolution calcium 
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imaging argue against convergence of afferents with complementary sensitivity 

ranges in a given glomerulus7, there is no obvious explanation for this difference. 

Assuming “syntopic interaction” (no interaction beyond competition for 

receptors) of analytes which explained half the data in ref2 this sigmoidal 

concentration tuning entails sigmoidal ratio tuning. I therefore examined the 

implications of sigmoidal single channel tuning for the population code. This was 

done in a minimal, mathematically tractable model and in a more naturalistic model 

with qualitatively the same results.  

Results 

In pioneering trials either model frequently generated correlation matrices with 

apparent block structure qualitatively similar to that observed experimentally. This 

remained true if Euclidean distance was used instead of Pearson correlation.  

Blockiness index. To quantify this observation I introduced the following blockiness 

index B which detects block edges along the diagonal of the distance matrix D. For 

each grid point on the diagonal the longest two horizontal (or vertical) lines starting 

from this point were determined such that the pixels directly above (or left of) and 

directly below (or right of) the line could be separated by a threshold (Fig. 1). E.g. the 

nth rightbound line would have length 

/ 0/ 0mjiDDml jnninnn ,,1,max ,1,right, �25�
.� ���  (1) 

where in the correlation and Euclidean metrics one would use the less-or-equal and 

greater-or-equal signs, respectively. The lengths of these “boundary lines” were then 

decreased by two grid units and all resulting positive numbers added and normalised 

by number of all boundary lines. Applied to measured data1 the blockiness indices of 

an afferent arginine/histidine series were 0.25 or 0.3125 in the correlation and 
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Euclidean metrics, respectively, that for phenylalanine/tryptophan were 0.3125 or 

0.25 in the correlation and Euclidean metrics, respectively.  

1:0

99:1

9:1

7:3

1:1

3:7

1:9

1:99

0:1

Figure 1. Blockiness of pooled arginine/histidine afferent response. Correlation (left) and Euclidean 

(right) metrics. Data by Jörn Niessing. 

Note that in the Euclidean metric it is obvious that linear mixing leads to 

blockiness 0, because all binary mixtures lie on the line connecting the pure 

components. 

It may be worthwhile to make this index more robust by relaxing the 

separation criterion with a tolerance parameter. 

Minimal model. In the minimal model each glomerulus has a ratio "x  at which it 

switches from its response to one of the analytes to the response to the other. 

� � � �� �121 FFxxFxF 

6�� "  (2) 

Responses are assumed to be normally distributed; the switching points of different 

glomeruli are assumed to be equidistant along the ratio axis, such that in an evenly 

spaced ratio series the same number s of glomeruli will switch in each step.
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 In the Euclidean metric the expected blockiness index can be calculated, 

because the distribution of individual values in the distance matrix is quite simple. 

Because the blockiness index only depends on rank order instead of the Euclidean 

metric its square can be used. Then the i,jth matrix element is 2
k7 -distributed where k

is the number of glomeruli switching between ratio i and ratio j.

 Because starting from the diagonal distances monotonically increase in 

horizontal and vertical direction one can test whether a given boundary line has length 

> l by comparing the innermost o�-diagomal element on the outward row to the lth

o�-diagonal element on the inward row. Using (A&S6.5.5, A&S6.5.21; ref8) and the 

fact that the two elements are independent the probability can thus be calculated 
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if successive mixtures di��er by precisely s glomeruli. Here P is the regularised 

gamma function and 
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 is the binomial coefficient with non-integer arguments allowed for. (3) can be 

rephrased in terms of the Gaussian hypergeometric function 2F1 (A&S15.1.1) 
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 The expected Euclidean blockiness index of an n-step mixture series of 

patterns comprising sn glomeruli (Fig. 2) is 
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Figure 2. Expected blockiness index E(B(n,s)).
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when n is large. For s = 1,2 this simplifies to 
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and 
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where I have used (A&S15.1.8, A&S15.1.24). 

Higher Bs can be calculated similarly using 

Fact 1. Let 
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converge absolutely where k is a positive integer. Then 
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with � a primitive kth root of unity. 

 This can be applied to (7) in the form 
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where 

� � � � azzaF 

� 1;01 . (13) 

Syntopic model. The equations for syntopic interaction given in ref2 which yield the 

response F of a single channel to a mixture $ oco  can be rewritten 
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with co, Ko, Fmax,o the concentration, half saturation concentration and maximum 

response for analyte o, respectively and all sums running over analytes {o} which are 

considered to span a vector space of mixtures. 

Binary mixtures with the same total concentration ctot = c1 + c2 are 

conveniently parametrised in terms of 
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 (15) 

The distributions of parameters entering into these equations have not been 

reported in zebrafish. I therefore used data from rat2 and systematically scaled the 

distribution of Hill coe���cients and the total concentration ctot . The number of 

glomeruli and the values of Fmax were chosen such that the pure analytes at 

concentration ctot reproduced response patterns to phenylalanine and tryptophan in 

zebrafish9. The blockiness index was then averaged over 2,000 realisations of the ratio 

series used in ref1 (Fig. 3). The average blockiness index strongly varied and reached 

high values for some parameter combinations. 

In summary, both a minimal mathematically tractable and a more realistic 

model based on measured single channel a��erent characteristics predict that sigmoidal 

ratio tuning can translate into ratio clustering at population level. 
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c t
ot

Figure 3. Average blockiness index of phenylalanine/tryptophan series using Rospars’ model.

Discussion

I have demonstrated that ratio clusters emerge naturally from minimal assumptions. 

My treatment formalises the following intuitive argument: Glomeruli for which 

response amplitudes between the two analytes differ strongly are rare. Because these 

glomeruli contribute strongly to pattern differences their switching ratios delineate 

ratio clusters. 

 It is also intuitive that the phenomenon is diluted if the number of glomeruli 

becomes large, because in a given ratio series many glomeruli will switch in each step 

(parameter s in the minimal model), levelling the distribution of per step distances. 

References

1. Niessing, J. & Friedrich, R.W. Olfactory pattern classification by discrete neuronal network states. 
Nature 465, 47-52 (2010). 

2. Rospars, J., Lansky, P., Chaput, M. & Duchamp-Viret, P. Competitive and Noncompetitive Odorant 
Interactions in the Early Neural Coding of Odorant Mixtures. J. Neurosci. 28, 2659-2666 (2008). 

3. Firestein, S., Picco, C. & Menini, A. The relation between stimulus and response in olfactory 
receptor cells of the tiger salamander. J. Physiol. (Lond.) 468, 1-10 (1993). 

4. Ito, I., Bazhenov, M., Ong, R.C., Raman, B. & Stopfer, M. Frequency Transitions in Odor-Evoked 
Neural Oscillations. Neuron 64, 692-706 (2009). 

5. Meister, M. & Bonhoeffer, T. Tuning and Topography in an Odor Map on the Rat Olfactory Bulb. 
J. Neurosci. 21, 1351-1360 (2001). 

6. Wachowiak, M. & Cohen, L.B. Representation of Odorants by Receptor Neuron Input to the Mouse 
Olfactory Bulb. Neuron 32, 723-735 (2001). 

7. Wachowiak, M., Denk, W. & Friedrich, R.W. Functional organization of sensory input to the 
olfactory bulb glomerulus analyzed by two-photon calcium imaging. Proceedings of the National 
Academy of Sciences of the United States of America 101, 9097 -9102 (2004). 



Chapter 3 A note on olfactory bulb responses to mixtures with varying analyte ratio   65

8. Abramowitz, M. & Stegun, I.A. Handbook of mathematical functions with formulas, graphs, and 
mathematical tables.  (Dover publications: 1964). 

9. Friedrich, R.W. & Korsching, S.I. Combinatorial and Chemotopic Odorant Coding in the Zebrafish 
Olfactory Bulb Visualized by Optical Imaging. Neuron 18, 737-752 (1997). 



 Acknowledgements 66



 Acknowledgements 67

Acknowledgements

The author would like to thank friends and family for continued support, members of the 

Friedrich group for stimulating discussions, sharing data and creating a pleasant atmosphere, 

Botond Roska for reviewing this thesis and last not least Rainer Friedrich for the patience and 

trust to see a project through that at times was teetering on the brink of failure. 



�



Appendix A1 Theory supplementing chapter 1 A-1

Appendix A1 

Theory supplementing chapter 1 

Prerequisites

For convenience and to unify notation we collate a couple of well-known facts about 

the univariate � -rectified standard normal distribution ��  with density 

(M1) � � � � � � � � � �� �

���6�

0
dssxxxx �#C�##�

which results from applying a threshold �  to the standard normal distribution �  with 

density � � 2

2

2
1 x

ex



�
�

# . 6  and C  refer to the Heaviside step function and the Dirac 

delta distribution, respectively. The premoments of ��  elsewhere called “repeated 

integrals of the normal probability integral” (Ref 1: 26.2.41-45, beware of misprints in 

26.2.43, 45) are given by 
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with � � � �
� �

� ��#
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m
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m
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H 1
�  the m-th Hermite polynomial (Ref 1:  22.3.11, 

26.2.31). If m is positive mMm �!  equals the m-th raw moment of �� . The mM�

satisfy (M3) 1
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 mm MM
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We will now formulate a bivariate version of the above. Applying thresholds ,�,  to 

the � -correlated standard binormal distribution ��  with density 
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gives rise to the ,�, -rectified � -correlated standard binormal distribution �,� �,

with density 
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(M8)
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The bivariate Hermite polynomials and the premoments of �,� �,  are 
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Definition (M10) extends to arbitrary integer m,n by (M11, M12) below. If m,n are 

positive � ��,� nmMnm ,,!! equals the m,n-th raw moment of �,� �, . Elementary 

calculations (cf. Ref. 2) yield 
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 (M16) � � nmnm MMM ,�,� �0,,

 (M17) � � � � 0,!1!! ,, ��� � nmMnmMnm nmnm ���

(M13) follows from Price’s theorem. From (M13) and (M16) Mehler’s formula (Ref 

1: 26.3.29) 
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�  we derive the simple but very useful fact 
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Via (M12, M13) this implies for nonnegative m,n that � ��,� nmM ,,  strictly increases in 

�  and strictly decreases in ,�, . Similarly, � ��,� nmM ,,  is strictly convex in �  and 

strictly concave in ,�,  if m,n are positive, and so forth. One consequence is that the 

covariance � ���� 1,1, M  of the thresholded binormal has the same sign as � . We will 

freely use these and similar facts. 

Proof of TIDe theorem 
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Proof of theorem 1: Assertion 1 is essentially contained in remark M1. To prove 

assertion 3 choose 0�E  and EN  such that E� E �N . By the Mehler formula (M18) 

we have � �
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for large � . By (M5) we have � ��#� �� 00 M  if 1�� . Since the iH  are 

polynomials of degree i with leading coefficient 1 the numerator of the l.h.s. of (M21) 

is easily seen to tend to � � � �!2
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N  which proves (M21) and assertion 3. 

Assertion 2 follows from the following two lemmata. 

Lemma M2: Let cba �.  be real numbers and F  a nonempty connected open subset 

of the real numbers. Let the function � ��3 ,g  be defined on the set � �ca,F . Let g be 

differentiable in 3  and strictly increasing in � . Let � ��3 ,1
g  be the inverse of g with 

respect to the second argument. Assume that the composite function 
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1. strictly decreasing (or strictly increasing) in 3  if b��

2. strictly increasing (or strictly decreasing) in 3  if b��

Proof: Abbreviating � ��37� ,g�  we can write 
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such that (M22) must be negative. The other cases are proven similarly. 
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which is clearly positive. 

Remark M4: As a consequence of )(lim �� ��
r


��
�  and assertion 2 we have )(�� � r�

for 10 �� � , i.e. TIDe. From assertion 1b) one derives the lower bound 
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� � � �
� � EE

��

��
� G
�


1
1

11
1,1,

0,0,

M
M

r  which limits the amount by which near-identical stimuli 

are decorrelated and thus guarantees noise-tolerance. 

Remark M5: Violation of either the assumption of equal thresholds for both variates 

or the assumption of binormality permits counterexamples to theorem 1 

(Supplementary Fig. 1a-c).  

Recurrent circuit 

Let us abbreviate 

 (M25) 
� �

� �v
v

v �
��

�



� 0

 (M26) � � � ����� �� 1,1,,, MPPf 
�

 (M27) � � � �PfMPf aa ,1,,, 11 ����� � ��

�

 (M28) � � � �
� �Pf

PfPQ
,1,
,,,,

�
���� �

 (M29) � � � �PQPf a ,,,,2 ����� 
�

where � �v�  stands for the standard deviation of a variate v. With these substitutions 

and under assumptions of binormality equations (3-5) become  

 (M30) � � 0,,1 �Pf ax ��

 (M31) � � 0,,2 �Pf xx ��
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Recall that P cannot be negative because it stands for 2	p .

Remark M6: Strictly speaking the phrasing of theorems 2 and 3 is nonsensical because 

the premise of binormality of input and feedback can only be approximately satisfied. 

What is actually meant is, of course, that these theorems refer to the idealised system 

(M30, M31). 

Proof of theorem 2: ax �� �  would by (M31) and theorem 1 imply 

(M32) 
� � � �
� �

� �
� � a

x

xx

x

xx
xa Pf

MP
Pf

MrP
xxxxx �

�
��

�
��

�� ����� �



�



�.
,1,,1,

1 1,1,1,1,

which is a contradiction. 

Uniqueness of solutions 

Definition M7: The system (M30, M31) or its parameters are called gain-limited if 

1.� . A solution x�  to (M30) is called variance-limited if 

(M33) 10 �MP
x�

;

the system or its parameters are called variance-limited if they permit a variance-

limited solution. 

Note that variance-limitedness is slightly stronger than the constraint  

(M34) � � 0,1, �Pf x�
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implicit in (M30, M31). We will see below that gain- and in particular variance-

limitedness are good predictors of convergence of the system (1). 

Theorem M8: Let (M30, M31) be gain- and variance-limited. Then  

1. variance-limited solutions x�  are unique.  

2. for any 11 ..
 a�  there is a unique solution x�  to (M31) extending the 

variance-limited solution x� .

Proof: To prove assertion 1 we will demonstrate that to the right of a solution 1f

decreases in x� . Observe that � �Pf ax ,,0 1 ���  implies 

(M35) � � � �
� �

� �Pf

Pf
MMPf

x

x
x

xax
x

xx ,1,2

,1,
1,, 101 �

�
�

���
� ��

D
D

�����
.
D
D

with equality if x�  is actually a solution. By (M4, M17) we have 

(M36) 
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Together (M34-M36) imply 

(M37) � � 0,,1 �
D
D Pf ax

x

��
�

.

Assertion 2: By (M33) 
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(M38) � � � � � �
� � 0

,1,
1

,,,, 0,0,
2 �
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which implies uniqueness. Since Q is concave in x�  and � � 0,0, �PQ x�  and 

� � 1,1, �PQ x�  we have � � 1,1, 
.
 PQ x� . Existence now follows from the 

intermediate value theorem. 

Remark M9: If the requirement of variance-limitedness is omitted from theorem 7 

uniqueness can be lost (Supplementary Fig. 1d). 

Proof of theorem 3 

Definition M10: The system (M30, M31) is called sufficiently coupled if 

 (M39) � � 000,1, �� MP
xxx ���

holds for a variance-limited solution. 

Lemma M11: Under the assumptions of theorem 3, � �PQ xx ,,��

1. strictly increases in P,

2. strictly decreases in x�  if (M30, M31) is sufficiently coupled and 

3. strictly increases along 

(M40) 
� �

� �
x

e
Pf

Pf
Pev

ax
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where
x

eeP �,  are unit vectors defined by xP �, .

Proof: Write � � � �""" ��� 11, MPF
xxx P 
� . By remark M1, (M17) and variance-

limitedness 

(M41) � � � � 01 0,0, �
�
D
D ""
" ��� MPF

xxx P

such that lemma M2 can be used. We will abbreviate � �"7 � PF
x

� .

Assertion 1: It must be shown that � � � �� �77 ��
1

1
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 is strictly concave 

on the interval � �� �1,0 F� . Directly calculating the curvature yields 
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which is indeed negative. 

Assertion 2: Assuming sufficient coupling, it must be shown that 

� � � �� �7
�

7 ��
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 is strictly convex on the interval � �� �1,0 F� . Directly 

calculating the curvature yields 
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which has the same sign as � �"� �� 0,1, MP
xxx � .

Assertion 3: We distinguish two cases. 

Case 1: 0�a� . Lemma M2 can be used as above. It must be shown that 

� � � � � �� �77 ��
1

3 1


� PPv FFDu
xx

 is strictly concave on the interval � �� �1,0 F� . Here 
1vD

indicates the directional derivative along the vector 1v . Combining (M42, M43) yields 

the curvature 

(M44) 
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Because a�  is nonnegative � �Pf
P ax ,,1 ��
D
D  is non-positive and 1M

xx �� ��  is 

nonnegative such that by (M35-M37) 
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It is now obvious that (M44) is negative if (M30, M31) is sufficiently coupled. We 

therefore assume otherwise, in particular 0�x� . Then by (M4, M5) 
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and, similarly, using remark M1 and (M17, M6) 
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Finally, by the mean value theorem, remark M1 and (M17) 

 (M48) � � � �
P

MM
xxxx

1110 0,0,1,1, ��� ����

Together (M45-M48) prove that (M44) is negative. 

Case II: 0�a� . Write 
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Using the rightmost expression in (M50) it is obvious that 

 (M51) 10 �� F

such that  

 (M52) � � FveFv P �
� 11

is a convex combination. Finally, a direct computation yields 
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which is seen to be positive by theorem 1.2. Together, assertion 1 and (M51-M53) 

prove that � �PQD xxv ,,
1

��  is positive. 

Proof of theorem 3: The theorem implicitly states that the association between a point 

� �aaP �� ,,,�  in parameter space and a stable solution � �xx �� ,  extends to a well-

defined map taking a neighbourhood of � �aaP �� ,,,�  to a neighbourhood of � �xx �� , .

This is guaranteed by (M37, M38) via the implicit function theorem (IFT) applied to 

(M30, M31). 

Demonstrating assertion 3 is now straightforward: 

(M54) � � 0,, �
D
D PQ xx

x

��
�

,

cf. (M41). Together with lemma M11.2 this implies that x�  strictly increases in x�

by the IFT applied to (M31); x�  in turn strictly increases in a�  by the IFT and (M30, 

M37).

Similarly, by the IFT and (M30) an infinitesimal change in P will entail an 

infinitesimal change in x�  such that the combination of these infinitesimal changes is 

proportional to 1v . Since by (M54), lemma M11.3 and the IFT applied to (M31) x�

strictly decreases along 1v , this proves assertion 1. 

As for assertion 2, since � �PQ xx ,,��  strictly increasing and strictly concave in x� ,

its inverse is strictly convex. 

Convergence criterion 
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We conclude our treatment by deriving a heuristic criterion for convergence of the 

system (1) to a steady-state. The argument is based on the so-called circular law for 

random matrices which states that in the limit of large N the eigenvalues of a well-

behaved NN   random matrix with entries of variance 
N
1  are distributed uniformly 

in the complex unit disc. This has been proven for various concepts of well-

behavedness 3-7. It is conjectured that the circular law holds in many more 

circumstances. 

Assume that equation (M30) admits a solution x�  that corresponds to a fixed point of 

(1). For this fixed point to be stable the eigenvalues of the Jacobian of the r.h.s. of (1) 

must have negative real part. This will be the case precisely if the eigenvalues of the 

reduced connectivity matrix L~  have real part less than one. L~  is obtained from L by 

leaving out the rows and columns corresponding to cells not active in the fixed point. 

Since connectivity is assumed to be sparse and random these cells form a random 

subset. If the number of all cells is N, the expected number of active cells is NM
x 0�

and L~  is an NMNM
xx 00 ��    random matrix with approximately independent entries 

of variance 
� � 2

%&
'

()
* 



 
�

N
pp

N
P 	 . Numerical evidence suggests that a variant of the 

circular law applies in this situation (Supplementary Fig. 14). Assuming it does, the 

eigenvalues of L~  other than the Perron-Frobenius eigenvalue 

(M55) 0max Ml
x�

� 

are distributed uniformly in the disc with centre at the origin of the complex plane and 

radius
� �

N
Mpp

MPR x

x

0
22

0
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� . We predict convergence precisely if 
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0M
x�

�  and R are both less than one. The criterion correctly predicted convergence 

and non-convergence of the 10,000 neurone circuit for all parameter combinations 

tested (Supplementary Fig. 3). The criterion also motivates definition M7. 

Fully linear transformations 

Fact M12: Let 0�f  be a linear map between Euclidean spaces V,W and let �X  be 

the set of all pairs (u,v) of unit vectors in V subtending a given angle � � ��H vu, .

Then the transformed angle has expected value � �� � ��H fvfuE ,  where the average is 

taken over �X .

Proof: Since the conclusion is trivial for degenerate angles we assume �� k�  is not 

an integer multiple of � . Then �X  can be identified with the Stiefel manifold 

� � � � � �I� TOVOVSt ,2  of orthonormal 2-frames in V. For clarity we have chosen a 

base point � � �Xvu 200 ,  together with its linear span T  and orthogonal complement 

IT  in V .  As � �VStX ,2��  is a homogeneous space of the orthogonal group � �VO

there is precisely one invariant regular Borel measure �  on �X  which is also a 

probability measure8. � �VSt ,2  is via the obvious projection p a principal bundle over 

the Grassmannian � � � � � � � �� �I� TOTOVOVGr ,2  of planes in V. It clearly suffices to 

prove the statement for integer fractions 
k
�� 2

� . Let � �TOo 2�  be rotation by � .

The right action of �o  on an element � � � �oTpovou 1
00 , 
2  is given by 

� � � �0000 ,, voouooovou o
��

� � . Since the winding number of a linear map � �,2GL2

equals 1�  (e.g. by the singular value decomposition) we have almost everywhere 
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Because � �VO  is compact the measure �  is invariant under right action of � �TO .

Thus

 (M57) 
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Remark 13: What does Fact M12 mean for Pearson correlation? Put differently, what 

are the effects of mean subtraction WV cc ,  and taking cosines? 

1. Denote by V1  and VM  the kernel and image of mean subtraction Vc  in V,

respectively. We need a geometry on the set � � VVVMSt 11   of pairs (u,v) of 

vectors of unit variance. Concerning � �VMSt  the only plausible measure is the 

unique invariant probability measure M�  as above. The probability measure 

1�  can be freely chosen. The only way mean subtraction can circumvent fact 

M12 is if 
V

fcW 1
�  is large. The average image angle then strongly depends on 

the distribution 1�  of the mean in V. Output correlation thus strongly depends 

on something that is invisible to input correlation. Therefore in this situation 

Pearson correlation cannot be used to form a meaningful measure of pattern 

separation. 

2. Assume now that fcW �  factors through Vc . The cosine, being nonlinear, will 

not in general preserve averages; in fact, using Jensen’s inequality it is easy to 
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construct examples where a fixed input correlation on average (but not 

uniformly) slightly increases or decreases. However, this is an effect of the 

nonlinearity of the measure itself, not of the transformation, and does therefore 

not represent a relevant change. 
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Supplementary Figure 1  |  Counterexamples demonstrating that assumptions of 
theorems 1 and M8 cannot be omitted. a, Pearson correlation of the thresholded 
binormal �,� �,  at 8.0��  as a function of the normalized thresholds�  and , . If  
� � � � � ��� ��� aaa ��  and )var()var()var( �� aaa ��  as assumed in the model, �  

will equal ,  (dashed line). The solid line indicates the relation between �  and ,  if 
)var(16)var( �� aa �  and � � � � � ���� �� aaa var8
� . b, Pearson correlation along the 

two lines indicated in a, parameterized by , . If the two stimuli have different means 
and variances (solid line) monotonicity is lost. c, Effect of thresholding on the Pearson 
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the general behavior of the binormal, consistent with its universal character. d, If 
variance-limitedness is not enforced, solutions to (M31) are not necessarily unique. 
Parameters in this particular counterexample are 5.31
�� , 946559.1�a� , 

0078125.31�P . For details see Supplementary Equations and Mathematical 
Analyses. 
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Supplementary Figure 2  |  Illustration of the reTIDe mechanism. “External input” 
(1) shows a binormal distribution representing a pair of correlated input patterns. The 
external input is combined with the feedback input (2) from the network, yielding the 
total input (3). The total input is thresholded to generate the output (4), which is also 
fed back into the network. Because thresholding reduces pattern correlation (TIDe), 
the correlation between thresholded feedback patterns (2) and total input patterns (3) 
is lower than the correlation between external input patterns (1). Feedback of the 
output pattern therefore seeds a regenerative loop that progressively amplifies the 
decorrelation produced by TIDe alone. The strength of this amplification depends on 
the relative contributions of the external input (1) and the feedback input (2) to the 
total input (3). In dense networks (right) the input to each neuron is an average over 
many other neurons; therefore the feedback has low variance and contributes little to 
the total input. In sparse networks (left), the feedback pattern has higher variance and 
contributes more to the total input. As a consequence, sparse connectivity enhances 
the amplification of TIDe in recurrent networks (reTIDe). 
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Supplementary Figure 3  | ”Sufficient coupling” is a good criterion to predict the 
effect of baseline activation on pattern decorrelation (Supplementary Equations and 
Mathematical Analyses). Green color depicts regions in parameter space where the 
gain in decorrelation increases with baseline activation in theoretical predictions (left) 
and simulations (center). Right: match between prediction and simulation. As 
expected (theorem 3.3) there are no false positives. Furthermore, false negatives are 
rare, making sufficient coupling a strong predictor. Gray areas depict parameter 
combinations for which the theory is not applicable because coupling is too strong 
(	 � 1). Hatched areas depict parameter regimes where convergence to a steady-state 
does not occur in theoretical predictions or simulations. Note that the match between 
predicted and observed convergence is perfect. 
 



Appendix A2 Supplementary Figures and Table for chapter 1 A-25 
 

0 ms 200 ms 400 ms 600 ms 800 ms 2000 msAl
a

Se
r

Ph
e

Ty
r

0.9-0.1
Pearson correlation

Reference model
Input Output

 

Supplementary Figure 4  |  Tolerance of reTIDe against small variations in the input. 
Gaussian noise with approximately 3% of the average variance was added to four 
input patterns with relatively high Pearson correlation (Ala, Ser, Phe, Tyr). Negative 
values in the resulting patterns were set to zero. Four variants of each stimulus were 
created and processed with 100 realizations of the reference network. Response 
patterns were pooled and correlation matrices calculated. Similarity between noisy 
versions of the same input patterns (blocks along the diagonal) were clearly preserved 
in the output. Over time, the difference between within-block and across-block 
correlation increased. ReTIDe therefore facilitates pattern classification. 
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Supplementary Figure 5  |  Validation of SNORE theory for mixed excitatory-
inhibitory networks. Top: � �a�  = 10.7 Hz. Bottom: fan-in 20�p . Other conventions 
as in Fig. 4a–d. 
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Supplementary Figure 6  |  Forward optical probing. a, Distance-dependence of 
signal amplitude. Response intensity of follower neurons is plotted as a function of 
distance dsphere (Fig. 5c) from the trigger neuron. Line: linear fit; correlation: r = -0.15. 
Response amplitude decreases only slightly with the distance of the follower neuron, 
consistent with the assumption that the evoked action potentials propagate actively 
within the dendritic tree of the mitral cells. Hence, the approximately exponential 
decay of follower probability with distance (Fig. 5d) cannot be explained by a 
distance-dependent decrease in the response intensity of follower neurons. b, Fraction 
of followers with statistically significant responses as a function of the fraction of 
repetitions included in the analysis. The total number of repetitions for each follower 
was 20. For each fraction of repetitions, a subset of trials was drawn randomly and 
significance of the response was determined by a Mann-Whitney U test (P < 0.05, 
Methods). This analysis was repeated 100 times for each data point. The fraction of 
significant followers does not decrease steeply with the fraction of repetitions, 
indicating that identification of followers was robust. 
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Supplementary Figure 7  |  Cell counts in the OB. To estimate the total number of 
potential follower neurons of mitral cells in the OB, we assume that follower neurons 
are exclusively interneurons. We counted nuclei in the deep (interneuron) layers in a 
series of 14 μm sections through the whole OB (30 sections) stained with DAPI (left). 
The boundary of the deep layer (INL; blue outline) was drawn based on HuC-YC 
fluorescence in the same section, which marks sensory afferents and mitral cells in the 
glomerular/mitral cell layer (GL/MCL; right). Somata in the INL of all sections were 
then counted using automated procedures in Imaris (Bitplane). Four sections were lost 
during the histological procedure and soma numbers were interpolated. The total 
number of somata detected in all sections was 24,822. Assuming that the OB contains 
approximately 25 % non-neuronal cells, the total number of interneurons in the deep 
layers is estimated to be ~20,000. This number is assumed to be a conservative (low) 
estimate of the total number of potential mitral cell followers because the real fraction 
of non-neuronal cells may be smaller than 25 %, and because interneurons in the 
GL/MCL were not included in the count. 
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Supplementary Figure 8  |  Computer model of the olfactory bulb. a, Model 
architecture. Mitral cells receive spatially patterned excitatory inputs and make 
reciprocal inhibitory connections to stochastic subsets of other mitral cells. b, 
Connectivity patterns. Each square depicts one mitral cell. Connection probability and 
connectivity are illustrated for the mitral cell marked by the cross. Color map shows 
the distribution of connection probability. Open squares show mitral cells that were 
connected to the neuron marked by the cross by random selection of connections 
based on the underlying probability distribution. Left: sparse connectivity with 
exponentially decaying (topographic) connection probability, representing the 
reference model derived from experimental data. Right: non-topographic and/or dense 
connectivity patterns. c, Examples of rasterized odor-evoked glomerular activation 
patterns in zebrafish1. Patterns evoked by structurally similar pairs of odors (Tyr/Trp, 
Val/Ile, Arg/Lys) are highly correlated (r, Pearson correlation coefficient); overlap is 
particularly high within foci of active mitral cells (arrowheads). 
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Supplementary Figure 9  |  Dynamics of responses produced by different OB 
models. Line plots show responses of 20 mitral cells to two similar inputs (Tyr and 
Trp) as a function of time. Three mitral cells were chosen from the central cluster of 
high afferent activity shared by Tyr and Trp (Supplementary Fig. 8b, arrowhead1); the 
remaining 17 mitral cells were selected randomly. Positions of mitral cells are 
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indicated by the color code at the bottom. Color plots show the tuning profiles of the 
same neurons to all 16 amino acid stimuli as a function of time (see bottom right). The 
first separated line in each plot shows the tuning profile at response onset (200 – 300 
ms). Odors were arranged such that the evoked firing rates decrease from the center 
outwards. The central field shows the tuning profile in successive time bins as the 
odor response evolves. The order of odors is preserved for each mitral cell. The last 
separated line shows the tuning profile 1200 ms after the initial tuning profile. These 
plots can be directly compared to experimental data from zebrafish mitral cells2. a, 
reference model. b–f, models with dense connectivity, low baseline membrane 
potential and no topography. Note that in models with sparse connectivity and high 
baseline membrane potential (reference model and non-topographic model; top), a 
subset of mitral cells show pronounced firing rate modulations during the initial phase 
of the odor response and a dynamic change in their tuning profiles, similar to 
experimental observations in zebrafish2-4. Other models, in contrast, produced more 
stereotyped mitral cell responses and tuning profiles that were stable or broadened 
over time. 
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Supplementary Figure 10  |  Output patterns produced by different OB models. Left: 
two input patterns evoked by structurally similar odors (Tyr and Trp)1. Right: Time 
series of corresponding output patterns produced by OB models. r: Pearson 
correlation coefficient. Top (reference model) is identical to Fig. 6a. Substantial 
pattern decorrelation and disappearance of the central focus (arrowhead) observed in 
experimental data2,4,5 occurred only in models with sparse connectivity and high 
baseline membrane potential (green). 
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Supplementary Figure 11  |  Correlations between output patterns produced by 
different OB models. Left: color-coded correlation matrix showing correlations 
between all 16 input patterns. Right: time series of correlations between the 
corresponding output patterns produced by different OB models. Decorrelation 
comparable to that observed experimentally2-4,6 occurred only in models with sparse 
connectivity and high baseline membrane potential (green). 
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Supplementary Figure 12  |  Outputs of different OB models as a function of time. 
Time courses and absolute values obtained with the reference model and the non-
topographic model correspond well to experimental data for all measures: Mean 
activity (firing rate)2, standard deviation (SD) of population activity2, lifetime 
sparseness2,4,5, pattern sparseness2,4,5, pattern focality5, pattern chemotopy5, and rate of 
pattern change4. Outputs of other models are clearly different. Focality and 
chemotopy indices were calculated as described previously5. 
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Supplementary Figure 13  |  Output patterns and correlations in response to non-
chemotopic input patterns, generated by random shuffling of glomerular positions. a, 
Left: two input patterns evoked by structurally similar odors (Tyr and Trp)1 after 
shuffling of glomerular positions. Right: Time series of corresponding output patterns 
produced by OB models. r: Pearson correlation coefficient. b, Left: color-coded 
correlation matrix showing correlations between all 16 input patterns. Right: time 
series of correlations between the corresponding output patterns produced by different 
OB models. Decorrelation obtained with the reference model was comparable to that 
obtained with chemotopic inputs (Fig. 7; Supplementary Figs. 11, 12).  
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Supplementary Figure 14  |  Outputs of different OB models as a function of time 
for original (chemotopic) and non-chemotopic input patterns. In non-chemotopic 
input patterns, positions of glomeruli were randomly shuffled in the same manner for 
all odors. Top left graph shows pattern correlation as a function of time (10 most 
similar pairs of patterns). Note that eliminating chemotopy had only a minor effect on 
pattern decorrelation by the reference model (dark green vs. light green lines). For all 
other measures except those quantifying topological pattern properties (focality and 
chemotopy), shuffling of glomerular positions also had only minimal effects on model 
output. Conventions as in Supplementary Fig. 12. 
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Supplementary Figure 15  |  Dependence of pattern decorrelation on length constant 
in models with distance-dependent connectivity. a, Connectivity patterns for different 
length constants and nearest neighbor connectivities (top row). Conventions as in 
Supplementary Fig. 8c. b-d, Corresponding decorrelation for the reference, low 
baseline and dense models, respectively. Pooled data from 100 realizations for each 
parameter combination except nearest neighbor models, which are non-random.
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Supplementary Figure 16  |  Numerical evidence for the circular law used to derive 
the convergence criterion (Supplementary Equations and Mathematical Analyses). 
Shown are the 6127 eigenvalues of the reduced connectivity matrix L~  of the steady-
state of a single simulation at the reference parameter set 

6875.1-4.85,,5.4 ��
�� Pa� . All eigenvalues have a real part less than one, 
indicating stability. The distribution of eigenvalues is well predicted by the circular 
law (dotted circle). 
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Ephys  Img. Expt  Ref. Non-topo  Dense D., n-t.  Low b.  L.b., n-t. 

Baseline activity [Hz] 8.8 8.8 8.8 8.8 8.8 8.8 0.98 0.98 
Evoked activity [Hz] 10 10 10 10 9.2 9.2 1.8 1.8 
SD of activity [Hz] 14 14 15 15 5.1 5.6 3.2 3.3 
Lifetime sparseness 0.6 0.7 0.65 0.72 0.72 0.18 0.23 0.76 0.77
Pattern sparseness 0.65 0.7 0.675 0.69 0.69 0.23 0.27 0.75 0.76
Chemotopy 0.06 0.06 0.045 0.074 0.11 0.2 0.19 0.29
Focality 0.04 0.04 0.041 0.07 0.17 0.22 0.22 0.26 
Pattern correlation 0.45 0.25 0.35 0.41 0.44 0.68 0.72 0.66 0.68 

 
 
Supplementary Table 1  |  Quantitative comparison between experimental data and 
model output. Experimental data were measured by electrophysiology (“Ephys”)2,4 
and/or temporally deconvolved 2-photon calcium imaging (“Img.”)5. Column “Expt” 
gives the mean value of experimental measurements when readouts were measured by 
both methods or the individual values otherwise. Remaining columns show 
corresponding outputs of different OB models: “Ref”., reference model; “Non-topo”, 
non-topographic model; “Dense”, model with dense connectivity; “D., n-t.”, model 
with dense and non-topographic connectivity; “Low b.”, model with low baseline 
membrane potential; “L.b., n-t.”, model with low baseline membrane potential and 
non-topographic connectivity. Colors correspond to plots. 
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Appendix A3 

Theory supplementing chapter 2 

Univariately thresholded binormal 

Consider the standard � -rectified � -correlated binormal distribution �� �  with density 
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� � � � � � � ����� ��� 1,,11, 1 �

 ��� nmnmnm MnMM  (A3.7) 
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Definition (A3.2) extends to arbitrary m,n via (A3.4). For m,n positive the premoment 

� ��� nmM ,  equals the m,nth moment of �� �  divided by !!nm .

Numerical solution of model II

The presence of a dominant solution precluded a forward iteration through (2.15) because it 

would have been numerically unsound. I therefore resorted to a backward scheme built 

around a function � �aaxpn ���	� ,,,,,, �
backward . Assuming 
�� 
 nn CC 222 ,  are small such 

that (2.8—2.11) apply this function first calculated 
�nC2  and 22 
�nC  using (2.5,2.8—2.11) 

and then backward iterated through (2.15). The iteration step involved inversion of the 

function � �"" �� 1,1, M
xx

�  and was therefore susceptible to domain errors. If, however, no such 

error was encountered the function finally returned 0C  and if requested 2C . After 

temporarily setting a�  to unity x�  was determined in two hierarchical root finding steps. 

Keeping aapn ��	 ,,,,�  fixed (2.5,2.6,2.8—2.11,2.15) define a map 
�� �x:beta_inf

which was implemented using the secant method on backward . After combining 

backward  and beta_inf  to a map 2Cx �� , finally using (2.14) allowed pinning down 

x� , again by the secant method. This procedure was repeated for successively incremented 

values of �n  until the relative difference between subsequent results fell within a preset 

tolerance. With x�  known, 
�  (which depends on a� ) could be calculated from a�  using 
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backward  and another application of the secant method to the deviation from (2.14). 

From 
� � �ax C �� 0�  was gained using backward .

Normal theory—direct approach 

To get around the somewhat arbitrary constraint (2.5) I tried to more directly calculate 

� �/ 0nanB � and � �/ 0nanC �  by inverting LI ~

  and � �� �LILI

T ~~ 

  where L~  is a matrix derived 

from L to account for thresholding. 

For this I will need some combinatorial tools which I now derive. I will write / 0�,3,2,1�N

and / 000 K� NN  for the positive and nonnegative integers, respectively. I will also use the 

Pochhammer symbol 

� � � �
� �x

nxx n

1
�1

� . (A3.10) 

Regarding the elements of N  as the vertices of a graph with edges between successive 

numbers define the path count 

NNN 22�
L
M
N

9
:
;

nmP
m
n mn ,0

,  (A3.11) 

where 

/ 0 NNNN 22
�� nmnmnP mn ,1 tofrom12lengthofinpaths 0
,  (A3.12) 

and, similarly, the conditional path count 

NNN 22�
L
M
N

9
:
;

nimP
im

n imn ,, 0
,,  (A3.13) 

where 

/ 0 NNNN 22�2� nimiPP mnimn ,, times1precisely1hit that paths 0
,,, . (A3.14) 

I now derive basic properties of and explicit expressions for (A3.11,A3.13). Trivially 
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and 

N2
L
M
N

9
:
;



�

L
M
N

9
:
;

m
mm 1

21
. (A3.16) 

If 1,0 �� nm  the second vertex in paths counted by 
L
M
N

9
:
;

m
n

 is either 1
n  or 1�n . This 

defines two complementary subsets and leads to the identity 
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using which the identity 
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is easily verified. The rightmost expression is useful because it helps compute certain sums of 

path counts in terms of the Gaussian hypergeomtric series. 

As for 
L
M
N

9
:
;

im
n

, trivially 

mi
im

n
��

L
M
N

9
:
;

0 . (A3.19) 

Further observe 
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 (A3.20) 

because corresponding paths are in bijection via 

)1',,1',1'(

)1,2,,,(

22211

21221

�
�
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���

�

�
�

mn

mnmn

vvvvv

vvvnv

�
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 (A3.21) 

Similarly, 
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via the bijection 
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where h is the smallest index such that 2�hv  or 1' �hv , respectively. 

Thus
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I assume 1~
op
�L  such that 

� � $
�

�



�


0

1 ~~
k

kLLI . (A3.25) 

Because cycles were assumed to be negligible

� �
k

jj
k
d d

LL �,
~~ �  (A3.26) 

does neither depend on j nor on the choice of d� . To calculate k
dL~  I count paths of length k

from j to � �jd�  or—equivalently—formal products 

/ 0pbl

k

l
bd l

,,1
1

�2-�O
�

� . (A3.27) 

Denote by 2
,1 dkd

pP



�
 the set of all such paths/products. Similarly, denote by 

idkd

pP
,

2
,1 


�
 the set of 

products that end in precisely i blocks � � iBlBl PPP �1  of terms that cancel or—

equivalently—the set of paths that hit � �jd�  precisely 1�i  times. Assigning to each vertex 
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in a path 2
,1 dkd

pP



�
2  one plus its graph-theoretical distance from � �jd�  defines a map 
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� N . It is easily verified that the 

preimage of a path 
idkd
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�
2 N  has precisely � � idk

i pp 





 21  elements. Indeed, while steps 

towards � �jd�  are unique each step away from � �jd�  has 1
p  potential targets unless it 

starts at � �jd�  in which case there are p targets. Therefore 
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where for the moment 0M
x�

 approximates the effect of thresholding. Other models might be 

better. Using (A&S15.1.13; ref1) and abbreviating 

� �� �2014 Mpz
x�

	
�  (A3.29) 

this leads to 
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Here subscript d indicates any element � �jj d�, . Note that the last expression confirms half 

of the heuristic constraint (2.5). Also note that comparing (A3.30) and (2.7) recovers (2.1,2.2) 

in the form 
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Similarly, using 
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I calculate 
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This confirms the other half of constraint (2.5). 
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A4.0.1 Status

ed.sniff is as of now quite stable and generally useful. What is missing is more
testing and more parameter sanity checks. Currently it is too easy for the user
to self-harm without getting a meaningful error message. Also a couple of odd
normalisations should be ironed out either by changing them or by providing a
high-level Python wrapper.

ed.sniff was written in a clean but terse style adequate to the small set of
features originally envisaged. It has since then mushroomed to put considerable
strain on its ad hoc design and has become only just maintainable. Before pon-
dering any further extensions ed.sniff should be refactored and modularised
to make the complexity it has acquired more manageable.

A4.0.2 Prerequisites

All that will be needed is solving scalar linear ordinary differential equations.
Thus, recall that the solution of

(A4.1)
d

dt
u(t) = S(t)u(t) + L(t)

is

(A4.2) u(t0 +Δt) = u(t0)e

Δt∫

0

S(t0+v)dv
+

Δt∫
0

L(t0 + v)e

Δt∫

v

S(t0+w)dw
dv.

Also recall that the “homogeneous” (u(t0) = 0) solution is linear in L. We will
need two special cases where S(t) = −τ is constant

u(t0 +Δt) = u(t0)e
−τΔt +

L0

τ

[
1− e−τΔt

]
L(t) = L0

(A4.3)

u(t0 +Δt) = u(t0)e
−τΔt +

L0

τ ′ − τ

[
e−τΔt − e−τ ′Δt

]
L(t) = L0e

−τ ′(t−t0)

(A4.4)

Note that (A4.4) is only correct if τ ′ �= τ ; indeed

Warning 1. “alpha-functions” are not currently implemented in ed.sniff.

In the only other case we will encounter both, S and L, will be sums of
exponentials

(A4.5)

S(t0 +Δt) = S0 +
∑
σ∈S

Sσ(t0)e
−τσΔt τσ > 0, S(t) ≤ 0 ∀ t ≥ t0

L(t0 +Δt) =
∑
σ′∈L

Lσ′(t0)e
−τ ′

σ′Δt τ ′σ′ > 0

Abbreviating

bσ := −Sσ(t0)

τσ
(A4.6)

fσ′ := τ ′σ′ + S0(A4.7)

fσ,σ′ :=
fσ′

τσ
(A4.8)
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the solution is

(A4.9) u(t0 +Δt) = u(t0)e
ΔtS0+

∑

σ∈S

1−e−τσΔt

τσ
Sσ(t0)

+
∑
σ′∈L

Lσ′(t0)

Δt∫
0

e
−τ ′

σ′v+[Δt−v]S0+
∑

σ∈S

e−τσv−e−τσΔt

τσ
Sσ(t0)

dv

= e
ΔtS0+

∑

σ∈S

bσe
−τσΔt

⎡⎣u(t0)e− ∑

σ∈S

bσ
+

∑
σ′∈L

Lσ′(t0)

Δt∫
0

e
−fσ′v−

∑

σ∈S

bσe
−τσv

dv

⎤⎦
= e

ΔtS0+
∑

σ∈S

bσe
−τσΔt

⎡⎢⎣u(t0)e− ∑

σ∈S

bσ
+

∑
σ′∈L

Lσ′(t0)

fσ′

1∫
e−f

σ′Δt

e
− ∑

σ∈S

bσy

1
f
σ,σ′

dy

⎤⎥⎦ .

ed.sniff calculates u(t0+Δt) by numerical quadrature using the line before the
last line in (A4.9). Optionally (argument transform integral in Shunting LIF

constructor) the last line can be used. This, however, appears to be never useful
and will probably be removed.

In the special case

(A4.10) S(t0 + Δt) = S0 + Sσ(t0)e
−τσΔt

(A4.9) reduces to

(A4.11)

u(t0+Δt) = eΔtS0+bσe
−τσΔt

⎡⎣u(t0)e−bσ +
∑
σ′∈L

Lσ′(t0)

τσΔt∫
0

e−fσ,σ′v−bσe
−v

τσ
dv

⎤⎦
= eΔtS0+bσe

−τσΔt

⎡⎢⎣u(t0)e−bσ +
∑
σ′∈L

Lσ′(t0)

bσ∫
bσe−τσΔt

yfσ,σ′−1e−ydy

⎤⎥⎦
= eΔtS0+bσe

−τσΔt

[
u(t0)e

−bσ +
∑
σ′∈L

Lσ′(t0)
[
Γ
(
fσ,σ′ , bσe

−τσΔt
)− Γ (fσ,σ′ , bσ)

]]

with Γ(a, x) =
∫∞
x

e−vva−1dv the (upper) incomplete gamma function. Since the
GSL provides an implementation of the incomplete gamma function which is pre-
sumably faster than numerical quadrature (A4.10) is special-cased in ed.sniff.

Info 1. Unfortunately the difference of incomplete gamma functions in (A4.10)
is prone to loss of significance. Therefore if the relative difference

(A4.12)

∣∣∣∣∣Γ
(
fσ,σ′ , bσe

−τσΔt
)− Γ (fσ,σ′ , bσ)

Γ (fσ,σ′ , bσe−τσΔt) + Γ (fσ,σ′ , bσ)

∣∣∣∣∣
falls below a preset value (argument incomplete gamma in Shunting LIF con-
structor) ed.sniff falls back to numerical quadrature.
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A4.1 Mathematical model

A4.1.1 Neurones

ed.sniff uses the standard model of single-compartment linear leaky integrate-
and-fire neurones, i.e. the state of a neurone is characterised by a single state
variable u which is conveniently interpreted as the membrane potential. As long
as the membrane potential is below a fixed threshold θ it evolves according to
the equation

(A4.13)
d

dt
u(t) = −S0u(t) + I(t)

Without loss of generality the resting potential of model neurones is zero. How-
ever, unlike other authors, we do not normalise out θ or the passive leak conduc-
tance S0. The total synaptic current I may depend on u, see below. Whenever
u(t) = θ an action potential is emitted, u immediately jumps to its reset po-
tential ur and is frozen for a refractory period trefr ≥ 0.1 Afterwards dynamics
returns to equation (A4.13).

A4.1.2 Synapses

Info 2. Since neurones in ed.sniff are single-compartment all incoming synap-
ses of a given type are combined into a single object which, by abuse of language,
will be called a synapse.

Synapses σ in ed.sniff can be current- or conductance-based. Both types
have an “observable” state variable gσ and—possibly—additional “non-observ-
able” state variables. The observable state of a current-based synapse is identical
to the current it evokes. The observable state of a conductance-based synapse
σ is its conductance Sσ. The corresponding synaptic current is then given by

(A4.14) Iσ(t) = [uσ − u(t)]Sσ(t)

where uσ is the synapse’s reversal potential.

Info 3. ed.sniff special-cases purely shunting synapses (uσ = 0). Indeed,
conductance-based synapses are implemented as the sum of a purely shunting
synapse and a current-based synapse with shared state variables.2

Each of these types can either have monophasic (single exponential) or bipha-
sic (difference of exponentials) dynamics.

Pulsed synapses

These are either monophasic

(A4.15)
d

dt
gσ(t) = −τσgσ(t) +

∑
P∈P

JP,σ

∑
i

δ(t− tP,i −ΔP,σ)

1At the moment the membrane potential during refractoriness is irrelevant. This may,
however, change should “graded synapses” ever be implemented for refractory neurones.

2To be entirely precise the states of the two synapses will typically differ by a constant
factor.
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or biphasic

(A4.16)

d

dt
gσ(t) = −τσgσ(t) + g′σ(t)

d

dt
g′σ(t) = −τ ′σg′σ(t) +

∑
P∈P

JP,σ

∑
i

δ(t− tP,i −ΔP,σ)

Here g′σ is the hidden state, τσ, τ
′
σ are the synaptic rates (reciprocal time con-

stants), P is the set of presynaptic cells connected through σ, {tP,i}i are the
spike times of cell P and ΔP,σ, JP,σ are the corresponding synaptic delay and
weight, respectively.

Warning 2. To save a multiplication weights J̃P,σ stored for biphasic synapses

are interpreted by ed.sniff as J̃P,σ =
JP,σ

τ ′σ−τσ
, cf. (A4.18) below. It is the

user’s responsibility to correct for that. In particular, τσ (argument r (shunt

|full) 2 in Shunting LIF constructor) must be smaller than τ ′σ (ar-
gument r (shunt|full) 1 in Shunting LIF constructor)! In ed.sniff a
biphasic current-based synapse will translate a presynaptic spike into the same
total charge as a monophasic current-based synapse with the same τσ if the ratio

of their stored weights is
τ ′σ

τ ′σ−τσ
.

Of course, in between spikes the solutions to (A4.15, A4.16) are

(A4.17) gσ(t0 +Δt) = gσ(t0)e
−τσΔt

and

(A4.18)
gσ(t0 +Δt) =

[
gσ(t0) +

g′σ(t0)
τ ′σ − τσ

]
e−τσΔt − g′σ(t0)

τ ′σ − τσ
e−τ ′σΔt

g′σ(t0 +Δt) = g′σ(t0)e
−τ ′σΔt

respectively, cf. section A4.0.2.
Internally ed.sniff does not represent biphasic synpases using gσ and g′σ

directly. The synaptic state is stored as h1,σ := gσ+
g′σ

τ ′σ−τσ
and h2,σ := − g′σ

τ ′σ−τσ
.

When a synaptic event arrives the corresponding stored weight J̃ is instantly
added to h1,σ and subtracted from h2,σ. The rest of the time h1,σ and h2,σ decay
exponentially with rates τσ and τ ′σ, respectively. Indeed,

Info 4. Every synapse in ed.sniff is implemented as a set of state variables
each of which decays exponentially with its own rate.

Saturation. Optionally, pulsed synapses in ed.sniff support a simple model
of synapse saturation. In this model the weight J of a synaptic event is replaced

by a dampened weight Ĵ := dσ(t)J
dσ(t)+J with

(A4.19) dσ(t) :=

{
gmax,σ − gσ(t) σ monophasic

gmax,σ + h2,σ(t) σ biphasic

where gmax,σ is the saturation constant. Obviously, this model was chosen for
computational economy, not biological plausibility.

Warning 3. For a biphasic and a monophasic synapse with the same τσ to
saturate at the same current the ratio of their saturation constants must equal

τσ
τ ′σ−τσ

, cf. warning 2.
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A4.2 Event-driven integration scheme

The state of a neurone in ed.sniff is only updated when an event arrives.
Broadly, events fall in two categories: External events (typically synaptic input)
and self-events (e.g. the neurone’s own spikes).

A4.2.1 External events

Whenever an external event arrives at a neurone and the neurone is not refrac-
tory its time stamp is replaced with the current time and all its state variables
are updated according to their passive dynamics. If the event is synaptic it is
accounted for by the receiving synapses3. If the neurone was predicted to fire a
spike in the future, the corresponding pending event is removed from the sched-
uler. Based on the updated state a new prediction is made as to whether and
when the neurone is expected to spike assuming no further external events. If
a spike is predicted it is scheduled as a self-event and control is returned to the
scheduler.

A4.2.2 Self-events

When a spiking self-event arrives the neurone’s time stamp and synaptic state
variables are updated and the membrane potential is reset. Synaptic events for
all outgoing synapses are scheduled.

Info 5. To unburden the scheduler and—more importantly—to accelerate post-
synaptic processing of colocalised synapses synaptic events with the same delay
are automatically grouped at the time the network is specified.

If the refractory parameter of the neurone is positive the membrane poten-
tial is frozen and an unfreeze self-event is scheduled. Otherwise a new spiking
prediction is made and if a spike is predicted to occur it is scheduled.

More events are described below.

A4.2.3 The scheduler

Event bookkeeping is handled by a scheduler which is organised as a block of
time bins each of which contains an AVL tree. Unless events are distibuted very
unevenly, using multiple bins helps keeping tree height, and thus access times,
low. AVL trees are ordered balanced binary trees, i.e. elements can be inserted
and removed in logarithmic time and the tree can be traversed in order in linear
time. Of the latter property we only need that the first element can be identified
in constant time. AVL trees are implemented in ed.sniff by means of a version
of the pyavl library that was stripped down in the following way: To save some
overhead leaves of AVL trees are not Python objects.

A4.3 State maintenace and spike prediction

Updating the synaptic state variables is simple and cheap. Each variable needs
to be decreased exponentially according to the time passed since the last update.

3cf. info 5 below
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To update the membrane potential an equation of type (A4.9) must be evaluated
which is more expensive but still straightforward.

Info 6. Cells with only one or no shunting conductances are special-cased,
cf. (A4.11). For the latter case a specialised cell type Linear LIF is also avail-
able. Only cells of type Linear LIF can be presynaptic at graded and local
synapses.

Predicting spike times u(t) = θ is more involved. We will focus on neurones
with shunting conductances.

A4.3.1 Coarse prediction

Fact 1. The threshold θ can only be crossed from below if

(A4.20)
L(t)

S(t)
≥ θ.

Therefore ed.sniff only performs a full (and expensive) spike prediction
for times at which (A4.20) is predicted to be satisfied. To find these times all
zeros of

(A4.21) r(t) := L(t)− θS(t)

must be calculated. r being a linear combination of exponentials we can use

Fact 2. A linear combination

(A4.22)
N∑
i=1

gie
−τit �= 0

of N exponentials has no more than N − 1 zeros

Proof. Without loss of generality one of the rates τi vanishes. Now, take the
derivative and use induction.

Similar to this proof ed.sniff uses derivatives to recursively find all future
zeros. Neighbouring zeros of the derivative enclose at maximum one zero which
is pinned down by bisection.

Remark 1. Taking advantage of the second derivative it should be possible to
narrow down intervals where r changes sign, in such a way that they are either
convex or concave. Then Newton’s method could be safely used. This may be
implemented in a future version of ed.sniff.

As for purely linear neurones: With those the membrane potential is itself a
linear combination of exponentials, cf. (A4.4, A4.27). The above method applied
directly to the membrane potential therefore suffices to predict the next spike.

A4.3.2 Actual prediction

Having obtained all future time intervals where (A4.20) holds, starting from
the left ed.sniff determines whether one of them contains a threshold crossing
u(t) = θ. Using (A4.1) calculating the derivative is cheap. Therefore Newton’s
method is used.
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Info 7. If a spike happens to fall on or near the right interval boundary Newton’s
method may not be very efficient. It may be worthwhile to special-case this, but
currently ed.sniff does not.

This is safe because there is at most one threshold crossing in each interval.
Therefore Newton’s method can overshoot—in which case ed.sniff falls back
to bisection—but it cannot overlook a spike.

Info 8. Because most predicted spikes will be invalidated by intermittent synap-
tic events ed.sniff schedules a self-event to suspend Newton’s algorithm as soon
as the current guess lies more than a given delay ahead (argument granularity
in Shunting LIF constructor). This delay defaults to zero such that spike pre-
diction is suspended after each iteration.

A4.4 Further concepts

A4.4.1 Graded synapses

In ed.sniff a graded synapse is a synapse whose input is not derived from
presynatic APs but from a presynaptic voltage-dependent quantity vμ. Mono-
phasic

(A4.23)
d

dt
gσ(t) = −τσgσ(t) +

∑
μ∈M

Jμ,σvμ(t−Δμ,σ)

and biphasic

(A4.24)

d

dt
gσ(t) = −τσgσ(t) + g′σ(t)

d

dt
g′σ(t) = −τ ′σg′σ(t) +

∑
μ∈M

Jμ,σvμ(t−Δμ,σ)

graded synapses are available. The state vμ itself depends on the presynaptic
membrane potential uP either monophasically

(A4.25)
d

dt
vμ(t) = −τμvμ(t) + uP (t)

or biphasically

(A4.26)

d

dt
vμ(t) = −τμvμ(t) + v′μ(t)

d

dt
v′μ(t) = −τ ′μv′μ(t) + uP (t)

For this mechanism to be compatible with the event-driven architecture of
ed.sniff the presynaptic cell is required to be purely linear, i.e. to have only
current-based synapses. To enforce this

Info 9. Only neurones of type Linear LIF are allowed to be donors of graded
synapses in ed.sniff.
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As between events the membrane potential uP of a purely linear neurone
can be written as a sum of exponentials

(A4.27) uP (t0 +Δt) =

NP∑
i=1

hP,i(t0)e
−τP,iΔt,

cf. (A4.4), the same is true for the voltage-dependent variables

(A4.28) vμ(t0 +Δt) =

Nμ∑
i=1

hμ,i(t0)e
−τμ,iΔt τμ,i = τP,i ∀ i ∈ {1, . . . , NP }

and the observable state of the graded synapse

(A4.29) gσ(t0 +Δt) =

Nσ∑
i=1

hσ,i(t0)e
−τσ,iΔt τσ,i = τμ,i ∀ i ∈ {1, . . . , Nμ}.

The state variables h�,i are partly redundant and relate as follows
(A4.30)

hμ,i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− hP,i

τP,i−τμ,Nμ
vμ monophasic, i ∈ {1, . . . , NP }

vμ +
NP∑
i=1

hP,i

τP,i−τμ,Nμ
vμ monophasic, i = Nμ

hP,i

(τP,i−τμ,Nμ)(τP,i−τμ,Nμ−1)
vμ biphasic, i ∈ {1, . . . , NP }

− v′μ
τμ,Nμ−1−τμ,Nμ

−
NP∑
i=1

hP,i

(τμ,Nμ−1−τμ,Nμ)(τP,i−τμ,Nμ−1)

vμ biphasic, i = Nμ − 1

vμ +
v′μ

τμ,Nμ−1−τμ,Nμ

+
NP∑
i=1

hP,i

(τμ,Nμ−1−τμ,Nμ)(τP,i−τμ,Nμ)

vμ biphasic, i = Nμ

and, analogously,
(A4.31)

hσ,i

Jσ
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− hμ,i

τμ,i−τσ,Nσ
gσ monophasic, i ∈ {1, . . . , Nμ}

gσ
Jσ

+
Nμ∑
i=1

hμ,i

τμ,i−τσ,Nσ
gσ monophasic, i = Nσ

hμ,i

(τμ,i−τσ,Nσ )(τμ,i−τσ,Nσ−1)
gσ biphasic, i ∈ {1, . . . , Nμ}

− g′σ
Jσ(τσ,Nσ−1−τσ,Nσ )

−
Nμ∑
i=1

hμ,i

(τσ,Nσ−1−τσ,Nσ )(τμ,i−τσ,Nσ−1)

gσ biphasic, i = Nσ − 1

gσ
Jσ

+
g′σ

Jσ(τσ,Nσ−1−τσ,Nσ )

+
Nμ∑
i=1

hμ,i

(τσ,Nσ−1−τσ,Nσ )(τμ,i−τσ,Nσ )

gσ biphasic, i = Nσ

Warning 4. For no good reason biphasic, but not monophasic, voltage mecha-
nisms and graded synapses are not represented by the h�,i in ed.sniff but by
[τ�,N�−1 − τ�,N�

]h�,i. The user must adapt synaptic weights accordingly.
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Info 10. In ed.sniff the presynaptic mechanisms of a given type of graded
synapse (cf. info 2) must be compatible, i.e. they must have the same set of
rates {τμ,i}i in (A4.28).

Warning 5. As the state of a graded synapse depends on the presynaptic voltage
all events of the presynaptic cell must be forwarded to and processed by the post-
synaptic cell. Therefore graded synapses can considerably slow down ed.sniff.

Update rules

By way of example we partly spell out the update rules in the case of a biphasic
presynaptic mechanism (Nμ = NP +2) and a monophasic synapse (Nσ = Nμ+
1).

Passive update. Before any event is handled all state variables are brought
up-to-date by the simple rule

(A4.32) h�,i �→ h�,ie
−τ�,iΔt

where Δt is the difference between the event time and the old time stamp.

Presynaptic AP. Assume that the passive leak of P is the last term in the
sum in (A4.27). Only this term will jump in the membrane potential:

(A4.33) hP,NP
�→ hP,NP

− θ + ur

(A4.30, A4.31) dictate the corresponding changes in the voltage-mechanism

(A4.34)

hμ,NP
�→ hμ,NP

− θ − ur(
τP,NP

− τμ,Nμ

) (
τP,NP

− τμ,Nμ−1

)
hμ,Nμ−1 �→ hμ,Nμ−1 +

θ − ur(
τμ,Nμ−1 − τμ,Nμ

) (
τP,NP

− τμ,Nμ−1

)
hμ,Nμ

�→ hμ,Nμ
− θ − ur(

τμ,Nμ−1 − τμ,Nμ

) (
τP,NP

− τμ,Nμ

)
and the post-synapse
(A4.35)

hσ,NP
�→ hσ,NP

+
Jσ(θ − ur)

(τP,NP
− τσ,Nσ )

(
τP,NP

− τμ,Nμ

) (
τP,NP

− τμ,Nμ−1

)
hσ,Nμ−1 �→ hσ,Nμ−1 − Jσ(θ − ur)(

τμ,Nμ−1 − τσ,Nσ

) (
τμ,Nμ−1 − τμ,Nμ

) (
τP,NP

− τμ,Nμ−1

)
hσ,Nμ �→ hσ,Nμ +

Jσ(θ − ur)(
τμ,Nμ

− τσ,Nσ

) (
τμ,Nμ−1 − τμ,Nμ

) (
τP,NP

− τμ,Nμ

)
hσ,Nσ

�→ hσ,Nσ
− Jσ(θ − ur)(

τμ,Nμ
− τσ,Nσ

) (
τμ,Nμ−1 − τσ,Nσ

)
(τP,NP

− τσ,Nσ
)

respectively.

Synaptic event. The presynaptic cell can only receive pulsed synapses. As-
sume an event of weight Jσ′ occurs at a synapse σ′ and let σ′ be e.g.
biphasic. Let the k − 1st and kth term in the sum in (A4.27) correspond
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to its hidden and observable state variables, respectively. The membrane
potential will then4 experience the following changes:

(A4.36)

hP,k−1 �→ hP,k−1 − Jσ′

(τP,k−1 − τP,NP
) (τP,k−1 − τP,k)

hP,k �→ hP,k +
Jσ′

(τP,k − τP,NP
) (τP,k−1 − τP,k)

hP,NP
�→ hP,NP

− Jσ′

(τP,k − τP,NP
) (τP,k−1 − τP,NP

)

As above this translates into rules for the voltage mechanism and the post-
synapse by (A4.30, A4.31). However, the details—being straightforward
as well as cumbersome—are omitted here.

A4.4.2 Local synpases

Local synapses in ed.sniff are very similar to graded synapses. The only differ-
ence is that the presynaptic mechanism of a local synapse is based on the state
of one synapse terminating on the donor rather than the donor’s membrane
potential.

A4.5 Input and Output

A4.5.1 Poisson spikers

External input to ed.sniff networks is generated exclusively by Spiker in-
stances. These are Poisson spikers with time-varying firing intensity.

Let p(t) be the instantaneous firing density. Then the survival rate since t0
is

(A4.37) s(t) = e
−

t∫

t0

p(v)dv

A Poisson process with instantaneous firing density p(t) can thus be simulated
by drawing ξ from the uniform distribution on the unit interval and then solving

(A4.38) ln ξ = −
t∫

t0

p(v)dv

for the next spike time t.
ed.sniff implements the following functional forms of the firing intensity

pn(t) = 0 ”nop”(A4.39)

pf (t) =

{
0 t < tlast spike + trefr

τ else
”fixed”(A4.40)

ppt(t) = o+ r̃
[
p+ (1− p)e−τst − e−τf t

]
”phasic-tonic”(A4.41)

po(t) =

[
o+ a cos

t+ φ

2πω

]
+

”oscillatory”(A4.42)

4That is the theory; in practice warning 2 applies.
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In (A4.40) r̃ either equals r
p (flag normalise not set) or

r

p+(1−p)e−τstmax−e−τf tmax

(flag normalise set) with tmax :=
ln(1−p)+ln τs−ln τf

τs−τf
. Consecutive “epochs” each

with any one of these functional forms can be pieced together. In the case of
phasic-tonic and oscillatory spikers (A4.38) is solved using Newton’s method.

A4.5.2 Event loggers

To record an ed.sniff simulation an instance of one of the two event logger
classes Write All and Store All must be passed to the process event method
of the scheduler. The former will write events chronologically to a file, the latter
will group them by receiving cell and store them in memory in a Python dic-
tionary. Both provide limited support for event filtering. The Store All class
offers three event tallying methods:

1. recording events

2. counting events

3. making a phase histogram, assuming periodic firing rate modulation

A4.6 Miscellaneous implementation details

Synapse id’s are integers based at FIRST SYN in the follwing order

1. pulsed purely shunting monophasic,

2. graded/local purely shunting monophasic,

3. pulsed purely shunting biphasic,

4. graded/local purely shunting biphasic,

5. pulsed conductance-based monophasic,

6. graded/local conductance-based monophasic,

7. pulsed conductance-based biphasic,

8. graded/local conductance-based biphasic,

9. pulsed current-based monophasic,

10. graded/local current-based monophasic,

11. pulsed current-based biphasic,

12. graded/local current-based biphasic.

Synaptic rates are stored as negative numbers, the (Linear|Shunting) LIF

constructor flips the sign.

Graded and local synapses do not implement their postsynaptic part. They
rather tap into an existing pulsed synapse which is specified as the second
element of argument gr (shunt|full|lin)[ bi] to the Shunting LIF

constructor.

Graded and local synapses can currently only terminate on cells of type
Shunting LIF. Lifting this restriction would in principle be possible but
involve quite some work.
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Graded synapses currently have a hard complexity limit (module constant
MAX WEIGHT GROUP). This caps the numberNμ of state variables in (A4.28).
The limit can be extended at compile time by changing MAX WEIGHT GROUP

in the C source.

Graded and local synapses cannot currently handle refractory donors.

Event groups arise from automatic grouping of outgoing synapses by delay
and target cell at the time the network is specified (method set[ (graded

|local)] synapses of Cell object). This optimisation reduces the num-
ber of scheduled events and avoids multiple state updates triggered by
simultaneously arriving events. On the downside event loggers cannot cur-
rently resolve event groups which makes simulation logs less straightfor-
ward to read.
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ed.sniff: an event-driven simulator of networks of integrate-and-fire neurones

class Cell()

Cell ( cell_type, id, spiking_rules, scheduler, g_full=NULL, g_shunt=NULL, g_lin=NULL,

g_full_1=NULL, g_shunt_1=NULL, g_lin_1=NULL, g_full_2=NULL, g_shunt_2=NULL,

g_lin_2=NULL, u=0.0, t=0.0)

Cell object.

Parameters

cell_type [Linear_LIF or Shunting_LIF or Spiker] Note: constructor
signature depends on cell type type

id [str] cell identifier

spiking_rules [iterable] only if cell_type is Spiker; dicts describing consecutive

“epochs”; see Spiker for details

scheduler [Scheduler] only if cell_type is Spiker; the scheduler to hook up

with; the first spike is calculated and scheduled immediately; this still leaves

time to create synapses

g_lin [iterable] only if cell_type is Shunting_LIF or Linear_LIF; initial

conductances of linear (“current-based”) synapses

g_lin_1 [iterable] only if cell_type is Shunting_LIF or Linear_LIF; initial

values of first state variables of linear (“current-based”) synapses

g_lin_2 [iterable] only if cell_type is Shunting_LIF or Linear_LIF; initial

values of first state variables of linear (“current-based”) synapses

g_full [iterable] only if cell_type is Shunting_LIF; initial conductances of full

conductance-based synapses

g_full_1 [iterable] only if cell_type is Shunting_LIF; initial values of first state

variables of full conductance-based synapses

g_full_2 [iterable] only if cell_type is Shunting_LIF; initial values of first state

variables of full conductance-based synapses

g_shunt [iterable] only if cell_type is Shunting_LIF; initial conductances of

purely shunting (reversal potential = resting potential) synapses

g_shunt_1 [iterable] only if cell_type is Shunting_LIF; initial values of first

state variables of purely shunting (reversal potential = resting potential) synapses

g_shunt_2 [iterable] only if cell_type is Shunting_LIF; initial values of first

state variables of purely shunting (reversal potential = resting potential) synapses

u [float] only if cell_type is Shunting_LIF or Linear_LIF; initial membrane

potential

t [float] initial time; must not be in the future

detach_synapses
detach_synapses()

Remove all (pulsed | graded | local) outgoing synapses.

Returns None

identifier
the cell’s identifier string

set_graded_synapses
set_graded_synapses (params)

Set outgoing graded synapses.
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Parameters

params [ndarray of dtype synapse_descriptor] the synapse record

Returns None

The presynaptic (this) Cell must be of type Linear_LIF.

Each individual synapse is specified by a synapse_descriptor with the following fields:

delay [float] time difference between presynaptic AP and postsynaptic event

target [object] the postsynaptic Cell

type [int] the synapse type; this is the index into the synapse table of the target cell type plus

an offset of FIRST_SYN

weight [float] the synaptic strength

Matching presynaptic voltage-mechanisms are found automatically. An exception is raised if there is

none.

set_local_synapses
set_local_synapses (synapse_no, params)

Set outgoing local synapses.

Parameters

synapse_no [int] presynaptic synapse type based at FIRST_SYN

params [ndarray of dtype synapse_descriptor] the synapse record

Returns None

The presynaptic (this) Cell must be of type Linear_LIF.

Each individual synapse is specified by a synapse_descriptor with the following fields:

delay [float] time difference between presynaptic AP and postsynaptic event

target [object] the postsynaptic Cell

type [int] the synapse type; this is the index into the synapse table of the target cell type plus

an offset of FIRST_SYN

weight [float] the synaptic strength

Matching local mechanisms of the donor synapse are found automatically. An exception is raised if

there is none.

set_synapses
set_synapses (params)

Set outgoing pulsed synapses.

Parameters

params [ndarray of dtype synapse_descriptor] the synapse record

Returns None

Each individual synapse is specified by a synapse_descriptor with the following fields:

delay [float] time difference between presynaptic AP and postsynaptic event

target [object] the postsynaptic Cell

type [int] the synapse type; this is the index into the synapse table of the target cell type plus

an offset of FIRST_SYN

weight [float] the synaptic strength

class Linear_LIF()
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Linear_LIF ( g_leak, r_lin=NULL, r_lin_1=NULL, r_lin_2=NULL, r_vm=NULL, r_vm_1=NULL,

r_vm_2=NULL, sat_lin=NULL, sat_lin_bi local=NULL, u_reset=0.0, u_thresh=1.0, t_refr=0.0)

Linear leaky integrate-and-fire neurone type with linear synapses.

Use a Linear_LIF instance as first argument to the Cell constructor to create cells of this type.

Parameters

g_leak [float] passive leak conductance

r_lin [iterable] decay rates of monophasic synapses

r_lin_1 [iterable] decay rates of hidden state variables of biphasic synapses

r_lin_2 [iterable] decay rates of observable state variables of biphasic synapses

r_vm [iterable] decay rates of monophasic voltage mechanisms

r_vm_1 [iterable] decay rates of hidden state variables of biphasic voltage mech-

anisms

r_vm_2 [iterable] decay rates of observable state variables of biphasic voltage

mechanisms

sat_lin [iterable] saturation constants of monophasic synapses

sat_lin_bi [iterable] saturation constants of biphasic synapses

local [iterable] specification dicts, one for each synapse

u_reset [float] reset potential

u_thresh [float] firing threshold; must be positive and greater u_reset

t_refr [float] refractory period

Synapse-local mechanisms are specified as dicts with the following (optional) keys:

r_lm [iterable] decay rates of monophasic mechanisms

r_lm_1 [iterable] decay rates of hidden state variables of biphasic mechanisms

r_lm_2 [iterable] decay rates of observable state variables of biphasic mechanisms

Synapses without local mechanisms can be indicated by False or None or an empty dict.

class Scheduler()
Scheduler(no_bins, cycle_time)

Scheduler object

Parameters

no_bins [int] number of time bins, two at least; larger numbers speed up the sched-

uler as long as typical time bins contain at least one event

cycle_time [float] time horizon of the scheduler; predicted events should not lie

further in the future

Uses AVL trees to store future events.

process_event
process_event(output=NULL, steps=1)

Retrieve and processes one or more events from the scheduler

Parameters

output [Store_All or Write_All] event logger; required to retrieve simu-

lation output

steps [int] maxmimum number of events to process; if network activity ceases

earlier this is handled gracefully
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Returns n, t

n [int] number of events processed

t [double] current simulation time

to_recarray
to_recarray()

Return all scheduled events and bin sizess.

This is mostly useful for introspection and debugging.

Returns (events, bin_counts)

events [ndarray of dtype synapse_descriptor] all scheduled events in

chronological order; value stored in field delay is absolute time; field weight

is only valid for individual pulsed synaptic events

bin_counts [ndarray] number of events in each scheduler bin

class Shunting_LIF()

Shunting_LIF ( g_leak, r_shunt=NULL, r_full=NULL, r_lin=NULL, E_full=NULL, sat_shunt=NULL,

sat_full=NULL, sat_lin=NULL, r_shunt_1=NULL, r_full_1=NULL, r_lin_1=NULL,

E_full_bi=NULL, sat_shunt_bi=NULL, sat_full_bi=NULL, sat_lin_bi=NULL, r_shunt_2=NULL,

r_full_2=NULL, r_lin_2=NULL, gr_shunt=NULL, gr_full=NULL, gr_lin=NULL,

gr_shunt_bi=NULL, gr_full_bi=NULL, gr_lin_bi=NULL, u_reset=0.0, u_thresh=1.0, t_refr=0.0,

granularity=0.0, transform_integral=False, incomplete_gamma=0.001)

Linear leaky integrate-and-fire neurone type with full synapses.

Use a Shunting_LIF instance as first argument to the Cell constructor to create cells of this type.

Parameters

g_leak [float] passive leak conductance

r_shunt [iterable] decay rates of monophasic purely shunting synapses

r_full [iterable] decay rates of monophasic conductance-based synapses

r_lin [iterable] decay rates of monophasic current-based synapses

E_full [iterable] reversal potentials of monophasic conductance-based synapses

sat_shunt [iterable] saturation constants of monophasic purely shunting synapses

sat_full [iterable] saturation constants of monophasic conductance-based

synapses

sat_lin [iterable] saturation constants of monophasic current-based synapses

r_shunt_1 [iterable] decay rates of hidden state variables of biphasic purely shunt-

ing synapses Important: must be larger than r_shunt_2!

r_full_1 [iterable] decay rates of hidden state variables of biphasic conductance-

based synapses Important: must be larger than r_full_2!

r_lin_1 [iterable] decay rates of hidden state variables of biphasic current-based

synapses

E_full_bi [iterable] reversal potentials of biphasic conductance-based synapses

sat_shunt_bi [iterable] saturation constants of biphasic purely shunting synapses

sat_full_bi [iterable] saturation constants of biphasic conductance-based synapses

sat_lin_bi [iterable] saturation constants of biphasic current-based synapses

r_shunt_2 [iterable] decay rates of observable state variables of biphasic purely

shunting synapses Important: must be smaller than r_shunt_1!
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r_full_2 [iterable] decay rates of observable state variables of biphasic

conductance-based synapses Important: must be smaller than r_full_1!

r_lin_2 [iterable] decay rates of observable state variables of biphasic current-

based synapses

gr_shunt [3-tuple of iterables (rates, targets, sizes) ] specification of monophasic

graded purely shunting synapses

gr_full [3-tuple of iterables (rates, targets, sizes) ] specification of monophasic

graded conductance-based synapses

gr_lin [3-tuple of iterables (rates, targets, sizes) ] specification of monophasic

graded current-based synapses

gr_shunt_bi [3-tuple of iterables (rates, targets, sizes) ] specification of biphasic

graded purely shunting synapses

gr_full_bi [3-tuple of iterables (rates, targets, sizes) ] specification of biphasic

graded conductance-based synapses

gr_lin_bi [3-tuple of iterables (rates, targets, sizes) ] specification of biphasic

graded current-based synapses

u_reset [float] reset potential

u_thresh [float] firing threshold; must be positive and greater u_reset

t_refr [float] refractory period

granularity [float] the spike predictor is suspended as soon its best guess lies more

than this parameter in the future

transform_integral [bool] do not use!

incomplete_gamma [float] threshold below which to assume loss of significance

in relative difference of incomplete gamma functions

Each family of graded synapse is specified by three parameters:

rates [iterable] the decay rates of the presynaptic voltage mechanisms as a flat sequence

targets [iterable] the indices (based at FIRST_SYN) of the target synapses; these must be in the

matching family

sizes [iterable] the sizes of the presynaptic voltage mechanisms; these must sum to the length of

rates

class Spike_Counter()
Spike_Counter (ignore_before=0.0, ignore_after=inf)

For use with Store_All objects; counts events.

Despite the class name all kinds of events are counted.

Parameters

ignore_before [float] point in time to start counting from

ignore_after [float] point in time to cease counting after

count
count ()

Return the current count.

Returns

n [int] number of events recorded so far
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class Spike_Histogram()
Spike_Histogram (ignore_before, ignore_after, cycle, no_bins)

For use with Store_All objects; make phase histogram.

Events are binned according to time modulo cycle. Despite the class name all kinds of events are counted.

Parameters

ignore_before [float] point in time to start counting from

ignore_after [float] point in time to cease counting after

cycle [float] cycle time

no_bins [int] number of histogram bins to use; two at least

counts
current histogram bin counts (read only)

frequencies
frequencies (time)

Return normalised histogram in units of 1/time.

Parameters

time [double] current simulation time; the instance does not now itself! Must be

later than ignore_before and will be replaced by ignore_after if it is later than

that, cf. Spike_Histogram constructor

class Spiker()
Spiker (seed=0)

Poisson spiker with time-varying firing intensity.

Use a Spiker instance as first argument to the Cell constructor to create cells of this type.

Parameters

seed [int] for random number generator

The firing rate envelope of a spiker must be passed to the Cell constructor as argument spiking_rules as an

iterable returning consecutive “epoch” descriptors. Epoch descriptors are 3-tuples (type, dt, params) with:

type [str] functional form of the envelope for the epoch; see below for legal values

dt [float] epoch duration

params [dict] parameters for envelope function

The following functional forms taking the indicated parameters are supported

“nop” ()

no spikes

“fixed” (tau, t_refr=0.0)

tau [float] firing rate not accounting for refractoriness

t_refr [float] absolute refractory period

fixed firing rate

“phasic-tonic” (

tau_fast, tau_slow, r=1.0, plateau=0.0, offset=0.0, normalise=1, ytol=1e-8)

tau_fast [float] faster exponential rate

tau_slow [float] slower exponential rate

r [float] target firing rate excluding offset; also see normalise
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plateau [float] steady-state level relative to dynamic range; 0 <= plateau < 1

offset [float] fixed firing rate offset; must be nonnegative

normalise [int] whether to normalise steady-state (normalise=0) or maximal (normalise=1)

firing rate to r

ytol [float] tolerance for Newton’s method

modified difference of exponential accomodating a non-zero steady-state firing rate

“oscillatory” (

frequency, phase=0.0, offset=1.0, amplitude=1.0, ytol=1e-8)

frequency [float] oscillation frequency

phase [float] in units of cycles; phase=0 gives a cosine, phase=-1/4 a sine

offset [float] fixed firing rate offset; must be >= -amplitude

amplitude [float] oscillation amplitude

ytol [float] tolerance for Newton’s method

oscillating firing rate

class Store_All()

Store_All ( filter, recorder, event_dict=NULL, cell_watcher_args=NULL, cell_watcher_kwds=NULL, for-

mat=NULL)

Event logger writing to a dict with keys the Cell id’s.

Events are therefore grouped by receiving Cell before they are tallied.

Parameters

filter [str] what kind of events to record

recorder [str] how to record events

event_dict [dict] the dict to record to; if not passed a new one will be created

cell_watcher_args [tuple] only needed if recorder is “count” or “histogram”

cell_watcher_kwds [dict] only needed if recorder is “count” or “histogram”

format [str] only needed if recorder is “list”

Filter can be one of

“all” : do not filter

“APs” : only record spikes

“no input” : ignore Spiker cells

“APs no input” : only record spikes not originating from Spiker cells

“APs no input but R” : only record spikes not originating from Spiker cells whose id does

not start with “R”

Recorder can be one of

“list” : create a list for each Cell; requires format argument

“count” : create a Spike_Counter for each Cell passing cell_watcher_args and

cell_watcher_kwds as args and kwds to the constructor

“histogram” : create a Spike_Histogram for each Cell passing cell_watcher_args and

cell_watcher_kwds as args and kwds to the constructor
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Format can be one of

“full” : for each event record a tuple (time, event type) if it is an event group and a tuple (time,

event type, weight) if it is a single event. Warning: if the event is graded synaptic or local

synaptic the weight will be gibberish!

“time” : only record event times

log
the dictionary of events recorded

class Write_All()
Write_All (file_name, filter)

Event logger writing to a file.

Writes one line with time, cell id, event code and weight per event. If the event is a group of events the

weight will be omitted. If the event is graded weight will be gibberish. Destroy object to flush buffer.

Parameters

file_name [str] name of log file; file will be opened in append mode

filter [str] what kind of events to record

Filter can be one of

“all” : do not filter

“APs” : only record spikes

“no input” : ignore Spiker cells

“APs no input” : only record spikes not originating from Spiker cells

classify_spikes()

classify_spikes(trains, lfp, dt, ang_disp, ang_dev, lfp_criterion, lower=0.0, use_last_lfp_sample=0,

axis=-1)

Currently dysfunctional!

Separate synchronous and asynchronous spikes.

lfp()
lfp(interneurones, filter, fx, fy)

Compute LFP on decimated grid from IN activity and filter.

Parameters

interneurones [ndarray of shape (nt, ny, nx)] firing rates of interneurones

filter [ndarray of shape (ny, nx)] must zero-pad to match shape of IN grid

fx [int] decimation factor for x-axis. Must divide nx. Attention: order of axes is

y, x!

fy [int] decimation factor for y-axis. Must divide ny. Attention: order of axes is

y, x!

Returns

lfps [ndarray of shape (nt, ny/fy, nx/fx)] the local field potential, obtained from

interneurone activity by spatially filtering and decimating

train_to_Dirac()
train_to_Dirac(trains, dt, nt, lower=0.0, axis=-1, interpolate=1)

Convert spike trains to sums of “Dirac functions”.

Parameters
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trains [ndarray of dtype object] spike trains; each train is either None or an iterable

returning spike times

dt [float] size of time bins to use in output array

nt [int] number of time bins to use in output array

lower [float] left boundary of first time bin

axis [int] index of dimension where to insert time axis in output

interpolate [int] whether to linearly interpolate (1: yes, 0: no); if yes, a rectangle

of width dt centred at spike time is tallied to the nearest bins according to area

of overlap

Returns

Dirac [ndarray of dtype double] array of instantaneous firing rates with time res-

olution dt; array has shape of trains with time axis inserted as dimension no.

axis

exception error
Bases: exceptions.Exception

synapse_descriptor
a numpy dtype with fields

‘delay’ : float

‘target’ : object

‘type’ : int

‘weight’ : float

used for synapses and events

note that itemsize is larger than sum of field sizes

FIRST_SYN=5
synapse count starts here

MAX_WEIGHT_GROUP=5
maximum number of state variables permissible in voltage mechanisms
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