Weiner, J. and Stoll, P. and Muller-Landau, H. and Jasentuliyana, A.. (2001) The effects of density, spatial pattern, and competitive symmetry on size variation in simulated plant populations. The American naturalist, Vol. 158, Nr. 4. pp. 438-450.
Full text not available from this repository.
Official URL: http://edoc.unibas.ch/dok/A5250246
Downloads: Statistics Overview
Abstract
Patterns of size inequality in crowded plant populations are often taken to be indicative of the degree of size asymmetry of competition, but recent research suggests that some of the patterns attributed to size-asymmetric competition could be due to spatial structure. To investigate the theoretical relationships between plant density, spatial pattern, and competitive size asymmetry in determining size variation in crowded plant populations, we developed a spatially explicit, individual-based plant competition model based on overlapping zones of influence. The zone of influence of each plant is modeled as a circle, growing in two dimensions, and is allometrically related to plant biomass. The area of the circle represents resources potentially available to the plant, and plants compete for resources in areas in which they overlap. The size asymmetry of competition is reflected in the rules for dividing up the overlapping areas. Theoretical plant populations were grown in random and in perfectly uniform spatial patterns at four densities under size-asymmetric and size-symmetric competition. Both spatial pattern and size asymmetry contributed to size variation, but their relative importance varied greatly over density and over time. Early in stand development, spatial pattern was more important than the symmetry of competition in determining the degree of size variation within the population, but after plants grew and competition intensified, the size asymmetry of competition became a much more important source of size variation. Size variability was slightly higher at higher densities when competition was symmetric and plants were distributed nonuniformly in space. In a uniform spatial pattern, size variation increased with density only when competition was size asymmetric. Our results suggest that when competition is size asymmetric and intense, it will be more important in generating size variation than is local variation in density. Our results and the available data are consistent with the hypothesis that high levels of size inequality commonly observed within crowded plant populations are largely due to size-asymmetric competition, not to variation in local density.
Faculties and Departments: | 05 Faculty of Science > Departement Umweltwissenschaften > Ehemalige Einheiten Umweltwissenschaften > Naturschutzbiologie (Baur) |
---|---|
UniBasel Contributors: | Stoll, Peter |
Item Type: | Article, refereed |
Article Subtype: | Research Article |
Publisher: | University of Chicago Press |
ISSN: | 0003-0147 |
Note: | Publication type according to Uni Basel Research Database: Journal article |
Identification Number: |
|
Last Modified: | 22 Mar 2012 14:28 |
Deposited On: | 22 Mar 2012 14:04 |
Repository Staff Only: item control page